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"ABSTRACT
A class of linear elliptic differential equations with homogeneous
boundary conditions is considered. These equations are put into an

abstract form

T*ETu

£,

\
involving linear operators on Hilbert spaces. Conditions are given for
the existence and uniqueness of solutions to this operator equation.
A set of variational principles associated with the equation are
derived. 1In the elasticity context these variational principles
include the Hu-Washizu principle, the Hellinger-Reissner principle as
well as the well known potential eneray and complementary energy
principles. Conditions are given for the variational problems to have
a unique solution which is also the solution of the differential eemation.
The relationships between the different variational principles are also
stressed.

The most general non-linear equations considered are those that can

be put into the abstract form

T*E(Tu) + F(u) = O,

where E and F are non-linear operators. Conditions are given under
which a unique solution can be shown to exist. The variational problems
analogous to those of the linear case are derived and shown to have a
unique solution corresponding to the solution of the differential
equation. Finally it is shown how more general boundary conditions are

incorporated into the theory given.



Throughout the development of the theory, examples are considered
to bring out the relationship between the abstract formulation and
its practical applications. 1In particular the operators and Hilbert
spaces are given explicitly for both the abstract differential equations

and the associated variatioral problems.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The study of elliptic differential equations plays a central role
in mathematical physics. In this thesis we shall study an important
class of linear elliptic equations and a related class of non-linear

equations. The linear equations are of the form
T*ETu = £, (1.1.1)

where T, T* and E are linear operators on Hilbert spaces. A large
number of problems in mathematical physics can be put into this form
by the appropriate choice of the operators and Hilbert spaces. Some
examples are: heat conduction in anisotropic media; fully-developed
fluid flow in ducts; the torsion of cylindrical bars; the bending of
elastic plates. Many other examples can be found in Arthurs [1970) and
Oden-Reddy [1974].

The non-linear equations we shall study are of the form
T*E(Tu) + F(u) = O (1.1.2)

where T and T* are linear operators and E and F are non-linear operators
on Hilbert spaces. Some examples of this class of equation are:
non-Newtonian viscous fluid flow; charged particles in equilibrium; the

theory of colloids. For further examples see Arthurs [1970].



All of the above examples have variational principles, such as
the minimum potential energy principle or the minimum complementary
energy principle, associated with them. The variational approach to
the statement of problems has always played an important part in
mathematical physics, indeed many problems are initially formulated
in terms of a variational problem. For example the (small) displace-
ments of an elastic solid'subiect to prescribed displacements and
body forces can be found by minimizing the potential energy of the
solid amongst all possible displacements, that is, those displacements
satisfying the prescribed displacement boundary conditions. A variational
principle is a very concise way of formulating a problem, both mathemati-
cally and physically. From the mathematical point of view there is only
one functional to deal with, which incorporates many of the boundary
conditions. Physically, one only needs to know a quantity such as the
potential energy of the system to be able to completely specify the
problem. Of course, the potential energy is itself a physically important
parameter which we might need to compute separately when using any other
approach to the problem.

Variational principles not only play an important role in the
mathematical statement of physical problems but also in the computation
of solutions. The best known computational tcchniques based on a
variational method are of course the Rayleigh-Ritz and Galerkin methods.
It is a variant of these methods, the finite element method, which, in
the last twenty years, has proved to be a powerful computational method.

In this thesis we study a set of variational principles associated
with each of the operator equations (1.1.1) and (1.1.2). Some of these
are very well known principles but others have only been discovered in

the last few years. However, all can be used as the basis for finite

element methods.



1.2 Historical Review

In the eighteenth and early nineteenth centuries the calculus of
variations played a central role in mechanics. The developments of
that time are typified by the work of the Bernoullis, Euler, Lagrange,

Legendre and Jacobi. For a more detailed account of that period see

[
t

Kline [1972] or Bell [1945]. The developments of that period culminated
in the proof that the solution of a variational principle could be
found as the so;ution of a differential equation. Hence from then on
the emphasis was on the statement of problems in mechanics in terms of
differential equations. We shall give an outline of further develop-
ments in variational principles later. First, hoﬁever, we shall give a
brief review of the historical development of the relevant theory of
abstract differential operators.

The theory of abstract operators in the form T*T was initiated by
von Neumann [1932] and was extended by Murray [1935] and Friedrichs
[1939}. They gave the basic structure in terms of adjoint linear
operators on Hilbert spaces and proved many theorems on the existence
and uniqueness of both operators and solutions to the operator equation.
Kato [1953] and Fujita [1955] used the works of von Neumann and Murray
to develop approximation methods fov operators of the form T*T. uhey
also gave some important examples of equations with this structure.

Implicit in the papers of von Neumann etc. were tlie concepts of
generalised derivative and what are now called Sobolev spaces. These
concepts were formalised in the late 1930's by Sobolev [1937]. 1In 1950
in his book "Theorie des Distributions”, Schwartz [1950] gave an
alt;rnative basis for these concepts in terms of distributions. These
developments lead to a great deal of work in the 1950's and 60's on
the abstract theory of differential equations by many authors, see for

example, Lions-Magenes [1972] and the references contained therein.



Returning to the development of variational principles, these
continued from a more applied viewpoint, particularly in continuum
mechanics. This led to the formulation of complementary variational
methods by Castigliano [1879] in the late nineteenth century. 1In the
early twentieth century an approximate method based on a variational
method was developed by Ritz [1909] (repeating the work of Rayleigh
[1871]) for solving problems in elasticity. This is now known as the
Rayleigh-Ritz method and can be used for many préblems in mechanics.

A generalisation of this method was put forward by Galerkin [1915],
which is now widely known as Galerkin's method.

An important advance in our knowledge of variational principles
occurred in the 1950's, when Reissner [1950] correctly formulated an
earlier attempt by Hellinger [1914] at a mixed variational principle.

Hu [1955] and Washizu [1955] generalised this to a variational principle
which incorporates a general form of constitutive equation. At the same
time an approximate method, now known as the finite element method,

was proposed, see Turner, et al. [1956]. This method was based on the
minimum pctential energy principle and was a variant of the Rayleigh-
Ritz method. In the mid 1960's Herrmann [1966] proposed the use of a
finita element method based on a mixed variational principle for the
solution of plate bending problems.

In 1964 Noble [1964] gave a general framework for complementary
variational principles. This was further developed by Arthurs [1969],
Rall [1966] and Noble-Sewell [1971]. Arthurs developed an extensive
range of applications in the area of differential equations, see
Arthurs [1970].

In the late 1960's and early 1970's a rigorous attack on the finite

element method based on a minimum principle was made by several
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mathematicians, e.g. Babuska [1971], Ciarlet-Raviart [1972], Strang
[1972] and Zlamal [1968]. In 1973, Johnson [1973] gave a rigorous
account of a mixed finite element method applied to a problem in plate
bending. Brezzi [1974] developed an abstract formulation which can
include mixed variational principles. Recently Oden-Reddy [1974] have

attempted to put the theory of Noble into a more rigorous setting.

1.3 Thesis Objectives

2

The major objective of this thesis is to give a rigorous account
of the variational principles associated with classes of elliptic

differential equations. More precisely, for each class of equations,

we
1) show how differential equations may be put into one of the
abstract forms considered,
2) give existence and uniqueness theorems for the abstract
operator equation,
3) derive the set of variational principles associated with the
abstract equation,

and

4) show the relationships between the variational principles.

The problem of putting differential equations into an abstract form
was of course considered at the very beginning of the develoément of the
theory of abstract operators. For operators of the form T*T see von
Neumann [1932], Murray [1935] or Friedrichs [1939]. However, in the last
twenty five years there have been considerable developments in the
treatment of boundary value problems from the abstract point of view,
see Lions-Magenes [1972] or Necas [1967]. We adopt an approach originally

due to Friedrichs [1939], who considered operators acting from Hilbert
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spaces. However, we incorporate many of the modern techniques, in
particular we think of the Hilbert spaces as Banach spaces. This

allows us a greater variety of norms which are essential for identifying
the abstract operators with bounded linear differential operators.

The conditions for the existence and uniqueness of solutions of
linear operator equations are well known, see Stone [1932]. 1In this
thesis we give a simple existence and uniqueness proof for operators
of the form T*T. This proof forms the basis of the existence theorems
we shall give for the more complicated linear and non-linear equations
considered.

An extensive set of interrelated variational principles for linear
equations have only recently been elaborated by Oden-Reddy [1974]. 1In
this thesis we give conditions under which each variational problem is
in fact equivalent to the abstract differential equation. Similar
results are derived for some non-linear equations.

Relatignships between various variational principles have been
suggested by many authors, for example, see Washizu [1975] and Oden-
Reddy [1974]. 1In this thesis we take the approach in which we consider
the general variational principle as a starting point. From there, by
successive specializing assumptions we derive all the variational

principles associated with a particular equation.

1.4 Outline of the Thesis

In Chapter 2 we shall consider some simple problems which give rise
to linear or non-linear differential equations. We shall use these
examples throughout the thesis to illustrate how the theoretical results
can be applied to practical examples. We show how these examples can be
put into an abstract setting involving operators on Hilbert spaces. We

then consider the simplest abstract problem
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T*Tu = £

and give conditions on the operators T and T* for a unique solution
to exist.

In Chapter 3 we give some theoretical results on saddle functionals,
derive the main variational problem associated with the abstract form
given in Chapter 2, and show ﬁow other variational problems can be
derived using the concept of saddle functionals.

Chapter 4 is concerned with the extensions ¥equired to the theory

given in Chapters 2 and 3 to include the abstract equation
T*ETu = f,

where E is a linear operator.
In Chapter 5 we study some non-linear equations, the most general

being of the form
T*E(Tu) + F(u) = O,

where E and F are non-linear operators. Existence and uniqueness theorems
are given and the variational princaples corresponding to those ir the
linear case are derived.

Chapter 6 shows how more general boundary conditions can be incorpor-
ated into the theoretical results given. Non-homogeneous Dirichlet and
Neumann type boundary conditions are treated, a mixture of these being
the most general form considered.

Finally in Chapter 7 we summarize the material covered and suggest

some directions for further work on this subject.



13

CHAPTER 2

THE ABSTRACT PROBLEM

2.1 Types of Problem Considered

-

In this section we shall briefly give an example for each class
of problem to be considered. In a later section we will show
rigorously how these examples can be put into the abstract forms. We
shall use these examples throughout the text to demonstrate how the
abstract theory can be applied to practical problems. For each class
of equations we shall also indicate other important problems that can
be put into the abstract form but we shall not give all the details

here.

Example 2.1.1

First we shall consider a very simple ordinary differential equation
which we shall subsequently study in great detail to bring out the

important points of the abstract theory. Consider the equation

2
—d_u. = f in Q-
ag?
(2.1.1)
ufa) = uf{) = o0

where f is a given function of £ and Q@ is the interval (a,b). We can

rewrite this as the problem of finding the functions u and v such that

du _
atg !

(2.1.2)
‘dv
- EE £,
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This is in the canonical form

™TTa = Vv
(2.1.3)

T*v = £

where T = %E' T* = = gf and T is an identity mapping. Obviously this

can be written as the single equation
T*tTu = f. - (2.1.4)

The boundary conditicns are included in the abstract form by ensuring
that the domain of the operator T consists only of those functions

satisfying the boundary conditions, that is, those u such that

We may of course consider other boundary conditions for this

problem, for example

du(a) _ du(b)
ag 13

This is equivalent to the conditions

via) = v() = 0 (2.1.5)

and in this case the domain of T* would have to consist of only those
functions satisfying (2.1.5).
Many other differential equations may be put into the form of

equation (2.1.4), here we mention two. Firstly, Poisson's equation
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(2.1.6)

on a region 2 C ﬂ{n with boundary I'. Taking T = grad, T* = - div
and T = I, (2.1.6) is in the form (2.1.4), provided the domain of T is
restricted to those functions;satisfying the boundary condition u = O on

' Secondly, the biharmonic equation

V4u = f in @ v
(2.1.7)
u 32- = Oon T
an

where n is the outward normal to T, the boundary of . Here we take T
and T* to be V2 and T to be the identity mapping. Then if the domain of
T is restricted to those functions satisfying the boundary conditions

Ju

=sp=oonT, this is in the form of (2.1.4).

Example 2.1.2

Next we consider a problem in heat conduction in an anisotropic
material, such as for example crystalline substances, sedimentary rocks,
wood, asbestos and laminated materials, e.g. transformer cores used in
engineering practice.

For the domain f let us consider the rectangular region O < gl < a,
0<g,< b of the ﬂ?z plane. The boundary T is then as shown in figure

2.1.1. The differential equation is

-V. (K.Vu) fin @

(2.1.8)

[
]

OonT.
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b ' (a,b)

v

bl

Figure-2.1.1 The domain of Example 2.1.2
Here u is the temperature field on Q,Jf is the heat source in @ and
K = [kij] is a tensor of thexrmal conductivities. The components of K
represent the thermal conductivities in different directions and in
practice K is considered to be a symmetric tensor.

Note that it is always possible to transform the anisotropic
equations to a new set of axes called the principal axes of conductivity
such that the equation is in the same form as for an isotropic material
i.e. kll = k22 = k, k12 = k21 = 0, see Carslaw-Jaeger [1947]. However,
this transformation can considerably complicate the boundary conditiors
and distort the boundary to irregular shapes. Hence it is often easier

to treat the material as anisotropic and retain "nice" boundary conditions.

Equation (2.1.8) can be put into the canonical form

Vu = w
v = Kw in Q . (2.1.9)
~-V.v = £

with u=0o0onTT.
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Hence setting T = ¥V, T* = -V, and E = K, this can be put in the form
Tu = w
v = Ew . (2.1.10)
T*v = f.

As in the previous example the boundary condition is included by taking
the domain of T to be only those functions which satisfy the boundary
conditions. Equations (2.1.10) can of course be written as

J

T*ETu = f. (2.1.11)

Another important example of an equation of this form occurs in
linear elasticity. The equations for the small displacements of an

elastic body with domain Q Cc R3 are

1 i J
2
BEJ BEi ij
cijkl wkl = vjj in Q (2.1.12)
avi,
- . = f
9k, i
gJ

where u, is the displacerent in direction Ei, i=1,2,3, wij_iﬁ the strain
tensor, cijkl is the tensor of elastic coefficients, vij is the stress
tensor and fi is the vector of applied body forces. Then taking T to be
the operator defined by the first of equations (2.1.12), T* to be the

operator
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and E the tensor c.. ., equations (2.1.12) can be written in the form

ijk1
of (2.1.10).

Example 2.1.3

~

Here we consider an equation of the form

]

T*E (Tu) £ (2.1.13)

where E is a non-linear operator. The canonical form of this equation is

Tu = w
E(w) = v (2.1.14)
T™v = £.

The non-linear relationship E(w) = v occurs in many physical situations
where it represents the constitutive equations. For example taking w

to be the strain and v to be the stress (2.1.14)2 represents a non-linear
stress~strain relationship. This is often given by a power law formula

of the form

v = C.W (2.1.15)

where Cyr €5 2 O are constants (see Reiner [1969]). Another example of

this type of constitutive equation is in the magnetic saturation problem,



where w represents the magnetic intensity and v is the flux density,
(see Cunningham [1967]).

A simple example that we shall consider in more detail arises
in the laminar flow of an incompressible non-Newtonian viscous fluid
in a circular cylinder of radius a and length 1, see Jaeger [1969].

The equations are

-5, (2.1.16)
i3 = o, (2.1.17)
-2 - %, (2.1.18)
a(a) = u(-a) = 0, (2.1.19)

where u is the axial velocity, Y is the rate of strain, k > 0 is a

constant, o is the stress and P is the pressure applied at one end of

1/3

the cylinder. Setting T to 4 and T* to - a , with E(y) = ky and

dr dr
f = %E’ equations (2.1.16)-(2.1.19) are in the form of equations (2.1.14).
The boundary conditicns (2.1.19) are satisfied by choosing the correct

domain for T as ‘n the previous examnle.

Example 2.1.4

As a final example we consider a non-linear equation which has

applications in many fields. It is the Liouville equation

in Q

i
(@]

-V2u + ceu

(2.1.20)
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where ¢ is a positive constant. This equation arises for example in
plasma theory. Taking u = E%-, where q is the charge per particle;

V is the electrostatic potential and kT is the Boltzmann energy,

equation (2.1.20) gives the potential of charged particles in equilibrium.
For more details see Arthurs [1970] or Longmire [1963]. Another example
is the case of steady vortex motion of an incompressible fluid. For this
problem equation (2.1.20) canibe used to find the stream function u, see

Davis [1960].

Equation (2.1.20) can be put into the abstract form

T*TTu + F(u) = O - (2.1.21)

where, as in example 2.1.2, T = grad and T* = ~-div. The isomorphism T
is the identity mapping and the non-linear term F(u) is ce’. Aas in
the other examples the boundary condition is incorporated into the
domain of the operator T. Equation (2.1.21) can of course be written

in the canonical form

Tua = w
v = 1w (2.1.22)
T*vy + F(u) = 0.

For other examples of equations of this type see the monograph of

Arthurs [1970].
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2.2 Some Results from Functional Analysis

In this section we introduce some notation and give results from
functional analysis which will be needed to put the problems of
section 1 into an abstract setting.

Let X be a Banach space. The norm on X will be denotred by ” . ” X!
the dual of X by X* and the duality pairing between X and X* by
X*<-.,->X . If X is a Hilbert space the canonical isomorphism between

X and X* is denoted by Ty and the inner product on X by (-,°) When

X"
there is no ambiguity, ” || X ,x*<-,->x ' 'rx and (',-)X may be written
as ” '“ ¢ <*,*>, T and (°,°) respectively. Let X and Y be Hilbert
spaces with X a dense subset of Y. Identifying Y with ¥Y* via the

canonical isomorphism Ty, we have X C Y = Y* C X*, Then if x* € y* C X*

and x € X, we have, see Lions-Magenes [1972],

-1
<x*’x>x = <x*,x>Y = (t x*,X)Y-

X* Y* Y

A point in R " is denoted by € = (51'52""'511)' If

a = (al,...,an) is a n-tuple of nonnegative integers a., we call o
a, o a

. 1.2 .
a multi-index and denote by Eja the monomial El 52 ...Enn, which has
degree Ial = I oa,. Similarly, if D. = 2 for 1 < j < n, tken
. Jj J 3L, —_ -
J=1 J
a, a o
o 1 2 n
D = D1 D2 ...Dn

denotes a differential operator of order Ial .

Let @ be an open domain in R ™ withT its boundary. We denote
Q + T by Q. For any nonnegative integer m let c™ () be the vector space
of all functions x which, together with all their partial derivatives p%x
of orders Ial < m, are continuous and bounded on 9. We let c° () be

(-]
denoted by C(Q) and (@) = N c" (.
m=0
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We next define the important concept of a closed operator. This

is most easily expressed in terms of the graph of an operator.

Definition 2.2.1

Let T be an operator from a set X to a set Y. Then the graph G
of T is the subset of XXY consisting of the ordered pairs (x,Tx), where

X ranges over the domain of T.

Definition 2.2.2

Let X and Y denote Banach spaces, then an operator T:X > Y is called
a closed operator if its graph is a closed subset of XxY.
An important property of closed operators is that they map closed sets
into closed sets. They pléy an important role in existence theorems

which are based on Banach's closed range theorem.

Example 2.2.1

Consider the operator <= a defined on functions belonging to the

ag
space Cl(§3, where Q is an open interval of the real line. Let the

1 —
norm on C () be

=l = [ fix%+ g’g‘ y2raq) /2
C Q) Q

Then ——-1s a continuous linear operator from Cl(§3 to C(Q), with

ag
llxll = [ xzdﬂll/z, since
Q)
c (9 Q
ll ll = lI( )dm e | x| L
c( c (Q)

It is also a closed operator since for any sequence {xn} <+ X, with

1 — 1 —
X € C (Q) for all n and x € C (Q),

> & ec@® . . ' 1
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This brings out an important point for neither the domain of

a

x i.e. Cl(ﬁ), nor the range C(?) is a closed space with the norms
a

given, although aE is a closed operator. However, in order to prove

existence theorems, it is essential to consider cloused operators with

closed domains. Hence the question is, can we find some ceneralisation
4 . .

of the operator EE- which has a closed domain?

We can answer this by considering an extension of the operator.

Definition 2.2.3

Let Tl:DlCI X » Y and T2:D2<I X -+ Y be operators with graphs

G1 and G2 respectively. Then T2 is said to be an extension of Tl if
Gzp Glo 2
We shall want to find a closed extension of an operator T. The

following theorems to be found in Stone [1932]) guarantee the existence

and uniqueness of a closed linear extension.

Theorem 2.2.1

If the operator T. has a closed linear extension, then there exists

1

a unique closed linear operator T with the properties:

(1) T is an extension of Tl'

(2) every closed linear extension of Tl is also an extension of T.
In essence, T is the smallest closed linear extension of Tl'

Theorem 2.2.2

If Tlis a continuous linear operator, then the extension T exists and
is a continuous operator whose domain is the closure of the domain of Tl;

atso || ]l = Il Il
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Theorem 2.2.3

If Tl is a continuous linear operator whose domain is dense in X,

then T is defined throughout X and is the only closed linear extension

of Tl.

Example 2.2.2

From theorem 2.2.2 a closed extension of %E-exists and its domain X
is the closure of Cl(§3. Theorem 2.2.3 guarantees the uniqueness of this
extension if Cl(ﬁi is dense in X. []

We now describe the nature of the extended operator T and its
domain X. For this we will introduce the notions of generalised

derivatives and Sobolev spaces.

We define the space
D@ =1{¢ ec (WM; ¢ has compact support in Q}.

