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ABSTRACT

This thesis is a contribution to the field of multilinear system theory,
and investigates the state space realization and stability of dynamical
systems characterized by multilinear input/output maps.

A summary of research done to date in this field is presented,
together with a number of original results. The principal work which has
been carried out in recent years has been for the case of bilinear input/
output maps, where necessary and sufficient conditions for such a map to
be realizable in finite-dimensional state space form have been Bbtained.

A major contribution of this thesis is the determination of necessary and
sufficient conditions for a realization of such a map to be observable and
quasi-reachable, and of reduction procedures for obtaining a realization
which is quasi-reachable and observable from one which is not. Previous
thoughts and ideas on constructing realizations direct from the transfer
function (notably by Kalman [K1]) are formalized here, and sufficient
conditions for stability of the output sequence due to finite length .input
sequences are demonstrated.

Multi-output bilinear systems are examined separately, as these
require relaxation of the idea of observability to that of quasi-observability,
and although conditions for quasi-reachability and quasi-observability are
obtained, together with a reduction procedure for quasi-reachability, the
results are not quite as definitive as those for single output bilinear
systems.

Sufficient conditions for stability and state space quasi-reachability
of a particular class of multilinear input/output maps are shown, and
necessary conditions are obtained in terms of the input-to-state transfer
functions for the state space realization of a general multilinear input/

output map to be quasi-reachable.
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NOTATION

The following standard notation is used in this thesis, primarily in

Chapter 2:

z

N
REx]
RLEx1]

Rix,y]
RO x,y1]

RI(x;]
R[(XIY) ]

real

— the set of negative integers including zerxo

— the set of natural numbers

— the ring of

— the ring of

— the ring of

— the ring of

— the ring of

— the ring of

R [(x,y)] — the subring

and RI(xy)]

of rational

polynomials in x

power series in Xx

polynomials in x and y

power series in x and y

rational power series in x

rational power series in x and y

of RI(x,y)] generated by R[(x)], Ry} ]
(which consists of power series expansions

functions with denominator pj(x)ps(y)p(xy)).



CHAPTER 1. INTRODUCTION

Ever since the time of Newton and Leibniz and the birth of the calculus
there has been a continued interest in the theory of differential equations
and dynamical systems, and this interest has been vigorously pursued
throughout the intervening years from then until now. Great strides have
been made, particularly in the area of linear system theory, including
linear control systems and the theory of state space realizations., _Non-
linear system theory has remained somewhat intractable however, and
apart from specific examples is usually dealt with by means of approxima-
tions. One form of approximation which is applied to non-linear control
systems provides a motivation for this thesis — the Volterra series
approximation. This is based on the ability to write the solution to

the differential equation

(n-1)

y(n)(t) =gly,y'see-ry Sstou(t))

where y(l) = dy

as the infinite series

o t t
y(t) = jgl%...% hj(t;tl,...,tj)u(tl)...u(tj)dtl...dtj.

This is called the Volterra series, and a Volterra series approxima-
tion is obtained by truncating this series so that summation is from 1 up
to some integer n.

These approximations were studied in detail during the late 50s and
early 60s, by a number of researchers at M.I.T., prominent among whom
were Wiener [W1], Lee and Schetzen [1S1], Bush [BUL], and George [GEll.

Various techniques were invented in the time invariant case for
dealing with these approximations; notable among these are the multiple
Laplace transform operators s;,...,s; of [GE1], and the determination of
the kernels hj(t—tl,...,t—tj) by means of suitable 'white' noise or

pseudo-random inputs [LS1], [BOll.



Similar operator techniques were applied by Alper [AL1] to Volterra

séries representations of discrete-time input/output maps, which have the

form X k
co
Y = L ) 2w lk-ip,...k-i) uo...u (1.1)
k+l r=1 i1=0 ir=o r r iy i,

and this approach was developed further by Kalman, whose 1968 paper [Kll
provides the first study of multilinear machines. One of the purposes of
this study was to investigate in depth the properties of the Volterra
kernels wr, and to facilitate this he examined the system governed by the
kernel wr, but with the input channels all distinct. In the bilinear

case, for the kernel Wo s this results in the so-called bilineai input/

output map
k
Yoo = 1 w, (k=1;,k-1,) u, v, (1.2)
k+1 il,i.z:o il 1,y

where we no longer have the constraint u, =v, (i=0,...,k).as in (1.1).
As with linear input/output maps, various questions can be asked
about (1.2), in particular questions concerning state space realizability,

and the answer as to what form the realization should take was given in
(k1] and by Arbib [Al]. This was taken further by Fornasini and Maréhesini
[(Fm1], [FM2] who derived necessary and sufficient conditions for finite

state realizability (i.e. conditions for writing (1.2) in state space

form, where the dimension of the state space is finite) in terms of the
transfer function description of (1.2).

However there still remained several other problems associated with
state space descriptions of (1.2); in particular, when is such a realiza-
tion minimal, controllable, observable? How can one obtain a minimal
realization from a non-minimal one? While the ultimate objective, to
characterize (1.1l) via some 'nice' state space description, has not been

fulfilled in this thesis, those questions concerning state space



descriptions of (1.2) have now been answered, and the results can perhaps
be extended to the analysis of (1.1).

Various other problems have been thrown up by (1.2) such as minimal
realizations when there is more than one output, and, rather surprisingly,
it has so far proved impossible to provide the same definitive results
which were found for the single output case. The principal deficiency is
that although the results on reachability and observability are similar
to those for single outputs, there has as yet been little success ;B_
establishing an isomorphism theorem for minimal realizations in the multi-
output case. An interesting analogy here is with observability of single
output cascaded linear systems (or dually, controllability of single input
cascgded linear systems), where fairly straightforward conditions for
observability can be established; these conditions do not hold in the
multi-output case and any conditions in this case are far more complicated
than for single outputs. This analogy is mentioned again in the Appendix
to this thesis.

Of additional interest in the context of Volterra series expansions
of non-linear input/output maps are the higher-dimensional analogues of

(1.2), i.e.

k
Yis = _Z ' wn(k—ll,...,k—ln)uil...uin. (1.3)
11,...,1n=0

It appears that state space descriptions of such multilinear input/
output maps have even 'deeper structﬁre than those of bilinear input/output
maps, and although conditions for reachability can be obtained for certain
classes of multilinear maps, the problem of minimal realizations of general
multilinear maps still remains unsolved. Indeed, whereas for example it
has been shown in [FM1] that all bilinear input/output maps with finite-

dimensional state space representation can also be represented by some

transfer function N(zj,2z2)/p1(21)p2(27)p(2)27) where N, p1, P2 and p are



all polynomials with the indicated arguments, a similar result does not
hold in the multilinear case; in particular for n =3, the set of transfer
functions with finite dimensional state-space representations contains
the ring of transfer functions of the form
N(z1,22,23) /p1(21) P2 (22) P3(23) p(212223),
but is in turn strictly contained in the ring of transfer functions of the
form
N(z1,22.,23) /p1(21) P2 (22) P3(23) P12 (2122) P23(2223) P13(2123) P(212223) «
Research on the continuous time analogues of (1.1), (1.2) and (1.3)
has also been undertaken, but the only significant result has ?een to
establish classes of similarity transformations on the state space

representations which preserve the input/output map.

Contents of Thesis and Original Contributions

Chapter 2

This begins with a summary of the work done in [FM1] introducing
the reader to bilinear input/output maps, in particular to the necessary
and sufficient conditions for a bilinear input/output map to have a finite-
dimensional state space representation. Some of the proofs of [FML] are
exnanded upon for the sake of clarity, and the errors in those proofs are
corrected; in addition, Lemma 2.2.2, which is required for the proof of
finite-dimensionality; is proved in an apparently original way and
simultaneously provides a matrix representation of the so-called ring of
recognizable series for commuting operators. This lemma was originally
proved in [F1] for the more general case of non-commutative operators,
but that proof did not entail the construction of the matrix representa-
tions supplied here. New alternative methods of realizing bilinear

input /output maps are presented in §2.4, and these in effect formalize



the ideas of Kalman [Kl], and set the scene for the results of Chapters 3
and 4; a more general state space representation of bilinear input/output
maps than that of [FM1] is presented, and Theorem 2.4.1 demonstrates how
to compute the transfer function corresponding to it. Sufficient
conditions for stability of the output sequence due to a finite input
sequence are obtained in Theorem 2.5.1, and this uses the result of

Lemma 2.2.2.

Chapter 3

The whole of this chapter is original, and begins with definitions
of quasi-reachability, observability and canonical and (co-)minimal realiza-
tions, and a presentation of the class of similarity transformations on
the state space representations of bilinear input/output maps which
preserve the nature of these maps. The remainder of the chapter is
devoted to lengthy proofs of the necessar§ and sufficient conditions for

such state space representations to be quasi-reachable and observable.

Chapter 4

This chapter is also completely original, and demonstrates procedures
for reducing a realization which is not quasi-reachable or observable to
one which is. 1In addition it is shown that reduction to quasi-reachable
form reduces the dimension of the state space and that reduction to
observable form at least does not increase the dimension. It is then
apparent that all bilinear input/output maps can be represented by a
canonical (i.e. observable and quasi-reachable) realization, and in
addition it is shown that all such canonical realizations are isomorphic
under the similarity transformations introduced in Chapter 3, and hence
are minimal. Some canonical forms for these state space realizations

are also presented.



Chapter 5

The results of this chapter are again original, although not as
definitive as those of the two preceding chapters. Discussion centres on
state space realizations of multi-output bilinear systems, and a specific
example is used to illustrate that it may not always be possible to con-
struct a realization which is both observable and quasi-reachable, and it
is therefore necessary to introduce the new concept of quasi-observability,

analogous to quasi-reachability. It is then possible to construct a
realization which is quasi-reachable and quasi-observable, but it has not
yvet been possible to provide the conditions for such a realization to be

minimal, in the sense that any two quasi-reachable and quasi-observable

realizations are isomorphic under some class of transformations.

Chapter 6

This chapter begins with two new results on Quasi-reachability and
stability for a particular class of multilinear input/output maps. The
particular class of maps considered are those whose transfer functiops
have denominators which can be factorized as pl(zl)...pn(zn)p(zl...zn),
and Theorems 6.1.1 and 6.2.1 are a generalization of the earli~r results
on quasi-reachability and stability for bilinear input/output maps. The
chapter then continues with a review of work done to date in the field of
multilinear input/output maps; the main contributions are contained in
three papers by Kalman [K1], Arbib [Al] and Anderson, Arbib and Manes
{aaM1], the last of these analysing the problem from a category-theoretic
viewpoint. All of these papers indicate how to set up a state space
realization, but fail to tackle the problem of reachability, observability,
etc., in a satisfactory way. It is however possible, as is shown for the

case of trilinear systems, to provide necessary conditions for



quasi-reachability by invoking the idea of linear independence of the
input-to-state transfer functions and their Kronecker products, and these

necessary conditions can be extended to all multilinear systems.

Chapter 7

This last chapter is the conclusion to the thesis, with suggestions
for further work. The major field suggested for further researcﬁ is that
of continuous time bilinear state space realizations, and while no results
on reachability and observability have yet been achieved, an origi;;l
result concerning similarity transformations on these realizations is

»

introduced in Theorem 7.1.

Appendix

For ease of reference this draws together two results on linear
system theory obtained earlier in the thesis, and an original result
concerning reachability conditions for cascaded linear systems is

presented.



CHAPTER 2. BILINEAR INPUT/OUTPUT MAPS

In this chapter we introduce the formal definition of a bilinear input/
output map and present necessary and sufficient conditions for the
existence of a finite dimensional state space realization. In addition
we will see that this is equivalent to the canonical, or Nerode, state
space being reachable in finite time, which will tie up with our
intuitive notion of what the Nerode state space represents. This Qf;
course is a result of our being able to view "state" as a partial
memory of past inputs. .

The necessary and sufficient conditions for realizability which we
shall examine in this chapter were derived by Fornasini and Marchesini
[FML]. However some of their proofs are not clear and we shall present
them here in greater detail. In addition we shall present an alternative
proof of a theorem by Fliess [F11, which will provide us with a result
on stability for bilinear input/output maps. We shall mention this
again in Chapter 5, when we study a related stability result for

multilinear input/output maps.

2.1 Preliminaries and Definitions

We shall work in the field of real numbers, R, but of course the
results will hold over all fields, finite or infinite.
Let U, V and Y denote the following spaces:

{ue RE™ witn compact support}

U=
vV = {ve RZ™ with compact support}
y = {ye RN—{O}}

where
Z- is the set of negative integers including zero

N is the set of natural numbers.



U and V will then be made up of sequences of the form (...,O,ur,...,uo)
and (...,O,vs,...,vo) respectively, and Y will be made up of sequences
(Y1,¥2+---.). UXV is termed the input space and Y the output space. An
input/output function £ : UXV->Y, will then map a finite number of
inputs from U and V into an infinite output sequence in Y.

The bilinear nature of the map f is described by the following
definition.

Definition 2.1l.1

Amap £ : UXV~>Y is a bilinear discrete-time stationary input/
output map if it satisfies the following conditions:

i) bilinearity —

f(kjuj +kous,vy) k1£(uy,vy) + kof(usy,vy)
fluy,k1vy +kovy) = ki1f(uy,vq) + koflu;,vy)
for all uj,upe U, v,vp¢ V and kj,kpe R;
ii) stationarity —
the map £ is invariant under translation with respect to time
in the following sense:

f(oju,09v) = o*£(u,v) (2.1.1)

where 0 and o* represent delay operators as follows:

01(-..,O,ui,...,u0) = (...,O,ui,...,U0,0) (2.1.2)
02(...,O,Vj,...,V0) = (...,O,vj,...,vo,o) (2.1.3)
0*(Y10'Y21Y3l---) = (Y21Y3,...)o (2.1.4)

It now becomes apparent that we can identify UxV with R[z;]1xRI[z51,
where R[z] is the ring of polynomials in z, and that we can identify Y
with Z_lR[[z—l]], the ring of formal power series in the one indetermin-
ate z—l. This we can do via the isomorphisms

¥1 : U~ R[z;]

x
: (...,o,ur,...,uo) -> urzl + ... + gp
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Yo ¢ V =+ Rlzp]
: ( o,v vg) * Vv zs + + v
. oo U, s'-oc, 0 52 es e 0
-1 -1
Y3 : ¥ + z RIz 1]
-1 -2
: (Y1/¥Y24e.e) 22 7Y + 2 Ty2 + ...
and it is clear that we can in addition identify o) with 23, o, with z;
and o* with z, although for the z mapping we must also include the
operation of omitting any term involving non-negative powers of z, i.e.

Z(Z-lY1+z_2Y2+...) A z_lyz + e

We shall now find that because of the bilinearity of the map £ we
shall be able to identify f with a "causal" power series s(zj,2Z3) €
(zlzz)_lR[[zzl,zzl]], and then z will be equal to zjz,.

Let us consider f£(u,v) where u = (...,O,ur,...,uo) and
v = (...,O,vs,...,vo). Then because of bilinearity we have

£u,v) =] £((...,0,u,,0,...,0) ,(...,o,vj,o,...,o))
1,)]
=j§j uivjf(ei,fj)

where e, = (...,0,1,0,...,0) and fj =(,..,0,1,0,...,0)

with a 1 in the -i and -j positions respectively.

= (el <2
Now let f(ei'fj) (Sij'sij"")'

i.e. s;j,s?.,... is the output sequence due to unit inputs at time-1i at

1)
the U channel and time- j at the V channel. Hence

- 1 .2
£(u,v) j;. uivj(sij'sij"'°)
r]

and operating on this with the delay operator ¢*, we see from (2.1.4)

that

* = 2 3
o*f (u,v) i{'j uivj(sij,sij,... (?.1.5)

Now from (2.1.2) and (2.1.3) it is clear that

gle, = e, and ozfj = £

i i+l J+1

so utilizing equation (2.1.1) we obtain



11

o*f(u,v) £(oq1u,02v)

2 uiv.f(e. )

£
L, i+l 79+1
i,3 J J
1

= 2
Y V0S54 341 S, ger et ) (2.1.6)

L. 1
1,]

Equating coefficients of uivj in (2.1.5) and (2.1.6) we now obtain

1 2 (<2 3
(S50, 94175541, 4417070 = (SigeSigre--)y
... k k+1 . .
.e. .., =8S,. > > 1.
i.e si+l,3+l si] for all i,j 0, k 1

By induction we see that

sk+l _ sl
ij i+k+1l,J+k+1

SO we can write
flegr£) = (5,508, 41,5417 5142, 342

where we have written s.,., = sij

1]

Intuitively this means that the response at time k+l1 due to inputs

'-o.)

for convenience.

at times -i and -j is equal to the response at time 1 due to inputs at
times -(i+k) and -(3j+k). Hence

£f(u,v) = 2 u
i,j

V5955578541, 341770
so that the output sequence is dependent solely on the values of the.

input sequence and on the numbers sij (i,j=z1).

It is now apparent that we can identify f with

s(zy,2p) = (2122)_1 2 si,zfizz' where £ : R[z;]x R[22]—+(zlzz)-lRff(zlzz)_l]]

I
is defined by

-Z;iZEJu(Zl)V(Zz) ® Z (2122)_k (2.1.7)

£lutz),v(z2) = (z1z) " | sy,
k=1

i,3

and the Hadamard product ® is defined by
-1, -3 =i -3 -1 -3
'2. aijzl zy G'Z' bijzl Zo =.Z- aijbijzl zZp”.
1,] 1,) 1,

Hence the product (2.1.7) just picks out all terms in (zlzz)_k from

s(z1,2z2)u(zy)v(zp). As an example, we can see that

J

-1 -i-jrs -k
(z122) S,.21 22 2122C)Z(2122)

- r s
f(er,fs) = f(Zl,Zz) . Sy
1,]

(z129) (zlzz)_k.

_]_Zs
k r+k,s+k
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2.2 Equivalence Relations and Realizable Series

In this section we introduce the concept of Nerode equivalence
classes; the intuitive notion for these rests on the fact that an input
sequence ij to a system effectively generates a "partial memory" of
that input sequence within the system, so that the response of the system
to any further inputs is dependent on the original input sequence. 1If
another input sequence i generates the same "partial memory", i.e.
the response of the system to any further inputs is the same as that for
iy, then i; and i, are said to be Nerode equivalent.

A standard example of Nerode equivalence is provided by a:linear
system of the form £(z) /p(z); if we can only make observations of the
inputs and outputs of this system after time O, then the system can only
"partially remember" the input sequence prior to time O. Writing the
input sequence u(z) prior to time O as a(z)p(z) + b(z) where degb <deg p,
the system will in effect “remember" b(z), but not a(z).

For a system like the one above we find that the “partial memoxy”
of any input sequence will be the same as the "partial memory" of some
input sequence of length less than deg p, and we refer to this as
reachability of the Nerode space in time deg p; similarly for non-linear
systems we can think in terms of reachability of the Nerode space in
bounded time, and the intuitive feeling at this point is that this
implies that there exists a finite dimensional state space realization
of the system. This feeling is borne out in the case of bilinear
systems as we shall see.

We also define three other equivalence relations and show that
taken together they are equivalent to the Nerode equivalence relation.
It is then shown that the space of equivalence classes generated by these

three relations is finite-dimensional if and only if s(z;,23) is a



13

realizable power series, i.e. s- can be written as N(zj,z3)/
p1(22)p(22)p(2122), and this is a necessary and sufficient condition
for reachability of the Nerode space in bounded time.

Definition 2.2.1

Two input pairs (uj3,vy),(up,vs) € UXV are Nerode equivalent iff
(u1°u,v1°v) = f(us°u,vyov) for all (u,v) € UxV, where supp u = supp V.
’ The symbol ¢ is the concatenation operator, and is defined by
(ceelOputyeeeug) o («eerOpu ... up)
. = (... O,ui,...,ué,uk,...,uo).
In polynomial notation; the two input pairs are Nerode quivalent if

+1 4 k+ k+
lu1+u,z§ vit+v) = £(z] lu2+u,zz lv2+v),

£(5t
for aAll (u,v) e UXV; deg u = deg vsk.
We denote the Nerode equivalence classes by [u;,v;] i.e.
[uy,vil = {(u,V eU le(u,v)ﬁ(ul,vl)}.

f can then be factorized as in the following commutative diagram:

£

Uuxv

-

x ~
X AU v/N

+
w

where v is an onto mapping and £ is (1-1).
XA Ux v/ = {Tuy,v1]] (uy,v1) € UxV}
is called the canonical, or Nerode state space.

Definition 2.2.2 N

xN is reachable in time m if the mapping v restricted to input
sequences with support less than m is still onto. XN is said to be
reachable in bounded time if it is reachable in time m for some m.

Thus if XN is reachable in time m, the partial memory which the
system has of any input sequence will be the same partial memory that

it has of at least one input sequence of length less than or equal to m.
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We shall now introduce three more equivalence relations, T, ; and
3, which play a major role in what will follow:
u T up iff f(ulook,oov) = f(ugook,oov)
for all ke N, ve Vv, with deg V<k
where ulook denotes uj followed by k zeros and Oov denotes the zero
input sequence followed by v.
V1 ; vy iff f(O°u,v1°0k) = f(O°u,v2°Ok)
for all ke N, ue U, with deg.u<1<
(ul,vl);(uz,vz) iff f(ulook,vlook) = f(uzook,vzook)
for all ke N. \
Remark By stationarity (up,v;) ; (ug,vy) iff £f(uy,vy) = £(uz,w).
The relationship between these equivalence relations and Nerode equivalence
is defined by the following lemma.
Lemma 2.2.1
(uy,vy) 3 (up,vy) iff u; ; vy, V] ; vy, (uy,vy) ; (up,vy) .
Proof: Let (up,v)) o (ug,v2), i.e. £(ujeu,vyev) = f£f(ugeu,vyev) ¥u,v.
This immediately implies (uj,v;) ; (un,vy) by the remark above.'
Now f(ulook,vlov) = f(ulook,vlook) + f(ulook,Oov) (2.2.1)
by bilinearity. Similarly
£(upo0N, vpov) = £(upo0®,vp00%) + £(upe0%,00v).  (2.2.2)
Equating (2.2.1) and (2.2.2), and using (uj,v)) ; (up,v2), we obtain

f(ulook,oov) = f(uzook,oov).

2
z

Hence uj T uz. We can show in an analogous way that v; ; V.
Conversely, let u; T uy, v ; vo, (up,v)) ; (up,vy) .
Then, using bilinearity, we have

f(ujou,vyev) -~ f(upou,vyev)

k
f(ulook,v1°0k)+-f(u1°o ,0°v)4—f(0°u,v1°0k)4—f(0°u,0°v)

f(u2°Ok,v2°0k)+—f(u2°0k,0°v)4—f(0°u,v2°0k)+-f(0°u,0°v)

=0
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~ ~ ~~ .
where we use 3,,) and , in turn.

Hence (uj,vy) 5 (u,v2). 0

We can now construct the quotient spaces X = U/’; and X, = V/;, and
these can be endowed with the structure of a linear space. This follows
because

(1) "k[uﬂ'i‘ = [kuﬂ'i‘

(ii) l‘:ul]'; + [uz]'; = [u1+u2]'i' where [u]'; is the | equivalence class
of u, and similarly for the 5 equivalence classes. -

However UXV/'; cannot be endowed with this structure. It is necessary
first to embed UXV in the tensor space UmV, where UaV = R[zil,zz]. We
then define the map fﬂ : UrV—+Y, by identifying flzl with (zlzz) ZS zl 22 '
and its domain with R[zy,z,]. That is

£ : Rlzy,25] > (zlzz)'ln[[(zlzz)'l]]

a

wizy,2z9) > (2122) Zs zl 22 w(zl,zz) ") Z(z z,) k.

It is clear that fa is a linear map and we can therefore write down
the commutative diagram:

uxv

£
@
fa
UmnV —> Y
V3
£
UaV/ker fﬂ &

where v3 is emto and I:a: is (1-1).

It is now immediate that (uj,v;) '; (up,vy) L1ff fﬂ(u1V1) =fﬂ(u2ﬂv2) .
This is because £(u,v) = fﬂ(uﬂv) . We can further see that UzV/ker fa AXy
ca;'l be endowed with the structure of a linear space.

Before coming to the realizability theorems we shall prove the

following technical lemma which will be of use not only for the purposes



16

of studying realizability, but also for discussing stability of bilinear
input/output maps and, by an obvious extension, to more general multi-
linear input/output maps.

Note that this lemma has been proved by Fliess [F1] for series
which are somewhat more general — the so-called recognizable formal
series, where zj} and zp; do not necessarily commute and where R is
replaced by a semi-ring. However the present statement of the proof is
as general as we need it for our purposes, and the proof, though fairly
obvious, appears to be original, and also supplies a representation of
the matrices and vectors involved. :
Lemma 2.2.2

r is a power series in (zlzz)_lR[(zl)]a R[(z3)], i.e. r can be
written as r = M(z1,2z2) /p;(21)py(2,) for some pj(x),ps(x) € R[x] and

. X N .
M(z1,2z7) € Rlz},2,] iff there exists an integer N, vectors b,ce R, matrices

% _ R B R
M), ,My e RN N with MM, = MyM;, such that r = (z1z)) 1 X - C‘MlMgbzllZZJ.
i,j=o0
Proof: Let
T..—-i-—l
(z127)r = z c M;M%bzl zzj
i,j=0
O N S T omid -1 -3
i -1 i -i -
= X X ¢ MjMybz,; zz + X X c"MM,bz; zzj
i=0 j=i j=0 i=3j+1
[s]
i § =i -i -1,-1 +1 3 = (j+1) -3 -1, -1
= X cTMiM;zllzzl(I-MJzz ) b + X c MJ 221(3 )ZZJ(I-MIZZ ) b
i=0 3=

= 'cT(I—MlMZ(zlzz)-l)—l(I—Mzz;l)—lb

+ etz (T Mz 20 ) " a-m 2 TH i

= (MM (220 ") T gt T 4wy 2T ez h THe
= -CT(I*MIMZ(ZIZZ)_l)_l[I—MIZIl4'MIZIl(I-MZZEI)]

- -1
(I—Mzzzl) (1~ Mlzll) b

7 -
= o] (I-Mzzzl) (1- Mlzll) lb

- -1
zlzsz(ZzI-Mz) (zI-M;) b

m

RI(z;) 1aR([ (zp) 1.
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Note that all the above equalities are obtained using the fact that

My and My commute.

Conversely, let re (zlzz)—lR[(zl)]m RI(z5)]. Then r can be written

X L nlz—l ni—(];. zizj
= 2122
pi(z1)p2(za) ;2o j=o 13

as

z?l + Blz?l—l + ... + 8B

m
no-1
+ Y1222 + ce. + Ynz.

where p;(z})

-
222

I

and pa(zjy)

Consider now the term zi/pl(zl) where i<n . This we can write as

i -1 T xr. =
z1/p1(z1) = 21" ] c];AIb12)

r=0

where A} = o °- by = ~ i+lth position.

