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ABSTRACT 

An axiomatic formulation for the theory of Classical 

Tensorial Fields is constructed based on three principles, 

the Relativity, the Chronos and the Variational Principle. 

After a short historical introduction, we begin the 

construction of superspace starting from the product space 

of the space of metric functions and the space of any number 

of scalar functions and any number of vector functions. The 

scalar and vector fields are here defined on a three-dimensional 

manifold with a positive definite metric. 

Using then the above mentioned principles we are able to 

deduce the most general Lagrangian which is compatible with 

them. This turns out to include the Einstein and Jordan theories 

as regards its gravitational content and the Yang-Mills and 

Chiral theories as far as its field theoretic content is concerned. 

The parameters of the gauge group are in one to one correspondence 

with the vector fields and the group acts on the space of scalar 

fields as a group of motions. 

We then discuss the removal of massless scalar fields and 

the corresponding acquisition of mass of the vector fields. In 

this connection we distinguish the transitive from the intransitive 

group case (spontaneous symmetry breaking). 

Finally we restrict our attention to the cases where the 

dimension of the space of scalar fields is one, two and three. 

For these cases we discuss all possible Lagrangians of the above 

mentioned form. 
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CHAPTER I 

INTRODUCTION 

Superspace, that is, the space of all geometries of a 

3-dimensional manifold, has originally attracted attention in 

connection with the canonical approach to the quantization of.  

General Relativity. The work of Diracl, De Witt2, Higgs3and many 

others towards this direction revealed that superspace is the 

domain manifold for the quantum mechanical state-functional. On 

the other hand, at the classical level and mainly due to the work 

. 
of A.D.M.. it became clear that the dynamical variable of General 

Relativity is the 3-geometry of space. Both the above facts have 

been illuminated by Wheeler5who was the first to realize the 

importance of superspace and to clarify its role as the proper 

configuration space of General Relativity. 

This having been done, it became highly desirable to obtain 

a better understanding of the structure of this space, the hope 

being that this would lead to deeper insights both at the classical 

and quantum level. 

The first investigations of superspace were done by De Witt 

who recognised the metric that General Relativity" dictates to be 

introduced on it. He also investigated its geodetic structure and 

found that it was incomplete (geodetically). This was a rather 

discouraging result and was not to be clarified until Fischer's6  work 

which came later. Meanwhile, Stern7  studied the topological structure 

of superspace and found it to be Haussdorff. Almost at the same time 

9 
Ebin8proved, with the help of some remarks of PalaiS', the so-called 
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slice-theorem for superspace. This theorem was successfully used 

by Fischer
6
who showed that this space is a metrizable topological 

space and it inherits from the action of the group of diffeomorphisms 

Diff (A) a "stratified" manifold structure. The same author proved 

that though superspace is not a proper manifold, it can be extended 

in such a way as to become a proper manifold. 

Most of this work, however, was too complicated and mathemati-

cally involved to be of any direct use in physical applications. 

However, De Witt
10 
 was able, with a simpler analysis, to obtain space-

time obeying Einstein's equations as a sheaf of geodesics in super-

space. 

11 
In another development Christodoulou, by introducing what he 

calls "The Chronos Principle", has shown how one can use superspace 

in order to obtain physical theories starting from very few principles. 

This was our motivation in the first place for studying super-

space. The idea was to use the methodology of Christodoulou's 

earlier work and find out where such an axiomatic basis would lead 

us. The principles on which we rely are the "Chronos Principle", 

the Variational Principle, and the Relativity Principle. By Variatio-

nal Principle we mean that physical "histories" are obtained by 

stationarization of the action defined as a line integral in super-

space. (By superspace we shall from now on mean the "generalized 

superspace" which includes, apart from the geometry, any number of 

scalar and any number of vector fields, defined on a three dimensional 

manifold). 
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For Relativity Principle we use its more physically appeal-

ling (and best suited in our case) formulation as given by 

Hojman, Kuchar and Teitelbolm: 
12 
 The laws of physics should be 

independent of the way that space-time is sliced into 3-dimensional 

space-like hypersurfaces". Finally, we can roughly define the 

Chronos Principle as: "time is a measure of the changing of the 

spatial configuration of the physical system". 

In chapter one we investigate the structure of superspace 

and give the mathematical form of the above principles. (In this 

and the subsequent chapters we shall always assume that the three-

dimensional manifold on which the spatial geometry and all fields 

are defined is compact). 

Chapter two is devoted to the search of the form that the 

Lagrangian should have in accordance with the principles established 

in chapter one. 

The gauge group is introduced and its structure investigated. 

It is shown that its action on the scalar fields is that of a group 

of motions of their space and so omission of the vector fields brings 

13 
us to Isham's theory. 

Finally, in the last chapter we apply the results obtained 

earlier in order to get some general information about symmetry break-

ing and to obtain all gauge invariant Lagrangian in the case when we 

have one, two and three scalar fields. 
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In conclusion, we see that by using our set of axioms we 

are in position to deduce a physical theory in an economical way. 

We do not claim that this is the best approach possible. But we 

hope, however, that some better understanding of Classical Field 

Theory has been gained this way. 



CHAPTER II 

FUNDAMENTALS 

1. 	Definitions 

Let Vu. be a C 3-dimensional manifold, which is compact and 

orientable, and let T(u(4) be its tangent bundle. We construct 

overLa the following three fibre bundles: 

(1) The subspace 	+(T((,)) of positive definite forms of the 

tensor bundle of continuous symmetric bilinear forms (bundle of 

2-covariant tensors IAT(0,4")). 

(2) The iterate cotangent bundle 
T*(N)(A), each fibre Tx(N) 

of which over a point xeckt.,  is the product of the cotangent space 

Tx tou(if., at x with itself N times: 

( ) Tx 	Tx X...X T  

N factors 

(3) The bundleX(A), each fibre of which is an n-dimensional 

manifoldX 

We form then the product bundleC (A) of the above three 

fibrations: 

(Ulut) = L -1-(T(vq.,)) x T*(N)(tt )Xk(uVi) 	(I.2) 

Dach C cross-section of the bundle L
2+ 
 (T(A))is a C 	positive 

definite Riemannian metric onfitk and Riem (VU') is defined to be the 

space of such sections. 	Each C cross-section of T (N)  (vii) is an 
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is an N-tuple W = (W1,...,WN) of Cc°  1-forms onUbt , and we shall 

denote by Form (A) the space of these sections. 

A C cross-section ofk (A) is a C map: 

T:LA-1.)6 	 (1.3) 

From the C nature of T it follows that for every point xecidtand 

for every neighbourhood U of that point, there exists another neighbor-

hood U1, of x contained in U, such that T U1  (restricted to U1) sends 

U1 
into a coordinate neighbourhood(, of (1). If then: 

h 	4- Rn, 

is a local chart of 

.1) = hoT Ul: U1  ± Rn 	(1.4) 

is an n-tuple of functions ($1,...,Sbn)  on UlCiAt. In particular, if 

y is a point contained in U1, then (1)(y)=(1)1(y),...,(Pn(y)) are the 

coordinates of the point p.-a.T(y)E4. We shall denote by Map (A. 	) 

the space of C sections of the fibration 
	

( A) 

We finally define the space Conf(A): "space of configurations 

of(,* to be the space of C sections of the product bundle Vat) 

We introduce in the usual way tangent vectors associated with 

CI  curves in Conf(A): Let c(a) be a Cl  curve in Confair). The 

vector X tangent to the curve c(a) at the point c(a0) is the operator 
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which maps every C1  function F on Conf(A) into the number 

XF 	Foc(01 

0 0 

Since points in Conf(A) are triplets: 

(g,W,T) 

the vector X can be expressed as: 

A 6 	(14)a 	6 
X - I n{(-

dg
). 	+ (

dy
-)* 	---4S WA-  at 	do • 6g 	(do do )  6(1)a  

 

c( ao) 

 

A = 1...N, 	a = 1...n, 	(1.6) 

where(I)
a 
are the functions defined by (1.4), and n in local coordinates 

is given by dx1A dx 2 A dx
3 
. 

2. 	The metric structure of Conf(A)  

A metric on Conf(A) is a smooth assignment of a bilinear 

symmetric form to its tangent bundle T(Conf(A)) which sends any 

two vectors X
1
,X
2
eT (Conf(oth)) to their inner product Gc(X1'X2). 

The most general form of this inner product is given by: 
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( ) d 	( ' 

	

dg. 	2. x 	g mn x ) 
Go(Xi,X2) 	I dV 	dV' (Giiinn(x,x1) 	13  

vq, g g 	 du 	do 

	

dg.(x) dW
2
(x') 	dW(

1
x) dg

2
..(x') a  

+ Gila(x,x')(  1J 	
a 	i]  	) 

	

do 	do 	do 	do 

dg.(x) 2A 
	lA 

dW
m 
(x') 	dW' (x) dg..(x') 

+Gilm(x,x')( 	1]  A 	do 	do 	do 	do 

2 
4a(x) dW

2A(x') 	dW(x) d(Pa(x') 
+Gam(x,x')( 	 A 	do 	da 	do 	do 

41' 	0(x') 
+Gab(x,x,, a(x) b 	

1 
dW' (x) (14.11)  (x') (I.7) 

do 	 + 	 do 	do 

where dV denotes the volume element. 
g 

Here, each of the coefficients G is a C map which sends each 

element C of Conf(A) into a bitensor distribution inL,U. These 

coefficients will be called "metric coefficients of Conf(a.t)". 

Let Xu 
be a tangent vector at a point cEConf(Utt), the 

components of which 

(do' dW, dc) 
do' de du) 

have support only in a region TICA We shall call such tangent 

vectors "local in 1.1r. 

Let then Yu  be another tangent vector at c, which is local in 

another region "UC u{A, . We introduce the following postulate: 

G(XU2 YU  ) = 0 if 101):-.. 0 
	

(Postulate I) 
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From the above postulate, taking into account the fact that 

is Hausdorff, it follows that 

G(x,x') = 0 if xix'. 	(I.8) 

It is a well known result of the theory of distributions that a 

distribution which vanishes outside a certain point is a linear 

combination of the 6-function and its derivatives. Thus: 

—k 
9 G(x,x') = G(x)6(x,x') + E Gk1 

	
v(x)6 k15...1  k v  (x 5  x') 	(I.9) 

n=1 

kkv 
where each of the coefficients G,G 	appearing on the right is 

a C map which sends each element ceConf(A) into a C tensor field 

on A. 

A fibre of the bundler (A) over a point xc 	is the space: 

: = Ls+(T x)xTx(N)xk 
	

(1.10) 

A vector X
x tangent to a C

1 
curve Cx(a) in this fibre, at the 

point c x  (a0  ) can be expressed in the form 

a 	(d(),a(x)) 	
1 

a( 	)1 
dg(x)..  	 (dWA(x)) X

x ={ ( do ) 9g(x) 	do 	9wA(x) 	x 	c (a  ) x 0  

The spacel: x, being an ordinary 6+3N+n dimensional manifold, 

admits a (pseudo) Riemannian metric which sends any two vectors 
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Xl, X2  T (r, ) into their inner product: Tc 
	x 

1 	2 	1 	2 2 
. 	dg.. dg 	

.a 	11 - dg.. dc2. a 	dg.4 
1 2 	 mn 	 I] 	mn 	il (X ,X ) = (G1'

i 	
+ G 	( 	+ 	1-1  ) G 

c x x 	d d 	d d 	d d 

1 2A lA 2 	1 2 
dg. dW 	dW dg 	dW

lA 
dW
2B 

	

+Gijm(  1j m 	m 	ij )+Gab 	mn  m 	m  
A 	do do 	do do 	do do 

+ G
AB do do 

1 
+Gan 

 cp
a 
 dWm

2A dW1A 
dcP
2 

m , a 

A 	do do + 	
do 	d  )) (x)1 cx 

(I.12) 

In the above expression, each of the coefficients G(x) is a C 	map 

which sends each element cX ofr,X into a tensor at x. These coeffi-

cients will be called "metric coefficients of the fibre l°  
X 

To each point c = (g,W,Y)c Conf(ubt) there corresponds a point 

cx  = (g(x),W(x),Y(x)E:x  (the point where the given section of the 

bundle3: (IA) intersects the fibre over x). Also to each local 

vector XU ETc(Conf(A)) which has components 

d(1)a) (dg dW 
do ' do ' do 

with support in a neighbourhood U
x of x, there corresponds a vector 

X x  ETc  (t:x) with components 

dg(x) dW(x)  d(I)a(x) 

do ' do ' do 

We now introduce the postulate: 

G
c(XU 'XU ) 

x x  

	

Lim 	
IdV 	

= G
c  (X x ,Xx  ) 	(Postulate II) 

	

Ux÷x 	x 
U 
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where the limit is taken in the Moore-Smith sense with respect to 

the directed set of neighbourhoods of the point x. 

It follows from the above postulate, in view of Eq. (1.12) 

that for any two tangent vectors X,YeTc(Conf(A)), 

Gc(x,y) = J-„,„ Gc  (Xx,Yx)dV 	(I.13) 
x 

where X ,Y are the corresponding tangent vectors in Tcx(r x). x x 

We may thus express the "element of arc length" dL in 

Conf(a4), where 

dL 2 
) c(X,X), 

in terms of the "element of arc length dR,(x) in Cx: 

(dk
d
(x))2 = G (X ,X ) 

x c x x 

as the integral: 

dL
2 

= L, dA(x2)dV 

(I.14) 

(1.15) 

(I.16) 

The formalism with which we are working is invariant under the 

point transformations: 

= 

WAA 
= wAB(owB 	

(I.17) 
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the first of which is a coordinate transformation in the manifold 

and the second is a transformation in the linear space T*(N)
x 

3. 	The group of diffeomorphisms and the introduction of  

superspace 

Consider now the group Diff(A) of C orientation-preserving 

diffeomorphisms 

f :LAt +(At 

of the base manifoldA. The group structure of Diff(ia ) as defined 

by composition, has C group operations. It is thus a Lie group, 

which, as a manifold, is modeled on the space V(A), namely the space 

of C vector fields ontA. 

If feDiff(A), f acts on T(A) by its tangent map 

Txf : Tx  4- Tf(x)  

defined as follows: For each 1,vT
X tangent to a curve k(t) at k(to)=x, 

T
xf(1)x) is the vector which is tangent to the curve fok(t) at 

fok(to)=f(x). 

Diff(t,U.,) acts as a transformation group on Conf(A): 

Diff(A) x Conf(at) 	Conf(tt4) 	(I.18) 
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where the action sends (f,c)--Wc. Here c is the point 

(g,W, )6 Conf(A) 

and f*c is the point 

(f*g, f*W, f*T)EConf(A) 

defined by: 

(f*g)x(Vx,1,1x) = gf(x)(Txf(11x),Txf(1.1k)) 

for every 'U 	, x x x 

<f*WA, Ai
x>
x = <W

A 
 TX.f(1)X)>f(x) 

(1.19) 

(1.20) 

for everyUxeTx, and 

f*T(x) 	y(f(x)). 	 (1.21) 

For a fixed point ccConf(0), the above action embeds Diff(A) 

as a differentiable submanifold in ConfUt ) through the orbit map: 

0D Diff(A) 	Conf(J4 ), 	(1.22) 

where: 

0D(f) = f*c 	 (1.23) 

and the image of Diff(A) by 013c  is the "orbit of the group of 

diffeomorphisms through c": 
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OD( c) 	{ c fe Diff (at )} 	(1.214) 

Let f
t 
wh
ere ter-1,1] and fo=id be smooth curve in Diff(A). 

As is well known, to every such curve corresponds a vector field 

c V(A) defined by requiring that E(x) be the vector tangent to 

the curve ft(x) in u(A, . If in particular ft is a one-parameter sub-

group of Diff(A) then for every differentiable function 4  on 

(P(ft(x))= exp(tEW ) 	 (1.25) 

It thus turns out that every vector field generates a diffeo-

morphism and therefore V(A) is the Lie algebra of Diff(A). 

