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ABSTRACT 

The present work, which incorporates a theoretical and an 

experimental part, deals with the determination of thermal 

stresses and their influence on the fatigue life of pressure 

vessel nozzles. Numerical and computational methods are 

developed for the calculation of transient thermal stress dis-

tribution, in radial nozzles of various geometries and under 

specific heating conditions. A literature review is made of 

recent de7elopments in pressure vessel technology and investi-

gations relating to pressure vessel nozzles. 

The heat transfer analysis makes use of the finite 

difference and finite element methods. The elastic thermal stress 

analysis is dealt with exclusively by the finite element method. 

The methods can be used to achieve more accurate design in 

nozzles and other parts of the vessel. The thermostructural 

computer programs developed in this work are flexible and can 

be applied to complex geometries. 

The experimental part sets out to measure the thermal 

stresses for a particular nozzle configuration. When theoretical 

predictions and experimental results are compared the former are 

shown to be in more than adequate agreement for design purposes. 

The accuracy of the numerical methods in the measurements of 

stresses are also analysed. 

With fatigue being an aspect of vital importance for safe 

and reliable design of pressure vessels and their components, a 
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theoretical investigation, dealing with crack initiation and 

propagation is made in Chapter 7 based on the boundary 

collocation analysis. The analysis determines the values of 

the stress intensity factor K along the axis of a hypothetical 

,Crack introduced in the structure and subsequently compares it 

with experimental values of the critical stress intensity 

factor K. This will determine if the applied level of thermal 

stress will be largeenough to initiate a crack or, in case of 

an already existing one, cause it to propagate. The nozzle 

specimen was subjected to a thermal fatigue test of alternating 

heating and cooling cycles for a period of four months to 

investigate possible crack initiation and/or.oropagation. 
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GENERAL NOTATION 

   

 

Symbol Definition 

 

a 

Cs 

c
p 

d
1 

D. 1 

d. 
1 

E 

g 

h 

h 
av 

h
c 

h
COND 

11N 

h
r 

hv 

Nu 

crack length 

specific heat of steel 

depth of crack 

specific heat of air at atmospheric 

pressure 

first matrix coefficient 

inside diameter of vessel 

inside diameter of nozzle 

modulus of elasticity 

acceleration due to gravity 

crack height 

average heat transfer coefficient 

convection heat transfer coefficient 

for nozzle 

conduction heat transfer coefficient 

for nozzle 

heat transfer coefficient for nozzle 

radiation heat transfer coefficient 

for nozzle 

heat transfer coefficient for vessel 

moment 

Nusselt number 
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Symbol 

k 

k
a 

K 

v 

Pr 

grad 

Re 

r 

S 

S 
y 

S
m 

S
b 

T
f 

T
w 

T
m 

t 

t
n 

Uf 

Definition 

thermal conductivity of steel 

thermal conductivity of air 

stress concentration factor 

characteristic length of vessel 

Prandtl number 

pressure 

heat transfer rate due to radiation 

Reynolds number 

crack co-ordinate 

allowable stress (code) 

shear stress at the yie]R point 

average tensile stress 

bending stress 

temperature of fluid 

wall temperature 

mean temperature 

wall thickness vessel 

nozzle thickness 

velocity of fluid flow 
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GREEK SYMBOLS 

  

thermal expansion coefficient 

thermal diffusivity, a =-
h- 
fc 

volume coefficient of expansion 

emissivity 

true strain 

principal strains 

crack co-ordinate 

dynamic viscosity 

Poisson's ratio 

1(inen10116 uiscositij 
density 

Stefan-Boltzman con5frainfr 

principal stress 

direct stresses 

maximum principal stress 

time 

maximum shear stress in xy plane 

maximum shear stress in yz plane 

maximum shear stress in zx plane 

stress function 

space increment in x direction 

space increment in y direction 

time increment 

 

V 

a1, a2,  a3 

a 

2 3 

 

 

a , 	, 	,G ,(3 x, 6y, z 
L ;  

 

a 
maxp 

T 

max(12) 

Tmax(23) 

max(31) 

X 

Ax 

Ay 

AT 

 

NOTE: Numbers in parentheses as (R.1-6) indicate references 

in Appendix 8. 
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INTRODUCTION 

The design and analysis of modern pressure vessels and their 

components constitute two very important tasks which often 

require a broad understanding of a number of fields. Subjects 

like pressure vessel design criteria, fatigue fracture, elastic 

and plastic analysis, as well as the influence of high temper-

atures and external loads are of vital importance. As the 

design requirements become more and more strict the need for 

understanding of the above mentioned subjects grows stronger. 

In recent years basic changes have taken place in the 

design of pressure vessels and pressure vessel components. With 

the introduction of high speed computers, analysis of localised 

stresses and strains is possible and more accurate results can 

be obtained. Present design criteria are based on a design 

which accounts for all possible modes of failure such as fatigue, 

brittle fracture, plasticity, shakedown, mechanical and thermal. 

ratcheting. As a result of all these considerations today's 

design criteria are safer and more reliable. 

Fatigue, both mechanical and thermal, continues to be a 

field of major concern in pressure vessels and components, 

especially nozzles. Nevertheless, as a result of major advances 

and studies which have been made in the atomic, microscopic and 

macroscopic aspects of various materials, fatigue can be con-

sidered as a problem for which sound theoretical and experimental 

analyses have been achieved, and results have been obtained 

which provide the ground for safer design. 
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The risk of fracture of components, like nozzles, increases 

as the characteristic length of the member increases. This is 

because there are always hidden flaws. in the metal due to 

-manufacturing or welding. It is impossible that any structural 

component of a pressure vessel including the vessel shell can be 

completely free of flaws. It is even more speculative to assume 

such a thing for welded regions. Of course there is always an 

attempt to keep the number of such flaws at a minimum through 

careful fabrication but this is an ideal rather than a practical 

target. 

The advancement of the digital computer and computational 

techniques has made elastic-plastic analysis possible, although 

plastic analysis does tend to depend on plastic theories con-

cerning the behaviour of the material after yielding. Computing 

has also made the consideration of more complicated geometries 

possible both in 2- and 3-dimensional cases. 
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1. DEVELOPMENTS IN PRESSURE 
-VESSEL TECHNOLOGY 

1.1 Pressure Vessels  

The main characteristic of a pressure vessel is the pressure 

it can hold. This however makes the vessel a potential source of 

danger if it fails, leading to uncontrolled release of the 

pressure. Therefore the study of the failure.and of the general 

behaviour of pressure vessels has been of great value in prevent-

ing failures. This also leads of course to better design, which 

is not only safer, but also more economical. During the yeas 

of pressure vessel research and development attention was con-

centrated in various areas of the design and construction. In 

early steam and chemical vessels, rivet joints were the weakest 

link and were the subject of much investigation. The development 

of the welding process and its adoption switched attention to 

other areas, one of which was the improvement made possible by 

better shapes and reinforcements for the vessel. When the 

design of a particular vessel included the attachment of nozzles, 

attention had to be paid to the possibility of failure of such 

• branches and also the way of welding these components on to the 

main body of the vessel. 

Most vessels are built as cylinders due to ease of fabri-

cation. Neverthelets their actual configuration may vary 

according to purpose, and spherical vessels for example are 

often used for storage purposes. Great attention is generally 



attached to vessel heads enclosing the ends of cylindrical 

vessels, and to nozzles. The nozzle and in particular the area 

of attachment to the vessel is the area of study of the present 

work. 

In recent years the development of nuclear power has been 

an important factor in the improvement of presSure vessel 

design. Since safety was of significant concern and protection 

against radiation hazards very important the structural analysis 

of pressure vessels was crucial. A second equally important 

factor was the desire to upgrade all the pressure vessel codes 

to take advantage of the many advances that had been made in the 

understanding of pressure vessel behaviour, thereby eliminating 

potential weaknesses of existing codes and permitting safe, and 

in some cases more economical, construction. 

Also new criteria concerning the design of pressure vessels 

were formulated in the 1950's. It was during this period that a 

reason-Jble understanding of brittle fracture and low-cycle 

. fatigue was reached, the principles of limit design were estab-

lished, and the mechanics of thermal ratcheting, shakedown, 

elastic-plastic action, and constrained plasticity were explained. 

Of equal importance to the understanding of physical prOcesses 

were the advances made in computational methods. The electronic 

computer made the routine solution of complex problems first 

possible and then economical. 

Since 1960 new criteria have been accepted and are based 

on fundamental considerations of analysis and material behaviour. 

An attempt has also been made to understand all possible modes of 

failure and provide rational margins of safety against each type 

of failure in a manner consistent with the consequences of what 

type. As a result of this quest for fundamental understanding 
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several basic concepts have emerged. Thermal stresses have been 

the subject of a more detailed analysis and vessels built to the 

new criteria have a balanced design to better carry thermal and 

mechanical stresses. It is well known that stresses resulting 

from a given thermal gradient increase with section thickness, 

whereas for a given diameter, pressure stresses decrease with 

shell thickness. 

The basiS for design stress limits and structural evaluation 

has also been shifted from the maximum principal stress theory 

to the more accurate maximum shear stress theory. This is a 

fundamental change and is very important in regions where one 

principal stress is tensile and the other is compressive. Equally 

significant is the 7ecognition that pressure vessels may be sub-

jcIct to changing thermal stresses, and specific procedures and 

criteria were introduced for evaluation of thermal fatigue 

damage. Incorporation of these methods was made possible by the 

undersLanding gained of low-cycle fatigue failure mechanisms in 

the 1950's. Equipment made of ductile material will normally 

fail only after some plastic action. In structural evaluation 

of equipment, in general, only elastic analysis is required, 

nevertheless, many concepts from plasticity theory have proved 

exceedingly useful in the development of design stress limits. 

The use of plastic theory is a result of the attempt to under-

stand fundamental mechanical behaviour and is only possible 

because of major advances in applied mechanics theory and com-

putational ability. 

The most important feature of the change in normal design 

procedure is the concept of design by analysis. A complete and 

detailed analysis of the vessel is required and the calculated 

stresses must be compared to various allowable values. The 
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allowable values are established by consideration of the possible 

modes of vessel failure. Thus, average membrane stresses are set 

up by consideration of gross distortion and bursting, local 

stresses are permitted to exceed yield but must "shake down" to 

elastic action. Peak stresses are considered in conjunction with 

specified cyclic service to ensure, suitable fatigue life. 

So far general considerations of vessel design and develop-

ments have been reviewed for the last two decades. But the 

effort for future advance in the field of pressure vessels is 

continuing. One of the more significant developments at present 

is the preparation of new design criteria for use in the 

temperature range above 800°F (427°C). High temperature design 

criteria under development are expected to folloN, the "design by 

analysis" philosophy, namely, consideration of all possible modes 

of failure, and design criteria associated with each mode. 

It is certain that methods and criteria will continue to 

evolve and computer programs will be used extensively to calculate 

and analyse cyclic, non-linear and time-dependent deformations. 

The development of rational design criteria against which to 

evaluate local and general creep and stress relaxation, fatigue 

in the creep range, and other time-dependent structural behaviour 

is already under development. As criteria are developed, 

structures designed and built, and experience is gained the 

understanding of 'in-service' behaviour will become clearer and 

the fitness for purpose of any pressure vessel be more assured. 

1.2 Criteria for Design Analysis  

The determination of stresses in pressure vessels is the 

primary objective of the investigator, but a calculated, or even 

measured value of stress or strain means rather little until it 
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is associated with its location and distribution in the structure 

and with the type of loading which produced it. This can be 

illustrated by comparing the average stress and strain in the 

wall of a pressure vessel with the stress and strain at the 

root of a sharp notch in the wall. When the internal pressure 

reaches a value which produces an average hoop stress in excess 

of the yield strength, the wall becomes thinner, the diameter 

becomes larger, and if it were not for strain hardening of the 

material, the vessel would burst. Therefore the average stress 

produced by internal pressure must be kept below the yield 

strength. On the other hand, the material at the root of the 

notch yields even before the working pressure is reached, but no 

failure occurs. At the notch the local strain can be several 

times the yield strain but this condition is perfectly safe as 

long as the material is ductile and the load is not cycled often 

enough to start a fatigue crack. There are also other stresses 

whose calculated values can be safely allowed to exceed the 

yield strength of a ductile material. A well known example is a 

thermal stress, which is self equilibrating within the structure. 

There is no fixed external load which must be balanced and 

yielding helps the material to accommodate the imposed dis-

tortion pattern. Another example is the discontinuity stress 

near the junction of a head and shell which is produced by 

internal pressure. In this case the head and the sb.ell want to 

-.expand by different amounts and distortion is required to keep 

them together at the junction. Usually stresses can be grouped 

in three distinct categories. These can be designated as primary 

stresses, secondary stresses and local or peak stresses. Primary 

stresses are stresses developed by the imposed loading which is 

necessary to satisfy the laws of equilibrium of external and 
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internal forces and moments. The basic characteristic of primary 

stresses is that they are not self-limiting. If a primary stress 

exceeds the yield strength of the material, the prevention of 

failure is entirely dependent on the strain hardening properties. 

Secondary stresses are developed by the self constraint of the 

structure. The basic characteristic of secondary stresses is 

that they are self-limiting since minor distortions can satisfy 

the discontinuity conditions which cause the stresses to occur. 

The local or peak stresses are the highest stresses in the 

region under consideration. • Both primary and secondary stresses, 

as well as stress concentration effects, are considered. The 

basic characteristic of local stresses is that they cause no 

significant distortion and are objectionable only as a possible 

source of fatigue failure, brittle fracture or stress corrosion 

cracking. Nevertheless it can also be said that membrane 

stresses, the average value across a section, and bending stresses 

(linearLy variable across the section) are stresses that can be 

included within the above three groups of stresses. 

If assessment has to be made of how close a given calculated 

stress is to the danger point, it is helpful to consider the 

various possible modes of failure. According to the International 

Institute of Welding (R.1-1) these modes can be grouped as 

follows: 

1. Excessive plastic deformation, including plastic instability. 

2. High strain fatigue. 

3. Corrosion fatigue. 

4. Stress corrosion. 

5. Brittle fracture. 

6. Excessive elastic deformation, including elastic instability. 
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The specification of allowable stresses is in fact a function 

--of-the code writing bodies rather than of research. Nevertheless 

the researcher must be able to produce concrete answers on what 

conditions will or will not produce failure so that designers 

can have a basis for choosing their margin of safety. 

The analysis of stresses and strains must be sufficiently 

detail.ed to include multiaxiality. It is not sufficient to know 

only the magnitude of the largest principal stress at a given 

point. All three of the principal stresses should be known in 

both magnitude and direction, since it is well established that 

the distortion energy theory (also known as the Mises criterion 

and the octahedral shear theory) is a much better criterion of 

yielding and fatigue failure in ductile metals than is the 

maximum stress theory. The maximum shear stress theory is often 

used as a close and conservative approximation to the distortion 

energy theory, but this also requires knowledge of all three 

principal stresses. Knowledge of the stress distribution, as 

distinguished from knowledge of only the peak stress at a single 

point, is important. A stress which is uniform across the thick-

ness of a section has a different significance from one which 

varies across the thickness because if the uniform stress 

exceeds the yield strength, the load must be transferred to 

other sections in other parts of the structure if collapse is to 

-be-avoided, and this may involve large distortions. On the 

other hand, if a member is subjected to a bending load which 

puts only the outer fibres of a section into a yielded condition 

the load is transferred to the inner fibres and a great load is 

required to produce collapse. Knowledge of stress distribution 

is also important in the study of fatigue phenomena. It is well 
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known that theoretical stress concentration factors frequently 

give an exaggerated picture of the real fatigue strength re-

duction in a member and one of the most important quantities is 

the stress gradient at the notch as well as the value of the 

peak stress. 

In order to prevent failure of the pressure vessel by any 

of the failure modes that have already been mentioned certain 

limits have to be imposed on the value of stresses. The lowest 

of the allowable values must be assigned to primary stresses, 

which are the stresses required to satisfy the laws of equilibrium 

of internal and external forces. These stresses are not self-

limiting and if the average value across a solid section exceeds 

the strain hardened yield strength, failure will occur. Con-

sideration should also be given to the distribution of the 

primary stress across the thickness of a section, since the sum 

of membrane and bending components may be allowed to attain a 

higher value than the membrane component itself. The chosen 

allowable stress values must keep the imposed mechanical loading 

safely below the collapse load of the structure. Considerably 

higher values may be assigned to the calculated values of 

primary-plus-secondary stresses. If these stresses are calcul-

ated on an elastic basis, they do not need to be kept below 

yield strength, but must be kept low enough to insure that the 

elastic analysis is a valid measure of the strains in the 

structure. The primary-plus-secondary stresses must be limited 

to values which will prevent both cyclic and incremental collapse. 

Additionally, the sum of the primary and secondary stresses must 

be kept below the value which might produce brittle fracture, 

considering the temperature of operation and the size of the 
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possible defects. Finally a third set of allowable values must 

be assigned to the peak stresses in the structure, since they 

may form the nuclei for fatigue or stress corrosion cracking. 

The allowable value to prevent fatigue depends on the threshold 

stress for this phenomenon determined from tests. The establish-

ment of allowable stresses is based on the assumption that the 

material being used has sufficient ductility to accommodate the 

required plastic flow. Most of the materials commonly used for 

pressure vessels do have enough ductility to accommodate 

secondary and localised stresses as described above. When, 

however, higher strength steels are used what degree of reduced 

ductility can be accepted? When analysis assumes the idealised 

stress-strain curve it is assumed that there is no limit to the 

amount of plastic strain which can occur. Sharp corners and 

defects such as might be found in many vessels can produce 

theoretical stress concentration factors as high as 10 or even 

more, even though the fatigue strength reduction factor is much 

lower. Secondary stresses can produce strains as high as twice 

the yield strain in relatively large volumes of material without 

causing failure. Nevertheless sometimes loadings and stresses 

do not affect the failure criteria directly. For instance, the 

burst pressure is significant because it indicates how much 

safety margin exists as protection against gross over-pressure, 

but for protection against fatigue failure the burst pressure 

has no significance at all. The true fatigue margin in the 

design is the ratio between the highest strain range found at 

any point and the strain range which the material can tolerate 

for the required number of cycles. In establishing this true 

safety margin for fatigue, the notch sensitivity of the material 

is important, since the fatigue strength reduction factor, as 
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differentiated from the theoretical stress concentration factor, 

depends on both the notch sensitivity of the material and the 

stress gradient at the notch. For higher temperature when creep 

is significant, the differentiation between primary and secondary 

stresses is particularly important. Creep, like plastic flow, 

aggravates primary stresses but reduces secondary stresses. 

Therefore in the absence of notches, it is probably feasible to 

select values of allowable primary stress for use at high 

temperature which are controlled by the creep strength. Allow-

able values of secondary stress might still be based on the 

yield strength at the operating temperature. When notches are 

present, additional precautions are required to control the con-

centrated values of primary stresses, since the stress rupture 

strength at high temperature may be reduced by notches, whereas 

the yield strength at room temperature is not. 

1.2.1 Strength Theories  

The stress state at any point in a structure may be com-

pletely defined by giving the magnitudes and directions of the 

three principal stresses. When two or three of these stresses 

are different from zero, the proximity to yielding must be 

determined by means of a strength theory. The theories most 

commonly used are the maximum stress theory, the maximum shear 

stress theory (also known as the Tresca criterion), and the dis-

tortion energy theory (also known as the octahedral shear theory 

and the Mises criterion). It has been known for many years that 

the maximum shear stress theory and the distortion energy theory 

are both much better than the maximum stress theory for pre- 

dieting yielding and fatigue failure in ductile metals. Most 

experiments show that the distortion energy theory is even more 
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accurate than the shear theory, but the shear theory is a little 

more conservative, it is easier to apply, and it offers some 

advantages in some applications of the fatigue analysis. 

The maximum shear stress at a point is defined as one-half 

of the algebraic difference between the largest and the smallest 

of the three principal stresses. Thus, if the principal stresses 

are,a1, 
a
2 
and a3, and a

l 
> a

2 
> a

3' 
the maximum shear stress is 

1/2(a
1 

- a
3
). The maximum shear stress theory of failure states 

that yielding in a component occurs when the maximum shear stress 

reaches a value equal to the maximum shear stress at the yield 

point in a tensile test. In the tensile test, at yield, 

a1  = Sy, a2  = 0 and a3  = 0. Sy is, the shear stress at the yield 

point. The maximum shear stress is Sy/2. Therefore yielding in 

the component occurs when 

1/2(a1  - a3) = 	
Sy 
	

(1.2.1.1) 

In order to avoid dividing both the calculated and the allowable 

stresses by two before comparing them, a new term called 

"equivalent intensity of combined stress" or "stress intensity" 

is used. The stress intensity is defined as twice the maximum 

shear stress and is equal to the largest algebraic difference 

between any two of the three principal stresses. Thus the stress 

intensity is directly comparable to strength values found from 

tensile tests. For simple analysis of low pressure vessel 

stresses, it makes little difference whether the maximum stress 

theory or the maximum shear stress theory is used. For example, 

in the wall of a thin-walled cylindrical pressure vessel, remote 

from any discontinuities, the hoop stress is twice the axial 

stress and the radial stress on the inside is compressive and 

equal to the internal pressure, p. If the hoop stress is a, the 
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principal stresses are: al  = a, a2  = a/2 and a3  = - p. Accord-

ing to the maximumshearstress theory, the controlling stress is 

the stress intensity, which is (a + p). Since p is small in 

comparison with a for a thin-walled vessel, there is little 

difference between the two theories. In more complex stress 

situations, however, the difference between the two theories 

often becomes important. 

Stress intensity limits are one of the major considerations 

in the design of pressure vessels. It has already been 

mentioned that stresses can be grouped in three basic categories 

of primary stresses, secondary stresses, and peak stresses. 

Limit design theory is based on certain assumptions and the 

Choice of the stress intensity limits for the str^ss categories 

mentioned above is accomplished by the application of the limit 

design theory. The basic assumption which is made is that there 

is perfect plasticity with no strain-hardening. In a structure 

as simple as a straight bar in tension, a load producing yield 

-stress, Sy, results in collapse. If the bar is loaded in bending, 

collapse does not occur until the load has been increased by a 

factor known as the shape factor of the cross section, at that 

time a plastic hinge is formed. The shape factor for a rectang-

ular section, for instance, in bending is 1.5. When the primary 

stress in a rectangular section consists of a combination of 

bending and axial tension, the value of the limit load depends 

on the ratio between the tensile and bending loads. Fig.1.2.1.1 

shows the value of the maximum calculated stress at the outer 

fibre of a rectangular section which would be required to pro-

duce a plastic hinge plotted against the average tensile stress 

across the section, both values expressed as multiples of the 

yield stress, Sy. When the average tensile stress, Sm
, is zero, 
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the failure stress for bending is 1.5S . When the average 

tensile stress is Sy, no additional bending stress, Sb, may be 

applied. Fig.1.2.1.1 can provide allowable values, in terms of 

the yield stress, for general primary membrane stress, Sm; and 

primary membrane plus bending stress, Sm  Sb. It may be seen 

that limiting S
m 
to (2/3)Sy and S

m 
+ S

b 
to S provides adequate 

safety. Nevertheless the safety factor is not constant for all 

combinations of tension and bending, but a design rule to pro-

vide a uniform safety factor would be unnecessary complicated. 

In the study of allowable secondary stresses, a calculated 

elastic stress range equal to twice the yield stress has a very 

special significance. It determines the borderline between loads 

which, when repetitively applied, allow the structure to "shake 

down" to elastic action and loads which produce plastic action 

each time they are applied. The theory of limit design provides 

rigorous proof of this statement, but the validity of the concept 

can eaqily be visualised. If, for example, the outer fibre of a 

beam is considered which is strained in tension to a strain value 

e1' somewhat beyond the yield strain as shown in Fig.1.2.1.2(a) 

by the path OAB. The calculated elastic stress would be 

S = S
1 
= E

1. Since the case of secondary stress is considered 

it will be assumed that the nature of the loading is such as to 

cycle the strain from zero to e
1 
and back to zero, rather than 

cycling the stress from zero to Si, and back to zero. When the 

beam is returned to its undeflected position, 0, the outer fibre 

has a residual compressive stress of magnitude S
1 
- S . On any 

subsequent loading, this residual compression must be removed 

before the stress goes into tension and thus the elastic range 

has been increased by the quantity S - Sy. If S
1 
= 2Sy, the 

elastic range becomes 2Sy, but if S1  > 2Sy, the fibre yields in 
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compression, as shown by EF in Fig.1.2.1.1(b) and all subsequent 

cycles produce plastic strain. Therefore, 2Sy is the maximum 

value of calculated secondary elastic stress which will "shake 

down" to purely elastic action. 

The allowable stress intensity for austenitic steels and 

some non-ferrous materials, at temperatures above 100°F, may 

exceed (2/3)Sy and may reach 0.9Sy at temperature. Nevertheless 

if Fig.1.2.1.1 is considered it will be seen that loads in 

excess of the limit load are permitted. This is because these 

materials have different stress strain diagram. Austenitic steels 

that are usually employed for the construction of pressure 

vessels have no well-defined yield point but have strong strain-

hardening capabilities so that their yield strength is effectively 

raised as they are highly loaded. This is equivalent to choosing 

a different definition of the "design yield strength" for those 

materials which have no sharply defined yield point and which 

have strong strain hardening characteristics. It can be con-

cluded that the primary criterion of the structural adequacy of a 

design, is that the stresses, as determined by calculation or 

experimental stress analysis, shall not exceed the specified 

allowable limits. The third category of stresses, peak stresses, 

are related only to fatigue and they will be discussed in 

Chapter 7. In the case of fatigue analysis, plastic action can 

actually persist throughout the life of the vessel and plastic 

zones within the structure are responsible for initiation and 

propagation of cracks. Repetitive plastic action occurs only 

as the result of peak stresses in relatively localised regions 

and these regions are intimately connected to larger regions of 

the vessel which behave elastically. Typical examples of peak 

stresses are those at the root of a notch in a fillet, at the 
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edge of a small hole, or at the junction of nozzle and vessel. 

The material in these small regions isStrain-cycled rather than 

stress-cycled and the elastic calculations give numbers which 

have the dimensions of stress but are really proportional to 

the strain. 
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2. REVIEW OF RECENT 
INVESTIGATIONS IN PRESSURE 
VESSEL NOZZLES 

2.1 Nozzle and Openings  

It has generally been accepted that the design of nozzles 

and openings in pressure vessels is guided by the "replacement 

of area" rules. The rules stipulate that the area cut out of 

the vessel by the opening must be replaced within a prescribed 

zone around the opening. The area replacement rule may be con-

sidered as a crude limit pressure design. The nozzles and 

openings so designed are not likely to rupture due to a few 

applications of pressure up to the yield pressure of the 

unperforated vessel. This statement is made on the assumption 

that fabrication does not introduce cracks in the material and 

that brittle fracture does not occur. Nevertheless it is found 

that during fabrication, cracks are introduced and rupture of 

the component occurs below the expected limit of yield pressure. 

Additionally the area replacement rule does not give any assurance 

that performance will be satisfactory for cyclic pressure loading, 

for static or cyclic external loads such as piping systems which 

may impose forces and moments on the nozzles, for cyclic thermal 

gradients, or for combinations of those loads. Therefore, while 

design rules exist for nozzles and openings, a significant 

amount of research effort has been and is being directed toward 

improvement in their design and analysis. Elastic stresses in 

isolated, radial nozzles and circular openings in spherical shells 

can be analysed by means of axisymmetric shell theory. Waters 
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(R.2-1) developed a theory specifically for a uniform wall nozzle 

in a uniform wall sphere for internal pressure loading. Leckie 

and Penny (R.2-2)-  developed a similar theory, but more general 

in that it also covers moment, thrust, and shear loads applied 

to the nozzle. Calculated data on stresses at nozzles in 

spherical shells are given in reference (2-3). These data are 

for both internal pressure and external loads on the nozzle and 

cover a wide range of dimensional parameters, and they are useful 

for design at the design code level. 

Computer programs have also been developed for various 

loading conditions but only a limited number of them will be 

referred to here. An axisymmetric shell computer program applic-

able to nozzles in Emherical shells with variable wall thickness 

and for internal pressure, external loads on the nozzle and 

thermal gradients was developed by Kalnins (R.2-4). Axisymmetric 

finite element computer programs, such as that developed by 

Wilson (R.2-5), are also applicable to the same geometries and 

loadings as the shell computer programs but can be used to 

establish stresses in greater detail and with more accuracy than 

possible with shell programs. 

Nozzles in cylindrical shells present a more difficult 

theoretical problem. Until a few years ago, analytical estimates 

of elastic stresses at small nozzles or openings were often 

obtained by reducing the problem to that of an opening or 

nozzle in a flat plate with edge loads. Papers by Beskin (R.2-6) 

and Waters (R.2-7) are examples of this sort of approximation. 

Solutions to the problem of a cylindrical shell with a circular 

opening are given in (R.2-8 and 2-9). Solutions to the problem 

of two normally intersecting cylindrical shells, with internal 

pressure loading is treated by A.C. Eringen (R. 2-10). He solves 
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the boundary value problem by solving the differential equations 

of the two shells for a ratio of radii smaller than 0.3 and sub-

jected to edge conditions along the intersection curve and at 

the ends of the cylinders. Bijlaard, Dohrman and Wang (R.2-11) 

formulated the problem for di  = Di  and indicated the form of the 

solution. Pan and Beckett (R.2-12) developed a theory for 

d./D. up to unity and give a numerical example for d. = 0.5 D.- 
1 

Several papers related to the subject of non-radial nozzles 

and non-circular holes are published in the Welding Research 

Council Bulletin No.153. 

The overall problem of nozzles and openings in pressure 

vessels is quite complex because of the many dimensional para-

meters involved and because of the variety of loadings. The 

advances in the field of pressure vessel nozzles will now be 

examined from the theoretical and experimental sides. As will 

be seen, although a considerable amount of work has been done on 

calculating stresses in nozzles due to internal and/or external 

pressure and loadings the field of thermal stresses has been 

neglected and there are hardly any works that are directly con-

cerned with thermal stresses exclusively. The behaviour of 

nozzles and openings at elevated temperatures, where creep and/or 

relaxation occurs, also needs further work in order to develop 

reliable design methods. 

2.2 Theoretical Investigations of Nozzles  

The theoretical work which has been done the last twenty 

years is concerned with elastic theory applied to nozzles, limit 

analysis of pressure and loads. Considerations on external 

loads have been met with difficulty and the work by Bijlaard 

(R.2-13, 2-14 and 2-15) estimates external loads on the nozzle 
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for distributed loads on the surface of cylindrical shells. 

Bijlaard's theory has been completed with empirical modifications 

but is essentially limited to small values of di/Di (up to 1/3 

or at most 1/2). Pressure vessel nozzles can have a variety of 

shapes and arrangements. Considerable amount of effort must be 

spent to adapt straightforward solutions of the shell theory to 

the mathematical idealisation of the local geometry. First 

Beskin (R.-2-6) studied the subject of reinforcement. He repre-

sented the reinforcement by a pair of pads on both sides of the 

vessel wall, or a rim at the edge of the'hole, or a combination 

of both. He considered the vessel wall to be an infinite flat 

plate and therefore the results were thus strictly applicable 

only to small openings. With larger opening-diameter to vessel-

diameter ratio, the effect of curvature increases the stress 

concentration. Nevertheless it was found that the high predicted 

stresses at the junction were sometimes much greater than that 

observed. Agreement may be good along the nozzle and the vessel 

wall, but the theoretical meridional bending-stress at the 

junction does not represent adequately the actual load stress at 

the junction and is, in many cases, much too high when the nozzle 

is of the protruding type or when the nozzle is finished with 

no sharp stress-raiser. This inaccuracy is due to the limitations 

of the thin-shell theory which represents the shell as being 

located at its mid-wall position, and thus cannot picture 

accurately the local stresses at a shell discontinuity unless 

additional correction is made there to a direct application of 

the thin-shell theOry. 

Theoretical solutions of non-symmetric shells are harder to 

achieve than shells of revolution. Nevertheless, recently, finite 



element analysis and computer programs are used and can calculate 

elastic and plastic stresses for nozzles in cylindrical shells. 

The geometry of the configuration can be non-symmetric since 

finite element analysis employs basic elements into which the 

structure is broken down. Therefore finite element methods are 

of course, applicable to variable wall thickness and many 

possible nozzle or opening configurations. The significance of 

the calculated elastic stresses in pressure vessel nozzles must 

be assessed in terms of performance criteria such as excessive 

deformation or rupture, due to either single loads applications, 

or many load applications leading to fatigue failure, which is 

the more normal operational condition. 

2.2.1 Limit Pressure and Loads  

Theoretical analysis of limit pressure for various types of 

nozzles has attracted the attention of a great number of researchers 

and S.G. Gill (R.2-16) gives an account of a theoretical analysis 

for flush cylindrical nozzle in a spherical pressure vessel. 

Membran forces in circumferential and meridional directions in 

the shell and longitudinal membrane force in nozzle are used to 

define a yield surface and the limit pressure was calculated for 

a flush nozzle for a range of parameter ratios of nozzle radius 

to sphere radius, and thickness ratios. The analysis considers 

plastic behaviour and the method uses upper and lower bound 

theorems. The nozzle is subjected to internal pressure, shear 

force and moment at the junction. Using similar methods Dinno 

and Gill (R.2-17) calculated the limit pressure for the case of 

a spherical and cylindrical vessel with hemispherical ends inter-

sected by a nozzle. Various mechanisms of failure were considered 

and the collapse pressure for the vessel was studied. It was 

1 O 



assumed that the effect of strain hardening and the effect of 

fillet welds at the junction are neglected. The junction hinge 

is assumed to form at the intersection of the centre lines of 

the plate thickness of the cylinder and sphere. Upper and lower 

bounds to the collapse pressure are calculated and these are for 

the assumed interaction surface which circumscribes the true 

interaction surface for a material which obeys the Tresca yield 

criterion. The effect of changes of geometry on the collapse 

pressure is also neglected: Cloud (R.2-18) has calculated limit 

pressure in a spherical shell intersected by a cylindrical 

nozzle and also for a pad reinforced shell. The analysis assumes 

a perfectly plastic material and the equations for equilibrium 

for the axisymmetric shell of revolution were used. Graphs of 

radial deflection of shell at nozzle junction for various internal 

pressures were provided. The theory was completed with deformation 

tests made on three steel models of cylindrical nozzles in hemi-

spherical heads. 

Coon, Gill and Kitching (R.2-19) obtained a lower bound of 

the limit pressure in a cylindrical pressure vessel with an 

unreinforced hole. The stress distribution was restricted to 

one in which the principal stress directions were in the 

circumferential and longitudinal directions of the cylinder. 

The results of the theoretical analysis were compared with 

experimental work on the limit pressure of cylindrical pressure 

vessels with branches. It was evident from the analysis that 

as the ratio t/T of the thickness of the branch (t) to the 

thickness of the cylinder (T) decreased a rapid fall of the 

limit pressure was observed. An approximate analysis of the 

plastic limit pressures of nozzles in cylindrical vessesl was 

made by Cloud and Rodabaugh (R.2-20) who estimated the limit 
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pressure from an upper bound analysis. The analysis was re-

stricted to nozzle/shell diameter ratios of 1/2 or less. They 

also compared the theoretical analysis with other theoretical 

approaches and the results of a single experiment. Design 

graphs bas-ed on the analysis were prepared to indicate the 

amount of nozzle or shell thickness required to make the limit 

pressure of the nozzle-cylinder structure approximately equal to 

the yield pressure of the unperforated cylinder. Calladine and 

Goodall (R.2-21) studied the plastic behaviour of thin cylindrical 

pressure vessels with circular openings and radial branches. 

Shakedown pressures for cylinder-sphere shell intersections 

were studied by Leckie (R.2-22). Lower bound estimates were 

found of the shakedown pressure. This was achieved by applying.  

Mnlan's theorem and making use of elastic solutions already in 

existence. The stress concentration and shakedown factors were 

presented in graphical form for various ratios of nozzle/shell 

_ thickness from 0.25 to 1.0. The same author together with 

Penny (R.2-23) obtained further theoretical estimates of shake-

down values for pressure and thrust and moment loadings applied 

through a radial nozzle in a spherical vessel. Again Melan's 

theorem was used and by using available elastic solutions. The 

results were obtained by using linear programming techniques and 

have been presented in a useful graphical form. Elastic-plastic 

behaviour of flush nozzles in spherical pressure vessels were 

studied by Marcal and Turner (R.2-24) by developing a computer 

program for the elasto-plastic analysis of axially symmetrical 

shells of revolution. The program was modified appropriately to 

allow interaction loads at nozzle junctions to be distributed 

over bands of finite width, rather than the conventional con-

centrated lines of loading at the intersection of the shell centre 



lines. They compared the results with previously published test 

results for displacements, yield and collapse loads of flush 

nozzles and showed that the above modification in the approach 

improves the predictions from those of conventional shell theory. 

Deflections of nozzle junctions were plotted against pressure 

and meridional strain (maximum) were also plotted for various 

values of pressure. This was done for nozzles with and without 

fillet weld. It was found that the results were in broad agree-

ment with experiment. 

2.2.2 Elastic Analysis  

Stresses due to internal pressure loadings have been studied 

on the basis of elastic theory as well as experimentally. 

Bijlaard (R.2-25) developed a method where the stresses in 

a juncture of a nozzle to cylindrical pressure vessel for equal 

diameters can be determined. The application of the proposed 

method included pipe lines, header nozzle junctures, process 

reactors, etc. In the derivation of the methods utilised to 

compute the stresses, the proposed shell theory takes into 

account in fact that the shells are thick. This fact is neglected 

in conventional thin shell theory. As part of the development in 

the paper the shell shear deformation and the resulting stresses 

are considered in addition to the thick shell stress distributions 

caused by internal pressure loadings. The solution of the three 

coupled partial differential shell equations is obtained through 

the use of a series solution that satisfies the differential 

equations as well as the continuity conditions at the juncture of 

the two shells. In addition to the theoretical development, a 

proposed method for the numerical solution of the equation is 

given. Hasberry and Jones (R. 2-26) made a theoretical study 
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into the elastic behaviour of a joint formed by the normal inter-

section of a right circular cylindrical shell with another of 

larger diameter. The wall of the larger cylinder was assumed 

to remain open inside the joint in order to given an arrangement 

which is encountered frequently in pressure vessels or pipeline 

intersections. An external bending moment which acts in the 

plane of the joint was applied to the nozzle cylinder and is 

equilibrated by moments of half this magnitude applied to either 

end of the parent cylinder. A solution for this loading has been 

obtained by assuming antisymmetric distributions of certain 

stresses across a plane transverse to the joint. The analysis 

presented is believed to be valid for nozzle to cylinder diameter 

ratios of less than 1/3. Numerical results are given by a 

lumber of cases having radius ratios of 1/10 and 1/4. 

The problem of two normally intersecting cylindrical shells 

'subjected to internal pressure was considered by Pan and Beckett 

(R.2-27). They solved the differential equations of shells sub-

ject to the boundary conditions imposed along the intersection 

between the two cylinders. Numerical results for a radius ratio 

of 12 are also given. They also discuss problems concerned with 

the -numerical computations and there is certain comparison with 

some experimental results. Most o.f the analyses of elastic 

stresses due to external loads are experimental and they are 

discussed in Section 2.3. 

2.2.3 Reinforcement of Nozzle Openings  

Reinforcement of nozzle openings has so long been served by 

the "area replacement rule". This has been proved to be a 

satisfactory method. Although failure of pressure vessels is 

relatively rare, many of the failures occur in the vicinity of 
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the openings due either to brittle fracture or fatigue (even 

though the nature of the operation may not be cyclic in the 

normal sense of the term). Although inadequate welding and 

inspection are often factors in such failures, there is no 

doubt that the high stress level existing in the vicinity of 

the openings is a basic factor in the problem. Theoretical 

and experimental procedures are quite difficult to be formulated 

and this is mainly due to the large number of variables involved. 

Nevertheless theoretical analyses have been made and an account 

of some of them is given below. 

2.2.3.1 Spherical Shells  

A relatively rigorous analysis of the stresses in nozzle . 

connections in spherical shells have been made by 

Professor E.O. Waters (R.2-28). The work indicated that there 

were some significant differences under certain circumstances 

between theoretical and experimental work. It has been found 

that the outside fillet radius at the nozzle shell junction can 

have a major influence on.the resulting stress level. This is 

rather apparent due to the fact that even a small fillet radius 

can constitute an appreciable increase in effective nozzle wall 

thickness at the most critical location, and is particular 

important at small di/Di  ratios where the fillet radii used for 

the experimental modes were sometimes relatively large in 

relation to nozzle wall thickness. 

Professor N.C. Lind (R.2-29) provided another more simpli-

fied analysis which gives only the hoop stress at the 

intersection. Comparison of the results from Water's and Lind's 

solutions with those of Penny and Leckie (R.2-30) indicated 

that there is reasonable agreement for d./D. ratios in the range 
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of 0.25-0.50, for Dm/tv  ratio of 100. However, for the same 

range of diameter ratio and a materially greater D.
1
/t 
v
, the 

Penny and Leckie results are low, and for a materially smaller 

D./t ratio, the results are high. Rose and Thompson (R.2-31) 
v 

provided values of stress concentration and for small diameter 

ratios they tend to agree with Penny's and Leckie's results but 

both give results higher than Water's solution. 

2.2.3.2 Cylindrical Shells  

Theoretical investigations of stresses around holes in 

cylindrical shells have been made by A.C. Eringen. Two 

solutions were developed, the first is reported in reference 

(2-32) and employs a perturbation technique. The second refer-

ence (2-33) employs an exact solution of thin shell theory and 

satisfies the boundary conditions in a collocation sense, that 

is in a definite number of points along the boundary. The 

later work was later programmed for a digital computer, and 

extensive data calculated for the case of a circular hole with 

membrane closure (t
n
/t
v 
= 0), the results of which are reported 

in references (2-34) and (2-35). The limitations of the 

presently available data are as follows: 

d.
1
/D.
1 
 2 0.35 

D./t 2 20.0 
1 v 

(d./D.) i(D./t ) - between 0.155 and 3.90 
1 1 	1 v 

The works give graphs of diameter and thickness ratios against 

stresses tangential to the edge of the opening on the longi-

tudinal and transverse axes of the cylinder. The distribution 

of the tangential. membrane stress around the edge of the hole is 

also given and it is possible to locate points of maximum mem-

brane stress. Work is being done to extend the study to larger 

diameter ratios. 



2.3 Experimental Investigations of Nozzles  

Experimental measurements of stresses due to various loads 

and internal pressure have been obtained using the strain gauge. 

Recent research on the experimental side of the stresses in 

pressure vessel nozzles has produced test data for various cases 

and an account of this research is given herein. The strain 

gauge is laid on and usually adhered on to the surface of the 

vessel. Any straining of the surface in the direction of the 

gauge causes a small change in the electrical resistance of 

the gauge wire, which is detected and quantitately measured by 

a sensitive amplifying instrument. 

The other commonly used method for analysing stresses at 

a pressure vessel is photoelastic analysis. Stress freezing is 

used and it is a very convenient way for three-dimensional 

geometries. Vessel components forming shells of revolution 

simplify the analysis and reduce the work because of symmetry, 

but stress freezing is still required. The great advantage of 

stress freezing photoelastic analysis is that stress changes 

through the shell wall can also be measured. A complete picture 

can thus be made of the stresses if required. This is especially 

useful for thick-walled vessels, thin vessels are known to have 

a linear distribution of stresses through the thickness. Never-

theless there is always an unknown factor in the use of photo-

elastic results, this being the effect to the stress values 

caused by differences in the Poisson's ratio v. Steel and 

other common pressure vessel materials have a value v of about 

0.3 while photoelastic plastics undergoing stress freezing have 

a value of 0.5. Studies on the nature of this effect have been 

made in references (2-36) and (2-37). The observations were 

4.7 
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found to apply only to specific problems and could not be 

generalised, even extensions of observations to other similar 

geometries and loadings have to be treated with care. 

Elastic stresses due to internal pressure have been 

investigated by a large number of researchers and Everett and 

McCutcham (R.2-38) have investigated the stress conditions in 

full-size branch connections under internal pressure. William, 

Morgan and Bizon (R.2-39) investigated the elastic stress 

distributions of two shell junctions and obtained measurements 

of the stresses. The junctions were incorporated in a single 

type of structure, a cylinder with a toriconical head. The 

data obtained from the tests were compared with theoretical 

curves determined by previously published analyses. It was 

established that one of the principal sources of experimental 

error was the variation in geometry from the dimensional values 

assumed for purposes of analysis. 

In reference (2-40) experimental data were obtained by 

Hardenbergh and Zamrik to show the general state of stress in 

nozzles. This is one of the most complete works and includes 

studies of five hot-formed contoured nozzles, four insert 

nozzles, and one juncture reinforced by an annular pad. The 

nozzles vary in size, and in the amount and distribution of the 

reinforcing material around the outlets. The tests were con-

ducted under internal pressure and various external loads to 

the branch pipe. Bending moments and effects of internal 

pressure on the elastic stress distributions in the vicinity of 

two transition rings used to connect cylindrical ducts with 

large .spherical pressure vessel have been studied by Kitching 

and Jones (R.2-41). Experimental values of stresses were 

obtained near the weld where it was found that stresses attained 



their maximum value. Riley measured stress distributions in 

thin walled cylindrical and spherical vessels with circular 

nozzles. Stress distributions were determined in a series of 

vessels for internal pressure, axial thrust on the nozzle, and 

also external moment forms of loading (R.2-41). Stresses due 

to axial loads and internal pressure on forged nozzles in 

spherical pressure vessels were studied by Kitching and Duffield 

for two different type forging rings which provide different 

degrees of reinforcement. It was found that there was a 

marginal reduction in maximum stress for the heavier specimen. 

Stress concentration factors due to pressure were also determined 

(R.2-43). Experimental investigations of plastic behaviour of 

nozzles were made by Dinno and Gill (R.2-44) and Cottam and 

Gill (R.2-45). 

If 9 
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3. THE NATURE OF THE PRESENT 
PROBLEM OF THERMAL STRESSES 

A great deal of research and investigation has been done in 

the field of pressure vessel nozzles, as described in the previous 

sections; but the research has been exclusively concentrated on 

evaluating stresses due to internal pressure and external loads. 

Thermal stresses, although very important to the design, have 

been treated rather qualitatively than quantitatively. Allow-

ances for thermal stresses in design tend to take the form of an 

increase of the value of the safety factor based on predictions 

of thermal stresses at regions where they can be quite high and 

calculations have been far from detailed and precise. Temper-

atures across the thickness of nozzle and vessel walls were 

represented by mean values and thermal transients were treated 

by various analytical methods which were limited to simple 

geometries and boundary conditions and could not be applied 

easily to complex cases. Whenever the wall thickness is small 

the approximation of a mean temperature can be accepted and the 

error involved is comparatively small too, but this is not true 

when the vessel or nozzle wall is thick. Additionally, since 

the design of pressure vessel is greatly influenced by economic 

factors the precise and detailed determination of thermal stresses 

has become a desirable goal. 

The theoretical part of this work deals with the following 

three main areas:- 
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(i) The determination of time dependent teMperature dis- 

tributions within the nozzle and vessel walls during 

warm-up for radial nozzles of various thicknesses 

attached to the vessel by different junction con-

figurations. 

(ii) The calculation of transient thermal stresses due to 

the effect of the thermal transients during warm-up and 

cool-down and the determination of the areas of high 

thermal stress concentrations. 

(iii) The determination of stress intensity factors K at areas 

of high stress concentration in order to make predictions 

about fatigue life and possible crack growth and pro-

pagation which could lead to fracture unf',Ler certain 

conditions. 

Initially, the methods by which the above quantities have 

to be evaluated are formulated. The equations describing the 

various physical 0016011.1-1CM5 are obtained and solved numerically 

by writing the appropriate computer program and using the College 

CDC6400 and the London University CDC6600 computers. Numerical 

methods have the great advantage that they are immensely flexible 

thus permitting them to be used over a wide range of various 

geometries and boundary conditions. They are also fast and 

accurate. Nevertheless it must be noted that whenever com-

putational methods are employed attention must be paid to the 

evaluation of the errors involved in the numerical procedures. 

This in turn will permit the necessary steps to be taken to 

ensure that these, such as convergence and round-off errors, do 

not affect the values of the quantities under investigation. 
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3.1 The Geometry of the Pressure Vessel Nozzle 

There are various types of nozzles attached to pressure 

vessels but here only the radial type is considered. Radial 

nozzles are the most common ones and sections of a radial 

nozzle are shown in Fig.3.1.1. Nozzles can be of the pro-

truding type or flush type. Protruding nozzles penetrate the 

vessel wall and are continued within the vessel. Alternatively, 

nozzles can be welded directly on to the vessel wall. In 

Fig.3.1.1 a radial nozzle. of the protruding type and a flush 

nozzle are shown, together with a nozzle directly welded on the 

vessel. Variations of type (c) are the ones that are examined 

herein. The sections of the nozzles are through the longitudinal 

plane of the vessel as shown in Fig.3.1.2. 

When a nozzle is directly welded on the vessel the junction 

can have different configurations. The form of the welding 

connection can also vary. The geometry of the junction affects 

the stresses directly and therefore is an area that requires 

investigation. The accurate determination of the stress levels 

near the junction on both nozzle and vessel sides inevitably 

leads to the designer being able to reinforce the area without 

having to speculate on the amount and type or reinforcement. 

The area replacement method as it has already been explained is 

rather a crude way of applying reinforcement. This is due to 

the fact that up to now stresses around the junction, as well 

as peak stresses at the junction, could not be evaluated 

accurately.•  

The configuration of Fig.3.1.1(c) is studied theoretically 

and experimentally. The advantage of this configuration is 

that the junction is now part of the main shell and the weld is 

further away from the junction. Therefore this contributes to 
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a higher strength since there are no discontinuities due to 

welding connections. Nevertheless the above design is more 

expensive because the vessel wall has to be machined down and 

this is costly. It is also limited to rather small pressure 

vessels and when the number of nozzles, inlet or outlet, is not 

large. The different cases of nozzle configurations which are 

investigated theoretically are described in the next section. 

Cases are not only distinguished for their particular geometry 

but also for the particular physical conditions which prevail 

with respect to heat transfer conditions across the nozzle-vessel 

boundaries. 

The present analysis of thermal distributions and stresses 

applies not only to cylindrical vessels but to spherical vessels 

too under a main assumption: in Fig.3.1.3 a spherical vessel is 

shown; when the diameter of the vessel !s large the curvature of 

the shell wall is small and can be neglected. In most practical 

cases spherical vessels do have large Di/di ratios and therefore 

the analysis can be used to determine stresses with the present 

methods. Appendix 2 of this work deals with a spherical vessel 

nozzle where the curvature is larger and is taken into account. 

3.2 Nozzle-Vessel Cases Examined Theoretically  

The cases examined theoretically are shown in Figs.3.2.1, 

3.2.2, 3.2.3. Case A (Fig.3.2.1) represents a radial nozzle 

attached to the vessel and the geometry of the junction is as 

indicated, where the radius R and the rest of the dimensions 

can vary to any specified values. For all three cases the 

dimensions studied are shown in the figures. Case B (Fig.3.2.2) 

differs in the geometry of the junction and also in that heat 

is conducted only across the boundary of the nozzle while in 



Case A heat is transferred across the vessel boundary as well. 

Case C (Fig.3.2.3)is quite different from the other two. It 

is the theoretical model of the experimental specimen. There 

is no insulation on the outside and heat is conducted only 

across the inside surface of the nozzle. The dimensions are 

shown in the figure and the geometry of the junction is similar 

to Case B. Heat conduction takes place when hot fluid passes 

through the nozzle and enters the vessel. At an inlet nozzle 

during the heating-up period stresses occur at the nozzle and 

junction. The stresses are produced by thermal expansion in 

the nozzle and by relative strain between nozzle and main vessel 

shell, due to a difference in temperatures between the two com-

ponents. Inlet nozzles are subjected to higher thermal stresses 

than outlet nozzles because of the higher thermal gradients set 

up. In Case A and B the structure is thermally insulated on the 

outside and the direct effect of this is that temperature inside 

the wall increases more rapidly than in Case C where there is no 

insulation. 

The stresses produced are the combination of two effects: 

(a) Thermal stresses developed due to variation of 

temperature across the thickness of the nozzle and vessel walls. 

Thermal stresses of this nature decrease as the thickness of the 

wall decreases. In practical problems they can be neglected 

completely if the thickness becomes very small, although their 

values can still be estimated theoretically. 

(b) Thermal discontinuity stresses which are produced due 

to the difference in temperature between vessel and nozzle. 

These stresses will be manifested immediately around the junction 

because of the discontinuity of the structure in that area. The 

combination of the stresses above produces an overall effect 

which is studied in this work. 
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In certain pressure vessels inlet nozzles are thermally 

sealed on the inside and thermal stresses (a) above do not 

develop or are rendered minimal. 

Wherever there is a discontinuity in a structure, such as 

the transition from nozzle to vessel, the variation in thickness 

of the corresponding walls will produce a differential strain. 

It is therefore desirable to make such discontinuities as smooth 

as possible in order to reduce the stresses. Thermal stresses 

develop along the outside'surface of the nozzle and vessel as 

well as along the inside. The stresses reach maximum values at 

different areas, these areas being designated as high stress 

concentration areas. With the present theoretical analysis the 

stresses are calculated not only along the inside and outside 

surfaces of the structure, but also across the full thickness 

of the wails. This provides a complete picture of the stress 

field and decisions about reinforcement at the junction and 

position of the weld can be made fcr safer design. 

3.3 Thermal Stresses and How They Develop  

Often it is necessary to distinguish between thermal stress 

and thermal shock by saying that in thermal shock the thermal 

stresses are produced by transient temperature gradients, 

resulting from step changes in boundary temperature. For 

instance, if a body originally at a uniform temperature is 

suddenly immersed in a medium of different temperature, a 

condition of thermal shock is then introduced. At any instant 

the stresses are determined by the temperature distribution, 

and they are the same as they would be if this temperature 

distribution could be obtained in the steady-state condition. 

But the temperature gradient that can be established in the 
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'step change' initiated state are generally much higher than 

those that occur in the steady state. Hence, thermal shock is 

important relative to ordinary thermal stress because of the 

higher stress that can be induced. Another distinction between 

thermal stress due to finite rate transients and thermal shock 

is that the rate of application of stress is very rapid, and 

many materials are affected by the rate at which load is applied. 

Some materials are embrittled by rapid application of stress and 

therefore may not be able to withstand a stress in thermal shock 

which, if applied slowly, could readily be absorbed. 

In dealing with thermal stresses it is thus desirable to 

distinguish between brittle and ductile materials. Brittle 

materials allow only a very small amount of strain prior to 

rupture. Ductile materials can undergo appreciable strain 

without rupture. Since thermal shock behaviour depends mainly 

on the ability of the material to absorb the induced strains 

necessary to maintain a continuous body upon the application of 

thermal strains, brittle materials generally exhibit inability 

to withstand these superimposed strains without rupture. 

Ductile materials, on the other hand, can withstand these strains or 

many cycles, and in the absence of mechanical loads, ultimate fracture 

must involve exhaustion of the ductility through cyclic loading. 

3.3.1 Thermal Shock of Ductile Material  

It is the rapid step-change of heat that distinguishes 

thermal shock from ordinary conditions of time-dependent thermal 

stress. Such properties as specific heat and conductivity, 

which do not enter directly into consideration for thermal 

stresses under known conditions of temperature, become important 

in thermal shock applications because these properties determine 

the temperature, the temperature gradients, and the rate of 
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change of the gradients, which, in turn, govern strains and 

strain rates. Some materials are more sensitive than others to 

stress gradients or to strain rate, and therefore thermal shock 

may rate various materials differently than would slowly applied 

thermal stress. 

Ductile materials cannot fail in one thermal cycle as 

brittle materials can. Therefore it is to be expected that con-

siderations of failure will be limited to the mechanisms of 

distortion and fatigue rather than to fracture upon the appli-

cation of a single cycle. The thermal fatigue aspects of such 

failure are examined later in this work. The thermal shock 

resistance of a material depends on several parameters. These 

include conductivity, thermal expansion coefficient and Poisson's 

Ratio. Thus for example the temperature distribution is governed 

to a considerable extent by the conductivity. Therefore good 

conductors will have an advantage over poor conductors. In a 

severe thermal shock, on the other hand, the induced strain is 

governed mainly by the parameter aAT where a is the thermal ex-

pansion coefficient and "IT the change in temperature of the  

structure, and is almost independent of the material conductivity. 

When the aAT parameter is large and thus plastic strain is large, 

the ductile material will tend to have the highest cyclic life. 

When aAT is small, on the other hand, the strain may be absorbed 

largely elastically and the material with the highest endurance 

limit will show a life advantage. 

Thus when considering different materials it must be 

realised that their relative merits may interchange depending 

on the conditions. In addition, it is important to consider 

that the metallurgy of a material may change as its temperature 

increased. The properties of some materials deteriorate rapidly 
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as the temperature is raised, hence it is important to use the 

properties at the temperatures at which the strains are imposed 

in order to arrive at valid conclusions regarding relative 

resistance to high temperature transients. 
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4. THEORETICAL DETERMINATION 
OF TRANSIENT THERMAL 
DISTRIBUTIONS FOR THE 
NOZZLE VESSEL CASES 

Here the three cases of nozzle-vessel configurations 

mentioned in Section 3.2 are examined, and the thermal distri-

butions are determined at different times during the heating-up 

period. Fluid enters and leaves the vessel through the nozzles; 

in most cases the fluid is at a relatively high temperature and 

the value of this temperature for the present investigations is 

considered to be T
f 

= 450°F. This temperature value is used 

for both the theoretical and experimental parts. In order op 

proceed to the evaluation of the temperature inside the material 

in any practical problem involving fluid flow in nozzle and 

vessel, the heat transfer coefficient must be determined. The 

heat transfer coefficient affects the rate of heat flow across 

the fluid/metal boundary and when the flow is low the heat 

transfer coefficient is also low (see Section 4.1). In the case 

of low flow there is a large convection boundary film thickness 

and the rate of heat transfer from fluid to metal is decreased 

proportionally. Therefore whenever the flow rate is small 

thermal stresses are also small. Nevertheless in here a high 

flow rate is considered for cases A and B which can be encountered 

in practical problems. For Case C there is no flow of fluid. 