O+ +0
Q
—
[
|
O_'-F-"U‘Q

-

—Bnl.... ~-B1

This follows directly from our knowledge of linear systems

realization theory.

In a similar way we can write

J -1 T .S -s
23/P2(23) = 23" | c, A;by2p
s20
ol., 0 o
where Ay = O"'- 1 b, = g c2j = 1 ~ j+1lth position.
Yyttt YL 1 o}

Hence we can write

il

iJ -1 T r». T _ s =~r -s
2122/P1(21)pa(2) = (z122) | ] cy;A1P16;4Rabaz1 22
. rz0 s20

-1 T T _ r .S -xr_-s
(z3z) Y ) c) 196, jA18Azb1EbsZ ) Z)
r20 s20

and it then follows that

i J
r= ) a,.z122/p1(21) P2 (22)
T

-1 T r _s -r -s
(ZlZz) z Z,C AlﬂAzblEbzzl Zy
r20 520

whe = o,.C,,8C ..
re ¢ _Z_ 137137723
1,]
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If we then write b = bjmby, M3 = Ajel, M>» = ImAj, then the lemma is

i

proven, since MjMp (A1®I) (I=Ay)

A=A,y

(ImAy) (ApmI)

MoM;. |

It is obvious from the proof of the above lemma that we can state
the following generalization:
Lemma 2.2.3

. . -1 .
r is a power series in (zy...z ) R[(zl)]a...&R[(zn)] iff there
: . N 2N
exists an integer N, vectors b,ce R, matrices er---an€ with
T i

_ s _ R in, -i -ip
MiMj = MjMi for all i,j such that r = (zl"'“n) Xc My e M bz, eeez

Now, following [FM1], we define the power series:

<«
-k ) :
ri(z) = z si,i+kz i= Q,l,... — Yow series
k=0
oo
-k , .
c.(z) = z s, 2 j=12,... — column series
] k=0 J*Ks3
[o:]
d,.(z) = 2 s z—k i,j3 =0,1 — diagonal ]
i3 = Lo i+k, 4k /) =0,1,... gon series

- -i -
formed from the general formal power series s = (z22,) 1 Z Sijzl 257,
i,3

Diagrammatically, we are doing the summations as shown below:

real

We also define R [(z1,20) 1 as the subring of R[(z),2z;)]generated
by R[(z;)], R[(z,)] and R[(z;2,)], and called the ring of realizable power
series.

We next present a result from[rMl], the proof of which seems to be

somewhat questionable there, but which is proved correctly here.
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Lemma 2.2.4
. real : .

Let s be a formal power series. Then se R [(zy,22)] iff the
members of the sets {ri}, {cj} and{dij} are power series expansions of
rational functions in one indeterminate, having a common denominator
for each set.

Proof: Let p;(2), py(2), p(z) be the common denominators of the

rational functions associated with {ri}; {c.} and {d,j} respectively.
i

]

Now s = (z325) ZS z1 zz can be written as

©o

o
(21207 L] ] sg i+k(2122)-125k +1 1
i=0 k=0 ' j=1 k=0

0]
]

-j -k
SJ+k J(lez) zy 1]

A (zy25) Yisy +s9).

Considex then

(o] e
. _l -
s1= ) 1 os; 14x(Z122) 22
i=0 k=0 '

o

z a, (22)(2122) /PZ(ZZ)
i=0

for some ai(zz) with deg a; < deg p»
and by interchanging summations we have

©o

s z b (z1z2)zz /p(zlzz)
k=0

for some bk(zlzz) with deg bk < deg p.
Now from Apostol [AP1], we know that if a sum Z G(m,n) can be
m,n

written as z G(m,n) = z Am = z B s then the sum does indeed exist. 1In
m,n m n

particular, for the case we are considering, we can readily show that

1
= Ny (z
S1 = 5lzp)plziz) |1(Z1rZ2)

for some Nje Rlzy,z5].

Similarly

-1
p1(z1)p(2122)

éz = N2 (zy,25)



so that

1
~ p1(21) p2(23) z122p(2122)

s = (zlzg)_l(51+sz) [p1(z1)Ny(21,22)

+ p2(22)Ny (z1,22) ]
real

e R [(z1,279)].

. N(z1,2z2)
p1(2))p2(22)p(2127)

By multiplying top and bottom by (zlzz)k for appropriate k it is

Conversely, sSuppose s =

clear that we can factorize s as

s = £(z127) M(z1,27)
p(z12z2) qi(2z1)qs(z2)

where deg £ < deg p

degZIM < deg qji, degzzM < deg ds

where degz M is the highest power of z; appearing in M,

i
k k
and qj;(zy) = zi1p1(21), 92(29) = z3py(z7).

- .j_.+_.+

Hence s = 2 ak(zlzz) k Z cTMiMzbzl(l l)zz(:l 1 by Lemma 2.2.2.

k=0 i,j=o0

- (m+1) - (n+
It then follows by equating this with s = Xsmnzl(m l)zz(n 1) that
min{m,n) T m-k n-k
Son = a, ¢ My Mp; b,
k=0

Hence if we consider the column series,

-

=}

O

0
il

H

| o~ 8
7]

8

T n+r-k n-
a ¢ M? * kmg kb

H

T n+r-k n- -r
akc M? r kMZ kbz

o] ~ e
%MS gM:’ r-f{

-k -1 -1 -1 n-
koL (z-mzh Ty Fp

il

P
OH
=

=} EM.‘J EM.‘J 5M

Z'ach(MIMZ)“'k(zI-MI)'lb

k=0

which is a finite sumhaving denominator det(zI-M;) for all n 2 1.

Similarly the row series (m20) all have common denominator det(zI-Mj).
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-r
Now dmn(z) = Eosm+r ntr .
[=<]
-r -r
H =
ence dmn(zlzz) z sm+r,n+rzl -2
r=0
m+l n+l -
=2] Z2 S © Z (z122)
k=0

£(z122) 2m+lzg+l

1 -
= M(zy,2 9] Z12
p(z1z2) q(z))az(zp) (21,22) kgo( 122)

£f(z122) m+l 2+l z CTM v b —(1+l) (j+l)O z (zizz)_
p(z122) 1,320 k=0
by Lemma 2.2.2. .

Because of the term to the right of ©®, we can neglect any term to
the left of © where the powers of z; and z; are not equal.
Now, assume m 2n. By considering equal powers of z; and 2; (by

setting m-i = n-j) in the above expression we obtain

J -3 -
£(z127) z T 3+m nM2b ng i g z (2125) k

d (z125)
mn 1520 T plzy2) 3 o1

. _ -
B p§§12 ; Tl "M zy2) " (21221'M1M2) Lo 1(z125) .

Hence dmn(z) has denominator p(z)det(zI-MMj;) for all mzn, and

likewise for all n=mn. . 0

We next show that the R-linear spaces X3, X) and X; are all finite

dimensional if s¢ Rreal

[(z1,25) 1, by relating X3, X; and X; to the
diagonal, column and row series defined above.

We first of all examine X3 = Um V/ker fa’ and we note that

i J -1 -m_-n_i -k
fﬂ(z%zz) = (2,25) z smnzlmzz zlzg ® Z (z122)
m,n20 k=1
— _ (by definition of fg)
= (z2127) kzosi+k,j+k(zlzz)

-1
(z122) dij(zlzz).

Using this relationship, we can establish the following result.
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Lemma 2.2.5

X3 is finite-dimensional iff {dij(z)} are power series expansions
of rational functions, having common denominator.

Proof: Since {z%zg} is a basis for R[z;,z,], it is apparent that
Imfﬂ = span{fﬂ(z%zg) :i,3 =0,1,...1}.

Let us assum; that X3 is finite-dimensional. Then Imﬁa has a
finite basis, so equivalently span{dij(z)} has a finite basis, say
diljl(z),...,dinjn(z). -
n

Hence dik+l,jk+l(2) = Zlbkmdimjm(z), bkme R, k=1,...,n.

But by definition of the diagonal series we have

dik+1'jk+l(z) = z(dikjk(Z) - Sikjk) k 1,.ce,n.
Equating these, we obtain

‘ (zI—B)g_ =S
T

T
where B = (bkm) 4= [di,j'(z)°"din3n(2)] y S = [si,j""sinjn

]

so that all dij(z) have common denominator det(zI-B).

Conversely, suppose dij(z) = Nij(z)/p(z) with deg p = n. Then

dim X3 = dim span{dij(z)}Stn. 0

Before proving analogous results for the row and column series, we
shall define the morphisms £, and £, and relate them to the equivalence
relations 7 and 5.

. - X
We define £ : U'> Rz 11V " ny
2
f1w = (£(z1n,1),£(z79,1),...).
-1, 1lXw .

The linear space R[[z "1] admits the structure of an R[z;]

module if we have the multiplication z;(s),59,53,...) = (S2,S3,.-.).

Hence f; is an R[z;] morphism since

it

z1£1(0) = zj (£(z1u,1) ,£(z3u,1),...)

(£(z2u,1),...)

fl (Zl u) - !
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We next show that £ (uj) fi(uz) iff uy T uz2. From the definition

of £} it is clear that £j(uy) f1(uy) iff

k
f(zyuy,1) f(z¥u2,1). for all k 2 1.

x . .
- i
z ai(zlz?_)r lf(zlul,l)
i=1 '
3 r-i i
= z a, (ZIZZ) f(zlup_,l)
\ i
i=1

X r-1
Hence f(zjuj,ayzs + .., +ar)

= f(zfuz,alzg’l + ... +a)
so that u; ~ uj. -
1
k
Conversely, let uj; ~ uz. Then 'f(zju;,l) = f(z%uz,l) for all k 2 1, so
1
that fj(uy) = £f3(up). :
. : : =1, 1%
In a similar manner we define the R[z;] morphism f, : V> R[[z 1]
by
£2(v) = (£(1,zw),£(1,22v), ...)
and we can show that fj(v;) = fa(vy) iff v; ~ vy,
2
Having established these relationships, it is clear that an

equivalent definition of the spaces X} = U/T and Xy = v/; is X; = U/ker £,

and X, = V/ker f;. We can then obtain the commutative diagrams

fl _ © f2 - ©
U ——+ R[[z 117+ v RLz 111M™
o //////x" V2 //////X_
f f
X1 = U/kex £ Xo = V/kexr £,

where v; is onto and f; is (1-1); Xj is then naturally endowed with
R[z;] module structure and ker f; is a principal ideal in R[z;].
(similarly for vy, £, and Xj.)

We now have sufficient machinery to obtain the following results:
Lemma 2.2.6

X, is finite-dimensional iff the column series cj(z), j =0,1,...
are power series expansions of rational functions having common

denominator.

Proof: Let X, be finite dimensional. Then ker f; = (w;(z;)) for some
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polynomial wj(z;) € R[zy]. Moreover dim X; = deg wj.

Now let wy(z;) = z? + alz?—l + ... + a € ker £ .

Then o) fl(wl(zl)) = wyl(zq) £ (1)

where £3(1) = (d;1,d231,d31+.-.-)

d eees) + d d cee
Hence (o] an( 11:921. ) an-l( 21,431 )

P v (A iy g

This in turn implies that

®S14k,14k T %n-1S24k, 1k Yoot Y S uak,e -0 forallk

% Souk, 14k T %n-1%34k,14k T 000 T Snazax,14x - O forall k
. « o etc. :
Hence
Srak,l+k (10 ... o) o 0 i 51+k,L+k A A
° 1
-—an R _al sn+k,1+k

Hence the column series are power series expansions of rational
functions with common denominator wj(z). This follows immediately from

-x T -1
E sr+k,l+k E c A bz = ¢"A{zX-A) b
r=1
where wy (z) = det(zI-A).
Conversely, suppose that the column series ci(z) correspond to
rational functions Ni(z)/wl(z), wy(z) 2 O.
Then

f(z{wl(zl),l) = (Z]_Zz) ): S Zl 22 Z]_(ZI-HJ.IZ —1+...+0 )O ):(ZIZZ)

k=21
. tr—1—i s _
= (ZIZZ) z S Zz (Zl +x l+a1zr11 r-1 l+...+anz]f l) ® ): (ZIZZ)
i3 k21
n -] -]
-1 -k -k
= (2125) [glag[kzlsr_l_n_g_l_k'k(z1zz) +k£13r+n+k,k(z1zz) }
- (k+1)

Let us examine the coefficient of (z;2;)
n

; this is equal to

Sr+n+k,k + izlaisr+n—i+k,k°

~

Now the column series c (z) = Z s z_ sums to Nk(z)wl(z).
I
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Hence the coefficients of the negative powers of z in
(2]
w1(z)ck(z) = wp(2) Z Soik kz—k are all equal to zero. This immediately
-0 & ~(k+1)

implies, on examination of the coefficient of z in this sum, that

=0 forr =1.

s + a.s . )
r+n+k,k ;2 i r+n-itk,k

i=1

It is now clear f(szl(zl),l) = 0 for all r, so that wj(z;) € ker f£f;,
and since R[z;] is a principal ideal domain, ker f; = (w;), so that X;
is finite~dimensicnal. - O

Using similar reasoning, we obtain the following. -
Lemma 2.2.7

X, is finite dimensional iff the egi:ma series ri,i = O,l,i.., are
power series expansions of rational functions having common denominator.

Hence, combining the lemmas that we have just proved, we find that
the space X;9X,9X3 is finite-dimensional if and only if s(zj,zp) is a
realizable series. In §2.3, we shall demonstrate how to obtain a state
space realization of the bilinear input/output map f represented by a
realizable series s(zj,z;), based on the use of the module-morphisms
£+ £, and fm and their kernels. Before that, however, we shall devote
a few further lines to conditions for reachability in bounded time of
the Nerode space XN' details of which may be found in [FM1].

The principal result concerning this is that XN is reachable in
bounded time if and only if s(z;,z;) is a realizable series. In other
words, the intuitive Qotion that reachability in bounded time is an
equivalent concept to that of being able to write down a finite-
dimensional realization for £ is confirmed. We shall omit the proof
of this result as it is not fundamental to any of the work presented

later; however, it is worthwhile giving some indication of the path

taken, as this bears some similarity to the proof of quasi-reachability



of the state-space realization of Chapter 3, and it also provides an
opportunity to point out an error in the proof of [FM1].

Defining (wy(z))) = ker f; and (wy(z;)) = kexr £, as above, it is

possible to write any input sequence € UXV = Rlz,]1 x R[z,] as
(P1(21)w1(21) + q1(zy), pa(zp)wy(zp) + qg(zz))
where deg gq; < deg w;, deg gy < deg wj.

Fornasini and Marchesini then construct an algorithm to choose
polynomials gj(z1) and gp(zy) such that (i) £(gywj,gwW3) = £(p1W1,PovW2) ,
(ii) £(g1w1,92) = £(p1w1,92) and (iii) £(qy,gpws) = £(g;,ppwy) with
deg g3 and deg g, always less than some specified integer M (dependent

on the particular map f). The Nerode equivalent input is then

(g1w1 + 91,92W2 + d2) , which can be seen from the equivalence of

k . k k k
f[zl(giw1+q1)+u,z2(g2w2+q2)+v) and f(zl(p1w1+q1)+u,z2(p2w2+q2)+v)

where deg u and deqg v < k.

The reader of [FM1] will find, however, that for the construction

given, conditions (ii) and (iii) are not necessarily satisfied, e.g. in

the case
1l

(z%+az1+b)(zz—c)z% )

This deficiency can be remedied by replacing the truncation map

T2 of Lemma 2.6 of [FM1] by the truncation map TL, where

L = max(%, deg wj, ded wp). This will then ensure that conditions

(ii) and (iii) hold.

2.3 Finite-Dimensional Realization

In this section we demonstrate how to derive updating equations

in X19X29X3 for the case when XN is reachable in bounded time. The
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only tool that we shall need will be Zeiger's Lemma (K21, which we state
here without proof for the special case of modules.
Lemma 2.3.1

Let A, B, C, D be arbitrary modules. Consider the commutative

diagram
o (onto)

>

> B

¥
* D
§(1-1) o

where a, B, Y, 6 are morphisms, with o onto and & one-to-one. Then
there exists a unique morphism ¢ : B-~C such that the diagram remains
commutative.

Updating Equations in X; and X3

Cosider the following commutative diagram of R[z;]-module morphisms:

Z] Vi
U ~ U U -~ X,
Id
,/
\\\zj(onto) v e
,I
'd
wl -~
U4 p—
£ Xy————m——- - X1 I~ vi1°z) ,/' zy1°f,
2 i
£ f1 gl
4 (1-1) ¥} | +
imf, > imf X1 — > Imfy
z) 3

Since v; is onto and 51 is (1-1), there exists a unique R[z;]-
morphism Y; : X; > X; such that
vy°zy = ¢1°V1.

Hence we can write

£1(zju+ ) f1evy(ziu+ ) (2.3.1)

§1°(v1°zl(u)-+ukv1(l)]

Ero(provy (w) +uk\)1(l)] (2.3.2)
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and since El is (1-1) we can equate (2.3.;) and (2.3.2) to obtain
vl(zlui-uk) = Yrevy(u) + ukvl(l).
So with respect to a basis in X] we can write
xp, = B1xE + biu C€2.3.3)
where A} and b; are representations of Y; and v;(1).
In a similar manner we obtain updating equations for Xj;:
x}zﬁ_l = AgxZ + byv, . ‘ (2.3.4)
Updating Equation in X3

Consider the following commutative diagram of R[z;z;]- module

morphisms:

z18zs v3
UaV > UaVv UaV > X3
I,,
v 3 (onto) v3 yd
4
‘ V3 ‘ ,/,, _
_________ ~ oz 4
a X3 > X3 a = V302,825 b3 zlzzofa
- £ ol
4
fﬂ (l—'l) 7
$ ] s v
. e
imfﬂ ‘rlmfm X3 — + Imf
Z123 fa =

Since v3 is onto and Ex is one-to-one, a unique R[z;z;l]-morphism
Y3 : X3 > X3 exists, such that
v3e(zj@zy) = Y3ov3.
Let us introduce the projeccion mapping
m s ROz T2387 > RIZMIT : (s1.8p,.00) > 5y

which satisfies the following equations:

fa(zluxl) wofy (u)

fa(lazzv) mof, (V).
Then by bilinearity of f we can write
f(zlu+uk,zzv +vk) = f(zlu,zzv) + ka(zlu,l) + ukf(l,zzv)

+ ukka(l,l)
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and hence
E&°v3((zlu+uk?a(zzv+vk)) = fmovy(zjuazyv) + kamov3(zluml)
+ ukfﬂ°v3(lazzv) + ukkaa°v3(lal)
= Eﬂ°w3°v3(uxv) + kaa°T1°V1(u)
+ ukaOTzovz(v) + ukkaa°v3(lal)
where T, = F Tom of : X, - X3 i=1,2.
i @ i 7i i

Since fa is one-to one, we can write with respect to a basis in X :

1 2 .-
X =Byt x vy, + Qxu + bu v (?:3.5)
T
Yy = h Xy (2.3.6)
where A, Q), Q2, b and hT are representations of Y3, 11, T3, v3(lal) and

fa respectively in the chosen basis.
We shall now show that if a bilinear input/output map can be
represented in the above state space form, then it can also be represented
by a realizable power series s, which can be directly computed from the
jz;izzj, where

sij is the output at time O due to unit inputs at times -i and -j in the

system matrices. This we do by evaluating s = (2122)—125i

U and V channels respectively, as was defined previously in §2.1.
Consider unit inputs at time =(i+k) and -i in channels U and V

respectively for k 2 1. We then obtain the following:

1 =
x! g~ P by (2.3.3)
k-1
xl, =2y b by (2.3.3)
k-1
X i1 " 0127 by by (2.3.5)
i k-1
X1 = A Q1A) by by (2.3.5)
T i k-1
Y1 = h A"QjA; "by by (2.3.6).
_oTi k-l L . T3 k-1
Hence Si+k,i = h"A"QjA} b). Similarly we obtain sj,j+k_'h A“QoA7 "bj.

Finally for unit inputs at time -i in both channels U and V, we obtain

-

T i
sij = h A'b. We can then compute s as
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w0 (o] o0 (o]
T i k-1 ~(i+1) -k T . k-1 ~(§+
2 2 h AlQlAl b1 (z122) (i )zl + 2 2 h AJQZAZ by (z123) 4 l)z
i=0 k=1 §=0 k=1  w» ., .
+ ) nTa'b(zyz,)
T -1 -1 -1 1=0
h'(zy2,I-2) " {Q1(z1I-A1) T"by + Q2 (zpI-A2) by + b}.

4]
1]

-{i+1)

In order to illustrate the realization procedure described above,
we will carry out each step for a simple example.

1
(z1-a) (zp-b) (z125-c)

Let s =

It can then readily be seen that

1
£, = o o
k _ ak R
£(z,1) = (z—ab) (z-c)
k, ____ bk
f(l,zz) = (z—a.b) (Z"C)

and we can now compute f(u,v) for any (u,v) € UXV. Note in particular

zZ

-k
2

that £(z;,2z;) = 72:35772:377 so that a basis for 1.mfa is given by fa(lal)

and f&(zlmzz), i.e. dim X3 = 2.

Now

Il

£11) = (£(z1,1),£(22,1),...)
a2

= | a ‘o)
(z-ab) (z-c) ' (z-ab)(z-c) '’

and we can readily see that f£;(z;) = z£,(1) = af;(1) = f,(a), so that
ker £; = (z;-a), and similarly ker f, = (z,-b). It is also clear that
[uly = xi[l]l for all u ¢ U, for some scalar xi dependent on u, where
[w]; denotes the equivalence class of w under 7. We can then write

[z1utu Js = x;+l[1]1 (2.3.7)

z1lul; + uk[l]1

|

aluly + uk[l]l since zj-a € ker f,

ax; (1) + u [1];. (2.3.8)
Equating (2.3.%) and (2.3.8) we obtain

1 — 1
xk+1 = axk + uk (2.3.9)



31

and similarly for zpv+ vV, where we define vlp = xi[l]z, we obtain
xi+l = bxi * v - (2.3.10)
Now from our choice of basis for im fn above, we can write
= 1) +
fa(uav) akfﬂ(lal) kaa(zlmzz)

for some scalar a, and Bk dependent on u and v.

k
Hence
fa((zlu+uk)a(z2v+vk))
= fﬂ(zluazzv)i-kaﬂ(zlual)d-ukfﬂ(lazzv)4-ukkaﬂ(lal)~
= zlazz{akfﬂ(lal) + kaﬂ(zlazz)}
.. (2.3.11)
+ v £ (zyual) + u £ (lazpv) + w v, £ (lal) . ( )
Now
z1@29 fﬂ(lal) = fﬂ(zlazz)
and 218029 fﬂ(lal) = fa(z%az%)
and £ (22mz2) = —————jéi———— o z z_k
@l 2 (z-ab) (z-c) ko1
_ (ab+c)z - abc
(z-ab) (z-c)
= (ab+c)fﬂ(zlazz) - ahcfﬂ(lal). (2.3.12)
Furthermore, we note that
(fa(zluﬂl),fﬂ(z%ual),...) = £;(uy)

x}(fl (1) since [U1]1 = :ﬁ]'.{[ljl

= xﬁ(fﬂ(zlal),fﬂ(z%al),...).

Hence fﬂ(zlual) = xifa(zlal)
= 1
= axkfﬂ(lal). (2.3.13)

Similarly we obtain
— 2
fﬂ(lazzv) = bxkfﬂ(lnl). (2.3.14)
Inserting (2.3.12)-(2.3.14) into (2.3.11) we obtain
0+
ak+lfﬂ(lal) + Bk+lfﬂ(zlmzz)é=fﬂ((z1u uk)a(z2v+vk))
= akfﬂ(zlazz) + Bk[(ab+c)fﬂ(zlazz) - abcfﬂ(lal)]
1 2
+ axkkaﬂ(lal) + bxkukfa(lal) + ukkaﬂ(lal)
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and equating the coefficients of fa(lml)andof fﬂ(zluzz) we obtain

o o -abc|(a a {p) 1
vk+l

k+l| _ k 1 2
= + Xy oJxkuk + o ukvk. (2.3.13)

Bpn) WL a8 0

Finally we note that f(l,l) has zero output at time+ 1, and
f(z3,22) has output 1 at time+ 1, so that
v, = (0 1)[e,]- (2.3.14)
By
We can immediately check that the state space realization given by

(2.3.7), (2.3.8), (2.3.13) and (2.3.14) is correct by calculating

s = (0 1)(z12z5 abc " (a (zl—a)_1 + |b (Zz~b)_1 + 1]
-1 zjzp-ab-c o] o o
1 a b
= + + 1
(z125-c) (z12zp-ab) (z1-a  2z2-b ]

1
(z1-2) (z2-b) (z12p-¢)°

Note that the state space description obtained above is obsexrvable
(in the sense defined later in Chapter 3), but it is not reachable, since

xixi = o, + abB, for all k.

2.4 Alternative Methods of Realization

The realization which was produced at the end of the last section
is typical of state spgce realizations of bilinear input/output maps
formed by consideration of the equivalence relations 7, 3 and 3, in that
it is not reachable. A reasonable method of correcting this deficiency
for the example above is to substitute xixi - aka for ak wherever it

occurs. The dynamic equation for Bk+ can then be expressed as

1
B

1,2 _ N
K4l (xkxk aka) + (ab+ C)Bk

1,2
X X+ cBy
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and it is now clear that we are left with a three-state realization
describing the map s, which it is fairly easy to see is both reachable
and controllable (by the usual definitions of reachability and controll-
ability) provided that a and b are non-zero.

We shall now introduce a state space description of bilinear input/
output maps which generalizes the preceding analysis and which formal-
izes the ideas of Kalman's seminal paper on multilinear systems [K1].

We shall follow this by a discussion of the advantages of this representa-
tion over the one of §2.3, in particular how it is possible to go s;¥aight
from the transfer function to the state space description, by-passing any
consideration of equivalence classes, which even for the simple example
above was somewhat tedious. The state space description which is the
basis for our later results on reachability, observability and minimal -

realizations is as follows:

x11(+1 - Alxllc + bruy (2.4.1)

X}zﬁl = A2X}2{ + bavy (2.4.2)
- 1 .2 1 2

xk+l Axk + kaaxk + lekvk + szkuk + bukvk (2.4:3)

v, = thk + delliﬂxi. (2.4.4)

Note the inclusion of the term x @x“, where @ is the Kronecker

1 .2
k 7k
product, and since this is bilinear in U and V, it is obvious by induc-
tion on Xy that both X and yk are also bilinear in U and V. In Chapter
4 we will show that by the addition of this term it will always be
possible to set up a state space description of any bilinear input/output
map, with finite dimensional Nerode space, which is both quasi-reachable
and observable.

