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ABSTRACT 

The theory for the diffraction of water waves has previously 

been limited to two simple cases; the diffraction around a semi-

infinite breakwater and the diffraction through an opening in a rigid 

plane. A useful harbour configuration is two breakwaters forming an 

arbitrary angle between themselves. A solution for this case has 

been derived with the objective of finding the wave heights in the 

lee of two breakwaters simulating a harbour. 

Numerical results using the.new method agree with the known 

classical solution of the special case where the two breakwaters lie 

in the same plane. Experimental verification has also shown good 

agreement. 

The tables and figures presented here give the wave heights in 

the region of interest as related to the angle between the two arms, 

the breadth of the opening, and the angle of incidence. 	The waves 

are assumed to be of small amplitude. 

The information obtained from the new solution can be useful to 

the design engineer whenever he is undertaking coastal studies involv-

ing diffraction of water waves. 
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NOTATION 

Numbers in brackets - [ ] - refer to papers or books listed 

at the end of the book. Numbers in rounded brackets - ( ) - refer 

to equations in the text. 

The most frequently occurring symbols with their meaning 

are:- 

d gap width 

F,Fi,Fs  wave function of the total, incident, scattered field in 

two space dimensions 

F
o 	

incident plane wave in two space dimensions 

G Green's function 

Hv 	Hankel function of the first kind (= Jv  + iYv) 

H wave height 

h water depth 

Iv(x) 	modified Bessel function of the first kind {=i-vJ
v
(ix)) 

J
v 	

Bessel function of the first kind 

Kv(x) 
	

modified Bessel function of the second kind (= 22-r-{iv+1H
v
(ix)1] 

k 
	

wavenumber 

K 
	

diffraction coefficient 

(r,w) 	polar co-ordinates of point of observation 

(r o 
 ,w 

o
) 	polar co-ordinates of line source 

r>,r< 
	greater, smaller distance from a given set 

(x,y,z) 	axes of orthogonal co-ordinate system 
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Y
v 
	Bessel function of the second kind 

6 	dimensionless gap width (= dix) 

e
n 	

equals 1, n = 0; equals 2, n 	1 

surface elevation 

angle between breakwaters 

e
o 	

angle of incidence (= 271.  + e — 

A 	wavelength 

it 	3.14159... radians 

p 	dimensionless polar co-ordinate (= r/x) 

a 	circular frequency of waves 

velocity potential 

0 	wave function in three space dimensions 

(1),(2) 	'weather', 'protected' breakwater arm 

32 	32 	32 
I  A 	Laplace differential operator - —2- + 

3
- 
	 5-77  -57n 

V 	divergence 

Im,Re 	imaginary, real part of complex nubmer 

log 	natural logarithm 

11,11 	union, intersection 
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GENERAL INTRODUCTION AND OUTLINE 
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Al INTRODUCTION AND NOMENCLATURE 

Almost any field of science or engineering involves some 

questions of wave motion, one of the broadest scientific subjects. 

Here we limit ourselves to a domain that particularly concerns the 

harbour engineer; nevertheless a great deal of our theory can be 

easily transposed to other branches of science, a common practice 

where waves are concerned. 

The difficulty that arises from the above limitation is that 

the mathematical material must act as a servant to the practical 

aspect of the problem and each theoretical development has to lead 

us towards that end, the bridge between the two standpoints being 

very delicate. 	In spite of this role that the mathematics has to 

play here, effort has been made that as much rigour as possible is 

retained for the sake of completeness. 

From a phenomenological point of view we deal exclusively 

with diffraction, that is the propagation of waves into a sheltered 

region - the 'shadow' according to geometrical optics terminology. 

A 'flow of energy' is taking place along the wave crests rather than 

normal to them. When the engineer considers the problem of design-

ing a harbour, this phenomenon, as well as refraction, plays a major 

part in his hydrodynamical considerations. 	Indeed, having ascer- 

tained the maximum wave height at every point of the sea surface in 

the harbour he has at his disposal a criterion for the general lay- 

out of mooring places and other harbour installations. 	Conversely, 

knowing the solution of the diffraction problem he can arrange the 

exterior structures of the harbour (breakwaters, etc.) to obtain a 
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wave height distribution close to his requirements, which are 

dictated by operational factors. 	The same applies also to other 

coastal engineering works which involve wave diffraction processes. 

Most water waves diffraction problems fall in one of the two 

general classes: (a) the passage of waves around the tip of a rigid 

semi-infinite barrier; and (b) the passage of waves through a gap 

in a similar but infinite breakwater. The complete theory of the 

first problem has been developed many years ago by Penney and Price 

and is given in the following chapter. The second has been solved 

so far only for the special case where the two branches of the 

breakwater are 'in line', i.e. lie on the same vertical plane. 	The 

aim of this study is to provide a solution for the general case 

where the two arms form between them an arbitrary angle 0. The 

most significant values from an application viewpoint are in < 0 < 

in which region the numerical computations were performed. 

Nevertheless the theory holds over the entire range of 0 from 0 to 

2n. 	The main parameters of the problem are shown in fig. 1, where 

the x and y axes of the Cartesian co-ordinate system lie on the 

undisturbed water surface. 

Our objective is to determine the diffraction patterns behind 

such a configuration of breakwaters as in fig. 1, which is met in 

almost any harbour. 	No restriction to the magnitude of the opening 

has been put. 

Another point that our formulation reveals is that the most 

significant values of the angle of approach 0
0 of the plane wave are 

n 	00  n + 0 because for these values the agitation in the harbour 

becomes great. 	The formulation of the solution holds for every 

angle 00  (as for every 0 too), but results have been found for 00  in 

14 



X ........-am.... 

Fig. 1. Nomenclature of the problem 

the above range. 	Of course our interest is focused on the region 

behind the breakwater for obvious reasons. 

Our tool is the first-order linear theory with the usual 

assumptions, which has been proved a good approximation for our 

purposes. 	Indeed the current practice in maritime engineering is 

based on this theory when dealing with diffraction problems. 	These 

assumptions are: 

(1) 	Outside the sources of wave radiation the fluid is homogeneous 

and isotropic, i.e. uniform in space and time, and non-absorb- 

ing, i.e. wavenumber k = 27r/X > 0, X wavelength. 	A deviation 

is made for convenience when examining the Wiener-Hopf 
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technique where k is a complex number with 0 < Im(k) << 1, 

and also in the solution of the wedge problem. 

(2) The height of the waves 2a is small compared with their length 

and the water depth h; therefore it can be established that 

the wave-profile is nearly sinusoidal. This means that 

Ursell's parameter 2aX2/h3  is less than 15, say. 

(3) The water depth is uniform or slowly varying. 

(4) The breakwaters are of vanishing thickness and completely 

reflecting. 

(5) The motion throughout the fluid is irrotational. 

(6) The water is an ideal, incompressible fluid. 

(7) The pressure at the water surface is constant. 

Applying the conventional first-order theory we derive the 

water motion from a velocity potential ¢(r,w,z;t), the z axis point-

ing upwards, t the time, satisfying the equation 

A ¢ = 0 	 (1) 
a2 	a2 4. 	

i 
92  

where A is the Laplace differential operator (- --z 
ax 	

in 

Cartesian co-ordinates x,y,z). 

The depth of the water being h we have at the bottom the condition 

= 0, 	 z = -h 	 (2) 
az 

while at the faces of the barriers it is 3¢ — = 0, where n is the 
an 

outward normal to the surface of the object at any point. When the 

wave height is not too great, as our assumption states, the pressure 

3¢ 
p is given approximately by p = po(TE - gz), 	z < 0, where Po 

represents the water 
	

density and g the gravitational acceleration. 

In order that p be constant at the surface z = n 	we require to the 
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first order 

ac!) 
g at (3) 

Also since the normal component of the fluid velocity at the surface 

must equal the normal component of the velocity of the surface 

itself, we have approximately 

an = _ 
at 	az 

z = 0 	 (4) 

whence, from eqs (3), (4) 

at/ +g8 
arh 

at
/  + g

az 
 = 0, 	z = 0 (5) 

The property that any particle once on the free surface remains on 

it, which is expressed by eq. (4), is a basic assumption in conti-

nuum mechanics. 

A solution of eq. (1) simple harmonic in time is 

q(x,y,z;t) = Re(4)(x,y,z)exp{-iat}] 	(6) 

where Re denotes the real part and a the circular frequency of the 

waves = 2.ff x the phase velocity of plane waves propagating in free 

space. 	It is convenient to factorise the function (1) 

(1)(x,y,z) = G(z) F(x,y) 	 (7) 

where G(z) behaves like coshk(z + h). 

Boundary conditions (2) and (5) are satisfied as one can 

easily verify. 	Now, eq. (1) in virtue of eqs (6) and (7) is 

replaced by 

a2 	a2  (537  + 	+ k2)F(x,y) = 0 	 (8) 
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known as the Helmholtz equation. This equation provides the link 

between the study of waves in many branches of science and engineer-

ing e.g. optics, electromagnetism, acoustics etc., being the start-

ing point for any investigation of the diffraction problem in two 

horizontal dimensions. The complex function F is called the wave 

function and eq. (8) the Helmholtz equation or the reduced wave 

equations throughout this study. 

The incident plane wave Fo 
in fig. 1 can be described as 

exp{-ik(x cos% + y sinO0)} leaving any constants to be incorporated 

in G(z). Then if we denote by K the diffraction coefficient, that 

is the ratio of the maximum wave height at any point (x,y) = (r,w) 

to the maximum height of the incoming waves far away from the break-

water, we have easily 

K = IF I 
	

(9) 

The main aim in the diffraction problem is the determination of K. 

Knowledge of the phase difference between the incident waves at the 

point (x,y) if they had not been disturbed by the breakwater and the 

actual waves at the same point is sometimes useful but not always 

necessary, except when dealing with wave forces on structures. 

But is the above orderly scheme of physical laws and equations 

of any use, when apparently it contrasts with the disorder that 

reigns on the surface of the ocean? 	Or is it a mere mathematical 

structure for its own sake? 

Observing the chaotic appearance of the sea we must not for- 

get the underlying order governed by a probability law. 	The great 

development of wave statistics and generalised Fourier analysis 

offers us a powerful tool with which we can analyse the randomness 

of the sea into simple components to each of which our diffraction 

procedure could be applied. 	So, the more complicated situations 
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dictated by the nature of the sea could be analysed into simple 

components which would be subject to our analytical treatment; the 

individual results could afterwards be summed to produce the final 

answer. 
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A2 OUTLINE OF MATERIAL 

The theory leading to the solution of our problem presented 

in section Al is given in chapter C. 	The approach is followed step 

by step until the final result is reached; all this material is 

contained in section C3. Another approach is developed indepen-

dently in section C5, based on the method of the matched asymptotic 

expansions; this method could eventually provide a kind of checking 

of the principal approach and on the other hand it could stand by 

itself as a means of solving such a problem to a lower level of 

accuracy. 	Further refinement of it to increase the accuracy is 

possible but for the engineer rather cumbersome. Checking of the 

main theory was thought desirable, for to my knowledge no other 

solution of the problem exists so far apart from a special case. 

This special case is covered in chapter B by four different 

methods to provide another test of our theory. 	These methods are 

well established having been examined and cross-examined over the 

years and represent classical solutions for the case where the angle 

0 equals Tr radians. 

The computing part of the solution found in section C3 is 

presented in section C4, while section C2 is devoted to an essential 

prerequisite for the development of our theory, namely the applica- 

tion to water waves of the theory of diffraction by a wedge. 	An 

outline of the methods normally used for solving diffraction problems 

is presented in section Cl, where the method of matched asymptotic 

expansions is not mentioned because it has been developed mainly on 

problems other than diffraction; nevertheless a brief account of it 
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is given in section C5 where it is also applied. 

A third and final checking is provided by experiment. A 

description of the procedure, together with considerations on the 

laboratory equipment involved (wave maker, filters, etc.),are to be 

found in chapter D. 

The last chapter comprises the presentation of the results, 

comparisons with theory and experiment, and critical discussion of 

the work together with a brief account of some allied topics. 
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CHAP TER B 

BACKGROUND 
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BI GENERAL 

The objective of this chapter is to provide a means of check-

ing the results of the main theory which is developed in chapter C, 

in the case where the two branches of the breakwater are in the same 

vertical plane; the incident field is a plane wave and approaches the 

screen at any angle. Although the above case is an extreme one for 

our problem, it is of great importance because no other established 

theory or practice to check the results of the present study in a 

wide range exists so far. Furthermore by referring briefly to the 

solutions of a similar case a link and continuity are established 

within the framework of the diffraction problem as viewed by the 

hydraulic engineer. 

The problem of diffraction of water waves through a gap with 

vertical edges in a plane screen (breakwater) has been thoroughly 

investigated. The rigorous solution has been published in a paper 

by Carr and Stelzriede [1], based on the theoretical work of Morse 

and Rubenstein [2] for the diffraction of waves by ribbons and by 

slits. 	As it is explained in subsection B3.2 this exact solution 

has the disadvantage of not being of practical use for gaps wider 

than about two wavelengths; therefore we must apply ourselves to 

other theories, approximate ones, in order to cover as wide a range 

of cases as possible. 

Three approximate solutions are covered briefly in subsection 

B3.1; those attributed to: Penney and Price [3] (subdivision B3.1.1), 

Lacombe [4] (subdivision B3.1.2) and Lamb [5] Art. 305, 2°  (subdivi- 

sion B3.1.3). 	The first one is convenient and accurate enough for 
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engineering purposes if the gap width is greater than two or three 

wavelengths but it has been presented for only normal incidence of 

the incoming plane waves. Oblique incidence is covered in the 

second approximate solution which is based on Huyghens' principle; 

the third one is of small interest for direct engineering calcula-

tions because it is not accurate for gaps wider than one wavelength 

and it gives wave amplitude as a function of the distance from the 

opening and of the gap width (both expressed in wavelengths) but not 

of the angle of the incident wave nor of the specific position of 

the point of observation. 	However it extends the range of gap 

widths applicable to the approximate solutions to the smallest values 

and consequently the range of checking with the results of this 

study. An indirect reference to that solution is made in section C6. 

While section B3 deals with the above-mentioned problem, 

section B2 refers to the comparatively simpler problem of diffraction 

by a semi-infinite breakwater the solution of which forms the basis 

of Penney and Price's method for the gap. 	The main reference [3] 

is based on Sommerfeld's solution [6] for the diffraction of light 

waves at the edge of a semi-infinite screen. 

The picture of the diffraction problem has its principle 

features arranged at three main levels: semi-infinite breakwater, 

breakwater gap and two inclined breakwaters, the theoretical investi-

gation of this latter being dealt with in chapter C. 

A complete survey of the literature on diffraction of waves 

by planes is out of the scope of this chapter which is simply to 

provide a reference frame by retaining the results obtained by the 

methods cited. 
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B2 THE SEMI-INFINITE BREAKWATER 

The problem whose solution is presented in this section has 

been the subject of numerous investigations in several branches of 

physics. 	Sommerfeld [6] obtained the first rigorous solution for 

the case of diffraction of light by a semi-infinite perfectly reflec-

ting plane. He arrived at an integral representation along a con-

tour, that bears now his name, by a method involving Riemann surfaces 

and a transformation technique of surface spherical harmonics. 	It 

is on this work that the extension and adaption to the water waves 

due to Penney and Price [3] is based. 

Having in mind the assumptions laid down in chapter A and 

applying the conventional first-order theory, we derive the water 

motion from a velocity potential gr,w;t), with the variables as 

defined in the introduction (section Al) and which satisfies Laplace's 

equation (1). 

Solutions of eq. (1) periodic in time and satisfying condition 

(2) are of the form 

= Re[A coshk(z+h) F(r,w)exp{-iat}] 

where Re denotes the real part, A is a constant related to the wave 

amplitude and F(r,w) represents a complex function, the wave function, 

satisfying the Helmholtz equation (8), or in polar co-ordinates 

centred on the breakwater tip (fig. 1) 

a2F  + 	aF 	a2F 

' 7 37 	r w 
+ k2F = 0 (10) 

The boundary conditions at the breakwater are 
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(1-0 .2rt- 

/ / 

region S 

PIrAtA 

region 0 

line source (r0 . 0 ) 

(1) 

Jro-IT 

region R  

N 
N

.\  

x 

0 9F 
95? 

4  - 0 ay -  at y = 0, x 0 

or in terms of the wave function 

at y = 0, x 	0 	(11) 

Consider now a line source located at a point (r0,00) and 

radiating waves of wave function 71- Ho(kr), H
o 

= Jo  + iY0  being the 

Hankel function of the first kind and zeroth order, (see fig. 2). 

