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ABSTRACT

An axiomatic formulation for the theory of Classical
Tensorial Fields is constructed based on three principles,
the Relativity, the Chronos and the Variational Principle.

After a short historical introduction, we begin the
construction of superspace starting from the product space
of the space of metric functions and the space of any numbér
of scalar functions and any number of vector functions. The
scalar and vector fields are here defined on a three-dimensional
manifold with a positive definite metriec.

Using then the above mentioned principles we are able to
deduce the most general Lagrangian which is compatible with
them. This turns out to include the Einstein and Jordan theories
as regards its gravitational content and the Yang-Mills and
Chiral theories as far as its field theoretic content is concerned.
The parameters of the gauge group are in one to one correspondence
with the vector fields and the group acts on the space of scalar
fields as a group of motions.

We then discuss the removal of massless scalar Fields and
the corresponding acquisition of mass of the vector fields. 1In
this connection we distinguish the transitive from the intransitive
group case (spontaneous symmetry breaking).

Finally we restrict our attention to the cases where the
dimension of the space of scalar fields is one, two and three.

For these cases we discuss all possible Lagrangians of the above

mentioned form,
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CHAPTER I

INTRODUCTION

Superspace, that is, the space of all geometries of a
3-dimensional manifold, has originally attracted attention in
connection with the canonical approach to the quantization of
General Relativity. The work of Dirac% De Witf% Higgssand many
ofhers towards this direction revealed that superspace is the
domain manifold for the quantum mechanical state-functional. On
the other hand, at the classical level and mainly due to the work
of A.D.M% it became clear that the dynamical variable of General
Relativity is the 3-geometry of space. Both the above.facts have
been illuminated by Wheeler’who was the Ffirst to realize the
importance of superspace and to clarify its role as the proper

configuration space of General Relativity.

This having been done; it became highly desirable to obtain
a better understanding of the structure of'this space, the hope
being that this would lead to deeper insights both at the classical
and quantum level.

Q2

The first investigations of superspace were done by De Witt
who recognised the metric that General Relativity dictates to be
introduced on it. He also investigated its geodetic structure and
found that it was incomplete (geodetically). This was a rather
discouraging result and was not to be clarified until Fischer'sswork
which came later. Meanwhile, Stern’studied th¢ topological structure
of superspace and found it to be Haussdorff. Almost at the same time

9
Ebinsproved, with the help of some remarks of Palais', the so-called



slice-theorem for superspace. This theorem was successfully used

by Fischer6who showed that this space is a metrizable topologicai
space and it inherits from the action of the group of diffeomorphisms
Diff (dl/) a "stratified" manifold structure. The same author proved
that though superspace is not a proper manifold, it can be extended

in such a way as to become a proper manifold.

Most of this work, however, was too complicated and mathemati-
cally involved to be of any direct use in physiéal apblications.
However, De Wit%owas able, with a simpler analysis, to obtain space-
time obeying Einstein's equatioﬁs as a sheaf of geodesicé in super-

space.

11
In another development Christodoulou, by introducing what he
calls "The Chronos Principle", has shown how one can use superspace

in order to obtain physical theories étarting from very few principles.

This was our motivation in the first place for studying super-
space., The idea was to use the methodology of Christodoulou's
earlier work and find out where such an axiomatic basis would lead
us. The principles on which we rely are the "Chronos Principle",
the Variational Principle, and the Relativity ?Pinciple. By Variatio-
nal Principle we mean that phySical "histories'" are obtained by
stationarization of the action defined as a line integral in super-
space. (By superspace we shall from now on meaﬁ the "“generalized
superspace" which includes, apart from the geometry, any number of
scalar and any number of vector fields, defined on a three dimensional

manifold).



For Relativity Principle we use its more physically appeal-
ling (and best suited in our case) formulation as given by
Hojman, Kuchar and 'I‘e:'L‘celbo:'Lm:l2 The laws of physicé should be'.
independent of the way that space-time is sliced into 3-dimensional
space-like hypersurfaces". Finally, we can roughly define the
Chronos Principle as: V"time is a measure of the changing of the

spatial configuration of the physical system".

In chapter one we investigate the structure of superspace
and give the mathematical form of the above principles. (In this
and the subsequent chapters we shall always assume that the three-
dimensional manifold on which the spatial geometfy and all fields

are defined is compact).

Chapter two is devoted to the search of the form that the
Lagrangian should have in accordance with the principles established

in chapter one.

The gauge group is introduced and its structure investigated.
It is shown that its action on the scalar fields is that of a group
of motions of their space and so omission of the vector fields brings

3, .
us to Isham'g'theory.

Finally, in the last chapter we apply the results obtained
earlier in order to get some general information about symmetry break-
ing and to obtain all gauge invariant Lagrangian in the case when we

have one, two and three scalar fields.



In conclusion, we see that by using our set of axioms we
are in position to deduce a physical theory in an economical way.
We do not claim that this is the best approach possible. But we
hope, however, that some better understanding of Classical Field

Theory has been gained this way.



CHAPTER II

FUNDAMENTALS

1. Definitions

LetM be a ¢ 3-dimensional manifold, which is compact and
orientable, and let T(AL) be its tangent bundle. We construct

over M the following three fibre bundles:

(1) The subspace L§+(T((,u,)) of positive definite forms of the
tensor bundle of continuous symmetric bilinear forms (bundle of

2-covariant tensors LjTQLL)).

(2) The iterate cotangent bundle T"(N)(JL), each fibre T;(N)
of which over a point xedds is the product of the cotangent space

T; tohdy at x with itself N times:

My xT (1.1)
X X X
e —

N factors

(3) The bundl%}t(JJ,), each fibre of which is an n-dimensional

manifold)<,.

We form then the product bundlecz (Uba) of the above three

fibrations:

Gy = 2w x TPy

Dach C cross-section of the bundle L§+(T(ULL))iS ac positive
definite Riemannian metric on044/ and Riem (VCC) is defined to be the

space of such sections. Each C cross-section of T"(N)(QLC) is an
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is an N-tuple W = (Wl,...,WN) of ¢° 1-forms ontld, , and we shall

denote by Form (v(/{/) the space of these sections.

o«

A C cross-section ofK (M) is ac map:

‘P:M+){; (I.3)

From the C_ nature of ¥ it follows that for every point xedd and
for every neighbourhood U of that point, there exists another neighbor-
hood U,;, of x contained in U, such that ¥ U, (restricted to Ul) sends

U, into a coordinate neighbourhoodu ofk( 1). If then:

h :u-*Rn,

is a local chart ofk s

¢ = ho¥ Up: Uy > r" (I.4)

is an n-tuple of functions (¢1,...,d>n) on Ulcd,(,. In particular, if
y is a point contained in U,, then ¢(y):(¢1(y),...,¢n(y)) are the
coordinates of the point p:‘{’(y)eu. We shall denote by Map (vu, -t}(‘, )

the space of Cw sections of the fibration j& (L/(/(,)

We finally define the space conf(A,): "space of configurations

of{j/{," to be the space of ¢ sections of the product bundle (Z((/“)

We introduce.in the usual way tangent vectors associated with
¢t curves in Conf(A, ): Let c(o) be a ¢l curve in Conf(UA). The

vector X tangent to the curve c(o) at the point c(oo) is the operator
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which maps every C! function F on conf (4 ) into the number

d
XF :—d-a-l-"oc(o)lozu (1.5)

Since points in Conf(UM ) are triplets:

(g,W,¥)
the vector X can be expressed as:

A aé
dﬁz)' ‘G'A +(doa) ai}
W a c(oo)

' dg 8
X =z &bn{(ag)' §§-+ (
A= 1...N, a=1...n, (1.6)

where ¢a are the functions defined by (1.4), and n in local coordinates

is given by dxi dXQI\ ax>.

2. The metric structure of Conf(t/u;)

A metric on Conf(./{/(;) is a smooth assignment of a bilinear
symmetric form to its tangent bundle T(Conf(vuz)) which sends any

two vectors Xl,XzeTc(Con‘f(Uu;)) to their inner product Gc(Xl’XQ)'

The most general form of this inner product is given by:
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1 2
dV fdvl{(;llmn(x x') dgij(X) dg mn(x')

1 -
G (x ,X ) JL T ke

ag} . (x) dwz(x') dWi(x) dgi.(x')

ija(x,x')( ) + J )

+ 6 do do do do

2A 1
i dgi.(x) dWm (x") dWﬁA(x) dgg.(x')
+61 M (%, 11 ) (—=3 + 1

A do do do do

)

d¢2(x) dWiA(x') dWiA(x) d¢§(x')

am
+GA(X’Xw( do do + do do
At asi(x ), Moy ei® (x) (1.1
ab a( ) b g n
167 (x,x") 5 T Gaplxex ) 3 3o

where dVg denotes the volume element.
Here, each of the coefficients G is a C map which sends each
element C of Conf(ubt) into a bitensor distribution inu&&. These

coefficients will be called "metric coefficients of Conf(bLL)”.

Let Xu be a tangent vector at a point csConf(bLL), the

components of which

(dg dw, d¢)
do? da?

have support only in a region WCA, . We shall call such tangent

vectors "local in .

Let then YU be another tangent vector at c, which is local in

another region YC U, . We introduce the following postulate:

G(XU?YU ) =0 1if UNV= ¢ (Postulate I)



From the above postulate, taking into account the fact that

is Hausdorff, it follows that

G(x,x'") = 0 if xfx'. (1.8)

It is a well known result of the theory of distributions that a
distribution which vanishes outside a certain point is a linear

combination of the &-function and its derivatives. Thus:

g ky...k
Glxyx') = G(x8(x,x') + IG5 Y08,k ...,k (k%) (1.9)
n=1
kl""’kv
where each of the coefficients G,G appearing on the right is

[oo]

a C map which sends each element ceConf(AA) into a ¢ tensor field

on M

A fibre of the bundleE:(VLL) over a point xe A is the space:

£, = L§+(TX)XT*(N)xk (1.10)

X

1 . . .
A vector XX tangent to a C~ curve CX(G) in this fibre, at the

point CX(UO) can be expressed in the form

d¢a(x) 9
) }
a¢a(x) ¢ ()

X o)

3 an(x)

( P
og(x) * do

). + (
o™ (%) do

dg(x), .
Xx={(d0 )

(I.11)

The space [ 4> being an ordinary 6+3N+n dimensional manifold,

admits a (pseudo) Riemannian metric which sends any two vectors
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Xl, Xi T, (Z:X) into their inner product:
X
1 402 1 442 1 gg?
6 (xtx?y - (ciim dgi s dgg, X Gija(dgij dog 95 9845
c, x*Tx T d d d d d d
1 2A 1A 2 1 2 1A 2B
. . .- W
+Gijm(dgl] dwm + dwm dg1])+r,abd¢a dd)a + g"n dwm d m_
A do do de do ’"7 do do AB do do
an G902 00" ao]
Bl o o 3 ) e (1'12{

[oe)
In the above expression, each of the coefficients G(x) is a C map
which sends each element Cy ofEX into a tensor at x. These coeffi-

cients will be called "metric coefficients of the fibre]z x“.

To each point c¢ = (g,W,¥)e Conf(JA ) there corresponds a point
c, = (g(x),W(x),‘{’(x)sﬁx (the point where the given section of the
bundleﬁ () intersects the fibre over x). Also to each local

vector X eTC(Conf(ou)) which has components
X

de ai a
do * do * do
with support in a neighbourhood Ux of x, there corresponds a vector

XxeTCX(CX) with components

(A8 d(x) ¢, ()

do * do °? do )

We now introduce the postulate:

GC(XUX,XUX)
US?.lm — i < G, (Xx’xx) (Postulate I1)
X+x U X
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where the 1limit is taken in the Moore-Smith sense with respect to

the directed set of neighbourhoods of the point x.

It follows from the above postulate, in view of Eq. (I.12)

that for any two tangent vectors X,YeTc(Conf(uLL )),

GC(X,Y) = Lb GCX(XX,YX)dV (1.13)

where Xx’Yx are the corresponding tangent vectors in TCX(C:X).

We may thus express the "element of arc length" dL in

Conf (4, ), where

dL, 2
()7 = G (XX, (I.14)

in terms of the "element of arc length d(x) in CX:

(dz(x))Q

= = 6 (X _,X) (I.15)

X

The formalism with which we are working is invariant under the
point transformations:
> -
6.8 = §.(9)

I ) (1.17)
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the first of which is a coordinate transformation in the manifold

. . . . (N
3{, and the second is a transformation in the linear space Tx( ).

3. The group of diffeomorphisms and the introduction of

superspace

Consider now the group Diff(dd, ) of c” orientation-preserving

diffeomorphisms

£ M >

of the base manifolddb(. The group structure of Diff(JUf, ) as defined
by composition, has ¢ group operations. It is thus a Lie group,

which, as a manifold, is modeled on the space V(J{, ), namely the space

oo

of C vector fields onU/,.

If feDiff( M), £ acts on TG) by its tangent map

Txf : Tx > Tf(x)

defined as follows: For each y eT  tangent to a curve k(t) at k(t)=x,
TXf(\)X) is the vector which is tangent to the curve fok(t) at

fok(to):f(x).

Diff(U{, ) acts as a transformation group on Conf(A, ):

Diff(M) x Conf(Ud ) » Conf(Uf) (I.18)
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where the action sends (f,c)—pf¥c. Here ¢ is the point

(g,w, Ye Conf(U4,)
and f%c is the point
(F%g, F5W, £5¥)eConf(4,)
defined by:

(£%8) (U_U) = ge( (T, E(U),T E(U)) (1.19)

for every'UX,ILXETX,

ot A ) A ‘ .
<£=W ,’Ux>x = <W, TXf(IJX)>f(x) (1.20)

for everyl)XeTx, and

FRy(x) = Y(E(x)). (1.21)

For a fixed point ceConf({)), the above action embeds Diff(M,)

as a differentiable submanifold in CoanLL ) through the orbit map:

02 . Diff(M) + Conf( U ), (1.22)
where:
D
0_(£) = f¥c (I.23)
and the image of Diff(J{ ) by Og is the "orbit of the group of

diffeomorphisms through c":
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02(c) = {fc| feDiff(ld)} (I.24)

Let f, where te[—l,l] and f =id be smooth curve in Diff(l,) .
As is well known, to every such curve corresponds a vector field
£ € V(M) defined by requiring that £(x) be the vector tangent to
the curve ft(x) in L . If in particular ft is a one-parameter sub-

group of Diff(JUd ) then for every differentiable function ¢ on

¢(ft(x)): exp(t&)¢(x) (1.25)

It thus turns out that every vector field generates a diffeo-

morphism and therefore V(4 ) is the Lie algebra of Diff( ).

