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ABSTRACT 

This thesis is a contribution to the field of multilinear system theory, 

and investigates the state space realization and stability of dynamical 

systems characterized by multilinear input/output maps. 

A summary of research done to date in this field is presented, 

together with a number of original results. The principal work which has 

been carried out in recent years has been for the case of bilinear input/ 

output maps, where necessary and sufficient conditions for such a map to 

be realizable in finite-dimensional state space form have been obtained. 

A major contribution of this thesis is the determination of necessary and 

sufficient conditions for a realization of such a map to be observable and 

quasi-reachable, and of reduction procedures for obtaining a realization 

which is quasi-reachable and observable from one which is not. Previous 

thoughts and ideas on constructing realizations direct from the transfer 

function (notably by Kalman [K1]) are formalized here, and sufficient 

conditions for stability of the output sequence due to finite length input 

sequences are demonstrated. 

Multi-output bilinear systems are examined separately, as these 

require relaxation of the idea of observability to that of quasi-observability, 

and although conditions for quasi-reachability and quasi-observability are 

obtained, together with a reduction procedure for quasi-reachability, the 

results are not quite as definitive as those for single output bilinear 

systems. 

Sufficient conditions for stability and state space quasi-reachability 

of a particular class of multilinear input/output maps are shown, and 

necessary conditions are obtained in terms of the input-to-state transfer 

functions for the state space realization of a general multilinear input/ 

output map to be quasi-reachable. 
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NOTATION 

The following standard notation is used in this thesis, primarily in 

Chapter 2: 

Z 	— the set of negative integers' including zero 

N 	— the set of natural numbers 

R Ex] 	— the ring of polynomials in x 

R[Cx]] 	— the ring of power series in x 

R[x,y] 	— the ring of polynomials in x and y 

R[[x,ar]] 	— the ring of power series in x and y 

R[(x,] 	— the ring of rational power series in x 

R[(x,y)] 
	

— the ring of rational power series in x and y 

Rreal, 
i(x,Y)] — the subring of R[(x,Y)] generated by R[(x)], R[(Y)] 

and R[(xy)] (which consists of power series expansions 

of rational functions with denominator pl(x)p2(y)p(xy)). 

vi 
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CHAPTER 1. INTRODUCTION 

Ever since the time of Newton and Leibniz and the birth of the calculus 

there has been a continued interest in the theory of differential equations 

and dynamical systems, and this interest has been vigorously pursued 

throughout the intervening years from then until now. Great strides have 

been made, particularly in the area of linear system theory, including 

linear control systems and the theory of state space realizations. Non-

linear system theory has remained somewhat intractable however, and 

apart from specific examples is usually dealt with by means of.approxima-

tions. One form of approximation which is applied to non-linear control 

systems provides a motivation for this thesis — the Volterra series 

approximation. This is based on the ability to write the solution to 

the differential equation 

(n) 
Y 	(t) =

(11-1)
,t,u(t)) 

diy 
dtl 

as the infinite series 
m t t 

Y(t) = X f...f h.t,t1,...,ti)u (ti)...ucti)dti...dti. 
j=10 0 3  

This is called the Volterra series, and a Volterra series approxima-

tion is obtained by truncating this series so that summation is from 1 up 

to some integer n. 

These approximations were studied in detail during the late 50s and 

early 60s, by a number of researchers at M.I.T., prominent among whom 

were Wiener [al], Lee and Schetzen [LS1], Bush [BM], and George [GE1]. 

Various techniques were invented in the time invariant case for 

dealing with these approximations; notable among these are the multiple 

Laplace transform operators si,...,sn  of [GEl], and the determination of 

thekernelsh
3
(t-ti,...,t-t.) by means of suitable 'white' noise or 

pseudo-random inputs [LS1], [B01]. 

where y(i) 
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Similar operator techniques were applied by Alper [An] to Volterra 

series representations of discrete-time input/output maps, which have the 

form k 	k 

Yk+1 = I 	1 	w
r
(k-ii,...,k-i 

r1  
) u. . 	

r  r=1 i1=0 ir=0 	
1 

and this approach was developed further by Kalman, whose 1968 paper [Kl] 

provides the first study of multilinear machines. One of the purposes of 

this study was to investigate in depth the properties of the Volterra 

kernels w
r
, and to facilitate this he examined the system governed by the 

kernel w
r
, but with the input channels all distinct. In the bilinear 

case, for the kernel w2, this results in the so-called bilinear input/ 

output map 
k
CC ykt1 =G 	

w2(k-i1,k-i,) ui
-1 
 v. 

- 	1 12 
illi2=0  

(1.2) 

where we no longer have the constraint ui  = vi  (i=0,...,k) .as in (1.1). 

As with linear input/output maps, various questions can be asked 

about (1.2), in particular questions concerning state space realizability, 

and the answer as to what form the realization should take was given in 

[1(1] and by Arbib [Al]. This was taken further by Fornasini and Marchesini 

[FM1],[FM2] who derived necessary and sufficient conditions for finite 

state realizability (i.e. conditions for writing (1.2) in state space 

form, where the dimension of the state space is finite) in terms of the 

transfer function description of (1.2). 

However there still remained several other problems associated with 

state space descriptions of (1.2); in particular, when is such a realiza-

tion minimal, controllable, observable? How can one obtain a minimal 

realization from a non-minimal one? While the ultimate objective, to 

characterize (1.1) via some 'nice' state space description, has not been 

fulfilled in this thesis, those questions concerning state space 
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descriptions of (1.2) have now been answered, and the results can perhaps 

be extended to the analysis of (1.1). 

Various other problems have been thrown up by (1.2) such as minimal 

realizations when there is more than one output, and, rather surprisingly, 

it has so far proved impossible to provide the same definitive results 

which were found for the single output case. The principal deficiency is 

that although the results on reachability and observability are similar 

to those for single outputs, there has as yet been little success in 

establishing an isomorphism theorem for minimal realizations in the multi-

output case. An interesting analogy here is with observability of single 

output cascaded linear systems (or dually, controllability of single input 

cascaded linear systems), where fairly straightforward conditions for 

observability can be established; these conditions do not hold in the 

multi-output case and any conditions in this case are far more complicated 

than for single outputs. This analogy is mentioned again in the Appendix 

to this thesis. 

Of additional interest in the context of Volterra series expansions 

of non-linear input/output maps are the higher-dimensional analogues of 

(1.2), i.e. 

Yk+1 = X 	
w
n
(k-i1,...,k-i )u. ...u. . 

n 11 n 	
(1.3) 

ii,...,i
n 

It appears that state space descriptions of such multilinear input/ 

output maps have even deeper structure than those of bilinear input/output 

maps, and although conditions for reachability can be obtained for certain 

classes of multilinear maps, the problem of minimal realizations of general 

multilinear maps still remains unsolved. Indeed, whereas for example it 

has been shown in inn] that all bilinear input/output maps with finite-

dimensional state space representation can also be represented by some 

transfer function N(z1,z2)/p1(zi)p2(z2)p(z1z2) where N, pi, p2 and p are 
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all polynomials with the indicated arguments, a similar result does not 

hold in the multilinear case; in particular for n=3, the set of transfer 

functions with finite dimensional state-space representations contains 

the ring of transfer functions of the form 

N(zi,z2,z3)/p1(z1)p2(z2)p3(z3)p(ziz2z3). 

but is in turn strictly contained in the ring of transfer functions of the 

form 

N(ZI,z2,Z3)/P1(z1)P2(Z2)P3(z3)P12(Ziz2)P23(Z2Z3)P13(Z1Z3)P(Z1Z2Z3). 

Research on the continuous time analogues of (1.1), (1.2) and (1.3) 

has also been undertaken, but the only significant result has been to 

establish classes of similarity transformations on the state space 

representations which preserve the input/output map. 

Contents of Thesis and Original Contributions  

Chapter 2  

This begins with a summary of the work done in [FM1] introducing 

the reader to bilinear input/output maps, in particular to the necessary 

and sufficient conditions for a bilinear input/output map to have a finite-

dimensional state space representation. Some of the proofs of [FM1] are 

exranded upon for the sake of clarity, and the errors in those proofs are 

corrected; in addition, Lemma 2.2.2, which is required for the proof of 

finite-dimensionality, is proved in an apparently original way and 

simultaneously provides a matrix representation of the so-called ring of 

recognizable series for commuting operators. This lemma was originally 

proved in [Fl] for the more general case of non-commutative operators, 

but that proof did not entail the construction of the matrix representa-

tions supplied here. New alternative methods of realizing bilinear 

input/output maps are presented in 52.4, and these in effect formalize 
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the ideas of Kalman [K1], and set the scene for the results of Chapters 3 

and 4; a more general state space representation of bilinear input/output 

maps than that of [FM1] is presented, and Theorem 2.4.1 demonstrates how 

to compute the transfer function corresponding to it. Sufficient 

conditions for stability of the output sequence due to a finite input 

sequence are obtained in Theorem 2.5.1, and this uses the result of 

Lemma 2.2.2. 

Chapter 3  

The whole of this chapter is original, and begins with definitions 

of quasi-reachability, observability and canonical and (co-)minimal realiza-

tions, and a presentation of the class of similarity transformations on 

the state space representations of bilinear input/output maps which 

preserve the nature of these maps. The remainder of the chapter is 

devoted to lengthy proofs of the necessary and sufficient conditions for 

such state space representations to be quasi-reachable and observable. 

Chapter 4  

This chapter is also completely original, and demonstrates procedures 

for reducing a realization which is not quasi-reachable or observable to 

one which is. In addition it is shown that reduction to quasi-reachable 

form reduces the dimension of the state space and that reduction to 

observable form at least does not increase the dimension. It is then 

apparent that all bilinear input/output maps can be represented by a 

canonical (i.e. observable and quasi-reachable) realization, and in 

addition it is shown that all such canonical realizations are isomorphic 

under the similarity transformations introduced in Chapter 3, and hence 

are minimal. Some canonical forms for these state space realizations 

are also presented. 
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Chapter 5  

The results of this chapter are again original, although not as 

definitive as those of the two preceding chapters. Discussion centres on 

state space realizations of multi-output bilinear systems, and a specific 

example is used to illustrate that it may not always be possible to con-

struct a realization which is both observable and quasi-reachable, and it 

is therefore necessary to introduce the new concept of quasi-observability, 

analogous to quasi-reachability. It is then possible to construct a 

realization which is quasi-reachable and quasi-observable, but it has not 

yet been possible to provide the conditions for such a realization to be 

minimal, in the sense that any two quasi-reachable and quasi-observable 

realizations are isomorphic under some class of transformations. 

Chapter 6  

This chapter begins with two new results on quasi-reachability and 

stability for a particular class of multilinear input/output maps. The 

particular class of maps considered are those whose transfer functions 

have denominators which can be factorized as p1(z1)...pn(zn)p(zi...zn), 

and Theorems 6.1.1 and 6.2.1 are a generalization of the earli.lr results 

on quasi-reachability and stability for bilinear input/output maps. The 

chapter then continues with a review of work done to date in the field of 

multilinear input/output maps; the main contributions are contained in 

three papers by Kalman pa], Arbib Ekl] and Anderson, Arbib and Manes 

[AMA, the last of these analysing the problem from a category-theoretic 

viewpoint. All of these papers indicate how to set up a state space 

realization, but fail to tackle the problem of reachability, observability, 

etc., in a satisfactory way. It is however possible, as is shown for the 

case of trilinear systems, to provide necessary conditions for 
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quasi-reachability by invoking the idea of linear independence of the 

input-to-state transfer functions and their Kronecker products, and these 

necessary conditions can be extended to all multilinear systems. 

Chapter 7  

This last chapter is the conclusion to the thesis, with suggestions 

for further work. The major field suggested for further research is that 

of continuous time bilinear state space realizations, and while no results 

on reachability and observability have yet been achieved, an original 

result concerning similarity transformations on these realizations is 

introduced in Theorem 7.1. 

Appendix  

For ease of reference this draws together two results on linear 

system theory obtained earlier in the thesis, and an original result 

concerning reachability conditions for cascaded linear systems is 

presented. 
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CHAPTER 2. BILINEAR INPUT/OUTPUT MAPS 

In this chapter we introduce the formal definition of a bilinear input/ 

output map and present necessary and sufficient conditions for the 

existence of a finite dimensional state space realization. In addition 

we will see that this is equivalent to the canonical, or Nerode, state 

space being reachable in finite time, which will tie up with our 

intuitive notion of what the Nerode state space represents. This of 

course is a result of our being able to view "state" as a partial 

memory of past inputs. 

The necessary and sufficient conditions for realizability which we 

shall examine in this chapter were derived by Fornasini and Marchesini 

[FM1]. However some of their proofs are not clear and we shall present 

them here in greater detail. In addition we shall present an alternative 

proof of a theorem by Fliess DE1], which will provide us with a result 

on stability for bilinear input/output maps. We shall mention this 

again in Chapter 5, when we study a relatoti stability result for 

multilinear input/output maps. 

2.1 Preliminaries and Definitions 

We shall work in the field of real numbers, R, but of course the 

results will hold over all fields, finite or infinite. 

Let U, V and Y denote the following spaces: 

U = {uE RZ  with compact support} 

V = {vE RZ  with compact support} 

Y = 1YE R141°1 1 

where 
Z- is the set of negative integers including zero 

N is the set of natural numbers. 
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U and V will then be made up of sequences of the form (...,0,ur,...,u0) 

and (...,0,vs,...,v0) respectively, and Y will be made up of sequences 

(YllY2,---) . U x V is termed the input space and Y the output space. An 

input/output function f : Uxv-4-Y, will then map a finite number of 

inputs from U and V into an infinite output sequence in Y. 

The bilinear nature of the map f is described by the following 

definition. 

Definition 2.1.1  

A map f : UxV÷Y is a bilinear discrete-time stationary input/ 

output map if it satisfies the following conditions: 

i) bilinearity — 

f(klui+k2u2,v1) = kif(ul,v1) + k2f(u2,vi) 

f(ui,kivi+k2v2) = kif(ul,v1) + k2f(ul,v2) 

for all ul,u2e U, vi,v2c V and ki,k2E R; 

ii) stationarity — 

the map f is invariant under translation with respect to time 

in the following sense: 

f(alu,a2v) 	= a*f(u,v) 

where a and a* represent delay operators as follows: 

(2.1.1) 

al(...,0,ui,...,u0) 	= 	(...,0,ui,...,u0,0) (2.1.2) 

a2( • • • 10 1 17i 	• • • IVO) 	 ( • • • ,°11.ri ir • • • , V0 ,°) (2.1.3) 

a* 	YI,Y2,Y3, • • •) 	= 	(Y2,Y3,  • • •) • (2.1.4) 

It now becomes apparent that we can identify U x V with R[zi] x R[z2], 

where R[z] is the ring of polynomials in z, and that we can identify Y 

with Z-1R[[z 1]], the ring of formal power series in the one indetermin-

ate z
-1
. This we can do via the isomorphisms 

: u 	R[zl] 

: (...,0,ur 	
urzf.  + 	+ up 
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11)2 : V 	REz2] 

vs4 + 	+ vo 

'P3 : Y -4- z
1
R[Cz-1]] 

-1 	-2 
z Y1 	Y2 + --- 

and it is clear that we can in addition identify al with zl, 02 with z2 

and a* with z, although for the z mapping we must also include the 

operation of omitting any term involving non-negative powers of z, i.e. 

z(z 1 + z 2y2+ 	A z 1y2 + 	. 

We shall now find that because of the bilinearity of the map f we 

shall be able to identify f with a "causal" power series s(zi,z2) 

(z1z2)
-1 

 R[Ezi
-1 

 ,z2
-1  ]], and then z will be equal to ziz2. 

Let us consider f(u,v) where u = (...,0,ur,...,u0) and 

v = 	Then because of bilinearity we have 

f(u,v) = 
i,j 

= 	u.Ivjf(e1.,f.) 3 
i,7 

where e. = (.....„0„1„0„.--,() and I!.
3 	

(...,0,1,0,...,0) 

with a 1 in the -i and -j positions respectively. 

	

Now let fle 	= (
si s

2 	) 
i j 	j' ij 

i.e. s
13 1
.,s.,... is the output sequence due to unit inputs at time - i at 

the U channel and time- j at the V channel. Hence 

	

f(u,v) = 	u.v.(0.,s?- .,...) I] 13 
i,7 

and operating on this with the delay operator a*, we see from (2.1.4) 

that 

a*f(u,v) = X u.v.(s.,s?.,...) 3 13 13 
i,j 

Now from (2.1.2) and (2.1.3) it is clear that 

alei  = ei+1  and a2f. = f. 3+1  

so utilizing equation (2.1.1) we obtain 

(2.1.5) 
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cr*f(u,v) = f(aiu,a2v) 

= 	u.1v.f(e. 	,fj+1  ) 3 1+1  
i,j 

= 	u1.v3 .(s!
. 	s2 	 (2.1.6) 
1+1,j+1,  1+1,j+1,  

i,j 

Equating coefficients of u.v.3  in (2.1.5) and (2.1.6) we now obtain 

s2 	...) = (s2 s3  

	

1+1,j+1,  i+1,j+11 	ij,  ij 

i.e. 	
k+ 

s
k
i+1,j 	

= sill  for all i,j 	0, k 1. 
+1  

By induction we see that 

k+11 s 	= s. 
ij 	i+k+1,j+k+1 

so we can write 

f(ei,fi) = (sij,si+1,j+1,si+2,j+2,...) 

where we have written s = sl, for convenience. ij ij 

Intuitively this means that the response at time k+1 due to inputs 

at times -i and -j is equal to the response at time 1 due to inputs at 

times -(i+k) and -(j+k). Hence 

f(u,v) = X u.v.(s..,s.1+1,j+1 ,...) 1 3 i3  
i,j 

so that the output sequence is dependent solely on the values of the. 

input sequence and on the numbers s..13 
 (i,j ?. 1) . 

It is now apparent that we can identify f with 

s(zi,z2) = (ziz2) -1  X s..z1 z2-j  where f : R[zi]x R[z2]4- (ziz2)-1  RI Rz1z2) -17] 
1
. 
,7  
. 13 

is defined by 

f(u(zo,v(z2)J 	(z1z2) -1  L s..z1iz iti(z1)v(z2) e L (z1z2)-k  (2.1.7) 
1,j 

1) 
 

and the Hadamard product 0 is defined by 

X a..zTlz-2-j  0 	= 1 a..b..zTiz;j. 
1,j 

i7
" 	i,j 

Hence the product (2.1.7) just picks out all terms in (ziz2)-k from 

s(zi,z2)u(zi)v(z2). As an example, we can see that 
- r s 

f(e ,f 	E f(zY,z3) = (ziz2)
-1 

si4zi
-i  z23  ziz20 r (ziz2)-k 

S i,3 j  
, -1 	-k = (z1z2) 	L 	s+k(z1z23 k 
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2.2 Equivalence Relations and Realizable Series  

In this section we introduce the concept of Nerode equivalence 

classes; the intuitive notion for these rests on the fact that an input 

sequence it to a system effectively generates a "partial memory" of 

that input sequence within the system, so that the response of the system 

to any further inputs is dependent on the original input sequence. If 

another input sequence i2 generates the same "partial memory", i.e. 

the response of the system to any further inputs is the same as that for 

i1, then it and i2 are said to be Nerode equivalent. 

A standard example of Nerode equivalence is provided by a'linear 

system of the form f(z)/p(z); if we can only make observations of the 

inputs and outputs of this system after time 0, then the system can only 

"partially remember" the input sequence prior to time 0. Writing the 

input sequence u(z) prior to time 0 as a(z)p(z) + b(z) where degb <deg p, 

the system will in effect "remember" b(z), but not a(z). 

For a system like the one above we find that the "partial memory" 

of any input sequence will be the same as the "partial memory" of some 

input sequence of length less than deg p, and we refer to this as 

reachability of the Nerode space in time deg p; similarly for non-linear 

systems we can think in terms of reachability of the Nerode space in 

bounded time, and the intuitive feeling at this point is that this 

implies that there exists a finite dimensional state space realization 

of the system. This feeling is borne out in the case of bilinear 

systems as we shall see. 

We also define three other equivalence relations and show that 

taken together they are equivalent to the Nerode equivalence relation. 

It is then shown that the space of equivalence classes generated by these 

three relations is finite-dimensional if and only if s(zi,z2) is a 
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realizable power series, i.e. s- can be written as N(z1,z2)/ 

pi(z2)p2(z2)p(ziz2), and this is a necessary and sufficient condition 

for reachability of the Nerode space in bounded time. 

Definition 2.2.1  

Two input pairs (u1,v1),(u2,v2)c UxV are Nerode equivalent iff 

(u1°u,v1°v) = f(u20u,v20v) for all (u,v)e U xV, where supp u = supp v. 

The symbol 0 is the concatenation operator, and is defined by 

(....002;e...ud) ° (...,0,uk,...010) 

(...  

In polynomial notation, the two input pairs are Nerode equivalent if 

k+1 	k+1 	k+1 	k+1 
f(zi ul+u,z2 vl+v) = f(z1 u2+u,z2 v2+v), 

for all (u,v) E U X V; deg u = deg v5 k. 

We denote the Nerode equivalence classes by Cul,v1] i.e. 

Cul,v1] = { (u,v) E U xV1(u,v)ii(ui,v1)). 

f can then be factorized as in the following commutative diagram: 

f 
U x V 

f 

X
N 
 AUxV/- 
= 

where v is an onto mapping and f is (1-1). 

XNAUxV/ii = {[ui,v01(ui,v1)E U x V) 

is called the canonical, or Nerode state space. 

Definition 2.2.2  

XN  is reachable in time m if the mapping v restricted to input 

sequences with support less than m is still onto. XN  is said to be 

reachable in bounded time if it is reachable in time m for some m. 

Thus if XN  is reachable in time m, the partial memory which the 

system has of any input sequence will be the same partial memory that 

it has of at least one input sequence of length less than or equal to m. 
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We shall now introduce three more equivalence relations, i, 2 and 

3, which play a major role in what will follow: 

ul 	u2 iff f(u100
k
,00v) = f(u200

k
,00v) 

1 

for all kE N, VE V, with deg V< k 

where u100
k 

denotes ul followed by k zeros and 00v denotes the zero 

input sequence followed by v. 

vi - v2 iff f(00u,v100
k
) = f(00u,v200

k
) 

2 

for all kE N, 11E U, with deg u< k 

o,viook ) 	f(u200k,v2.0k)  (1.11,v1);(u2,v2) iff f(ulo
k 

 

for all kE N. 

Remark 	By stationarity (1.11,v1) 	(u2,v2) iff f(ui,v1) = f(u2,v2). 

The relationship between these equivalence relations and Nerode equivalence 

is defined by the following lemma. 

Lemma 2.2.1 

(ul,v1) 
N  
- 	

1 
(u2,v2) iff ul - v2, vl 

2  
- 	

3 
v2, (ul,v1) - (u2,v2). 

Proof: 	Let (121,v1) R (u2,v2), i.e. f(ulou,viov) = f(u2ou,v20v) Vu,v. 

This immediately implies (ul,v1) -' (11,,,v2) by the remark above. 
3 

Now f(u100
k
,viov) = f(u100

k
,v100

k
) + f(u100

k
,00v) 	(2.2.1) 

by bilinearity. Similarly 

f(u200
k
,v20v) = f(u200

k,v200k) + f(u200
k
,00v). 	(2.2.2) 

Equating (2.2.1) and (2.2.2), and using (ul,v1) ^ (u2,v2), we obtain 
3 

f(u100
k
,00v) = f(u200

k
,00v). 

Hence ul u2. We can show in an analogous way that vl - v2. 
1 	 2 

Conversely, let ul1 
	2 
u2, vl - 	

3 
v2, (ul,v1) 	(u2,v2). 

Then, using bilinearity, we have 

flulou,viov) - f(u2ou,v20v) 

= f(uloO
k,v100k) +f(u100

k
,00v) + f(00u,vio0

k
) + f(00u,00v) 

- f (u200
k
,v200

k
) + f (u200

k
, Oov) + f (00u, v200

k
) + f (00u, Oov) 

= 0 
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. 
where we use 3,,1 and 2 in turn. 

Hence (u1,v1) 11(u21v2)- 

We can now construct the quotient spaces X1 = U/- and X2 = V/-, and 
1 	2 

these can be endowed with the structure of a linear space. This follows 

because 

(i) k[ul]T = DculTi I 

(ii) [u17-  + [u2]- = [ui+u2]- where Di]- is the 1 equivalence class 
1 	1 	1 	1 

of u, and similarly for the a' equivalence classes. 

However Ux VP- cannot be endowed with this structure. It is necessary 
3 

first to embed UxV in the tensor space Uta V, where Uo V E R[z.1.,z2]. We 

thendefinethemapf identifyingfra with iz;j, 

and its domain with R[zi,z2]. That is 

f : R[z1,z2] 	(z1z2)-1R[[(ziz2)-1]] 

r 
: w(zi,z2)4-(z1z2)

-1
2.s13..z1 z

2-j  w(zi,z2) O pziz2)
-k 

It is clear that f is a linear map and we can therefore write down 

the commutative diagram: 

UxV  

Ur V 

v3 1 

	

U0V/kerf 	fa 

	

where v3 is **to and 	is (1-1). 

It is now immediate that (121,171) N (u2,v2) iff f (ulovi)=fo(u2ov2) . 3 

This is because f(u,v) = f (uov). We can further see that UoV/kerf AX3 

can be endowed with the structure of a linear space. 

Before coming to the realizability theorems we shall prove the 

following technical lemma which will be of use not only for the purposes 

f 

fra  
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of studying realizability, but also for discussing stability of bilinear 

input/output maps and, by an obvious extension, to more general multi-

linear input/output maps. 

Note that this lemma has been proved by Fliess [Fl] for series 

which are somewhat more general — the so-called recognizable formal 

series, where z1 and z2 do not necessarily commute and where R is 

replaced by a semi-ring. However the present statement of the proof is 

as general as we need it for our purposes, and the proof, though fairly 

obvious, appears to be original, and also supplies a representation of 

the matrices and vectors involved. 

Lemma 2.2.2 

r is a power series in (ziz2)
-1 

 R[(zi)]ci R[(z2)], i.e. r can be 

written as r = M(z1,z2)/P1 (z1)p2(z2) for some pl(x),p2(x)E R[x] and 

M(zi,z2)E R[zi,z2] iff there exists an integer N, vectors b,cE R, matrices 

,NxN 	 -1 v. 	T i j 	 j MI,M2E K 	with M1M2 = M2M1, such that r = (zlz2) 	L 	c MIM2bzi z2 . 

Proof: 	Let 

- 
(ziz2)r = y 	cT mi m2bz, z2j  

i,j0 

L Ti) 	-j  	Ti) 	-j 
=X 	L cM1M2bzi z2 +X 	X 	cM1M2bzi  z2  
i=0 j=i 	j=0 i=j+1 

	

T i i 	-1 -1 	r T j+1 	-21(I-Miz)
-1 

= 	cM1M2zi  z2  (I-M1z2 )b+cMi  M2
j  zi (j+1)z 

i=0 	 j
L
=0  

T 	,-1)-1,, 	 1,-1, 
= c (I-M1M2(zlz2, ) 	J L 

	

T c. 

	

	-1( 	
14 	1(I-MizT1)-1b Mizj iI-M12(ziz2)-1)-  

r 	 - 1 
• cT J-M1142(ziz2)-1)-1[(I-M2z-211-1+Miz7.1(I-Mizi ) 

-1 
 ]b 

Tr 
• c J.-141142(z iz2)-11-1[I-MIzl+ Miz71  (I-M2z-21)] 

(I-M2z21 )
-1 

 (I-Mizi1 )
-1 

 b 

• c (I-M2z2-1 )
-1 

 (I-Mizi1 )
-1 

 b 

T, , . %-1. 	,-1„ 
= ziz2c kz2.1.-r12) 	kz1.1.-M1) 

C IMZ1)]ORNZ2)]. 
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Note that all the above equalities are obtained using  the fact that 

M1  and M2  commute. 

Conversely, let rE (z1z2) -1  R[(zi)]isi R[(z2) 7. Then r can be written 

as 
nylnz-1 1  

pi(z1)102(z2) i=0  j=0 -j 
r - 	a4iziz2  

n1  
where pi(z1) = zl

ni 	
81z1

-1 	
a ni  

and p2(z2) ='z22  + y12212-1  + 	+ yn  . 
2 

Consider now the term zl/p1(z1) where i<n . This we can write.  as  

z1/Pi(z1) = z-11 	c1.Aibizlr  

r-?:0 

where Al  = 

01 

-0 

• 0 

.... 

0 

*-• 	1 

-131 

b1  = 

O  

0, 
1' 

 c = 

0 

1 
• 
0 

 - i+lth position.  

This follows directly from our knowledge of linear systems 

realization theory. 