Fig. 2. 	Waves from a line source incident on a semi-infinite 
breakwater 

It is convenient to divide the whole plane into three distinct 
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w+0o +A(R -R'),cos 
1 	2 

> 0 	(R) 

w+0 
-A(R 

1 	2 
-R'),cos 	< 0 

1 

(Q,S), 

regions following Penney and Price's method for an incident plane 

wave [3]: 

(1) Region S, where 0 < w< 0o 

(2) Region Q, where
o 	

<co <37r-0
o 

(3) Region R, where 3w-0
o
< w < 211.  

The problem of finding the velocity potential at any point 

(r,w) of the plane x-y has been solved. The solution given by 

Bowman and Senior [7] following the notation of fig. 2 is 

1 ikR f  exp{iu2}  F(r,w) = 	e 	i  du -* 
2n 

-m 02  + 2kR)2  

eikR' f  exp{iu2}  du] 

-m (112  + 2k11')I  
(12) 

where w—e 
+6Ti7iT, cos 2  ° > 0 (regions Q,R) 

m = 	cos 2 
o 

R +R 

kr
o
r 	w -A 	1 

1 	1 	w -0 
-6TE-7.1-i5-, cos< 0 	(S) 

1 	2 

and R = r + r
o 1 
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This result is to be used later on in subsection C3.2. 

Now, by letting ro  4- co and making use of the identy 

f exp{i112}dp = 1+i (2/01W  
f 	exp{iint2}dt, 

we find the corresponding solution for an incident plane wave of the 

form exp{-ikr cos(w-00)}, a < 0
o 

< 27r, which is the well-known 

Sommerfeld solution to a similar problem in optics: 

(2- F(r,w) = (inc) f 
ul 
 exp{ii7 	

l
t2ldt + (ref) f exp{i7rit2}dt 

-m 
(13) 

where we have put 

(inc) = exp{-ikr cos(w-00) - 

(ref) = exp{-ikr cos(0-80) - ;in} 

w-9 	w+9w+0 
flkrN 1 	,kr,  

and 	= 2 (---) cos 	, u
2 

= 2 (--j cos u
1 	2 	71 	2 

The first term in eq. (13) arises from the directly diffracted 

incident wave and the second accomodates the effect of the diffraction 

of the reflected part. 	For the simplified solution where the second 

term is omitted see e.g. Putnam and Arthur [8]. 	For partial 

reflection a proportion of the second component should be used but 

the phase relative to the first component must be taken into account 

(see Silvester and Lim [9]). 

The composite solution to the gap problem, which is based on 

the results of this section, has been developed only for normal 

incidence. 	Therefore we put in eq. (13) 0 = 2-1Tand obtain the 
o 2 
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following expression when the incidence is normal to the breakwater 

w1  
F(x,y) = expf+iky - 	f exp{liTru2}du -+ 

w2 
+ expC-iky - }in} f exp{ii7u2}du 	(14) 

4 	2 = 	(r+y) where w2  = — (r-y), w
2  1  

A 

The signs of w
1, 

w
2 
depend on the position of the point of obser- 

vation P(x,y) E P(r,w) and can be derived from the corresponding 

values of u1, u
2 

in eq. (13). 	It is found that when the point lies 

in region S,Q,R the signs of Nil , w2  are 	(+,-), (+,+) respec- 

tively. 	The quantities in eq. (14) can be easily evaluated using 

tables of the Fresnel integrals or graphically by Cornu's spiral 

(see e.g. Lacombe [4], p. 347). 
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B3 THE BREAKWATER GAP 

B3.1 	Approximate Solutions  

Three approximate solutions to the gap problem are studied 

below. At least two of them are widely used in engineering practice. 

In particular the assumptions in these are investigated in order to 

ascertain which regions are inadequately covered by the methods at 

present available. 

B3.1.1 Penney and Price's method [3]. 	This assumes that the pheno- 

menon of diffraction through the gap can be divided into two indepen-

dent processes: the diffraction of the waves by (a) the left-hand 

and (b) the right-hand breakwater each acting independently of the 

other. 	In this way the solution for the diffracted wave in the gap 

problem is the sum of these waves in the two single breakwater 

problems. 	Obviously the boundary conditions along the breakwaters 

are not satisfied because the method does not take into account the 

interaction effect between the two structures. 	The error induced 

decreases with increasing gap width and is acceptable when the 

simplified solution is employed for widths greater than about three 

wavelengths. 

The case of normal incidence is covered by this method, as 

mentioned before, and therefore reference to the corresponding 

equation (14) must be made (see section B2). 	It can be written 

F(x,y) = exp{+iky} f(wi) + exp{-iky} f(w2) 	(15) 
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where f(w) = 1(1+i) 	 exp{-1  

The relation 

f(w) + f(-w) = 1 	 (16) 

which can be readily verified, makes possible a decomposition of the 

field (15) according to the position of the point (x,y). 	Thus we 

have in each of the three regions (fig. 3) 

Ay 

region Q 

(+ 

 

region S 
-.- 

(1) 
0 

 

   

plane 
wave region R 

     

     

     

     

Fig. 3. 	Signs of w, w in the case of normally incident waves on 
a semi-infinite

2 
  breakwater 

Region Q w 	' 	w
2 	

2(E±X) 
1 = 	 A 

and so 	w1(y) = -w2(-y) 

Eq. (15) gives 

F(x,y) = expf+iky)[1 - f(-w1)] + exp{-iky)f(w2) = 
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= exp{+iky} - fl(r,y) + f l(r,y) 	 (17) 

	

where f1(r,y) = exp{+iky} f{ 2 „ } 	 (18) 

Region R 

and so 

= 	
' 	

w2 1  

wi(Y) = w2(-Y)  

Eq. (15) gives 

F(x,y) = exp{+iky}[1 - f(-w1)] + exp{-iky}p - f(-w2)] 

= exp{+iky} + exp{-ikY} - f1  (r,y) - f1  (r,-y) 	(19) 

E = 2() Region S 	w
1 

= -2( =Y) w
2 

and so 	w1(Y)  = w2(-Y)  

Eq. (15) gives 

F(x,y) = exp{+iky} f(wi) + exp{-iky} f(w2) 

= fl(r,Y) 	fl(r,-Y) 
	

(20) 

Or if we put g1(r,y) = f1(r,-y) 

we have 

Region Q : F1  = exp{+ikY} 	fl 	gl 

R : F
1  = exp{+iky} + exp{-iky} - fl  - gl 	(21) 

S : F1 = fl g1 

where the subscript of the wave function denotes the right breakwater 

(1) (see fig. 4). 
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(2) 
alIe .1■1. ■Em. ..m. ...low 

x 

fir 
P(x,y) 

(1) 

II t 

 

IIr 

   

   

Fig. 4. 	Breakwater gap: decomposition into two semi-infinite 
breakwaters 

Now having in mind only the left-hand breakwater (2) with 

corresponding regions q,r,s, we can indicate the composition of the 

field in the regions as in fig. 4 as follows: 

Region I 	= Q + q 

IIt = Q + r, 	IIr = q + R 

Int = Q + s, 	IIIr = q + S 

As with the barrier (1), we find for the barrier 

Region q 	: 	F
2
(x,y) = exp{+iky} - f

2 
+ g

2 

(2): 

r 

s 

: 	F
2
(x,y) = exp{+iky} + exp{-iky} - f

2 
— g

2 

: 	F
2
(x,y) = f

2 
+ g

2 

(22)  

r1  -y 
where 	f

2  = f 2  (r 1
,y) = exp{+iky} f -2 [--,---] 

II  
(23)  

g2 = g2(r1 a)  = f2(r1,-57)  

r1  = (r2  + d2  + 2xd)i, d breadth of opening (fig. 4) 
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In both sets of relations (21) and (22) the incident, 

reflected, diffracted of incident and diffracted of reflected fields 

clearly emerge as exp{-iky}, exp{+iky}, f and g respectively. 

By 'addition' of the fields of the two individual problems we 

obtain 

Region I 	: F = F
1 
+ F

2 
= exp{+iky} - fl  + gi  - g2  + g2  

III : F = exp{+iky} + exp(-iky) - fl  + gi  - f2  -•g2  

IIr : F = expf+ikyl + exp{-iky} - fl  - gl  - f2  + g2 	(24) 

IIIR : F = - fl + gl + f2 + g2 

IIIr : F= f
1 
+ g

1 
- f

2 
+ g

2 

For small values of w < 0, f(w) can be written 

f(w) 	i(l+i)[- 	exp{ -i7i(l+w2)1 + 0(w-3)] 

- 
1 	exp{- 17i(1 + 2w2)) 
	

(25) 
7TW 

which is correct to within 2% of If(w)1 when w < -2. 	We find for 

the unsatisfied boundary condition along the unoccupied part of the 

x axis (x < -d) 

= 
ay dy 

,r,i 	1  a 	 2 + g 
1 	

47i ) = - 	f{-21=i 	( 	
expf- 17i + ----4 

A 	 r
1 	2nir 
 

A 

or substituting the approximate expression for f(w): 

8F1  
ay 0 

to the same degree of approximation provided - 
2rf1< 

 -2 

which means that the gap width must be greater than A for such an 

approximation to be achieved. 
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Considering again the expression (25) which holds good for 

w < -2, we find 

2iir
I  

r, _ I r 	
+ 
 ) exp{-iin - A g (r) - 2n ■2(ry)1 1

a  

whence we deduce that on the leeside of the breakwater (y > 0) the 

functions gl, g2  will be small except for points within one or two 

wavelengths from either tip of the opening. We ignore therefore 

the influence of the reflected wave on the total field in the lee of 

the breakwaters and get the widely used 'simplified' solution (see 

e.g. Blue and Johnson [10]) 

Region I 	: F = exp{+iky} - fl  - f2  

IIIt : F = - f1 + f2 	 (26) 

IIIr :F=f -f 
1 	2 

A further simplification of the first of eqs (26) is obtained 

when the gap is relatively narrow, of the order of two wavelengths, 

and y is large compared with Ix': 

we have 	r - y - 1 x2  .T 7  
(27) 

(x + d)2  1 
and similarly r1  - y - 2 	y  

Now from eq. (18) we derive 

o 
f1  = i exp{+ iky}(l+i)[ fexp{-iniu2}du + 7 exp{-iniu2}dul 

-00 	o 

= i exp{+ iky}(1+i)[ l(1-i) + 7 exp{-iniu2}du] 	(28) 
o 

fNi  
where w - 2t

-y
---) 
A 
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using the property of Fresnel integrals 

CO 

fsin (Inu2)du = J cos (1m2)du 

r -y 
A similar expression holds for f 2 	

1 with w = -2 --x- . For small 

values of w we can expand the integrand in eq. (28) as a power series 

1 - 17iu2  - 

giving - 3  f 1  = lexp{+iky 
}[1 + w + 1 	3 - 	+ 	- 1 

 1
rw 3  - ...) 

 

(29)  

and so from eqs (26),(27) and (29) we have 

F = exp{+iky}d(Xy)-i[exp{}iml + 	(3x2  + id2  + 3xd)exp{-}Tri}] 

(30)  

Recapitulating the results of this method we distinguish three 

solutions with decreasing accuracy or in other words with diminishing 

domain of applicability in equations (24),(26),(30). 	The following 

assumptions apply to each of them: 

eqs (24) 	d > 1 or 2 wavelengths 

eqs (26) 	d > 1 or 2 wavelengths 

r+y, ri+y > 2X say 

eq. (30) 	d > 1 or 2 wavelengths 

r+y, ri+y > 2A say 

y large compared with ixl so that r = y+2nd-order 
term, 

r
1 
= y + 2nd-order term. 

The above conditions must be meant when we simply say the Penney and 

Price's method can be used for d greater than two or so wavelengths. 

We shall meet these solutions again when making comparisons in sub- 

36 



section E2.1. 

B3.I.2 Lacombe's method [4]. 	Professor Lacombe has developed a 

method based on a generalisation of Huyghens' principle under certain 

assumptions. 	For a more detailed account of this principle see 

subdivision C3.3.I. 

With the same notation as before we seek a velocity potential 

0(x,y,z;t) or 0(r,w,z;t) in the form of 

0 = Re[A coshk(z+h) F(x,y)exp{-iat}] 	(31) 

The motion being irrotational, the problem reduces to finding the 

wave function F at every point of the water surface under considera- 

tion; F satisfies the Helmholtz equation (8). 	Applying Green's 

theorem to the volume V confined between the two vertical cylindrical 

surfaces E, S (fig. 5) we obtain 

fff (41  - 00)dv = ff 	-21-1  - * an an )ds 
V 	EUS 

where 71-1  denotes differentiation along the outward normal to the 

boundaries of V and a function satisfying Laplace's equation. 

A simple and suitable expression for 4'  is 

gx,y,z;t) - coshk(z + h)  iHx y)e
-iat  

coshkh 	of  ' 

where H
o 
represents as before the Hankel function of the first kind 

and zeroth order. 	On the other hand 4) can be written 

coshk(z + h) 
 F(x,y)e

-iat 
0(x,y,z;t) = Re{ 

g  
- 
a 	coshkh (34) 

after substitution of the value of 

A - 	 
acoshkh 

(32)  

(33)  
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Fig. 5. 	Generalisation of Huyghens' principle after Lacombe [4] 

representing waves of maximum height equal to unity. Putting the 

above values of 11),(1) into eq. (32), suppressing the z and t depen-

dences and letting c (fig. 5) tend to zero we obtain the fundamental 

formula 

3H 
9F 

f(Fan 
	

H
o an) 
	

= 4iF 
 
dz

Ir 
(35) 

We can now apply this relationship to the problem of finding 

the agitation in the lee of a breakwater with a gap (fig. 6), under 

the classical Kirchhoff's assumptions discussed later in subdivision 

C3.3.I: 

(1) The function F is zero along the inner face of the breakwaters. 

(2) Along the gap, F has the same value as if there were no 

obstacles. 

(3) We can apply Green's theorem despite the discontinuities in 

F, 3F/an along the contour. 
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5' 

1 

1 

x 

1>0 

Fig. 6. 	Application of Green's theorem to the diffraction problem 

It can easily be seen that the first of the above three 

assumptions does not allow for any effect of the relative position 

of the two branches to the velocity potential; thus any geometry of 

the problem leads to the same result provided the opening is being 

kept constant. 

Using the asymptotic expression for the Hankel function for 

large argument we find in the end 

F(x,y) = 
1 f cosy- sineo  

2ir OA 	vq(ET 

expf-ik[Zcos00-R(10] - 

(36) 

with the symbols as defined in fig. 6. 

A fourth restriction has been imposed so far namely that R(2) 

be greater than 2 or 3 wavelengths. The practical evaluation of 
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7d 
log -4-T + y + ii7 

Tr 	Ho(kr') F(x,y) = 

eq. (36) is considered in chapter E for the sake of comparison. 

B3.1.3 Lamb's Method [5], Art. 305, 2°. 	When the gap width d is 

small compared with the wavelength a reasonable approximation can 

be obtained assuming that the streamlines of the motion of the water 

through the gap are the same as for a simple uniform streaming of 

water. This problem has been treated by Lamb as an application of 

Rayleigh's considerations [11] Arts 341,342. 	At distances r' large 

compared with d we have 

r 
a) 

N i  exp{-17i + ikr' } 
ie  r 
r 	log 21 y 	]Tri

4X  

(37) 

where r' is the distance of the point (x,y) from the centre of the 

gap 

r' = 
	+[y2 

	(x id)2]! 

and y Euler's constant (= 0.5772...). 

The expression for the height of the waves may be written 

I FI - 1 	
1 	

1 	(--r) 

8 
2[(log — kd + y)2 	n2] 	r 

(38) 

We see from the last equation that it gives the same answer for 

different angles of approach of the incident wave, as well as for 

different points of observation (e,w1). 

It would be useful for further reference to represent graphi-

cally eq. (38) in a co-ordinate system with axes d/X, K(r'/X)1  where 
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K = IFI is the diffraction coefficient. 	The parameter K(r'/X)1  is 

suggested by the form of the equation and it is also used later in the 

following subsection when comparing the theories discussed in this 

chapter. 	Relation (38) can be written 

0.5 
(39) 

[(log 	+ 0.336)2  + 2.46]i  

a plot of which is presented in fig. 7 

K 4/2  

0318 
0.311 

0.248 
0199 

Fig. 7. 	Graphical representation of equation (38) 

The maximum value of the parameter K(r'/X)1  is n-1(=0.318) and it is 

obtained for d = 0.716X. 