The tangent at the identity to the orbit map (I.22) is the map

Tidog which sends any vector field & tangent at fo:id to a curve

ft in Diff(ld ), into the following vector in Conf(UAA ):

dft¢ 5

1) a
R T R T
ad

SW

Pele

}

1
=
~

[aB
t

t=0

I A 8 S
= L, ) e (:EE W +(E £4) 5o (I.26)

SW 6¢a

c

In the case that ft is a one-parameter subgroup of Diff(dd ),

then for every differentiable functional & on Conf(d{ ),
@(f;c) = exp(tp£)®(c) (1.27)

Thus, the operator P, which (integrating by parts in (I.26)

£

may also be expressed in the form:
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PE = _{bn(E'p) (1.28)

where p is an operator having the tensor character of an l-form
density whose components in a local coordinate system are

expressed by:

8 —wAV —-§~—fA —6—+¢ S (1.29)

_P = “Qg \Y) —
k km ' n ngn km a,k 6¢a

is the generator of an action of Diff(yl{, ) on Conf(dd ). 1In (I.29)
fﬁn are the components of the 2-forms which are the exterior

derivatives of the 1-forms WA:

‘fA = WA - wA (I.30)
mn m,n n,m

By its orbit map (I.22) the group of diffeomorphisms of M
induces an equivalence relation on Conf(UM, ): two configurations
Cj,Cqy are equivalent if they lie on the same orbit of Diff( U ).
Considering the fact that this equivalence implies that the confi-
gurations are physically indistinguishable, we define '"superspace"

to be the identification space:

Conf ()
g(d/l)) :—D'lf_f(m (r.31)

where the quotient denotes that there exists a continuous, open
projection M which maps each orbit OD(c) in Conf( M ) into a point
seS. A point of superspace will be called an "intrinsic configu-

ration of l{".
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Fischer has studied the structure of the space of geometries
(Wheeler's original notion of superspace) which is defined to be

quotient space:

Riem( A )
G () = T (I.32)

In his penetrating analysis he showed thatg () is not a proper
manifold. This is due to the existence in Riem((d,) of orbits OD,
which are such that the metrics g contained in them are left invariant

under the action of some non-trivial subgroup of Diff(lb ).

I, = {feDif£(M ) | F*g = g } (1.33)

namely metrics which admit an isometry group Ig. These orbits are
projected into points inE§~(UbL) which have neighbourhoods that are

not homeomorphic to those of the points ingé‘(uLL) which correspond

to "generic'" orbits in Riem(({{, ) (that is to say orbits, the metrics

of Which'do not admit any group of isometries). As a consequence,

the space of geémetries decomposes into strata, where each stratum
contains geometries of the same symmetry type. Fischer has further
shown that each of these strata is a proper manifold and the strata
containing geometries of a higher symmetry (larger isometry group) form

the boundary of the strata which contain geometries of lower symmetry.

Fischer's reasoning should carry‘over to (generalized) super-
space since Conf(y{, ) and Riem(Ul ) have basically the same manifold

structure and the quotient is taken with respect to the same group.
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Thus, the orbits OD in CoanA& ), whose points c are left invariant

under the action of a subgroup:

I, = {feDiff(d ) | FEe=c} (1.34)

of Diff( ;) and therefore represent symmetric configurations, shall
have neighbourhoods in superspace which are not homeomorphic to those
of generic orbits. The stratified structure should also exist in the

present case.

4. The requirement that j) is an isometry of the metric of Conf(ld )

We shall now proceed to construct a definition of arc length in
superspace from the already obtained definition of arc length in confM, ).

First we not that consistency with the equivalence relation induced
by Diff(UA ) on Conf(A ) requires us to demand that the group of trans-
formations (I.18) induced by Diff(Ud ) on Conf(UA) is an isometry of

the metric of Conf(U{ ). This demand is expressed by

V feDiff(Ud ), F£*G=C (I.35)

where

(f*G)c(X,Y) = Gfkc(TCf*(X)’ch*(Y)) (1.36)

-In the above relation, ch* is the map tangent to f* at the point
ceConf( ). (Thus, if X is the vector tangent to the curve c(o) at

C(OO):C, ch*(X) is the vector tangent to the curve ftc(o) at f*(Oo)zf*c).
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The requirement expressed by Eq. (I.35) is readily satisfied
if the tensor character of the metric coefficients of C;)( is chosen
so that the integral (I.13) is independent of the choice of coordi-

nate systems.

Let us consider a curve s(o) in superspace, namely a map of the
closed interval[sl,UQ] of the real lime into E:(ubb). Since jg ()
is not a manifold, we cannot specify directly the continuity and
differentiability properties of the curve. We can, however, specify

these properties in the following indirect fashion:

The inverse ﬂ_l of the projection map sends the curve s(c) into
a one parameter family of orbits OD(U) in Conf({l) which is such that
there exists a smooth curve c(g) (C. map of [01,02] into Conf(Atd ), which
crosses each orbit of the family once and only once. Any such curve

s(o) will be called "smooth' curve in superspace.

Every other curve in Conf(U{ ) with the same properties may be
obtained from the pafticular curve c( o) in the following manner: Let
fU be a smooth l-parameter family of diffeomorphisms, namely a c
curve in Diff(J ). Let us then move each point C(GO) of the curve
c(o), along the orbit oP (GO) on which it lies, through the action
induced by the diffecmorphism £, - The curve f;c(c) which results in

)

this way is another C curve in Conf(J{, ) which crosses each orbit of

the family 0°(s) once and only once.’

Thus we see that to a given curve s(o) in'f;(xLL) corresponds
an infinity of smooth curves f;c(U) in Conf(d, ), one for every smooth

curve fcl in Diff(UA ). The need of assigning in a unique way an arc
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length to the curve s(0) motivates us to introduce the following
definition: The arc length of a curve s(o) in superspace is equal
to the stationary value of the arc length of the curves f¥c(o) in

Conf(UM, ) as f0 ranges over the space of smooth curves in Diff (A ):

N .
L(s(o)) = stat. L(f*c(aq)) (1.37)

We must, however, demonstrate that this stationary value exists for
any curve s(o) in$§ (M, ) of the kind defined above, and also that
it is unique and that it tends to zero if the curve s(o) is allowed

to contract to a singel point infg W ).

5. Point correspondence equations

Let &(o) be a smooth one parameter family of vector fields on
M (7 curve in V(M)), defined as follows: For any particular value
ooe[cl;cé]of the parameter, £(00) is the vector field which is tangent

at the identity to the curve eO:fgf;l in Diff(d).
(o]

Through any point c(Oo):c of the curve c(o), let us define a

curve eﬁc(d) from which the curve fﬁc(o) results through a motion
. =1l
induced by the diffeomorphism f = (since ei’=f of ).If X is the
@] o] @]
vector tangent to the curve c(0) at c, then the vector Y tangent
: o
to the curve éZC(O) at the same point is given by

g g

Y = X +T€(Oo) (1.38)
o o f .
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where
D
T&;("o) = TidOC(&;(co)) (1.39)

Thus, if

(dg A dg
do? do’ do |

are the components of X0 , then
0

+£ o

+£’E’dc g’EE

are the components of Y0 . Finally, the vector tangent to the curve
)

f;c(o) at f;o c(UO):faoc is evidently chgo(Yco).

In terms of the vector Y0 defined as above at any point along

the curve c(o), the arc length of the curve fﬁc(o) is expressed as:

02

L(fie(0))z S do[Gg, (T_E(Y_), T E5(Y))]
91

Taking, however, into account Egs. (I.35) and (I.36) the above

1/2 (I.40)

expression reduces to:

g2
" 1/2 _
L(fgelo)) = 1 do[C (¥5.1)] 7" = Llelo),E(o)) (1.41)
1
where the integration is now carried over along the original fixed

curve c(o).

A given pair (c(0),£(0)) represents not a single curve ffc(o)
in Conf(uLL) but a class of curves h*ofcc(c) one for every he Diff(d4,),
all of which possess the same arc length. For any point on any given
orbit of the family OD(U), there is one and only one curve of this

flass which passes through that point. As a consequence a pair (c(o),
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E(s)) establishes a one to one correspondence between the points of

any two orbits OD(O') and OD(O") of the family.

From Eq. (I.41) we conclude that the variation implied by
Eq. (I.37) may equivalently be carried over the space of smooth

curves on V(ULL). The stationarization conditions

8L(c(o)3E(0))

52(0) (T.42)

assume the form of a linear inhomogeneous equation for the vector

field £ at any given value of the parameter o
At = p (I.43)

where A is a (2-covariant) self-adjoint tensor operator which in a

local coordinate chart is expressed by:

v, g™Ky )

k&mn gmna mnk _A A
i'k°A n

Aij = 28507285, V67 e, 4 *Ey Tk -W

mn _A mn kin - an,,.B
+(GABfmifwgiVmGAB - 285 VCg 4, 16p ) (W, 5V

klé am_A A am
+GA fmi—w.v S I (T.uu)

ab
HE7d, ;285,76 i'mea *%a, g

while P is a 1-form given locally by:
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dg d¢
kZmn mn ab b
Py = ~285(6 o 3t%,1 ¢ &
B B
+ g A dwn B WA(Gmn dwn ) _ 9 (Gmna d¢a ). + Gmna dgmn
AB "mi “do i*7AB “do ‘3m &im do ‘3n" *a,i do
A
2 (Gmnj wj + Gmnij dgmn —WA(Gmnj dgmn)
€im'®"A “do’3n T A T3i “do "i‘"A Tdo 33
ma A d(ba A, ma dé, | ma dwg
*Oa fni 0 3% a6 Ygn'ta,i% Tae (1.45)

The question of the existence and uniqueness of the stationary
value in Eq. (I.37) evidently reduces to the question of the existence
and uniqueness of the solutions of Eq. (I.43). We discuss this problem

in Appendix I.

Equation (I.43) shall be called 'global point correspondence

equation" for a reason which will become apparent in the following.

6. The action as a path integral in superspace

We shall now formulate the Variational Principle igg QAA ).
Let us be given two fixed points s, and Sq inT;(oLL). Let us consider
the set of "smooth" (in the sence of preceding paragraph) curves
which 5oin these points. The subset of ''physically aéceptable" cﬁrves._

in f; (UL ) which have s; and s, as end points, are those for which

2

the line integral:
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LY 91 n drl}_,’ ]
S = fS(c) Xal, [: sz (A(s(09)) 5 )do (1.u46)

is stationary. Here 2 is a functional on f; (gbk) which is such
N . o . . . .

that Aen = A is a C functional on Conf(ubL) which is constant

along the orbits of the group of diffeomorphisms. Such functionals

will be called "smooth" functionals on superspace.

We can also formulate the Variational Principle in the original

space . Conf({{d,) as follows: Consider the orbits oD and OD

1 5 in

conf( A4, ) into which the points s; and s, are sent by the inverse T
of the projection map. The subset of physically acceptable curves,

of the set of smooth curves in Conf(yld ) which have end points in the

orbits 02 and Og, are those for which the line integral:

a2

S = IC(U) AdL :fcl (A(c(c)-%)dd | (I.u7)

(Variational Principle)

is stationary. Evidently, in this formulation the end points cq and
¢, of the curves c(9) are not fixed but are allowed to vary along their

D

orbits ( 0 and Og respectively).

It follows from the definition of arc length in superspace and
the fact that A is constant along the orbits of Diff(J{ ), that the
two formulations of the variational principle are equivalent. This
is because stationarization of the above form of S with respect to the
class of curves c(o) which cross the one-parameter family of orbits

0%(o) which 7 sends into a given curve s(o) injg (M), will bring us



28.

back to the form of S expressed by Eq. (I.46).

The quantity S defined above plays evidently the role of an
action. Its form as given by Eqs. (I.46) and (I.47) will be called
the "global form of the action'" to distinguish it from the '"local

form" of which we shall speak later.

7. The Chronos Principle

We are now ready to introduce the Chronos Principle. Consider
a smooth curve c(o) in Conf(JX/) and let c(ol), c(oz) be the end
points of this curve. We define the '"global time interval"™ T between

these points to be the integral

c2
dL 1 dL
T =7/ =f — do (T.u48)
c{c) Bl/2i:°1 B1/2 do

where B is a smooth functional on Conf(,).

THe above definition may be expressed formally in infinitesimal

form by:

AT = —/— (T.149)

We now postulate that the functional B has the form of a simple

integral over the base manifold VLL:

B = éu‘bdv (Postulate ITI)
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Remembering that dL2 also has the form of a simple integral
OVer‘UbL (cf. Eq. (I.16)),.we may, by restricting the region of
integration in dL2 and B, to a neighbourhood Uc A, define the

element of local time in U

dL

N

daT (1.50)

N
!
d
[ant

where

2 2
dLj = [fyde®dv, B = [ pdv

In the Moore-Smith limit of U converging to a point xeU

definition (I.50) gives the element of "local time at x":

2
at(x)? = Q%%i%_ (Chronos Principle) (I.51)

8. Construction of space-time

We shall now construct the 4-dimensional spacetime manifold and
its Lorentzian metric. Consider a smooth curve c®(g) in Conf(ubt),
such that (dr“/d‘r)2 is positive at every point on the curve and for
any xe M. We define spacetime to be the 4-dimensional manifold
(4$b£=di XEJl,GQJ associated with such a curve. Its metric is con-

structed as follows: Let us define the function T on (uhﬂi, by :

a
t*(x%,0) = f N¥*(x)do, (1.52)
gl
where;
N - Qﬁ{ (1.53)
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(”W is

Evidently, t%(x,0) is the local time at x. The metric of

then define by:

(u)g* - -dr*® ® d’r*'fg* (1.54)

Here g%(0) is the projection on Riem(Jd ) of the line c*(0) in
Conf (M), and d represents the exterior derivative operator.

If now c*(g) = f¥c(0), and we perform the Y-dimensional diffeo-

morphism
h :Vl,{,x[cl,cg:]-r LLLX f,cl,GQ]
with
h(x,0) = (£,7(x),0), (1.55)
then, we can show that h*(u)g* = (u)g is expressed by:
(1) 2 z =
g = ~(N"-g(&,8))d @ d9-E&)do-d9 @ E +g , (1.56)

where £ is the 1-form related (fhrough the metric g) to the vector £

and N is defined by: N=_- f§N. This is shown as follows:

Consider a curve (x(t),o(t)) in (MLLL . Let a be its tangent
vector at (xo,do). Then if a is the vector tangent at X, to the
projection x(t) of this curve ony,

do(t)

~ d
a-a+t It ik (I.57)
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The 4-dim. diffeomorphism h send the curve (x(t),o(t)) into the

curve (f—l

o(t)(X(t))’o(t))' Let e, be the aforementioned curve

e,= foOf;i in Diff(bbL) which passes through the identity at

0=0). Let us then construct a curve e;%t)(x(t)) inyLL through the

point X s from which the curve fo%t)(X(t)) is obtained by acting

with the diffeomorphism f;l. The vector b tangent to the curve

0
e;%t)(X(t)) at x_ is obtained from the vector a by:

b=a+c¢ (1.58)

where ¢ is the vector tangent at x_ to the curve e;%t)(xo). It

~ can be easily seen that

do(t)
dt

£ - -§ R (1.59)

where £ is the vector E(xo,oo) defined previously. The vector

h(a) tangent to the curve (f

2(o (=6, o(®) in MU at

Tx 50 )
(o] (o]

(f;l(xo),oo) is then simply expressed as

do(t)

p)
T 30 (I.60)

~ -1
T(x o yh(E) = T, £, (®) +
(o] (@) (o] (o]

Now, the 4-metric y is related to the 4-metric y* by:

(L") o~ (L") -~ ~
g (a,a) = (T h(a),T h(a))
(xo’oo) (f_l(x ),0 ) (xo’oo) (xo’oo)
OO Q Q
2 do(t),2 -1 -1
= -(N) _1. ( e )t -1 (TX £, (b)), Tx £ O(b)) (I.61?
£, (xo) £ (xo) o o o o
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Considering then the definitions of N and g, the above reduces to:

(u) ~ 2 , do(t). .2
(xo,oo)(a,a) = —Nxo( Fee ) +gxo(b,b)
2 ,do(t),2 do(+t) do(t)
= —Nxo( dt > gxo(a_ET » at dat ) (1.62)

from which Eq. (I.56) follows immediately (Q.E.D.).

