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(I ) 

ABSTRACT 

The present work deals with the evaluation of Fracture 

Mechanics parameters in some pressure vessel components, viz. 

corner cracks in the inside transition of a junction of thick-

walled cylinders. 

This study is confined to elastic, isotropic and homog-

eneous materials. No temperature effects have been considered. 

Such crack configurations, because of their particular 

geometry and loading conditions, are fully three dimensional 

in nature and consequently have been dealt with as such. 

Moreover these configurations are gecmetrically too complicated 

to be treated analytically and for this reason finite 

element methods have been applied. 

A three dimensional finite element computer program 

using brick type elements has been brought into use and mesh 

generation, plotting routines and computational procedures, 

including substructuring schemes are described in detail. 

Special "crack tip elements" have been introduced to 

model the singularity in stress and strain fields near the 

crack tips. 

The effectiveness of such elements is demonstrated by 

performing analyses of Compact Tension Specimens, Corner and 

Part-through crack configurations and Semi-circular cracks 

emanating from the inner surface of thick-walled cylinders 

subjected to internal pressure. 

Finally, stress intensity factors have been obtained 

for some hypothetical cracks of different sizes situated in 



the plane of highest nominal stresses near the intersection 

regions of a T-junction of thick walled cylinders. 

Consideration is given to the application of these 

results to a fracture safety analysis of this particular 

component. 

Throughout the present work the variation of stress 

intensity factor along the crack fronts of the various con-

figurations is discussed along with the general stress 

behaviour of the cracked and uncracked geometries. 
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CHAPTER1 

INTRODUCTION TO THE PROBLEM 

1.1 Definition  

Thick walled pressure vessels occur in many enginee-

ring installations and modern technology requires these 

components to work under increasingly severe conditions. 

The utilization of new materials, the introduction of new 

fabrication techniques, the requirements either to work 

under extremely high or low temperatures such as in the 

cases that occur in boilers and reactors, or to work under 

adverse environmental conditions, impose new demands on 

methods of design and analysis. 

It is well known that a problem of stress concentration 

arises in the regions of intersections or changes in 

geometry, therefore knowledge of the stress distribution in 

these areas is important to ensure proper and safer designs. 

Furthermore, the existence of crack starting tendencies, 

cracks or crack like flaws in the structure can eventually 

lead to failures at loads well below the ones specified by 

the conventional strength of structures. 

On the other hand, the science of Fracture Mechanics 

can be used, providing the designer with an approach to 

safe design, even if components have crack-like defects. 

Figure 1.1 a) shows a typical construction of a pressure 

vessel used in Nuclear Reactor Technology. As can be seen, 



these vessels normally have cylindrical and/or spherical 

shapes with several discontinuities like nozzles, and the 

supports of the vessel. During the last five years some 

attempts have been made (1)(*) , (2) , (3) , (4), (5) to 

access the severity of cracks in those nozzles. 

Figure 1.1 b) shows a typical component of the piping 

system associated with those vessels, they differ substant-

ially in geometry (diameter ratio and size) from the vessel 

nozzles but no reports on Fracture studies of these 

configurations could be found in recent literature. Such 

a study was carried out by the author on amain steam vent 

pipe "T" junction of a C.E.G.B. power station. 

Such components seem to be too compact to be treated 

analytically and for this reason recourse is to be made to 

the Finite Element Method already adopted by other workers 

in this field of studies. 

Chapters 2 and 3 describe the Finite Element Method, 

its computer implementation and relative merits for the 

evaluation of Fracture Mechanics parameters. Finally, 

Chapter 4 presents results for some crack configurations 

in the considered "T" piece. 

In the next three sections, design criteria for pressure 

vessels are outlined followed by a brief review of Linear 

Elastic Fracture Mechanics (LEFM) with some reference to 

three dimensional crack problems. 

(*) - Numerals in round brackets indicate references 
described in Appendix 5 of this thesis. 



1.2 Design Criteria, The Role of Fracture Mechanics  

The design of pressure vessel components has in the 

past received considerable attention and a comprehensive 

report on its developments can be found elsewhere in the 

literature, (6), (7). 

In the late fifties, as a result of the accumulated 

experience the basic philosophy of design was mainly 

governed by two general rules, first, keeping overall 

stress levels at low values and second, requiring ductile 

materials to safely tolerate local peak stresses and 

discontinuity stresses. 

The development of Nuclear Power Technology, where 

concern for safety and possible serious hazards was a clear 

stimulus for further research in this area. 

The simultaneous development of electronic digital 

computers made possible more thorough structural analysis 

and improvement on the existing evaluation methods. 

A better knowledge of material behaviour beyond the 

elastic limit lead to a more accurate elastic plastic 

analysis of pressure vessels with the use of numerical 

methods and of the equivalent plastic stress-strain curve 

of the material. 

Pressure vessels are often subjected to cyclic loading 

systems either due to flow induced vibrations or cyclic 

stresses generated by major pressure changes and thermal 

gradients due to start up and shut down conditions. Although 

for the best part of this century fatigue has been 

recognised as a potential threat to safety and reliability 



cf engineering structures, it was only in the fifties 

that this type of failure was explicitly recognized in 

pressure vessels and specific procedures and criteria were 

developed for evaluating fatigue damage. 

We have seen so far, a first group of engineering 

situations where the successful application of the outlined 

design criteria did not take into account the service life 

expected. Moreover, many structures in the past, have 

experienced brittle fracture by application of a small 

number of loading cycles or even failures at proof test 

stages which were directly attributable to pre-existing 

defects. Reports on spectacular brittle failures of pressure 

vessels are well known in the literature of which some 

examples are given in Refs. (8) , (9) and (10). 

The necessity to assume the existence of cracks in 

structures becomes evident. However, at the time it was felt 

to be impossible to evaluate fast failure in terms of 

stresses. This fact justified the use of the temperature 

transition approach described by Pellini et al(11), based 

on information obtained from notched impact tests. This 

method of selection of materials provided and still provides 

helpful information to the non fracture specialist, but 

it cannot be applied directly to assess the resistance 

of a piece in service. 

The relationships between crack instability, the 

surrounding stress fields and the critical flaw sizes, 

forming no part of traditional design methods, remained 

unsolved. It was only in the late forties, that Irwin 



and Orowan laid the foundation of Fracture Mechanics, and 

more recently, in the sixties that its principles were 

applied providing then, the continuity between the design 

method for flawed and unflawed structures. 

During the last decade Fracture Mechanics and partic-

ularly the concepts of stress intensity factor and critical 

stress intensity factor have advanced to the stage where 

it is of direct value for the prevention of brittle frac-

ture in thick walled pressure vessels, and efforts are 

being made to include these concepts in standards and codes 

of practice. 

An excellent compilation of papers on the developments 

of the art in the 1960 - 70 period and onwards can be found 

in ASME publications (12), (13) and in a recent Conference 

on Reactor Technology (14). 

1.3 Review on the Linear Elastic Fracture  Mechanics  

1.3.1 Introduction 

The main objective of Fracture Mechanics is to study 

in a macroscopic manner the fracture phenomenon as a function 

of the applied loads. Such a study, in the absence of 

large plastically yielded areas surrounding the cracks or 

flaws, is referred to as Linear Elastic Fracture Mechanics 

(LEFM). 

Provided fracture occurs prior to large-scale yielding 

of the structural member LEFM can be extended to study 

fracture problems involving moderate plastic yielding by 

incorporating various plasticity correction factors. 



The classical stress function method of solving 

elasticity problems described by Timoshenko et al. (15) 

was first used by Inglis (16) to derive an equation (1.1) 

for the maximum stresses at the tip of an elliptical notch 

with major axis a on the x direction and minor axis b 

subjected to a remote stress a on the y direction. 

(ay) 	= 
 ) 	= a (1 + 2a) 

max 

The ellipse degenerates to a crack when a » b and again 

the methods of elasticity can be used (17), to calculate 

the stresses in the vicinity of the crack. The maximum 

tensile stress occurs at the end of the crack, (a ) 	I 

Y max 
and is given approximately by 

(a ) 	..= 	2 a ir for a» p 
Y 	P max 

(1.2) 

where p is the radius of curvature at one end of the ellipse 

and is given by p = b2 /a. 

1.3.2 The Energy Balance Approach to Fracture 

The energy balance approach to fracture was first 

proposed by Griffith (18) based on the Inglis' solutions. 

The basic idea in his theory is that a crack will 

begin to propagate if the elastic energy released by its 

growth is greater than the energy required to create the 

fractured surfaces. The main value of this thermodynamic 

approach is that by considering the changes in energy as 

the crack grows, it can ignore the details of the fracture 



process at the crack tip. 

For a problem of a crack of length 2a in a plate under 

remote tension a, Griffith then found that the critical 

stress, 0
cr

, required for crack growth is given by the 

following expressions 

acr 	
= 2Ey 

in plane stress conditions 	(1.3.a) 

a 	)/ 	- 
cr 

2Ey  
r(1-v2) in plane strain conditions (1.3.b) 

where E is the Young's Modulus 

y is the specific surface energy 

v is the Poisson's ratio 

Since the terms on the right hand side of expressions 

(1.3) are only material constants the factor acr 
 la should be 

an intrinsic material parameter. The experiments Griffith 

performed on glass have shown encouraging results, in fact 

at the instance of fracture a constant value of a ra was cr 

obtained over a wide range of crack lengths. 

However, Griffith's work could not be applied to materials 

which did not behave in a pure elastic manner, thus vir-

tually ruling out consideration of any engineering problem. 

Some twenty five years later Irwin, (19), and Orowan, 

(20), in their analysis of fracture suggested that the energy 

released in the fracture process was mainly dissipated by 

producing plastic flow around the crack tip. A quantity yp 



called plastic work was then introduced and was estimated 

to be on the order 10' times greater than Griffith's 

surface energy 2y which enabled Orowanto re-write equations 

(1.3) in the following manner by simply neglecting the 

Griffith term 2y 

/EY 

acr )/ 
	in plane strain conditions 	(1.4.a) 

Eyn  
acr 	

(1-v) in plane strain conditions 	(1.4.b) 

Surprisingly enough this new quantity y p  appeared to 

be independent of the initial crack length, hence could 

still he regarded as a material property. Furthermore, if 

the plastic zone was small enough, all the merits in 

Griffith's idea were still safeguarded and a theory corr-

elating fracture behaviour could still be substantiated. 

In Irwin's view the modified theory consisted of evaluating 

the strain energy release rate with respect to crack extension 

at the point of fracture. If the fracture process were 

essentially the same, regardless of the loading conditions 

and geometry, the fracture event would occur when the strain 

energy release rate reached a critical value, Gc, and this 

value would be a material property. 

As stated by Irwin, the Gc  concept plays a similar 

role in relation to fracture as the yield strength to plastic 

deformation. As in the case of design methods based on the 

knowledge of the stress-strain curve of the material, 

experiments on cracked specimens enable the onset of fracture 



to be predicted in real structures and this ability is 

sufficient justification for utilizing the concept as an 

engineering approach. 

1.3.3 The Stress Intensity Factor Approach to Fracture 

In Griffith's theory of brittle fracture a critical 

stress-crack size relation was derived from an energy 

postulate. An alternative interpretation of the fracture 

phenomenon leads to stress-crack size relations by focussing 

attention on the elastic stresses close to the tip of the 

crack. 

Based on the method of Westergaard (24), Irwin (19), 

(22), (23), derived a general solution for the stress 

system at the tip of an ideally plane sharp ended crack in 

an isotropic elastic body. Referring to Figure 1.3, a 

local coordinate system is chosen so that the z-axis is 

parallel with the leading edge of the crack, the y-direction 

is perpendicular to the plane of the crack and the x-axis 

is such that the plane (xy) is normal to the crack front line. 

If in the case of a straight front crack the z-dimension 

of the body is large or small, plane strain or plane stress 

will exist respectively. More realistically, in all but 

thin plate-like geometries a mixed plane stress plane-strain 

situation will exist across the z direction varying from 

plane stress at the surface to plane strain at the central 

area. Any plastic deformation which may occur at the crack 

borders is neglected in a first approximation and will be 

subsequently treated as a minor correction to the elastic 

analysis. 
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Three basic modes (I, II, III) of crack surface 

displacements which can lead to crack extension are shown 

in Figure 1.2. During the course of this work attention 

will be confined only to the opening mode of separation, 

mode I. 

Corresponding to opening mode conditions, the stresses 

and displacements at points close to the crack front can 

be shown (25) to have the form (see Figure 1.3) 

KI 	0 	30 
ax  = /27r7 	:2  cos - ( 1-sin -2. sin 	) + . (1.5.a) 

K1  0 	0 	30 
a = 	cos -2- ( l+sin 	sin 	) + . . . 	(1.5.b) 
y 	cos 	 2 

0 -f 	0 -2- 	3 -7 + . • • - 	sin cos cos - 
xY 

KI  (1.5.c) 

az = v(ax + ay) for plane strain 

(1.5.d) 

= 0 	for plane stress 

ux = 

u = 
y 

KI I-Tr.- 
811 	7 

KI .07- 
8p 	Tr 

[(2K-1)cos 

[(2K+1)sin 

0  

2 

0 
2 

cos 

sin 

301 

2 

30] 2 

▪ (1.6.a) 

. 

▪ 	

(1.6.b) 

uz = 0 	for plane strain 

where 	K = 3-4v 	for plane strain 

3-v for plane stress 
1+v 



The omitted terms of these series expansions involve 

increasing half powers of the ratio of r divided by the 

crack length and consequently are important only at large 

distances from the crack tip. 

Results similar to expressions (1.5) and (1.6) can be 

obtained for the edge sliding mode II and the tearing 

Mode III. 

The K term in these equations is independent of the 

polar coordinates r and 0, and serves only as a positive 

multiplying factor which can be shown to depend on the ap-

plied boundary load and the crack size. In Fracture 

Mechanics terminology, K is referred to as the "stress 

intensity factor" (SIF). 

The significance of the above expressions is due to 

their generality since they hold for any plane crack, thus 

the elastic stresses and displacements around the crack tip 

are entirely characterized by the stress intensity factor K. 

Hence it must be expected that fracture will occur when K 

reaches a critical K. 

The K
c concept should indeed be expected to be equiva-

lent to the Gc concept already described. In fact Irwin 

(19), (22), using virtual work arguments has shown that 

the strain energy release rate could be identified with K 

according to the following expression: 

G
I  = KI

/E1 	 (1.7)  

where E' = E(Young's Modulus) for plane stress conditions 

or E' = E/(1-v2 ) for plane strain conditions. 
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It was mentioned early in this section that LEFM 

should take into account a plasticity correction factor. 

In fact the stress solutions (1.5) predict infinite 

values of stress at the crack tip (r=0) which cannot occur 

in practice of course. Plastic flow will therefore take 

place in areas of small r values. The approximate extent 

of the region of plastic flow can be estimated by substit-

uting a yield criterion into the stress field equation, 

leading to 

1 ,KI 
2 r — y 	2Tr (a ys)  

for plane stress conditions 	(1.8) 

ry  is the distance ahead of the crack tip where ay  reaches 

the yield strength of the material. 

For plane strain conditions, due to the triaxialaty 

effects (see Figure 1.4) allowance must be made for the 

elevation of yield stress ahead of the crack and this is 

normally done (26) by substituting 1/-- ays 
 foray, leading to 

KI 
rIy = 	( a 	)2  for plane strain conditions 	(1.9) 

61T  ys 

Current test specimen dimensional specifications (21) 

(* 
(56) in order to ensure proper determination of KIc 

values • ) 

require that the crack length a, the specimen thickness B the 

uncracked ligament w-a should all exceed 2.5(K_lc 
 /a ys)2. 

(*) - In KIc
, I denotes opening mode I 

c denotes critical for onset of fracture 
under plane strain conditions. 
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This limit should be proportional to the plastic zone 

size r
Iy 

(e.g. 1.9), (25) 

rIy 0.02 (1.10) 2.5(KIc/oys)2 

Therefore the range of applicability of LEFM is 

limited in principle by the existance of a plastic zone 

size at the crack tip which cannot be greater than 2% 

of, for instance, the crack length a. 

Finally, reference to methods of obtaining K for 

different loading conditions and geometries are outlined. 

In general, mode I stress intensity factors may be written 

in the form 

KI = Yo 

The term oi/Tr. represents the SIF of a crack of length 

2a in an infinite sheet subjected to a remote tensile 

stress perpendicular to the plane of the crack. Y is a 

nondimensional magnification factor which is a funtion of the 

relevant geometric parameters and loading conditions(*) 

A great variety of K1  determination methods is already 

available: analytical methods using complex stress funtions, 

alternating techniques or integral transforms: numerical 

methods using conformal mapping techniques, boundary 

collocation and finite element methods. 

(*) - The evaluation of this factor Y is sometimes called 
"K calibration". 
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The principle of superposition (29) also enables the 

calculation of solutions with different boundary conditions 

to be combined to produce solutions for more complex 

problems. 

A comprehensive review of this subject was made by 

Cartwright and Rooke (27) and Sih (28) and Cartwright and 

Rooke(30) compiled a wide variety of solutions in a 

"Compendium of Stress Intensity Factors". 

Experimental methods have been also used to obtain 

K values, amongst these the more relevant are: Compliance 

Methods, also used for determination of Kic  values for 

different materials, Photoelasticity techniques and fatigue 

tests where the K variations in the loading cycles can be 

related to the crack growth rate using some fatigue crack 

propagation law. 

1.3.4 The Three Dimensional Crack Problem. 

In real heavy-section structures, for example pressure 

vessel components, cracks will often be initiated in areas 

of high nominal strain. Normally these cracks will not be 

through- cracks, but surface flaws or more commonly known 

as part-through cracks or corner cracks. These cases, 

because of their particular geometry and/or loading conditions 

are fully three dimensional in nature and consequently should 

be dealt with as such. Moreover, these cracks will normally 

advance in a curved front and the stress intensity factor 

may vary along the periphery of the crack. The analysis of 
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this type of flaw usually requires the assumption that 

fracture will occur when somewhere along the crack front 

the SIF exceeds the critical value Kic. 

However, two major difficulties arise when dealing 

with such problems. First, as pointed out by Hartranft 

and Sih (31), an agreement amongst the theoreticians has 

not yet been reached as regards stress and displacement 

fields as well as K values in areas where the crack meets 

the free surface. In their studies of a part-through 

semi-circular crack, using an alternating method, they 

found that a drastic drop in values of K will occur in a 

small area near the surface. Benthem (33) on the other hand, 

has shown that the degree of singularity in those areas is 

no longer constant and equal to the well known -(for_ stresses) 

suggested by Westergaard, but strongly dependant on the 

Poisson's ratio. For the case where the Poisson's ratio is 

equal to 0.3 he indicates a value of about .45 for the degree 

of singularity, thus ruling out the usage of the stress 

intensity factor concept, which has lost its meaning. 

However, if this boundary layer effect is restricted 

to very small areas near the free surface, as it appears to 

be, it may yield only a minor contribution to the overall 

distribution of K values in the more central portions of 

the crack and the discrepancies introduced by neglecting it, 

will be, hopefully, irrelevant for engineering purposes. 

The second difficulty concerned with the surface flaw 

is related to the crack front shape and the local variations 
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of K along the crack front. 

Such crack configurations are normally characterized 

by a length and a depth, but these two geometric parameters 

are obviously insufficient to define the crack front, thus 

allowing an infinity of possible shapes, (see Figure 1.5 

for some examples), each one with its own K calibration and 

with its own local variation of K values. 

This complexity, however, may be irrelevant as stated 

by Swedlow et al. (35), following R.A. Westman's reasoning 

( . . . we expect, perhaps merely hope, that most of the 

contours . . . will grow in a slow manner to a common shape 

before rapid fracture ensues . . . The point is that 

irregularities in crack shape may be expected to be smoothed 

out somewhat and that the range of shapes that one might be 

obliged to deal with is relatively modest 	 

These assumptions are widely supported by post-mortem 

observations of various thick walled pressure vessels, and 

a typical example, which was taken from (6), is given in 

Figure 1.6. 

Since the famous papers by Sneddon (36) and Green et 

al. (37) on the penny shaped and elliptical cracks in an 

infinite solid, a good number of workers have devoted them-

selves to studies involving circular and elliptical cracks, 

fully imbedd 	with different loading and/or geometric 

conditions. 

The only exact opening mode solutions are for infinite 

regions. For the planar case of crack of length 2a the 

SIF is given by 
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K = a iTra 	 (1.12) 

and for the circular crack of radius a the SIF is given by 

K = 20
111-- 
	 (1.13) 

where a in both cases is the remote applied stress 

perpendicular to the plane of the crack. 

For the more general case of an elliptical crack Irwin 

(38) derived an expression for the SIF which is given by 

a 	b 	 1/4 K 	E (k) = 	(a)
1/2  (a2 	a + b2  cos2  a ) (1.14) 

where E(k) is the complete elliptical integral of the 

2 second kind with the argument k =1142) a 

a,b, are the major and minor semi-axis of the ellipse 

a 	is the angle measured from the major axis in 

the plane of the crack. 

Paris and Sih (25) have shown that the problem of a 

crack in an infinite solid subjected to remote tension can 

be replaced by a pressurized crack in an infinite solid. 

Kobayashi (42) using a stress function method evaluated 

the SIF for an elliptical crack in a solid subjected to an 

internal varying pressure distibution which was represented 

by a double-Fourrier series expansion. 

He then, based on Paris' (25) ideas, extended his 

studies to elliptical cracks subjected to uniaxial tension, 

pure bending and transient heating, using suitable pressure 

distributions on the faces of the crack. For the case of 



K = 1.12M a  E(K) 2  - .212(2  -)2  
ys 

nb 
(1.16) 
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uniaxial tension, he eventually arrived at the same expression 

as Irwin (1.14). 

The semi-elliptical surface flaw has been initially 

studied by Irwin (38) based on the Green-Sneddon results. 

His expression including a plasticity correction factor, 

evaluates the SIF for the deepest point of a shallow crack(*) 

as follows: 

K - 1/ 1.2a2 b  

E(K) - .212(2-)2  a ys 

(1.15) 

later Kobayashi et al. (39) have modified Irwin's expression 

by introducing another magnification factor, Mf, as follows 

This factor, being a funtion of the ratio b/a and b/B 

where B is the thickness of the plate and accounts for the 

proximity of the back free surface for the case when the 

crack penetrates deeply inwards. 

Smith et al. (32) have obtained the SIFs for semi-

circular surface flaws at its deepest points in a beam in 

bending. From their results they show that the SIF does not 

vanish when these points are at the neutral axis of the 

beam. This means that the crack tip can penetrate further 

(*) - Shallow crack means the crack depth being less than 
half of the plate thickness (see Ref. (41)). 
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into the compression region before it can no longer open. 

The quarter elliptical corner crack bearing great 

resemblance to the semi-elliptical configurations was 

studied by Broek (40) by applying the expressions (1.15) 

and (1.16) to particular problems such as radial corner 

cracks emanating from holes in plates. 

Among the several other studies on the surface flaw 

problem which have been published to date, the more 

accurate analytical solutions have been obtained using the 

alternating method which basically combines analytical 

results of two auxiliary problems with numerical techniques 

(31). 

The method has been used extensively by Smith et al. 

(43), (44), who determined the SIF for part-circular cracks 

in different loading conditions and by Shah and Kobayashi (41), 

(45), for elliptical cracks, including also cracks under 

uniform and non-uniform internal pressure. 

Quite recently Sih (28) has introduced an entirely 

new approach to LEFM based on the field strength of the local 

strain energy density. 

In this new theory a fundamental "strain energy density 

factor", S, is derived which not only measures the amplitude 

of local stresses (like K and G) but is also direction 

sensitive. In his paper, Sih gives an example of the 

application of these concepts in a three dimensional crack 

problem yet no results have been presented at this time. 
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However, a three-dimensional analysis for predicting 

the growth of an embedded elliptical crack subjected to 

general loadings was carried out by Sih and Cha (58) 

in which fracture is assumed to initiate in the direction 

of minimum strain energy density factor. 

The principles of the Compliance test(*) used in the 

experimental determinations of SIFs, have also been applied 

to 3D crack problems. Sih and Hartranft (57) generalized 

this approach to study various elliptical surface flaw con-

figurations. They computed the compliance changes for 

several possible extensions of the crack front, and indicate 

how this method is applied to cracks in pressure vessels 

subjected to internal pressure. 

The main advantage of this method lies in the fact 

that values of G derived from compliance changes ignores the 

complex local stress field analyses of 3D crack problems. 

However, the evaluation of local values of G using this 

method, is strongly dependant on the local variation 

of the crack front. The necessity to assume a particular 

shape for the extended crack front may yield doubtful results. 

The use of Finite Element Methods in the solution of 

3D crack problems has been limited in the past due to its 

inaccuracy as compared to the more rigorous analytical and 

numerical methods. 

(*) The strain energy release rate G can be obtained 
experimentally using the following expression 

G = liP2N)/B 
Where C is the so called "compliance" or the reciprocal 
of the load (P) - deflection curve of a test specimen 
with thickness B. (see Ref.(26)). 
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However, when a real problem becomes three dimensional 

most of the conventional methods can no longer be applied. 

The application of the Finite Element Methods to 

Fracture Mechanics will be discussed in Chapter 3. 

Experimental Methods have also been studied recently 

to determine the SIFs for 3D crack configurations. 

Broekhoven and Ruijtenbeek (59) carried out some 

experiments by monitoring crack growth rates (da/dN) under 

uniaxial fatigue loading of precracked nozzle-on-plate 

specimens. They then converted the resulting (da/dN) 

measurements into AK values with the use of a suitable 

fatigue crack propagation law for the same material of the 

nozzle specimens. This method has the advantage that SIFs 

are determined under conditions very similar to those in 

reality. 

Fatigue crack growth behaviour is strongly dependant 

amongst other factors (61) on loading history, mean stress 

specimen thickness and environmental conditions, therefore 

the accuracy in the simple application of fatigue crack 

growth laws to evaluate K values is yet to be demonstrated. 

Sommer et al. (60) investigated the growth charac-

teristics of part-through cracks in thick walled plates 

and tubes under fatigue loading. 

They have shown that (verbatim) ( . . . Although . 

the results cannot provide a refined failure analysis . . 

they indicate which parameters are of importance for crack 

extension and explain some general tendencies of crack 

growth in thick walled plates and tubes). 
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A consise review on the various analytical methods used in 

3D crack studies as well as some solutions can be found 

in Refs. (31) and (41) and a reasonable collection of 

practical results in this family of crack problems is given 

in Refs. (25) and (42). 
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CHAPTER2 

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS 

2.1 Introduction  

2.1.1 General 

The Finite Element Method (FEM) is a very powerful 

technique for numerically solving many complex field 

problems. 

This method which was introduced in the fifties has 

been successfully applied to the solution of a great number 

of problems in stress analysis. 

The basic idea of the FEM is that a structure can be 

represented by an idealized discrete analogue made up of 

relatively small standard subregions, called elements, with 

a number of nodal points related to them. 

The energetic assumptions behind the Finite Element 

theory allows the overall behaviour of the model to be 

obtained as the sum of the contributions of all of its 

elements. At the same time the characteristic behaviour of 

each element can be developed based only upon its geometry 

and material properties. 

There exists a great number of excellent texts for 

example Ref. (46) which covers the details of this method. 

Refs. (47) and (48) give a good description of a wide range 

of types of element which have been introduced during the 

past twenty years. 
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Much has been published to date about the FEM. It 

has reached such a stage where it has become a common tool 

in a great number of research institutions and some 

industrial organisations. Therefore a complete review of 

this subject will not be given here. 

One of the main features of the FEM and particularly 

the displacement (stiffness) method, as compared to others, 

is the ease involved in the handling of geometric shapes, 

and the specification of boundary conditions of real 

engineering structures. 

This particular advantage was a governing aspect on 

the choice of the FEM to perform the stress analysis of the 

rather complex "T-junction" geometries and the subsequent 

LEFM studies of some three-dimensional crack configurations 

in those structures. The displacement method was adopted 

in this work and will be briefly outlined and followed by 

some considerations of the Finite Elements which have been 

used. 

2.1.2 The Displacement Method 

In the displacement method, as opposed to the force or 

equilibrium method, the displacement field within each 

element is defined in terms of various functions 0 (usually 

simple polynomials). 

161 = [0(x,y,z)] fa1 	 (2.1) 
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where 

{6} = 	u(x,y,z) 	, {a } = _a l  

v(x,y,z) 	a 
2 

• w(x,y,z)  
an 

and n is the number of generalized coordinates (a) which 

is equal to the number of degrees of freedom of the element. 

The x,y and z coordinates are not necessarily the global 

coordinates. 

Equation (2.1) can be solved for the generalized 

coordinates, a , in terms of generalized nodal displacements. 

By using the strain-displacements relationships and 

the constitutive law, the stresses and strains within the 

element can be evaluated in terms of nodal displacements. 

The strain energy of the entire structure is then obtained 

by adding the contributions of all its elements. Applying 

the principle of minimum potential energy leads to a set 

of linear equations relating the externally applied generalized 

nodal forces F to the generalized nodal displacements, A , 

k A = F 	 (2.2) 

where k is the stiffness matrix of the entire system. 

It can be shown through the principle of minimum 

potential energy, (see (48)), that this method provides a 

lower bound for the displacement solution A. 
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Criteria for convergence to the true solution by 

finer mesh subdivision must be met (48), which imposes two 

well-known conditions on the choice of the displacement 

functions: 

1. The displacement field should include "constant 

strain" states and "rigid body" movements. 

2. Continuity of the displacement field must be 

ensured within the element and at interelement 

boundaries. 

A wide range of functions 0 can be found to meet these 

requirements. However a proper selection of these functions 

is essential to ensure good rates of convergence. 

Some detailed considerations of this method, as applied 

to the three dimensional elements used, will be made later 

on this Chapter. 

2.1.3 The Choice of Elements, the Computer Program 

Finite Element Programs, in general, are bound to 

require large spaces of computer memory and this problem 

is obviously more relevant in the case of three-dimensional 

applications, and the use of more sophisticated programming 

techniques such as the "Front Method", to be described 

later, becomes compulsory. 

Several powerful and elaborate systems do exist in the 

United Kingdom (ASKA, BERSAFE, etc.) in which libraries of 
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various finite elements are used together. However at 

the time this work was started, none of these systems 

were available at Imperial College. It was only quite 

recently (1974) that the ASKA system was implemented at 

Imperial College Computer Centre and later on at the 

University of London Computer Centre. 

In view of the foregoing, a computer code initially 

developed by Alujevic (DIMS) Ref.(50) based on a shell 

program (NAMAIN) developed by Natarajan Ref.(49) under the 

supervision of Dr. J.A. Blomfield* was brought into use. 

The present version of the code, now called DIM3B, 

uses two different brick-based elements: 20 and 32 node 

hexahedrons using second and third order displacement func-

tions respectively. However only one type of these elements 

is used at a time in one computer run. 

The choice of these elements was based on past exper-

ience with Finite Element applications (see Refs. (])-(5)), 

Refs.(46) and (52)). Problems of idealizing second order 

curved boundaries (viz. cylinders) are eased by using these 

higher order curved elements. Moreover, these particular 

elements have proven to be extremely useful when dealing 

with cracked structures. 

Bearing in mind the forseeable large costs involved 

in running the DIM3B code, an attempt was made to model a 

"T-junction" piece by a two-dimensional axisymetric sim-

ulation of the real problem. 

* formerly Lecturer, Mechanical Engineering Department, 
Imperial College. 



- 28 - 

For this purpose a Finite Element program using 

triangular axisymetric elements was developed (FRONT) 

using a simplified version of the "Frontal Method". 

This study was carried out in the early stages of 

this work, simultaneously with the debugging nrocess of 

the DIM3B code. This analysis will be omitted for no 

conclusive results nave been reached. However, in order 

to provide a permanent record of the program FRONT a 

description and listing are given in Appendix 1 of this thesis. 

2.2 Mathematical Theory of Three Dimensional Finite Elements. 

2.2.1 General 

This section describes the mathematical theory involved 

in the calculation of the individual matrices of the two 

element types available. 

Although a fairly general formulation of the FEM using 

these elements is known (48), a brief sketch of this theory 

is presented here for the sake of completness and also to 

introduce the notation which will be used later. 

2.2.2 Isoparametric Concept, Shape Functions 

In a typical three-dimensional isoparametric finite 

element with n nodes the coordinates or any field variable 

are given by, for example 

$ = al  + a2x +a3y +(le 	+a xPl7cizr 

	
(2.3) 



s a (2.6) 
1 

a 2 

a n 

= 0 

$ 

• 
2 

1 

On 
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where M = [1,x,y, . . . .] 

or 

0(x,y,z) = [M(x,y,z) 
	

(2.4) 

an 

IalT = r a 
 1
,  a2, . . . ' an] L  

by substituting the coordinates at each node 

Oi  = [1,xi,yi, . . .] {a} 	 (2.5) 

and for all nodes 

1 x1 y1  . . . 

1. . x2  y2 	.  

1 xn yn . 	. 	. 

= E cla} 

where [C] is a square matrix of constant terms. The 

coeficients a can be calculated as follows 

(2.7) 

{a} . [c]-1 {0i} 	 (2.8) 



or 
n 

$ (x,y,z) =E N.1Oi 
i 

(2.10) 
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then from expression (2.4) and substituting {a} calculated 

in (2.8) 

0 (x,17,z) = [M(x,Y,z)] [ Cr'  {0i} 	(2.9) 

where i shape functions and i  are the 

nodal values of the field variable. 

It is convenient to stress that the shape functions 

Ni, so far, are funtions of the general coordinates x, y 

and z. 

The isoparametric concept is based on the fact that 

the same interpolation functions are used for defining any 

field variable, namely, in this case, coordinates and 

displacements within the element. 

2.2.3 Local Curvilinear Coordinates 

Let us consider curvilinear coordinates 	n, C 

varying between -1, +1 so that in the space (E,11,0 the 

hexahedron (20 or 32 node 3D finite elements, see figure 

2.1) becomes a cube with side length of two units. 

Following expression (2.10), the relationship between 

the cartesian and the curvilinear coordinates will be 

n 
xi = E Ni  E.  i i=1 

(2.11) 

and displacements within the element will be defined as 

follows 
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n 
{S} = 1-2 Ni {Si}

i=1  
	 (2.12) 

where 

{6)T Eu,v,w] and 

ly
T 

= [ui,vi,wi] 

n = 20 or 32 

Once the local coordinates have been defined, the 

shape functions Ni  can be expressed in terms of the local 

coordinates and they become independant of the element 

shape, therefore the same for all the elements. From now 

on they will be considered as 

Ni  = 11.(t;,n i d. 
	 (2.13a) 

For these elements the shape functions Ni, i=1,2, . .20/32 

defined in terms of local coordinates are, using the notation 

Eo = EEi ► no  = nnio = cCi  

Quadratic element (20 node): 

Corner nodes 

Ni  = ( o)( 	o )( o 
+fl
oo

-2)/8 	(2.13b) 

Mid-side nodes 

+1 	N.=(1-V) (l+n
o) (l+co)/4 
	

(2.13c) 
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ni  =0, ci 
 =-+ 1, ci 1  =-1 	N.(1+Eo)(I-T.1 2 )(1+Co)/4 

i=0, Ei=-+ 
	

1 1, n.=-
+  

	

1 	Ni(l+E0)(1+no)(1-c2 )/4 

Cubic element (32 node): 

Corner nodes 

Ni= (1+E0) (l+n0) (1+ ,:)) 	9(v+T12÷2)-19] /64 (2.13f) 

Typical third side node 

+13' n.=-1, c•=-1 
	

Ni= (1-E2  ) (1+9E0) ( i+no) (1+ 0) 9/64 

(2.13g) 

The main advantage of this formulation is that the 

numerical procedures involved with the element will always 

be the same regardless of their particular distorted shape 

they will assume in the idealized mesh. 

2.2.4 General Steps of Finite Element Formulation 

Following the basic finite element formulation descri-

bed elsewhere, Ref.(47)/ a list of wanted relationships is 

described below. 

i) {6}= [N]{6}e  

ii) {c}= [B]{5}e  

iii) {a}= [D]{E}= [ID] B{6}e  

iv) [K]e= r[ B]T[ D] [ B] d vol 
dvole 

where 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

[N] 	is called the shape function matrix 

{c} 	are the strains {c}T={c ,E C E x y' z' xy' . . 

are the nodal displacements for each element {6} 	are 

[D] 	is the elasticity matrix 



- 33 - 

[B] is the displacement/strain transformation matrix 

[K]e is the stiffness matrix for each element. 

2.2.5 Strains; Derivation of Expression (2.15) 

To calculate strains, derivatives of displacements with 

respect to x,y,z are needed. Bearing in mind expressions 

(2.13) 

as 

and (2.14). 

= 3N1 aN2 • • 0 	• 

3 aE 

as 3N1 aN2 • • • • 

an an an 

96 3N1 aN2 • • 0 	• 

ac _BC a? 

(2.18) 

d n 

 

(2.19) 

Looking at expression (2.19) [ DE] can be considered 

as a derivative operator so the same principle is also 

applied to the coordinates as follows 

[DE] x1 y1 z1 
x2  y2  z 2 -2 z2 

x n Yn z  n 

= - ax By az - 
9E 	aE 	aE 

ax 	By 	az 
an 	an 	an 

ax 	By 	az 
ac 	9c 	9c 

= [ J] 
	

(2.20) 

where [J] is obviously the Jacobian of transformation of 

general coordinates x,y,z to the local ones 	n,c. 

Using now chain rule relationships of the type 
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aO 	30 ax + aO 2y + a0 Bz 
BE 3x aE By BE 5z aE (2.21) 

	

= [ ax 	By 	Bzi 	a0 
BE 

	

aE 	ac 	ax 

43 
By 

BO 
Bz 

  

 

(2.22) 

  

having 

ras 

now 

Generalizing for 

the displacement 

= 	[J] 

21T 
. [J]

inverting 

the 

as 

rest of the 

as field variable 

coordinates and 

(2.23) 

T 

(2.24) 

of expression 	(2.18) 

. 	(2.25) • i)
T 

. 	(2.26) • .( r)
T 

aa: 

as 

3x 

as 
an 

as 

ay 

ad 
9c 

as 

this equation 

Bz 

' 

right 

we 

IJJ 

Lax 

into 

ras 

ay 	az 	' 

Substituting the 

expression 	(2.24) 

T 
as 	as] 	= 

as 	as] 1[Dd 

r 	1-1r 

[DEXYZ] 

aE 	a 

hand side 

obtain 

iDEjks 162 

[6 	6 1 	2 

Lax By 	Bz 

= 

The matrix [DEXYZ] can be suitably changed in order 

to accommodate the derivatives for the several components 

of the engineering strains 
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{e } = ex 
ey 
cz 
e xy 
e yz 
e zx 

 

3u/3x 

3v/3y 

aw/3z 

3u/3y + 3v/3x 

3v/3z + 3w/ay 

aw/ax + 3u/3z 

(2.27) 

    

as follows 	: 	if[DEXYZ] 

[DEXYZ] 	= 

is given by 

dll 	d12 	' 	' 	' 	dln (2.28) 

d21 	d22 	• • . d2n 

d31 	d32 	. . . d3n  

hence 

{ c } = d11 	0 	0 d12  0 	0 	. 	. 	dln 0 0 6i(2.29) 

0 	d21 	0 0 d22  0 	. 	. 	0 d2n  0 6
2 

0 	0 	d31 0 0 d32 	. 	0 	0 d
32 

d21 d11 	0 d22  d12  0 	. 	. 	d2ndin  0 6n  

T 
= [B] [61  62 	. . . . 6n ] 
	

(2.30) 

as it was required in expression (2.15) 

2.2.6 Stiffness matrix [R]e 

Remembering the basic theory Ref.(48), the stiffness 

matrix of an element is defined as follows 

[K le  =1.[ B]T( DJ [ B] dvole 	 (2.31) 
vol 

e 

where B was defined in expression (2.29), D is the 

elasticity matrix to be defined, and vole  is the volume of 
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the element. 

Remembering that [B] is a funtion of E,n and so 

the element volume dvol must be transformed as 

dxdydz = IJI dEdndc 

Taking into account the definition of the local 

coordinates (E,n,c) given in 2.2.3 the integral (2.31) 

becomes 

1+1 1 +1 1+1 
I k le = 	

[BITE Dll B] I JI dE 	do 	szl 

(2.32) 

(2.33) 

 

2.2.6.1 Numerical Integration of Expression (2.33) 

The element stiffness matrix is assembled by numerical 

integration of the expression (2.33). Using the Gaussian 

Quadrature formula Ref.(51) as a definite integral, 

+1 

f f(x)dx is replaced by a summation 	C.3f(ai) where C. 3 
-1 

are the weight coefficients, ai 
are the Gauss abcissae and 

n the number of Gauss points. 

To evaluate the integral (2.33) over the volume of 

the element the summation referred above will be used three 

times, 

n 	n 	n 

[K]e = E 	E :E: cm  C. C.f(,n.,c m) 	(2.34) 3 1 i3  

I 
where f in this case is the function [Bi

T  [D][B]I JI . 

2.2.6.2 Elasticity Matrix and its Economical Use. 

The elasticity matrix for isotropic materials (52) 

will be defined as follows 

m=1 j=1 i=1 
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[ D I = 
E 1-v 	v 

1-v 

symmetric 

v 
v 

1-v 

0 

0 

0 

1/2-v 

0 
 

0 

0 

0 

0 

1/2-v 

0 

0 

0 

0 

1/2-v 

(2.35) (1+v)(1-2v) 

where E is the Young's modulus and v the Poisson's ration. 

The multiplication of the three matrices of (2.33) 

involves a very large number of arithmetic operations. 

Owing to the presence of a large number of zero elements 

in these matrices Irons suggested a method which improves 

the matrix forms and reduces the number of operations 

considerably. This feature which was inherited from the 

initial version of the DIM3B code is described in detail 

in Ref.(53) and, therefore, will not be included here. 

2.2.7 Equivalent Nodal Forces 

In general a structure is loaded by surface forces 

acting on finite areas. For the FEM this loads must be 

converted into consistant nodal forces by the use of the 

expression 

IF } liNjT {g} dA 
g e 

(2.36) 

where {g(x,y,z)} is a vector representing the applied 

load and [ N] 	the shape function matrix. 

Assume the pressurized face is 	= -F   1, an element 

of area (5A in this face will be 

(SA = dEdn 	 (2.37) 
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or in vector notation 

SA-  = at x 6-; 
	

(2.38) 

where the product is a vector product, and the direction 

of SA is normal to the surface c=±1. 

Expression 

SA = 

= Det 

A 	A 

where 	x, y, 

dAx  

SA 
Y 

SAz  

and 

_ 
A 

z 

(2.38) can be written also as 

cicin 

dEdn 

unit vectors. 

(2.39) 

(2.40) 

{3x 
- 	a 

Dy 

lax x an 

3y 
DE 

Dz 

an 

3z 
DE 

A 

3x 	3y 

an 

A 	A  
Y 	z 

■ 

az 
ac 	3E 	DE 

ax 	Dy 	3z 
3n 	3n 	an _ 
are cartesian 

The jacobian matrix 

adjoint 

adj [J] 	= 

where, for instance, 

term in the expression 

J21 
= 

[ (7] 	(see 

J11 	J21 

J12 	J22 

J13 	J23 

J21  is 

above. 

Dy 	3z 

expression 	(2.20)) has an 

J31 

J32 

J33 

] 

the cofactor of the 	(2,1) 

(2.41) 

(2.42) 
DE 	3E 

3y 	3z 
3c 	3c 
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Thus expression (2..40) is re-written as follows 

dA = (J31 x + J32 y + J33 z) 
	

(2.43) 

In general, if the pressure is applied in face i where 

i=1 for 	i=z for n=-1, i=3 for c=±1 

A 
SA = (jil x 	 ji2 	ji3 z) 

da df3 (2.44) 

where arf3 	are the 

the loaded face. 

Expression 	(2.36) 

{F 	"[NIT  
g e 

=fi N ]T  

may 

gx 	0 

0 

0 	0 

Jii 	gx  

J.12 	g y 

J.13 	g z 

{ 

two coordinates 

now be 

00 

gz  

da 

0  

of 

rd: 

dAz  

df3 

written 

n,c 	parallel to 

as 

(2.45) 

(2.46) 

The integration is performed numerically using again the 

Gaussian Quadrature formulae. 

2.2.8 Evaluation of Stresses 

Once the nodal displacements have been calculated 

by the overall solution of equation (2.2), the stresses 

are calculated at node points. At node i the stress vector 

is given by 

{a} = [ D] [ E]fq 	 (2.47) 
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where [ B] is calculated using values of the shape functions 

at node i. 

2.3 Description of the code DIM3B  

2.3.1 Introduction 

In the previous programs, NAMAIN Ref.(49) and 

DIM3 Ref.(50), special subroutines were developed to perform 

the initialization work and carry out the book-keeping 

procedures before entering the actual solution stages. 

These subroutines generate 	the necessary data to perform 

the analysis of the particular problems being studied, with 

the use of very small sets of input data. 

Although it is recognised that manually assembled 

programs may be advantageous for research purposes, any 

potential user of these codes would have to face enormous 

difficulties if a new class of problems is to be studied. 

The idea to create a general purpose 3D finite element 

program was the main reason for the development of the 

DIM3B code. 

One disadvantage, of course, is that the potential 

user of such a program is faced with the tedious and 

sometimes difficult task of producing large amounts of 

input data. 

However, he will be strictly concerned with his 

particular problem without being involved in the more 

difficult and complicated programming aspects of the code. 

The problem of producing this type of data can be 

eased with the use of automatic data generation techniques, 

and this method has been adopted throughout the work 



[M

KN 	MU 1 [ 6 	= [ FUN] 

T 
M
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M
UN 	

a
UN 	

FKN 

(2.48) 
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reported in this thesis. 

2.3.2 The Solution Technique of Equation (2.2) 

Remembering equation (2.2), the stiffness matrix 

of the overall assemblage relates the nodal forces F 

acting on the structure to the corresponding nodal displace- 

ments S. 

The stiffness matrix may be characterized in general 

as symmetric, banded, positive definite and sparsely 

populated. 

Prescribed displacements, which are physically required 

to preserve equilibrium as well as to specify initial 

displacements at certain nodes, are accommodated in the 

solution technique. A suitable partitioning of the 

equation (2.2) is performed as 

where 6KN 
 and 	are known (prescribed) and unknown 

nodal displacements respectively. The corresponding 

unknown and known generalized forces are FUN and FKN* 

The expansion of equation (2.48) yields 

M
KN 

6KN 
+ M

U 
6
UN 
 = FUN 

MT 6 	= F
KN U KN 

+ M
UN

6
UN 

(2.49) 

(2.50) 
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or 

M
UN

dUN = F
KN 

 - MTJ6KN  

F
UN 

= M
USUN + MKNSKN 

From equation (2.51) the unknown nodal variables 

can be calculated by an extension of the Gaussian elimin-

ation process. In the backward substitution stages, as the 

elements of SUN are explicitly known, the unknown reactions 

FUN can also be found. 

2.3.3 Frontal Method of Solution (FMS) 

The use of these three dimensional elements with 

3x20 or 3x32 degrees of freedom implies large dimensions 

of the stiffness matrix k, which is equal to the number of 

degrees of freedom in the structure. Normally these matrices 

cannot be fully assembled and stored in fast core. 

The FMS is suitable for such cases and is used in 

this program with the Gaussian Elimination technique. 

This method was first introduced by Irons (54) and 

is based on the fact that only a small amount of the banded 

matrix has to be processed before forward elimination of a 

variable corresponding to a row. After the elimination 

process, data pertaining to the variable is stored on a 

disk file and the row is freed. Thus a variable becomes 

active on its first appearance and is eliminated immediately 

after its last. 
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Due to this method the total number of equations 

(one per variable) is not anymore the limiting factor, rather 

it is the semi-band with in the case of the matrix k. 

A simplified version of this method is described 

in detail in Appendix 1 as used in the FRONT code. 

2.3.4 Program Breakdown 

This section describes the general layout of the 

program and gives a survey of each subroutine included in 

the program. 

An User's Guide of DIM3B code is given in Appendix 2, 

which contains a definition of the relevant program 

variables which will be mentioned in this section. A quick 

reading of that Appendix may be useful if difficulties 

are encountered in reading this section. 

The DIM3B code consists of four main parts 

A - Initializations 

B - Determination of forces; evaluation of coefficients 

for assemblage of stiffness matrices by numerical 

integration. 

C - Solution of the overall stiffness matrix; determin-

ation of displacements 

D - Backward substitution; stress determination. 

Some of the initialization procedures and parts B 

and C are performed in a general DO LOOP element by element 

as is shown on a primary flow chart in Fig. 2.2. A more 
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detailed flow chart of DIM3B code is shown in figure 2.3. 

A - Initializations 

In this initial part, the program reads the input 

data concerned with the description of the two basic systems 

(basic and global) as well as numerical data for the 

Gaussian integration procedures, all these data correspond 

to the first five input data cards. 

After checking these data, the matrix TP relating 

the two basic systems is evaluated. The elasticity matrix 

EI is calculated and then the P matrix is formed. 

The subroutine INIAL is now called and the resulting 

integer values NUNKVA, NKNVA, NCELNO, NCELN1, NT, NTOTAL, 

NUNVA1 and NKNVA1 are calculated and printed out. 

The subroutine NODE is called by INIAL and forms the 

ELNODE and PRENIC arrays which describe the topology of 

the structure including the last appearances adding a 

minus sign to the respective nicknames. 

The ELNODE matrix is stored in a random access file 

using non-standard subroutines available in the CDC system 

at ICCC and ULCC. 

The matrix UNKMAT, UNKNIC, UNCLE, KNOMAT, KNONIC, 

KNORHS and UNRHS are reset to zero and the dimensionless 

local coordinates are defined depending on the type of 

element (20 or 32 node). 

