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ABSTRACT

The present work deals with the evaluation of Fracture
Mechanics parameters in some pressure vessel components, viz.
corner cracks in the inside transition of a junction of thick-
walled cylinders.

This study is confined to elastic, isotropic and homog-
eneous materials. No temperature effects have been considered.

Such crack configurations, because of their particular
geometry and loading conditions, are fully three dimensional
in nature and consequently have been dealt with as such.
Moreover these configurations are gecmetrically too complicated
to be treated analytically and for this reason finite
element methods have been applied.

A three dimensional finite element computer program
using brick type elements has been brought into use and mesh
generation, plotting routines and computational procedures,
including substructuring schemes are described in detail.

Special "crack tip elements" have been introduced to
model the singularity in stress and strain fields near the
crack tips.

The effectiveness of such elements is demonstrated by
performing analyses of Compact Tension Specimens, Corner and
Part-through crack configurations and Semi-circular cracks
emanating from the inner surface of thick-walled cylinders
subjected to internal pressure.

Finally, stress intensity factors have been obtained

for some hypothetical cracks of different sizes situated in
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the plane of highest nominal stresses near the intersection
regions of a T-junction of thick walled cylinders.

Consideration is given to the application of these
results to a fracture safety analysis of this particular
component.

Throughout the present work the variation of stress
intensity factor along the crack fronts of the various con-
figurations is discussed along with the general stress

behaviour of the cracked and uncracked geometries.
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CHAPTER 1

INTRODUCTION TO THE PROBLEM

1.1 Definition

Thick walled pressure vessels occur in many enginee-
ring installations and modern technology requires these
components to work under increasingly severe conditions.

The utilization of new'materials, the introduction of new
fabrication techniques, the requirements either to work
under extremely high or low temperatures such as in the
cases that occur in boilers and reactors, or to work under
adverse environmental conditions, impose new demands on
methods of design and analysis.

It is well known that a problem of stress concentration
arises in the regions of intersections or changes in
geometry, therefore knowledge of the stress distribution in
these areas is important to ensure proper and safer designs.

Furthermore, the existence of crack starting tendencies,
cracks or crack like flaws in the structure can eventually
lead to failures at loads well below the ones specified by
the conventional strength of structures.

On the other hand, the science of Fracture Mechanics
can be used, providing the designer with an approach to
safe design, even if components have crack-like defects.

Figure 1.1 a) shows a typical construction of a pressure

vessel used in Nuclear Reactor Technology. As can be seen,



these vessels normally have cylindrical and/or spherical

shapes with several discontinuities like nozzles, and the
supports of the vessel. During the last five years scme

attempts have been made (1)), (2), (3), (4), (5) to

access the severity of cracks in those nozzles.

Figure 1.1 b) shows a typical component of the piping
system associated with those vessels, they differ substant-
ially in geometry (diameter ratio and size) from the vessel
nozzles but no reports on Fracture studies of these
configurations could be found in recent literature. Such
a study was carried out by the author on amain steam vent
pipe "T" junction of a C.E.G.B. power station.

Such components seem to be too compact to be treated
analytically and for this reason recoursec is to be made to
the Finite Element Method already adopted by other workers
in this field of studies.

Chapters 2 and 3 describe the Finite Element Method,
its computer implementation and relative merits for the
evaluation of Fracture Mechanics parameters. Finally,
Chapter 4 presents results for some crack configurations
in the considered "T" piece.

In the next three sections, design criteria for pressure
vessels are outlined followed by a brief review of Linear
Elastic Fracture Mechanics (LEFM) with some reference to

three dimensional crack problems.

(*) - Numerals in round brackets indicate references
described in Appendix 5 of this thesis.



1.2 Design Criteria, The Role of Fracture Mechanics

The design of pressure vessel components has in the
past received considerable attention and a comprehensive
report on its developments can be found elsewhere in the
literature, (6), (7).

In the late fifties, as a result of the accumulated
experience the basic philosophy of design was mainly
governed by two general rules, first, keeping overall
stress levels at low values and second, requiring ductile
materials to safely tolerate local peak stresses and
discontinuity stresses.

The development of Nuclear Power Technoloqgy, where
concern for safety and possible serious hazards was a clear
stimulus for further research in this area.

The simultaneous development of electronic digital
computers made possible more thorough structural analysis
and improvement on the existing evaluation methods.

A better knowledge of material behaviour beyond the
elastic limit lead to a more accurate elastic plastic
analysis of pressure vessels with the use of numerical
methods and of the equivalent plastic stress-strain curve
of the material.

Pressure vessels are often subjected to cyclic loading
systems either due to flow induced vibrations or cyclic
stresses generated by major pressure changes and thermal
gradients due to start up and shut down conditions. Although
for the best part of this century fatigue has been

recognised as a potential threat to safety and reliability



cf enginecering structures, it was only in the fifties

that this type of failure was explicitly recognized in
pressure vessels and specific procedures and criteria were
developed for evaluating fatigue damage.

We have seen so far, a first group of engineering
situations where the successful application of the outlined
design criteria did not take into account the service life
expected. Moreover, many structures in the past, have
experienced brittle fracture by application of a small
number of loading cycles or even failures at proof test
stages which were directly attributable to pre-existing
defects. Reports on spectacular brittle failures of pressure
vessels are well known in the literature of which some
examples are given in kefs. (8), (%) and (10).

The necessity to assume the existence of cracks in
structures becomes evident. However, at the time it was felt
to be impossible to evaluate fast failure in terms of
stresses. This fact justified the use of the temperature
transition approach described by Pellini et al(ll), based
on information obtained from notched impact tests. This
method of selection of materials provided and still provides
helpful information to the non fracture specialist, but
it cannot be applied directly to assess the resistance
of a piece in service.

The relationships between crack instability, the
surrounding stress fields and the critical flaw sizes,
forming no part of traditional design methods, remained

unsolved. It was only in the late forties, that Irwin



and Orowan laid the foundaticn of Fracture Mechanics, and
more recently, in the sixties that its principles were
applied providing then, the continuity between the design
method for flawed and unflawed structures.

During the last decade Fracture Mechanics and partic-
ularly the concepts of stress intensity factor and critical
stress intensity factor have advanced to the stage where
it is of direct value for the prevention of brittle frac-
ture in thick walled pressure vessels, and efforts are
being made to include these concepts in standards and codes
of practice.

An excellent compilation of papers on the developments
of the art in the 1960 - 70 period and onwards can be found
in ASME publications (12), (13) and in a recent Conference
on Reactor Technology (14).

4

1.3 Review on the Linear Elastic Fracture Mechanics

1.3.1 Introduction

The main objective of Fracture Mechanics is to study
in a macroscopic manner the fracture phenomenon as a function
of the applied loads. Such a study, in the absence of
large plastically yielded areas surrounding the cracks or
flaws, is referred to as Linear Elastic Fracture Mechanics
(LEFM) .

Provided fracture occurs prior to large-scale yielding
of the structural member LEFM can be extended to study
fracture problems involving moderate plastic yielding by

incorporating various plasticity correction factors.



The classical stress function method of solving
elasticity problems described by Timoshenko et al. (15)
was first used by Inglis (16) to derive an equation (1.1)
for the maximum stresses at the tip of an elliptical notch
with major axis a on the x direction and minor axis b

subjected to a remote stress o on the y direction.
(0. =0 (1 + 2_ba_) (1.1)

The ellipse degenerates to a crack when a >> b and again
the methods of elasticity can be used (17), to calculate

the stresses in the vicinity of the crack. The maximum

tensile stress occurs at the end of the crack, (o ) '
Y nax
and is given approximately by
(o) = 2 o‘}é for a>> ¢ (1.2)
Y max P

where p is the radius of curvature at one end of the ellipse

and is given by p = b?/a.

1.3.2 The Energy Balance Approach to Fracture

The energy balance approach to fracture was first
proposed by Griffith (18) based on the Inglis' solutions.

The basic idea in his theory is that a crack will
begin to propagate if the elastic energy released by its
growth is greater than the energy required to create the
fractured surfaces. The main value of this thermodynamic
approach is that by considering the changes in energy as

the crack grows, it can ignore the details of the fracture



process at the crack tip.

For a problem of a crack of length 2a in a plate under
remote tension o, Griffith then found that the critical
stress, Our? required for crack growth is given by the

following expressions

Oy Ya =\wg%l in plane stress conditions (1.3.a)

_ 2Ey . . o
Oy Ya = Q7TT:?TT" in plane strain conditions (1.3.b)

where E is the Young's Modulus
Y is the specific surface energy
v is the Poisson's ratio

Since the terms on the right hand side of expressions
(1.3) are only material constants the factor och§ should be
an intrinsic material parameter. The experiments Griffith
performed on glass have shown encouraging results, in fact
at the instance of fracture a constant value of Oar Va was
obtained over a wide range of crack lengths.

However, Griffith's work could not be applied to materials
which did not behave in a pure elastic manner, thus vir-
tually ruling out consideration of any engineering problem.

Some twenty five years later Irwin, (19), and Orowan,
(20), in their analysis of fracture suggested that the energy
released in the fracture process was mainly dissipated by

producing plastic flow around the crack tip. A quantity Yp



called plastic work was theh introduced and was estimated

to be on the order 10® times greater than Griffith's

surface energy 2y which enabled Orowanto re-write equations
(1.3) in the following manner by simply neglecting the

Griffith term 2y

Ey
o Ya = P
cr T

Eyp . L
o Ya =4/————- in plane strain conditions (1.4.Db)
cr m(1l-v?)

Surprisingly enough this new quantity Y appeared to

in plane strain conditions (1.4.2)

be independent of the initial crack length, hence could
still he regarded as a material property. Furthermore, if
the plastic zone was small enough, all the merits in
Griffith's idea were still safeguarded and a theory corr-
elating fracture behaviour could still be substantiated.
In Irwin's view the modified theory consisted of evaluating
the strain energy release rate with respect to crack extension
at the point of fracture. If the fracture process were
essentially the same, regardless of the loading conditions
and geometry, the fracture event would occur when the strain
energy release rate reached a critical value, Gc, and this
value would be a material property.

As stated by Irwin, the Gc concept plays a similar
role in relation to fracture as the yield strength to plastic
deformation. As in the case of design methods based on the
knowledge of the stress-strain curve of the material,

experiments on cracked specimens enable the onset of fracture



to be predicted in real structures and this ability is
sufficient justification for utilizing the concept as an

engineering approach.

1.3.3 The Stress Intensity Factor Approach to Fracture

In Griffith's theory of brittle fracture a critical
stress-crack size relation was derived from an energy
postulate. An alternative interpretation of the fracture
phenomenon leads to stress-crack size relations by focussing
attention on the elastic stresses close to the tip of the
crack.

Based on the method of Westergaard (24), Irwin (19),
(22), (23), derived a general solution for the stress
system at the tip of an ideally plane sharp ended crack in
an isotropic elastic body. Referring to Figure 1.3, a
local coordinate system is chosen so that the z-axis is
parallel with the 1leading edge of the crack, the y~direction
is perpendicular to the plane of the crack and the x-axis
is such that the plane (xy) is normal to the crack front 1line.

If in the case of a straight front crack the z-dimension
of the body is large or small, plane strain or plane stress
will exist respectively. More realistically, in all but
thin plate-like geometries a mixed plane stress plane-strain
situation will exist across the z direction varying from
plane stress at the surface to plane strain at the central
area. Any plastic deformation which may occur at the crack
borders is neglected in a first approximation and will be
subsequently treated as a minor correction to the elastic

analysis.
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Three basic modes (I, II, III) of crack surface

displacements which can lead to crack extension are shown

in Figure 1.2. During the course of this work attention

will be confined only to the opening mode of separation,

mode I.

Corresponding to opening mode conditions, the stresses

and displacements at points close to the crack front can

be shown (25) to have the form (see Figure 1. 3)

K
I
o, = cos = ( 1l-sin 5 sin EL)
X v2nx 2 2 2
KI
o, = cos ) ( 1+sin = sin 30
Yy v2nr 2 2
_ % . 0 36
= sin = C€OS = cos — +
XY fonr 2 2 2
o, = v(oX + oy) for plane strain
=0 for plane stress
K
e N ¥ [ } 9 _
U, =g V@ (2x=1)cos > cos
K
_ I 2r [ U
uy = B - (2x+1)sin 5 sin
u, = 0 for plane strain
where Kk = 3-4v for plane strain
3-v

= — for plane stress

+ L3 L .
+ . . L
36

(1.5.a)

(1.5.b)

(1.5.c)

(1.5.4)

(1.6.a)

(1.6.b)



The omitted terms of these series expansions involve
increasing half powers of the ratio of r divided by the
crack length and consequently are important only at large
distances from the crack tip.

Results similar to expressions (1.5) and (1.6) can be
obtained for the edge sliding mode II and the tearing
Mode III.

The K term in these equations is independent of the
polar coordinates r and 6, and serves only as a positive
multiplying factor which can be shown to depend on the ap-
plied boundary load and the crack size. In Fracture
Mechanics terminology, K is referred to as the "stress
intensity factor" (SIF).

The significance of the above expressions is due to
their generality since they hold for any plane crack, thus
the elastic stresses and displacements around the crack tip
are entirely characterized by the stress intensity factor K.
Hence it must be expected that fracture will occur when K
reaches a critical Kc.

The K, concept should indeed be expected to be equiva-
lent to the Gc concept already described. In fact Irwin
(19), (22), using virtual work arguments has shown that
the strain energy release rate could be identified with K

according to the following expression:

G, = K’I/E' (1.7)

where E!

E(Young's Modulus) for plane stress conditions

or E' = E/(1-v?) for plane strain conditions.
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It was mentioned early in this section that LEFM
should take into account a plasticity correction factor.

In fact the stress solutions (1.5) predict infinite
values of stress at the crack tip (r=0) which cannot occur
in practice of course. Plastic flow will therefore take
place in areas of small r values. The approximate extent
of the region of plastic flow can be estimated by substit-
uting a yield criterion into the stress field equation,

leading to

B S 3
2m UYS

)? for plane stress conditions (1.8)

ry is the distance ahead of the crack tip where Gy reaches
the yield strength of the material.

For plane strain conditions, due to the triaxialaty
effects (see Figure 1.4) allowance must be made for the
elevation of yield stress ahead of the crack and this 1is
normally done (26) by substituting V3 oys foroy, leading to

1 K

_1 . L
Y1y T %r ( s ) for plane strain conditions (1.9)

Current test specimen dimensional specifications (21)

*
(56) in order to ensure proper determination of KIc values( )

require that the crack length a, the specimen thickness B the

uncracked ligament w-a should all exceed 2.5(KIC/oys)’.

(*) = In K I denotes opening mode I

Ic’

c denotes critical for onset of fracture
under plane strain conditions.



This limit should be proportional to the plastic zone

size rIy (e.g. 1.9), (25)

r

Iy
= = 0.02 (1.10)
Z'S(glc/oys)

Therefore the range of applicability of LEFM is
limited in principle by the existance of a plastic zone
size at the crack tip which cannot be greater than 2%
of, for instance, the crack length a.
Finally, reference to methods of obtaining K for
different loading conditions and geometries are outlined.
In general, mode I stress intensity factors may be written

in the form

KI = Yo Y 7ma (1.11)

The term oYmra represents the SIF of a crack of length
2a in an infinite sheet subjected to a remote tensile
stress perpendicular to the plane of the crack. Y is a
nondimensional magnification factor which is a funtion of the
relevant geometric parameters and loading conditions(*).

A great variety of K. determination methods is already

I
available: analytical methods using complex stress funtions,
alternating techniques or integral transforms: numerical

methods using conformal mapping techniques, boundary

collocation and finite element methods.

(*) - The evaluation of this factor ¥ is sometimes called
"K calibration".



The principle of superposition (29) also enables the
calculation of solutions with different boundary conditions
to be combined to produce solutions for more complex
problems.

A comprehensive review of this subject was made by
Cartwright and Rooke (27) and Sih (28) and Cartwright and
Rooke (30) compiled a wide variety of solutions in a
"Compendium of Stress Intensity Factors".

Experimental methods have been also used to obtain
K values, amongst these the more relevant are: Ccmpliance
Methods, also used for determination of ch values for
different materials, Photoelasticity techniques and fatigue
tests where the K variations in the loading cycles can be
related to the crack growth rate using some fatigue crack

propagation law.

1.3.4 The Three Dimensional Crack Problem.

In real heavy-section structures, for example pressure
vessel components, cracks will often be initiated in areas
of high nominal strain. Normally these cracks will not be
through- cracks, but surface flaws or more commonly known
as part-through cracks or corner cracks. These cases,
because of their particular geometry and/or loading conditions
are fully three dimensional in nature and consequently should
be dealt with as such. Moreover, these cracks will normally
advance in a curved front and the stress intensity factor

may vary along the periphery of the crack. The analysis of
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this type of flaw usually requires the assumption that
fracture will occur when somewhere along the crack front
the SIF exceeds the critical value KIc'
However, two major difficulties arise when dealing
with such problems. First, as pointed out by Hartranft
and Sih (31), an agreement amongst the theoreticians has
not yet been reached as regards stress and displacement
fields as well as K values in areas where the crack meets
the free surface. 1In their studies of a part-through
semi~-circular crack, using an alternating method, they
found that a drastic drop in values of K will occur in a
small area near the surface. Benthem (33) on the othexr hand,
has shcwn that the degree of singularity in those areas is
no longer constant and equal to the well known -%(for stresses)
suggested by Westergaard, but strongly dependant on the
Poisson's ratio. For the case where the Poisson's ratio is
equal to 0.3 he indicates a value of about .45 for the degree
of singularity, thus ruling out the usage of the stress
intensity factor concept, which has lost its meaning.
However, if this boundary layer effect is restricted
to very small areas near the free surface, as it appears to
be, it may yield only a minoxr contribution to the overall
distribution of K values in the more central portions of
the crack and the discrepancies introduced by neglecting it,
will be, hopefully, irrelevant for engineering purposes.
The second difficulty concerned with the surface flaw

is related to the crack front shape and the local variations



of K along the crack front.

Such crack configurations are normally characterized -
by a length and a depth, but these two geometric parameters
are obviously insufficient to define the crack front, thus
allowing an infinity of possible shapes, (see Figure 1.5
for some examples), each one with its own K calibration and
with its own local variation of K values.

This complexity, however, may be irrelevant as stated
by Swedlow et al. (35), following R.A. Westman's reasoning
(. . . we expect, perhaps merely hope, that most of the
contours . . . will grow in a slow manner to a common shape
before rapid fracture ensues . . . The point is that
irregularities in crack shape may be expected to be smoothed
out somewhat and that the range of shapes that one might be
obliged to deal with is relatively modest . . . .).

These assumptions are widely supported by post-mortem
observations of various thick walled pressure vessels, and
a typical example, which was taken from (6), is given in
Fiqure 1.6.

Since the famous papers by Sneddon (36) and Green et
al. (37) on the penny shaped and elliptical cracks in an
infinite solid, a good number of workers have devoted them-
selves to studies involving circular and elliptical cracks,
fully imbedd with different loading and/or geometric
conditions. |

The only exact opening mode solutions are for infinite
regions. For the planar case of crack of length 2a the

SIF is given by:
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K = ¢ vYma (1.12)
and for the circular crack of radius a the SIF is given by
K =208 (1.13)

where ¢ 1in both éases is the remote applied stress
perpendicular to the plane of the crack.

For the more general case of an elliptical crack Irwin
(38) derived an expression for the SIF which is given by

K = E(E) (g)% (a?sin?a + b’cos’a)% (1.14)

where E(k) is the complete elliptical integral of the
second kind with the argument k =V l—(g)2
a,b, are the major and minor semi-axis of the ellipse
o is the angle measured from the major axis in
the plane of the crack.

Paris and Sih (25) have shown that the problem of a
crack in an infinite solid subjected to remote tension can
be replaced by a pressurized crack in an infinite solid.

Kobayashi (42) using a stress function method evaluated
the SIF for an elliptical crack in a solid subjected to an
internal varying pressure distibution which was represented
by a double-Fourrier series expansion.

He then, based on Paris' (25) ideas, extended his
studies to elliptical cracks subjected to uniaxial tension,
pure bending and transient heating, using suitable pressure

distributions on the faces of the crack. For the case of
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uniaxial tension, he eventually arrived at the same expression
as Irwin (1.14).

The semi-elliptical surface flaw has been initially
studied by Irwin (38) based on the Green-Sneddon results.
His expression including a plasticity correction factor,
evaluates the SIF for the deepest point of a shallow crack(*)

as follows:

1.20%b

_al
K = . (1.15)
WE(K) - .212(—0—
OYS

later Kobayashi et al. (39) have modified Irwin's expression

by introducing another magnification factor, Mf, as follows

b

K = l.lZMfo%/ =
E(K)? - .212(0—°—>

Ys

(1.16)

This factor, being a funtion of the ratio b/a and b/B
where B is the thickness of the plate and accounts for the
proximity of the back free surface for the case when the
crack penetrates deeply inwards.

Smith et al. (32) have obtained the SIFs for semi-
circular surface flaws at its deepest points in a beam in
bending. From their results they show that the SIF does not
vanish when these points are at the neutral axis of the

beam. This means that the crack tip can penetrate further

(*) - Shallow crack means the crack depth being less than
half of the plate thickness (see Ref. (41)).
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into the compression region before it can no longer open.

The quarter elliptical corner crack bearing great
resemblance to the semi-elliptical configurations was
studied by Broek (40) by applying the expressions (1.15)
and (1.16) to particular problems such as radial corner
cracks emanating from holes in plates.

Among the several other studies on the surface flaw
problem which have been published to date, the more
accurate analytical solutions have been obtained using the
alternating method which basically combines analytical
results of two auxiliary problems with numerical techniques
(31).

The method has been used extensively by Smith et al.
(43), (44), who determined the SIF for part-circular cracks
in different loading conditions and by Shah and Kobayashi (41),
(45) , for elliptical cracks, including also cracks under
uniform and non-uniform internal pressure.

Quite recently Sih (28) has introduced an entirely
new approach to LEFM based on the field strength of the local
strain energy density.

In this new theory a fundamental "strain energy density
factor", S, is derived which not only measures the amplitude
of local stresses (like K and G) but is also direction
sensitive. In his paper, Sih gives an example of the
application of these concepts in a three dimensional crack

problem yet no results have been presented at this time.
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However, a three-dimensional analysis for predicting
the growth of an embedded elliptical crack subjected to
general loadings was carried out by Sih and Ché (58)
in which fracture is assumed to initiate in the direction
of minimum strain energy density factor.

The principles of the Compliance test(*) used in the
experimental determinations of SIFs, have also been applied
to 3D crack problems. Sih and Hartranft (57) generalized
this approach to study various elliptical surface flaw con-
figurations. They computed the compliance changes for
several possible extensions of the crack front, and indicate
how this method is applied to cracks in pressure vessels
subjected to internal pressure.

The main advantage of this method lies in the fact
that values of G derived from compliance changes ignores the
complex local stress field analyses of 3D crack problems.

However, the evaluation of local values of G using this
method, is strongly dependant on the local variation
of the crack front. The necessity to assume a particular
shape for the extended crack front may yield doubtful results.

The use of Finite Element Methods in the solution of
3D crack problems has been limited in the past due to its
inaccuracy as compared to the more rigorous analytical and

numerical methods.

(*) The strain energy rclease rate G can be obtained
experimentally using the following expression

9C
G 5P <8a>/B
Where C is the so called "compliance" or the reciprocal

of the load (P) - deflection curve of a test specimen
with thickness B. (see Ref. (26)).
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However, when a real problem becomes three dimensional
most of the conventional methods can no longer be applied.
The application of the Finite Element Methods to

Fracture Mechanics will be discussed in Chapter 3.

Experimental Methods have also been gtudied recently

to determine the SIFs for 3D crack configurations.

Broekhoven and Ruijtenbeek (59) carried out some
experiments by monitoring crack growth rates (da/dN) under
uniaxial fatigue loading of precracked nozzle-on-plate
specimens. They then converted the resulting (da/dN)
measurements into AK values with the use of a suitable
fatigue crack propagation law for the same material of the
nozzle specimens. This method has the advantage that SIFs
are determined under conditions very similar to those in
reality.

Fatigue crack growth behaviour is strongly dependant
amongst other factors (61) on loading history, mean stress
specimen thickness and environmental conditions, therefore
the accuracy in the simple application of fatigue crack
growth laws to evaluate K values is yet to be demonstrated.

Sommer et al. (60) investigated the growth charac-
teristics of part-through cracks in thick walled plates
and tubes under fatigue loading.

They have shown that (verbatim) ( . . . Although . .
the results cannot provide a refined failure analysis . .
they indicate which parameters are of importance for crack
extension and explain some general tendencies of crack

growth in thick walled plates and tubes).
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A consise review on the various analytical methods used in
3D crack studies as well as some solutions can be found
in Refs. (31) and (41) and a reasonable collection of

practical results in this family of crack problems is given

in Refs. (25) and (42).
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CHAPTER?2

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS

2.1 Introduction

2.1.1 General

The Finite Element Method (FEM) is a very powerful
technique for numerically solving many complex field
problems.

This method which was introduced in the fifties has
been successfully applied to the solution of a great number
of problems in stress analysis.

The basic idea of the FEM is that a structure can be
represented by an idealized discrete analogue made up of
relatively small standard subregions, called eclements, with
a number of nodal points related to them.

The energetic assumptions behind the Finite Element
theory allows the overall behaviour of the model to be
obtained as the sum of the contributions of all of its
elements. At the same time the characteristic behaviour of
each element can be developed based only upon its geometry
and material properties.

There exists a great number of excellent texts for
example Ref. (46) which covers the details of this method.
Refs. (47) and (48) give a good description of a wide range
of types of element which have been introduced during the

past twenty years.
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Much has been published to date about the FEM. It
has reached such a stage where it has become a common tool
in a great number of research institutions and some
industrial organisations. Therefore a complete review of
this subject will not be given here.

. One of the main features of the FEM and particularly
the displacement (stiffness) method, as compared to others,
is the ease involved in the handling of geometric shapes,
and the specification of boundary conditions of real
engineering structures.

This particular advantage was a governing aspect on
the choice of the FEM to perform the stress analysis of the
rather complex "T-junction" geometries and the subsequent
LEFM studies of some three-dimensional crack configurations
in those structures. The displacement method was adopted
in this work and will be briefly outlined and followed by
some considerations of the Finite Elements which have been

used.

2.1.2 The Displacement Method

In the displacement method, as opposed to the force or
equilibrium method, the displacement field within each
element is defined in terms of various functions ¢ (usually

simple polynomials).

{6} = [d(x,v,2)] (a} (2.1)
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where

{6} = u(XIYIZ) 7 {(1 } = _(111
vi(x,y,z) a

J L2y
w(x,y,z) .
a

3 nl

and n is the number of generalized coordinates (a) which
is equal to the number of degrees of freedom of the element.
The x,y and z coordinates are not necessarily the global
coordinates.
Equation (2.1) can be solved for the generalized
coordinates, a , in terms of genefalized nodal displacements.
By using the strain-displacements relationships and
the constitutive law, the stresses and strains within the
element can be evaluated in terms of nodal displacements.
The strain energy of the entire structure is then obtained
by adding the contributions of all its elements. Applying
the principle of minimum potential energy leads to a set
of linear equations relating the externally applied generalized
nodal forces F to the generalized nodal displacements, A

14

k A=F (2.2)

where k is the stiffness matrix of the entire system.
It can be shown through the principle of minimum
potential energy, (see (48)), that this method provides a

lower bound for the displacement solution A.
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Criteria for convergence to the true solution by
finer mesh subdivision must be met (48), which imposes two
well-known conditions on the choice of the displacement

functions:

1. The displacement field should include "constant

strain" states and "rigid body" movements.

2. Continuity of the displacement field must be
ensured within the element and at interelement

boundaries.

A wide range of functions g can be found to meet these
requirements. However a proper selection of these functions
is essential to ensure good rates of con&ergence.

Some detailed considerations of this method, as applied

to the three dimensional elements used, will be made later

on this Chapter.

2.1.3 The Choice of Elements, the Computer Program

Finite Element Programs, in general, are bound to
require large spaces of computer memory and this problem
is obviously more relevant in the case of three-dimensional
applications, and the use of more sophisticated programming
techniques such as the "Front Method", to be described
later, becomes compulsory.

Several powerful and elaborate systems do exist in the

United Kingdom (ASKA, BERSAFE, etc.) in which libraries of



various finite elements are used together. However at
the time this work was started, none of these systems
were available at Imperial College. It was only quite
recently (1974) that the ASKA system was implemented at
Imperial College Computer Centre and later on at the
University of London Computer Centre.

In view of the foregoing, a computer code initially
developed by Alujevic (DIM3) Ref. (50) based on a shell
program (NAMAIN) developed by Natarajan Ref. (49) under the
supervision of Dr. J.A. Blomfield* was brought into use.

The present version of the code, now called DIM3B,
uses two different brick-based elements: 20 and 32 node
hexahedrons using second and third order displacement func-
tions respectively. However only one type of these elements
is used at a time in one computer run.

The choice of these elements was based on past exper-
ience with Finite Element applications (see Refs. (1)-(5)),
Refs. (46) and (52)). Problems of idealizing second order
curved boundaries (viz. cylinders) are eased by using these
higher order curved elements. Moreover, these particular
elements have proven to be extremely useful when dealing
with cracked structures.

Bearing in mind the forseeable large costs involved
in running the DIM3B code, an attempt was made to model a
"T-junction" piece by a two-dimensional axisymetric sim-

ulation of the real problem.

* formerly Lecturer, Mechanical Engineering Department,
Imperial College.
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For this purpose a Finite Element program using
triangular axisymetric elements was developed (FRONT)
using a simplified version of the "Frontal Method".

This study was carried out in the early stages of
this work, simulfaneously with the debugging nrocess of
the DIM3B code. This analysis will be omitted for no
conclusive results nave been reached. However, in order
to provide a permanent record of the program FRONT a

description and listing are given in Appendix 1 of this thesis.

2.2 Mathematical Theory of Three Dimensional Finite Elements.

2.2.1 General

This section describes the mathematical theory involved
in the calculation of the individual matrices of the two
element types available.

Although a fairly general formulation of the FEM using
these elements is known (48), a brief sketch of this theory
is presented here for the sake of completness and also to

introduce the notation which will be used later.

2.2.2 Isoparametric Concept, Shape Functions
In a typical three-dimensional isoparametric finite

element with n nodes the coordinates or any field variable

are given by, for example

L

g = a) + ayX tagy +a4z + .. tag Xpyq (2.3)
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or
g(x,y,2) = [M(XIYIZ)] % (2.4)

)
2
o
n

where M = [1,x,y, « . . .]

{a}T =

[0.1, (12, . - . Fi an]
by substituting the coordinates at each node

¢, = [Lix;oyys o o o] o) (2.5)

and for all nodes

r ¢l! =7 Xy yl « e e ] al ) . (2.6)
¢2 1 Xy Yy o o oo a,
- ° } L]
‘ ¢n‘ _l X ¥, oo e . a

= [ c]{a}

(2.7)

where [C] 1is a square matrix of constant terms. The

coeficients a can be calculated as follows

(o) = [c]7? (%) (2.8)
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then from expression (2.4) and substituting {al calculated

in (2.8)
¢ (x,v,2) =[Me,y,2)] [c]™ ) (2.9)
ox
n
g (x,y,2) =2, N;d, (2.10)
i

where Ni are called the shape functions and ¢i are the
nodal values of the field variable.
It is convenient to stress that the shape functions

N so far, are funtions of the general coordinates x, y

i’
and z.

The isoparametric concept is based on the fact that
the same interpolation functions are used for defining any

field variable, namely, in this case, coordinates and

displacements within the element.

2.2.3 Local Curvilinear Coordinates
Let us consider curvilinear coordinates &, n, ¢
varying between -1, +1 so that in the space (&,n,z) the
hexahedron (20 or 32 node 3D finite elements, see figure
2.1) becomes a cube with side length of two units.
Following expression (2.10), the relationship between

the cartesian and the curvilinear coordinates will be

n
X; = 'Z N, &y (2.11)
i=1

and displacements within the element will be defined as

follows
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n
{6} = igﬁ Ni {Gi} (2.12)
where
(61T = [u,v,w] and
T
(6,37 = [u,vy,w,]

n = 20 or 32

Once the local coordinates have been defined, the
shape functions N, can be expressed in terms of the local
coordinates and they become independant of the element
shape, therefore the same for all the elements. From now

on they will be considered as

N, =N, (g/n,z). (2.13a)

For these elements the shape functions Ni’ i=1,2, . .20/32

defined in terms of local coordinates are, using the notation

Quadratic element (20 node):

Corner nodes

N, = ( 14€_) ( 14n ) (E_*+n_+t_-2)/8 (2.13b)

Mid-side nodes

+
£.=0, n,=-1, ¢.,==1 Ni=(l—£2)(l+no)(l+go)/4 (2.13c)
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n.=0, ¢g.,=-1, £.=-1 Ni(1+£O)(1—n2)(1+co)/4 (2.134)

= =% =t -2

Cubic element (32 node):

Corner nodes

N = (1+€.) (1+n ) (1+c ) [9(24n? +52)-19] /64 (2.13f)

Typical third side node
~tl =t =% = (1-f2 !
£4==3, ng=-1, T;==1  Ny=(1=€7) (1+9€ ) (1+n ) (1+1 ) 9/64
(2.13qg)
The main advantage of this formulation is that the
numerical procedures involved with the element will always

be the same regardless of their particular distorted shape

they will assume in the idealized mesh.

2.2.4 General Steps of Finite Element Formulation
Following the basic finite element formulation descri-
bed elsewhere, Ref. (47), a list of wanted relationships is

described below.

i) {s8}= [N]{G}e (2.14)
ii) A{el= [B]{a}e (2.15)
iii) {o}= [D]{e}= [ D] B{s 3, (2.16)
iv) (k] _=[(B]"[p][B] @ vol (2.17)
vol
e
where
[N] is called the shape function matrix
{e} are the strains {E}T={ex,ey,ez,exy, . .. 3
{G}e are the nodal displacements for each element

[D] is the elasticity matrix
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[B] is the displacement/strain transformation matrix
[K]e is the stiffness matrix for each element.
2.2.5 Strains; Derivation of Expression (2.15)
To calculate strains, derivatives of displacements with
respect to x,y,z are needed.

Bearing in mind expressions

(2.13) and (2.14).

Looking at expression
as a derivative operator so the same principle is also

applied to the coordinates as follows

(2.19)

ras) = [N N2 . (51) (2.18)
og 9 g 62
LA sM1 M2 -1
oan an an .
38 N1 N2 . 5
[ 3¢ 3¢ 3t S
= [pE] [s, (2.19)

[ DE] can be considered

[DE] [y v, = [ax oy 2z] =[J] (2.20)
& 9 o
Yy
272 ax 3y az
. an on an
n n “n 3x 3y 3z
I | |3 3¢ ac
where [J] is obviously the Jacobian of transformation of

general coordinates x,y,z to the local ones g&,n,¢t.

Using now chain rule relationshipsof the type



0 - 3@ dx , 3 3y ., 34 2z
—_0 = = —_— + - - —
E ” 3 v E + 3z 3E (2.21)
=[x 3y 23z (34) (2.22)
£ 93g g IX :
12}
3y
38
32 )
Generalizing for the rest of the coordinates and
having now the displacement as field variable
(38 =[J] ([3s) (2.23)
RS IxX
34 36
1on| 4@
s a8
LaCJ saza
inverting this equation
T T
36 38 38| _ =138 38 36
(3 & ¥ - o (2.24)

Substituting the right hand side of expression (2.18)

into expression (2.24) we obtain

(38 28 28 - (o) M) leysy - - sy (2.25)

"
o
wjow
N|O
—
i

[DEXYZ] [68.5, - - .SAT (2.26)

The matrix [DEXYZ] can be suitably changed in order
to accommodate the derivatives for the several components

of the engineering strains
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e} = [ e, |= [ 3u/9x (2.27)
ov/ 9
€y /3y
J [ aw/dz |
exy du/9y + dv/9x
eyz ov/3z + Iw/dy
L €2x LBw/'c)x + Bu/BzJ
as follows : if[DEXYZ] is given by
[ DExYZ] = d;; 4y, - - .4 (2.28)
d21 d22 e o . d2n
d3) d3p - - - d3y
hence
{e} = dll 0 0 d12 0O 0. . dln 0 O 61K2.29)
0 d21 0 0 d22 0. . O d2n 0 62
0 0 d31 0 0 d32 . 0 O d32 {1
dyy; dyp 0 dyy &4, 0. . 8504, n
- . L] L] . L ] L ] L] . L] L] L] . L ] L ] L] [ ] L] L] L J
T
= [ B] [51 S5 o e e an] (2.30)

as it was required in expression (2.15)

2.2.6 Stiffness matrix [K]e
Remembering the basic theory Ref. (48), the stiffness

matrix of an element is defined as follows
T
[k.] =Jf[B] [D] [B] dvol (2.31)
e e
vol

where B was defined in expression (2.29), D is the

elasticity matrix to be defined, and vole is the volume of



the element.
Remembering that [B] is a funtion of &,n and ¢ so
the element volume dvol must be transformed as

dxdydz = | J| d&dndc (2.32)

Taking into account the definition of the local

coordinates (&,n,z) given in 2.2.3 the integral (2.31)

+1 +1 +1 T
=/ f / [B][D][B] ]3] da¢ an dg (2.33)
-1 -1 =1

2.2.,6.1 Numerical Integration of Expression (2.33)

becomes

The element stiffness matrix is assembled by numerical
integration of the expression (2.33). Using the Gaussian

Quadrature formula Ref. (51) as a definite integral,
+1

J{ f(x)dx is replaced by a summation :i;cjf(ai) where Cj
-1 J_
are the weight coefficients, a; are the Gauss abcissae and
n the number of Gauss points.
To evaluate the integral (2.33) over the volume of
the element the summation referred above will be used three

times,

n n n '
[kl = 2, Z E Cp Cy CyElEgimy ity (2.34)
j=1 =1

where f in this case is the function [B]T[D][B]I J |

2.2.6.2 Elasticity Matrix and its Economical Use.
The elasticity matrix for isotropic materials (52)

will be defined as follows
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_ E
[P] = Ty

(2.35)

o O O O
o 00O O O

symmetric

where E is the Young's modulus and v the Poisson's ration.
The multiplication of the three matrices of (2.33)
involves a very large number of arithmetic operations.
Owing to the presence of a large number of zero elements
in these matrices Irons suggested a method which improves
the matrix forms and reduces the number of operations
considerably. This feature which was inherited from the
initial version of the DIM3B code is described in detail

in Ref. (53) and, therefore, will not be included here.

2.2.7 Equivalent Nodal Forces

In general a structure is loaded by surface forces
acting on finite areas. For the FEM this loads must be
converted into consistant nodal forces by the use of the

expression

{(F } f}r[N]T {g} aa (2.36)
ge

where {g(x,y,2z)} is a vector representing the applied
load and [ N] the shape function matrix.

Assume the pressurized face is ¢ = ¥ 1, an element
of area 6A in this face will be

"SA = SEén (2.37)
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or in vector notation

> - - .

A = 6& x 6n (2.38)
where the product is a vector product, and the direction
of GZ is normal to the surface §=il.

Expression (2.38) can be written also as

- = [3x) [ 3x dedn
R = sa | =[32] = |5 (2.39)
SA 3y 3y i
Yy < SE y 4 o
2 az 2z
3E J L an )
= pet [ = v z1  Qtdn (2.40)
3x 3y 3z ‘
3E 9E &
3 3y 2z
_an an anJ

-

- ~
where X, y, and z are cartesian unit vectors.

The jacobian matrix [ J] (see expression (2.20)) has an

adjoint
adj [J] = Iy Jo1 I3 (2.41)
Ji2 J22 I3
Jy3 I3 Y33
where, for instance, J21 is the cofactor of the (2,1)
term in the expression above.
=] 3 9z
J21 =5 SE (2.42)
oy 2z

Q
[

Q
[
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Thus expression (2.40) is re-written as follows

~ ~

5> ~
A = (J31 x + J32 y + J33 z) (2.43)

In general, if the pressure is applied in face i where

i=1 for E=il, i=z for n=-1, i=3 for =21
- ~ ~

§A = (Jil X + Ji2 y + Ji3 z) da dB (2.44)

where a,B are the two coordinates of ¢,n,¢ parallel to

the loaded face.