It is evident from Eq. (I.56) that the (time-like) vector field
of norm N which is normal to the hypersurfacesd&ozd&x{o} in (43bt is

given by:

nz Et o | (1.23)

We thus see that the one parameter family £(o) of vector fields on W

(H{LL which establishes the normal point

gives fhe vector field n on
correspondence of an& two hypersurfaces(LLa, and b&b o (0',0"8[01,02])
defined by requiring that the integral curves of n pass through the
corresponded points on the two hypersurfaces. Therefore, where the
intrinsic geometry of the hypersurfaces bLLO is given by the line

ga (o) ix1g;((lL) to which both curves‘g(c) and g*(o) in Riem(Ud)

are projected by the orbit projection map, it is the line £(0) in V(uLL),
specifying the particular orbit correspondence in conf(M, ), which,

together with the local time t*, prescribes the way in which the space-

like hypersurfaces LLLG are to be embedded in the spacetime manifold

(Ur)(/u“
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The second fundamental form (or extrinsic curvature) of any

hypersurface |{{, , is given by:
)

b - 1 dgf‘
K ~(ao) =5 (=) (1.64)

from which by acting with the diffeomorphism f;l we obtain:
)

K(o ) = %[ (& +.£€g)]0:0 (1.65)

where K“(GO) = fgoK(Go)-_

We have thus seen that to an equivalence class of diffeomorphi-
cally related curves {f*c(o)lfeDiff(Jj.)Z in Conf( L), or, equivalently,
to a curve s( o) inT; ) plus a "connection" along that curve (namely,
a correspondence of the orbits OD(G)L is associated a spacetime of
determined geometry, plus a slicing of that spacetime into space-like

hypersurfaces.

Let us suppose now that from a given curve c(o) in Conf(UbL), in

(4)

addition to the metric (u)g, an N-tuple of 1-forms W can be constructed

(4)

on (ulﬂb as well as a map from (u{ji'uf)g which are such that

the N-tuple of 1-forms induced on each space-like hypersupfacebbco is
)

_W(GO) and the map restricted to dl/o is ¥ (oo). The Relativity principle

0
is the statement that the actions which correspond to any two curves in
conf(M, ) which give the same intrinsic configuration of (u)DLL sliced

in two different ways into spacelike hypersurfaces, are equal (Principle

of Path-Independence).

A change of the slicing of spacetime is a U-dim. diffeomorphism

(x,0) » (x,p(x,0)) ' (1.66)



which is orthochronous" (namely 09p/90 is positive everywhere) and
sends each spacelike section ¢ =const. into a spacelike section

p=-const.

We note that the action S is, with the introduction of £,

manifestly invariant under any 4-dim. diffeomorphism

(x,0) » (f(x,0),0), (1.87)

which reduces to a 3-dim. orientation preserving diffeomorphism on
eachvu% . On the other hand a diffeomorphism (I.66) can be composed

. 0 ’
on the right with a diffeomorphism of the above type to give a generic

4-dim. diffeomorphism

h:vu,x[ol,GQ] +qu [01,02]

which preserves the orientations of(}L and [01,02] and sends the space-
like sections into space-like sections. Consequently, the Relativity
Principle is equivalent to the demand that the action be invariant under

the group of 4-dim. diffeomorphisms of this kind.

9. The space-time form of the action

Using the established correspondence between a line in conf(M )
and a spacetime manifold, we shall now transform the action from a line

integral in Conf(ubb) into a space-time integral.

The form of the action given by Eq.(I.47) shall be valid in the

case that the slicing of spacetime is such that



d (x) = dT, for every xeldd, (1.68)

namely any two space-like sections have constant normal separation

("Global inertial frame'").

In transforming this global form of the action into a space-
time integral we must take into account the following two consistency
requirements:

1) That the variation of S with respect to the restricted class
of smooth curves in Conf(uLL) which cross each orbit in a fixed one-
parameter family of orbits OD(G), should recover the global point

correspondence equation (Eq. I.43).

2) That the variation of S with respect to dT/dd should recover

the definition of global time (Eq. I.u9).

It follows from the first requirement that the tangent vector
to the curve c(0) over which S is defined, enters S only in terms of
its norm dL/do. We shall now make use of Eq. (I.49) in replacing the
measure dL of the integration in Eq. (I.47) by the measure d4dT. The

most general expansion of S which satisfies requirement 1)is the following:

s - f . .ar(npY2ar,

c(o)

where

1 ,dL,2 - ’
A= g (5 i (1.70)
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Here f is a C  function of A satisfying
f(1) =1 ) (1.71)

Evidently, if Eq. (I.49) holds, A=1 and the expression for S
given by Eq. (I.69) reduces to that of Eq. (I.47). It is easy to

show that requirement 2 demands that

df(A)

£(A) = 20 =55~~ = 0 implies A=1. (I.72)

We now take into consideration the Relativity Principle in
requiring that, since in Eq. (I.69) only a single integration over

[01,02] occurs, S must have the form

s<= 1 fav'®, (I.73)
(HXLU
of a simple integral over the spacetime manifold (q%LL :JLx[bl,OQJ
Here
av®) = grav (1.74)
is the measure of U+h}& constructed from the Y-metric (q)g which

corresponds to the line c(0) in Conf(ubt).

Comparing Eqs. (I.69) and (I.73) and taking into account the
2 - . ,
fact that both dL” and B are simple integrals over Lll, we conclude

that the two equations are compatible if and only if:

£

Cl + C2 (a)

1/2 (1.75)
B (up to an inessential multiplicative constant)  (b)

)\9

A=
From (I.71) and (I.72) it then follows that

Cq = ¢y = 1/2.
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Hence, the action, in the case that spacetime is sliced in accordance

with (I.68), is expressed as

1 dL,?2
S = —2—. fc(o){(ﬁ) +B}dT (1.76)

The action in the case of a general slicing of spacetime into

spacelike hypersurfaces, is then evidently given by:

1 AR 20
= 5y c(G){(d_T) i+ b} dtav (1.77)

This is the "local (generic) form of the action", and if we vary it
with respect to d1/d0 we recover -the definition of local time (Eq.(I.51)).
We see that it has the form of a spacetime integral, and the Lagrangian

£ is equal to:

ag. 2
1 - G+ (1.78)

Transforming back the local form of the action into a line

integral in Conf(\l{,) by making use of Eq. (I.51), we obtain:

1
S=3 {u,-.fc(c) a dedv, (1.79)

where:
a = pi/? (1.80)

Finally, the "local point correspondence equation'" is obtained
in the same way as the global one, with the difference that the local -

instead of the global form of the action is being varied.



CHAPTER III

DERIVATION OF THE LAGRANGIAN

We shall now derive the most general form of the Lagrangian

compatible with the Principles established in the previous chapter.

I.Introduction of the gauge group

We first draw attention to the fact that although relativi-
stic invariance requires Wﬁl to be the three~dimensional compo-
"nents of four-vectors WA defined on the four-dimensional space-
time manifold, no components Wﬁ enter the action. The only way

in which this contradiction can be removed is if the space COAK\M)\F

is replaced by the space of '"invariant fields"

Se = SE%@M (2.1)

where (DJ is a N-parameter iocal group of continuous transforma-—
tions. By é.pplying Fischer’s reasoning to the operation of taking
this quotient we see that this ope.ration destroys the manifold
properties of §F at the neighborhoods of those points *F;
which correspond to orbits in COV\“‘M)\F thréugh points |3 which are
left invariant.'by the action of some subgroup r:))o of /j . Thus
such points E will be boundary points on SF .

The parameters of the grouv are "gauge" functions _’XA
(A:I.A...N) which are as many as the number of vector fields 50

that théy are in one—to—one correspodance with the Wo’s needed.

“conf (L )l F is the space of C® sections of the product bundle

U RIS OTRE X7
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So on COV\QW)\F two groups act: the group of diffeomorphisms

ot
D ML) a.nd-the gauge group (J' . Then oL in S ryepresents not

the element of distance in the original superspace S but rather

that in the "invariant superspace"

3. S

T 5 (2.2)
and rﬁ is a functional on S « It will be shown in the following
that the correlation of "éauges" removes the afore-mentioned
contradiction by introducing the Wﬁ’s as gauge correlation funti-
ons,just as the goi’s are introduced by the corresvodence of
points as the vectors gL establishing this correspondence.

In order that relativistic invariance of the Lagrangian is
ensured it is also necessary that the following consistency re-—
quirement is satisfied: that to the afore-mentioned grouv of.spatial
gauge transformations corresponds a group of space-time gauge
transfomations which acté on the four-dimensional field forms andb
is such that its action on the (spatial) field forms generated on
each space~like hypersurface reduces to the action of the correspo—
nding three-—dimensional grouv.

It can be readily seen that the above requirement restricts
the infinitesimal form of the four-dimensional gauge transfomation

to the following:

gq)a, = 'BACL'XA ' o (a)

A (2-3)
S‘w?\ = % BR W%\'XR-\- eAO'B Lpa’vtxe_\_ %ABrXB)\A (v)

A A | .
where JAa’gABR’e aB and h 5 are functions of ((’.)_ .« 3P, only.
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A
We now assume that h B is a non—degenerate matrix . We can
then redefine the vector fields
-\ )A B8
= s W
.( v (2.4)
and in terms of the new vector fields, the gauge transformation
takes the form

gzéo» = :SAQ. (XA (2)

oA ZA n (2.5)
SWy = % R+e 8 CPa)\A'X +x° p o ()
where _
~ ) o
G 0e= L) e 3 ar + 9™ /99 0ra h%
~ Po (2.6)

= (') e e e

In the following we will use the form (2.5) of the gauge trans=
formations, dropping the ~v for simplicity.

The possible reparametrizations (I.I7)are now restricted to

Qo —> Qo = Do (@, ... &9,) (a)
W?a” Wv-_:?« BWr (v)

where the QAGB are constants.These will be the reparametrizations
that will be allowed from now on. Under this transformation the

metric coefficients transform as

EC'SM"‘: G)i&*“‘" E b— @—:-'} 8‘,{ ch
9%, 3
o~ 0t ‘e P —\& W
GL)O‘ = Qﬁg" 6”\)‘ GAB =\ ) a2 ) BGP((;, (2.8)

D da.

\.ﬁm

He
>
1

) 96”” G- 'V 9ds 63"
DR
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If then the gauge functions 'XA are taken to transform as

A SA AR 6
{X"-“’ X' =% X (2.9)

in order that the form(2,5) of the gauge transformation remains

. . A
invariant, JAa.’ g pgy and e‘A‘a'B should transform as

%M =(27)% 9 /99 Jen
’éﬂea‘—’ 2% ()% (A7) %, %P@.S (2.10)

~ - ~ Pb
e h - A% (% 99,19%a e

From egs«{2,I0) it is evident that the JAa’s transform as

components of a contravariant wvector in ’\\K,

22, The requirement tha.t()} is an isometry

of CO“\Q L\}\k)

We will now begin the construction of a definit'ion of a
distance in S from the already obtained definitipn of distance
in S . _

Let us consider two nearby elements go and g:: _ ofS . We
are looking for a definition of their distance. Now, to 'theAse two
points correspond two orbits O('\j) and OI((\S) of the group(:)) in

S respectively. Consider a particular point So on the orbit

' ' iy O
OL’D’) . The distance of this point from a point on the orbit
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~ ,
as given by L of eq.(r.3'()obvious1y varies in general as the

'l
other point traces the orbit O(T))) . However, the distance

between the points-g_c> and S should be unique. Hence it must be
defined equal to the distance d L-Lgbg )between g and some
particular point So of the orbit O 'j) « Thus a particular
correspondence ga <~ S.: should be defined. We shall return
to this problem later. For the moment we note that if such a corre-
gpodence has been established then a one~to—one correspondence

!
between all other poinits of the orbits OQD)) and O\fg) is fixed

by the rule

PE e—>7PS,

(2.11)

v.rhere"s> is any element of the group(DJ . Since the original

point 'So on O('\J)) was picked arbitrarily, we must demand that
~ 1

the distance between corresponding poinits on O\ ‘)) and Ok‘j) is

invariant along the orbit

(\\:. (‘?go))?§o'): T‘(Agg) -S;) ’ (2.12)

Thus we must demand that if we vary the field functions which
enter the metric coefficients G) in accordance with the spatial
$ransformation corresponding to that given by eq.(Z.5)and the

differentials of the field functions in accordance with®

$d¥ = dS%o = 9Dan/ 996 ddp XN (;)
(2.13)
Solw" = dSwWh = (2 erdWS + 93 er /99, WA ()

+ e @ dda, m +°«)e,ho°a/8wb Qo dv ) X" (gxhoo)

*From now on we shall be working in coordinates E;i—_-O.
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NS
then the corresponding variation of L_ vanishes

5L =0  (2.12)
This determines the way that the metric coefficients G trans—~
form under the action of the gauge group. Even before writing down

these transformation laws, it is evident that eAaB must be set

equal to zero

e 3=0 , (2.15)

since this term would introduce derivatives of dde ana: Cﬁx
in - and no such derivatives are present in the original
expression. With eq.(2.I5) taken into account the equations for the

six metric coefficients are

Ly MmN
267" =0 ()

C\}q)a. @

§65™ 4+ 6H™ 9%axF 20 | (o)
SGab 4+ (Go.c 9re 4 G,bc ‘a)'JRc +(5 3g RWB
‘ﬁCPb VPa, prb (a)
+ G 9% w8 Y X< (2.16)
‘z)‘%,
| 86?3 + (6no8%ar + Goa %) %R =0 (o)

(GA Q,_.b + 6% 9 AR‘\’GAB(‘%%..Q_ )’)(R::O (£)
A Qo.
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Now since the variations of the metric coefficients G are

)
given by (dropping the indices of the ® S )

56 = 22 - Sq, +%%§\.xwfbﬂ

(96 3&&4—33 AR Wi )W(R—\— g%g %E, (2.17)

we obtain two equations from each of eqs.2-I5 one being the
condition that the coefflclent of - 'X M vanishes a.nd the other
that the coefficient of 'X vanishes.
The equations which arise from the vanishing of the
. 23
coefficient of X, are trivial

96 _g
AWA | |  (2.18)

If we now take into account the most general possible form of .

the G's as restricted by postulate I we deduce

{,)MV\

G

i

5999 4 &, gH" g (=)

0%qd | (o)

&
P
I

.ab Qb (d)

G
i
3

(2.19)
Gas = faa g™ : (e) '

sz =0 | . (f)
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a ab

where hI,2’ r, G and fjp are now functions of | (PR

only. Then the vanishing of the coefficient of CKR in eqgse.
2.16(a), (b) . ana (a),(t) gives the following equations for these

functions

Qhie _ -
Veo o, =0 (a)

9p% b 9%ep _
Db o + o =0 (b)

Jec 96°°, g% IWRe , @ Mac -0 (o) (2.20)
Qe 9 Yy S Do

3@@%3 + faa 8% + feal%ar=0 (@)

Finally, the vanishing of the coefficient of )(R‘ in-eq 2.I6(f)

f

gives

9% _ o
N (2.21)

provided that the matrix fAB is non~degenerate.