Finally the global coordinates are fed into the 

program together with nodal point forces RHSI. If the 

global system for input is cylindrical or spherical the 

subroutine GTRANS is called from the main program and transforms 

the coordinates into cartesian coordinates. 
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B - Determination of forces, stiffness matrices 

From now on the program proceeds within a general 

DO LOOP until all finite elements have been processed. 

Firstly, stress data are fed into the program and 

the equivalent nodal forces RHSL are calculated in sub-

routine LOAD called by the main program. 

Prior to this, subroutine COORD is called and sets up 

nodal matrices TR which are going to be used in subroutine 

LOAD to transform the local components RHSL into new 

components TRHSL, referred to the main problem system. 

The subroutine COORD also stores the nodal coordinates 

in a random access file no.2. 

The equivalent nodal point forces TRHSL are added to 

the initial prescribed nodal point forces RHSI and the sum 

RHSRED of the components of these forces will be used on the 

right hand side of the stiffness equations. These values 

eventually can be printed out. 

In the subroutine LOAD, numerical integrations are 

performed (see section 2.2.7) using the shape funtions DE 

and their partial derivatives with respect to the local 

coordinates. 

The subroutines SHAP20 and SHAP32 containing these 

functions and its derivatives are called when necessary, one 

or the other according to the elements in use. 

The main program now calls the subroutine FEM from 

which the components SK of the stiffness matrix are evaluated 

(see section 2.2.6). 
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The subroutine STFTR is called next, and distributes 

the SK coeficients over the UNKMAT, KNOMAT and UNCLE 

matrices. According  to equation (2.48) KNOMAT, UNKMAT 

and UNCLE correspond to the partial matrices MKN, MUN  and  

Mu  respectively. 

In fact 

UNKMAT = Submatrix corresponding to nodes with unknown 

displacements 

KNOMAT = Submatrix corresponding to PRENIC 

UNCLE = Off diagonal submatrix of [k] 

KNORHS = Known submatrix of load vector 

UNRHS = Unknown submatrix of load vector 

KNONIC = Addresses of known subvector of displacements 

UNKNIC = Addresses of unknown subvector of displacements 

The distribution of these matrices is shown again as 

they are kept in the program. 

... 
KNOMAT 	i ■ 

N, I  UNCLE 
I 

1 N,, 
1 	■ 

UNKMAT 
I ., 

    

    

PREDEF 

- - - - 
U 

-., 

 

UNRHS 

KNORHS 

    

X 

NKNVA 	NUNKVA 

Due to symmetry of this matrix only the upper triangles 

and leading diagonals are kept in the computer. 

In terms of computer variables expressions (2.51) 

and (2.52) will become 
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UNKMAT * U = KNORHS - UNCLET * PREDEF 

UNRHS = KNOMAT * PREDEF + UNCLE * U 

where 

PREDEF = Submatrix containing the known displacements 

(boundary conditions) 

U 	= Submatrix where the vector solution will be 

stored. 

C - Solution of the overall stiffness matrix 

The forward elimination process for each frontal 

position is performed in subroutines FORWD and BUFFER. 

During the forward elimination process the system of equations 

(2.51 ) and (2.52) is solved by the Gaussian Elimination 

Method as follows. 

Suppose the set of equations is 

(e1)  S1161 + S12  62  . + . 	.+ Sln  6 	= F 1 

(e2)  S2161 + S2262 + 	. 	. . 	.+ S2n6n 
= F.2  

(2.53) 
• • • • • 

(en) Snl61 + Sn262  + 	. 	. .+ S 	= F 
nnn 	n 

and when 6s is eliminated with the use of equation es 
one 

obtains 

S. .. 	S.1.3  - (S.l 
 S ./S ) s s3 ss 

i=1,2 . . . n,(i/ s) 

(2.54) 

or 
* 

S.. = S.. - Q*S . 13 	13 	s3 
(2.55) 

where Q = Sis/Sss 
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and the modified right hand side 

F* .F - Q F 
	

(2.56) 

i=1,2, . • . n 

These elimination procedures are performed in subroutine 

FORWD in the following manner. A completed row composed of 

NUNKVA coefficients retrieved from UNKMAT and NKNVA 

coefficients retrieved from UNCLE is stored in an auxiliary 

array COMP and the factor Q (see exp. (2.55)) is evaluated. 

The submatrices KNOMAT, UNCLE and UNKMAT are modified 

according to expression (2.55). 

The stored equation space is released and the data 

contained in COMP is transferred to a buffer area. Also 

the known and unknown righthand sides are calculated 

according to expression (2.56) and then placed in a buffer 

area. Finally, all the working variables used are reset 

for the next forward elminiation. 

Writing on a disk file takes place in blocs for all 

the eliminated nodes, in order to reduce the number of 

tape operations, this is done using subroutine BUFFER which 

is called from subroutine FORWD where all the data already 

stored in a buffer area are to be tranferrred for a random 

access file. 

D - Backward substitution, Evaluation of stresses 

When the general DO LOOP in the main program has 

processed all the elements, all the evaluated upper trian-

gular overall matrix, including the leading diagonal, is 

stored on disk. 
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The main program calls subroutine BACKWD to calculate 

the nodal displacements. 

This subroutine firstly reads back from the random 

access file the stored data in blocks in a reversed order. 

Starting with the last eliminated node the unknown 

displacements are now obtained directly. 

8 . F* 	
* 

/s 
n n nn 

and the rest 	are obtained from the formula 

n 
* 	* 8 

s 
 . * (F

s 
 _ E 	S .  6

i
)/ S ss i=s+1 

(2.56) 

(2.57) 

where s = n-1, n-2, 	 2,1 

In terms of program variables the above expression, 

using the same index notation, will be written as follows: 

n 

Us = (KNORHSs - E UNCLEs
T  
i*PREDEFi)/UNKMATss  (2.58) i=s+1 

If the index s corresponds to a prescribed deflection, 

the respective unknown reaction is computed using the already 

calculated unknown displacements Us+1, Us+2  . . . in the 

following manner. 

UNRHSS  = KNOMAT*PREDEF + UNCLE * U 
	

(2.59) 

The unknown reactions and the displacement solution 

eventually can be printed out using subroutine DEFOUT. 



- 50 - 

A brief summary of the procedures involved in subroutines 

FORWAD and BACKWD are described below. 

Subroutine FORWAD  

If in presence of an unknown displacement 

(i) Storing completed row in a row matrix COMP 

(ii) Modify KNOMAT, UNCLE, UNKMAT and RHS matrices 

(iii) Release the stored equation space 

(iv) Storing required data in buffer area (sub.BUFFER) 

(v) Reset for the next element. 

If in presence of a prescribed deflection 

(i) Storing completed row terms of KNOMAT and column 

terms of UNCLE in COMP 

(ii) Modify the unknown right hand side RHS 

(iii) Storing required data in buffer area (sub.Buffer) 

(iv) Reset for the next element. 

Subroutine BACKWD 

(i) Initialization (reset KNONIC, UNKNIC, KNORS) 

(ii) Read back stored data in blocks in re'iarsed 

order. 

If in presence of an unknown displacement 

(iii) UNCLE is multiplied with known displacements 

(iv) UNKMAT is multiplied with known displacements 

except the diagonal term 

If in presence of a prescribed deflection 

(iii) Multiply KNaMAT with PREDEF 

(iv) Multiply UNCLE with UNKDEF now stored in RHS 

(v) Evaluate the corresponding unknown reactions. 
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If stresses are required by specifying the control 

parameter IOUT=2, the subroutine STRESS is called by the 

main program. The output results for the displacements 

are used here to compute nodal stresses using expression 

(2.16) described in section 2.2.4. 

The matrix product ] 	B] (sometimes is referred 

to as "stress" matrix) is evaluated in subroutine FEM2 

using again the shape functions DE stored in subroutines 

SHAP20 and SHAP32. 

The stresses referred to the main problem system are 

calculated using TR matrix already described. 

cr I mp  = TR fr  ] a I L c  ] TR] 	 (2.60) 

where [a]MP  are the stresses referred to the main 

problem system which are obtained from the stresses, 

[ 	obtained from expression (2.16) and are referred to 

the local system of coordinates (C,71,0. 

If various elements meet at one node, the stresses are 

averaged, i.e., the final result will be the mean of values 

obtained for that particular node from each element. 

The nodal stresses, if so desired, are printed out by 

calling subroutine STROUT. 

As it can be seen from figure 2.3, the main program 

although spread in the central column from the top to the 

bottom of the page, is indeed, a relatively small and simple 

routine. 	Its basic function is to call the various 

modules in an appropriate manner. 
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2.3.5 Program Environment 

The DIM3B code is a program written in FORTRAN' IV 

language. 

One of the main features of this program as compared 

to its predecessors (NAMAIN and DIM3) is related to the 

transfer of data into back-up store files. In the previous 

versions these operations have been made with the use of the 

standard READ and WRITE Fortran statements, (see Ref.(55)). 

The physical time involved in these operations has been 

drastically reduced by the implementation of special 

subroutines READMS and WRITMS which are presently available 

in the CDC machines at ICCC and ULCC. These subroutines 

transfer large amounts of data to random access files with 

the use of mass storage devices. 

Several other technical aspects regarding the operation 

with this program are described in more detail in Appendix 2. 
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CHAPTER3 

THE FINITE ELEMENT METHOD APPLIED TO 

LINEAR ELASTIC FRACTURE MECHANICS 

3.1 Introduction  

A number of solutions for SIFs and strain energy 

release rates, G, have been obtained using the more accurate 

methods which have already been outlined in Chapter 1. 

Unfortunately these solutions have been limited in the 

past, to idealized and relatively simple-shaped configur-

ations and, in several cases, these solutions are far from 

providing the engineer with good estimates of SIFs for the 

more complex configurations of actual problems. 

The FEM, which was originaly designed as a versatile 

tool to solve general problems in structural analysis, 

has become also a useful method when dealing with such 

complex LEFM applications. 

The next section will review the various finite element 

techniques used for calculating SIFs and strain energy 

release rates for cracked bodies. 

It has been shown (section 2.2.3, Chapter 2) that the 

displacement fields within the element (expressions 2.12 

and 2.13) are described by continuous polynomials (shape 

functions) of the second and third order depending on the 

type of the element used. 

These elements, having these type of shape functions, 

are obviously unable to describe in an adequate manner the 
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square root behaviour of the displacement components and 

the subsequent singularity fields in stresses and strains 

near the crack tip. Moreover, the deteriorated solutions 

obtained in those areas with the use of conventional 

elements may eventually cause the propagation of errors 

into larger regions away from the crack tip. 

The need to use relatively coarse meshes in 3D finite 

element analysis, due to the limitations of present genera-

tion computers, leads to the compulsory use of special 

elements with embedded singularity fields modelled by the 

introduction of a square root term in their displacement 

functions. 

Various planar elements of this type have been devel-

oped and have been reviewed by Rice and Tracey (65), 

Jerram and Hellen (66) and Atluri et al. (67). 

In the three dimensional family of elements Blackburn 

(68) introduced an element containing an r1/2  displacement 

function which was implemented in the BERSAFE system in 

the CEGB Research Department. Tracey also developed a 

wedge-shaped element which is described in Ref. (69). The 

former is compatible with the 20-node isoparametric elements 

whereas the latter can be used with 8-node linear isopara-

metric brick-type elements. 

Although these elements have been used successfully by 

Hellen and Dowling (2) and Schmit et al.(4), they have 

specific stiffness formulations and differ from their 

related conventional elements. Therefore the implementation 

of these elements has the disadvantage of requiring major 
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alterations in the initial standard computer programs. 

In section 3.3 of this Chapter, it is shown how a 

"crack tip element" can be derived from the isoparametric 

elements previously described in Chapter 2 without requiring 

specific changes in the standard computer program DIM3B. 

The final sections of this Chapter will describe the 

results obtained in several tests which have been carried 

out to assess these "crack tip elements". 

3.2 Finite Element Techniques in LEFM  

3.2.1 - Introduction 

The various techniques for determining SIFs using 

finite element methods can be divided into three groups. 

Firstly, those utilizing directly the computed stresses 

and displacements obtained from standard finite element 

programs. Secondly, those in which the rate of reduction 

of potential energy of the body with respect to increasing 

crack length, G, is calculated, hence K. 

A third group of techniques involves a simultaneous 

use of the FEM and the analytical near tip expansions. 

In this third method, which was developed by Wilson (62), 

a displacement pattern associated with the leading terms 

of the Williams stress function (64) is imposed in a small 

circular area(*) (for 2D problems) near the crack tip. This 

region is then coupled with the more conventional finite 

elements in order to model the areas away from the crack tip. 

(*) This circular region can be eventually regarded as 
another special crack tip element. 
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This method was well described by Hilton and Sih in 

Ref.(63) in which results are given for some planar cases. 

3.2.2 - The Direct Method 

3.2.2.1 - The Stress Method 

One of the more straightforward methods of calculating 

the SIFs of cracked bodies is to correlate the stresses 

at nodal points of the finite element mesh with those of 

the near tip stress field which are given for the opening 

mode I by 

where r, 0 are the polar coordinates centred at the crack 

tip, and f..(8) is a known function of 0 (see expression 13 

1.5, Chapter 1). 

Earlier work using this method has been done by 

Chan et al.(70). They applied this approach to a compact 

tension test piece, symmetric about the crack, and found 

that good results could be obtained by substituting the 

oy  (y being normal to the crack line) stress components 

ahead of the crack (8=0), and the distance, r, of the node 

from the crack tip into equation (3.1). 

A discrepancy of about 10% in relation to a collocation 

method(*)  was reached at the cost of a highly refined mesh. 

(*) The collocation solution is believed to be accurate 
within 0.5% (see Ref(63) ). 



- 57 - 

In the stiffness formulation of the FEM it is 

well known that the computed stresses are directly obtained 

through the strains by differentiating the displacement 

fields which means that the functions which model the stress 

fields within the elements are of one order lower than the 

displacement functions. 

In fact Chan et al.(70) confirmed that a better 

estimate of the SIFs could be obtained with the use of the 

computed displacements rather than the stresses. 

3.2.2.2 - The Displacement Method 

Similarly to the stress method, the displacement 

technique requires a correlation of the finite element nodal 

point displacements with the known crack tip displacement 

field solutions (see section 1.3.3). For plane strain 

opening mode I, these solutions are: 

U. . = 
xl rr 

fi(0,v) p 	27  (3.2) 

where ul  = u, 	u2  = V 

f

1 ' 
(0 V) = cos (;) [ 1 - 2v + sin2 (2)] 

	

12( 0 , v) = sin (—
e ) 	[ 2 - 2v - cos' (2 ) 2  

By substituting the computed displacements ut and the 

respective distances rl.'i  into expression (3.2) the SIF will 

be obtained by extrapolating the curve 



- 58 - 

K* = 	ef ( , v ) 
	 (3.3) 

towards the line r*=0. 

It should be remembered that expression (3.2) 

describes only the first term of the Westergaard solution, 

and it is only valid for regions very close to the crack 

tip. On the other hand the computed values ut, are normally 

less relaible in that area, thus the need to extrapolate 

values of K*  from regions far away from the crack tip and 

using large values of r*. 

Some improvements of the extrapolation procedures 

can be obtained either by retaining higher order terms in 

expression (3.2) or by acquiring, at least, some knowledge 

of the K* curve in regions away from the crack tip. 

The displacement expansions for the case of plane 

strain conditions can be derived from the Williams stress 

function (71) as follows 

3, 
2pv = A1B1r2 	A2B2r - A3B3r 	

+ • • • (3.4) 

where Al - 

p is the shear modulus 

3 B.1  = B.1
(0,v) similarly to f1

..(0,v)(*)  

By substituting the value of A1, expression (3.4) 

(*) These coefficients as described by Williams in Ref(64) 
contain some typographical mistakes which have been 
corrected by Rook and Cartwright(27) and Ewing et al.(71) 

K1  
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becomes 

K* = K -  BTT - A2B2r 2  - A3B3r  + 	) 	(3.5) '1 	1 

p  where K* = 2
B
v r 

7.
T  similarly to expression (3.3). 

l 
 

By inspection of the functions Bi  it can be shown 

that B2=0 when 6=7 	thus expression (3.5) becomes 

K* = K1 + 	(A3B 3r + . . .) 	(3.6) 1 B1 

Therefore a plot of values of K* vs. r should be expected 

to behave in a linear manner up to relatively large values 

of r. 

The first seven coefficients Ai  have been obtained by 

Leevers (72) using a variational method as it applies to 

the Williams series solution to the crack problem in a 

single edge notch geometry under plain strain conditions. 

The various K* curves for various ratios a/w represented 

in Figure 3.1 show that for this type of configurations 

the variations found in the evaluated coefficients A2, A3.. 

..A7' have a very small effect on the overall behaviour of 

those curves regarding their linearity or otherwise. 

It is clear from this figure 3.1(*) that in the case of 

0 = ir the influence of the square and higher order terms is 

(*) The squares and circles in this figure will be referred 
to later on. 
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practically negligible over a range of r values up to 

about 80% of the crack length. However the use of the 

extrapolation method in the direction 0=-1/r/2 becomes much 

less reliable due to the strong influence of the square 

root term in expression (3.5), and in this case the extra-

polated SIFs are bound to overestimate the true solution. 

3.2.3 - Energy Methods 

Finite element techniques using the energy method are 

based on the LEFM relation 

dei dU 
Pi dA 	dA = G 

	K2  (1-v2) 
(3.7) 

for plane strain conditions, where A is the area of the 

crack surface. The energy available for an increment of 

crack area dA is provided from the work done by the forces 

P.
1 
 when displaced in the direction of its application of 

an amount (IA.
1
, and the release - dU of the total strain 

energy U, stored in the cracked body. 

In fact the terms in the left-hand side of expression 

(3.7) account for the well known "constant load" and/or 

"fixed grip" conditions. 

The strain energy due to the highly localized crack 

tip stress fields should be small compared with the total 

energy of the body, also the overall deflection of the body 

is only slightly affected by these stress fields. Thus the 

need to use either special tip elements or highly refined 

meshes, is not so critical as in the case when the direct 

methods are applied. 
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For planar cases the direct application of expression 

(3.7) obliges the finite element analysis to be performed 

twice, as described by Dixon and Strannigan (73), thus 

increasing considerably the computing costs of such an 

analysis. 

In three dimensional applications the problem is com-

plicated many-fold. If localized SIFs are to be evaluated, 

a set of successive runs must be carried out and small and 

localized extensions of the crack front must be assumed. 

A variety of techniques have been put forward to simplify 

and improve the efficiency of these energy methods. 

Jerram (74) suggested that the strain energy release 

rates, G=dU/dA, could be obtained by evaluating the amount 

of work required to close successive nodal intervals along 

a crack. This procedure is illustrated in Figure 3.2 and is 

particularly useful when the plane of the crack is a plane 

of symmetry of the body. 

For this case Broekhoven and Spaas (75) have shown that 

the associated change of strain energy with successive 

crack extensions (modelled by unpinning successive nodes) can 

be written as 

m 
1 p AUi 	E n. 1+1 1=n 

(3.8) 

where AUi 	i+1  is the change in strain energy due to 

extension from crack front i to crack 

front i+1 
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n = 1,2 . . . m, is the number of node released 

Pn. is the nodal force of node n for crack front i 

ni+1  is the v displacement of node n due to its unpining 

i=1,2, . . . indicates uncracked geometry. 

This technique sometimes called "crack closure work" 

has been successfully used by Broekhoven and Spaas (75) in 

some three dimensional applications. 

Bueckner (76) developed a similar technique to the 

"crack closure work" method. He has shown that the problem 

of evaluating the rate of change of strain energy with 

increasing crack length in a loaded body is the same as 

evaluating the rate of change of work done by tractions 

acting on the surface of the crack when the body is free 

from the initial loads. 

The basis of Buekner's method as applied to the finite 

element technique is indeed very similar to the Paris and 

Sih replacement method which was briefly described in 

section 1.3.4. 

The "J integral" method developed by Rice (77) has 

also been successfully applied to 2D cases by Chan et al.(70) 

and Neal (78). Its application to 3D problems seems to be 

rather complicated and no work using this technique was 

yet found in the literature. 

Quite recently Parks (79) has developed a "stiffness 

derivative procedure" in which K values can be obtained 

directly by differentiating the potential energy of the 

finite element solution 
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P = 	1 u 	[k) I u} 	lufr 	f} 
	

(3.9) 

with respect to crack length a of a 2D body under constant 

load conditions 

dP _ 1 u T d [k] u  
da 

I 
da 

F 

If the crack surfaces are load free then 

dPI= dUl = G - K2(1-v2) - -- 
da 	da 

F 	F 

(3.10) 

(3.11) 

where P is the potential energy 

U is the strain energy 

1 u1 is the vector of nodal displacements 

[k] is the global stiffness matrix 

10 is the vector of prescribed nodal forces. 
This method has been recently used by Hellen (80) 

in 2D configurations. Broekhoven and Spaas (75) and 

Schmit et al. (4) applied this method to problems of cracked 

nozzles. 

All computing efforts involved with the use of energy 

methods can be substantially reduced if the Front Method 

of solution is adopted in finite element programs. 

These advanced numerical procedures for estimating G 

have been described by Hellen (80), Parks (79) and 

Broekhoven and Spaas (75). 

Small extensions of the crack front can be modelled 

by changes of the few elements adjacent to the crack front. 
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In the case of the Parks method, for example, the only 

contributions to the d [k] term in expression (3.10) are 

provided by the elements containing the translated nodal 

points. Moreover if the nodes of the crack front and the 

elements containing them are suitably numbered, the values 

of d [kJ to be used in expression (3.10) can be obtained 

by repeating (for an extended crack) only the very last 

stages of the forward elimination procedure. 

If the displacements and stresses are not required for 

the entire structure, the components of the vectors 

lul and luIT  related to the non zero terms d [k] are then 

evaluated by carrying out only a few steps of the back-

wards substitution. In conclusion, it can be said that 

energy methods are bound to be more accurate as compared 

to the direct techniques. However, an efficient use of the 

former methods may involve a reasonably large effort in 

their implementation on a standard computer program as in 

the case of DIM3B. 

On the other hand the inaccuracies involved with the 

application of the direct method with the use of "crack 

tip elements" are expected to be small enough at least for 

engineering purposes. 

Finally, in Figure 3.3 the more relevant methods 

used to date to study 3D crack problems are summarized and 

the methods used in the present work are conveniently 

indicated. 



r = al  + a2 	+ a3c 2  

u = bl + b2C + b3 
2 
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3.3 - Theory of the Singularity Element  

3.3.1 - Introduction 

In this section it is intended to show how a singul- 

arity in stress and strain fields can be easily accommodated 

in the isoparametric (20 and 32 node) elements described 

in Chapter 2. This singularity can be made to occur 

within these elements at certain nodal points by carrying 

out some minor mathematical changes in the theory 

described in the previous Chapter. 

3.3.2 - Theory 

3.3.2.1 - One line elements 

The modelling of near-tip fields by the second order 

2D quadrilateral isoparametric elements, in which the mid-

side nodes are displaced, has been illustrated by Henshell 

and Shaw (81) by reference to the corresponding line 

(1-dimensional) element. The same method is used here. 

The equivalent one dimensional elements to the 3D 

(20,32 node) elements, in terms of the order of the shape 

functions, are the (3,4 node, respectively) elements, as 

they are shown in Figure 3.4. 

In the second order line element (see Figure 3.4(a)) 

using a local natural non dimensional coordinate C, the 

coordinate r and displacement u in the global system are 

expressed in terms of the local coordinate 	by 
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where the a. and b. are constants which are obtained 1 	1 

from nodal values of r and u respectively and accordingly 

to expressions (2.3) and (2.8). In this case [M]=[lEE2] 

and tal T  = [al  a2  a3]. 

Let us assume that the mid side node (node 2) can have 

a varying position identified with the value of p in the 

thus 

hence 

general system of coordinates 

equation 	(2.8) will be 

0 	= 	1 	-1 	1- 

p 	[ 1 	

0 	0 

2 1 	1_ 

al  = p ; 	a2  = 1 	; 	a 3 

r 	(see 

for this 

1  

2 

{ : a3 

= 1-p. 

Figure 	3.4(a)), 

case 

(3.14) 

Substituting these values into equation (3.12), 

r = p + ; + (1-13) Fit 
	

(3.15) 

When p=1 equation (3.15) becomes r=l+E which is obviously 

the transformation of coordinates (0,1,2) to the scaled 

(-1,0,1). 

Developing expression (2.9) for this case and when 

p=1 

r= -2-  (-E+E2)r1  + (1-E2 )r2 + 	(E+E2)r3 
	(3.16) 
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To obtain strains, expression (2.18) will be simplified 

as follows 

du _ dN1 	dN2 	dN 

+ 3 dE 	dE u1 	dC u2 	dE u3 

= 1 ( 2E-1)u1  - 2Eu2 + 
1 
 (1+2E)u3 

(3.17) 

A plot of the shape functions Ni  and its derivatives 

fi  = dNi/dE 	is shown in Figure 3.5. 

The chain rule (2.21) to obtain the engineering strain 

r is simplified as follows 

du =  du dr 
dE dr dE 

(3.18) 

du 
= —dr [J] 

Hence 

du 	dur,1-1 
= 	= 	Lu1 r dr dE 

(3.19) 

where [J]-1  = (dr/dE)-1  is the inverse of the jacobian 

of the transformation of coordinates r to E . 

Combining equations (3.18) and (3.15) 

r d d
u = 	{1 + 2(1-p)Er 
E 

(3.20) 

The strain will be singular where 
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1 + 2 41-p) = 0 	 (3.21a) 

If the singularity is to occur at r=0. i.e. at c= -1, p 

must satisfy the equation 

1 - 2 (1-p) = 0 	 (3.21b) 

1 i.e. p = -2-,  

Thus the mid-side node must be displaced to a point 

one quarter of the element length from the node at which 

the singularity occurs. 

W2 now investigate the order of the singularity 

substituting p = 2 into equation (3.15) 

	

1 	1  f 

	

r = -2- 	E + - E2  (3.22) 

solving equation (3.22) in terms of r, we have 

E . -1 + (2r) 1/2 
	

(3.23) 

Applying equation (3.13) to each of the nodal points 

and solving for bi  

1 	1 
bi  = u2  ; b2  = -f(u3-u1) ; b3  = 	(u3  + ul  - 2u2) 

Substituting these values into equation (3.13) and 

using expression (3.23) the displacements within the element 
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will be described as follows 

2-3 	+ 2r  u - 

	

	u1 
 + (-2r+2)u

2 + 
2r-

2 u3 (3.24) 2  

hence 

r= {1-2 (2r) 2 

	

	 1 	 1/2 u1+ {-2+2(2r) 2Iu2  + {1-7-(2r) }1.1 2 	(3.25) 

which exhibits the r 2  singularity which occurs at the 

crack front. 

Expressions (3.24) and (3.25) have the same form as 

expressions (2.12) and (2.29) respectively. 

A plot of these new shape functions i d its deriv- 

atives f. = dN./dr is shown in Figure 3.6. 

In the case of the third order line element (see 

Figure 3.4(b)), following the same steps as in (3.12) 

and (3.13), the transformation of coordinates will be 

r = al  + a2E + a3E2  + a4E3 	(3.26) 

u = b
l 

+ b
2
E + b3 2 	b4E3 
	

(3.27) 

In the same manner, the intermediate nodes (2 and 3) 

are assumed to have varying positions identified with the 

values pl  and p2. Similarly to expression (3.14) the values 

of a., i=1,2,3,4 can then be evaluated. 
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1 9 
a1 = .8-  4-  1-67 (p1  + p2) 

1 27 , 
a2 = 8 + (p2 - P1) T-6 

(3.28) 

9 	9 
a3 = "g.  -16 (p1  + p2) 

9 	27 , a4 
 ... 

-8-  - 16 (p2 - p1)  

Following for this case the steps (3.18) to (3.20) 

dr = aT  _ a2  + 2a3C +3a4C2 
	

(3.29) 

and the singularity will be made to occur at r=0 or E= -1 

when 

or 

dr = 
u 
, 

sd  for 	c = -1 	 (3.30) 

a2 -2a3 + 3a4 = 0 
	

(3.31) 

Substituting the values ai(3.28) into equation (3.31) 

yields to the following equation 

4 
P2 = .g 4- 2P1 (3.32) 

which corresponds to equation (3.22). The required positions 

of the intermediate nodes (2 and 3) are not uniquely defined 

for the third order line element, but related by equation (3.32). 
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au 
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However, if the normal position for node 3 is maintained 

p2  = 1, the position of node 2 is then given by (3.3 ) 

as pl  = 4/9. For these particular values of pl  and p2  the 

shape functions Ni  and its derivatives are represented in 

Figure 3.7. 

It is impossible to solve analyticaly equation (3.26) 

for 	in terms of r. However the function 	(r) 

equivalent to expression (3.23) should also contain an r 2  

term and subsequently the equivalent to expression (3.25) 

should also exhibit the r 1/2 singularity. 

3.3.2.2 - Extension of the singularity in 2D 

Let us consider now the 8 node isoparametric element 

as it is shown in Figure 3.8. In this case expression 

(3.15) leads to 

x = pl  + C + (1-pl)c 2 	 (3.33a) 

Y = P2 	n 	(1-p2)n 2  

The chain rule (2.21) will be as follows 

ax 	au Dy  
3E 3x ac 	ay a 

(3.33b) 

(3.34) 

and from (2.23) 



- 72 - 

From equations (3.33) the inverse of the Jacobian 

can be evaluated as 

{ J1-1 1  
1-2 (1-P1) 

(3.36) 

 

0 

 

   

If the singularity would be valid for all strains then 

the following conditions must be imposed 

_ 1 
P1 = p2 - f (3.37) 

Two typical shape functions Ni  = Ni(C ,n ) are repres-

ented in figure 3.10,and the derivatives of these functions 

at node 1 have infinity values. 

Following the same procedures as for the one line 

element the strain ex, for example will be 

3 ex=  3x  .p_11 = [1 - -2(2x) 1/21  u1  + [ -2 + 2 (2x) 2] u2 j  

+11 - 2 (2x) 2J  u3 	 (3.38) 

the strains for any direction r (see Figure 3.8) 

x = r cos 0 	 (3.39a) 

y = r sin 0 	 (3.39b) 

thus, from expression (3.38) 

du  
dx = 	

-1/2 	1/2  
f(r , cos 0, sin 20, u 1,u2'u3)  (3.40) 
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which means that the singularity holds true for any 

direction r. 

3.3.2.3 - Singularity in 3D elements 

Let us consider now a 3D (20 node) isoparametric 

element as it is shown in Figure 3.9. 

By inspection of the Jacobian in expression (2.20) 

it can be seen that by shifting the nodes 8, 9, 4 and 10 as 

it is indicated the same type of singularity can occur 

along the line AB, in planes perpendicular to that line. 

Developing new expressions similar to expressions 

(3.33) 

= p1 

y = p2 -E. n 	(1—p2)n2  

z = p3  + 	+ (1-p3W 	 (3.41c) 

if pi  = p2  = .5 and p3  = 1 

1 x = 	+ E + .fE2  

y = 1 	 1 2 

z = 1 + 

(3.42a) 

(3.42b) 

(3.42c) 

therefore the derivatives in the third row of the Jacobian 

will only contain terms 1 or 0 which will not affect the 
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bidimensional singularity described in expression (3.40). 

Conditions must be met to ensure the square root 

behaviour in node 2 (see Fig. 3.9) and will be described 

as follows. 

Considering now a local system of coordinates x, y 

and z defined by nodes 6, 2 and 14. The shape functions 

of the nodes in the base of the element and for C= 0 and 

c = -1 are (see exp. 2.13, Chp. 2) 

N 1 = N3 = N5 
= N7 

= - 1(1 - 11 2 ) 4 

N2 = N6 	2 = 1(1 - n) 

N4 = N8 	2 = 1(1 - n2 ) 

The relationship between y and n can be derived by 

using exp. 2.11, thus 

1 
Y = -4-(1 - fl2 )(2Y4+ 2y8  - y1- y3- y5- y7) 

+ 
1  
-.(1 - n2  )y6 	 (3.43) 

Differentiating y with respect to n it can be shown 

that the singularity occurs when 

1 	1 
Y6 = -2-  (Y7 + Y5)  - 2 (Y1 + Y3)  

(3.44a) 

A similar condition can be derived for node 14 as follows: 

1 	z15) 	, z14= - 2  - (z13
+  z

15
) - -2- kz1

+ z3) 
(3.44b) 
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2.3.2.4 - Conclusions 

A brief summary of the present theory is laid out in 

order to help to understand the manner in which singularities 

can occur in isoparametric elements. 

Derivatives of displacements with respect to global 

coordinates x,y,z can be obtained by differentiating 

expressions (2.14) with respect to local coordinates 

multiplied by the Jacobian of the tranformation 

a 	a 	a 	f.t1 - ate, an, a 	f Vm 1 1 	„. —1 
ax' ay' az' 	 ' - aC an' W`L"iui!* u  (3.45a) 

If the positions of the intermediate nodes i,j,m . . 

are described by varying parameters pi,pj,pm  . . , the 

Jacobian J will be a function of these parameters and the 

local coordinates E,n,c. 

J = J(PisPiflpm • • • , ,T1,C) (3.45h) 

Singularities in stress and strain fields can be made 

to occur at particular nodes, i.e., at particular values 

of E,n,, let us call them Es,  n s  , c s, and the particular 

positions where these intermediate nodes have to be shifted 

can be found using the condition. 

J(pi,pi,pm  - • . , Cs'ns's)  = 0 	
(3.45c) 
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this condition will determine a function g(p.,p3.,p m 
 . . .) 

which is the desired solution. The singularities are of 

several orders and depend only on the type of the element. 

These elements are incompatible with their related 

conventional versions. However, if nodes i,j,k,l, (see 

Figure 3.9) are kept on their original positions the 

singularity still occurs at the line AB. 

If pl  and p2  (see figure 3.8) are assumed to vary 

linearly accross the element in order to satisfy the new 

positions of nodes 4 and 6 then 

3 	1 
P1 = 4 :f t  

1 
P2 = 3 + 4 71  

and new expressions (3.33) are derived as 

1 
x = 7-1- (3 + 3c + C2  -c2) 

1 y = -4  (3 + 3n + n2 -n 3 ) 

(3.46a) 

(3.46b) 

(3.47a) 

(3.47b) 

Now, following the same procedures as from (3.34) to (3.38) 

it can be shown that the new strains ex 
still contain the 

x 2  terms. 

3.4-Test Cases 

3.4.1 - Introduction 

Several series of test cases have been performed to 
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assess these crack tip elements. Various techniques have 

been used to generate the finite element meshes for the 

test case configurations. 

A schematic flow chart of the strategy involved in 

the generation of the finite element data is shown in 

Figure 3.11. 

Basically, a mesh generation program was developed 

for each configuration. These programs read in the rele-

vant geometric parameters of the problem as well as data 

describing the loading conditions. 

These programs produce three separate sets of data 

which are written on three separate output tapes. Firstly, 

the relevant data for execution of program DIMDIM is 

written on tape DDMDAT. A second tape, DIMDAT, will contain 

all the data necessary for the execution of DIM3B code. 

Finally, data describing the geometry as well as the 

topology of the mesh is written on a tape called DRDAT. 

This tape contains the necessary data needed for a plot 

procedure (program DRAW) using some of the off-line graphic 

facilities available at the Imperial College Computer Centre. 

Some of the data which are needed for the DIMDIM, 

DIM3B and DRAW codes but which are not relevant of the mesh 

generation program, pass through it, unchanged, in the form 

of card images. These data are for instance, control 

parameters IIN, IOUT for DIM3B, sequential numbers for 

DIMDIM code, etc. 

Initially, a relatively small job consisting of the 

execution of the mesh generation program and the subsequent 
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plotting procedure (execution of program DRAW) is carried 

out at I.C.C.C. using an "Instanturnround" batch service. 

The finite element mesh is then checked visually in a 

TEKTRONIX terminal, using a "QUICK-LOOK" facility available 

at I.C.C.C., (82) and the rest of the input data can be 

easily examined by printing out the files DDMDAT and DIMDAT. 

The plot file generated by the program DRAW is then 

processed to generate the necessary magnetic tape format 

to drive a microfilem plotter (see Reference (83)). 

Once the necessary checks have been made a complete 

run using now the DIM3B and DIMDIM codes is then executed 

by resubmitting the mesh generation program at U.L.C.C. 

The plot procedure, Program DRAW 

A general plot program, DRAW, was developed to 

produce an isometric perspective of the 3D finite element 

mesh which is obtained by transforming the original coord-

inates x,y,z into new x',y',z' coordinates. 

This transformation, being the result of two rotations, 

as shown in figure 3.12, one around the z axis by an amount 

0x 
and the other around the y axis by an amount 0z will be 

described by a matrix TF as follows 

sine cos0xcos0z sinex
cos0z 	z  

[ 

-sinex 	
cost)

x 	
0 	(3.48) 

-sinexcos8z 
-sinezsinex 	

cos()z 

Then the new coordinates x',y',z' are obtained by the 

relation 
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x' { = [TF] x 

Y i  
z' 

{ 

Y 
z 

(3.49) 

By specifying the view angle defined by0x  and Oz  a 

prespective can be obtained by plotting the y',z' values 

as the logical plot coordinates for each nodal point. 

The plot is then carried out one element at a time 

where the order of execution of the logical functions 

"pen up" and "pen down" are described in Figure 3.13. 

Although this procedure involves the repetition 

of edges pertaining to more than one element it provides an 

easy check of systematic errors which may occur either in 

the topological description of the mesh or in the specific-

ation of the nodal coordinates. 

A listing of the program DRAW is described in Appendix 

4. 

3.4.2 - Compact Tension Specimens 

A mesh was generated, representing one quadrant of a 

Compact Tension Specimen (CTS) of length 2H, width W and 

thickness T, having a single edge crack of length 2a in 

the mid-plane. The specimen and mesh are shown in Figure 3.14. 

A primary two-dimensional mesh was developed for the 

plane x = T/2 and was specified in the form of input data 

cards. The mesh generation program for this case, based 

on this two-dimensional type of information, generates all 

nodal coordinates for the rest of the mesh and subsequently 
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generates the topological description of the mesh. 

Two layers of the 20-node elements were used through 

the thickness of a quadrant (i.e. four elements through 

the thickness of the specimen). The number of elements in 

the quadrant was 88 and the number of nodes 585. A uniform 

tensile stress was applied at the free end of the quadrant, 

in the direction normal to the plane of the crack. Approp-

riate boundary conditions were applied at nodes of faces 

representing planes of symmetry of the specimen excepting 

those in the free surface of the crack which were allowed 

to move freely. 

Figures 3.15 and 3.16 show the variations of 	stresses 

ahead of the crack front. In one case, Figure 3.15, the 

standard 20 node elements were used throughout, in the other 

case, Figure 3.16, the elements adjacent to the crack front 

were distorted by displacing the mid-side nodes to the 

quarter points nearest to the crack front as described in 

Section 3.3 of this chapter and illustrated in Figure 3.10. 

Although the results may be somewhat inaccurate, the 

ability of the distorted elements to model a singularity 

in stresses is well illustrated in Figure 3.16. 

The stress components in the thickness direction,ax, 

in the mid-plane of the specimen (x=0) are also shown in 

Figure 3.16. 

Figure 3.17 shows the mid-element stresses as a function 

of the distance, x, from the middle surface of the specimen 

for the elements adjacent to the crack tip. These nodal 

points are at a distance 0.08T form the crack front. 
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Although the number of nodal points is very small to 

draw any quantitative conclusions it may be suggested from 

the results in Figure 3.17 that the in-plane stresses a Y 

and az are nearly constant throughout the thickness except 

for a rapid fall near the free surface. 

The expression for the strain in the thickness direc-

tion is given by 

ex 	E  . 
1-[ ax  -v(ay +az) ] 
	

(3.50) 

Levey et al. (84) suggested that the condition of plane 

strain and plane stress can be described by a parameter, 

Ps, defined by the ratio 

P 

 

ax (3.51) s 	v(a y  +az  ) 

derived from expression (3.50), being unity when ex  is 

either zero or bounded (generalised plane strain), and zero 

under plane stress conditions, ax  = 0. 

From the results in Figure 3.17 the variation of the 

parameter Ps has been plotted on the same figure, and it 

shows an immediate decrease from a maximum value of.72 even 

in the more central portions of the specimen. However, from 

the behaviour of the ax 
stresses in Figure 3.16, it is 

expected that a curve of values Ps  in regions very close to 

the crack tip will be fairly constant reaching values of 

unity and presenting a drastic drop to values near zero only 

in a small region near the free surface. 
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Based on the reasoning referred to above, values of 

K which are not in the free surface have been obtained 

directly from the computed displacements by ploting the 

following function against r/a and extrapolating to r=0. 

For plane strain conditions and from expression (3.2) 

with 1,1 = E/2(1+v) 

K = Lim K* = E 
 Fr 

w  
4 (1+v) (1-v) 	x 

(3.51) 

r+0 

and values of K at free surfaces have been obtained by 

using the corresponding plane stress function 

27 K = Lim K* = E 	— w r 
r+0 

(3.52) 

where w is the displacement component normal to the crack 

face. 

The extrapolation procedures using expressions (3.51) 

and (3.52) are shown in figures 3.19 and 3.20. In one case, 

Figure 3.19, the standard 20 node elements have been used 

whereas in the other case, Figure 3.20, the elements adjacent 

to the crack front were distorted as was described earlier 

in this Section. The results have been normalized to the 

stress intensity factor in an infinite plate (Ko=a 

By comparing Figures 3.19 and 3.20, the improvement in 

the value of K, which is obtained by the use of the distorted 

elements may be seen. The value obtained on the mid-plane 

using these elements differs by only 2.6% from the value 

obtained by Brown and Srawley (85) using a two dimensional 
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plane strain collocation method. 

This slight increase in the extrapolated value of K 

in the mid-plane as compared to the two-dimensional plain 

strain analysis is in close qualitative agreement with the 

results shown in Figure 3.18 which were obtained by 

Yamamoto and Sumi (86) in their 3D finite element analysis 

of a standard single edge notch specimen (ASTM standard 

E-399-72). 

A table is presented below in which the present results 

(i) for CTS are compared with those obtained by Leevers (72) 

(ii) using a 2D plane stress and plain strain analysis 

(see Section 3.2.2.2) assuming the same configuration with 

a/W = 0.25. 

Values of K/a 

(i) 3D Finite Element Analysis 

Mid-plane of the specimen 

Free surface 

(ii) Williams Series Solutions 

Plane strain conditions 

Plane stress conditions 

1.54 

1.43 

1.51 

1.51 

The discrepancies of the K* curves obtained by the two 

methods of analysis for this Compact Tension Specimen (see 

Figures 3.1 and 3.20) could be due to the following reason: 

if variations in K values have been found with the 3D finite 

element analysis it is also expected that the coefficients 

of the higher order terms in expression (3.6) would also 

vary across the thickness. In fact, by inspection of the 
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slopes of the K* curves obtained with the finite element 

method it can be seen that the variation, across the thick-

ness, of the coefficient A3 in expression (3.6) presents a 

similar trend to the variation of K values shown in 

Figure 3.20 . 

Figure 3.21(b) shows the results obtained by use of 

the 32-node elements, distorted as shown in Figure 3.21(a). 

On the mid-plane close agreement is obtained with the plane 

strain results of Brown and Srawley. 

3.4.3 - Compact Tension Specimens with Curved Crack Fronts 

The results obtained for the compact tension specimen, 

with straight crack front, show a higher value of K in the 

interior planes, indicating a tendency for the crack to 

advance with a curved front. There is experimental evidence 

to support this conclusion (see for example Neale (87), 

and Johnson and Radon (88)). 

In a second series of tests, the mesh was distorted by 

a simple skewing technique to model curved crack fronts, 

having the form of circular arcs, in which the ratio of 

crack front radius R to the specimen thickness T varied 

between 0.57 and 1.13. 

The curved fronts and one of these meshes are shown 

in Figure 3.22. As in the first series of tests, values of 

K along the curved crack fronts were obtained by the extra-

polation method from the computed displacements. 

For these curved crack fronts the extrapolated values 

of K are expected to be somewhat inaccurate. 
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This is due to the fact that by using the mesh shown 

in Figure 3.22(b) the directions of the extrapolation 

procedures being parallel to the plane yz (see Figure 3.14) 

make an angle 0 with the direction perpendicular to the 

crack front as it is shown in Figure 3.22(a). 

This angle, 0, varies from zero in the mid-plane of 

the specimen (x=0) to a maximum in the outer planes and 

depending on the radius of curvature of the crack front. 

If changes of displacements near the crack border 

possess a certain degree of constancy relative to the 

direction parallel to the crack front(*) the value of r in 

expression (3.51) should be replaced, in a first approxima- 
(**) 

tion, by the term r cos Of 	'. This correction is based on 

the assumption that for small values of r the differences 

in the opening displacements at the points A and B, as 

shown in figure 3.22(a) should be negligible. 

It can be seen that the application of this correction 

factor for large values of r is no longer valid for two 

reasons: Firstly, the new points A' and B' (see Figure 3.22(a)) 

would be too far from each other, thus the assumption of 

displacement constancy between these two points no longer 

holds true. Secondly, the displacement fields in areas away 

from the crack tip, and in planes of x=constant, will be 

(*)As suggested by Irwin in Reference (38) 

This type of correction has been already introduced 
by Sih and Cha (58) by describing the crack border 
stresses referred to the bi-normal and osculating 
planes of the crack front curve of an elliptical crack. 
In their work, another factor,X is also introduced dep-
ending also on the crack front shape. For circular 
cracks X = cos 0 

(**) 
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mainly governed by the higher order terms of expression (3.4) 

which are expected to vary across the thickness (see 

previous Section) and at the same time to be less sensitive 

to the particulars of the crack front than the variations 

of the stress intensity factor. 

Therefore the K* curve obtained from the extrapolation 

method should still present its linear behaviour for large 

values of r and provide a reasonable extrapolated K value. 

If the finite element mesh were highly refined in the 

vicinity of the crack front a drop of the K* curve would 

eventually occur for small values of r which could be 

corrected then by the introduction of the correction factor 

suggested earlier on, however, this particular behaviour 

was not noticeable with the coarse meshes used in the 

. present work. 

A comparison of the extrapolation procedures using the 

computed displacements in the free surface of the crack 

( 0=Tr ) and in planes perpendicular to the crack surface 
(* (0 = Tr/2) is shown in Figure 3.23(b) ) for the more critical 

curved front case when the ratio R/T is 0.57. 

This relatively constant increase in K values obtained 

from the direction 0 = IT/2 has already been justified 

earlier in this chapter and supports the assumptions referred 

to above. 

Also, for each radius of curvature, a single value of 

K was obtained using the energy method based on equation 

(3.7). In this case the energy available for an increment 

of crack area dA is provided (see expression (3.7)) by the 

(*) Figure 3.23(a) indicates the corresponding results for the 
straight crack front. The same results are also ploted in 
Figure 3.1. 
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work done by the nodal point forces Pi  equivalent to the 

remote stress applied in the top faces of the specimen 

and required the computation 

G = 2 (7.: Pi  dwi)/dA (*) 	 (3.53) 

where d .wi  are the variations of the displacements, w, in 

the z direction of the nodal points where the forces Pi  

are applied. Again the results of K have been normalized to 

the value of K in an infinite plate. Figure 3.24 show; 

the results where the single value obtained by the energy 

method is indicated by a horizontal line. For each of 

these crack front radii, the value of K obtained for the 

mid-plane of the specimen was lower than the value obtained 

for the surface. Figure 3.25 shows a graph of the normalized 

K, obtained by the energy method, ploted against a parameter 

which represents the crack front curvature. The figure 

clearly shows the reduction of K with increasing tunnelling 

supporting observations of Neale (87). 

It should be pointed out that these values of K 

obtained from the global energy method are associated with 

the values of K which are obtained experimentally using 

for example, a compliance test, provided the assumed extension 

of the crack front is similar to those verified in post 

mortem observations of a test specimen. 

(*)The factor 2 arises from the fact that only one quarter 
of the specimen is considered. 
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A factor depending on a tunnelling geometric parameter 

should be introduced to correct the planar K calibration 

of a CTS specimen. This factor, based on results similar 

to those presented in Figure 3.25 would take into account 

in an adequate manner a possible non conservative inter-

pretation of test data. 

3.4.4 - Corner Crack 

The mesh for this case, shown in Figure 3.26 was 

developed from a similar mesh of 20 node elements used in 

the earlier tests, by a cylindrical skewing technique 

about the z axis. The number of elements was 88 and the 

number of nodes was 553. This technique has resulted in 

an axial groove, see Figure 3.26, which has been made 

small so that its effect on the results is negligible. This 

groove could eventually be eliminated by the use of an 

additional type of element. 

A uniform stress was applied in the direction z and 

the yz and zx faces were assumed to be free. 

Values of K, obtained by the extrapolation method from 

computed displacements of the crack face, are shown in 

Figure 3.27. The figure also shows results obtained by 

Tracey (89) for a cylindrical specimen using a different type 

of singularity element. The discrepancy is verified to 

increase towards the mid point of the crack front having a 

maximum of 5%. at a = 45°. 

In fact, for this direction, the uncracked ligament of 

the present specimen, being the diagonal of the square base, 
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is greater than in Tracey's geometry, which may be the 

reason of the decrease in values of K in the more central 

portions of the crack front of the present specimen. 

3.4.5 - Part-through Semi-Ciruclar Crack 

By using the mesh shown in Figure 3.26 	, changing 

the boundary conditions to represent symmetry about the 

zx face, a specimen with a part-through semi-circular 

crack was modelled. 

Values of K, obtained by the extrapolation method for 

computed displacements are shown in Figure 3.28. The figure 

also shows results obtained by Smith and Alavi (90). 

The maximum discrepancy is 2.0%. 

3.4.6 - Thick-walled Cylinders with Radial Part-Through 

Semi-Circular Cracks. 

Two different configurations of this type of structures 

have been studied and the results are presented in this 

Section. 