Expression (2,36) may now be written as

T
{Fg}e =J/iN] g, O 0 an_ (2.45)

T
- )
Jﬁ NI (T, 9y da dB (2.46)
JiZ gy
Jiz 92

The integration is performed numerically using again the

Gaussian Quadrature formulae.

2.2.8 Evaluation of Stresses
Once the nodal displacements have been calculated
by the overall solution of equation (2.2), the stresses
are calculated at node points. At node i the stress vector

is given by

{o} =[D][Bl{8} ‘ (2.47)
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where [ B] is calculated using values of the shape functions

at node i.

2.3 Description of the code DIM3B

2.3.1 Introduction

In the previous programs, NAMAIN Ref. (49) and
DIM3 Ref. (50), special subroutines were developed to perform
the initialization work and carry out the book-keeping
procedures before entering the actual solution stages.
These subroutines generate the necessary data to perform
the analysis of the particular problems being studied, with
the use of very small sets of input data.

Although it is recognised that manually assembled
programs may be advantageous for research purposes, any
potential user of these codes would have to face enormous
difficulties if a new class of problems is to be studied.

The idea to create a general purpose 3D finite element
program was the main reason for the development of the
DIM3B code.

One disadvantage, of course, is that the potential
user of such a program is faced with the tedious and
sometimes difficult task of producing large amounts of
input data.

However, he will be strictly concerned with his
particular problem without being involved in the more
difficult and complicated programming aspects of the code.

The problem of producing this type of data can be
eased with the use of automatic data generation techniques,

and this method has been adopted throughout the work



reported in this thesis.

2.3.2 The Solution Technique of Equation (2.2)

Remembering equation (2.2), the stiffness matrix
of the overall assemblage relates the nodal forces F
acting on the structure to the corresponding nodal displace-
ments §. |

The stiffness matrix may be characterized in general
as symmetric, banded, positive definite and sparsely
populated.

Prescribed displacements, which are physically required
to preserve equilibrium as well as to specify initial
displacements at certain nodes, are accommodated in the
solution technique. A suitable partitioning of the

equation (2.2) is performed as

MKN MU GKN = FUN (2.48)
T
My Mo SuN Frn
where GKN and GUN are known (prescribed) and unknown

nodal displacements respectively. The corresponding

unknown and known generalized forces are FUN and FKN'
The expansion of equation (2.48) yields
Mew Sk ¥ My fun T Fuw (2.49)
Vi + 5. = F (2.50)

U KN MUN UN KN



or

(2.51)

8 (2.52)

From équation (2.51) éhe unknown nodal variables
can be calculated by an extension of the Gaussian elimin-
afion process. In the backward substitution stages, as the
elements of 6UN are explicitly known, the unknown reactions
FUN can also be found.
2.3.3 Frontal Method of Solutién (FMS)

The use of these three dimensional elements with
3x20 or 3x32 degrees of freedom implies large dimensions
of the stiffness matrix k, which is equal to the number of
degrees of freedom in the structure. Normally these matrices
cannot be fully assembled and stored in fast core.

The FMS is suitable for such cases and is used in
this program with the Gaussian Elimination technique.

This method was first introduced by Irons (54) and
is based on the fact that only a small amount of the banded
matrix has to be processed before forward elimination of a
variable corresponding to a row. After the elimination
process, data pertaining to the variable is stored on a
disk file and the row is freed. Thus a variable becomes
active on its first appearance and is eliminated immediately

after its last.
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Due to this method the total number of equations
(one per variable) is not anymore the limiting factor, rather
it is the semi-band with in the case of the matrix k.

A simplified version of this method is described

in detail in Appendix 1 as used in the FRONT code.

2.3.4 Program Breakdown

This section describes the general layout of the
program and gives a survey of each subroutine included in
the program.

An User's Guide of DIM3B code is given in Appendix 2,
which contains a definition of the relevant program
variables which will be mentioned in this section. A quick
reading of that Appendix may be useful if difficulties
are encountered in reading this section.

The DIM3B code consists of four main parts

A - Initializations

B - Determination of forces; evaluation of coefficients

for assemblage of stiffness matrices by numerical
integration.

C - Solution of the overall stiffness matrix; determin-

ation of displacements

D - Backward substitution; stress determination.

Some of the initialization procedures and parts B
and C are performed in a general DO LOOP element by element

as is shown on a primary flow chart in Fig. 2.2. A more
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detailed flow chart of DIM3B code is shown in figure 2. 3.

A - TInitializations

In this initial part, the program reads the input
data concerned with the description of the two basic systems
(basic and global) as well as numerical data for the
Gaussian integration procedures, all these data correspond
to the first five input data cards.

After checking these data, the matrix TP relating
the two basic systems is evaluated. The elasticity matrix
EI is calculated and then the P matrix is formed.

The subroutine INIAL is now called and the resulting
integer values NUNKVA, NKNVA, NCELNO, NCELNl, NT, NTOTAL,
NUNVA1l and NKNVA1l are calculated and printed out.

The subroutine NODE is called by INIAL and forms the
ELNODE and PRENIC arrays which describe the topolecgy of
the structure including the last appearances adding a
minus sign to the respective nicknames.

The ELNODE matrix is stored in a random access file
using non-standard subroutines available in the CDC system
at ICCC and ULCC.

The matrix UNKMAT, UNKNIC, UNCLE, KNOMAT, KNONIC,
KNORHS and UNRHS are reset to zero and the dimensionless
local coordinates are defined depending on the type of
element (20 or 32 node).

Finally the global coordinates are fed into the
program together with nodal point forces RHSI. If the
global system for input is cylindrical or spherical the
subroutine GTRANS is called from the main program and transforms

the coordinates into cartesian coordinates.



B - Determination of forces, stiffness matrices

From now on the program proceeds within a general
DO LOOP until all finite elements have been processed.

Firstly, stress data are fed into the program and
the equivalent nodal forces RHSL are calculated in sub-
routine LOAD called by the main program,

Prior to this, subroutine COORD is called and sets up
nodal matrices TR which are going to be used in subroutine
LOAD to transform the local components RHSL into new
components TRHSL, referred to the main problem system.

The subroutine COORD also stores the nodal coordinates
in a random access file no.Z2.

The equivalent nodal point forces TRHSL are added to
the initial prescribed nodal point forces RHSI and the sum
RHSRED of the components of these forces will be used on the
right hand side of the stiffness equations. These values
eventually can be printed out.

In the subroutine LOAD, numerical integrations are
performed (see section 2.2.7) using the shape funtions DE
and their partial derivatives with respect to the local
coordinates.

The subroutines SHAP20 and SHAP32 containing these
functions and its derivatives are called when necessary, one
or the other according to the elements in use.

The main program now calls the subroutine FEM from
which the components SK of the stiffness matrix are evaluated

(see section 2.2.6).



The subroutine STFTR is called next,
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and distributes

the SK coeficients over the UNKMAT, KNOMAT and UNCLE

matrices.

and UNCLE correspond to the partial matrices M

According to equation (2.48) KNOMAT, UNKMAT

M

UN and

KN'

MU respectively.

In fact

UNKMAT

KNOMAT

UNCLE

KNORHS

UNRHS

KNONIC

UNKNIC

Submatrix corresponding to nodes with unknown
displacements

Submatrix corresponding to PRENIC

Off diagonal submatrix of [x]

Known submatrix of load vector

Unknown submatrix of load vector

Addresses of known subvector of displacements

Addresses of unknown subvector of displacements

The distribution of these matrices is shown again as

they are kept in the program.

NKNVA

' - . - _ -
| X =
; UNCLE PREDEF UNRHS
|
l\\\\
; UNK@@T U KNORHS
l \\Q L 4 L N
NUNKVA

Due to symmetry of this matrix only the upper triangles

and leading diagonals are kept in the computer.

In terms of computer variables expressions (2.51)

and (2.52) will become



UNKMAT * U = KNORHS - UNCLE' * PREDEF
UNRHS = KNOMAT * PREDEF + UNCLE * U
where
PREDEF = Submatrix containing the known displacements

(boundary conditions)

U = Submatrix where the vector solution will be
stored.
C - Solution of the overall stiffness matrix

The forward elimination process for each frontal
position is performed in subroutines FORWD and BUFFER.
During the forward elimination process the system of equations
(2.51 ) and (2.52) is solved by the Gaussian Elimination
Method as follows.

Suppose the set of equations is

4

(el) S1187 T S5p8, * . o . ot Sinbn = Fl
(ez) Spp8, t 5558, * . o . o7 Sondn = Fo
1 (2.53)
(en) LSnlél + Sn262 + e e o« o+ S & =PF
nn n n

and when 65 is eliminated with the use of equation e, one

obtains
*
15 = Si5 = (5;4545/5ss) (2.54)
i=1,2 . . . n, (i s)
or
* * 2.55
iy = 813 7 Q545 (2.55)



and the modified right hand side
. .

F* _F _oF
i i T Q% (2.56)

i=1,2, . . . n

These elimination procedures are performed in subroutine
FORWD in the following manner. A completed row composed of
NUNKVA coefficients retrieved from UNKMAT and NKNVA
coefficients retrieved from UNCLE is stored in an auxiliary
array COMP and the factor Q (see exp. (2.55)) is evaluated.

The submatrices KNOMAT, UNCLE and UNKMAT are modified
according to expression (2.55).

The stored equation space is released and the data
contained in CbMP is transferred to a buffer area. Also
the known and unknown righthand sides are calculated
according to expression (2.56) and then placed in a buffer
area. Finally, all the working variables used are reset
for the next forward elminiation.

Writing on a disk file takes place in blocs for all
the eliminated nodes, in order to reduce the number of
tape operations, this is done using subroutine BUFFER which
is called from subroutine FORWD where all the data already
stored in a buffer area are to be tranferrred for a random

access file.

D - Backward substitution, Evaluation of stresses

When the general DO LOOP in the main program has
processed all the elements, all the evaluated upper trian-
gular overall matrix, including the leading diagonal, is

stored on disk.
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The main program calls subroutine BACKWD to calculate
the nodal displacements.

This subroutine firstly reads back from the random
access file the stored data in blocks in a reversed order.

Starting with the last eliminated node the unknown

displacements are now obtained directly.

* *
§ =F
n n/Snn (2.56)
and the rest are obtained from the formula
n ‘
* * *
§ = (F° - 8 .
s ( s .E: Ssi i)/ sss (2.57)
i=s+1

where s = n-1, n-2, . . .« . . . 2,1
In terms of program variables the above expression,
using the same index notation, will be written as follows:

n
Us = (KNORHS - :z: UNCLEE.*PREDEFi)/UNKMAng (2.58)

i=s+1 .
If the index s corresponds to a prescribed deflection,
the respective unknown reaction is computed using the already

U e« « « in the

calculated unknown displacements Us+1' S+2

following manner.

UNRHSs = KNOMAT*PREDEF + UNCLE * U (2.59)

The unknown reactions and the displacement solution

eventually can be printed out using subroutine DEFOUT.
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A brief summary of the procedures involved in subroutines

FORWAD and BACKWD are described below. '

Subroutine FORWAD

(1)
(ii)
(iii)
(iv)

(v)
(1)
(ii)

(iii)

(iv)

If in presence of an unknown displacement
Storing completed row in a row matrix COMP
Modify KNOMAT, UNCLE, UNKMAT and RHS matrices
Release the stored equation space
Storing required data in buffer area (sub.BUFFER)
Reset for the next element.

If in presence of a prescribed deflection
Storing completed row terms of KNOMAT and column
terms of UNCLE in COMP
Modify the unknown right hand side RHS
Storing required data in buffer area (sub.Buffer)

Reset for the next element.

Subroutine BACKWD

(1)

(ii)

(iii)

(iv)

(iii)
(iv)

(v)

Initialization (reset KNONIC, UNKNIC, KNORS)
Read back stored data in blocks in revarsed
order.

If in presence of an unknown displacement
UNCLE is multiplied with known displacements
UNKMAT is multiplied with known displacements
except the diagonal term

If in presence of a prescribed deflection
Multiply XKNOMAT with PREDEF
Multiply UNCLE with UNKDEF now stored in RHS

Evaluate the corresponding unknown reactions.
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If stresses are required by specifying the control
parameter IOUT=2, the subroutine STRESS is called by the
main program. The output results for the displacements
are used here to compute nodal stresses using expression
(2.16) described in section 2.2.4.

The matrix product [D][B] (sometimes is referred
to as "stress" matrix) is evaluated in subroutine FEM2
using again the shape functions DE stored in subroutines
SHAP20 and SHAP32.

The stresses referred to the main problem system are

calculated using TR matrix already described.

[olyp = TRIT [ o], [ TR] (2.60)

where are the stresses referred to the main

Lolyp
problem system which are obtained from the stresses,
[o]LC, obtained from expression (2.16) and are referred to
the local system of coordinates (&,n,z).

If various elements meet at one node, the stresses are
averaged, i.e., the final result will be the mean of values
obtained for that particular node from each element.

The nodal stresses, if so desired, are printed out by
calling subroutine STROUT.

As it can be seen from figure 2.3, the main program
although spread in the central column from the top to the
bottom of the page, is indeed, a relatively small and simple

routine. Its basic function is to call the various

modules in an appropriate manner,
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2.3.5 Program Environment

The DIM3B code is a program written in FORTRAN IV
language.

One of the main features of this program as compared
to its predecessors (NAMAIN and DIM3) is related to the
transfer of data into back-up store files. 1In the previous
versions these operations have been made with the use of the
standard READ and WRITE Fortran statements, (see Ref. (55)).

The physical time involved in these operations has been
drastically reduced by the implementation of special
subroutines READMS and WRITMS which are presently available
in the CDC machines at ICCC and ULCC. These subroutines
transfer large amounts of data to random access files with
the use of mass storage devices.

Several other technical aspects regarding the operation

with this program are described in more detail in Appendix 2.
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CHAPTER 3

THE FINITE ELEMENT METHOD APPLIED TO

LINEAR ELASTIC FRACTURE MECHANICS

3.1 Introduction

A number of solutions for SIFs and strain energy
release rates, G, have been obtained using the more accurate
methods which have already been outlined in Chapter 1.

Unfortunately these solutions have been limited in the
past, to idealized and relatively simple-shaped configur-
ations and, in several cases, these solutions are far from
providing the engineer with good estimates of SIFs for the
more complex configqurations of actual problems.

The FEM, which was originaly designed as a versatile
tool to solve general problems in structural analysis,
has become also a useful method when dealing with such
complex LEFM applications.

The next section will review the various finite element
techniques used for calculating SIFs and strain energy
release rates for cracked bodies.

It has been shown (section 2.2.3, Chapter 2) that the
displacement fields within the element (expressions 2.12
and 2.13) are described by continuous polynomials (shape
functions) of the second and third order depending on the
type of the element used.

These elements, having these type of shape functions,

are obviously unable to describe in an adequate manner the
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square root behaviour of the displacement components and
the subsequent singularity fields in stresses and strains
near the crack tip. Moreover, the deteriorated solutions
obtained in those areas with the use of conventional
elements may eventually cause the propagation of errors
into larger regions away from the crack tip.

The need to use relatively coarse meshes in 3D finite
element analysis, due to the limitations of present genera-
tion computers, leads to the compulsory use of special
elements with embedded singularity fields modelled by the
introduction of a square root term in their displacement
functions.

Various planar elements of this type have been devel-
oped and have been reviewed by Rice and Tracey (65),

Jerram and Hellen (66) and Atluri et al. (67).

In the three dimensional family of elements Blackburn
(68) introduced an element containing an r;2 displacement
function which was implemented in the BERSAFE system in
the CEGB Research Department. Tracey also developed a
wedge-shaped element which is described in Ref. (69). The
former is compatible with the 20-node isoparametric elements
whereas the latter can be used with 8-node linear isopara-
metric brick-type elements.

Although these elements have been used successfully by
Hellen and Dowling (2) and Schmit et al. (4), they have
specific stiffness formulations and differ from their
related conventional elements. Therefore the implementation

of these elements has the disadvantage of requiring major
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alterations in the initial standard computer programs.

In section 3.3 of this Chapter, it is shown how a
"crack tip element" can be derived from the isoparametric
elements previously described in Chapter 2 without requiring
specific changes in the standard computer program DIM3B.

The final sections of this Chapter will describe the
results obtained in several tests which have been carried

out to assess these "crack tip elements".

3.2 Finite Element Techniques in LEFM

3.2.1 - Introduction

The various techniques for determining SIFs using
finite element methods can be divided into three groups.
Firstly, those utilizing directly the computed stresses
and displacements obtained from standard finite element
programs. Secondly, those in which the rate of reduction
of potential energy of the body with respect to increasing
crack length, G, is calculated, hence K.

A third group of techniques involves a simultaneous
use of the FEM and the analytical near tip expansions.

In this third method, which was developed by Wilson (62),
a displacement pattern associated with the leading terms
of the Williams stress function (64) is imposed in a small

(*)

circular area (for 2D problems) near the crack tip. This
region is then coupled with the more conventional finite

elements in order to model the areas away from the crack tip.

(*) This circular region can be eventually regarded as
another special crack tip element.
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This method was well described by Hilton and Sih in

Ref. (63) in which results are given for some planar cases.

3.2.2 - The Direct Method
3.2.2.1 - The Stress Method

One of the more straightforward methods of calculating
the SIFs of cracked bodies is to correlate the stresses
at nodal points of the finite element mesh with those of
the near tip stress field which are given for the opening

mode I by

X

cij(r,e) = — f£..(06 ) (3.1)
2nr

where r, 6 are the polar coordinates centred at the crack
tip, and fij(e) is a known function of 6 (see expression
1.5, Chapter 1).

Earlier work using this method has been done by
Chan et al.(70). They applied this approach to a compact
tension test piece, symmetric about the crack, and found
that good results could be obtained by substituting the
cy (y being normal to the crack line) stress components
ahead of the crack (6=0), and the distance, r, of the node
from the crack tip into equation (3.1).

A discrepancy of about 10% in relation to a collocation

(*)

method was reached at the cost of a highly refined mesh.

(*) The collocation solution is believed to be accurate
within 0.5% (see Ref (63) ).



- 57 -

In the stiffness formulation of the FEM it is
well known that the computed stresses are directly obtained
through the strains by differentiating the displacement
fields which means that the functions which model the stress
fields within the elements are of one order lower than the
displacement functions.

In fact Chan et al.(70) confirmed that a better
estimate of the SIFs could be obtained with the use of the

computed displacements rather than the stresses.

3.2.2.2 - The Displacement Method

Similarly to the stress method, the displacement
technique requires a correlation of the finite element nodal
point displacements with the known crack tip displacement
field solutions (see section 1.3.3). For plane strain

opening mode I, these solutions are:

K
I r
ui = " e fi(e,v) (3.2)
where ul = u, u2 = v
£.(8,v) = cos (%) [1'—2v+sin2-(9-)ﬂ
1t 2 27 ]
£.(8,v) = sin (2) [ 2 - 2v - cos2(g)—
27 2 27 ]

By substituting the computed displacements u; and the
respective distances r; into expression (3.2) the SIF will

be obtained by extrapolating the curve
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K* = Fi;__-—— .2_7*1' (3-3)
fi(e,v) y r¥

towards the line r*=0.

It should be remembered that expression (3.2)
describes only the first term of the Westergaard solution,
and it is only valid for regions very close to the crack
tip. On the other hand the computed values u;, are normally
less relaible in that area, thus the need to extrapolate
values of K* from regions far away from the crack tip and
using large values of r*.

Some improvements of the extrapolation procedures
can be obtained either by retaining higher order terms in
expression (3.2) or by acquiring, at least, some knowledge
of the K* curve in regions away from the crack tip.

The displacement expansions for the case of plane
strain conditions can be derived from the Williams stress
function (71) as follows

3

5 /.
AlBlr - A2B2r - A3B3r 2+ .. . (3.4)

2uv

where Al

Var

¥ is the shear modulus
(*)

Bi = Bi(e,v) similarly to fij(O,V)

By substituting the value of Al, expression (3.4)

(*) These coefficients as described by Williams in Ref (64)
contain some typographical mistakes which have been
corrected by Rook and Cartwright(27) and Ewing et al.(71)
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becomes
Yor X
* = - - 2
K K . ( - ABrx AjByr + ) (3.5)
_ 2uv 27 e .
where K* = - < VT similarly to expression (3.3).
1

By inspection of the functions Bi it can be shown
that 82=O when 6=7 thus expression (3.5) becomes

1 B

r + . . .) (3.6)
1 )

3
Therefore a plot of values of K* vs. r should be expected
to behave in a linear manner up to relatively large values
of r.
The first seven coefficients Ay have been obtained by
Leevers (72) using a variational method as it applies to
the Williams series solution to the crack problem in a
single edge notch geometry under plain strain conditions.
The various K* curves for various ratios a/w represented
in Figure 3.1 show that for this type of configurations
the variations found in the evaluated coefficients Az, A3..
..A7, have a very small effect on the overall behaviour of
those curves regarding their linearity or otherwise.

(*)

It is clear from this figure 3.1 that in the case of

6 =7 the influence of the square and higher order terms is

(*) The squares and circles in this figure will be referred
to later on.



- 60 -_ -

practically negligible over a range of r values up to

about 80% of the crack length. However the use of the
extrapolation method in the directioq 0=m/2 becomes much
less reliable due to the strong influence of the square
root term in expression (3.5), and in this case the extra-

polated SIFs are bound to overestimate the true solution.

3.2.3 - Energy Methods
Finite element techniques using the energy method are

based on the LEFM relation

% _au | LK a-v)
i da da E

P (3.7)
for plane strain conditions, where A is the area of the
crack surface. The energy available for an increment of
crack area dA is provided from the work done by the forces
Pi when displaced in the direction of its application of
an amount dAi, and the release - dU of the total strain
energy U, stored in the cracked body.

In fact the terms in the left-hand side of expression
(3.7) account for the well known "constant load" and/or
"fixed grip" conditions.

The strain energy due to the highly localized crack
tip stress fields should be small compared with the total
energy of the body, also the overall deflection of the body
is only slightly affected by these stress fields. Thus the
need to use either special tip elements or highly refined

meshes, is not so critical as in the case when the direct

methods are applied.
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For planar cases the direct application of expression
(3.7) obliges the finite element analysis to be performed
twice, as described by Dixon and Strannigan (73), thus
increasing considerably the computing costs of such an
analysis.

In three dimensional applications the problem is com-
plicated many-fold. If localized SIFs are to be evaluated,
‘a set of successive runs must be carried out and small and
localized extensions of the crack front must be assumed.

A variety of techniques have been put forward to simplify
and improve the efficiency of these energy methods.

Jderram (74) suggested that the strain energy release
rates, G=dU/dA, could be obtained by evaluating the amount
of work required to close successive nodal intervals along
a crack. This procedure is illustrated in Figure 3.2 and is
particularly useful when the plane of the crack is a plane
of symmetry of the body.

For this case Broekhoven and Spaas (75) have shown that
the associated change of strain energy with successive
crack extensions (modelled by unpinning successive nodes) can

be written as

m
= 1 u
AUi+i+1 = E 3 Pni ny (3.8)

1=n '

where AU,

{ » i+l 1S the change in strain energy due to

extension from crack front i to crack

front i+l
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n=1,2. . .m, is the number of node released

P is the nodal force of node n for crack front i

un is the v displacement of node n due to its unpining
i=1,2, . . . indicates uncracked geometry;

This technique sometimes called "crack closure work"
has been successfully used by Broekhoven and Spaas (75) in
some three dimensional applications.

Bueckner (76) developed a similar technique to the
"crack closure work" method. He has shown that the problem
of evaluating the rate of change of strain energy with
increasing crack length in a loaded body is the same as
evaluating the rate of change of work done by tractions
acting on the surface of the crack when the body is free
from the initial loads.

The basis of Buekner's method as applied to the finite
element technique is indeed very similar to the Paris and
Sih replacement method which was briefly described in
section 1.3.4.

The "J integral" method developed by Rice (77) has
also been successfully applied to 2D cases by Chan et al.(70)
and Neal (78). 1Its application to 3D problems seems to be
rather complicated and no work using this technique was
yvyet found in the literature.

Quite recently Parks (79) has developed a "stiffness
derivative procedure" in which K values can be obtained
directly by differentiating the potential energy of the

finite element solution
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p=3 {uff (k) {u}-{u}” {g] (3.9)

with respect to crack length a of a 2D body under constant

load conditions

=1 () dg;] fu} (3.10)

If the crack surfaces are load free then

_ ~ _ K2(1-v?)
=G = — 5 (3.11)

- au
da

o5

F

where P is the potential energy
U is the strain energy
{u} is the vector of nodal displacements
[k] is the global stiffness matrix
{f} is the vector of prescribed nodal forces.

This method has been recently used by Hellen (80)
in 2D configurations. Broekhoven and Spaas (75) and
Schmit et al. (4) applied this method to problems of cracked
nozzles.

All computing efforts involved with the use of energy
methods can be substantially reduced if the Front Method
of solution is adopted in finite element programs.

These advanced numerical procedures for estimating G
have been described by Hellen (80), Parks (79) and
Broekhoven and Spaas (75).

Small extensions of the crack front can be modelled

by changes of the few elements adjacent to the crack front.



In the case of the Parks method, for example, the only
contributions to the d [k] term in expression (3.10) are
provided by the elements containing the translated nodal
points. Moreover if the nodes of the crack front and the
elements containing them are suitably numbered, the values
of d [k] to be used in expression (3.10) can be obtained
by repeating (for an extended crack) only the very last
stages of the forward elimination procedure.

If the displacements and stresses are not required for
the entire structure, the components of the vectors
{u} and {u}T related to the non’zero terms d [k] are then
evaluated by carrying out only a few steps of the back-
wards substitution. In conclusion, it can be said that
energy methods are bound to be more accurate as compared
to the direct techniques. However, an efficient use of the
former methods may involve a reasonably large effort in
their implementation on a standard computer brogram as in
the case of DIM3B.

On the other hand the inaccuracies involved with the
application of the direct method with the use of "crack
tip elements” are expected to be small enough at least for
engineering purposes.

Finally, in Figure 3.3 the more relevant methods
used to date to study 3D crack problems are summarized and
the methods used in the present work are conveniently

indicated.
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3.3 - Theory of the Singularity Element

3.3.1 - Introduction

In this section it is intended to show how a singul-
arity in stress and strain fields can be easily accommodated
in the isoparametric (20 and 32 node) elements described
in Chapter 2. This singularity can be made to occur
within these elements at certain nodal points by carrying
out some minor mathematical changes in the theory

described in the previous Chapter.

3.3.2 - Theory
3.3.2.1 - One line elements

The modelling of near-tip fields by the second order
2D quadrilateral isoparametric elements, in which the mid-
side nodes are displaced, has been illustrated by Henshell
and Shaw (81) by reference to the corresponding line
(1-dimensional) element. The same method is used here.

The equivalent one dimensional elements to the 3D
(20,32 node) elements, in terms of the order of the shape
functions, are the (3,4 node, respectively) elements, as
they are shown in Figure 3.4.

In the second order line element (see Figure 3.4(a))
using a local natural non dimensional coordinate &, the
coordinate r and displacement u in the global system are

expressed in terms of the local coordinate & by

— 2
r = a, + a2£ + a3£ (3.12)

c
|

= 2
b1 + b2£ + b3£ (3.13)
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where the ay and bi are constants which are obtained
from nodal values of r and u respectively and accordingly
to expressions {(2.3) and (2.8). 1In this case [M]=[1 EE’]
and { a) T - [a; a, a,l.

Let us assume that the mid side node (node 2) can have
a varying position identified with the value of p in the
general system of coordinates r (see Figure 3.4 (a)),

thus equation (2.8) will be for this case

0 = 1 -1 1 al
p 1 0 0 a, (3.14)
2 1 1 1 aq

hence

ay =P i a, = 1 ag = l-p.

Substituting these values into equation (3.12),

r=p+ & + (1-p) &2 (3.15)

When p=1 equation (3.15) becomes r=1+4+f which is obviously
the transformation of coordinates (0,1,2) to the scaled
(-1,0,1).

Developing expression (2.9) for this case and when

H

_ 1 - + L
=5 ( €+£’)rl + (1 E’)r2 t 2(E+E’)r3 (3.16)
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To obtain strains, expression (2.18) will be simplified

as follows

aN dN . dN
du _ 1 2 3
aE = —EE u1 + —ac u2 + —at u3 (3.17)
=1 ('25—1)u - 2Eu, + S(142£)
=2 1 U ¥ 3 U3

A plot of the shape functions Ni and its derivatives
f, = dN,/df  is shown in Figure 3.5.
The chain rule (2.21) to obtain the engineering strain

€ is simplified as follows

3t " ar at (3.18)
du
ar [J]
Hence
_du _ du -1 :
€ = ar = ar [J] (3.19)

1

where [J]—1 = (dr/dE) ~ is the inverse of the jacobian

of the transformation of coordinates r to & .

Combining equations (3.18) and (3.15)
-1
€. = =% { 1+ 2(1—p)£} (3.20)

The strain will be singular where
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1 + 2 (1-plg =0 (3.21a)

If the singularity is to occur at r=0. i.e. at g= -1, D

must satisfy the equation

1 -2 (1-p) =0 (3.21b)

Thus the mid-side node must be displaced to a point

one quarter of the element length from the node at which

the singularity occurs.
We now investigate the order of the singularity

substituting p = % into equation (3.15)
=1 1 ..
r =3 + £ + 5 £ (3.22)
solving equation (3.22) in terms of r, we have
g = -1+ (2r)° (3.23)

Applying equation (3.13) to each of the nodal points

and solving for bi

R P ) =1 -
1 o i by = 3(ug-uy) ; by =35 (g +u, - 2u,))

Substituting these values into equation (3.13) and

using expression (3.23) the displacements within the element
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will be described as follows

u = 2-3 V2r + 2r u, + (-2r+2¥2r)u, + 22:;125u (3.24)
2 1 2 2 3
hence
- .3 -% _ -% 1 - ‘
c = {1 3 (21) }ul+{ 242 (21) }u2+ {1 () }u3 (3.25)

which exhibits the r-}2 singularity which occurs at the
crack front.

Expressions (3.24) and (3.25) have the same form as
expressions (2.12) and (2.29) respectively.

A plot of these new shape functions N, and its deriv-
atives fi = dNi/dr is shown in Figure 3.6.

In the case of the third order line element (see
Figure 3.4(b)), following the same steps as in (3.12)

and (3.13), the transformation of coordinates will be
—_ 2 3
r = a; +ayk + ajE? + a;i (3.26)
- 2 3
u b1 + b2£ + b3£ + b4£ (3.27)
In the same manner, the intermediate nodes (2 and 3)
are assumed to have varying positions identified with the

values P, and Py Similarly to expression (3.14) the values

of as ., i=1,2,3,4 can then be evaluated.
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1 9
a, = g+ T Py *py)
- 1 27 -
a, =g+ 1 (Py = Py)
(3.28)
- 9 _ 9
az = 3 16 Py T Py)

a, = 2 - 2L (p, - pp)
4 8 16 ‘P2 T Py

Following for this case the steps (3.18) to (3.20)

dr _ 2 '

at - a, + 2aj¢ +3a4£ - (3.29)
and the singularity will be made to occur at r=0 or £= -1
when

dr _ _

T 0 for £ = -1 (3.30)
or

a, —2a3 + 3a4 =0 (3.31)

Substituting the values ai(3.28) into equation (3.31)

yields to the following equation

p, = % + 2p, (3.32)
which corresponds to equation (3.22). The required positions

of the intermediate nodes (2 and 3) are not uniquely defined

for the third order line element, but related by equation (3.32).
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However, if the normal position for node 3 is maintained
P, = %, the position of node 2 is then given by (3.3 )
as py, = 4/9. For these particular values of P, and Psy the
shape functions Ny and its derivatives are represented in
Figure 3.7.

It is impossible to solve analyticaly equation (3.26)
for ¢ in terms of r. However the function & =f (r)
equivalent to expression (3.23) should also contain an r%

term and subsequently the equivalent to expression (3.25)

-1
should also exhibit the r ? singularity.

3.3.2.2 - Extension of the singularity in 2D
Let us consider now the 8 node isoparametric element
as it is shown in Figure 3.8. In this case expression

(3.15) leads to
x =p, +E& + (1-p))E 2 (3.33a)
Yy =Py, tn + (1-p,)n 2 (3.33b)
The chain rule (2.21) will be as follows

u _ 3w 3x . du 3y (3.34)

9E X RS 3y 9¢&

and from (2.23)

duy _r 3 3y - du
9E - 9& 9g X (3.35)
du ax oy | | 2u
an | 9n an - Ay
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From equations (3.33) the inverse of the Jacobian

can be evaluated as

-1 - 1
[o]7° = Ty 0 (3.36)
0 1

1-2(1-p2)

If the singularity would be valid for all strains then

the following conditions must be imposed
1 .
Pl = P2 = "2' ! (3.37)

Two typical shape functions Ni = Ni(E ;N ) are repres-
ented in figure 3.10, and the derivatives of these functions
at node 1 have infinity values.

Following the same procedures as for the one line

element the strain €yt for example will be

m

Il
|
><‘C

= [1 - %(ZX)—%]ul + [—2 + 2(2x)_%] u,

+[1-3 <zx>‘%] u, (3.38)

the strains for any direction r (see Figure 3.8)

b
Il

r cos © (3.39a)

y = r sin 6 (3.39b)

thus, from expression (3.38)

-1 -1 -
= = f(r 2, cos “6, sin ‘0, ul,uz,u3) (3.40)
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which means that the singularity holds true for any

direction r.

3.3.2.3 - Singularity in 3D elements

Let us consider now a 3D (20 node) isoparametric
element as it is shown in Figure 3.9.

By inspection of the Jacobiaii in expression (2.20)
it can be seen that by shifting the nodes 8, 9, 4 and 10 as
it is indicated the same type of singularity can occur
along the line AB, in planes perpendicular to that line.

Developing new expressions similar to expressions

(3.33)
X=py; tEH (1—p1)£2 (3.41a)
Yy =P, *n+ (1-p,)n? (3.41Db)
Z = Py + ¢ + (1—p3)c2 (3.41c)

X = % + £ + %g? (3.42a)
y=%+n +%n2 (3.42b)
z =1+ (3.42c)

therefore the derivatives in the third row of the Jacobian

will only contain terms 1 or 0 which will not affect the
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bidimensional singularity described in expression (3.40).
Conditions must be met to ensure the square root
behaviour in node 2 (see Fig. 3.9) and will be described

as follows.
Considering now a local system of coordinates x, y
and z defined by nodes 6, 2 and 14. The shape functions

of the nodes in the base of the element and for £ = ¢ and

r = -1 are (see exp. 2.13, Chp. 2)
N = N = N = N = - l(l - nz)
1 3 5 7 4
_ D
- _ 1 _ .2
Ny = Ng =5 = n%)

The relationship between y and n can be derived by

using exp. 2.11, thus
1
Yy = Z(l - nz)(2Y4+ 2y8 - yl— Y3_ Y5— Y7)
+ 10 -0 (3.43)
E‘ - n y6 °

Differentiating y with respect to n it can be shown

that the singularity occurs when
L 1 (3.44
Yo =35 ¥ *¥g) 5 (v, +v3) -44a)
A similar condition can be derived for node 14 as follows:

+ z3) (3.44Db)
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2.3.2.4 - Conclusions

A brief summary of the present theory is laid out in
order to help to understand the manner in which singularities
can occur in isoparametric elements.

Derivatives of displacements with respect to global
coordinates x,y,2z can be obtained by differentiating
expressions (2.14) with respect to local coordinates

multiplied by the Jacobian of the tranformation

5 3 N N B -1 -

_BE' 3_);’ azr (5) - agl anr az)-l (ZNiGi.)' J (3.45&1)

If the positions of the intermediate nodes i,j,m . .
are described by varying parameters pi,pj,pm . .« , the

Jacobian J will be a function of these parameters and the
local coordinates &,n,cz.

(3.45b)

Jd = J(pi'p P o+ - - rErnsT)

jl
Singularities in stress and strain fields can be made
to occur at particular nodes, i.e., at particular values

of &,n,t, let us call them gs, n g and the particular

SI
positions where these intermediate nodes have to be shifted

can be found using the condition.

J(pi,pj,pm .« e gs,ns,gs) =0 (3.45¢)
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this condition will determine a function g(pi,pj,pm .« . o.)
which is the desired solution. The singularities are of
several orders and depend only on the type of the element.

These elements are incompatible with their related
conventional versions. However, if nodes i,j,k,l, (see
Figure 2.9.) are kept on their original positions the
singularity still occurs at the line AB.

If 1< and P, (see figure 3.8) are assumed to vary

linearly accross the element in order to satisfy the new

positions of nodes 4 and 6 then

Py 7 % + %‘E (3.46a)

P, =%+%n (3.46Db)
and new expressions (3.33) are derived as

x =3 (3436 +¢67 -g) : (3.47a)

y =% (3 + 3n + n? -n?) (3.47b)

Now, following the same procedures as from (3.34) to (3.38)
it can be shown that the new strains €4 still contain the

~%
X terms.

3.4 - Test Cases
3.4.1 - Introduction

Several series of test cases have been performed to
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assess these crack tip elements. Various techniques have
been used to generate the finite element meshes for the
test case configurations.

A schematic flow chart of the strategy involved in
the generation of the finite element data is shown in
Figure 3.11.

Basically, a mesh generation program was developed
for each configuration. These programs read in the rele-
vant geometric parameters of the problem as well as data
describing the loading conditions.

These programs produce three separate sets of data
which are written on three separate output tapes. Firstly,
the relevant data for execution of program DIMDIM is
written on tape DDMDAT. A second tape, DIMDAT, will contain
all the data necessary for the execution of DIM3B code.

Finally, data describing the geometry as well as the
topology of the mesh is written on a tape called DRDAT.
This tape contains the necessary data needed for a plot
procedure (program DRAW) using some of the off-line graphic
facilities available at the Imperial College Computer Centre.

Some of the data which are needed for the DIMDIM,
DIM3B and DRAW codes but which are not relevant ot the mesh
generation program, pass through it, unchanged, in the form
of card images. These data are for instance, control
parameters IIN, IOUT for DIM3B, sequential numbers for
DIMDIM code, etc.

Initially, a relatively small job consisting of the

execution of the mesh generation program and the subsequent
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plotting procedure (execution of program DRAW) is carried
out at I.C.C.C. using an "Instanturnround" batch service.
The finite element mesh is then checked visually in a
TEKTRONIX terminal, using a "QUICK-LOOK" facility available
at I.C.C.C., (82) and the rest of the input data can be
easily examined by printing out the files DDMDAT and DIMDAT.

The plot file generated by the program DRAW is then
processed to generate the necessary magnetic tape format
to drive a microfilem plotter (see Reference (83)).

Once the necessary checks have been made a complete
run using now the DIM3B and DIMDIM codes is then executed
by resubmitting the mesh generation program at U.L.C.C.

The plot procedure, Program DRAW

A general plot program, DRAW, was developed to
produce an isometric perspective of the 3D finite element
mesh which is obtained by transforming the original coord-
inates x,y,z into new x',y',z' coordinates.

This transformation, being the result of two rotations,
as shown in figure 3.12, one around the z axis by an amount
ex and the other around the y axis by an amount ez will be

described by a matrix TF as follows

[TF] = -  cosf cos® sin® cos® sin®
X zZ X z z
-si 3.4
51n6X cosex 0 ( 8)
L -sin® cosH® _ -sind _sind cos#
X z z X z

Then the new coordinates x',y',z' are obtained by the

relation
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x! = [TF]. x ‘
y' y (3.49)
z! z

By specifying the view angle defined byex and ez a
prespective can be obtained by plotting the y',z' values
as the logical plot coordinates for each nodal point.
The plot is then carried out one element at a time
where the order of execution of the logical functions
"pen up" and "pen down" are described in Figure 3.13.
Although this procedure involves the repetition
of edges pertaining to more than one element it provides an
easy check of systematic errors which may occur either in
the topological description of the mesh or in the specific-
ation of the nodal coordinates.

A listing of the program DRAW is described in Appendix

3.4.2 - Compact Tension Specimens
A mesh was generated, representing one quadrant of a
Compact Tension Specimen (CTS) of length 2H, width W and

thickness T, having a single edge crack of length 2a in

the mid-plane. The specimen and mesh are shown in Figure 3.14.

A pfimary two-dimensional mesh was developed for the
plane x = T/2 and was specified in the form of input data
cards. The mesh generation program for this case, based
on this two—éimensional type of information, generates all

nodal coordinates for the rest of the mesh and subsequently



generates the topological description of the mesh.

