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ABSTRACT 

The monitoring of the electrical power system requires information 
regarding its state for the analysis, assessment and control of the 
system. This information is obtained through a state estimation pro-
cess which comprises the data validation, network configuration 
and estimation algorithm. The non-linear state estimation in power 
systems is studied using a linearized model provided by a Taylor 
series expansion of the measurement equations. A linearity test is 
incorporated to check the validity of the linearized model. A discus 
sion is made on the weighting factors effect in the state estimation 
algorithm performance. 

The observability of the power system for state estimation is dis-
cussed using numerical analysis and graph theory concepts. It shows 
how the structural properties of the network are associated with its 
observability. A measurement set is expressed as a directed graph 
and its observability is related to the reachability matrix concept. 

It is the practice to design decentralized areas in a large power 
system which are almost self-sufficient in operation and which can 
be decomposed into smaller subproblems. The power system state 
estimation problem can also be decomposeddklAo smaller subsystems, 
regions or areas and a computer associated tiv:61514. each. By this means, 
it is then possible to reduce the length of data transmission links 
and to share the dimensionality of the data processing and control. 

The state estimation problem is solved here in a decentralized 
manner by employing local estimators. A qualitative explanation of 
the forms of decomposing a large scale system is given and its cor-
responding application to power system state estimation is presented. 
A semi-automatic procedure to find possible decentralized subsystems 
is developed which uses an ordering algorithm and heuristics to ob-
tain the near optimal decomposed states of the system. 

As it is impractical to measure and telemeter all the possible data 
of the network, the number of meters and amount of redundancy should 
be decided giving priority to the financial rather than the technical 
side of the problem. A suboptimal procedure which uses a shortest 
spanning tree criterion to allocate the measurement points is pre-
sented and discussed. Mathematical modelling of the minimum num-
ber of collecting measurement centres problem is presented in a 
graph theory framework. 
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CHAPTER ONE 

INTRODUCTION 

The present work is concerned with one of the fields, now well 

established, that are inherent to any on-line control centre in power 

systems: the state estimation problem. It has been studied extensive 

ly in the last eight years and a great number of works related to it 

have been published, centering the main attention to solving the 

state estimation problem for the whole network. However, the contin-

uous growth of system size, coupled with the complexity of intercon-

nections, have made it difficult for a single processor to cope with 

the increasing needs. This has originated the necessity to search for 

a more efficient solution to the problem. 

It is the aim of the present work to contribute towards the develop-

ing of a simplified and decentralized method of solution. 

1.1 On-line monitoring of power systems  
war 

The development of modern control centres in power systemsAthitiated 

at the outset of the present decade. The operation of a power system 

control centre by a relatively small number of system operators per 

shift, gradually became an intractable task, unless: 

a) the volume of data to be observed was displayed in a condensed 

and easily expanded form; 

b) all the information required was reliable and presented in a clear 

and comprehensible manner; and 

c) the personnel was relieved of any type of burdensome operations , 

such as acquisition, preparation and evaluation of data. 

These conditions could only be satisfied With a computerized 

operations centre, which became an essential necessity. 

The monitoring of the power system requires information regarding 

its instantaneous state for the analysis, assessment and control of 

the system. This information is obtained through the state estimator 

which comprises the data validation, network configuration and 
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estimation algorithm. 

Power systems generally have uncertainties due to meter, com-

munication and parameter errors, etc. The state estimation algorithm 

is a numerical process designed to provide the system operator with 

a reliable data base from the system measurements and network struc 

ture, thus rectifying the present level of error. 

On the other hand, it is not economical to measure all quantities 

that are desired, such as, all line flows and currents, all voltages 

and all injections. While some of these quantities are expensive to 

get, such as voltage phase angles with a common reference, others 

may require the installation of current and/or potential transformers 

at a prohibitive cost in some system locations. The need for computing 

some quantities based on other quantities being measured becomes 

apparent. The possibility of bad data acquisition, a fault in the com-

munication devices, etc., makes it imperative to ensure the validity 

of the system conditions displayed to the system operator. While it 

is important to know when a faulty measurement arrives at the control 

centre, it is equally important to be able to present the system condi 

tions to the operator without the effect of the bad measurements. This 

is also accomplished by state estimation, which will not only detect 

and isclate had measurements but will provide the means to compen-

sate for them, so that in most cases the presence of bad measurements 

becomes transparent to the operator. The point is then, that for proper 

monitoring we are required to have a measurement system consisting 

of high quality on-site devices, high speed communication channels, 

a real time computer, state estimation calculations and efficient 

displays. 

The state estimation problem (SEP) in power systems has evolved 

rapidly from its initial formulation to the present on-line implement-

ations. To date, companies in several countries have installed on-

line computers to handle the monitoring and -to a varying degree- the 
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system control, in conjunction with the system operator. The state 
Parameter 

and estimation techniques in power systems have been applied to : 

1) On-line calculation of the complex node voltages (1-7,11-18). 

ii) Parameter estimation of the network (8,29,30,33). 

iii) Identification of static external equivalents (99,107). 

iv) Identification of dynamic equivalents (103,104). 

v) Parameter identification for thermal power stations and generators 

(101,102,108). 

In view of the extent of interconnection and interaction of present 

large power system networks and the great difficulty in implementing 

a single centralized control structure, the power system enginear has 

been naturally led along the path of developing a number of multi-level 

hierarchical systems (110,111). Several authors have proposed hier-

archical models for the state estimation of the power system, for the 

dynamic (109,73) and static cases (50,75). More recently, a demand 

has been made for the development of decentralized estimators (88). 

1.2 Decentralized estimation  

In recent years the idea of decentralized areas has been introduced 

and studied to coordinate multiple control systems, even when control 

objectives are dissimilar. 

The present large power systems can be decomposed into smaller 

subsystems, regions or areas and a computer is associated to each 

of these areas. It is then possible to reduce the length of data trans-

mission links and to share the dimensionality of the control and data 

processing, as illustrated in Chapter 4. 

To develop an algorithm for a particular problem, it is essential to 

have a clear understanding of the physical properties and structure 

of the system and of its mathematical representation by abstract con-

cepts (models). 

Information contained in the set of measurements concerning physical 

properties and structure of the system has been represented by graph 

theory concepts to further our understanding of the power systems 
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state estimation problems. 

The structural properties of the electrical power systems or of its 

algorithms are of utmost importance in developing a decentralized 

state estimation process and its algorithms, as will become clear 

throughout this work. 

The weighted non-linear least squares estimator fits the equations 

(Kirchoff laws) to the measured values. Obviously the Ohm and 

Kirchoff laws are satisfied by the network itself. This information is 

contained implicitly in the measurements, provided the expected 

values of the measurement errors are null and there is no faulty 

metering equipment. 

To decentralize the state estimation process, the concept of inde-

pendence has been used to identify the subsets of measurements that 

can be grouped to form independent subsystems where the local state 

vector is estimated by using only local measurements through a local 

estimation process. 

As it is impractical to measure and telemeter all the possible data 

of the network, the number of meters and amount of redundancy should 

be decided giving priority to the financial rather than the technical 

side of the problem. Chapter 6 "looks" at this problem taking into 

account that it is very important to analyse the communications system 

because the transmission link costs are very high. Therefore, from 

the financial point of view, it is advisable to measure all quantities 

in a selected node. 

1.3 Contents of the present work  

In Chapter 2, the non-linear state estimation in power systems is 

studied using a linearized model provided by a Taylor series expan-

sion of the measurement equations.A li nearity test is incorporated 

to check the validity of the linearized model. An analysis of the 

effect of different weighting factors is made. 

In Chapter 3 the set of measurements is expressed as a directed 

graph. Observability of the network is defined in terms that include 
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the structural properties of the measurements and the numerical 

solution process involved. A structural matrix concept (borrowed 

from graph theory) is introduced: the reachability matrix. 

The case of unobserved portions of the network is discussed and 

a criterion for this case is given. 

A discussion on the pseudoinverse technique is made and its 

limitations and potentialities are dealt with. 

In Chapter 4, a decentralized state estimation procedure is pres-

ented based on the simple principle of independence, which takes 

into account the redundancy of the measurements to decompose the 

system. 

A qualitative explanation of the forms of decomposing a large 

scale system is given by using block diagrams, and the correspond-

ing interpretation of the state estimation process is provided. 

In Chapter 5, a description of the main elements (strong components) 

belonging to the measurements directed graph and its corresponding 

algorithm is discussed. 

A semi-automatic procedure to find the possible decentralized sub-

systems is developed which uses an ordering algorithm and heuristics 

to obtain the decomposition of the system. 

Two mathematical models describing the measurement system are 

put forward in Chapter 6. A suboptimal procedure which uses the 

shortest spanning tree criterion to allocate the measurement points 

is implemented and its interpretation is discussed. The problem of 

allocating the minimum number of gathering measurement centres is 

solved by using an algorithm that solves the equivalent p-median 

problem. 

Main contributions of this thesis: 

1. A linearity test to check the validity of the Taylor series linear 

approximation and monitor the convergence of the Gauss-Newton 

algorithm in power systems state estimation. 

Discussion of the weighting factors effect in the state estimation 
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problem. 
a 

2. A gc,ph theory framework introduced to represent the measurement 

system, which contributes to the understanding of its structural 

features and mathematical modelling. 

A structural observability concept (reachability matrix) introduced 

for the state estimation in power systems. 

A criterion to deal with a partially observed network. 

3 . Explanation of the different decomposition criteria for the state 

estimation problem in power systems. 

A decentralized state estimation for power systems. 

A heuristic procedure to decompose power system networks for the 

state estimation problem. 

4. A suboptimal procedure using one mathematical model proposed to 

solve the measurement optimization problem. 

Mathematical modelling of the minimum number of collecting measure 

ment centres problem in a graph theory framework. 
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CHAPTER TWO 

POWER SYSTEMS STATE ESTIMATION 

2.1 Introduction  

The problem of state and parameter estimation in electrical energy 

systems can be described in the following manner: 

Given a set of m measurements containing measurement (and/or 

modelling) errors, we wish to estimate the n-dimensional state vector 

describing the system where m is greater than n (redundancy) and 

observability is maintained (21,22). The estimated state vector is 

required to have the property of minimizing certain error function cri 

teria . It may be desired to estimate a r-dimensional parameter vector 

of the model system, with m>n+r. In general, the solution of the 

state estimation problem will be required (apart from the parameter 

estimation) in an on-line mode. When it is required to estimate some 

parameters of the model of the system, it can be done in an off-line 

mode (30,2.9), although it has been suggested to do it together in an 

on- line mode in power systems (33). In mathematical terms the SEP 

is equivalent to a non-linear parame ter estimation in multivariable 

statistical analysis. Appendix 1 describes the properties of a linear 

least squares estimator. Here the focus of our attention will be on 

the numerical procedure for the (on-line) problem as an unconstrained 

non-linear programming. The method of Fletcher and Powell to solve 

the SEP has already been studied by Handshin (16), who showed its 

main advantages and disadvantages. Therefore, it will only be de-

scribed briefly later on. 

It is convenient to point out that the problem, in general, is to 

minimize a sum of squares, for which the methods of Newton are more 

advantageous (32). 

The SEP makes the following demands on an algorithm: i) minimum 

core requirements; 	short execution time, and iii) reliability. Sev- 

eral approaches have been suggested, not only for the theoretical 

analysis but for on-line applications in electrical utilities (11-15). 

In our case, we assume static state estimation, i.e., the computa- 
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tion time and the data gathering time together are such that the 

computer monitoring the system "sees" a static system during this 

period. 

In the past, three methods have been applied to solve the SEP by 

exploiting certain properties of power systems. A general description 

of these methods is given in (17). The AEP method (line flows only), 

(2 ,3 , 6) has less requirements of core size and execution time than 

the other two, but it is less reliable in detecting data errors and 

identifying them (18). The optimality conditions are shadowed by the 

approximation assumed to justify the non-linear transformation of the 

variables, which obscures the statistical properties of the optimal 

solution (35). 

The sequential least squares approach (Extended Kalman Filter, 

known as the BPA method) makes several assumptions to overcome 

numerical difficulties arising in its implementation (5,11). In general, 

the execution time is difficult to assess due to particular conditions 

of the system, program code, machine, etc., but with these restric-

tions in mind, its execution time has been found longer than the AEP's 

algorithm (20). 

The third approach can be covered by the general name of Newton 

type methods (19). The first is the Gauss-Newton, known as the MIT 

method in power systems (1,32,18). This method requires more core 

than AEP's and the same order as BPA's and has potential divergence 

problems. Since these methods will be dealt with in detail in the fol-

lowing sections, at this stage we will only raise some general points 

relating to the three methods with a discussion on the requirements of 

a "good estimation algorithm". 

Firstly, it is very difficult to obtain a general rule for choosing a 

particular estimator which is equally acceptable for any system be-

cause one estimator which yields good results with one system may 

not do so with another (18,20). For a certain system, the detection 

and identification of errors can be done more efficiently with one es- 
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timator than with an other. It is then a question of trading- off 

reliability versus time. The AEP algorithm (line flows only) is 

fast, but it is weak in error detection. An improvement has been 

made by taking into account injection measurements, with the 

disadvantage that it increases execution time, but improves error 

detection capability (6,18). 

In this chapter results of the following methods are shown: the 

non-linear least squares; the weighted non-linear least squares; 

and an extension of the latter using scaled weights. The Gauss-

Newton 

 

 method has been applied to estimate the state vector con- 

trolling the steps in the iteration process through a test of the va-

lidity of the Taylor series approximation. 

2.2 Power system description 

2.2.1  Power system model  

The state estimation process can be described in the diagram 

shown in Fig. 2-1. 

The structure of the system is obtained from all the elements con 

nected to the nodes of the network. From this information, together 

with the parameters of the lines, transrormers, etc., the admittance 

matrix of the system is formulated (23,24,25). 

2.2.2 Measurement equations  

The measurement functions in terms of the state vector and the 

admittance matrix are: 

*  
Line flows: S

k = PL
i,m 

- jQL.
1 	= Vi  (Vi  - V 

m  )(y 
 m) 

 + V.y ,m 	 i,m 	1 shk 

(2-1) 

where 

k is the number of the line connecting node i to node m. 

Ysh k is the line charging admittance at measured end. 
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/Raw information 
from 

Vower system 

Measurements 
(line flows , 
injections and 
voltages) 

PL , QL 
P , Q , V 

D ata 
validation 

System structure 

(Admittance matrix) 

Estimation 

(algorithm) 

where 
P , Q 	- real and reactive power injections 
PL, QL - real and reactive power line flows 
V 	- voltage magnitude 

- admittance matrix 
- estimated state vector 

F (51) 	residuals sum of squares. 

Fig. 2-1 Estimation process in power systems. 

Gki + j Bid 	 node i 	T
Ys

. , 	___ 
node k 

(measured end) 

Ysh k 
■ 

h i 

, F (5e) 

Fig. 2-2 Line parameters used in the formulation of measurement 
equations. 



23 

Node injections : 

(2-2) SIk  = Pk  - jQk  = Vk 	yk,i Vi 

i E {nodes connected to kl 

Voltage magnitude : 

2 	2 IVk  = \rek  + fk  

where 

SIk = complex node injection at node k 

= complex voltage at node k 

[Yk,i] = admittance matrix of the network 

ek = real part of the complex voltage at node k 

fk = imaginary part 

= conjugate of the corresponding complex variable 

(2-3) 



- -2G, f + G.. f. + B
i»  
.e. a f, 	

_ 	
13 	13  

aP 
(2-5) 
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As it will be necessary to use the Jacobian elements in the for-

mulation and solution of the SEP, these elements can be computed 

from the next equations. 

Jacobian expressions for line flow measurements are: 

a P 
- -2G..e. +G .e - B..f aei 	1 	 j 

(2-4) 

a e - G .e, + B. f. 

a P.. 
- G., f. - B.. e. Df, 	3.3 1 	3.) 3. 

DQ, 
- 2e. (B. - y.,) - G..f. - B ,e. a e. 	1 	3.j 	1) 	17 3 	13 J 

a Q. 
- 2f. 	- y..) + G,. e, - B.. f , a f. 	1 	3.j 	3.) 	3.3 

3Q.. 	P. 

D e . 

- 	

f. 

• 	

Q.. 	p..  
_ 

D 	f 	e. 

(2-6) 

(2-7) 

(2-8) 

(2-9) 

(2-10) 

(2-11) 

Jacobian expressions for injection measurements are: 

D P 
	 - Gki ek + Bki fk 	k 	 (2-12) ei  

a Pk   
a ek 

_ (-2Gkj  ek +Gkj  ej -Bkj  f j) 

j E nodes connected to k 

(2-13) 



3 Qk - G f -B e 	; - k=i a ei 	ki k 	ki k 
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(2-14) 

` C?k 
aek 

(2Bkj ek -2yshm ek  - Gkj  f j  - Bkj  e j ) ; 	(2-15)  

j E. nodes connected to kl 

a Pk 	aQk  
	- 	 ; 	k # i 	 (2-16) a f

i 	Dei 

	k 
a f

k 
- 	( -2Gkj  fk  + Gkj  f j  + Bkj  e j ) ; 	 (2-17) 

i c nodes connected to k 1 

'DQk 	3Pk 
D f 	

- 

ae. 1. 	1 
k. i 	 (2-18) 

k  
a fk 

- 	(2Bkj  fk  - 2yshm  fk  + Gkj  e j  - Bkj  f j ) ; • 	(2-19) 

j c I nodes connected to k I 

Jacobian expressions for voltage magnitude measurements are: 

- o 	; k # j (2-20) 

a  I V  I k  
D f. 

J 

a  I V  I k  
a ek  

- 0 	; k # j 

ek  

(e2 + f2 ) 1/2 
k k 

(2-21) 

(2-22) 

ai v i k  _ 	fk  
afk 	(e2 + fk 2 ) 1/2 , 	(2-23) 

3P 

aQ 

where 

yshm is the line charging. admittance of line m at the measured end; 
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Gki + j Bki is the (k,i) element of the admittance matrix of the 

network. 

2.3 Estimatio n algorithm  

2.3.1. Problem statement  

The SEP can be stated as follows: 

Given f(x), a vector of m function mismatches between the estima-

ted and measured values, where x is the n-dimensional state vector 

describing the system, the performance function 

F(x) = f t f 	 (2-24) 

is to be minimized and values of 1Z found. Without loss of generality, 

a weighting function W can be included so that P(x) = ftW f. 

The general problem of minimizing a sum of squares can be solved 

in various ways but there is no generally accepted algorithm. It can 

be considered as an unconstrained non-linear optimization problem 

to be solved by methods which deal with general problems of this 

type, according to several authors (16,25,26,36). However, the spe-

cial form of equation (2-24) (sum of squares) and the experience With 

the Taylor series expansion to linearize the power system equations 

provides strong support to pursue this method. 

2.3.2 Optimization procedure 

The general solution is found by using the conditions of optimality 

= -2 ft  J = 0 	 (2-25) 

where 2.  is the gradient of equation (2-24) and J is the Jacobian 

matrix with elements 1, j equal to a f./b x. ; i = 1, ... ,m and 

j = 1, ...,n. These elements are computed with equations (2-4) to 

(2-23). 

In the general case, equation (2-25) represents a set of non-

linear equations which can only be solved in an iterative procedure. 
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Thus, from eq. (2-25), (17/ 1̀1 ) 

xk+1 = xk - k+1 VFk 
	 (2-26) 

where ex is chosen to satisfy F(xk  , o( k+1 ) <F(xk ,o(k ), which 

defines the step length in the iteration process and in general is 

dependent on the vectors xk , xk-1  , )4_2  , 	, Lco  where 2so  

is the starting point. At the limit, 

lim x —n = ;"Z 
n (2-27) 

The expression (2-26) defines a sequence of computations to be 

performed in a minimum seeking procedure to determine the vector 

R. This is a steepest descent method. In general, it converges to 

the minimum but its convergence rate i s very slow. This rate can 

be improved by applying a matrix A in the iterative process so that 
(27 ,32) 

x 	= x - A 	IC7F k+1 k k+1 k (2-28) 

If A is chosen to be equal to the inverse of the Hessian matrix 

of F, then the Newton method results. It provides fast convergence 

when the starting point is located near the minimum. Hence, 

x k+1 = xk - ( V
2 Fk )-1 

 VFk 
	 (2-29) 

This method gives non-linear steps and care must be taken to 

ensure the positive-definiteness of the Hessian matrix. In our par-

ticular problem, the Hessian matrix is less sparse than the Jacobian 

and the matrix inversion is more expensive in terms of time and stor 

age. To overcome the matrix inversion problem, another possibility 

is to use a positive definite matrix Sk . The expression is 

2-c k+1 =K k G(k+1Sk+1 VFk 
	 (2-30) 



28 

where a( has the properties defined for the expression (2-26). 
Sk is updated at each step by keeping its direction towards the 

minimum between iterations. In the end, the Hessian matrix is inverted 

in S. Again, the main problem is storage since S is a full matrix. 

This procedure is known as the Davidon-Fletcher-Powell algorithm 

(41). The search for a can be approximated without an exact linear 

search by maintaining the downhill direction in the updating process 

(37), but doing it without the matrix S explicitly. With triangular 

factorization it is possible to obtain an efficient algorithm, as re-

ported by Gill and Murray (38). This general algorithm for uncon-

strained optimization has not been implemented in power system 

problems, although it is likely to make good advantage of the spar-

sity in the network. But in the SEP the performance function is a sum 

of squares which can produce a very convenient result as described in 

the next subsection. 

2 .3 .3 Gauss-Newton  method 

In general, non-linear models require non-linear procedures for 

estimation unless a method for the transformation of the variables is 

available to reduce the model to one that is linear in the parameters. 

It is possible that there are other specifying assumptions of the model 

which makes linear least squares applicable. It must be pointed out 

that the AEP method does not have optimal properties as far as least 

squares is concerned. 

Now, to show the application of the Gauss-Newton method, we take 

the non-linear model 

y =f(x,Y) + q 	 (2-31) 

where y is a m x l vector; Y is the admittance matrix of n x n order; 

x is the nx1 state vector and q the mxl measurement error. 

In this particular application to the power system equations, it 

has been found satisfactory to expand in a Taylor series and to 
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linearize by neglecting terms of order higher than the first. 

Writing the sum of squares function as 

F ( ac 	q
T 

 ) = 	El (2-32) 

and linearizing eq. (2--31) by guessing a starting point, say, x , 

around which to write the Taylor series expansion, gives 

V 2f f(x ,Y) =f (x Y) + Vfts- x ) + 	(ac. - aso )2 . . . 	(2-33) _0 , —o 	2 

Neglecting the second and higher order terms and putting 

fo  = f (x o ,Y) , we have from eq. (2-33): 

y = fo  + Vf ( x - xo ) + q. 

Now let 

(2-34) 

. 	 . (2-35) 
a f 

T - ax--- 

af (m) 
ax1 

where a f 
 (i)  is the partial derivative of the corresponding function 

ax, 
J 

of the measurement i with respect to x, . 
l 

The matrix J in (2-35) is of dimension mx n. Now, let 

 

6 f 
(m) 

  

  

  

 

,c, 

—ro = y --fo 
and 

of J - .0 DX 
X=X o 

by combining (2-34), (2-3 6) and (2-3 7) we have 

(2-3 6) 

(2-37) 
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ro  =jo(x - xo) + -10 
	 (2-38) 

Eq. (2-38) is a linear model on the state vector and as such can 

be solved with the well known linear least squares equations. 

These are described in Appendix 1. 

Thus, 

ax = (x - x ) = (jT j)-1 JT r 
o — o 	 —o 

and we can evaluate 

(2-39) 

xl  = xo  + oxo  . 	 (2-40) 

We now start the next iteration and obtain 

f1  = f(x1' Y) — — 

rl = 
o f 
ax X=Xi  

and the linear relation 

	

rl 	 ) q 

so we have 

dx = (JT  j )-1T  r 

	

1 	1 1 	1-1 

x = x + dx 
2 -1 l 

(2-41) 

(2-42) 

(2-43) 

(2-44) 

(2-45) 

(2-46) 

etc. 

The process is continued, reaching the end when one or several 

of the following conditions are satisfied, depending on the chosen 

criterion: 

a) the sum of squares equals a required value (zero when n=m. For 

practical purposes, a reasonably small number applies, rather 

than zero); 
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b) the deviation between iterations in the sum of squares reaches a 

pre-specified tolerance; 

c) the difference between x.1  and xi-1  is smaller or equal to a re-

quired minimum; 

d) the maximum number of function evaluations is reached. 

The sequence of equations (2-34), (2-41- 2-46) can be summarized 

as follows: 

„1 r x. 	. —1+1 x - b J i 	1 —1 

where 

(2-47) 

BF--  j. J. 	 (2-48) 

The computed sequence of values obtained from each linear least 

squares step leads us, in principle, to the point x and gives con-

sistent estimates. The method gives a maximum likelihood estima-

tors for each iteration if the errors are normally distributed. Details 

of the asymptotic variance-covariance matrix of non-linear least 

squares estimates are given in (39). 

Let us now examine eq. (2-47) and compare it with (2-29). This 

enables us to substitute the Hessian matrix F by its approximate, 

B. Thus, 

-1 . Bi = ( V2 Fk )-1 (2-49) 

which is equivalent to substituting the Hessian matrix in eq. (2-29) 

by its approximate jT j (41). 

The Gauss-Newton algorithm is therefore as follows: 

1.- Set initial values for xo  ; — 
2.- compute F ; 

3.- compute j ; 

4 .- form A = JT J and JT r ; 
5 .- compute dx using A Ax = jT r ; 

6.- compare Ax against tolerance (another criterion can be used or 

augmented), if it is reached, go to 8 ; 
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7.- update x
k+1 

 = x
k 
 + x and return to 2; 

8.- stop. 

2.3.4 Marquardt method  

It is to be noted that there may be some cases in power systems 

in which non-linear effects predominate, for which the surface of 

the objective function forms "ridges" as in Fig. 2-3. In these cases 

the directions generated by the Gauss-Newton method form angles 

nearly 90 degrees away from the steepest descent direction and can 

produce convergence problems. Computer experiments have shown 

that when there is an error in the parameters of the model or in the 

data points, the Newton method can exhibit erratic behaviour. 

Regarding the convergence problems, Marquardt and Levenverg 

have suggested that a bias to the "downhill" direction be applied 

to the Newton step (9,10,40), which can be done in the following 

way: 

Rewriting the Newton step and, since in the remaining equations 

we shall only be concerned with a single iteration, dropping the 

subscripts, gives 

IT 
j ex = j

T
r 	 (2-50) 

Let us now try a better approximation to the Hessian matrix by 

introducing a parameter -X and the matrix D and writing the system 

of equations as 

(jT j + X D)  ex = JT r 	 (2-51) 

Matrix D is a diagonal matrix that can be obtained from 

i) D = I, or ii) D = diag (jT J). \ has the properties of 0( in the ex-

pression (2-26). -X in (2-51) has the following properties: i) when 

= 0, the solution of (2-51) reduces to the solution of (2-50), the 

Newton step; ii) when ) is large (—co), the expression (2-51) 

gives a step proportional to the steepest descent method in the same 

direction. A geometrical interpretation of the idea can be illustrated 
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in Fig. 2-4, which is drawn on the plane defined by the Taylor series 

point and the line of steepest descent at the starting point 0; TS is 

the Taylor series point and OSD is the direction of the steepest de-

scent. 

Since the sum of squares must decrease initially along OSD and 

since the Taylor series approximation predicts a reduced sum of 

squares at the point TS then it is reasonable to suppose that reduced 

values of the sum of squares can be found over a part of the area 

OTSSD . Overall strategy demands that the base point for the next 

iteration be as far away as possible from 0 but that the number of 

evaluations of the least squares surface be kept to a minimum. 

With these considerations the next base point will be taken at the 

first point found with a reduction in the sum of squares. Clearly the 

first point to be investigated must be the Taylor series point, TS. If 

this is not successful then the validity of the linear approximation 

to the model at 0 does not range as far as TS. 