In a similar way we can write 

- 	,s 
z2/z2/P2(z2) 	= z2

1 
 L c

T
2'11 2
, 

] 	2''2. 
s?:0 

01. 0 0,  

where A2  = 01 
b2  = 6 c 	= 2j - j+lth position. 

-11-12— -Y1  1 6 , 

Hence we can write 

j , „ 	-1 	r Tr Ts -r -s 
zlz2/pi(zi)p2(z2) = (zlz2) 	L c .Albic .A2b2z1  z2  - 2j  

rN:) s?_0 

	

r 	-r -s r s 

	

= (ziz2)-1  L 	L ciT  .oc
T 

 .
3
AlrmA2bimb2zi  z2  

2 rNDs s.?.0 

and it then follows that 

r = / 13 a..z1z2/P1(z1)P2(z2) i,j   

= (z1z2)-1  X. X cTA54b1cab2z.7rz2s 
rN:)s?:0 

where c = 	a..c 	. 1j  11 2J 
i,j 
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o 

It is obvious from the proof of the above lemma that we can state 

the following generalization: 

Lemma 2.2.3 

-1 
r is a power series in (zl ••• z) R[(zl)]~ ••• ~R[(z)] iff there 

n n 
N .,.NXN . 

exists an integer N, vectors b,c€: R, matrices MI, ••• /M €: K with 
n 

-1\ T i in -i -in M.M. = M.M. for all i,j such that r = (zl ••• z) LC Ml ••• M bZI ••• Z • 
~J J~ n n n 

~ow, following[FMl], we define the power series: 

co 

r. (z) l s .. kZ -k i 0,1, ••. series = = - row 
~ k=O ~,~+ 

co 

c. (z) l -k 
j 1,2, ... - column = s. k .Z = series 

) k=O J+ , ) 

co 

d .. (z) L s. k . kZ 
-k 

i,j - diagonal = = 0,1, ... series 
~J k=O ~+ ,J+ 

formed from the general formal power series s = (ZIZ2)-1 l s .. zïiz;j • 
. . ~J 
~, ) 

Diagrammatically, we are doing the summations as shown below: 

real 
We also define R [(zl,z2)] as the subring of R[(zl,z2)]generated 

by R[(zl)]' R[(z2)] and R[(zlz2)]' and called the ring of realizable power 

series. 

We next present a result from[FM1], the proof of which seems to be 

somew.hat questionable there, but \'lhich is proved correctly here. 
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Lemma 2.2.4 

Let s be a formal power series. Then Sc IC 	C(zi,z2)] iff the 

membersofthesets{r.}, {c.} and{d
ij. .} are power series expansions of 

rational functions in one indeterminate, having a common denominator 

for each set. 

Proof: 	Let pi(z), p2(z), p(z) be the common denominators of the 

ratdcx-wafuncuons associated with{r.},(
cj
} and{d

ij  
} respectively. 

Now s = (ziz2)
-lr

sij  zi z2
j 
 can be written as 

	

Q 	CO 	 Co 	Co 

	

S = (ziz2)-1[ X 	c
o S ,i+k (ziz2)-iz2c  + X 	/ S. 	(z1z2)-jzik] i 

i=0 k=0 	j=1 kZ:0 

A (z1z2)-1(si+s2). 

Consider then 

Co 	CO 

	

= 	z2
-k  

1,i+k 
i=0 k=0 

CO 

= X a.(z2)(ziz2) 
-1 
/P2(z2) 

i=0 

for some a.(z2) with deg a. 5= deg P2 

and by interchanging summations we have 

Co 

sl = X b
k
(ziz2)z2

k 
 /p(ziz2) 

k=0 

for some bk(ziz2) with deg bk  5_ deg p. 

	

Now from Apostol [API], we know that if a sum 	G(m,n) can be 
m,n 

written as X G(m,n)= X A
m 
= X B

n, then the sum does indeed exist. In 

	

m,n 	m 	n 

particular, for the case we are considering, we can readily show that 

S i = 
1  

132(z2)1D(ziz2) N1(z1,z2) 

for some Nic 

Similarly 

1  
s2 - 	

-  
.t.-1(zi)p(±,z2) .N2(zi,z2) 
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so that 

, 	1 
S = (ziz2)

-1  tsl+s2) - 	„ 	 • [P1(z1)141(zi,z2) pitzi,p2tzvziz2p(ziz2) 

+ P2(z2)N2(zi,z2)] 

E R
real

[(z1,z2)]. 

Conversely, suppose s = 
N(zl,z2) 

 

p1(zi)p2(z2)p(ziz2) 

By multiplying top and bottom by (ziz2)k for appropriate k it is 

clear that we can factorize s as 

f(ziz2) 	M(z1,z2)  s - 	 p(ziz2) ql(z1)q2(z2) 

where deg f 5 deg p 

degzi M < deg qi, degz2  M < deg q2 

where deg_ M is the highest power of zi  appearing in M, 
41  

and qi(zi) = z1P1(z1),  q2 (z2) = z2132(z2)- 

Hence s = X ak(zlz2)
-k r 	T i 	-(i+1) -(j+1) 

	

L c MIM2bzi 	z2 	by Lemma 2.2.2. 
koCi 	i,jN) 

- 	- 
It then follows by equating this with s = Xs z1(m+1) z2(n+1)  that 

mn 

min(m,n) 
s = X 	MI M2 h. 

T m-k n-k 
akc inn 	

k=0  

Hence if we consider the column series, 

co 

cn G S r=0 n+r,nz 
-r 

= X X akcTM? 	M2 b 
r=0 k=0 

	

co n 	+r-k n-k 

n co 
= 	

X a c To+r-k n-k, 
Z
-r 

k 1 M 
D 2  

k=0 r=0 

• T n-k -1 	-1 -1 n-k 
= X a

k
c Mi 	(I-1(I 	) M2 b 

k=0 

= 1'akC

• T

(M1M2)
n-k(zI-M1)-1b 

k=0 

which is a finite sum having denominator det(zI-M1) for all n 1. 

Similarly the row series (m?. 0) all have common denominator det(zI-M2). 



21 

co 
Now d (z) = 	s

m+r,n+r
z-r 

Mr1 r=0 
03 

-r -r 
Hence d (zlz2) = 	sz 1 z2 mn r=0 

m+r,n+r 
 

m+1 n+1 	Iv , 	,-k 

	

= zi z2 s 	L kZ1Z2) 
100 

f(zlz2) 	zi
m+1 

 z2
n+1 

 M(z1,z2) 0 	(zlz2) 
p(zlz2) q1(z1)q2(z2) )0:0 

= 
f(z1z2)zr11+1 4+1 x 
, 	mitii2bzi(i+1)z3(j+1)0 (z1z2)-k  

Ptz1z2) 	 10.0 
by Lemma 2.2.2. 

Because of the term to the right of 0, we can neglect any term to 

the left of 0 where the powers of z1 and z2 are not equal. 

Now, assume m:n. By considering equal powers of z1 and z2 (by 

setting m-i = n-j) in the above expression we obtain 

f(z1z2) v T j-i-m-nMbzril-jzi21-j  0 r  ' 	
,-k 

d (zlz2) = 	, 	L C  M1 	L kziz2) 
mn 	ptzlz2) 

	

j>0 	)0.1. 

f(z1z2) T m-n = , 	,c 	(ziz2)
n+1

(z1z2I-MIN12)
-1 

0 Dziz2)
-k 

p(zlz2) 

Hence d
M11. 

 (z) has denominator p(z)det(zI-M1142) for all m?.. n, and 

likewise for all 	m. 	 . ❑  

We next show that the R-linear spaces X3, X1 and X2 are all finite 

dimensional if se R
real[(zi,z2)], by relating X3, X1 and X2 to the 

diagonal, column and row series defined above. 

We first of all examine X3 = Urn V/ker fa, and we note that 

-m -n 	r , 	,-k 
f (z1

i 
 z2) = (z1z2) -1 v L s zi z2 z

i 	t  z2 e L  zlz2) 
mn 10:1 

= (Z1Z2)
-1 V L s

i+k,j+k(z1z2) 
k=0 

-k 
(by definition of f) 

= (z1z2)-1  d.,(Z1Z2). 

Using this relationship, we can establish the following result. 
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Lemma 2.2.5  

X3 is finite-dimensional iff {d..13(z)} are power series expansions 

of rational functions, having common denominator. 

Proof: 	Since {z
i 	i z2} is a basis for R[z1,z2], it is apparent that 

Imf
a 
 = span{f (ziz2) : i,j = 0,1,...}. 

Let us assume that X3 is finite-dimensional. Then Imf_
m 
 has a 

fillitebasis,soecluivalefftWsParl{d13(z)} has a finite basis, say 

(z) , 	, dinjn  (z) . 
101 n 

Hence dik+1,jk+1(z) = 

	

	bkmdirom(z), bkm e R, k = 1,...,n. 
m=1 

But by definition of the diagonal series we have 

dik+1,30-1(z)  = z(dikjk(z) sikjk) 
	

k = 1,...,n. 

Equating these, we obtain 

(zI-B)d = s 

1  where B = ()Dim) d = [di,j,(z)...dinjn(z)]
T 
 , s = [six.— sinjni

T  

so that all d. (z) have common denominator det(zI-B). ij 

Conversely, suppose dijij (z) = N (z)/P(z) with deg p = n. Then 

dim X3 = dim span{dij  (z) } S m. 

Before proving analogous results for the row and column series, we 

shall define the morphisms fl  and f2  and relate them to the equivalence 

relations T and a. 

We define fl : 	R[EZ-1]]1"  by 

fl(u) = (f(z11.1,1),f(zu,1),...). 

The linear space R[Cz-1]]lx 
admits the structure of an R[zi] 

module if we have the multiplication zi(si,s2,s3,...) = (s2,s3,...). 

Hence fl is an R[zl] morphism since 

z1f1(u) = zi(f(z11.1,1),f(ziu,1),...) 

= (f(ziu,1),...) 

= f 1 (z1 	- 
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"1 

Xl = U/ker f1 

R[[z -1]]lxc° V 	 

v2 

X2= V/ker f 

R[[z-1]]lxco 

f 

fl f2 
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We next show that fl(111) = fl(u2) iff ul 	u2. From the definition 
1 

of fl it is clear that fi(u1) = fl (u2) iff 

f(z1121,1) = f(ziu2,1). 	for all k 	1. 

Hence f(zTui,alz2
r-1  + „, +a ) = X a (z1z2)r-if(z1u1,1) 

r 	1=1  i 

r. 
=la.(ziz2)r-if(z1u2,1) 
i=1 

r 
= f(ziu2,alz2

-1 
 + 	+ ar) 

so that u1 ~ u2. 
1 

Conversely, ,let u1 	u2. Then f(ziul,l) = f(ziu2,1) for all k 	1, so 
1 

that fl (u1) = fi(u2). 

In a similar manner we define the R[z2] morphism f2 : V-+RUz-lillx°3  

by 

f2(v) = (f(1,z2v),f(1,+), ...) 

and we can show that f2(v1) = f2(v2) iff vl .; v2. 

Having established these relationships, it is clear that an 

equivalent definition of the spaces X1 = U/7 and X2 = VP; is X1 =U/ker fl 

and X2 = V/ker f2. We can then obtain the commutative diagrams 

where vl is onto and 11 is (1-1); X1 is then naturally endowed with 

R[zi] module structure and ker fl is a principal ideal in R[zi]. 

(Similarly for v2, f2 and X2.) 

We now have sufficient machinery to obtain the following results: 

Lemma 2.2.6 

xlisarlite-dimensionaliffthecolumnseriesc.(z) , j = 
0,1,... 

are power series expansions of rational functions having common 

denominator. 

Proof: 	Let X1 be finite dimensional. Then ker f1 = (wi(z1)) for some 
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polynomial wi(21) c R[21]. Moreover dim X1 = deg w1. 

Now let wi(21) = z1 + alzi
n-1 
 + 	+ a

n 
E ker f . 

Then 	0 = fl(wl(z1)) = wi(21)f1(1) 

where f1(1) = (d11,d21,d31,---) 

Hence = an
(dii,d21,...) + a

n-1(d21,d31,...) 

+ 	+ (d
n+1,1 

d
n+2,1' 

This in turn implies that 

a 	 = 0 	for all k n-s 	
+ 	+ s

l+k,l+k 
 + a

n-1
s
2+k,l+k 	n+1+k,l+k 

ans2+k,l+k 
+ a

n-1
s
3+k,l+k + 	+ sn+2+k,l+k = 0 	for all k 

. . . etc. 

Hence 

	

sr+k,l+k = (10 ... 0) 01 	0 
0 	

1 

	

-an 	 -al 

r 
s
l+k,l+k A c

T
Arb. s 	= 

n+k,l+k 

   

Hence the column series are power series expansions of rational 

functions with common denominator w1(2). This follows immediately from 

/ sr+k,l+k-r = Lc
TArbz

-r 
 = cTA(2I- A)-lb 

r 	r=1 

where n(2) = det(21- A) . 

Conversely, suppose that tilt.- column series ci(2) correspond to 

rationalfunctionsN.(z)/w1(z) w1(z) 0. 

Then 

rl r 	-j r n 	n-1 

	

f(2Twi(21),1) = (2122) 	L s..21 z2 21(21+alz 	+...+an)0 Dziz2)
-k 

. 	1] 
1,3 

	

, 	
j

-1 	-j, n+r-i 	n+r-l-i
nz

f. ) 	0 	(2122) 
r-i 

1 -k 

	

= (2122) 	X s22 tzl 	4-alz1 +...+ct 

i,j 	 kl 
L { co s  , -1 v ct 	v 

[ Z=1 k=1 r+n-16-1-k'k 	

,-11 co 

1-1 

(2122) 

	

= (21221 	L t  L 	(2122) 	+ 1 s k=i  r+n+k,k 

Let us examine the coefficient of (2122)
-(k+1); 

 this is equal to 
n 

. sr+n+k,k + X 
	

r+n-i+k,k. 1=1
a1s 
 

00 

Now the column series ck(z) = C sp+k,k
z-P  sums to Nk(z)wl(z). 

p=0 
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Hence the coefficients of the negative powers of z in 

wl(z)ck(z) = wl(z) / sp+k,k 
z
-k 

are all equal to zero. This immediately 
p=0 

implies, on examination of the coefficient of 
z7(k+1) 

in this sum, that 

+ 
1
las 	= 0 for r 1. 

r+n+k,k 	. 	i r+n-i+k;k 
1 

It is now clear f(zfwi(z1),1) = 0 for all r, so that wi(zi)eker fl, 

and since R[zi] is a principal ideal domain, ker f1 = (w1), so that X1 

is finite-dimensional. 	 ❑  

Using similar reasoning, we obtain the following. -- 

Lemma 2.2.7 

row 
X2 is finite dimensional iff the eel series ri,i = 	are 

power series expansions of rational functions having common denominator. 

Hence, combining the lemmas that we have just proved, we find that 

the space x1ex2ex3  is finite-dimensional if and only if s(zi,z2) is a 

realizable series. In §2.3, we shall demonstrate how to obtain a state 

space realization of the bilinear input/output map f represented by a 

realizable series s(z1,z2), based on the use of the module-morphisms 

fl, f2 and f and their kernels. Before that, however, we shall devote 

a few further lines to conditions for reachability in bounded time of 

the Nerode space XN, details of which may be found in [FM1]. 

The principal result concerning this is that XN  is reachable in 

bounded time if and only if s(z1,z2) is a realizable series. In other 

words, the intuitive notion that reachability in bounded time is an 

equivalent concept to that of being able to write down a finite-

dimensional realization for f is confirmed. We shall omit the proof 

of this result as it is not fundamental to any of the work presented 

later; however, it is worthwhile giving some indication of the path 

taken, as this bears some similarity to the proof of quasi-reachability 

CO 
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of the state-space realization of Chapter 3, and it also provides an 

opportunity to point out an error in the proof of CFM 1]. 

Defining (wi(z1)) = ker fl and (w2(z2)) = ker f2 as above, it is 

possible to write any input sequence e Ux V 2 Uzi] x R[z2] as 

Opi(zi)wi(zi) + q1 (z1) p2(z2)w2(z2) + q2(z2)) 

where deg ql < deg w1, deg q2 < deg w2. 

Fornasini and Marchesini then construct an algorithm to choose 

polynomials g1(z1) and g2(z2) such that (i) f(glwl,g2w2)=f(p1w11p2w2) , 

(ii) f(giwi,q2) = f(piwi,q2) and (iii) f(qi,g2w2) = f(qi,p2w2) with 

deg gi and deg g2 always less than some specified integer M (dependent 

on the particular map f). The Nerode equivalent input is then 

(g1w1,+q1,g2w2+q2), which can be seen from the equivalence of 

r k 	 r k 
f 	(giw Ft-cif )+u, z2 (g2w2+q2) +v) and f 	(p lw +qi ) +u, z2 (p2w2+q2) +v) 

where deg u and deg v < k. 

The reader of EFM1] will find, however, that for the construction 

given, conditions (ii) and (iii) are not necessarily satisfied, e.g. in 

the case 
1 

S 	
(zi+azi+b)(z2-c)q 

This deficiency can be remedied by replacing the truncation map 

T of Lemma 2.6 of EFM1] by the truncation map TL, where 

L = max(t, deg w1, deg w2). This will then ensure that conditions 

(ii) and (iii) hold. 

2.3 Finite-Dimensional Realization 

In this section we demonstrate how to derive updating equations 

in XleX29X3 for the case when XN  is reachable in bounded time. The 



ul°z1 

Xl Imfi imfi 	 imfi 

U 
\\\\ 

vi(onto) 

*1 

	

XI 	'` X1 

	

I/41 	

fl 

(1-1) 

fl 

X1  

27 

only tool that we shall need will be Zeiger's Lemma [K2], which we state 

here without proof for the special case of modules. 

Lemma 2.3.1  

Let A, B, C, D be arbitrary modules. Consider the commutative 

diagram 
a (onto) 

A 

	 D 
6(1-1) 

where a, a, y, 6 are morphisms, with a onto and 6 one-to-one. Then 

there exists a unique morphism (f) : 13-4-C such that the diagram remains 

commutative. 

Updating Equations in X1 and X2 

Cosider the following commutative diagram of REzii-module morphisms: 

zi 	 fl 

Since vi is onto and fl is (1-1), there exists a unique REzii- 

morphism 	: Xi + X1 such that 

V10Z1 = 

Hence we can write 

fl(z1u+uk) = ii°v1(ziu+uk) 
	

(2.3.1) 

= 	0 (v 1°z1 (u) + ukv (1) 

= 110 	(u) +ukvl(1)) 
	

(2.3.2) 



X3 
ee  

ziz20ica 

Imfrs2 

UM, 

f 
ca 

imf 	)imf 
ziz2 

zicaz2 	 v3 
	 UeV 	UeV 	 

v3 3 (onto) 

 

X3 

Ca 

 

f 

 

V302:1OZ2 

)4' 
X3 	 

f 

1P3 
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and since fl is (1-1) we can equate (2.3.1) and (2.3.2) to obtain 

vi(ziu+uk) = lhov1(u) + ukvi(1). 

So with respect to a basis in X1 we can write 

1 	1 , 
xk+1 = Alxk 1"luk 

where Al and }al are representations of IP' and v1(1). 

In a similar manner we obtain updating equations for X2: 

'<L
1 
 = A2x + b2vk. 	 (2.3.4) 

Updating Equation in X3  

Consider the following commutative diagram of R[ziz2]- module 

morphisms: 

(2.3.3) 

Since v3 is onto and f
n 
is one-to-one, a unique Uzlz2]-morphism 

4)3 : X3 ÷ X3 exists, such that 

y3o(ziaz2) = r1)3°v3- 

Let us introduce the projection mapping 

Dcw 
: R 	-1  ]]. 	-4- R[[z 11] : (si,s2,...) 	sl  

which satisfies the following equations: 

f(z1ua1) = Trofi(u) 

f(laz2v) = 7rof2(v). 

Then by bilinearity of f we can write 

f(ziu+uk,z2v +vk) = f(ziu,z2v) + vkf(ziu,1) + ukf(1,z2v) 

ukvkf(1,1) 
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and hence 

fmov3((z1u+uk)m(z2v+vk))  =fmov3(zivaz2v) + v
k
f
a
ov3(ziuml) 

+u 	ov (1 az2v) k 0  3 

= 1 04)30v3(umv) + 

+ u,x
f 01-20v2(v) 

+ ukvki00v3(1a1) 

v
k 	'

l oTovi(u) 

+ ukvkolov3(1c41) 

where Ti 	
-1 f o7r.ok..: X. -' X3 	i = 1,2. - 
0111 

Since f
a 

is one-to one, we can write with respect to a basis in X : 

xk+1 = Ax
k  + Qixilcvk  + Q2x12(uk  + bukvk 	(2.3.5) 

Yk = hTxk 
	 (2.3.6) 

where A, Q1, Q2, b and hT  are representations of tP3, ti, T2, v3(1a1) and 

f
a 

respectively in the chosen basis. 

We shall now show that if a bilinear input/output map can be 

represented in the above state space form, then it can also be represented 

by a realizable power series s, which can be directly computed from the 

system matrices. This we do by evaluating s = (ziz2) Ls..z1 z2
J  , where 

s..1.] is the output at time 0 due to unit inputs at times -i and -j in the 

U and V channels respectively, as was defined previously in §2.1. 

Consider unit inputs at time -(i+k) and -i in channels U and V 

respectively for k 1. We then obtain the following: 

xl 
-(i+k)+1

= bl 

k-1 
xl. = AI b -1 i 

by (2.3.3) 

by (2.3.3) 

• x_i+1  = Q1A1
-1 

 bi 	by (2.3.5) 

xi  = A
i 
 Q1A1

k-1 
 1)1 	by (2.3.5) 

yl = hT Ai Q1A1
k-1 

 bi by (2.3.6). 

Hence si+k,i  = hT Ai Q1A1
-1 
 b1. Similarly we obtain si,j+k=hT A

j 
 Q2A2

k-1  b2. 

Finally for unit inputs at time -i in both channels U and V, we obtain 

s.. = h
T
A
ib. We can then compute s as 



fl(1) = (f(z1,1),f(z,1),...) 
2 r 	a 	a  

(z-ab) (z-c) 	(z-ab) (z-c) 

30 

co 	co 	 co 	co 

22 S = 	/ hTlki121A1ribi(2122)—(i+1)Z-ik 	/ hT201224-1b2(z1z2)—(j+1)  —k  
T  i=0 k=1 	 j=0 k=1 

+ X h A-b(ziz2)-(i+1) 

i=0 
= hT(z1z2I-A)-11021(z1I-A1)-1)01 	Q2(z2I-A2)-1b2 	b}. 

In order to illustrate the realization procedure described above, 

we will carry out each step for a simple example. 

Let s - (z1-a) (z2-b) (ziz2-c) 

It can then readily be seen that 

(z-ab) (z-c) 

ak  
f(z1,1) - (z-ab) (z-c) 

bk  
f(1,z2) = (z-ab)(z-c) 

and we can now compute f(u,v) for any (u,v) E U XV. Note in particular 

that f(zi,z2) -(z-ab)(z-c)' so that a basis for imf0 
 is given by f (101) 

and f(ziaz2), i.e. dim X3 = 2. a 

Now 

1 

f(1,1) = 	
1 

and we can readily see that fl(z1) = z1f1(1) = af1(1) = fl(a), so that 

ker fl = (z1-a), and similarly ker f2 = (z2-b). It is also clear that 

= x]lc[1]1 for all u e U, for some scalar xk dependent on u, where 

[w]1 denotes the equivalence class of w under 7. We can then write 

[ziu+uk]l = x114.1[1]1 

= zl[u]1 + uk[1]1 

= a[u]1 + uk[1]1 since zl-a e ker fl 

= 	+ uk[1]1. 

Equating (2.34) and (2.3.8) we obtain 

x31+1  = axk  + uk  

(2.3.7) 

(2.3.8) 

(2.3.9) 
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2 1-,1 and similarly for z2v + vk, where we define Rd2=xkLI-12, we obtain 

x)c+1 = bqc  + vk 

Now from our choice of basis for im f above, we can write 

fa
(uav) = ak

fm
(1a1) +

k
f(zioz2) 

for some scalar ak 
and k dependent on u and v. 

Hence 

(2.3.10) 

fm((ziu+uk)a(z2v+vk)) 

= fia(z1uaz2v) +vkfca(ziuml) +ukfm(laz2v) +ukvkfca(131) 

= ziaz2lakfm(101) + Okfa(ziaz2)1 

+ vkfa(zival) + ukfm(laz2v) + ukvkfol(lal).:  (2.3.11) 

Now 

zimz2 fol(lal) = fa(zioz2) 

and 	ziaz2 fo(lal) = foL(4mq) 

2  
and 	f a(z

2  
1
az2
2) - (z-ab)(z-c) ° 	z

-k 

(ab+c)z - abc  
(z-ab) (z-c) 

= (ab+c)f(z1mz2) - abcf 
a
(lal). 	(2.3.12) 

Furthermore, we note that 

(f(zival),f 	(zu01),...) 	= fl(u1) 1 

= x31-cfl (1) since Cu1]1 = xilc[1]1 

= 

Hence 	f(ziusl) = x
(zial) 

= axl
k
f (lal). (2.3.13) 

Similarly we obtain 

fo(laz2v) = bqjcit(101). (2.3.14) 

Inserting (2.3.12)-(2.3.14) into (2.3.11) we obtain 

(1a1) + 010.1f0(zioz2) fm((zill+uk)a(z2v+vk)) ak+lfa 

= akfa
(zioz2) + 0 [(ab+c)f (zimz2) - abcf (131)] 

+ axilvkfm(lml) + b+kfm(11231) + ukvkf0(101) 
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and equating the coefficients of f
a
(101) and of f(zioz2) we obtain 

r k+11 	
-abcl[akl 	(b1 	1 

+ 	+ 	xl2cuk  + 	ukvk. 	(2.3.13) 
ak+1 	

1 ab+c 8
k 	

0 	0 	0 

Finally we note that f (1,1) has zero output at time +1, and 

f(zi,z2) has output 1 at time + 1, so that 

yk  = (0 1)[1  . 
8k 

(2.3.14) 

We can immediately check that the state space realization given by 

(2.3.7), (2.3.8), (2.3.13) and (2.3.14) is correct by calculating 

s = (0 1) ziz2 	abc 	-1  a (z1-a)-1  + b (z2-b)-1  + 1  

[ -1 ziz2-ab-c 	0 	0 	0 

1 	a  
, 

	

	 b  + 1) 
tzlz2-c)(ziz2-ab) zl-a z2-b 

1 
(z1-z) (z2-b) (z1z2-0 

Note that the state space description obtained above is observable 

(in the sense defined later in Chapter 3), but it is not reachable, since 

2 xkxk  = ak  + ab8k  for all k. 

2.4 Alternative Methods of Realization  

The realization which was produced at the end of the last section 

is typical of state space realizations of bilinear input/output maps 

formed by consideration of the equivalence relations y, 2 and ', in that 

it is not reachable. A reasonable method of correcting this deficiency 

for the example above is to substitute xl
k
x3 - ab8k 

for ak 
wherever it 

x 

occurs. The dynamic equation for ak+1 can then be expressed as 

1 2 Ok+1 = (xkxk  - ab  k
)+ (ab + c) Rk  

= xlexk + c8k 
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and it is now clear that we are left with a three-state realization 

describing the map s, which it is fairly easy to see is both reachable 

and controllable (by the usual definitions of reachability and controll-

ability) provided that a and b are non-zero. 

We shall now introduce a state space description of bilinear input/ 

output maps which generalizes the preceding analysis and which formal-

izes the ideas of Kalman's seminal paper on multilinear systems [K1]. 

We shall follow this by a discussion of the advantages of this representa-

tion over the one of §2.3, in particular how it is possible to go straight 

from the transfer function to the state space description, by-passing any 

consideration of equivalence classes, which even for the simple example 

above was somewhat tedious. The state space description which is the 

basis for our later results on reachability, observability and minimal 

realizations is as follows: 

x11+1 = 	bluk 

qc+1  = A2qc  + b2vk  

xk+1 = Ax
k  + Cxk  loqc  + Qixilvk  + Q2x)2cuk  + bukvk  

1 2 yk  = h
T 
 xk  + dT  xock. 

Note the inclusion of the term 	
' 

xlcilx2
lc 
 where s is the Kronecker 

k  

product, and since this is bilinear in U and V, it is obvious by induc- 

tion on xk  that both xk  and yk  are also bilinear in U and V. In Chapter 

4 we will show that by. the addition of this term it will always be 

possible to set up a state space description of any bilinear input/output 

map, with finite dimensional Nerode space, which is both quasi-reachable 

and observable. 

We shall also see that the matrices A1, A2 and A have a direct interpre- 

tation in terms of the transfer function s = N(z1,z2)/p1(z1)p2(z2)p(z1z2); 

in fact the characteristic polynomials of these matrices will be equal to 

(2.4.1) 

(2.4.2) 

(2.4.3) 

(2.4.4) 
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pl(z), p2(z) and p(z) respectively, to within some factor zr. 	To 

demonstrate this fact we shall prove the following theorem which shows 

how to compute the transfer function associated with (2.4.1)-(2.4.4) 

and afterwards give examples of how to set up a suitable state space 

description. 