Two layers of the 20-node elements were used through
the thickness of a quadrant (i.e. four elements through
the thickness of the specimen). The number of elements in
the quadrant was 88 and the number of nodes 585. A uniform
tensile stress was applied at the free end of the quadrant,
in the direction normal to the plane of the crack. Approg-
riate boundary conditions were applied at nodes of faces
representing planes of symmetry of the specimen excepting
those in the free surface of the crack which were allowed
to move freely.

Figures 3.15 and 3.16 show the variations of o, Stresses
ahead of the crack front. 1In one case, Figure 3.15, the
standard 20 node elements were used throughout, in the other
case, Figure 3.16, the elements adjacent to the crack front
were distorted by displacing the mid-side nodes to the
quarter points nearest to the crack front as described in
Section 3.3 of this chapter and illustrated in Figure 3.10.
Although the results may be somewhat inaccurate, the
ability of the distorted elements to model a singularity
in stresses is well illustrated in Figure 3.16.

The stress components in the thickness direction,ox,
in the mid-plane of the specimen (x=0) are also shown in
Figure 3.16.

Figure 3.17 shows the mid-element stresses as a function
of the distance, x, from the middle surface of the specimen
for the elements adjacent to the crack tip. These nodal

points are at a distance 0.08T form the crack front.



Although the number of nodal points is very small to
draw any quantitative conclusions it may be suggested from
the results in Figure 3.17 that the in-plane stresses o
and o, are nearly constant throughout the thickness except
for a rapid fall near the free surface.

The expression for the strain in the thickness direc-

tion is given by

I | -

€x = & [ox v(cy +oz)] (3.50)
Levey et al. (84) suggested that the condition of plane

strain and plane stress can be described by a parameter,

Ps’ defined by the ratio

g
X

s T Vlogto,)

derived from expression (3.50), being unity when €y is
either zero or bounded (generalised plane strain), and zero
under plane stress conditions, o, = 0.

From the results in Figure 3.17 the variation of the
parameter P has been plotted on the same figure, and it
shows an immediate decrease from a maximum value of .72 even
in the more central portions of the specimen. However, from
the behaviour of the Oy stresses in Figure 3.16, it is
expected that a curve of values Pg in regions very close to
the crack tip will be fairly constant reaching values of
unity and presenting a drastic drop to values near zero only

in a small region near the free surface.
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Based on the reasoning referred to above, values of
K which are not in the free surface have been obtained
directly from the computed displacements by ploting the
following function against r/a and extrapolating to r=0.

For plane strain conditions and from expression (3.2)

with p= E/2(1+v)
. E 2w :
= * = LT
K Lim K (1) (1=v) - w (3.51)
r>0

and values of K at free surfaces have been obtained by

using the corresponding plane stress function
. T E
K = Lim K* = 1 — W (3.52)

where w is the displacement component normal to the crack
face.

The extrapolation procedures using expressions (3.51)
and (3.52) are shown in figures 3.19 and 3.20. 1In one case,
Figure 3.19, the standard 20 node elements have been used
whereas in the other case, Figure 3.20, the elements adjacent
to the crack front were distorted as was described earlier
in this Section. The results have been normalized to the
stress intensity factor in an infinite plate (Ko=o vra).

By comparing Figures 3.1 9 and 3.20, the improvement in
the value of K, which is obtained by the uée of the distorted
elements may be seen. The value obtained on the mid-plane
using these elements differs by only 2.6% from the value

obtained by Brown and Srawley (85) using a two dimensional
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plane strain collocation method.
This slight increase in the extrapolated value of K
in the mid-plane as compared to the two-dimensional plain
strain-analysis is in close qualitative agreement with the
results shown in Figure 3.18 which were obtained by
Yamamoto and Sumi (86) in their 3D finite element analysis
of a standard single edge notch specimen (ASTM standard
E-399-72).
A table is presented below in which the present results
(i) for CTS are compared with those obtained by Leevers (72)
(ii) using a 2D plane stress and plain strain analysis
(see Section 3.2.2.2) assuming the same configquration with
a/W = 0.25.
Values of K/o VTa
(i) 3D Finite Element Analysis
Mid-plane of the specimen 1.54
Free surface 1.43

(ii) Williams Series Solutions

Plane strain conditions 1.51

Plane stress conditions 1.51

The discrepancies of the K* curves obtained by the two
methods of analysis for this Compact Tension Specimen (see
Figures 3.1 and 3.20) could be due to the following reason:
if variations in K values have been found with the 3D finite
element analysis it is also expected that the coefficients
of the higher order terms in expression (3.6) would also

vary across the thickness. 1In fact, by inspection of the
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slopes of the K* curves obtained with the finite element
method it can be seen that the variation, across the thick-
ness, of the coefficient Aq in expression (3.6) presents a
similar trend to the variation of K values shown in
Figure 3.20 .

Figure 3.21(b) shows the results obtained by use of
the 32-node elements, distorted as shown in Figure 3.21(a).
On the mid-plane close agreement is obtained with the plane

strain results of Brown and Srawley.

3.4.3 - Compact Tension Specimens with Curved Crack Fronts

The results obtained for the compact tension specimen,
with straight crack front, show a higher value of K in the
interior planes, indicating a tendency for the crack to
advance with a curved front. There is experimental evidence
to support this conclusion (see for example Neale (87),
and Johnson and Radon (88)).

In a second series of tests, the mesh was distorted by
a simple skewing technique to model curved crack fronts,
having the form of circular arcs, in which the ratio of
crack front radius R to the specimen thickness T varied
between 0.57 and 1.13.

The curved fronts and one of these meshes are shown
in Figure 3.22. As in the first series of tests, values of
K along the curved crack fronts were obtained by the extra-
polation method from the computed displacements.

For these curved crack fronts the extrapolated values

of K are expected to be somewhat inaccurate.
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This is due to the fact that by using the mesh shown
in Figure 3.22(b) the directions of the extrapolation
procedures being parallel to the plane yz (see Figure 3.14)
make an angle ¢ with the direction perpendicular to the
crack front as it is shown in Figure 3.22(a).

This angle, @, varies from zero in the mid-plane of
the specimen (x=0) to a maximum in the outer planes and
depending on the radius of curvature of the crack front.

If changes of displacements near the crack border
possess a certain degree of constancy relative to the
(*)

direction parallel to the crack front the value of r in

expression (3.51) should be replaced, in a first approxima-
tion, by the term r cos ¢,(**). This correction is based on
the assumption that for small values of r the differences

in the opening displacements at the points A and B, as

shown in figure 3.22(a) should be negligible.

It can be seen that the application of this correction
factor for large values of r is no longer valid for two
reasons: Firstly, the new points A' and B' (see Figure 3.22(a))
would be too far from each other, thus the assumption of
displacement constancy between these two points no longer

holds true. Secondly, the displacement fields in areas away

from the crack tip, and in planes of x=constant, will be

(*)

As suggested by Irwin in Reference (38)
(**) . . .
This type of correction has been already introduced

by Sih and Cha (58) by describing the crack border
stresses referred to the bi-normal and osculating -
planes of the crack front curve of an elliptical crack.
In their work, another factor,\A is also introduced dep-
ending also on the crack front shape. For circular
cracks A = cos ¢
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mainly governed by the higher order terms of expression (3.4)
which are expected to vary across the thickness (see
previous Section) and at the same time to be less sensitive
to the particulars of the crack front than the variations
of the stress intensity factor.

Therefore the K* curve obtained from the extrapolation
method should still present its linear behaviour for large
values of r and provide a reasonable extrapolated K value.
If the finite element mesh were highly refined in the
vicinity of the crack front a drop of the K* curve would
eventually occur for small values of r which could be
corrected then by the introduction of the correction factor
suggested earlier on; however, this particular behaviour
was not noticeable with the coarse meshes used in the
_present work.

A comparison of the extrapolation procedures using the
computed displacements in the free surface of the crack
( =7 ) and in planes perpendicular to the crack surface

(*)

(6 = n/2) is shown in Figure 3.23(b) for the more critical
curved front case when the ratio R/T is 0.57.

This relatively constant increase in K values obtained
from the direction 6 = w/2 has already been justified
earlier in this chapter and supports the assumptions referred
to above.

Also, for each radius of curvature, a single value of
K was obtained using the energy method based on equation

(3.7). 1In this case the energy available for an increment

of crack area dA is provided (see expression (3.7)) by the

(*) Figure 3.23(a) indicates the corresponding results for the
straight crack front. The same results are also ploted in
Figure 3.1.
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work done by the nodal point forces P, edquivalent to the
remote stress applied in the top faces of the specimen

and required the computation
G =2 (TP, dw;)/daa (*) (3.53)

where dwi are the variations of the displacements, w, in
the z direction of the nodal points where the forces Pi
are applied. Again the results of K have been normalized to
the value of K in an infinite plate. Figure 3.24 shows
the results where the single value obtained by the energy
method is indicated by a horizontal line. For each of
these crack front radii, the value of K obtained for the
mid-plane of the specimen was lower than the value obtained
foa the surface. Figure 3.25 shows a graph of the normalized
K, obtained by the energy method, ploted against a parameter
thch represents the crack front curvature. The figure
clearly shows the reduction of K with increasing tunnelling
supporting observations of Neale (87).

It should be pointed out that these values of K
obtained from the global energy method are associated with
the values of K which are obtained experimentally using
for example, a compliance test, provided the assumed extension
of the crack front is similar to those verified in post

mortem observations of a test specimen.

(*)

The factor 2 arises from the fact that only one quarter
of the specimen is considered.

.



- 88 -

A factor depending on a tunnelling geometric parameter
should be introduced to correct the planar K calibration
of a CTS specimen. This factor, based on results similar
to those presented in Figure 3.25 would take into account
in an adequate manner a possible non conservative inter-

pretation of test data.

3.4.4 - Corner Crack

The mesh for this case, shown in Figure 3.26 was
developed from a similar mesh of 20 node elements used in
the earlier tests, by a cylindrical skewing technique
about the z axis. The number of elements was 88 and the
number of nodes was 553. This technique has resulted in
an axial groove, see Figure 3.26, which has been made
small so that its effect on the results is negligible. This
groove could eventually be eliminated by the use of an
" additional type of element.

A uniform stress was applied in the direction z and
the yz and zx faces were assumed to be free.

Values of K, obtained by the extrapolation method from
computed displacements of the crack face, are shown in
Figure 3.27. The figure also shows results obtained by
Tracey (89) for a cylindrical specimen using a different type
of singularity element. The discrepancy is verified to
increase towards the mid point of the crack front having a
maximum of 5%. at o = 45°. |

In fact, for this direction, the uncracked ligament of

the present specimen, being the diagonal of the square base,
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is greater than in Tracey's geometry, which may be the
reason of the decrease in values of K in the more central

portions of the crack front of the present specimen.

3.4.5 - Part-through Semi-Ciruclar Crack

By using the mesh shown in Figure 3.26 , changing
the boundary conditions to represent symmetry about the
zx face, a specimen with a part-through semi-circular
crack was modelled.

Values of K, obtained by thé extrapolation methoa for
computed displacements are shown in Figure 3.28., The figure
also shows results obtained by Smith and Alavi (90).

The maximum discrepancy is 2.0%.

3.4.6 - Thick-walled Cylinders with Radial Part-Through
Semi-Circular Cracks. ‘

Two different configurations of this type of structures
have been studied and the results are presented in this
Section.

A part-through semi-circular crack emanating from
the inner surface of the cylinders were assumed to exist
in a radial plane containing the axis of the cylinder, as
shown in Figure 3.29.

The models investigated have the following geometries:
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GEOMETRIC

PARAMETERS CASE CYL 1 CASE CYL2
R, 71.9 mm 71.9 mm
R, 135.9 mm 115.8 mm
W=R,/R, 1.88 1.61
a/(RZ—Rl) .2 .29

In both cases the length of the cylinders is ten
times the crack length. The cylinders were subjected to
internal pressure fully penetrating the crack, which is
the most critical case. These geometries were selected
because their geometric parameters defined above are similar
to those of the "T-Junction" structure to be described

later, in Chapter 4.

3.4.6.1 - Mesh Generation

A mesh was generated representihg 1/8th of the
structure as it is shown in Figure 3.29.

This mesh was obtained from the previous corner crack
finite element idealization by a three step skewing technique
schematized in Figure 3.20.

Due to symmetry tangential boundary conditions were
applied in the y and x directions to nodes in the planes
xz and yz respectively. Of course nodes in the crack face
were allowed to move freely.

In fact this representation assumes the existance of

two equal cracks situated in the same radial plane and
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diammetrically opposed.

Shannon (91) using the finite element method has
calculated the SIF for a single radial crack in a thick-
walled cylinder and presented also values of SIFs for two
diametrically opposed cracks in cylinders of several diameter
ratios. The results obtained by Shannon being derived from
a two dimensionai analysis are not applicable to curved
crack fronts.

For the equivalent straight-front cracks having the
same geometric parameters, W and a/(Rz—Rl) of the cases
CYL1 and CYL2, he predicts a decrease of about 9 and 6%
respectively for the situation when two diametrically
opposed cracks are present.

It is expected that these differences should be somewhat
reduced in the part-through crack cases due to the constraint
supplied by the uncracked material beyond the diameter of
the crack in the z direction. The lack of such constraint
with two infinite length cracks is bound to cause a higher

interaction of the crack tip stress fields.

3.4.6.2 - Overall behaviour

A check on the equilibrium of forces in both x and y
directions was made. The summation of reactions at nodes
where boundary conditions were applied differs by less than
0.3% (in both cases, CYL1 and CYL2) from the total force
applied due to internal pressure.

In figure 3. 30 nodal values of hoop and radial stresses

in the plane xz are compared with the Lamé solution for the
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case CYLl, and a maximum error was found to be 3%. This
discrepancy is quite acceptable in stress and is partially
due to small deviations of the mid-side nodes from their
correct positions, which is a result of the rather com-
pPlicated skewing techniques applied to the mesh.

In Figure 3.31 the ratio of hoop stresses ahead of
the crack tip divided by the respective Lame hoop stresses
is plotted versus the distance from the crack tip. This
plot illustrates the incapability of the finite element
analysis to model the singular stress field described by
expressions (1.5)(*). However, it can be seen that the
raising effect caused by the presence of the crack die
away quite rapidly (approximately one crack length) and
reaches values slightly below the Lame's solution as it
was expected due to the offset of the load in that plane.
This behaviour as well as the results presented in
Figure 3.30 clearly supports the assumptions made earlier,
and representing only 1/8th of the structure.

The same behaviour and inaccuracies were verified
for the case CYL2, therefore the results are not presented

here.

3.4.6.3 - Stress Intensity Factors
Values of K along the crack front have been obtained
by the extrapolation method using the computed displacements

of the nodes in the free surface of the cracks.

(*)

-1
From expression (1.5)c = oKr ? thus

logeo = Cte -% log r or 1logoc = Cte =-arc tg(26.5)L10g r
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Plain strain conditions were assumed for all the
extrapolation procedures but for those on lines in the
inner surfaces of the cylinders where plane stress expres-
sions were used.

The variations of the SIFs along the crack fronts for
the CYL1 and CYL2 cases are shown in Figure 3.32. These
values have been non-dimensionalized by dividing them by
the guantity p +a where p is the internal pressure and a
the crack length.

Qualitatively these results present a rather reasonable
behaviour as compared to those of the part-through crack
configuration studied in Section 3.4.5 (see Figure 3.28).
The ratio between the SIFs at the free surface (a = 900)and at
the point of deepest penetration of the crack . (a =0°) is
1.22 for CYL1 and 1.16 for CYL2. These ratios are greater
than the same ratio in the part-through crack case, 1.1.
This can be explained by the fact that the opening stresses
in the uncracked cylinders are no longer constant but
decrease across the thickness according to Lamé's expressions.
By inspection of the Lamé solution for both cases the same
reasoning can be used to explain the higher ratio for the
CYL2 case.

On the other hand, the average increase of about 14%
of the S1Fs from CYL1l to CYL2 can be associated with the
ratio 1.17 between the maximum hoop stresses in CYL1l and
CYL2 cases.

Values of SIFs for these particular configurations were

not found in the literature and a combination of existing
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analyses, as suggested by Underwood (92}, will be carried
out to obtain some estimates of K values and assess the
validity of the present results.

This analysis is based on the assumption that crack
shape effects in a pressurized cylinder can be similar,
under certain conditions, to shape effects in a plate under
tension. These analyses which will be combined are briefly
described as follows:

i) Cylinders with straight front cracks

A long tube of internal radius R; and external
radius R, contains a radial crack of length a from the
inner surface. A uniform internal pressure acts on the
cylinder and on the crack faces. Bowie and Freese (93)
using a collocation method obtained the opening mode stress
intensity factor K, over a wide range of radii and crack
depth to thickness ratios. A plot of these results is shown
in Figure 3.33.
ii) Cylinders with curved-front cracks

Cracks with curved fronts are more often found in
structures and their shape can be idealized by a semi-
ellipse with major axis, 2c¢, and minor axis, a. The present
cases CYLl and.CYL2 having semi-circular cracks are
particular cases of those ellipses.

Rice and Levy (94) obtained opening mode SIFs for a
finite thickness plate under uniform tension with a semi-
elliptical crack at the point of deepest penetration of the
crack.

The proposed combination of these analysis can be

expressed by the following relationship:

"
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(K,) = a (K (3.54)

where

= K, for a pressurised cylinder with a semi-
elliptical crack

(Kl)S = K, for a pressurized cylinder with a straight

front crack

K. for a plate with a semi-elliptical crack

K, for a plate with a straight edge notch

The validity of expression (3.54) is limited either
to thin walled cylinders or to thick-walled cylinders but
with small crack depth to thickness ratio, as pointed out
by Underwood.

The values of @ depend on the ratio a/(Rz—Rl) and on
the aspect ratio, a/2c, of the ellipses representing the
crack shape. A table of @ values is presented in
Reference (92).

The K values of the equivalent straight crack fronts
to cases CYL1 and CYL2 are indicated by two circles in
Figure 3.33, and these points are thought to lie within the
range of validity of the expression (3.54).

It should be pointed out that this method is only app-
licable to non pressurized cracks. Now, using the principle
of superposition, the effect of the pressure (P) acting on the
crack surfaces can be dealth with by modifying expression (3.54)
in the following manner.

(K)) g = (K)) o+ (K)o o= alRy) o+ o (Ry) (3.55)

S P p

= a =
where (Kl)ep— 2p§’n ; (Kl)sp p Yna
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The following table shows more clearly the numerical
results obtained by this combination method.

The discrepancies shown below are within the 10% accuracy
suggested by Underwood, and the higher 6.6% discrepancy may be
associated with the larger a/(Rz—R1)=.29 ratio for the CYL2 case.

NUMERICAL RESULTS FOR THE COMBINATION ANALYSIS

: . Cases
Description = = VI CvLo
From Fig. 3.33 K_=2p —ﬁa—EF /ra  |.555 Mnm~Y, |.655 MNm ™~ 7
2 1
From Fig. 3.33'K1/Ko(see circles) 1.07 1.20
Thus pvYma + (K,) .594 MNm~ V2 |.786 MNm'%
Non dimensionalized
pYra/pYa + (Kl)s /pYa 1.77+3.52 1.77+5.16
p
a = 2p‘/% / (pY/7a) .64 .64
Values of from Ref. (92) .44 .39
From expression 3.55 (Kl) 1.13+1.55 1.13+2.01
€ =2.58 =3.14
K, obtained from figure 3.32 2.62 2.94
K1_(K1)e
% discrepancy 2. ————71 2.3 6.6
K, +K))
er

However, if in the combination analysis two diametrically
opposed cracks were considered, in agreement with the present
finite element idealization, the values Kls would be reduced by
about 10% according to Shannon's predictions (91) for these cases.

On the other hand, this 10% reduction of K1s values for
cylinders with straight-crack fronts are expected to be some-
what reduced for the case of cylinders with part-through
cracks (see Section 3.4.6.2) thus the discrepancies shown in

the table above should be somewhat changed; in the case CYL1

an increase and in the case CYL2 a decrease.

(*) A : — -2
ssuming p = 1MNm
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CHAPTER 4

SURFACE CRACKS IN A T-JUNCTION OF THICK WALLED CYLINDERS

4.1 -~ General Considerations

Excessive deformation, leakage or fracture are the
most common ways by which a containment system may fail
(see Ref. (95)). It has been shown in the past that the
first two modes of failure referred to above can be effect-
ively prevented by the use of the more conventional methods
of design. ’

However, peak tension stresses do occur in some regions
of such containment systems and, particularly in thick-
walled components, brittle failures can initiate either from
defects in those areas, or cracks which may have grown to
critical sizes by fatigue and/or corrosion.

As a result Linear Elastic Fracture Mechanics (LEFM) can
be used to assess the structural integrity of these compon-
ents as it is suggested in Appendix G of the ASME Code,
Section III, (Ref. (96)).

The utilization of LEFM to prove the structural integrity
of a containment system requires the inter-relationship of
various aspects as follows:

i) Defect characterization

Flaws or cracks may be assumed to exist in the more
critical areas (stress concentrations) of the vessel and

with the most detrimental orientation.
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ii) Dominant stresses during operation.

The design pressure and operating temperatures may be
considered, as well as the effect of proof loading and a
detailed estimate of the transient.conditions must be made.

iii) The material fracture toughness (ch) may be
measured by fracture tests and the variation of these values
for heat affected zones and weld metals may have to be taken
inté consideration. In Nuclear Reactor Technology toughness
degradation due to radiation may also have to be considered.

As can be seen from the foregoing, any safety analysis
of a wide range of structures relating all these aspects in
a rational basis may involve a major research program which
is outside the scope of this work.

A more detailed description of the ways in which LEFM
and general yielding fracture mechanics can be used in
pressure vessels was presented by Burdekin and Dawes Ref. (97).

Mager and Riccardella Ref. (98) presented also a clear
example of Fracture Mechanics Technology in analysing the
integrity during the site life time of a heavy section
nuclear reactor pressure vessel. An excellent compilation of
papers on this subject can be found in Ref. (99).

It was already pointed out in Chapter 1 that LEFM is
mainly valid for situations where fracture occurs prior to
large scale yielding, and its use is mainly confined to the
plain strain regime, Ref. (97).

Although the application of LEFM in cases where there is
a considerable plastic region may be doubtful, it can still

be used as a lower bound (e.g. Refs.(2) and (97)).
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Moreover the evaluation of the stress intensity factors
for assumed cracks in the containment systems under hydraulic
test conditions is a necessary part cf some methods of
(*)

failure analysis (e.g. Refs.(2) and (98)).

4.2 Definition of the Problem

A main steam vent pipe T-junction of a CEGB power plant
was considered as the basis for the work reported in this
Chapter. A sketch of this component is shown in Figure 4.1
and the data of the problem as supplied are:

Inside radius of the branch pipe r = 73.1 mm

o]

Thickness of the branch pipe (near

the junction area) to = 63.5 mm
Inside radius of the run pipe R, = 120.6 mm
Thickness of the run pipe Ty = 43.9 mm
Young's Modulus E = 2.07x105 N /mm?
Poisson's ratio (assumed) v = 0.3

Internal pressure P =17.24 N/mm?

It is expected that high local stresses will occur at
the nozzle discontinuities and these areas should be considered
as key points for a detailed stress analysis bearing in mind
the subsequent LEFM studies of possible crack configurations

situated in such regions.

(*)

As a result of a hydraulic test performed on a pressure
vessel it may be reasonably assumed that no flaw greater
than a certain size, say a, was initially present in the
vessel. Thus, subsequent studies involving transient
conditions may assume an initial crack of size a.
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Based on reports of similar studies carried out by
other workers, Refs. (1) - (5), and in view of past experience
with the various finite element analyses described in the
previous Chapter(*), it was anticipated that an adequate
mesh idealization of the craék configurations could only
be possible with the use of a substructuring technique. The
number of degrees of freedom involved in an adequate mesh
representation of the T-junction and, simultaneously, a
considerable mesh density around the cracked regions would
be incompatible with the capabilities of the computer
facilities available at ULCC(**).

Therefore, following a similar procedure as that
described by Hellen ard Dowling, Ref.(2), the T-junction was
idealised by a finite element mesh (main structure) and an
initial stress analysis was performed using the DIM3B code.
Subsequently, a subregion of the T-junction (substructure)
was represented by a reasonably refined mesh where various
crack configurations were idealized.

Boundary conditions were prescribed in this substructure
based on the nodal displacements obtained from the previous
analysis. These boundary conditions were applied in nodes

pertaining to the interface between the main structure and

the substructure.

(*)

An account of the computer requirements and costs of
the various finite element analyses described in this
thesis, will be made in Chapter 5.

(**)
CDC 6600
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Unfortunately, experimental results were not available
for comparison with the present finite element solutions.
Therefore, the achievement of some confidence in the present
analysis could only be obtained, with some intuition, by
a thorough check on the stress analysis results and on the
overall behaviour of the structure. Also some qualitative
comparisons of the trends shown by the present results with
others found in the literature for similar components but with
rather different geometric parameters are presented. Thus,
this stress analysis is described in Sections 4.3 - 4.5 and

the crack studies return to Section 4.6.

4.3 Finite Element Mesh Ideal:izations

4.3.1 - General

For the situation when the T-junction is only subjected
to internal pressure, as in the present case, the structure
has two planes of symmetry. Taking advantage of this fact
only one quarter of the structure has to be analysed as it is
shown schematically in Figure 4.2. Appropriate boundary
conditions were prescribed in nodes in these planes of
symmetry.

The top ends of the branch pipe and the run pipe were
subjected to axial loads representing the effects of end

caps.

4.3.2 - 32 Node Element Mesh. CASE TJUN1
In the early stages of this work, a simplified model

of the T-junction was idealized by a mesh of 32 node elements
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as it is shown in Figure 4.3. Only one layer of these
elements was used across the thickness and throughout the
structure. This was justified by the fact that stresses are
modelled within these elements by second order polynomials
(see Section 2.2.3(*)), thus being able to model the Lame's
solutions in regions of the cylinders away from the junction
area.

It was also expected that this type of mesh would
represent with reasonable accuracy the stresses in the
nozzie regions. The number of elements was 49 and the number
of nodes 728,

A mesh generation program was developed to generate the
necessary data for the DIM3B code.

bue, mainly, to the lack of experience with such
problems a rather complicated and unreliable mesh generation
technique was developed. It was found that the bandwidth of
this mesh was too high (208), resulting in large computing
costs(**), despite the use of a simplified idealization of
the structure which did not model adequately the weld details.
As a consequence, only one run was performed and this mesh was

abandoned. Some of the results of this analysis will be

presented in the following sections of this chapter.

*) Stresses are obtained by differentiating displacements,
hence from expressions (2.13 f) and (2.13 g) it can be
shown that stresses are modelled by second order poly-
nomials.

(**) . . . . . .
The computing costs involved in this analysis will be

described later in Chapter 5.

The bandwidth is understood to be the maximum number of

unknown variables at one time (NUNKVA).
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4.3.3 - 20 Node Element Mesh. CASE TJUN2
4.3.3.1 - Mesh Generation

Based on the previous experience, an entirely different
mesh generation technique was adopted. This technique is
similar to that described in Section 3.4.2 for the idealiz-
ation of the CTS configurations.

For the sake of the explanation let us assume the
existence of radial planes containing the axis of the branch
pipe and defined by an angle as illustrated in Figure 4.2.
These planes will be subsequently referred to by the values
of B.

This new mesh generation technique is based on the
assumption that the entire structure can be defined by the
specification of the cross section of the structure at Bg= 0°
and the inner radii of the run pipe and branch pipe. Thus,
for values of g between 0° and 90° the idealized details of
the weld region may not be the same as those found in
practice. However, it is assumed that this idealization is
still acceptable for the present purposes.

A primary two dimensional mesh was developed for the
cross section of the structure at g=0° as it is shown in
Figure 4.4.

The nodal coordinates input data were obtained from a
scaled drawing of this section using a CADMAC digitiser
This machine enables x,y coordinates of a drawing to be
picked up by an electronic probe and automatically recorded
on punched cards. The topological description of this 2D

mesh was specified manually also in the form of punched cards.
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The mesh generation program for this case, based on
this 2D type of information generates all nodal coordinates
for the 3D structure as well as the topological description
of the 3D mesh.

Various skewing techniques have been used in order to
obtain the final mesh and they can be divided into three
stages.

Stage I: Construction of a slab with a cross section
identical to that illustrated in Figure 4.4.

Ctage II: Basically a cylindrical skewing technique
around the z axis is used, generating a nozzle-on-a flat
plate configuration.

These first two stages are illustrated in Figure 4.5.
These drawings have been generated by the program DRAW using
intermediate nodal coordinate data obtained immediately
after each one of these stages.

Stage III: Another cylindrical skewing technique now
around the y-axis, is applied to the plate and to a small
portion of the branch pipe, generating then the run pipe. 1In
this stage some difficulties arise in the specification of
nodal coordinates in nodes near the junction area of the cyl-
inders and for values of 8 near 90°. Some particular procedures
had to be used to correct in a proper manner these nodal
coordinates. The mesh as finally used is shown in Figure 4.6.

As can be seen from the foregoing, this technique
allows the generation of a 3D mesh of a T-junction based on

a rather simple set of specifications which is normally
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available in any design drawing of such components. It is
also clear that changes in the original design details are
very easily accommodated in the input data for the mesh
generation program.

As illustrated in Figure 4.6 the structure was divided
into four sections separated by radial planes of different
value of Bg. In each section 2 lavers of 20 node elements
have been used throughout as it was specified intially in the
drawing shown in Figure 4.4. The total number of elements
was 104 and the total number of nodes 713. Due to the
topological regularity of this mesh and of the fact that 20
node elements have been used, the bandwidth dropped sharply
to the value NUNKVA=157, which is 25% less than the previous
case. On the other hand a better mesh density was obtained,
especially in the nozzle regions.

In this first case it was decided to assume that the
face ABCD (see Figure 4.6) would be sufficiently away from
the junction areas in order to neglect any disturbances, in
stresses and displacements, caused by the presence of the
nozzle. Therefore the nodal points in that face were only
allowed to move in a radial plane in relation ot the y-axis
which is the axis of the run pipe. Due to symmetry appropriate
boundary conditions were prescribed in nodes in the planes

g = 0° and 8 = 90°.

4.3.3.2 - Results of Finite Element Analysis for Case TJUN2
Overall Behaviour.
The overall behaviour of this structure has been invest-

igated in terms of stresses and displacements in various
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sections of the structure.

A check on the equilibrium forces in the x,y and z
directions was made. For each of these directions the summ-
ation of the calculated reactions at nodes where boundary
conditions were applied differs by less than 0.1% form the
total force applied due to internal pressure.

In Figure 4.7 the thicker lines represent the originai
sections of the structure ﬁor the planes 8= 90°.and g= 0°.
The thinner lines represent the displacement solution for
these sections. A perspective view of the displaced structure
is illustrated in Figure 4.8. From these results it was
found that the computed radial displacement for the point P
(see Figure 4.7) was 2.71 times greater than the value

predicted by the following Lamc expression for displacements

Rzp' R2
_ 1 1v1 _ 2
ur = E ——-_——Rz—Rz [(1 2\))r + (1+\)) TJ (4.1)
2 71
where E = Young's Modulus

v = Poisson's ratio
p:= internal pressure
R.,= internal radius
R.,= external radius

r = radial coordinate from the axis of the cylinder.

This fact clearly shows that the assumed boundary cond-

itions in the face ABCD (see figure 4.6) are not valid for
this structure. Moreover, if the radial displacements for
the points situated in the face ABCD are affected by the
presence of the nozzle discontinuity, as it appears to be, the

rather large ratio, 2.71, referred to above is also associated
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with the fact that two nozzles diametrically opposed have
been assumed in the present mesh idealization.

From these results it is clear that a proper idealization
of the structure has to include the lower part of the run
pipe, thus representing a full quarter of the structure. The
finite element analysis of this new mesh will be described

in the next Section.

4.3.4 - 20 Node Element Mesh. Case TJUN3
4.3.4.1 - Mesh generation
As illustrated in Figure 4.9 the finite element mesh
for this case was obtained from the previous mesh by simply
adding eight more elements representing the rest of the run
pipe. In the new face ABCD appropriate new boundary conditions
were prescribed and one of the nodes in the line AB was
totally fixed to avoid rigid body motion in the z direction.
The total number of elements and nodes was respectively
112 and 773. By using a suitable numbering scheme for the
extra elements (see Figure 4.10) the bandwidth was kept the

same as in the previous case.

4.3.4.2 - Results of the Finite Element Analysis for
Case TJUN3. Overall behaviour.
Again, a check on the equilibrium forces in the x,y
and z direction was made, and similarly to the previous case
" the same agreement was found (less than 0.1%).

Equivalent results to those shown in Figures 4.7 and
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4.8 are illustrated for this case in Figures 4.11 and 4.12.
From these results, basically two conclusions can be drawn.

Firstly, for the same point P as in the previous case,
the ratio between the computed radial displacement and that
predicted by expression (4.1) has been now reduced to the
value 1.84. Moreover, it is clearly shown in Figure 4.11
that the line PQ loses its radial direction in the displaced
section. These two results clearly show the invalidity of
the idealization described in Section 4.3.3 for the case
TJUN2.

Secondly, it can be seen from figures 4.11 and 4.12
that the computed displacements near the ends of both
cylinders instead of converging to the predicted Lame solu-
tions were developing an oval shape.

A better illustration of this behaviour in the ends of
the branch pipe and the run pipe is shown in Figures 4.13
and 4.14 respectively. In these figures the displacements
and stresses obtained with the present analysis are compared
to the predicted Lame solutions.

By inspection of these results (see Figures 4.13(b) and
4.14(b)) it is interesting to note that the deviations
of the computed stresses from the Lame solutions do indicate
the presence of bending moments which have been superimposed
on the internal pressure.

Although no report describing this phenomenon was
found in the literature it is quite acceptable physically and

it is due to the distribution of self equilibrating forces
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(*)

in the junction area of the cylinders.

By comparison of the displacement results described in
Figures 4.7 and 4.11 it is clear that this phenomenon is less
noticeable in the present case than in the previous TJUN2 con-
figuration where two diametrically opposed nozzles were
actually assumed.

For the cases TJUN2 and TJUN3, Figs. 4.15 and 4.16 show
various contours maps of hoop stresses obtained in the nozzle
regions with the present finite element analysis. For each
case two cross sections were considered, 8=0° and 8=90° in
Figures 4.15 and 4.16 respectively.

It can be seen that the streés patterns are very similar
for both cases TJUN2 and TJUN3, however, a slight decrease in
the overall stress levels was noticed for the case TJUN2.
These relative differences in the stress levels and mainly
for the plane B=0° (see Figure 4.15) are much smaller than the
relative differences obtained for the displacéments (compare
Figures 4.7 and 4.11). This fact led to the conclusion that
the prescription of radial displacements according to expres-
sion (4.1) in the ends of the cylinders, in order to avoid the
ovalization effect, would have a negligible influence on the
stress patterns indicated in Figures 4.15 and 4.16. Therefore,
possible alterations to the prescribed conditions in the mesh
TJUN3 were considered and discarded.

Figure 4.17 shows a contour map of hoop stresses in the
nozzle region of a PWR pressure vessel similar to that shown

in Figure 1.1. These results were obtained by Hellen and

*
( )This type of behaviour can be easily visualized when sub-

jecting one end of a cylinder to two types of loads:
Either (i) a set of self-equilibrating axial loads or
(ii) two diametrically radial loads.
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Dowling, Ref.(2), using also a Finite Element Method.

In Figure 4.18 values of hoop stresses along the inner
surface in the crotch corner region obtained by Broekhoven,
Ref. (75), also for a PWR vessel,(*) are compared with the
results obtained by the present analysis for the case
TJUN3.

In both cases quantitiative.comparisons of results are
not possible due to major differences in the geometric
parameters of this configurations and in the geometric nozzle
details (see Figure 4.19) as compared with the present
geometry. However, in the first case the similarity of the
stress patterns with those of Figure 4.15 are encouraging.

In the second case, Figure 4.18, the present results
are indicated by the full dots, the circles will be
referred to later on, and the squares indicate the results
from the case TJUN1l. The results obtained by Broekhoven are
indicated by the thinner lines.

In the ascending part of these curves reasonable
agreement is verified and it is due to the fact that in both
configurations the average ratios, thickness to internal
radius, for the branch pipes, are very similar, (.94 in the
present case and 1.04 in Ref. (75)). The larger discrepancies
in the descending part of these curves are mainly due to the
fact that in Ref. (75), the vessel is modelled by a flat
plate, thus not allowing for an increase of hoop stresses in
the inner surface as predicted theoretically if a cylinder

was considered instead. The rather high peak value obtained

*
(*) modelled by a nozzle on a flat plate.
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in the present results is associated with the sharp corner
modelled in the TJUN3 finite element mesh. The proper
idealization of this geometric detail as specified in Figure
4.1 will be made later on.

In view of the foregoing, the subsequent studies
described in the following Sections of this Chapter will
be referred to as the stress analysis results obtained in the

TJUN3 case.

4.4 Validity of the Substructuring Technique

Part-through crack configurations in the section g=0°
can be considered, from the stress analysis point of view,
as the most critical situation regarding the fracture safety
analysis of the present T-junction. This is due to the
rather high stress concentration factor, 3.8, which was
obtainea in the crotch corner region of that section, (see
Figure 4.18).

Because the assumed crack configurations are situated in
a plane of symmetry of the T-junction, only one half of the
region surrounding the crack has to be idealized in any
substructuring technique.

Before entering the actual analysis of such crack con-
figurations, using a detailed idealization of that part of
the structure, a simple test was carried out to assess the
validity of such procedhre.

Using the previous finite element mesh, the node which
represents the crotch corner in the plane 8 = 0° was released

from its prescribed zero displacement in the x direction. As
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it is illustrated in Figure 4.20 this procedure implies

the existence of a corner crack having an approximate
circular shape with an average radius of 23 mm. In addition,
a force was applied on this node in the x-direction repres-
enting the pressure acting on the crack surfaces.

Some of the.nodal points which will be part of the
interface between the main structure and the substructure,
have been chosen to monitor the computed displacements
obtained in the present test. A comparison of these
results with those obtained in the main structure analysis is
shown in Figure 4.21. 1In this fiqgure, the circles, which are
referred to the right hand axis, indicate for each nodal
point the ratio between the computed displacement components,
u in the x direction for the uncracked and cracked situations.
Similar results were obtained for the v and w components
and the maximum discrepancy was found to be less than 0.05%.

As long as the boundaries of the idealized subregion
are as remote from the crack regions as the nodal points
referred to above, the results shown in Figure 4.21 clearly
support the validity of the substructuring technique which

will be described in the following sections of this chapter.

4.5 Substructure Analysis

4.5.1 - The Choice of Crack Configurations

Basically, in Appendix G of the ASME code, Section III,
it is indicated that the plane strain fracture toughness
values of the material should exceed by a given safety

factor the K-values of a postulated defect. This defect has
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a depth of one quarter of the section thickness and a length
of six times that depth. It is also suggested that for the
nozzle regions‘the postulated defect size may be a fraction
of that postulated for the vessel.

If these defects are small they can be treated as cracks
under constant stress fields magnified by a stress concen-
tration factor. However, the use of simplified and approx-
imate procedures for estimating K-values of larger crack
configurations in the nozzle regions may yield rather
inaccurate results. Therefore assessments of the severity of
such cracks, based on this type of approach are bound to
be too conservative.

Four circular crack configurations of successively
increasing depth were thus studied. A sketch of these crack
configurations is shown in Figure 4.22.

The particular choice of these geometries is due to
three reasons. Firstly, post mortem observation of cracked
nozzles (see Refs. (6) and (3)), indicate the existence of
initial defects of circular or nearly circular shape.

Secondly, this shape is very convenient, bearing in
mind some limitations associated with the evaluation of K-
values, using the extrapolation method. This will be expl-
ained later on.

Finally, for engineering purposes, the values of SIFs
along anelliptical crack front, may be estimated within 10%

(*)

accuracy by assuming quarter circular corner cracks instead.

This assumption was based on the results presented by Cha(loo)

(*)

For ellipseswith aspect ratios down to 0.4 (see Ref.(100))
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and is also substantiated by Kobayashi and Enetanya(lOl) in

their studies ofelliptical corner crack configurations, even
for the situation when linear varying stress distributions

are considered.

4.5.2 Mesh Generation

A sketch of the subregion which was considered for the
present substructure analysis is shown in Figure 4.23.