A part-through semi-circular crack emanating from 

the inner surface of the cylinders were assumed to exist 

in a radial plane containing the axis of the cylinder, as 

shown in Figure 3.29. 

The models investigated have the following geometries: 
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GEOMETRIC 
PARAMETERS CASE CYL 1 CASE CYL2 

R1  71.9 mm 71.9 mm 

R2 135.9 mm 115.8 mm 

W=R2/R1 1.88 1.61 

a/(R2-R1) .2 .29 

In both cases the length of the cylinders is ten 

times the crack length. The cylinders were subjected to 

internal pressure fully penetrating the crack, which is 

the most critical case. These geometries were selected 

because their geometric parameters defined above are similar 

to those of the "T-Junction" structure to be described 

later, in Chapter 4. 

3.4.6.1 - Mesh Generation 

A mesh was generated representing 1/8th of the 

structure as it is shown in Figure 3.29. 

This mesh was obtained from the previous corner crack 

finite element idealization by a three step skewing technique 

schematized in Figure 3.29. 

Due to symmetry tangential boundary conditions were 

applied in the y and x directions to nodes in the planes 

xz and yz respectively. Of course nodes in the crack face 

were allowed to move freely. 

In fact this representation assumes the existance of 

two equal cracks situated in the same radial plane and 
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diammetrically opposed. 

Shannon (91) using the finite element method has 

calculated the SIF for a single radial crack in a thick-

walled cylinder and presented also values of SIFs for two 

diametrically opposed cracks in cylinders of several diameter 

ratios. The results obtained by Shannon being derived from 

a two dimensional analysis are not applicable to curved 

crack fronts. 

For the equivalent straight-front cracks having the 

same geometric parameters, W and a/(R2-R1) of the cases 

CYL1 and CYL2, he predicts a decrease of about 9 and 6% 

respectively for the situation when two diametrically 

opposed cracks are present. 

It is expected that these differences should be somewhat 

reduced in the part-through crack cases due to the constraint 

supplied by the uncracked material beyond the diameter of 

the crack in the z direction. The lack of such constraint 

with two infinite length cracks is bound to cause a higher 

interaction of the crack tip stress fields. 

3.4.6.2 - Overall behaviour 

A check on the equilibrium of forces in both x and y 

directions was made. The summation of reactions at nodes 

where boundary conditions were applied differs by less than 

0.3% (in both cases, CYL1 and CYL2) from the total force 

applied due to internal pressure. 

In figure 3.30 nodal values of hoop and radial stresses 

in the plane xz are compared with the Lame solution for the 



- 92 - 

case CYL1, and a maximum error was found to be 3%. This 

discrepancy is quite acceptable in stress and is partially 

due to small deviations of the mid-side nodes from their 

correct positions, which is a result of the rather com-

plicated skewing techniques applied to the mesh. 

In Figure 3.31 the ratio of hoop stresses ahead of 

the crack tip divided by the respective Lame hoop stresses 

is plotted versus the distance from the crack tip. This 

plot illustrates the incapability of the finite element 

analysis to model the singular stress field described by 

(* expressions (1.5) ) However, it can be seen that the 

raising effect caused by the presence of the crack die 

away quite rapidly (approximately one crack length) and 

reaches values slightly below the Lame's solution as it 

was expected due to the offset of the load in that plane. 

This behaviour as well as the results presented in 

Figure 3.30 clearly supports the assumptions made earlier, 

and representing only 1/8th of the structure. 

The same behaviour and inaccuracies were verified 

for the case CYL2, therefore the results are not presented 

here. 

3.4.6.3 - Stress Intensity Factors 

Values of K along the crack front have been obtained 

by the extrapolation method using the computed displacements 

of the nodes in the free surface of the cracks. 

(*)From expression (1.5)0 = aKr 2  thus 
1 logo = Cte 	log r or loge = Cte -arc tg(26.5).log r 
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Plain strain conditions were assumed for all the 

extrapolation procedures but for those on lines in the 

inner surfaces of the cylinders where plane stress expres- 

sions were used. 

The variations of the SIFs along the crack fronts for 

the CYL1 and CYL2 cases are shown in Figure 3.32. These 

values have been non-dimensionalized by dividing them by 

the quantity p ,ra-  where p is the internal pressure and a 

the crack length. 

Qualitatively these results present a rather reasonable 

behaviour as compared to those of the part-through crack 

configuration studied in Section 3.4.5 (see Figure 3.28). 

The ratio between the SIFs at the free surface (a = 90°)and at 

the point of deepest penetration of the crack. (a =0°) is 

1.12 for CYL1 and 1.16 for CYL2. These ratios are greater 

than the same ratio in the part-through crack case, 1.1. 

This can be explained by the fact that the opening stresses 

in the uncracked cylinders are no longer constant but 

decrease across the thickness according to Lamps expressions. 

By inspection of the Lame solution for both cases the same 

reasoning can be used to explain the higher ratio for the 

CYL2 case. 

On the other hand, the average increase of about 14% 

of the SIFs from CYL1 to CYL2 can be associated with the 

ratio 1.17 between the maximum hoop stresses in CYL1 and 

CYL2 cases. 

Values of SIFs for these particular configurations were 

not found in the literature and a combination of existing 
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analyses, as suggested by Underwood (92), will be carried 

out to obtain some estimates of K values and assess the 

validity of the present results. 

This analysis is based on the assumption that crack 

shape effects in a pressurized cylinder can be similar, 

under certain conditions, to shape effects in a plate under 

tension. These analyses which will be combined are briefly 

described as follows: 

i) Cylinders with straight front cracks 

A long tube of internal radius R1  and external 

radius R2 contains a radial crack of length a from the 

inner surface. A uniform internal pressure acts on the 

cylinder and on the crack faces. Bowie and Freese (93) 

using a collocation method obtained the opening mode stress 

intensity factor K, over a wide range of radii and crack 

depth to thickness ratios. A plot of these results is shown 

in Figure 3.33. 

ii) Cylinders with curved-front cracks 

Cracks with curved fronts are more often found in 

structures and their shape can be idealized by a semi-

ellipse with major axis, 2c, and minor axis, a. The present 

cases CYL1 and CYL2 having semi-circular cracks are 

particular cases of those ellipses. 

Rice and Levy (94) obtained opening mode SIFs for a 

finite thickness plate under uniform tension with a semi-

elliptical crack at the point of deepest penetration of the 

crack. 

The proposed combination of these analysis can be 

expressed by the following relationship: 
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(K
1
)
e = a (Ki)s 	 (3.54) 

where 

(K1)e. = K1 for a pressurised cylinder with a semi-

elliptical crack 

(K1)s = K1 for a pressurized cylinder with a straight 

front crack 

K1 for a plate with a semi-elliptical crack a - 

The validity of expression (3.54) is limited either 

to thin walled cylinders or to thick-walled cylinders but 

with small crack depth to thickness ratio, as pointed out 

by Underwood. 

The values of a depend on the ratio a/(R2-R1) and on 

the aspect ratio, a/2c, of the ellipses representing the 

crack shape. A table of a values is presented in 

Reference (92). 

The K values of the equivalent straight crack fronts 

to cases,CYL1 and CYL2 are indicated by two circles in 

Figure 3.33, and these points are thought to lie within the 

range of validity of the expression (3.54). 

It should be pointed out that this method is only app- 

licable to non pressurized cracks. Now, using the principle 

of superposition, the effect of the pressure (P) acting on the 

crack surfaces can be dealth with by modifying expression (3.54) 

in the following manner. 

(ye  = (K1)e+ (ye  = a(Ki)s+ ap(Ki)s 	(3.55) 

where (K1)e 
= 2pff ; (K ) = p 1 s 

K1 for a plate with a straight edge notch 
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The following table shows more clearly the numerical 

results obtained by this combination method. 

The discrepancies shown below are within the 10% accuracy 

suggested by Underwood, and the higher 6.6% discrepancy may be 

associated with the larger a/(R2-R1)=.29 ratio for the CYL2 case. 

NUMERICAL RESULTS FOR THE COMBINATION ANALYSIS 

Description Cases 
CYL1 CYL2 R2 t 	(*)., 

3.33 	=2p 	'' 
	ilra .555 MNM-3/2 

1.07 

.594 MNm-//2 

1.77+3.52 

.64 

.44 

1.13+1.55 
=2.58 

2.62 

2.3 

.655 MNm-3/ 

1.20 

.786 MNmY2 

1.77+5.16 

.64 

.39 

1.13+2.01 
=3.14 

2.94 

6.6 

From Fig. 	K 	R2 	R2 o 	R2  - Ri  

From Fig. 	3.33 K1/K0 (see circles) 

Thus piTra + 	(Ki ) s  

Non dimensionalized 

pi7i17 /pia + 	(K i ) s  /pia 
P 

a 
P 

	Tr /(p 2pp/(piTTa-) 

Values of 	from Ref.(92) 

From expression 3.55 	(K i) e  
T 

K1  obtained from figure 3.32 
K1--(1‹1)eT % discrepancy 2. 
K140‹LT 

However, if in the combination analysis two diametrically 

opposed cracks were considered, in agreement with the present 

finite element idealization, the values Kis  would be reduced by 

about 10% according to Shannon's predictions(91) for these cases. 

On the other hand, this 10% reduction of Kls values for 

cylinders with straight-crack fronts are expected to be some-

what reduced for the case of cylinders with part-through 

cracks (see Section 3.4.6.2) thus the discrepancies shown in 

the table above should be somewhat changed; in the case CYL1 

an increase and in the case CYL2 a decrease. 

(*) Assuming p = 1MNm-2 
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CHAPTER 4 

SURFACE CRACKS IN A T-JUNCTION OF THICK WALLED CYLINDERS 

4.1 - General Considerations  

Excessive deformation, leakage or fracture are the 

most common ways by which a containment system may fail 

(see Ref. (95)). It has been shown in the past that the 

first two modes of failure referred to above can be effect-

ively prevented by the use of the more conventional methods 

of design. 

However, peak tension stresses do occur in some regions 

of such containment systems and, particularly in thick- 

walled components, brittle failures can initiate either from 

defects in those areas, or cracks which may have grown to 

critical sizes by fatigue and/or corrosion. 

As a result Linear Elastic Fracture Mechanics (LEFM) can 

be used to assess the structural integrity of these compon-

ents as it is suggested in Appendix G of the ASME Code, 

Section III, (Ref.(96)). 

The utilization of LEFM to prove the structural integrity 

of a containment system requires the inter-relationship of 

various aspects as follows: 

i) Defect characterization 

Flaws or cracks may be assumed to exist in the more 

critical areas (stress concentrations) of the vessel and 

with the most detrimental orientation. 
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ii) Dominant stresses during operation. 

The design pressure and operating temperatures may be 

considered, as well as the effect of proof loading and a 

detailed estimate of the transient conditions must be made. 

iii) The material fracture toughness (K1C)  may be 

measured by fracture tests and the variation of these values 

for heat affected zones and weld metals may have to be taken 

into consideration. In Nuclear Reactor Technology toughness 

degradation due to radiation may also have to be considered. 

As can be seen from the foregoing, any safety analysis 

of a wide range of structures relating all these aspects in 

a rational basis may involve a major research program which 

is outside the scope of this work. 

A more detailed description of the ways in which LEFM 

and general yielding fracture mechanics can be used in 

pressure vessels was presented by Burdekin and Dawes Ref.(97). 

Mager and Riccardella Ref. (98) presented also a clear 

example of Fracture Mechanics Technology in analysing the 

integrity during the site life time of a heavy section 

nuclear reactor pressure vessel. An excellent compilation of 

papers on this subject can be found in Ref.(99). 

It was already pointed out in Chapter 1 that LEFM is 

mainly valid for situations where fracture occurs prior to 

large scale yielding, and its use is mainly confined to the 

plain strain regime, Ref. (97). 

Although the application of LEFM in cases where there is 

a considerable plastic region may be doubtful, it can still 

be used as a lower bound (e.g. Refs.(2) and (97)). 
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Moreover the evaluation of the stress intensity factors 

for assumed cracks in the containment systems under hydraulic 

test conditions is a necessary part of some methods of 

failure analysis(*) (e.g. Refs.(2) and (98)). 

4.2 Definition of the Problem  

A main steam vent pipe T-junction of a CEGB power plant 

was considered as the basis for the work reported in this 

Chapter. A sketch of this component is shown in Figure 4.1 

and the data of the problem as supplied are: 

Inside radius of the branch pipe 	ro = 73.1 mm 

Thickness of the branch pipe (near 

the junction area) 	to = 63.5 mm 

Inside radius of the run pipe 	Ro = 120.6 mm 

Thickness of the run pipe 	To = 43.9 mm 

Young's Modulus 	E = 2.07x103  N/mm2  

Poisson's ratio (assumed) 	v = 0.3 

Internal pressure 	P = 17.24 N/mm2  

It is expected that high local stresses will occur at 

the nozzle discontinuities and these areas should be considered 

as key points for a detailed stress analysis bearing in mind 

the subsequent LEFM studies of possible crack configurations 

situated in such regions. 

(*) As a result of a hydraulic test performed on a pressure 
vessel it may be reasonably assumed that no flaw greater 
than a certain size, say a, was initially present in the 
vessel. Thus, subsequent studies involving transient 
conditions may assume an initial crack of size a. 
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Based on reports of similar studies carried out by 

other workers, Refs. (1) - (5), and in view of past experience 

with the various finite element analyses described in the 

previous Chapter(*), it was anticipated that an adequate 

mesh idealization of the crack configurations could only 

be possible with the use of a substructuring technique. The 

number of degrees of freedom involved in an adequate mesh 

representation of the T-junction and, simultaneously, a 

considerable mesh density around the cracked regions would 

be incompatible with the capabilities of the computer 
(**) 

facilities available at ULCC 	'. 

Therefore, following a similar procedure as that 

described by Hellen and Dowling, Ref.(2), the T-junction was 

idealized by a finite element mesh (main structure) and an 

initial stress analysis was performed using the DIM3B code. 

Subsequently, a subregion of the T-junction (substructure) 

was represented by a reasonably refined mesh where various 

crack configurations were idealized. 

Boundary conditions were prescribed in this substructure 

based on the nodal displacements obtained from the previous 

analysis. These boundary conditions were applied in nodes 

pertaining to the interface between the main structure and 

the substructure. 

(*)An account of the computer requirements and costs of 
the various finite element analyses described in this 
thesis, will be made in Chapter 5. 

(**) 
CDC 6600 
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Unfortunately, experimental results were not available 

for comparison with the present finite element solutions. 

Therefore, the achievement of some confidence in the present 

analysis could only be obtained, with some intuition, by 

a thorough check on the stress analysis results and on the 

overall behaviour of the structure. Also some qualitative 

comparisons of the trends shown by the present results with 

others found in the literature for similar components but with 

rather different geometric parameters are presented. Thus, 

this stress analysis is described in Sections 4.3 - 4.5 and 

the crack studies return to Section 4.6. 

4.3 Finite Element Mesh Idealizations  

4.3.1 - General 

For the situation when the T-junction is only subjected 

to internal pressure, as in the present case, the structure 

has two planes of symmetry. Taking advantage of this fact 

only one quarter of the structure has to be analysed as it is 

shown schematically in Figure 4.2. Appropriate boundary 

conditions were prescribed in nodes in these planes of 

symmetry. 

The top ends of the branch pipe and the run pipe were 

subjected to axial loads representing the effects of end 

caps. 

4.3.2 - 32 Node Element Mesh. CASE TJUN1 

In the early stages of this work, a simplified model 

of the T-junction was idealized by a mesh of 32 node elements 
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as it is shown in Figure 4.3. Only one layer of these 

elements was used across the thickness and throughout the 

structure. This was justified by the fact that stresses are 

modelled within these elements by second order polynomials 

(see Section 2.2.3(*)), thus being able to model the Lame's 

solutions in regions of the cylinders away from the junction 

area. 

It was also expected that this type of mesh would 

represent with reasonable accuracy the stresses in the 

nozzle regions. The number of elements was 49 and the number 

of nodes 728, 

A mesh generation program was developed to generate the 

necessary data for the DIM3B code. 

Due, mainly, to the lack of experience with such 

problems a rather complicated and unreliable mesh generation 

technique was developed. It was found that the bandwidth of 

this mesh was too high (208), resulting in large computing 
(**) 

costs 	', despite the use of a simplified idealization of 

the structure which did not model adequately the weld details. 

As a consequence, only one run was performed and this mesh was 

abandoned. Some of the results of this analysis will be 

presented in the following sections of this chapter. 

(*) Stresses are obtained by differentiating displacements, 
hence from expressions (2.13 f) and (2.13 g) it can be 
shown that stresses are modelled by second order poly-
nomials. 

(**)The computing costs involved in this analysis will be 
described later in Chapter 5. 
The bandwidth is understood to be the maximum number of 
unknown variables at one time (NUNKVA). 
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4.3.3 - 20 Node Element Mesh. CASE TJUN2 

4.3.3.1 - Mesh Generation 

Based on the previous experience, an entirely different 

mesh generation technique was adopted. This technique is 

similar to that described in Section 3.4.2 for the idealiz-

ation of the CTS configurations. 

For the sake of the explanation let us assume the 

existence of radial planes containing the axis of the branch 

pipe and defined by an angle as illustrated in Figure 4.2. 

These planes will be subsequently referred to by the values 

of 13. 

This new mesh generation technique is based on the 

assumption that the entire structure can be defined by the 

specification of the cross section of the structure at a= 0°  

and the inner radii of the run pipe and branch pipe. Thus, 

for values of a between 0°  and 90°  the idealized details of 

the weld region may not be the same as those found in 

practice. However, it is assumed that this idealization is 

still acceptable for the present purposes. 

A primary two dimensional mesh was developed for the 

cross section of the structure at 13=0°  as it is shown in 

Figure 4.4. 

The nodal coordinates input data were obtained from a 

scaled drawing of this section using a CADMAC digitiser 

This machine enables x,y coordinates of a drawing to be 

picked up by an electronic probe and automatically recorded 

on punched cards. The topological description of this 2D 

mesh was specified manually also in the form of punched cards. 
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The mesh generation program for this case, based on 

this 2D type of information generates all nodal coordinates 

for the 3D structure as well as the topological description 

of the 3D mesh. 

Various skewing techniques have been used in order to 

obtain the final mesh and they can be divided into three 

stages. 

Stage I: Construction of a slab with a cross section 

identical to that illustrated in Figure 4.4. 

Stage II: Basically a cylindrical skewing technique 

around the z axis is used, generating a nozzle-on-a flat 

plate configuration. 

These first two stages are illustrated in Figure 4.5. 

These drawings have been generated by the program DRAW using 

intermediate nodal coordinate data obtained immediately 

after each one of these stages. 

Stage III: Another cylindrical skewing technique now 

around the y-axis, is applied to the plate and to a small 

portion of the branch pipe, generating then the run pipe. In 

this stage some difficulties arise in the specification of 

nodal coordinates in nodes near the junction area of the cyl-

inders and for values of P.near 90°. Some particular procedures 

had to be used to correct in a proper manner these nodal 

coordinates. The mesh as finally used is shown in Figure 4.6. 

As can be seen from the foregoing, this technique 

allows the generation of a 3D mesh of a T-junction based on 

a rather simple set of specifications which is normally 
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available in any design drawing of such components. It is 

also clear that changes in the original design details are 

very easily accommodated in the input data for the mesh 

generation program. 

As illustrated in Figure 4.6 the structure was divided 

into four sections separated by radial planes of different 

value of f3. In each section 2 layers of 20 node elements 

have been used throughout as it was specified intially in the 

drawing shown in Figure 4.4. The total number of elements 

was 104 and the total number of nodes 713. Due to the 

topological regularity of this mesh and of the fact that 20 

node elements have been used, the bandwidth dropped sharply 

to the value NUNKVA=157, which is 25% less than the previous 

case. On the other hand a better mesh density was obtained, 

especially in the nozzle regions. 

In this first case it was decided to assume that the 

face ABCD (see Figure 4.6) would be sufficiently away from 

the junction areas in order to neglect any disturbances, in 

stresses and displacements, caused by the presence of the 

nozzle. Therefore the nodal points in that face were only 

allowed to move in a radial plane in relation of the y-axis 

which is the axis of the run pipe. Due to symmetry appropriate 

boundary conditions were prescribed in nodes in the planes 

= 0°  and 13 = 90°. 

4.3.3.2 - Results of Finite Element Analysis for Case TJUN2 

Overall Behaviour. 

The overall behaviour of this structure has been invest-

igated in terms of stresses and displacements in various 



- 106 - 

sections of the structure. 

A check on the equilibrium forces in the x,y and z 

directions was made. For each of these directions the summ-

ation of the calculated reactions at nodes where boundary 

conditions were applied differs by less than 0.1% form the 

total force applied due to internal pressure. 

In Figure 4.7 the thicker lines represent the original 

sections of the structure for the planes a= 90°_and ii= 0°. 

The thinner lines represent the displacement solution for 

these sections. A perspective view of the displaced structure 

is illustrated in Figure 4.8. From these results it was 

found that the computed radial displacement for the point P 

(see Figure 4.7) was 2.71 times greater than the value 

predicted by the following Lamc expression for displacements 

Illpi 	[ 	122  1 	 9 
U = ,._,  	(1-2v)r -I- (11-v) -.] r 	r., R2 _R2 	r 

2 1 
(4.1) 

where E = Young's Modulus 

v = Poisson's ratio 

pi= internal pressure 

R1= internal radius 

R2= external radius 

r = radial coordinate from the axis of the cylinder. 

This fact clearly shows that the assumed boundary cond- 

itions in the face ABCD (see figure 4.6) are not valid for 

this structure. Moreover, if the radial displacements for 

the points situated in the face ABCD are affected by the 

presence of the nozzle discontinuity, as it appears to be, the 

rather large ratio, 2.71, referred to above is also associated 
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with the fact that two nozzles diametrically opposed have 

been assumed in the present mesh idealization. 

From these results it is clear that a proper idealization 

of the structure has to include the lower part of the run 

pipe, thus representing a full quarter of the structure. The 

finite element analysis of this new mesh will be described 

in the next Section. 

4.3.4 - 20 Node Element Mesh. Case TJUN3 

4.3.4.1 - Mesh generation 

As illustrated in Figure 4.9 the finite element mesh 

for this case was obtained from the previous mesh by simply 

adding eight more elements representing the rest of the run 

pipe. In the new face ABCD appropriate new boundary conditions 

were prescribed and one of the nodes in the line AB was 

totally fixed to avoid rigid body motion in the z direction. 

The total number of elements and nodes was respectively 

112 and 773. By using a suitable numbering scheme for the 

extra elements (see Figure 4.10) the bandwidth was kept the 

same as in the previous case. 

4.3.4.2 - Results of the Finite Element Analysis for 

Case TJUN3. Overall behaviour. 

Again, a check on the equilibrium forces in the x,y 

and z direction was made, and similarly to the previous case 

the same agreement was found (less than 0.10). 

Equivalent results to those shown in Figures 4.7 and 
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4.8 are illustrated for this case in Figures 4.11 and 4.12. 

From these results, basically two conclusions can be drawn. 

Firstly, for the same point P as in the previous case, 

the ratio between the computed radial displacement and that 

predicted by expression (4.1) has been now reduced to the 

value 1.84. Moreover, it is clearly shown in Figure 4.11 

that the line PQ loses its radial direction in the displaced 

section. These two results clearly show the invalidity of 

the idealization described in Section 4.3.3 for the case 

TJUN2. 

Secondly, it can be seen from figures 4.11 and 4.12 

that the computed displacements near the ends of both 

cylinders instead of converging to the predicted Lame solu-

tions were developing an oval shape. 

A better illustration of this behaviour in the ends of 

the branch pipe and the run pipe is shown in Figures 4.13 

and 4.14 respectively. In these figures the displacements 

and stresses obtained with the present analysis are compared 

to the predicted Lame solutions. 

By inspection of these results (see Figures 4.13(b) and 

4.14(b)) it is interesting to note that the deviations 

of the computed stresses from the Lame solutions do indicate 

the presence of bending moments which have been superimposed 

on the internal pressure. 

Although no report describing this phenomenon was 

found in the literature it is quite acceptable physically and 

it is due to the distribution of self equilibrating forces 
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(* in the junction area of the cylinders. )  

By comparison of the displacement results described in 

Figures 4.7 and 4.11 it is clear that this phenomenon is less 

noticeable in the present case than in the previous TJUN2 con-

figuration where two diametrically opposed nozzles were 

actually assumed. 

For the cases TJUN2 and TJUN3, Figs. 4.15 and 4.16 show 

various contours maps of hoop stresses obtained in the nozzle 

regions with the present finite element analysis. For each 

case two cross sections were considered, a=o° and 0=90°  in 

Figures 4.15 and 4.16 respectively. 

It can be seen that the stress patterns are very similar 

for both cases TJUN2 and TJUN3, however, a slight decrease in 

the overall stress levels was noticed for the case TJUN3. 

These relative differences in the stress levels and mainly 

for the plane 0=0°  (see Figure 4.15) are much smaller than the 

relative differences obtained for the displacements (compare 

Figures 4.7 and 4.11). This fact led to the conclusion that 

the prescription of radial displacements according to expres-

sion (4.1) in the ends of the cylinders, in order to avoid the 

ovalization effect, would have a negligible influence on the 

stress patterns indicated in Figures 4.15 and 4.16. Therefore, 

possible alterations to the prescribed conditions in the mesh 

TJUN3 were considered and discarded. 

Figure 4.17 shows a contour map of hoop stresses in the 

nozzle 'region of a PWR pressure vessel similar to that shown 

in Figure 1.1. These results were obtained by Hellen and 

(*)This type of behaviour can be easily visualized when sub-
jecting one end of a cylinder to two types of loads: 
Either (i) a set of self-equilibrating axial loads or 
(ii) two diametrically radial loads. 
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Dowling, Ref.(2), using also a Finite Element Method. 

In Figure 4.18 values of hoop stresses along the inner 

surface in the crotch corner region obtained by Broekhoven, 

Ref.(75), also for a PWR vessel,(*) are compared with the 

results obtained by the present analysis for the case 

TJUN3. 

In both cases quantitiative comparisons of results are 

not possible due to major differences in the geometric 

parameters of this configurations and in the geometric nozzle 

details (see Figure 4.19) as compared with the present 

geometry. However, in the first case the similarity of the 

stress patterns with those of Figure 4.15 are encouraging. 

In the second case, Figure 4.18, the present results 

are indicated by the full dots, the circles will be 

referred to later on, and the squares indicate the results 

from the case TJUN1. The results obtained by Broekhoven are 

indicated by the thinner lines. 

In the ascending part of these curves reasonable 

agreement is verified and it is due to the fact that in both 

configurations the average ratios, thickness to internal 

radius, for the branch pipes, are very similar, (.94 in the 

present case and 1.04 in Ref. (75)). The larger discrepancies 

in the descending part of these curves are mainly due to the 

fact that in Ref.(75), the vessel is modelled by a flat 

plate, thus not allowing for an increase of hoop stresses in 

the inner surface as predicted theoretically if a cylinder 

was considered instead. The rather high peak value obtained 

(*) modelled by a nozzle on a flat plate. 



in the present results is associated with the sharp corner 

modelled.in the TJUN3 finite element mesh. The proper 

idealization of this geometric detail as specified in Figure 

4.1 will be made later on. 

In view of the foregoing, the subsequent studies 

described in the following Sections of this Chapter will 

be referred to as the stress analysis results obtained in the 

TJUN3 case. 

4.4 Validity of the Substructuring Technique  

Part-through crack configurations in the section (3=0°  

can be considered, from the stress analysis point of view, 

as the most critical situation regarding the fracture safety 

analysis of the present T-junction. This is due to the 

rather high stress concentration factor, 3.8, which was 

obtained in the crotch corner region of that section, (see 

Figure 4.18). 

Because the assumed crack configurations are situated in 

a plane of symmetry of the T-junction, only one half of the 

region surrounding the crack has to be idealized in any 

substructuring technique. 

Before entering the actual analysis of such crack con-

figurations, using a detailed idealization of that part of 

the structure, a simple test was carried out to assess the 

validity of such procedure. 

Using the previous finite element mesh, the node which 

represents the crotch corner in the plane fi = 0°  was released 

from its prescribed zero displacement in the x direction. As 
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it is illustrated in Figure 4.20 this procedure implies 

the existence of a corner crack having an approximate 

circular shape with an average radius of 23 mm. In addition, 

a force was applied on this node in the x-direction repres-

enting the pressure acting on the crack surfaces. 

Some of the nodal points which will be part of the 

interface between the main structure and the substructure, 

have been chosen to monitor the computed displacements 

obtained in the present test. A comparison of these 

results with those obtained in the main structure analysis is 

shown in Figure 4.21. In this figure, the circles, which are 

referred to the right hand axis, indicate for each nodal 

point the ratio between the computed displacement components, 

u in the x direction for the uncracked and cracked situations. 

Similar results were obtained for the v and w components 

and the maximum discrepancy was found to be less than 0.05%. 

As long as the boundaries of the idealized subregion 

are as remote from the crack regions as the nodal points 

referred to above, the results shown in Figure 4.21 clearly 

support the validity of the substructuring technique which 

will be described in the following sections of this chapter. 

4.5 Substructure Analysis  

4.5.1 - The Choice of Crack Configurations 

Basically, in Appendix G of the ASME code, Section III, 

it is indicated that the plane strain fracture toughness 

values of the material should exceed by a given safety 

factor the K-values of a postulated defect. This defect has 
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a depth of one quarter of the section thickness and a length 

of six times that depth. It is also suggested that for the 

nozzle regions the postulated defect size may be a fraction 

of that postulated for the vessel. 

If these defects are small they can be treated as cracks 

under constant stress fields magnified by a stress concen-

tration factor. However, the use of simplified and approx-

imate procedures for estimating K-values of larger crack 

configurations in the nozzle regions may yield rather 

inaccurate results. Therefore assessments of the severity of 

such cracks, based on this type of approach are bound to 

be too conservative. 

Four circular crack configurations of successively 

increasing depth were thus studied. A sketch of these crack 

configurations is shown in Figure 4.22. 

The particular choice of these geometries is due to 

three reasons. Firstly, post mortem observation of cracked 

nozzles (see Refs. (6) and (3)), indicate the existence of 

initial defects of circular or nearly circular shape. 

Secondly, this shape is very convenient, bearing in 

mind some limitations associated with the evaluation of K-

values, using the extrapolation method. This will be expl-

ained later on. 

Finally, for engineering purposes, the values of SIFs 

along an elliptical crack front, may be estimated within 10% 

accuracy by assuming quarter circular corner cracks instead
*) 

This assumption was based on the results presented by Cha
(100) 

(*)For ellipseswith aspect ratios down to 0.4 (see Ref.(100)) 



- 114 - 

and is also substantiated by Kobayashi and Enetanya
(101)  in 

their studies of elliptical corner crack configurations, even 

for the situation when linear varying stress distributions 

are considered. 

4.5.2 Mesh Generation 

A sketch of the subregion which was considered for the 

present substructure analysis is shown in Figure 4.23. 

It is clear from this figure that all the nodes in the 

interfaces between the main structure and the substructure 

are situated at similar distances, from the crack region, as 

those of the nodes considered in Section 4.4 of this Chapter. 

The technique used to generate the substructure was 

basically derived from that used in the idealization of the 

cracked cylinders described in Chapter 3 (see Section3.4.6.1). 

Suitable geometric alterations to the external boundaries 

were initially specified in order to account for the weld 

details of the present geometry. ¶he final mesh as illus-

trated in Figure 4.24 was then obtained by subsequently 

applying a cylindrical skewing technique similar to that 

referred to as stage III which was described in Section 4.3.3.1. 

Some relevant features associated with this mesh are 

described as follows: 

i) The total number of elements and nodes is 88 and 

583 respectively. 

ii) Using always the same topology, the various crack 

configurations were idealized by the application of simple 

linear skewing techniques. In these skewing procedures only 
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the interior nodes suffered changes in their geometric 

positions, whereas the nodes in the interfaces were kept un-

changed. Hence, the boundary conditions based on the nodal 

displacements, such as those indicated in Figure 4.21, 

remained the same for the various crack configurations. 

iii) At the time the TJUN3 mesh was developed it was 

possible to forsee for the substructure the spatial positions 

of the nodes in the interfaces. Therefore, identical spatial 

nodal positions were ensured, in the main structure, by an 

adequate specification of the values of f3 for the various 

radial planes in which the nodal points are located. Further 

complications and inaccuracies associated with the specifica-

tion of boundary conditions are avoided with this procedure. 

iv) With the present mesh, a proper representation of 

the crotch corner, as specified in Figure 4.1, replaced the 

sharp corner idealization of the main structure (TJUN3). 

v) Internal pressure was specified in the inner surfaces 

and was assumed to fully penetrate the crack, thus acting on 

its surfaces. 

vi) As it is shown in Figure 4.24, the nodes in the free 

surface of the crack are distributed in five radial directions 

emanating from the crotch corner. By assuming circular-

shaped cracks, these directions remain perpendicular to the 

crack fronts. Thus the evaluation of SIFs along the crack 

front by using the extrapolation method in these radial 

(* directions is a straight forward procedure. )  

(*) The use of the extrapolation methods in directions which 
are not perpendicular to the crack front have been dis-
cussed in Section 3.4.3. 
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4.5.3 - Analysis of the Uncracked Substructure 

Overall Behaviour. 

In order to obtain greater confidence in the substruct-

uring procedure a defect-free substructure was considered 

before the idealization of any crack configurations. The 

overall behaviour of the substructure was investigated in 

terms of the stresses in the nozzle region. 

A comparison of the hoop stress patterns obtained in 

both the main structure and the substructure is shown in 

Figure 4.26. 

In Figure 4.18 the circles represent the values of the 

hoop stresses which were obtained in the inner surface with 

the present analysis. It is interesting to see that the 

peak stress value obtained in the main structure analysis, 

where a sharp corner was assumed, has been smoothed out with 

the proper idealization of the crotch corner geometry. 

In both cases, Figures 4.18 and 4.26, the similarity 

of the stress patterns is again encouraging. 

However, as illustrated in Figure 4.26, some minor 

differences are noticeable in the vicinity of the crotch 

corner and in the area close to the run pipe. In the former 

region the results obtained in the substructure analysis are 

believed to be more accurate whereas in the latter, the TJUN3 

analysis should provide better results. 

This is due to the fact that in the substructure ideal-

ization, a better mesh density was obtained in the crotch 

corner at the cost of a coarser mesh in the areas away from 

that region as illustrated in Figure 4.25. 
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4.6 Analysis of the Cracked Structure  

4.6.1 - Idealization of the Cracks 

The various cracks have been idealized by releasing the 

nodes in the free surface of the crack from their prescribed 

zero displacements in the x direction. Again, the mid-side 

nodes adjacent to the crack front were displaced to the 

quarter point positions nearest to the nodes in the crack 

front. 

4.6.2 - Overall behaviour 

The influence of the presence of various cracks on 

the overall behaviour of the substructure was investigated 

by monitoring the changes of the boundary reactions as the 

crack size increases. 

The maximum changes for each crack configuration and in 

various radial planes B, are shown in the table below. The 

deviations are indicated in percentage values of the initial 

reactions which were obtained in the uncracked substructure 

analysis. 
CHANGES IN THE NODAL REACTIONS 

CRACK SIZE 
mm 

Max. Deviation % 

13 = 0°  13= 	34o  fi = 	90o  

1 12.7 1.1 .8 .9 

2 19.1 2.8 2.0 2.2 

3 25.4 6.7 4.2 4.5 

4 31.8 11.4 7.6 7.7 
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As can be seen from this table the deviations increase 

considerably with the crack depth and the application of the 

present substructuring technique may eventually underestimate 

the values of the SIFs for cracks deeper than the crack 3. 

The results obtained for crack 4 yet will be presented. 

4.6.3 - Stresses Ahead of the Crack Fronts 

The a
x 
stress distributions for the sections a=0, 

a = 45°, a = 90°  ahead of the crack fronts are shown in 

Figure 4.27. 

It is interesting to note the values of these stresses 

in areas away form the crack regions are just slightly 

affected by the presence of cracks of increasing size. This 

may be due to the "fixed grip" conditions to which this 

substructure was subjected. Small variations of the stress 

levels in these areas would be expected to occur if a full 

structure were analysed instead. 

Due to reasons which have already been described in 

Chapter 3, the stress data in the neighbourhood of the cracks 

can only support, in a qualitative manner, the distribution 

of the SIFs along the various crack fronts. In fact the 

stress values at the quarter point nodes are in close qualit-

ative agreement with the variation of the SIFs along the 

various crack fronts (see Figure 4.28). 

4.6.4 - Evaluation of K-Factors, Discussion of Results 

As in the previous test cases, which were described in 

Chapter 3, the extrapolation method was applied using the 
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displacement components in the x directions of the nodes in 

the free surface of the cracks, thus 0=Tr . Plain strain 

conditions were assumed for all the directions , with the 

exception of a= 0°  and a= 90°  where plane stress express- 

ions were used instead. This first group of results is shown 

in Figure 4.28. 

In order to obtain more confidence in these results the 

SIFs were also obtained using the extrapolation method in 

the directions perpendicular to the crack plane, thus for 

0 = 7/2. This second set of results is also shown in Figure 

4.28. 

It is interesting to note that the K-values obtained with 

this second procedure (for 0= 7/2) are consistently greater, 

by about 9%, than the results obtained with the extrapolation 

procedures in the free surface of the crack. 

These differences, as pointed out in Chapter 3 (Section3.2.2) 

are associated with the inaccuracies involved in the extra- 

polation procedures and mainly in the direction e = 7/2. 

Due to this, the second set of results may be regarded as 

an upper bound to the true solution. Subsequently, based on 

these two sets of results, areas of uncertainty of the SIFs 

distributions, for each crack configuration, may be defined 

as illustrated in Figure 4.28. 

Another procedure was used, based on the Global Energy 

Method and is described as follows. 

As it is shown in Figure 4.29, when the crack is extended 

by skewing the mesh, the energy balance equation for the 

system can be expressed as 



- 120 - 

1 - A 	= GAA = 2 — R* Au
m" "m  (4.2) 

provided no pressure is acting on the free surfaces of the 

crack. 

Now using the principle of superposition, the work done 

by the nodal equivalent point forces to the internal pressure 

can be added to the right hand side of equation (4.2) thus 

	

m P
1 	1 
+ Pn. 

-AU. 	 + X 	ni+
2 	

Au
n 

GAA = I R
m 
 Au' 

2 	m n=1 

where AU i i+1 

R ,* mR m 

Au',Au'* 
m 

- Change of strain energy from crack i 

to crack i+1 

- Reaction on the node m 

- Crack opening displacement in the 

point A indicated in Figure 4.29. 

AUn = U 	- U 
n. ni+1 	1 

P
ni43pi 	- Nodal equivalent point forces to the 

the internal pressure. 

The work done by the internal pressure is evaluated by 

assuming the displacement of forces which are an average of 

the forces obtained for crack i and crack i+1 and can be 

obtained from the output of DIM3B code. 

The subsequent strain energy release rates obtained 

with this method are best associated with an intermediate 

crack by assuming the mean of the depths of cracks i and i+1. 

From this method the values of strain energy release 

rates have been translated into K-values and were found to be 
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about 40% lower than those predicted by the extrapolation 

method. Very little importance should be attached to these 

discrepancies due to the following reasons: 

i) Large inaccuracies involved in the evaluation of the 

u' value. n 

ii) Problems associated with the evaluation of the work 

done by the internal pressure on the crack surfaces. 

iii) Rather coarse crack extensions have been assumed 

by using the results from the analysis of cracks 1 to 4. 

iv) The present procedure, as well as the crack closure 

work method (see Section 3.2.3), are more accurately used 

when the crack extensions are idealized by supressing the pres-

cribed conditions in nodes ahead of the crack front, instead 

using skewing techniques as in the present case. 

It has already been confirmed by other workers in their 

LEFM studies of cracks in nozzles (see Refs. (2), (3), and 

(59)) that, for these types of configurations the use of 
\ 

simplified analytical or semi-analytical procedures to eval-' 

uate K-values, may result in a considerable inaccurate 

estimates of the true solutions. Therefore this type of 

analysis, which is bound to be inconclusive was not considered 

in the present work. 

Alternatively, a comparative study of the present 

results with those described in Refs. (2) and (75) was carried 

out and is based on the following assumptions. It has been 

shown (see Figures 4.15, 4.17 and 4.18) that hoop stress 

patterns in the nozzle regions, for the section fl= 0°, are 

very similar for a relatively wide range of geometries. 



- 122 - 

In fact: 

i) Maximum stress concentration factor is always found 

at the crotch corner, whereas very low stress levels are 

obtained in the opposite surfaces. 

ii) The membrane stresses away from the nozzle regions 

are normally higher in the vessel or run pipe than in the 

branch pipe. 

iii) However, for small distances away from the crotch 

corner the stresses in the inner surfaces die away more 

rapidly in the side of the vessel or run pipe. 

iv) The hoop stress distributions for angles of a near 

45°  are lower than the same distributions for a = 0°  and 

a = 900. 

v) The variations of SIFs along the crack fronts 

show similar trends to the stress distributions with the 

exception for crack depths smaller than the crotch corner 

radius. 

vi) The/values of the stress concentration factor in the 

crotch corner regions seem to increase when the crotch 

corner radius decrease. 

From these conclusions, an average of SIFs for each 

crack configuration in the various nozzle geometries can be 

related by normalizing them to the SIF of a penny-shaped 

crack, Ko, (see exp. 1.13, Chapter 1), subjected to a remote 

stress equal to the membrane stress of the vessel, thus Ko  

can be expressed as 

Ko  = 2 p R 
	

(4.4) 
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where 	p is the internal pressure 

R is the internal radius of the vessel 

T is the thickness of the vessel 

a is the crack length 

Moreover, the true geometric size of each crack can 

also be suitably normalized in relation to some geometric 

parameter which is obtained, on an empirical basis, from 

the design details of each nozzle, With this procedure 

cracks which may have rather large different sizes are then 

compared on the basis of the same depth to thickness ratio. 

According to this procedure the results which were 

obtained are shown in Figure 4.30. The circles indicate 

the present results whereas the squares and the hexagonals 

are referred to the results obtained by Hellen and Dowling 

(2) and Broekhoven (59) respectively. 

The thinner curve which is referred to the right hand 

axis indicate for the present case, only, the true Ko  
/ 

variations for a range of a/T up to .5. 

The following conclusions can be drawn from these 

results. 

i) The normalised K-values for the present crack con-

figurations are considerably higher than the values corresp-

onding to the other cracked nozzles 2 and 3. 

ii) These differences can be associated with the higher 

hoop stresses which where obtained in the present case (see 

Figure 4.18) for the uncracked.structure. 

iii) On one hand, the present results are expected to 

underestimate the true solutions, due to the "fixed-grip" 
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conditions which were used in the present substructuring 

technique. This is somewhat confirmed by a faster decrease 

in the normalized K values as the ratio a/T increases. 

iv) On the other hand, the hoop stresses in the present 

case (see Figure 4.18) die away, from the crotch corner, 

more rapidly as compared to the hoop stresses obtained by 

Broekhoven in nozzle 2. 

v) However, due to the doubly-connected nature of these 

structures, regarding both the run pipe and the branch pipe, 

the present technique may not yield too large an error in the 

evaluation of K-values. This is more so in the present 

case, where the ratio of thickness to internal radius is 

much larger than in the other geometries 2 and 3. 

This type of behaviour has been somewhat confirmed in 

the analysis of cracked cylinders described in Chapter 3. 

In these cracked cylinders it was found that the distur-

bances caused by the presence of the crack are restricted to 

a small region in the plane of the crack and negligible in 

radial sections perpendicular to the crack plane. (See Figs. 

3.30 and 3.31). 

vi) The variations of reactions with increasing crack 

depth, which are described in Section 4.6.2, indicate that 

the substructure idealization could have been restricted to 

a smaller sector of the nozzle region between the planes 

B = 0 and, say, a= 450  thus allowing for a better mesh 

density in the cracked region. 

vii) The cracked cylinder CYL1, described in Chapter 3, 

and the present branch pipe are very similar in their geometric 
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parameters, having the same thickness and differing - by 

only 2% on the internal radius. 

For the same crack depth to thickness ratio, a/T=.2 

the normalized SIF at the free surface of the branch pipe 

is about 3.12 (see Figures 4.29 and 4.30) and the stress 

concentration factor SCF, at that point (see Figure 4.18) is 

3.3 in the uncracked structure. Using the same Ko value as 

before (for comparison purposes) the SIF at the point where 

the crack meets the inner surface of the cylinder CYL1 

was found to be .97. Multiplying this value by the SCF 

indicated above, yields to a correspondent SIF for the branch 

pipe of 3.03 which is only 3% lower than the 3.12 value 

obtained form Figures 4.29 and 4.30. 

viii) In Figure 4.30, the full circle indicates the 

average normalized K value obtained in the corner crack 

configuration described in Chapter 3 (see Section 3.4.4). 

In that spe&imen the ratio thickness to crack depth is also 

.2. This averaged SIFs is2.73 times smaller than the corres-

pondent value in the present cracked nozzle, which can also 

be associated with the previous SCF, 3.3, referred to above. 

This larger difference is explained by the doubly-connected 

nature of the present geometry where bending is restricted 

thus reducing the SIFs as compared to the corner crack in 

the square specimen. 

ix) From the scarce results indicated in Figure 4.30, 

similar trends can be observed to occur in the various 

geometries and for values a/T greater than .16. However, 

in these normalized SIFs strong differences, of up to about 
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50% are observed which are associated with differences in 

the geometric details and the stress distributions of the 

various nozzles. These differences and the complexity 

of these crack configurations seem to rule out any prospect 

of obtaining an exact analytical solution. 

Finally, bearing in mind possible safety implications of 

the present crack configurations, some conclusions can be 

drawn based upon the following considerations. 

i) The hoop stresses in the uncracked structure as 

well as the SIFs are higher in the branch pipe than in 

the run pipe, hence cracks tend to grow faster in the branch 

pipe. 

ii) For materials such as the A533-B steel, which is a 

low alloy pressure vessel steel commonly used in the 

Americal reactor technology, typical Kic  values can be as 
_3 

low as 50 MNm 2_ This value is for very low temperatures 

or for higher temperatures under dynamic or impact testing 

conditions. 

iii) From Figure 4.29 the maximum K1  values for cracks 

1,2,3 and 4 can be obtained. Based on the above K1C value, 

it can be said that under extreme conditions (low temperatures 

or impact conditions) the following safety factors against 

instability or brittle fracture are indicated: 

SAFETY FACTORS FOR CRACKS 1,2,3,4 
3, 

FOR K1C = 50 MN m 
/2 

CRACK CRACK LENGTH MAX K1  SAFETY FACTOR 

1 12.7 21 2.38 

2 19.1 24.5 2.04 

3 25.4 27 1.85 

4 31.8 30 1.67 



- 127 - 

iv) In ultrasonic testing, the detectable defect size 

for the range of thickness values specified in the present 

geometry is found from Ref. (102) to be less than 2 mm. 

Thus the present crack configurations can be found and measured 

safely. 
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CHAPTER5 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

5.1 Achievements  

i) A three dimensional general purpose linear elastic 

finite element program was brought into use. In this 

program (DIM3B) the input data format is quite general and 

applicable to any geometric and/or loading conditions, yet its 

generation may become a rather tedious and complicated job. 

In order to ease some of these problems, facilities exist 

in the program which allow the user, if so desired, to chose 

various optional sets of coordinates to which the various 

input data may be referred. 

ii) The DIM3B code can be submitted in a so-called 

"Dynamic mode of operation". For each analysis this procedure 

attempts to optimize, in a semi-automatic manner the computing 
_.- 

costs (in CM and CPU(*) time) involved in running the program. 

iii) Various mesh generation techniques have been 

developed for the three-dimensional analysis. In general, 

these programs generate the necessary data for the DIM3B 

code based on a rather simple 2D type of information. In all 

these mesh generation programs various stages can be identified. 

1 - Full description of the topology of the 3D mesh 

2 - Generation of a simple 3D geometry 

3 - Application of various skewing techniques separated 

in distinct stages which yield to the desired geom-

etric shape. 

(*) CM - Central memory 	CPU - Central processor unit 
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These procedures ensure 

1 - Validity of the mesh generation programs for a 

relatively wide range of the geometric parameters of 

the type of structure under study. 

2 - Topolgical regularity in the 3D meshes, thus keeping 

the size of the bandwidth to a low level. 

3 - Normally, changes in the geometric details of the 

structure can be easily accommodated by performing 

minor alterations in the 2D type of input data. 

iv) Using some off-line graphics facilities available 

at I.C.C.C. a plottingprogram, DRAW, was developed whereby 

the various 3D meshes can be visualized and efficiently 

checked in terms of the topology, nodal coordinates and 

prescribed displacement boundary conditions. In this program 

an isometric view of the mesh is generated from a direction 

which can be suitably specified by the user. 

v) An axi-symmetric general purpose linear elastic 

finite element program was developed. This program, FRONT, 

uses a simplified version of the FMS in which the symmetric 

property of the body stiffness matrix [k] is not taken into 

account. However, profiting from this fact, the introduction 

of slope boundary conditions was easily accommodated in the 

solution technique (see Appendix 1, Section A1.4.2.4) by 

performing relatively simple alterations in the coefficients 

of the matrix [k]. 

v) The theory outlined by Henshell and Shaw (Ref. (81)) 

for the "2D crack tip elements" was extended for the equivalent 

3D element, i.e., for the 20 node isoparametric element 

(Section 3.3). 
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vi) It was also shown that this theory could be gener- 

alized so that "crack tip elements" can be derived from any 

isoparametric finite elements (Section 3.3) provided they 

have one or more than one intermediate nodes in the edges. 

This means that any field variable within the conventional 

elements must be described by quadratic or higher order 

shape functions. 

vii) To substantiate this theory various test cases of 

CTS configurations were carried out in which the crack tip 

regions were idealized by using standard 20 node elements 

or their derived "singularity elements" (Section 3.4.2). 