The tangent at the identity to the orbit map (1.22) is the map 

Tid 0
D
C  which sends any vector field 	tangent at fo=id to a curve 

ft in Diff(va ), into the following vector in Conf(vU ): 

PIc 

	d(fg 	dft WA 	dft(P. a 	6 
= 

	n( 	dt ). Sg 	( dt 	). SW  —K 	(a-T-  ) (4a t=0 

r  f(E g) . 	(;( WA) ±S.- ±(1, (I) ) 6  1 vt, 	E 	 g 	(swA 	a SS 

  

c 
(1.26) 

   

In the case that f
t is a one-parameter subgroup of Diff(t), 

then for every differentiable functional (I) on Conf(A), 

(I)(ftc) = exp(tp )(1)(c) 
	

(1.27) 

Thus, the operator P which (integrating by parts in (1.26) 

may also be expressed in the form: 



= -2gkmVn 6g -mn 	
k m 6wA 	km (swA a,k 64)a  

	

m 	 na 

WAD 
6 fA 6 

+4) 	6 
(1.29) 

(1.28) 
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where p is an operator having the tensor character of an 1-form 

density whose components in a local coordinate system are 

expressed by: 

is the generator of an action of Diff(A.) on Conf(vW). In (1.29) 

f
A 

are the components of the 2-forms which are the exterior mn 

derivatives of the 1-forms WA: 

fA 
 

= W
A 
 - WA 

 
mn 	m,n 	n,m (1.30) 

By its orbit map (1.22) the group of diffeomorphisms of Al 

induces an equivalence relation on Conf(tAAd ): two configurations 

cc2 are equivalent if they lie on the same orbit of DiffQ4 ). 

Considering the fact that this equivalence implies that the confi-

gurations are physically indistinguishable, we define "superspace" 

to be the identification space: 

( 	) 	con f (t1A,  
Diff(V.0 (1.31) 

where the quotient denotes that there exists a continuous, open 

projection II which maps each orbit OD(c) in Conf(ai, ) into a point 

sES. A point of superspace will be called an "intrinsic configu-

ration oftX". 
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Fischer has studied the structure of the space of geometries 

(Wheeler's original notion of superspace) which is defined to be 

quotient space: 

(A) 	Riem(  
Diff(ak ) 

(1.32) 

In his penetrating analysis he showed that (A) is not a proper 

manifold. This is due to the existence in Riem(A) of orbits 0
D, 

which are such that the metrics g contained in them are left invariant 

under the action of some non-trivial subgroup of Diff(A ). 

Ig  = ffeDiff(A) If*g = g 	(1.33) 

namely metrics which admit an isometry group I . These orbits are 

projected into points ing (a) which have neighbourhoods that are 

not homeomorphic to those of the points ing ((A) which correspond 

to "generic" orbits in Riem(A) (that is to say orbits, the metrics 

of which do not admit any group of isometries). As a consequence, 

the space of geometries decomposes into strata, where each stratum 

contains geometries of the same symmetry type. Fischer has further 

shown that each of these strata is a proper manifold and the strata 

containing geometries of a higher symmetry (larger isometry group) form 

the boundary of the strata which contain geometries of lower symmetry. 

Fischer's reasoning should carry over to (generalized) super-

space since Conf((j}, ) and Riem(t ) have basically the same manifold 

structure and the quotient is taken with respect to the same group. 
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Thus, the orbits 0D in Conf((M. ), whose points c are left invariant 

under the action of a subgroup: 

Ic = ffeDiff(Ga )1 f*c=cl 
	

(1.34) 

of Diff(A) and therefore represent symmetric configurations, shall 

have neighbourhoods in superspace which are not homeomorphic to those 

of generic orbits. The stratified structure should also exist in the 

present case. 

4. 	The requirement that 2)  is an isometry of the metric of Conf(A)  

We shall now proceed to construct a definition of arc length in 

superspace from the already obtained definition of arc length in Conf(A). 

First we not that consistency with the equivalence relation induced 

by Diff(A) on Conf(vU) requires us to demand that the group of trans-

formations (1.18) induced by Diff(M,) on Conf(ug) is an isometry of 

the metric of Conf(dt). This demand is expressed by 

V fsDiff(ubt), f*G=G 	(1.35) 

where 

(f*G)c(X,Y) = Gfe,c(Tcf*(X),Tcf*(Y)) 	(I.36) 

- In the above relation, Tcf* is the map tangent to f* at the point 

ceConf(tA). (Thus, if X is the vector tangent to the curve c(a) at 

c(ao).c, Tcf*(X) is the vector tangent to the curve f*c(a) at f*(0-o
)=Vcc). 
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The requirement expressed by Eq. (1.35) is readily satisfied 

if the tensor character of the metric coefficients of r, is chosen 

so that the integral (1.13) is independent of the choice of coordi-

nate systems. 

Let us consider a curve s(a) in superspace, namely a map of the 

closed interval[ai,a2] of the real lime into -5(A). Since 	(iA2 ) 

is not a manifold, we cannot specify directly the continuity and 

differentiability properties of the curve. We can, however, specify 

these properties in the following indirect fashion: 

The inverse 7
-1 

of the projection map sends the curve s(a) into 

a one parameter family of orbits 0
D(a) in Conf(S) which is such that 

there exists a smooth curve c(a) (C map of [a 1,a2] into Conf(t ), which 

crosses each orbit of the family once and only once. Any such curve 

s(a) will be called "smooth" curve in superspace. 

Every other curve in Conf(tt ) with the same properties may be 

obtained from the particular curve c( a) in the following manner: Let 

fa be a smooth 1-parameter family of diffeomorphisms, namely a C 

curve in Diff(A). Let us then move each point c(a
o) of the curve 

c(a), along the orbit OD  (as) on which it lies, through the action 

induced by the diffeomorphism f
a . The curve f*c(a) which results in 

this way is another C curve in Conf(jk ) which crosses each orbit of 

the family 0
D
(a) once and only once. 

Thus we see that to a given curve s(a) in -S'(t.g) corresponds 

an infinity of smooth curves fa c(a) in Conf(at ), one for every smooth 

curve fa  in Diff(A ). The need of assigning in a unique way an arc 



23. 

length to the curve s(a) motivates us to introduce the following 

definition: The arc length of a curve s(a) in superspace is equal 

to the stationary value of the arc length of the curves f*c(a) in 

Conf(A) as fa 
 ranges over the space of smooth curves in Diff(A, ): 

L(s(a)) = stat. L(f*c(a)) 	(1.37) 

We must, however, demonstrate that this stationary value exists for 

any curve s(a) in J 6.(,, ) of the kind defined above, and also that 

it is unique and that it tends to zero if the curve s(a) is allowed 

to contract to a singel point in 7S 	). 

5. 	Point correspondence equations  

Let “a) be a smooth one parameter family of vector fields on 

(C curve in V(M)), defined as follows: For any particular value 

a0cLa12lof the parameter, &(ao) is the vector field which is tangent 

at the identity to the curve e6 	al  n Diff(40. 
a a a1 i o  

Through any point c(a0)=c of the curve c(a), let us define a 

curve ec(a) from which the curve f*  c(a) results through a motion a  
, 	 --.1. 

induced by the diffeomorphism fa (since e"=f0  of0),If X
ao 

is the 
0 

0 	0 

vector tangent to the curve c(a) at c, then the vector Ya  tangent 
o 

to the curve ea  c(a) at the same point is given by 

Ya = Xa +T (uo) 
0 	0 

(1.38) 



24. 

where 

T (a 
o  ) - T. 0

D 	
o)) id C  

(1.39) 

Thus, if 

(dg dW dcf) 1 1 

0 
do' 	'1

o 

are the components of Xa  , then 

± 114'aQ +f-  el))  

are the components of Y
a . Finally, the vector tangent to the curve 
0 

 

f*c(a) at f* 	c(a0)=f6c is evidently Tafg (Ya  ). a o 	0 	0 0 

In terms of the vector Y defined as above at any point along 

the curve c(a), the arc length of the curve f*c(a) is expressed as: 

a2 
L(f ,,c(a))= I cla[Gf*c.  (T  ca f*(Ya'  ) 	fe,(y a)1-1 1/2 

..1 5 1  

(1.40) 

Taking, however, into account Eqs. (1.35) and (1.36) the above 

expression reduces to: 

02 	11/2 L(fc(a)) = I da[G c (Ya' Ya  )j 	E L(c(a), “a)) a 	•  
01 

(I .41) 

where the integration is now carried over along the original fixed 

curve c(a). 

A given pair (c(a),Va)) represents not a single curve fjic(a) 

in Conf(A) but a class of curves h*ofac(a) one for every hE Diff(04), 

all of which possess the same arc length. For any point on any given 

orbit of the family 0
D
(0), there is one and only one curve of this 

flass which passes through that point. As a consequence a pair (c(a), 
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(G)) establishes a one to one correspondence between the points of 

any two orbits 0 (a') and 0
D
(a") of the family. 

From Eq. (1.41) we conclude that the variation implied by 

Eq. (1.37) may equivalently be carried over the space of smooth 

curves on V(A). The stationarization conditions 

SL(c(0);E(a))  
SE(a) (1.42) 

assume the form of a linear inhomogeneous equation for the vector 

field E at any given value of the parameter a 

= p 	(1.43) 

where A is a (2-covariant) self-adjoint tensor operator which in a 

local coordinate chart is expressed by: 

Ii.„.2g .(-2g.pdaarli.elna + kfAk. - WAV Gmnk  V ) 1] 	n3 	ik t 	
. 	

A 	1 	1 k A 	n 

+(GmnfA _1,1.vGmn V 2g 	"n 	an B 	B 
AB mi mi m AB 	- ik t B 	. G 	)(W 	+W.V ) a,i B 	n 

	

ab 	kta am A A am 

	

+(G ab 	+GA  fmi-WiVmGA  Gam) (1.44 ) 

while P is a 1-form given locally by: 
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ab dib 
P. = -2gik(G

kimn 
dgmn 
	 ). +4) 	G 

1 	do 	
. 	do 

	

B 	
dW
B 

dg 
 

	

mn 
 G

AB 
fA. 

dWn 	A mn 	n 
). 	2g. (G

mna dcl)a 
 ). +4) .G

mna -mn 
	 W.(G 

	

AB mi do 	W1 (GAB do ?r) 	im 	do 3n ao. 	do 

A 
G f 	w  

. 	
dg mn dW 3 mnjA 

dg
mn Amnj d  -mn 

ble A 	do/
1 
 ;11 	A 	3i do 	I\(G 

	\, 
A 	do J>j 

dW
A  

+G A 
0a A ma d()  ) +G a  ni 	W.(G A 

f 
 mi do 	A do 5m

4) 
 ao
.
. A do 

(1.45) 

The question of the existence and uniqueness of the stationary 

value in Eq. (1.37) evidently reduces to the question of the existence 

and uniqueness of the solutions of Eq. (1.43). We discuss this problem 

in Appendix I. 

Equation (1.43) shall be called "global point correspondence 

equation" for a reason which will become apparent in the following. 

6. 	The action as a path integral in superspace  

We shall now formulate the Variational Principle in'S(A). 

Let us be given two fixed points sl  and s2  in(,tL). Let us consider 

the set of "smooth" (in the sence of preceding paragraph) curves 

which join these points. The subset of "physically acceptable" curves.  

in S (A) which have sl  and s2  as end points, are those for which 

the line integral: 



S = Is(q) AjdT, [= I (W(s(a)) da )da a2 
(1.46) 
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ti 
is stationary. Here A is a functional on ' (A) which is such 

that Aon = A is a C functional on Conf(uUd) which is constant 

along the orbits of the group of diffeomorphisms. Such functionals 

will be called "smooth" functionals on superspace. 

We can also formulate the Variational Principle in the original 

space Conf(L.tt) as follows: Consider the orbits 0
D and 02 

D 
 in 1 

Conf( 	) into which the points s1  and s2  are sent by the inverse 7 
-1 

of the projection map. The subset of physically acceptable curves, 

of the set of smooth curves in Conf(A) which have end points in the 

orbits 0
D 

and 02' are those for which the line integral: 1 

02 
S = f

c(a) 
AdL =f 	(A(c(a)-(1j)da 	(1.47) 

da 
al 

(Variational Principle) 

is stationary. Evidently, in this formulation the end points c1  and 

c2 
of the curves c(a) are not fixed but are allowed to vary along their 

orbits ( 01 and 02 respectively). 

It follows from the definition of arc length in superspace and 

the fact that A is constant along the orbits of Diff(a), that the 

two formulations of the variational principle are equivalent. This 

is because stationarization of the above form of S with respect to the 

class of curves c(a) which cross the one-parameter family of orbits 

0D(a) which 7 sends into a given curve s(a) in-S (A), will bring us 
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back to the form of S expressed by Eq. (I.46). 

The quantity S defined above plays evidently the role of an 

action. Its form as given by Eqs. (1.46) and (1.47) will be called 

the "global form of the action" to distinguish it from the "local 

form" of which we shall speak later. 

7. 	The Chronos Principle 

We are now ready to introduce the Chronos Principle. Consider 

a smooth curve c(a) in Conf(A) and let c(a 1), c(o2) be the end 

points of this curve. We define the "global time interval" T between 

these points to be the integral 

02 1  dL -I T = f
c(0) B1/2

dL 	

al B1/2 do 
do 	(1.48) 

where B is a smooth functional on Conf(A). 

The above definition may be expressed formally in infinitesimal 

form by: 

2 
	dB 	(I.49) dT = 	 (1.49) 

We now postulate that the functional B has the form of a simple 

integral over the base manifold Utt : 

B = JAbdV 	(Postulate III) 
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Remembering that dL
2 also has the form of a simple integral 

over WV  (cf. Eq. (I.16)), .we may, by restricting the region of 

integration in dL
2 and B, to a neighbourhood UCug, define the 

element of local time in U 

	

,m2 	
dL

U ul =  

	

U 	B
U  

(1.50) 

where 

	

dLu  = fud2.
2
dV, 	Bu  = fubdV 

In the Moore-Smith limit of U converging to a point xeU 

definition (1.50) gives the element of "local time at x": 

2 	dt(x
b(x)

2 

	

dl(x)2  - 	(Chronos Principle) (I.51) 

8. 	Construction of space-time 

We shall now construct the 4-dimensional spacetime manifold and 

its Lorentzian metric. Consider a smooth curve c*(a) in Conf(A), 

such that (dT,Vdt)
2 
 is positive at every point on the curve and for 

any xe(A. We define spacetime to be the 4-dimensional manifold 

(1
4) 
	xtb 

1'  a  2 
 j 

associated with such a curve. Its metric is con- 

structed as follows: 	Let us define the function t 
on (4)1,Q, 

 

a 
t*(x,a) = I N*(x)da, 

01 
(1.52) 

where: 

dfk 
do 

(1.53) 
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Evidently, T*(x,u) is the local time at x. The metric of (4i)dti, is 

then define by: 

(4) * 
g = -d-r* 0 dT*+g* (1.54) 

Here g*(u) is the projection on Riem(t0) of the line c=(u) in 

Conf(A), and d represents the exterior derivative operator. 