Fig. 2-5 shows the flow chart for the Marquardt method. We are 

not going into details, since a modified method is being described. 

It can be seen that now we are creating an additional problem, the 

selection of 	such that it satisfies the condition cr decreasing the 

value of the objective function F , i.e., F (x,X ) >F (x+Ax , A ). 

Levenberg showed that this is possible but if A is too large, there 

will be problems of slow convergence rate associated with the 

steepest descent method. On the other hand, if A is too small 

(including zero) and the function F has narrow valleys, there will 

be numerical problems. Then a compromise has to be made. It has 

been recognized that on many occasions the Taylor series expansion 

linearizing the system equations has given satisfactory results (29). 

This means that since we do not have strong non-linear effects, it 

is wise not to throw away the advantages of the Newton step. To 

ensure this, it is possible to test the linear approximation adequacy 
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steepest 
descent direction 

Fig. 2-3 Objective function surface with "ridges". 

Fig. 2-4 Geometrical interpretation of Marquardt method. 
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and take advantage of the feature of the Newton method to provide 

a minimum in the local vicinity. 

2.3.5 Linearity test  

Given a linear model 

y = Ax + r 

where 

y is a m-dimensional vector 

x is a n- 

r is a m- 

A is a micn matrix 

and the function 

F (x) = rT  r 

we can write for x and x-Ftsx, the following expressions 

F (x) = r1 r1  

F (x+Ax) = r2 r2 

or 

F (x) = (y - Ax)T  (y - Ax) 

F (x+Ax) = (y - A (x+Ax))T  (Y - A (x+ex)) 

(2-52) 

(2-53) 

(2-54) 

(2-55) 

(2-56) 

(2-57) 

Expanding the products and subtracting (2-57) from (2-56) we 

have 

F (x) - F (x+Ax) 
	

(ox )T AT y  yT (ox) 	(Ax)T A T A x_ 

xT AT A (Ax) - (Ax)T A T A(Ax) 

(z\x)T AT 	Ax) 	(yT xT A T )A (Ax)  

(dx)T AT A (Ax ) 
	

(2-58) 

U sing (2-52) and the commutativity of scalar product between 
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vectors, we obtain 

F(x) - F(x+Lx) = 2(Ax)TTA ri 	(hx)T AT A(ax) 	(2-59) 

Returning to the non-linear model we can now define a ratio 

which expresses the validity of the linear Taylor series approxima-

tion. Substituting 

r --= r1  

J =A 

B = AT  A 

into eq. (2-59), then the ratio can be expressed as 

 

F(x) - F(x-I-Lx)  

) 	2 PxT JT r - AXT Box 

 

(2-60) 

It is convenient to note that when A =0, 

B Px = AT r 

Then, from eq. (2-60) we have 

F(x) - F(x-FAx) = 6.xT A T r a? 	 (2-61) 

The term AT r is always computed, so the test in the case of 

7=0 requires only one vector multiplication. 

The ratio cp in (2-60) takes values near to unity when a linear 

model is fitted. This implies that A ought to be small or reduced. 

If the ratio (f) is near to or less than zero, then A ought to be 

increased. However, for some intermediate values of ef,  , it has 

been suggested (10) that constant bounds a and b be incorporated 

such that 0<a<b<1 , in the test of (i) . It is considered that with 

a =0.25 and b =0.75 , the number of modifications to '7■ will be 

reduced with guaranteed convergence. 

As shown in the flow chart in Fig. 2-5, when necessary X is 

increased by multiplying by v . In the algorithm used, a range be- 



Set xo  

choose 

evaluate Fo 

yes 

=a 

no 

F()s) = F(x+c.x) 

?■ =A /v 

solve least 
squares iteration 
evaluate 

F 

Fig. 2-5 Flow chart for the Marquardt method. 
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tween 2 and 10 is assigned to v. Detailed theoretical considera-

tions and other features are given in (10,42). The rightness of the 

linearity test and its bounds was verified by the values obtained 

with the different systems tested. Tables 2-1 and 2-2 show the 

values obtained for 4 examples. 

2.3.6  Algorithm description  

The flow chart for the modified Marquardt method is shown in 

Fig. 2-6. The estimation procedure is as follows: 

1.- Setting up of initial conditions. 

a) Read system parameters and structure; 

b) obtain system conditions from a load flow analysis; 

c) set flat voltage profile, i.e., voltage angle equal to zero 

and magnitude equal to 1 for all unknown node voltages of 

the system; 

d) set up measurement system simulation. 

2.- Problem solution. 

a) Set A=0 , compute F 	J and J r o 	o 	• o —o 
b) evaluate residuals and sum of squares; 

c) compute Jacobian elements; 

d) set up i) JT W J; ii) JT W r ; 

e) evaluate A x ; 

f) test for linearity conditions and reduction of P. If pis 

near unity, set xk+1 =  —xk  + Ax ; otherwise evaluate "X and 

return to (b), this time skipping steps (c) and (d)i)); 

g) check with specified stopping rule, in our case comparing 

changes in state vector 0.0001 . If stopping rule is satis-

fied, stop. Otherwise return tol(c) . 

Some useful simplifications can be applied. For example, the 

Jacobian evaluation can be skipped provided its elements have only 

small changes after the first correction. This applies especially if 
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Set initial 
conditions 

Evaluate F0  

Fig. 2-6 Flow chart for the modified Marquardt method. 
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Fig . 2-6 (cont'd) 
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Table 2-1 Values of 	for the 14 node system. 

Iteration 
number 

Measurements 
24 LM and 6 Inj.* 	26 LM 

1 0.7795 0.8511 
2 0.9916 1.0000 
3 0.9966 1.0010 
4 0.8114 1.0047 

Table 2-2 Values of '9) for the 23 node system . 

Iteration 
number 

Measurements 
24 LM and 6 Inj . 	32 LM 

1 0.8984 0.8964 
2 0.9995 0.9998 
3 0.9877 0.9999 
4 0.7622 0.9976 

* LM = complex line flow measurement. 
Inj. = complex node injection measurement. 
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we start with a precomputed solution and the system conditions 

have only changed by, say, 10 -20%. 

The setting up of JT WJ can be done as in (44), where an auto-

matic procedure is used to obtain the matrix structure and the 

optimal order of the system of equations. The computer programs 

developed to test the algorithm used Cholevsky's method to solve 

the linear system of symmetric equations. For practical applica-

tions, sparsity techniques should be used. Another successful 

technique is the Zollenk.opf' bi-factorization method which exploits 

the sparsity feature of the power system network (45). 

2.4 Simulation 

2.4.1 Measurement error modelling 

In the numerical tests the measurement errors were modelled as 

follows: 

Standard deviation = 0.0035 x (full scale) + 0.02 (load flow 

magnitude) 	 (2-62) 

An automatic procedure was developed which took into account 

several ranges of values to include a general error simulation for 

several systems. For example, a line with a power flow from 0 to 

40 MW will have a full scale meter of 50 MW. Fig. 2-7 shows the 

corresponding program flow chart. The system data are on a basis 

of 100 MVA, and the full scale is set to unity at the beginning. 

The simulated error is computed as follows: 

Error = range ,((random number) 	 (2-63) 

where the value of the random number is produced by a uniform 

distribution pseudo-random generator and is bounded between -1 

and 1. The range is the corresponding value of the standard 

deviation as given by eq. (2-62) multiplied by' (43). This is 

shown in Fig. 2-8 1) which depicts the density function of a uni- 
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Set: full scale=l. 

z=magnitude of 
measurement 

Full scale=. 

Full scale= 4. 

Yes 

Range=(.0035*full scale + 
.02*z)*1.732 

Error =Range*rnd (-1 ,1) 

Evaluate weighting factors 

1) 3/Range**2 
ii) 1. 

iii) 3*z/Range**2 

Continue 

Fig. 2-7 Flow chart of measurement simulation. 
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Density 
function 

-a -a/ r3 0 a/13 a 

Density 
function 

i 
-a 	-a/1.645 	0 

(ii) 

a/1.645 a 

Fig. 2-8 (i) Uniform random variable 

(ii) Normal random variable 
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form random variable. This function has been chosen because it 

provides the worst case, the greatest dispersion for a given stand-

ard deviation. Comparing with the normal distribution, this gives a 

greater closeness to the true values in the chosen range, as shown 

in Fig. 2-8 ii). 

2.4.2 Considerations on weights  

The aim in applying weights in the performance function (2-24), 

as described in Appendix 1, is to associate the residuals of each 

measurement with the accuracy that one can expect from that par-

ticular measurement. These weights are evaluated from the variance 

values corresponding to a uniform distribution in our case. Then we 

have 

Weight = 3/(value of range)2 	 (2-64) 

However, if we use the expression (2-62) there are certain con-

ditions which will arise in a practical situation that we need to 

consider. An example will clarify this point. 

Let us have the variance for a uniform distribution given by 

Variance = 10-4 % (2 y + 0.35 )2/3 
	

(2-65) 

Computing the weights for different values of y, we obtain the 

second column of Table 2-3. 

Table 2-3 

Y 

Weights and scaled weights. 

w =1/variance 	w =Abs (y)/variance 

1.00 5200 5200 

0.75 6800 5100 

0.50 14500 7250 

0.25 31000 7750 

0.10 71200 7120 

0.00 81700 0000 
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Table 2-3 shows a modified weight, scaled by the division of 

the variance with the absolute value of y. It is easy to see that 

the effect of making the weights equal to the reciprocal of the 

variance given by eq. (2-65) is opposite to the desired one, since 

it gives more weight to those measurements which in relative terms 

are more inaccurate as is apparent from the second column of the 

table. The third column provides a more regular behaviour. Ex-

tending this idea, the next step is to consider equal weights for all 

the measurements. 

When the scaled weights are used, the RHS of eq. (2-64) is mul-

tiplied by the corresponding absolute value of the measurement. 

2 .5 Numerical results  

The systems analysed are: a 5 node and 7 line system (23), a 14 

node and 20 line system (55) and a portion of the CEGB network, 

which consists of 23 nodes and 30 lines (58). The corresponding 

data for these systems are given in Appendix 4. 

Figures 2-12 to 2-19 show the measured points for the different 

systems tested. The criterion emplyed in the choice of measurement 

points was to select those nodes with the largest number of lines, 

since it is usual that the cost is heavily dependent on the amount 

of gathering and measuring equipment at each node. 

Table 2-6 shows the number of iterations required to find a solu-

tion with a stopping criterion of change in node voltages 0.0001 . 

It can be seen that the number of iterations is fairly independent of 

the size of the system. The last iteration is generally unnecessary 

but is computed to detect the changes in the state vector. 

Table 2-7 shows the change of the objective function versus iter-

ation numbers for some of the different systems tested. 

Tables 2-8 to 2-21 show the voltages obtained with the different 

systems for the weighting factors used, together with the "true" 

values from load flow. It can be noticed that there is little difference 
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1 	 3 

( a ) 

13 

Fig. 2-9 	(a) Five node, seven line system. 
(b) Fourteen node, twenty line system. 
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10 

Fig. 2-10 Ten node, thirteen line system. 
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Fig. 2-11 Twenty three node,thirty line system. 
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0 Complex line flow measurement 

0 Complex injection measurement 

Fig. 2-12 2 complex injections and 7 complex line 
flows measurement sample. 

L71 

Fig.2-13 2 complex injections and 7complex line 
flows measurement sample. 
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Fig. 2-14 3 complex injections and 16 complex line 
flows measurement sample. 

❑ Complex injection measurement 

0 Complex line flow measurement 

-T- 3  

Fig. 2-15 16 complex line flows measurement sample. 
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❑ Complex injection measurement 

Complex line flow measurement 

0 

Fig. 2-16 7 complex injections and 25 complex line 
flows measurement sample. 

Fig. 2-17 25 complex line flows measurement sample. 
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0 Complex line flow measurement 
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Fig. 2-18 10 complex injections and 
34 complex line flows measurement sample. 
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in the voltage values, 

The residual sum of squares and the root mean square error 

(tables 2-4, 2-5, 2-22 and 2-23) are given by the expressions: 

T 
Fk 	1(k) 1(k) (2-66) 

1) residual of true - measured 

2) residual of measured - estimated 

3) residual of true - estimated 

Residual RMS - 
F (50 k 

 

(2-67) No. ofmeasurements 

It can be noticed that the results obtained with the three weighting 

factors are reasonably similar when no bad data are present. 

In order to save computer time it was decided to test intensively 

and extensively the 5 node and 7 line system with the three different 

methods to determine the behaviour in the presence of bad data and 

to assess the error detecting capability of the algorithms. We have 

chosen four main cases to test the algorithms with gross measurement 

errors, adding these to each case, modifying injections at nodes 2, 

3 and 4 and the line flow from node 2 to node 4. The amount of gross 

measurement error is + 50% and + 100% of the true value for each 

case. The results are displayed in tables 2-25 to 2-28. 

The residuals shown in tables 2-25 and 2-26, correspond to the 

elements of vector r
(k) 

 in expression (2-66). Four values of gross 

measurement errors were considered: + 100 and + 50% of the true 

values. They were simulated by adding these quantities to the true 

values. Table 2-25 shows the residuals obtained with a gross meas 

urement error in the 5 node system from reference (23), having two 

measured injections and 7 line flows as shown in Fig. 2--12. The 

gross measurement is added to the real power of the line connecting 

nodes 2 and 4 at node 2. Table 2-27 contains the estimated voltages 

k 
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Table 2-4 Residual sum of squares of a system of 5 nodes and 
7 lines, measuring seven complex line flows and two complex 
injections. Measurement errors simulated with a uniform distri-
bution. (See Fig. 2-12 ) 

Gross 
meas. 
error 

Meas- 
urement 

true - estimated 

1 	2 3 

measured - estimated 

1 	2 	3 

none .00120 .00046 .00080 .00050 .00076 .00054 .00050 

-50% .02090 .02325 .00498 .00858 .02593 .01623 .01722 

+50% .02106 .01400 .00419 .00220 .01829 .01650 .01735 

-100% .07933 .35100 .01665 .00056 .30024 .06375 .07775 

+100% .07955 .00214 .01500 .00614 .07173 .06410 .06671 

Table 2-5 	Residual root mean square of a system of 5 nodes and 
7 lines, measuring seven complex line flows and twc complex in-
jections. Measurement errors simulated with a uniform distribution*. 

Gross 
meas. 
error 

Meas- 
urement 

true - estimated 

1 	2 	3 

none .0082 .0051 .0067 .0053 

-50% .0341 .0359 .0166 .0218 

+50% .0342 .0088 .0153 .0111 

-100% .0664 .1396 .0304 .0056 

+100% .0665 .0109 .0289 .0185 

* Average taken from five runs. 

Numbers in column headings correspond to: 

1 weights equal to the reciprocal of the variance; 
2 all weights equal to one; and 
3 weights equal to the absolute valueof the measurement divided by 

the variance. 
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Table 2-6 Number of iterations starting from flat voltage level 
(1.0 	+.j0.0). 

	

System 	Number of 
injection 

meas. 

2 5 nodes 2 
7 lines 	0 

(a) 	2 

	

10 nodes 	3 
9 13 lines 9 

	

14 nodes 	7 
0 20 line s 13 

	

23 nodes 	10 
0 30 line s 0 

Number of 
line 

meas. 

5 
6 
8 
7 

10 
9 

21 

25 
25 
17 

34 
34 
46 

1 

4 
4 
3 
4 

4 
4 
4 

5 
4 
4 

5 
4 
4 

2 

4 
4 
3 
4 

4 
4 
4 

4 
4 
4 

8 
4 
4 

3 

4 
4 
3 
4 

4 

4 

4 
4 
4 

5 
4 
4 

(a) This row groups different combinations of 2 injection measure-
ments with 7 line measurements and with same number of iter-
ations . 



58 

Table 2-7 Values of the objective function . 

System 

23 
nodes 

14 
nodes 

10 
nodes 

Case 

34 LM 

7 Inj. 
25 LM 

3 Inj.  
16 LM 

Method 

1 
2 
3 

1 
2 
3 

1 
2 
3 

Iteration 
1 	2 

490000 	19700. 
101.40 	4.8960 
253000 	40000. 

392000 	46700. 
9.1600 	0.1806 
84700. 	2948.0 

377000 	8296.0 
72.740 	0.8040 
189000 	3708.0 

number 
3 

81.400 
0.0052 
35.890 

896.23 
0.0036 
71.080 

32.780 
0.0091 
33.460 

4 

24.4300 
0.00239 
14.8000 

45.3800 
0.00120 
10.5400 

31.6400 
0.00860 
32.5400 

LM = line flow measurements 
Inj . = inje ction measurements. 
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Table 2-8 Voltage values for a system of 5 nodes and 7 lines , 
with 2 injections and 7 line flow complex measurements (see Fig. 
2-12  ). 

Node 
No. 

"true" values estimated values @ 

1 1.0600 0.0000 1.0600 0.0000 
2 1.0462 -.0513 1.0460 -.0515 
3 1.0203 -.0892 1.0210 -.0881 
4 1.0192 -.0951 1.0198 -.0938 
5 1.0121 -.1090 1.0108 -.1109 

Table 2-9 Voltage values for a system of 5 nodes and 7 lines , 
with 2 injections and 7 line flow complex measurements (see Fig. 
2- 12) . 

Node 	estimated values * 	estimated values + 
No. 

E F E F 

1 1.0600 0.0000 1.0600 0.0000 
2 1.0464 -.0508 1.0462 -0.512 
3 1.0214 -.0874 1.0212 -.0878 
4 1.0204 -.0928 1.0201 -.0934 
5 1.0113 -.1010 1.0111 -.1103 

Note.- Column headings E and F correspond to the real and imaginary 
parts of the complex node voltage respectively. Node 1 is the 
reference bus. 

@ weights equal to the inverse of the variance; 
* all weights equal to one; 

weights equal to the absolute value of the measurement 
divided by the variance. 
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Table 2-10 Voltage values for a system of 5 nodes and 7 lines , 
with 2 injections and 7 line flow complex measurements (see Fig. 
2-13). 

Node 
No. 

"true" values 
E 	F 

estimated 
E 

values @ 
F 

1 1.0600 0.0000 1.0600 0.0000 
2 1.0462 -.0513 1.0458 -.0521 
3 1.0203 -.0892 1.0193 -.0912 
4 1.0192 -.0951 1.0182 -.0969 
5 1.0121 -.1090 1.0113 -.1104 

Table 2-10 	(Cont'd) 

Node 
No. 

estimated values * 
E 	F 

estimated values -I- 

E 	F 
1 1.0600 0.0000 1.0600 0.0000 
2 1.0457 -.0521 1.0458 -.0521 
3 1.0194 -.0912 1.0194 -.0911 
4 1.0183 -.0969 1.0183 -.0968 
5 1.0112 -.1106 1.0112 -.1105 

Note.- For column headings and symbols, see page 59 . 
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Table 2-11 Voltage values for a system of 10 nodes and 13 
lines, with 3 injections and 16 line flow complex measure-
ments (see Fig . 2-14 ). 

Node 
No. 

"true" 
E 

values 

F 

estimated 

E 

values @ 

F 

1 1.0400 0.0000 1.0400 0.0000 
2 1.0484 0.0345 1.0482 0.0340 
3 1.0425 -.1163 1.0417 -.1162 
4 1.0341 -.1105 1.0341 -.1112 
5 0.9927 -.1858 0.9928 -.1869 
6 1.0282 -.1562 1.0280 -.1574 
7 1.0204 -.1375 1.0206 -.1379 
8 0.9457 -.1277 0.9454 -.1281 
9 0.9795 -.1862 0.9793 -.1873 

10 1.0299 -.0705 1.0303 -.0705 

Table 2-12 Voltage values for a system of 10 nodes and 13 
lines, with 3 injections and 16 line flow complex measure - 
ments (see Fig. 2-14). 

Node 
No. 

estimated values * 
E 	F 

estimated values + 
E 	F 

1 1.0400 0.0000 1.0400 0.0000 
2 1.0485 0.0354 1.0482 0.0345 
3 1.0417 -.1162 1.0417 -.1162 
4 1.0345 -.1111 1.0344 -.1110 
5 0.9921 -.1879 0.9927 -.1869 
6 1.0281 -.1573 1.0282 -.1571 
7 1.0204 -.1378 1.0207 -.1376 
8 0.9447 -.1290 0.9451 -.1285 
9 0.9792 -.1874 0.9794 -.1870 

10 1.0306 -.0705 1.0306 -.0703 

Note.- For column headings and symbols, see page 59. 
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Table 2-13 Voltage values for a system of 10 nodes and 13 
lines, with 16 line flow complex measurements (see Fig. 2-15). 

Node 
No. 

"true" 
E 

values 
F 

estimated 
E 

values @ 
F 

1 1.0400 0.0000 1.0400 0.0000 
2 1.0484 0.0345 1.0486 0.0351 
3 1.0425 -.1163 1.0428 -.1150 
4 1.0341 -.1105 1.0341 -.1107 
5 0.9927 -.1858 0.9920 -.1866 
6 1.0282 -.1562 1.0283 -.1558 
7 1.0204 -.1375 1.0201 -.1379 
8 0.9457 -.1277 0.9452 -.1279 
9 0.9795 -.1862 0.9786 -.1867 

10 1.0299 -.0705 1.0294 -.0713 

Table 2-14 Voltage values for a system of 10 nodes and 13 
lines, with 16 line flow complex measurements (see Fig. 2-1 5 ) . 

Node 
no. 

estimated 
E 

values * 
F 

estimated 
E 

values + 
I. 

11 1.0400 0.0000 1.0400 0.0000 
2 1.0486 0.0356 1.0486 0.0353 
3 1.0428 -.1150 1.0428 -.1150 
4 1.0340 -.1107 1.0341 -.1106 
5 0.9920 -.1862 0.9921 -.1863 
6 1.0283 -.1557 1.0284 -.1556 
7 1.0201 -.1379 1.0202 -.1378 
8 0.9448 -.1277 0.9449 -.1277 
9 0.9786 -.1864 0.9786 -.1864 

10 1.0294 -.0713 1.0295 -.0712 

Note.- For column headings and symbols, see page 59. 
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Table 2-15 Voltage values for a system of 14 nodes and 20 
lines, with 7 injections and 25 line flow complex measure -
ments (see Fig. 2-16 ). 

Node 
No. 

"true" 
E 

values 
F 

estimated 
E 

values @ 
F 

1 1.0600 0.0000 1.0600 0.0000 
2 1.0410 -.0907 1.0414 -.0907 
3 1.0369 -.2628 1.0369 -.2637 
4 0.9851 -.2223 0.9858 -.2215 
5 1.0602 -.2519 1.0610 -.2526 
6 1.0020 -.1825 1.0025 -.1824 
7 1.0329 -.2455 1.0334 -.2463 
8 1.0082 -.1557 1.0085 -.1557 
9 1.0204 -.2724 1.0209 -.2727 

10 1.0147 -.2739 1.0152 -.2742 
11 1.0218 -.2698 1.0213 -.2711 
12 1.0186 -.2744 1.0183 -.2753 
13 1.0136 -.2746 1.0135 -.2757 
14 0.9952 -.2861 0.9951 -.2868 

Table 2-16 Voltage values for a system of 14 nodes and 20 
lines, with 7 injections and 25 line flow complex measure-
ments (see Fig. 2-16 ). 

1 1.0600 0,0000 1.0600 0.0000 
2 1.0413 -.0907 1.0414 -.0906 
3 1.0370 -.2430 1.0372 -.2630 
4 0.9855 -.2210 0.9858 -.2210 
5 1.0608 -.2534 1.0611 -.2528 
6 1.0023 -.1824 1.0025 -.1822 
7 1.0331 -.2470 1.0335 -.2465 
8 1.0084 -.1557 1.0085 -.1555 
9 1.0207 -.2734 1.0211 -.2729 

10 1.0150 -.2749 1.0154 -.2744 
11 1.0216 -.2702 1.0218 -.2703 
12 1.0188 -.2743 1.0190 -.2743 
13 1.0136 -.2750 1.0139 -.2750 
14 0.9950 -.2869 0.9954 -.2866 

Note.-- For column headings and symbols, see page 59, 
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Table 2-17 Voltage values for a system of 14 nodes and 20 
lines, with 25 line flow complex measurements (see Fig. 2 -17 ). 

Node 
No. 

"true" 
E 

values 
F 

estimated 
E 

values @ 
F 

1 1.0600 0.0000 1.0600 0.0000 
2 1.0410 -.0907 1.0409 -.0912 
3 1.0369 -.2628 1.0378 -.2629 
4 0.9851 -.2223 0.9857 -.2211 
5 1.0602 -.2519 1.0617 -.2516 
6 1.0020 -.1825 1.0029 -.1813 
7 1.0329 -.2455 1.0338 -.2450 
8 1.0082 -.1557 1.0090 -.1545 
9 1.0204 -.2724 1.0211 -.2725 

10 1.0147 -.2739 1.0156 -.2741 
11 1.0218 -.2698 1.0222 -.2697 
12 1.0186 -.2744 1.0196 -.2747 
13 1.0136 -.2746 1.0143 -.2750 
14 0.9952 -.2861 0.9965 -.2863 

Table 2-18 Voltage values for a system of 14 nodes and 20 
lines, with 25 line flow complex measurements (see Pig. 2 -17 ). 

Node 
No. 

estimated values * estimated values + 

1 1.0600 0.0000 1.0600 0.0000 
2 1.0412 -.0913 1.0412 -.0913 
3 1.0380 -.2629 1.0379 -.2629 
4 0.9859 -.2211 0.9858 -.2214 
5 1.0619 -.2525 1.0621 -.2524 
6 1.0029 -.1818 1.0029 -.1818 
7 1.0340 -.2459 1.0342 -.2458 
8 1.0091 -.1549 1.0091 -.1549 
9 1.0214 -.2734 1.0216 -.2734 

10 1.0159 -.2749 1.0161 -.2749 
11 1.0224 -.2698 1-.0224 -.2698 
12 1.0198 -.2748 1.0197 -.2748 
13 1.0145 -.2750 1.0145 -.2750 
14 0.9967 -.2869 0.9969 -.2869 

Note.- For column headings and symbols, see page 59. 
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Table 2-19 Voltage values for the system Of 23 nodes and 30 
lines, with 10 injections and 34 line flow complex measure-
ments (see Fig. 2-18). 

Node 	"true" values 	 estimated values 
No. 

1 1.0186 0.0000 1.0186 0.0000 
2 1.0214 -.0290 1.0215 -.0287 
3 1.0313 0.0902 1.0321 0.0905 
4 1.0360 0.1707 1.0365 0.1697 
5 1,0053 0.3032 1.0570 0.3033 
6 0.9895 0.3513 0.9899 0.3510 
7 0.9954 0.0060 0.9959 0.0060 
8 0.9863 0.1679 0.9868 0.1670 
9 1.0037 0.0399 1.0041 0.0400 

10 0.9824 0.0480 0.9827 0.0480 
11 1.0100 0.0228 1.0100 0.0223 
12 1.0256 0.1474 1.0260 0.1464 
13 1.0183 0.1860 1.0185 0.1850 
14 1.0010 0.0055 1.0014 0.0057 
15 1.0071 0.1428 1.0074 0.1419 
16 0.9888 0.2531 0.9892 0.2524 
17 0.9890 0.2157 0.9893 0.2152 
18 0.9970 0.1959 0.9973 0.1975 
19 0.9941 0.1882 0.9945 0.1876 
20 0.9870 -.0676 0.9871 -.0674 
21 1.0009 0.2420 1.0014 0.2410 
22. 1.0022 0.2399 1.0027 0.2389 
23 0.9809 0.0846 .0.9813 0.0852 

Note.- For column headings, see page 59. 



66 

Table 2-20 Voltage values for the system of 23 nodes and 30 
lines, with 10 injections and 34 line flow complex measure-
ments (see Fig.2-18). 