This is because Case C is the theoretical model of the experi-

mentally examined specimen, where the fluid is simulated by a 

resistance coil inserted in the nozzle. The resistance provides 

heat at a rate necessary to maintain the inside surface of the 



nozzle at T
f 
= 450°F. Hence in the theoretical analysis of 

Case C the temperature on the inside surface of the nozzle is 

taken as T
f 
= 450°F. As has already been said, there is no 

heating along the vessel inside surface for Case C; thus the 

theoretical model is equivalent to high flow in the nozzle, and 

very low at the vessel wall. 

4.1 Flow in Nozzle-Vessel and Foi.ed Convection Heat Transfer 

Coefficients  

The problem of forced convection heat transfer for a number 

of physical problems can be solved analytically. In such cases 

the principles of the convection processes and their relation to 

fluid dynamics are employed to obtain an analytical solution. 

However this is not always possible and experimental methods are 

used to obtain empirical formulas or graphical charts, so that 

they may be used with a maximum of generality. 

The relationships used herein to obtain the values of heat 

transfer coefficients for the vessel and nozzle are empirical 

and the physical conditions are as follows:- 

The flow within the nozzle and vessel is turbulent and this 

is a realistic situation encountered in almost all cases of fluid 

flow within pressure vessels. For the vessel the relationship 

is approximated to that of turbulent forced convection past a 

flat plate. This assumption is true when the diameter of the 

vessel is large and therefore the curvature of the shell small. 

The properties of the flow are evaluated at the mean film 

temperature. This is the arithmetic mean of the temperature of 

the surface of the wall, T
w 

and the fluid temperature Tf. Using 

T
m 

to denote the mean temperature, 

T
w 
+ T

f 
T
m 2 

(4.1.1) 

6o 



61 

Sometimes in the case of internal flow a mean film temperature 

which is the average of the surface temperature and the bulk 

temperature is used in place of the mean temperature. The 

analysis of the basic differential equations of motion, con-

tinuity, and energy of fluid mechanics (R.4-1) shows that forced 

convection problems can be represented by a relation of the 

form 

Nu = f(Re, Pr) 	 (4.1.2) 

On the basis of this relation, experimental forced convection 

data can be correlated to yield an empirical equation for a 

certain set of conditions. The formulation above is based on 

the assumption that the fluid properties involved in the 

dimensionless parameters of Reynolds and Prandtl numbers are 

constant. This assumption is not always true. For instance 

the evaluation of all the properties at a mean temperature does 

not produce a satisfactory correlation of the experimental data, 

because, for example, of one strongly temperature-dependent 

property (usually viscosity). In cases like this the introduction 

of another dimensionless parameter which allows for a description 

of the temperature dependence of one or more of the properties 

will permit a satisfactory correlation of experimental data. 

In general the experimental forced convection data correlations 

can deviate up to + 20%, and consequently even this order of 

accuracy has to be considered quite satisfactory in the absence 

of specific data on the. configuration being considered. 

Nusselt (R.4-2) has calculated the average heat transfer 

coefficient hay for a plate of length L as, 

0.8 k 	x0.2dx 	
(4.1.3) h = 1  0.0292(P43  av 
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where x is the distance of any point on the plate from the 

leading edge. A Nusselt average number can be evaluated by 

integration of the above equation. 

hence 

hay = L 

hL Nu = = 

1/3 4 0.0292 	(Pr) 

	

0.8 	(Pr) 0.036 	(Re) 	L) 

LT 
)0.8 

k L
4/5 

/3 

(4.1.4) 

(4.1.5) 

where k is the thermal conductivity and v the viscosity of the 

fluid. The relation of 4.1.5 assumes that the boundary layer is 

fully turbulent from the leading edge of the plate. 

For fully developed turbulent flow in tubes Dittus and 

Boelter (R.4-3) have proposed the following relation: 

hd 	0.8 	0.4 
Nu = --k— = 0.023 (R) 	(Pr) 	(4.1.6) 

Again the properties in the equation are evaluated at the 

fluid mean temperature. The mean temperature T
m 
is normally 

used when the wall temperature Tw  is different from the fluid 

free stream or bulk temperatures. 

4.2 Evaluation of Heat Transfer Coefficient for Cases A,B and C 

4.2.1 CASE A. Forced Convection across Nozzle and Vessel Walls 

Referring to Fig.3.2.1 it can be seen that for Case A 

there is heat transfer by forced convection across the nozzle 

and vessel walls. Fluid of temperature T
f 
= 450°F flows through 

the nozzle and along the inside wall of the main shell. The 

fluid is assumed to have velocity Uf  = 2.00 ft/sec. This is a 

common velocity order of magnitude for pressure vessels where 

transient thermal stresses become important. The velocity of 

the fluid in the vessel and/or nozzle, and consequently the 

vessel and nozzle heat transfer coefficients, can take any 
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value, but the computer program developed in here is able to 

determine the thermal transients for the various cases by simply 

taking the predetermined values of velocities. The nozzle and 

vessel inside surfaces are exposed to a convection boundary 

condition and the temperature of the wall does not automatically 

attain the temperature of the fluid. Nevertheless during warm-up 

the wall temperature increases fast due to the relatively high 

Reynold's number due to turbulent flow and the small film thick-

ness. The effect of the convection boundary on the surface of 

the nozzle and vessel is determined later on by considering the 

heat transfer coefficients of nozzle and vessel sides which are 

calculated herein. The properties of the fluid are obtained at 

the initial mean temperature which is given by 

Tf + Tw 450 + 60  
255

o
F 

	

2 	2 

Fluid Properties for water at mean temperature Tm  = 255°F. 

k = 0.306 btu/ft.h.°F 

Pr = 1.405 

* = 0.543 lb/ft.h 

p = 62.428 lb/ft3  

Also the relation between dynamic and kinematic viscosities 

is: 

	

v = 	 (4.2.1.1) 

(i) Heat transfer coefficient h
v 
for the vessel  

Characteristic length -eV  for the vessel = 7.00 in = 0.583 ft. 

The characteristic length is considered for half of the vessel-

nozzle configuration above the centre line since the configuration 

is symmetrical about the xx' axis (see Fig.3.2.1). 

Fluid velocity Uf  = 2.00 ft/sec = 7200 ft/h. 



h.2 v 
Nu = k 

U
f
t
v 

Re = 
U 
f v- 
11  

(4.2.1.2) 
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and by substituting the values for the above quantities the 

Reynolds number is obtained. 

Re = 0.4826 x 106  

Now using Equation (4.1.5) and substituting for length .217, 

we have, 

= 0.036 (Re)
0.8

(Pr)1/3  

hence 

h = -- 0.036 (Re)
0.8

(Pr) 
1/3 

v
v 

By substituting the values for k, t.v., Re and Pr the heat transfer 

coefficient for the vessel is obtained h 964.8 Btu/ft2h.°F. 
v ,  

(ii) Heat transfer coefficient h
N 

for the nozzle  

The same fluid properties hold for the flow through the 

nozzle at fluid temperature of 450°F and fluid velocity 2.00 ft/sec. 

The characteristic length is now the diameter of the nozzle 

d. = 1.00 in = 0.083 ft. 

Reynolds number is, 

U 
f
d, P 

Re = 	and by substituting the values for U
f
,  , d., P, and p 

Re = 0.06871 x 10
6 

The heat transfer coefficient is then given by Equation 

(4.1.6) for forced convection within pipes 
hNdi 	0.08 	0.4 

N
u 
- 	- 0.023 (Re) 	(Pr) 

hence, 

hN d 
k 

= — 0.023 (Re) 0.8 e) 	(Pr) 
0.4

.  

SubstitutingtheaPproloriatevalliesabovefork,d.,Re and Pr 

the coefficient is obtained. 

h = 906.1 Btu/ft2.h.°F 
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4.2.2 CASE B. Forced Convection across Nozzle Only  

In this case:there is no heat transfer across the vessel 

surface but only across the nozzle surface. The case is shown 

in Fig.3.2.2. The condition of heat transfer only across the 

nozzle is studied here because it is believed that the differ- 

ential stresses developed are higher than those produced when 

heat transfer takes place across both the nozzle and vessel 

surfaces. This is because the thermal differential stresses 

set up between nozzle and vessel are higher due to larger 

difference in relative expansion between vessel and nozzle parts. 

In practice Case B can be considered as the one where fluid. 

flows towards the vessel through a relatively long nozzle or 

pipe setting up differential stresses between nozzle and vessel 

while the fluid is not actually coming in contact with the 

inside surface of the vessel. This is particularly true when 

power plants involving pressure vessels are started-up, and hot 

'slugs' of liquid enter vessels. It can also be said that Case B 

can be encountered in inlet nozzles while Case A corresponds 

more to outlet nozzles when there is a flow down the shell and 

out through the nozzle. 

The flow conditions are the same as in Case A. The 

temperature of the fluid is T
f 
= 450°F and its velocity 2.00 ft/sec. 

Therefore all the other prOperties of the fluid are similar to the 

ones in Case A and the coefficient h
N 
is the same and equal to 

906.1 Btu/ft2 h.°F. It must be noted that this is true because 

thenozzleinsidediameterhasulesamevalueofd.=1.00in= 

0.083 ft. 

4.2.3 CASE C. Radiation Heat Transfer in Nozzle  

The configuration of this case, shown in Fig.3.2.3, is 

similar to the specimen which is tested experimentally and which 
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is shown in Fig.6.1.2. The fluid flow is simulated experiment-

ally by a heating cartridge element of 5/8in diameter which is 

placed inside the nozzle and fixed so that it is concentric 

with the nozzle as shown in the figure. More details of the 

arrangement are given later on in the experimental part of this 

work. 

The heating cartridge heats the inside of the nozzle by 

radiation-and by means of a thermocouple attached on the inside 

of the nozzle the surface temperature is maintained at 450°F. 

The temperature of the sheath of the heater is allowed to reach 

the value of 600°C (1112°F) which is less than the maximum of 

700°C (1293 F) which can be obtained with clearances between 

0.005in and 0.010in. Since the clearance between nozzle and 
d. 

2 

 d 
heater is 0.187in ( 

1 - el), the watt density is reduced by 

means of an adjustable Variac which controls the voltage to the 

heater and therefore the sheath temperature is limited to 

1112°F (600
o
C). 

It is desirable in this case to obtain theoretically the 

heat transfer coefficient as in the previous two cases. In this 

case heat is transferred by three modes; radiation, convection 

and conduction. It is found that the conduction heat transfer 

coefficient is the dominant one followed by the radiation heat 

transfer coefficient. Since the clearance between the nozzle 

and the heater is small (0.187in) and the air is almost stagnant 

around the heater, the convection term is small compared to 

the other two. Nevertheless, the convective heat transfer 

coefficient is also obtained in order to determine the overall 

coefficient. 



a 	(Ti - T4) -Al 1 2 
/E

1  2
.- (A

1
/A
2
)(1/E

2 
- 1) 

q 
rad 1 

(4.2.3.1) 
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The radiation problem is limited to that of determining 

the radiation heat transfer coefficient between two concentric 

cylinders of different surface temperatures. 

When two concentric cylinders 

as shown-in Fig.4.2.3.1 exchange 

heat by radiation the equation 

of heat transfer can be written 

in terms of certain parameters 

characteristic of the two 

cylinders. This is given by 

FIG.4.2.3.1 

where the suffixes 1 and 2 refer to inner and outer cylinders 

respectively. 

El  and E2  = emissivities 

Al  and A
2 
= total surface areas 

T
1 
and T

2 = temperature of the surfaces 

a = Stefan-Boltzmann constant. 

The derivation of the above relation is given in Ref.4-4. 

The ratio of areas 
A1/A2 can be replaced by the diameter ratio 

d
1
/d
2.  

It is now possible to evaluate the radiation heat transfer 

coefficient h
r for the nozzle of Case C as follows. From 

Equation (4.2.3.1) 

q = 
a(T

1 
 - T

2
) 

1/c
1 
 + (A

1
/A
2
) (1/E

2 - 1) 
= hr (T1 - T2) 



(T + T2) (T1 + T2  ) 1  
hr 

= 
 1/c1  + (d1

/d2)(1/c2 
- 1) (4.2.3.3) 

and hence, 
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al(T+ T2)(T1 
 + T

2 
 ) (Ti

1   

   

hr = 1/el  + (211/A2) (1/E2  - 1) 

and by putting AI/A2  = di/d2  

(4.2.3.2) 

 

Now the quantities in Equation (4.2.3.3) can be given the 

appropriate values in the case of nozzle heating. 

Cartridge heater  

The heater is the inner cylinder at a sheath temperature 

= 1112°F. The diameter d
1 
= 5/8in = 0.052ft and is manu- 

factured of stainless steel. The emissivity el  of stainless 

steel at the temperature of T = 1112°F is obtained from 

Ref.(4-4) as 0.586. 

Nozzle  

The nozzle is the outer cylinder of Fig.4.2.3.1. The 

temperature T2  is 450°F and this is recorded by a thermocouple 

attached on the inside surface of the nozzle (shown in Fig.6.1.2). 

The inside diameter of the nozzle is d2 = 1.00in = 0.083ft. 

The emissivity c2  is that of stainless steel at temperature 

T2 
= 450°F and is equal to 0.540 (R.4-4). 

The above values are now substituted in Equation (4.2.3.3) 

where the Stefan-Boltzmann constant a is 0.171 x 10-8 

Btu ft2h.°R4 and the radiation heat transfer coefficient obtained 

as 

hr = 6.24 Btu/ft2h.
o
F. 

The convection heat transfer coefficient is determined by 

considering a relation for free convection from a heated hori- 

zontal cylinder given in Ref.(R.4-4). The relation is for 
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laminar flows and in the present case the air in the space 

between the cartridge heater and the nozzle can be considered 

still. The convective heat transfer coefficient h
c 

is given 

by 
1/4 

= 0.27 -A 
er — 
d 

(4.2.3.4) 

where AT = T
1 
- T2; - T

1 
 is the temperature at the surface of the 

cartridge heater, T2  the temperature at the surface of the nozzle, 

and d the diameter of the heater in feet. For this problem: 

T
1 
= 1112

o
F 

T
2 
 = 450°F 

d = 5/8in = 0.052ft. 

Therefore h
c 

= 2.87 Btu/ft2 h.°F. 

Heat is transferred by conduction through the air between 

the inside cylinder (cartridge heater) and outside cylinder 

(nozzle). The conduction heat transfer coefficient is given by: 

(R.4-4) 
27k(T

1 
- T

2
) 

h
cond 	ln(r2

/r
1
) (4.2.3.5) 

where 

k = thermal conductivity of air (at 4500F + 11120F = 7810F) 
2 

= 0.0340 Btu/ft.h.°F 

T
2 
= 450°F (see Fig.4.2.3.1) 

T
1 
= 1112°F 

r
1 
= 0.026ft 

r
2 
= 0.0415ft 

Hence the conduction heat transfer coefficient is found as 

hcond = 302.44 Btu/ft2 h.oF 

Therefore the overall heat transfer coefficient due to the 

combined effects of radiation, convection and conduction is now 

equal to: 
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h
TOTAL 

= h
RADIATION + hCONVECTION 

+ h
CONDUCTION • 

= 311.55 Btu/ft2h.°F 

4.3 Two-Dimensional Transient Heat Flow in Nozzle-Vessel and  

Finite Difference Analysis  

In all three cases heat is transferred inside the nozzle-

vessel walls by conduction. The problem of heat conduction is 

a two-dimensional one, the heat being transferred in x and y 

directions across the section of the nozzle-vessel configuration 

in the xy plane. 

The objective is to determine the temperature distribution 

within the walls at any particular time during warm-up. The 

thermal stresses can then be calculated at any time using the 

values of the obtained temperatures. The temperure of the 

fluid is considered steady with respect to time. In Cases A 

and B, where the outside of the nozzle and vessel is insulated, 

theoretically the temperature of the structure becomes every-

where the same and equal to that of the fluid. This happens 

after a period of prolonged exposure and under the assumption 

that the insulation is perfect and therefore there are no heat 

losses at the outside surface of the nozzle and vessel. 

For all cases there are the following four basic heating-

up phases. 

(a) The nozzle-vessel section is initially at uniform room 

temperature TR  = 60°F and in thermal equilibrium with the 

surroundings. At this state the surface heat flux q'(heat 

rate per unit surface area) across the vessel and/or 

nozzle is zero. ' 

(b) As fluids enters the nozzle the inside surface boundaries 

of the section are exposed at time t = 0 to the fluid 
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temperature Ti  = 450°F. There is now a surface heat flux 

q' > 0 across the convection boundary film and the temper-

ature at the wall is proportional to the heat transfer 

coefficient: The rest of the section is .still at room 

temperature. 

(c) Heat is transferred by conduction and the temperature dis-

tributionyithin the nozzle-vessel walls is now a time-

dependent quantity. 

. (d) In Cases A and B where the outside of the nozzle-vessel 

section is insulated and there is no heat flow across the 

insulated boundary, the temperature of the structure reaches 

everywhere the temperature of the fluid after a certain 

prolonged exposure period. In Case C where there is no 

insulation the thermal distribution within the section 

becomes steady and the heat fluxes across the inside and 

outside surfaces become steady too. 

The problem of heat conduction through the nozzle-vessel 

section is solved using the numerical method of finite differ-

ences. The method is analysed in the following section and in 

detail in Appendix 1. 

4.3.1 Finite Difference Analysis* 

The differential equation which governs the heat flow with-

in a solid body in two dimensional unsteady-state conduction is 

given by 

a2T  a2T 	aT 
ax 

-a7r2-) — pc -Tr  (4.3.1.1) 

where T is the temperature at any point defined by (x,y) co-

ordinates at a particular time T, p the density of the body, 

k the thermal conductivity and c the thermal capacity. 

*See note on this paragraph and equation 43.1.1 in 
page 83-N1 at the end of this chapter. 



The solution to Equation (4.3.1.1) will give the temper-

ature in a two-dimensional section of the solid as a function 

of two independent space coordinates x and y. The equation of 

heat flow can be solved analytically but only for certain 

specific boundary conditions and geometries. 

Nevertheless the development of high speed digital computers 

enables us to obtain numerical solutions to many problems which 

cannot be solved by analytical methods. 

In order to apply the finite difference method to solve 

the problem, the section is divided into equal increments in 

both the x and y directions. The grid thus produced has a 

number of nodal points as shown in Fig.4.4.1. Finite differ-

ences are then used to approximate differential increments in 

the temperature and space co-ordinates. The smaller the chosen 

finite increments the more closely the true temperature dis-

tribution is approximated. 

DT 
The temperature gradients -

p..2 
and — at each nodal point 

3x 	Dy 

are expressed by finite difference equations as is explained in 

detail in Appendix 1. Then the temperature at each nodal point 

after a time increment AT is calculated using the values of the 

temperatures of the nodes at the end of the previous time 

interval. The same procedure is repeated to obtain the 

temperature distribution after any desired number of time 

increments. This is done by computational methods described in 

the next sections. 

The difference equations which are used to determine the 

conduction of heat through the solid cannot be used to calculate 

the temperature at the inside walls of nozzle and vessel. At 

the boundary of the section a convection resistance to heat flow 

exists which is a function of the heat transfer coefficients 

?2 
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already obtained. The equations governing the temperature change 

on the wall are also obtained in Appendix 1. Each convection 

boundary condition must be handled separately, depending on the 

particular geometric shape under consideration. 

4.4 Solution and Results of Thermal Distributions for CASE A  

The temperatures at the various time increments are deter-

mine,' by solving the equations obtained in Appendix 1. This is 

done by computer program TRAN1 which solves the transient thermal 

distributions for CASE A. The construction and operation of the 

program is described in this section. The program data desig-

nations and the listing is given in Appendix 3. 

First the nozzle-vessel section of Case A is divided into 

the grid shown in Fig.4.4.1. The grid space increment Ax is 

equal to Ay and equal to Olin. This division produces a total 

of 3533 nodal points for the dimensions in Case A. Temperatures 

are determined for all the nodal points at selected time inter-

vals. In the program the dimensions of the section are designated 

with variables 11, 12, 13, J1, J2 and J3 which can be given any 

values so that the dimensions of the section can be changed 

accordingly. This makes the program flexible for the study of 

different cases. There is heat flow across the inside boundaries 

of the nozzle and vessel but there is zero heat gradient aq on 

the outside insulated boundary. The nozzle and vessel heat 

transfer coefficients are the ones already determined in 

Section 4.2. 

COMPUTER PROGRAM TRAN1 - CASE A  

The program solves the difference equations of heat flow 

across the boundaries for all the boundary nodal points and for 

all the nodes inside the section for specified time intervals 
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during the transient heating-up period. It then prints the 

numerical results of the temperatures for all the nodes for each 

time interval as shown in Table 4.4.1. A subroutine named PLOT 

is incorporated in the main program and plots the temperature 

profiles for the corresponding times as shown in Figs.4.4.2(a) 

and 4.4.2(b). 

The main program and the subroutine were constructed by 

the author in order to solve the case problems of nozzle-vessel 

transients presented hereby. The plotting of the profiles 

provides a more comprehensive picture than the numerical results 

but the exact values of the temperatures are used later to obtain 

the thermal stresses. The series of the main operations of the 

program and the subroutine are given below and an attempt is 

made to present the sequence of operations as comprehensively as 

possible. This is as follows: 

- The total number of nodal point temperatures is defined. 

- The maximum number of time increment iterations is defined 

as well as the maximum number of iterations for the con-

vergence of the temperature equations. 

- The dimensions of the section are given including the 

radius RA of the junction, nozzle and vessel heat transfer 

coefficients, coefficient of thermal conductivity, initial 

temperature of the section and fluid temperature. 

- The initial temperature of the section is defined by scanning 

all 3533 nodal points. This is set to 600F. 

- The temperature of the fluid is set and the temperature of 

the boundary nodal points on the vessel and nozzle walls 

are determined for the first time increment using Equations 

(A1.12) and (A1,13) respectively (Appendix 1). These are 
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for the nozzle, where h
N is the heat transfer coefficient 

for the nozzle. 

The nodal temperatures are calculated for the first time 

increment AT inside the section for all nodal points using 

Equation (A1.7) in Appendix 1 and temperatures in the 

insulated boundaries of vessel junction and nozzle using 

Equations (A1.8), (A1.10) and (A1.9) respectively. 

For the second time increment the boundary values of the 

nodal temperatures are determined using the values of the 

temperatures at the end of the previous time increment. 

The temperatures of the inside of the section are also 

determined using the same equations described above and 

the temperatures at the end of the first time increment. 

The procedure is the same for subsequent time incre-

ments until the temperature of the section is uniform. 

The values of the temperatures are printed every 0.5 

minutes (30 seconds) and calculated for every 0.3 minutes 
prinkti f-or 

for the first 12 minutes andfe- erv'3 minutes thereafter. 
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The printing time can be changed to any value desired. 

In Table 4.4.1 the printing of the temperature for selected 

value of the index I at the time interval of 9 min 30 secs 

is shown. Each nodal point is identified by two indices I 

and J. The value of I changes at the top of the page and 

the value of J across. Every temperature is then identified 

as Tij. 

The temperatures for every time increment printed are 

plotted by subroutine PLOT in a comprehensive way as it is ex-

plained below. 

SUBROUTINE PLOT-CASE A  

The thermal profiles for the section at the time intervals 

of 9 min 30 secs and 54 min are shown in Figs.4.4.2(a) and 

4.4.2(b) as they are plotted by the subroutine. Every letter 

represents a band of 10 degrees F. Each temperature is trans-

lated into a blank or a letter according to the table provided 

with the figure. The subroutine incorporates the following 

steps. 

- Define the temperature bands by designating a letter to 

each band of 10 degrees °F. 

- Put index I = Il and plot the temperatures for every value 

of the index J along the row. 

- The junction boundary is determined as follows. 

The junction is a quarter circle. In the Fig.4.4.3 the 

co-ordinates of the quarter circle at points A and B are 12, 

J2-R and 12-R,J2. 

The equation will then be: 

I = ( - 	- (J- J2)2  )+ 12 	(4.4.1) 

and 

J = 	- i/R2  - (I - 12)2  ) 	J2 	(4.4.2) 
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where R = RA/Ax and RA the radius of the junction. These two 

equations give the corresponding values of i and j for any values 

of the radius of the junction. Since the grid elements are 

finite, the nodal points on the quarter circle are rounded by 

computation according to the decimal part of their value to 

give a smooth curve through the points. 

When the plotting of the temperatures for the entire 

nozzle-vessel section is completed for the first time 

interval, the operation is repeated for the subsequent 

time intervals. 

Data designations and listing of the subroutine are given 

in Appendix 3. 

Thermal Results - CASE A  

The temperatures for each time interval of 30 seconds for 

the first 12.0 minutes, and each time interval of 1 minute 

thereafter of the heating-up period were obtained by the main 

program and plotted by the subroutine in order to study the 

behaviour of thermal distributions in the section. The exact 

values of the temperatures are subsequently used to determine 

the thermal stresses. This is done for only one time interval 

when the developed stresses are maximum, and it is explained 

below. In Fig.4.4.4(a) to Fig.4.4.4(c) the thermal distributions 

are shown for the time intervals T = 3 min, 9 min 30 secs, 

18 min, 27 min, 36 min, 45, 63, 81, 126, 144, 162, 200 minutes. 

It can be seen that the temperature rises faster in the nozzle 

because the thickness of the wall is smaller than that of the 

vessel. At early time intervals the temperature variation 

across the walls is larger. Later the heat flow becomes 

steadier and it can be noticed that the profiles become more 

distinct. In Fig.4.4.4(c) it is quite clear that temperature 
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variation across the section is decreasing appreciably. The 

bounds of 1Q°F isothermals are getting wider and heat flow is 

now more steady. As there is no heat flow across the insulated 

boundary the temperature of the nozzle first becomes uniform at 

time = 2 hr 06 min (Fig.4.4.4(c)). The temperature of the 

entire vessel-nozzle configuration becomes uniform after 3 hours 

and 20 minutes (Fig.4.4.4(c)). Thermal differential stresses 

are present during the whole period of the transient heating-up 

as the mean temperature of the nozzle is always higher than the 

mean temperature of the vessel wall. The thermal differential 

stresses are due to different expansion rates of nozzle and 

vessel and are the most important ones but not the only ones as 

has already been pointed out. Thermal stresses also develop 

across the thickness of the vessel and nozzle walls due to the 

variation in temperature. These are complementary to the 

differential stresses and they contribute to. the increase of the 

overall value of the thermal stress field. 

At time T = 9 min 30 secs the variation of mean temperature 

between nozzle and vessel AT
m 
= T

m(nozzle) - Tm(vessel) 
 is 

maximum. In Fig.4.4.5 the value of AT
m 
is plotted against time. 

The value of AT
m increases continuously until the time of 

9 min 30 secs, when it attains its maximum value of 193.1°F and 

then decreases steadily to zero at the time of 3 hours 20 min when 

the temperature of the section becomes uniform. It is evident 

that maximum thermal stresses will develop after 9 min 30 secs of 

the heating-up period. It is these maximum thermal stresses that 

are examined later on in Section 5. 

Tryi  0,,t,05z) 	/3 	11,4stvii 	442 rcktutt A'AA 4,e np. 
Lalcv,[0,f-eti 	avefaf 	ali 42 Ito dad -6Afertxtu 	/14 

4k 11,5362.. TivzScvvike. fv2,146 th.r Of‘e vakk T  (a„,i) 
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4.5 Solution and Results of Thermal Distributions for CASE B 

In Case B heat flows only across the boundary of the nozzle. 

The variation of temperature between nozzle and vessel will 

therefore be higher and differential expansion between nozzle 

and vessel will produce higher differential stresses. 

The temperatures are determined using the same method of 

finite differences and program TRAN2. The nozzle-vessel section 

is divided into the grid shown in Fig.4.5.1. The physical con-

ditions are also shown. There is a rate of heat flow aq/Dt 

across the inside boundary of the nozzle and there is no heat 

_flow at the outside insulated boundary. The temperature of the 

fluid is T
f 

= 450°F and the heat transfer coefficient of the 

nozzle is b
y 

= 906.1 Btu/ft2hr.°F. This was calculated in Section 

4.2.1. The temperature grid comprises of a total of 3712 nodal 

points with a grid spacing Ax = Ay = 0.lin. The data designations 

for TRAN2 are the same as for TRANI and are given in Appendix 3 

together with the listing of TRAN2. The steps in program TRAN2 

are the same as in Case A with the following differences. 

PROGRAM TRAN2 - CASE B  

- The temperature of the fluid is set and the temperature of 

' the boundary nodal points on the nozzle walls are deter-

mined for the first time interval using Equation A1.13 

(Appendix 1). This is 

{ 

n+1 a/ AT 	
h
N
Ax 

n 	n 	n 
T. - ----2 2 - Tf  + 2 T 	

+ Ti ,j+1 
 + 

Ti ,j-1  ij 	(Ax) 	k 	f 	i+1,j 	1,3+1 	1,j-1 

ir 
, 	(Ax)2  

2 	 
a' AT 	

4 I T
n 

iri 

hN/x  

- There is no heating across the vessel inside boundary. 

- For the second time interval the boundary values along the 

nozzle are determined using the temperatures at the end of 



the first interval. The interior nodal temperatures are 

--then determined using the Equations (A1.1), (A1.8), (A1.9), 

and (A1.10) of Appendix 1. Equation (A1.10) for the junction 

is valid for the geometry of this case. 

Temperatures are determined for subsequent time intervals 

using the values at the end of the previous times. 

The temperatures profiles are plotted by subroutine PLOT. 

The junction geometry is a straight line inclined at 45
o 
 in 

respect of the vessel and nozzle. (See Fig.3.2.2.) 

Thermal Results - CASE B  

The temperatures of the section are calculated by the program 

and plotted by the subroutine for time increments of 30 seconds 

for the first 15 minutes and 1 minute thereafter. The time incre-

ments at which the temperatureq are printed can be changed to any 

desirable value of48 seconds or more. The minimum value of 0.18 
(Ax)

T  

2  
aA seconds is limited by the value of the parameter 	which 

must be equal to 4 so that it can be eliminated from Equation A1.7 

(Appendix 1). Table 4.5.1 gives the values of the nodal tempera- 

tures of the entire section for time T = 10 min. In Figs.4.5.2(a) 

and 4.5.2(b) the thermal profiles are shown as they are plotted 

by the subroutine for times T = 10 min and T = 54 min. In Figs. 

4.5.3(a) and 4.5.3(b) the thermal distributions are shown for 

time T = 0.0 to T = 54 minutes. 

The isothermal lines obtained in this case are different to 

the ones obtained in the previous one. It can be seen that heat 

flows across the nozzle inside surface, changing the nozzle wall 

temperature first and then as time proceeds the temperature of 

the vessel wall. The nozzle is heated to a considerable higher 

temperature than the vessel. This will introduce differential 

stresses between nozzle and vessel. Generally it can be seen 

8o 
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that in Case B the section is heated-up slower than in Case A, 

and the variation temperature between nozzle and vessel is 

higher. This makes the differential stresses in Case B generally 

higher than in Case A but the overall stresses are higher in 

Case A due to higher temperatures. The variation in mean 

temperature between nozzle and vessel AT is shown in Fig.4.5.4. 

The maximum value is 302.4
o
F and it is attained after 10 minutes. 

As there is no heating across the vessel boundary in Case B 

and the vessel wall is insulated, comparison of the two curves 

for AT
m 
for Case A and B indicates that maximum temperature 

variation for Case B contributes to higher differential stresses 

than in Case A, where the maximum value of AT is considerably 
m 

lower (see Fig.4.5.4). 

4.6 Solution and Results of Tnermal Distributions for CASE C  

Case C examines theoretically the thermal distributions and 

thermal stresses of the nozzle-vessel geometry of the specimen 

tested experimentally. This makes possible the comparison of 

theoretical and experimental results and provides a criterion of 

how accurately the theory can approximate experimentation. The 

correlations of stress results between the theoretical Case C 

and the experiments are described in Chapter 6. In here only 

the thermal distributions are obtained, as for the two previous 

cases, and these distributions are used in Section 5 to obtain 

the thermal stresses. 

Case C has the dimensions shown in Fig.3.2.3. The nozzle-

vessel section is a section in the xy plane (longitudinal plane) 

of the specimen which is shown in Figs.6.1.1 and 6.1.2. The 

section is heated by a cartridge heater which is inserted inside 

the nozzle. This simulates the fluid of the previous cases. 
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Heat fow across the nozzle boundary is now a combined result of 

radiation, natural convection and conduction. This mode of heat 

transfer is different from the forced convection in the two 

previous CASES A and B. The combined radiation, convection and 

conduction heat transfer coefficient was obtained in Section 

4.2.3 and its value is OTAL h_
T 	

= 311.55 Btu/ft2.hr.°F. The heat  • 

transfer coefficient h
TOT 

can be used to obtain the temperature 

of the wall when it is not known. In this case the cartridge 

heater provides the necessary amount of heat to maintain the 

inside surface of the nozzle at a temperature of 450°F. There 

is no insulation on the outside and therefore there is a heat 

loss dq/dt by natural convection from the outside walls to the 

surrounding air. The heat flow inside the wall 17y conduction 

and the heat loss to the air by natural convection are described 

in Appendi;: 1. Program TRAN3 (Appendix 3) determines the 

temperature distributions for CASE C. 

PROGRAM TRAN3  

- Temperatures of nodal points inside the wall are calculated 

by Equation (A1.7): 

n+1 1 n 
T
1
. 	(T. . + T

1
. 	. 4- T.1  . 	+ T1. . 	) ,3 	4 	1,3 	-1,3 	,3+1 	,3-1 

(A1.7) 

- The heat transfer coefficient for the vessel outside wall 

and the junction outside wall are determined by Equation 

(A1.14): 

0,33 

hL L30(T
w 
 - Tom) 

 k = 0.13 	( 	) (Pr) 
a 	v2 
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- The heat transfer coefficient for the nozzle outside wall 

is determined by Equation (A1.15): 

L3ga(Tw  - T.) 	0.25 

- The temperature grid comprises a total of 1387 nodal points 

and is shown in Fig.4.6.1. 

Temperatures are obtained at 1 minute intervals for up to 

18 minutes. In Figs.4.6.2(a) to 4.6.2(c) the thermal profiles 

are shown for times = 0,4,6,10,12,14 minutes during heating-up. 

In Table 4.6.1 the values of temperatures are shown for time 

T = 11 min. The mean temperature variation AT between nozzle 

and vessel attains its maximum value of 236.9°F at time 

T = 11 min. In Fig.4.6.3 AT is plotted against time. After 

the eleventh minute the value of AT
m 
decreases with time. Never-

theless the value of AT
m 
will never be zero since there is no 

insulation on the outside and heat flows across the boundaries. 

hL = 0.54   (Pr) 
k
a 



[ 

k 	32T .1.  1 aT + 1 a2T 4.  

3r2 r ar r2 TO az2  

a2T 

= 	
DT - pc Tr  (N.1) 

  

83-N1 

Note on paragraph 4.3.1 (page 71)  

The differential equation of heat conduction which governs the heat 

flow within a solid body in three-dimensional time-dependent conduction 

in cylindrical coordinates, specified as r (radial), z (axial) 0 (cir-

cumferential), is given by 

If a cylinder (Fig.N.1) whose axis coincides with the axis of z 

is heated and the initial and boundary conditions are independent of 

the coordinates 

r 

   

 

	C> Z 

  

Figure N.1 

0 and'z the temperature will be a function of r and time only and the 

equation reduces to: 

k D2T 	1 3T aT 
—7— = P 

x a 2 r  
(N.2) 

   

In this case the flow of heat takes place in planes perpendicular to 

the axis and the lines of flow are radial. 

When the initial and boundary conditions do not contain 0, the 

flow of heat takes place in planes through the axis and the equation 

of conduction becomes 
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[ 2 

32T 1 DT 	D2T _ 	DT 
3r2 r 

k 	 4-  5
r 
 + - - PC 3T  (N.3) 

Nevertheless, when two axially symmetric bodies intersect as in the 

problem of this work the above equation N.3 cannot be used to analyse 

the transient temperature distribution in both cylinders and especially 

around the junction area due to lack of symmetry of the cylinders. 

Therefore an approximation is made in order to overcome this difficulty 

which results in using Equation 4.3.1.1. 

	

k (
a2T  a2T 	3T --- + ---) = pc --- -  

	

ax2  ay2 	DT 
 

whose solution still involves three independent variables, but it 

treats the problem in two-dimensional plane wall cartesian coordinates. 

This is an approximation which works accurately (the error is between 

1% and 2% for a vessel of thick wall and large diameter DiA::--.-2c)cod 

accurately for the nozzle. The plane wall approximation for the nozzle 

of the present problem produces results where the error averages at 

about 11.5%. 

In Appendix 9 (page 244) the temperature distributions which were 

obtained in the nozzle by using the two-dimensional time dependent 

plane,, wall equation 

(22  
k 3T+

aT 
= pc T.t.  ) 	DT (4. 3. I. , F. 7I) 

3x2  Dy2  

away from the junction for Case C are compared to the temperature 

distribution obtained in the same nozzle configuration using Equation 

N.2. 

It has not been possible to compare the results with analytical 

solution data for the cylinder time-dependent equation with the above 

boundary conditions or with insulated outside boundary due to lack of 

any such data. However comparisons are made to the results of 



temperature distribution for the cylinder obtained by solving the 

Equation N.2. numerically as is shown in Appendix 9 .(p.244). The 

plane wall approximation for the nozzle of the present problem pro-

duces results in which the differences average at about 11.5%. 
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5.THEORETICAL DETERMINATION 
OF THERMAL STRESSES 

Elastic thermal stresses are calculated for all three cases 

by computational analysis using the temperatures obtained in the 

previous section. Maximum thermal stresses develop at times when 

AT
m is maximum. It has been shown that for Case A, ATm 

b
e
comes 

maximum at time T = 9 min 30 secs, for Case B at T = 10 min and 

for Case C at T = 11 min. Only maximum thermal stresses are 

determined for Cases A and B. For Case C stresses are determined 

for time intervals of very two minutes up to 18 minutes. This 

makes possible the comparison between theoretical values of 

stresses and experimental results. 

The analysis and solution of the stress problem is based on 

the method of finite elements. An account of the method is 

given in Appendix 4. The finite element method does provide a 

tool for solution of problem with complex geometries but it also 

has its limitations. The analysis of the present problem for 

example assumes a linear displacement field across each of the 

triangular elements into which the nozzle-vessel section is 

divided. This assumption tends to be true for small area 

triangles. The concept of imaginary forces at nodal points 

representing the distributed stresses actually acting on the 

element boundaries is also another assumption. This is accept-

able to a certain extent when the stress field is more or less 

uniform. But in places where stresses change abruptly the 
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elements must be small to allow for the possible variation of 

stress field within the elements. The combination of tri-

angular elements is called a MESH. Fine meshes are required at 

places where peak stresses are expected, or where the stress 

concentrations are high. 

5.1 Computer Program STREN  

The analysis given in Appendix 4 presents the mathematical 

procedure used for the determination of stresses. The equations 

are solved by computer program STREN which analyses the displace- 

ments in the structure due to thermal expansion. The programme 

calculates the direct stresses ax,  a
y
, a 

z
, where a

x 
and ay  are 

in the xy plane of the section (Fig.5.1.4) and az  is in a 

direction perpendicular to the plane. (See Fig.5.1.4 for stress notation) 

The two principal stresses a
1 
and u

2 
in the x-y plane are 

also determined as well as the shear stress T . The angle of 
xy 

the principal stress a1  is determined in respect to the x axis. 

Stresses are calculated for every element and node of the mesh 

and they are printed in such a way that they can be read for 

each node and element. 

The general analysis and the computational procedure con-

sists of the following steps. 

(i) Initially the physical data of the material are defined. 

The material used is Austenitic stainless steel of the EN58J 

type. The values of Young's modulus E, the coefficient of 

thermal expansion a and Poisson's ratio v are all temperature 

dependent. A relation is therefore established for each of the 

above quantities with respect to the temperature. Values are 

obtained from reference (R.5-1) and are plotted against temper-

ature. In Fig.5.1.1 the modulus of elasticity is shown for the 
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temperature range 00C (32°F) to 800°C (1472°F). In Fig.5.1.2 

the coefficient of thermal expansion a is plotted against the 

temperature. The coefficient behaves linearly up to about 500°C 

(932°F). Finally in Fig.5.1.3 Poisson's ratio v is shown for a 

temperature range of 400°C (720°F). The temperature of the 

nozzle-vessel section at the various time intervals is not the 

same everywhere. Most of the elements and nodes are at a 

temperature generally different to that of other elements or 

nodes. It would be extremely difficult, even with computational 

techniques, to use different values of the above quantities for 

each element and node according to their temperature. This would 

of course be theoretically an ideal situation but practically it 

involves an unnecessary amount of calculations whIch is not 

justified by the degree of accuracy obtained. Therefore the 

mean temperature of the section at each time interval concerned 

is that at which the quantities above are obtained. 

(ii) The number of elements and nodes of the mesh is defined 

together with the x and y co-ordinates for every node. The 

Initial displacements of each node in x and y directions are set 

to zero and the boundary conditions are defined as unrestrained. 

The temperatures of all elements are given for the particular 

time interval. The temperatures of the elements is the averav 
three 

value, of theftemperatures of the three surrounding nodes, and 

are fed as data into the program. 

(iii) The program calculates the areas of the elements and takes 

into account any forces present at the nodes. These forces are 

zero in the present problem since no external reactions are con-

sidered. The stiffness coefficients for the nodes are summed 

and the stiffness matrices for each element are subsequently 

formed. The displacement of each node is calculated due to 
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internal thermal forces set up by thermal expansion and by in-

version of the main diagonal stiffness submatrix the flexibility 

submatrix at each node is formed. 

A Gauss-Seidel iteration on the stiffness matrix for the 

entire section is performed and a test for convergence is used 

to check if a predetermined tolerance has been achieved. The 

stress components for each element are then calculated from the 

equations shown in Appendix 4. The stresses are also calculated 

for all nodes. Finally the direct stresses a , a and a are 
x y 	z  

printed for each node and element together with the principal 

stresses a
1 
and a

2 in the xy (longitudinal) plane, the shear 

stress T
xy' 

 and the angle 0 (in degrees) that a
1 
forms with 

respect to the x-axis. The displacements u and v of each node in 

x and y directions are also determined. 

5.2 Thermal Stress Results for Case A and B  

The finite element mesh for Case A is shown in Fig.5.2.1. 

The mesh has 377 elements and 221 nodes and it is finer at the 

junction where stress concentration is high. The stress results 

for the mesh are obtained by program STREN1 which is given in 

Appendix 5. Stresses are obtained for the time interval 

T = 9 min 30 secs during heating-up when their values are maxi- 

mum. For each element and node three direct stresses a 	a 
x
,  

and a
z 

are determined. The two principal stresses a
1 
and a

2 
are 

also determined and the maximum principal stress is selected and 

plotted for the outside boundary of the structure. In Fig.5.2.2 

the three direct stresses are plotted for time T = 9 min 30 sec. 

Stress 	is compressive for the vessel and its value increases 

as the junction is approached. At node 7 it attains its maximum 

value of -21371 lb/in' and then gradually decreases to -2638 lb/in' 

at node 18. Then the aL  becomes tensile for the rest of the 
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junction reaching a peak value at node 23 of +11.089 lb/in'. 

It then decreases along the outside of the nozzle but its value 

remains tensile for the nozzle. The transition from compression 

to tension for the 0:7 stress occurs between nodes 17 and 18 in 

the junction region. The two peak values also occur at the 

junction, with the compressive maximum being on the vessel side 

of the junction (node 7) and the tensile highest value on the 

nozzle side of the junction (node 23). The exact values of the 

stresses for the nodes along the outside of the structure are 

given in Table 5.2.1 

The physical explanation of thermal stress results and 

their interpretation for complicated sections like the one under 

investigation, are not always as straightforward as for instance 

the results obtained under internal pressure loads. This is 

because thermal loads affect the structure in more ways than 

one. For example expansion of one part of the structure sets 

up tensile stresses in the fibres of the metal. At the same 

time this same part is under compression by the rest of the 

structure surrounding it as its expansion is restricted by the 

cooler metal around it. Again, during cooling compressive 

forces are set up in the metal due to the drop in temperature 

but since contraction is restricted by the rest of the structure 

which is at a higher temperature tension is also applied on it. 

Therefore the net effect eventually will be determined by the 

magnitude of the different stresses, compressive and/or tensile, 

that are present as the result of the specified thermal loads. 

It can be seen from Fig.5.2.2 that the other two direct 

stresses 	az follow almost the same pattern as the stress 

a . 	kris a compressive maximum at the junction node 

(7) and (8) respectively and a tensile maximum at junction 
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node (23). Their values are compressive for the vessel, in-

creasing gradually as the junction is approached, then they 

decrease along the junction and they become tensile between 

nodes (17) and (18). Along the nozzle part of the section 

they are tensile and they decrease as we move away from the 

junction. It can also be seen that the value of the stress 

is higher throughout the structure than that of stress a. 

This clearly indicates 

that higher direct stresses are set up in the longitudinal 

plane of the section than in the transverse plane. 

The compressive values of (1, aR  and a
z 

for the vessel 

from node (1) to node (17) are due to the expansion of the 

inner part of the vessel section which is at a higher temper-

ature than the outer part, therefore setting up compressive 

forces on the outside boundary. These compressive stresses 

become higher as the junction is approached due to the dis-

continuity at node (7). For the vessel and part of the nozzle, 

up to node (17), the compressive stresses are higher than the 

tensile therefore producing an overall compressive result. 

Compressive forces for this part of the vessel and junction are 

also increased due to the effect of the expansion of the 

nozzle which as it expands compresses the vessel and the area 

around the junction. 

The maximum principal stress for every node on the outside 

is plotted in Fig.5.2.3. The shear stress T
xy 
 is determined 

by the'program but from the design point of view the maximum 

shear stress T
max 

(12) = I 11(al  - a2) I, where al  and a2  are 

the principal stresses in the xy plane, is more important. The 

maximum value of Tmax(12)  depends of course on the magnitude of 

the principal stresses and also their signs. When al  and a
2 
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are of the same sign, TmaxC121 is equal to their difference and 

when a
1 
and a

2 
are of opposite signs Tmax(12)  is equal to their 

sum. Additionally the other two maximum principal shear 

stresses Tmax(23)  and Tmax(31)  are equal to 1.1 la
2 
- a

3
1 and 

12 Ia3  - a1 	respectively. It is found (Fig.5.2.3) that T
max

(12) 

(acting in the xy plane) is considerably larger than the other 

two maximum shear stresses. From Fig.5.2.3 it can also be seen 

that the'maximum principal stress graph is similar to the graphs 

of the three direct stresses but with considerably higher stress 

values. There is a maximum compressive stress at node (8) of 

the junction of -23,665 lb/in' and a tensile maximum at node (23) 

of the junction of +11.091 lb/in'. The maximum shear stress 

x
(12) graph also has a maximum value at node (8) of 10579 lb/in' 

ma 

and at node (23) of 5104 lb/in'. It is clear that high stress 

concentrations at the junction points (7), (8) and (23) are 

present and it is at these regions where failure is possible. 

The smooth geometry of the junction decreases the magnitude of 

the peak stresses around that area, but maximum peak stresses 

still develop at the points where the vessel and nozzle join 

up with the junction (points (7)-(8), and (23)). This leads 

to the conclusion that the welding of nozzles on vessels has 

to be undertaken with great care to avoid sharp transitions 

from one point to another. Even if the overall transition 

appear to be smooth it is possible to have small discontinuities 

and corners within the weld which will unavoidably produce peak 

stresses at these areas. Nevertheless by providing a smooth 

overall junction high stress concentrations can be avoided and 

discontinuities within the junction region can be prevented 

from acting as nuclei for very high peak stresses which could 

lead to crack initiation. A method of machining down the 
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vessel wall and making the area of the junction part of the 

vessel is thought to be more effective in combating failure at 

the junction. The nozzle is then welded on further away from 

the junction. This method of construction places the weld away 

from the region where stresses are high and at the same time it 

renders the junction region stronger since the junction is now 

part of the vessel. This method 5s used in the experimental 

part of this project. 

Stresses are equally important on the inside surface of 

the nozzle and vessel which is in contact with the fluid 

(Fig.5.2.1 nodes (206) to (75)). It is found that 

direct stresses ax, and. .a
z 
are compressive with a maximum 

compressive value at nodes (156) for a 	and (157) for 

g
z 
(Fig.5.2.4). Again stress Qx  is greater than 	Gz 

especially between nodes (192) to (126) but 	stresses 

have approximately the same values for nodes further along the 

nozzle. The thermal stresses for the inside surface are also 

given in Table 5.2.2. 

The maximum principal stress graph for the inside surface 

is shown in Fig.5.2.5 and it can be seen that a maximum com-

pressive value is obtained at node (157). The maximum shear 

stress also attains its maximum value of 5173 lb/in' at node 

(156). The stresses at this part of the vessel are partly the 

result of a bending moment produced by the relative expansion 

of the nozzle. As the expansion of the nozzle is restricted a 

bending moment is set up with a direct effect on the stresses 

developed on the vessel side. 

The finite element mesh for Case B is shown in Fig.5.2.6. 

The three direct stresses are again plotted for the outside 

surface and are shown in Fig.5.2.7. Table 5.2.3 gives the 

x 
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values of the computed stresses. Both 	stress components 

are compressive for the vessel and they increase to .a maximum 

at node (5) and then decrease gradually to become tensile at 

node (9). There is a tensile maximum for - the 

stresses at node (11). The maximum principal stress and the 

maximum shear stress are shown in Fig.5.2.8. The highest com-

pressive value for the principal stress is again at node (5) 

and the highest tensile stress at node (11). For the shear 

stress a maximum of 15,245 lb/in' occurs at node (5) and at 

node (11) a value of 1354 lb/int  is obtained which is relatively 

higher than the rest of the values along the nozzle. These 

high values of the stresses at the points where the junction 

forms sharp corners with the vessel and nozzle shows how dis-

continuities of this kind affect stress concentrations. 

Stresses developed in Case A are generally higher than 

those in Case B. Comparison of the temperatures in the 

structure at time T= 9 min 30 sec for Case A and at time 

T = 10 min for Case B indicates that the temperatures are 

higher for Case A. This is because heat flows across both the 

vessel and nozzle inside surfaces thus producing a greater 

overall thermal load in Case A. Nevertheless it has been ex-

plained that the difference between the mean temperature of the 

nozzle and vessel is greater in Case B and therefore thermal 

differential stresses will generally be higher than in Case A. 

The net effect of the thermal expansion stresses and the thermal 

differential stresses eventually determines the magnitude of 

the resulting stresses. 

The situation on the inside surface in Case B (Fig.5.2.9 

and Table 5.2.4) is similar to that in Case A. The maximum 

principal stress is compressive at the vessel, junction and 
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nozzle and its value increases from -1362 lb/in2  at node (149) 

-10,442 lb/in2  at node (102). It then decreases along the 

nozzle. The maximum shear stress develops a similar pattern 

with the highest value of 4924 lb/in2  at node (102). 

Wherever the maximum shear stress develops peak values, a 

crack can be initiated or an existing crack can propagate under 

certain conditions of stress level. This could lead to failure 

of the structure when cyclic loading is applied, as for instance 

under continuous heating and cooling. The thermal fatigue 

problem is considered later on when crack propagation is also 

investigated. 

5.3 Thermal Stress Results. Case C  

The finite element mesh is shown in Fig.5.3.1. The mesh 

is geometrically identical to the experimental specimen. The 

theoretical results obtained are then compared to the experi-

mental results. This is done in the next chapter. The stresses 

for Case C are presented for the time intervals of T = 4, 8 and 

11 minutes of the heating up period. At time 11 minutes the 

maximum thermal stresses are developed. Temperatures for each 

of the 549 elements and for each of the 340 nodes are taken from 

the temperature results obtained by program TRAN3 for each of 

the three time intervals. The temperatures are fed as data in 

the program STREN3 which calculates the stresses at the re-

spective time intervals. Program STREN3 is similar to the 

previous two programs which are used for Cases A and B. The 

listing is given in Appendix 5. 

The overall stress results obtained in this case indicate 

that the magnitude of the stresses is lower than that of Case A 

or B. This is partly due to a lower AT
m 
between nozzle and 



vessel and partly due to the smaller dimensions of the section 

which makes the thermal transients across the thickness of the 

vessel and nozzle considerably lower in magnitude. The stress 

aL is shown in Fig.5.3.2 and Table 5.3.1 gives the exact values 

for the three time intervals. Stress al,  is plotted for the out-

side boundary of the section from node (1) to node (77). The 

stress is comparable for the vessel with a maximum at node (21),. 

It becomes positive at the middle of the junction and remains 

positive along the nozzle with a maximum value at node (43) of 

the nozzle. Graphs are plotted for the three time intervals 

of the heating-up period. In Fig.5.3.3 and Fig.5.3.4 the other 

two direct stresses a
R 

and a
z 

are plotted respectively and their 

values are also given in Table 5.3.1. Generall" the pattern of 

the graphs is similar. Both ala  and a
z 
have a maximum compressive 

value at node (21) for all the three time intervals, and a 

tensile maximum value at node (43) of the nozzle. Stresses 

reduce considerably Keerthe ends of the nozzle and vessel. Again 

Figs.5.3.5 and 5.3.6 show the maximum principal stress a 	and 
maxp 

 

the maximum shear stress T 	(12). Their values are given in 
max 

Table 5.3.2. A maximum compressive principal stress of 

-8247 lb/in' is recorded at time 11 minutes at node (21) com-

pared to -14897 lb/in' for Case B and -23665 lb/in' in Case A. 

The shear stress Tmax(12)  has a maximum of 7872 lb/in' at 

node (21) and time 11 min compared to 15245 ib/in' for Case B 

and 10579 Lb/in' for Case A. 

Stresses are calculated for every element and node within 

the section and the results are used to determine the stress 

field which is used in the fatigue section of this project. 

* Values of Gil  are at the centroids of the elements near the 
boundary.The values of 0—R  is zero at the boundary. 
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6. EXPERIMENTAL DETERMINATION 
OF THERMAL STRESSES 

In this experimental part of the project an attempt is 

made to determine the thermal stresses developed at the vessel, 

nozzle and junction areas using a specimen which was con- 

structed to specifications described (Section 6.1). By determining 

the stresses experimentally, it is possible to determine how 

accurately we can predict the stresses by finite element analysis, 

and also by approximate theoretical analyses. 

Strain gauges are used to measure the stresses. It has been 

found that thermal stress measurements pose considerable 

difficulties and special strain gauges are used. The situation 

is made more difficult by the strain gauges having to operate at 

relatively high temperatures. 

The second objective of the experimental part is to discover 

whether, under continuous heating and cooling cycles, 

it is possible to initiate any cracks at regions of high 

stress concentration or make existing cracks propagate to the 

extent of causing failure of the structure. This second aim is 

considered in Chapter 7 together with a theoretical analysis on 

crack propagation and fatigue. 

6.1 Geometry and Characteristics of the Specimen  

The specimen used for the experimental part of the project 

simulates the part of the vessel where the nozzle is attached 

and the curvature in the tangential (hoop) direction is 
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neglected. This assumption is quite realistic, as has already 

been explained, since when the diameter of the vessel is large 

curvature is small compared to nozzle wall curvature and it can 

be neglected over a small arc of the vessel wall. A stereogram 

of the specimen is shown in Fig.6.1.1 and a section of it through 

the longitudinal plane is shown in Fig.6.1.2 with the exact 

dimensions. The specimen is constructed of austenitic stainless 

steel of.the EN58J type and its physical characteristics are 

obtained from the graphs plotted for Young's modulus E, thermal 

coefficient a, thermal conductivity k, and Poisson's ratio v. 

The specimen was machined down from an original block of 

- 4.5" x 8" x 8" to produce the result shown in Figs.6.1.1 and 

6.1.2 where the junction is part of the vessel. The nozzle is 

then electrically welded on the vessel and the weld is well 

away from the junction where stress concentrations are high. 

This procedure is more expensive than welding the nozzle 

straight on to the vessel wall but it is generally considered 

stronger. The nozzle is made of the same steel EN58J and there-

fore has the same physical characteristics. In theory the weld 

is a region of discontinuity but if its dimensions are not 

large and if it is made of the same material as the specimen 

its effect can be neglected. This is not strictly correct since 

welding processes may change the properties of the material and 

thus produce . cii5conillaifieS between the weld and the structure 

material which eventually influences the stress pattern. Never-

theless this aspect is not the object of the investigation. 

The specimen is shown in the picture of Fig.6.1.3. 
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6.2 The Design and Construction of the Rig  

The general mode of operation of the rig consists of a 

number of alternative heating and cooling cycles. There are two 

objectives: 

(a) To record the stresses on the outside of the specimen during 

heating and cooling. 

(b) To subject the specimen to a continuous thermal cycling 

for .fatigue investigations. 

When measurements of thermal stresses are recorded, the 

specimen is heated for 20 minutes by means of a cartridge heater 

inserted into the nozzle as described below, and subsequently 

cooled by air for another 24 minutes (see figure below). 