32 The finite form of the gauge ftransformations

Taking into account egs.(2.I5) and(2.2I) ,the form of the

infiﬁitesimal gauge transformation is now reduced to
A
S‘Qm 13'3Aofx _ (a)

(2.22)

{

SWA = 3P arRWEXR 4 AP, ()
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with Sdwh = 8hga dw® x* ()

A
where the g BR,S are now constants. From the above form of the

infinitesimal gauge_tfansformations and their group property we may

deduce their finite form

/ S ah XRz%
(PCL = € Qo ‘ (a)
. (2.23)
VV‘n = € va\ (b)
dw
, S ax ‘XRZ R
A A
dWm = e dWm (2.24)
' )
Z s = Jno a
A Mg% (2)
W (2.25)
-Z.g = -V S%JA +%R33W%1—§—m (v)
[14) m
AW |
Z%h = 9%endwW® S 2 (2.26)
ddWm
Here, .
— ¢ v
Za = Zy = (2.27)

are the generators of the gauge groupry .
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Since eq.(2.23) says that the gauge transformation of the LQ>S
does not involve the W?s and the gauge transformation of the W's
does not involve the '\?)S we may think of the set of gauge trans-—
formations of the Q’S as the group (j(cp) induced by'j on Ij{a
and ‘éhe set of gauge transformations of the W’s as the group ,3’(\)\1)
induced by ,j’ on \NJ .

Let then ,:)J(C\w) be the group induced on the cotangent
bundle of N (transformations (2.24) )

Since the scalar fields $o0%) and Qalx') ang the diffe-
rentials of the vector fields 0‘\/\?\37\)) and O\Wﬂ(,s"") at fwo different
space points S and ' transform independenfly, the groups 3(“9)

and "j(dW) are direct products of groups Fj(‘“ﬂ’ ")) and j(dwo"))

which act on U'(» and tNJ‘ respectively

diect

Tw = 11 T(400)

Bx e M
chized (2.28)

Tew) = T 1T (dwo)

Iaedh
Thus, while the groups D(®) and D@W) are 1ikeY itself
infinite parameter groups the groups'j(_@eﬂ)) and(j.(d“)o")) are finite
(M and N ) parameter groups.
In terms of the generators XE{ and YR of these groups

which are given by

9 :
XQ = 3(&0» CE_\—P-Q, (a)

. o (2.29)
(\IQ)ABA: %AGR (b)
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. b} bl
the equations of finite gauge transformations of the WS and the dwW’s

given by eqsR.23{a)and(2.24 )are reexpressed as

! x® X

Ro. = € ® N (2)
' (2.30)
R\/ A

dw® = (e™ *) e awt (v)

From the first of egs. 2.I0 it follows that under a repara—

metrization the generators XA transform as

namely as covariant vectors in d%:

Actually only the non vanishing XA’s should be considered

as generators oflzy(@eo). Thus if N-M of the XA’S vanish

1
.

X, =0 A=MN+L,.....N ' (2.32)
only the remaining M X (A =I,....,M) should be properly
considered as generators.

Eq.(2-32) limits the allowed ~e parametrizations by the

condition

I\ B . - — (2.33)
(2 ') A= 0 (ot 12 4=0) (so +hot X4=0 aoso)

The generators # and YR should obey

[XK’XE] =3SR1—1§xﬁ (a) [_Y]?’Y(l: tRBQ (b) (2.34)

and £ being the structure constants onj@?P*))andﬁjLibo@°Q).’

R——-
S 4B rq
From eqs.2.30)and(2.34) it follows that

A B _ A B A B o
8 apt rgrT 8 P8 my — € Bq & RP (2.35)
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4. Gauge correspodence equations

We now return to the problem of defining the correspodence
' _
Sg.@""? go y which will give finally the required definition of
— [
distance in ‘S » Let ug first pick the point So to be any voint

on the orbit O(J) which is in an infinitesimal neighborhood 0fJs.

Let us then change the arbitrary correspondence just obtained

L &« !
o So (2.36)

' . /
by acting on So and S@ by the two different elements? and’?
of '3‘ respectively, fhus establishing a new correspondence

PS, <« P'S, (2.37)

— —_

We may think of §° and So to be the points ¢ and o +do

on the path

-S;’: §(0')

(2.38)
H
in the invariant superspace and 7? and? to corresvond

respectively to the points ¥ and o+d6  on the path

A_ ~A

. A
in the space of gauge functions X
Defining

“AA _ 9IxA
“'é%‘da. (2.40)

wegee that the change in correspondence is manifested in the
presence of these V\A).S.It follows from eqgs. (2.30)that the new
metric and field differences are then given in terms of the
original ones by

1

d9iy = doig | (2) (2.41)
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= 994e d(_‘)brXA + Jq’q, )
0 Q.
A (2.41)
dawh = dwd +dSwi o)
= 3P grdw? xR+ JW@
"where _ :
AW = dW@o, + "I pawh (a)
(2.42)

T A 10)
dW? = olW% +%A9RW; Y\R-‘- \nA){, ()

The distance betweenf'(ygo)and“-‘yso‘)is then given by
Y] [ m . .
dr= § (599" 1 4 958 Yo dg g
- = g (2.43)
»* o— - — —— mn
1 9,3”{-’“&91-‘5 d@, + GGbol%,d“pb + Q% Q"W & dW 1,
2
We finally define the distance dL between ‘50 and S; to

)
be the extremal distance betwaen ?go and ’?Sa ag the correspondence

is varied

dL = exte ((dL )

(2.44)
The extremization conditions are
/
2 LS o ‘ -
LoSdL _ 3 PTdSG S, ¢+ 6%P day, Vae
(2.45)

e d%ra AWh WET —(RagdW 5 )" 2 g

or

H‘r-\e n® = Sa | (2.46)
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Here HAB is the self-adjoint operator

o tqQ m
HAB =D Am DG,B -+ @Qb ‘3/%()«.‘\33&) (2.47)

Where

D agm = QA& D&6m
(2.48)

0, e '
0% m = 3% Vm +3% pa W
\l Q
D&e,m :-S%Vwﬁr % e Wp?v\

The source term S, in eq.(2.46) is given by

Sp,: '75Aob90'3{‘;ol%‘b3 + G)Qbho,d'-?b
<™ (2.49)

+ Yea D%adwE WA _(0ne dWd,)’

Three conditions should be satisfied by the given definition

of distance in S in order that the definition is meaningful.

I) That it exists for any ﬁair of points in :5; which corre—
spond to nearby orbits in S

2) That it is unique

3) Tha‘c if the orbits in 5 to which Do and -éo correspond
coincide, ‘bhe dls’cance between E: and 50 should be zero.

In this case however ,go and go lie on the same orbit and
therz_ewae‘?‘go and ’?go may be chosen to coincide, in which case
we have A9j = AR = O‘W =(Q which satisfies egs.(2.45)

and dl"=0 » Hence, if condition 2) is satisfied,condition 3)

is always satisfied. Thus we need only demonstrate the existence
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and uniqueness of the solution Y\A of ed2.46for any source term Sy

of the form given by eq.p.49.This will be done in aPpendixiil.

5e Construction of the four~dimensional

field forms

We are now finally in position to determine the four—dimen—

4 ——
()fﬂ .Consider a path S(o) in S .

sional one—=forms
. ) gA s

Let the spatial one—forms ,9 be the intrinsic one—forms of
the three—dimensional hypersurfaces G = constant of the space-
time manifold defined earlier., Let then the gauges of the spatial
one~forms belonging to adjacent hypersurfaces (6‘ and a‘+dd‘) be corre—
lated by the gauge correlation defined by eq.2+46). We then define
the space-time one-~form 1o be

@Wph - W g (2.50)

)

remembering that since page 42 . we have been working in the coz-rec‘l:==
correspondence'_fwithout actually putting % for the shake Qf
simplicity. N
Using now the fox/zr—dimensional gauge transformations (noting
X

A
that{(2+50) denotes Wy =0) we can write the four~dimensional

form(2.50) in the gauge of the original gauge correlation obtaining

“’)y" - A WA AR

(2.51)
o A W (XN e = Wl

*By correct we mean the one defined on page 40.



53,

where in the last expressions we have also returned to- the coordi-.
nate system of the original arbitra»y vpoint corresvondence.From
eq. (2.51) we deduce

| A W |
GV L A B R VT (2.52)
DN
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6. Derivation of the Lagrangian

We now express the Lagrangian in a general coordinate system

and gauge obtaining

~ 2
i} = (M) _-l—b(?'?(.)

A~ (3) (2.53)

—

where the local element of distance df(32) in S s given by

AT A L) .Mn (Mg - -
ON(SW) = (’8\\%“')3 +'e\?.3\'(' 55“))dﬁii°\3mn

.= - - - — —  (2.54)
+ 299 0% gy dd + 6 Pddaddy + Las 3w W
where 9!' is the "convective" derivative
- Db o5
d=d+ Ly + Ly (2.55)

0.4
Here L--; is the Lie derivative with respect to the group of

7.
diffeomorfisms along & and \_"\i% is the Lie derivative with respect

N .
to the gauge group along V' where

Z, = N{ dn®

(2.56)
WA N w@ an’ .
| .Thus
da; = dgg; + B+ 3isl
o'\%\, = dda + Doy} +3AO.V\A (2.57)

TR L A L A 2t
dWin = dWy + WM‘,LEL-\— W@ ib',w\ +%Q>&Wfpnﬂg-_w;"*)m
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From egs. 2.53,54,55,56 and(2.57) we conclude that
the problem of the introduction of the Wf;’s in the Lagrangian has
finally been solved.

We now seek a bP®) which is such that when added to the
already obtained expression for Ldv@")/dze"))zmakes the resul-

tling Lagrangian relativistic invariant. Let us suppose that a
particular WL is found {ehich satisfies this requirement. Then
if the most general b(®%) is written in the form

bCn = hoBn) - e(®3») (2.58)
it is obvious that eCn) must also be by itself relativistic in—
variant. But the only spacial invariants we can form which are also

space-time invariants are functions of L'(’U --. 39 only:
9 bBx) ;
From eqs.(2.58) and (2.5 ) we conclude that is up to a
function of the scalars, determined by the relativistic invariance
of the Lagrangian.

Y

Iet us first look at the third term in eq.(2.54). Defining

A
PDap = Koy - DA (2.60)

we can bring this term to the form

6 ONK:L) gi?): %%b (Das + N Dol YO oo +¥° D5 ) (2u67)
A6 " | |
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Taking then into account the fact that the comvonents

of the contravariant four-dimensional metric tensor are given by

©  _1 ol_ _ N @i o> _ N
=5, Y T Y9 3 -NR e

it becomes clear that if the purely spatial expression (part of‘b@ﬂ)
GC’.b g()\‘,') D . D »
o Vb (2.63)
is added’to the expression2.6I +the sum which resul$% is the relati-

vistic invariant expression

~ %Y 6% Doy Dy C (2.64)

Let us then turn to the fourth term in eq. 2.54 . Defining

now
A A A 0 W
Fu = fav — 2 paWhwy (2.65)
A A A
wbere {8, = Wy Wy, (2.66)

we express the term as
- -8 v A b g 38
0,oqm dWh dWE _ R O™ (F [k NEFA ) (F NV F i)
B0 d0w oW N -
(2.67)
The above expression differs from a relativistic invariant one
by a purely spacial term if and only if FTQV is antisymme tric in
¥ and v .Considering eq.2.65this implies that gAPQ is antisym-—

metric in P and Q

A A
gpgt8qgp= 0 (2.68)

Then the addition of the Purely spatial expression
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-3 e 378N EL RS (2.69)
to the term (2.67) gives the rel.invariant expression

—4 de ENML F‘&P o (2.70)

We finally consider the first and second terms in eqd2.54) .
It can be shown that the only space-—time invariant which diffexrs

by a purely spatial quantity from the sum of these two terms,and

this only after an integration by parts has taken place (see below)

is up to a function of the scalars

@ R4 (2.71)

where h is a function of the scalars,
The part of the agtion which corresponds to expression2.7I)

is then

L g(’-r)(g,la \).k‘vg dbn
- AL - ~
— 5 3a) 3-19;; QL G)UMAGI " (2’72)
= 4 | Jdd ) 90335 he L% d;?});)
AN - -
“nfs GO AsS dSma L, O (S 3
dwn  Jdw '

where
Ao N N ‘
LMW \ tLim g N C3omn :
6 = (% 4% - % 8 (2'73)
Performing an integration by parts with respect to %x° on the

first term in the integrant of eqd2.72) we obtain

o) | @ ko —
3 Joen Lpdts

| L s d
§ 3i; o Dunt
1 S {5 o3x Bo\“fG )gh C dThn dzhw (2.74)

R

N M\na%mv\ Jq)a ?;!’\_ - G)R'(/\ |
X ATl oBw R - g
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Comparing the above expression with the first and second terms

of eq.+54) we conclude that

jﬂq_:: *'Rﬂ\:: '41

pre (2.75)
po - 1 2h
T2 M
and
Dao (MA/SLP“ =0 (2.76)

The above equations contain egs.2.20(a)and2.20(b) for hr,h, and

£%. Hence in the following we need only take into account eqs.(’:‘.75)
and (2.76) .

Considering egs.(2.74),2.70) and(2.64) we conclude that we N
have found a particular bo@") which when added to LO{'QG") /0\-6‘3“))
makes the resulting Lagrangian relativistie invariant. The most
general b@‘) is then given by(2.,58) ~and the most general form of

the Lagrangian is
' | b 8
4= WRh-e— G D Dp' t s Fyv F 1 2u1p)

the spatial function b(”") being just the three~dimensional analogue

of the above four—dimensional Lagrangian

ab mn
bCx = PRA e - C° DDy & Lag Fona F & ™ (o.10)

: (where all contractions are with respect to the spatial contra—
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variant metric tensor %Mn)

To the Lagrangian(2.75) We muét now impose the final consis-~
tency requirement,that of invariance under the four-dimensional
gauge transférmations (2.5) .(We could equivalently,impose on o)
the condition of invariance under the groﬁp of spatial gauge trans~

formatios.Because of the identity in form of(2.77) and2.78) as

well as the identity in form of the transformations (2.3) and (2.5)
this would lead to identical results).