We shall also see that the matrices A), A; and A have a direct interpre-

tation in terms of the transfer function s = N(zy,z5)/p1(z1)p2(zy)p(z125);

in fact the characteristic polynomials of these matrices will be equal to
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P1(z), pa(z) and p(z) respectively, to within some factor zr. To
demonstrate this fact we shall prove the following theorem which shows
how to compute the transfer function associated with (2.4.1)-(2.4.4)
and afterwards give examples of how to set up a suitable state space

description.

Theorem 2.4.1

The transfer function associated with equations (2.4.1)-(2.4.4) is

given by
T -1 -1 - -
s =h (ZIZZI—A) {C(ZII"'AI) blﬂ (z>I-A)) lbz + QI(ZII"'AI) lbl
-1 T -1 -1
+ QZ(ZZI_AZ) b, + b} + a4 (ZlI—Al) b @ (zpI-Aj) bs. (2.4.5)
Proof: We shall set up a state space analogous to that in §2.3, and

then employ the formula derived there to calculate s.

First we shall compute the transition map of xiaxi from (2.4.1) and
(2.4.2), and combining this with (2.4.3) we obtain the composite state
transition map
xi+laxi+l = |Aj@h, O xiﬂxi + |Ajmbjy xivk + |bj=As xiuk + |[bjabs WV -

e+l ¢ Al x 3! Q2 b
This equation together with (2.4.1), (2.4.2) and (2.4.4) are of the same
form as the state space description of §2.3, so that the transfer function

s{(z1,2z2) 1s computed as

. _ - -1 _
= [dThT] zyz,I-A@mAp, O 1 Ajabsy (ZII—AI) by + (birA, (ZzI—Az) lbz

6]
|

-C z122I-A Q1 | Q2

+ —blﬂbz

b

.

T 1 - -
[dTh ] (ZIZZI—AlﬂAz) (@] Alﬂbz (ZlI—Al) lbl

- -1 . -
(z1z,I-R) 1 C(z12,I-A1a@A)) (z12,I-R) ! | 0

+ |biwb,y| + bl&AzT (ZZI—Az)—lbz . (2.4.6)

b Qo
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Now (zjzo2I-AjmAj) —l{Alab;)_(le—Al)_lbl + bijmby + biafs (z2I-A)) —lbz}

(ZIZZI—AlﬁAz)—l{Alﬁ(Zzl—Az) + (z1I-Ay)a(z,I-Ap) + (le—Al)&Az}
-1 -1
(ZlI—Al) blﬂ(ZZI-Az) by

(z122I-AjmA)5) —l{AlazzI —- Aj@hAy + 21251 - Ajaz,I - zyIaf, + A@h,

- -1
+ ZlI&AZ - AlﬂAz} (ZII_AI) lbla(ZzI—'Az) bz

-1 -1
(ZlI—Al) blﬂ(ZZI"'Az) bz.

Hence from (2.4.6) we see that

0
]

dT(Z II-AI) -lb lﬂ(ZZI—Az) —1b2 + hT (Z IZZI_A) -lC(ZlI-Al) —lblﬂ (221-A2) —lbz

+ hT(ZIZZI-A) -l{Ql(le-Al)—lbl + Qz(ZzI-Az)—lbz + b}. ]

By comparing the expression (2.4.5) for s with the state épace
equations (2.4.1)-(2.4.4), it becomes apparent how to set up a suitable

state space description. Consider the example of section 2.3:

1
"~ (z1-a) (z5-b) (z12p-¢c)

S

By associating the A; matrix with z;-a and the A, matrix with z,-b
and regarding the bilinear output 1/(z;-a) (zp-b) as the input to the
linear system with transfer function 1/z-c, it is possible to write down

the simple state space description as
y S |
X4l T Ty
2 = 2
Xeql T P¥ vy
= cx, + xix?
k1 x © k%
Y = %

Returning to more general sc¢ Rrea1[[2—1

...1 .
122 1], we shall consider
two cases; this is done for convenience, rather than because the realiza-

tions corresponding to these two cases differ in any significant manner.

Case 1: s = N(zy,23) /p1(21)p2(2))

n-1 m-1
where N(z,,z,) = .z 'z gijz
J=0 1=0

izj
172
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m m-1
z1 + ajz;) + ... + a

p1(z1)

-1
p2 (z3) zg + b122 + ... +b

A possible state space description is

1 - 4 1 l 4 W
*k+1 01l  0ix+) 0 U
o °. .
‘1 o}
e Y (1)
2 _ ' 3 2 4 W
xk+l o} l. xk-+ 9 vk
‘1 o}
b, -bij L 1)

- ... "y
Y = 095129, 017 " Inm1,17" "I ) P

That this does realize s is an immediate consequence of the fact
that the transfer function vector from u to xé is [lzl...zT—l]T/pl(zl),

and l.kewise for the transfer function vector from vk to xi.

Case 2: s = N(z129) /pi(z1)p2(Zz9)p(z1z)) where deg p21.
By multiplying numerator and denominator of the expression for s by

(zlzz)k for appropriate choice of k we can factorize s as

s = £(z127) M(zy,22)
p(z122)  q1(z1)492(23)

(2.4.7)

where deq_ M = deqg q1, deg. M < deqg gy, deg £ < deg p
Zy 1 Z2 2

k k
and qp(zy) z1p1(21) » do(2z2) = zppy(27) .
We can now view M(z;,=j5) /d3121)dp(2z2) as the input to a system with

transfer function f£(z) /p(z), so writing this as

M(z1,22) _ _Mi(z1,22) Ma(z1) | Ma(zp) .
qi1(z))az(z2)  ai(z1)gz(z2)  qi(zy))  q2(z2) o

where we now require degZIMI < deg q)., degz Mg < deg gy,
2
deg My < deg q;, deg Mg < deg qy
(which can always be satisfied). We can employ Theorem 2.4.1 to enable

us to write down a state space description for s as follows:



1 _ 1oL
xk+l (0] l. Wkk +
1
~ap;-.-~a1} L
2 = ( YL2 4
X4l o1 *
‘1
-b ....=b
rl2 1) \
X = | o1l ) + (
k+1 . *x
‘1
~9n-----91) L
yk =[d..... d].]:ﬁ{

where the numbers in the above

q;(zy)
ds(2))
p(z)
f(z)

Ml (21,22)

M,y (z1)

M3(22)

I

Z?l + alz?l—l
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Owuk
o}
1)
(e} va
o}
1)
Yalgw? + 1 2
O %= %y O jxvy + 10| xu + 10 v
o} o} o o
T T T
c1) c2 c3 my

matrices are given by

+...+a
n)
222+b1222"1+”_ +b
na
z"+ gz o+ +
91 et g
42" e ... +a
n
cf 1 <] 1
z) zo
‘ni- ‘no-1
241 . 252
nj-1
L ozy....21} “dep

-1
[1 22....222 ]C3.

This particular realization will not in general be a canonical

realization as we shall define it. later. However we only desire at this

stage to demonstrate that we can in general set up a state space descrip-

tion involving the term xﬁaxﬁ, and that this only requires linear system

realization procedures, assuming that the transfer function of the

bilinear system is known.

This 1s a considerable simplification of the realizataon
procedures of [FMﬂ] since it essentially only involves the
construction of substates corresponding to pq(zq),pg(zz)
and p(zng)respectively.The procedures of [Fﬁﬂ] require the
construction of substates corresponding to the pﬂ(zﬂ)p2(zg)
interaction,as evidenced by (2.3.13).
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2.5 1Input/output Stability

In this section we will present some new sufficient conditions for
the output sequence {yk : k21} due to finite input sequences {ui : i< 0},
{Vj : j<0}, to be stable in the 2;-norm, or %)-stable.

As above, let s = N(zy,22)/p1(21)pP2(22)p(2123); then N(zj,z5) can be

completely factorized with respect.to polynomials in zj)z, as

N(Zl,Zz) = M(ZI,ZZ)f(ZIZZ) i.e.

- f(ziz2) M(zy,22)
p(z123) p1(z1)pa(z))’

If deg f S deg p, deg, M < deg py and deg M < deg pp we leave the
1 2
above expression for s as it is.
+f either or both of degziM > deg p; and deg, M 2 deg p; hold we
2

shall express s as

M(z1,22) (z122) P£(z122)
S = m m \
P1(z1) z1P2(23) 25 p(zy2,)

where m = max{degz'M-deg P1. dcgzzM - deg ppl + 1.
1

If deg £ > deg p, we shall express s as

- M(z1,zp)z]z5 .. £(z127)
P1(z1)p2(22) ~ (2127)Yp(z)2z5)

where x = deg £ - deg ».

In any event, we can rewrite s as

s = R(z1,22) g(z)27) (2.5.1)
qi(zy)az(z2)  glzyzp)

where degle < deg qgi., degzzR < deqg gy, deg g = deq g.
Note the similarity between this expression and expression (2.4.7).
The difference is that in this case the ﬁumeratbr'of s is completely
factorized with respect to any polynomials in the tefm z1z9, but this is

not necessarily so with (2.4.7).
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Having set up this useful expression for s, we can now state the

following

Theorem 2.5.1

If either of the following conditions hold, then the output sequence
due tg a finite length input sequence from UXV is f#j-stable:

(1) a;l zeros of p(z) and all terms of the form {aiBj}, where.{ai}
and {Bj} are the zerxos of pj(z}) and pp(z;) respectively, lie within the
unit circle; . —

(ii) all zeros of p(z) lie within the unit circle, and all terms

{aiBj} not lying within the unit circle are zeros of g(z). :

Proof: The output sequence due to inputs (zt,zg) for 12 j is given by
iJ R -k
y(z,2,) = thz (z1,22) « 9(2122) o T (z129)

a; (z1) 495 (2)5) alz1z7) k=1

i J -(xr+l) -(s+ -
= z%zz z cTAfaAgblabzzl(r l)zz(s 1 glz)z )G Y (z125) k
r,s 1 al2122) 5y

by Lemma 2.2.2.

So equating powers of z) and zp i.e. by setting i-r = j-s, we

obtain
T i-j+ j—-s-1 Z12 -k
y(zyzp) = | c Ay ) wAz(zyz)7 © blﬂbzg%_l_2%@ I (z12p)
s>1 2122} 4>y
T -1 i-j (z127) Ig(z]127) -k
= c (z12z2I- A1@A A bieb 0] Z12
(z1221 - Ajahy) "B} “biaby =2t L(z122)
Simlarly, for i< j, we obtain an output sequence
T -1 j-i, (z12 )i (zy129) -k
y(z123) = c (2121 - Ajmd,)  biadAl by AZ2L I ENED G T(z)2,) " (2.5.2)

q(z1z2)
We can now immediately see from our knowledge of linear systems that

if det(zzpI- AjmA,) and q(z3zp) both have zeros within the unit circle,

then the output sequence due to any finite input sequence from UxV will

be 2j-stable. Now g(z) has zeros which are either zero or else zeros of
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p(z), and det(zI - Aj@Aj) has zerxos which are either zero oxr else of the
form {aiBj} where {ai} are the zeros of p;(z]) and'{Bj} are the zeros of
pr(2z3). Hence (i) is a sufficient condition for &q-stability.

Likewise, we can see from (2.Su2) that if g(z) cancels all zeros of
det(zI - AjmA;) which lie on or outside the unit circle, then the output
sequénce‘y(zlzz) is f1-stable. Hence (ii) is a sufficient condition

for f;-stability.
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CHAPTER 3. CANONICAL REALIZATIONS OF BILINEAR INPUT/OUTPUT MAPS

In this chapter we analyse state space representations of bilinear
input/output maps in greater depth. The motiva£ion for this is that
state space representations will in general be neither controllable nor
obser&able, and it may be helpful for the purpose of identification of
parameters to be able to construct a realization possessing the properties
of controllability and observability. _

For the case of linear discrete-time systems it is common to talk
about state space reachability rather than state space controllability
(where controllability refers to zero state controllability) since a
zero-eigenvalue mode which is unaffected by inputs will certainly attain
zero value in finite time. For this reason reachability rather than
controllability is considered here as well, but as we shall see, it is
necessary to relax the concept of reachability to that of quasi-
reachability, and in §3.2 necessary and sufficient conditions are
obtained for a state space realization of a biliﬂear input/output map
to be quasi-reachable.

Observability too has to be treated in a slightly different manner
from that of linear systems, and the idea of a realization being observ-
able if its initial state can be determined with the help of a finite
number of "experiments" has to be invoked. Necessary and sufficient
conditions are obtained in §3.3 for a state space realization of a
bilinear input/output map to be observable.

In §3.1, formal definitions of these and other concepts are intro-
duced, as are the similarity transformations on the state space which
' produce equivalent realizations of bilinear input/output maps. In
Chapter 4 it will be shown that any two minimal realizations (Definition

3.1.4) of a bilinear map f are isomorphic under these transformations.
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3.1 Preliminaries |

Definition 3.1.1

A state space realization of an input/output map is guasi-reachable

if the closure of the set of states reachable from the zero state is the
whole space.

Definition 3.1.2

A state space realization of an input/output hap is observable if
no two states are equivalent. We say that two states x; and xj are
equivalent if f(x;,w) = f£(x;,w) for all w where f£f: XXW-=Y represents
the map from an initial state xe X and an input sequence we W éo the
output space Y.

Definition 3.1.3

A state space realization is canonical if it is both quasi-
reachable and observable.

pefinition 3.1.4 [Ami]

A state space realization M of an input/output map £ is (co)minimal
if it is observable, and if for every other observable realization M' of

£, there exists a unique mapping @: M - M.

We now reintroduce the state space realization first mentioned in

Chapter 2:

ey = P1xy * D1y (3.1.1)
i,y = Boxp + bavy (3.1.2)
ey = AN F Oqaxg + gV + Qxpn + buvy (3.1.3)

Y = thk + d"xlo? (3.1.4)

n n
where xjie R, xie R"2, X, € R", and the system matrices have dimension
consistent with these.

Before going on to discuss reachability and observability in §3.2
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and §3.3, it is of interest to discover the class of transformations on
this state space which preserves the behaviour of the system, and it is
this which provides the setting for the reduction procedures of Chapter 4.
From our knowledge of linear system theory, it is immediately
obvious that there exist three particular classes of similarity trans-
formations which preserve the behaviour of the system, namely xi-*Tlxk,
xi-*szi and xk-*Txk, where T}, T, and T are non-singular square matrices,
with the associated transformations
-1 -1
A >T1ATy b; » T1b; Ay > THApT) by + Tyb,y
-1 -1 -1 -1 -1
A > TAT C~ TCT; aT, Q1> TQ T Q2+ TQ, Ty b->Tb
. T - - -
IR I G T e e
However there is one further similarity transformation which is not

so clearly apparent:

Proposition 3.1.1

Let (3.1.1)-(3.1.4) be a realization of the bilinear input/output

X
map £ : UxV—>Y. Then for any We i R

(3.1.1)~-(3.1.4) is also a
realization of £ under the transformation

C - W(AjmAy) + C- AW

Q1 ~ Q + W(Ajaby) 9y + Qp + W(bjmAy)
b - b + W(blﬂbz) dT > dT - hTW.
Proof: We calculate the transfer function s_(z;,z7) of the transformed
Y

system according to the methods of Chapter 2, and show that it is equal
to the original transfer function s(zj,z;).
The transfer function ST(ZI'ZZ) is given by
T —l{ -1 -1
ST(ZI'ZZ) = h (z127I-A) [w(ai@An,) +C- AWl (z1I-A]) “bia(z,I-A,) "by
-1
+ [0 +W(Aajab,y) J(z1I-A1) by
+ [Qz +W(b1[\lA2)](221-A2)—1b2 + b + W(b]ﬂbz)}

+ (dT— hTW) (le—Al)—lblﬂ(ZZI—Az)-lbz
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- hT(zlzZI—A)—l{C(zll—Al)—lbla(zzl-Az)—lbz + Q1(z1I-A]) by + 0y (2pTI-Ry) Thy+b)
+ dT(le—Al)-lbla(zzI-—Az)—lbz
+ W (zy2,1-8) L{[W(Aajany) - AW](z1I-A1) “bym(zpI-Ap) by
+ W(Ajaby) (z1I-A1) 'by + W(byaAy) (zpI-Ay) by + W(bjaby)}
- hTW(ZII—Al)—lblu(ZZI—Az)—l.
Then using the identity (zI—P)—lF =~-I + z(zI-—E‘)-l = E‘(zI—E‘)“l and
the expression for s(z),z;) given in (2.4.5) we obtain
sT(zl;zz) = S(Zl,ZZ)-+hT(2122I—A)—l{W(-I+21(ZII-AI)—l)blﬂ(-I+22(22I:A2)_l)bz
+ W(-T4z (211-A)) ")bab,
+ Wbya(~T+zp (2pT-Ap) )by +Wbiab,
+ hT (I-2125 (212o1-8) DIW(z,I-A]) "byalzyI-a,) Tby
- hTW(Z1I-A1)_lbla(zzl-Az)—lbz

= S(Zl,Zz). D

Remark: This transformation is equivalent to the similarity transforma-

tion [ IaI O ] applied to the linear system defined by
W I

&> hel,

Aj@A, O] ’ [Alabp_ biuA, bisb,

o A o] Q2 b

In Chapter 4 we shall see tlat these four classes of similarity
transformation define the isomorphism between two minimal realizations

of a bilinear input/output map.

3.2 Reachability of the State Space

In Chapter 2, we mentioned the intuitive idea of reachability in
bounded time and in [FM1] it was shown that this is equivalent to the exist-

ence of a finite-dimensional state-space realization. Here we bring in
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some intuitive ideas of state space reachability and demonstrate that
within certain restrictions they do indeed hold.
We first of all digress for a moment to discuss linear systems.
By a well-known theorem we know that the system
= +
41 T P T 9%

. . T T
is not reachable iff there exists a row vector a such that a g =0

and STF = AaT for some Ae C. 1In other words, er

_ 4.7 '
k+1 Aa X! and

given a zero initial state, the state space evolves on the hyperplane
With bilinear systems, using a certain amount of intuitive

reasoning, we may expect the state space to evolve on some hyper
’ |

(

surface pTx + qTxlmx2 = 0 if the state space realization (3.1.1)-(3.1.3)
is not reachable. To be more precise, we expect that

'PTxk+1+qTx¢+1“xi+1 - x(pTxk*'qTxéaxi)
identically, for some A€ C.

In fact, we shall see that, subject to certain assumptions
detailed in Theorem‘g.Z.Lthis condition is both necessary and
sufficient for non-reachability.

Before we come to the main body of this section, we recall the
following definitions from linear system theory. Let Fe¢ Rnxn’

He R7*?, Ge R™™. Then

n-1

(i) (F,G) is a reachable pair iff rank[GFG ... F “GJ = n, and

(ii) (H,F) is an observable pair iff rank [HTFHD n-1) T Ty =n

We shall now make the following two assumptions concerning the
state-space description (3.1.1)-(3.1.4): %
(Al) (A;,b1) and (A;,bp) are reachable pairs
(a2) (hT,A)is an observable pair.

If either of these assumptions does not hold, we know from the

Well-known linear system theory results of Kalman [K2] how to reduce
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(3.1.3)-(3.1.4) to suit our requirements. In particular, assumption (A2)
tells us that if we diagonalize the matrix A into Jordan form,
then there is only one Jordan block corresponding to each distinct
eigenvalue of A, and hence just one Jordan block corresponding to zero
eigenvalues of A.

We now state the following technical lemma concerning the transfer
functions of the system.

Lemma 3.2.1 ,

Let [AlaAzo]'|:Alﬂb2 bi@hs P10 | he a reachable pair.
C A Q1 Q2 b

Then the components of xl(zl)mxz(zz) and x(z},z3) are linearly

independent, where

xl(zy) = (le—Al)_lbl (3.2.1) ‘
XZ(Zz) = (ZZI_AZ)_le (3.2.2) X
x(z1,29) = (zlzZI—A)_l[C(zll-Al)_Fbla(zzl—Az)_lbz+-Ql(zll-Al)_lbl
+ Q9 (2z2I-Rg) Tby + b] (3.2.3)
are the transfer functions of xi, xi and X, respectively.
Proof: Suppose there exist row vectors pT and qT such that

pTxl(zl)axz(zz) + q?x(zl,zz) = O.

Expanding x(zj1,2z2) in powers of z;lzzj we obtain
: -(k+1) _k i 3 -(i+1) -(j+1
x(zy,2p) = z (z123) ( )A [Cz (AIEA%)(blmbz)zl(l )ZZ(J )
k20 i,j20
. i, =(i+1) =(j+1)
+ O Z Alblzl( + Qo zAgbZZZ J + bl.
i=0
-(x+l1)

The coefficient of (z3z2) is then

[o 1] [Aquz o]r [blxbz] r =0,1,...

C A b

' - (r+l) —(s+
The coefficient of (zjz)) (x l)zl(s 1)

+
[o 1] [AIGAZ o]r [Ai lblabz] r)s = 0,1,...

C A 01a7b)
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-(r+l) -(s+
The coefficient of (zjzj3) (z l)zz(s 1

[o 1]'[A1aA2 o]r [blmAgﬂ'bz] rys = 0,1,...

S
c A Q23,07

(x+1)

Similarly the coefficient of (zlzz)_ in X1(21)EX2(22) is

X
(AlﬂAz) bimb, r =0,1,...

- + -
the coefficient of (zjzs) (= l)zl(s+l) is

+
(A1ann) SAShymb,  r,s = 0,1,...

- -(s+
the coefficient of (zjzj) (r+1)22(s L

r s+l
(Ai=A5) bimAj "bo r,s = 0,1,... .

So pTxlax2 + q?x = O implies that
[quT]-hlaAz 67r-Blﬂb2 =0 r=0,1,... "(3.2.4) ;
B Cc Al L b

- - - T T ‘
[p g 1[a1=A; O]F A  biebs] =[p g ][AlmAz O}r[l-\labz]l\?bl =0 (3.2.5) ;’

| C A _QlA?b1 c A o r,s = 0,1,...

r,s =0,1,...

[p q 1[A1mA, O] [bymas 'by] = [p'q ] [AIMAZ 0 r[blaAz]Agb:Z:o (3.2.6)
s
C A L_Q2A2b2 C A Qs
But (Aj,b)) and (Apbs) are reachable pairs, and hence (3.2.5) and (3.2.6)
reduce to

T T, -
[pa] [AajmAy O

Ajmb,| =0 ¢ =0,1,...
L € A L2
T T - -
(pal [Ama, 0]F [bi=A] =0 ¢ =0,1,...
L ¢ .A] LQ ]

[l

which together with (3.2.4) provide a contradiction to 1
A1sAs O Ajmbs bi®A; bjmbsy
C al ' Q1 Qo b |

being a reachable pair. 0

We now state the main result of this chapter:

l
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Theorem 3.2.1

The system (3.1.1)-(3.1.4), with assumptions (Al) and (A2), is

quasi-reachable iff

Ai8Ay O] , [Alﬂbz by=h, blﬂb2:| A (F,G)
(o4 A Q3 Qo b

is a reachable pair.

Proof: Suppose that (F,G) is not a reachable pair. Then there

exist row vectors p and q such that

T T T T
[P q ] [AIEAZ O] = l[pT q 1 and [pT q] [Alﬂbz biah, blﬂbz:] =0
cC A Q Q@ b

; 1 2 55 e 1,2 i
and by expanding xk+l and xk+lﬂxk+l in terms of xk,xk,xk,uk and vk it
T T 1 2 T T 1. .2
+ = + .
is clear that p xk+l q xk+lﬂxk+l Alp x +ta xkaxk)

Hence, given a zero initial state, i.e. X, = 0, x

(1)=o, x(2J=O,

we see that the state space evolves on the hypersurface pTx + qTxlr.ax2 =0

for all time, so that the system is certainly not quasi-reachable.
Conversely, suppose that (F,G) is a reachable pair. We shall

now proceed to show quasi-reachability of the state space using a

similar approach to that of [K2].| This we do by specifying a desired

state, and then constructing input sequences from UXx V which

reach this desired state at time +1l. Note that the state X at time+l

is given by the vector cocefficient of (zlzz)_l in the expansion of

x(2z1,29)u(z])v(zy), because x is a bilinear function of U and V. We

k

are of course assuming that at some time -J, where J is greater than

the length of the input sequence that we shall construct, we have

x1_, xE

3 and X_ all zero.

J J

Now let P1(z) and Y5 (z) be the characteristic polynomials of

A) and Ap respectively. Then, given desired states x% and x% we

know from linear system theory that there exist unique input sequences
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q) (z1) and g3(z3) with deg a; < deg wi (i = 1,2) such that the input
sequences pj(z1)¥1(z1) + q1(z1) and pa(z2)Ya(z3) + g(z,) applied to

1 2
(3.1.1) and (3.1.2) respectively reach x) and xj for all pj(z)) andpy(z3).

- 1
X1

Hence, once the desired state x% is specifed, the reachability

X1
problep becomes one of constructing polynomials pj(z);) and ps(zj)
which enable us to reach the state x; via (3.1.1)-(3.1.3). \
The construction of these polynomials is fairly long and detai;?d,
" so we shall first outline the two major remaining stages of the proof:
1. Using a suitable choice of matrix T, we apply a similarity trans-—

formation to equation (3.1.3) in such a way that

mar = [3;, o
o Jo (3.2.7)
o1 o
where Jo = '-'-. e R and J; is non-singular.
<1
o ‘0

We then show in Lemma 3.2.2 that the subsystem corresponding to Jo,
together with equations (3.1.1) and (3.1.2) is quasi-reachable and wé
show how to construct the input sequences necessary to achieve the
desired state.

2. We then construct a further input sequence with the aid of another
technical lemma, which enables us to reach the remaining desired
components of xX;. In fact it becomes clear that if A has no zexo
eigenvalues then the state space is not only quasi-reachable but
completely reachable as well.