The validity of the theory was confirmed by the 

improvements which were observed in the K-values when the 

"crack tip elements" were used (see Figures 3.18 and 3.19). 

viii) The generalization of the theory referred to in 

vi) was also substantiated by the results which were obtained 

when the same CTS geometries were idealized by 32 node 

element meshes (see Figures 3.21 b). 

ix) Some other typical 3D crack configurations were 

then studied (Sections 3.4.4 to 3.4.6). The results which 

were obtained from these analyses compare favourably with 

suitable bounding approximate solutions and other results 

already given by other authors. 

x) By applying an adequate substructuring scheme it 

was possible to study various crack configurations of increa-

sing size in the crotch corner region of a thick-walled 

T-junction of cylinders. (Chapter 4 ). 
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5.2 Computing Costs  

In Chapter 3, Section 3.4.1, the strategy which was 

adopted for running a typical case with the DIM3B code was 

described. This strategy, illustrated in Figure 3.11, 

can be divided into two main stages. 

1 - Execution of the mesh generation program followed 

by the plotting procedure (execution of program DRAW) 

2 - Resubmission of the mesh generation program followed 

by the execution of DIMDIM and DIM3B codes. 

It was found that the costs involved in the stage 1 

computations are, on average, about 2% of the total computing 

requirements of a complete analysis. 

. A table is presented here where the computer requirements 

for the execution of the DIM3B code are described in detail 

for the various finite element analysis reported in this 

thesis: 

The usage of the CDC system at U.L.C.C. is combined via 

a complex formula and translated into a measure called unit 

as follows 

1  Units = 	CP( 
10+3CM) + TR x DR (1 + .3CM) + 

128 	30 6 	
1 (CR+LP) 

1.44x10  

where 	CP is the total central processor time 

CM is the number of core memory words occupied 

TR is the number of words transmitted to or 

from magnetic tapes 

DR is the number of words transmitted to or 

from disk 



COMPUTER REQUIREMENTS FOR THE EXECUTION OF DIM3B CODE (FTN compiler) 

CASE NN 
ELM NELEM NODTOT NPRDEF NKNVA NUNKVA 

(**) COMPUTER REQUIREMENTS NT 
CM (*) o CPU(*)  o PP(*)  UNITS 

COST 
£ 

1 20 22 202 109 24 101 606 29488 147.196 35.718 4.934 9.87 

2 20 44 319 123 26 162 957 39990 290.682 84.486 8.338 16.68 

3 32 22 340 175 36 164 1020 45230 331.517 88.935 18.476 36.95 

4 20 88 553 68 14 291 1659 74730 817.823 110.962 65.388 130.78 

5 20 88 553 151 30 278 1659 75853 795.010 105.084 58.339 116.68 

6 20 88 553 215 39 269 1659 76011 782.157 105.285 54.328 108.66 

7 32 49 728 213 29 208 2184 59444 899.766 163.412 53.761 107.52 

8 20 104 713 239 23 157 2319 48221 656.421 91.038 30.969 61.94 

9 20 112 773 256 19 157 2319 48414 686.750 113.153 32.534 65.07 

10 20 88 553 325 56 282 1659 85916 864.77 99.7. 64.686 129.37 

(*) 	- CM 

(**) 
' 	- NT 

- Control Memory; CPU - Central Processor Unit Time; 

- Total number of degrees of freedom, NT = NODTOT x 

PP - Peripheral Processor Time 

o - Seconds 

3 

Case 1 - Compact Tension Specimen Case 6 - Cracked Cylinder, Fig.3.29 
Case 2 - Compact Tension Specimen, Fig.3.14 Case 7 - TJUN1, Fig.4.3 
Case 3 - Compact Tension Specimen, Fig.3.21(a) Case 8 - TJUN2, Fig.4.6 
Case 4 - Corner Crack Specimen, Fig.3.26 Case 9 - TJUN3, Fig.4.9 
Case 5 - Part-through Crack Specimen, Fig.3.26 Case 10- Substructure, Fig.4.24. 
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CR is the number of cards read 

LP is the number of lines printed 

The estimation of the costs for the various computations 

is based on a rate of £2.00 per unit of the computer resour-

ces usage. 

5.3 Final Conclusions  

5.3.1 - The FEM and its LEFM applications. 

i) The FEM is a very powerful technique to solve 

general stress analysis problems. However its application 

to three dimensional cases is hampered both by the present 

generation computer capabilities and the rather high costs 

involved in such computations. As a consequence, such 

analyses are still limited to relatively coarse mesh 

idealizations of the geometries in study. 

ii) The utilization of "crack tip elements' in three 

dimensional LEFM studies seems to be compulsory if K factors 

are to be evaluated without unacceptable loss of accuracy. 

For the present meshes, discrepancies of about 20% are found 

if no "singulairy elements" are used. 

iii) K-values obtained by the extrapolation method 

and using the displacement distribution in the free surface 

of the crack (0=10 show in general an agreement within 5% with 

other results already given by other authors. 

iv) Less accurate estimates of the K-factors are obtained 

when the displacement method is applied in directions per-

pendicular to the crack plane (0=Tr/2). This is due to the 

strong square root behaviour of the K* curves (see Figure 

3.1) as it was described in Chapter 3, Section 3.2.2.2. 
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v) However by using these two directions of extra-

polation (0 = Tr and e = Tr/2) valuable information can be obtained 

about the coefficients of the higher order terms of the 

Williams series solution (exp. 3.4). These coefficients 

which are derived from the K* curves can eventually be 

physically interpreted by following the lines suggested by 

Cotterell (106). 

vi) Such coarse meshes present some limitations on 

the validity of the computed stresses in the vicinity of 

the crack. Therefore finer meshes would be recommended if 

a detailed analysis of the near tip stress fields is 

required, or if K factors are to be calculated by the "stress 

method". 

vii) Strain energy release rates, G, obtained from 

boundary load displacements can only be used by making two 

complete runs for adjacent crack configurations. 

The averaged K-factors associated with the values of 

G (exp. 1.7) compare favourably with those obtained by the 

extrapolation method using the direction e= IT (see section 

3.4.3). 

viii) The variations of K-values which were obtained 

along the crack fronts of all the configurations studied, 

show the incapability of the FEM to detect any surface effects 

in regions where the cracks meet the free surfaces. However 

it is believed that in such areas the present results are 

still acceptable for engineering purposes. 

ix) The computation costs associated with 32 node 

element meshes are considerably higher than those involved 
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in 20 node element mesh indealizations. Moreover it was 

found that better mesh densities are obtained with the 

use of 20 node elements. 

5.3.2 - The LEFM Studies of Cracks in the Main Steam Vent 

Pipe HT-Piece". 

i) Confidence in the validity of the results obtained 

from the finite element analysis of the defect-free "T-piece" 

geometry is based on the following observations: 

- Agreement of the results which were obtained with two 

different mesh idealizations (see Figure 4.18). One 

using 32 node elements (Figure 4.3), another using 20 

node elements (Figure 4.9). 

- Apart from an ovalization effect which was observed 

in the ends of the cylinders, and shown to be physically 

explicable, the stresses and displacements in such 

areas agree well with the predicted Lame solutions. 

- The hoop stress distributions in the crotch corner 

regions of the present geometry and two other nozzle 

configurations (see Figures 4.15 and 4.18) show rather 

similar trends. 

ii) By comparing these stress distributions ( in the 

present case and in the other two nozzle configurations) 

the following conclusions may be drawn. 

- The smaller the crotch corner radius the higher the SCF 

in these areas. 

- This suggests that better stress distributions may 

eventually be obtained if the crotch corner is smoothed 
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out by removing material and so increasing the crotch 

corner radius. Comparison with other workers indicates 

that this will lower the K values of possible cracks 

in such regions. 

iii) When two diametrically opposite branch pipes are 

considered (case TJUN2) the overall stress levels in the 

crotch corner regions increase by about 10% in relation to 

the stress levels which were obtained for the single T-

junction geometry (case TJUN3). 

iv) For the present case the maximum hoop stress in the 

crotch corner regions was found to be 174 MNm
2 which is 

below the yield strength of a mild steel. This result 

demonstrates that, for this configuration, there will be no 

gross yielding and ensures the validity of the LEFM studies. 

v) Whereas a relatively coarse mesh idealization was 

sufficient to obtain the stress and displacement distributions 

in the uncracked "T-piece" geometry, a much denser mesh was 

necessary to idealize in a proper manner the various crack 

configurations. 

vi) Due to the limitations of the present computers, it 

is necessary to use a substructuring technique in order to 

achieve the desired mesh density in the regions of concern. 

vii) Substructuring schemes are expected to under-

estimate somewhat the true K-values, however, due to the 

doubly-connected nature of the present configuration, such 

errors may not be too large. 

viii) For crack depths up to about one half of the 

thickness of the run pipe the present substructure idealization 

could be restricted to a smaller sector of the junction area 

of the cylinders. 



- 137 - 

5.4 Recommendations for Further Work  

The results presented in this thesis clearly demonstrate 

the possibility of evaluation of K-values utilizing a stand-

ard 3D finite element stress analysis computer program. 

However the rather high costs involved in such comput-

ations immediately suggest the development and implementation 

of new features into the DIM3B code. 

i) Implementation of the 15 node wedge-shaped element. 

This element is fully compatible with the presently available 

20 node hexahedron elements, and the main advantages 

associated with this element are: 

- More versatility in the mesh idealizations 

- In general, these elements yield smaller sizes of the 

bandwidth, 

- "Crack tip elements" are still easily derived from 

this wedge-shaped element (the "quarter point distances" 

rule is still applicable). 

As far as the programming aspects of the DIM3B code are 

concerned the implementations of these elements requires the 

following major procedures. 

- Addition of an extra library subroutine containing the 

shape functions and its partial derivatives for these 

elements. 

- Suitable alterations in subroutines LOAD, FEM and 

FEM2. 

ii) Organization of book-keeping procedures for the 

stiffness coefficients so that possible substructuring schemes 

can be used in a more accurate manner and at lower costs. 
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This feature is not only suitable for general stress analysis 

problems but it is also rather useful bearing in mind the 

possible application of the Parks. "stiffness derivative 

procedure" for evaluating strain energy release rates. 

iii) The implementation of initial stresses and/or 

initial strains due to temperature rises would obviously 

allow the solution of a wider range of problems of pratical 

interest as for instance, residual stresses and stress dis-

tributions due to thermal gradients. 

Three dimensional LEFM studies are still very scarce. 

A wide range of practical problems is yet to be studied and 

a completely general approach to the solution of these 

problems has been provided. 

As an immediate extension of the present work the 

following studies may be of interest. 

iv) In Chapter 3, Section 3.4.3, it was suggested that 

a single averaged K factor obtained by the Global Energy 

Method can replace the 2D calibration factors for the 

specimens used in fracture toughness testing procedures. 

For the CTS with curved crack fronts the results clearly 

show a reduction in K with increasing tunneling effect. A 

much more accurate analysis with a finer mesh would be 

required if proper correction factors are to be evaluated. 

v) The present substructuring technique could eventually 

yield improved results by carrying out this scheme in a step 

wise manner. In other words, the imposed displacement boundary 

conditions which are obtained from the analysis of the entire 

structure can be updated for each crack length by grossly 
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, idealizing equivalent cracks in the main structure mesh. 

The improvements of this modified scheme can be monitored by 

inspection of the reactions. 

vi) Some LEFM studies are suggested which may be 

carried out using the FRONT code: 

- Simulation of nozzle geometries by an axisymmetric 

nozzle on a flat plate. 

- Long and narrow banana-like cracks occur in stuctures, 

as for instance, in off-shore oil rig"T-piece" components. 

These cracks can eventually be studied by an approximate 

axisymmetric idealization of their configurations. 

vii) Finally, carefully controlled experiments are 

required so that the present results, which were obtained by 

a numerical method, could be properly substantiated. 
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APPENDIX1 

PROGRAM FRONT . DESCRIPTION . USER'S GUIDE 

A1.1 - Introduction 

The program FRONT is a finite element computer program 

using triangular axisymmetric finite elements. This program 

has been developed from the FLAPS code for which a full 

User's Guide is given in Ref. (103). The elements used are 

the axisymmetric version of the well known "Constant Strain 

triangular elements" which are described in Ref. (46). 

The FLAPS program uses the Gaussian iteration method 

to solve the system of equations 

[k ] {A} 	= {F} 	 (A1.1) 

where [Id is the general body stiffness matrix 

{A} is the unknown displacement vector 

{F} is the applied nodal forces vector 

The iteration method is speeded up by using an over-

relaxation factor reducing the number of cycles necessary 

to reach a given tolerance. 

The rate of convergence of this method is highly dep-

endant on: the over-relaxation factor, the shape of the 

structure, the boundary conditions and the initial geometry 

of the elements (see Refs. (48) and (104)). 

Experience has shown that, in general, good results 

(apart from mesh density considerations) are obtained if a 
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tolerance(*) of the order 10-5  is reached. Nevertheless it 

has been found that in some cases this level of tolerance is 

very difficult, if not impossible, to reach, even using 

techniques for optimization of the over-relaxation factor 

(see Ref. (105)). 

For these cases the Gaussian iteration method is no 

longer reliable and another method of solution of the equation 

(A1.1) is required, such as the Gaussian elimination technique. 

A description of this method has been given in Chapter 2, 

therefore will not be repeated here. Only its computer imple-

mentation will be described in some detail for the present 

case. 

The mathematical theory involved in the prescription of 

displacement boundary conditions, for the present case, is 

described in the following section. 

The programming aspects of the FRONT code will be out-

lined in Section A1.3 and a User's Guide as well as a listing 

of the program will be included in the final sections of 

this Appendix. 

A1.2 - Displacement boundary conditions 

In the DIM3B code full advantage is taken from the 

symmetry of the overall stiffness matrix [k] whereas in the 

present program the completed equations are fully stored. As 

a result the partitioning of the matrices, as indicated by 

expression (2.48) in Chapter 2, is no longer necessary. 

(*) In the present case, tolerance is expressed as 
cAui  

Tol =  	where Au. = l. 	uu• - 
Cu. 	1 	1+1 -il  

u.1 
 = nodal displacements at iteration i 
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A description of the method whereby initial prescribed 

displacements are accommodated in the present solution 

technique will follow. 

A1.2.1- Prescribed Displacements in the Radial or Axial 

Directions. 

Suppose the set of equations (A1.1) can be expressed 

as 

S1,1 61 + S1,2 62 + 	. 

S2,1 61 + S2,2 62 + 

S2n,1 61 + S2n,2 
d2+ 	• 

where in this two dimensional case 62k-1 
= u

k 
and 

62k = u
k 

for each node k. 

If 6s is a prescribed displacement at node k, a suitable 

alteration of equations (A1.2) can be performed as follows: 

The quantities Sis  6S  (for i=1, 2 .. 2n
) will be transferred 

to the right hand side of all equations i as known quantities. 

Fs is the sum of the external applied forces Rs, the internal 

forces due to initial strains and body forces for the node s. 

Fs = Rs + Rbs 
+ R

ES 	 (A1.3) 
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where Rs = external forces 

Rbs
= Forces which are statically equivalent to body 

forces 

Rcs = Forces to suppress initial strains (thermal 

strains in the present case.) 

If 6s 
 is known, Rs  becomes an unknown reaction as well 

as Fs. This unknown quantity is replaced in the solution 

vector, A, and can be evaluated if reactions are to be cal-

culated. In view of the foregoing all equations will be 

changed as follows 

S. 6 + S 	6 + . 
1,1 1 S. 	2 	

. + 0.6
s+ . . +Si,2n62n= Fi-S.,s 

(A1.4) 

and the equation s which contains 6s  in the leading 

diagonal will be changed to 

Ss,161 + Ss,262 + . . . -Fs 
+ . . . + S

s,2n62n = -S 	
6 

s,s s 

(A1.5) 

thus equation (A1.2) can now be expressed in matrix form as 

51,1 

S2,1 

Ss,1 

2n,1 

s1,2 

S2,2  

s,2 

S2n,2 

. 

• 

. 

' 

. 

0 

. 	0 	. 

.-1 	. 

. 	0 	. 

• 

. 

. 

. 

.S1,2n 

.S2,2n 

.Ss,2n 

S2n,2n 

1 

2 

Fs 

62n 

F1-S1,s6s 

F2-S2,s6s 

- S 	6 ss s 

F2n-S2n,ss 

(A1.6) 

It is obvious that this procedure can only be performed in 

equations which have already been completed, or, in finite 

element terminology, when all the elements adjacent to the 

node k=(s+1)/2 have been processed. 
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A1.2.2 - Slope Boundary Conditions 

If a node k is only allowed to move on a particular 

direction, as it is illustrated in Figure A1.1, the displace-

ments uk  and vk for that node remain unknown and a relationship 

Figura A1.1 - Slope boundary condition in node k 

between these two values can be established as 

uk  = q. V. k 	 (A1.7) 

where q = 1/tan $ 

Resulting from this boundary condition, a reaction Qk  

perpendicular to the prescribed direction has to be added to 

the force Fk, so that the resulting total force applied in 

node k will follow the prescribed direction as it is indicated 

in Figure A1.1. 

It is obvious that the quantities in the right hand side 

of equations 2k-1 and 2k are no longer known quantities. 

However, bearing in mind that the reaction Q
k 

must remain 

perpendicular to the prescribed direction, its components Q 
kr  

and Q
k 

will be related by the following expression 
z 
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Q k = cl•Qkr 
	 (A1.8) 

The set of equations (A1.2) becomes then 

S1,iu1 + S1,2v1 
+ . . . . S1,2nvn 

= Fl  

S2k-1,1u1 + s2k-1,2v1 + . . + S 2k-1,2nvn=F2k-1
+ Q

kr 
(a) 

(b) s2k,1
u 
 1 	

s 	+  	F 	+ Q 2k,2v1 2k,2nYn = 2k 	kz 

Uk  - qVk  = C 

Qk + k = 0 z 

(A1.9) 
(c)  

(d)  

   

From this set of equations it can be seen that the 

number of unknowns has increased by two so the number of 

equations, and this fact will drastically increase some 

programming aspects of the computer code. In order to over-

come this problem and bearing in mind that the evaluation of 

reactions is not the aim of the problem, Qk and 
Q
k 

can be 
r 	z 

 

eliminated by substituting equations (a) and (b) into 

equation (d) in (A1.9) as follows: 
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(S2k,1+q•S2k-1,1-  )ul + (S2k,2 q'S2k-1,2)v1 	• • 

.+( 	 (a) 
S2k,2n

+ q.S2k-1,2n)vn 
= F2k  + q.F2k-1 

uk 	cl•vk = 	(b) 

(A1.10) 

As it is shown in the set of equations (A1.10) the 

introduction of a slope boundary condition for a particular 

node k is made by means of replacing - the pair of equations 

2k-1 and 2k in (A1.2) by the equations (a) and (b) in 

expression (A1.10). 

A1.3 - Program Breakdown 

This section described the layout of the program and 

gives a survey of each subroutine included in the FRONT code. 

Similarly to the DIM3B code the computer program FRONT 

consists of four main parts 

A - Initializations 

B - Determination of forces. Evaluation of the stiffness 

coefficients for each element and assembly of the 

stiffness matrix. 

C - Forward Elmination 

D - Evaluation of displacements and stresses. 

The primary flow chart referred to DIM3B code is also 

applicable to the program FRONT (see Figure. 2.2 of Chapter 

2). A detailed flow chart of the present program is described 

in Section A1.3.4 of this Appendix. 
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A1.3.1 - Initializations 

In this part, the program reads the initial input data 

such as the title of the analysis, TITLE, and the basic 

parameters, LBW(size of the bandwith). NEL (total number of 

elements), NNP (total number of nodes), NBR (Number of 

prescribed conditions) and NMAT (Number of materials). 

Material properties, the topological description and 

the geometry of the structure are fed into the program, and 

finally the loads are defined. 

Subroutine INIAL is then called where the last appear-

ances are calculated and identified with a minus sign. 

Boundary conditions are fed in, defining the array PRENIC 

and the prescribed displacements are immediately stored in 

the displacement solution array UV. 

Some working variables, ANP, NAP, are prepared for the 

main DO LOOP and the stiffness matrix STIF is reset to zero. 

A1.3.2 - Total Nodal Forces, Stiffness Coefficients. 

Forward Elimination. 

From now on the program proceeds within a general DO 

LOOP until all finite elements have been processed. 

Firstly, subroutine LOAD is called and evaluates the 

total nodal point forces, REX, adding to the external applied 

forces the internal body forces as well as nodal equivalent 

point forces due to thermal strains. 

Subroutine ELSTIF follows subroutine LOAD and evaluates 

the stiffness coefficients, KEL, by performing a single point 

integration over the volume of the element of the matrix product 
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KEL = [13]T  [ D] [13] 

where [ B] is the shape function matrix 

[ D] is the elasticity matrix for each element 

The subroutine STTR is called immediately after ELSTIF 

and distributes KEL coefficients which were previously 

calculated, into the main stiffness matrix STIF. 

If a certain number of equations is complete and ready 

for elimination, this subroutine, in a second stage, performs 

the necessary alterations to the equations in order to deal 

with the boundary conditions and according to the theory 

described in Sections A1.2 of this Appendix. 

Three variables, KROWI, KROWF and KROWFA are set up 

to monitor the advance of the front through the structure 

(one node at a time). KROWI indicates the initial node of 

the front and starts with the value 1 and increases by 1 each 

time a forward elimination (for the pair of equations 

corresponding to node KROWI) is performed. KROWF describes 

the largest node related with KROWI. Thus the front is 

described each time by the nodes between KROWI and KROWF. 

After each forward elimination KROWF is increased according 

to new KROWI and the previous KROWF value is assigned to 

the KROWFA variable. 

For the sake of a better understanding of this sub-

routine, a simple example is put forward describing the 

basic operations mentioned above. 

Let us assume a finite element mesh composed of trian-

gular axi-symmetric finite elements as it is indicated in 

Figure A1.2. 
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Figure A1.2 - Mesh Idealization For a Thick Walled Cylinder 

A table is presented below in which the evolution throughout 

the structure of the process referred to above is described. 

FMS. MONITORING THE FORWARD ELMINATION 

ELEM 
NO NPI (*) (*) NPJ (*) NPM KROWI KROWF KRUWFA 

SUB. 
FORWARD Pair of  

Eq. Elim 

1 1 5 2 

■

-•1
 

t
-
I
 o
-
I
 t
-
i
 ri  
-
4

 
-
4

 N
 

N
 
M

  r
n

  
'
c
r
 I

n
  1/40  1/40  

N
  C

O
  C

A
  

5 1 - - 

2 2 5 6 5 1 - - 

3 -2 6 3 5 1 - - 

4 3 6 7 5 2 - - 

5 -3 7 4 5 2 - - 

6 -4 7 8 5 3 - - 

7 -5 9 6 5 4 called 1 

8 6 9 10 6 5 - 

9 -6 10 7 6 5 called 2 

10 7 10 11 7 6 - 

11 -7 11 8 7 6 called 3 

12 -8 11 12 8 7 called 4 

13 -9 13 10 9 8 called 5 

14 10 -13 14 10 9 - 

15 -10 14 11 10 9 called 6 

16 11 -14 15 11 10 called 7 

17 -11 15 12 12 11 called 8 

18 -12 -15 -16 16 12 called 9-16 

(*) NPI, NPJ, NPM describe the topology of each element 
in the mesh. The minus sign indicates thd last 
appearance. 
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The overall stiffness matrix is represented in Figure Al.3 

when KROWI assumes the value 3 and immediately before calling 

the subroutine FORWAD. The front of active nodes is 

indicatec'i by 

1 2 16 u v u .. '" u v "r-" 1
0

,. -1 v 0 CD '. I r. & _. 
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Figure AI.3 Overall Stiffness Matrix 

the thicker line in Figure AI.2. 

equations 
sent away 

•• 

Subroutine FOR\\1ARD, when called, performs the eliminatio:1 

of the pair of equations related to the node KROWI. After 

the elmination process, the equations referred to above 

are stored in an array COMPo The first two rows in the 

STIF matrix are freed and the rest of the equations are 

shifted 2 rows upwards. 
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It should be pointed out that the coefficients in the 

STIF matrix are kept in the computer in a rectangular 

matrix of LBW + 1 columns and LBW rows. This book keeping 

procedure is aimed to reduce to a minimum the amount of 

computer memory necessary for the storage in fast core of 

the non-zero coefficients. 

In order to reduce the tape operations, the transfer 

to a disk file of all the elminated nodes takes place in 

blocks. This is done using a non standard subroutine, 

WRITMS, which is called from subroutine FORWAD where all the 

equations already placed in a buffer area, COMP, are to be 

transferred to a random access file. 

The larger the buffer area, the faster is the execution 

of the program, for less transfer operations take place. 

However it will be less efficient in terms of the central 

memory needed. 

The size of this buffer area is such that it can share 

the same core spaces which will be needed later on for the 

arrays describing the element stresses. This is done by 

use of EQUIVALENCE statements in both the main program 

and the subroutine FORWAD. 

A1.3.3 - Evaluation of Displacements and Stresses 

After all the elements have been processed and the 

Gaussian elimination has been performed for all the equations, 

the system (A1.1) is now ready for the backward substitution. 

The main program calls subroutine BACKWD to perform this 

operation. 
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In this subroutine, the equations are retrieved from 

the random access file in reverse order and the displacement 

solution for the entire structure is evaluated as it is 

described in Chapter 2. 

When in the presence of a previously prescribed 

displacement the backward substitution operations are skipped 

to preserve the initial displacement values which have been 

stored in UV when the boundary conditions have been fed 

into the program in subroutine INIAL. Otherwise these 

particular locations UV would contain the equivalent reaction 

forces as it was described in A1.2.1. 

After this procedure is completed the main program 

evaluates the element and/or nodal stresses if required, 

in the same manner as it is done in the program FLAP5. 

A1.3.4 - Flow chart of the Program FRONT 

A detailed flow chart of the present code is illustrated 

in Figure A1.4 on the next page. 

A1.4 - User's Guide 

A1.4.1. Introduction 

The FRONT code is a computer program written in 

FORTRAN IV. 

In order to adapt its capacity to different cases , 

this code is provided with an additional program, EDT, 

which makes FRONT to operate in a "dynamic version". 

EDIT is a facility available in the CDC system at ICCC 

which enables the contents of a particular file to be changed 

by using a set of control editing commands. 
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The program EDT defines the exact amount of storage 

needed and calculates each array size in the COMMON block 

of the FRONT code. Moreover the EDT program writes into a 

file, TEXT, the necessary control directives by which a 

file containing the FRONT code will be suitably modified using 

the EDIT facility. The modified version of FRONT is then 

prepared to be compiled and executed. 

Some environmental aspects of the programs FRONT and 

EDT will be described later on. 

A1.4.2 - Preparation of the Problem 

A1.4.2.1 - Material properties 

Values of the Young's Modulus, the Poisson's ratio, 

the material density and the thermal expansion coefficients 

must be provided. The program allows for the use of five 

different materials. One will be specificed for each element. 

A1.4.2.2 - Mesh Generation 

The elements available are described by their cross-

section made by a plane containing the axis of symmetry 

as illustrated in Figure A1.2. 

For describing the topology of the mesh, it is necessary 

to define for each element three values NPI, NPJ, NPM 

containing three different nodal numbers in the mesh, 

following the topological order (anticlockwise) of that part-

icular element. 

Temperature rises are defined for each element and 

assumed to be constant within it. 
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It is also necessary to define the coordinates for 

all the nodes of the mesh in terms of the set of r,z coor-

dinates. 

A1.4.2.3 - Loading. 

The program will only accept point forces applied to 

the nodes of the structure. 

The sign of the load components is positive if it 

follows the positive direction of the r or z axis. 

The forces will be interpreted as the total forces 

applied to a circle described by a particular loaded node 

rotating about the axis of symmetry. 

A1.4.2.4 - Displacement Boundary Conditions 

It is possible to prescribe any initial displacement 

in any node of the mesh by the components in the two direc-

tions r,z. 

Slope boundary conditions can be prescribed as well, 

i.e., a node can be forced to displace within a particular 

direction making an angle 0 with the r axis. This information 

is given to the program as follows 

Prescribed Displacements 

NB ICOND DIS 1 DIS 2 COMMENTS 

Node 1 Displ. u - Restricted in the r direct. 

Node 2 Displ. v - n 	II 	” 	z direct. 

Node 3 Displ. u Displ. v 11 	" 	both, 	r and z. 
A 	 * 
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Slope Boundary Conditions 

NB ICOND DIS 1 DIS 2 COMMENTS 

Node 4 Q - u = Qv 

A1.4.3 - List of Input Variables 

The variable data are categorized by the designations 

is integer 

ia integer array 

rs real single 

ra real array 

hs hollerith single 

ha hollerith array 

The unit can be any consistent set with angles in 

degrees. 

ALPHA 	ia 	thermal expansion coefficient 

DELTAT 	ra 	temperature rise in the element 

DIS 1, 	rs 	prescribed displacements, or DIS 1=Q 
DIS 2 	in slope b. conditions 

E 	ra 	Young's Modulus 

ICOND 	is 	Prescribed displacements code 

I 	is 	member of the element 

LBW 	is 	size of the bandwidth 

MAT 	ia 	Material identification number in the elem. 

MATN 	is 	Material identification number 

NBR 	is 	Total number of diaplacement boundary 
conditions 

NEL 	is 	Total number of elements 

NMAT 	is 	Total number of different materials. 
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NNP 	is 	Total number of nodes 

NPI,NPJ, is 	Topological description of the elements 
NPM 

NU 	ra 	Poisson's ratio 

R 	ra 	Nodal radial coordinate 

REX 	ra 	Nodal point forces 

RHO 	ra 	Material density 

SR 	is 	Control parameter for output 

SR=1 Output displacement solution and 
element stresses 

SR=2 Output displacement solution and 
nodal stresses 

SR=3 Output displacement solution and 
nodal and element stresses 

WI 
	

is 	Control parameter for input print out 

WI=O Title, control parameters 

WI=1 Title, control parameters and 
the rest of input data 

TITLE 	ha 	Title of the analysis 

A1.4.4 - Input Data Format 

The following table describes the order of input of the 

data defining the analysis. 

CARD ORDER 
GROUPS OF CARDS 

1 

PROGRAM NAMES 

TITLE 

FORMAT 

13A6 

2 	LBW, NEL, NNP, NBR, NMAT, 
SR, WI 	515, 213 

3 
	

MAIN, E(MATN), NU(MATN), 
RHO(MATN),ALPHA(MATN), 
MATN=1,NMAT 
	

15,4E13.5 
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4 	L,NPI(L),NPJ(L) ,NPM (L) , 
MAT(L),DELTAT(L),L=1,NEL 15,4E13.5 

. (NEL cards) 

5 
	

N,R(N),Z(N),REX(2*N-1), 
REX(2*N),N=1,NNP 
	

15,4E12.5 

. (NNP cards) 

6 
	

NB,ICOND,DIS1,DIS2 	215,2E10.0 

. (NBR cards) 

A1.4.5 - Operating FRONT Using Program EDT 

The listings of the programs FRONT and EDT are 

described in Sections A1.5 and A1.6 repectively. 

This section indicates the control cards which are 

necessary for running the FRONT code at ICCC,under the KRONOS 

2.1 system. 

No specific data is needed for running the program EDT, 

for it reads the necessary information from the basic 

parameters LBW, NNP and NEL which are specified in the 

second card of the FRONT code data deck. 

The control cards are as follows 

JOB( 	) 
PASSWORD( 	) 
MNF(B=BINEDT) 
COPYBR(INPUT,FLDAT) 
COPYBR(INPUT,FRONT) 
BINEDT(FLDAT) 
REWIND(FLDAT) 
RENAME(INPUT=TEXT) 
EDIT (FRONT) 
MNF(I=FRONT,B=BFRONT) 
BFRONT(FLDAT) 
EOR 

Program EDT 
EOR Data for program FRONT 
EOR Program FRONT 
EOF 
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If an editing facility is not available, the necessary 

alterations to the FRONT code can be obtained by printing 

out the TEXT file which may be generated by a seperate run 

of the program EDT. 

In this file TEXT, for instance, commands such as 

rs:/(NNNN)/,/(273)/;* 

indicate that the string of characters (NNNN) should 

be repleced by the new string (273). These changes should 

be carried out for all the occurrences of (NNNN) in the FRONT 

code, if the ;* sings are included in the end of the command. 

A1.4.6 - Environmental aspects 

Experience has shown that for a large number of cases 

the number of elements in a 2D mesh of triangular elements 

is related to the number of nodes by a factor of about 1.8. 

NEL r--- 1.8 NNP 

Based on this ratio the necessary central memory which 

is needed to run the FRONT code, for different cases, can 

be calculated with a reasonable accuracy taking into account 

only the number of nodes and the size of the bandwidth. 

A table is presented on the following page showing the 

number of central memory words (*) which are needed to run 

the FRONT code for a typical range of the parameters NNP 

and LBW. 

(*) For the CDC 6400 machine available at ICCC 
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CENTRAL MEMORY WORDS NECESSARY FOR 

RUNNING THE FRONT CODE  

Bandwidth 
LBW 

Number of Nodes in the Mesh 

200 500 1000 1500 2000 

21 

41 

61 

81 

101 

121 

12971 

14260 

16370 

19270 

17810 

19120 

21230 

24140 

25910 

27820 

29330 

34010 

35370 

I 37430 

42110 

43420 

45530 

48440 32240 40340 

44050 22990 27855 35955 52150 

56660 27500 32360 40469 48560 

25 K 
	

30K 	40K 
	50K 

K 	1000 CM words 

A1.5 - Listing of the FRONT code 

A listing of the FRONT code is presented in the following 

pages. 



1 • 	 2 

pROOPAm FRoNT(INOT=Innnl.OUTpHT=1A00B.TAnE5=INP1fT.TApc6=OuTpUT. 	 DO 35 L = 1. NEL 

	

1 	 TAPE7=T1'LEN) 	 IF (NPI (L) 	-1) SO TO 35 
C WRITE (6. 32) TITLE 
C 	0 SPFCIFICAT/ON AND nATA IN/173,AILIZATION STATEMENTS. 

INTEn1R TITLE. 	SR. 	 0. 	 35 r0;1rTINU1 

	

1 	 REAO(5. ,(6) (N.R(nP).Z(NP1.REX(2tHp-1).REX(2•NP).UP=1.NNP) CASCTL. wI. 	AN(/' 	P. 

	

2 	 COND. 	 0 	 36 F01tqAT(I5.4E12.5) 
REAL 	NU. 	KEL 	 • 

NPJ(LLLL). 	Npm(LLLL). 	 (W21E:n20.123456789E35) GO TO 37 COvm(IN 	1ITLE(13). NPI(LLLL). 

	

1 	 R(WINN), 	RRENIr(NNNN). NAmE(RFC). 	 wit/Tr (A. 32) TITLE 

	

2 	NU(5). 	 RFX(Nnn2). 	LN(3).w(4.61. 
37 rOrr:ITINUE R140(5). 	mAT(LLLL). 

	

3 	 uv(NNN2). 	13(4,6). 

	

4 	 ALpHA(5). 01.LTAT(LLLL). ANP(On.9), 

	

5 	 STIF(lP11.11RR). NAP(UnnN). 
• 6 SIGLRR(11.111.sIC.LTI(LLLL).SInL77(LLLL).SIGLR2(LL1L) 	 C 40 OUTPUT THE TITLE AND THE CONTROL PARAMETERS. 

WRITE (6. 41) CO"mrIN /PARAM/ fiCLORIP.WIR.N"ATILNNIL 
CO"'Arr /rLI. 1 111/ KNod1.viin.,r.ICODE.NEO0010.FA.K1.ICO.LR1C 	 41 FOkIIAT 	////// 
DATA CASCTL / WRIFCASE / 	 1 	45X. 411ITHE CASE TITLE ANO THE CONTROL PARAMETERS / 

2 	45X. 4111 	  /////) 
WRITE (A. 42) TITLE 

 

C 10 /NDNT TIIE CASE TITLE OUT STDP IF THERE IS NO FURTHER CASE. 	 42 FORMAT (1H . 1386) 
11 RE P (5. 1?) TITLE WRITE(6.43) NEL.NNp.NRR.NMAT.LOw .I  

43 FORMAT (P6HR1HE NU-nER OF ELEmENTS IS. 15. 1H. / 12 FaN4AT (13(,) 
3nHOTHE NH1 AER OF NODAL POINTS IS. 151 1P. / IF (TITLE (1) .E0 	s . CASCTL 	fol, 	 1 

C 	 2 	4311JTHE Ull”tiER OF RESTRAINED DONNDARY u0nES IS. Is. 1H. / 
3 	37111THE NH. PrR OF nicFrurNT MATERIALS IS. I5. 1H. / 

1AHRTHE OWIPWITH Is.I5.1H./ C 20 rUpHT THF CNNTRoL pARAmETERS Ann PREPARE TO INPUT THE ARRAY DATA. 	 5 
21OSTRESSES APE FOUND FOR) READ(5.21) 1X4.NLLOINp.NnR. NmAT.SR.WI 	 0 	H  

21 FO:wrT(51,5.21S) 	 IF (SR .10. 0) ARTIE (6. 44) 
44 FOPmAT (1H.. 2IX. u2HNCITHER THE ELEMENTS NnR THE NODAL POINTS.) DO 27 N" = 1. NmAT 

22 E (N ) = -1. 	 IF (SR .10. 1) wRIIE (6. 45) "  
ELEmENTS OHLT.) 45 FORMAT (IN+. 23X. 16HTHE 9n 23 L = 1. NCL 

?3 NPI (L) = -1 	 IF (SR .Ek;. 2) 	4R/TE (6. 46) 
nO 24 	= 1. NH))  46 FORNAT 	23X. 2711THE NODAL POINTS ONLY.) 

24 R 	= -8.1234567(1 4E35 	 IF (SR .1;. 3) 	MITE (6. 47) 
47 FORPAT (111.. 23X. 31)470T11 THE ELEMENTS AND THE NODAL POINTS.) 

IF 	.10. 0) ;.MITE (6, 48) 
48 FOROAT (37HRTHE INpHT ARRAY DATA ARE NOT OUTPUT.) C' 3n ItIPUT AO CHECK THE ARRAY DATA. 

'.f.() (5. 31) 	(vATti, ),*(mATN). NU (MATH). 	 IF (t , I .E4. 1) 	,'RITE (6. 44) 
49 FORMt.T (33HUTHE INPUT ARRAY DATA ARE OUTPUT.) 1 	RHO (NATN). ALPHA (MATN). NM = 1. NmAT1 

	

. 31 	(15. 1113.51 

110 	= I. 0,'AT 
Iv (r ( , 4) .1E. -1.) no TO 33 	 C 50 OUTPOT THE ARRAY DATA. 
4(ITr (4, S.!) 	TITLE 	 IF (III .14. (I) 60 TO 61 

dR)TE (6. 51) (04, E (Nm). NU (NM). 1(110 (NM). 32 FOchAT t1H1 ////// 5H III 11. 1384. 1H1 / 
1 	3;01 TIW 10- TS A MISSING INPUT DATA CA40.. 	 1 	ALPHA (118). N4 = 1. NmAT) 
2 	2q14 	THE jOrt IS AHANOMED.) 	 51 FOR -N,T (1111 ////// 
iT(IP 	 1 	SAX. 191'INPHT P.ATERIAL DATA / 

	  ///// 53 CO:'TIT).)F 	 2 
,14g,IATERIAL ELASTIC HODULHS POIsSONOS RATIO, READ (5. 34) (LE. NPI (LE). flPJ (LC), 'PM (LE). 	 3 

NAT IL)). DELTAT (1r). 1. 	 31H = 1 M11) 	 4 	 DENSITY 	THAL EXPN COEFF // 1 
34 FOloHNT (5151 F10.3) 

 



3 	 4 

5 	(133. X. 4E17.5)) 	 LPEC=RCIA(OW/241) 
WRITE (5. 52) 	 CALL OPENMS(7.NAME.LNAMEs0) 

52 FoRmAT (1111 ////// 	 C 
1 	57X. inpiptifiT ELEMENT DATA / 	 C 	LAST NODAL AppEARApCES AND INPUT BOUNDARY CONDITIONS 
2 	57x. 1AP 	 ///// 	 C 
3 	3x1 4sPEL-T NPI rIPJ NPM MTRL DELTA T 	 CALL INIAL 

NPM MTRL DELTA T 4 	 4AHCLI /IP/ (IPJ 	 C 
5 	 321HLL'^T NPI NPJ NPM MTRL DELTA T /) 	 C 	DO LOOP FOR ALL TILE ELEMENTS 
Ll = (NEL + 2) / 3 	 C 
Do 5= L? = I. LI 	 00 7? L=1.NEL 
L3 = mINO (L2 + 2 * Ll. NEL) 	 C 

53 4q1TE (C,. 54) 	(L. riPi (L). 'IPJ (L). NPM (L). 	 C 	CALCULATE TOTAL EXTERNAL NODAL FORCES REX(I) 
1 	MAT (L). DELTAT (L). L = LP. L3. L1) 	 C 	 \ -54 F0111AT (111 • 515. r1(1.3. 13x. 515. F10.3. 13X. 5/59 F1O.3) 	 CALL LOAD 

A4.TTE(6.95) 	 C 	 I 
55 FORrAAT(11I1 ////// 	 C 	CALCULATE ELEMENT STIFNESS MATRIX KEL(I.J) 

1 	5IX.15H/NPOT NODE DATA / 
///// 	

C 	 1-,  
2 	54 u x.l  	 CALL 	 NJELSTIF 	

NJ 3 	2(6)..21HHOUE 
RR 

H 	 2 	. 	 C 
4 	 R2 	 C 	CHECK IN ELEMENT STIFFNESS COEFICIENTS INTO MATRIX M AND )//) 
N1=( NNP+11/224" 	 C 	THEN INTO RECTANGULAR MATRIX STIE(IIJ) AND IMPOSE BOUNDARY CONDITI 
DO 57 r1,=1 •':1 	 c 
N3=MTNo(r..?+N1.NNP) 	 . 	 CALL STIR 

57 44/Ir(,,,,54) 01.R(N).2(0I.REX(2*N-1).REX(2*N).N=NP.N3.N1) 	' 	72 CONTINUE 
58 F9;y14I(..!(5X.15.4E17.5)) 	 C  

d41Tr(F,07,6) 	 C 	BACK SURSTITUTION CALCULATING NODAL DISPLACEMENTS 
56 FORmAT (I'll /4//// 	 C 

1 	44x. 35)1INPUT RESTRATNED 00UNOARY NODE DATA / 
? 	4AX. 3-ill 	  /WI 	 C 

CALL BACKWO 

3 	331.. 2■110(EsTND (INDY NODE 	. 	 C 
4 	 37HRESTNT COWITTION 	OISPLA //) 	C 150 OUTPuT TILE 1400E DISPLACEMENTS IN THE PLANE SECTION REVOLVED. 

	

C 	 151 wRITE (6. 152) 

	

. C 	 152 FORMAT (1111 ////// 

	

C 	 1 	49X. 3311THE CALCULATED NODE DISPLACEMENTS / ' 

	

C 	PREPARE TO SUM THE surrENEss COEFICIENTS 	 2 	49X. 3311 	  ///// 

	

C 	 3 	3X' 4711)IOOE 	U 	 V 	 . 61 00  M) 9j19=1.L.44-1 	 4 	 U 	 V 	 I. 
nn Al NC=10.1 1:. 	 5 	 u 	 V /) 

81 5T1E(NR.NC)=0.0 	 NI = (NNP + 2) / 3 
no '7 I1q=1.U3(/2 	 00 153 P2 = 1. Ni 
00 02 NC=1.9 	 ' N3 = MING (N2 + 2 * N]. NNP) 
A,:n( NI; , , ,r.  )=0 	 153 wRITF(6.1541 mai(2,0J-1).1w(?*m).H=H2.113.m1) 

82 A'I'(' 4.1) =r, 	
154 FORMAT (ill • IS. 2(16.5. In. 2E16.5. /15, 2E16.5) 

, 

DO Ax N4=1.H1IP 	 C 
83 NAN((•(R)=1 	 C 

KNo*:'7=1 	 C 160 CAICOLATE THE ELEMENT STRESS COMPONENTS. 
ICr'N)=R 	 • 	IF (54 .E(;. 0) GO TO 221 
KWIA=Arl 	 00 1n4 1 = 1. hEL 
KRi/1=1 	 I=TARSOIPI(L)) 
UF,=P 	 j=TAoS(HPJ(L)) 
LNW-T=CP.NNP-1)/RC0+1 	 M=1AHS(0144(L)) 



BI=Z(J)-7(M ) 	n.)=7(m)-z(/) 	£ 	BM=2(T).7(j) 

CI=-0(J18R(1 	£ 	CJ=-R(M)+R(T) 	CM=-R(T)+R(J) 
A1-,.:A=(RJ.C4-11m*CJ)/2. 
R1IIR = (14 (I) + H (J) + R (U)) / 3. 
WA=C2,01,AI:EA)/(3.*RRAR1 
EEHR=InTsliV(2*I-1)+0J*OV(P/J-114To*UV(2*u-1))/(2.*APEA) 
EETT=IUVI20,1-11+UV(PPJ-11+UV(2*M-1))/(3.*RRAR) 
EL7I=ICI+UV(2oI)+CJ,UV(2•J)+CM*UV(2*M))/(2.*AREA) 
EER1=(CrouVI26I-11.0)I.11VI7*II+CJ*UV(2*J-1)+RJ*UV(2*,11+ 

1 

	

	Cv*UV(26.',-1)+Nm*uV(2*g)//(2.*AREA) 
MATN = mAT IL) 
WI = NU (''Aiii) 
W2 = I. - wl 
W3 = I. 	41 
W4 = 1. - 2. * hl 
w5 = E ("ATO) / (W3 * W4) 
Eiu = A1RHA (.'ATN) * DELTAT (L) 
ER0 = 	- ETH 
ETT = LETT - 
El7 = EF/4 - Fiu 
ER7 = EFRZ 
SIr.L"R (L) = w5 * (W2 * FRR + W1 * ETT 	* E22).  
SIGITT (1) = i.5 * (41 * ERR + W2 * ETT + W1 	EZZ) 
SInL77 (L) = 45 * (1..1 * ERR + wi * ETT + W2 * EZZ) 
SIrLw1 (L) = .J5 * W4 * ERZ / 2. 

C 
C 
C 170 cApEnLATr plE.ELE0rNT PRINCIPAL AND MEAN STRESSES IN THE PLAN*" 
C 	SEcTIoN 4EvoLVED. 

IF (SW .C.1. 2) GO To ing 
41 = (STr.LRq IL) + SIGL77 (0) / 2. 
42 = (sT5Lk.I (L) - 	(L)) / 2. 
w3 = Sl(_'1C (L) 
W4 = SIJ41" ('42 4'. 2 + W3 ** 2) 
SIr.L1 = w1 + w4 

= wI - *44 

IF (PPS (42) .GT. 1.E-35 .0Q. AnS (w3) .GT. 1.E-35) GO TO 171 
roPqVL = 1. 
Go 1*) 172 

171 'Jr(Af"L. = 2?%.647e!;4756 	ATAPOI )W3. w2) 
172 Slr.t.3 = szlr,LTT (L) 

= s.)1(1 (ISIGI1 + STSL2 + 	** 2 
1 	- 3. * (SM.? * SIGL3 4 	* sIGL1 + STGL1 * SISL21) 

C 
C 
C 1A0 OUTruT TJAE EL( 4ENT sTprssEs. 

Iv (I 	1) GO TO 247 
WKTIr (A. 1°1) 

IN' FO4'AT (1111 ////// 
1 	4x.,4411T11r CALCULATED rLrmENT STurss CN,POOrNTS Ann. 
2 	43!1 ,,vAn stqESs In TIIE SINNCE AOD TI r PRInCIPAL.  

3 	39H STRESSES IN THE PLANE SECTION REVOLVED / 
4 4X/ 
5 	

41X 	  

6 	 ///// 
7 

	

1X. 3911 
	

 • 

37HSIGV1 	

SIGMRR 

9 	
SIGPRZ 	SgP6TE1 
SIGm2 	SIGWM /) 

182 WRITE (6. 183) L. sISLRR (L). sIsLTT (L). sIGUZ 
1 	SIGLR2 (L1. ARGLEL. SIGL1, sIGL2. SIGLm 

183 FORMAT (IN 	15, 4E16.51 r12.2. X. 3E16.5) 
184 CONTINUE 

IF (SR .EQ. I) GO TO 221 
C 

C 190 FIND THF. NODE STRESS COMPONENTS. 
DO 212 to = 1. NNP 
SIGNri/ = O. 
SIGN1T = n. 

: g. 	