B3.2 	Exact Solution 

Carr and Stelzriede [1] have developed a rigorous method for 

solving the problem of this section extending the work done by Morse 

and Rubenstein [2] in electromagnetic waves. 
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The same assumptions as in Penney and Price's method (sub- 

division B3.1.1) are made. 	By the use of elliptic-cylinder co- 

ordinates (E,T,z) the wave-function F(E,T) has an assumed solution 

F(E,T) = E(E) H(T) 	 (40) 

where the functions E,H satisfy the differential equations 

d2E 
+ (s cosh2E - b)E = 0 

717 

(41) 

d2H + (b - s cosh2t)H = 0 

b being a separation constant and s = (1-11-12  lAJ • 

The solution of eqs (41) is expressed in terms of radial Mathieu 
co 

functions Je
m
(s,E), Ye

m
(s,E) and the series Se

m
(s,T) = 	, De

ncosnT. 
n=o 

The subscripts m are index numbers 0,1,2, ... corresponding to 

increasing characteristic values of the parameter b. 	The primed 

summation sign indicates that for even values of m only even values 

of n are included in the summation, and for odd m only odd values of 

n are summed. The Mathieu coefficients Den may be determined by 

substituting the series representation into the second of eqs (41) 

expanding the trigonometric functions into series and equating 

coefficient of like powers of T to zero. 

The final result for the function F is expressed by the 

equation 

co .m-1 
F(E,T) = (8n) X[ N 	siny 

m 
 exp{iy 

m
}Se 

m(s,0 o-n)Se m 
 (s,T) - 

m=o m 

- [Jem(s,E) + iYem(s,E)] 	 (42) 
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N
m 

is a normalization factor and y
m 
= arccotan 	 

Yem(s,0) 

Je(s,0) 
m 

 

The complexity of eq. (42) dictates the use of its asymptotic form 

at points where the radius of curvature of the wave crest in plan is 

greater than about three wavelengths. 	Carr and Stelzriede introduce 

here the 'intensity factor' defined as I , 	= H2, /113, where Hr,  
r ,T 	r ,T 1 	 ,T 

themaximumheightofthewaveatapoin e corres-

ponding height of the incident wave. They have found that 

I r ,,T 	
4X 

= 	X siny
m 

siny
n 

Se
m
(s,0

o
-7) Se

n
(s,B

o 	
. 

m,n 

. Se
m
(s,i) Se

n
(s,T) cos(Yn-Yn) 

	
(43) 

The above relation is used to present polar plots of the 'intensity 

factor' I
r,  T. 

 

This exact method, a brief account of which has been given, 

holds for every gap width the only assumption for eq. (43) to be 

valid being that at the point (r',T) the radius of curvature of the 

wave crest be greater than about three wavelengths. However the 

series in eq. (43) converge slowly for d > 2, say, and the method is 

impracticable. 	As it stands, it is useful for d less than about 

two wavelengths and it bridges the gap between Penney and Price's 

method (subdivision B3.1.1) and Lamb's method (subdivision B3.1.3) 

viewed in terms of applicable gap width. 

To illustrate the above I have plotted three simple diagrams 

which indicate the variation of the parameter KW/AO with d/A for 

three angles of incidence. All methods of this chapter have been 

included so that one can easily get an idea of when each one can be 
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applied successfully, together with the appropriate assumptions 

(figs 8,9,10). 	'Penney and Price' method refers to eqs (24), 

'Penney and Price (simplified)' to eqs (26) and 'Carr and Stelzriede' 

to eq. (43). 

Observation of these figures reveals that for engineering 

purposes and on normal incidence Penney and Price's method is ade-

quate for d > 2X, while for d < 2X 'Carr and Stelzriede' should be 

applied. 	On oblique incidence 'Lacombe' can give satisfactory 

answers for 2400 <
o 

< 3000, while for e
o 

< 2400 'Carr and Stelzriede' 

covers the range d < 2A; for d > 2X the lack of a suitable theory is 

apparent. This problem —d > 2X, eo  < 2400-- can be regarded as a 

special case of the theory developed in chapter C. 

44 



.1■111 •■=1. ■•■• 	 .... 11••=11 INI=NO •••■• •••11•11 ,N■ 	f■ MONO =MD .1■1 IMIMII■ OEM GEMIMI 	 f ■ID ••••I 4■11 •■•■■ MEM ••■• •■•• 

4 
• 

/ 
(V./.  

04/ 
/ ••"--1••••• .4.,../W=80 

•%. 
0.  /* 

3 

2 

*,, • 2 7 0.  

X . wavelength 

W • 80' 
.1■• INIMMIVII■M 01■11 4•••11111 1111111•111 MEMO. 

wig 6 0 6  

I 	I 	I 	I 	I 	I 	I 	I  
2 	 3 	 4 	 5 

1 

0 
/ 

..•'....... 

/* 
/ 

/ 
/ ,0,2:"......--- — • -.ft.. w • 60°  

•••■••■., ..,..... 	 N. 

I i  
1 

Penney and Price (I) 
Penney and Price.samplitiedtb 
Carr and Stelzriede 
Lamb 

Fig. 8. Comparison of theories with respect to gap width ( normal incidence ) 



Carr and Stetzriede ' 

Lacombe 
Lamb 

•..240' 

X • wavelength 

b0 

 

  

4■11 MIND 

M■IP 
- MEM. .1■411. 

w•90.  
••••• ••••• .••■•• 

Carr Carr and Stelzriede • Lacombe 

W• 30°  

. ......... ........ ........ 	..... ....... 

1 
05 
	

t•5 	 2 	 2.5 	

7 
Fig.9. Comparison of theories with respect to gap width (oblique incidence :'V'°=2L0°) 



/ 

••••• ,■•■•• 

.0" 

.... ..... 
... es ea 

• • • 000000000000000000000000000 

I 	 I 	 I 

MID .1■• ■11,  IBM 

15 

J=210.  

X ■wavelength 
or°141  

.0° 
00  

W ■0' 

Carr and Stelzriede 

Lacombe 

Lamb 

05 

60°  

—w.60' 

0 0 5 	 1 	 1.5 	 2 	 .5 

Fig.10. Comparison of theories with respect to gap width (oblique incidence :•&o =210° 



CHAPTER C 
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Cl OUTLINE OF METHODS IN DIFFRACTION THEORY 

C1.1 	General Remarks  

A glance through the classical diffraction theory for the 

scalar wave - in contrast with the vectorial wave in electromagnetism 

for example - will provide the starting point of our investigation 

that follows in section C3. Plane obstacles only are to be consi-

dered and the main methods will be outlined in this section. High 

frequency approximate methods that are used mainly in optics and 

electromagnatism having their origin in geometrical optics and the 

works of Fresnel are not included. A critical review of the classi-

cal diffraction theory can be found in Bouwkamp [12]. 

Diffraction is a subject of several branches of physics, 

chemistry, meteorology, engineering - the quantum-mechanical scatter-

ing processes lying beyond the limits of the classical theory, the 

ground of our study. Undoubtedly much credit for the new developments 

through use of Green's functions, integral equations etc. goes to the 

pioneers of electromagnetism in general and of radio technique 

specifically. 	Application to the diffraction of water waves has been 

carried out in acoustics, optics, electromagnetism especially in two 

dimensions where the results of a vector problem with a specific 

polarization can at once be interpreted in terms of scalar theory, 

by resolving the vectors in rectangular Cartesian components. 

Rayleigh's first-order theory has been mentioned already 

(subdivision B3.1.3); it deals with the extreme case of very long 

waves. 	The opposite extreme is covered by the Kirchhoff theory 
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which with its various modifications is presented in section C3. 

Lacombe has based his method on Kirchhoff's assumptions (subdivision 

B3.1.2). Many attempts have been made to bridge the gap between 

these two extremes. Higher order approximations in Rayleigh's sense 

have been obtained and various versions of the Kirchhoff theory have 

been suggested as 	will be seen in subdivision C3.3.1. 	On the 

other hand the integral equation approach to diffraction problems has been 

widely applied in recent years; it provides the background for the 

numerical methods (subsection CI.4), proves the Wiener-Hopf technique 

to be a powerful tool for solving a class of these integral equations 

(C1.3) and gives birth to the variational formulation of diffraction 

problems (C1.2). 

Consider the diffraction, in the three dimensional space, of 

an arbitrary incident wave o
(x,y,z) through an aperture A in an 

infinite plane screen S of vanishing thickness coinciding with the 

plane y = O. 	The field 0o 
is a solution of the reduced wave equation 

and is incident from the left (y < 0). 

Our boundary value problem requires the normal derivative of 

the wave function to vanish on the screen; in this case the total 

field is given by 

0 
o 
 (x,y,z) + 00(x,-y,z) - 

1
(x,-y,z), y 5  0 

0(x,y,z) = 

	

	 (44) 

1 
0 
1
(x,y,z) 	 y 	0  

where 01, defined for y 0 only, has the following properties: 

is a solution of the reduced wave equation 
1 

1 + k201 
 = 0 when y > O. 

301/3y = 0 on S. 
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(3) 01  satisfies a suitable radiation condition at infinity. 

(4) 0 1 = 0
o 

in A. 

(5) 01  is everywhere finite. 

The above properties characterize 01  completely. 

A word must be said here about the radiation condition 

(property (3)). The requirement is that any secondary waves behave 

like an expanding outgoing wave at infinity, the analytical expression, 

due to Sommerfeld, being 

a lim R r 
- ik) 0 = 0 	 (45) aR 	1 

R403 

uniformly with respect to the polar angles for three-dimensional 

problems, and 

lim ri  (1- - ik) F(r,c) = 0 
Dr 

r402 

uniformly with respect to w for problems in the two-dimensions;R 

and r represent distance from a fixed point. 

It should be pointed out that condition (45) or (46) is sufficient 

but not necessary, and can be replaced by weaker requirements. 

The above conditions together with the rest four 

properties determine uniquely therequiredfunction in two or three 

dimensions when the obstacles lie in a bounded domain, as e.g. a 

vertical circular cylinder. When this is not the case the Sommerfeld 

conditions may not be appropriate, and we must employ a modified 

expression of the radiation condition applied on a part of the wave 

function chosen on physical grounds (as e.g. the case of a semi-

infinite breakwater treated by Stoker [13]). 

(46) 
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It is difficult, if possible at all, to determine exactly the 

wave function 0 for an aperture of arbitrary shape. The separation 

technique, by which the wave equation is separated in appropriate 

co-ordinates, is applicable only to an elliptical aperture and an 

infinite slit (subsection B3.2). Numerical evaluation is cumber-

some and demands extensive auxiliary tables of Mathieu functions and 

their generalizations such as spheroidal wave functions. 

A much more powerful approach to the solution of our diffrac- 

tion problems is by means of integral equations. 	Any solution 0 of 

the reduced wave equation that is regular inside a closed surface E 

can be expressed in terms of the values on E of either 0 or 30/3n 

if we know the corresponding Green's functions,which roughly speaking 

represent for a given problem the effect at any point of a fixed unit 

source; these are known in the case that E consists of an infinite 

plane and a half-sphere at infinity. Thus for y ?• 0 we have the 

formulas 

0 . _ i r  30 eikR  
dE 

2.ff f an 	R 

0 
. 	1 cl, 3 re

ikR
) dz  

21r )  an 	) 

where the integration is over the plane y = 0, R denotes the distance 

between the field point (x,y,z) and the source point (x',y',z') and 

3/an means differentiation with respect to y' and then putting y' = 0. 

0 of course must satisfy appropriate conditions at infinity. 

In spite of the singularities of V01  at the edge it is 

legitimate to apply formula (47) to our function 01  ; taking into 

account property (2) we find 

(47) 

(48) 
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(1) 	- 	r e
ikR 
 21'1 dE 

1 	2ir 1A R an 

Applying the property (4) we get integral equation for the unknown 

aperture value. 	If we introduce the kernel G(x,z;x',z') = 

exp{ik[(x-x')2  + (z-z')2]1 )  

[(x-x')2  + (z-z t)2]i  

we find in virtue of (49) 

—2noo(x,0,z) = f ay'  4)
1 	' (x' 0,z')G(x,z;x',z')dx'dz' 	(50) a  

A 

where 	(x,0,z) is any point of the aperture. 

Other types of integral equation can be obtained if eq. (48) 

is applied to (Di  and use is made of properties (2),(4). 	The follow- 

ing differential-integral equation is thus found 

f '1(x',0,z') --T G(x,z;x',z')dx'dz'l 
ay
,  

7  S 	 IY=0 

a = — a 
	f 	—r G(x,z;xi,z)dx'dz'i ay 	ay A 	 ly=0 (51) 

This is not suitable for calculations because the domain S is unbounded 

and eq. (50) is to be preferred (Baker and Copson [14] , p. 183). 

The formula corresponding to (50) 	for two-dimensional diffrac- 

tion problems is readily obtained if it is remembered that (Watson 

[15] , ch. VI) 

m ikR r  e j R  dz' = iTrH
o(kr) 

(49) 

53 



where 	R = + [(x-x')2  + (y-y')2  + (z-z')2]1, 

r = + [(x-x')2  + (y-50)2)1  

and H
o is the Hankel function of the first kind and zeroth order. 

When the aperture is a simple slit of width d independent of z eq. 

(50) gives 

0 a 2iF0(x,0) = f Ho(klx-xl) -57-F1(x',0)dx' 
--d 

(52)  

in which -d x 0, and FO,F1  are the corresponding to (D0,4)1  two-

dimensional wave functions. 

C1.2 Variational Formulation  

The development of variational techniques for analysis of 

diffraction phenomena is largely due to Schwinger. A formulation of 

scalar diffraction problems for plane apertures, which permits approxi-

mate but accurate numerical evaluation of the diffracted amplitude 

was given by Levine and Schwinger [16]. 	It is based on the integral 

equations already considered in subsection C1.1 but avoiding the need 

for solving the equations; this is achieved by establishing a symmetry 

relation of the amplitude with respect to the vectors of the observa-

tion point and the direction of propagation of the incident wave, and 

by proving the stationary character of an expression suitably defin-

ing the amplitude a of the waves. 

From eq. (50) supposing incident plane wave 

o 
= exp{ik(ax + ay + yz)} where a,a,y are the directional 

cosines, we have 

f a'Y
(x',0,z1 )0(x,z;x',z')dxedze = - 2 exp(iril0xx + yz)1 

A 
(53)  
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where * 	(x',0,z') is the value of aclyay' due to the plane wave 0o (1,Y 

The amplitude of the diffracted wave in the direction (l,m,n) is 

therefore 

a(1,n;a,y) = - - 
1  
T-rr  f * 	(x',0,x')expflx' + nz')}dx'dz' (54) 

A a'Y  

The amplitude is a symmetrical function of the variables (1,n) and 

(a,y) as it is easily verified from eq. (54); thus 

a(1,n;a,y) = a(a,y;1,n) 

If we consider the variation da produced by small variations d* a,y 

and 
d*1,n 

about the correct values * citY and *1,n 
given by eq. (53), 

we find after some algebra that 

da = 0 

Hence if 

a(1,n;a,y) = 

f* 	(x,z)exp{-ik(lx+nz)}dxdz f
A
*1'n 

(x'z')exp{-ik(ax'+yz')}dx‘dz' 
A a'Y   

f f 
*a'y(x

,z)*
1,n

(xl,z') G(x,z;x;z t)dxdzdx'dx' 
A A 

(55) 

then'a'is stationary in the calculus of variations sense for small 

variations of *
a,y
,  *

1,n
. We have thus proved the variational 

principle of Levine and Schwinger that the expression'a'defined by 

eq. (55) is the required amplitude of spherical waves at a great 

distance behind the screen with the aperture A if and only if it is 

stationary for small variations of *a,y 
and *

1,n
. 

For the corresponding problem in two dimensions, i.e. a 
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screen with a gap of breadth d we find the corresponding to eq. (55) 

relation 

f *a(x)exp{-iklx}dx f *1(x')exp{-ikax'}dx' 

a(l,a) - 
-d 	-d 

 

where *a,*1  are the corresponding to *a,y,*1,n  two-dimensional values. 

The great value of the variational principle is that it enables us to 

find the amplitude approximately by assuming for * physically plausible 

expressions involving arbitrary constants and then choosing these 

constants to make 'a' stationary. 

For a mathematical survey and criticism of variational methods 

in general see Dolph [17]. 

C1.3 Wiener-Hopf Technique  

A powerful method of solving a class of diffraction problems 

has been developed as an extension of the original work by Wiener and 

Hopf [18]. 	The method in any of its many versions uses the custo- 

mary integral transforms (Sneddon [19]) supplemented by function-

theoretic techniques such as analytic continuation, Liouville's 

theorem, factorization of analytic functions (Titchmarsh [20]). 	It 

is now recognized that the more general method of singular integral 

equations of the Cauchy type (Muskhelishvili [21]) contains the Wiener-

Hopf technique, which uses the Fourier transform in the complex 

domain, as a special case. 	So the whole apparatus of singular inte- 

gral equations is at our disposal to achieve a solution. 

o o 
f f * (x)*1(x')H0(klx-xl)dxdx' 
-d -d a  

(56) 
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To get an idea of how the technique works, a short account of 

it will be given as applied to the elementary problem of diffraction 

of a plane wave by a rigid screen (section B2). 