If now c'''(a) = fgc(u), and we perform the 4-dimensional diffeo-

morphism 

h 	x[a1,a2 ]-, titx La1,a21 

with 

h(x,u) = (fal(x),G), 	(1.55) 

, then, we can show that ,(4)0!' = (4) i g is expressed by: 

(4)g = -(N2-g( 0)d 	da-E 	do-da 	E +g , 	 (1.56) 

where E is the 1-form related (through the metric g) to the vector 

and N is defined by: N*.7 fgN. This is shown as follows: 

Consider a curve (x(t),u(t)) in (4)  A . Let a be its tangent 

vector at (x o  ,ao  ). Then if a is the vector tangent at xo to the 

projection x(t) of this curve on, 

du(t) @ a 7. a + 
dt 3u (1.57) 
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The 4-dim. diffeomorphism h send the curve (x(t),a(t)) into the 

curve (f0.30(x(t)),0(t)). 	Let e0  be the aforementioned curve 

e = f 
Cf 
of

CI
1 in Diff(0) which passes through the identity at 

0 
	1 

a-a
o
. Let us then construct a curve e

a()
(x(t)) intg through the 

point x
o
, from which the curve f

Yt)
(x(t)) is obtained by acting 

with the diffeomorphism f
a

1 
 . The vector b tangent to the curve 

ea(t)(x(t)) at xo is obtained from the vector a by: 

b = a + 	 (1.58) 

where C is the vector tangent at x
o 
to the curve e

a
( 
t)
(x). It 

can be easily seen that 

-E da(t)  C =  
dt ' 

(1.59) 

where E is the vector E(xo'o)  defined previously. The vector 

T
(xa)

h(a) tangent to the curve (f
a
( 
t)
(x(t)), a(t) in (4)A at 

o' o 

 

(f
a
1 (x

o
)
'
a
o
) is then simply expressed as 

da(t)  
T 	T f 1(b) + 
x
o' o 
a) 	X a 	dt @a 

0 0 

(I.60) 

Now, the 4-metric y is related to the 4-metric -0 by: 

(4)g

(x 	5.'
a 
-
) 

r: 

 (4) 

g -1 
h(),T

(x 	) 
h(-A)) 

o'ao

)( 

(f
a 
(xo)a

o
)
(TCx

o'ao
) 	

o'ao 

O 

-(N )2 
 

-1 	
(d

Gd(t

t))2+ ge,

_1 	f-1(b), T
xo

f

ao

1 

o
(b)) 	(1.61) 

fa (xo) 	f (x ) xo ao 
a 0 
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Considering then the definitions of N and g, the above reduces to: 

(4) 	-112 ( da(t).)  2+g (b b) g(x 'ao) ' 	xo
‘ 	0  dt -x ' 

= -N
2da(t)

)
2 

+ gx 	
da 

(a - E 	a-E du 
x
o 

dt 0  dt
(t) 

 ' 	dt
(t) 

 
(1.62) 

from which Eq. (1.56) follows immediately (Q.E.D.). 

It is evident from Eq. (1.56) that the (time-like) vector field 

) 
of norm N which is normal to the hypersurfacesA okc{01 in (4A is 

given by: 

n 	E+ Tc7 	(1.23) 

We thus see that the one parameter family E(a) of vector fields on A 

gives the vector field n on (11 W, which establishes the normal point 

correspondence of any two hypersurfacesaa' and ut() a" (0',aue[01,a2]) 

defined by requiring that the integral curves of n pass through the 

corresponded points on the two hypersurfaces. Therefore,. where the 

intrinsic geometry of the hypersurfaces ata is given by the line 

/(a) in 	((,U) to which both curves g(a) and g*(a) in Riem(A) 

are projected by the orbit projection map, it is the line E(a) in VOA 

specifying the particular orbit correspondence in Conf(A), which, 

together with the local time T*, prescribes the way in which the space-

like hypers ,faces aka  are to be embedded in the spacetime manifold 
(4)b  a. 
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The second fundamental form (or extrinsic curvature) of any 

hypersurface 	is given by: 

1 de 10(o ) - o 	2 (dT,: )o=6  • 
(1.64) 

from which by acting with the diffeomorphism f 1  we obtain: 
a
o 

K(CrO)  = 
1 11 d g 	(1.65) 

where K*(a0) = fg K(a 

We have thus seen that to an equivalence class of diffeomorphi-

cally related curves if*c(o)IfEDiff(A)} in Conf())i), or, equivalently, 

to a curve s( a) in (ubt ) plus a "connection" along that curve (namely, 

a correspondence of the orbits 0
D  (a)), is associated a spacetime of 

determined geometry, plus a slicing of that spacetime into space-like 

,hypersurfaces. 

Let us suppose now that from a given curve c(o) in Conf(A), in 

addition to the metric ("g, an N-tuple of 1-forms 
(4)W can be constructed 

on 	as as well as a map (4)  from ("at to %, which are such that 

the N-tuple of 1-forms induced on each space-like hypersurfaceata  is 

W(ao
) and the map restricted to A a is T (ao

). The Relativity principle 

is the statement that the actions which correspond to any two curves in 

Conf(A 	
(4)

) which give the same intrinsic configuration of 	sliced 

in two different ways into spacelike hypersurfaces, are equal (Principle 

of Path-Independence). 

A change of the slicing of spacetime is a 4-dim. diffeomorphism 

(x,a) 	(x,p(x,a)) 	(1.66) 
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which is orthochronous" (namely DR/aa is positive everywhere) and 

sends each spacelike section a =const. into a spacelike section 

n=const. 

We note that the action S is, with the introduction of E, 

manifestly invariant under any 4-dim. diffeomorphism 

(x,o) 	(f(x,a),(1), 	 (1.67) 

which reduces to a 3-dim. orientation preserving diffeomorphism on 

eachat
h
. On the other hand a diffeomorphism (1.66) can be composed 

o 
 

on the right with a diffeomorphism of the above type to give a generic 

4-dim. diffeomorphism 

h:LAA,x[a1,o-2] 	[cri,a21 

which preserves the orientations of A and [al'a21  and sends the space-

like sections into space-like sections. Consequently, the Relativity 

Principle is equivalent to the demand that the action be invariant under 

the group of 4-dim. diffeomorphisms of this kind. 

9. 	The space-time form of the action  

Using the established correspondence between a line in Conf(Litt ) 

and a spacetime manifold, we shall now transform the action from a line 

integral in Conf(A) into a space-time integral. 

The form of the action given by Eq.(I.47) shall be valid in the 

case that the slicing of spacetime is such that 
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d (x) = dT, for every xedk, 	(1.68) 

namely any two space-like sections have constant normal separation 

("Global inertial frame"). 

In transforming this global form of the action into a space-

time integral we must take into account the following two consistency 

requirements: 

1) That the variation of S with respect to the restricted class 

of smooth curves in Conf(A) which cross each orbit in a fixed one-

parameter family of orbits 0
D(a), should recover the global point 

correspondence equation (Eq. 1.43). 

2) That the variation of S with respect to dT/da should recover 

the definition of global time (Eq. 1.49). 

It follows from the first requirement that the tangent vector 

to the curve c(c) over which S is defined, enters S only in terms of 

its norm dL/da. We shall now make use of Eq. (1.49) in replacing the 

measure dL of the integration in Eq. (1.47) by the measure dT. The 

most general expansion of S which satisfies requirement 1)is the following: 

S = I
c(a)

Af(X)B
1/2

dT, 

where 

1 (dL )2 
B - (TUT) 

(1.70) 
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Here f is a C function of A satisfying 

f ( 1) = 1 	 ( I . 7 1) 

Evidently, if Eq. (1.49) holds, A=1 and the expression for S 

given by Eq. (1.69) reduces to that of Eq. (1.47). It is easy to 

show that requirement 2 demands that 

f(A) = 2A df(A)  _ 0 implies A=1. 
dA 

(1.72) 

We now take into consideration the Relativity Principle in 

requiring that, since in Eq. (1.69) only a single integration over 

[01,02] occurs, S must have the form 

S = f 	
p (4) 
kdV 	(1.73) 

(4)0A, 

of a simple integral over the spacetime manifold (4),M, =u1Lx[a1,02] 

Here 

dV(4) = dTdV 
	

(1.74) 

is the measure of (4)uLt constructed from the 4-metric (4)g  which 

corresponds to the line c(a) in Conf(A). 

Comparing Eqs. (1.69) and (1.73) and taking into account the 

fact that both dL2  and B are simple integrals over va we conclude 

that the two equations are compatible if and only if: 

f = ci  + c2A, 	
(a) 

A = B1/2 (up to an inessential multiplicative constant) 	
(b) (1.75) 

Fro"; (1.71) and (1.72) it then follows that 

c1 = c2 7" 1/2. 



37. 

Hence, the action, in the case that spacetime is sliced in accordance 

with (1.68), is expressed as 

S = 2 , I
c(0) 

 {(511dT) 
 +13}dT 
	

(1.76) 

The action in the case of a general slicing of spacetime into 

spacelike hypersurfaces, is then evidently given by: 

1
I
4,
I

a di
) 1 
2, 

 hi dTdV S = 
2
— 	{(----
a c() dt 

(1.77) 

This is the "local (generic) form of the action", and if we vary it 

with respect to dr/da we recover the definition of local time (Eq.(I.51)). 

We see that it has the form of a spacetime integral, and the Lagrangian 

(L) is equal to: 

di 
( 	2 + b (1.78) 

Transforming back the local form of the action into a line 

integral in Conf(A) by making use of Eq. (1.51), we obtain: 

where: 

S = 1 - — I f 
2 	c(a) a didV, 

a = b
1/2 

(1.79) 

(1.80) 

Finally, the "local point correspondence equation"  is obtained 

in the same way as the global one, with the difference that the local 

instead of the global form of the action is being varied. 



CHAPTER III 

DERIVATION OF THE LAGRANGIAN 

We shall now derive the most general form of the Lagrangian 

compatible with the principles established in the previous chapter. 

I.Introduction of the gauge group 

We first draw attention to the fact that although relativi-

stic invariance requires WA  to be the three—dimensional compo-

nents of four—vectors WA  defined on the four—dimensional space—

time manifold, no components Wk  enter the action. The only way 

in which this contradiction can be removed is if the space COAN41 
is replaced by the space of "invariant fields" 

SF=  COIVCW\F 	 (2.I) 

where 	is is a N—parameter local group of continuous transforma- 

tions. By applying Fischer's reasoning to the operation of taking 

this quotient we see that this operation destroys the manifold 

properties of 	at at the neighborhoods of those points SO 
which correspond to orbits in COIMIcthrough points F0 which are 

left invariant by the action of some subgroup f-330 of 	. Thus 

such points P. will be boundary points on SF 
The parameters of the group are "gauge" functions 

(A=I....N) which are as many as the number of vector fields so 

that they are in one—to—one correspodence with the WoIs needed. 

Conf(A 	is the space of Cw  sections of the product bundleF 

((ft() )1 F  = .e.''(14)(L,14/ )xX((A2 ) 
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So on C0ACV,Q6 two groups act: the group of diffeomorphisms 

	

att(a) and the gauge group ES . Then at- 	in S represents not 

the element of distance in the original superspace S but rather 

that in the "invariant superspace" 

r-' 	 (2.2) 
rw rs' 

and A is a functional on S . It will be shown in the following 

that the correlation of "gauges" removes the afore-mentioned 

contradiction by introducing the 00-'s as gauge correlation funti-

ons,just as the goi9s  are introduced by the correspodence of 

points as the vectors 	establishing this correspondence. 

In order that relativistic invariance of the Lagrangian is 

ensured it is also necessary that the following consistency re-

quirement is satisfied: that to the afore-mentioned group of.'spatial 

gauge transformations corresponds a group of space-time gauge 

transfomations which acts on the four-dimensional field forms and 

is such that its action on the (spatial) field forms generated on 

each space-like hypersurface reduces to the action of the correspo-

nding three-dimensional group. 

It can be readily seen that the above requirement restricts 

the infinitesimal form of the four-dimensional gauge transfomation 

to the following: 

E(Pa, = P3AOCA 	 (a) 

A 	n 	0,, 	 (b) 	
(2.3) 

N it; 	e 8 q)cx.)14 (X8 -1- 	B f)(6) \,, 

A  
where JAatg BR,e

Aa 
 B  and hAB  

are functions of (P 	AI  only. 
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We now assume that hP1B is a non—degenerate matrix 4, We can 

then redefine the vector fields 

kA/ 	01-1 ) A 8 	 (2.4) 

and in terms of the new vector fields, the gauge transformation 

takes the form 

C40,, = 3 AA. rX 	 (a) 

r 	
(2.5) 

c. ‘ 	re 
vv 	BR. w 	

Ac, 
+ e 6 cPct)yi 	+ "A) 	(b) 

where 

rs o A  eg = [(V) A P 5P6.1Z -i-  9 (-?1-1) A 0. /9qc.,t-SRoll1a8 

eAo.6= (fit)A p e Paa 	 (2.6) 

In the following we will use the form (2.5) of the gauge trans 

formations, dropping there for simplicity. 

The possible reparametrizations (I.17)are now restricted to 

Hca. .12a, = 4o. ((P, , _ 	§-e,) 	 (a) 

w itt, 	 w8r, 	 (b ) 
	(2.7) 

where the A 	are constants.These will be the reparametrizations 

that will be allowed from now on. Under this transformation the 

metric coefficients transform as 

Gtr  • , 
,D t, Vs° 

gfc, 

;I) 	) A G cgs 
 

Gab 6 Dqc Gca  
Z4a- 941, 

G R8 -.:-- LV)PA(XlaBG "132), (2.8) 

-- )%\(a 	bee% 
6 A 	A eLP G s 
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If then the gauge functions n are taken to transform as 

(2.9) 

in order that the form(2.5) of the gauge transformation remains 

invariant, JAa9 A g 9  and eAa
B should transform as BR  

Act. =0 —TA 0(7a, /9cfb 38b 

a6R= 	ir4 1:'()-1 )(118(-1-1 ) s R 	as 	(2.10) 

AP 0-1 )aB 9cpb/71)a. ePb ct, 

From eqs.(2.10) it is evident that the JAa's transform as 

components of a contravariant vector in ta, 

22. The requirement that J is an isometry 

of Cov4 la) 

We will now begin the construction of a definition of a 
*NO 

distance in S from the already obtained definition of distance 

in S 

Let us consider two nearby elements So and 'So of 	. We 

are looking for a definition of their distance. Now, to these two 

points correspond two orbits Orn and 00) of the group rs.5 in 

S respectively. Consider a particular point So  on the orbit 
, 

arj) . The distance of this point frOm a point on the orbit „.‘ J J 

15)(A .= niA a.  rxe 
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as given by 	of eq.( r .31)obviously varies in general as the 

other point traces the orbit (kJ) 	. However, the distance 

between the points So  

defined equal to the 

particular point 

-74; 1  
and 'Jo  should be unique. Hence it must be 

distance d Lcs„s!) - between So and some 

of the orbit d(rJ) . Thus a particular 

correspondence So  -s i should be defined. We shall return 

to this problem later. For the moment we note that if such a corre-

spodence has been established then a one—to—one correspondence 

between all other points of the orbits OD') and UV ) is fixed 

by the rule 

(2.11) 

where is any element of the group rY . Since the original 

point 	on on CV)) was picked arbitrarily, we must demand that 

the distance between corresponding  points on U. t)) 	I  and OVS) is 

invariant along  the orbit 

L. ( -? s„•?5,1), 	s3,-so) 	(2.12) 

Thus we must demand that if we vary the field functions which 

enter the metric coefficients G 	in accordance with the spatial 

transformation corresponding  to that given by eq.(0.5) and the 

differentials of the field functions in accordance with" 

d (Pc., = oi 	D')AcA,/ 9 qb 	 (a) 
(2.13) 

SSW L = oi ■i\Orit 	( 	e k aW?el 	nA  hk-Pci,V\I i!" (b) 

4- e lla- 	+ 44°..0 eqb ctc.t,v, owbr( R  (ove-_-_0) 

From now on we shall be working in coordinates 	. 
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then the corresponding variation of L 	vanishes 

N 	

O 
	

(2.14) 

This determines the way that the metric coefficients ES trans-

form under the action of the gauge group. Even before writing down 

these transformation laws, it is evident that e
Aa
B  must be set 

equal to zero 

e
Aa = 0 	 (2.15) 

since this term would introduce derivatives of ClAok, arla' 

in 	L. 	and no such derivatives are present in the original 

expression. With eq.(2.15) taken into account the equations for the 

six metric coefficients are 

•GL.,1■■■ 
=-. 0 (a) 

5Gi-Sm 	(G'ib pagi, 	nt(ta w,a )r)( R= 0 	(b) 
Ycv 	”ck 

(S.G i'A ‘11  + 	'eA1Z)( g  =O 
	

(0) 

EG°'b  .+ ( G" eRc. 4- rbc 	'3Rc + 	054 8n  W m  
`OcOqb 	 To. 	‘Dqb 	(d) 

Am A 
	R 

+ G A " OR  W 13 ) rX 0 
9(1)0, 

EGrnAl; .+ ( epta e'eft + G tnena 

R;71 (GbAme_.+6°;4%6AR4-(S7ila2C4 ))(a  = O (f) 
$(fo. 
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Now since the variations of the metric coefficients G are 

given by (dropping the indices of the (;) S 	) 

SG 	-StPc 9-6- .Swi n cpw ,,„ 

(DG `act.  1-" cAl.fkwir34X 
),), 	v4.1 

(2.17) 

we obtain two equations from each of eqs.2.I6 one being the 

n/R 
condition that the coefficient of A Jrn vanishes and the other 

that the coefficient of A 	vanishes. 