Node 
No. 

estimated values * estimated values + 

1 1.0186 0.0000 1.0186 0.0000 
2 1.0263 -.0305 1.0222 -.0292 
3 1.0407 0.0867 1.0332 0.0895 
4 1.0464 0.1650 1.0379 0.1685 
5 1.0170 0.2963 1.0073 0.3016 
6 1.0017 0.3457 0.9913 0.3504 
7 1.0037 0.0036 0.9968 0.0054 
8 0.9966 0.1625 0.9882 0.1659 
9 1.0126 0.0371 1.0052 0.0393 

10 0.9916 0.0447 0.9839 0.0470 
11 1.0109 0.0219 1.0102 0.0222 
12 1.0359 0.1419 1.0273 0.1453 
13 1.0285 0.1805 1.0200 0.1838 
14 1.0065 0.0040 1.0020 0.0053 
15 1.0175 0.1373 1.0087 0.1409 
16 1.0004 0.2477 0.9906 0.2515 
17 1.0002 0.2104 0.9907 0.2142 
18 1.0080 0.1800 0.9987 0.1943 
19 Li.0051 0.1819 0.9958 0.1863 
20 0.9920 -.0690 0.9878 -.0679 
21 1.0122 0.2350 1.0028 0.2397 
22 1.0135 0.2329 1.0041 0.2376 
23 0.9882 0.0826 0.9825 0.0846 

Note.- For column headings and symbols, see page 59. 
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Table 2-21 Voltage values for the system of 23 nodes and 30 
lines, with 34 line flow complex measurements (see Fig. 2 -19). 

Node 
No. 

estimated values @ estimated values * estimated values + 

1 1.0186 0.0000 1.0186 0.0000 1.0186 0.0000 
2 1.0218 -.0293 1.0220 -.0291 1.0220 -.0291 
3 1.0319 0.0891 1.0317 0.0894 1.0318 0.0891 
4 1.0363 0.1692 1.0360 0.1698 1.0362 0.1697 
5 1.0056 0.3019 1.0050 0.3027 1.0054 0.3024 
6 0.9900 0.3483 0.9895 0.3487 0.9898 0.3487 
7 0.9957 0.0052 0.9958 0.0055 0.9958 0.0055 
8 0.9868 0.1666 0.9867 0.1676 0.9868 0.1671 
9 1.0039 0.0384 1.0040 0.0386 1.0040 0.0386 

10 0.9823 0.0465 0.9821 0.0467 0.9822 0.0464 
11 1.0095 0.0226 1.0095 0.0226 1.0095 0.0226 
12 1.0260 0.1457 1.0257 0.1461 1.0260 0.1461 
13 1.0187 0.1848 1.0185 0.1854 1.0187 0.1853 
14 1.0008 0.0033 1.0009 0.0035 1.0009 0.0035 
15 1.0074 0.1412 1.0071 0.1416 1.0073 0.1415 
16 0.9893 0.2519 0.9888 0.2525 0.9891 0.2523 
17 0.9895 0.2140 0.9890 0.2146 0.9893 0.2144 
18 0.9974 0.1945 0.9969 0.1950 0.9973 0.1949 
19 0.9945 0.1867 0.9941 0.1872 0.9944 0.1871 
20 0.9878 -.0677 0.9880 -.0675 0.9880 -.0675 
21 1.0012 0.2404 1.0007 0.2409 1.0010 0.2407 
22 1.0025 0.2383 1.0020 0.2389 1.0024 0.2387 
23 0.9807 0.0825 0.9806 0.0827 0.9806 0.0825 

Note.; For column headings and symbols, see page 59. 



Table 2-22 Residual sum of squares with different weighting factors . 

Measurement 	true - estimated 	 measured - estimated 
error 

1 	2 	3 	 1 	2 	3 

	

0.00998 	0.00271 	0.00436 	0.00274 	0.00794 	0.00562 	0.00651 

	

0.01958 	0.00296 	0.01031 	0.00560 	0.01449 	0.00929 	0.01087 

	

0'.00130 	0.00077 	0.00069 	0.00069 	0.00068 	0.00059 	0.00060 

	

0.00170 	0.00036 	0.00052 	0.00041 	0.00134 	0.00111 	0.00117 

	

0.02052 	0.01570 	0.01810 	0.01650 	0.00342 	0.00242 	0.00282 

	

0.06765 	0.02178 	0.04881 	0.03438 	0.04257 	0.02372 	0.02645 

System 

10 
nodes 

14 
nodes 

23 
nodes 

Case 

16 LM 
3 Inj., 
16 LM 

25 LM 
7 Inj. 
25 LM 

34 LM 
10 Inj. 
34 LM 



Table 2-23 Root mean square error of residuals with different weighting factors. 
System 	Case Measurement 	true - estimated 

error 
measured - estimated 

1 	2 	3 	 1 	2 	3 
16 LM 	0.0177 	0.0092 	0.0117 	0.0093 	0.0158 	0.0133 	0.0143 

	

0.0227 	0.0088 	0.0165 	0.0121 	0.0195 	0.0156 	0.0169 

10 
nodes 	3 Inj. 

16 LM 

	

0.0051 	0.0039 	0.0037 	0.0037 	0.0037 	0.0034 	0.0035 

	

0.0052 	0.0024 	0.0029 	0.0025 	0.0046 	0.0042 	0.0043 

0.0174' 0.0152 0.0163 0.0156 0.0081 0.0060 0.0064 

	

0.0277 	0.0157 	0.0236 	0.0198 	0.0220 	0.0164 	0.0173 

14 
	25 LM 

nodes 	7 Inj. 
25 LM 

23 
	34 LM 

nodes 	10 Inj. 
34 LM 

Table 2-24 Standard deviation of the real and imaginary part of the node voltage in 
the 5 node and 7 line system(see Fig. 2-9 ). All values multiplied by - 10 . 

Case 	 Node 	Number 
2 	 3 	 4 	 5 

7 LM 
2 Inj. 
14 LM 
5 Inj. 

E 	F 	E 	F 	E 	F 	E 	F 

	

1.88 	3.78 	3.44 	6.50 	3.42 	6.39 	3.97 	7.54 

	

1.17 	2.47 	2.07 	4.01 	2.11 	4.95 	2.51 	4.57 
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Table 2-25 Residuals for a system of 5 nodes and 7 lines with 2 
• injections and 7 line flow measurements with gross measurement 

error in the real power of line from node 2 to node 4 corresponding 
to measurement number 7. (See Fig. 2-13 ) 

Meas. 
No. 

-1 
1 

0 0 % 	GME 
2 	3 

- 5 
1 

0 % 	GME 
2 	3 

1 0.03835 0.04223 0.00199 0.01137 0.02886 0.01916 
2 -.00040 -.00125 -.00352 0.01236 0.00415 0.00712 
3 -.25549 -.01521 0.01165 -.05764 -.00343 -.01856 
4 0.01095 0.00199 0.00080 0.00843 0.00441 0.00462 
5 0.21539 0.05117 0.00732 0.05006 0.01776 0.02814 
6 0.00722 0.00377 0.00156 -.00270 -.00472 -.00379 
7 -.04842 -.22626 -.27911 -.07895 -.11325 -.10173 
8 0.00917 0.00550 0.00329 0.00409 0.00159 0.00258 
9 -.23320 -.04096 -.00474 -.06663 -.02772 -.04224 

10 -.00079 -.00136 0.00161 -.00242 -.00572 -.00444 
11 0.12516 0.04660 -.00552 0.02927 0.01792 0.02447 
12 -.00600 -.00387 -.00098 -.00431 -.00605 -.00613 
13 -.18557 -.03187 -.01163 -.06735 -.02218 -.03925 
14 -.00426 0.00259 0.00176 -.00324 -.00364 -.00386 
15 -.18826 -.03142 0.00481 -.06191 -.02778 -.03935 
16 0.00976 0.00261 -.00023 0.00167 -.00019 0.00018 
17 -.20672 -.04472 -.00198 -.04529 -.01375 -.02386 
18 0.00496 0.00103 -.00121 -.00187 -.00227 -.00237 

+5 0% 	GME +1 0 0% 	GME 
1 2 3 1 2 3 

1 -.00282 -.02336 -.00911 -.00353 -.04246 -.01464 
2 -.00696 -.00302 -.00442 -.00716 -.00382 -.00512 
3 0.02694 0.01818 0.02319 0.03194 0.03032 0.03450 
4 -.00294 -.00220 -.00197 -.00321 -.00284 -.00234 
5 -.01159 -.02198 -.01559 -.01552 -.04442 -.02815 
6 -.00269 -.00273 -.00260 -.00289 -.00398 -.00336 
7 0.14170 0.12687 0.13593 0.27911 0.24123 0.26302 
8 0.00217 0.00230 0.00245 0.00196 0.00102 0.00167 
9 0.01588 0.02253 0.02011 0.02023 0.04108 0.03248 

10 0.0129 0.00419 0.00257 0.00134 0.00593 0.00316 
11 -.01015 -.03593 -.02046 -.01255 -.06442 -.03253 
12 0.00070 0.00311 0.00237 0.00086 0.00500 0.00320 
13 0.01906 0.01709 0.01831 0.02228 0.02929 0.02764 
14 0.00150 0.00243 0.00238 0.00164 0.00244 0.00263 
15 0.00428 0.01121 0.00696 0.00786 0.03009 0.01815 
16 -.00040 -.00119 -.00066 -.00067 -.00281 -.00145 
17 0.01116 0.02125 0.01504 0.01498 0.04300 0.02723 
18 -.00001 -.00089 -.00045 -.00017 -.00180 -.00086 

GME = Gross Measurement Error. 
For column headings, see page 56. 
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for this example. 

The first case, -100%, is equivalent to having the measurement 

almost equal to zero (this corresponds to y=0 in eq. (2-65)). 

Using the different types of weighting, different residuals were 

obtained. Spotting the error was particularly difficult in the normal 

weighting case, due to the fact that it gives more weight to those 

measurements which are relatively more inaccurate. In the other 

two cases, the greatest residual is the one that corresponds to the 

faulty measurement. It is important to observe that in the case of 

the scaled weights the residual in the faulty measurement is prac-

tically the value of the added error. 

With the -50% gross error, the greatest residual is located in the 

faulty measurement for three different weightings. The residual in 

the faulty measurement is of the same order as the error 

On the other hand, in the case of +50% error, the three methods 

behave properly but the scaled and normal weighting methods are 

better. 

In the last example, with +100 % error, the normal weighting is 

best since it gives less weight to the faulty measurement and the 

greatest residual is practically the error value. The other two meth 

ods give the greatest residual in the faulty measurement too. 

As is apparent from the tests, the scaled and the unitary weights 

behaved consistently in every example in the presence of gross 

measurement errors. Their closeness to the true voltage values 

follows the same pattern. The better the correspondence to the error 

value in the residual the better the closeness to the true values of 

the voltage. 

The residuals in Table 2-26 correspond to the gross measurement 

error in an injection and the error is simulated for the real power at 

node 4. With -100% error, the best solution is obtained with the 

scaled weights as expected, since it gives less weight to this type 

or error. The next case shows that the largest residual is not at the 
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Table 2-26 Residuals for a system of 5 nodes and 7 lines with 2 
injections and 7 line flow measurements with gross measurement 
error in the real power of injection at node 4 corresponding to meas-
urement number 1 (see Fig. 2-13 ) . 
Meas. 	-1 0 0% GME 	 -50% GME 

No, 	1 	2 
	

3 
	1 	• 	2 	3 

1 0.02083 
2 0.00634 
3 0.01543 
4 0.00804 
5 0.06383 
6 -.00252 
7 0.10294 
8 0.00534 
9 0.01208 

10 -.00270 
11 	-.07011 
12 -.00389 
13 	-.21014 
14 -.00119 
15 	-.21608 
16 -.00450 
17 -.09288 
18 0.00067 

0.13779 
0.00428 
0.03160 
0.00182 
0.02615 
-.00320 
0.05354 
0.00412 
-.06272 
-.00679 
-.07017 
-.00429 
-.03211 
-.00142 
-.14737 
-.00364 
-.04458 
-.00185 

0.40233 
0.00369 
0.00694 
0.00267 
-.00447 
-.00450 
-.00185 
0.00171 
-.03194 
-.00253 
-.00430 
-.00230 
-.02153 
-.00112 
-.00256 
-.00385 
0.00927 
-.00422 

0.07215 
-.00152 
0.00577 
0.00444 
0.01689 
0.00050 
0.02650 
-.00108 
0.02095 
-.00073 
-.02464 
0.00071 
-.07676 
-.00092 
-.0E929 
0.00104 
-.02891 
0.00233 

0.06348 
-.00145 
0.01295 
0.00123 
0.01077 
0.00026 
0.02006 
-.00144 
-.02298 
-.00271 
-.04140 
0.00065 
-.01309 
-.00154 
-.06746 
0.00150 
-.02266 
0.00201 

0.06153 
-.00116 
0.00710 
0.00222 
0.01404 
0.00043 
0.02265 
-.00126 
-.02620 
-.00199 
-.04487 
0.00098 
-.02157 
-.001C2 
-.06344 
0.00139 
-.02517 
0.00207 

+5 0 % GME 	 +1 0 0% GME 
1 	2 	3 	1 	2 	3 

	

1 	-.19225 
2 -.00187 

	

3 	-.00212 
4 0.00507 

	

5 	-.01033 
6 -.00119 
7 -.01377 
8 -.00026 
9 0.03040 

10 -,00037 

	

11 
	

0.00572 

	

12 
	

0,00079 

	

13 
	

0.02151 
14 -.00072 

	

15 
	

0.02601 
16 0.00147 

	

17 	0.01452 
18 0.00228 

-.08489 
-.00111 
-.01880 
0.00173 
-.01924 
-.00320 
-.03391 
-.00276 
0.04587 
0.00047 
0.02815 
0.00209 
0.01841 
-.00038 
0.09145 
0.00047 
0.03400 
0.00275 

-.13221 
-.00122 
-.00674 
0.00255 
-.01717 
-.00261 
-.02596 
-.00192 
0.04693 
-.00010 
0.02280 
0.00143 
0,01938 
-.00043 
0.05717 
0.00105 
0.02632 
0.00273 

-.3E571 
-.00195 
-.00254 
0.00498 
-.01229 
-.00125 
-.01689 
-.00040 
0.03018 
-.00032 
0.00791 
0.00083 
0.02638 
-.00066 
0.0284 
0.00153 
0.01754 
0.00211 

-.13751 
-.00052 
-.01392 
-.00411 
-.02804 
-.00135 
-.05267 
0.00040 
0.04487 
0.00511 
0.07257 
0.00292 
0.01286 
0.00829 
0.14489 
-.00025 
0.07309 
-.00080 

-.26179 
-.00138 
-.00926 
0.00201 
-.02776 
-.00359 
-.0430G 
-.00334 
0.06553 
0.00046 
0.04444 
0.00172 
0.02595 
0.00087 
0.09493 
0.00097 
0.04283 
0.00235 

For column headings, see page 56. 
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Table 2-27 	State vector values obtained with the case of Table 2-25 
GME 	 -50% 	GME 

2 	3 	1 	2 	3 
-100% 

. 
State 
vector 1 

e2 1.05057 1.04643 1.04597 1.04727 1.04617 1.04661 
f2  -.04187 -.05044 -.05160 -.04897 -.05154 -.05058 
e3 1.03938 1.02387 1.02011 1.02521 1.02155 1.02287 
f3 -.04547 -.08147 -.08988 -.07779 -.08565 -.08301 
e4 1.03982 1.02336 1.01901 1.02458 1.02070 1.02211 
f4 -.04753 -.08583 -.09575 -.08255 -.09072 -.08788 
e5 1.00661 1.00995 1.01133 1.01106 1.01110 1.01112 
f5  -.12596 -.11280 -.11000 -.11294 -.11095 -.11169 

+50% 	GME +100% 	GME 
1 2 3 1 2 3 

e2 1.04570 1.04570 1.04565 1.04561 1.04539 1.04542 
f2 -.05193 -.05180 -.05187 -.05211 -.05249 -.05239 
e3  1.01904 1.01835 1.01876 1.01865 1.01632 1.01753 
f3  -.09154 -.09317 -.09217 -.09237 -.09756 -.09476 
e4 1.01779 1.01684 1.01743 1.01737 1.01448 1.01606 
f4 -.09773 -.10012 -.09867 -.09863 -.10535 -.10162. 
e5 1.01203 1.01265 1.01233 1.01212 1.01331 1.01265 
f5  -.10792 -.10717 -.10744 -.10761 -.10584 -.10659 

Table 2-28 State vector values obtained with the case of Table 2-26. 
State 	- 1 0 0 % GME 
vector 1 	2 	3 
e2 1.05062 1.04629 1.04601 
f2 -.04086 -.05093 -.05153 
e3  1.02973 1.02250 1.01997 
f3  -.06744 -.08374 -.08941 
e4  1.03124 1.02317 1.01882 
f4  -.06735 -.08561 -.09539 
e5  1.01831 1,00961 1,01199 
f5  -.09605 -.11426 -.10932 

-5 0% GME 
1 	2 	3 

1.04785 1.04630 1.04652 
-.04724 -.05085 -.05037 
1.02325 1.02113 1.02161 
-.08121 -.08580 -.08479 
1.02316 1.02098 1.02142 
-.08490 -.08954 -.08864 
1.01391 1.00999 1.01018 
-.10340 -.11183 -.11175 

+100% GME 
1 	2 	3 

1.04604 1.04467 1.04596 
-.05155 -.05396 -.05149 
1.02034 1.01578 1,01885 
-.08976 -.09833 -.09217 
1.01879 1.01269 1.01650 
-.09640 -.10837 -.10057 
1.01179 1.01247 1.01335 
-.10843 -.10698 -.10444 

+50% GME 
1 	2 	3 

02 1.04617 1.04622 1.04620 
f2 -.05127 -.05109 -.05114 
e3  1.02061 1.01975 1.01997 
f3  -.08917 -.09036 -.09010 
e4  1.01916 1.01749 1.01812 
f4 -.09561 -.09866 -.09743 
e5  1.01194 1.01278 1.01274 
fs -.10814 -.10625 -.10616 

Note.- ei = real part of ith node voltage 
fi  = imaginary part of ith node voltage. 
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faulty measurement. These two cases produce smearing of the error 

but the voltage values obtained for the unitary and scaled weights 

methods show fairly good results and the estimated voltages are 

practically close to the true values. In the third test, +50% error, 

the greatest residual in the three methods is located in the faulty 

measurement. This time the best is the normal weighting followed 

by the scaled weighting method. The test with +100% error shows 

the same pattern as the last one. It is worthwhile noting that the 

voltage values follow the true values as the residual gets closer to 

the gross measurement error. Moreover, for practical purposes any 

of the voltages obtained with the scaled or normal weights give a 

good solution to the problem. These estimated values are shown 

in Table 2-28. 

2.6 Comments  

In the present work we are mainly interested in the algorithms 

since statistical properties of least square methods in general can 

be found elsewhere (56) and the asymptotical properties of non-

linear least squares estimation can be seen in (39). 

Having in mind the difficulties in choosing an algorithm and since 

the Gauss-Newton method is fairly general, it is possible to find 

one algorithm best suited for a particular system. 

Any method has to be chosen with regard to the connectedness of 

the network, the presence of short lines, transformer types and other 

particular components of the system. It is not easy to give a precise 

rule unless a lengthy computer simulation is carried out, but in gen-

eral we found greater reliability in the presence of gross measurement 

errors with the proposed modification of the weighting factor, as the 

results in tables 2-25 to 2-28 show, especially in relation to the 

smearing problem since the measurement with the greatest residual 

was the problematic one. With the modified weights algorithm the 

smearing is reduced or at least equal to values found by other algo- 
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rithms and, more importantly, the level of degradation of the esti-

mation is low and comparable to the residual sum of squares of the 

measurement in normal conditions. This property enhances the error 

detecting capability of the proposed modified algorithm. 

The Marquardt method (9) is provided when the Gauss-Newton fails. 

As shown by the results, the tested systems have a well behaved 

surface for the objective function and there was no need to use the 

Marquardt iteration steps. A similar approach was suggested by 

Jazwinsky (47) by adding a positive-definite matrix to the matrix 

JT J so as to ensure positive-definiteness when needed. 

We have proposed a reliable way to solve the SEP, having a robust 

and reliable algorithm that at least takes us to the local minimum. 

We should point out that in the load flow problem, the idea of incor-

porating some kind of control during the iterations was suggested in 

(46,48,54) following the "downhill" direction. In our test a simpli-

fication has bee n made to find the parameter ( a in our case) that 

ensures the reduction of the objective function. a need only be cal 

culated when required and only one additional vector multiplication 

is needed . 

Our testing procedure for the validity of the Taylor series approx-

imation on the systems tested showed no need to switch to the 

Marquardt iteration, as shown by tables 2-1 and 2-2. One important 

feature is that the test can be applied to the estimation process in 

general, using it in a tracking mode (18,20,31) and computing the 

Jacobian matrix only when it is needed. 

The present algorithms may have several other applications, the 

immediate ones being: a) the model coordination method in hier-

archical state estimation (50); b) optimization problems in power 

systems (51); c) reformulation of the optimal load flow as in (52), 

and d) the stochastic load flow, as a particular case of our problem, 

following (53) and (59). 
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CHAPTER THREE 

GENERALIZED INVERSE METHOD, OBSERVABILITY AND RANK 

DEFICIENCY IN POWER SYSTEMS STATE ESTIMATION. 

3.1 Introduction  

Power systems state estimation has proved to be a reliable tool 

for monitoring systems and it is capable of producing a consistent 

data base useful for the control and the security assessment needs 

of the power system controller. However, no system can be 100% 

reliable and it is necessary to have some way of detecting any 

abnormality that may occur in the event of a fault in the measurement 

system, associated with the state estimation process. A fault may 

produce a situation where a portion of the system cannot be "seen" 

with a given set of measurements, This is the case when one or more 

voltages can not be estimated. This condition can be described in 

terms of a "reachability" matrix. On the other hand, when all the 

nodes of the network can be reached (observed), an observability 

criterion can be defined (22). 

In an emergency condition, when a fault occurs in the measurement 

system producing a corresponding loss of information, one or more 

nodes may be left unobserved. The first step is to determine which 

nodes are missing. Once these are known the problem can be solved 

on the estimable portion, as explained in the next paragraphs. If the 

unobserved nodes are not identified, the linear system of equations 

is inconsistent and we may require the use of the generalized inverse 

approach (60,61). 

The solution of the SEP in electrical power systems requires pre-

processing (data validation) the set of measurements and network 

configuration in order to have the least possible amount of spurious 

data fed into the numerical process of solution. This pre-processing 

of the measurements can be done by comparing full scale meter 

values against measured values, logical checking of circuit breaker 

positions against power.flow , local summation of flows, etc. (16). 
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The next step is to ensure the connectedness of the network and 

its correspondence with the measurements. In this step of the pro-

cess it is usually possible to detect unobservable nodes leaving a 

singularity condition in the linear system of equations to be solved. 

Allam and Borkowska (60,61) have made some suggestions as to 

how to deal with this singularity condition but the usefulness of 

this approach is limited to the observed portion of the network, as 

explained in Section 3.3 .3 of this thesis. 

The matrix structure of the measurements for a given condition of 

the system can be represented by a directed graph, which will be 

dealt with in the next section. Before that, some matrices of graphs 

will be explained. The basic concepts are contained !n Appendix 2 

and the terminology used corresponds to reference (62). 

3 .2 Graph theory and measurements  

3 .2.1 Algebraic representation of a graph 

A convenient way of representing a graph algebraically is by using 

matrices, as follows: 

Given a graph G, its adjacency matrix is denoted by A =[aiii and 

is formed by 

= aij 	1  

a 	O.. = 

if arc 	 , 3 (x1. x.) exists in G; 

if arc (x. x.) does not exist in G . 

Thus, the adjacency matrix of the graph shown in Fig. 3-1 (b) is: 

X1  x2  x3  x4  x5  
xl  1 1 1 0 0 

x2  0 0 0 0 0 

A = x3 0 0 0 0 0 (3-1 ) 

x4 0 1 1 0 1 

x5 0 1 0 1 1 

The adjacency matrix defines completely the structure of the graph. 
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Measurements: 
A Voltage magni tude 
0  Complex line flow 

( a ) 	 ( b ) 
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Fig. 3-1 Sample power system. (a) one line diagram with 
measured points. (b) Its equivalent directed graph. 

state 
estimation 
algorithm 

V 
data 
base 

off-line 
functions 

6 

Fig. 3-2 Block diagram of state estimation process arid functions. 
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For example, the sum of all the elements in row xi  of the matrix 

gives the outdegree of vertex i and the sum of the elements in 

column xi  gives the indegree of vertex i . 

Given a graph G of n vertices and m arcs, the incidence matrix 

of G is denoted by B= ibiji and is an nxm matrix defined as 

follows: 

bij = 1 
	

if . is the initial vertex of arc a. 

bii  = -1 if . is the final vertex of arc a j 	and 

bii  = 0 
	

if xi is not a terminal vertex of arc a or 

if ai  is a loop. 

This is analogous to the transpose of the element-node incidence 

matrix in reference (23). In our example the incidence matrix is: 

a l a2  a3  a4  a5  a6 a7 a 8 a 9 

	

1 	1 

	

-1 	-1 	-1 

	

-1 	- 

1 1 1 -1 

-1 1 1 

(3-2) 

Since each arc is adjacent to two vertices, each column of the 

incidence matrix contains one 1 and one -1 entry, except when the 

arc forms a loop in which case it contains only zero entries. 

If G is a nondirected graph the incidence matrix is defined as above 

except that all entries of -1 are now changed into +1 . 

3.2.2 Graph representation of measurements  

A set of measurements can be represented by a directed graph whose 

elements are defined as follows: the complex state vector elements 

form the vertex set of the graph, X and the complex measurements 
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form the arcs of the graph G. This directed graph is represented by 

A (G, X). The arc direction is given by the point measured and the 

nodes related by the measurement. Hence, the complex line flow 

measurement made at, for example, node i for the line joining nodes 

i and j will produce an arc from vertex i to vertex j in the corre-

sponding directed graph. 

As an example let us assume a system of 5 nodes and 7 lines as 

shown in Fig. 3-1 (a). Its corresponding directed graph is shown in 

Fig. 3-1 (b). To obtain this directed graph we proceed as follows: 

i) A voltage measurement is represented by a loop (a loop is defined 

as an arc whose initial and final vertices are the same). This 

corresponds to 1 in the respective diagonal element in the 

adjacency matrix, since this measurement only relates to the 

node. 

.ii) A line flow measurement between nodes i and j measured at 

node i is represented by an arc from vertex i to vertex j. This 

is expressed in the adjacency matrix by putting a 1 in the cell 

(i4). 

iii) An injection measurement requires special consideration since 

it relates all the nodes directly connected to the node where it 

is measured. It is represented as a group of arcs which must be 

labelled so as to identify their origin, i.e., as deriving from an 

injection measurement. Thus, an injection is best described by 

putting l's in all the elements (1,j) of the adjacency matrix, 

where j takes the values of all the vertices directly connected 

to vertkx 

The adjacency matrix A corresponding to the example of Fig. 3-1 

is then 
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A 

1 1 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 1 1 0 1 

0 1 0 1 1 

(3-3) 

   

In this example , we have excluded injections in order to simplify 

it. If an injection was measured, for example in node No. 3 , the 

third row in matrix A will appear as 	1 1 	1 0 . 

The adjacency matrix provides a systematic representation of the 

measurements taken from the system. It is important to note the 

difference that exists between the directed graph of the measurements 
Qui 

represented by the adjacency matrix I* the power system network 

which can be represented by a nondirected graph whose adjacency 

matrix corresponds to the matrix structure of the bus admittance 

matrix. 

3 .2 .3 Reachability  matrix 

The representation of the measurement system as a graph permits 

us to pose the next problem: does the graph cover all the nodes of 

the system and is it possible to reach any node, starting from a 

node with an outdegree greater then zero ? 