Now suppose X is a locally integrable function on Q. Then we have the

following definition:

Definition 2.2.5

If there exists a locally integrable function y such that

[ xemepran = -p lel [ ve)e€)daa,
Q Q

for all ¢ €2(Q), then y is called the generalised derivative of x. ]

If x is sufficiently smooth to have a continuous partial derivative
Dax in the usual sense, then p*x is also a generalised derivative of x.
However, p%*x may exist in the generalised sense without existing in the
classical sense. When @ C [R we sometimes use tﬂe notation gg-to mean

a derivative in the generalised sense.
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Next we introduce Scbolev spaces. We restrict ourselves to the
family of Sobolev spaces based on the L2(Q) space.

Define the norm

|l x| = { £ |Io%][ %2
m, o<|a|<m

where II'II is the L2(Q) norm, i.e.
=l = € [x%a2*/2,
1]

Where no confusion can occur we write II'Ilm q as I|'||m.
’

?
Definition 2.2.6

The Sobolev space Hm(Q), m > O is defined as the completion of C®(Q)

a

with respect to the norm ||'|| .
m,Q
The space HO(Q) is in fact LZ(Q)‘
m

As with the space L2(Q), the elements of H () are equivalence

classes of functions.
m
It can be proved that H (2) is a Hilbert space with inner product

a. o
(xl,xz) = z [ 0D x,dq.

o<lal<ma 1

An equivalent definition of a Sobolev space is as follows:
m : a
H( = {xerL,(®; DxeL, for 0 < [a|<m},

where Dax is a derivative in the generalised sense.
An important subspace of Hm(Q) is dg(ﬂ), the closure of ) () in

m
H (2. A more illuminating characterisation of this space is
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Hm(Q) = {xe HHVQ); 3—5- = OonT, 0<3j<m-1}
o ij 4z

where ssﬁ- is the "j-order normal derivative on T". A definition of

3 nd
what we mean by %;? on I' will be given in a later chapter. We also
- m
define the space H-™(Q), m > O as the dual of the space Hy(Q). see

Adams [1975] for these and many other results on Sobolev spaces.

Example 2.2.3

It is now easily shown that the closed extension of gE' discussed
in example 2.2.2 is the generalised derivative D , its domain X is
Hl(Q) and its range is in LZ(Q). We can see that D is closed from
the following:

o~

lloxll = ¢ fon?er’? < € [ix® + on*1ae)? = |Ix]l
Q 1]

i.e. D is bounded. Hence the range of D is a closed subspace of
L,(?) and so D is closed. O
Next we give a general theorem which gives a simple condition for

an operator to be closed.

Theorem 2.2.4

Lat X and Y be Banach spaces and T a bounded linear operator with

domain D(T) C X and range in Y. If there exists an o > O such that
llTxIlY 3_a||x]lx ¥x € D(T), (2.2.6)

then T is a closed operator.

Proof Let {xn} be a sequence in D(T) such that {Txn} converges to y € Y.
Then from (2.2.6)~{xn} is a Cauchy sequence and converges to x € X. Now
by the boundedness of T, .{Txn} converges to Tx = y. Hence x € D(T)

and the graph of T is closed. a
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Finally we give some important results for linear and non-linear

operators.

Theorem 2.2.5 (see e.g. Rudin [1973], p.93)
Suppose X and Y are normed spaces. To each bounded linear operator
T:X * Y there corresponds a unique bounded linear operator

T*:Y* > X* that satisfies
<Tx,y*> = <x,T*y*>

for all x € X and all y* € Y*,

Definition 2.2.7 ~

The operator T* defined in theorem 2.2.5 is called the adjoint of

the operator T.

Definition 2.2.8 (Vainberg [1973], p.l0)

Suppose X is a Banach space. Then an operator T:X + X* is said to be

positive if

<TX,x> > 0, ¥x e X.

Definition 2.2.9

Suppose X is a Banach space. Then the operator T:X -+ X* is said to

be symmetric if

= * D
<Tx1,x2> <Tx2,xl> Vxl,x2 e X

We now give some results on the differentiation of operators. For
these and other results see Vainberg [1973] or Tapia [1971]. Let X and Y

be Banach spaces and T:X + Y an operator which need not be linear.
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Definition 2.2.10

Let x and h belong to X and t be a real scalar and suppose

DT(x,h) = { T(x+th)t— T (x) }

lim
0

exists. Then DT(x,h) € Y is called the Gateaux derivative or G-derivative

of T at x in the direction h. O
In the case where Y is the real line, the mapping T is a functional

on X. An alternative definition can then be given.

Definition 2.2.11

If £ is a functional on X, the Gateaux derivative of f, if it

exists, is

Df (x,h)

d
[E fx + th)]t=0 .

Definition 2.2.12

A functional f on X is said to be G-differentiable if Df(x,h) exists
for all x € X and all h € X. 0
Note that for each fixed x € X, Df(x,h) is a functional with respect to

the variable h € X.

Definition 2.2.13

Suppose f is a functional on X, such that Df(x,h) is a bcuanded linear

functional. Then the unique element Vf(x) € X* such that

Df (x,h) = <VEf(x),h>, hex

is called the gradient of f at x.
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Further, if X is a product space, i.e. X = X1 x X2, then with
X = (xl,xz), h = (hl,hz) we can define Vlf(xl,xz) e Xi and

*
sz(xl,xz) € X} by

Df (x,h) <Vf (x) ,h>

<V1f(xl,x2),hl> + <V2f(xl,x2),h2> .

* *
Xl X1 X2 X2

Then Vlf(xl,xz) and sz(xl,xz) are called the partial gradients of f.
The extension to a product of more than two spaces is easily deduced

from this.

2.3 The Problems in an Abstract Setting

In this section we shall show how the problems of section 2.1 may be
put into an abstract form. All of the problems can be written in terms
of a pair of adjoint operators T and T*. The main idea is to define
T (or T*) as the closed linear extension of one of the differential
operators in the problem. We then formally define the adjoint operator
T* (or T). Then we give conditions under which the abstract equation
involving T and T* is equivalent to our original problem. This approach
is a generalisation of that of Friedrichs [1539] to Banach space adjoint
operators.

Consider the first example of section 2.1. Equations (2.1.2) for
this problem are

du

dt (2.3.1)

dv
dg

u(a) = u() = O.



1
We recall from section 2.2 that the space Hb (R) is the closure of the
space of smooth functions satisfying the boundary conditions (2.3.1)3.

Hence we can extend the operator 4 to the closed linear operator D

dag

1
defined on Ho (). Therefore we define T to be the generalised derivative

D with domain Hol(Q) and range in L2(Q).

We can formally define the adjoint operator T*: (Lz(Q))* > H-l(Q)
by
(Tx,y) = <x,Thy*>  Vx e H(Q), Vy*e (L,@)*  (2.3.2)
with v* = 1y,

where <¢,+> is the duality pairing between Hol(Q) and H—l(Q). Then

consider the problem

TTu = v*
(2.3.3)

T*v* = f*

where f£* € H_l(Q) is given. We want to show that equations (2.3.1) and
equations (2.3.3) are equivalent in some sense.
Recall that the integration by parts formula is valid for generalised

derivatives, see Necas [1967]. Hence

1 1
[pxyan = - [xDyada, vxeH; (@), vy eH (). (2.3.4)
Q Q

Comparing with (2.3.2) we see that, with y* = 1y,
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HO(Q) H ~(Q)

1
D=

1 1l
x Dy 4Q <x,T*y*> ' ¥x € Ho (), ¥y e H (Q)

= <X, T*y*> , from section 2.2,
LZ(Q) (LZ(Q))*

(x, T TT*ty).

Hence for all y € Hl(Q) we may identif§ T-lT*Ty with -Dy. Now let us

assume that (2.3.1) has a solution (u,v) and further, let us assume

that f € LZ(Q). Then we certainly have that v € Hl(Q) and so T-lT*Tv

can be identified with -Dv. Let v* = Tv and f* = 1f, then equation (2.3.3)2
can be identified with equation (2.3.1)2. Hence any solution (u,v) of
(2.3.1) gives a solution (u,v* = tv) of (2.3.3).

Let us now consider the problem with the boundary conditions (2.1.5),

that is,
du* .
ac Y
(2.3.5)
dv*
- = *
dag £
vd(a) = v*(d) = 0
In this case we define T* to be the extension of - gE-, i.e. =D, the

generalised derivative with domain HOI(Q) and range in LZ(Q). Then (2.3.5)2
and the boundary conditions (2.3.5)3 are given by T*v* = f*,

We can formally define the operator T : (LZ(Q))* - H-l(Q) as the
adjoint of T*, that is,

<Tx,y*> 1 = (x*,T*y*), Vvx* € LZ(Q), Yy* € Hol(g) (2.3.6)

with x* = tx.
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Then consider the problem

(2.3.7{

T*v* = f*

where f* € LZ(Q) is given. We shall show that equations (2.3.5) and
(2.3.7) are equivalent in some sense.

The integration by parts formula for generalised derivatives is

1

o (M.

[ px*y*dqa = - [ x*py*aq, vx* e Hl(Q), Vy* € H
Q Q

Comparing with (2.3.6) we have, with x* = T1x,

1 l
I Dx*y*dQ , ¥x € H (), vy* € Hy ()

i

A
H
X
s}
*
\%

=

H (Q) H.(Q)

= <Tx,y*>
(L, (2))* L, (2)

(TTT-lx*,y*).

Hence Zor all x* € Hl(Q) we identify TTT-lX* with Dx*. Let us acsume
that (2.3.5) has a solution (u*,v*). We also assume that f£* € Lz(Q),
in which case we certainly have that u* € Hl(Q). Hence TTT-lu* can be
identified with Du*. Let Tu = u*, then equation (2.3.5) can be identified
with equation (2.3.7)1. Hence any solution (u*,v*) of (2.3.5) gives a
solution (u = T—lu*,v*) of (2.3.7).

All of the examples in section 2.1 can be put into an abstract form
as we have.just done for the first examp}e. Here we briefly state more

precisely the operators and spaces involved in examples 2, 3 and 4.



33

In Example 2 the equations are

grad u = w
v = Kw
-divv = f.

We may take the operator T to be grad in a generalised sense with domain
X = Hol(Q) and range Y = (LZ(Q))z. Then provided f € LZ(Q) we can
interpret T*:[(LZ(Q))ZJ* -+ H_l(Q) as -div, at least at the solution.

The operator E:(Lz(Q))2 -+ [(LZ(Q))zl* is the tensor of heat transfer
coefficients K.

In example 3 the equations are

da

& -

o = kY 1/3
- G _ P_

dr 28 °

Provided gz-e Lz(Q), the operators T and T* and the spaces X and Y are taken
as in example 1, i.e. equation (2.3.1). The operator E:Lz(Q) -> (Lz(Q))*
is defined by

B = xy 7.

For the fourth example

grad u w
vV = 1w

. u
-div v + ce = 0 s



34

we take T and T* and X and Y as in example 2. The operator

F:Hol(Q) + H_l(Q) is a non-linear operator given by

F (u)

ce

for which we certainly have the range of F, R(F) C LZ(Q)‘

2.4 The Simplest Abstract Problem

The main result of this section is a proof of the existence and

uniqueness of a solution to the abstract problem:

given £ € X*, find (u,v) € X x Y* such that

Ty = v

T*v = f£, (2.4.1)

where X and Y are Hilbert spaces with duals X* and Y* respectively and
where T:X = Y and T*:Y* > X* are linear adjoint operators and t is the
canonical isomorphism from Y to Y*. The result is an adaptation of a
result of Brezzi [1974] to the abstract form we are considering here.
First we state some standard theorems that will be needed for this proof.
Let 2 = N(T*), the null space of T*, and define the annihilator Z0

of 2 as follows:

Zo = {yey; <y,z> = 0, Vz € 2}. (2.4.2)

See figure 2.4.1 for the relationship between the spaces and operator.

Then we have
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Theorem 2.4.1 (Banach's Closed Range theorem; see Yosida [1965], p.205)

Let X and Y be Banach spaces, and T a closed linear operator
from X into Y such that D(T) is dense in X. Then the following

propositions are all equivalent:

R(T) is closed in Y,

i
R{T*) is closed in X*,

R(T) = 20, ~

R(T*) = N(T)o. - a

¥y

X* T

Figure 2.4.1 Spaces and operators for the abstract problem
(o)

We now characterise the dual of Z .

Lemma 2.4.1 (c.f. Brezzi [1974))

(z0) * +

i
N

Proof

(ZO)* {z* e Y*; 2* = 1y for some y € Zo}

1

{z* e y*; =z*

]

1y for some y such that

<y,z> = 0, ¥z € Z}.
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However <y,z> = (ty,z).
(o]
Hence (z)* = {z* @ y*; (z*,z) = 0, ¥z € 2}
i.e. z9* = zt _ a

The next theorem gives conditions under which the adjoint operator

T* is a bijective operator.

Theorem 2.4.2 (see for example Rudin [1973], p.94)

Let X and Y be Banach spaces and T:X -+ Y a bounded linear operator.
Then R(T) is dense in Y iff T* is a bijective mapping. g

We are now in a position to give the main result of this section.

Theorem 2.4.3

Problem (2.4.1) has a unique solution if a > O such that
“Tx“Y 3_a||xllx r VX E€X . (2.4.3)

Proof We divide the proof into three parts, the first two of which

we shall make use of in subsequent theorems.

(1) From theorem 2.2.4 and inequality (2.4.3), T is a closed operator

and since the domain of T is closed, R(T) is closed. Hence from Ranach's

closed range theorem 2.4.1 we have R(T) = Zo. Therefore T is a surjective

o s s . .
operator onto 2~ and from (2.4.3), T is injective. Hence T is an

isomorphism from X to Zo.

(2) Now from lemma 2.4.1, (ZO)* ZJ' and so using theorem 2;4.2,
replacing Y by Zo, we have T* is a bijective map and hence an isomorphism
from z1 to X*.

(3) Hence, given an f € X*, (2) shows that there exists a unique

v e ztcy* satisfying
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T*v = £ .

From lemma 2.4.1 T_lv

we Zo. Hence (1) shows there exists a unique

u € X such that'
Tu = W,

see figure 2.4.2. Therefore there exists a unique (u,v) € X x Y*

satisfying problem (2.4.1).

Example 2.4.1

Recall the first example of section 2.1 which we put into an abstract
form in section 2.3. The operator T is the generalised derivative gz
with domain X = Hol(Q) and range in Y = LZ(Q). To prove the existence

and uniqueness of a solution to this problem using theorem 2.4.3, we

need only show that there exists a > O such that
||gi€‘-|| > aIIxIIHl(m , ¥x € Hol ().
L, ()

This inequality follows from the Poincare-Friedrichs inequality, see, e.q.

Necas [1967]. This can be written as

[ &%a > o2 [ x2aq, vx e B! (q)
dg - 0
Q 2

X

T

u

X* T*

£

Figure 2.4.2 The solution of the abstract problem
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where ¢ is a constant. From this we see that for 0 < B < 1,

N2 28 [ xax+ -8 [ S50
LZ(Q) Q Q &

Z_azllxllzl r Wx € Hol(ﬂ)
H ()
where az = max(Bcz, 1l - B). Hence example 2.l1l.1 has a unique solution

L. o

u in the space Ho

By adapting a theorem of Brezzi [1974] we have shown that problem
(2.4.1) has a unique solution provided inequality (2.4.3) is satisfied.
In later chapters we shall greatly extend this theorem to more complex

linear problems and to non-linear problems.



CHAPTER 3

VARIATIONAL PRINCIPLES

3.1 saddle Functionals

The concept of a saddle fhnctional provides an intuitive way of
looking at the variational principles we shall derive for the abstract
problem of Chapter 2. In particular the relationships between the
variational principles can be seen in a very graphical way using this
concept. In this section, we define and give some relevant results

regarding convex, concave and saddle functionals.

Definition 3.1.1 (Luenberger [1969], p.190)

A functional F(x) defined on a convex subset X of a linear vector

space is said to be convex if
F(ax1 + (1—a)x2) g_aF(xl) + (1—a)F(x2) (3.1.1)

for all Xy X € Xand all a, O < a < 1. F is said to ke strictly convex

2
if the inequality of (3.1.1) is strict for all Xyr Xy € X, %y # X, )

We usually deal with G-differentiable functionals and in this case

we have an equivalent definition of a convex functional.

Lemma 3.1.1
IfF : X+ R is G-differentiable in X then the following are

equivalent statements:

(i) F is (strictly) convex in X

(ii) F(xl) - F(xz) - <VF (xz)’ xl_x2> _>_ (>)O, Vxl'x e X. (301.2)

2
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Proof (i)=> (ii). From (3.1l.1) we have
F(le1 + (l-a)xz) - F(xz) < (<)°‘(F(xl) - F(xz)),

i.e. F(x2 + a(xl-xz)i - f‘(xz)

m S (QIF(x)) - Flx,).

Taking the limit as a@ -+ O we have

<VF(x,), X 7X> < (<)F(x1) - Flx,).

(ii) => (i). From (3.1.2) we have

F(x,) - Flx,ta(x;-x,)) - <VF(x,+o (%=%5)) %, = %, - a(x;-x,)> > (>)0,

2

i.e. F(x,) - Flx,+a (xl—xz)) + a<VF (x,%a (x,-%,) ) 1 %,-%> > (>)O0. (3.1.3)

1 2

Also from (3.1.2) we get

F(xl) - Flx,ta (xl-xz)) - <VF(x,+a (xl-xz)),x -a (xl-x2)> > (>)o,

17 %2

i.e. Flx;) = Flxta(x;-%,)) = (1-a)<VF (x,+a(x,-%,)), x > (>)0. (3.1.4)

17%2”
Then (l-a) times (3.1.3) plus a times (3.1.4) gives

(l—a)F(xz) - (1-a)F(x2+a(xl-x2)) + aF(xl) - aF(x2+a (xl-xz)) (>)o,

|v

i.e. aF(xl) + (1-a)F(x,) > (>)F(ax; + (1-a)x,) .
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Definition 3.1.2

A functional F : X * [R is said to be (strictly) concave iff - F

is (strictly) convex on X.

Lemma 3.1.2
IfF : X+ R is G-differentiable in X then the following are

equivalent statements:

(i) F is (strictly) concave in X,

(ii) F(xl) - F(xz) - <VF(x1), X)~X > > (>)0 . (3.1.5)

Proof From lemma 3.l1l.1 and definition 3.1.2

(1) <=> -F(x)) + Flx,) = <V(-F(x))), x,-%,> > (>)0

<=> F(xz) + F(xl) - <VF(x2), x2-x1> > (>)o

<=> F(xl) + Fl(x,) - <VF(xl), X, x> > (>)o

since x) and x, are arbitrary elements of X.

Theorem 3.1.1

If F is G-differentiable and strictly convex (concave) on X, then

F has a unique minimum (maximum) point u, i.e.

F(u) < (>)F(x), ¥x € X, x # u.
Proof Let F be a strictly convex functional and suppose F has two
minimum points uy and Uy i.e.

F(ul) = F(uz) <F(x), ¥x€ X, x # uy, X # u,.

Now from the definition of strict convexity, definition 3.1.1, with

1l 1l
X = E-ul + 3“2’ we have



42

F (x) <%p(ul) +%F(u2) = Flu) = Flu).

Hence we have a contradiction and so there exists only one minimum u
of F(x). Similarly when F is strictly concave there is a unique
maximum. ' a

We now define a saddle functional and give some of its properties.
For a wider discussion of saddle functionals as well as convex and

concave functionals see Noble-Sewell [1971].

Definition 3.1.3

A functional L : Xx¥-2 |JR is called a convex-concave saddle

functional if L(x,y) is convex in x for every y € Y and concave in y

for every x € X. See figure 3.1.1.

Figure 3.1.1 A convex-~concave saddle functional
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Remark 3.1.1 We can similarly define a concave-convex functional in

the obvious manner. When it is not relevant to distinguish between
the two we drop the prefix and juét call the functional a saddle

functional.

Lemma 3.1.3

Tf L : XxY + [R is G-differentiable then the following are

equivalent statements:

(1) L(x,y) is a convex-concave saddle functional on XxY,
(ll) L(xllyl) - L(leY2) - <V1L(x2’y2)’ xl - x2>

- <V2L(x1,y1),y1 - ¥,> 20 Vxl,x2 e X, Vyl,y2 € Y.

(3.1.6)

Proof (i) => (ii). From lemma 3.1.1 we have for Yy ey,

L(xl,yz) - L(xz,yz) - <V1L(x2,y2), Xy = x2> > 0 ¥x , € X. (3.1.7)

1'%2

From lemma 3.l1.2 we have for Xy e X

L(xl,yl) - L(xl,yz) - <V2L(xl,y1), ¥y y2> >0 Vyl,y2 € X. (3.1..8)

Adding (3.1.7) and (3.1.8) we have

L(xl,yl) - L(leyz) - <V1L(X2,y2), xl = x2>

- < - >
V2L(xl,yl), Y, ~ ¥,> 20 ¥x,,x, €X, Vy,,y, €Y.

2



(i) = (i). Lety=y, =y, Y in (3.1.6), then

L(xl,y) - L(x2,¥) - <V1L(x2,y), %y = x2> >0 Vxl,x2 e X,

i.e. L(x,y) is convex in x for any y € Y.

Let x = x, = X

1 2 € X in (3.1.6), then

i.e. L(x,y) is concave in y for any x € X.

Definition 3.1.4

L(x,y) is called a strict saddle functional if

L(xllyl) - L(leyZ) - <VlL(x2rY2)r xl - x2>

- Val(xysyy), ¥y —¥y> > 0

for all X, 1%, e X, x; # Xy ¥y ¥, €Y, vy # Y,

Definition 3.1.5 (Cea [1971], p.196)

A point (u,v) € XxY satisfying

L(u,y) < L(u,v) < L(x,v) V¥xe€X, ¥yey,

is called a saddle point of L(x,y).
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(3.1.9)

Remark 3.1.2 A functional having a saddle point need not be a saddle

functional. Conversely we have the following lemma.

Lemma 3.1.4

If L ¢+ XxY > [|R is a saddle functional then any stationary
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point of L(x,y) is a saddle point.