It is clear from this figure that all the nodes in the
interfaces between the main stiructure and the substructure
are situated at similar distances, from the crack region, as
those of the nodes considered in Section 4.4 of this Chapter.

The technique used to generate the substructure was
basically derived from that used in the idealization of the
cracked cylinders described in Chapter 3 (see Section3.4.6.1).
Suitable geometric alterations to the external boundaries
were initially specified in order to account for the weld
details of the present geometry. The final mesh as illus-
trated in Figure 4.24 was then obtained by subsequently
applying a cylindrical skewing technique similar to that
referred to as stage III which was described in Section 4.3.3.1.

Some relevant features associated with this mesh are
described as follows:

i) The total number of elements and nodes is 88 and
583 respectively.

ii) Using always the séme topology, the various crack
configurations were idealized by the application of simple

linear skewing techniques. In these skewing procedures only
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the interior nodes suffered changes in their geometric
positions, whereas the nodes in the interfaces were kept un-
changed. Hence, the boundary conditions based on the nodal
displacements, such as those indicated in Figure 4.21,
remained the same for the various crack configurations.

iii) At the time the TJUN3 mesh was developed it was
possible to forsee for the substructure the spatial positions
of the nodes in the interfaces. Therefore, identical spatial
nodal positions were ensured, in the main structure, by an
adequate specification of the values of B for the various
radial planes in which the nodal points are located. Further
complications and inaccuracies associated with the specifica-
tion of boundary conditions are avoided with this procedure.

iv) With the present mesh, a proper representation of
the crotch corner, as specified in Figure 4.1, replaced the
sharp corner idealization of the main structure (TJUN3).

v) Internal pressure was specified in the inner surfaces
and was assumed to fully penetrate the crack, thus acting on
its surfaces.

vi) As it is shown in Figure 4.24, the nodes in the free
surface of the crack are distributed in five radial directions
emanating from the crotch corner. By assuming circular-
shaped cracks, these directions remain perpendicular to the
crack fronts. Thus the evaluation of SIFs along the crack
front by using the extrapolation method in these radial

(*)

directions is a straight forward procedure.

*

(*) The use of the extrapolation methods in directions which
are not perpendicular to the crack front have been dis-
cussed in Section 3.4.3.
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4.5.3 - Analysis of the Uncracked Substructure .
Overall Behaviour.

In order to obtain greater confidence in the substruct-
uring procedure a defect-free substructure was considered
before the idealization of any crack configurations. The
overall behaviour of the substructure was investigated in
terms of the stresses iﬁ the nozzle region.

A comparison of the hoop stress patterns obtained in
both the main structure and the substructure is shown in
Figure 4.26.

In Figure 4.18 the circles represent the values of the
hoop stresses which were obtained in the inner surface with
the present analysis. It is interesting to see that the
peak stress value obtained in the main structure analysis,
where a sharp corner was assumed, has been smoothed out with
the proper idealization of the crotch corner geometry.

In both cases, Figures 4.18 and 4.26, the similarity

P
of the stress patterns is again encouraging.

However, as illustrated in Figure 4.26, some minor
differences are noticeable in the vicinity of the crotch
corner and in the area close to the run pipe. In the former
region the results obtained in the substructure analysis are
believed to be more accurate whereas in the latter, the TJUN3
analysis should provide better results.

This is due to the fact that in the substructure ideal-
ization, a better mesh density was obtained in the crotch
corner at the cost of a coarser mesh in the areas away from

that region as illustrated in Figure 4.25.
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4.6 Analysis of the Cracked Structure

4.6.1 - Idealization of the Cracks

The various cracks have been idealized by releasing the

nodes in the free surface of the crack
zero displacements in the x direction.
nodes adjacent to the crack front were

quarter point positions nearest to the

front.

4.6.2 - Overall behaviour

from their prescribed
Again, the mid-side
displaced to the

nodes in the crack

The influence of the preserce of various cracks on

the overall behaviour of the substructure was investigated

by monitoring the changes of the boundary reactions as the

crack size increases.

The maximum changes for each crack configuration and in

various radial planes

B,

are shown in the table below. The

deviations are indicated in percentage values of the initial

\
reactions which were obtained in the uncracked substructure

analysis.
CHANGES IN THE NODAL REACTIONS
Max. Deviation %
. SIZE
CRACK mm 8= 00 B = 34o 8= 900
1 12.7 1.1 .8 .9
2 19.1 2.8 2.0 2.2
3 25.4 6.7 4.2 4.5
4 31.8 11.4 7.6 7.7
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As can be seen from this table the deviations increase
considerably with the crack depth and the application of the
present substructuring technique may eventually underestimate
the values of the SIFs for cracks deeper than the crack 3.

The results obtained for crack 4 yet will be presented.

4.6.3 - Stresses Ahead of the Crack Fronts

The Oy stress distributions for the sections o=0,

o = 450, o = 90° ahead of the crack fronts are shown in
Figure 4.27.

It is interesting to note the values of these stresses
in areas away form the crack regions are just slightly
affected by the presence of cracks of increasing size. This
may be due to the "fixed grip" conditions to which this
substructure was subjected. Small variations of the stress
levels in these areas would be expected to occur if a full
structure were analysed instead.

Due to reasons which “have already been described in
Chapter 3, the stress data in the neighbourhood of the cracks
can only support, in a qualitative manner, the distribution
of the SIFs along the various crack fronts. 1In fact the
stress values at the quarter point nodes are in close qualit-
ative agreement with the variation of the SIFs along the

various crack fronts (see Figure 4.28).

4.6.4 - Evaluation of K-Factors, Discussion of Results
As in the previous test cases, which were described in

Chapter 3, the extrapolation method was applied using the
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displacement components in the x directions of the nodes in
the free surface of the cracks, thus 6=7m . Plgin strain
conditions were assumed for all the directions , with the
exception of a= 0° and a= 90° where plane stress express-—
ions were used instead. This first group of results is shown
in Figure 4.28.

In order to obtain more confidence in these results the
SIFs were also obtained using the extrapolation method in
the directions perpendicular to the crack plane, thus for
8 = n/2. This second set of results is also shown in Figure
4.28.

It is interesting to note that the K-values obtained with
this second procedure (for 6= m/2) are consistently greater,
by about 9%, than the results obtained with the extrapolation
procedures in the free surface of the crack.

These differences, as pointed out in Chapter 3 (Section3.2.2)
are associated with the inaccuracies involved in the extra-
polation procedures and m;inly in the direction 6 = w/2.

Due to this, the second set of results may be regarded as

an upper bound to the true solution. Subsequently, based on
these two sets of results, areas of uncertainty of the SIFs
distributions, for each crack configuration, may be defined
as illustrated in Figure 4.28.

Another procedure was used, based on the Global Energy
Method and is described as follows.

As it is shown in Figuré 4.29, when the crack is extended
by skewing the mesh, the energy balance equation for the

system can be expressed as
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et

- = = = * LI .
AU, .., = GOA R* Au (4.2)

N
=
=

provided no pressure is acting on the free surfaces of the
crack.

Now using the principle of superposition, the work done
by the nodal equivalent point forces to the internal pressure

can be added to the right hand side of equation (4.2) thus

m Pn + Pn
i+l i 1
- + = = = Au?
AUi*i+1 21 2 Aun GAA 2 Rm um
where AUi i+l — Change of strain energy from crack i
to crack i+l
R_,R* - Reaction on the node m
m’ m
Aué,ﬁu'* - Crack opening displacement in the
m
point A indicated in Figure 4.29.
AUn = Un - U
i+l i
P P . . -
Ni4y 0y - Nodal equivalent point forces to the

the internal pressure.
The work done by the internal pressure is evaluated by
assuming the displacement of forces which are an average of
the forces obtained for crack i and crack i+l and can be
obtained from the output of DIM3B code.

The subsequent strain energy release rates obtained
with this method are best associated with an intermediate
crack by assuming the mean of the depths of cracks i and i+l.

From this method the values of strain energy release

rates have been translated into K-values and were found to be
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about 40% lower than those predicted by the extrapolation
method. Very little importance should be attached to these
discrepancies due to the following reasons:

i) Large inaccuracies involved in the evaluation of the
115 value.

ii) Problems associated with the evaluation of the work
done by the internal pressure on the crack surfaces.

iii) Rather coarse crack extensions have been assumed
by using the results from the analysis of cracks 1 to 4.

iv) The present procedure, as well as the crack closure
work method (see Section 3.2.3), are more accurately used
when the crack extensions are idealized by supressing the pres-
cribed conditions in nodes ahead of the crack front, instead
using skewing techniques as in the present case.

It has already been confirmed by other workers in their
LEFM studies of cracks in nozzles (see Refs. (2), (3), and
(59)) that, for these types of configurations the use of
simplified ané&ytical or semi-analytical procedures to eval-'
uate K-values, may result in a considerable inaccurate
estimates of the true solutions. Therefore this type of
analysis, which is bound to be inconclusive was not considered
in the present work.

Alternatively, a comparative study of the present
results with those described in Refs. (2) and (75) was carried
out and is based on the following assumptions. It has been
shown (see Figures 4.15, 4.17 and 4.18) that hoop stress
patterns in the nozzle regions, for the section B= OO, are

very similar for a relatively wide range of geometries.
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In fact:

i) Maximum stress concentration factor is always found
at the crotch corner, whereas very low stress levels are
obtained in the opposite surfaces. |

ii) The membrane stresses away from the nozzle regions
are normally higher in the vessel or run pipe than in the
branch pipe.

iii) However, for small distances away from the crotch
corner the stresses in the inner surfaces die away more
rapidly in the side of the vessel or run pipe.

iv) The hoop stress distributions for angles of @ near
0©°

45O are lower than the same distributions for o = and

« = 90°.

v} The variations of SIFs along the crack fronts
show similar trends to the stress distributions with the
exception for crack depths smaller than the crotch corner
radius.

vii The/ values of the stress concentration factor in the
crotch corner regions seem to increase when the crotch
corner radius decrease.

From these conclusions, an average of SIFs for each
crack configuration in the various nozzle geometries can be
related by normalizing them to the SIF of a penny-shaped
crack, KO, (see exp. 1.13, Chapter 1), subjected to a remote
stress equal to the membrane stress of the vessel, thus KO
can be expressed as

R Ja
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where p is the internal pressure
R is the internal radius of the vessel
T is the thickness of the vessel
a is the crack length

Moreover, the true geometric size of each crack can
also be suitably normalized in relation to some geometric
parameter which is obtained, on an empirical basis, from
the design details of each nozzle, With this procedure
cracks which may have rather large different sizes are then
compared on the basis of the same depth to thickness ratio.

According to this procedure the results which were
obtained are shown in Figure 4.30. The circles indicate
the present results whereas the squares and the hexagonals
are referred to the results obtained by Hellen and Dowling
(2) and Broekhoven (59) respectively.

The thinner curve which is referred to the right hand
axis indicate for the present case, only, the true K,
variations éor a range of a/T up to .5.

The following conclusions can be drawn from these
results.

i) The normalised K-values for the present crack con-
figurations are considerably higher than the values corresp-
onding to the other cracked nozzles 2 and 3.

ii) These differences can be associated with the higher
hoop stresses which where obtained in the present case (see
Figure 4.18) for the uncracked structure.

iii) On one hand, the present results are expected to

underestimate the true solutions, due to the "fixed-grip"
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conditions which were used in the present substructuring
technique. This is somewhat confirmed by a faster decrease
in the normalized K values as the ratio a/T increases.

iv) On the other hand, the hoop stresses in the present
case (see Figure 4.18) die away, from thecrotch corner,
more rapidly as compared to the hoop stresses obtained by
Broekhoven in nozzle 2. |

v) Howeva2r, due to the doubly-connected nature of these
ctructures, regarding both the run pipe and the branch pipe,
the present technique may not yield too large an error in the
evaluation of K-values. This is more so in the present
case, where the ratio of thickness to internal radius is
much larger than in the other geometries 2 and 3.

This type of behaviour has been somewhat confirmed in
the analysis of cracked cylinders described in éhapter 3.

In these cracked cylinders it was found that the distur-
bances caused by the presence of the crack are restricted to
a small region in the plane of the crack and negligible in
radial sections perpendicular to the crack plane. (See Figs.
3.30 and 3.31).

vi) The variations of reactions with increasing crack
depth, which are described in Section 4.6.2, indicate that
the substructure idealization could have been restricted to
a smaller sector of the nozzle region between the planes
B = 0 and, say, B= 45° thus allowing for a better mesh
density in the cracked region.

vii) The cracked cylinder CYL1l, described in Chapter 3,

and the present branch pipe are very similar in their geometric
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parameters, having the same thickness and differing by
only 2% on the internal radius.

For the same crack depth to thickness ratio, a/T=.2
the normalized SIF at the free surface of the branch pipe
is about 3.12 (see Figures 4.29 and 4.30) and the stress
concentration factor SCF, at that point (see Figure 4.18) is
3.3 in the uncracked structure. Using the same K, value as
before (for comparison purposés) the SIF at the point where
the crack meets the inner surface of the cylinder CYL1
was found to be .97. Multiplying this value by the SCF
indicated above, yields to a coprespondent SIF for the branch
pipe of 3.03 which is only 3% lower than the 3.12 value
obtained form Figures 4.29 and 4.30.

viii) In Figure 4.30, the full circle indicates the
average normalized K value obtained in the corner crack
configuration described in Chapter 3 (see Section 3.4.4).

In that specimen the ratio thickness to crack depth is also
.2. This averaged SIFs is 2.73 times smaller than the corres-
pondent value in the present cracked nozzle, which can also
be associated with the previous SCF, 3.3, referred to above.
This larger difference is explained by the doubly-connected
nature of the present geometry where bending is restricted
thus reducing the SIFS as compared to the corner crack in
the square specimen.

ix) From the scarce results indicated in Figure 4.30,
similar trends can be observed to occur in the various
geometries and for values a/T greater than .16. However,

in these normalized SIFs strong differences, of up to about
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50% are observed which are associated with differences in
the geometric details and the stress distributions of the
various nozzles. These differences and the complexity

of these crack configurations seem to rule out any prospect
of obtaining an exact analytical solution.

Finally, bearing in mind possible safety implications of
the present crack configurations, some conclusions can be
drawn based upon the following considerations.

i) The hoop stresses in the uncracked structure as
well as the SIFs are higher in the branch pipe than in
the run pipe, hence cracks tend to grow faster in the branch
pipe.

ii) For materials such as the A533-B steel, which is a
low alloy pressure vessel steel commonly used in the
Americal reactor technology, typical ch values can be as
low as 50 Man“% This value is for very low temperatures
or for highéi temperatures under dynamic or impact testing
conditions.

iii) From Figure 4.29 the maximum K, values for cracks

1
1,2,3 and 4 can be obtained. Based on the above ch value,
it can be said that under extreme conditions (low temperatures
or impact conditions) the following safety factors against

instability or brittle fracture are indicated:

SAFETY FACTORS FOR CRACKS 1,2,3,4

-3
FOR Kic = 50 MN m ‘2
CRACK CRACK LENGTH MAX K, SAFETY FACTOR
1 12.7 21 2.38
2 19.1 24.5 2.04
3 25.4 27 1.85
4 31.8 30 1.67
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iv) In ultrasonic testing, the detectable defect size
for the range of thickness values specified in the present
geometry is found from Ref. (102) to be less than 2 mm.

Thus the present crack configurations can be found and measured

safely.
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CHAPTEHR 5

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

5.1 Achievements

i) A three dimensional general purpose linear elastic
finite element program was brought into use. In this
program (DIM3B) the input data format is quite general and
applicable to any geometric and/or loading conditions, yet its
generation may become a rather tedious and complicated job.

In order to ease some of these problems, facilities exist
in the program which allow the user, if so desired, to chose
various optional sets of coordinates to which the various
input data may be referred.

ii) The DIM3B code can be submitted in a so-called
"Dynamic mode of operation". For each analysis this procedure
attempts to optimize, in a semi-automatic manner the computing
costs (in CM and CPU(*) time) involved in running the program.

iii) Various mesh generation techniques have been
developed for the three-dimensional analysis. In general,
these programs generate the necessary data for the DIM3B
code based on a rather simple 2D type of information. 1In all
these mesh generation programs various stages can be identified.

1 - Full description of the topology of the 3D mesh

2 - Generation of a simple 3D geometry

3 - Application of various skewing techniques separated

in distinct stages which yield to the desired geom-

etric shape.

*
*) CM - Central memory CPU - Central processor unit
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These procedures ensure

1l - Validity of the mesh generation prcgrams for a

relatively wide range of the geometric parameters of

the type of structure under study.

2 - Topolgical regularity in the 3D meshes, thus keeping

the size of the bandwidth to a low level.

3 - Normally, changes in the geometric details of the

structure can be easily accommodated by performing

minor alterations in the 2D type of input data.

iv) Using some off-line graphics facilities available
at I.C.C.C. a plottingprogram, DRAW, was developed whereby
the various 3D meshes can be visualized and efficiently
checked in terms of the topology, nodal coordinates and
prescribed displacement boundary conditions. In this program
an isometric view of the mesh is generated from a direction
which can be suitably specified by the user.

v) An axi-symmetric general purpose linear elastic
finite element program was developed. This program, FRONT,
uses a simplified version of the FMS in which the symmetric
property of the body stiffness matrix [k] is not taken into
account. However, profiting from this fact, the introduction
of slope boundary conditions was easily accommodated in the
solution technique (see Appendix 1, Section Al.4.2.4) by
performing relatively simple alterations in the coefficients
of the matrix (kl.

v) The theory outlined by Henshell and Shaw (Ref. (81))
for the "2D crack tip elements" was extended for the equivalent
3D element, i.e., for the 20 node isoparametric element

(Section 3.3).
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vi) It was also shown that this theory could be gener-
alized so that "crack tip elements" can be derived from any
isoparametric finite elements (Secticn 3.3) provided they
have one or more than one intermediate nodes in the edges.
This means that any field variable within the conventional
elements must be described by quadratic or higher order
shape functions.

vii) To substantiate this theory various test cases of
CTS configurations were carried out in which the crack tip
regions were idealized by using standard 20 node elements
or their derived "singularity elements" (Section 3.4.2).

The validity of the theory was confirmed by the
improvements which were observed in the K-values when the
"crack tip elements" were used (see Figures 3.18 and 3.19).

viii) The generalization of the theory referred to in
vi) was also substantiated by the results which were obtained
when the same CTS geometries were idealized by 32 node
element meshes (see Figures 3.21 Db).

ix) Some other typical 3D crack configurations were
then studied (Sections 3.4.4 to 3.4.6). The results which
were obtained from these analyses compare favourably with
suitable bounding approximate solutions and other results
already given by other authors.

x) By applying an adequate substructuring scheme it
was possible to study various crack configurations of increa-
sing size in the crotch corner region of a thick-walled

T-junction of cylinders. (Chapter 4 ).
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5.2 Computing Costs

In Chapter 3, Section 3.4.1, the strategy which was
adopted for running a typical case with the DIM3B code was
described. This strategy, illustrated in Figure 3.11,
can be divided into two main stages.

1 - Execution of the mesh generation program followed

by the plétting procedure (execution of program DRAW)

2 - Resubmission of the mesh generation program followed

by the execution of DIMDIM and DIM3B codes.

It was found that the costs involved in the stage 1
computations are, on averade, about 2% of the total computing
.requirements of a complete analysis.

A table is presented here where the computer requirements
for the execution of the DIM3B code are described in detail
fof the various finite element analysis reported in this
thesis.

The usage of the CDC system at U.L.C.C. is combined via
a complex formula and translated into a measure called unit
as follows

1 10+3CM TR x DR

Units = 128 CP ( 30

) + —=—_ (1 + .3CM) + 1 (CR+LP)

1.44x10° 128
where CP is the total central processor time
CM 1is the number of core memory words occupied
TR is the number of words transmitted to or
from magnetic tapes
DR is the number of words transmitted to or

from disk



COMPUTER REQUIREMENTS FOR THE EXECUTION OF DIM3B CODE (FTN compiler)

CASE | pi3, | NELEM | NODTOT | NPRDEF | NKNVA | NUNKVA | NT' ) G COMPULRS REQULERIIRES CoST
cM o CPU o PP UNITS g
1 |20 22 202 109 24 101 | 606 | 29488| 147.196 | 35.718 | 4.934| 9.87
2 |20 44 319 123 26 162 | 957 | 39990 290.682 | 84.486 | 8.338| 16.68
3 |32 22 340 175 36 164 | 1020 | 45230 331.517| 88.935 | 18.476 | 36.95
4 |20 88 553 68 14 291 | 1659 | 74730| 817.823 | 110.962 | 65.388 | 130.78
5 | 20 88 553 151 30 278 | 1659 | 75853| 795.010| 105.084 | 58.339 | 116.68
6 |20 88 553 215 39 269 | 1659 | 76011| 782,157 | 105.285 | 54.328 | 108.66
7 | 32 49 728 213 29 208 | 2184 | 59444| 899.766 | 163.412 | 53.761 | 107.52
8 |20 | 104 713 239 23 157 | 2319 | 48221 656.421| 91.038 | 30.969 | 61.94
o 20 | 112 773 256 19 157 | 2319 |48414] 686.750| 113.153 | 32.534| 65.07
10 |20 88 553 325 56 282 | 1659 . |85916| 864.77 | 99.7. | 64.686 | 129.37

(*)

(**)

- CM - Control Memory; CPU - Central Processor Unit Time;

- NT - Total number of degrees of freedom, NT =

Case
Case
Case
Case
Case

Uik W~

- Compact Tension Specimen

- Compact Tension Specimen, Fig.3.14

- Compact Tension Specimen, Fig.3.21l(a)
- Corner Crack Specimen, Fig.3.26

- Part-through Crack Specimen, Fig.3.26

NODTOT x

Case 6
Case 7
Case 8 -
Case 9

1

Case 10-

PP - Peripheral Processor Time

o - Seconds
3
Cracked Cyliﬁder, Fig.3.29
TJUN1, Fig.4.3
TJUN2, Fig.4.6

TJUN3, Fig.4.9
Substructure, Fig.4.24.

- CET -
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CR is the number of cards read
LP is the number of lines printed
The estimation of the costs for the various computations

is based on a rate of £2.00 per unit of the computer resour-

ces usage.

5.3 TFinal Conclusions

5.3.1 - The FEM and its LEFM applications.

i) The FEM is a very powerful technique to solve
general stress analysis problems. However its application
to three dimensional cases is hampered both by the present
generation computer capabilities and the rathexr high costs
involved in such computations. As a consequence, such
analyses are still limited to relatively coarse mesh
idealizations of the geometries in study.

ii) The utilization of "crack tip elements' in three
dimensional LEFM studies seems to be compulsory if K factors
are to be evaluated without unacceptable loss of accuracy.
For the present meshes, discrepancies of about 20% are found
if no "singulairy elements" are used.

iii) K-values obtained by the extrapolation method
and using the displacement distribution in the free surface
of the crack (6=m) show in general an agreement within 5% with
other results already given by other authors.

iv) Less accurate estimates of the K-factors are obtained
when the displacement method is applied in directions per-
pendicular to the crack plane (6=w/2). This is due to the
strong square root behaviour of the K* curves (see Figure

3.1) as it was described in Chapter 3, Section 3.2.2.2.
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v) However by using these two directions of extra-
polation (6 =mand 6 =72) valuable information can be obtained
about the coefficients of the higher order terms of the
Williams series solution (exp. 3.4). These coefficieﬂts
which are derived from the K* curves can eventually be
physically interpreted by following the lines suggested by
Cotterell (106).

vi) Such coarse meshes present some limitations on
the validity of the computed stresses in the vicinity of
the crack. Therefore finer meshes would be recommended if
a detailed analysis of the near tip stress fields is
required, or if K factors are to be calculated by the "stress
method".

vii) Strain energy release rates, G, obtained from
boundary load displacements can only be used by making two
complete runs for adjacent crack configurations.

The averaged K-factors associated with the values of
G (exp. 1.7) compare favourably with those obtained by the
extrapolation method using the direction € = 7 (see section
3.4.3).

viii) The variations of K-values which were obtained
aiong the crack fronts of all the configurations studied,
show the incapability of the FEM to detect any surface effects
in regions where the cracks meet the free surfaces. However
it is believed that in such areas the present results are
still acceptable for engineering purposes.

ix) The computation costs associated with 32 node

element meshes are considerably higher than those involved
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in 20 node element mesh indealizations. Moreover it was

found that better mesh densities are obtained with the

use of 20 node elements.

5.3.2 - The LEFM Studies of Cracks in the Main Steam Vent

Pipe "T-Piece".

i) Ccnfidence in the validity of the results obtained

from the finite element analysis of the defect-free "T-piece"

geometry is based on the following observations:

Agreement of the results which were obtained with two
different mesh idealizations (see Figure 4.18). One
using 32 node elements (Figure 4.3), another using 20
node elements (Figure 4.9).

Apart from an ovalization effect which was observed

in the ends of the cylinders, and shown to be physically
ekplicable, the stresses and displacements in such
areas agree well with the predicted Lame solutions.
The hoop stress distributions in the crotch corner
regions of the present geometry and two other nozzle
configurations (see Figures 4.15 and 4.18) show rather
similar trends.

ii) By comparing these stress distributions ( in the

present case and in the other two nozzle configurations)

the following conclusions may be drawn.

The smaller the crotch corner radius the higher the SCF
in these areas.
This suggests that better stress distributions may

eventually be obtained if the crotch corner is smoothed
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out by removing material and so increasing the crotch

corner radius. Comparison with other workers indicates

that this will lowef the K values of possible cracks

in such regions.

iii) When two diametrically opposite branch pipes are
considered (case TJUN2) the overall stress levels in the
crotch corner regions increase by about 10% in relation to
the stress levels which were obtained for the single T-
junction geometry (case TJUN3).

iv) For the present case the maximum hoop stress in the
crotch corner regions was found to be 174 MNm—2 which is
below the yield strength of a mild steel. This result
demonstrates that, for this configuration, there will be no
gross yielding and ensures the validity of the LEFM studies.

v) Whereas a relatively coarse mesh idgalization was
sufficient to obtain the stress and displacement distributions
in the uncracked "T-piece" geometry, a much denser mesh was
necessary to idealize in a proper manner the various crack
configurations.

vi) Due to the limitations of the present computers, it
is necessary to use a substructuring technique in order to
achieve the desired mesh density in the regions of concern.

vii) Substructuring schemes are expected to under-
estimate somewhat the true K-values, however, due to the
doubly-connected nature of the present configuration, such
errors may not be too large.

viii) For crack depths up to about one half of the
" thickness of the run pipe the present substructure idealization
could be restricted to a smaller sector of the junction area

of the cylinders.
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5.4 Recommendations for Further Work

The results presented in this thesis clearly demonstrate
the possibility of evaluation of K-values utilizing a stand-
ard 3D finite element stress analysis computer program.

However the rather high costs involved in such comput-
ations immediately suggest the development and implementation
of new features into the DIM3B code.

i) Implementation of the 15 node wedge-shaped element.
This element is fully compatible with the presently available
20 node hexahedron elements, ard the main advantages
associated with this element are:

- More versatility in the mesh idealizations

- In general, these elements yield smaller sizes of the
bandwidth,

- "Crack tip elements" are still easily derived from

this wedge-shaped element (the "quarter point distances"

rule is still applicable).

As far as the programming aspects of the DIM3B code are
concerned the implementations of these elements requires the
following major procedures.

- Addition of an extra library subroutine containing the
shape functions and its partial derivatives for these

elements.

- Suitable alterations in subroutineé LOAD, FEM and
FEM2.
ii) Organization of book-keeping procedures for the
stiffness coefficients so that possible substructuring schemes

can be used in a more accurate manner and at lower costs.
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This feature is not only suitable for general stress analysis
problems but it is also rather useful bearing in mind the
possible application of the Parks. "stiffness derivative
procedure" for evaluating strain energy release rates.

iii) The implementation of initial stresses and/or
initial strains due to temperature rises would obviously
allow the solution of a wider range of problems of pratical
interest as for instance, residual stresses and stress dis-
tributions due to thermal gradients.

Three dimensional LEFM studies are still very scarce.

A wide range of practical problems is yet to be studied and
a completely general approach to the solution of these
problems has been provided.

As an immediate extension of the present work the
following studies may be of interest.

iv) In Chapter 3, Section 3.4.3, it was suggested that
a single averaged K factor obtained by the Global Energy
Method can replace the 2D calibration factors for the
speciﬁens used in fracture toughness testing procedures.

For the CTS with curved crack fronts the results clearly
show a reduction in K with increasing tunneling effect. A
much more accurate analysis with a finer mesh would be
required if proper correction factors are to be evaluated.

v) The present substructuring technique could eventually
yield improved results by carrying out this scheme in a step
wise manner. In other words, the imposed displacement boundary
conditions which are obtained from the analysis of the entire

structure can be updated for each crack length by grossly
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idealizing equivalent cracks in the main structure mesh.
The improvements of this modified scheme can be monitored by
inspection of the reactions.

vi) Some LEFM studies are suggested which may be
carried out using the FRONT code:

- Simulation of nozzle geometries by an axisymmetric
nozzle on a flat plate.

- Long and narrow banana-like cracks occur in stuctures,
as for instance, in off-shore oil rig"T-piece" components.
These cracks can eventually be studied by an approximate
axisymmetric idealization of their configurations.

vii) Finally, carefully controlled experiments are
required so that the present results, which were obtained by

a numerical method, could be properly substantiated.
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APPENDTIZX 1

PROGRAM FRONT . DESCRIPTION . USER'S GUIDE

Al.l1 - Introduction

The program FRONT is a finite element computer program
using triangular axisymmetric finite elements. This program
has been developed from the FLAP5 code for which a full
User's Guide is given in Ref. (103). The elements used are
the axisymmetric version of the well known "Constant Strain
triangular elements" which are described in Ref. (46).

The FLAP5 program uses the Gaussian iteration . method
to solve the system of equations

[k] {a} = {F}. (al.1)

where [k] is the general body stiffness matrix
{A} is the unknown displacement vector
{F} is the applied nodal forces vector

The iteration method is speeded up by using an over-
relaxation factor reducing the number of cycles necessary
to reach a given tolerance.

The rate of convergence of this method is highly dep-
endant on: the over-relaxation factor, the shape of the
structure, the boundary conditions and the initial geometry
of the elements (see Refs. (48) and (104)).

Experience has shown that, in general, good results

(apart from mesh density considerations) are obtained if a
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tolerance(*) of the order 10_5 is reached. Nevertheless it
has been found that in some cases this level of tolerance is
very difficult, if not impossible, to reach, even using
techniques for optimization of the over-relaxation factor
(see Ref. (105)).

For these cases the Gaussian iteration method is no
longer reliable and another method of solution of the equation
(Al1.1) is required, such as the Gaussian elimination technique.
A description of this method has been given in Chapter 2,
therefore will not be repeated here. Only its computer imple-
mentation will be described in some detail for the present
case.

The mathematical theory involved in the prescription of
displacement boundary conditions, for the present case, is
described in the following section.

The programming aspects of the FRONT code will be out-
lined in Section Al.3 and a User's Guide as well as a listing
of the program will be included in the final sections of

this Appendix.

Al.2 - Displacement boundary conditions

In the DIM3B code full advantage is taken from the
symmetry of the overall stiffness matrix [k].whereas in the
present program the completed equations are fully stored. As
a result the partitioning of the matrices, as indicated by

expression (2.48) in Chapter 2, is no longer necessary.

(*)

In the present case, tolerance is expressed as

EAui

eui

Tol =

where Aui = |ui+l_ uil

ui = nodal displacements at iteration
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A description of the method whereby initial prescribed
displacements are accommodated in the present solution

technique will follow.

Al.2.1 - Prescribed Displacements in the Radial or Axial
Directions.

Suppose the set of equations (Al.1l) can be expressed

as
Fsl’l §, + 31’2 §, + . . . .t 51,2n $on 1=(F1) (A1.2)
Sz'1 6§, + 82’2 6, ¥ o 0 . o4 SZ,Zn Son IF1F >
J R
S §.+ S §,+ . . . . F 8, [=I|F
®2n,1 %17 ®2n,2 ©2 San, 20| %20 [T2n)
where in this two dimensional case 62k-1 = and
62k = u for each node k.

If GS is a prescribed displacement at node k, a suitable
alteration of equations (Al.2) can be performed as follows:
The quantities Sis 65 (for i=1, 2 .. 2n) will be transferred
to the right hand side of all equations i as known quantities.
Fs is the sum of the external applied forces Ry the internal

forces due to initial strains and body forces for the node s.

Fs Rs + Rbs RES (Al. 3)
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where RS = external forces

Rbs= Forces which are statically equivalent to body
forces
R ..~ Forces to suppress initial strains (thermal

strains in the present case.)

If §_ is known, RS becomes an unknown reaction as well
as FS. This unknown quantity is replaced in the solution
vector, A, and can be evaluated if reactions are to be cal-
culated. In view of the foregoing all eéuations will be
changed as follows
i,2n%2n= Fi785 %

(A1.4)

S, ,6.+ S s+ . . .+ 0.Gs+ . .+ S

and theé equation s which contains Gs in the leading

diagonal will be changed to

+ + .. .-F_+ ...+ = -
Ss,161 Ss,262 Fs Ss,2n62n ss,sas

(A1.5)

thus equation (Al.2) can now be expressed in matrix form as

{ = - \
Sl,l Sl,2 -0 S1,2n 61 W Fl Sl,s s
Sy,1 Sa,2 0 m 0 0 e e85y o 82 Fr-5,,5%
{ "y 47 r
Ss,l Ss,2 SR ss,2n Fys " Sg5°%s
) .. s -
52n,1 S2n,2 0 2n,2n (®2n) (Fan"52n,s%
(A1.6)

It is obvious that this procedure can only be performed in
equations which have already been completed, or, in finite
element terminology, when all the elements adjacent to the

node k =(s+1) /2 have been processed.
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Al.2.2 - Slope Boundary Conditions
If a node kK is only allowed to move on a particular
direction, as it is illustrated in Figure Al.1l, the d{splace—

ments uy and Vi for that node remain unknown and a relationship

Figure Al.1 - Slope boundary condition in node k
between these two values can be established as

u = q. Vg (A1.7)

where g = 1/tan ¢

Resulting from this boundary condition, a reaction Qk
perpendicular to the prescribed direction has to be added to
the force Fk' so that the resulting total force applied in
node k will follow the prescribed direction as it is indicated
in Figure Al.1l.

It is obvious that the quantities in the right hand side
of equations 2k-1 and 2k are no longer known quantities.
However, bearing in mind that the reaction Qk must remain
perpendicular to the prescribed direction, its components Qk

r

and Qk will be related by the following expression
z
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Q = -g.Q (A1.8)

l,2nvn F1

SZk—l,lul + SQk—1,2v1 R SZk—l,van=F2k—1+ ri (a)

Y Sax,a% tSak,2Vitcoc o+ o+ - Syp,anVn T Fax * %, ®
u -qv, =0 (c)

%, 7T =0 ()

From this set of equations it can be seen that the
number of unknownshas increased by two so the number of
equations, and this fact will drastically increase some
programming aspects of the computer code. In order to over-
come this problem and bearing in mind that the evaluation of
Q can be

and kz
eliminated by substituting equations (a) and (b) into

reactions is not the aim of the problem, Qk
o

equation (d) in (Al.9) as follows:
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r - - L] L] - - - - . - -
(Syy 1% 9-Sp39,1091 + (Syy o A-Sppy 2)Vy + -
9 v TS onT DSy, 20! V0 T Fax T I Ty (a)
u - q.v, =0 (b)
L (A1.10)

As it is shown in the set of equations (Al1.10) the
introduction of a slope boundary condition for a particular
node k is made by means of replacing - the pair of equations
2k-1 and 2k in (Al1.2) by the equations (a) and (b) in

expression (Al.10).

Al.3 - Program Breakdown
This section described the layout of the program and
gives a survey of each subroutine included in the FRONT code.
Similarly to the DIM3B code the computer program FRONT
consists of four main parts
A - Initializations
B - Determination of forces. Evaluation of the stiffness
coefficients for each element and assembly of the
stiffness matrix.
C - Forward Elmination
D - Evaluation of displacements and stresses.
The primary flow chart referred to DIM3B code is also
applicable to the program FRONT (see Figure. 2.2 of Chapter
2). A detailed flow chart of the present program is described

in Section Al.3.4 of this Appendix.
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Al.3.1 - Initializations

In this part, the prégram reads the initial input data
such as the title of the analysis, TITLE, and the basic
parémeters,'LBw(size of the bandwith). NEL (total number of
‘elements), NNP (total number of nodes), NBR (Number of
prescribed conditions) and NMAT (Number of materials).

Material properties, the topological description and
the geometry of the structure are fed into the program, and
finally the loads are defined.

Subroutine INIAL is then called where the last appear-
ances are calculated and identified with a minus sign.
Boundary conditions are fed in, defining the array PRENIC
and the prescribed displacements are immediately stored in
the displacement solution array UV.

Some working variables, ANP, NAP, are prepared for the

main DO LOOP and the stiffness matrix STIF is reset to zero.

Al.3.2 - Total Nodal Forces, Stiffness Cogfficients.
Forward Elimination.

From now on the program proceeds within a general DO
LOOP until all finite elements have been processed.

Firstly, subroutine LOAD is called and evaluates the
total nodal point forces, REX, adding to the external applied
forces the internal body forces as well as nodal equivalent
point forces due to thermal strains.

Subroutine ELSTIF follows subroutine LOAD and evaluates
the stiffness coefficients, KEL, by performing a single point

integration over the volume of the element of the matrix product
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KEL = [B]T[D] [ B]

where [ B] is the shape function matrix
[ D] is the elasticity matrix for each element

The subroutine STTR is called immediately after ELSTIF
and distributes KEL coefficients which were previously
calculated, into the main stiffness matrix STIF.

If a certain number of equations is complete and ready
for elimination, this subroutine, in a second stage, performs
the necessary alterations to the equations in order to deal
with the boundary conditions and according to the theory
described in Sections Al.2 of this Appendix.

Three variables, KROWI, KROWF and KROWFA are set up
to monitor the advance of the front through the structure
(one node at a time). KROWI indicates the initial node of
the front and starts with the value 1 and increases by 1 each
time a forward elimination (for the pair of equations
corresponding to node KROWI) is performed. KROWF describes
the largest node related with KROWI. Thus the front is
described each time by the nodes between KROWI and KROWF.
After each forward elimination KROWF is increased according
to new KROWI and the previous KROWF value is assigned to
the KROWFA variable.

For the sake of a better understanding of this sub-
routine, a simple example is put forward describing the
basic operations mentioned above.

Let us assume a finite element mesh composed of trian-

gular axi-symmetric finite elements as it is indicated in

Figure Al.2.
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Figure Al.2 - Mesh Idealization For a Thick Walled Cylinder

r

A table is presented below in which the evolution throughout

the structure of the process referred to above is described.

FMS. MONITORING THE FORWARD ELMINATION

EII\J'SM ne1 ) | wpa ) {nem ") | krows | kROWF | KRUWFA Foigif{o gg%rrsifm
1 5 2 1 5 1 - -
2 5 6 1 5 1 - -
3 -2 6 3 1 5 1 - -
4 3 6 7 1 5 2 - -
5 -3 7 4 1 5 2 - -
6 -4 7 8 1 5 3 - -
7 -5 9 6 1 5 4 called 1
8 6 9 10 2 6 5 -

9 -6 10 7 2 6 5 called 2
10 7 10 11 3 7 6 -

11 -7 11 8 3 7 6 called

12 -8 11 12 4 8 7 called

13 -9 13 10 5 9 8 called

14 10 -13 14 6 10 9 -

15 -10 14 11 6 10 9 called

16 11 -14 15 7 11 10 called

17 -11 15 12 8 12 11 called 8
18 -12 -15 -16 9 16 12 called 9-16

(*) NPI, NPJ, NPM describe the topology of each element

in the mesh.
appearance.