Theorem 2.4.1  

The transfer function associated with equations (2.4.1)-(2.4.4) is 

given by 

s = hT(z1z2I-A)-1{C(z1I-A1)-1b1 m (z21-A2)-1b2 + Q1(z1I-A1)bi 

Q2(z2I-A2)
-1 

 b2 + b} + dT(z1I-A1)-1b1 e  (z21-A2)b2. (2.4.5) 

Proof: 	We shall set up a state space analogous to that in §2.3, and 

then employ the formula derived there to calculate s. 

First we shall compute the transition map of q(ctqc  from (2.4.1) and 

(2.4.2), and combining this with (2.4.3) we obtain the composite state 

transition map 

[

xic uxk l+l +1 

0 	1  [Aical (z1I-Ai) /pi + rics[A21 (z2I-A2) 1b2 s = [dThT] ziz2I-A1mA2  

-C 	z1z2I-A 	Qi 	22 

+ clic:1b2  

b 

+ raAl (z2I-A2)
-1 

 b2 

22 

. 	(2.4.6) 

xk+1 

This equation together with (2.4.1), (2.4.2) and (2.4.4) are of the same 

form as the state space description of §2.3, so that the transfer function 

s(z1,z2) is computed as 

[

= A10A2 0 +qc  + A inb2 xilvk  + b1eA2 x?clik  + b1eab2 ukvk. 

C A xk 	21 	22 

-I-  [31311 b 

= idThT] 	(z1z2I-AlmA2)
-1 	

0 	Alob2 (z1I-A1)
-1 

 bi 

[ (z1z2I-A)-1 
	-1 	

' C(z1z2I-A1oA2) 	(ziz2I-A)1 	21 -..] 
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,-1, 	 I  Now (z1z2I-AletA2 ) 	 + blob2  + b le[A2 (z2I-A2 ) 

= (z1z2I-AlaA2 ) -1  {A la(z2I-A2 ) + (z1I-A1)121(z2I-A2 ) + (z1I-A1)3A2} 

(z1I-A1) -1  b io(z2I-A2 )-1  b2  

= (z1z2I-A1csiA2) -1  {A icaz2I- A1t3A2 + z1z2I- A1caz2I- zl IcaA2 +A1cilA2  

z1I2A2 — A1ciA2}(z1I-A1 ) -1b1a(z2I-A2 )-1  b2  

= (z1I-A1) -1b1o(z2I-A2 ) -1b2 . 

Hence from (2.4.6) we see that 

s = dT(z1I-A1) lbio(z2I-A2 ) 1b2  + hT(z iz2I-A)-1  C(z1I-A1)-1  b ia(z2I-A2 ) 1b2  

	

+ hT(z iz2I-A) -1  {121(z1I-A1) 1b1 	Q2(z2I-A2) 1b2 + b}. 	0 

By comparing  the expression (2.4.5) for s with the state space 

equations (2.4.1)-(2.4.4), it becomes apparent how to set up a suitable 

state space description. Consider the example of section 2.3: 

1 s - 	  (z1-a) (z2-b) (z1z2-c). 

By associating  the Al  matrix with z l -a and the A2  matrix with z2-b 

and regarding  the bilinear output 1/(z1-a)(z2-b) as the input to the 

linear system with transfer function 1/z-c, it is possible to write down 

the simple state space description as 

xl 	= ax, + u. k+1  
= bx2 + v xk+1 k k 

Xk+1 = cxk  + xkxk  

Yk = xk- 
real , Returning  to more general se K 	-1 F Z2

1  ]i, we shall consider 

two cases; this is done for convenience, rather than because the realiza-

tions corresponding  to these two cases differ in any significant manner. 

Case 1: 	s = N(zi,z2)/131(z1)P2(z2) 
n-1 m-1  

where 	N(z i ,z2) = y 	X gijziz2  
j=0 i=0 
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m 	m-1 
Pl(zi) = z1 + alz1 	+ 	a 

P2(z2) = z2 	b1z2
n-1 
	bn 

A possible state space description is 

1 
xic+i 0 1 	0 x11(  ÷ 0 u

k 
0 

'1 0 
-a
m
....-al 1 

x3(+1  o 1 xk2  + o vk  

'1 0 
-b
n 	

-bi 1 

Yk = 

That this does realize s is an immediate consequence of the fact 

that the transfer function vector from uk  to xilc  is azi...zri]T/ Pl(z1),  

and 1...kewise for the transfer function vector from vk 
to qt. 

Case 2: 	s = N(z1z2)/p1(z0p2(z2)p(ziz2) where deg 	1. 

By multiplying numerator and denominator of the expression for s by 

(zlz2)
k for appropriate choice of k we can factorize s as 

f(z z2) 	m(zi,z2)  s = 	 (2.4.7) 
q1(z1)q2(z2) 

where deg zl 
	z M 5_ deg (I', deg. 2

M 5 deg q2, deg f < deg p 

and q1(zi) = zi
k 
 pi (zl), q2(z2) = z2

k 
 p2(z2). 

We can now view M(z1,z2)/qitzi)q2(z2) as the input to a system with 

transfer function f(z)/p(z), so writing this as 

q1(z1)q2(z2) 	q1(z1)q2(z2) 	qi(zi) 	q2(z2) 	m4'  

where we now require deg 
zi 
 M1 < deg q1, deg 

z2
Mt < deg q2, 

deg M2 < deg ql, deg M3 < deg q2 

(which can always be satisfied). We can employ Theorem 2.4.1 to enable 

us to write down a state space description for s as follows: 

p(ziz2) 

M(z1,z2) 	M1(zi,z2) 	M2(z1) 	M3(z2) 



xlkvk + 0 xtuk  + 0 ukvk  

111 
C3 	 m4 

x
k+1 

= 0 1. 	xk 
• 

*1 
-gu....-gi 

0 
T 
cl 

0 

0 
T 

C2 
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x1 
k+1 

-x1  + O uk  0 1 

*1 
-ani...-a11  

k+1 	
0 1.  x2  x = 2  

.1 
-bn....-bi 

0 
1 

+ 0 v
k 

0 
1 

y
k 

= [(1
n 

where the numbers in the above matrices are given by 

q1 (z1) 

q2 (z2) 

p(z) 

1 	1-1 
= z1

n  +aizin 	+...+ a 
ni 

2 , 2-1 	, 
= z2 +D1z2

n 	
- • 	Dn2 

= z
n 	n-1 
+ giz 

	
+ 	+ g

n 

f(z) = diz
n-1+ 	+ d 

mi(zi ,zz) 

M2(z1) 

M3(z2) 

= cl 1 • 1 
zi 	z2 
.
n1-1 	.n2-1 

z1 	z2 

= [1 z1....41-17c2 

= [1 z2....42-1]c3. 

This particular realization will not in general be a canonical 

realization as we shall define ii. later. However we only desire at this 

stage to demonstrate that we can in general set up a state space descrip- 

tion 	 2  involving the term xkaxk, and that this only requires linear system 

realization procedures, assuming that the transfer function of the 

bilinear system is known. 

This is a considerable simplification of the realizatthon 

procedures of [FH1] since it essentially only involves the 
construction of substates corresponding to pi(z1),p2(z2) 

and p(zizp)respectively.The procedures of [Ni]II 	require the 

construction of substates corresponding to the p1(z1)p2(z2) 

interaction,as evidenced by (2.3.13). 
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2.5 Input/output Stability  

In this section we will present some new sufficient conditions for 

the output sequence {yk  : 	1} due to finite input sequences lui  : 

{v. 
	j SO}, to be stable in the R1-norm, or 2.1-stable. 

As above, let s = N(zi,z2)/pi(zi)p2(z2)p(ziz2); then N(zi,z2) can be 

completely factorized with respect.to polynomials in ziz2 as 

N(z1,z2) = M(zi,z2)f(zlz2) i.e. 

	

f(ziz2) 	M(z1,z2)  s - 
p(zlz2) p1(z1)p2(z2).  

If deg f 5 deg p, deg 
zi 

 M < deg pi  and deg 
z2

M < deg p2 we leave the 

above expression for s as it is. 

"If either or both of deg .M deg pi and deg M 1. deg p2 hold we 

	

zi 	z2 

shall express s as 

	

M(z1,z2) 	(z1z2)111f(z1z2) 
s = 	, 	m , 	m 
P1  kzi)zip2kz2;z2 	p(z1z2) 

where m = maxIdeg M- deg pl, deg M - deg p2I + 1. zi 	z2 

If deg f > deg p, we shall express s as 

M(zi,z2)z1
r 
 z2
r  

f(ziz2) s - 

where r = deg f - deg n. 

In any event, we can rewrite s as 

R(Z1,Z2)  S = 
cli(z1)g2(z2) 

g(ziz2) 
q(ziz2) 

(2.5.1) 

where deg 
zi 
 R < deg ql, deg z2

R < deg q2, deg g < deg q. 

Note the similarity between this expression and expression (2.4.7). 

The difference is that in this case the numerator of s is completely 

factorized with respect to any polynomials in the term ziz2, but this is 

not necessarily so with (2.4.7). 

P1(Z1)P2(Z2) 	(z1z2)rp(z1z2) 
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Having set up this useful expression for s, we can now state the 

following 

Theorem 2.5.1  

If either of the following conditions hold, then the output sequence 

due to a finite length input sequence from Ux V is 21-stable: 

(i) all zeros of p(z) and all terms of the form la.a.31, where 	} 

and {S.} are the zeros of pl(z1) and p2(z2) respectively, lie within the 

unit circle; 

(ii) all zeros of p(z) lie within the unit circle, and all terms 

fa.B.1 not lying within the unit circle are zeros of g(z). 

Proof: 	The output sequence due to inputs (zi,z2) for i_?_j is given by 

	

i 	R(zi,z2) 	x  g(z1z2)  0  V / % 	
,-k 

L 	z1z2) y(ziz2) = zi z2 (11(zoci2(z2) 	q(z1z2) 	k> 1 

L 
r 	rs om 	-(r+1) -(s+1) g(zlzp) r , 	,-k 

	

= ziz2 	cT  A lmA2bl b2zi 	z2 	 0 	t zlz2) 
cl(z1z2) r,s 1 	 kI.1 

by Lemma 2.2.2. 

So equating powers of z1  and z2  i.e. by setting i- r = j- s, we 

obtain 

L 
	s y(z i z2) = L c

T Ai-j+s 026,2(ziz2) j-s-1 
 JD'ab2q(

g(ziz2)
ziz2)0  r (z

1z2)-k 

sl. 	 kl. 

- = cT (ziz2I- AicaA2)-1  Ali j  blob2(z1z2)ig(ziz2)0 r L(ziz2)-k 
q(z1z2) 

Simlarly, for i 5 j, we obtain an output sequence 

y(z1z2) = cT (ziz2I-ArNA2)-1 
	 r birsA2j-i b2 (ziz2) g(ziz2)  s L(z1z2)-k (2.5.2) 

q(z1z2) 

We can now immediately see from our knowledge of linear systems that 

if det(z1z2I-AicaA2) and q(z iz2) both have zeros within the unit circle, 

then the output sequence due to any finite input sequence from Ux V will 

be 2.1-stable. Now q(z) has zeros which are either zero or else zeros of 
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p(z), and det(zI-AicA2) has zeros which are either zero or else of the 

form {a.B.
j
} where {a.} are the zeros of pi(zi) and {a.} are the zeros of 

p2(z2). Hence (i) is a sufficient condition for ti-stability. 

Likewise, we can see from (2.5.2) that if g(z) cancels all zeros of 

det(zI-AicaA2) which lie on or outside the unit circle, then the output 

sequence y(ziz2) is 2,1-stable. Hence (ii) is a sufficient condition 

for 2,1-stability. 
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CHAPTER 3. CANONICAL REALIZATIONS OF BILINEAR INPUT/OUTPUT MAPS 

In this chapter we analyse state space representations of bilinear 

input/output maps in greater depth. The motivation for this is that 

state space representations will in general be neither controllable nor 

observable, and it may be helpful for the purpose of identification of 

parameters to be able to construct a realization possessing the properties 

of controllability and observability. 

For the case of linear discrete-time systems it is common to talk 

about state space reachability rather than state space controllability 

(where controllability refers to zero state controllability) since a 

zero-eigenvalue mode which is unaffected by inputs will certainly attain 

zero value in finite time. For this reason reachability rather than 

controllability is considered here as well, but as we shall see, it is 

necessary to relax the concept of reachability to that of quasi-

reachability, and in §3.2 necessary and sufficient conditions are 

obtained for a state space realization of a bilinear input/output map 

to be quasi-reachable. 

Observability too has to be treated in a slightly different manner 

from that of linear systems, and the idea of a realization being observ-

able if its initial state can be determined with the help of a finite 

number of "experiments" has to be invoked. Necessary and sufficient 

conditions are obtained in §3.3 for a state space realization of a 

bilinear input/output map to be observable. 

In 53.1, formal definitions of these and other concepts are intro-

duced, as are the similarity transformations on the state space which 

produce equivalent realizations of bilinear input/output maps. In 

Chapter 4 it will be shown that any two minimal realizations (Definition 

3.1.4) of a bilinear map f are isomorphic under these transformations. 
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3.1 Preliminaries  

Definition 3.1.1  

A state space realization of an input/output map is quasi-reachable  

if the closure of the set of states reachable from the zero state is the 

whole space. 

Definition 3.1.2  

A state space realization of an input/output map is observable if 

no two states are equivalent. We say that two states xi and x2 are 

equivalent if f(xl,w) = f(x2,w) for all w where f: XxW÷Y represents 

the map from an initial state XE X and an input sequence WE W to the 

output space Y. 

Definition 3.1.3  

A state space realization is canonical if it is both quasi-

reachable and observable. 

Definition 3.1.4 [AMI] 

A state space realization M of an input/output map f is (co)minimal  

if it is observable, and if for every other observable realization M' of 

f, there exists a unique mapping 0: M 	
1 

We now reintroduce the state space realization first mentioned in 

Chapter 2: 

x.11+1  = 	bluk  

- A  2 + b 
xk+1 2xk 2

y 
 k 

• xk+1 = Ax
k  + Cxk  loxi2(  + Qixkvk  + Q2x12(-  uk  + bukvk 

hT + aTx1„2
k  Yk = - xk 	-k - 

(3.1.1) 

(3.1.2) 

(3.1.3) 

(3.1.4) 

where XI1E Rn1, q'c E Rn2, xk c Rn, and the system matrices have dimension 

consistent with these. 

Before going on to discuss reachability and observability in §3.2 
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and §3.3, it is of interest to discover the class of transformations on 

this state space which preserves the behaviour of the system, and it is 

this which provides the setting for the reduction procedures of Chapter 4. 

From our knowledge of linear system theory, it is immediately 

obvious that there exist three particular classes of similarity trans-

formations which preserve the behaviour of the system, namely xlic-+Tixk, 

q(-4-T2xt and xic 4-Txk, where T1, T2 and T are non-singular square matrices, 

with the associated transformations 

Al 	
1 

-*TiMT].  b1-+Tib1 A2-+T2A2T21  b2-*T2b2 

A .+ TAT 1 C4-TCTi
1 
 taT2

1 
 Q1 TQ 1T1

1 
 Q2 ÷ TQ2T2

1 
 b Tb 

h
T
÷h

T
T
-1 

d
T 

 -4-d
T
T
- 

However there is one further similarity transformation which is not 

so clearly apparent: 

Proposition 3.1.1  

Let (3.1.1)-(3.1.4) be a realization of the bilinear input/output 

map f:UxV-*Y. Then for any WE Rn"In2, (3.1.1)-(3.1.4) is also a 

realization of f under the transformation 

C -+ W(AlaA2) + C- AW 

Q1 	Qi  + w(Alob2) 	Q2 4' Q2 + W(b1mA2) 

b 	b + W(b10102) 
T T T 
d 	d - h W. 

Proof: 	We calculate the transfer function s,,,(z1,z2) of the transformed 

system according to the methods of Chapter 2, and show that it is equal 

to the original transfer function s(zi,z2). 

The transfer function s
T 
 (z z

2 
 ) is given by 

s (zi,z2) = hT(z1z2I-A)-11[W(A1oA2)+C-AW](z1I-A1)-1b1a(z2I-A2)-1b2 

+ [Q1+W(Alc3b2) ](z1I-A1)
-lbl  

+ [Q2 + W (b yak) ](z2I-A2)-1b2  + b + W(biob2)}  

+ (d
T
-h

T
W)(z1I-A1)

-1
bia(z2I-A2) 1b2 
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= hT(zlz2I-A)-11  1C(z1I-A1)-1  bia(z2I-A2) -1  b2 + Q1(z1I-A1) -1  bl + Q2(z2I-A2 ) -1  b2+bl 

+ dT(z1I-A1)-1  bio(z2I-A0 -1  b2 
- 	_ 

+ hT (z1z2I-A)-11[W(AlciA2) - AW](z1I-A1) lbin(z2I-A2) 1b2 

+ W(A1ab2)(z1I-A1) -1b1 + W(b1aA2) (z2I-A2) -1b2 + W(biab2)1 

- hTW(z1I-A1) -1  blm(z2I-A2) -1  . 

Then using the identity (zI-F)-1  F = -I + z(zI-F) -1  = F(zI-F)-I  and 

the expression for s(zi,z2) given in (2.4.5) we obtain 

sT(zi .,z2) = s(z1,z2) +hT(ziz2I-A)-11W(-I+zi(ziI-A1)-1)bica(-I+z2(z2I-A2) -1)b2 

+ W(-I+zi(z1I-A1) 1)131mb2 

+ Wbia(-I+z2(z2I-A2) 1)b2+Wb1calb2 

+ hT(I-ziz2(ziz2I-A)-1  )W(z1I-A1) -1  bin(z2I-A2)-1  b2  

- hTW(z1I-A1) -1  bia(z2I-A2) 1b2 

= s(z1,z2 ). 

Remark: This transformation is equivalent to the similarity transforma- 

( 
tion 

	

	ImI 0 applied to the linear system defined by 
W I 

[cir  hT] , 	ArnA2 0 	, 	Alub2 bimA2  brob2 

	

C A 	Q1 Q2 

In Chapter 4 we shall see that these four classes of similarity 

transformation define the isomorphism between two minimal realizations 

of a bilinear input/output map. 

3.2 Reachability of the State Space  

In Chapter 2, we mentioned the intuitive idea of reachability in 

bounded time and in [FM1] it was shown that this is equivalent to the exist-

ence of a finite-dimensional state-space realization. Here we bring in 
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some intuitive ideas of state space reachability and demonstrate that 

within certain restrictions they do indeed hold. 

We first of all digress for a moment to discuss linear systems. 

By a well-known theorem we know that the system 

x]..1 = Fxk  + gu 
is not reachable iff there exists a row vector a

T 
such that jg = 0 

and aTF = XaT for some XE C. In other words, a
Txic+1  = XaTxk, and 

given •a zero initial state, the state space evolves on the hyperplane 

aTx = 0. 

With bilinear systems, using a certain amount of intuitive 

reasoning, we may expect the state space to evolve on some hyper 

surface pTx + q xlmx2  = 0 if the state space realization (3.1.1)-(3.1.3) 

is not reachable. To be more precise, we expect that 

1.1Tl m(2 	= A (p 	T 1 2 
k x + q x, x P xk+14 v -k+1 k+1 	k  

identically, for some XE C. 

In fact, we shall see that, subject to certain assumptions 

detailed in Theorem 3.2.1,this condition is both necessary and 

sufficient for non-reachability. 

Before we come to the main body of this section, we recall the 

following definitions from linear system theory. Let FE Rnxn  

H  Rrxn, G E R
nxm. Then 

(i) (F,G) is a reachable pair iff rank[GFG 	Fn-1G] = n, and 

(ii) (H,F) is an observable pair iff rank [HT 
FTHT...(Fn1)THT]  = n.  

We shall now make the following two assumptions concerning the 

state-space description (3.1.1)-(3.1.4): 

(Al) (Al,b1) and (A2,b2) are reachable pairs 

T  
(A2) (h 	is an observable pair. 

If either of these assumptions does not hold, we know from the 

well-known linear system theory results of Kalman [K2] how to reduce 
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(3.1.3)-(3.1.4) to suit our requirements. In particular, assumption (A2) 

tells us that if we diagonalize the matrix A into Jordan form, 

then there is only one Jordan block corresponding to each distinct 

eigenvalue of A, and hence just one Jordan block corresponding to zero 

eigenvalues of A. 

We now state the following technical lemma concerning the transfer 

functions of the system. 

Lemma 3.2.1 

Let 

	

AloA20 	Almb2 binA2 biab2 
be a reachable pair. 

	

C A 	Q1 	Q2 	b 

Then the components of xl(z1)mx2(z2) and x(z1,z2) are linearly 

independent, where 

xl(zi) 	= 

2( 
X 	kZ2,1 	= 

(z1I-A1)
-1  bi 

t 	A 	11, 
1,Z2

7
1-c/2, 	A."2 

(3.2.1) 

(3.2.2) 

x(z1,z2) = (z1z2I-A)-1[C(z1I-A1)-lblin(z2I-A2)b2+Q1(z1I-A0 ibi 

r 71- 	1-1 
Q2(Z21-1-12)1 "2 	"J 	(3.2.3) 

are the transfer functions of 	
' k 

xl
k  x

2  and x
k 

respectively. 

Proof: 	Suppose there exist row vectors pT  and qT  such that 

pTx1( z1 ) 0x2( z2 ) 	ex ( zi,z2) = 0.  

Expanding x(z1,z2) in powers of z1 z2
-j 
 we obtain 

-(k+1)Ak[cx (AtnAl)(biob21zi(i+1) -(j+l)  x(z1,z2) = 	(ziz2) 	 z2 
1C-!0 

+.421 Aibizi 	+ -(i+1) , 	VA1, 

	

Q2 L'12J"2z2(j+1) 	b]. X l  

The coefficient of (ziz2)-(r+1)  is then 

E0 I] [AloA2 O r  rimb21 r = 0,1,... 

C A 

The coefficient of (z1z2)
-(r+1)zi(s+1) is 

E0 I] Al A2 [Ariblob21 r,s = 

C 	A 	Q1A7101 



- The coefficient of (ziz2)-(r+1) z2  (s+1) is  
s+1 [0 IltAiralk2 	[lorstA2  b2] r,s = 0,1,... 

C A Q2A2b2 

,. Similarly the coefficient of (z1z2)-(r+1) in Xl(ZDOX2 tZ2) is 

(AlmA2) rblob2 	r = 0,1,... 

the coefficient of (ziz2)-(r+1) z1-(s+1) is 

(A1ciA2) rA1 iblob2 	r,s = 0,1,... 

the coefficient of (zlz2)-(r+1) z2-(s+1) is 

(AimA2)rb1mA2s+ib2 	r,s = 0,1,... . 
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T 	 T So p xlmx2  + q x = 0 implies that 
EpTcITTinA2  11701 

= 0 r = 0,1,... 
C A 

'(3.2.4) 

 

EpTqT ] ApaA2 0 r  Ariblob2 = EpTqT]  AloA2  oir AI .cab  2 A isbi  = 0 	(3.2.5) 

[ C 	A Q1A7b1 	_ C 	A Q1 r,s = 0,1,... 

EpTqT ] AloA2 0 r  bloArib2 = EpTqT'J - nA2 0 Al r  binA2 4b2= 0 	(3.2.6) 

[ C 	A y21A2u2 Q2A2b2 C 	A Q2 r,s = 0,1,... 

But (Al,b1) and (A2,b2) are reachable pairs, and hence (3.2.5) and (3.2.6); 

reduce to 
T, ipTq J rioA2 O robl = 0 r = 0,1,... 

C A Q1 

[pTc1T]  rin12 r 11010A2] = 0 	r = 0,1,... 

C .A LQ2  

r

which together with (3.2.4) provide a contradiction to 

loA2 O 	r1121132 b1etA2 
C A ' 	Q1 	Q2 	b _ 

being a reachable pair. 

We now state the main result of this chapter: 

1 
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Theorem 3.2.1  

The system (3.1.1)-(3.1.4), with assumptions (Al) and (A2), is 

quasi-reachable iff 

r

1mA2 	rl°°02 b1mA2 blob2] A (F,G) 

C A Q1 Q2 

is a reachable pair. 

Proof: 	Suppose that (F,G) is not a reachable pair. Then there 

exist row vectors p and q such that 

Lp
T 
 qT] J 	= X[LD

T 
q
T
] and [p

T 
q
T
] rinb2 b1nA2 blsb2 = 0 

and by expanding xk+1 
and xl

k+1 nxk+1 
 in terms of xk,qc,x12c,uk  and vk  it 

1 	2 	T 	T 1 2 is clear that p
T
xk.4.1 + 

qT xk+1181xk+1 = X (P xk 4- q xkm[k)  ' 

Hence, given a zero initial state, i.e. xo  = 0, x(!.)  = 0, x(23  = 0, 

we see that the state space evolves on the hypersurface p
Tx + qTxleix2  = 0 

for all time, so that the system is certainly not quasi-reachable. 

Conversely, suppose that (F,G) is a reachable pair. We shall 

now proceed to show quasi-leachability of the state space using a 

similar approach to that of OK2HThis we do by specifying a desired 

state, and then constructing input sequences from ux V which 

reach this desired state at time +1. Note that the state xk  at time +1 

is given by the vector coefficient of (z1z2)
-1  in the expansion of 

x(z1,z2)u(z1)v(z2), because xk  is a bilinear function of U and V. We 

are of course assuming that at some time -J, where J is greater than 

the length of the input sequence that we shall construct, we have 

x1 J, , x2
J 
 and x

-J 
 all zero. 
 

Now let th(z) and 42(z) be the characteristic polynomials of 

Al and A2 respectively. Then, given desired states xl and xi we 

know from linear system theory that there exist unique input sequences 

C A Q1 Q2 b 
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cli(zl) and q2(z2) with deg qi  < deg tPi  (i = 1,2) such that the input 

sequences pi(z1)11)1(zi) + qi(zi) and p2(z2)11,2(z2) + q2(z2) applied to 

(3.1.1) and (3.1.2) respectively reach xi
1 
 and xi

2  
 for all pi (zi) and P2 (z2) 

Hence, once the desired state xi is specifed, the reachability 

[xl 

xi 

problem becomes one of constructing polynomials pi(z1) and p2(z2) 

which enable us to reach the state xi via (3.1.1)-(3.1.3). 

The construction of these polynomials is fairly long and detailed, 

• so we shall first outline the two major remaining stages of the proof: 

1. Using a suitable choice of matrix T, we apply a similarity trans-

formation to equation (3.1.3) in such a way that I 

TAT
1 = Jl 0 

0 JO] 

0.1 	0 

where 	Jo = 	. - 	E exm  and J1 is non-singular. 
• • "1 

We then show in Lemma 3.2.2 that the subsystem corresponding to Jo, 

together with equations (3.1.1) and (3.1.2) is quasi-reachable and we 

show how to construct the input sequences necessary to achieve the 

desired state. 

2. We then construct a further input sequence with the aid of another 

technical lemma, which enables us to reach the remaining desired 

components of xi. In fact it becomes clear that if A has no zero 

eigenvalues then the state space is not only quasi-reachable but 

completely reachable as well. 

Let us now consider the special case A = Jo, where Jo E 

Lemma 3.2.2  

The state space realization (3.1.1)-(3.1.4) is quasi reachable iff 

(3.2.7) I 
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(F,G), as defined in Theorem 3.2.1, is a reachable pair, where A = Jo. 

