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ABSTRACT 

A class of linear elliptic differential equations with homogeneous 

boundary conditions is considered. These equations are put into an 

abstract form 

T*ETU = f, 

involving linear operators on Hilbert spaces. Conditions are given for 

the existence and uniqueness of solutions to this operator equation. 

A set of variational principles associated with the equation are 

derived. In the elasticity context these variational principles 

include the Hu-Washizu principle, the Hellinger-Reissner principle as 

well as the well known potential energy and complementary energy 

principles. Conditions are given for the variational problems to have 

a unique solution which is also the solution of the differential eouation. 

The relationships between the different variational principles are also 

stressed. 

The most general non-linear equations considered are those that can 

be put into the abstract form 

T*E(Tu) + F(u) = 0, 

where E and F are non-linear operators. Conditions are given under 

which a unique solution can be shown to exist. The variational problems 

analogous to those of the linear case are derived and shown to have a 

unique solution corresponding to the solution of the differential 

equation. Finally it is shown how more general boundary conditions are 

incorporated into the theory given. • 
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Throughout the development of the theory, examples are considered 

to bring out the relationship between the abstract formulation and 

its practical applications. In particular the operators and Hilbert 

spaces are given explicitly for both the abstract differential equations 

and the associated variationll problems. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction  

The study of elliptic differential equations plays a central role 

in mathematical physics. In this thesis we shall study an important 

. class of linear elliptic equations and a related class of non-linear 

equations. The linear equations are of the form 

T*ETu = f, 	 (1.1.1) 

where T, T* and E are linear operators on Hilbert spaces. A large 

number of problems in mathematical physics can be put into this form 

by the appropriate choice of the operators and Hilbert spaces. Some 

examples are: heat conduction in anisotropic media; fully-developed 

fluid flow in ducts; the torsion of cylindrical bars; the bending of 

elastic plates. Many other examples can be found in Arthurs [1970] and 

Oden-Reddy [1974]. 

The non-linear equations we shall study are of the form 

T*E (Tu) + F (u) = 0 	 (1.1.2) 

where T and T* are linear operators and E and F are non-linear operators 

on Hilbert spaces. Some examples of this class of equation are: 

non-Newtonian viscous fluid flow; charged particles in equilibrium; the 

theory of colloids. For further examples see Arthurs [1970]. 
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All of the above examples have variational principles, such as 

the minimum potential energy principle or the minimum complementary 

energy principle, associated with them. The variational approach to 

the statement of problems has always played an important part in 

mathematical physics, indeed many problems are initially formulated 

in terms of a variational problem. For example the (small) displace-

ments of an elastic solid subject to prescribed displacements and 

body forces can be found by minimizing the potential energy of the 

solid amongst all possible displacements, that is, those displacements 

satisfying the prescribed displacement boundary conditions. A variational 

principle is a very concise way of formulating a problem, both mathemati-

cally and physically. From the mathematical point of view there is only 

one functiOnal to deal with, which incorporates many of the boundary 

conditions. Physically, one only needs to know a quantity such as the 

potential energy of the system to be able to completely specify the 

problem. Of course, the potential energy is itself a physically important 

parameter which we might need to compute separately when using any other 

approach to the problem. 

Variational principles not only play an important role in the 

mathematical statement of physical problems but also in the computation 

of solutions. The best known computational techniques based on a 

variational method are of course the Rayleigh-Ritz and Galerkin methods. 

It is a variant of these methods, the finite element method, which, in 

the last twenty years, has proved to be a powerful computational method. 

In this thesis we study a set of variational principles associated 

with each of the operator equations (1.1.1) and (1.1.2). Some of these 

are very well known principles but others have only been discovered in 

the last few years. However, all can be used as the basis for finite 

element methods. 
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1.2 Historical Review  

In the eighteenth and early nineteenth centuries the calculus of 

variations played a central role in mechanics. The developments of 

that time are typified by the work of the Bernoullis, Euler, Lagrange, 

Legendre and Jacobi. For a more detailed account of that period see 

Kline [1972] or Bell [1945]. The developments of that period culminated 

in the proof that the solution of a variational principle could be 

found as the solution of a differential equation. Hence from then on 

the emphasis was on the statement of problems in mechanics in terms of 

differential equations. We shall give an outline of further develop-

ments in variational principles later. First, however, we shall give a 

brief review of the historical development of the relevant theory of 

abstract differential operators. 

The theory of abstract operators in the form T*T was initiated by 

von Neumann [1932] and was extended by Murray [1935] and Friedrichs 

[1939]. They gave the basic structure in terms of adjoint linear 

operators on Hilbert spaces and proved many theorems on the existence 

and uniqueness of both operators and solutions to the operator equation. 

Kato [1953] and Fujita [1955] used the works of von Neumann and Murray 

to develop approximation methods fc operators of the form T*T. They 

also gave some important examples of equations with this structure. 

Implicit in the papers of von Neumann etc. were the concepts of 

generalised derivative and what are now called Sobolev spaces. These 

concepts w•were formalised in the late 1930's by Sobolev [1937]. In 1950 

in his book "Theorie des Distributions", Schwartz [1950] gave an 

alternative basis for these concepts in terms of distributions. These 

developments lead to a great deal of work in the 1950's and 60's on 

the abstract theory of differential equations by many authors, see for 

example, Lions-Magenes [1972] and the references contained therein. 
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Returning to the development of variational principles, these 

continued from a more applied viewpoint, particularly in continuum 

mechanics. This led to the formulation of complementary variational 

methods by Castigliano [1879] in the late nineteenth century. In the 

early twentieth century an approximate method based on a variational 

method was developed by Ritz [1909] (repeating the work of Rayleigh 

[1871]) for solving problems in elasticity. This is now known as the 

Rayleigh-Ritz method and can be used for many problems in mechanics. 

A generalisation of this method was put forward by Galerkin [1915], 

which is now widely known as Galerkin's method. 

An important advance in our knowledge of variational principles 

occurred in the 1950's, when Reissner [1950] correctly formulated an 

earlier attempt by Hellinger [1914] at a mixed variational principle. 

Hu [1955] and Washizu [1955] generalised this to a variational principle 

which incorporates a general form of constitutive equation. At the same 

time an approximate method, now known as the finite element method, 

was proposed, see Turner, et al. [1956]. This method was based on the 

minimum potential energy principle and was a variant of the Rayleigh-

Ritz method. In the mid 1960's Herrmann [1966] proposed the use of a 

finita element Tethod based on a mixed variational principle for the 

solution of plate bending problems. 

In 1964 Noble [1964] gave a general framework for complementary 

variational principles. This was further developed by Arthurs [1969], 

Rall [1966] and Noble-Sewell [1971]. Arthurs developed an extensive 

range of applications in the area of differential equations, see 

Arthurs [1970]. 

In the late 1960's and early 1970's a rigorous attack on the finite 

element method based on a minimum principle was made by several 
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mathematicians, e.g. Babuska [1971], Ciarlet-Raviart [1972], Strang 

[1972] and Zlamal [1968]. In 1973, Johnson [1973] gave a rigorous 

account of a mixed finite element method applied to a problem in plate 

bending. Brezzi [1974] developed an abstract formulation which can 

include mixed variational principles. Recently Oden-Reddy [1974] have 

attempted to put the theory of Noble into a more rigorous setting. 

1.3 Thesis Objectives  

The major objective of this thesis is to give a rigorous account 

of the variational principles associated with classes of elliptic 

differential equations. More precisely, for each class of equations, 

we 

1) show how differential equations may be put into one of the 

abstract forms considered, 

2) give existence and uniqueness theorems for the abstract 

operator equation, 

3) derive the set of variational principles associated with the 

abstract equation, 

and 

4) show the relationships between the variational principles. 

The problem of putting differential equations into an abstract form 

was of course considered at the very beginning of the development of the 

theory of abstract operators. For operators of the form T*T see von 

Neumann [1932], Murray [1935] or Friedrichs [1939]. However, in the last 

twenty five years there have been considerable developments in the 

treatment of boundary value problems from the abstract point of view, 

see Lions-Magenes [1972] or Necas [1967]. We adopt an approach originally 

due to Friedrichs [1939], who considered operators acting from Hilbert 
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spaces. However, we incorporate many of the modern techniques, in 

particular we think of the Hilbert spaces as Banach spaces. This 

allows us a greater variety of norms which are essential for identifying 

the abstract operators with bounded linear differential operators. 

The conditions for the existence and uniqueness of solutions of 

linear operator equations are well known, see Stone [1932]. In this 

thesis we give a simple existence and uniqueness proof for operators 

of the form T*T. This proof forms the basis of the existence theorems 

we shall give for the more complicated linear and non-linear equations 

considered. 

An extensive set of interrelated variational principles for linear 

equations have only recently been elaborated by Oden-Reddy [1974]. In 

this thesis we give conditions under which each variational problem is 

in fact equivalent to the abstract differential equation. Similar 

results are derived for some non-linear equations. 

Relationships between various variational principles have been 

suggested by many authors, for example, see Washizu [1975] and Oden-

Reddy [1974]. In this thesis we take the approach in which we consider 

the general variational principle as a starting point. From there, by 

successive specializing assumptions we derive all the variational 

principles associated with a particular equation. 

1.4 Outline of the Thesis  

In Chapter 2 we shall consider some simple problems which give rise 

to linear or non-linear differential equations. We shall use these 

examples throughout the thesis to illustrate how the theoretical results 

can be applied to practical examples. We show how these examples can be 

put into an abstract setting involving operators on Hilbert spaces. We 

then consider the simplest abstract problem 
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T*Tu = f 

and give conditions on the operators T and T* for a unique solution 

to exist. 

In Chapter 3 we give some theoretical results on saddle functionals, 

derive the main variational problem associated with the abstract form 

given in Chapter 2, and show how other variational problems can be 

derived using the concept of saddle functionals. 

Chapter 4 is concerned with the extensions required to the theory 

given in Chapters 2 and 3 to include the abstract equation 

T*ETu = f, 

where E is a linear operator. 

In Chapter 5 we study some non-linear equations, the most general 

being of the form 

T*E(Tu) + F(u) = 0, 

where E and F are non-linear operators. Existence and uniqueness theorems 

are given and the variational principles corresponding to those in the 

linear case are derived. 

Chapter 6 shows how more general boundary conditions can be incorpor-

ated into the theoretical results given. Non-homogeneous Dirichlet and 

Neumann type boundary conditions are treated, a mixture of these being 

the most general form considered. 

Finally in Chapter 7 we summarize the material covered and suggest 

some directions for further work on this subject. 
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CHAPTER 2 

THE ABSTRACT PROBLEM 

2.1 Types of Problem Considered  

In this section we shall briefly give an example for each class 

of problem to be considered. In a later section we will show 

rigorously how these examples can be put into the abstract forms. We 

shall use these examples throughout the text to demonstrate how the 

abstract theory can be applied to practical problems. For each class 

of equations we shall also indicate other important problems that can 

be put into the abstract form but we shall not give all the details 

here. 

Example 2.1.1  

First we shall consider a very simple ordinary differential equation 

which we shall subsequently study in great detail to bring out the 

important points of the abstract theory. Consider the equation 

d
2
u 

dC
2 

u(a) = u(b) = 0 

where f is a given function of E and Q is the interval (a,b). We can 

rewrite this as the problem of finding the functions u and v such that 

du _ 
dC 

(2.1.2) 

_'dv = f 
dC 

u (a) = u (b) = 0 

f 	in 0.  

(2.1.1) 

v, 
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This is in the canonical form 

rTu = v 
(2.1.3) 

T*v = f 

where T = 	T* = - -c-IT and T is an identity mapping. Obviously this 

can be written as the single equation 

T*TTu = f. 	L 	(2.1.4) 

The boundary conditions are included in the abstract form by ensuring 

that the domain of the operator T consists only of those functions 

satisfying the boundary conditions, that is, those u such that 

u (a) = u (b) = 0. 

We may of course consider other boundary conditions for this 

problem, for example 

du(a) 	du(b) 
dE 	dE 

= 0. 

This is equivalent to the conditions 

v(a) = v(b) = 0 	 (2.1.5) 

and in this case the domain of T* would have to consist of only those 

functions satisfying (2.1.5). 

Many other differential equations may be put into the form of 

equation (2.1.4), here we mention two. Firstly, Poisson's equation 
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-V u = f in n 

(2.1.6) 

u = 0 on r 

on a region gl C R n  with boundary F. Taking T = grad, T* = - div 

and t = I, (2.1.6) is in the form (2.1.4), provided the domain of T is 

restricted to those functions' satisfying the boundary condition u = 0 on 

r. Secondly, the biharmonic equation 

V
4u = f in P 

(2.1.7) 

u = 3u = 0 on r 
an 

where n is the outward normal to r, the boundary of Q. Here we take T 

and T* to be V
2 
and T to be the identity mapping. Then if the domain of 

T is restricted to those functions satisfying the boundary conditions 

u = au 0 on I', this is in the form of (2.1.4). an 

Example 2.1.2  

Next we consider a problem in heat conduction in an anisotropic 

material, such as for example crystalline substances, sedimentary rocks, 

wood, asbestos and laminated materials, e.g. transformer cores used in 

engineering practice. 

For the domain n let us consider the rectangular region 0 < E1 < a, 

fr, 0 < E2  < b of the /K plane. The boundary r is then as shown in figure 

2.1.1. The differential equation is 

-V. (K.Vu) = f in Q 

(2.1.8) 

u = 0 on r. 
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(a,b) 

a 

Figure*2.1.1 The domain of Example 2.1.2 

Here u is the temperature field on S-2, f is the heat source in SI and 

K = [kid ] is a tensor of thermal conductivities. The components of K 

represent the thermal conductivities in different directions and in 

practice K is considered to be a symmetric tensor. 

Note that it is always possible to transform the anisotropic 

equations to a new set of axes called the principal axes of conductivity 

such that the equation is in the same form as for an isotropic material 

i.e. k
11 

= k
22 

= k, k
12 

= k
21 

= 0, see Carslaw-Jaeger [1947]. However, 

this transformation can considerably complicate the boundary conditions 

and distort the boundary to irregular shapes. Hence it is often easier 

to treat the material as anisotropic and retain "nice" boundary conditions. 

Equation (2.1.8) can be put into the canonical form 

Vu = w 

v = Kw 
	

in n 	(2.1.9) 

-V.v = f 

with u = 0 on r. 
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Hence setting T = 7, T* = -V, and E = K, this can be put in the form 

Tu = w 

	

v = Ew 
	

(2.1.10) 

T*v = f. 

As in the previous example the boundary condition is included by taking 

the domain of T to be only those functions which satisfy the boundary 

conditions. Equations (2.1.10) can of course be written as 

T*ETu = f. 	 (2.1.11) 

Another important example of an equation of this form occurs in 

linear elasticity. The equations for the small displacements of an 

elastic body with domain Q C 10 are 

aui 	3u 
1 	

. 
(ail  + 	wij j 	1 

c., 	w 	= v . 
13k1 kl 	jJ 

in n 	(2.1.12) 

3v.. 
_ 	- f.  

E3  

where u.
1 
 is the displacement in direction 

1 
 i = 1,2,3, w.. 1.̂  the strain 

13 

tensor, ci jki  is the tensor of elastic coefficients, v.. is the stress 
13 

tensorandf.1 
 is the vector of applied body forces. Then taking T to be 

the operator defined by the first of equations (2.1.12), T* to be the 

operator 
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a 

ail 

a 

2 

a 
aE
3 

and E the tensor cijkl
, equations (2.1.12) can be written in the form 

of (2.1.10). 

Example 2.1.3  

Here we consider an equation of the form 

T*E(Tu) = f 	 (2.1.13) 

where E is a non-linear operator. The canonical form of this equation is 

Tu = w 

E (w) = v 

T*v = f . 

(2.1.14) 

The non-linear relationship E(w) = occurs in many physical situations 

where it represents the constitutive equations. For example taking w 

to be the strain and v to be the stress (2.1.14)2 represents a non-linear 

stress-strain relationship. This is often given by a power law formula 

of the form 

V =W cl  

c2 
(2.1.15) 

where c1, c2 > 0 are constants (see Reiner [1969]). Another example of 

this type of constitutive equation is in the magnetic saturation problem, 
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where w represents the magnetic intensity and v is the flux density, 

(see Cunningham [1967]). 

A simple example that we shall consider in more detail arises 

in the laminar flow of an incompressible non-Newtonian viscous fluid 

in a circular cylinder of radius a and length 1, see Jaeger [1969]. 

The equations are 

da• 
= Y dr (2.1.16) 

1/3 
ky 	a, 	 (2.1.17) 

da = 
dr 	22. ' 

(2.1.18) 

	

a (a) = 11(-a) = 0, 	 (2.1.19) 

where a is the axial velocity, y is the rate of strain, k > 0 is a 

constant, a is the stress and P is the pressure applied at one end of 

the cylinder. Setting T to 27  and T* to- 	, with E(i) = kcr1/3  and 

f = -1.27, equations (2.1.16)-(2.1.19) are in the form of equations (2.1.14). 

The boundary conditions (2.1.19) are satisfied by choosing the correct 

domain, for T as ..n the previous example. 

Example 2.1.4 

As a final example we consider a non-linear equation which has 

applications in many fields. It is the Liouville equation 

-V2u + ceu = 0 	in 0 

(2.1.20) 

u = 0 on r 



20 

where c is a positive constant. This equation arises for example in 

plasma theory. Taking u = 	, where q is the charge per particle, kT 

V is the electrostatic potential and kT is the Boltzmann energy, 

equation (2.1.20) gives the potential of charged particles in equilibrium. 

For more details see Arthurs [1970] or Longmire [1963]. Another example 

is the case of steady vortex motion of an incompressible fluid. For this 

problem equation (2.1.20) can'be used to find the stream function u, see 

Davis [1960]. 

Equation (2.1.20) can be put into the abstract form 

T*TTu + F(u) = 0 	 (2.1.21) 

where, as in example 2.1.2, T = grad and T* = -div. The isomorphism T 

is the identity mapping and the non-linear term F(u) is ceu. As in 

the other examples the boundary condition is incorporated into the 

domain of the operator T. Equation (2.1.21) can of course be written 

in the canonical form 

Tu = w 

V = TW 
	

(2.1.22) 

T*v + F(u) = 0 . 

For other examples of equations of this type see the monograph of 

Arthurs [1970]. 
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2.2 Some Results from Functional Analysis  

In this section we introduce some notation and give results from 

functional analysis which will be needed to put the problems of 

section 1 into an abstract setting. 

Let X be a Banach space. The norm on X will be denoted by H .1I x  , 

the dual of X by X* and the duality pairing between X and X* by 

x*<-,.>x  . If X is a Hilbert space the canonical isomorphism between 

X and X* is denoted by Tx  and the inner product on X by (.,-)x. When 

there is no ambiguity, II .11 XX*<.,.>X ,rX and (.,.)X may be written 

as II 	‹.,'›F T and (.„*) respectively. Let X and Y be Hilbert 

spaces with X a dense subset of Y. Identifying Y with Y* via the 

canonical isomorphism Ty, we have X C Y = Y* C X*. Then if x* e Y*C X* 

and x e X, we have, see Lions-Magenes [1972], 

, 	1 , 
y*<x*,x>y = LT X',X) . 

X*
<x*x>

X 
= 

A point in IR n  is denoted by E = (E1 ,E
2 • • ,En  ). If •  

a =
l''an) is a n-tuple of nonnegative integersaj  , we call a 

a1 a2 	an a multi-index and denote by E
a 

the monomial El  E2 ...En  n, which has 

degree IaI = E a.. Similarly, if D. - — for 1 < j < n, then 
j=1 J 

	
a 

 

Dal 
a
2 	a

n D
a 

= D1 D2 ..Dan 

denotes a differential operator of order lal. 

Let 0 be an open domain in 	
n 
with r its boundary. We denote 

+ r by P. For any nonnegative integer m let Cm (0) be the vector space 

of all functions x which, together with all their partial derivatives Dax 

of orders lal < m, are continuous and bounded on Q. We let C0  (0) be 
00 

denoted by C(Sl) and Cc%45 = n cm(Si). 
m=0 
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We next define the important concept of a closed operator. This 

is most easily expressed in terms of the graph of an operator. 

Definition 2.2.1  

Let T be an operator from a set X to a set Y. Then the graph G 

of T is the subset of XxY consisting of the ordered pairs (x,Tx), where 

x ranges over the domain of T. 

Definition 2.2.2  

Let X and Y denote Banach spaces, then an operator T:X Y is called 

a closed operator if its graph is a closed subset of XxY. 

An important property of closed operators is that they map closed sets 

into closed sets. They play an important role in existence theorems 

which are based on Banach's closed range theorem. 

Example 2.2.1  

Consider the operator dE  defined on functions belonging to the 

— 
space C

1 
 (0), where 0 is an open interval of the real line. Let the 

norm on C
1 
 (SO be 

II xli 1_ 
C (0) 

E  f{x2 	
(
c1x)2}ds_21 1/2 

d E 
is  Then 

d
--s a continuous linear operator from C1  (R) to C(52), with 

II xil cro = [ fx
2dm 1/2, since 

C 
 

II li IL (ii)  dx 2 	1/2< II  = [ )(—) d0] 	< 	xi' 
ci(s-D• 

It is also a closed operator since for any sequence {x 
n
}x, with 

1 — 	1 — 
x
n e C (0) for all n and x e c 

dx 

dE 	
de C 	. 
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This brings out an important point for neither the domain of 

d i.e. 1 .e. C (0), nor the range C(l) is a closed space with the norms 

given, although d is a closed operator. However, in order to prove 
dC 

existence theorems, it is essential to consider closed operators with 

closed domains. Hence the question is, can we find some generalisation 

of the operator 
do 

 which has a closed domain? 

We can answer this by considering an extension of the operator. 

'Definition 2.2.3  

Let T
1
:D
1
C X + Y and T2:D2C X + Y be operators with graphs 

G1  and G2  respectively. Then T2  is said to be an extension of T1  if 

G2D Gl. 

We shall want to find a closed extension of an operator T. The 

following theorems to be found in Stone [1932] guarantee the existence 

and uniqueness of a closed linear extension. 

Theorem 2.2.1  

If the operator T1  has a closed linear extension, then there exists 

a unique closed linear operator T with the properties: 

(1) T is an extension of T1, 

(2) every closed linear extension of T1  is also an extension of T. 

In essence, T is the smallest closed linear extension of T1
. 

Theorem 2.2.2  

If T1is a continuous linear operator, then the extension T exists and 

is a continuous operator whose domain is the closure of the domain of Ti; 

also H T
111 = I I TII • 
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Theorem 2.2.3  

If T1 is a continuous linear operator whose domain is dense in X, 

then T is defined throughout X and is the only closed linear extension 

of Tl. 

Example 2.2.2  

From theorem 2.2.2 a closed extension of —exists and its domain X 
dE 

— is the closure of C1  (0). Theorem 2.2.3 guarantees the uniqueness of this 

extension if Cl(Th is dense in X. 

We now describe the nature of the extended operator T and its 

domain X. For this we will introduce the notions of generalised 

derivatives and Sobolev spaces. 

We define the space 

2(n) = 	e c°°(Th; 	has compact support in Q). 

Now suppose x is a locally integrable function on R. Then we have the 

following definition: 

Definition 2.2.5 

If there exists a locally integrable function y such that 

f x(E)Da(1)(E)dQ = 	(-1)lal  J Y(E)4)(E)clQ, 

for all 4  eX(n), then y is called the generalised derivative of x. 

If x is sufficiently smooth to have a continuous partial derivative 

Dax x in the usual sense, then Dax is also a generalised derivative of x. 

However, Dax may exist in the generalised sense without existing in the 

classical sense. When Q C 	we sometimes use the notation — dE to mean 

a derivative in the generalised sense. 