	 Heating by -p*A4 	  Cooling by air—_,p 

cartridge heater 

	

20 minutes---*< 	 24 minutes 

CYCLE FOR MEASURING STRESSES  

. For the fatigue experiment the cycle consists of 12 minutes 

heating (enough for the maximum stresses to develop) by means 

of the cartridge and 6 minutes cooling by water (see figure 

in next page). 



98 

Heating by Cooling by 

water cartridge heater 

12 minutes 	prot.----- 6 minutes ----to 

CYCLE FOR FATIGUE EXPERIMENT  

Details of the heating and cooling cycles are described 

in this section and Section 7.4. 

In order to record the thermal stresses on the outside 

surface of the specimen, the specimen is heated by means of a 

cartridge heater inserted within the nozzle as shown in Fig.6.1.2. 

The diameter of the heater is 5/8" and is mounted concentrically 

within the nozzle with a clearance of 0.187". The element con-

sists of fine gauge resistance wire which is wound around a 

refractory former and then inserted in a stainless steel sheath. 

The total length of the heater is 12" with a cold length at one 

end of 3/4" which allows the heater to be clamped in the hori-

zontal position. The maximum sheath temperature is 700°C and 

the maximum watt density 100 watts/sq.in (or 960 watts total). 

The inside surface of the nozzle/vessel is maintained at 450°F 

(233
o
C) by means of a thermocouple which is spot welded at one 

end of the nozzle as shown in Fig.6.1.2. An alternative way of 

positioning the thermocouple is to drill a hole through the 

nozzle or vessel and insert the thermocouple through the hole. 

This arrangement has basically two disadvantages: a hole would 

introduce stress concentration on the outside surface where the 

stress field is recorded and if-  r would be 4culi-  in  determining 

the influence of this stress concentration on the overall stress 

field. Second the thermocouple lead would be subjected to a 

considerable temperature gradient as it passed through the 

nozzle or vessel and thus could affect the controlling temperature. 
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In welding the thermocouple on the inside surface of the 

nozzle care is taken to place the tip of the thermocouple within 

a small groove and cover it with a thin layer of high thermal 

resistance solder. This ensures that the thermocouple is re-

cording the temperature of the surface without being affected by 

direct radiation from the cartridge heater. The voltage to the 

heater was reduced to 190 volts (maximum operating voltage 

220 volts) by means of an adjustable transformer. This reduces 

the sheath temperature of the heater to 1112oF (600
o
C) since 

the maximum sheath temperature of 1292°F (700
o
C) can.only be 

applied for clearance between 0.005" and 0.010".' The reduction 

of the voltage, and consequently of the watt density and sheath 

temperature, prevents the heater from burning ou-.11. The cartridge 

heater is shown in Fig.6.2.1(a). 

The heating-up and cooling-down processes of the specimens 

are controlled by a series of devices which are mounted on an 

instrument panel shown in the photograph of Fig.6.1.4. The 

instrument panel has dimensions 4'11" x 2' x 1'4" and is con-

structed of wood with metal legs. The sides are protected with 

expanding wire mesh. The following switches, fuse holders and 

instruments are mounted on the panel: 

1. Main power switch (13A rating) and "orange" power indicating 

light. 

2. Relay (AC 220/250 volts, 10A rating) with eleven contact 

ploints. 

3. A cycle counter. 

4. Electronic timer and timer switch (13A). 

5. High temperature controller and switch (13A). 

6. Low temperature controller and switch (13A). 



100 

7. Reset switch to isolate the high temperature controller 

from the lower temperature controller. 

8. Cooling cycle switch (13A) and "green" cooling indicating 

light. 

9. Heating cycle switch (13A) and "orange" indicating light. 

On the panel the following fuses are mounted: 

(a) low temperature controller fuse (5A) 

(b) timer fuse (5A) 

(c) high temperature controller fuse (15A) 

(d) water valve fuse (5A) 

(e) compressed air valve fuse (5A). 

The operational procedures for the heating and cooling 

process are as follows: initially the high temperature con-

troller is set at the desired maximum temperature at which the 

inside surface of the nozzle/vessel is to be maintained. This 

is 450°F (233°C) for the present experiments. The temperature 

is sensed by the Nickel Chromium/Nickel Aluminium thermocouple 

which is thermally insulated and it is connected to the high 

-temperature controller. The controller is a thermic solid 

state one with a temperature range 0°C to. 450°C (842°F). It is 

provided with a temperature deviation meter calibrated in 

degrees centigrade. It is also fitted with an over or under 

temperature alarm output (Fig.6.2.1 (e)) which is adjustable 

within the range of + 15°C from set point. The alarm circuit 

provides a changeover output contact rated at 5A and 240 V AC. 

The high temperature controller is shown in Fig.6.2.1(e). 

The cartridge heater is switched on through the high 

temperature controller and by means of the thermocouple the 

temperature of the inside surface of the nozzle/vessel is 

maintained at 450°F (233°C) for 20 minutes by means of the 
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timer (Fig.6.2.1(c)). The timer provides two time ranges of 

1 to 120 seconds and 2 to 30 minutes by changing the range 

sliding knob from position x1 to x20. At the end of the 

specified time interval the timer, through the relay, switches 

off the high temperature controller and consequently the heating 

cartridge and at the same time it turns on the low temperature 

controller and the cooling system. The low temperature con-

troller is similar to the high temperature controller. It has 

a range from 0
o
C to 150°C (302°F). The controller is used to 

control the cooling temperature of the specimen. This is done 

with the same thermocouple which senses the high temperature. 

The low temperature controller is connected to the high 

temperature controller by Nickel Chromium/Nickel Aluminium com-

pensation leads. The connections are fitted with electronic 

cold junction compensation to reduce the thermoelectric effects 

in the thermocouple circuit. There are two cooling systems. 

Compressed air is used to cool the specimen when strain gauge 

readings are taken and water, which is more effective, is used 

for the fatigue experiment. The compressed air -is switched on 

at the end of the heating-up period by the timer. This is done 

by a two way spool valve which is connected to the relay. The 

water cooling circuit operates by means of a pressure operated 

solenoid valve shown in Fig.6.2.1(b). A series of pipes shown 

in the picture of Fig.6.1.3 cool the nozzle and block. The 

cooling temperature is set at 60°F (15.6°C) which is also the 

valike used for the theoretical analysis. The complete electrical 

circuit diagram is shown in Fig.6.2.2. 



102 

6.3 Strain Gauge Measurements of Thermal Stresses  

As the temperature on the outside of the nozzle reaches an 

average of 380°F (193.3°C), special high thermal resistance 

strain gauges are used to record changes in strain. The gauges 

used are the 45
o 

degree rosettes manufactured by the Tokyo 

Sokki Ltd. The dimensions of the rosette is 7.5 x 7.5mm with 

a gauge resistance of 120 + 0.5 SI. The rosette is a polyamide 

backing foil and it has a special grid configuration with good 

performance, especially in sensitivity, and creep characteristics 

at high temperature. The gauges are specially constructed for 

temperature up to 572°F (300°C) and for locations of stress con-

centration. The maximum admissible current is 25mA.and they 

have a fatigue li±e of 10
6 

for a strain level of 1500 x 10
-6
. 

The strain gauge rosettes are bonded on the metal using a 

special adhesive made by the same manufacturer. The adhesive, 

NP-50, is a polyester with two components. The mixing ratio of . 

the components is 2 ft,  4 in weight. The surface of the metal 

is first smoothed with emery cloth and subsequently cleaned with 

acetone. Adhesive is applied to the surface of the metal and 

the back of the rosette foil and the rosette is then placed on 

the metal. A very fine line is grooved along the longitudinal • 

and transverse planes so that rosettes are bonded with gauge 

number 1 in line with the planes. The accurate positioning of 

the gauges is very important since even small angles will affect 

the results. In order to be able to bond the rosettes with 

accuracy the rosettes are placed on a piece of cellotape and 

subsequently placed on the metal and held in position for one 

hour. • The maximum operating temperature for the adhesive is 

the same as the maximum temperature for the gauges of 572
o
F 

(300°C). The adhesive does not require any curing and has a 
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very good resistance to humidity. When the rosette is placed 

on the metal, care must be taken to avoid any bubbles trapped 

underneath the foil. Existing air bubbles are forced to escape 

by pressing the rosette onto the metal working gradually from 

the centre towards the edges taking care not to destroy the 

gauges. Bubbles can produce false readings since the gauge is 

not touching the surface of the metal, apart from the destructive 

effect of the bubble expansion on heating. 

Fifteen rosettes are placed on the specimen (Figs.6.3.1(a) 

and (b)). Eleven of them are placed in the direction of the 

longitudinal plane. Of these eleven three are on the vessel, 

one on the junction and seven on the nozzle. The other four are 

positioned in the transverse plane of the vessel as shown in 

the figure. Due to symmetry it is expected that the gauges in 

the transverse plane will indicate the same amounts of strain 

as the corresponding ones in the longitudinal plane. Therefore 

no gauges are placed in the transverse plane along the nozzle. 

The centre of each rosette, that is the point where the 

centre line of each of its three gauges meet which is near the 

top right hand corner of the rectangular foil, is placed so 

that it corresponds to the following nodes of the finite element 

mesh of Fig.5.3.1. 
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Rosette 

$ 

Gauge Node 

-- 

1 1,2,3 75 (Nozzle) 

2 4,5,6 67 (Nozzle) 

3 7,8,9 59 (Nozzle) 

4 10,11,12 51 (Nozzle) 

5 13,14,15 43 (Nozzle) 

6 16,17,18 35 (Nozzle) 

7 19,20,21 27 (Nozzle) 

8 22,23,24 23 (Junction) 

9 25,26,27 19 (Vessel) 

10 28,29,30 12 (Vessel) 

11 31,32,33 5 (Vessel) 
r 

For each of the forty five gauges a pair of connection 

terminals is used as junction point to connect the gauges to 

the instrumentation leads. This prevents the gauges being 

destroyed in the case of an accidental pull. An intermediate 

junction box is also used for the instrumentation leads before 

they are connected to the strain recorder. The intermediate 

box is held rigidly in position as shown in the photograph of 

Fig.6.1.3(b) to ensure that any pulling of the leads will not 

damage the gauges. 

The strains are recorded using a multi-channel automatic 

strain recorder (Data-Log). The basic bridge-circuit is a 

direct current Whetstone bridge circuit with the electric 

potential drawn from a constant voltage electronic power pack. 

A digital voltmeter reads the out-of-balance voltage. Fifty 

bridges are provided in the recorder unit, each with its own 
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balancing unit, thus giving 50 available channels. A commutator 

unit selects the-channels, either repeatedly or in turn, and 

the voltage reading is displaced each time on the digital 

voltmeter and printed on to paper tape through a fast printer 

for permanent record. The maximum selection speed of the unit 

is 10 channels per second. It is thus possible for a set of 

50 readings to'be recorded within 5 seconds from the moment of 

trigger. A slower speed of 4 channels per second was used 

throughout this series of experiments giving a time of 11.2 

seconds for recording all 45 gauges. 

The bridges in the recorder are separated from each other 

and each active gauge must be provided with a corresponding 

dummy gauge. However since thermal stresses are recorded and 

the gauges are temperature self compensating up to 356oF (180
o
C) 

the dummy gauges are replaced by 0.5 watts metal oxide resistors 

of the same resistance (120 0) as the active gauges. Attention 

is paid when selecting the resistors as an alternative to dummy 

gauges to ensure that their resistance does not change very 

much with temperature. 

Voltage readings are taken every minute during the heating-

up period for twenty minutes; this covers the necessary time 

for the maximum stresses to develop. Since transient heating 

is not a static but a dynamic process the time needed for the 

strain recorder to scan all 45 gauges has to be taken into 

account when comparison with theoretical results is made. It 

takes 11.2 seconds to record and print voltage changes for all 

45 gauges at a scanning speed of 4 channels per second. Although 

the Data-Log maximum recording speed is 10 channels per second 

this cannot be used as the automatic printer can only record 

accurately at a maximum speed of 4 channels per second. 
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Therefore readings for every minute are actually recorded from 

approximately 6 seconds before the minute to 6 seconds after 

the minute. At the end of the twentieth minute the compressed 

air is switched on and cooling measurements are obtained again 

for every minute for 25 minutes of cooling. 

A total of fourteen sets of .readings are obtained under 

identical heating and cooling conditions. It is observed that 

a maximum of +0.27% variation in voltage occurs between different 

sets of readings, which in turn produces a variation of direct 

and principal strains and stresses of +0.27%. The maximum 

variation occurs for strain gauges 1-21 along the nozzle where 

the temperature on the outside averages 380°F (193.3°C). At 

the beginning of the thirteenth test it was four...a that gauges 

IZ, 18 and 19 were not working due to failure of the adhesive 

material. Careful examination indicated that the adhesiVe was 

cracked under the rosette foil and there was no proper contact 

between the gauges and the metal. 

Special care is taken for the instrumentation leads to be 

-kept away from the hot metal to prevent melting. The experi-

mental results and comparisons with the theoretical analysis 

are presented and discussed in the next section. 

6.4 Experimental Results and Comparisons with Theoretical  

Analysis  

_During heating-up measurements of stresses the strain 

gauges would under normal circumstances record changes in volt-

age due to strains set up in the structure plus a voltage 

change due to the expansion of each gauge. The apparent increase 

of the voltage due to the thermal expansion of the gauge is 

avoided by using temperature-compensating gauges. The gauge 
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exhibits a negative apparent strain due to heating (see 

Appendix 6) up to a certain temperature and therefore the 

indicated change in voltage is exclusively the result of the 

stresses occurring in the material. However the strain gauges 

used are temperature compensating only up to 180°C (356°F) and 

therefore any strains recorded at points where the temperature 

is higher than 180°C are apparent strains. 

In the experiments conducted only the outside surface of 

the nozzle at the time interval of 12 minutes is at temperatures 

higher than 180°C. Adjustments of the values of the voltage, 

and consequently strain and stresses, are performed for the 

strain gauges of the following rosettes at the temperatures 

indicated: 

Rosette Gauges 
Temperature o

C 
Apparent 
Strain 

■ 

1 (Nozzle) 1,2,3 198.0 40 x 10
-6 

2 (Nozzle) 4,5,6 197.9 33 x 10
-6 

3 (Nozzle) 7,8,9 197.9 33 x 10
-6 

4 (Nozzle) 10,11,12 197.8 28 x 10
-6 

5 (Nozzle) 13,14,15 189.4 10 x 10
-6  

6 (Nozzle) 16,17,18 188.4 7 x 10
-6 

7 (Nozzle) 19,20,21 186.3 5 x 10
-6 

The detail calculations are shown in Appendix 6. The value 

of the voltage indicated is reduced by the determined value of 

the observed strain which will give an adjusted value of strain, 

and therefore stress, free from the apparent strain due to the 

expansion of the gauge. 
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Measurements are obtained during the heating-up process for 

every one minute for all the fifteen rosettes (forty five gauges) 

up to twenty minutes. Cooling-down measurements are then re-

corded for another 24 minutes for every minute The Data-Log 

records changes in voltage which are printed on a tape by the 

printer and are identified by the number of the gauge. The 

observed values of the voltage are then converted into strain 

using the relationship 

1 	AV 
indicated(in/in) = 	x — 

250(F) 	V 

where : F = the gauge factor 

(6.4.1) 

AV = voltage indicated in mV (lo-3  volts) 

V = voltage across the bridge in volts (this is set 

to 6 volts) 

The calculated strain from the above relationship is 

directly expressed in in/in and therefore is dimensionless. When 

it is used in relationships to calculate stresses, the units of 

stresses obtained will thus be unaffected. The above relationship 

is derived by considering the bridge circuits of the Data-Log 

strain recorder (R.A2-8). 

The voltage readings are converted into strain and then 

stress by using Equation 6.4.1 and computer program EXPER2. The 

mathematical analysis of the equations and the program details 

are given in Appendix 6. 

Basically the program performs the following calculations 

for each time interval of one minute during heating-up and 

cooling-down processes. 

1. Converts voltage readings into strain for each gauge by 

using Equation (6.4.1). 
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2. Determines the three direct strains for each of' the three 

gauges of each rosette and sUbsequently calculates the 

three direct stresses. 

3. It then calculates the principal strains for each rosette, 

• the principal stresses and the angle of the principal 

strain
I 

with respect to the longitudinal plane. 

4. It then prints all the strain and stress results in a com- 

prehenisve form as shown in Table 6.4.1(a) and 6.4.1(b). 

The results obtained by the program are the indicated or 

observed results. The corrections for the apparent strains at 

time = 12 minutes during heating up for the rosettes along the 

nozzle are made separately. 

First experimental results of stresses are plotted for the 

time interval T = 12 minutes when the stresses are maximum. 

These are presented in the following graphs and tables: 

Fig.6.4.1 and Table 6.4.2. Stress a  . 

It is observed that for the vessel and junction gauges the 

observed values of stress are also real values. This is because 

the temperature at the corresponding positions of the rosettes 

is below 180
o
C and the gauges are self-compensating. Along the 

nozzle the observed values are higher due to the apparent 

strains for temperatures over 180°C as has already been explained. 

The difference between observed and real values of stresses in-

creases along the nozzle as the apparent strain increases due to 

higher temperatures away from the junction. 

The theoretical graph is shown by the continuous line. 

Generally there is. good agreement at the vessel and the part of 

the nozzle from nodes 35 to 75 with the experimental values 

higher than the theoretical by an average of 16%. The possible 

factors which account for the difference between the experimental 



110 

results are analysed at the end of this section. In the figure 

there are two experimental values that deviate appreciably from 

theory, at gauges (22) and (19). Gauge (22) is on the junction 

and gauge (19) near the junction. Stress discontinuities at 

this region produce this high amount of difference in value 

between theory and experiment and it can be concluded that pre-

diction or measurement of stresses at or near the junction is 

subject to a considerable degree of uncertainty. Nevertheless 

the average between theoretical and experimental results at that 

region can be considered as a realistic prediction. 

Fig.6.4.2 and Table 6.4.2. Stress az  

Generally the situation for the a
z 
stress is similar to 

the previous figure with the theoretical values again higher 

than the experimental. The observed values due to apparent 

strain are also higher along the nozzle where the temperature on 

the outside surface is higher than 180°C. There are two positions 

along the nozzle (gauges 18 and 15) where the theoretical pre-

dictions are higher than the experimental. 

Fig.6.4.3 and Table 6.4.3. MAXIMUM PRINCIPAL STRESS a
maxp 

The experimental readings for the maximum principal stress 

at -time T = 12 minutes during heating-up are calculated by 

program EXPER2 from the direct stresses at each rosette. The 

values presented are the real principal stresses after the 

• corrections for apparent strains. There is again generally good 

agreement with theory. Experimental values are higher than 

theoretical at the vessel and junction but for most of the 

rosettes along the nozzle theoretical values are higher than 

experimental with the exception of rosettes (2) and(1 ). 
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Fig.6.4.4 and Table 6.4.3. MAXIMUM SHEAR STRESS T max(12) 

Maximum shear stress values are calculated using the values 

of principal stresses obtained by program EXPER2 which analyses 

the experimental readings of the direct stresses. Experimental 

values are again in reasonable agreement with theory within 

± 12% to ± 16%, with maximum differences again near the junction. 

Figs.6.4.5, 6.4.6, 6.4.7. Table 6.4.4. STRESSES AT THE VESSEL  

In the figures above the stress a , the stress 	and the 

maximum principal stress cr 
axp 

 are plotted for the vessel for 
m 

every two minutes during heating-up and cooling down. Both 

theoretical and experimental results are shown for node 12 on 

the vessel where strain gauge rosette number 10 is positioned. 

The strain gauge readings are the real ones since the temperature 

on the outside of the vessel is below 180°C and therefore 

there are no apparent strains for the gauges placed on the block. 

It can be observed that experimental readings are again higher 

than the theoretical values. Maximum experimental stresses 

occur at time T = 12 minutes during the heating-up and after 

40 minutes from the beginning of the cooling-down process. 

Theoretically the maximum stresses occur at time T = 11 minutes 

and therefore there is a difference of one minute between theory 

and experiment. Variation of the actual value of k from that 

listed (Ref.R.5-1) for this material could account for this. 

Heat loss at the outside surface of the vessel and nozzle can 

be higher than the theoretically estimated value and this also 

delays the development of the maximum stresses in the structure. 

Experimental stresses developed during cooling-down are 

relatively higher than the equivalent stresses during heating-up. 

Since cooling-down is performed by blowing a compressed air 

stream of 55 F through the nozzle and around the specimen; no 
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theoretical predictions of stresses are made for the cooling-

down process. In real situations, pressure vessels are usually 

cooled by natural convection which is a long process and there-

fore the stresses developed are generally lower than the ones 

set up during the heating phase. 

Figs.6.4.8, 6.4.9, 6.4.10, Table 6.4.5. STRESSES AT THE NOZZLE  

Stresses at node 43 (rosette number 5) on the nozzle are 

shown in the figures and values are recorded in Table 6.4.5. 

Tensile stresses for this.oarticular point on the nozzle increase 

rapidly with time during the heating-up process to reach a 

maximum of 5541 lb/in2  for ax'  1890 lb/in2  for a and 5545 lb/in2  

for a
maxp 

after 12 minutes. These are strain gauge readings of 

voltage converted to stress and again they represent real values. 

At time 12 minutes the observed values have to be adjusted for 

the effect of apparent strain as the temperature at that time 

is over 180
o
C. The observed values are indicated on the graphs. 

Theoretical values are lower than the experimentally recorded 

-ones by an average of 17% and theoretically the maximum stresses 

_develop one minute earlier at 11 minutes. Stresses during 

cooling-down are compressive for the nozzle reaching a maximum 

of -6240 lb/in2  for ax, -2086 lb/in2  for az  and -6377 lb/in2  

for a
ma
xp, after 10 minutes of cooling. 

Account of errors involved in the theoretical and experimental  

analysis  

Assumptions made for the theoretical analysis and possible 

errors involved in the experiments both influence the final 

results. An attempt is made here to discuss all the possible 

factors which the author can identify as important, without 

implying that these errors are the only ones present. 
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1. Finite element analysis divides the structure into small 

parts and applies the theory of elastic analysis to each of 

them in order to find the collective result of the entire 

structure. In practice the structure consists of a much 

greater number of elementary particles which are also 

smaller than the theoretical triangular elements with a 

behaviour similar to that of the theoretical model but not 

identical. 

2. Convergence of computational results is achieved to a very 

small tolerance but exact values would require a very large 

number of iterations which is impractical. 

3. Coefficient of thermal expansion (a), modulus of elasticity 

(E), coefficient of thermal conduction (k) , Poisson's 

ratio (v) are all temperature dependent parameters. In 

practice their values change continuously during the heating-

up process at all points within the metal. Theoretically 

an average value of each parameter for the entire structure 

is used at the temperature of each specific time interval. 

This is considerably more accurate than using an average 

value for each parameter for the entire structure but for 

an average temperature for the heating-up process. 

4. The temperature of the inside surface of the nozzle is 

recorded by the thermocouple which is set at 450°F. In 

theory the above temperature is assumed to be acquired at 

time T = 0 but in experiment there is a time lapse of 

about one minute until the temperature on the inside 

reaches the value of 450°F. During this time a heat transfer 

rate is taking place which is not accounted for in theory. 

5. Apparent strains indicated by the strain gauges are estimated 

as has been explained in an earlier section. Nevertheless 
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there are additional apparent strains due to temperature 

rise in the instrumentation leads. Every precaution is 

taken to keep the leads away from the hot metal but there is 

a certain amount of heat which is transferred to the leads 

through the gauges. If the gauges were not self temperature 

compensating and dummy gauges were used then the resistance 

changes in the leads will cancel each other. However with 

the self temperature compensated gauges only one pair of 

lead wires is required and if they are connected in one leg 

of the bridge variations in their resistance will be 

indicated affecting the results. The problem is solved by 

placing one lead in one bridge leg and the other lead in the 

adjacent leg as shown below. 

LEADS AT VARYING TEMPERATURE 

   

   

SELF 
TEMPERATURE 
COMPENSATED 
GAUGE 

  

( EMF ) 

  

   

   

Nevertheless there is still a small percentage of error in- 

volved due to small difference in length and temperatures 

of the leads. 

6. Gauge voltage readings and their recording for all 45 gauges 

requires a total of approximately 12 seconds but when com- 

parison to the theoretical results is made it is assumed 
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that experimental readings are instantaneous. Therefore 

stresses for the first gauge recording (gauge NO-1 ) and 

the last gauge recording (gauge No-45) may vary to a maximum 

of 4- 2.8% from the assumed instantaneous reading at any 

particular time interval given in the graphs. The above 

percentage is estimated by determining stress changes 

between successive readings of one minute and subsequently 

allowing for the 12 seconds of recording time. 

7. Finally changes in the resistance of resistors used for the 

half bridge circuit introduce small amounts of error. 

During the experimental measurements care is taken not to 

,produce any currents of air near the specimen during the heating 

up process as heat losses from the outside surfaco of the 

specimen are assumed to take place only by natural convection- 
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7. BASIC CONSIDERATIONS OF 
THERMAL FATIGUE EXPERIENCED 
BY VESSEL AND NOZZLE 

7.1 Thermal Fatigue and Fracture Mechanics  

Thermal fatigue of vessels and nozzles is a direct result 

of the cyclic thermal stresses applied during heating-up and 

cooling-down of the pressure vessel. Safety of a plant is 

therefore often connected directly to the endurance of the 

pressure vessel and its components under continuous cyclic 

stress. Thermal cyclic stresses, unlike other stresses, imply 

the presence of a liquid or gas which apart from causing thermal 

stresses it often acts as a corrosive agent. Corrosion can 

accelerate the propagation of cracks with all the associate 

consequences. 

The problem of thermal fatigue in brittle and ductile 

materials has been investigated extensively and research is 

being carried out to produce solutions for unsolved questions. 

In this section no account of such works is given since this 

is not the object of the present project. However reference 

to certain thermal fatigue investigations directly connected 

to pressure vessels is given below. 

The problem of thermal fatigue in structures is now 

associated with fracture mechanics as it is by crack initiation 

and propagation that failure eventually occurs. Basically the 

study of fracture can be divided into two main categories. 

(a) Linear elastic fracture mechanics. 

(b) Elastic-plastic fracture mechanics. 



117 

Additionally fracture mechanics must deal separately with 

brittle and ductile materials. In the case of thermal fatigue 

of pressure vessels ductile materials are used and considerations 

of crack growth are associated with the fracture mechanics of 

ductile materials. However brittle fracture can also occur but 

only under the influence of high internal pressure or excessive 

external loads. Low-cycle fatigue is associated with very high 

temperatures, usually above 1200°k-  (650°C) where plastic flow 

at the tip of the crack is mainly responsible for propagation. 

A very comprehensive account of low-cycle fatigue is given by 

Manson (R.7-1). Some fatigue studies of pressure vessel and 

nozzles are given in references (R.7-2,7-3 and 7-4). 

7.2 Mechanics of Fracture and Crack Propagation  

A load operating on a structure produces normal and shear 

components of stress. Failure occurs when the sum of external 

and any internal stresses reaches a critical value. Elastic 

failure (yielding) occurs when the maximum shear stress or shear 

strain energy of distortion reaches a critical value. Since the 

shear stresses are related to the difference between the 

principal components of stress, a larger principal stress 

exists when yielding begins under triaxial tension or compression 

than under uniaxial tension or compression. Whenever a dis-

continuity exists in a structure stress concentrations will 

occur, near it and local yielding can occur in the vicinity of 

this discontinuity. Regions away from the discontinuity will 

remain elastic. The structure is then in an elastic-plastic 

state of deformation. 

The concentration of elastic stress near the discontinuity 

is expressed analytically in terms of an elastic stress 
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a local 

  

K = 
a nominal (7.2.1) 

 

which is the ratio of the local stress near the discontinuity 

to the nominal stress acting across the gross cross section. 

The elastic stress distribution depends on the shape of dis-

continuity. Around a discontinuity when a load is increased 

to a certain amount (which is usually expressed as a fraction 

of the load that would cause yield in the absence of the dis-

continuity) a plastic zone appears which will spread further as 

the load increases. The rest of the structure will behave 

elastically until the plastic deformation becomes large and 

the plastic zones spread over sufficiently large distances to 

cause a significant distortion. 

Fracture is an inhomogeneous form of deformation which can 

be viewed on different levels. On an atomistic level it occurs 

by the breaking of atomic bonds, either perpendicular to a 

plane (cleavage) or across a plane (shear). On a microscopic 

level cleavage occurs by the formation and propagation of micro-

cracks and the separation of grains along cleavage planes. 

Shear fracture (rupture) usually occurs by the formation of 

voids by intense shear. On a macroscopic level cleavage occurs 

when a cleavage crack spreads essentially perpendicular to the 

axis of maximum tensile stress. Shear fracture occurs when a 

fibrous crack advances essentially perpendicular to the axis 

of maximum tensile stress (normal rupture) or along a plane of 

maximum shear stress (shear rupture). Fracture is said to be 

transgranular when microcrack propagation and void coalescence 

occur through the grains and intergranular when they occur along 

grain boundaries. More than one mode of crack propagation can 
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contribute to the fracture of a structure. In general, cleavage 

fracture is favoured by low temperatures. 

In order to analyse the fracture process under various 

types of stress systems it is necessary to establish a co-

ordinate system with respect to both the fracture plane, the 

direction of crack propagation and the applied stress system. 

At the present time there is no standard type of notation and 

symbols are explained in the text as they occur. The system is 

shown in Fig.7.2.1(a). The crack whose length = a, height = 2h, 

and tip radius = p lies in the xz plane of a plate of thickness 

t and width w. The propagation of the crack is treated as a 

two-dimensional process since this introduces a relatively 

small error in computation and considerably simplifies the 

treatment of the problem. In practice a crack will also pro-

pagate in one plane as long as that plane is the one on which 

maximum principal stresses occur. The direction of the crack 

propagation is along the x axis and x = 0 at the centre of the 

crack. The leading edge of the crack is parallel to the z axis. 

At the centre of the plate z = 0 and equals + t/2 at the outer 

surfaces of the plate; (r,O) are the co-ordinates of a point in 

the xy plane near the crack tip. Three distinct modes of 

separation at the crack tip can occur, as shown in Fig.7.2.1(b). 

Mode.1. The tensile component of stress is applied in the y 

direction, normal to the faces of the crack, either under plane 

strain (thick plate, t large) or plane-stress (thin plate, t 

small) conditions. 

Mode 2. The shear component of stress is applied normal to the 

leading edge of the crack either under plane-strain or plane-

stress conditions. 
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Mode 3. The shear component of stress is applied parallel to 

the leading edge of the crack (antiplane strain). 

7.2.1 Crack propagation  

Over a wide range, the growth of fatigue cracks in both 

'fully plastic and elastic-plastic situations is by a continuum 

controlled process. Direct observations at high applied strain 

levels indicates a mechanism which depends on the crack tip low 

field and results fractographically in striation formation. 

The growth of a fatigue crack from its nucleation to final un-

stable propagation involves amounts of crack extension per 

cycle which vary from the atomic to macroscopic scale. 

In general fatigue failure consists of at least three 

distinct stages. These involve the initiation or production of 

a microcrack, steady crack growth at a measurable rate and 

catastrophic fracture in one cycle. In a simple polished 

specimen for instance the initiation time occupies most of the 

life to fracture. However in most welded structures crack-like 

defects will be present before the structure enters service or, 

failing this, high stress concentration regions will probably 

provide cracks, running into low stress regions, soon after 

service loading commences. 

Griffith (R.7-5) and Irwin.(R.7-6) were the first to in-

vestigate the crack propagation in materials. They consider the 

necessary conditions for the propagation of the elliptical, 

elastic crack and the stress concentration around an elastic 

crack. Irwin noticed that the local stresses near a flaw depend 

on the product of the nominal stress a and the square root of 

the flaw depth 2c and that they are proportional to a term K 

which is called the stress intensity factor and has dimensions 

stress V'lengthj. For an infinitely sharp elastic crack, in an 
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infinitely wide plate, the stress intensity factor K is defined 

as 

K = a /71E- 

and the local stresses near the crack can also be expressed in 

terms of-the stress intensity factor. 

Since the introduction of the stress intensity factor the 

approach to crack growth has been expressed in the form of the 

law 

da 
= M (AK)n  dN 

(7.2.1.1) 

where M and n are material constants. 

The exponent n was originally taken (R.7-7) to be equal to 

four but in recent work (R.7-8) it has been shown to vary widely, 

although this cou1:1 be due to the limited range of data used. 

Coffin (R.7-9) has shown that plastic strain range considerations 

could produce something much closer to a universal criterion. 

Propagation laws have been examined and presented in a paper by 

Paris and Erdogan (R.7-7) and a comprehensive work on fracture 

- is given by Liebowitz (R.7-10). In equation above a is the 

-amount of crack growth and N the number of cycles. Therefore 
la is 
dN 

the fatigue crack growth per cycle and AK is the stress intensity range. 

There is a threshold level AT
c 
below which growth does not 

occur. For most materials the threshold range of stress intensity 

factor is determined experimentally for the various modes of 

failures described in Section 7.2. It is found that aggressive 

environments, especially corrosive agents, tend to decrease the 

stress intensity threshold range and hence encourage crack growth 

at lower values of the stress intensity factor K. 

The range liK is in fact the alternating stress intensity, 

given by the difference between the maximum and minimum values 

for each cycle. Therefore liK = K
max 

- 
Kmin. 

 This equation has 
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been found to represent the behaviour of a large number of 

materials (R.7-7), but it is now recognised that it is only valid 

for the intermediate range of growth rates (10 5- 10 3  mm/cycle). 

The complete relationship between stress intensity and growth 

rate (R.7-11) is shown schematically in Fig.7.2.2, where it can 

be seen that Eqn.7.2.1.1 does not hold at very low values of AK, 

where K approaches the threshold value Kc  (Region A), nor for 

very high.  values which approach the material's fracture toughness 

K
IC 

(region C). For the mid-range of growth rates (region B), 

values of the exponent 'n' , i.e. the slope of this "crack 

growth-rate" curve, have been found to lie mainly in the range 2 

to 4. These values are consistent with most analytical theories 

of fatigue (R.7-12 to R.7-14) which are modelled on a mechanism 

involving one growth increment per cycle. This pertains to the 

generally accepted metallurgical theories which involve the pro-

duction of ductile striations, by alternate blunting and re-

sharpening of the crack tip, and where growth is controlled by 

the local crack tip alternating plastic deformation. In such 

situations Eqn.(7.2.1.1) can be used with confidence to predict 

growth rates in service components and to provide the basis for 

designs against failure by fatigue. 

However, there is recent evidence that, in medium and high 

strength steels, much higher values of the exponent n (up to 10) 

can be obtained for a particular material or heat-treated 

condition (R.7-15 to R.7-17). 

7.3 A Theoretical Investigation of Crack Growth for Case C  

A theoretical analysis is made for Case C in order to deter-

mine.the stress intensity factor K under the stress loads during 

heating-up of the structure. This is done for a region of high 
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stress concentration where crack propagation is most likely to 

occur under cyclic thermal loading. The boundary collocation 

method is used for the determination of K. The method is used 

as an alternative to the finite element analysis and it has the 

advantage.of being able to calculate the stress intensity factor 

at any point including the tip of the crack. 

No attempt is made to determine the constants M and n in 

Eqn.(7.2.1.1) since this requires experimental work directly con-

cerned with the material used. However from the designer's 

point of view the determination of K is very important in order 

to predict if an existing crack will propagate and, according to 

the magnitude of K, if this crack propagation will be such as to 

cause extensive damage to the structure. 

7.3.1 Regions of high stress concentration for Case C  

Cracks already existing in the structure will propagate 

under the condition that the value of the stress intensity factor 

K is above the threshold value K
c
. During heating-up the maximum 

value of the factor K ax 
m

, which will be attained when the maximum 

thermal stresses are reached, has to be determined in order to 

find out if it is sufficient to cause crack growth. 

Initially it is necessary to determine the regions of the 

section where the maximum principal stresses develop. Cracks 

propagate under Mode I perpendicular to the lines of maximum 

principal stress, the rate of propagation being determined by K. 

Maximum principal stresses have been determined for Case C by 

program STREN3 and in Fig.7.3.1.1 the lines of maximum principal 

stresses are plotted for the section of Case C. 

It can be seen that the area surrounded by the square is a 

region of stress concentration. The area is defined by the 

square whose corners are the nodes 285, 283, 200, 180 of the mesh 
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of Fig.5.3.1 for Case C. It is assumed that a small crack, 

similar to the ones present in the material due to machining 

and welding, exists at node 284. The crack length is taken as 

a = 0.04in which is a typical magnitude of a crack produced due 

to fabrication of the structure. During heating-up the nozzle 

expands and bending at the junction will cause growth of the 

crack assuming of course that the stress intensity factor K 

reaches the required value. In fact growth will occur for that 

period of heating-up during which the thermal stresses developed 

are large enough to produce a stress intensity factor K greater 

than K
c
. On the other hand during cooling-down existing cracks 

could propagate from nodes 21 or 25 towards the interior of the 

structure. 

7.3.2 Determination of stress intensity factor K by boundary 

collocation theory  

If the state of stress in a two-dimensional solid is con-

sidered, it is found (R.7-18) that it is specified by three 

stress components ax,  ay, T
xy 

 which satisfy the equilibrium 

equations 

as 	aT 

3 

aT Xy 
	 -I- DX = 0 	 (7.3.2.1) axy 

at 	as 
xY + 	+ Y = 0 	 (7.3.2.2) x 	a 	

fo 
Y 	I 

where X and Y are the components of the body force per unit mass. 

If X and Y are zero then the expressions 

	

a2x 	Lx2 	a2x  
G - 	 
x 3y 	T — 

xy 	axay' ay (7.3.2.3) 

satisfy the equilibrium equations for an arbitrary function x. 

If the body is elastic then the components of stress satisfy the 

compatibility relations of the form 
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;2 	B2 	
B27. 

-.7"2" 	V(a + a )1+ -2- 	-via  -1- 	) 2 	x'
'ay 	x 	x y 	a x 	y 	x 	y 	Bxy 

(7.3.2.4) 

Substituting Eqn.(7.3.2.3) into Eqn.(7.3.2.4) it is seen that x 

mist satisfy the fourth-order linear partial differential equation 

2)( 4. 2  Ox 	D2x  = 0 	
(7.3.2.5) 

xt+ 	Bx2D/72 	ay4 

which can be written as 

V 4X = 0 	 (7.3.2.6) 

which is the two-dimensional biharmonic equation and x in the 

stress function. 

In Fig.7.3.2..1 the area where the crack is introduced is 

Shown. The method cf analysis consists in finding a stress 

icnction X  that satisfies the biharmonic equation 74x = 0 and 

also the boundary conditions at a finite number of stations 

along the boundary BC and .AD. The biharmonic equation and the 

boundary conditions along the crack are satisfied by the 'Williams 

stress function (R.7-19), therefore 

f 
1(1.,t) = ,-- 	 n- (,1) la2n-1 r

n+(li) , _ 	(11 - 2) 0  

n-----.1 72... 

2n + 1 
	 cos (n + )() + (-1)11/...cos(111)0 

' 1 1: 

+ cos (n+1) 
	

(7.3.2.7) 

the remaining boundary conditions to be satisfied are as follows 

((Derivations in Appendix 7). 

Boundary BC: 

12M a3  a2y  ay2 	.614 12 	a2  
X  - —75-v (T. 	2 	-I-  7-  (t.+ aY -T)  

2 	a2 
-1- a — + ay +, 2 
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where the first term is the moment effect and the second term is 

the stress effect. M is the moment of the sum of the components 

of 6x along boundaries BC and AD. 

Also along BC 

- ax 
ax  

Boundary CD: 

X = M/V 
aX— = 0 (Moment effect) 

a V2  n  x 	=.-1 
X 2 ay = OF,Y (x-stress effect) 

0   

The total effect will then be 

m3V2 

X - V 2 

aX = 0  
ax 

Boundary AB: The moment effect is 

X = 0 and 	= 0, and the stress effect is 
3
h  - 	an 
Y 

x = 0, 	= 0 
3y 

therefore the total effect will be: 

aX 
X.= 0, y = 0. 

From here the procedure consists of solving 2m simultaneous 

algebraic equations corresponding to the value of the stress 

function X and 
By  
—X  at m selected boundary stations. In this way 

the values for the first 2m coefficients in the Williams stress 

function are obtained, the remaining terms are neglected. Only 

the value of the first coefficient d
1 
is needed for the present 

purpose because this is directly proportional to the stress-

intensity factor K. According to Irwin (R.7-20), the stress com-

ponent a in the immediate vicinity of the crack tip (as r 

approaches zero) is given by 

3 
a - 

K 
  cos 

e 	0 	0 
T - (1 + sin 	sin 	) 

2 Y 	17.171-1. 
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while in terms of the Williams stress function, as r approaches 

zero 
- dl 
	0 	0 -I 	28) 

a = 	cos -2  (1 + sin sin 

and similarly for the other stress components, hence 

K = - VYTI7  d1 
	 (7.3.2.8) 

Once the value of d1 has been determined for values of r 

near the tip of the crack (where 8 = 0) the stress intensity 

factor at-the tip of the crack can be calculated. Now Eqn.7.3.2.7 

by neglecting coefficients of higher order than 1 we have 

3 	2n-3  
x(r,0) = (-1)

n-1 
d2n-1 

rn+(lA
- cos(n - 	+ 2n+1 cos(n+1/2)0] 

where 	n = 1 

hence 	X(r,0  = 0) = - d1
r
3/2 

 ( 3)  

and 

4 
X(r,0 = 0) = - —3 r 

(7.3.2.9) 

In order to determine the stress function X for the area A of 

Fig.7.3.1.1 a finite element mesh is constructed shown in 

Fig.7.3.2.2. This enables the calculation of stresses at a much 

smaller scale than they were calculated before for Case C. 

Program STREN4 is used to solve this finer mesh. It does not 

use the temperature differences to calculate the thermal stresses 

but it sets as boundary conditions the stresses obtained by 

STREN3 for Case C around the boundaries of area A. Program 

STREN4 is listed in Appendix 7. 

When the stresses are determined for the area, program FUNSTR 

is used to determine the stress function x for a total of 2025 

nodal points (a grid of 45 x 45). Program FUNSTR performs the 

following calculations: 
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Using finite difference analysis it determines the stress 

function x which satisfies the biharmonic equation at the 

prescribed boundary points and at all interior mesh points. 

The grid is shown in Fig.7.3.2.3. 

The following steps are performed by the program: 

1. Read constants and dimensions parameters such as: 

mesh points, crack length, cell width and height, boundary 

co-ordinates. 

2. Read boundary stresses in y-direction. These are provided 

as data from the results of STREN4. 

3. Calculate moment for x-stress component. 

4. Using finite difference equation solve for interior mesh 

points. The finite difference approximation for the bi-

harmonic equation V4x = 0 is derived from the cell shown in 

Fig.7.3.2.3 and is given below as: 

174x 	20xik  - 
8(Xj,k+1 	Xj,k-1 	Xj+1,k 

+ 	Xj-1,k) 	2(Xj+1,k+1 T  xj 1,k-1 

4 Xj-1,k+1 	Xj-1,k4) 	(Xj+2k 	J X. -2,k 

▪ 	

Xj,k+2 	Xj,k-2) = 0  

5. Perform convergence test until predetermined tolerance. 

6. Print the stress function x for all nodal points. 

The listing and designations of program FUNSTR are given in 

Appendix 7. 

Having determined x the first matrix coefficient d1  is 

calculated by subroutine DMATRX which is linked to program FUNSTR. 

The subroutine calculates d
1 
using Eqn.(7.3.2.9). The matrix 

coefficient d
1 
is a function of x and the distance r from the tip 

of the crack. The subroutine prints d1  for each value of x and r 

at every nodal point. Intermediate points are obtained by 
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specifying the co-ordinates x,y between two nodal points. The 

subroutine is also listed in Appendix 7. 

Stress Intensity Factor K Results  

The theoretical values of K obtained by the analysis are 

those developed at time T = 11 minutes when the maximum stresses 

are set up for Case C. In Table 7.3.2.1 the values of the first 

matrix coefficient d
1 
and the equivalent values of K are shown 

for distances r away from the tip of the crack. The values are 

calculated by subroutine DMATRX using the values of the stress 

function x along the y axis of the crack where 6 = 0. It can be 

seen from the table that K increases as the tip of the crack is 

approached. It attains its maximum value of 2112.3 at the tip 

of the crack. This is the maximum value which will be attained 

during heating-up at that particular point under the present 

conditions of thermal loading. 

From reference R.7-21 the critical or threshold value of K 

for austenitic steel estimated by experimental analysis is of 

the order of 5.5 x 103. This value is considerably higher than 

the maximum value of 2112.3 obtained above, and it can be safely 

assumed that an existing crack will not propagate under the 

applied thermal load. In practice corrosion of the metal by the 

fluid responsible for the thermal stresses may lower the critical 

value of K, but such an effect is not likely to alter the value 

more than 10%. The critical value of K mentioned above is valid 

under the condition that a crack already exists and is not less 

than 0.02in in length. If the crack length is very small 

(0.001-0.010in) the critical value of K will tend to be lower. 

However as the crack grows K must be increased for further pro-

pagation and if this does not happen then the crack growth will 

be arrested permanently at a particular stress level. Therefore 
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in order to have a catastrophic crack growth the value of K must 

be higher than the critical or threshold value at every stage of 

the growth until the length of the crack is such to cause 

fracture of the structure or the component. The theoretical 

analysis can estimate K at every stage of the growth by taking 

into account the various lengths of the crack and by determining 

the stress function x from the existing stress field. 

If a crack does not exist at all, the stress intensity factor 

must be very high in order to initiate one. This is not possible 

unless the loads applied on the structure are quite large and 

generally at least 50% of the tensile strength of the material, 

if cyclic loading is applied. 

Summarizing, the theoretical analysis for the determination 

of the stress intensity factor K consists of the following steps: 

(i) Determine the stresses at the area where the crack is 

located. 

(ii) Using the calculated stresses determine the stress function 

x by solving the biharmonic equation Ox = 0. Use the 

boundary collocation analysis to define boundary conditions. 

(iii) The calculated values of x are then used to determine the 

first matrix coefficient d
1 
at the tip of the crack and 

at various distances r from the tip of the crack. 

(iv) The stress intensity factor K is a function of the first 

matrix coefficient d
1 
(Eqn.7.3.2.8) and therefore it can 

be calculated at any point including the tip of the crack 

using the values of dl. 

(v) The calculated value of K at the tip of the crack can 

then be compared to the threshold value Kc  determined by 

experiments, and if K > Kc  then crack growth will take 

place. 
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(vi) By experimentally determining the values of M and n in the 

equation 
la 

= M(AK)
n 

for the material considered, the 
dN 

rate of crack growth per cycle can be assessed. 

7.4 Experimental Thermal Cycling of Specimen  

In order to check if any cracks would develop in the specimen 

under investigation by subjecting it to thermal cycling, the 

experimental rig is slightly modified. Heating is still achieved 

by means of the heater but for cooling water is used which flows 

over the nozzle and the block as shown in the photograph of 

Fig.6.1.3. 

Rapid cooling by water ensures that reverse stresses will 

develop of approximately the same order like the ones developed 

during the heating up process. 

The inside of the nozzle is kept at 450°F for twelve minutes, 

enough time for the maximum thermal stresses to develop. Cooling 

is subsequently switched on for approximately six minutes until 

the inside of the nozzle is cooled down to 65°F (18.3°C). There-

fore the specimen is subjected to a thermal cycle of 18 minutes 

and an alternating maximum principal stress which ranges from 

+ 8247 lb/in' at node (21) to + 4583 lb/int  at node (43). The 

thermal cycling of the specimen at maximum stresses continued 

for four months at 12 hours daily to produce a total of 4783 cycles. 

Then the water valve failed and therefore it was decided to examine 

the specimen for possible cracks without inducing further cycles. 

This was decided in the light of the theoretical analysis which 

has predicted that the thermal stresses and therefore the stress 

intensity factors were not high enough to initiate cracks or cause 

growth of possible existing ones. 
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The specimen was cut in half through the longitudinal plane 

as shown in the photographs of Fig.7.4.1. It was then polished 

and examined under the microscope for possible cracks. The 

area shown within the square in Fig.7.4.1 was given special 

attention since it is in this area of high stress concentration 

and high stress intensity factors where existing cracks would 

most probably propagate. The results were negative and no cracks 

of detectable length were revealed. 

It is therefore concluded that under the above thermal 

loadings the specimen will not fail within its possible service 

life unless the thermal stresses increase appreciably. 
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8. CONCLUSIONS 

MOW 	 ANION. 

8.1 General Conclusions  

To Conclude the present work the following questions are 

answered in this section: 

(1) Are the numerical and computational methods produced and 

developed in the theoretical part of the work satisfactory and 

reliable for the determination of thermal stresses and fatigue 

aspects in pressure vessel nozzles? Can they be used for design 

purposes and can they be applied to other parts of the vessel? 

(2) What is the nature and magnitude of thermal stresses which 

develop in the various cases of vessel nozzles examined and how 

do they compare? 

(3) Are the experimental techniques for measuring thermal 

strains (and consequently stresses) accurate enough, and how 

do theoretical predictions agree with experimental results? 

The transient thermal distributions are determined for all 

three cases (A, B and C) by using the finite difference method 

to solve the heat convection and conduction equations at various 

time intervals during heating-up. The advantage of the method 

is that any heating conditions can be treated including tran-

sient convection at the boundary. The thermal programs developed 

can be used for other geometries by simply changing the input data. 

The method is reliable and converges fast. Truncation and round-

off errors are present but are greatly reduced for small time 
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intervals and pre-determined tolerance. The heat transfer 

coefficient at the convective boundaries is a source of error 

since it is computed separately by using approximate relation-

ships described in Section 4.1. Nevertheless this only affects 

the accuracy of the method indirectly and the values of heat 

transfer coefficients can be improved at any stage without 

disturbing the general structure of the program. 

In Appendix 2 the finite element method is used to obtain 

thermal distributions with curvature taken into consideration. 

Its main advantage lies in the fact that the temperatures can 

be obtained at any time interval for every point within a square 

element. With the finite difference method the temperatures are 

- obtainable at the nodes. However the method is not as fast 

as the finite difference method and it converges much slower. 

The thermal stresses are calculated by the developed elastic 

stress-strain programs using the finite element method, and the 

thermal results obtained by the temperature distribution programs. 

Again stresses can be determined at any time and at any point of 

the structure where the temperature is known. The programs can 

be used extensively for o4kr parts of the vessel and stresses can 

therefore be assessed for design purposes. 

It is found that in all three cases the thermal stress 

pattern during heating-up is generally similar for both the out-

side and inside boundaries and for direct as well as principal 

and shear stresses. The outside vessel wall is in compression 

with the nozzle in tension. On the inside the wall is in com- 

. pression. Additionally the maximum shear stress T
max

(12) 

develops in the xy plane for all three cases. 
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In CASE A, where the heating takes place from both the in-

side boundary of the vessel and nozzle, the magnitude of the 

stresses is the highest, and this is due to higher temperatures 

in the structure. Stresses in CASE B are generally higher than 

in CASE C although the rate of heating is the same. This is 

because in CASE B the inside vessel wall and the outside of the 

structure are insulated and this contributes to higher temper-

atures for CASE B at the corresponding time intervals during 

heating-up. In CASE C heat is transferred to the surroundings 

by natural convection. A considerable number of vessels are not 

insulated on the outside and this makes the analysis of CASE C 

useful with respect to the deterMination of thermal distributions 

when natural convection conditions prevail around the vessel. 

In the experimental part of the project the temperature 

self compensating strain gauge is proved to be the most 

appropriate device to record strains under continuously changing 

temperature. The automatic strain recorder (Data-Log) is adequate 

for recording transient strains, but the printer's selection 

speed is limited and it takes 11.2 seconds to scan all 45 gauges. 

The experimental results are generally in good agreement with the 

theoretical model of CASE C with the experimental values higher 

than the theoretical by an average of 16%. The agreement indicates 

that both methods of finite difference and finite elements for 

the determination of temperatures and stresses can be used 

reliably for design assessments. 

8.2 Conclusion to Chapter 7  

The determination of the stress intensity factor K along the 

crack axis by the boundary collocation analysis for a structure 

other than a plate of thickness t poses a number of problems 
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directly associated with the loading at the boundaries. However 

it is thought that boundary collocation analysis can be used to 

determine K in a region of a structure as long as the stress 

loading at the boundary can be determined. 

To achieve this the stress field of the entire structure 

determined in CASE C is used and region A (Fig.7.3.1.1) is iso-

lated with the stress loading on the boundary uniformly 

distributed as shown in Fig.7.3.2.1. I t is found that the value 

of K at various distances.from the tip of the crack can be 

obtained from the stress function x. The method is mathematically 

accurate and as long as the maximum principal stress 
amaxp 

is 

in one plane, and in this case the xy plane, the values of K are 

reliable and the crack will propagate, if K > Kc. perpendicular 

to the lines of maximum principal stress. The value of K for 

CASE C at the tip of the crack is found to be 2112.3 1b)11T1=3, 
(R.1-21) 

which is less than the critical value K
c 	

5500•IbiTr773 raelermined 

by experiments for the same material. Although for this low 

value of K no cracks are detected in the region A of the specimen, 

it should be emphasised that more experimental work is required 

in order to establish fully that the theoretical model predictions 

• coincide with experimental results. However it is believed that 

the theoretical analysis developed in Chapter 7 can be used 

reliably in conjunction with experiments to assist the designer 

of pressure vessels in his effort to ITT-00e hi5 	lb redid"  

fatigue crack initiation and propagation. 
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9. DISCUSSION OF NUMERICAL 
METHODS 

9.1 Finite Difference and Finite Element Methods for the Determination 

of Temperatures and How They Compare  

The solution of the time-dependent heat transfer equation for the 

heat flow within a solid body in two-dimensional unsteady-state con-

duction has been solved by both finite difference and the finite 

element method. An account of the relative merits and disadvantages 

6y 
of each method thrown up (this work will be given in this section. 

(a) Finite Difference Method  

As is shown in Appendix 1, to solve the partial differential 

equation of heat flow the derivatives are replaced by finite difference 

approximations. The entire region of interest for the solution is 

divided into a mesh or grid over which the approximate solution is 

obtained. The solution at each point is equal to the average value of 

the quantity at the four adjacent points. In steady state problems 

the difference equations set up are solved by the iterative procedure 

over the entire grid until no point changes by more than the prescribed 

error; that is, the solution converges to the pre-determined accuracy. 

ThiS.  accuracy depends on the problem and the available computing 

facilities. Now when time is one of the independent variables a 

sequence of solutions corresponding to each time increment must be 

obtained. The solution of the time dependent equation is an explicit 

solution, that is the expression used uses forward difference repre-

sentation to give the future temperature Ti  at node i in terms of the 

I 
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current temperatures of its surrounding nodes. From the computational 

point of view the method is stable for small time increments AT and 

very fast. 

Now the space increments Ax and Ay must be small enough to give 

the required accuracy. Of course the size of Ax, Ay depends on the 

overall dimensions of the body. Once the value of Ax, Ay (and in this 

cash Ax = Ay) has been established, two other quantities are automati-

cally fixed as well. The first is the time increment AT which is now 

fixed and tne second is the total number of nodal points. It is clear 

that the larger the value of Ax and AT the more rapidly the solution 

will proceed. On the other hand, the smaller the value Of these 

increments the more accuracy will be obtained. At first glance one 

might assume that small distance increments could be used for greater 

accuracy in combination with large time increments to speed the 

solution. This is not the case since the finite-difference equation 

(A 1.13, Appendix 1) limits the value of AT which may be used once Ax 

is chosen. It can also be seen that when Ax is increased AT is in-

creased and when Ax decreases AT also decreases. This dependency of 

AT on Ax poses a computational problem. If for example the temperatures 

of a large structure were to be determined, the distance increment Ax 

cannot be taken as very small, which will otherwise be desirable for 

accuracy, because it will result in a very large number of nodal points 

which may be outside the storage capacity of the available computer 

facilities. At the same time, a small Ax means an equally small time 

increment AT. A small time increment will unavoidably lead to a 

large number of time iterations to cover a fairly long heating-up process 

and therefore a considerable amount of computing time will be necessary. 

On the other hand if Ax is chosen to be large in or02r to make AT large 

and thus speed the solution the accuracy of the results will be 

limited. 
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It is therefore highly desirable under the above circumstances for 

the method of finite difference to converge rapidly. Rapid convergence 

saves computing time and it has been proved that finite difference 

method converges faSt. 

(b) Finite Element Method  

In the Finite Element Method the temperature is approximated 

within the element by using shape functions which are defined piece-

wise element by element. Since the values of temperatures are known 

at time T
o' 
 values at time T

1 
= To AT can be obtained by summing 

around the nodes at this latter step and then solving the system of 

simultaneous linear algebraic equations that results At each new step 

an identical procedUre is used until a required time is reached. The 

accuracy of the results still depends on the size of the element but 

for the same Ax,.Ay coordinate spacing the finite element method is 

more accurate than the finite difference method. This is mainly due 

to the fact that the temperature is defined better by the shape functions 

for the isoparametric elements used. On the other hand the finite 

element method is not as easily programmed as the finite difference 

and it does not converge to the exact solution as fast as the finite 

difference. The finite element method has the advantage that the 

determination of temperature at any point x, y within an element at 

. time T is obtained relatively more easily than fcr the finite difference 

method where the interpolation is time-consuming and not as accurate. 

The geometry of the domain under investigation often favours the use 

of the finite element method. For example in the case of the spherical 

vessel where the boundary shape is curved it is difficult to fit a 

finite difference grid to the boundary and therefore the finite element 

method is more appropriate for this particular geometric configuration. 