If we can go from a vertex xi  to a vertex xi  , we say that x j  is 

reachable fromxi  . If this reachability is restricted to paths of 

limited cardinality (defined in Appendix 2), we say that set Ii(x j. ) 

is that set of vertices reachable from vertex i along a path of 

cardinality 1; H(H(q) = H2  (xi ) is the set of vertices formed by 

those vertices reachable from xi along a path of cardinality 2, and 

so on. 

If the nodes of the network associated through the measurement 

system are reachable from any arbitrary node with outdegree greater 
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than zero, it is possible to estimate all those state variables that 

are reachable from the given set of measurements. 

The reachability matrix is then formed as follows: 

Set 
r.. i) = 1 	if xi 	 i  • can be reached from x •r..=0 , otherwise ij   

The reachability matrix of Fig. 3-1 (b) is formed by starting from 

node 1 from which it is possible to go to nodes 2 and 3; this row 

then appears as the first row in matrix (3-4). From nodes 2 and 3 

it is not possible to go to nodes 4 and 5 , so zeroes are put into 

theserows. But it is always possible to go from any node i to itself 

along a path of cardinality zero, so a one is placed on the diagonal 
element. 

The reachability matrix of the graph shown in Fig. 3-1 (b) is given 

by 

Xi 

x1  
1 1 

x2  
1 

x3  

1 

x4  —4 
0 

x5  —5 
0 

x2 0 1 0 0 0 

R = x3  0 0 1 0 0 (3-4) 

x4  0 1 1 1 1 

x5  0 1 1 1 1 

We now define the "reaching" matrix Q = [qii} which is obtained 

by 

qij  = 1 if x.J  can reach x.1  ; q.1 . = 0 	otherwise. 
) 

It is clear that the columns of the matrix Q are the same as the 

rows of matrix R; i.e., Q = RT . 
It is apparent from (3-4) that all the nodes of the graph are covered 

since it is possible to go from 1 to 3, from 5 to 4 and from 4 to 3 and 

2. 

By inspecting the reachability matrix R it is possible to check the 

state variables that can be estimated with a given set of measurements. 
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In the case of a connected symmetric graph it is clear that all the 

nodes can be reached from any node and the reachability matrix R is 

full of l's. 

Matrices Q and R will be used again in the evaluation of the 

"strong" components of a graph in Chapter 5. 

3 .2 .4 Reachability matrix algorithm  

To find the reachability matrix R it is necessary to search all pos-

sible paths that are generated starting from any node. It is obvious 

that those nodes with outdegree of zero are exempted. The algorithm 

is as follows: 

1) Initialize R(i,j)= 0 for all i, j = 1,2, ...,n , where n is the 

number of vertices in the graph. 

2) Form the elements of matrix R from the arcs information, 

R(i,j) =1 	if there is an arc between vertices i, j. 

R(i,j) =0 	otherwise. 

3) Find the paths from node k, (k =1, 	n) , modifying matrix R at 

element R(i,j), (i, j =1 ..... n), if there exists a path between 

nodes i, j through node k. 

4) Is k =n ? If yes, stop. If not, return to (3). 

It is important to note that this procedure is very compact and 

requires very little storage since all the information can be expressed 

in binary variables and all the operations are logical. 

3 .3 Observability in power systems SEP 

3 .3 .1 Singularity condition,  

Two methods of solution that have been applied to the SEP in power 

systems (1,3) require the solution of a sequence of linear systems with 

equations of the type 

Ax = b 	 (3-5) 

where A is a mysn matrix; x is a n-dimensional vector of unknowns 

in the linear system of equations for the current iteration; b is the 



84 

corresponding m-dimensional vector of residuals for the current 

iteration. 

The least squares solution of (3-5) is given by 

= (ATA)-1AT 
b 
	

(3-6) 

provided AT
A is not singular (for simplicity we assume the weights 

all equal to one without loosing generality). 

But it may happen that in some cases, the matrix AT
A is singular 

or nearly singular and the inverse required cannot be calculated. 

Here two types of singularity can be described. The first, which 

will be analysed later, is related with the observability problem, 

i.e., when at least one column of matrix A is composed of zero 

valued elements. The second case arises when the matrix ATA has 

the following features: i) very small eigenvalues and ii) instability 

of the numerical process due to the finite arithmetic of the represen-

tation of numbers in the computer; this ill-condition can occur rela-

tively easily because the condition number of ATA is the square of 

the condition number of A . 

The condition number of a matrix is given by the ratio of the 

largest eigenvalue to the smallest. Its interpretation in terms of 

random errors is that the condition number for a symmetric matrix 

gives the ratio of the largest semi-axis to the smallest for an ellipsoid 

of dispersion of a vector whose components are the errors of the 

unknowns (41,63). The next example will illustrate this point . 

Let us have the quadratic function given by 

Q (x) = 2 xT  Hx 	 (3-7) 

where H is a positive definite matrix which can be decomposed 

into 

H = VT DV 
	

(3-8) 

where V is an orthogonal matrix, i.e., VT
V = VVT = I and D is 

the diagonal matrix whose elements are the positive eigenvalues of 
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H. If we consider a new variable z=Vx , which transforms the 

function Q (x) to the form 

Q(z) = i zT  D z 	 (3-9) 

the isocontours Q(z) = constant , are n-dimensional ellipsoids 

centred at the origin x=0 , which cut the ith coordinate axis at 

the points zi  =constant ,i(di ) 2  , where di  are the components of 

D. We see that the value zi  (principal axis) associated with the 

eigenvalue di  is inversely proportional to d? , so that small di  

corresponds to ellongation of the ellipsoid in the direction zi  . 

Such elongation implies that the variable zi  is poorly determined 

in the numerical solution. 

3.3.2 Observability criteria  

In an operational situation all the information from the power sys-

tem is fed into a computer. A data validation process then takes 

place and once the data has been checked, the adjacency matrix or 

an analogous matrix is built up. 

However, in the planning stage the one line diagram may be used 

to check the data, network connectedness and whether or not a given 

set of measurements spans all the nodes (complex node voltages). 

In a real time situation most of the information about the structure 

is made up in the form of logical variables and an automatic proce-

dure is necessary, i.e., an algorithm is required so that the compu-

ter can "see" the network and find if the nodes are all interconnected 

and if the whole network is observable with the available set of data. 

It is said that a system is observable if the whole state vector can 

be uniquely obtained from the given set of observations. Reference 

(22) uses modern control theory to explain observability and provides 

a geometrical interpretation of the small cigenvalues in the linear 

system of equations. However, it is felt that a simpler explanation 

to the problem may be possible by using only the condition number 
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and rank deficiency of the matrix ATA in (3-6) shown by columns 

without non-zero elements. In the equivalent directed graph, this 

corresponds to node(s) that cannot be reached from any other node 

of the network. Its corresponding row in the reaching matrix Q is 

full of zeroes with the exception of the diagonal element. A solu-

tion to the rank deficient problem can be obtained by using the 

partial observability criterion as will be explained later. In the ill-

conditioned case, more stable methods such as the Householder 

transformations and singular value decomposition can be employed 

if the need arises. 

Nevertheless, the results contained in Chapter 2 of this work, 

have shown in most cases the linear Taylor series approximation is 

convenient and the function to be optimized is fairly well behaved, 

making the sequence of the linear system of equations well condi-

tioned. 

Given a network of n nodes and m complex measurements 

(m n-1), the corresponding jacobian matrix J is of the order 

2m x(2n-2 ), then the observability condition can be defined as fol-

lows: 

Definition 1. The system is observable if the rank of J is k =2n-2 

and the matrix H=JT J is nonsingular. 

Definition 2. The system is partially observable if the rank of J 

is k< 2n-2 and a matrix ji  ji  is nonsingular, where J1  is of 

order 2mx(2k). 

Let us explain the first condition. The state vector of the system 

can be estimated through the sequence of the linear system of equa-

tions given in expression (3-6). The solution to the system of 

equations requires that the matrix H= JT J be nonsingular. However, 

it may occur that even when matrix j is of full rank, matrix H may 

turn out to be singular since its condition number is the square of 

that of J. 

Before advancing on this point, it is convenient to recall that the 



87 

system of equations involved in the estimation process is non- 

linear, but that it is solved as a sequence of linear systems of 

equations. A necessary and sufficient condition for observability 

is that the rank of matrix A in the linear system of equations 

(3-5) be equal to n. In order to satisfy this condition and be 

able to estimate the state vector of the system, it is necessary 

to have at least the same number of measurements as that of ele- 

ments in the state vector and that the group of measurements cover 

all the state variables of the network. 

Therefore, observability of the state estimation can be expressed 

as the possibility of going from the measurement block one to the 

data base block 4 in the block diagram shown in Fig. 3-2 through 

the mathematical process involved, state estimation algorithm block 

3. 

Two types of unobservability condition may arise during the solu- 

tion process of the SEP. Firstly, the set of measurements does not 

cover all the elements of the state vecotr, i.e., the redundant sys- 

tem of equations becomes rank deficient and matrix ATA singular. 

Secondly, the rank of A is the maximum rank but the condition num- 

ber of A
T
A is large. 

In practice it may occur that a system is nearly singular when 

there exists rounding-off errors in the computations so it may be dif- 

ficult to decide whether a particular value, at any stage of reduction, 

is a real deviation from zero or a rounding-off error in the place of a 

zero. In our case, the detection of zero columns does not present 

any problems. When information for all nodes is not available it is 

convenient to have a method to detect singular values, like the Golub 

and Reinsch algorithm (65), which will be explained in Section 3.3.4. 

When ill-conditioning occurs and the rank of the matrix is known 

to be n, one needs to apply more stable algorithms, like the QR 

orthogonal factorization given by the Bu singer-Golub algorithm,(detailed 

in Appendix 5) where the matrix A is expressed as 
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A = P
l

(3-10) 

in which P is a mxm orthogonal matrix and U is a ri)(n upper 

triangular matrix. 

The vector x from (3-5) is thendetermined by back substitution 

in the equation 

Ux = z 	 (3-11) 

where y is the n.1 vector consisting of the first elements of Pb . 

If A is rank deficient, the solution to (3-5) is not unique and a 

particular solution could be arbitrarily large. When this condition 

arises, it is better to find the unique solution that provides the 

vector x with minimum norm (66). This is the pseudoinverse solu-

tion and its effect will be shown later, in Section 3.3.4 . It is now 

convenient to summarize the relationship between pseudoinverses 

and least squares solutions, following references (65,66). 

3.3.3 Pseudoinverses  

The concept of a generalized inverse matrix has its roots in the 

theory of simultaneous linear equations. The solution of a set of 

linear equations 

A x = b 	 (3-5) 

where A is a mxn matrix of rank r_ri , may have two forms: 

0 If m =n =r, a unique solution x =A-1 b exists . 

ii) When A is rectangular or square singular a simple representation 

of a solution in terms of A is more difficult and the use of 

generalized inverse matrices has been suggested by Penrose (67). 

A unique matrix A 	is defined satisfying the conditions 

AAA = A (3-12) 

AAA 	= A (3-13) 

(AA- )T  = AA- (3-14) 

(A-A )T  = A-A (3-15). 
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A solution to (3-5), as shown in (67) requires a generalized 

inverse which satisfies only (3-12). Pringle and Rayner (68) pointed 

out that this type of generalized matrix applied in statistics to the 

analysis of the linear model and in particular, that the estimates of 

estimable linear functions and the variances of these estimates 

wlfere invariant under the choice of a generalized inverse. This state 

ment will be clarified later in the computational methods description. 

This invariant property will be of great help in the particular condi-

tions applying to the SEP in power systems. 

The pseudoinverse can be stated explicitly in terms of least 

squares as follows: 

Given a mxn matrix A and a vector b of order m , how shall we 

determine a vector x of order n such that the residual vector (b-Ax) 

has the minimum norm ?* In general, the vector x is not unique and 

it is pertinent to ask a further question: which of the x vectors 

giving the minimum residual has the minimum norm ? This unique vector 

is referred to as the minimal least squares solution and is given by 

X b , where X is the pseudoinverse. Clearly when A is square and 

non-singular the solution is A-l b . 

If m>n and the rank (A) =n, then the least squares solution is 

x  = (AT A) IAT b  (3-16) 

and for this case the pseudoinverse A-4will be 

A = (ATA) AT 	 (3-17) 

which can be verified by substitution in expressions (3-12 - 3-15). 

At this point it is convenient to comment on the work of Allam (60), 

who uses an oblique pseudoinverse proposed by Milne (69) which 

is a constrained generalized inverse. In general the vector x in 

(3-5) is not unique and one can find arbitrary solutions for its 

n 1 
* The Euclidean norm, defined by II x  II =(7  lx.1 )2 is used. This 

1=1 	I 
is, of course, the ordinary Euclidean length (66). 
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singular elements, including the trivial solution. The oblique 

pseudoinverse is a constrained generalized inverse which provides 

one of the many possible solutions to the non-estimable variables. 

Allam's generalized inverse is the matrix given by the solution of 

the normal equations (41) 

(JT J)ox_ = JT r 
	

(3-18) 

which is the same as eq. (2-50). Provided JT J is nonsingular, 

Allam's generalized inverse is the matrix (JT  J)-1 JT  . A particular 

case is when j is nonsingular and the matrix j
-1 

satisfies rela-

tions (3-12 - 

To solve the singularity condition problem, the pseudoinverse 

approach may be useful, but it is important to note that the main 

point in the solution is the rank of the covered portion of the network. 

Let us have a matrix A of dimensions mKn, where m>n, with rank 

k<n , where k is known and let it be possible to partition A in the 

form 

A = (B1  : B2) 	 (3-19) 

by a permutation of columns if necessary, such that B1  is a matrix 

mxk and B2 is a matrix mx(n-k). Then one possible choice of 

pseudoinverse of A is 

   

A 
-L.  (3-20) 

   

where T 	 T 
C = (B1 B1  )-1  B1 (3-21) 

This will be illustrated in the next example. 

Let us have the system shown in Fig. 3-3 . The matrix structure 

of the measurements jacobian is given by expression (3-22) , 

where jii  , (1=1,4; j =1,8 ) is a 2x2 submatrix. The elements in 

the submatrices Jklt  , (k =1,8) are all zero since there is no 



Measurements: 
Voltage magnitude 	

03 

Complex line flow 

( b ) 
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Fig. 3-3 Sample power system. (a) one line diagram with 
measured points. (b) its equivalent directed graph. 
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measurement relating the voltage at node 3. This is apparent in 

the corresponding directed graph, Fig. 3-3 (b), where the node 3 

is isolated from the rest of the graph. 

` J11 • . • 114 

• • 

. 	. 	 . 	. 

J-81 	• 	' 	/84 -  

= (3-22) 

By a permutation of columns, we have: 

I 	= 

Expression (3-23) 

T 	= 

where 

= B1  

= B2 

J11 	J14 

. 

• 

/81 	/84 

can be 

[ B1  

Ill 

. 

. 

/81 

T12 
. 
• 

/82 

B2  ] 

J14 

/84 

= 

written 

J13 

. 

/83 

as 

3-13 

. 

. 

/83 

0 	0 
0 	0 

0 	0 
0 	0 

J12 

/82 

(3-23) 

 (3-24) 

(3-25) 

(3-26) 
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Substituting (3-25) and (3-26) into the normal equations (2-50), 

we obtain 

(B1 B2  )T  (Bi  

B1 B1 

0 

B2 ) 

0 

0 

x 

X 

= 

= 

B1 

BT 
2 

BT 
1 

0 

r 

(3-27) 

(3-28) 

This proves the validity of eq. (3-20) and illustrates Definition 2 

in Section 3 .2 .2 . 

The pseudoinverse approach in general requires longer time and 

larger computer storage than the Cholesky method and for the case 

when the problem can not be solved due to near-singularity condi-

tion of matrix ATA, neither can the rank be determined, the singu-

lar value decomposition as shown in (65) will provide the elements 

where the eigenvalues are very small. The rank of the system can 

then be determined and the singular valued points set to zero as 

will be described in the next section. 

3 .3 .4 Singular value decomposition 

In practice, matrices are rarely exactly rank deficient when they 

are ill-conditioned and, if they were, errors in the computation 

would obscure this fact. For these cases it is necessary to determine 

the rank, and one way of obtaining it is by using the singular value 

decomposition (SVD) contained in the algorithm developed by Golub 

and Reinsch (65), (Appendix 6). 

Let A be a real mxn matrix with rri_n . It has been shown (70) 

that it can be decomposed into 

A = U D VT 
	

(3-29) 
where 	

U T U = In 	 (3 -3 0) 

(3-31)' 
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VVT = In 
	 (3-32) 

and 

D = diag (d i , d2 ,..., dn ) 	 (3-33) 

The matrix U consists of n orthonormalized eigenvectors 

associated with the n largest eigenvalues of AAT , and the matrix 

V consists of the orthonormalized eigenvectors of AT A. The diagonal 
elements of D are the non-negative square roots of the eigenvalues 

of ATA They are called singular values. 

Let us consider that 

dl! d2 . . . 	 (3-34) 

Thus if rank (A) =k , then dk+l = dk+2 = . . . = dn = 0 . The 

decomposition (3-29) is called the singular value decomposition. 

The solution of the system of linear equations (3-5) can be 

obtained using the pseudoinverse X. As has already been stated, 

this matrix has a unique solution when satisfying the four condi-

tions (3-12 - 3-15). 

It is easy to verify that if A = U DVT then X = VD+U T , with 

D+-= diag (d i+ ) 	and 

 di.+ = 	1 	i d1/d. for 	> 0 

0 for . 0 
(3-35) 

Thus the pseudoinverse may easily be computed from the solution 

provided by the singular value decomposition algorithm. 

3 .4 Discussion on the state estimation algorithms  

3.4.1 AEP algorithm 

For a given structure of measurements, i.e., a given graph, the 

condition number of the coefficients matrix of the linear system of 

equations depends on the associated network structure. This can 

be seen by analysing the expression from the solution of the 
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sequence of systems of linear equations. 

Using the AEP method (3,98), we obtain (Appendix 3) : 

BT DB -Es  = BT D(Vm ) 	 (3-36) 

where B is the mxn incidence measurements matrix to nodes. B 

contains in each row the nonzero elements, +1 and -1 . D is a 
2 2 

diagonal matrix formed by d ji  = wi Ep/Zi  where wi  is the weight 

associated with measurement j , Z. the line impedance of the 

corresponding measured line and E the magnitude of the voltage 

at node p where the measurement is done. 

The observability of the system with a given measurement set is 

clearly dependent upon the condition number of the matrix B
T DB 

which is rairly constant provided the structure of the measurement 

system and the fairly constant values of the elements in D have 

not changed. Thus, it is clear that the dominant factor is the struc 

ture incidence matrix of the measurements. 

3.4.2 Gauss-Newton algorithm 

With the Gauss-Newton method (explained in Chapter 2), the 

situation differs slightly, but again the main factor affecting the 

value of the condition number is the structure of the measurement 

parameters associated with each measurement equation, i.e., the 

admittance matrix elements associated with the measurements. 

This can be seen by considering that the values of the node volages 

are bounded between close limits, for example, 0.95-1V1 	, 

where IV I is the magnitude of the node voltage per unit value. 

Thus, the main factors influencing the matrix J
T j are the admit-

tance matrix values for a given measurement configuration. This 

can be seen in the expression (3-37) which is an element i,j in 

the Jacobian matrix corresponding to an injection measurement at 

node k with k 	, with respect to the real part of the complex 

voltage at node j : 



96 

DPk - Gkj  ek  + Bk j  fk (3-37) 
e j  

Clearly for an approximately constant voltage profile, large 

changes in the Jacobian will correspond to changes in the para-

meters of the measurements structure. This can be extended to 

any Jacobian element where ek  and fk  are the ial and imaginary 

parts of the node k voltage, Gkj and Bkj are the real and 

imaginary parts of the line admittance between nodes k and j . 

3.5 Numerical results 

Table 3-1 shows the condition number for several tests with 

different sets of measurements applied to the 5 node and 7 line 

system of reference (23). Observing this table we should note the 

following points: 

Increasing the number of measurements does not necessarily 

mean a reduction in the condition number. 

For the same number of measurements but at different points the 

condition number differs notably. This can be seen with test num-

bers 6 and 7 which have the same line measurements at the same 

points but different node injection measurement. State vector ele-

ments are the same for all the nodes with exception of node 5 

where there is a difference of 0.00127 in the real part and 0.0003 

in the imaginary part between them. However, with respect to the 

true values the estimation with the smallest condition number 

provides the closest value. 

For a given set of measurements the normal level of measurement 

error produces approximately the same condition number as shown 

in tests 4 and 3, which have the same set of measurements, but 

in test 4 the level of error is reduced to zero. The condition num-

ber value is almost the same for both cases. 

Eigenvalues associated with non-observed state vector elements 

are very small and practically made up by the rounding-off errors 



Table 3-1 Condition number evaluated at the solution point for different cases with the 5 node system. 

Test Case Eigenvalues 
largest 	smallest 

Condition 
number 

Remarks 

1 14 LM 
4 Inj. 

9858.50 81.000 121.71 All line ends and all injections 	are 
measured. 

2 7 LM 
4 Inj. 

8992.73 181.440 49.5 6 Lines at nodes 2 and 4 and all 
injections are measured. 

3 14 LM 5058.05 68.228 74.14 All line ends are measured. 

4 14 LM 5011.22 64.642 77.52 As above, with noise level reduced to 
zero. 

5 4 Inj. 5590.55 11.089 504.16 Equivalent to the normal load flow 
solution. 

6 8 LM 
1 Inj. 

4977.30 4.928 1009.90 Node 5 is related only to injection at 
node 4. 

7 8 LM 
1 Inj. 

2173 .42 18.063 120 .33 Node 5 is related only to injection at 
node 2. 

8 8 LM 7084.59 10E-29 708 E+29 Node 5 is not observed. 
1 Inj. 

9 8 LM 796.37 33 E-29 240E+28 Node 4 is not observed 

10 5 LM 
3 Inj. 

7724.65 19.010 406.3 6 Node 5 is related only to injections at 
nodes 2 and 4. 

Note.- LM = complex line flow measurement; Inj. = complex injection measurement. 
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in the computation. They would be zero with exact arithmetic. 

Hence the condition number can be very large. 

The results obtained have shown that reducing the dimension of 

the Jacobian matrix of the measurements, by the number 	of 

columns corresponding to the unobserved nodes, it is possible to 

obtain the state vector corresponding to the observed portion of the 

network. 

Table 3-2 shows the state vector elements estimated using the 

singular value decomposition of Section 3.3.4 . The same cases 

were run with the Gauss-Newton method taking into consideration 

the columns made up of zero valued elements corresponding to the 

unobserved nodes and reducing the dimension of the linear system 

of equations to that of the observed portion. The results were the 

same as for the Table 3-2. The values obtained for the estimable 

portion of the system were practically the same as those obtained 

for the whole system with the added measurements that permit the 

observation of the whole network. This is clearly shown for the 

nodes 2, 3 and 4 in tests 6, 7, 8 and 10 and especially in case 

8 in which node 5 is not observed. The same can be said for case 

9, for nodes 2, 3 and 5 in which node 4 is not observed. 

These tests were conducted with a small system but they can be 

extended to larger ones. Table 3-3 shows the results obtained 

with the 14 node and 20 line system (55) in whi ch node 14 is not 

observed and the results are comparable to the solution obtained 

with the network fully observed as shown in tables 2-15 to 2-18. 

3.6 Comments  

The reachability matrix of the measurements directed graph shows 

which variables can be observed by a given set of measurements. 

The relationship between observability and reachability shows which 

elements of the state vector can be estimated and the elements that 

can not be observed correspond to those vertices that can not be 

reached. 
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Table 3-2 State vector estimated values using the singular value 
decomposition method. 

Element 
6 

test 
7 

number 
8 9 10 

1 1.0461 1.0461 1.0464 1.0463 1.0467 
2 -.0518 , -.0518 -.0511 -.0509 -.0505 
3 1.0200 1.0200 1.0206 1.0205 1.0208 
4 -.0900 -.0900 -.0894 -.0892 -.0882 
5 1.0187 1.0187 1.0194 1.0000 1.0197 
6 -.0960 -.0960 -.0953 0.0000 -.0939 
7 1.0102 1.0115 1.0000 1.0117 1.0128 
8 -.1099 -.1096 0.0000 -.1095 -.1071 

Table 3-3 State vector obtained by using the Gauss-Newton method 
with 22 complex line flow measurements and 5 complex injection 
measurements. Node 14 is unobserved. 

State vector estimated 
element No. 	value 

true 
value 

State vector estimated 
element No. 	value 

true 
value 

1 1.0420 1.0410 14 -.1554 -.1557 
2 -.0902 -.0907 15 1.0222 1.0204 
3 1.0384 1 .03 69 16 -.2719 -.2724 
4 -.2638 -.2628 17 1.0166 1.0147 
5 0.9867 0.9851 18 -.2735 -.2739 
6 -.2209 -.2223 19 1.0229 1.0218 
7 1.0624 1.0602 20 -.2712 -.2698 
8 -.2517 -.2519 21 1.0201 1.0186 
9 1.0034 1.0020 22 -.2756 -.2744 

10 -.1819 -.1825 23 1.0155 1.0136 
11 1.0347 1.0329 24 -.2755 -.2746 
12 -.2453 -.2455 25 1.0000 0.9952 
13 1.0093 1.0082 26 0.0000 -.2861 
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The effect of the condition number on the state estimation 

process has also been investigated and it has been shown that 

the values that may be computed for the unobserved elements 

(singular case) are such (arbitrary in general) that their useful-

ness is in doubt. Moreover, the case of unobserved elements 

can be described as a trivial solution of the system of equations. 

It was shown that for the case when the system of linear 

equations is not of full rank due to unobserved portions of the 

network, it is possible to solve the estimable elements provided 

there is a voltage measurement which will give the level of voltage 

and angle reference inside the observable (reachable) portion. This 

can be done,without applying more complicated and more costly 

methods, by using the already well known and tested methods like 

the AEP or Gauss-Newton techniques by reducing the dimension of 

the state vector, leaving out the elements that can not be reached 

even if they are electrically connected. 
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CHAPTER FOUR 

DECOMPOSITION IN POWER SYSTEMS STATE ESTIMATION 

4.1 Introduction  

Real-time power system problems have become increasingly 

large and complex, interconnecting different utilities to form 

pools and superpools, while on the other hand the time available 

for their solution appears to be decreasing and becoming more 

critical. These factors place an increasing burden on the system 

operation engineer, requiring enlargement of computer aids for 

problem solving. In recent years the more and more powerful 

computer systems have been incorporated into the control centres 

in electric utilities. In particular the state estimation process 

becomes more complicated and with the increase of system size 

and of number and length of communications channels, all these 

factors make less cost effective the centralized approach to static 

state estimation. To solve this problem a new decentralized state 

estimation scheme which overcomes the difficulties mentioned 

above is proposed in this chapter. Some other methods are also 

assessed and advantages and disadvantages of their application 

are discussed. 

4.2 Hierarchical systems 

With recent developments in relative increase in computing 

power by mini-computers and micro-processors it is possible to 

share the computing loads between different areas or subsystems. 

Hierarchical systems theory (71) has been used to solve the 

problems of optimization, state estimation and identification in 

power systems (50,72,73,74). In our case ,the SEP, two suggested 

methods are explored based on hierarchical systems theory (HST) 

(50,73) and a third one using the theory of teams (75) is discussed. 

Using HST, the principle is used of a central controller which 

sends out input instructions and receives output data of the sub- 
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systems appropriate to their needs. Fig. 4-1 depicts a hierarchical 

structure with two levels formed by 2 subsystems A and B. In other 

words, a complex system can be represented by a multitude of 

smaller and simpler but interacting subsystems. Each of these sub-

systems has its own control and/or optimization problem which it 

seeks to solve. Consequently, the overall system may be decom-

posed as follows: at the top level of the hierarchy there is only one 

subsystem,the controller. Each level below the top level has one or 

more subsystems. Each subsystem receives information fed back from 

the controller and sends coordinating information to the other sub-

systems including the controller. The action taken at one level in 

the hierarchy has the effect of providing constraints on the possible 

actions in the lower levels. The problem then is one of achieving 

the desired coordination among the various subsystems in such a 

manner that the overall system objectives are attained in an opti-

mal manner. 