25 

Next we introduce Sobolev spaces. We restrict ourselves to the 

family of Sobolev spaces based on the L2(P) space. 

Define the norm 

IIxII m,n  = 
E 	II pax!' 2)1/2 

0<lal<m 

where II 	is the L2  (S2)norm, i.e. 

II xii  = 	rx2d01/2.  

Where no confusion can occur we write H m  as II 	m . , SI 

Definition 2.2.6  

The Sobolev space H
m
(0), m > 0 is defined as the completion of Cm(U) 

with respect to the norm II 'II 
m,R• 0 

The space HO  (S2) is in fact L2(Q). 

As with the space L2(0), the elements of H
m
(P) are equivalence 

classes of functions. 

It can be proved that H
m
(P) is a Hilbert space with inner product 

(x
1,x2

) = 	E 	) 
r a a 
D x

1
D x

2
dr). 

0<lal<m 0 

An equivalent definition of a Sobolev space is as follows: 

H (P) = {x e L
2
(1); D

a
x e L2(P) for 0 < 'al< m}, 

where D
a 
 x is a derivative in the generalised sense. 

An important subspace of rell(Q) is 1110:1)(P), the closure of0(P) in 

H
m
(P). A more illuminating characterisation of this space is 
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aj  
n ' a x = 0 on r , o < j < m-1} Hg (2) = {x e Hm(). 

v.  

a
v
ix where 	is the "j-order normal derivative on r". A definition of 3. 

a 
what we mean by —x  on r will be given in a later chapter. We also Dvj 

define the space H-m(n), m > 0 as the dual of the space H
0  (0). See 

Adams [1975] for these and many other results on Sobolev spaces. 

Example 2.2.3  

It is now easily shown that the closed extension of — dE discussed 

in example 2.2.2 is the generalised derivative D , its domain X is 

H
1
(0) and its range is in L2(Q). We can see that D is closed from 

the following: 

II DxIl = 	
r(Dx)2d01/2 < { f(x2 	(3x)2]d01/2 	xi 

I
i
I J. II n 

i.e. D is bounded. Hence the range of D is a closed subspace of 

L 2()) and so D is closed. 0 

Next we give a general theorem which gives a simple condition for 

an operator to be closed. 

Theorem 2.2.4  

Let X and Y be Banach spaces and T a bounded linear operator with 

domain D(T) C X and range in Y. If there exists an a > 0 such that 

II Tx II y 	a II x11 x 	Vx e D(T), 	(2.2.6) 

then T is a closed operator. 

Proof Let fxnI be a sequence in D(T) such that {Txn} converges to y e Y. 

Then from (2.2.6) {x
n} is a Cauchy sequence and converges to x e X. Now 

by the boundedness of T, {Txri} converges to Tx .2 y. Hence x e D(T) 

and the graph of T is closed. 	 CI 
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Finally we give some important results for linear and non-linear 

operators. 

Theorem 2.2.5 (see e.g. Rudin [1973], p.93) 

Suppose X and Y are normed spaces. To each bounded linear operator 

T:X Y there corresponds a unique bounded linear operator 

T*:Y* X* that satisfies 

<Tx,y*> = <x,T*y*> 

for all x e X and all y* e Y*. 

Definition 2.2.7  

The operator T* defined in theorem 2.2.5 is called the adjoint of 

the operator T. 

Definition 2.2.8 (Vainberg [1973], p.10) 

Suppose X is a Banach space. Then an operator T:X 4- X*  is said to be 

positive if 

<Tx,x> 	0, Vx e X. 

Definition 2.2.9  

Suppose X is a Banach space. Then the operator T:X X*  is said to 

be symmetric if 

<Tx1,x2> = <Tx2,x1> 	vxi,x2  e X. 	0 

We now give some results on the differentiation of operators. For 

these and other results see Vainberg [1973] or Tapia [1971]. Let X and Y 

be Banach spaces and T:X Y an operator which need not be linear. 
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Definition 2.2.10  

Let x and h belong to X and t be a real scalar and suppose 

DT(x,h) = 
lim  T(x+th) - T(x)  

t40 

exists. Then DT(x,h) e Y is called the Gateaux derivative or G-derivative 

of T at x in the direction h. 	 ❑  

In the case where Y is the real line, the mapping T is a functional 

on X. An alternative definition can then be given. 

Definition 2.2.11  

If f is a functional on X, the Gateaux derivative of f, if it 

exists, is 

Df(x,h) =
dt 

 f(x + th)]
t=0 

• 

Definition 2.2.12  

A functional f on X is said to be G-differentiable if Df(x,h) exists 

for all x e X and all h e X. 

Note that for each fixed x e x, Df(x,h) is a functional with respect to 

the variable h e X. 

Definition 2.2.13  

Suppose f is a functional on X, such that Df(x,h) is a bcanded linear 

functional. Then the unique element Of(x) a X* such that 

Df(x,h) = <Vf(x),h>, 	h e x 

is called the gradient of f at x. 
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Further, if X is a product space, i.e. X = Xi  x X2, then with 

x = (xi,x2), h = (111/12) we can define Vif(xi,x2) e Xi and 

V2f(xl,x2) e xl by 

Df(x,h) = <Vf(x),h> 

= 	<V
1
f(x

1
,x2 ,h1> 	+ 	<V2f(xi,x2),h2> 	. 

Xt 	X
1 	

X
2
* 	X2 

Then Vif(xi,x2) and V2f(xi,x2) are called the partial gradients of f. 

The extension to a product of more than two spaces is easily deduced 

from this. 

2.3 The Problems in an Abstract Setting  

In this section we shall show how the problems of section 2.1 may be 

put into an abstract form. All of the problems can be written in terms 

of a pair of adjoint operators T and T*. The main idea is to define 

T (or T*) as the closed linear extension of one of the differential 

operators in the problem. We then formally define the adjoint operator 

T* (or T). Then we give conditions under which the abstract equation 

involving T and T* is equivalent to our original problem. This approach 

is a generalisation of that of Fritdrichs (1939] to Banach space adjoint 

operators. 

Consider the first example of section 2.1. Equations (2.1.2) for 

this problem are 

du  
dE 

 

(2.3.1) 

dv _ 	= 
d 

f 

 

u(a) = u(b) = 0. 
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1 
We recall from section 2.2 that the space H0  (2) is the closure of the 

space of smooth functions satisfying the boundary conditions (2.3.1)3. 

Hence we can extend the operator TIT to the closed linear operator D 

defined on H
0 
 (Q). Therefore we define T to be the generalised derivative 

D with domain H01(Q) and range in L2(0). 

We can formally define the adjoint operator T*: (L2(Q))* H 1()) 

by 

(Tx,y) = <x,T*y*> 	Yx e o1(f/), vy*  e (1,2(0))* 	(2.3.2) 

with 	y* = Ty, 

where <.,.> is the duality pairing between H0
1
(1) and H 1  (Q). Then 

consider the problem 

TTu = v* 

(2.3.3) 

T*v* = f* 

where f* e H 1(0) is given. We want to show that equations (2.3.1) and 

equations (2.3.3) are equivalent in some sense. 

Recall that the integration by parts formula is valid for generalised 

derivatives, see Necas [1967]. Hence 

1 	1 
f Dx y dc2 = - f x Dy 	Yx e H

o (Q), Vy e H (0). 	
(2.3.4) 

Comparing with (2.3.2) we see that, with y* = Ty, 
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- f x Dy an = 	1 <x,T*y*> -1 	, Vx e H
o 
1 
 (o), Hy e H1(c2) 

HO  (P) H (Q) 

<x,T*y*>. 	, from section 2.2, 
L2  (S2) (L2(n))* 

= (x, T T-Ty). 

1 
Hence for all y e H (n) we maY identify T-1T*Ty with -Dy. Now let us 

assume that (2.3.1) has a solution (u,v) and further, let us assume 

that f e L2(n). Then we certainly have that v e H
1
(Q) and so T 1

T*Tv 

can be identified with -Dv. Let v* = Tv and f* = if, then equation (2.3.3)2  

can be identified with equation (2.3.1)2. Hence any solution (u,v) of 

(2.3.1) gives a solution (u,v* = iv) of (2.3.3). 

Let us now consider the problem with the boundary conditions (2.1.5), 

that is, 

du* 
dE 

dv* 
dC 

= v* 

= f* 

(2.3.5) 

V* (a) = v* (b) = 0 

In this case we define T* to be the extension of - TIT , 	i.e. -D, the 

1 
generalised derivative with domain H

o 
(St) and range in L2(0). Then (2.3.5)2 

and the boundary conditions (2.3.5)3  are given by T*v* = f*. 

We can formally define the operator T : (L2(Q))* 	H 1(R) as the 

adjoint of T*, that is, 

-1(0)
<Tx,y*> 1 	= (x*,T*y*), Vx* e L2(0), Vy* e Ho

1
(Q) 	(2.3.6) 

H H
o (0) 

with x* = TX. 
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Then consider the problem 

TTu = v* 

(2.3.7) 

T*v* = f* 

where f* e L2(S2) is given. We shall show that equations (2.3.5) and 

(2.3.7) are equivalent in some sense. 

The integration by parts formula for generalised derivatives is 

Dx*y*dfl = - j x*Dy*dn, Vx* e H1(0), Yy* e H
o
1(Q). 

Si 	 52 

Comparing with (2.3.6) we have, with x* = TX, 

Dx*y*dO = 	-1 	<Tx,y*> 	, vx e H
1 
 (n), Vy* e H 1(52) 

H (n) 	H0 (o) 

<Tx,y*> 

(L2(52))* 2(52) 

, 
= (TTT x*,y*). 

Hence for all x* e H
1
(Q) we identify TTT

-1
x* with Dx*. Let us acmlme 

that (2.3.5) has a solution (u*,v*). We also assume that f* e L2(52), 

in which case we certainly have that u* e H
1
(1). Hence TTT-1u* can be 

identified with Du*. Let TU = u*, then equation (2.3.5) can be identified 

with equation (2.3.7)1. Hence any solution (u*,v*) of (2.3.5) gives a 

solution (u = T
-1
u*,v*) of (2.3.7). 

All of the examples in section 2.1 can be put into an abstract form 

as we have just done for the first example. Here we briefly state more 

precisely the operators and spaces involved in examples 2, 3 and 4. 
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In Example 2 the equations are 

grad u = w 

V = Kw 

-div v = f. 

We may take the operator T to be grad in a generalised sense with domain 

X = H0  1(0) and range Y = (L2(P))
2. Then provided f e L2(0) we can 

interpret T*:[(L2(0))
2
)
* 

H (n) as -div, at least at the solution. 

The operator E:(L2(0))
2 ÷ [(L2(n))

2
]* is the tensor of heat transfer 

coefficients K. 

In example 3 the equations are 

d1.1 
dr 1' 

a = )(I 113  

- da 
dr 	22, 

Provided 	e 1,2(S/), the operators T and T* and the spaces X and Y are taken 

as in example 1, i.e. equation (2.3.1). The operator E:L2(n) -÷- fL2(1))* 

is defined by 

E (if) = ky 1/3 

For the fourth example 

grad u = w 

V = TW 

-div v + ceu = 0 I* 
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we take T and T* and X and Y as in example 2. The operator 

- F:H
o
1(0) 	1 H (P) is a non-linear operator given by 

(u) = ceu  

for which we certainly have the range of F, R(F)C 1,2(c). 

2.4 The Simplest Abstract Problem  

The main result of this section is a proof of the existence and 

uniqueness of a solution to the abstract problem: 

given f e X*, find (u,v) e X x Y* such that 

tTu = v 

	

T*v = f 
	

(2.4.1) 

where X and Y are Hilbert spaces with duals X* and Y* respectively and 

where T:X -A- Y and T*:Y* X* are linear adjoint operators and t is the 

canonical isomorphism from Y to Y. The result is an adaptation of a 

result of Brezzi [1974] to the abstract form we are considering here. 

First we state some standard theorems that will be needed for this proof. 

Let Z = N(T*), the null space of T*, and define the annihilator Zo 

of Z as follows: 

	

z0 = {y e Y; 	<y,z> = 0, Vz e Z}. 	(2.4.2) 

See figure 2.4.1 for the relationship between the spaces and operator. 

Then we have 
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Theorem 2.4.1 (Banach's Closed Range theorem; see Yosida [1965], p.205) 

Let X and Y be Banach spaces, and T a closed linear operator 

from X into Y such that D(T) is dense in X. Then the following 

propositions are all equivalent: 

R(T) is closed in Y, 

R(T*) is closed in X*, 

R(T) = Z0, 

R(T*) = N(T)0. 

Figure 2.4.1 Spaces and operators for the abstract problem 

We now characterise the dual of Z0. 

Lemma 2.4.1 (c.f. Brezzi [19741) 

(Z
0
)* = Z 

Proof 

(z )* = {z* e Y*; z* = Ty for some y e Zs"} 

= fz* e Y*; z* = Ty for some y such that 

<y,z> = 0, Vz e zl. 
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However <y,z> = (Ty,z). 

Hence 	(Z
o
)* = {z* e Y*; (z*,z) = 0, Vz e Z} 

i.e. 	(z0)* = 

The next theorem gives conditions under which the adjoint operator 

T* is a bijective operator. 

Theorem 2.4.2 (see for example Rudin [1973], p.94) 

Let X and Y be Banach spaces and T:X -* Y a bounded linear operator. 

Then R(T) is dense in Y iff T* is a bijective mapping. 0 
We are now in a position to give the main result of this section. 

Theorem 2.4.3 

Problem (2.4.1) has a unique solution if a > 0 such that 

II Tx11
Y — 
	X , vx e x . 	(2.4.3) 

Proof We divide the proof into three parts, the first two of which 

we shall make use of in subsequent theorems. 

(1) From theorem 2.2.4 and inequality (2.4.3), T is a closed operator 

and since the domain of T is closed, R(T) is closed. Hence from Panach's 

closed range theorem 2.4.1 we have R(T) = Z0. Therefore T is a surjective 

operator onto Z
0 
 and from (2.4.3), T is injective. Hence T is an 

isomorphism from X to Z0. 

(2) Now from lemma 2.4.1, (Z0)* = Zj-  and so using theorem 2.4.2, 

replacing Y by Z0, we have T* is a bijective map and hence an isomorphism 

from Zj" to X. 

(3) Hence, given an f e X*, (2) shows that there exists a unique 

v e Z1  C Y* 	satisfying 



A2d0 > c2 f x
2
clQ, dE Yx e H

o 
(c2) 

SI 
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T*v = f . 

From lemma 2.4.1 I'
1
vEldez

0 
 . Hence (1) shows there exists a unique 

u e X such that 

Tu = 

see figure 2.4.2. Therefore there exists a unique (u,v) e x x Y* 

satisfying problem (2.4.1). 

Example 2.4.1  

Recall the first example of section 2.1 which we put into an abstract 

d form in section 2.3. The operator T is the generalised derivative -d-k 

with domain X = H0  1(0) and range in Y = L2(Q). To prove the existence 

and uniqueness of a solution to this problem using theorem 2.4.3, we 

need only show that there exists a > 0 such that 

II > 	(s.0  , 

2 L (SI) 

1 Vx e H
o (0). 

This inequality follows from the Poincare-Friedrichs inequality, see, e.g. 

Necas [1967]. This can be written as 

Figure 2.4.2 The solution of the abstract problem 
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where c is a constant. From this we see that for 0 < S < 1, 

II dx ii  2 
de II 	2 $ x2dx + (1 - a) j d dx 2d  > 8c 	x 	0 

L2(0) 	0 

> a211 x11 
H

2 

 
1
(Q) 	

vx e H
o
1(0) 

where a2  = max(0c2, 1 - a). Hence example 2.1.1 has a unique solution 

u in the space H
0
1  (n). 

By adapting  a theorem of Brezzi [1974] we have shown that problem 

(2.4.1) has a unique solution provided inequality (2.4.3) is satisfied. 

In later chapters we shall greatly extend this theorem to more complex 

linear problems and to non-linear problems. 

EI 
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CHAPTER 3 

VARIATIONAL PRINCIPLES 

3.1 Saddle Functionals  

The concept of a saddle functional provides an intuitive way of 

looking at the variational principles we shall derive for the abstract 

problem of Chapter 2. In particular the relationships between the 

variational principles can be seen in a very graphical way using this 

concept. In this section, we define and give some relevant results 

regarding convex, concave and saddle functionals. 

Definition 3.1.1 (Luenberger [1969], p.190) 

A functional F(x) defined on a convex subset X of a linear vector 

space is said to be convex if 

F(axi  + (1-a)x2) < aF(xl) + (1-a)F(x2) 	(3.1.1) 

for all xl, x2  e X and all a, 0 < a < 1. F is said to be strictly convex  

if the inequality of (3.1.1) is strict for all xl, x2  e X, xl  x2. 	13 

We usually deal with G-differentiable functionals and in this case 

we have an equivalent definition of a convex functional. 

Lemma 3.1.1  

If F : X ÷ 	is G-differentiable in X then the following are 

equivalent statements: 

(i) F is (strictly) convex in X 

(ii) F(x
1 
 ) - F(x

2
) - <VF(x2 ' 1 ) x -x

2 
 > > 	Vx

1 
 ,x

2  G X. 	(3.1.2) 
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Proof 	(i) => (ii) . From (3.1.1) we have 

F (axi  + (1-a) x2) - F (x2) < (<)a (F (xi) - F (x2) ) 

i.e. F (x2 + a (x1-x2) ) - 	x2) 

a 	< (<)F(x1) - F (x2). 

Taking the limit as a -* 0 we have 

<VF(x2), xl-x2> < (<)F(xl) - F(x2). 

(ii) => (i) . From (3.1.2) we have 

F (x2) - F (x2+a (x1-x2) ) - <VF (x2+a (x1-x2) ) ,x2  - x2  - a (x1-x2)> > (>)0, 

i.e. F (x2) - F (x2+a (xl-x2) ) + a<VF (x2+a (xl-x2) ) ,x1-x2> > (>) 0. 	(3.1.3) 

Also from (3.1.2) we get 

F (x1) - F (x2+a (x1-x2) ) - <VF (x21  +a (x -x2  ) ) ,x1  -x2  -a (x1  -x2  ) > > (>)0, 

i.e. F (x1) - F (x2+a (x1-x2) ) - (1-a) <VF (x2  (x1  -x2  ) ) ' x1  -x2  > > (>)0. (3.1.4) 

Then (1-a) times (3.1.3) plus a times (3.1.4) gives 

(1-a)F (x2) - (1-a )F (x2+a (x1-x2) ) + aF (x1) - aF (x2  +a (x1  -x2  ) ) > 

i.e. 	aF(x1) + (1-a)F(x2  ) > (>)F(ax1  + (1-a)x2) • 
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Definition 3.1.2  

A functional F : X (R is said to be (strictly) concave iff - F 

is (strictly) convex on X. 

Lemma 3.1.2  

If F : X + fR is G-differentiable in X then the following are 

equivalent statements: 

(i) F is (strictly) concave in X, 

(ii) F (x1) - F (x2) - <VF(x1), x1x2> > 	. 	(3.1.5) 

Proof From lemma 3.1.1 and definition 3.1.2 

(i) <=> -F(x1) + F(x2) - <V(-F(x2)), xl x2> > 

F(x2) + F(x1 
 ) - <VF(x

22  
), x2 > > 

 -- 

F (x1) + F (x2) - <VF (x11  ) , x -x2  > > 

since x
1 and x2 are arbitrary elements of X. 

Theorem 3.1.1  

If F is G-differentiable and strictly convex (concave) on X, then 

• F has a unique minimum (maximum) point u, i.e. 

F(u) < (>)F(x), Vx e x, x 	u. 

Proof Let F be a strictly convex functional and suppose F has two 

minimum points ul  and u2, i.e. 

F(u1) = F(u2) < F(x), Vx e x, x 	x 	u2. 

Now from the definition of strict convexity, definition 3.1.1, with 

1 
x = 	+ 7122, we have 

< = > 

< = > 
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F (x) < 1 — F (u1 	2 
1 ) + — F (u2  ) = F (u1) = F (u2) . 2  

Hence we have a contradiction and so there exists only one minimum u 

of F(x). Similarly when F is strictly concave there is a unique 

maximum. 

We now define a saddle functional and give some of its properties. 

For a wider discussion of saddle functionals as well as convex and 

concave functionals see Noble-Sewell [1971]. 

Definition 3.1.3  

A functional L : Xx 	JR is called a convex-concave saddle 

functional if L(x,y) is convex in x for every y e Y and concave in y 

for every x e X. See figure 3.1.1. 

Figure 3.1.1 A convex-concave saddle functional 
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Remark 3.1.1 We can similarly define a concave-convex functional in 

the obvious manner. When it is not relevant to distinguish between 

the two we drop the prefix and just call the functional a saddle 

functional. 

Lemma 3.1.3  

If L XxY -4- fR is G-differentiable then the following are 

equivalent statements: 

(i) L(x,y) is a convex-concave saddle functional on XxY, 

(ii) L(x1,171) - L(x2,y2) - <V1L(x2,y2), xl  - x2> 

- <V2L(x1,y1),y1  - y2> > 0, Vxi,x2  e X, Vy1,y2 
 e Y. 

(3.1.6) 

Proof (1) => (ii). From lemma 3.1.1 we have for y2  e Y, 

L(x1,y2) - L(x2,y2) - <V1L(x2,y2), xi  - x2> 	o vx1,x2, e X. 	(3.1.7) 

From lemma 3.1.2 we have for x1  e X 

L(x1,y1) - 1,(x1,y2) - <V2  L(x1 ,Y11 ), Y. 	Y2> > 0 Vy1 
 ,y
2 
 G X. 	(3.1.8) 
 

Adding (3.1.7) and (3.1.8) we have 

L(x1,y1) - L(x2,Y2) - <V1L(x2,y2), xi  - x2> 

- <V21,(x1,y1), y1  - y2> 	0 Vxl,x2  e x, Vy1,y2  e Y. 
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(ii) => (i). Let y = yl  = y2  e Y in (3.1.6), then 

L(xl,y) - L(x2,Y) - <V1L(x2,Y), xl  - x2> 	0 Vxitx2  e x, 

i.e. L(x,y) is convex in x for any y e Y. 

Let x = xl  = x2  e X in (3.1.6), then 

L(x,y1) - L(x,y2) 	<V2L(x,y1),y1  - y2> > 0 
	

Vy1,y2 
e Y,  

i.e. L(x,y) is concave in y for any x e X. 

Definition 3.1.4  

L(x,y) is called a strict saddle functional if 

L(xl,y1) - L(x2,y2) - <V1L(x2,Y2), xl  - x2> 

- <V
2
L(x

1
,y
1
), y

1 
- y

2
> > 0 

for all 
x1,x2 

e X, x1 x
2
, Vy

1
,y
2 
e Y, y

1 
y
2
. 

Definition 3.1.5 (Cea [1971], p.196) 

A point (u,v) e XxY satisfying 

L(u,y) < L(u,v) < L(x,v) 	Vx e X, Vy e Y, 	(3.1.9) 

is called a saddle point of L(x,y). 

Remark 3.1.2 A functional having a saddle point need not be a saddle 

functional. Conversely we have the following lemma. 

Lemma 3.1.4  

If L : XxY 4- IR is a saddle functional then any stationary 
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point of L(x,y) is a saddle point. 

Proof Suppose L(x,y) has a stationary point at (u,v) e XxY, i.e. 

SliL(u,v) = 0 	 (3.1.10) 

and 

	

V2L(u,v) = 0. 	 (3.1.11) 

Let x2 = u and y1 = y2 = v in (3.1.6), then using (3.1.10) we get 

	

L(xl,v) - L(u,v) > 0 	Vx1  e X. 	(3.1.12) 

Now let xi  = x2  = u and y1  = v in (3.1.6), then using (3.1.11) we get 

	

L(u,v) - L(u,y2) > 0 
	

vy2  e Y. 	(3.1.13) 

Then (3.1.12) and (3.1.13) imply (u,v) is a saddle point of L(x,y). 