The finite element method is also unconditionally stable for any time 
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:;top Ar although in certain cases where AT is very large some condition 

between the space increment Ax and the time increment AT must be 

imposed to obtain meaningful results. 

Finally we can conclude in general that : 

(1) The finite difference method is less accurate than the finite 

element method for large areas (greater than about 50,000 nods( poi/f5) cmcl 
for retahu214 (ow 	(irolaFer That about- ia,000at) but- 	is 
mote economical and computationally faster. On the other hand the 

Cinite element method is generally unconditionally stable for any time 

step AT. 

(2) For smaller areas and shorter times than those mentioned above 

the finite difference method should be preferred since the accuracy 

obtained is comparable to that of the finite element and at the same 

time it is faster. It must be emphasized that the area and time 

dimensions given above are based on the available computing facilities 

and the figures mentioned are of the computer systems used for this 

work (namely the CDC 6400 and CDC 6600 computers). For other computer 

systems the storage capacity and the central peripheral time must be 

taken into account in order to assess the relative value of the ',.wo 

methods in relation to any particular problem. 

9.2 Comparisons of Finite Difference and Finite Element Methods for  

the Determination of Stresses  

In this work the finite element method was 119ed tc calculate the 

thermal stresses and the finite difference method was used to solve the 

biharmonic equation Ox = 0 in order to determine the stress function x. 

An advantage of the finite difference method, as has already been 

mentioned in Section 9.1, is the ease with which it may be formulated 

and programmed for solution by a digital computer. This is mainly due 

to the use of regular grids. In almost all finite difference methods 

the grid lines are parallel to the coordinate axes and therefore the 
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method is best suited to solving problems where the rows of points can 

terminate with points on the boundary (see Fi4.7.3.2.3, p.337 for the 

finite difference solution of V4x = 0). 

Nevertheless, a disadvantage of finite difference method is a lack 

of geometric flexibility in fitting irregular boundary shapes and in 

concentration points in regions of the solution domain where the stresses 

for example change most rapidly (although it is possible to use irregular 

grids with varying distances between successive rows, this increases 

the complexity of the formulation). 

The finite difference method is applied to the governing partial 

differential equations for the problem concerned while the finite 

element is formulated directly from the physical arguments used to 

derive such equations and therefore by using shape functions to de-

scribe the displacements the finite element method becomes more 

accurate. 

Generally it can be concluded that: 

(a) The finite difference method can be formulated and programmed 

more easily than the finite element and is faster. 

(b) The finite element method is more accurate and has greater 

geometric flexibility, especially at irregular boundaries and 

at regions where the stresses change most rapidly. Computation-

ally it is more cm.plex and expensive than using finite 

differences. 
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APPENDIX 1 

Transient Heat Conduction and 
Convection 

1.1 Transient Heat Conduction Finite Difference Equations  

inside the Walls  

The difference equations derived below apply only within 

the walls where heat is transferred by conduction. The equations 

across the convection boundary between fluid and nozzle-vessel 

section are derived in 1.2. 

Consider the -ozzle-vessel section divided into a two-

dimensional net of space increments Ax and Ay, Ax being equal 

to Ay. The co-ordinates of the nodal points are represented by 

increments of i and j. 

i+1, j 
r 

i-1 , ‘, j rA  

wt--- Ax Lx 
y 

y 

X 
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Finite differences are used to approximate differential 

increments in the temperature and space co-ordinates. The 

temperature gradients are written as follows: 

T
i 	

- T
i  aT 	,y i-i,j 	,j  

ax i+12,j q, 	Ax 

T. 	- T. 
aT)ru  1,i 	3.-1,i  
ax 	n., 	Ax 

i-Ilsj 

 

. 	- T. 
aT 	

T 
1,j+1 	i,j  

aY
Ay  

aT 	
T.1,3 - T. 

)  
Ay 

  

 

The second partial derivatives will be: 

 

 

aT _ 3T 
ax 	a a2 	x 

 i+1/2,j 	i-1/2,j 
3x2 	(1, 	Ax 

i sj 

T 	2T 
+1,j 

+ T
i
T 

+1,j 	 -1,j 	isj 

Ax2  

 

(A1. 1) 

and) 
aT) 	_ aT) 

a2T 	ay i,3+  . 	e I 
,3+2 

y 	42 

  

  

	

Ti ,j+1 	Ti ,j-1 
 - 2 Ti,] 

	

1,3+1 	1,3-1 	x 

 

(A1.2) 

     

The differential equation of transient heat conduction is: 

a2T 	a2T 	3T 
k(-a--2- +-w2-) - pc -57 	 (A1.3) 

a2T 	D T Substituting the gradients ----2- and 	in in equation (A1.1) 

above the time derivative equations is approximated by 

	

n+1 	n 

	

T. . 	
1

- T. . 
aT 	1,3 	,3  — ,I., 	 (A1.4) 
BT q, 	AT 

where n is the time increment. By combining the equations (A1.1), 

(A1.2), (A1.3) and (A1.4) the equation of the temperature T at a 



particular time is derived in terms of the temperatures at the 

surrounding nodes at the beginning of the time increment. 

n 	n 	n 	n 	n T
n 	

-I- T. 	- 2T. 	T. 	+ T. 	-2T. i+1,j 	1-1,j 	ij +  i,j+1 	1,j-1 i,j  

(Ax)2 	(Ay)2 

 

 

, - 
urn 1 

- Ti  1 

  

  

(Al. 5) 

 

AT 	
a 

 

 

    

where a is the thermal diffusivity in ft2 /hr and is equal to -IL 
pc 

Since the space increments are equal, that is Ax = Ay the 

equation (A1.5) above becomes 

	

T n+1 	a AT 
 - 	(T.

n 	
+ T.

n 
 - + T.n 	+ T.

n  . ) 

	

1,J 	2 1,j 1-1,j i,j+1 1,3-1 (Ax) 

+ 1 
4a AT 

 T 
 n 

(Ax)2 	1,3 
(A1.6) 

By choosing the distance and time increment such as 

(Ax)2
= 4 

a/.AT 

the last term of the equation disappears and the temperature of 

the node (i,j) after a time increment is the arithmetic average 

of the four surrounding nodal temperatures at the beginning of 

the time increment. 

Therefore, 

e+1 1 n n 	+ Tn + Tn 
i,j 

= 
4T 
(T
i,j 

+  T
i -1,j 	i,j+1 	i,j-1)  (A1.7) 

For the insulated boundaries, but not the junction, the 

energy balance gives the equation for the temperature Tn+1 

14o 
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T
n 

T 
	- 
	

. 	. n+1 	Ti,  
j-1 	

Ti
-1,j -1,3  

ij 	2 

iki 

For the vertical nodal points 

	

T
n 	n 	n 

n+1 Ti ,j-1 + 
 T
i-1 

+ T
i+1,j  

1,3 	2 	4 

For the horizontal nodal points 

T 	- T
i  	

Tr  

	

,j-1 
	T. 

n+1 	-1,j 	1,j-1 	i,j+1 
.  
Iri 	2 	4 

(A1.8) 

(A1.9) 

The insulated boundary on the outside at the junction when 

the junction is curved the energy balance gives, 

1.2 Difference Equations for Convective Boundary Condition  



The boundary of the inside walls of the vessel and nozzle 

is exposed to a convection boundary condition. The transient 

energy balance on the node (i,j) is made by setting the sum 

of the energy conducted and converted into the node equal to 

the increase in the internal energy of the node. Therefore 

	

n 	n n 	n T 

	

Ti 
 

,j+1 
	T.
1 	- T.

1  Ax i+1,j ,j  A 	,j+1 	,j 

	

kill. 1  	
+ k 

Ax 	2 	Ay 

n 	n 

	

Ti -1,j 
	
Ti 

	

,j  k
Ax 	1-1,j 	1,j + hAy (T

f 	
Ti  . .) 

,3 2 Ay 

n+1 n 

	

T. 	- T Ax  
pc Ay ,j  = — 

	

2 	AT 

n+1 For Ax = Ay the above. equation for T. becomes 
1.i 

(A1.11) 

n+1 
T
1  
. . = 
. 3 

a/AT  

(Ax)2 	

hAx 2 -T- Tf + 2 Ti,j+1 + T
n 
i+1,j 

	

Tn 	+ 	 2 	4 T. 
(Ax)2 	hAx . 	 I n 

1-1,j 	a/.AT 	I,j 
(A1.12) 

(Aa) 2  No attempt to choose the value of 
a
/
AT to make the coef- 

ficient ofor T. 	zero, since the heat transfer coefficient Tj  
1,i 

influences the choice and also the time interval has been de-

fined appropriately to give the value of 7-- equal to 4 for the 
a AT 

interior difference equations. 

The equation for the nozzle inside convection boundary will 

be the same with the i and j subscripts interchanged and a 

different heat transfer coefficient. Thus, 

n+1a-AT 	hAx 

Ti,j 
	2 — T + 2 Tn 	+ Tn 

1,j (Ax) k f i+1,j i,j+1 

+ T
n 	(Ax)22 

	4 hAx 	n j 	(A1.13) i,j-1 
a-AT 	

T13k 
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1.3 Natural Convection to Air for Case C  

In Case C there is no insulation on the outside of the 

nozzle and vessel (see Fig.3.2.3) and therefore when the heat 

.wave reaches the outside boundaries, heat is lost to the 

surrounding air by natural convection. Every precaution is 

taken during the experimental measurements of stresses not to 

create any air draughts near the specimen which will upset the 

condition of natural convection. During the transient period 

the heat lost to the gas is less than the heat input and the 

temperatures of the nodal points inside the wall will keep 

rising until steady state is reached. At steady state the heat 

input is equal to the heat lost to the gas plus the heat used 

to maintain the nodal temperatures of the structure at their 

steady state values. In order to determine the heat loss to 

the air the heat transfer coefficient h is determined for the 

vessel, junction and nozzle parts of the outside wall at the end 

- of each time interval. 

The equation of heat transfer for the vessel and junction 

wall for laminar flow (R.4-4) is given by: 

L
=0.13 	w 

L3g3(T - T
03 

 ) 
k
a 	

(Pr) 
v2 

I 0.33 

(A1.14) 

where, L is the length of the vessel or junction wall, T
W 
is the 

wall temperature at the end of each time interval, and T is the 

air temperature (60°F). The temperature of the wall T is taken 
w 

as the mean of all the nodal temperatures along the wall at the 

end of each time interval and the heat transfer coefficient thus 

obtained is the mean for the particular section of the wall under 

consideration. 

For the vessel outside wall the equation is 

1k3 



hL 	
r3gr3 (vT - T.)) 	0.25 

= 0.54   (Pr) 
ka 	

: 

 
(A1.15) 

Again T107  is the mean temperature along the wall and h the 

mean coefficient for each particular time interval. Once the 

heat transfer coefficient h has been determined for each section 

of the outside wall the heat lost to the air by convection is 

calculated by considering the heat balance equation at the wall. 

This has as follows (figure below). 

At the time interval n+1 the heat conducted from point i,j-1 to 

point i,j is equal to the heat used to raise the temperature of 

the wall at the point i,j plus the heat lost to the gas by con-

vection. This happens for every nodal point of the structure 

near the inside wall. 

Now the heat conducted from point i,j-1 to point i,j = 

- k — 
, Ax ( 

v 	T. 	- Ti,j-1  ). The heat which is used to raise 
AY   

the temperature of the wall by AT = ps  Cs  AxAyAT. The heat 

lost to the air = hAx (T. . - Tom). Therefore the equation of 

heat balance will be: 

- k 	(T. 	T. 	) = p C AxAyAT + hAx (T. 	- Tom) 
I Ay 	,j 	s s 	1  

or since Lx = Ay 

- k (T.. - T. 	) = p C (Ax)2  1T + hAx (T. . - Tom ) 
1,J 	I,]-1 	s s 	Irp (A1.16) 

1.13 
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From this last equation AT can be calculated for the time 

interval n+1. Nevertheless in the computation of the temperatures 

at the nodal points on the outside wall an approximation has to 

be made. The temperature of each node on the outside wall T. 
1.3 

at the time interval n is taken as equal to the temperature of 

the previous node T 	of the same time interval. This is an T. 

approximation which is necessary in order to establish some value 

for the wall temperature which will enable us to calculate h. 

The real value of the wall temperature at the new time interval 

n+1 will therefore be 

n+1 
T. 	 = T. , - AT 
ItJ 	1.7 

(A1.17) 

This is done for all the nodal points on the outside wall. 

The new heat transfer coefficient is then calculated at n+1 time 

using the new wall temperature 	This new coefficient is used T. i,j. 

to obtain the wall temperature at time n+2 and so on. A trun-

cation error exists here since the wall temperature at any time 

increment is calculated using the heat transfer coefficient which 

is obtained by using the wall temperature at the previous time 

increment. This error is unavoidable because in the unsteady 

state, when temperature changes continuously with time, the heat 

transfer coefficient is a function of the wall temperature and 

the wall temperature cannot be calculated if the heat transfer 

coefficient is not known. Nevertheless the error is very small 

for small time increments used in this analysis. 
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APPENDIX 2 
11•1111111121INIA 	 

Transient Therrnal Analysis 
for Spherical Vessels 

  

  

	•VOMMINNIMINEIIM. 	  

 

	A 

   

2.1 Introduction  

It was explained in Chapter 4 that the analysis for the 

determination of thermal distributions and stresses applied in 

the case of cylindrical vessels may be equally applied for 

spherical vessels. This is when the diameter of the spherical 

vessel is large and the curvature can be neglected. In here a 

method of determining the thermal distributions for spherical 

vessel where the curvature is taken into account is developef,. 

The two-dimensional transient heat conduction problem is solved 

by the finite element method. 

The finite element method was first applied by Wilson and 

Nickell (R.A2-1). Their method for analysing the unsteady flow 

of heat was based on the variational principle of Gurtin (R.A2-2). 

Richardson and Shunn (R.A2-3) used the same variational principle 

and the finite element method to solve transient heat conduction 

problems involving non-linear boundary conditions. Emery and 

Carson (R.A2-4) and Visser (R.A2-5) used the variational form-

ulations in their finite element method applied to transient 

heat conduction problems. Zienkiewicz (R.A2-6), Desai and 

Abel (R.A2-7) have also used the finite element method for 

determination of two-dimensional heat conduction problems. 
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2.2 Theoretical Formulation of the Finite Element Method  

The two-dimensional heat conduction equation which describes 

the unsteady temperature distribution in a solid which is in a 

domain P (Fig.A2.2.1) is given by the equation below: 

a 	3T 	 3T 

	

(kx T;E) 	
3

Y Y Y (k 	Q  = 130  57 
3T 

 
(A2.2. 1) 

The equation subject to the conditions on the boundary 

surface S
1 

T = T
s 
on S

1  

	

aT 	aT - kxax  kx  - ky —@y  9,y  = q on S2 

- 
kx 3x 	

- k 
2 	= h (T - T

a
) on S

3 x 	y 9y y 

The initial condition is 

(A2.2.2) 

(A2.2.3) 

(A2.2.4) 

T(x,y,o) = To(x.y) 	(A2.2.5) 

where S 	= S
1 
+ S

2 
+ S

3 

S
1 	

= the part of the boundary on which T is pre- 

scribed 

S2 	= the part of the boundary on which q is pre- 

scribed (the intensity of heat input) 

S3 
	= the part of the boundary on which h(T - Ta) is 

prescribed 

T(x,y,T) = temperature in the solid 

k & k = thermal conductivities 
x y 

x,y 	= principal directions of the conductivity tensor 

c 	= specific heat 

p 	= density 

Q 	= externally applied heat flux 

T
s 	

= boundary surface temperature 

T
o 	

= initial temperature 



£ x) 	= direction cosines of the outward normal 

to the boundary surface 

ih 	= heat transfer coefficient 

Ta 	= temperature of the surrounding 

11+8 
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FIG.A2.2.1 P domain governed by Equation (A2.2.1) 

-Fig.A2.2.2 shows the P domain divided into finite elements 

in space and time. 

ji 
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FIG.A2.2.2  



150 

The temperature within each element is approximated by 

nnp 

T(x,y,T 
	

N (x,y,T) T 

where, 	1 

N = the shape functions defined element by element 

I = summation subscript 

T
I = nodal temperature representation of T(x,y,T) 

nnp = number of nodes in an element 

Using the weighted residual process in which the weighting 

function is equal to the shape function defining the approxi-

mation within the elements, the heat conduction equation 

(A2.2.1) becomes, 

jr  
NI 
	 aT 	a 

T; 	
DT 	aT dP  _ ° (1'x+ 	(k  y 	+ Q — P c  

(A2.2.6) 

where, P is the finite element domain and dP = dx dy dT. 

Integrating by parts on the first and second terms in the 

equation above is simplified to 

- k aNI DT 	
DN
T DT 

X DX T; ky 	T1 	
IQ  

7 - N 
	Nipc DT  dP 

 aT 

- N q dS
2 
- JIN

I
h(T - T

a
)dS

3 
= 0 
	

(A2.2.7) 

S
2 	

S
2 

where 
S2 

and S
3 are defined in Fig.A2.2.1. 

Using the equation for the temperature approximation within 

each element the I
th 

equation of the system that will allow the 

solution for the n values of T
I 
is 
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a  n 

	

( E 0,TI) 	+ 
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(A2.2.8) 

3x ax 

c at 
— 

— ky 	ay 
ay 

dxdyd 

ir 	

n 
- 	N

I
qdS

2 
- 	N

I 
( E N

I
T
I 
- T

a
)S
3 
= 0 

1 
S2 	S

3 

TherPfore the system consists of n linear algebraic equations 

in n unknowns. 

2.3 Rectangular Prism (x,y,T). Element Shape Functions  

The rectangular prism is used to represent the three 

dimensional element (Fig.A2.2.2). Co-ordinates x,y are space 

co-ordinates while T is the time co-ordinate. In order to 

establish the shape functions for a rectangular prism, the 

rectangular 12345678 is first considered shown below. 

Let the shape function cp be 

expressed in a polynomial form in x 

and y. In order to ensure inter-

element continuity of (1 along the 

top and bottom sides the variation 

must be linear. The eight nodal 

points are to be determined and thus: 

10 	  8 

20 	 7 

3c 	6 

4® 	 5 

= al a
2 
+ a

3
y + a

4 
x y + a

5 
y
2 
+ a

6 
xy
2 
+ a

7 
y3 + a

8 
xy3 

Substituting co-ordinates of the various nodes a set of 

simultaneous equations is written in a matrix form 

2 2 3 3 
1,x

1
,y

1
,x

1
y
1
yx

1
yy

1
,x

1
y
1 

(A2.3.1) 

•1 

4)8 

a1 

a
8 



or 
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[0:11 e=[c ][ a] 

Equation (A2.3.1) can then be written 

 

(I) 

 

=[P ]L a] = [ P h c]
-1 

L

-e 

 

(A2.3.2) 

(A2.3.3) 

 

where [ P = [1, x, y, xy, y2, xy2, y3, xy31 	(A2.3.4) 

Therefore the shape functions for the elements defined by 

]e 
0 	NPN2 - - - - N8 ] H 

(A2.3.5) 

	

and hence [11 = P 	c 
]-1 	

(A.2.3.6) 

It is more convenient to use normalised co-ordinates and these 

are so chosen that on the faces of the rectangle their values 

are + 1. 

	

E = (x - xc)/a 	, d = dx/a 	
(A2.3.7) 

n = (y - yc)/b , do = dy/b 

where a and b, the length of the sides of the rectangle. Once 

the shape functions are known in the normalised co-ordinates 

translation into actual co-ordinates can be carried out. 

2.4 Three Dimensional Element. Rectangular Prism  

. As it has already been explained the three dimensional 

rectangular prism is used for the element discretization of the 

structure. This is shown in the figure below (linear element 

with 8 nodes). 
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The shape function is thus given by 

N.
1  =

(1 + Eo) (1 + no) (1 +) 8 

where 

C = x /a 
o 	c 

n
o 
 = y 

c
/b 

= z /c 
0 	c 

(A2.4.1) 

and x
c 
 y 

c 
 , Z

c  the co-ordinates of the centroid and a,b,c the 

dimensions of the element. 

2.5 Numerical Solution of the Thermal Distribution  

The section of nozzle-vessel is shown in Fig.A2.5.1(a). 

The solid is symmetrical about axis xx' and yy'. In Fig.A2.5.1(b) 

the finite element grid is shown. This divides the structure into 

426 elements. Since values of the element temperatures are known 

at T
o 
values at Ti  = To  + AT can be obtained by summing around 

the nodes at this latter step, an identical procedure is used 

until a required time is reached. 

The temperature approximation for each element using 

rectangular prisms as the elements and linear shape functions as 

it was explained in Section 2.4, is as follows. 



1 
T(x,y,T) 	= -8-  (1 

1 + -6- 	(1 

1 
+ T3-  (1 

1 
+ 	(1 

1 + 	( 1 
1 

+ T3- (1 

+ 	
1
(1 

+ 	(1 

- 	(1 

- 	(1 

+ E)(1 

+ 	1 

- 	) (1 

+ E) (1 

+ n) (1 

+ n) (1 

- n) (1 

- n)(1 

+ n) (1 

+ n) (1 

- n) (1 

+ 4)T. 

+ 

+ 4)Tk  

+ OTz  

- 

- C)To  

- 

= N.T. + N.T. +NT
k  +NT +NT +NT + N T i 1 	3 3 	k 	mm 	nn 	oo 	pp 

where 	= 2(x - x)/(Ax) 

n = 2(y - yc)/(Ay) 

= 2(T - Tc)/(AT) 

x ,y T = co-ordinates of the centroid of each element. c c c 

Ti,Ti,Tk,Tt, Tm,Tn,T0,Tp  = values of temperatures at the 

appropriate nodal points. 

Ni,Ni,Nk,Nt,Nm,Nn,No,Np  = shape functions 

x = x co-ordinate spacing 

y = y co-ordinate spacing 

i,j,k,t,m,n,o,p = node numbers 

2.6 Boundary Conditions  

At time T = 0 the structure is at room temperature of 60°F. 

Boundaries BCDE and AG are insulated (Fig.A2.5.2), thus making 

the heat gradient zero. 

Fluid enters at temperature T
f 
= 450°F and heat input q is 

provided along the boundary GF. Temperature of fluid is main-

tained steady at 450°F along GF. Small fluctuations will not 

affect the thermal distribution within the solid and the 

temperature of the inside surface of the nozzle is assumed to 

I54 

be at 450°F. 
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2.7 Computer Program TEFEL  

The program is determining the temperature distribution at 

prescribed time intervals. Element and nodal temperatures are 

recorded every 3.0 minutes. The time increments may be increased 

or decreased to any value. 

The variable data and main parameters in program TEFEL are 

designated as follows: 

is 	integer single 

ia 	integer array 

rs 	real single 

real array 

Dimensions of the sections are in feet. 

TEL ra temperature of the element 

TEN ra temperature of nodes 

NPI 	ia #.4  

NPJ ia index of node adjacent to element 

NPK ia 

NPM ia ,/ 

X 	ra x-co-ordinate of node 

y 	ra y-co-ordinate of node 

TFL rs temperature of fluid 

TR 	rs temperature of structure at time = 0.0 

MAXIT is number of gaussian iterations 

TIME rs time interval 

TT 	rs time spacing 

NEL ia number of elements 

NNP ia number of nodes 

L11 

L2 is working variables referring to elements 

L3 
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rs shape functions 

N1 

N2 	is working variables referring to nodes 

N3 

XC 	rs X co-ordinate of the centroid of element 

YC 	rs Y co-ordinate of the centroid of element 

X1 	rs X co-ordinate of point within element 

Y1 	rs Y co-ordinate of point within element 

XXX 

YYY rs working variables 

XX 	X-spacing (6y) 

YY 	rs Y-spacing (Ly) 

SNI 

SNJ 

SNK 

SNM 

ITN rs iteration index 

SUM rs iteration summation index 

G 	rs Gaussian iteration variable 

SFT rs time shape function 

L8 
is working variables referring to input data 

L9 

NNI 

NNJ is index of node adjacent to node 

NNK 

NNM 

The listing of the program is given in the next page. 



JO(UMHi".1(: $ J10,T3GO,CM4;;000,LC3072) 	OI:CNCMIDES.C.N 
t$FIT;Dr R=21E=1,_IN) 	 159 
MAP (P) 
BIN, 

. PROGRAM TEFEL(INPUT,OUTPUT,TAPE5=INPUTOAPE6=OUTPUT) 
COVMCN 	TEL(451), TEN (515), 

1NPI(4511,1?)(451),NFK(451),NPA(451), 
2X(515),Y(jI),X1(451),Y1(45!), -  

-3NNI(51i)- ),NAlt515),NNK(515),N1M(515) 1 
4SYMPOL(51),.SG(41),TELL(22,41) 

COMMON 6LANK 
READ GRAP■iiNO SYM2OLS AND BLANKS 
READ (5,71:;! (SYMOCL(J), J=1,51),BLANK 

708 FORMAI-(52AI! 
DO 232 1=1,22 
DO 232 J=1,41 

232 TELL(I,J)=) 0 
C 	DEFINE CONSTANTS AND PARAMETERS 

TFL=450. 
• TR=63. 

XX=0.5 
YY=0.5 
MAXIT=50 
TIPE=0.0 
TT=0.0 
NEL=451 
NAP=515 

Aa 	READ ELEMENTS 
READ(5, 53) q.E,NPI(LE),NRJ(LE),NPK(LE),NPM(L:A4L=1,NEL) 

.8 FORMAT(5I5) 
C 	READ NODES 
C 	READ NODE ;:c)—ORDIMATES 

REAC(5,10):NP,ANI(NF),NNJ(AP),NNK(NP),NNP(NP),X(NP),Y1NP),N=1I NNE) 
10J- ORMAT(5I5 ?F5.4) 

C 	PERFORM INITIAL DISTRIF;UTION OF TEMPERATURE AT TIME=0,0 MIN. 
-.DEFINE 90U1' ;:,RY AND INTERIOR NODES AN] ELEMENTS 

C- 	ELEMENTS :-.:0-ERIOR 
C 	L1=17 
C 	L2=24 
C 	DO 2 L=L11 L2 
C 	TEL(L)=TFL 

2 CONTINUE 
C 	ELEMENTS INTERICR 

-L3=1 
DO 3 L=LI,NEL 
TEL  

3 CONTINUE 
C 	NODES ;::)(T,_RIOR 

NI=64 
H2=93 
DO 4 N=N1,112 
TEN(N)=TFL 

4 CONTINUE 
NODES INTE.P.IOR 
DO 51i N=1,63 
TFN(N)=TR 

511 CONTINUE 
N3=94 
DO 5 N=N3,1NP 
TEN(N)=TR 

5 CONTINUE 
CO TO 33 

555 CONTINUE 
CALL DIN(7TmE) 
WRITE (6, 3?:) 

82 FORMAT (1Hi ////// 

	

1 	57X, 18HINPUT ELEMENT DATA / 

	

2 	57X, 18H   ///// 

	

- 3 	3X, 40HELMT NPI NPJ NPK NDN TEMP 

	

4 	5X: 40HELMT NPI `IPJ NPK NPN TEMP 

	

-5 	- 	6X, 29HELMT NPI NPJ MPK 'OM TEMP /) 
19 = (NEL + 2) / 3 
DO 33 L8 = — 1, L9 
L3 = MIND (L1 + 2 ' L9r  NEL) 

. 83 URITE(6,4; 	(L,NPI(L),NRJ(L)11PK(L),AFML),TEL(L),L=L8,L31L9) 
84 FORMT(1H,515,F6.1,15X,515,F6.1,15X,51:-:,F6.1) 

WRITE (6, 3q) (N, NNI(N),NNJ(N),NNK(A),NNA(N),TEN(N),X(N),Y(N), 
1N=1,NNF) 

-85 FORMAT (1HI ////// 

	

1 	53X, 15HINPUT NODE DATA / 

	

2 	58Y, 15H--------------- ///// 
3I3Xr  56HNUJE NNI NNJ NNK NNM T5M7 	 X 	 Y I 

	

-11 	(Iirl,X,415,F7.1,2E16.5)) 
START PERFOPVING TIM': STEPS. 
TIME SHAPE c'UNCTICN IS DEFINED. 



0 

'  

.1  

0 

0 

(" 

PAPAPOLIC FOCH CF D1STRIUUTION IS ASTJMEC IN EVERY ELEMENT 160  
C='04D25 
T1E-1:34D 
TT=3,D 

6D SFT=1..40417Iv.E/TT) 
C 	CALCULATE TH.E. ELEMENT TEMPERATURES • 

DO 2' L=1,NEL 
I=NPI(L) 
J=NPUIL1 
11<=NPK(L) 
C=NPV(L) 

-C 	CALCULATE THE CO—ORDINAT:S OFJ_EMENT CENTROIDS 
XC 	=(XII) 4,X(J)+X(K)+X(fr))/4 
YC 	=(Y(.1;-LY(J)+Y(K)+Y(1))/4. 
xi =YC 
Y1 =TC 
CALCULATE DIRECTION SHIFTS OF AXIS TO CENTROIDS 
XXX0 0 =. . • 
YYY=0,(1 
CALCULATE SHAPE FUNCTIONS 
SNI=11./4.) — (1.+XXX 	)4 (1.+YYY 	) 
SNJ=11./44. -"(1.—XXX 	) 4- (1.+YYY 	) 

)'(1.—YYY 
SA14=(1./4 4 i1: 4-XXX 	)*(1.-YYY 	) 
SET ITERATION COUNTER TO 1 
ITN=1 

21 SUM= 0. 1? 
A=SNI*TENCIl+SNJ -E'TENiJ)+SNK'TIN(K)+SNATEN(M) 
IFIA.EO.TELM) GO TO 20 
C=1.84-"- (A—T'EL(L)) 
TEL(L)=TELL)+G 

.SUM=SUN+A3SI.G.) 
ITN=ITN+1 
IFIITN.GT,AAXIT) GC TO 22 
-CD TO 21 

22 CONTINUE 
TTLA(L)=TL(L)*SFT 
1F(-F-.L(L),3T.45J) 	TEL(L)=45J 

2D CONTINUE 
CALCUL 	THE NODS TEMPERATURES 
-DO 25 N=_:_,NNP 
I=!NNI(N) 

- J=INNJ(N) 
K=7NNK(N) 
!M=NNN(N) 
SET ITERATION COUNTER TO ONE 
ITN=1 

27 SUM=D. 
B=ITEN(I)47M.J)+TET:NtM))/4. 
IF1 .EC.TEN(N)) GC Tr) ZO 
C=1.84-"(9—TEN(1)) 
TEN(N)=TEN:N)+G 
SUM=SUM+AG) 
IF(ITN.GT.T1XIT) SC TO 30 
ITN=ITN+1 
GO TO 27 

3D CONTINUE 
TEN(N)=TEN(N)+SFT 
IftTf=_N(N),OT.450) TLN(N)=450. 

25 CONTINUE 
33 CONTINUE 

IFITIM.E1 0) GC TO 555 
CALL DIN(TIm:) 
TI NE=TI ME+TT 
IFITEN(1).EQ.450) GO TO br) 
GO TO 80 

6E CONTINUE 
STOP 

-END 
-SUEROUTINE DIN(TIME) 
COMMON 	TEL(451)1 TEN(515), 

INPI(451)ORJ(451)=NFK(451).NRM(451), 
2X(515),Y(51q),X1(451)0151) 
3NNI(515),NNJ(515),NNK(515),NN(515) 
4SYM9OL(51) GG(41),TLLL(22,41) 
COMMON _,LAN'( 

C • 
C 
C 	PLOT TEMPERATURES 
C 
C 

TRITE (6,937' 
/9Dt FORmAT(1h1 //////////) 

WRITE(6,47) 	TIME 
47 FORIAT(58X,FITIMI=sF5_1) 



 

VRITE(6,47fl 
477 FORNATt5t/i) 

C 
C 161 

C0 

0 

0 

0 

1=22 
882 CONTINUE 

DO 883 J=1,41 
IF(TELL(I,J).E.O.0) GO TO 8-39 
K1=TELL(1 7 .079 41 
IF(KI.GT.51 1  GO TO 889 
PLACE APPROPRIATE SYMBOL IN APPROPRIATE POSITION 

C 
C 

GG(J)=SY1430L(K1) 
GO TO 883: 

889 GG(J)=BLAN 
883 CONTINUc" 
891 CONTINUE 

C 	PRINT PROPIL,7S 
.0 
C 

WRITE(S I 931  GG 
893 FORM;AT45X341A1) 

I=I-1 
IF(I.NE.8) 	GO TO 882 
RETURN 
END 

 

0 

0 



2.8 Thermal Distribution Results  

The thermal profiles are plotted for the section for every 

3.0 minutes. Temperatures are in degrees °F. The method of 

finite element is flexible and the temperatures can be calculated 

at any point within the elements by defining the x and y co-

ordinates. This is not possible with the finite difference 

method where values can only be obtained at the nodal points of 

the grid, unless an extrapolation procedure is performed which 

is not very accurate. On the other hand finite difference method 

is computationally faster and converges faster too. 

Once the temperatures are determined at any point defined 

by x-y, the stress can be calculated by the methods described 

in Chapter 5. 

In the next pages the temperature distributions are shown 

for specified time intervals of 3.0 minutes for the first 15 

minutes and at various time intervals up to 100 minutes when the 

structure attains uniform temperature of 450°F. 

162 
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INSULATED BOUNDARY 	TEMPERATURES IN DEGREES 
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time = 0.20 hr. ( 12 min.)  
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time = 1.16 hr. ( 70 min.)  
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APPENDIX 3 

COMPUTER PROGRAMS: TRAN 1, 
TRAN 2, TRAN a .  

SUBROUTINE PLOT 

3.1 Data designations for Programs TRAN1, TRAN2, TRAN3 and  

Subroutine PLOT  

The data are designated as follows: 

INTEGER SINGLE is 

INTEGER ARRAY is 

TEAL SINGLE rs 

REAL ARRAY ra 

The main parameters have the following names: 

MAXIT 	is 	number of iterations (for grid) 

NNAX 	is 	number of iterations (for time) 

W rs 	dimension of nozzle-shell 

Z 	rs 	dimension of nozzle-shell 

✓ rs 	dimension of nozzle-shell 

RA 	rs 	dimension of nozzle-shell 

GRID 	rs 	size of grid increments 

R 	rs 	generalised corner radius 

COCON 	rs 	coefficient of thermal conductivity 

of metal 

HTRCOV 	rs 	heat transfer coefficient for vessel 

HTRCON 	rs 	heat transfer coefficient for nozzle 

TIN 	rs 	temperature of fluid (
o
F) 

TIS 	rs 	initial temperature of structure (
o
F) 

RO 	rs 	density of metal 

U is 	nodal temperatures 



170 

G 	ia 	symbol for subroutine PLOT 

ia 	generalised co-ordinate 

12 	ia 	generalised co-ordinate 

'13 	ia 	generalised co-ordinate 

J1 	ia 	generalised co-ordinate. 

J2 	ia 	generalised co-ordinate 

J3 	ia 	generalised co-ordinate 

DIFF 	ra 	difference of nodal temperature 

SUM 	ra 	sum of differences of nodal temperatures 

for iteration process 

ITN 	ra 	. -number of iterations 

OMEGA 	rs 	convergence constant 

TIME 	ra 	time increments 

PLOT 	SUBROUTINE this subroutine plots temperature 

profiles 

BLANK 	ra 	symbol designations for subroutine PLOT 

L10 	ia 	generalised co-ordinate for boundary 

calculations 

L15 	ia 	-generalised co-ordinate for boundary 

calculations 

ia 	time increments for all nodal points 

L18 	is 	generalised co-ordinate for boundary 

calculations 



302 JCB(UMEMM1B013,T600,CM50C00) 	O] CNCHIDES.C.r4. 
MNF(I2D.R=2,F=1,P=560 1)) 

PROGRAM TkAN1(INPUT5 OUTPUT:TAPE5=INPUT,TAP6 2 OUTFUT) 

PROGRAM TRANI DETERMINES THE TRANSIENT TIER` AL DISTRIBUTIONS 
FOR THE NOZZLE-VESSEL SECTION FOR CAS: A 3Y SOLVING THE 
TUC-CIMFNSIONAL UNSTEACY-STATE UNDUCTICN DIFFERENTIAL 
EQUATION .4Mr) 3Y APPLYING TH:. APPROPRIALE BOUNDARY CONDITIONS. 

0 	
- C 	

COMKON U(7C1100), 
iSYMECL(51),• 
1G(100). 

31,J2,J3 12,GRID 
COMMON PLAit: 

	

C 	READ GRAPHING SUMOLS AND :LANK 	• 
• READ(51737; 	(SYMEOL(J), J=1,49),9LAN4 

0 • 	707 FORMAT(52.411  

C 
C 

MAXIT=50 
NMAX=75 
MAX=10 
W=4. 
Z=10. 
V=7. 
S=1. 
RA=2. 
GRIO=0.1 
R=RA/GRID 
EPS=3. 
SIGMA=10. 
COCON=9.75/1.2. -*3E0C.) 

. HTRCCV= 95/(3E47:.3.'144.) 
VIRCON= 9j6.1/(3E00.*144 ) 
TIN=450. 
TIS=6.0. 
R0=4S0./(12."3) 

I1=V/GPID 
I2=(S+RA)/GRID 
I3=S/GRIO 
J1=Z/G2ID 
J2=04-VRA)/GRID 
J3=W/GRID 

C 

	

C 	AT INITIAL STATE THE. TEMPERATURE OF.7 4,2 MATERIAL IS DEFINED 

	

C 	THIS MAY JAPRY 

	

C 	VESSEL PART CALCULATIONS-.30UNEARY-- 
C 
C 

J=1 
DO 11 I=1:Ii 

11 U(I1J)=TIN 

1=1 
DO 12 J=1 .J1 

12 U(I,J)=TIN 
C 

C. C 	SET ITERATION COUNTER TO 1 
ITN=1 

C 	START AN ITERATICN EY SETTING SUM OF RESIDUES TO ZERO 9 SU1=0.0 
J=1 
Li5=I1-1 
• DO 15 I=' L15 
U(1 9 1)=U(I;;.1) 
U(I1.1)=U(11-1,1) 

. CIFF=HTPC0/-'GRICTIN/(HTRCOJAGRIE+2t'DOCON) 
1+COCON'(2. 4U(I,J+1)+U(I+15 J)+U(I-13 J)) 
1/(2.1- 8TPC1J-GRIO+4.*CCCON)-U(I,J) 
U(I,J)=U(I,J)--+DIFF 

15 SUt1=SUS'+Af(OIFF) 
IF(SUM.LE.(EPSW)) GO TO 16 
ITN=ITN+1 
IF(ITN.GT.1AXIT) GO TO 16 

C 	NOT LONVER6F0-4-GO BACH FOR ANOTHER IT.:RATION 
0 	

GO TO 9 
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( C 
C 
C 
C 

0 

0 

0 

0 

DO 99 I=2,T1 
DO 99 J;:2. J1 

99 U(I,J)=TIS 



0 

0 

C) 

C. 

0 

C 

0 

0 

16 CONTINUE 
ITN=1 

17 SUM=0.0 
I=1 
Li8=J1-1 
CO 18 J=2,L1.3 
U(1,J1)=U■2..,J1-1) 
DIFF=-MTRCON4 CRID-'TIN/(NTRCON-(GRIC+2.*--;CCON) 
1+COCOW- (2. -M(I+1,J)+U(I,J-1)+U(I,J4-1)0 
1/(2.=A-ITROON- G(I04 4.-LCOCON)-U(I,J) 
LI(I,J)=U(I,J)+0IFF 

18 SUM=SUN+AJS(DIFF) 
IF(SUM.LE.:EPS`J1)) GO TO 19 
ITN=ITN+1. 
IF(ITN.GT.1AXIT) GC TO 19 
GO TO 17.  

19 CONTINUE 

172 

C 

C 
C 	- VESSEL AND .NOZZLE WALL CALCULATIONS 
C 
C 
C 	THIS IS TIME ITERATION 

ITN=1 
300 SUM=0.0 

L1=I1-•1 . 
L10=J3-1 
DO 1.'70 I=2,L1 
DO 100 J=2,L18 
U(I11J)=U(I1-1,J) 
-U(I.J1)=UiI,J11) 
DIFF=1...8(0)(I-1,J)4U(I+1 1J)+U(I,J+1)+L(I,J-1))/4.-L(I,J)) 
U(I,J)=U(I,J)+DIFF 

100 CONTINUE 
ITN=ITN+1 
IF(ITN.GT.MVX) GO TC .31 
GO TO 300 

101 CONTINUE 
DO 120 J=J2rL18 
DO 120 

120 U(I,J)=U(J2,I2) 
130 CONTINUE 

N=1 
WRITE(6,65 1  N 

650 FORNAT(2X,"N=s-,I2/) 
I=I1 

600 CONTINUE 
WRITE(612:M) I 

2999 FORT(2X, I=/- 1I2/) 
WRITE(6,3-32.0) (J,J=1,10) 

3000 FORMAT(2X 1 19(I2,10X)) 
WRITE(6,3) 

3200 FOR1AT(1(/)) 
WRITE(6,31:10) (U(I,J);J=1,J1) 

3300 FORNATC(1X 110(F5.117X))) 
WRITE (6,34'') 

3400 FOPNAT(1(J! 
1=1-1 
IF(I.E0.0) r,0 TO 1500 
CO TO 600 
CALL PLOT (`+' 

1500 CONTINUE 
00 1000 N=1,NMAX 
DO 112 I=1,I1 
J=1 

112 U(I,J)=TIH 
DO 113 J=1;  J1 
I=1 

113 U(I,J)=TIH 
ITN=1 	. 

310 SUV=C.0 
DO 200 I=2,L1 
PO 2C0.  J= -1  L18 
U(I1,J)=(“11-1,J) 
U(I,J1)=U(IJ1-1) 
DIFF=.84 C;0(I-1+U(14-1,J)+U(I,J4-1)+C(I,J1))/4.•.U(I,J)) 
U(I,J)=U(I,J)+DIFF 

200 CONTINUE 
ITN=ITN+1 
IF(ITN.CT.M&X) GO TC 201 
GO TO 313 

201 CONTINUE 
DO 250 J=J2,L18 • 
DO 250 I=I?,L1 



250 UtI,J)=U(I202) • . 
IFt(N+2)/3.N2,N/3). GO TO 1009 
4)RITE(6,55]1 N 

550 PORMAT(2X1 - N= 4.,I2/) 
I=I1 
JJ=J3 

500 CONTINUE 
WRITE(6,1.9.0N I , 

1999 FORMP, T(2x 	I2/) 
WRIT (6,29)20) J,J=1,10) 

200C FOCiMAT(2X,"(I2 I1X)) 
WRITc(5,2200) 

2200 FORVAT(1(/) 1  
WRITE(6,.2300) (U(I,J),J=1,JJ) 

230C FoRMAT((1 5.1,7X))) 
WRITF:(6,2437) 

2400 FORMAT(1(/)1 
I=I-1 
IF(I.LT.I2.,\MD.I.GT.I3) 	GO TO 670 • 

JJ=J1 
IP(I.ECiC) GC TO 145 
GO TO 5D0 

870 C=FLCAT(J2)-SORT(R 4*2-U-LOAT(I-I2) ,=*2)) 
JJ=INT(O+3.5) 
GO TO 530 

. 145 CONTINU'7. 
145 CALL PLaTiN) 
1002 CONTINUE 

STOP 
END 
SUCUTINE DLOTtN) 

.COHNON U(701100), • 
isYtincL(51), 
1c(in)$ 

• 1P“1,I21113 J11.121 J3 1 7- 9GRID 
COMnON 

C. • 
C 
C 	FRC" HERE THE TEMFRATURFS ARE PLOTTED 
C 
C 
C 

t".9E TC 8  1*7.'A PAGE 
. 	- 

• 845 FOT(1) 
IF(NG-,:_ 6

!-',;
J) GO TO 852 

CO 7C 853 
852 77''E.7.7LCAT:N)/60. 
857, r 7'.:-- ',9±71  Yq,Ti 77  
547 7.)P' 7(4',:-'7 71.27. 1GX, u7PiEF10.2) 

C 	ER1 	I;19 =X I TO I1 FOR TOP ROw 
17-'11 

CpuN 	DOXPL-= TE ROW 
502 

iFij.,_.7,72.1ND.I.GT.I3T GO TO 308 
GO TC 

50E .7CNTTY 
C==; 2. ?).-- . T(R442-(FLOAT(I-I2)*-2)) 

. 80E :CONTINUE 
DO .31.  

C 	CHECK IF P-1NT IS OLTS107 LI1IT 
IFAI.LT4.12.10.I.GT.ILAND.J.ST.J3,AND.J.LT.J2) GO TO 8C9 
IFtI,GL.T.2,J.T.J3) GO TO 880 

' 	.809 CONTINU7. 
C : 	NOT OUTSF:7--SELECT LETTER OR 3LANK T) REPRESENT TEMPERATURE 

K1=U(I,J)/?, 
IF(Ki,GT,":;) GO TO 830 

C 	PLACE APPRIATE SY;12CL IN APPROPRIATE POSITION IN LINE 

GO TC 
C 	INSERT 	IF CUTSID: LriUT 

880 C(J)=BLAN4 
901 CONTINUE 

IF(I4Lf,I3: GO TO 807 
IFtI,GE.1fl GO TO 9C2 
L809=7_, 
L(09=INTL;+1 .) 
DO 807 J=L9C8 1L809 
G(J)ELAN; 

807 CONTINUE 

902 CONTINUE 
C 	WRITE FNTI:pc-  LINE 

905 WRITE (65.91S1  G 
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910 FOR`1IIT(1H,! ,100.1) 
C 

	

	MOVE TO TH: NEXT ROW 
I=I-1 

C 

	

	CHECK FOR COMPLETION 
IF(I.NE.0) r;0 TO 802 

920 CONTINUE 
RETUP.N 
ENO 
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C0 

0 

0 

0 

0 



(. 
3.3 

 JCO(CMEIN16,J13 T700,CM40000,LL3072) 	. OIKCNCIIOES,C.N 
MArl(PART) 
ENFiT; D.R=2,E=1,5000) 

PROGRAM TRAN2(INPUT,OUTPUT1TARE5=INRUT,TARE5=OUTPUT) 
C ' 

	

C 	PROGRAM TRAN2 DCM7.RFIN:S TA TRAt'SI7N7 THERMAL DISTRIRUTIONS 

	

. C 	FOR THE NO27LE-jESSEL SECTION FC' 	 AS 	.::Y SOLVING THE 

	

C 	TWO-CIMENSIDNAL UNSTEADY-STATE CCNDUCTIDN DIFFER'=NTIAL 

	

C 	
EQUATION AND BY APPLYING THE APPROPREATE 3OUNDARY CONDITIONS. 

G 
	C 

C 
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C) 

COPMON U(701100)1 
1SYK'OL(51) 
16(100), 
1R,I1,12,I33 1102,J3 12,GRID 

COMMON BLANK 
C 	READ GRAPHING SUM,- OLS ANDSLAW( 

READ(59707)• (SYXBOL(J), J=1,51),BLAN< 
707 FORMAT(52A 

C 
C 
C 

MAXIT=59 
NMAX=72; 
MAY=i0 
S=1. 
Z=10. 
V=7. 
14=4. 
CRID=0.1 
RA=1.5 
R=RA/GRID 
SIGMA=10. 
COCON=9.75/(123600.) 
HIRGON=903.1/(360D.4144.) 
TIN=450. 
TIS=60. 
R0=490./(12_"3) 

C 
I1=V/GRID 
I2=(SfRA)/GRID • 
I3=S/GRID 
J1.=.'Z/SRID 
J2=0.14-RALIGRID 
J3=1-1/GRID 

LJ 

0 

0 

0 

C 
 C 	AT INITIAL STATE THE TEMPER..:TURE OF . T: JE MATERIAL IS DEFINED 

C 	THIS MAY JARRY 
C 
C 	VESSEL PART CALCULATICNS.--BOUNIDARY 
C 
C 

J=1 
DO 11 1=2.11 

11 U(I,J)=TI3 

I=1 
• DO 12 J=1

, 
Ji 

12 U(II- J)=TIN 
C 

DO 99 
DO 99 J=27.11 

99 U(I,J)=TI3 
C 
C 	SET ITERATION COUNTER TO 1 • 
C 
C 	NOZZLE PART OALCULATICNS---BOUNDARY 
C 

ITN=1 
17 Slit:=0.0 

-1=1 
L18=J1-1 
DO 18 J=3 L18 
U(11J1)=Ua7J1-1). 
U(1,1)=U(1 ?) 
DIFF=HTRC)!1'4GRIC4TIN/(HTRCON4GRID+2,`COCON) 

1-1-COCOW-(2.:'N(I+1,J)4U(I; J-1)4-U(I,J+1)) 
1/(2.-r-HTRCON*.GRID+L.4COCON)-U(I,J) 
U(I,J)=U(IA ))+DIFF 

18 SUM=SUM-1-A3DIFF) 
ITN=ITN+1 	• 
IF(ITN,GT.MAXIT) 	GO TO 19 . 
GO TO 17 

C.  

0 

0 



r 

0 

Li 

er,  

0 

0 

0 

a. 

0 

0 

CONTINUE 
C 
C 
C 

VESSEL-N077LE WALL CALCULATIONS 
C 
C C 	THIS IS TIAE ITERATION 

ITN=1 
300 SH?=0.0 

L1=I1-1 
L10=J3-1 
DO 1G0 IJ.:2 3 L1 
DO 100 J=2,L18 
U(I1J)=U(It-17 J) 
U(I,J1)=UCI,J1--1) 
U(1 9 1)=U(I) 
DIFF=1.84 ,Uti-i,J)+U(I+1,J).+U(I1J+1)+U(I2J1))/4.U(I t j)) 
UtI,J)=U(I,J)+DIFF 

100 CONTINUE 
ITN=ITN+1 
IF4ITN.GT.1'X) GO TO 101 
GO TO 300 

101 CONTINUE 
00 120 J=J?,L18 
DO 120 I=I?,L1 

120 U(I,J)=U(J2 7 I2) 
130 CONTINUE 

N=1 
CALL PLOT(q) 
WRITE(6 1 630) N 

. 650 FORMAT(2Xc'N=4 ,121) 
I=I1 

600 CONTINUE 
WRITE(6,2399) I • 

2999 FORMAT(2X,=`I"'.I2I) 
WRIT(613.9) (J,J=1,10) 

-3009 FORMAT(2X I I2 1 1:X)) 
WRITE(6,3230) 

3200 F)c1M4T(1(/)' 
WRITE(6,7339) (U(I,J).j=101) 

3300 FORlAT((iX 1.0(F5.1,7X))) 
WRITE(6,39) 

3400 FORAT(1(1)! 
I=I-1 
IF(I,E0t0) GO TO 15:3 
GO TO 603 

1500 CONTINUE 
DO 1010 N=1 I NMAX 
DO 113 J=1)J1 
I=1 

113 U(I,J)=TIN 
• ITti=1 

310 SUM=0.0 
00 200 I=2,L1 
DO 200 J=2,L13 
U(II1J)=U;i1-1 1 J) 
U(I5 J1)=U(I. J1-1) 

• U(I,1)=UtIl'?) 
0IFF=1,8*t%U(I-11J)+U(I+11J)+U(I,J+1)+U(IIJ-1))/4.-.U(I,J)) 
U(I,J)=U(I,J)+DIFF 

200 CONTINUE 
ITN=ITN+1 
IF(ITN.GT.MX) GO TO 231 
GO TO 310 

201 CONTINUE 
• 00 250.  J=J?Li8 

DO 250 I=I?.,L1 
250.U(I1J)=U(I2,J2) 

IFt(N+2)/3.NE.N/3) GO TO 1000 
IF(NtE0.12 	GO TO 1000 

WRITE(6,55 1  N 
550 FORMATk2X 1 -. N=-4 ,I2/) 

I=I1 
jJ=J3 

509 CONTINUE 	. 	. 
WRITF(6,1399) I 

1999 	 I - I2/) 
WRIT:1(6121739) (J,J=1,10) 

2000 FORMAT(2X,In(I2,10X)) 
WRITE(6,223)) 

2200 FOP91T(1(/) 1  
WRITE(;,2330) (UtI,J),J=1/JJ) 

2300 F3RNATMX, 4-0(F5.1,7X))) . 
WRITE(6 7 2430) 
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2400 FOPMAT(1(1)) 

IF(I.LT.T.2.ND:II,GT,I3) 	GO TO 670 
IF(I1LE.I3: 	JJ=Ji 
IF(I.E(.0) GO TO 145 
GO TO 500 	• • 

670 C=65.*FLOAT(I) 
JJ=INT(0) 
GO TO 500 

145 CONTINUE 
'— 145 CALL PLCT(NP 

1000 CONTINUE 
• STOP • 

ENO 
SUDROUTIN' °LOT(N) 

. COMMON U(72,133), 
1SYMBOL(51); 
16(100) 1 - 
11-2.9.11,I2II:35)1,,J2,J37Z1GRID 

COMMON eLANK 	• 

177 

.
C 

	

C 	FRC? HERE THE TEMPERATURES ARE PLOTTED 
. • "C • 

() 

	

.c. 	MOVE TO • A NEW PAGE 

	

. 	 WRITE(6,8l5 
• 845 FOR"AT(1H1) 

IF(N.GE.6J: GO TO 852 
GO TO S53 

852 TIME=FLOA7.N)/60. 
853 WIT=(6047) N; TIME 
847 FORMATIN=:',I2110X14TIVE=""-,F10.2) 

	

-• 'C 	SET ROW INJEX I TO I/ FOR TOP ROW. 
I=I1 

• • RUN THPCUGH COMPLETE ROW 
- 	802 CONTINUE 

' •• • 	IF(I.LT,I2.:\IND.I.GT.I3) GO TO 508 
GO TO .10,53 

808 COTINH=. 
• C=gECAT(I) 

. 	 J1=INT(C) 
506 CONTTUE• 	

• 	DO r-J1 J=g 4,_11 
CHECK IF P%.1-5:7 IS OLTSIOF LIMIT 
IF(I..LT.I2.AND.I.GT.I3.AND.J.GT.J3eAN3.J.LT.,2) GO TO 809 
IF(I.G,=.12."1.ND.J.GT.J3) GO TO 55C 

809 
C NOT :,UTSI1:--SELECT LETTER OR BLANK T) REPRESENT TEMPERATURE 

IFJKlaGT. 	GO TO 681 

.c • 	
,OcRIATE YNB SOL IN APPROPRIATE POSITION IN LINE 

• 
GO TC 

• t 	INSEF:T ?LANK IF CUTSIOE LIAUT 
- 	880 G(d)='31—-: 

• • 	901 CONT!E 
IF(IiLT.1) 7,3 TO 8C7 

• IF(ItGEI2 7,0 TO 9C2 

	

. CD 	
L.309=7/6:2 

DO• 507* j=1A38,L89 
• G(J)=DLANK 

.807 CONTINUE • J1.7;ZIGRID 
902 CONTINUE 

	

t 	• WRITE ENTI 	LINE 
• • 905 WRITF(61.LP 
• ,• 	910 FORMAT(1H,,...Y.,10N1) 

	

C 	MOVE TO 	NEXT !ROW 
. I=I-1 

•• 	
CHECK FOR •..OMPLETION 

• IF(I•N.0; 1-70 TO 802 
920 CONTINUE 
• RETURN ' 

0• . 	. 	' END 

0 
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.4 JOB(UMEMM18.J13370,CM500:G.LC5120) 	OIKONOMIDES.C,N. 
MNF(T,D,R=2,E=1,irDIN) 
MAP 
BIN. 

PROGRAM TU"3(INPUT,OUTPUT T TAP75=INPUTJAPE6=OUTPUT) 
C 	PROGRAM TF.,:h3 DETERMINES THE TRANSIEAT THERMAL DISTRIrUTION 
C 	FOR THE NOE7LL-VLSSEL SECTION FOR THE CASE C 3Y SOLVING THE 
C 	TWO-DIMENSIodAL UNSTEADY STATE CCIV 	DIFFEPENTIAL 

EaUATION AND BY APPLYING THE APPROPRIATE BOUNDARY CONDITIONS. 
C 
C 
C 

COMMON U(3:/10[1), 
1R.I1.12.17:2 ,1102.J3.Z.GRID 

C 
C. 
C 
C 	DATA DESIGNATIONS--DIMENSIONS- 
C 	DIMENSIONS OF THE STRUCTURE IN INCHES. 
C 	"TMPERATURI_S IN DLGRLES FAHRENHEIT 
C 

TI P1=450. 
TIS=60. 

Z=10.0 
V=3.5 
W=3.0 
-GRID=0.1 
PA= 1.5 
RB=0.5 
R=RA/GRIO • 
TI=5. 
AMI NUT= 60. 
TIMEB=2.5 

C 
C 
C 
C 	PROPERTIES OF STEEL-ZRITISH 
C 
C 	THERMAL CONDUCTIVITY IN 2TU/FT-HR-F 

CO1DS=35..' 
DENSITY OF STEEL IN LC/CUBIC FEET 
DENST=491.: - 

C 	SPECIFIC HEPT OF STEEL IN 3TU/LB-F 
SPEST=1.Ii. 

C 	CHARACTERISTIC LENGTHS IN FEET 
XChAR1=2.5/!_2. 
XCHAR2=a7:7/12. -  
XCHAR3=6.17/1.2. 

C 
C 
C 	PROPERTIES OF AIR AT 60 DEGREES F-BRITISH UNITS- 
C 
C • 	THE MAL CONDUCTIVITY OF AIR IN BTU/FT-.HRF 

GASK=:J.C146 
C 	SPECIFIC-MT OF AIR IN BTU/L3-q.  