The minus sign indicates the last
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The overall stiffness matrix is represented in Figure Al.3
when KROWI assumes the value 3 and immediately before calling
the subroutine FORWAD. The front of active nodes is

indicated by

[S)
BN

uvu - - A ~ .. uyv
jufelelele :’SI°H [ !
viDjojo's. ool ¥ equations
2uro Qjocoel | IXxXso sent away
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krowi_. 00,0.0,0000xxv0eo0 Yo
5%4010101&9 veix'xis0l0 0]
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:[00{01070 @10 8 jxixix x/9.0'6 0 ]
01{00i0 mu’qaoelx XiXixi® o] |
010:0x x]x'Xa'®® a'XixiXix 08 I ('
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krowf . ceee i woeoeae | 0 30
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@] 77771 oo I~
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20’001 | 0] ‘2900
3'0i0 0] | 2000
0000l | 0000, )
100} | 0000
ool i | 00,00
i | 000 {0 0,0 0/ |
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: 0,00 6.0 0]
163 {0:0,0,0]
o000

‘—-Lrows to be zeroed

@ - stffness coetficients fully calculated

o -~ stiffness coefficients partully caleulated
0- stifness coetficients nat yet cacutated
Q- zeros, previous coefficientsalready Zeroed
X~ nonzero coefficients generated by F.E.
s~ compicted eguations

s s=-shffress matrix STIF

Figure Al.3 Overall Stiffness Matrix

the thicker line in Figure Al.2.

Subroutine FORWARD, when called, performs the elimination
of the pair of equations related to the node KROWI. After
the elmination process, the equations referred to above
are stored in an array COMP. The first two rows in the

STIF matrix are freed and the rest of the equations are

shifted 2 rows upwards.
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It should be pointed out that the coefficients in the
STIF matrix are kept in the computer in a rectangular
matrix of LBW + 1 columns and LBW rows. This book keeping
procedure is aimed to reduce to a minimum the amount of
computer memory necessary for the storage in fast core of
the non-zero coefficients.

In order to reduce the tape operations, the transfer
to a disk file of all the elminated nodes takes place in
blocks. This is done using a non standard subroutine,
WRITMS, which is called from subroutine FORWAD where all the
equations already placed in a buffer area, COMP, are to be
" transferred to a random access file.

The larger the buffer area, the faster is the execution
of the program, for less transfer operations take place.
However it will be less efficient in terms of the central
memory needed. |

The size of this buffer area is such that it can share
the same core spaces which will be needed later on for the
arrays describing the element stresses. This is done by
use of EQUIVALENCE statements in both the main program

and the subroutine FORWAD.

Al.3.3 - Evaluation of Displacements and Stresses

After all the elements have been processed and the
Gaussian elinmination has been performed for all the equations,
the system (Al.1l) is now ready for the backward substitution.
The main program calls subroutine BACKWD to perform this

operation.
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In this subroutine, the equations are retrieved from
the random access file in reverse order and the displacement
solution for the entire structure is evaluated as it is
described in Chapter 2.

When in the presence of a previously prescribed
displacement the backward substitution operations are skipped
to preserve the initial displacement values which have been
stored in UV when the boundary conditions have been fed
into the program in subroutine INIAL. Otherwise these
particular locations UV would contain the equivalent reaction
forces as it was described in Al.2.1.

After this procedure is completed the main program
evaluates the element and/or nodal stresses if required,

in the same manner as it is done in the program FLAPS5.

Al.3.4 - Flow chart of the Program FRONT
A detailed flow chart of the present code is illustrated

in Figure Al.4 on the next page.

Al.4 - User's Guide
Al.4.1. Introduction
The FRONT code is a computer program written in
FORTRAN 1IV.
In order to adapt its capacity to different cases ,
this code is provided with an additional program, EDT,
which makes FRONT to operate in a "dynamic version".
EDIT is a facility available in the CDC system at ICCC
which enables the contents of a particular file to be changed

by using a set of control editing commands.
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The program EDT defines the exact amount of storage
needed and calculates each array size in the COMMON block
of the FRONT code. Moreover the EDT program writes into a
file, TEXT, the necessary control directives by which a
file containing the FRONT code will be suitably modified using
the EDIT facility. The modified version of FRONT is then
prepared to be compiled and executed.

Some environmental aspects of the programs FRONT and

EDT will be described later on.

Al.4.2 - Preparation of the Problem
Al.4.2.1 - Material properties

Values of the Young's Modulus, the Poisson's ratio,
the material density and the thermal expansion coefficients
must be provided. The program allows for the use of five

different materials. One will be specificed for each element.

Al.4.2.2 - Mesh Generation

The elements available are described by their cross-
section made by a plane containing the axis of symmetry
as illustrated in Figure Al.2.

For describing the topology of the mesh, it is necessary
to define for each element three values NPI, NPJ, NPM
containing three different nodal numbers in the mesh,
following the topological order (anticlockwise) of that part-
icular element.

Temperature rises are defined for each element and

assumed to be constant within it.
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It is also necessary to define the coordinates for
all the nodes of the mesh in terms of the set of r,z coor-

dinates.

Al.4.2.3 - Loading.

The program will only accept point forces applied to
the nodes of the structure.

The sign of the load components is positive if it
follows the positive direction of the r or z axis.

The forces will be interpreted as the total forces
applied to a circle described by a particular loaded node

rotating about the axis of symmetry.

Al.4.2.4 - Displacement Boundary Conditions

It is possible to prescribe any initial displacement
in any node of the mesh by the components in the two direc-
tions r,z.

Slope boundary conditions can be prescribed as well,
i.e., a node can be forced to displace within a particular
direction making an angle g with the r axis. This information

is given to the program as follows

Prescribed Displacements

NB ICOND DIS 1 DIS 2 COMMENTS

Node 1 Displ. u - Restricted in the r direct.

Node 2 Displ. v - " " "™ 2z direct.

Node 3 Displ. u Displ. v " " both, r and z.
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Slope Boundary Conditions

NB ICOND DIS 1 DIS 2 COMMENTS

Node 4 Q - u = Qv

Al.4.3 - List of Input Variables
The variable data are categorized by the designations
is integer
ia integer array
rs real single
ra real array
hs hollerith single
ha hollerith array

The unit can be any consistent set with angles in

degrees.
ALPHA ia thermal expansion coefficient
DELTAT ra temperature rise in the element
DIS 1, rs prescribed displacements, or DIS 1=Q
DIS 2 in slope b. conditions
E ra Young's Modulus
ICOND is Prescribed displacements code
I is member of the element
LBW is size of the bandwidth
MAT ia Material identification number in the elem.
MATN is Material identification number
NBR is Total number of diaplacement boundary
conditions
NEL is Total number of elements

NMAT is Total number of different materials.
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NNP is Total number of nodes

NPI ,NPJ, ia Topological description of the elements
NPM

NU ra Poisson's ratio

R : ra Nodal radial coordinate

REX - ra Nodal point forces

RHO ra Material density

SR is Control parameter for output

SR=1 Output displacement solution and
element stresses

SR=2 Output displacement solution and
nodal stresses

SR=3 Outpﬁt displacement solution and
nodal and element stresses

WI is Control parameter for input print out
WI=0 Title, control parameters

WI=1 Title, control parameters and
the rest of input data

TITLE ha Title of the analysis

Al.4.4 - Input Data Format
The following table describes the order of input of the

data defining the analysis.

CARD ORDER
GROUPS OF CARDS PROGRAM NAMES FORMAT
1 TITLE 13A6
2 LBW, NEL, NNP, NBR, NMAT,
SR, WI 515, 2I3
3 MAIN, E(MATN), NU(MATN),

RHO (MATN) ,ALPHA (MATN) ,
MATN=1,NMAT I5,4E13.5
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4 L,NPI(L) ,NPJ(L) NPM (L),
MAT (L) ,DELTAT(L) ,L=1,NEL I5,4E13.5

. (NEL cards)

5 N,R(N),Z(N),REX(2*N-1),
REX(2*N) ,N=1,NNP I5,4E12.5

. (NNP cards)

6 NB,ICOND,DIS1,DIS2 215,2E10.0

. (NBR cards)

Al.4.5 - Operating FRONT Using Program EDT

The listings of the programs FRONT and EDT are
described in Sections Al.5 and Al.6 repectively.

This section indicates the control cards which are
necessary for running the FRONT code at ICCC.under the KRONOS
2.1 system.

No specific data is needed for running the program EDT,
for it reads the necessary information from the basic
parameters LBW, NNP and NEL which are specified in the
second card of the FRONT code data deck.

The control cards are as follows

JOB ( )
PASSWORD ( )
MNF (B=BINEDT)
COPYBR (INPUT,FLDAT)
COPYBR (INPUT,FRONT)
BINEDT (FLDAT)
REWIND (FLDAT)
RENAME (INPUT=TEXT)
EDIT (FRONT)
MNF (I=FRONT , B=BFRONT)
BFRONT (FLDAT)
EOR

Program EDT
EOR
EOR

EOF

Data for program FRONT
Program FRONT
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If an editing facility is not available, the necessary
alterations to the FRONT code can be obtained by printing
out the TEXT file which may be generated by a seperate run
of the program EDT.
In this file TEXT, for instance, commands such as
rs:/(NNNN) /,/(273)/;*
indicate that the string of characters (NNNN) should
be repleced by the new string (273). These changes should
be carried out for all the occurrences of (NNNN) in the FRONT

code, if the ;* sings are included in the end of the command.

Al.4.6 - Environmental aspects
Experience has shown that for a large number of cases
the nuuwber of elements in a 2D mesh of triangular elements

is related to the number of nodes by a factor of about 1.8.

NEL = 1.8 NNP

Based on this ratio the necessary central memory which
is needed to run the FRONT code, for different cases, can
be calculated with a reasonable accuracy taking into account
only the number of nodes and the size of the bandwidth.

A table is presented on the following page showing the
number of central memory words (*) which are needed to run
the FRONT code for a typical range of the parameters NNP

and LBW.

(*) For theCDC 6400 machine available at ICCC
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CENTRAL MEMORY WORDS NECESSARY FOR

RUNNING THE FRONT CODE

Bandwidth Number of Nodes in the Mesh
LBW 200 500 1000 1500 2000
21 12971 17810} 25910 1§ 34010} 42110
41 14260 19120|| 27820] 35370 ] 43420
61 16370 21230} 29330} 37430} 45530
81 19270 24140]] 32240 |J40340 | 48440
101 22990 27855} 35955 {144050 ] 52150
121 27500 32360 (140469 | 48560 ] 56660
25 K 30K 40K 50K

K = 1000 CM words

Al. 5 - Listing of the FRONT code
A listing of the FRONT code is presented in the following

pages.



00,

anon

an.n

PROGPAM FRONTCINPUTSI0NNROUTPUT=1N00BTAPES=INPUT«TAPEA=0UITPUT.
1 TAPET=TPLEN)

0 SPFCIFICATIUN AND DATA IHMITTALIZATION STATEMENTS.

INTERER TIILE. Shte QA Os

1 CASCTL wle ANP Py
2 [HURIVN Q

REAL HU EL

comMMAn TITLEL13) HPTOLLLL) « MPJELLLL) » NPMILLLL)
1 E(H) e, RONTIMITY PRENIC(HNNNDY e NAME(RFC) o
2 MUIES) b4 LVLUFAIR I REX{NNNI2) o LME3) ewW(4e6) e
3 KOS Y MATOLLLL) ¢ UVINIITI2) Bt b,

4 ALIMIALS ) DLLUTATOLLLLY Y ANPIQR.9) D(4eli)

S STIFtRYLWBBIEY e AP INNIINY § KEL(6+A) ¢
& SIGLORILLIL I SIGLTTOLLLL) »SIALZZILLLLYsSTIGLRZ2LLLL)Y

COMMAN ZPARAA/, LEL 1R o« ARG IMAT s LI s L
Couerts LI ITHZ KROUT oKD AF s TCNDEHEN A KRORFAWKL1 ¢ ICOLREC
DATA CASCIL 7/ RUIIFCASE /

10 tMOHT TiiE CASE TITLE BUT STOp IF THERE IS Nn FURTIER CASE.
11 READ (S, 12}  TITLC
12 Far~aT (131)

IF (TITLE (1) LEU, CASCTL) STup

20 I'liD'T THF CUNITHAL PARARETERS AND PREPARE TO INPUT THE ARRAY DATA,
READ(IS?2)) L e UL o NP o AR o 1AAT ¢ SR e W

21 IO rT(NI54213)
DD 22 v = ls NMAT

22 £ 1y = =1,
DN 23 L = 1. NEL

23 HPI (L) = =1
NN 2¢ 1 = 1. NOP
24 K by = =n,L234567R9E£39%

30 109 UT AR CHECK THC ARRAY DATA.
PEAN (e 310 (¥ATte B CCIATHYI e LU (AT ) @
1 RHO (MATH) ¢ ALPIIA (MATH)e NM = 1. MMAT)

31 FOrEAT (15. 4E13.5)

Nno 33 My = 1e NUAT
IF (5 () «tibe =1la)
ATTF (&s 520 TITLY
32 FCeMAT (Inl /727777 511 In e 13AA, 1HD /
1 241 THERE TS A MISSIOG ITMPHT DATA CAND.
2 241 THE Just 1S ARARDCRED.)
STnp
X3 CONTILUF
READ (B¢ 39)  (LEe NPT (LE)« MPJ (LE) e HPM (LE)
1 TOUNMAT qLEYe BELTAT (UF)s L= Ve HEL)
34 FOwtaT (SI5 Flu.3)

G0 TO 33

Oo0on

nna

2
00 35 L = 1. NEL
IF tMPI (L) NE. =1) 60O TO 38 :
WRITE the 32) TITLE o .

sTop C
35 CONTIMUE '

READISe36) (NeRUIP) s Z2(NPY ¢REX(29HP=1) +REX(2¢NP) +NP= +NNP)Y
36 FORMAT(IS«4E12,.5) : '

DO 37 M = 14 HNP . .

IF (R (W) oMHEs =0.1234567H9E3S) GO TO 37

WRTITF (hy 32) TITLE

STopP
37 contTinug

* \
40 OUTPIT THE TITLE AND THE CONTROL PARAMETERS.
WRITE (A 41)
41 FORNAT (AHY 277777 |
1 45Xe 4IHTIE CASE TITLE AMD TIHE CONTROL PARAMETERS /
2 USKe 4lllmmemmmemcomcercraccracaemamarmeancnnnaan /7))
WRITE (& 42) TITLE
42 FORMAT (1M « 13A6) =
WRITE(At3) MELWNOP JNARNMAT o LAW ‘1
43 FONMAT (P6HNTHE NUYGER OF ELEMENTS ISe ISe 1te / -

JO01ITHE i dgie OF NONDAL POINTS ISs ISe 1M, /
UIHJUTHE NUY3ER NDF RESTRAINED BOUNNARY HONES IS, IS, 1H, /7 ‘
3THTHE 0L BER OF DIFFENFNT MATERIALS 1Se I5e 1He 7/
1A1ITHE OagRITH ISeTde1tla/ |
2IMNSTRESSES ARE FOUHD FOKR)
IF (SR JFWe 0}  ARITE (He 4H) . .
44 FOQOMAT (1i+s 23Xe Gw2IINEITHER THE ELEMEMTS HNR THE NORAL POTHTS.)
1IF (SR e 1) WRITEC (6 459)
45 FORMAT (1M+s 23X 10HTHE ECEMENTS OILY.)
IF (SR JCue 2) dARITE (64 61
46 FORMAT (1H+s 23Xe 22HTHE NODAL POINTS ONLY.)
IF (SK £ 3) ARTITE (64 47)
47 FORIAT (1M 23Xe 39HROTI THE ELEMENTS AND THE NODAL POINTS.)
IF (#1 FQ. Q) WRITE (Ay 48
48 FORMAT (I71IMTHE 10PUT ARRAY DATA ARE NNT OUTPUT.)
IF (v JEwe. 1) WRITE (Ay 449)
49 Fonrnme (330THE THPUT ARRAY DATA ARE OUTPUT.)

[=- WO NE RV

50 JUTROT THE ARRAY DATA,
IF (U] K3« )y 6O TO 61
ARITE (he 51) (1, E (R™)e NU (MI£) e RITO (MNM) e
ALPHA (HI1F) s WM = 1y NMAT) .
S1 FOuSAT (AL 277777
56X 1ANTUPHT MATERIAL NDATA 7
364 19Mmcemccccncccnnccana 7/
20X U2NMATERIAL  CLASTIC mMONULMS  POTISSONDS RATIO,
341 DENSITY THML EXPN COEFF 2/

[

BN Ve




o000 nN

S (I33+ Xo UEL1T7.5))
ARITE (A4 52)
82 FORMAT (1WLl /2/777/

1 57Xs 18HINoUT ELEMENT DATA /

2 57Xy 18Hecrccocccccccacecna 2271/

3 3Xe UBHELTT NPl MPJ HPM MTRL DOFLTA Y

u GHICLAT T Py MPM O MTRL DFLTA T

5 33HLLMT WPT HPY nPM MTRL DELTA T /)

L1 = (MEL 4 2) 7 3
DO S5® L2 = 1. L1
L3 = MIngp (L2 + 2 « L1l. HEL)
S3 AITE (& SW) (Le NPT (L) MPJ (LYe NPM (L)
1 MAT (L) DELTAT (L) L = L2+ L3. L1)

54 FOAIAT (15 ¢« 515 10,3 13Xe 515 103+ 13Xs SI5+ F10.3)

ARTTFLALVHS)
55 FOMSATOWM 277777

1 SAX150INHPUT NODE DATA /

2 GuX11Gllecmcccmacecacas/yt)/

3 PL6EX 2 DNIODE R 2z .
4 244 RR RZ 22

Ni=(mitpe1dY /2
DO H7 HPz=1all
HISUMTHN (M2 40 NP .
67 ARTITFELAWSH)Y (eI Z 0N REX(2aN=1) +REX{221]) s N=[MD « N3+
58 FoitAT(2(9X019.4E12.5)) .
ARTTIF (R, %A)
56 FurvaT (Inl 727777/
1 48Ky 3SHINPUT RESTRATNED ROUNDARY HONE DATA /
2 UAXs S9lleccecccccaccamconncaccaaancanncna== ////F
3 Z3xe 2AHKESTRO ALDY HORE .
[Ty

STHRESTHT ConpITION DISPLA /7))

PREPARE Tu SUY THE STIFFENESS COEFICIENTS

61 DO #) Np=l.lWy=1
NN 8y Moz=l.Li.
81 STIF(Mt.CI=0.0
N 1y ne=1.La/2
NO A2 1IC=1+Y
AID (R ) 2
82 Al (' ReyYI=OR
DO Y42 s leilip
83 NAnD (M) =1
Kiwr=l
1CHn: =n
Kithvws A=
Kilhw F=1
En=o
LUASEZ (20l =) ) /RCO+]

o0 e N eNe) o000 a0 o000

o000

a0

LREC=RCna(LRW/2+1)
CALL OPEUMS(TWHAME JLNAME,0)

LAST MODAL APPEARAHCEs AND INPUT BOUNDARY CONDITIONS
CALL INIAL

DO LOUP FOR ALL THE ELEMENTS . -
DO 72 L=1.NEL

CALCULATE TUOUTAL EXTERNAL NODAL FORCES REX(I)

CALL LOAD h
!
CALCHLATE ELEMENT STIFNESS MATRIX KEL(I+J)
Yt
A - [«))]
CALL. ELSTIF )

CHECK In ELEMEMT STIFFNESS CDEFICTIENTS INTO MATRIX M AMD |
THEN INTo RECTANGULAR MATRIX STIF(I.J) AND TMPOSE BOUNDARY CONDITI

CALL ST . -
conTInug .

BACK SURSTITUTION CALCULATING WODAL DISPLACFENTS

CALL BACKWD

C 150 ouTPHT THE NODE DISPLACEMENTS IN THE PLANE SECTINN REVALVED.
151 WRITE (64 152)
152 FORMAT (3WY /77777

o0

0N E N

49Xs 33HTHE CALCULATED NODE DISPLACCMENTS /

49Xs 33llcmcmmmaa T TN Y 777

3Xe 47HI0NE U v .
Y4THNORFE U v ..

S0ITIONE U vV /)
NY = (qpP ¢ 2) /7 3 .
no 153 #2 = 1, 11

TN3 = MINQ (U2 + 2 x N1, MNUP)

153
154

RITFLAR15%) (HyUV(22N=1) sUVI28M) JH=H24NF4M1)
FORMAT (1H « ISs 2016.9¢ 1194 2E16.5¢ 115, 2E164.5)

CAL CUHLATE THE ELEMNCHNT STRESS CO4PONECNTS.

IF (SR .CRe 0) GO TO 221

00 1ny L = 1. LEL

I=TAnS(nuPItL))

JTARSGpJd L)) )

M=tARS (rinadL) ) . ]



aonon

5
3 394 STRESSES IN THE PLANE SECTION REVOLVED /
81:2(\,"7("” € nJ:?(M,-Z(I, € BM--Z(T,.Z(J, 4 4X¢ YiHemcmomaccanccca cmecancrncancercncacccccancncay
Cl==n(Jrspl™) € Cd==R{My+r(1} £ CM==R{T)+R{J) 5 (7% 11 [ Sy P PP SEUPEPEPRPES P,
AMFAZ(RJeCH=RYeCJ) /2. ' 6 39){cccmcccnaan meemecmmemcccnmcccccnr e /)1
RBAY = (K (1) 4+ K (J) ¢+ R (M)) / 3. 7 1Xe 4SHELFMENT SIGMKR SIGMTT .
WA 1D« ARCA) /71342 UIAR) 8 451HSIGM2Z SIGHMRZ ANGLE1L 0
ECHR=(RT eV IR e T=1)4iJe V(24 J=1) +CMaUV (2 «M=1) )/ (2,2 AREA) 9 37HSIGML © S16m2 SIGMM /)
EETT=tUY(2el=1) ¢UV(I2rJ=1)4UVI2¢=1) )/ (3. 4RBAR) 182 WRITE (6¢ 183) L+ SIGLRR (L)s SIGLTT (L)e SIGLZZ (L)
EEZ7/=(CI+UVI2aT)+COsUVIZ2# I +CHYUVI2M) )/ (2, ¢ ARFN) 1 SIGLRZ (L) ANGLELs SIGL1s SIGL2, SIGLM
EERZ2(CToUVI20T=1 )4 8T o1V 21 4CUsUVI2 e =-1)+pJaUV (2%J) + : 183 FORMAT (T + IS¢ 4E16e5¢ T12.2¢ X+ 3E1645)
1 CreUVIi2av=1)4Rt2euV(2¢2)) /(2. *AREA) 184 CONMTTHUE
MATH = AT (L) IF (SR .EQ. 1) GO TO 221
W1l = DU AT c
W2 = 1. -~ Wl C \
W3 = 1 ¢ wl C 190 FInN THF NONE STRESS COMPONEMNTS,
WY = 1e =~ 2¢ ¢ bl ) DO 212 N = 1. NNP
WS = E (YATUY /7 (W3 &= W) SIGHI'K = 0. |
ETfir = ACPHA (2ATH) » DELTAT (L) SIGLIT = 0.
Ene = £FE1Ro~- EIN SIGNZ2Z = 0. ;
ETT = ERTT ~ ETH SIRMNEZ = 0. w
E27 = CF7L =~ £IHt L ON = 1 . .
ERZ = EtnZ . 00O 121 t = 1. NEL |
SIALYY® (L) = w5 * (¥2 & FRR + W1 » ETT + W1 = £22Z), IFTIARS(HMPTIL) ) dHEJNeANDSTARSINPIIL) ) ¢NE Mo AND IABS(NPMIL) ) oNE 11D
SIALTT (L) = w5 * (41 ¢ ERK 4 W2 « ETT + W1 * E22) 1 Go TO 191
SIAL72 (L) = 45 & (vl & FRR + Wl = ETT + W2 x EZ2) SIANER = SIGNRR + SIGLRR (L)
SIFLHZ (L) = 45 * W4 = ERZ /7 2. . SIGHTT = SIGHTT 4 SIGLTT (L)
SINNZ2Z2 = SI1GIIZZ + SIGLZZ (L)
SIGMIRZ = SIGHRZ + SIGLRZ (L)
170 CAYCHLATE THE, ELE#CHT PRINCIPAL AND MEAN STPESSES IN THE PLANF OA = QA 4+ 1 .
SCCTION REVULVED, IF(QALEN.IABSCHAPLIN Y)Y GO TO 192
IF (SR CJa 2) GO TN 184 . 191 CconTIMUL
Wl = (STALRR (L) ¢+ SIGLZZ (L)) 7 2. 192 vl = FLUAT (kA = 1)
W2 = (SIGUKRR (L) = SIGLZZ (L)) 7 2. SIAMER = SIGHRR / w1
w3 = SIabLdg (L) SIAMTT = SIGHTT / w1
A= ST (W2 ee 2 ¢ w3 xx D) SInNz2 = SI6HZZ /7 W)
SIfLY = al + wn SIGHRZ = TIGHRZ /7 Wl
SIFL? = w1l = «f c
IF (i3S (42) o6Te 1.E=35% ,0R. ABS (W3) ,GTe. 1.E-35) GO TO 171 c
ANeLFL = D C 200 CAl CHLATE THE NINDF PRINCIPAL AND MEAN STRICSSFS IN THFE PLANF
GN 1H 172 . c SECTION RLCVOLVED.
171 AICLEL = 20.AUTEARYTSA & ATAMN2 (W3. W2) 201 W1 = (STGLOHNHR + SIGNLZ)Y / 2.
172 SIAL3 = SIGLTT (L) T W2 = (STOMRR = SIRDZZY 7 2.
: SinLy = SIF ((SIGLL ¢ STGL? + SICL3) % 2 ’ . W3 = KIANZ
1 = 3. * (SICL2 « SIGL3 + SIGL3 & SIGLY + SIGLY = SIcL2)) Wik = SONT (w2 sx 2 4+ K3 3% 2)
Sirtn = ¥l + Wy
SIfti2 = &1 = «b .
1A0 NHTEPOT THE ELUARNT STPFSSES, . IF (ARS (w?) J6G1e 1.7=35 JORe ARRS (W3) .GT. 1.E=-35) GO To 202
IF (1 e 1) GO TO 182 ANCITI = 0.
ARTTE (As L71) GO T 2n3
1R FOIAT (VN1 /77777 202 ANALFI] = PR.GUTHRAYTHA = ATAU? (W3¢ W2)
1 AXa, HUHTHE CALCULATEDN FLOMEMT STRESS COCPONINTS AN 203 S$1ihix = SI16OTT

2 43 MEAL STRESS I THE SPACE ARG THE PRIVCIPAL.



SIGNM = SURT ((SIGHY1 + SIGN?2 + SIGN3) =« 2
1 - 3. * ($IGN2 * SIGHI + SIGH3 * SIGH1 + SIGHY1 * SIGN2))
o
o
C 210 OQUTPUT THE NODE STRESSES.
I (I Fe 1) GO 1O 2312
SWRITE (As 211)
211 FORMAT (1M /27777 .
1 66X+ 41MTHE CALCULATEOD nODF STRESS cOMPOMCMTS AND.
2 H3H ME AN STHRASS M THE SPACE ANO THE PRINCIPAL.
3 391 STRESSES TN THE PLANE SECTTON REVOLVED /
4 6Xe Yl omm e cama = ——————— -t ————————y
) Y3 ommm e B e mm e L LT N
6 3Ylemmemmc e mm e am e rm— - —————— ———— 1777
7 3Xe 43HMIONC SIGMRR SIGMTT 0
a 4snsInmee SIGMRZ ANGLEL 0
9 3TUSTIY1 SIGM? SlGMM /)
212 WARITE (6 213) e STGHRR, SIAGHTT, SIGNZZe STGHRZ
1 AICLEl . SIGHY Y SIGYZ. SIGHM
233 FORMAT (1] ¢ ISe HE164%y F1242¢ Xo 3E1645)
c
c
C 22N RETURN TO THE BEGINHIMG nF THE PROGRAM FOR THE NECXT CASE.
221 STP
£y
SUBRAUTING THTIAL
o THIS SURENUTLIHE FIRPS THFE LAST HODE APPFEARANCES FOR EACH ELEMENT
c AND READS Ir QUUHDARY COEDITIONS
o
IHTECFR PHRENICTITLE«RAWWI«AND P OELNONE
HREAL HUWKEL
[of o Al 1} TITLE(L13) PePTOLTLL) . NRPJILILL) . NPM{LL(L)
1 E(9Yenl, HOMEIEeg) o PREJJIC TN o NAME(RFClty
2 HUCS) . PALIALIN I REX (N2 LM{Z)ewldsR) e
3 RHO(S) o MVATOLLLL) - UV L) Bl4eh)
4 ALPHACS Y o DLLTATILLLL )Y s AP (IND) Doli) s
5 STIFSNILRR)y AR QNI ) KFL{AWR) o
6 SIGLRIILLE )« STIGULTT LI L) o SIOLZZELLLL) «STGLRZALILL)
CO* Yy ZPARAY /L L o itP a8 e |PAT 10w L :
COMBEO ZELINTIN/Z KR YT eFROUF «ICOPE +HEDWKHUATA+K1 o TCOWLREC
CI“FNSTON tLitdOE LI LL «3)
EQUIVALFICEL (ELHMOLECL.T)1IPTL1))
C
c FID LASNT APPEARANCE S “ARKING WAITH A - SICGH FOR fACH ELFEMENT
~

DO 5 n=t1.np
N0 3 1=1,41EL
Il=ngl-14+1

onn

s N Xal

wE W

100

16

70
80

S50

40

20
30

8
DO 3 J=1.3
J1=3=J+) .
IFCELIIONF (I1eJ1)«EQN) GO TO 4
CONTINUE '

ELHOPE( [1+J1)==ELNODE(TI1,4J1)
COMTIHVE

BOUNPARY CONDITIONS

00 100 t=1.MNNP

PRENTICL1)=D

NO 36 K=1,MBR

READ(S16) e ICONIDWDIS1eNDIS2 ‘ . \
FORMATI2IS+2E10.0) ’
PREGICLNIR)=ICOND

DIS=N1s
IFCICONNLEO4)
I11=)
IF(PRPCNTICING)=2) 60470.60
INN=2aNR=]

GO Tn 8y

Itn=2s010 .
uvernny=ngst . Lz
I11=111-1 .
IF(PPENTICUIBI eEVe3AND.ITILEVL0) GO TO S0
GO Ty 10

Dlg1z=NIs?

GO T 7n

UVI24MR)ZD1S :
IF(Y1.E0.0) GO TO 30

WRITF(AR20) HBPREMICI(NR)«DISDIS2
FORMAT(142+1244,2E2C.9)

CO:1N THUE

RETUIIM

£

G0 TO 40 '

- P9t

SUNRQUT ITHE LOAD

. THIS SURROUTIWE CALCULATES THE EXTFRIIAL NODAL FORCES DUE T

NE NN

APPLTED FURCES.BONY FORCES AND INITIAL STRATH COLDITIONS

INTEGER PRELICAMPLIT

REAL NULKEL

COu* N TITIEC1I3)e  MPTLLLLL) HPJILILL) . MAMALTLL) .
E(S5)enl, Rernrer) , PRENTC O ) e MAYTUIREC)
HULSY PAN TN HEXCII]D) o Lii{3) ew(uoh) e
HO(S) FATLLLLL) « Uy (trgreo ), BtLa.G),
ALPNALS) DELTATCLLLL) s ANP(QN.9) . DICTT S

STUEABLTRR)Y . BAP (DY KEL(A¢h) o

SIGULRRILLUI Y o STLLTIOLLLL) o SIGLZ2Z2LLI L) «SIGLRZ(LILLL)



a0

a0

COYMAN/ZMATH/NT «B8JRMCTICJCMIAREN
COVMAL ZpARANYZ HELJHIP W HBRHIAT s LRW L

60 DO GFOVFTHIC CALCULATIONS OM THE ELEMENTS.

I=TASSIDPICL)Y)
JIIARS{RIL))
M=TARS(Hp A(L))
BIzZ(d)=2(") £ fd=2()=-2(1) 3
Cl==0(J)aRRCN) 3 CJd=-R(M)+R(I) £
ARE A= (BJe A=t 30 CII /2,
IF (ANEA 6T 1.E-39)
WHITF (Ae 62) L
62 FopMaT (Il /77777
1 23t THE CASE IS A3ANDONED.)
ST

G0 TO 71

70 S THE TOTAL nolaL POLINT FORCES.

T1 MATH = wAT (L)
RAAR = (R (1) + R (J) + R (M)) 7/ 3.
W1l = 3,1815926536 ¢ REBAR « £ (MATN)

w2 = (2. * AREA) /7 (3. * RAAR)
BONYF = 2. & J.141592h536 % ROAR
REX(DeIwl)SLEX(P0]=1)401a(iT442) £
REX(2eJ=1)3¢EX(20J=1)441s(RJsn2)
REX (260 =)=t X (Dol ) eyl e (RM+02) £
RETUREK

En . '

* AR

SUARCUTTUE ELSTIF

BM=Z(T)=Z(J)
CM==R(I)4R(Y)

/ (1 = 2. » NU

EA ® RHO (MATH)

PRI FLFYENTY TS 251 HAS A MOM=-POSITIVE AREA. /

x ALPHA (MATM) = DELTAT (L)

(MATN) )

/ 3.

REX(2«T)=REX(241)4W1eCT=RODYF
REX (29 JISREX (P2 )4 WIxCI=NRONYF
REX(2«)=REX (24M) 4ulsCH=RONYF

TMIS SURKOUTTHE CVALUATES THE STIFHESS MATRIX KFL(I.J) FOR CACH EL

REAL HUeKEL
THTEGER O edeui]

covren TITLECLS)Ye  MPICLLLL)

1 E(9)eal, ROOTNME)

2 HUCS) . PATLAIRR)

k) RIS « MAT(CLLL)

q ALPHIALS) NELTATILLLL)
5 STIFN(RBLIWCRRY
€

COYMPLZMATIRZB L IS e T CJe e AREAN

NPJ(LLLL) .
PREVICCNIIRTE) o
REX(IINN2) o
Uv 2,
AMO LN )
HAP LI «

COVMNI ZPARNE/ HEL NP o TR o HIMAT o LIBW oL

0 92 P = 1. 4

N 491 2 = 1l 6k
91 3 (e D) = N

N 492 13 S 1 8
92 D (e Q) = U

NREMILILL)
HAME(REC)
LM{3)ev({leh) o
Btheh)e
DeUetd),
KFLIAWR)

STOLRK QLU « STOLTTILIUL) o STOLZZ L L) o STGLRZILLI L)

(e NeNe]

93

94

10

B(1.1)=81 £
I=TARS(NPTIIL))
J=TARS(NPJI(L))
ME=TABRS(HPrMIL))

B(1+.3)=0RJ £ B(1:5)=nM

RBAR = (R (1) ¢+ R (J) ¢« R (M)) 7 3.
Wl = (2. = AREA) / (3. = RBAR)
8({2+1)=u1 £ B(2+3)=W1 £ B(2¢5) =W}
B{2+.2)=CI £ B{3.4)=Cy £  B(3.6)1=CM
Blus1)=C1 £ N{u.2)=R]1 £ RlY43)=CJ
Blusu)=ay £ B(yeS)=Cn f B{u.6)=n11
MATIL = AT (L)
W1l = LU (MATH)
W2 = 1, = 4wl
W3 = 1., 4+ w1l
W4 = 1, = 2. %= ¥l
WS = 3,1415926536 = RRAR = £ (MATN) 7 (2.
D (1, 1) = WS = W2
D {1y 2) = WS % Wl
D (3¢ 3) = WS * W}
D (?2¢ 1) = 45 = 41
D (24 2) = w5 % 2
D (2y 3) = u5 ¢« 01
D (3. 1) = w5 * W}
0 (3¢ 2! = 45 % Wl
D (3, 3) = 5 * w2
Dty 4) = WS * uh / 2.
DO Yys B = 1, 4
DO 93 % = 14 6
W (P, Q) = 0.
DO 92 0= 1¢ 4
W Py Q) = v (Pe Q) ¢+ D (Py 0) = 8 (04 )
DO 94 P = 1. 6
DO 94 N = 1y 6
KEL{P«L)=U.
00 98 0 = 1. 4
KT {DeQISKELIP L) ¢+ BIOWW) = W(N.Q)
RETURN
END
T SUAROUTICE STTR

(ST Y ]

e

* AREA = W3 = W4)

S91

.
-

THIS SUFHOUTTHE CHECKS It STIFNFSS COCFFICTFNTS MEL

INTO THE RCCTANGULAR MATRIX STIF(TW«J)

INTECFR DPyDe ANPGPRENTICOA

REAL KUL

co e TITLUC13)y  oPPTILLLL) .
£(S)ewl, ROENITR) o
15 ) . 2N o
KO(S) AATCLLLL)Y ¢

HPJLLLL) «
PRENIC UMY «
REX(IHI2)
UV (HNN2) .

LRI )
NAME(QFCY.
LH(3) o' (Uea)
Blu.6).



101
102

103

104

105

108
107

11

4 ALPHA(SY . DELTATILLLLY e ANP(ON9) D(Ueld) o
5 STIF(RB1.BEN) e NAP(HNMNMN) KEL(646) 4
6 SIGLRIROLLL L) o SIGLTTILII L) oSIALZZILLLLY #SIGLRZ(LLLL)

COUMOAM /PARAMZ HEL «MMHP IRy AT s LW L

COVUNN ZFELLIAINZ KRAM L KROAF s TCODE «HEQWKRNAWFAWKLTCOWLREC
(RSB AR [4 Lt =npegeL) £ L3 =P L)
DO 1n6 P=1+3 :

1Ky FaxROSF

MP=TARSIL))

LD [ =KRIAT 4L

DO ey 2=1.3

NDA=N

INZIA+Y

IF(NA.LF.9) 6O TO 103

WRITH (Ae1N2) NP

FORMAT (1ML 72727777 S HODCe 15

1 3RH HAS Mpe THAML CIGHT ADJACENT NNNES. /
2 2314 THE CASE IS ABANDONED.)