Proof Suppose L(x,y) has a stationary point at (u,v) € XxY, i.e.

VlL(u,v) = 0 (3.1.10)
and

V2L(u,v) = O, (3.1.11)
Let x, = u and Y, =Y, =V in (3.1.6), then using (3.1.10) we get

L(xl,v) - Luv) >0 ¥x, € X. (3.1.12)
Now let X =X, =1 and Y=V in (3.1.6), then using (3.1.11) we get

2

L(u,v) = L(u,y,) >0 vy, € Y. (3.1.13)

Then (3.1.12) and (3.1.13) imply (u,v) is a saddle point of L(x,y).

3.2 A Variational Principle

In this section we derive the most general variational principle

associated with the abstract problem given in Chapter 2, i.e.

™TTu = Vv
(3.2.1)

™™y = f .,

The main result is theorem 3.2.1 which shows that any solution of the
abstract problem (3.2.1) is a solution of the following variational

problem:
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find (u,v) € XxY¥* saddle point of
) {(3.2.2)

L(x,y*) = <Tx,y*> - %-<T-}y*,y*> - <x,f>, x e X, y* e y*,

This is related to the Hellinger-Reisner principle of linear elasticity.

We first show that L(x,y*) is a convex-concave saddle functional.

Lemma 3.2.1

L(x,Y*) is a convex-concave saddle functional.

Proof Let x,, X

1 € X and yl*, y2* € Y*, then using lemma 3.1.3 we have

2

* - * - * -
PN S0 I Sl Pt
= <Tx_ ,y.*> - £-<r—1y *, y.*> - <x_,f>
1’ 1 2 1 ! 1 1!
1
2

—-<T_ly2*,y2*> - <x2,f>

*> 4+ <Tx *> 4 <xl,f> - <x2,f>

2'Yp
- <Tx,,y.*> + <Tx_,y. *> + <T-ly *,y %> ~ <T—1y *,y %>
1’71 1'%2 171 1 'Y

1 -1 -1 1 -1
= = * xS — * = * *
3 <T y1 ,yl > <1 yl ,y2> + > <T y2 ,y2 >

1, -1 1
= - kg * * - kS = = Kemyy ¥ kg *
PR S PRI S Sl B Sl PUES Sl PRI

Hence L(x,y*) is a convex-concave saddle functional.

Remark 3.2.1 Note that the strict inequality holds for all yl*, y2* e y*,

yl* # y2*. Hence from definition 3.1.4, L(x,y*) is a strict saddle functional.

We now state the relationship between problem (3.2.1) and problem (3.2.2).
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Theorem 3.2.1

Assume the hypothesis of theorem 2.4.3. Then L(x,y*) has a unique
saddle point (u,v) € Xx¥*. Moreover (u,v) is the solution of problem

(3.2.1).

Proof We compute the Gateaux derivatives of L(x,y*) at (u,v) and

deduce that

(1) <V.L{u,v), x> = <Tx,v> - <x,f>
1l
= <x,T*v> - <x,f> =0 W¥xeXx (3.2.3)
iff T*v = £.
(2) <V,L(u,v),y*> = <Tu,y*> - < ly,yr = 0 vy* e y* (3.2.4)
iff Tl = Tu
i.e. iff v = TTu,

Hence (u,v) is a stationary point of L{x,y*) iff T*v = f and v = 1Tu.
Therefore from theorem 2.4.3 there exists a unique stationary point

(u,v) of L(x,y*) where (u,v) is the solution of problem (3.2.1). Further

as L(x,f*) is a2 saddle functional (iemma 3.2.1), (u,v) is a saddle point

of L(x,y*) by lemma 3,1.4.

Example 3.2.1

The variational problem for the first example of Chapter 2, equations
1
(2.3.1), is: find (u,v) € HO Q) x LZ(Q)' saddle point of
1 .2

L{x,y*) = f %}é—y* i Al x£f)dQ, x € Hol(Q), y € Lz(Q)-
7]
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Note that the last term can be written as

| x£ aa

since we have assumed that f € Lz(n), see section 2.3.

3.3 Complementary Variational Principles

In this section we show that any saddle functional with a saddle

point can give rise to a pair of complementary extremum principles.
The essential idea is to restrict the domain of the saddle functional in
such a way that it still contains the saddle point but provides us with
a simpler functional.

We restrict the domain of L(x,y) to those points which satisfy the

constraint VlL(x,y) = 0. Let us denote the restricted domain by

D, = {Ux,y) € xxv; VLix,y) =0} . (3.3.1)

Remark 3.3.1 A saddle point (u,v) of L(x,y) belongs to ﬁh_since

VlL(u,v) = Q.

Theoren 3.3.1

Any saddle point (u,v) of L(x,y) on X XY is a maximum point of L(x,y)

on 31. -

Proof From (3.1.6) we have

L(xysyy) = Lix,yy) = <V, Lix;h¥,), vy = ¥,> 20 (3.3.2)

ye .

for all (xl’yl)' (x 1

2'¥2



49
Now let (xl,yl) be the saddle point (u,v), then

L(u,v) - L(x ) >0, ¥(x

) e :Dl.

2’y2 21y2

Hence (u,v) is a maximum point. of L(x,y) on :Dl. O

In most of the applications it will be the case that L :
:Dl + [R can be denoted by a functional of the single variable y, i.e.
as K: Y. - [R , where

1

Y, = {yey; Ixexs.t. (xy € :Dl} .
This may arise because the constraint VlL (x,y) = O provides an explicit
relationship for x in terms of y. Also if L(x,y) is linear in x then

VlL (x,y) is "the coefficient" of x. Hence on :Dl the coefficient of x

in L(x,y) will be zero and so we can set L(x,y) = K(y).

Lemma 3.3.1
If we can write L : 31* R as K : Y1+ R, then K(y) is a

concave functional on Y,. Further, if L(x,y) is strictly saddle cn D

1 1l

then K(y) has a unique maximum point.

Proof From (3.3.2) we have
K(yl) - Klyy) - <v1<(yl), Y - ¥,>20 vy iy, € Y. «

Hence from (3.1.5), K is a concave functional. When L(x,y) is a strict

saddle functional on fDl we have

Hence K is strictly concave and from theorem 3.1.1 has a unique maximum. (]
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The domain of L(x,y) can be restricted by another constraint.

We let

3)2 = {(x,y) e xx¥; V,Llx,y) = ok (3.3.3)

Remark 3.3.2 A saddle point (u,v) of L(x,y) belongs to :Dz since
i

VZL (u,v) = 0.

Theorem 3.3.2

Any saddle point (u,v) of L(x,y) on XxY is a minimum point of

L(XIY) on $2-

Proof From (3.1.6) we have

L(xl,yl) - L(xz,yz) - <V1L(x2,y2), Xp T Xy> 2 (o} (3.3.4)

V(lel), (leyz) e mz .

Now let (x ) be the saddle point (u,v), then

2'¥2

L(x ) - L{u,v) >0 v (x

1'¥1 vy e Dy

Hence (u,v) is a minimum point of L(x,y) on mz. 0
As before we may be able to write L : ;Dz + M as a functional

of a single variable x, i.e. as J : X2 + R , where

x, = {xex; Jyevs.t. (x,y) € 3)2}.

Lemma 3.3.2

If we can writeL : J) 2'+fRas J ot X, > [R , then J(x) is
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1
a convex functional on X2. Further, if L(x,y) is strictly saddle on

:Dz, then J(x) has a unique minimum point.

Proof From (3.3.4) we have

J(xl) - J(xz) - <VJ(x2), pYs X.> >0 VX)X, € X

1 %27 2 2°

i
Hence from (3.1.2), J is a convex functional. When L(x,y) is a strict

saddle functional on sz we have

J(xl) - J(xz) - <VJ(x2), Xy = x2> >0 Vxl,x2 € X, X, # X,.
Hénce J(x) is strictly convex and from theorem 3.1l.1 has a unique minimum
point. ‘ a

Therefore from the saddle point problem (3.2.2) based on the saddle
functional L(x,y) we have derived

(i) a maximum problem:

find v € Yl s.t. K(v) = max K(y),
erl

which is based on the concave functional K(y).

(ii) a minimum problem:

find u e Xl s.t. J(u) = Min J(x),
XeXl

which is based on the convex functional J(x). Hence (i) and (ii) can be

regarded as complementary extremum principles in the sense that

Min J(x) = J(u) = L(u,v) = K{v) = Max K(y),
xeXl erl

see figure 3.3.1.



Figure 3.3.1 ' Complementary extremum principles
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3.4 The Minimum Potential Energy and Complementary Energy Methods

We apply the theory of section 3.3 to the saddle functional (3.2.2).

Restrict the domain XxY* of L(x,y*) to those (x,y*) satisfying VlL(x,y*) =0,

i.e. D.. From (3.2.3) :Dl is (x,y*) € Xx¥* such that

1

T*y = £,

Hence we take ng = Xl X Y1 with X1 = X and

Y, = 2, = {yey; Ty = f}.

Remark 3.4.1 2Z¢ is a linear variety and when £ = O we have the linear

space 2. = % = {y € ¥; T*y = O}.

0

Now from (3.2.2) and theorem 2.2.5 we have

L(x,y*) <x,T*y> - %-<T_ly*,y*> - <x,f>

-1
- %.<T y*,y*> = K(y*).

O

Vx € X, Vy* € z;

(3.4.1)
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We see that L(x,y*) is a functional of the variable y only, in this

case

because L(x,y*) on XxY¥* is linear in x. Then we have the

following theorem:

Theorem 3.4.1

The concave functional K : 2, > R defined by
K(y*) = -%<‘r-1y*,y*> | (3.4.2)
’
has a unique maxiﬁum at y* = v, where (u,v) is the solution
of (3.2.2).

Proof From theorem 3.3.1, K(y*) has a maximum point v, where (u,v) is

the s

is a

Remar

addle point of (3.2.2). From lemma 3.3.1 and remark 3.2.1, K(y*)

concave functional with a unique maximum.

k 3.4.2 In the context of elasticity the problem of finding the

maxim

Examp

um of K(y) is called the complementary energy principle.

le 3.4.1

with

Hence

The saddle functional for example 1 of Chapter 2 is, see example 3.2.1,
L{x,y*) = f( y*--y* - x£)dq (3.4.3)
Q

domain Hol(n) x L,(Q). We restrict the domain to those y* satisfying

1
31 = HO () x zf where

dy* ‘
zg = {y* e L, (2); -a-g— £},
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Now using the adjoint relationship (2.3.4) we see that on ;Dl’

L(x,y*) reduces to

K(y*) = -

N

[ y*%aq, y*ez_.
: £

Theorem 3.4.1 shows that v is the unique maximum point of this functional.ll
Now restrict the domain X X Y* of L(x,y*) to those (x,y*) € X x Y*

such that V2L(x,y*) = 0, i.e., such that

or y* = 1Tx. (3.4.4)

Hence we take 3)2 =X, xY,, where X, =X and Y, = zt  from part (2)

of theorem 2.4.3. Therefore from (3.2.2) we have

1 -
L(x,y*) <Tx,y*> - §-<r 1y*,y*> - <x,f>, ¥x e X, vy* e 2

1
§-<Tx,rTx> - <x,f>.

We see that L(x,y*) is a functional of the variable x only since (3.4.4)

*
provided us with an explicit relaticnship for y in terms of x.

Theorem 3.4.2

The convex functional J : X » R defined by
1l
J(x) = 5 <Tx,TTx> - <x,f> (3.4.5)

has a unique minimum at x = u, where (u,v = tTTu) is the solution of (3.2.2).
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Proof From theorem 3.3.2} J(x) has a minimum point u where (u,v) is

the solution of (3.2.2). From lemma 3.3.2 and remark 3.2.1, J(x)

is a convex functional with a unigque minimum. a
See figure.3.4.1 which shows the functionals with the assumptions

relating each functional.

Remark 3.4.é In elasticity theory the problem of finding the minimum

of J(x) is called the principle of minimum potential energy.

Example 3.4.2

We restrict the saddle functional (3.4.3) to those (x,y*) € Hol(ﬂ) X

Lz(Q) satisfying -

ax
c— = *
acE y=.

Hence (3.4.3) can be written as

Jx) = = [(%%)2 - xfl a0, xeH, @.
Q

Theorem 3.4.2 shows that u is the unique minimum point of this functinnal.

L(x,y*)

T*y* = £ y = 1TTx

K(y*) J (x)

Figure 3.4.1 The functionals for the abstract problem.
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CHAPTER 4

THE EXTENDED ABSTRACT PROBLEM

4.1 The Extended Abstract Problem

In this chapter we introduce an extension of the abstract problem
of Chapter 2 so that we can easily deal with problems having a
constitutive relation which is not the identity mapping, e.g. example
2 of section 2.1. We introduce a linear operator E:Y -+ Y* and consider
the problem:

given £ € X*, find (u,w,v) € X x Y x Y* such that

Ta = W
Ew = Vv (4.1.1)
T*v = f,

where the spaces X, Y, X*, Y* and operators T, T* are as defined in
section 2.4. The second of equations (4.1l.1) represents the constitutive
relation we wish to introduce. In this section we shall prove an
existence and uniqueness theorem for problem (4.1.1). The rest of the
chapter is devoted to the derivaticu of all the variational principles
associated with this extended abstract problem.

The proof of the existence and uniqueness of a solution to this
problem closely follows theorem 2.4.3. Therefore we shall only prove
the extension that is needed to theorem 2.4.3 to cope with problem 4.1.1.

First we state some theorems we shall need.

Theorem 4.1.1 (Lax-Milgram [1954])

Given a continuous bilinear form a(xl,xz):x x X + [R for which

there exists a > O such that
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a(x,x) Z_a||x||x2 ¥x € X, (4.1.2)

then the problem:
given £ € X*, find u € X such that
(4.1.3)
alu,x) = <£,x> ¥x € X,

has a unique solution.

Remark 4.1.1 Condition (4.1.2) is sometimes called X-ellipticity.

Lemma 4.1.1 Let 2 and Zo be defined as in section 2.4, then

22 = (z¢yth.

Proof Recall that

z = {y* e y*; T*y* = O}
Now
2% = {z*t @Y; z* = T—lz for some z € 2}
Hence
K]
z¢)" = {yevy; (z*,y), = 0 ¥a* e 2%}
= {yey; <,y = 0 vz e z}
= ZO.

Theorem 4.1.2 (Yosida [1965], p.43)

A linear operator E:X - Y admits a bounded linear inverse E_lz R(E) C Y

<+ X iff there exists a > O such that

|| Ex|| ¢z o] || x VxE€ X (4.1.4) O
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We are now in a position to prove the extension required to
theorem 2.4.3. 1In this we proved (1) that T is an isomorphism from
X onto ZO and (2) that T* is an isomorphism from Z'L onto X*, see
figure 4.1.1. Hence we concluaed that there exists a unique v € ZJ'

such that
T* = f. (4.1.5)

The next stage of the proof is to find a unique w € ZO such that

-~

Ew = V¥ + 2 where Z is any element of Z.

Theorem 4.1.3

If there exists a,, a,, > O such that

1 2
eyl 2 ellvll,  ¥venm@, (4.1.6)
<E—1z,z> Z_azllzlls* vz € zZ, (4.1.7)

- . . 0]
and R(E) Y*, then for any v € 2zt we can find a unique w € 2~ such

-~

+ Z = Ew, where Z is an element of 2.

<t

that v =

Proof From theorem 4.1.2 and (4.1.6) E_l is a bounded linear operator.
Hence E-lG iz a unique element of Y. From lemma 4.l1.1 we can represent

E_lﬁ by

- (o]
E'v = 2z + z* where z € ZO, z* € 2*,
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Since E'-1 is bounded, <E-1y1,y2>: y* x y* >~ R is a continuous
bilinear form. Also (4.1.7) is satisfied, so from theorem 4,1.1, given
z* € Z* there exists a unique Z € Z such that

<E "Z,z> = =<z¥%,z> ¥z € Z,

see fiqure 4.1.1. Therefore there exists a unique w = E-l(G + Z) for

which
o
<w,z> = <z 4 z%¥ = z¥%, 2> ¥z € 2
= <zo,z> = 0O,
0]
since zo € ZO. Hence w € 2. )]

Therefore we have the following theorem concerning problem (4.1.1).

Figure 4.1.1 The spaces in the extended abstract problem
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Theorem 4.1.4

Problem (4.1.1) has a unique solution if there exists al' a2’ aq >0
such that
(1) loxlly 2 e llxll,  vxex
@ eyl 2 ayllvll,  vyenm
(iii) <E'1z,z> 3_a3l|z||§* vz € Z,

and R(E) = Y*,

Proof. From theorem 2.4.3 and theorem 4.1.3,

Example 4.1.1

Recall example 2 of section 2.1. The eguations are

grad u = w
Kw = v in Q
-divv = f
with u = OonT.

Setting T =grad, T* = -div and E = K, this can be put into the form
(4.1.1) when we take X = Hol(n) and Y = (Lz(Q))z. Then X* = H—l(n)
and Y* = (LZ(Q))z. T and T* are of course considered as extensinns of
the operators grad and -div as in example 2.4.1.

To prove the existence and uniqueness of a solution to this problem

we have to show that the conditions of theorem 4.1.4 are satisfied.

Condition (i) is satisfied for

Fexll 5= [ 08D E %z ol x] (4.1.9
(L, (Q)) Q 1 2 . H (Q)
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for all x e H&l(Q) using the Poincare-Friedrichs inequality as in
example 2.4.1. To prove condition (ii) we assume that the tensor K

is symmetric and positive definite. Then we have

* < S
Il xyl| = sup Ky y*) > . (4.1.9)
w2@? yre,@n? ¥ = Tyl )
2 (L, (@) (L, (2))
{
However,
2 2
<Ky,y> = f (kllyl + 2k12yly2 + k22y2 )dQ
Q
2 2 2 2
{2 [kya¥y" + kpp¥p ~ Kpply)” + vy )lan
2
> el vl 2! (4.1.10)
(L, (2))
where y = (y,,y,) and a = min[k, =k ./ ky, = k,yl. From (4.1.9) and

(4.1.10) we have
el o 2l vl , + Vye (@man?.

Hence if K is a symmetric and positive definite tensor, we have a > O
and so condition (ii) is satisfied. The inverse K_l of K is also
symmetri c and positive definite, hence the inequality (4.1.10) will apply

to Kfl and so condition (iii) is also satisfied. Therefore example 2,1.2

has a unique solution if K is symmetric positive definite.
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4.2 More on Saddle Functiocnals

In this section we show how the concepts of convexity and saddle
functionals can apply to functionals whose domains are product spaces.
Let W =X X Y be a real Hilbert space with dual W* = X* X y*,

Then we have
<wk,w> = <x*,x> + <y*,y>, VYw € W, w* € w*,

vhere w = (x,y) and w* = (x*,y*), x € X, y € ¥, x* € X* and y* € Y*.
From definition 3.1.1, F:W > R is a convex functional if

F(awl + (l-a)wz) j_aF(wl) + (l-a)F(wz), le,w2 e Ww.

Then if W, = (xl,yl) and w, = (xz,yz) this definition becomes

- - < '
F(ax1 + (1 a)xz, ay, + (1 a)yz) aF\xlpyl) +

(l-a)F(xz,yz), Vxl,x e X, Y ¥, €Y, 0<ac<l.

2
(4.2.1)

Now if P is G-differentiable on W then

<VF(w1;,w2> <V1F(x1,y1),x2> + <V2F(x1,y1),y2>
where ViF, i = 1,2 are the partial G-derivatives of F. Hence from

lemma 3.1.1 the convexity of F on X X Y is equivalent to

F(leyl) - F(xz,yz) - <V1F(x2,y2), X = %>

(4.2.2)
- <V2F(x2,y2),y1—y2> > 0, Vxl,x2 € X, yl,y2 e Y.
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We can of course define concave functionals on product spaces in a
similar way. Also the extension to the product of n spaces, n > 2
is obvious. However, as we shall not be using products of more than
two spaces, we do not give the more general form.

It is now straightforward to define a convex-concave saddle
functional L: (XxY) x 2 - [R which is convex on X x Y and concave

on Z. when L is G-differentiable we have

L((leyl);zl) - L((xzryz)lzz) - <VlL(X2pY2122): xl = X2 >

- <V2L(x21Y2122)l Yl - Y2> - <V3L(xllyllzl)l zl = 22> Z_O (4.2.3)

for all xl,x2 e X, yl,y2 ey, zl,22 e 2.
Note that where no confusion arises we write L((x,y),z) as L(x,y,z).
From definition 3.1.5 a saddle point ((u,w),v) € (XxY) x 2 of L(x,y,2)

satisfies
L(u,w,z) < L{u,w,v) < L(x,y,v) (4.2.4)

for all x e X, yey, z e 2,

4.3 The Extended Variational Principle

The main result of this section is to give conditions under which
we can derive a variational principle for problem (4.1.1). We shall show

that any solution of problem (4.1.1) is a solution of the problem:

find ((u,w),v) € (XxY) x ¥Y*, saddle point of
(4.3.1)

L(x,y,¥*) = <Tx,y*> - <y,y*> + %'<YIEY> - <x,f> ,

where the spaces and operators are as in problem (4.1.1).
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Throughout the rest of the chapter we assume that D(E) = Y. However,

all the results are valid for D(E) a dense subset of Y.

Remark 4.3.1 In the context of elasticity this variational principle

is sometimes called the Hu-Washizu principle.

Lemma 4.3.1

(u,w,v) is a stationary point of L(x,y,y*) iff

T*v = f,
Q = Ew,
Tu = w.
Proof VlL(u,w,v) = 0
<=> <V1L(u,w,v),x> = <x,T*v> - <x,f> = 0 ¥x € X
<=> T*y = £.
V2L(u,w,v) = 0
<=> <V2L(u,w,v),y> = —<y,v> + <y,Ew> = 0, vy ey
<=> v = Ew.
V3L(u,w,v) = 0
<=> <V3L(u,w,v),y*> = <Tu,y*> - <w,y*> = 0, Wy* e y*
<=> Ta = w.