Thus, it is possible to work with several smaller, more easily 

handled subproblems. Two types of subsystems are candidates for 

decomposition. The first corresponds to those systems which may 

possess a natural hierarchical structure which easily lend themselves 

to decomposition. In power systems there are clearly defined struc-

tures, namely, levels of voltage, areas, different utilities, etc. 

In the second case,the complexity of the problem may force the 

search for a hierarchical structure in order that the problem may be 

reduced in size to the point where a solution is possible and prac-

tical. Once a decomposition is obtained of whatever type, the 

solution to the overall problem proceeds in the following iterative 

manner: 

First, the controller sets the initial conditions and supplies 

initial values to the constraints in the subsystem. Each subsystem 

then solves its own optimization problem subject to the constraints. 
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When the subsystems have interaction the connecting variables 

may be treated as additional constraints on the subsystem. Once 

all the subsystems problems have been solved, the results are 

fed back to the controller. With this information the controller 

adjusts the constraint variables and supplies updated values to 

the subsystems which in turn solve their individual problem. The 

process is continued until the subsystems solve their problems in 

such a way that all the constrained variables are satisfied and the 

overall cost function is optimized. This approach has been applied 

to power systems by Kobayashi and Narita (50). Similarly, the 

methods of system identification and hierarchical systems theory 

have been integrated to produce a sequential algorithm for state and 

parameter estimation in large scale systems (73). 

In power systems state estimation two main ways of forming sub- 

systems can be suggested with respect to the exchange of informa- 

tion between subsystems. In the first one each subsystem transmits 

the state estimates X and error covariance information from the local 

estimator to the controller (central control). Then the controller makes 

the corresponding analysis and sends back information and the pro- 

cess iterates until a stopping criterion is reached. Once the solution 

is obtained the controller makes the residual analysis to check 

against presence of bad data and accepts the estimation or, if rejec- 

ted, triggers off the bad data detection procedure. 

For the second method each subsystem will have enough information 

to do the local validation of the estimation and -what is more important- 

it should be capable of obtaining the local solution without the need 

of exchanging information with other systems. For power systems the 

second approach is clearly the most attractive since it is highly 

desirable to have each subsystem estimating its own state and vali- 

dating it independently. This last point also leads to the possibility 

of reducing the work load on the central controller. 

The first approach using the model coordination method (71) was 
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applied to a typical power system (50). The idea consists in 

decomposing the system into areas having a hierarchy consisting 

of a central control computer and several area computers for 

regional on-line monitoring and supervision. The system shown 

in Fig. 4-2 consists of two areas and one tie line between the 

areas. It can be seen that the interconnecting nodes 1 and 

have common variables to both areas and,if predicted a priori, 

the objective function in the state estimation process can be 

minimized for the whole system. Local policies can be taken in-

to account to constrain either the magnitude and/or the angle 

between the common nodes. But in practice this approach requires 

an iterative procedure to reach the minimum of the cost function 

with an intermediate step for handling the constraints imposed by 

the interconnection variables associated with the common node. 

This increases the computational burden and requires the sending 

of iteration information between areas and the control centre, 

independently of the type of algorithm used to minimize the sum 

of square residuals for each area. So changes in the iterative 

process in one area generate changes in the other area, which in 

turn implies that some knowledge of the other area !s required in 

the first area. This approach increases the amount of data to be 

transmitted and slows down the process. This kind of decomposi-

tion greatly saves on core memory requirements if the solution 

algorithm for the whole system involves full matrix operation. 

But the need for feedback information between iterations requires 

more time to solve the problem compared to an integrated method, 

which uses the whole system information. 

A recent paper (75), which uses iterative information to solve 

this problem calls the process "decentralized state estimation". 

This proposition uses the theory of teams to coordinate the solu-

tion process between areas. With this method the entire system 
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Fig. 4-1 Two level Hierarchical System. 

Fig. 4-3 Three node sample system. 
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is decomposed to a suitable number of subsystems and data which 

in each subsystem is collected by each local control centre. Infor-

mation processed by the local estimators is interchanged with other 

information in a hierarchical manner. The buses of a given power 

system are classified into n blocks and the state vector is decom-

posed into n subvectors. The basic assumptions are: a) that the 

state vector is normally distributed and its variance-covariance 

matrix is known; b) the measurement equations can be linearized 

through a Taylor series expansion, and c) that the estimation pro-

cess in each block is affected only by those elements which cor-

respond to the buses connected to the other blocks through tie-

lines. Again, the main disadvantage of the method is that it needs 

the interchange of information between neighbouring blocks. The 

exchange of phase angle information is useful for improving the 

convergence speed and accuracy of the phase angle estimation 

throughout all the blocks. 

So far, the two methods described above require interchange of 

information between iterations, i.e., between partial solutions, 

something that is highly undesirable since it imposes a delay in 

obtaining the overall solution. In addition, high speed communi-

cation channels are demanded for this task. 

4.3 Decomposed systems 

4.3.1 System decomposition 

A new method which overcomes the main difficulties encountered 

in prior suggestions is proposed using a very simple principle of 

independence. 

It has been shown that the need for exchanging information 

between subsystems and the incorporation of an intermediate step 

to obtain overall convergence may require an optimization procedure 

followed by modification of the state vectors using the methods 

mentioned above. 
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The new approach takes advantage of the implicit solution of 

Kirchoff and Ohm laws given by the network and the corresponding 

information contained in the measurement set. Each measurement 

contains information for the unknown variables directly related to 

it. Fig. 4-3 shows a 3 node system having a complex injection 

measurement, and all complex line flows measured at node 1. The 

measurement of line 1 relates the complex voltage of nodes 1 and 

2. The complex injection relates the complex voltages of all the 

nodes. So, having in mind the physical meaning of observability, 

it has been found possible to decompose the system into indepen-

dent parts and solve them separately. This proposition does not 

require the imposition of a hierarchy unless it is necessary but 

even in this case, it will be shown that it is possible to find a 

decentralized solution procedure. 

The decomposition of power system networks was proposed to 

solve the problem of load flow in very large systems. There is a 

good deal of literature suggesting ways in which to solve the load 

flow problem in partitioned networks (76,77,78). But we have to 

recall the distinction between the two problems (state estimation 

and load flows) which is the difference between a redundant and a 

non-redundant system of non-linear equations. This redundancy 

gives us flexibility and permits a fresh look at the decomposition 

problem as will become apparent later in this chapter. 

4.3.2 Interpretation of systems decomposition  

Before demonstrating approaches to the decomposed state esti-

mation problem, we explain with block diagrams the ways a sys-

tem can be decomposed. This idea was suggested by Mesarovic 

and Takahara (79) and a simplified variation of this proposition 

of general systems theory is given here (Fig. 4-4). 

With reference to Fig. 4-4, it can be seen that some decompo-

sitions may be merged to give more complicated schemes but the 

main modules and interconnections needed are laid down. It is 
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convenient to interpret these decompositions in terms of power 

systems state estimation. 

Let us define a vector z , the set of measurements which itself is 

formed by two subvectors 	and z2  relating the subsets of 

measurements of area 1 and 2 respectively. The system S is the 

state estimation process and X the estimated values of the state 

vector of the system composed of two subvectors Sci  and ic2  cor-

responding to areas 1 and 2 respectively and yi  and y2  are 

feedback vectors from each of the subsystems S1  and S2  which 

correspond to the estimation processes for areas 1 and 2. 

Model 4-4 (a) corresponds to Lhe case where independent sets 

of measurements exist for each area and feedback information 

(updating) is available from system 1 to system 2. 

Model 4-4 (b) has the same properties as model (a) but there is 

additional feedback information from system 2 to system 1 

Model 4-4 (c) corresponds to the case of having common elements 

in the measurement set for both subsystems but the estimation for 

each area can be done locally without requiring any feedback between 

subsystems. 

Finally, model 4-4 (d) is the case where we have independent sets 

of measurements for each area but we require the solution of the first 

one in order to proceed with the solution of the remainder. The main 

difference between this case and model 4-4 (a) is in the type of 

information sent between subsystems. For model 4-4 (d) the estimated 

value of the state vector from area 1 is required at area 2. In case 

4-4 (a) however, it may be some type of processed information which 

may implicitly or explicitly carry information from the state vector 

in system 1 

4.4 An application example 

In this section the interpretation of the block diagram for different 

decompositions will be explained. 

Let us assume a network as depicted in Fig. 4-5. Its measurement 
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incidence matrix is: 

Nodes 

1 2 3 4 5 6 

1 1 -1 

to 2 1 -1 

3 1 -1 

a)  4 1 -1 

5 1 -1 M a) (4-1) 
I-  6 -1 1 

rn 7 1 -1 

al  8 

9  

1 -1 

-1 1 
10 -1 1 
11 -1 1 

It shoul be noted that the structure of nonzero elements formed 

by submatrices of order 2x2 for the corresponding Jacobian matrix 

of the measurements is the same as the measurement incidence 

matrix, 'vith the exception of the column corresponding to the 

reference node, node number one. This is illustrated in expression 

Iht_fennee  
(3-22)and Fig. 3-3. The measurements forams. example are shown 

in the graph of Fig. 4-5. 

Let us take node 1 as reference node, then the structure of the 

Jacobian is given by matrix S as follows, where x denotes nonzero 

elements. 
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Nodes 
2 3 4 5 	6 

XX 1 xx 
xx 2 xx 

xx 3 
xx 

xx 
4 

xx 
xx 

5 xx 
xx 6 xx 
xx xx 

(4-2) 

7 xx 
xx xx 

xx 

8 xx xx 
xx xx 9 xx xx 

10 

11 

xx
xx 

xx xx 
xx xx 

Now, the crucial point of the solution procedure using the non-

linear weighted least squares method in state estimation is the 

solution of the linear system of equations given by 

J.T w  3.85,c = TT w r  (4-3) 

where J is the Jacobian matrix of the set of measurements, r the 

residuals vector at the current iteration and PSZ is the updating 

increment of the estimated state vector . 

To simplify the explanation of the decomposition there is no 

need to include the weighting matrix W since it is a diagonal 

matrix and it does not affect the nonzero elements structure of the 

Jacobian, so it is possible to use just the matrix S to illustrate 

the point. 

Let us find ST S : 

S 

M
e

a
s
u

re
m

en
ts
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Nodes 
2 3 4 5 6 

 

S S 

2 

0 
Z5 

6 

XX xx xx 
XX xx xx 
XX XX 
XX xx 
XX 	 :XX: 
XX 	:XX. 	:xx: 

XX XX 
XX XX 

:XX: xx xx 
:XX: XX XX 

(4-4) 

    

Looking at the matrix ST S , it is readily seen that if we remove 

measurement 9 which links nodes 4 and 6 (dotted), the structure of 

the matrix JT WJ is modified in such a way that after removing the 

row corresponding to measurement 9 in the system, the new struc-

ture is given by matrix S'T S' as: 

Nodes 
2 3 4 5 6 

XX 
XX 
XX 
XX 

XX 
XX 
XX 
XX 

XX xx xx 
XX XX XX 
XX XX 
XX xx 
XX 	xx 
XX 	XX 

(4-5) S' S' = 

This changes the numerical value of block (4 )  4) but the structure 

remains the same. The block diagonal structure of (4--5) clearly 

indicates that there are independent solutions for nodes 2, 3 and 4 

with reference node at 1 and for nodes 5 and 6 with the same node 

one as reference node. 

The variance-covariance matrix of the estimated state vector can 

be obtained using the properties for block diagonal matrices. So, it 

is possible to evaluate the variance-covariance matrix in separate 

forms, independently for each subsystem. 
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Let us put 

Cov (x) = (JT  WI)-1  

From (4-4), we can write 

1.1 
	0 
	

0 
W= 

0 
	

3-2 
	 0 	W 2 

then we have in (4-5): 

(4-6) 

0 2 0 W2 

1 
A = (J

T
WI)

-1 
 = 

-1 

12 

.0 

Cov (xi  ) = Ail 	• 

Cov (x2 ) = A21 

0 	J2 W2 J2 

A
1 = 

Ji Wi 
A 1 

1 

0 A2
1  

(4-7) 

(4-8) 

(4-9) 

1 

0 W1 0  

Expressions (4-8) and (4-9) are the variance-covariance matrices 

for systems 1 and 2 respectively. 

In Fig. 4-7 the parting arc is shown by the dotted line joining 

nodes 4 and 5. The subsystems are formed using node 1 as ref-

erence. The decomposed solution obtained can be related to the 

decomposition corresponding to model (c) in Fig. 4-4. The link in 

the input to each subsystem is the voltage at the reference node 1. 

Up to now we have not considered measurement number 9 which 

links the independent blocks of equations. Returning to Fig. 4-7, 

when measurement number 9 is used one additional piece of infor-

mation, the complex voltage of node 4, is considered as another 

measurement. This procedure is the equivalent to the block diagram 
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d shown in Fig. 4-4. 

If it is required to use all the measurements, another possibility 

is to handle the problem in a sequential manner, i.e., solve the 

problem for nodes 2, 3 and 4 as before, and afterwards solve the 

subsystem formed by nodes 5 and 6 with the addition of node 4, but 

without considering the measurements already used for the first 

subproblem. 

It is important to emphasize that for both cases there is no need to 

exchange information between iterations. In the sequential solution 

case only the information from the state vector is needed, but its 

amount is quite small and it is not needed between iterations. 

Another example extending these ideas showing a three subsystem 

case will be described in dealing with the principles to decompose 

the system in Section 5.4. 

4.5 Numerical examples 

The proposed method has been tested with different sets of measure 

ments for two systems, the 14 node and 20 line (55) and the 23 node 

and 30 line (58), which are detailed in the Appendix 4. In both cases 

the systems were decomposed into two subsystems as indicated by 

the dotted line in figures 4-8 and 4-9. A common reference node at 

one of the partitioning points has been chosen. The sets of measure-

ments corresponding to each case are shown by the arcs . 

The results obtained for the state vector and its standard deviation 

are contained in tables 4-1 to 4-4. I t should be noted that values 

obtained for the state vector with the system solved together and the 

solutions obtained using the new decomposition are very close. The 

reason for the small difference is apparent from the expressions 

obtained for the covariance matrices in block diagonal forms. The 

voltages themselves are usually slightly different but this difference 

is diluted in the elements of the variance-covariance matrix A = 

(JT 	J) W -1 
. Looking at a particular element a (k,i ) which is given 

by 
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Table 4-1 Voltage values for the 14 node system, using a 
decentralized state estimator (see Fig. 4-8 ) 
Reference voltage at node 1 = 

Node 
No. 	Solution 

E 	 F 
(14 	LM, 

2 	1.03144 	0.16743 
3 	1.02761 	0.26034 
4 	1.00918 	0.02643 
5 	_ 	_ 	- 	- 
6 	1.01596 	0.06850 
7 	- 	- 	- 
8 	1.01545 	0.09617 

1.06968 + j 0.0 

Standard 
Deviation 

3 	Inj. ) E  

3.53 
4.27 
3.94 
- 

3.28 
- 

3.03 

104  
F 

9.55 
10.61 
11.03 
- 

9.36 
- 

8.29 
(16 	LM , 1 Inj.) 

9 1.05584 -.01363 2.54 2.99 
10 1.05066 -.01661 2.47 2.88 
11 1.05633 -.01102 2.04 2.41 
12 1.05416 -.01618 2.01 2.33 
13 1.04999 -.01756 1.37 1.71 
14 1.03465 -.03327 2.94 3.48 

(14 	LM , 0 Inj.) 
2 1.03182 0.16935 3.91 11.93 
3 1.02784 0.26047 4.55 12.80 
4 1.00988 0.02840 4.17 12.37 
5 - 	- - 	- - - 
6 1.01660 0.07018 3.53 10.90 
7 - 	- - 	- - - 
8 1.01591 0.09729 3.45 10.56 

(10 	LM , 1 Inj.) 
9 1.05596 -.01398 3.46 4.13 

10 1.05078 -.01696 3.42 4.05 
11 1.05650 -.01116 2.84 3.41 
12 1.05412 -.01626 2.70 3.10 
13 1.04995 -.01761 1.49 1.88 
14 1.03466 -.03337 3.93 4.74 
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Table 4-2 Voltage values for the 14 node system, using a 
centralized state estimator (see Fig. 4-8 ). 
Reference voltage at node 1 = 

	

Node 	Solution 

	

No. 	E 	 F 

	

(24 	LM , 

1.06968 + j 0.0 

Standard 
Deviation 	104  

	

E 	F 
6 	Inj.) 

2 1.03117 0.16798 3.53 9.54 
3 1.02716 0.26108 4.27 10.59 
4 1.00944 0.02657 3.94 11.03 
5 1.09007 0.01689 7.05 4.89 
6 1.01599 0.06877 3.28 9.36 
7 1.06202 0.01618 3.23 4.32 
8 1.01542 0.09653 3.03 8.28 
9 1.05654 -.01292 3.46 4.13 

10 1.05149 -.01571 3.42 4.05 
11 1.05732 -.01030 2.84 3.40 
12 1.05492 -.01565 2.69 3.10 
13 1.05016 -.01715 1.49 1.88 
14 1.03460 -.03336 3.92 4.73 

(24 	LM , 8 Inj.) 
2 1.03125 0.16819 2.97 7.55 
3 1.02744 0.26135 3.51 9.00 
4 1.00924 0.02533 3.64 9.21 
5 1.08977 0.01624 6.16 4.61 
6 1.01597 0.06910 2.53 6.34 
7 1.06161 0.01578 3.08 4.03 
8 1.01543 0.09670 2.44 5.98 
9 1.05591 -.01355 2.84 3.77 

10 1.05067 -.01631 2.93 3.77 
11 1.05625 -.01100 2.63 3.27 
12 1.05430 -.01583 2.69 3.10 
13 1.04989 -.01727 1.48 1.87 
14 1.03459 -.03291 3.81 4.71 

(26 LM , 0 Inj.) 
2 1.03120 0.16667 3.91 11.94 
3 1.02720 0.25993 4.56 12.80 
4 1.00939 0.02604 4.18 12.39 
5 1.08920 0.01619 7.27 14.73 
6 1.01605 0.06861 3.53 10.91 
7 1.06081 0.01571 5.51 14.25 
8 1.01535 0.09602 3.45 10.58 
9 1.05679 -.01331 3.47 4.14 

10 1.05175 -.01610 3.43 4.06 
11 1.05719 -.01034 2.84 3.41 
12 1.05487 -.01628 2.70 3.15 
13 1.05009 -.01723 1.88 2.39 
14 1.03493 -.03345 3.97 4.77 
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Table 4-3 Voltage values for the 23 node system, using a 
decentralized state estimator (see Fig. 4-9 ). 

Node 
No. 

Total 	 Decomposed 	Standard 
Solution 	 Solution 	Deviation 104  

E 	. 	F 	E 	F 	E 	F 
2 1.00402 -.19804 1.00146 -.20103 8.11 11.39 
3 1.03207 -.08234 1.03151 -.08431 7;48 12.74 
4 1.04968 -.00573 1.04950 -.00563 2.12 2.52 
5 1.04169 0.12948 1.04236 0.13232 1.44 6.72 
t, 1.03417 0.17953 1.03418 0.18028 1.78 9.66 
7 0.98442 -.15895 0.98107 -.16219 7.53 10.84 
8 1.00627 -.16819 1.00376 -.17145 7.80 11.22 
9 0.99773 -.12748 0.99516 -.13005 6.79 10.24 

10 0.97781 -.11588 0.97570 -.11863 6.35 9.81 
11 1.00137 -.14406 0.99878 -.14747 8.23 11.55 
12 1.03575 -.02648 1.03565 -.02709 0.86 2.30 
13 1.03501 0.01264 1.03467 0.01218 1.61 1.62 
14 0.99000 -.16000 0.98724 -.16300 7.51 10.97 
15 1.01665 -.02801 1.01681 -.02861 1.94 2.38 
16 1.01706 0.08345 1.01718 0.08428 2.00 6.17 
17 1.01091 0.04692 1.01111 0.04761 2.12 6.18 
18 1.01545 0.02590 1.01567 0.02647 2.00 5.33 
19 1.01140 0.01866 1.01155 0.01945 2.10 5.53 
20 0.96355 -.23073 0.96118 -.23318 9.63 12.37 
21 1.02708 0.07072 1.02770 0.07307 2.63 10.50 
22 1.02770 0.06798 1.02835 0.06946 2.46 8.05 
23 0.98196 -.07996 0.98151 -.07945 5.49 10.75 

Reference voltage at node 1 = 1.00049 + j 0.0 
The number of measurements for the whole system is 32 LM and 6 Inj. 
Subsystem A: 14 LM and 3 Inj.; subsystem B: 18 LM and 3 Inj. 
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Table 4-4 Voltage values for the 23 node system, using a 
decentralized state estimator (see Fig. 4-9 ). 

Total 

	

Node 	Solution 

	

No. 	 F 

Decomposed 
Solution 

E 	 F 

Standard 
Deviation 	104 

E 	F 

2 	1.00184 	-.20054 1.00162 -.19972 8.44 11.93 
3 	1.03135 	-.08673 1.03228 -.08402 8.24 12.89 
4 	1.05005 	-.00515 1.04957 -.00517 2.12 2.52 
5 	1.04206 	0.13049 1.04197 0.13075 1.55 7.17 
6 	1.03427 	0.17836 1.03398 0.17942 1.97 11.69 
7 	0.98161 	-.16194 0.98168 -.16086 7.68 11.22 
8 	1.00378 	-.17139 1.00347 -.17081 8.10 11.75 
9 	0.99518 	-.13033 0.99565 -.12900 6.96 10.66 

10 	0.97583 	-.11896 0.97609 -.11757 6.51 10.26 
11 	0.99884 	-.14702 0.99852 -.14644 8.46 11.94 
12 	1.03575 	-.02665 1.03575 -.02673 0.86 2.30 
13 	1.03520 	0.01276 1.03470 0.01230 1.62 1.62 
14 	0.98744 	-.16302 0.98709 -.16245 7.70 11.39 
15 	1.01696 	-.02802 1.01666 -.02814 1.97 2.39 
16 	1.01746 	0.08412 1.01696 0.08269 2.11 7.66 
17 	1.01138 	0.04693 1.01090 0.04633 2.15 6.54 
18 	1.01594 	0.02644 1.01530 0.02511 2.09 6.15 
19 	1.01180 	0.01921 1.01129 0.01811 2.16 6.21 
20 	0.96122 	-.23275 0.96101 -.23198 10.24 13.17 
21 	1.02741 	0.07118 1.02757 0.07148 2.70 11.05 
22 	1.02827 	0.06893 1.02804 0.06699 2.55 8.21 
23 	0.98151 	-.07945 0.98168 -.07923 5.49 10.75 

Reference voltage at node 1 = 1.00049 ±- j 0.0 
The number of measurements for the whole system is 32 LM and 0 Inj. 
Subsystem A: 14 LM and 0 Inj.; subsystem B: 18 LM and 0 Inj. 
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where Wii  is the same for the decomposed solution and for the 

complete one. It can be seen that the values of afOxi  are 

the same, since only those elements that are directly related, 

i.e., the connected elements in the directed graph, have non-

zero values and they are the only elements which have influence 

in the element a(k,i). This effect can be deduced from the 

graphs corresponding to the measured points. 

For the 14 node system decomposition,the system was simpli-
fied by parting nodes 5 and 7, without any loss of generality. 
These nodes do not have a strong influence on the state vector 

and dropping them only affects injections at nodes 6 and 9. How-
ever, these are not considered since our main measurement cutting 

line is on the line that links node 6 and 9. The only common ele-

ment that can be seen for both areas is the reference node. But it 

is important to note that this does not mean that the system itself 

is disconnected. The same idea applies to the measurements for 

the 23 node system. In its measurement directed graph, shown in 

Fig. 4-9, it can be seen how it splits clearly into two parts with 

a common reference node. 

4.6 Comments  

It has been shown how feasible the present approach is to the 

solution of the state estimation problem, solved in a decentralized 

manner. In practice it would be possible to use transformers as 

breaking points, as in our examples, since they are the natural 

choice for the splitting points, not only from the mathematical 

point of view but also from the natural division of voltage levels 

throughout the system. Thus we are faced with the problem: how 

can decomposition be achieved in a systematic way ? The works 
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already mentioned (50,73,75) do not provide an answer and in the 

next chapter this problem will be dealt with by a proposed pos-

sible procedure. 

The advantages of the present approach to the decomposed state 

estimation are: 

1. Large problems can be handled in smaller subproblems. 

2. Smaller computer requirements, time and core storage. 

3. Different, localized computers can solve the estimation problem 

of the area independently. 

4. Smaller amount of information need to be interchanged between 

areas, implying savings on communication lines. 

5. Increased reliability since the task of estimation is shared among 

several computers. 
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CHAPTER FIVE 

DECOMPOSITION METHOD 

5.1 Introduction  

The size of the problems posed by the modern power system in 

terms of computer needs, has encouraged several researchers to 

try to find ways of decomposing the large problems into smaller 

subproblems with a systematic procedure. The aim is to obtain 

more tractable and efficient solutions. The power systems SEP is 

equivalent to a large system of redundant non-linear equations. 

An algorithm to find the main nodes (vertices) of the measurements 

directed graph is proposed and use of reachability properties of 

directed graphs is made. A procedure to find the possible decen-

tralized subsystems using an ordering algorithm is illustrated. This 

procedure is applied to the adjacency matrix structure of the power 

system network and several test systems were conducted to show 

the heuristics applied to obtain the final decomposition. 

5.2 Decomposition and related problems  

For some time there has been a widespread interest in finding an 

algorithm, which has the capabilities for the efficient solution of 

very large problems using a partitioned subsystem. Real-time oper-

ation of power systems in recent times has made this type of 

solution an urgent need due to the capabilities of core size and 

computing time available in a real-time environment. The application 

of mini-computers reduces the amount of data to be transmitted and 

increases the processing power of the local controller. 

In the past, three problems have motivated the search for algorithms 

to decompose the power system network into smaller subnetworks. 

These problems are: load flow (78,85), economic dispatch (80) and 

network reduction (84,86) . 

The algorithms suggested to decompose the large problem into 

smaller subproblems can briefly be described in the followin9 manner: 
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1) Form trees for each area, keepin3the lines with the highest 

impedance to form the linking lines between subsystems (83). 

This proposal applies decomposition to those lines which prod-

uce least partitioning effects. 

2) Find some combination of boundary nodes such that the number 

of lines radiating from the main system is kept to a minimum. 

This ensures that a minimum number of nodes are related to the 

outside areas (84,86). By these means, the minimum fill-in is 

obtained for the admittance matrix that is required in the area 

that is to be analized in detailed form. 

3) Find some node permutation such that the system admittance 

matrix forms a set of diagonal blocks with the least number of 

connections between them (81,87). This produces diagonal blocks 

which will permit a sequential solution of the subproblem. 

The above three procedures are oriented towards the solution of 

a set of n equations (linear or non-linear) in n unknowns. This 

limits the extent of searching the decomposed parts and forces 

all the parts to be connected in some manner. 

The SEP possesses a special feature with respect to the problems 

mentioned above. It can be expressed as a redundant system of non- 

linear equations. Taking advantage of this redundancy, it is pos- 

sible to solve the whole problem as several smaller, independent 

subproblems. These decentralized subsystem problems can then be 

solved without having to put the solution of these smaller subproblems 

together to form the solution of the original problem. Thus savings 

in execution time and the exchange of information is produced. How 

ever, the main hurdle is to find the cutting points so that the subsystems 

formed are independent and observable with acceptable degradation 

due to neglected measurements in the links between the subsystems. 