SPHEAT=J.24n 
C 	DYNA;1IC VIS 0SITY OF AIR IN LB/FT-HR 

DYNVIS=0.0+77 
C 	KINEMATIC VTSCOSITY OF AIR IN FEET SQUARE/HR 

VISCK=0.579 	• 
C. 	VOLUME COEFFICIENT OF EXPANSION CF AIR PER/DEG.F 

6=0,10164 
C 

_C 
C 	DATA RELATED TO CONDITIONSDRITISH UNITS- 
C 
C 

C 

C 

C 

C C 	AT INITIAL STATE THE TEMPERATURE OF THE MATERIAL IS DEFINED 
C 	THIS MAY VARRY 

ACCELARATIO" DUE TO GRAVITY IN FEET/HR.SCUARE 
ACCEG=4.17:'t1.E+08) 
TEMP'CRATURE OF AIR -DEGREES F.- 
TGAS=60. 
UNIT DIMENSION OF ELE!IENT•.FEET- 
ROY=1.0 

I1=V/GRID 
I2=(S+R)/GRID 
I3=S/GRID 
J1=7/GRID 
J2=(W+RA)/CRID 
J3=W/GRID 
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C 
C 	VESSEL PART CALCULATIONS--POUNDARY- 
C 
C 

J=i 
DO 11 

ii UtI,J)=TIN 

1=4  
DO 12 J=23 ,11 

12 U(I,J)=TIS 
C 
C 

L1=I1-1 
L1E=J1-1 
122=12-1 

-137:7=13+1 
J33=J3+1 

C 
C 
C 

C 
C 

C • 
C 
C 

• 
VESSEL WALL CALCULATIONS 

C 	THIS IS TINE ITERATION 
TIME 2.5O 
NV=1 

299 CONTINUE 
30C CONTINUE 

DO 1)0 I=2,I3 
DO 1,33 J=2,1_18 
U(15 J)=U(2 J) 
U(I,J)=CU(11)+U(14.11J)I.U(I1J+1)+U(I1J-1))/4. 
U(I,J1)=U(I,J1-1) 

IOC CONTINUE 
C 
C 
C 
C 	PEAT IS CONVECTED TO AIR BY NATURAL CONVECTION. 

CALCULATE TPE HEAT TRANSFER COEFFIECIENT AT THE WALL TEMPERATURE 
C 	OF THIS TI1F INTERVAL 

PRAND=(SPHLAT''DYNVIS)/GAS< 
C 
C 	CALCULATE CPASHOFF NUMHR AS A FUNCTION OF THE WALL 
C 	TEMPERATURE AT 	END OF THIS TIME INTERVAL 	 

UM=(U(I3,J214-U(I3,J1))/2. 
CPASH=i(XCi:AP.1x43):- ACCEG -=3'(UM—TGAS))/(VISCK*32) 
PNSL=0.54'(/GRASH- PRi-.N.Ci'f- 0.25) 
HEATC0=(GAEK*ANSL)/X3HARi 

C 
C 	FROM THE NAT FALANCE EQUATION ON THE INSIDE BOUNDARY 

• C 	CALCULATE THE TEMPERATUPE DROP OF THE WALL NOJAL- 
C TEMPERATURLS DUE TO COVVE3TION AT THIS TIML INTERVAL 
C 
C 

PO 4V J=J?,J1 
AA1=—CONOS'`/GRID/12.)*RCY 1- (U(I3,J)—U(I3-11J)) 
IF(A410E0,:c) GO TO 483 
EB1=HEATCO'(GRID/12.)3RC1"- (U(I31J)—TGAS) 
IF(DE11.E0,(#) GO TO 480 
CC1=DENST:P -z_ST*(GRID/12.) 3 (GRID/12.)'= RCY 
DIFF=(—AA1— t 
FDIFF=(DIFF'TINE2)/3600,, 
U(I3,J)=Ui17,J)—FDIFF 

48C CONTINUE 
C 
C 
C 

DO 120 1=133,122 

DO 95 I=/ 133- 
00 95• J=2,J1 

95 U(I,J)=TIS 
DO 96 1=137 ,122 
THE EQUATION OF THE INCLINED INSIDE SURFACE OF THE VESSEL 
WALL DETERMINES THE VALUE OF J CO—ORDINATE FOR EACH VALUUE OF I 
JJ=43—I 
JJJ=JJ+1 
CO 95 J=2 JJJ 

96 U(I,J)=TIS.  
DO 97 I=12,I1 
DO 97 J=43,133 

97 UtI,j)=TIS 
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C 	THE EQt!ATIO" OF THE INCLINED INSIDE SlFACE OF THE VESSEL 
C. 	WALL DETEEIINES THE VALUE OF J CO—ORDINATE FOR FACH VALUUE OF I 

JJ=43—I 
DO 1.2G J=2, JJ 
U(I1JJ)=U(I,JJ-1) 
NI,J)=ME-1,J)+U(I4-1,J)+U(I1J+1)+U(I,J....1))/4. 
U(I,JJ4-1.):-U(I3 JJ) 

12C CONTINUE 
C 
C 

UM=N(I2,J=I+U(I:z.,J2))/2. 
GRASH=C(XCWR2**3rACCEGUN—TGAS))/(VISOK**2) 
ANSL=2.13..(( GRASH-*PFAND)"5.33) 
hEATC0=(uEv— V4SL)/XCHAR2 
DO 	1=T331122 
JJ=471—I 
AA2=—CONDS(GRID/120 41.7.CY*(U(I,JJ)...U(I,JJ-1)) 
IF(14.2.EQ.:0G0 TO 431 
E32=hEATCO'(GRIO/124)'FLYs(IJ(I,JJ)—TGAS) 
IF(IL2.E..:4)50 TO 431 
CC2=DENST;.Sc'EST*(GRID/12.)x(GRID/12.)'RCY 
DIFF2=(—A;,2-6712)/CC2 
FDIFF2=(D1FF2*TIMD)/7600. 
U(T I JJ)=U(I:JJ)—FDIFF2 

481  CONTINUE 

C 

DO 130 I=1.2, L1 
DO 131.! 
U(I,J)=CU(I-1,J)+U(14-1,j)+U(11J+1)+U(I,J—i))/4. 
U(I1,J)=U(T-1,J) 
U(I,j1)=U(Is ..11-1) 

13C CONTTNUE 
1!M=CU(I1,J:)+U(I2,J3))/2. 
GRASh=t(XCEAR3"- 3)*.ACCrG'5*(UN—TGAS))/(VISCK**2) 
ANSI=t;.13'( ( GRASH."-PRANb)**0.33) • 
L:LATOD-=(GAZY*ANSL)/XCHAR3 
DO 4'32 
.AA3--CUNDS".GRID/120 4.-RCY*(U(I,J.7)—U(I,J3-..1)) 
IF(AA3.EC.:..) GO TO 432 
ii13=nEATCO"GRID/120 4aCY*(U(I,J3)—TGAS) 
IF(933.EQ. - s) GO TO 482 
CC.3=5:7NST;'tpFST 4(GPIG/12,)* ( GRID/12.)*RCY 
DIFF3=(—AA'--..-27)/CC3 
FDIFF3=(DIFF7*TIN-E)/3600. 
V(I,J3)=U(I,J3)—FOIFF3 

462 CONTINUE 
C 
C 
C 

IF(TIME.EQ.32.5) TI=10. 
IF(TIT:- .Era_!22.5) TI=33s 
IF(T1'1E.EQ.'f.2.5) T1=61'. 
IF(TINE.EQ.1P02.5) TI=120. 
IF(TIME.E0,, 72.5) NV=4 

MV=5 
IF(TIME.EC1,7 i2.5) NV=6 

Ni=16 
TINT=TI'FLOPT(NV) 
IF(TIMF.EQ.TINT) GO TO 131 
TINE=TIME4L.5 
GO TO 3/20 

111 CONTINUE 
EV=NV+1 

C 
C 
C C 	CALCULATE THE MEAN TEMPERATURES FOR THE SECTIONS OF THE VESSEL 
C 	WALL. 
-C 
C 

SU1=0 
NN1=0 
DO 2A0 I=T2,Ii 
DO 23J0 J=1,J3 
SUM=SEPI+U(IsJ) 
NAP=NNP+1. 
MEA.N1=SW/FLOAT(NNP) 

200C CONTINUE 
C 
C 

SU4=3.0 
NNP=1  

.DO 2.31C 1=133,122 
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JJ=40-I 
DO 2)1r J=1_,JJ 
SUM=SUM+U(I,J) 
NNP=NNP+1 
TMEAN2=SUMiFLOAT(NNP) 

201C CONTINUE 
C 
C 
C 

SUM=:J.0 -  
NNP=3 
DO 2320 .1=1,13 
DO 2:2f 
SUN=SUM+U(:,J) 
N10=NNP-1-1 
T1F_AN3=STI/FLOAT(NNP) 

21.? 2(T CONTINUE 
C 
C 
C 	CALCULATE THE MEAN DIFFERENCES IN TEMPERATURE BETWEEN SECTION'S 
C• 

DELT12=TMEAN1-TMEAN2 - 
DELT23=THL;.N2-TMEAN3 
IF(TIME.GT.61.AND.TINE.LT.1304) GO TO 1000 
IF(TIME.G7:.:1.80.) GO TO 523 
TIME=TIMETIMEB 

C 
C 
C 
C 
C 	PRINT ALL )ORAL TEMPERATURES AT SPECIFIED TIME INTERVALS 
C 
C 
523 CONTINUE 

STI`1==TINL.'FO. 
WRITE(6,24:r) 

24CC FORMAT(1(J)) 
PRITE(6,5E;) STIME i TIME 

556 FORM,.\T(2X 1'TIME IN MINUTES=4,F9.3,10X1*TIME IN SECONDS=*,F9.2) 
WRITE(6 1 245") 

245: FOP,W,T(1(/i) • 
1RITE(6,246r) DELTI2, DELT23 

2461 FORIAT(2X.DIFFERENCE DLLT12=4- ,F9.2,1CX,I'DIFFERENCE DELT23=*,F9.2) 
I=I1 
JJ=J3 

5CE CONTINUE 
WRITE(6,1999) I 

1999 FOR'IAT(2X z Y!=*,I3) 
WRITE(6,2,.7r) (J,J=1,10) 

2134 FORN,1T(2X 1-..*( I21 1(X)) 
WRIT( (6,2.:^ ) (U(I,J),J=i,JJ) 

230(4 FORMAT((1XF5.17 7X)))- 
I=I-1. 
IF(I.LT.I2,AND.I.GT4I3) 	GO TO 670 
IF(I.LE.I3: 	JJ=J1 
IF(I.E0.0 GO TO 1010. 
GO TO 500 

67C C=4'1.-FLOAT( I) 
JJ=INT(C) 
CO TO 551 

1010 IF(TIME.LE.J.50.) GO TO 528 
GO TO 100L 

528 TIM=TIME/TTmEL.  
19N; IF(STIME.a,tAlINUT) GO TO 1001 

GO TO 299 
C 
10E1 CONTINUE 

END
STOP  
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APPENDIX 4 

Stress Analysis by Finite 
Elements 

4.1 Finite Elements  

The structure is considered as an assemblage of elements 

interconnected at a discrete number of nodal points. If the 

force displacement relationships for the individual elements 

are known it is possible to derive the properties and study the 

behaviour of the assembled structure. In an elastic continuum 

the real number of interconnection points is infinite. The 

concept of finite elements attempts to overcome the difficulty 

of an infinite number of points by assuming the real continuum to 

be divided into elements interconnected only at a finite number 

of nodal points at which some imaginary forces, representative of 

the distributed stresses actually acting on the element boundaries, 

were supposed to be introduced. With this idealisation the problem 

reduces to that of a conventional structural type which can be 

solved by numerical treatment. 

4.2 Equations  

In Cartesian co-ordinates (x,y,z) the stresses are: 

Direct stresses: a , a , a 
xx yy zz 

Shear stresses: T / T 	T 
xy yz zx 

First subscript denotes the direction of the stress and the 

second subscript the direction of the outward normal to the 

surface on which it acts. Tensile stresses are positive. 
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Strains are 

DU 	 av 	3w 

	

E xx 
• = 

ax 
eyy = —ay 	2EZZ -- , 

3z 

_Duav E  = —Dv + 	E
3w = 3w 3u 

xy ay ax' yz 3z 3y ' zx 3x Dz 

where u,v,w are the corresponding displacements in x,y,z direction. 

For the isotropic elastic solid with thermal strains 

c xx E 
= —

1 
[ a xx - v (a

YY 
 + a ) l + AT  ZZ 

cyy  = 
1

ayy  - v (azz  + a xx
) + a .6T 

e
ZZ E 

= 
1
- [ a 

zZ 
 - v (a 

xx 
 + a ) 	+ a .AT 

YY 

Txy _ 2(1 +v)  
xy 	G 	E 	a xy 

C 	= 	_ 2  (1 +v) 
yz G 	

a 
yz 

zx 	2 (1 	+v) e 
zx 	azx 

where E = Young's modulus 

G = Shear modulus 

V = Poisson's ratio 

a = Coefficient of thermal expansion 

6T = Temperature rise 

For this particular project the elementary part in which 

the sections of vessel/nozzle are divided is the triangular 

element. The displacements are given by u and v in the direction 

of the x and y axes. Due to thermal expansion of the solid the 

stress in a direction perpendicular to the x-y plane is not 

zero. This is the case of plane strain. By definition the 

strain in the z-direction is zero, and therefore no contribution 

to internal work is made by the stress in this direction, which 

is evaluated from the three main components. The displacements 

within an element are given by two linear polynomials. 
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u = a
1 
+ a

2
x + a

3
y 

v = a
4 
+ a x + a

6
y 

The six constants a can be evaluated by solving the two 

sets of three simultaneous equations which will arise if the 

nodal co-ordinates are inserted and the displacements equated 

to the appropriate nodal displacements. 

u
i 

= a
l 
+ a

2
x
i 
+ a y. 

3 1 

U. = a
l 
+ a

2
x
j 
+ a

3 
 y. 

um = al + a2xm + a3
y
m 

Solving for a
l
, a

2
, a

3 
in terms of the nodal.displacements u.

1
, 

u., u and obtain 
m 

t = - 1 
a. + b.x + c.y)u. + (a. + b.x + c.x) 

(A4 .2 . 1) 
+a 

m 
+ bx + c y)u 

m 
 

m m 

where, 

a. = x,y - x y. 
1 	3 	m 1 

b. = y. - y = y. 
3 m im 

C. =x - x.  =x . 
m 1 	m3 

The other coefficients can be obtained by a cyclic process 

of subscripts in the order i,j,m and where 

1 x. Y1  . 

2A = det 1 x. y, 
D 

= 2(area of triangular element ijm) 

1 xm Ym 

1 1 i 1  J 3 

For the vertical displacement v 



u. 
J 
vj 

u
m 
v
m 
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v=-1.

[ 
i 	1 	1(a.+bx+c.Y)v,+(a.+b.x+ c.y)v.  

2A 	J J 3 i 

+a + bx + cy)v -
m 

m m m 
 

• 

(A4.2.2) 

 

The displacement function guarantees continuity of dis-

placements with adjacent elements because the displacements vary 

linearly along any side of the triangle and, with identical dis-

placement imposed at the nodes, the same displacement will exist 

all along the interface. The total strain at any point within 

the element can be defined by its three components which contri-

bute to internal work. 
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Using equations (A4.2.1) and (A4.2.2) we have 
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D ___1 
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b. 0 b. 0 b 0 
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0 	c.
1  0 
	c. 0 	c

m 
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	c 	b. c In 	b
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v/ (1 - v) 
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(1 + v) (1 - 2v) 
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(1 - 2v) 
2(1 - v) 
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xX 

{a} ..-: a yy  

T xy }

C XX 

= [DI yy 

Ixy  
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where 
ui) 

= 
v. 
( 

Ni = (a. + b.x + c.y)/2 

= (a. + b.x + c.y)/2 	e.t.c. 
J 	J 	J 

The matrix thus derived is independent of the position within the 

element and hence the strains are constant thoughout it. 

In the case of plane strain for the case of isotropic 

thermal expansion az  exists and we have 

a 	va 	va xx 	YY 	zz  
c 

	

	+ aATe 
xx 

Va 	a 	va 
YY zz  

+ aAT
e  

c = - 
XX 
 + 

yy 

I xy 

but also 

2(1 + v) Txy 

va 	va 	a xx 	zz 
+ aAT

e  e22 =0 = 	
E YY 
	

E 

By elininating azz  and solving for the three remaining stresses 

the matrix [ D J is obtained as 

The direct stresses are then calculated from 

where 	aAT xx 

{c } = 	aAT 
o 	yy 

0 

and 

a zz 
 is determined from Equation (A4.2.3). The principal 

stresses are subsequently calculated from 



187 

{al} 
 = 	Icixx ayyl 	1(clxx ayy)z 	4 431  

{a2}  .;,1  {a 	+ a } - {1/2 )1(a 	- a )2  + 4 2  xx yy 	xx yy xy 

As the condition of plane strain is valid for the present 

problem due to large thickness of the vessel in the z-direction 

(closed ring) and as E
z 
= 0, the stress az can be assumed to 

represent the principal stress 0-3  in the z-direction. 
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APPENDIX 
alrlIMM=SOMMININI■.. 

COMPUTER PROGRAMS: SIRE N 1, 
STREN 2, 
SIREN 3 

5.1 Data Designations for Programs STREN1, STREN2, STREN3  

The data are categorised by the following designations: 

is 	integer single 

ia 	integer array 

rs 	real single 

ra 	real array 

hs 	Hollerith single 

ha 	Hollerith array 

The units can be any consistent set, with angles in 

degrees. 

ALPHA 	ra coefficients of thermal expansion 

ANGLEL rs angle of the major principal in plane stress on 

an element, counter-clockwise from the x-axis 

ANGLEN rs angle of the major principal in plane stress at a 

node, counter-clockwise from the x-axis 

ANP 	ia indices of the forced node and of the displaced 

nodes adjacent to it 

AREA 	rs area of an element 

B 	ra the B-matrix in the compatibility or in the 

equilibrium equation for an element 

BI 	ra y -y
m 
 for the elements 

BJ 	ra y -yi  for the elements 

BM 	ra y.-y. for the elements 

BODYF 	rs gravitational body force per unit thickness on 

an element taken to be in the -y direction 
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CASCTL hs constant with the value NFCASE used for testing 

for the termination of the job 

CI 	ra - (x.-x ) for the elements 
3 m 

CJ 	ra - (x
m 
 -x.) for the elements 

CM 	ra - (x.-x.) for the elements 
1 J 

COND 	is specified conditions of restraint for boundary 

nodes with the three possible values 

0 fixed in both x and y directions 

1 fixed in the x direction only 

2 allowed to move along a line at an in plane angle 

cl) measured counter-clockwise from the x-axis 

D 	ra the elasticity D-matrix for an'element 

DELTAT ra temperature rise in the elements above their 

initial constant value 

DELTAU rs x-component of the cyclic increment in the 

iteration to the displacement of a node 

DELTAV rs y-component of the cyclic increment in the 

iteration to the displacement of a node 

E 	ra moduli of elasticity in the elements 

EEXX 	rs linear total strain in the x-direction in an 

element 

EEXY 	rs total shear strain in the plane of an element 

EEYY 	rs linear total strain in the y-direction in an 

element 

ETH 	rs thermal strain in an element 

EXX 	rs linear elastic strain in the x-direction in an 

element 

EXY • 	rs elastic shear strain in the plane of an element 

EYY 	rs linear elastic strain in the y-direction in an 

element 



190 

FXX 	ra components for each node of flexibility times 

thickness in the x-direction due to a force per 

unit thickness on itself in the x-direction 

ra components for each node of flexibility times 

thickness in the x-direction due to a force per 

unit thickness on itself in the y-direction 

FIX 	ra components for each node of flexibility times 

thickness in the y-direction due to a force per 

unit thickness on itself in the x-direction 

FYI 	ra components for each node of flexibility times 

thickness in the y-direction due to a force per 

unit thickness on itself in the y-direction 

is working index of the first node of an element 

is working index of the second node of an element 

K 	ra matrix of stiffness per unit thickness for an 

element 

KXX 	ra components for each node of stiffness per unit 

thickness in the x-direction due to displacements 

in the x-direction of itself and of nodes adjacent 

to it 

KYY 	ra components for each node of stiffness per unit 

thickness in the x-direction due to displacements 

in the y-direction of itself and of nodes 

adjacent to it 

KYX 	ra components for each node of stiffness per unit 

thickness in the y-direction due to displacements 

in 'the x-direction of itself and of nodes adjacent 

to it 

KYY 	ra components for each node of stiffness per unit 

thickness in the y-direction due to displacements 

in the y-direction of itself and of nodes adjacent to it 
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is running index of the elements 

L1 	
is working variable used in the output of element 

data 

L
2 	

is working variable used in the output of element 

data 

L3 	
is working variable used in the output of element 

data 

LE 	is index of particular element 

LN 	ia working indices of the three nodes of an element 

M 	is working index of the third node of an element 

FAT 	is indices of materials specified for the elements 

MATN 	is index of a particular material 

is running index of the nodes 

is working variable used in the output of node 

displacements 

N
2 	

is working variable used in the output of node 

displacements 

N
3 	

is working variable used in the output of node 

displacements 

NAP 	ia numbers of nodes adjacent to each node plus one 

added for itself 

NAP1 	is number of nodes adjacent to a particular node 

plus one added for itself 

NB 	ia indices of the restrained boundary nodes with 

values corresponding to those of NP 

NBR 	is number of restrained boundary nodes 

NC 	is cycle count in the iteration 

NCC 	is cycle interval for writing the iteration progress 

NCY 	is maximum number of cycles for the case 

NEL 	is number of elements 
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is running index of materials 

NMAT 	is number of materials 

NNP 	is number of nodes 

NP 	is index of a particular node 

NPI 	is indices of the first nodes of the elements 

NPJ 	is indices of the second nodes of the elements 

NPM 	is indices of the third nodes of the elements 

NR 	is running index of restrained boundary nodes with 

values 1, 2 

NU 	ra Poisson's ratios in the elements 

0 	is working row or column index used in matrix 

multiplication 

OMEGA 	rs over-relaxation factor 

is working row index of a matrix 

PS 	hs control parameter specifying the type of deformation 

in the body with the two possible values 

STRESS plane stress 

STRAIN plane strain 

Q. 	is working column index of a matrix 

QA 	is running index of a reference node and the nodes 

adjacent to it 

RELDIF rs relative sum of absolute cyclic component 

increments in displacements 

RHO 	ra densities in the elements 

RX 	ra x-components of forces per unit thickness acting 

on the nodes, external or total 

RX1 	rs x-component of an out-of-balance force per unit 

thickness acting on a node plus the force per 

unit thickness acting on the node due to its own 

displacement 
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ra y-components of forces per unit thickness acting 

on the nodes, external or total 

RY1 	rs y-component of an out-of-balance force per unit 

thickness acting on a node plus the force per unit 

thickness acting on the node due to its own dis-

placement 

SD 	rs sum of the absolute components of displacements 

SDD 	rs sum.of the absolute components of cyclic dis- 

placement increments 

SIGLM 	rs the second invariant of stress in an element 

SIGLXX ra normal stress in the x-direction in the elements 

SIGLXY ra shear in plane components of stress in the elements 

SIGLYY ra normal stress in the y-direction in the elements 

SIGLZZ ra normal stress in the z-direction in the elements 

SIGL1 	ra maximum principal in plane stress on an element 

SIGL2 	rs minimum principal in plane stress on an element 

SIGL3 	rs principal anti-plane stress on an element 

SIGNM 	rs the second invariant of stress at a node 

SIGNXX rs normal stress in the x-direction at a node 

SIGNXY rs shear in plane component of stress at a node 

SIGNYY rs normal stress in the y-direction at a node 

SIGNZZ rs normal stress component in the z-direction at a node 

SIGN1 	rs maximum principal in plane stress at a node 

SIGN2 	rs minimum principal in plane stress at a node 

SIGN3 	rs principal anti-plane stress at a node 

SIGTH 	rs thermal stress in an element 

SLOPE 	ra tan 4  for the condition COND - 2 at the re- 

strained boundary nodes 
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SR 	is control parameter specifying stresses to be output, 

with the four possible values 

O none 

1 elements only 

2 nodes only 

3 both elements and nodes 

STRAIN hs 'constant with the value STRAIN used in testing 

which type of deformation is specified 

STRESS hs constant with the value STRESS used in testing 

which type of deformation is specified 

"TITLE 	ha input text being the case title 

1WER 	rs cyclic convergence test constant 

U ra x-components of displacements of the nodes, 

the input guessed values or the solution values 

✓ ra y-components of displacements of the nodes, 

the input guessed values or the solution values 

ra working matrix 

WI 	is control parameter specifying how much of the 

input data is to be output, with the two possible 

values 

O case title and control parameters only 

1 all input data 

W1 	rs working variable 

W2 	rs working variable 

W rs working variable 

W
4 	

rs working variable 

W5 	
rs working variable 

W
6 	

rs working variable 

W
7 	

rs working variable 

X 	ra abscissae of the nodes 

Y 	ra ordinates of the nodes 
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5.2 Listing of Program STREN1  

PRCGRAM STP.EN1(INPUT=1002,OUTPUT=1002-“APE5=INPUTITAPE6=CUTPUT) 

C 
C 0 SPECIFICATION ANC DATA INITIALIZATION STATEMENTS. 

	

INTEGER TITLE, PS, . SR, 	OA 
CASCTL, 	STRESS, • 'di, 	AN, 	P, . 1 

2 	• 
REAL 

COPMCN 

.7 7 
-3 

5 
1 
2 
3 

TITLE (13) , 

. -5)2 
NU(5) 2 

RHO(5), 
ALPhA(5), 

61(377) , 
EJ(377), 
OM(377), 
CI(377), 
CJ(377), 
CM(377), 

4 	 DELTAT(377), 

5 	 FXX(221), 
6 	 FXY(221), 

NPI(377), 	X(221), 
NPJ(377), 	- Y(221), 
NPA(377), 	RX(221), 
NAT(377)1 	RY -(221)1 . 

U(221), 
V(221), 
ANP(22119), 
NAP(221),. 
LN(3) 

0(3,3), 
W(3,6), 
K(6,6), 

5HSTRESS,  

NP, 

6hSTRAIN / 

STRAIN, CONO, 
NU, 	K, 	 KXX, 

Kxy 
2 	 KYX,

,  

3 	 KYY- 

KXX(22119), 
KXY(2210), - 
KYX(221,W, 
KYY(221,9), 

7 	 FYX(221), 
FYY(221) a

DATA CASCTL, STRESS, STRAIN / - 6hNFCASE, 

SIGLXX(377), 
SILLYY(377), 

• SIUZZ(377), 
SICLXY(377), 

C 
C 
C 10 INPUT THE CASE TITLE BUT STOP IF THERE IS NO FURTHER CASE. 

11 READ (5, 121 	TITLE 
12 FORMAT (13A6) 

IF (TITLE (1) .E0. CASCTL) STOP 
C 
C 
C 2C INPUT THE CONTRCL PARAMETERS .AND PREPARE TO INPUT THE AFFAY DATA. 

READ (5, 211  NEL, tqlP, 	NMAT, NCY, Nt3C, 
1 	 TOLER, CN-GA, PS, SR, WI 

21 FORMAT (515, E13.5, F7.3, 2X, A6, 213) 
DO 22 NM = 1, NMAT 

22 E (NM) = 
DO 23 L = 1, NEL 

23 NPI (L) = -1 
00 24 N = 1, NNP 

24 X (N) = -J. 123456789:.35 
C 
C 
C 30 INPUT AND .;HECK THE ARRAY `)ATA. 

READ (5, 3:_) 	(MAIN, I (MATN) , NU (MATH), 
1 	 RHO (MATH), ALPHA (MAIN), 	NA = 1, NHAT) 

31 FORMAT (I5,-4E13,5) 
DO 33 NM = 1, NKAT 
IF (E (NM) .NE. -1.) GO TO 33 
WRIT:(613331  NM 

333 FORMAT(1X,7H E(NN)=, 15) 
WRITE (6, 3?) TITLE 

32 FORMAT (1d1 ////// 5H IN ', 13AE, 1H' / 
1 	36H THERE IS A MISSING INPUT DATA CARD., 
2 

	

	2-Th 	ThE JCB IS ABANDONED.) 
STOP 

33 CONTINUE 
READ (5, 341  (LE, NPI (LE), NPJ (LE), NPA (LE), 

1 	DELTAT(LE), MAT(LE),' L=1,NEL ) 
34 FORMAT(415,P19.3,15) 

00 35 L - i, NEL 
IF (NPI (L) .NE. -1) 	GO TO 35 ' 
WRITE(6,33-d L 

33,4 FORMAT(1X, 	L=, 15/ 
WRITE (6, 3?) TITLE 
STrF 

35 CONTINUE 
DO 350 N=1,45 
REAP(5,36) 	A1,B1,NF1,A2,32,NP2053,93,NP3,A4,94,11 4,A5,E5,NP5 

36 FORMAT(5(F4.P,1X,F4.u,I4 3X)) 
WRITE(6.371) N21 1 NF27 NP31,NP41NP5 

371 . FORmAT(1X 23(I2))) 
X(NP1)=(A1-c214?..)/254.ZX(NP2)=(A2-6343.)/254. 
X(ND3)=(Ai-49.)/254.X(N24)=(A4•6843.)/254, 
X(NF5)=(A3-5848.)/254. 
Y(NP1)=(::1-1111.)/254.EY(NP7)=(32-811.)/254e 
N(NP3)=(?3-11.)/2511.eY(NP4)=(34-811.)/254, 
Y(NP5)=(E5-1311.)/254. 

350 CONTINUE 
00 361 N=iONP 
RX(N)=0. 
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361 CONTINUE 
CO 37 N = 1, NNP 
IF (X (N) .NE. -0.12345E789E35) GC TO 37 
WRITE(6,335) N 

	

33E FORMAT(1Y, 	3H N=, 15) 
WRITE (6, 32) TITLE 
STCF 

C  .37 CONTINUE 
C 	 . 
C 40 OUTPUT TEE TITLE AND THE CONTROL PARAMETERS. 

WRITE (6, 41) 
41 FORMAT (IH: ////// 

I 	. 	45X ;.41HTFE CASE TITLE AND THE CCNTRCL PARAMETERS / 
2 

	

	43X, 41H    /////) 
WRITE (6, 4?) TITLE 

	

42 FORMAT (1H 	13AE) 
• WRITE (6, 47) NEL, NNP ;  NJR,_ NEAT, NCY, UGC, TOLER, OMEGA, PS 
43 FORMAT (26H0THE NUHEER OF ELMENTS IS, 15, 1H. / 

3)H0THE . NUMEER OF NODAL 	IS, 15, iH. / 
2 	4360THE NUMHR CF R.2-3TRAINE0 iCUNDARY NODES IS, 15, iH. 
3 	37H1THE NUMLER CF DIFFERENT N1TERIALS IS, 15, 1F. / 
4 	23H0THE ITERATION LIAIT IS, 13, 8H CYCLES. / 
5 	36HITHE INTERVAL FCR PRCGRESS CLTPUT IS, I5, 6H CYCLES. /. 

29HOTHE CONVERG:NCE TOLERANCE IS, L13.5, 1P. / 
7 	33H0TW: OVT-FR=LAXATION FACTOR IS, F7.3, 1H. / 
6 	37H0THE CASE HAS THE CCNOITICN CF PLANE , A6, IH. / 
9 	23H0STRESSES ARE FOUND FCR) 
IF (SR .EO. 0) WRITE (6, 44) 

44 FORMAT (1H+, 23X, 42HNEITHER THE ELEMENTS NCR THE NCDAL POINTS.) 
IF (SR QED. 1) WRITE (6, 45) 

45 FORMAT (1H+, 23X, 1EMTHE ELEMENTS ONLY.) 
IF (SR .E11. 2) WRITE (6, 46) 

4E - FORMAT (1H+, 23X, 22HTHE NODAL FCINTS CNLY.) 
IF (SR .E). 3) WRITE (6, 47) 

47 FORMAT (1H+, 23X, 3SHECTh THE ELEMENTS AND THE NODAL POINTS.) 
IF (WI .EO. 0) WRITE (6, 43) 

48 FORMAT (37H0THE INFLT ARRAY DATA ARE ACT OUTPUT.) 
IF (WI .E). 1) WRITE (6, 49) 

4S FORMAT (33d9THE INPLT ARRAY DATA ARE OUTPUT.) 
C 
C 
C 5C CUTPUT THE ARRAY DATA. 	- 	 - 

- 	• 	NP1(376)=132 a NPJ(376)=181 
IF (WI .E0. 0) GC 10 61 

	

. WRITE (6, 51) 	(NM, z (NM), NU (NM), IFC (NM), 
1 	 ALPHA INM), 	NM = 1, NEAT) 

51 FORMAT (1HI ////// 
1 	56X, 19FINPLT MATERIAL DATA / 
2 . 	56X, 13H    /1//1 
3 	28X, 42HEATERIAL ELASTIC MOCji-LS PCISSON'S RATIO, 
4 	34H 	DENSITY 	THAL EXPN CCEFF // 
5 	(I37, X, 4E17.5)) 

	

WRITE (6, 5?) 	
_ 

52 FORMAT (1HI //////' 
1 	57X;  18HINPUT ELEMENT DATA / 
2 	57X, 18h    ///// 
3 	3X, 45HELMT NPI NPJ NPM MTRL DELTA T 
4 	4SHELET NPI NPJ NPM MTRL DELTA T 
5 	33HELET NFI NPJ NPM MTRL DELTA I /)  
Li = (NEL + 2) / 3 
DO -53 L2 = 1, L1 
L3 - MIND i.L2 + 2 * LI, NEL) 

	

53 WRITE (6,54) 	(L. NFI (L))  NPJ ( L), NrE (L), 
1 	MAT (Li, DELTAT (L), L_= L2, L3, 1-1) 

54 FORMAT (1H , 515, F13.3, 13X, 515, F1).31  13X, 515, F19.3) 
DO 540 N=1,NNP 
U(N)=0. 
V(N)=0. 

54C CONTINUE 

	

WRITE (6, 55) 	(N, X (N) , Y (N), RX (N), RY (N), 
1 	U (N), V (N), 	N = 1, NNF) 

55 FORMAT (IHI ////// 
1 	53X, 15HINPUT NODE DATA / 
2 	53X, 15H 	 ///// 
3 	13X;  49HNCDE 	X 	Y 

. 4 	 31HRX 	 RY - 	 , 
5 	 21H 	U 	 V // 
6 	(I16, X, 6E17,5)) 

C 
C 
C EC DO GEOMETRIC CALCULATIONS ON THE ELEMENTS. 

61 CO 72 L = 1, NEL 
I = NPI (17.) 
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=-NPM (
Y
L) 

2I (L) = 	(J) - Y (M) 
EJ (L) = Y ('1) - 	(I) 
81 (L) = Y (I) - Y (J) 
CI (L) 	- X (J) 4 y (M) 
CJ (L) = - X (H) + X (I) 
CH (L) - 	X (I) + 	(J) 
AR2A = -(DJ (L) * CM (L) - BM (L) * CJ (1)) / 2. 
IF (AREA .GT. 1.E...35) GO TO 71 
WRITE (6, 6?) .L 

62 FORMAT (141 ////// EH ELEMENT, I5, 259 PAS A NCN..•POSITIVE AREA. / 
- 23H THE CASE IS ABANDONED.) 

GO TO 221 
C 
C 
C 7C SW' THE TOTAL NCCAL PCINT FORCES. 

71 MAIN = MAT (L) 
IF (PS 4801 STRESS) 	SIGTH = 1. - NU (MA71) 
IF (FS *Ea. STRAIN) SIGTH = (1. + NU (MAIN)) 

1 	 4  (is — 2. * NU (MAIN)) 
SIGTH = 	(MATN) 4  ALPHA (MAIN) 4  0:LIAT (L) / SIGTH 
EOCYF = Ai 21 * RHC WAIN) / 3, 
RX (I) = RX (I) - 0.5 * 21 (L) * SIGTH 
RY (I) = Rf (I) - 0.5 ; CI (L) 4  SIGTH 	BODYF 
RX (J) = RX (J) 	0.5 * BJ (L) * SIUTi 
PY (J) = RY (J) - 0.5 A  CJ (L) 

• 

5101.1 - BOOYF 
RX (A) = RX (M) - 0.5 * 91 (L) - SIGTH 

	

72 RY (M) = RY (M) •• 0.5 * CA (L) * SIGTH 	BODYF 

C 
C 8C PREPARE TO SUM THE STIFFNESS CCEFFICIENTS. 

CO 82 N = is  NNF 
00 81 CA = 1, 9 
KXX (N, 0,7-;) = O. 
KXY (N, CA) = O. 
KYX (NI CA) = O. 
KYY (N, CA) = O. 

81 ANP (N, CA) = 0 
AN 	(N, 1) = N 

E2 NAP (N) = 
C 
C 
C 90 FORM THE STIFFNESS MATRIX FOR_ THE ELEMENT. 

CO 105 L = 1, NEL 
DO 92 P = 1, 3 
ro 91 0 = 1, 6 

91 0 (P, 0) = O. 
DO 92 0 = 1, 3 

92 0 (P, 0) = 1. 
2 (1, 1) = 91 (L) 
2 (1, 3) = 9J (L) 
E (1, 5) = 9M (L) 
E (?, 2) = CI (L) 
B (2', 4) = CJ (L) 
0 (2, 6) = CM (L) 
0 (3, 1) = CI (L) 
l? 

 
(3, 2) = 9I (L) 

8 (3, 3) = CJ (L) 
2 (3, 4) = 9J (1) 
0 (3, 5) = CM (L) 
L (3, El 	cK (L) 
MAIN. = MAT (L) 
W1 = NU (MiMIN) 
W2 = 1. 	Wt 
W3 = 1. + W1 
W4 = 1. - 2. ' W1 
IF (PS .20. STRAIN) 	GO TO 93 
W5 = E (MAIN) / (W2 	W3) 
W6 = W1 
W7 = W2 / 2. 
GO TO 94 

93 W5 = E (MAIN) * W2 / (W3 * W4) 
W6 = W1 / W? 
W7 = W4 / :?. * 142) 

94 AREA = (2) (1) * CM (L) - 0M (L) * CJ (LA) / 2. 
W5 = W5 / (4. * AREA) 
E (1, 1) = 95 
C (1, 2) = W5 4  W6 
• (2, 1) = M5 * WE 
• (2, 2) = 45 

(3, 3) = 145 - W7 
'CO 95 P = 1, 3 
DO 95 0 = 1  6 
DO 95 0 = 1, 3 

95 W (p, 0) = W (P, 0) + 0 (P, 0) * 0 (0, 0) 
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CO 96 P = ty 6 
CO 96 C = 1, 6 
K (P, 	= O. 
DO 96 0 = 1, 3 

56 K (P, G) = K (P 0) + B (01  P) * W (C;  C) 

C 
C 100 SUP ANC STORE FCR EACH (FORCED) NODE ThE NONZERO STIFFNESS 
C. 	COEFFICIENTS FOR THE ACJACENT (CISPLACEC) NODES. 

LI (1) = NPI (L) 
LN (2) = NP) (L) 
14 (3) = NP'" (L) 
CO 105 P = 11• 3 

- NP - LN (P) 
DO 105 0 = 1, 3 
0A = 0 

101 OAOA + 1 
• IF --(0A .1-1. 9) 	GO TO 103 

WRITE (6, 12) NP 
102 FORMAT (JAI ////// 5H NODE, 15. 

1 - 	36H FAS NCRE THAN EIGHT ADJACENT NODES. / 
2 	23H THE CASE IS ABANDONED.) 
GO TO 221 

103 IF (ANP (NP, OA) .EG. LN (0)) 	GO TO 104 
IF (ANF (NP, GA) .Niis 0) 	GO TO 101 

. ANC (NP, OA) = LN (C) 
NAP (NP) - OA 

104 KXX (NP, 	= KXX (MP, CA) +•K (2 * P 	1, 2 4  0 -• 1) 
KXY (NP, OA) = KXY (NF, GA) + K- (2 * 13 - 1, 2 4  0) 
KYX (NP, OA1 = KYX (1F, OA) + K (2 * ', 2 4- 0 •- 1) 	' 

105 KYY (NP, OA) = KYY (NP, OA) + K (2 * Pg 2 * Q) 
C 
C 
C 110 	INVERSION OF THE MAIN DIAGONAL STIFFNESS SUEMATRIX, FIND THE 
C 	 -'7 FLXIBILITY SUBMATRIX AT EACH NCCE DISPLACED BY FORCES AT ITSELF. 

DO 112 N = 1, NNP 
141 = KXX (A. 1) * Kr( (N, 1) • KXY (N, 1) * KYX (N, 1) 
FXX (N) = 	KYY (N, 1) / N1 
FXY (N) = - KXY (N, 1) / W1 
FYX (N) = - KYX (N, 1) / 141 

112 FYY (N)= KXX(N,1) / 
C 
C 

125 CONTINUE 
C 
C 

• C 130 PERFCRN A GAUSS 	ITERATICN ON TFE STIFFNESS HATFIX FOR 
C 	TIE ENTIR: STRUCTURE. 

IF (NCC .GT. NCY) 	GO TO 132 
WRITE (6, 21) 

131 FORMAT (1H:. /MY/ 
1 	34X, 35hThE PROGRESS OF THE GAUSS - SEIDEL . 
2 	 23hITERATION TOWARD CONVEFGENCE / 
3 	34X. 35H. 	 .  
4 	 23H 	  ///// 
5 	33X, 39HCYCLE 	 CONVERGENCE CRITERION, 
6 	 26H 	CURRENT CIFFERENCE) 

132 NC = 0 
133 SD = 0. 

SOD = 0. 
DO 136 N = 1, NNP 
IF (FXX (N) + FYY (N) .EQ. 0.) 	GO TO 12E 
RX1 = RX (N) 
-RY1 = FY .ZNI) 
NAPE - NAP (N) 
CO 1374 CA = 1, NAP1 
NP = ANP IN;  OA) 
-RX1 = RX1 - KXX (N, OA) 4  U (NP) - KXY (N, CA) * V (NP) 

1734 FY1 - RY1 - KYX (N, OA) * U (NP) - KYY (N, OA) * V (NP) 
IF (FXX (I) .E0. 3.) GO TO 135 
CELTAU = FXX (N) * RX1 + FXY (N) * RY1 
U (N) = UCN) + Ct4EGA * DELTAU 
SD = SD + E3S- (U (N)) 
SOC = SOO + ABS (DELTAU) 
IF (FYY (N) 	fl.) GO TO 136 

135 OELTAV=FYX (N)*RX1+FYY(N) *RY1 
V (N) = V CN) + OMEGA 4  DELTAV 
SD = SC + ABS (V (N)) 
SDC - SOC + ABS (CELTAV) 

13E CONTINUE 
SD=AXAX/ (71 1 1.E-35) 	- 
RELDIF = SJC / SC 

C 
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NC = NC + 1 
IF (NCC .GT. NCY .OR. mcn INC, NCC) .1E. 0) 	GO-  TO 142 

• WRITE (6, 1')1) NC, TCLER, RELDIF 

141 FORMAT (id.-J, 136, 3X, 2E27.5) 
142 IF (RELOIF .GT. TCLER) GO TO 144 

WRITE (6, 14.?) NC 
143 FORMAT (1H1 ////// 28H THE ITERATION HAS CONVERGED, 

6d 'UTERI I5, off CYCLES.) 
GO TO 151 

144 IF (NC 	NCY) GC TO 133 
WRITL (63 .1 45) NC, RrADIF, TOLER 

145 FORMAT (1di ////// 28h THE ITERATION HAS COMPLETED, 15, 5H THE , 
i. 	526MAXIMLM NUN; =R OF CYCLES WITHOUT CCNVFRGING, EUT HAS / 

. 2 	34H ACHIEVEC A R.-A-ATI/E.: CIFFERENCE OF, E13.5, 
3 	 33H AGAINST A SP:CIFIED TOLERANCE OF, E13.5, 1H. / 
4 	 43H THE UNCCNJERGED RESULTS A:!E WRITTEN BELOW.) 

C 
C' 
C-150 CUTPUT THE NODE CISPLACEMENTS. 

151 WRITE (6, 152) 
152 FORMAT (1H1 ////// 

1 	49X, 33HTHE CALCULATED NODE DISPLACEMENTS / 
2 	49X, 33F.    ///// 
3 	3X, 47HNCDE 	U 	V 
4 	 47HNCOE 	 U - 	 V 
5 	 3OHNCDE 	 •U- 	 V /) , 	. 

N1 = (NNP + 2) / 3 
CO 153 N2 r-  1, N1 
N3 = MIND (N2 + 2 * Ni, NNP) 
WRITE (6, 154) 	(N, U (N), V (N), 	N = N2, N3, Ni) 
FORMAT (1H , I5, 2E16.5, I15, 2E16.5, 115, 2E16.5) 

CALCULATE THE ELEMENT STRESS CCMFONENTS. 
- 	IF (SR .EO. 0) GC TO 221 

DO 184 L = 1, NEL .  
I = NFI CL) 
J = NPJ (1) 
M = NPM (L) 
AREA = (8.J (L) * CM (L) -• OM (L) ' CJ (1)) / 2. 
EEXX = (DI (L) * U (I) + BJ (L) * U 

1 

	

	 + LM(L)4  U(M))/ (2.*AREA) 
EEYY =•(CI (L) * V (I) + CJ (L) 4  V (J) 

1 

	

	 + CM (L) 4  V ('1)) / (2. 4  AREA) 
EEXY = (CI (L) * U (I) + DI (L) * V (I) 

1 	+ CJ (L) * U (J) + DJ (L) * V (J) 
2 	+ CM (I) * U (M) + BA (1) 4  V (M)) / (2. * AREA) 
MATN = MAT (L) 
WI = NU (MATN) 
W2 = 1. 
W3 = 1. + W. 	- 
W4 = 1. •• 2. * W1 
IF -("PS .E0_ STRAIN) 	GO.TO 161 
W5 = E (MAIN) / (W2 * W3) 	 • 	- 
W6 = WI 
W7 - H2 / 2. 
GO TO 162 

161 W5 = E (MATH) * W2 / (W3 * W4) 
N6 = W1 / W2 
W7 = W4 / (2. * W2) 

162 ETI-  = ALPHA (MAIN) 4  OELTAT (L) 
EXX = EEXX - ETH 
EYY = EEYY - ETH 
EXY = EEXY 
SIGLkX (L) = W5 4  (EXX + W6 * EYY) 
SIGLYY (L) .=• W5 4  (1+6 * EXX 4 EYY) 
IF (PS .EQ. STRAIN) 	GO TO 163 
SIGLZZ (L) = J. 
GO TO 164 

163 SIGLZZ (L) = W1 * (SIGtXX (1) + SIGLYY (0) 
164 SIGLXY (L) = W5 * Wi 4  EXY 

153 
154 

C 
C 
C 160 

C 
C 
C 170 CALCULATE THE ELEMENT PRINCIPAL AND NZAN STRESSES. 

IF (SR ;;. 2) GC TO 184 
W1 = 	 (L) + SIGLYY (L)) / 2. 
H2 = (SIGLXX (L) - SIGLYY (L)) / 2. 
W3 = SIGLXY (L) 
W4 = SORT (H2 ** 2 + W3 ** 2) 
SIGi=1 = ki + W4 
SIGL2 	- W4 
IF (ABS(W21  .GT. 	.OR. ABS (W3) .GT. 1.E•.35) GO TO 171 
ANGLEL - 0. 
GO TO 172 

171 ANGLEL = 23.647889756 * ATAN2 (W3, W2) 
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172 SIGL3 	= 	SIG!_27. 	(L) 
SIGL3 	= 	SORT 	((SIGL1 	4 SIGL2 	+ 	SIGL3) 	** 	2 

— 3. 	* 	(SIGL2 	* 	SIGL3 	SIGL3 * SIGL1 	+ SIGL1 	* SIGL2)) 
C 
C 
C 180 COTPUT THE ELEMENT 	STRESSES. 

IF 	(L 	.NE. 	1) 	GC 	TC 	182 
WRITE 	(6) 181) 

181 FORMAT 	(1H2. 	////// 
1 	27X) 40HTHE CALCULATED ELEMENT 	STRESS COMPONENTS,- 
2 	 43H 	ANC 	THE 	PRINCIPAL 	AN') 	THE MEAN 	STRESSES 	/ 	* 
3 	27X, 	40H 	 I 
4 	 .40F 	  ///// 
5 	1X) 	45HELENENT 	SIGMXX SIGMYY 	 / 

' 6 	45HSIGMZZ 	SIGMXY 	- ANGLr1 	./• 	. 
7 	37HSIGP1 	. 	SIGV2 SIGNM /) 

182 

.183 

WRITE 	(6) 	183) 	L, 	SIGLXX 	(L) 	SIGMYY 	(L)) 
1 	SIGLXY 	(01 	AN. 	SIGL1, 
FORMAT 	(1H 	) 	I5) 	4E15.5) 	F12.2) 	X, 	3E16.5). 

SIGLZZ 	(L), 
SIGL2, 	SIGLM 

184 CONTINUE 
IF 	(SR 	...EQ. 	1) 	GC 	TO 	221 

C 
C 
C 190 FIND 	THE 	NODE 	STRESS 	COMPONENTS. 

00 	212 	N = 	1, 	NNP 
SIGNXX 	= 	J. 
SIGNYY = 	Os 
SIGNZZ = 	3. 
SIGNXY = 	0. 
OA — 1 

—191 CO 	L = 	1, 	NEL 
IF 	(NFI 	(L) 	.NE. 	N 	.AND. 	N°J 	(L) 	.NE. 	N 	.AND. 	NT"( 	(L) 	.NE. 	N) 

1 GO TO 191 
SIGNXX = 	SIGNXX 	SIGLXX 	(L) 
SIGNYY 	= SIGNYY 	+ 	SIGLYY 	(L) 
SIGNZZ 	= 	SIGNZZ 	4 	SIGNZZ 	(L) 
SIGNXY 	= 	SIGNXY 	+ SIGLXY 	(L) 
OA — OA +  
IF (QA .E0. NAP IN)) GO TO 192 

191 CONTINUE 
192 	W1 	= 	FLOAT 	(QA — 	1) 

SIGNXX = SIGNXX / W1 
SIGNYY = SIGN?? / W1 
SIGNZZ = SIGNZZ / W1 
SIGNXY = SIGNXY / W1 

C 
.-c 

C 200 CALCULATE THE NcrE PRINCIPAL AND MEAN STRESSES. 
201 W1 = (SIGNXX + SIGNYY) / 2. 

W2 = (SIGNXX — SIGNYY) / 2. 
W3 = SIGNXY -  
W4 = SORT (W2 ** 2 4 W3 ** 2) 
SIGN1 = W1 	W4 
SIGN2 = Wi — W4  
IF (ABS(N2)  .GT...1.E-35 .OR. ABS (W3) .GT. 1.E-35) GO TO 202 
ANGLEN — 
GO TO 203 

202 ANGLEN = 28.647339756 * ATAN2 (W3) W2) 
203 SIGNS = SIGNZZ 

SIGNM = SOT ((SIGN1 4 SIGH + SIGN3) - 	2 
. 	— 3. - (SIGN2 * SIGN3 + SIGN3 * SIGH_ + SIGN1 * SIGN2)) -  

C 
C 
C 21C OUTPUT THE. NCOE STRESSES. 

IF 	(N 	.NE. 	1) 	GC 	TC 	212 
WRITE 	(6) 	211) 

211 FORMAT 	(IH1 	////// 
1 23X) 	37HTHE CALCULATED NCDE 	STRESS COMPONENTS, 
2 41H 	ANE THE 	PRINCIPAL 	ANI 	TFE 	MEAN 	STRESSES / 
3 29X; 	37H 	 /  
4 . 	 40H ///// 
5 3X, 	43HNCOE 	SIGMXX 	SIGMYY , 
6 45HSIGMZZ 	SIGMXY 	ANGLE1 t 
7 37HIGh1 	SIGM2 	SIGNM /) 

212 WRITE 	(6) 	213) 	N, 	SIGNXX) 	SIGNYY, 	SI3NZ21 	SIGNXY/ 
1 ANGLEN) 	SIGN1) 	SIGN2, 	SIGNM 

213 FORMAT 	(1H 	, 	15) 	4E16.5) 	F12.21 	X, 	3E16.5) 
C 
C 
C 220 RETURN TC THE 	BEGINNING 	CF THE.PROGRAM FCR THE NEXT CASE: 

221 GO TO 11 
END 
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5.3 • Listing of Program STREN2  

TYP,CGRAN S71".t.N2(INPUI=1082.9UTPU7=1002,TAP'-:5=INPUT,TACE6=OUTPUT) 
C 	0 SPCIFIDAT'ICN ANC DATA INITIALIZATION STATEENTS, 

INTEGER TITLE, PS, 	SR, ' OA, 	0, 	NF, 
1 	CASCTL, SIESS, NI 	AAA, 	Pg  
2 	STRAIN, COND, 	0, 
REAL 	NU, 	Ks 	KXX, 

J. 	. 	 - KXYg 
2 	 KYX, 
3 	 KYY 
COMMON 	. TITLE(1.1), NPI(277), 	X(1.66)1  

1 	E(1), 	NPJ(271), 	*Y(166), 
2 	NU(1) , 	N71(777), RX(166), 
3 ' 	PHO(1), 	MAT(277), 	RY(166), 
4 	ALPHA(1), 	DELTAT(277), U(166), 

• 5 	 V(166), 
1 	31(277), 	KXX(16E,9), ANP(166,9), SIGLXX(277), 
2 	 BJ(277), 	KXY(166 g 9), 	NAP(166), 	SIGLYY(277), 
3 	OH(277), 	KYX(1CP 1 9)1 	LN(3) 1 	- -SIGLZ7.(277), 
4. 	CI(277), 	KYY(16e,9),. 	--L;(3,6), 	SIGLXY(277), 
5 	CJi277)2 	FXX(16E), 	0(3,3), 
6 	CM(277), 	FXY(1E6), 	W(3,6), 
7 	 FYX(16E), 	K161 6), 
8 	 FYY(lEE) 
DATA CASCTL, STRESS, STRAIN / 6HNFOASE, 6HSTRESS, 6HSTRAIN / 

C 
C 
C 1C INPUT THE CASE TITLE BUT STOP -1F THERE IS NO FURTHER CASE. 

11 READ (5, .12) 	TITLE 
12 FORMAT (13A6) 

IF (TITLE (1) .E0. CASCTL) STOP 
C 
C 
C 20 INPUT THE CONTROL PARAMETERS AND PREPARE TO INPUT THE ARRAY DATA.. 

READ (5, 21) NEL, NNP, 	NMAT, NCY, NOC, 
1 	TOLER, OMEGA, PS, SR, WI 	- 

21 FORMAT (5E51  E13.5, F7.3, 2X, A6, 213) 
DO 22 NM = 1, NMAT 

. 22 E (NM) 
DO 23 L = 1, NEL 

23 NPI (L) = "I  

DO 24 N = 	NNP. 
'24 X (N) 	-3.123456789E35 

C 
C 
C 3C INPUT ANC CHECK THE APRA? DATA. 

READ (5, 31) 	(MAIN, E (MAIN) , NU (MAIN), 
RHO (OAP)), ALPHA (NATA), NM = ig  NHAT) 

31 FORMAT (13, 4E13.5) 
- 00 •33 NM-= 1, NMAT 
IF (E (NM) .NE. -1.) GO TO 33 
WRITE(6,333) NM . 

333 FORMAT(1X1 7H E(NM)=, 15) 
WRIT;' (6, '3?) TITLE 

32 FORMAT 	////// 5H IN 	13A6, 1H' / 
1 	3611 THERE .IS A MISSING INPUT DATA CARO., 
2 

	

	- 24H 	ThE JOB IS ABANDONED.) 
STOP 

33 CONTINUE 
RAD (5, 31-0 (LE, NPI (LE), '4PJ (LE), NFf1 (LE), 

1 	DELTAT(LE), HAT(LE), L=1,NEL ) 
34 FO-RMAT(4I3,P10.3,I5) 

DO 35 L- 1, NEL 
IF (NPI (L) .NE. -1) GO TO 35 
WR1TE(6,334! L 

334 FORMAT(1X, 3H L=, 15) 
WRITE (6, 3?) TITLE 
STOP 

35 CONTINUE 
DO 350 N=1,34 
REA?(5,36) AlyLiI NFi,A2,3?,NP2,A3,'L-A,NR3,A4,j4,NP4,A5,C5,NP5 

36 FORMAT(5(F4,011X,F4.01I4,3X)) 
WRIT:(6,37L) NP1INF2,NP3INP4,NP5 

371 FORmAT(1X,5(I20)) 
X(NP1)=-(41-38670/5C5.F.X(NP2)=(A2-3607.)/505. 
X(NP3)=(A3--i637,)/505.EX(NP4)=(A4-36070/505. 
X(NP5)=(A5-7607.)/505. 
Y(NP1)=(1-1101.)/505. E Y(NP2)=(E2-11C1.)/505. 
Y(NP3)=(±33-1101.)/505. E Y(NP4)=(B4-11)1.)/505. 
Y(NP5)=(35-1191.)/505. 

350 CONTINUE 
00 361 N=1,NNP 
P.X(N)=0. 
RY(N)=0. 

361 CONTINUE 
DO 37 N. = 1, NNP 
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IF (X (N) .NE._ -G.123456783E35) 	GO TO 37 
WRIT:7 (6,3351 A 

335 FOR1AT(1X, 3H N=I 15) 
WRITE (6, 32) 	T ITLE 
STOP 

• 37 CONTINUE • 
-C 
C 
C 42 OUTPUT TH: TITLE ANC THE CONTROL PARAMETERS. 