STnp

TF(ADPLULNP s UA) JENLTARSILMEN)Y) GO TO 104
IF(AIPLLIP A JHE W) GO TO 101

AFD () HP GOA) S TABS (L 1IN )

MAD NP =0A

k=2 (11°=KR0OH1 141

[C22e AU LNP oA =141l RN /2=(2¢1P=1)+1 .
SIIFCIN W IC ISSTIF (IR +IC ) + KEL(2+#P=1,2¢Q=1)
STIFCIN  +ICH#LISNTIF(IN S IC+1) + KCL(2¢P=1,240 )
STTFE 4T IC=1)SSTIF IR+ T1G=1) ¢ KEL(2sP 42¢0=1)
STIF(IN#TWIC ISSTIFCINGIWIC ) + KEL(2xP 4240 )
IF(LIHM)WGTa0) GO TH 111

NAD (1R ) s=lIAENP)

IF(NDenTrROAF) GO TN 111

IT(hretiFa.1) GO TO 107

KRoSf =A (1 1)

QO 178 T=2,4°

URsEZAAXNEARP (L eI) «KRNAT)

TF(MOT P ERe3eANL.EVLHEL)Y GO TO 109
NERE2s (i P=aRYA1) 4

LURI MM

[HIA R Al |

DU 110 (=KRINFA+]1 W KEOWF

IF(H"P () Gle) L TO 111

Clntrrus

TP da71f.e2) KRDal =IKNOLF

1conr=y

Gy o]

1CHDF=0

IFelronr . FYaed) G0 TO 1nNG

HOgARY CODTTIONS

DY 51 KJIZKRDAFA+4 L oDl

OO0

12

60

70
200

S0

55

1

12

KRTII=ANP(KV=KROWI+1+1)

KRFF=KRTI

LNAP=IARS(HAP(KV))

DO 12 I=2.LHNAP
KREF=IAAXD (KKFF AP (KV=KROWI+1+1))
KRII=MIMO(AIP(KV=KROWI+1+1)eKRII)

DO 9N KH=KRIIWKRFF
IF(PREHICIKH) dEQ. 0, O0RPRENIC(KH) ,EQ4) GO TO S0
I11=1

IF(PREMNIC(KH)I=2) 60470460

NB=2% (Ki{=KRlUAL) +1

GO To 200

NB=2+ (KH-KRUWI)+2

I1T7T=2¢KV=1 '
IVISTIT-(24KHOWI=1)+2

Ivo=IV1+l

IC1L=np+LBW/2-1V14]

1C2=1C1~1

IFIICL.EQ.LAW/2+41) KREX(IT)I=0,0
IF(IC2.C0.,L3w/2+42) REX(IT+1)=20.0
IF{PRENTCIKHYJEQe2) ITI=0
REXCIT)I=KEX(IT)=STIFLIV1,IC1)»UV(22KH=TTIT)
REXCIT41) =L XCIT+1)=STIF(IV2,IC2)%UV(2aKIi=ITT)
STIF(IV1,1C1)=9.0

STIF(1v2,IC21=0.0

IF(Irler.Lidw/241) STIFLIVIWICIY)==1,
IF(IC2.FULBW/241) STIF(IV241IC2)==1.
I11=111-1

IF(PRENTCIKHY EQ.3,ANDLITL.EQ.D) GO TO 70°
CONTINUL

IF(PRENTICIKVYHNESs4) GO TO S1

NO 55 I=1.LUAP
NOSAHPIKY=-KRNWI+1¢1)=KROWI+1

IVI=Dr (KV=-KROWNI)+1

Ivo=TIVied

IC1=osNN+LBH/2-TV1

IC>=1C1-1
STIF(IVIZICL)=STIF(IV24.TC2)+UVI2*KV) ¢STIM(TIVILICT)
STIF(IVIICL41)=STIN(IV241C2+41)+4UV(22KV)STIF(IV14IC141)
ALY (PAKV=1ISREX(2«XV) 4OV (2aKVIAREX(2%KV=1)
N0 BSA J=l+Llhy

STIFIIVD.0)=19.0

STIF(IVo,.Lii/2)=1.9
STIF{IV241 e /2411 ==1VI2#KV]

REX 2KV )=,1)

COLY UL

KRNuF=iKitDab

FOyAuD FLDAINATION
1F FOUATINGS FROY «20u1 10 KRDwF ARE CYYPLETFO »meCERED 19

" 991
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OoO0O0O000

106

135

13e

WV EOGLY =

13

CALL FORWAD
ICODF=0
conTIug
RETURN

£N0)

SURRNUTTHE FORWAD

THTS SURPAUTIHE USES FOWARD FLIMINATION TO A SET OF MEQ COLUMNS
STOKFS tH A PERIPHIFRAL NDEVICE THE COMPLETED EQUATIONS AMD SHIFTS
URARDS NEY TICES THE MATRIX STIF(I«J) AND (NEO+1)/2 TIMES

THE VATHIX ANPIPGDA)

THTEAER TITLE+SReDAWOPRENICaHIALIPP
REAL fIJ.KECL

DIYEHSInt COMPIRCNIBR)

COAPN TITLEC13)y BIPICLLLL), HPJLLLLL) « NPMILLLL) »
£(9)enl. RO o PRENIC(NYIMMY e MAME(REC) »
HUES) ZCHI) o REX (NMMN2) LME3)sWlteb) e
HMO(S) MAT(LLLL) » UVINITI2) BlUsh),
ALPHALS) DELTATILLLL) e ANPI9) DUl
STITIRSLBCRYy HAP NN KEL(AA) o
STOLRROLLLL ) « SISLTTILLLLY «SIALZZILLLL) o SIGLRZILLILY

cCOviant ZPARAKYZ HEL«MUP ARG INT o L3 0L .
COMANN JELT 7Tt/ K0 u T oKROUT «TCONEvHEQ o KIRNWFAWK1 s TCOWLRFC
EQUIVALENCEICO P ILI41) e SIGLRIIL))

KRT=x RO} '

IF(KRI.FR.12 ICUS0

00 134 ICORL=1HEQ

ICH=ICU+1

LINE=2« (KU F=KRT+1)

LIkC=LINE

0o 136 INE=ICNEL+1.LIDE

I=10F

JITCAEL4l An/2=141

IT(ANSISTIT(I0d) ) e TaelE=35) GO TO 136

K=iCnfL

ML, /21

NISTIF (T JI/STIF(K )

DN 135 IRC=ICCELLINC

1=1°¢

JITrCeLitw/2=141

K={LOFL

HINCALAL/2=K4 L

STITHTI v IENTIF(led)=0*STIF(KM)

Cr Tl

e[ ad=1=1)ZREXII+KRI€D=1=1)=0¢RFX(TICOrL4KRT2P=1=1)
cottitur

Kiz(2stvRI=1)1+TICOF1 )/KRCO

NI 40 [=1eL'$a/24+1

[sNsXel

40

41

30

71

134

43

60

12

10

22

" 20

50

14

COMP(ICN II=STIF(ICOEL+LBW/2+1)
IF(ICO.MNELRCO) GO TO 30

CALLL WRITIZSt{7+COMP(141)+LREC.K1)
DO 43 ICOM=1.RCO

DO 43 JCNM=1.LBw/2+1
coMPLICOM,JCOM)I=0.N

ICoh=n

IF(MODCICOEL2)NELO)Y GO TO 134
KROWI=KRONT+1

KROWFASKROWF

KROETF=ANP (KROAI-KRI4141)

00 71 1=2.9
KROWT=MAXO(ANP{KROWI-KIRI+1 4 1) +KROWF)
IF(KRIUF LT sKROWFA) KROVUF=KROWFA
CONTINUE

IF(HFQ.EQ.2) GO TO 60

N0 43 T=1.LBw/2+1
CNPITCO+1+1)=STIF(NEQ+1,.14LBW/2)
1CN=1C0+1

GH Tn S0

SHIFTING MATRIX STIF(I+J) UPWARDS

DO 10 IR=1+LBW=1

D0 10 IC=1.LB%
IT(IP.GT.LBA=1=NFW) GO TN 12
STIF(IRGICI=STIF(INR+NE X IC)
GO Tn 1

STIF(IR+IC)I=0.0 .
CONTINUE

00 20 IR=1+LRBRA/2

DO 29 IC=1.9

IT(Lit.C0.LRW/2) GO TO 22

AP (T TCI=ANPLIR+14IC)

GO ¥n 2n

AMDCTIRIC) =0

AP TR 1) =K I+IR

contrhug

IT(KUOWT TLNKROWFAY GO TO 1
couTimIg

- REYURD

EnnD
SUBRNUT IHE BACKKD
BACK SURSTITUIION CALCULATING HADAL OISPLACEMENTS

INTECTR TITLE «SReNA QP e PRENICeAI AP
REAL 1IUKEL
DIMENSING CHP(RCO,NARMR)

CoMwintl TITLEC(13)s RPIGLILL), MPJLILL)
LtS)awtl, EELINIALLD I PREYTIC IR o
HutS) . ZANIHD) o REX (111112 o

e

LI9T

]

fPMELLt LY.
MAVE(RFC)
LHE3)en(Ge6)e



142

1u5

50

150
140

P EW

15

RHO(S) MATILLLL) ., UV (NHN2) . Btl+6) e
ALPHA(S)Y DELTATILLLLYe ANP(QQR«F) Dibel),
STIF(HB1.BBM) e NAP(NMHN) o KEL(64¢H)

SIGLRRILLLL) «SIGUTTILLLL)«SIGL2Z(LLLLY«SIGLRZILLIL)
CovrMall /PARAM/Z HEL TP LR R« MYAT LR W L
COWMON /0L TLIN/ KROUIWKROUF S ICODE +HEQ W' KINWFAIKL1 e TCOWLREC
EQUIVALSDCEI(CUMPIT1,1)«SIGLRIIL1))
IVAX=2 1P
DO 1ud TIM=1eK141
MREC=K1=1"11k+2
IF(INR.ET 1) CALL READMS(74COMP(14+1) sLRECNREC)
DO 150 T1SHE=141CD
I=10n=1IQ.0d¢Y
RSskEX(TVARX)
IF(ISuFIaFeleANDT INENLL) GO TO 145
KV=A4JH0CTVARK e LW/ 242 %t INP)
DO 242 RYSIVARX+L1KY
JTKy=Tvarxe
RHS=RHS-COMY (T4 J) «sUVIIKY)
J=t
D= (IvArXel) 72
IF(PrEnIctImm)JEwe3) GO TO S0
IF(PeERTCOl ) +2«(THD=1).E24 TVARX) GO TO 50
AR ATATIS ST VA Bt A & SN D
IvAY S IVARX=1 .
N0 1850 T1=leLy/2¢1
c0nv(1.r{)=n.q
CO TN UL
[Con=nCO
CONTLLVE
RETURN
Enn .

891

]
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Al.6 - Listing of the nrogram EDT

FEOGFAM EDTCIHFUT»OUTFUT s TEXET « THFES=INFUTy THFEE=OUTFUT, THFET=TEXT>
INTESER FCO«TFLENSTITLE

FEAD (S22 TITLE

FOFMAT cH1 0

FEWVMIND T

FEARDCS« 10 LEWsHEL » HHF

FORMAT 215>

EYALUATION OF HUMEER OF FECOFRDE CLFECY
EVALUATION OF HUMEER OF ESUATION: COMTRINED IH ERCH RECORD CRCOD
CALCULATE THE ZIZE OF THE EUFFERP AFER COMF <TFLEMNX

FCO=d4eHEL - (LEMSZ+10

TFLEH=FCOe "LEM-Z+12

IFCTRFLEH.GT. 1000y TFLEH=1000
LEEC=czeHNHF~-13 ~FCO+1

HHFZ =2 «HHF .
LANF=LEM."& '
LEM1I=LEM-1

LEWZ1=LANF+1

UWEITE ALL DIEECTIWET IHTO TAFE TEXT

WRITE (s 23 HHF s TFLEHYHELsHHFZ«LEML s LEMSRCOS LEWZ L s LREC s ECOs LAMF s HEL
FOERMAT C14HFIZ: < v HHHHY <o w e Tda JHI 75 ¢~
12HFZ: ~TFLEH - s s IS¢ L Ho
194HRZ < VLLLL Y «ws <o ITde JHY 3 @
14HF D AP HHHE Y e m s Tda dH 75 @7
1VHFRZ: w iEE1«EBEEY <y~ Ca I 2o IHe s I 2 dHr # 3 @
17HREZ: ~ v FCOBEEEY “y Lo I3s IHy s I 2y dHI #5
1ZHREZ: - YREC) s~ Ca TZvdHI #5007
10OHFE D ZRCOS s <y T2 ZHASS ¢
14HFZ D 0D Fr e S J2a BH ' F0 75 45
1EHFE: -~ dLLLL s 30 e w Oy JdeBHy S0 S ¢7
10HZ: ~COMMON- - .
SHLY T -
ZHEHD
EHDD FILE 7
FEMINDY
zZTOF
EHD !

=R IS O D K e

2l CRLS WY B ¢}
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APPENDTIX 2

DIM3B CODE USER'S GUIDE

A2.1 - Introduction

The DIM3B code is a computer program written in
FORTRAN IV. The size of the problems it can handle is very
small compared with a typical problem, so it is provided
with an additional program which makes DIM3B operate in a
so called "Dynamic version".in order to adapt its capacity
to a larger case.

This additional program (DIMDIM) is not fully

described, only the necessary details for its use are given.

A2.2 - Preparation of the problem
A2.2.1 - Material properties

Values for Poisson's Ratio and Young's Modulus must
be provided. These values will be taken to apply to all

the elements of the structure.

A2.2.2 - Mesh generation

As it is a three dimensional problem, the generation
of a mesh of 3D finite elements becomes a tedious and
complicated process for all but straightforward cases. A
particularly complex example is a T-junction of thick pipes.
The most common way to tackle this problem is to have a
mesh generation program to supply all or part of the input

data.
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The elements available have hexahedron shape with

20 or 32 nodes as it is shown in Fig. A.2.1.

'20 node element 32 node element

Figure A2.1 - Isoparametric elements

available in DIM3B code

It is not possible to use the two types of elements
in the same mesh.

The topology of the element.is also shown in figure
A2.1 which indicates the order of the nodes in the element
in relation to the local set of coordinates.

The nodes must be also numbered throughout the mesh.

Therefore, for describing the topology of the mesh, it
is necessary to define for each element an array ELNODE
containing 20 or 32 (depending on the element chosen)
different values of nodal numbers in the mesh following the

topological order of that particular element.
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The elements are also numbered along the mesh.
It is necessary for a full description of the mesh

to define the coordinates of all nodes.

A2.3 - Sets of Coordinates

All the theory related to the program is developed
on the basis of a general system of cartesian coordinates.

It is first necessary to define the terms: Basic
Global System, Basic Problem System, Global System for Input,
Main Problem System, A Main Problem System and Local
Curvilinear System.

Basic Global System (x,y,z) is a cartesian system of

coordinates. This system will be orientated in relation
to the structure according to the geometrically preferen-
tial directions of the structure if there are any.

Basic Problem System (x',y',z') is a cartesian system

of coordinates. The orientation of this system can be
different from the Basic Global System and will be chosen
according to the loading conditions of the structure.

In order to define the position of this system in
relation to the global system it is necessary to define
the direction of the new x' and y' axis.

These new directions are specified py two angles
defining each direction and these angles are similar to
those used in spherical coordinates as it is shown in
Figure A2.2. The z' direction is defined implicitly and
the program works out internally that direction.

Both systems have the same origin.



Figure A2.2 - Basic Problem System and

Basic Global System

The concept and definition of the following systems
are defined from the two basic systems.

Global System for Input: This system can be a cartesian,

cylindrical or spherical system of coordinates. The choice
of this system is up to the user. It is a matter of conven-
ience depending only on the main geometrical shape of the
structure to be studied. The basic frame and orientation

of this system will be coincident. with the basic global
system. The nodal coordinates are referred to this
system.

Main Problem System: Can be also cartesian, cylindrical

or spherical, but the basic frame and orientation of this
system will be coincident with the basic problem system.
The prescr.ibed displacements (boundary conditions), the’

applied forces, the reactions, the nodal displacements
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and stresses, all the components of these quantities are

referred to _this main problem system.

A Main Problem System: Is a system that can be different
from the Main Problem System and it is used to define in a
more efficient way part or all the stresses applied to the
faces of elements which are loaded.

A table and an example are presented to help the

explanation of these concepts and relations between these

systemns.
BASIC SYSTEMS DERIVED SYSTEMS TYPE

Basic Gobal System ) Global System for cartesian
(Cartesian) Input ;cylindrical

1 spherical

*

1 Main Problem System cartesian
gcylindrical

Basic Problem spherical

System

(Cartesian) A Main Problem System cartesian
3cylindrical

spherical

(*) - these two systems have the same origin and are

related by 4 angles to be specified by the user.

ExamEle

Let us think of a multinozzle-on-sphere structure as
it is shown in Figure A2.3 and subjected to internal
pressure P.

It is most suitable to define the Basic Global system

as it is represented in Figure A2.3 with its origin on
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the geometric centre of the sphere. It is most suitable

to define the coordinates referred to a cylindrical system,

so the Global System for Input will be cylindrical.

z'
/‘jcvh'\deﬂ
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eylinder2
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\ '
! / ‘
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/ .
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ANG2
)
1 Y'

Xex’ v

Figure A2.3 - Multinozzle-on-sphere structure

The spe&ification of the nodal coordinates on the
cylinder (2) is a straight forward prob;em. The nodal
coordinates on the cylinder (1) and on the spherical part
will be easily specified bearing‘in mind a clockwise rota-
tion of these parts of the structure by an angle « as it
is shown.

The four anlges specifying the relative positions of

these two basic systems are also shown in Figure A2.3 where
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ANG, = 0.0, ANG, = 90°.0, ANG, = 90°.0, and ANG, = « .
The main problem system can also be cylindrical,
therefore all the quantities mentioned in Section A2.3
refer to a cylindrical system of coordinates, for instance,
due to physical reasons of equilibrium, all nodes situated
on circle (1) will have zero displacements on the z'
direction.

The pressure acting on the cylindrical part (1) of
the structure is referred to the Main Problem System and
obviously the only non zero component of applied stresses
will be the radial component with a value of P throughout
this part of the structure.

The same will happen to the cylindrical part (2)
provided the applied stresses in this area are referred
to the Global System for Input.

Finally for the spherical part it is possible to define
the applied stresses in spherical coordinates (A Main
Problem System) so again with only a radial component P,
provided, it is specified the type of system to which P is

referred.

Local Curvilinear System of Coordinates: For these

hexahedron elements, dimensionless coordinates &,n,t
are chosen each varying between -1, +1 so that in the
(£,n,c) space the hexahedron become cubes with side lengths
of 2 units.

Note: With respect ot all the coordinate systems, the

order of coordinates and components is understood to be
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ORDER lst 2nd 3xd
Cartesian X Y Z
Cylindrical R 0 pA
Spherical R 0 &

A2.4 Loading

There are two main types of loading:

i) Nodal Point Forces

ii) Constant Stresses on faces of the elements.

The components of the Nodal Point Forces are referred
to the Basic Problem System.

The stresses are defined on the same Basic Problem
System, or if it is convenient, on A Main Problem System.

The face of the element where the stresses are applied,
is identified in relation to the local curvilinear system.

Let us define the axis £ as direction 1, n as
direction 2 and ¢ as direction 3. The face is referred
to as the direction to which it is perpendicular and with
a+,- sign indicating if it is on the positive or negative
side of that direction.

For example:

Figure A2.4
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In Figure A2.4 the cross-hatched face is specified
by the code - 2.

Note: The sign of the loads is positive if it follows
the positive sense of the axis of the system to which the

loads are referred.

A2.5 - Boundary‘Conditions and Prescribed Deflections:

It is possible to prescribe any initial displacements
in any node of the mesh by the components in the three
directions.

This information is given to the program in two input
variables for each component: a number called nickname
(PRENIC) containing the information of the number of the
node in the mesh plus the direction on which the displacement
is prescribed. This is done by multiplying the number of
the node by 100 and then adding the identification number
of the direction (1,2,3). The other variable (PREDEF)
will specify the amount of deflection.

Let us suppose the node 72 restrained with an initial
displacement of .001 (any length unit) in the y direction,
considering the basic problem system to be a cartesian one.

The nickname will be 7202 and the corresponding deflec-

tion .001l.

A2.6 - Computation Data
Into this category falls the data which govern the
variable aspects of the numerical analysis and which

addresses the program by specifying optional features.
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In the course of execution of the program it is
necessary to perform some numerical integrations using the
Gaussian-Quadrature formula. Therefore it is required to
give the Gauss points, XG, and the respective weight
coefficients, CG. The number of Gauss points, IGAUS, can
be up to four.

A table with these values is presented below

IGAUS X6 CcG

2 XG,=-XG_= CG,=CG_=
.57735027 1.000000

3 XG,=0.000000 ©G,=.8888889
XG,=-XG_= CG,=CG_=
.77459667 .5555556

4 XG,=-XG,= CG,=CG, =
.33998104 .65214515
XG,=-XG_= CG,=CG_
.86113631 .34785485

A2.7 - Special Modes of Operation

Facilities exist which allow the user, if so desired,
to choose a certain number of optional types of output.
The option codes are values 1,2,3 for the variable IIN
which specifies the amount of input data to be printed out.
Values 1,2,3,4 for the variable IOUT describe the'amount of

data processed and stress analysis.
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If 1IN = Will be printed out

1 Title, IIN, IOUT

2 Coordinate systems, Gaussian Points.
Number of elements and nodes,
Number of nodes per element,
Prescribed conditions, Young's
Modulus,
Poisson's Ration

3 -  The rest of input data, except
for topological description -of
the mesh, ELNODE.

If I0UT = Will be calculated and printed out

1 Number of elements where data are
processed, Diagnostic advice,
Elasticity Matrix, Number of known
and unknown variables, integer
results, Displacements. ’

2 Nodal Stresses

3 Calculated reactions, Nodal
loading per each element

4 Topological description of the

mesh, with last appearances.

Note: The higher levels of INN and IOUT include also

everything described on the lower levels.



- 181 -

A2.8 - List of input variables

degrees.

ANG

CCORD
CG

E
ELNOD
I

GL
HED
ICODE
IGAUS

IGS

IIN

JouT

IPS

The variable data are categorized by the designations

is
ia
rs
ra
hs

ha

integer single
integer array
real single

real array
hollerith single

hollerith array

The unit can be any consistent set with angles in

E

ra

ra
ra

rs

is
ra
ha
is
is

is

is
is

is

angles for defining the position of Basic
Problem System

nodal coordinates

coefficients for Gaussian—-Quadrature formula
Young's Modulus

topological description of each element
element number

stress components

title for the analysis

identification of the loaded face in the element
number of Gauss points

type of Global System for Input

1l = Cartesian

2 Cylindrical

3 = Spherical
control of the input data print out
control of the amount of output
type of Main Problem System

1l = Cartesian

2

Cylindrical

3 = Spherical



ISGL

NELEM

NFACE

NFREE

NNELM

NODTOT

NOSTR

NPLOC

NPLOC1

NPRDEF-

NPRSEL

- PRENIC

PREDEF

RHSI

UN

XG

is

is
is
is
is
is
is
ia
is
is
is
ia
ra
ra
rs

is
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type of A Main Problem System

1 = Global system for Input

'2 = Basic Global System

3 = Basic Problem System

4 = Main Problem System (def. by IPS)

5 = A Main Problem System (cylindrical)

6 = A Main Problem System (spherical)
number of elements in the mesh
number of loaded faces in the element
number of degrees of freedom (always =3)
number of nodes per element (20 or 32)
total number of nodes in the mesh
number stress cases (always =1)
loaded element numbers (in ascending order)
index of loaded element
number of components of prescribed deflections
number of elements loaded
nicknames for specification of prescribed cdefl.
prescribed deflections
components of nodal point forces
Poisson's ratio

Coordinates of Gauss points

A2.9 - Data Format

A2.9.1 - Data order

The following table describes the order of input of

data defining the analysis. It should be read in conjunction

with the previous section.
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The program variable names of various data items are

given as they are used to describe the input of the data

following them.

GROUP

1st

2nd

3rd

4th

5th

OF CARDS

CARD ORDER

1

2

PROGRAM NAMES

HED
IIN,IOUT

IGS,IPS, (ANG(I),
I=1,4)

IGAUS
(X6 (1) ,C6(I),I=1,
IGAUS)

NELEM,NFREE ,NNELM
NPRDEF ,NOSTR,NODTOT

I,19 of the nodal
indices of element I

I, the rest of ncdal
indices of element I

".I=1,2 . . NELEM

(PRENIC(1,I) ,PREDEF
(1,I), I=1,NPRDEF)

(as many cards as

are needed)

J ( (CCORD(I,Y),I=1,3),
RHSI (I,Y),I=1,3)

J=1,2, . . .,NODTOT

FORMAT

8A10
215

2I5,4Fr10.0

I5
8F10.0

6I5

2014

1414

4(110,E10.0)

2E15.2

I10,6E10.0
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6th 1 NPRSEL . I5
(when NPRSEL)O,
then include)

2 NPLOC(I) ,I=1,NPRSEL 1615
(in ascending order)
for each NPLOC specify

3 NPLOC1,NFACE 215
4 NPLOC1,ICODE, ISGL,
(GL(1),I=1,3) 315,3E10.0
. ‘ The last group of cards
3,4 is repeated NPRSEL
. times

A2.9.2 - Data Deck

Each data deck as defined above will consist of

(9+2 *NELEM+NODTOT+NPRDEF /4 +I+2xNPRSEL) cards

I=0 if NPRDEF is multiple of 4

I=1 if NPRDEF is not multiple of 4

A2.10 - Error Messages

1. WRITING CONTROL PARAMETER IS INCORRECTLY SPECIFIED
This message occurs if IIN is different from 1,2,3
or/and if IOUT is different from 1,2,3,4. The program
stops.

2. THE COORDINATE SYSTEM DATA ARE INCORRECT
If IGS ans IPS are different from the values 1,2,3
This message also occurs if the second and fourth
angles defining the Basic Problem System are out of

the range 0°-180°.
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3. PROGRAM STOPPED DUE TO THE.CASE BEING TOO BIG FOR THE
DIMENSIONS SPECIFIED
If the numbér of known variables (NKNVA) and the
number of unknown variables (NUNKVA) exceed resp-
ectively 24 and 60, the program stops. This happens
only on the basic version of DIM3B. However this
message will occur if the dynamic version is not
working properly.
4, J . " - -
SEQUENCE ERROR IN COORDINATE DATA
J, is the number of the node where the error was
found.
5. SEQUENCE ERROR IN NPLOC DATA
If the numbers of stressed elements are not defined
in ascending order this message will appear. The
program stops.
6. PARAMETER READ BY INIAL IS INCORRECTLY SPECIFIED
The parameters are in basic version
NELEM=3
NPRDEF = 24
NODTOT = 44
NNELM=20
7. I,J
SEQUENCE ERROR IN ELNODE INPUT DATA
I, indicates where there is a sequential error in
the topological description of the mesh, J is the

wrong number



- 186 -

8. THE DATUM I IN THE ELEMENT OR PRESCRIBED DEFLECTION
J IS OUT OF RANGE
This occurs if the part of the nickname describing
the node number is greater than NODTOT, and if
the direction indicated is out of the range 1 to 3.
9. STRESS DATUM IS SPECIFIED INCORRECTLY
This message occurs when the number of loaded faces
in a stressed element is out of the range 1 to 6.
10. DETJ=0 PROGRAM HALTED
The value of the determinant of the Jacobian matrix
concerning the transformation of coordinates from
the problem system to the local curvilinear coor-
dinates is zero.
It is advised to check again the coordinates of the

mesh and the topological description.

A2.11 - DIMDIM code
A2.11.1 - Problem Size
The restrictions of the problem size assuming the
basic verison of DIM3B are indicated below. (The restric-
tions on the program variables are stated in parenthesis
where applicable.)
i) Total number of nodes must not be greater than
44, (NODTOT < 44)
ii) Total number of elements must not be greater than
3, (NELEM = 3)

iii) The number of nodes per element must be 20 (NNELM=20)
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iv) The number of prescribed deflections must not
exceed 24 (NPRDEF = 24)

v) The problem must contain only one stress case
(NOSTR=1). The same will apply for the dynamic
version.

vi) The number of prestressed elements must not exceed
2 (NPRSEL = 2)
vii) The number of known variables at one time must
not be greater than 24 (NKNVA = 24)
viii) The number of unknown variables at one time must

not exceed 60 (NUNKVA=60).

A2.11.2 - General Description

Any excess in computer central memory storage with
a three dimensional Finite Element Analysis usually causes
tremendous overheads unnecessarily.

The DIMDIM program attempts to minimize the demands
the DIM3B code makes on computer facilities (storage, CPU
time, etc) by using special features of the CDC systems.

UPDATE is a facility available in the CDC system at
I.C.C.C. and U.L.C.C., which enables the storage on disk
of card images of programs in a compact form.

This facility is useful for batch jobs and has various
features with which a program can be modified either tem-
porarily or permanetly by a set of control directives.

According to the particular problem to be studied,
DIMDIM defines the exact amount of storage needed by

calculating each array size.
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Following the execution of DIMDIM the basic UPDATE
library (in this case DIM3B code) is modified by a set
of control directives and new FORTRAN statements generated
by DIMDIM.

This modified version of DIM3B, now with the suitable
declaration and executable statements is then prepared to

be compiled and executed.

A2.11.3 - List of Input Variables
Following the same catego:ization used in A2.8, the

list of input variables for DIMDIM is indicated below.

VARIABLE TYPE DESCRIPTION
TITLE ih Hed for the input data
NELEM is the same as for DIM3B
NNELM is the same as for DIM3B
NFREE is the same as for DIM3B
NPRDEF is the same as for DIM3B
NOSTR is the same as for DIM3B
NODTOT is the same as for DIM3B
NPRSEL is the same as for DIM3B
NKNVA is number of known variables at one

time in the overall stiffness matrix
NUNKVA is number of unknown variables at one

time in the overall stiffness matrix

CON ra constants of a function P with wvalues
CON (1)=-.105615x10"3
CON(z)=.1357z3x10'3
4

CON(3)=.166273x10"



NWB

MCL

MCE (*)

PP (**)

MCI (**)

SEQ

is

is

is

ir

is

ia
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CON (4)=.913812x10""}

CON (5)=-.217439x10"1

CON (6)=5000

size of the basic storage required
without the variable arrays which
are to be changed NWB=17943
Core memory declared in job control
card, is a limit information
Anticipated core field length required
for the execution of DIM3B
Anticipated peripheral processor
time required for the execution of
DIM3B
The same as MCL
Series of sequential numkers ind-
icating the order of the lines in
the basic version of DIM3B where

statements are to be replaced.

A2.11.4 .- Data Format for DIMDIM

The following table describes the order of input of

data for DIMDIM program.

The program variable names of various data items are

given as they are used to describe the input of data following

them.

(**) - PP and MCI are obtained from experience and can be
found from the Dayfile in the printed output

(*) This value is the calculated MCL from DIMDIM less the

size required for the loader ( =~ 4500).



noov
ns73
n929
1360
no25
1767
0161
1107

CARD ORDER

*

* %

**x* - Referred to executable statements

The last eight cards referred to the sequential

are

nnl)
n93in
N2k

0162
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PROGRAM NAMES

TITLE

NELEM, NFREE, NNELM,
NPRDEF ,NOSTR,NODTOT,
NPRSEL,NKNVA , NUNKVA

CON(I) ,I=1,6

NWB,MCL ,MCE, PP ,MCI

SEQ(K) ,K=1,58 (*)

. (4 cards)

SEQ(K) ,K=1,24 (**)

. (2 cards)

SEQ(K) ,K=1,26 (**¥*)

. (2 cards)

1

- Referred to COMMON statements

- Referred to DIMENSION statements

indicated below.

nnl3
nS574
1pas5
1363
naps
1297
01A8A
1119

1354

1799

no16 0018 nNa2l

n879
1098
1443
ngRy
13A6
n3RG
1122

1099

nsAaz

nISG
1130
1854
()7[_\1
1712
N4l
1167

1135

039K
0756
1138
1707
0877

0418
1307

0402

1139
1709

0419

FORMAT

8A10

915

'6E10.0

3110.0,F10.0,110

16 (1X,A4)

16 (1X,A4)

16 (1X,A4)

0489 0493
0759
1264
0931

0520

numbers

nS541

nSak

n871 0874 09?71
1287 1291 1294 129>

1100

0565

1141

0567

0926
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A2.11.5 - Job File

In order to submit both programs together under the
running system KRONOS 2.1 at the present in ICCC the card

deck has the following structure.

JOoB ( ...)
UPDATE, N=PL3, L%1.
FUN (G).
UPDATE, P=PL3,L=1.
RETURN,PL3, CORRET.
REWIND, LGO.
FTN, I=COMPILE, OPT=1, L=¢.
LGO .
EOR

*DECK DIM3B

PROGRAM DIM3B
EOR

PROGRAM DIMDIM
EOR
* IDENT NEWDIM, K=DIM3B
* READ CORRET

EOR

DATA FOR DIM3B

EOF
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A similar structure is used for running these programs

under the system SCOPE 3.4 at ULCC.

A2.12 - Sample Problems
In order to help the user two sample problems are
presented and for each case the necessary input data are

described.

A2.12.1 - Cantilever Beam Loaded at the End

Consider a cantilever beam having a square cross
section with a force F applied at'the end.

As it is illustrated in Figure A2.5 the beam was
idealized by three 20 node elements.

Ail the nodes in the built-in end were totally fixed
in the three difections and the force F was modelled by a

constant shear stress applied in the free end of the beam.

Figure A2.5 - Cantilever Beam

The input data is described as follows.
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A2.12.2 - Thick-Walled Cylinder Subjected to Internal Pressure.
In this case 32 node elements have been used in the
finite element mesh idealization as it is shown in Figure
A2.6
The internal pressure was specified in the inner faces
of the elements by radial components using a cylindrical
.system of coordinates.
This problem exceeds the capacity of the basic DIM3B

version, thus the DIMDIM program has to be used.

AR

o ™
%%
Il

L

Figure A2.6 - Thick-Walled Cylinder
' /

The necessary data for this analysis is described as

'follows.
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data for DIMDIM
data for DIM38
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- DIMDIM code.

A2.13

Finally, a listing of the DIMDIM code is presented in

the following pages.



1

PROGRAM™ DIMDIM(INPUT OUTPUT TAPES=INPUT, TAPF6=NUTPUT,
1COPRFT«TAPE1=CoRRET)

INUTFRER SEWWTITLE

DIMENSINN TITLE(B)SEQIS8)CONLSE)

0 NPEFINE THE DIYENSION COMNSTANTS.
REWITD 1
READ(S«1)TITLE
‘1 FOR“AT(3ALL)
ARTITr(AG2ITITLE
2 FORYAT(WHL////71HO«uATOD
AREAD(H s 3)ELEMJMFRFE JHHELM o HPRDEF +NOSTRWMONTOT ¢MPRSEL « MKNVA 4 NUINKVA
3 FORSATLO1S)
N WRITE (A7)
7 FORMAT (11A10THE NDIEHSIONS OF TIE ARRAYS IH TUHE PROGRAM NDIM3R ARC
1 DETERMTOED BY THE FOLLOKING MAXTIMUN PROCLE™ PARAMFTER VALUFES.)
ARITFLEGAIMLLE 29 IFCEC o HMELIM e MPRCEF « HOSTR 4 NODTOT « HPRSEL o KNV A « MUNKV
1A
6 FOUMAT (AHUMELEM =,13/78H NFREE =4T12/8M HMELYW =,13/79H MNPROFF =414/
199 tnSTo =6 12/790 NODTOT =+ I8/911 HPRSEL =+413/811 HKNVA =,14/
291 MOIKVA =eI4)
READ (5, H4%) (COIL (INe I = 14 6)
&4 FOE“AT (AE1UL0)
WRITE (A¢ HBH) (L0 (I)e T = 14 6)
85 FORLAT (35 UTHE P FUNCTION COMSTANTS INPUT ARE /7 1t ., 6C14,.3)
READCH M) Ta' e MCLYMCE o' 9aCT
4 FOIAT(3I10«FIU0,04710)
ATTE theY) )
9 FOAT tALIUTHE EXEOUTTON OF DIM33 IS ASSUMFD TO REQUIRE THE FOLLO
1AING UNY PARKACTTER VALNES.)
ARTIFE (&R) MECEWPPCT
8 FOU"AT (PHUITHL CDUL FIELD LFNGTIE =eT6¢7H WNRDSW /3211 TUF PPRIPHIFRA
1L PROCFSSOR Tl =,Faa109H SECHNDS Z4BIL THE MAXIMUM CORE FIELD LEN
20Tt 6F TUE COCPUTER o771 wORNS,)
NKPIVALS (L KHIVAR LKA /2
NbRAaL o kA () KVASL) ) /2
NCFLNI= iFEE st Le
HECELLN=nolal+l
HTOTALS VAR K VA
T =lFRFFetiNNITOT
HANEARYAX) (HR YA GTICTIKVA)
NN TOTAL LT FLOAT(2CE ) « PP 0. o CONY |
READISaN1) (SEIK) v K=1058)
Bl FORAATIIARULX0AN))
5 YRFC=ntT/13F
IFLFLOAT(OTI/ZFLOATMBUR) o GTFLOAT (HREC) YR CSNREC+]
WAITF (AWY2)
82 TOPYAT (STITHE NEUIVED) DICEMNSINIAL COHNSTANTS ARF AS FALLOWS.)
WTTE (a3 LKIVALZHUNKVLIZHCELL S NCELHND. MTOTALY KTe NAB NBUF,
19nFC .
83 FOPYAT (YHUHKNVAL =«15/7911 HUNKVL =215/7911 HCELNL =.13/90 NCFLMNN =,

c
c

2

1I3/79K NTOTAL =+I4/5H NT =+14/6H NAB =,15/7H NBUF =,1I3/7H MREC =,13
2)

10 CORRFCT THE COMMON STATEMENTS.
K=1
Nu=N«R
CALL DELETE(SER(K) +SEO(K+1)K)
CALL S1(NPROEF «N)

. NWENL 4ty .

CALL S2(NPRUEF sNUMKVA+TTKNVA «NCELML « NKNVAI « MUKV ¢NODTOT «NABWN)
NW=t)y 41

CAlL SS(MELEMsMNCELHOWNCELNY«NODTOTWN)

NW=Ila+1) .

CALL DELETE(SEOUK) +SED(K+1) oK) \
CALL S1n{MHNELMJUCELMYL«MTOTAL «H)

Hw=ti, 48

CALL NELETE(SEW(K) ¢SERIK+1) ¢K) !
CALL F2(HAUFeHTOTAL+L1HREC+1oN)
Hw=ty+N

CALL C3(HNELMWN)

NwW=u 4

CAIlL DRCLTTE(SEA(K) SEQ(K+1)eK) .
CALL CORCNNELMIMTUNTOTNELEM41 4N) -
NW= Iy 4 N+ PRSEL . )
WRIIF(6412)1INB MW eMCL .

12 FORUAT (117HUTHID SPECIFIFD CORE FIELD LENMGTH NFERED FOR LOANING TH
1E£ PHOGRAM LESS THAT FOR BASIC ARRAYS WITH VARIABLE DIMENSIONS =,16
2471 LURNSL/34H THE CAL CULATED CORE FIELD LENGTIL NEENDFD FOR LOARING
3 = TALTH WHRDS 7421 THE SPECIFIFRD MAXIMUM CORE FIELD LEMNGTH =.1647
YH 1OENS, )

IF(HW.LE.NCLIGY TO 14
WRITF(A413)

13 ForbAT(AUN THE BIGGEST CNRE MEMORY SPACEK NECFSSARY IS MORE THAN sp

1ECIFIEN.)

IF (»CL.GT. MCI ) GO TO 15

HBA = HRUF=(S+NTOTAL) + MREC + 2 = (HW = MCL)

F (HBAJLE.U) 6O TO 15

HRNFY = 13UF

MBHF = MG (NTOTALs Te FLOAT (MCE)s PPs FLOAT (NRA). CON)
WRITF (5417) H3UF1e MRUF

17-FORMAT (7201MI0LEVER IM ORDER THAT AN EXPECTED LARGE CASE mAY BRE AC
1CNMENATFN HIUF TS/ 134 RCODUCED FROMe The 31 TOe I4¢ S1t1 WHICH WILL
2 IVCREASE Tdf PERIPHFKAL PROCESSOR TIME,.)

REWNIND 1
60 In 5§
15 BACKSPACFE Y9 .
14 CALL PDELETEISTRIK) +SEUIK+Y) oK)
CALL S1IUPRNLE 1)
CALL S2(HPRIEF " BUIKVASMKIIVAGICELIL o KNIVAT s HUNMKYL o HHODTOT «MAR W 1)
CALL SathFLEuN ICEL:OLUCFLNL HORTAT o)
CALL DFLETEUSIOIK) (SEQIK+1) 4K}

- L6T1,



CALL
CALL
CALL
cat L
cAat L
carLL
cAaLL
cALL
CALL
caLL
CAL.L
cmL
crtL
car L
cAaLL
CALL
cAar L
cAaLL
caLL
cnr L
cALL
CAt L
calL
catL
CALL
cAt L
CALL
cALL
CALL
cALL
cAaLL
cAl L
CALL
cat L
cAaLL
cAat L
CAt L
cAaLL
cAar L
cAtl
cAar L
cALL
cALL
caL
caLl
CAL L
cAt L.
CAat L
cAal L
crL
cAaLL

S1(HIPRDEF.N)

SZIMPRDEF S HUNKVASHXIVACNCE L N1 e NKNVAL o NHIMKVL o NODTOT e NABN)
SANHFLLIGHCELNHOHEELNL«RODTOT W)
DELFTEA(SED IR ) ¢ SEDtIK41) oK)
DELFTEASE JIK) s SEUWIK+L) oK)
SHEUMNLEMOICELNONCELNT HINOTOTWN)
CORUNNEL A HUDTOT ICLEM+1411)
CELOTELSEGIK) 4 SCRIK1) oK)
S1O(NMLL AHCELMT W ITATALWN)
DELETLASE 3(K) ¢ NFUIKE1) oK)
CI3thnttten)

NELFTULSLO(K) ¢SENIK+41) oK)
COHANIEL e NUDTOT W HELE MM+ 61))
DELETEUSFNIK) o SCUtKI1) oK)

SHEHLF LU GICELHDWHCELHL «HODTOT o N)
DFLFTEUSEAOIKY JSENIK+L) 1K)

SIOCH It Lo HCELN L «aTOTAL M)
DELFTULSE JIR) o SFatrel) oK)

COENI LM tINATOT S CLE e 400)
DELFTRISEGIK) ¢SFUIKe1) oK)

S2( . WRUEF oI IAVA S HKNVAJHCELNT « NKMVAT ¢ MIMKVL 4 NODTOT o NABWN)
SEILELEN HCELEND G HEEILNLHONTOT o M)
DELFTEISEGIN) s SEFULKeL1) oK)

S1 (PRI or)

S2CEPANEN s OUNV YA CIKIVACHCELMNL s MKNVAT o NIIMKVL o NODTOT o N2 1 eN)
SEUHELE MICELIONICEL L 1INTOT 1)
SO0 LY HCELMY vHTOTAL G M)
PELRTELSEOUK) ¢ SEUIK+1) oK)
C2(NIUF «ITOTAL #14nKEC+1e0)
OELFTELSU UK ) (SFUIKe 1) 4v)
S10(HOL L HICET W THTAL 1]
DELETELSENIM ) «SFUIK 1) oK)
CALNNUF o HTOTAL #1eRECHY W M)
DELFELESL 2UK) o SEL(KEL1) W K)
SYCLOHICE of1)

SP2UEPHRILE P VA R IVAGHCELMT o IKNVAL ¢ UMKV 1« NODTOT « NARWN)
SHEICELLAHCELMD W HELLEL«TODTOTWN)
SLIACHINLEN GHUELDY o1t TOTAL o N)
NELFTELSF (v ) o SFUIF 1) 4K) |
Cotrtubl o ITOTAL AL b Col1 4 H)
PELFTLUSL MR ) oS tK1) oK)

Sol L A ICFLINHCFL N« MONTOT M)
DELETLASH DK ) o SFUIR L) o)

S2 U PROEN SHUIM YA s KOVAGTRCELMY oHIKNVATL s MUNKY L JHODTOT «NAR LN
SEELE AWHCEL0MCELULWIONTOT o N)
SEANE LYW HCEL ) o TOTAL W)
PELETOUSEU(M) «SLLIK*+]1) 4K)
CIONEL )

CO (L L hMTOT L el 1)
CELETRASLULR) W SPQIKIL)aK)
SLULINLLM HEELYLaNTOTAL )

20

2.