To date, no criteria have been proposed to decompose the SEP in 

such a way that it is possible to find a localized set of measure- 
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ments that can be used by a local state estimator. It is true that 

for the diakoptics and piece-wise load flow approaches several 

criteria have been suggested and their results reported (81,83, 

82). In these references, the solution of the whole problem is 

obtained by a set of subproblems which cover a subnetwork of a 

given size or some arbitrary number of nodes with the aim of 

having the least number of links between subsystems. All these 

criteria and some of those mentioned before for network decom-

position, are not easily implemented. It is necessary to apply 

graph theory to determine the cutting points. 

The decomposition, for state estimation, might make more 

stringent the local redundancy in the sense that for a local 

(decentralized) state estimator it is necessary to have enough 

local measurements to achieve independent subsystems without 

omitting any measurements. It is important to note that the pro-

cess of achieving independent areas is not done by omission of 

unknown variables, relaxing them or fixing them to some value. 

On the other hand, it may require sometimes to duplicate some 

border node voltages and to handle them as measurements for a 

different area or simply compute them for each case, with their 

associated area measurements. Thus, independence between 

areas can be obtained by: 

a) Neglecting some measurements, i.e., supressing some of the 

redundant information. This will imply either a small degrada-

tion from the overall optimum solution or none at all in some 

particular cases. 

b) Estimating voltages at the boundary nodes twice using only the 

information contained on "each side" of the boundary system 

and 

c) As in (b) but applying a series solution in which it is required 

to receive some information from the central control, for 
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example the reference angle from the cut border nodes, and 

then to use the known node voltage for the magnitudes. This 

corresponds to model (d) in Fig. 4-4. 

5.3 Application of graph theory concepts  

In the analysis of systems in general, it is useful to find some 

concepts which will help in clarifying our understanding of the 

interaction of the different elements that form a large system. In 

recent times there has been an increasing awareness of the need 

of developing a generalized systems theory (88) that takes into 

account the behaviour of the large power systems as a whole and 

using hierarchical systems theory to analize and to control the 

relatively smaller areas or elements in a decentralized manner 

without relaxing the overall control of the complete system. In this 

respect, graph theory provides a theoretical framework which 

permits us to take advantage of the structural properties of the 

power system. This approach brings with it a set of optimality 

criteria and algorithms which enhance the understanding of the 

power system problems. Algorithms associated with graph theory, 

such as maximum flow, shortest spanning tree, etc. can be de-

scribed by using abstract concepts. Application of these concepts 

to a set of measurements makes apparent the potential of these 

ideas, as shown in Chapter 3 of this thesis. 

The adjacency matrix provides a systematic representation of 

the measurements from a system. The crucial problem is now to 

find those measurements that decompose the directed graph into 

disconnected subgraphs which satisfy the requirements of a decen 

tralized state estimator. 

Initially, it is necessary that in any partitioning of the meas-

urement set, relates all the unknown variables contained in each 

corresponding segment of the system. It is important to know which 

variables are observable (for the whole system) with the available 
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(non-decomposed) set of measurements. In Chapter 3, it was 

mentioned that the reachability matrix could be used to check 

this property. 

Let us now consider the next graph theory concepts (62). 

A graph G is strongly connected if there exists a path between 

every pair of distinct vertices. This definition is equivalent to 

saying that we can go or we can "see" from any vertex i to any 

other vertex j. 

A graph is said to be "weakly connected" or "weak" if there is 

at least one chain joining every pair of distinct vertices. This can 

be illustrated by the example of Fig. 5-1 (b), which is a weak 

graph, since there is no path from x1  to x4  ; x1  to x5  and vice-

versa . 

If a graph is not strongly connected, the strongest components 

of G are the maximal strongly connected subgraphs of G. In the 

above mentioned example, the subgraph formed by vertices 4 and 

5 is a strongly connected subgraph and these vertices form a 

strong component of graph G. 

The vertices contained in a strong component can be found by 

selecting those vertices related to a vertex xi , when this vertex 

. is taken to be both the initial and terminal vertices of a path. 

The vertices that can reach xi  and be reached from xi , and also 

reach and be reached from each other, can be obtained in the set 

given by R(xi) Q(xi) , where the oper6tor (1 means the common 

elements of the considered set. This can be computed by the spe-

cial matrix operation Ft Q , where the operator ® means the 

element by element binary multiplication of the two matrices. It 

is apparent that row xi  of the matrix 	Q contains values of 1 

in those columns xj for which xi  and x j  are mutually reachable 

and values of 0 in all other places. Thus, two vertices are in the 

same strong component if and only if their corresponding rows 



(a) 

Measurements: 
A voltage magnitude 
0 complex line flow 
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(b) 

Fig. 5-1 Sample power system network. (a) One line 
diagram with measured points. (b) Its equivalent 
directed graph. 
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(or columns) are identical. 

The next example will show this clearly. 

Let us have the directed graph shown in Pig. 5-2 with its adja-

cency matrix as: 

1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 

1 1 	1 	1 	1 
2 1 	1 	1 	1 
3 
4 1 	1 	1 	1 	1 
5 
6 1 	 1 1 1 

A 	= 	7 (5-1) 
8 1 	1 	1 1 
9 

10 
11 
12 
13 1 1 1 

Its reachability and reaching matrices are: 

1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 

1 1 	1 	1 	1 	1 	1 	1 	1 	1 	1 1 1 1 
2 1 	1 	1 	1 	1 	1 	1 	1 	1 	1 1 1 1 
3 1 
4 1 	1 	1 	1 	1 	1 	1 	1 	1 	1 1 1 1 
5 1 
6 1 	1 	1 	1 	1 	1 	1 	1 	1 	1 1 1 1 
7 1 (5-2) 
8 1 	1 	1 	1 	1 	1 	1 	1 	1 	1 1 1 1 
9 1 

10 1 
11 1 
12 1 
13 1 	1 	1 	1 	1 	1 	1 	1 	1 	1 1 1 1 
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Fig. 5-2 Directed graph of a 13 node system with 
24 measurements. 

13 	 11 

F i g . 5-3 System decomposed into three 
subsystems. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 1 1 1 1 1 
2 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 
4 1 1 1 1 1 1 
5 1 1 1 1 1 1 1 
6 1 1 1 1 1 1 

Q 7 1 1 1 1 1 1 1 (5-3) 
8 1 1 1 1 1 1 
9 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 
11 1 1 1 1 1 1 1 
12 1 1 1 1 1 1 1 
13 1 1 1 1 1 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 1 1 1 1 1 
2 1 1 1 1 1 1 
3 1 
4 1 1 1 1 1 1 
5 1 
6 1 1 1 1 1 1 

R Q = 7 1 (5-4) 
8 1 1 1 1 1 1 
9 1 

10 1 
11 1 
12 1 
13 1 1 1 1 1 1 

Now, we obtain the strong components of the directed graph by 

doing the binary matrix multiplication of equation (5-4). From the 

results it. is apparent that the strong component of this example is 

made up with vertices 1, 2, 8 and 13. With this information it is 

not very difficult to decide how to choose the vertices so as to 

form each of the composed parts. However, it is necessary to 

proceed further with a limited concept of reachability. The idea is 

to reflect in the partial reachability matrix the nearest nodes to a 
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particular node, making easier the detection of cutting elements. 

The limited reachability matrix will show the vertices that can be 

"seen" with 2, 3, ... q arcs away from any node, equivalent to 

finding the possible paths of cardinality less than or equal to q 

leading from node xi  to x j  . Let us now consider a limited strong 

components matrix given by 

Limited strong components = Rq  ® Qq 
	

(5-5) 

Let us illustrate this with an example: 

Using the graph in Fig. 5-2, the limited reachability and reaching 

matrices of 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 1 1 1 1 1 1 	1 	1 1 
1 1 1 1 1 1 1 1 

1 
1 1 1 1 1 1 1 1 1 	1 

1 
1 1 1 1 1 1 	1 1 1 1 

1 
1 1 	1 1 	1 1 1 	1 

1 

1 

R2 
= 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

   

(5-6) 
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Q
2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

(5-7) 

    

    

and the limited strong components of cardinality 2 is given by 

R 2 0 Q2 as follows: 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 	1 	1 	1 	 1 
1 1 	1 	1 	1 

1 
1 1 	1 	1 	1 

1 
1 1 	1 	1 

1 
1 1 	1 	1 

1 

(5-8) 
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From inspection of the strong components matrix with cardi-

nality 2, we can choose the nodes from 1 to 7 to form one sub-

graph and use node 6 as reference. The rest is left to form another 

subgraph. This leaves us with two sets of measurements which 

can be solved independently and in parallel. 

It is important to note that there is a need for certain ordering of 

the nodes which will permit an easier visual inspection of the lim-

ited strong components matrix. However, at this stage there is no 

obvious procedure to "tell" the computer how to choose the main 

nodes and links that permit the splitting of the system into separate 

subsystems. But the application of the limited reachability concept 

provides us with a simple systematic procedure to find those nodes 

from the network with special properties like the matrix structure 

of those nodes that are connected only three or fewer lines away 

from any particular node. 

Before coming to the practical implementation, the symmetric 

case is considered, i.e., a non-directed graph (e.g. the struc-

ture of the bus admittance matrix). Clearly this is a strong graph, 

since it is possible to go from any vertex i to any vertex j. The 

reachability matrix is the same as the reaching matrix, consisting 

of a matrix full of l's . Most problems in power systems have a 

symmetric structure, e.g the admittance matrix, the Jacobian 

matrix for the solution of the load flow problem using Newton's 

method. The matrix H given by 

H = J
T WJ 	 (5-9) 

is needed for the solution of the SEP as explained in Chapter 2. 

The symmetric graph case requires special handling and since 

it is very important later, it will be illustrated in the next section. 
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5.4 An ordering algorithm  

It has already been shown that the strong elements of a graph 

do not necessarily provide an easy way of finding the cutting 

elements and, moreover, in the symmetric case the situation is 

more complicated. 

Now, the matrix structure of the measurements adjacency 

matrix might appear in a disordered grouping, the reordering of 

the nodes will help in finding the possible self-sufficient areas 

and in spotting the cutting elements. It is important that such re-

ordering will not affect the sparsity of the network structure and 

tends to maintain local redundancy since this ordering will con-

centrate the measurements that relate a particular group of 

unknown voltages in the same portion of the network. 

The main objectives that might be considered by an algorithm 

to decompose the system are: 

i) Find those vertex (node) groupings with few arcs between 

them, such that the least number of measurements is affected. 

ii) Find a reference node which will permit a parallel solution of 

the subsystems that may be formed. 

iii) If it is not possible or extremely difficult to comply with ii), 

it is necessary to find a mixed solution with some partially 

sequential solutions and possibly duplicating some nodes in 

different areas. 

Obviously these strategies are simple to state and easy to apply 

by someone with a little insight and experience into the problem. 

But to develop a computer program with those criteria is consider-

ably difficult. The next example will clarify these criteria. 

Suppose a system can be agrouped in such a way so that the sub-

system as depicted in Fig. 5-3 is obtained. We assume that the 

subsystems are internally observable. 

Firstly, criterion (1) can be achieved by neglecting measurements 

at lines a-b and e-f . Secondly, criterion (ii) is achieved by using 
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node d as reference node and incorporating it into each subsystem, 

considering only the measurements related to that subsystem, i.e., 

subsystem A will only consider measurements at line c-d , subsystem 

C will only consider measurements g-d and both subsystems will 

consider node d as a subsystem node. 

Case (iii) can occur in many ways. If node a is chosen as reference 

node, subsystems A and B can be solved in parallel but subsystem 

C will require one of the solutions to solve its own problem using 

either node d or e as reference node. Another possible solution is 

provided if we have a voltage measufment at the node e and/or d. 

Using one of these voltage magnitudes as reference and setting its 

angle to zero, it is possible to find the solution for subsystem C 

and obtain its state vector. Once the solution is obtained for sub-

system A or B and the angle at node d or e is known then we only ' 

have to add algebraically this angle to the angles obtained in the 

solution for subsystem C in order to have a reference ccaimon to 

the whole system. 

There could be a large number of ways in which a graph with n 

nodes can be divided to form subsystems. One of the critical prob-

lems in implementing these objectives is the identification of those 

nodes that comply with the points (1) and (ii). The main objective 

must be to obtain a permutation where the number of boundary nodes is 

usefully small,but it is possible to reach some cases which are not 

minimal but contain certain number of border nodes relating different 

possible partitions. One of these nodes could provide the reference 

node to the subsystem, provided a voltage measurement is available. 

However, to implement all the criteria mentioned to split the system 

is a difficult task for the following reasons: i) the number of different 

possible permutations for large n is also large. This has motivated 

a simplified procedure described hereunder which may be applied to 

detect the possible groupings; ii) the problem of the computer "seeing" 
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those connected subgraphs with few arcs between them and detec-

ting the probable reference node is extremely difficult. But, 

although the simplified procedure may not give the optimal solu-

tion, it can give useful guide lines for an insight into the struc-

ture of the graph, the corresponding network and the system of 

equations representing it. The following simplified algorithm is 

proposed which can be integrated into an interactive procedure 

and, by visual inspection and judgement,can provide several alter 

native solutions. 

1) Initiate renumbering with the given starting node and assign to 

it the new node number 1. 

2) Assign new node numbers to all the nodes directly connected to 

the starting node. 

3) Look for those nodes directly connected to the already renumbered 

nodes that have not been considered, and renumber them. Increase 

counters accordingly. 

4) Check if the No. of renumbered nodes is equal to the No. of nodes. 

If not, go to step (3); if yes, go to step (5). 

5) Is there a new starting node ? If not, stop; if yes, go to step (1). 

5.5 Application examples  

Several systems were used to test the algorithm described above. 

These systems were the 23 node and 30 line from reference (58), 

the 30 node and 41 line and the 57 node and 78 line from reference 

(55). Their data structure is contained in Appendix 7. 

Only symmetric cases were chosen for analysis, where the equi-

valent graph has measurements for each line end. This symmetry 

makes this case the most difficult, since it has the largest number 

of possible permutations that can be generated. The corresponding 

adjacency matrices before and after re-ordering for example cases 

are shown in figures 5-4 (a) and (b) (23 node), 5-5 (a), (b), (c) and 

(d) (30 node) and 5-6 (a), (b), (c) and (d) (57 node). In these 

matrices, the dots represent the existence of the corresponding 
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1 	 10 
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Fig. 5-4 (a) Adjacency matrix of the 23 node system network. 

Fig. 5-4 (b) Re-ordered adjacency matrix(starting node:1). 
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arc, i.e., a 1 in binary representation. Tables 5-1, 5-2 and 5-3 

contain the re-ordered node numbers for the systems tested. The 

30 and 57 node systems have been run with three different 

starting nodes. Table 5-4 shows execution time for the algorithms. 

The figures in brackets correspond to the running time obtained, 

excluding printing of the old and new node numbers, on a Cyber 

7314 machine. 

Thus, with respect to the 23 node system, the initial ordering 

does not produce an obvious formation of subsystems as can be 

seen in the corresponding matrix of Fig. 5-4 (a). After the node 

re-ordering, it is clear from Fig. 5-4 (b) that two subsystems may 

be formed, having a common reference node (provided there is a 

voltage measurement in this node) for both subsystems. Any node 

from 10, 11 or 12 can be chosen as is epparent from Fig. 5-4 (b), 

the re-ordered adjacency matrix. It is possible to cut the arcs 

that are formed by the encircled elements, which will form one 

subsystem of 14 nodes and another of 10, a total of 24 nodes 

because the reference node appears in both subsystems. Using 

the new node 12 (old 8 ) as reference node, the dotted line on 

the adjacency matrix in Fig. 5-4 (b) , indicates the portions into 

which the system is split into two independent blocks once the 

arcs corresponding to the encircled elements are withdrawn. 

For the 30 node system, using the initial ordering, it is pos-

sible to split the system into three subsystems that can be solved 

in parallel having node 10 as a reference. The three subsystems 

are formed as follows: the first one is made with nodes 1 to 11; 

the second one is composed of node 10 and nodes 12 to 20 and 

the third is integrated with node 10 and nodes 21 to 30. All sub-

systems are clearly shown in Fig. 5-5 (a) separated by the dotted 

line. The arcs represented by the encircled elements are either 

supressed or considered with the nodes in other subsystems and 

permit the system to be split satisfactorily. It is important to 
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Table 5-1  Re-ordering for the 23 node system, with node 1 as 
starting node. 

Old 1 2 3 4 5 6 7 8 9 10 11 12 

New 1 2 13 14 22 16 6 12 7 9 3 10 

Old 13 14 15 16 17 18 19 20 21 22 23 

New 11 4 15 18 19 17 20 5 23 21 8 

Table 5-2 Node re-ordering for the 30 node system. 
starting 	node 	 starting node 

Old 	1 6 13 Old 1 6 13 

1 1 3 28 16 21 21 16 
2 2 2 26 17 15 15 11 
3 3 6 27 18 22 22 17 
4 4 4 3 19 24 24 19 
5 5 5 29 20 14 14 10 
6 6 1 4 21 16 16 12 
7 8 8 30 22 17 17 13 
8 9 9 5 23 23 23 18 
9 10 10 7 24 25 25 20 

10 11 11 9 25 26 26 21 
11 13 13 8 26 27 27 22 
12 7 7 2 27 28 28 23 
13 18 18 1 28 12 12 6 
14 19 19 14 29 29 29 24 
15 20 20 15 30 30 30 25 
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Table 5-3 Node reordering for the 57 node system . 

starting node starting node 
Old 1 20 40 Old 1 20 40 

1 1 48 27 30 36 11 48 
2 2 51 30 31 40 17 52 
3 6 52 31 32 41 18 53 
4 7 53 32 33 42 19 54 
5 8 54 33 34 43 20 55 
6 9 55 34 35 44 21 3 
7 11 15 36 36 45 22 2 
8 12 56 37 37 46 23 4 
9 14 47 26 38 32 7 5 

10 15 43 25 39 48 25 6 
11 16 33 15 40 47 24 1 
12 17 57 39 41 21 32 14 
13 18 41 23 42 53 31 13 
14 23 37 19 43 22 34 16 
15 3 36 18 44 49 26 8 
16 4 49 28 45 26 35 17 
17 5 50 29 46 25 39 21 
18 10 3 35 47 54 38 20 
19 27 2 41 48 50 28 10 
20 28 1 42 49 24 27 9 
21 29 4 43 50 55 40 22 
22 30 5 7 51 20 42 24 
23 31 6 44 52 39 16 51 
24 33 8 45 53 56 44 56 
25 34 9 46 54 57 45 57 
26 35 10 47 55 19 46 40 
27 37 12 49 56 52 30 12 
28 38 13 50 57 51 29 11 
29 13 14 38 
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Fig. 5-5 (a) Adjacency matrix of the 30 node system network. 
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Fig. 5-5 (b) Re-ordered adjacency matrix(starting node:1). 
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Fig. 5-5 (c) Reordered adjacency matrix(starting node:6). 
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Fig. 5-5 (d) Re-ordered adjacency matrix (Starting nocie:13). 
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note that the initial ordering complies more or less with the 

procedure of the ordering algorithm. The three cases, run with 

old numbered starting nodes 1, 6 and 13 are shown by their re-

ordered adjacency matrices in figures 5-5 (b), (c) and (d), 

respectively. From node 1, the re-ordered matrix shows the 

possibility of splitting the system into two subsystems, as shown 

by the line dividing the adjacency matrix in Fig. 5-5 (b). These 

subsystems can be solved in parallel using the new node 7 as 

reference node. The subsystems formed are composed of nodes 1 

to 18 for the first system and node 7, 19 to 30 for the second sys-

tem. Starting with node 6 is basically the same. 

Finally, with starting node 13, shows how the algorithm is 

influenced by the starting node. In this test, three subsystems 

can be formed, the first with nodes 1 to 13, the second with node 

2 and nodes 2 to 22 and the third with node 3 and nodes 23 to 30. 

This splitting of the system does not provide a parallel solution 

and the third subsystem has to receive the angle reference for the 

whole system, either from the first subsystem through the common 

node 3 or from subsystem 2 through the common link within nodes 

23 and 21. For this 30 node system, the best arrangement is that 

given by the initial ordering. This initial ordering permits the 

parallel solution which offers the best method by taking advantage 

of the reduced need for centralized control. 

The initial ordering in the 57 node system provides two possible 

divisions. The first splits the system into two, as is shown in 

Fig. 5-6 (a) by the full line. Node 11 is considered as reference 

and one subsystem is formed by nodes 1 to 29 and the second 

with node 11 and nodes 30 to 57. The number of links between sub-

systems is 8. The second possibility, which is more interesting 

since smaller subsystems are produced, has three subsystems 

which can be solved in parallel. These are composed of nodes 1 
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Fig. 5-6 (a) Adjacency matrix of the 57 node system network. 
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Fig.5-6 (b) Re-ordered adjacency matrix(starting node:1). 
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to 17 and 41 to 57 having as reference the node 11. Another way 

of solving in parallel is the subsystems formed by nodes 18 to 40 

and 41 to 57 having node 38 as reference. The reference angle is 

now obtained from node 11 and its links with nodes 41 and 43. The 

No. of links between subsystems is 12. 

The test shown in Fig. 4-6 (b), using node 1 as starting node, 

does not improve the partition provided by the initial ordering. The 

case of Fig. 5-6 (c) with starting node 20, provides a little improve 

ment since only one link is reduced. However, the case of Fig. 

5-6 (d) provides a further improvement because the system can 

b3 solved in parallel and the number of links between subsystems 

is less. The system splits into three blocks with 11 links between 

them. The reference is node 7. The three subsystems are composed 

by nodes 1 to 26, node 7 and node 27 to 43 and node 7 and nodes 

44 to 57. It is worthwhile mentioning that there is a reduction of 

core storage for the 57 node solution assuming full symmetric 

matrices. For the whole system, n(n +1)/2 = 1653 memory posi-

tions are needed; the initial ordering needs 624 memory positions 

and the positions for the 12 links joining the subsystems. For the 

re-ordered system obtained using node 40 as starting node, 642 

memory positions are required to store the three subsystems struc 

ture and an additional store for the 11 links joining the subsystem. 

One extra consideration for the initial ordering case, is the need 

of additional information to handle the sequential part of the solu 

tion and the time delay involved. 

5.6 Comments  

An algorithm to order the nodes of the network has been imple-

mented. Several criteria are applied by visual inspection and the 

feasibility of decomposing the SEP for the symmetric graph case 

shown. A decomposition procedure has a strong dependence on 

the user objectives. 

It has been shown that the starting node has a definite influence 
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on the node ordering,but no attempt was made to define the properties 

or features of the starting node. Not only was the number of links 

between subsystems affected but the starting node also affected the 

selection of the number of nodes for the chosen subsystems. 

One useful property of ordering is that the node grouping may help 

in finding the interdependence of the various elements of the whole 

system as well as giving insight into localized properties or features 

and groups of variables that are only related to certain portions of 

the network. 

The concept of limited reachability can be useful in showing the in-

teraction between the closest nodes of the network and in spotting 

the main variables related to them. 

Although it may not be possible to formulate an algorithm that 

rigorously applies defined criteria, for example the objectives attained 

with the application of examples by visual inspection after re-ordering, 

simpler algorithms can provide useful guidelines in obtaining decentra-

lized estimation processes to accomplish the desired results. They are 

useful in facilitating the task of visualisation and judgement when only 

two or three subsystems are desirable. 

Furthermore,by visual inspection of the adjacency matrix with or-

dering as has been proposed,the most likely common variables can 

be found. 

The results obtained so far greatly encourage the use of a simple 

algorithm which does not require much computing and offers two or 

three alternatives using different starting nodes. 

It is important to note that the subsystems formed mai,ntain the 

original sparsity of the system and are not affected by the splitting 

of the system whatever way the nodes are grouped. 

The main virtue of the proposed method is in providing parallel 

solutions for self-sufficient decentralized estimation. With parallel 

solutions, it is possible to solve large scale problems with greater 

speed than by solving the whole problem in the conventional way. 
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The re-ordering algorithm computing time requirements are very 

small, as is shown in Table 5-4. This is mainly because no numer-

ical operations are required, only logical variables and operations 

are used. With simple modifications, the method can be extended 

to comply with certain requisites such as a fixed number of nodes 

per subsystem or that certain nodes must be constrained to lie 

In a particular subsystem. 

Table 5-4 Timing of 

Starting 
node No. 

the ordering algorithm. 
Time 

execution 
& printing 	execution 

System 
(nodes) 

23 1 0.025 0.007 

1 0.031 0.008 
30 6 0.033 0.008 

13 0.063 0.016 

1 0.058 0.012 
57 20 0.110 0.023 

40 0.113 0.023 
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CHAPTER SIX 

MEASUREMENT SYSTEM OPTIMIZATION 

6.1 Introduction  

In the planning stage of an on-line monitoring system it is 

required to determine the best distribution of measurement points 

in the power system network and to design the data acquisition, 

transmission and reception arrangements. This step requires the 

analysis of several factors like: i) how and where the measure-

ments are to be taken, ii) measurement accuracy, iii)redundancy 

and iv) type of estimator. 

The especification of an optimal or near optimal measurement 

point selection is posed as several different problems, de-

pending on their modelling. This selection problem is expressed 

in terms of graph theory and a suboptimal procedure is used which 

guarantees the spanning of the network locating the measured points. 

A further extension is that of finding the solution to the minimum 

number of collecting nodes in terms of a plant location problem. 

6.2 Problem description  

There are many factors which influence the selection of a set of 

measurements for state estimation: observability and its condition 

number, the number of measurements that provide better solution, 

cost of the measurements, load conditions, performance of the 

measurement system in practical conditions, the parameters of the 

network associated with the measurements, the covariance matrix 

changing with the voltage profile and with changes in the network, 

etc. All these factors make the assessment of a particular set of 

measurements and the simulation of the different practical condi-

tions, a very difficult task. 

Large computational requirements are demanded to assess all the 

possible combinations of conditions and to find an optimal meas- 



156 

urement system for a particular or a general situation of the power 

network. 

One of the first questions that arise in choosing a measurement 

configuration is: which quantities can and should be measured ? 

The solution will have to take into account the features of the 

particular power system network being analized • For example, 

when a relatively large number of generation nodes exists, a 

combination of node voltage, line flow measurements and injection 

measurements will be chosen. 

Another question is: what accuracy of measurement is required? 

A cotal error of about 3% in a power measurement whose value ranges 

between 40 and 100% of the full scale of the meter will provide an 

acceptable estimated voltage assuming a redundancy of around 2 

for the whole network, On the other hand, if we try to optimize 

the meter configuration keeping to strict levels of accuracy it is 

impossible to simulate all or most of the different load levels and 

posible configurations of the measurement system that may arise 

in practical conditions. The results obtained with this approach 

by Koglin (90) provide a solution for a set of particular conditions 

of the system, which is constrained to a desired level of accuracy 

and does not provide a general solution for a wide range of condi-

tions of the measurement system, network structure, voltage profile, 

etc. 

A better approach is proposed by Handschin and Bongers (89) where 

the observability condition is checked first for any meter configura-

tion. The main criterion is reliability and the solution is obtained 

for a measurement configuration with a "good" local redundancy 

that provides a certain level of probability that guarantees the bad 

data detection step. It is pointed out that the local redundancy is 

much more important than the overall redundancy for the reliability 

of the estimator, especially in the bad data detection and identifi- 
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cation step. This effect can be visualized in Section 3.4.2 . 

Although attempts to optimize the cost of the measurement sys-

tem are made in (89), there is no proposal for a mathematical model 

to represent the problem of the measurement optimization. 

6.3 Cost function modelling 

From the practical point of view there are many factors to be 

considered in the optimization of the measurement system, the 

main factor being cost which can be affected by many parameters 

such as the length of transmission between two points, the 

gathering of data in a power station or a substation, the com-

plexity of the equipment, etc. It is therefore very difficult to 

provide the whole spectrum of possible factors that can influence 

the choice of measurements and points. 

A simplified procedure has been developed by making several 

assumptions which will permit the conversion of the problem of 

optimal allocation of measurements into a weighted graph problem. 