Lemma 4.3.2
Suppose E is positive and symmetric. Then L{x,y,y*) is a saddle

functional, convex in XXY and concave in Y¥*.
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Proof Inequality (4.2.3) is satisfied as

1
* - * —_— -
<Tx1'Y1 > <y1,y1 > + > <y1,Ey1> <x1,f>
-<Tx

h
* S - —
21Yy > + <yz,y2 > 5 <y2,Ey2> + <x2,f>

-<Tx ,y2*> + <TX

1 *> + <x_,f> - <x_,f>

* - * -
+<Y1'y2 > <y2’y2 > <Y1rEY2> + <YZIEYZ>

-<Tx1,y1*> + <Txl,y2*> + <y1,y1*> - <y1,y2*>

1 1
§<y1,Eyl> - <y1,Ey2> + 5%y¥,/Ey,>

I

1 . X .
3<y1—y2,E(y1—y2)> since E is symmetric
> 0 since E is positive. a
The next theorem shows the relationship between the extended
variational problem (4.3.1) and the extended abstract problem (4.1,1).

Theorem 4.3.1

Assume the hypotheses of theorem 4.1.4 are satisfied. Assume in
addition that E is symmetric and positive. Then L(X,y,y*) has a unique

saddle point ((u,w),v), which is the solution of problem (4.1.1).

Proof From lemma 4.3.1, (u,w,v) is a stationary point of L (x,y,y*)
iff T*v = £, v = Ew and Tu = w. Hence from theorem 4.1.4 (u,w,v) is a
unique stationary point of L(x,y,y*). Now from lemma 4.3.2 and lemma 3.1.4

((u, w),v) is a saddle point of L(x,v,y*).

Example 4.3.1

Recall example 4.1.1, where we proved that example 2 of section 2.1

has a unique solution provided K is a symmetric positive definite tensor.
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From theorem 4.3.1 we have that under these conditions the main

variational problem associated with example 2.1.2 is:

£ind (u,w,v) € Hol(ﬂ) x (1.2(9))2 x (Lz(Q))z, saddle point of

1 (4.3.2)
L(x,y,y*) = f(grad x.y* - y.y* + 5 y.Ky - xf)dQ,
Q ;

l

x € Hol(Q), y € (LZ(Q))Z, y* e (LZ(Q))z, provided £ € LZ(Q)‘

4.4 Further Varjational Principles

In this section we show that several other variational principles
can be derived from the main variational principle of the previous
section. We apply the same technique used in section 3.4 of restricting
the domain of the saddle functional to give us further functionals

associated with the problem. Recall that L:XxYxY* + [R is given by
1
L(x,y,y*) = <Tx,y*> - <y,y*> + 5 <y,Ey> - <x,f> . (4.4.1)

We shall restrict the domain XxYxy* to.ﬁl, i.e. those (x,y,y*) satisfying

VlL(x,y,y*) = 0, From the first part of the proof of lemma 4.3.1 we have
3%_ = '{(x,y,y*) € XxYxY*; Thy* = f} |,

3 ) = * = = * =
Let us wr:.te.)1 Xl x Y1 X Yl where Xl X, Yl Y and Y1 Zs.

Then using theorem 2.2.5, (4.4.1) becomes

1
L(x,y,y*) = =<y, y*> + 35 <y,Ey> = M(y,y*) (4.4.2)

¥y ey, ¥yt e 2.
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Theorem 4,4,1

The convex-concave saddle functional M(y,y*) has a unique saddle
point (w,v), where Tu = w and ({u,w),v) is the saddle point of

L(x,y,v*).

Proof Since@l contains the saddle point ((u,w),v) we have from (4.2.4)

M(w,y*) < M(w,v) < M(y,v) Vy € Y, ¥y* e Zg.
Hence (w,v) is a saddle point of M(y,y*). Now

My vy *) = MUy eyp*) = <V MUy ry,*) sy =y, > = <V My sy %),y %y % >
‘ 1 1
= Ty Y b 5 <Y GEY > <YYot = 5 <y, By,
+<y1,y2*> - <y2,y2*> - <y2,Eyl> + <y, /Ey,>

RS0 SRS AW Pats

N

1
= T Y1iEY > = <YoBy > + 5 <yyEy,>

N

= 3 <Y{Yys E(yl—y2)> > O since E is positive.

Hence from (3.1.6), M(y,y*) is a convex-concave saddle functional.

Now
<V1M(w,v),y> = =<y,v> + <y,Ew> = O, ¥y ey
iff v = Ew.
Also
<v2M(w,v),z> = -<w,z> = 0, ¥z € 2

. (o]
iff we 2,

i.e. iff w = Tu, u e X,
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Hence from theorem 4.1.4 (u,w,v) is a unique solution of problem 4.1.1

and so (w,v) is a unique saddle point of M(y,y*).

Example 4.4.1

The domain of the functional of example 4.3.1 can be restricted to

those y* satisfying

{
-div y* = f.

Hence defining

Z; = {y* € XLZ(Q))Z; -div y* = f}

and using the adjoint relationship we have that (4.3.2) can be written as:

find (w,v) € (LZ(Q))2 X Zg, saddle point of
(4.4.3)

1
Mly,y*) = [ Cy.y* +5y.K0aR ye @y@)?, vt ez o
Q

Let us restrict the domain X x ¥ x Y* of L(x,y,v*) to j&, i.e. those

(x,y,y*) satisfying V,L(x,y,y*) = O. From lemma 4.3.1 we have
2

mz = {(XIYIY*) e X xY x Y*; y* = Ey}.

Let us write .mz = X2 X Y2 b3 Y2* where X2 X, Y, =Y and Y ,* = Y*, Then

2 2
from (4.4.1)

1
L(x,y,y*) = <Tx,Ey> - 5 <y,Ey> - <x,£> =2 G(x,y), (4.4.4)

¥x € X, ¥y € Y.

Theorem 4.4.2

The convex-concave saddle functional G(x,y) has a unique saddle point

(u,w) where ((u,w),v) is the saddle point of L(x,y,y*).
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Proof sinceJDZ contains the saddle point ((u,w),v) we have from (4.2.4),

remembering that y* = Ey,
G(u,w) :_G(x,w) ¥x € X.

Now let y = w + ¥ where y € Y, then

- - 1 - ~
G(u,y) = Gluw + 3) = <Tu,E(wt§)> - 5 <wty, E(w+§) > - <u,£>
-~ - 1 . .
= G(u,w) + <Tu,Ey> - <w,Ey> - 5 <¥,E¥>.

However

<T™u1,Ey> - <w,Ey> = <Tu-w, Ey> = O
and

<y,Ey> > O ¥y € Y.
Hence

G(u,y) < G(u,w) ¥y € Y.

Therefore (u,w) is a saddle point of G(x,y).
From (3.1.6) we can show that G(x,y) is a convex-concave saddle functional.

We also have

«VlG(u,w) ! X> = <Tx,BEw> - <x,f> = 0, ¥xeX
iff T*EW = £, )
and
<V2G(u,w),y> = <Tu,Ey> - <w,Ey> = 0, ¥y €Y
iff Ta = w.

Hence from theorem 4.1.4 the saddle point (u,w) is unique. a



70

Now suppose that E is an isomorphism from ¥ to Y*. Then we can

write (4.4.4) as

H(x,y*) = <Tx,y*> - %-<E—ly*,y*> - <x,£>, (4.4.5)

¥x € X, WVy* € Y*,

Then we have

Theorem 4.4.3

The convex-concave saddle functional H(x,y*) has a unique saddle

peint (u,v) where ((u,w),v) is the saddle point of L(x,y,y*).

Proof From (4.2.4) we have

H(u,v) < H(x,v) ¥x € X.

Now let y* = v + y*, y* € Y*. Then

H(u,y*) = H(u,v+y*) = <Tu,v+y*> - %-<E—1(v+§*), v + §*> - <u,f>
= T* “l ow L g low o
= H(u,v) + <Tu,y*> = <E “v,§*> - 5 <E "§*,§*>.
However
<Tu,§*> - <E-1v,y*> = 0
and
-1_. . - i
<E "§*,y*> >0 vyt e yY*, .
Hence
H(u,y*) < H(u,v) wy* € Y,

Therefore (u,v) is a saddle point of H(x,y*). From (3.1.6) we can show
that H(x,y*) is a convex-concave saddle functional. Taking Gateaux
derivatives of H(x,y*) at (u,v) and using theorem 4.1.4 we find that

(u,v) is unique.
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Remark 4.4.1 In the context of elastomechanics the variational

principle based on functional (4.4.5) is called the Hellinger-Reisner
principle. Note its resemblance to the variational principle of

section 3.2.

Example 4.4.2

From example 4.3.1 we can restrict the domain of L(x,y,y*) to

those y and y* satisfying
y*¥* = Ky.
This gives rise to two problems:

find (u,w) € Hol(ﬂ) X (LZ(Q))Z, saddle point of

(4.4.6)
1l
Gx,y) = f (grad x.Ky - %-yxy - x£)aq, x e HO ),
Q
y e (Ly@)?
and
. 1 2
find (u,v) € HO Q) x (Lz(Q)) , saddle point of
1 -1 1 (4.4.7)
Hi{x,y*) = f (grad x.y* - E'Y*‘K y* - x£f)de, x € Ho ),
Q
ye L@?. 0O
Finally, let us restrict the domain of L(x,y,y*) to ;33, i,e. those
(x,y,vy*) € X x ¥ x Y* satisfying V3L(x,y,y*) = 0. From lemma 4.3.1
we have

;D3 = {(x,y,y*) € X x Y x Y*; y = Tx}.

Let us write Q. = X, x Y. x Y.* where X, =X, Y, =2, Y

3 3 3 3 3
from (4.4.1) we get
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L (x,y,y*) = %-<Tx,ETx> - <x,£> = J(x), ¥x € X. (4.4.8)

Theorem 4.4.4

A

The convex functional J(x) has a unique minimum point u where

((u,w = Tu), v = Ew) is the saddle point of L(x,y,y*).

Proof ;D3 contains the saddle point ((u,w),v), hence from (4.2.4) we

have
J (u) < J (x) ¥x e X.

Now

J(xl) - J(xz) - <VJ(x2), X - x2>

> + <x2,f>

2

1

1

2 2

—<Tx2,ETx1> + <Tx2,ETx2> + <x1,f> - <x2,f>
= l-<T ETx.> -~ <T ETx.> + 1'--<Tx ETx.>
B s L | KrblX >+ g SHK e BIXy

1
= §-<T(x1-x2), ET(xl—x2)> >0 Vxl,x2 € X, x1 # Xoe

Hence J(x) is a strictly convex function and so the minimum point u

is unique.

Remark 4,4.2 J(x) is the functional of the minimum potential. :nergy

principle. Compare with functional (3.4.5).

Example 4.4.3

Constraining the domain of L(x,y,y*) in example 4.3.1 to those y*

satisfying

y* = Tx,
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we can write (4.3.2) as

find u € Hol(Q), minimum point of
(4.4.9)

3(x) = [ (>grad x.K grad x - x£)dR, x e ile. O
Q

Hence from the saddle funétional L(x,y,v*) we have generated two
further saddle functionals M(y,y*) and H(x,y*) and a convex functional
J(x). (We consider the functionals G(x,y) and H(x,y*) to be essentially
the same.) M(y,y*) and H(x,y*) lead to complementary variational principles
as follows.

Restrict the domain ¥ X Z¢ of M(y,y*) to

1S

1 = {wyn ey xzy y* =Ey)

Then withJ)ll Y., X Zgqq where Y

11 = {y e ¥Y; Ey € Z¢} and 24y, = Zg,

11

we can write

M(y,y*) = - %,-<y,Ey> = Ily), V¥ye€ Yoy (4.4.10)
. -1
Letting y = E "y* we also have
Mly,y*) = L g lon,yrs = k(y* Yyt 4.4.11
yiy*) = = 3 <E y*,y*> = K(y*), Vy* e Zg. (4.4.11)

Theorem 4.4.5

The concave functional K(y*) defined by (4.4.11) has a unique

maximum at y* = v.

Proof From theorem 3.3.1 K(y*) has a maximum at y* = v. From lemma 3.3.1

this maximum is unique and K(y*) is a concave functional.
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Remark 4.4.3 K(y*) is the functional of the complementary potential

energy principle. Compare with functional (3.4.2).

Remark 4.4.4 Since we can write I(y) = K(E-ly), we can deduce from

theorem 4.4.5 that I(y) is a concave functional with a unique maximum

at y = w.

Example 4.4.4

From example 4.4.1, defining the space
Y. o= {yve @ (% xyez)
11 2 ! £

we can substitute y* = Ky into (4.4.3) to give the problem:

find w € Yll' maximum point of

(4.4.12)
= -2 yxya
Iy) = -3 ) yXyde, yevy,.
Q
Substituting instead, y = Knly* we get:
find v € Zf maximum point of
(4.4.13)
Ky*) = - = [ v Lyran, y* e z.. a
2 f £

We can also restrict the domain of M(y,y*) to

:Dlz

{(y,y*) € Y x Zes y = Tx}.

A where Y = Zo A

Then withd,, Y12 ¥ 2612 12 1 Zg1p = 2

|
X



we have

M(y,y*) = =<Tx,y*> + %-<Tx,ETx>

-]2—'-<Tx,ETx> - <x,£> = J(x), ¥x € X, (4.4.14)

using theorem 2.2.5. From theorem 4.4.4, J(x) is a convex functional

with a unique minimum at x = u.

Example 4.4.5

We can easily see that substituting y = Tx in (4.4.3) and using
the adjoint relationship and the already assumed relationship

~div y* = f, we get the functional

Jx) = f (%-grad x.K grad x - x£)dQ
Q

from M(y,vy*). a
Hence from the functional M(y,y*) we have derived complementary

variational principles based on K(y*) and J(x) since

Min J(x) = J@) = M(w,v) = K(v) = Max K(y*) .
x€X y*€Zg

H(x,y*) also leads to complementary principles. Restrict the

domain X x Y* to

321 = {(x,y*) € X x Y*; Try* = f}.
= * = * =
setd,, =X, x Y4,, where X, =X and Y}, = Z¢, then

Hx,y*) = - % <E-1y*,y*> = Rly*), Vy* € Zg. (4.4.15)
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Now restricting the domain X X ¥ of G(x,y) to
Dy, = {y) ex xy; - y=1x},
we have
G(x,y) = %-<Tx,ETx> - <§,f> = J(x), ¥x € X. (4.4.16)

Example 4.4.6

Using the adjoint relationship and -div y* = £ in (4.4.7) gives the
variational problem (4.4.13). Also substituting y = grad x in (4.4.6)
we get the variational problem (4.4.9). a

Hence the complementary functionals J(x) and K(y*) can also be
derived from H(x,y*) (and G(x,y) = H(x,Ey)). The relationships between

all the functionals are given in Figure 4.4.1.
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CHAPTER 5

‘"NON-LINEAR EQUATIONS

5.1 Results from Non-Linear Operator Theory

In this section we give some results in the theory of non-linear
operators which will allow us to extend the variational principles
already discussed to include non-linear problems. The basic concept
is thét of a monoﬁoné opérator: We show how this is related to convex
functionals and give some e*istence and uniqueness theorems of monotone

operator equations.

Definition 5.1.1 (Vainberg [1973], p.46)

An operator F(x) from A € X to X* is said to be potential if there

exists a functional £(x), defined on X, such that for all x € A
F(x) = VE£(x). ' (5.1.1)

The functional £(x) is called the potential of the operator F(x). O
The next theorem gives a very general condition for an operator

F(x) to be a potential operator.

Theorem 5.1.1 (Vainberg {1973], p.56)

Let F(x) be a continuous operator from an open convex set A & X to X*.
Then F(x) is potential if and only if, for any polygonal line £ < A, the

line integral

j' <F(x), dx>
L

is independent of the path of integration. O
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If the operator is G-differentiable we have the following condition

for it to be potential.

Theorem 5.1.2 (Vainberg [1973]1, p.59)

Let F(x) be an operator from X to X* which is G-differentiable at
every point of an open convex set A C X, the Gateaux differential
DF (x,h) being continuous in x. Then F(x) is potential in A if and only

if the bilinear functional <DF(x,hl),h2> is symmetric, i.e.

<DF (x,hl) /hy> = <DF (x,hz),hl>. (5.1.2)

Remark 5.1.1 (Vainberg [1973], p.56)

Under the hypotheses of theorem 5.1.1 or theorem 5.1.2 the potential

f(x) of the operator F(x) has the form

1
£(x) = £+ ({ <Flxg + tlx-x)), x - x>dt, (5.1.3)
where fo is a constant. a

Many of the operators we shall consider will be positive-homogeneous

operators. In this case the potential takes a much simpler form.

Definition 5.1.2

F(x) is a positive-homogeneous operator of degree k > O if

F(tx) = th(x) for t > O.

Remark 5.1.2 (Vainberg [1973}, p.59)

Let F(x) be a positive-homogeneous potential operator of degree k > O.

Then from (5.1.3), its potential is of the form
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1 '
- —— >.
£ (x) fo + ) <F(x), x

Lemma 5.1.1
If F(x) is a positive-homogeneous operator of degree k > O and F

exists, F_l is a positive-homogeneous operator of degree 1, k.

Proof Let F(x) = x*, then from definition 5.1.2
tF () = FL(ERx).
Let s = tk, then

Sl/kF-l(x*) = F l(sx*),

i.e. F 1 is positive-homogeneous of degree 1l/k.

Definition 5.1.3 (Vainberg [1973], p.1l0)

An operator F : X - X* is said to be monotone if

<F(x1) - F(xz), x1 - x> >0 Vxl, x, € D(F).

It is strictly monotone if equality can hold only when X = Xge a
The next theorem gives the relationship between monotone operators

and convex functionals.

Theorem 5.1.3 (Vainberg [1973], p.51)

A potential operator F(x) defined on an open convex set A of X is
monotone (strictly monotone) if and only if its potential f£(x) is a convex

(strictly convex) functional on A. . a



81

We now give two theorems on the existence and uniqueness of the

solution of non-linear operator equations.

Theorem 5.1.4 (Vainberg [1973], p.79 and p.96)

Let £(x) be a convex lower semicontinuous functional defined in a

reflexive Banach space X, satisfying the condition

Lin £(x) = +e,
Il x| =+ -

Then f (x) has an absolute minimum point. Further if f£(x) is strictly

convex then the minimum point is unique.

Theorem 5.1.5 (Vainberg [1973], p.97)

Let f£(x) be a G-differential functional defined on X and such that

F(x) = VE(x) is a continuous monotone operator satisfying

<F (%) ,x>

%[ = 1

Then f£f(x) has a minimum point x_ and F(xo) = 0. If F is strictly monotone,

(0]
then the minimum point of the functional is unique and £ (x) has an
absolute minimum there. a

We now give a stronger definition of a monotone operator.

Definition 5.1.4 (Vainberg [1973], p.232)

An operator F : X » X* is said to be strongly monotone if

<F(xl) - F(xé), Xy = x> Z_IIXI - lely(llxl - x2||)

where y(t) is an increasing function such that y(0) = 0 and y(t) » «

as t > =,
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Theorem 5.1.6 (Vainberg [1973], p.232)

Let F : X + X* be a continuous strongly monotone operator. Then F

is a homeomorphism of X onto X*.

5.2 Some Non-Linear Equations

We consider some non-linear equations related to the linear equation

studied previously, i.e.

T*ETu = f£f.

We shall introduce the non-linearity in two ways, first by taking the
operator E to be non-linear and secondly by replacing the function £ by
a non-linear function F : X =+ X¥*,

In this section we shall prove some existence and uniqueness theorems
for the non-linear equations and in the next section we shall develop the
associated variational principles.

First we consider the equations

Tu = w
Elw) = v (5.2.1)
T™*v = f£,

where as before X and Y are Hilbert spaces, T : X + Y is a linear operator
with adjoint T* : Y* - X*, E : Y -+ Y* we now consider to be a non-linear
operator. Obviously u € X and f € X*,

In section 4.1 we extended theorem 2.4.3 to prove the existence and
uniqueness of a solution to problem (4.1.1). Here we shall adopt a similar

method to show that equation (5.2.1) has a unique solution. Recall that
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theorem 2.4.3 established that T* is an isomorphism from zh to x*
and T is an isomorphism from X to ZO, see figure 2.4.2, The next

theorem is analogous to theorem 4.1.3 where E is a linear operator.

Theorem 5.2.1

Suppose E is a homeomorphism and that for any V € 2zt we have

L . .
GV(Z) = E (Vv + 2) is a strictly monotone operator on 2. Also suppose

<G;, (z) ,2>

lim =T " (5.2.2)
Il =] > i

. -~ . . (0]
Then given a v € ZL, there exists a unique w € Z such that
E(w) = ¥V + 2, (5.2.3)

where z is an element of z.

Proof

From theorem 5.1.5 there exists a unique Z € 2 such that
<Gy(z),z> = O ¥z € 2. (5.2.4)
Hence given V € 2 we can define
- -1 . -
w = GV(Z) = E (v + 2),
(0]
and from (5.2.4) we 2, a

The next theorem achieves the same result but with assumptions which

are more easily proved in the applications.
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Theorem 5.2.2

Suppose E is a continuous strictly monotone operator with

R(E) = Y* and

. <E(y),y>
lim —I-FPL- = 4o, (5.2.5)
[yl » Y

!
: - . : 0
Then given ¥ € 2zt there exists a unique w € Z° such that

where Z is an element of 2.

Proof

Since E is strictly monotone it is one-to-one and as R(E) = Y*,
E is a homeomorphism. Now since E is strictly monotone, it follows
easily that E—1 is strictly monotone and hence Gv(z) = E—l(§ + z) is
strictly monotone on Z for any v € z+ . Also E—l and hence G satisfies

the growth property (5.2.2). Hence the result follows from theorem 5.2.1.