Proof: 	The transfer function x(zi,z2) is calculated as 

(z1z2I - Jo)x(ziz2) = [C(z1I-A1)-1csi(z2I-A2)-1b2 + Qi (z ii - A1) -1b1 

A ‘t.. 
Q2(Z2I-1-121 

1 
 U2 

	b] 

The RHS of (3.2.8) can be written as the vector 

(3.2.8) 

so that 

x(z1,z2) A 

1 [Ri(ti,z2) 

R
m
(zi,z2) 

1 

(z1z2)m-1  

0 

1 	] 

sm-1 
(ziz2) 

[11(zi,z2) 

Rm(zi,z2) 

1 

11)1(z1)11)2(z2) 

[K1(zi,z2)1 

x 	(zi,z2) 
(ziz2)m 4)1(z1)*2(z2) 

(3.2.9)i 

Let us now examine the state sequence from time + 1 onwards due to 

the input sequence 

[(mo+alzi+...+aszT)11)1(zi) +cli(zi)][(80+81zi+...+Htz)11)2(z2) +c12(z2)] 

A [a(zi)IPI+cli][a(z2) 11)2412] - 

We shall label this state sequence y(z1z2 )=ryl(z1z2)...ym (z1z2)1T  so that 

y m-r  (ziz2 ) = x m-r
(zi,z2 )Ca(zi)qq+cli ][R(z2)4-q2I3I(z1z2)

-k 

(r = 0,...,m-1) 

1 	-r 	Rm 
lig(z1)1)2(z2) zi 

rm 	
+ 	+ z2 	(z1z2)][a(z1) 1)14":11][a(z2/2-c12] 

Dz1z2)
-k 

(r = 0,...,m-1) 

On examination of the terms to the left of 0 which involve ai  and 

a.
3 
 for i and j greater than r, it is clear that these do not contribute 

to y m-r  (ziz2), since oLzoh(zi) cancels out all zi terms in the denomina-

tor for i> r, and (3,z24)2(z2) cancels out all z2 terms in the denominator 

for j > r. Hence 



51 

1 	m-r  (z1z2) - 	, 	+ 	+ Y m-r 	In (zi)4,2(z2) [ ziz2 
Rm  

z z2) r+1 
x 

[ (ao  + . + arzY) + q1 i[ (ao  + 	+ arzD1) i)2  + q2] o 1(ziz2)-k  
(r = 0,...,m-1) 

In addition, it is clear that all terms involving multiplication 

of ar and R m-1 make no contribution to y 	(ziz2 )-since once m-r 	 m-r 
again we have a cancellation of all z1  terms in the denominator. The 

same goes for multiplication of Sr  with Rm_r ,...,Rm_1, so using the 

bilinearity principle we can now write 

(ziz2 ) = yq 	
Rm 

y 	 (z1z2 )+ m-r 	m-r 	(z1z2)1.+41(z1)1P2(z2) 

X [ctrar (ziz2 ) r h)P2.  
 +arzitP1[(ao+ .•• +0r-lz2
r-1 

 )1P2+c12] 
r 	 r-1 

+a z211)2[(a-o  + ..• + ar_lzi  )1P1  +q1]  
, 0 I(z1z2 ) -k  

(r = 0,...,m-1) 

where ym-r  q (ziz2) is just ym-r  (ziz2 ) for ar = Sr 
= 0. 

We can simplify this to 

ar ( 3o + — - + 3r-lz5-1) 	arc 2 (z2) 
ym-r (z iz2 )=  ym-r (z1z2,  +z  z2  [a r+ 	 4 	+

z
,P2(z2) 

r-1 
Or(cto+ --- +ctr-lz1 ) 	13 rcil(z1) 0 I(ziz2)-k  

+ 	 +  , z-ipl(zi) 	 (3.2.10)1 zr 1 	 1 
(r = 0,...,m-1) 

We immediately notice that any terms of Rm(zi ,z2) with a factor of 

ziz2  make no contribution,, since this factor cancels with the ziz2  term 

in the denominator outside the square brackets of (3.2.10), and all terms 

inside the square brackets have denominator with terms either in zi  or 

in z2 , but not involving  both z1  and z2 . Hence the only terms of 

Rm(zi ,z2 ) which contribute to y m-r(ziz2)  are those of the form 
ni 	 n2  a lzi + 	+aniz i  + Diz2 + ..• +bn2z2 	a(zi ) + b(z2 ) + c. 
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Let us now write 

a(zi)ql(zi) 	f 	zni-1 
	+ fizi + f

o 
+ terms in 	(3.2.11) n1-1 1  11,1(z1) 

and 

b(z2)q2(z,) 	n2-1 	 -1 	 = g 	,z2 	+ 	+ giz2 + go 
+ terms in z2 . (3.2.12) 

	

*2(z2) 	n2-1 

It then follows from (3.2.10) that 

-1 
Y 	(ziz2) 	Ycl  (z1z2) 	(ziz2) [a 	c a 0 b "1" alb 	- 131) m-r 	m-r 	r r 	r o r 	r-1 	r-1 

+ a g + B  (a a + ale+ ... + aa0
) + 	f ] 	(3.2.13) r-1 	r-1 r r 	r o r 	 r r 

(r = 0,...,m-1) 

As we remarked earlier, the term of interest to us is the coefficient 

of (ziz2)-1, and it is clear from (3.2.13) that if c is non-zero, by suitable 

choice of ar  and Sr we can achieve any desired value of this coefficient. 

Hence if c is non-zero, not only do we have quasi-reachability of 

(3.1.1)-(3.1.4), but complete reachability. 

Alternatively, suppose c = 0. We then have two cases to consider: 

(1) either a(zi) = 0 or b(z2) = 0, 

or 	(2) neither a(zi) nor b(z2) are identically zero. 

Note that if both a(z1) and b(z2) (as well as c) are zero, then we can 

write Rm
(z1,z2) as z1z2111

m
(zi,z2), in which case we see from (3.2.9) that 

1 	1  
X (21,Z2) - 	R (ZI,Z2) 

	

M 	z1Z2 M 	11)1(Z1)11)2(Z2) 

RI(Zi,z2) 

11)1(z1)11)2(z2) 

which is linearly dependent on the components of xl(z1)ox2(z2), in 

contradiction of Lemma 3.2.1. 

Let us first assume, then, that a(z1) x 0 and b(z2) x 0, and 

suppose that 

a. = 0 (i= 1,...,s1) and as1+1 x 0 

and b. = 0 (j=1,...,s2) and bs2+1 
x 0 

for some si 	s2 it2. Then from (3.2.13) we have 
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q- = y 	a g' + 13, f' 	(r = 0,...,m-1) 	(3.2.14) 
m-r m-r rr rr   

where ym-r  and 0m-r are the coefficients of (z1z2)
-1 

in y
m-r  (ziz2) and 

m-r(zlz2) respectively and 

g'r  = 	
b 	+ albr-1 

+ 
o r 

fr = a 
o  ar 

 + 
alar-1 

+ 

+ ar-1
bi + g

r 

+ 
ar-1al 

 + f
r 

r = 0,...,m-1 

r = 0,...,m-1 	. 

(3.2.15) 

(3.2.16) 

From (3.2.14) we see that a sufficient condition for reachability is 

that g' and f' are non-zero for r= 0, . . .,m-1. However from (3.2.15) and 

(3.2.16) it is clear that g'r=g rr  (r=0,...,s2) and f'=f r(r=0,...,s1),_so 
_ 

if g
r 

= 0 and fr 
= 0 for any of these values of r, we have y

m-r 
= y

q 

m-r' 

so the state space is not reachable. We therefore constrain 

gr(r=0,...,s2) and fr (r=0,...,s1) tobe non-zero; from(3.2.11) and(3.2.12) 

we see that this is just a restriction'on the coefficients of q2(z2) 

and qi(zi) not to lie within a certain union of hyperplanes of Rn2  

and Rn1  respectively, and this in turn is a restriction on x2  and xi 1 

not to lie within a certain union of hyperplanes also in Rn2  and Rn1. 

If we can now show that we can attain any value of x1 provided that 

x1 and x do not lie in the hyperplanes characterized by the above 1 

discussion, it then follows that the closure of the reachable set of 

(3.1.1)-(3.1.4) is the whole space Rn1-1112-1-n,so that the system is quasi- 

reachable. To do this, we just need to ensure that g'(k>s2) and 

P(k>si) are non-zero. Now from (3.2.15) and (3.2.16) we see that 

g' si+r+1 = obs2+r+i+... + ar-1bs2+2 + arbs2+1 + gs2+r+1 

(r = 0, . . . ,m -s2-1) 

	

f 	= aa 	+... + a 	a 	+ aa 
o si+r+1 r-1si+2 	rsi+1 si+r+1 	

+ f
s1+r+1 

(r = 0,...,m-s1-1) 

so our methodology is to choose ar  and Sr  in such a way that 

f' 	and g' 	are non-zero, and at the same time ensure that 

	

si+r+1 	s2+r+1 



k(zi,z2) 	flyiz2)11,1(z1)11,2(z2) 
S(z1,z2) 	n-m 

c R 	E(zi,z2)] 
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the desired value of Yra_r  in (3.2.14) is achieved. It is readily seen 

that we can attain these objectives, so quasi-reachability is proven. 

Now consider b(z2) = 0. From (3.2.12) we see that gr  = 0 for all r, 

so the coefficient of ar 
in (3.2.14) vanishes. Then, as above, we restrict 

fi 	sl) to be non-zero; we then choose a
r 
(r=0,m-s1 -1) arbitrarily, 

since it makes no contribution to g m-r  , to ensure that fs'+r+1 ' 	is non- 
1 

zero. Finally we choose ar so that the desired value of y111-r is 

attained. Hence we have quasi-reachability. 

We follow an analogous argument for the case a(zi) = 0. 	0 

Let us now return to the proof of Theorem 3.2.1; we have seen from 

Lemma 3.2.2 that we can achieve all states associated with the subsystem 

of xk  corresponding to zero eigenvalues, and it is clear from the proof 

t2 
of this lemma that all inputs of the form z

t
i
i1)1(zi) and z2 4,2(z2) have 

no influence on that subsystem or on the 	andd x12(  states for ti,t2>m-1. 

If we now calculate the transfer function of the remaining xk  states, 

it is clear that this will be of the form 

(3.2.17) 

where, and from (3.2.7), 0(z) is the characteristic polynomial of: 

J1,4(z) 	chz+ 0o- 

We can write this as 

, 
S(zi,z2)(z1z2)  

m 
ci(zi,z2) = 

0(z1z2)T1(z1)2(z2) 

 
where th= z

mith and 11;2 = z211,2. 

Now consider constructing an input sequence of the form 

(131(zi)T1(zi) + il(zi)) x (P2(z2)1T2(z2) + i2(z2)) 

where Eli = a(z1)1P1 + ql and q2 = 8(z2)1P2 + q2- 

Let the vector bilinear map (3.2.17) be represented by 

(3.2.18) 



Then 

g: R[zi]x REz2] --*Rn-miC(zI z2) -1]] 

: (u(z1),v(z2 ))--451(z1,z2)u(z i )v(z2) ® Dz1z2 ) -k. 
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9(P1T1 +iltP211;2+ El2) = 9(P1T1,P2T2) + 

+ g(41,1321T2) + g(i1, 2)- (3.2.19) 

 

We shall now set up pi  and p2  in such a way that the two middle 

terms of (3.2.19) become zero, and then concentrate on demonstrating  

reachabilityVia g(1311,P2T2)-  The reason for doing  this, as we shall 

see very shortly, is to enable us to select the coefficients of p2 (z2) 

by solving  a series of linear equations. 

Consider then 

) 
z 130 

)mS(z 	
E1 

(ziz2i2   
9(PliTlei2) - 

	

	 12 0 Dziz2) -k  
01T2 

(ziz2)
m
S(ziz2) 	,-k 

- 	 PlE12 0 (z1z2) 	• 
62 
,T 	 i j Now S(z i ,z2) 4_ [S1,...,S

n-m
J is made up of terms c..ziz,. _ 	 ij  ,. 

Let us now define 

i j 
ml = max{j-ilcij 	i 0, c .ziz occurs in one of S1,...,Sn-m} j 	2 

and let 

P1 (z1) = zT151(z1) 

for some 151to be constructed later. 

Then 
(z1z2)msPii2  -(ziz2)ms zili1 rr az2  i 

02 	 p(z iz2 ) 
(3.2.20) 

a9(z2) 
where 1 y.z2i  is the expansion of =--- in negative powers of z2. 

i>1 1 	 T)2(z2) 

It is now clear that because of our choice of ml, all terms in 

the numerator are of the form akel
k  z2t  with k>t for all a,x  0. 

Hence the expansion of (3.2.20) in negative powers of z1  and z2  contains 

no terms of the form b
kk
(ziz2 ) -k with non-zero bkk, so that 

g(P01,q2) = O. 
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In a similar manner we can choose m2 to ensure that g(El1,p211,2)= 

where p2(z2) = 2212i52(z2). 

Let us now consider 

0 Dziz2) PlIT1P217)2S(z1z2)  
,m 

,-k 
g(PlIT1,1D2T)2) - 

1412s(ziz2) 	Dziz2)-k 

411-1)2 

= P11324 

and let us write 

(z1z2)m21112212S = N(zi,z2) + 4(ziz2)M(zi,z2) 

where N(zi,z2) contains no term with a factor (ziz2)
n-m 

(3.2.21) 

(3.2.22) 

We assert that the components of N(zi,z2) are linearly independent. 

For, suppose the contrary; then there exists c
T 
such that c

TN = 0. 

Hence (ziz2) mzT1 2
212cTs 	(1)cT__m, by (3.2.22), so that cp divides cTs,since 

cp has no zero roots. Then by (3.2.17) 

T„, 	c
T
S(zi,z2) k(zi,z9) c xtzi,z2) - 	, say. 
011)2 	11)02 

But this is linearly dependent on the components of xlmx2, which 

is a contradiction of Lemma 3.2.2. 

Now, substituting (3.2.22) into (3.2.21), we obtain 

7 7  
g kPlY1,P242

, 
 = 1.1i2 (M T) 

	v
k Z1Z2

,-k 

1302(1)(!1z2) /(z1z2)
-k 

since M is a polynomial in z1 and z2. 

Now the terms in N(zi,z2) will be members of the sets 

B = {(z1z2)kzi : k = 0,...,fi-1; j = 

and 	C = {(ziz2)
k z2
i  : k = 0,...,R-1; 	i = 1,...,Z2} 

for some Zi and Z2, and fi = n-m. 

Let us arrange these terms in the following way: 

(3.2.23) 
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Z2 	1 	ZI 	Z12.1  

	

2 	 % zi (Z1Z2,1  Z2 	 (ziz2)z2 	zlz2 	(ziz2)zi 	(z1z2,zi 
• 
• 

. 	• 	 • 
,ii-1 2.2 	, ii-1 	, 	t  fi-1 	

(z1z2) 
,./1-1 	 s ii-1 9.1 

(z1z2) 	z2 	 (z1z2) 	z2 	‘ziz2; 	tzlz2) 	z1 	(ziz2) 	z1 

We label the columns of this table as e 	,...,e-1,e0,e1,...ezi, 

and it is clear that if we can show that the transfer function vector 

e 2  

Z2 z2 

1  
w(z1,z2) - 

0(zlz2) eO 
RrI(21+Z2+1) r L( zi,z2)] 	(3.2,24) 

611 _ 
is "reachable", then it follows that N(z1z2)1¢(ziz2) is also "reachable" and 

hence that the system (3.1.1)-(3.1.4) i6 quasi-reachable. By "reachability" 

of w(zr,z2) in this context, we mean that for all specified ye e(211421-1), 

there exists 17.1(z1)E R[zi] and T1(z2)E R[z2] such that the vector 

coefficient of (ziz2)
-1 
 in w(zi,z2)17)1(z1)152(z2) is equal to y. 

Note that although N(zi,z2)/4)(ziz2) and w(zi,z2) are not necessarily 

strictly causal (that is, there may be higher powers of z1 in the 

numerator than in the denominator), we counter this by only allowing 

inputs to be inserted before time 0, and observe the outputs at time + 1. 

Furthermore, it is obvious from the earlier development how we arrived 

at N(z1,z2)/(1)(ziz2) and there is nothing spurious about the way we use 

it in (3.2.23) as though it were a transfer function with inputs pi(zi) 

and i52(z2). 

Before constructing our input sequence, we prove the following 

Lemma 3.2.3: 

Let (A,b) be a controllable pair. Then for all 2, > 0, there 

exists an integer N > 2, such that (A
N
,A
k
b) is a controllable pair for 

all k iff A is non-singular. 



58 

Proof: 	Let us write (A,b) in the following canonical form 1K2]: 

0 	b= [bi A= J
A 

 
1 

where J 	Rnixni  is the Jordan block 
Xi 

Xi  1 

1 

O 
xi  

0 

and b = [ 0 E Rni. 
1 

Suppose A is singular; then X. 
= 0 for some j. If 	hass multi- 

plicity m, then J, b. = 0, so that (A
N  ,Am  Jo) is not controllable for 

i ] 

any N. 

Conversely, suppose A is non-singular. Then it is clear that 

(AN,Akb) is controllable iff (AN,b) is controllable. 

N N 
But(AN,WisuncontrollableiffX.=Xk 

for some j, k. Let us 

N N 
write Xj  = rje

i0j
, Xk  = rke

i0k
, where ri  irk > co. Then Xj  = Ak implies 

N iNej 	N iNOk 
r.e 	= r

k
e 

so r. = rk and e
iNej = eiNek 

or 	N(0.
3 
 - 0

k 
 ) = 2nrr for some integer n. 	(3.2.25) 

Let N
jk 

be the minimum value of N for which this occurs. Then any other 

N satisfying (3.2.25) is an integer multiple ofNjk  . Now choose N > Z 

coprime to {Njk: j,k= 1, . ,n; 

. 
Then (A ,b) is a controllable pair. 0 

We now return once again to the proof of Theorem 4.2. Let (c
T,A,b) 

be a minimal realization of 1/(1)(z1z2). We choose N to satisfy the 

conditions of the above lemma for Z = ki + Z2 and define P1(z1) and 

P2(z2) as follows: 

J
Xn 	

b 
0 
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2,2 N 2N 	(i1-1)N
) Pi(zi) = zi (1+ zi + 	+ 	+ zi 	 (3.2.26) 

2.2+1 	Z1+2,2 
P2(z2) = a-2.2,

1+a 
 -Z2+1,1 z2+---

-Eaolz2 +allz2 

N, 	 k2-1-1 	2,1442 
zl Ia-L2,2.411-9.2+1,2z2  

+ 

N(1-1) 	 2,1+12 + z1 	(a-2.24H+...+aOn
z2 +...+a 	-z2 	) 

2,1,n 
(3.2.27) 

Again, a diagram may prove useful to visualize the polynomials: 

Pc 0 	010. 00 	00 .010 	00 	0  00 	010....0 

132. x 	xxx 	x0 	Ox 	.xxx 	x0 	0  Ox....xxx....x - 

Note that by our choice of N > 21+2,2 there is no overlapping of 

terms in (3.2.27). We shall now find that for all i, the inputs 

aij (j=1,-11) only affect the outputs of the transfer functions of (3.2.24) 

whose numerators lie in the column e.. 

For we see that the output from the transfer function with numerator 

(z1z2)szl is 

s  (ziz2)z  TI(z1)132(z2) O E(ziz2)-k (s = 
flziz2) 

s+4..2+1 (a 
	

,N ( 1-1) 
(z1z2) 	-. +(z )N  aj  3,1 	iz2 	,2+...+(ziz2) 	ajmn  

_) 
(3.2.28) 

cp(ziz2 ) 

by inspection. 

Similarly the output from the transfer function with numerator 

(ziz2)sz2 is 

, 	, 	. (z1z2
) 
	ka_i,i+(zIz2)

N  a_i,2+...+(ziz2)N(R-1)a 
71,

) 
 

4(z1z2) 
(s = 

Let us now label the output at time 1 from the transfer function 

/ 
e
3
. cf)( ziz2) (j 0) due to the input sequence (3.2.26) and (3.2.27) by 

jl n...y. ...yj_]
T. It then follows from (3.2.28) that 

js  

+..--Fa02z2 4-a12z2 ) 
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171 
L cTrig.2+3AkNba. 

3 
k=1 	

,k 
 

G cTAs+9..2+jakNba. 

k=1 
j,k 

n 
cTAn 

_ 
1-14.2+j

AcNb aj,k 
k=1 

= 

c
T 
. 

c
T
A 

c
T
A
F1-1 
) 

CO.24-jb A lA124-ib....AN(11-1)Ai12-14b] a. 
J. 

..- 

a
ifn 

(3.2.29) 

where (c
T,A,b) is a minimal realization of 

cf)(z1z2) 
 as defined above. 

i 

Now the first two matrices of (3.2.29) are invertible since (c
T
,A) is 

1 

an observable pair and (AN,Al2+3b) is a controllable pair by Lemma 3.2.3, 

so given specified value
sIrj,k 

 (k = 1,...,fi ) we can obtain unique 

aj,1,...,ajol  which reach yj,k. 

A similar situation holds for the outputs at time 1 from the 

transfer functions with numerator (ziz2)
s 
 z2
i  
 (s = 0,...,11-1), so it is 

clear that the transfer function vector (3.2.24) can reach any desired 

output, so that our theorem is proved. 	 0 

In linear system theory, we usually ask not only about reachability, 

but about controllability as well; if a system is both reachab1,2 from and 

controllable to the origin, it follows that the system is completely 

controllable, i.e. we attain any one state in finite time starting 

from any other. 

In the same way, subject to the quasi-reachability constraint, 

we can prove a similar theorem for bilinear systems: 

Theorem 3.2.2  

If the conditions of Theorem 3.2.1 hold, then every state of the 

Yjl 

Y. js 

Yjn.-  
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system (3.1.1)-(3.1.4) is controllable to the origin. 	j  

Proof: 	We first show that from an initial state which is not 

reachable from the origin, we can attain a state which is reachable 

from the origin. We then show that any reachable state is controllable 

to the origin. 

By Lemma 3.2.2, a non-reachable state x(2)  is one which is 

[xl 

x
o 

o 

characterized by x1  and x2  lying on some finite union of U1, U2  of 

hyperplanes in Rn1  and Rn2  respectively, and the substate R
o
c Rm  of xo,  

corresponding to zero eigenvalues of A, being incompatible with these. 

It is of course clear, from Lemma 3.2.2, that there do exist reachable states 
• 

of (3.1.1)-(3.1.4) for any/ xloE Rnl x2
o
E Rn2. 

[ _ 

Let us now partition xic  as 
xk
, 	, using the transformation (3.2.7), \ 
xk 	 \ 

where Rk, k  are the subsystems corresponding to Jo  and Jl respectively. 

Then if there are no inputs from UxV for the next m stages, it is clear 

from (3.1.1)-(3.1.3) that the state at time m is given by 

1 x
m 
= Am 

1mx 2 x mm 

x  

m 

1 ix
o 

AlmA2  

Cl  

C2 

2 xm  = Am2x 

0 	0 'm 

JO 	0  

0 	J1,  

2 
o  

xlmx2 
o o 

5-c 

o 

(3.2.30) 

Now 411. 0, 

x1 mx  2 ' 
m m 

R
m  

x
m 

so 	(3.2.30) 

= 

can be rewritten 

, 
A1mA2 	0 	0 

Tol 	0 	0 

t12 	0 	dl, 

as 

x10x2 ' 
o 0 

Ro 

xo 

In other words R
o 

makes no contribution to the state at time m, 

m 
x 

and the state 

xl 

x2  

5 c
m 

A 

could equivalently have been reached from a state 
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xl 
0 

x2 	which was reachable from the origin. Hence 

x- 
O 

o 
from the origin. 

xl 
m 

x2 
m 

m 

m 

is reachable 

 

   

We now show that any reachable state is controllable to the origin. 

If it is reachable, then it is attained by an input (1)01+0T1,132121-q2) 

for some p1,q1E R[z1], p2,q2 E R[z2]. 

We shall construct the input sequence which sends the state to zero 

by the following concatenation: 

((P1lh+c11)orlOsliPl°0m), ((13211)24q2 )0r20s211,200M) 

with (r1,r2) and (s1,s2) determined sequentially. 

T-,2 Step 	 O 	P2th2+a Multiply p l+qi  and 	by zi and z2 respectively, 

where k = max(deg 11,1, de00. 

Now choose r1 and r2 such that 

ziqi+ri  E 0 (mod y i = 1,2 

with deg ri  = deg 

and define putpi  = z.(p.11) L +q.) + r. i 	1 i = 1,2 

Step 2: 	Choose the integer N as in Lemma 3.2.3, and in addition the 

integer M>N(n-1) + ZI  + Z2  + m (Z i  and Z2  defined as in Theorem 3.2.1) 

in such a way that 

, m 
M  ' 	 ' m 	M  ' • gtz1P1111)1,z2s2Y2) = 0  = gkz1slih,z2P224,2) 

where g represents theSc(z1,z2) transfer function (3.2.17), so that we , 

obtain g(zip101+zisixpl,z2p224/2+z2s242) 

g(z113101,z2P22412) 	g(z1s01,z2s21P2) 

We can then choose sl and s2 appropriately, as explained in Theorem 

3.2.1. In addition the factors!zim   and z2 ensure that the subsystem of xk  

corresponding to zero eigenvalues becomes zero. 	 0 
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3.3 Observability of the State Space  

In Definition 3.1,2 we said that two initial states were dis- 

tinguishable if there exist finite length input sequences producing 

different outputs for each initial state. 

For linear systems, because we have no coupling of initial states 

with inputs other than with respect to addition, it is possible to 

distinguish initial states by observing a finite number of outputs due 

to one input sequence, and the actual input sequence itself is immaterial. 

For bilinear systems we will in general need a number of "experiments" 

— that is, several distinct input sequences all starting at the'same 

initial state — to distinguish initial states. This is because we 

have a multiplicative coupling between inputs and initial states. We 

demonstrate this by the following 

Lemma 3.3.1  

Let f: X1xX2xXxUxV ± Y represent the map from initial states 

x1 E X1, x2e X2, xo 
X and input sequences ue U, VE V to the output Y 

as specified by equations (3.1.1)-(3.1.4). Then 

,x2,  f(xo 
	

x
o
,0,0;0,v) + f(0,x2,0;u,0) + f(xl,x2,0;0,0) l x 01 

 o,v
) = ft, _1 

o o 

+ f(0,0,x0;0,0) + f(O,O,O;u,v) 	(3.3.1) 

Proof: 	By (3.1.3) and (3.1.4) we see that f is linear in xo, so that 

f(xl,x2,x ;u,v) = f(0,0,x;0,0) + f(x1,x2,O;u,v). 	(3.3.2) 
o o o 	o 	o o  

Now, 2c(1,  represents a linear sum of past inputs from U and xf!,  

represents a linear sum of past inputs from V, so that f is bilinear 

with respect to (xl,u) and (x2,v). Hence 

f(xl  x2,0-u v) = f(x1,0,0;0,v) + f(0,x2,0;u,0) o' o " 

+ f(xl,x2,0;0,0) + f(0,0,0;u,v). 
o o 

Combining (3.3.2) and (3.3.3) we obtain (3.3.1). 	0 

(3.3.3) 



we can combine (3.3.4) and (3.3.5) to obtain 

yk =
r T hT, 	AlaA2 0 I

k 
x10ox2  o 

C 	A 	x 
r 

Now f(x1,0,0;0,v) = y foc1,0,0;0,-,,.) 0 	. 	. .i.o 
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An immediate consequence of this lemma is that two initial states 

are equivalent iff the first four terms of (3.3.1), for each initial state, i 

are equal for all input sequences in UxV. 

Let us consider f(x,1,x(!),0;0,0). From (3.1.1) and (3.1.2) we see that 

x31+1  = Apqc  and x120.1  = A2x1c  

so that we can write 

xic+12x1c+1  = AlastA2xilaxi2c  

and together with (3.1.3) this gives us 

qolanqc.o.  I = 	AlmA2 0 	xkcic 
 

so that y = 	[13T h
T 
 ] AlaA2 0 k  o o xlax2  

(3.3.4)  
C 	A 	0 

Next, f(0,0,x0;0,0) immediately gives us 

yk = h
T
A
k
xo 
	 (3.3.5) 

by inspection of (3.1.3) and (3.1.4), and this is the reason for our 

original requirement that (h
T,A) be an observable pair. 

In fact, since f(xl,x2,x ;0,O) = f(xl,x2,0;0,0) + f(0,0,x;0,0) (3.3.6) 
0 0 0 	0 0 	0  

C A 	x 
xk+1 	 k 

where 	(0...0,v.,0,...,0) 

by bilinearity, where v is the input sequence (vo,v1,...,vr). 

Note that we are considering inputs vk  at times k > 0. 

1- Consider then 	At time i, we have xl = 7, x1 
1 

x. = 0, by examination of (3.1.1)-(3.1.3). At time i+1, we have 

x1+1 
1 	

o 
= Al+ixl, 1+1 = b2v., x. 	= Q1Alx

o 
 v. 

1 1+1 	1 



and since all further vk
(k> i) are zero, we have 

[ 

x1044.10x .i.la  = 	k  AloA2 0 AlAtxonb2vi  

i 1 C A 	Aix Sh v
i  xk+141. 	 o  

so that v
k+i+1 = Cd

T
h
T
] AlimA2 0 

k 
 Alob2 Atx(ovi  

-  

C 	A 	Q1 

1 by removing the term Aixo 
 v, to the right of the brackets. 

Similarly, f(0,x2,0;i1.
3
,0) gives a sequence of outputs 

 2 

	

Y
k+j+1 = T hT ] AloA2 0 	biaA2 A2xouj. 

C 	A 	Q2 

(3.3.7) 

(3.3.8) 
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Remark 3.3.1 We note that the identity (3.3.1) tells us that we can 

actually "observe" the output sequence (3.3.7) by first performing an 

"experiment" with no inputs, and then, starting at the same initial 

state, perform another experiment with all inputs zero except Vi. 

Similarly with the output sequence (3.3.8). 