)-■ 

on = 1 
DO 101 t = 1. NEL 
Ir(IAUS(NPI(L)).NE.N.AND.IAQS(NPJ(L)).NE.N.ANO.IABS(NPM(L)).NE.UJ 

1 	 GO TO 3.91 
SIGMA? = SIGNRR + sIGLRR (L) 
SIGNTT = SIGNTT 	SIGLIT (L) 
SIGN77. = SIGHL7 + SIGL22 (L) 
Sinnr7 = SIGTO(Z + SICLRZ (L) 
OA = OA + 1 
IF(0A.E'),IAI)S(IJAP(IJ))) GO TO 192 

. 191 CONTINUE 
192 41 = FLOAT (wA - 1) 

SIGmult = SIGORR / wl 
= sIGNTT / WI 

SIt:N2Z = 	/ 
SIGnR7 = "IGIJRZ / 

C 
C 
C 200 CAICNLAll THE HOOF PRINCIPAL AND mEAN STRESSES IN THE PLANE 
C 	sFr.Tlo)) REVOLVED. 
201 wi = (SiGNRR + s/Gp/z) / 2. 

w2 = 	- SIC.07Z) / 2. 
W3 = sinoRZ 
W4 = SORT (v:2 ** 2 + w3 9* 2) 

= WI + W4 
Sir N9 = W1 - 44 
IF (MIS (tr:;,) .G1. 1.r-35 .0R. AHS (W3) .GT. I.E-35) 	GO TO 202 
ANGIrN = O. 
GO TP 2n3 

2n2 Anr.LrH = 24.647A1197SA * PTAH? (w3. W2) 
203 S1(1113 = sIGnTT 



SIGN. = SORT ((SIGN' + SIGNP + SION3) ** 2 	 00 3 J=1.3 
1 	- 3. • (SIGN2 • SIGN3 + SIGN'S * SIGN1 + SIGN1 * SICN2)) 	 J1=3-J+1 

C 	 IF(ELHOOCtI1l..11).E004) GO TO 4 
C 	 3 CONTINUE 
C 210 OUTPUT TUE NODE STRESSES. 	 4 ELNODE(lI.U1)=-ELNODE(Il.U1) 

IF (n .'1E. 11 GO TO 212 	 5 COnTintlE 
.WRITE (4. 211) 	 C 

211 FOrmAT (1111 ////// 	 C 	00UNPARY CONDITIONS 
1 	6X. 4111T11E CALCULATE° NODE sTRrss EOmPOPENTS ANC. 	 C 
2 	'13H :411(1 STIO:SS IN THF: SPACE AHO THr PRINCIPAL. 	 00 ino I=1,11Np 
3 	3911 STI+CSsES IN nil-. PLANE SECTION REVOLVED / 	 100 PRENTC(1)=0 

4 4 	 4 . 6x1r1 	 no 30 K=1.NUR 
5 	 43H 	 . 

///// 	
READ(.16 ) NO. ICOND.DIS1.DIS2  

• 6 	3911 	 16 F0PMATIJI5.2E10.11) 
7 	3X. 43HNUDE 	SIGtAR 	SIGMTT 	 PRENICINR)=1COND 
S 	 4y15 Try.qz 	S/Ov 	ANGLC1 RZ 	 . 	 oIs=nisi 

232 WRITE (61 213) '1. SIGHRR. SIGNTT. STGuZZ. STONR I.G"  I) 	 II1=1 	

I 9 	371ISIW,*1 	SIGH? 	 IFIICON:).E0.41 GO TO 40 
P-1  

1 	 ANC.LLN. SIGN). SIC,N2. SIGNM 	 IF(PMENTC(N6)-2) 60.70.60 	 Cl 
233 FO4r4 AT flif • 15. 4E16.5, F12.2, X. 3[16.5) 	 '60 INn=24NP.-1 	 .A. 

C 	 GO Tn 80 
C 	 . 70 Inn=2.Nn 
C 220 RETURN TO THE DEGInUING OE THE PROGRAM FOR THE NEXT CASE. 	 80 UVfInO)=OIS1 

221 ST-1P 	 III=T1I-1  
EN0 	 IF(P1+E1ITECNB).EO.3.AND.III.E0.0) GO TO 50 

GO Ti' 10 
50 DIs1=DISP 

GO TO 70 
SUf;RnUTINC INIAL 	 40 uv(2,mr1)=nts 

C 	TIlTS Sli1I.IUTLIIE FINPS THE LAST nopE APPEARANCES FOR EACH ELEMENT 	 10 IF(NT.E(J.0) GO TO 30 
C 	AND 4cnnS IN UOUNOAKY CONDITIONS 	 wRTTFI6.20) NII.PRENIC(NR).0IS.0IS2 
C 	 20 Folv04.T(142,124,2E2c.5) 

INTErr); P4EHIC.TITLE,On.wI.ArIP,P,O,ELNOOE 	 30 COnlINUE 
RE.AL nu.KLL 
CO,"CN 	TITLL(13). VPICL(.LL). 	NPJCLILL). 	NPM(LLIL). 	 IJJ1r)U" 

1 	E(51.'AI, H(PinnP)). 	pRcotc(rwoh), NAmr(Rrc), 

R110(5). 	Nint(Ltu.). 	INCHNNPI. 
REX(NNH2). 

11(4.6). 
Ln(3).w(4,go, 2 	 NU(5). 	ZCNNON), 

3 
4 	ALPHA ( 5 1 . 	(ILL TAI ( LLLL ) . 	ArIP ( ,)0 • 9 I . 	D(4.41. 	 SUPR(UTINE LoAn 
5 	 stircRiti.nro). HAPINHHH). 	KFL(6.(0. 	 C 	THIS SUrOtOUIIHE CALCULATES TUE EXTERNAL NODAL FORCES ONE TO 
6 	SIGL41((ltu I.,:int_TrculL),sint.7z(LLLL).stoutz(LILL) 	 C 	APPLIED FORCES.00DT roitcrs AND INITIAL STRATN COI OITTONS 
C0'"f1H /Pnt(A",/'iLL.,:.I1'.1:.i,(..1',AT.Lrlh.L . 	 C 
Co.mrn /FLI,iI(J/ KI:).... I.vtinF.ICOnr,uEO.KNo,111).)(1,TC0,LREC 
0IF.nsinri t.LilooLlulL.31 
ENNIvALErCL fELHODEl1.11.NPI(I)) 	

REAL NU.KEL 
CO.P;(N 

INTEGER PRENICIANI 

IITIE(13). NPIRALL), 	NRafLI1.L30 
C 	 1 

=I.I, 	
R ( ONflit). 	

NPMLILL). 

' C 	FI'D LAT APPLARAHCIS ,'AIN<ING wITH A - SIGN FOR fACH ELEMENT 	 2 
=l1). 	

PRENTECNNNr). NArEIPEC). 

C 	 3 	1:110f5). 	 Tg=9 	
LNI3).W(4.61. 

DO 5 N=1,NNP 	 4 	ALPHA(5). 	0ELTAT(LLLL). AriP(CT.9). 	=1: 	' 
00 3 I=1.11LL 	 5 	 sTII(.11)l.r:IT). 1:Avmonio. 
I17.,iF.-I+1 	 6 	SIOLRRULLL).S1t,LTIMI(L)•SIGLZ7ALLILI1S/G== 



• 

9 	 10 

C 

C 	• 
C 
C 
. 

C 

CO"m0N/mATH/M10J.0m.CT.CJ.CM.AREA 
CO" '') 	/pARAm/ 	NELOINp•NRR.NMAT.1.001.1.. 

60 DO (4- CvriRIC CALCULATIONS ON THE ELEMENTS. 
1=TAr:S(NP/(1.)) 
J=IAr`S('i)'J(L)) 
M=TA''S(NPA(L)) 
DI=LIJI-700 	E 	RJ=Z(r1)-Z(I) 	£ 	DM=Z(T)-Z(J) 
C1=-R(J)+R( 1 ) 	E 	CJ=-R(m)+R(I) 	£ 	CM=-R(I)+R(J) 
ARfArA(tJ•Cm-nt*CJ)/2. 
Ir 	(APIA 	.Gr. 	1.E-35) 	60 	TO 	71 
WRITF 	(6. 	b2) 	L 

62 	Fni:11 AT 	(1111 	////// 	ELEvEHTt 	T5. 	2511 HAS 	A 	NON-POSITIVE 	AREA. 	/ 
1 

	

	23H 	THE CASE 	IS A3A00OMED.1 
STrIP 

70 sol THE TOTAL NODAL POTUT rOPCES. 

71 	'1ATN 	= 	vAT 	(L) 
RBAR 	= 	(U 	(1) 	(J) 	(M)) 	/ 	3. 
wl 	= 3.1415926536 * 	ROAR 	* E 	(MAIN) 	* ALPHA 	(MAIM) 	* DELTAT 	(L) 

1 	 / 	(1. 	- 2. 	* NO 	(MATN)) 
K? 	= 	(2. 	* 	/IKEA) 	/ 	(3. 	* 	ROAN) 
BOnYr 	= 	P. 	• 	3.1415926536 	* 	I3AH 	* 	AREA 	* 	14110 	(MATZO) 	/ 	3. 
REX(n*I-1)=r,Fx(2.1-1)*'41*(nT 4 42) 	£ 	REX(2*I)=REX(2*I)+W1*CT.-nODTF 
REY(7*J-1)=.‘LX(2 0 J-1)+41.(RJ4, 2) 	f 	REX(2*J)=REX(2*J)4W1*CJ-00DYF 
REX(7•"-1)=,<LX(2 4,4 -1).U1*(Wa+w2 ) 	E 	REX(2*.:)=REx(2*m)..w1*cm-RoflYF 
RETuuN 
E.Jr, 

SUrircUTTOE ELSTIF 
THIS SlmiJOUTIUE EVALUATES THE. 	STIFNESS MATRIX xi-L(1.J) 	FOR EACH EL 

REAL nuoKEL 
INTEMR 
CO"'ON 	1ITLE(13). 	NRI(LLLL). 	NPJ(L(LL). 	NPM(LILL). 

1 	 E(5).4I. 	u(N'INrt)• 	PitenIC(0,1(w). 	onnwc), 
2 	 1!O(5). 	ZINTINN). 	PEXID9f12), 	LH(3).1.(4.6). 
3 	vn)(5). 	vAT(IlLL). 	OvI111Rl?). 	R(4.6). 

4 	ALIMA(5). 	nELTATILL1L). 	A 10P(0';.9). 	0(4.4). 
5 	 sTir(nmum), 	NAP(NWIN). 	KrL(6.6), 
6 

	

	 ST(4.1It 	Lt t.) •cI(,LT T(LI I L) •SISLZ1 CIA 1.11•STGLIU (Ll I L ) 
COt,"IcriP,,NTo/ol.11J.ro.Cf.CJ.c,,./otin 

C 
C 
C 

B(I.1)=9I 	E 	B(1.3)=RJ 	£ 	8(115)=EIM 
I=IARS(nPI(L)) 
J=IAPS(NPJ(L)) 	. 
M=IAI3S(OPM(L)) 
(MAR 	= 	(I) 	(1) 	R 	R 	(M)) 	/ 	3. 
W1 	= 	(2. 	* 	AREA) 	/ 	(3. 	* ROAR) 
B(211)=41 	E 	13(2.3)=w1 	£ 	S(2.5)=.141 
R(312)=CI 	£ 	0(3.4)=Cd 	£ 	n(3,6)=cm 
n(4.1)=ci 	11(492)=B1 	E 	0(4.3)=CJ 
D(4.4)=RJ 	f 	0(4.5)=C4 	f. 	n(4 ,6)=nm 
MATH 	= 	(AT 	(L) 
W1 	= 	110 	(mATN) 
W2 	= 	1. 	- 	41 
w3 	= 	1. 	+ 	wi 
W4 	= 	1. 	- 2. 	* WI 
W5 = 3.1415926536 • ROAR * E 	(MAIN) 	/ 	(2. 	* AREA 
0 	(1. 	1) 	= 	W5 	* 	w2 

f1. 	3 ) 	: 
	* 

0  ) 	1    
D 	(2. 	1) 	= 	n5 	* 	1 
D 	(2. 	2) 	= 	w5 	* 	W2 
0 	(2. 	3) 	= 	*5 	* 	1,11 

0 3) 
D 	(4. 	4) 	= 	w 5 	* 	W4 	/ 2. 
DO 	9 	I' 	.7. 	1, 	4 

DO 93 	3 = 11 	6 
W 	(P, 	0) 	= 	0. 
00 93 	0 = 	1. 	4 

93 	W 	(P. 	0) 	= 	r, 	(P. 	0) 	0 	(P. 	0) 	B 	(0. 	0) 
00 94 	P = 	1. 	6 
00 94 	n= 1, 	6 
KEL(P.0)=0. 
(10 	94 	0 	= 	1. 	4 

94 	Ki filrl=0)=14(:L (Pi()) 	8(01P) 	* 	4(0.0) 

ENO 

SURRODTME SITU 
THIS SHPRourInC CHECKS III sT/PIESS COEEFICTENTS 
INTO THE RECTAHGULAR MATRIX STIF(I.J) 

* 

KCl 

W3 * W4) 

Ql 
Lri 

•I 

C 
COvr4oVi /PA10 ,/ 

DO 92 p = 1. 4 
no 91 	-4 1, A 

91 '1 (1'. :)) = 0. 
no 42 u = 1, 4 

9?()(P.01=o. 

INTErrn P.O. ANP.PPENIC.OA 
REAL KLL 
C01.-4(.4. 	1TTLr(13). 	r ,PT(u1.1). 

(Nir.r.)) . 
2 	 .01(9). 	z IMMO • 
3 	 I•110( 5 ) • 	MAI (ULL). 

UPJ(1.1).L). 	1.T",((11.1). 
PI(ENICINuni1). nt ,T(4f-C). 
REXCHHH2). 	LN(3)•td(41;), 
UV(HMH2). 	D(4.6). 
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4 	ALPHA(51. 	nurnm 	 0(4.4). iLL), 	ANP(o0.9). 
5 	 sTIrcn(Il,non). 	NAP(NNNN). 	KEL(6.6). 
6 	SIGLI(LLIL).SIGLTT(LIIL).SIGLUILLLL).SIGLRIALLIL) 

12 

KRT/=ANP(KV-KROWI+1.1) 
KRFF=K0TI 
LNAP=IAI1S(rinPcKV1) 

CO' '0N /PAWHA/ MEL.NNP.WittOP.IAT.LBWIL 
COvmPN /ELF 1 IN/ KRiwI.K4oAr.TCOOL.NEQ.KROwrA.KI.TCOILREC 

DO 1? I=2.LNAP 
KRPT=I4Ax0(KRFF.AMP(KV-KR0WI+1.I)) 

LN(11=',IPI(L) 	£ 	IN(2)=NPJ(L) 	£ 	LN(3)=NPN1(L) 12 KRII=mI”0(ANP(KV-KROWI+1.I).KRII) 
DO 	11)6 	P=I.3 DO 	'in 	KN=K1t1I.KREF 
IKr+0.,F=KR0Ar Go TO 50 

'ICI 
.:1;ENIC(1.01).E0.0.0R.PRENIDIKH).E0.4) 

NP=ImIsluicr» 
LrJn=•,F•-KI:J,II +1 IF(PoENIC(K4)-2) 	60.70,60 
00 	105 	-;=1.3 
nA=1 

60 (03=2*(KH-Kfto'4I)+1 
GO To 210 

101 	3n,-,o+1 70 WF1=2*(KI1-KItWwI)+2 
• IF(QA.Lr.9) 	GO 	TO 	103 

wHiTr(6.102) 	MP 
200 IT=2.KV-1 

IV1=IT-(2*KtiOWI-1)+1 
102 	FOqt,AT 	Wil 	////// 511 ”TIOE, 	15. IVP=IV1.1 

I 	364 tins nolq. THAN EIGHT ADJACENT moncs. / IC1=t 1 B4 LBW/2-1V1+1 
2 	2311 	THE 	CnSt. 	IS 	ABANDONED.) ICP=TC1-1 
STPP Irc1cI.Eo.L11w/24.1) 	HEX(IT)=0.0 

103 	IFIA,P(LrPP.NA).E1.1.1A11 S(LMCQ))) 	GO 	TO 	104 IF(IC2.00.L 1 14/2+1) 	REX(IT+1)=0.0 
IFInrP(Lr.P,.JA).NE.01 	GO 	TO 	101 IF(I+F+EFJTC(KH).EO.2) 	III=0 
WJP(INP..JA)=IABSW:l1)1 REX(IT)=;:FX(IT)-STIF(IV1.1C1)+IIV12*KH-III) 
N10c:P)=QA REXC IT+11=qLXIIT+11-STIF(IV2,IC2)*UV(2*KH-III) 

104 	Ik=21, ( 1W-K40,.1)+1 STIr(IV1.1C1)-0.0 

IC=9.ANP(LNP.QA)-1.11.4/2-(240T-1)+1 
sl)rlik 	.IC 	)=SIT1(IIt 	.IC 	) 	+ 	KELI2*P-1.24.0-1) 

STIV(IV2.1C21=0.0 
Ir(Icl.F).LHs1/24.11 	STIF(IVIOC1)=-1. 

SITFICI 	tIC41.)=STTF(Iii 	,IC41) 	+ 	KEL(2+13-1.2s0 	) ' IF(IC2.ru.1.4w/2.1) 	STIFIIV2.IC2)=-1. 
STTF(IH.'1,1C-1)=%rTICII,+1.IC-1) 	+ 	KEL(201 	.2+0-1) 111=111-1 

105 	STTF(IP.1.)C 	)=STIF(I1(+1.IC 	) 	+ 	KEL(20) 	.240 	) IF(PI:ENIC(KH).E0.3.AND.III.E0.0) 	GO 	TO 	70.  
IF(L:1(P).GI.0) 	GO 	TO 	111 50 CO,ITTHUF 
Ninp(fiw)=-ww(PiP) 11(1'REMIC(KV).NE.41 	GO 	TO 	51 
Trcip.,IT.KK:)m.7 ) 	Go 	TO 	III 
If(rw.mr.1) 	GO 	TU 	107 rtI,InP1(= I+1.I)-KROWI+1 
Kuo...J=A•g.(1.1) IV1=2*(Kv-KHOnI)+I 

00 	1^1I 	(=?.-.. 

in3 	,<R,,,T=.,Axn(AriP(1.11.10flAF) 
Iv2=TV1.1 
ICI=2,14n4L04/2-TV1 

107 	IF(.',OT.W.EQ.3..L.Eu.NEL)) 	GO 	TO 	109 
Nc.:=2.cap-..ko.4t).1 

IC2=1C1-1 
sur(lviocI)=surctv2.7c2)41p1(2*Kv)*Srtrmi./c11 

KI1sF=WIP 55 STIF(IV1.1C1+1)=ST11(IV2.1C24.1)+UV(2*KV)*STTF(IVIIIC1+1) 
GO 	10 	1 ,ICY(')*Kv-1)=REX(240e.V)+OV(2*KV)AuCX(20(V-1) 

109 	00 	110 	I=1,0404rA+1.K1;014' ' 00 	56 	J=1.1.H. 

IFIti 4 P(T).61.0) 	1,11 	TO 	111 56 STIF(IV2.J)=0.0 
110 	Cw;TTruc STIT(IV2 1=1.1 

IF(11L4.'11.2) 	rmo4r=IKHI)r;r STIF(Iv2.14,../2+1)=-1JV(24,KV) 

IConr=1 REv(24.(v)=0.0 

GO 	PI 	1 

111 	1C6nr=0 
51 C0f0Tilli 

KROm-=1KING.IF 
IrtIci.,.W.r.J.0) 	GO 	TO 	106 C 

C 	mpripAicr 	COHOETIONS C VOI.Awil 	FLIOIMATION 

C C IF 	E.WATIor'S 	FficTv 	4q0wi 	TO Kun'4r 	AHE 	cnv,PLETrO H0PCrED TO 
1 	09 51 	K4=KuO4FA41.1eNNX C 
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CALL FOnwA0 40 

14 

COmP(ICO./)=STIF(ICOELILOW/2+/) 
IcOOF=0 IF(ICO.NE.01C01 	GO TO 30 

106 ConT(nuc CALL 	wRITils(7.COmP(1.1).LREC,K1) 
RETURN DO 41 	ICOM=1.RCO 
Eno DO 41 	Jcnm=1.LDw/2+1 

41 CONP(ICom.JCOm)=0.11 
ICO=n 

30 IF(RoD(IC0EL.2).NE.01 	GO TO 	134 
SUnRnUTINE FORWAD KRowT=R11Ow1+1 

C THIS SUPPOUTIHE UsES FOwARD ELIMINATION TO A SET OF NEo COLDNINS KRowFA=RnowF 
C STnliFS 	III A iiERIPHFRAL DEVICE THE COMPLETED EQUATIONS ANO SHIFTS RROwF=A1JR(KR041-KR/+111) 
C UP, ARDS nr.,) 	TIES 	THE 	mATRIx 	STIF(11.1) 	AND 	(NE0+1)/2 	TIMES DO 	71 	1=2.9 

C THr 	mATIx 	An),(NP.oA) 71 KR(1.,:r=mAxo(AuP(RROwI-KRI+1,I).KROWF)  C  IF(KROwF.LT.RRnwFA) 	RROWF=RROWFA 
INTEnER 	TITLE.SR.QA.O.PRENIC.WI.ANP.P 134 CONTINNE 
REAL nuo<ct. IF(NFO.E0.2) 	GO TO 60 
D1mESInn 	cm,ocmcnolso) 
co...Arm 	TT(LE(13). 	np1(LLLL), 	NPJ(LLLL). 	Npm(1LLL). 43 

no 43 	I=1.LOo/2+1 
CO4P(IC0+1.1)=STIF(NE0+1.I+LRW/2) 

I 

)-• 
1 F(5).w 	N I. 	RUINN). 	PRENIc(NoNn). 	NAME(REC). ICO=IC0+1 a, 
2 Z(Ninin). Nu(5). 	 REX(NNN2). 	LN(31.w(4.6). GO Tn 5n ....] 
3 RHO(5). 	mAl(LLLL). 	uv(Nnn2), 	B(4.6). C 
4 
5 

ALI'IIA(',). 	DELTAT(LLLL). 	ANP(Du.9). 	D(4.4). 
sTir(roldien), 	NAP(NWM). 	KEL(6.4). 

C 
C 

SHIFTTNG MATRIX STIF(I.J1 	UPWARDS 'I 

,- 
6 STGLRR(LLL11.stni..Tr(LLLO ,s int_zz tu.LL ) 9SIGL RZ (LLI.L 1 60 DO 	in 	IR=1.LOw-1 
CO' 	,N 	/pARAm/ 	NUL.Y'Jp.nRR.NIAT.LO..;.L 
COmAnN 	/ELI "In/ 	Ki0'...T.KR,IJF.TCor:E.HEQ.KRTAFA.Ki.TCo.LREC 

DO 	In 	IC=1,LW.,  
I1(In.GT.L114-1-ME0) 	GO 	TO 	12 

Eo0IvALEnCL(COmP(1.1).SIGLRR(1)) ST1F(IR.IC)=STIF(IR+NE),IC) 
1 KRT=I.(RoqI GO 	Tn 	1) 

1F(KNI.FQ.1) 	IC0=0 12 STTF(IROC)=0.0 
CO 	1.;4 	icoLL=tolcu 10 COHTINuE 

1C0=IC0+1 DO 2n 	IR=1.LRw/2 
LIHE=2.(1.(Ro.,F-KRI+1) DO 	2'i 	Ic=1.9 
Likc=Ltri IF(Ii(.Eo.LO0/2) 	GO TO 	22 
DO 	136 	IDE=1COEL+1.LIDE ANNTk.TC)=ANP(IR+10C) 
I=1Nr GO Tn 2n 
J=TUIEL+IPW/2-I+1 22 ANP(IftlIC10 
IrlA:ISINTIrlI,J)/.1.7..1E-35) 	GO 	TO 	136 ANp(TR.1)=KRI+IR 
K=TF0EL 
.,=LIT,./2+1 

20 CONTTnuE 
IF(Kunt..F.EO.RRnwFA) 	GO TO 	1 

q=sTiFfl.J)/sTIF(K.m) 50 COnTlhOE 
DO 	1A5 	Il(C=ICVEL,LTRC -RETUk0 

I=Wr EWO 
Jr-Tur+lw,, /2-I +1 SUI1RPUTINE RACKWO 
K=TCOFL C RACK SUmsTIWIION CALCULATING NNW.. DISPLACEmENTS 
-A=ihr+L.4,:/2-K+1 C 
STirrI,J17.,;11F(I.J)-0,STIF(K.M) INTCrrI2 	TITLE.SR.on.Q.P.n.PRFNIC.64I.ANP 

135 Co1.7THOL ((UAL 	illl.kEL 

13c; 
'0-x((.1.,,, I.2-1-1)=Rcx(I+10(1*2-1-1)-0*RFX(ICorL+KRT*2-1-11 
C/11.TIr.Ur 
Ki=c2*(v12 1-1)+Tcnri 	)/HCO 

DP4I-Wirot1 	CofP(HCO.(01!‘1 „,111",,),  
ICOm.AnN 	IITLE(13). 	NPI ( IALL), 	NVJUALL14 

1(5 ).wI. 	oorfilc (romr.). 
PPHILLILI, 
twIECurx). 

0) 	411 	1=1,1_14/2+1 2 	HU(5), 	Z(N11,10). 	REX(UNN2).. LN(3).r.:(4,6). 
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3 	8)10(5). 	MAT(ULL), 	UV(NNN2)0 	B(4,6). 
4 	 ALMIA(519 OELTAT(ULL). A)IP(000/o 
5 	 STIFOOHITIBB). NANNWM). 	Fri(EL;46.Z). 
6 	 STOLRR(IALL).SVATTlitil.).STOLZZ(LLLL)*STOLIIZtLUL) 
COv`"ON /PARAm/ nE.L.WW.110.(.w,AT.LDw.l. 
COmt'IN 	Ksv.,..41.Kno.T.ICODE.NEO.KleOwFA,K1OCCILRFC 
EQUIVAL 14JiCE(Cor )(1,1)1SIGLIM(1)) 
IVI'Mx=21, p 
CO 1q0 Thq=1.K14,1 
NREC=K1-VIR*2 

cnu REAOMS(71C0)4P(1.1)/LRECOMEO) 
DO 1 ,,O 

• fuls=4EXIIVA ,(X) 
IF(Ic.F:J.FIJ.I.AND.MR.E0.1) GO TO 145 
KV=AI':U(IVAx+Ln.i/2.24,nriP) 
DO 2 142 ThV=IvA4X*1.KV 
J=Tliv-IVAqX•1 

142 RriS=f;IIS-COCI.J)•(JV(IKV) 	 1-a 

145 J=1 	 CO 
U•71=(IVArx+1)/2 
IF(PrErliCt1"0).Eu.31 GO TO 50 	 I 
IF(W,Erlir(110)4-2*(Tr10-1).E').TVARX) GO TO 50 . 
UVCIVAUX)=101S/C,V1P(I.J) 

50 IVxr.IV1HX-1 
oo 	II=1.Lo4/2+1 
C0;")(ToTI1=0.0, 

150 CO':TirAIC' 
ICO=PCO 

140 ClrITTraT 

ENn 
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A1.6 - Listing of the program EDT 

PPOGPAM EDTcIHPUT.OUTPUT.TEXTITAPE5=INPUT.TAPE6=OUTPUT.TAPE7=TEXT) 
IHTEGEP PCO.TPLEH.TITLE 
PEAD(,5.981  TITLE 

98 FOPMATeA10) 
REwIND 7 
PEAD(5.10.LEW.HEL.NHP 

10 FORMAT (3I5) 
C 

EVALUATIOH OF HUMEEP OF PECORDS (LREC) 
EVALUATIOH OF HUMBER OF EOUATIONS COHTAIHED IH EACH RECORD(RCO) 
CALCULATE THE SIZE OF THE DUFFER AREA COMP (TPLEN) 

C 
PC0=44,HEL .LDW 2+1 ,  
TPLEH=PCO.,LDw 2+11 
IF,TPLEH.GT.1000. TPLEN=1000 
LPEC=,2*HHP-1 :'PC0+1 
HHP2=2.HHP 
LANP=LDW 2 
LDw1=LDm-1 
LEw21=LAHP+1 

C 	WRITE ALL DIRECTIVES IHTO TAPE TEXT 
C 

WRITE(7.99)HHPITPLEH.HELOINP2.LEW1.LDW.RCOILDW21.LREC.RCO.LAMP.MEL 
99 FORMAT(14HPS:si.HHHH)././(.14.4H)s;./ 
❑ 12HPS:sTPLEH/../.15.1Hss 
1 	14HPS:/,:LLLL)s../(.14.4H)s:+s 
2 	14HP.:::./f.HHH2)/.s(.14.4H)s:4/ 
8 	17HRS:s(PD1.EDD)s.s6I311H..I3.4H)s;+s 
4 	17HPS:s...PCO.EDD)s../(..I3.1H.II3.4H)/;+s 
5 	13HRS:s(REC)s.s6I3.4H)/;../ 

10HPS:/RCOs.s.I3.3H/;+s 
A 	14HRS: s (00.9) s. s I2.6H. 9) s; 
7 	16HRS: s (LLLL! 3) /! / (1I4.6H. 
9 	10HS:sCOMMOHss 
A 	?HL;7/ 

3HEHD) 
EMD FILE 7 
PEWIHD7 
STOP 
EMD 
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APPENDIX2 

DIM3B CODE USER'S GUIDE 

A2.1 - Introduction 

The DIM3B code is a computer program written in 

FORTRAN IV. The size of the problems it can handle is very 

small compared with a typical problem, so it is provided 

with an additional program which makes DIM3B operate in a 

so called "Dynamic version".in order to adapt its capacity 

to a larger case. 

This additional program (DIMDIM) is not fully 

described, only the necessary details for its use are given. 

A2.2 - Preparation of the problem 

A2.2.1 - Material properties 

Values for Poisson's Ratio and Young's Modulus must 

be provided. These values will be taken to apply to all 

the elements of the structure. 

A2.2.2 - Mesh generation 

As it is a three dimensional problem, the generation 

of a mesh of 3D finite elements becomes a tedious and 

complicated process for all but straightforward cases. A 

particularly complex example is a T-junction of thick pipes. 

The most common way to tackle this problem is to have a 

mesh generation program to supply all or part of the input 

data. 



3 2 31 	30 

15 

19 

27 
28 

29 
13 

- 171 - 

The elements available have hexahedron shape with 

20 or 32 nodes as it is shown in Fig. A.2.1. 

.20 node element 
	

32 node element 

Figure A2.1 - Isoparametric elements 

available in DIM3B code 

It is not possible to use the two types of elements 

in the same mesh. 

The topology of the element is also shown in figure 

A2.1 which indicates the order of the nodes in the element 

in relation to the local set of coordinates. 

The nodes must be also numbered throughout the mesh. 

Therefore, for describing the topology of the mesh, it 

is necessary to define for each element an array ELNODE 

containing 20 or 32 (depending on the element chosen) 

different values of nodal numbers in the mesh following the 

topological order of that particular element. 
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The elements are also numbered along the mesh. 

It is necessary for a full description of the mesh 

to define the coordinates of all nodes. 

A2.3 - Sets of Coordinates 

All the theory related to the program is developed 

on the basis of a general system of cartesian coordinates. 

It is first necessary to define the terms: Basic 

Global System, Basic Problem System, Global System for Input, 

Main Problem System, A Main Problem System and Local 

Curvilinear System. 

Basic Global System (x,y,z) is a cartesian system of 

coordinates. This system will be orientated in relation 

to the structure according to the geometrically preferen-

tial directions of the structure if there are any. 

Basic Problem System (x',y',z') is a cartesian system 

of coordinates. The orientation of this system can be 

different from the Basic Global System and will be chosen 

according to the loading conditions of the structure. 

In order to define the position of this system in 

relation to the global system it is necessary to define 

the direction of the new x' and y' axis. 

These new directions are specified by two angles 

defining each direction and these angles are similar to 

those used in spherical coordinates as it is shown in 

Figure A2.2. The z' direction is defined implicitly and 

the program works out internally that direction. 

Both systems have the same origin. 
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Figure A2.2 - Basic Problem System and 

Basic Global System 

The concept and definition of the following systems 

are defined from the two basic systems. 

Global System for Input: This system can be a cartesian, 

cylindrical or spherical system of coordinates. The choice 

of this system is up to the user. It is a matter of conven-

ience depending only on the main geometrical shape of the 

structure to be studied. The basic frame and orientation 

of this system will be coincident with the basic global 

system. The nodal coordinates are referred to 	this 

system. 

Main Problem System: Can be also cartesian, cylindrical 

or spherical, but the basic frame and orientation of this 

system will be coincident with the basic problem system. 

The prescribed displacements (boundary conditions), the' 

applied forces, the reactions, the nodal displacements 



Basic Gobal System Global System for 	cartesian 
(Cartesian) 	Input 	cylindrical 

spherical 

Main Problem System cartesian 
cylindrical 

Basic Problem 	 spherical 
System 

(Cartesian) 	A Main Problem System cartesian 
cylindrical 
spherical 

	1* 	 
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and stresses, all the components of these quantities are 

referred to 	 this main problem system. 

A Main Problem System: Is a system that can be different 

from the Main Problem System and it is used to define in a 

more efficient way part or all the stresses applied to the 

faces of elements which are loaded. 

A table and an example are presented to help the 

explanation of these concepts and relations between these 

systems. 

BASIC SYSTEMS 
	

DERIVED SYSTEMS 
	

TYPE 

(*) - these two systems have the same origin and are 
related by 4 angles to be specified by the user. 

Example  

Let us think of a multinozzle-on-sphere structure as 

it is shown in Figure A2.3 and subjected to internal 

pressure P. 

It is most suitable to define the Basic Global system 

as it is represented in Figure A2.3 with its origin on 
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the geometric centre of the sphere. It is most suitable 

to define the coordinates referred to a cylindrical system, 

so the Global System for Input will be cylindrical. 

Figure A2.3 - Multinozzle-on-sphere structure 

The specification of the nodal coordinates on the 

cylinder (2) is a straight forward problem. The nodal 

coordinates on the cylinder (1) and on the spherical part 

will be easily specified bearing in mind a clockwise rota-

tion of these parts of the structure by an angle a as it 

is shown. 

The four anlges specifying the relative positions of 

these two basic systems are also shown in Figure A2.3 where 
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ANG1 = 0.0, ANG2 = 900.0, ANG3 
= 90°.0, and ANG4 = 

The main problem system can also be cylindrical, 

therefore all the quantities mentioned in Section A2.3 

refer to a cylindrical system of coordinates, for instance, 

due to physical reasons of equilibrium, all nodes situated 

on circle (1) will have zero displacements on the z' 

direction. 

The pressure acting on the cylindrical part (1) of 

the structure is referred to the Main Problem System and 

obviously the only non zero component of applied stresses 

will be the radial component with a value of P throughout 

this part of the structure. 

The same will happen to the cylindrical part (2) 

provided the applied stresses in this area are referred 

to the Global System for Input. 

Finally for the spherical part it is possible to define 

the applied stresses in spherical coordinates (A Main 

Problem System) so again with only a radial component P, 

provided, it is specified the type of system to which P is 

referred. 

Local Curvilinear System of Coordinates: For these 

hexahedron elements, dimensionless coordinates E,n,c 

are chosen each varying between -1, +1 so that in the 

(E,n,c) space the hexahedron become cubes with side lengths 

of 2 units. 

Note: With respect of all the coordinate systems, the 

order of coordinates and components is understood to be 
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ORDER 1st 2nd 3rd 

Cartesian X Y Z 

Cylindrical R 0 Z 

Spherical R 0 0 

A2.4 Loading 

There are two main types of loading: 

i) Nodal Point Forces 

ii) Constant Stresses on faces of the elements. 

The components of the Nodal Point Forces are referred 

to 	the Basic Problem System. 

The stresses are defined on the same Basic Problem 

System, or if it is convenient, on A Main Problem System. 

The face of the element where the stresses are applied, 

is identified in relation to the local curvilinear system. 

Let us define the axis 	as direction 1, n as 

direction 2 and r  as direction 3. The face is referred 

to as the direction to which it is perpendicular and with 

a+,- sign indicating if it is on the positive or negative 

side of that direction. 

For example: 

Figure A2.4 
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In Figure A2.4 the cross-hatched face is specified 

by the code - 2. 

Note: The sign of the loads is positive if it follows 

the positive sense of the axis of the system to which the 

loads are referred. 

A2.5 - Boundary Conditions and Prescribed Deflections: 

It is possible to prescribe any initial displacements 

in any node of the mesh by the components in the three 

directions. 

This information is given to the program in two input 

variables for each component: a number called nickname 

(PRENIC) containing the information of the number of the 

node in the mesh plus the direction on which the displacement 

is prescribed. This is done by multiplying the number of 

the node by 100 and then adding the identification number 

of the direction (1,2,3). The other variable (PREDEF) 

will specify the amount of deflection. 

Let us suppose the node 72 restrained with an initial 

displacement of .001 (any length unit) in the y direction, 

considering the basic problem system to be a cartesian one. 

The nickname will be 7202 and the corresponding deflec-

tion .001. 

A2.6 - Computation Data 

Into this category falls the data which govern the 

variable aspects of the numerical analysis and which 

addresses the program by specifying optional features. 
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In the course of execution of the program it is 

necessary to perform some numerical integrations using the 

Gaussian-Quadrature formula. Therefore it is required to 

give the Gauss points, XG, and the respective weight 

coefficients, CG. The number of Gauss points, IGAUS, can 

be up to four. 

A table with these values is presented below 

IGAUS XO CG 

2 XG1=-XGo= CG1=CGo= 

.57735027 1.000000 

3 XG1  =0.000000 CG1  =.8888889 

XG2=-XGo= CG2=CGo= 

.77459667 .5555556 

4 XG2=-XG = 1 CG2=CG1= 

.33998104 .65214515 

XG3=-XGo
= CG3=CGo 

.86113631 .34785485 

A2.7 - Special Modes of Operation 

Facilities exist which allow the user, if so desired, 

to choose a certain number of optional types of output. 

The option codes are values 1,2,3 for the variable IIN 

which specifies the amount of input data to be printed out. 

Values 1,2,3,4 for the variable IOUT describe the amount of 

data processed and stress analysis. 
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If IIN = 	Will be printed out 

1 	Title, IIN, IOUT 

2 	Coordinate systems, Gaussian Points. 

Number of elements and nodes, 

Number of nodes per element, 

Prescribed conditions, Young's 

Modulus, 

Poisson's Ration 

3 
	

The rest of input data, except 

for topological description of 

the mesh, ELNODE. 

If IOUT = 

1 

2 

3 

4 

Will be calculated and 'printed out 

Number of elements where data are 

processed, Diagnostic advice, 

Elasticity Matrix, Number of known 

and unknown variables, integer 

results, Displacements. 

Nodal Stresses 

Calculated reactions, Nodal 

loading per each element 

Topological description of the 

mesh, with last appearances. 

Note: The higher levels of INN and IOUT include also 

everything described on the lower levels. 
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A2.8 - List of input variables 

The variable data are categorized by the designations 

is 	integer single 

is 	integer array 

rs 	real single 

ra 	real array 

hs 	hollerith single 

ha 	hollerith array 

The unit can be any consistent set with angles in 

degrees. 

ANG 	ra 	angles for defining the position of Basic 

Problem System 

CCORD ra 	nodal coordinates 

CG 	ra 	coefficients for Gaussian-Quadrature formula 

E 	rs 	Young's Modulus 

ELNODE is 	topological description of each element 

I 	is 	element number 

GL 	ra 	stress components 

HED 	ha 	title for the analysis 

ICODE is 	identification of the loaded face in the element 

IGAUS is 	number of Gauss points 

IGS 	is 	type of Global System for Input 

1 = Cartesian 

2 = Cylindrical 

3 = Spherical 

IIN 	is 	control of the input data print out 

IOUT 	is 	control of the amount of output 

IPS 	is 	type of Main Problem System 

1 = Cartesian 

2 = Cylindrical 

3 = Spherical 
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ISGL 	is 	type of A Main Problem System 

1 = Global system for Input 

2 = Basic Global System 

3 = Basic Problem System 

4 = Main Problem System (def. by IPS) 

5 = A Main Problem System (cylindrical) 

6 = A Main Problem System (spherical) 

	

NELEM is 	number of elements in the mesh 

	

NFACE is 	number of loader faces in the element 

	

NFREE is 	number of degrees of freedom (always =3) ' 

	

NNELM is 	number of nodes per element (20 or 32) 

	

NODTOT is 	total number of nodes in the mesh 

	

NOSTR is 	number stress cases (always =1) 

	

NPLOC is 	loaded element numbers (in ascending oraer) 

	

NPLOC1 is 	index of loaded element 

	

NPRDEF• is 	number of components of prescribed deflections 

	

NPRSEL is 	number of elements loaded 

	

.PRENIC is 	nicknames for specification of prescribed defl. 

	

PREDEF ra 	prescribed deflections 

RHSI 	ra 	components of nodal point forces 

UN 	rs 	Poisson's ratio 

XG 	is 	Coordinates of Gauss points 

A2.9 - Data Format 

A2.9.1 - Data order 

The following table describes the order of input of 

data defining the analysis. It should be read in conjunction 

with the previous section. 
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The program variable names of various data items are 

given as they are used to describe the input of the data 

following them. 

GROUP OF CARDS 	PROGRAM NAMES 	FORMAT 

1st 

CARD ORDER 

1 HED 8A10 

2 IIN,IOUT 215 

3 IGS,IPS,(ANG(I), 
I=1,4) 

215,4F10.0 

4 IGAUS 15 

5 (XG(I),CG(I),I=1, 
IGAUS) 

8F10.0 

6 NELEM,NFREE,NNELM 615 
NPRDEF,NOSTR,NODTOT 

2nd 1 1,19 of the nodal 
indices of element I 

2014 

2 I, the rest of nodal 
indices of element I 

1414 

.1=1,2 	. 	. NELEM 

3rd 1 (PRENIC(1,I),PREDEF 
(1,1), 	I=1,NPRDEE) 4(I10,E10.0) 

(as many cards as 

are needed) 

4th 1 E,UN 2E15.2 

5th 1 J((CCORD(I,Y),I=1,3), 
RHSI(I,Y),I=1,3) 110,6E10.0 

J=1,2, 	. 	. 	.,NODTOT 
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6th 	1 	NPRSEL 
	

I5 
(when NPRSEL>0, 
then include) 

2 
	

NPLOC(I),I=1,NPRSEL 
	

1615 
(in ascending order) 
for each NPLOC specify 

3 
	

NPLOC1,NFACE 	215 

4 	NPLOC1,ICODE,ISGL, 
(GL(I),I=1,3) 	315,3E10.0 

The last group of cards 
3,4 is repeated NPRSEL 
times 

A2.9.2 - Data Deck 

Each data deck as defined above will consist of 

[9+2*NELEM+NODT0T+NPRDEF/4+I+2xNPRSELD cards 

1=0 if NPRDEF is multiple of 4 

I=1 if NPRDEF is not multiple of 4 

A2.10 - Error Messages 

1. WRITING CONTROL PARAMETER IS INCORRECTLY SPECIFIED 

This message occurs if IIN is different from 1,2,3 

or/and if IOUT is different from 1,2,3,4. The program 

stops. 

2. THE COORDINATE SYSTEM DATA ARE INCORRECT 

If IGS ans IPS are different from the values 1,2,3 

This message also occurs if the second and fourth 

angles defining the Basic Problem System are out of 

the range 0o-1800 . 
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3. PROGRAM STOPPED DUE TO THE CASE BEING TOO BIG FOR THE 

DIMENSIONS SPECIFIED 

If the number of known variables (NKNVA) and the 

number of unknown variables (NUNKVA) exceed resp-

ectively 24 and 60, the program stops. This happens 

only on the basic version of DIM3B. However this 

message will occur if the dynamic version is not 

working properly. 

4.  

SEQUENCE ERROR IN COORDINATE DATA 

J, is the number of the node where the error was 

found. 

5. SEQUENCE ERROR IN NPLOC DATA 

If the numbers of stressed elements are not defined 

in ascending order this message will appear. The 

program stops. 

6. PARAMETER READ BY INIAL IS INCORRECTLY SPECIFIED 

The parameters are in basic version 

NELEM=3 

NPRDEF 24 

NODTOT 44 

NNELM=20 

7. I,J 

SEQUENCE ERROR IN ELNODE INPUT DATA 

I, indicates where there is a sequential error in 

the topological description of the mesh, J is the 

wrong number 
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8. THE DATUM I IN THE ELEMENT OR PRESCRIBED DEFLECTION 

J IS OUT OF RANGE 

This occurs if the part of the nickname describing 

the node number is greater than NODTOT, and if 

the direction indicated is out of the range 1 to 3. 

9. STRESS DATUM IS SPECIFIED INCORRECTLY 

This message occurs when the number of loaded faces 

in a stressed element is out of the range 1 to 6. 

10. DETJ=0 PROGRAM HALTED 

The value of the determinant of the Jacobian matrix 

concerning the transformation of coordinates from 

the problem system to the local curvilinear coor-

dinates is zero. 

It is advised to check again the coordinates of the 

mesh and the topological description. 

A2.11 - DIMDIM code 

A2.11.1 - Problem Size 

The restrictions of the problem size assuming the 

basic verison of DIM3B are indicated below. (The restric-

tions on the program variables are stated in parenthesis 

where applicable.) 

i) Total number of nodes must not be greater than 

44, (NODTOT 44) 

ii) Total number of elements must not be greater than 

3, (NELEM 3) 

iii) The number of nodes per element must be 20 (NNELM=20) 
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iv) The number of prescribed deflections must not 

exceed 24 (NPRDEF -.5 24) 

v) The problem must contain only one stress case 

(NOSTR=1). The same will apply for the dynamic 

version. 

vi) The number of prestressed elements must not exceed 

2 (NPRSEL-- 2) 

vii) The number of known variables at one time must 

not be greater than 24 (NKNVA ---5 24) 

viii) The number of unknown variables at one time must 

not exceed 60 (NUNKVA--5. 60) . 

A2.11.2 - General Description 

Any excess in computer central memory storage with 

a three dimensional Finite Element Analysis usually causes 

tremendous overheads unnecessarily. 

The DIMDIM program attempts to minimize the demands 

the DIM3B code makes on computer facilities (storage, CPU 

time, etc) by using special features of the CDC systems. 

UPDATE is a facility available in the CDC system at 

I.C.C.C. and U.L.C.C., which enables the storage on disk 

of card images of programs in a compact form. 

This facility is useful for batch jobs and has various 

features with which a program can be modified either tem-

porarily or permanetly by a set of control directives. 

According to the particular problem to be studied, 

DIMDIM defines the exact amount of storage needed by 

calculating each array size. 
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Following the execution of DIMDIM the basic UPDATE 

library (in this case DIM3B code) is modified by a set 

of control directives and new FORTRAN statements generated 

by DIMDIM. 

This modified version of DIM3B, now with the suitable 

declaration and executable statements is then prepared to 

be compiled and executed. 

A2.11.3 - List of Input Variables 

Following the same categorization used in A2.8, the 

list of input variables for DIMDIM is indicated below. 

VARIABLE 	TYPE 	DESCRIPTION 

TITLE 	ih 	Hed for the input data 

NELEM 	is 	the same as for DIM3B 

NNELM 	is 	the same as for DIM3B 

NFREE 	is 	the same as for DIM3B 

NPRDEF 	is 	the same as for DIM3B 

NOSTR 	is 	the same as for DIM3B 

NODTOT 	is 	the same as for DIM3B 

NPRSEL 	is 	the same as for DIM3B 

NKNVA 	is 	number of known variables at one 

time in the overall stiffness matrix 

NUNKVA 	is 	number of unknown variables at one 

time in the overall stiffness matrix 

CON 	ra 	constants of a function P with values 

CON(1)=-.105615x10-3  

CON(2)=.135723x10-3 

CON(3)=.166273x10-4 
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CON(4)=.913812x10-1  

CON(5)=-.217439x10-1  

CON(6)=5000 

NWB 	is 	size of the basic storage required 

without the variable arrays which 

are to be changed NWB=17943 

MCL 	is 	Core memory declared in job control 

card, is a limit information 

MCE(*) 	is 	Anticipated core field length required 

for the execution of DIM3B 

pp(**) 	it 	Anticipated peripheral processor 

time required for the execution of 

DIM3B 

MCI(**) 	is 	The same as MCL 

SEQ 	is 	Series of sequential numbers ind- 

icating the order of the lines in 

the basic version of DIM3B where 

statements are to be replaced. 

A2.11.4.- Data Format for DIMDIM 

The following table describes the order of input of 

data for DIMDIM program. 

The program variable names of various data items are 

given as they are used to describe the input of data following 

them. 

(**) - PP and MCI are obtained from experience and can be 
found from the Dayfile in the printed output 

(*) 	This value is the calculated MCL from DIMDIM less the 
size required for the loader ( = 4500). 
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CARD ORDER 	PROGRAM NAMES 	FORMAT 

1 	TITLE 	 8A10 

2 	NELEM, NFREE, NNELM, 
NPRDEF,NOSTR,NODTOT, 
NPRSEL,NKNVA,NUNKVA 	915 

3 	CON(I),I=1,6 	6E10.0 

4 	 NWB,MCL,MCE,PP,MCI 	3110.0,F10.0,110 

5 	SEQ(K),K=1,58 (*) 	16(1X,A4) 

. (4 cards) 

6 
	

SEQ(K),K=1,24(**) 
	

16(1X,A4) 

. (2 cards) 

7 
	

SEQ(K),K=1,26 (***) 
	

16(1X,A4) 

. (2 cards) 

- Referred to COMMON statements 

* * - Referred to DIMENSION statements 

*** - Referred to executable statements 

The last eight cards referred to the sequential numbers 

are indicated below. 

n007 nn11 0013 0016 0018 nnP1 0.398 0402 0489 0493 n541 n546 
n573 0576 ,1579 07c4 07c:,6 0759 n871 0574 09?1 0976 0929 n93n 1n05 109Q 1099  1130 1135 113t1  1139 1264 1287 1291 1294 1295 
1360 1363 1164 1443 1c54 1 107 1709 - 
n025 002k 040c f‘co11 05R2 8761 0677 0931 1100 1141 1P67 1297 1799 13('6 1712 
0161 016? OlgS n1Q5 0413 0418 0419  0520 0565 0567 
1107 1119 1122 1167 1307 
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A2.11.5 - Job File 

In order to submit both programs together under the 

running system KRONOS 2.1 at the present in ICCC the card 

deck has the following structure. 

JOB ( ...) 

UPDATE, N=PL3, L=1. 

FUN (G). 

UPDATE, P=PL3,L=1. 

RETURN,PL3, CORRET. 

REWIND, LGO. 

FTN, I=COMPILE, OPT=1, L=0. 

LGO. 

EOR 

*DECK DIM3B 

[PROGRAM MOB] 

EOR 

[ 

PROGRAM DIMDIM 
. 	. 