The equations which arise from the vanishing of the 

coefficient of 	JrA are trivial 

G  0 
W (2.18) 

If we now take into account the most general possible form of, 

the G's as restricted by postulate I we deduce 

L(m 5;n) 

(2 .19) 
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where h
1 	fa , 	 and ftiB are now functions of 

only. Then the vanishing of the coefficient of 001 	in eqs. 

2.I6(a), (b) and(d),(f) gives the following equations for these 

functions 

-11'13.)2. 
Yo.., 	O 	 (a) 

+ "Pb 0 	 (b) 
t. 

c0 
r-3Rc cOG

.) 
 -+ G nac + G bc 

nRc — 0 	(c) 
9cn 	c3 (Po., 

-eFt 0,SQp. 	4a(1.(q Prik = 0 	(d ) 

(2.20) 

Finally, the vanishing of the coefficient of )(9" 	in eq 2.16(f) 

gives 

A  aa 0 
9,Ra. (2.21) 

provided that the matrix fAB  is non—degenerate. 

3; The finite form of the gauge transformations 

Taking into account eqs.(2.I5) and(2.21) ,the form of the 

infinitesimal gauge transformation is now reduced to 

'Pct, = .̀3 Ao:X A 	 (a) 

c v _,A 	0,A 	,.3. Ng 	A 
0 1,1Vm 	 Vv rn'A 4- rX (b) 

(2.22) 



with 
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A 
where the g BR's are now constants. From the above form of the 

infinitesimal gauge transformations and their group property we may 

deduce their finite form 

c13-y_ r)(Z P̀R  
e 	 (a) 

•S 3)c. 	Z wR  
, 
vv m (b) 

(2.23) 

( a-x, 	ZaRw  
avi ft, - e j 	avet, 	 (2.24) 

	

7-4)P1 	rI A°' 

	

W 	 T..,  
o p WM S  

Shi m  

(a)  

(2.25) 
(b)  

9.  
7- °ka ----=e, d 

5a4y, (2.26) 

He 

-Z  A 	A 

are the generators of the gauge group7  

(2.27) 
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Since eq.(2.23) says that the gauge transformation of the ,es 
does not involve the W's and the gauge transformation of the W's 

does not involve the L'S we may think of the set of gauge trans-

formations of the ceS as the group rsi(g) induced. by 1*.i on iYa 

and the set of gauge transformations of the W's as the group P-S(w) 

induced by rS on Je 

Let then 3(0014) be the group induced on the cotangent 

bundle (4 t.f\r 	(transformations (2.24) ) 

Since the scalar fields /0L,(3)ki) and stA.3Aji) and the diffe- 
„1  

rentials of the vector fields Wk3)0) and ou'v k" 1- ) at two different 

space points 3 0 and 1AP transform independently, the groups 	( ) 

and NS (CAS) are direct products of groups f'3( 	4)) and 'nelki\1010 ) 

which act on 	and LN.” 	respectively 
tii'ceLt 

TT "S 4, (34)) 
3x0x 

a tea 
	 (2.28) 

r.-A01 V)) -= 	 (01,N (34)) 
34A-  JA_ 

Thus while the groups 'i(t-Q) andg'S(P10.9 are likeCY itself 

infinite parameter groups the groupsTql3.4)) and rAol v*9) are finite 

(M and N ) parameter groups. 

In terms of the generators Ft  and YR  of these groups 

which are given by 

X e  = Ro. 	 (a) 

e, = 	c't  (3.1 
(2.29) 

(b) 
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„ 1.) 
the equations of finite gauge transformations of the 14 5 and the Ow S 

given by eqs2.23(a)and(2.24)are reexpressed as 

r)(g. X 
(3?a  = e 	(Po, 

rA 	rAtZ \ik. 1 A 
dw M   (e 	 e 	am  

(2.30) 

From the first of eqs. 2.10 it follows that under a repara-

metrization the generators XA  transform as 

ti 

X A 	XA 	) ° A )Cg  (2.31) 

namely as covariant vectors in ti\r.:, 

Actually only the non vanishing XA 's should be considered 

as generators of 	 (4)0')) . Thus if N—M of the XA 's vanish 

X-A  = 0 	A = M +It  	 (2.32) 
only the remaining M XA (A =1, ••••,M) should be properly 

considered as generators. 

Eq.(2.32) limits the allowed Te parametrizations by the 

condition 

(2.33) 
) A 7--  0 	(0-c 	16  A=0) (so 4vick4 Xq = 0 otho) 

The generators XR and YR  should obey 
ri 

XA- XT3I  =.73 S -AT3 X,R 	(a) 	[yp,yj:= t 	 (b) (2.34) 

sil-Ar5  and tEti,c  being the structure constants of .S01,310)andtf)(Ch/0(314,))• 

From eqs 42.30) and(2.34) it follows that 

A 4)3 	A B 	A B 
g 1113'P  PQB=  g F g 	BQ g RP 	 (2.35) 



49, 
4. Gauge correspodence equations 

We now return to the problem of defining the correspodence 

Jo 	which will give finally the required definition of 

distance in IS  . Let us first pick the point 50  to be any point 
I  

on the orbit V J which is in an infinitesimal neighborhood ofSp. 
ncd  

Let us then change the arbitrary correspondence just obtained 

4-0. 43 	
t! 
o (2.36) 

4,1  
by acting on So and .:›0  by the two different elements, and 

of (.3  respectively, thus establishing a new correspondence 

1? S. 	 (2.37) 

We may think of o  and So  to be the points a-  and o-+4,7- 

on the path 

(2.38) 
in the invariant superspace and 1P and 	to corresnond 

respectively to the points Cr and 01-4-der on the path 

rx A rx  A v.) 	
(2.39) 

A 
in the, space of gauge functions 

Defining 

• iel A = 9.24  do-
er (2.40) 

wesee that the change in correspondence is manifested in the 

presence of these Y1 S.It follows from eqs. (2.30)that the new 

metric and field differences are then given in terms of the 

original ones by 

(a) 	(2.41) 



(No. = el 40,  el ET._ 

`S AO- oiteb rX A  4 ckh;i, 
qt3. 

50. 

(b ) 

( 2 .41) 
(WL' 	d StAq, 	

(0 ) 

A egogei: cxk jvq. 

where 

agct. -:-- 01L-P0, -+ `%3Aci:A 4 
	

(a) 

T W A a
w 

+45 tke  w yl  R 4 yi 	
(b) (2.42) 

The distance be tweenlf 1(750and 7f 1  S()is then given by 
49, 

GIL 	i $.1  %11" 	 d 	ct 

(2.43) 
A cm C3  

C-c cLci 	jt.Pck 	el°  ci (i2o,SI LPb 	-c46 tf1161w rn 
.2. 

We finally define the distance CIL between So and Soto 

be the extremal distance between 1150 and 'A: as the correspondence 

is varied 

d L 	ex-1. 	( ol L 

The extremization conditions are 

4"11.!'  

2 	AA —
t34aC3L3V3AC 4 GCb  jqb )Ax 

(2.44) 

;)Wift Vq
12ret 

—PAG 0-1W ?,.1)')fn 

	 (2 .45 ) 

Or 	
kqe, 	 (2.46) 
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Here HAB  is the self—adjoint operator 

 
H 	D 

0, 
 Am') om m  + Gal) t'3Ack.''Sab 	 (2.47 ) 

where 

D Aso') = kAa, 
(2.48) 

Da'601 	W6 Vol + Ck.  R.-13 W 

0 6,en 	 * 	k'%)en 

The source term S 	in eq.(2.46) is given by 

SA r- ''3Ackja.5 0( Z,') 	Gc3110-olqb 

gea 	 KAalW,'% W Rm 	sokw e.,,)3vn  
(2.49) 

Three conditions should be satisfied by the given definition 

of distance in 	in in order that the definition is meaningful. 

I) That it exists for any pair of points in -S which corre-

spond to nearby orbits in S 

2) That it is unique 
7.;; 

3) That if the orbits in 5 to which So and 50 correspond 

coincide, the distance between §0 and 	should be zero. 

In this case however ,S3 and 'Jo lie on the same orbit and 

therefore So and 	o may be chosen to coincide, in which case 

we have cA$i,S 	ok 	= OM 	 which satisfies 	eqs.(2.45) 
1 ,2 

and GI I— "=-: 	Hence if condition 2) is satisfied,condition 3) 

is always satisfied. Thus we need only demonstrate the existence 
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and uniqueness of the solution rLA 
of eq2.46for any source term SA  

of the form given by eq.P.49).This will be done in aPPendii:.II. 

5. Construction of the four—dimensional 

field forms  

We are now finally in position to determine the four—dimen-

sional one—forms ( A .Consider a path S(u') 

(75)n A Let the spatial one—forms j- be the intrinsic one—forms of 

the three—dimensional hypersurfaces 6 = constant of the space—

time manifold defined earlier. Let then the gauges of the spatial 

one—forms belonging to adjacent hypez-surfaces(rava T+ds)be corre-

lated by the gauge correlation defined by eq.(2.46). We then define 

the space—time one—form 	to be 

(4-)
Y 

A 
(2.50) 

remembering that since page42 we have been working in the correct 

correspondence without actually putting lk 	for the shake of 

simplicity. 

Using now the four—dimensional gauge transformations (noting 

that(2,50) denotes V/0 
1A 
 7-0) we can write the four—dimensional 

form(2.50)in the gauge of the original gauge correlation obtaining 

(4) A 	 A -1- 	cA y 	— Y1 	y 	— 

= 	.1 A 	‘AYI (pt 'il4  !robe) W CA 1°'‘  

By correct we mean the one defined on page 40. 

in S 

(2.51) 
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where in the last expressions we have also returned to the coordi-

nate system of the original arbitrary point correspondence.From 

eq. (2.51) we deduce 

N v% 	(x A  0 ->t°  
c0x (2.52) 



54. 

6. Derivation of the Lagrangian 

We now express the Lagrangian in a general coordinate system 

and gauge obtaining 

+ b (370 
(x.53) 

where the local element of distance O(3x) in S is given by 

	

01 F( 5x5t 	( AI 56  Yviv1-4-k (,r4 "13  ) 	a-So/IN/I 

k 56 cLot5 aqc, e'‘DOTL-Pajqb -Nf3V"(iV°,0d7W 1 

2.54) 

where 	is is the "convective" derivative 

t's 

	

d 	L -s 	 (2.55) 

Here L- 	is the Lie derivative with respect to the group of 
r'S 

diffeomorfisms along 7; and L- W' is the Lie derivative with respect 
to the gauge group along 41  where 

' • 	W ob°  

- W Cbt°' 
(2 .56) 

.Thus 

015.;—°143.+ 	+ 

ago.. -+ (-C)ooCt". 	A 

W4.0 	ctvem 	W,1. 8 10" 	w A  S + 	.) w1  i 	er(WIYI 	V•iA ) 

(2.57) 
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From eqs. 2.53,54,55,56 	and(2.57) 	we conclude that 

the problem of the introduction of the Wk's in the Lagrangian has 

finally been solved. 

We now seek a IbC.3)(-) which is such that when added to the 

already obtained expression for LO(Nn)/ 01-0") )makes the resul- 

ting Lagrangian relativistic 	invariant. Let us suppose that a 

particular ION is found which satisfies this requirement. Then 

if the most general b(3x) is written in the form 

b 	b 	- €C3 x) 	 (2.58) 

it is obvious that eN) must also be by itself relativistic in-

variant. But the only spacial invariants we can form which are also 

space—time invariants are functions of (-Pi)  - •. )t-eri only 

e (3x) = e C SP1 _ - Le n) 	 (2.59) 

From eqs.(2.58) and (2.59) we conclude that b .3,1t) is u-o to a 

function of the scalars, determined by the relativistic invariance 

of the Lagrangian. 

Let us first look at the third term in eq.(2.54). Defining 

cx- 	c-NOA — A 0. ■^4, ( 2 . 6 ) 

we can bring this term to the form 

Vlb  oTqa. 	G"  (000.3  4- N C' 00,Z, )0100  -1-N s Obj) (2.61) 
tixt5h) 
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Taking then into account the fact that the comnonents 

of the contravariant four—dimensional metric tensor are given by 

50:.=  Nt 	36_ 3:3   __I 	 N:1\13 NE ) 	 (2.62) 

it becomes clear that if the purely spatial expression (part of b(1)t)) 

— GWo 
v.) lickt D b 	 (2.63) 

as added= to the expression2.6I the sum which result is the relati- 

vistic 	invariant expression 

— 13" G °̀'' Dc›1-% 	■1 	
(2.64) 

Let us then turn to the fourth term in eq. 2.54 Defining 

now 

where 

r7 	 A 
r 

A 
"4--- -Ow 	W /?., veQv 

vg  — _ vq. f;k4.),) 	w Aja)ri  

(2.65) 

(2.66) 

we express the term as 

(2.67) 

The above expression differs from a relativistic 	invariant one 

by a purely spacial term if and only if qv is antisymme trio in 

IA and 9 .Considering eq.2.65this implies that 4Q,  is antisym-
metric in P and Q 

gA13141- W1114°  = 0 
	

(2 .68) 

Then the addition of the Purely spatial expression 

B .1;r—B, , „1/1 10,1q. 	54.'4 	 +hit 	 +IV I-- yis ) P qv"' 	 -= AB 	len " 	fi° AB 0 	IA "CD 4) oi -ClIA 
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hasAYI V' 	125 . 

to the term (2.67) gives the rel.invariant expression 

iA4'5‘/C)cr F Ai P 

(2.69 ) 

(2.70) 

We finally consider the first and second terms in eq.(2.54) • 

It can be shown that the only space—time invariant which differs 

by a purely spatial quantity from the sum of these two terms,and 

this only after an integration by parts has taken place (see below) 

is up to a function of the scalars 

(9)  ik 
	

(2.71) 

where h is a function of the scalars, 

The part of the action which corresponds to expressionP.7I) 

is then 

S (4)  Ritl 

— 	GOA )cit-c0A) 	( 	G"'"Gts,,Aq ci-r(34 	cAlRIA) 
A • I 
" M 	G l'AA c s.; 	30Avi A (3)  g-i4 V 1- 

where 

 
oilk379 01-q34 

(2.72) 

(et Y1) cy3syvwl (2 .73) 

Performing an integration by parts with respect to7L°  on the 

first term in the integrant of eq.(2.72) we obtain 

(10 RA ici1) of It x 

-2,cA3x oit'r(5,0 	G`''4" oi 5i; 	a °a0,4 

	

A ' 	— 

	

dzo)t) 	
(2.74) 

51"" cmmvl 	 CS)f,f/CZ
c 01 '01) ON  
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Comparing the above expression with the first and second terms 

of eq.(2.54) 	we conclude that 

- RA (2 .75 ) 

 

and 

tux, 	dtA / 4,0,, = o 	 (2.76) 

The above equations contain eqs.2.20(a)and2.20(b) for hi,h2  and 

fa.. Hence in the following we need only take into account eqs4.75) 

and (2.76). 

Considering eqs.(2.74),(2.70) 	and (2.64) we conclude that we 

/ 	2-1  have found a particular b0Q)  which when added to Lal-"it-)  , °k-k10)  

makes the resulting Lagrangian relativistic 	invariant. The most 

general DN) is then given by(2.58) and the most general form of 

the Lagrangian is 

q4) 	G'' ab 
	0h 14-1- 	FIA4,/ F a  " (2.77) 

the spatial function Wx.) being just the three—dimensional analogue 

of the above four—dimensional Lagrangian 

b OA) = (3)  R41 e 	b  Do" D 	Frei  1F B'Yln  (2.78) 

(where all contractions are with respect to the spatial contra- 
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variant metric tensor 
yvl )  

To the Lagrangian(2.75) we must now impose the final consis-

tency requirement,that of invariance under the four—dimensional 

gauge transformations(2.5) .(We could equivalently,impose on b(7'4,  

the condition of invariance under the group of spatial gauge trans-

formatios.Because of the identity in form of(2.77) and(2.78) as 

well as the identity in form of the transformations (2.3) and (2.5) 

this would lead to identical results). 