We now present the main theorem on observability, which also 

demonstrates the sufficiency of (hT,A) being an observable pair. 

Theorem 3.3.1 

is observable iff The system (3.1.1)-(3.1.4) 

(i)  (h
T
,A) is observable 

(ii)  
[ciThT] AlmA2 

C 

0 

A 

, Alab2 

C21 

, 	Al is biobservable (3.3.9) 

(iii)  
[dThT3 

A1mA2 

C 

0 

A 

, b1oA2 

Q2 

, A2 is biobservable (3.3.10); 

where (a
T
,M,L,T) is biobservable iff aTM1LT3y = 0 for all i,j implies y=0. 

Remark 3.3.2 To check biobservability, we calculate the observability 

subspace H generated by (a
T
,M). Then, letting H be a matrix whose row 

vectors are a basis for H, it is clear that (aT,M,L,T) is biobser.vable 

iff (HL,T) is an observable pair. 
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Proof: 	We have already seen that condition (i) is necessary, for if 

the initial state is (0,0,x
0
), its contribution to the output is h

T
A
k
x
o
. 

Consider now the initial state (x1,0,0); then xlm0 = 0, so the 

contribution from f(x1,0,0;0,0) is zero, as we see from (3.3.4). So the 

only contribution which xZ makes is via f(xZ,0,0;0,v). Hence (ii) 

is necessary. 

Similarly, by considering the initial state (0,x2,0), we see that 

condition (iii) is necessary. 

To show sufficiency, we note by Remark 3.3.1 that we can always 

"observe"f(x1,0,0;0,v.1
),so that condition (ii) is sufficient. Likewise, 

we see the sufficiency of condition (iii). Finally, since we already 

haves  x1  and x2  observable, we see from (3.3.5) and (3.3.6) that (i) is 

sufficient for x
o 

to be observable. 	 0 

This theorem, together with Theorem 3.2.1, provides us with necess-

ary and sufficient conditions for a state space realization of a bilinear 

input/output map to be quasi-reachable and observable. In the next 

chapter we shall demonstrate how to obtain a realization with the 

properties of quasi-reachability and observability from a realization 

which does not possess them, and since we have seen in Chapter 2 that 

some state space realization can always be constructed, it will then 

follow that a quasi-reachable and observable realization always exists. 
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CHAPTER 4 

REDUCTION PROCEDURES AND CANONICAL FORMS FOR BILINEAR INPUT/OUTPUT MAPS 

We have seen in Chapter 2 that it is possible to construct a state space 

realization of any bilinear input/output map, and in Chapter 3 we have 

demonstrated necessary and sufficient conditions for such a realization 

to be quasi-reachable and observable or canonical (Definition 3.1.3). In 

this chapter we shall see how to reduce any realization to a canonical 

one, and in addition we shall find that the term reduction is well-chosen, 

since in the case of reduction to quasi-reachable realization, the dimen-

sion of the state space is reduced, and in the case of reduction to observ-

able realization, the dimension of the state space is at least not increased. 

Note that the dimension of the state space may well stay the same, as in 

' Example 1 below, on reduction to observable state space form. 

We shall deal with reduction to observable state space form in §4.1 and 

in §4.2 we demonstrate reduction to quasi-reachable form. We choose this order 

of doing things rather than the conventional reduction to reachable form 

followed by reduction to observable form, basically because it is simpler; 

the fact that we are dealing with quasi-reachability rather than complete 

reachability means that it is more convenient to deal with this factor second. 

In §4.3 we show that a realization is canonical if and only if it is 

co-minimal (Definition 3.1.4), and that all co-minimal realizations are 

isomorphic under the transformations defined in Chapter 3. (Henceforth we 

shall omit the prefix co- before minimal, although by convention a minimal 

realization has as its definition the analogue of Definition 3.1.4, where 

observable is replaced by reachable.) 

In §4.4 we present two canonical forms for realizations of bilinear 

input/output maps. 

4.1 Reduction to Observable Realization  

When we talk about an unobservable state in linear system theory, 
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we mean a particular mode of the state space which can be partitioned 

off from the other states and which neither contributes to the output 

nor to any of the other states. Naturally, with bilinear systems we 

encounter the same phenomenon; however as the following example shows, 

this is not the only kind of unobservable state: 

Example 1: 

s - 
1  

zl(z2-a) • 
(4.1.1) 

An obvious choice of state space representation is 

2  - axi2c  + vk  Yk = qcc0  
1 	■ 

X1C+1 	u. 	Xic+1 - 

However, if we check the conditions of Theorem 3.3.1, we see that 

this is unobservable;, more straightforwardly, we see that if q)  = 0, 

then the value of xl  has no effect on the output. Note, though, that 

we could perhaps call this state space description quasi-observable, 

since if x2  x 0, we can observe the effect of xl as well. This idea 

of quasi-observability will arise with multi-output bilinear maps. If 

we now regard the transfer function (4.1.1) as 

z2 
s = 	 

ziz2(z2-a) 

a natural choice of state space description is 

xlc4.1  = axi2c  + vk xk+1 = uk(aqc+ vk) 	Yk = xk 
	(4.1.3) 

and we can check that this is indeed observable, although only 

quasi-reachable. 

The reduction procedure that we detail here will tell us how to 

switch from (4.1.2) to (4.1.3), and in addition we shall see that the word 

reduction is not inappropriate — at worst the dimension of the state 

space will remain the same after reduction, as in the example above. 

Otherwise, the dimension of the state space will indeed be reduced. 

Let us now turn to the reduction procedure itself. We shall 

assume that (hT,A) is observable; if not, we reduce the state space 

in the usual way. 

(4.1.2) 
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Now, let H be a matrix whose rows are a basis for the observability 

subspace H of 

CdThT] , [ AinA2 01 I 

A 
• 

It then follows from Remark 3.3.2 that the biobservability subspaces 

corresponding to Al and A2 are the observability subspaces of 

{ H 

[Avab21 , Al and H po1mA21 , A2 respectively. 

Q1 	Q2 

Let T1 and T2 be matrices whose rows are a basis for these 

biobservability subspaces. 	In particular, this implies that 

T1A1 = S1T1 	and 	T2A2 = S2T2 (4.1.4) 

for some Si and S2. 

We shall now write the basis matrix H of H as 

U 	0 

H= V 	0 

W 	In 

where U c TioT2 

and V is linearly independent of T1oT2. 

(4.1.5) 

This we can do since ( AlmA2 0 is lower block triangular and (h
T,A) 

A 
is an observable pair. 

Now because of the invariant 	subspace property of H, we c.n write 

Al2A2 0= L 	0 0UO 

[

U0 

V 0 C A L1 	K1 0 V 0 (4.1.6) 

W 	I L2 	K2  A W 	I 

for some matrices L, L1, L2, K1 and K2. The only identity that we 

obtain from this matrix equality which is not immediately obvious is 

U(AlmA2) = LU, but this follows from the fact that U c TicaT2, which is 

an invariant subspace of A1oA2. 

Further, because [:1T h
T 
 i ] is contained in H, we can write 

CdThT] = [kTkT  hT] U 0 
V 0 
W I 

 

(4.1.7) 

for some k1, kT . 

 



{ EkT hT
], 
	[ Ki 0 

is  

K2 A 

is an observable pair. This last 

lower block triangular. 

We also note that by (3.3.9) 

117 	(?.:1 
Al b

2  = 
W 	I 

and 	by (3.3.10) 	" 

II;  
[ bt2  = 

W 	I 
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It is now immediate, from (4.1.6) 	and (4.1.7Y.and from the fact that 

H has full row rank, that 

[kT kT  hTi, 	L 0 0 
L1 
[ [ 

K1 0 
L2 K2 A_ 

is an obseivable pair, and in particular we see that 

(sT,R)  

remark follows from L 0 0 being 
L1 K1 0 
L2 K2 A - 

we have 

IN;(11i11:22) c  Ti 
w(Aldb2) + Q1 

=1:2Z) c T2 	(4.1.9) 
W(bloA2) + Q2 

We shall use these facts (4.1.8)-(4.1.9) in the reduction procedure. 

To actually perform the reduction to observable form we shall first 

of all add on some dummy states to the substate xk; the number of 

dummy states will be equal to the rank of the matrix V. We shall then 

transform equations (3.1.1)-(3.1.4) using the transformations from Proposi-

tion 3.1.1. Finally, we shall eliminate those states in the null-spaces of 

T1 and T2 in the same way as we do for linear systems. 

Step 1. Addition of Dummy States 

4,11. g »text' 
We -r-e".t..1-ta• equations (3.1.3) and (3.1.4) as follows: 

- 1 2 

2 	
• = [Ki 01 51k  + [ 0 lxkrsixk  -t- [ 	xk  

lv
k 
 + 

K A 	Q1 
T 

ra
, 	[kT bT],4  

y
k
=dx x-

k 
 + 

1 	k 	K. 

0 x2u. + 0 u. v 	(4.1.10) 
Y2 

b  

(4.1.11) 

Note that the upper subsystem of (4.1.10) plays no clear role at the 
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moment, since if it starts at the zero state, it will remain zero for 

all time; however the reason for its addition will become apparent in 

due course. 

Let us also bear in mind that during the remaining steps of the 

I 
reduction procedure, the pair 	EkT  hT],.. [K1 011 will remain 

K2 A J 
unchanged, so the fact that they are an observable pair is crucial. 

In addition we remark that the calculation of k
T, K1 and K2 is 

done in the usual way, i.e. we append the matrix [111 0] to H, where _ 

the rows of U1 are linearly independent of those of U and V, and then 

perform a similarity transformation on the pair [dThT], A1mA2 01 , 
(  C A 

extracting the required values of k
T, K1 and K2 from the positions 

indicated by (4.1.6) and (4.1.7). 

Step 2. Transformation of System Equations  

We now transform equations (4.1.10) and (4.1.11) as prescribed by 

[ 

Proposition 3.1.1, using the matrix V -  
W 

[

[

[

[

0] -11 AlmA2 + {0] - K1 0 [V] = V A1oA2) - K1V 	A 6 	(4.1.12) 

C 	W 	C 	K2 A W 	C+W(A1csiA2) - K2V- AW 

0  -10 ] + V Almb2 = [V(Almb2) 	& Q1 	(4.1.13) 

Q1 	Q1 	W 	Qi + W(A1mb2) 

0 ] -10 ] + [V] b1oA2 = r(blmA2) 	A. Q2 	(4.1.14) 

Q2 	Q2 	W 	• 	Q2  + w(bimA2)] 

0 ] -10  + [V] b1ob2 = [V(bimb2) 	A b 	(4.1.15) 

b 	b 	W 	b + W(bimb2) 

T 
d
T 
-4.-  d - [k

T 
h
T
] [V 	= d

T 
- k

T
V - h

T
W 	A_ a 	(4.1.16)T _ 

W 

Now from (4.1.6) we see that 

V(AlmA2) - K1V = LIU 	c TinT2 	 (4.1.17) 
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and 	W(A1mA2) + C - K2V - AW = L2U c TioT2. 

i.e. C c  T1aT2, and from (4.1.7) we see that 

dT - kTV - hTW = kiU 

i.e. dT  c T1oT2. 

So 	(4.1.10) 	and (4.1.11) 	are now transformed to 

5t1(4.1  K1 (Dyck  + L1 U]xilmx12c  1V(Aimb2) 	lxkvk  

K2 A L2 U 	Q1 + W (A1iab2) 

+ {V(bimA2) 

• Q1 ÷ W(bimA2) 

xicuk  + {V (b1ab2) 
b + W (b1mb2)  

ukvk 

yk  = kTUxklaxic2  + [kThT]cck 

Remark 4.1.1  The upper subsystem of Xi(  satisfies the system equation 

for Vqmxi2c, since 

VxitiamxL1  = V(Aixilt+bluk ) m (A2x12c+b2vk ) 

= K1 (Vx}lcaxk2 ) + LlUxliccaxk2  + V (Aimb2)xkl vk  + V (bimA2) xj2c.uk  + V (b imb2) ukvk  

using identity (4.1.17). 

It is now apparent, therefore, that one of the intentions of the 

reduction procedure is to set up a new xk  substate to replace those 

substates of 	and qc  which are unobservable separately, but which are 

observable as substates of xIlmqc. . 

Step 3. Elimination of Unobservable States  

From (4.1.8) and (4.1.9) we see that Qi c Ti and Q2 c T2. Hence by 

choosing X1 and X2 to make [Ti and 	full rank, and calculating Xi 	 ?JJJJ  

[V1W11=  rti  and EV2W2]= r2 )-1  Xi 	 X2 
we can employ the usual linear system reduction procedure via similarity 

transformations on xkl  and qc  to obtain 
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5q0.1 =T1A1Vlxk+ Tibluk 

xk+1 = T2A2V22k  + T2b2vk 

k+1 =Axk + EV1cal725111m512  + Q1Vlxkvk  + 12v2i7cuk  + bukvk  

• I' ^ 	9 	- 
yk  = d VIsaV2231coki + h

T  2k  

where we use the fact that UW1oW2 c (T1nT2)(W1aW2) = T1W1raT2W2 = O. 

We now wish to show that the term "reduction" does indeed apply; 

we shall see shortly that we can immediately eliminate all the modes 

of xk and xk contained in ker T1 and ker T2 respectively which are 

associated with non-zero eigenvalues of Al and A2. However some of 

the modes associated with zero eigenvalues will reappear in some sense 

in V, and are converted into xk  states. Intuitively, we can view this 

as the transfer function zi1z2 — giving rise to an xk  state or equivalently 

	

the transfer function z1 —
1 	

z2 
• 1-- producing an xk  and an xk state. 

Let us consider the eigenvectors and generalized eigenvectors of Al; 

then it is well-known that the null-space of T1, i.e. the unobservable 

subspace of Al, has as a basis a subset of these eigenvectors. If we 

then take the subset of those eigenvectors which correspond to non-zero 

eigenvalues, which we label as [y]....yk] A Y1, it is clear that T1Y1 = 0 

and A1V1 = V1, where V1 is the subspace generated by Y1. It then 

follows that there exists some non-singular matrix M1 such that 

Y1 = AlY1141- 	 (4.1.18) 

Lemma 4.1.1  

Let U, V, W, A2 and b2 be defined as above; let (A2,b2) be a 

controllable pair. Then for all xZ there exists a matrix Z1 such that 

U o I f Y lcmcZ 1 = O. 

V 0 [ Zi 

W I 

(4.1.19) 



Cd
T
h
T
] [A1  ®A2 

	1 -
oA2 0 

[
AlYiNA2b2 
0'10102 AQ1Y1M1 C A . 

= 0 for all i. 
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[xl 

Remark: 	This tells us that all initial states xo where xl  V1 are 

[0 	xo 2 indistiguishable from the initial state xo 
xo
-Zly 

where xlo  = Yiy. 

This follows from 

U 

V' 

W 

0 

0 

I 

Yiyox 

 x 
 

U 

V 

W 

O 

0 

I I 

Ocix2  

Ziy-xo  

U 

V 

W 

0 

0 

I 

Y72  

= 0 

Proof of Lemma: 

U 0 
Since V 0 is the observability subspace generated by [dThT] and A1mA2 0 , 

[4 I 	 C A 

(4.1..19) is equivalent to 

Now Theorem '3.3.1 

[dThT] 

[dThT] 

A1mA2 
( 	C 

AlmA2 ( 	

C 

tells 

0 
A 

us 

i  

0 i  
A 

that 

Ainb2 
Q1 

Yitax 
Zl 

if Y1 

AlY1 

= 	0 

c ker T1 

= 0 

for all 

then 

for all 

i. 

i,j. 

Setting j = 0, postmultiplyingby M1 and substituting from (4.1.18) we 

obtain 

[dThT] [AloCA2 A) i ( Ylab2 ) = 0 	for all i. 	(4.1.20) 

 Q1Y1M1 

Now expanding (4.1.20) we obtain 

As before we postmultiply by M1 and substitute from (4.1.19) to 

obtain 

MTh"] (A1A2 0)i  [YlmA2b2) = 0 
C A Ki 

where K1 = CYIMImb2 + A021Y1M. 

In a similar way we obtain 
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Cd
T
h
T
] helA2 

C 
0) 
A 

i ( 	r 
YimA2b2) 
K 

= 0 

for all i and r, where Kr+1 
CY1M1nA2b2 + AKr

M . 

Finally, since (A2,b2) is a controllable pair we can write 

n2-1 
x = 71, 	a.A2b2 	for some a

on2-1 o 	. 
1=0 ]  

and it then follows that 

[dThT] A1mA2 0 i  Y1mxo 	= 0 

n2-1 
C 	A 	a.K. 

j=0 " 

So our lemma is proved with Z1 = 

We obtain a similar result for Y2 where T2V2 = 0 and A2V2 = V2, 

so, we know that V1 and V2 can be discarded from the state space 

description. 

Let us now examine the modes associated with zero eigenvalues. 

Some of them may end up being completely discarded as with V1 and Y2; 

in general, however, some will be transferred through the state space. 

We assume that (Ai;b1) is a controllable pair. Hence Al is cyclic 

and has just one Jordan block of zero eigenvalues. Let us suppose that 

there are ki + ri of these zero eigenvalues;- then there exists a vector 

xi such that Aixi is non-zero for k< 2,i+ri and is zero for k = 

We'also suppose that TiAlZ1-1  xi is non-zero, but 

1 	 (4.1.21) TiAi xi = 0. 

 Then TO'2'1+1  xi = SiTiAiZ1  xi = 0 by (4.1.4) and similarly 

1-1-j 	j 	Z1 T1AI 	xi = SiTiA Xi = 0 for all j O. 	(4.1.22) 

	

Hence a basis for ker Ti is given by Yi,AZ1 	xi. 

Now it is clear that there exists ci such that ciT  Al 	xi x 0 

T T 	T r1-1 
and clY1 = 0, and it then follows that ci,c1A1,...,ciAl 	and T1 are 
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linearly independent; for otherwise there would exist non-zero 

al,...,a 	and 0T such that 
r1 

rl T 	T i-1 ,T 
m = L alc1A1 	+ 0  T1 = 0- 

i=1 

t1 Multiplying on the right by Al+r1-1  xl c ker T1, we obtain 

T tl+r1-1 	T ti+r1-1 
'm Al 	= alciAl 	= 0 

so that al = 0. Similarly multiplying by Al2-1+r1-2  xi c ker T1, we obtain 

T tl+ri-2 	T 2,1+r1-1 
m Ai 	= a2c1A1 	= 

so that a2 = 0. Similarly we find that a3 = 	= a = 0. ri 

It is now clear that cl
T 
 ,c1
T 
 A1,...,ciT Al

ri-1 
 and T1 are a basis for 

the annihilator of Y1, since by (4.1.18) we have that 

c1AlY1 = c1i1M1
k 
 = 0 for all k. 

Similarly for T2 and A2, and the corresponding R2 and r2 there 

t2 
exists c2 such that c2T 

A2+r2-1  x2 x 0 and c2Y2 = 0, and it then follows 

that c2,...,c2 A2r2-1  and T2 are a basis for the annihilator of Y2. 

and 

Now 

It 

U 

V 

[ U ] 

V 

then 

we proved in Lemma 

Y1nx(23  = 0 

x(13aY2 = 0 

follows that 

4.2.1 	that 

for all x2  

for all x1. o 

U  
[ V 	

must be spanned by{eiof3
} where {ei

} 
and 

{f.}are bases for the annihilators of Y1 and Y2  respectively. Hence by 

the preceding discussion we can immediately see that v  is spanned by 

{T1 U 	{T2 U cT, 	(4.1.23) 

Now, let [VT  07 be the first row of [V 0] that we obtain in (4.1.5) 

after expansion of [dT  hT] 	21,10A2 
0  n+1.  

C A 

Then by (4.1.23) it is clear that we can write v
T 
as 
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T T 	
Y 

r2-1 	T j 	r1-1  T i T 
v = w TioT2 + X 	.Tinc2A2 + X ciAlmaiT2 jT 

j=0 	i=0 

ri-1 r2-1 
+  X a...clAoc2T Aj 
i=0 j=0 13

2  

(4.1.24) 

for some wir, W.1},{j}and{aij
..}. 

The remaining rows of V and U are then calculated from v
T
(AlmA2) 

k > 0. Let r = max (ri ,r2) . Then using the facts that 

i) TIM c TI and T2A2 c T2 since T1 and T2 are bases for invariant 

subspaces of Al and A2 respectively, 

ii) cTAY1  c T1 since cTA11Y1 = cTY114-1-r1  = 0 and cTAT1(4x1) = 0, 

k = 9.1,...,21+r1-1 i.e. ciT  Al annihilates the null-space of T1 

and similarly 

iii) 
,r 

c
T
2L-12

2 
 c T2, 

it is clear from (4.1.24) that 

v
T
(A1mA2)r  c T1oT2. 

Hence v
T
(AIGA2)

r c U, so that 

rank V 5_ r = max(ri,r2). 

Now in Remark 4.1.1 we saw that the number of additional substates 

added to xk  was equal to rank V, and from Step 3 of the reduction 

procedure it is clear that the dimensions of xk and qc  are reduced by 

at least r1 and r2 respectively. Hence the dimension of the whole 

state space is reduced.by at least 

r1 + r2 - max(r1,r2) 	0. 

Remark 4.1.2 

The fact that our examination of V can be based on its first row 

v
T when dealing with a single output is the departure point when we 

turn to multioutput bilinear systems. As we shall see in the example 
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at the beginning of Chapter 5, any attempt to set up a realization which 

is both completely observable and quasi-reachable may well break down 

because the above reduction procedure to observable form actually increases 

the dimension of the state space rather than decreases it. We are then 

left with a realization which is no longer quasi-reachable. 

4.2 Reduction to Quasi-Reachable Realization  

Reduction in the case of a realization with uncontrollable states 

is much simpler than reduction for unobservable states. Before 

desscribing the procedure, we prove the following 

Lemma 4.2.1 

If (A1,131) and (A2,b2) are controllable pairs, then 

(AloA2, [Alob2;b1mA2;biab2]) is a controllable pair. 

Proof: 	Suppose otherwise. Then there exists v e Rn1n2  such that 

v
T 

AlmA2 = XvT for some X E C 	(4.2.1) 

and 
	

vT[Almb2 b1sA2 biaA2] = 0. 

In particular v
T
Ala 	

T 
b2 = 0 implies v Ai

k 
 binb2 = 0 for all k 

and 
	

v
T
bloA2 = 0 implies v

T 
 binA2

k 
 b2 = 0 for all k. 

Then from (4.2.1) we have 

T +Ic 	j 	T k 
v Ai  nioA2b2 = X v Aibimb2 = 0 for all j,k 

vTAlbloA2l-kb2 = Ob1re142 = 0 	for all j,k 

T j 
v AlbleA2b2 = Xjv blub2 = 0 	for all j. 

Now (Al,b1) and (A2,b2) controllable implies that 

{AlbloA2b2 : i = 0,...,n1-l; j = 0,...,n2 -1} is a basis for Rn1n2, so 

T
A
i 

v blmA2b2 = 0 for all i,j implies v
T 

= 0. 0 

Let us suppose that the system (3.1.1)-(3.1.3) is not quasi-reachable. 

By Theorem 3.2.1, this means that the'controllability. matrix of 

and similarly 

and further 



[ [ 

 AloA2  

NI[C+AL-L(AloA2)] N1AL2 

B1 

( N1(B2-LB1) 1] 

0 
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AinA2 0 ] and A1ob2 b1oA2 blob2  A  B1 

C A 	Q1 	Q2 . b 	B2 

does not have full rank. 

With the aid of Lemma 4.2.1 above we can normalize the controllability 

This follows because.) A1C 2 0 A ) is a lower triangular matrix. Now, 

[

because of the invariant subspace property of R we can write 

AlmA2 0-] [ I 0= 

	

I 0 ] [ AlogiA2 0 

C A 	L LI ] 	{ L Li 	E1 E2 

[ ] for some El, E2, and because Bi is contained in R we have 
B2 

B1 	= 	I 0 	[ B1 

B2 	L Li 

(4.2.2) 

(4.2.3) 

for some matrix E. 

We now append the matrix 

independent of L1, and calculate 

 L2 

O 
to R, where L2 is linearly 

[ I 0 0 

L L1 L2  

= 	I 	P 	, say. 

-N1L N1 

-N2L N2 

Then using (4.2.2) we calculate 

I 

[ 

[AloA2 0 

	

	AloA2 	0 	0 ] I 0 0 ] 

C A L Li L2 -N1L :1  [41[C+AL-L(AlmA2)] .NIAL1 N1AL2 

-N2L N2 

 

0 	0 N2AL2J 

and 
I 0 B1 

N1 

	

B2 

-N2L N2 

B1 

NOB2-LBI) 

O 

and this last identity follows from (4.2.3). 

We immediately see that 

matrix to [ 
L L 
0 
i ) 

R where I is the identity matrix of Rn1n2. 

is a controllable pair. 



It is now obvious what we need to do to reduce the state space to 

controllable form; we first transform (3.1.1)-(3.1.4) using the transformation 

defined in Proposition 3.1.1, with W=-L; we then just employ the 

ordinary linear system type similarity transformation xk 	[1g1 
Njxk 

so that our reduced system equations (3.1.3) and (3.1.4) can be rewritten as 

cck+i  = NiALicck  + Ni[C + AL - L (AissiA2) ]xkl istx32.  

+ N1 EQI-L (Aicatb2)] 391(vk  + N1 [Q2-L (b icia2)] )92cuk  + N [b-L (bitstb2)]ukvk  

2k  yk  = (dT+hTL) xk 	+ hT  L xk. 
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Remark 4.2.1  

It is readily seen that the transformations used here all preserve 

observability. 

We now return to our previous example s - z ( a) with state space 1z2- 

description 

1 	 2 	2 + v 	1 2 
xk+1 = uk 	ack4.1  = axk 	k 	yk  = xkxk. 

We have dT = [1] 	AlaA2 = [0]. 

So the observability subspace H of (dT ,AlaA2) is [17. Now 

Alab2 = [0] and b1aA2 = [a], so that T1 = 0 and T2 = [1] and the system 

is not observable. 

It is clear that H = [1] ¢ T1mT2 = [0]a[1] = [0]; hence V = [1] and 

using (4.1.6) and (4.1.7) we obtain 

K1 = [0] 

K2 = 0 since A = 0 

and 	 kT = Cl]. 

Finally we choose xl = [1] and V2 = T21  = [1], V1 = 0. 

Then 	StLi  = ax + vk  

c+1 = Klxk + V(oloA2)V2iqcuk  + V(biob2)ukvk  

= Oxk  + [1][a][1]q(uk  + [1][1]ukvk  

= aq.cuk  + ukvk  
T 

Yk = 1,  xk = 



Remark 4.2.1 

Reduction to quasi-reachable form is in effect just 

pole-zero cancellation,similar to that encountered in linear 

systems.For example the transfer function 

1 
2 (zi-Faz +b)(z2+cz2A-d)(zizee) 

can be rewritten as 

zIz2+f  	1 
s = 	2 (ztazi+b)(z2+cz2+d)(z1z2+e)Zzlz2+f) - 

Then by considering this as a linear system 1/(z+e)(z+f) 

with input from a bilinear map (z1zef)/(01-1-azi4b)(4+czed), 

a state space realization 

-"lc--1-147, 	xk 411uk a -c 	1 
xk+1= r I  xl  r] 

-b -a k+  1 uk 	
,2 	° 11 1 ° 1 

[ 0 	1 	0 0 0 

-ef -(e+J if 0 0 1 
x1ex2 xivom k k 

Yk= [1 01 xk 
can readily be constructed.It is now easy to check that the 

quasi-reachability conditions of Theorem 3.2.1 are not 

satisfied. 

s = 	2  
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4.3 Minimal Realizations  

In this section we will show that a realization is minimal if and 

only if it is canonical. This we do by demonstrating that all canonical 

(i.e. quasi-reachable and observable) realizations of a bilinear input/ 

output map f are isomorphic to one another in the sense that any two are 

related by the four types of transformations detailed in §3.1. Having 

done this it will then be apparent that there is a unique mapping from 

any observable realization of f to any specified canonical realization; 

hence, according to Definition 3.1.4, a canonical realization will also 

be minimal. Finally, to show that a minimal realization is canonical we 

use the method of contradiction; suppose that a minimal realization M is 

not quasi-reachable. Then given any observable realization M', there is 

not in general a unique mapping ¢ :fi -*MI, a contradiction of the fact 

that M is minimal. Hence M must be quasi-reachable. 

We shall now build up to Theorem 4.3.1, which states that all 

canonical realizations are isomorphic to one another, by means of 

Lemmas 4.3.1-4.3.3. We do not make any assumptions regarding the 

dimensions (ni,n2,n) and (fil,n2,n) of the substates (qc,x?exk) and 

(111,qc,ilk) of any two canonical realizations M and M, but we shall find 

that the dimensions of corresponding substates are equal. 