Remark 5.2.1 We may replace condition (5.2.5) by the conditions that

e(y), the potential of E(y),is strictly convex and satisfies

lim ely) = +%,
| yll +=
Then we can use theorem 5.1.4 instead of theorem 5.1.5. a

The existence and uniqueness of a solution to equations (5.2.1)
now comes from theorem 2.4.3 and either theorem 5.2.1 or theorem 5.2.2.

We state this as the next theorem.
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equation (5.2.1).

Let the spaces X and Y and operators T, T¥ and 'E be defined as in
Then suppose there exists

o >0 such that
x|l 2 ell x| 4. vx € X.

l
are satisfied.

Suppose also that the conditions of theorem 5.2.1 or of theorem 5.2.2

Example 5.2.1

Then equations (5.2.1) have a unique solution (u,w,v).

Recall example 2.1.3.

The equations are

du *
a Y
kw'rl/3 . (5.2.6)
_ 4o P_
dr 2%
with a(a) = u(-a) = o.
T ¢

Hé(ﬂ) -+ Lz(Q) is the generalised derivative
is the adjoint of

dr
seen before.

-1
— . * . Q) > H
ar T L2( ) ()
, that is, T* is an extension of - 4

3y as we have
The operator E is given by

E{y) = kyl/3

We prove the existence and uniqueness of a solution to this problem by
verifying the hypotheses of theorem 5,2.3.

The inequality
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dx
dr

>allxll |, vxe Hé(ﬂ)

L, () H (9)

we have proved before, see example 2.4.1l. The operator E(y) is a
positive-homogeneous operator of degree 1/3 and is easily shown to be
potential from theorem 5.1.2. Hence from remark 5.1.2 we have that the
potential of E(y) is

1/3

ely) = %E <y Jy> = %-k Y4/3d9 - §'k||Y2/3llz

4 LZ(Q) *

§ Sy

a
(5.2.7)
Using remark 5.1.1, we need to show that e(y) is a strictly convex

functional satisfying

lim  e(y) = +o, (5.2.8)
Il yll »=
Now from theorem 5.1.3 e(y) is strictly convex if E(y) is strictly
monotone. This is easily shown as

a
1
<Ely,) - Ely2), v, ~ yy> = f (Yll/3-y2 /3)(yl - y,)ae

a
3 2/3_ 2/3,2
> 3 {a (v, -y, )% > 0 Wy v, e ¥,y Ay,

(5.2.8) is also satisfied, hence a unique solution of problem (5.2.6)
exists. a
We now introduce the second type of non-linearity we shall be
considering. As before let X and Y be Hilbert spaces and T : X + Y a
linear operator with adjoint T* : Y* - X* and let T : Y > Y* be the

canonical isomorphism from Y to Y*, Then we introduce the non-linear

operator F : X =+ X* and consider the equations
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™™ = v
(5.2.12)
T*vy + F(u) = O

We can easily prove the existence and uniqueness of a solution to these
equations under certain ass'umptions on the operator F. These results

are given in the next theorem.
1

Theorem 5.2.4

Let all spaces and operators be defined as in equations (5.2.12).

Then suppose there exists a > O such that
“Tx”Y Z_allxllx ) ¥X € X. (5.2.13)

Suppose also that F is a monotone operator satisfying

lim inf SE{KIx> (5.2.14)

I %]} *
Then equations (5.2.12) have a unique solution (u,v).

Proof
Let G(x) = T*1Tx + F(x), then we only need to prove that G(u) = 0O

has a unique solution. Now

<G(xy) - G(x,), Xy = x>
-— * - - —_ -
= <T rT(x1 xz), X; = X> <F(x1) F(xz), X, = X,>
= <TT(x1-x2), T(xl-x2)> + <F(x1) - F(xz), Xy = x> > o}

for all Xy 1%, e X, x # Xy from (5.2.13) and the monotonicity of F. Hence
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G is a strictly monotone operator. Also

<G (x),x> _ <T*tTx + F(x),x>

M= IR

<1Tx,Tx> <F (x) , x>

M=l " =l

<r (x) ,x>
X

vy

afl x]| +

Hence as F satisfies (5.2.14) we have

<
lim G {x) , x> = 4o,

Il %[ *

Therefore from theorem 5.1.5, equations (5.2.12) have a unique solution

(u,w = TTU).

Example 5.2.2

Recall example 2.1.4, that is,

grad u = Vv
-divv + ce? = 0 inf (5.2.15)
u = 0 on1i .

We take T : Hol(ﬂ) > (L2(9))2 to be the generalised grad operator and T*
is defined through the adjoint relation as an extension of -div. The

operator F is given by

We prove the existence and uniqueness of a sclution to this problem by
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verifying the hypotheses of theorem 5.2.4. 1Inequality (5.2.13) has

already been proved in example 4.1.1. Hence we only need to show

that F is a monotone operator satisfying (5.2.14). For any point

£ € 2 we have

x, (8) x, (£)

el -e? e @ - %) 20, Wy x, € HT

o]

Hence

<F(xl) - F(xz), x > >0, ¥x_,x

1
1 zeHo @,

1~ %2

i.e. F is a monotone operator. Condition (5.2.14) is
f exxdﬂ

Q
lim inf ¢ > —o,
Il x|[ = Tl
Now at any point & €  we have

ex(E)x(g) >a

where A = -e l. Hence of M is the measure of ! we have

f exxdn > Ma,
Q

and therefore

f e xa

Q
lim inf > 0.
|| ][ »= Tl =

Hence from theorem 5.2.4 a unique solution of problem (5.2.15)

exists. O
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Finally we combine the two forms of non-linearity we have considered.
Let X and Y be Hilbert spaces and T : X #+ Y a linear operator with
adjoint T* : Y* > X*, Let E : Y+ ¥Y* and F : X = X* be non-linear

operators. Then consider the equations

TW = w
E(w) = v . {(5.2.16)
T*v'+ F(u) = O.

The following theorem gives the conditions on E and F for these equations

to have a unique solution.

Theorem 5.2.5

Suppose there exists & > O such that
x|l >ellxll, wxex.

Suppose that E is strictly monotone on ZO and F is monotone on X. Further

suppose that either

|yl > Y

and lim inf <F (x) x> > —o x e X,
|| X|| > x
(ii) lim inf 5—?]-(-1’-1-[’-2 > —w y e 2°,
| yl[ + o
and lim <F {x) x> +0 x € X.
|| x| »= ¥

Then equations (5.2.16) have a unique solution (u,w,v).
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Proof
Let G(x) = T*E(Tx) + F(x).
Then

<G(x1) - G(xz), Xy - x2>

= * - Tk -
<T E(Txl) T E(sz), 3 x2>

+ <F(x1) - F(xz), x1 - x2>

= <E(Tx1) - E(sz), Tx1 - Tx2>

+ <F(x1) - F(xz), Xy - x2> >0
for xl,x2 € X, Xy # Xy since E is strictly monotone on Zo and F is

monotone on X. Now

<G (x),x> _ <E(Tx),Tx> <F(x) ,x>

+
IEll Il =l [l =l

>0‘<E('.I.'x),'l.'x> <F (x) ,x>

S 1| I | "7

Hence

<G (x) ,x>
X

lim
|| ][] »=
is satisfied if either (i) or (ii) are satisfied. Therefore from
theorem 5.1.5, the equation G(u) = O has a unique solution u. Now since
E is strictly monotone on Zo, E is a one-to-one mapping of Zo to Y*,
Hence there exists a unique (u,w = Tu, v = E(w)) satisfying equations

(5.2.16).
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5.3 Variational Principles for Non-Linear Equations

In this section we develop variational principles associated with
the non-linear equations given in section 5.2. The development will be
similar to that of sections 4.3 and 4.4 where we described variational
principles for linear equations. We shall consider only the most general

non-linear equation of section 5.2, that is,

T*E(Tu) + F(u) = 0, (5.3.1)

where the spaces and operators are as defined in equations (5.2.16). We

can rewrite this as

T*y + F(u) = 0,
v = E(w), (5.3.2)
w = Tu.

Then if (u,w,v) is a solution of (5.3.2) u is a solution of (5.3.1).

We shall prove the following result (theorem 5.3.1): assume the
hypotheses of theorem 5.2.5 are satisfied and in addition that the
operators E and F are potential operators, then the solution (u,w,v) of

equations (5.3.2) is also a solution of the variational problem,

find ((u,w),v) € (X x Y) x ¥Y* a saddle point of

(5.3.3)
L{x,y,y*) = <Tx,y*> - <y,y*> + e(y) + £(x) .
The functionals e(y), and £(x) are derived from (5.1.3) and are
1
ely) = [ <E(ty),y> dt, (5.3.4)

(¢}
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1
and £(x) = [ <F(tx),x> dt. (5.3.5)
o

Then we have

Lemma 5.3.1 Suppose E and F are potential operators, then (u,w,v) is

a stationary point of L(x,y,y*) iff equations (5.3.2) are satisfied.

{
Proof

<V1L(u,w,v),x> = <x,T*v> + <F(u),x> = 0 ¥x € X

iff T*vy + F(u) = O.

<V2L(u,w,v)y> = -<y,v> + <E(w),y> =0 ¥y €Y

iff v = E{w).

<V3L(h,w,v),y*> = <Tu,y*> - <w,y*> = 0 Vy* @ Y*

iff Tu = w.

Lemma 5.3.2
Suppose E and F are potential monotone operators, then L(x,y,y*) is

a saddle functional, convex in X X Y and concave in Y¥*,

Proof
From inequality (5.2.3) and theorem 5.1.3. a
Hence we can now prove the existence and uniqueness of a saddle point

of L(x,y,y*).

Theorem 5.3.1

suppose the conditions of theorem 5.2.5 are satisfied, that is, there

exists o > O such that

=] > afllx|]|, wxex,
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. . o . i .
E is strictly monotone on Z , F is monotone on X and either

<E(y).,y> (0]
T < v vez,

eSS
and lim <F(x) , x> —c0 xex '
| x|+ 1% '

are satisfied or

1lim 5%ﬁx%rxz-> ~ y € Zo,
I}yl + Y

and lim = 4o x e X.

Suppose in addition that E and F are potential operators. Then
L(x,y,y*) has a unique saddle point ((u,w),v) which is also the solution

of (5.3.2).

Proof

From lemma 5.3.1 (u,w,v) is a stationary point of L(x,y,y*) if and
only if (5.3.2) is satisfied. Hence from theorem 5.2.5, (u,w,v) is a
unique stationary point of L(x,y,y*). Now from lemma 5.3.2 and lemma

3.1.4 (u,w,v) is a saddle point of L(x,y,y*).

Example 5.3.1

Consider the problem of example 5.2.1 in which the non-linear

operator E is given by

E(y) = kyl/3 .

This is a positive-homogeneous operator of degree 1/3, see definition

5.1.2, and is easily shown to be a potential operator from theorem 5.1.2.
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Hence from remark 5.1.2, the functional e(y) is given by

a
e = 3x | ¢Yar.

a

Therefore the variational form of this problem is:

£ind ((,7),0) € (H,'(2) x L,y(2)) x L,(@), saddle point of

a
dx 3k 4/3 P
Lix,y,y*) = Gy -wr+ gy 73 Z—’E)dr. (5.3.6)
-a

This has a unique solution from theorem 5.3.1 which is also the solution

of equations (5.2.6).

Example 5.3.2

Consider the problem of example 5.2.2 for which the operator E is

just the isometric isomorphism 1. Hence
1 1 -1
ely) = F<ymy> = F <t y*.y*>.

The non-linear operator F is given by

F(x) = ce .
Hence
1 tx i
f(x) = f <ce ,x>dt
(0]
ex -1
= c< ’ x>
x

= c [ (¥ - Daa.
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Therefore the functional L(x,y,y*) is given by

L(x,y,y*) grad x.y*dQ - <y,y*> + %-<1-1y*,y*> + c f(ex - 1)an
Q

Dy Dy

1
(grad x.y* - 5-y*.y* + c(e® - 1))aa.
Hence the variational problem is:

find (u,v) € Hol(ﬂ) X (LZ(Q))Z, saddle point of

L(x,y*) = f {grad x.y* - %-y*.y* + c(e® - 1)}aq.
Q

Theorem 5.3.1 shows this has a unique solution which is also the solution

of equations (5.2.15). o
As in section 4.4 we can derive other variational principles

associated with equations (5.3.2) by restricting the domain X X Y X Y*

of L(x,y,y*). Let us restrict X x ¥ x ¥* to §D1, i.e. those (x,y,y*)

satisfying VlL(x,y,y*) = 0. From the proof of lemma 5.3.2 this is

§D1 = {(x,y,y*) € X X Y x Y¥; Tty* + Fx = O}.
Now if we assume that F is a bijective map from X to X* we can express
any x € X by

x = F L(-T*y*), y* e Y*,

as T* is a one-to-one map from z+ ¢ Y* to X*. Hence the restriction of
L(x,y,v*) to ﬁ)l can be written as

M(y,y*) = <F l(-T*y*): T*y*> - <y,y*> + el(y)
(5.3.7)

+ £(F T (~Tryr)) Yy € Y, Vy* e Y,

Then we have the following theorem.



97

Theorem 5.3.2

Suppose the conditions of theorem 5.2.5 are satisfied and in addition
that E and F are potential operators with F also bijective, then the
convex~concave saddle functional M(y,y*) has a unique saddle point

(w,v) where ((u,w),v) is the saddle point of L(x,y,y*).

Proof

<V1M(W.v),y> = —<y,v> + <y,E(w)> = O
iff v = E(w)

<V2M(w,v),y*> = <DF-1(-T*V,-T*V),T*y*> + <F—l(-T*v),T*y*>

- <y*,w> + <DF-1(-T*V,-T*V),-T*Y*> = 0
- -1
<=> <F (-T*v) IT*Y*> - <Y* W> = 0
. -1
i.e. w = T(F ~(-T*v))

Hence w € R(T) = zo and since T is an isomorphism from X to Zo, there

exists a unique u € X such that

Therefore any stationary point of ii(y,y*) satisfies (5.3.2) and so under
the conditions of theorem 5.2.5, this stationary point is unique. Now
M(y,y*) is a convex-concave saddle functional since the term

<F-l(-T*y*),T*y*> + f(F-l(—T*y*)) is concave in y*. To show this we have

<F“l(-T*yl*),T*yl*> + f(F-l(-T*yl*)) - Ty, M) Thy s - (T (Thy, %)
<DF_1( Thy * _Tky *) Tk (y *—y *)s> - "1 pay * * (y Koy *
- STrY *emTrY ) TRy Foypt) > = <F T Ty ) LT (g Pyt ) >

-1
- kg * mky k) Mk kg *
<DF ~ (-T ¥i* T Yl ),-T (yl Y, )>



98
-1 -1
= £(F T(-Try;*)) = £(F T(-T*y,*))
- <=m* * F—l (—T* *) - F-l (—T* *)> > 0

as f is convex.

Example 5.3.3

From problem (5.3.6) of example 5.3.1 we can easily derive the

problem

find (w,v) € LZ(Q) b3 Zf, saddle point of

N\

2 3. 4/3
M(y,y*) = = fa (yy* - 7 ky "Tdr, y € L,(2), y* e Z..
- VAR o
where Zg {y* e L, (2); o T 1.

Let us restrict the domain of L(x,y,y*) to ZDZ, i.e. those (x,y,y*)

satisfying VZL(x,y,y*) = 0. This is given by

D, = {x,y,y*) X x¥xy* y*=Elyk

Provided E and ¥ are potential operators this leads to two functionals

G(x,y) and H(x,y*), in this case given by

G(x,y) = <Tx,E(y)> - <y,E(y)> + ely) + £(x), (5.3.8)

H(x,y*) = <Tx,y*> - <E_l(y*).y*> + e(E_l(y*)) + £(x), (5.3.9)

where the functionals e(y) and f£(x) are given by (5.3.4) and (5.3.5)

respectively.
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However, let us suppose that E(y) is a positive homogeneous potential

operator of degree k > O, see definition 5.1.2. Then from remark 5.1.2

we have
ely) = = <y.Ely)>.
k+1
{
Hence e(y) - <y,Ely)> = = % t 1 <y,E(y)>. (5.3.10)
Now if y* = E(y) then
k -1
ely) - <y,E(y)> = - <E “(y*) ,y*>. (5.3.11)

k+1

-1 1
But as E 1 is positive-homogeneous of degree —, see lemma 5.1.1, we can

k
define
1
_ -1 k -1
e*(y*) = [ <E (ty¥),yt>dt = o <E (y%),y*>. . (5.3.12)
(0]
Hence we have
e(y) - <y,y*> = -e*(y*). (5.3.13)
Therefore we can rewrite H(x,y*) as
H{x,y*) = <Tx,y*> - e*(y*) + £(x). (5.3.14)

Then we have the following theorem

Theorem 5.3.3

Assume the conditions of theorem 5.2.5 hold and that E and F are
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rotential operators with E a positive homogeneous operator of degree

k > 0. Then H(x,y*) is a convex-concave saddle functional with a

unique saddle point (u,v), where ((u,w),v) is the saddle

L(x,y,v*).

Proof

<V1H(u,v),x> = <Tx,v> + <F(u),x> = 0, ¥x € X,
iff T*v + F(u) = O.
<V2H(ulv)ly*> = <Tu,y*> - <E-1(V)IY*> = 0, Vy* e Y*,
. -1
iff Tu = E (v) = w.
Hence any étationary point of H(x,y*) satisfies equations
therefore it is a unique stationary point. Now since E
we can use theorem 5.1.3 to show that -e(y*) is concave.

a convex functional and so H(x,y*) ic a convex-concave sa

Hence using lemma 3.1.4, the theorem is proved.

Example 5.3.4

The following variational problems are easily derive

(5.3.6) of example 5.3.1:

£find (u,w) € Hol(ﬂ) X LZ(Q), saddle point of

a
dx 1/3 4/3 3k _4/3 Px
ctey) = [ Eryt? -k BV Hyar,
-a

find (u,v) € Hol(ﬂ) X L2(9), saddle point of

point of

(5.3.2) and
is monotone
Also f£(x) is

ddle functional.

d from problem

1
X € HO Q, ye Lz(g)r

(5.3.15)

a
d 1 y* 3 p 1
H(x,y*) = f (&% y* - Z({—) y* - -;T)dr, x € Hj (), y* e L, (). a
-a
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Finally we can restrict the domain of L(x,y,y*) to ;D3, i.e.

those (x,y,y*) satisfying V3L(x,y,y*) = 0. This is

3)3 = {(x,y,y*) € X x ¥ x Y*; y = Tx}

On :D3 we can write L(x,y,y*) as

Jx) = e(mx) + £(x), ¥x e x . (5.3.16)
Then we have

Theorem 5.3.4

Provided the conditions of theorem 5.2.5 are satisfied and provided
E and F are potential operators, the convex functional J(x) has a unique

minimum point u where ({u,v),v) is the saddle point of L(x,y,y*}.

Proof

<VJ (u) ,x> = <E(Tu) ,Tx> + <F(u),x> = 0 ¥x € X

iff T*E(Tu) + F(u) = O.

Hence from theorem 5.2.5, J(x) has a unique stationary point u. Since

e(y) and f(x) are convex functionals J(x) is convex and hence the

stationary point is a minimum point of J(x).

Example 5.3.5 e

From example 5.3.1 writing y = %;_c_ we get the problem

find u € Hol (2) , minimum point of

g%} ar, x e H(@.

3k dx,4/3 _ )

a
) = [ A5
-a
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Example 5.3.6

From example 5.3.2 writing y* = grad x we get the problem

find u e Hol(Q), minimum point of

J(x) = f { %-grad x.grad x + c(e®* - 1)} 42, x e Hol(Q)- a
n [}

In the same way we can derive all the functionals shown in figure
4.4.1. Here we show only how K(y*) is derived from H(x,y*). We restrict

the domain X x ¥* of H(x,y*) to
;321 = {(x,y*) € X x Y*; T*y* + Fx = O}.
Hence we can write H(x,y*) as
-1

K(y*) = <F L(-THy*) ,Thy*> - e (y*) + £(F L (~T3y*)). (5.3.17)

Then we have the following theorem

Theorem 5.3.5

Under the conditions of theorem 5.3.3, the concave functional K{(y*)
has a unique maximum point v, where ({(u,w),v) is the saddle point of

L(x,y,y*).

Proof

<VK(v) ,y*> = <IDF-1(-T*V,—T*V),T*Y*> + <F_l(-T*v),T*y*>
_l _l
= <E T (v),y*> + <DF T(-T*v,-T*v),-T*y*> = O

<=> <P L(-THv),Try*> - <E T(v),y*> = O, Vy* @ Y*,

iff EYv) = T(F T (-T*v)).
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- o] . .
However E 1(v) =wand so w € R(T) = 2 . Hence there exists a unique

u € X such that

Therefore equations (5.3.2) are satisfied and so from theorem 5.2.5 the
stationary point of K(y*) is unique. From theorem 3.3.1 and lemma 3.3.1,

K(y*) is a concave functional and v is a unique maximum point.

Example 5.3.7

From problem (5.3.15) of example 5.3.4 using the adjoint relationship

and the constraint

!
i
3]
*»
[
wl'd
b

we get the variational problem

find v & Zf, maximum point of

a 1l y* 3
K(y*) = - f 7 477 yrar, y* ez
-a
dy* P
- * , ST -
where Zg {y* e L, (@) ; : T }.