WRITE (6, 41) • 
41 FORMAT 	////// 

1 	45X; 41HTHE CASE TITLE AND TH: CONTROL PARAMETERS / 
2 	45X, -r1H   /////) 
WRITE (6, 4?) TITLE 

42 FORMAT (1H , 13A6) 
WRITE (6, 43) 	NEL, NNF, M:;R2.  NKAT, NOY, 'ICC, TOLER, OMEGA, PS 

• 43 FORMAT (26H1THE NUMF!ER OF EL:-.1ENTS 	-15, 1H. / 
1 	3)HITHE AW.IEER OF NODAL POINT, IS, IS, 1H. / 
2. 	43H9THE NUMELR OF R:STRAIN'--0 3CUNDAP7 NODES IS, I5, 
3 	37;-11TH:: NUM,:.R OF DIFF:_kcAT MATLRIAL:7 13 ;  I5, 1H. / 
4 	21V3THE ITERATION LIMIT IS, 15, 8H CYCLES. / 
5 	36HUHE INTERVAL FOP PROURESS OLTPUT IS, 15, 6H CYCLES. / 
6 	29HrTHE COAVRGEACE TOLERANC:.:: IS, E13.51 iH, / 
7 	33H9THE OVER-RELAXATION FACTOR IS, F7.3, 1H. / 
8 	. 37MTHE CASE HAS THE CONCITIO1 CF PLANE , A6, IH. / 9 	23i0STRESS'-S ARE FOUND FCR) 
IF (SR .EQ. 0) WRITE (6, 44) 

44 FORMAT (1H+, 23X, 42HNEITHER THE ELEMENTS NOR THE NCDAL POINTS.) 
IF (SR .E/, 1) WRITE :6, 45) 

• - 45 FORMAT (Id+, 23X, 1P.HTH: ELEMiATS ONLY.) 
IF (SR .EO. 2) 	WRITE (6, 46) • 

46 FORMAT (1H+, 23X, 22HTHE NODAL POINTS ONLY.) 
IF (SR .E/. 3) 	WRITL (6, 47) 

47 FORMAT (1H-4-1-23X, 39HD)TH THE ELEMENTS AND THE NODAL POINTS,) 
' 	IF (WI .EI. 0) WRIT: (6, 43) 
48 FORMAT (37H1 THE INPLT ARRAY DATA ARE ACT OUTPUT.) 

IF (WI 	1) WRITE (6, 49) 
49 FORMAT (33H1THE INPLT ARRAY DATA ARE OUTPUT.) 

C 
C 
C 50 OUTPUT THE ARRAY DATA. 

IF (WI .EQ. 8) 	GO TO 61 
WRITE (6, 51) (NM, E (NA), NU (NM), RHO (AM), 

I 	ALPHA (NM), 	NM = 1, :`)NAT) 
51

i
FORMAT (1AL ////// 

56, 1.9HINPLI MATERIAL DATA / 
2 	56X, 19H 	 ///// 
3 . 	23X, 42HMATERIAL ELASTIC MODULUS POISSON'S RATIO, 
4 	• 	34H 	DENSITY 	TH IL EXPN COEFF // 
5 	(1331 X, 4E17.5)) 
WRITE (6, 52) 	' 

52 FORMAT (IH' ////// 
1 	57X, 18HINPUT ELL- HEAT DATA / 
2 	- 	57X, 18h---- 	 ///// 
3 - . 	3X, 48HELVT NPI NP.1 NPM MTRL DELTA T 
4 	

. 	48HELMT NPI NPJ - NPM MTRL DELTA T 
5 	33HELMT NPI NPJ NPM MTRL DELTA I /)- 
L1 = (NEL + 2) / 3 
DO -i3 L2 - 1, Li 
L3 = MIND -(_2 + 2 * Li, NEL) 

53 WRITE (6, 541 	(L, NPI (L) , N2J (L), NFM (L) , 
MAT (L), DELTAT (L), L = L2, L3, Li) 

54
i
FORMAT (1H , 5151  F1J.3, 13X, 515, F1).3, 13Xy 515, F10.3) 
DO.  540 	N=1.7 NAP 
U(A)=9. 	 . 

V(N)=0. 
54C CONTINUE 	• 

WRITE (6, 55) (N, X (M), Y (A), RX (N), RY (N), 
1 	U (N),• V (N), 	N = 1, NNF) 

55 FORMAT(1H1 ////// 
1 • 	58X, 15HINPUT NODE DATA / 
2 	58X, 15H 	' 	//if/ 
3 	13X, 49HNODE 	X 

5 
4 • 	3iHRX U 
	

RY 	, 
21H 	 V // 

6 	(115, X, 6E17.5)) 
C 
C 
C 60 DO GEOMETRIC CALCULATIONS OM THE ELEMENTS. 

61 DO 72 L = 1, NEL 
I = API (T.; 
J = NPJ (L) 
M = NPM (L) 
LI (L) = Y (j) - Y (M) 
DJ (L) = Y (M) 	Y (I) 
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BA (L) = Y (I) — Y (J) 
CI (L) = 	(J) + X (M) 
CJ (L) 	X (9) + X (I) 
CM (L) = — X (I) + X (J) 
AREA — (3J (L) * CM (L) — 3M (L) * CJ (L)) / 2. 
IF (AREA 	1.E-35) GO TO 71 
WRITE (62. 62) L 

62 FORMAT (1H1 ////// eH ELEMENT, IS, 25A HAS A NON—POSITIVE AREA. / 
1 	23H THE CASE IS A3AN0ONED.) 

GO TO 221 
C 
C 
C 70 SUM THE TOThL NCCAL PCINT FORCES. 

71 MATN — MAT (L) 
IF (PS 4E0. STRESS) . SIGTH = 1. — NU (V,AT1) 
IF (PS *EQ. STRAIN) 	SIGTH = (1. + NU (VATN)) 

1 

	

	 * (1. 	2. 	NU (MAIN)) 
SIGTH = — : (MATN) '* ALPHA (MAIN) * OELTAT (L) / SIGTH 
FOOYF = ARE4 " RHO (lATN) / 3. 
RX (I) = RX (I) — 0.5 * 31 (L) * SIGTA 
RY (I) = RY (I) — 0.5 4  CI (L) * SIGTH 	30DYF 
RX (J) = RX (J) — C745 * 3J (L) 	SIGTH 
RY (J) = RY (J) — 0.5 * CJ (L) * SIGTH 	600YF 
RX (M) = RX (M) — 0.5 * 714 (L) * SIGTA 

	

72 RY (M) = RY (H) — 0.5 4  CM (L)-* SIGTH 	300YF 
C 
C 
C 8 PR"DARE TO SUM THE STIFFNESS COEFFICI21NTS. 

PO 92 N = 	NNP 
DO 81 QA = 1, 9 

. KXX (N2  OA) = O. 
KXY (N, OA) = 0. 
KYX (N, OA) = 0. 
KYY (N, OA) = 0. 

81 AMP (N, QA) = 0 
• (N, 1) = N 

82 NAP (N) = 
C 
C 
C 90 FORM THE STIFFNESS MATRIX FOR THE ELEAENT. 

00 105 L = 1, 277 
00 92 P = 1/ 3 
00 91 0 = 1, 6 

91 6 (P. 0) = 
00 92 0 = 17 3 

0) 	9, 92 D 
(P7 1) 0 (17 1 = 91 (L) 

C (1, 3) = 9J (L) 
0 (1, 5) = .9M (L) 
B (2, 2) = CI (L) 
B (2, 4) = CJ (L) 
B (22 6) = rM (L) 
M (3, 1) = = CI (L) 
B (3, 2) 91 (L) ,  
• (3, 3) = CJ (L) 
t: 13, 4) = 	(L) 
• (3, 5) = CM (L) 
B (37 6) = 9M (L) 
MATN = MAT (L) 
41 = NU (MATN) 
42 = 1. — Hi 
W3 = 1. + 
W4 = 1. — 24 * 41 
IF (PS .E1. STRAIN) 	GO TO 93 - 
45 = E (MATN) / (42 * 43) 
46 = 41 
47 = W2 / 20 
GO TO 94 

93 45 = E (MATN) 4  42 / (43 * W4) 
WF = 41 / 4? 
Wi = 44 / (2, * 42) 

94 AREA = (3) (L) * CM IL) 	UM (L) * CJ (L)) / 2. 
45 7 W5 / (4. * AREA) 
D (1 	= 45 
C (1

,  
, 

1)  
2) = 45 * 46 

O (2. 1) = 45 * 46 
D 2) = 45 
• (3, 3) = 45 * 47 
DO 95 P = 1/  3 
CO 95 0 = 1, 6 
W (P, 0) = le 
00 95 0 = 11 3 • 
IF(P.GT.3) P=3. 
IF(O.OT.6) 0=6 
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95 n
0 9 
(Pi
6 P 

0) = 
= 1 

N 
 , 6 

( t  0) + 0 (P, 0) * 0 (0, 0) 
• 

DO 96 Q = 12  6 
K (Pt Q) = 9. 
DO 96 0 = 1, 3 

- 96 K (P, (1) = KAP, 0) + e 	P) 	W 	co 
C 
C. 
C 100 SUP AND STORE FOR EACH (FORCED) NODE THE NON-ZERO STIFFNESS - 
C 	FOR THE ADJACENT (DISPLACEC) NODES. 

LN (1) = 	IL) 
LA (2) = NP) (L) 
LN (3) = NPM (L) 

. 	DO 165 P = 12 3 
NP = LN (P) 
DO 105 0 = 1, 3 
OA = 0 

01 OA - QA + 
IF --(0A .1-2, 9) GO TO 103 
WRITE (62-102) NP 

102 FORMAT (1d1 ////// 5H NODE, IS, 
1• 	36H HAS MORE THAN EIGHT ADJACENT NODES. / 
2 	23d THE CASE IS ABANDONED.) 
GO TO 221 

103 IF (ANP (NP;  OA) 	LN (0)) 	GO TO 104 
IF (ANP.(HP2 QA) .NE. 0) 	GO TO 101 
AAP (NP, (1;2.1  = LN (C) 
NAP (NP) = CA 

104 KXX (NP, QA' = KXX (AP, OA) + K (2 * 	1, 2 4  0 - 1) 
KXY (NC), OA) = KXY (NP, OA) + K (2 * 	- 1, 2.* 0) 
KYX (NP, 	= KYX (NP, CA) + K (2 * 73 2  2 	Q 	1) 

	

105 KYY (NP, Q.\) = KYY (NP, OA) 	K (2.  * P, 2 * 0) 

C 
C 110 2Y INVERSION OF THE MAIN DIAGONAL STIFFNESS SUBMATRIX, FIND THE 
C 	FLEXIBILITY SUBMATRIX AT EACH NODE DISPLACED 2Y FORCES AT ITSELF. 

DO 112 N = 1 2  NNP 
W1 = KXX (A2 I) * KYY (N, 1) 	KXY (N, 1) * KYX (N t  1) 
FXX (N) = 	KYY (N, 1) / Wi 
FXY (N) = 	KXY (N, 1) / N1 
FYX (N) = 	KYX (N, 1) / Wi 

C • 
C 
C 
C 130 PERFORM A GAUSS - SEIDEL ITERATION ON THE STIFFNESS MATRIX FOR 
C 	THE ENTIRE STRUCTURE. 

IF - (NCC .GT. NOY) GO TO 132 
WRITE (6, ":.1) 

131 FORMAT (1H. ////// 
1 - 	34X; 35HTHE PROGRESS OF THE GALSS - SEIDEL 
2 	23HITERATION TOWARD CONVERGENCE / 
3 	34X2 35H 
4 	23H 
5 . - 	33X, 39HCYCLE 	CONJERGENCE- CRITERION2 
6 	2611 	CURRENT DIFFERENCE) 

132 NC = 0 
133 SO = 0. 

SOD = 0. 
DO 136 N = 1, NNP 
IF (FXX (1) + FYY (N) .E0. 0.) 	GO TO 13E 
RX1 = RX (N) 
RY1 = RY (NI 
NAPi = NA? (N) 
DO 134 OA ": 1, NAPI 
NP = ANP (A, OA) 

 

RX1 = RX1 - KXX (N, CA) * U (NP) 	KXY (N, QA) * V (NP) 
134 RY1 = RY1 - KYX (N, OA) * U (NP) 	KYY (N, OA) * V (NP) 

IF (FXX (1) 'EQ. 0.) GO TO 135 
DELTAU = FXX (N) * RX1 + FXY (N) * RY1 
U (N) = U (N) + OMEGA * DELTAU 
SO = SO + ARS (U (N)) 
SOD = SOD + 49S (DEtTAU) 
IF (FYY 	.E0. 0.) GO TO 136 

13E CELTAV=FYX (N)*RX1+FYY(N) *RY1 
V (N) = V 	+ OMEGA 4  DELTAV 
SO = SD + ;t9S (V (N)) 
SOO = SOD + ABS (DELTAU) 

13E CONTINUE 
SD=AMAX1 (C9t1.E.•.35) 
RELDIF = SOO / SO 

C 

C 140 TEST FOR CONVERGENCE. 
NC- NC + 1 ' 
IF (NCC .GT. NCY .0R. MOB (NC, NCC) .NE. 0) GO TO 142 

/1/1/ 
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WRITE (6. "1i) NC, TOLER. RELDIF 
141 FORMAT (1)17;2  136 /  3X ,  2E27.5) 
142 IF (RELDIF .GT. TOLE'?) GO TO 144 

WRITE (6, 1'+3) NC 
143 FORMAT (1i1 ////// 28H THE ITERATION HAS CONVERGED, 

6H AFTER, 15;  8H CYCLES.) 
GO TO 151 

144 IF (NC .LT. NCY) GC TO 133 
WRITE (6, 1'45) NC, RELDIF, TOLEP 

- 145 FORMAT (1H1 ////// 2'3H THE ITERATION HAS COMPLETED /  I5, 5H THE'. 

	

1 	52flMAXIMUM NUMr;ER OF CYCLES WITF.CUT CONVERGING, EUT -HAS / 

	

-2 	34H ACHTEVED A RELATIVE CIFFE.71ENCE OF , E13.5/ 

	

3 	33d 'AGAINST A SP GIFTED TOLERANCE OF, t13.5. 1H. / 

	

4 	43H THE UNCCNVERGED RESULTS AP.E WRITTEN IELCW.) 
C 
C 
C 150 

151 
152 

2 	LOX/ 33H 	 
3 	, 3X, 47HNODE 	 U 	 V 
4 	 47HNODE 	 .0 	 V 
5 	 3OHNCOE 	 U 	 V /) 

N1 = (NNP + 2) / 3 
DO 153 N2 — 1, N1 
N3 — MIND (■12 + 2 * Ni, NNP) 

— - 153 WRITE (6, 15N) 	(N/- U (N), V (N) , 	N = N2, N3, N1) 
154 FORMAT (J.H 	15/ 2E16.5, 1151 .  2E16.5 1  I15. 2E/6.5) 

• C 
C 
C 160 CALCULATE THE ELEMENT STRESS COMPONENTS. 

IF (SR .E0. D) 	GO TO 221 
DO 184 L — 1, NEL .  
I = NPI (L) 
J = NPJ (L) 
M = NPM (L) 
AREA = (9.1 (1) * CM (L) — 	(L) * CJ (L)) / 2. 
EEXX = (B1 (L) * U (I) 4  BJ (L) * U 

1 	 + AIL)* U(1))/ (2.*AREA) 
EEYY = (CI (L) * V (I) + CJ (L) * V (J) 

+ G1 (L) 4  V (1)) / (2. * AREA) 
EEXY = (CI (L) * U (I) + 31 (L) 4  V (I) 

CJ (L) * U (J) + J (L) * V (J) 
+ CM (L) * U 	+ 31 (L) 4 V (1)) / (2. * AREA) 2

MAIN = MAT (L) 
W1 = NU (MAIN) 
W2 	1. — W1 
W3 = 1. +• qt 
144 = 1. — 2. * W1 

IF (PS sE0, STRAIN) GO TO 161 
W5 = E (MATN) / (W2 '4  W3) 
W6 = W1 
W7 — W2 / 2. 
GO TO 162 

161 W5 = E (MAP)) * W2 / (W3 * W4) 
W6 = W1 / W? 
W7 = W4 / (2. * W2) 

162 ETH = ALP,iA (MATN) 4  DELTAT (L) 
EXX = EEXX — ETH 
EYY = EEYY 	ETH 
EXY = EEXY 
SIGLXX (L) = W5 * (EXX + W6 * EYY) 
SIGLYY (L) = W5 4  (h6 + EXX + EYY) 
IF (PS .E1.1. STRAIN) 	GO TO 163. 
SIGLZZ (L) = O. 
GO TO 164 

163 SIGLZZ (L) = Wi * (SIGLXX (L) + SIGLYY (L)) 
164 SIGLXY (L) = W5 * W7 * EXY 

C 
C 
C 170 CALCULATE THE ELEMENT PRINCIPAL AND M:AN STRESSES. 

IF (SR .ED. 2) GO TO 184 
W1 = (SIGLXX (L) + SIGLYY (L)) / 2. 
W2 = (SIGLXX (L) 	SIGLYY (L)) / 2. 
W3 = SIGLXY (L) 
W4 = SORT ( 1 42 ** 2 + W3 "`* 2) 
SIGLI = Wi + W4 
SIGL2W1 — W4 
IF (ABSS (W2) .GT. 10E-35 .OR. ABS (W3) .GT. 	GO TO 171 
ANGLEL = O. 
G3 TO 172 

171 ANGLEL = 28.6478E9756 * ATAN2 (W3, W2) 
172 SIGL3 = SIGLZZ (L) 

SIGLtd = SORT ((SIGL1 + SIGL2 + SIGL3) m/ 2 

OUTPUT THE NODE DISPLACEMENTS. 
WRITE (6. 152) 
FORMAT (1H1 /1/YY/ 

49X. 33HTHE CALCULATED NODE DISPLACEMENTS-/ 
///// 
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- 3. * (SIGL2 * SIGL3 	SIGL3 -- SIGL1 + SIGL1 * SIGL2)) 
C ) 
• c •_A 
C 180 OUTPUT TH: c.LEMENT STRESSES. 

IF (L .NE, 4-)- GO TO 182 
WRITE (6, 191) 

181 FORMAT (1H1 ////// 
- 	1 	 27X ?  40HTHE CALCULATED ELEMENT STRESS COMPONFNTS, 

2 	 40H AND THE PRINCIPAL AND THE MEAN STRESSES / 
• 3 	 27X, 40H   1 	• 

4 	 41H   /i/// 
5 	 1X? . 45HELEMLNT 	SIGMXX 	- SIGMXY 	 7 

6 	 - 45HSIGNZZ 	 SIGMXY 	 ANGLE1 	 2 

7 	 37F-rIGM1 	 SIGN2 	 SIGNM /) 
182 WRITE (6, 111) 	L? SIGLXX (L), SIGLYY (L) I . SIGLZZ (L)? 

1 	 SIGLXY {L), ANGLEL? SICL1, SIGL2 ? .SIGLM 
183 FORMAT (Iii , 15, 4E16.51 F12.2, X, 3E1E.5) 

'184 CONTINUE 
IF (SR .EQ. 1) GO TO 221 

C 
C 
C 190 FIND THE NO')E STRESS COMPONENTS. 

DO 212 N = 1 2  NNP 
SIGNXX = O. 
SIGN?? = 1. 
SIGNZZ = 0. 
SIGNXY = J. 
OA - 1 
DO 191 L = 1, NEL 
IF (NPT (L) .NE. N .AND. NPJ (L) .NE. N .ANO. NPH (L) .NE. N) 

1 	 GO TO 191 
SIGNXX = SIGNXX + SIGLXX (L) 
SIGNYY = SIGNYY + SIGLYY - (L) 
SIGNZZ =- SIGNZZ 4 SIGLZZ (L) 
SIGNXY = SIGNXY + SIGLXY (L) 
OA = OA + 
IF (OA .E). NAP (N)) GO TO 192 

191 CONTINUE 
192 W1 = FLOAT (OA -• 1) 

SIGNXX = SIGNXX / Al 
SIGNYY = SIGN?? / WI 
SIGNZZ 7= SIGNZZ / WI 
SIGNXY = SIGNXY / W1 

C 
C 
C.200 CALCULATE THE NODE PRINCIPAL AND MEAN STRESSES. 

201 Ai = (SIGNXX + SIGNYY) / 2. 
W2 = (SIGNXX - SIGNYY) / 2. 
W3 = SIGNXY 
W4 = SORT (N2 ** 2 + W3 ** 2) 
SIGN1 = Wi + W4 .  
SIGN2 = W1 - W4 
IF (A37S (W2) *GT. 1.1=-35 .OR. ABS (W3) .GT. 1.E•35) 	GO TO .2132 
ANGLEN1. 
GO TO 2-03 

202 ANGLEN = 23.647889756 4  ATAN2 (1431 W2) 
203 SIGN3 = SIGN71 

SIGNM = SOPJ ((SIGN1 	SIGN2 	SIGN3) ** 2 
1 	 •• 3. 4  (SIGN2 - SIGN3 + SIGN3 * SIGN1 + SIGN1 - SIGN2)) 

C 
C 
C 210 OUTPUT THE NOCE STRESSES. 

IF (N .NE. 1.) GC TC 212 
WRIT: (6, 211) 

211 FORMAT (191 1/1,1 /1 	 ' 
1 	2/X, 17HTHE CALCULATED NODE STRESS COMPONENTS, 
2 	 40H ANC -TNE PRINCIPAL AN] THE MEAN STRESSES / 
3 	 29X, 37H-- 	 9 

4 	 40H   /1/// 
5 	 3X, 43HNODE 	 SIGMXX 	 SIGMr" 	 ? 
6 ' 	 451-1STGMZZ 	 SIGMXY 	 ANGLE]. 	 ? 
7 	 37HSIGMi 	 SIGN2 	 SIGNM 1) 

212 WRITE (6, 213) 	N, SIGNXX, SIGNYY. SI3N22. SIGNXY, 
1 	ANGLEN , SI,N1, SIGN2i SIGNM 

213 FORMAT (1H , 15 4E16.5, F12.2, X, 3E16.5) 
C 	 X, 3E16.5) 
C 
C 
C 220 RETURN TO THE BEGINNING OF THE PROGRAA FCR THE NEXT CASE. 

221 GO TO 11 
END 



5,4 Listing of Program STREN3  
PROGRAM STRN7(Ii\RUT,CUTPUT,TAPE5=INPT,TAPE6=OUTPUT) 	. 207 

C 	0 SPECIFICATION ANO DATA INITIALIZATION •STATEMENTS. 
INTEGER TITLE, PS, 	SR, - 0, 	•NP, 

1 	. 1.,ASTL, STRESS, WI, 	n, 	Pt 
STRAIN, COAO, 	 'Q _ 

REAL 	NU, 	K, 	KXX, 
1 	 • 	KKXY

YX,, 2   
3 	 KYY 

- COMMON 	TITLE(13); 	NPI(549), 	X(340), 
1 	 E(1), 	NPJ(549), 
2 	 NP1(549), 	

Y(341), 
RX(340)-, 

3 	 RHO(1), 	MAT(549), 	RY(340), 
4 	ALPHA(1), 	OELTAT(549), U(340),. 
5 	 V(340), 
.1 	 914549), 	KXX(340,9), ANP(340,9), SIGLXX(549), 
2 	 3J(549); 	KXY(340,9), 	NAH(340), 	SIGLYY(549) ;  
3 	 6M(549); 	KYX(340,9) ; 	LN(3), 	S161.7_7(549), 
4 	 C1(5.49), 	KYY(343,9), 	e(3,6), 	sIGLxy(549), 
5 - 	 cJ(549), 	Fxx(340), 	C(3,3), 
6 	 CM(549), 	FXY(346), 	W(3,6), 
7 	 FYX(340), 	K(616), 
8 	 FYY(340) -  
DATA CASOTL, STRESS, .STRAIN / 6HNFCASE, 6HSTRESS t  6HSTRAU / 

C 
C 

:c 10 INPUT THE C1SE TITLE BUT STOP IF THER: IS NO FURTHER CASE. 
11 READ (5, 12) 	TITLE 
12 FORMAT (13A5) 

IF (TITLE (1) .EC. CASCTL) STOP . 
C 
C 
C 20 INPUT THE CONTROL PARAMETERS AND PREPARE TO INPUT THE ARRAY DATA. 

PrAD (5, 21) NEL, NNP, 	NUT, NCY, MCC, 
TOLE R I  OMEGA;  PS, SR WI 

21 FORMAT (5I5, E13.5, F7.3, 2X, A6, 213) 
DO 22 NM = 1, NMAT 

22 F (NM) 
CO

-  
 23 L = ty NEL 

23 NPI (L) = -1 
DO 24 N =:" 1, NNP 

24 X (N) = -).12345678 E35 
C 

• C 
C SC INPUT ANC CHECK THE ARRAY DATA. 

. 	READ (5, 31) 	(MAIN, E (MATN), NU (MATN) , 
•1 	 RHC (MAIN) ;  ALPHA (MATA), NM = 1, NMAT) 

31 FORMAT (I3, 4E13,5) 
DO 33 NM = 1, NMAT 
IF (E (NM) .ME. -1.) GO TO 33 
WRITE(6,3331 NM 

333 FORIAT(1X,79 E(NM)=, 15) 
WRITE (6, 32) TITLE 

32 FORMAT (1H1 ////// 5H IN 1 , 13A6, 1H' / 
36H THERE IS A MISSING INPUT 'DATA CARD., 

2 

	

	2-4h 	THE J03 IS A3ANDONED.) 
STOP 

33 CONTINUE 
READ (5, 34 1 	(LE, NPI (LE);  NPJ (LE), NPA" (LE), 

DELTAT(LE), MAT(LE), L=1,NEL ) 	-• 
3.4 FORMAT(415,P10.3 1 I5) 

DO 35 L = 1, NEL 
IF (NPI (L) .NEs -1) GO TO 35. 
WRITE(61334! L 

334 FORMAT(1X, 3H L=, 15) 
WRITE (6, 32) TITLE 
STOP 

35 CONTINUE 
DO 350 N=1,68 
READ(5,36) A1191,NF1lA2,32,NP2,A3,03,NP3,A4,84,NP4,A51E5,NP5 

36 FORMAT(5(F4(0,1X,F4.0,I4,3X)) 	- 
WRIT:(6,171! NP1,NP2;NR3) NP4,NP5 

371 FORMAT(1X,:-.(I20)) 
X(NP1)=(A1-1.693.)/7S7.EX(NP2)(A2-1693.)/797. 
Y(NP3)=(A:.-15)6.)/7S7.EX(NP4)=(A4-1693.)/797. 
X(NP5)(A3-1.698.)/797. 
Y(N111)=(n1-1477.)/7S7.' E Y(NP2)=(.92-1 7f77.)/797. 
Y(NP3)=(33-1477.)/7S7. E Y(NP4)=U34-14:177.)/7S7. 
Y(NP51=(33-1477.)/7S7. 

350 CONTINUE 
00 361 N=1, NNP 
RX(N)=0. 
RY(N)=0, 

361 CONTINUE 
00 37 N = 1, NNP 
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IF (X (N) .NE. -C.12345E789E35) 	GO TO 37 
WRITE(6,315) N 

335 FORMAT(1X, 3H N=1 15) 
WRITE (6, 3') TITLE 
STOP 

37 CONTINUE 
C 
C 
C 40 OUTPUT THE TITLE AND THE CONTROL PARAlETERS.- 

WRITE (6, 41) 
41 FORMAT (ldf- ////// 

1 	45X/ 4/MIME CASE TITLE AND THE CONTROL PARAMETERS /' 
2 

	

	 45X, 41H 	  /////) 
WRITE (6, 42) TITLE 

42 FORMAT (id 	13+1E) 
WRITE (6, 43) NEL, NNP, MDR, NMAT, NCY, NCC, TOLER, OMEGA, PS 

43 FORMAT (26IIITHE NUME1R OF ELFMENTS IS, 151 
1 	 38HOTHE NUMBER OF Nrg) AL FOINT) IS, 151 1H. / 
2 	41h9THE NUME.ER OF '?ENTRAINED 3CUNDARY NODES IS, 15, 1H. / 
3 	371i'?THE NUMEER OF DIFEtRENT MATERIALS IS, I5, ih. / 
4 	23H1THE ITERATION LIMIT IS, 15, 89 CYCLES. / 
.5 	36d9THE INTERVAL FOR PROGR.1SS CUTPUT IS, I5, 8H CYCLES. 
6 	2(M9THE CONVERGENCE TOLERANCE IS, E13.51 ik. / 
7 	3-UN9THE OVER-RELAXATION FACTO; IS, F7.3, 1H. / 
8 • 	37H1THE CASE HAS THE OONCITIGN CF PLANE 	A6, 1H. / 

. 9 23N!STRESSES ARE  k • 

IF (SR 
44 FORMAT 

IF (SR 
45 FORMAT 

IF (SR 
4E FORMAT 

IF (SR 
47 FORMAT 

IF (WI 
48 FORMAT 

IF (WI 
49 FORMAT 

1U+1 623X -71.NN 9ITHIn) THE ELEMENTS NOR THE NODAL FOINTS.) 
.E0. 1) WRITE (6, 45) 
(1H+; 23X, 18HTHE ELEMENTS CNLY.) 
.Eq. 2) WRITE (6, 46) 
(111+, 23X, 22kTHE NODAL POINTS CNLY.) 
!ED. 3) WRITE (6, 47) 
(1H+; 23X, 39HiJOTH THE ELEMENTS AND THE NODAL PCI1NTS.) 
.E.;1. 0) WRITE (6, 43) 
(37,0THE INPUT ARRAY DATA ARE ICT OUTPUT.) 
.r3. 1) 
	ARAAnATA ARE OUTPUT.) 

C 
C 
C 50 OUTPUT THE ARRAY DATA. 

IF (WI .E]. 0) GC TO 61 
WRITE (6) 51) (NM, 	(NM), NU (NM), RHC (NM), 

1 	ALPHA (NM), 	NM = 1, NMAT) 
51 FORMAT (idl ////// 
i 	56X, 19HINPUT MATERIAL DATA / 
2 	56X, 19H   /.//// 
3 	23X, 42HMATERIAL ELASTIC MODULUS POISSON'S RATIO, 
4 	34k 	DENSITY 	THAL EXPN COEFF // 
5 • 	(133, X, 4E17.5)) 
WRITE (6, 52) 

52 FORMAT (Jill- ////// 
1 	57X, 13HINPUT ELEMENT DATA / 
2 	57X, 18H   MI/ 
3 	3X, 48HELMT NPI ApJ NFM MTRL DELTA T_ 
4 	48HELMT NFI, NPJ NFM N'TRL DELTA T 
5 	33HELMT NPI NPJ NPM MTRL DELTA T . /) 
L1 = (NEL + 2) / 3 
DO 53 L2 = 1, Li 
L3 = MINT (L2 + 2 * Li, NEL) 

53 WRITE (6, 54) 	(L) NPI (L)L 1PJ (L), 1F14 (L), 
1 	MAT (L), OLLTAT (L), 	L = 12, L3, L1) 

.54 FORMAT (ld , 5151 F10.3, 13X, 515, F1].3, 13X, 5151 F10.3) 
00 540 N=1,NNP 
U(N)=0. 
V(N)=0. 

54:: CONTINUE 
WRITE (6, 55) 	(N, X (N), Y (N), RX (1), RY (N), 

1 	U (N), V (A), 	N = 1, NNF) 
55 FORMAT (idI ////// 

1 	53X, 15kINPUT VOCE DATA / 
2 . 	58X, 15k 	 ///// 
3 • • 	13X, 49HNCOE 	X 	Y 
4 	31HRX 	RY 	t 
5 	21H 	U 	V // 
6 	(I16, X, 6E17.5)) 

C 
C 
C 60 DO GEOMETRY CALCULATICNS ON THE ELEMENTS. 

61 CO 72 L - 1, NEL 
I = NPI (E) 
J = NPJ (L) 
M = NPM (Li 
91 (L) = Y (J) - Y (M) 
EJ (L) = Y (41) - Y (I) 

3 
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PM gt) = I fI5) 	I IA 
• C5 (CL) = ''•• X(J) * X (H) 

tCjJ (t)) = 	X (1) 	X II) 
CA (CI)X II') 4 X 1J) 

7-(9J (1.) 	ail (L) 	41-) 4  CJ (1.) / 2. 
5F iL41 	

• 

1.E.-35) GO TO 71 
M:11E (61  62) 1. 

6? FO'R'MATtld± /1//1/ 81-1 ELEMENT, 15, 2511 HAS A NON-POSITIVE AREA. / 
23ji Tri CASE IS . A3ANOONED.) 

CO IrD 221 

- C 
C 711 SU1 THE TOTAL NCCAIL POINT FORCES. 

71 	= MAT .(t) 

	

. 5F IPS 4€QA 'STRESS) SIGTH = 1. 	NU (MAIN) 
IF In 04.1,. STRAIN/ SIGTH = (1. 4 - NU IMATN3) 
1 	 4  (le 	2. 	NU ‘MATN)) 
55(GTH = 	E (MATV) * ALPHA (MATN) * D=LTAT (L) 	SIGTH 
Va.71W = A:1CA * RHO (MATN) / 3. 
RX II) = RX (I) 	1.5 • RI tL) * SIGTH 
RI II) = RY (I) 	0.5 * CI 	SIGTH 	BODYF 
RX 	= RX (j) 	0.5 	J (L) * SIGTH 
RI Li) = RY (J) ••• 0.5 - .CJ IL) * SIG TA 	300IF 
PX 11) =X (1) ••• 13.5 * 111 (L) * SIGTH 

72 EY IM) = EY (M) 	0.5 * CM IL) * SIGTA •.• 300YF 

C inPREPARE TO SUM THE STIFFNESS COEFFICIENTS. Do 	N = 

• 

NNP 
VO '31. CA = 14 9 
XXX IN. OA) = 04 
KXI (N/ 0) = 0. 
XIX (N/ OA) = 04 
gly (N, OA) = 0. 

61 All= (N, OA) = 0 
AlF IN/  1) = N 

62 NAP (N) = 1 

C 	vFOm THE STIFFNESS VATRIX FOR THE ELE1ENT. 
DO 105 	L = 1, 	NEL 
CO 92 P = 1-1 3 
DO 91  

91 43 	f94 0) = n. 
CO 9 0 = 1, 3 

92 0 	('9  0) = r. 
-13 	(1, 1) = 3I (L) 
B 	(11 3) = 9J (L) a 	(1, 5) . 9M (L) 

(2, 2) = (7..1 (L) 
B 	(24 4) CJ (L) 

6) B 
	

(2, = GM (L) 
D 	(3, 1) = CI (L) 
t. (3. 2) = 51 IL) 
D 	(3, 3) = CJ (L) 
B 	(3,. 4) 0J (L) 
D 	(3, 

(3, 
5) = 
e) = 

GM 
M 

IL) 
(L) 

MATW= MAT (L) 
NU 	(NATN) 

W2 =i. -• 41 
W.3 = 1. 	Ni 
W4 	1. - 2. * W1 
IF '(PS oEO. STRAIN) 	GO TO 93 
R5 = 	(MATN) / (42 * 43) 
W6 = 41 
W7 = 42 / 2. 
GO TO 94 

93 W5 = E (MATN) * 42 / (43 * W4) 
P6 = Wi / W? 
07 = W4 / 	

• .

0  W2) 
94 !REA = (9.1 (L) * CM (L) 	RM (L) * CJ (L)) / 2. 

W5 = 115 / (4. * AREA) 
(1, 1) = 

D (11 2) = 45 * 46 
O (24 1) = '45 * 116 
0 (2, 2) = 45 
D (34 3) = 45 * W7 
DO 95 P = 1, 3 
DO 95 0= Lt, 6 
W (Pt 0) = n. 
00 95 0 = 1 4  3 
IF (F.GT03) 	P=3 
IF (0.GT.6) 	0=6 
IF (0. GT.3) ' 0=3  

• 

• 
• 

• 
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•:- 

W (2, 0) = N 	(P, 0) + 0 (P, 0) * (0;  0) 
DO 96 P = 1, 	6 
DO 96 Q = 1.1 	6 
K (P, 0) = 
CO (26 0 = 1.7 	3 
K (P, 0) = K 	(P, 0) + B (0, 2) * 4 (0, 0) 

C ' 
C 100 SUM AND STORE FOR EACH (FORCED) NODE THE NON-ZERO STIFFNESS. 
C 	COEFFICIENTS FOR THE ADJACENT -(DISPLACED) NODES. 

LN (1) = NPT (L) 	 • 
• LA (2) = 	(L) 
LN (3) = NPA! (L) 
DO-10

LN (
5 P P) = 1, 3 

NP  
00 105 0 = 1, 3 
QA = 0 

101 OA = QA + 1 
IF -(0A .LE. 9) 	GO. TO 103 
WRITF (6, 192) NP • 

102 FORMAT (1111 ////// 5H NOOEL  157  
1 	• 36H HAS MCRE THAN EIGHT ADJACENT NODES. / 
2 

	

	23H THE CASE IS ABAIDONED.) 
GO TO 221 

	

103 IF (ANP (AP, OA) 	LN (Q))--  GO TO 104 
IF (ANF (AP, QA) .NE. 0) 	GO TO 101 
AMP (NP, OA) = LN (C) 
NAP (NP) = OA 

---- - 104 KXX (NP, qi5,1 = KXX (NPs  QA) + K (2 * P - 1, 2 * 0 - 1) 
KXY (NP, QA) = KXY (AP, 14) + K (2 * 	- 1, 2 * 0) 
KYX (NP, ()A) = KYX (NP, OA) + K (2 * P, 2 ' 0 - 1) 

105 KYY (NP, GA) = KYY (NP, OA) + K (2 * P, 2 * 0) 

C 
C110 PY INVERSION OF THE MAIN DIAGONAL STIFFNESS SUEMATRIX, FIND THE 

-.c 	FLEXIBILITY SUBMATRIX AT EACH NCCE DISPLACED BY FORCES AT ITSELF, 
DO 112 N = 1, NNP 
141 = KXX (A, 1) ' KY? (N, 1) 	KXY (N, 1) * KYX tNt 1) 
FXX (N) = 	KYY (N, 1) / Wi 
FXY (N) = - KXY (N, 1) / 41 
FYX (N) = 	KYX (N, 1) / 41 

112 FYY (N)= KXX(N,1) / Hi 
- 'C 

C 
C 

95 

96 

C 130 PERFCRM a G1USS - SEIDEL ITERATICN CN THE STIFFNESS MATRIX FOR 
-C 	THE ENTIR: STRUCTURE. 

--..— 	IF (NCC .G.Tt NCY) GO TO 132 
WRITE (6, 131) 

131 FORMAT. (111-1 ////// 
I. 	34X, 35HTHE PROGRESS OF THE GAUSS - SEIDEL , 
2 	28HITERATION TOWARD CONT:RGENCE / 
3 	34X, 35H ' 	 1 

23H 	  ///// 
33X, 39HCYCLE 	CON/ERGENC:.= CRITERION, 

CURRENT DIFFERENCE) 
5 
6 	26H 

132 NC = 0 
133 SO = 0. 

- 	= 0. 
DO 136 N = 1, NNP 
IF (FXX (N) + FYY (N) .EQ. 0.) 	GO TO 136 
RX1 = RX (N) 
RY1 = PY (A) 
NA-P1 = NAP (N) 
DO 134 QA - 1 	NAP1. 
NP = ANP (11, OA) 
RXI = RX1 	KXX (N, QA) * U (AP) 	KXY (N, OA) * V (NP) 

134 RY1 = RY1 - KYX (N, 04) * U (AP) - KYY (N, QA) * V (NP) 
IF (FXX (W .EQ. 0.) GO TO 135 
DELTAU = FXX (M) 	RX1 + FXY (N) * RY1 
U (N) = U (N) + OMEGA * DELTAU 
SD = SD +.7,E=.S (U (N)) 
SOO = SOD + ABS (DELTAU) 
IF (FYY (A) .E0. 1) 	GO TO 136 

135 DELTAV=FYX (N)*RX14FYY(N) *RY1 
V (N) = V (N) + OMEGA * OELTAV 
SD = SO + AS (V (N)) 
SOD = SOO + ABS (CELTAV) 

13E N)NTINUE 
SA=ANAX1 (5n,1.E-35) 
RELOIF = 309./ SO 

C 
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G 150 OUTPUT THE MODE DISPLACEMENTS. 

1$1 WRITE ( 6, L1.2) 	. 

FORMAT 11A .... ////// 
i 	 49X, 33hTHE CALCULATED NCDE DISPLACEMENTS / 
2 	- 	4.1X. 33H  
3 	 ut 47HNOCE 	 U 	 V 

4 	
47HNODE 

	

3OHNCDE 	
-IT 	 V 
U - 	 V /) 

- Ni = (NNP + 2) / 3 
00 153 N2 7-.  il Ni 
N3 = MINO (N2 + 2 * NI, NNP) 

153 WRITE (6, 194) 	(N, U (N), V (N), 	N = N2, N3, N1) 

4  FORMAT (1d ) 15 ) 2E16.5) 115, 2E16.5, 115/ 2E16.5) 

NC = NO + 1  
IF (MCO ,C)Tp NCY OR, MOD (Mo, NCC)  *NZ. 0) 	GO TO 142 

WRIT (6, 141) NC, TOLER, RELDIF 

141 FORMAT (IHO;  1361 3X) 2E27,5) 

142 IF (RELOIF .GT. TOLER) GO TO 144 
WRITE (6, ..43) NC 

.143 FORMAT (1% ////// 23H THE ITERATION HAS OONVZRCED, 
61J AFTER) I5) 0H CYCLES.) 

U) TO 151 • 	. 
1,44 IF (NQ 'LT! NCY) GC TO 133 

WRITE (6, ,45) NC, 'RELDIF, TOLER 
iie FORMAT (111_;. ////// 23H THE ITERATICN HAS COMPLETED) I5) 5H THE , 
• '1 WMAXIMUM \U 1Y OF CYCLES WITHOUT CONVERGING, CUT HAS /. 

34 ACHIEVED A RELATIVE DIFFEENCE• OF, E13.5/ 
34i AGAINST A SP_CIFI_D TOLERANN OF Ei3.5. 1H. / 
tari THE W.3cNVERGED RESULTS AT:E WRITTEN EEL,CW.) 

160 CALCULATE THE ELEMENT STRESS COMFONENTS. 
IF (SR ,E1. 0 GO TO 221 
OQ 134 L = 1, NEL 
I NPI (L) 

NPJ (L) 

H = NPH (L) 
4,REA = (9J (L) * CM (L) - DM (L) 4  CJ (1.)) / 2. 
EENX 	(Ill (L) * 	(1) + BJ L. 	U 

+ i'4H(L) * U(M))/ ( 	* 2 AREA) 
EYY ; (CI (4) * V (i) 	CJ (L) * V (J; 

+ OM (L) 4  V (I)).  / (2. * AREA) 
7-1 

 

(CI (L) A,  U (I) 	DI CL) * V (I) 

l• 	+ CiIL) * U (J) + 1J (L) * V (J) 

2 	+ OM (L) * U (M) + BH (L) * V (A)) / (2. * AREA) 

161 W5 = E (MATM) * W2 / (W3 * W4) 
W6 = W1 / A2 
W7 = W4 / 2. * W2) 

152 ETH 	ALPHA (MATN) 4  OELTAT 
E4X = EEXX 	ETH 
EYY EEYY ETH 

EEXY 

V2 = 	1, 

W3 = 	1. 

W4 = 	1. 

IF (PS 

E 

MATN = MAT (L) 
Wi 	NU (MAIN) 

- lit .  

+ 

2. * W1 
,E1, STRAIN) 	GO TO 161 
(MATN) / (W2 4  W) 

106 -74.  Wi 
W7 = W2 / 2. 
GO TO 162 - 

211 

SIGLXX 	7  W5 * (EXX + W6 * EYY)  SIGLYY (L) = 45 * tW6 - EXX + E.YY) 
IF (PS .EO, STRAIN) 	GO TO 163 
SIGLZZ (L) 1 0. 
GO TO 164 

16' STGLZZ IL) = W1 * (SIGLXX (L) + SIGLYY (1)) 

164 SJ.GLXY (L) = W5 * W7 * EXY 

C 170 CALCULATE THE ELEMENT PRINCIPAL AND M=AN STRESSES. 
IF (5R .E1. 2) 	GC TO 134 

	

= (SIGLXX (1) 4  SIGLYY (L)) 	2. 
W2 = (SIGLXX (L) 	SIGLYY (L)) I 2. 
W3 = SIGLXY (L) 
W4 = SORT (N2 ** 2 4 W3  
SIGL1 = W1 4  W4 
SIG1„2 - W1 	W4 
IF . (ADI (A2) .GT. 1.E••35 *OR. A 	(4143) tGT. 1.&.35) 	GO TO 171 

ANGLE4 = 9. • 
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172 SIGL1 = SIGLZZ (L) 
SIGLM = SORT ((SIGL1. + SIGL2 + SIGL3) 44  2 

1 	 •• 3. * (SIGL2 * SIGL3 + SIGL3 * SIGL1 + SIGL1 * SIGL2)) 
. 

• C 180 OUTPUT THE ELEMENT STRESSES. 
IF (L 	 GO TC 182 
WRITE (6, 2.11) 

181 FORMAT (1H1 ///Y/1 
27X, 49hThE CALCULATED ELEMENT STRESS COMPONENTS, 

2 	 • 	40H ANC THE P'?.INCIPAL AN] THE MEAN STRESSES / 
3 	 27X, 40H 
4 	 40H 	  ///// 
5 	 IX,. 45H ELEMENT 	SIGNXX 	 SIGMYY 	 7 
6 	 45HSIGMZZ 	 SIGMXY 	 ANGLE1 " 
7 	 37HSIGM1 	 SIGN2 	 SIGNM /) 

182 WRITE (6, 113) 	Ll  SIGLXX (L), SIGLYY (L), SIGLZZ (L), 
1 	 SiGLXY (L) 7  ANGLEL, SIGL1, SIGL2, SJGLM 

483 FORMAT (1H 	IS, 4E16.5, F12.2 7  X, 3E1E.5) 
184 CONTINUE 

IF (SR .EQ. 1). GC TO 221 
C 
C 
C 19C FIND THE MODE STRESS COMPONENTS. 

DO 212 N = 1, NNP 
SIGNXX = 3. 
SIGNYY = O. 
SIGNZZ = 0. 
SIGNXY = O. 
QA — 1 
DO 191 L — 17  NEL 
IF (NPT (L) .NE. N .AND. NPJ (L) .NE. N .ANO. NPM (L) .NE. N) 

1 	 GO TO 191 
SIGNXX = SIGNXX + SIGLXX (L) 
SIGNYY = SIGNYY + SIGLYY (L) 
SIGNZZ = SIGNZZ + SIGLZZ (L) 
SIGNXY = SIGNXY + SIGLXY (L) 
QA = GA + 1 
IF ICA 0E0. NAP (N)) GO TO 192 

191 CONTINUE 
192 Wi = FLCAT (OA — 1) 

SIGNXX = SIGNXX / W1 
SIGNYY = SIGNYYJ W1 
SIGNZZ = SIGNZZ / 11 
SIGNXY = SIGNXY / Wi 

C 
C 	• 
C 200 CALCULATE THE NCCE FRINCIPAL AND MEAN STRESSES. 

201 Wi = (SIGNXX + SIGNYY) / 2. 
W2 = (SIGNXX 	SIGNYY) / 2. 
W3 = SIGNXY. 
W4 — SORT (H2 ** 2 + W3 ** 2) 
SIGN1 = Wi + W4 
SIGN2 — W1 — W4 
IF (ADS (N2)• .GT. i.E35 .OR. ABS (W3) .GT. 1..E•-35) 	GO TO 202 
ANLL-LN-  — 3:: 
GO TC 203 

202 ANGLEN = 23.647889756 4 ATAN2 (W3, W2) 
203 SIGN3 = SIGNZZ 

SIGNM = SORT ((SIGN1 + SIGN2 + SIGN3) 44  2 
1 	 — 3. 4  (SIGN2 * SIGN3 + SISN3 4 SIGN1 + SIGN1 * SIGN2)) 

C 
C 

• C 210 OUTPUT TH: NODE STRESSES. 
IF (N .NE. 1) 	GO TC 212 
WRITE (6, 211) 

211 FORMAT (1H1 ////// 
1 	29X, 37HTHEC.ALCULATED NODE STRESS COMPONENTS, 
2 	 40H ANC THA PRINCIPAL AN3 THE MEAN STRESSES / 
3 	 29X, 37H 	 /  
4 	 4)h 	 /J7/I 
5 	3X, 43HNCOE 	 SIGMXX 	 SIGMYY 	 9 

.6 	 45HSIGMZZ 	 SIGMXY 	 ANGLE1 	 s 
7 	37HSIGK1 . 	 SIGN2 	 SIGMM /) 

212 WRITE (6,. 213) 	N, SIGNXX, SIGNYY, SIGNZZ, SIGNXY, 
i 	 ANGLEN, SIGN1, SIGN2, SIGNM 

213
— 
 FORMAT (1H , 15, 4E16.5 7  F12.2, X, 3' E.5) 

C 	 X, 3E1E.5) 
C 
C 
C 220 RETURN TO THE BEGINNING CF THE.PROGRAA FOR THE NEXT.CASE. 

221 GO TO 11 
END 



213 

APPENDIX 6 

Experimental 
of Stresses 

etermination 

11■11111111101. 	 

6.1 Determination of Apparent Strain for Temperatures above 180°C  

Strains conform to the folllowing designations: 

E
I = strain indicated by strain gauge. 

E
R = real strain due to thermal expansion of the material. 

e
A = apparent strain due to heating of the gauge (above 180

o
). 

and 

The indicated strain will then be: 

EI  = ER  + EA  

The relation is valid for the stresses 

a
I = aR + aA 

Therefore the real strain and stress 

ER = eI  -  EA 

a
R = aI - aA 

(A6.1.1) 

(A6.1.2) 

(A6.1.3) 

(A6.1.4) 

The figure below gives the relation between apparent strain 

and temperature. It can be seen that the gauge is self com-

pensating up to 180°C since the apparent strain is negative and 

decreases with temperature. For temperatures over 180°C the 

apparent strain increases, that is the gauge expands, and there-

fore the indicated strain is not the real strain but the combination 

of the real and apparent strains as it is described in Equation 

(A6.1.1). 
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Calculations  

At time interval 12 minutes during heating-up the following 

rosettes along the nozzle have temperatures above 180°C. 

Rosette Gauge 
Temperature Degrees 	ove 180

o
C 

C 

1 1,2,3 198.0 18.0 

2 4,5,6 197.9 17.9 

3 7,8,9 197.9 17.9 

4 10,11,12 197.8 17.8 

5 13,14,15 189.4 9.4 

6 16,17,18 188.4 8.4 

7 19,20,21 186.3 6.3 
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The determination of the apparent strain can be calculated 

as follows: 

For rosette (1) the temperature is 198.0°C. The apparent 

strain for 180°C, read from Fig.A6.1.1, is -720 x 10
-6 and for 

198.0°C is -680 x 10-6. Therefore the apparent strain is: 

E
A 
= -680 x 10

-6 
- (-720 x.10-6) = 40 x 10

-6
. For the rest 

of the rosettes the calculation is similar. 

Rosette Gauge Apparent Strain 

1 1,2,3 40 x 10
-6 

2 4,5,6 33 x 10
-6 

3 7,8,9 33 x 10
-6 

4 10,11,12 28 x 10
-6 

5 13,14,15 10 x 10
-6 

6 16,17,18 7 x 10
-6 

7 19,20,21 5 x 10
-6 

6.2 Determination of Direct Stresses and Strains. Principal  

Strains and Stresses, Direction Angles and Maximum Shear  

Stresses  

The determination of all the strain and stress components 

of the experimental results is performed by the computer program 

EXPER2 which was constructed for this purpose. The various 

processes and their mathematical analysis is as follows. 

1. The program converts the millivolt readings recorded by the 

Data-Log into strain (in/in). 

This is done by using the relationship 

1 	A E
indicated 	250(F)x  V V 
	(A6.2.1) 
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where: 

F = the gauge factor 

AV = voltage indicated in mV (10-3 volts) 

V = voltage across the bridge in volts 

(This is set to 6 volts.) 

The conversion is performed for all 45 gauges for every one 

minute interval during heating-up and cooling-down. 

2. Calculate the direct stresses for each gauge by using the 

relationship: 

a = EE 	 (A6.2.2) 

3. Calculate principal strains for all fifteen rosettes. 

3 

If the principal strains in a two-dimensional system are 

E
I 
and c then the direct strains c

1' 
 c2, c

3 
in directions 

inclined at 0, (0 + a), (6 + a + fi) to c
I 

are 

c
1 
 = 1/2 (c + 6 ) 	(c1 

— 	) COS20 

c2 = 12.(cI 
+ c

II
) + 12(c

I 
- c

II)
cos2(0 +a ) 
	

(A6.2.3) 

3 
= 	(c + cII) + 11(c - cII

)cos2(0 +a + f3) 
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In practice the directions of the principal strains are not 

known usually but if the three direct strains el, e2, e3  are 

measured in known directions, then the three unknowns in 

Equation (A6.2.3) are 

eII 
and 0 

Now if three strain gauges are arranged so that a = = 450  

they form a 45°  rosette like the one in the figure which is used 

for this work. Equations (A6.2.3) become 

e
1 
= 12(eI 

+ e
II
) + 	(e

I 
- eII

)cos20 

62 = 12(cI + II) - 	(eI 
- e

II
)sin20 

63 = 1.2(€ I + eII) - 	(eI 
- e

II
)cos20 

On eliminating 0 from these equations we find that eI, cII 

are the roots of the quadratic equation 
1 

e2 	(e1  + e3  )e -77 (el 
+ e3 - 2e 2

)2  = 0 	(A6.2.4) 

and the two principal strains are given by 

eI = {(e1 + e3) +/ (e1 + e3)2 
 + (e1 + e3 

 -2e7)2}/2 

eII = (e1 + 63) - (e1 + 63) 2  + (e1 + € 3 - 	)21/2 

4. Calculate the principal stresses for all fifteen rosettes. 

When the principal strains e and eII have been estimated, 

the corresponding principal stresses are deduced from the 

relations 

ciI 
- 

1 	Vz 
(e
I 
+ v eII ) 

E  
°I/ - 1 _ v2 ('II 4A)e  1)  

(A6.2.5) 

(A6 .2.6) 

5. Determine the angle 0 between the directions of eI  and e1 

measured clockwise from the direction of eI
. 

The equation for the angle 0 is 

tan20 = 262 - 61 - 63 (A6.2.7) 

 

e 	e1  1 

 

The angle is determined in degrees. 
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6. Print all the results for the first time interval and then 

repeat the above procedure for the second time interval. 

The millivolt readings for each gauge at each time interval 

are given to the program as data. The data designation and the 

listing of the program are given in the next pages. 

PROGRAM EXPER2 

DATA DESIGNATION 

is integer single 

is integer array 

rs real single 

ra real array 

MVOLTS 	ra 	millivolts readings of strain gauges 

NU 	rs 	Poisson's ratio 

SGFACT 	ra 	strain gauge factor 

THETA 	ra 	angle of direction of principal stress 

PSTRE1 	ra 	principal stress I 

PSTRE2 	ra 	principal stress II 

DSTRAN 	ra 	direct strain 

DSTRES 	ra 	direct stress 

PSTAN1 	ra 	principal strain I 

PSTAN2 	ra 	principal strain II 

NG 	ra 	number of gauge 

ITINI 	is 	iteration parameter 

ITMAX 	is 	maximum iteration parameter 

NSG1 I 	is 
number of strain gauge 

NSG2 	is 

NRO1 j 	is 
number of rosette 

NRO2 	is 

VOLT 	rs 	voltage across the bridge 
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E 	rs 	modulus of elasticity 

1,1 	is 	working parameter 

L2 	is 	working parameter 

L3 	is 	working parameter 

B 

D 
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. 
JOBAUMEA11.81ii) 	 OIKCNCAIDES.C 7 N 

PROGRAN EXPFR2(INPUTOUTPUT,TAPE5=INPUT I TAP;=- 6=OUTPUT) 
C 
C 
C 
C 	PROGRAN EXPFR2 INITIALLY CALCULATES" THE DIRECT STRAINS IN THE 
C' 	LONGITUDINA 	TR,NST.ERSI PL;-;NES F01 ALL 45 SP: AIN GAUGES 
C . OF 1; ROS_TrES 3Y C014:.RTING VDL-TAGE 1AOINGS FR C1 A MULTI 
C 	CHANEL WHE;;FT3'I ;;.RI GE INT') OIECT ST:111'N FOR VARIOUS TINE 
C 	IATERVALS ;;AIRING HEATING AAD COOLING CYCLES.IT DETERMINES FOR 

THE ST-CIE TIME INTFRLS THE DIRECT SflESSESI THE PRINCIPAL 
C 	STRESSES AS WELL AS TH..IR DIRECTION 
C 
C 

REAL MVOLTSi NU 
COMMON APILTS(45), 	DSTRAN(45), 

SGFACT(L5), 
2 	T 	

D3TRES(45), 
HETA(15),  RSTAN1(13), 

3 	PSTRE1(15), 	PSTAN2(15), 
4 	PTRE2(15), 	NG(45) 
ITINI=1 
ITMAX=16 
MSG1=1 
MSG2=45 
Naol=i 
NR02=15 

C 	RLAC DATA FOR SPECIFIED TI IE INTERVALS 
C 	REA9 NumK2 OF STRI,IN GANGES AND ROSETTES 
C 	READ MILLIVOLTS CUTRUT.AND STRAIN GAUGE FACTORS- 
C • 	NUMI7 R CF 2,1- FAIN GAUGES =45 

PO 	IT=ITINIIITMAY 
PEA7l5,1r)(No(N),!IVOLTS(N),SGFACT(N),1=NSG1 I NSG2) 

1C TORMAT(5(I41 F6.21 F6,2)) 
T=FLCAT(IT) 

• C 
C 	DEFINE VOLTPGE(IN VOLTS) ACROSS THE YlIDGE 
C 	CONVERT JOLTAGE RFACINGS IATO DIRECT STRAIN FOR ALL GAUGES 

VOLT=6.00 	 , 

. DO 15 N=1Crl,NSG2 
FISTRAN(M)=0.JL44MVOLTS(N))/(VOLT*SGFACT(1)) -  

15 CONTINUE 
C 
C 	VDOULUS CF ELASTICITY 

E=3C.04 (1::.'"-a) 
C 	CALCULATE DTRECT STRESSES FOR ALL GAUGES 

U") 91  N=ASr.1,NSG2 
OSTRES(N)=_:4- 9STRAN(N) 

2C CONTINUE 
C 
C 	CALCULATE PRINCIPAL STRAINS FOR ALL FIFTLEN ROSETTES 
C 

11=0 
PO 25 	M.-=AsGI,NsG223 
N=N+1 
L1=4 
12=1+1 
L3=M+2 
E=DSTRaN(L!..1 4-DSI-RANCL:D 
C=9sTRAN(L.)+ 7)sTRAI“L:3)-?,-1STRAN(L2) 
PSTAN1(N)=Cli-SORT(t2)+tC"2)))/2. 
PSTAN2(N)=(B-SORT((2*;=2)+(04'*2)))/2. 