3.2 A Variational Principle  

In this section we derive the most general variational principle 

associated with the abstract problen given in Chapter 2, i.e. 

1-Tu = v 
(3.2.1) 

T*v = f . 

The main result is theorem 3.2.1 which shows that any solution of the 

abstract problem (3.2.1) is a solution of the following variational 

problem: 
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find (u,v) e XXY* saddle point of 

(3.2.2) 

1 
L(x,y*) = <Tx,y*> - .57 <t

-1 
 y*,Y*> - <x,f>, x e X, y* e Y*. 

This is related to the Hellinger-Reisner principle of linear elasticity. 

We first show that L(x,y*) is a convex-concave saddle functional. 

Lemma 3.2.1 

L(x,y*) is a convex-concave saddle functional. 

Proof Let xl, x2  e X and 111*, y2* e Y*, then using lemma 3.1.3 we have 

L(x1,y1*) - L(x2,y2*) - <V1L(x2,Y2*), xl - x2> 

- <V2L(x1,y1*), y1*  - y2*> 

= <Tx
1
,y
1
*> - 1 — <1-1 * 	*> - < 2 	Yl  

1 - <Tx2,y2*> - -2- <T-1  y2w,y2w> — <x2,f> 

- <Tx1,y2*> + <Tx2,y2*> + <xl,f> - <x2,f> 

- <Tx
1,Y1

*> + <Tx
1
,y
2
*> + <T-1y

1
*,y

1
*> - <T-1y1*,y2*> 

1 —1 17 
	

—l 	1 —1 * le> = —2— ‹T Y1*, 1*>  — <1  Yi*,Y2> 	‹T Y2  ,Y2  

1 —1 	 1 
= --<T (1,1*-Y2*), Y1* - Y2*> = 	(Y1*-1,2*,171*-y2*) > 0. 2 

Hence L(x,y*) is a convex-concave saddle functional. 

Remark 3.2.1 Note that the strict inequality holds for all yl*, y2* e Y*, 

yl* 

	

	y2*. Hence from definition 3.1.4, L(x,y*) is a strict saddle functional. 

We now state the relationship between problem (3.2.1) and problem (3.2.2). 
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Theorem 3.2.1  

Assume the hypothesis of theorem 2.4.3. Then L(x,y*) has a unique 

saddle point (u,v) e XxY*. Moreover (u,v) is the solution of problem 

(3.2.1). 

Proof We compute the Gateaux derivatives of L(x,y*) at (u,v) and 

deduce that 

(1) 
	

<V
1
L(u,v), x> = <Tx,v> - <x,f> 

= <x,T*v> - <x,f> = 0 Yx e X 	(3.2.3) 

iff T*v = f. 

(2) 
-1 

<02L(u,v),y*> = <Tu,y*> - <1.  v,y*> = 0 Vy* e Y* 	(3.2.4) 

iff T
-1
V = Tu 

i.e. iff 	v = TTu. 

Hence (u,v) is a stationary point of L(x,y*) iff T*v = f and v = TTu. 

Therefore from theorem 2.4.3 there exists a unique stationary point 

(u,v) of L(x,y*) where (u,v) is the solution of.problem (3.2.1). Further 

as L(x,y*) is a saddle functional (lemma 3.2.1), (u,v) is a saddle point 

of L(x,y*) by lemma 3.1.4. 

Example 3.2.1  

The variational problem for the first example of Chapter 2, equations 

(2.3.1), is: find (u,v) e H0  1(n) x L2(n), saddle point of 

dx  
L(x,y*) = f dE 	

1 
y* - --y* - xf)dn, x e H

1
(n), y e L2(0). 2 2 
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Note that the last term can be written as 

5 xf dfl  

since we have assumed that f 8 L2(n), see section 2.3. 

3.3 Complementary Variational Principles 

In this section we show that any saddle functional with a saddle 

point can give rise to a pair of complementary extremum principles. 

The essential idea is to restrict the domain of the saddle functional in 

such a way that it still contains the saddle point but provides us with 

a simpler functional. 

We restrict the domain of L(x,y) to those points which satisfy the 

constraint V1L(x,y) = 0. Let us denote the restricted domain by 

= {(x,y) e XXY; ViL(x,y) = o 1 . 	(3.3.1) 

Remark 3.3.1 A saddle point (u,v) of L(x,y) belongs to ,9)3.  since 

V
1  L(u,v) = 0. 

Theorem 3.3.1  

Any saddle point (u,v) of L(x,y) on X xY is a maximum point of L(x,y) 

on 211. 

Proof From (3.1.6) we have 

L(x1,y1) - L(x2,y2) - <V2L(x1,1,1), yl  - y2> 2.0 	(3.3.2) 

for all (x1.171), (x2,y2) e 	21. 
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Now let (x1,y1
) be the saddle point (u,v), then 

L(u,v) - L(x2,y2) > 0, 	v(x2,y2) e :D • 

Hence (u,v) is a maximum point of L(x,y) on 11' 	0 

In most of the applications it will be the case that L : 

31
1 
 + ll? can be denoted by a functional of the single variable y, i.e. 

as K : Y
1 4- fR , where 

= {y e Y;  3 x e x s.t. (x,y) e 	. 

This may arise because the constraint V1L(x,y) = 0 provides an explicit 

relationship for x in terms of y. Also if L(x,y) is linear in x then 

V
1
L(x,y) is "the coefficient" of x. Hence on 01 the coefficient of x 

in L(x,y) will be zero and so we can set L(x,y) = K(y). 

Lemma 3.3.1 

If we can write L 1 	IR as K : Y1 -9- fR , then K(y) is a 

concave functional on Y1. Further, if L(x,y) is strictly saddle cn 5)1 
then K(y) has a unique maximum point. 

Proof From (3.3.2) we have 

K(y1) - K(y2) - <VK(yi), yl  - y2> > 0 
	

Vy1,y2 6 Y1. 

Hence from (3.1.5), K is a concave functional. When L(x,y) is a strict 

saddle functional on ID1 we have 

K(y2) 	<VK(y1),171 	y2> > 0 	Vy1,y2  e Y1, Yl 	y2. 

Hence K is strictly concave and from theorem 3.1.1 has a unique maximum. 0 
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The domain of L(x,y) can be restricted by another constraint. 

We let 

OD2 = f(x,y) e XxY; 	V2L(x'y) = 01. 
	

(3.3.3) 

Remark 3.3.2  A saddle point (u,v) of L(x,y) belongs to ,2,I2  since 

V
2
L(u
'v) = 0. 

Theorem 3.3.2  

Any saddle point (u,v) of L(x,y) on XxY is a minimum point of 

L(x,y) on j)2. 

Proof From (3.1.6) we have 

L(x1,171) - L(x2,Y2) - <V1L(x2,y2), xl  - x2> > 0 	(3.3.4) 

V(xlyi), (x2,y2) e J)2  

Now let (x2,y2) be the saddle point (u,v), then 

L(x1,y1
) - L(u,v) > 0 
	v(x1,1,1) e 

	

Hence (u,v) is a minimum point of L(x,y) on M2' 	❑  

As before we may be able to write L : 2 4  In as a functional 

of a single variable x, i.e. as J : X
2 
4 J  , where 

X2 = {xeX; 3 y e Y s.t. (x,y) e 12}. 

Lemma 3.3.2  

If we can write L : 5) 2  4  jp, as J : X2  + 	, then J (x) is 
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a convex functional on X2. Further, if L(x,y) is strictly saddle on 

5)2' then J(x) has a unique minimum point. 

Proof From (3.3.4) we have 

J(xl) - J(x2) - <VJ(x2), xl  - x2> 10 	8x1,x2  e x2. 

Hence from (3.1.2), J is a convex functional. When L(x,y) is a strict 

saddle functional on 02 we have 

J(xl) - J(x2) - <VJ(x2), xl  - x2> 	0 	Vx1,x2  e x, xl  # x2. 

Hence J(x) is strictly convex and from theorem 3.1.1 has a unique minimum 

point. 	 ❑  

Therefore from the saddle point problem (3.2.2) based on the saddle 

functional L(x,y) we have derived 

(i) a maximum problem: 

find v e Y
1 

s.t. 	K(v) = max K(y), 

which is based on the concave functional K(y). 

(ii) a minimum problem: 

find u e x1  s.t. J(u) = Min J(x), 
xeXi 

which is based on the convex functional J(x). Hence (i) and (ii) can be 

regarded as complementary extremum principles in the sense that 

Min J(x) = J(u) = L(u,v) = X(v) = Max K(y), 
xexi 	 yeY1  

yeY1 

see figure 3.3.1. 
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Figure 3.3.1 • Complementary extremum principles 

3.4 The Minimum Potential Energy and Complementary Energy Methods  

We apply the theory of section 3.3 to the saddle functional (3.2.2). 

Restrict the domain XxY* of L(x,y*) to those (x,y*) satisfying V1L(x,y*) = 0, 

i.e. :pl. From (3.2.3) :7/),. is (x,y*) a XxY* such that 

T*y = f. 

Hence we take 01= X1 x Y1 with X1 = X and 

Y1 	Zf  = {y e Y; T*y = f}. 

Remark 3.4.1 Zf  is a linear variety and when f = 0 we have the linear 

space Zo  = Z = {y e Y; T*y = 0). (:3 

Now from (3.2.2) and theorem 2.2.5 we have 

L(x,y*) = <x,T*y> - 221  <T-iy*,y*> - <x,f> 	Vx E X, VI,* e Zf  

1 -1 - — <T y*,y1t> E K(y*). 2 (3.4.1) 



53 

We see that L(x,y*) is a functional of the variable y only, in this 

case because L(x,y*) on XxY* is linear in x. Then we have the 

following theorem: 

Theorem 3.4.1  

The concave functional K : Zf 	IR defined by 

 

K(y*) = - 1 — <T 1 y*,lry 2 

 

(3.4.2) 

I 

has a unique maximum at y* = v, where (u,v) is the solution 

of (3.2.2). 

Proof From theorem 3.3.1, K(y*) has a maximum point v, where (u,v) is 

the saddle point of (3.2.2). From lemma 3.3.1 and remark 3.2.1, K(y*) 

is a concave functional with a unique maximum. 

Remark 3.4.2  In the context of elasticity the problem of finding the 

maximum of K(y) is called the complementary energy principle. 

Example 3.4.1  

The saddle functional for example 1 of Chapter 2 is, see example 3.2.1, 

dx 
Y* 
	y*2 	xf )cin  L (x,y*) 	j 

dE 	2 (3.4.3) 

with domain Ho1(11) x L2(n). We restrict the domain to those y* satisfying 

—
dE 	

f. 

Hence 5)1 = H01(S1) x Zf 
where 

	

zf  = {y* E L2(n); 	f } 
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Now using the adjoint relationship (2.3.4) we see that on JD 

L(x,y*) reduces to 

K(y*) = - 
1 
— 

r 
y*
2 	

y* e Zf . 2 

Theorem 3.4.1 shows that v is the unique maximum point of this functional. 0 

Now restrict the domain 3i X Y* of L(x,y*) to those (x,y*) e x x y* 

such that V2L(x,y*) = 0, i.e., such that 

- 
T 
1 
 y- = Tx 

or 	y* = TTx. 	 (3.4.4) 

Hence we take n2 = X2 x Y2, where X2 = X and Y2 = Z-L  from part (2) 
of theorem 2.4.3. Therefore from (3.2.2) we have 

L(x,y*) = <Tx,y*> - 1 — <T
-1  y*,y*> - <x,f>, Yx e X, Vy* e Z 2 

= 1 —<Tx,TTx> - <x,f>. 2 

We see that L(x,y*) is a functional of the variable x only since (3.4.4) 

* i provided us with an explicit relaticnship for y n terms of x. 

Theorem 3.4.2 

The convex functional J : X + 	defined by 

J(x) = 1 — <Tx,TTx> - <x,f> 2 (3.4.5) 

has a unique minimum at x = u, where (u,v = TTu) is the solution of (3.2.2). 



55 

Proof From theorem 3.3.2, J(x) has a minimum point u where (u,v) is 

the solution of (3.2.2). From lemma 3.3.2 and remark 3.2.1, J(x) 

is a convex functional with a unique minimum. 

See figure 3.4.1 which shows the functionals with the assumptions 

relating each functional. 

Remark 3.4.3 In elasticity theory the problem of finding the minimum 

of J(x) is called the principle of minimum potential energy. 

Example 3.4.2  

We restrict the saddle functional (3.4.3) to those (x,y*) e Hol m) x 

L2  (S2) satisfying 

dx 
dE = 

y*.  

Hence (3.4.3) can be written as 

J 
(x)  = 2, r  r(dx ) 

. - 
2 	

xf] 	, x e H
0
1 
 (Q). 

2 J 	 dE  

Theorem 3.4.2 shows that u is the unique minimum point of this functinnal. 

T*y* = f 
	

y = TTx 

Figure 3.4.1 The functionals for the abstract problem. 
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CHAPTER 4 

THE EXTENDED ABSTRACT PROBLEM  

4.1 The Extended Abstract Problem  

In this chapter we introduce an extension of the abstract problem 

of Chapter 2 so that we can easily deal with problems having a 

constitutive relation which is not the identity mapping, e.g. example 

2 of section 2.1. We introduce a linear operator E:Y Y* and consider 

the problem: 

givenfeX*, find (u,w,v) e X x Y x Y* such that 

Tu = w 

Ew = v 
	

(4.1.1) 

T*v = f, 

where the spaces X, Y, X*, Y* and operators T, T* are as defined in 

section 2.4. The second of equations (4.1.1) represents the constitutive 

relation we wish to introduce. In this section we shall prove an 

existence and uniqueness theorem for problem (4.1.1). The rest of the 

chapter is devoted to the derivation of all the variational principles 

associated with this extended abstract problem. 

The proof of the existence and uniqueness of a solution to this 

problem closely follows theorem 2.4.3. Therefore we shall only prove 

the extension that is needed to theorem 2.4.3 to cope with problem 4.1.1. 

First we state some theorems we shall need. 

Theorem 4.1.1 (Lax-Milgram [1954]) 

Given a continuous bilinear form a(x1,x2):X x X 4 (R for which 

there exists a > 0 such that 
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a(x,x) > all xn 2 
	

Vx e x, 	 (4.1.2) 

then the problem: 

given f e X*, find u e X such that 

(4.1.3) 
a(u,x) = <f,x> 	Vx e X, 

has a unique solution. 

Remark 4.1.1 Condition (4.1.2) is sometimes called X-ellipticity. 

Lemma 4.1.1 Let Z and Z°  be defined as in section 2.4, then 

0 = 

Proof Recall that 

Z = {y* e Y*; T*y* = 0} 

Now 

Z* = {z* e Y; z* = T-1  z for some z e z} 

Hence 

(Z*) 	= {y e Y; (z*,y) 	= 0 	Vz* e Z*} 

= {y e Y; <z,y> = 0 	Vz e Z} 

= Z0 

Theorem 4.1.2 (Yosida [1965], p.43) 

A linear operator E:X Y admits a bounded linear inverse E-1 R(E) C Y 

X iff there exists a > 0 such that 

fl Ex11y> aIixl1 X 	Vx e X. 	(4.1.4) C3 
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We are now in a position to prove the extension required to 

theorem 2.4.3. In this we proved (1) that T is an isomorphism from 

X onto Z0  and (2) that T* is an isomorphism from Z 	onto X*, see 

figure 4.1.1. Hence we concluded that there exists a unique v 8 Z 

such that 

T*-1", = f. 	 (4.1.5) 

The next stage of the proof is to find a unique w e Z0  such that 

Ew = v + 2 where 2 is any element of Z. 

Theorem 4.1.3  

If there exists al, a2  > 0 such that 

II EYII y* 	Ylly 

-  
<E

1  z,z> > a2H zil Y* 

Vy e D(E), 	(4.1.6) 

Vz e z, 	(4.1.7) 

and R(E) = Y*, then for any v e 	we can find a unique w 8 Z
0 
 such 

that v E v + z = Ew, where Z is an element of Z. 

Proof From theorem 4.1.2 and (4.1.6) E
-1  is a bounded linear operator. 

Hence E
-1 
 i v is a unique element of Y. From lemma 4.1.1 we can represent 

-1_ 
E v by 

-1- 	0 0 
E v = z

o + z* 	where z 	Z , 	z* e z*. 
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Since E
-1 is bounded, <E

1
y
1
,y
2
>: Y* x Y* 	IR 	is a continuous 

bilinear form. Also (4.1.7) is satisfied, so from theorem 4.1.1, given 

z* e Z* there exists a unique i e Z such that 

1_ 
<E z,z> = -<z*,z> Vz e z, 

_ see figure 4.1.1. Therefore there exists a unique w = E 1 (, z) for 

which 

<w,z> = <z
0 
 + z* - z*,z> 

	
vz e z 

= <z
0
,z> = 0, 

since z0  e Z
0
. Hence w e Z

0
. 	 0 

Therefore we have the following theorem concerning problem (4.1.1). 

Figure 4.1.1 The spaces in the extended abstract problem 
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Theorem 4.1.4  

Problem (4.1.1) has a unique solution if there exists a
l
, a

2
, a

3 
> 0 

such that 

(i) II Ta y  > «IIIxII x 
	vx e x 

(ii) EY I I y* 	a2 II 17 11 y 
	Vy e D(z) 

(iii) <E-1z, z> > a311 zil y* 	Vz e z, 

and R(E) = Y*. 

Proof. From theorem 2.4.3 and theorem 4.1.3. 

Example 4.1.1  

Recall example 2 of section 2.1. The equations are 

grad u = w 

Kw = v 
	

in St 

-div v = f 

with 
	

u = 0 on r. 

Setting T = grad, T* = -div and E = K, this can be put into the form 

(4.1.1) when we take X = H01  (SZ) and Y = (L2(Q))2. Then X* = H 1(Q) 

and Y' = (L2(Q))
2
. T and T* are of course considered as extensirns of 

the operators grad and -div as in example 2.4.1. 

To prove the existence and uniqueness of a solution to this problem 

we have to show that the conditions of theorem 4.1.4 are satisfied. 

Condition (i) is satisfied for 

II Tx11 2 	
2 	f _ t ax )2 4. (ax ) 2_ 	> Jd 	amxm

H 
1
(n ) 

= 	[ 
- a

2 (I,2(Q)) 	
1 

(4.1.8) 
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1 for all x e H
0 
 (1) using the Poincare-Friedrichs inequality as in 

example 2.4.1. To prove condition (ii) we assume that the tensor K 

is symmetric and positive definite. Then we have 

= sup 	
(Ky,y*) 	>  <Ky,y>  

(L
2
(0) )

2 y*e (L2 (q) ) 2 	I Y*  II —  111'11 
(L2(0))

2 	a, 	2 
2(a)) 

 
(4.1.9) 

However, 

<Ky,y> = f 
(k11y1

2 + 2k
12y1y2 k22Y2

2),n 
 

> f [k11y1
2 
+ k22y2

2 
- k12(y1

2 
+ y2

2)]d0 

>  2  all  . — 	
(L2(n))

2 ' (4.1.10) 

where y = (1,1,Y2) and a = min[k11-k12, k
22 k21]. From (4.1.9) and 

(4.1.10) we have 

II KY II 
(L2 (0) ) 

2 	allYll 	

2(0))
2 ' 
	Vy e (L2(m)

2 . 

Hence if K is a symmetric and positive definite tensor, we have a > 0 

and so condition (ii) is satisfied. The inverse K
1 of K is also 

symmetric and positive definite, hence the inequality (4.1.10) will apply 

to K
1 and so condition (iii) is also satisfied. Therefore example 2.1.2 

has a unique solution if K is symmetric positive definite. 
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4.2 More on Saddle Functionals  

In this section we show how the concepts of convexity and saddle 

functionals can apply to functionals whose domains are product spaces. 

Let W = X x Y be a real Hilbert space with dual W* = X*)(Y*. 

Then we have 

<w*,w> = <x*,x> + <y*,y>, Vw e w, w* e w*, 

where w = (x,y) and w* = (x*,y*), x e X, y e Y, x* e X* and y* e Y*. 

From definition 3.1.1, F:W 	is a convex functional if 

F(awl  + (1-a)w2) < aF(wi) + (1-a)F(w2), Vwl,w2  e W. 

Then if wl  = (x1,171) and w2  = (x2,y2) this definition becomes 

F(ax, + (1-a)x2, ayi  + (1-a)y2) S aF(x1,171) + 

(1-a)F(x2,y2), Vx1
,x
2 
e X, 

y1,y2 
e Y, 0 < a < 1. 

(4.2.1) 

Now if F is G-differentiable on W then 

<VF(wi),w2> = <V1F(xl,y1),X2> + <V2F(x1,1,1),y2> 

where. ViF, i = 1,2 are the partial G-derivatives of F. Hence from 

lemma 3.1.1 the convexity of F on X X Y is equivalent to 

F(x1,171) - F (x2,y2) - <V1F(x2,y2), 

(4.2.2) 
- <V2F(x2,y2),171-y2> LO, Vxl,x2  e X, yi,y2  e Y. 
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We can of course define concave functionals on product spaces in a 

similar way. Also the extension to the product of n spaces, n > 2 

is obvious. However, as we shall not be using products of more than 

two spaces, we do not give the more general form. 

It is now straightforward to define a convex-concave saddle 

functional L:(XxY) x Z + rR 	which is convex on X x Y and concave 

on Z. when L is G-differentiable we have 

L((x
1
,y1),z1) - L((x2,y2),z2) - <V1L(x2,y2,z2), x1 

 - x2  > 

- <V2L(x2,Y2,z2), yl  - Y2> - <V3L(x1,y1,z1), z1  - z2> > 0 
	

(4.2.3) 

for all x1,x2  e X, y1,y2  e Y, zi,z2  e Z. 

Note that where no confusion arises we write L((x,y),z) as L(x,y,z). 

From definition 3.1.5 a saddle point ((u,w),v) e (XxY) x Z of L(x,y,z) 

satisfies 

L(u,w,z) < L(u,w,v) < L(x,y,v) 	 (4.2.4) 

for all x e X, y e Y, z e z. 

4.3 The Extended Variational Principle  

The main result of this section is to give conditions under which 

we can derive a variational principle for problem (4.1.1). We shall show 

that any solution of problem (4.1.1) is a solution of the problem: 

find ((u,w),v) e (XxY) x Y*, saddle point of 
(4.3.1) 

L(x,y,y*) = <Tx,y*> - <y,y*> + ;- <y,Ey> - <x,f> , 

where the spaces and operators are as in problem (4.1.1). 
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Throughout the rest of the chapter we assume that D(E) = Y. However, 

all the results are valid for D(E) a dense subset of Y. 

Remark 4.3.1 In the context of elasticity this variational principle 

is sometimes called the Hu-Washizu principle. 

Lemma 4.3.1  

(u,w,v) is a stationary point of L(x,y,y*) iff 

T*v = f, 

v = Ew, 

Tu = w. 

Proof 	V
1L(u,w,v) = 0 

< = > 	<V
1
L(u,w,v),x> = <x,T*v> - <x,f> = 0 

	
vx e x 

<=> 	T*v = f. 

V2L(u,w,v) = 0 

<=> 	<V2L(u,w,v),y> = -<y,v> + <y,Ew> = 0, 	Vy e Y 

<=> 	v = Ew. 

V3L(u,w,v) = 0 

< = > 	<V3L(u,w,v),y*> = <Tu,y*> - <w,y*> = 0, Vy* e y* 

<=> 	Tu = w. 