Taking into account eqs.22)and(2.68) the quantities intro- 

duced by eqs.(2.6o) and(2.65) 	transform as follows under the 

action of an infinitesimal gauge transformation 

00AA 	1:14 ga.IA`Xg  

Fyiv 	TO a \Av  /)02. 	 (2.79) 

where 

13 	A 	B nea qv, - ̀3iia ".1-4bW14 -'(-3Aa, BR W 
b (2.80 

AR‘ 	" 	
A 

a QR) 
1,j P 

cr1Q13. 56  RP 	P6 	" Av 	BR 1 

The requirement of gauge invariance of the Lagrangian takes then 

the form 



sys, 04:3,„ — `3Cbc‘15 	tsi 
574, kict1- 1-1 	J Rc  — Ra,\404ti, 

60. 

b vi E g b y%  

-CAB F\,/;‘, -V1.6z v  2,  

(2.81.) 
ct)4AB  

F kA
A  

v 	V"113Ro. TA61-1 4v F B" 

1512.0. rX R ::--- 0 

In the above equation the coefficients of 

Ay C2. 	o.) 	Tck.) y W 	a) 

	

`fib'" b) 	41%,/ vJ Q k' vq" 	e) 
TAwi Te‘Av c)  W k4 

13k,  W14W Vivkni" 

B 0 

c ) 
must clearly vanish separately. The vanishing of the coefficients 

of a), b), and c) reproduces eqs. 	2.76,2.20(c)and 2.20(d) 

respectively, while the vanishing of the coefficients of d) and e) 

gives (taking into account eqs.2.20(c) and2.20(d)) 

J Bb V3rtot, 	RbT‘3 (3.ck.I 9 k-Pbc--P'3 AoL A GR 

ft A 	0 6 	(-) A 	0, e. 	0  ae,D. 	P 	"a 9 (3, d 	(2. 	Tze, 	pa, 
(2.82) 

From the above equatiovs it now follows that 

R.ay 	/9th, Db k, 

rl 	 (2.83) A (1.\,,v 	511 	F 

From eqs.(2.83) 	(taking again into account eqs2.20'(c,Itnd. (d) ) 

it then follows that the coefficients of f) and g) vanish identi-

cally.The only remaining condition so that eq.(2.8],is satisfied is 

the vanishing of the last term 

r3iza. 	/ 5,Pot = 0 	 (2.84) 
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7. Discussion 

We now look at eqs.(2.82) . In terms of the generators XE.  of 

the group V(q)(34)) 	the first of eqs42.82) assumes the form 

[X ) ).U.1 	C3-4  115siiFi 	 (a) 

(2.86) 

Comparing then eq.(2.35) with the second of eqs.(2.82) we obtain 

a. ---- —g 	 (2.87) 

namely that the grtpQ.9s are minus the structure constants of the 

group f (aViV:ht)) . It follows that the second of eqs(2.82)is simply 

the Jacobi identity for the structure constants of the group 

From eqs. 2.85(b) and (2.87) it follows that the generators 

Y.. close an algebra 

(2.85) °a -1\ ak 	 (b) - Comparing eqs. 2.34(a) and 2.85(a) we conclude that the g 
A
TA's 

are the structure constants of the group rj ( C1)0) 

(2.88) 

thus thus they represent the generators of an N-M parameter subgroup of 

(004) We shall call this subgroup 	t'SWAN112)i)) 

With eq.2.85(b) taken into account the second of eqs42.82) 

imposes the following conditions on 	and gRiS'a 

(006$6'a.i 4-'04 Sa Rn 	cY --c.do-ae.-cli 7:0 	(a) 

$ 4 6i;, 	 t5  %.6 	 $e' 	 (b) 

634 6 .6 $15.-6.: 	clk 	‘e. 0- 4- %A Tzs- tie) T56, 	
(2.89) 

-1-cs 4 1-56,s -61-i 4-€34  a- 	+ 	 (c) 
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Comparing eq.2.89(a)with the Jacobi identity for the structure 

constants of the group 	we conclude that 

P a = 	Oa- 	(k )s: cvaiirtomi6 uwts-tavits) (2.90) 

we can set 

0-`) R = kaa (a-1)6K 

.9) satisfying eq.(2.33) and 

(0t. 	Q 
2 .Y1 	) (2.91) 

(2.92) 

Making then a reparametrization (2 

such that 

Further reparametrizations are now limited by the condition 

;('.̀ 6 	Di A -6 	0 	 (2.93) 
and therefore they do not mix the W's with the W's . 

With eq.(2.92) taken into account eq.2.89(b)reduces to 

$‘ pQ =0 	 (2.94) 
and with eqs.(2.92) and(2.94) satisfied eq2.890is an identity. 

From eqs.(2.94) and(2.92) it follows that the generators TR  

also close an algebra (that of the group rAcl‘04) ) 

nit5 	- 	 (2.95) 
and 	

,V6:3 0 
	

(2.96) 

We realize from eqs.(2.96), (2.95) and(2.88) that the group 

ri(OMN)) 	is the direct product of the group:30-140 and3k?'.)). 

From eqs.2.29(b),2.85(b)2.92and(2.94)as well as eqs.2.34(a) 

and (2.86)we conclude that the group .3(G/Vi"4)) is simply the 

adjoint of the group 5 C`PIN) 
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We now go back to eqs2.20(c) and2.20(I). Since the space ,  

is a n—dimensional Riemannian space; we can define its affine 

connection in the usual manner (torsion free) 

C 0,` = C G 	c bc)a 
c:  bc)ci 	( 	G ),,t 4,  96;c a 	c,.)  6;  bc 

	 (2.97) 

'340 	)(-1 P1:› 	qd, / 

We can then write eq?.20(o)in a reparametrization covariant 

manner 
IA alb 	 1)10- 
J 	 =0 (2.98) 

where 
	

is the covariant vector corresponding to Jza  

t3c2A " 	Gab  `57t b — (2.99) 

and "I" denotes the covariant derivative with respect to the 

connection 

ti-A 
alb= 971-j /9 ,-(?1, 	C elc;b1-SA 	(2.100) 

Equation(2.98) is Killing's equation for the Riemannian 

space ,,V.„ 	.WeconcludethatJAa are the components of a 

Killing vector in c

onclude 

 and A  generates an isometry of the space 

Since the XA's are the generators of the grouplONOit 

follows thatrYORNO is either the complete group of motions of the 

space NJ 	or one of its subgroups. 

.Conversly, the space 'X must be a n—dimensional Riemannian 

space admitting a M—parameter group of motions. 
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We now turn to eq. 	2.20(d) 

X12, -45 	-VA0,%&  e,sk 	-960.,VQ AR =0 	(2.10I) 

This equation represents a system of differential equations ge-

nerated by the Vs for the metric coefficients fa. The inte-

grability of this system is examined in appendix II .From that 

analysis it follows that eq.I0I)possesses acceptable solutions 

fAB for any group of motions 	of a Riemannian space be it 

compact or not. 

The remaining conditions on the Lagrangian given by eq.(2.77) 

which have yet to be discussed are those imposed on the functions 

h and 	e 	by eqs. (2.76) 	and(2.84) respectively 

)(A 	0 	X6 e 	 (2 . IO2 ) 

These equations denote the invariance of the functions h and 

e 	under the action of any element of the group r3(`-63)0). Hence 
these functions must be constants along the orbits of the group 

(3(Cil(3)9) orifSL 



CHAPTER IV 

APPLICATIONS 

In this chapter we shall use the resultsobtained previously in 

order to get more specific information about the Lagrangians of our 

theory. 

We shall only deal with the case that the unphysical W
A
's are 

absent. For this case we study the removal of massless scalar fields 

and the corresponding acquisition of mass by the vector fields. This 

will be done in the first two sections. In the last sections we give 

all gauge invariant Lagrangians for the cases when the space of scalar 

fields is of dimension one, two and three. This is done for each 

dimension by first giving the group of motions of the C1 -space then the 

corresponding metric of this space and finally the solutions of eqs. 

(2.101) for the fABIs 

A main distinction that is done in this chapter is between transi-

tive and intransitive groups of motions. One can think of the transitive 

groups. of motions as more physically acceptable for reasons like the 

15 
exclusion of Jordan,

14 
 Brans-Dicke-type of theories and the fact that 

Higgs bosons which are present in the case of intransitive groups have 

so far failed experimental verification. 
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1. Removal of massless.ccalar fields (transitive group)  

In this case it follows from Eq.(2,84) that e is a constant, 

absorbed in the function 41 	of 	which is also a constant 

because of Eq.(2.76). It also turns out that the solutions for 

G a.b 	and TAB of Egs. (2.618) and (1:10}) respectively contain only 

arbitrary constants and not functions of integration. 

It is evident then that all the scalqr fields are massless. 

Since for a transitive group, 

wank C t"3 A 
	 (3.1) 

everywhere on 	IL31e., 

we can use h of the generators of DCLQ(.3,0) to move from any point 

on ,  

points 37,. 

the form 

rl,h to some fixed point sTI — the same for all space 

After this fixation, the matter Lagrangian assumes 

4,m = —(`3AzIff- )1 ■014 4— 1(p ) F1„,  Fevtv z  AS 	4 	(3.2) 

Thus, all the scalar fields are removed. 

The constant matrix ( AQ)1,  which now appears in front of the 

kinetic part can be transformed into the unit matrix by a 

reparametrization (2._?(6)). Then it is evident that the matrix 

(3.3) 
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will be the mass-matrix of the vector fields. It can be diagnon-

alized by a further reparametrization using orthogonal matrices 

21A 8 	which will leave unaltered the kinetic part. 

If the group 1‘..1(")) is simply transitive (n N) there is 

no remaining gauge symmetry after the fixation. If, on the other 

hand, it is multiply transitive (N> n) the reduced gauge 

symmetry is that of the N - n parameter stability subgroup of 

the point of fixation 4q1 . 

2. 	Removal of massless scalar fields (intransitive group) 

In this case the action of the group is transitive on the 

minimal invariant varieties which it defines on k"5-1!). 

Thus, if we redefine our coordinates in 

= 	Qt C LP, 	. (-PO 	0. t,. 

Az, = @a, C 	. . JLkn 	
(3.4) 

such that the minimal invariant varieties are the m-dimensional 

subspace of 136 
	

defined by the eqns : 

d06=0 
	

(3.5) 

then in this system of coordinates, 

(3.6) 

X A = '5  A  -6 	't3/6-, 
	 (3.7) 
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The WO are the coordinates on the minimal invariant varieties 

and the vectors 9/99a. take us from one minimal invariant 

variety to another. 

It follows then from Eq. (2.84) that e, h are independent of 

the 	y 3.s 
	 (2.?6) 

e= 	 ei j 	„o vi.„„,) 	 (3.8) 

and also the arbitrary functions of integration contained in -CAB 

and 
Gab 

 can depend on the (PS only 

Hence, the 0 	fields may have masses, but the kV fields 

are necessarily massless. These fields can however be removed by 

a fixation of the point on the minimal invariant varieties, the 

argument of Case I applying here too, since on these varieties the 

group 	has Lt13j0 ) has transitive action. Let the point of fixation 

be 41 	. The matter Lagrangian assumes then the form 

'LM =  -e 	ea,k4 01'D 	4- 2(Gkl; 134-41nAAWA14  

-(3AF:364)1\kl* N614 -1L40i 	eq'V 	(3.9) 

All the massless scalar fields have been removed. 

The coefficient of the quadratic term in the vector fields 

) A is now a function of the V S 	. The mass matrix of the vector 

fields is now given by : 
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14L 	PiAzi 	 (3.10 ) 

where min denotes the value at a minimum of the "potential" e : 

Stable constant classical solution for the 04, )S (with 	O)— 

their vacuum expectation value in the quantum theory. Equation 

gives actually the mass matrix provided that 

CC ABV ,tet, 
	 (3.11) 

has been transformed beforehand to the unit matrix by a reparamet-

rization (2..?(I)). If an analogous reparametrization is used to 

set also 

(G" 	= s & ,0 	 (3.12) 

then the mass matrix of the remaining scalar fields 06, is : 

0,,,,t) 	 (2.e  
L 

(3.13) 

In the case that the potential function e has many minima there 

are correspondingly many mass matrices defined. 

The comments made at the end of the treatment of the 

transitive case concerning reduced gauge symmetry, apply also here 

with respect to minimal invariant varieties (with n replaced by m). 
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3. One—dimensional space of scalar fields 

A one—dimensional space can admit only a one—PaTameter group 

of motions whose killing vector can always be brought to the form 

X ( ) 
The metric of the space 	is given by 

61,L2 Cc3 x-)L-ccLez 

and 
	

fAB=fII = 
	

is a positive constant. 

After fixing the value of y at q2=0 we obtain the La-

grangian 

f = k R 	WiL  14///, 	c /)11  v 

describing a massive spin—one field in G.R. 

4.  Two dimensional space of scalar fields. 

A two—dimensional space can admit one, two, and three para-

meter groups of motions. There are two two—parameter groups,the 

abelian,(corresponding space flat) and the non—abelian (correspo-

nding space of constant negative curvature) both of which are tra-

nsitive. The three—parameter groups are of course the complete 

groups of motions of a two—dimensional space of constant curvature. 
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In the following use will be made of a represantation of the 

killing vectors and a coordinate system of the —space such as to 

make our study of the three—dimensional —spaces admitting an 

intransitive group of motions easier. 

4.1 One—parameter group 

The killing vector can be taken in the form 

X ( 0) 1 ) 

and the metric is given by 

cf.,L2-Df(3x-)i- agzi- PociTz 	6(e)>o 

fII is now a positive function of e . 
Using the generator X we. set q) =0 and our Lagrangian becomes 

of 4. (e) R- ece)- (9,ix e/i4-6(e)W1A-wp, -1c(e)r vfit.tv  
describing a spin-0 field which acts as a scalar gravitational 

field in interaction with a massive spin—I field. 

4.2 Two—parameter groups 

a) Abelian 

The killing vectors commute 

[ x i )  X 2.] 0 	 ,o 	•1( ( 0 1 ) 
The metric of JIL is 
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ciLz= 10" ace + z 612'6(11 cc_ 	622A TI 
where the constant matrix (b) must be chosen positive definite.The 

gauge group is simply the group of translations of a flat 2—dime-

nsional space. 

faB is a Positive definite constant matrix: 

fII= CII 	f12= C12 	f22= 022 

Using XI, X2, we, may fix Lpi = 'z=0 and our Lagrangian assumes 
the form 

= K — — 	wAjt  WA,B  — CAB rjA")  c 	 (A)5 1,2')  

which describes two uncoupled fields of spin-1 in G.R. 

b) Non abelian 

The commutator of XI' X2 can be brought to the form 

[X1)X2]= Xz, 	Xi(1,0) 	X2"(°) e494) 

and the metric is 

diz Eif (3 )0]-(U1-2ipqy2+112(-P72:)cq:+z(: 1)2) 4(-E d yz_+ 6z
2
ct cP 2: 

The matrix CO must be chosen again positive definite. 

Integrating eqs.(2.101)ie obtain for fAB  the following 

c41 	C 41 - 2  Ciz 	2. C2 cfL2-  

cf, 	(Ciz -c22. cpL) e 991  

f z2-= cza  e 
2.-(P1 
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where the constant matrix (C) should. be taken to be positive den-

te. After fixing kfi = Lez=0 we obtain the Lagrangian 

[DAB w
w/ 	F Aiv F u- 2' g 	/41) 

1 	 2 1 	2 
where: F/tv =Sitv 	F

41) 
- f 

fr" 1) 
- (W4 	2 W 

/ 	v 
	

W 

Evidently this Lagrangian describes the interaction of two massive 

spin-I fields. 