Let us now consider the special case A = Jo, where Jo ¢ R,

Lemma 3.2.2

The state space realization (3.1.1)-(3.1.4) is quasi reachable iff
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(F,G), as defined in Theorem3.2.1l, is a reachable pair,}where A = Jo.
Proof: The transfer function x(z),z3) is calculated as
-1 -1 -1
(z122I - Jo)x(z122) = [C(z)I-A}) “a(zyI-Ay) "by + Q;(z;I-3;) "by
_l :
+ Q2(zpI-Ay) "by + bl (3.2.8H
The RHS of (3.2.8) can be written as the vector E

Ry(21,22)

1
v1(z)¥a(z2) | o (21322)
m

so that

x1(z1,22) (zlzz)m—l......l Rl(él,ZZ)
x(21,25) A : . - : o o

1022) 8 E (z122)™ ; 1 _ Yy(z1)¥a(z2)
x_(21,22) 0. (2123) #1022 |35 )]

Let us now examine the state sequence from time + 1 onwards due to
the input sequence
[(ag+ayzy+.. .+aszsf) ¥y (z1) +ay(zy) JL(Bg+Brz+. . .+stz§)w2 (z3) +qa(z3)]
A_[a(zl)¢1+qu[3(zz)¢2+$2] .
We shall label this state sequence y(zlzz)=={y1(z122)...ym(zlzz)]T so that
Ym_r(zlzz) =X (21,22)[d(zl)¢1+q1][8(22fiq2]©z(lez)_k

m-x
(r = 0,...,m"1)

1 -r Ry -
" Y1z ¥z (z2) [lez e m][“(z”‘”mlm‘zzwzj
© [(z129) "

(r = 0,...,m1)
On examination of.the terms to the left of ® which involve a, and
Bj for i and j greater than r, it is clear that these do not contribute
to ym_r(zlzz), since aiziwl(zl) cancels out all z; terms in the denomina-
tor for i>1x, and szng(zz) cancels out all z, terms in the denominator

for j>r. Hence
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Y (z12p) = 1 [Rm—r+ +—L-]x
m-r ' 192 P1(21)¥2(22) | Zz122 Tt (z12zp) X+l

-k
[(a°+ +arzf)1p1+q1][(B°+ eeo+ Brzg_)lbz+qz] o 2(2122)
(r = 0,...,m-1)

In addition, it is clear that all terms involving multiplication

of a_ and R ro+-sR make no contribution to y, (z32z5) "since once
r m-xr m m-r

-1

égain we have a cancellation of all z; terms in the denominator. The

same goes for multiplication of B_ with R rees R so using the
g r m-r m

-1’

bilinearity principle we can now write -

4 Ry
ym—r(zlzz) B ym—r(zlzz) + (z122) THY, (21) ¥ (25)

x [ 8.8, (z122) Tava
' +arz’1"1p1[ (B°+ . Br_lzg_—l)lbz +qz]
A CIE P o g1 ¥t ql].]
o J(z129) F
, (r = 0,...,m-1)

where yg_r(zlzz) is just ym_r(zlzz) for a = Br = 0.

We can simplify this to

_ q
ym_r(zlz?_) = ym_r(ZIZz) +

[ ap(Bo+ -+ +Br-125"1) | ayqs(22)
arBr +

+
z129 zy 252 (z2)

r-1
Brlog+ «co +Qy—121 ) B,a;(zy) -
, Bxfloo r-1 rd1 1:| o [ (2207 F (3.2.10)]

27 ziy) (z1)

(r = 0,...,m1)
We immediately nogice that any terms of Rmhq,zg)with a factor of
2129 make no contribution, since this factor cancels with the z;z; term
in the denominator outside the square brackets of (3.2.10), and all terms
inside the square brackets have denominator with terms either in z; or
in zp, but not involving both z) and z;. Hence the only terms of

Rm(zl,zz) which contribute to ym_r(zlzz) are those of the form

n .
ayzy+ ... +anlzll+ byzo + ... +bn2222+CA a(zl) + b(zz) + c.
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Let us now write

Eifllglifl) = fn _12?1-1 + ... + f1z1 + fo + terms in zzl (3.2.11)
Yy (z7) 1
and
b(z,)q, (z,) no-1 -1
—2-72 "2 - .z 2 + ... + Zo + + terms in z, . 3.2.12
wz(zz) gnz_l 2 g]. 2 gO 2 ( )

It then follows from (3.2.10) that

q -1
Y, (2z122) = Y (2122) + (z12)) [arBrc+ar(Bobr+ Bib __, +...+8 by)

r-1
tag +B8 (@a +aja  +... +&r_la0) +B8 £ ] (3.2.13)
(r = 0,...,m1) -

As we remarked earlier, the term of interest to us is the coefficient
of (zlzz)-l, and it is clear from (3.2.13) that if c is non-zero, by suitable
choice of a, and Br we can achieve any desired value of this coefficient.
Hence if c is non-zero, not only do we have quasi-reachability of
(3.1.1)-(3.1.4), but complete reachability. /

Alternatively, suppose c¢ = O. We then have two cases to consider:

F
(1) either a(zy) = O or b(zp) =0,

or {2) neither a(z)) nor b(zj) are identically zero.

Note that if both a(zj) and b(zy) (as well as c) are zero, then we can

write Rm(zl,zz) as zlzzR'm(zl,zz), in which case we see from (3.2.9) that

1
x (z1,22) = 2122 Ry (21:22) b1(z1)¥a(z2)
- R(zy.zp)
T P1(z1) Pa(zg)

which is linearly depeﬂdent on the components of xl(zl)ﬂxz(zz), in
contradiction of Lemma 3.2.1. \

Let us first assume, then, that a(z;) # O and b(zp) # O, and

suppose that

a,

i

and b,
J

for some sy <m;, sp<my. Then from (3.2.13) we have

0 (i=1,...,s1) and asl+l 0

0 (j=1,...,s5) and b52+l 20



53

y =% _+toagl+Bf (r=0,...,m1) (3.2.14) |
i

where §m—r and yq are the coefficients of (zlzz)_l in ym_r(zlzz) and

m-r

Yg_r(zlzz) respectively and

' = + ... = 0,...,m .2.
gl = B8 b, +Bib +B, by +tg. =0 m-1  (3.2.15)

r-1

' + ... = ees,m-1 . .2
£l =cea, +toa _, ta _jap + £ r=0,...,m1 (3.2.16)
From (3.2.14) we see that a sufficient condition for reachabiiity is
that g; and f; are non-zero for r=0,...,m-1. However from (3.2.15) and
(3.2.16) it is clear that g;==gr(r=0,...,sz) and f;==fr(r=o,...,sl),_so

if g9, = O and fr = O for any df these values of r, we have §m—r‘;w§$—r’
so the state space is not reachable. We therefore constrain
gr(r=0,...,sz) and fr(r=0,...,sl) to be non-zero; from (3.2.11) and (3.2.12)
we see that this is just a restriction on the coefficients of gj(z))

and q;(z;) not to lie within a certain union of hyperplanes of R"2

and R™M1 respectively, and this in turn is a restriction on x% and x{

not to lie within a certain union of hyperplanes also in R"2 ana R%1,

If we can now show that we can attain any value of x; provided that

xi and x% do not lie in the hyperplanes characterized by the above
discussion, it then follows that the closure of the reachable set of
(3.1.1)-(3.1.4) is the whole space Rn1+n2+n,so that the system is quasi-

reachable. To do this, we just need to ensure that gé(k>sz) and

f#(k>sl) are non-zero. Now from (3.2.15) and (3.2.16) we see that '

! = § ces +
g51+r+1 Bobsz+r+l-F * 8r-—lbsz+2 8rbsz+l * gsz+r+l
(r =0,...,m"s5-1)
! = +... a + +
fsl+r+l aoasl+r+l %r-1 s1+2 arasl+1 fsl+r+1

(r =0,...,m-s;-1)

so our methodology is to choose o and Br in such a way that

L] - am 3
fsl+r+1 and gsz+r+l are non-zero, and at the same time ensure that

1
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the desired value of §m—r in (3.2.14) is achieved. It is readily seen ) /
that we can attain these objectives, so quasi-reachability is proven.
Now consider b(z2) = O. From (3.2.12) we s;e that g9, = 0 for all r,
so the coefficient of o, in (3.2.14) vanishes. Then, as above, we restrict
fi (1S s;) to be non-zero; we then choose ar (r==0,m-sl—1) arbitrarily,
since it makes no contributiqn to §m—r' to ensure that f' is non-

si+r+1

zero. Finally we choose a,. so that the desiraed value of ?m-r is
attained. Hence we have quasi-reachability.

We follow an analogous argument for the case a(zj) = O. n]

Let us now return to the proof of Theorem 3.2.1; we have seen from
Lemma 3.2.2 that we can achieve all states associated with the subsystem
of Xy corresponding to zero eigenvalues, and it is clear from the proof
of this lemma that all inputs of the form z%lwl(zl) and z§2¢2(z2) have
no influence on that subsystem or on the xi and xﬁ states fér t1,t2>m-1.

If we now calculate the transfer function of the remaining X, states,

it is clear that this will be of the form
‘1

- S(z1,22) n-m 3.2.1 |
&(z1,25) $(z122) V1 (21) V2 (22) © R "[(z1,22)] (3.2.17)

where, and from (3.2.7), $(z) is the characteristic polynomialof;
-m
J1'¢(Z) = Zn +...+¢IZ+¢0.
We can write this as

S(z1,22) (z122)™
$(2122)P1(21) P2 (22)

&(z1,22) = (3.2.18)

where ¥1= z1¥1 and ¥y = zpyp.
Now consider constructing an input sequence of the form
(P1(z1)¥1(z1) + @1(z1)) x (p2(22)¥2(22) + qz(z2))
where q1 = a(z})¥1 + q1 and Q2 = B(z2)Y2 + qa-

Let the vector bilinear map (3.2.17) be represented by 1



g: R[zq1% Rlzp] — RV P (zy20) 113
1

s (ulzy) ,vizg)) — k(z1,22) ulzy) vizg) © J(z122) %.
Then
g(p1¥) +a1,P202 + Q) = g(p1¥1.,p202) + glp1¥1.,4d2)
+ g(a1,p2¥2) + gla1.dz) - (3.2.19)
We shall now set up p; and py in such a way that the two middle

terms of (3.2.19) become zero, and then concantrate on demonstrating

reachabilityvimn g(p1V;,p202). The reason for doing this, as we shall

see very shortly, is to enable us to select the coefficients of pj(zj)
by solving a series of linear equations.

Consider then
(zlzz)mS(zlzZ)
P19,

- (zlzz)mS(zlzz)
oY,

- = - - -k
g(py1¥1.92) P1Y1d2 © 2(2122)

- -k
P1d2 @ (z1z3) .

T . i3
Now S(zj,2z5) Q:[Sl,...,sn_m] is made up of terms eijzlzz.

Let us now define

_ . . i3] .
m, = max{j—lleij # 0, €;42123 occurs in one of Sl,...,Sn_m}

and let
p1(z)) = z]B1(z))

for some pjto be constructed later.

m, = m, Mmj= Lol
Then (2122) SP1d2 _ (2122)7S 211y Jviz) (3.2.20)
1) $(z125)

where z Y_zzi is the expansion of g&iﬁ@) in negative powers of 2z;.
i>1 * Y2 (22)

It is now clear that because of our choice of mj, all terms in
k & .
z 0.
the numerator are of the form a %122 with k> 2 for all a ., o
Hence the expansion of (3.2.20) in negative powers of zj and z; contains
no terms of the form bkk(zlzz)_k with non-zero bkk' so that

g(lelréZ) = 0.

55
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In a similar manner we can choose mp to ensure that g(&l,p2E2)==O
Mo
vwhere pj(zy) = zp°P2(z2).

Let us now consider

- - m
- - p1V1poY2S(z122) -k
g(p1¥1,P2V¥2) = —== © J(z1zp)
Y92
m1 mz m _
= P1Py 22 i(zwz) o T(zyzp) © (3.2.21)
and let us write

m m; m
(z1252) zllzzzs = N(zy,2z2) + ¢$(z122)M(z]1,22) (3.2.22)
where N(z;,z;) contains no term with a factor (zlzz)n—m.

We assert that the components of N(z),z3) are linearly independent.

- »

For, suppose the contrary; then there exists cT such that cTN = 0.
Hence (zlzz)szlzgchS = ¢cTM, by (3.2.22), so that ¢ divides cTs,since

¢ has no zero roots. Then by (3.2.17) &

\
T
c S(zy,22)_ k(zy,20)

oY1¥2 v1v2

TI\
c X(Zl,Zz) = ; Say.

But this is linearly dependent on the components of x'ax2, which

!
i
Now, substituting (3.2.22) into (3.2.21), we obtain i

is a contradiction of Lemma 3.2.2.

- - - - N -k
-~ glp1¥1.p2¥2) = p1P2(M+73) © 1(z125)
.- N -k :
= B1P2 i, © Y (z122) (3.2.23)

since M is a polynomial in z; and zj.
Now the terms in N(zj,z3) will be members of the sets

B

k j - .
{(z127) z{ : k=0,...,0-1; j Oye..,21}

and C

{(zlzz)kz; : k=0,...,n-1; i=1,...,%1}
for some %) and %5, and I = n-m.

Let us arrange these terms in the following way:
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L
z22 ......... b4 1 z2] 2121
( 29 21
ZIZg)Zz ..... (zlzg)zz 21?2 (lez)ZI (21?2)21
n-1 2 n-1 T.on-1 ‘n-1 n-1 %
(zlzz)n z22 ..... (z122) Z9 (z122) (zlzz)n z) (z1z2)rl zll

We label the columns of this table as e gees1€ L 4€ ,811...€,
—22 -1 o 21
and it is clear that if we can show that the transfer function vector

e

1

. n(Ly+i,+1
wizy,22) = m) e, € Rn( 1+52+ )[(zl,zz)] (3.2.24) !
&

is "reachable", then it follows that N(z,z5)/¢(z;2,) is also "rea:chable" and
hence that the system (3.1.1)-(3.1.4) i$ quasi-reachable. By "reachability"
of w(z1~,z25 in this context, we mean that for all specified ve Rﬁ(21+22+1) v
there exists Py (z)) € R[z;] and P, (z3) € R[z3] such that the vector
coefficient of (zlzz)-1 in w(zy,22)P)1(21)P2(22) is equal to y.

Note that although N(zj,z5)/$(zy12,) and w(z;,2zp) are not necessarily
strictly causal (that is, there may be higher powers of z) in the
numerator than in the denominator), we counter this by only allowing
inputs to be inserted befare time O, and observe the outputs at tirqe+ 1.
Furthermore, it is obvious from the earlier development how we arrived
at N(z)],2z2) /$(z1Z,) and there is nothing spurious about the way we use
it in (3.2.23) as though it were a transfer function with inputs E_Jl(zl)
and pj (z3) . .

Before constructing our input sequence, we prove the following
Lemma 3.2.3:

Let (A,b) be a controllable pair. Then for all & > O, there

. N _k . .
exists an integer N > £ such that (A ,A b) is a controllable pair for

all k iff A is non-singular.



Proof: Let us write (A,b) in the following canonical form [K2]:

A = JAl (o] b = b1
J
(0] xn bn

where Jx_e RP™PL 55 the Jordan block
i

Xi 1 0
1
0 Ay
9 -
and b, = é e RUL,
1

v

Suppose A is singular; then Aj = O for some j. If Aj has multi-
plicity m, then Jm

A-b' = 0, so that (AN,AFb) is not controllable for
1
any N.

Conversely, suppose A is non-singular.

Then it is clear that
N kb . N .
(A ,Ab) is controllable iff (A ,b) is controllable.

But (AN,b) is uncontrollable iff A? = Ai for some j, k. Let us

. 103 i0k N N . .
write Aj = rje J, Ak =re , where rj,rk> 0. Then Aj = Ak implies
N iNOj N _iNOk
x.e =rx e
k
so r, = x. and e1NOJ = elNOk
Jj k
or N(Oj- Ok) = 2nm for some integer n. (3.2.25)
Let Njk

be the minimum value of N for which this occurs.

Then any other
N satisfying (3.2.25) is an integer multiple of N'k'

Now choose N > £
coprime to {N,

]k: j,k=1,...,n; J=2k}.

Then (AN,b) is a controllable pair. O

We now return once again to the proof of Theorem 4.2.

Let (c',A,b)
be a minimal realization of 1/¢(z125).

We choose N to satisfy the
conditions of the above lemma for £ = £; + %, and define p;(z;) and
P2(z3) as follows:
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L 2 n-1)N
212(1+zli1+ng+ +z{n )

pP1(2z1) ) (3.2.26)

Po(zp) = & +a Zo+.. .40 222+a 222+1 +0.
P2iz2) = @ g,,17%0,41,1%27 - - TO0O122 71 22 +...

L L
+ z?(a z2+...+a02z22+a12z22+1+...+a X

~2g,27 %041, 2
+ ...

+ A0 +o..t0_z524. .40

11+12)
-lz}ﬁ On

=Z2

21,8 (3.2.27)

1
Again, a diagram may prove useful to visualize the polynomials:

0

pi: 0.....010....00..... 00....010..... 00.ceeannn 0...00....010....0
P2: Xeoe.. KXXeoooeXOourn® OX.ee eXXXeeews b1 0...0%....XXX..0eX -
Note that by our choice of N > £;+%, there is no overlapping of

terms in (3.2.27). We shall now find that for all i, the inputé ’ I

e —

aij(j=l,...ﬁ) only affect the outputs of the transfer functibns of (3.2.24) ‘l
whose numerators lie in the column e;- .
For we see that the output from the transfer function with numerator

(zlzz)sz-i‘ is

(2122)52?

$(z122) B1(z1)B2(22) © Z(z122) " (s = 0,...,f-1)
s+lo+j, - N N(A-1)
(z12p) " 2 (aj’l+(z1zz) aj,2+...+(z122) aj,ﬁ) '

= (3.2.28)
¢(2122)

by inspection.
Similarly the output from the transfer function with numerator
s i,

(zy122) 27 is

+...+(zlzz)N(ﬁ_l)a =)

S+12
(zy22) {a ,2 -i,7

+(zy2 )Na
-i,1" 71%27 "oy

$(z125)
(s = 0,...,n-1)

Let us now label the output at time 1 from the transfer function

ej/¢(zlzz) (42 0) due to the input sequence (3.2.26) and (3.2.27) by '

i
T !
ceeVY. seY. 1. foll £ .2.28
[yjl y)s yjn] It then follows from (3 ) that i
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n .
k=1 . !
: n T s+£ +3_kN
vo | =| 272 pa,
IS k=1 : 1
. D f-1+8,+] kN
Y- ) c'a 2737 pa,
| ~Jnj ( k=1 3k )
et 22tdy ANatetdy | AN(01) 0040y, ay )
. ’
= cta -
cTAn-l J a, -
J.n
T . L. . . 1 . :
where (c™,A,b) is a minimal realization of $7;;;—7-as defined above.
R 2
. |
Now the first two matrices of (3.2.29) are invertible since (é?zn is i

an observable pair and (A”,A22+Jb) is a controllable pair by Lemma 3.2.3,

so given specified values y,

3,k (k =1,...,1 ) we can obtain unique
14

a eee;a, . which reach y, ..
jll’ 73,0 yJIk
A similar situation holds for the outputs at time 1 from the
transfer functions with numerator (zlzz)sz; (s = 0,...,n-1), so it is

clear that the transfer Ffunction vector (3.2.24) can reach any desired '

output, so that our theorem is proved. 0

In linear system theory, we usually ask not only about reachability,
but about controllability as well; if a system is both reachable from and
controllable to the origin, it follows that the system is completely
controllable, i.e. we attain any one state in finite time starting
from any other.

In the same way, subject to the quasi-reachability constraint,
we can prove a similar theorem for bilinear systems:

Theorem 3.2.2

If the conditions of Theorem 3.2.1 hold, then every state of the
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system (3.1.1)-(3.1.4) is controllable to the origin. ;
Proof: We f£irst show that from an initial state which is not

reachable from the origin, we can attain a state which is reachable

from the origin. We then show that any reachable state is controllable

to the origin. «1
o
By Lemma 3.2.2, a non-reachable state xg is one which is
x
o

characterized by xé and xg lying on some finite union of Uj, U; of

: ny ny : 7z e R®
hyperplanes in R and R respectively, and the substate X € of X
corresponding to zero eigenvalues of A, being incompatible with these.
It is of course clear, from Lemma 3.2.2, that there do exist reachéble states

.

of (3.1.1)-(3.1.4) for any| xle rM x2 e R72.

Let us now partition X as N , using the transformation (3.2.7),\

where ik'ﬁk are the subsystems corresponding to Jy and J) respectively.
Then if there are no inputs from UxV for the next m stages, it is clear

from (3.1.1)-(3.1.3) that the state at time m is given by }

m

xl = Arfx1 x2 = A2x2

m o] m o

x1mx? AjmA, o o)™ [ xlax?

m m o o
% = c Jg O X .2.30)
x 1 0 X (3.2.30) |
X Co o o0 X

Now JJB= O, so (3.2.30) can be rewritten as

xlax? ﬂ?mﬂz o O xlax?
m m o o
X = D o o X
X D o 3? X,

In other worxds §o makes no contribution to the state at time m,

x1
m

and the state x; could equivalently have been reached from a state

»i

m

o>

m
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[ x! ) [ x! )
o m
xg which was reachable from the origin. Hence xé is reachable
= %
o m
% %
.\ O J . o)

from the origin.

We now show that any reachable state is controllable to the origin.
If it is reachable, then it is attained by an input (pjV¥1+q;,pP2¥2+d2)
for some p;,q) € Rlzy]1, p2,q5€ Rlz,].

We shall construct the input sequence which sends the state to zero

by the following concatenation:
((P11P1+CI1);r1951¢100m),((Pz¢2ﬂz)orzos2wzoom)
with (r;,r;) and (sy,s;) determined sequentially. )
Step 1: Multiply p)¥1+q; and paY,+qz by z% and z§ respectively,
where k = max(deg VY3, degyy).
Now choose r; and rp such that
z};qi+ri = 6 (mod wi) i=1,2
with deg r, = deg wi
and define piiwi = zt(piwl+qi) -+ r, i=1,2
Step 2: Choose the integer N as in Lemma 3.2.3, and in addition the
integer M> N(n-1) + £; + %, + m (2; and %, defined as in Theorem 3.2.1)
in such a way that
g(Z1P11¥1,2552%2) = O = g(Z1s1¥1,25p22¥2)
where g represents the.i(zl,zz) transfer function (3.2.17), so that we 2
obtain g(z?p11¢1+ZT51¢112¥P22¢2+Z?SZ¢2)
= g(z!fpu‘hrzgpzz‘bz) + g(z]s1¥1,2252¥2)
We can then choose sy and 52 appropriately, as explained in Theorem

m m
3.2.1. In addition the factors\zl and z, ensure that the subsystem of X

corresponding to zero eigenvalues becomes zero. 0
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3.3 Observability of the State Space

In Definition 3.1,.2 we said that two initial states were dis-
tinguishable if there exist finite length input sequences producing
different outputs for each initial state.

For linear systems, because we have no coupling of initial states
with inputs other than with respect to addition, it is possible to
distinguish initial states by observing a finite number of outputs due
to one input sequence, and the actual input sequence itself is immaterijal.
For bilinear systems we will in general need a number of "experiments"
— that is, several distinct input sequences all starting at the ‘same
initial state — to distinguish initial states. This is because we
have a multiplicative coupling between inputs and initial states. We
demonstrate this by the following
Lemma 3.3.1

Let f: X)XXoxXxUxV + Y represent the map from initial states
xée X1 xge Xo xoe X and input sequences ue U, ve V to the output Y
as specified by equations (3.1.1)-(3.1.4). Then E

f(xl,xz,x ju,v) = f(xé,o,o;o,v) + f(O,xg,O;u,O) + f(xé,xg,o;o,o)

o'"0o' "0
+ f(0,0,xo;0,0) + £(0,0,0;u,V) (3.3.1)
Proof: By (3.1.3) and (3.1.4) we see that f is linear in X s SO that
£(x},x2,% iu,v) = £(0,0,% ;0,00 + £(x},%2,05u,v). (3.3.2)

Now, xé represents a linear sum of past inputs from U and xg
represents a linear sum of past inputs from V, so that f is bilinear
with respect to (xé,u) and (xg,v)- Hence

f(xl,xz,o;u,v) = f(xl,0,0;O,v) + f(O,xz,O;u,O)

oo o o
+ f(xé,xg,o;o,o) + £(0,0,0:u,v). (3.3.3)

Combining (3.3.2) and (3.3.3) we obtain (3.3.1). ; 0



An immediate consequence of this lemma is that two initial states

are equivalent iff the first four terms of (3.3.1), for each initial state, j

are equal for all input sequences in UxV.

Let us consider f(xé,xg,O;0,0). From (3.1.1) and (3.1.2) we see that

1

1 - )
Xeap = B1¥ and Xy = Roxy

so that we can write

1 2 _ 1902
X1 Wy = PiEhaxpExy

and together with (3.1.3) this gives us

K1 eay | " Aan, O

*)k+1 ¢ A

so that y, = [@™hT] [ ajen, o )¢
c A {

Ox'-'

1o..2
xkaxk

ax

(0]

X

2
o]

Next, f(0,0,xo;0,0) immediately gives us

T k
yk = h A X,

k

(3.3.4)

(3.3.5) \

by inspection of (3.1.3) and (3.1.4), and this is the reason for our

original requirement that (hT,A) be an observable pair.

In fact, since f(xé,xg,xo;oao)

we can combine (3.3.4) and (3.3.5) to obtain

Yy = [a'hT] AjmA, O k

C A

r
1 . = 1 .0
Now f(xo,0,0,0,v) X f(xO,O,O,O,vi)

. i=0

where Gi==(0...0,vi,0,...,0)

by bilinearity, where v is the input sequence (vo,vi,...,vr).

Note that we are considering inputs Vi

Consider then f(xé,o,o;o,ﬁi). At time i, we have x;

X, = 0, by examination of (3.1.1)-(3.1.3).

1 = Ai+l

1 2
Xi+l ol %

i+l

= byv., x,
2V #y

+1

At time i+l, we have

at times k = O.

Q1

i
arxl,x2=0
o L

1 .2 0. . .
f(xolxolorolo) + f(ololxololo) (3-3-6)

. ———

!
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and since all further vk(k> i) are zero, we have

1 2 o k i+l
Ferin | - | M1ER2 O Al x mbovy
i
*K+14i ¢ A QlAlxéVi
k .
so that y, ..., = [@Th'] AjmA; O Ajmb, arxlv,
k+i+l oi ‘
(3‘3‘7):
C A (o)) '
by removing the term A%xévi to the right of the brackets.
Similarly, f(O,xg,O;ﬁj,O) gives a sequence of outputs
LT ' X )
Yierjel = [@nh™] { AymA, O biah, XU, - 3.38)

Cc A Q2

Remark 3.3.1 We note that the identity (3.3.1) tells us that we can

actually "observe" the output sequence (3.3.7) by first performing an
"experiment" with no inputs; and then, starting at the same initial
state, perform another experiment with all inputs zero except ui.
Similarly with the output sequence (3.3.8).

We now present the main theorem on observability, which also

T , .
demonstrates the sufficiency of (h ,A) being an observable pair.