Lemma 4.3.2  

Suppose E is positive and symmetric. Then L(x,y,y*) is a saddle 

functional, convex in XXY and concave in Y*. 
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Proof Inequality (4.2.3) is satisfied as 

<Tx
1
,y
1
*> - <y

1
,y
1
*> + - 1 -<y

1 
 ,Ey

1 
 > - <x 

1
,f> 

2  

-<Tx2'y2*> + 
<y2,y2*> - 1 --sy

2 
 ,Ey

2 
 > + <x2-  

,f> 
2  

-<Tx1,y2*> + <Tx2,y2*> + <xl,f> - <x2,f> 

-"YvY2*> - 'Y2'1'2" <Y1,EY2> <Y2'EY2' 

-<Tx1,171*> + <Tx1,y2*> + <y1,y1*>  - <Y1,Y2*> 

= 1 -<y1  ,Ey1  > - <y1 
 ,Ey2 	

1 
> + -<y2  ,Ey2  > 2 	2  

1 
= --< y1  -y2  ,E(y1  -y2  )› 	since E is symmetric 2  

> 0 since E is positive. 	❑  

The next theorem shows the relationship between the extended 

variational problem (4.3.1) and the extended abstract problem (4.1.1). 

Theorem 4.3.1  

Assume the hypotheses of theorem 4.1.4 are satisfied. Assume in 

addition that E is symmetric and positive. Then L(x,y,y*) has a unique 

saddle point ((u,w),v), which is the solution of problem (4.1.1). 

Proof From lemma 4.3.1, (u,w,v) is a stationary point of L(x,y,y*) 

iff T*v = f, v = Ew and Tu = w. Hence from theorem 4.1.4 (u,w,v) is a 

unique stationary point of L(x,y,y*). Now from lemma 4.3.2 and lemma 3.1.4 

((u, w),v) is a saddle point of L(x.Y,Y*). 

Example 4.3.1  

Recall example 4.1.1, where we proved that example 2 of section 2.1 

has a unique solution provided K is a symmetric positive definite tensor. 
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From theorem 4.3.1 we have that under these conditions the main 

variational problem associated with example 2.1.2 is: 

find (u,w,v) e hol(St) x (1,2(S/))2  x (L2(12))2, saddle point of 

1 
L(x,y,y*) = !(grad 	1 - y.y* + - y.Ky - xf)df2, 

(4.3.2) 

. 2 x e H01(St) 	 2
), y e (L(CI)) 	y* e (1,20) , provided f e L2(0). 

4.4 Further Variational Principles  

In this section we show that several other variational principles 

can be derived from the main variational principle of the previous 

section. We apply the same technique used in section 3.4 of restricting 

the domain of the saddle functional to give us further functionals 

associated with the problem. Recall that L:XxYxY* + (R is given by 

L(x,y,y*) = <Tx,y*> - <y,y*> + 1 <y,Ey> - <x,f> . 	(4.4.1) 

We shall restrict the domain XxYxY* to01, i.e. those (x,y,y*) satisfying 

V1L(x,y,y*) = 0. From the first part of the proof of lemma 4.3.1 we have 

= {(x,y,y*) e XxYxY*: T*y* = f} . 

Let us write:Di  = X1  x Yl  x Yl* where X1  = X, Y1  = Y and Yl* = Zf. 

Then using theorem 2.2.5, (4.4.1) becomes 

li(x/Y,Y*) = -<Y,Y*> 	<Y,EY> E M(Y,Y*) 	(4.4.2) 

Vy e Y, Vy* e zf. 
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Theorem 4.4.1  

The convex-concave saddle functional M(y,y*) has a unique saddle 

point (w,v), where Tu = w and ((u,w),v) is the saddle point of 

L(x,y,y*). 

Proof Since D1 contains the saddle point ((u,w),v) we have from (4.2.4) 

M(w,y*) < M(w,v) < M(y,v) 
	

Vy e Y, Vy* e zf. 

Hence (w,v) is a saddle point of M(y,y*). Now 

M(Y11Y1*) M(Y2'172" <V1M(Y2,Y2*)'171-172> <V2M(Y1'Y1"'Y1*-172*  

*> 	< 
-<Yv Y1 	Y1'EY1> <Y2sY2"  - <Y2'EY2>  

4.<173:Y2" - <Y2'1'2" - 'Y2'EY1> <y2,Ey2> 

+<yl ,yl*> 	<yl,y2*> 

<y2,Ey1> 	<Y2'EY2> 

1 <y1-y2, 
E(Y1-172)›  > since E is positive. 

Hence from (3.1.6), M(y,y*) is a convex-concave saddle functional. 

Now 

<V
1 
 M(w,v),y> = -<y,v> + <y,Ew> = 0, 	vy e Y 

iff v = Ew. 

Also 

<V2 " M(w v) z> = -<w,z> = o, Vz e Z 

iff w e z°, 

i.e. 	iff w = Tu, 	u e X. 
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Hence from theorem 4.1.4 (u,w,v) is a unique solution of problem 4.1.1 

and so (w,v) is a unique saddle point of M(y,y*). 

Example 4.4.1  

The domain of the functional of example 4.3.1 can be restricted to 

those y* satisfying 

-div y* = f. 

Hence defining 

Zf = {y* e (L2(S2))2; -div y* = f} 

and using the adjoint relationship we have that (4.3.2) can be written as: 

find (w,v) e (L2(Q))
2 x Zf, saddle point of 

M(y,y*) = f (-y.y* + 
1

y.Ky)dS1, y 8 (L2(m)2, y* e Zf' 
Si 

(4.4.3) 

1:1 

Let us restrict the domainXxYxY* of L(x,y,y*) to /)2' i.e. those 

(x,y,y*) satisfying V2L(x,y,y*) = 0. From lemma 4.3.1 we have 

J)2 = ((x,y,y*)exxYxy* ; 	yk = Ey}. 

Let us write 22 = X2 x Y2 x Y2* where X2 = X, Y2 = Y and Y2* = Y*. Then 

from (4.4.1) 

L(x,y,y*) = <Tx,Ey> - 1 —<y,Ey> - <x,f> E G(x,Y), 2 

vx e x, vy e Y. 

(4.4.4) 

Theorem 4.4.2  

The convex-concave saddle functional G(x,y) has a unique saddle point 

(u,w) where ((u,w),v) is the saddle point of L(x,y,y*). 
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Proof SinceZ
2 
contains the saddle point ((u,w),v) we have from (4.2.4), 

remembering that y* = Ey, 

G (u,w) < G (x,w) 	vx e X. 

Now let y = w + Si where Si e Y, then 

G(u,y) = G(u,w + Si) = <Tu,E(w+D> - 22:. <w+Si, E(w+S) > - <u,f> 

= G(u,w) + <Tu,Ey> - 	- <y,Ey>. 

However 

and 

Hence 

<Tu,Ey> - <w,ESi> = <Tu-w, Ey> = 0 

<Si,ESi> > 0 	Hy e Y. 

G(u,y) < G(u,w) 	Vy e Y. 

Therefore (u,w) is a saddle point of G(x,y). 

From (3.1.6) we can show that G(x,y) is a convex-concave saddle functional. 

We also have 

cV
1
G(u,w),x> = <Tx,Ew> - <x,f> = 0, Yx e x 

iff T*Ew = f, 

and 

<V2G(u,w),y> = <Tu,Ey> - <w,Ey> = 0, Vy e Y 

iff Tu = w. 

Hence from theorem 4.1.4 the saddle point (u,w) is unique. 	❑  
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Now suppose that E is an isomorphism from Y to Y. Then we can 

write (4.4.4) as 
L 

H(x,y*) = <Tx,y*> - 1 
	-1 y*,y*> - <x,f>, 	(4.4.5) 

vx e x, Vy* e Y*. 

Then we have 

Theorem 4.4.3  

The convex-concave saddle functional H(x,y*) has a unique saddle 

point (u,v) where ((u,w),v) is the saddle point of L(x,y,y*). 

Proof From (4.2.4) we have 

H(u,v) < H(x,v) 	Vx e X. 

Now let y* = v + Si*, Si* e Y*. Then 

H(u,y*) = H(u,v+Si*) = <Tu,v+Sf'*> - 1 
	 1 
<E (v+y*), v + Sift> - <u,f> 

-1 1 -1 

	

= H(u,v) + <Tu,pt> - <E 	- 	<E re,Si*>. 

However 

<Tu,Si*> - <E-1v,y*> = 0 

and 

<E
-1

Si*,Si*> > 0 
	

Vy* e Y. 

Hence 

H(u,y*) < H(u,v) 	Vy* e Y*. 

Therefore (u,v) is a saddle point of H(x,y*). From (3.1.6) we can show 

that H(x,y*) is a convex-concave saddle functional. Taking Gateaux 

derivatives of H(x,y*) at (u,v) and using theorem 4.1.4 we find that 

(u,v) is unique. 



71 

Remark 4.4.1 In the context of elastbmechanics the variational 

principle based on functional (4.4.5) is called the Hellinger-Reisner 

principle. Note its resemblance to the variational principle of 

section 3.2. 

Example 4.4.2  

From example 4.3.1 we can restrict the domain of L(x,y,y*) to 

those y and y* satisfying 

Y* 
 
= Ky. 

This gives rise to two problems: 

find (u,w) e H01(S1) x (L2(Q))
2, :addle point of 	

(4.4.6) 

G(x,y) = f (grad x.Ky - TyKy - xf)dcl, 	x e H
o
102), 

2 

find (u,v) e Ho
1(Q) x (L2(S2))

2, saddle point of 

(4.4.7) 
H(x,y*) = f (grad x. y* - 

1
y*.K

1y* - xf)dP, x e Ho
1(SO, 

y e (L2(o))2  . 	Cl 

Finally, let us restrict the domain of L(x,y,y*) to Z3, i.C. those 

(x,y,y*) eXxYxY* satisfying V3L(x,y,y*) = 0. From lemma 4.3.1 

we have 

J)3 = {(x,Y,Y*) 6XxYxY*; y= Tx}. 

y e (L2(P)) 

and 

Let us write 23  = X3  x Y3  x Y3* where X3  = X, Y3  = Z0, Y3* = Y*. Then 

from (4.4.1) we get 
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L (x,y,y*) = ;-<Tx,ETx> - <x,f> E J(x), 	Vx e X. 	(4.4.8) 

Theorem 4.4.4  

The convex functional J(x) has a unique minimum point u where 

((u,w = Tu), v = Ew) is the saddle point of L(x,y,y*). 

Proof jD3 contains the saddle point ((u,w),v), hence from (4.2.4) we 

have 

J(u) < J(x) 	Yx e X. 

Now 

J(xl) 	J(x2 ) 	<VJ(x2), xl - x2> 

= 1 — <Tx
1  ,ETx1 	

1 > - <x
1
,f> - — <Tx

2  ,ETx2 
 > + <x2,f> 

2 	2  

-<Tx2,ETx1> + <Tx2'ETx2> + <x1  ,f> - <x2,f> 

1 = 1 <Tx
1 
 ,ETx

1 
 > - <Tx2  ,ETx1 	2 > + <Tx2  ,ETx2  > 2  

= - 
1 
-<T(x

1
-x2), ET(x1

-x2)> > 0 	Vx
1
,x
2 
G X, x1 	x2. 2 

Hence J(x) is a strictly convex function and so the minimum point u 

is unique. 

Remark 4.4.2 J(x) is the functional of the minimum potential energy 

principle. Compare with functional (3.4.5). 

Example 4.4.3  

Constraining the domain of L(x,y,y*) in example 4.3.1 to those y* 

satisfying 

y* = Tx, 
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we can write (4.3.2) as 

find u e H
0
1  (n), minimum point of 

3(x) = f (-
1  

grad x.K grad x - xf)dil, x e H01(f2) . 2 

(4.4.9) 

Hence from the saddle functional L(x,y,y*) we have generated two 

further saddle functionals M(y,y*) and H(x,y*) and a convex functional 

3(x). (We consider the functionals G(x,y) and H(x,y*) to be essentially 

the same.) M(y,y*) and H(x,y*) lead to complementary variational principles 

as follows. 

Restrict the domain Y X  Zf  of M(y,y*) to 

.D11  = {(y,y*) e Y X Zf; y* = Ey}. 

Then with d)
11

= Y
11 X  Zfll 

where Y
11 

= {y e Y; Ey e Z2} and Zna  = 2f, 

we can write 

M (y,y*) = - 2 <Y,EY> F- I (Y) 
	icy e Y11. 
	 (4.4.10) 

Letting y = E
-1

y* we also have 

1  14(y,y*) = 	7  <E 1 y*,y*> E K(y*), 	VY*  e Zf. 	(4.4.11) 

Theorem 4.4.5  

The concave functional K(y*) defined by (4.4.11) has a unique 

maximum at y* = v. 

Proof From theorem 3.3.1 K(y*) has a maximum at y* = v. From lemma 3.3.1 

this maximum is unique and K(y*) is a concave functional. 
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Remark 4.4.3 K(y*) is the functional of the complementary potential 

energy principle. Compare with functional (3.4.2). 

Remark 4.4.4 Since we can write I(y) = K(E ly), we can deduce from 

theorem 4.4.5 that 1(y) is a concave functional with a unique maximum 

at y = w. 

Example 4.4.4  

From example 4.4.1, defining the space 

Yll = {y e (L2(Q))2; 
	Ky e Zf} 

we can substitute y* = Ky into (4.4.3) to give the problem: 

find w e Y
11, maximum point of 

I (y) =- - 1 
2- f y Ky dft, 	y e Y 	. 11. 

Substituting instead, y = K 1y* we get: 

find v e Zf maximum point of 

K(y*) =-2 f y*K iy*dQ, 	y* e zf.  2  

(4.4.12) 

(4.4.13) 

We can also restrict the domain of M(y,y*) to 

= .{(YrY*)  e Y x Zf; 
	y = Tx}. 

Then with 
:D12 = Y12 x Zfl2  where Y12  = Z°, Zf12 = Zf 
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we have 

M(y,y*) = -<Tx,y*> + 

1 
--<Tx,FTx> - <x,f> E J(x), 2 Yx e X, 	(4.4.14) 

using theorem 2.2.5. From theorem 4.4.4, J(x) is a convex functional 

with a unique minimum at x = u. 

Example 4.4.5  

We can easily see that substituting y = Tx in (4.4.3) and using 

the adjoint relationship and the already assumed relationship 

-div y* = f, we get the functional 

J(x) = 	r 
1 
 grad x.K grad x - xf)dS1 J 2 

from M (y,y*) • 

Hence from the functional M(y,y*) we have derived complementary 

variational principles based on K(y*) and J(x) since 

Min J(x) = J(u) = M(w,v) = K(v) = Max K(y*) . 
xeX 	 y*eZf 

H(x,y*) also leads to complementary principles. Restrict the 

domain X x Y* to 

2
21 = {(x,y*) e X x Y*; T*y* = f}. 

Set0 
21 = X21 

 x 
Y*21' 

 where X
21 	2 

= X and Y*
1 
 = Zf, then 

H(x,y*) = - 2 
 <F ly*,y*> E K(y*), 	Vy*  e Zf. 	(4.4.15) 



y* = Ey Tx= y T*y =f Tx=y 

Fig. 4.4.1. Variational principles derived from L(x,y,y*). 



77 

Now restricting the domain X x Y of G(x,y) to 

2  22 = {(x,y) e X x Y; • y = Tx), 

we have 

1 
G(x,y) = y<Tx,ETx> - <x,f> E J(x), Yx e X. 	(4.4.16) 

Example 4.4.6  

Using the adjoint relationship and -div y* = f in (4.4.7) gives the 

variational problem (4.4.13). Also substituting y = grad x in (4.4.6) 

we get the variational problem (4.4.9). 	 ❑  

Hence the complementary functionals J(x) and K(y*) can also be 

- derived from H(x,y*) (and G(x,y) = H(x,Ey)). The relationships between 

all the functionals are given in Figure 4.4.1. 
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CHAPTER 5 

• • • • 	• . • 	• • • • 	• • 	 • • • 	• • • 

*NON-LINEAR EQUATIONS  

5.1 Results from Non-Linear Operator Theory  

In this section we give some results in the theory of non-linear 

operators which will allow us to extend the variational principles 

already discussed.to include non-linear problems. The basic concept 

is that of a monotone operator. We show how this is related to convex 

functionals and give some existence and uniqueness theorems of monotone 

operator equations. 

Definition 5.1.1 (Vainberg [1973], p.46) 

An operator F(x) from A C X to X* is said to be potential if there 

exists a functional f(x), defined on X, such that for all x e A 

F(x) = Vf(x). 	 (5.1.1) 

The functional f(x) is called the potential of the operator F(x). LI 

The next theorem gives a very general condition for an operator 

F(x) to be a potential operator. 

Theorem 5.1.1 (Vainberg [1973], p.56) 

Let F(x) be a continuous operator from an open convex set A d. X to X. 

Then F(x) is potential if and only if, for any polygonal line I, C A, the 

line integral 

<F(x), dx> 

is independent of the path of integration. 	 E1 
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If the operator is G-differentiable we have the following condition 

for it to be potential. 

Theorem 5.1.2 (Vainberg [1973], p.59) 

Let F(x) be an operator from X to X* which is G-differentiable at 

every point of an open convex set A C X, the Gateaux differential 

DF(x,h) being continuous in x. Then F(x) is potential in A if and only 

if the bilinear functional <DF(x,h1),h2> is symmetric, i.e. 

<DF(x,h1),h2> = <DF(x,h2),hi>. 	 (5.1.2) 

Remark 5.1.1 (Vainberg [1973], p.56) 

Under the hypotheses of theorem 5.1.1 or theorem 5.1.2 the potential 

f(x) of the operator F(x) has the form 

1 
f(x) = f

0 
 + f <F(x

0 
 + t(x-x

o
)), x - x0>dt, 

0 
(5.1.3) 

where f
0 
 is a constant. 

Many of the operators we shall consider will be positive-homogeneous 

operators. In this case the potential takes a much simpler form. 

Definition 5.1.2  

F(x) is a positive-homogeneous operator of degree k > 0 if 

F (tx) = t
k
F (x) 
	

for t > 0. 

Remark 5.1.2 (Vainberg [1973], p.59) 

Let F(x) be a positive-homogeneous potential operator of degree k > 0. 

Then from (5.1.3), its potential is of the form 
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f(x) = f0 
k+1  

+ 	<F(x), x>. 

Lemma 5.1.1  

If F(x) is a positive-homogeneous operator of degree k > 0 and F
-1 

exists, F-1  is a positive-homogeneous operator of degree 1/k. 

Proof Let F(x) = x*, then from definition 5.1.2 

tF
-1
(x*) = F

-1
(t
k
x*). 

Let s = tk, then 

S1/kF
-1
(x*) = F-1(sx*), 

i.e. F-1  is positive-homogeneous of degree 1/k. 

Definition 5.1.3 (Vainberg [1973], p.10) 

An operator F : X X* is said to be monotone if 

<F (xi) - F (x2) , x1  - x2> > 0 	Vxl, x2  e D(F). 

It is strictly monotone if equality can hold only when xl  = x2. 0 

The next theorem gives the relationship between monotone operators 

and convex functionals. 

Theorem 5.1.3 (Vainberg [1973], p.51) 

A potential operator F(x) defined on an open convex set A of X is 

monotone (strictly monotone) if and only if its potential f(x) is a convex 

(strictly convex) functional on A. 	 0 
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We now give two theorems on the existence and uniqueness of the 

solution of non-linear operator equations. 

Theorem 5.1.4 (Vainberg [1973], p.79 and p.96) 

Let f(x) be a convex lower semicontinuous functional defined in a 

reflexive Banach space X, satisfying the condition 

lim f (x) = +00. 

Then f(x) has an absolute minimum point. Further if f(x) is strictly 

convex then the minimum point is unique. 

Theorem 5.1.5 (Vainberg [1973], p.97) 

Let f(x) be a G-differential functional defined on X and such that 

F(x) = Vf(x) is a continuous monotone operator satisfying 

<F (x) ,x>  lim 
x1I 4c* 	II xi/  

= +CO. 

Then f(x) has a minimum point x0  and F(x0) = 0. If F is strictly monotone, 

then the minimum point of the functional is unique and f(x) has an 

absolute minimum there. 	 0 

We now give a stronger definition of a monotone operator. 

Definition 5.1.4 (Vainberg [1973], p.232) 

An operator F : X 4 X* is said to be strongly monotone if 

<F (xi) - F (x) , xi  - x2> > 	xl  - xo y(11 xl  - X21!  ) 

where y(t) is an increasing function such that y(0) = 0 and y(t) 4 00 

as t 	03. 
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Theorem 5.1.6 (Vainberg [1973], p.232) 

Let F : X -+ X* be a continuous strongly monotone operator. Then F 

is a homeomorphism of X onto X. 

5.2 Some Non-Linear Equations  

We consider some non-linear equations related to the linear equation 

studied previously, i.e. 

T*ETu = f. 

We shall introduce the non-linearity in two ways, first by taking the 

operator E to be non-linear and secondly by replacing the function f by 

a non-linear function F : X -* X. 

In this section we shall prove some existence and uniqueness theorems 

for the non-linear equations and in the next section we shall develop the 

associated variational principles. 

First we consider the equations 

Tu = w 

E ;w) = v 
	

(5.2.1) 

T*v = f, 

where as before X and Y are Hilbert spaces, T : X 4- Y is a linear operator 

with adjoint T* : Y* ÷ X. E : Y Y* we now consider to be a non-linear 

operator. Obviously u e X and f e X*. 

In section 4.1 we extended theorem 2.4.3 to prove the existence and 

uniqueness of a solution to problem (4.1.1). Here we shall adopt a similar 

method to show that equation (5.2.1) has a unique solution. Recall that 
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theorem 2.4.3 established that T* is an isomorphism from Z1-  to X* 

and T is an isomorphism from X to Z0, see figure 2.4.2. The next 

theorem is analogous to theorem 4.1.3 where E is a linear operator. 

Theorem 5.2.1  

Suppose E is a homeomorphism and that for any v e z-L  we have 

G..(z) E E
-1  (v + z) is a strictly monotone operator on Z. Also suppose 

lim 
II zit 4- 

<G_ (z) ,z> 

114 
- +=. 	 (5.2.2) 

Then given av e Z1, there exists a unique w e Z
0 
 such that 

E(w) = 	+ 2, 	 (5.2.3) 

where z is an element of z. 

Proof 

From theorem 5.1.5 there exists a unique Z e Z such that 

<G (2)'  z> = 0 
	

Vz e Z. 	 (5.2.4) 

Hence given v e Z-L  we can define 

W = G0 	= E-167+ z), 

and from (5.2.4) w e zo. 

The next theorem achieves the same result but with assumptions which 

are more easily proved in the applications. 
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Theorem 5.2.2  

Suppose E is a continuous strictly monotone operator with 

R(E) = Y* and 

11 y11 4- 	1 1

7 
	

(5.2.5) 

Then given * e Z there exists a unique w e Z0  such that 

E(W) = N-7 + 

where I is an element of Z. 

Proof 

Since E is strictly monotone it is one-to-one and as R(E) = Y*, 

E is a homeomorphism. Now since E is strictly monotone, it follows 

easily that E
-1 

is strictly monotone and hence G (z) = E
-1

(* + z) is 

strictly monotone on Z for any * e Z1  . Also E
-1 

and hence G satisfies 

the growth property (5.2.2). Hence the result follows from theorem 5.2.1. 

Remark 5.2.1 We may replace condition (5.2.5) by the conditions that 

e(y), the potential of E(y),is strictly convex and satisfies 

lim 	e(y) 	+00. 