4.3 Three-parameter groups 

a) Euclidean 

This is the well known complete group of motions of a two dimensio-

nal Euclidean space E 2 = SO (Z) ®s T(2) 

The killing vectors are 

X = 010) 	X L =(0>1) 	x 3 = (- Oz, 01) 
and they obey the following commutation relations: 

[x4,x2]=0 [x3 ) xil= - 	[x2„ xj= 
The metric is of course flat 

ci 	(3x)] = 6 ( (.e14 d (-P7 

where b is a positive constant. Eqs.(2.101) give 

3 3 = 	1 4 0( 2_ ((f,1 2' 't 12:z) 

4 .2 	 !1 3 = "C2 
 Cl 2 	 23 - — 	2- (191 

and to ensure positive definiteness we must take oC i d > 0. 

Using the translations we may fix (pi = (p2_ =0. 

A B = 1, 2 ) 



Defining then 

vvik" 	/14' + 
	W2 /(4" = 3  Pt ) 	/4- 	/A- 

the Lagrangian after the fixation becomes: 
AA. 	c4 z. 	it-u. V - 1-\ 

= A).4..0) - A vdt., 

This Lagrangian describes the electromagnetic interaction 

of a spin-I field. 

b) Spherical 

This is the complete group of motions of a two dimensional 

sphere (SQ(3))with the following killing vectors 

X 4 = (cos tp, ,- cot (pi sin 49,) , X2 = (si_n (P_, cot yi  cos y,) 

X3 	(0, 1 ) 
The commutation relations are 

[x, xj= - x3 	[x, x3-1= 	[x3  , 	- x 

and the metric is given by 

d. Lz[cf(3 2z)] = b (ct 	+ 	 (R. ) 

where b is a positive constant. Integrating eqs•(2.101) we obtain 

41 = 6 -4 c4. s in1 	sinz  (1), 	= 	 cp, cos (22.  

I 2.2 = 	- 2_ S n Z (191 C OS Tz. 	13 	stn cp., cos yo, sin k_p2_ 

f 33 = 044 - 0 	C0S 2  Lei 	c 13 = c( Z  S.111 (-1)1 cos tp, cos Lp2_ 

The requirement of positive definiteness is satisfied if d1>0 ) 0( L>oc i  

If we now fix 	 t_p,_= 0 	and define 
3 

\A//,z 
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the Lagrangian becomes 

= KR-A- bw tv; - 1-  GL, F 	- Vac, - 

where 

F,L,L)) 	v 	 ( 	A v - viv A 

1-1,(A.v= 	- Av,t_ + z (v)4 Wv3  - Wv 
It describes the interaction between a massive complex spin—I 

field a massless spin—I field 

c) Hyperbolic 

The group is S 0 (2.1 1) with killing vectors 

x1 	(0s q„. , - cLk. Lp, sin cp2.) 

x, = Gtr) Lc), , c-Lk tp, cos LPL) 	X, = (o, 1 
which obey the following commutation relations 

[x1 ,x 2:1,  x3  , [x1, x31=-xl 
Theme trio is 

aCiRex)]-1(a,f+ A2-1T4 	(b=const.>0) 

Eqs. (2.101) give 
2. 

41 = CI -hott $ Q., y1 Slfl2cp, 

S 4 -- 2 	LIR COS 2 (f 
„ Z 

33 -7 	COSK, 	c61  

c
4 2. = -d2  sk2Ti Sln LPL  cos (-P2_ 

c43 z 

f -2.3  _04..  qi 5 in qL CoST2. 

and this is positive definite for o(1 0 	) d 2 > °Z 4 

We now fix 	=-• (-f a  =0 and define 

1 	2, 	
Vki 3  kiVAL = 	 A = 

after which our Lagrangian becomes 
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H1-1/., 

( \iv/4- Ay 	Ar-) 

Fitcv 	— A 	— (t, w A. vi,)* w v \Ail! ) 

5. 	Three—dimensional space of scalar fields. 

A three—dimensional space can admit 1,2,3,4 and 6—parameter 

groups of motions. In the following we shall destinguish between 

the transitive and intransitive 3—parameter groups. Also since a 

4—parameter group contains necessarily _3—parameter one we shall 

examine separately those containing a 3—parameter transitive from 

those containing an intransitive one. 

5.1 One—parameter group 

The killing vector is 
rt 

X = ( 0, 0, 1) 

and the metric 

CIL, L2 [q(3%)] = 
!oCb

d -t°d ckq6 

where b=b(Ti,(1)0 is a positive definite matrix. 

h, and e will now be functions of -f i Ce2, and f 
fAB= f, 

must be chosen positive. 

If we fix T3=0 we get the Lagrangian 

ifz.) R—e (ft ,LK) 
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z 6"\Aff,.SP1  z6wfr  (e)  2 

5.2. Two—parameter groups 

Since two generators cannot have the same paths,the minimum 

invariant varieties of a two parameter group are surfaces geodeti-

cally parallel and of constant curvature (negative or zero).Taking 

these surfaces for e = constant and their orthogonal trajectories 
along the lines (e) with parameter e their arc—lengthl the 

metric will assume the geodetic form 

Lz  [T (3 	= Gt. 	+ 	ct,(P.;+ z 61, d. T., a (-1/, 	&LK'11 

	

where the matrix (b) depends on e, f, 	and is positive definite. 

With such a choice of coordinates the action of the group re-

duces to its transitive action over the two dimensional hypersurfa-

ces defined here for e = constant. The groups are of course the 
same as in the two—dimensional case. The metric on the surfaces 

	

9 = constant has obviously the same 	dependence as before. 

However there is an extra 6) -dependence , that is the matrix 

(b) will now be s-dependent. Since the eqs. (2.101) for fAB  are the 

same as regards the Til ikvariables we get the same solutions as 

previously where the constants CAB  will now be arbitrary functions 

of e subject to the positive definiteness requirement.h and e 

will now evidently be functions of e 
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), Abelian 

Metric: 

	

[if (3 x.)] = a ez+ L4. 1, ci 	6:14  a (p, 02:F 6-2--.zaez  
where (b) is a positive definite a-dependent matrix. 

fAB is now a positive definite e -dependent matrix 

f 41 -'Cii (a) 	c22 = C,, 	 fiz =  
After making  the fixation 424  . UfL=0 we obtain the Lagra- 

ngian 

f= 11-(e)R• -• e (9)-  %it 9)1A-  ID A  re) VI A It  I Ike 	AB(e)  FAt)f .11,, (A, 6:=1,2) 

describing the interaction of a spin-0 field with two massive spin 

I fields. 

b) Non abelian 

The metric now is 

	

d. L2'11,0(3  x)]- 9z4-(b11-2 1;i22,+.1012T:i 	6-zq2) ay, a (T2 622  

where b=b(9) and positive definite. 

For fAB we have 

f44 =c44 -2.c izif,+caiez c4 	(CU.' CizT2.)e4)14 r 	 2-41 
22 .----- c2.2. e 

and at if, = 49 =0 the lagrangian becomes 

df- 	(9) R. e(e)-  6A8(e) w AILL 	- CAB  (o) F:14  a p F BILL V  

where 

\Ai ), W v4  ‘A)/LA-21 
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5.3 Three—parameter intransitive groups 

The minimum invariant varieties are again surfaces so we 

shall also here use the same coordinate system as previously. This 

brings us to exactly the same situation as before the only change 

being that the similarity is now with the two—dimensional scalar 

spaces admitting a three—parameter groun. 

a) Euclidean 

The metric is now given by 

ciL/Cv3x)]..-a.ez+ L(e) 	cLc,' ) 	6 ( e ) > 0 

For fAB  we obtain 

= 042 (e) 	 (e) + d2  (e) 

f 12, = 0 	— otz(e) q2, 	2.3 
where 04 4 (e) 0. 2 (e) > o . 

After fixing Lei  = 91=0 and defining 

= 1+4  + Wilt 

	

A = P-3 
we get 

e (e)_ ev  ort_ (e) 	a
z  )' 'o c 

4
0 

0 
" 

fiv H
i V 

where Fl  1-1" are the same as in case 4.3 a) 

b) Spherical 

The metric is 

'AC- I-T(3201- d,e2-+ 6000.494
2

+ sir12- 1e4 aq::") 	6(e)>0 
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and fAB has exactly the same form as in case 4.3 b) where t•Li  

oCz are now functions of e and oc4(e) 	ot.2.(e) d4  (e) 
Fixing 

Tl 11" 
Tl= and defining as before, 

we obtain the Lagrangian 

=-L (a) R —  e (e) - e 	 * c' 4(e) 	(oVe)- 0/4 (e))  Atv 

(e) W Wr- 	Fpv 	2, 	H  

where 
F

v Hhtv 
	

are the same as in 4.3 b) 

c) Hyperbolic 

ct.[±[C3x)]=  d,82-  + 6(e) (ct 	+ seLp,, a.T2.) 	6(R), 0  

and fAB is the one given in 4.3 c) 	with c4 ) d. 2  now 

functions of e and 04 4(e) > 0 	0( 2  (e) > ot4 (e) 

Fixing (p4  y2..0 and defining 
wtt, 	w  

we obtain obtain 

7. 1, ) rt—e(8)- 	L 	* °Cite) 	(d 	(o)) 	v 

A" 	°(°)W  W/A-- 	FA' vF 	2(e)- 4 	H 
/AV 

.p.v 
where F 
	

) 1 I /Lk v  are the same as in 4.3' c) 
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5.4 Three—parameter transitive groups 

These are the nine groups that have been labeled by the la-, 

16 
tin numbers I, II, 	 IX by Bianchi who has also obtained 

the corresponding three dimensional spaces which admit them as 

groups of motions. The type VIII and IX groups are simple 

whereas all the others are integrable (non—simple). In the follo-

wing we shall make extensive use of Bianchi's work in the deter- 

mination of the Lagrangians. The fixation of ) 4)2. ) 	
will 

always be done at the origin (-1)-= 	Le, = O . 
The solution of eqs.(2.101)will now depend on six arbitrary 

constants CAB' This matrix (3) must always be taken positive de-

finite in the following so that the positive definiteness of fAB  

is ensured. 

a) Type I 

This is the abelian group in three dimensions 

X 4  = (1 )  07 0) 	X-2,=( 011 1 0) 	X3  (Di°,1) 	EX A  ) X 61= 0 . 

The space is of course flat 

	

[ 	x-)] 2--  a- 'Piz -4-  a tetz 	'1°32.  
and fAB is a constant matrix. 

Using the generators of the group we move to the origin and 

our Lagrangian assumes the form 

	

R,  _ 	vu 	... vpu.‘4 	upv_ cA f A 	0/J.V 

/0/ 
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describing three uncoupled massive spin—I fields . 

b) Type II 

This group has the structure 

( x I x z) (Xi ) X3) 0 	( XZ, X3) = Xi 

X4=(0,1,0) , X2_ 7. (0, 0,1 ) 	X3 	1 )  Cf3 ) 0) 

The metric is 

dizit-F3  x)j= 61112' 1-  a V+ 2. te1 d(f 2ALf3  + ( 4 +T11) 4)32. 

Solving eqs.(2.101 )for fABwe  obtain 

ft
C  

.! 	41 	2.2. = C22 + C4 7_ ft +c11 

) 	'C13 C14 

where CAB as has already been said must be chosen Positive de-

finite. 

After the fixation we obtain 

k R 	- wr,  wiPz wp2- 	vrt  v,)31‘-  

where 

A 

AB /v- 
y 

Br V 

c) Type III 

The killing vectors are 

-(4,1,0) 	X 2,-(01 0,1) , X3  -( 	, 0) 
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and they obey the commutation relations 

( xi x =C x,, x3  ) 0 	(x3  xi ) 
The corresponding space has metric 

1 I2,r 	2, 	vpi 	2. 	t-9 , 
cu._ LT (3x)j= a (ei + e de  T, + 2n e a Lez_ A 4)3 4-y32-  

where n is an essential constant (that is for different values 

of 	n 	the type of the space is different) and n
2 	. 

From eqs.(2.1a1) we get 
2Y4 

33 =  C33 C 41 f e -,2C3Te i 
4 	2 = c 	e7-4)1 	 2. c2_2 = C2.2. 

"Pi 	 2.1ei 
f42. = CU. 	 f 43 C13 e - 	 C23 - ciz Tzeel  2, 

The Lagrangian after the fixation is 

f =t<R - x -  WitA.1  \AF/A- 	04-- 	Ok--2nvJitditt  

where 

v),A.3  w1) 	\AJ/I1  
d) Type IV 

(X41 X21=0 	(Xi ,X3)= X1 	(X2) X3)=  Xi Xz 

X4 =C01 2.1 0) 	X2=--(0,0,1) , X3.=(-2) 	ZT3 ) 9°3) 

The metric of 	 L. 	is 

ctLz[ke(3 x.)1:-- 	el91 (ct({):+2$ T,ay3  (Tizt r1.2-)a Le: ) 
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where 	n 	is a constant (essential). 

For f
kB we obtain 

41 	'11 e  	 (c 	+ e42 	"14: cii LP1 2-  e 4)1  

	

c33 	c4, (P,(°11-1- 	4-c44÷c“.)T2_ 	(c43 Tif 

C  13 Ti  4;13 2' C2-3 (f3 ) e2If  (C, t-P., +'-f- em fiz+ c,, 	+Czz )(f3
z 
 e4)  

--c e"±(4-c4,ka +c„(f.3 	 kf,k-P3 + 	T3) 
, 	J43 	13 

f 23 =  (C23 11. C43 (pi) 	 (4 C44 k-P, (-P, 	cu. LP,, 	 c,2(p3+ 

C 2,2 1-P3 + y C44 4)4 (1)3) e `P"  

After moving to the origin we have 

if= K R - X-Lt vol4 W9tni Wft W zik: 4 Wiu,3  1A13/-- '41 /c o) 

_ 4 	ft 
L- 12.. 

where 

f /v-v 
( fry 

F2  /Ay 

in) 
(A iv 

/- 
f l o 

C„ 

3 

vv  V — 

3 

/"' 

vviA 
3 

(-3,A.1)  

, 
 v 

\AJ 2  
14  

2.  

e) Type V 

(X4 I XL) =0  1 -(X4 I X3)= )(1 	(X/)X3) -  X4.  

X4 = ( 01 1 , 0 ) 	X7., = (0)  01 1) 	, 	X3 	/:-7.1 11z. 	k-P3 

01.L2Gtox)] -  ci tp12 +e2r41  (ct-LP2 	de) 

This is the hyperbolic three—dimensional space (constant nega- 

tive curvature). 
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.E qs 2.101)for 	fA33 	give 

f4 1` C44 e241  
024 _ 	A2- 

t(C14 f,_ +ez2.9)3÷ZCiatR)c tfi f2 L2-2. L 	) 33-  .3 

2, Cci3402.4- Ci3T3)e"T1)  f12. 	e2r1 LIR 	ci3  eT1-+ (co 	 1  

	

11 	
Cela 

	2 n 
f 

	Lei 
2.3   \-2_3    	LPL  + C7_2 1-P3 	e 
At 	= LK. y3 =0 we have 

	

f. Kt?, - 	10 4iL--1A1 	1' 712. \NA,t3  kit) 	111 A.11) F 	C2-2. 	F2/"- 3/4-  - i 	4 41/ 

f - 3iu„V 
C 42_F 1.44 vF 2) 	r 31(v- C 2-3 c't 	r 3/"  C33 	,u1) 	 ""1.3 I ALV 

where 

Fikv.f/A.% 	w i, -w,N,0,) 2 
F 	v,) 	) 

fr v 	
\A -

IA' 

f) Type VI 

()(1,X/ )=0 , (X1,X3)=X4 , 

X i  =(OA()) 	X x -z (O1 01 1) 	x3 = (-1 )  qt I  v43 

ci.L2N(3)0j= 	eficte+2 11 e( '+' )ttie2, .44)3  -I- e2.efl 1 (Q32-  

where 1, n 	essential constants and 1 0 ,0 C n2 LT 

f33 = C33 +. Cii4)22 e2191-i-VCz.2. 11932 e2e4914 1-fkeia lfziP3e 	-F2c, yo,11-1-z2c23  ({9.3 e 

fAi= 	4 e 	 A 
 2. 2. e 4 	 2ty, 

	

(41)6 	 (i" I 

f 42, cia eg-fri)(Pi 	 Lel 	21)1 
513 " C43e 	cii(P/e 	+ c42 (P3 e

(t+-4)1ei 

c237. C23  e"1 + cizy, e(e+1)4)1  + C,2 _ 	e2";  

The Lagrangian after the fixation is given by 



where 1 n 	essential constants )  0 L 12  4 w= 

Eqs.(2.101) for fAB  give 

f

PC11-2(tC42.-Clz).4. 2.,(tC12,-C2.1)+-(2-,e9Ci, 
40- 	b 	' 	 6z Cl%b(P1 2C4Z-64C11 

- 12
) n2 > -T  

86. 