Taking into account eqs@.22)and(2.68) the quantities intro-
duced by eqs«2.60) and(2.65) transform as follows under the

action of an infinitesimal gauge transformation

0 Dow = = exx\AQ(g

(2.79)
A ,
where
vt - YNa - o B _ A B
L Row= m q)b)"‘ m L‘Sgbw\'\ BAQ,‘% BRW‘A

| (2.80)
T P e = 36t - (9%0e8%re +3 pe 3B IW R U,

The requirement of gauge invariance of the Lagrangian takes then

the form
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2 b |
§4, = {R 5&‘ Sea - 5—%— a\«Db BRC.“GQ \-—--RO»\’\D\?)
2.8T
GQb 1 ‘ﬂ \ Ca_QA B\A\/l Bé\/ )
- DQ\«L_le -3 ;57 \AJF 3(20.——1‘)1\5-“!(\«\/‘:
D A 8 hv
.—.}i Yae Fuv U e %&WRQE'XQ:O
In the above equation the coefficients of
R ) Qo WAY )
Qo " ) o WEEWE ey

RSB o wRWE £
whw®rwhwar o

must clearly vanish separately. The vanishing of the coefficients
of a), b), and c¢) reproduces eqgs. 2.76,2420(c)and 2.,20(d)
respectively, while the vanishing of the coefficients of d) and e)

gives (taking into account eqs.2.20(c) and2.20(a))

S e Vea 1996 - JRb 953al9hpb=k3ﬂa%ABR
(2.82)
8069%0 +3%033%0 +5"re 3%pa =

From the above equatiors it now follows that

L Rap = 270 /99y Doy

8 (2.8
ﬂAR\z\V:%ABRF}AV (2 3)

From egs.(2.83) (taking again into account eqs?2.20{chnd (a) )
it then follows that the coefficients of f) and g) vanish identi-—
cally.The only remaining condition so that eq.@.8ﬂis satisfied is

the vanishing of the last term

Do 9/ 99 =0 (2.84)
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T« Discussion

We now look at eqs.(2-82) « In terms of the generators XK of

the grouv (j("?@"')) _ the first of eqs.(2.82) assumes the form
A - A_ . o |
[(Xg,%Xe)l= 3" 8% Xa (2) (5.85)
ah gd =0 (b) *

Comparing eqs. 2. 34(a) ana 2. 85(8.) we conclude that the gA-ﬁﬁ’s
are the structure constants of the group T( ‘QOK))
A__ A_-
STER = 9 BR (2.86)
Comparing then eq.2. 35) with the second of eqs.(2.82) we obtain

namely that the gRPQ’s are minus the structure constants of the
group S(JWQ")) . It follows that the second of eqs@.82)is simply
~ the Jacobi identity for the structure constants of the group .
From egs. 2.85(b) and (2.87) it follows that the generators

Yj\. close an algebra
- - 'R s .
[YP,VQ] = -%7éaV¥r (2.88)
thus they represent the generators of an N-M parameter subgroup of
D’(O‘W’\W) « We shall call this subgroup {j(dw G"))
With eq.2.85('b) taken into account the second of eqs.(2.82)

R
imposes the following conditions on g I.’Ei and g f,‘é

Aaas®ea =0 (2)
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Comparing eq.2.89(a)with the Jacobi identity for the structure

constants of the group we conclude that

%g pa = 94 K®s  (K’s: acfitroty wastouls) (2,90)

Making then a reparametrization (2.9) satisfying eq.{2.33) and
-such that . .
= QA= (- Q = - P
R=-K2 0O (o 9 Q:QO'PK K)(2.9I)

Wwe can set .
a3
afsa=0 (2.93)
Further reparametrizations are now limited by the condition
A . A
2e = 0Rg =0 (2.93)
and therefore they do not mix the W’'s with the W’s . '
With eq.(2-92) taken into account eq.2.89(b)reduces to
B
% pE =0 (2.94)
and with eqs.(2-92) and (2.94) satisfied ¢q2.896)is an identity.
From eqs.(2.94) and(2.92) it follows that the generators T

also close an algebra (that of the group Pj[d"‘“}’”)))

{Ys,Y¥a1 =-%%53 V& (2.95)

LVs,val=0 | (2.96)
We realize from eqs.(2.96),(2,95) and(2.88) that the group
3 (W) is the direct product of the grousJ(dWEH) anaIdWes),
From eqs.2.29(b),2.85(b)2.92and(2.94)as well as eqgs.2.34(a)
and (2.86)we conclude that the group F(dWED)  ig simply the

adjoint of the groun o C¥®9) |, -
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We now go back to eqs2.20(c) and2.20@) Since the space I
is a n-dimensional Riemannian space, we can define its affine

connection in the usual manner (torsion free)

b -
G'C.z e l)e:»uxl Cbc)d

26", 96! 96 ) =0

Cbc)d - 3
2 2¢e Vdp DQa

We can then write eq2.20(c)in a reparametrization covariant
manner

b bl
'3;;‘ -\‘Bﬁ =0 (2.98)

a . . - .
where JK is the covariant vector corresvonding to JKa

M ab
Vg = (CHEENY % (2.99)
and"'l" denotes the covariant derivative with resvect to the
connection
alb

Va0 = 9'3%/9% - C‘:b 3% (2.100)

Equation(2-98) is Killing’s equation for the Riemannian
space 'DQ. «We conclude that JKa are the comnmonents of a
Killing vector in ﬁ)& and XK generates an isometry of the space
344 . Since the XK’S are the generators of the groupfj(qvﬁl)it
follows that:r(W(bQ) is either the complete group of motions of the
space '\\R/ or one of its subgroups.

.Conversly, the space:}L must be a n~dimensional Riemannian

space admitting a M-parameter group of motions.
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We now turn to eq. 2.20(a)

Xg (—‘ABA + J?Aa,%&' BR- e QB&%QAR =0 (2.101)

This equation reﬁresents a systgm of differential equations ge-
nerated by the XA’S for the metric coefficients fAB' The inte-
graﬁility of this system is examined in appendix II .From that
analysis it follows that eq%.IOI)possesses acceptable solutions
fAB for any group of motions of a Riemannian space be it
compact or not.

The remaining conditions on the lagrangian given by eq{?.??)

which have yet to be discussed are those imposed on the functions

h and e by eqgs.(2.76) and (2.84) resvectively
Xﬁ h=0 X"S, e =0 (2.102)

These equations denote the invariance of the functions h and
e under the action of any element of the group:j(qvx)). Hence

these functions must be constants along the orbits of the grouv

SCW6D> o;j{- .



CHAPTER IV

APPLICATIONS

In this chapter we shall use the resultsobtained previously in
order to get more specific information about the Lagrangians of our

theory.

We shall only deal with the case that the unphysical WA'S are
absent. For this case we study the removal of massless scalar fields
and the corresponding acquisition of mass by the vector fields. This
will be done in the first two sections. In the last sections we give
all gauge invariant Lagrangians for the cases when the space of scalar
fields is of dimension one, two and three. This is done for each
dimension by first giving the group of motions of the CF—Space then the
corresponding metric of this space and finally the solutions of egs.

1]
(2.101) for the fAB 5.

A main distinction that is done in this chapter is between transi-
tive and intransitive groups of motions. One can think of the transitive
groups. of motions as more physically acceptable for reasons like the

. ' 14 . L .
exclusion of Jordan, Brans-Dicke-type of theories and the fact that
Higgs bosons which are present in the case of intransitive groups have

so far failed experimental verification.
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1. Removal of masslessscalar fields (transitive group)

In this case it follows from Eq.(2:84) that € is a constant,
abgsorbed in the function 41 of SZ.G which is also a constant
because of Eq.(2,.76). It also turns out that the solutions for

ab

¢} and ‘ep‘g of Eqs. (2.98) and (2.101) respectively contain only

-arbitrary constants and not functions of integration.

It is evident then that all the scalgr fields are massless.

Since for a transitive group,

ttank ( '3(\&); n (3.1)

everywhere on ,\.‘k:

ve can use N of the generators of IJ'CL(’@»)) to move from any point
on '36 to some fixed point flq)‘ - the same for all space
points Sx . After this fixation, the matter Lagrangian assumes

the form :

i‘mz ‘(SRQ,NSB&)\WA\A We‘a“"‘é‘.(-")gg)\ ch Fehv (3.2)

Thus, all the scalar fields are removed.

>
The constant matrix ( ‘QAB )‘, which now appears in front of the

kinetic part can be transformed into the unit matrix by a

reparametrization (2.2%(b)), Then it is evident that the matrix

\42};9, =()3Aa,\560“)| | (3.3)
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will be the mass-matrix of the vector fields., It can be diagnon-
alized by a further reparametrization using orthogonal matrices

9“9 which will leave unaltered the kinetic part.

If the group {j(‘-ﬂq&)) is simply transitive (n = N) there is
no remaining gauge symmetry after the fixation., If, on".che other
hand, it is multiply transitive (N> n) the reduced gauge

gsymmetry is that of the ¥ - n parameter stability subgroup of
the point of fixation v/\(_()‘ .

2. Removal of massless scalar fields (intransitive group)

In this case the action of the group is transitive on the
minimal invariant varieties which it defines on \j‘{)-

Thus, if we redefine our coordinates in 36
’\‘)&: LP&.(LP\)")LPV\‘) a: \)--' )m
gd = Qﬁ(,"?l). .. D\‘o’\)

d._.\)_”)“-m (3.4)

such that the minimal invariant varieties are the m—-dimensional

subspace of D{, defined by the eqns :

dog =0 (3.5)
then in this system of coordinates,

'jgd =0

(3.6)

(3.7)

= Naz O
XA-‘\‘SAQ-%W&‘
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The "-\’5‘ 95 are the coordinates on the minimal invariant varieties
and the vectors 9/99d take us from one minimal invariant

variety to another.

It follows then from Eq.{2.84) that e, h are independent of
_ | (2.%6) |
the W§ °S: :

e= 8(910.. )Qn_m) 2\;}\( g\) .. ‘)QV\-M) v (3-8)

and also the arbitrary functions of integration contained in 'cAe

Gab

2
and can depend on the €°S only .

Hence, the 0 fields may have masses, but fhe AV fields
are necessarily massless., These fields can however be removed by
a fixation of the point on the minimal imwvariant varieties, the
argument of Case I applying here too, since on these varieties the
group 3(\.@@;_)) has transitive action., Let the point of fixation

be m“’\ « The matter Lagrangian assumes then the form :

L= e ~(6%°), 84, 0% + 2(6™" Uya) 01 ™

_('jAa‘SBa)IWA\" Wey\ 3é-tpgg)| F“:\, Ferv (3.9)

N

All the massless scalar fields have been removed.

The coefficient of the quadratic term in the vector fields

is now a function of the 973 e The mass matrix of the vector

fields is now given by :
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Y‘%B: {(jpfa}e»a)l_lm]n (3.10)

where min denotes the value at a minimum of the "potential" e :
A

Stable constant classical solution for the 96, ’g (with Wy.: 0)“ :

their vacuum expectation value in the quantum theory. Equation

gives actually the mass matrix provided that

[ (QAB):] wao) (3.11)

has been transformed beforehand to the unit matrix by a reparamet—
rization (2.Z(b)). If an analogous reparametrization is used to

set also

[(G‘\b) ] . - gob (3.12)
t mwvy .
then the mass matrix of the remaining scalar fields 96. is

Qm%’)o‘b - _l[ 2?_2—1 ‘ (3.13)
2 39&39{7 8384

In the case that the potential function e has many minima there

are correspondingly many mass matrices defined,

The comments made at the end of the treatment of the
transitive case concerning reduced gauge symmetry, apply also here

with respect to minimal invariant varieties (with n replaced by m),
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3. One—dimensional space of scalar fields

A one-dimensional space can admit only a one—parameter group

of motions whose killing vector can always be brought to the form

X=(1)
The metric of the snace'j<i is given by
ALPLPCx)]=d ¢?

and fAB=fII = is a positive constant. _
After fixing the value of Y at Y =0 we obtain the La-

grangian

of=|<ra-x-w/‘wﬂ—%c)(””](ﬂv

describing a massive spin-one field in G.R.

4, Two dimensional space of scalar fields.

A two-dimensional space can admit one, two, and three vara-
meter groups of motions. There are two two-varameter groups,the
abelian,(corresponding space flat) and the non-~abelian (correspo~
ndiné space of constant negative curvature) both of which are tra—
nsitive. The three-parameter grouvs are of course the complete

grouvs of motions of a two-dimensional snace of constant curvature.
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In the following use will be made of a represantation of the
killing vectors and a coordinate system of thejkL—space such as to
make our study of the three—dimensionalj<J—spaces admitting an

intransitive group of motions easier.

4.1 One-parameter groun

The killing vector can be taken in the form
X=(0,1)
and the metric is gi?en by
LL2[YCu]=de®+b@dy*  pe)>o

f,5=F;r=f 1is now a positive function of © .

Using the generator X we.set \V =0 and our lagrangian becoues
_ ] _ 3 2 | "“’f
L=4h(e) R-e@-5, 8/ b@wuu-Tc@f ],

describing a spin-0 field which acts as a scalar gravitational

field in interaction with a massive spin-I field.

4.2 Two-parameter grouvs

a) Abelian

The killing vectors commute

[X, X.]=0 X, 21,00 X,=(0,1)

The metric of tki is
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L1%= b Ayt + 2b2d Y, d s bR e

where the constant matrix (b) must be chosen positive definite.The

gauge group is simply the group of translations of a flat 2-dime-—

nsional space.
fAB is a positive definite constant matrix:

=C F=0

i f10= 10 20~ Cop

II II

Using X, Xz, we may fix %%==\Pl==0 and our Lagrangian assumes

the form

Apy . B
L=kR-A-t*W Wl e (7 f L, (AB=12)

which describes two uncouvnled fields of spin~1 in G.RH.

b) Non abelian

The commutator of XI’ X2 can be brought to the form

[X,,X:]=X, X,= (1,00 X,=(o,e™)

and the metric is

22 2 22 22 2
L[ Cx-(2b% ¢ 5] )dg +2(0 - b ) A0 At b dds
The matrix (b) must be chosen again positive gefinite.

Integrating eqs.(2.10Dwe obtain for f,p the following

fa1
| fu (Ciz -Coy ) e ™ |
9{22 . ¢y, ez%

1l

C11 - ZC'\Z LPZ/ -+ sz LF;_Z.