In Lemma 4.3.1 we shall require the following results from Chapter 

3 regarding 

for M, but 

(R1)  

(R2)  

canonical 

they will 

(A1,131) 	and 

[dT  hT], 

[ 

[ [d

T  hTi, 

realizations 

be identical 

(A2,b2) 	are 

[ A1mA2 	o 

C 	A 

[ A1mA2 	0 

C 	A 

M and M. 

for M: 

reachable 

,[ Alob2  

Q1 

,[ b1csiA2  

Q2 

We 

pairs 

, 	Al  

, A2  

only state the results 

and 

are biobservable pairs. 



(101,,F) A rThiriTimA2 and (IDT ,F) A [[dT hT ], AloA2 O 	. 

C. A 
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Lemma 4.3.1 

Let M = (A1,b1,A2,b2,A,C,Q1d22.b,hT,dT) and M = (A1,b1,A2,102,A,C, 

61,a'2,1^21,sT,aT) be canonical realizations of a bilinear input/output map 

c epcni, T2 ERn2xn2 
f. Then there exist non-singular matrices T1 

such that 

Al = T1A1T11, Li = Tibi, A2 = T2A2T2
1

b2 = T2b2. 

Proof: 	If M and M are realizations of f, then the following equalities 

hold on expansion of the terms in (2.4.5): 

si+j+1,i= [dT h
T
][AlmA2 O 

i Aleb2 Aibl = [dT fiTIAlmA2 01 rian2jAlbi 

C 	A Q1 C 	A Q1 

(4.3.1) 

si,i+j+1= [d
T hT A aA 0 h A Ajb 	

*
2 (4.3.2) 1-1--2 -11-1c4-1-2-2 = 	otolx2 olirmAT2-- 

C A Q2 	C R Q2 

si,i 	 ^ 	A 	A 
= 	h

T
][AlmA2 0] 	= 521T hT T 	

i 

laA2 0] [1)1°1321 
C A b 

(4.3.3) 

Lwhere s = (ziz2)-1 L s zTiz2j 
is the transfer function representation 

i,j!1 ij  
of f. 

Now let H = T 
P 
T 
P F 

piFk-1 

and H = -T 

P F 

• -T-k 
P F_i  

span the observability subspaces generated by 

Equality (4.3.1) then implies that 

H 

[ 

Alab2 Alb]. = fi Riab2 Albi for all j I. 0. 

Using results (P1) and (R2) above and the theory of Hankel matrices 

[K2], we can now deduce that there exists an invertible matrix T1 such 

that 

Al = T1A1T11 and LI = Tibi. 

••■ 

Q1 	Q2 
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In a similar way, equality (4.3.2) implies that there exists an 

invertible matrix T2  such that 

A2  = T2A2T-21  and b2  = T2b2. 

Using this result, it is now clear that to establish a relationship 

between two canonical realizations of a bilinear input/output map, it is 

sufficient to study realizations of the form M = (A1,b1,A2,b2,A,C,Q1,Q2, 

b,hT,dT) and M =(Al ,b1,A2,b2,R,a, 1 , 2,S,CIT,IaT). 

Returning then to the expressions (4.3.1)-(4.3.3) for si+j+1,i, 

si,i+j+1' sii' where we now assume that Al  = Al , bi = bl , A2  = A2, b2  = b2, 

it is clear that since (Al ,b1) and (A2,b2) are reachable pairs, we can 

rewrite (4.3.1) and (4.3.2) as 

arhTI

AIRA2 OnAlob2 = [61 h ] AlmA2 0 Artib2 

C A Q1 	 e 

 

(i = 0,1,...) 

 

{ 

[dThT] Al0A2 0 i  10142 = CaTliT] AlmA2  0 i  bletA2  

C A Q2 	 C A Q2  

 

(i = 0,1, ...) 

 

and combining these with (4.3.3), we obtain the following equality: 

jdThTIAlcitA2  011Aimb2  b1oA2  biab21 = raTÎITIAlmA2  OnAlmb2  b1citA2  bimb2) 

which we shall rewrite for convenience as 

[dThir]. F 0 	G 	= ba
T hT  ] F 0 i (G 	(i = 0,1,...). 	(4.3.4) 

	

C A . B 	 A l  

Note that (hT ,A).and (hT  ,A) are observable pairs and 

	

[17,F 01, [ G 	and [1-  F 0  , 	[ G 11 are reachable pairs. 

-C A 	-B 	-a A 

Before we show the relationship between the matrices of M and M we 

shall prove the following lemma: 

.A 

C A QI Q2 b 	 C A QI Q2 Q 
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Lemma 4.3.2 

Let K , M and j, ;Il l be reachable pairs -1ril 

IL Ai IN 

which are related by a similarity transformation. Then this similarity 

f 

transformation is of the form I 0 , where T is an invertible matrix. 
W T 

Proof: 	By the above assumptions there exist matrices T, U, V and W 

such that 

{

VU KO 	= 	KO VU 
f WT 

(4-.3.5) 
W T L A 	LA 
and { 	U M = 	). (4.3.6) 

W T N 

From (4.3.6) we obtain 

VM + UN = M 	and hence 

[V-I 	U] ( M ) = O. (4.3.7) 

From (4.3.5) we obtain 

VK + UL = KV 

and adding -K to each side we obtain 

(V-I)K + UL = K(V-I). (4.3.8) 

Also from (4.3.5) we obtain 

UA = KU , (4.3.9) 

so combining (4.3.8) 	and (4.3.9) we get 

[V-I K 0 ) = K[V-I U]. 	(4.3.10) 
L A 

Combining (4.3.7) and (4.3.10) we see that 

[V-I1 u,[ . rmi[Kuirml 	 K 0 
n
rm 

N LA N 	[L AI DV] 
which can only hold if [V-I U] = 0 because of the controllability 

assumption. Hence V = I and U = 0. 	 0 

0 



for all i, 	(4.3.11) 

[CF 
and 
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We shall now prove a similar result to this lemma, involving the 

matrices in thb expression (4.3.4). 

Lemma 4.3.3 

Let CdThT1 F 0 
C A 	B 

)1 G.) = 
raTisIT] F 0 i 	) 

where (hT,A) and (h
T
,A) are observable pairs and 

C!AI [ 	I are reachable pairs. Then there exists a similarity 
transform relating these matrices which is of the form ( I 0 1 where 

Y T 
T is invertible. 

Proof: 	Let us first note that the observability assumptions imply 

that A and A are cyclic. 

Without loss of generality let n = dim A 5. dim A, and suppose that 

the characteriStic equation of A is given by 

A1.1 + a1 A
n-1 

+ 	+ anI = 0. 
	(4.3.12) 

Consider the following equality which can be derived from the 

assumption (4.3.11): 

idThT] • [- F 0 r + al F 0 P-1 

[ 
C A 	C A 	

+ a
n I 01  [Fc 0A1

i
GB 1 = 

_.0 

raTI-IT3[ [F 

	
+ al 

in 	i 
F 0 

id
n-1 0 	+ ... + a

n I 011 [e OA 
]i[ Gis ] 

_ 
(i = 0,1,2,...) 

It follows from 44.3.12) that the left-hand side of this expression 

reduces to EllT 0]r F 0 	G 
C A Il l G 

where uT is defined in the obvious way, 

and the right-hand side can be expressed as [u w ] F 0 
I C A 

Hence 
T. [u wT ]( 0 111 

I C A 
= [u

T 
0]( F 

=uTFiG 

= [u
T 
0]( F 

G 
11). 
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This implies that 

-T 	- 
-u w

T , 
J[FO)if G) =0 for all i. 

- 
Hence [u

T 
 -uT w

T 
 ] = 0 because of the reachability assumption. 

An immediate consequence of this is that A also satisfies (4.3.12), 

and since R is cyclic, we must have dim A = dim A. 

It now follows from the fact that il = u and W = 0, that we can 

[ 

write a basis for the observability subspaces H 	fl and of [dThT-F ],I 01  
C A J 

andi[aTfIT],r.  I) as the rows of [11 0) A H and [U 0) A ii respectively 
CR 	PQ  

{ uTFk-11 
where U = 	where k dim F. 

utF 

uT 

Further, we know that Q and Q are full rank because (hT,A) and 

(Li 	are observable pairs, so by rearranging the rows of H and CI, we 

[ 

' can write down a basis for the observability subspaces as U 0 and U 0 . 
V IJ 	lv 	r 

... 
Because of the invariant subspace property of H and H we can now 

write 

vUOI )1 cF0A )=[K0)(U 
L A 	VI 

0.) 
 

for appropriate K and L, and 

J 

	2  ) 	( K 0 
LA 

 )1 U 0 I 
0' 

(4.3.13) 

(4.3.14) 

for appropriate L. Note that K is the same in both (4.4.13) and 
• 

(4.4.14). Furthermore, since [dThT] cH and raTfiT1 c H, we can write 

T 
Ed h

T 
 ] = [k

ThT] ( U 0 ) 
V I 

07013 	[01fiT,
j  [ and 	U 0 

V I 

for appropriate kT and T. 

(4.3.15) 

(4.3.16) 

We can now write (4.3.11) in terms of minimal representations, 

A 

namely 
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[kThT1 K 0 
L A 

UG 
VG+B 

= iiTc1T 3  K  _ 

1. 	
0 

: A 
1  UG 

VG+g 
(i = 0,1,...) 

By Lemma 4.3.2 we know that there exists a similarity transformation 

relating the two sets of matrices as follows: 

f I 0 
WT 

 )( K 
LA  
0 ) = K 0 

(1.: 	]( 
I 0 
WT,  

so in.particular 	A = TAT 1  

WK + TL = + Rw 

I 0 	UG 
W T ) f VG+B ) = ( Ii/IG+13 

so in particular 

WUG + TVG + TB = VG + B 

and [kThT3.= njli
T] ( I 0 1 
IWTJ 

(4.3.17) 

(4.3.18) 

(4.3.19) 

T- 

	

so in particular 	h = hT -1 T 	 (4.3.20) 

" 	-.7. 

	

and 	kT 	a' = k + h W. 	(4.3.21) 

We shall now show that (4.3.13)-(4.3.20) together imply that the 

similarity transformation relating the two sets of matrices in (4.3.11) 

isI 
[ 

	0). 
TV+WU-V T 

(i) Rearranging (4.3.19) we obtain 

B = TB + (TV+wU-V)G. 	 (4.3.22) 

(ii) From (4.3.16) we have 

-T -T T d =kU+h V. 

T- Substituting for k from (4.3.21) we obtain 

AT 	 T 	T 
d =kTU-hWU +hV 

and substituting for k
TU from (4.3.15) and hT from (4.3.20) we obtain 

T -  
d =d

T  -hTV- hTWU +hTV 

= dT  - hTT -1 (TV+WU-C7). (4.3.23) 



(iii) From (4.3.14) we have 

C = LU + AV - VF 

= (WK+TL-AW)U + AV - VF by (4.3.18). 

Substituting for LU and KU from (4.3.13) we obtain 

C = WUF + T(VF+C-AV) - AWU + AV - VF 

= (TV+WU-V)F + TC - TAT 1 (TV+WU-i1) 

on substituting for A from (4.3.17). 
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(4.3.24) 

It is now clear that the relationships (4.3.17), (4.3.20), (4.3.22) 

(4.3.23) and (4.3.24) together give the required result. 	0 

We are now in a position to put together the results of Lemmas 4.3.1 

and 4.3.3 to provide the main result of this section. 

Theorem 4.3.1  

Let M = (A1,b1,A2,b2,A,C,Q1,Q2,b,hT,dT) and A = 

61,52,8,11TaT) be canonical realizations of a bilinear input/output map. 

Then there exist unique invertible matrices T1, T2 and T and a unique 

matrix Y such that the following relationships hold: 

Al = T1A1T11 61 = Tlbl A2 = T2A2T21  b2 = T2b2 

A = TAT-1 	h
T 
 = h

T 
 T 1  

C = TCT1
1 
 oT2

1 
 + YT1mT2(AlaA2)T13T

21 
- TAT

1
Y 

Ql = TQ1T11  + YTIaT2(Alab2)T1
1 
 Q2 = TQ2T21 + YT1aT2(b1mA2)T21 

b = Tb + YTicaT2(b1ob2) 	
dT dTT110T21 h

TT-1Y. 

Proof: 	The existence of T1, T2, T and Y follows from Lemmas 4.3.1 and 

4.3.2. Uniqueness of T1, T2  and T follows immediately from the facts 

that (Al,b1) and (A1,131) are reachable pairs and (hT,A) is an observable 

pair. 

To show uniqueness of Y, suppose that Y1 also satisfies the above 

equalities. In particular, we obtain from the equalities for C and dT  

the following: 
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C - Tca1
1
mT31  = YA1aA2  = AY = YIAIc3A2  - RY1 

i.e. (Y-Y1)iilmA2 = R(Y-Y1) 

T T 1 1  
d - d TI  aT2  = -h TY = -hT Y 

i.e. h
T
(Y-Y1) = 0. 

Using  (4.3.25) and (4.3.26) we obtain 

fiT 
(Y-Y1) = 0 

h 
TA-n1 

so that (h
T
,A) observable implies Y = Y1. 

_and 

(4.3.25) 

(4.3.26) 

We are now in a position to obtain a result connecting  minimal and 

canonical realizations: 

Theorem 4.3.2  

A realization of a bilinear input/output map is minimal iff it is 

canonical. 

Proof: 	Referring  back to §4.2, we see that reduction to quasi-reachable 

form from an observable realization is equivalent to linear system 

( 

reduction to reachable form of the pair A1mA2  0 , Al b2 b1 A2 b1ab2  . 
C A 	Ql Q2  b 

From this we can deduce, with the aid of Theorem 4.3.1, that there 

exists a unique mapping  taking  any observable realization of e bilinear 

input/output map f to any specified canonical realization of f. Hence, 

according  to Definition 3.1.4, a canonical realization is a minimal 

realization. 

Conversely, let M be a minimal realization of f;  then by Definition 

3.1.4, it must be observable. Suppose, however, that M is not a canonical 

realization;  it follows, then, that M is not quasi-reachable. If this is 

the case, there will not in general be a unique mapping  from any 

observable realization of f to M, a contradiction of M being  minimal. 

Hence we deduce that M is canonical. 	 0 
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Remark: 

It is now apparent from this result and from the reduction pro-

cedures that produce observable and quasi-reachable realizations that a 

minimal realization is one with the smallest number of states necessary 

to describe the input/output map in state space form. 

4.4 Canonical Forms  

We present a few definitions from [D1] before getting down to the 

main business of presenting realizations of bilinear input/output maps 

which are unique with respect to their structure and which contain as 

many fixed zeros and ones as possible. 

Definition 4.4.1  

Let E be an equivalence relation on the set S. A set of canonical  

forms for S under E is a subset C of S such that for all s E S, there 

exists a unique c e C such that sEc. Let 0: S C be defined by 

0(s) = c. Clearly ImO = C a S/E. 

Definition 4.4.2  

A function f: S -± V is an invariant (for S under E) if for all 

s1,s2 E S, s1Es2 implies f(s1) = f(s2). f is a complete invariant if 

f(s1) = f(s2) 4-4-siEs2. f is an independent invariant if Im f = V. 

Clearly 0: S + C is a complete independent invariant, and conversely, 
• 

a complete independent invariant f: 	CS generates canonical forms 

(V is a set of canonical forms). 

For bilinear dynamical systems, we shall say that M1EM2 if the 

transfer functions obtained from them are equal. For single input/single 

output linear systems it is well known that the following two realizations 

are canonical, each having invariants 	and 



(i) cT = [C].....cn] A = 	0 1 

	

[9 	 
-a
n 

	

.(ii) cT  = Co....cs 1] A= r 0 	a 

	

1 	0 .
n 

0 	•1 -al 

0 

•1 
-al 

b = 

0 
1 

b= I bil  

bn 
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{al,...,an,b1,...,bil}which uniquely specify the transfer function of the 

system 

Given a realization M = (A1,b1,A2,b2,A,C,01,Q2,b,dT,hT) of a bilinear 

input/output map we know that (Al,b1) and (A2,b2) are reachable pairs, so 

that we can set up these pairs like A and b in (i), and in addition (hT,A) 

is an observable pair so we can set this up like (cT,A) in (ii). 

We can now ask whether there is any representation of the remaining 

matrices specifying M which has a similar well-defined form and is also 

unique. The answer to this is in the affirmative, and we can derive 

several different canonical forms. 

Before specifying these canonical forms we remark that having defined 

the form of the matrices A1,b1,A2,b2,A and hT, we are no longer permitted 

to transform M via the similarity transformations T1, T2 and T, defined 

in Theorem 4.4.4, and the only freedom allowed us with regard to changing 

parameters is therefore via the matrix Y E Rnxn1n2  

Canonical Form 1: 

We assume that ni,n2 and n are all greater than zero. If any of 

these are zero, then clearly Y = 0. 

The canonical form presented here will be specified by dT = 

and all rows of C except the first are zero. We shall show that not only 

does this canonical form exist, but that it is unique. An immediate 



..T 
cl 
. 

. 

...T 
c 
• n 

AT c- 	= 
k 

= 

c
T 
 + k 

( ci
T  
. 
. 
.. 
T 

• 
c
n 

y
T 
 AltaA2 k 

+ 
• 
yi
T  

. 
' . 
T 
Y  k 	n' 

T 
- yk-1  

. 
AlimA2 - 

T 
+ akyn  

0 

0 

(k = 2,...,n) 
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corollary of this will be that a complete set of independent invariants 

for an input/output map f will be given by {a1,a2,a,c,Q1,Q2,1°} where 

a1,22 are the bottom rows of A1,A2 respectively, a is the last column of 

A and c is the first row of C. 

From Theorem 4.4.4 we have 

T T T 
d =d -hY and C=C+ YA1oA2 - AY. 

We can obtain d
T 
 = 0 by setting the last row of Y equal to d

T
, for 

then d
T 
= d

T 
- [0 	0 1] Yil = 0 where Y 

dTJ J.  

	

i  T 	T 	
T dT yi where y
n = d 

If we now define C = r  aT , c . cl   ,    
[ ..j 	'T 

itY=[ 
 'T 

	

cn 	Yn n 

we obtain 

and hence 

T 
yn = dT. 

To obtain c
k 
= 0 k 	we choose y

T 
sequentially in the manner 

T T 
y
k-1 

= ck + yk
A1aA2 + a

k
y
n 

T 
= ck

T 
 + ykAimA2 + akd

T. 

This gives unique values for {yk}, and hence 

- 
ci
T 
 = cl

T 
 + yl

T  
AimA2 + aid

T 

is uniquely specified. Finally, since it is now apparent that Y is uniquely 

defined, we must have 61  = Qi  + VA --1.4--1-1  2. Q2 = Q2 + Y(b1caA2) and b = b + Y(b1ub2) 

uniquely defined. 

Note that using the nnin2 elements of Y we have specified a canonical 

form with nnin2 zeros. 
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Canonical Form 2  

The canonical form presented here will be specified by b = 

all columns except the first of Q1 and Q2 are zero, and C is structured 

as follows: 

C = 

	

x 	 X X 	 x . 	. 

::  o 1 . 	. 
• • 	 . 
• • 	 • 	 • 

	

[:i 	X X  

	

X 	x' 

	

< 	) n1+1 	2n1+1 	(n2-1)ni+1 
nl columns 

Again, we shall show that this canonical form exists and that it is 

unique. We shall then find that a complete set of independent invariants 

is given by {2.1,22,a,q1,32,C',dT},  where a1,22 are the bottom rows of 

A1,A2 respectively, a is the last column of A, Eli and 22 are the first 

columns of Q1 and Q2 respectively and C' is the nx(ni+n2-1) matrix made 

up of the non-zero columns of C. 

From Theorem 4.4.4 we have 

b = b + Y(bicab2) 	Q1 = Ql 	Y(Almb2) 	Q2 = Q2 	Y(1010Az) 

C = C + Y(AlmA2) - AY. 

	

Defining Y = [y. ...y
n1.1

Y
12

-..Y
n1,2

-...171 	---Y 	] 
11 	 n2 	n11.12 

and letting 	Yn n 
= -b 

1 2 
it is clear that 

b + Y(bimb2) = b + Cy ,....yn/n2 ] 0 	= 	0 

101 j 

Defining Q1 = [c111c112-...1n1  ] 	Q1 = bal1q12---(11 3,  

we can write 

[all----qini ] = 	 ry11----Ynin2][ 0 
0 

01 0 
0 1 

ni 



and hence 
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= q - al 
lk 	lk 	ky  n1n2 

+ y
k-1,n2 

= -b. 
Ynin2 

To obtain qlk = 0 k = 2,...,n, 

we choosesequentially as choosey sequentially 

= aly yk-1,n2 	k nin2 
1- = -ako - qlk 

k = 2,...,n, 

 

Defining Q1 and Q2 similarly, it is clear that we can obtain 

A 

q2k 
= 0 k = 2,...,n2 by choosing ynik 

sequentially as 

Yni,k-1 = 	- a -2k' 

Note that 

and 

1 
ill = qll - alb 

q21 = 421 - alb 

are uniquely specified. 

Finally, defining C = r&11.... ] 

	

n1,1 
	C1,n2 	nin2 

	

and C = [cii....c
n1,1 
	c, 

	

, n 	nin2 i2 	] 

we can write 

[811.---8nin2] = [c11----cnin2  ] 	A[1711---.1r  nin2 

0 	01 0 

0 '1 
-a1 	1, 

•  ni 

-11'11 	 nin2 

01 

0 

"1 
1 0 	-at....-an  i  

-aA 	 -a2 Al 1 1 	 n2 

• • 
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where 

0 1 
0 

0 
.1 

-a1  al 	-al 
nl 

and hence 

c 	= c. + Ay. - y. C. 	jk 	jk 	j- 	j-  
+ a31yj-1,n1 	a2\1 

where Y 	ry1n2....y 	]. 
n1n2 

Hence we can set {C.jk :j = 2,. . . ,n1; .
1c = 2, . ,n2} to zero by 

appropriate choice of {v - j-1,k-1:  J = 2, . ,ni, k= 	and it is 

clear that the remaining columns of C are uniquely defined. 

Note again that the number of zeros we have inserted into C,01,02 

and b is given by n(n1-1)(n2-1)+n(n1-1) + n(n2-1) + n = nnin2. 

Al = 

j= 2,...,ni 

k = 2,,..,n2  



s - 1  

[
zi(q+az2+b) 	z2 

(5.1.1) 

= 0 1 ])qc  + 0 lvk  

-b -a 	( 1 

xk+1 = 

yk  = 1 0 yk. 

0 1 

0 	1 

-b -a 

)q(uk  + 0 

1 

(5.1.3) v
k
u
k 
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CHAPTER 5. MULTI-OUTPUT BILINEAR SYSTEMS 

5.1 Preamble  

Before discussing canonical and minimal realizations of multioutput 

bilinear systems, we shall examine the following example of a two-output 

bilinear input/output map in the context of observability and quasi-

reachability of single output maps. 

Let the map be represented by the transfer function SE R
realr, 

Ltziz2)]. 

Following on from our discussion of state-space descriptions of 

bilinear input/output maps in Chapter 2, an obvious choice of state-space 

realization in this case is 

xic+1 = uk 	xL.1 	0 1 jx.12c  + I 0
k 

-b -a 	[ 1 (5.1.2) 

and this implies that the realization (5.1.2) is not observable. In 

particular, if the initial substate xg = 0, it is impossible to determine 

the value of the initial substate xl by any sequence of experiments. So, 0 

to construct an observable realization, we employ the reduction procedure 

of §4.2 to obtain the following: 

yk  = 1 0 IxIlcoqc  

0 1 

Using the notation of Chapter 4, we see that 

H= 1 0 ) 	T1 = 0 	T2 = 0 1 

0 1 	 -b -a 
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It is now clear that not only is this a state space with higher 

dimension than the one we started off with, but it is also not quasi- 

reachable since x_1 	
= uxk+1 . The reason that we obtained a higher- 

dimensional state space can be explained by writing H in the form 

described in §4.2, i.e. 

H = U 0 
✓ 0 
W In 

and in our case here we have n = 0 and V = I, so that H = V. Whereas 

in the single output case V could be written in the form 

• 
V = VT  A1 NA2

k 
 

T ✓ AloA2 
vT 

it is impossible to do this for (5.1.2) for any v
T
, since 

AIRA2 = DDIE 0 1 = 0 0 . 

-b -a 	0 0 

so that the proof showing that the state space dimension does not 

increase breaks down at this point. 

Turning our attention now to the reason for (5.1.3) not being 

quasi-reachable, we can calculate the transfer function s in a natural 

way from (5.1.3) as 

1 	Z2  
S = 

ziz2 q+az2+b 

2 
z2  

z22+az2  +b 

and our proof of Lemma 3.2.2. indicates that because both elements of the 

transfer function vector have numerators containing terms in z2,z3,... 

but no terms in 1,z1,zi,..., the state space is not quasi-reachable. 

It follows also from Lemma3.2.2that if the A matrix has more than 

two Jordan blocks corresponding to zero eigenvalues, or equivalently if 
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the dimension of the null-space of A is greater than two, then the state 

space is certainly not quasi-reachable. However, suppose that A has two 

Jordan blocks of zero eigenvalues, and the input to state transfer 

functions corresponding to these are written as 

•' 	'  

xl(zi,z2) 	1 	(z1z2)m1-1 	 1 	 Ri 	1  

(z1z2)mi 

	 1)1(z1)112(z2) 

. 	 . 
• . 
. 	 . 
. 	 . 

m1-1  
0 	 .(z1z21

, 	, s  Rm i  xml (zi,z2) , 

xml+l
(zl,z2)

, 	1 	'(z1z2)m2-1

- 1 
(ziz2)m2 	

• 
 

and 

   

Rm1+1 

 

1 

 

Wzi)11)2(z2) 

   

X (zi,z2) 	 s  0 
m2  

(z1z2)m2-1  
ml+m2'  

where R1,. .,R 	Uzi,z2]. 

m1+1112 

Then the state space corresponding to these will be quasi-reachable if 

the terms of R and R 	which remain after discarding those divisible 

ml 	ml+m2 

by zlz2 are not all divisible by z1 or all divisible by z2. This is an 

immediate consequence of the detailed discussion in the proof of Lemma 3.2.2, 

where we discovered that the crucial terms in the study of reachability 

for zero-eigenvalue modes were those terms in the numerator which were 

not divisible by ziz2. - 

We now have an indication of how to test whether a state ;,pace realiza-

tion of multi-output bilinear map is quasi-reachable or not, and this is 

formalized in the next section. Complementing this, in §5.3 we provide 

an algorithm for reducing a realization which is not quasi-reachable to 

one which is. 

There is another problem that remains, however, and that is the 

question of observability, and in order to cope with a realization such 

as (5.1.2) it is necessary, in §5.4, to formulate the concept of quasi-

observability. As we shall see, this is not quite enough to generate 
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a theory of minimal realizations (Definition 3.1.4), and this remains 

an open problem. 

5.2 Quasi-Reachability  

We have seen in Chapter 2 how to construct a realization of a 

bilinear input/output map. We can therefore assume that for the multi-

output case it is in general possible to obtain a realization of the 

form 

x30.1  = Alx11 + bluk  

'w  
A "2 J. 

xk+1 = 4"2 k̂ 	2v
"  
k 

xk+1 = 
Axk  + CxlIcalqc +Qlxlcvk

+  Q2x2uk  + bukvk  

yk  = Hxk+ Dxilcox?c. 

We shall assume that (Alibi) and (A2,b2) are reachable pairs, and 

that the pair {[AiA2 0], [ Aicab2 bloA2 blob2 I ) is also reachable 
C A 	Q1 Q2 

and (H,A) is an observable pair. If any of these conditions do not hold, 

then we know from standard linear system theory and from the results of 

Chapter 4 how to remedy this. Note that these conditions do not imply 

quasi-reachability of the state space, but only that the components of 

the transfer functions x(z1,z2) and x1(z1)ax2(z2) are linearly independent, 

and quasi-reachability will certainly break down if dim ker A > 2. 

Before determining conditions for quasi-reachability in the case 

dim ker A = 2, we shall give an example of how quasi-reachability works 

in this case. To show quasi-reachability for general cases of dim ker A=2, 

the argument proceeds in a similar way to that of Lemma 3.2.2, and we do 

not include it here. 

Example: 	We shall just consider the transfer functions involving 

zero-eigenvalue modes of A, and assume that a reachable state space has 

been set up for the linear sub-systems involved. For example, let 
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sl = (zi+z2)/z1z211)1(z1)1P2(z2) 

s2 = (zi + kq)/z1z24)1(z1):P2(z2) • 

From Lemma 3.12we know that the only inputs affecting the output at 

time + 1 of si and s2 are those of the form 

(01 (zi) 	qi (z1) ,642(z2) + C12 (Z2) ) E U X V e  

where a and t3 are scalars. 