EOR 

* IDENT NEWDIM, K=DIM3B 

* READ CORRET 

EOR 

[

DATA FOR DIM3B 

EOF 
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A similar structure is used for running these programs 

under the system SCOPE 3.4 at ULCC. 

A2.12 - Sample Problems 

In order to help the user two sample problems are 

' presented and for each case the necessary input data are 

described. 

A2.12.1 - Cantilever Beam Loaded at the End 

Consider a cantilever beam having a square cross 

section with a force F applied at the end. 

As it is illustrated in Figure A2.5 the beam was 

idealized by three 20 node elements. 

All the nodes in the built-in end were totally fixed 

in the three directions and the force F was modelled by a 

constant shear stress applied in the free end of the beam. 

Figure A2.5 - Cantilever Beam 

The input data is described as follows. 
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A2.12.2 - Thick-Walled Cylinder Subjected to Internal Pressure. 

In this case 32 node elements have been used in the 

finite element mesh idealization as it is shown in Figure 

A2.6 

The internal pressure was specified in the inner faces 

of the elements by radial components using a cylindrical 

system of coordinates. 

This problem exceeds the capacity of the basic DIM3B 

version, thus the DIMDIM program has to be used. 

Figure A2.6 - Thick-Walled Cylinder 

The necessary data for this analysis is described as 

follows. 
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CC37 0011 0013 	nc16 coin 1'21 	391 04u2 0489 0493 0541 	0545 
n573 	0576 	0579 	07"i4 	9756 	0751 	0871 0474 0)21 0926 
7929 :931 109' 	1,98 1C99 1133 1135 L34 1139 1264 	1287 1291 1294 1295 
126' 	1367 !354 1442 	1554 	1-n7 1709 
0025 0026 0415 	0541 0582 07A1 	0477 	0931 	1100 	1141 
1267 	1297 !219 1366 	1712 
0161 0162 0188 	0345 	0411 	1418 )419 3520 	0565 	0567 
1107 	1119 	1122 	1167 	1.7C.7 	 data for DIMDIM 

3 
...77451667 .551175555 .n 	.84114889 

8 	3 	32 	67 	1- 4 
1 97 101 1.1 115 1k6 1C7 131 114 112 
1 66 1 5 7 9 10 11 12 8 
2 105 1)9 111 113 114 115 11') 112 113 
2 Si 9 13 15 17 18 19 20 16 
3 113 117 119 121 122 123 124 12^ 118 
3 70 17 21 23 75 2; 27 28 24 
4 12 1 125 127 129 131 131 13? 124 126 
4 72 25 21 31 31 34 35 36 32 
5 129 133 17.7 137 138 139 141 136 134 
5 74 33 37 39 41 42 43 44 41 
6 137 141 143 145 146 147 144 144 142 
6 76 41 45 47 49 5. 51 ' 12 48 
7 145 149 151 153 15. 155 156 152 150 
7 75 49 ql 65 57 51 59 6". 56 
8 153 157 15) 97 98 9) 100 160 158 
8 80 57 61 63 1 2 3 4 64 

	

207.50E+09 	0.3LE400 
2 	4. 	C. 

TEST CASE 4A 	IHTMALLY PkESSURIZtD THICK CYLIHDER 
3 	4 
2 	2 	0. 	90. 	90. 	9C. 

0. 0. 
o. 
n. 

.77.59667 .55555556 
1c^ 99 91 41 83 84 82 65 67 68 

	

ri 	4 	.3 	2 
1:4 107 126 Al 85 86 84 67 69 7.) 
14 12 11 10 

1:6 115 114 85 87 88 86 69 71 72 

	

11:jf. 	122 
18 

 89 9C 88 71 73 74 
10 28 27 25 

132 131 130 89 91 92 90 73 75 76 
38 36' 35 34 

141 134 138 91 93 94 92 75 77 78 
46 44 33 42 

148 147 146 93 95 96 94 77 79 80 
54 52 51 5' 

156 155 154 95 81 82 96 79 65 66 
62 66 59 58 

data for DIM3B 

	

3 	5. 	0. 
5 

	

4 	6. 	C 
3. 	15.

. 

	

6 	6. 	1r. 

	

7 	3. 	3C. 

	

8 	6. 	30. 

	

9 	3. 	41- . 

	

1) 	4. 	45. 

	

11 	5. 	45. 

	

12 	6. 	45. 

	

11 	3. 	60. 

	

1. 	6. 	6; . 

	

15 	3. 	75. 

	

16 	6. 	75. 

	

17 	3. 	91. 

	

11 	4. 	90. 

	

11 	5. 	It. 

	

-... 	6. 	91 

	

71 	 3. 	Int.,.. 

	

22 	6. 	1 - 5. 

	

23 	3. 	170. 

	

2. 	6. 	12( . 

	

25 	3. 	• 35 

	

26 	4, 	i3''... 

	

27 	5. 	175. 

	

74 	6. 	135. 

	

29 	3. 	15r. 

	

30 	6. 	10,0. 

	

31 	3. 	115. 

	

3? 	6. 	165. 

	

33 	2 	1gf. 

	

. 14 	4.
. 
	1)'. 

	

35 	5. 	140. 

	

36 	6. 	13,". 

	

37 	3. 	195. 

	

35 	6. 	195. 

	

39 	3. 	210. 

	

40 	6. 	210. 

	

41 	3. 	225. 

	

42 	4. 	275. 

	

43 	5. ^^5. 

	

4. 	6. 	?.75. 

	

45 	3. 	24^. 

	

46 	6. 	240. 

	

47 	3. 	255. 

	

48 	6. 	25F. 

	

3. 	231.. 

	

4. 	270. 

	

5. 	._' • 

	

6. 	27". 

	

3. 	21'. 

	

6. 	235. 

	

3. 	300. 

	

6. 	1"'• 
3. 315. 
4. 315. 
5. 315. 
6. 315. 

	

3. 	331 . 

	

6. 	31( . 

	

3. 	745. 

	

6. 	345. 

	

3. 	0. 

	

6. 	0. 

	

3. 	45. 

	

6. 	45. 

	

3. 	IL • 

	

6. 	9'. 

	

3. 	i V-  • 

	

6. 	135. 

	

3. 	180. 

	

6. 	14.. 

	

3. 	22',. 

	

6. 	225. 

	

3. 	270. 

	

6. 	27( . 

	

3. 	315. 

	

6. 	315. 

43 
5) 
51 
52 
53 
5. 
55 
56 
57 
58 
53 

.6) 
'61 

62 
63 
64 
55 
66 
67 
68 
6') 
71 
71 
72 
73 
74 
75 
76 
77 
73 
79 
80 



31C. 
r. 
0. 

45. 
1.4.,. 
9C. 
qr.. 

135. 
1'5. 
180. 
14C. 
225. 
225. 
27(. 
270. 
315. 
315. C. 
0. 
0. 
C. 

15. 
15. 
3C. 
30. 
45. 
45. 
L5. 
45. 
6:. 
60. 
75. 
75. 
90. 
)C. 
9:. 
91' 
1,'5.
. 

115. 
12% 
120. 
1 55. 
135. 
135. 
135. 
15.'. 
1cC. 
165. 
1(.5 
140.
. 

18r. ±50. 
18G 
195. 

	

-0-. 	12. 

	

210. 	12. 

	

21'.. 	12. 

	

725. 	12. 

	

M. 	
12. 
12. 

	

2.5. 	12. 

	

21.. 	12. 

	

240. 	12. 

	

25I-. 	12. 

	

755. 	12. 
2" 12. 

	

27C. 	12. 

	

27C, 	12. 

	

27? . 	12. 

	

285. 	12. 

	

?A5. 	12. 
330. 12. 

	

3:1. 	12. 

	

315. 	12. 

	

715. 	12. 

	

315. 	12. 

	

315. 	12. 

	

331,. 	12. 
331. 12. 

	

345. 	12. 

	

345. 	12. 

	

6 	7 	8 

4.  
A. 
8. A. 
8. 
8. 5.  
8.• 
8. 
8. 
8. 
8. 
A. 
8. 
8. 
8. 
8. 
12. 
12. 
12. 
12. 
12. 
12. 
12. 
12. 
12. 
17. 
12. 
12. 
12. 
17. 
12. 
12. 
12. 
12. 
12. 
12. 
12. 

12. 
12. 
12. 
12. 
12. 
12. 
12. 
12. 
12. 
12. 
12. 
12. 
12. 
12. 
12. 
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80 6. 
81 3. 
82- 6. 
8.11 3. 
84 6. 
85 3. 
86 6. 
87 3. 
48 6. 
89 3. 
90 6. 
91 3. 
qz 6. 
93 3. 
94 6. 
95 3. 
96 6. 
97 3. 
9i 4. 
93 5. 

136 
1 01 

6. 
3. 

112 6. 
103 3. 
1 54 6. 
135 3.  
1 05 4.  
1 17 5.  
108 6.  
1 C 1 3. 
110 6. 
1 11 3. 
11 2  6. 
113 3. 
114 4. 
115 5. 
116 6. 
117 3. 
119 6. 
119 3. 
12: 6. 
121 3.  
22 4.  

1 2 S 5.  
124 6.  
25 3. 

1 26 6. 
127 3. 
121 6. 
123 3. 
13; 4. 
1 31 5. 
132 6. 
133 3. 
1 34 
133 . 
13',  6. 
137  3. 
1 38 
? 23 

4.  
5.  

140 6.  
14/ 3. 
142 6. 
143 3. 
144 6. 
145 3. 
2 46 4, 
i47 5. 
148 6. 
149 3. 
15' 6. 
151 3. 
152 6. 
153 3. 
154 4. 
*55 5. 
156 6. 
157 3. 
153 6. 
151 3. 
160 6. 

8 
1 1 I 

2 1 
-1 

3 

4 

4 	5 
621.E+06 

2 
2 4 621.E+06 
3 1 
3 -1 4 621.E+n6 
4 
4 
5 

1 
-1  1 4 621.E+16 

5 -1 4 621.E406 
6 1 
6 -1 4 621.5+56 
7 1 
7 4 621.E4C6 
11 . 	i 
8 -1 4 621.E+06 

A2.13 - DIMDIM code.  

Finally, a listing of the DIMDIM code is presented in 

the following pages. 



1 	 2 

PROG4Am DIMDIM(INPUT.OUTPUTITAPE5=INPUT.TAPF6=OUTPUT. 
1C0PRFT.TApE1=CoRRETI 
INTFT:14 SE,J.TITLE 
DP,EI.SION TITLE(8),SE0(58).CON(6) 

0 TIEFIPIE THE DImENSION CONSTANTS. 
RLN.I(0 1 
READ(5.1)TITLE 

1 FCP',A1(iA10) 
wR7Tr(A.2)TITLF 

2 FOdtAT(IH1////1H0.4A101 
REANc...1)NELEm.NFRFE.NNELM.NPRDEF.NOSTR.NODTOT,NPRSEL.NOVA.NUNKVA 

3 FOR:AT(.15) 
wRITE (A.7) 

7 FORmAT (11AHOTHE DI'ENSIONS or THE ARRAYS IN TNE PROGRAM DIm3D ARE 
I rrTrUNTNr0 MT THE FOLIJUING MAXImUN PRODLEm PARAMETER VALUES./ 
4RITF(6.A)NLLE!.NEPEE.NNELN.NPRDEF.NOSTR.NODTOT.NPPSEL.NKNVA.NUNKV 

IA 
6 FORmAT (alio-cLcm =.13/911 NFREE =.12/AH NNELm =.I3/9H NPRDFF =.14/ 
19H NRSTR =.I2/911 NnBTOT =.I4/91? NrRSEL =.I3/8H NIKNVA =.14/ 
2941 UNNKvA =914) 
READ (5. R9) (CON II), I = 1. 6) 

84 FOP.:AT (AE1u.0) 
WRTIr (A, 1-V1) (LON (I). 1 = 1. 6) 

85 FORAT (35HRTHE P FONCTIoN CONSTANTS INPUT ARE / III 	6E14.S) 
REAN(5.9 I iJr..,"CL .0CE .PP..ACI 

4 FOV.*ATIi110.110.0.110) 
,JR1Tr (f,04) 

9 FO.I.-1AT (r,1110THE cxrrurron or UT '3B IS ASSUmFD TO REQUIRE TIT FOLLO 
IwING JO1 HARA41 TER VALUES./ 

4,(7/r 	mrc.op.,,c1 
8 FOr-rT (:9110THE CDR( FIELD LENGTH =.16,7)1 wouns./3211 Tull PFRIPHFRA 
1L PR(TESsoR TIpE =0-6.1.914  SECNNDS./4811 THE MAXImUM CORE FIELD LEN 
2GTH r.F Ti';: (.iLTUTER =./7.7H wouns.) 
.4vivA1=1r..mvn.wkm9A+1))/2 
NOyo/1=(,.NR.11A+('1T,KvA+1))/2 
NCELN1=(FRUELL.: 
NCELI.n=•IT:EL 11+1 
ranTAL=',i,: w+NNNKVA 
NI=Nr1H7r.fRiNTuT 
Ar.==,."Axo(NKNvA.NrNRVA) 
Tmr=:.,:crrmIAL.:J.rLoAT(,cc).nP.o..com).  
R1AU(5.01)(s-E:J(R).R=1.58) 

hl FJI:tAT(IA(lx.A4)) 
5 1110-C=NT/I.ROF 

IF(FINIT(NTI/FLOAT(NBUF1.GT.FLOAT(NRECHNREC=NREr+1 
:4RTTF (A.12) 

b2 FNR- vr (tRHUTHE DERIVIN NPIENSIONAL CONSTANTS Aur AS FOLLOWS.) 
(Ao)31 lovivAl.numKvt,mcam:.NccLuo. NTOTAL. NT. mAn. WAIF. 

1N(,EC 	 • 
(13 FO1m.7 (911ONRNVA1 =.I5/9H NUNKV1 =.I5/911 NCELN1 =.13/911 NcrLNn =.  

1/3/9H NTOTAL =119/5H NT =.14/6H NAB =IIS/7H NOUF =43/7H NPEC =./3 
2) 

C 
C 10 CORRECT THE COMMON STATEMENTS. 

K=1 
N.I=NwD 
CALL DELETE(SEINI.SEO(R+1).10 
CALL SI(NPROU.N) 
Nw=Nw+N 
CALL S2(NPROEF.NUNRVA.NRNVA.NCELNI.NKNVAl.N(rNKV1.NOOTOT.NATI.N) 
Nw=Ny+N 
CA11 S6(NELEMOICELNO.NCELN1.NODTOTIN) 
NW=11',I+N 
CALL. DELETE(SEO(K).SEO(K+1).K) 
CALL SlA(NNELM.NCELN1,NTOTAL.N) 

fCr"T'1%;TELETE(SEN(K),SED(1(+11,K) 
CALL C2(NIUF.NTOTAL+11N1(EC+1.41) 	 hr Nw=No+N 
CALL. C3(NNELM.N) 
Nw=111,1+N 
CA1L OCLUTE(SEN(K).SEQ(K+I)IK) 
CALL CORINNELM.NUOTOT.NLLEM+1.N) 

WRI(F(6.12)HwB.Nw.MCL 
12 FORvAT (1171IuTHE SPECIFIED CORE rm.° LENGTH NFErED FOR LOAOING TH 

1E PR0(04Am LESS THAT rou BASIC ARRAYS WITH VARIABLE DIMENSIONS =06 
2.71) LOROS./5441 THE CAICULATFD CORE FIELD LENGTH munrn FOR LOADING 
3 =.IA.711 WORDS./4PH THE SPECIFIED MAXIMUM GORE FIELD LENGTH =06,7 
411 KIWIS.) 
IF(Nt,LE.mCL)GO TO 14 
WRITF(6.13) 

13 FORAT(A911 THE BIGGEST CORE MEMORY SPACE NECESSARY IS 'LORE THAN SP 
lECIEIE0.) 
IF (uCL.ST. MCI ) 	GO TO 15 
NBA = NB01.(5+NTOTAL) + NREC + 2 - (NW - MCL) 
:F (nnti.Lc.u) GO TO 15 
WINE, = NBUF 
NBHF = NB (qTOTAL. NT. FLOAT (MCE). PP. FLOAT (NBA). CON/ 
HRTTr (6.17) NBuri. NBUF 

17-rOP!3 AT (7?11R11oNIVER IN ORDER THAT AN ExPurrn LARGF CASE MAY RE AC 
1COmOnATFn 1)1)111 IS/ I341 urouun rRnR. 14. 3H TO, 14. 51H WHICH WILL 
2 INCPEASE THE PLRIPHFRAL PROCESSOR TIME.) 
REWP.D 1 

.;/Nr. 	o O :r5  15 	Arr 99 
14 CALL DELLTE(SE1(R).SEu(K+1).14; 

CAM_ S1(NPRNEF.0) 
CA1L SP( 1'PR7EF.N0o1<vA,NRNVA.NCELN1INKNVA1OUNKV1.NODTOT.NAR.N) 
CALL sA(hru-1,mrt.:L%o.urrLnl.hoornr.(!) 
CALL DELETC(SEc)(1<).sEo(K+1).10 



CALL 51(NPHDEF.W.  
CALL S2WP40EF.nUNKVA.NX ,IVA.NCF:01.I4KNVAl.NIINKVI.NODTOT.NA8.N1 
CALL SAUTLIPIOICELNOOICELN1.NODTOT.N) 
CALL DELFTCISEQ(K),Sr1l(1441).K) 
CALL DELFTEtsLAK),SFu(K4.1).K) 
CALL 561,1CCEmoICELrmOirELN1, ,100TrIT.N) 
CALL COIWTILLel.NOOTOT.'1ELE ,44.1.N/ 
CALL CELriCISCq(KI.sE:J(K.1).K) 
CALL SIII(W,LL-I.FICEL"11. 1 1TOTALINI 
CALL DLIITL(Y:.)(K).SIK+1),K) 
CALL C3(r:ni.Lp,'J) 
CALL nELrTLISLoCK),sfu(K+1),K1 
CALL Cni(WfIC.L:Olt)Tor.riELC7,14.1.11) 
CALL OELFTEI(K).sc:J(v..1),K) 
CAIL Ss(P.FLC.oCELnU.NcELNI,n0DTOT,N) 
CALL 11FLrTLIsFocri). ,;En(K+1).14) 
CAIL Slo(Irttc.•010ELNI.LanTAL.^1) 
CALL PELFTLIm:J(K). ,,r,J(v■I).K) 
CALL cn.1cro , LLmOmoToT.rflr-1+1.0) 
CAIL OKLFTLASI:,JCKW -u(K.1).14) 
CALL S20.PKOEF.NOT4VA0901VA.NCELN1.NKNVAI,NIINKV1.MOOTOT.NAS.N) 
CAIL Wr.FLEP , oiaLrm,nrUi.n10100TOTO) 
CALL DEAFTEISLAKI.Sru(“1).K) 
CALL SII'WUnfir,r0 
CALL S2(1, PqrCro , wiwvA,TK,NA.NCELI11,IIKNVAIIN(JNKV1.NODTOT.Iltr.N) 
CAIL %6INFIL',1 0)CELII0./IrftN1.I190TOT.,1) 
CALL Slo((I'ilLo.HCEL ,IlINTIITAL.II) 
CALL rVirTEIsEt)01).SLu(K.1).K) 
CALL c2(rolur.uToTAI410mcc+1.11) 
CALL PEtrir(sC,J(K).sE:J(K.t).w) 
CALL SlOttrILLO.!ICDNI..ToTAL01) 
CAIL NELFTE(SCl(K).ksu(K+11.14) 
CALL C..CL110.01TOTAL4.1.,!RFCI.I.N1 
CALL DELF- tE(',L:(K).%K(;(K+1),K) 
CALL SIMPW4-1-.0) 
CAIL S2(rvH1LF.NwiwVAO'KHVA.NCELNI.NKNVA1OUNKV1INOOTOT.NAR.N) 
CAIL 561t4:LCA,ncu.w.NOILN10100TOT.N) 
CALL Sln(trIlL'ortirLL111,11TornI,r1) 
CAI L riF.ur rE I sr r 1)•v.) 
CALL C2In.tor ,riTOTAL +1 	C +1 oL) 
CAI L 	It (St •)(h1.51u(K-r1).V,) 
CALL SiWILLI-. 0 ..WFL:M.IicrL'Il.mOUTOT.N) 
CALL 	I IL (Sf. j(K), ,,1 of 1, 41).v.) 
CAL L 52(r 1,;(.JCI.NU,  wvA.,R.Ivn .nCELN1.NKNVA1.NUNKVI.NODTOT.NAR.N) 
CALL 56C'ELLIO!CULIO.NCCLIII.'IONTOTINI 
CAIL S1'IMLLv.NCELNI.'ITOPIL.N1 
CAIL. PELETEICOKI.cLu(K•I).K) 
CALL C3(':I:CL .11 ,1) 
CALL Cr,WimlL ,I.:1■PlinTolFLI-1+101) 
CAIL CEIFTL(MoIK).cFQ(K.1),K) 
CALL Slurr:LLr4 01CfuiloiTOTAL,U) 

CALL DELF:TCISEQ(K).SEOCK+1100 
CALL C3INNELmiN) 
CALL C0n(NNELM.NOOTOT.NELEM+1.N) 
CALL DELETE(SEO(K).SEOIK+1100 
CALL Slq(NuCLA.NCELMI.HTOTAL.N) 
CALL. DELETEISEUW.SEU(K+1)00 
CALL SincHIJCLII.NCELII1.CITOTAL.11) 
CALL DELFTE(SEOLK).SEO(K41).14) 
CALL S2(PPROLF.H0014VA.tIKNVA.NCELNI.NKNVAlonlINKV1.NODTOT.NAR.N) 

C 
C 20 CONFLICT THE D1MENSTON STATEMENTS. 

READ(5,31)(SEIJ(K),K=1.24) 
K=1 
CALL 11ELFTEISE0(K).SEUI14411.1<) 
viRTTF(1.21)11PRSEL.rCELH1.NNCLM.NNELMINNFLm 

21 ,7010,. AT(6X.3%!HOI"EWSIOH E116.61.HT(6.9).NPLOC(04.8)I).TRUSL(./4.110 
1/rA.13HrliqDISLON V1(.14.5)1I.V2(.14.5H).V3(04.111)) 

CALL OCLETC(SF4IK).SEU(K41).10 
4111T1(1.72), AB.HAB 

22 FONMAT(40(.1211DMINSION A(05,41001(1I541H)) 	 VD 
OD CALL DELETL(SCWKI.SFO,(4= 

WRITE13.231 , 1CLLI110"nEL 
23 FOIWATIAX.15HDIMLUsItIN RHSL(414.3211)0CTM(6),TRIlt3).GL(3)1JACC3$34 

1o/5X.6111nEl4..14 4).TIMSL(04,171),TP(3.3),TR0LC31) 
CALL. OELEILISUAKI.SEOI14+1I.K) 
M=01(ELH14.InCELN1+11//2 
WiTTF(1.241).1FJELI 

24 FUlw4T(r,X.2U1IDI4ENSION A(3.31.SK(II5.26H).JAC(3.1).TJAC(3.3).DE(41 
1.14.1m) 
CALL PELFTEISE0(K).SEO(K+1).K) 
44711(1.75).A 

25 FnIWAT(6X.1311OImLN,4TON SK(.75.111)) 
CALL DELETE(SEU(K).SE0(1(.41).14) 
4141T1(1.26INTOTAL 

26 FO,WATI4W50011T-USION CO"VIII4,110) 
CALL DELETEISEOIKI.SEG(K+11$K) 
WRTTF(1126)NTOTAL 
CAIL DELFTELSENIKI.SEO(K+1),K) 
M=3*rODT(IT 
4HTTF(1.27Im.HrOTAL 

27.F(PwATt6X,13/10P,,CUSION 02104,711).COMP(1/4.110) 
CAIL DELFTr(SE.7(K).SFULK+1).KI 
WRI7r(1.?,t):A 

28 FO4r, AT(AX.13IIDVIEMSION U2(.74,111)) 
CAIL nELCTE(SEOCK).sEG(K+1).14) 
4141TrII,24(110ELUlotOnToT.v010078T.NCELN1 

29 FOP4ATC6x0? ,191,:EnsION c(.111.3511).ST4(6).ST,(3.3),STnT(3.3).SL(3,3 
11/(0(.151:71i-EHSIO0 , J1-, IV(.14.5101021.140 1 1)/6X115HOII-ENSTON STSS(.14 
2.1o)1.(0.DOTI4.114.1,1)) 

CALL 1)1LF:TIA ,,r4(w).sEr(K41),14) 
WRIEr(1.311)14CELMOJUL41.011EL,4 
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APPENDIX 3 

DIM3B CODE LISTING 



25611 TUC spiLmmo A0GLES RELATING THE TWO BASIC SYSTEMS W. 
pionHAm 01m.50110POT=502.0UTPOT=1002.TAPES=IMPOT.TAPE6=OUTPUT. 	 3 	41-8.2. 911 01.(•RELS.) 

1 	7A01=100,!.1Apt2=1002.1APE3=1002) 	 48 IF 1.00T.(16S.LT.0 .0R. 1GS.UT.3 .00. Ips.LT.0 .0k. IpS.Gr.3 
HEAL hoW,Al.K.JoHos 	 1 	.ori. AH6(21.11.0. .011. A06(2).GT.1H0. 
IN1FrJR FLP0Nti.t.L000L.PHC01C.00KNIC 	 2 	.00. ADG(41.LT.O. .011. APG(4).GT.Im0.1) 	GO TO 43 
I0II,C.L1( 	AA 
CU.1.4(0)/s1/ Pt(1.01:1:1). 141 	 44 gir■T I 71,44V1111.: LOORDI0ATE SYS1LM DATA ARC I000RRECT.) 

241.00KNIC(11 AU).KNOIJIC(2.24).UNHMS(1.24). 

Lt11 1C1_c 	i3O•241 	
43 r0()% 	I = 1. q s.o).C1P040(2.601.1(110mATII. 5001.(JommAT(1.10511). 

A 	= 0.017453292520 * n11G (I) 
cu.,1,1/0/fLwp,1(3.F.1(').uuslau(106(1),RusI(3. 441.1(10(2) 	 C (11 = cos (A 
Cn,'41);1/,./1 /x(,(q).C1.14),I(.AO'l '+0 S (1) = SIN (A 
C'xo'Al,/,Ou/oLAY/(1.?(I).1011,....4).V('1.9).0P(60.9) 	 III 11. II = 5 (2) • C (1) 
Car.wh/C1/ ,Inino,o).y,mvA0)()%Tk.IICEL11001CrLIJI.NTOIAL.NPUDEr.11I. 	 TB (2. 1) = S (11 * S (1) 

INTAEv.NT0U.uu)LN.r.uNI(.1.1) 	 T4 (3. 1) = C (21 
CO'"mnn/C?/110,.1■01- 1,).851.11.111F(9.4).1piECOITI(Ce.RHS.NIC.LPI.LP2. 	 IF (A 1(1(2).11E.0. .AND. ANG(2).NE.180.1 	GO TO 46 

I01-'1,411.1HA(1.0 
CO/ocin/c3/v1..,0.3) 	

A = 1.',70 	B /9h326 
GU -r(! 45 

C0-*c6t:/c4/1 1,S.IPs.111(5.3) 46 IF (A06(2).01..90.1 	60 10 47 
CO "..,d1/15/110.1001 	 A = 0.01745.),A.92510 * Awr,(4) 
Cn,'Ion/E0R/LORP(3.;u1 ).11(120,3..1).1C040(3. 44).J0A(4) 	 Gu In 

47 A = ATAri 	12) / (S (2) * tC(1)•C(5)+s(1)*51311)) 
01 E10-31u0 utull) IF IA .LT. 0.1 	A = A +'3.141542N536 .-  
01,1 1:041(01 A.16(41. C(4).' S(4) 45 C (41 = COS (A) 
1t 11 1`1'1 ,0 1.1(,.,-0.016.41,'IPLUC(2).TBNSL(60) 

vl 	kr.! (20). vi (20) 	
S (4 ) = SIN tA) 
1)3 (1. 2) = S (4) 	C (a) 

k:wulvALF01) (v 11. 111 VI (1)). (v (I. 2). 1J2 (1)).(V(I.3'.V3(1)). 	TB (p. 2) = S (4) * S 131 
(1).,Jp120U».(I1(1).,w(1».(WT(1).01)(100)) 	 TB (3. 2) = C (U) 

C 	 TB (I. 61 = III 12. 1) • TIt (3. 2) - TB (2. 2) * TB (3. 1) 
C 	 - TR (2. 3) = 113 (3. 1) • TB (1. 2) - TB (3. 2) * TB (1..1) 

1 11 (A. 	= 1') (1. 1) * TB (2. 2) - TB (1.2) * TU (2. 1) 

BrAN(5.5Pd..)) NLO 	
==116AUS 

5000 rji1-Al(mA10) 	 Irlir,Aus.G1.4) GO lu 3001 
ARItr(6.50111) 0E0 	 REA0(5.$)(xo(I).CGt1),I=1.11;AOS) 

01 FouriAt(INI /////// 	1 1 10. AA1U) 	 8 roHNA1(011u.u) 
tiCAll (5. 14 1 //) 11,1. I(0)( 
4,(11r I1.. '),J0-1) 	lour 

5005 Ful1,,4 A1 I/// bloolor pool pAHANLAra COoTHOLLING TILL wi/ITING Or INP 
1'11 oAIA Is. 12 / 6AN Till 101,01 PARA,1EIER CU0TBOLLING THE WHITING 0 
2r ppr,GRAt, IcisuL15 Is. 12) 

Ic (11r..c.r.o .AWD. 110.11.3 .A00. T(IOI.GL.0 .A00. IOUT.LE.4 ) 
1 	 GO TO 75 

• 41(11F IA. 741 
74 F-011.1x1 (541 01A wHITI06 CU0TROL PAHAr.iTE0 IS 4HCOB11ECTLY 

Srop 
75 uLAD (5. 5I)Pe) 	164. IPS. (A'n (I). I= I. 4) 

5002 FuH,P.1 1215. 4(1U.1) 
IF (110.1U.1) (.0 ('I 4m 
ARtiF 	50041 Ir.S. it's. (Ant. (I). 1=1. 4 ) 

S004 	I// 	Mq.Cir ILO GLOW/I. COOROTHATE SYSTEM rOH INPUT IS 
1, I/ / 	11 4C soLcIrtru MAIN 1'116111.1.0  COOMMIATC SYSTC+1 IS. 12 / 

CALL (VIAL 
IF (11N.I.J.1) Gu it' 4o 
wRIIL(6.103) 

105 FORnAI (/// * SVLCIIILD GAUSS ABSCISSAr Aq11 COFFFICIFNTS FOR ELEME 
1111)(04 /%11m PI Tor LOCAL COOROINATC SYSTEM*) 

ART1F(6.1 114) (0(6(11.1G(1».1=1.1GAUS) 
204 -FumAAT (311 • 21.16.0) 
49 IF (110.1.1.A) 	(A) Ti' 61) 

P1(11-16.41) 
41 ruRmAT (1111 //// 	6IX. • SPrCII-1C0 PRISCRIBLE) NICHNAmfS ANn UEFLE 

1C1101IS IN 110.. IAA1N 1'ROBLL0 SYS1F.k* /) 
1(PRLNI«1.J1WRFDLIII.JI.J=1.0PHOEF).1=1.0USTB) 

42 FOl(i'nl (52(111 . 5(110. 11'1.6) /1, 
1(1111 ///// 	52(111 • 110. 1_15.6. 11 0. 115.3. Illi. L15.3. 
2110. E15.3. 11u. L15.3/1)1 



sbn ,(Ln1)(S.b00.3) 1,014 

5003 rOR,InT 12E1.2) 
'1') 3,-,  1=1.6 
lo 54  J=1 .N 

.39 F.1(1..1)=11.0 
un/o=1/(11.+NN)•11.-2'.+0N)) 
11(1.1)=pn1o11l..-0111 
1:111.2)=ph('l.km 
F111.3)=r1(1.2) 
U1(2.1)=I 1(1.2) 
1-.I(7.?)=L1(1.11 
111?.3)=1  
F1(3.1)=11(1.3) 
EI(3.2)=r1(s..5) 
C1(3.3)=1(1[.11 
EI( 4 .41=1,n1 1.(1).5-14.1) 
1:)('1.51=t 1(4.4) 
CI16.+0=11(1 .4) 
ANITLIG.tiout) 

*4001 wydonT (11.1 ////// 	ill . sq1:SW:11W) 0LNCRAL CLASTICITy MATRIX* /1 
.vp-(11 1.1(..4110.'1 IILIII.J).J=1.61.1=1.6) 

4002 FO.,•:n1 (111 . .0.1600 
II' 1 r IALTSA I 10(1 

.1c)11. 1=h(TINO-1 
N1=1:11411...Nu0101 

ID,.1=(r•o.ii■vn.(N)ilhvr.4.1)/2) 
Nm.yr.1=1(.Kovn.(ro.c1vA.1)/2) 
21,4Fc = lIIUIIIL, • 1 
NNrC = 0' 

= 0 
oLl ,,W=1 
IF (IIN.Lo.1.) 60 It' e,1 

	

41'1Is (6. h/) 	 HolLm. Hmt(HEr. nOsTN. moOTOT. IGAUS 
6? FUro-nT (/// 7310sprCtrflo tHrkhric DATA. // 

1x.41 ,ur•1 1rN II +11..oLol%11 (I:11 4 )= 1, 14/ 

	

ul 	ur tqL1141-1(IN44(.F)=.15/ 
21x.6 , umil1N 	 ElFu1q.141( 1 04LNI)=1, I9/ 
41X..' (!,111111 of I'u1_NCKTIWA) lArtECTIoo (o014OrF)=*I5/ 
511...1.1,,(.:11( or 	rn,d.(.10,0•14)=.1,-,/ 

nlx...1l1iIIL o.h.11(1.1-1 or :oh)I ,; 	roil 	s114uCioNT(o00101)=*15/ 
914...100.1to or 	1 1 i•l")lS 	1.0(10 11 01.11'1^I (IGnOS) =.I5) 

61 ANIIr I,. 63) 14,1I.Avn. IlKIV1I. NuTioo. NC:F.1.01. NT. NTOTAL. 00+4  (VI. 
1 	 )JKNVA1 

63 FOldo'n1 (/// 	111TCh1N NnTA. // 
61)(.*,N,c.:114 10 uluvvi,N v0NIA01.1: Al oIIr I(M('(oOoNVA)=*15/ 
71x.+I1I.i414 	linwInaL1 Al opt. riN,t(ptitivA)=*15/ 
214.*rqr...;1 1 z or LoLo",.. IN f 11fwIF, r,A101XIIIC1LNo)=.15/ 

'0 COLO • 10 ILooOT ,../111i1X otouS OUr(01.11N1)=*T5/ 
4(,(.01 1 )1■1. 	01 1N!.NTLS or 10(11p)m or (III: Sf001100r(11T)=*I5/. 
51x.0107 ,31. 'I f. ')I InlNlx NLN01 1 0.1,  FTQI SOEIITIOU(IITOIAL)=4,15/ 

61.1(.4c12E OF UHROUwo NATRIX(NONKV1)=*17/ 
71x.*st1Z1 OF KNowN 11AI4Ix(NtiNVA1)=.27) 
IF (IIN.P.1.2) 	GU To 64 
WNTIr I... 3044) L. UN 

3004 FO 	 sPLCIFILD LLASTTC mOtIOLH4 (C) =. E13.5 / RoAl 1//// 3,!H  
1 	3111 s1'EC1r11.1) POISSONS RATIO (ON) 	L13.5) 

64 IF(114017A.G1.24) NO IU 3041 
IF(DUNKJA.G1.60) GO 10 6001 
GU 10 3(10 

3001 W0[11 (1,.300.11 
3003 FoRmA1(76HopRot:Imo sloPPE(I 101E TO THE CASE' 0EINO TOO ATG FOR THE 1) 

1114FOSI0115 sPLC1111:0.1 

301)2 	tTI C:1 1;11101: 
1tI1CI¢If = U. 
00 200 J=1.000T01 
RErowl•211111 Tu1.(CC(IIu 

2111 FooplAt(110..s(.20.0.31.13.01  
Ir(N61lott...fl GO To P02 
JJ 1nu I = 1. 3 	 NJ 
1415(' r' = III SISm + ANS (RNSI (I. J)) 	 CD 

200 CUNIIHOE 	 L.J 
GU ro 2 111 

202 5411r(6.2041 J 
204 1-01(AATIIM+SCoOLNCE LNNON IN ConROINATC OATA AT*Ib) 

Stop 
203 CoortooL 

RIAD 	101 T•lp4SrL 
10 	FUlo4n1(16151 

IF (1111.1a.1) 	0 10 bA 
W.(111 (.. 64) oVi(sLL 

69 F04061 (/// 5904501CIrILD NUmNI...1( Or ELLmINTS TO wIlICH STRESS IS AP 
IOLIC;) Is. 14) 

60 11-(0pSTL.G1.2) (,I) 10 5001 
If (1111 .Lr.i) 	6o 10 65 
viN51116.70i1 (J.(CroND(I.J1.1=1.31.(NNSTIT.J1.I=1.3),J=1.NOOTOTI 

,0,CCIFILD NoNAL COONDINATE Alt!) APPLIED FORCE O 205 F0414nT(1111///*U 
IATA IN (Or GLoonL 5r511 ,t rIb INVOT ANN Mr MAIN PNOULEM SYSTEM 'IES 
21'trIivCiv* // 7x. *Hour*. 1IX. *C9oNn X*. 13X. *r00101 Y*1 13X. *CO 
304(0 7*. Itx. oto(*. 10X. 1,1(Y*. 1,4X. $RL,  // 50I111 • 
4(1o1 ////// 	.10(1.1 • 14, 	/1/1 	

T9. 6E20.3 /). 

65 IF (T(.5.1q.1) Gu lu 1+1 
..1 1 ) It J = Is No0101 

17 CAIL NTRAHS 111.5. (COW) (1. J). CCORO (24 J). CC0N0 (J. J) ) 
ill 1F(ooNSLL .Lo.41 No lo 14 

HL/1O 15. 101 (N0LUC(1). I=1.NPNSLL) 
IF (NPl(stL .C.0. 1) Gu 10 14 
DU 11 1=P0Ww3LL 
IFININ.0C(1).LL.00LoC(1-11) GO 10 1. 

11 	cuotioo)_ 
II cooLoc(oplo,LL).1.t.010.N) (;o 11) 14 



3 
3 
3 
3 

00 01 OU (10%/01111301dn'1b1•1-n .019," (1-0v010)101dn**.n*I-h) 11 
10 Ill 09 (0 'ml• 	dl 

OU 01 09 tl .141. oV0-1'11 Al 9/ 
w/ 'IL 0‘3 

61 nl nq ill •14-3* (J(. '11(11q) 001 31 
T + 	= List. LL 

9L 01 09 lc "-i0' 1001 'mi. S ./.1' n111 31 
'l 01 09 Cl *r.1* i0 JI 

willn'T=11 InuI 011,94 
= 11St 

10.1111103 ton? 
1/// Int) 1wh10.3 4L 

(Vt 'ti) 
time 01 Ofi (w31111.01.1 •>10" O.-1M*1(1'110mo 11 

111114I ' n11 /c1 .01111 iii!/103 euoz 
19'0013311./..=r .(r41)3n0n1J) '1I.II1100113 few.? 	AiImm 

willh.1=I Toue! 0(1 
ftw0033/13 JO 318010 )./(ION 1S01.11 1r0,41103 3.0101 	JOIe 
N3111 001/ 1S3310N1 FNA'-3131 1091103 110111 3010110141(91 	n7 / 1.4311IS1 

NIvI1  101 Ill .10001:1 WIss13mia11c4 '1031, '011I /// 11111 1V4003 0002 
1000?,9111101,  

99 01 09 	(4-11.1111111 AI 

1(11W113 WJVA 11113 SI --- I0OT 	0001 
110/L01Th11g onvrll'il 

AnnloinD 
'0 = 0nen.7(41w= (.oen= (a)en 

'L = 1/1W=1911(A=IGT)GA=11(1i!A=101)4A= (tilen= (bIcIA= 11cP 
,‹31 	(oe)en=ff,nen=isnen=tenen= fblen= IvIeh= (i)en= illeA 
O .11 = 107.1IP=1vI1TA= (P)1A= 1+,11A 
• 6i = 1611IA=16111A=1/11IA=ICI1TA=11111/1= 1/11/.= 1910= 110l0 

= 1G11TA=.1111/1A=11,111A=10111A= (fOtp= (9)TA= (7)1/1.= mu. 
'0 = 1i.11cA=11I1VA=IIIIIVP= 1h)VP 

'1- = (chit 19A 
?I +I = dill 

'I=(1)VA 
t.01=I 4 (.fi 

L 01 09 

'T = 1/?)0=10P1eP=0,e1eAfi 

=Ihe16A=11,11eA=1w1101=(I)eA=11,11?A= (Lien= (9)en= (cdepr. (breA 

= ibe)crs=(!.e)en= ivw= 191e/N 
'c/"1- = (6e)en=(,:e)en= tb)(1A= (()(•A 

.1- = le.c1e/1=11$1eP=thi1a9 
=ITLI4A=10e1eA=ILI14P=CvlIdA=Ii11?A=Ie114A=111101=10I10%= MCA • 

'i/'1 = 111/11A=14?1IA=tI111A=14/1A 
'4'/"1- = (es)in=cc(.)111=(?1)1n= (c)TA 

-1 = (119)10=1,,;,:)(n=oiallnil 
.1(ce)ln=(04)in=ihnin=t41)1n=0,nin=(ontn= (h)ln= (101P=(/71P 

'T- = Ifii:11A=(9?)1e=t4e)TAT 
=11?11/1=(UT)1A:(L1)1A=110,11A= l4:111/1= It1IA= RATA= 1e1TA= 1111/' 

19(1$A- =((e)4A:(.1)0'=(u1)4A=(1114A 
= (41)4A=1,-.114h=(..71.71,=(111b 

.1-1,t• (d  11= 
'T = (psi% 

	

el.1=I 	nu 

	

4* "1  " 11'?"flf-11;1 	11  13 c 
( I 	) 	r. I ) 0= ( ' [10 	. 

=4C■1?(,-; 
On 

(..1(= 

tr•)41111•11i,  I 11 14 	T1,,102=1=y4",,11(1::: 

11'1:=cr'It110 
A.1=n e nn 
9.1=1 e 00 

n'I=1b•.411n1 
=(a.91.10=1L.S)10=19.511n=(0.b)111=19...1 	10=(k.v1In=1c.T.IL:::(1,:= I 

%Au■•::%:11=::;w11‘ 4/Z 

0'0=cw,11,,n"ni we 

o'0=tr.11shwhk). 
vArhnh.1=1. ALS UN 
)1j...ou.1=1 0/i ou 

0=(1'11:Anon), 099 
vrio.eol=p (1.-v CC 

CVA,  :0 .1=r 09.7  
°41, 

	

VPmih.1=r 41139 00 	. 

""n:11:71= (icy 

1111=g11.= ueg 
Tomnr,st=c 	00 

3 
11oIlv111141 

3 

	

1014111a,3 	fit 
ciT 

o.re • IV 1/11/0 30100 01 W0011 1J11109'4.400ec, 1trii0J 4'1 
( 1 ).011.1(1,  ( I 	1:10 1,10 	(4 1'9) 	HP. 	ZT 

91 1,1 1..3 
I'ATIVP .10 inc. V11.0 101Hh010,i111Vh;10.1 CI 

0,(.9)111hy 

9 
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OSI.t = n 

	

Smlo rop,r1 (10o. ■11.1,0111 no4orit 	1A, 	tS IMO In fI•ITEtt Tlir STTF 

6020 r0q,p1 tii, /A. $CALCWAILD LIAO ViCI0I( FOU THIS ELEMENT IN rot: MA 

.211 po.:.00 11. 1) = RII■h).11 (1, 11 + 11m51,, (1) 

• tr IhPloAL .10. ui NO to HI 

• tr 	o..0m. 1001 .1?. 3) 	U0 TO 77 
74 .4(11r 

7n .0111 1.-..3010) 0 

tH (I 11v01.11.') .0R. 1t11S1SA.LU.O. 'non. N.NE.MPLMCINLOA01) MO TU 70 

1+0Iko. L.40%1100.01 

,$U Ti' N 

CALL Loom' 

CALL LOAM 
.111 )1. 	1 = L. 0CLLm1 

IF PI 4/144 oPLot INLoA011 Go 10 14. 

IF 111 .111. 11PL0L lo1oAn11 	60 10 Pn 

.m111 1h..50rot 

Mot //I 

I it' 	■pti t 	STS 	) 
e; rt11F (h.i0.!1) 

31)21 Filo :1 1111R. 4.. &Noll, AL0o6 x+, 111. .roorE AL006 r*. 11X. 
.ro11[1 A1,006 /*/1 ▪ t A,',0 51) 1qw,..g1111.11.1=1.0c11,011 

3(„59  rwd .ptt:t■IA.11g..v» 
7U 11 1', 	ooL tL OlnAn) .A011. 111_OAtl 	111)11%LO NOM = NL11AD*1 

nj  ,110 J=..t...L1Lo0 
JAI=J-1 
AA=1A0stiL0001.01.0)1 

C 
C 
	 coiCK 10 U000.0,,.N NICK wior 

C 
• 170 K=1.0onKvA 
tr10!.K01111.K).L0.AA) Go 10 130 

520 COn(,0Ui 
C 

To C'IEcK Ill K00so NICK 0AuL 
C 

On 7411 1.=1.11rOwA 
IF1K1.0MC11.L1.11.1.AA) (0) TO 

ts4q C0.11 T1101 

10.coLcK 10 okr,:c1.1.1t0 01ILLCIToo 

'1(1 "3/0 .4=1..40WILF 
IF1PPL0011.0).1.J.AA) (.11 lo 5/U 

560 Cuolt0ot 

If 001 t0s11c1 p. uoKotml nIcK NAAL 

11.l non '11 7: 	IF VA 

III' 1,44111 I 14■1•11.L ...t.) 	1*.t1 	ift 

,NU COH1111Ur 
!Of) OutimiC1101M1=EL1100r(WiJ) 

.110,01StIoNN)=1(HSRLO(1,0M11 
tlY~110Jrs1)=111) 
ULPINO%;.100111=0 
no ro 510 

Nbll 
11,1X=1:1:=1,1tHMUCU(IodN1) 
LLP0s1411,J.1)=K 
rLo11s1it).U411=0 
GO II) -)10 

511) 1011)111Ct1.1.)=kLuOUP(H.ol 

FLvW011,.0011=1 
GO 10 5111 

5711 IU h10 mA=I.0KoVA 
1+1KnotItC11.1,4011,Lio.0) MO to be, 

1,111 (III' 
 

WIHM11!..du)=0 
LIhl0 

5IU E-C:1 11.,=::""1):1  
CALL Iro 
CALL StFto 
CAIL GrAimS I. LlhoOL(141), 1631 1) 
CA1L 1-oP1..Ao 

1001 COHltuor 
CALI OACItA11 
CAL1 or.root 
It ttoolo-,0.11 bU tU 72 
CALL S1.0.SS 
CALL STRUM 

72 slot' 
CNn 

SUmmuTII ,C IHIAL 
lhatMit fulim1,1,1(L)IC 

r.1 rr 11x1.11.1: 
Corwow/s1/ 1o1rotrti. 24; 
Co P.1, 00 	 pc.t.00Kolctl. No).Korr11r(2.241.00KoS11.94). 

IKNollo,(1. ho).1Low,h(,).Got.KnoonT ( i. 3(l0).011K0A111.1o30). 
2owcitt 
(:Ov.o11/s.,/1Loom(3.Niu)0(0Nuo(1.(..1).00si(3 , 44).KPA1?1 
co., ..... //1/0o.mvA.movA.00S10.011too.0CLL61.oTUTAL.i.pHOFF.oT. 

lArLI • ON IA I Will Lii.;,01,1111 
A 1.1!1111 01 

Cu”V"ALIliCt 	I 1 • 0100111 1 1 I 1 • (II( 1)•Li:ICU. (1) 1 

C 
C 
C 

C 

C 
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c 	PAittA1oU '!').til Kt01#tl VAItIA/1Lr Alit) UHIVJOWN VARIAPLP 
C 
	

11opLAPIot4 Al UNk 11HL 
C 
C 

1.1AO200 
oLLLotnIkLL ,NU1.OIHN0DLrtHOSTU.NOWTOT 

3Aon K,1'. 4r1 1o.15) 
Irtw ktt oit .3.0eitostrioit..11 

160 In “t 
IH th11.10.1.L.3 .A110 ,hONUir.1.1.24 .A00.1100T0t.lr.44.AND.MNUM.LC.201 

11,11 th 

61 Airtr1 
ruv...AttlP10A PAHAuttilt 01/10 Hr lltIAL IS 111c,144rCTIA SPrCIPIEN.1 
Stc.P 

'60 t1C1'LtU=.11itLL4WILLm+1 
CALL 1,0111 
no tr. 	= 10 UM! 
A11)=0 

711  111/=n 

1:K.u/ti =0 
ou 	1=10"LLF,a 
(141 200 J.=.)tuLLLHO 
AA=1AusttLnou+.1141J)) 

C F: 	in (.e/ 	 Is In A 04 It ALottre 
C 

c 
	

Ir It IS HOI 111 A 04 4 Oil PRLNIC sronr IT TN A 
C 

170 on 100 11 2 1, NA4 
tvio(N).10.0) 40 TO 14U 

160 C01111M0+. 
190 Atol=LUTOItItd) 

(I TO 22J 
200 COOttUUt 
720 11(1 2A0 II = 11 ((Alt 

111 = UAO + 1- 11 
Ir(Af1111,0i.o) (10 1° 240 

23(1 MOM' 
240 11-(111.ol otounvAl M10012111 

00 20 JJ = I. ((Alt 
trIAIJJI.L1.0) n(JJ1=0 

2tiO Marina 
00 21.0 N( n 10 MAO 
KIA1 = hAO + 1 - KR 
fri4tRx1).14L.0) 1,1) TI) '?l) 

.e1,0 C0011HUF 
2/0 1i(hk10001KOVAI Nv,'4VA=KK1 

UO W.41 1 LL = It 11101 
il(LL)=0 

280 C001111OL 
HO COHIIMOI: 

111_1000 

C00 

IV 

171 

Ou '" K 	1. WAO 
11- tAIK 1.1 0.,PH) GO 10 100 
IF(O(K).F.w.AA) GIJ 10 11U 

40 
Go to 1:01 

100 f\th)=ILTIo0+.II.J) 
• lu 210 

110 
GU tv 2to 

C 
C 
	 To Cllr CK xotloro N1CKNNAL'Is 	viquIC IF SU STORE IN H 

C 
111 00 Ian 

ou 140 L=1.wwn.r 
/FinA.L ,J„p(t.u(ctis.L)) 	to 140 

130 Coillmur 
:to to Ito 

140 oj 	= 1. unq 
Ir1,t(14).1 r.or 61) to I6” 
CoroIropt 

11'') 

• 

'I=F'LurntL(I,,J) 
G0 In Plo 

C 

summUTI10: ' ,VOL 
INTIGLH rt_t4uuL.P0LuIC 
1011.1;ER A 

1,01.1:11-(1. 24) 
24),t0IH111C(1. 60)0(0O0Trt2t24ItUNHIM(1.24)9, 

IKI1F,mos11, b01,LL1'osn(p.b0).KOOmAT(1. 300).UOKI1A1(1.1)430). 
P110CL(1 611.2q) 

COR.100/'st/LL000L1.5.+00).ROSOF011.‘,01.10151(3. 44).KKA(2) 
C0'...1 0/(1/00IIKVA.nhfOIA.00STH.W.XL00.0C1.-.101.0TUTAL.NOODFF.+17. 