Example 5.3.8

From example 5.3.2 we can derive the problem

find v € (LZ(Q))Z, maximum point of
K(y*) = f {-1n(div y*)div y* + ¢y div y* - %-y*y*
Q
* 2
-clag, y*e (LZ(Q)) '

where ¢y = 1ln c + 1. O
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As in the linear case the functionals J(x) and K(y*) are complementary

for
J(u) = e(Tu) + £(u)
and .
K(v) = <F—1(‘T*V)IT*V> - e*(v) + f(F-l(-T*v))
| .
= <u,T*v> - e*(v) + £(u)
= <w,v> - e*(v) + £(u)
= e(w) + £(u).
Hence
min J(x) = J(u) = K(v) = max K(y*).
x€ex yreyx

In this chapter we have achieved the same results for the non-linear
problems as we gave for the linear problems in Chapter 4. To summarise

these results, we have

(1) given conditions on the operators T,T*, E and F for the operator

equation

T*E(Tu) + F(u) = O

to have a unigue solution,

(2) shown that under further conditions on the operators E and F, the
operator equation is equivalent in some sense to the variational

problem
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find ((u,w),v) € (X x ¥Y) x Y* saddle point of

L(x,y,¥y*) = <Tx,y*> - <y,y*> + e(y) + £(x),

(3) shown that from this variational problem we can derive an inter-
related set of variational problems, two of which are complementary

extremum problems,

(4) given examples of how the abstract theory is applied to boundary

value problems of mathematical physics.

In applying these results to simple problems we have always
considered homogeneous boundary value problems. The abstract theory
can, however, be applied to non-homogeneous boundary value problems

and it is this application of the theory that we consider in the next

chapter.



106

CHAPTER 6

NON-HOMOGENEOQOUS BOUNDARY VALUE PROBLEMS

6.1 Theoretical Results on Elliptic Boundary Value Problems

In this chapter we show how boundary conditions, other than the
homogeneous Dirichlet conditions we have considered previously, are
incorporated into the abstract formulation. To do this we first need
to ensure that the problem is "well posed" and that it has a Green's
formula associated with it. We shall study the class of problems
called regular elliptic problems which are extensively studied by
Lions-Magenes [1972]. The major result that we shall use is stated
in theorem 6.1.4 which shows that a regular elliptic problem has a
Green's formula. In this section we shall briefly state the major
concepts involved in the study of regular elliptic problems using
Lions-Magenes [1972] as our main source. First we define precisely
what is meant by a function having a value on the boundary T of a
region Q.

Let Q be an open bounded set of R™ with boundary I'. Then we
wish to define, in some sense, the values of a function x on the
bourdary I' Fecr x € anﬁ) we can adefine a trace operator Yo such that

yox is the value of x on I'. We may also define a trace operator Yj

such that T
3
YX = §_x onTl, 0<j<m-1,
ad .th .
where —= is the j order outward normal derivative on I'. Then the
on

. m ==,
most general trace operator we can define for x € C (Q) is

Yx = {Yox, ceoy m_lx}.
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i m
Now can we extend this concept to functions x € H ()2

For simplicity we shall make the following assumptions about T:

the bbundary T of Q@ is an (n-1) dimensional
infinitely differentiable variety, f being (6.1.1)

locally on one side of T.

Definition 6.1.1

m
For 9 a domain satisfying (6.1.1), H (T) is the space of functions
for which all generalised derivatives of order < m on T belong to

LZ(T).

m
Remark 6.1.1. The space H (T') for m not an integer can be defined by

interpolation, see Necas [1967] or Lions-Magenes [1972]. a

Then we have the following trace theorem

Theorem 6.1.1 (Lions-Magenes [1972], p.39).

Let Q be a bounded domain satisfying (6.1.1). The mapping
X > {ij; j =0,...,m-1}

— m
of CT(R) + (D)) extends by continuity to a continuous linear mapping,

still denoted

X {ij; j = O,o.o’m—l}

m-1 .
of () » 1 V2,
j=0
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Corollary 6.1.1 (Necas [1967], p.99)

For @ a bounded domain satisfying (6.1.1l) and x € anﬂ), there

exists constants aj > 0 such that

“ij”Hn-j-l/2 - < ajH x|| . ¢+ 0<3 <m1. (6.1.2) O

In the applications we shall frequently use spaces such as
H(div,Q) = {x e (Lz(ﬂ))n; div x € LZ(Q)}

with norm

+ Jlav x| 2 2.

. 2
el pgase o = €2 :
2

5 Q)

For this space we have the following trace theorem, see Raviart-Thomas

[to appear].

Theorem 6.1.2

Let @ be a bounded domain satisfying (6.1.1). Then the mapping
1/

x + x.n of H(div,{) -+ H 2(I‘), where n is the unit outward normal to

T', is such that there exists a constant o > O such that

|| x.n]| _ < af x|| . ) m)
12 () H(div, Q)

To simplify the notation we generalise the operator y discussed above
and denote x.n by YoX-
We also have the following theorem which will be needed in the

applications for a fourth order problem.
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Theorem 6.1.3 (Necas [1967], p.2l)

Let  be a bounded domain satisfying (6.1.1). Then for x € HZ(Q)

we have

|lxll 2 f_c{f lezdr + f z lDixlde}l/2
H™( r Q |

Q) il=2
l

where ¢ is a constant.

Remark 6.1.2. If x € Hz(ﬂ)r\ Hol(ﬂ), then since YoX = O on I', we have,

N=ll , <etf = Ipx[2an}/2. a)
HY(Q Q |i|=2

We now give some results on elliptic boundary value problems which

are given in Lions-Magenes [1972] ch.2. Let

z (—1)|Plop(a (¢)p%x) (6.1.3)
lpl/lq]<m Pd

be a linear differential operator of order 2m with infinitely differen-

tiable coefficients apq(i). We associate with it the polynomial

A_(E,7) = r 1" (5)Pe (6.1.4)
(0]
lp|, |q|=m Pd :

which is the characteristic form of A.

Definition 6.1.1

The operator A is said to be elliptic if
n
A, (E,T) # O, vgce R, t¢#0,

for all £ e Q.
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The operators we shall be studying belong to the class of strongly

elliptic operators.

Definition 6.1.3

The operator A defined by (6.1.3) is said to be strongly elliptic

if there exists a constant o > O such that
2m n
iAO(EIC) Zalt;l : Y0 € R ’

for all £ € Q.

The problem we shall be considering is of the form

Au

£f in §,

(6.1.5)

o]
=
I

gj on T,

where A is an elliptic operator, the Bj are certain differential boundary

operators and £ and gj are given.

However, we know that we cannot arbitrarily choose the operators Bj

and obtain a well posed problem. We must introduce some restrictions

on the number and type of the boundary operators Bj. Let the

operator Bj be given by

- h
B.x = z bjh(E)Yo (Dx),
|n|= my

where mj is the order of Bj and the coefficients b,. are infinitely

jh

differentiable on I'. Then we have the following definitions:

Definition 6.1.4

The system of operators {Bj; o] f_j.f_v-l} is a normal system on T
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(a) % b.h(E)ch #0, ¥E €T and ¥Z # O which are normal
|h|=m, 3
5
to T at §&,
(b) mj # m, for § # i.

Definition 6.1.5

The system {Bj, 0<3j f_m-l} covers the operator A on T if for all
terT, all g e ernot equal to zero and tangent to T at &, and all
gt e an} not equal to zero and normal to I' at §, the polynomials in

the complex variable n: X bjh(E)(c +ng'), j=0,...,m1, are

h|=m,
J m

linearly independent modulo the polynomial 1T (n - ni+(E,C,c')), where
i=1
+
U (8/5,5') are the roots of the polynomial AO(E,c + ng') with positive

imaginary part.

Definition 6.1.6

Problem (6.1.5) is called a regular elliptic problem if the

following hypotheses are satisfied:

(1) the operator A is strongly elliptic in % and has infinitely
differentiable coefficients in @,

(2) there are m operators Bj'

(3) the coefficients of Bj are inrinitely differentiable on T,

(4) the system {Bj; 0 <j<m-1l} is normal on T,

(5) the system {Bj; 0 < j < m-1} covers the operator A on T,

(6) the order mj of Bj is < 2m-1.

Remark 6.1.2. Among the systems of operators {Bj} which satisfy hypotheses

(1),...,(6) for every strongly elliptic operator A, there is the system

of Dirichlet conditions
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With these boundary conditions problem (6.1.5) is called the Dirichlet

problem for the operator A,

Definition 6.1.7

" The system {Bj; 0 £ j < v-1} is a Dirichlet system of order v on T
if it is normal on I' and if the orders mj run through exactly the set
0,1,...,v-1, when j goes from O to v-1. a

With the elliptic operator A given by (6.1.3) we may associate the

form

alig,x) = [ I a__(£)p0Pzp%agq.
2 [pl,|alem #9

Then we have the following Green's theorem.,

Theorem 6.1.4

Let {Fj; 0 < j < m-1} be a Dirichlet system of order m, with
infinitely differentiable coefficients on I'. Then there exists a system
{¢j; 0 < j < m-1} which is normal on T, has infinitely differentiable
coefficients with: order of Fj + order of ¢j = 2m-1l, such that

a(®,x) = [ (A%)xda2 - T [ ¢.x F.xdl. {6.1.6)
Q j=oT J

Remark 6.1.4. Equation (6.1.6) is also valid when the derivatives are

interpreted in the generalised sense. In this case we must huve

% € H2Q) and x € HMQ).
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6.2 Non-Homogeneous Boundary Value Problems

We shall be studying the class of problems given by

s* G si £ in Q

- (6.2.1)
B, = gjonl‘, 0<j<ml,

where S and S* are formally adjoint differential operators of order m
and G is an operator of order O. S maps the function x into the vector
y = (yq ,...,yq ) with r components Yq = qu, |q| = m. S* maps the
1 r
vector y* = (y* ,...,¥* ) into the scalar I (—l)IPIDpy*. The operator
Py Pr ‘ |p|=m
G can be represented by the matrix with components apq(E), c.f. equation
(6.1.3). The Bj are boundary differential operators of order
m. < 2m-1.
J-—-

In this section we shall show how (6.2.1) can be put into an
intermediate canonical form given by equations (6.2.3). At this stage
we do not concern ourselves with the precise definition of the spaces
involved in this classical formulation of boundary value problems.
However, in section 6.3 we extend the operator S to a generalised

differential operator and show how the intermediate canonical form can

be related to an abstract formulation

Tu = w
Ew = v
T*v = £,

in the sense that the abstract problem is an extension of the intermediate
canonical problem. This involves the precise definition of the spaces
and operators and hence in a natural way we obtain restrictions on the

class of functions in which the solution lies.,
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Section 6.4 is concerned with a second method of extending the
intermediate canonical form (6.2.3) to the abstract form by extending
the operator S* to a generalised differential operator. First, however,
we introduce the intermediate canonical form.

Suppose that in (6.2.1) the aj are sufficiently smooth so that

there exists a u, satisfying
i

Bu = g, on I, 0<3j<ml.

Then u = u - Uy satisfies

i
H
|
0n

»*
()]
w0
o
[
o]
D

S* G Su

o
<]
i
o]
o]
=]
)
O
A
L
A
7
[

Hence we have the homogeneous boundary value problem

S* G Su f in Q

(6.2.2)

o
o
i

O onT, O0<3j<ml.

We assume that (6.2.2) is a regqular elliptic problem, see definition
6.1.6, with v of the boundary operators Bj of order mj < m. Reorder

the B. so that these are the first v operators, i.e. mj <m, 0<3Jj<vl.
Then provided G has an inverse with components a;;, we define the
operators Cg, v <j<ml, by

b Dh-qa-ly ),

C. =
o Pap

b o Y0 Z
] [n[=m 3" ©p|

o |q]=m

so that cj satisfies

C. GSsSx = B.X v<ij<m-l
j i = zms
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where Cj is of order n, = m, - m. Hence equations (6.2.2) can be

written as

Su = w in &,

B.u = 0 onTl, 0<3j<vl,

Gw = v in Q, (6.2.3)
S*v = £ in ¥,

ij = 0 onT, v._g_j < m~1.

Remark 6.2.1. The terminology for boundary value problems of the form

(6.2.3) is not universal. We adopt the following classification (c.f.
Necas [1967]). If there are m boundary operators of order <m, i.e.
v = m, then there are no equations involving the operators Cj and we
call this a Dirichlet problem. If there are no boundary operators of
order <m, i.e. v = O, then there are no equations involving the
operators Bj and we call this a Neumann problem. If there are some
boundary operators of order <m and cthers of order >m, then we call the
problem an intermediate problem. 0
We now give some examples of regular elliptic problems of these

types.

Example 6.2.1

Consider the problem

~

—Vzu

n
Hht
|-
5
0
@
=
N

(6.2.4)

e
(o]
=]
1

u =

where the domain Q satisfies condition (6.1.1). The operator -v? is of
order 2, i.e., m = 1. The boundary condition is to be interpreted in

the sense
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and so BO = Yo is of order 0O, i.e. my = 0. As my < m, this boundary
condition is a Dirichlet type condition and as there are no other
boundary conditions, v = m=1 and this is a Dirichlet problem.

Now suppose that g is sufficiently smooth such that there exists

a uy satisfying

thenu =41 - uO satisfies

(6.2.5)

We shall verify that (6.2.5) is a regular elliptic problem, i.e. it
satisfies the conditions of definition 6.1.6.

(1) The characteristic form of -V2 is

2
1

2
AJED) = =%+ T, .

Then taking @ = 1 in definition 6.1.3 we have

A (8,0) > alt]|?, vo e R?

and so -2 is a strongly elliptic operator.
(2) and (3) are obviously satisfied.

(4) BO = Y, is trivially normal on T.
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(5) BO trivially covers the operator -V2.
(6) is obviously satisfied.
Hence problem (6.2.5) is a regular elliptic problem.

As V = m, there are no boundary conditions involving the operators

Cj' hence we can write (6.2.5) as

grad u = Ww in Q,
u = 0 onlT, (6.2.6)
w = v in @,

~divv = £ in Q,

where w and v are vectors with r = 2 components.

Example 6.2,2

Consider the problem

-v% = f in Qe IRZ,

N (6.2.7)
du ~
n g onTr,

)
where n is the outward normal derivative to the boundary I' which we
assume satisfies condition (6.1.1). As in the previous example m = 1.

L]
The boundary condition B, = 5— = Y

o P is of order 1, i.e. m_ = 1, This

1 0

is a Neumann type boundary condition and as there are no other boundary
conditions, vV = O and this is a Neumann problem.
Suppose that there exists a U satisfying

d
.:32 = o on T
on g '

then u = u - uo satisfies
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V2 = £z E+ V2u0 in Q;
(6.2.8)
Ju
._._O_= (o} onI‘.
an

As the operator -V2 is strongly elliptic (see thc previous example)

we need to show that the boundary operator BO = %;- is nurmal on T’ and
covers the operator —V2 for (6.2.8) to be a regular elliptic problem.
We shall not prove this here, but refer to Kellog [1972] for the proof.

As v = O there are no boundary conditions involving the operators

Bj' hence we can write (6.2.8) as

grad u = w in @,
w = v in Q,
(6.2.9)
~-divv = f in Q,
Yo = O on r,
as y.v = y.(grad u) = Qu on T.
(0] 0] on

Example 6.2.3

Next we consider a problem which arises in the theory of flat
elastic plates (see, for example, Duvaut-Lions [1976] chapter 4 for a

brief description of the theory of flat plates). The equations are

vis = % inne R
@8 = g onT, (6.2.10)

Md6 = R onT,

where
2. 2. 2
2 971 2 97 u 9 1 2
= 3 — + —
MG = oV'u + (1-0)( 5 0y + 2 3E.3E n,n, 5 1, )
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is the moment about the tangent at T', with o being Poisson's ratio
(O <o < %0 and n = (nl,nz) the unit exterior normal to T. ﬁ(El,Ez)
represents the displacement of thé plate from its initial plane,
E(gl,gz) represents the body forces acting on the plate, e.g. gravity,
§ is the prescribed displacement of T and h is the prescribed
tangential moment at I'. We assume T' satisfies condition (6.1.1).

The problem is of order 4, i.e. m = 2, The first boundary operator

B

5 = Yo is of order m, = O and the second boundary operator B, =¥ M

o]
is of order m; = 2. Only one of the boundary operators is of order <m

and so we set v = 1. Hence this is an example of an intermediate problem.

Suppose there exists uy satisfying

Youy = 9 onT

and Yo MuO = h on T,

then u = 4 - u. satisfies

(o]
vha = £:=F- V4uo in Q
w = 0 on T, (6.2.11)
Mu = O onT.

Problem (6.2.11) satisfies the hypotheses of definition 6.1.6, i.e. it is

a regular elliptic problem, since:
(1) The characteristic form of V4 is
2 2,2
AL, D) = (T +5,7)

and obviously V4 is strongly elliptic (see definition 6.1.3).

(2) and (3) are obviously satisfied.
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(4) and (5) are satisfied, see Kellogg [1972] where all the sets
of boundary operators which are normal and cover V4 are
given.

(6) is obviously satisfied.

Defining the operators S, S* and G by

2 2 2
3 3 3
Sx = ( x2 ’ ag ag 12 x2) ’ (6.2.12)
.851 172 852
Gy = 1 (o} o Y, ' (6.2.13)
o} 2(1-0) (o] Yoy
o] 0 1 Y3

Ty, * 32Y * 32y *
1, 2_ . 3
2 9E_0JE e 27
351 1 °2 052

and Sky* = (6.2.14)

where y = (yl,yz,y3) and y* = (yl*,yz*,y3*) are vectors with r = 2
components, we can show that

S* G Su = V4u.

We define the operator Cl by

2 2
* - * * *
cly n, Ty * o+ nn Yy, + n,%y, (6.2.15)

and after some manipulation we get

C1 G Sx = Mx,

where y* = GSx. C1 is of order n; = 0.
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We can now write (6.2.11) as

Su = w in Q

You = 0 onT

Gw = v in Q (6.2.16)
S*v = f in Q
Clv = 0 onl,

where S, G and S* are given by (6.2.12), (6.2.13) and (6.2.14)

respectively and ¢y is given by (6.2.15).

6.3 The First Abstract Formulation

Having put the non-homogeneous boundary value problem

S* G Si fin Q

B, 0 = §j onT, 0<3j<ml,

into the intermediate canonical form

Su = w in @,

Bju = 0 onT, 0<j< vl

Gw = v in Q, - (6.3.1)
S*v = f in @,
c.v = 0 onl, v<j<ml,

we now want to extend equations (6.3.1) in such a way that they can be

related to an abstract form
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Tu = w
Ew = v (6.3.2)
T™v = f ,

in the sense that any solution of (6.3.1) is a solution of (6.3.2).

To achieve this we shall introduce two further restrictions on the
boundary operators Bj and Cj' Then we shall define the abstract
problem in one of two ways. The first method is to define the operator T
as a suitable extension of the differential operator S and then define
T* as the adjoint of T. The second approach is to define T* as a
suitable extension of the differential operator S* and then define T
as the adjoint of T*. This second approach is described in the next
section, here we concentrate on the first approach.

There are two further assumptions that have to be made about the
boundary differential operators of {6.3.1). First, let {Fj, 0 <3 <m-1}

be a set of boundary operators given by

o]
.

L
w
(e

{A
.

A
<

]
l—l

(6.3.3)

where the set of integers {pj, v < j < m-1} is such that

{mo,...,m ' pv,...pm_l} takes all values between O and m~1l. Then

v-1

we assume that:

{r,, © < j <m-1} is a Dirichlet system
J (6.3.4)
of orxrder m on T.

Then from theorem 6.1.4 there exists a normal system {¢j, 0<3j<ml}

of boundary operators such that
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. m—-1
a(x,x) = [(s*Gsx)xdQ - I [ ¢.%F xdr, (6.3.5)
Q jorT I
where a(x,x) = I GSx Sx df, and the order of ¢j = 2m-l-order of Fj.
Q

As {Fj} is a Dirichlet system of order m, the order of Fj < m-1l. Hence
order of ¢j > m. Therefore as we saw in section 6.2, provided G has

an inverse, we may define the operators wj by
ijsSi = ¢ji, 0<3j<ml,

Then with y* = GSx, (6.3.5) becomes

m-1
[ y*sxd = [(s*ty*)xda - I [ y.y*F.xdr. (6.3.6)
Q Q j=or J J
The second assumption we make is that the Cj can be permuted such

that

n.+1

b o= D J cy v <y <ml. (6.3.7)

Then (6.3.6) can be written as

V-1
I y*Sxd + I f¢.Y*B.XdT =
m-1 n, +l
j y* dr 6.3.
I (S*y*)xdQ - I (-1) J f CJY ijx ' ) (6.3.8)
Q j:\) r

which is a general integration by parts formula for the differential

operator S.

Remark 6.3.1l. The assumption (6.3.7) is equivalent to the assumption

4>.=Bj, vV<i<ml.,
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Remark 6.3.2. The assumption (6.3.7) imposes restrictions on the

boundary operators'{cj, v<3 j_m—l} and hence on the operators
{Bj, v < j < m-1}. The order of ¢j = 2m-l-pj, v £ J £ m-1 and so, from

remark 6.3.1, the order of the boundary operators Bj are restricted by

Now we are in a position to define the abstract equations (6.3.2)
and show they are an extension of the classical differential equations

(6.3.1). Let us define the spaces

o m-p =-1/2 m-p -1/2
X = X = (xp oeeerxy D EHU@XHE V(M x..xH T D)
P \
v m-1
B.x = 0, 0<3J<vl; = Y. XjpeeasX =y x}
J x‘pv pv m-1 Tm-1

and Y = (LZ(Q))r, where r is the number of compcnents of a vector in the

range of S.

Remark 6.3.3. The space X may be identified with the space {x € H(Q);

Bjx=o,o_<_j§_v-1}. -
We define the operator T:X + Y by

Tx = 8x, (6.3.9)
where x = (x,x.p reserX ) € X and the operator S is interpreted in the

v n-1
generalised sense.