111711 4' 

Then we can use theorem 5.1.4 instead of theorem 5.1.5. 	0 
The existence and uniqueness of a solution to equations (5.2.1) 

now comes from theorem 2.4.3 and either theorem 5.2.1 or theorem 5.2.2. 

We state this as the next theorem. 
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Theorem 5.2.3  

Let the spaces X and Y and operators T, T* and l E be defined as in 

equation (5.2.1). Then suppose there exists a >0 such that 

I I Tx II y 	all x II x 	vxex. 

Suppose also that the conditions of theorem 5.2.1 or of theorem 5.2.2 

are satisfied. Then equations (5.2.1) have a unique solution (u,w,v). 

Example 5.2.1  

Recall example 2.1.3. The equations are 

du 
dr = Y  

.1/3 
ky 	= a 	 (5.2.6) 

da _ P 
dr - 2Z 

with 	u(a) = u(-a) = 0. 

1 T :
o
(n) 4- L2  (Q)is the generalised derivative — dr . T* L2

(R) 1(P) 

is the adjoint of dr  , that is, T* is an extension of - dr  as we have 

seen before. 

The operator E is given by 

E(y) = ky
1/3
. 

We prove the existence and uniqueness of a solution to this problem by 

verifying the hypotheses of theorem 5.2.3. The inequality 



> aIIxli  
L2  (n) H (n) 

vx e o 
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we have proved before, see example 2.4.1. The operator E(y) is a 

positive-homogeneous operator of degree 1/3 and is easily shown to be 

potential from theorem 5.1.2. Hence from remark 5.1.2 we have that the 

potential of E(y) is 

a 
k 3 1/3 	3 5 y4/3 = 4 k y2/3112 .0.  

2(  
e (y) = .47 <y 	,y> = 74- k 	dS) 

-a 	L  ) 

(5.2.7) 

Using remark 5.1.1, we need to show that e(y) is a strictly convex 

functional satisfying 

lim e(y) = +03. 
II Yll 4°D  

(5.2.8) 

Now from theorem 5.1.3 e(y) is strictly convex if E(y) is strictly 

monotone. This is easily shown as 

a 
<E(1,1) - E(y2), Yl  - y2> = J (Y11/3-y21/3)(y1 - y2

)do 
-a 

a 
3 

f (Y1 
2/3 

-Y2 
 2/3
) 
2
chi > 0 Vy1FY2 e YI Yi Y2. 

-a 

(5.2.8) is also satisfied, hence a unique solution of problem (5.2.6) 

exists. 

We now introduce the second type of non-linearity we shall be 

considering. As before let X and Y be Hilbert spaces and T : X.4-Ya 

linear operator with adjoint T* : Y* -+ X* and let T Y Y* be the 

canonical isomorphism from Y to Y.  Then we introduce the non-linear 

operator F : X .4- X* and consider the equations 
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TTu = v 
(5.2.12) 

T*v + F(u) = 0 

We can easily prove the existence and uniqueness of a solution to these 

equations under certain ass'imptions on the operator F. These results 

are given in the next theorem. 

Theorem 5.2.4  

Let all spaces and operators be defined as in equations (5.2.12). 

Then suppose there exists a > 0 such that 

II Txn y  > allxll X  , vx e x. 

Suppose also that F is a monotone operator satisfying  

<F(x),x>  
lim inf 	 > -co. 

xll- 	IIxII 

(5.2.13) 

(5.2.14) 

Then equations (5.2.12) have a unique solution (u,v). 

Proof 

Let G(x) = T*TTx + F(x), then we only need to prove that G(u) = 0 

has a unique solution. Now 

<G(xl) - G(x2), xl  - x2> 

= <T*TT(xl-x2), xl  - x2> + <F(xl) - F(x2), xl  - x2> 

= <TT(xl-x2), T (xl-x2)> + <F (x1) - F(x2), xl  - x2> > 0 

for all xx2 e x, x1 # x2, from (5.2.13) and the monotonicity of F. Hence 



88 

G is a strictly monotone operator. Also 

<G(x),x> 	<T*TTx + F(x),x>  

Il xil 	Il xli 

<TTx,Tx> 	<F(x),x>  
H xil 	H x11 

all xli + <F( 
	 >  

Hence as F satisfies (5.2.14) we have 

lim 
<G(x),x>  

. 
II xli 4°3 	II xil 

Therefore from theorem 5.1.5, equations (5.2.12) have a unique solution 

(U ,W• = TTU). 

Example 5.2.2  

Recall example 2.1.4, that is, 

grad u = v 

-div v + ceu = 0 
	

in n 	(5.2.15) 

u = 0 	on r . 

We take T : H0  1
(n) + (L2(m)

2 to be the generalised grad operator and T* 

is defined through the adjoint relation as an extension of -div. The 

operator F is given by 

F(x) = cex. 

We prove the existence and uniqueness of a solution to this problem by 
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verifying the hypotheses of theorem 5.2.4. Inequality (5.2.13) has 

already been proved in example 4.1.1. Hence we only need to show 

that F is a monotone operator satisfying (5.2.14). For any point 

E e i we have 

	

x
1
(E) 	x

2
(E) 

(e 	- e 	) (x 	T 1 (E) 	x2 	> (E)) 	0, Vx1  ,x2  e H0  1(0). —  

Hence 

<F(x ) - F(x
2 
 ), x

1 
 - x2> > 0, Vx

1
,x
2 
e H

0
1(n), 

i.e. F is a monotone operator. Condition (5.2.14) is 

f exxdn 

	

lim 
4°) 

 inf c 	
ll 	

> 

	

II x11 	x 

Now at any point E e n we have 

ex(E)x(E) > A 

where A = -e
1
. Hence of M is the measure of n we have 

f X 
j e xdO > MA, 
51 

and therefore 

> 0. a 4- 	H 	- 
J

X 
e xdn 

lim inf 

Hence from theorem 5.2.4 a unique solution of problem (5.2.15) exists. 0 



or 	(ii) 	lim inf <E(Y)'17> 
> yil +co 	111711  

x e X, 

y e z°, 

and 	lim inf 
II x11 4°3 	II x i l  

<F(x),x>  
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Finally we combine the two forms of non-linearity we have considered. 

Let X and Y be Hilbert spaces and T X.+Ya linear operator with 

adjoint T* : Y* -+ X. Let E : Y Y* and F X4- X* be non-linear 

operators. Then consider the equations 

Tu = w 

E (w) = v 	 (5.2.16) 

T*v•+ F(u) = 0. 

The following theorem gives the conditions on E and F for these equations 

to have a unique solution. 

Theorem 5.2.5  

Suppose there exists a > 0 such that 

II TxIl 	all x11 , 	vx e x. 

Suppose that E is strictly monotone on Z0  and F is monotone on X. Further 

suppose that either 

(i) 	lim
Il Yll 

— +c° ye z°, 

<F(x),x>  and 	lim 	- +co 	x e X. 
xll 	xli 

Then equations (5.2.16) have a unique solution (u,w,v). 
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Proof 

Let G(x) = T*E(Tx) + F(x). 

Then 

<G(xl) - G(x2), xi  - x2> 

• <T*E(Tx1) - T*E(Tx2), xl  - x2> 

+ <F(xl) - F(x2), xl  - x2> 

• <E(Tx1) - E(Tx2), Tx1  - Tx2> 

+ <F(xl) - F(x2), xl  - x2> > 0 

for xl'  x2  e x, x1  x2, since E is strictly monotone on Z
0  and F is 

monotone on X. Now 

<G(x ) ,x> <E(Tx),Tx> 	<F(x),x>  
= II xII 	II xll 	xII 

<E(Tx),Tx> 	<F(x),x>  >et - 	Tx II 	II xll 

Hence 

<G(x),x>  
lim 	+00 

II xike° 	114 

is satisfied if either (i) or (ii) are satisfied. Therefore from 

theorem 5.1.5, the equation G(u) = 0 has a unique solution u. Now since 

E is strictly monotone on Z0, E is a one-to-one mapping of Z0  to Y. 

Hence there exists a unique (u,w = Tu, v = E(w)) satisfying equations 

(5.2.16). 
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5.3 Variational Principles for Non-Linear Equations  

In this section we develop variational principles associated with 

the non-linear equations given in section 5.2. The development will be 

similar to that of sections 4.3 and 4.4 where we described variational 

principles for linear equations. We shall consider only the most general 

non-linear equation of section 5.2, that is, 

T*E(Tu) + F(u) = 0 , 	 (5.3.1) 

where the spaces and operators are as defined in equations (5.2.16). We 

can rewrite this as 

T*v + F (u) = 0, 

v = E (w) , 	 (5.3.2) 

w = Tu . 

Then if (u,w,v) is a solution of (5.3.2) u is a solution of (5.3.1). 

We shall prove the following result (theorem 5.3.1): assume the 

hypotheses of theorem 5.2.5 are satisfied and in addition that the 

operators E and F are potential operators, then the solution (u,w,v) of 

equations (5.3.2) is also a solution of the variational problem, 

find ((u,w),v) e (X x Y) x Y* a saddle point of 
(5.3.3) 

L(x,Y,Y*) = <TX,y*> - <y,y*> 	e(y) + f(x) . 

The functionals e(y), and f(x) are derived from (5.1.3) and are 

1 
e(y) = f <E(ty),y> dt, 	 (5.3.4) 

0 
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1 
and 
	

f (x) = f 	(tx) ,x > dt. 	 (5.3.5) 
0 

Then we have 

Lemma 5.3.1 Suppose E and F are potential operators, then (u,w,v) is 

a stationary point of L(x,y,y*) iff equations (5.3.2) are satisfied. 

Proof 

<V
1
L(u,w,v),x> = <x,T*v> + <F(u),x> = 0 

	
vx e x 

iff 	T*v + F(u) = 0. 

<V2 " L(u w v)y> = -<y,v> + <E(w),y> = 0 Vy e Y 

iff 	v = E (w) . 

<V3
L(u,w,v),y*> = <Tu,y*> - <w,y*> = 0 Vy* e Y* 

iff 	Tu = w. 

Lemma 5.3.2  

Suppose E and F are potential monotone operators, then L(x,y,y*) is 

a saddle functional, convex in X x Y and concave in Y*. 

Proof 

From inequality (5.2.3) and theorem 5.1.3. CI 

Hence we can now prove the existence and uniqueness of a saddle point 

of L(x,y,y*). 

Theorem 5.3.1  

Suppose the conditions of theorem 5.2.5 are satisfied, that is, there 

exists a > 0 such that 

II Tx!' > aII xli , 	Vx e x, 



94 

E is strictly monotone on Z 0 , F is monotone on X and either 

<E(Y),Y>  
II Yuirall +c° 	11Y11 

- +co, 	y e z°, 

<F(x),x>  and 	lim 	> 	x e x, 
x114-.° 	II xII  

are satisfied or 

<E

"

(Y)'17>  11  

II Yll  
ye z°, 

<F(x),x>  and 	lim 	+= 	x e X. 
xII +c° 	II x11 

Suppose in addition that E and F are potential operators. Then 

L(x,y,y*) has a unique saddle point ((u,w),v) which is also the solution 

of (5.3.2). 

Proof 

From lemma 5.3.1 (u,w,v) is a stationary point of L(x,y,y*) if and 

only if (5.3.2) is satisfied. Hence from theorem 5.2.5, (u,w,v) is a 

unique stationary point of L(x,y,y*). Now from lemma 5.3.2 and lemma 

3.1.4 (u,w,v) is a saddle point of L(x,y,y*). 

Example 5.3.1  

Consider the problem of example 5.2.1 in which the non-linear 

operator E is given by 

E(y) = ky
1/3 

. 

This is a positive-homogeneous operator.of degree 1/3, see definition 

5.1.2, and is easily shown to be a potential operator from theorem 5.1.2. 
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Hence from remark 5.1.2, the functional e(y) is given by 

a „ 
e(y) = 4.1c f y43dr. 

-a 

Therefore the variational form of this problem is: 

find ((u,Y),0) e (Hol m) x 1,2 (R)) x L2  (Q) saddle point of 

a 
f dx 	3k 	Px 

L(x,y,y*) = f 	y* 	YY* 	
Y4/3 	22.)dr. 

-a 
(5.3.6) 

This has a unique solution from theorem 5.3.1 which is also the solution 

of equations (5.2.6). 

Example 5.3.2  

Consider the problem of example 5.2.2 for which the operator E is 

just the isometric isomorphism T. Hence 

1  
e(y) = 	<y,Ty> = 	<T

-1 
 Y*117*>. 

The non-linear operator F is given by 

F (x) = cex  

Hence 

1 
f (x) = f <ce

tx , x > dt 
0 

ex - 1  
c< 	, x> 

x 

= c f (ex  - 1)4451. 
SZ 
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Therefore the functional L(x,y,y*) is given by 

L(x,y,y*) = f grad x.y*dP - <y,y*> + 1 <T
-1 

 y*,y*> + c f(ex  - 1)a2 

= f(grad x.y* - 2 — y*.y* + c(ex  - 1))df2. 

Hence the variational problem is: 

find (u,v) e H
o
1(Q) x  (L2(1))

2
, saddle point of 

L(x,y*) = f {grad x.y* - 	y*.y* + c(ex  - 1)}dH. 

Theorem 5.3.1 shows this has a unique solution which is also the solution 

of equations (5.2.15). 

As in section 4.4 we can derive other variational principles 

associated with equations (5.3.2) by restricting the domainxxyx y* 

of L(x,y,y*). Let us restrictXxyx Y* to ;Di, i.e. those (x,y,y*) 

satisfying V1L(x,y,y*) = 0. From the proof of lemma 5.3.2 this is 

0 

.11 = {(x,Y,Y*
) eXxyxy*; T*y* + Fx = O}. 

Now if we assume that F is a bijective map from X to X* we can express 

any x e X by 

x = F
-1(-T*y*), 	y* e Y*, 

as T* is a one-to-one map from Z4' C Y* to X. Hence the restriction of 

L(x,y,y*) to 5)1 can be written as 

M(y,y*) = <F-1(-T*y*), T*y*> - <y,y*> + e(Y) 
(5.3.7) 

+ f(F
-1 
 (-T*y*)) 
	

vy e Y, Vy* e Y*. 

Then we have the following theorem. 
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Theorem 5.3.2  

Suppose the conditions of theorem 5.2.5 are satisfied and in addition 

that E and F are potential operators with F also bijective, then the 

convex-concave saddle functional M(y,y*) has a unique saddle point 

(w,v) where ((u,w),v) is the saddle point of L(x,y,y*). 

Proof 

<V 
1M(w,v),Y> = -<Y,v> + <y,E(w)> = 0 

iff 	v = E (w) 

<V2 
	" M(w v) y*> = <DF-1(-T*v,-T*v),T*y*> + <F-1(-T*v),T*y*> 

- <y*,w> + <DF
-1
(-T*v,-T*v),-T*y*> = 0 

<=> <F
-1
(-T*v),T*y*> - <y*,w> = 0 

i.e. 	w = T(F-1(-T*v)) 

Hence w e R(T) = Z0  and since T is an isomorphism from X to Z0, there 

exists a unique u e X such that 

Tu = w. 

Therefore any stationary point of 1.1(y,y*) satisfies (5.3.2) and so under 

the conditions of theorem 5.2.5, this stationary point is unique. Now 

M(y,y*) is a convex-concave saddle functional since the term 

<F-1(-T*y*),T*y*> + f(F-1(-T*y*)) is concave in y*. To show this we have 

<F-1(-T*y
1
*),T*y

1
*> + f(F-1  (-T*Y1*)) - <F

-1
(-T*y2*),T*y2*> - f(F

-1
(-T*y2*)) 

- <DF-1(-T*y
1  *,-T*y1*),T*(y *-172*)› - <F

-1
(-T*Y1*),T*(Y1*-Y2*)> 

- <DF-1(-T*yi*,-T*yi*),-T*(y1*-Y2*)› 
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= f(F-1(-T*y
1
*)) - f(F

-1(-T*y2*)) 

- <-T*y2*,F
-1 

 (-T*y
1 
 *) - F

-1 
 (-T*y2  *)> > 0 

as f is convex. 

Example 5.3.3  

From problem (5.3.6) of example 5.3.1 we can easily derive the 

problem 

find (w,v) e L2(Q) x Zf'  saddle point of 

a 
M(y,y*) = - f (yy* - 2  - ky4/3)dr, y e L2(2), y* e Zf. 4 

-a 

where 	Zf = {y* e 1,2(n), 	= 	}. 0 

Let us restrict the domain of L(x,y,y*) to ,12, i.e. those (x,y,y*) 

satisfying V2L(x,y,y*) = 0. This is given by 

j)2 = {(x,y,y*) 8xxYxY*; y* = E(y)}. 

Provided E and F are potential operators this leads to two functionals 

G(x,y) and H(x,y*), in this case given by 

G(x,y) = <Tx,E(y)> - <y,E(y)> + e(y) + f(x), 

H(x,y*) = <Tx,y*> - <E-1(y*),y*> + e(E-1(y*)) + f(x), 

where the functionals e(y) and f(x) are given by (5.3.4) and (5.3.5) 

respectively. 
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However, let us suppose that E(y) is a positive homogeneous potential 

operator of degree k > 0, see definition 5.1.2. Then from remark 5.1.2 

we have 

e (y) = k + 1 <y,E(y)>. 

Hence 	e (y) - <Y,E (Y)> =k + 1 <Y,E(y)>. 	(5.3.10) 

Now if y* = E(y) then 

e(y) - <Y,E(Y)> = 	k + 1 ‹E 
1 
 (Y"'17". 
	(5.3.11) 

1 
' But as E is positive-homogeneous of degree k— see lemma 5.1.1, we can 

define 

1  
e*(y*) = f <E

-1(ty*),y*>dt = k+1 <E
-1 

 (y*),Y". 
0 

. (5.3.12) 

Hence we have 

e(Y) - <y,y*> = -e*(y*). 	 (5.3.13) 

Therefore we can rewrite H(x,y*) as 

H(x,y*) = <Tx,y*> - e*(y*) + f(X). 	 (5.3.14) 

Then we have the following theorem 

Theorem 5.3.3  

Assume the conditions of theorem 5.2.5 hold and that E and F are 
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potential operators with E a positive homogeneous operator of degree 

k > 0. Then H(x,y*) is a convex-concave saddle functional with a 

unique saddle point (u,v), where ((u,w),v) is the saddle point of 

L(x,y,y*). 

Proof 

<V H(u,v),x> = <Tx,v> + <F(u),x> = 0, fix e x, 

iff 	T*v + F(u) = 0. 

<V2 " H(u v) y*> = <Tu,y*> - <E-1  (v),y*> = 0, yy*  e Y*, 

iff 
	

Tu = E-1  (v) = w. 

Hence any stationary point of H(x,y*) satisfies equations (5.3.2) and 

therefore it is a unique stationary point. Now since E-1  is monotone 

we can use theorem 5.1.3 to show that -e(y*) is concave. Also f(x) is 

a convex functional and so H(x,y*) is a convex-concave saddle functional. 

Hence using lemma 3.1.4, the theorem is proved. 

Example 5.3.4  

The following variational problems are easily derived from problem 

(5.3.6) of example 5.3.1: 

find (u,w) e H0
1(S1) x L2 	' (51) 	saddle point of 

f dx 1/3 	Px„ 	_ G (x ,y) = 	( d7 ky 	- ky4/3 
	3k 

- y
4/3 

 - -2-11 ar , X e H01  (s) y e L2  (s) r 
-a 

find (u,v) e H 10) x L2(.2), saddle point of 

(5.3.15) 
a 

dx 	
4 
1 y* 	xP 

H(x,y*) 
	f = a 
	

y* - 	3 
k y* - )dr, x e H

1
0), y* e L2(0). 	

❑  
dr - 

a 
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Finally we can restrict the domain of L(x,y,y*) to X3' i.e. 

those (x,y,y*) satisfying V3L(x1Y,Y*) = O. This is 

j)3  = {(x,YfIrfleXxYxY*; 	y = Tx) 

On 3 we can write L(x,y,y*) as 

J(x) = e(Tx) + f(x), 	Vx e x . 	(5.3.16) 

Then we have 

Theorem 5.3.4  

Provided the conditions of theorem 5.2.5 are satisfied and provided 

E and F are potential operators, the convex functional J(x) has a unique 

minimum point u where ((u,v),v) is the saddle point of L(x,y,y*). 

Proof 

<VJ(u),x> = <E(Tu),Tx> + <F(u),x> = 0 	Yx e x 

iff 	T*E(Tu) + F(u) = O. 

Hence from theorem 5.2.5, J(x) has a unique stationary point u. Since 

e(y) and f(x) are convex functionals J(x) is convex and hence the 

stationary point is a minimum point of J(x). 

Example 5.3.5  

x d 
From example 5.3.1 writing y = - 

d
-. we get the problem r 

find u e H
0
1  (0), minimum point of 

a 3k dx 4/3 xPI dr,  
J (x) 	j = 	- 	x e H 1(Q). 

4 dr 	2t 
-a 
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Example 5.3.6  

From example 5.3.2 writing y* = grad x we get the problem 

find u e H
0
1 
 (c), minimum point of 

J(x) = f { 
1
grad x.grad x + c(ex  - 1)} dn, x e Ho

1
(o) • 

In the same way we can derive all the functionals shown in figure 

4.4.1. Here we show only how K(y*) is derived from H(x,y*). We restrict 

the domain X x Y* of H(x,y*) to 

21 = {(x,y*) e x x Y*; T*y* + Fx = 0}. 

Hence we can write H(x,y*) as 

K(y*) = <F-1(-T*y*),T*y*> - e(y*) + f(F-1(-TAy*)). 	(5.3.17) 

Then we have the following theorem 

Theorem 5.3.5  

Under the conditions of theorem 5.3.3, the concave functional K(y*) 

has a unique maximum point v, where ((u,w),v) is the saddle point of 

L(x,y,y*). 

Proof 

<VK(v),Y*> = <DF-1(-T*v,-T*v),T*y*> + <F-1(-T*v),T*y*> 

- <E
-1 

 (v),V*> + <DF 1(-T*v,-T*v),-T*y*> = 0 

<=> 	<F
-1

(-T*v),T*y*> - <E
-1
(v),y*> = 0, vy*  e Y*, 

iff 	E
-1
(v) = T(F

-1
(-T*v)). 
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However E 1(v) = w and so w e R(T) = Z0. Hence there exists a unique 

u e X such that 

Tu = w. 

Therefore equations (5.3.2) are satisfied and so from theorem 5.2.5 the 

stationary point of K(y*) is unique. From theorem 3.3.1 and lemma 3.3.1, 

K(y*) is a concave functional and v is a unique maximum point. 

Example 5.3.7  

From problem (5.3.15) of example 5.3.4 using the adjoint relationship 

and the constraint 

_ 	- P  

	

dr 	2k 

we get the variational problem 

find v e Zf' maximum point of 

a 
K(y*) = - r 1 

	

$ 	
2,.* )3 y*dr, y* a Zf  

-a 

where 	Zf = {y* e 1,2(Q); - 	} 

Example 5.3.8  

From example 5.3.2 we can derive the problem 

find v e (L2(0))
2, maximum point of 

K(y*) = 5 {-1n(div y*)div y* + cl  div y* - 
1  y*y* 

- c} dP, y* e (1,26-0)2 

where c1 = In c + 1. 
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As in the linear case the functionals J(x) and K(y*) are complementary 

J(u) = e(Tu) + f(u) 

K(v) = <F
-1  (-Tiv),T*v> - e* (v) + f(F-1  (-T*v)) 

= <u,T*v> - e*(v) + f(u) 

= <w,v> - e*(v) + f(u) 

= e (w) + f (u) . 