• C 	CALCULATE PRINCIPAL STRESSES FOR ALL FIFTEEN ROSETTES 
C 	R.IISSON'S 	NU=c.3 

PSTRE.1(N)=(STANit'1)+3,3':-)STA2(N)))/0091 
PSTR=2(N)=F(PSTAN2(1)+',..3 PSTAN1(N)))/i3.91 

C 	CALCULATE THE DIRECTION OF PINCIPAL STRESSES 
C 	THE ANGLE IF MEASURED IN DEGP,EES 

D=2.*OSTRAN/L2)-OSTRAN(L1)-DSTRAIN(L3) 
F=DSTRAN(L.-5-03TRAN(L1) 
THETA(N)=57.2957779:i4 (ATAN(0/F))/2. 

• 25 CONTINUE 
C 
C 	'PRINT• ALL aFSULTS 
C 	• 

WRITE(61 55) 
55 F0R.m,AT(5(/)) 

WRIT.: (6,56) 	T 
56 •FlPs'IAT(1X,4rYCLE41 8X1 4TIXE=^,F5,2) 

WRIT:(6,5i) 
57 FOR'.1AT(1X .24( 4-*)) 

WRITE(6,5) 
58 FOIAT(2(1)) 

WRITE t6,59) 
F0P,UT(1X,VHGAUGE NO 	MVOLTS READINGS DIR 
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iCT STRAINS 	 DIRECT STRESSES / 
21X;1911 
3    //) 

WRITE(5 1 65) 4 NG(N),MVOLTS01),OSTRAN(N),OSTRES(N),N=NS617(JSG2) 
65 FOP1AT(1X4IF,19X,F6,32i3X,L16.4118X,F3.1) 

WRITE (b,7..) 
7C FOR1AT(5(/;? 

i.J°.IT=(5,73) 
75 FO'-',"AT(1X,37HR0SETTE ?1O 	 PRINCIPAL STRAINS 

lIW;IPAL 	 DIRECTION ANGLE / 
21X197H 
3   //) 

PRITE(6/3 	(1,PSTAN10),PSTAN2(N),PSTRE1007- 
1PST 72(N),THETA1N),,N=NR01) NR02) .  

FO?"AT(1X I I4),5X,Elcs4,E10.427X,Fe.192X,F8.1,16X,F6.2) 
WRIT -Z(6,9j) 

9C FORMaT(1X,172(*—*)) 
143C C0qTINUE 

STOP 
EAO 

PR 
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APPENDIX 7 

oundary Collocation 
Analysis 

7.1 Boundary Collocation Analysis. 

Derivation of Boundary Conditions. 

The Williams stress function is given by 

X (r,0) = 

cc, 

n=1,2,... 

(-1)n-1d
2n-1

rn+(1/2)- cos(n40 

2n-3  
2n+1 cos(n + 1/2)0 + (-1)n d

2n
r
n+1 

- cos(n - 1)0 

+ cos (n + 1)0 

The stress components are given by 

a 

Dx2  

2, a2„ 	D2x  sinecose Dx  sin20 a
x 
= A - 	- 2 

aagar' r 	3rart 
(A7. 1. 1) 

+ 2 sinOcos0 	D2x  sin20 

r2 
DO 	ae2 r2 

a - 

	

a2, 
— a2, sin20 + 2  -  A 

2,/ 	
+ 

sinOcos8 	3x  cos20 ,  2 	---a- 

	

Y °Y 3r2 	90r r Dr 

	

7 	r 
?2 C sin8 cosh  a  .)( cog e 4 _ 

	

-2  WO 	(2- 	ae 	ri- 

cos20  
- T 	= 12-2-( - sinecose 2)( 4.  

r arae ar2 xY axaY  

	

sinecos0 D2x 	sinOcos0  
2 	arae Dr 

cos20 Dx  
D r 	O  

(A7.1.2) 

(A7. 1.3) 



aX =ar+A X 

a r2  X 
+ Ar + B X - 2 

223 

Therefore a
x
, a

y' 
-.T3cy  are all functions of x,r,O. The conditions 

at different points will be as follows: 

Along the crack surface: 

0 = f(cose, sine) 	cos8 = cos (±7r) , sinD=sin(+-If),o 

hence a = 0, and -T 
xy 

= f(cosesin8) 

therefore -T 
xy 

= 0. Hence the normal and shearing stresses are 

zero along the surface of the crack. 

-4- 
BOUNDARY AB: 

At boundary AB 8 = + 7r/2 

x = f(cos8,r) = f(cos(74)

aX

,r) = 0 

and therefore X = 0, 	= 0 

-4- 
BOUNDARY BC: 

Equation (A7.1.1) for a
x 

for 8 = 0 becomes 

a = 
x 

 
ar2  

Integrating 

92x  

Using conditions on boundary AB to determine the constants, 

ax 
for r = -a (on boundary AB) x = 0, 	= 0 

ay 

Therefore Equation (A7.1.4) becomes 

0 = - a
x
a + A 

hence, A = axa 
a r2 

equation (A7.1.5) becomes x = 	2 	+ a
x 

ar + B 

at r = a, x = 0 (at tip of the crack) 
a 2 a2 

hence x = 0 = 	- a
x
a
2  

+ B 

a2 
ax

a2 

and hence, B = a
x 
 a2 - a

x 2 = 2 
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Therefore the force component of the stress function is given by 

2 
X = 0 (Y  + ay + 7) along BC 

BOUNDARY CD: 

(A7.1.6) 

4- 
In Equation (A7.1.6) above at CD y = V)a = 0 

 

 

0 V2  
x 
2 

 

and 	3aX =0,-1)-(- =av 
Dy 

 

7.2 PROGRAM STREN4  

Data designations for program STREN4 are the same as the 

ones given in Appendix 5. The listing of the program is given 

in the next page. 
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PROGRAM STREN4(INPUT=10j2,OUTPUT=1002,TAPE5=INPUT,TAPE6=OUTPUT)  

C 
C 

Y (256), 
PX (256), 

X (25u), 	
COMMIS), 
NiA15), 

SLOPE(15), 
RY {256), 
U (256), 
4 (256)9_ 	

SIGLXX - (430), 
ANP (256, 9), SIGLYY (430), NAP (256), 	

SIGLLZ 1436), 
0 (3,

) 
 6), 	SIGLXY (430), 

D {3, 3), 
H (3, 6), 
K (6, 6), 

)t) 
DATA CASCTL, STRESS, STRAIN / 6HNFCASE, 6HSTRESS, 6HSTRAIN / 

.0 
C 
-C 10 INPUT THE CASE TITLE BUT STOP IF THERE IS NO FURTHER CASE. 

11 READ U$ , 1) TITLE 
12 FORMAT ti3,i.6) 

IF {TITLE (1) .EO4 CASCTL) STOP. 
C 

C 2C INPUT.THE CONTROL PARAV.ETERS AND PREPARE TO INPUT THE ARRAY DATA. 
READ (5, 2:;.) 	NEL, NNP,HB, NAAT, NOY, NCO, 

TOLER J  ONEGA, PS, SR, AI 
21 FOR!-i.AT 	F7431  2X, A6, I3) 

DO 2? NM = if  NMAI 
22 E 	= -L. 

1:10 23 L= 1, NEL 
23 NPI (L) = -1 

00 2t! N = 1, NMP 
24 X (N) = -13.4123456789E35 

C 

C 30 INPUT AND CHECK THE ARRAY DATA,. 
READ (5, :31.) 	(MATH, E (NATN), NU (lATN), 

RHO (MATN) $  ALPHA (lATH), NW =-1, NNAT) 
31 FORMAT (IS, 4E13,5) 

DO 733 NM 	1, NMAT 
IF (E (MN) 0ME4 -14) GO TO 33 
WRITE (61 32) TITLE 

32 FORMAT 	////// 5H IN 1 , 13A6, 1H' / 
1 	 TWERE IS A NI3SING I■,PUT DATA CARD0, 

24H 	THE JOD IS A3AdDONE04) 
STOP 

33 CONTINUE 
READ (5, Jr'.) 	1.LE, NPI (LE) ;  HPJ (LE), NP1 (LE), 

1 MAT 0.-■:), JELTAT (LE), L = if  ft,-.:L) 
34 FORMAT (51.5, F1 a•)) 

DO 35 L = 2., NIL 
IF (NPI (L) .NE. .-1) 	GO TO 35 
WRITE (6 ;  .32) TITLE 
STOP 

35 CONTINUE 
• READ 459 :36) 	11, 	ZNPi l  Y (NP), RX (t\P) ;  RY (NP), 
1 	 U IIPTI 7  V (HP),• Nr - 12  NHP) 

36 FORNAT(I:j3 i,F12 , Fi..45) 
DO 37 N 
TF (X IN) 	 12 ^57 	GO TO 37 
1 .RTT 	- E (5, 7.2.) TITLE 
STOP 

37CONTINUE 
NR (ND 	COW) CV), SLOPE (NU, 

FOI.Y.IAT (2153 Pi()* 5) 
C 
•C 
C I 	OUTPUT TH1: 7 ITI.E. AND ""F.:: CONT'ML PARA17TFP.S4 

tlkfTE (6 ;  4i) 
41 FORAT 	ii//// 

45X, 14. -LHIL 	TITLL A.71 
2 	 45:„, 	 ///) 
WRITE {G, 4?) 	TITLE 

.%2 FOR'IrAr t:LH c  13A:A 

C SPECIFICATIol ANO DATA INITIALIZATION STATEMENTS, 
INTliGER 

2 
REAL 

1 
2 
3 

COMMON 

2 
3 
4 
5. 
1 
2 
3 

S 
6 
'7 
8 

t'S, 	SR, 	OA, 	0, 
WiSCTL, STP;---3S, WI, 	ANP, 	P, 

STaIN, COND, 
NU, 	x, 	KXX, 

KXY, 
KYX, 
KYY 

NPI (430), 
NPJ (43Q.), 
NPM (430), 
HAT (43a), 
DELTAT (430), 

KXX (256, 9), 
KXY (256,-  9) , 
KYX (256, 9), 
KY? (256, 9), 
FXX (256), 
FAY (256), 
FYX (2:5.6), rv s 

TITLE 413), 
F (5), 
NU 15) - 

H RO '15;, 
ALPHA .(5) J  

RI (430, 
Psi (430), 
BM (430), 
CI 043t;), 
CJ (4:32) 1  
CM (43), 
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WRITJ (6, it?) NEL, NNP4 NOR, NMAT, NCY, NCC, TOLER, OMEGA, PS 
43 FORMAT (261le' - MU'13!,R OF ' -- -4 -. IS, 15 7 111a 

1 	30 
., 
1rTHE NUT_ER OF NODAL POINTS IS; IS, 1H, / 

2 	4....7i ''THE NUMIER OF RESTRAINED DOUNDARY NODES IS, 15 7 1H. / 
3 	37HITHE NUMEER OF DIFFERENT MATERIALS IS, 157 1H. / 
4 	2.31-S THE ITETRATION LIMIT IS, 15, 8H CYCLES, / 
5 	36HrTHE INTERVAL FOR PROGRESS OUTPUT IS, I5 1 8H CYCLES. / 
6 	290'THE CONVERGENCE TOLERANCE IS7 E13.5, 1H., / 

6 	7 	3v1:(' THE OYER-RELAXATION FACT02. IS, F7,37 1H. / 
8 	37h' THE CASE_ HAS TWE CONDITION- CF PLANE , A67 1H, / 
9 

	

	2.3HrSTR 	SES, 	t 
IF (SR *EC!. 0) WRITE (6 7 44) 

44 FORMAT (1H+, 23X, 42HNEITMER THE ELEMENTS NOR THE NODAL POINTS.) 
IF (SR .EQ. 1) 	WRITE (6 7 45) 

45 FORMAT (1H+1 23X 7 18MTHL ELEMENTS ONLY.) 
IF (SR .E..1, 2) WRIT: (6 7 .-.6) 

46 FORMAT (1H+7 23X, 22HTHE NODAL POINTS ONLY.) 	/ 
IF (SR .E.I., 3) WRIT: (6, 47) 

47 FORMAT (1H+; 23X, 39HLOTH THE ELEMENTS AND THE. NODAL POINTS.) 
IF NI 1E'..). 	WRITE (67 48) 

48 FORMAT (37H9THE INPUT ARRAY DATA ARE NOT OUTPUT.) 
IF (AI .I77. 	1) WRITE (67 49) 

49 FORMAT (33I-WTHE INPUT ARRAY DATA ARE OUTPUT.) 
C 
C 
C 50 OUTPUT THE. ARRAY DATA. 

IF (rd 'EQ. a) 	GO TO 61 
WRITE (6, 51) 	(WI, L CNN) , NU (NM), RHO (NI)1 

I 	ALPHA (MN), NM = 1, NMAT) 
51 FORMAT (1H1 ////// 

1 	56X7 19HINPUT MATERIAL DATA / 
2 	riCIX; 1911   ///// 
3 	23)., 42H1IATERIAL ELASTIC MODULUS POISSON'S RATIO, 
4 	34H 	DENSITY 	. THA EXPN COEFF // 
5 

	

	(IZ77 7 X, 4E17,5)) 
WRITE (6, 52) 

..-52 FOR MAT (1H--,. ////// 
4 	57X7 1.E.',HINPUT ELEMENT DATA / 
2 	57X, 18H-•.-------•------ 1//// 
3 	3X1 48HELIT NPI NPJ NPN ATR!_ DELTA T 
4 	48HELMT NPI IPJ NFM MTRL DELTA T 
5 	33HELIT NPI NPJ MPH MTRL DELTA T /) 
Li = (NEL + 2) / 3 
DO 53 L2 = 1, Li 
13 = MIN ) ■L2 + 2 4 Lit MEL) 

	

53 WRITE (67 5L) 	(L, NPI (L) , MPJ (L), UPH (L), 
1 	MAT (L), DELTAT (L)7 L = L2, L3 7 Li) 

54 FORMAT (IN ; 515? F1t).3, 13X; 515, FIA,37 13X1 5152 F10,3) 
WRIT: (6, 55) 	(d7 X (M3, Y (N), RX (107 RY (N), 

i 	U (N), V (N), 	N = it NNF) 
55 FORMAT (1Hi ////// 

4 	58X; ISHINPUT NODE DATA J 
2 	5(3!, 15H-------*-------.- ///// 
3 	13X, 49HNODE 	X 	Y 
4 	31HRX 	RY 	t 
5 	21H 	U 	- 	V // 
6 	.(Iir1 7 X, 6E:17.5)) 
WRIT_ (6, 	6) 	(ND (NR) 7 COIN) - (NR) 7 SLOPE (NR)7 	NR = 17 NOR) 

56 FORMAT (1H1 ////// 
1 	4::3X 7 35HINPUT RESTRAINED BOUJ-DARY NODE DATA ./ 
2 	48X; 35H 	 .///// 
3 	33X, 28HST1) DNDY- NODE 	7 
4 	37HRESTN1 CONDITION 	SLOPE // 
5 	(14?, 127, F30.5)) 

C 

C 6C PO GEOMFTRIC CALCULATIONS 01 THE ELEMENTS. 
61 CO 72 L = 1, NEL. 

I = NPI (L) 
J. NPJ (L) 
M = N P 1 (L) 
21 (L) = 	/ J) 	Y (I) 
EJ (L) = Y (1.") - Y 
Ed (L) = Y 	Y (J) 
CI (L) = 	v (J) 	X (1) 
CJ (L) = 	X (1) 4- X (I) 
Cl (L) = - V fI) t- X (J) 
AREA = 	/1_) 	Oil 	- DM (N) 	CJ (L)) / 2. 
IF (AREA .Cr. 1.:-35) GO TO 71 
WRITE (6. 62) 1. 

62 FORMAT OH' //!/// 3H ELEMENT: 1.57 25H HAS A NON-POSDIVE AREA. / 
1 

	

	23d THE DASE IS ABANDONEE.) 
GO TO 221 

C 
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C 70 SUM THE TOTAL NODAL 'POINT FORCES. 
71 MAIN - NAT (L) 

IF (PS .EQ. SMESS) SIGH = 1. - NU (MATH) 
IF (PS .EQ. STRAIN) SIGTH = (1. 4- NU (NATN)) 

1 - (1. - 2. 4  NU (NATN)) 
SIGTn = - E (MATN) 4  ALPHA (MATN) 	DELTAT (L) / SIGTH 
BOOYF = AREA 4  RHO (NATN) / 3. 
RX (I) = RX (I) - 0.5 	i I (L) * SIGTH 
RY (I) = RY (I) - 0.5 	CI (L) * SIGTH - BODYF 
RX (J) = RX (J) - 0.5 -* EJ (L) * SI6TH 
RY 	= RY (J) - 045 * CJ (L) * SIGTH 	BODYF 
RX (N) = RX (N) - 0.5 4  Ll (L) 	SIGTH 

72 RY (N) = RY (H) - 0.5 4  CH IL) 'A SIuTd - BODYF 
C 
C 
C 80 PREPARE TO SUM THE STIFFNESS COEFFICIENTS, 

DO 82 N = 1, NNP 
DO 31 OA = 1. 9 
KXX (N, OA) = 0. 
KXY (N, QA) = 0. 
KYX (N, QA) = 0. 
KYY (N, 	= 

81 ANP (N, OAJ = 0. 
ANP (Ny 1) = A 

82 NAP (N) = 1 
C 
C 
C 90 FORM THE STIFFNESS MATRIX FOR THE ELEMENT. 

DO 135 L = 1, NEL 
DO 92 P = 1, 3 
DO 9). 0 = 1, 6 

91 L (P2  0) = P. 
DO 92 Q = 	3 

92 D (P, 0) = P. 
8 (1, 1) = RI (L) 
L (1) 3) = FJ (L) 
B (1, 5) = PM (L) 
7t3 (2, 2) = CT (L) 
0 (2, 4) = CJ (L) 
L (2) 6) = CM (L) 
6 (3, 1) = CI (L) 	 -0 

D (3, 2) = 91 (L) 
(3, 3) = CJ (L) 

• (3, 4) = PJ (L) 
(3, 5) = CM (L) 

6 (3, 6) = (1 M (L) 
MATN = MAT -(L) 
141 = NU (MATH) 
W2 = 10 - W1 
143 = 1. 4- W1 
W4 = 1. - 2. * Wi 
IF (PS 	STRAIN) GO TO 93 
W5 = E (HATN) / (42 * W3) 
W6 = Hi 
W7 = W2 / 2% 
GO TO 94 

93 W5 = E (MATH) * W2 / (W3 * W4) 
W6 = 01/ 
W7 = W I (2% * W2) 

94- AREA = (21J (L) 	CN (L) - UN (L) 	CJ (L)) / 2. 
W5 = W5 / 	AREA) 
D (1, 1) = W5 
O (1, 2) = 05 * H6 
O (2, 1) = H5 	W6 
1) (2, 2) = N5 
o C3, 3) 	W5 * W7 
DO 95 P = 1 2  3 
DO 93 0 = 1 2  6 
W (2, C)) =- P, 
DO c.)

... 	
0 = 1.1  3 

IF(0,GT43) 0=2 
95 N (P 2  0) = 0 (P;  0) 4. 0 (P, 0) 4. 3 (0;  0) 

DO 9u P = 1, 6 
DO 96 0 = 1, 6 
K ( 39 (.1) = P. 
00._96 0 = 1 1  3 

96 K (P, 0) = K 4:Py 0) 4- 3 (0, P) * W (0, 0) 
C 
C 
C 1k0 SUN AlD STORE FOR EACH (FORCED) NODE - THE HON-ZERO STIFFNESS 
C 	Cr)EFFICI; MiS FOR THL. ADJACEia (DISPLACED) :00ESo 

LN (1) 71.  NPI 
LN (2) = NPj (L) 
LN (3) = 	(L) 
DO 105 P = 1, 3 
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NP = LN (P) 	- 
DO 105 0 = 1, 3 
QA = C 

101 QA = QA 4- i 
IF (QA 	9) GO TO 103 
WRITE (6, L02) MP 

102 FORMAT (1111 ////// 5H NODE, 15, 
36h HAS MORE THAN EIGHT ADJACENT NODES. / 

2 

	

	231: THE CASE IS A3i‘ tnOtIE C e ) 
GO TO 221 

103 IF (AMP (MP, QA) .EQ, LN (Q)) 	GO TO 104 
IF (AnP (dP, QA) *NE. 0) 	GO TO 101 
ANP (NP, QA) = LN (Q) 
NAP (NP) = OA 

104 KXX (N0, OA) = KXX (NP, QA) + K (2 * P 	1, 2 * 0 - 1) 
KXY 	0,A) = KXY (NP, OA) + K (2 -1  P 	1, 2 4  Q) 
KYX (NP, QA) = KYX (NP, OA) + K (2 * P9 2 4 Q - 1) 
KYY (NP, 	= KY? (NP, OA) 4- K (2 * P9 2 * Q) 

105 CONTINUE 
C 
C 
C 110 BY INVERSION OF THE MAIM DIAGONAL STIFFNESS SUVATRIX, FIND THE 
C 	FLEXI3ILITY SUi3MATRIX AT EACH NOCE DISPLACED 3Y FORCc.S Al ITSELF. 

DO 112 N = 1, NNP 
N1 = KXX (Ns 1) 	KY? (N9  1) 	KXY (N, 1) * KYX (N, 1) 
FXX (N) = 	KYY (U, 1) / NI 
FXY (N) = - KXY (N, 1) / 
FYX (N) = 	KYX (N, 1) / 141 

112 FYY (N) = 	KXX (N, 1) / W1 
C 
C 
C 120 CALCULATc THF EFFECTIVE SELF FLEXIE3ILITY SiJ3NATRICES FOR THE 
C 	RESTRAINED 7:0UNDARY NODES, 

00 125 HR = 1, HBR 
NP = 143 (NR) 
IF (.OND (Ac.) - 1) 123, 122, 121 

121 FXX (N?) = f FXX (N?) 	FYY (AP) 	FXY (NP) 	FY`; (NP)) 
1 	 / (FXX (NP) * SLOPE (NR) **- 2 
2 

	

	 (FXY (NP) + FYX (AP)) Y SLOPE (NR) + FYY (MP)) 
FXY (NP) = FXX (MP) * SLOPE (NR) 
FYX (NP) = FXY (NP) 
FYY (UP) = FAY (NP) 	SLOPE (NR) 
GO TO 125 

122 FYY (NP) = FYY (NP) - FYX (MP) * FXY (NP) / FXX (NP) -
GO TO 124 

123 FYY (NP) = 11 4 
124 FXX (NP) = C. 

FXY (N?) = Po 
FYX (NP) = C. 

125 CONTINUE 
C 
C 
C 13C PERFOR1 A GAUSS - SEIDEL ITERATICN ON THE STIFFNESS MATRIX FOR 
C 	THE ENTIaE STRUCTURE, 

IF (MCC .GT. NC?) GO TO 132 
(6, .:.71) 

131 FOR!IAT (1H_ ////// 
34X; 35HTHE PROGRESS OF THE GA1JSS - SEIDEL 

2 	 23HITERATION TOdARD CONVEP.GENCT. / 
3 
4 
5 	33A 3-)HCYCLE 	 CONVERGENCE CRITERION, 
6 	 26H . 	CURR:NT DIFFERENCE) 

132 NC = 3 
133 SO = 0, 

SDO = O. 
DO 136 N = 1, NMP 
IF (FXX (11) + FYY (N) *.:E0* 0*) 	GO TO 13E • 
RX1 = RX (N) 
RY1 = RY (N) 
NAP1 = NA? (U) 

134 Qr, = 1, NAP! 
HP = AMP 	Om) 
RX1 = RX1 - KXX(N OA) " U (IP) - KXY (N7  QA) 4  V IMP) 

134 RY1 = PY1 	KYX (, CIA) * U (UP) 	KYY (M, HA) ". V (MP) 
IF (FXX 	.-LQ G.) GO TO 135 
DELTAU 	FXX 	RX1 + FXY (N) 4  RYA'. 
U (N) = O (N) 	01i GA 	OELTAU 
SD = SO + AFS U (N)) 
son . SOD 	A 3] m:A.TAu) 
IF (FY? (H) 	33) GO TO 136 

135 DELTA,/ = FYY (N) 	RX1 + FY? (N) 	R';1 
V (N) = V (N) + ON;.7.GA * OELIAV 
SD = SO 	,HS (V (N)) 
SOO = 500 ± AGS (0[LTAV) 
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136 CONTINUE 
SD — AMAX1 (SD, 1.E-35) 
REL6IF = son / SD 

C 
C 
C IAD TEST FOR CONVERGENCE. 

NC = NC + 1 
IF (NCC .CT, NCY 	MOO (NC, NCC) 'NE. -0) GO TO 142 
WRITE. (6, 1h1) 	NC, TOLL R, RELDIF 

141 FORMAT (11-1;:; 1361 3X;  2E27. 5) 
142 IF (RELDIF oGT, TOLER) GO TO 144 

WRITE (6, 143) NC 
143 FORMAT -  (1d1 ////// 28H THE ITERATION HAS CONVERGED, 

6H AFTER, _15$ 8H CYCLES.) 
GO TO 151 

1 44 IF (NC .LT4 NCY) GO TO 133 
WRITE (6, .145) 	NC, RELDIF, TOLER 

145 FORMAT (1111 1/1/1/ 28H THE ITERATION HAS COMPLETED,. 15, 5H THE 
1 	52HMAXIMUM NUMBER OF CYCLES WITHOUT CONVERGING, BUT HAS / 
2 	34d ACHIEVED A RELATIVE DIFFER7NCE OF, E13.51 
3 - 	33H AGAINST A SPECIFIED TOIH.ANC.: OF, Ei3,51 1H, / 
4 	- 	43H THE UNCONVERGED RESULTS ARE WRITTEN i:EL011,) 

C 
C 
C 15r OUTPUT INC MODE DISPLACEMENTS, 

151 WRITE (6 	..52) 
152 FORMAT (1H4_ 	////// 

1 	49X, 33HTHE CALCULATED NODE DISPLACEMENTS / 
2 	49,X, 33H 	 ///// 
3 	3:-.1 47HNODE 	U 	V 
4 	47HNODE 	U 	V 	- 
5 	3CHNODE 	U 	V /) 
N1 = (NNP + 2) / 3 
'00 -153 H2 = 1, N1 
N3 = NINO (N2 + 2 - N11,  NM?) 

153 WRITE (6, 1F4) 	(N, U 14), V  (N) , 	M = N2, M3, Ni) 
154 FORMAT (1H , I5, 2E16.51 115, 2E16,5, I15, 2E16.5) 

C 
C 
C 16C CALCULATE THE ELEMENT STRESS COMPONENTS, 

IF (SR ,EQ. C) 	GO TO 221 
DO 164 L = 1, HEL 
I = HPI (L) 
J = NPJ (L) 
N = NPM (L) 
AREA = (DJ (L) * CM (L) — ON 	* CJ (L)) / 2, 
EEXX = (BI (L) * U (I) + pJ (L) 4  U (J) 

Lid (L) 4  U (;I)) / (2. if  AREA) 
EEYY = (CI (L) 4  V (1) 	CJ (L) 4  V (J) 

1 	 + CM (L) * V (1)) 1 (2. 4  AREA) 
SEXY = (CI (L) 4  U (I) 	(L) - 4 (I) 

+ CJ (L) * U (J) + 	(L) 4  V (J) 
2 

	

	+ CH (L) 4  U (H) 	(L) 4  V (;.1)) / (2. 4.  AREA) 
MATN = MAT (L) 
N/ = NU (MAIN) 
W2 = 1..— NI 
W3 = 1, + 1'11 
M4 	1. — 2, * W1 
IF (PS aE(1. STRAIN) 	GO TO 161 
W5 = E (MATH) / (M2 	W3) 
W6 = W1 

.W7 = W2 / 2. 
GO TO 162 

161 N5 = E (MATH) * W2 / (W3 	W4) 
W6 = WI / M2 
N7 = W4 /( 2.4. 4  N2) 

162 ETH = ALPHA (MATN) 	DELTAT (L) 
EXX = EEXX 	ETH 
EYY = LEVY 	ETH 
EXY = :TEX? 
(7IGLXX (L) = N5 * (EXX + W6 * EYY) 
:GLYY (L) = H5 .* (W6 4  EXX + EYY) 
1F (PS .c3 STRAIN) 	GO TO 163 
SIGL7:2 4(L) = 04 
GO TO 164 

163 SICLZZ (L) . = W1 -4-  (SIGLXX (L) + SIGLYY (1)) 
164 SIGLXY (L) = M5 -* W7 	EXY 

C 
C 
C 17C CALCULATE TM': EL.7.MENT '-=RINCIPAL AND ALAN STR‘r.SSES, 

IF (SR .ED. 2) GO 70 134 
WI = (SIGLXY (L) + SIGLYY (L)) / 2. 
W2 = (SIGLXX (L) — SIGLYY (L)) 	2. 
W3 = SIGLXY (L) 
W4 = SORT (4.i2 	2 + N3 " 2) 

7 



SIGL1 = Hi + W4 	 230 
S I G L 2 = Wi — W4 
IF (ABS (Na) .GT0 14E^.35 40R, A35 CW3) oGT4 14&.35) 	GO TO 171. 
ANGLEL — 
GO TO 172 

171 ANGLEL = 28.647889756 " ATAN2 (W3, W2) 
172 SIGL3 = SICLZ7- (L) 

SIGL'1 = SWIT ((SIGLI + SIGL2 4- SIGL3) 4*  2 
.1 . 	•-• 3. 	(SIGL2 	SIGL3 + SIGL3 * SIGL1 + SIGL1 * SIGL2)) 

C 
C 
C 18C OUTPUT THE FLEMENT STRESSES. 

IF (L eME. 1) 	GO TO 182 
WRITE (67  81) 

181 FORMAT (1H1 ////// 
I 	27X7 4QHTHE CALCULATED ELEMENT ST ESS COVPONENTS, 
2 	40H AND THL PRINCIPAL AND TFE NEAN 

  	
STRtSSES / 

3 	27X7 40.H• 	4 ..M O 

 

I 

4 	4CH   ///// 
5 	1X, 45W:=_EM:NT 	siGrxx• 	SIGrAY •3 
6 	45HSTGMZZ 	SIGMr( 	AMGLE1 	/ 

" 2 

- 7 	37HSIGM1 	SIGN2 	SIGMN /) 
182 WRITE (6, :LP3) 	L, SIGLXX (L)1 SIGL'tY (L) 7  SIGLZZ (L), 

1 	SIGLXY (L) , ANGLEL, SIGL1 7  SIGL2, SIGLM 
183 FORMAT (1H 1 151 4E16457  F12.27  X, 3E1645) 
184 CONTINUE 

IF (SR 4EQ. 1) 	GO TO 221 
C 
C 
C 190 FIND THE NODE STRESSMPONENTS. 

00 212 N = 1 NNP 
SIGNXX = O. 
SIGNYY = 
SIGNZZ = 
SIGNXY = J. 
QA = 1 
00 191 L = 1, DIEL 
IF (UPI. (L) 	N .ANO. HP.1 (L) 4M E. M .AND. MAN (L) .CE, N) 

1 	 GO TO 191 
SIGNXX = SIGNXX + SIGLXX (L) 
SIGNYY = SIGNYY + SIGLXY (0 
SIGNZZ = SIGNZZ + SIGLZZ (L) 
SIGNXY = SIGNXY + SIGLXY - (L) 
QA = QA + 1 
IF (OA 	NAP (N)) GO TO 192 

191 CONTINUE 
192 WA. = FLOAT (OA — 1) 1 

• C 
C 
C 20C 

201 

SIGNXX 7-= 	SIGNXX 	/. Ni 
SIGNYY = SIGNYY 	/ Hi 
SIGNZZ 	SIGNZZ / W1 
SIGNXY = SIGNXY 	Ni 

CALCULATE THE NODE PRINCIPAL AND MEAN STRESSES. 
W -1- = 	(SIGNXY 	r 	SIGNYY) 	/ 	2. 
W2 	= 	-(SIGLXX 	'SIGNYY) 	/ 	2. 
W3 = SIGNXY 
W4 	= 	SORT 	(k1 2. 	4'.4 	2 + 	W3 " 	2) 
SIGN1 	= 	Hi 	+ 	4•t4 
SIGN2 = 	IrLL 	W4 
IF 	(ABS 	(1-12) 	.GT, 	10E-35 	OR 	ABS 	(W3) 	.GT. 10E-351 	GO 	TO 202 
ANGLEN = 
CO TO 	2:1 3 

202 ANGL,:r..N = 	23.647389756 4 	ATAM2 	(W3, 	W2) 
203 SIGN3 = 	SIGN7.7. 

SIGNN = 	S017 	((SIGN1 	+ 	SIGN3) 	44 	2 
— 	3. 	*- 	(SIG 12 	SIGN3 	+ 	SIGN3 SIGN1 	+ SIGN1 SI.;7N2)) 

C 

C 210 OUTPUT TH: H007 STRESSES. 
IF 	IN 	.NE, 	GO TO 212 
WRITE 	(6, 	2!.1) 

211 FORMAT 	(111 .2. 	////// 
1 29X 9 	37ATHE CALCULATE) NODE STRESS COAPONENTS. 
2 40H ANO THL 	PRINCIPAL 	AND TFE ALAN 	S.7.E.SSES / 

29X9 7 

5 
6 

–3X9 	43HNOOL 	SIGNX'( 
45HSIGZZ   

SIGN"( SIGN"( 
ANGLE I 

! 
9 

7 37HSIGNI 	SIGN2 SIG NN 1) 
212 WRITE 	(6. 	213) 	N, 	St +i;;{%:; 	SIGNYY, 	511, 	Z... SIGNXY7 

ANGLE.N. 	SIG1. 	SIGNA 
213 FORMAT 	(1H 	9 	4E16,, 	F12.L, 	is 	3i11E.,) 

C 
C 

C 220 RETURN TO THF BEGINNING OF 	THE PROGRU FOR TW: NEXT 	CASE.. 
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7.3 Program FUNSTR and Subroutine DMATRX  

The data designations are as follows: 

is integer single 

is integer array 

rs real single 

ra real array 

PROGRAM FUNSTR  

CRACKL .rs Crack length 

HMESH 	rs Height of cell 

WIDTH 	rs  Width of cell 

EDIST rs Dimension 

JJ 

KK 
is Grid co-ordinates 

KKE 

JJE 

SIGMYY ra 1Stresses in y-direction 

SIGMXX ra Stresses in x-direction 

SIGMTO ra Specified stress at boundary points 

XX 

Al 

A2 	rs Working parameters 

A3 

A4 

AMOM rs Moment 
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B1 

B2 	rs Working parameters 

B3 

CONVER rs Convergence constant 

PREVIO rs Convergence criterion 

SUBROUTINE DMATRX  

The same as above and additioilally: 

MCR 	is Crack positions 

DI 	ra First matrix coefficient 

CONS 	rs Working constant 

R 	ra Working constant 

The listing of FUNSTR and DMATRX is given in the next 

page. 
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Ja6iUMEMM13,J123 T1200,CM63000,LC9930) 	OIKONOMIDESoCeN 
MAP (PART) 
MNF(1- 70,E=2,R=2).7)::50C0) 

PROGRAM FUNSTR(INPUT,OUTPUT I TAPE5=INPUT I TAPE6=OUTPUT) 
C 
C 
C 	USING FINITE*. DIFFERENCE ANALYSIS PROGRAM FUNSTR 
C 	DETERMINES THa STR7SS FUNCTION X WITCH SATISFIES 
C 	THE 3IHAR1OMIC EQUATION AT THE PRESORIED BOUNDARY POITS 
C 	AND ALL TH:. INTE;:ZIOR MESH POINTS THE MAGNITUDE 
C 	OF THE MESH DEPENDS ON THE SIZE CF T HL. REGION 
C 	UNDER CONSIDERATION 

COMMON X(4!:',45), SIGHYY(43),SIGt'XX(43),SIGNTO 9. 
101(43)9R(43)9 
iCRACKLIHMLSH,JJ 

C 
C • 	CONSTANTS AND DIMENSION PARAMETERS 
C 	MESH POINTS 

MAXIT=700 
EPS=0*1 
CRACKL=0*04 
HMESH=0,025 
WIDTH-1:1.00 
EDIST=045 
J,J=43 
KK=t43 
KKE=KK+2 
JJE=JJ+2 

C 
C 
C 
C 
C 	REArl BOUNDARY STRESSES IN Y—DIRECTION 
C 

9C READ(5,101) 	J 7 SIGMYY(J),SIGAXX(J),AZXT 
FORMAT(I5 1 2F10,22II) 
IF(NEXT,,EQ,P) 	GO TO 90 
WRIT(6,14:5) 

• 105 FORlAT(lHf ////) 
ItiRITE(b,L,.) 

102 FOR'IAT(1,43 T4 3HJ 	 SIGMYY 	• 	 SIGHXX ///) 
WRfT(6113O (JI SIG:IYY(j1SIrIXX1J),J=1)JJ) 

'04 FORNA1(15X,1317X 7 F84217X1 F8,2) 
WRITEt6,I23) 

103 FORMAT(5(/)) 
C 

• C 
C 	CALCULATE MOMENT FOR X--STRESS COMPONENT 
C 
C 
C 

DO 88 	I=35  JJ 
IF(I.GTo3) 	GO TO 92 
IF(I.E0.3) SIGMT0-=SIGNXX(3) 
GO TO 85 

92 SIGTO=SIG:iTC-1-SIGMXX(I) 
88 CONTINUE 

A!ION=SIGMTO''EDIST 
C 
C 
C 	CLEAR ARRAYS 
C 

DO 110 J.-:- 1 JJE 
PO 110 K=:1.,KKE 

liC X(J ) ,<)=0.c.: 
C 	PRESCRIBE THE BOUNDARY 4ALUES FOR BOUNDARY 3—JJ 
C 

DO via j7:7IJJ 

XX.--FLOAT(J-73 -';HHESH—RACK.- 
A2.7.-((OPAC3)/6.)-1-(((CV,CKL 4.*2) .4 XX)/20)-1-(CCRACKL (XX2))/2A) 

11,-((XX-4 3)/b,.) 
A1.14(124;-4X:QN)/('AIDTM3) 
A4=-- ((XX";12)/2,.)+(ORACL"XX)}((CRACKL4 2)./2o) 
A31:03o 4- AMO)/(HIDTH2) 

C 
X(J,K)=(A.i2..(2)“A/0'(A7..i.STr.,MYY(J))) 

200 CONTINUE 
C 
C 	PRESCRIBE VALULS FJ BOUNDARY 3—KK 
C 

DO 300 :::.7-7KK 
J;173 



234 
30C CONT IMIW 

WRI .L:.(6 1 232) 	SIGHT() 
282 FORNAT(15X,7HSIGTO=; E.12.2) 

WRIT:0128,f) 
283 FO°NATk3(/)) 

WRITE(67465) 
465 FORUT(1Hi j  f///) 

C 
C 
C 	USING FINITE DIFFERENCE EQUATION 
C 	SOLVE FOR INTERICR MESH POINTS 
C 

ITN=i 
290 CONTINUE 

DO 3 8 J=4, JJ 
DO 308 K=4 1 KK 
X(JJ-iyK)=X/JJ-2/10 
X(J,KK-1)=X!JIKK-2) 

Di= 8,2 4 (X1J/K+1)+X(J,K-1)fX(J4-1210+XIJ-1,10) • 
1.2=2,4 (X(J41.71:1-1)PX(J4- 19K-1)+X(J-11K+j)+X(J-IDK-1)) 
B3= X(J1-2,K)+X(J-21K)+X(,hK+2)4 1J1K-2) 

DIFF-7;1480:1 	(31-a2-33) /20. 	-X(J,K) 
X(,),K)=X(J,K)+9IFF 
X(JJ,K) =MJJ--.17 K) 
X(J,KK) =X(JyKK-.1) 

3C8 CONTINUE 
IF(IEN4EQ21.) 	GO TO 325 
CONV7_7 7..-7:X(JJ ) KK)-PEVIO 
IF(AiS(CN,ER).LE4EPS) GO TO 400 

325 CONTINUE 
1F(TTN,E04:iAXIT) 	60 TO 400 
IF(ITN/ 5L,F0,(ITN+ 40)/ 50) GO TO 4,30 • 
PRE'/IO=X(JJ, KK) 
ITN.7.ITNft 
GO TO 290 

400 CONTINUE 

ADSCON=A8S(CON/ER) 
WRITF(6 7 5UJ:) ITN,ASCON 

51-A FOR11AT(5X,HITEi2ATIONS=1I4 1 5X722HCONVERGENCE CRITERION= I F16.6) 
WPJTE(6,5U7) 

5C7 FOPAT(2(/)1  
IF(ITN,LOA1AXIT) GO TO 504 
IF(A3SGON4GT.EPS) GO TO 505 

. 504 CONTINUF 
WRITE(6 9 533) 

588 FOPi 	f////) 
J=JJ 

509 MUTE(6,_5)) J 
51J FORNAT(5X, 2NJ=, 13) 

URIT(61_52) 
520 FORM -N52XIJAPSTRESS FUNCTION X ///) 

LM,K),K.:417KK) 
530 FORM'AT“2X J -1.0(F1;2i2J2X))) 

J=J-I 
IF(JE0.06) 	GO TO 505 
WRIT (61512) 

51.2 FORNAT(3(/)) 
GO TO 509 

505 CONTINUE 
IF(ASCON.01:::.*PS) GO TO 540 
IF(ITN,0,MAXIT) GO TO 510 
PREVIO=X(JJ,KK) 
ITN=ITt 
GO TO 290 

54C CONTINUE 
‘/ALL OMATRX(ITH) 

ENO 
SUEIRCUTIN: DMATRX(ITN) 

C 
fC 	SUBROUTIN: INAFRX -CJ:TPRMINtS THP VALU:2S 
C 	

OF THE FIRST NATRIX 7;CTEPFICIE -47 D13 
THE CO7FETCT.:HT IS A FUNCTION OF ThE :31R ESS FtiNCTION X 

C 	AND THE NI::TACE 2 	FPO 	.fliE TIP OF THE C:.ZAC:<. 

CON.:AOM X(457 45), SIGNYY(43) )SIGMXXi4:3)SIGNIO 1  
5.0:_('4332Rt43)5 
lORAC;;L'HA.:.SH,jj 

C 
C 

C 

C 
C 
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C 	AXIS OF THE CRACK 
NCR=23 

C 
C 

CLEAR Di . 
C 

DO 998 L=.1, JJ 
Di(L)=60 

.998 CONTINUE 
DO 1000 
P(I)=(HNE.A.4- FLOAT(I-7))—CRACKL 

'1F(R(I)0LE.0.0) 	GO TO 1000 	. 
CONS=(-41/3.)*(R(I)4 (3./2.)) 
Di(I)=X(I2 NGR)/CONS 

1000 CONTINUE 
WRITE(67 11:n) • 

1100 FORMAT (1H). /11/ 
120X, 5IHJ 	X 	R 	 DI. ////) 
J=JJ 

114.0 CONTINUE 
WRIT:::(6710) JIX(j1ICR),R(J)901(J) 

1150 FORMAT(17X 3 1315X7F12-.278X,FlOv536X,F12,2) 
J=J-1 
IF(J.E0.0) GO TO 1200 
GO TO 1140 

1200 CONTINUE 
WRIT (6,1.250) 

1250 FORYAT(1H1) 
RETURN 
END 
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APPENDOX 9 
11111221111.119:1111.M...,,elf 

compoxison f emperrature 
istributilons 

VW. 	  

A 9.1 Finite Difference Equation  in a Cylindrical System  

Consider the system in a three-dimensional cylindrical co-

ordinates as shown in Fig.A 9.1.1. The energy balance equation gives 

the following equation for the temperature To  at node 0. 

	

(r. + Ar/2)A®Az 	(r. - .Ar/2)A0Az 
k

1 	1  
(r2 	

T
o
) + k 	(T

4 
- To) 

	

Ar 	 Ar 

r.A0Ar 
ArA 

+ k 
AOr.

z  

	

 (r1 
+ T

3 	
2To) + k 	Az 	

(T
5 
+ T

6 
- 2T

o
) = 0 (A 9.1.1) 

1 

Now consider a part of a hollow cylinder subdivided into equal 

space increments Ar as shown in Fig.(A 9.1.2). The explicit difference 

equation for the node m is from Equation A 9.1.1 and for the one-

dimensional (radial) time dependent conduction  

[ 

.(Tn 
	
- Tn) Cr - Aryi.  (rn 

	- 
T$1)  ( 	4.  Ar 1  

Ar 	m-1 	m 	m 	z 	m+1 	n rm ' 2 ' 
• 

Arperill  - 

AT 

n+1 n 
m 

	 T 	- T
m 

(A 9.1.2) 

= space increment in radial direction 

AT = time increment, and n indicates temperature at time (T +AT). 

In explicit solutions of time dependent equations the expressions used 

give the future temperature T
m 
at node m (say) in terms of the current  

temperatures at the surrounding nodes. The explicit formulation uses 
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forward--difference approximation for the non-steady conduction 

equation. 

(Ar
- Now if the time and space increment is chosen so that 

aAT)2 
 2 

 

then equation A 9.1.2 above becomes: 

T
n+1 
=T

n
m-1 

(1 - 	) + T 	Ar n 	
(1 + 

_ 
2rm 	2rm  

(A 9.1.3) 

A 9.2 Determination of Temperature Distribution  

The tcmperature distribution is determined by program CYL1DT 

(Listing at the end of the Appendix) which solves the equation 

2T 	1  yr 	aT 
+ --,) = Pc  

art  r  °x' 	aT 
( N.2 id. F3) 

numerically using the forward-difference expression A 9.1.3. Temper-

atures are determined alor.; the radial direction (r) at specified time 

increments. The space increment Ar is chosen equal to 0.05 inches and 

this produces 11 nodal points along the radius of the cylinder as 

shown in Fig.A 9.2.1. The parameter (Ar)2  = 2 for Ar = 0.05 inches 
oCLVC 

and a = 0.347 ft2/hr 	(for steE.l EN58J (R.5-1) gives AT = 0.09 secs. 

60 secs  
This time increment will produce 	= 0.09 secs 667 time iterations for 

every minute. 

the boundary conditions are identical to that of the nozzle in 

Chapter 4, that is, the :Inside circumference is maintained at the 

constant temperature of Tf 
= 450°F and there is heat loss by natural 

convection to the air on the outside boundary. The heat transfer 

coefficient is that given in Reference (R.4-4) for horizontal cylinders 

and pipes. 
0.25 

h
c
D
o 

kf 
= 0.53 D

3  p g 	At 	c 
Do3  f f  

2 kf 

  

(A 9.2.1) 
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where hc 
= heat transfer coefficient 

D
o 

= outside diameter of cylinder 

kf = thermal conductivity of air 

p
f 

= density of air 

g = acceleration due to gravity 

13f  = coefficient of volumetric expansion of air 

At = T -T 
W 	co 

Tw 
= temperature on the outside surface of cylinder 

T = is the air temperature (60
o
F) 

= viscosity of air 

C = specific heat of air (at atm.pressure) 

The heat transfer coefficient is calculated at each time increment 

using the equivalent surface node temperature. 

A 9.3 Comparison of Temperature Results  

The temperature distribution for the nozzle of Case C away from 

the vessel (grid points 91 to 100 see Fig.4.6.1, page 289) which was 

obtained using the two-dimensional (x,y), time dependent ('C) equation 

for a plane wall 

32T  32T 	DT 
k 	= pc Tr- 

ax2 ay2 
(4_3. Li p7i) 

is compared to tht results obtained by using the one-dimensional 

(radial) time dependent (T) equation for the cylinder 

(a 2T 	1 aT 	DT 
k 	= pc FIT 

art 
r  qr  

01.2 , /0. 8 

for the times 1 minute (Fig.A 9.3.1, Table A 9.3.1), 2 minutes.(Fig. 

A 9.3.2, Table A 9.3.2), and 4 minutes (Fig. A 9.3.3, Table A 9.3.3). 

The cylinder results are given in Table A 9.3.4. The dimensions of 

both cylinder and nozzle are identical, with Di  = 1 in and Do  = 2 in, 

and the boundary conditions already referred to. 
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It can be seen from Fig. A 9.3.1 that at time 1 minute the 

temperature at r = 0.6 inches for the nozzle is higher by 5.3% of the 

value of the cylinder and by 19.0% on the outside boundary. The 

average deviation is 12.2%. For time 2 minutes the average deviation 

is 11.8% (Fig. A 9.3.2) and for time 4 minutes 11.6%. In general the 

temperatures obtained in the nozzle using the two-dimensional time 

dependent plane wall conduction equation are higher than the temper-

atures obtained for the cylinder by an average of 11-12%. Near the 

junction where the end effects (vessel) affect the conduction in the 

z (axial) direction the equation for the cylinder will in fact be two-

dimensional (r and z) 

T 2 	1 3T 	D2  , 
k 	

r 	D9 T 	= 	T ar  
3r2  r 	3z2 	

pc TI  

It can be concluded that the approximation of the plane wall heat 

conduction in two-dimensions (x,y) and time (T) gives reasonable 

results for the nozzle and can be used to overcome the difficulty in 

the analysis of the heat conduction at the intersectionof two cylinders. 

Of course the alternative of treating the problem in three-

dimensional time dependent formulation will soon be possible with the 

expansion of the computing facilities in order to give acceptable 

accuracy. But even so, the economics and time consumption of three-

dimensional unsteady analysis will still be subjected to considerable 

competition from the two-dimensional analysis especially whenever 

axisymmetric geometries are considered. 

(iv.  3 p.. 9. -A/2) 



r 
FIGURE A9.1.1 
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Three-dimensiolial cylindrical system 

r 

0 

FIGURE A9.1.2  

Subdivision of cylindrical wall 

One-dimensional cylindrical system 

Heat conduction(unsteady) in radial direction 
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Boundary condition: 

Natural convection to air 
T =60°F(air) 

r = 0.05 in. 
AT =0.08 secs. 

Finite-Difforence Grid  

FIGUR: A9.2.1 
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JJ— 400 

TIME = 1 minute  

R=r/ri  

t, Nozzle of Case c0.41y  )-r1T-r, 
R=2 

	Hollow Cylinder k(t.14.1 aY 	
Ca  

R=2 	-31-z r 

A 

A 

T
E

M
P

E
R

A
T

U
R

E
  300 

200 

100 

0 1 
0.5 	0.6 

inside (r ) 1  

0-i 	0'8 	0 .q 	 radius r 
rouiside (r2 ) inches 

TIME = 1 minute 

RADIUS r 

inches 

TEMPERATURE (0F) 

NOZZLE OF CASE C 

0 TEMPERATURE ( I') 

HOLLOW CYLINDER 

DEVIATION 
%  

0.5 	(r1) 450.0 450.0 

0.6 311.2 294.4 +5.7 % 

0.7 220.4 195.6 +12.7 % 

0.8 164.7 149.5 +10.2 % 

0.9 116.8 101.7 +14.8 % 

1.0 	(r2) 82.6 70.2 +17.6 % 

AVERAGE 

DEVIATION = 12.2 % 

FIGURE A9.3.1 

Comparisons of temperatures for time = 1 minute. 
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0.5 	0.6 	o.7 	0-8 	0.9 	1-0 	radius r 
r;"-1-5icl' 	inches 

TIME = 2 minutes 

RADIUS r 

inches 

TEMPERATURE (OF) 

NOZZLE CASE C 

TEMPERATURE (OI') 

HOLLOW CYLINDER 

DEVIATION 

% 

0.5 (r1) 450.0 450.0 

0.6 316.7 306.3 +3.4 % 

0.7 231.2 211.7 +9.2 % 

o.8 183.1 .16o.2 +14.5 % 

0.9 151.8 134.5 +12.9 % 

1.0 125.2 105.2 +19.0 % 

AVERAGE 

DEVIATION= 11.8 %. 

rinside 

FIGURE A9.3.2  

Comparisons of temperatures for time = 2 minutes. 
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TIME = 4 minutes 

RADIUS r TEMPERATURE (OF) TEMPERATURE (OF) DEVIATION 

inches NOZZLE OF CASE C HOLLOW CYLINDER  

0.5 	(ri) 450.0 450.0 

o.6 333.4 316.6 +5.3 % 

0.7 255.2 232,2 +9.9 % 

o.8 215.7 191.4 +12.7 % 

0.9 195.4 176.0 +11.0 % 

1.0 186.3 156.4 +19.0 % 

AVERAGE 

DEVIATION = 11.6 % 

FIGURE A9.3.3  
Comparisons of temperatures for time = 4 minutes 
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FL REQJIRED TC LOAD 
FL REQJIRED TC RUN 
INITIAL TRANSFER TO 

BLOCK ASSIGNMENTS. 

24400 
17000 

CYLI1UT 4302 

BLOCK ADDRESS LENGTH FILE 

CYLI10T 101 4262 BIN 
ABORTS 4363 47 FORLIBB 
CPUCPR 4432 201 FORLIBB 
CPUCIO 4533 13 FORLIBB 
CPUCPM 4646 5 FORLIBB 
CPULFM 4653 10 FORLIBB 
CPURDS 4663 42 FORLIBB 
CPURDW 4725 133 FORLIBB 
CPUSYS 5:63 32 FORLIBB 
CPUWTC 5112 13 FORLIBB 
CPUWTS 5125 43 FORLIBB 
CPUNTW 5170 104 FORLIBB 
GETBA 5274 17 FORLIBB 
/cIOBJF./ 5313 426 

INuUTi: 5741 143 FORLIBB 
INPUTE 6104 1245 FORLIBB 
/FREE= OR/ 7351 3 

OUTPUTS 7354 1156 FORLIBB 
RUNIOP 10532 324 FORLIBB 
RUNSYS 11056 1106 FORLIBB 
SYSTEM 12164 442 FORLIBB 
TRACBAC 12626 277 FORLIBB 
TRACES 13125 750 FORLIBB 
// 14075 2623 

TIME IN SECONDS= 60.0 

450.0 	366.5 	294.4 245.1 195.6 170.1 149.5 114.1 101.7 75.3 70.2 

TIME IN SECONDS=120.0 

45040 	350.1 	306.3 345.6 211.7 184.5 160.2 135.1 134.5 115.8 105.2 

TIME IN SECOND3=240.0 

450.0 	355.2 	316.6 260.4 232.2 205.3 191.4 176.9 176.0 163.2 156.4 
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PROGRAM CYLIDT 

The program solves the one-dimensional time 

dependent, heat conduction equation 

	

k  ( iT 	 p ";1" 

	

-brz 	r 	c  
for a hollow cylinder explicitly using forward 

difference formulation in time (T. ) and space (radial) 

increments. It assumes a constant temperature 

around the inside circumference and along the 

axis (z) of the cylinder and heat conduction by 

natural convection on the outside boundary. 

( The program was initially developed in 

November 1976 for an investigation of heat conduction 

in jacketed pressure vessels used by Ethylene 

Plastique Co. Ltd.,France, for the storage of 

ethylene gas at low temperatures; Internal Report 

2-EP-5000L/C.N.Oikonomides,Applied Mechanics, and 

in here the boundary conditions are changed for 

natural convection to air.) 
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JOR(WIET113,)10 / T7 ji,CAO,LC307) 
MNF (T ID/ R=',F=1, 
MAP( P) 
B I N. 
C 
f. 