Theorem 3.3.1

The system (3.1.1)-(3.1.4) is observable iff

l
|

)

(i) (hT,A) is observable
(T T, Y )
(ii) fa'h*1, (a@a, o), [ amby | , A; |is biobservable (3.3.9)
|, C A . Q)
\ J
( T.T ( ) ( ) ) .
(iii) [eh], | aymp; O | , { bymAy | , Ay |is biobservable (3.3.10%
L € A ) | Q2 |
- J

. T i
where (aT,M,L,T) is biobservable iff a™M LTJ

|
Remark 3.3.2 To check biobservability, we calculate the observability
t

T . ,
subspace H generated by (a”,M). Then, letting H be a matrix whose row
vectors are a basis for H, it is clear that (aT,M,L,T) is biobservable

iff (HL,T) is an observable pair.

y = O for all i,j implies y=0.
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Proof: We have already seen that condition (i) is necessary, for if
the initial state is (0,0,Xo), its contribution to the cutput is hTAkxo.
Consider now the initial state (xé,o,o); then xéao = 0, so the
contribution from f(xé,o,o;o,o) is zero, as we see from £3;3.4). So the

only contribution which xé makes is via f(xé,o,o;o,v). Hence (ii)
is necessary.

Similarly, by considering the initial state (0,xg,0), we see that
condition (iiii is necessary.

To show sufficiency, Qe note by Remark 3.3.1 that we can always-
"observe" f(xé,o,o;o,vi), so that condition (ii) is sﬁfficient. Likewise,

»

we see the sufficiency of condition (iii). Finally, since we already
have, xé and xg éb;ervable, QF see from (3.3.5) and (3.3.6) that (i) is
éuffieient for X, to be observable. 0
This theorem, together with Theorem 3.2.1, provides us with necess-
ary and sufficient conditions for a state space realization of a bilinear
input/output map ﬁo be quasi-reachable and observable. 1In the next
chaéter we shall demonstrate how to obtain a realization with the
properties of quasi-reachability and observability from a realization
which does not possess them, and since we have seen in Chapter 2 that

some state space realization can always be constructed, it will then

follow that a quasi-reachable and observable realization always exists.
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CHAPTER 4
REDUCTION PROCEDURES AND CANONICAL FORMS FOR BILINEAR INPUT/OUTPUT MAPS

We have seen in éhapter 2 that it is possible to construct a state space
realization of any bilinear input/output map, and in Chapter 3 we have
demonstrated necessary and sufficient conditions for such a realization

ko be quasi-reachable and observable or canonical (Definition 3.1.3). 1In
this chapter we shall see how to reduce any realization to a canonical

one, and in addition we shall find that the term reduction is well—Shosen,
since in the case of reduction to quasi-reachable realization, the dimen-
sion of the state space is reduced, and in the case of reduction to observ-
able realization, the dimension of the state space is at least not increased.
Note that the dimension of ghe state space may well stay the same, as in
Example 1 below, on reduction to observable state space form.

We shall geal witﬁ reduction to observable state space form in §4.1 and
in §4.2 we demonstrate reduction to quasi-reachable form. We choose this order
of doing things rather than the conventional reduction to reachable form
followed by reduction to observable form, basically because it is simpler;
the fact that we are dealing with quasi-reachability rather than complete
reachability means that it is more convenient to deal with this faztor second:

In 54.3 we show that a realization is canonical if and only if it is
co—minim§l (Definition 3.1.4), and that all co-minimal realizations are
isomorphic under the transformations defined in Chapter 3. (Henceforth we
shall omit the prefix co- before minimal, although by convention a minimal
realization has as its definition the analogue of Definition 3.1.4, where
observable is replaced by reachable.)

In §4.4 we present two canonical forms for realizations of bilinear

input/output maps.

4.1 Reduction to Observable Realization

When we talk about an unobservable state in linear system theory,
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we mean a particular mode of the state space which can be partitioned
off from the other states and which neither cgntributes to the output
nor to any of the other states. Naturally, with bilinear systems we
encounter the same phenomenon; however as the following example shows,
this is not the oniy kind of unobservable state:

Example 1:

g = X (4.1.1)

z1(z2-a)

An obvious choice of state space representation is

1 = 2 = 2 = sele2
il =~ % Kear Tt Ve TR (@.1.2)

However, if we check the conditions of Theorem 3.3.1, we see that
this is unobservable; more st;aightforwardly, we see that if xg = 0,
then the value of xé has no éffect on the output. Note, though, that
we could perhaps call this state space description quasi—bbservable,
since if xg # 0, we can observe the effect of xé as well. This idea
of quasi-observability will arise with multi-output bilinear maps. If
we now regard the transfer function (4.1.1) as

22
2122 (Zz—a)

a natural choice of state space description is

x}2c+l = axi * e o *k+l uk(axi+-vk) Y = % (4.1.3)
and we can check that this is indeed observable, although only
quasi-reachable. .

The reduction procedure that we detail here will tell us how to
switch from (4.1.2) to (4.1.3), and in addition we shall see that the word
reduction is not inappropriate — at worst the dimension of the state
space will remain the same after reduction, as in the example above.
Otherwise, the dimension of the state space will indeed be reduced.

T,et us now turn to the reduction procedure itself. We shall
assume that (hT,A) is observable; if not, we reduce the state space

in the usual way.
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Now, let H be a matrix whose rows are a basis for the observability
subspace H of
T
[dn'l, [Alez o:l
C A -
It then follows from Remark 3.3.2 that the biobservability subspaces

corresponding to A] and Az are the observability subspaces of

H [Alabz] ¢ A and | H [blez] y Ap respectively.
o3 Q2

Let T} and T, be matfices whose rows are a basis for these
biobservability subspaces. In particular, this implies that
TiA} = S1T; and TA; = STy (4.1.4)
for some S; and Sj.

We shall now write the basis matrix H of H as

U (o)
H=}1 Vv O where U < T18T; (4.1.5)
W In and V is linearly independent of T;mT,.

This we can do since [ AjumhA, O ] is lower block triangular and (hT,A)
Cc A

is an observable pair.

Now because of the invariant subspace property of H, we cun write

U o amh, 0)l=(1L o o U o
vV O c A Ly K3 O vV O (4.1.6)
W oI L, K, A W oI

for some matrices L, Lj, Ly, K; and K,. The only identity that we

obtain from this matrix equality which is not immediately obvious is

U(A;®A,) = LU, but this follows from the fact that U ¢ T aT,, which is
an invariant subspace of AjgA;.
T T, . . . .
Further, because [d"h'] is contained in H, we can write
[dh'] = [kik"h'l (U O (4.1.7)
v O
W I

T T
for some ki, k .
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It is now immediate, from (4.1.6) and (4.1.7).and from the fact that

H has full row rank, that
r -
T
ki k" h'd, [L o o
Ly X3 O
> Lo K A
- .. .

is an observable pair, and in particular we see that

[k h'1, [X; o A (hT,A)
Ko A

\

is an observable pair. This last remark follows from L 0 O | being

In K3 O
lower block triangular. Lo Ko A -
We also note that by (3.3.9) we have

U o Ajmbs = U(Alﬁbz)
Vv o 0 V(Ajaby) cm (4.1.8)
W I W(Aj=bsy) + Q)

and similarly by (3.3.10)
U o b@As =’ U(bjaAs)
vV o Qs V(bya@h,) c T, (4.1.9)
W I W(bjmRhy) + Q2

We shall use these facts (4.1.8)-(4.1.9) in the reduction procedure.
To actually perform the reéuction to observable form we shall first
of all add on some dummy states to the substate X i the number of
dummy states will be equal to the rank of the matrix V. We shall then
transform equations (3.1.1)-(3.1.4) using the transformations from Proposi-
tion 3.1.1. Finally, we shall eliminate those states in the null-spaces of

T) and T, in the same way as we do for linear systems.

Step 1. Addition of Dummy States

augment
We *egiite equations (3.1.3) and (3.1.4) as follows:

% = [k; 0] 5 +[ 0’
| Bl
T T T
o2 5
d xktaxk + k" n ]xk. (4.1.11)

Note that the upper subsystem of (4.1.10) plays no clear réle at the

ol
|

x}(@xi+ [:O:Ix}(vk+ [:O:Ix}z(uk+ [:O]ukvk (4.1.10)
A Q2 b



moment, since if it starts at the zero state, it will remain zero for

all time; however the reason for its addition will become apparent in
N .

due course.

Let us also bear in mind that during the remaining steps of the

T T
reduction procedure, the pair [ x" n'l, [:Kl O:] ] will remain
Ko A

unchanged, so the fact that they are an observable pair is crucial.
T
In addition we remark that the calculation of k™, Kj and K; is

done in the usual way, i.e. we append the matrix [Uj; 0] to H, where _

the rows of U; are linearly independent of those of U and V, and then

: T
perform a similarity transformation on the pair { [dTh 1, [AlaAz O] ],
: C A

. . T .
extracting the required values of k', Kj and Ky from the positions

indicated by (4.1.6) and (4.1.7).

Step 2. Transformation of System Equations

We now transform equations (4.1.10) and (4.1.11l) as prescribed by

Proposition 3.1.1, using the matrix [ V_J :
- W

71

(o) =(v] ajma, + (0] - [y o) [v] = [v(ajany) - Ky AT (4.1.12)
\c] [w] [c] [K2 A} [w] [C+W(A1ﬂ1\2) - KoV - AW

(0 ] —(o ] + ’v] Ajab, = ([V(ajmby) A Q (4.1.13)
Q1) Q1) W Q1 + W(Alﬂbz)]

(0 ]-ﬂo + 'v] bjmh, = (V(bymhy) A 9, (4.1.14)
(Q2 ‘Qz] U Q2 + W(blm\z)]

(0 ) =>{o )+ (v] bjab, = (v(bjmby) A b (4.1.15)
b ] b ] \w] b + W(byab,) ]

& = at - k¥ n'] [v] —a’ -xv-nw 4 a (4.1.16)

W

Now from (4.1.6) we see that

V(AjmAy) - K3V = LU < TyaTy (4.1.17)
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and W(A]_&Az) + C - KoV - AW = L,oU < TyaTy,

ie. Cc TiaT,, and from (4.1.7) we see that

T
& - xTv - n'w = xju

i.e. ElT c ;I‘lﬂTz.
So (4.1.10) and (4.1.11) are now transformed to
~ [Kl O]f(k + [Ll U}K}iﬁx)zc +[V(Alﬂb2) A ]xivk

Ko A L, U Q3 + W(Ajmbsy)

+ [V(blaAz) ]xiuk + [V(blmbz) ]ukvk

Q1 + W(baAj) b+ W(bab,)

e
&
I

T 1 o T T,
Y, = kiU ax, + [x"n ]xk

Remark 4.1.1 The upper subsystem of ﬁk satisfies the system equation

for Viémxi, since

1 ax?2 = V(Ayx} 2
VX 1 V(Alxk+b1uk) @ (Azxk+b2vk)

152 1.,5.2 1. 2
K, (V}ﬁ{axk) + L) Ux, axy + V(Alxbz)xk n t V(bjaAs) xu, + V(bjaby) w vy

using identity (4.1.17).
It is now apparent, therefore, that one of the intentions of the

reduction procedure is to set up a new x, substate to replace those

k
substates of xi and xi which are unobservable separately, but which are

observable as substates of xiaxi.

Step 3. Elimination of Unobservable States
From (4.1.8) and (4.1.9) we see that él < T1 and 62 © To. Hence by

choosing X) and X to make [zi] and [zz] full rank, and calculating
2

Ty1-1 Ty -1
v = d =
(v,w,] [Xl] and [VoW,] [Xz]
we can employ the usual linear system reduction procedure via similarity

transformations on xé and xi to obtain
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Xl = TlAlvlii + leluk

+1 f T2A2V2§k + szzvk

o YN - 21oe2 o Biy-al A 8D ~

X1 Axk + Cvlmvzxkaxk + Q1V1xkvk + szzxkuk + bukvk
AT 122 AT

Yy = d VlaVZkaxk + h 2k

where we use the fact that UWjeW, © (T18T5) (WimWy) = T1WieToW,y = O.

~ We now wish to show that the term "reduction" does indeed apply;
we shall see shortly that we can immediately eliminate all the modes
of xﬁ and xi contained in ker T; and ker T, respectively which are
associated with non-zero eigenvalues of A;} and A;. However some of

the modes associated with zero eigenvalues will reappear in some sense

in vV, and are converted into X states. Intuitively, we can view this

as the transfer function z;é giving rise to an X state or equivalently
' 2

. iz-producing an xﬁ and an xﬁ state.

Let us consider the eigenvectors and generalized eigenvectors of Aj;

the transfer function ;

then it is well-known that the null-space of T;, i.e. the unobservable
subspace of Aj, has as a basis a subset of these eigenvectors. If we
then take the subset of those eigenvectors which correspond to non-zero
eigenvalues, w?ich we label as [yl...yk] A Yy, it is clear that T1Y; = O
and a,Y,; =VY,, where ¥, is the subspace generated by Y;. It then
follows that there exists some non-singular matrix M; such that

Y1 = A1 1M, (4.1.18)

Lemma 4.1.1
Let U, V, W, Ay and by be defined as above; let (Aj,by) be a

controllable pair. Then for all xg there exists a matrix 2; such that
u o [ vyiex? | = o.

o}
vV O A (4.1.19)

W I
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4
o
Remark: This tells us that all initial states xg where xé e Yy are
0 X
indistiguishable from the initial state |x3
XO—Zly
where xé = Yyy-.
This follows from
2 2 = [« 2Y 2
U o Ylymxo . + 10 O OaxO U o Y1yaxo o
(@) xo v O “IY"XO v O Z1y
w I
Proof of Lemma: -
uo T T
Since |V 0| is the observability subspace generated by [@ h ] and [AjmA, O],
WI ' C A
(4112i97'ié'eduivalent to
[a'h'1 (ayea, 0)" (vyax) = 0  for all i.
' C A 21

Now Theorem '3.3.1 tells us thatif ¥Y; < ker T; then

[a™h'] Ajmd, O * Aqaby A%Yl =0 for all i,j.
c A 1451

Setting j = O, postmultiplying by M; and substituting from (4.1.18) we

obtain

[@'hT] AjmhA, O * Yimb, | = 0O for all i. (4.1.20)
' C A Q1Y 1My

Now expanding (4.1.20) we obtain

T, i~
[a™h’] AjmA, O -1 A1Y1mAsbo = 0 for all i.
c A CY @b, + AQ Y My

As before we postmultiply by M; and substitute from (4.1.19) to

obtain

[aTh ] Ajmhy O * YimAsbs| = 0
C A Ky

where K; = CY¥iMjab, + AQ1YiMI.

In a similar way we obtain
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[a™n’) [AIEAZ o]l {YlaAﬁbz} =0

C A K
r

fpr al} i and r, where Kr+l

. r
= CYlMlﬂ.Azbz + AKrM -
Finally, since (Aj,bj) is a controllable pair we can write
) nz—l j
x2 = Z ajAzbz for some CRPRRNT

i=0 np~1

and it then follows that

T, T ;
[ah’] (ajmr, o] (viax? =0
, ) , np,—-1 -
c Al | a.k,
50 33

So our lemma is proved with Z; = zajKj.

We obtain a similar result for Y, where T,Y, = 0 and a,Y, = Y5,
so. we know that Y, and Y, can be discarded from the state space
description.

Let us now examine the modes associated with zero eigenvalues.
Some of them may end up being completely discarded as with Y, and Vz;
in general, however, some will be transferred through the state space.

We agsume that (Aj,b;) is a controllable pair. Hence A; is cyclic
and has just one Jordan block of zero eigenvalues. Let us suppose that
there are 2] + riof these zero eigenvalues; then there exists a vector
%) such that A%xl is non—zeré for k< 21+1ry and is zero for k = %) +rjy.
21-1

We 'also suppose that T1Aj; X1 is non-zero, but

marlx = o. (4.1.21)
‘ 21+l 21 s s
Then TjA; X1 = S1T1A81 %1 = 0 by (4.1.4) and similarly
2147 )
pa7 %y = sdmatly) = 0 for a1 320. (4.1.22)

21+r1~lx

Hence a basis for ker T; is given by Yl,Azlxl,...,A

Now it is clear that there exists CT such that CTA%1+r1_lx1 20

T -
and c1¥; = O, and it then follows that c?,c?Al,...,c?Afl ! and T are
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linearly independent; for otherwise there would exist non-zero

Oyrees, O and BT such that

r
r] .
T T i- T
m=ZQ1C1A11+BT1=O.
i=1
s . A £1+I1-l .
Multiplying on the right by 2 X1 € ker Tp, we obtain
T L3+r1-1 T 2,+ry~1
‘m All 1 = a1c1A11 1 =0
L. . . L14r1-2 .
so that oy = 0. Similarly multiplying by A) Xy € ker Ty, we obtain
T 2y+r1-2 T 21+4r1-1
m All 1 = a2c1A11 1 =0
so that ap = 0. Similarly we find that a3 = ... = ar1= 0. -
- . T T T ry- .
It is now clear that cl,clAl,..t,clAfl 1 and Ty are a basis for

the annihilator of ¥;, since by (4.1.18) we have that
T k T, .~k
c1A1¥Yy, = cj1My =0 for all k.

Similarly for T and Ap, and the corresponding %7 and rp there

, T T fo+ro-1 T, .
exists cp such that czAzz T2 xp # 0 and co¥2 = O, and it then follows
T T ro-1 . iy s
that c3,...,C2A3 and T, are a basis for the annihilator of Yj,.

Now we proved in Lemma 4.2.1 that

U Ylaxz
o
v

and [ U ] XIEY?
o2t2

o] for all x?
fo)

It

o] for all xl.
o)

U
It then follows that [V] must be spanned by {eimfj} where {ei} and

{fj} are bases for the annihilators of Y] and Y, respectively. Hence by

. U
the preceding discussion we can immediately see that v is spanned by
T T ry1-1 T T ro-1
{7y Ucls..-,c1A1} "} & {T) U cy,...conp2 "}. (4.1.23)

Now, let [vT 0] be the first row of [V 0] that we obtain in (4.1.5)

~ T, T +
after expansion of [d" h ] { ay=a; o |" L.
Cc A

Thenby (4.1.23) it is clear that we can write vT as
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‘o ro-1 e
v o= wiTiaTy + ) Y. TimcsA3 + ) cTAixS?Tz
j=0 1 i=0
21 poe (4.1.24)
ri-l ro-1l T i T3
+ z z Oli .C1A1@CoA)
i=0 j=0 I

for some wT, {Y§}r {62} and {aij}'
The remaining rows of V and U are then calculated from VT(AlaAz)k,
k> 0. Let r = max(rj,rz). Then using the facts that
i) TlAg c Ty and TzAg ¢ To since T; and T, are bases for invariant
subspaces of A; and A, respectively, )
ii) C?Afl € T3 since CTA?IYI = C?YIM;rl = 0 and c?Afl(A¥x1) =0,

k = 21,...,214r1-1 i.e. cTAfl annihilates the null-space of T

and similarly
11i) ciA52 c Ty,
it is clear from (4.1.24) that

VT(AlﬂAz)r c TyaTs.
Hence VT(AlaAz)r ¢ U, so that
rank V £ r = max(rj,rp).

Now in Remark 4.1.1 we saw that the number of additional substatés
added to Xy was equal to rank V, and from Step 3 of the reduction
procedure it is clear that the dimensions of xﬁ and xi are reduced by
at least r) and r, respectively. Hence the dimension of the whole

state space is reduced.by at least

ry + ro - max(ry,rp) 2 O.

Remark 4.1.2

The fact that our examination of V can be based on its first row
T R . . . .
v~ when dealing with a single output is the departure point when we

turn to multioutput bilinear systems. As we shall see in the example
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at the begiﬁning of Chapter 5, any attempt to set up a realization which
is both completely observable‘and quasi-reachable may well break down
because the above reduction procedure to observable form actually increases
the dimension of the state space rather than decreases it. We are then

left with a realization which is no longer gquasi-reachable.

4.2 Reduction to Quasi-Reachable Realization

Reduction in the case of a realization with uncontrollable states
is much simpler than reduction for uncbservable states. Before )
desscribing the procedure, we prove the following
Lemma 4;%:L

If (A;,b;) and (A;,bjy) are controllable pairs, then

(Ay=hs, [Alnbz?blaAnglﬂbz]) is a controllable pair.

Proof: Suppose otherwise. Then there exists v ¢ Rnlnz such that

T T

v’ AjmA; = Av for some X ¢ C (4.2.1)
and VT[Alﬂbz b=A, blﬂAz-_] = 0.

Il
il

k
In particular VTAlﬂbz O implies vThlblnbz O for all k

]
Il

k
and . valaAz O implies valaAzbz O for all k.

Then from (4.2.1) we have

. .
v'al anlb, = A v atbiab, = 0  for all i,k
] biaRzbs 1b1aby
and similarly v'albiaa) M, = Ajblamlzﬁ:z =0 for all j,k
and further v Adb,andb, = A v byab, = O for all j.
1b1@AsDby 1:=b)

Now (A;,b}) and (Ap,bs) controllable implies that

{A%blﬂAgbz :i=0,...,nm-1; j =0,...,np-1} is a basis for RPN
VTA§b1ﬂA3b2 = O for all i,j implies vr = o. o

Let us suppose that the system (3.1.1)-(3.1.3) is not gquasi-reachable.

By Theorem 3-2.1, this means that the- controllability matrix of




79

[ AymA,; O ] and [ Ajabs bimAs; biabs ] 4 | By ]
C A 193] Q2 . Db By
With the aid of Lemma 4.2.1 above wecan normalize the controllability

I O
L In

This follows because.[

o>
—

does not have full rank.

matrix to [ ] A R where I is the identity matrix of RM1M2,

Aj®Ay

c g ] is a lower triangular matrix. Now,

because of the invariant subspace property of R we can write

Aj@h, O 1o ={1o0 Aj@h, O (4.2.2)
c a L L L Ly 'E; E, N

.
Bj

| B2
[ B, } =(zo ] [ B, ] (4.2.3)
By LLLI BE

o)
Lo

for some E;, Ep, and because }'is contained in R we have

for some matrix E.
We now append the matrix [ ] to R, where L, is linearly

independent of Lj, and calculate

1 o o )1tl= 1 0 , say.
L L Ly, -NjL Ny
~NoL Ny

Then using (4.2.2) we calculate

I O |[am=n, 0l 0 o0} = AymA, o o
-N;L N; [ C A][L Ly Lz] N; [C+AL-L(AjmRy) ] *NjAL; N;jALy
~N,oL N o o NZALZJ

and
I o By | = B,
-NiL Ny [ By ] N} (Bp-LB))
-NpL Np o

and this last identity follows from (4.2.3).

We immediately see that

AIEAZ 0 ’ Bl
N [C+AL-L (A 8R5) ] N;AL, Nj (Bo-LB;)

is a controllable pair.
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It is now obvious what we need to do to reduce the state space to
controllable form; we first transform (3.1.1)-(3.1.4) using the transformation
defined in Proposition 3.1.1, with W=-L; we then just employ the
ordinary linear system type similarity transformation X > [Nl]xk,

N2
so that our reduced system equations (3.1.3) and (3.1.4) can be rewritten as
= % - 1.2
& . = MALIR 4 Ni[Cc+ AL - L(Aj=A)) ]xkaxk
-FN1[Q1'L(A1ﬂb2)]Xin4'N1[Q2-L(b1xA2)]xiuk4'Nltb-L(blabz)]uka

_ T._ T 1_.2 T .
Yy = (d +hL)xkaxk+thk.

Remark 4.2.1

It is readily seen that the transformations used herxe all preserve

observability.

1
z1(z,-a)

We now return to our previous example s with state space

description
ST S T XX
We have d' = [1]  Ajma, = [0].
So the observability subspace H of (dT,AlﬂAz) is [1]. Now
Ajmb, = [0] and bjmA; = [al, so that T} = 0 and T, = [1] and the system
' is not observable.
It is clear that H = [1] ¢ TjaT; = [0Jal1] = [0]; hence Vv = [1] and

using (4.1.6) and (4.1.7) we obtain

Ky = [0]
K, = @ since A = ¢
and kT = [11.

Finally we choose X; = [1] and V) = Tgl = [1], v; = o.
Y )
Then xk+l axy + Vi

A

%+l

$2
Kyx, + V(blaAz)szkuk + V(blmbz)ukvk

ox, + [l][a][l]&iuk + 1101 Jw v,
2R *

T
Yk—kxk=xk.
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Remark 4.2.4

Reduction to quasi-reachable form is in effect just
pole-zero cancellation,similar to that encountered in linear

systems.For example the transfer function

/l

s = —
(z%xézq+b)(zg+cz2+d)(z1z2+e)
can be rewritten as

zqz2+f 1

(z%fazq+b)(z§+cza+d)(zqz2+e)@z1z2+f)

.Sa

Then by coasidering this as a linear system 1/(z+e)(2+f)
with input from a bilinear map (zqz2+f)4(z3+az1+b)(z§+cz2+d),

a state space realization

0 1 To o 1 0
1 1 2 1
X = X, + u X = X 4+ ' ¢
k+1 [_b _J k u k k+1 [_d _c] ! [,'] k

) 0 1 0000 4 5
X = + X, @
K17 _er —(ess)| |00l F
Y= [ O]}ck ‘ ,
can readily be constructed.It is now easy to check that the

quasi-reachability conditions of Theopem 3.2.1 are not

satisfied.
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4.3 Minimal Realizations

In this section we will show that a realization is minimal if and
only if it is canonical. This we do by demonstrating that all canonical
(1.e. quasi-reachable and observable) realizations of a bilinear input/
output map f are isomorphic to one another in the sense that any two are
related by the four types of transformations detailed in §3.1l. Having
done this it will then be apparent that there is a unique mapping from
any observable realization of £ to any specified canonical realization;
hence, according to Definition 3.1.4, a.canonical realization will also
be minimal. Finally, to show that a minimal realization is canonical we
use the method of contradiction; suppose that a minimal realization M is
not quasi-reachable. Then given any observable realization M', there is
not in general a unique mapping ¢ : M -*Mt a contradiction of the fact
that M is minimal. Hence M must be quasi-reachable.

We shall now build up to Theorem 4.3.1, which states that all
canonical realizations are isomorphic to one another, by means of
Lemmas 4.3.1-4.3.3. e do not make any assumptions regarding the
dimensions (n;,n,,n) and (fi;,f,,n) of the substates (xi,xﬁ,xk) and
(iﬁ,iﬁ,ﬁk) of any two canonical realizations M and M, but we shall find
that the dimensions of corresponding substates are equal.