Let the plane wave Fo(x,y) = exp{-ik(xcosO0  + ysin00)} 

impinge on the screen x > 0, y = 0. 	If f(x') denotes the value of 

OF/3y in the aperture,eq. (52) becomes 

f(xl )Ho{klx-xl}dx' = 2iexp(-ikscosO0), x 0 	(57) 

In order to make eq. (57) manageable by complex Fourier 

transforms we define the following 

f(x') = 0, x' > 0 

0 	 x > 0 

g(x) = 

2iexp{-ikx cosOo}, x 0 

ff(xl)Ho{kix-x'l}dx', x > 0 

-a°  

h(x) = 

0 	, x 0 

The extended integral equation then becomes 

CO 

ff(x')Ho{klx-x'l}dx' = g(x) + h(x), -00 < x < 
	

(58) 
■ CO 

Now, let F*(w), G*(w), H*(w) and L*(w) denote the Fourier transforms 

of f(x), g(x), h(x) and Ho(klxl) respectively. 

We have 

03 

G*(w) = f g(x) exp{-iwx}dx - 	
2 

 
■ CC1 	 0 

where k is assumed to be complex with Im(k) > 0 and Im(w) < -cos0o
Im(k). 

w + kcosO 
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Similarly, 

co 

L*(w) = f Ho(kIx1)exp{-iwx}dx 	2 

-co 	 (

15-17.--T72) 

if -Im(k) < Im(w) < Im(k) 

and the square root is equal to k if w = 0. Under certain assump-

tions of boundness and integrability of f(x) we can apply the con-

volution theorem (Sneddon [19], p. 60) and obtain from eq. (58) 

F*(w)L*(w) = G*(w) + H*(w) 	 (59) 

valid in the domain - Im(k) < Im(w) < min[0, -coseoIm(k)]. 

This can be converted easily into 

F*(w) 
(k-kcos00)1 	

1 	* 
(k + w)i - (k-kcos00)1  

2 -r-    - (k + 0111(w) + 	 
(k-w) 	w + kcos00 	

w + k cos0
o 

It can be shown that either side of this equation is the analytic 

continuation of the other and both define one and the same entire 

function P(w) which easily is verified to be a constant = 0. 

It thus follows that 

F*(w) - 
(k - 01(k - kcosedi 

w + k cosO 
 

and consequently 

3F1 1  co (k-01(k-kcos00)1  - _ 
ay 	2-ff 1 	w + k cos00  f(x) = exp{iwx}dw 	(60) 

where the path of integration passes below the branch point w = k and 

the pole w = -kcosO0  of the integrand. 

By closing the path of integration we obtain the complete 

solution for -03 < x < co; the integral in eq. (60) is expressible in 
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terms of Fresnel's integral which means that we rediscovered the 

solution of section B2. 

For a complete account of the above example see Copson [22], 

while a slightly different approach is presented by Karp in his paper 

[23]. 

C1.4 Numerical Methods  

The integral equations which were presented in subsection C1.1 

have been solved exactly for a few simple scattering shapes only. 

For bodies of complex shape the diffraction problem can be solved 

numerically by dividing the scattering surface in portions over each 

of which the amplitude and the phase of the field can be considered 

as varying in an approximately known way, usually regarded as 

constant. 

The integral equation is then replaced by a set of linear 

algebraic equations, to be solved numerically by a computer. Computer 

programmes based on this method have been developed for the study of 

diffraction from various structures. 

The integral equation approach is the most logical one for 

numerical solutions because boundary and radiation conditions are 

automatically taken into account. The numerical method is well 

suited to problems in the low-frequency and resonance regions, where com- 

paratively large facets may be taken on the object. 	If the dimensions 

of the obstacle are very large compared with the wavelength, 	the 

number of linear algebraic equations becomes very large and diffi- 

cult to handle. 	We shall meet again this point in subsection C3.2. 

The rapid expansion of the numerical methods in recent years 
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should be seen in connection with the powerful 'Finite Element Method' 

(Gallagher et al. [24])that has been applied in many disciplines already and 
be use d

will certainly nrin the future. 
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C2 THE WEDGE PROBLEM 

C2.1 	Uniqueness and Edge Conditions  

A modification to Sommerfeld's radiation condition has 

already been hinted at in subsection C1.1 with respect to infinite 

bodies, so that uniqueness is achieved. 	It must be said that a 

suitable decomposition of the total field is necessary even in cases 

when the obstacle is bounded, in order to enable application of the 

radiation condition to the scattered part of the total field. 	I 

suggest that whenever the incident field is a plane wave, the radia-

tion condition at infinity be applied on the appropriate part of the 

total field, subtracting any reflected wave from a plane obstacle 

bounded or not, as Stoker does for the infinite obstacles [13]. 	For 

a rigorous investigation of the field behaviour when the boundary 

conditions are given on semi-infinite domains see Jones [25]. 

We shall go a little further here considering obstacles with 

discontinuous changes of the direction of the surface normal and 

presenting the additional restrictions that have to be imposed so 

that uniqueness is ensured. The presence of an edge introduces 

several distinctive features; for example the radius of curvature is 

zero at an edge so that it does not diffract waves in the same way as 

the smooth surface of the obstacle. 

The most striking characteristic of an edge is perhaps that 

a radiation condition at infinity together with the continuity of the 

function off the obstacle are not sufficient to ensure a unique solu-

tion of the reduced wave equation subject to the usual boundary 
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conditions. This can be clear by imagining for example a source at 

the edge, which would not violate the above conditions; hence this 

possibility must be formally excluded by 

Fs 	rv 	as r 0 

or 	DF
s 	

r
y-1 	as r-}0 

where r is the local distance from the edge and v = n/6, 6 being the 

exterior angle at the corner. The last condition can be written 

(see e.g. Leppington [26]) 

aFs 
0 

3r 
as r-;0 

IntermsofthetotalfieldF=F.+F
s
, (F. : incident field), the 

edge conditions are 

1 

and 
3F 	v-1 
— r 
Dr 

as in Stoker [13], p. 113 (where his k in (5.5.11) could be 	I). 

For the case of a semi-infinite screen, these give 

F 'I' 	19  
3F n, -1 
3r 	r  

The physical interpretation of these requirements is that the 

edge shall not radiate any energy,which has been proved by earlier 

investigators who assumed that the energy in any finite region (inclu- 

ding the edge) must be finite. 	Another physical meaning is that the 

radial velocity component may be infinite at a corner, but not as 

strongly as it would be for a source or sink (which behaves like r-1  
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in two dimensions). 

C2.2 Diffraction of Waves by a Corner or Wedge  

The diffracted field due to a line source is to be established, 

whence we can deduce the solution for the incident plane wave. Let 

the faces of a perfectly reflecting wedge occupy the semi-infinite 

planes w = 0 and w = 6 the region 0 < w < 6 being free space (fig. 11). 

Suppose the incident field is due to a line source at Po(ro,w0), the 

wave function being It Ho(kR), where 

R2  = r2  + r2  - 2rr
o 
 cos(w

o  - w), 	
(r,w) denoting always the 

o  

point of observation. Then we seek a solution of the reduced wave 

equation 

82F
+  I ar 	

1 82F  

r 3r 	172-T2; + kF = 0 
	

(61) 

such that 3F/3w vanishes on the surface of the wedge,F is bounded 

at r = 0 and satisfies a radiation condition at r 03. 

A common technique of solving this problem is by making use 

of the Kontorovich-Lebedev transform (see Sneddon [19], ch. 6) and of 

the edge conditions; thus an integral representation of the scattered 

field is obtained (Jones [27] , p. 610). 	We shall not proceed along 

that line but we will try to find a series representation following 

a method by Oberhettinger [28]. 

With the usual notation, a solution of the reduced wave 

equation representing diverging waves is of the form 

F = 71. exp(±ivw)Hv(kr) 
	

(62) 
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Fig. 11. 	Diffraction in wedge-shaped region 

where v is an arbitrary parameter. Then making the substitution 

k = iy 

we have 

AF - y2F = 0 

with a particular solution corresponding to eq. (62). 

i 
F = - Tt exp(±ivw)Kv(yr) 

where K
v 
denotes the modified Hankel function of the second kind 

K
v
(z) = iiriexp(lIrvi)H

v
(iz) 

The transition from k to y amounts to a transition from a wave prob- 

lem to an exponential decay problem. 	We solve first the exponential 

decay problem and we return to the wave problem by substituting y with 

its value -ik. 

64 



The total field can be represented as the sum of the incident 

field F. and the scattered field F
s
: 

F = F. + F
s 
	 (63) 

The incident field in P(r,w) due to the line source P 
o 
 (r 

 o 
 ,w 

o
) is 

given by 

F. 	 1 	1 
= 1  H (kR) = 	K (yR) = 	K (y[r2+r2-2rr cos(w-w)]1} 4 o 	2n o 	2n o 	o o 	o  

(64) 

Making use of the relations (see Watson [15]) 

r 	r  v z4z21, (Zz) dv 
K (Z)K

v 
 (z) = 	j  expi- 	- 	

2v .11̀ v 	v 
0 

v  

CO 

K
v
(z) = f exp (-z cosht)coshvt dt 

00 

2 
1 	

4t 

2 	- _ 
= — (1z)v  f exp[-t -  z  ] t v idt 

0 

which hold under fairly general conditions, we can write eq. (64) in 

the form 

CO 

 I F. 	71 
= —7 j K. V1  

(yr)K. V  (yr 0)cosh[v(r - lw-woI)]dv 
	

(65) 
0 

Let the scattered field be represented in the same form 

0:1 

Fs 	n 
= —7 f K. (yr)K. (yr 

o  Mf1  (v)exp(vw) f2(v)exp(-vw)]clv 
0 

iv 	iv  

(66) 

where the introduced unknown functions fl, f
2 are to be determined by 

the boundary conditions. 	On the walls w = 0 and w = 0 of the wedge 
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we have aF/aw = 0. This leads to 

fl 	f2  = - sinh[v(Tr - wo
)] 

(67) 

flexp(ve) - f2exp(-v8) = sinh[v(n - 8 + wo)] 

Equations (67) give the values of f
1
, f

2 which together with eqs (63), 

(65) and (66) result to 

f F = --r j K. (yr)K.v
(Y ) sinh(ve) 

sinh(v7) 
 {cosh[v(0 - Im - m01)] + w 	iv 	- "ro  

+ cosh[v(8 - w - w
o
)]}dv 
	

(68) 

This expression shall now be transformed into an infinite 

series. 	For this purpose we recall the relation 

co  
cosh[v(8 - 46)] _ v 	r 	cos 

L E 	
e  

sin(v8) 	6 	m 	2 0171-12  m=o 	v +i—) 
6 

where e
m 

= 1 	for m = 0 

m 
= 2 for m 1, 

valid for 0 $. (I) 15 28. 	Term by term integration yields 

f K. (yr)K. (Yr ) cosh[v(6-01 sinh(vir)dv = 
0 
iv iv o sinh(ve)  

. 	.. . 
1 	r 	InTrcl) f vsinh(v7) 

= — L cm cos---- j 	 K. (yr)K. (yr )dv 
0 	8 	2 fmu)2 	iv 	1V 0 ra7--.0 	 0 V +i--J 0 

MIT4) 

(69) 

CO 

But if I is the modified Bessel function of the first order we have 
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f7 	1 jsinh(v  
K. (yr)Kiv(yro)dv = 172 Imn(yr<)Kmw(yr>) 

o v2 + (r—a1-Te 	
6 

where r< and r> denote the lesser and greater of the co-ordinates r 

and r
o
. Therefore the field F can be written as 

CO 

1 m 
F = — X c m 

	6 
{cos ---(63-w

o
) + cos ---(w+w

o
)). I Mff  (yr < )Kmn (yr > ) 2e 	

mn 
6 o 

Returning now to the wave problem by replacing y by -ik we 

arrive at the solution 

ni 
F(r,w;r 

o 
 ,w 

 o  ) = 26 
— X c 

m  J  p 
 (kr

< 
 )H 

p 
 (kr

> 
 )cospwcospw

o 
m=o 

(70) 

where p = mn/0 

This is the wave function at the point (r,w) in the free 

space of a corner of angle 0 due to waves emitted by a line source at 

the point (ro,w0); this solution holds in the domain 0 < (r,r0) < co, 

0 * (w,w
o
) $. a. 

The other main expression of the same result gives different 

answers for the different domains of the space, seen from the point 

of view of 	geometrical optics as in the solution of the semi- 

infinite plane found in section B2, and allows a convenient asymp- 

totic expansion. 	We are not referring to this representation because 

we are going to use the result in the form of eq. (70). 

The behaviour of F near the edge is given by F cc constant + 

+ 0[(kr)w/c], as r 	0 where c is an arbitrarily small positive quantity 

(Felsen and Marcuvitz [29]). 	It can be verified that this behaviour 
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satisfies the edge condition of subsection C2.1. 

We now proceed to derive the solution for the case of an 

incident plane wave. This result and its asymptotic form will help 

us when working along the lines of the matched asymptotic expansions 

method in section C5. First we establish a normalization factor 

for the passing from the line source to the plane wave. 

The field at the point (r,w) due to a line source of unit 

strength at (ro,wo) in free space is 

4 
— H

o 
 (kR) 

where R = +[r2 r2  - 2rr cos(w-w
o
)]i  

The large-argument approximation for the Henkel function is 

110(kR) 	— 
rkR e i(kR-1 71-) 

for kR = 

Now, as ro  tends to infinity the circular waves of the line source 

tend to a plane wave. We obtain upon expansion by the binomial 

theorem 

1) 
R 	r

o 
- r cos(w-w

o
) + 0 

(

r 	
, 	r

o 
-+ 

o 

For the determination of the amplitude it is sufficient to approxi-

mate R by ro  as ro  becomes very large. However, for the determina-

tion of the phase we can neglect only those terms which tend to zero 

(1% 
as r

o 	
=, i.e. terms of Ot--) . 	The expression for the field at 

r
o 

(r,w) due to plane wave can be written now 

exp[i(kr
o 
- krcos(w-wo) 	10] r

o 

and which must be identical with the term exp[-ikrcos(w-wo)] 
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representing a plane wave of unit amplitude incident along the 

direction w
o
. Comparing the two expressions we find the normali-

zation factor 

1 ,\I 
nkr exp[i(kro 

+ In)] 
0 

(71) 

Thus, to pass from a result derived for a line source of unit 

strength located at (ro,w0) to the result for a plane wave of unit 

amplitude incident from the direction wo
, we first let r

o 
co and 

then set N = 1. 

Returning now to the original result of eq. (70) we let 

r
o 

co, wo  = 00  and derive the result for excitation by an incident 

plane wave exp[-ikrcos(w-00)]. 	Since J
p
(kr

<
) decays when p > kr 

the contributing range of the series is bounded in p and negligible 

error is introduced through use of the asymptotic approximation of 

the Hankel function 

2 
H(kro) 	nkr exp[i(kr

0 
- ipn - In)] 

0 

Imposition of condition (71) yields the following expression for the 

wave function 

F(r,w;00) 

co 
211. -iipn 

e
m
J
p
(kr)cospw cospe

o 
e 

m=o 
(72) 

with p = mn/0 

This is the result that we are seeking for the case of plane inci-

dence. 

Some approximate expansions of this relation might be useful 

for further reference (see section C5). 	If kr « 1 a small- 

argument expansion of the Bessel functions in eq. (72) gives 
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F '11  -321- + 	(Ikr)illeexp(-iiir2/0)cos 11- cos 41  + 0[(kr)27T/6] e 	r  (ITA 
1) 

(73) 

for 0 > n and r(x) the gamma function 
co 	 x 

= f e
-t

t
x-I

dt = lim 	n.n  
0 for x 0 0,-I,-2,... 

	

x(x+1)(x+2) 	(x+n) 
n4.00 

We can also write the relevant expression for kr >> I (Felsen 

and Marcuvitz [29], ch. 6) decomposing the total field into two 

components 

F = F
g.o. 

+ F
d 
	 (74) 

where 
Fg.o. 

and F
d 
are the geometrical optics and diffracted fields 

respectively. 	The geometrical optics field is 

F
g.o. 