Hence 

min J(x) = J(u) = K(v) = max x(y*). 
xex 	 y*eY* 

In this chapter we have achieved the same results for the non-linear 

problems as we gave for the linear problems in Chapter 4. To summarise 

these results, we have 

(1) given conditions on the operators T,T*, E and F for the operator 

equation 

T*E(Tu) + F(u) = 0 

to have a unique solution, 

(2) shown that under further conditions on the operators E and F, the 

operator equation is equivalent in some sense to the variational 

problem 

for 

and 
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find ((u,w),v) e CK x Y) x Y* saddle point of 

L(x,y,y*) 	<Tx,y*> - <y,y*> + e(y) + f (x), 

(3) shown that from this variational problem we can derive an inter-

related set of variational problems, two of which are complementary 

extremum problems, 

(4) given examples of how the abstract theory is applied to boundary 

value problems of mathematical physics. 

In applying these results to simple problems we have always 

considered homogeneous boundary value problems. The abstract theory 

can, however, be applied to non-homogeneous boundary value problems 

and it is this application of the theory that we consider in the next 

chapter. 
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CHAPTER 6 

NON-HOMOGENEOUS BOUNDARY VALUE PROBLEMS  

6.1 Theoretical Results on Elliptic Boundary Value Problems  

In this chapter we show how boundary conditions, other than the 

homogeneous Dirichlet conditions we have considered previously, are 

incorporated into the abstract formulation. To do this we first need 

to ensure that the problem is "well posed" and that it has a Green's 

formula associated with it. We shall study the class of problems 

called regular elliptic problems which are extensively studied by 

Lions-Magenes [1972]. The major result that we shall use is stated 

in theorem 6.1.4 which shows that a regular elliptic problem has a 

Green's formula. In this section we shall briefly state the major 

concepts involved in the study of regular elliptic problems using 

Lions-Magenes [1972] as our main source. First we define precisely 

what is meant by a function having a value on the boundary r of a 

region P. 

Let SZ be an open bounded set of 0 with boundary r. Then we 

wish to define, in some sense, the values of a function x on the 

boundary r. Fcr x e cm(n) we can refine a trace operator yo  such that 

yox is the value of x on r. We may also define a trace operator. Y3  

such that 

3 x .x .- Y3 	
anJ  

on r, 	o < j < m-i , 

ai 	.th where 	. is the 3 order outward normal derivative on r. Then the 
an 

most general trace operator we can define for x e Cm(12) is 

	

Yx = fyox, 	ym_110. 
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Now can we extend this concept to functions x e H (n)? 

For simplicity we shall make the following assumptions about r: 

the boundary r of Q is an (n-1) dimensional 

infinitely differentiable variety, SI being 
	

(6.1.1) 

locally on one side of r. 

Definition 6.1.1  

For n a domain satisfying (6.1.1), H (r) is the space of functions 

for which all generalised derivatives of order < m on r belong to 

L2(r). 

Remark 6.1.1. The space H
m
(r) for m not an integer can be defined by 

interpolation, see Necas [1967] or Lions-Magenes [1972]. 	0 

Then we have the following trace theorem 

Theorem 6.1.1 (Lions-Magenes [1972], p.39). 

Let Q be a bounded domain satisfying (6.1.1). The mapping 

x 	{yjx; j = 

m— 
of C (0) -4- (D(r))

m 
extends by continuity to a continuous lineal mapping, 

still denoted 

x -+ {y.x; j = 0,...,m-1} 

m-1 
P Q) 	II Hril- of I ( 

j-1/2
(r). 

j=0 
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Corollary 6.1.1 (Necas [1967], p.99) 

For P a bounded domain satisfying  (6.1.1) and x e H111(0), there 

exists constants a. > 0 such that 

• 
11Yjx11 n-j-1/2(r)  < aj 	

Hfft(Q) 
114 	, 0 < j < m-1. (6.1.2) 0 

In the applications we shall frequently use spaces such as 

H(div,P) = {x e (L2(P))n; div x e 1,2(S1)1 

with norm 

II xll H(div m 	• (II xii 2 	+ ll div xli 2 	)1/2 . 

	

L2 (P) 	L2  (S2) 

For this space we have the following  trace theorem, see Raviart-Thomas 

[to appear]. 

Theorem 6.1.2  

Let Q be a bounded domain satisfying  (6.1.1). Then the mapping  

x x.n of H(div,0) 	H
1/2

(r), where n is the unit outward normal to 

r, is such that there exists a constant a > 0 such that 

x.n11 -1/2 	.!L all x11 	• 	
C3 

H 	(r) 

To simplify the notation we generalise the operator y discussed above 

and denote x.n by yox. 

We also have the following  theorem which will be needed in the 

applications for a fourth order problem. 
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Theorem 6.1.3 (Necas [1967], p.21) 

Let SI be a bounded domain satisfying (6.1.1). Then for x e H2(0) 

we have 

II 4 
2 	c{f i x12ar  f 	i pixrd01/2 

H (C2) 	r 	2  li1=2  

where c is a constant. 

Remark 6.1.2. If x e H2(0)/1 H0
1  (n), then since y0  x = 0 on r, we have, 

II xll2 	< 	E IDix12d01/2. 
H (0) 	S2 li1=2 

We now give some results on elliptic boundary value problems which 

are given in Lions-Magenes [1972] ch.2. Let 

Ax = 	E 	(-1)IPIDP(a
Pq 

 (C)Dqx) 
	

(6.1.3) 

be a linear differential operator of order 2m with infinitely differen-

tiable coefficients a 
Pq

(C). We associate with it the polynomial 

A (C,0 = 	E 	(-1)ma (C) p+q 0 Pq 
(6.1.4) 

which is the characteristic form of A. 

Definition 6.1.1  

The operator A is said to be elliptic if 

A ' 	0, 	v4 e IRn, 	o, 

for all E e 
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The operators we shall be studying belong to the class of strongly 

elliptic operators. 

Definition 6.1.3  

The operator A defined by (6.1.3) is said to be strongly elliptic  

if there exists a constant a > 0 such that 

2m 	if,n 
± A (E,0 > 

1I 	
, 	e u< , 

for all E e 

The problem we shall be considering is of the form 

Au = f in (2, 
(6.1.5) 

B.0. 
g3 
 on r, 

whereAisanellipticoperator,theB.
3 
 are certain differential boundary 

operators and f and gj  are given. 

However, we know that we cannot arbitrarily choose the operators B. 
3 

and obtain a well posed problem. We must introduce some restrictions 

ontheruunberandtnDeoftheboumdaryoperators 13..Let the 

operatorB.
3 
 be given by 

B.x = 	E b.3h (Oy (Dhx), 

1 h1 = m' 

where m. is the order of B. and the coefficients bjh  are infinitely 
3  

differentiable on r. Then we have the following definitions: 

Definition 6.1.4 

Thesystemofoperators{B
3
40 < j < v-1} is a normal system on r 

if 
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E(C)h 0, 	e r and Tog 0 which are normal 
I hl= m. 311  3 

to r at C, 

(b) 	mj 	in. for j 	i. 

Definition 6.1.5  

The system {B., 0 < j < m-1} covers the operator A on r if for all 

e r, all e M n  not equal to zero and tangent to r at E, and all 

e (R n, not equal to zero and normal to r at C, the polynomials in 

the complex variable n: 	E b (CM + nv), j = 0,...,m-1, are 
IhI=m. jh 3 m 

linearly independent modulo the polynom (n ni E , 	) ) , where 

imaginary part. 

Definition 6.1.6  

Problem (6.1.5) is called a regular elliptic problem if the 

following hypotheses are satisfied: 

(1) the operator A is strongly elliptic in SZ and has infinitely 

differentiable coefficients in 17, 

(2) there are m operators B., 

(3) the coefficients of B. are infinitely differentiable on r, 

Mulesystm{13.;0 < j < m-1} is normal on I', 
— — 

(5)thesystern{3.
3
;0 < j < m-1} covers the operator A on r, 

(6) the order m. of B. is < 2m-1. 
3 — 

Remark 6.1.2. Among the systems of operators {B.) which satisfy hypotheses 

(1),...,(6) for every strongly elliptic operator A, there is the system 

of Dirichlet conditions 

(a) 

i=1 
ni  4-(C,C,V) are the roots of the polynomial A (C,c + nv) with positive 

/2" = y., 	0 < j < m-1. 
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With these boundary conditions problem (6.1.5) is called the Dirichlet 

problem for the operator A. 

Definition 6.1.7  

Thesystem{13.;0 < j < v-1} is a Dirichlet system of order v on r 

ifitisnormalonrandiftheordersm.
3 
 run through exactly the set 

0,1,...,v-1, when j goes from 0 to v-1. 	 0 

With the elliptic operator A given by (6.1.3) we may associate the 

form 

= 	E 	a (ODPitieqxa. 
1P1,1 c11 11 Pq  

Then we have the following Green's theorem. 

Theorem 6.1.4 

Let {F.; 0 < j < m-1} be a Dirichlet system of order m, with 
— — 

infinitely differentiable coefficients on r. Then there exists a system 

{cp.; 0 < j < m-1} which is normal on r, has infinitely differentiable 

coefficients with: order of Fj  + order of $3  = 2m-1, such that 

m-1 
a(R,x) = j (A31)xdQ - E 5 cP.R F.xdr. 

0 	j=o or 3  
(6.1.6) 

Remark 6.1.4. Equation (6.1.6) is also valid when the derivatives are 

interpreted in the generalised sense. In this case we must have 

e em  (0) and x e em. 
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6.2 Non-Homogeneous Boundary Value Problems  

We shall be studying the class of problems given by 

S* G Su = f in n 

g]. on r, o < j < m-1, 
(6.2.1) 

where S and S* are formally adjoint differential operators of order m 

and G is an operator of order 0. S maps the function x into the vector 

y = (y 	) with r components yq  = Dqx, Ica! = m. S* maps the 
ql 	qr 

vector y* = (y* ,...,y* ) into the scalar E (-1)1plgy*. The operator 
P1 	Pr 	1111=m 

G can be represented by the matrix with components a 
Pq

(E), c.f. equation 

(6.1.3). The B. are boundary differential operators of order 

m. < 2m-1. 
3 — 

In this section we shall show how (6.2.1) can be put into an 

intermediate canonical form given by equations (6.2.3). At this stage 

we do not concern ourselves with the precise definition of the spaces 

involved in this classical formulation of boundary value problems. 

However, in section 6.3 we extend the operator S to a generalised 

differential operator and show how the intermediate canonical form can 

be related to an abstract formulation 

Tu = w 

Ew = v 

T*v = f, 

in the sense that the abstract problem is an extension of the intermediate 

canonical problem. This involves the precise definition of the spaces 

and operators and hence in a natural way we obtain restrictions on the 

class of functions in which the solution lies. 
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Section 6.4 is concerned with a second method of extending the 

intermediate canonical form (6.2.3) to the abstract form by extending 

the operator S* to a generalised differential operator. First, however, 

we introduce the intermediate canonical form. 

Suppose that in (6.2.1) the g.  are sufficiently smooth so that 

there exists a u
0 
 satisfying 

B.0
o 	

Io g. on r, o < j < m-1. 
3 	— — 

Then u = a - u0 satisfies 

S* G Su = 	- S* G Su
o 

in SI 

B.
3
u = 0 on r, o < j < m-1. 

Hence we have the homogeneous boundary value problem 

S* G Su = f in n 
(6.2.2) 

B.
3
u = 0 on r, 0 < j < m-1. 
 — — 

We assume that (6.2.2) is a regular elliptic problem, see definition 

6.1.6,withvoftheboundaryoperatorsEi.
J 
 of order m. < m. Reorder 

theLsothatthesearethefirstvoperators,i.e.m.<m, 0 < j < v-1. 
3 	 3 _ 

Then provided G has an inverse with components a
-1, we define the 
Pq 

operators C., v < j < m-1, by 

-- 
C.y = 	E 	b. y ( 	E 	Dh qa 

1
y ),  

Ihl=m jh 0 1131,1c1I'm 	
Pq P 

so that C. satisfies 
3 

C. G 	v < j < m-1, 
3 	3 
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where C. is of order n. = m. - m. Hence equations (6.2.2) can be 
3 	3 	3 

written as 

Su = w in R, 

B.0 = 0 on r, 	o < j < v-1, 

Gw = v in 0, 	 (6.2.3) 

S*v = f in n, 

C.v = 0 on r, 	v < j < m-1. 

Remark 6.2.1. The terminology for boundary value problems of the form 

(6.2.3) is not universal. We adopt the following classification (c.f. 

Necas [1967]). If there are m boundary operators of order <m, i.e. 

v=m,thentherearenoequationsinvolvingtheoperatorsC.and we 

call this a Dirichlet problem. If there are no boundary operators of 

order <m, i.e. v = 0, then there are no equations involving the 

operators B. and we call this a Neumann problem. If there are some 

boundary operators of order <m and others of order >m, then we call the 

problem an intermediate problem. 	 O 

We now give some examples of regular elliptic problems of these 

types. 

Example 6.2.1 

Consider the problem 

2- _v u in Q e m2 
(6.2.4) 

u = g on r, 

where the domain n satisfies condition (6.1.1). The operator -V2  is of 

order 2, i.e. m = 1. The boundary condition is to be interpreted in 

the sense 
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. 
r = yo  u = g, 

and so B
0 
 = y

0 
 is of order 0, i.e. m

0 
 = O. As m

0 
 < m, this boundary 

condition is a Dirichlet type condition and as there are no other 

boundary conditions, v = m=1 and this is a Dirichlet problem. 

Now suppose that 4 is sufficiently smooth such that there exists 

a u
0 
 satisfying 

Youo = 
.. 
g on r, 

then u = U - u
0 
 satisfies 

-02u = fEi+ V2u0  in n 	
(6.2.5) 

y
o
u = 0 	on r. 

We shall verify that (6.2.5) is a regular elliptic problem, i.e. it 

satisfies the conditions of definition 6.1.6. 

(1) The characteristic form of -V2  is 

Ao(E,c) = -( 12  + 2
2
) . 

Then taking a = 1 in definition 6.1.3 we have 

1 1 2 	m 
-A
o
(E,C) > alq , w 	

2 e A 

and so -V2 is a strongly elliptic operator. 

(2) and (3) are obviously satisfied. 

(4) B
o 
 = y

o 
 is trivially normal On F. 

al 
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(5) B
0 

trivially covers the operator -02. 

(6) is obviously satisfied. 

Hence problem (6.2.5) is a regular elliptic problem. 

As v = m, there are no boundary conditions involving the operators 

C.
3
, hence we can write (6.2.5) as 

1 

grad u = w in 51, 

u = 0 	on r, 	 (6.2.6) 

w = v in 

-div v = f in n, 

where w and v are vectors with r = 2 components. 

Example 6.2.2  

Consider the problem 

2- -V u = f in 12 e 1112, 

(6.2.7) 
au 
an - 

_ 
g on r, 

where-5-n- is the outward normal derivative to the boundary r which we 

assume satisfies condition (6.1.1). As in the previous example m = 1. 

The boundary condition B0  = 	= yl  is of order 1, i.e. m0  = 1. This 

is a Neumann type boundary condition and as there are no other boundary 

conditions, v = 0 and this is a Neumann problem. 

Suppose that there exists a u0  satisfying 

au0 
 on r, 

an 

then u = u - u
0 
 satisfies 
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 -V2u = fEf+V2u
o 
in Q, 	

(6.2.8) 
au 
0 

an 
0 on r. 

As the operator -V2  is strongly elliptic (see the previous example) 

a  we need to show that the boundary operator B0 
an  is = — 	nurmal on r and 

covers the operator -V2 for (6.2.8) to be a regular elliptic problem. 

We shall not prove this here, but refer to Kellog [1972] for the proof. 

As v = 0 theke are no boundary conditions involving the operators 

B., hence we can write (6.2.8) as 

grad u = w in Q, 

w = v in n, 

-div v = f in P, 

y0v = 0 on r, 

(6.2.9) 

as y
0 
 v = y0 
	3n 
(grad u) = 22  on r. 

Example 6.2.3  

Next we consider a problem which arises in the theory of flat 

elastic plates (see, for example, Duvaut-Lions [1976] chapter 4 for a 

brief description of the theory of flat plates). The equations are 

m 2 V
4
a 	i in Q e it‘ , 

u = a on r, 	 (6.2.10) 

Ma = fi on r, 

where 

_ 2 2_ 	a u 	2 	32a 	a'2Q 	2 ma . a u + (1-a)( 	n1 
+ 2 	n n + 	n ) 

3E 
2 3E

1 
 

2 
1 2 	2 2 

3 2 1 
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is the moment about the tangent at r, with a being Poisson's ratio 

< a < 1 and n = (n1,n2
) the unit exterior normal to r. 	 1,C2) 2 

represents the displacement of the plate from its initial plane, 

i( 1, 2) represents the body forces acting on the plate, e.g. gravity, 

g is the prescribed displacement of r and h is the prescribed 

tangential moment at r. We assume r satisfies condition (6.1.1). 

The problem is of order 4, i.e. m = 2. The first boundary operator 

Bo  = yo  is of order mo  = 0 and the second boundary operator B1  = y0M 

is of order m1 = 2. Only one of the boundary operators is of order <m 

and so we set v = 1. Hence this is an example of an intermediate problem. 

Suppose there exists u0  satisfying 

y0 
 u
0  = g on r 

and y0  Mu0  = h on r, 

then u = u - u0 
 satisfies 

V4u = f E f - 04u0 in c 

u = 0 on r, 	 (6.2.11) 

Mu = 0 on r. 

Problem (6.2.11) satisfies the hypotheses of definition 6.1.6, i.e. it is 

a regular elliptic problem, since: 

(1) The characteristic form of V
4  is 

A0 ' (E C) = (C1
2 
 + C2

2
)
2 

and obviously V4  is strongly elliptic (see definition 6.1.3). 

(2) and (3) are obviously satisfied. 
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(4) and (5) are satisfied, see Kellogg [1972] where all the sets 

of boundary operators which are normal and cover 04 are 

given. 

(6) is obviously satisfied. 

Defining the operators S, S* and G by 

and 

Sx 	= 	( 

Gy 	= 

*y* S 	= 

32x 	32x 
2
x 
' 

2 
Y3*  

fyl  

Y2 

Y3 

(6.2.12) 

(6.2.13) 

(6.2.14) 

2 	' 	3E 	aE 	' 

	

DE1 
	

1 	2 

1 	0 

0 	2(1-a) 

a 	0 

	

2 	2 
a Yl* 	a Y2*  + 

2' 3E2 

a\ 

0 

1/ 

a + 
2 	aE aE DE 	1 	2 1 

 2 
42 

where y = (Y1,Y2,173) and y* = (y1*,y2*,y3*) are vectors with r = 

components, we can show that 

S* G Su = V4u. 

We define the operator C1  by 

C1  y* = n1
2 yl*  + nin2y2* + n22y3* 
	

(6.2.15) 

and after some manipulation we get 

C1 G Sx = Mx, 

where y* = GSx. C1  is of order nl  = 0. 
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We can now write (6.2.11) as 

Su = w in 

you = 0 on r 

Gw = v in n 

S*v = f in n 

C1v = 0 on r, 

(6.2.16) 

where S, G and S* are given by (6.2.12), (6.2.13) and (6.2.14) 

respectively and C1  is given by (6.2.15). 

6.3 The First Abstract Formulation 

Having put the non-homogeneous boundary value problem 

S* G sa = finS2 

B.1 = g. on r, 0 < j < m-1, 

into the intermediate canonical form 

Su = w in R, 

B.0 = 0 on r, 0 < j < v-1 

	

Gw = v in R, 	 (6.3.1) 

S*v = f in R, 

	

Cjv = 0 on r, 	< j < m-1, 

we now want to extend equations (6.3.1) in such a way that they can be 

related to an abstract form 
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Tu = w 

Ew = v 
	

(6.3.2) 

T*v = f , 

in the sense that any solution of (6.3.1) is a solution of (6.3.2). 

To achieve this we shall introduce two further restrictions on the 

boundaryoperatorsLand C.. Then we shall define the abstract 

problem in one of two ways. The first method is to define the operator T 

as a suitable extension of the differential operator S and then define 

T* as the adjoint of T. The second approach is to define T* as a 

suitable extension of the differential operator S* and then define T 

as the adjoint of T*. This second approach is described in the next 

section, here we concentrate on the first approach. 

There are two further assumptions that have to be made about the 

boundary differential operators of (6.3.1). First, let {F., 0 < j < m-1} 
3 - 

be a set of boundary operators given by 

F. = 	B., 
3 	3 

Y Pi ►  

0< j < v-1 
•■•■ 	■■■• 

v< j < m-1 
(6.3.3) 

whera the set of integers {p., v < j < m-1} is such that 

{m
0 ,...,mv-1 

p
v
,...pm-1

} takes all values between 0 and m-1. Then 

we assume that: 

{F., 0 < j < m-1} 	is a Dirichlet system 
(6.3.4) 

of order m on r. 

Then from theorem 6.1.4 there exists a normal system {4,,, 0 < j < m-1} 

of boundary operators such that 
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m-1 
a(X,x) = 	f(S*GS51)xdS1 - E f $01F.xdr, 

sZ 	j=0 r J  3  
(6.3.5) 

wherea6c00.5Gsksxa,andthe orderof (1).=.2m-l-order of F.. 
Q 3 	3 

As {F.} is a Dirichlet system of order m, the order of F. < m-1. Hence 
3 — 

order of cp.
3 
 > m. Therefore as we saw in section 6.2, provided G has 

aminversetwernal"definetheoperators17 *.b  

*jGSx = cy, 0 < j < m-1. 

Then with y* = GSR, (6.3.5) becomes 

m-1 
y*Sxd 	= f(S*y*)xdc/ - E f tpy*F.xdr. 

s2 	n 	j=0 r 3 	3  
(6.3.6) 

ThesecondassumptionwemakeisthattheC.can be permuted such 

that 

n.+1 
= (-1) 3  C., 	v < j < m-1. 	(6.3.7) 

Then (6.3.6) can be written as 

1.)-1 
y*Sxd 	E f*.y*B.xdr 

f2 	j=0 r 3 	3  

m-1 	n.+1 
(-1)  3 	

J  
r C.

3
y*y xdr, 

sZ 
(S*y*)xdS2 - E 

j=v 	P3 
(6.3.8) 

which is a general integration by parts formula for the differential 

operator S. 

Remark 6.3.1. The assumption (6.3.7) is equivalent to the assumption 

*. = B., 	v < j < m-1 . 
3 	3 
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Remark 6.3.2. The assumption (6.3.7) imposes restrictions on the 

boundary operators {0., v < j < m-1} and hence on the operators 

{B. v < j < m-11. The order of 	= 2m-1-p., v < j < m-1 and so, from , 	 cbj J — — 

remark6.3.1,theorderoftheboundaryoperatorsB.are restricted by 

m. = 2m-l-p., 	v < j < m-1. 

This is equivalent to the restriction that 

n. = m-1-p., 	v < j < m-1. 	 ❑  

Now we are in a position to define the abstract equations (6.3.2) 

and show they are an extension of the classical differential equations 

(6.3.1). Let us define the spaces 

X = m 	m-p -1/2 m-pm-1-1/2 
= (x,xp  ,...,xp 	) e H(n) x H 	(r) x 	x H (r); 

V 	m-1 

Bjx = 0, 0 < j < v-1; xp  = yp  x,...,xp 	=y,  x} 
V V 	m-1 i'm-1 

and Y = (L2(Q))r, where r is the number of components of a vector in the 

range of S. 

Remark 6.3.3. The space X may be identified with the space {x e l m(n); 

B.x = 0, 0 < j < v-1}. 

We define the operator T:X + Y by 

Tx = Sx, 	 (6.3.9) 

where x = (x,x 	) e X and the operator S is interpreted in the 
Pv 	Pn-1 

generalised sense. 