In Lemma 4.3.1 we shall require the following results from Chapter
3 regarding canonical realizations M and M. We only state the results
for M, but they will be identicai for ﬂ:

(R1) (A;,b;) and (Aj,by) are reachable pairs

®2) [1a® 071, ( a@h, 0 ),[ Amb, ), A | ana
9 { o] AJ { 93] ) J
r[dT hT], [ A=A,

c A Q,

\ J \

A .
[ bymA, ], A, | are bicbservable pairs.

o}

J
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T T ~ ~ -~ ~ - A A
Let M = (A;,b;,A7,b7,A,C,01,Q2,b,h",d") and M = (A;,b;,A7,b5,A,C,
él,Qz,ﬁ,AT,aT) be canonical realizations of a bilinear input/output map
X
f. Then there exist non-singular matrices TlesRnl n1' To e R2XM2
such that
Proof: If M and M are realizations of £, then the following equalities

hold on expansion of the terms in (2.4.5):

3

s .= [dT hT] rAlmAz O\i rAlﬂbz\ Alb) = f&T ﬂT] rl‘\klﬂf\z o)* rlgle)z'\ I;{}’:;l (4.3.1)
i+4j+1,i . . .
L ¢ A &) L ¢ AL Q)
~ ~ ~ A ~ A AjA
Si i+j+l= [dT hT] rAlﬂAz O\i rblﬂAz\ Agbz = [d hT] rA]_ﬂAz O\i rblﬂAz\ A2b2 (4 ..3-2)
’ ’ A ~ A
[ ¢ a) | Q2 L ¢ Al Q)
Si i = [dT hT] 'AlﬂAz O’i rblﬂ.bz\ = [aT ﬁT] [Alﬂgz 0]1[51&52] (4.3.3)
’ -~ -~ ~
. ¢ Al | b | cC A b
-1 i -3 . . .
where s = (zy2z7) X s;:21 227 is the transfer function representation
' i,j=1
of f£.
Now let H = pT and H = ﬁT
T ATA
PF PF
T k- AT~
p Fk 1 p Fk !

span the observability subspaces generated by

c A

j Afa -~ AjA
H[Alabz]Albl = H[Almbz]Albl for all j 2 O.
Q1 Q2

lie>

(pT,F) A [dThT], A=A, O|| and (ﬁT,ﬁ)
C A

Equality (4.3.1) then implies that

Using results (Rl) and (R2) above and the theory of Hankel matrices
[K2], we can now deduce that there exists an invertible matrix T; such
that

;\1 = TlAlTIl and 61 = lel'
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In a similar way, egquality (4.3.2) implies that there exists an

invertible matrix T2 such that
Ay = ToAyTaT and By = Tyby.

Using this result, it‘is now clear that to establish a relationship
between two canonical realizations of a bilinear input/output map, it is
sufficient to study realizations of the form M = (Al,bl,Aé}bz,A,C,Ql,Qz,
b, 1T,y and B = (] /by, Ag.ba, 8,801 ,00,5,67,a7) .

Returning then to the expressions (4.3.1)-(4.3.3) for si+j+1,g’
si,i+j+l' Siy¢ where we now assume thaé ﬁl = Ay, gi = bp, 52 = Ap, 52 = bjp,

it is clear that since (A;,b;) and (Aj;,bj) are reachable pairs, we can

»

rewrite (4.3.1) and (4.3.2) as
i

[aTh 1 (A mp, 0) (A abs) = [4TAT1{A@A, 0)* (Ajab,) (i=0,1,...)
. € AJ | Q) . € A} | @1 )

[dThT] rAlﬂAz 0w i rblﬂhzw = [&TﬁT] rAlﬂAz O’ * rb]_&l\zw (i =0,1,...)
. ¢ A | Q) | & A | Q2 )

and combining these with (4.3.3), we obtain the following equality:

IdThT] [AlﬂAz O]i[Alﬂbz bjah, blﬂbz] = [a"h") [Alﬂi\z 0]1[1\1&’02 bjmAy bjmby
C A 3] Q2 b cC A o3 Q2 Q

which we shall rewrite for convenience as

@h 1 F o) (e) =3 F o) (6} (i=o0,1,...). (4.3.4)
cC A B c A B

Note that (hT,A).and (ﬁT,i) are observable pairs and

I_F O],[G] and [F O],[G] are reachable pairs.
-cad LB -¢ A B

Before we show the relationship between the matrices of M and M we

shall prove the following lemma:
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Lemma 4.3.2

Let KO [, M and KO |,| M be reachable pairs
La||N | LA | | R

[

which are related by a similarity transformation. Then this similarity

transformation is of the form [ 10 ], where T is an invertible matrix.

wrT
Proof: By the aﬁove assumptions there exist matrices T, U, V and W
such that
[vu][xo]=[1§9][vu] (4.3.5)
wrT LA LA WwrT
and - [ vu ][ M ] = [ M ]. © (4.3.6)
WwrT N N
From (4.3.6) we obtain
VM + UN = M and hence
[v-r vl [M] = 0. (4.3.7)
N .
From (4.3.5) we obtain
VK + UL = KV
and adding -K to each side we obtain
(V-I)K + UL = K(v-I). (4.3.8)
Also from (4.3.5) we obtain
UA = KU , (4.3.9)

so combining (4.3.8) and (4.3.9) we get

fv-1 vl K o | = x[v-1 U]. } (4.3.10)
LA

Combining (4.3.7) and (4.3.10) we see that

[v-1 U] [3][1; 2][3][1;2]"[21

which can only hold if [v-I U]

]
o

1l

O because of the controllability

assumption. Hence V =1I and U

0. 0
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We shall now prove a similar result to this lemma, involving the
matrices in the expression (4.3.4).

Lemma 4.3.3

et [@h"1[Fo ) (6)=@hI(ro)"(c) forall i,  (4.3.11)
CA B cA B

where (hT,A) and (hT,A) are observable pairs and [:F o] ],I—G'] and
CA B

[ [:F o ,[-G-] are reachable pairs. Then there exists a similarity

transform relating these matrices which is of the form [ IO ] wherXe
YT

T is invertible.

Proof: Let us first note that the observability assumptions imply

that A and A are cyclic.
Without loss of generality let n = dim A < dim ﬂ, and suppose that
the characteristic equation of A is given by
A + alAn -1 + ve. + anI = 0. (4.3.12)

Consider the following equality which can be derived from the
assumption (4.3.11):

[dThT]'l_FO'n nl+...+a'_IO
ca Moz
a7 (- rol®+a[Fo]™t +alz1o

c A | & "lox

\ J
(i =0,1,2,...)

=

(o IRD}
> O
O o}
W o

> O

B
Il

o>m
O
o Q

It follows from (4.3:12) that the left-hand side of this expression

reduces to [ur O][ F O ]l[ G ] where u- is defined in the obvious way,
cC A B

f

and the right-hand side can be expressed as [ﬁTﬁT] FO * G |.
¢ A B
Hence
ATAT i i
w1 ro ) (e)=m olfFo)'(c)
¢ A B cCaA B
T i ’
=uFG
T
=[u olfFo)*(c).
C A ) B )
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This implies that

~ T AT s
[quu w1l FO i G | =0 for all i.
. caAa B
AT T AT s s ;
Hence [u'-u” w ] = 0 because of the reachability assumption.

An immediate consequence of this is that A also satisfies (4.3.12),
and since A is cyclic, we must have dim A = dim A.
It now follows from the fact that U = u and w = 0, that we can

write a basis for the observability subspaces H and f] of [[dThT], F d]]
lc a

and[[d"A71, [F O]) as the rows of (U O A H and (U 0] A A respectively,
C A PQ 230
uTFk—l
where U = . where k < dim F.
u'F
uT

Further, we know that Q and § are full rank because (hT,A) and

T F . . A
(h~,3) are observable pairs, so by rearranging the rows of H and H, we

can write down a basis for the observability subspaces as [U O] and [U 0].
VI vr

Because of the invariant subspace property of H and H we can now

write

ve)lea) T (xe)(ve] (4:3:13

for appropriate K and L, and

(32 )(83)  [£7)]

for appropriate f.. Note that K is the same in both (4.4.13) and

=
» 0
S

o (4.3.14)
I

(4.4.14). Furthermore, since [dThT] cH and [aTﬁT] c H, we can write

[a’h'] = [kx'h'1{ v o (4.3.15)
VI
and [3AT] = [£TAT1({ v o (4.3.16)
VI
T

for appropriate k and 7.

We can now write (4.3.11) in terms of minimal representations,

namely
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[kThT][ K o']i[ UG ] = [ﬁTﬁT][

o )*( ue (1 =0,1,...)
LA VG+B

K
L A VG+B

By Lemma 4.3.2 we know that there exists a similarity transformation

relating the two sets of matrices as follows:

(Zo)(xe)-(x2)(22]

so in particular A= TAT_1 (4.3.17)
WK + TL = L + AW (4.3.18)
[22)(%e ) [%s] -
W T )| vetB VG+B

so in particular

WUG + TVG + TB = UG + B T (4.3.19)
and [k'h ] = [ﬁTﬁT][ Io J
WT

so in particular ﬁT = hTT--l (4.3.20)
and kT = kT + AW (4.3.21)

We shall now show that (4.3.13)-(4.3.20) together imply that the

similarity transformation relating the two sets of matrices in (4.3.11)

is |I . Of.
TV+WU-V T

(i) Rearranging (4.3.19) we obtain :
B = TB + (TVHIU-V)G. (4.3.22)

(ii) From (4.3.16) we have

Substituting for kT from (4.3.21) we obtain

&% = xTu - AU + AT0

and substituting for kTU-from (4.3.15) and hT from (4.3.20) we obtain

§T = a¥ - A% - nTwu + A%

& = nTr L (rvsnu-vy (4.3.23)
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(iii) From (4.3.14) we have

a

LU + AV - VF

¢

(WK+TL-AW)U + AV - VF by (4.3.18).

Substituting for LU and KU from (4.3.13) we obtain

~

C = WUF + T(VF+C-AV) - AWU + AV - VF

(TVAHU-V)F + TC - TAT T (TV+HU-1) (4.3.24)

on substituting for A from (4.3.17).
It is now clear that the relationships (4.3.17), (4.3.20), (4.3.22)
(4.3.23) and (4.3.24) together give the required result. 0
We are now in a position to put together the results of Lemmas 4.3.1
and 4.3.3 to provide the main result of this section.

Theorem 4.3.§

T T -~ g A N A A .
Let M = (A1,by,A;,b5,A,C,Q1,Q2,b,h",d") and # = (A,,6,,4,,5,,4,C,
-~ ~ ~ ATI\ . . I3 3 .
01,92,b,h dT) be canonical realizations of a bilinear input/output map.
Then there exist unique invertible matrices T;, T, and T and a unique

matrix ¥ such that the following relationships hold:

~ - A _l ~
Ay = TlAlTll 51 = lel Ay, = TpAsT, by = T2b2
A =oart BT = nTrt
¢ = TcT ' mT,t + YT,aT,(AjaA,) Ty laT, - TAT 1y
~ -1 -1 A -1 -1
Q1 =TTy + YT1aTp (Ajaby) Ty Qp = TQpTp  + YTyaT;(bymAr) Tp
b = Tb + YTiaTy (bjaby)  d° = d T T, - hoT Ly.
Proof: The existence of Tj, Ty, T and Y follows from Lemmas 4.3.1 and

4.3.2. Uniqueness of T;, T, and T follows immediately from the facts
that (A;,b;) and (A;,b;) are reachable pairs and (hT,A) is an observable
pair. |

To show uniqueness of Y, suppose that Y; also satisfies the above
equalities. 1In particular, we obtain from the equalities for 6 and &T

the following:



89

¢ - TCT, aTp = YAjmA, = AY = Y Rj@h, - AY;
i.e. (Y-¥p)AjmRy; = A(Y-Y5) (4.3.25)
_and 3T - afritaT,t = -ATy = -Gy
i.e. h'(¥-¥,) = O. (4.3.26)

Using (4.3.25) and (4.3.26).we obtain

e (¥-¥;) =0
ﬁT*n-l
so that (hT,A) observable implies Y = Yj. - 0

We are now in a position to obtain a result connecting minimal and

canonical realizations:

Theorem 4.3.2

A realization of a bilinear input/output map is minimal iff it is
canonical.
Proof: Referring back to §4.2, we see that reduction to quasi-~reachable
form ffom an observable realization is equivalent to linear system

reduction to reachable form of the pair [ Aj®hAy O ), Ajab; bjmA,; bjab, ].
C A N Qo .b

From this we can deduce, with the aid of Theorem 4.3.1, that there
exists a unique mapping taking any observable realization of ¢ bilineaxr
input/output map £ to any specified canonical realization of f. Hence,
according to Definition 3.1.4, a canonical realization is a minimal

realization.

Convérsely, let M be a minigal realization of f; then.by Definition
3.1.4, it must be opservable. Suppose, however, that M is not a canonical
realization; it follows, then, that M is not quasi-reachable. If this is
the case, there will not in general be a unique mapping from any
observable realization of £ to M, a contradiction of M being minimal.

Hence we deduce that M is canonical. 0
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Remark:

It is no& apparent from this result and from the reduction pro-
cedures that produce observable and quasi-reachable realizations that a
minimal realization is one with the smallest number of states necessary

to describe the input/output map in state space form.

4.4 Canonical Forms

We present a few definitions from'[ﬁl] before getting down to the
main business of preseﬁting realizations of bilinear input/output maps
which are unique with respect to their structure and which conéain as
many fixed zeros and ones as possible.

Definition 4.4.1

Let E be an equivalence relation on the set S. A set of canonical

forms for S under E is a subset C of S such that for all s € S, there

exists a unique c € C such that sEc. Let @#: S > C be defined by
P(s) = c. Clearly Img = C = S/E.

Definition 4.4.2

A function f: S =+ V is an invariant (for S under E) if for all

S1¢82 € S, S1E5p implies f(s3) = £(s3). f is a complete invariant if

f(s)) = £(sy) +>s1Esy. £ is an independent invariant if Im £ = V.

Clearly @: S - C is a complete independent invariant, and conversely,

a complete independent invariant f: § - V © § generates canonical forms

(Vv is a set of canonical forms). '
For bilinear dynamical systems, we shall say that M;EM, if the

transfer functions obtained from them are equal. For single input/single

output linear systems it is well known that the following two realizations

are canonical, each having invariants {al,...,an,cl,...,c } and
n
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{a1,...,an,b1,...,bn}which uniquely specify the transfer function of the

system
. T_ . _ [ 3\ - r
(i) c = [cl....cn] A=(01 b 0
0 ‘1 o]
-a cesea™al 1
\ n ) . J
(1) ¢* = [0....011 a={o a| b=(5)
1 0. .
0 .l—a]_ b
\ . J L n) —

Given a realization M = (A1,b1,A2,b2,A,C,Q1,Qz,b,dT,hT) of a bilinear
input/output map we know that (A;,bj) and (A5,by) are reachable pairs, so
that we can set up these péirs like A and b in (i), and in addition (hT,A)
is an observable pair so we can set this up like (cT,A) in (ii).

We can now ask whether there is any representation of the remaining
matrices specifying M which has a similar well-defined form and is also
unique. The answer to this is in the affirmative, and we can derive
several different canonical forms.

Before specifying these canonical forms we remark that having defined
the form of the matrices Aj,b;,A,bs,A and hT, we are no longer permitted
to transform M via the similarity transformations T;, T and T, defined
in Theorem 4.4.4, and the only freedom allowed us with regard to changing

X
parameters is therefore via the matrix Y ¢ Rn n1n2'

Canonical Form 1:

We assume that nj,np, and n are all greater than zero. If any of
these are zero, then clearly Y = O.

The canonical form presented here will be specified by dT = [0....0]
and all rows of C except the first are zero. We shall show that not only

does this canonical form exist, but that it is unique. An immediate
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corollary of this will be that a complete set of independent invariants
for an input/output map £ will be given by {gl,gé,gjngl,Qz,b} where
aj),a» are the bottom rows of A;,MA, respectively, a is the last column of
A and ¢ is the first row of C.

From Theorem 4.4.4 we have

A T PN
dT =d - hTY and C = C + YAjamA; — AY.
. 4T X T
We can obtain 4" = O by setting the last row of Y equal to 4, for
then d* = d® - [0..... 011( ¥;) = o where v = [ v ’\.
I
If we now define & = [ E? , C = CT , Y = yT wvhere y: = dT
é'r Y T
‘. n “n Yy
. AT T
we obtain ci = ci + y? \AlaAz - 0] -aj f yT )
: : : L o : l:
AT °T T Tl J T
cn cn yn . 0o 1 a, yn
AT T T T T
and hence S = Sy + ykAlﬂAz - yk_l + akyn (k = 2,...,n)
T
yn = dT.
. AT T , , :
To obtain C = 0o k = &,...,n we choose yk sequentially in the mannex
T _ »
Yx

T T T
1 - C:k + ykAlﬂAz + akyn
T

S yEAlﬂAz + ade.
This gives unique values for {yk}, and hence
ET = CT + yTAlﬂAz + a1dT
is uniquely specified.. Finally, since it is now apparent that Y is uniquely
defined, we must have Ql = Q1 + YAjaby, éz = Q3 + Y(bj=A,;) and b=b+ Y (bjmbs)

uniquely defined.

Note that using the nn)ny elements of Y we have specified a canonical

form with nnjn; zeros.
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Canonical Form 2

T
The canonical form presented here will be specified by b = [0....0]7,
all columns except the first of Q) and Q; are zero, and C is structured

as follows:

C=. Mo ooseaeX X b4 X
Xevoonne X % x x
——— nj+1  2nj+l (no-1)n;+l

n; columns

Again, we shall show that this canonical form exists and that it is
unique. We shall then find that a complete set of independent invariants
is given by {EJ'EZ'EJEJ'SZ'C"dT}' where aj,a2 are the bottom ;ows of
A) A, respectively, a is the last column of A, 91 and g, are the first
columns of Q; and Q; respectively and C' is the n x (n}+np-1) matrix made

up of the non-zero columns of C.

From Theorem 4.4.4 we have

-

b =b + Y(bjmby) Q) = Q) + Y(Aj@by) Qp = Q, + Y(bmA,)
C =C + Y(Ajmh,) - AY.
Defining ¥ = [y. ..y R TS
~n2

4 Y .
11 ni.1 12 ni,2
and letting Yy = ~b

nlhzj

it is clear that

b =b + Y(b =D + e
b (bimb2) [Yll ynan

| |

Defining Q; = [qllqlz---.qlnll Q) = [q11q12;"'q1n1]'

it
Q vveev e O

HO 1 +0
| U

we can write

[Qyy----ay 1= [ayg----q1_ 1 + [¥1]---.¥ 1( o
1 In, In, 11 n,n, o




and hence

9y =
ynlnz = -b.

To obtain &1k =0

k=2,...,n,

k=2,...,n,

we choose ykn2 sequentially as

Yx-1,n,

Defining 61 and Q5 similarly, it is clear that we can obtain

q2k=o k=2,...,n2 by
Yn,,k-1 ~

Note that a3 =

- and g21 =

are uniquely specified.

Finally, defining C

and C =

we can write

1= lc

[c“....cnln2

e 1 )
o . 0 .
: i. 0
. (o] ‘1
. —a%... -al
. n]
—[Y]_l ..... ynlnz : '.
: ol (o]
: 6] .
(o] —a%.... aél
a2 2
L alAl ....................... -a Al J

1 -
q¥nny - Yk

-alp -
akb 9y

choosing y sequentially as
nik

—324 -
akb SO
1
q11 - ;b
d21 -~ a%b
= [C11eeeeC  euenn ¢ . 8 ]
11 1,1 l,np niny
= [c;1 "'Cnl,l ..... Cl,nz""cnlnzj

e + A cean
1l Cnlnzj [y ynlnz

94
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where

and hence

= C

1 25 .
B * + =2,...
cjk jk + ijk yj—l,k—l akyj-l,nl éjYAl j , /Ny

where Y é=[yln2""y 1. k

2,.04,0¢
niny r2morti

Hence we can set {éjk :j==2,...,n1;_k==2,...,n2} to zero by
appropriate choice of {yj—l k-1° j=2,...,n1, k=,...,n0}, and it is
1
clear tﬁat the remaining columns of C are uniquely defined.

. Note again that the number of zeros we have inserted into é,Ql,QZ

and b is given by n(n;-1)(ns-1) + n(n}~1) + n(ny~1) + n = nnynjy.
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CHAPTER 5. MULTI-OUTPUT BILINEAR SYSTEMS

5.1 Preamble

Before discussing canconical and minimal realizations of multioutput
bilinear systems, we shall examiné the following example of a two-output
bilinear input/output map in the context of observability and quasi-
reachability of single output maps.

Let the map be represented by the transfer function se Rreal[(zlgz)].

s = L ! (5.1.1)
zl(z%+az2+b) %)

Following on from our discussion of state-~space descriptions of

bilinear input/output maps in Chapter 2, an obvious choice of state-space

o 1 xﬁ +[o)v,
-b -a 1 (5.1.2)

realization in this case is
12
[ 1l O ]xkﬂxk.

o1

1 =

*%+1

2
Y k41

Yy

Using the notation of Chapter 4, we see that

H=|1 O Ty =0 T, = [0 1
o 1 -b -~a

and this implies that the realization (5.1.2) is not observable. In
particular, if the initial substate x% = 0, it is impossible to determine
the value of the initial substate x% by any sequence of experiments. So,

to construct an observable realization, we employ the reduction procedure

of §4.2 to obtain the following:

2 _( 2
2.0 o 1 ]xk + [ o ]vk

L-b -a 1
= { 2
xk+1 o 1 xkuk + o) vkuk (5.1.3)
‘-b -a 1

o1

.

Yy = 1 o )xk.



It is now clear that not only is this a state space with higher
dimension than the one we started off with, but it is also not quasi-
3 = 2 3 3 -
reachable since X1 ERSE The reason that we obtained a higher
dimensional state space can be explained by writing H in the form
described in §4.2, i.e.

H =

H OO

n

E<c

and in our case here we have n = 0 and Vv = I, so that H = V. Whereas

in the single output case V could be written in the form

X
v = [ viakmay )

T
V AjaBg
vI

T
it is impossible to do this for (5.1.2) for any v , since

Aajmn; = 0laf 0 1) =0 o).
o o

-b -a |
so that the proof showing that the state space dimension does not
increase breaks down at this point.

Turning our attention now to the reason for (5.1.3) not being
quasi-reachable, we can calculate the transfer function s in a natural

way from (5.1.3) as

-1 22
z2122 z%+a22+b

2

» 2 22
zz+azz+h

and our proof of Lemma 3.2.2 indicates that because both elements of the
transfer function vector have numerators containing terms in zz,z%,...
but no terms in l,zl,z%,..., the state space is not quasi-reachable.

It follows also from Lemma3.2.2 that if the A matrix has more tha

two Jordan blocks corresponding to zero eigenvalues, or equivalently i

97

n

£
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the dimension of the null-space of A is greater than two, then the state
space is certainly not quasi-reachable. However, suppose that A has two
Jordan blocks of zero eigenvalues, and the input to state transfer

functions corresponding to these are written as

-1
x1 (2} ,25) 1 CITT) 1 Ry : )1 :
= . z21) Yo (2
. (2122)m1 . V1 1 !12 2
° . my-1] -
%n, (21,22) o (z1292) Rm,
and . -
x_ . (Z1,29) 1 (zyz)™27 L. 1 R 1
mj+1 re2 = m, 122/ m)+1
. (z12) . [¥1(z1) v2(z2)
X (Zl,zz) 0 .'(zlz )mz—l
m2 2’ my+my

wher ces
ere Ry, ,Rm1+m2

€ R[lezz]-
Then the state space corresponding to these will be quasi-reachable if

the terms of le and Rm which remain after discarding those divisible

1+m2
by z1zp are not all divisible by z; or all divisible by z,. This is an
immediate consequence of the detailed discussion in the proof of Lemma 3.2.2,
where we discovered that the crucial terms in the study of reachability

for zero-eigenvalue modes were those terms in the numerator which were

not divisible by z;z,.

We now have an indication of how to test whether a state space realiza-
tion of multi-output bilinear map is quasi-reachable or not, and this is
formalized in the next section. Complementing this, in §5.3 wé provide
an algorithm for reducing a realization which is not quasi-reachable to
one which is.

There is another problem that remains, however, and that is the
guestion of observability, and in order to cope with a realization such

as (5.1.2) it is necessary, in §5.4, to formulate the concept of quasi-

observability. As we shall see, this is not quite enough to generate
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a theory of minimal realizations (Definition 3.1.4), and this remains

an open problem.

5.2 Quasi-Reachability

We have seen in Chapter 2 how to construct a realization of a
bilinear input/output map. We can therefore assume that for the multi-
output case it is in general possible to obtain a realization of the

form

7;1—-
+
N

]

Alxi + bluk

‘ Xepy = B2X ¥ bavy
ka1 = AX F OxgExd £ Qv+ Qpxiuy + bu vy
yk = ka+ Dxi&xi.

We shall assume that (A1,b)) and (Az,bz) are reachable pairs, and

»
it

that the pair {[Alalxz O],[Alubz bjmAy blmszl ] is also reachable
C A Q1 Q2 b

and (H,A) is an observable pair. If any of these conditions do not hold,
then we know from standard linear system theory and from the results of
Chapter 4 how to remedy this. Note that these conditions do not imply
quasi-reachability of the state space, but only that the components of
the transfer functions x({(z;,z;) and xl(zl)uxz(zz) are linearly independent,
and quasi-reachability will certainly break'dOWn if dim ker A > 2.

Before determining conditions for quasi-reachability in the case
dim ker A = 2, we shaii give an example of how quasi-reachability works
in this case. To show quasi-reachability for general cases of dimker A=2,
the argument proceeds in a similar way to that of Lemma 3-2.2, and we do
not include it here. |
Example: We shall just consider the transfer functions involving
zero—eigenvalue modes of A, and assume that a reacﬁable state space has

been set up for the linear sub-systems involved. For example, let
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il

s (z%+zz)/zlzzw1(zl)wz(_zz)

S5 (zl4-kz%)/zlzzw1(zlyw2(zz).
From Lemma Q.IJye know that the only inputs affecting the output at
time + 1 of s} and s3 are those of the form
(apy(z1) + q1(z1),BYa(z2) + q2(z3)) € UxV,

where a and B are scalars.

The output is then given by

2
1 {Gq2(22)22+ Bq1(21)21} ® 2(2122)—k + y? -

Y1 % 20z | o lzp) P (zy)
-1 kadgs (z2) 22 Bay(zy)z1 -k q

(following the notation of Chapter 3).

If we now write out the series expansions of q;/¢; and q/y, as

il

-1 -2
ql/wl £f12zy + £z + ...

|l

-1 -2
q2/¢2 g122 + gz + ...
the output at time + 1 is given by

gy + sz + ??