The adjoint operator T* is defined via the adjoint relationship
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<Tx,y*> = <x,T*y*>, ¥x € X, -y* € Y*, (6.3.10)

To identify the operator T* we shall use the integration by parts
formula (6.3.8).. This is valid in the generalised sense for all

x € Hm(ﬂ) and all y* € H(S*;Q), where
H(S*;2) = {y*e @,@)"; sty* e L, (@)}

Then since B,X =0, 0 < § < v-1 when X = (X,X_ ,...,X ) € X, the
J - = Py m-1
left hand side of (6.3.8) is identical to the left hand side of (6.3.10).
Hence we have
_ m—-1 n.+1
<x,T*y*> = [(sty*)xa - I (-1) 7 [ c.y*y_ xdr, (6.3.11)
Q j=v r J Pj
when X € X and y* € H(S*,R). Then we can say that, at least for all
Y* e H(S*IQ)I

n +1 nm_l+l
T*Y* = (S*y*, (-l) va* foeeey (—1) Cm_ly*) . (6' 3' 12)

Remark 6.3.4. For y* @ H(S*;{!) we cannot characterise T* simply by

(6.3.12). Therefore in general T* is an extension of the right hand
side of (6.3.12). o

Hence the abstract problem

W = w
Ew = v (6.3.13)
T*y = E,

where T:X =+ Y is given by (6.3.9), T*:Y* - X* is given by (6.3.10),

E:Y + Y* is given by Ey = Gy, ¥y € ¥, u = (WY, Wyeepy, ) €Xand
v m-1
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f = (£,0,...,0) € X*, can be considered an extension of equations
(6.3.1) which reduce essentially to (6.3.1l) when v € H(S*;Q), that is,
when £ € L2(Q). Note that (6.3.11)1 gives rise to the equations

Su w in Q

Lo
=
i

O onT, 0<3j<vl,

since u € X implies Bju =0, 0<3j <v-1. Provided v € H(S*;Q) we see

from (6.3.12) that (6.3.13)3 gives rise to the equations

Stv

]
Hh
e
o]
D

(@]
<
]
(@]
(o]
o]
1
<
|A
.
|A
i
ol

Equations (6.3.13) aré in the form of the abstract problem of
Chapter 4. Hence the conditions for the existence and uniqueness of a
solution to this problem are given by theorem 4.1.4. Va;iationaJ
principles associated with this problem are also given in Chapter 4,

the most general being (4.3.1).

Example 6.3.1

Consider the problem

V%% = F inge R?
(6.3.14)

d = onT.

Qe

In example 6.2.1 we showed that this is a regqular elliptic problem

which can be put into the form
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grad u = w in
= onT

w = v in Q (6.3.15)
= £ in Q’

-div v

where u = ﬁ-uo, Uy satisfying Yoo = gon . Since V=m=1, the

boundary operator

Hence condition (6.3.4) is satisfied as Yb is a Dirichlet system of
order 1 on I'. Theorem 6.1.4 shows that Green's formula is valid, that

is, there exists a ¢O such that

a

[ grad %. grad x a2 = - [ (¥2%)xd® - [ ¢ %y xar, (6.3.16)
Q Q r °0°

with ¢o of order 1. As G is the ideatity map in this problem, it has

an inverse and hence as in section 6.2 we can define the operator wo by

¢O grad x = ¢ox

and letting y* = grad %X, (6.3.16) becomes
[ y*.grad x ae = -f (div y*)xdaqQ - | Vo¥*yoxdrl. {6.3.17)
Q Q T

Assumption (6.3.7) is trivially satisfied as there are no Cj operators
in this problem.

Hence we define the spaces

- ' 1
X = {xe®#Q; Yo* = O on r} = Hy, (Q)

v o= (e,
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We define the operator T:X = Y by

Tx = grad x
where grad is interpreted in the generalised sense. The adjoint
operator is defined via the adjoint relationship

1 2
<Tx,y*> = <x,T*y*>, ¥x € HO (Q), y* e (LZ(Q))- .

Comparing this with (6.3.17), which is valid in the generalised sense

1
for all x € H (Q) and all y* € H(div;Q), we have

1
<x,T*y*>y = - f x div y*dQ, ¥x € Ho (R), y* € H(div;Q).
Q

Hence we can identify T*y* with -div y*, for all y* € H(div:;Q). Now

we can define the problem

Tu = w
™w = Vv
T™*v = £,

where T:X »+ Y and T*:Y* + X* are as given above and 1 is the identity
mapping. This is an extension of tquations (6.3.15) provided f € Lz(ﬂ),

since the equation Tu = w implies

grad u = w in Q
u = O onT,

and T*v = £ implies
-divv = £ in Q



Provided v € H(div;Q), i

.e. provided f € LZ(Q)'
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This abstract problem

is of the type studied in Chapters 2 and 3, and all the results given

there are valid for this

Example 6.3.2

Recall the example

example.

from the theory of flat plates, example 6.2.3.

This was reduced to the set of equations

where

9 X

in Q
onT
in Q
in @

onT,

2'
851

I
=

Gy

o

3 X 82x )
r
851852 a€22

2(1-g) O Y,

S*y*

and Cly* = n

In example 6.2.3 we proved that this is a regular elliptic problem.

2
* * *
+ nyn,y, +n, Y37

(6.3.18)

(6.3.19)

(6.3.20)

(6.3.21)

(6.3.22)

We

now show that it satisfies the two further assumptions (6.3.4) and

(6.3.7).
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The system of boundary operatoréi{Fj, 0 <j <1}, see (6.3.3), is

given by

Yll j=l’

This is easily shown to be a Dirichlet system of order 2 on T,
definition 6.1.7, and su assumption (6.3.4) is satisfied. Then from

theorem 6.1.4, there exists a normal system of operators {¢j, 0<3j<1}

such that

1
| Gsxsxdq = [(s*GS%)xaQ - T [ ¢.%y.xdl (6.3.23)
Q Q j=oT 7 )

with ¢O of order 3 and 2 of order 2. As G is non-singular we can define

the operators wj by
ijsi = ¢j5’c, 0<3j<1l,

and letting y* = GSx, (6.3.23) becomes

| v.y*y,xar. (6.3.24)
A R

CISMH

f y*sxdQ = [(S*y*)xaQ -
Q Q 3

However integration by parts gives us the relationship

* * *
2 ] oy 2 Y3

* — ke k - —— — ——
é y*Sxd é(s y*)xd { (o) 3m T ™MPa3n t P2 3 Yo

+ £ C,y*y, xdr. (6.3.25)

Hence from (6.3.24) and (6.3.25) we see that assumption (6.3.7) is

satisfied, 1i.e.

Yy = G-
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Now define the spaces

x = {x= (x,xl) € Hz(ﬂ) x Hl/z(r); Yo = OonT and x, = le}

1

=<
]

(L, (@) .

We define the operator T by

5 = '(Bzx 82x 82x )
- 2 [ [
%, 98,938, 3522

where x = (x,le) € X and the derivatives are interpreted in the
generalised sense. The adjoint operator T* is defined by the adjoint

relationship
<TX,y*> = <x,Try*> ¥x € X, y* € (T, ) 3.

Comparing with (6.3.24), which is valid in the generalised sense for
all x € Hz(Q) and all y* € H(S*;Q), we see that for y* € H(S*;Q), T*

can be defined by
Thky* = (Sky*, _cly*)_

Hence the problem

™ = w
Ew = v (6.3.26)
T*y = E-,

where u = (u,Ylu) ex, £=(£,0 € LZ(Q) x L2(F) and E is the operator G,

is an extension of problem (6.3.18).
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Equations (6.3.26) are in the form of the abstract problem of
Chapter 4 and we shall prove that it has a unique solution by verifying
the hypotheses of theorem 4.1.4.‘ As 0 < 0 < %-the operator E is a
éne-to-one mapping with an inverse E—l. Hence a unique solution of this

problem exists if we can prove that there exists a > O such that

2 b2

2
1| Il 3= U] E5% s i s %'/
m,@° e e %2 e,
> af|] x|| y/2

2 2
+ || v,xl|
HZ(Q) 1 H1/2

Q)

This is easily shown from remark 6.1.1 and the trace inequalitv (6.1.2).
The most general variational principle considered in Chapter 4,

see (4.3.1), can, for this problem, be written as:

find (u,w,v) € X X (LZ(Q))3 X (LZ(Q))3 saddle point of

[ g 2%x 2°x

*
RS A T TSN S
L 1%%2 3,

L(;,y,y*) = Y; ) an

* * *
‘J;(yly1 + Y,v% + yav3ldn

1 2
+ 5 E[z{yl(y1 + oyz) + 21 - o‘)y2 + y3(o'y1 + y3)}dQ

| =xf aq,
Q

— 3
where x = (x,ylx) €X, y-= (y1,y2,Y3) e (Lz(Q))
and y* = (yi, ya, yg) e (LZ(Q))3. This is a generalisation of the Hu-~

Washizu principle for flat plates, see Washizu [1975].
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Remark 6.3.5. Note that although the abstract problem (6.3.26)

involves very general operators, e.g. T*, the variational problem can
be expressed in terms of relatively straightforward operators such as

generalised derivatives on Sobolev spaces.

6.4 The Second Abstract Formulation

Returning to the intermediate canonical'problem

Su = win Q
Bju = 0 onT, 0<j<vl
Gw = v 1in Q
S*»v = f in Q
cjv = 0 onTr, v_<_j_<_m-—1,

we shall show in this section that this classical problem can be related

to an abstract problem

T = w
Ew = v
T*v = £,

as in the previous section. Here, however, we take T* as the primary
abstract operator and define T as its adjoint. First, as in section 6.3,
we introduce two restrictions on the boundary operators Bj and Cj of the
intermediate canonical problem.

We know that there exist boundary operators {Bj', v < j < m-1} which

define a set
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F, = (6.4.1)

of boundary operators such that'{Fj, 0 < J < m-1} is a Dirichlet
system of order m. Then from theorem 6.1.4, there exists a normal
system {¢j, 0 < j < m-1} of boundary operators such that
m-1
alk,x) = | (s*GSx)xd? - £ [ ¢,%F xdl (6.4.2)
with order of ¢j = 2m-l-order of Fj' As in the previous section we

may define the operators wj by
V.Gsx = ¢.%, 0<3j<ml.
J J - =
Then (6.4.2) becomes

‘ - m-1
J y*sxa? = [ (sty*)xd? - I [ ¥ y*F xdl (6.4.3)
y Q j=oT I3 J

where y* = GSx.

Now we make two assumptions. Let '{pj, 0<] f.v-l} be a set of
integers such that the set {po,...,pv_l,nv,...,nm_l} take all the
values from O to m-1. Then we assume that

+1

P.
V. = (1) 7 y , 0<q<v-1, (6.4.4)
3 2 -7 =

Secondly we assume that the Cj can be permuted such that

n.+l
by = 1) J Cy V3wl , (6.4.5)
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With these assumptions (6.4.3) can be written as

v-1 p.+1
[ y*sxae+ ¢ (1) 3 [y y*B.xar =
Q j=0 r Py J
. m-1 n,+1
I (S*y*)xdQ - I (-1) 7 fc_y*B!de. (6.4.6)
Q $ 2=V rid 3

{

Remark 6.4.1. As in section 6.3, the assumption (6.4.5) imposes

restrictions on the boundary operators‘{cj, v<j j.m—l}, which must

be of order

We are now in a position to define the abstract equations and to
show they are an extension of the classical equations of the intermediate

canonical form. Let us define the spaces

- r “Py~1/2 P,_"1/2
Y* = {y* = (y*,y* ;... ) € (L,(Q))7 x H (M)x ... xH (r);
Py Py-1 .

Sty* € L, (2); C.y* =0, v<j<ml; y* =y y*...,yx =y  y*},
2 ] Po  'Po - Py-1 Py

where r is the number of components of a vector in the domain of S*, and
* =
X Lz(ﬂ).
Here S* is considered as an operator in the generalised sense.

Remark 6.4.2. The space Y* may be identified with the space

{y* e (L, (@)%; s*y* e 1,(); Cjy* =0, v<j<mill. B
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We shall define T*:Y* + X* by
Tky* = Skyk, (6.4.7)

where ;* = (y*,¥* s.c.,¥* ) € Y* and the operator S* is interpreted
Pg pv—l
in the generalised sense. The adjoint operator T is defined via the

adjoint relationship
<Tx,y*> = <x,T*y*>  ¥x € X, y* € Y*. (6.4.8)

We shall use (6.4.6) to identify the operator T. Note that (6.4.6)
is valid in the generalised sense for all x € Hm(Q) and all y* € H(S*;Q).
The right hand side of (6.4.8) is identical to the right hand side of
(6.4.6) since ij* =0, v<j<ml, for y* € Y*. Hence
_ v-1 p.+l .
<Tx,y*> = [ yxsxap + £ (-1) 7 [ y_ y*B xdr, (6.4.9)
Q j=0 r Py
- m
for all x € H'(R) and y* € Y*, Hence, at least for x € H (Q), we can
identify T by

p.+1 p +1

T = (sx,(~1) 0 B.X,.007(~1) V' B

o ve1®) (6.4.10)

Now define a linear operator E with domain

D(E) = {ye Y; v = (Yror--ro)}
such that
Ey = (G, Y_ GY¥ree-rY Gy).
Po Pv—l
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Then we define the abstract problem

Tu = '5
Ew = Vv (6.4.11)
T*hy = f

{
where T:X *+ Y is defined by (6.4.8), T*:Y* + X* is defined by (6.4.7),

w = (w,0,...,0) and v = (VoY VieeorY v). We can easily show

Po v-1
that this is an extension of the intermediate canonical form (6.3.1),
provided u € Hm(Q). For if this is the case we can use (6.4.10) to show

that (6.4.11)1 gives rise to the equations

Su

]

w in Q :

oo}
[+
]

OonT, 0<j<vl.

Also (6.4.11)2 implies
Gw = v in @

and (6.4.11)3 leads to the equations

S*v f in &

It

C.v = Oonl, v<j=<ml,

since v € Y* implies ij =0, v<j<ml.

The assumption that u € Hm(Q) is easily shown to se valid in the
applications considered. In fact if the problem can be put into the
first abstract formulation given in section 6.3, then we must have

ue H(Q).
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Conditions for existence and uniqueness of an abstract form of
problem (6.4.11) are given in Chapter 4, theorem 4.1.4. The variational

principles for this problem are also given in Chapter 4.

Example 6.4.1

Consider the problem

-Vzﬁ = E in 8 e Rz
(6.4.12)

4 = gonT.

This is a reqular elliptic problem, see example 6.2.1, which can be

put into the form

grad u = w in @

u = OonT
(6.4.13)

w = v in

-divv = f in Q,

where u = i-~u_, u

o satisfying youo =gonTlT. Sincev =m=1, the

0

boundary operator FO is given by

This is a Dirichlet system and so from theorem 6.1.4 there exists a

normal operator ¢0’ such that

2

f grad X.grad x dQ = - I(V X)xdo - f¢oiyoxdr, (6.4.14)
N N T

with ¢o of order 1. The operator ¥ _ is defined by

o

~

¢O grad ¥ = ¢ox,
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and (6.4.14) becomes

[ y*.grad x a0 = - [ (aiv y*)xdad - [ ¢ _y*y xdr, (6.4.15)
Q Q r @0

where y* = grad X. However, integration by parts gives

. 4 i
f y*¥.grad x dQ = - f (div y*)xdQ + f Yoy*yoxdr. ’ (6.4.16)
Q T

Q

Comparing this with (6.4.15) we see that assumption (6.4.4), i.e.

lpo = -Yo [4

is satisfied. The second assumption (6.4.5) is trivially satisfied as
there are no Cj operators for this problem. Hence (6.4.15) can be

written as
[ y*.grad x aa - [ y_ y*y xdl = - [ (div y*)xdQ. (6.4.17)
Q r @ ° Q

We define the spaces

..1/

and
X* = LZ(Q)'
Then we define T*:Y* » X* by
Thy* = - div y*
where ;* = (y*,yé). Theg comparing the adjoint relationship

<Tx,y*> = <x,T*y*>, V¥x € X, y* € Y+,



with (6.4.17) we see that

<Tx,§'*> = ‘j; y*.grad x 4Q - f YOY*YOXdI'r
’ T
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for x € Hl(ﬂ), ;* € Y*, since (6.4.17) is valid in the generalised sense

for all x e Hl(ﬂ) and all y* @ Y*, Then, provided x € Hl(ﬂ), we can

identify Tx with (grad x, —yox).
Now define the linear operator E with domain
p(E) = {yev;y= (y,0)
and such that

Ey = (ry.YO'ry) .

Then we define the problem

Tu = ;
Ew = V
T*y = f,

where T and T* are defined as above, w = (w,0) and v =

(6.4.17)

(v,YOv). Then

1
if ue H (%) we can identify T as above and hence (6.4.17) redvres to

(6.4.13). The fact that u € Hl(Q) for the generalised form of (6.4.13)

can be seen from example 6.3.1.

The existence and uniqueness of a solution of (6.4.17) is guaranteed

if the conditions of theorem 4.1.4 are satisfied, i.e. if there exists

>
al, a2, oy O such that

|| || c2ollxllyr wex,

(6.4.18)
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el i 2 o, ll¥ll,, ¥ eDE, (6.4.19)

1—

<€ Z,Z> :_a3||21|§*, VZ e Z. (6.4.20)

To prove (6.4.18) we adopt an approach of Raviart-Thomas [to appear].

Let h be a solution of the problem:

1(Q) such that

f£ind h € H2(Q) N H
-V2h = x in Q
Yoh = O onT.

We know a unique solution h € H 1(Q) exists for this problem when

(o]
x € LZ(Q)' see example 6.3.1. Let k* = grad h. Then

<Tx,k*> = <x,T*k*>

<x,x> = ||x||§2(n), (6.4.21)

where k* = (k*rYok*) € Y*, Also

w2, = [[x*]| 3 + |l vx+| _
T* H(div,Q) o T yg1/2 g,
sara ez o

using the trace inequality of theorem 6.1.2.



Therefore

2

L@ * [ div k+||

||E}ll§* < (1 + o) {]| graa nl|

(1 + a){||n]| 2 + || vl 2}
1t (Q) L, (@

2

f.. c“ x” LZ(Q) L4

where c and a are constants > O, hence

“Tx“ v = sup m

;*ey*_{o} “ ;* ” Y*

<Tx, k*>

AR
- -— -1 L, (Q
%1l 2@

using (6.4.21) and (6.4.22).

To prove (6.4.19), note that

—r1 2 2 2
||Eylly* = llTyllH(div,Q) + llYOTleH—l/Z

However

”Y”Y = “y”H(diV,Q)* = ”Ty”H(diV,ﬂ)‘

Hence “ E;” y* 2 (12” ;“ \'al
Finally (6.4.20) is easily proved as
-1— — -1

<E z’z> - <T Z,Z> “ Z“ ;(div,g)

2 2
2 8llzll fasv, g + @08 vzl g1/2

2

L, (@)

ry

()

}
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for 0 < B < 1 and using theorem 6.1.2. Hence
5D > allZl -

Therefore problem (6.4.17) has a unique solution

(u,w,v) € L,(Q) X Y x Y*,

The most general of the abstract variational principles studied

in Chapter 4 is then applicable to this problem, and is:

find (u,w,v) € L,(2) X ¥ x Y*, saddle point of

Le,Y.¥%) = - [ x div y*an - = [ y y*an
Q f
- f x £ d4Q,
1]
where §' = (y,0) € Y*, y* = (y*,Yoy*) € ¥*., This can be regarded

as a generalisation of the Hu-Washizu principle applied to this problem.
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CHAPTER 7

"SUMMARY AND CONCLUSIONS

7.1 . Summary

In this section we briefly summarize all the material covered in
this thesis before giving a summary in the next section of the
contributions this thesis has made to the subject.

We started by considering a simple abstract linear equation
THrTu = f | (7.1.1)

where T : X >+ Y and T* : Y* > X* are adjoint operators, X, Y and their
duals X*, Y* are Hilbert spaces and { is the canonical isomorphism
from Y to ¥Y*., 1In Chapter 2 we gave conditions on T necessary to
guarantee the existence and uniqueness of the solution u € X of (7.1.1)
for any £ € X*, This abstract problem can be identified with a differ-
ential equation in one of two ways. First we may define the operator T
as a differential operator in the generalised sense and T* as its adjoint.
Secondly we may define T* as a differential operator in the generalised
sense and T as its adjoint. 1In the applications we always regard the
spaces X and Y as Socbolev spaces and in particular the sub-class of
Soholev spaces based on the LZ(Q) space.

In Chapter 3 we showed that the abstract problem (7.1.1) is related

to the mixed variational problem:
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find (u,v) € X x y*, saddle point of

T -1 (7.1.2)
L(x’y*) = <Tx’y*> - -5- <T . y*’y*> - (x,f> x e X' y* e Y*’

in the sense that, if u is a solution of (7.1.1) then (u,v = TTu) is a
solution of (7.1.2) and conversely if (u,v) is a solution of (7.1.2)
then u is a solution of (7.1.1).

From (7.1.2) we derived two further variational problems:

find u € X, minimum point of

1 (7.1.3)
J(x) = 5 <rx,TTx> - <x,f>, x €X
and
find v € Y*, maximum point of
K(Y*) = —5<1; y*’y*>’ Y*ezf;

where Zf = {y* € y*; T*y* = £},
We proved that these two variational problems each have a unique solution
provided (7.1.2) has a unique solution. Further we showed that the
solutions are related in the sense that, if (u,v) is a solution of
(7.1.2) then u is a solution of (7.1.3) and v is a solution of (7.1.4),

and that these two variational problems are in fact complementary extremum

problems, that is, )

Min J(x) = J(u) = L(u,v) = Y(v) = Max Y(y*).

x€X y*ezf

In a more general setting we showed that from a saddle functional,
such as L(x,y*), we can obtain another functional, such as J(x), by

restricting the domain of the saddle functional to a linear variety.
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We can achieve this for any saddle functional L(x,y*) for which the y*
variable is either linear or such that the relation V2L(x,y*) = 0
provides an explicit relationship for y* in terﬁs of x. We also showed
that, for any saddle functional containing a saddle point which satisfies
the above conditions for both the x and y* variables, we can choose two
linear varieties containing the saddle point, such that the restriction
of the saddle functional to tﬁe linear varieties gives complementary

extremum functionals.