22

23

24

25

26

27

28

29

CALL DELFTE(SEN(K) +SEQ(K+1) ¢K)

CALL C3(MNELM(N)

CALL CON(NMELM NODTOTMELEM+1¢N) *
CALL DELETEA(SEW(K) «SEQ(K+1)4K)

CALL S1O(NNELAWHCELML«NITOTALN) ‘
CALL DELETEU(SEUWIK) +SEUIK+1) oK)

CALLL S10(MNELMWHNCELNLHTOTALN)

CALL DELETE(SEN(K) JSEVIK+1) eK)

CALL S2(1PRUEF « UK VA IIKNVANCELMNT «NKNVAL JHINKVI«NODTOT «NABN)

CORRFCT TIE DIMENSTON STATEMENTS,

READ(S+81) (SEN(K) eK=10204)

K=) : \
CALL DELFTE(SCNIK) SEO(K+1) oK)

WRTTF L1421 HUPRSELHCELI JNUCLMMNELMJHNFLM

FORGAT(AXA2NDTYENSION ET(A16) +HT(6+9) +NPLOCE« T4 ¢B)1) « TRHSL (o X4 o 1H)
176X 13UOTHELSTON VICeIneSH) sV20eTUeSH) eV (e TUe1H)) )
CALL DELETEISFILR) ¢SEUIK41)4K)

WRITF(1422)¢ AW HIAR —
FORMATIAX s 12ZHDIHEUSTON AL TSe8H) oB(eI541H)) 0
CALL DELFTULASLULIK) ¢SFOIKT1) oK) .
WRITC ] 0230 ICLLIL o tEL M HCELHL

FORMAT(AX + 15HDTMLISTION unsL(.x».szu).ncTM(s).TRutsa GL(S).J&C(S.S*

10/78X e AHINE 1 o s TH BT s TRUSLE o THGL1TI) o TP(343)« TRGL(3))

CALL DELCTEUSEI(K) 4SENO(K+1) oK)
SEHCELUI e (ICELNL+Y) )72
WRITF(1,24) YeHilCLM
FORIPATIAX 20HDT ZENSTON A(3.3)'QK(.IS.?su).JActso%)oIJAc(SoS)oDE(Qo

LeIUerh))

CALL NELFTE(SEO(K) SEQ(K+1)4K)

WRTTFL11.25)4

FORMATIAX s L3HDTHLMSTON SKE«15011H))

CALL DELETL(SEQIK) JSEN(K+1) oK)

WRYITE (1 26INTOTAL

FORIPATLAX ¢ * SHDIALNSION COMP (T8 ,1M))

CALL DELETE(SENIK) «SEQIK+1) oK)

WRITE (1 426)NTOTAL

CALL DELFTEISEN(K) 4 SEDtK+1)4K)

M=2+1:0NTOT

WRITF (L2700 ITUTAL

FOHMATUIAX s LIHNTIMEHSTION U2 (e T48aTI) s COMP(4TUe1))

CAtL DELFTIUISEIIK) ¢SFLIKE1) oK) :
WRITE (1s28):4

FORMAT(AX «13HDTENSION U2{aT8111))

CAIlL DELETEASEN(K) +SECIK+1) oK)
ARITI(L29)LCELNDI I ODTOT " o INDTNT JNCELTIT
FORAATLAX 120D INENSTON ClalUe351) s STRIA)I«STRI343)¢STRTI3¢3).SLI3,3
VI/AY L 1SEDTIFEUSTON LIV TGa51) s U210« T4 IH) /X« LSHNTRENSTON STSSCe T4
2vINHA)LURTIAY s TU e YH))

CALL NELETEASEItM) JSEC (K4 ) oK)
WRITF(1e3UINCOLMY HCELHL NNELM



30

31

un

ui
u2

43
4y

u%

46

47

48

59

So

FORMAT(AX « 16HDIMENSION NATIG6+ s TUsTH) «DB(69 e TUe18HIWA(6+3)eJAC(3:3)
1¢/75x+416M1TJACI3e3)4CR(8 00 TU1IH))

COLL DELETE(STUIK) «SEQO(K+1) +K)

WRITF(1.30L)00NTOT

FORYAT(AX «1HHOINENSTION STSS(«1443H46))

CoreCT THE EXECUTARLE STATEMENTS.

READ (5, 81) LSEQ (K K = 1. 26)

K=1

CALL DELFTEISERIK) ¢SEQIK41) oK)

WHITF (L oG 1) HKHUVACTINNKVA

FORMAT (3% 101158 TF(HKIIVALGT. 1 TU12H) GO TO 3001/76Xe13HIFINUNKVAL.GT
LeoJ4,124) 68 TN 3un1y

CALL DELETEC(SEN(K) «SIGIK+1) oK)

WRTTE (L en2) INSEL

FORMATIAX «1AHAY IR (NIPRSELGTaeI4e12H) GO TN 30011Y
CALL DECLETEISE J(K) +SECIK+1) oK)

Mzt EvetiCCLIIY

wilTTE (1 u3) )

FOLMAT(AX« 2 71CALL READMS (3FLNNDE(141) e91543He1))
CAM L DRLETELSENIK) SEUIK+1) oK)

ARTTE (Lot }oinyg

FORZAT(AX v4Mijanzs15)

CALL GELFTEISIRIK) (SENIK+L) oK)

ARYITFCLeGS It LEMepRDECHODTOT « HHELM .
FOPUAT (AXI2NIF N LMl e a T8 151 ANDMPRDEF JLE e s I8 ¢ 1SHJANDJNODTOT
1oLFa It /79419 AN GINELY.LE e+ 1241001) GO TO 60)
CALL DELFTEUSEMIR) «SFULIMe1) oK)

ARTITF(1,uk) A

FOPVAT(AX e 2THCALL ARITMS (34FLHONEC(L1e1) 0 e15¢3M141))
CALL DELFTEISENLIR) «STRIXK+1) KD

lz=tis LEel

M2z12etinE LM

WNRITE (s 47y ™M

FORMAT (6Xe 31UIF (HEN0.1) CALL OPENMS (2+¢JRAY+ T4 «3H0))
CALL NELETE (SEQ (K)o SER (K + 1), K)

ARITE (14 53) A2

FORIMAT (AXe 2SNCALL WRITHS (2+4CORDIIv1)ee T4 3HN))
CALL DELETE(SENIK) oSEYIKAL1) oK)

AZIRFC 4]

ARTTE (L0030

FUPAAT (AY 2 1HCALL APFHMS (14 TRAG T 3HN) )

CALL DELFTEASIOUIK) ¢ SFGIKIL1) 1K)

WHITE (L 89 IRULE .
FORCATLAX«IUNIF(HLARCEG. « T4 13HY GO Tn 10)

CALL DFIPTLISULRQIK) (SELIK+1) oK)

A=t ALEF e (S TDTAL) ¢

ARTTIC(14H0) ¢

FORSATLAX « LHCALL wRITHS (1eNLG 2 THa6IINREC) )

CALL DELFTIF(STUIK) ySITUKe1) K}

AHTTFLY1451) 2

81 FORMAT(GX19HCALL READMS (1.NLGeeIS5:6)44NRES)Y)
CALL DELETE(SLO(K) +SEQ(K+1)+K)
WRITE(L1 520112 :

52 FORMAT{4X+29HCALL READMS (2+CORD(1¢1) oottt LL))
EHNNFTLE 1
REWIND 1
STOP
END

FUMCTION NBINTOTALWNTCMPP«DMMAXCON)
NDIMENSION CON (6)
UP=(1.4C¥/15000.17300.

UMz=PP/4 ,RE6

RECLOAT(S+NTOTAL)

8 = 1.
= v
X = 1.E35
1 0=R 2R+ 1,
P = CON (1) 4 CON (2) = EXP (CON (3) %= Q)
1 + CON (4) » EXP (CON (5) = @)

NREC = NT/ZIFIX(B) .
IF (FLOATUIRTI/B.GT.FLOATI(NREC)) HNREC = NREC - + 1
REC = FLOATINRES)
DELTAP = P22.¢RCCx
NDELIAM = 1. + REC + 0
IF (MMMAX.GTeNe «AMDe NDELTAM.GT.DMMAX) GO TO 2
DRLTAU = UPADCLTAP + UMSDELTAM
IF (DCLTAULGC.X) GO TO 2 .
X = DELTAU
N = IFIX(0)
28 =p + 1.
IF (1.+12R.LELCONLA)) GO TO 1
IF (NB.GF.1) GO TN 3
WRTTE (Aol \

, = 66T -

4 FORAAT (YINUDEVEN THOUGH RUMNING A LARGE CASE MAY BE IMTENDFN NMBUF

1CAL 0NT BE REUUCED ENOUGH TN ALLOW 1T.)
BACKSPACE 9y

3 RETUKN
EHND

SURREUTINE DELETE(G KD
INTEGER (1eLeFafe
DItEOSIN C(S)Fly)

NATA BX/z7un /

DATA F 1) 700NN NHenELET/ZE(2) /71000 DIN3RB.AZEL3)/72Hu) 7 ECu) /71018,

AT A EARLIVEY M 83 WA TI Y AT 4
KEKe¢D
Nno 1 1=1+3

1 FUr)=L(I)



IF(N.£Q.DIG0 TO 2
F{3)=E(4)
Fly)=6(%)
ARITF (1+F)IGH
GO TO 3
WRITF(1.F)6
RETURN

o Ta}

SURRAQUTINE S1{(L.+H1)

MN=L

HWRITF(141)L

FORMAT(HXy 19HCOMMON/S1/PREDEF(1eeI891H))
RETUAN

EtD

SURRAUTINE H2(LY1eL2+L3¢L4+LSeL6LT7.L8N)

M1I=AAYD(LAeheLToLY)
M2=LA/L?

IC(FIDATILB)/FLOATIL2) sGTFLOAT(M2) IM2=124]

M2=MrXN(L3M2)

ML 132al248¢L 34200041 54M1 41 222

ARTTE L1 4T ILLaL2 0L 3et 3oL 2Lt ol,SeM10l,24M2 .
1 FOR“AT(AX 1 HHEHN0, FREMTICET oo TU o1 1H) «UNKMICCT 99 T4 1IH) JKNOAHTC(
1209 Tua21) 0 /9% YNIULRUS (1o 0 Tho 111D « KHORMHS (104 T4 11H) oELPUSN(29 41842
2 U)o /SX 10 I2KHOMAT (1o J9e 1M JUNKMAT(La s ISeBH) sUNCLE (s TU 1M s I441H)
3) :

RETURNI

Ean

SHORAUTINE S6(L1.L2.L3,L8WN)

Miz(L3e(L3+1))/2

M2=m1 /01

IF(FIOATCAL) ZFLOATCLY) A GTFLOAT(M2) IM2=M24]

ML=rAXG (L 2eM2)

N leidlel 545200

ARITF(11IL1 %1 eL 300 8
1 FOUYAT(AX  LTHCOMADNN/SA/ZFLNONDECa T o1t 9 I541111) «RUSRED (14« 144 9H) +RHS
1T 30 T8t e KA(2)) . : ’
RE T

g£an

SURRNUTTINE S10(L1eL2+L3e0y)

NSV
IF(FLUATIL ) /90T FLOAT(1#1))MM1=014]
M= AXO(L2 o)

NZRsl Je9e 4

8
WRITE(1+1)L14M .
1 FORMAT(AX,19HCOMMON/SID/DEXYZ (34014 ¢20H) «DH(6+9) +P(9¢9)sOP(sT4¢3Hs
19)) : *
RETURN
END

1

. ENn

1

SURRNUTTINE C2(L1+L2+L34N)
N=L1#(L244)+L3
WRITF(1.1)L1.L24L1.L3
FORMAT(6X+168HCOMAON/C2/HLGBUF (e T8 o 1Ho o T4 o 7H) s IBUF (s T4+ 15H 4) « NREC
ToMTRFCo/SXe2THIRNUS S HIC«LPLLP2 MPOSN«IRAC« TG 11{))
RETURN

\
EnD .

SURRNUTINE C3(LN)

N=3*L

WRITF(142)00L

FORMAT (AX s 12HCOMMON/C3/V(eTI4e3He3))
RETURN

, = 00T -

SURRNUTTINE COR(LLIWL24L34N)

N=12¢i.1+43sL24L3

WRITF(1,1)0L).L1.L2,L3 )

FORMATEAX e LUHCOMMON/COR/ZCORDE3 e e I8¢ SH) s TRCeTUe18He343) sCCORN( B¢ o1
1e6H) s JRAC 1% 41H)) -

RLTUKN

END
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APPENDIX 3

DIM3B CODE LISTING




Chaeos
c
C
Coaver

5009

2001

5005

74

7%
Suv2

S00uy

PROGEAM DIMEINIUTZHN2 4 0UTPUT=I002 e TAPESZINPUT « TAPEG=OUTPUT
1 TAREL=LU02TAPL 21002 TARPEZ=T1V02)

REAL WDHUOYAY eniDHILS

IHIFArR FLPUSHELHODE JPHENICJUNIKDIC

IOTEHCEH AN

CUMARII/ZNTZ PHREDEF L) 24)

CLOMM IR PREGICELe 24)0UTKHICETs AD) KOMITC (2428) s UNKHSI1424)
1K S L e AU) s ELIOSHIE2 e AN cKIIOMAT L L e 300) «UNKMATI241850)
2UNCLF L BN e2Y)

COAnNZSa/Zb Lt LAGALTU) HISHEFDEL o6 S HISTU3e T11) dKRAL2)

COYMON/ZSAZALLE ) «Cht %) o TLAUS

GOl /ST HZ0LATZ 08,20 ) «NDHTAGQI O L6 ) P LAENLY)

COF a0t /7C17 IRV AGHAINIVA o JOSTHOHCELHO L OCFLUL cHTOTAL o NPRDEF o 1T
JHELE® JFREE o1 LM DT T o)

COMMNN/ZC2/70ULLaHE LD 85 ) s JTUHF (Y04 ) s UREC e NTRCCAHHS I NICeLPLoLP2
1UBASH L, THA L L)

CULANII/CI/IVEAZ3)

COMLEZEUZILN NS e TIHES0S)

CoraniizCHz i TOUL

COMINZCURZCONIES 2U) s TRE2D 030 3) s CUNRNERY Bu) cJHALY)

COM 212G 2al 1ol g NN

DT astat vealsy

NLEERSTON A la)s Cla) e St

W ENSTON Lllonen) o lTLR«9 Y o IPLOGL2) o TRUISL LEN)

NlernsTon v o0 e V2 (20)e VS L2V)

V) wALFLGE (Y e e VI L)) e (v (e 2)e V2 (1)) e (VIE1e3°.V3(1))
TUFRISE (1) adb L2000 ) o UF TE1 i (1)) o T L) 4220100 :

RN R R R NN I I Ny Ty s 2 2 L 2 2

.

‘.‘OCA"'..Q".’P..""'.."A!CUD.‘0‘....th..."".""....."t‘".“.“'
HEANESS1ItIY) LD

Foi=Attsntm)

ARTIN tHeSIULY NLO

FURMATLIMY 2777777 110, BALY)
AT (S, Su2) Tl TOnt
ARLTFE tive muUn) tlne Loyt

FUNMAT t/77 UL PO PARAMETIR R CONTROLLING THE wWRITING OF INP
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2561 TUC SPELIFTRD ANGLES KELATING THE TWO BASIC SYSTCMS ARC.

. 3 4r8.2¢ YL DELRELS.)
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M tas 1) = C (2)
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FlL(3.2)=F1124%)
Elts.3)=h 1 (<de2)
. Eftuo,,u)=vAl 1e)ab=11)
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Sl st lita il O LOLS I b Laual, eaticlxitLnny=se s/
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SI%e s TOTAL SIZE M) AKX bt Pl SOLUTIONINTOTALY==] R/

4

61%.«<1Z{ NF UHKNOWN MATRIX (UKL ) =17/
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V101) =v1(2) =v1td) =vite) =vit13) =vi(iai=svi(17)svi(ial=vy(21)=
vit22)=vi(23)=via2n) = =1. '
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76 IF (hHLuA obwe 1) LU To 1Y
LF (ebRSEL obwe U GO T sl
TE (=10 o iPLNCENE DAD =1 ) ¢AGUe NH=1lMEHPLOCIYLOADY)Y) GO TO 8O
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B Ty »Lh
St K pCtl«L 2L LiUnF titey)
JLeeSitlsdeli=t
FLrasht2ednt =)
GuoTn Hyn s
8T DU w1l A= LagiIvAa
[ECKEMNIIU L o) J LW ) RY T 621
A1 CUDTINILY
#2909 Khmpe o2 = LhONE (NG J)
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BOOFO TR L BATD Ay 8010 I TLEIENT g vuﬁSculuho DEFLFCTIONWIS

Vel 7t IS UYL vk VAN )

TS I AN Y]
b HEADTS 2 LEHENTCIY e DY e HHEDE S (Lo DT o L= e nPRIFE)
! Forealtatrilestienl])

B0 1 t=tenb it

Azpip L IC Ltz

IFinsl tealeunteNabl o Tl b T 7

Azpreb il tleld=10en

trinal Tealadenetslo3) v TU v

LO Conrrvigy
Wty
ERTRY

SO e DT L Lot

THOTE 8 ) L)k

G el /SEZELN0IL CSem T ) o HMDISHEN (L oRN ) e NS TS 44 ) JKIAL(D?)
CHOANI/CT/ VHIAVA G RIVAGHTIS TR o HLL LD W HCELNL D TOTAL«MPRDEF oMY o
P oot ) Wh boot it L Yo et ] ot :
[ ATV A VA SRS R IR R I TR B ]

[P R HVINIVE S ETRN R VR

O 20N ZLUI E A 20 ) s IN(20 e Re 310 0COMMNCEs My ) s gRALY)
NS 11P (84 %)

JU L usterme

KAt STLL oL G Sag=1)0710000

0 LIzt

Lzdengest

Cioudtledrselamtirel on

Wi the L) = by

TFCEL 00t tas L #1)aleTot) it

12

RUSKHED L L) 21UIST LT oK)
COnT UL

N 2 1 =2 te NHLLNA

CALL PTRAYSICURDtL e 1) o T1?)
NU 7 J=+8
MU 7 K = 1
T (Te Je K
DU/ L = Ll
It (Lo Jo K}
connnur

IF Wt ortde 1) CALL ODPLNMY (24 JIAY 8o 1)
IF LLOUT oL de 1) 1) 1U 2

CALL wit]THS t2¢ CURD tle 100 2400 1))
reETurn

ENn

oo

The (le Joe K) 4 10 (uJe LY = TP (Lo W)

SURHNAUT LUE LOAD '
REAL JAC )
COMIETIZSI/Z XA Yo L1t o TLAUS
COMMAPNZSINZHLRYLES 2N DNLH e} 18 (QeY) e luP (AU Y)

COanti/zr 1/ BNNKYAGHRDVAGINS TG HCT LW HCKLN JHTOTALHPBRNEF o' T
LNELE A HEREL oW LMt Y o 1)

COMAnEI/ZC3/VIZ2Ne D)

COMMNZCUZIUSY TIPS IS0 S)

CUmanl/zCh /LT LOUT

CUtBZCURZLUIESe 20 ) o TRE2We3408) s CCUNRDLS s 4Uu) o JuALY)

COt I ZS e Z G0t e F atas

DIMEMSTON sfSLAGE) s HETHES) « THRITEI) oL LAY v JACE 303} eDELUI20) « TRIISL IGO0
11410 (33 e inniL (3)

Ewt VAL 0 (O CL) o EL) ) o CTIISLET ) o USLEL) w1 20U))

BIVIRD f = le ittt L

\— L0C -

AT (LY = .

UY)

1
2

a6
S5t
2
SN

"l

IF (1IneLTas) () Ty 1

WRITE (fHe 40) .
PFOREAT (70 208 0RCSS LOANTNG (H0UT DATA I'Ne TUFE ELFPENTY
1 St ukALEL Ll SYST X CumbONENT Y COMPONENT  Z COMPOUFRNT/)
REANCS 2 LC T v IFACKE .
FUaAl 1219

IF aniPinC ek eit) 1) 10) 84

Thpet sl ot RULSU Dok aMi pFALL oY o)) GU TO S0

AKITF (heS1) .

FOoAT Cadniva SYIESS DATOR IS SPHCTFIL LHCOMRECTLY . )

Qhop

Nno g L=t 4 ACL

REAN (S )L DL Lo IENDL o TSGLe tLLITY e 1213

Furval(stnenl L)

I (1Ihaltand) Ll Tr S

ATl (b1 TLubl e ISuLe tLLEIY e I=14 31

FOROAT (11l o« 1oe L7e t1xe 41.13.9)



12

13

1u

15

17

]

42

53

16

18
23

20

13

IF (NPLOCL1.MELN) GO 10 56

IF LISGLLTaleORGISGLOTLH) GV T 56
IFCaMUTLISULEUa1aANDCIGSeNELY)) GO TO 82
CALL GTRANS (IGSe 6L (1) GLI2)s 6GLE3))
(ACUNE=TIANSCICUNE)

1ScONt =tCRUL/1ACUUE

IF (TACOLL LT 1 0RGIACODELGTL3) GO TO 56
0O 100y I6L=S1etiiLv
IFIFIA(viTIuL«IACUDE) ) JNELISCOLE) GO TO 10UN
0N 1ol Jubl = 1e 3

KoL=s2e ([GL=-1) +JULL

UL 1ol LG = 1. [CGAUS

nuw 1001 Ju = 1. I6AUS

G T (11+412413)¢1ACOVE

G=IsCuNE

H2XG10)

F2XG(Jh)

G T 1ns

H=ISCUUE

G (LK)

FzxG(Jb)

GO To 1u

F=1Srnhe

G=XhitlG)

H=xG(JO)

IF(hnbELM,EQRe20) GU TOU 15

CALL SHAp32 )

50 T 16 .

CALL S'tap2y

DO 17 1=143

DY 17 r=1eS

JACIT nY =1l

IF (InCeL oNEs 1) GO TO 14
JAC(l1KI=1

6O 1n 17

DO 2% g = 1s HHELM

JACET RI=UALC LK) ADE (T J)2CORDIK W Y)
COIITIUE
OETMII)ISIACEL o) ¢JAC(242) YJACEI 4 3)
BETM(2)2JnCL1e2) 2 JACITZ248)2JAGI301)
ODLTY13)=uUnACtL1eS)2UAC(241)0JAC(S2)
DETHM(W)IZINAC IS 1) *¢JACI242) 0 JNAC L4 3)
DETM(S)=JACIIe2)eJACI243)%JACTL 1)
DLETYLR)IZJACLS eI e N2 1) 8JACILe2)
IFLIACODLE=2) 19ePudlt

nx EMDE N AR R S
AY SHET™(S1-DL T 1S)
174 TPE (L) =UET N 6)
G0 T 22

AX SHE TS =DETMA)

AY SPEEM2)=LLTM D)

.

19

°2

25

60

61
26
27

b
24

1001 comYINUE

1voo
4

30

31

1

14

A2 =NETMIL)=LETMIY)

GO To 22

AX =DETMI1)=DETMLS)

AY =NETML2)=DETMLG)

AZ SNETM(3)=ULTM(Y)

IF (ISGL.GE+3) GU 10 2% .
CMPT=GLIJLL)

60 TO 24

CMPT=U.

IF (18GL.EWe3) GU TU 27

0L 60 =143

THGLUT)=0,

NO 60 J=1+nNNELM
TRGLOII=TRGLII ) 4DE(U +J)=CORDITI VY)Y
{PS1 = 1PS

IF (LSGL +GE. $) (PS = ISGL = 3
CALL PTKAUS (TRGLeTP)

tPs = 1St

00 61 K=1,3

THELIK)Y=U,

DU 61 J=143
rnGL(K)=THbL(K)4TB(JGL1J)tTP(JoK)
No 26 1=1+58 )
CMPT=CMETHIRGLIL)AGLLL)

50 To 24

DO 28 [=1+3
CMDT=CMPP T+ T CJGL L) *GLIT)

RHSL (KGL) = RHSL tKGL) + CG (I1G) = C¢G {JG) = DE (4. I16L)
* CMPT * SURT (AX = AX 4 AY = AY + A2 » A2)

CUNITHUL

CONTINUE

Lo 3 [ = 1¢ GNELM
JdsSe(l=1)

00 30 K=1.3

TR (K) = U,

DO $n Jy=1.3

JK=JJU+J

THD (K} = TKH (K) # TR (le Je K) = RHSL (JK)
DO 31 K= )4 3
Kl=JJd+K

THHSL (K1) = TRH (K)
HE TUIM

END

SUBROUTINE GTHANS (IGSe Xe Yo £)

A = 0.017455829252) = ¥
C = 0SS A
S = SIn (n)

.

- 80C -



- 10

11

R
X
Y
143
)
c
3
X
Y

Wi

I'4
RET
EN

SUR
cov
Ulwm
2V
1Y

Jn
vo
DUt
IF

15

X

n«C

R ¢ S .
(I168.E0e2) GO TOU 1
Ne01745329252H » 2
cus (A

SIt (A)

x ¢S

Y « s

R o« C
une]

ROGUTINLE PIRANS (Ue TP)
AON/CU/ LGS TIPS THISWS)

EHSTON IPE343)UULS) e ULS)

3 J=1¢ 3

2 K = 1+ 3

(Je K) Oe

(Jde D) 1. .

(1PS.fuesl1) GU TO &

S J = 1

(J) = Ue .
S K = 1+ 3 .
JISUDCJI+TUHIR ) ULK)

(ABSIUDIL) 1oGTa1.E=35 «OR. ABSIUD(2)).GT.1.E=35) GO T0 8

ey = o,

GO
THE
C =
S =
re
TP
re
T
IF
r
PH1
0
Piv]
IF

C
S
L

Te
T
RLT
EMn

Ty 9
0 = ATANZ (WD (2)« LU (1))

cOs (i)

SIn (ThHeD)

(1 1) [«

(10 ?) -S

(2¢ 1) s

(2+ 2) c .
(IPS.ERN.2) GO TO 6
(ARSIUNIS)) 06T 1.E=35) GO TO 10
N = 1,%5707963268 .

Tuo 11

U = ATAN (SUK) (UD (1) =& 2 & U (2) «+ 2) /7 LD (3))

(PHIN.LTene)  PIID = PHID 4+ 3.14815926536
CUS (P :
STt (PrLY)

(1« 1) TP 1+ 1) ¢ C
(2¢ 1) P (2 1) ¢« C
(3¢ 1) -5

(1e 3) P (2¢ 2) ¢ 8
(2 3) -1 tle 2) = S
(3¢ 3) o

URIY

g

(e Nalel

oo

non

ano

16

SUBKOUTINE FEM
REAL JACTUACMVJIAC

COMMNIN/SA/ZELHODE(34610) sRISRED(1060) sRIST(3¢ 44)KRA(2)

COMMON/SH/ZALIY) «CG(U) + IGAUS
COMMON/ZSTIO/DEXYZL3420)¢D1H(649)e12(949)00P(6N.9)

COMMNN/ZGLZ HUIKVAMKNVAsMOSTReNCELNUWNCELNT «HTOTAL«NPROEF «MT e

IHELEM P RCEL « NHELMGNODTOT o N
COMMON/CORZLORUL3420) e TRI200343)CCORDIZ 8U) s IRA(Y)
COMMNN/SP /G etleF o+ MS
DIENSTUN AE3¢3) e SKEL1B830) «JACI343) 0 IJACI343)DE(H20)
CUuIvALENCE (SKE1) W LLNOUE(L)) o tUE(L) 40I2(1))

I = (nCELNL * (MCELHL + 1)) /7 2
DO 5 KS§=1.1
5 SK(KS)=U.

MUMERICAL INTEGRATIOHN LOOP

DO 1000 1G=1,16GAUS

00 1000 J6=116AUS
NO 1r00 KG=1+1GAUS
G2XLI1G)
H=XI(JG)
F=xG(Ki3) .
[F(unkLMmEWe20) GO TO 30
CALL StiAY3e
6u To 31

31 CALL SHAPZ2U

31 COnNTINUE .

.

FORMATIUN OF JACOBIAN MATRUX == JAC .

DO 1In I=1.3
DU 10 K=143
JAC(1+K)=U.U
DO 1n J=1WHRELM
10 JACIT+K)ISJALLIaK)+DL (T e J)*CORULIK )

VALUE OF DETERMINANT OF JAC ~= VUAC

VUACZJUAC(L1e1 )&« tUAC(2+2)12JACI3431=UNC(2¢3)¢JAC(3:2))~
LTUAC 1) 212 CJACH20 1) 2 JNACLI3¢3)=JAC(2+3)*JACI3e3) )+
C2INCLT1e3)#LUNACI241 )4 JACT342)=JACI242)12JACL341))
IFIVUAC) 12411412
I1 WRITE(64138)
13 FORMAT (L1HU«Z2HDLTJ=U PRUGRAM HALTED)
sTOPr
12 CUNTINULE .

IMVERSIUN OF JACOBIAN == IJAC

TJUAC(1e1)=(UNCL2+2)%JACI343)=JAC(3:2)*JAC(2:3))/VIAC

.

e

60¢

1



20

19

21

22
1000

17.

TUACI142)22tUACIL402)0UACI343)=UACI3+2)¢JAC(T+3))/7VUAC
TJACIT143)={UNCIL0212UAC(243)=UNC(2:2)%JNC(L1+8))/VIAC
TUACH(241)==tUNC(2+1) «JAC(Ie3)=UNC{3e1)*JACtP+3))/VINC
TUACI2+2)=(UACTIY e LI AJAC LI 03)=UACI3I1)*JACIL3))/VINC
TJAC(23)==tJNACILs 1) 0JACI243)=UNACI2+1)2JACE143))/VINC
TUACI3 v 1) =tJACLZy 1) 0 UAC(342)=UNCHL242)2UNCI34 1)) /VIAC
TJUACI342)==tJACIL1 1) oUNC(342)=JACI142)*JAC(341))/VUNAC
TUAC(3 s3I =(UNC L L) aJNCL24021=UNC{201)*JAC({142))/VJIAC
DO 20 J=143

DO 2y L=t hutlM

NExYy2(JsL)=UL0

DU 2n wK=1.3

DEAYZIJLIZNLXAYLZIJ LI+ TJACHIKIADE (KWL
AVINCZVIACSLGLIG) 2CGHLJG) 2COIKG)

00 39 I=1.nlLlinl

09 19 Uzl WY

YPl.,Ji=0.y

DO 21 1=1HAUELM

11=3+1=2

12=341-1

13=3e1 :

DO 21 K=149

NI 21 JU=1.3

JizJs+3

J2sJ4+b

AP LIToRI=NPTITILWKIANEXYZ(U el ) oP(JWK)
WP 120K )=l CI20KIALEXY LU 1) 2P (I 4K)
CRUETSoK)I=OPULSWKI4DEXYLZUV e L) 2P (U2 4K)
CONTIHUE '

DU 22 Kz=) HHELM

VO 22 [1=1+3

Kl={n=1)e3s11]

J2=(II=-1)43

DU 22 1=1.hk1

Ke=lel(K1=1)aK1)/2

D0 22 JU=1+3

J1z=J2+J
SKIK2)=SKIKZ)I+UPLI VL) 20EXTZ(JaK) *#MVIAC
CONTINUE

00 1ns &4 = LeHNELM

M1z je(tM=l)

DO 1hp L = 1M

L1 = 3e«(lL=1)

DO 102 | = 1«3

DO 102 3 = L+3

All.u)=n,

J1 = (GAa1e0) ¢ (Mlau=1))/72401

B0 102 K=1.3

IF(LLEQLGY oAMDe KoGToJ) GO TO 101

KS = Jl+K

GJ Tn 102

in1

ONOOG

102

108
103
U6

qul
902

18

KS=((L14K)atLleK=2))/24ML4y
AlTed)IZACT o) +TRILKeI)2SKIKS)

00 103 U = 1448

JL = ((M1+U)x(M1+J=1))/24L01

00 1n3 I=1.+3

IF(L.EQ.M onNDe 146GT.J) GO TO 103
KS = J1 + 1

SK(RS) = U

DO 105 K=1.3

SKIKS) = SKIKS) + A(1K)*1R(IMIKJ)
COMITHUE

CONTINUE

RETURN

END

SUBRUUTINE STFTR
REAL KNOMAT
INTLRER FLPUSN

COottsng PRENICt1s 28) UNKNICtY 6U) yKNONIC (2424 ) sUUNKRHS(1428)
LKHORHS (e 60D s ELPOSNI2460) 1 KNOMAT (14 300) UNKMAT(141830)

QUNCLEL 60424) .

COM“ﬁN/SG/ELNOUL(équO)'RHQRCD(IoGO)oRHSI(So 44) (KKA(2)
commprt/Cc1/ NUNKVAQHKNVAoNUSTR'NCﬁLUU¢NCELNIoNTOTAL'HPRnEFoNTC

THELEMOOFHER « HNELM(JUDTOT o
OIMEOSION SKI11830)
EQUIVALENCE (SK(1),LLMNUDE(L))

ROUTINE 10 OLSTRIBUTE ELEMENMT STIFFNESS MATRIX IN
UMKMAT JKHOWH A UNCLE MATRICES ( MAIN MATRIX)

U0 90U TI=1.MCELNL
I1=ELPOSH{1+1)
I2=ELPOSN(2. 1)

D0 You U=1wCELHL
IFIJ.GE.T) GO TO Y01
ISzU+(I=x(1=-2))/2

GO Ton Yu2
[S=1+(Uer(U=-1))/2
conrinuE
TJL=ELPOSHEL e O)
J2=ELPOUSH(24J)
IF(12.L0.0) GO Tu 810

TO FILL KNOWR MA(RIX 1F NICK NAME 1S IN KNONIC

IFty2.tu.0) GU TO Y00
IF(J1.6T.121 Gu Tu you
Io=t11#(11=20172+0

N
bt
o

"

-



nonN

acooon

non

810
a83u

840

0u

101

110

129

19.

KNOMAT (10 TJ)SKNOMAT (10 TJI4SKLIS)
GO T Q00U

To FILL UHCLE AMD UNKMAT WHEN NICKNAME IS AN UNKNOWN ONE

IF(J2.,EWe1) GU T 83n

GO 10 840
UNCLEC(TIT1«JLIZUNCLEC(L1+4J124SKIIS)
60 T van

IFtJ1.6T.11) GO 1V Y0V
Id=ttleatl=111/241

UNKMATC Lo TJISUNKMAT (Lo TJY #SKLUIS)
COrvTINUE

RETUNL

END

SUNKRAUTINE FuRwAD

REAL KMUMATJKNURHS

TUHTLGER ELPOSYWULKIIIC e ELNOUE

INTEALR COPNKUE

CO™MONI/ZS1/ PREDLF (1. 24W)

CO“MNM PIUIICELs 20) oUNKHIC( e AU) «KNONTIC (2024 ) sUNRHS(Le24)
IKORIS T 6UTELPUSHI29b0)) «KNOMAT(1s 300) yUNKMAT(1¢1830)
QUNCLEL A0 24)

COMAMOI/ZNAZELNONL 30610 ) o HHMSKFIL 14601+ 1UISTI3e 44) KKAL2)

COMMON/SIN/ZUEAYLZUE020) UNEE99) P (9+9) v UP(60.9)

COAN/CL/ NUHKVAGHKNIVAWNOSTRSHUCELNUWHCELNT v HTOTAL «NPRDEF oNT
LiE LR o MFREL HUE LA HUDTOT o N

COMADN/ZC2ZHLG v BUF (D e nS s THUF (940 ) JHRECsHTREC «RIIS«NICILP1 1 LP2
PO IRAL L)

UIvENSINt Cuspibn)

EQUIVALENCEL LCUMP (L) st L))

ROUTINE FUIC MUDTEYING LLEMEMTS IN MAIN MATRIX FOR A COMPLETED
UNKHOW! W 1UKRAME

00 1nu (=1 enCELMNY
IF(LLNODLINSIMe1) . LTWU) GO TU 101
S0 10 1ou )
12ELFOSHLL Y LM)
IF(LLPOSIII2 s [M)ebia 1) GO D 210

STOILIHG CHMPLLILD KOW IN AN AUXILIAKRY ROW MATKIX == COMPe=

[1=14NKHVA

It = (1 « (] = 1)) , 2
N0 120 J=1 IKHVA
COMPIJI=UNCLE(T )

DU 1300 Jl=lel
1Jd1=111eU1

" 130

caon

noo

onn

noc

1u0
141

150

160

170

420

w3y

Yy
UL

20

AJ1=tKMA+IL
COMP(MJ) ) SURKMAT L, 1JUL)
i=1+1

[FUIN1ater HUNKVA)D (O T 1n)
DY 1A 12217 1eMunKyA
[J2=([2s012~=1))/24+1
HI2=ukhivnel 2

CUAR (MIZ)=tUnKMAT UL, JJ2)
COMT T,

MaDICY KUYMAT MATRIX

Y 35D [(H=1enkppvn

L2 = (In & (1w = 1)) /7 2
Cab=g gmprtInd)/CoME (1Y)

DU 180 Ju=lely .
fTJa=sTl240%

KNOMAT (1 o FJ9) SAMDMAT (T « LN ) =UMbE s CUMP L J4)

MOBIEY UNCLE AATIIX
DY 1640 [H=1shliIKVA

MISSTH+nsVA

Cri=goir g h)/Cunmeily)

DU 160 JHSLUKHVA
UNCLELIDeUD) SURCLLETIS v IS ) =CPpeCOI (JY)

MONLEY UnKkMal AATwlx

DY LY JAS Lt IKVA

[13 = (Ikh = (16 =~ 1)) / 2
qib=Terrriva
CHp=COm (M n) /LumP (1)

NO 170 UL 16
AJA=TJ6+hKilun

Ldn=11440k

HUKEAT (Lo LR ) SaHKMA L (1 TJR ) =CHPACOMP (MU )

W LEASE 1t SHuvf D CQUATION SI'ACK

INY Nun J=1ealtiivA
UNCLE 1l eUd) =0l

NU 448 1=l

Ivr=111401
yrkral (1, =0,

TFOT L alel o Vi VA) 0,00 T H 1
nn an FElel ottty
Ld2=(lvet)e=-1)2/¢4)
LPIFLSTN:S B 4 IY0 Y P =XV ¥

cun)hur
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STOITING HEWUIRLIY DATA IN A BUFFER AREA

HNIC=TARS(URIIICtLe))
RUS=HIUIHISC1e 1)
LPI=rLPoSHlLeIM)
LP22FLPOSH I IM)
HPnshi=

CALL BUFFLR

MODIFY KRLILGHT IANU STDE

RUSASKINRIIStEL 1)
RHK=RHSK/CUMPLIL)
DO 1AU [7=1«MNrNVA
180 UHNNS (117U RIS 17 )=COMPLTI7) RIIK
DO 190 TH=1HUNKVA
ALU=THIKIIVA

190 KNOHKHST1 e IB)SKHUKHS(1+18) =COMP (MI0) *1IHK

aooo

o000

o000

o000

KHOMStLe 113060
ULKNIC L> nADE ZERO

UNMKHEICtL1 150
GO TO 190

KAUTINE FUR CUMPLETED KNOWN NICKNAMES :
STOKING LOMPLETEU RUW TEKMS OF KNOMAT IN AUXILARY MATRIX COMP

210 Ili=(i=*t1=-12)/2
V0 220 J1=1.1 : .
Tur=ttlii1+01l
CUMFPILJL)SKBUMAT (L [ JY)
220 KuN4AAT(l.1JL)=00
IF({I.EQ.NKRIVA) GU TO 280

STUKTING CUOMPLETED COLUM TEKMS OF KNOMAT

1P1=r+1

DU 230 (23111 UKHIVA

TJ2=t12etl2=1)17241

COMPLI2Y=RIUMAT(L1J2)
230 KHNOMAT (L 1J2)=0.0

ST0RLNG CUMPLETFD CotumMm TECRMS OF UNCLE

240 DO 250 T3=1eHUIIKVA
AL I=OKNHVASLS
CO+P(MT)SUICLECTS )
250 UNCLE(IS[)=UeU

22
c FINDING IHE VALUE UFf PRESCRIBLD NEFLECTION(PREKNw)
g COHKUSPUNUING TO THE CUMPLETED NICKNAMES
CUPRNE=KNONIC(2..1)
"PHEKRW=PRENLF (1. CUPHDL)
c : :
c MODIFY THE UNKNUWN KH3 EXCERT THE CUMPLETED KHS
c

DO 260 14=]+NKNVA

IF(Iu.Enal) GO TU 240

UNKHS (1o I8 T SUNRNS (1o T8 ) «COMP (T4 ) #PCKNW
e60 CUMTINUE

MOUILIFY THE KNDWN KHS

aoOo

" DU 270 1S5=1+NUNKVA
MIS=HKNVA+LS
270 KNOKHS (14 IS)=KNURHS 1 +15)=COMP(MIS) =PREKNW

STURING KEWUINED DATA IN A BUFFEK AREA

o000

NIC=TABSIKHUNIC(Le1))
RIKSUNKHS (L0 1)
LPI=FLPOSNt L 114)
LP2=FLPOSHE24 1)
NPOSU=KIONIC(241)
CALL BUFFEK

RFSET FUM NEXT CLEMENT

o000

KNODNIC(1.1)=0
KNONIC(2.1)=0
UNIHHSt1e1)=0.0
100 CONTINUE
IF(N,LU.NELEM) GO TO 1uU2
GU 0 143
1002 IF(IN.G.ttWe.) GU TO 1003
RLG==MLG
CALL BUFFER
10U3 CUNTINUE
RETUNRN
. END

SUBNOUTINE BUFFER
COMMON/STO/ZUEXYZU3420) oA 412 (Ye D) v (AN ,I) "

COMMON/CL/ UNKVA SIIKHVA S MUS TR« BCELHO W HCELNL o ITOTAL « HPKRDEF o NT ¢
LMELEM e FREL o LMo UL TOT o 10

COMMON/C2/NLGyBUF {9985) s IBUF (9 014) ¢MREC +MTREGC o RIS e NIC o LP1+LpP2.
INPDSHIRA Lo

e

(A Y4

[
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bIﬁENSIUH Cump(i48)
EQUIVALENCEICOMPLL) QP (1))

ROUTTINE 11 wHITCH Tk HOW CORROSPOANDING Tn TIIE COMPLETED
vaklapLl 1S STURLD IN A QBUFFER AKEA

IF(NREC ML LU ORJILG.NEL0) GO TO 3
CALL UPENAStTLINALLs o))
IF(NLGathey) LU TU 2
HLG==ML0

GL TO lu

NLGSHNHLG #1

N 1 1=1.NTOTAL
HUFLHLG. T =Luvp )
AUFIHLGWHITHEC) = RHS
LHurenLGy 1) =Lr
[JVFLHLGe2)SLP2
[Sureht6eSt=0ric

T (LG o9 ) STIROSN
IFeLLG.ELe ) GO TO 10

GLU 10 20

HREC=NKREC+1

CALL wHITMSE1eNLGeBU2HREC)
fiense

CONTINUE .
RETURN : .
[AFD)}

SURRNUTIMNE UACKWU

REAL KHORUS

THTLGER PREMICIUNKILC

COMMON/ZSL/ PREDEF (L. 24)

CoMAny PHENICE1y 24) sUNKNIC(1¢AN) s KNONIC(2+¢24) ¢sUNRHS(1424)
IKOORHS (T AU ELPUSHI24A0) «KHOMAT (1 300) UHNKMAT(141830)
QUHCLF L ALEY)

COMMAN/SA/ZELHBUE (S ALU) s RUSHED (L e6N) oRHST( 3. 44) KRA(2)

COVYMPN/ZSTOZULAYLE3420 e DHEE09) o P1I249) U2 (R09) .