Y10

y20 = okg, + BEy + V3
and these two simultaneous equations can be solved for a and B proviéed
that f,g9; - kfags # 0. This of course is just a restriction on the
components of q)(z;) and q;(z3) not to lie on some manifold € Rn1+n2+2’
When this condition is satisfied, any given value of y;g and y,qg can be
attained, so that the whole system is quasi-reachable.

We shall now determine necessary and sufficient conditions for the
state space realization of a bilinear input/output map to be quasi-
reachable when dim ker A = 2. We shall assume that A has been transformed

by a similarity transformation A - TAT_l in such a way that it can be

written as

—_—————p——
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The transfer function of the zero-eigenvalue modes will then be

given by
1 " -1 -1 " -1 u -1 "
s = 2122[b (z1I-31) “bia(zpI-Ap) “by + Q(21I-3A;) "bi+ Q5 (z3I-Ap) "by + b"]

where C", 07, QE and b" respresent the bottom two rows of C, Qj, Qp and b.

Expanding (ZII—AI)-I and (Zzl—Az)-l as

-1 nl 1 ni-1

(z1I-27) =z I+ 21 (A1+a11) + ... + (2] + ... F anl_lI)
(zpoI-Bp) ©~ = z52~ 11 4 0272 (Bp+B1I) + ... + a2t Lo B, 1D
o=

where all + a0t 4+ ... + oy 1Pt o, T =0
np-1 '

and A22 + 814z + ... + Bn A, + BnZI = O represent the characteristic

2=-1
polynomials of A} and Aj, we obtain

1 ny-1 ny-1 no=-1 no-1
=-———————{C"[z I 14 +(a) 7 T+, L+ Ibyalzy2 “I+..+(Br2 ~+..+ 1) Ib
z122P1¥2 1 ( n1—lD balz; (Ap an-l ) Iby

+ Qli [2?1_11'*'- _+(A?1—l+. .+d.n1_lI) ]bl‘PZ (z2)

2-1

Q" [Z lI+..+(A2 +..+Bn2_lI) ]bzlpl(zl) + 1])1(21)1:)2(22)1)"}.

We have seen by Lemma 3.2.2 that the system is not quasi-reachable if

and only if either all the coefficients of 1,z;,2 inside the brackets

2
17"

{ } are zero or else all the coefficients of l,zz,z%,... are zero.
Suppose the coefficients of 1,21,2%,... are all zero; this is

equivalent to

" nl-l nl—l n2—l
oo .o I .eo
c"[z7* "1+...4(A1 T+ -l ) Ibjalns? ~+ +3n2_lI]b2

" n1—l
+ Q1[=z; I+...+(al] +...+an1_lI)]b18n
no-1 n n
+ 0" A2 T+, ..+ I Ly .+ + 4. .. b" = O.
Q7 (A7 an—l Iby (2] anl) Bn2(21 +an1) o]

Taking the coefficients of z?l,...,l, in turn, we obtain

n2—l

z1l:  oy(a; +o..48 Dby + 8 D" =0

S p2le o+ I)by+B_ Q"b nap2 e s + "=
z) : C"bja(Ag +... an—l )bo anQl +01Q2(A2 .e- an_ll)bz alﬁnzb 0
. wran1-l m-1
1: C (Al +...40 l_lI)blﬂ(Al +...+Bn2 I)b2
n-= -1

-1
" + " (a2 4. .. " = 0,
+ 8 Q (a1 "+ R Dby +a Q (A +Bn2_lI)b2+an18n2b o

np-1

" e + " =
By subtracting ai[ 5(R2% T+ +Bn2_lI)b2 anb ] = 0 from each of

these equalities in turn we obtain
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" nz—l "
C A +... I)by, + by =
bya(A; Bh,-1 )by anQ1 1 =0

n;-1 no>-1 w0171
c"(a +o..H0 I)bya(Aa +.0.F I)by + A +...H I)b; = O.
(a3 nq-1 Ybia(Ap an—l )bs anQl( 1 anl—l )by

Now bl,}A1+a11)b1,...,(A?1-1+...+an1_11)b1 are linearly independent
and span Rnl. Hence this series of equalities reduces to

" n2—1 -
C"Ia(Ay +...+Bn2_11)b2 + anQl (o] 5.2.1)
and Q;(A22'1+...+3n2_11)b2 + 8, b" =0

which are the necessary and sufficient conditions for the coefficients of

1,z1,...,z1111 to vanish. Note that for an # O, this is equivalent to

C"Iah; by = QY : ;
1 to(5.2.1)°
Q'2'A2 by, = b".

In a similar way we obtain the necessary and sufficient conditions

for the coefficients of l,zz,...,zg2 to vanish as

n1—1

' (n +...+an1_lI)b1aI + anIQ; =0

N (5.2.2)

and Qq(A?l +...+an1_lI)b1 + anlb“ = 0.

Hence, provided that neither (5.2.1) nor (5.2.2) are satisfied, and
that the reachability conditions above hold, we know that the system is
quasi-reachable. Note that we no longer require A to be a cyclic matrix.
In fact, our proof of reachability in Chapter 3 was general enough to
guarantee that provided that the components of x(zj,z3) and xllzl)nxz(zz)
were linearly independent, then the whole system is quasi-reachable (if

we include the special condition for dim ker A = 2). So for example the

system
1 = 1 2 = 2
xk+l axk + uk xk+l bxk + vk
= + 1 2 1
xk+l c (o] xk 1l xkxk + (o] xkvk
0 o] 0 1

is reachable for ¢ # O and quasi-reachable for ¢ = O.
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5.3 Reduction to Quasi-Reachable Realization

We shall consider three possible alternatives as to why a multi-
output bilinear state space realization is not quasi-reachable, and show
haw to reduce the state space in each case. This will then provide us
with an interative procedure (with a finite number of iterxations) for
reducing any state space realization of a multi-output bilinear system
to quasi-reachable form. The three possible alternatives are:

(1) dim ker A

v

2 and (5.2.1) holds but not (5.2.2)

(2) dim kexr A

[\%

2 and (5.2.2) holds but not (5.2.1)

(3) dim dexr A > 2 and neither (5.2.1l) nor (5.2.2) hold.'

Note that we need not consider the case where both (5.2.1) and
(5.2.2) hold, for then the numerator of the transfer function of the
zero-eigenvalue modes would be divisible by z1z;. Thus we would have
‘a cancellation of zjz, in both numerator and denominator, and the transfer
functions would then be linearly dependent on the components of
xl(zl)axz(zz). This case has then been covered by the reduction
procedure of Chapter 4.

It is also ciear that the reduction procedure for case (2) will be
completely analogous to that of case (1), so we shall only deal with the
latter.

In all three cases we shall assume that the xk subsystem 1s written
as

X4 T {A‘ A"]xk + [C']xiaxi + {Qi]xivk + [Qé]xiuk + [b']ukvk (5.3.1)

O Om c" Q] Q5 b"
with y, = b: 8 H"]xk + Dxiaxﬁ where m = dim ker A and the matrices (A;,b;)

and (A;,bjy) are in reachable canonical form.

1 in the numerators of

case (1) Here we have no terms in l,zl,...,z?
the transfer functions, so that they must all be divisible by 2p. Therefore

we can write
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s(zy,29) = zpR/z12201(21) U2 (23)

R/z101(21) Yo (25) for R € Rlz,,z,].
It is now clear that the sensible path to take to obtain a quasi-
reachable realization is to increase the dimension of the xi subsystem

by 1, and to dispense with all the zero-eigenvalue modes of x . Let us

k
label these modes by Ek so that x,  may be written as x ==[gk ]; then
the system equation for these is given by "k
> = "1 2 " "
X1 C X /XL + Q1 v + Q4 xkuk + b w v, . (5:3.2)

Consider the case det Ap = Bn # 0. Substituting into this equation
2

from (5.2.1)"', we obtain

- -1 <2
- " " "
X1 c xkaxk + C xkaAz bzv + Q5 kuk 2A2 bzuk "
= xkaAz xk+1 + Q7 Az xk+luk (5.3.3)
If we now adjoin a new state §i to xi as follows, -
%1”1:'01 o+ [0 )%
.. o :
) " .
s "1 0
L 0 —anl... -0 L 1 ]
2l = ( 3l =1
such that X R for X, € RY,
1
L "k
1 _ ( 21 21
then I AR ! L 01%
e ‘10
and = &l o x4 ...+ alx1
Yk T *k+1,n;41 7 npk,l k,ny
- T~1
= [anl ...... a) l]xk+l é:plxk+1-
Hence

*x

We can then write the equations for &k and Yy as

(C"JlaA;l + Qhp mAz )x axk kaﬂxk

-~

[ o= ' 1.2 ' 51 1,2 '
X4 A xki-(A C+C JzﬂI)kaxk-kQlszk-kgzxkuk-kb w vy

n

= 1'% A 512
Yy H X+ (H Ci—DJzﬂI)xknxk
where J2 = (0] . .

. In\

o 1
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In the case Bn = 0, from (5.2.1) we obtain the identities
2

c' T a(al27 4, 4B I)b, = O (5.3.4)
2 ny-17P2
w21
. o @ I = - - -
and Q3 (A% "+...48 )by = O (5.3.5)

For (A,,bs) in reachable canonical form, it is easy to show that

,(an2-1 - N
V) +...+.8n2_11)b2 e R

Q oo O

so that (5.3.4) and (5.3.5) imply that C" and Q3 are of the form

c" = 0....0 >< .
::><:: 0....0
4

This in turn implies that equation (5.3.2) is independent of xﬁ 1’
14

Q=

Q ¢+ 0O

and it is then possib to express v, and x2 e, X2 as linea
en p le to expre X Xk,2' ’xk,n near

2

functions of xk+1'

to obtain an equation analogous to (5.3.3). From

this point on, the construction is the same as for an z O.

Case (2) As we remarked above, this is treated in an analogous

way to Case (1).

Case (3) In this case all we do is set up new chtes i xi and xi
and get rid of states corresponding to zero eigenvalues in the Xy
subsystem.

We adjoin the new states as follows:

k] =(o01 12! + [ 0 Ju
4 - o *k DTk
o . .
"1 o
| 0-a +-o -a1) L1
A2 - r A "2 r 3
41 o1 19 %%
"1 o}
\ OB, -+ ~B1 [ 1)
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so that 1 - O Ix .A_-Jl’\1
*x . S kel *k+1
nj -
\ O J
_ 1 o1
K 180 A 3p]
R ¢
. n1
| O )
2 _ 52 52
and <= | L O %21 A¥aRg,
n2 :
{ o )
= Y22 42
° fe  AXex
A ; _
. n2
(| O )

so that we obtain
= "y lgy2 w,l " "
Xy T CIREG QIR V) HQOu + D vy
= " 51 &2 nel &2 2 2
R T R O e L
nwg?2 o1 1 !
+ + ce ‘
Q2% i1 Fear, np 1M, 0 P Y0 %k, )
% 1 1 $2 2
+ . e
b(xk+l,n1+l+a1xk,n1+ +an1xk,l) (xk+l,n2+l+ +Bn2xk,l)

= (C"Ji=J; + Q'iprg + Q'z'pr{aJ + bp?apg)

T
where p, = [an---Bl 1]

=21 o2
A Cx L ®K4,

We can then write the equations for S{k+l and yk as

R,y = A'R + (A"CHC'IpuKy) RlakZ + Q] Jp%yv, + QiKpR2u, by vy
= 1'% neA o 1o02
yk H xk+ (H"C + NzﬂKz)xkaxk.

Having gone through one of the reduction procedures (1), (2) or (3},
we examine dim ker A',.and if this is greater than or equal to 2, we
repeat the above tests and if necessary reduce the system further. Since
the dimension of the A matrix is constantly being reduced as a result of
these procedures, after a finite number of iterations we must reach a

stage when the whole system is quasi-reachable.
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5.4 Quasi-Observability and Canonical Realizations

It has not proved possible as yet to provide a really good definition
of observability or quasi-observability which will lead to a realization
which is minimal in some sense and also canonical. The best that we
have done so far is as follows:

Definition 5.4.1

A state-space realization is quasi-observable if the closure of the

observable set is the whole space.

Referring back to the example (5.2) at the beginning of the chapter,
we can readily see that provided x% ¢ R?2 is not equal to zero, ‘it is

possible to observe the value of xé e RL,

With the aid of the work done on observability conditions in Chapter 3,
we can also formulate some ideas of observability for multi-output systems.

Let us write a basis for the observability subspace of { (o H]'[%IBAZ é] )
c A

as H =

=<c
H OO

where U c T)aT, where T;,T; are the observability subspaces of

Q1 Q2

linearly independent of the rows of TimT;.

[ I_{[Alxbz] iy:31 ] and { I_{[blaAz] ,Az] respectively and the rows of V are

If we were dealing with a single output system, then as we have
shown in Chapter 4, we would have dim V < dim ker T; + dim ker Tj.
However this is no 1o£ger the case in general for multi-output systems,
so we are led to the idea of a system being quasi-observable if (H,3) is
an observable paixr, and if dim V 2 dim ker T; + dim ker Tp,. We also
assume in this case that all non-observable modes of xi and xi associated

with non-zero eigenvalues have been eliminated, i.e. there exist no
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xé € ker Ty or x% € ker T such that V(xémI)=()or V(Iﬂx%)==0. To eliminate
any of these modes we follow the reduction procedure to observable
realizatioﬁ of Chapter 4, followed by the conversion to quasi-reachable
form as detailed in §5.2.

However this is still unsatisfactory with regard to obtaining
canonical realizations which are related by a unique mapping. An example

which has two realizations which are both quasi-reachable and quasi-

observable illustrates this point:

T
s = [ 1 1 -3} . ] (b # Q)
Z12p zl(z§+azz+b) zl(z%+azz+b)

v

s . 1 = 2 = 2
Realization 1: xk+l uk xk+l O 0 O xk + 1 vk
0O 0 1 (o]
0O -b -a 1
- 1..2
yk 1 O O xkﬂxk
0O 1 O
O O 1

Realization 2: xk+l =

!
>v}:.'
»
w
+
-
I

2 = Ol]x}%+ 0 )v,
-b -a 1 ]

7

= %Yk

= 1ox2
yk 1 xk + O O xkaxk.
(0] 1 O
o] o 1
In fact, it has so far proved impossible to find a really satisfac-
tory definition of canonical realizations for multi-output bilinear
systems which ensures that they are minimal realizations too. The only

way that minimality can be brought in directly is that a canonical

realization is one with the smallest state dimension.
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CHAPTER 6. MULTILINEAR SYSTEMS

This chapéér opens with the study of a particular class of multilinear
systems, which bear a great deal of resemblance to bilinear systems and
concludes with a summary of some‘of the ideas contained in previous
work on multilinear system theory.

The particular class of multilinear systems that is studied in §6.1
and §6.2 is based on the class of multilinear input/output maps whoie
denominators (in the case of n-linear maps) can be factorized as
pl(zl)....pn(zn)p(zl....zn). In §6.1, necessary and sufficien; conditions
are presented for a particular class of state space realizations of these
maps to be quasi-reachable, and the proof is a natural extension of the
proof for quasi-reachability of state space realizations of bilinear
input/output maps. In §6.2, a stability result similar to that of §2.5
for bilinear maps is obtained for this class of multilinear maps, and
this provides sufficient conditions for the boundedness of the output
sequence due to a finite length input sequence.

In 56.3, multilinear input/output maps are characterized in a more
formal way, analogously to the treatment of bilinear input/outprut maps in .
§2.1, and in addition some of the notions of the category-theory approach
of [AAM1] to multilinear or multidecomposable systems are introduced. The
main purpose of this approach is to provide the right sort of input and
output spaces in which to work, but as yet it has not produced a theory

of minimal realizations (except in the linear or decomposable case [AM1]).

6.1 Quasi-Reachability of a Class of Multilinear Systems

We shall consider the following specialized class of multilinear

systems:
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] Axd + b ud
1 T % T P9% r 1
X = A+ Cx}{a...ax]i + ¥ ZQi

i=] i =0
} Ji

vlq@. . .@Vli‘fbu]i. v (6.1.1)
Tt

/l...ir

(ij not all egual)

3 L=
3 _ xk if lj =0
where vi = 3
j if i, =1
%k j
and dim kex A = 0 ox 1.

This is specialized in the sense that the transfer function of the
X state has denominatoxr of the form Pl(zl)'-'Pr(zr)P(zl'~~Zr)r with no
polynomials in the denominator of the form pjs(2123) /P3ys5(232425) -

In much the same way as we provided necessary and sufficient condi-
tions for quasi-reachability of bilinear systems, we can express

conditions for'quasi-reachabilify of this multilinear system as follows:

Theorxem 6.1.1

The system (6.1.l1l) is quasi-reachable iff the following conditions
hold:
(1) (Ai'bi)""'(Ar’br) are all controllable pairs.

(ii) Alm...mAr o}, Almbzm...abr....blﬂAza...nAr bla...br
c A
A (F,G) is a reachable pair.
Proof: Clearly these conditions are necessary for quasi-reachability,
since if any (Ai.bi) were not a controllable pair then the substate x;
would not be reachable, and if (F,G) were not a controllable pair, then
there would exist vectors p ¢ Rnl"'nr, q € R® such that
T T
[pT qT]F = Alp qT] for some A ¢ C and [@F qgle=0
and then we would have
Tyl g...ax .+ Tx = A( T lo. . .ax” + T )
P Xen® %71 %n P X8 mx e Xt
To show sufficiency, we first note that the components of the

transfer functions
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xl(zl)s...xxr(zr) and x(zl,...,zr) are linearly independent.
This follows from a similar argument to that of Lemma 3.2.1.
Following the now established procedure of Chapter 3, given any

r .
desired x%,...,x , We can construct input sequences

1

pl(zl)w1(21)+q1(zl),...,pr(zr)wr(zr)+qr(zr)whlch.reach these substates, for
. < 3u
unique qi(zi) where deg q; deg wi' and for any pi(zi) € R[zi], where
wi(z) is the minimal polynomial of Aiu
Now with the aid of a similarity transformation on X1 we can write

A as A

diag (Jy,Jp), where J; and Jg are square matrices with

ker J;

$, and

It is now clear ;hét if x 1is partitioned as [ﬁi §§] with % and §k
associated with Jy, Jp respectively, then only the first r terms of
pi(zi) (i= l,.(.,r)é:ai(zi) will affect the substate X;, and in a
similar way to that for bilinear systems, we find that §1 can almost
always be reached. To be more precise, any given value of Xj can be
reached provided that the coefficients of qi(zi) or equivalently the
elements of x% (i=1,...,xr) do not lie on a certain finite union of
hyperpianes.
We can now write the transfer function for i(zl,...,zr)e an[(Zp...,zg]

as m

S(Z1see212y) (Z)0e-..2y)

¢(zl...zgw1(zl).....wr(zr)

%(z1re.-02) =

- m
where Y, (z.) = 2 Y, (2,
by (z)) = 2.9 (2))
and our problem is now to construct input sequences of the form

pi(zi)wi(zi) + qi(zi) which enable us to reach x; (where

c';i(zi) = ai(zi)lbi(zi) + qi(zi)) .
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We shall now let pi(zi) = z?i§i(zi), for some §i to be determined

later, where mi (i=1l,...,r) is given by
. €, ., 20,€, . zgl...zJr occurs in one of sjy,...,s_ }.
i "J1--.3¢ J1e.-3¢ x n-m

It is then clear that

m, = mﬁx {jk—j

&(zl,...,zr)wl(zl).:.w;(zr) o) (zl...zr)_k =0

k=0
where wi(zi) = pi(zi)wi(zi) or qi(zi) except in the case where

wi(zi) = qi(zi) fo; all i or else wi(zi) = pi(zi)wi(zi)for all i.

If we can-now show that
2 i o -1
(zl,...,zr)iglpi(zi) i(zi) ® (zl...zr)

n—
can attain any value of x; € R m’ then the proof is complete.

We first write the numerator of x as
m_m; My~ =
(zl...zr) zy .-.2 S N(zl,...,zr)4—¢(21...zr)M(21,...,zr)
where N contains no term with a factor (zl...zr)ﬁ_m. By a similar

argument to that of §3.1, we find that the components of N arxe linearly

independent, and that.

- = -k
ipl(zl)wl...pr(zr)wr V] Z(Zl.-.zr)

k

(z1...2) 27200 ) )
3z ..z ) £ Bz ... (z) © [(z1...2)

N(zy,..,2 - _ -k
= _j.ll__l_fg p1(z1)...p (z) © z(zl°°'zr) .
¢(Zl...zr)
We shall choose the p, in such a way that By(z;),..-,B__,(z_ .) have
1 r-1 r-1
coefficients either O or 1, while the coefficients of §r(zr) are chosen
to solve a set of linear equations.

The terms of N(zlh...,zr) can be written as members of the sets

iy ir-1 k 2
A= {z7 °'°z;—l (21...zr_1) (z1...2)) }
- [,i1 ir-1 k L
and B = {z3 ez Tz (2)-2) }

where i;,...,1 range from zero to 21,...,2r_ respectively with the

r-1 1

proviso that at least one of ij;...,1 is zero, k ranges from zero to K

r-1

and & ranges from zero to n-1 (where ni=n-m).
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The input sequences will be structured in a way that is very
similar to that for bilinear systems. First of all we shall divide the
input sequences into n sections, and as with bilinear systems we shall
choose an integer N gre;ter than an integer M to be specified shortly
such that (Ay,b) is a reachable éair, where (cT,A,b) is a minimal

realization of 1/¢(z). The inputs §i(zi) will be of the form

- - 0 N 1 N(n-1) n-1 .
pi(zi) ui(zi):l-ziui(zi)-i-...-l-zi u, (zi) (Li=1,...,x)
3 <
where deg ui(zi) < M. _
All the ui(zi) fbor each i will have the same structure, and each of

these will be divided up into sections each of length 2 2K+ 1. Each of

ipo
these sections will be characterized by z{'...zrf l; let I; = max(iy,..,i

)

1 r-1

for the first choice of ij,...,1i Then the inputs corrxesponding to

r~1°
K+Il—i
VA

this which we shéll choose will be z -1 r-1 and

K+Il—i|
1 g e ey
Il K 2K

+ + ... + + ...+ .
Zr(OLK zra—K+l zrao zr ak)

If this were the only set of inputs to the system, it is clear that

the only effects would be on the transfer functions

i ip-1 ¢ \ 2 _ =
z] "'zr—l z§ (z1...zr) (2 =0,...,0-1)
¢(z1...zr) .
z
x
1
(zl...zr_l)
- K
L (Zl..-zr_l) J
and the outputs of these will then be equal to
e e [ e, ) (% = 0,...,a-1)
¢ (z) .
-a_;
eli]
o)z
- ‘%
L %2 J
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The next section of the input sequence will be chosen in a similar

fashion, except that we have to multiply it by z (i=1,...,r) and

I3+2K+1
i
we continue in this way until all the ug(zi) (i=1,...,r) are completely

s---,0_etc. are yet to be chosen.

characterized, although the wvalues o _x X

It is easy to check that the various sections of the input sequences do
not interact with one another through the transfer functions.

Before completing this p;oof we give an example of what the inputs
look like for the case r= 3.

Suppose the numerator terms are grouped together as {z3,1,z12z,1},

.{2123,z1,z%22}, {2223,z2,ilz%}. The input sequences will be as follows,

in ascending powers of zZ,:

u o1 o 1 o o o1l o
up o1 o o1 o 1 oo
ug aj) ap asg ay ag ag az ag ag

The outputs will then be given by ({alz,azz,agzz},{aqz”,asz”,aszs},
{a7z7,a827,a928})/¢(z).

To return to the proof, we now choose N>M = Il-b...-+Is-ks(2K+l),
where s is the number of different combinations of {il,...,ir}, in sﬁch
a way that N satisfies the conditions of Lemma 3.2.3. It is then clear that
the various unknowns, ai, etc., can be chosen to ensure that the whole
vector transfer function is 'reachable', in the sense that any output at
time + 1 can be attained. This follows from exactly the same arguments
as those in Theorem 3.2.1.

Hence we can coﬂétruct an input sequence which reaches any state
which does not lie on a certain finite union of hperplanes, so that the

system (5.1.1) is quasi-reachable. O

Note that the A-matrix was not required to be cyclic other than with

respect to its zero eigenvalues.
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6.2 Input/Output Stability of a Class of Multilinear Systems

Closely associated with the state space realization of §6.1 is the
transfer function
s = N(zl""’zr)/Pl(zl)"'pr(zr)p(zl"'zr) (6.2.1)
which, using analogous arguments'to those of §2.5 for the special case
of bilinear systems, can be realized in the form of (6.1.l) with the

observation

Yy = deix...ax; + thk
and although this realization may not in general be observable it c;n
always be reduced to quasi-reachable form, using similar methods to
Fhose of §4.2.

| We shall now produce é similar result to that of Theorem 2.3 concern-

ing stability of the output sequence of (6.2.1) due to a finite length
input sequence. Let us factorize the numerator of s as

N(zi,...,zr) = M(zl,...,zr)f(zl...zr).

Depending on whether degziM > deg p; or deg f > deg p, we multiply

top and bottom of (6.2.1) by (z1...z)° to obtain (in analogy with §2.5)

R(Z}se--12Zy) « 9(21---%5)
s =
ql(zl)...qr(zr) q(zl...zr)

where deg ziR < deg qi (L=1,...,1)
deg g £ deq q.
With the preliminaries over, we can now state the following
sufficient conditions Eor output stability.

Theorem 6.2.1

If either of the following conditions hold, then the output sequence

due to a finite length input sequence from Uj X ... X Ur is fstable:

(i) all zeros of p(z) and all terms of the form {ailr..aF } (where

ir

{ail},...,{az } are zeros of pl(z),...,pr(z) respectively) lie within the
r

unit circle;
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(ii) all zeros of p(z) lie within the unit circle and all terms

{ail...az } not lying within the unit circle are zeros of f(z).
r

Proof: Using the representation lemma for recognizable sequences,
Lemma 2.2, it is easy to see that an input of the form z%l...zir will
produce an output sequence given by

Ty e el Ty Zg(z) o) z " (6.2.2)

T
y(z) =c (zI—Ala...aAr) an r qlz) L

where I = min(il,...,ir).
It is now immediately obvious that because (1) the eigenvalues of Ai
(i =1,...,r) are the same as the zeros of pi(zi) with perhaps the éddition
of a few zero eigenvalues, (2) the zeros of g(z) are the same ;s those of
p(z) with the possible addition of a few zeros, the conditions (i) or (ii)
are sufficient for the output sequence given by y(z) to be %£;-stable.
Finally, because a finite input sequence leads to the addition of

only a finite number of terms of form (6.2.2), the theorem is proven. [J

6.3 Characterization of Multilinear Systems

We shall define the input space and output spaces in a similar way
to that of Chapter 2, where in this case we deal with m 2 2 infut channels.