This problem is defined in terms of a linear cost function subject 

to the restriction of covering all the nodes of the network . Each 

measurement has an associated cost and a weighted graph is made 

in the same manner as the measurement directed graph described 

in Chapter 3. There are several advantages in expressing the 

problem in terms of a weighted graph. Among these are the availa-

bility of a theoretical framework and a number of algorithms which 

can be applied and the fact that it is fairly simple to incorporate 

different criteria and factors so as to reflect certain features on 

the selection of measurements. This is made apparent in the ap-

plication examples to follow. 

The following assumptions are made in order to model the problem: 

i) The general cost function is linear, and 

ii) the cost of each measurement is related to the associated 

data transmission cost. 

The cost function for optimization is expressed as follows: 
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C = 	 C. z• 
tei 1  

(6-1) 

where ci  is the associated cost of measurement i. Z is set to 1 

if the measurement i is chosen, or to zero otherwise. 

I = {1, 2 , 	, 

where m is the total number of feasible measurements. 

The cost function is subject to the next set of constraints: 

ajil Zi ›._ 1 	 (6-2) 

where aii is an element of the transpose of the node incidence 

measurement matrix. This set of constraints forces each node to 

be related to a measurement at least once. There are other pos-

sible additional constraints that may be formulated. For example, 

if for a given line it is desired not to have both ends measured, 

this constraint can be expressed as: 

Z.1  + Z.J 	1 — (6-3) 

where Zi is the corresponding element in the unknown vector 

which corresponds to one end measurement, and Z j  to the opposite 

end. This has the effect of excluding one of the line ends. 

Other types of constraint that can be constructed is ,for example, 

to force a set of measurements to concentrate in a given node, etc. 

It is worthwhile to point out that the cost function as expressed 

is quite a general one. It is possible to relate the costs to the 

importance of the measurement in the network, for example taking 

into account the structure of the system which, as shown in 
number 

Chapter 3, has a definite influence in the condition,and in the sen-

sitivity matrix used in (89). The usefulness of this approach is 

exhibited in the systematic formulation of the measurement opti-

mization problem. There are general algorithms to solve this problem, 

but some variations of the problem are now explained taking into 
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account certain features of the power system network. 

The formulation contained in expressions (6-1) to (6-3) only 

accounts for the cost of individual measurements and considers 

them, to a certain extent, independent between themselves. There 

are other formulations which lead to a simplified mathematical 
ssT) 

model of the problem. A minimal spanning treeA (92) approach will 

now be considered. 

Assuming that the most costly part of equipment is the data 

acquisition and transmission devices, as many measurements as 

possible should be made at nodes in the system, since the cost 

increases only marginally with additional measurements. Thus, it 

is possible to have the next cost expression for each node as: 

cj = aj + 	bij 
iEI 

(6-4) 

where cj is the total cost at node j ; aj the cost of installing the 

data acquisition and transmission system, and bii  the cost of 

measurement i at node j. 

Modifying the cost of each measurement at node j in order to 

build up a graph (weighted graph) with link costs given by: 

c = c j/No. of measurements at node j 	(6-5) 

Then the link cost of a line measurement will be equal to the 

lowest of the two end costs. 

Once we have the corresponding weighted graph of the measure-

ment system, the minimal spanning tree of this graph can be ob-

tained and the final node selection is then computed by choosing 

the cheapest end node of every link forming the SST. These nodes 

will then be the measured nodes, i.e., all lines going out from 

them will be measured. With this approach there is no guarantee 

that the overall optimum is found, but the solution to this problem 

is very easy and well known. By definition, all the node variables 
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of the network are covered by the SST. The corresponding 

algorithm requires a short computer time, is easy to implement 

and has a very wide range of applications. 

In this approach it is possible to include a weight (cost) accord-

ing to the structure of the network, the importance of the node (at 

small cost if measuring equipment already exists), etc. 

6.3 .1 Trees and the Shortest Spanning Tree  

A nondirected tree (62) is a connected graph of n vertices and 

n-1 links. If G= (X,A) represents a nondirected graph of n ver-

tices, then a spanning tree of G is defined as a partial graph of 

G which forms a tree according to the definition above. Thus, if 

G is represented in the graph of Fig. 6-1 (a), then the graph of 

Fig. 6-1 (b) is a spanning tree of G. 

One particular tree is of great interest: the tree that spans the 

network with the minimum cost. This basic problem can be stated 

as follows: 

Consider a connected nondirected graph G(X,A) with costs cii  

associated with its links (xi, xi). Of the many possible spanning 

trees of G, we want to find the one whose sum of link costs is a 

minimum. This problem appears in communications, pipelines and 

electric networks. The shortest spanning tree can be used to op-

timize certain properties of the network like distance, reliability 

and cost. 

In our case the main point is to find all those links which pro-

vide the SST and from this to assign the nodes where measure-

ments are to be made. 

The finding of the SST of a graph can be done by an algorithm 

originated by Prim (92). This algorithm produces a SST, Ts by 

growing only one subtree containing more than a single vertex 

and considering the remaining single vertices to form one sub-

tree each. Subtree Ts is then grown continuously by adjoining 
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(a) 

( b ) 

Fig. 6-1 (a) Graph G. (b) 	A spanning tree of the graph. 
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the link (xi , xi), xi  e Ts, xi Ts with the minimum cost cij until 

(n-1) links are added and Ts becomes the required SST. An efficient 

technique for its implementation is given in (94). 

6.3 .2 Minimal number of collection nodes  

Assuming all the nodes have measurement equipment (or have 

already been selected) and considering the data transmission line 

as the most expensive item, cost being proportional to its length, 

and that information coming from neighbouring nodes can be gathered 

at any node or passed onto another one, thus making better use of 

the data transmission links without capacity constraints, we wish 

to minimize the total data transmission cost and the number of col-

lection centres. This problem can be stated as a plant location pro-

blem (95) and is expressed as follows: 

Minimize 
C = 	gij Zji + 	fk  yk  

icI jEj 	k eK 

subject to 
Z. • = d • 

iGI 

• )• ?: Z1  

idi ; jdj 
and 

yk  = 0 or 1 	 (6-9) 

k eK 

where, 

I= (i=1, ...,n) 	j=Cj=1, 	; K =(k=1, ...,p) 

The model represents a network with p collection centres to 

install and n nodes; di is the number of measurements at node j, 

fi  is a positive cost associated with the installation of the col-

lection centre k and gii  is a positive cost per unit of the data 

transmission between node i and j. The variables Zji and yi 
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represent the number of measurements transmitted between i and 

j, whether a collection centre is installed (y1=1) or not (yi  =0). 

Thus, we are left with the problem of minimizing the number of 
cta 

collection centres and the„ transmissioncosts. To simplify the pro- 

blem, the number of collection centres can be fixed and the cor-

responding cost obtained. This procedure is repeated for a series 

of collection centres and the resulting costs compared. 

Thus, the objective is now to minimize the transmission costs 

and the allocation of collection centres. This problem is identical 

to the one expressed by the generalized p-median problem (62). 

In practice, fk  in (6-6) represents the fixed costs associated 

with building the facility at node k. If we consider fk  to be the 

same for all the nodes (fk =f) and since the number of measurement 

centres has been fixed at exactly p, the cost function becomes 

C = 	gij Zij + e  f 	 (6-10) 

Then the fixed costs need not be considered in the formulation of 

the plant location problem and only the equivalent pure p-median 

problem (93) is left to be solved. This p-median problem consists 

of locating p facilities on a network, so that the sum of shortest 

distances from each of the nodes of the network to its nearest 

facility is minimized (fixed costs are assumed not to vary with the 

location of the facility). 

Equations (6-6) to (6-9) correspond to the integer programming 

formulation of the plant location problem. With the simplification 

described above, this problem can be stated as follows: 

Minimize 
C = 	>  d1 Zij 	 • (6-11) 

JJ 

subject to 
Z., =1 
	

(6-12) 
iEI 

i 
	

Zii = p 
	

(6-13) 
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Z ii 

where 

Zi.i  4 Zi.1 	lei, 	jej, 	iitj 

I

l 	if node j is allocated to facility i 

0 	otherwise 

J= {j=1, ...,n} 	I= { 1=1, ..., n} 

(6-14) 

	

{1 	if a facility is located at node i 
Zii  = 

	

0 	otherwise 

Since there are no capacity restrictions and no economies of 

scale are made, no node will need to be associated with more than 

one centre. Hence, Zi.i  e {O, 1} for all i and j; Zit  c tl , Oi 

indicates that the centre is installed or not. 

The solution to the p-median problem has been studied extensively 

and several methods of solution have been proposed (62,93). In the 

present work, a direct tree search algorithm (62,96) is used. 

The basic pronciple involved in tree search methods is the parti-

tioning of an initial problem Po  into a number of subproblems Pi.  , 

P2  , ..., Pk  , whose totality represent the original problem and which 

are easier to solve than Po  . 

To solve a subproblem means 

either i) find an optimal solution, 

or 

	

	ii) show that the value of the optimal solution of the subproblem 

is worse than the best solution obtained so far, 

or 	iii) show that the subproblem is infeasible. 

If, after the initial partition, it is still impossible to solve the 

subproblem Pi.  , it is further partitioned into yet smaller subproblems 

Pil , Pi2 , • • • , Pik • 
This branching is repeated for every subproblem which cannot be 

solved. 

To deal in detail with the algorithm is outside the scope of this 
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work but a complete description of the algorithm and some other 

methods of solution to the p-median problem can be found in (93). 

6.4 Power systems network applications 
6.4.1 Shortest spanning tree approach  

In order to convert the original problem into one of a shortest 

spanning tree, preliminary calculations are made. 

For a given node i, the cost of measuring k lines and the cost 

of corresponding equipment is given by equation (6-4). 

The matrix cost containing the link costs is built up from: 

wii  = min (ci , ci) and 

W ij = w ji 

Several tests were made for different values of fixed costs and 

variable measurement costs. 

One set of simulated costs was obtained with the fixed cost at a 

fictitious value of 500 units and the arc costs were simulated at 0, 

200, 500, 600 and 800 units. The extreme case of fixed zero 
cost and the arc cost,

of  
100 was also considered. The results are 

shown in tables 6-1 and 6-2 for the systems of 14, 23, 30 and 57 

nodes. The redundancy was computed with the expression: 

No. of complex measurements  Redundancy - No. of nodes - 1 

The resultant number of measurements is approximately equal 

to the number of links plus the number of nodes minus one. This 

means that at least one additional measured point is available at 

each node, which may be an injection or a voltage measurement. 

In most cases the overall redundancy is approximately equal to 

or greater than 2. 

As shown in Table 6-1, the same node selection was obtained 



No. of 
nodes 

14 

23 

30 

57 

Table 6-1 	Results with the shortest spanning tree approach 	for different 	systems . 

	

=200,500,600,800 	fixed cost =0 ; 	arc cost =100 
No. of 	 Selected 	 No. of 

Redundancy 	nodes 	measurements 

	

24 	1.85 	3,6,7,8,9,2,11,13 	37 
1,2,5,6,8,9,10,12,13,- 

	

45 	2.05 	 54 16,18,21,23 

3,4,5,6,9,10,12,15,17, 

	

55 	1.90 	 73 19,20,22,25,27,28,29 

1,3,4,6,7,9,10,11,12, 
13,14,15,19,20,22,24,25, 

	

123 	2.20 	 152 27,28,29,30,32,34,36,37, 
38,41,44,46,48,49,51,53, 
54,55,56,57 

Redundancy 

2 .85 

2.45 

2 .52 

2.71 

fixed costs =500 ; 	arc costs 
Selected 
nodes 	measurements 

3, 	6, 	7, 	8, 	9 

1,2,5,8,9,10,12,13,16, 
18 

2,4,6,9,10,12,15,19,24, 
25,27 

1,4,6,9,10,11,12,13,14, 
15,19,20,22,24,27,29,30, 
32,34,36,37,38,41,48,49, 
53,54,56 

Table 6-2 Timing for the node selection using the shortest spanning tree approach 

System: 	14 node 	23 node 	30 node 	57 node 
Time (secs) : 	0.026 	0.106 	0.229 	1.48 

Note.- Time shown corresponds to algorithm execution time only, using a Cyber 7314 machine. 
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with all the different fictitious cost values used, with the exception 

of the extreme case where the fixed cost equals zero and the arc cost 

equals 100, which is shown in Table 6-1. 

It should be noted that this procedure leads to a suboptimal re-

sult, since we are forcing all possible measurements to be made 

only at those nodes contained in the shortest spanning tree of the 

network. 

6.4.2 The p-median approach 

Two main networks have been used to test the model: 

1) The 14 node and its reduced 10 node network, and 

ii) the 23 node and its reduced 20 node network. 

This was done considering that each resulting node is in fact a 

substation, i.e., a single location. 

The reduced 10 node network was derived by grouping together 

nodes 3 and 8 into a single node and nodes 5, 6, 7 and 9 into 
another one. 

The reduced 20 node network was obtained in a similar manner, 

this time grouping nodes 8, 9, 12 and 13 into a single node. 

For our case, to give importance to the nodes with greater num-

ber of lines, the arc costs were assigned values pruportional to the 

number of links existing at the corresponding end node. 

Tables 6-3 to 6-6 show the values of the cost function, i.e., 

the minimum sum of link costs corresponding to different numbers 

of collection centres. 

The total minimum can be obtained by adding the fixed costs pf 

to the minimum cost of the corresponding p-median shown in the 

third column of tables 6-3 to 6-6. 

An example will illustrate this point. 

Let us assume that f is equal to 10 units and the total costs are 

those shown in Table 6-7. The underlined numbers will then be the 
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Table 6-3 Results of the application of the p-median algorithm to 
the 14 node system. 

No. of 
centres 

No. 	of 
solutions 

minimum 
cost 

time * 
secs. 

1 1 68 1.13 
2 1 43 2.11 
3 1 31 3.27 
4 2 25 3.42 
5 2 20 2.88 
6 1 16 1.93 
7 1 13 1.47 
8 6 11 1.45 

Table 6-4 Results of the application of the p-median algorithm 
to the 10 node system. 

No. of 
centres 

No. of 
solutions 

minimum 
cost 

time* 
secs. 

1 1 33 0.48 
2 1 19 0.53 
3 1 15 0.45 
4 1 12 0.53 
5 6 10 0.70 
6 15 8 0.99 
7 20 6 1.12 
8 15 4 0.95 

* The time shown includes data reading, execution and data and 
solution printing, using a Cyber 7314 machine. 
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Table 6-5 Results of the application of the p-median algorithm 
system. 

No. of 	minimum 	time* 
solutions 	cost 	 secs. 

to the 23 node 

No. of 
centres 

1 1 141 5.03 
2 1 92 18.55 
3 1 70 56.97 
4 1 5 6 79.27 
5 2 48 100.17 
6 2 42 105.08 
7 3 37 98.68 
8 1 32 72.89 
9 6 28 48.01 

10 3 24 24.62 

Table 6-6 Results of the application of the p-median algorithm 
to the 20 node system. 

No. of 
centres 

No. of 
solutions 

minimum 
cost 

time* 
secs. 

4 2 36 16.45 
5 1 31 21.28 
6 4 27 21.34 
7 3 23 21.74 
8 27 21 22.05 

* The time shown includes data reading, execution and data and 
solution printing, using a Cyber 7314 machine. 
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minimum costs. 

Table 6-7 Total costs, with f =10. 

No. 	of 
centres 

23 
nodes 

20 
nodes 

14 
nodes 

10 
nodes 

1 151 78 43 
2 112 63 39 
3 100 61 45 
4 96 76 65 52 
5 98 81 70 60 
6 102 87 76 68 
7 107 93 83 76 
8 112 101 91 84 
9 118 

10 124 

It can clearly be seen that there is a point (minimum) beyond 

which any further increase in the number of collection centres 

will not reduce the total cost. 

6.5 Comments  

Two mathematical models that complement each other were 

formulated for the solution of the measurement optimization pro-

blem. Although this mathematical modelling is well known in 

other fields, operational research for example, improvements 

to the model remain in power systems, for example, the use 

of realistic costs. 

It can be observed that the SST solution provides coverage of 

the network with partial reachability of cardinality 1, which is 

similar to the p-median solution for this particular case, cor-

responding to the number of nodes selected with the SST 

approach. 

Of no less importance is to have a technique for reducing the 

size of the network, especially when dealing with large networks, 

since the computer time is considerably reduced when the number 
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of nodes reduces. This is shown in tables 6-3 to 6-6. 

A further extension may be the use of the two mathematical 

models in a sequential manner. First, the SST approach is used 

to obtain the nodes where measurements are to be made, and 

then to these nodes the p-median algorithm is applied to 

locate the optimized collection centres. 

It is apparent that for the solution of extreme cases, like 

fixed cost =0 and arc cost =0 , very simple rules can be applied 

but,for the general case, the SST approach offers a computationally 

attractive procedure. 
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CHAPTER SEVEN 

CONCLUSIONS 

7.1 General comments  

The on-line state estimation problem has been widely studied and 

various approaches have been suggested towards its solution. 

In the present work the proper weighting factors of the measurement 

residuals in the cost function have been assessed, especially for the 

case when bad data errors (gross measurements) are present. As shown 

in Chapter 2, the scale weighting provides a more consistent per-

formance than the one provided by the reciprocal of the variance 

weighting method, especially when the gross measurement error is 

negative. This is a desirable property since scale overshooting is a 

type of error easy to detect. This illustrates the importance of properly 

modelling the variance of the measurements and judiciously selecting 

the weighting factors. It is important to note the well behaved proper-

ties of the performance cost function as proved by the linearity test 

for the examples tested with different weighting factors. There is a 

close relationship between these well behaved properties and the value 

of the condition number in the corresponding system of linear equations. 

In general, it can be said that the observability of the system is 

determined by the structural and numerical properties associated to 

a given set of measurements. However, from the linearity test and 

condition number obtained, it can be concluded that for most cases 

the observability of the system is more dependent on the structure of 

the set of measurements (i.e., the covering of the network), than on 

the numerical process. 

The partial observability concept leads us to the solution of par-

tially observed networks. Its relationship with the singular case was 

illustrated and methods of solution for this situation were described. 

The equivalence and invariance of the solution is a characteristic 

important to emphasize. 
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It is possible to solve the singular case along the lines of Chapter 

3 by using the standard methods, employing a rank reduced system 

and giving the trivial solution values to the unobserved variables of 

the network. 

With the grounds established above, the decentralized state esti-

mation problem is solved by using the partially observed networks 

obtained by applying the concept of independent blocksof equations 

and taking advantage of the redundancy of the system. The results 

obtained are highly encouraging. The local estimators have the prop-

erties of a centralized estimator, with the following additional 

advantages: 

1) The large scale state estimation problem can be solved with smaller 

computer requirements. 

ii) The subproblems can be solved in parallel. 

iii) Different control areas can solve the state estimation problems in 

an independent manner. 

iv) There is no need of a master control as in the case of the hierarchical 

approach. 

v) The amount of data to be transmitted is reduced. 

The disadvantages, though not crucial are: 

i) Local redundancy is made more stringent. 

ii) A slight degradation of the estimation process occurs, especially 

at the common nodes. 

iii) Voltage measurements are required at various portions of the 

network. 

The need to apply decentralized structures has arisen due to the 

high cost of communication lines and the impracticality of telemetering 

all the data required for a centralized controller. 

The currently used decomposing criteria for solving the state esti-

mation problem require a coordination process, which by itself reduces 

the efficiency of this solution. Schemes like the one proposed in this 
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work are highly desirable since they best suit the on-line needs. 

The forming of subsystems, as shown in Chapter 4, may be 

useful in the analysis and design of large scale systems, large sys-

tems of non-linear equations and similar problems where knowledge 

of the interaction between different elements and/or parts of the 

whole system is required. 

The mathematical modelling of the measurement system is the 

first step to provide algorithms to optimize it. Two models were 

tested which had a strong bias towards the nodes with a large number 

of connecting lines. The results of the measurement optimization 

problem shown in Chapter 6, exhibit a pattern of node clustering 

which favours network decomposition. 

A more rigorous model, though not implemented, is suggested for 

future research, which expresses the problem as a set covering 

problem that can be solved by using a set covering algorithm or a 

general integer programming algorithm. The latter may comprise other 

type of constraints, as the forcing of all measurements of a given 

node to be chosen, etc. 

In our models, no attempt was made to minimize the level of error 

or any related function but our generalized modelling could allow for 

it since it is possible to give weight, cost, etc. to the nodes and/or 

measurements to reflect the degree of accuracy, importance of a 

certain measurement, etc. 

7.2 Possible areas for further research  

7.2.1 System decomposition  

Research is required to further develop the re-ordering algorithm 

so as to automatically produce the splitting of the system into sub- 

systems with parallel solutions, giving the corresponding node 

(state variable) selection for each subsystem. 

7.2.2 Decentralized dynamic state estimation 

Application of the developed decomposition principles to the dynamic 

state estimation of the electrical power systems is required. This 
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will provide the basis for the determination of control actions by 

the local controller to prevent (or cope with) dynamic instability 

of the system. The idea is to find out the sets of equations that 

can be grouped together in order to decompose the whole problem 

into smaller subproblems and be able to obtain independent esti-

mators accordingly. Each subproblem may be linked to the rest of 

the system only through the electrical reference angle at the 

selected boundary point(s), i.e., the boundary variable. 

7.2.3 Individual measurement optimization  

Implementation of the solution is needed to obtain the general 

case of individual measurement allocation using a mathematical 

model which is equivalent to a set covering problem (62). This 

approach will include several types of possible cost functions 

and/or constraints (106). 

The measurement allocation problem can be modelled as follows: 

Minimize 

subject to 

and 

where 

C = >._ c.
1 
 Z• 

i eI 	I  

	 a.. Z. ... 1 .1. , J1 1 

jei 
Zi= 1 or 0 

i c I 

I = ti=1, ...,m} 

J= 1 j =1 , ... , n 1 

n is the number of nodes, 

m is the number of possible (or starting) measured points, 

ci is the cost of measurement i, 

aii =1 means measurement i relates node j, 

aii=0 	,, 	measurement i does not relate node j, 

Zi  =1 	measurement i is chosen, and 

Zi =0 	measurement i is not chosen. 
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The units on the RHS of the inequalities cause all nodes to be 

covered. The greater than or equal sign permits redundant measure-

ments. Other constraints that can be put in the form of equation 

(7-2) may be added. 
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APPENDIX 1 

Least Squares Estimator (34) 

Let us have a sequence of measurements y1, y2 	 Ym 
where m is the number of measurements. The measurements can be 

written as: measurement = true value -+ noise. Or: 

	

Yt 	 (A1-1) 

and the expected value: 

	

E tyl= y t 	 (A1-2) 

Now, the feature of the linear estimator is that we have a linear 

relationship between the state unknowns x which are to be estima-

ted. 

Yt= A x t 
	 (A1-3) 

We also want that our linear estimates be unbiased; this means: 

= 
and its covariance matrix: 

R = E 	±11-  

(A1-4) 

(A1-5) 

The theory states (34) that the least squares linear unbiased esti 

mate of x is defined as the vector x , which minimizes the 

quadratic risk function with respect to x: 

J (3:1) = 	- A x )T(y. - Ax) 	 (A1-6) 

We have to note that the matrix ATA has to be non-singular. To 

minimize (A1-6), differentiate with respect to x , and equating the 

derivative to zero, we have: 

Vxj(x)Ix_ce  = -2ATy.  + 2ATA = 0 	 (A1-7) 

and 

= (AT A)-1AT y. 	 (A1-8) 

To show that it is a minimum point, we write the risk function in 
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the form of the squared norm: 

d  = 11X A Lc

I1 2 	
(A1-9) 

   

 

2 

 

d = Il y - (A1-10) 

  

Then J has a minimum if and only if x = x , where 2 is given by 

(A1-7). 

The next step is to show that 5Z is an unbiased estimate  . 

Let us write: 

- 2st1 = E (ATA )-1AT y. I  - x t 
(ATA)-1 ATE 

[y1J  - 
 

t 

= (ATA)-1ATAx - x t 	 t 

- Et = 0 
 

This means that 2 approaches Et and we do not have any deviation 

of this value. Therefore, x is an unbiased estimate of x. 

The covariance matrix of 5? can be written as follows: 

Cov (5;.) 

Define 

= 1.(g L1 Et)( 	
Ti

Et )  

= E 	[E i‹.1 12  

(piT A )-1AT z iT A (AT A)-1 - x x t t 

B = (AT A)-1AT  ; 	BT = A(AT A)-1  

Cov (2) = E jByZT BT I - x t xT 

EkByiT BT i = BE tizT iBT  = B[AytxtT AT  + 	BT  

= BAxtxtT A T BT + BE 
	

BT 

E 
)1 
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Then 

= Ix t  x
T I + BEilvziT1 BT 

— — (A1-11) 

Cov (2) = x x+ BE 	q-r  1 BT  - x t 	 t xT  t 

= (ATA)-1  A T  E 	qT 	A (AT A) -1 

Weighted Least Squares Linear Estimator 

Most of the times we wish to assign a relative importance to the 

measurements. Then, we assign some weighting factors to the risk 

function associated with the different measurements. Thus, we can 

write: 

J (x) = (y-Ax)T W-1  (y.  - Ax) 	 (A1-13) 

In practical situations, we generally have that W-1 is a sym-

metric and positive-definite matrix. 

The estimate 2 , which produces a minimum of the risk function, 

can be established by operating on j , as follows: 

	

Vx J (x) = 0 	 (A1-14) 

= Ox (zT  - xT A T )W-1( y - Ax) Vx J(E)Ix_ x  

= -2AT W-1 + 2AT W-1Ax = 0 

AT w-1A  = Air w-1 z  

= (Airw- A t-i T , A w y 

The proof that (A1-16) yields an absolute minimum requires some 

mathematical manipulations that are out of our present objectives. 

Reference (34) deals with it in detail. 

The covariance matrix of the estimate is: 

{ E {5,ci  12 Cov(R) 	E 	 (A1-17) 
2 E(2) = x t 	; 	 = 2it  2st 	 (A1-18) 

(A1-12) 
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= E {(AT W-1
A)

-1AT W-1  zyT IN-1A(AT W-1A)-1  

By analogy with (A1-11) and writing 

C =  (A
T

W
-1

A)
-1

A
T

W
-1  

E 	5ZT  1 = ,C Aact xtAT + E 	n'T I 	CT 	(A1-19) 

Substituting (A1-17) 	and (A1-18) into 	(A1-19): 

Cov (5is  = (Ax
t  x

T A
T

C
T

+ CEEILA 
T

i 
t 

T 
C

T

-xL—t
x 

= I act  Tt  I + C E 	_r_11 C
T 

- x
t 

x
t 

= C E 1:1 r_AT  CT  

(AT w-l A)-l AT IN-1 E  ..r1T 
W

-1
A(A

T
W

-1
A)

-1  

(A1-20) 

We now choose IN =E , which will provide the minimum 

variance estimator (34). In other words, any other weighting matrix 

would give us a greater covariance matrix for the estimated values. 

Then, substituting W = E 	Cf.  I into (A1-20) we have: 

Cov(X) 
	(AT w-1A)-1AT w-1 ww-l A(AT w-1A)-1 

T -1 -1 T -1 	T -1 -1 
= (A W A) A W IA(A W A) 

= (AT w-1 A)-
1 (AT w-1A)(ATW-1A)-1 

= (AT IN-1A)-1  I 

Cov(5i) = (A
T

R
-1

A)
-1 
	

(A1-21) 

Now, if W1  R , we state, without proof, that the covariance 

matrix is: 

(A1-22) 
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where 
Cl = (A

T
W

-
1
1A)-1AT

W1
1  

is greater than the matrix (A1-21). Then, we write: 

C1 	1 
R-1  C1 	(A T R-1A)-1 

Thus, our choosing of W= R gives us the minimum variance es-
timate. This expression is of more theoretical than practical use, 
because in practical applications the exact values of the elements 
of the covariance matrix of the errors are seldom known. However, 
it gives us the possibility to state that we use some values as close 
as possible to the true but unknown elements of the covariance matrix. 
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APPENDIX 2 

Elementary Concepts of Graph Theory (62) 

A graph G is a collection of points or vertices x1' x2 ' 
. xn (denoted by the set X), and a collection of lines a a2 2' • 
• am (denoted by the set A) joining some or all of these points. 