1
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where the constant matrix (C) should be taken to be positive defi-

te. After fixing L{%= kﬁzzo we obtain the Lagrangian

_ AB  Au B 4 Apy B '

L=kr-2-bPw™wi-2Cp F77FL,  (aB-12)
1 -

where! F/LV =§/LLV , /uv {/ng W/w WV W \A//u,)

Evidently this Lagrangian describes the interaction of two massive

spin~I fields.

4.3 Three-parameter grouvs

a) Buclidean
This is the well known complete group of motions of a two dimensice
nal Euclidean space [ ,= S0) e T(2)

The killing vectors are
X4:(4)O) xz,:(o)i) ng(_¢z,¢1>

and they obey the following commutation relations:

[Xd,xz]zo [Xz.,xa]: - xz [XL,XJ*X«

The metric is of course flat
dLYC0)= b (At +d g )

where b is a positive constant. Eqs.(2.101) give

]64423[21 =2 533=°<4+°<1(‘“F42'*“Fzz)
quzo 3(43= ~y Py 3(23= <L, P4

and to ensure positive definiteness we must take 4{1, X, > 0.

Using the translations we may flx Lp1 = Y, =0.
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Defining then
4 . 2 3
=1 +L =
the Lagrangian after the fixation becomes:

) Oy LAY
L= KR -M-bW*Wh-ZFAFav- FH Hu

F/(;LyzW/L)y—wv,/&“L(\A//LLAV—\A}yA/&) H/&)I:A/U.)V' A\))/'V
This lagrangian describes the electromagnetic interaction

of a spin-I field.

b) Spherical
This is the complete group of motions of a two dimensional

sphere (SO(3))with the following killing vectors

)(4 =(cos @, - col s sin 0,) X1=<5Ln @, cot §, COS{PQ
X;=(0,1)

The commutation relations are

X ]=-%, XX )= % Ix, XJ=- %o

and the metric is given by

AL [pen)]= b(dg+ sin®p, 44,")

where b is a Dositive constant. Integrating egs.(2.101) we obtain
Eu = oy - o(ls{nlk(), s(nltpl guﬁdl gint (P4 Sl'h ¢, cos §,

}zz = ody- ol, SN cost §43 =-dy Si”LPﬁ cos @ sin{.

)Cas = oo - oty cos” §13 = &, sin Y, cos Py cos g,

The requirement of positive definiteness is satisfied if d1>0,dl>ci4

If we now fix %a==§g LPZ= 0 and define
A . 3
W Wy Wi A=W
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. the‘ Lagrangian becomes
x A4 MY _x A 14
]\0_=KR‘)\‘E\A//LW/L'—23°C4F F/uu‘i("é»:“o‘z)H/u H/u.v
where '
F/u): \/\//l«L)V - \A/\/,/.,(, ——»i. (W/LLA)}_ WV A/,L-)
L X X
H/m/: A/u.,v— Av,/a. + ’Z(W}L W, - W, \/\//u, )
It describes the interaction beiween a massive complex spin-I

field a massless spin-I field

" ¢) Hyperbolic

The group is SO (2,1) with killing vectors

X, = (cos P, , - cth ¢, sin g, )
X, = <S(nLPL ,dem‘-(h COs “PL) X3=(0,4) '

which obey the following commutation relations

[Xa,xo:_lzx3 , [X,_, Xsl]z"xﬂ ) .[X3,X,]:'XL

Themetric’is

LU [90e0]- b+ sl g 4) (b=const. >0)
Egs. (2.101) give

§M= g+ oy 59\,1(?4 Sinl(.P,_ §“_= ~-d, Skztﬂ sin LP,_ cos (-Pv_
511:«’44‘*0(1 SJ’n:LLR COSZCPL gm c-dla g C()4 ch L{){ sin @,

§33 =dy coskzqu - dy )(7_3 :—"(L SZ\/ZCP-' 5|-n LPL cos (Fz_

and this is positive definite for o4 >0 , Ko D> edy .

He now fix Lﬂ = LFZ=O and ciefine
4 . 2 3

after which our Lagrangian becomes
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L-kR-N-bwhw -2 FN 2 (- ) 1 H
F/w: \'Aj/‘&)v—'\)\/v'/&—ll(w/bp‘v‘\)\/v/\/b)

C X X
H/u\"—' A/u,v“ Av)/u, - z(\/\»//»\’\/y ~ Wy \A/,u')

5. Three—dimensional svace of scalar fields.

A three-dimensional space can admit I,2,3,4 and 6-parameter
groups of motions. In the following we shall destinguish between
the transitive and intransitive 3-parameter groups. Also since a

~4-parameter group contains necessarily a 3-varameter one we shall
examine separately those containing a 3-parameter transitive from
those containing an intransitive one.

5.1 One-parameier group

Tha killing vector is
X = (001)
and the metric

LU TYE0) = BT Ay AY,

where b=b($, ,4,) is a positive definite matrix.

f f, hy, and e will now be functions of L€4 ,LFL and T

AB™
must be chosen positive.

If we fix ‘V3=O we get the Lagrangian

f /R,(LPH R« € <LPI ’LP [333 W/LV/L— 4-tp")/“' Le‘)lu;
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l;z(@lw’ LP“M_{_ ) b& 3\)\//& ‘-P“/u't- Zbﬂwf’” (_szu__ 2 BZLP:,/L(P’—{A‘%’ Q(te)te)]fuvf/w

5.2. Two—parameter grouvs

Since two generators cannot have the same paths,the minimum
invariant varieties of a two parametervgroup are surfaees geodeti-
cally parallel and of constant curvature (negative or zero).‘l‘aking
these surfaces for & = constant and their orfhogonal trajectories
along the lines (9) with parameter © their arc-length, the

metric will assume the geodetic form

AL (90 =d e +b, dPSs2b, dQ A+ by, df)

where the matrix (b) depends on 9,% ,LPl and is positive definite.,
With such a choice of coordinates the action of the grouv re-
duces to its transitive action over the two dimensional hypersurfa-
ces defined here for © = constant. The groups are of course the
same as in the two-dimensional case. The metric on the surfaces
e = constént has obviously the same L{J4 ,\Pl, dependence as before.
However there is an extra © -devendence , that is the wmatrix
(b) will now be @-dependent. Since the egs. (2.101) for fAB are the
same as regards the LPHLPLvariables we get the same solutions as
previously where the éonstants CAB will now be arbitrary functions
of © subject to the positive definiteness requirement.h and e

will now evidently be functions of 8
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a)‘ Abelian

Metric:
AL [900)= dote b d@i+ 26 df 4@, + bAY,

whee (b) is a positive definite © —dependent matrix.

fAB is now a positive definite E?—dépendent matrix

](41=C“(9) )(222 sz (e) {42’&1(9)
After making the fixation q% = LF1=O we obtain the Lagra~
ngian

v

' AB A 8 ArV_g :
L= 20)R @6, 0/ by w" Wi-Cu@FF2, (3=12)
describing the interaction of a spin-0 field with two massive spin

I fieldse.

b) Non abelian

The metric now is

‘ ' 2
L Toen]-dd (b2 80, B502)dg, +2(6 - 5 Y.) df,dds + by, Y,
where b=b(©) and positive definite.

For fAB we have

| 4 1¢.
f’“ =Cyy —2C12LPL+CD.LPLL gu.:(cm'czz“ﬂ.)e 1 g22= Cz2 € !

and at %a = LP =0 the lagrangian becomes
B A
L= her-e@- v wi-c,, @ Fr, F7

where .

1 1 2 2 y 5 2
. FDMV =:f/u4) ) F}MJ):'§>&V - (VU/& UJV - VU:; ijb)



79.

5.8 Three-parameter intransitive groups

The minimum invariant varieties are again surfaces so we
shall also here use the same coordinate system as previously. This
brings us to exactly the same situation as before the only change
being that the similarity is now with the two-dimensional scalaxr

sbaces admitting a three-parameter grouvn,

a) Euclidean

The metfic is now given by
&LZ[KQ(3X)]=dGZ+E(e)(o[k{?,2+d,(?;) L(e)>0

For fAB we obtain

&44

4F47U= 0 | }43 == 0(2(6) k?L J[Z3: olz(e) (‘P'i

where 0(4(9), 0(1(9) >0.
After fixing %% = Lf1=0 and defining

i"

j[”-: oL, (0) §33= Xy (8)+ 4, (0) (k{)ﬁl‘*’\?z)’)

E , 2 _ 3
W/u, =\/\//u, +LW/,L A/u," W/‘L
we get

AV oy (8) MY
,fzk(e)R,-e(e)-e,/ue,“-b(e)w,.w"&"‘f’r”;f-"%@ H™ H,v

v
where F/*’ FPMV are the same as in case 4.3 a)

b) Spherical

The metric is

AU [9e0)= d o™+ Le) (cUPf‘{ sin'g, d49,)  bey>o
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and fAB

oL, are now functions of © and L (6) DO 0(1(6)( s (8-

has exactly the same form as in case 4.3 b) where oy )

-
|
Fixing Lﬂ = —;j LP;_:O and defining as before,

4 . 3 2
W/u, = W/A, + L W}A, A/u, M
we obtain the Lagrangian

" X o(0)_pV g (dyl0)- dalO) MY
L=h@R-e@-6,.8/b@)w - AR - S

bY
where F/u , H/“v are the same as in 4.3 b)

c¢) Hyperbolic
d[_’“w(ax)]z 6%+ b©) (d ¥*+ skl% o[‘{)f) Lg)>0

and fy5 is the one given in 4.3 c) with oy o, now
functions of €@ and o4B)>0 d 2_(9) > dj (8).

Fixing LP,‘ LP?. =0 and defining
W/.A/=W/u_ 'f‘LW/u. A/&'—'Wfi
we obtain

;f *?»(e)r{ e®)- e,/we’” b(e)w)L X "‘(9)[:/4\’ x (og@zix@)H .

v v ,
where F/u ) H/u are the same as in 4.3 c).



81.

5.4 Three-parameter transitive groups

These are the nine groups that have been labeled by the la=
tin numbers I, I, «e.. IX Dby Bianch%swho has also obtained
the corresponding three dimensional épaces which admit them as
groups of motions. The type VIII and IX groups are simple
whereas all the others are integrable (non—simnle). In the follo-
éing've shall make extensive use of Bianchi’s work in the deter-
miﬁéfién of the lagrangians. The fixation of @, y Py, ><f3 will
always be done at the origin =@, =®,y=0.

The solution of eqs.(2.101)will now depend on six arbitrary

constants Cyp. This matrix (C) must always be taken positive de-—

finite in the following so that the positive definiteness of fAB

is ensured.

a) Type I

This is the abelian grouv in three dimensions

XA:(LOIO) : X.l-_-(o,i,O) ’ X3=.(O,0,'1) [XA)XB]:O ’

The space is of course flat

L[0T =P e d @t +d ]

- and fAB

~Using the generators of the group we move to the origin and

is a constant matrix.
-~
\
our Lagrangian assumes the form

. 4 4 2 ) 3 A
{ =k R-n- W W W ww” - e f

B/#V
o |
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describing three uncoupled massive spin-I fields .

b) Type II

This group has the structure

(X4, %2)= (X, X,)=0  (Xg, X,) =X,

X4:(O,1,0) ) xz_:(o;ol” ) Xb :(-'1, LP‘;) O)
The metric is

2

AL [PE0] = +d P 2 g, dg, Ay, « (1097) d s
Solving eqs.(2.101) for f,p we obtain .

' 2
fﬂ =Cu. X fzz = sz?“zcn‘ﬁ +Cyy Lﬂl, &3 = C33+2’C43‘103+CM\F3

J(”’:C“J’c“ r §13 =Cist Cy s §23 <Gyt Gy s+ Coa s *Cs

where CAB ag has already been said must be chosen positive de-

finite.

After the fixation we‘obtain
- N RN LN LN L a2 A §/~V
L= kr-n- Wiw Wi wows - ¢, (',
where -

oo = (U3

¢) Type III

The killing vectors are

X, =€0,1,0) , X,=(0,0,1) , X5=(1,-=,0)
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and they obey the commutation relations
(Xy,X2)=(Xe X,)=0 (X5 Xi)=X, .
The corresponding space has metric

LI [l d@+ Pyt e’y 0, 49, +d @,

where n is an essential constant (that is for different values
of n the type of the space is different) and n2 1 .

From egs. (2.101) we get

‘ 2., 2 29 {1
f/M :CM e ) g?_lzcll f g‘33=C33 +C44 LPle —2C43 \eze

K v 2, ,
f“= Cip € d ) )C43:C43€ - Cas \&6 ) gz\f sz - Cag k@_@

The Lagrangian after the fixation is

L=kr =X =W w kW W - Za v W

A Py, 2 I/u\’ 3 3y VAR Pakd IMmY
ECMT;,VF "icugﬂyg ’173C33§/WE ‘Cnﬁvf 'Cur,uvg —C, /wg

where

S ' 3 4 4 3

v = S (o wy = W)
a) Ty’pe'IV

(X, X )0 (X X)= Xy (Ko %)= Xat X,
X,':(O,Z,.O), X,=0(0,01) , X3=('2; Y, + 25 ;“93)

The metric of j’( is

AL [oe)- A0+ P (T +29, 40, Ay + (974 n®)d ;)
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where ‘n is a constant (essential).,

For fAB we obtain

§ or e¥ &7_ (Cant Caz o+ % Cu P, )e

](33 Ca i CMLP e +(LCHL?1+CM+C41)L? Ps e‘DW(CH‘Q t2C5 W *
z ”91

Cpa Py +20, %)filtﬁ‘f (Cufy + & Culp+ €y Pr+Ca +C22>LF

. fn’(&z*%&ﬂ-ﬂ)e " 43:C43€1Lﬂ+(%gtl]Oz_"’CM‘%*_Z—.CM &PaLP3 +C12,L?3)e i

1[23=(C13 +12C43LP,)€J’:%+(£ICM ‘PaHDz. +£C44LP&LP3+C41LPALP3;+5£C4Z(~PL +Cy, ‘~P3 +
szLP3 +J“_’CM LP,Z%)G\P'-

After moving to the origin we have |
3,43 4
L= kR - xawhw ot W W s wiw’- Lo, fr, £

- 3 3 Y
"1 G B, P -z 0 [, j(”*

where

1;3:3( C(Whw) - W wh)- (Wewy - ul W)
F/?;v‘{,uv- (\M/&WV’“W/MWV)

e) Type ¥

(Xo, X )=0 (X0, Xg)= Xy (X5, X)) = Xy

X4=(0,1,0) ; Xz,'—(O 0,1) X3:("'1Y_\ ) \’PL ,Lps)
AL @e0)- dgtee ™ (9 + dip?)