The adjoint operator T* is defined via the adjoint relationship 
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<T7,y*>. = <x,T*y*>, 	v7e X, y* e Y*. 	(6.3.10) 

To identify the operator T* we shall use the integration by parts 

formula (6.3.8). This is valid in the generalised sense for all 

x e Hm(Q) and all y* e H(S*;0), where 

H(S*;0) = Cy* e (L2(Q))r; 	S*y* e L2(n)}. 

Then since B.x = 0, 0 < j < v-1 when x = (x,x
pm-1

) e X, the 
Pv 

left hand side of (6.3.8) is identical to the left hand side of (6.3.10). 

Hence we have 

m-1 	n.+1 
<x,T*y*> = f(S*y*)xdn - E (-1) 3 	C.y*y xdr, 

j=v 	r 	Pi 
(6.3.11) 

when x e X and y* e H(S*,0). Then we can say that, at least for all 

y* e H(8*,Q), 

n +1 	nm-1
+1 

T*y* = (S*y*, (-1) 	Cvy*,...,(-1) 	Cm-1y*). (6.3.12) 

Remark 6.3.4. For y* 0 H(S*;S2) we cannot characterise T* simply by 

(6.3.12). Therefore in general T* is an extension of the right hand 

side of (6.3.12). 

Hence the abstract problem 

Tu = w 

Ew = v 
	 (6.3.13) 

T*v = 

where T:X 4 Y is given by (6.3.9), T*:Y* 4 X* is given by (6.3.10), 

E:Y Y* is given by Ey = Gy, fly e Y, u = (u,yu,...,yu) e X and 
pv 	pm-1 
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f = (f,0,...,0) a X*, can be considered an extension of equations 

(6.3.1) which reduce essentially to (6.3.1) when v e H(S*;n), that is, 

when f e L2(n). Note that (6.3.11)1  gives rise to the equations 

Su = w in n 

B.
3
u = 0 on r, 0 < j < v-1, 

sinceueXimpliesB.
3
u= 0, 0 < j < v-1. Provided v e H(S*;f2) we see 

from (6.3.12) that (6.3.13)3  gives rise to the equations 

S*v = f in n 

C.
3
v = 0 on r, 	v < j < m-1. 

Equations (6.3.13) are in the form of the abstract problem of 

Chapter 4. Hence the conditions for the existence and uniqueness of a 

solution to this problem are given by theorem 4.1.4. Variationa3 

principles associated with this problem are also given in Chapter 4, 

the most general being (4.3.1). 

Example 6.3.1  

Consider the problem 

-V2171 = f in SZ e ne2  
(6.3.14) 

a = g on F. 

In example 6.2.1 we showed that this is a regular elliptic problem 

which can be put into the form 
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grad u = w in n 

u = 0 on r 
w = v in n 
	

(6.3.15) 

-div v = f in 0, 

where u = 	uo  satisfying youo  = g on r. Since V = m = 1, the 

boundary operator 

= FO 
	

B
o 	

y
o  

Hence condition (6.3.4) is satisfied as y0  is a Dirichlet system of 

order 1 on r. Theorem 6.1.4 shows that Green's formula is valid, that 

is, there exists a *0  such that 
• 

f grad R. grad x df2 = - $ (V2ii)xcl1 - $ *
o 
 Ry
o 

 xdr, 	 (6.3.16) 
f2 	 f2 	 r 

with *0  of order 1. As G is the identity map in this problem, it has 

an inverse and hence as in section 6.2 we can define the operator *0  by 

*0 grad 	= (1) 0 	0 

and letting y* = grad x, (6.3.16) becomes 

f y* .grad x dS-2 = -f (div y*)xdS1 - f *,y*y0xdr. 	 (6.3.17) 
r " 

Assumption  (6.3.7) is  trivially satisfied as there are no C. operators 

in this problem. 

Hence we define the spaces 

1 
x 	 {x e Hm(n); y0x = 0 on r} E H0  (Q) 

Y = (L
2

(S2))2. 



128 

We define the operator T:X 4-Y by 

Tx = grad x 

where grad is interpreted in the generalised sense. The adjoint 

operator is defined via the adjoint relationship 

1 
<Tx,y*> = <x,T*y*>, Vx e H (0), y* e (1,2 (g)) 2  . 

Comparing this with (6.3.17), which is valid in the generalised sense 

for all x e H
1(S2) and all y* e H(div;f2), we have 

<x,T*y*> = - f x div y*dQ, Vx e H0
1 
 (n), y* e H(div;52). 

0 

Hence we can identify T*y* with -div y*, for all y* e H(div;s1). Now 

we can define the problem 

Tu = w 

TW = V 

T*v = f, 

where T:X Y and T*:Y* + X* are as given above and T is the identity 

mapping. This is an extension of c!quations (6.3.15) provided f e L2 (0), 

since the equation Tu = w implies 

grad u = w in n 

u = 0 on r, 

and T*v = f implies 

-div v = f in 0 



where 

Sx Sx 

Gy 

= = 

= /1 0 a 

0 2(1-a) 0 

a 0 1 / 

(
9
2
x 	3

2
x 	D

2
x 

(a! 2' DE
1
DE
2 n2

2) 

1 

I Yl 
Y2 

1Y3 

(6.3.19) 

(6.3.20) 
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provided v e H(div;0), i.e. provided f e L2(0). This abstract problem 

is of the type studied in Chapters 2 and 3, and all the results given 

there are valid for this example. 

Example 6.3.2  

Recall the example from the theory of flat plates, example 6.2.3. 

This was reduced to the set of equations 

Su = w in n 

you = 0 on r 

Gw = v in Q 

S*v = f in 0 

C
1
v = 0 on r, 

(6.3.18) 

2 
9y1* 	

2 
3y2* 

2 
* 9y3 

S*y* = 	+ 	+ 
n
1
n
2 n2

2 
a1

2 
(6.3.21) 

and 
2 	2 * 

C
1
y* = n

1 
y
1
* + nin2y2* + n2 y3*. (6.3.22) 

In example 6.2.3 we proved that this is a regular elliptic problem. We 

now show that it satisfies the two further assumptions (6.3.4) and 

(6.3.7). 
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Thesysternofbouroaryoperators{F7,0 < j < 1), see (6.3.3), is 

given by 

F. = 
	YO 	j = 0 

11 ' 
	j = 1. 

This is easily shown to be a Dirichlet system of order 2 on r, 

definition 6.1. 7, and so assumption (6.3.4) is satisfied. Then from 

theorem 6.1.4, there exists a normal system of operators f(i, 0 < j < 1) 

such that 

1 
f GS5Sxd0 = f(S*GSR)xdO - E f cp.Sty.xdr 

i=o r 3 3  
(6.3.23) 

with co  of order 3 and cp1 of order 2. As G is non-singular we can define 

the operators 	by 

P .GSR = ..R , 	0 < j < 1, 

and letting y* = GSR, (6.3.23) becomes 

1 
f y*SxdC2 = f(S*y*)xdP - E f 1P.y*y.xdr. 

0 	j=0 r 3 
(6.3.24) 

However integration by parts gives us the relationship 

3y* 	3y* 	ay* 
f y*Sxd12 = f(S*y*)xdC2 - f (nl  Tr 

 
-1 

2 	17-+ 

	

2 + n 	3,
1 2 an + n 
	xoi 2 an 0 

	

+ f C1y*y1xdr. 
	 (6.3.25) 

Hence from (6.3.24) and (6.3.25) we see that assumption (6.3.7) is 

satisfied, i.e. 

-Cl • 
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Now define the spaces 

• - 
X = tx = (x,x1) e H2(S2) X H

1/201; y0x = o on r and x1  = y1  x) 

Y = (L2(0))
3
. 

We define the operator T by 

. a2x 	a
2
x 	;

2
x 

Tx = (n

1
2 ' DE

1
3E
2
' 
D2

2 

where x = (x,y1x) e X and the derivatives are interpreted in the 

generalised sense. The adjoint operator T* is defined by the adjoint 

relationship 

<Tx,y*> = <x,T*y*> 	v7c e X, y* e (L2(n))3. 

Comparing with (6.3.24), which is valid in the generalised sense for 

all x e H2(2) and all y* e H(S*;Q), we see that for y* e H(S*;n), T* 

can be defined by 

T*y* = (S*y*, -Cly*). 

Hence the problem 

Tu = w 

Ew = v 
	

(6.3.26) 

T*v = 

where u = (u,y1  u) e x, 1.= (f,0) e L2  (Sl)x L2  (t) and E is the operator G, 

is an extension of problem (6.3.18). 
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Equations (6.3.26) are in the form of the abstract problem of 

Chapter 4 and we shall prove that it has a unique solution by verifying 

1 
the hypotheses of theorem 4.1.4. As 0 < a < 7  the operator E is a 

one-to-one mapping with an inverse E
-1
. Hence a unique solution of this 

problem exists if we can prove that there exists a > 0 such that 

II T2711 
s a

2
x_1 2 	,  32x  1 2 4. (32x )2d01/2 

1  2' In
1
n
2
' 

(L2(0))
3 

0 DE 	n
2
2 

1 

> a{ 11 xil 
H
22
(0) + 	YlxII 21/2n 

}1/2 

H ' -() 

= all xll  x  , 	e X. 

This is easily shown from remark 6.1.1 and the trace inequality (6.1.2). 

The most general variational principle considered in Chapter 4, 

see (4.3.1), can, for this problem, be written as: 

find (u,w,v) e X x (1,2(S))3  x (L2(S2))3 saddle point of 

a2x 	 2 * a 2 
L (x,y,y*) = j 	yt + 	at_    y2  + 	x y3 ) (10 

S2 3E1 	'1 2 	3E2 

- f(Y1Y1 Y2Y2 173173)d  

1 r 	 2 
7-7  J {Y-(171 	aY2) 	2(1  - c1)172 	573(44571 	173))(12  4 i2  

- f xf dg, 

where x = (x,y1x) e x, y = (1,1,1,2,y3) e (L2(Q))
3 

and y* = (y*, y*' 3 y*) e (L2(0))
3
. This is a generalisation of the Hu- 1 2 

Washizu principle for flat plates, see Washizu [1975]. 
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Remark 6:3.5. Note that although the abstract problem (6.3.26) 

involves very general operators, e.g. T*, the variational problem can 

be expressed in terms of relatively straightforward operators such as 

generalised derivatives on Sobolev spaces. 

6.4 The Second Abstract Formulation  

Returning to the intermediate canonical problem 

Su = w in 

B.0 = 0 on r, 	o < j < v-1 
3 

Gw = v in 0 

S*v = f in n 

C.v = 0 on r, 	v < j < m-1 , 

we shall show in this section that this classical problem can be related 

to an abstract problem 

Tu = w 

Ew = v 

T*v = f 

as in the previous section. Here, however, we take T* as the primary 

abstract operator and define T as its adjoint. First, as in section 6.3, 

weintroducetworestrictionsontheboundanroperatorsB.and C. of the 

intermediate canonical problem. 

We know that there exist boundary operators (B.', v < j < m-1} which 

define a set 
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Bj  , O < j < v-1 

F. = 
3 

(6.4.1) 

S.', 	v < j < m-1 

of boundaryoperatorssuchthat{F.,0 < j < m-1} is a Dirichlet 

system of order m. Then from theorem 6.1.4, there exists a normal 

system {y 0 < j < m-1} of boundary operators such that 

m-1 
a(R,x) = f (S*GSR)xd2 - 

j
E 	4) RF.xdr 
=0 r ) ) 

(6.4.2) 

with order of cb. = 2m-l-order of F.. As in the previous section we 

maydefinetheoperators1P.
3 
 by 

= .GSR 	(P.R, 	0 < j < m-1 . IP] 	
3 

Then (6.4.2) becomes 

m-1 
f y*sxds1 = f (5*y*)xdQ - E j 1P.y*F.xdr 
0 	 j=o r 3  

(6.4.3) 

where y* = GSR. 

Now we make two assumptions. Let {p., 0 < j < v-1} be a set of 

integers such that the set {po  ,...,pv_linv,...,nm_i} take all the 

values from 0 to m-1. Then we assume that 

p.+3. 
= (-1) 3  y

P 	
0 < j < . 

• 
(6.4.4) 

Secondly we assume that the C. can be permuted such that 

n.+1 
= (-1) 3  C,, 

3 	
v < j < m-1. 	(6.4.5) 
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With these assumptions (6.4.3) can be written as 

f y*SxdS1 + E (-1) 
V-1 	p.+1 

f y y*H.xdr = 
jc4 	r Pj 3  

m-1 	n.+1 
f (S*y*)xda - E (-1) 3  fC.y*B!xclr. 

j=v 	r 3 	3 
(6.4.6) 

Remark 6.4.1. As in section 6.3, the assumption (6.4.5) imposes 

restrictionsollemboluidaryoperators{c
3
,v < j < m-1}, which must 

be of order 

nj  = m -1 -p., 	v < j < m-1. 	 ❑ 

We are now in a position to define the abstract equations and to 

show they are an extension of the classical equations of the intermediate 

canonical form. Let us define the spaces 

-p -1/2 	 -p 
Y* = 	= (y*,y* ,...,y* 	) e (I,2(sof x Ho (1)x 	x H

v- -1/ 
1/r); P0 	pv-1 

S*y* e L2 (Q); cjy* = o, v< j< m-1; 31,  = yn  y*,...,y4 = y, 	y*}, 
'0 '0 	'v-1 'v-1 

where r is the number of components of a vector in the domain or S*, and 

X* = L2(0). 

Here S* is considered as an operator in the generalised sense. 

Remark 6.4.2. The space Y* may be identified with the space 

Cy* e (1,2(n))r; s*y* e 1,2(n); cjy* = o, v < j < m-1) . 	El 
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We shall define T*:Y* + X* by 

T*y* = S*y*, 	 (6.4.7) 

where y* = (y*,y* ,...,y* 	) e Y* and the operator S* is interpreted 
PO 	Pv-1 

in the generalised sense. The adjoint operator T is defined via the 

adjoint relationship 

<Tx,y*> = 	Vx e x, 	e Y*. 	(6.4.8) 

We shall use (6.4.6) to identify the operator T. Note that (6.4.6) 

is valid in the generalised sense for all x e Hm(Q) and all y* e H(S*;Q). 

The right hand side of (6.4.8) is identical to the right hand side of 

(6.4.6)sinceC.3y*= 0, v < j < m-1, for y* e Y*. Hence 

v-1 	p.+1 . 
<Tx,y*> = f y*SxdS/ + E (-1) 3 	J  y y*B.xdr, 

12 	j=0 	r Pj 3  
(6.4.9) 

for all x e Hm(Q) and 	e Y. Hence, at least for x e Hm(n), we can 

identify T by 

p +1 0 	
pv+1 

Tx = (Sx,(-1) 	B0  x 	(-1) 	By-1x). " 

Now define a linear operator E with domain 

D(E) = • {7 e Y; y = (y,0,..,0)} 

such that 

Ey = (Gy, y Gy,...,y 	Gy). 
PO 	Pv-1 

(6.4.10) 
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Then we define the abstract problem 

Tu = w 

Ew = v 
	

(6.4.11) 

T*v = f 

where T:X Y is defined by (6.4.8), T*:Y* + X* is defined by (6.4.7), 

w = (w,0,...,0) and v = (v,y v,...,y 	v). We can easily shoal 
p0 	P v-1 

that this is an extension of the intermediate canonical form (6.3.1), 

provided u E H
m(n). For if this is the case we can use (6.4.10) to show 

that (6.4.11)
1 
 gives rise to the equations 

Su = w in n 

B.0 = Don r, 0 < j < v-1 . 

Also (6.4.11)2  implies 

Gw = v in SZ 

and (6.4.11)3  leads to the equations 

S*v = f in n 

C.v = 0 on r, 	v < j < m-1 , 

sincev8Y*impliesC.
3
v= 0, v < j < m-1. 

The assumption that u e lim(S2) is easily shown to be valid in the 

applications considered. In fact if the problem can be put into the 

first abstract formulation given in section 6.3, then we must have 

u e Hm(n). 
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Conditions for existence and uniqueness of an abstract form of 

problem (6.4.11) are given in Chapter 4, theorem 4.1.4. The variational 

principles for this problem are also given in Chapter 4. 

Example 6.4.1  

Consider the problem 

-V2C1 = f in S2 e GR 2  
(6.4.12) 

a = g on r. 

This is a regular elliptic problem, see example 6.2.1, which can be 

put into the form 

grad u = w in a 

u = 0 on r 

w = v in Q 

-div v = f in Q, 

(6.4.13) 

where u = u-u0, uo satisfying y0  u0 
 = g on r. Since v = m = 1, the 

boundary operator F
0 
 is given by 

= y . 
0 	'0 

This is a Dirichlet system and so from theorem 6.1.4 there exists a 

normal operator (Po, such that 

r 2- f grad x. grad x d2 = - j(V x)xdSZ -
o
Ry
o
xdr 

with cl)
o 
of order 1. The operator 11)

0 
is defined by 

4,0  grad R = (pox, 

(6.4.14) 
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and (6.4.14) becomes 

5 y*.grad x dQ =- f (div y*)xdO - f
0
y*y xdr, 

where y* = grad R. However, integration by parts gives 

y*.grad x dQ =- f (div y*)xdfl + f yy*yxdr. 
S2 	 12 	 r 

(6.4.15) 

(6.4.16) 

Comparing this with (6.4.15) we see that assumption (6.4.4), i.e. 

= -Yo ' 

is satisfied. The second assumption (6.4.5) is trivially satisfied as 

there are no C. operators for this problem. Hence (6.4.15) can be 

written as 

f y*.grad x dO - fy y*y xdr =- f (div y*)xdQ. 	(6.4.17) 
12 	 r  o 

We We define the spaces 

Y* = {7= (y,y0) e (L2(12))
2 x H 1/2(r); div y e L

2
(Q); y0*  = yoy*1 

and 

X* = L2(Q). 

Then we define T*;Y* .4- X* by 

T*y* = - div y* 

where y* = (Y*,11). Then comparing the adjoint relationship 

<Tx,y*> = <x,T*y*>, 	Vx e x, y* e Y*, 
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with (6.4.17) we see that 

<Tx,y*> = f y*.grad x dS2 - f y_y*yoxdr, 
f2 	r 

for x e H
1
(a), 7* e Y*, since (6.4.17) is valid in the generalised sense 

for all x e H
1
(0) and all y* e Y*. Then, provided x e H

1
(Q), we can 

identify Tx with (grad x, -y0x). 

Now define the linear operator E with domain 

D(E) = {y e Y; y = (y,0)} 

and such that 

Ey = (Ty,y0Ty)• 

Then we define the problem 

Tu = w 

Ew = v 
	

(6.4.17) 

T47 = f, 

where T and T* are defined as above, w = (w,0) and v = (v,y0v). Then 

if u e H
1 
 (S2) we can identify T as above and hence (6.4.17) reduces to 

(6.4.13). The fact that u e H1(0) for the generalised form of (6.4.13) 

can be seen from example 6.3.1. 

The existence and uniqueness of a solution of (6.4.17) is guaranteed 

if the conditions of theorem 4.1.4 are satisfied, i.e. if there exists 

al, a2, a3  > 0 such that 

Vx e X, 	(6.4.18) 
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II z711 y* 	a211711  y' VY.  e D (E), 

-- — <E lz,z> > a — 3 	Y* 
vT e z. 

(6.4.19) 

(6.4.20) 

To prove (6.4.18) we adopt an approach of Raviart-Thomas [to appear]. 

Let h be a solution of the problem: 

find h e H2(0)/1 H 1
(P) such that 

-V2h = x in fl 

Yoh = 0 on r. 

We know a unique solution h 8 H
0  1(P) exists for this problem when 

x e L2(0)' see example 6.3.1. Let k* = grad h. Then 

<Tx,k*> = <x,T*7*> 

xm 2  L2  (n) (6.4.21) 

where 7:* = (k*,yok*) e Y*. Also 

II k*  II 2 II "II 
2 

Y* 	+ 	YOk*  II -1/2 H(div,Q) 	H 	(r) 

< (1 + a)11k*11 2  H (div, 

using the trace inequality of theorem 6.1.2. 
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Therefore 

2 
+ II div k* I1 

L  
2 !mid i 	< (1 + 	{ grad hi' 2  

L Y* 	2
(2) 	

2
(n) 

= 	(1 + a){ 11 1111 2 (n)  + n V21111 2 	/
Hl 	 L

2
(0) 

f.  cil xII L2(1) 

where c and a are constants > 0, hence 

<Tx,7*>.  
sup 

y*ey*_{0) II I —Y*  I I y* 

<Tx,17*> 	0 0 
(11 11x11 L2(n) V* II y* 

using (6.4.21) and (6.4.22). 

To prove (6.4.19), note that 

2 
_ 1/2  H ETI! y* = 	TYII H(div,P) 

+ 	y
o
Ty 11 

H ' (r) 

However 

1171Iy = 	115711 H(div,0)* = 	TY II H(div,2).  

Hence II Ey I I y* 	 a211Yll y • 

Finally (6.4.20) is easily proved as 

— 
<E z,z> = <T Z,Z> =zil 2  

I " H(div,P) 

2 2 
a(1-01IY0z11 -1/2 > 13 11 zII H(diva 	H 
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for 0 < R < 1 and using theorem 6.1.2. Hence 

z,z> > a311 Z11 y* 

Therefore problem (6.4.17) has a unique solution 

(u,;c7) e L2(i) x Y x  Y*. 

The most general of the abstract variational principles studied 

in Chapter 4 is then applicable to this problem, and is: 

find (u,w,v) e L2(R) 
X  Y x Y*, saddle point of 

r 
L(x,1,7*) = -fxdiv y*d0 --2 

1  
-jyy*d0 

-fxfdP, 
ft 

where y = (y,0) e Y*, 	= (y*,yy*) e Y*. This can be regarded 

as a generalisation of the Hu-Washizu principle applied to this problem. 
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CHAPTER 7 

'SUMMARY AND CONCLUSIONS  

7.1 . Summary  

In this section we briefly summarize all the material covered in 

this thesis before giving a summary in the next section of the 

contributions this thesis has made to the subject. 

We started by considering a simple abstract linear equation 

T*TTu = f 	 (7.1.1) 

where T : X 4- Y and T* : Y* 4- X* are adjoint operators, X, Y and their 

duals X*, Y* are Hilbert spaces and T is the canonical isomorphism 

from Y to Y. In Chapter 2 we gave conditions on T necessary to 

guarantee the existence and uniqueness of the solution u e X of (7.1.1) 

for any f e X. This abstract problem can be identified with a differ-

ential equation in one of two ways. First we may define the operator T 

as a differential operator in the generalised sense and T* as its adjoint. 

Secondly we may define T* as a differential operator in the generalised 

sense and T as its adjoint. In the applications we always regard the 

spaces X and Y as Sobolev spaces and in particular the sub-class of 

Sobolev spaces based on the L2(Q) space. 

In Chapter 3 we showed that the abstract problem (7.1.1) is related 

to the mixed variational problem: 
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find (u,v) e X X Y*, saddle point of 

L(x,y*) = <Tx,y*> - 1 <T
-1  y*,y*). - <x,f> x e X, y* e Y*, 

	(7.1.2) 

in the sense that, if u is a solution of (7.1.1) then (u,v = rTu) is a 

solution of (7.1.2) and conversely if (u,v) is a solution of (7.1.2) 

then u is a solution of (7.1.1). 

From (7.1.2) we derived two further variational problems: 

and 

find u e X, minimum point of 

1 
J(x) = 7  <Tx,TTx> - <x,f>, x e x 

(7.1.3) 

find v e Y*, maximum point of 

1 K (y*) = - 7  <T
-1  y* ,y*> , y* e Zf, 

(7.1.4) 

where Z
f = {y* e y*; T*y* = f}. 