101.11P'.10-10.1.111t11.0.000101.0 
0C11.0, = uttLf:0 - 

• 00 	1=1.01.1_1.0 
drr0(t1.1) 1.1.0001.11.11.1111:00r(1.01.J=.3),IOLCV.(rLOUDECI.J)..J= 

1Y4.h(LLIW.5; 
1 	folw,01(.?014/ 

fr(1.110161 11.1/.01 .1 .01t.r1.1 0101:(1.1),IIL:111LCK1 GO 10 40 
00 	J=:.011I00.) 
A=11.0o0I (I'd) 
11 IA.11.1.uh.1I.GI.1.001011 GO 10 70 



2 	CLNUPLII.L)=Iun.ArK 	 10141011(1.,L1=HINIII.K) 
On S n=1.1 OPILII 
nut=1.Nt.LLA 	

conrtwl, o 
no 	1 E 1. NDLLO 
CALL PIOAHS(CURUI1.1).1P) 

no 	 OU 7 J=1,5 
1)0 7 K = 1. .5 

IFIIIinnO III.J1).1Q.1Unt1141) OU IU  4 

	

9.11 Into 	
TK IT. J. KI = O. 

3 	C 90 	L = 1. 3 
PO 	1<=1 	 rEln IT , 	= 71. (10 J. 	Pt (Jo 	* Ti' (Le K) 
L=010K- ) 
Unort. I 11 .1. I =-LLIm1.1 	1 	I 	

1 CONIInnr 
tr (o .ro. 1) CALL oPLHms 	JRA. 4, U/ 

5 	C)' IIHOI 	 11- I (mil 	11 	(.0 TO 2 
CALL ulqn:.5, (3. KRA. 2. II/ 	 CALL hid T•k4S 129 C010 1 	plio. III 
cALL y,R11-s (3. LLPimt(1.1). 1113o 11 	 2 0.10101 
00 It (3 

41' 	..:4TIL(F..,111) 1ulovi.11-1.1). mUrf.lI.11 
511 	Fon,...AI(3,010SL:niChLI ERROR I') LLUOOL INPUT DATA AT 4215) 

ht) "Om. 
7') 	 SUoltrtUTIME LUAU 

F01,-.1T(1000101 	111 ILIPLnt OR PIO.:SCR114.0 U[FLF'CTfON,I5 ULA. JAC 	 CD 
1.1711 IS 'III uF 	 Cn17t.H/S1./x11(4).C11(4I.IhAUS 

to to hn 	 co,A,4rn/s1(1/0LArtti.2n)itm(6.9).P(9.4).Nv(611.9) 
q1AD15.1) (1'ifr11lL(1.11•.plu(41(1.1).1:1.11Plinrr) 	 co,o;.nn/r1/ OnnKVA.nlinVA.110qt11 .1ICILNO.00FLNI.DTMAL.OPIIIIEF.PT. 1 

I'ILLLP.OrkLLINt,LLSOIDU101.11 
no In 1=1.nrtiNt1 	 CO'Plon/C3/Vt;?0.3) 

C01.D/C4/11,5. 1PNI1DIS,3) A=Pu h lIC(1.11/100 	 .Q1 

40 TO 70 	 C00,,,01./CWIlOstOUT 
CW.0,1111/COR/LO1OISOOI.TRI.20.3.6/0CCORDT3, 44T.JRA(4) 

II-(A.11.1.01..A.Q1.i) 60 TO 7u 	 convennp..P/4.n.F.r.5 
c.n, 111.1JI 	 i)I'-F.FS1Ul1 10011.(hn).DLIHIb1oiR 1 1(3).CL(3)*JAC(313),Dr(4i20),IRHSL(60 
'IL Fiji'') 
C00 	

1).10(311S1.1t00_(3) 
L6)IVALrhLr MIII.QPIIII.IInnsLt1/.101SL(1).0P(200)) 
90 n I = I. NCLLW1 

h Tnn'CL III = o. 
IF tfIn.LT.5I Gn Ti) 1 

soulo.UT114 Lonqn 	 wolli If,. 401 
Itiffw.1( 	 40 rom, At 	4211osrit1ss LIM01116 111'U1 DATA role 	ELFPCNT/ 
C), n,.1/,a./FLNuNLISo..1n).nosnrntl.F.4).Png1(3. 44I.KPA(2) 	 1 	,l 11)1- ALL Con SYSI 	ComPOPCNT Y CuMPUNENT 	Z CO4PONENT/) 
CN , AoH/C1/ min4vA.'non/A.nosIK.nctLno.nCILN10110TAL.11PHDEF.ml. 	 1 KF41)(5.2INVLOC1.31FACI: 

2 roP..A1 (P(4, 
IC (hOL(1(1..4..11) (.1) lo 
Di.loI.tvOALL.11.1.141.11FACI.I.O.AII GU TO 5n 

co....nn/(0o/LLmn(s.21).1'.(1v.%.3).LCo4n(5. 44).00A(4) 	 St, 
III o:1,‘“ O. IP( 	 51 FokonT (4)Hon 	DAToP IS SPIc11-1LN lIiCu'(KECTLY.) 
)0 I J=1 .."'1.L•• 	 iToP 

K=1 'Q N 1.1 .JOLIL 	 ) )/Inf) 	 SC) nO Q L11=1.111ACC 
nn 1 1=1.3 	 4CAntS.‘InPLoL1.ICoOL.TSGL.II,L(1),I=1.31 

FuRvA1151s.5I11'.4) 

CoknII.J)=LL.nwil. 1.) 	 IF 111H.Li.)/ UN Iu  S 
ow:Iwo II. 1) = Q. 	 AQTI1(6.4111LOOL.I‘,"L.I1JL(T).1=1.3/ 
11u1l-0,11 	L .1).3.1.n) horn 1 	 4] 	(JO 1 I.,. I/. 4*. SLL.S.5) 
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IF (HPLOCI.NE.N) GO 10 56 
IF (ISGL.1.1.1.0)(.ISGL.(,I.6) 	GO To 56 
IFI.NUT.(15GL.Eo.l.ANU.IGS.NE.11) 	GO TO 42 
CALL CTRArs (IGS. GL (1), GL(2). 603)) 

42 IAConL=IABS(1000L) 
ISc0,1 1=1cOuL/IACUUE 
I' (TACoUL.Li.1.01(.1ACoDE.GT.3) GO TO 56 

53 00 10ou IGL=1.HHILm 
IFIIFIxlv(IuL.IACU(1E1).NE.ISCOUE) GU TO 1000 
00 10(11 JuL = 1. 3 
iv,3L=116L-1)+JUL 
Ou 10(01 	IG = 1. IGAUS 
DO 1001 JG = I. IGAUS 
GO To 111.1,!.131.1ACO0E 

11 	G=1sCODE. 
H=xGIIG) 
F=xli(JG) 
Go To 14 

12 H=IScooE 
G=x6(I(;) 
F=AG(,' ) 
GO To 14 

13 	F=ISr005: 
G=xI,(I(,) 
11=)(G(JG) 

14 	Ircnr,ILm.Eu.20) GO TU 15 
CALL S1IAP32 
GU To 16 

15 	CALL SHAP20 
16 DU 17 1=1.3 

DO 17 K=1.3 
JAc(T,K1=1). 
IF (IACu('l .NE.. I) GU TO 18 
JAC(I.K)=1. 
GO TO 17 

1m 00 71 J = 1. NNELP 
23 JAc(r.K)=JAL(14K)+01(I.J)*CORD(K...1) 

17 	CON1INUE 
HETm(11=JAC(1.1),,JAC(2.2).JAC(3,3) 
11ET.1(21:JAC(1,2)•JACC2.3)+JAC(3.11 
OLTs,(3)=JAC(1.3)*JAC(2.1)*JAC(3.2) 
HE1:444)=JACC3.11 4,JAC(2.2)•JAc(1.31 
DETm(5)=JAC(3.2).JACC2.3)*JAC(1.1) 
OLT,1 (6)=JAL(3.3)4JACI2.1)4JAC(1.2) 
IF(lAco('L-) 19.21,9.'1 

21 AX 	.m-IF.(,(e)-01:p.14) 
AY 	=1ETm(3)-ii(T(s) 
AL 	=PCli,(1)-011'11A1 
GO TO 22 

20 AX 	=HL1,4(31-OLu4 (1.1 
AY 	:DEIm12)-ULTm(51  

AZ 	ITOETm(1)-0ETH(4) 
GO TO 22 

19 AX 	=1)E1m(1)-DETM(51 
AY 	:n(TMl21-UET(4161 
AZ 	=DETm(3)-11ETM(41 

22 IF (ISGL.GE.31 GU TO 25 
CMpT=G.1JGL) 
GO TO 24 

25 CMPT=0. 
IF (ISGL.EN.31 GU TO 2/ 
DU 60 1=1.3 
TRGL(I)=0. 
00 60 J=1.NNELM 

60 TR(;LII)=IRGL(I1 40E149.11*CORD(I4J) 
IPS1 = IPS 
:Fps  = 	s  (ISG. 	5) 	IPS = ISGL - 3 	• 
CALL PTRAHS (TRGLITP) 

00 61 K=1.3 
TRGL(K1=o. 
DU 61 J=1.3 

61 TRGL(R)=TRbL(K)+T13(UGL1J)*TP(J.K1 
00 26 1=1.3 

26 CMPT=CMPT 4 LiGL(Il*GL(1) 
GU In 24 

27 DU 2A 1=1.3 
28 cmpir.cmpT410(J6-11)*GL(1) 	 • 
24 RHSL (KGL) = RHSL (KGL) a. CG (1G) * CG (4G) * DE (4, IGL) 

cmpT 	* SORT (AX * AX • AY * AY 4. AZ * AZ) 
1001 CONILNUA: 
1000 CONl(N0L 
4 	CONTINUE 

UU 31 	1 = 1. NNLLM 
00=34(1-1) 
1)0 3:1 K=1.3 
TRH (K) = U. 

30 TKII IK) = THI4 (K) a TR (I. 0. K) * RHSL (OK) 
On 31 	K = 1. 3 
KI=JJ4K 

3; TRHSL (KI) = TRH (K) 
RETURN 
ENO 

SUBROUTINE 61RANS (CGS, X. Y. L) 
A = 0.01745329250 * 
C = COS (A) 
S = SIN (A) 
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SUBROUTINE FEm 
REAL JAC.IJACOVJAC 
COMI,ON/S6/ELNO0E(3.610).RIISRE0(1.60).RHSI(3. 44)000(2) 
CONm('N/S8/41,(9).CG(4),IGAUS 
COmNON/S1U/NEATZ(3.20).01I(6.9).14(4.9).0P(6(1.9) 

• CONNInN/E1/ NUNKVA.NKNVA.NOSTRINCELNO.NCELNI.NTOTAL.NPROEF.NT. 
1NELLNOWHEL.NNELm.110010T.N 
CONNON/C00/LORU(3.20)1TR(20.3.3).CCOR0(3. 941).J0A(4) 
Comm11N/51'/6 eilvr•MS 
DINF'ISION A13.3).s0(111301.JAC(3.1),IJAC(3.3),0E(4.20) 
CuolvALENCI (SK(1).LLNOUL(11).(01(1).014(1)) 
I = (NCELN1 	(NCELN1 + 1)) / 2 
DO 5 KS=1.I 

5 SK(Ks)=0. 
C 
C 
	

NUMERICAL INTEGRATION LOOP 
C 

.U0 'not) 1G=1.IGAUS 
00 1000 JG=1.IGAUS 	 N, 
00 1n00 KG=1.IGAUS 	 C) 
G=X6(1G1 	 UD 
11=x6(JG) 
1=x6(KG) 
IF(WNLLM.10.211, GO TO 30 
CALL SIIAI'32 
GO To 31 

30 CALL SHAP20 
31 coratmuE 

C 
C 
	

foRMATION OF JACOBIAN MATRUX -- JAC 
C 

DO In 1=1.3 
00 111 K=1.3 
JAC(I.K)=0.0 
00 10 J=1.NNELM 

10 JAC(I.K)=JAL(I.K)+0L(I.J).4CURU(K.J) 
C 
C 	VALUE OF OUTERAINANT OF JAC -- VJAC 
C 

VJAC=JAC(1.1)*(JAC(2.2)+JAC(3.3)-JAC(2.3)*JAC(3.2))- 
1JAC(1.214.(JAC(;?.1)*JAC(3.3)-JAC(2.3)*JAC(3.2))* 
.2JAC(1.3)*(JAC(2.1)*JAC13.2)-JAC(2.2)+JAC(3.1)) 
IF(VJAC) 12.11.12 

11 ;MITT( (6.13) 
13 FouNA1(1H0.21HOLTJ=0 PROGRAM HALTED) 

STUD 
12 CU/41100E 

C 
C 	INVERSION OF JACOBIAN 	'JAC 
C 

IJAC (1.1)= IJAC(2.2)*JAC(3.3)-JAC(3.2 )*JAC (2.3))/VJAC 

R = X 
X = 	C 
T = R • S 
IF (IGS.L0.2) GO TO 1 
A = n.017953292520 * 
C = Cos (A) 
S = ,III (A) 
▪ = x • S 
• = y • s 
• = 0 • C 

1 RETU0N 
ENN 

SoRRNUTME P11(A)JS (U. IF') 
CO"mCN/C14/IGNIIPS.TH(3.3) 
DIMENSION IP(313)1U0(3).11(3) 
DO 3 J = 1. .3 
00 2 K = 1. 3 

2 TP (J. K) = U. 
3 TP (J. J) = 1. 

(F (1PS.IN.1) GO TO 
4 00 5 J = 1. .5 
u0 (j) = O. 
UO 5 K = 1. S 

5 UD(J)=u01J)+TB(K.J).4 0(K) 
IF (A0s100(1)).G1.1.E-35 .OR. A0S(60(2))*GT.1:E-35) GO To 
THEu = 
GO TN 9 
THEO = ATANe t00 (2). OU (1)) 

9 C = ENS (IIILU) 
S = SIN (TH10) 
IP (1. 1) = C 
TP 11. 2) = -S 
TP (2. 1) = S 
TP (2. 2) = C 
IF (IPS.Lo.2) GO TO 6 
IF (APSIoN13».61.1.E-35) GO TO 10 
PHTH = 1.5707963260 
GO To 11 

-10 PHIO = AlAN (SUM) NO (I) " 2 + uo (2) 4.• 2) / (ID (3)) 
IF (01110.L1.0.) 01110 = PHIU + 3.1915926536 

11 C = CUS (PH1N) 
S = SIN (('0(11) 
TP 11. 1) = TP (1. 1) • C 
TP (2. 1) = If' (2. 1) 	C 
VP (3. 1) = -S 
TI' (1. 3) = IP (2. 7) ♦ S 
re (2. 3) = -IP 11. 2) • S 
TP (3. 3) = C 

6 RLTuuN 
EN() 



3INONX NI SI  3WVN  N3IN  .T XIN1Vw  NmON14  1113  NI  

Y 
N;
 

O 
N)
 

 
a
 	

n,
 	

•-•
 	

m,
 

O
 	

.-
. 	

%c
 	

0
 

C
l 

X
..

 :
L

 >
 Z

: 
c:

 r
- 

c:
 L

c, . 
c;

 n
 0

 c
..

 c
) 

.x
 G

L 
A 

CD
 c;

 n
 c

 :
:.

 .
7.

, 
c_

 C
_ 

0
 C

; 
.,
 .
-.

 .
-.

 0
L

: 
0

 0
 _

s
 0

 C
D

 -
7

 0
 0

 	
 

C-
 C

A 
- 1

 C
I +

, ■
- C

Z 
C

Z 
+.

 0
 •-

• 0
 C

) 
A
 )

.4
 C

D 
A,
 C
: 

4:
 +

. C
7 

CZ
 C

D 
"L

' 'C
 -

a 
NJ
 .
• 
C.
) 
C:
 l
. 
AJ
 h
. 
0 

"3
 C

D 
C7

 c
 i

n 
c 

rs
 C

C 
c_

 c
_ 

c_
 c

_ 
c-

 c
- 

C-
 C

- 
-
 	

..
 	

11 	
:7

 -
 1

1
 	

II 	
11

 II
 	

Z
7 

-•
 -

- 
--

 i
f 

ii
 	

11
 0

 II
 	

--
 	

C
 A

 	
x 	

>
 >

 >
 >

 >
 >

 >
 >

 
-4
 I

I 
r-
  r
- 
II

 .
 a,
  0-
• I

I •
-■ 	

a.
 -

4 
X 

C-
 N

J 
m.

 V
 •

-•
 •

-•
 '

V 
AJ

 -
• 

..
 .

..
 •

-•
 C

_ 
C.

 I
v 

AJ
 C

m 
l.

 C
. 
N

 •
• 

.-
 .

..
. 

>
 -

‹ 
NJ

 -
( 

V 
NJ

 
r,

 0
 r

l I
n 
rn
 0
1 
r,
 n
 

o
 	
•
 
c
 	

c_.
..-z
 c
 	

7. 
...

 ..-
.1•

-• 
'
V
 
N
J
 
V
 
•
 
V
 •

-•
 7

 N
J 

V 
m.

 .
..

m 
NJ

 •
-
•
 *

 •
 •

-
•
 ■

-
•
 •

 •
 •

 I
..
. 

41
 .C

.' 
-I

 ••
••

 >
 ••

A
 ._

 _
. 

C_
 r
n 
N:
 -
 -
 .
Q.
 N.

, 
04

0 
' •

 a
' Z

..7
 4

- +
 	

4-
 	

.4
 1

 	
C

 •
 •

 •
 C

P
 L

. 	
0.
 
0
,
 
0.
 
	

C.
 	

11
 --

 	
--

 	
CA

 C
A 

Co
 N

 N
J 

N 
.4

 •-
• 

•-•
■•

• 
'Z.

 	
--

 I
I 	

• 	
-■

 	
C 

II
 L

 C
_ 

--
 .-

- 
i 

0-
. 

•-
• 

X 
C:

 X
 A

 X
 	

C
_
 
X
 	

I 
I 

..
 .

..
..

 C
_ 

•-
• 

< 
C_

 
7

 L
 r
-  

C.
 
	

 
O
 
+
 
•
 

A
 3

. '
A

 C
 
a,
  -
- 
r
 -.

7.; 
3

 Cl
 .4

 	
0 

X 
II

 .
- 

..
.'

 .
-+

 I
I 

Cl
 m

- 
..

 m
• 	

II
 I

I 	
m.
 N
J 
II
 I
I 
II
 I
I 
C 
• 
II
 -
 I
I 
II
 
.
0
 
V
 
,
.
.
 
.
.
.
.
 
A)

 m
+ 

•.,
4 A

i 
NJ

 
A

 C
 I

I 
..

. •
 	

r
 	

4 	
7C

 	
m.

 -
• 

I.
 •

■ 
* 

II
 m

. 
. 

II
 I

I 
II

 	
1-

• 
•-

• 	
..
..
 =
 .
..
. 
..

. 
>

 r
 .

. 
r 
	

 
•-•

 •
 	

ii
 i
 1

 t
 I
I 
t-

 I
I 	

-
 	

- 
I 

- 
• 

t.
 t

-.
 -

 	
C

 I_
 a

: 	
.
 
.
 	

. 
. 
. 
. 
n

 -
 -

 -
 .
 .
 
II 

II 
II 

II
 I
I 
II
 I
I 
II
 

•
 .
 
C
-
 	

im
• 	

m,
 	

7C
 	

4.
. 
l-

 7
 1

.•
 •

 •
 .

7
 	

"C
 "7

:. 
-C

 	
L

. 
4

. 
, 	

Z.
' C

: .
..0

 Z
 . 

II
 C
m 
II
 .
7 
t.
 ■
■ 
I 
.-
. 
I 
■■
 I
 ■
■ 
1 

:7.
. 
C.

  .
,_

, 	
I.
 

m .
 ...
 p

+ 	
...

 	
A.

 	
-4

 .4
 	

4-
 C

• ..
-.: 	

•••
•• 

.- 
-- 

. 
• 	
.
 
	
.
 
	
-
 	

•
 	

,-.
 

C
l  •

- 
r.
 .
..
 	

C
l 	

I-
  0

 r
- 	

• 
C

l 	
>

 C
_

 >
 L

 >
 C

- 
>

 L
 

(.
..
 1

.•
 3

 Z
 	

+ 	
A

 	
r_

 C
A

 N
 ■

-•
 	

I-
 	

r
 -

 >
. 

c
 r

 
In

 
> 
n 
> 

n
 >

 c
-)
 >

 
-
 
c

 	
..

 	
I
;
 
.
 
.
 
.
 	

x
 	

- 
.-

. 
.t

 	
x

 -
 n

 -
 r

-1
 -

 r
t 

- 
Cl

 
C

l "
 	

T
 	

r
 	

DC
 D

C 
DC

 	
•■

 C
l 
A.
 	

b
-.

 -
-.

 A
. 

.-
 •

••
-•

 /
.-

. 
..

 
X

 	
3

 	
r
 	
-
 	

.,
 	

.-
 .
. 
.-
 	

.- 
...

. 	
.
 1.
..
• 
I■
04
. 
No
 I
-.
 

•
 

X
 	

•-•
 	

N
 	

+
 +

 +
 	

•*
 C

- 	
,.
..
 -
 	

•
..
. 
. 
..
 .
 
N

 .
 

Ll
 	

• 	
0

 0
 0

 	
rl

 •
  

 N
 

-
.
C

 	
C

 	
f+

 r
,  7

1 	
0

r
 	

• 
- 

• 
- 

• 
..
. 
• 

- 
• 

1 	
•-•

 	
x

 x
 x

 	
..
 -

 	
C

_
 •

 C
- 

+
 C

- 
• 

C
- 

• 
C

. 
Y

 	
-4

 -4
 -c

 	
C

_ 
+ 	

>
L

>
C

_
>

L
>

C
- 

...
 	

* 	
h 

r•
.. 

I•4
 	

0
 A

. 	
In

 >
 I-

1 
>

 -
i 
>

 n
 >

 
C

-
 ••

•■•
 ....

 	
....

. C
_ 	

.--
 n
-
 n

-
 n

-
 n

 
Cl
 	

0
 	

C
C

C
 	

*
 >

 	
N

-
 C

.
,
 ..

. 
L.

 ..
..

 V
 .

..
m 

C
 	

N
 	

14
 	

'
.
 
.
 
.
 	

Cl
 C
l 	

.
.
 
1
.
-
 
V
 
.
 
;
.
•
.
 
C
m
 

-(
 	

..
. 

m.
 i
m.

 	
CI
 ■
■ 	

N
 .

 N
 .

 L
A

 .
 L

.:
 .

 
-4

 	
r
 	

IS
. 	

..
..

 .
..

. 
..

. 	
.
.
0
 	

•-
• 

/V
 .

- 
C,

. 
*-

- 
W

..
  C

A
I 

o
Y
 	

* 
• 
* 	

A
 •

 	
I 

•-
• 

I 
•-

• 
I 

--
 I

 •
-•

 
C.

. 	
-C

 -
Z.

 A
 	

0
 A

 	
C._

 
I 

C
_

 I
 C

. 
I 

C_
. 

1 
••

 	
• 	

...
. .

...
 ..

.. 	
-
-
 	

:.-- -
L

>
L

>
L

>
 C

- 
0

 	
X

 	
C

C
C

 
  
	

•
Cl

 >
 n

 >
 C

l
 
>
 
:
1
 
>
 

I-
. 	

s
.
 	

N
Y

.
 	

c
 	

-
 r

) 
--

 c
-1

 .-
- C

-I
 	

 C
I 

* 
.
 0
 
x

 	
r."

 	
.%

) -
 N

, .
■
 
C
m
 
.
.
.
 
V
^
 

X
 	

X
 
X
 
m
.
 	

.
.
 	

.
 Y
.
  V

 •
 

L
4

 .
 

LA
 

<
 	

...
. .

...
 	

A
 	

•-•
 . 

N.
1 
. 
•-
 .
 
Al

 0
 

C
.
 
	

m•
 V

 ■
■ 

m.
 •

•■
 F

. 
	 •
 A
) 

>
 	

Cl
 	

* 
•-

• 
* 

•-
• 

• 
•-

• 
• 

•-
• 

Cl
 	

..
. 	

L
 •

 C
._ 

• 
L

 •
 C

_
 •

 
> 
c_
 >
 c
_ 
> 
L 
> 
C
 

n
>
n
>
n
>
n
>
 

 

	

rn
 	

rn
 -

. 
•
 

-.
 L

A
 -

 	
I
.
,
 

0
4
 
-
 
✓
 

 
•
 

N3
 •

 1
..

6 
N

 •
 +

+
 	

LA
 • 

L
. 

• 
C

A
 C

m
 C

A
 

•-■
 	

s
.
 

<
"
 
■
■
 
<
 
<
 
<
 
m
s
 

C.
 <

 C
- 

<
 C
- 
4:
 C
- 
4:
 

C
 >

 C
 >

 C
 >

 
Cl

•
 

>
>

 >
 C

l 
>

 
n
 

C
l 
C

l 
0

 

r 
r 	

c 
z 

C
-
 

G
 
•
 

• 

n
 	

t- I
 C

I 0
 n
 

I-•
 	

• 
1

• 
IA

. 
. 

,C
 4

) 
• 

1-
• c

 	
C
7
 
0
 

	

C
C
 	

C:
 C

: 
CA

 	
A:

 •
• 

	

N
 .4

 	
Cr

. C
m 

• 
.-•

 	
ft
, 
.+
 

•-•
 C
- 
C_
 n

 ..
 ..

.71
 ,-

. ,
-,

 0
 a.

.,,
 ,.

...
 c

: 	
C

I c
: 

::
 c
l 
rn
 c
: 

A
 e
l 
..
 X
 C
d,
 	

(1
 A

 C
I 0

 ,4
 :
: 
o
 A
 .

. 
c:

 c
_ 

o 
> 

X
 

T
I
N
Y
 
0
 
:
.
1
 
C
:
 
V
.
 
T
I
O
N
 
h
.
 
C
)
 	

C
 *

-.
 r

l 
0

 0
 
2
:
 ..

7 
0
 z 

rr
 c

: 	
z:

 r
n 

o 
c 

A 
c 

A 
,A
 -
1 
o 

r•
 C

: 
..

. 
:A

 
-
-
 
II
 i
l 
Z:
 I
I 	

II
 -

■ 	
II
 I
I 	

C:
 3

 r
-  

3 
3 

C
l Z

.. -  
3

 -
4 
> 
2:
 	

0
 
-
.
 
7
 
- -'_

' .
..-

 	
^.
. 	

.■
 	

•-
• 
II
 

m-
 1
-̂
 C
1 
-,
 .
4 
44
 C
- 
C.
..
 ,
C 
PI

 r
n 

.0
 	

c: 
.7.

 	
..

 I,
 

 r
"'

 X
 X

 C
-
  
X
 

C
. r

- 
I-
  7
; 	

C:
 .
4
 
.
.
 
7
 
Y

S
 H

 r
,.
. 
II
 r
. 
..
 

NJ
 r-

  r-
  -
. 

+ 
7.

: 
+ 

• 
0
 r-

  r
 
2
:
 	
7
 -7
 	

<
"
 
1
'
 
0
 -.

.., 
r-

  0
 7

.-. 
II
 	

:7:
 

	 -
. 

..
 A

 0
 A

 	
•
 C

 	
C:

 C
. 

.■
 

•
 .
: 
1:
 2
 .
s 	

..
..
 :
1 
c:
 

77
 1:

 c
: 	

7
C
 	

>
 C

r 
. 
::
 z
: 
--
 G

l 
Z7

 7
1 

7c
 c

: 	
Z

 Z
 Z

7 
- 

cn
 -

- 
c_

 r
1 

cg
 -

. 
cm

 -
- r

- 
C

CC
 c
: 
c_
 .
c 
..
 r
n 	
C
C
 	

-4
 	

C-
  M
-.

 2
: 

'S
\ 	

.■
 	

X 
2:
 -
4 	

C:
 C

: 	
h.
 4
2 	

..-
• 	

11
 .+

 
C

 ,d
1 C

A 
rn
 •

 z
.-

 *
 •

 c
_ 

,..4
 ,
A 
6
.
 

	
C
l
-
.
 	

:r
 (
.7
. 
'1
 n
 ..■

 
Cm

 P
..

 	
0

+
. 	

rn
 7
1 

II
 

A
 H

 	
• 

m
.
 
X
 
C
_
 
>
 
+
 

	

..
. 
N3
 .
. 
m.
 I
I 
72
 2
2 

II 	
-4

 Z
: 	

::
 :
2'
 :
7 

h.
 7
,
  C
■ 
. 	

:'
, 

X 
2:
 	

II
 	

+ 
2:
 I
I 
a.
 	

-
 
X
 

	

C_
  
 

	 -
Cl
 	

Cl
 	

71
 ■
••
 ■
••
 .
0 	

r-
  >
 r
n 	

v)
 .
- 
z -- 	

..
 C.

  II
 .
..
..
 

--
 N

: +
- 	

I 	
I 	

-
 
A;

 0
,
 
 
.
 	

:c
 	

rn
 :A

 r
, 	

(
I
 A
j 

7
 "
C 

72
 -

. 	
X
 
.
 
•
 
b-,

  •
 a

 C
..

 	
•
 
*
 

•
 0
 	

I-
. 	

•
■

 C
' 
Z

 •
 .

  
	

=
 
-
 	

X
 •

 Z
 
r-
 
	

•
 

---
• :

..-
. .

 x 
c 	

. :
/: 	

--
 c
r.
 	

::- . 
C

• •
-•

 b
..
 C
. 
..
..
 

CI
 C
 C

- 	
--

• 	
.-
 ::

 r
l 

..
 .

. 
el

 	
c:

 c
: 	

- 
- 

- 
c 

,.
.-

- 
--

 r
r 

CA
 	

-4
 	

X
 	

27
 	

* 
. 

--
- 

r-
 

c:
 -
- 
-.
 	

--
 	

..
 	

r-
  •

■
 •

- 
r'

 	
cn
 .
. 
z 
z 
c 	

. .
-.:

 z
 	

-n
 	

CA
 	

C:
 	

4-
 C

A
 +

 ■
- .

 

	

::
 2

 
	

-
 	

•
 	

z
 	

-a
 ..

. 
-•

 	
N

 
N

C
 =

 	
C.

 	
.--

 	
•-

• 
L

A
 r

 <
I"

 
r
^
 	

:::
 	

•-•
 

C
 

C
 	

■-•
 	

I-
. 	

0
 V

. 	
1

-.
 C

 .
3 

>
 -

--
 	

T 
•••

•• 	
+

 	
+.

 	
+ 	

^.
 

,C
 	

2'
 .
.
 	

..
 .
..
 .
 .
 C

. 	
-.

. 1
...

 	
•
 	
C
 	

r-
  I-

4 

	

--
 _

 .
 	

c4
 .

 	
>
 	

CI
 	

I 	
. 
.•
-•
 

I.
..
 	

1
.
0
 	

.
.
 
	

c:
 X

 C
r 	

2:
 	

-
 	

-1
 	

•-•
 	

A
.-

. 
CZ

 	
C

 C
 	

r
 	

0
 Z

 •
-•

 	
•••

• N
 	

•-■
 	

...
 	
.
 N

. 

	

-Z
.  
C

 	
C

-4
 <

 0
 

IV
 4

L-
 	

C
 
.
.
.
 
•

•
 A
3 

	

r)
 -
I 	

C
 	

C 
> 

.-
• 	

•
.
.
.
 	

X
 	

Ns
 	

•■
• 

• 

	

r
 r
.

-4
 •

 •
 	

a.
. 	

N
 *

 X
 

Cl
 	

. 
Z

 7
. 	

11
3 

C 	
* 	

0
 +

 	
CI

 4
4. 

	

IT
. 	

I-
,  

	

Z
 C

 =
 -

-•
 Z

. 	
0

 C
l 
X

 +
 

	

3
r
 	

Y
 	

:1
2

 .
1

2
 •

 X
 	

X 
	

4
4

4
 -

C
 	

CO
 

	

>
I-1

 	
-I

-
  
7

Z
 	

-4
 	

X 

	

-I
 3

 	
7

- 
rl

 Z
 1

-.
 	

C
 	

0
 	

:0
2 

	

C
. 
rl

 	
•
 
0

 
0

 C
I 	

..
. 

..
. 

r
 

	

 
X

 
Z

 •
-•

 	
••••

 	
X

 	
••

 

	

C
I -

• 	
n

 .
. 	

> 
1.

.. 	
o

 
C

l 	
rn

 .
 	

-#
 .
 	

C.
 	

C
A

 

	

C
A

 U
. 	

r 
os
 	

-•
 	

..
..
 

	

-4
 	

Z
. 

0
 	

I.
.

7.
 

	

.•
 1

-4
 	

C
.
-
 
•
 
C

 

	

T
i 	

•
 
•
 	

.
.
 

	

C
 1

1 	
Z7

 
	

C
A

 •
 

	

>
Z

 	
n

 =
 

o
z
 

•-■
 r

i 	
rl

 L
I 

0
 
Z

 

	

Z
 ty

: 	
,r

 I
,
 	

••
••

 
0

 

	

Cf
: 

	--
,- 	

• 
Z

 
I:

 	
• 	

I-•
 C

A 	
C

 •
-•

 
>

 3
• 

*
 

C
 C

I 

	

-4
 >

 	
C

 	
X

 -
 

	

C
 -

I 	
-.

 C
 

x
 N

 

	

+4
 A

 	
c)
 4
: 
>.
 

	

X
.
.
 	

-4
 -
- 	

-4
 A
) 

	

..
■ 
,C
 	

>
 
.
 
•
 
-
C
 

r-
  
X
 
a
•
 
m
.
 

p
4

•
 
7

 
•
 
•
 

	

2
 	

IT
 :
a 
a.
 C
: 

	

12
 .

-.
 	

Oa
 z

 

	

:c
 1

12
 	

CA
 7

C 

	

2)
 m

• 	
cI
 3
C 

rn
 	

s-
 C
a 

11
 	

a 
..
. 

•
 

I.
• 

Z
 

-
4

 	
1%

) 
• 

.0
 

O
T
Z

 -
 



19 

KN0mATII,IJI=KNOmAT(1.1J)+SKIISI 

20 

Jij1=hp(1.1qA+J1 

bU 	TO 900 130 CON.1'(mJ1)=OnKmAt(1,111) 
C .  IP1=1+1 
C Tn FILL UNCLE ANU UNKMAT WHIN NICKNAME IS AN UNKNOWN ONE 11:(11.1.1.r 	1I111IKVA) 	i0 	141 
C Du 	1.4o 	I7zIPI.nn0KvA 

8111 	IF(J2.EN.1) 	GU 	10 	831) 1.12=112*(12-1))/2+I 
Gu 	lo 04 0 

83U 	UNCLE(11.J1)=uNCLE(11.J1(+811(IS) luo co.4)(hIe)=thirimA1(1,1J21 
GO To 900 141 CNDI1Nm. 

840 	IF(J).GT.11) 	GO 	1u 	900 	' C 
IJ:II16(11-11)/2+J1 C IJR.D11-y 	Kuum81 	MAIRIA 
UNRAAT41.1J1=UNKmATt1.I.J)+SK(IS) C 

9UU CONTINUE IN) 	1c0 	(4=1.0Ko0A 
RETURN I19 	= 	(14 	• 	(14 	- 	1)) 	/ 
ENI) CmP=comP(141/Comv(11) 

00 	1,-0) 	u4=1.14 • 
1u4=T12....14 

150 KO(o4A1(1,1J4)=KOomAT(1.1J4)-CmP•C1Imm(J4) 
SURRGUTINU 1-uowAU C 
REAL KNuPAl.KNORNS C moDIFY 	111ICL1 	mAlkIX 
WTL(.I:R ILPusD,UNKNIC.ELNOUE C 
INTEr.LR COPIWE 00 	1‘,0 	15=1,141NKVA 
C0Ivo1/S1/ PREDLF(1. 	24) 
COmmoN 	pio.Dic(1. 	24),UNKNIC(1. 	60)IKNONIC(2.24) ,UNRHS(1924). MIS=1N+IIIMV4 

1KDoRns(1. 	601.LLvUSN(2,6o).KNOMAT(1, 	300).UNKMAT(1.1830). CPIP=C0.41 ,1)/CD1w(11) 
2U%CLE( 	60.d.4) I))) 	11.0 	Jh=1.NrcovA 

COr4moN/LLNUDL8.4.10).RIISRF0(1.60).RDSI(3. 	44).KKA(2) 1#10 DNCLI(ItI.Dt)(=NuCLL(15.J5,-CmRsCW-P(.1.11 
Cu,,(100/s10/uLxyz(3.20).u0(6,9).0(9,9).UP(60.91 C 
Cu•Ponn/C1/ 	NuNilvG,IIKNvA.NUsTR.NCELNU.NCELN1.NTOTALINPROEF.NT1 C . pu,DIVY 	111,K14/11 	.AA11t0( 	• 

1;IELL'..NFREL.DIJILm.nu11181.N C 
Cwi-lou/c.)/(ILG.Duv(9.#15(.inuF(9.4).NRCC.NTREc.RNS.N/C,LP1ILP2. 00 	I7o 	IA=l•11mIKVn 

INvoYi.IHA(1( 
Cowil(R41 

113 	(1k 	* 	(14 	- 	11/ 	/ 	2 
mib=lboivioim 

ENDIvALLNCLICUM,(1),NP(1)) CmP=cOmPW0-1/LUmV(111 
• c I))) 	11U 	J6=1.16 

C RnoT(ni 	MUuIF. YIdC, LLEJALDTS 	IN MAIN MATRIX FOR A COMPLETED AJA=J6+1IFOIVA 

C unKNOwN NILKNAML 1.),,=1164aP. 
170 QnKrA1(1.14t,I=o)1KMAI(1,1.1h)-Cmm•LOm14mJ6) 

C 
C 
C 

DU ino ((•=1.NCELN1 
IF(EL100L(N.Im.1).0.0) GU TO 101 
cu 10 1110 

101 1=ELposn(1,1m) 
• IF(LLP0Sn (2.1m).10.1) GO To 210 

STDRING Com(JIAILO RoW IN AN AUXILIARY ROW MATRIX -- COMP-- 

110 11=1444K(0,0 
Ill = (1 	- 1» / 2 
NO 120 J=1.11K0vA 

120 C(P4P(J)=UNCLE(1,4) 
Du 13)) J1=1.1 
1J1=111+.11 

C 
C 	141 U:0SL 	 IMIAr10).1 NV00. 
C 

90 97u J=1..11ovA 
420'ONCLI (1.,()=0.0 

OU 440 J1=1.1 
IJ)=1114J1 

430 u0Kr1.1(1,(.11)=11 .0 
IF(11,1.10.000avA) (,() In 441 
00 '140 (;%=1PL.'101 1 e(VA 
IJi=114, (1.,-1»/e4( 

440 qi4K0A1(1.1J.?/=11.0 
441 Co011001' 



0
 	

2
 	

2
 

C
V

 
g

l
 

•4
7

 	
I-. 	

0
 	

2
 	

2
 

A
I 	

N
 	

.
(
 	

0
 	

0
 

	

e-1 	
.4

 

4.1 1  4
4

 1
.-1

 	

L
J

 U
 4

4
 

0
1

.1
0

 

1
J

 4
.3

 

L
l 

• 
L

I 

O
 

L
l 

• 

L
I 

O
 TERMS  or 

O
 

O
 

- 212 

•
 

CV 
2

 
3

.
 

•
 

-4
 

LL 	
•

 
tJ

 
0

 
O

.
 

X
 
.
J

 
••• 

0
. 	

•
 

4-1 
•-• 

1
J

 	
Cr•  

.
7

:
•

 
•
 • 	

4.1 
(/) 	

L
i 

I
-
 	

:II 
• 

0
 

0
 	

6
-
•
 
x

 

.

0
 

-
 

V
 1-

  
1

J
 <

 	
0

 

 
C ▪
 

O
 

2
 
2

 
X

 X
 	

U
. 

U
 	

0
 

•-• 
• 

C
 	

V
) 

2
 

M
 	

I
-
 

V
 1-

  
1

J
 <

 	
0

 

 
C

O
 

2
 
2

 
X

 X
 	

U
. 

U
 	

0
 

•-• C
 	

V
) 

	

3. 	
.. v., 	

2.  

	

:,- 	
3
f
 	

L
i 

	

O
 	

o
 x

 	
1- 

	

44 	
5
 4, 

	

I 	
x •-• • 	

••-• 

	

-
 	

3
 

	

7
7

 	
:"as  

3
 	

2
 	

_
I 

•-• 	
L

 :7
 	

5
 	

Z
. 

	

.
 
	

0
 	

.
 
-
•
 	

•
-o

 
A

l
 	

U
 	

... 	
U

 

	

.1-1 	
..r. 	

L
.' 	

.4
 	

N
I 	

._
. 

	

.... 	
L

I 	
-1

 3
 	

-1
 	

3
 	

3
 	

'1
 	

3
 	

.... 
.
 
	

V
 	

N
I 	

D
. L

i 	
.
 
	

1
- 	

,...1 	
<

 .... ..-4
 	

U
. 

 

....1 	
•
 	

... 0
 	

r_
 	

••• 	
1.- 	

3
 4

. . 	
I.- 	

<
 	

"") 
..%

 	
.-1

 	
... <

 :./1
 3

 	
2

 	
..I 	

3
 ....1

 
	

.-
•
 2

O
 	

..1
 	

5
N

.4
0

 	
4

) 	
3

 	
.4

  
0-4 	

.
.
 	

••• •-•• 	
••• .4

  3
 
=

 
<

 	
2

 	
0

 	
L

I -
I 	

•
-
•
 •

 0
 	

J
 	

X
 N

. •-• • 	
.4

 	
X

 	
-
 

.2
 0

 •
-
•
 7

. 7
 	

I-
  •
-
•
 
.
 
.
7

 
5

'
 
=

 
=

 
a

 
<

 	
1

_
 
N

 	
4

-- a
 	

1
 
	

7._
 -

•
 6

-
 o

 7
-
 	

-
 

W
 
2

 
.
 

*4
 •-• 	

2
. 	

• •-• 	
5
 o

 	
• 	

m
 	

2. x 	
"... 	

<
 1

1
 •-•• 	

!-.: 	
• •-• <

 I 1
 	

5
 	

-
J

 •
 

L
I 	

=
 
•
 
•
 
•
 	

-0
 	

.4
 =

2
:
2

5
 	

il 	
..-:.• 

C
, 	

-
 .1 	

I •
•
•
 5

 	
3

 	
•
-
•
 . 7

:
 -

•
 	

3
 	

2
 	

IJ
 3

 
2

. 	
/C

 ..4  •-• 
-N1 	

"
. 	

... 7
. •

 
11 

•
 	

I1 	
A

 	
II 	

.i. 
J
 	

-
 
•
 	

'3
 --, >

 	
L

I 	
1

. 1
 :..-

N
 	
U
 	

.
4'7

1
1

 
-
 
-
-
 
.
.
 
-
-
 	

--• 	
•-• 	

:.r) 
3

 . .•
•
•
 . >

 X
 •

-
•
 	

--* 	
''-'' 	

.
 
.
 	

5
 -

)
::: 	

... "
'V

 .7
 -7

 	
.... -.. 

	
-
 

.
 

5 tr, 2 =
 	

-..., 	
:: u II 

1. • 1
1

 C
 P

. *
4

 	
.
4

 	
L

I 0
 	

1 
II 
.4

  <
 •

-
, <

 	
e

` 	
II 

•
-•

 <
 •

•
 	

5
 	

II •
 1

1
 .4

  
V. :n

 	
..L. 	

I-
 	

2
 
■

 P
.. •

-
•
 X

 X
 •

 . 	
4

4
 	

.
 
0

2
 . Z

".. •
 •

-
•
 -

. -
1

 
I
I
 
•
 
2

 	
2

 	
h

 •
-•

 1
1

 •
 	

=
 	

•os,  
0

 
-
 
•
 

... 	
7

 -- 0
 ^

, 	
4

. 	
U

. 	
c

 
<

 
a
. v

v
 V

. ._
. v

. •
•

-•
 	

•-• 	
v

. 
CI: 	

-
 
7

 
a

 
-
 	

-
 
•
 
-
 
.
1

 	
.-1 	

•-• 3
 `''' ••: 

.■
 	

2
 
3

 a
. a

. 0
 3

 	
*-1 	

5
 1

r: 	
•-1

 	
•
 .. f

t
. 	

Z
 	

... .4
 	

1
-
 2

 	
*
 	

.4
 .1

 .. 3
 	

2
 	

.1
 	

2
 2

 .-
-
 	

2
 	

- .4
 •

-•
 

O
 

<
5

....1
-
/1

1
 2

 	
0

 	
'<

=
=

■
.
=

=
:
A

.
/
1

 	
1

 
	

U
 	

3
 
3

 	
.. 3

 ... ."
 •

•
•
•
•
 lj 	

0
 	

• =
 •■

■
 .. 1

••• 	
3

 	
r-7

: Y
 
7

 
-
 

p-
 	

*
- .r L

.- I... :: 	
C

 	
1

1
5

 
X

V
7

.
.
.
1

1
5

 	
..7

 	
.4

C
 	

C
l
-
 	

-
N

. -4
-
G

 
•
 	

I-
 	

•
-
•
-
-
<

 
	

L
f. 	

L
. 

.-
 

CO 	
si ti II ti 

.1
).

....1 	
I
.
 	

•C
 
1

1
 .4

 =
 . 1

1
 x

 
5

' 	
3

 	
.=

 1-
 	

5
. /1

 	
1

1
 N

 
11  
1

 
	

V
) 	

11 2 11 :... X
 	

V) 	
f., 11 a ..., 

1,...: .../: •-• (N. =
J

 	
V

 x
 	

5_ 	
5

 =
 3

 	
I
 
	

.4
 	

... /... C
- 	

.4
 	

C
N

. : 0
 	

I
'
 
,
 
U

 
..., - a :..•_ 3. <

 	
5
5
0
2
0
-
S

S
0

2
 
	

5
0

 	
.
0

-
>

3
.7

1
.4

. 	
1

7
7

0
 

 
 
 
2

 	
0

 
.
 
0

 
-
7

 
=

Y
 
-
1

 
J

 
r
 
U

 	
.
2

2
0

3
3

7
:
X

Y
.
 	

Z
 
0

 	
1•

4  0
 . 4

4
 1

 •
•
•
 	

•-• 3
 •-o

U
 Y

 	
0

 
r
 
U

=
 

	

3. 	
.. v., 	

2.  

	

:,- 	
3
f
 	

L
i 

	

O
 	

o
 x

 	
1- 

	

44 	
5
 4, 

	

I 	
x •-• • 	

••-• 

	

-
 	

3
 

	

7
7

 	
:"as  

3
 	

2
 	

_
I 

•-• 	
L

 :7
 	

5
 	

Z
. 

	

.
 
	

0
 	

.
 
-
•
 	

•
-o

 
A

l
 	

U
 	

... 	
U

 

	

.1-1 	
..r. 	

L
.' 	

.4
 	

N
I 	

._
. 

	

.... 	
L

I 	
-1

 3
 	

-1
 	

3
 	

3
 	

'1
 	

3
 	

.... 
.
 
	

V
 	

N
I 	

D
. L

i 	
.
 
	

1
- 	

,...1 	
<

 .... ..-4
 	

U
. 

 

....1 	
•
 	

... 0
 	

r_
 	

••• 	
1.- 	

3
 4

. . 	
I.- 	

<
 	

"") 
..%

 	
.-1

 	
... <

 :./1
 3

 	
2

 	
..I 	

3
 ....1

 
	

.-
•
 2

O
 	

..1
 	

5
N

.4
0

 	
4

) 	
3

 	
.4

  
0-4 	

.
.
 	

••• •-•• 	
••• .4

  3
 
=

 
<

 	
2

 	
0

 	
L

I -
I 	

•
-
•
 •

 0
 	

J
 	

X
 N

. •-• • 	
.4

 	
X

 	
-
 

.2
 0

 •
-
•
 7

. 7
 	

I-
  •
-
•
 
.
 
.
7

 
5

'
 
=

 
=

 
a

 
<

 	
1

_
 
N

 	
4

-- a
 	

1
 
	

7._
 -

•
 6

-
 o

 7
-
 	

-
 

W
 
2

 
.
 