The output is then given by 

Y1 = 1  fage(z2)z2 	aqi(zi)zi) 	1(zlz2)-k 4_ 177 
z1z2 	11,2(z2) 	1P1(z1) 

Y2 = z1z2 
1 	kac12(z2)z2  11)2(z2) aql(z0z1 Dziz2)-k y2

1P1(z1) 

(following the notation of Chapter 3). 

If we now write out the series expansions of q141 and q2/11,2  as 

	

f1z11 	f2z12 	--- 

g2/*2 = g1z21  g2z22  

the output at time + 1 is given by 

Y10 = agl 	13f2 

Y20 = akg2 	Of1 	Srl 

and these two simultaneous equations can be solved for a and a provided 

that f1g1 - kf2g2 0. This of course is just a restriction on the 

components of q1(z1) and q2(z2) not to lie on some manifold E R
nri-n2+2 

When this condition is satisfied, any given value of y10 and ya can be 

attained, so that the whole system is quasi-reachable. 

We shall now determine necessary and sufficient conditions for the 

state space realization of a bilinear input/output map to be quasi-

reachable when dim ker A = 2. We shall assume that A has been transformed 

by a similarity transformation A TAT 1 in such a way that it can be 

written as 

	

A = 	A' 	A" 

0 	 0 0 0 

0 	 0 0 0 
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The transfer function of the zero-eigenvalue modes will then be 

given by 

1 	 -1 
s = 	[C"(z1I-A1) lbin(z2I-A2) 1132 + QI(z1I-A1) 101+ Q(z2I-A2)

-1
b2 + ziz2 

where C", Q1, 122 and b" respresent the bottom two rows of C, Qi, Q2 and b. 

Expanding (z1I-A1)
-1 

 and (z2I-A2)
-1 
 as 

	

-1 	n1-1 	n1-2 
(z1I-A1) 	= zi 	I + zi 	(Al+alI) 

	

% -1 	n-1 	n-2,  (z2I-A2) 	= z2 	I + z2 	,A2+ali) 

+ 

+ 

+ 

+ 

n1-1 
(Al 

(A l  n 

+ 

+ 

+ and-1I) 

+ a
n2-1

I) 

where Ail  + alAi
n1-1  + ... + a 	Al + a I = 0 

	

41-1 	41 

A22 	
n2-1 

and A2 + alk 	+ ... + 
an2-1A2 

 + 13 I = 0 represent the characteristic 
n2 

polynomials of Al and A2, we obtain 

21 ziz24,1w 	 n1-1 
1-1 	n11 	n21 	n21 

s 	, C"[zi
n  I+..+(Al +..+a Iflbin[z2 I+..+(A2  +..+a

n2-1
1)]:32 

+ Q1[41.1-1I+..+(411-1+..+ani_lI)]b02(z2) 

, n-1 	n2-1 + Q;Lz2 	I+..+(A2 	+..+Ii.n2-1I)]b21P1(zi) + 11,1(z1))2(22)b" . 

We have seen by Lemma 3.2.2 that the system is not quasi-reachable if 

and only if either all the coefficients of 1,zi,z,... inside the brackets 

{ 	
are zero or else all the coefficients of 1,z2,z,... are zero. 

Suppose the coefficients of 1,zi,z,... are all zero; this is 

equivalent to 

1-1 	n1-1 	n2-1 
C"Ezi

n 
 I+...+(Al +...+a

n1-1
I)]bio[A2 +...43n2-1

I]b2 

+ Q1[41-1I+...+(41-1+...+ani_iI)]bian2  

+ Q" 
2-1 

+. • .+ 2[A2 	8112_1I]b2(41+...+a
ni

) + 13
n2
(z71+...+a

n1
)b" = 0. 

Taking the coefficients of 41,...,1, in turn, we obtain 

i.. QI(A2  
n2-1 

zni 	+...+$1.12 _1I)b2 + Sn2b" = 0 

41-1: C"birs(42-1+...+e,
n2-1

I)b2+ n2 1 Q"b1  +alQ(Ar212-1
+...+R

n2-1
I)b2+al5 n2b" = 0 

1-1 	n1-1 
1: C"(Al

n  +...+a
n1-1

I)bio(Al +...+a I)b2 
n2-1 

n1 	 n2 
+ a n2 4 

Q'; (Ai
-1  +... +a

ni-1
I) bi + a ni L 12!.! (A2

-1 
 +...+8

n2-1
I) b2 + anif3n2b" = 0. 

....r,,,,,m42-1.....4_ By subtracting ull-.2“.12 	+ 	13
n2-1

I)b2+ f3
n2b"] = 0 from each of 

these equalities in turn we obtain 
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n2 
C"bia(A2

-1 
 +...+13

n2-1I)b2 
 + an2Qlb1 = 0 

n1-1 	n2-1 	 n1-1 
C"(Al

n1-1
I)bia(A2 	+...+3

n2-1
I)b2 + 13n 2Q1(211 	= 0. 

-1 
Now b1,(A1+a1I)b1,...,(Al

n1  +...+a
n1-1

I)bi are linearly independent 

and span Rnl. Hence this series of equalities reduces to 

C"Im(A2
2-1 

 +...+13
n2-1I)b2 

 + a Q7 = 0 
n2 - 

n2 
and Q"2(A2

-1  +...+an2-11)b2  + n2
b" = 0 

which are the necessary and sufficient conditions for the coefficients of 

1,z1,...,z1
ni  

to vanish. Note that for an 	0, this is equivalent to 
2 

C"ImA21b2 = 121 

Q21,2
1 
 b2 = b". 
	 (5.2.1)' 

In a similar way we obtain the necessary and sufficient conditions 

n2 
for the coefficients of 1,z2,...,z2 to vanish as 

	

"C"(Al
n1-1 	

n1-1
I)bimI + a Q" = 0 an 2 

	

and Q"(Al
n1-1 	

n1-1
I)bi + a

ni
b" = 0. 1 

(5.2.2) 

Hence, provided that neither (5.2.1) nor (5.2.2) are satisfied, and 

that the reachability conditions above hold, we know that the system is 

quasi-reachable. Note that we no longer require A to be a cyclic matrix. 

In fact, our proof of reachability in Chapter 3 was general enough to 

guarantee that provided that the components of x(z1,z2) and xl lzi)mx2(z2) 

were linearly independent, then the whole system is quasi-reachable (if 

we include the special condition for dim ker A = 2). So for example the 

system 

1 	1 
xk+1 = ax

k  + uk 	x2  = bx2
k 
 + v 

k+1 	k 

xk+1 = 
c 	0 lxk  + 1 xilx12c  +  0 lxilvk  

0 	c 0 1 

is reachable for c x 0 and quasi-reachable for c = 0. 

(5.2.1) 
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5.3 Reduction to Quasi-Reachable Realization  

We shall consider three possible alternatives as to why a multi-

output bilinear state space realization is not quasi-reachable, and show 

havt to reduce the state space in each case. This will then provide us 

with an interative procedure (with a finite number of iterations) for 

reducing any state space realization of a multi-output bilinear system 

to quasi-reachable form. The three possible alternatives are: 

(1) dim ker A 	2 and (5.2.1) holds but not (5.2.2) 

(2) dim ker A 	2 and (5.2.2) holds but not (5.2.1) 

(3) dim der A > 2 and neither (5.2.1) nor (5.2.2) hold. 

Note that we need not consider the case where both (5.2.1) and 

(5.2.2) hold, for then the numerator of the transfer function of the 

zero-eigenvalue modes would be divisible by z1z2. Thus we would have 

'a cancellation of z1z2 in both numerator and denominator, and the transfer 

functions would then be linearly dependent on the components of 

xl(z1)3x2(z2). This case has then been covered by the reduction 

procedure of Chapter 4. 

It is also clear that the reduction procedure for case (2) will be 

completely analogous to that of case (1), so we shall only deal with the 

latter. 

In all three cases we shall assume that the xk  subsystem is written 

as 

xk+1 
= A' Alxk  + [Clxiltax + [QTqc.vk  + [121xuk  + riukvk  (5.3.1) 

0 Om 	C" 	 b" 

with yk  = [B' H"]xk  + Dxilfax where m = dim ker A and the matrices (Al,b1) 

and (A2,b2) are in reachable canonical form. 

Case (1)  
ni . 

I Here we have no terms in 1,z1,...,zi in the numerators of 

the transfer functions, so that they must all be divisible by z2. Therefore 

we can write 
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s(z1,z2) = z2R/z1z2i1(z1)4i2(z2) 

= R/z1ii1(z1)12(z2) 	for R E R[zi,z2]. 

It is now clear that the sensible path to take to obtain a quasi-

reachable realization is to increase the dimension of the x31 subsystem 

by 1, and to dispense with all the zero-eigenvalue modes of xk. Let us 

label these modes by Ric  so that xk may be written as xk  =[ Stk ; then 

51k 

xk+1 = Cfl xIetx12c  +Q'lxkvk + V2x.1c uk  + buukvk. 	 (5.3.2) 

Consider the case det A2 = O. Substituting into this equation 
n2 

from (5.2.1)', we obtain 

1 1 	 1 
= C"xilcsaxic  + 0  ....uxkotA2 b2v + Qxuk  + QpN.2 b2ukvk -k+1 	 k 	2 k 

= 

If we now adjoin 

-k+1 

such that 

then 	xlit 

and uk = 5ck+1,n1+1 

Cu xil2A21xl2c4.1  

a new state 

 0 1 
• 0 

: 	0 	• 
• 

0 -a 	... 	-a1 ni 

R1 	for xk E 

xk  

1 	0 
. 	0 

O 	•1 0 

a nl 

.1 

R1, 

-1 xk+1 

xl 

+ Q2 ik21x3c.auk. 

k,1 

Kilc  to 

xk  + 

A J1kk+1  

xk 

0 

• 

0 
1 

1 

+ 

(5.3.3) 

as follows, 

uk  

alml i-k,ni 

 

= [a nl 

 

al 17X11.4.1  A T"1  = Pl xk+1.  

Hence 

 

xk  = (C"J1aA21  + T
GA

;1)5'cili.ox A EXIl ix. 

We can then write the equations for xk  and yk  as 

A' X.k  + (A"C + C' J2saI) Xkl  ox.i.c  + Q1J2Sikl  + Q2ck2uk  + b' UkVk  F 

= HI  xk  + (H"E A- 103.2E1I) cCk01X3(  

where J2  = 0 

[ 

0 I '. nl 

the system equation for these is given by 
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In the case a 	= 0, from (5.2.1) we obtain the identities 
n2 

C' 12 (42- 11-...4-an2_11)132 = 0 

n 
and i4(A2

2-1  +...+an2-1I)b2 = 0. 

For (A2,b2) in reachable canonical form, it is easy to show that 

(42-1+...+.13
n2-1

1)b2 = 	1 c Rn2  

• 
O 

so that (5.3.4) and (5.3.5) imply that C" and Q2 are of the form 

(5.3.4) 

(5.3.5) 

= 9 

; 

C" = 	0....0 

0....0 1 -  
This in turn implies that equation (5.3.2) is independent of qc.,1, 

and it is then possible to express vk 
and x22  as linear 

k,2 I..01 k  x,n2 

functions of x2
k+1, 

 to obtain an equation analogous to (5.3.3). From 

this point on, the construction is the same as for a x 0. n2 

Case (2) 	As we remarked above, this is treated in an analogous 

way to Case (1). 

Case (3) In this case all we do is set up new dates in >clic  and qc  

and get rid of states corresponding to zero eigenvalues in the xk  

subsystem. 

We adjoin the new states as follows: 

0 
5.51+1  0 1 ' 0 u

k 

0 • 
• 
'1 

0-a
ni
... 

0.2 	( 0 1 	'-2 
”k+1 	

X
k 

*1 
0-$

n2
... —al, 

0 
1 ■ 

0 v
k 

O 
1 

• 
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so that 

and 

_ xk  - 

= 

2 xk  = 

I 
nl 

0 
: (. 3  

n2 

o 
- 
O 

I ni  

0 . 
. 
O 

;i1114  A. Jik11+1  

k 1 	• 	j  ^1 2x k 	k 

2 	A KI 2  k 	X k+1 — 	k+1 

= 0 	Rk  2 	0 K9 "'  = -xk In2 
O 

so that we obtain 

xk+i cu xklatqc  vix)cvk Q;uk bto ukvk  

= C's J10J2q+icakk+1  + 	(k1c+i,n2+1+131x ,n2+...-1-e.n2x12c,1) 

12kk+1 °JO-1,111+1+a 1Xk 
1 

b(kk+1,n1+1
44, 
 

= (C"J13J2 + (21Inp2  +1211piaaJ + 

,n 1 +...+an1x
kJ

)  

..+a 0 )(k2 	+...-443 x2  ) 
nl-k,1 k+1,n2+1 n2-k,1 

 bplop2T  ) 

where p2 = 1.0n2 — 	1] 

A 65131(+135̀12c+1. 
We can then write the equations for g'ck+1  and yk as 

- 

kk+i  = A' kk  + (A"C + C' J2ca1(2) kk  lesci2c  Q1j2stIlvk  Q2(2:4,3uk 	v 
k 

yk  = H kk  + (HD  C + DJ2caK2) kilcakI2c. 

Having gone through one of the reduction procedures (1) , (2) or (3) , 

we examine dim ker A' , • and if this is greater than or equal to 2, we 

repeat the above tests and if necessary reduce the system further. Since 

the dimension of the A matrix is constantly being reduced as a result of 

these procedures, after a finite number of iterations we must reach a 

stage when the whole system is quasi-reachable. 
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5.4 Quasi-Observability and Canonical Realizations  

It has not proved possible as yet to provide a really good definition 

of observability or quasi-observability which will lead to a realization 

which is minimal in some sense and alsO canonical. The best that we 

have done so far is as follows: 

Definition 5.4.1  

A state-space realization is quasi-observable if the closure of the 

observable set is the whole space. 

Referring back to the example (5.2) at the beginning of the chapter, 

we can readily see that provided 4 E R2  is not equal to zero, 	is 

possible to observe the value of xl E R1. 

With the aid of the work done on observability conditions in Chapter 3, 

we can also formulate some ideas of observability for multi-output systems. 

Let us write a basis for the observability subspace of( 	111, AimA2 0 ) 
 C A 

where U c T1caT2 where T1,T2 are the observability subspaces of 

( 171[Alob21,A1 ) and ( TI[bloATA2) respectively and the rows of V are 

Q1 	Q2 

linearly independent of the rows of T1oT2. 

If we were dealing with a single output system, then as we have 

shown in Chapter 4, we would have dim V 5 dim ker TI + dim ker T2. 

However this is no longer the case in general for multi-output systems, 

so we are led to the idea of a system being quasi-observable if (H,A) is 

an observable pair, and if dim V ?_ dim ker T1 + dim ker T2. We also 

assume in this case that all non-observable modes of XlIc  and 	associated 

with non-zero eigenvalues have been eliminated, i.e. there exist no 

as 5 = U 0 
v o 
W 
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E ker T1 or xg e ker T2 such that V(x(13t3I)=0 or V(Ioxii) = 0. To eliminate 

any of these modes we follow the reduction procedure to observable 

realization of Chapter 4, followed by the conversion to quasi-reachable 

form as detailed in §5.2. 

However this is still unsatisfactory with regard to obtaining 

canonical realizations which are related by a unique mapping. An example 

which has two realizations which are both quasi-reachable and quasi-

observable illustrates this point: 

[1 	

1  
s = 

z1z2 zi(q+az2+b) zl(z3+az2+b) 

T 
(b x 0) 

Realization 1: 1 
xk+1 = uk 	= [0001x2  + 1 lvk 

O 0 1 	0 

O -b -a 	1 

yk  = 1 0 0 reliqc  

O 1 0 

O 0 1 

Realization 2: 1 _ 
xk+1 uk 

= I 0 1 3qc  + 0 k 
-b -a j 	1 

xk+1 = ukvk  

yk  = 1 	+ 0 0 xilmx2. Ixk  

O 1 0 

0 0 1 

In fact, it has so far proved impossible to find a really satisfac-

tory definition of canonical realizations for multi-output bilinear 

systems which ensures that they are minimal realizations too. The only 

way that minimality can be brought in directly is that a canonical 

realization is one with the smallest state dimension. 
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CHAPTER 6. MULTILINEAR SYSTEMS 

This chapter opens with the study of a particular class of multilinear 

systems, whiCh bear a great deal of resemblance to bilinear systems and 

concludes with a summary of some of the ideas contained in previous 

work on .multilinear system theory. 

The particular class of multilinear systems that is studied in §6.1 

and §6.2 is based on the class of multilinear input/output maps whose 

denominators (in the case of n-linear maps) can be factorized as 

pi(z1)....pn(zn)p(zi....zn). In §6.1, necessary and sufficient conditions 

are presented for a particular class of state space realizations of these 

maps to be qu6.si-reachable, and the proof is a natural extension of the 

proof for quasi-reachability of state space realizations of bilinear 

input/output maps. In §6.2, a stability result similar to that of §2.5 

for bilinear maps is obtained for this class of multilinear maps, and 

this provides sufficient conditions for the boundedness of the output 

sequence due to a finite length input sequence. 

In 56.3, multilinear input/output maps are characterized in a more 

formal -way, analogously to the treatment of bilinear input/output maps in 

52.1, and in addition some of the notions of the category-theory approach 

of [RAMI] to multilinear or multidecomposable systems are introduced. The 

main purpose of this approach is to provide the right sort of input and 

output spaces in which to work, but as yet it has not produced a theory 

of minimal realizations (except in the linear or decomposable case [AM1]). 

6.1 Quasi-Reachability of a Class of Multilinear Systems  

We shall consider the following specialized class of multilinear 

systems: 
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2 1 . 
x
k+1 

= Axk  + 	+ X 	ICh 	V- 0. .0Vitbukl...ukr  (6.1.1) 
j=1 i .=0 1 • • 	11 

(ij  not all equal) 

xk 
	3 

if i. 	ID 
j where v 
i j xuji 

	

if i
3  
. 	1 

and 	dim ker A = 0 or 1. 

This is specialized in the sense that the transfer function of the 

xk  state has denominator of the form p1(z1)...pr(zr)p(zi...zr), with no 

polynomials in the denominator of the form 1312(z12)/13345(z3z4z5)- 

In much the same way as we provided necessary and sufficient condi-

tions for quasi-reachability of bilinear systems, we can express 

conditions for quasi-reachability of this multilinear system as follows: 

Theorem 6.1.1 

The system (6.1.1) is quasi-reachable iff the following conditions 

hold: 

(i) (A
i
,b
i
),...,(A 

r 
 ,b r) are all controllable pairs. 

(ii) A 2...aAr  0 , A1mb2o...mbr....b1oA20...aAr 	bin...br  
1 

A 	Q10•••0 	Q01---1 

A (F,G) is a reachable pair. 

Proof: 	Clearly these conditions are necessary for quasi-Teachability, 

since if any (A..b.) were not a controllable pair then the substate xk 

would not be reachable, and if (F,G) were not a controllable pair, then 

. 
there would exist vectors p E R

ni ..nr, 
 , q E Rn  such that 

EpT ciT3F 	x,pT 
L qT] for some X E C and [pli  qT]G = 0 

and then we would have 

T 	 T 	r T 
P xk+112- —axk+1+ q xk+1 = (P xkca—clxk+q xk)  - 

To show sufficiency, we first note that the components of the 

transfer functions 

xk+1 = A
jxk  + bluk  
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xl(zi)o...mx
r

r
) and x(zi,...,zr

) are linearly independent. 

This follows from a similar argument to that of Lemma 3.2.1. 

Following the now established procedure of Chapter 3, given any 

desired xl,...,xl, we can construct input sequences 

pi(z1)¢1(z1)+qi(z1),...,p r
(z 
r
)¢ 
r
(z 
r
)+q (z ) which reach these substates, for 

unique qi(zi) where deg qi  < deg ¢i, and for any pi(zi) c Rizi], where 

¢i(z) is the minimal polynomial of Ai. 

Now with the aid of a similarity transformation on xk, we can write 

A as A = diag (J1,J0), where J1 and Jo are square matrices with 

ker J1 = ¢, and 

Jp =  0 1  E R
m>cm 

. 	. 

• 
. 0 

O . 
*0 

It is now clear that if xk  is partitioned as xk] with 51k  and xk  

associated with Jl, Jo respectively, then only the first r terms of 

p.(z.) (i= 1, . ..,r) A a,J.  (z,J.) will affect the substate Ri, and in a  

similar way to that for bilinear systems, we find that x1 can almost 

always be reached. To be more precise, any given value of RI can be 

reached provided that the coefficients of q.(zi 
 ) or equivalently the 

. 
elements of xl

i  (1=1,...,r) do not lie on a certain finite union of 

hyperplanes. 

• 
We can now write the transfer function for 51(z1,...,zr

)cRIrm 

as = s(zi,...,zr)(zi 	zr)
m 

 

¢(z1...zr)¢-1(z1) 	-11-)r(zr) 

where ¢1..(z1..)=  z
m
41.(z1.) i 1  

and our problem is now to construct input sequences of the form 

p.(z )¢.(z.) + q.(zi 
 ) which enable us to reach xl (where 

= a.(z.)¢.(z.) + q.(z.)). 
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We shall now let pi(z. ) = 
 

z'- . 
 

PI  (z. ) , 	to be determined 
i 1  

later, where m.1 
 (i= 1, .. ,r) is given by 

m. = ma* {j -j 	
ir zi ...zr 

occurs in one of si,...,sn-m
}. 

1 	k 	k 
	e. 
	j1---jr 

It is then clear that 

	

r
)141(z1)....w 

r 

 (z 

r  ) 

	(zi...zr)
-k 

= 0 
k>0 

where w.
1
(z.) = p.(z.)11).(z.) or q.(z.) except in the case where 
, 1 

w(z) = q.(z.) for all i or else w.1  (zi 
 ) = p.(z.)1).(z.) for all i. 

If we can-now show that 

r • 

r) 11 p.(z.)T.(z.) 0 (z1...z
r)
-1 

i=1 1111 

can attain any value of xl  E R
n-m, then the proof is complete. 

We first write the numerator of x as 

(z1...zr)m2111...zTrS = 

where N contains no term with a factor (z1...zZ
-m. By a similar 

argument to that of §3.1, we find that the components of N are linearly 

independent, and that 

klp1(z1)1P1---Pr(zr)1Pr a
-k 

)111  ml 	mr  = (z1...zr, z1 	pi(z1)...isr(zr) 	Dzi...zrck 

(1)(z ...zr) 

N(zi,..,zr) 
	 iii(zi)...pr(zr) 0 Y(zi...zr)-k. 
(1)(zi...zr) 

weshallchoosethe5i in such a way that pl(z1),•--,pr_1(zr-1) have 

coefficients either 0 or 1, while the coefficients of i5r(zr) a.-7e chosen 

to solve a set of linear equations. 

The terms of N(zi,....,zr) can be written as members of the sets 

tr 	
ir-1 

A = zl ...zr-1  (z1... zr-l) (z1...zr)} 

r 	ir-1 k, 
and B = Lzi ...zr-1 

z
r
tzl...z

r I 

	

whereil,...,ir-1 range from zero to 	
respectively with the 

proviso that at least one of 	 r-1 
is zero, k ranges from zero to K 

and it ranges from zero to ri-1 (where Ft = n-m) . 



it 	it-1 z1 ...zr_i  

113 

The input sequences will be structured in a way that is very 

similar to that for bilinear systems. First of all we shall divide the 

input sequences into n sections, and as with bilinear systems we shall 

choose an integer N greater than an integerM to be specified shortly 

such that (A
N,b) is a reachable pair, where (c

T,A,b) is a minimal 

realization of 1/4(z). The inputs Pi(zi) will be of the form 

Pi (zi) = u° (zi  ) + zlvu zi  ) + 	+ zN(7-1) un-1(zi) 	(i = 	,r) 
•  

where deg uii(zi) < M. 

All the u.(z.) for each i will have the same structure, and each of 

these will be divided up into sections each of length 2K+ 1. Each of 

these sections will be characterized by z1  ...z
ir-1

; let 	= max(ii 
r-1 	""ir-1)  

for the first choice of 	Then the inputs corresponding to 

I 
this which we shall choose will be z

K+Ii-is 	K+l- 
1

1
r- 

ir-1  and 

z 	+z a 	
2K 

+ 	+ zKao  + 	+ z
r 
a
k
) . 

r -K r -K+1 

If this were the only set of inputs to the system, it is clear that 

the only effects would be on the transfer functions 

zK 
r 

(z1...z
r) 
	

(t = 

(z1...zr_i)
K 

and the outputs of these will then be equal to 

z
K+Ii+t a

-K 
cp(z) 

-a
-1 

a0 

alz 

.1( 
a
K
z 

(2. = 0,...,E-1) 
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The next section of the input sequence will be chosen in a similar 

fashion, except that we have to multiply it by z.
II+2K+1 
 (i = 1, . ,r) and 

we continue in this way until all the u9(z.) (i = 1, . ,r) are completely 

characterized, although the values a_K,...,a1(  etc. are yet to be chosen. 

It is easy to check that the various sections of the input sequences do 

not interact with one another through the transfer functions. 

Before completing this proof we give an example of what the inputs 

look like for the case r= 3. 

Suppose the numerator terms are grouped together as {z3,l,z1z2}, 

.{Z1z3,zi,z1z2}, {z2z3,z2,ziz2}. The input sequences will be as follows, 

in ascending powers of z.: 

ul 0 	1 	0 1 	0 	0 0 	1 	0 

u2 O 	1 	0 0 	1 	0 1 	0 	0 

u3 al a2 a3 a4 a5 ac, a7 ag  a9 

The outputs will then be given by ({alz,a2z,a3z2},{a4z4,asz4,a6z5}, 

{a7z7,a3z7,a9z8})/(1)(z). 

To return to the proof, we now choose N >M = II+ 	+ Is  + s(2K+1) , 

where s is the number of different combinations of {il,...,ir}, in such 

a way that N satisfies the conditions of Lemma 3.2.3. It is then clear that 

thevariousunknowns,a.,etc., can be chosen to ensure that the whole 

vector transfer function is 'reachable', in the sense that any output at 

time + 1 can be attained. This follows from exactly the same arguments 

as those in Theorem 3.2.1. 

Hence we can construct an input sequence which reaches any state 

which does not lie on a certain finite union of Irerplanes, so that the 

system (5.1.1) is quasi-reachable. 	 0 

Note that the A-matrix was not required to be cyclic other than with • 

respect to its zero eigenvalues. 
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6.2 Input/Output Stability of a Class of Multilinear Systems  

Closely associated with the state space realization of §6.1 is the 

transfer function 

s = N(zi,...,zr)/p1(z1)...pr(zr)p(z1...zr) 	(6.2.1) 

which, using analogous arguments to those of §2.5 for the special case 

of bilinear systems, can be realized in the form of (6.1.1) with the 

observation 

r 
y
k 

= dTxca...mxk  + h
T 

 xk  

and although this realization may not in general be observable it can 

always be reduced to quasi-reachable form, using similar methods to 

those of §4.2. 

We shall now produce a similar result to that of Theorem 2.3 concern- 

ing stability of.  the output sequence of (6.2.1) due to a finite length 

input sequence. Let us factorize the numerator of s as 

N(zi,...,zr) = M(zi,...,zr)f(zi...zr). 

Depending on whether degziM deg pi  or deg f > deg p, we multiply 

top and bottom of (6.2.1) by (z1...zr)s  to obtain (in analogy with §2.5) 

R(zi,...,zr) x  g(zi...zr) 
s = q1(z1)...qr(zr) 	q(zi...zr) 

where deg ziR < deg qi  (i = 1,...,r) 

deg g deg q. 

With the preliminaries over, we can now state the following 

sufficient conditions for output stability. 

Theorem 6.2.1  

If either of the following conditions hold, then the output sequence 

due to a finite length input sequence from Ulx 	x Ur  is trstable: 

(i) all zeros of p(z) and all terms of the form {(1
r
} (where 

11- 

fot 1,...,{  r 
1  1 	

a
i 	

are zeros of pi(z),...,p
r(z) respectively) lie within the 1 	r 

 

unit circle; 
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(ii) all zeros of p(z) lie within the unit circle and all terms 

W...a.lnot lying within the unit circle are zeros of f(z). 
11 r 

Proof: 	Using the representation lemma for recognizable sequences, 

Lemma 2.2a,it is easy to see that an input of the form zi ...z
r
' will 

produce an output sequence given by 

z g(z)  	z-r 
y(z) = c

T
r
)-  Ill

r 	r q(z) 
(6.2.2) 

where I = min(ii,...,ir). 

It is now immediately obvious that because (1) the eigenvalues ofAi  

(1 = 1,...,r) are the same as the zeros of p.(zi 
 ) with perhaps the addition 

of a few zero eigenvalues, (2) the zeros of q(z) are the same as those of 

P(z) with the possible addition of a few zeros, the conditions (i) or (ii) 

are sufficient for the output sequence given by y(z) to be Z1-stable. 