CUMANHI/ZCLZ UKV AGHRIIVAGHOS TG HCELNO«HCELNYI «NTOTAL s NPRDEF o MNT o
IHF Mo MF o LM IODTOT of)

COmn G2 /0L 0o BUF (D89 ) s THUF (908 ) s MREC ' HTREC e RIS« NICLPLeLP 2
LUrnStieItAt Lo) .

COMANN/ZCS/ZL LU THUT

NDINENSTINN )et132)CONPBY)

EWUIVALENCL LUZEL) oM STEL) )« (COMPLY) e (1))

InITIALLSATLON

K
[F (1UUT.LT«3) GO 10 3

[aNaXp]

NnNO, NNo0

[(aNeNpl

24

WRITE (Ae2)
2 FurMal (1Y /777
1SYSIFMx/) -
3 DO 202 I[=1+UKNVA
NN 202 J=1.+2 :
202 KNONIC(J.1)=0 )
NO 203 1=1+1UNKVA
203 UNKNTIC(1.1)=U
DO 1 M=1,HUNMKVA
1 KNUKIIS(14M)=0.0
DO 2n M1=1.097
U213 1=n.0
20 CONTI1HUE

HEAD BACK THE STURED UDATA IN BLOCKS IN A REVERSED ORUER

NREC1=NREC
VO 10 L=1+NHECL
NHEC=NKECL~-L+1
CALL READMSILI+NLG+802NREC)
LG=NLG
3u0 DO 4 l=1.NTUTAL
4 COMP(1)=RUF(LG.I) '
RUS=RUF LG UTREC)
LPI=TBUF(LG.1)
LP2=10UF (LG 2)
NIC=ZIRBUF(LGS)
NPOSH= LUUF (LG 4)
LL=LG-1 *
FNIC IS INM

CHECK wWIHLTHER KNONIC *

IFILP2.NE.1) GO TO 140

I'r FNIC IS IN  KNONIC MULTIPLY KNOMAT WITH PRENEF
ANS1=0,0
KNOMIC(1.L°2)=01C
KNONTC(2,L1°L)=NPOSN
N0 120 [2=1NKNVA
NPNSHEKDONIL(212)
IF(NPOUSNLLW0) U TO 120
L ANSISANSL+CUMP (I2) 2PREDEF (1.NPOSIH)

120 CUMTINUE
ey MULILPLY uncLk WITH UNKDEF MOW STORED IM KNOWN RHS

ANS2=0.0
DU 130 T3=1+NUNKVA
MIZ=T3+0KIVA
130 ANS2=ANS2+CUMPIMIZ) «KHNUKIIS(1413)

1H o+ #CALCULATLD REACTINNS IN THE MAIN PROBLEM

e

€12

1
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aoc . o0on

ccCcon

(s NeNe]

1000

180

170

1en
141

1y
1<l
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FOVDTon, 1L CORROSHOBNI DI UNK!HIttdd jREAGT INN

ANSSAIST A N\ES ety

[F tthnt.Lted) GLu 1N 2un

(F (2N tReSZ)aftdet) AT e Kallt oll)
Fauwma? (1ML 2777)

o= h ¢ 1

SIS (ne 1000} HIL A0S

AMITF (he 5)

FUICAAT L (P ALTTOH AT 1IDF w17 +2Xe811 TS JL1A.H)
501D 2un
Ty FItn tnl wiktitalr ubdb L TR FHIC [ noy I KNONIC

T ALK I g wtid 11 ORCHNTFS DURING FOoRJARD FLIMINATION
YHKHTC L L LY =1LC
Ta=t1r1
[oah=]5-)
[Ps=(%41
IS =(%s'ihi)yN

e e, IS L HIPLIED w10 XUOWD DISPLACERENTS

AS1=0.0

YLD (S letinitvA

HenStsatn ittt e L6

TF S ar e} GU TO 120 : .
ASEAL ST L0 (LAY S PREDLE LY s MPUOISNY

corefrngr

)

Peran ) IS LT ICLTED A1 TH UKl DISPL 1ONF KMOWN ANE STORED
Lo oSy eme Lx(LPE THE XINGODAL PR IM

AMS 2zl 4
TR Seltuadd) B FU 1K)

1Y Ly 17=1elr

1 7=rmiivael
ANS2=ANS2 40P L 7)) sKEMRIIS LT D7)

AISSzn,n

IF IS 6T wyny 1) fu 1L

MY L0 eSS e tir A

AU N TN I

AUSIZALIS S et Jenr (et fS g Lo 1)

Corl s,

KOO S UL ISkt T=nis2=niis )z i (s

At LBt beee, Lt g DISPUACH PEilTS

D LR ARUN B U DN TYTE AN O G X
Jd=ut (/1
|1 C U N R S
Joz TErbr st s)=-1)¢11

200
"1

ny1
43y

2 FOIMAT (1L 27/ 110«

[ S
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u2(J)=uuNEFL
IF(LG.NELU) GU TO 3u0
CONTIHUE

DO 30 Jz1EPROLF
DEFL=PKEDFI (1 +J)
NIC=PHRENIC(LeJ)

JK = N1C/1U0

II HIC=JK *= 10U

JJ = NFREE={JK=1)+]I1

U2(Ju)=1yLrL
CONT I HUE
RETURN
END

\
SUBKNUT TE UEFOUT
COMMONZSHZELNONEL3+610) oRIHSRED(1¢60) «({HSI(Ss 4n) KHA(2) 1
COMMNINZCL/ NUNKVAJHKNVASMOSTRoNCELNU«NCELNL1 +NTOTAL +PRDEF «NT o
INELEH o NFIEE s WNE LMo uUDTOT o N ~
NnimLHS1ION V211320 'S

EVUIVALENCLLUZ2{(2 ) +1HS1(LY)
ARTIE (b4 2) ' . 1
1Xe BUHTIIE NOUAL OISPLACEMENT SOLUTTION UF.
LTHE STIFIHLSS REQUATION IHN THE MAIN PROBLEM SYSTEM/Z 1HOe 11Xe *=HODE
2¢4 TXe 2DISPL ALUNG X*e¢ 7Xe sDISPL ALONG Yx¢ 7Xe sDISPL ALONG Zx/)
MPRINT= Y0

DU 1 JJ=1eWLDTOL

JEUFRECE*» tJdJd=11+1

[F(vPRINIOIaU) GLU TO 4 .

WRTITE LhAe 9

FORMAT (1HY /Z/777)

MPRINT = Hu

MPRIMNT=MPRINC=1

ARTTE (he3) JJeU20J)sUJ21U+1)4UMU+2)

FORMAT U140 (N XeEL16.8))

RETURN

Enp

SUBRQUTINE STRESS

INTEGER ELMOUE

commnn PRENTICE1s 24)«UNKHNTCEYe 6U) oKNOHTICI2424) UNRHS{1424)
TKANKHS (1s A0) ¢ELPOSN{2+60) s KNUMAT(1s 300)sUNDKMAT (1418300
2UNCLE L AU 24)

COMMONZSAZELMNONEL3 A1N) RHSRENIT «AU) +RIISII3. 44) 4KRA(2)
COMMOMZSIU/Z0EXTZE3020 1 o IilA YY) e (Y909) QP LADL9I

COMINN/CT/Z MUNKVAGKIIVASHNSTR e NCELNOVHCELHT sNTATAL«MPRDEF« 1T
JHELLM s MERLL o HHLLM o JOOTOT W

COMMON/ZCI/VIZ2U04+3)
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COMMNII/ZCURZCURD (3+420) s TR(2U 3+ 3)9CCORDI(Se 44) s JRA(Y)
COMANL/ZSP/O s F 4SS .

UDIMELSTION ClbU) oSTRI6I.  STGI343)4SIGT(343)+8LU1343) C HNDIVINODU ISNDIVINODE) +1

DIMEMSING LIV IHY),u2(132) DO 51 k=146 '
DIMEMSINN SISSI4446)s DBT (6460) ' 1 STSS(NOIE«K) = STSS(NUDEWK) ¢ STR (K)
EJUIVALENCEISTSS(1) s UNKMAT (1) ) o (DBT(L1) «BP(150) )+ (KDTV(1)+CCORD(1)) IF(LLMNONE (LLy 3*MS=1)GELVU) GO TO 650
Lo (2011 WRHSTCL)) v LCEL1 ) sRHSREDIL)) . VO 53 K=14o
DO S I=1.H0DTOT 53 STSSINUDEKISSTSS(HUDE +KIZFLOATI(NDIVINDGDL))
HRIviII=U . 650 COMTINUE
DO %2 J=1l.b , ; 20 CunTIMUE

92 STSSIIed) = U RE TURN
DO ¢ LiL=1snLLEM ' LD

CALL KEA[MS (29 CURDEL41)e 240 LL)
DO 3n K=20CLLNO

HIC=TABSIELNODE(LLK)) . .
JK=NIC/100 SURRNUT [N FEM2
11=n1C=-JKk = 100 REAL JACIUNC .
JUSHIREE®* (JK=1)+11 CUMMIN/SINZDEAYZL3420) sDH(6+19) 5P (909 )W (6),49)
 KMI=K-1 . COMIANNZCTZ HUUKVASHANVAWNOSTRoNCELHOSNCLLNT WNTOTAL +NPRDEF «NT o
- CikMT)=t2(Jdd) . 1HELEMGOFRLE s E LM NODTUT W N
30 | CONTINUE ’ ) : ) COMANN/ZCI/VIR2043)
00 6510 MS=1«NNELM COMMONZCUIR/ZLCURD(3+20) « TR(204343)CCOMNNITs Uu)sJKA(G)
CALL FLM» ' ) . COMPOIIZSI' /G oo F o« MS .
DL 630 I=1+6 . DIMENSTON DRT(6e60) DB(GIHU)IsALAIIIeJACI343)TJAC(I343),DELL,20)
STRU1I=0,.0 EQUIVALENCE(DECI) «QP (1))« (UBCL)DBT (1) 0P (150))
DU 638 K=1+1CELNL . 6 = v (M5 1)
630 STRUII=STRULIHDUBTIIKI«C(K) H = Vv (ns, 2)
STGUY »1)=STREL) . F =V (1S 3)
. STh1.2)=8THL6) ‘ ' . IF (HNELM .tQe 20) GO TO 30
N STHE163)=STK(H) . CALL SHap32 ,
STGL241)=S{KR16) : 0 T 31
STG242)=8THZ2) . , 30 CALL SHap2u
SIG(248)=STRIY) . 31 COUNIINUE
STGER41)=5TKY) c
STG(3e2)=STR(Y) c FORMATION OF JACOBIAN MATRUX <« JAC
STGE3e3)=STILS) N c
DO 2001 I=1+3 D 10 I=1.4
Nno 201 u=1+3 DO 1N K=1438 -
SIGT1led)=UL . JACLTsR1=N0
0DV 201 K=l.43 . DU 10 J=1e1NELM
201 STGTUIvI=SIGT(Ie)+STG(IeKIRTRIMSKoU) ) 10 JACIT«KIZUJACIT«KI+OE(T+J)*CORDIKWY)
DY 202 J=1.+3 c
50 202 L=Je3 c VALUE OF DETERMIUANT OF JAC == VJAC
SL(JsL)=0,.0 c
D0 202 k=143 VIACSJAL (T4 ) (JAC 1242 )% JAC(303)=UAC(2:3)JAC(3+42) )~
202 SLIJLI=SLIJaL)+TR(MSKeJI*STGT(KWL) ) LIACI142)#(UNACI2¢1)wJNCT343)=JAC(2:3)8JACI3:1))+
SIRE1)=SLLIL1) 2UACTEYT 3% (UNCL241)aJNC(342)=JACT(24+2)«JAC(3.1))
STRE2)1=SLUZ2e2) . IFIVJUAC) 12411412
STREA)=SLISe3) . ' 11 WARITEL6413)
STR(W)=SLI2¢3) . ) 135 FORMAT(UID«+211HUETJ=U PRUGRAM HALTED)
STH{S)=SLI13) ' VJAC=.1t=25
STR(AI=SLIL2) 12 COMNTINUE

LODE=INGS (LLNODE(LL3#MS=1))/1U0 c

S1¢
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INVERSION OF JACUBIAN == 1UAC

TUACIL 1) SUJIACI242) ¢ JAC(343)=JNC(3+2)2JAC(2,:3))/VINC
TJACIY102)==(JACI142)¢UACI3431=UACIIe2)2JNC(1+3))/VJIAC
IJACII03)=(JACIL 2V eJACI243)=JAC(242)%JACI1431)/VINAC
IJACK(291)==tUACI240 12 JNACII03)=JACLI3s1)vUACI2+:3)1/7VINC
TJACHZ242)=tJACHL 1) PUACIEe3)=JACI341)*JIACLT43))/VINC
TJAC(P2 v 3)==tUACLL 1) e JACHI243)=UJACI2¢1) v JACI143))/7VINC
TOACI3 411t UNC(201)0JACTS02)=JACHLZ242)2UACL341))/7VINC
ICAC(3+42)==JAC L1 1) ¢JNAC(342)1=JACIYe2)2JNACI341))/7VIAL
TOACESv3)=tINCIL L) v JACI202)=UACI201)«JACIL42))27VINC
00 20 J=1.35

VU 20 L=lefiitlM

DEXYZ{(JL )=V 0

DU 20 K=1+3

RDEXY2(JsL)I=VEXYZ(I L) +TIJACTIJWK) ¢DEIK L)

0U 21 I=1len

0O 21 Jy=t.aluiltin

DB(ledr=DL0

S DU 22 K=1l.ieM

101

102

KlzSeh=2

K2zSeK =)

K3I=3eK

U 22 3=1+b

DO 22 J=1+0

J1sJdes

JezJe6 o '

DRI .KIIZDBCTI WKLY 4MI(T s JI*OEXY2(JK)
DBCLer2)=DBIT K2 +DHIT U1 CDEXYZ2(JeK)
NBUTWK3)=DBLLIeRIIADHITVJ2)*UEXTL(UWK)
CunTIhUE

0 1p2 L= s NHELM
J2 = 3 « L -3

O 1r1 I = 1 b

o 11 K = 1+ 3

A (ly K) = Ve

DO 101 U = 1+ 3

Aotle K) = A (1e KD + 08 (Ly JI) » T (Le Je K)

o 12 1 = 1. A

0o tu2 J = 1 3

Jl = u2 + J

DBT (e J1) = A (1y D)
conTINUE

HE TUKHN

£nn

30

SURKNUTIME SHAR2U
COVMUNIQJU/UEXYL(SoZO)-DH(6q9)qP(9o9)n0P(60v9)
COMIANM/ZSP/GelleF o MS

NDIMENSTION LE(4,20)

ENUIVALENCE(DE(L) vUP(1))

GP1=1.+6
GMi=le=ty
HM1=1.=h
HP1=1.+11
FP1=1,.+¢F
FM1=1.-F
G2PIl=2,.,2G+H
G222 e a 5=
H2PF=2.=H+F
H2MF =2 4 »H|=F
F2Irh=2. ¢F +0
F2MGz2 .4 =0
Hi=HmlaFpl
12=HplaFpl
H3=HMY «F M1
HyzHPLeFML
Gl=Grlsrpl
G2=6GPY*FP1
G3=GMLeFM]
GrU=GPlsfml
G9=UML ML
GbH=GML L
G7=GPLelP)
GA=GPLIsNIML
NDE(141)=0.125%H1®(G2PHeFMYL)
DE(1e2)==le25*lirP1=I11

DE(Yed )-n.lébtu?‘(GZMH+rM1)
NE{]l 4)==0.5¢Gel2
DECLvS)=0. 12D (G21=FM1) #HI2
NDE(LHB)I==1.L(142)
DE(Le7)=041254102M11=FM1) =il
NDE(Les)==llaDrlal{]

DE(1 49)==Ue25*F 12111
DE11410)==H.25«FM1 «112

NE(1 11)==lIL(1+20)
NC(1412)==DL(149)
DE(L1413)=0.1256(02001H+FPY)Y =113
DE(Le14)==Ue2D%1tIP1¢H3
DE(T419)=01250(G2MI+FPY)sNY
NE(Lslb)==eDxlrvtiy
DE(1417)20e1204(G201=FPL) N
DE(L18)==Dht141%)
DE(1.,19)=U0129(062MII=-FPY) a3
NE(L20)==U.5¢02113
DET241)=01204 (LM T +H2MF ) 261
DE(242)==0.0%11s01 .
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PE(2¢3)1=20.125«(H2PF=GP1)4GL
DE(2,4)=0.25«L0140Y

DE(2+5)=0.1295 (HZPF=GML) ¢G2
DEt2eR)==llenetlee
DE(247)1=04125&(N2M4F+GM1) 262
NE(2.8)==F (2+9)

DEL2eY)==UedDrFM]leG])

PDE(2:101==0L(2+9)

DE(24,11)=D29%FMLeG2
NE(2.12) ==t (2411)

DE(2.131=0e120¢ (MPPFAGPL) Y63
DEt2el41==Ueberlel}
DE(2.19120 L eh s (H2F=06PL1) &GS
NE(2.1AI=0256P1203
DEL2+17)1=0.125% v ONIZMF=06MY) 2aGY
NE(2.,18)1==Uartelbl

DE(S 19120122 (H2PF +OGML)*6Y
NEi220)==nt teelb)
DE(Ss1l)=0alene (i’ 2Mn=1P]1) *GS

N (34,2102 %HP 1809
LE(S3)1=0 e (fF 2vi=HM1) 2Gb

DEL3¢8)=0e D010 A
DL(S«DIzN 1290} 2H0G=HM1) e G7
DE(SanIzUlDen 14067

DEIS.7)1=0120(F 20°6=-HPL) *G8
NE(3+8)1S0.20280601%065

DE(SeY)==NeD0f #0D

DE(3el)==UeH*Foun

DE(S,11)==UeDsk 57

NE(3432)1==Uebekeln

DL (3e131=Ne 200 (F2PG+HP1) 206
PE(3,14)==DEL(3.2)
DLt3,15)15U0e125«(T2P0+IIMY)AGH
QFE341R)==ub t $04)
DE(S,17)S0.129(F2U0+11M1)2G7
NE(S,18)==11t(Ss6)

NELA 1)U LNe(F2MLANPL)Y*0GB
DE(Ss20) == S5e19)

DE(Y 41 1SU1294 P 1S (OMLAIMLFPL=5.0)*0%
NE(U2)=0 2900550112

UL (% e 3120125 1a(GML+HPLSFPL1=95,0)%G6
DL (B 441D 2eGnel2

DELY 4910 len et P1a(GPLEHPL4F!1=5,.D)*G7
NDEIG R) =0 2D 012 .
DE(H471=U1292F 1 e (GPL4HMLF PL=S.0) *GH
DE(N «B8I=ND 20562

DE(4 91z e2D00u501t]

DEf{M 1N e 2013010

DE (M 1102 0810

PE(4 121302500l

DE(Y 413120412952 F M1e (GMLHIIMLI+FM1=5.0) %G5S

32

DE(4,414)20.25=G=l1Yy

DE(YU.15)=0.2125%FM1# (GML4HP1+FM1=5,0)+G6
DLqu, 16)1=Z0.2952G6206Y

DE(Y417)1=0.125¢TML* (GP14{IP14FML=5,0)26G7
DE(4418)=U.25%G72113
DE(Y4419)1SU.1254T M1 (GPL+{IM1+4FM1=5,0)4G8
DE(4,201=U0425%GO206Y

RETURN

END

SURRNUTINE SHAP32

COMMON/S10/UEXYZ(3420) +DH{6+9)9P(9:9),0P(60+9)

COMMOGNZSP/GaH ok o MS

DIVERSION UE(4,32)
EQUIVALFHCEtDE(L) vRPLL))
Cl=1./6"%.

C2=Y./64.

A=Y .3 (GAGHHI*I+F2F ) =19,

G1=1,.46

6G2=1,-6G

Hi=1,+1

H2=1,.,-4

Fl=1.4F

F2z1,.-F

6G3=G12G2

GH=1.=3.%6 .
65=1,+3.40

H3=111+H2

=l . =301 - .
HO=1,+3.#H

F3zry1s+F2

FiizT.~3.4F

FSz1.,43,*F
NE(1,1)=C14tI22F12(=A+G2+18.*G)
DE(1.2)=={2%H321{4aF]
DE(143)==C2x113%115*F1

NE() 41 =ClallleF12(=N+G2%18.%G)
DE(145)=CO¢lleFLle(=2.2G2G4=3,263)
DECLeHISCR4NL1sT 120 =2.%5265+3,%G3)
DE(1¢7)=CL4H1 241+ (A+GL218B%6G)
NEL1.8)=C2H30IIDF
DE(1,9)=C2«113%1{44"1
DECY1.+101=C)tI2*T14(A+G1#218.+0)
DEC1411)=C20112%1 1%(=2.202GH+3.4G3)
DE(1.12)SC240124F 10 (=2, 4GAGY=8,213)
DEC1413)==Ceat 34 Hati2
DEGLedy)==C2aF 341 Sl
UFE(1419)=C2¢F 30K D0]
DE(Y14116)=C2YF3¢FDeN2

’

-

L1¢
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DEtLe17)==CeelP 30k uelf2
NE(1e18)==C2aF 3ol Uiy
DEC1y19)=2CerF3ebuahi)

DL (1,20)=C2e¢F3sf anp
DE(1421)=Clel2s+2a(=N4G2218.%0)
NE(1s22)==Ceriletineg.?

DE(L1423)==L 200N eF2
DE(1428)=L1sH1sE 20 (=A4G2218.%G)
DE(L42S)=Cletilobla(=2,90640G4=3,403)
NECL426)1=C2s1H ol 2e(=2.2G3065+5,2G63)
DE(Lle27)1=Cleatilef 22« (NsGlrller(3)
DE(1428)1=C2silleliber?
DELL2YI=C2eH8atthafp

VECL 3UI=CLet2el 2 e (A40G10108046)
DL(1 4310l ohnlsl e (=La20Le(95+5,29G3)
DE(L1432)=C24420F20(=2,0GaGN=3,203)
DEG2e2)=Clab2s 1o (=As12 911}, 011)

DL t2e)sCPohPelLo(apattisitiad, ¢1i3)
DBt 3)SCl020 Le(=2,01I211548,0113)
DE(P 4 )=ClatsF 1o (Al »ln, v 1))
CL{2eH)=C2¢0500408)7 ]
DE(2em)I2029L30054) )
DEUZ2s7)=Cle0GIsF e AR 4L, 0t
DEt2eb)=C200LeF LoD, abieliS+3,0H3)
DLIR2e9I=CL290LPF Lo (=2 0iln1fuaS xi]S)
DE(2410)=C1eGLlel Ja(=As1241800H)
DEt2s11)==0.280L8c05¢f ]

NF 24121 ==CPaldalhunt’}
DLUZ24s138=~Ceof 3ol Hels2
NEtZ2lU)=Clel S0} Het.2

DLiPs19)=Cler SeFhapsl
NE(2vlo)==CeeF8svel;)
DEL24171z==leb 3ot ua(ce
DE(2,18)12C2eF 3t a2
DE(2419)=CesF el Uan]
DE(24s20)==C2eF 3t ue,]
DEL2421)=Clon2sl e =A+1I2018ae)])
DE12,28)1=C20G20F2e(=240)1eli4=32)18)
UL P3)=Cerileb2e(=2,0t12HS+5,013)
DE(2s20)=CLeG20F 20 (AXII121H ),
DL2+s25)=02e30LUaf
DEA24s2b )1zl 2e0h 30O er 2
DLU2427)=CLeLLsl deinel)ll all,slt)
RNE(2W28)1ZC2201 0k 2e(=2osilrlIN43,213)
VE(R2¢29)=C7ehlsl 2a(=2,0lin1i4=35,2013)
NLIZs30)=CleGlelZre(=At112s]18,21!)
VE(2:31)1==C2e03%UNne} 2
DE(2¢32)==Cle0,5¢li40F 2
BEG3d13=Cletpzene (Al lollaeF)

NEUS 21020t 8al,, oty
DE(S3)=CRe0tide,l%115

34

DE(3¢4)=Cl2L2+H1%(A4F12108.+F)
DEt345)=C24032Guxil]
DE13:6)=C2+2L52G5=H]
DE(3+7)=Cle0141112(A+FL21842F)
DE13«8)=C24H34061%11S
DEL3.9)=C2+113xGl+HY
DELGS410)=CL*Ul 12« ({A4FL218.2F)
NE(3,11)=C2+63s0GDeN2
DEt3412)=CexGSabtan2
NE(3,13)=C2xG22llxl=2,4Fel543.2F3)
DE(3414)=C2*0G24H12 (=2, ¢F £l 5+3.¢F3)
DE(3¢15)=C22GLaHl% (=2, 4F2FS5+3.2F3)
DEL341A)IZL2+GL211241=2,%sF543,473)
DELS,17)=C23G2%1He* =2, %FsFH=5,3F3)
DEL3 18I =C2eG20Hlcl=2,0F2FU=3,4F3)
DEL3 19)=C22Gl¥lIlal=2 2k aFU=5,%3)
DE13.2032C226G1«l12% (=2, 2T sFu=3,+F3)
DL(3421)=CL*C2eN2x(=n4F2410.2F)
DELAV22)==C2ei152062+14
DELS,28)==C2e)13402¢115
NEC3s2M)=Clen2enl b {=A4F2%10.2F)
DE(3425)==C220G3¢0nx]I1
DE13,26)=2=CPr6G5+065011
DE(3,27)=C1Glellle(~A4F241U,.2F)
DEL(3.28)==L2#1132014110
DLt3429)==C2+115+G1 0014
DEI(3430)=CLeGLelIl*{=N+F2#184%F)
DEL3431)==C2e03¢00aN2
DEt(3432)==C24G320L14412
NDELY+1)=Cleu2412«F 1A

DE(4 e 2)=C2e30G2401 0eF ]
DELH3)=C22H320L241158F )
DELH,1)=Cle0L29111 ¢} )N
DELHeD)I=CeLI* UL FL
DE(U+6)=C2¢082L5 L eF )
DE(H,7)=Cle0L1«N14F1#A

DECH B)=C20134GL21501 ]
DE(449)2CerHI201sNnsF )
NELYW10)=CLleGLo12¢M 1A
DE(U,4111=C2e03206541124F)
DE(U,12)=C220L3e06he12f 1
DEL4,13)=C2ef Seb0s;2412
DE(Sy14)=C22FS4F 920G etH)
DE(Y419)2C24F %L1 01T
DE{Y+16)=CeeF3+r5eGleli2
DELH17)=Ce+-SeFusG24112
DELM,18)=C24TS4FHaG2oHI]
NE(Y419)=U2*F 3 U1 001

DECH 420)=C28F Sob i3] a2
DE(u211=ClebletlZal2ep
DELH,22)=C2sH320L2 %)t &f D

gle¢ -



1

.

DEIU«23)1=C29113¢02«115aF 2
DE(U28)=CLrG2=lILeF 2N

NE(U291=C24G5e0u il o} 2
UEL8 261 =C2«08e00 1110} 2
LEI4427)=CLleCLlxlllef2en

NE(B,28)=C2e113eGLatlSHel 2
DLW 2912C2+13«GLotINF2
DE (8 43N)I=CleGLeall2eF2eNn

DL(4.31)1=C2a0G9a050H2F 2
PE(U 432102003006 uUus)2eF2
RE TUKN

END

SURROUTINE SITROUT
CUMMON PREMIC(Ly 24) 1N

TKENHMS (e 6U) sELPOSN(2+60) «KNOMAT (1 o

QUNCLE( 6102

35

KNICt1.

HU) dKMONTC(2¢24) sUNKHS(1e24)

300) ¢UNKMAT(141830)

CO=Mnti/CL/ NUHKVAGTIKEIVACNOSTRoNCELNOWNCELNL «NTOTAL « MPRNEF o+ NT

TIELEMe NP REL o MRELM;0DTOT o 1
DIVENSION SISS U 45)
CUDTVALEHCLISTSS (1) JUNKMATL
ARITF I« 3)

S TOR™MAT (3L 2777 I7Xe #!
IPROHLLM SYSIEMe// Gae wlINN)
2¢Y2«, 1Hxs sX&e 18Xy *XYe

U 1 I=1.8N0DTUT
IF (MUDETI=1eDU)efULU «ALDS

4 FOWAAT tYIN) /72/777)

WHITE(OG«2) Lo (STSS{I1eK)

(1))

HE RESULTING NODAL STHFSSES IN THE MAIM

Eee IXo
/)

I.NEL1)

K=1e6)

*XX*e 18X

WRITE (60

xYYx,y

4)

18X,

.

#22%,

18X

61¢

|
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APPENDIX 4

LISTING OF DRAW CODE




400
820

. 621

410

180

10

1

PRNGRAM DRAW (DRDATsTAPEL1=DRODATOUTPUTTAPE2=O0UTPUT.TAPE62)

REAL LEN

INTEGER TITLE. PREMIC

COWMON LI1US20)s X(T718)e Y(T15)s Z(715)s XPLT15)s YP(715),
TF(3+3)y PRENIC(60N) TITLE(H)

READIY1+A) TITLE

FOPMAT(PALN)

READTT.1) LLLEM, NODTOTe NPROEF. NHNELM
FORMAT(UITIS)

IF (MUFLM.EWL32) GO TO 400

DO 2 K=1+HLLEM

READTI143) Ty (LEIsU)s U=1420)

GO T uion

0D 420 X=1+HELEM

REA{L14n21) Te (L{Ted)s J=1,32)
FORMAT(ASIH)

READCLIu) (fle XCI)y Y(T)e 2€(I)s I=1«NODTOT)
FOrm#AT(2114)

FORMATIT1IU3F1N.4)

REAC(14%) TETAKY TETAZ. DISTOR
FOW/AT( 4 12.0)

REAILI+1HD) (PPENTIC(T) s I=1+MPRCEF)
FORZAT(uI10)

PI=2.9+ASTI1101,.0)

TCIANZ=TF TAXepI/183.0
TETAZ=TFTaZepI'/7180,0
TFC1,1)=COSLTETAX) eCOS(TETAZ)

TR 2)=STILTETAX) s ZOSITETAZ)
TFE1,2)=N1HITETAL)
Tr(2.1)1==STL(TETAX)
TE(2.,2)1=COSITETAR)

TF(2:3)=0.0
TFE3,1)==SIalTETAZ)Y v COSITETAX)
TEL3,212=SDHItTETAZY«STUITTETAX)
TF(3,3)=CNS(TETAZ)

E4axz0 N0

RVaX=n.0

FuaY=(,N

RIAY=1a P

DD 10 I=1.09NTOT .
XPEI)IZX (TS TF (201 )2 TSTUR+Y(T) =2TF(242)"
YPLIISXC LY 2EE (Sel)a)ISTORY(IISTF(3¢2)4Z(T)»TF(3:3)
IF(XP (L) e TAHAAX) RWAX=XP(T)

IF (yP(T) L AX) EMAYIXD(])

IF (Y (1) et T NAYY PMAYSYILT)

IT (i (1Y LTLUAYT EMAYZYP(T)

CH Tt

TOTAL YWt AX={MAX

TOTAL Yl AY = MAY

101

102

FACX=13.0/TUTALX

FACY=13.0/TOTALY

FAC=FACX R

IF (FACY.LT.FACX) FAC=FACY
X0=3,0+FACRABS(EMAX)
Y0=2,0+FAC*ARS(EMAY)

CALLL STARTI(2) ' !
CALL SYAOL (N,40,3+7+TITLE+Q.4+80)
CALL PLOT (1644245+3)

DRAVITHNG ELEMENT BY ELEMENT.

CALLL INTENSE(1S)
X1=14.0+TF(2¢1)«DISTORSFAC
Y1z2.5+TF(3+41)2DISTONSFAC

CALL SY4ROL (X1e Y1s 043Se 119 0,04 =2)
X1=X140,35*FAC

Y1=Y1-D.35%FNAC

CALL SYBOL. tX1s Y1s 0,359 S1ly 0.0¢ =1)
CALL PLNDT (16ay 2454 3)
X2=1A.0+TF(22)6FNC

Y2=2.54Tr(3:2)14FAC

CALL SYMIDL 1X2¢ Y2¢ 0.35¢ 119 D00 =2)
Y2=Y2+40.35¢«FNnC

CALL SYMROL (X2e Y2¢ 0.39¢ S2¢ 0,00 =1)
CALL PLOT (1Heq 2456 3)

X3=1%.0

Y322,.9+TF(3+3)¢FAC

CALL SY«uBRNOL (X3¢ Y3¢ 0.3%5¢ 11y 0.0 =2)
X3=1A.040,35

CALL SYu3UL (X3« Y3s 0435¢ S3¢ 0,04 =1)
CALL PLOT (Ues Qe 3)

CALL FLOT (X004 YUy =3)

CALL  FACTUR (FAC)

LIMKr=y

IF (hnEimC9e32) LIMKB=13

DO 100 H=1eUELEM

INTAL=L e l)

CALL PLOT (APCINIAL) . YP(INIAL)Y 3)

DO 101 KA=1.LIMKY=)

INN=«3+1

IF (KIB.EN.LIMKR=1) 1InD=1

K=l (re I '

CALLL PLOIT (XP(K)es YD(K)e 2)
IHDZONELMe T 42

INTAL =L (e THD)

CATL PLOT (xp(TIHIAL)e YP(INTIAL)Y 3)

NN 12 KhisleLINMK=-1
Irmseriset v ent e 2

IT (¢t R L1IAK=1) THOZHUELWU=LIMKB+2
KKzt i 1)

CALL PLDT (AP(IK) e YRP(K)Y 2)

-

12¢

)



103

163
100

110

320

250
200

00 1n3 KL=1l+H . -
Kl=(XL=1)+(HUUNELM/32+2) 41 . .
K=l liteK1) . -

CALL PLOT (XPIK)e YP(K). 3) :

K=t ek sl InKii=1)

CALL PLOT (XPIXK)e YPIK), 2)

IF (nngem.Lde2) 6O TO 10S

KoL (teMi ¢l L 2K1I=144)

CALL PLOT (x{X)s YP(K)s 2)

Trnss gl A= [k eK1+1

K=t (e 1 4D)

CALLL PLOT (AP(K) s YP(K)e 2)

CurTlnue

CALL INTECHMSE (30)

DO 110 [=1enDTOT

CALL SYPOL (XPLI)e YPII)e Ne015¢ 1o N0 ~1) . }
COonyyHiur

1Cnnrz2 . . gj
T=1.5 ’ N
I# (1CONF.EW.0) ICNnDE=1 .

CALL INTFiISE (15) . |

NN NHeTeFLINT(3=2¢ICONEY

NO 2,0 =1 W 1LWRNEF .

NI=PWENTC(N) 710 .
I0I=PRCIIC O =100 *00 '

CAtL PLOT (X0() e YPLHN) Y 3)
IF (1nT1=2) 309, 310, 320
X=X (Y e TE (24 1)20I8TOR ' : .
YYSYRUR IS0 eTE (3.1 1STOR

GO T 2%0

XXSXD( ) +IsTF(242)

YY=Y (i) +deTF(X342) 4

GO Tn 280

XX =2 (Py)

YYZYD{I) =Nl sTeTF (343)

CALL SYRYL (XXe YYs N,0154 14 0,0, =2)

COLTINNE

CA L EndenT :

St ' .

END .
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Fig. 4.24 Finite element mesh idealization of the
subregion illustrated in figure 4.23
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Fig. 4.25 Corhparisoh of distribution of nodes
' in the nozzle region (cross section g=0°)
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Fig. 4.26 TJUN3 and uncracked substructure analyses.
Comparison of stress contour maps of hoop stresses,
oy /p; in the nozzle region (cross section p=0°)
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Fig. 4.29 Evaluation of K values by the Global Energy
Method based on crack plane nodal point for-
ces and displacements
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