In Chapter 4 we extended the abstract linear equation to the form

T*ETu

£, (7.1.5)

where E : Y > Y* is a linear operator. We gave conditions on the
operator E for (7.1.5) to have a unique solution and we proved that it

is related to the variational problem

find ((u,w),v) € (X x ¥Y) x ¥Y*, saddle point of
. 1 (7.1.6)
L(x,y,y*) = <Tx,y*> - <y,y*> + 3 <y,Ey> - <x,£>,

x€eX,yey, y* e y*, and that if u is a solution of (7.1.5),

(u,w = Tu, v = ETu) is a solution of (7.1.6) and conversely if (u,w,v)

is a solution of (7.1.6) then u is a solution of (7.1.5). In the theory
of elasticity a particular case of this variational principle is known

as the Hu-Washizu principle. By the same technique as in Chapter 3 we
were able to derive many other variational principles associated with
equation (7.1.5). These include generalisations of the Hellinger-
Reisner principle, the minimum potential energy principle and the minimum
complementary energy principle. We gave the precise relationship between

each of the principles and showed that each of them can be obtained by
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restricting the domain of the functional L(x,y,y*) in (7.1.6).
In Chapter 5 we studied some non-linear equations, the most

general of which is
T*E(Tu) + F(u) = O (7.1.7)

where T : X + ¥ and f* :+ Y* > X* are linear adjoint operators and

E: Y>+Y* and F : X + X* are non-linear operators. We gave sufficient
conditions on the non-linear operators E and F such that the existence
and uniqueness theorem for the linear equation could be extended to

the non-linear equation (7.1.7). The main variational problem associated

with (7.1.7) is

find ((u,w),v) € X X Y X ¥*, saddle point of
(7.1.8)
L{x,y,y*) = <Tx,y*> - <y,y*> + ely) + £(x),

xe X, yey, y* e Y*, we then proved that, provided the non-linear
operators E and F are potential operators with potentials e(y) and £(x)
respectively, this problem has a unique solution (u,w,v) where u is
the solution of (7.1.7), w = Tu and v = E(Tu).

From the variational problem (7.1.8) we derived a set of variational
problems associated with equation (7.1.7). These are the non-linear
versions of those derived for the linear problem (7.1.5) and we gave the
relationships between them as in the linear case.

Finally in Chapter 6 we showed in detail how to incorporate more
general boundary value problems into the abstract formulation we had
previously studied. In particular we considered the class of regular

elliptic problems of order 2m; e.q.
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S* G Su f in Q

: (7.1.9)
B,u = gj, 0O<j<mlonT,

where S and S* are differential operators of order m, G is of order O
and the Bj are boundary differential operators. We saw how this could be

put into the abstract form
T* ETu = f

by associating the adjoint relationship for the operators T and T* with
the Green's formula for problem (7.1.9). This led to two possible
formulations for the problem. One in which the Dirichlet boundary
conditions are incorporated into the domain of T and the Neumann boundary
conditions are incorporated into the operator T*. The other in which
the Dirichlet boundary conditions are incorporated into the operator T
and the Neumann boundary conditions incorporated into the domain of T*,
Throughout the text we illustrated the theoretical concepts by
applying them to simple problems for which we specified precisely the

operators and spaces involved.

7.2 Contributions to the Subject and Relations to Other Work

In this section we briefly show how the material in this thesis
relates to work done by other authors. First we show how the abstract
formulation we have considered is related to the abstract formulation of
Noble-Sewell [1971] and of the French school, e.g. Lions-Magenes [1972],
Brezzi [1974] and Raviart-Thomas [to appear].

Considering first the French school, a typical abstract problem

from the work of Lions-Magenes might be
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find u € X such that

afu,x) = <f,x>, ¥xeX, (7.2.1)

where a(u,x) is a continuous bilinear form from ¥ X X to R and
f e X*, A sufficient condition for this problem to have a unique

solution is that a(u,x) is X-elliptic, that is, there exists a > 0

such that

a(x,x) > a| x|| 2, V¥x € X. (7.2.2)

When a(u,x) is symmetric, it is easily shown that problem (7.2.1) is

equivalent to the variational problem

find u € X minimum point of

(7.2.3)

J{x) = %-a(x,x) - <f,x>.

Problem (7.2.1) can be related to the simplest abstract equation

we have studied
T*tTu = £, (7.2.4)

by the relation
afu,x) = <TTu,Tx>. (7.2.5)

Obviously the right hand side of (7.2.5) is bilinear and it is easily

shown to be continuous. Using (7.2.5) in (7.2.1), we get

<tTu,Tx> = <£f,x>, ¥x € X
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and using the adjoint relation gives
a(u,x) = <T*TTu,x> = <£,x>, ¥x € X,
which is a weak form of equation (7.2.4).
Using (7.2.5) in inequality (7.2.2), a sufficient condition for
[}
existence and uniqueness of a solution is that there exists ¢ > O such
that

<TTX,Tx> z_allxllz, ¥x € X.

However
2

<1Tx,Tx> = (Tx,Tx) = || Tx||

and so the condition becomes
2

2|l ® 2 all=ll %, wxex,
which is the inequality we have shown to be sufficient for the existence
of a unique solution of equation (7.2.4).

As <T1Tu,Tx> is symmetric we can use the relation (7.2.5) in the

variational problem (7.2.3) which becomes

find u € X minimum point of

1
J(x) = 7 <TTx,Tx> - <f,x>,

which is the abstract minimum potential energy problem, see section 3.4,

related to the abstract equation (7.2.4).
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The treatment of mixed methods in the French school comes from

the work of Brezzi [1974], see e.g. Raviart-Thomas [to appear].

abstract problem considered by Brezzi can be written as

find (u,v) @ X x ¥* such that
a(v,y*) + b(u,y*) = 0, Vvy* e Y*,

{
b(x,v) = <x,£>, ¥x e X,

where X and Y* are Hilbert spaces and a : Y* x Y* » [R and

b: Y* x X > [R are bilinear forms. If al(v,y*) is symmetric and

X-elliptic, then (7.2.6) is equivalent to the variational problem

find (u,v) € X x y* saddle point of

H(x,y*) = b(x,y*) +%a(y*,y*) - <f,x>.
Problem (7.2.6) can be related to the abstract equation
T* ETu = £

as follows: Suppose the operator E has an inverse E_l, then let

-1 * * * %
aly]ry3) = —<E Ty;.y,> + Vy,iy, € Y*

and b(x,y*)

<Tx,y*>

<x,Tky*>, Vy* @ Y*, x @ X.

The

(7.2.6)

(7.2.7)

(7.2.8)

(7.2.9)

(7.2.10)
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Using these relations in equations (7.2.6) we get

—<E lv,y*> + <Tu,y*> = O, Vy* @ ¥*,

. (7.2.11)
<x,T*v> = <x,£>, ¥x € X.

This is a weak form of the equations

and

T™*v = f£,

that is, equation (7.2.8).
Hence a solution (u,v) of (7.2.6) gives a solution u of (7.2.8) when
related by (7.2.9) and (7.2.10).

' The variational formulation (7.2.7) is transformed by the relations
(7.2.9) and (7.2.10) into the abstract Hellinger-Reissner variational

problem, see equation (4.4.5), that is

find (u,v) € X x Y* saddle point of

H(x,y*) = <Tx,y*> - %-<E_ly*,y*> - <f,x>.

Turning to the work of Noble-Sewell [1971], we can express the

abstract problem they considered as

Tu = Vzw(u,v)
(7.2.12)
T*y

]

VlW(u,v),
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where T is a linear operator from a Hilbert space X to a Hilbert space Y
with adjoint T* and W : X X Y* >+ [R is a given functional. This is

related to the non-linear abstract equation

T*E(Tu) + F(u) = O (7.2.13)

{
as follows: Assume the operator E has an inverse E—l, then (7.2.13) can

be written as

T = E"l(v)

T*v ~F(u).

We can see that this is a particular case of (7.2.12) in which

1]

VW (u,v) E’l(v),

~F({u).

Vzw(u,v)

Therefore, assuming E_1 and F are potential operators, the abstract
equation (7.2.13) can be considered as a special case of (7.2.12) where
the functional W is given by

1l

Wieyt) = W+ <ETH(y ¢+ t(yoy ) yrey Rodt
o 4 o o o

1
- f <F(xo + t(x—xo)),x—xo>dt,
o]
see section 5.1.
Hence we see that the abstract form studied in this thesis is closely
related to the abstract problems of both the French school and the work

of Noble-Sewell. The approach of the French school has the advantage of
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great precision in the definition of operators and spaces, and the
availability of existence and uniqueness theorems. The Noble-Sewell
approach is far more general, in¢luding non-linear problems, but does
not give any existence results. In this thesis we have given an
abstract formulation in sufficient precision for us to prove existence
and uniqueness theorems. Also this abstract formulation, although not
as general as the Noble—Seweil form, can be applied to some non-linear
as well as linear problems.

One of the more difficult aspects of studying differential equations
from an abstract point of view is to relate the abstract equation to a
specific differential equation. This requires a precise definition of
the operators and spaces used in the abstract formulation. To simplify
this identification we have restricted ourselves to an abstract formula-
tion in which the linear adjoint operators T and T* act as generalisations
of differential operators. For the spaces that form the domains and
ranges of these operators we have restricted ourselves to the subclass
of Sobolev spaces which are Hilbert spaces, that is, those Sobolev
spaces based on the LZ(Q) space.

The most common approach for differential equations of order 2m
is to use the space Hm(Q) or a subspace, e.d. Hol(Q). These spaces
are widely used for the formulation of problems in the weak form or in
terms of variational problems of the minimum potential energy type.
This approach can be extended to the formulation of problems in terms
of a mixed variational principle in which we use the spaces Hm(Q)
and (LZ(Q))q, dq an integer, see Oden-Reddy [1976]. Another approach
given recently by Raviart-Thomas [to appear] for the mixed method for
the second order problem is to use the spaces LZ(Q) and H(div; ).

In this thesis we have shown that these two approaches occur quite

naturally for operators of the form T*T as suggested by Friedrichs [1939].
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The first arises from defining the operator T as an extension of a
differential operator of order m and T* is its adjoint. The second
arises from defining T* as an extension of a differential operator

of order m and T as its adjoint. We have also shown how various
boundary conditions are incorporated into the abstract form. In the
first approach the Dirichlet boundary conditions are incorporated into
the domain of the operator T, i.e. they are essential boundary conditions.
The Neumann boundary conditions are incorporated into the operator T*,
i,e. they are natural boundary conditions. Conversely in the second
approach the Dirichlet boundary conditions are incorporated into the
operator T, i.e. they are natural boundary conditions. The Neumann
boundary conditions are incorporated into the domain of the operator T*,
i.e. they are essential boundary conditions.

We may study the existence and uniqueness of the solution of
variational problems in two different ways. Firstly we could show that
a unigue solution exists by proving that the functional has a unique
stationary point. Secondly we could show that a set of abstract
equations are satisfied at a stationary point of the functional. Then
we would only need to prove that the abstract equations have a unique
solution to ensure that the variational problem has a unique solution.
For non-linear problems of a very general type involving two variables
Noble-Sewell [1971] took the first approach. They proved the unique-
ness, but not existence, of the saddle point provided the functional is
strictly convex in one variable and strictly concave in the other.
However, all the variational problems we have studied are linear in one
of the variables and so we are not able to use the Noble~Sewell approach.

The other approach was taken by Brezzi [1974] for linear problems

based on a different abstract form which we discussed in the previous
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section, equations (7.2.6). We have essentially used the approach of
Brezzi to prove the existence and uniqueness of a solution to the

simplest abstract form we considered, that is,

find (u,v) € X X ¥* such that
™TT™ua = v

T*v = f,

where X and Y* are Hilbert spaces and T : X > Y and T* : Y* > X* are

adjoint linear operators. We extended this result to the more complex

linear problem

find (u,w,v) € X x ¥ x Y* such that

Tu = w
Ew = v
T™™v = £,

and to the non-linear problem

find (u,w,v) € X X ¥ X ¥* such that

Tu = Ww
Ew) = v
T*v + F{u) = 0, B

where E and F are non-linear operators in this case.

There are many variational principles associated with an abstract
equation of the type we have been considering. We have given a set of
principles all of which are known, at least for the linear problems,

see Oden-Reddy [1974]. Some are straightforward generalizations of
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classical variational principles, fo; example the minimum potential
energy principle, others are of more recent origin, e.g. the
Hu-Washizu principle. We have shown that each of these has a unique
solution which is related to the solution of the abstract equation.
We have also stated precisely the domain of the functional involved
and shown that for boundary value problems there is a choice of
generalizations leading to different functionals defined on different
domains. Hence, for example, the mixed variational principle for the
harmonic equation in ﬂ?z with homogeneous Dirichlet boundary conditions
can have either the domain H (@) x (Ly(2))? or the domain

Lz(ﬂ) x H(div;Q). It is interesting to note in this case that when
the function f € L2(Q) the solution of the two generalizations is the
same. Whether a result of this type can be put into a more general
framework remains to be shown.

For either the linear or non-linear abstract equation the set of
associated variational principles are interrclated. These relationships
may be viewed in several ways, all of which are mathematically equivalent
but conceptually rather different. We can view the extremum principles,
i.e. the minimum potential energy and minimum complementary energy
principles, as fundamental and derive the other variational principles
by using Lagrange multipliers, see Washizu [1975]. Alternatively we
may view the most general principle involving three variables as funda-
mental and regard all other principles as derivable by specialising
assumptions from the most general principle, see Fraeijs de Veubeke
[1974] or Oden-Reddy [1974]. We have taken the latter view, but stressed
that the specialising assumptions can be viewed as a restriction of the
domain of the functional of the general variational principle. For

example, the functional
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J(x) = %‘<TX,TTX> - <x,£>, x € X
of the minimum potential energy principle can be derived from the

functional
1l -1
Lix,y*) = <Tx,y*> - 5 <1 "y*,y%> - <x,£>, x €X, y* e y*

of the Hellinger-Reissner principle by restricting the domain of
L(x,y*) to those (x,y*) satisfying y* = TTx.

To recapitulate the contributions made in this thesis, we have
shown that an elliptic boundary value problem may, by a suitable extension,
be put into one of the abstract forms based on the operators T and T*.
This may be done in two ways, one in which T is the primary operator and
one in vhich T* is the primary operator. We have given conditions on
the operators for a unique solution of the equation to exist and for
there to be a set of variational problems associated with the equation.
We have shown that under these conditions, the variational problems
each have a unique solution which is related to the solution of the
abstract equation. We have also shown how these variational problems
are interrelated.

An important area of research which follows naturally from these
results is the study of approximate methods associated with each of
the variational principles to determine which, if any, providas the
"best" way of computing solutions to elliptic differential equations.

We have not pursued this question in this thesis but in the next
section we give a brief review of the questions involved in this

extension of the material in this thesis.
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7.3 Methods of Approximation

All of the variational principles we have discussed in this thesis
may be used as the basis of an approximate method, such as the finite
element method, for the solution of differential equations. To do
this we need to define an approximate variational principle with a
finite dimensional domain. This appréximate variational principle
will often be the exact variational principle defined over a finite
dimensional subspace of its domain. This is sometimes called an
interior approximation. We shall not consider the case of exterior
approximation, when the finite dimensional domain is not a subspace
" of the infinite dimensional domain. Further we need to prove that the
solution .of the approximate variational principle converges to the
solution of the exact variational principle, additionally it is useful
if the rate of convergence and some estimate of the error can be
found. There has been considerable advance in the last ten years in
proving some of these results for the finite element method based on
some of the variational principles we have discussed. We briefly
summarize the results presently known to the author.

The first results along these lines were obtained for the minimum
potential energy principle. See. for example, Zlamal [1968] where
various piecewise polynomial subspaces were used as the domain of the
minimum potential energy principle for second order and fourth order
problems. Results for the complementary energy principle for second
order nroblems have only recently been obtained, see Thomas [to appearl.
For mixed methods, e.g. the Hellinger-Reisner principle, results have
been given by Johnson [1973] for the biharmonic equation and by Raviart-
Thomas [to appear] for second order equations. The convergence of

approximate methods based on the more general three field principles,
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e.g. the Hu-Washizu principle, have, apparently, not yet been studied.

For those spaces which give a solution converging to the correct
solution for each variational principle we also have to compare the
practical difficulties of implementing such schemes on a computer.

A major problem is the difficulty of automatically generating the
elements of the finite dimensional spaces involved. For example, let
us consider Poisson's equation with homogeneous Dirichlet boundary
conditions. The minimum potential energy principle uses the space
Hol(Q). It has proved fairly easy to construct approximation spaces
for this which can be generated automatically, see George [1971]. The
complementary energy principle uses the space {y € (LZ(Q))n; -Vy = f}
for which the construction of approximate spaces presents difficulties,
Thomas [to appear]. See alsoc Fraeijs de Veubeke [1965].

The first formulation of the mixed method uses the spaces Hol(Q)
and (LZ(Q))n, Oden-Reddy [1976]. This seems to offer no advantage
over the minimum potential energy principle unless the second function v
of the solution (u,v) is specifically required. However, this is quite
often the case, for example in elasticity the v's may represent the
stresses. In this case the mixed method may produce more accurate
results for v. 1In the second formulation the mixed method uses the
spaces LZ(Q) and H(div; Q), Raviart-Thomas [to appear]. The elements
of these spaces require very little continuity and it would presumably
be easy to generate elements of a finite dimensional subspace.

The three field principles appear to offer no advantage over the
two field mixed methods for linear problems. However, for problems with
non-linear constitutive equations it may well be useful to consider these
more general principles. There are no results known to the author on the

implementation of three field principles for non-linear problems of this

type.
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7.4 Structure of the Mathematical'Ahalysis

In this section we briefly outline the structure of the existence
and uniqueness proofs for the abstract problem and the associated
variational problem. In this way we hope to lay bare the methodology
used and hence clarify the way in which it could be used for other

formulations.

The simplest abstract form we considered, see Chapter 2, was

find (u,v) € X x ¥* such that
™TTu = v

THy = f, | (7.4.1)

where X and Y* are Hilbert spaces and T : X > Y and T* : Y* > X* are

adjoint linear operators. Under the assumption that there exists a > O

such that

x|l > allx]l,  wxex,

we proved that T* is an isomorphism from a subspace zt= [N(T*)]L C y*
onto X* and that TT is an isomorphism from X onto z*. Hence given any
f € X* there exists a unique v satisfying (7.4.1)2 and also a unique u
satisfying (7.4.1)1.

In Chapter 4 we extended this result to the more complex linear

problem

find (u,w,v) € X x ¥ x ¥Y* such that

Tu w

Ew

Il
<

(7.4.2)

™y = f,
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For this we only needed to extend the proof to deal with the linear
equation Ew = v rather than the isomorphism tw = v, where w = Tu,
encountered in the simplest abstract problem. We showed that if there

exists al,az > O such that

o)l > llivll,  wev

and

<E Yz,2> Z_azllzllzr ¥z € 2 = N(T*),

~ . . o _
then for any v € zT+ there exists a unique w € 2 = (z*)* such that

where Z is an element of the null space of T*, i.e. Z. We were thus
able to use the results of the simplest abstract problem, which showed
that T* is an isomorphism from zt to X* and T is an isomorphism from
X to Zo, to deduce that problem (7.4.2) has a unique solution under the
conditions given.

Using some elements of non-linear operator theory, we were able to

further extend the existence and uniqueness theorem to the non-linear

problem

find (u,w,v) € X x Y x Y* such that

Tu = w
Ew) = v
T*v + F(u) = O,

where E and F are non-linear operators. The non-linear operator E was

incorporated into the existence and uniqueness proof in essentially the
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same way as the linear case. Here, however, we used monotone operator
theory to establish that for any ¥ € 2% there exists a unique w € Zo

such that
vIv+z = E(W)l

provided E is a continuous strictly monotone operator satisfying

lim fg%%lTF? = 4o,
| y]| += Y

Then as in the linear case we used the results of the simplest abstract
problem relating to T and T* to compiete the proof.

To incorporate the non-linear operator F instead of the function f
of the linear case, we have applied the theory of monotone operators
to the whole equation to show that a unique solution exists provided
the conditions of the simplest abstract problem are satisfied and F is

a monotone operator satisfying

<F (x) ,x>
x

> -—00

lim 4inf
|| %[] +

Hence from the existence and uniqueness theorem of the simplest zbstract
problem we have been able to build up proofs for more complex linear
problems as well as non-linear problems.

These results have also been used as the basis for existence and
uniqueness theorems for the variational problems we have studied. The
proofs for all the variational problems, both linear and non-linear,
have the same general structure. We first show that any stationary
point of the functional of the variational problem is also a solution

of the related abstract equation. Then we use the existence result for
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the abstract equation to show that the functional has a unique stationary
point. Finally we show that the functional is a saddle functional and

hence the stationary point is in fact a saddle point.

7.5 Conclusions

The abstract form we have studied in this thesis has some advantages
over the approaches of the French school and the work of Noble-Sewell.
The form we have.given is a more natural generalization of a differential
equation than the abstract form associated with the French school but
still retains the preciseness of their approach. We were also able to
easily extend the abstract form to include some types of non-linear
equation. The Noble-Sewell approach, although including more general
nor-linear problems, does not include any existence and uniquenecs
theorems.

We have been able to show that with each of the abstract forms
considered there are associated a set of interrelated variational problems
with solutions corresponding to the solution of the abstract problem.

In applying the abstract formulation to differential equations we
have been able to unify the approaches of Oden-Reddy and Raviart-Thomas.
We have seen that these two approaches occur quite naturally for problems
in the T*T form, one by taking T as the primary operator and the other by

taking T* as the primary operator.
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