Finally, because a finite input sequence leads to the addition of 

only a finite number of terms of form (6.2.2), the theorem is proven. 0 

6.3 Characterization of Multilinear Systems  

We shall define the input space and output spaces in a similar way 

to that of Chapter 2, where in this case we deal with m 2 input channels. 

Ui  = {u e le-  with compact support} i = 1,...,m 

Y = {u E R
N-{0}

}. 

Then we say that.a map f : Ul x ...x Um 
is a multi-linear discrete-

time input/output map if it satisfies the conditions: 

(i) Multilinearity: 

Forallfixedu.cU. for i x j, the map 

• ,uj+1,...,um) : Uj  4- Y 

is linear (j = 1,.:.,m). 
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(ii) Stationarity: 

= 

where a and a* are shift operators. 

As with bilinear systems, we can easily show that after setting up 

the isomorphismsU.zUz.i, Y = R[[z
-1

]], the map f will then be iso- 

morphic to the causal power series s = (z1...zra)
-1 

 Ls zlll 
 —z-im 

m 

with output y 	)
-1

]] given by 

'y = sui(zi) ...0 (z ) 0 1 (zi...zm
)
-k 

m m  k>1 
for  inputs ui(zi) c R[zi]. 

Again, in analogy with bilinear systems, we can define a series of 

equivalence relations which, when taken together, are equivalent to 

Nerode equivalence. An example of this is given by the case m= 3; we 

define the equivalence relations 1, 2, 3,  12,13'23, 173, as follows (where, 

for convenience, we consider input spaces U, V and W): 

ul  7 u2 	iff f(ziu1,4),10 = f(z1111,(1),10 

for all k and for all (1),1, with deg 4,1;) < k 

with similar definitions for 2 and "5 . 

(vi s wi) 23 (v2,w2) iff f(0,4v1,4w1) = f(0,4v2,z3w2) 

for all k and for all 0 with deg 0 < 

with similar definitions for fi and 13. 

(ui,v1,w1) 123 (u2,v2,w2) iff f(ul,vi,w1) = f(u2,v2,w2). 

It is then easy to show that (ui,vi,w1)  N(u2,v2,w2) iff u1  y u2, 

vi  a,  v2, w1 3w2, (ui,vi) 12(u2,v2), (ui*,wi) 1-3  (u2,w2), (v1,w1) 23 (v2,w2) 

and (ui,vi,w1) 123  (u2,v2,w2). 

Further, by analogy with bilinear systems, it is clear that the 

quotient spaCes X1 = 	X2 = V/a., and X3 = Wig may be endowed with 

the structure of a linear sgice. Then, by embedding UxV in the tensor 

space UsV, we can show that there exists a linear map flog  inducing an 
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equivalence relation in UxV, and then (ul,v1) 12  (u2,v2) iff ulavi _ u2ev2  

(mod f
102

). We can do the same with UxW and ITV to obtain linear spaces 

X12 = UaV/ker fla2, X13 = UaW/ker fia3  and X23 = VoW/ker f2a3  into which 

we can naturally embed the equivalence classes under 12, 13 and 23 respect-

ively. Finally by embedding UxVxW in UaVaW, we can show that there exists 

a linear map f inducing an equivalence relation in uxVxW and then 

(ui,vi,wi) 123(u2,v2,w2) iff ulaviawl = u2av2aw2 (mod fa
). The equivalencc 

classes under 123 are then naturally embedded in the linear space 

X123 = UmVoW/ker fa. 

Xi  (i= 1,2,3) will then be an REz.1-module, Xij (j> i) will be an 

R[z zA-module and X123 will be an R[z1z2z37-module. Using Zeiger's 
i 3 

Lemma, we will be able to set up a state space realization as follows: 

xk+1 = A
ixk  +-biuk  

+ Qlixtqc  + Qi274culic  + bijutqc  (j> i) 

(6.3.1) 
xic4.1 	Axk 	QlxV11)1( 	Q2xlic3qc.  + Q3x112qc  + buul(121(  

yk  = Hxk. 

In general, for m 1, we can characterize this type of realization 

as follows, and we quote directly from [ixAmii, where it is described as an 

m-line system: 

Definition 6.3.1  

An m-line system M with input objects U1,...,Um  and output object Y 

is defined by induction on m as follows: 

For k= 1: M is a linear system M = (X,F,U1,G,Y,H) 

G: U1 .+ X, F: X.÷. X, H:X4.Y. 

For k> 1: M is specified by 

(i) a state transition map F: X-+X and output map H:X4-Y; 

{ii) for each proper non-empty subset a of 11,...,0 an lal 

linesyster"awithinputobjects{V.:ic a} and output 

object Ya; 
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(iii) for each proper non-empty a, a morphism Ja:YetcaI54.X 

where Ia  = szlI,
3

Ij ft/  al; 
•  

(iv) a morphism 4) 	
m
4- X. J 

As we can see, this definition agrees with the state space realiza-

tions (2-1.S) and (6.3.1) obtained for bilinear and trilinear systems. 

However, as we have observed with bilinear systems, this realization will 

in general not be reachable or even quasi-reachable. The conditions for 

observability will be the straightforward ones we had for bilinear systems; 

in the cape of (6.3.1) these will be (H,A) , (Q1,A23), (Q2,A13) , (Q3,Al2), 

(N12Q12],A1), aszi 
As has been mentioned by Kalman [K1], the state space as defined by 

Definition 6.3.1, will lie on some algebraic variety, and it will there-

fore be possible to reduce the system in such a way as to include multipli-

ction of states. HolZiever it has not yet proved possible to demonstrate . 

necessary and sufficient conditions for quasi-reachability. We would 

again expect, as with bilinear state space descriptions, to have quasi-

reachability if the various tensor products of transfer functions are 

linearly independent, so for instance in the trilinear case we will require 

the components of the following set of vectors to be linearly independent: 

(i) x
i
(z
i
); i = 1,2,3 

(ii)xi(z.1)axj(z.), xii(z.,z.); j> i 
j 

(iii) xl(zi)ox2(z2)ox3(z3), x1(zi)ax23(z2,z3), x2(z2)ox13(z1,z2), 

x3(zomx12 

and these will clearly be necessary conditions for quasi-reachability. 

Finally, it is perhaps necessary to comment on the use of category 

theory in the analysis of multilinear systems. In their first paper on 

decomposable systems [M11], Aibib and Manes demonstrated how to set up 

canonical realizations of systems of the form 

3Q12].A2), ([013W],A3) must all be observable pairs. 

(z1,z2), x(z1,z2,z3), 
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xlc4.1  = a(xk) 0 b(uk) 	
ukE U  

y
k 

= c(x
k
)Y Y 

k 

where 0 indicates some operation particular to the system, e.g. addition 

for modules, or multiplication for groups (when a, b, and c would be 

homomorphisns). 

In their paper they showed that the input spaces U§  suitable for 

analysing this system would have to be in the same category as U, in fact 

a countable copower of it, so that if U is a module, then US  would have 

to be a module, and if U were a group, then in the same way U would 

have to be a group. Analogously, they showed that the output space Y5  

would have to be in the same category as Y, in fact a countable power 

of it. 

However, when it comes to multidecomposable systems, any algebraic 

entity which is not at least a ring seems to be unsuited to this form of 

analysis, although Abelian groups might possibly fit into the scheme 

better. 

More suitable is the category theory approach adopted by Goguen [G1], 

who treats discrete-time machines in closed monoidal categories. Rather 

than present various definitions concerning categories, we shall outline 

the application of his work to affine maps, and we comment that this 

might provide an extension of the results of multilinear maps to those 

of multiaffine maps. . 

Goguen began within the framework of a particular category C, e.g. 

the category of groups, or of vector spaces, or of affine spaces, or of 

sets, together with the various mappings (e.g. in the above cases we 

would be considering homomorphisms, linear maps, affine maps, set maps) 

within which there existed a monoidal structure (defined by a), i.e. if 

A,Be C, then MBE C,(A3B)MC = Am(BaC). He then assumed that this 
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monoidal category was closed, i.e. for all mappings f : AmB C (for 

A,B,C€ C) , there existed an entity [B,C]e C, such that there is a natural 

isopmorphism between f : AraB4-C and f' : A4- [B,C]. 

For the case C = category of sets, a: is the Cartesian product, and 

if we have 

f : AxB-+C : (a,b) f(,,b) 

then f' is given by 

f' : A+ [B,C] : a+f(a, ) 

and it is clear that [B,C] is the collection of set mappings from B to C, 

which i s itself a set. 

Note that for C = category of vector spaces with a the Cartesian 

product, there exists no such suitable entity, since we have 

f : AxB-+C : (a,b) 	fl (a) +f2(b) 

and if we define f' by 

f' : A4- [B,C] : a+ fi(a) + f2( ) 

then this is clearly not a linear space, so [B,C]i C. 

For vector spaces it is easy to see that m = tensor product produces 

a closed category. 

In the case that interests us here, we consider C = category of 

affine spaces with 0 = affine tensor product, i.e. ® : AxB-+ AcaB + A+ B, 

where at is now defined as the usual tensor product. 

Then the affine map f applied to MB is given by 

f : AmB C 

: (a,b) 	fi(amb) + f2(a) + f3(b) + c 	 (6.3.2) 

(where fl, f2 and f3 are linear). 

It follows that 

f' : A 4. [13,C] 

: a 4- fl(ara•) + f2(a) + f3(.) + c 
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is affine, so [B,C] is an affine space, and hence is in the same category 

as A, B and C. 

Goguen then showed that given an input/output function f:U*--i■Y, 

where U* = U Um...oU, the countable copower of U, a suitable state space 

is given by [U*,Y], and a minimal realization will be provided by the 

reachable set of [U*,Y]. In the case of linear systems we have fl and c 

(as in (6.3.2)) both zero, but otherwise we have.a well-defined input/ 

output map. If we write the impulse response of this linear system_as 

(sl,s2,s3,....), then the elements of [U*,Y] which will be of interest to 

us will be 

gl 	sl( ) 	sl( ) "I" sl( ) 	1.7+ 	Y 

g2 0 sial + s2( ) + s3( ) + s4( ) + 	: U* 	Y 

g3 A spa' + s2a2 + s3( ) + s1+( ) + s5( ) + 	: U* -4- Y, 

etc. Clearly then, if the Hankel matrix formed from (si,s2,s3,....) has 

dimension n, then the number of linearly independent gi  will be equal to 

n+1, so that the dimension of the affine state space will equal n+ 1. 

In the case of fl  and c not equal to zero, a state space description 

(assuming one exists) would be of the form 

xk+1 = Ax
k  + ukFxk  + buk 	

(6.3.3) 
yk  = Cxk  

which is termed an affine system in [G1]. (Note that Isidori [Il] and 

others refer to (6.3.3) as a bilinear system, since the R.H.S. of the 

transition equation of (6.3.3) is linear in each of uk  and xk  separately.) 

A possibility now is to extend this approach of Goguen to biaffine 

and multiaffine systems, which would provide greater generality than 

multilinear systems, and would probably be more relevant than the multi-

decomposable approach of [NAM1]. 
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CHAPTER 7. CONCLUSION 

The main accomplishment of this thesis has been to give a thorough account 

of the theory of state space realizations of bilinear input/output maps, 

providing the solution to a number of previously unsolved problems. The 

contributions to this realization theory have involved a formalization in 

Chapter 2 of the ideas of Kalman [Kl] regarding the actual setting up of 

a state space realization directly from the transfer function, thus by-

passing the elaborate constructions of Fornasini and Marchesini [FM1]; 

the derivation of necessary'and sufficient conditions in Chapter 3 for a 

state space realization to be observable and quasi-reachable; reduction 

procedures for obtaining canonical realizations from realizations which 

are not observable or quasi-reachable, and furthermore, in Chapter 4, an 

isomorphism theorem showing that any two such canonical realizations are 

isomorphic under a well-defined class of transformations. 

Quasi-reachability results have also been obtained in Chapter 5 for 

the case of multi-output bilinear systems, and the concept of quasi-

observability was introduced to cover the cases when observability was 

too strong a requirement. However it was not possible to obtath such 

definitive results as for the single output case studied in Chapters 3 

and 4, and in particular no isomorphism theorem has been obtained for 

minimal realizations.' 

Sufficiency conditions were obtained in Chapter 2 on the transfer 

function of a bilinear input/output map which ensure that the output 

sequence from this map, due to a finite length input sequence, tends to 

zero. In Chapter 6, analogous conditions on a particular class of multi-

linear transfer functions were obtained, assuring a similar stability 

result for the corresponding input/output map. Sufficient conditions 
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were also derived in Chapter 6 for a particular form of state space 

realization of this class of multilinear maps to be quasi-reachable, 

these conditions again being analogous to those of Chapter 3 on bilinear 

state space realizations. In addition it was shown in Chapter 6 how to 

obtain necessary conditions for quasi-teachability for general multilinear 

state space realizations, but the question of sufficiency still remains 

open. 

Apart from this investigation of conditions for quasi-reachability 

and observability of realizations of discrete-time multilinear input/ 

output maps, an obvious area for future work on multilinear system theory 

is the realization of continuous-time input/output maps. 

case, such a realization may be written as 

In the bilinear 

Xi = Avg + biu (7.1) 

SC2 = A2x2 + b2v (7.2) 

= Ax + Cxiox2 + Qixlv + Q2x2u + buy (7.3) 

y 	= hTx + dTximx2. (7.4) 

Using the intuitive approach of Chapter 3, we expect that this 

representation will not be reachable if there exist vectors p and q such 

that pTximx2 + qTx evolves independently of u and v. In particular we 

expect that 

d —(p-T  ximx2 + qTx) = X (pTxicax2 + qTx) dt for some XE C. 

On expansion of the left-hand side of this expression we find that this 

property is equivalent to the pair 

Aim' + IcarA2 0 , bioI 	Ifstb2 0 [ [ 
(7.5) 

C A Q1 	Q2 b 

not being reachable. Although this condition is sufficient for non-

reachability of (7.1)-(7.3) it has not yet been shown to be necessary. 

However we can still obtain some information from (7.5) concerning simi-

larity transformations, namely that the similarity transformation 
0] 

W I 
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applied to the pair (7.5) and [dThT] yields a system which is equivalent 

to that of (7.1)-(7.4). We state this result formally, as follows: 

Theorem 7.1  

Let (7.1)-(7.4) be a realization of a continuous-time bilinear 

input/output map f: UxV-+Y, where xl (t) e Rn1, x2(t)ERn2, x (t) E Rn. Then 

for any We 
Rnxnin2,  (7.1)-(7.4) is also a realization of f under the 

transformation 

C 	W(AisI+ImA2) + C - AW 

Qi > Qi 	W(Imb2) 
(7.6) 

Q2 + Q2 	W(131 51I) 

T T 
dT 
	

-h W. 

Proof: 	From (7.1)-(7.4) we can immediately write down the expression 

for y(t) as 
t ,  

y(t)  =.11Ty eAtt-T) 	r 
{Ci

o

Al(T-T1)
biu(TI)dTimf eA2(T-T2) b2v1,T2idT2 

j0  
ft Al(T_Ti)

biu(Ti)dTiv(T)+Q2j
t
e f A2 (T-T2) 

	

Qlj e 	 b2vcr2)ur2u(T) 
0 	 0 

+ bu(T)v(T))dT] 

+ aTcf eAl(T-T1)  biU(Ti)dTiOf eA2 (T-T2).b  , 2vtT2)GT2J 
0 

Now by inspection we can see that the difference y(t) between this 

value and that of the output of the transformed system is equal to 

t .„,,_ 	. 	,. 1  
?(t) = hT[r ej"17-T)W{f A-eAltT-T1)  blU(TOdT1Of eA2(T-T2)b2v(T2)dT2 

j0 	j0 z 	0 

+J
O  

f
T 

e 	 & 
Al(T-T1)

biu(T1)14
0 	

A-12kTA2e' ' r-T2) b2v(T2)dT2  

+jo 
fT T 

e 
r Al(TTi) biu(TOdTimb2v(T)+biu(T)caj

o 
e
A2(T_T2) 

 b2v(T2)dT2}dT] 

t ,, 	, 	, 
_ *hTi elAkt-T,Aw[f 'eAl kT-T1). 	, „ 	r 

DiutTvaTiajo  e
A2(T-T2)

b2v(T2)dT2}dT* 
jO
t 	

O.. 
t 

- hTwf  eAl(t-To blucTo dTlof e A2(t-T2), , b2vtT2)calT2. 
0 	0 

If we now integrate by parts the term enclosed by asterisks (*), and 

use the fact that d 
d
T e 

A(t-T) 
= -e

A(t-T)A,  we obtain 
— 
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h T 1r2 -eA(t-T)
Wff 
 
e
Al(T-T1) )1(11)3114

0 
  eA2(T-T2)b2v(T2)dT21] 

T=t 

 T=0 
T 	 T 

4. hTi eA(t-T)14.1.4 f
TeA1( 	1) 

T-T ' bill(TOdTiElf e A2(T-T2), , 	im .102vvrvuT2fuT. 
j0 	dT 1 0 	 0 

Evaluating these terms we find that they are equal to the remaining 

terms of Si(t). Hence Si(t) = 0 and the theorem is proved. 	 0 

Although this is only a preliminary res'ult,.further work will hope-

fully show that the conjecture, that the system (7.1)-(7.3) is controllable 

iff (Al ,b1),(A2,b2) and the pair (7.5) are controllable, does hold true. 

One question that must be asked at this point is whether the multi-

linear approach to non-linear dynamical systems is likely to bear any 

fruit, but unfortunately it is still difficult to give a definite answer. 

Even in the simplest single input non-linear case, when the input/output 

map is identical to its own second-order Volterra kernel, W2, quasi-

reachability can easily break down. The following two examples illustrate 

this: 

1) Let the state space description derived by considering W2 as bilinear 

input/output map be given by 

1 1 
xk+1 = A1x, 	bluk 
,2 
-k+1 =A2Xk + ,2uk 

y dTx1mx2 
k k 

where the two separate input channels are now regarded as identical. Then 

it is obvious that the state space is not reachable if Al  and A2 have 

common eigenvalues. 

2) Let the state space description be given by 

xk+1 = axk + bu2 	(a,b > 0) 

k = xk.  

It is clear that if x0 = 0, then xk 0 for all k. 
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It is also conceivable that in the general non-linear case the 

Volterra approximation could well produce a larger state space than one 

derived straight from the input/output map itself. 

However, multilinear system theory is undoubtedly of use when it 

comes to modelling a system with more than one input channel, when it is 

known that the inputs from separate channels interact multiplicatively to 

produce an output. 

Various other approaches to non-linear system theory, besides the 

multilinear approach and the classical methods of examining concepts such 

as stability by means of approximations and norm inequalities, have been 

made in recent years. Fliess [F2] looks at Volterra series approximations 

with the aid of non-commutative formal series, and Sontag 0S1],[S2] 

discusses discrete time polynomial systems, which are systems for which 

the state transitions are polynomial functions of the inputs and state 

variables. This supplements the work of such people as Isidori [Ii] and 

Fliess [F2],[F3], who have studied the so-called bilinear system of the 

form 

xk+1 = Ax
k  + ukFxk  + buk 	 (7.7) 

(x
k E R. 

This system also falls naturally into the class of affine systems 

discussed in Chapter 6-, and has been looked at by Goguen [G1] in this 

category-theoretic context. 

At this point it is worthwhile stating a conjecture concerning the 

reachable set of (7.7), which arose after reading [G1]: 

Assume that there is no transformation xk.4-Txk  on (7.7), such that 

a substate k
k 
of Tx

k 
can be partitioned off as 

A 	A 

k+1 
= (A+u

k
F)Rk 
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(or equivalently, assume that the reachable set of (7.7) is not contained 

within a subspace of Rn) ; then the reachable set, S, of (7.7) is given 

by 

S = {Ax + uFx + bu : x€ Rn,uc R}. 

This is a trivial result for F = 0, since the subspace assumption holds 

iff (A,b) is a reachable pair, in which case it is obvious that 

{AX + bu : x Rn e u R} = 

All in all, however, non-linear system theory, with its related 

aspects of stability and controllability, etc., is still very much an 

unresolved topic, and a great deal more research is required to bring 

the state of the art anywhere near that of linear system theory. 

Heverthelesslnonlinear systems in general are still 

amenable to study by less exact methods.In particular,global 

input/output stability properties of the system (7.1)-(7.3) 

and of the continuous-time analogues of (7.7) are partic-

ularly suited to the off-axis circle criterion of Cho and 

Narendra [xl].The more recent application of circle theorems 

by Shankar and Atherton [X2] to nonlinear multivariable 

systems is also significant,as is the less recent but 

important theory of Liapounov functions(see e..[WI11). 
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APPENDIX. LINEAR SYSTEM THEORY RESULTS 

During the course of this thesis, two interesting results have been proved 

in linear system theory, and it seems convenient to restate them here, 

together with an independent theorem on cascaded linear systems which was 

proved in an early attempt at attacking the quasi-reachability result of 

Chapter 3. 

The two earlier results are as follows: 

1) Lemma 3.2.3 

Let (A,b) be a reachable pair. Then for all 2.> 0, there exists an 

integer N>t such that (A
N,Akb) is a reachable pair iff A is non-singular. 

The interpretation of this result is that if a discrete-time system 

is constrained in such a way that all inputs must be separated by at least 

t time intervals, with the initial input only permitted after time k, then 

invertibility of A guarantees that the system is still reachable. 

2) Lemma 

Let 

where 

and ( 

0112,A) 

4.3.3 

CdThT7 

and 

[F 
C 	A 

01, 

[ F01 C 	A 

(h
T 
 ,A) 

r 
B 

) 

G 
B 

are 

and ( 

observable 

= [aTfIT]  

r C 	0],[ 

pairs 

F 	0  

C 	21 

fi 
01 ) 

i 
G 
B 

are 

for all i, 

reachable pairs; 

then there exists a similarity transformation relating the system matrices, 

which is of the form -I 0 , with T invertible. 

[ Y T 

The interpretation of this result is that given a cascaded linear 

system, which is known to be reachable, although not necessarily observable, 

and with the requirement that the (F,G) subsystem be included in the state 

space realization, then any two realizations of this system will be iso-

morphic, despite the fact that they may not be completely observable. 
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The new result that we present here concerns the cascaded linear 

system represented by 

.xk+1  = [ F K ]xk  + [ g juk 	(A.1) 
o A 

where gE Rnl, be Rn2, A and F are square matrices and (A,b) and (F, CK g]) 

are reachable pairs. 

A long-standing problem has been to provide necessary and sufficient 

conditions for (A.1) to be reachable, without having to check whether the 

Kalman controllability matrix has rank n1+n2. Instead it has been hoped 

that a check for reachability will be provided by examining whether some 

other matrix has rank m<ni+n2. 

Equation (A.1) has been studied by various people; in particular we 

mention Chen and Desoer [CD1], Chen [C1] and Davison and Wang [DAT, who 

have all made valid contributions to the multiple input case. 

Here we present necessary and sufficient conditions for reachability 

of (A.1) which only require the examination of a matrix to be defined 

below, as to whether it has rank n1 or less. Unfortunately these conditions 

are only valid for the single input case, and it is not clear how the 

approach taken here might be extended to take in the more general multiple 

input case. 

Theorem A.1 

The linear system (A.1) with.(A,b) and (F,CK g]) reachable pairs is 

itself reachable iff 

rank M(F) = ni 

where M(z) = adj(zI-F)D‹adj(zI-A)b+(det(zI-A))g1-kii0+tliz+...+11.0zP  

(so that H(F)=N00.1+Mi0F+...+Hp0FP) 

Proof: 	We form the transfer function corresponding to (A.1) to 

obtain 



for some k(z) E R[z]. 

Note that 1PA(z) and the components of XA(z) are linearly independent, 

because of (A,b) being a reachable pair. 

Now the components of the numerator y2(z) are all contained in the 

ideal (4F(z)), so that (A.3) holds 

-iff there exists a vector a2 e 	s.t. ally2(z) E IPF (z) 
(A.4) 

[
i.e. iff there exists an at s.t. a1WF(z)[K g] XA(z) = k(z)tl)F,(z) 

'PA(z) 
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xi (z) = (zI-F) -1  [( (zI-A) 	+ g] 

x2 (z) = (zI-A) -lb. 

Rewriting this more conveniently we obtain 

	

[

xl (z) 	 1 	
w (z) (KX

A
(z) +IP

A
(z)g) 

	

x2 (z) 	41A(z)
F

(z) 	
X

A
(z) tP

F
(z) 

where X
A

(z) = adj (zI-A)b 

W
F

(z) = adj (zI-F) 

IPA (z) = det(zI-A) 

1PF(z) = det(zI-F). 

1 	[ 	z) 
A 4  (z)4) (z) 

A 	F 
	

Y2 (z) 

(A.2) 

Now (A.1) is not reachable iff 3 al a Rn l ,a2 a Rn2 , with al x  0 such 

T 	T 
aix (z) + a2x2 (z) = 0 identically. 

• 
(A.3) 

that 

Let us now write XF(z) =.wF(z) 	g] 

= X11  (z) )4( 

where n = n2+1 

x 	(z) 	x 	(z) 
n1,n 

and [ XA (z) 	W1 (z)I 

PA ( z) 	wn (z)  
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Now (F,[1( 9'7) is a reachable pair iff all minors of XF(z)/11,,F(z) 

have common denominator equal to tp
F(
z). 

Hence xii(z)xkt(z) - xit(z)xkj(z) = aiikt(z)lpF(z) for someaijki  (z) E R [z] 

We now have by (A.4) 

cl[x11(z)wl (z)+...+xinwn(z)] 

+ c2Ex21(z)w1(z)+...+x2n(z)wn(z)] 	(A.5) 

+ + c
nini,1

(z)wi(z)+...+x
n1sn

w
n
(z)] = k(z)11) (z) 

where a1 = Eci...cn]. 

Multiplying (A.5) by xli(z) and substituting 

xli (z)xkt (z)  = xit (z)Nki (z) 4-a11k2, (z)li'F (z)  
we obtain 

cixii(z)Exii(z)wi(z)+...+xin(z)wn(z)] 

• c2x21(z) EK11 (z)wi (z) +...+xin  (z)wn(z) ] 

+ + c x 	,(z) Exii(z)wi(z)+...+xln(z)wn
(z)] = bil(z)11)F(z) nl n1,1 

where b11 (z) = 	a
1110.

(z)w(z) + k(z). 
k„2, 

Rearranging, we obtain 

[clxii(z)+...+c x 	(z)7[x11(z)wi(z)+...+xln(z)wn(z)] = bil(z)11,F
(z). 

ni n1,1 
Inasimilarinamer,rmatiraying (x.5)by xii(z) (j = 2,...,n), 

we obtain 

Ecixij
(z)+...+cnixn, 	1-‘,  ,j(z)1  ..11(z)wi(z)+...+xln 

(z)w
n(z)] = bli(z)1PF(21). 

Now (F,[K g]) is a reachable pair, so that aiXF(z) = 0 implies 

al = 0. By hypothesis, we have a2 x 0, so that at least one of 

cixii(z)+...+cnlxn,,j(z) 	0, but this last term has degree less than 

deg tpF(z), so that xii(z)wi(z)+...+xin(z)wn(z) shares a common polynomial 

factor with F. 

Inasimilarlday,byrialatiplying(A.5)byx..lj(z), we discover that 

Ecixii(z)+...+c x 	(z)]Exil(z)wi(z)+...+xin(z)wri(z)] = b (z)11,F  (i) ni ni,j 	 ij  

for all i = 	= 1,...,n. 
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Without loss of generality, let cix
lk
(z) +...+c

n1xni,k
(z) x  O. It 

is then clear that all the polynomials xii(z)wi(z)+...4-xin(z)wn(z) share 

the same common polynomial factor of 1PF(z). 

Utilizing Theorem 1 of Barnett [Bl], we see that a necessary and 

sufficient condition for this to hold is that 

rank 	xii(F)wi 

[ 
x 

i,A. 	

(F)+—+xln(F)wn(F) 	

< n1  i(F)wl(F)+...+xni,n(
F)w

n
(F) I  

which is precisely the condition stated. 	 0 

We can write a dual result for observability as follows using 

similar notation to that of Lemma 4.3.3: 

The linear system 

= F 	0 + G xic+1  Ixk  lu 
k 

C 	A 

yk 
[dT 

 hTixk 

where (h
T
,A) and 	dT  ,F are observable pairs, it itself observable 

iff 

rank M(F) = nl 

where M(z) = [dT(det(zI-A)) + hTadj(zI-A)C]adj(zI-F) 

and F ERnixn1. 

Of interest here is that both this result and Lemma 4.3.3 only hold 

for single output systems, which throws up a further analogy. between 

bilinear input/output maps and cascaded linear systems. (The first 

analogy is that a cascaded linear system results from constraining a 

bilinear state space realization to sustain the substate qc  at a constant 

level using a constant value for the input uk.) 
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