The graph G is then fully described and denoted by the doublet (X,A). 

If the lines in A have a direction -which is usually shown by an 

arrow- , they are called arcs and the resulting graph is called a di-

rected graph (Fig. A2-1). If the lines have no orientation they are 

called links and the graph is non-directed (Fig. A2-2). 

The arc is denoted by the pair of its initial and final vertices, its 

direction is given from the first vertex to the second. Thus, in Fig. 

A2-1, (x1  ,x2  ) refers to arc a l  and (x2  ,x1) to arc a2  . 

A path in a directed graph is any sequence of arcs where the final 

vertex of one is the initial vertex of the next one. 

Thus, in Fig. A2-3 the sequence of arcs: 

al' a 6' a5' a9 
	 (A2-1) 

is a path. 

Arcs a = (x ,x.), x. x.3  which have a common terminal vertex 

are called adjacent. Also, two vertices xi and x are called adjacent 

if either arc(x.,x j ) or arc (x.
3
,x.

I 
 ) or both exist in the graph. Thus, 

in Fig. A2-3 arcs a l , a10 , a3  and a6  are adjacent and so are the 

vertices x5 and x3  ; • on the other hand, arcs a l` and a5 or vertices 

x1 and x4 are not adjacent. 

Another way of describing a directed graph G, is by specifying the 

set of vertices and a correspondence H which shows how the vertices 

are related to each other. H is called a mapping of the set X in X 

and the graph is described by the doublet G = (X,B). 

In the example of Fig. A2-1 we have: 
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Fig. A2-1 Directed graph. 

Fig. A2-2 Nondirected graph. 

Fig. A2-3 Sample graph. 
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H (xi)  ) = x2 , x5  1 

i.e., x2  and x5  are the final vertices of arcs whose initial 

vertex is 1. 

H (x4 ) = 0 , the null or empty set. 

When the correspondence H does not operate on a single vertex 
but on a set of vertices such as X

q  = ix1 ' x2 ' . • ., xq  1 , then 

H (Xq ) is taken to mean: 

H(Xq ) = H(xi ) UH(x2  ) U . . . UH(xq ) 

i.e., H(Xq ) is the set of those vertices x. E. X for which at least 

one arc (xi , xj ) exists in G , for some xi  E- Xq  . Thus, for the graph 

of Fig. A2-1, 

H(1x2 , x51) = 1 x1 ,x3 ,x4  1 

and 
H({xi ,x31 ) = lx2 , x5 , xi  1 . 

)The double correspondence H(H(x.J.) is written as H2 (xi) . Similarly 
)the triple correspondence H(H(H(x.1) ) is written as 1-13 (xi) and so on. 

Thus, the graph in Fig. A2-1 : 

H2 (xi ) = H(H(xi )) = Hqx2 , x51) = xi. , x3 , x4 1 

,The relation H-1(x.2. ) 	the set of those vertices xk for which an 

arc (xk , xi ) exists in G , is called the inverse correspondence. Thus 

in Fig. A2-1 we have: 

H-1 (x1  ) = x2 , x3  \ 

It is apparent that for a non-directed graph, 
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-1(  (x.) 	H(xi ) 	for all x1E X. 

A simple path is a path which does not use the same arc more than 

once. 

An elementary path is a path which does not use the same vertex 

more than once. 

A chain is the nondirected counterpart of the path and applies to 

graphs with the direction of its arcs disregarded. Thus a chain is a 

sequence of links in which every link, except perhaps the first and 

last links, is connected to the links 5i-1 and a1+1 by its two 

terminal vertices. 

a2 , a4 , a8 , "a"10 
	 (A2-2) 

(V raz-31 
is a chain„ where a bar above the symbol of an arc means that its 

direction is disregarded, i.e., it is to be considered as a link. 

A simple chain is a chain which does not use the same link more 

than once. 

An elementary chain is a chain which does not use the same vertex 

more than once. 

A path or a chain may also be represented by the sequence of 

vertices that form it. This representation is often more useful when 

one is concerned with finding elementary paths or chains. 

A number cii  may sometimes be associated with an arc (xi , xi ). 

The numbers are called weights, lenghts or costs and the graph is 

then called arc-weighted. Also a weight vi  may sometimes be 

associated with a vertex x, and the resulting graph is then called 

vertex-weighted. If a graph is both arc and vertex weighted it is 

simply called weighted. 

Considering a path tA represented by the sequence of arcs (a1, 

a2  . . . , aq  ) , the length (or cost) of the path 1 (p. ) is taken to 

be the sum of the arc weights on the arcs appearing in 	 i.e.,IA , 
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1 (IA) = > 	cij 
(xi'xj) in i..A 

(A2-3) 

The cardinality of the path j.k is q , i.e., the number of arcs ap-

pearing in the path. 

A loop is an arc whose initial and final vertices are the same. 

A circuit is a path al , a2  , . . • , aq  , in which the initial vertex 

of a l coincides with the final vertex of aq  . 

A cycle is the nondirected counterpart of the circuit. Thus, a cycle 

is a chain x1  , x2 , . . . , xq  in which the beginning and end vertices 

are the same, i.e., in which x = x 1 	ci • 

The number of arcs which have a vertex x
i as their initial vertex 

is called the outdegree of vertex xi , and similarly the number of arcs 

which have x, as their final vertex is called the indegree of vertex 1 
xi . 

For a nondirected graph the degree of a vertex xi  is defined in a 

similar way. 

Given a graph G= (X,A), a partial graph G
P 
 of G is the graph 

(X,Ap ) with Ap C. A . Thus, a partial graph is a graph with the same 

number of vertices but with only one subset of the arcs of the original 

graph. 

Given a graph G = (X,H), a subgraph Gs  is the graph (Xs,Hs ) 

with Xs  c X ; and for every xi  E Xs , Hs  (xi ) =ll(xi ) n Xs  . Thus, a 

subgraph has only a subset Xs  of the set of vertices of the original 

graph but contains all the arcs whose initial and final vertices are 

both within this subset. 



187 

APPENDIX 3 

The AEP Algorithm  (2,3) 

Given Sm , a vector of line flow measurements only, it can be 

modelled as follows: 

am = S + n 
	

(A3-1 ) 

and 

qpi=0 
	

(A3-2) 

R =Elfifir l 
	

(A3-3) 

where E [ q 1 represents the expected value of the m-dimensional 

vector q , the "noise" of the measurement, and R is a mxm 

diagonal variance-covariance matrix. 

The line power flow of line j can be expressed as: 

S 
 l 
. = (( Ep - Eq) Ypq )* Ep + EP Ypj 

	 (A374) 

Where Ep and Eq  are the voltages at nodes p and q respectively; 

Ypq is the admittance of the line j between nodes p and q ; Ypj is 

the shunt admittance of line j at node p, and * represents the 

conjugate operator. Expression (A3-4) can be re-written as: 

Si= V*  Y*  E + E2  y* . 
J 	Pq Ypq P 	P pi (A3-5) 

Using the "measured" values of V , the voltage across the line 

p-q and substituting Zi  =1/Ypq  , we have: 

2 sMi = (Vm/Zj)*  Ep  + Ep  Ypj (A3-6) 

Substituting (A3-5) and (A3-6) into (A3-1) : 

(Vm j/Zi)* Ep  + E
P

Y
Pi 

= (Vi/Zi)*  Ep  + Ep  Ypj + q j 	(A3-7) 

Multiplying (A3-7) by 4/Ep  : 
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Z j  
v*mi  = 	+ E - 

Pi 
(A3-8) 

Defining Zj 
_ 

E 
Pi 

* 
j 

(A3-9) 

we can then write: 

Vm j = Vi  + Ci 	 (A3-10) 

From the structure of the network we have that : 

V = BE 

where B is a matrix with 0, 1, -1 valued elements. Then 

Vm  = BE + e 

The cost function is given by: 

J(E) = [ 	- V i *T  D [ V - V 1 
	

(A3-13) 

Minimizing (A3-13), as in Appendix 1, we have: 

= (DT  D B ) BT  D Vm 	 (A3-14) 

We now choose D to be: D =Q-1, where Q is equal to: 

Q =E 

(A3-15) 

(A3-11) 

(A3-12) 

. Z l
12  

hi 113  Q 	- 1E01 2  

IZJ12  
Q = ding --2 [ 

Eirliii 	
(A3-16) 

lEpil  

= E •l I Pi
2 	

1   	11122_ d . 	W 	(A3-17) 
I 2  ZJI 	Glil 	

I Zj 12 	
i 

where 6  is the variance of the jth measurement. 

Expression (A3-14) is used iteratively to compute the node voltages 

and the process is stopped when a tolerance criterion is reached. 
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APPENDIX 4  

Table A 4-1 Line data for the 5 node and 7 line system . 

line from 
node to node 

line admittance in 
series 

G 	B 

shunt admittance 
(1/2) 
B 

1 2 5.0000 -15.0000 0.030 
1 3 1.2500 - 3.7500 0.025 
2 3 1.6667 - 5.0000 0.020 
2 4 1.6667 - 5.0000 0.020 
2 5 2.5000 - 7.5000 0.015 
3 4 10.0000 -30.0000 0.010 
4 5 1.2500 - 3.7500 0.025 

Table A 4-2 Load conditions for the 5 node and 7 line system. 

No. 	P 	 Q node 

1 1.295 -.075 
2 0.200 0.200 
3 -.450 -.150 
4 -.400 -.050 
5 -.600 -.100 

Table A 4-3 Line data foc the 10 node and 13 line system. 

line admittance in 	shunt admittance 
series 	 (1/2) 

G 	B 	 B 

line from 
node to node 

1 2 4.0489 -19.8346 0.0506 
1 3 2.6008 - 7.1400 0.0506 
1 4 1.9028 -12.5282 0.0759 
1 8 3.5631 -17.3481 0.0506 
2 4 4.0489 -19.8346 0.0253 
3 7 3.7591 -14.7136 0.0759 
4 6 3.0305 -19.9948 0.0253 
4 7 3.6098 -14.4372 0.0759 
4 8 1.2480 - 4.9012 0.0506 
4 10 9.7371 -48.6855 0.0506 
5 9 1.9028 -12.5282 0.0759 
6 9 4.3677 -14.6158 0.0506 
8 9 1.2480 - 4.9012 0.0506 

Note.- All power and line data are in per unit form, on 100-MVA base. 



190 

Table A4-4 Load conditions for the system of 10 nodes and 13 lines. 

No. 	 P 	 Q node 
1 4.2139 0.4774 
2 3.8400 -.2465 
3 -.3800 0.5011 
4 -4.6599 1.7651 
5 0.0600 0.0806 
6 -.1951 0.5792 
7 -.9000 -.4000 
8 -2.6000 -1.5500 
9 -1.0000 -.5000 

10 1.9200 -.8000 

Table A 4-5 Load conditions for the system of 14 nodes and 20 lines. 

No. 	 P 	 Q node 
1 2.3230 -.1690 
2 0.1831 0.2962 
3 -.1118 0.0466 
4 -.9419 0.0435 
5 0.0000 0.1732 
6 -.4780 0.0300 
7 0.0000 0.0000 
8 -.0760 -.0160 
9 -.2950 -.1660 

10 -.0900 -.0580 
11 -.0350 -.0180 
12 -.0610 -.0160 
13 -.1350 -.0580 
14 -.1490 -.0500 

Note.- All power data are in per unit form, on 100-MVA base. 
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Table A 4-6 Line data for the 14 node and 20 line system. 
line from 

node to node 
line admittance in 

series 
G 	B 

shunt admittance 
(1/2) 

B 

1 2 4.9991 -15.2631 0.0264 
1 8 1.0259 - 4.2350 0.0246 
2 4 1.1358 -4.78340 0.0219 
2 6 1.6860 -5.11580 0.0187 
2 8 1.7011 - 5.1939 0.0170 
3 8 0.0000 - 4.2575 0.2895 (-.3106) 
3 11 1.9550 - 	4.0941 0.0000 
3 12 1.5260 - 3.1760 0.0000 
3 13 3.0989 - 	6.1028 0.000G 
4 6 1.9860 - 5.0688 0.0173 
5 7 0.0000 - 5.6770 0.0000 
6 7 0.0000 - 4.8895 -.1100 (0.1076) 
6 8 6.8410 -21.5786 0.0064 
6 9 0.0000 - 	1.8555 -.0594 (0.0575) 
7 9 0.0000 - 7.0901 0.0000 
9 10 3.9021 -10.3654 0.0000 
9 14 1.4240 - 3.0291 0.0000 

10 11 1.8809 - 4.4029 0.0000 
12 13 2.4890 - 2.2520 0.0000 
13 14 1.1370 - 2.3150 0.0000 

Note.- All line data are in per unit form, on 100-MVA base. 
Figures in brackets correspond to those shunt admit-
tances whose values are different at each end of the 
line. 
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Table A 4-7 Line data for the 23 node and 30 line system. 

line from 
node to node 

line admittance in 
series 

shunt admittance 
(1/2) 

1 2 0.0625 - 4.9992 0.0000 
1 11 6.9111 -15.4214 0.0059 
1 14 5.3671 -12.0369 0.0076 
2 20 4.2448 - 	9.3301 0.0099 
2 7 2.0482 - 5.3953 0.0171 
3 10 7.3159 -16.1389 0.0228 
4 12 3.4386 -28.0688 0.1187 
4 13 3.4386 -28.0688 0.1187 
5 19 3.3817 -27.2039 0.1226 
5 21 7.6932 -63.1656 0.0528 
5 8 5.3427 -11.6553 0.0079 
6 16 7.3271 -60.0821 0.0555 
6 13 1.6910 -13.6799 0.2436 
7 9 7.4725 -16.4460 0.0056 
8 23 3.7015 - 8.3242 0.0109 
8 10 2.8624 - .6.3050 0.0146 
8 12 0.3161 -11.5295 -.3805 (0.3683) 
8 13 0.3110 -11.3429 -.5671 (0.5401) 
9 14 4.7436 -12.4832 0.0074 
9 10 2.8624 - 	6.3050 0.0146 
9 12 0.1042 - 7.3245 -.3662 (0.3488) 
9 13 0.3345 -12.2004 0.2904 (-.2975) 

11 23 2.1800 - 5.7528 0.0160 
12 15 3.9710 -32.0818 0.1039 
15 18 4.1583 -34.2169 0.0976 
16 17 15.3846 -123.0769 0.0272 
17 18 7.4126 -58.9481 0.0567 
18 19 9.7650 -77.5099 0.0431 
18 22 6.4103 -51.2821 0.0649 
21 22 10.6125 -86.4160 0.0385 

Note.- All line data are in per unit form, on 100-MVA base. 
Figures in brackets correspond to those shunt admit-
tances whose values are different at each end of the 
line. 
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Table A 4-8 Load conditions for the system of 23 nodes and 30 lines. 

No. node 
1 -.1214 0.5116 
2 0.2413 0.3579 
3  1.0291 0.5639 
4. 0.2040 0.5857 
5 9.0300 1.6621 
6 8.5097 1.1806 
7 -.4800 -.1200 
8 -.0360 0.0000 
9 -1.4972 -.3800 

10 -1.7700 -.4500 
11 0.0000 -.0100 
12 0.0438 0.0000 
13 0.0471 0.0000 
14 -.4700 -.1300 
15 -2.0100 -.5000 
16 -1.3200 -.3300 
17 -3.4400 -.8600 
18 -1.0400 -.2600 
19 -3.7600 -.9400 
20 -.5100 -.1300 
21 -3.7500 -.9400 
22 2.1000 0.5200 
23 -.4100 -.1000 

Note.- All power data are in per unit form, on 100-MVA base. 



194 

APPENDIX 5 
Linear Least Squares Solutions by Householder Transformations  (64) 

Let A be a given mxn real matrix with min and of rank n and b 

a given vector. We wish to determine a vector 5Z such that 

11 12  - 	= min. 

where 	indicates the Euclidean norm . Since the Euclidean 

norm is unitarily invariant 

1112-Axil = 11.2 - QA1d1 

where c=Qb and QT Q =I . We choose Q so that 

QA =R = 

and U is an upper triangular matrix, Clearly, 

= u
-1 

cl 

(A5-1) 

where c1 denotes the first n components of c. 

A very effective method to realize the decomposition (A5-1) is 

via Householder transformations. Let A =A(1)  , and let A(2) , A(3)  , 

A (n+1)  be defined as follows: 

A  (k+1) p (k) A  (k) (k -1,2,.•., n). 

is a symmetric, orthogonal matrix of the form 

P (k)  = - p k Li(k) .11(k)T 

where the elements of P(k)  are derived so that 

(k+1)  al,k  - o _ 

for i =k+l, . 	P(k)  is generated as follows: 

6"k  =1.1 (ack) k  )2 1 21  L i=( 	1, 

p (k) 

• • rn • 
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A k = [6k ( 6k+ l a(kk)d )] -1  

( uik)  = 0 for i<k , 

u(}1)  = sgn (a(11:)k  ) (Gk  + 

(k) = k) ui  - aik for i>k . 

a(k) 
k,k ), 

  

The matrix 13(k)  is not computed explicitly. Rather we note that 

A(k+1)  = (I - p,, u(k) u(k)T ) A(k)  

= A(k)  -a (k) T  .4 

_ pk u(k) T A(k) . 

In computing the vector yk  and A(k+1) , one takes advantage of the 

fact that the first (k-1) components of LP')  are equal to zero. 

l

At the kth  stage the column of A(k)  is chosen which will maximize 

a(k+1)1 . Let k,k 

s(4k) = 	 (a(k)  )2  
, i=k i,) 

Then since la(k,  k+1  k  )1= 6k  , one should choose that column for which 

( 
si

k)  is maximized. After A(k+1)  has been computed, one can compute 

s(Y•4-1)  as follows: ) 
s k+1) -_ s( '')  - (a(k+1) )2  

l 	l 	k j 

since the orthogonal transformations leave the column lengths invariant. 

Let x be the initial solution obtained, and let 2 = R + e . Then 

11 12  - A 2111 = III - A  2.11 

where 	T 
Y-k 

j =k, k+1 ..... n. 
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where 
r =b -AA, the residual vector. 

Thus the correction vector e is itself the solution to a linear 

least squares problem. Once A has been decomposed, and if 

the transformations have been saved, then it is a simple matter 

to compute r and solve for e. The iteration process is contin-

ued until convergence. 
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APPENDIX 6 

Singular Value Decomposition (65) 

To compute the singular value decomposition of a given matrix A, 

a real mxn matrix with 	the algorithm described below is sug- 

gested which first uses Householder transformations to reduce A to 

bidiagonal form, and then the QR algorithm to find the singular 

values of the bidiagonal matrix. The two phases properly combined 

produce the singular value decomposition of A. 

Two finite sequences of Householder transformations are construc 

ted as follows: 

P (k) = I - 2 x (k) x(k)T 
and 

Q(k) = I - 2 y(k) y (k)T (k=1,2,..., n-2 ) 

(where x(k)T x(k) 	y(k )T y(k) = 1) such that 

q1  e2  0 	 0 

q2 e3 	• 
• 

p(n) .p(lAQ(1). 	.Q(n-2) 	 0 

0 en  

q n 

J
(0) 

0 
( m-n). n 

an upper bidiagonal matrix. If we let A(1)  =A and define 

A((+1) p(k) A(k) ( k = I , 2 , . . . , n) 
A(k+1) _ A(k+2) Q(k) ( k = 1,2 ..... n-2) 

then P(k) is determined such that 

a(k+D  = 0 ik 

and Q(k) such that 

(i=k+1, 	m) 
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a(k+1)  kj 	= o 	=k+2, • • • , n) • 

The singular values of J(°)  are the same as those of A. Thus, if 

the singular value decomposition of 

J(0)-_ GDHT 

then 	
A = PGDHT QT  

so that U =PG, V=QH with P---P(1) ...P(n) , (1) ...Q(n-2) 

Singular Value Decomposition of the Bidiagonal Matrix  

By a variant of the QR algorithm, the matrix J(0) is iteratively 

diagonalized so that 

3.(0) JUL. 	D 

where 	
J
(i+1) = P)T j(i) T 

(i)  , 

and SW , T(i) are orthogonal. The matrices1(1)  are chosen so that 

the sequence M(i)= J(i)T J(i)  converges to a diagonal matrix while 

the matrices S(1)  are chosen so that all j(i)  are of the bidiagonal 

form. 
For notational convenience, we drop the suffix and use the 

notation 

J = J(i)  , 	J(i+1) , 	s = s(i) , 	T 	T(i)  , M JTJ, M=JT J • 

The transition J-4 is achieved by application of Givens rotations 

to J alternately from the right and the left. Thus 

= sTn S(n-1) .. S2 J T2 T3 	Tn 
	(A6-1) 

ST 

where 
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(k-1) 	(k) 
1 0 

0 

1 

cos ek  - sin 0k 
sin Ak cos Ak 

1 

0 

0 1 

Sk  = 

and Tk 
is defined analogously to Sk with 0k  instead of k 

Let the first angle, 02  , be arbitrary while all the other angles 

are chosen so that 7 has the same form as J . Thus, 

T2 annihilates nothing, generates an entry 	21 

S2 annihilates [3.121 	generates an entry J.113  

T3  annihilates tj}13  , 	generates an entry [1132  , 

and 
finally T  

Sn annihilates / j) n,n-1 , and generates nothing. 

This is shown in Fig. A6-1 

This process is frequently described as "chasing". Since 

= ST JT, 

M = T = TT M T 

and M is a tri-diagonal matrix just as M is. We show that the first 

angle, cp2  , which is still undetermined, can be chosen so that the 

transition M—M is a Q R transformation with a given shift s. 

The usual QR algorithm with shifts is described as follows: 

M-sI=T R s s 
Rs  Ts  +sI = Ms 

(A 6-2) 
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where Ts  Ts  = I and Rs is an upper triangular matrix. Thus Ws  = 

Ts  MTs  . It is not necessary to compute (A6-2) explicitly but it 

is possible to perform this shift implicitly, Let T be for the 

moment an arbitrary matrix such that 

Yrsbc,1 = 
	

(k=1,2,...,n), 

(i.e., the elements of the first column of Ts  are equal to the first 

column of T) and 

TT T = I . 

Then we have the following theorem : If 

i) W =TT  M T , 

ii) M is a tri-diagonal matrix, 

iii) the sub-diagonal elements of M are non-zero, 

it follows that M =V Ms  V where V is EI diagonal matrix whose diag-

onal elements are +1. 

The transition (A6-1) is equivalent to the QR transformation of 

IT T with a given shift s. 

The shift parameter is determined by an eigenvalue of the lower 

2(2 minor of M. 

Test for Convergence  

If lentd , a prescribed tolerance, then igni is accepted as a 

singular value, and the order of the matrix is dropped by one. If, 

however, lekk cf for k g n, the matrix breaks into two, and the 

singular values of each block may be computed independently. 

If qk  =0, then at least one singular value must be equal to zero. 

In the absence of round-off error, the matrix will break if a shift of 

zero is performed. Now, suppose at some stage 

At this stage an extra sequence of Givens rotations is applied from 

the left to j involving rows (k, k+1), (k, k+2), 	(k, n) so that 
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{J} is annihilated, but rJ} , I J} are generated,
k,k+1 1 k,k+2 I k+1,k

IJ' is annihilated, but {J l , I J}k 2 k are generated,t lk,k+2 Jk,k+3 1 ~+,

{J} is annihilated, and I J} is generated.
k,n 1 n,k

The matrix thus obtained has the form

(k)

ek 0
r = qk (k)

dk+l l1k+l ek+2

0 . en

ern ern

Note that by orthogonality

q_2 + d 2 +. .. + d2
n

= qk2 L d2
k k+1

Thus choosing d = II J(O}II CO ( £0' the machine precision) ensures

that all cfk are less in mag~tude than to IIJ(O}lloo • Elements of J not

greater than this are neglected. Hence f breaks up into two parts which

may be treated independently.

Fig.A6-1
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APPENDIX 7 

Table A7-1 	Data structure for the 14 and 10 node network. 

10 	nodes 
node 	 link 	node 	to 	node 

No. 

14 
link 
No. 

nodes 
node 	to 

1 1 2 1 1 2 
2 1 8 2 1 3 
3 2 4 3 1 5 
4 2 6 4 1 7 
5 2 8 5 1 8 
6 3 8 6 1 9 
7 3 11 7 2 3 
8 3 12 8 2 4 
9 3 13 9 2 5 

10 4 6 10 4 5 
11 5 7 11 5 6 
12 6 8 12 5 10 
13 6 7 13 6 7 
14 6 9 14 8 9 
15 7 9 15 9 10 
16 9 10 
17 9 14 
18 10 11 
19 12 13 
20 13 14 
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Table A7-2  Data structure for the 23 and 20 node network. 

23 
link 
No. 

Nodes 
node 	to node 

23 
link 
No. 

Nodes 
node 	to node 

1 1 2 1 1 2 
2 1 11 2 1 3 
3 1 14 3 1 6 
4 2 7 4 2 4 
5 2 .  20 5 2 5 
6 3 . 10 6 3 9 
7 4 12 7 5 10 
8 4 13 8 6 10 
9 5 8 9 7 8 

10 5 19 10 7 10 
11 5 21 11 9 10 
12 6 13 12 10 11 
13 6 16 13 10 12 
14 7 9 14 10 13 
15 8 10 15 10 14 
16 8 12 16 11 20 
17 8 13 17 13 18 
18 8 23 18 14 15 
19 9 10 19 14 16 
20 9 12 20 15 17 
21 9 13 21 16 18 
22 9 14 22 17 18 
23 11 23 23 18 19 
24 12 15 24 19 20 
25 15 18 
26 16 17 
27 17 18 
28 18 19 
29 18 22 
30 21 22 

,\ 
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Table A7-3 Data structure 

to 	node 

for the 30 node network. 

link 	node 	to 
No. 

node link 
No. 

node 

1 1 2 22 12• 13 
2 1, 3 23 12 14 
3 2 4 24 12 15 
4 2 5 25 12 16 
5 2 6 26 14 15 
6 3 4 27 15 18 
7 4 12 28 15 23 
8 4 6 29 16 17 
9 5 7 30 18 19 

10 6 7 31 19 20 
11 6 8 32 21 22 
12 6 9 33 22 24 
13 6 10 34 23 24 
14 6 28 35 24 25 
15 8 28 36 25 26 
16 9 11 37 25 27 
17 9 10 38 27 28 
18 10 20 39 27 29 
19 10 17 40 27 30 
20 10 21 41 29 30 
21 10 22 
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Table A7-4 Data structure for the 57 node network. 

link 
No. 

node to 	node link 
No. 

node to 	node 

1 1 2 40 22 23 
2 1 15 41 22 38 
3 1 16 42 23 24 
4 1 17 43 24 25 
5 2 3 44 24 26 
6 3• 4 45 25 30 
7 3 15 46 2 6 27 
8 4 5 47 27 28 
9 4 6 48 28 29 

10 4 18 49 29 52 
11 5 6 50 30 31 
12 6 7 51 31 32 
13 6 8 52 32 33 
14 7 8 53 32 34 
15 7 29 54 34 35 
16 8 9 55 35 36 
17 9 10 56 36 37 
18 9 11 57 3 6 40 
19 9 12 58 37 38 
20 9 13 59 37 39 
21 9 55 60 38 44 
22 10 12 61 38 48 
23 10 51 62 38 49 
24 11 13 63 39 57 
25 11 41 64 40 56 
2 6 11 43 65 41 42 
27 12 13 66 41 43 
28 12 16 67 44 45 
29 12 17 68 46 47 
30 13 14 69 47 48 
31 13 15 70 48 49 
32 13 49 71 49 50 
33 14 15 72 50 51 
34 14 46 73 52 53 
35 15 45 74 53 54 
36 18 19 75 54 55 
37 19 20 76 56 41 
38 20 21 77 5 6 42 
39 21 22 78 5 6 57 
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