This is the hyperbolic three~dimensional space (constant nega-—

tive curvature).
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‘Eqs«{2.101)for f,5 give

][“ Cu ezntﬂ’ »* 6 ezn({% )C 3 Css*(CH‘Fzszczz‘P;*ZC42‘Pz"Ps)ez
2(C13‘-P2_+C13 %)8“%) ‘?’IZ = C1Z ZnL‘Q Th C13€ + C14\??.+CIL"P)€ \P1
](23: Cys e“kp‘ +(Cro P+ Ca ‘Pa) eznf‘

At \P’!. = LP,_z LP3=O vwe. have

/L ‘ V
2 Csy ﬁwf C47-F/‘VF/L“C43F/AV§3 . Cas /i"fa/u

W heve

szf;w - (W W, - Wl Wy ) | F;vz g;v_(w;kwf,fw/iwb)'

f) Type VI
(X1,X7_)=O , (Xq,X3)=X4 , (XZ.,X:}):X X
X4=(O;4,0> , X17(01011)_ ) X3:<_4)\’€1,R—bP3>

] ¥
2+ )LptdePs'Pez ‘P-Oupsz
2

wheme 1 , n , essential constants and 1 # 0 ,04n"¢7%

f = Cy 82% ' §21= C2s (‘322%
2P, zmt(? ¢, 2,
fsa Cyy t C‘HLP e %, LP3 L!L*Q-CIZLP LP; +2C43LP26 +20Cy 95 €

fd?. = C‘!Z e(eH)LP‘ f43 C{3€LP + CM ‘-P—)_ + /Q C42. tps ((.*—4) LP1
£23 = C23 QQ%-F C\ZLPL e(e )(91 4 X CZL L?g €2 tp,l

INTEIE 4+ eztp'dtPﬁz

The Lagrangian after the fixation is given by
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: A 2 1 2 _
LR W WYL 2 W WALy B -
3/(1.1/

5 Con E P4 L 170 Pl T/ B {5 Cos B f

4

Py (W) B - (Wi Wl W)

g) Type VIT , |
(XMXL):O ' (Xﬂ,X}):X?_ , (XL‘X3>:'X4+’QXZ
XKo=(0,1,00  X,=(0,01) , X,=(1, -Qs, P, +1,)

oU_z[ker)]:dLP,%e.M{(Mcos w) 4@+ (L cosw @ +wsinw Py +
+Qn)dk91dk]03 + ('&—2%3' coswy + &_Zb:) sn ka-; +n) ottPjg

where 1 , n , essential constants, 0 & 124 4 UJ=\J4_ - 12, n? > 1

Eqsd{2.101) for f g 8lve

A
f i 2c”—z,(élc,l-cn) 2.(LCiz- Czé);(z fl)c,,, cosb)- 2&2.:&&1_ smbtﬂ] s
{ fZsz 2(((3{2 C“)Jrz(ec,z, C)+(2-22Cor e b Z_CzJ.FZQ;_ sin buP] e—f‘ﬂ
22 b*
Ol (C e 24y
j( [—L(C44+sz) 'ZCn,_*.q 12-4(Cuy +Coa)  cos UF _E_LSM(OLP <
bl

533 =Ca3+2 0 (o +2f3) -2 Jods +§n ‘{)fntz,(lfn v{nz)({’&?ﬂ(El](?_,_-zf_g,ﬁfﬁ)‘f’f
3= M "'](42 LP?. + (efn - {44”)3
" ](23 = 0+ gu LPz,.‘*' (zgu “{12) kes
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where ' . » 'et_P ’ .
. - -z M
/LL:[C”, cos 'E%L()‘ - 26 L'e Cas) sm%LPf_l e

: L
E’:[Cm COS [%LP, + QC”(}C“’) SIn %LP,] € =

This is a rather complicated Lagrangian. However after fixation

we have

L= kR M- wi W (B2 )W, Ww W A ()W W

i 1Av 3 3 A 2 30V
~ 3 By P 4 G By P4 G B PP, P F 2%, By F

- Ca5 Py FW
where
2 2 A3 3, .1
F,uv—‘}/w <W)u,Wp W Wv)) avzgﬁv—(wﬁvawpwv)
2
Flv: 2y~ L(WaW" - Wi Wy')
h) Type VIII

This is the first of the two simple +three~parameter transitive

groups of motions. It has the structure

(thz):X4 , (Xq,xa): ZX, ) <X2,X§>: XB
X;(e’\%)—t‘ozz e'LP’)—zdﬁze'L&)l Xf(o,o,n , X,=(o, e‘%) 0)

The metric of the correspoding space is glven by

ACToel: b A ddgy ¢ j=n3
b= Q'!fﬁ) b7 Q) | b2 (Qe) - Qi +E Q) -%)

543_ Q) (a G ), | LA - Q)X

b.12: &" (7(_1)
12

Q)= ?47(, +‘17_)(1 +q3)¢1 + Gy Xy +ﬂ (9(1,611.,9(3,?%.6}0 ln)const)

)
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fu (Y-t Yt 4 + 20,7y g, Yus +Lf’iju ye s
fnnga—zuflgua{&jg s Y o>

frz= (Yo -2, You - Yoo + 3alyas- &(’23\333 Ye
J[43: 413 -QLPﬁjngrLPf‘j;; ) S:“ = (‘313“’?1_ ‘333)6%

‘jn—cu ‘j = €1 +2 CiP, + Ciy LP1L
l;}33 = C33 + 4 Cas L{)M Z(Zczz +C43>HD, + '+C12LP1 + Cu“ﬂ

‘j41= C12,+C44‘P4 , \343=C43+2C4z“€1+c41‘-P1
o \313:C23‘f(2ci2+(‘,13)k—?4 + 3C12’L912‘+C“ “P13

After fixation we obtain

£= KR~ ) gow W (95 13) WA WY g0 W W

~Guglw 2 (B )ul W B W WYL R P

i) Type IX
This is the familiar 90 (3) group whose structure is

(X, X,)=Xa , (X2, X3)=Xe , (X3, XY= X,

The Killing vectors are given by
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K010, Xy-lcsi ot sinf, i)
X.,’, = - SmLPz )T,COtkP? OOS\'PZJ CM )

; sing,
The metric b9 where

AL [QG)] = bLJoLLPi, 44, L=

is
M ¥y

P
b =20¢ws % +2§ sSin

7
CUP Y, §
7+

2
B 250§, cos, (bsind, - ¢ cos f3)-2 Bsinig, + L2+ A sin,
\333: 0(7_ -

b*= cos @, (beosfy + ¢ sim{)s)Jr'zSin ¢, (es'nmL% - g ¢os {j‘:)
b= beos Py + ¢ sin s

2. 0% o5+ sin @y (b sindy - ¢ cos ,)

TAB  is now given by

)C'H: ZM ) gn =%<Zzz+233>+%(Z21‘Z33) Cﬁ’JZ'-VZ:l' Z,3 sin ZLFZ
§33 = '42: (Zzlq-Zsz)"‘I(Zzz."Zaz) cer 2% - Z 23 ey 20,
£4z= L Co3fp t 2y M“Pz

{43 = Zyz vy - Zaa won, P

f% = L2z (,9424.@_« 'ji (Zzz"zw)m Z“P?_



Where Zuzﬂi(jﬂ +‘333>’41(‘333*‘2M)m2% fjﬂ A 2,
L2 ‘3221 ) Z33=ji <‘j14 +‘j33)+"(2’.(‘(%33 *‘310@11‘?& *“&13 MM’ZLﬂ
Ly = “341 Lm‘%“‘aza /va\P,, ) Z43:‘3130“1“{)1’1{(“333“3“)54;“1‘{)1
ZZB:\’AB c,m‘-ﬂ—tvéu /}(/V\/\—Fq v

and

%M‘- Cu | "37-9." z (sz’szz)“Z(Cu‘ C33)co*5 295 + C23 A 2>
yE:h 7(Caa + Cy3) - 7(Ca2-Ca3) e 295 = (a3 2w 205
‘342=Qm, CMLPa +Ca3 M% Ljn: Ciz W“Prca M‘{)a

‘323= Cag ot 2¢; - 41 (Caz,- C33) A 29,

where CAB must be chosen positive definite.

The Lagrangian after fixation is

Z
L=k -r-2ww-(2e+% Z& JWrW g e wd - 2 bw'w?
{

“2eW - fwzwz_ z Cu F/:v FoAY- £ F;v FAY 2G4 F,:vaa/"V
1 » \,
~Cig F/m, Fl}w- Ci3 F/Aw, FoMY - Cas F;v E3m
4 4 3 3 5
F/‘“’zi(/w ) (\U;WV - W Wy )
T e |
F/AD ~g/m) ) (Wﬂwdv - W;u \I\Ji)

Fov= = (Wi W= Wi wh)
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5.5 PFour-parameter grouvs containing a three-—

vrarameter. intransitive.

There are two four-parameter groups of motions containing a
three-parameter intransitive. These are a) the one containing 50(3)

and b) the one containing §0(2,4) « The corresponding spaces

"will of course constitute particular cases of the spaces 5.3 b)

and 5.3 ¢c)

a)

The Killing vectors and their commutators are
x‘l:(O’C’mLPB)*CUt‘?ZMLPB) ) XL:(O)M\{%) M\?L(MLPB’)
X;=(0,0,1) ,  Ku=(1,0,0) |
[Xq, XJ:‘Xg | [Xl;XA:—Xll, [Xgux*]:— X2 ) [XA »X‘A:O

The metric of the ‘f) -space is given by

LU L9 = AQT+ AP+ 4in2, defst
Eqs. (2.101) for £, give |
ﬁﬁoq—ou M, Ay fn" da=dy s o Cor'
forusaootdy -, gt f
542: o M2, nify ol R o,
furfa gy sonds , fass e e o
Sag= o rncfe v s ) )(wfﬂzwv%_
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where o/, /3410(2 , 52 constants which must satisfy

L >0, da>dy 5 >0 )((0(4"0(L>ﬂq ~/j’22)>0.

in order that fAB is positive definite.

After the fixation we have |
L 2 2 ¢ po yRY
L= k- Wi - wiw wihw —‘zo« P F-
_ 4 2 VA L’/‘”‘
240(1 F/“ F:u (0(4 dL)F F Lﬁﬂ :f/‘“’j( -
2y
-ﬂl F/A\)f M

o= (W2 W - WE )
Fav= 4= (Whow’ - Wow'y)
Faw {0 (Wi W - Wi W)
b) .
X4=(O,¢wt()3,—otb{’z,m“€3) Xy = (0, a0y, Khofy confy)
X3=(0,0,1) o Xy® (4,0,0)

[X"XZJ:X3) D<27X3]=—X1 )[xj .XJ:'XL ) [XArx‘{]:O
LLLP0x] = A+ AT+ 4G AP
n=Artds AJ:(P?. MZL&, , fn:oh +o(7_/;,£\,zq_,‘)z_ M1\‘P3

!
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/§33=°(7_CQ\,2(PZ—0<4 | {mﬁﬂf

fu =-o{z/,\)2&t{>2 sy @y | f«z; Ay ’”*“f)z R Ao
fruospn b am s (e do ahtfe e nifs
S o L

Aoy 30 > d, pio ((a-d)p,-pi)ro

After fixation we get

LoKR=x - Wi Wi w A wt - L4, B, B

i NEYRY) 3 3umv ¥ rmV 3 gV
s Bl PR S ) B (7 EL £

5.6 Four-parameter grouvs containing a three-

parameter transitive.

There are five four parameter groups of motions that contain

a three—parameter transitive one. These are:

a) The one containing the tyve-I group

b) " n " 1} type~II 1"
c) n " " " type—IiI ]
d) n n " " type-V n

e) on ] ] n. tyne-IX " .
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a)

This is the group S0QR) & T(3) with Killing vectors

R=(1,0,0), X;=(0,1,0) | X,=(0,0,0) , Xy=(f, -1, 0)
shat sabinty |
(% )= D)DK = o
RIRIEES SR D S S ED
Mo mebrioc is of course flab
AL CPe0)- A« 4+ dips
snd £ is given by
s I TN PR Y.
fuu=T + < (i) firah ) b8, [ 6
where (b, f |6 constants ana

L3, >0 [W‘52>0

After fixation we obtain the Lagrangian

- ke- X-W; W'/ w;wl/‘f_w;w%_ L& F/‘WF‘/‘“’_

-4 F;VFI/W——’;@{BV{%‘UW g:vg‘*/“_" vaj(u/*"
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vhere

’ F/LV;](,:AV ‘"(W;Wq\; “W;W2V>
Fov={ - (Wi}, - Wy W)
b)

X/‘:(O‘4IO)[ X11[0,0,4), X3:(‘4,‘{)3,0> ) Xq:(L%,Ji(‘p:"P;),—"P")
[X‘IXZ]:{X‘IXA:[:X")X"A:O,[xlux;}:)“ )(XZvX‘;}:_XS ,(XB/XH]: xz

cLLz[LP@Xﬂ: &@l+ dLPj‘I‘Z_ G dfs s + (4 ‘Hal) CUP;V
A P
e, PR o) P (05D

f”—}-‘- §- 74 (&RZ*‘_();-) ) gz(;:(g'/})t?f %—dk{)‘sa 2 “Pa (‘PSL

[rom (- ko= £

where d'{BIT’ 4 constants and
AT >0, AP-E>0

After fixation we obtain

L= k- n- whw WL W W w5 4 P B2 -
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' , 1%
/5 F/AV F ﬁ /3 F/(,lv "'1{’0/\ ;tv gL”/A\—}-gF/(V f‘-}/“

f,«v (ww,,ww)\: { ww‘* wﬂwv)

F;V{N-(w: W, - W, W)

c)
><'|-’-(O1/\IO) = (OO 4) ' Xf}: (‘4;_-LP2_’ O)

\ —2@4 7
X‘*:(k&-:%«(4nl 2 ), /T"-ﬁ'f)
DD, X0 Dk, Bx X I, % =%,

d L 6): AP s eup'&tpzl-;u n eLPA d g, AP, ertP;f (m?eq)

Eqs. (2.101) for the fAB give

R 2 7 2
)(” -Cye . gzzz Caz | ?33;("33 +Cia “P;_ € tP‘, Q'zz Ciz e%
- 0
§43=-C«4“Pz€ 1 ) gu-"CQLPz \P"

-2, : ¢
€ A o i o2 ™
JCLW 5 Cu Gonr T 2O oy Flue

Q'LP'

1 CM Z Q‘P P |
J;w-csa 2 (1-n) «’LCM&F 1 F““Q.CW-[,T;\;) Zcm%) % |

o . 2‘P4 kPz
:L‘i z Cu \{) = 3 C“ (1-n2)
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After fixation we have

f=ka->—w;W‘ﬂ-w;wzfiwﬂ W e WEw Wi W7
1 2
“2(4 ((4 \’\1))) W W :kr\l) W wt{ CM F/.v F

2 2 C14 v
'_'5‘ Cll, F/AVF/AV-—4 C33 F FB/“V qu F/Uy F Y 2(11 n’)" F Fq -

Cu v C42_
a (C35 _2(4‘\,\1)) /qu 2_(4 ne) r/mv F

F/w§ (Wow,-wawl) o Fav={,,

F;v=](; (W WU( W#W11> F;v {f,‘\) (W W W/A_\A/ )
d)
M, = (0,4,0), X,=(0,01) L9, K= (0,-9, 9,)

% %] (%, X 0 | [xx, szx., e Xk, B X G12X, [, %=X,

AL Lo A9 + X ( 40 +d )

fu frr =2 elm()' | J(;a:/“‘““(’f“@) and
R R N CARS

[P f,gfozk{k & [1g=-=pse
T A
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.The Lagrangian after fixation is
L= KR=A- WS WP i W dre waw/o L FL, PY
__,4_ 2 v 1 /“ q/uv q/uv

f/,«v]( ff/“”( a’f/up{

Fivs ; (vl w3 - W)+ (Wi w-wt wh)
FN{M.-(w#wi-w/&wv)-(w}v wh- wiwl)

o) |
X,\:(O,Q'O)I X1=<C/O’)\-Pz,‘(D/t\-P4MK(>L, Wk‘?"
X3:(—S4‘/\4/\.P7_)-Lﬁt‘{)4 e, %) , Xy = (0,0,1)
[Xi,xl_}:x3 ) £XL?<;:X1 ) [X3,x4]:><2,, [XA—,XL\—]:O
LI2(Q0)): A+ (wing, + ot @) dPi+ 2n oy A dfs + s
e A OmQy, [om e (B pinte in
fsf/&” ((5"’&)/3""‘&1“?4 u”_z“??— ) gn"-‘%(ﬁ“”‘)/“}‘“l“f)ﬂ s f,
fias £ (b0 2 oy, =L () e o A2 e
sy fbond, st fom Esindysinf,
A, b, >0 B8 >0
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The Lagrangian after the fixation is given by
- KR—>\—nlw“w‘—wlwhwgwlwqw*—z o'Wt -2 A TP
3 4pv tpV

1-/5 F: v i /% MV /u j—‘x’f f é; F— {- /&

F gﬁu(wwvww)'

i L )
3 3 A 7 2 A
Fpov 3(/*1/” (WpWy =Wyl )

5.7 Six-~parameter groubs

These are of course the complete groups of motions of a

three—dimensional space,namely the E3’ S3’ and H3 .