= y exp(ikrcosa
ni
) + 	exgikrcose

n2
) 

n
1 	

n
2 

	 (75) 

where a = n - w + e
o 
-2n0 

n 
1 

a
n 

= n - w -
o 
- 2n2e 

2 
 

and the summations extend over all integers n1  and n2  satisfying the 

inequalities 

1w - eo 
+ 2n101 < 	+ eo + 2n201 < 

The diffracted field F
d 

can be written 

Fd  = Vd(-w - w + 00) - Vd(n - w + 00) + Vd(-n - w - 00) — 

7d ( w 	- 00) 
	

(76) 
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with BW m 	sin -- 
Vd(8) = 26 j r  expa 	

0 
krcosht) 	dt 

t7 	On o 	cosh — - cos 
0 	0 

For values of 0 away from a geometrical optics boundary we can 

expand Fd  in eq. (76) and from the leading term in this expansion 

we get 

exp[i(kr+17)] 7 	n2 	1 	1  
d 
F 	sin 

(6-w-6)7 (2nkr) 	
6 	

w2 	
(w-0 )71. 

n2  
cos — - cos 	 COS 	+ cos 	 

0 	0 

(77) 

This has the appearance of a cylindrical wave 

On the geometrical optics boundaries 

following asymptotic representations (0 > 7) 

(i) 	Cil = n - 0o 	
with 0 < 0

o 
< 7 

	

, 	exp{ikrcos2601 + lexp(ikr) +  F 	
7 

	

'' 	 0  

emanating from the edge. 

the total field has the 

exp[i(kr + 17)) 
x 

(271(0 1  

72 
sin--  

0 

2 
COS — + COS 	 

0 	

1 	72 

(7+0-  26 	)7 	
] 

— — 2 cot (78) 

(ii) 	w = 20 - 0
o - 7 with 0

-7 < < 

7 exp[i(kr + 17)] x  F 	exp{ikrcos2(0
o
-0)} + lexp(ikr) 

4. 
 

(27kr) 
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n2 

2 	(n-6+ 260)n 	2  cot -Er 
n2I 6  

(iii) w = n + e
o 	with 0 < 60 < 6 - w 

sin w2 n exp[i(kr+17)] 	6  F q,  iexp(ikr) + 0  
(2nkr) 	1 n2 	(n+26o-0)n cos — + cos 

	

e 	8 

1 	n2 _] 
2  cot T  

si n — 

'teas 7 t cos 	 
0 

7 
(79)  

(80)  

72 



C3 THEORETICAL INVESTIGATION 

	

C3.1 	Combination of two Independent Solutions  

As we have already seen in subdivision B3.1.1 an approximate 

solution for a problem with two breakwaters can be derived from the 

rigorous solution of the problem of one semi-infinite breakwater. 

Thus Penney and Price have given such a solution for the case of two 

screens in line with a gap between them and an incident wave normal 

to the screens [3]. Their method is based on a combination of the 

known results of the two independent semi-infinite breakwaters. 

The approximation achieved is reasonable for application purposes 

when the gap is greater than about one or two wavelengths for normal 

incidence. 

An extension of this method is attempted in this subsection 

to cover the case of breakwaters not in line which is our final 

objective. 	Remembering the general solution of the diffraction of 

plane waves incident on a semi-infinite rigid breakwater (eq. (13)) 

we can write the equations corresponding to the regions S,Q,R (fig. 2) 

so that the appropriate expressions representing the incident and 

reflected wave are present when necessary. We denote these waves for 

simplicity by (inc) and (ref) respectively, being 

(inc) = exp[-ikrcos(w-60)] 

(ref) = exp[-ikrcos(w+00)] 

and consequently we have 

Region S  
u I 	 u2 

	

F(r,w) - 	(inc) f exp(Iwiu2}du + ---2
1i  
-- (ref) f exp{1Triu2}du 

1i
2  -00 	 -00 
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Region Q  

F(r,w) = (inc) 
-ul  1-i . (Inc) f expfliriu2ldu + 2 

1-i 	2  2 (ref) f exp{iriu2}du 

Region R 	 -u1  
2 

1-i F(r,w) = (inc) + (ref) - 	(inc)L 	f exp{3rriu2}clu - 

1-i 	2 
 
2 (ref) f expOiu2 lclu 

making use of the property of the Fresnel integrals 

-u 
f exp{17Tit2}clt + f exp[Irrit2]cit = 1 + i 

When two breakwaters are present we can write a similar set 

of equations corresponding to the second plate (2), see fig. 12. 

	

u1 	u' 2 1
21  (i 	

1-i ncr fexp{17riu2)du + ----(ref)' f exp{ Triu2}du 
■ 03 	 ■00 

Region q  -u' 1 
F(r,w) = (inc)' - 1 2

1(inc)' f exp{Priu2}du + 

u t  
2 

-2  (ref(ref)'fexp{Driu2}du 
■ CO 

Region r  

F(r,w) = (inc)' + (ref)' 1-i  (inc)' f exp{iniu2}du _ 2 

-u' 
1-i 	2  2 (ref)' exp{ilriu2 }clu 

■ CO 

-u 

Region s  

F(r,w) = 
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■■=m, ammo ■•■3111. 

X 

2 u' 

and 

Y 

	

(inc) 
	

(ref ) 

Fig. 12. 	Two 'independent' breakwaters inclined to each other 

where (inc)' = exp{-ikr'cos(w-e
o
)} 

(ref)' = exp{-ikr'cos(w+e
o
-20)} 

(1)-0 
n 	' 1  

u' . 4  (
kr
----) cos 

1 	 2 

(0+0
o
-20 

= 
2(kr') 

)
1  
 cos 

2 

r' = +[r2  + d2  - 2rdcos(e-w)] 1  

Following the method cf subdivision B3.1.1 we find for the 

five regions of fig. 12 the compound solution: 

0 
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Region S  

F(r,w) = (inc)f(u1) + (ref)f(u2) - (inc)I f(-up + (ref)'f(up 

Region R 

F(r,w) = (inc) + (ref) - (inc)f(-u1) - (ref)f(-u2) 

(inc)'f(-111) + (ref)'f(u1) 

Region s  

F(r,w) = (inc)'f(u1) + (ref)'f(up - (inc)f(-u1) + (ref)f(u2) 

Region r  

F(r,w) = (inc)' + (ref)' - (inc)I f(-u1) - (ref)'f(-up 

(inc)f(-u
1 
 ) + (ref)f(u 

2
) 

Region qnQ  

F(r,w) = (inc) - (inc)f(-u1) + (ref)f(u2) - (inc)'f(-u'1) + 

+ (ref)'f(up 

where 

1-i 
2 

f expaTriu21du (81) 

The question of the accuracy of this solution arises now. 

Disregarding for the moment breakwater (2) we shall try to find the 

deviation from the boundary condition 1
- 9w

:. 0 	along the unoccu- 

pied pied line r > d, w = 0, of the wave field caused by the presence of 

breakwater (1). 	Equation (13) gives easily 

3F — =  
aw 	

f(u
1 3w 	aw ) 	(inc) + (inc) 	f(u1  ) + f(u2  ) -57, (ref) + 

+ (ref) 
3w 
 f(u

2 
 ). 
	

(82) 

76 



But, 

a 	. 
-5-cs  (Ic) = (inc) ikrsin(w-0o) 

a 
-dz:  (ref) = (ref) ikrsin(w+0o) 

	

9111 	rkrl i 	td-e 	 w-0 
(1+i) 

2
-f(u ) = expfiniu2} — = -t--) sin  2  exp{2ikrcos2  

	

Dw 1 	1 aw 	 2 } 

	

Du, 	k 	w" 	w+G° 
(1 ti) 2 	4  —1(u ) 	exp{ iniu2} 	- (-1) sin 2 	- ° expq 2ikrcos2 2 

	

au)  2 	2 9w  

Equation (82) becomes 

w -0o 1 DE 	 1 -i„ , k 	w-610, 
= (inc)iksin(w-eo)f(u ) 	(-1 sin — expUkircos2  ----I + 

r 0(13 	1 	2 	2 	2 

+ (ref)iksin(w+00)f(u2) 12 	nr 
1 	k 	

2 	2 
°}  

w+0 
(rer) (--) sin 	exp{2ikrcos2 	1 

(83) (83) 

Keeping the same approximation that has been introduced by 

Penney and Price [3], which has been proved to be good for engineering 

purposes, we can substitute the integrals in eq. (83) by the leading 

terms of their expansion 

X 

f exp{iniu2}du ti - nexp{inix2} + 
	(84) 

We find 

(1+i)f(u1) 

w-0 
iexp{2ikrcos2  2 

 

and 

 

w 0 2(nitr) cos --- 2 0  
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(1+i)f(u2) ti 

w+0 
iexp(2ikr cost  

2  
w+0 

2(nkr)cos 	 2  ----0 

Putting these values in eq. (83) we have 

sin (w-0 
co)  tItN i 	w-0 

(1+i) r 3w 	2 
 = -I 	

w-0o 
(inc) 	 (---J exp{2ikrcos2  20} Trr 

cos 2 

w-0 	 w-0olk
- (inc) sin 2 0 (—) exp{2ikrcos2  Trr 	 2 ' 

sin (w+0 ), 
2 + 	(ref) 	° 	ec. exp{2ikrcos2 

w+0 
-1 	

w+0 	 0} 2 	 Trr 0 cos 2 

w+0o kli 	 w.f.° 
- (ref) sin 2  (7p exp{2ikrcos2  2 

o} 

= 0 

To obtain an adequate level of accuracy —diffraction coefficient to 

within about 2% as stated at the derivation of eq. (25)—  we require 

for the expansion (84) 

x < -2 

which gives the following conditions 

w -0o cos 2 

78 



COS 

w+0
o 	1 1

-  2 	<  

where d = d/A, d being the smallest value of r. It is clear that 

the first of these two conditions contains the second, and it can be 

rewritten 

1  
min 	

(0 
 -w) 	

(85) 
 

2cos2 	°
2 

The above relation is represented graphically in fig.13 where 

we can see that we have to have large gaps for large angles 60-w in 

order to keep our fixed level of accuracy. I have drawn out of 

fig. 13 two simplified graphs keeping constant on the one the angle 

0
o 

and on the other the angle co; these graphs are presented in figs 

14 and 15. It is evident now that this method of adding two inde-

pendent solutions is inadequate for situations other than close to 

that described by w = 180°, 00  = 270°  which is the case dealt with 

in subdivision B3.1.1. 

To improve this method we attempt a step which is presented 

in the rest of this subsection. 	The idea is to add a quantity to 

correct the boundary conditions on the breakwater arm where they are 

not satisfied. 	This will disturb the conditions at the other arm 

entailing a further addition and so on until the approximation to 

the boundary conditions obtained is acceptable. 	Then by knowing these 

extra quantities we could derive the whole field. 

Let F be the basic solution produced by addition of two 

-r- (-0 (2)  independent solutions as found above. 	In general 1 	0 
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3 

2 

 

 

 

 

 

  

   

0 93' 1206 	150° 	1808 	 0.-u) 

Fig.13. Relation between -D.- w and burin  for a given accuracy 

8min 

 

  

2 (1) 

 

   

0 	 1  
90° 	120' 	15(:)° 	180° 	 w 
Fig.14. Relation between W and 5,,n  for -Do= 270°  

Omin 
6 

A 

 

   

   

  

(2) 

    

2 

   

   

   

    

0. 

urn 

	 a.- 270' 	300' 	330' 	360' 
Fig.15. Relation between -Do and brnin for w=180° 	• 

80 



where the subscript (2) denotes evaluation of the differential along 

the screen (2). 	We introduce a 'boundary function' G1(r,w) defined 

along (2) such that 

1 3 
(F + Gi) 	= 0 

(2) 

and we try to evaluate the effect that G1  has on the boundary condi- 

tions of (1); if this effect be denoted by G(1) we have 
1 

—
1
-
3   

r 3w 
(F + 1

(1)
) o 

(1) 

  

3enerally, and we introduce a similar function G2(r,w) defined along 

(1) with effect G(2)  on (2) so that 

r 3w 	1 
(F + G()  +  G2)  

(1) 
= 0 	but 

   

 
r 

- 

aw (F + G1 + G2
(2) 

 ) , 
(2) 

  

We repeat the same procedure until the truncation errors 

1 a —r aw (F + G1  + G2
(2) + ...) - 0 = e

1 	
and 

(2) 

  

r 
1 3w 
	1 (F + G

(1) 
 + G

2
+ ...) 

- 3  - 0 = e
2 

(1) 

  

are acceptable. 	Then our solution will be 

F + gi  + g2  + . 	F+ C gi 
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wheregi  . denotes the field produced by a 'boundary function' G.. 

Although this method is simple in principle, it raises diffi-

cult problems when we come to actually finding the effects Gln), 

[(n) = (1) or (2)] on the boundaries of the producing functions G., 

or generally when calculating the fields gi. 	The difficulty arises 

from the fact that G1' G2' 
etc. are no longer plane waves or any 

other simple form of wave but a wave continuously decaying with 

increasing r which has to be approximated by an appropriate series 

of discrete line sources along the appropriate boundary or even by 

a sum of suitably chosen plane waves. Then the effect of this 

approximate 'boundary function' can be represented by the addition 

of known solutions for the diffraction of a line source or of a plane 

wave by a half-plane. The former is a special case of eq. (70) for 

= 2n, 

	

mw 	mw
o 

F(r,w;r03 ) = - 7 c J (kr )H (kr )cos — cos 
o o 	4 L. m m < m > 	2 	2 M=0 

where the latter is express in eq. (13). 

The transformation of the 'boundary functions' into line 

sources or plane waves may be achieved through the following relations 

(Watson [15]). 

L J
2n4.

1(11t2) +2n+1(In 2) 
f exp{Int2}dt = 

n=o 	n=o 2 

0 

= VT [ncp{iin} 	expOinu2}[VL(nu2,0) - iV1(nu2,0)]] 
2 

where 

4z 	1 	1.3.5 
V1(2z,0) 	- 	[Ty;5-z TETr + ...] 
2 
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V (2z,0) 
4z 	1 — 1.3 	1.3.5.7 

— n 2z (2z) ()-52z ...] 

and 

x2   x3  
ex  ti 1 + x + 	+ 	+ 

2: 	3: 

The apparently complicated and extensive calculations involved 

in the above procedure coupled with the need for repetition of these 

manipulations as we proceed further to approximate more closely the 

boundary conditions, suggest that we seek a formulation where the 

solution F + g. is contained implicitly in the equations. We 
i 1  

thus arrive at solving a pair of simultaneous integral equations 

following a method used by Schwarzschild [30] and presented in the 

following subsection. 

C3.2 	Schwarzschild's Diffraction Problem 

The difficulty encountered in the preceding subsection is 

overcome at least partially, if we suppose for the moment that we 

know the solution we are trying to find and form our equations in 

terms of the final steady state potential of the scattered wave F. 

The problem that was investigated first along these lines 

(Schwarzschild [30]) was that of diffraction of waves by two screens 

on the same plane, a relatively simpler configurationthanthat which 

we are considering here due to the fact that the former has a 

symmetry in its geometry which the latter lacks. 	However an attempt 

is made here to apply the same principles in our case following the 
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presentation by Baker and Copson [14]. 

Let us consider our two perfectly reflecting breakwaters (1) 

and (2) obstructing the free propagation of an incident plane wave 

F. We seek a solution F
s 
of the Helmholtz equation (8) or (10) 

such that it has no singularities outside (1) and (2), satisfies the 

radiation condition and the normal derivative an — (F
o 
 + F

s
) vanishes 

a  

on both screens. Then our solution would be F = Fo 
+ F

s 
everywhere. 

On an horizontal plane the two plates are considered to be bounded 

by two closed lines 2,1
, 

2,
2 
 as in fig. 16. 