  

1111LS.C.N 

   

C 
C 
C 

          

          

PMLCAM CYL1 DT (INRUT, OUTPJT , TAH:!7=-I ApjT, I A :6=01JTDUT) 
C 
C 	PRnG:;;AM CYLI.OT -3OLVS -11-C7 Tr: 	)1117.'ISI 3NAL 7- Iii 	9_:.P,: 1:-)':.I'T 
C 	DIFF:RENTIA°. :QUA TIM OF -1.7 A T CONDUCT =ON II A HCLL.:)11 
C 	CYLINDER IH flli: RADIAL 7.: DIP1CTION 	U INC3 ,  THL CYLI '1:.1RICA L. 
C 	FORNARD.DIF17 '_R:NC :::XPLICIT 7!IRMULATI2N TN TI:1:-. AND ::;PAC 
C 	INC RL MENTS, T T /4 SSUMLS A C 0 ASTAN T TENP _:,1.7- Ai.<7  A ?nur) THE 
r 	INSIDE CIT.CH'IFERF!ICE AHD ALO IG THE AX :S GF CYLIND 	Arm 
C 	H=AT CoNnUCTIol DI NATURAL CO11T,7 0TIO J ON TII: OUTSI 
C 	POUNDARY. 
C 
C 

COMMON U(5:' ) / 
1 	TRIMS, 	IROUT , 
2 	GRID, 	A (.7 1 	, [ (3 ji) , 	(7u7) 
3 	(12) , 	OUTF:IT 112) 

C 
C 	DATA DESIGJA.TIONS 1I1:14SIJA:; 
C 

R740(5,1) 	TIN 
READ(5,11:A 	TCYL 
EEAD(5,1L) 	SPACIN 
REAC(5,125) 	ROUT 
READ(5,128) 	RINS 
READ(5,17C) 	PAOTH 
READ(5/14U 
READ(5,135) 	T1 
READ (51145) 
REA0(5,15) 	TIM 

100 FOR4AT(1X,F1.2.6) 
110 FORMAT(1X,F.6) 
12C FORMAT(1X,F)_2.A) 
130 FORMAT (iX,F4  2.6) 
140 FORIAT(1X,171.?.6) 
125 FOR'lAT(1X,F12.6) 
128 FORMAT(1X,F12.6) 
135 FORMAT(1X,F1.6) 
145 FORMAT(1X,F1.2.6) 

F0P,MAT(1X1F1.2.6) 
IUUT=ROU;P;RIP 
IRIMS=RINS/r;PID 

C 

PROPTRTIFS nF NAT'-ZIAL 
C 

READ (51 16C) 	cOMOS1  
ONST, 

2 	SP,TS-T, 
.3 • 	XCHA71-  

160 FORMAT (1X,L, ( F12. 6) ) 
C 

ni7  GAS ON TH"-  DUT;I1 
C 	WHER.J. NAT 	L 	CONV7C TION 	] PLAC:.  
C. 
C 

READ (5, 17:) 	CASK, 
1 	 fr;PHF AT , 
2 	 hYNIii7/ 
7 	 VISOK, 
4 
5 	 DJ. ISG 

1 70 FORMAT (1X,Ci F12. 	) 

DATA RELAT.,.:n TO CO4CITIONS 
REAr) (5, 177) 	AM C, 

TGAS 
175 -FORMAT (IX,: (Fi2. 6)) 

C 
C 	R3Y=2*(3.12654).*RODT 

I1=(IROUT-IDIN2)/GRID+1 
C 
C 	INITIAL STAT T 	TF1'17:ATUkE OF TH7 il;AT:RIAL 
C 	IS DEFIK_D 

DO 186 9=1,71 
186 U(M)=TIN 

C 



Ll.= I1-1 
C 
C 	PAO IAL 	 C:-)L'7:(JLA Ts1 

THIS IS T: 	IT7.10T10:1 
TI 12 

187 FOP:1 (U (1X 3 F'.Y?• rS,) 
NV=1 

299 CM'ITIWY: 
a ni CONTINUF 

PD 136 '1=2,1:1 
U( I1)= U (It- 1) 
Y. ;•1= INS +17Lf.) A T ( ;') 
G=11(;.1-1)*(...• - (Gt:;IO/ 	) ) 
C =11 tiA +1 ) 	( 	rJ/ (297,11) ) ) 
U(1) = 	 *(C,4-0) 

1.96 CONTINUE 

244-16 

17, 
C 
C 	FI=AT IS C;1 1`':-- 	Tc) THA  :3•1,?,),n - JNE.jING 	;A.-) 	 601JJECTIoil 

(..;AL CUL AFT -TH 	 '1;17.9F 	I._ ,' 	11T 	1,•; ^_,Lt 
C 	TE"19C..'1:ATir --;__ OF THT ".; 	I!!'" 

P'?.AN:f)= (SP)1...11‘ T I'DYNVIS) 
C 
C 	CALCULAT ,..:: THE. 5 7;AFI-ICji--F 	 1`.. 	JHGTIWI OF TH"- 	HALL 
C 	TEHD...77:.ATIV,;_ AT Tit- 	THI 	.1NP, "'JAL 

(PI= (U ( 	) ) 
GR,A 	( ( 	* R,(.1U1.)":75) 	1:3 ,-;* 4- 2 	 ( U1-TS!- 

53'1 1 GR,ASH*P - ANP) *".-,'• • 29) 
IHE A TC0= (C,A'2/,'ANSL)./ (E. 4P.OiT) 

C 	FRO" THE 'LAT ';ALAU).--: 	 oN 	OUTSID 'AJU'PArA 
C 	C 	CUL AT 	TH 	T 7;r-7. - ;;:A 	 OF TH.: 	N 	1:-)7A1,_ T. ;j.

tta _11 
C 	DUF 	TO 1...;01)(;:: CT ION AT THI.7; TI 
C 
C 

AA1=-00(193*(G 7.11. -))"- CY* (l)(I .!.)-H (11-1 ) ) 
IF ( AA1.E1)•:,• ) GO TO l+d 
L31=HEATCO*- ( 
IF (9-31.•E'.:. ) 	GO TO LOU 

(5i;17.1"-L) 
/GC1 

FOIFF= (DIFF'6 T-IN: 	/.7E: 	• 
U( I 1)=U( I1)*FDI FF 

48C CONTINU:E 
C 

IF (TIAt._ -l4 7 2.5) 	T1=-- 10, 
IF 	 122. 7, ) Ti=:',C 4 
IF 
IF 	(TIrli: 	 .2.9)T1=1.2.... • 
IF 	 5)NV=1,  
IF (TIH17..,..2 -;• 122,7) NV=F 
IF (TI1E•L'It 7:32.5) NV=6 
IF (TIME•1:f:',. RT 5)(1V=L6 
TI NT=Tli- FLOA.T (NV) 
IF 	 II", T) GO TI) 121. 
TI (17=T IMF+ • 
GO TO 	• 
CONTINUE 
NV= NI+ 1 

C 

P R INT ALl. *-:(1 9 1)L 	 A 	 TI -17 11\T .  

923 CON TINUL 
ST It''--=TP" -../ 

	

I 	(6,24 	) 
24 a FOL:'"AT (1 (./ )" 

).V.)„ 	( 6,5F C ) 	T I M. 	T 

	

55C F9P 	(2.X .1 4.  I* 
	 FA p_ -3,1 	"- T I 1_ IN ..',-C =4tr'14.7.,) 

Ti. (6,2145r ) 
245C FOP "AT (1. (1 )' 

50C COR:ITINUF. 
I=1:1 

Wr),I LI (6,1 )...)o) 
1999 FDP.HAT 	 1_31 

) 	) 
2300 FOR4AT ( 	(FE;• 1,7X) )) 

I=T -1 
GO TO 500 

r) Tr) 5,18 
E■28 TI".F_-=TIN'77TT 

VAC IF ( 	),• A 1I NUT) GO TO 



1,) TO 2 1-) 	 244-17 
CALL DiAT!' 
CONTINIL 
STOW 

- N P 

SURUTINT D'Y)} 
COON 

2 	ItFvT(12),CUTFT(12) 
41) 5:5 

505 X(L)=0.0 
FEAO(5,87:) 	itEIT 
RFAD(5,875) OUTFT 

875 FOP.AT(6X,_P.6) 
PFAD(5,117) 

105 FOR1AT(I31 F1 i..3,77) 
=wp,In 	 . 	. 

DO 6.:5 I='," 
PEA9 (5,InFIT) (A(L),L=1,1).' 

605 WRIT:(1) 	1=1.H) 	- 
7(5,INFTT) (t...,(L), L=10) 
IfEr1=1 

995 PIG=0.0 
DO 1365 I=L,N 

102 Sn1=-.0 
E9(1) 1A(L),L=1,H) 

To 16'35' 
LAST-=I-1 
no 1:65 J=1.,LAZT 

1065 741'1=';Ut'l+A(J 14-X(J) 
IF(I.EO,t0 GO TO 105 

1055 I1ITL.=I+1 
DO 11:75  

175 su1=7;u1FA(J1 *X(...1) 
1075 1.,-,1f7,--(n(1)-ui)/7.;(i) 

TF(A:s(TIP-x(7.».1-,7.:TG) 	 1->(1)) 
1005 X(I)=TEMP 

IF (LIG.LT.7.'13) GO TO TL 
IF (IT 7R.GAX) GO TO 72 
IT7'R=IT:R+1 
CO T) J'5 

752 WrZIT,.(6,1471  
1 47 roc:IAT(1 1-1,TF,:):11...7) 

(X(L),L=1.1 1i 
PETT;.N 
F19 
CYL1)T-rYL_DT-CYL191-CYLi1T7'2,vLi.DT- T-;Y-L-1T-olL,DT-CYL1 rJT 

1 0 1  

r 
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C ASE  A
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T
h erm a
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  result s

 

431.5 
422,2 
417.' 

417.-4 

L15 1 
415 I. 
L:1" 	I. 

450,3 
432.3 
422.4  
41°.1 

415,4 
415..2 
415 1 
415.1 
41".1 

441 r. 

471.. 5 
417 r. 

411, 3 
41'; ' 
41 -, / 
415.1 
413. 1 

444.0 
47.7.1 
421..1 
417.3 
::1". 
417.3 
415.2 
415.1 
415.1 
417.1 

44262 
428.3 

417.1 
,1' A r

l 

415.1 
415,1 

415.1 

440,4 
427.0 
420, 0 
416,4 
41.7  
415.3 
415.1 
415.1 
1,15,1 
415.1 

435.7 
426.0 
419.5 
416.7 
415.5 
415.2 
415.1 
415.1 
1.1'41 
415.1 

437.1 
425.1 
41'1,1 
416.5 
415.6 
41F.2 
415 1 
415.1 
41 .1 
415.1 

435.6 
424.3 
415.7 

419.5 
415.2 
415.1 
415.1 
41-.1 
415.1 

10  

133 424.1 
427.5 
415.4 
L1.2 
415.5 	rri 
415.2 
415.1 
415.

5.1
1  

41  
414.6 

I= 3 
2 
	 5 	6 	7 

	
8 	9 

IT 2 

1 	2 5 	
5 

la 

451.7 
441,2 
42b.2 

432 3 
432.5 
432.4 
432.4 
432.b 
432.4 

455.1 
450,J 

452.0 
450.3 
45 1 
450 
453.5 
450.0 
450:0 

44°,1  
440 r, 
415 

7 

432 5 
. 	41? .4 

1,3?. 4 
432 4 

. 432,4  

45 7 
451 

45r.7 
45u. ) 
45'; 

450,1 
451.. 1  
45n 

447 71: 

411. 
 : 
6' 

%13. t; 
437.. 
43.3.5 
4'2 4 
432, 4 
432. 4 
41'. 4 

451,: 
451 n 
1,/10. 0. 
451.2 
4c1.0 
45'1 2 
11;1,1 
451.0 

451:1  

447.n 
41" ,-4 
41r.3 

417.° 
41').5 
412.4 
(.7' . T 
412.4 
417.4 

45%0 
4rm.0 
45!.*..0 
457.0 
457..3 

450.0 
452.0 
4.91 t'3 

446.0 
435.8 
435.1 

432.7 
432.5 
412.4 
1,32.4 
432.4 
432.4 

45uri. 
450.5 
450.0 
451.0 
450..4 
450.0 

450.0 
450.0 
45069  

445.1 
430.3 
434.5 
433.3 
432.7 
432,5 
412.4 

432.4 
432.4 

450 
4560 
430.0 
450.0 
4560 
450.0 
410.0 
450.0 
450.0 
450.0  

444.3 
437.5 
434.6 
433.2 
417.6 
432.5 
43.!.4 
432.4 
432.4 
432.4 

45:1.;l; 

450,5 

45!.:* 

t!UU.0 
450.0 
450.0 
459.0 

443.5 
437.4 

433.1 
432.6 
432,5 
432.4 
432.4 
432.4 
432.4 

451.0 

450.0 
450.0 
45q.3 
450.0 
450.0 
450.0 
454,0 
450.5 

442.7 
437.0 

433.0 
432.6 
432,5 
432.4 
432.4 
432.4 
432.4 

450.0 
to.)0.1 
45U.0 
450.0 

450.0 
454.0 
450.3 
450.0 
450.0 

441.9 
426.6 

437.!1 
472.6 
402.4 
432.4 
422.4 
432.4 
432.1 

10 

45I.0 
4t0.0 
453.0 
4clo 
450.3 
450.P 
45rJ.0 
450.3  

450.5 

I= 1 

1. 	2 	1 	to 
	5 	6 

	
7 



1= :; 

1 2 ., Ij 5 S ., 8 q 10 

45'1.1' 44~)", ! 1&4,: c 4~r;.9 "31.5 4;>7.3 423.3 419.4 41~.O 412.3 
4n'À,} Ij P'" ') t.f' 2 '.0 ~ • 1 3::17,5 3 n 5, a 392,7 3 '3'0' & 31' J;. fi 3 e f)., 7 
3b'.& ? 36:;· ~ ~r 1. ",1'.4- 37 'J.l 377.9 37(,.7 375.7 374.8 17 J.~ 
17':,1 372 

~ 

i71 . '-j ,·1 31 n .. CI 3"J.l 31,'). ,j JG~·2 3GA.'l 3f>1l." 
)n'l 2 3(,7 3(, ~. 5 367.4 ~r, 7.2 367.0 361',,5 36&,7 366.5 3 f 6. " 
36;;, 1 3f1h .. ~ 1;'; 1 :; ('(-''' ',J 3;1',. J 3(,5.') 36C;.() 3&r;.') 3b~;. 5 3E-,>,7 
365 '7 3n~ l :;,;r; :; 1Gr;.6 ~65, & 36<;. & 3,,';.6 365.5 365,5 3 F,5. 5 
365· ., 36~j .. ~():; r:; ,1',0:·5 3G5.5 365.~ 36"1( ~, J~'-rr :, 3~'· .. ') 3 t·". < 
3 () •. , :; :H,,· ,r.7 ~ ',-.5 3(~5 .. '3 365.5 36e;.5 31',5.<; 365.5 3 f "" 5 
36:;.~ 3(;r", r; 3 (,'j, r; 3 r,5. ~ 365.5 365.5 3&:'.5 '365.5 365. <; 3fJ4.3 

I= 5 

1 2 .. ~. 5 6 7 8 9 10 

4Sn. J 446. ~ 1.',.2 ., 41'.5 1j14,9 431.5 4 2~i. 2 425.1 422.1 41'3,3 
4H"ô 41 " t 411, 7 ~O:"'.~ ~ Il 7.3 405.3 4D 1.5" -- - 4Ql.7 4ll ·).1 3 c '!. 7 
3-.J7.1 3<"': -' :'''';. r. 1'13.-; 3':1 2.', 3'Ji, ~ 39". (;, 31\'l,1) 3e -3 dl 3E~.~ 
3·Q"/,7 lR7~l 3";;.5 3!1~,.1 ZI; 5. (, 3 :15.2 3~4.9 :;'14.5 3'~ h, 2 3f 4." 
3 d."{. 7 3"3.;; ::;r. ,. :1 3~3.1 3,3.0 3f\2.~ 3D?.7 332.5 392.4 :;f2.3 
3 ·.2,3 3~? '2 "t~?_1 ~"2·1 3~ 2, 'J 301'3 3tll.9 3 Si. q 3 '\1. Il 3 (1. f 
3Ôl.Q 3:>1 .. 7 ~~1 1~i • 7 3'3 t. 7 3tH.7 361. l 331. , 3~1. 7 3/1..h 
331r~ 3tH, 3[·1 

" 
3~1 • ô 3'; 1 .. n 381.5 3~1,& 3 'l1, Ij 191.5 3t1.1) 

381.1:- 1f 1· 6 ;;~1 fi 3A 1. & 3S 1. 1; 301.1) 381. b 381.6 ·l'H.6 .3 f.1. 1) 
351. S 3f1, ,j .3 ~ t. (, 31'1.6 31H. [, Bl·6 3'11.& 3 '31. ~ 31\1.& 3 f ~ ,& 

, 
!= ~ 

1 2 "3 4 5 6 7 8 9 1G 

Ij 5 n • ~ 1.o1j7. , 444 j 1.41.2 43 a. 5 435. '3 433.4 4 li, U !~ 2 ~. 7 t.. t?S. é, 
~ 2't 9 ~ ~ 27.,"· t ? J_ r- f, 1 -:.1 t17.~ ~·H,.O 414.& 413. ? H2.a 410.9 
t+U '1. 1) 4·n~ .. 3 Ij '1 7. ~ 4117. J 4:' 6. 2 40 ".5 4fJ4.1.\ 4D4.2 433.7 4r3.2 
40?7 4':12.2 4nl.S '~r j • <;; 401.2 4 J :.1. '3 43'3<6 4:11,3 4.; lI.t 39Q.'O' 
39q "7 39" " :'1Q, ~ ~9:':.1 3'j Q, 2 3'1':1 0 3':ltl,0) 3 'JLO. ~ 3q~.3 3 C.B. 7' 
3'.i".& 1'1:;. ij 3'j~ 5 3° 0 •. 5 3'1 >3.~. 3(J t, __ li' 39[\. " 3 '3D, ~, 3'1:1.3 3 ~ «.3 
3~f\.3 3tJ:~" ., 3<1i1 3 :;nRt~ 39 [lI 2 39~. 2 393.2 l'1S.? 3'O~.? 3"8.2 
J', ~. 2 3<')f" ? 3C,~· 2 3t\"..2 398,2 39",2 395,2 398.2 3'J'\.2 3 c.:~. 2 
3'01\.2 "",:q[\.? 3Cl3.? lf'lO,.2 3(J8 L 2 391l·,Z 398.2 39g·,2 39)1.2 3°5.2 
39".2 :;qe ... 2 3<J~, 2 3'J~. 2 398.2 

.. _ .. ' 

391\·2 - 39f:1.2 :3 96. 2 39'l.2 3(.:7 •• , 
.. 



1= 70 

1 

1=6) 

1 

l,51}. J 
2°2 " 
1'11 3 
12 il· 1 
~'J. 2 
0(, ? 

11<;, ~ 
13~. ? 
13<;.2 
135.2 

I=E-~ 

1 

4<;"," 
2Q~, ~ 
11).,,3 
12 n .2 
~'J·3 
oç.,,9 

13<;.2 
13<;.2 
13<; • .z 
135,2 

2 

2 

2 

ùJ? .. 4 
2!~. ~ 
i7S.1 
115. '1 

n 7 
~t,.1 

115.2 
11~" ? 
13<; 2 
1,5.2 

3 5 

1 4 5 

41'3 1 ~qo.2 3~ 1. 7 
c:~r;. 1 (''il<, J 2~ 2. 3 
1 r,7. I. 1Gr.2 151.3 
111. 1 l ~~ .• 1 134,6 

Ar,. 1 ·3'3.1 0 4 .1 
fig. • 1"\1.2 Q2., 

135. 2 1 ~r,. 2 1]<;.2 
1 ,~, :2 1 ~q. 2 135.2 
11<;. ~ 1:1<;.2 135.2 
13r;.2 115.2 135,2 

364.4 
229 0 
144. 3 

99.8 
62.1 
33. r, 

104 7 
1 a <J. 0 
11 Il '. 11 1.1.. 7 

6 

31)5 <j 
231,2 
1 .. 6 8 
1 'l1. 3 

33· 3 
g4· 1 

13'i. 2 
13~. 2 
135.2 
135.2 

6 

365:t; 
:?H.2 
146- 'J 
1014 

133.3 
'j1i. 1 

135,2 
135.2 
135.2 
135.2 

7 

7 

7 

3i.<J.9 
22U.G 
14~ dl 
Cl~.4 
'32,& 
~"< ~ 
13~.2 
135.2 
13'>.2 
13':.2 

6 

.3.14.7 
210.6 
115.1 

Q5.ô 
12.1 
Qn,7 

lr.2 
13'5,2 
l 3"i. 2 
135.2 

e 

3 ~". 7 
210. " 
131).1 
g5~.ô 
82.1 
gf.,7 

13<;,2 
135.2 
135.2 
13~. 2 

1 0 

'J B 

31 '3. q 3 "'.7 
201.;) 1 1. Q 

12Q,13 1 ~.~ 
'l3~1 1.1 
81.7 '.:: 
<;1.1.0 1 5.? 

13'5,2 1 5.2 
115.2 1 5,2 
135.2 1 5.2 
13~'J.2 1 ,.p 

N 
~ 
-..J 



I= 2 

2 '3 4 5 Il 7 El 9 10 
.. .' 

42'1.6 4~'1.o 42~.0 1.29.3 429.~ 42". f:\ 430.1 43'j.3 43'1.5 43U.1) 
43n.R 4.11. :' 431.1 431.2 431.3 43: .• 4 431.5 431.b 431.7 4_'1.7 
431.f1 411.9 4 J 1. Cl 1,32.0 432.1) 43;!. (1 432.1 43~.1 ,,32.1 "J2.2 
43 2,2 412.2 432.~ 1,32. ë 432.3 43;! .3 43".3 ,,3,~. 3 4J~.3 4J2. _~ 
432.3 4 1;'.3 43;.>.3 1,3i'..3 432.3 43:' .... 432.4 43;'.4- 43?4 ,,32.'1 
43:>.3 4'1;>.3 4.1,'.3 1.32. J 432.3 43.~.3 43 .... 3 43~,3 43:>.3 4:~è. ] 
43 2.3 4 1 ;:'.3 43~.J 1,32.3 432.3 43:!.3 43~.3 t.3~. 3 43;:>.3 432.1 
43~.3 41;>.3 432_?! l·32. ? 432.2 ~3:~.2 43;>.2 43/.2 432,è 4]é:!.? 
43:>.2 4 1?? 4 3,~. 2 432.2 432.2 4 3:!. 2 43;>.2 432.2 43:;>.2 432.2 
43 2.2 412.? 43 i;. r: 1.32.2 432.~ 4 3,~. 2 43.?2 4 3,'.2 432.2 432." 

l C· 

1-3 " 3 4 5 .~ 7 fI 9 lJ 
!l> 
tI1 
t-' 45 0.0 4'i:J.n 45~.:) 1.50.0 450.0 45J.0 450.0 450', ~ 45n .1; ~:,D,O W 

45 0,0 4:;n.o 45~ .Ii 1.50.1) 450.0 45 J. 0 45').0 ft,St). C 45 0. ~) r. S 0 • ~, 
-1:' 45/),0 4'1n.o 45.) .ll 45n.o 450.U 45~.o 45'\,0 45ü.:J 450.n 450.n • 45'),n 4S0.() 45Q. ,) 1,50,0 450.0 4S).0 45'1.0 loS,) ,~ 45(1. II 't.5~,n \J1 
• 451).0 4S0.u 45.1.u 450.0 450.0 45).0 45,'.0 45:),,:, 450.r. ""u.o 
-\ 451:'.0 4~G,0 450.il 1,50.0 450,0 45).0 45 (1.0 45u.n 450.1l 4S0.1) 

H) n 45 0,0 45n.O 45:).0 1.50.0 450.0 ~5:l.0 45r\.o 450.0 450.0' 4~O.~ 

0 !l> 45 0.0 4~O.o 450.0 1.50.0 450. 1) 450.0 45D.O 450.0 450.0 4~Orr, 

~ CIl 450.0 4'50.0 45~1 .1) 450. U 1050.0 '+50.0 450.0 450.0 450. '1 450 • . \ 
.trj 45Ô.O 4'30.0 450.1) 1,50.0 . 450. f) 105J.O 450.0 450.0 1050.0 450.0 ct' 

.." tI1 
8 
~ 

Il ~ 
@ 

-" Pi 
0 S 

Pl 
8 .... 
..," 
:;:! '1 
~ Ci) 

ct' 01 
Ci) ~ 
Cl f-' 

no 
"..... m 
0 
0 01 
1:1 III 
ct' 8 
..," lU ,g f-' 

r" ~ 
Ci) .t:-
n. CO 
........ 



Ie. 

1 	2 	3 	4 	5 	6 
	

7 	N 	9 	10 

387.3 
393.5 
395.4 
397.5 
397.9 
397.9 
397.9 
397.7 
397,7 
397.7 

3"7.3 

316,5 
397.6. 
3'7.9 
317,0 
317.P 
117.7 
317.7 
317.7 

388.3 
394.3 
396.7 
397.4 
39o.. 
397.9 
397,14 
397.7 
397.7 
397.7 

389.2 
394.7 
396.8 
197.7 
396.0 
797.9 
197.8 
n97.7 
197,7 
:07.7 

390.0 
395.0 
39/.0 
397.7 
390,0 
397.8 
397.8 
397.7 
397.7 
397.7 

390.7 
195.3 
197.1 
;97,8 
198.0 
197.8 
.97,7 
-97.7 
97,7 
97.7 

391.4 
395.5 
397.2 
397.9 
349.0 
397.6 
397.7 
397.7 
377.7 
347.7 

395.9 
397.3 
397.9 
398.. 
397.3 
397.7 
397.7 
397.7 
397.7 

34.5 
395.0 
197.4 
197.4 
397.4 
347.8 
197.7 
347.7 
197.7 
397.7 

393. 
3A6-3  
447.4 
3)7.4 
347.4 
va.o 
447.7 
1)7.7 
187.7 

'4 46.9 

I 3 

1 
	

3 	4 	5 	6 	7 	 6 	 9 	10 

407.7 
41p.o 
413.9 
414.7 
414.9 
414.9 
414.9 
414.8 
414.8 
414.9 

47.7 
412.2 
414.r 
414.7 
415.0 
414,9 ' 
414.9 
414.q 
414,11 
414.9 

408.4 
412.5 
414.1 
414.7 
415.o 
414.9 
414.8 
414.4 
414.11 
414.1i 

409.0 
412.7 
414.2 
414.0 
415.0 
414.9 
414.8 
414.8 
414.4 
414.0 

409.5 	410.0 
413.0' 	413.2 
414.3 	414.4 
414.8 	414.8 
415.0 	415.0 
414.9 	414.9 
414.8 	1 	414,8 
414.8 	414.8 
414.8 	414.8 
• 414.8 	414.8 

410.5 
413.3 
414.5 
414.9  
415.0 
414.9 
414.8 
414.4 
414.8 
414.8 
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CASE A. OUTSIDE BOUNDARY  

1 graph 
	

1 graph 

254 

NODE Cr R 6Z (15;nco(P 7inta 	J2 

1 -963 -853 
2 -1195 -1185 -945 -4823 3468 

3 -7598 -1568 -1661 -7687 4917 

4 -11063 -2308 -3369 -11065 5449 

5 -16438 -2981 -5828 -17921 8207 
6 -18785 -3742 -6243 -17608 8528 

7 -21371 -4211 -6850 -21602 10184 
8 -18505 -3451 -7851 -23665 10579 

9 -18274 -2708 -7753 -22560 10147 

10 -15995 -1912 -6786 -20778 9902 

11 -9137 -1583 -5612 -18765 8933 
12 -8945 -1350 -4425 -14728 7957 
13 -7142 -1002 -3779 -11605 6593 

14 -6342 -953 -2691 -10471 5985 
15 -4921 -810 -1920 -7813 5305 
16 -3930 -792 -1668 -6198 3418 

17 -2638 -543 -1119 -4725 2859 

18 237 268 100 2646 2478 

19 4782 1193 2029 7007 3624 

20 6842 1542 3012 8067 4931 

21 8239 1601 3496 10855 5029 

22 10354 1921 3640 10905 5093 
23 11089 1995 3766 11091 5104 

24 9912 2005 2886 9515 4814 

25 6756 1853 2743 6775 3335 
26 6443 1648 2493 6461 2645 

27 4369 1410 2158 4969 2421 

28 2056 1180 1650 442o 2307 

29 956 1594 

f See mode a+ "the bottom 01 roene q4 

TABLE 5.2.1 
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CASE A. OUTSIDE BOUNDARY 

NODES tmax(12) tmax(23) tmax(31) 

1 2024 587 

2 3468 2688 780 

3 4917 3811 1108 
4 5449 4223 1226 

5 8207 6361 1846 
6 8528 6610 1918 

7 10184 7893 2291 
8 10579 8200 2379 
9 10147 7865 2282 

10 9902 7675 227 
11 8933 6924 2009 

12 7957 6167 1780 

13 6593 5110 1483 
14 5985 4639 1346 

15 5305 4112 1193 
16 3418 2649 769 

17 2859 2216 643 

18 2478 1921 557 
19 3624 2809 815 
20 4931 3822 1109 
21 5029 3898 1131 
22 5093 3948 1145 
23 5104 3956 1148 

24 4814 3731 1083 

25 3335 2585 750 

26 2645 2050 595 
27 2421 1876 525 

28 2307 1788 519 • 
i 

29 1694  491 

i 

TABLE 5.2.1.1 
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CASE A. INSIDE BOUNDARY  

1 graph 
	

1 graph 

NODE (57z co.xp in 	x02) 
206 -155 -120 
200 -772 -278 -315 -1118 592 
192 -2632 -293 -865 -3026 1443 
186 -4875 -302 -1528 -5157 2610 
172 -8099 -361 -2538 -8489 4258 
165 -10572 -580 -3085 -10572 5142 
157 -10921 -1573 -3748 -10986 5150 
156 -10960 -1592 -3480 -10288 5173 
129 -10219 -1383 -3103 -9094 4487 
128 -9012 -1100 -2803 -5509 4423 
127 -5458 -1080 -1583 -3425 2639 
126 -3341 -920 -1028 -1579 1712 
125 -1490 -810 -1001 -1078 1525 
124 -1303 -703 -958 -1022 1403 
123 -1120 -702 -940 -982 1321 
122 -1002 -650 -857 -916 1201 
78 -952 -610 -803 -893 1194 
77 -677 -601 -763 -802 1072 
76 -603 -582 -745 -710 956 
75 -504 -701 

See not aim the. bottom of pa9e. 94. 

TABLE 5.2.2  
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CASE B. OUTSIDE BOUNDARY 

1 graph 
	 1 graph 

• 
NODE 6-R4(  6z  Frn  0,x p $ Imo% 12 

133 -376 -297 
132 -1358 -48o - 263 -1728 1289 

131 -2758 -653 -765 -2763 5605 

1 -6574 -833 -890 -4815 6113 

2 -8145 -94o -980 -6345 6270 

3 7 -10803 -1007 -1102 -8109 7607 

4 -11911 -2185 -3928 -12660 10397 

5 -14287 -4230 -4373 -14897 15245 

6 -5074 -2355 -2153 -7786 4197 

7 -2255 -1100 -956 -4474 2879 

8 -1164 -840 -493 -2758 193k 

9 229 105 97 -1693 1855 

10 866 642 368 1904 1290 

11 3846 2613 1506 3865 1354 

12 2923 2541 1494 3499 1317 

13 2861 2119 1048 3062 1315 

14 2480 1823 1003 2974 1307 

15 2473 1174 1000 2615 1095 

16 2404 1020 904 2613 1009 

158 2034 810 848 2509 1008 

160 1005 703 777 2498 990  

162 641 634 

8 See Ylofe ol- 	60f+orn of f' 3e 94. 

TABLE 5.2.3 
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CASE B. INSIDE BOUNDARY 	1 graph 

NODE or 1110)( p atcnctx (i2) 

149  
147 —14t.4 i 1332 
124 —2297 1595 
123  —3066 1871 
122 —3350 2638 
121 —7498 3165 
102 —10442 4924 
101 —9190 4743 
96 —5946 3077 
95 —4489 1558 
94 —3718  1369 
87 —3648 1358 
88 —3154 1274 
89 —2016 1203 
90 —1739 1091 
91 —1714 1047 
92 —1688 970 
93 —1631 957 
159 —1232 792 
161 —1061 772 
163 

TABLE 5,2.4 
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CASE C. OUTSIDE BOUNDARY  

NODE time=4 minutes time=8 minutes time=11 minutes 

61- 6R Ez  6; 6 L 6-f 6; 

1 -32 -137 -74 -319 -102 -438 
4 -52o -38 -157 -1209 -87 -365 -1663 -120 -502 

7 -1274 -118 -266 -2959 -274 -619 -4069 -377 -851 
10 -1573 -15o -299 -3654 -349 -1o6o -5024 -48o -1458 
13 -2166 -217 -519 -5031 -505 -1426 -6918 -694 -1961 
16 -2226 -256 -675 -5171 -594 -1569 -7110 -817 -2157 

19 -2370 -277 -776 -5506 -644 -1803 -7571 -886 -2479 
21 -2581 -347 -810 -5996 -806 -1881 -8245 -1108 -2587 

22 -194 -72 -87 -452 -168 -201 -622 -231 -277 
25 423 136 134 983 316 311 1351 435 427 
28 705 157 259 1638 365 601 2252 502 826 

31 831 175 302 1930 406 700 2654 558 963 

34 1009 176 356 2345 409 826 3225 562 1136 
37 1145 197 4o5 266o 457 94o 3658 628 1292 
4o 1246 198 433 2895 459 1006 3980 631 1383 
43 1434 204 489 3330 473 1136 4579 651 1562 
46 1152 87 359 2676 203 833 368o 279 1146 
49 1098 84 343 2551 194 798 3508 267 1097 
52 1006 59 283 2336 138 657 3212 190 904 
55 906 58 256 2104 136 594 2893 187 817 
58 858 57 253 1993 132 588 274o 182 808 
61 784 44 179 1820 101 415 2503 139 571 
64 611 41 166 1419 95 385 1951 131 529 
67 591 39 151 1372 91 351 1886 125 482 

70 512 35 128 1190 81 298 1636 111 410 
73 421 31 100 977 73 232 1344 100 319 
76 255 23 63 591 54 147 813 74 202 
77 20 61 47 141 65 194 

4( See vote. c1 -the bottom of" par 94. 

TABLE 	.3.1 



260 

CASE C. OUTSIDE BOUNDARY  

NODE 

time=4 minutes time=8 mInutes time=11 minutes 

6-max  p Troco<p) 6-rt1C4X p Tmax62) Cnax P rmaxaz) 

I 
4 -573 590 -1330 1370 -1829 1884 
7 -1280 1423 -2972 3305 -4087 4545 

10 -1576 1563 -3660 3631 -5033 4992 

13 -2167 2011 -5033 4670 -6921 6421 
16 -2246 2083 -5217 4838 -7174 6652 

19  -2375 2162 -5516 5020 -7584 6903 
21 -2582 2465 -5998 5725 -8247 7872 

22 -550 809 -1276 1880 -1755 2585 	I 
25 433 420 1006 976 1383 1342 
28 715 568 1661 1319 2284 1813 

31 834 663 1938 1540 2665 2118 
34 1012 838 2350 1945 3231 2675 

37 1147 944 2663 2193 3662 3016 
40 1253 1062 2910 2466 4001 3391 
43 1435 1240 3333 2879 4583 3959 
46 1159 1123 2692 2607 3702 3585 
49 1099 1102 2553 2560 3511 3520 
52 1009 1054 2343 2448 3221 3366 

55 858 1053 1993 2447 2741 3365 
58 849 962 1972 2234 2712 3072 
61 795 746 1846 1732 2538 2382 
64 615 677 1428 1573 1964 2163 
67 601 58o 1396 1347 1919 1852 
70 513 557 1192 1294 1639 1779 

73 445 196 1034 455 1422 625 
76 160 79 372 183 512 251 

77 

TABLE 5.3.2  



CYCLE T l'1 c: = 1. 0 G 

GAUG~ NO H~O~rS ~EAD1NGS DIR~CT ST~AINS DIRECT STRESSES 

1 • Oi~ .5'U9;::-05 177.6 
2· • IJ J.-) • 2dS 7~-G? 85.7 
.3 • jJg • 2,;:} ~E-,,5 8'-+ .1 
'::- • ,j~4 • 7~7r':"-QS 224 • .3 
5 • 'J15 .4762:::-05 142.9 
6 ·.012 .3730::-0S 112.1 
7 .C.)0 .1J28::-G4 308.4 
cl ,- )- ï3G2E-CS 219.0 .0<-.) • 
9 ,. 1 • 

• U _ J- .3,+27::-.jS 102.8 
1,-, .:.;.54 .lJS9t.-G4 617.8 
11 • Q 21 • 6567':'-05 20 C .0 
1~ .Li? .52géE-C5 156. '9 
1":; • J.3b .1121[-24 33é.l~ 
14 • :j 18 • 5714:::::'-J5 171.4 
1? • 019 .5919E-05 177.6 
16 • 039 .121?~-u4 36L.t.5 
17 • 02? • 8S71~-G:; 257.1 
16 • u15 .46i'3c:-û5 14:J • 2 

J-3 1'3 • L. )1 .965 lL_- 05 25'::.7 
~ 20 .018 .5714E-05 171.4 
t;;:I 2i .û:l.4 .4361E-05 13[.8 
t-4 ·2~ av11 .3427:::-[,5 102.6 I:'j 

2J • :'.jg • 23S?~-j5 85.7 
(J\ 24 • Q J t) .1569'="-05 5 b. 1 ~ 

.p- 2S -.07L -.2243;:-04 -672.9 
Q 

~ 
26 -.,~.3C -.9:524:::-05 -23S.7 

li 
27 .02.:. .8723=:-05 261.7 
25 -.054 -. 16S2::.-0lt -504.7 
29 -.029 -.9ZlJéE-05 -276.2 
3':: -.j23 -.7165E-L5 -21:;.C 
31 -. i.;33 -. L;23~-J4 -3Gt.4 
32 -.J1g -.6,,32::-'i~ -181.0 
oS..> -.013 -.4J50E-05 -121.5 
34 -. 007 -.2151:::-05 -65.4 
35 -.JJ8 -.25-ijE-Ù5 -76.2 
3b -. ]:2 -.373'3;::-C5 -11 (::.1 
37 -. J 29 -.gL;34'::-G5 -271.Q 
36 -.831 -.9841E-OS - 29 S. 2 
39 -.G74 -. 2.jG SC:-(;4 -691.6 
"tu -. j ~~ -.7ï5eE-ü5 -2~3.6 
4~ -.:'29 -.92;J E:::'-Q :5 -275.2 
4~ -.OS6 -.1745='-04- -523.4 
43 -.015 -.4b73ë-OS -14G.2 

LL - .... 21 -.6;)o7L-CS -2Ûù.G -. J35 -. 10':l,JE.-;::!t -327.1 



ROSETTE NO 	PRINCIPmL STRAINS PRINCIPAL STRESSES DIRECTION 

1 .8975E-05 -.2521E-06 293.4 80.5 22. CO 
2 •1128±-04 -.634JE-.:17 371.2 109.5 12.17 
3 .13721-.:4 -.1463E-.:7 452.2 1,55.2 -3.72 
4 .1599L-L4 -.1024:-...-wo 525.1 154.8 12.38 
5 .1760.:.-34 - .4625:-..-06 575.5 150.3 23.57 
b .1682=-04 -.1526E-08 554.6 166.3 -1.23 
7 .1414E-J4 -.11 8oE-06 464.9 105.9 13.03 
8 .5304L-J5 -.8245E-::0 0 174.3 52.2 -7.52 
9 .5,,18_-'.:o -.1421_-04 -124.0 -463.5 -4.86 

10 .3196L-06 -.2431E-04 -229.9 -798.2 15.50 
11 .69,181-37 -.1442E-04 -139.7 -474.5 11J.00 
12 .594:z-35 -.2363E-C7 -1:5.8 -57.9 -14.16 
13 .551:5:1-05 -.1457z.-J4 -125.9 -474.9 5.01 
14 .452,3_-06 -.2569,:.-04 -239.1 -842.3 -17.62 
15 .8036i-07 -.1566.1-u4 -152.2 -515.4 -9.90 

ANGLE 

( q
)V
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tia
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EXPERIMENTAL RESULTS. STRESSES (lb/int)  

Time=12 minutes. Heating-up. 

DIRECT STRESSES 

ROSETTE GAUGE CORRECTED OBSERVED 
_ 

1 1116 2316 

1 2 584 1211 
3 388 805 
4 2254 3243 

2 5 1150 1655 
6 634 912 
7 3212 4200 

3 8 2248 2940 
9 811 1061 

10 3985 4824 
4 11 2502 3030 

12 1063 1287 
13 3920 4218 

5 14 1943 2091 
15 904 973 
16 4065 4275 

6 17 2444 2571 
18 993 1045 
19 43o8 4458 

7 20 2211 2288 
21 1098 1136 
22 3192 - 

8 23 2543 - 
24 1451 - 
25 -9122 - 

9 26 -4841 _ 
27 -3002 - 
28 -7345 - 

10 29 -4204 - 

30 -2248 - 
31 -3231 - 

11 32 -2985 - 

33 -948 - 

TABLE 604.2 
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EXPERIMENTAL RESULTS.  

Time = 12 minutes. Heating-up. 

ROSETTE MAXIMUM PRINCIPAL 
STRESS Cr 	(lb/int) max? 

MAXIMUM SHEAR 
STRESS -"C 	lb/int max(P.) 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 
11 

1567 
2311 
2419 
2478 
2463 
2853 
3841 
4202 

-8194 
-7218 
-3178 

1401 
2118 
2641 
2845 

3109 
3281 
3613 
5718 
7402 
6348 
3312 

TABLE 6..4.3  
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VESSEL (NODE 12). STRESSES 1b/In2.  

Time(minutes) Gauge 28 Gauge 30 Rosette 10 

a-- y (5; r rnax p 
0 0 0 0 
2 -1186 -421 -1093 
4 -2243 -763 -2151 
6 -3418 -1140 -3502 
8 -5006 -1496 -5124 

C7) 
10 -6414 -1794 -6591 

C 12 -7345 -2248 -7218 
4-)  
0 14 -7096 '-2018 -6940 
N 16 -6307 -1991 -6690 

18 -4844 -1488 -5923 
20 -3652 -1476 -4688 

22 1364 497 1257 

24 2579 874 2484 

26 3931 1379 4062 
28 5757 1765 5995 
3o 8446 2585 8301 

C7) 
32 816o 2341 7981 

c: 34 7253 2353 7694 
6 36 5571 1771 6811 
0 38 4200 1727 5391 
U  4o 3110 1452 4711 

42 1448 808 3642 
44 6o8 819 3233 

—  	, 

TABLE 6.4.4 
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. NOZZLE (NODE 43). STRESSES lb an
2 
 . 

Time(minutes) Gauge 13 Gauge 15 Rosette 5 OBSERVED 

1:5-  6-cliaxp 6-  6-  GM nx 

0 0 0 0 

2 893 264 868 
4 1754 508 1921 
6 2614 911 3002 The same 

8 3721 1483 3855 
10 4891 1709 5002 

._c 12 5541 1890 5545 
4.,  0 14 5426 1814 5294 
_V. 16 4875 1551 4321 
_IL 

18 3762 1366 3717 
20 2918 1077 3109 

22 -1027 -304 -998 
24 -2035 -584 -2209 
26 -3045 -1048 -3452 
28 -5674 -1705 -4433 The same 
30 -6372 -2174 -6377 
32 -6240 -2086 -6088 
34 -5606 -1784 -4969 

C 36 -4326 -1571 -4275 
45 38 -3356 -1239 -3575 
19 4o -2169 -763 -2653 
L.) 42 -1478 -491 -1627 

44 -724  -304 -1141 

TABLE 6.4.5  
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r (inches) 
Distance from the 
tip of the crack 
along y 

d1 
First matrix 
coefficient 

K = -427(d ) 1 

0.960 -279.8 702.6 
0.910 -320.4 803.1 

0.885 -332.1 832.5 
0.735 -421.6 1056.8 
0.660 -462.7 1159.8 
0.585 -507.4 1271.9 
0.460 -578.9 1451.1 
0.360 -637.2 1597.2 
0.210 -726.7 1821.6 

0.110 -782.4 1961.2 

0.085 -801.6 2009.3 
0.060 -813.5 2039.1 
0.035 -834.2 2091.0 
0.010 -839.4 2104.1 

(Tip of the crack) -842.6 2112.3 

TABLE 7.3.2.1  
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[b] Radial flush nozzle 
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A 
A 

X 
minemomi 

[a] Radial protruding  nozzle 

	• X 
[c] Radial nozzle directly welded on the vessel 

FIGURE 3,1.1 
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GENERAL SECTION 

SHOWN IN FIGURE 

3.1.1.c  

Y. 

Y1  
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FIGURE 3.1.2 A PRESSURE VESSEL 



CURVATURE OF SHELL NEAR THE JUNCTION IS 

SMALL COMPARED TO THAT OF NOZZLE. 

Y 

.111■•■• 

FIGURE 3.1.3. 
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FIGURE 3.2.I CASE A. 
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FIGURE 3.2.2. CASE B 
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)ci 
Heat loss by natural convection 

to air at 

aq  
a t 

65" 

---- Heat loss by natural convection to air 

Y 

FIGURE 3.2.3  
CASE C. (EXPERIMENTAL SPECIMEN) 
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TEMPERATURE GRID FOP. CASE A. 
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YX 	TS OP 0 ;4:1 LL K JJ NH GO 
YX 	UTS 0 0 11 F.1 L K 	J H G;G FIFE 
YX 	UTS 0 0 II H I K 1 H G;G FFFF 
YX 	UTS 0 0 It N L K 1 H G3G FFFF 
YX UT! 0 ONNIK J H G;G FFFF 
YX 	UT! 0 o 1 ,1 M I K 	H G;G FFFF 
YX 	UTS 0 0 H 11 L K J H GIG 	FFF 
YX 	UT! Q 0 14 H L K 1 H G;G 	FFF 
YX 	UTS 0 0 N M L K J H G;G 	FFFF 
YX UTS 0 ONNIK J H GG FFFF 
YX 	UTS 0 0 /4 H L K J H1-1 3G 	FFFF 
YX 	UTS 0 0 41 II L K J NH GG 	FFFF 
YX 	UT!. 	0 0 N M L K J .Iiti GG 	FIFE 
YX 	UTS Q 0 N 11 L K 1 HH GG 	FFFF 
YX 	UTS RO 0 11 H L K J NH GG 	FFFF 
Y)( 	UT! RU PO It H L K J FIR ;G 	FPF 
YX 	UTS RO PO N 11 L KK J NH GGG 	FFF 
YX 	UTS RU PO 11 11 L KK JJ FIR GGG 	FFF 
YX 	UT!. RO PO N 11 L KK JJ H11 000 	FFF 
YX 	UT RO PO H M L KK JJ Hli 	GO 	FFF 
YX 	UT RO PO II 11 L KK JJ H 	GO 	Fr 
YX 	UT RO PO 41 M L K JJ 11H 005 	.FF 
YX 	UT RO PO II H L K JJ HH GGO 	r 
YX 	UT RO P tl M LL K J NH GOD 
YX 	UT RO P 41 H LL K J H11 	G130 
YX 	III R0 P II M L K JJ HH 	GGG 
YX 	UT RQ .P Otl 11 L K JJ NH 0000 
YX 	UT RO P 0 	H L KK JJ H4 	GGG 
YX 	UT R PONMI KK JJ HH 	GG3G 
YX 	UT R P O N M I K J 	Hi 	GGGG 
YX 	UT R P 0 ti ti I K JJ 114 	66000 
YX 	UT R P.0 N M LL KK JJ NIH 	GGGG 
YX 	UT SR OP 0 41 ti LL KK JJ -1414 	GGG 
YX VUT SR OP 0 14 M L K JJ .1H11 	Cr; 
YX VU SR 0 0 N NH L KK JJJ HHH 
YX VU SR 0 PO 1114 Ft LL KK JJ 	HHH 
YX VU S 	0 P 0 14 II L K 	JJ 	1111111i 
YX VU S O P U N H L KK JJJ 	HHRH 
Y 	VU S ()PON H LL KK JJJ 	H111114 
i 	vv TS 	P 0 111‘; R 1 	Fee 	JJ 	1111 

VU IS R OP 00 1,1 11M LL KK 	JJJJ 
V IS R 0 P 0 N M LL KK 	JJJJ 

Y WV 7 ROP 0 NH /111 LL KKK 	JJJJJ 
Y NV T SR r) P 00 LI M LLL KKK 	JJ 
V NV T S 	0 PP 0 .It4 rl LLL 	KKKK 

WV UT S R n P 00 FIN 1111 	LL 	KKKKK 
Y HV U SROP 0 N MM 	ILL KKK 

W U TS R 00 P 00 N 	NH 	LLLL 
14 UT S R0 PP JO UN 1-11th 	LLLLL 

Y 14 VU T S R 00 P 00 NN 	1-1MA 	LLLLI 
Y WVISRRIPUONNN A11M 
Y XW V U T SR 0 P 000 WINN 	MriMMi1FIMM 
Y XW V U T S R 00 PP 000 	14.4141N 
Y X VUT S RR 00 PP 	0000 
Y X W V U T SS RR 10 PPP 	00000 	 1111 
I X 14 V U IT SS RR 100 PPPP 	0000000000 
Y X 14 V UU T SS rill 000 	PPPPPP 	 0 
Y X 14 V U T SS RRR 	nonno 	PPPPPFPPPPPPP 

X N V U TT SS 	RRR 	00000100 
Y XX 14 V U TT 	SOS 	1:1;RRR 	 ononnowtrn 
Y X NH VV UU ITT 	SSSSS 	RRRRR2R.RRRRIRRRRRR.R 
Y X W VV UUU TTTT 	SSSSSSSSSS 

• 

(Y XX W 	VV 	UUU 	TTTTTTT 	 SSSSSOSSSSSOSSSSSSGSSSSSSOS SS SOSS3SSSOSS S O: 
CV XX 	WW 	yvv 	uuuuu 	 ITTTTTTTTTITTTTTUTTTTTTITTITTTITT TITTITTITT TT TT TTTTTTT 
CY XX 	WWW 	VVVVV 	UU 11JUUUUUUUUJUUUUUUUUUUUUUUUUUUJUMUJUUUJUUMUOUUULJUUUU0OUUUUJUu, 
YY 	XXX 	WwWW 	VV4VVV /V /44VVV 
fYY XXXXX WWWWNWWWWWW 
YYYY 	XXXX XX XX X 
YYYYYYYY 	 XXXXX XX X XXXXXXXXX XXX X XXX XX XXX XXX XXXX XX XX X X XX XX XX XX XX XXXX XX X x y 
yyyYyyyY•,,,- yYyvyyrYYYvyyvvvvryvYYYyrsoFYYYYYYYYyyyYvyyyryveyveyvvyyyyyyyrreyyyrey‘eyveyyvyyvyyyys 

FIGURE. 4 4 2(a)  

CASE A.TEMPERATURE PROFILES FOR TIME=9min.30.socc. 
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YY XX WNW VVV UUUU 	TTTTTTT  
YY XXX WWW JVVV UUUU 	TTTTTT 
YY XXX WWW VVV UUUU 	TTTT 
YY • XXX 	WWW 	VVVV 	UUUUUU 	 I 
YY XXX WwW VVVV UUUUUU 
YY ' XXX , 	WNW 	VVVV 	UUUUUU 
YY XXXX WWW VVVVV UUAUU9U 
YYY XXX WWWW VVVVV JUJJUUUU 
YYY XXX 4W14W VVVVV 	UJUUUUUU 
YYY XXXX WWWW VVVVVV 	UUUUUU 
YYY XXXX WWWW VVVVVV — UUUU 
YYY 	XXX 	WWWN 	VVVVVV 
YYY 	XXXX. 	'414141414 	VVVVVVVV 
YYY 	XXXXX 	WWWIWN 	VVVV'/4/VVV 
YYY 	XXXX 	WWWWWW 	 4VVVVVVVVVVV 
YYY 	XXXXX 	A14NW144 	 VVVVVVVVVVV 
YYYY 	XXXXX 	WWWWWWW 	 VVVVVVVV 
YYYY XXXXXX , WWWWWWWW 	 VV 
YYYY 	XXXXXX 	 14WW4WWWWWW 
YYYY 	 XXXXXXX 	 WWW14140-441WAMI11 
YYYYY 	 XXXXXXXX 	 W4Ww4WwwWwWwwWwWWWWWwW4 
YYYYY 	 XXXXXXXXX 	 AWWWWWWWwWWWWAWWW 
YYYYYY 	 XXXXXXXXXXX 	 . . 	WWWWNWwwWwWwwwWw14141144WwwWWWWWwwwwwwww11Www414I4A 

YYYYYYY 	 XXXXXXXXXXXXXX 
YYYYYYYY 	 XXXXXXXXXXXXXXXXXXXXXX 	 • 
YYYYYYYYY 	 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
YYYYYYYYYYY 	 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
YYYYYYYYYYYYYYY 
YYYYYYYYYYYYYYYYYYYYYYYYY 
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY 
YyyyvYYYYYYYYYYYYYYYYYYYYYYYYYYYyYYvyyYYYYyyvYyYvyyveymeYvyyvvvvvvvyysivryyywevyrlytyyyyvvyyyvy  

FIGURE. 4.4.2 (b)  
CASE A. TEMPERATURE PROFILES FOR TIME=54 minutes. 

YY XX WW VV UU 	TT 	SSSS 	 :CM 
YY XX NW VV UU 	TTT 	SSS 	RRRRQ 
YY XX WW VV IJU 	TTT 	SSS 	RRPRR 
Yr XX NW VV UU 	TTT 	SSS 	RRRRR 
YY XX WW VV UU 	TTT 	SSS 	RRRRR 
YY XX WN VV IJU 	TTT 	SSSS 	RRRRR 
YY XX NW VV UUU TTT 	SSSS 	Ri-OZRR 
YY XX NW VV UUU TTT 	SSSS 	RRRRR 
10Y xX WW VV UUU TTT 	SSSS 	RRRR 
YY XX WW VV UUU TTT 	SSSS 	RRRR 
Yr XX WN VV UUU TTT 	SSSS 	RRRR 
YY XX WW VV UUU TTT 	SSSS 	 RRR 
YY X 	VV UU TTT SSSS 	RRR 
YY x wW VV UU TT SSSS 	RR 
YY X WN VV UU TTT SSSS 	 RR 
YY X WN VVV UU TTT SSSS 
YY X WW VVV UU ITT SSSSS. 
YY X WW VV UU TTT SSSS 
YY XX WNW VV UUU ITT 	SSSSS 
YY XX WN VV UUU TTT SSSSS • 
YY XX WW VV UUU TTT SSSSS 
YY XX WN VV UU TTT SSSSS 
YY XX WW VV UU TTTT SSSSSS 
YY XX NN VV UUU TTT SSSSSS 
YY XX NW VVV UUU TTT SSSSSSS 
Yv XX WW VVV UUU TTTT SSSSSSS 
YY XX NW VV UU TTTT 	SSSSSSS 
YY XX NW VV UUU TTTT SS3SSSSS 
YY XX WWW VV UUU TTTT 	SSSSSSS 
YY XX WWW VVV UUU TTTT 	SSSSSS 
YY XX INN VVV UUU TTTT 	SSSSS 
YY XX WW VVV UUU TTTT 	SSSS 
YY XX WW VV UUUU TTTTT 	 SS 
YY XxX WN VVV UUU TTTTT 
YY XXX WWW VVJ UUUU 'TTTTT 
YY XXX WWW VV UUU TTTTTT 
YY XXX WNW 	VVV 	UUUU 	TTTTTT ' 
Yr 	XX 	WW 	p./ 	UUUU 	TTTTITT . 
YY XX NNW VVV UUUU TTTTTTTT 
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JUNCTION BOUNDARY DETERMINATION 
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1—Ment4 VESSEL 	 Clere:1(342  

Modal fepArenntures it Yesse I. 

Tm  IS MAXIMUM = 193.1 °F AT TIME = 9 min. 30 secs. 
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FIGURE 4.4.5. CASE A. MEAN TEMPERATURE VARIATION 

Tm BETWEEN NOZZLE AND VESSEL. 
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STRESS NOTATION(See figure 5.1.4 in the next page)  

In order to facilitate the comparison of the theoretical 

predictions with the experimental results on the outside of the 

vessel-junction-nozzle boundary, two stresses a
L 
and a

R 
are 

introduced into the system. Stress a
L 
always lies along the 

boundary ABCD and a
R 
is always perpendicular to the boundary 

ABCD at any point. Stress a
L 
is in fact stress a at the 

vessel part of the boundary (AB) and stress ax  at the nozzle 

part (CD) and the stress component of a and a
x 

at the junction 

part BC. Similarly aR  is in fact stress ax  at the vessel part, 

a at the nozzle part and the stress component of ay  and ax 
at 

any point perpendicular to the junction part (BC). 

Therefore the introduction of a
L 

and a
R
, which are in fact 

the stresses a and a
x 
(or their stress component for the 

y 

junction part), makes the representation of the stress field 

at the outside boundary more uniform and the comparison with 

the experimental results more comprehensive. 
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NOTE: STRESS (5-  IS PERPENDICULAR TO THE PLANE 

OF THE PAPER ( z DIRECTION ). 

F.71GUREE 5.1.4  DIRECTION OF STRESSES. 
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FIGURE 	EXPERIMENTAL SPECIMEN. 
FULL DIMENSIONS SHOWN IN FIGURE 6.1.2 
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FIGURE 6.3.1(a)  POSITIONS OF STRAIN GAUGE 
ROSETTES ON THE NOZZLE AND JUNCTION® 
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FIGURE 6.3.1(b)  POSITIONS OF STRAIN GAUGE 
ROSETTES ON THE VESSEL. 
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FIGURE 7.2.1 CO-ORDINATE SYSTEM FOR CRACK 
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a = CRACK LENGTH ( NOT IN SCALE ) = 0.04 in. 

rt9 = CO-ORDINATES FOR THE TIP OF THE CRACK 

FIGURE 	AREA A WHERE CRACK IS CONSIDERED FOR 

CASE C. 
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NUHBER OF NODES = 256 
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FIGURE 7.1.4  