The corresponding spaces have constant curvature ( zero, PoO-

sitive , and negative respectively ).

a) Euclidean S003) ®, T(3)
Xi=(4,0,0) | X3=(0,4,0), X;=(0,0,1)

XL}’-(O;“LPL“P-L) , XS‘((-Py,/O,"'{)g), Xg:(’LeL,LP1 ) O)-

| [XHXL]: [X4 ) X3]: [XL,X31 =0
qu,quz [Xl' XS}:[X3 ) X’J:O, (Xl.xﬂz‘b(x,)(s}' X3
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(X5, %)== 0, X=X, D6 X [XG, X = X ,
[><q|7K“g]="><c ’ [)<g1><¢:}:")<q ) [:><(;,><‘;]1:"><5

The metric is of course Euclidean

dL2(pen]= d @k +ou(> + Ay

Eqs 2 10)give

j{M: fuz 13 % ﬁz’fm'-fzz =0
‘qu”: Cay +4 ("Pll“' "P;) ) §SS = Csst o (%2* “f;)
foos Cow + (249 fiw=fos= [ B

frs=fu=20, fum-fu=-dth , frm-fos =L,
qu”o“ﬁ% | f%:—oltﬁ% ) fsc: _i”< LP”%

L= k- A-wiw ‘f”-wﬂw LWL AF, W E -

CEAFR P R AT P L G Py BV Lo L PP

?*VﬁF P

| -%.Cec,’F;v (aﬁ—ﬂ Fl Jf”/%

?.

Fr=d L - -t )- (i, - w i)
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jw=)(;v“ (W 4.\)\}(’\/“\“‘\)\1‘ >—(W;W3}/-W/3«un>\
](/4\1 (\US W, - \U w)- (w;qu-w‘pwl>
F;V f.,,tv (\U \)\JS \,U \AJ , /W f}w w WV Wt V\H)

e { (w w4 - \u‘*\u )
b)  Spherical SO(3) &  50(@3)
X,=(0,4,0)  Xa=(wd,, - urt% ML?Z,“MA::PLJ

)(3 =(~ MMAPL, DD’tLP«u)’? WLPL)

)

XHL:(O.O.D, Xs= (Cm‘ps, %;tias‘wt“% Wk?ﬁ)

Koz Com s, T3, - ot P cona)
D] X, B XdE X, DG XX, (K Xl X
‘ B(S,XJ:Xq )(-XLJX‘;}:XS)[XA)XB}:O, k=423 B= 4'5,(:

| (lLl[‘-P(SX)}: dFP,‘L+ &&Pj-\—dt_?:‘{- 2 o 4)4 oU—P;_ CﬁLPg

we obtain

g“ f’zz fu‘ A - 3(4z=3513=f13= 0
o furf fus Jfﬂ,
<y 3

)o and after the fixation we have
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K N wh W W W A
b bm A= Wi WS W W W W e g7 wh
L A
W W hzwﬁw*/‘izw;w%uw;w"f:«ix[:/{VFW_

SA B RV L g3 w3 L
74T Bz A Py F —zp FjavFLP/‘V-%/aF/fVFS/‘”—
-2 pFL FY

vV

¢) Hyperbolic H_3
X4=(04 0) Xz (0:0,0) , X3=(-%,%:,P5) Xy=(0-s,p=)
Xs- (%, o .——(uez %) 9 ,)

‘e*( =) S - T (R ))

| [x‘,xz]=[><3,><ﬂ=[XS,XJ=° % Xa)= X XD =X
DT )y, D, X2 060 Xde X [k XaD=0X, K%y
[, XeJ X0 K2 X [Xs, Kl = (X5, X< Xe

AL2LPe0) dpr+ ™ (agie d9)

_ i an | A
j(M- =l €T j(33= {wia—n—l T4 (L{)Zl“();)elh%

L and + ang, o |
{SS-' f{,(,: ynt ¢ 1+ m (kf)zl**{)az ezn«ﬁ +ant (L{>7_2+ LP_%L)



%“ 0, frz=df S S %.e'““’"

(1= (@2 ™| [s-poa iy e
sty € 2™ [ pragpent
far TR e"“‘“'j{,’ h

fre= o - S ()™

fae- Srds- L @ (9.2 0)*" N

Cus= (o fuem-fos, foro

L= K- n-wh W Wl W Wi w i A W
Lmv W bW - = W/ﬂ /‘—m\)\l W -—oLF/?WFA/‘Z
ST AT FY e A P A B

- ke F;v P i B P58 L o

t AR B P FY
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Appendix I

Having determined the form of the Lagrangian, we now give
the proof of the'existerice and 'un.iqueness of the solution
of the inhomogeneous Eq.(Z.46) for any source term 8, of the
form given by Eq.(4.49). So v.reifirst‘ look at. whether the

corresponding homogeneous equation

HABV\8=O (1.1)

possesses non-trivial solutions, Multiplying the above equation
by V\A and integrating over the 3-dimensional space manifold

we obtain :

Tt Hagn® 75 d® =

.Y[‘?AB ™ 0P & 6ab’3Aa33b“A“B % Vg =0 (1.2) |
where

A A |
Dm = Dgm n8 (1.3)

ab
Agsuming that the matrices 1046 and G are. positive~definite,

we realize-that Eq. (I:2) compells us to set :

Dén = V\A)m‘ + %A BR W%ﬂwg—‘:o (I.%a)
UAaa=0 | , (I.1b)

The integrability conditions of Eq.I(I'.'4a:) are:

' B
%ASR an=0 _ : (1.5)



b

105.

From Eqs.(I.4b) and (I.5) it follows that only at the boundary

points of S ‘we have non-trivial solutions of the homogene ous
equation (I.]). Since then either (if SABR"*O) we can set
‘W&,:O 1n é, particular gauge, or we have the_Abelian case
§Rae=0 , the solution of Bq.(l.4a) is

i A = ch . (constants)

In this case, however, the projection of the source term SA of
the inhomogeneous equation, on the subspace of these solutions

vanishes

(§A >CA)=SSACA{§-°P% =0

—

since at the boundary points of S ’ SA is a pure divergence:

54 = ~(fagws )"

Hence, the operator HAB is invertible, and the solution Y\A

of the inhomogeneous Eq, (2.46) always exists and is unique, up
CA

to a constant which is present only at boundary points,

2
and has no effect on d\_.
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Thé problem of thevexistence and uniqueness of the solutions
to the point correspondence equation is far from trivial, because
the equation is not of an elliptic character. This is due to the
fact that the metric oflRiem(ULL) is not positive definite. This
problem is discussed at length in a recent work by D. Christodoulou
and M. Francavigli£y7 They found that the solutions do not always
exist and they are not in general unique. However (if a solution

exists) the arc length inS(uDis unique.
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Avvendix  II

On the integrability of egs. (2.IO0I)

In our study of the above system of vpartial differential
equations we shall examine separately the cases when +the groun

GR with generators XR :r:SQm% is intransitive, 'simply transi-
o

tive and multiply transitive.,

a.) Intransitive group GR

If thg minimum invariant varieties of GR in ¥ are of -
n-g dimensions (i.e. if the rank of the matrix YA is n-q )
we can always write the transfomations of C'R (‘with a possible
change of coordinates ) as the transfomations of a transitive
group over n-g variables say P,.. - ,Y¥,.q only, while the
group does not act on the remaining @n-m—g.-~ T variables (Fubi-
ni’s theorem). So we have reduced this case to the transitive one.
It is clear that after this reduction the iﬁtegration of egs.

(2.I0I)will give only the @,.. »WPy.q dependence of £ while their

AB
?ﬂ'Qfl‘ .- %, dependence will be undetermined. That is the constants
of integration of the solution of the system2.I0I will not actu-

ally be constants but functions of Pp-qast, .- ®Pn

a)  Simply transitive group Gy

This is the case when R= I,...,n and rank("saa) =n (a.:I, .

.,n). Then eqs.(2,101)oonstitute ‘actually a system of total diffe-—
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3

ronbiad cguations whose exnlicit forni cin be obtuined by multi-

nlieatinn by{Dg&J . The integrability conditinas are

") Q Q Q -
K (XgTugt Ty 8357 Taq & ag) — Xs(fant fag & u* g 6 an) = O

or Q
& zs¥qfant far(s ng BRE Qau BS)
Q L
t Iy, (s" 358 AR~8 n8 AS) =0
and by using the Jacobi’s identity we obtain

(Xf+f‘L L)

ofart far8 Bg" TR ag) =0 (T1.7)

gns

which is satisfied because of the equatiovs@.TO[) themselves, In
other words our system is completely integrable and so tre solu-
tions for fAB will depend on n(n+I)/2 avbitrary consterts which
however in our case are restricted by the positive definilencss

of fAB .

¢) Multiply transitive Gy (R =T1,2,.00.,N)

When GR is multiply transitive (tha is R?»n  and Tﬁnk(FM,)ﬁn
a:I,...,n) among its generators XI""’XR there 22 n line »ly
independent (with variable coeffioients) and we can tave th=m to

be the first n

Xpy Xpy Xyyeecnce,X

Iy "2 n

will be different froem zers while

.x.
Hence the determinant (JSa)

the rest of the genarators Xn+I"'°"Xﬁ can be exmreszad lineir-

1y and homogeneously in terms of the first n

X The irdey o wiil alwiys be aseumed to rTar L
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X .o=u.7X 3= Iyeeee,Non (11.2)

where sz are functions of Poooo oy Py o
Since det(JSa) # 0 we can solve the first n of egs.p.101)

for 9QAQ/SQL. Introducing then these derivatives in the rest of

eQS.Q.IOI) we get some linear and homogeneous relations for the

fAB’s. This way we see that we have actually a mixed system and we

shall of 211 find the equations which determine the relatios among

the fAB’s. To this end we introduce in the equations
- Q - . Q
Xt35a8 T ~Th08 Bnty "TB0E Antj
the values of Xﬁ+ijB given by IT.2

_ )
Xoe3Tam = 25 XsTys
From the above equations and the first n of eqs.2,I0Ii%

follows easily that

S Q S Q  _ Q Q
25 Tao8 Bst 25 TBa® As T a8 Br+sT TBQS An+j
or
Q Q S Q Q _
208 BrrTTBGE Anej ~ 75 (agf Bst TRef as) (17.3)

EquationsII.3 provide the relations which the f,4’s must sa-

tisfy and together with the following

. Q Q  _ TT.,
Afap ¥ Tpg8 s T fpg8ag = 0O (TT.1)

they constitute a mixed systen of total differential equniions.

We shall show in the following that this system is comnlete.
That is, we shall show that a) the integrability conditions for
eqss I1.4 are identically satisfied and b) the eqs. obi:ined

when we apply the operator XS to anyone of the eqs.Il,? and make
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use of eqs.Il.] are contained in eqs.II.3 . However condition a)
has already been proved to be satisfied when we deduéed egs. 11.1,
ffe only note here that the calculations done for deducing IT.I are
also valid and when R>n . 8o we only need to prove b).

We first introduce the notation

_ Q Q
Boan = Tag8 3r * f5ef an

Then eqs 1.3, II.4 are written as

S

ByBney = 75 Taps = O (11.37)
Xsfpp + Hygg = 0 (IT.47)

and we must prove that due to these equations themselves

XP(HABn+j — Zj HA:BS) = O P = I’a'-.,n

is identically true.

To this end we observe that because of eqs.II.I we have the
identity
X (K Tap) = X, (fyp) + XHygy ~ X Hypy = O

for all values of K,L .In particular

- - - IT.
K5 an) = Xoas Crfus) + Xanry = %orgPang = © (Tr.5)

and
- X — =
s (efyp) = X (Xgyg) *+ Xgfypg = GMaps = ©
Iultipling the last one with zjs, summing over S and using IT.5

we obtain

S s
.

GeKsfan) = 25 K(KsTip) + Flamnes = 25 Mams

S H..)

~(Kestamr — 25 Asfamg) = ©
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Because of eq.II,4"1t is evident that the following equqtion

Sy —
Ko Kgfyp ¥ Hypg) = O

holds. Substraction of the above from II.6gives

S 5
L% psap ~ 75 %s®an) * Kc(higpnyy = 25 Hipg)
S
'(Xh+j -2 Xg)Hy gy = O

. S
But because of II,2 the operation Xn+j - 2y XS on any

function gives zero and hence we have

Xe(yprps = 25 Bapg) = 0

which was to be proved.

We conclude that the mixed system of total differential equ—
ations II.3, 4 for £y 1is in fact a complete system . It will
suffice then that the linear homogeneous equatiosII.3 at a fixed
(generic) point of the svace of the scalar fields (RQf,~- J‘Q:)
are compatible, that is they reduce to a number q ¢ N(W+I)/2 of
independent equations and the initial wvalues fABﬁﬁf) -j&f) can
be taken so that f

AB

general solution of our system will exist and will devend on

is vpositive definite. This being so the

N@+I)/2 —= q arbitrary constanis.
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