Fig. 16. 	Nomenclature of Schwarzschild's problem 

As 	will be seen in subdivision C3.3.1 a solution f of the 

Helmholtz equation is uniquely determined by the values of its normal 

derivatives on either (1) or (2); a fact that has already been used 

in eq. (47). 	We have accordingly 
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f(r,w) = - j
1 
 f(ri,w1)G(1)(ri,w1;r,w)dt1  

1 

(86) 

or 

f(r,w) = - j 31-7  f(r_,w2 )G(z)  —(r
2,w2;r,w)dt2 	(87) 

	

2•2 	2 	
z 

where we have put for simplicity a/av, = a/an1  or a/a;',, a/av2  = a/an2  

or a/an2 
 depending on the position of the point of integration on the 

contours t2.2' 

with n , n and n , Ti the normal directions to 2 and 2, respectively 

	

1 1 2 2 	 1 2 
(fig. 16); P (r ,w ), P (r ,w ) points on 2 ,Z and G(1),G(2) 

the 
1 1 1 	2 2 2 	1 2 

Green's functions for the regions outside trespectively. 
1 2 

Now, we consider the potential Fs  to be the sum of two functions 

F
1 
 and F2, not in general independent, satisfying the pair of 

equations 

F 
1 
 (r,w) = + r- 

av
a 
 {F2 

+ F 
0 l(r2' w2 )G(2) (r2 

 ,w2  ;r,w)dt2 
 (88) 

1
2 

2 

F 
2 
 (r,w) = + f ---4F

1 
 + F 

0 
 l(r

1  ,w 1 )G(1) (r1
,w1;r,w)dt 	(89) 

R. aV 
 
1 

This assumption is legitimate because the function Fs
=F +F 

1 	2 

satisfies all the requirements of the problem. 	Indeed it is a solu- 

tion of the Helmholtz equation, it satisfies the radiation condition 

and it has no singularities outside t
1 
 and t2'  • for each of its terms 

by assumption is a solution of (A + k2)F = 0 and satisfies the 

radiation condition while the sum of them has no singularities out- 

side t
1 
 and 2,

2
. 	Moreover by comparing eqs (87) and (88) we see 

that 

- 	 (r ) = 
a (r,w 
av2 

F
222

) + -1- F (r w ) 
ay
2 
F 
 1 2w' 2 	av2 o 2' 2 

so that the normal derivative of Fo + F1 
 + F

2 
= F

o 
+ F

s 
F 
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vanishes on (2); similarly we find by comparing eqs (86) and (89) 

a 	3 	a 
- Ov F2(rw1) - 1 	av1 F1

(r1,w1) + av1 
F0(r12w1) 

which means that our requirement -5
3  
‘7 F(ri,wi) = 0 is satisfied. 
1 

Equations (88) and (89) involve four unknown functions, 

namely F1(P), F2(P), 	F (P ), 	F2(P2); to overcome this diffi- d 	1 1 8v 
F2(P2); 

culty we let point P on breakwater (1) for eq. (88) and on (2) for 

eq. (89) and take the corresponding normal derivative: 

	

av F1(P1) = f 	{F2 + F }(P ) — g. av 	2 	o 	2 Dv
a 

G 
 (2) 

 (P 
 2'

P  1 )d22  (90) 
1 	 2.2 	z 	1 

3 

	

3v 
F
2
(P

2
) = 

I
1 

f 	{F 1 + F  o  }(P ) — G 	(P P2  )c12 1  (91) 2 	Dv3 
1 	

1 	1 av2 (1) 
 

Dv 
F
2
(P

2) and therefore in principle can be solved. 	Subsequently 
2 

eqs (88) and (89) can give F1(P) and F2(P) and solve the problem of 

finding function Fs(= F1  + F2). 

As we said before G(1)(PP)  is the total velocity potential 

at P1  when waves from a line source at P are incident on breakwater 

(1), which means that it is the solution of the problem of diffraction 

by (1). 	Similarly G
(2)

(P2'P) represents the solution of the problem 

of diffraction of waves emanating from a line source at P by the 

plate (2). 	Hence, since this problem has been solved (see section 

B2), eqs (90), (91) together with eqs (88), (89) constitute an analy-

tical formulation of the problem of diffraction by both breakwaters 

simultaneously. 

We now proceed to solving the pair of simultaneous integral 

equations (90) and (91). 	The incident plane wave F
o
(r,w) is expressed 

The above equations involve only two unknown functions 
Dv 

F
1
(P1)' 

1 3 
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an 
F
o
(P 1) - an

a 
F (P) 

1 	o 1 

a = — —  r aw F o(P)  
P=P

1  
w=0 

by exp{-ikrcos(w-00)}, therefore we have 

= -iksin00  exp{-ikrcos60} 	(92) 

a 	a 
F 	- — 
o

(T. 1) 	F r aw o(P)  
;;1 w=21T 

= iksineoexp{-ikrcos60} 

   

- a F (P.) 
and  0 (93) 

a 	a 

an2 
F
o
(P
2
) = — — F (P) 

r aw o  = iksin(6-60)exp{-ikrcos(6-6
o
)} 

w=6 
(94) 

a 	1 3 
F
o
(-I3
2
) 	- 

r aw Fo 
 (P)1 	=-iksin(6-60)exp{-ikrcos(6-60)} 

an2 
	

w=27r+0 

a 
F (P ) an  o 2 

Equations (90) and (91) can be written following  the notation of 

fig. 16 

a 	3 
(P 

an 
F
1 	

— G (P P ) 
av 

{F
2 	

2 
 + F 

0
l(P 

2
) an3 

(2) 2' 1
dt 

 2- 	
(96) 

1 	Z2

) = f 	
1 

a F1(P1
) = f 

	

 + Fl (P1 ) 
	
G 	(P 

ay
a  

2 	o 
(1, 

 1 	(2) 2' 1 	2 	
(97) 

an 	
2 	

2 
1 	

an
d 

(P 22) = 	{F1 + 
F )(P ) 

	
G 	(P ,P )t 

1 	o 	1 3n2  (1) 1 2
d 

1
, 	(98) 

2 
F2(P2) 	

3v
3  

1 
1 

(95) 

and 

and 
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F2(1 	J 2) = Ta  T- 	+ P01(P 1 )
a G 	(P 	)di 1 	(99) 

a112 	Z1 	1 	(I) 	2 
an2 

Or, using eq. (95) 

CO 

-  kr = f - 1r 	F AP ) — G .(F ,P.)dr + an 1 1 	2 o 2 3n, (2) 2 i 1 
r 	

d 37' 
iV

2 

CO r 
2 	

3 + j 
d 	

{F2  + F0}(P2) ani  G ) (P2,P 1 )dr 

F 
o 
 (ir
2 an1 ) --[ G(2) (F2' P1  ) - G(2)(P2'P)]dr + 

- d an2 	1 

CO 

+ flan F 
	 o  IF 

	

 2
6F 2) an 	2) C  2'P 1 ) + 

2 
d 	 1 

G k 

+ —a F 	ddr 
2 	 1 3n 	2 (P 

2
) 3n3  G (2) (P  2 1 

Similarly eq. (97) gives in view of eq. (93) 

CO 

F1  (TP1  ) = f 	{F2  + F o }6F2  ) 	G(2) (F2' F1  )dr + 
d an2 	ani  

03 
+ f — {F + F }(F ) 	G (P 	)dr an 2 o 2 - (2) 2 1 d 2 

	
an- 11

1  

a = f — F o  (F2  ) 	{G (2) (F21 ) - G (2) (P2,13 1 ))dr + 
2 	

- d 	 3n 1  

a 
an1 
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2. G
(2) 2'

T1) = 	a 
and  G(2) (T2'P1) and 

an 
 

a 
G
(2)

(P
2'
T) - 	and  G(2)(P2,P1) 

an 
 

So we find that 

a  
F (Ts ) = 	an F (P ) 

8n1 	1 

Similarly 

a 	a 
F (F )= + — F (P ) 2 2 	an 2 2 

2 	
2 

 

The set of the four equations (96), (97), (98) and (99) can be 

replaced now by the following two equations 

CO 

3 
X = f {Y +-I;

72
.-F

o
(P
2
)} 
 an 

[G
(2)

(P
2'
P
1
) - G

(2)
(i"P)]dr 	(100) 

1 

CO 

Y = f {X + 
an

d u 
F... 	dn2  [G(1)

(P
1
,P
2

(P1)) _ 	s 	) - G(1 )  (1 1 ,P2)Jdr 	(101) 

But 

where X - 
an 

F
1
(P1 ) 

1 
Y - a 

F (P ). 
an
2 

2 2 
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The values X,Y having been found from eqs (100) and (101), we can 

derive F 
1 
 , F

2 
 from eqs (88), (89): 

CO 

F (P) = f {Y + —an3 F0(P2)}[G(2)(P2'P)  - G(2)( 2'P)]dr 
d 	2 

(102) 

F
2
(P) = f {X + — 

and 
F 

 o 
 (P

I ))[G(1) 
,(P

1 
 ,P) - G(1)(1 1,P)]dr 

	
(103) 

As we said before G
(2)
(P

2'
P) represents the total velocity 

potential at the point P
2 

due to a unit line source located at the 

point P when only the breakwater (2) is present; and similarly for 

the other Green's functions. 

Let us employ first the integral form of the velocity 

potential; from section B2, eq. (12) we get 

I ikR 
G(1)(P1,P) = — e 	I 

ii  

-1k(ri+r-R1) 	
+ 2kRi  2  

dp 	(104) 
(11:xp{i 2})  

where R
I 
= +(r2  + r2  - 2rIrcosw)

1  ; similarly we have 

n 	(17 	N . 
7T 
 eikR 

-(1)1'
tI
"  1 f 	

explip21 	, 

	 (p2  + 2kR )  a/I 	
(105) 

+AUI+r-RI) 	1 

	

1 ikR 	exp{ip21 	
G
(2)
(P

2'
P) = — e 	2 	 du (106) 

+A(R
A
+r
2
-d-R

2
) 
(p2 2kR2) 

 

with 	R
2 = +[r2  + r2  - 2rr2cos(8-w)]] 	and 
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G(2) 2' 
p) 	eikR2 

	I du (107) 

-4(RA+2-d-R2) (122 
 2kR2)2 

exp{ip2} 

9 - 
aril  G 	(P (2) 2'

P 
1
) 

 
a 
an 

G
(2)

(p
2'

p)  
1 

P=P
1  

R
A 

= +[r2 + d2 - 2rdcos(e-W) ] 

Now, 

   

 

9n1 
G(2) 

(17
2'

p
1
) a 

ani 
G
(2)

(F
2'
p) 

P=P1 

    

1 	
e 
ikR 

= 74 	2 	
exgiu21 du  

nr 5  
-1/k(RA+r2  -d  -R2) 	(1-12+ 2kR2)1  

r= r1  

01=0 

ikr 2  sine . 
	 e

2.1cR
12 

nR
12 	

exp{ip2} 
du - 

-A(RIA -R12 - 
+r2--

AN (P2  + 2kR12
)2 

/ 

kr2sine 
	 e

ikR
12 	

exp{ip2}  
- du + ¶R12 	 3 

	  f,2 + 2kR
12)2 -,1k(R

IA
-R12+r2-d)   

exp{ik(R IAR124.1.2-d)) sin()  	r21 

2n 
[(RIA 

+r 
 2 
 -d)2 - R212  ] 	RIA+r2-d R12 

(108) 

91 



sine 
 exp{ik(R IA-R12+1.2-d" 	d 	r

2 
 

[  
2v  	R

IA
+r

2
-d R

12 AR +r -d)2  - R2  
IA 2 	12 

co 
I 3 	

e 
ikR exp{iu2}  

2 
	du 

2  +A(RA+r2-d-R2) 	
+ 2kR2)  

r= r1  

w=0 

ikr
2
sine 	co 

e
ikR

12 	
exp{iu2)  

du - 

	

v11
12   (u2  + 2kR12) +A(R

IA
-R12+r2-d) 

kr sine' 	co 
e 2 	ikR

12 	exp{iu2)  _ 	 I 	 du - nR12 	 (p2  + 2kR
12

L
)2  +,11c(R

IA
-R12+r2-d)  

(109) 

Where we have put 

R
IA 

= +(r2  + d2  - 2r1 
 dcos0)1 	and  

R12 = +(r2  + r22 
 - 2r

1
r
2
cos0) 

1  

Consequently 

3 
3n 

N(2)(17.,P1)  G(2)
(P

2
,P

1
)] 

1 

2ikr
2
sin() ikR 

e 12 
vR

12 

+A(RIAR12+1.9-d) 
e 
ip2 

dp - 

 

(112  + 
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4k(RIA+r2-d-R 12) 

e 
I nR12 0 

2kr
2 	i sin0  kR 

e 12 	L  du + 
(p2  + 2kR12)2  

[

sine expfik(R IA+r2-d-R12)1 	
d 	r2  

w[(R1A+r2
-d)2 - R2

12  ] 	
R
IA
+r
2
-d 	R

12 

(110) 

+A(r i+r -R1) 
iu2 

e d 
r2 Tr 3w 0 

- 1 2 3 I  eikR1 
+ 2kR1  

2ikr2sine i - 	 e kR12 
nR

12 

iu2 

i du + 
(u2  + 2kR

12
)2  

4k(r1+r2-R12) 

I 
0 

e 

+Vk(r1+1.2-R12)  
e 

I 
0 

iu2 
	L  du + 

(112 + 2kR12)2  

2kr1  sine 
	 e

ikR
12 

7IR
12 

From eqs (104) and (105) we have 

   

+A(ri+r-R1) 

2e
ikR

1 e "  
i2 

G
(1)

(P
1
,P) - G

(1) 
 (T

1
,P) - 

(p2  0 	+ 2kR )1  1  
du (111) 

and so 

1 

2 ° 

3 

w  3n2 	
7.  [G(I)(F1

,P2) - G(1)(P1,P2)] = - 7- .7 [G(1)(P1 ,P) - G(1)(P1,P)] 
L 77  P=P2 

r= r2  

w=0 
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A 
+r 2 -d-R 2) 

2eikR2 
G
(2)
(P
2'
P) - G

(2)
(T
2'
P) - 

ip2 
	 du 

(p2  + 2kR2) 
0 

r1sine exp{ik(R1+r2-R12)} 
(112) 

 

1TR12 
 [(r

1
+r2)2  - R12]1  

From eqs (106) and (107) we get 

(113)  

and thus we can refind eq. (110). 

The four equations (100)-(103) which constitute the formal 

solution of the problem can be rewritten now in view of eqs (92), (94), 

(110), (111), (112) and (113). 

R- sin0 
j  [Y + iksin(0-00)exp{-ikr2cos(0-0)}] x 

2 
f 
0 

)) 

im2 
e " 

chi 

r, 
` 

f 
0 

dr 
 

[2kr 
exp(ikR12) 

R12 

exp{ik(R1A+r2-d-R
12 

(p2  + 2kR
12
)2  

d 

L  du] + 
(p2  + 2kR12

)2  

(114)  
[(R

IA
+r

2
-d)2  - R212  ]1 RIA+r2-d  R

12
] 

with 	R12 = +(r2  + r2  - 2r r cos0) 1 	2 	1 2 

R
IA 

= +(r2  + d2  - 2r
1 
 dcos0) 

= +[k(RIA  + r2 	d  - R12)]  

d 
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co 	 r
l  Y=  sine f [X - iksine

o 
exp(-ikricoseo)] R— x  Tr 

0 	 12 

, 

x 2kexpakR12) - f 

[ 	

e
ip2 	V 	i,2 

e 
iu2 

 

0 (p2  + 2kRi2)1- ciii+ i  Of  02  + 2kR
12
) dil J - L  

expfik(r1+r2-R12)1 
dr (115)  

[(r
1
+r
2 	12 

with V = +[k(r, + r2 - 
R12)]1  

	

2 	m 

	

F1(r,w) = - — 	J [Y + iksin(0-00)exp{-ikr2cos(0-e0)}] x 
d 

412 
x exp(ikR ) dp dr 

2 
(116)  f 	

0 (p2  + 2kR2)2 2  

with 	
R2 	2 

= +[r2  + r2  - 2rr 
2
cos(0-0] 

m = +[k(RA  + r2  - d - R2)]i 

R = +[r2  + d2  - 2rdcos(0-0] 

r F2(r(0) = 2 
f 
IX - iksine

o
exp(-ikr1caseoMexpakR ) x 7 

0 

m' 
" e 	 xE f 	dpjdri  

o (p2  + 2kR )2 
1 

with 	R = +(r2  + r - 2rr cos (.0)- 
1 	1

2 	
1 

m' = +[k(r + r - R )] 
1 	1 

03 

(117) 

We have now expressed the components F
1 
 and F

2 
of the scattered 

field Fs in terms 
of the integral representation of the Green's functions 
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= arccos 	
r - dcos(0-w) 

[r2  + d2  - 2rdcos(8-w)]1  

involved. Alternatively let us try to express the Green's functions 

in eqs (102) and (103) in terms of series of products of Bessel 

functions. 

From eq. (70) we get for 8 = 211.  

co 
F(P,P0) . 1 1 

4 	cmI 
J,  m (kr <  )11,im  (kr>  )cos LP- cos 11E0  2_ 	2 

m=o 

which means that 

• 
m 

G(2)(P2,P) = 71; 	 (-1)-cmJim(krdHim(kr>)cosim6+0-0 m o   

(118)  

r< and r> choosing the lesser and greater respectively among the 

values below, as described when deriving eq. (70) 

r < ,r>  = {r2 
 - d, +[r2  + d2  - 2rdcos(6-w)] } 

and 	= arccos 
r-dcos(0-w) 

 
[r2+d2-2rdcos(0-0] 

is the angle under which point P 'sees' the gap AO. 