{u e R%™ with compact support} i =1,...,m

{ue RN—{O}}.

U,
i

f
Then we say that-amap £ : Uy x ... X Um is a multi-linear discrete-
time input/output map if it satisfies the conditions:
(i) " Multilinearity:
For all fixed u, € Ui for i # j, the map

f(u1,-..'u. hd Iu-

J"‘l' J+l,...,um) N Uj > Y

is linear (j = 1,...,m.
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(ii) Stationarity:
£(ou;,.-- ,Oum)‘ = o*f(uy,... ,um)'
where o and o* are shift operators.
As with bilinear systems, we can easily show that after setting up

the isomorphisms u, = R[zi], Y s'R[[z-l]], the map f will then be iso-

. : -1 - -1
morphic to the causal power series s = (zl...zm) Zsi zlll...zm m

1-eeip
with output y € R[[(zl...fm)_l]] given by
- -k
y = suy(zy...u (z) ) (z1...2)
k=1
for inputs u, (z,) € Riz,6].
it%i i

Again, in analogy with bilinear systems, we can define a series of
equivalence relations which, when taken together, are equivalent to

Nerode equivalence. An example of this is given by the case m=3; we

define the equivalence relations 7, Z,';,f;,{%,is,]zg,as follows (where,

for convenience, we consider input spaces U, V and W):

: k k
up 7 u2 1ff £(z uy,¢,9) = £(z1ug.9,9)

for all k and for all ¢,y with deg ¢,¥ < k
with similar definitions for 5 and 3 .

. k k k k
(vl,wl)ég (vo,w2) 1ff £(8,2,v),z5w)) = £(8,2,v3,2

3¥2)

for all kx and for all 6 with deg 6 < I
with similar definitions for 13 and 13-

(uy,vy.wy) (up,vo,wp) iff £(uy,vy,wy) = £(uz,vy,wy).

123
It is then easy to show that (u;,vy,w)) N (ug,vo,wp) iff uy 7 vz
V1 3 Var W1 § W2 (ul,vl)fa (uz,v2), (u,wy) 1y (up,wa), (vi.w1) 53 (v2,w2)
and (u1,v1,w1)153(u2,v2,w2).
Further, by analogy with bilinear systems, it is clear that the
quotient spaces X; = U/y, X = V/3, and X3 = W/3 may be endowed with
the structure of a linear space. Then, by embedding UXV in the tensor

space UaV, we can show that there exists a linear map £ inducing an

12
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equivalence relation in UxV, and then (uj,vy) 12 (uz,vy) iff wjavy = usav,
(mod fla2)' We can do the same with UxW and VW to obtain linear spaces

X1 = UaV/ker flazr ¥13 = UaW/ker £ and Xp3 = VaW/ker £ into which

1a3 2w3

we can naturally embed the equivalence classes under 12+ 13 and 53 respect-
ively. Finally by embedding UxVxW in UaVeW, we can show that there exists
a'linear map fn inducing an equivalence relation in UxVxW and then
(uy,vy,wy) 123(un,va,wy) 1ff ujaviaw) = upavyaw, (mod fa)' The equivalencc
classes under 153 are then naturally embedded in the linear space

X103 = UaVaW/ker fn'

Xi (i=1,2,3) will then be an R[zi]-module, Xij(j> i) will be an
R[zizj]-module and X153 will be an R[z;z5z3]-module. Using Zeiger's
Lemma, we will be able to set up a state space realization as follows:
B, +byuy

iy _ i3 ij i3 ij 3. 4 i3 ..
kil TR F AU Y FQTxey + by (3> 3)

i
. R+l
X
(6.3.1)

T A R L

Yy, = ka.
In general, for m > 1, we can characterize this type of realization
as follows, and we quote directly from [aaM1l], where it is described as an

m-line system:

Definition 6.3;1

An m-line system M with input objects Ul,...,Um and output object Y
is defined by induction on m as follows:

For k=1: M is a linear system M = (X,F,U;,G,Y,H)

G:U;>X, F: X>X, H: X>Y.
For k>1: M is specified by
(i) a state transition map F: X+ X and output map H: X->Y;
{ii) for each proper non-empty subset & of {1,...,k} an |o|
line system.Ma with input objects {Vi: ie'a} and output

object Yo



119

(iii) for each proper non-empty ¢, a morphism Ja: YaaIa—+X
where 1% = a{Ijljia};

(iv) a morphism J : Uya...au > X.

¢

As we can see, this definition agrees with the state space realiza-
tions (2.3.5) and (6.3.1) obtained for bilinear and trilinear systems.
However, as we have observed with bilinear systems, this realization will
in general not be reachable or even quasi-reachable. The conditions for
observability will be the straightforward ones we had for bilinear systems;
in the case of (6.3.1) these will be (H,A), (Q;,R23), (Q2,RA13), (Q3,;;2),
([e120121,a)), (10330321.3;), ([0}30531,A3) must all be observable pairs.

As has been mentioned by Kalman [K1], the state space as defined by
Definition 6.3.1, will lie.on some algebraic variety, and it will there-
fore be possible to reduce the system in such a way as to include multipli-
cation‘of states. However it has not yet proved possible to demonstrate
necessary and sufficient conditions for quasi-reachability. We would
again expect, as with bilinear state space descriptions, to have quasi-
reachability if the various tensor products of transfer functions are
linearly independent, so for instance in the trilinear case we will require
the components of the following set of vectors to be linearly independent:

(i) xi(zi); i=1,2,3

(ii) xi(éi)axj(zj), xij(zi,zj); j>1i

(iii) xl(zl)mxz(zz)ax3(23), xl(zl)ax23(zz,23), x2(22)3x13(zl,22),
x3(23)ﬂx]2(zl,zz), x(2y1,22,23),

and these will clearly-be necessary conditions for quasi-reachability.

Finally, it is éerhaps necessary to comment on the use of category
theory in the analysis of multilinear systems. In their first paper on
decomposable systems [AM1], Arbib and Manes demonstrated how to set up

canonical realizations of systems of the form
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¥eqp = 20x) e bly) Wev
Y = clx) : Ype¥

where ¢ indicates some operation particular to the system, e.g. addition
for modules, or multiplication for groups (when a, b, and c would be
homomorphisms) . .

In their paper they showed that the input spaces U§ suitable for
analysing this system would have to be in the same category as U, in fact

a countable copower of it, so that if U is a module, then U§ would have

to be a module, and if U were a group, then in the same way U§ would

-

have to be a group. Analogously, they showed that the output space ¥

§

would have to be in the same category as Y, in fact a countable power
of it.

However, when it comes to multidecomposable systems, any algebraic
entity which is not at least a ring seems to be unsuited to this form of
analysis, although Abelian groups might possibly fit into the scheme
better. .

More suitable i; the category theory approach adopted by Goguen [Gl],
. who treats discrete-time machines in closed monoidal categories. Ra£her
than present Qarious definitions concerning categories, we shall outline
the application of his work to affine maps, and we comment that this
might provide an extension of the results of multilinear maps to those
of multiaffine maps. .

Goguen began within the framework of a particular category C, e.g.
the category of groups,.or of vector spaces, or of affine spaces, or of
sets, together with the various mappings (e.g. in the above cases we
would be considering homomorphisms, linear maps, affine maps, set maps)
within which there existed a monoi@al structure (defined by @), i.e. if

A,Be C, thén AaBe C, (A@B)@C = Az(BzC). He then assumed that this

’
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ﬁonoidal category was closed, i.e. for all mappings f : AmB > C (for
A,B,Ce C), there existed an entity [B,C]elg, such that there is a natural
isopmorphism between f : A=B—+C and f' : A~> [B,C].
For the case C = category of sets, m is the Cartesian product, and
if we have
f : AxB>C : (a,b) > f(a,b)
then f£' is given by

£' : A>[B,C] : a>f(a, ) -

¢

and it is clear that [B,C] is the collection of set mappings from B to C,
which ie itself a set.

Note that for C = category of vector spaces with @ the Cartesian
product, there exists no such suitable entity, since we have

f : AxB>C : (a,b) £;(a) + f;(b)
and if we define f' by

£' : A~>[B,C] : a»£fy(a) +£5( )
then this is clearly not a linear space, so (B,Ccl¢ c.

For vector spaces it is easy to see that @ = tensor product pro@uces
a closed category.

In the case th;t interests us here, we consider C = categcry of
affine spaces with (:} = affine tensor product, i.e. C) : AXB-> AmB + A+ B,
where @ is now defined as the usual tensor product.

Then the affine map f applied to A=B is given by

£

AgB > C
: (a,b{ + fi(amb) + fo(a) + f£3(b) + ¢ (6.3.2)
(where £, f, and f3 are linear).
It follows that
£' : A~ [B,C]

:a-> filam.) + £5(a) + £3(-) + ¢
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is affine, so [B,c] is an affine space, and hence is in the éame category
as A, B and C.

Goguen then showed that given an input/output function f : U*->Y,
where U* = £;i Uz...aU, the countable copower of U, a suitable state space
is given by EU*,Y], and a minimai realization will be provided by the
reachable set of [U*,Y]. In the case of linear systems we have f; and c
(as in (6.3.2)) both zero, but otherwise we have a well-defined input/
output map. If we write the impulse response of this linear system. as
(s1sS2+S3+--..), then the elements of [U*,Y] which will be of interest to
us will be ' ' :

gy Asy() +s3() +s3() + .o = U+ > Y

gy A sjay + sp( ) + s3() + syl 5 + ... 1 U > Y

g3 A sjag + spap + s3( ) +s4() +s5() + ... = U > Y,
etc. Clearly then, if the Hankel matrix formed from (s;,s,S3,-...) has
dimension n, then the number of linearly independent 9, will be equal to
n+1, so that the dimension of the affine state space will equal n+1.

In the case of £, and ¢ not equal to zero, a state space description
{assuming one exists) would be of the form

Xepl = P¥ * g Fx + by
= Cx

T k
which is termed an affine system in [Gl]. (Note that Isidori [11] and

(6.3.3)

others refer to (6.3.3) as a bilinear system, since the R.H.S. of the

transition equation of (6.3.3) is linear in each of u and x, separately.)

k
A possibility now is to extend this approach of Goguen to biaffine
and multiaffine systems, which would provide greater generality than

multilinear systems, and would probably be more relevant than the multi-

decomposable approach of [AaMl].
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CHAPTER 7. CONCLUSION

The main accomplishment of this thesis has been to give a thorough account
of the theory of state space realizations of bilinear input/output maps,
providing the solution to a number of previously unsolved problems. The
contributions to this realization theory have involved a formalization in
Chapter 2 of the ideas of Kaiman [K1] regarding the actual setting up of
a state space realization directly from the transfer function, thus_by-
passing the elaborate constructions of Fornasini and Marchesini [FML];
the derivation of necessary and sufficient conditions in Chapter 3 for a
state space realization to be observable and quasi-reachable; reduction
procedures for obtaining canonical realizations from realizations which
are not observable or quasi-reachable, and furthermore, in Chapter 4, an
isomorphism theorem showing that any two such canonical realizations are
isomorphic under a well—deﬁined class of transformations.

Quasi-reachability results have also been obtained in Chapter 5 for
the case of multi-output bilinear systems, and the concept of quasij
observability was introduced to cover the cases when observability was
too strong a requirement. However it was not possible to obta‘n such
definitive results as for the single output case studied in Chapters 3
and 4, and in particular no isomorphism theorem has been obtained for
minimal realizations. - -

Sufficiency conditions were obtained in Chapter 2 on the transfer
function of a bilinear input/output map which ensure that the output
sequence from this map, due to a finite length input sequence, tends to
zero. In Chapter 6, analogous conditions on a particular class of multi-
linear transfer functions were obtained, assuring a similar stability

result for the corresponding input/output map. Sufficient conditions
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were also derived in Chapter 6 for a particular form of state space
realization of this class of multilinear maps to be quasi-reachable,
these conditions again being analogous to those of Chapter 3 on bilinear
state space realizations. In addition it was shown in Chapter 6 how to
obtain nécessary conditions for quasi-reaqhability'for'general multilinear
state space realizations, but the question of sufficiency still remains
\

open.

Apart from this investigation of conditions for quasi-reachability
and observability.of realizations of discrete-time multilinear input/
output maps, an obvious area for future work on multilinear sy§tem theory

is the realization of continuous-time input/output maps. In the bilinear

case, such a realization may be written as

%] = A;x) + bju (7.1)
%o = Agxy + byv (7.2)
" k% = Ax + Cxjaxy + Q1X1V + Qpxpu + buv (7.3)
Yy = th + dTXIEXZ. (7.4)

Using the intuitive approach of Chapter 3, we expect that this
representation will not be reachable ifbthere exist vectors p and g such
that pTxlxxz + qTx evolves independently of u and v. In particular we
expect that

é%:(p'-l‘xlxxz + qTx) = A(pTxlaxz + qTx) for some Xe C.

On expansion oflthe left—-hand side of this expression we find that this
property is equivalent to the pair

A1m®I + IwmAy O |,| bjal Iab, 0

(7.5)
C A 0 Q b

not being reachable. Although this condition is sufficient for non-
reachability of (7.1)-(7.3) it has not yet been shown to be necessary.

However we can still obtain some information from (7.5) concerning simi-

. . I O
larity transformations, namely that the similarity transformation [W I]
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applied to the pair (7.5) and [dThT] yields a system which is equivalent

to that of (7.1)-(7.4). We state this result formally, as follows:

Theorem 7.1
Let (7.1)-(7.4) be a realization of a continuous-time bilinear
input/output map £ : UxV-+Y, where x(t) € R°1, x,(t) e R'2, x(t) ¢ R". Then

x
for any We RV L2,

{(7.1)-(7.4) is also a realization of f under the
transformation
C - W(A;mI+Iahp) + C - AW

Q) ~ Q) + W(Iﬂbz)

(7.6)
Q> + Qy + W(bjal)
al + a® - h'W.
Proof: From (7.1)-{(7.4) we can immediately write down the expression

for y(t) as

t t t
y(t) =.hT[j:) eA(t_T){Cj; eAl(T-Tl)blu(Tl)drlj; eAZ(T_TZ)bzv(TZ)dTZ

RSN © Ay (1-1)
+ Qlfo e 11T byu(ty)dryv(T) +sz0 e2'17T2 bov(tyldrou(T)
+ bu(t)v(t)}dr]
t t
4 dT[j;) 'ep‘l(T'Tl)blu(rl)drlaneAZ (=72 v (1) dry]

Now by inspection we can see that the difference ¥(t) betwreen this

value and that of the output of the transformed system is equal to
T t A(t-T) oAy (1) T Ay (1-15)
g(t) =h []:)e : w{f0 Aye 111711 b1u(T1)dT1aj; 2 T2 v (1) dTs

T T
+f0 eAl(T Tl)blu(rl)drlﬂfo Azep‘z(T Tz)bzv(rz)drz

Ap{1~15)

T T
+fO PTG (e anyabyv (1) +b1u(T)aj;e bov(Te)dTs }dT]

t T T
Alt— , _ -
- *hTJ; e (t T)Aw{j; Pt Tl)blu(n)drlaj; P2 (T T2)bzv(Tz)de}dT""

t t
Ap (t- Ay (t-
- hij:)e 1(t Tl)blu(rl)drlafoe 2(t Tz)bzv(rz)drz.

If we now integrate by parts the term enclosed by asterisks (*), and

use the fact that — e

c;ir Alt-1) = -eA(t-T)A, we obtain
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T T T=t
hT[—eA(t_T)W{£ eAl(T_Tl)blu(Tl)dT1m£ eAZ(T—Tz)bzv(Tz)drz}]

=0

T T ] T
+ hT£ eA(t—T)wé%{% eAl(T—Tl)bld(rl)dT1x£ eAz(T Tz)bzv(rz)drz}dr.

Evaluating these terms we find that they are equal to the remaining

terms of ¥(t). Hence §(t) = 0 and the theorem is proved. ‘ 0O

Although this is only a preliminary result, .further work will hope-
fully show that the conjecture, that the system (7.1)-(7.3) is controllable
iff (A;,by),(Ay,by) and the pair (7.5) are controllable, does hold true.

One questién that must be asked at this point is whether the multi-
linear approach to non—line;r dynamical systems is likely to bear any
fruit, but unfortunately it is still difficult to give a definite answer.
Even in the simplest single input non-linear case, when the input/output
map is identical to its own second-order Volterra kernel, W,, quasi-
reachability can easily break down. The following two examples illustrate
_this:

1) Let the state space description derived by considering W, as bilinear

input /output map be given by

Al)ﬁi + bluk

2

ot

+

=
1

2=
X1 Azxk + bzuk
= Aty lgx?
Yy = d xktxxk

where the two separate input channels are now regarded as identical. Then
it is obvious that the state space is not reachable if A; and A, have

common eigenvalues.

2) Let the state space description be given by

xk+l axk + bu? (a,b > 0)

k
Y = %

It is clear that if xy = O, then xk > 0 for all k.
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It is also conceivable that in the general non-linear case the
Volterra approximation could well produce a larger state space than one
derived straight from the input/output map itself.

However, multilinear system theory is undoubtedly of use when it
comes to modelling a system with more than one input channel, when it is
known that the inputs from separate channels interact multiplicatively to

!

produce an output.

Various other approaches to non-linear system theory, besides the
multilinear approach and the classical methods of examining concepts such
as stability by means of approximations and norm inequalities, have been
made in recent years. Flieés,[F2] looks at Volterra series approximations
with the aid of non-commutative formal series, and Sontag [S1], [52]
discusses discrete time polynomial systems, which are systems for which
the state transitions are polynomigl functions of the inputs and state
variables. This supplements the work of such people as Isidori [Il] and
Fliess [F21,[F3], who have studied the so-called bilinear system of the
form Co 4

X = Axk + ukka + buk (7.7)
(xke R"Y) .

This system also falls naturally into the class of affine systems
discussed in Chapter 6, ané has been looked at by Goguen [Gl] in this
category-theoretic context.

At this point it is worthwhile séating a conjecture concerning the
reachable set of (7.7), which arose after reading [GlL]:

Assume that there is no transformation xkf>Txk on (7.7), such that
a substate ik of Txk can be partitioned off as |

Ry = (Aru R
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(or equivalently, assume that the reachable set of (7.7) is not contained
within a subspace of Rn); then the reachable set, S, of (7.7) is given
by
S = {Ax+uFx+bu: xe¢ Rn,ue R}.

This is a trivial result for F = O, since the subspace assumption holds
iff (A,b) is a reachable pair, in which case it is obvious that
{AX+bu: xe R",uec R} = R,

All in all, however, non-linear system theory, with its related
aspects of stability and controllability, etc., is still very puch an
unresolved topic, and a great deal more research is required to bring

the state of the art anywhere near that of linear system theqQry.

Nevertheless,nonlinear systems in general are still
amenable to study by less exact methods.In particular,global
input/output stability propérties of the system (7.1)-(7.3)
and of the continuous-time analogues of (7.7) are partic-
ularly suited to the off-axis circle criterion of Cho and
Narendra [Xﬂ].The more recent application of circle theorems
by Shankar and Atherton [X2] to nonlinear multivariable
systems is also significant,as is the less recent out

important theory oif Liapounov functions(see e.g.[ﬂlﬂ]).
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APPENDIX. LINEAR SYSTEM THEORY RESULTS

During the course of this thesis, two interesting results have been proved
in linear system theory, and it seems convenient to restate them here,
together with an independent theorem on ca§caded linear systems which was
proved in an early attempt at attacking the quasi-reachability result of
Chapter 3.

The two earlier results are as follows:
1) Lemma 3.2.3

Let (A,b) be a reachable pair. Then for all &> O, there e;ists an
integer N> £ such that (AN,Akb) is a reachable pair iff A is non-singular.

The interpretation of this result is that if a discrete-time system
is constrained in such a way that all inputs must be separated by ét least
£ time intervals, w;th the initial input only permitted after time k, then
invertibility of A guarantees that the system is still reachable.

2) Lemma 4.3.3

Let [@h"I[F 0} [6] = @hI[F 067 for au i,
c Al ls ¢ A |s

where (hT,A) and (ﬁT,ﬂ) are observable pairs

and F O|,| G and F 9 .l G are reachable pairs;
C A B CcC A B

then there exists a similarity transformation relating the system matrices,

~

which is of the form [i[ (3], with T invertible.
Y 7T

The interpretation of this resul; is that given a cascaded linear
system, which is known to be reachable, although not necessarily observable,
and with the requirement that the (F,G) subsystem be included in the state
space realization, then any two realizations of this system will be iso-

morphic, despite the fact that they may not be completely observable.
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The new result that we present here concerns the cascaded linear

system represented by

-xk+l = F K Xy + g |u (Ar.1)
O A b

where ge Rnl, be an, A and F are square matrices and (A,b) and (F, [X gJ)
are reachable pairs.

A long-standing problem has been to provide necessary and sufficient
conditfﬁns for (A.l) to be reachable, without having to check whether the
Kalman controllability matrix has rank nj;+n,. Instead it has been ﬁ;ped
that a check for reachability will be provided by examining whether some
other matrix has rank m<nj+ns. .

Equation (A.l) has been studied‘by various people; in particular we
mention Chen and Desoer [cD1], chen [cl] and Davison and Wang [DWl], who
have all made valid contributions to the multiple input case.

Here we present necessary and sufficient conditions for reachability
of (A.1) which only require the examination of a matrix to be defined
below, as to whether it has rank n; or less. Unfortunately these conditions
are only valid for the single input case, and it is not clear how thé

approach taken here might be extended to take in the more general multiple

input case.

Theorem A.1l
The linear system (A.1) with (A,b) and (F,[K g]) reachable pairs is
itself reachable iff
rank M(F) = nj

where M(z) = adj(zI-F) (K adj(zI-A)b+ (det(zI-A))qg] QMOH:Ll Z+.. .+hiozp
(so that I'I(F)=I‘IO®I+I~I,|®F+...+Np®Fp) i

Proof: We form the transfer function corresponding to (A.1l) to

obtain
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Il

(zI—F)—l[k(zI—A)—lb-&g]

(zI-a) 'b.

Xl(Z)

XZ(Z)

Rewriting' this more conveniently we obtain

¥ (2) L i W_(2) (KX, (2) + ¥, (2)q)
%9 (2) ) W L XA(z) le(z)
. [ vy (2) (A.2)
) & W | v2(2)
where XA(z) = adj(zI-a)b ~
W_(z) = adj(zI-F)
le(z) = det(zI-A)
Yp(2) = det(zI-F).

Now (A.l) is not reachable iff 3a1 € Rnl,aze R"2, with a; # O such
that
T T . .
a1x)(z) + arxp(z) = O identically. (A.3)
Now the components of the numerator y,(z) are all contained in the
ideal (le(z)), so that (A.3) holds
: . ng T
-1ff there exists a vector age R'® s.t. agy,(z) € le(z)

. (n.4)
i.e. iff there exists an ag s.t. aEwF(z) X gl xA(z) = k(z)le(z)

wA(z)

for some k(z) ¢ RIz].

Note that le(z) and the components of XA(z) are linearly independent,

because of (A,b) being a reachable pair.

Let us now write xF(z) ='WF(Z) X g]
= (x11(2)evec.c.... }SR(Z)
. : where n = np+l
xnl’l(z) ....... nl,n(z)

and XA(Z) W, (2)

le(z) wn(z)
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Now (F,[K gl) is a reachable pair iff all minors of XF(z)/wF(z)

have common denominator equal to wF(z).

Hence xij(z)xkz(Z) - xiz(z)xkj(z) = aijkl(z)wF(z) for some aijkz(z)e R[z].
We now have by (A.4)

c1[x11(z)w1(z)+...+xlnwn(z)]

+ c2[x21(2)w1(2)+...+x2n(z)wn(zj] (A.5)

+ ... + cnlfxnlll(z)w1(2)+...+xn nwn(z)] = k(z)wF(z)

1

where a’f = [cl...cn].

Multiplying (A.5) by x331(2) and substituting

xll(Z)xkz(Z) = xu(Z) xkl(?-) +a5050 (z) 1I)F(Z) .

we obtain

ci1x11(2) [xy 1 (2)wy(z)+.. . 4x I;(Z)wn(Z)]

1

+ Ccoxp1(2) Bk (2)wy(2) +. .. +x n(z)wn(z)]

1
+ ...+ cnlxnl'l(z)Exll(z)wl(z)+...+xln(z)wn(z)] = b11(z) ¥, (2)
‘ where by1(z) =) a) 130 (BVW, (2) + K(2).

k.2

Rearranging, we obtain
[clx11(2)+...+cn1xn1'l(z)][kll(z)wl(z)+...+xln(z)wn(z)] = b11(z)wF(z).
In a similar manner, multiplying (A.5) by xij(z) (j = 2,...,n),

we obtain

[blxij(z)+...+cn1xn1'j(z)][kll(z)wl(z)+...+xln(z)wn(z)]

Now (F, X gl) is a reachable pair, so that aTxF(z)

bii(Z) wF(z) .

O implies
a; = 0. By hypothesié, we have a, # O, so that at least one of

c1X (Z)+...+Cc X .(2) # O, but this last term has degree less than
ij ny; ny.,J

deg wF(z), so that xpj(z)wy(z)+...+x n(z)wn(:z) shares a common polynomial

1
factor with F.

In a similar way, by multiplying (A.5) by Xij(z)’ we discover that

[clxlj(z)+'"+cn1xn1,j(z)][xil(z)wl(Z)+"'+xin(z)wh(z)] = bij(z)wF(z)

for all i =1,...,my;] = l,...,n.
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. _ . o 2 0.

Without loss of generality, let clxlk(z)+- +cn1xn1'k(z) 0. It
is then clear that all the polynom;als xil(z)wl(z)+...+xin(z)wn(z) share
the same common polynomial factor of wF(z).

Utilizing Theorem 1 of Barnett [Bl], we see that a necessary and

sufficient condition for this to hold is that

rank xll(F)wl(F)+...+xln(F)wn(F) < ny
...+
xnl,l(F)wl(F) xnl,n(F)wn(F)
- which is precisely the condition stated. -0

We can write a dual result for observability as follows using
similar notation to that of Lemma 4.3.3:

The linear system

FOxk+Guk

*k+1

C A B

Yy [dT hT]xk

where (hT,A) and [ [<§r:],F ] are observable pairs, it itself observable
C

~

iff

rank M(F) = m

where M(z) = [dT(det(zI—A)) + hTadj(zI—A)C]adj(zI—F)

and F eR"1VPL,

Of interest here is that both this regult‘and Lemma 4.3.3 only hold
for single output systems, which throws up a further analogy  between
bilinear input/output maps and cascaded linear systems. (The first
analogy ié that a cascaded linear system results from constraining a

1

bilinear state space realization to sustain the substate X at a constant

level using a constant value for the input uk.)
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