= K R. 	- V1/41/„.  W4/L- \A); et  kA) ,,3  dft- 2  rt. 	w2P-- 	F  
2 11 	3 i- 3/4V 	—4 	_2/1.41) 	,-- I 	( 3/" 

Cz2 I 	f 	-CA2 rp) 	-C 4 3 riAli 	C2-3 VizAV f 31" itv 

F;v=f;v - (wfr, wv _ \,,)/4,3  wv ) F Av 	-,e0A) W w,3 

g) Type VII 

( X4I XL).: 	I C. X 

	

X 3 ) x 2_ , 	x 2_ ,x = 	+ x, 

X i  =(0, 1,0) I 	X z  (0, 0 , 4 ) 	X3 .=  ( 1 ) 	L(*2- + RT3) 

cti2:Cke(3-0],. otz+e '4)1 	+cos 	) (pal+ t cos w +to 	w(4), 4- 

	

I 	 1 U.) • 
+ k 	CLT2- C143 	

Z 
CGS LA)  ‘I)4 	sin w +n) a -6 

12ezz-20C12,-C40+Zaeft-  C41)+(242)Cza  C°S 	MITD2C12- j 22. 	62 

142  _ {,t(C44 C L2.) 'VC, 2_  +  CI 2' -4 (Cf4  eZZ) 	
C2.7_ Cti  

cos  bipi 

b 	
6 

	

33 =C33 t.2, IP (f2+ er3 '2/"P3 122- 	z (tf2.74 12)T431-(Q12.2.-2.ec,a ÷fi l)tf,2  

c13 +-F42 	uf4a f 44 )/3 

f23. 1 



where 

P-7-• [ ci3 

C 

ecs t:22 (p4 	(2(1.2-3 	C43) SirL 122: 	e b  

Cos 2 (-ti + 
(2C{3 	C23 ) Sllti 	 e 2 

87. 

This is a rather complicated Lagrangian. However after fixation 

we have 

- - +.1) wi 	 414) 	 /0+1041M/ill 

	

3 	314.1) 	2./AV 	I 	. 3/(4-1) 
- c 	ri4v c F ff-Litv 	F F- 	F - 44 /UV 	27. iLv 	2- 33 uV ci6 v 

3 AAN 
C 2_3 v) 

where 

F ,4 V • "or zI3)(w),,3 	W __ Wv 	Au, Atv cw,4,\J—to 	,, 3„\A)t) 
f, 
Aol - . t(Wi-LWv3 - 

h) Type VIII 

This is the first of the two simple three—parameter transitive 

groups of motions. It has the structure 

>CI,X2_) :: Xi 	(X1 ,X3)= 2 X2 	(X2_, X3)=-* X3 

Xi= (e43) te21 e (1)3, -z1f2e T3) X 2_=(0,0 1 1) ) X 3 =- (01 e4)3) o) 

The metric of the correspoding space is given by 

LI[9(3X.)].: !LJd!!etqj 	1, 1 ei .11 2,3 
4( 	1111 	 I 

, 63-1 (Q6(.0)4-2.2- 	Q"(xi) , 
1312. 	 o a (x i) +rt. 13.= Q"10(i) (QV() 

2-4 	k. 10_ 
1023 d(xi) _ Q(x.,) Xz_ 

4 

Q(ci),-- 14%,14412.x.13-+-13 (12-+ 9.4 X1+ 10 Cci1,c403,61-4 , c1-0 	co" 



For the fAB  we have 

2_ 	3 
fil =( j1'1 -41)-112.-F Lq2. tp.L 2(?2, 	qz, L3 + `Tz (-.3 

88. 

_2.(f3  

22 	Z2 —  2 12 kji3  4 t..?2,2" 33 	c33 : 133 e lf-3  

= 	Lj 12_ 2 (1)42. (-j  22 	113 t 3 tf 22.  t j 2-3 	kf23  ti 3 3 ) e 
-`e3 

43= 	- 2TL'a23 	 - 	kj33)e 4)3 

where 

44 	14 	2z 	C22. t 2. C42 kfi -I-  C44 	1 2-  
3 .1., 4- 

33 = C33 + 	C2.3 Ti Z (2. ezi C 4 3 )(f iz-f. 	c iz 	-t- Al 1'4 

l e= C12, -i- C41 (-P4 	C13 + 2, C4'7_ Ti + C41 Ti 

up3 c7.3 	-1-c,3)Lpi + 3  C12- L?1 2- 	4 1 C 	f t 3  

After fixation we obtain 

    2 	LfikR.-)- 	wi ,VP- (63-I) _dy- c+o   
to), tot_ 	Wit#.4 	- 	4,4  kA) 	CAB Fi,ky  

i) Type IX 

This is the familiar 50 (3) group whose structure is 

(X i1X2 )= X3 	(X21  X3) = X4 	(X3 X1)".  XL 

The Killing vectors are given by 



(I)  
sin SQL) 	 n  

cos tpt 

89 . 

X 4=  @i t () ) 	X 2.' (CDS (1;12. I--  COtf4 

= - Sin (f 	— cot: 4), (.002. 
The metric bii where 

(j_ D-e (3 	72  6L4  Gt-qk  

is 

6,44 = ze cos L- 1 + 	sin 4)73, + .9c2-z÷ci  

	

621=2 sin Lp, cos kfli  (6 sirt ({)3  - C COS f3) 	6 1s
. 
 R41 + a4 ÷ a 6ii-tatp1  

133, 04.2. 

cos yi (6 cos 3 +C sinT3)-1- 2 sin`()1 	 cos 1) 

613= 6 COS 4)3 	C Stn. ().3  

623= oLL  COS C)i  .+ Sin, Ti 	st q), 

fn is now given by 

fill' Z41 1  (Z +Z33)÷yl  (Z22.  -Z33) CA312Lf 	Sill- 2Lez c22  , 2.2. 	 2., 23 

/ 
f33 Z Z2a -t-Z-33)-±(Z22_ -Z33) C,OJ 2-TL Z23 1;v1A,  Z(ez. 

c cos ({), 

ccri  42 - 	 43 

f 13 = Z/13 	cp,_ — z 12 

23 ;" Z23  C.,g-') 2 f 2... 	2, zf2_ 
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where 1 	 1 
Z14 Zq 11 -4-  Lj33

\ 
 .2, ( \. 33`111) Ctri 2t-P1 	43 13'64,  2- 

Z 27. 	z 

     

     

      

      

      

Z12 	42, 

     

     

      

23 = 113 (-4Y 3 	-t - 12 11-(11A• 

  

and 

     

T14 :" C14 ) 	 + C33)41-  (C2.2. - C33)00-3 2. + C23 4tivt- 21)3 

LA 3 3 = (C22.  + C33 ) - z  (C22  -C33) Cr1 213  - C23  4-04., .243  

12 = C iz, C& 43  C,43 4-vvu.  13 C43 (,t)-1 L-P3  C42. 4-(Atif, 
Ldz3= C23 ciarl 2,T3  - 	33) 4-141,  2.43 

where CAB must be chosen positive definite. 

The Lagrangian after fixation is 

k R. - >, --- 0(2- w 4 W1-(2€ cac-ct  )W zvizi- 4eW3 v,13-z6\AN2-  

f W 2W 3-1, C44 	F"/"- z Czz F, F1/"- IC33  ,(1,f 3i i  

3 (1/ 
C42 	F

7  V 

- C13 	F3,41)  C23 	F
A. 

 

Fi.1) f;v (\u/lkitiv3  
3\ 

/A- IN V  ) 

- w3,) 
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5.5 Four—parameter groups containing a three— 

parameter. intransitive. 

There are two four—parameter groups of motions containing a 

three—parameter intransitive. These are a) the one containing SO(3) 

and b) the one containing SO(21 1) . The corresponding spaces 

will of course constitute particular cases of the spaces 5.3 b) 

and 	5.3 c1 

a) 

The Killing vectors and their commutators are 

Xi =-'(0,01Y) (P3 	tP2. 44/IA' 413 ) 	 (0)  /IA./1(U Li°3 CA12_ cbl (43 ) 

X3 = (OA I) 	 ( i t  0)0) 

[X Xi — )(3 	[X 2- I X  31 -X1 [X31)(:)=--[XA X 4) =-  

The metric of the —space is given by 

ci.C-  [fox)] = cifiz•-f &LP:: + 4i/vt-/T2 ot-LP37-  
Eqs. (2.101) for fu3  give 

1 044- 2_ 404:2(c), 4.61,J LQ3 	11, 	4 - 	4-Civu q2_ Co6.2 13 

f33 r 	42(- 	2  (p2_ 	4 - 	f 4 = /3  

4 z= 041. 444,t, 	 q3 	13 = 	M-44- T2_ c'er)12. 4(1-//'̀ ' 13 

- 2 CA:AAlz, 	 f v ot ZSr1v4z... (-‘7) Z GO-1 13 

= 	2. 41114,H)2.. C.Crl 	 ) 	3 4, 0 2. Cer7  q2_ 
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where 04 (34,  cz z 	constants which must satisfy 

a4>0 I 	> 	(34 >o ((di - ) 01 - 	> 0 

in order that 	fkB is Positive definite. 

After the fixation we have 

K 	?\ 	WA/4- \Altl.  104: kil)*  Vil/L 	44 V= 	4/4  v.- ix 
FV"- i(ce4 -0(,) Fly F3/"._  

- A F/A2„ r'1)  

F;v 	 w — 	W 3  

rhtv 12t,„ 	vo - wit3  \AI 1v) 

FL3 	v.) 	
W

A/A.  

b) 

X i  =(o, 	cb?, 	1-;/11-t-?3) , 	(ei) 44v1-f3, (tt-t12 ()(3) 

X3= (0,011) 	, 	(ii,o,o) 

[„X 	1)(2,X31-X„ [A3 ,x --X2 I  Cx,, x,-1=  

A. 1_2  Cif(3x)] = Yiz ctiftt  40-1 .1(134' 

ed, 1-  CZ 41‘. 2  T2_ 41)V- Z 	) f 2.2. = °Li +04 	 Gel-143 
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44, cC 33 = 	kfs, — 

iz=---okz4vIa 44,43 cz-q3 

sty2. 1  3 

2.4 = 02" 4-12 LAY) f3  

I1+ 14  - 01 

13 = °Z-2- 4-kf2 c-P-4 4-vm-f3 

z.3. 017_ 41_42_ [1, 99z 	- 3  

34- = p a. 	f,_ 

4 ) o >o 	, 041> c'di 	>o I((d2.-04)04-p21z)>3 

After fixation we get 

f, K R- 	\Al/A.
) 

2/A_ w vt-MA- __ A 14, 
\A) W 

 

r2/Av_ 1.(Gq_ ac,) F3, F 3/"—z-04   
4 	kt/LtV 	 +/4 V  

5.6 	Four—parameter groups containing a three— 

parameter transitive. 

There are five four parameter groups of motions that contain 

a three—parameter transitive one. These are: 

a) The one containing the type—I 	group 

b) it 	II 	ii 	It 	type—II 	tt 

c) 11 	il 	II 	 11 	type—III 	it 

a) 	,I 	,1 	II 	,, 	type —V 	11 

e) 	11 	II 	11 	 11 	type—IX 	It 
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a ) 

This is the group SO(2) Qxz T(3) with Killing vectors 

X4 (11°1°) X2=  (01 1,0) 	(0)0,0 1 Xy-":(q)1 j — M311  / 0)  

that satisfy 

LX41 X2.1 [X4o )C3-1 [X2.1  C3 	° 

[Xi )XLITz 	[X1d(41 

The metric is of course flat 

a C[Lf(3)0] = a f, 2- + a/2+ 

and fAB  is given by 

4:11.42,27-°( 	 33=P 
	qz f43 f2.3 -"-() 

where g constants and 

04. ) (11 	> 0 	- 62  >o 

After fixation we obtain the Lagrangian 

f- KR- -W/4  WVAL W/42  Ott— \AJ\Al3it z oC FftA  v r'/11--  

of 
F/42.v F  Z/4 V 	r  3 ( 3rt 	itt 	(3 

1') )roi 	-1-/Av 



where 

_1 	r i 
/Qv 

My 

b) 

95. 

X4 = CO, I I  0), Xt=  (OA 4 	>,c3 7-  (1/$10)  x4- G(31vkpl - f3z) ) -fi ) 

[xitx,Rxi l x3-}=Dcl,x0=0 7 [K 2. ,x3-1,x ilk2lx4) -x3 ,Cx3 I X 41 -2  "Z 

ILZET(3  X)3 aT42-t sq:-  +.2. (f1  aq)2 	t (1+$1) 604)3L 

f4- 0( I 	 ,7_  1 	33 	 3  ) 	 fi3=d(f13 

i3 - (1)4 	, fift+  •--wl-locp42T32-+ 4- e  6rf $) L-  Cs-0) z  f a) + 3 

(2.4= 	ok-()43 	14 413)- 

(&-0)13 	LP33 

 17,4  T izy3  

where d i _A i T , O constants and 

>0 	ezT 	>0 

After fixation we obtain 
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2 	21.41/ 4 	3 	3,c.t V 4 	 s- 
F 	F F - -5, F 	 v /4 11 	i` V I 

F1 
14v - 

2 
\ 31) VJrt3 ‘Al Zi) ) F 	-(v) p. V3 

P3 v c3,v -(w /AL" V .  - 	voiv) 

c) 

X i, co, 1,o) , X,= (0,0, i) , X, = CI, -Tz, 

Cf, , 1 	e - 'nz 	
_ e 4: 

.z 4 	 -  

Cx< ,X 2![X,_) 	z 0 ,CX1,X33 	[X, , X 	X3 , [X3, X 

	

(1.Lzty(3q--, Gt_kp,z+ eActy:-+ 2.Yte"c 	AkAO, dT3z- 	4) 

Eqs. (2.101) for the 	fAB give 

e C22 	f33 C33 + 	ez̀ PI, LP1 =c e J'2 C12.  

, 24), 	to ,kei 
f I 3 = -C4, Tz e 	1 z.3 :- - C42_ 1 2. L-- 

0 2 A W2-2. 
1.+Lt -r 44 C44 (-:--4 _ t.12. )2. -r i C44 (4_ nz. S- 

2_44 

oz24', 	 (o .2- = C33 - 3.: o_n/) 	CA4 j/ 	= 	C42_ - 	2\ - 	C42- 	e 
iztf z 

-4- 	C44 1/44312 3 	 _) C 4 4 kf23 e2-4)4 	4 ) "- 	0n.7.  
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After fixation we have 
4 

vizi_w 1,3  ■AP/k- 	„Aq.  ukit zn4̂ 

2(1- 1( (41-1-0-))) W A-1 W V(4  (12-- n2-)  vv 
A i 

L,44 FpA  v FA/1"-  

--{5, C22. F/241)  F2/41)- z C33 F 3to, F31"-  Ciz F„A4  F2)"- 	F 
/Av 

14 	,_1 4. 	 -(4/A V 

C 41  
(c33  2( 4-Y11- )1  4lv 	

C42. 	_ 	2. 	14-Jci V 
A-t-  2(4: )12-) 1  r,tv 

4 	 " 	4 3) 	l  

	

r2
-F/A-v 	A w)wAwv 	Frt     

	

ritkI  v 	 ; v 	/44 	(1.)/ 	W ) 	 ; v 	frtg  v  - Vli4 	1) - kiJ 3  W 

// - 

a.) 