In the same manner we find 

cc 

G
(2) 2' 	4 

P) =YcmJ 
m 
 (kr

< 
 )H (kr

> 	
60 )cosim+8- 1- 	

i  
m=o 

r<,r> = {r2- d, +[r2+d2-2rdcos(0-co)]i  

(119)  

cc 
G(1)(PI,P) = 	celim(krdHim(kr>)cos imco 	(120) m o   

r
<, 

r
> 

= {r 
1
,r} 
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G(1)(171,P) = 24: 1 (-1)mimJim(kr <)H]m(kr>)coslmw 	(I21` 
m=o 

rer> 	Cr1,r} 

We find from eqs (118)-(121) 

G(2)(P2'P) - G(2)(17
.P) =J ,(kr )H ,(kr )cos(m+1)(4)+8-0 

	

m+ 	< m+1  > 
mo 

(122) 

r<,r> = {r2-d R
A} 

Therefore 

a 	 1 

Qui 	` 
[G
‘
,,)(P2,P i) - G(2)(1 2,P1)] = -17 -TA G(2)(P2,P) - G(2)(F2,P)] 

r=r 1 
w=0 

i 7 
- _ V (m+DJ 	(kR )H 	Uk(r -d)]sin(m+1)0+8) + 

im.°  r 	m+1 IA m+ 	2 

idsin8  y m, 	, 	)H 	[k(r -d)]cos(m+1)0+6) - 
2 	

L f„+)J 
 Mil

(kR  IA m+ 	2 
R
IA m=o 

ikdsin8  Jmi-2- (kRIA )Hm+i ,[k(rl-d)]cos(m+1)0+8) 	(123) 
RIA m=o 2 

for values r 	d2  - 2r
IA 	

dcos8)1;  when r -d < R 2
-d > R = 4a,2 + - 1 	1 	2 	IA 

the symbols J,H in eq. (123) must be interchanged. 

We find too 

CO 

G(1)(P1'P) - G(I)
(13P) = i y J 	(kr111 	(kr )cos(mil)(13 	(124) 

	

m+ 	<' m 	> 
mo 

r < ,r>  = {r1,r} 
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a 
an2 

[G(I)(PP2) - (I)(13 1'1'2)1 = 	[G0)(1'1,0 	G(1)(FI,P)] 

r=r2  

w=0 

i 	c°  
-

r 	
1 (m+i)J . ,(kr_)11m4.1(kr>)sin(m+1)0 2 m=0 	c (125) 

r , <r > = {r1,r} 

Substituting eqs (92),(94),(122),(123),(124) and (125) into 

eqs (100)-(103) we find 

	

. 	co 	 co 

	

1 	f 	r 	 r 	r cos dr2 - X(r1,0) = - — JYLsin dr2 + 
idsin0 

 j Y L 

	

r1 d 	R2  d 
IA 

ikdsine  

	

co 	ksin(0-00)  
R 	

f Y 3/2 dr2 + 	 f exp{-ikr2cos(0-00)}Isin dr2 - 

	

IA 	d 	2 	r1  

kdsinOsin(0-00) 

	 f exp{-ikr2cos(0-00) } cos dr2  + 
R2  IA 

k2dsinesin(0-00) 
	 f exp{-ikr2cos(0-60) } 1 3/2 dr2 	(126) 

RIA 

where r
2
-d > R

IA 
as before and 

	

sin 	 sin 

1 cos = 	(m+I)Jm+i  (kR IA)Hm+1  [k(r2-d) ]cos (1:114.1) (4)+6)  m =0 

co 
X 3/2 =J

m+L
(kRIA)llm+i

[k(r
2
-d)]cos(m+1)(0-0) 

pa=0 2  
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Similarly we obtain 

m
2-- 	

ksine 
Y(r2,0) ' - 	fx E dr1 _ 

	
f exp(-ikricoseo) E dr, 	(127) 

r2 0 	r 
° 

2 	o 

CO 

where E = i(m+i)Jm+I(kr4)Hm+I(kr>)sin(m+1)e m o   

and r<  ,r>  = {rr2
} 

For the functions F F
2 
we get 

03 

F
1 
 (P) = - i f Y S1dr2 

+ ksin(e-e )fexp{-ikr
2
cos(0-0

o
)}S

1
dr

2 
(128) 

o 	d  

with 	S1 
	

Jm+I(kr4)Hm+I(kr>)cos(m+1)(4)+0-0 
m=o 

r4'r> = {r2-d, RA) 

and 

F
2
(P) = i f X S2dr1 + ksineo  f exp(-ikricoseo)S2dr i 	(129) 

o d 

CO 

with 	S2 	
J
m+1  

,(kr4 
)Hm+i  

,(kr
>  )cos(m+i)w m=o 

r ,r < > = {rl'r}  

We have again found functions F1  and F2  in another form - 

this time involving series of Bessel functions. 

The first half of the terms in each of the eqs (126)-(129) 

are associated with the scattered wave and the second half with the 

incident plane waves. 	Each of the two sets of equations (114)-(117) 
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and (126)-(129) provide a formal solution to our problem. 	However 

the apparent complexity of the coupled integral equations poses 

difficulties in evaluating the unknowns X,Y numerically. This 

suggests a further investigationintothe potential theory in order to 

substitute the kernels of the integral equations with simpler func-

tions or even better to convert the integral equations to non-integral 

ones, i.e. not containing the unknown in the integrand, having in 

mind that some approximation may be inevitable at this stage. The 

following subsection deals in general with this problem of modifica-

tion and with the presentation of the final result. 

C3.3 The Solution to the Problem 

C3.3.1 Some potential theory. 	The difficulties encountered in the 

previous subsection forced me to return to the fundamentals of the 

classical potential theory to search for 	any material useful for our 

task. 	An extension therefore of the remarks made in subsection CI.1 

is exposed here briefly. 

The most general two-dimensional velocity potential of period 

2Tria is of the form 

f(roo)exp{-iat}, 

where f is a solution of the Helmholtz equation in two dimensions 

(A + k2)f = 0 

Now, if f is to represent the field due to line source in free space 

it has to be independent of the angle to and it is evident that it is 

a solution of 
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d2
f + r 

1 d 
d
f 

+ k2f = 0 
dr 	r 

which is Bessel's equation of order zero and variable kr. 	The most 

convenient solutions of this equation are the Hankel functions which 

i 
behave near the origin like ± 

2
— logr but have no other singularity 

at a finite distance. Let r be a closed contour bounding the 

region D in the (x,y) plane. 	If v and w are two functions whose 

first and second-order partial derivatives are continuous within 

and on r, Green's identity gives (Baker and Copson [14]) 

T
{11 	— w 

an 
 }ds = fr(lAw — wAv)dx dy

an 
	 (130) 

where a/an means differentiation along the outward normal to r, and 

ds the differential length on r. 	If v and w are both solutions of 

the Helmholtz equation formula (130) becomes 

av 
f {v  an

w 
 an 
— }ds = 0 	 (131) 

or by taking w = Ho(kri) where r1  denotes the distance of the point 

P from a point on the contour, and letting v = f, 

an {f--- H (kr ) - H (kr ) — Ids = 0 an 0 	0 1 3n 
(132) 

provided that the point P(r,w) and the singularities of f lie outside 

r. 	If, however, P lies inside r this means that H
o
(kr

1
) has a 

singularity inside r and we have to apply Green's transformation to 

the region bounded externally by r and internally by a circle of 

centre P and radius c. 	Formula (130) gives, after letting c-'- 0, 
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f(r,w) = i — 
I 

	an if — H 
o 
 (kr

1 
 ) - H 

0 
 (kr1 3f ) — }ds 

4 	 an 
(133) 

where 3/3n now means differentiation along the inward normal to r. 

The following two theorems summarize the results. 

1. Interior problem  Let f be a solution of the equation 

(A + k2)f = 0 

with continuous partial derivatives of the first and second orders 

within and on a closed curve r; then 

f(r,w), P inside r 

{f 	Ho(kr1) - 110(kr1) 
an 
 }ds= 
	 (134) 

1 
0 	, P outside r 

where r
1 
 is the distance from a fixed point P(r,w) and 3/an means 

differentiation along the inward normal to r. 

2. Exterior problem  Let f be a solution of the equation 

(A + k2)f 
	

0 

with continuous partial derivatives of the first and second orders 

outside and on a closed curve r; moreover f should behave like Ho(kr) 

for large values of r; then 

f(r,w), P outside r 

4 
{f an  L H o- 

af 
(kr1) - Ho(kr1) 	}ds = 

r 1 
(135) 

0 	, P inside r 

where r
1 
 is the distance from a fixed point P(r,w) and 3/an means 

differentiation along the outward normal to T. 
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The requirement that f should behave like Ho(kr) at infinity 

is the radiation condition, which in other words states that 

f(r,m)exp{-iat} must represent cylindrical waves diverging from the 

origin. We note here that for large r 

2 ) 1  
Ho(kr) (akr) exp{i(kr - 1-01 

We turn now to the diffraction theory based upon the above 

considerations starting with Kirchhoff's approximation (see Bouwkamp 

[12]). Consider in a two-dimensional space a screen S of vanish-

ing thickness covering a finite part of the plane x = 0, and a system 

of sources in the left half-space (x < 0) (fig. 17). 

If the screen were absent the sources would produce a wave 

field Fi(P) at P. The actual field F(P) is the sum of Fi  and Fs, 

the scattered field due to the secondary sources on S. 	By Green's 

theorem 

Fs(P) = f {F 	Ho(kr ) - H (kr ) 	}dan 	 1 	o 	1 
3F  
an 

}ds 	(136) 

with the usual notation. 	Kirchhoff made the following assumptions: 

(a) On the 'illuminated' face of S (Si) the values of F and 3F/an 

may be replaced by the values of Fi  and 3Fi/311 respectively. 

(b) On the 'dark' face of S (Sd) both F and 3F/3n may be set 

equal to zero-. 

The total field then becomes, in Kirchhoff's approximation 

3F. 
i 	 a 

Fi(P) + 	
f 

4 
— {F. 

an 
— H (kr 

1 
 ) - H 

o 
 (kr

1 3n 
) 	}ds 

Si  

and its limiting values when P tends to S are 

103 



n 
si 	0  P (x.y) 

Sd  sources 
o e o 	 n 

o 

	VI. 

0 
	 x 

Fig. 17. 	Kirchhoff's approximation 

F. 
1 	i Ti  f r 	 1 -2- Fi(P) + 	H

o
(kr

1) an ds 	, P on S
d 

3F. 
i T j u 
	

1 
y Fi(P) + 	H_(kri) an  ds 	, P on Si

4 S. 	
1 

1 

We see that the assumed values F.(P) and 0 on S.
1 
 and S

d 1  

respectively are not reproduced unless 

3F. 
i T j 

r 2- Fi(P) + 	H 
o 
 (kr

1 
 ) 

an 
ds = 0 	, P on S ..  S

. Si  

However, it is evident that this condition cannot be fulfilled for 

arbitrarySandF.
].  

and therefore Kirchhoff's procedure is not self- 

S. 1 
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consistent. 	The reason for the inconsistency is that F and aF/an 

cannot simultaneously be described on S. 	Therefore the above 

solution is a rigorous one not of a boundary-value problem, but of 

a saltus problem in that it reproduces the jumps of the boundary 

values and not the actual values themselves. 

The complementary problem where the finite aperture A is 

present in an infinite plane screen S is solved in the same manner. 

Assuming the same primary field Fi  and noting that the integral over 

S is equal to that over S+A minus that over A, we find in Kirchhoff's 

sense 

aF. 
Ki(P) 	

4 
= — f {F. 

2 
an 

H 
 o 
 (kr

1 
 ) - Ho  (kr1 an  

) 	}dA 
3.  A 

(137) 

P in x> 0, n drawn into x> 0 

3F. 
Ki(P) = Fi(P) - -4  f - {Fi 

a 
T-Ho(kri) - Ho(kr1) -5711- }dA (138) 

A 

P in x< 0, n drawn into x< 0 

The analytic continuation of the function (137) through the aperture 

	

is the function (138), and vice versa. 	There are no discontinuities 

in the apertures where we have the values 

aF. 
Ki(P) = 1  F

i
(P) - — I H (kr ) — dA 

4 A 
 o 1 an 

n pointing x > 0 

Mi(P)  _ 1 
aF(P) 

an 2 an 	4 
	 + (A + k2) i 	

1 
f F.Ho (kr1 )dA 
A 

In this case Kirchhoff's method avoids the difficulty of not 

reproducing any assumed values in the apertures, for the assumptions 

made concern only the screen S. 
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A modification of Kirchhoff's theory has been proposed for 

diffraction problems in two space dimensions. 	It is based on 

Rayleigh's formulas (41) and (42) where we shall assume as before 

that F, 3F/3n may be replaced by the corresponding unperturbed 

values. Working in two dimensions we give the first of the two 

solutions,corresponding to (41), often called the Rayleigh solutions, 

for the case of the finite aperture in which we now limit ourselves: 

3F. 
Ra(P) = - 2 — f H

o  (kr 1 3n 
) 	dA, P in x > 0 

A 

From eq. (42) we derive the second of the Rayleigh solutions: 

RL(p) .f Fi  117110(kydA , P in x < o 
A 

(139)  

(140)  

Unlike Kirchhoff's theory, the modified theory is self- 

consistent. 	The reason is that it is sufficient to assume boundary 

values for either 3F/3n or F; the assumed values in the aperture are 

reproduced by the Rayleigh solutions when the point P tends to the 

plane x = 0 from the right (fig. 17). The continuation of these 

solutions into the 'illuminated' half-plane x < 0 is easy. 	We have 

3F. 
Ra(P) = Fi(P) - Fi(-P) - f Ho(kr ) 	dA 	, P in x < 0 	(141) 

A 

RA(P) = Fi(P) + Fi(-P) + 
2 
 f F. 

3n  2—.H o  (kr1  )dA , P in x < 0 	(142) 
A 

where F.(-P) means the value of F. at the reflection of point P in 

the plane x = 0. 

Like Kirchhoff's solution, the Rayleigh solutions are exact 
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solutions of saltus problems. The normal derivative of Ra jumps 

acrossthescreenfromnFian to zero; similarly the function Ra' 

jumps from 2Fi  to zero. 

The modified theory provides a means of distinguishing between 

the two principal boundary value problems,the soft and the rigid 

screen, the latter being of interest to us. 	Since DRa/an = 0 on 

the 'dark' face of the screen, eq. (139) was proposed by Bouwkamp 

(see [14]) as an approximate expression for the diffracted field 

behind the aperture of a rigid screen for the incident field F.. 

It is obvious that this approximation will be accurate immediately 

behind the screen but not so accurate in the vicinity of the gap. 

Rayleigh's solution provides the basis of our final formulation of the 

solution to our problem, a discussion of which is presented in subdi-

vision C3.3.3. 

If we try now to combine the Rayleigh solutions with the 

rigorous solution (eq. (44)) and its properties (2) and (4) we derive 

two sets of slightly different modifications of Kirchhoff's theory. 

Use of property (2) gives 

F = Ra 	, in x > 0 
(143) 

F = 2F. - Ra 	, in x < 0 

Use of property (4) gives 

F = Ra' 	everywhere 	 (144) 

In eq. (143) the incorrect boundary conditions of Rayleigh's solution 

have been corrected but the function 3F/3n is no more continuous 

across the aperture. 	In eq. (144) the boundary conditions are still 

incorrect but the approximation is now continuous across the aperture 
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and produces the correct values of F (=Fi) there. 	It is obvious 

that when the field in the vicinity of the screen is important rather 

than the aperture, as our case is, then approximations (143) are to 

be preferred. 

Our discussion so far in this subdivision concerns basically 

Green's (second) identity (eq. (130)) and the approximations based 

on it. 	Further study of this identity reveals its flexibility in 

the potential theory by the introduction of the Green's function 

which has already been mentioned in several instances. 