*4
 •-• 	

2
. 	

• •-• 	
5
 o

 	
• 	

m
 	

2. x 	
"... 	

<
 1

1
 •-•• 	

!-.: 	
• •-• <

 I 1
 	

5
 	

-
J

 •
 

L
I 	

=
 
•
 
•
 
•
 	

-0
 	

.4
 =

2
:
2

5
 	

il 	
..-:.• 

C
, 	

-
 .1 	

I •
•
•
 5

 	
3

 	
•
-
•
 . 7

:
 -

•
 	

3
 	

2
 	

IJ
 3

 
2

. 	
/C

 ..4  •-• 
-N1 	

"
. 	

... 7
. •

 
11 

•
 	

I1 	
A

 	
II 	

.i. 
J
 	

-
 
•
 	

'3
 --, >

 	
L

I 	
1

. 1
 :..-

N
 	
U
 	

.
4'7

1
1

 
-
 
-
-
 
.
.
 
-
-
 	

--• 	
•-• 	

:.r) 
3

 . .•
•
•
 . >

 X
 •

-
•
 	

--* 	
''-'' 	

.
 
.
 	

5
 -

)
::: 	

... "
'V

 .7
 -7

 	
.... -.. 

	
-
 

.
 
	

5 tr, 2 =
 	

-..., 	
:: u II 

1. • 1
1

 C
 P

. *
4

 	
.
4

 	
L

I 0
 	

1 
II 
.4

  <
 •

-
, <

 	
e

` 	
II 

•
-•

 <
 •

•
 	

5
 	

II •
 1

1
 .4

  
V. :n

 	
..L. 	

I-
 	

2
 
■

 P
.. •

-
•
 X

 X
 •

 . 	
4

4
 	

.
 
0

2
 . Z

".. •
 •

-
•
 -

. -
1

 
I
I
 
•
 
2

 	
2

 	
h

 •
-•

 1
1

 •
 	

=
 	

•os,  
0

 
-
 
•
 

... 	
7

 -- 0
 ^

, 	
4

. 	
U

. 	
c

 
<

 
a
. v

v
 V

. ._
. v

. •
•

-•
 	

•-• 	
v

. 
CI: 	

-
 
7

 
a

 
-
 	

-
 
•
 
-
 
.
1

 	
.-1 	

•-• 3
 `''' ••: 

.■
 	

2
 
3

 a
. a

. 0
 3

 	
*-1 	

5
 1

r: 	
•-1

 	
•
 .. f

t
. 	

Z
 	

... .4
 	

1
-
 2

 	
*
 	

.4
 .1

 .. 3
 	

2
 	

.1
 	

2
 2

 .-
-
 	

2
 	

- .4
 •

-•
 

0
 	

<
5

....1
-
/1

1
 2

 	
0

 	
'<

=
=

■
.
=

=
:
A

.
/
1

 	
1

 
	

U
 	

3
 
3

 	
.. 3

 ... ."
 •

•
•
•
•
 lj 	

0
 	

• =
 •■

■
 .. 1

••• 	
3

 	
r-7

: Y
 
7

 
-
 

p-
 	

*
- .r L

.- I... :: 	
C

 	
1

1
5

 
X

V
7

.
.
.
1

1
5

 	
..7

 	
.4

C
 	

C
l
-
 	

-
N

. -4
-
G

 
•
 	

I-
 	

•
-
•
-
-
<

 
	

L
f. 	

L
. 

.-
 

CO 	
si ti II ti 

.1
).

....1 	
I
.
 	

•C
 
1

1
 .4

 =
 . 1

1
 x

 
5

' 	
3

 	
.=

 1-
 	

5
. /1

 	
1

1
 N

 
11  
1

 
	

V
) 	

11 2 11 :... X
 	

V) 	
f., 11 a ..., 

1,...: .../: •-• (N. =
J

 	
V

 x
 	

5_ 	
5

 =
 3

 	
I
 
	

.4
 	

... /... C
- 	

.4
 	

C
N

. : 0
 	

I
'
 
,
 
U

 

	

..., - a :..•_ 3. <
 	

5
5
0
2
0
-
S

S
0

2
 
	

5
0

 	
.
0

-
>

3
.7

1
.4

. 	
1

7
7

0
 

 
 
 
2

 	
0

 
.
 
0

 
-
7

 
=

Y
 
-
1

 
J

 
r
 
U

 	
.
2

2
0

3
3

7
:
X

Y
.
 	

Z
 
0

 	
1•

4  0
 . 4

4
 1

 •
•
•
 	

•-• 3
 •-o

U
 Y

 	
0

 
r
 
U

=
 

0
 
0

0
 

C
 	

.
2

 
a

 
r
.
 

• 
.c

0
 	

7
, 	

.4
 	

N
 	

.
/
 	

a
 	

.r,  
6

.
 
.
 	

N
 
N

 
	

N
 

CV 
N

 

0
 
0

0
 

C
 	

.
2

 
a

 
r
.
 

• 
.c

0
 	

7
, 	

.4
 	

N
 	

.
/
 	

a
 	

.r,  
6

.
 
.
 	

N
 
N

 
	

N
 

CV 
N

 

IN A  MATER AREA 

17)ftCOMPI I7PARNK 

C
 

4
4

 U
 	

4
4

 4
4

 L
I 

4
4

 U
 	

4
4

 4
4

 L
I  

	

 -
 2

-
 -

 '7
-
 0

 	
-5

2
Z

O
L

D
L

L
_

I
<

D
W

Z
 	

7
0

.3
 

  
L

i 0
 C

. 
U

 
1

 
.
 	

0
 
.
 
2

 
4

_
,
 
7

 
C

o  7
 X

 	
2
Y
 -4

 2
1-  
2

 U
 	

1
X

3
U

.4
0

.
2

0
4

4
2

W
 	

0
0

0
2

 
0

7
 

6-
1 

I
-
 

U
 U

 U
 

U
U

U
U

 	
U

 U
 U

 	
U

 U
 U

 

-• 
I
-
 

)'-
cc 
C

 6-1 
X

 
3

 
C

 

• 

.4
 

U
 U

 U
 

U
U

U
U

 	
U

 U
 U

 	
U

 U
 U

 



23. 

UIftENS1011 ComP(84 ) 
EQUIVALENCLICDMP(1).0P(1)) 

C 
C 	 RoOTINE iN WHICH THL ROW cORROSVONOING TO THE COMPLETED 
C 	 VARIAVLL IS STUULO IN A DUFFER AREA 
C 

If (NRIC.NL.0.0R.NLG.NL.0) GO TO 3 
CALL uP).Nms(1.1)(A.1(... .0) 

3 IFINL(•.4E..0) GU 10 2 
OLF.=-T.LT; 
Go TO 10 

2 NLG=NLG■1 
DO 1 1=1.NTUTAL 

1 OUF(NLG.I)=LoAp(1) 
OuF(11LG.NTRLC) = RHS 
I:ior(111.G.1)=L1'1 
ToilF(NLG.2)=Lm2 
1,3'11- 04LT...5)=01C 
Ioor(NLG.4)=NpusN 

) GO TO 10 
GO To 2o 

10 NREC=NRLC+1 
CALL wRITMS(1.NLGIG02.6REC) 
NLI;=1,  

2u CONTINUE 
RETuRN 
Coo 

sullwnOTINE uACW.40 
RLAL KNORHS 
INTLGER PRENIC.uNKNIC 
C0•4mON/S1/ PRE0L1-(1. 24 ) 
(;01":40N 	PRINIC(1. 24).UNKNIC(1.M1).KNON/C(2.24).LINRHS(1.24). 
1K1g1ROS(1. f,u).ELPusN(2.A0).KNOmAT(1. 300).UNKMAT(1.1)T30). 
2UNCLEA 60.141 
covAnN/N6/LLNOuL(3.A101.RHSRED(1.60).RHSI(3. 44).KRA)2) 
CUmmoN/s10/oLATC(3.20).0o(6.4).M(9.9).0P(60,9) 
cu.14on/c1/ oo1IKvA.NKNvA.NOSTR.DCILNO.UCKLN1.NTOTAL.NPROEF.NT. 

1,1FLEm.rirpF.Lolw.L1o:1)n11)1.1) 
( 	#3 ) 	 ( 9 • 	.NNEc . 11 mu: •tiiiso,nc Lp2. .LP2. 

INPos:i.IRA(10) 
co,,4owc.,,111). Tour 
OPAENS1 op 1)21132 1 .co(1),(84 ) 
EoUIVALENCL (t)( I) .RNSI ( 1 ) 1•( COmP ( 1) .UP ( 1 ) ) 

C 
C 
	

INITIALIsAlION 
C 

K = 
IF (IUUT.LT.6) GU TO 3 

24 

WR/TT(k.2) 
2 FURmAI (1111 //// 	111 • *CALCULATLO REACTIONS IN THE MAIN PROBLEM 
• ISTSTEM*/) 
3 OU 202 I=1.111iNVA 

DO 202 J=1.2. 
2U2 KNONIC(J.I)=0 

00 2113 1=1.o0NRVA 
203 ORRNTC(1.1)=0 

00 1 m=1.11011RvA 
1 KNuRoS(1.14)=0.0 
DO 2n m1=1.or 
02(141)=0.0 

20 CONTINUE 
C 
C 	READ RACK THE STUgED DATA IN RLOCKS IN A REVERSED ORDER ' 
C 

NREC1=NREC 
U0 10 L=1.NRIC1 
NREC=NREE1-L+1 
CALL REA04St1.11LG.802.NREC) 
LG=NLG 

300 00 4 1=1.NT01AL 
4 EOmP(1)=RNFILG.1) 
RHS=001(1GINTRLC) 
LP1=TONE(L1-.1) 
LP2=111W-(Lb.21 
NIC=1RUF(LG.3) 
NVosw=luNF(LG.4) 
LO=LG-1 

• C 
C 	 CHECK wHLTHER rN1C IS IN KNONIC 
C 

IF(Lp2.NE.1i GO TO 14U 
C 
C 	rF FNIC IS IN KNONIC MULTIPLY KNOmAT WITH PREDEF 
C 

ANS1=0.0 
KNONIC(1.L!'1)=NIC 
KNONTC(2.LPI)=NPOsN 
00 120 12=11miNvA 
NPosr1=1.40(lN1L(2.12) 
IF(opOSN.Cw.0) Go TU 120 

. ANs1=Ansi+ComP(12),WREOEF(1.NPOS)J) 
120 CONTINUE 

C 
C 	 foEN moLIIPLY ONCLL with 1.11040EF NOW STORED IN KNOWN RHS 
C 

ANS2=0.0 
DO 130 16=1.NuNKVA 
M13=T3+NRNVA 

130 ANS2=AW+COM1'(M13)*KNURHS(1.13) 
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C 
C 	 F100101, loL LOR100,0001N(. U0R1tod4 REACIInN 
C' 

A0t:=A0s141111,!...illis 

IF 1100I.LI.A) (.o 10 7110 
tr l'oo(k.Se1.)u.0 ,AND. 11011.0) xRITE (6. 5) 
Fou-e%1 1101 ////) 

h • 1 
„mil! 0„10,101 

1000 F11( zA7(1,10 IwALiln0 AT N01 )F 	.17 .?x.51) TS 	.1.11+.0) 
GO In e00 

C 
T0 FIND !NI. uNIVRImN OLIL IF nut.: I', WIT IU )(NON% 

Att.,' 1 100 IIIc low 11 nccwirs nnlanG rougAku rtAminArron 
140 unlAnt('t.o41)=.,1r. 

Ims=15-1 
IPs=I')+1 
Ius=1.)..11ovn 

C. 
C 
	

ILL Is "0LIIPLIEP r,i lit KNOwN 01sOLACEvINTs 
C 

110s1=0.1, 

Nu 170 1'.=1.01NvA 
000s1.=m11•ilL(e.161 
Ir1 1.00So.)u.01 (,u To 1/u 
no,.t=n0.1)(.0:*011k1WRIPLU11.0ooSNI 

170 C001thOr 

C 	 01.K.IAt Is mUr1"11)0 41 T11 UNKHowN 01sPL 1'04 KNOwN Anr STONED 
L 	 1,1 	LvCr.Vi 10) 010t,00AL ILRm 
C 

ANs/=0.0 
NN IN In1 

Du lqu 

leo A1J,....)=An17.c0,11,trot7)4inqHm..t1.t7) 
141 A ik.S=0,,u 

IF (I0s.r.r. m0hvA) 	lo 
oo 	/”..7ws.000,4%,/. 

I"u .10,..5=ANN1.(0,.10(t.)).).K0040,;(1,14) 
11"1 COhlthDr. 

C 
C 
	

uoK ,ow0 PISPLACk ,HITS 

sPr4t1.-7.whols(1.1'1) 
JJ=.■It It 

101 
J = I 	t(I.P • t 1J-1 	411  

02(J)=UNDErL 
200 1F(LG.NE.0) GO TO 300 
' 10 CONTINUE 

DO 430 j=1.1 11ROLF. 
ucrL=PREorr(1,u) 
NIC=PREUICII1J/ 
JK = NIC/lUu 
II = HIC-OR 	100 
JJ = NFREE*(JK-1)+IT 

441 1)2(JJ)=1LFL 
430 CONTINUE 

RETURN 
END 

SURRNUT/NE UEFOUr 
COMPION/S6/ELNO0E(3ob10).RHSRLO(1.60)01tHS/(3. 44).KNA12/ 
CO.AmNN/C1/ NUIIKVA.IIKNVA.NOSTM.NCELNO.NCELN1.NTOTALINPROEFINT. 

1NELE1-',I1JF1ILL.NNILM.NUOTOT.N 
DIRL0S1ON 11(132) 
EUNIVALENCLIU2(1)14NSIIIII 
41411E16,P/ 

2 FORmAl (1111 /// 	100. 1X. 0414THE NODAL DISPLACEMENT SOLUTION OF- 
1THF ST1FFHLSS LNUATION IN THE (MIN Ptinntxm sysrcki lno. 11X. *NODE 
2.1 7Y. *DINPL ALONG X*. 7X. *OISPL ALONG Y*. 7X. *UISPL ALONG Z*/) 
MPRINI= 50) 
UO 1 JJ=1.NuUTOT 
J=OFRCE•IJJ-1/4-1 
IF(mPRINI.U1.0) Gu TO 4 
will IE. (6. 51 

5 FOR0A1 (101 /////) 
mORINT = 5U 

4 	mpRITIT=M1'RINI-1 
4RITI(6.31 JJ.112IJI.U2(J+1).U2IJs2) 

3 	Fol0AAT(I16,3(4X1E16.8)) 
RETURN 
END 

SUNR0UTI1TE. SIRESS 
(;;I R ELNDOC 	• 

PRLNICII. 24/•UNKNICt1. 60),KNONIC(2•24).UNRHS(1•24). 
1KNORHS(I, 60).ELPUSN(2.60),KNOMAT(lo 300).U0KMAT(1.1830). 

21==rt!LDE(3.610).HHSIWO(1.60).HUSI(3. 44).KHA(2) 
COMmON/S1Q/UCXYL(3,20).Ulith.4).1,(9,9),01(60,9) 
ComloN/Cl/ WINKVA.PRIIVA.NOSTR.NCELNOINGELNI,NTOTAL,NPROEF•NT, 

11JELLm,NFOLL.NNLLM.WOU101.14 
CONM('N/C3/VIPU.3) 
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COMmO11/COR/LoR0(3.20)1IR(20.3.3).CCORD(3. 44).JRA(4) 
CONwtorasP/G.H.F.NS 
ifALr)SIOt1 C thu ) 	(6) • 	STG( 3.3) .S TGT( 3•31 .SL ( 3.3) 
DIrENSIon ouIV(44).U2(132) 
DIOnsiOn S1SS(44.6). DUI (6.60) 
EonIvALENCEASTSS(1).ODKmAT(1)).(DrIT(1).0P(150)).(NDIV(1).CCORD(1)) 
1.012(1).w.51(1)).(C(1).RHSRED(1)) 
DO 52 1=1.N0DTOT 
NDIv(1)=0 
DO 52 J=1.b 

52 	STSS(L.J) = 0. 
00 2n LL=1.11LLEM 
CALL READmS (2. LoRU(1.1). 240. LL) 
DO 30 K=2.oLLLI10 
NIC=IABSIELNODEILL.K)) 
JK=NIC/100 
II=D1C-JK • 1111) 
JJ=U1(CE*(JK-1)+11 
)0../=K-1 
C(KMT):02(JJ) 

30 CON1INUE 
nO 650 MS=1.NNELM 
CALL FLN1 2 
DU 630 I=1.6 
STRI1)=0.0 
Du 630 R=1.nCELN1 

b30 STR())=sTu(1)+OUT(I.K),C(K) 
ST(;(7.1)=STR(1) 
ST6(1.2)=5TR(6) 
ST6(1.3)=Sfl(!) 
Sf6(2.1)=StR(6) 
S10(2.2)=sTR(2) 
SI6(2.3)=SIR(4) 
STG(3.1)=S1R(5) 
STG13,21=s1R(4) 
sTG(3.3)=sTRl4) 
DO 201 1=1.3 
00 201 J=1.3 
SIGT(I.0)=0.0 
DJ 201 K=1.6 

201 SIGT(I.J)=SIGT(1.J)+STG(1.K)*TH(MS.R...1) 
00 202 J=1.3 
DO 202 L=J..5 
SL(O.L)=0.0 
DO 202 K=1.6 

202 SL(J.L)=sL(J.L)+TR(MS.K.J)*STGT(K.L) 
SIR(1)=SL(1.1) 
STR(2)=SL(2.2) 
STR(3)=sL(3.3) 
SIR(4)=SL(L6) 

. STH(5)=SL(1.3) 
STP(6)=SL11.2) 
NODE=1AdS(ELDODULL13$MS-1))/1 00  

NOIV(NODU)=NOIVtNUVE)+1 
DO Si K=1.6 

51 	STSSiNONEIK) = STSS(NUUE,K) + STI( (K) 
IF(LLNUNECLL,3•MS.-11.E.U) GO TO 650 
00 53 K=1.6 

53 STsSINODE.K)=SISslouDL.K)/FLOAT(NDIV(NOOL)) 
650 CunTINuE 
20 CONTINuE 

RETURN 
END 

SUHHoUTInE 1-CM2 
REAL JAC.IJAC 
cumr,:dasi oiur.AYL t 3 20 ) .1.)H(6 .9) •P( 91 9 UN 	) 

N(1NKVA.IIKNVA.NUSTk.NCELr10.NCLLNI•NTOTAL•NPk0EF•NT. 
1NCLEm.oFRLE.DDLLm.NODTUT.N 
COv.ION/C3/V(20.3) 
COmil0o/cuR/LoRD(3.20).TR(20.3.3).CCORD(3. 44),JkA(4) 
COM,,,(4/S1'/G.H.F.mS 	 Ui 

DImEnSIoN 01(1(6,60).00(6.60).A(A.3).JAC(A.3),IJAC(3.3).DE(4.20) 
EuulvALCDCL(OL(1).01)(1)).(1)1((1).0(17(1).UP(150)) 	 • 
6 = V (MS. 1) 
II = V IRS. 2) 
F = V (RS. i) 
IF (NNELm .L(J. 20) GO TO 30 
CALL SHAP32 
GO To 31 

30 CALL S1IAP20 
31 CONTINUE 

C 
C 	 FORMATION Or JACOBIAN RATRUX -- JAC 
C 

UN 10 1=1.3 
UU 10 K=1.3 
JAClIsK)=0.0 
DO 10 J=1.WALLm 

10 JACII.K)=.JAC(I.K)+0E(I.J),PCORD(KIJ) 
C 
C 
	

VALUE: OF DETERMINANT OF JAC -- VJAC 
C 

VJAC=JAC(1.1)*(JAC(2.2)*JAC(3.3)-JAC(2.3)*JAC(3.2))- 
1JAC(1.2)*(JAC(2.1)*JAC(3.3)-JAC(2.3)*JAC(3.1))... 
2JAC(1.3)*(JAC(2.1).JAC(3.2)-JAC(2.2)•JAC(3.1)) 
IF(vJAC) 12.11.12 

11 WRITE (6.13) 
13 FORmAT(1110.:21HULTO=U PROGRAM HALTED) 

VJAC=.1L-25 
12 CONTINUE 

• 



INVERSION OF JACOMAN 	IJAC 

IJAC (111 )=IJAC ( 2.2)*JAC(3.3)•JACI3.2)*JAC(2.3) )/VJAC 
IJAC(1.2)=- IJACt1.21•JAC(3.3)-JAC(3.2)*JAC(1.3))/VJAC 
IJAC(1.3)=1JAC(1.2)*JAEl2.3)-JAC(2.2)*JACt1.3))/VJAC 
IJAC12.1)=-tJAC(2.1).JAC(3.3)-JAC(3.1) ,JAC(2.3))/VJAC 
IJAC(2.2)=tJACt1.1)*JAC(3.3)-JAE(3.1)*JAC(1.3))/VJAC 
IJAC(2.i)=-(JAE(1.1).JAC(2.3)-JAC(2.1).JACt1.311/VJAC 
IJACt3.11=tJAC(2.1)*JAC(3.2)-JAC(2.2)•JACt3.11)/VJAC 
/JACt3.21=-WAC(1.1) 4JACt3.21-JAC(1.2)*JAC(3.1))/vJAE 
IJAC(3.3)=IJAE(1.1) , JAE(2.2)-JAE(2.1)*JAC(1.2))/vJAC 
00 2n J=I.3 
Uu 20 L=1.NNLL1 
0ExTz(J.Lt=u.0 
OU 20 K=1.3 

20 NExr/(J.L)=DExYZ(J.L)+IJAC(J.K).DECK.L) 
OU 21 I=1.m 
00 21 J=1.DLL011 

21 00(1.J)=(1.0 
nu 22 K.7.1.111,LLm 
K1=3.0.-2 
K 2-3.K-1 
K3=3.K 
00 22 I=1.6 
DO 22 J=1.3 
J1=J+3 
J27.J.6 • 
01111.K1)=DDII.K1)en11(/.J) ,0EXY2tJ.K) 
011(1.K2)=DD(1.K2)+011(1.J1)*DEXY2(J.K) 
011(1.14 3)=OLIII.K3)+DD(1.J2140EXIL(J.K) 

22 CUOVJUE 
'JO 102 L = 1. NNELM 
J2 = 3 • L - 3 
Ou IPI I = 1. 6 
UU 1111 K = 1. 
A (I. K) = U. 
no 101 J = 1. 3 
J1 = J2 • J 

101 A It. K) = A (I. K) + DU (I. J1) • (II IL. J. K) 
DU 102 I = 1. A 
00 1(12 J = 1. 3 
J1 = J2 + J 
OBr tl. J1) = A (I. J) 

102 CON-fit:DE 
RETuRN 
EN0 

SunRnurinc SHAP2U 
EOMmON/SIU/UEXTZ(3.20).0N(A.9).P(9.9).UP(5U.9) 
COMPInD/SP/G.11.F.t.is 
OI' ENstun ULt4.2111 
ENOIVALENCE101.111,01)(1)) 
GP1=1.+G 

1041=1.-11 
HP1=1.+D 
FPI=1.+F 
Fm1=1.-F 
G2P11=2...G+N 
G2m11=2.+G-11 
112or=2...H+F 
N2m1:2.*D-F 
F21,0=2.4:4.6 
F2mGr.7...F-U 
HI=HD1*FD1 
112=Dp1.Fpl 
113=11m10-m1 
tin=Dr1.- FM1 
G1=1*Fpl 
G2=6P1..FP1 
(13=WA1.Fm1 
64=GD1*Fml 
GS=Uml*H(41 
G6=6m1.1.D1 
67=G11 1.111,1 
Gn=(ipl•DM1 
01.(1.1)=0.1;!5*H1*(G2PH+FM1) 
0E(1,2)=-0.25*111,1*111 
DE(k.3)=0.125*D2*(G2M11+FM1) 
OL(1.4)=-o.5*G012 
0E(1.5)=u.12(62141-FM1)+H2 
DE(1.6)=-1.111.2) 
0E11.7)=0.1254 (U2MH-FM1)*N1 

DE(1.9)=-U.2514M1*111 
NE(1.10)=-o.25*Fm1012 
DE(1.11)=-0L(1.20) 
OCt1.121=-DLt101 
01(1.13)=0.125.(621'11•FP1)+113 
01.(1.14)=-u.2t).D6,1013 
DE(1.15)=0.125stA2No..1-1)11044 
DE(1.16)=-0.5 ,6 4014 
01(1.171=0.1254.(G21'11-1-P1)..114 
DE(1.1u)=-Dt.t1.141 
DE(1.191=u.12')4tb2R41t-FP114.113 
0E(1.2(l)=-u.5..G.D3 
01(2.1)=0.125*t6P14D2m1) ,G1 
DE(2.2)=-0.5*11.01 
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UE(2.3)=0.1541 (H2FT-GP1)*G1 
DE(2.4 )=0.2 4,uwl*G1 
DE(2.51=0.125*(1121T-Gml)*G2 

UE(2.7)=0.1,e5*(o2mF+GM1)*G2 
nEt2.(+)=-OE12.4 ) 
0E(2.9)=-u.25*Fol*G1 
OE(2.10)=-oLl2.9) 
DE(2,111=1).25ipm1.G2 
OE12.12)=-1)tt2.11) 
UE(2.13)=u.125•to?PF*GP1),G3 
DE12.141=-U.5.(.G3 
0112.15)=u.lt5*(12oF-W-1 1)*G3 
OE(2.1A)=0.2!)“,o1•63 
01(2.171=0.12').(ooF-GM1)*G4 
11E(2. (0)=-U.5•'1•(,4 
DE(2.19)=0.12(112Pf+Gm1)*G4 
oL12,2v)=-HL(2.16) 
Utti.1)=0.125*(12mG-O)'11 ,0 65 
OL(3.2)=0.21eifi,1 4, G5 
DEt.i.3)=0.1etls(12,,(,-Omlf*C6 

DL1.5.5)=11.11.3.()2rG-oM1).G7 

UE13.7)=0.11.021'(,-oP1)*G0 
nE(3.6)=0.27.UP1s(,5 
OL13.9)=-11.1,1“,!) 
UEt3.1U)=-u.5,F.U, 
DE(3.11).=-u.Voii7 
UE13.12)=-0.5*F•G(s 
01(3.13)=0.11.11- 2vG-toO1),G5 
nE(3.141=-1)t(3.2) 
01(3.15)=u.1.15.(1- 2oG+Om1)*Gb 
CF13.16)=-ulti.4) 
0E13.17)=0.1?5.(F2mu+Hm1),, G7 
Ol(i.1d)=-oL(3.6) 
0E(3.19)=0.1t.".(F2r4U+o('1)+G)3 
DE13.211)=-oi(30i) 
OL(4.1)=0.1/5*IP1*(W11+oml+FP1-5.0)*G5 
nE(4.2)=4.2•3'0.1. 
UL(4.3)=u.125.TP1s(um1.oOl.FP1-:5.0)*G6 
oi ( 4 4 I =I) 	•Gn •(.1 
0E(4.5)=0.12t,01o1s(W1+HP1+FP1-5.0)*C7 
OE I 4 	) 	•1 
DE.14.71=U.11").V1'1 , (C,P1+HMI.IP1..5.U) 4,GA 
DE(4.8)=0.11465.G2 
OC(4,9)=0.15.1.,3*.H1 
OL1 4 .10)=0.e101.3 4, 02 
nh(4,11)=0.14.11? 
PE(4.121=-U.e5■1 .4 *H1 
UE(4,13)=1).15.FMl , lGML+IIM1+FM1-5.())*G5 

UE(4,14)=0.25,1, Gb*114 
0E(4.15)=0.125*FM1*(GMl+Hpl+FM1-5.0),0 66 

Ot.( 4.16)=u.25*G6.G4  
0E(4.17)=0.125•rm1*(GP1+OP1+FM1-5.0)*(i7  

Oi( 4.18)=0.25*G7*O3 
0E(4,19)=0.1254.rM1*(GP1+HM1+FM1-5.0)*G8 
OE(4.20)=0.254,G5“,4  
RETUPW 
ENO 

SUOROUTINE Sl1AI'32 
COMMON/S10/UEXYL(3,20)1C1(6.9),P(999)90P(60.9) 
COWION/SP/G.O0-.MS 
OINENSION OL(4.32) 
EUUIVALENCEME(1).UP(1)) 
C1=1./64. 
C2=9./64. 
A=4.*(G*G+114,11+F.PF)-19. 
G1,=1.4G 
G2=1.-G 
111=1.+11 
O2=1.-H 
F1=1.44" 
F2=1.-E 
(,3=G1.G2 
G4=1.-3.*0 
G5=1.+3.+G 
O3=111012 
o4=1.-3..O 
O5=1.+3.*I1 
F3=1-11.F2 
F4=r.-3.*F 
F5=1.+3.*F 
DE(1.1)=C14012*F1*(-A+62*18.*G) 
DE(1.2)=-C2*O3014*F1 
Di(1.3)=-C2*O3•115*r1 
OLl1.4)=C1*1110:1*(-A+(:2*18.*G) 
01(1.5)=C2011,F1*(-2.*G*G4-3.4.G3) 
OL(1.6)=C2.111+171*(-2.*G*G543.+G3) 
0L(1,7)=c14.o].0-1*ln+G1*18.*G) 
DE(1.8)=C2*oi*1IS.F1 
DE(1.91=C2*o3-10 14*1- 1 
DE(1.1)))=C7,112,11 4 1A+G1+1804,1 
0E(1./1)=C2$O201*(-2.sU*G54.3..G3) 

DE(1.121=C2,, O20-1 4, 1-2.*GAG4-3.4,1;3) 
OL(1,13)=-C24134.1.H2 
OC(1.141=-C10,5*(5W1 
NE(1,1"))=C?t.r,5.rb+o1 
OE(1,161=C20F3*F54,112 
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DE(3.4)=C1*u2012*IA+171+10.*F) 
UE(1.17)=-C20:30-4012 OC(3.5)=C2*(,3*G4sill 
DE(1.18)=-U44- 31,r4A1(1 DE(5.6)=C2 4,b5A.U5*H1 
UE(1,191=C..*r.s.r4.10 0E(3,7)=C1*(21.111*(A4T1*18.*F) 
DE.(1.20)=Cw.F3*F4.11? nE(3,8)=C2*113sql*H5 
DE(1.1)=C1.1120-2.(-A+G2*18.*G) DE(3.9)=C240134,G1014 
nE(1,22)=-C*H3•11,1441-2 OL(3.1U)=C1+61012s(A4T1*18.*F) 
UE(1.23)=-e/o130PI.F2 01.13,11)=C24.63.65.412 
UE(1.?4)=L1.111,01?.(-A*G2*18.*G) DE(3.121=C.G3 4(.4*1 12 
DL(1.25)=Ce.111.1-e•(-2.•(,'34-3.*C,3) 0113.13)=C2*G2*112*(-2.*F*r543.*F3) 
DE(1,2b)=C2w1•r1s(-2.*G.G54.3.*G3) 0E(3.14)=C2.(,2.H1e1-20,r*r5+3.0.3) 
oE(1.27)=c1.111..(A.G1.18..G) 01.13.15)=C2*(ii*H1*(-2.*10'5+3.*F3) 
DE(1.2111=c,?.w3145.r? 0E(3,16)=L24G14,H2+(-2.*r.F5+3.4T3) 
DE(1,:e9)=5,014.r„,  a(3,17)=C2*G2*1Ies(-2.4, F ,F4-3.*F3) 
OC(1.1u)=C1.1- ?.1A+61.1(1..,6) 0E(3.18)=C21,(,2.H14, (-?..*F.14-3..r3) 

( 	31) =L? 	 .'(-2.  • I -2. “,565+3,,,,G3) 01(3.19)=C2*Gl*H1*(-2.4,14-3.*I3) 
DE(1.32)=C2#W ,,F2*(-2.1.64,(,4-3.4,63) OEt3.2U1=C2,0 U101 2*(-2.*F.F4-3..F3) 
DICe.1)=Cl*we,W1•1-A+1121.1m..11) UL(3,21)=Ci•G2sH2*1-A+1-2*IBOF) 
DL(2.2)=c?.h2W1.(-d..11.114-3.013) OL(3,22)=-Ce.H3$62 4, 1 1 4 
Utt2.3)=Cu2W10 1-;). 4 11•Hb+3.4.113) DE(3.23)=-C2 1,113H5 
DE(.).4)=C14 1..1.- 16(AsH14,16.4,H) OE(3.24)=C1.62011•(-A+r2*10.ATI 
UL1205)=3.,(046F1 DE(3.25)=-U.G3*(,4*111 
uLf20-0=12.1,34,1,54,11 01(3.26)=-C?“;3•1,5•141 	' 
UL(2.7)=cl.b1.W1*(A*H1418.*H) 003,27)=CI*G1011.(-A+F2*113.*F) 
0E(2./1)=C2.(4 ,r1*(-2.4mati5+3.W3) DiA3.28)=-L2*H3,614H5 

DL(3.29)=-CP■116*G14414 
oL(?.10)=11•tAalls(-A‘H2.18.*Hl 0E(3.3U)=c1‘G1tii?*(-A0:2,0 10.*F1 
UL(2.11)=-1..b3.11 UE.(3.31)=-Ces63*65+112 
111(2.12)=-Cle.(A“,4.11 DE(3,32)=-C2.G3•(,44112 
UL(1.13)=-C•43•154(.2 0E14.1)=C1su2,m2 4, F1+A 
OEt?.14)=C2.1- 310-54,G2 01(4.2)=Ce*HA.(,2 4,119•Fl 
UL(2.15)=C,,W54FS.b1 DE(4.3)=C2013*(2+119•F1 
1)E12.1(,)=-Cesr31 DE:(40)=C1*(,2$111411.A 
OE(2.171=-L.e.r3o4.62 DE(4.5)=C2 4, (33+G 44011*F1 
UE(2.18)=C12-13.r4.1.2 01(4,6)=C2*U34q,5 4011•Fl 
01(2.19)=C44r3er 4 anl OF:(4,7)=C1sb1*Ill*Fl+A 
NE(2.20)=-Cd.F3,44.b1 OL(401)=C..*113*G1■115 6 1- 1 
01112.;'1)=C1•12.(-18.01, OE(4,91=C2 4013,14,1 4114•F1 
DE(2.711=C2 5 G2 ,F2f, t-.4011.H4-3. 0013) n1(4.11.1)=C14.61.112srl'A 
UE(2.:3)=C.,.n2.1- e.(-2..mo45,3.•443) DE(4,11)=C2*G3.G5.1120,1 
UL(2.24)=CI.G201*(A•1114, 18.*Ill. OL(4.12)=C2*1'44('4*H2*F1 
ULl.151=1,2•1;34U4,r1 DE.(4.13)=C2 40- 30- 5*G2W2 
OC(2.;,b)=11*(.3.1,5*1> DL(4,14)=C2*F.5,F:5 1:GP•M 
OLI2.17)=C1oU104.(AWls10.W) OC(4.15)=C244,344bsulala 
0E(2.>/i)=C?.c,10-r.4-..11.11.14.3.*143) UE(4.1b)=C2 44:3“- 5 4, G1•112 
uE(2.2,4)=c?.(.1.1.e.t-:e.+H•114-.3.A113) OL(4.17)=C20- 3.P4.G201 2 
nt.(2.30)=CI•0i.r74, 1-A+m?4,18.*H) DE(4418)=Ce0-50-4 *02*111 
0E(2.31)=-Le4u3sun.i? 01_(4.19)=1-30 44 1,1 011 
OL(2.32)=-C1*G5.(04.F2 OC(4.20)=C.?.1- 3 -WitGl'H2 
0E(3.1)=11.1.(A.1-(.10.0F) OL(4.211=C14,b2 ,0,? 41:W 
oL(3,2)=C-2.113.1,,, .114 DE(4,221=12.1134,1,24,114.17 
u1(3.3)=C?•1 1Se(2o,I5 
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APPENDIX 4 

LISTING OF DRAW CODE  



1 	 2 

PRnGRAM DRAW (OHDAToTAPE1=0R0AT.OUTPUTITAPE?=OLITPUToTAPE62) 	 FACX=13.0/TOTALX 
C 	 FACY=13.0/TOTALY 

REAL LEN 	 FAC=FACX 
INTEGER TITLE. PRE"IC 	 IF (FACY.LT.FACX) FAC=FACY 
CO"MON L(105.20). X(725). Y(715). Z(715). XP(715). YP(715)t 	 X0=3.0+FAC*1IUS(EMAX) 

1 	TF(3.3). PPENIC(600). TITLE(8) 	 YO=2.0+FACIABS(EMAY) 
C 	 CALL START(2) 

READ(.:) TITLE 	 CALL SY.*OUL (0..0.1.71TITLE.0.,00) 
6 F()l''+nTCrA10) 	 CALL PLOT (16..2.5.3) 

RFAO(1.1) OLLEmo NnOTOT. NPHOCF. NNELM 	 • c 
1 FORMAT (415) 	 C 	DRAwiNG ELEMENT BY ELEMENT. 

IF (NNELM.EU.32) GO TO 400 	 CALL INTE1JSE(15) 
DO 2 K=1.NLLEM 	 X1=16.0+TF(2.1)*DISTOR*FAC 

2 .EAD(113) It (L(I.J). J=1.20) 	 Y1=2.5fTF(3.1)*DISTUR*FAC 
GO TO 410 	 CALL SY1410L (Xl. Y1. 0.35. 111 0.0. -2) 

400 DO 420 K=IonELEM 	 X1=X1+0.35*FAC 
420 REAO(1.471) I. (L(I.J). J=1.32) 	 Y1=Y1-0.35*rAC 

. 421 FO1:"AT(‘II4) 	 CALL Sr,NOL (Xl. Ti, 0.35. 51. 0.0. -1) 
410 iEAn(1.4) (N. X(I). Y(I). Z(I)o 1=1.NODTOT) 	 CALL ('LOT (16.. 2.5. 3) 	 NJ 

NJ 3 FO,ZPAT(21I4) 	 X2=1A.WIT(212)*FAC 
4 FOR1P.T(I10.3F10.4) 	 T2=2.5+TF(3.2)*FAC 

REAn(1.1) TETAX. TETAZ. DISTOR 	 CALL Sr"f1NL 1X2. Y2. 0.35. 110 0.0. -2) 
5 FOR ,AT( 4f12.4) 	 Y2=Y2+0.35*FnC 

REAI1(1,1M)) (PPINIC(I). I=1.mPROEF) 	 CALL Sy'"noL (x2. Y2. 0.35. 52. 0.0. -1) 
180 FOPiAT(4110) 	 CALL PLOT (16.1 2.5. 3) 

PI=2.01AC(N(I.0) 
TEIA\L- TriAx.pui8J.0 	 Y3=2.5+TF(3.3)*FAC 
TETA7=rryAl.r,r/180.0 	 CALL SYQB0L (xi. Y3. 0.35. 111 0.0. -2) 
TF(1,1).7coStTL1nx).CoS(TETAZ) 	 X3=1A.0+0.35 
TF(1.2)=CI.IITETAX)*C0S(TETAZ) 	 CALL 	(X3. Y3. 0.35. 53. 0.0. 1) 
TF(1.3)=,,INI7ETAL) 	 CALL PLOT (O.. 0.. 3) 
TF(2.1)=-si:1(ITTAx) 	 CALL PLOT (X0. YU. -3) 
TFZ2,2)=CIsITLTAx) 	 CALL'FACTOR (FAC) 
TFc2,3)=0.0 

I  TF(N,1)=-sI , I(TETAI) ,COS(TETAX) 	 I=M.00.32) LTMK(3=13 
1;. (3.2)=-SIOl7ETNZI•SIN(TETAX) 	 DO no tJ=L!J);LFM 
TF(3.i)=CILS(TETAZ) 	 INTAL=L(O91) 

CALL I'LOT cXP(7NIAl), MINIAL). 3) 
00 1n1 RR=1.LIt4KB-1 

ct1 AY =C.1 

no 1r I=1.NOnTIT 	 11:::(11:1NO) 
RIAY=0.0 	 - IF tKO.E0.LiMK1-1) Iti0=1 

Wf1)=A(1)1, rF(2.1)PrTSTW14.T(i).TF(212). 	 101 CALL I'L)T (Xp(q). ?NV). 2) 
Tp(1)11,x(1)=Ir(s.1).01ST(m+Y(t),IF(3.2)+2(I)sT('(3.3) 	 IIID=w4E1m-,_IMKB+2 
IF(xp(I).6T.1(AAx) w-Ax=xp(I) 	 INIA1=L(n.flu1 
IF irP(T).L1.C•'Ax) EIAAY=xl(I) 	 cAIL PLOT (x14 (INIAL). YNINIAL). 3) 
IF (yi, (1).(a.fi(Ay) wAnyr.rp(I) 	 DO Ir2 KI:=1.LFIKlJ-1 
[F 	 P1 AT=Y('(I) 	 lnor.t'OCL''i-LIvn.147 

10 c')-17, 011_ 	 11 (wr.L0.1.10K.:-1) INC=IINEL'a-LIMKB+2 
TOIAl 	

wAy-L:.AT 	
< =t (P:,1141) 

TorAty=. 102 CALL pLol (xv(K). yP(K). 2) 



DO 103 KL=1.4 
K1=(KL-1)*(1JIJELM/32+2)+1 
K=L(N.K1) 
CALL PLOT (WM. YP(K). 3) 
Kr.(IN.KL+LI,'K4-1) 
CALL PLJT (xP(K). YP(K). 2) 
IF (NNCL,4.LJ.2'J) GO TO 105 
K=L(L.KL+LItKII-144) 
CALL PLOT (xP(K). YP(K). 2) 

105 INo=.,,,E1  ,A-L1e.;KO..K1+1 
K=1(:..I40) 

103 CALL PLOT (AP(K). YP(K). 2) 
100 CUr'TII:UE 
. 	CALL INTC:•ISE (30) 

DO 110 T=1.1400T0T 
CA1 L SY ,iP')L (XP(I). YP(I). 0.015. 1. 0.0. -1) 

110 
ICrinr=2 

IF (1CoOF.C11.0) IcnOE=1 
CALL 1%1'1NSF. (15) 
0=0.,0)*TeFLOAT(3-2•ICO0E1 
00 2N1 0=1,1,1 qnEF 
%0=PwENTC(N)/10.) 
Tol=pqENICIo1-100*00 
CA! L PLOT (x1'010). TP(00). 3) 
IF (inm-2) so?. stn. 320 

3n0 x,(=x:'(I:ri)evtTr(9.1)•'JISrrl( 
TY=TP(F.11+o•TF(3.1)4,01S1OR 
GO T9 211 

310  X't=xP(;O)+'f•TF(2.?) 
YY=Yo(rio)*q*TF(392) 
GO To 2,;0 

320 xx=>0(o)))  
TY.7.1N.(rio)-0.107$1F(3.3) 

250 GAIL STAR0L (XX. Ty. 0.015. 1. 0.0. -2) 
200 CO.,TTI:OE 

CAiL 
ST ,, ' 
EN0 
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Fig. 1.5 Various crack configurations having the 
same length and depth 

Fig. 1.6 Section of a nozzle showing two fatigue 
cracks 
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Fig.2.1 3D hexahedron finite elements 
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Fig, 3.2 Application of the Energy Method to the derivation 
of K factors from the crack plane nodal forces 
and displacements 
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Fig. 3.7 Shape functions Ni  and its derivatives fi for 
the 4 node singularity element 
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Fig. 3.10 Two tipical shape functions for the 2D 
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Fig. 3.12 Transformation of coordinates to obtain 
a prespective view of a finite element 
mesh 
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Fig. 3.13 Order of execution of logical functions 
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element 
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the CTS shown in figure 3.14 (a) 
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Flg. 3.28 Part-through semi-circular crack. Variation 
of K along the crack front 
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(I)) Three step skewing technique and final mesh idealization 

Fig. 3.29 Part-through semi-circular crack emanating 
from the inner surface of a thick-walled 
cylinder 
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Fig. 3.32 CYL1 and CYL2 caSQs. Variation of 
K along thQ crack fronts 

" .. -.. ,-, 
. . ...... :- .... : .- .. 

~~'f:: r:;J:LJ~~-' i; ·:·;::~~~tLriI'1;;---:~· ;.-·t_lJ_~t;'i;~~iii_;f~!f0r~; .. 
;::;' :~ :.:.: : :-; .... :': -: 1 : : ~ :. : ~ . ..- :.::.:- :.1.~·:;··: ':.t .:.: ',:":- t : 

.. ; .. : .... ! <t- -: .... : ~ ;. ........ .. 

: ~:: :.:.:-: .. :.J..:..:'.::.::r :.::.: . . -: ... :.,. : .-. 
: : :.: " ~ : ::. i : :-, 7': ~ . 

. . ... : ..... i ..... ! ...... 
.•. :-.. ; 

it;:d .. --..... -~ .;. ...... ':".j,.; 
~·:r:~ : t 
; .. ",. i 

tffl11Ifd ~;:EillT_E~::;=!C:: 
~{EL_Ij:n Li :~tEl'~_~~~ :: :-; 
.... .. ', ~ ..... .... _.i • 

_ ._: ~. :,,:,:. ~ ::~:~~.~:L·.~:,:::~'l ~ 
.............. ; •••••• I ..... : .. 

. ; ... ; ! ... ,_ .... __ . ..l ••••••• : .:. •• ~ .... ;. • 

. .: ~ ~ ',. ~ ~. ~ : : -:. ; ~ ~ ~ : ~: -: : :. ~ 
-, _ ......... - ... -_ ....•. _._-_ ..... -.-... -.... ~ ... -.--.--... - -... . ; .. -•.. - : .. . .. :.. .. ...: i : . . ... . :, : ':'; :",- ... :.: . : '~ I ~ ~'-'~': ! :-: -:.-: i .. 

0'0 0'1 0'2 0'3 0'4 0·5 0'7 
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form intQrnal prQssurQ (from RQf. (30)) 
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E='i g. 4.1 Specifica ti on of geometric details 
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Number of Nodes per Element 32 
Total Number of Elements 	49 
Total Number of Nodes 	728 

Fig. 4.3 TJUN1 case. 32 node element mesh idealization 
of a T-junction of thick walled cylinders 
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1.41...•■•., 

Fig. 4.4 Primary 2D mesh idealization for the 
section J3=0° 

Fig. 4.5 Intermediate stages in the generation technique 
for the node element meshes 
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C 
Fig. 4.6 TJUN2 case. 20 node element mesh idealization 

of a T-junction of thick walled cylinders 



- 267 - 

I 

1 

1 

1 

1 
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Fig. 4.7 Case TJUN2. Displacement solution for the 
cross sections p =0° and p=9o0 

Fig. 4.8 Case TJUN2. Prospective view of the mid-surface 
of the structure and the correspondent displa-
cement solution. 
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Fig. 4.9 Case TJUN3. Finite element mesh idealization 
of a T-junction of thick walled cylinders 
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Fig. 4.10 Numbering scheme for elements and nodes 
of the mesh illustrated in figure 4.9 
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Scale for dIsplocements 

9 	? • 	• 10 2mrn 
Scale for the structure 

0 	40 op  mm 
_ 
Fig. 4.11 CaSe TJUN3. Displace:nent solution for the 

cross sections 13=00  and 13=90° 

Fig. 4.12 Case TJUN3. Prespective view of the mid-surface 
of the structure and the correspondent displa-
cement solution 
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(a) Displacements of nodes in the inner surface 
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(b) Hoop stress distributions 

Fig, 4.13 Ovalization effect in the end of the 
branch pipe 
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TJUN 3 TJUN 2 

Fig. 415 Distribution of hoop stresses,crx /pi,in the 
nozzle region for the cross sections )9=0° 
of cases TJUN2 and TJUN3 . The membrane 
stress in the run pipe is 2.75 times the 
internal pressure pi  

TJUN 3 	 TJUN 2 

Fig. 4.16 Cases TJUN2 and TJUN3.Hoop stress distributions, 
ax/pain the nozzle region for the cross sections 
p =gob 
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Fig. 4.17 Stress contour 'map of hoop stresses in the 
nozzle region of a BWR pressure vesselaRef.(2) 
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TJUN3 Analysis 
0 	Subst. Analysis 
O 	TJUN1 Analysis 
	 ASKA Results, Ref.(75) 

Fig. 4.18 Variation of hoop stresses along the inner 
surface in the crotch corner region 
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1- prosent case 
2- Ref.(21.(scaled down 4 times) 

 

3- Ref.(59) 

Fig. 4.19 Comparison of geometric _details of three 
different nozzle configurations 

Fig. 4.20 Idealization of a corner crack using the 
TJUN3 finite element mesh 
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Fig. 4.21 Monitoring changes in nodal displacements 
when a crack is assumed to exist in the 
crotch region 
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0 crack number 

Fig. 4.22 Corner crack configurations 1, 2,3 and 4 

Fig. 4.23 Subregion considered for the substructuring 
scheme 

Fig. 4.24 Finite element mesh idealization of the 
subregion illustrated in figure 4.23 



TJUN3 SUBSTRUCTURE 
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Fig. 4.25 Comparison of distribution of nodes 
in the nozzle region (cross section p=00) 

TJUN3 SUBSTRUCTURE 

Fig. 4.26 TJUN3 and uncracked substructure analyses. 
Comparison of stress contour maps of hoop stresses, 
crx /pi  in the nozzle region (cross section p=o°) 
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Ko = 2 cr ITir,I-. 
a membrane stress 

(") scaled down 4 times 

•0  	 

Present results with substr. anal.-  

Hellen and Dowling , Ref.12) 

Brokhoven , Ref.(59) 

Corner crack in a square spe-
cimen, see Chapter 3 
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Fig. 4.29 Evaluation of K values by the Global Energy 
Method based on crack plane nodal point for-
ces and displacements 
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Fig. 4.30 Comparison of averaged K values of 
corner cracks emanating from the 
crotch corner of three different no-
zzle geometries 