(o, i,o), X,=-(01 0,1) X3q-711  , T-L I C , , 3 

Lx„x,..i.,[x,,x,-)., 0 , 	 rx 

01 L2 f(e( 3 x)] .-  GQ L-P1 2- 	 dk-c)3 ) 

rl Let 	 2 IA (fl 
) 	f3 3 = +d (T.2. -f-f3  

	

44= 2z °4- e 	 , e 

r'+ 	( T2.1  +'-f)3 	e 
ink-Pi 

S A L 0 	3  = 	e r"-Pi 	 rt. 

f 	e 
2 LPi 

n 	2. h(Pi 	 2. n 1P4 
2.  3 = ,) ,r3  e f2-t-r= 

eL12.  e 
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The Lagrangian after fixation is 

= 	- X - 	W 4/(4-  Vii4Z 	21L-- 	2. W/t3A. \A) 31( z 0(- F/AA U 114 v  

I jtA v 
=2",,v 	(„) f 3 	31.1 	 . 	LI/A V g  3 (1-1/4.1) 

/Av= 
	(w"  w3 

 _ w3 A k ) 	w U—  A w ay ) 

FAA.
2 v,  5. /42. 	ji,,,L2 w„ 

 — kdot v ,i ) 	w),w 

e) 

Xi= (01 i1 0), 

X3  = (- cAsAA4 1- crtfl 

_ uft ,1  44K42_  

co-5 T., 
u)-1‘-tz_ , 4„:„AL Lf 4  ) X,- (o o,1) 

[x„xii= x3 i [xoc3\- x„[x3 I xi-I -L, x2. ,  Cxpt.,x4]=0 

a Lz  Ckp (3)6)1,  d 	(6.w.2T4  + r1.2.C.er)1  q)14  ) q.2.+ an, cbiTi 

ci4 	 /WW1  T4  
1 c22,(1--(p-0044m./14 km/.  q, 

2.n 

f 33  =/' ((b-ot) AA:At-2. LT4  Ctn 	 /k-Pi 5AAL  4)2- 

3 = 	(V 00 Ati/Vt, 2.$ COI T2.1 23  = 	( (3- A) AAA41TI Jik- 242_ 

f t44 	 14 	coqi  	sv.r1A-i unT - 	 34-= Es't.ALL.C)1 sk:m-LPz.  

T >° Oz•--0 >0 
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The Lagrangian after the fixation is given by 

'f t-- KR- 	v\L \A)" VI -vol v.11.-- kAP‘A- vet  vi lt-z yvatAi`f -10( rev  9,V  

- / Fftz  Fz14 v- 	F3/ v - 	4C(  f% 4ft'
v  

r e v= ,,—(vu w3v — wi43  vv) 	(w,3  v—W w 
F 3 	/3 key V/2-p kA i  ry) 

5:7 Six—parameter groups 

These are of course the complete groups of motions of a 

three—dimensional space,namely the E3, 	S3, 	and 	H3  . 

The corresponding spaces have constant curvature ( zero, po-

sitive , and negative respectively ). 

a) Euclidean 
	

S (3) es T(3) 

1 , 0,0) 	X 2= Co, i, 0 	X 3  -z- (0,0 , i) 

X Lt = Co, - 1  To 	x5 = (T31 0, T1 ) )  x -q-A-e2_ k-P, i 0) 

[Xi )  x31= Cx, , x 31 = 0 
Lx x it] [x2.1  x5] x 3 X 1,1: 0 [x2.1 )(;)-:-[x1  ))(s)-- 
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LX31  Xs) - [X2) X61 =  Xi ) [Xi ) Xj=-  EX3 $  X if-1 Xt 

k ti I )(5-1 -X‘ [X51  X4I -X4 ) 

The metric is of course Euclidean 

a. L2- [Tex)] G4,2-+ d L{):- 
Eqs.(2.101)give 

33 fi fi3 =0 

411 C 	G-P2.1t f 3z.) 

cw, t ( cfiZ-+ 	) 

fss 	 ((V+ V) 

fi 4 c25 f36 

f15 - fzit eL 	) 	= 134 	01q)-2_ ,a 	-f35 

ci4 	CPA 1-P3 

After fixing at the origin our Lagrangian is 

kt2-- X- VJ, 10k-- V1/4) W21" MI, W 31-t- 2 0( F/44  v  F 4P v- 

ik 	3 VAV_ 2 	?-l) 	 4  F 	- -Ft-k  /A 
i • ,-- 
50( r-Av 	 /iv 

1 	- 
Claio r (,/ttl) SizAV 

I /AV I 

F 	CSS 1 2  SS jtAv 	— 

F3 r (7"  /41)  

6 	CI 	 3  
F

4 
7-

4 
- (Vki W 	\A)

7- 
 Wy) 	k 	y u   	„ 
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Flikv= 	
- Witt W iv 	(V/11, kAi - Wr.4.3  Vitfo  

3  
jay 	frt  v 

b) Spherical 500) Q SOO) 

(0,4,0) 	 4-c;vi_1,_ 'Pt 1 1  

uyt-qi  cerq, 
lytA,04),, 

xtt =c0,011) 	X5 = (W43) 	 .k---4)L3k),4 	4,1,1A,1ko3 ) 

k"()3 C7Cd4./vt,lPri  ) 	(AdetLe1 (43) 

t)(11X2-1 X3 )  CX1,\X3) xi [X3 p)(111:X2- ) N4 I XSV (o 

5(SiX61:.  X4 ,N c,,,x411:x5,[xpoxBI= 0, pc,„ 4, Z, 3 	f3  4,5 

I_R(3)c).1.-: otLE,2-1-aT24t44;132-i-  z Qb 11 ct 	a LQ3 

1 

For fAB we obtain 

f-44 	f33  ek 

fu 4 - f55 - 
 

fR 2 -f13 	0 

tf4S = 	fSb 0 

, 	>0)and after the fixation we have 
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kR- 	W Itk 	W idt  Veit  Wit  W.31L-- aft, lik4- VJA5  W Cit- 

V) (DL \Ai 	z w" \ANA-- 	W SiL  2- 3fr_ W (t t_ F4  F 

1._ a( F;tv 	 FLY"- 1- 
4 	F /4' F 

v-v 

c) Hyperbolic 

X4 (00,0) 	X2_ =  (010,0 i X3 =  Pvlifi-IL(3), 	= (0:13  , 

xs  (t e-2n4)1 	f,h  io 	
- 1.4-3 

X Le3 
2" - ) T )  

	

e 21-41 	
2- Znz- 	(q)3 -17\-   

[x, i x = [x3, c4-1 = 	s)  x 	0 	[K it ix 2.] -xi 

Cxz1 x31: x l_ Exs i xil= k i ,x2:1= x3  bcs  x23:[x 	41= xti  

Cx31 x517- [x tt, x1,1= x ) [ Xs, 	Lx3, x(0)-z 

di2Et.F.3)01-_ dyrii,z± e214)' (d ZZ-t-(p,z) 

eznTi 
I 	33 	LI 	

494 
Y1 Z- 	 64- (1)2, 	 3  )e 

6'4 	-2-Y"-P1 	04 	2_ ?As 2 mei 	oZ 
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Appendix I 

HaVing determined the form of the Lagrangian, we now give 

the proof of the existence and uniqueness of the solution 

of the inhomogeneous Eq,a446) for any source term SA  of the 

form given by Eq.U.40. So we,first look at whether the 

corresponding homogeneous equation 

1-111611 8 ----0 

possesses non-trivial solutions. Multiplying the above equation 

by 414  and integrating over the 3-dimensional space manifold 

we obtain 

Y1A  WA & 46 	01 371-- 

SHAG DC  Oa"" 	6"'3 Ao:SS b "A 48 	01 3'A- -7.--C3  (1.2) 

where 

A 	t-N A 
m *--= 	BYA 

„tab 
Assuming that the matrices -C46 and ( 	are positive-definite, 

we realize - that Eq.(I:2) compells us to set : 

tD A 	yt A )01  4. 5A 	W 	. 

0 
	

(I.4b) 

The integrability conditions of Eq.(L4a) are: 

%AeR 	=0 	 (1.5) 

(I.4a) 
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From Eqs.(1,Ab) and (1.5) it follows that only at the boundary 

points of S we have non—trivial solutions of the homogeneous 

equation (1.1). Since then either (if `g A ry4.-*(:)) we can set 
A in a particular gauge, or we have the Abelian case 

(pea=  0 	the solution of Eq.a..40 is 

A - (constants) 

In this case, however, the projection of the source term SA  of 

the inhomogeneous equation on the subspace of these solutions 

vanishes 

(SA)CA ) c 
	

SA CA 	01314- =D 

since at the boundary points of 15 , SA  is a pure divergence: 

Hence, the operator HAe. is invertible, and the solution 0 A 

of the inhomogeneous Eq.(44)always exists and is unique up 

to a constant 	c A which is present only at boundary points, 

and has no effect on 	dk! 
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The problem of the existence and uniqueness of the solutions 

to the point correspondence equation is far from trivial, because 

the equation is not of an elliptic character. This is due to the 

fact that the metric of Riem(A) is not positive definite. This 

problem is discussed at length in a recent work by D. Christodoulou 

7 
and M. Francaviglia.

1 
 They found that the solutions do not always 

exist and they are not in general unique. However (if a solution 

exists) the arc length ingqis unique. 
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Appendix II 

On the integrability of eqs. 	2.101) 

In our study of the above system of partial differential 

equations we shall examine separately the cases when the group 

GIt with generators XR.rnesx 9 	is intransitive, simply transi- 

tive and multiply transitive. 

a) 	Intransitive group GR  

If the minimum invariant varieties of GR in 'R,  are of 

n—q dimensions (i.e. if the rank of the matrix 311a, is n—q ) 

we can always write the transfomations of Gil  ('with a possible 

change of coordinates ) as the transfomations of a transitive 

group over n—q variables say A).- 	only, while the 

group does not act on the remaining 	variables (Fubi- 

ni's theorem). So we'have reduced this case to the transitive one. 

It is clear that after this reduction the integration of eqs. 

(2.IOI)will give only the (k. )44_,/dependence of fAB  while their 

Th-A„ .•kev, dependence will be undetermined. That is the constants 

of integration of the solution of the system2.IOI will not actu- 

ally be constants but functions of (Rn-q+1) 	Lpn 

a) 	Simply transitive group GR 

This is the case when R= 1,...,n and ranknaA) =m (a=I1 .. 

.,n). Then eqs. (2.10  4constitute'actually a system of total diffe- 
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r:mtia] eqiions whose explicit for 	b obtained by w..11- 
,-1 

-01ction byr,)gA . The integrability condi Inqs are 

X.,(Xf. 	f. 	. 	f 	Q 
s AB AQ BSA-  BQ AS) - (XitfAB-1- fAQ 	fBQ g%:11)  

or ,LQ Lq 
gQIISXQfAB-/- fA0g QSg BA-g QRg BS) 

 

L Q 	L ,Q ) 
- 
0 

fBL\
( 
 g QS° AR-g QII 3  AS 

and by using the Jacobi's identity 	we obtain 

Q  q 	 ) = 0 - 	(X Qf AB f 	f AL- BQ BL- AQ 

which is satisfied because of the equatioli4).TOI) themselves. In 

other words our system is completely integrable and so the solu- 

tions for 	willl depend on n(n±I)/2 arbitrary constants which 

however in our case are restricted by the positive definteness 

of fAB  

c) 	Multiply transitive Gil  (it = I,?,....,N) 

When GR  is multiply transitive (tha is B7 n at[d r: 

a=II...,n) among its generators 	there a ,c n 1 i nr my 

independent (with variable coefficients) and we can 	tr i m to 

be the first n 

XI, X2, X 	. X
n I,  21  3,""" 

Bence the determinant (TSa) 	will be different fro 

the rest of the genarators X 

	

can be ex-f):-es 	liner- 

ly and homogeneously in terms of the first n 

X T 	w il 	)(. as:-.Ittnr.,.(1 to 	-7,r) 



X . 	X 	j = 
n+j J S 

where z. 	are functions of L-F 1)- - ) (-e4 • 

10 9 . 

Since det(J
Sa
) 	0 	we can solve the first n of eqs.?-.107) 

for 	()A6/(9,Q,. Introducing then these derivatives in the rest of 

egs.(2.I0I) we get some linear and homogeneous relations for the 

fAB's. This way we see that we have actually a mixed system and we 

shall of all find the equations which determine the relatios among 

the fAB's. To this end we introduce in the equations 

X f = —f 	—f Q 
n+j AB 	AQL) Bn+j 	BQg  An+j 

the values of X .f n+3 AB 

X .f = z j 
s
X 1.14-3 AB 	Sf  AB 

given by 	11.2 

From the above equations and the first n of eqs.2.I0Iit 

follows easily that 

Z. .
S
f 	

Q 
+ z.3 

S
f 	

Q 
= f g

q 	
f g

Q 
AQg BS 	BQg AS 	AQ Bn+j.4-  BQ An+j 

or 

gQ 	S 	
Q 

k
Q ) =0 fAQg Bn+j

+f  BQ An+j — zj AQg BS+ 
f 
 BQ° AS 

EquationsII.3 provide the relations which the fl,B's must sa-

tisfy and together with the following 

X
S
f
AB 

+ fAQS 
+ fBQgQ,AS = 0 

they constitute a mixed system of total differential eqmtions. 

We shall show in the following that this system is comT)lete. 

That is, we shall show that a) the integrability conditions for 

eqs. II ,4 are identically satisfied 	and 	b) the eqs. obt.tined 

when we apply the operator Xs  to anyone of the eqs.If.3 and make 
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use of eqs,II.4 are contained in eqs.II.3 . However condition a) 

has already been proved to be satisfied when we deduced 

i4e only note here thali the calculations done for deducingIT.I are 

also valid and when R> n . So we only need to prove b). 

We first introduce the notation 

E 	f gQ + f gQ  
ABR 	AQ BR 	BQ AR 

Then eqs 11.3, 11.4 are written as 

H
ABri-F 	

z H
j 	j ABS = 0 
	

(II .3' 

XSfAB 4-  II:ABS = 0 
	 (II .4' 

and ve must prove that due to these equations themselves 

S
H 	) = 0 xP 	— zj 

 ABn+j 	ABS P = 	),...I n 

is identically true. 

To this end we observe that because of eqs.II.I we have the 

identity 

X.K(X.LfAB) 	XL(XKfAB) 
	XKHABL XLHABK = 0 

for all values of K 	.In Particular 

X.K(Xni-jfAB) 	Xyl.+J(XKfAB) 	XKHABni-j 	Xn+jHABK = 0 

and 

Xs(XIJAB) — Xic(XsfAB) 	XSHABK XKHABS = 0 

multiTqing thelastonewithz.,summing over S and using 11.5 

we obtain 

X,,(X 	.f, ) 	z.
s
X 	..f, ) 	X...11 	. 	a. X H 

n+j hB 	j 	S-J3 	K ABni-j 	j K ABS 

—(X H 	z SX 	) = 0 

	

n+j ABK 	j S ABK 



Because of eq.II,4'it is evident that the following equqtion 

XiejSkX  SfAB HABS)  = o  

holds. Substraction of the above from II.6gives 

Xic(Xn.i.jfAB zjSXSfAB) X.K(HABn+j zjSHABS)  

S 

	

—(X 	 z X )H 	— 0 
n+j 	j S ABK 

But because of 11.2 the operation X
nd-j 	j 

function gives zero and hence we have 

— zj S 
	

) = 0 

	

XKABn+j 	ABS 

on any 

which was to be proved. 

We conclude that the mixed system of total differential equ-

ations 11.3, 4 for fAB is in fact a complete system . It will 

suffice then that the linear homogeneous equatiosII.3 at a fixed 

(generic) point of the space of the scalar fields (‹,. 	L(345) 

are compatible, that is they reduce to a number q < N(N+I)/2 of 

independent equations and the initial values fAB(q3t.) • Yq  9 can 

be taken so that 
A
f

f; 
 is positive definite. This being so the 

general solution of our system will exist and will depend on 

N(N4-I)/2 	q 	arbitrary constants. 
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