We proved that these two variational problems each have a unique solution 

provided (7.1.2) has a unique solution. Further we showed that the 

solutions are related in the sense that, if (u,v) is a solution of 

(7.1.2) then u is a solution of (7.1.3) and v is a solution of (7.1.4), 

and that these two variational problems are in fact complementary extremum 

problems, that is, 

Min J(x) = J(u) = L(u,v) = Y(v) = Max Y(Y*). 
xeX 	 y*eZf  

In a more general setting we showed that from a saddle functional, 

such as L(x,y*), we can obtain another functional, such as J(x), by 

restricting the domain of the saddle functional to a linear variety. 
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We can achieve this for any saddle functional L(x,y*) for which the y* 

variable is either linear or such that the relation V2L(x,y*) = 0 

provides an explicit relationship' for y* in terms of x. We also showed 

that, for any saddle functional containing a saddle point which satisfies 

the above conditions for both the x and y* variables, we can choose two 

linear varieties containing the saddle point, such that the restriction 

of the saddle functional to the linear varieties gives complementary 

extremum functionals. 

In Chapter 4 we extended the abstract linear equation to the form 

T*ETu = f, 	 (7.1.5) 

where E : Y Y* is a linear operator. We gave conditions on the 

operator E for (7.1.5) to have a unique solution and we proved that it 

is related to the variational problem 

find ((u,w),v) e (X x y) x y*, saddle point of 

L(x,y,y*) = <Tx,y*> - <y,y*> + 
2 	-Y 

<y,r > - <x,f>, 
(7.1.6) 

x e X, y e Y, y* e Y*, and that if u is a solution of (7.1.5), 

(u,w = Tu, v = ETu) is a solution of (7.1.6) and conversely if (u,w,v) 

is a solution of (7.1.6) then u is a solution of (7.1.5). In the theory 

of elasticity a particular case of this variational principle is known 

as the Hu-Washizu principle. By the same technique as in Chapter 3 we 

were able to derive many other variational principles associated with 

equation (7.1.5). These include generalisations of the Hellinger-

Reisner principle, the minimum potential energy principle and the minimum 

complementary energy principle. We gave the precise relationship between 

each of the principles and showed that each of them can be obtained by 
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restricting the domain of the functional L(x,y,y*) in (7.1.6). 

In Chapter 5 we studied some non-linear equations, the most 

general of which is 

	

T*E(Tu) + F(u) = 0 	 (7.1.7) 

where T : X + Y and T* : Y* -* X* are linear adjoint operators and 

E : Y Y* and F : X X* are non-linear operators. We gave sufficient 

conditions on the non-linear operators E and F such that the existence 

and uniqueness theorem for the linear equation could be extended to 

the non-linear equation (7.1.7). The main variational problem associated 

with (7.1.7) is 

find ((u,w),v)exxYxY*, saddle point of 
(7.1.8) 

	

L(x,y,y*) = <Tx,y*> - <y,y*> 	e(y) + f(x), 

x e X, y e Y, y* e Y*. We then proved that, provided the non-linear 

operators E and F are potential operators with potentials e(y) and f(x) 

respectively, this problem has a unique solution (u,w,v) where u is 

the solution of (7.1.7), w = Tu and v = E(Tu). 

From the variational problem (7.1.8) we derived a set of variational 

problems associated with equation (7.1.7). These are the non-linear 

versions of those derived for the linear problem (7.1.5) and we gave the 

relationships between them as in the linear case. 

Finally in Chapter 6 we showed in detail how to incorporate more 

general boundary value problems into the abstract formulation we had 

previously studied. In particular we considered the class of regular 

elliptic problems of order 2m; e.g. 
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S* G Su = f in n 
(7.1.9) 

B.0 = g., 0 < j < m-1 on r, 

where S and S* are differential operators of order m, G is of order 0 

and the 13j  are boundary differential operators. We saw how this could be 

put into the abstract form 

T* E Tu = f 

by associating the adjoint relationship for the operators T and T* with 

the Green's formula for problem (7.1.9). This led to two possible 

formulations for the problem. One in which the Dirichlet boundary 

conditions are incorporated into the domain of T and the Neumann boundary 

conditions are incorporated into the operator T*. The other in which 

the Dirichlet boundary conditions are incorporated into the operator T 

and the Neumann boundary conditions incorporated into the domain of T*. 

Throughout the text we illustrated the theoretical concepts by 

applying them to simple problems for which we specified precisely the 

operators and spaces involved. 

7.2 Contributions to the Subject and Relations to Other Work  

In this section we briefly show how the material in this thesis 

relates to work done by other authors. First we show how the abstract 

formulation we have considered is related to the abstract formulation of 

Noble-Sewell [1971] and of the French school, e.g. Lions-Magenes [1972]/ 

Brezzi [1974] and Raviart-Thomas [to appear]. 

Considering first the French school, a typical abstract problem 

from the work of Lions-Magenes might be 
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find u e X such that 

a(u,x) = 	Yx e X, 	 (7.2.1) 

where a(u,x) is a continuous bilinear form from X x X to IR and 

f e X. A sufficient condition for this problem to have a unique 

solution is that a(u,x) is X-elliptic, that is, there exists a > 0 

such that 

a(x,x) > all x11 2, 	Vx e x. 	 (7.2.2) 

When a(u,x) is symmetric, it is easily shown that problem (7.2.1) is 

equivalent to the variational problem 

find u e X minimum point of 

J(x) = 1 —a(x,x) - <f,x>. 
2 

(7.2.3) 

Problem (7.2.1) can be related to the simplest abstract equation 

we have studied 

T*TTu = f, 	 (7.2.4) 

by the relation 

a(u,x) = <TTu,Tx>. 	 (7.2.5) 

Obviously the right hand side of (7.2.5) is bilinear and it is easily 

shown to be continuous. Using (7.2.5) in (7.2.1), we get 

<TTu,Tx> = <f,x>, 	Yx e X 
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and using the adjoint relation gives 

a(u,x) = <T*TTu,x> = <f,x>, Vx e X, 

which is a weak form of equation (7.2.4). 

Using (7.2.5) in inequality (7.2.2), a sufficient condition for 

existence and uniqueness of a solution is that there exists a > 0 such 

that 

II 2 <TTx,Tx> > allxii , 

However 

<TTx,Tx> = (Tx,Tx) = 11'1'4 2  

and so the condition becomes 

Txii 2  > all x11 2, 

which is the inequality we have shown to be sufficient for the existence 

of a unique solution of equation (7.2.4). 

As <TTu,Tx> is symmetric we can use the relation (7.2.5) in the 

variational problem (7.2.3) which becomes 

find u e X minimum point of 

J(x) = 
1

<TTx,Tx> - <f,x>, 

which is the abstract minimum potential energy problem, see section 3.4, 

related to the abstract equation (7.2.4). 
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The treatment of mixed methods in the French school comes from 

the work of Brezzi [1974], see e.g. Raviart-Thomas [to appear]. The 

abstract problem considered by Brezzi can be written as 

find (u,v) e x x Y* such that 

a(v,y*) + b(u,y*) = 0, 	`Ty*  e Y*, 

b(x,v) = 	Yx e x, 
(7.2.6) 

where X and Y* are Hilbert spaces and a : Y* x y* 	OR and 

b : Y* x X -* ni are bilinear forms. If a(v,y*) is symmetric and 

X-elliptic, then (7.2.6) is equivalent to the variational problem 

find (u,v) e X x Y* saddle point of 

H(x,y*) = b(x,y*) + 	a(y*,17*) - 
(7.2.7) 

Problem (7.2.6) can be related to the abstract equation 

T* E Tu = f 	 (7.2.8) 

as follows: Suppose the operator E has an inverse E 
1 
 , then let 

a(yt,* = 
-1 * * 	* * 

-<E y
1,y2> V171,Y2 eY*  (7.2.9) 

and b(x,y*) = <Tx,y*> 

= <x,T*y*>, 	qty* e Y*, x e X. 	(7.2.10) 
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Using these relations in equations (7.2.6) we get 

-<E
-1
v,y*> + <Tu,y*> = 0, Vy* e Y*, 

<x,T*v> = <x,f>, 	Yx e X. 

This is a weak form of the equations 

(7.2.11) 

E -1v = Tu 

and 

T*v = f, 

that is, equation (7.2.8). 

Hence a solution (u,v) of (7.2.6) gives a solution u of (7.2.8) when 

related by (7.2.9) and (7.2.10). 

The variational formulation (7.2.7) is transformed by the relations 

(7.2.9) and (7.2.10) into the abstract Hellinger-Reissner variational 

problem, see equation (4.4.5), that is 

find (u,v) E X x Y* saddle point of 

1 H(x,y*) = <Tx,y*> - T<E-1  y*,y*> - <f,x>. 

Turning to the work of Noble-Sewell [1971], we can express the 

abstract problem they considered as 

Tu = 72W(uv) 
	

(7.2.12) 
T*v = V

1
W(u,v), 
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where T is a linear operator from a Hilbert space X to a Hilbert space Y 

	

with adjoint T* and W : X X Y* 	[11 is a given functional. This is 

related to the non-linear abstract equation 

	

T*E(Tu) + F(u) = 0 	 (7.2.13) 

as follows: Assume the operator E has an inverse E
-1

, then (7.2.13) can 

be written as 

Tu = E
-1
(v) 

T*v = -F(u). 

We can see that this is a particular case of (7.2.12) in which 

V
2
W(u
'
v) = E-1  (v), 

V2W(u,v) = -F(u). 

Therefore, assuming E-1 and F are potential operators, the abstract 

equation (7.2.13) can be considered as a special case of (7.2.12) where 

the functional W is given by 

1 
W(x,y*) = W

0 
 + 5  <E (y

0 
 * + t(y*-y

0 
 *)),y*-y

o
*>dt 

0 

1 
- 	<F(x 

0 
 + t(x-x0)),x-x

o
>dt, 

0 

see section 5.1. 

Hence we see that the abstract form studied in this thesis is closely 

related to the abstract problems of both the French school and the work 

of Noble-Sewell. The approach of the French school has the advantage of 
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great precision in the definition of operators and spaces, and the 

availability of existence and uniqueness theorems. The Noble-Sewell 

approach is far more general, including non-linear problems, but does 

not give any existence results. In this thesis we have given an 

abstract formulation in sufficient precision for us to prove existence 

and uniqueness theorems. Also this abstract formulation, although not 

as general as the Noble-Sewell form, can be applied to some non-linear 

as well as linear problems. 

One of the more difficult aspects of studying differential equations 

from an abstract point of view is to relate the abstract equation to a 

specific differential equation. This requires a precise definition of 

the operators and spaces used in the abstract formulation. To simplify 

this identification we have restricted ourselves to an abstract formula- 

tion in which the linear adjoint operators T and T* act as generalisations 

of differential operators. For the spaces that form the domains and 

ranges of these operators we have restricted ourselves to the subclass 

of Sobolev spaces which are Hilbert spaces, that is, those Sobolev 

spaces based on the L2(P) space. 

The most common approach for differential equations of order 2m 

is to use the space Hm(Q) or a subspace, e.g. H
0  1

M. These spaces 

are widely used for the formulation of problems in the weak form or in 

terms of variational problems of the minimum potential energy type. 

This approach can be extended to the formulation of problems in terms 

of a mixed variational principle in which we use the spaces Hm(Q) 

and (L2(n))q, q an integer, see Oden-Reddy [1976]. Another approach 

given recently by Raviart-Thomas [to appear] for the mixed method for 

the second order problem is to use the spaces L2(Q) and H(div;c2). 

In this thesis we have shown that these two approaches occur quite 

naturally for operators of the form T*T as suggested by Friedrichs [1939]. 
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The first arises from defining the operator T as an extension of a 

differential operator of order m and T* is its adjoint. The second 

arises from defining T* as an extension of a differential operator 

of order m and T as its adjoint. We have also shown how various 

boundary conditions are incorporated into the abstract form. In the 

first approach the Dirichlet boundary conditions are incorporated into 

the domain of the operator T, i.e. they are essential boundary conditions. 

The Neumann boundary conditions are incorporated into the operator T*, 

i.e. they are natural boundary conditions. Conversely in the second 

approach the Dirichlet boundary conditions are incorporated into the 

operator T, i.e. they are natural boundary conditions. The Neumann 

boundary conditions are incorporated into the domain of the operator T*, 

i.e. they are essential boundary conditions. 

We may study the existence and uniqueness of the solution of 

variational problems in two different ways. Firstly we could show that 

a unique solution exists by proving that the functional has a unique 

stationary point. Secondly we could show that a set of abstract 

equations are satisfied at a stationary point of the functional. Then 

we would only need to prove that the abstract equations have a unique 

solution to ensure that the variational problem has a unique solution. 

For non-linear problems of a very general type involving two variables 

Noble-Sewell [1971] took the first approach. They proved the unique-

ness, but not existence, of the saddle point provided the functional is 

strictly convex in one variable and strictly concave in the other. 

However, all the variational problems we have studied are linear in one 

of the variables and so we are not able to use the Noble-Sewell approach. 

The other approach was taken by Brezzi [1974] for linear problems 

based on a different abstract form which we discussed in the previous 
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section, equations (7.2.6). We have essentially used the approach of 

Brezzi to prove the existence and uniqueness of a solution to the 

simplest abstract form we considered, that is, 

find (u,v) e x x Y* such that 

TTu = v 

T*v = f, 

where X and Y* are Hilbert spaces and T : X 4 Y and T* : Y* X* are 

adjoint linear operators. We extended this result to the more complex 

linear problem 

find (u,w,v)eXxYxY* such that 

Tu = w 

Ew = v 

T*v = f, 

and to the non-linear problem 

find (u,w,v) eXxYxY* such that 

Tu = w 

E(w) = v 

T*v + F(u) = 0, 

where E and F are non-linear operators in this case. 

There are many variational principles associated with an abstract 

equation of the type we have been considering. We have given a set of 

principles all of which are known, at least for the linear problems, 

see Oden-Reddy [1974]. Some are straightforward generalizations of 
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classical variational principles, for example the minimum potential 

energy principle, others are of more recent origin, e.g. the 

Hu-Washizu principle. We have shown that each of these has a unique 

solution which is related to the solution of the abstract equation. 

We have also stated precisely the domain of the functional involved 

and shown that for boundary value problems there is a choice of 

generalizations leading to different functionals defined on different 

domains. Hence,.for example, the mixed variational principle for the 

harmonic equation in N 2  with homogeneous Dirichlet boundary conditions 

can have either the domain H0 
 1
(S2) x (L2(so)

2 
or the domain 

L2  (S2)x H(div;Q). It is interesting to note in this case that when 

the function f e L2(0) the solution of the two generalizations is the 

same. Whether a result of this type can be put into a more general 

framework remains to be shown. 

For either the linear or non-linear abstract eauation the set of 

associated variational principles are interrelated. These relationships 

may be viewed in several ways, all of which are mathematically equivalent 

but conceptually rather different. We can view the extremum principles, 

i.e. the minimum potential energy and minimum complementary energy 

principles, as fundamental and derive the other variational principles 

by using Lagrange multipliers, see Washizu [1975]. Alternatively we 

may view the most general principle involving three variables as funda-

mental and regard all other principles as derivable by specialising 

assumptions from the most general principle, see Fraeijs de Veubeke 

[1974] or Oden-Reddy [1974]. We have taken the latter view, but stressed 

that the specialising assumptions can be viewed as a restriction of the 

domain of the functional of the general variational principle. For 

example, the functional 
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of the minimum potential energy principle can be derived from the 

functional 

L(x,y*) = <Tx,y*> - 2<T-1y*,y*> - <x,f>, 	x e x, y* e Y* 

of the Hellinger-Reissner principle by restricting the domain of 

L(x,y*) to those (x,y*) satisfying y* = TTx. 

To recapitulate the contributions made in this thesis, we have 

shown that an elliptic boundary value problem may, by a suitable extension, 

be put into one of the abstract forms based on the operators T and T*. 

This may be done in two ways, one in which T is the primary operator and 

one in which T* is the primary operator. We have given conditions on 

the operators for a unique solution of the equation to exist and for 

there to be a set of variational problems associated with the equation. 

We have shown that under these conditions, the variational problems 

each have a unique solution which is related to the solution of the 

abstract equation. We have also shown how these variational problems 

are interrelated. 

An important area of research which follows naturally from these 

results is the study of approximate methods associated with each of 

the variational principles to determine which, if any, proviCas the 

"best" way of computing solutions to elliptic differential equations. 

We have not pursued this question in this thesis but in the next 

section we give a brief review of the questions involved in this 

extension of the material in this thesis. 
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7.3 Methods of Approximation  

All of the variational principles we have discussed in this thesis 

may be used as the basis of an approximate method, such as the finite 

element method, for the solution of differential equations. To do 

this we need to define an approximate variational principle with a 

finite dimensional domain. This approximate variational principle 

will often be the exact variational principle defined over a finite.  

dimensional subspace of its domain. This is sometimes called an 

interior approximation. We shall not consider the case of exterior 

approximation, when the finite dimensional domain is not a subspace 

of the infinite dimensional domain. Further we need to prove that the 

solution.of the approximate variational principle converges to the 

solution of the exact variational principle, additionally it is useful 

if the rate of convergence and some estimate of the error can be 

found. There has been considerable advance in the last ten years in 

proving some of these results for the finite element method based on 

some of the variational principles we have discussed. We briefly 

summarize the results presently known to the author. 

The first results along these lines were obtained for the minimum 

potential energy principle. See, for example, Zlamal [1968] where 

various piecewise polynomial subspaces were used as the domain of the 

minimum potential energy principle for second order and fourth order 

problems. Results for the complementary energy principle for second 

order problems have only recently been obtained, see Thomas [to appear]. 

For mixed methods, e.g. the Hellinger-Reisner principle, results have 

been given by Johnson [1973] for the biharmonic equation and by Raviart-

Thomas [to appear] for second order equations. The convergence of 

approximate methods based on the more general three field principles, 
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e.g. the Hu-Washizu principle, have, apparently, not yet been studied. 

For those spaces which give a solution converging to the correct 

solution for each variational principle we also have to compare the 

practical difficulties of implementing such schemes on a computer. 

A major problem is the difficulty of automatically generating the 

elements of the finite dimensional spaces involved. For example, let 

us consider Poisson's equation with homogeneous Dirichlet boundary 

conditions. The minimum potential energy principle uses the space 

H
0  1(Q). It has proved fairly easy to construct approximation spaces 

for this which can be generated automatically, see George [1971]. The 

complementary energy principle uses the space {y e (L2(Q))n; -Dy = f} 

for which the construction of approximate spaces presents difficulties, 

Thomas [to appear]. See also Fraeijs de Veubeke [1965]. 

The first formulation of the mixed method uses the spaces H 1(Q) 

and (L2(Q))n, Oden-Reddy [1976]. This seems to offer no advantage 

over the minimum potential energy principle unless the second function v 

of the solution (u,v) is specifically required. However, this is quite 

often the case, for example in elasticity the v's may represent the 

stresses. In this case the mixed method may produce more accurate 

results for v. In the second formulation the mixed method uses the 

spaces L2(R) and H(div; 	Raviart-Thomas (to appear]. The elements 

of these spaces require very little continuity and it would presumably 

be easy to generate elements of a finite dimensional subspace. 

The three field principles appear to offer no advantage over the 

two field mixed methods for linear problems. However, for problems with 

non-linear constitutive equations it may well be useful to consider these 

more general principles. There are no results known to the author on the 

implementation of three field principles for non-linear problems of this 

type. 
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7.4 Structure of the Mathematical Analysis  

In this section we briefly outline the structure of the existence 

and uniqueness proofs for the abstract problem and the associated 

variational problem. In this way we hope to lay bare the methodology 

used and hence clarify the way in which it could be used for other 

formulations. 

The simplest abstract form we considered, see Chapter 2, was 

find (u,v) e X x Y* such that 

TTu = v 

T*v = f, 	 (7.4.1) 

where X and Y* are Hilbert spaces and T : X-*Yand T* : Y* 4- X* are 

adjoint linear operators. Under the assumption that there exists a > 0 

such that 

H Tx!! > all xll 
	

Vx e x, 

we proved that T* is an isomorphism from a subspace Z-L E (N(T*))-L  C Y* 

onto X* and that TT is an isomorphism from X onto Z. Hence given any 

f e X* there exists a unique v satisfying (7.4.1)2  and also a unique u 

satisfying (7.4.1)1. 

In Chapter 4 we extended this result to the more complex linear 

problem 

find (u,w,v)eXxIxY* such that 

Tu = w 

Eta = v 
	

(7.4.2) 

T*v = f. 



and 

n  <E
1
z,z> > a2lizii 2  , Vz e z E N(T*), 

162 

For this we only needed to extend the proof to deal with the linear 

equation Ew = v rather than the isomorphism rw = v, where w = Tu, 

encountered in the simplest abstract problem. We showed that if there 

exists al,a2  > 0 such that 

II Ey II 	ai  II Yll 
	

vy e Y 

then for any v e z-1.  there exists a unique w e z°  E (Z i)* such that 

v E + 2 = Ew 

where .2 is an element of the null space of T*, i.e. Z. We were thus 

able to use the results of the simplest abstract problem, which showed 

that T* is an isomorphism from Z 1  to X* and T is an isomorphism from 

X to Z0, to deduce that problem (7.4.2) has a unique solution under the 

conditions given. 

Using some elements of non-linear operator theory, we were able to 

further extend the existence and uniqueness theorem to the non-linear 

problem 

find (u,w,v) exxYxY* such that 

Tu = w 

E(w) = v 

T*v + F(u) = 0, 

where E and F are non-linear operators. The non-linear operator E was 

incorporated into the existence and uniqueness proof in essentially the 



163 

same way as the linear case. Here, however, we used monotone operator 

theory to establish that for any v e z there exists a unique w e z0  

such that 

v = v + z = E (w) 

provided E is a continuous strictly monotone operator satisfying 

lim 
II Y 11 4- = +03. 

Then as in the linear case we used the results of the simplest abstract 

problem relating to T and T* to complete the proof. 

To incorporate the non-linear operator F instead of the function f 

of the linear case, we have applied the theory of monotone operators 

to the whole equation to show that a unique solution exists provided 

the conditions of the simplest abstract problem are satisfied and F is 

a monotone operator satisfying 

<F(x),x>  
lim inf 	7. -co. 

II xll_", 	Axil 

Hence from the existence and uniqueness theorem of the simplest abstract 

problem we have been able to build up proofs for more complex linear 

problems as well as non-linear problems. 

These results have also been used as the basis for existence and 

uniqueness theorems for the variational problems we have studied. The 

proofs for all the variational problems, both linear and non-linear, 

have the same general structure. We first show that any stationary 

point of the functional of the variational problem is also a solution 

of the related abstract equation. Then we use the existence result for 
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the abstract equation to show that the functional has a unique stationary 

point. Finally we show that the functional is a saddle functional and 

hence the stationary point is in fact a saddle point. 

7.5 Conclusions 

The abstract form we have studied in this thesis has some advantages 

over the approaches of the French school and the work of Noble-Sewell. 

The form we have given is a more natural generalization of a differential 

equation than the abstract form associated with the French school but 

still retains the preciseness of their approach. We were also able to 

easily extend the abstract form to include some types of non-linear 

equation. The Noble-Sewell approach, although including more general 

non-linear problems, does not include any existence and uniqueness 

theorems. 

We have been able to show that with each of the abstract forms 

considered there are associated a set of interrelated variational problems 

with solutions corresponding to the solution of the abstract problem. 

In applying the abstract formulation to differential equations we 

have been able to unify the approaches of Oden-Reddy and Raviart-Thomas. 

We have seen that these two approaches occur quite naturally for problems 

in the T*T form, one by taking T as the primary operator and the other by 

taking T* as the primary operator. 
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