A natural point of departure is formula (133) valid if f 

satisfies the Helmholtz equation. 	This formula expresses f at any 

interior point of r in terms of its boundary values and those of its 

normal derivative. But we know (Kellogg [31]) that the boundary 

values alone (or:their normal derivatives) determine f and it is 

natural to try to eliminate the normal derivatives (or: the boundary 

values). 	The problem of finding f after showing its existence is 

called the Dirichlet (Neumann) problem or the first (second) boundary 

problem of potential theory. 	In our application it is clear that 

we are interested in the Neumann problem because generally in hydro-

dynamics we know the values of the normal derivatives of the wave 

function along a boundary rather than the values of the function 

itself. 	We wish thus to eliminate f under the integral sign in 

i 
j  r 
	a

n  
f(P) = 	(f — H 

o 
 (kr

1 
 ) - Ho(kr1 

en  
) — }ds 

2-1. 	a 	an 

by means of eq. (131): 
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0 	f {f 2E:— w 	ids  
4 r 	an 	3n 

in order that f may be expressed in terms of the boundary values of 

its normal derivative alone. This could be achieved if we could 

find a function w, solution of the Helmholtz equation, with normal 

derivative such that by adding the last two equations to find 

f(P) 	 f Bf(Q) 
j an  G(Q,P)ds (145) 

The function G(Q,P) if it exists is known as the Green's 

function of the second kind for r, or in our case the Green's function 

since we no longer deal with the Dirichlet problem where by analogy 

we have the function of the first kind. It represents the total 

velocity potential at Q when the incident waves are due to a line 

source at P. 	If this diffraction problem were solved then eq. (145) 

would give the solution of all other diffraction problems with the 

same reflecting boundary r. 

It is not difficult to formulate and prove uniqueness theorems 

for the functions found above. 	Care must be nfluanto apply the 

radiation condition to the appropriate part of the decomposed field 

as discussed in subsection C1.1. 	We suppose for the moment that 

there were two solutions f and f', we form their difference on their 

real and imaginary parts on which we apply Green's second identity. 

Finally we find that f = f' (see Stoker [13]). 

C3.3.2 	Integral equations. 	We have seen in subsection C1.1 that 

a powerful technique of tackling diffraction problems is by means of 

integral equations. 	The type of integral equation obtained for the 

simple problem of the slit in two dimensions is presented in eq. (46). 

Before trying to apply integral equations to the more difficult 
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problem of the two screens not being in the same plane, it is 

necessary to discuss briefly some of the theory of these equations 

to the extent it is useful for our work. 

The general equations (134) and (135) give, when the point P 

is allowed to be on the contour of the integration where it is 

denoted by p, the following type of integral equation 

s(p) = f(p) - Kff(q)K(p,q)dq 	 (146) 

where the function f(p) can be evaluated by knowing 3F/3n, K a con-

stant for any particular problem and the kernel K(p,q) of the equa-

tion depending on the derivative of the Hankel function Ho(kri). 

A classical method to solve eq. (146) is by successive approxi-

mations. We may take any appropriate function fn  as the zeroth 

order approximation, e.g. we take fo  = s when the kernel is small. 

Then the first order approximation is 

yp) = s(p) + Kffo(q)K(p,q)dq 

the second 

f
2
(p) = s(p) + Kff

1 
 (q)K(p,q)dq 	and so on. 

Or introducing the iterated kernels 

Kn(p,q) = fKn_1(p,r)K(r,q)dr 	, Ko(p,q) = K(p,q) 

we find for the nth approximation 

fn(p) = s(p) + Kfs(q)K(p,q)dq + 	+ K n-i f s(q )Kn_2 (p,q)dq + 

Knif.(0K.-1 (13 ,0dci 
	

(147 ) 
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The solution (147) with fo 
= s can be put into the form 

f(p) = s(p) + Icfs(q)R(p,q;K)dq 	 (148) 

where the function 

R(p,q;K) = K(p,q) + KK1(p,q)  + K2K2(p,q) + 

is the resolvent of the kernel K(p,q) (Kellogg [31]). 

The associated homogeneous integral equation obtained from eq. 

(146) is 

f(P) = Kff(q)K(p,q)dq 	 (149) 

which generally has no non-trival solutions. 

The kernel is said to be degenerate if it consists of a 

finite sum of products of functions of p only and of q only. 

K(p,q) = 	Tk(p)ak(q) 
k=1 

Equation (146) gives now 

n 
f(p) = s(p) + K / xkT(p) 

k=1 

where xk  are certain numbers given by 

xk = fak(q )f (odci 

Thus the entire problem reduces to finding numbers instead of 

functions (see e.g. Smirnov [32]). 	Generally we can approximate 

the integral in eq. (146) by some simple form not involving the 

integral sign. 

Indeed we can put 
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b 	 n 
I IP(x)dx = 	Akgsk) + 
a 	k=1 

.where Ak  and xk  are constant numbers for a given formula and E is 

the error. . Applying the above relation to eq. (146) we arrive at 

the equation 

f(p) = s(p) + Kt(p) + K Ak K(p,qk)f(qk) 
k1 

which in fact is a system of algebraic equations easy to be solved 

after neglecting the small quantity c (see e.g. Kantorovich and 

Krylov [33]). 

Much work has been done in the case where the kernel is 

singular; when the singularity occurs at p = q we can remove the 

diagonal term of the matrix K = Kid. In general we can use a compo-

site formula for the evaluation of the integral avoiding the points 

of singularity (Delves and Walsh [34]). 

So far we have seen only the second kind of the so-called 

Fredholm integral equations: eq. (146) is the general and eq. (149) 

is the homogeneous form. Equations of the first kind are of the 

type 

fK(p,q)f(q)dq = s(p) 	 (150) 

and the associated homogeneous is 

fK(p,q)f(q)dq = 0 	 (151) 

We shall meet this kind of integral equation later, therefore let us 

see quickly the special difficulties it poses. 

The main troublesome feature from a computational point of 
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view is that the problem is improperly posed, that is the solution f 

does not depend continuously on the data function s; thus a very 

small perturbation on s can give rise to an arbitrarily large 

perturbation in f. A method of solving the equation is of expanding 

the kernel and the given function into products of appropriate functions 

K(p,q) = 	ki  ui(p)vi(q) 

s(p) 	= 	s.1  u.1(p) 

hence the solution would be of the form 

s. r  
f (co = L kl  vi(q )  i 1 

There are uniqueness theorems of course, together with condi- 

tions for convergence and compatibility. 	In general s(p) must not 

contain components which are not matched by a corresponding compo- 

nent in K(p,q). 	Use of other expansions can be made, as well as 

regularization or iterative method (Delves and Walsh [34], ch. 13). 

Returning now to the diffraction problem, we rewrite eq. (134) 

for the interior problem under the same assumptions in a complete 

form taking into account the values of f at the boundary r 

f(p) , pCD 

	

f{f(q) 9n — G(p,q) - G(p,q) — 3n f(q))(1q = if(p) , 	p 	r 
9  

	

, 	p E E 

(152) 

where G(p,q) = 4 H 
0
(kr) is the free space Green's function, r is the 

non-negative distance between the two points p and q, D the interior 

domain and E the exterior. 	Function f must satisfy the conditions 

of eq. (134) and it will be specified later in relation with the 
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familiar incident, scatterd and total fields. 	These equations are 

of the type considered above, namely Fredholm integral equations of 

the second kind. The integral 

g(P) = -2 f G(p,q) -a 
f(q) dq 

F 
3n 

is known for any given boundary r, so the second of eq. (152) gives 

f(p) = g(p) + f K(p,q)f(q) dq 	 (153) 
F 

where K(p,q) = 2 2--
n 
 G(p,q). 

a 

The last equation is identical with eq. (146) which permits 

the numerical treatment suggested previously. 	In fact we approxi- 

mate the integral in eq. (153) by a quadrature formula 

b 
f Q(t)dt = 	w.Q(t.) 
a 

say, and we get 

f(p) = g(p) + 	w.K(p,q.)f(q.) 

j 	3 	3 
(154) 

To solve eq. (154), Fredholm put p = qi, i = 1,2, ... and 

arrived at the system of algebraic equations 

. K..w.f. = g. 
	 (155) 

By getting max i = max j = n we have n equations for the n unknown 

f. E f(q.), the qi  being quadrature points. 	Having found f. by 

solving eqs. (155) we can calculate f(p) at non quadrature points 

via eq. (154). 	The normal procedure is to divide the contour into 

n equal arcs and take the value of f constant along each interval so 

that it comes out of the integral sign. 	When the points coincide 
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the kernel is non-singular for two-dimensional problems, in fact 

(Delves and Walsh [34], p. 286) 

lim K(p,q) = lim an 2G(p,q) = -curvature at p orp 	q4pq 

In eqs (152) function f can clearly represent the scattered 

field F. 	Nevertheless in order to take advantage of the fact that 

for our case we have 3F/8n = 0 along the solid boundary, where F 

is the total field, we give the following formulation of Burton and 

Miller [35] 

F(p), p e D 

Fi(p) + P 	
3

F(q) 	G(p,q) - G(p,q) 	F(q)}dq = IF(p), p e r (156) 

0 ,peE 

which, when the boundary condition 
3F 
 0 is applied reduces to 

3n 

3 
F(p) = 2Fi(p) + 2 1  F(q) — G(p,q)dq , 	per 	(157) 3n 

a Fredholm equation of the second kind similar to (153). 

In order to apply the above theory to our problem, a contour 

can be drawn as in fig. 18 in whose interior we try to evaluate the 

wave function F. 	Unfortunately I have encountered difficulties in 

finding a non-trivial solution; this is due to the fact that the 

second of eqs (156) - or (152) - does not hold for boundaries that 

have been shrunk to a double line segment and their interior domain 

has disappeared. 	A brief proof might be worthwhile, for I have not 

found anything similar presented explicitly in the literature. 

Consider the contour S comprising the two identical arcs 

S1,S
2 
(fig. 19). 	We shall apply twice Green's identity taking the 

point p to be on S
1 
or S2 each time but with the same co-ordinates. 
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Fig. 18. 	A contour S forapplicationof Green's identity 

Fig. 19. 	A contour S with no interior 
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Applying Green's identity for the function f fulfilling all the 

necessary requirements of eq. (135) we have for the point p1: 

-2- 1 	a 
f(pi) = f f(q i) = G(p1,q 1)dq1  + f f(q ) 7 -̂- G(p l,q2)dq2  - 

S1 	
°Ill 	S2 

2 
a 
on2 

- f "P1'cl11‘ 
 

	

f(q
1 
 )dq

1 
 - f G(pl'  q2 

a
n2 

) 	f(q2)dq2  

	

an a 	 a 
S
1 	

1 	S
2 

For the point p 2: 

1-  
1 

f(P2) = f f(qi) an  G(p
2
,q

1
)dq

1 
+ f f(q2) :

n2 
G(p2,q2)dq2  - 

Si 	1 	S
2 

	

- f G(p
2
,q

1
) a 

3n 
f(q

1 
 )dq

1 
 - f G(p 

2  ,q2 
a  

) 	f(q
2
)dq

2 
Si 	

a 
1 	S2 

n2  

i 
For our free space Green's function G(p,q) = -2-1-H0(1c1p-q1) we 

can readily show that 

G(p1,q1) = G(p2,q1), G(p1,q2) = G(p2,q2) 

and 

a 	a 	 a 
G(p1,q 1) = 	G(p2,q 1), an  G(p1,q2) = -5-- G(p2,q2) 

an1 	an 	
a

1 	2 	n2 

Hence we find f(p1) = f(p2) which contradicts the assumption that 

we can ascribe whatever values of the function f at the boundary. 

The contour of fig. 18 has now to be abandoned,in view of the 

above limitation. 	The only simple alternative is to draw two 

contours as in fig. 20. 	Our intention is to apply Green's identi- 

ties to two separate contours and appropriate functions and to use 
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the continuity of the total potential F as well as of its normal 

derivative aF/Dn across the opening OA. 

Employing the modified Green's identities (156) we get for 

region I, when the point p lies on the contour r1  

Fig. 20. 	Two regions I, II covering the whole plane 

1 	3 	3 
Fs(p) = fF(q) 3n 	an 

G(p,q)dq - fG(p,q) 	F(q)dq 
r1 	r1  

f F(q) 
a 	a 
n 	3 G(p,q)dq + f F(q)  8n G(p,q)dq - 

O 
L23q 	0A1 

- 	f G(p,q) 
3n 
 F(q)dq 

3 
OA
I 
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taking into account boundary and radiation conditions. When p is 

on OA we get 

2 
1 — Fs 	 3 

(P) = fF(q) 
a
n G(p,q)dq - f G(p,q) — an F(q)dq 

L2 	q 	OA, 

Similarly working in region II we obtain 

I.Fs(p) = fF(q) 
a
n G(p,q)dq - f G(p,q) — 3n F(q)dq 

3  L1 	 OA_ 

(158)  

(159)  

when p lies on segment OAR. 

It is clear that from eqs (158) and (159) we cannot formulate 

a system of algebraic equations as in eq. (155) because point p 

cannot occupy all the positions of point q; the need therefore to 

eliminate the first integrals in the above equations becomes apparent. 

Unfortunately, even if we differentiate these relations along the 

normal to OA, the fact that the two screens are not in the same plane 

leads in general to 

a2  

an an G(P,q) 	0 , 

q P 

with p on OA and q on L1  or L2, and consequently the first integrals 

cannot be set equal to zero if the kernel remains the free space 

Green's function. 	This suggests, since we cannot have F = 0 along 

the arms, to try to achieve aG/an = 0 there, in other words to employ 

the Green's function associated with our configuration rather than that 

of the free space; thus we could also limit our calculations 

to the finite segment OA instead of having infinite range of inte- 

gration. 	Of course the pure numerical method, as we can label it, 

leading to the formulation of eqs (158) and (159), where the free 
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space Green's function is used, is of much use when we are dealing 

with finite and irregular configurations where analytical approach 

seems impossible. We shall mention again this method briefly in 

subsection E3.1 but for the rest of the present subsection let us 

try to arrive at the final formulation of our equations along the 

lines suggested above. 

C3.3.3 Final formulation. As we have already seen the Green's 

function that satisfies the boundary conditions of the problem is 

no longer the free space Green's function; the former is a different 

function for each problem under consideration, while the latter 

remains the same. The form of a Green's function reveals its nature; 

generally a complicated function is associated with the actual 

problem as we have already seen in subsection C3.2 and presents 

simply the solution of the diffraction problem under consideration 

when a unit source is present. 

Using the contours of fig. 20 we can write expressions for 

the two regions I and II employing suitable Green's functions. 	The 

wave function in each region will be the sum of the same potential 

if there were no aperture plus that due to the presence of the gap; 

thus by denoting the field in region I,for the same incident wave but 

with the aperture filled by extending plane (2) to the origin 0 so 

that a wedge is formed,by Fw  we have for 

region I : F
I 

= F
w 

+ F
1 
	 (160) 

region II : F11= 0 + F2 	 (161)  

where now, 
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d 
F1  (p) = f V(q)G

I
(q,p)dq 
	

(162) 

d 
F2(p) = 	V(q)GII(c1Mdcl 
	

(163) 

V(q) is the velocity derived from F as its normal derivative to OA 

pointing into the region II. 

Gi(q,p) is the total velocity potential at the point q in OA due to 

a line source at p for the wedge problem. 

GII(c"p) 
 is similarly the potential for the corner problem (see fig. 

21). 

region II 

region I region I 

Fig. 21. 	G
I 

and G
II 

for the two regions 

These functions are known and can be found in subsection C2.2. The 

solution consisting of eqs (160) to (163) is rigorous so far under 

our general assumptions;indeed we have implied continuity of the 

normal derivative V across the gap. We now imposed the other 

requirement that is continuity of F across the gap. 	Letting the 

points p of the two regions I and II coincide on the point q' on OA 
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we obtain from eqs (160) and (161) 

Fw(q') + F1(q') = F2(q') 

or using eqs (162) and (163) 

d 

V(c){GI(cl'cl') 	GII(cbq' ))dq = - Fw(q') (164) 

where Fw(q') is the potential at q' due to our actual incident wave 

diffracted by the wedge of fig. 21, which again can be obtained from 

subsection C2.2. 	Equation (164) is a Fredholm integral equation of 

the first kind with unknown function V(q); solving this equation and 

substituting V(q) into eqs (162), (163) we obtain F1,F2  hence Fr  FII  

by eqs (160), (161). 

We deduce easily from eqs (70) and (72) 

Fw(p) = 
co 

2n 
 e J (kr)cosp(27-0cosu(27-0

o
)e 
-iip7 

27-0 	m p 
m=o 

Fw(q') = 27  
27-0 

v 
(-)me 

m  J  p 	
" (kr)cosp(27-0

o
)e-ii 

 
m=o 

CO 

7  
2(27—

i  
0) 	

(-)mc
m
J

11
(kr

<
)ll

11
(kr

>
)costi(2.7r-w) G

I
(q,p) = 

m=o 

7i  
G
I
(q,q') 2(2n-0)  emJp(krdykr>) 

m=o 

ni m  m 
G
II
(q,p) = 20 — X (-) e 

m  J  v 
 (kr < )H 

v 
 (kr

> 
 )cosvw 

m=o 

CO 
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c0 

L  G
II
(q,q') = 

ri 
L cmJv(kr<)Hv(kr>) 

m=o 

with v = mIT — = p 
ren 

 - 1) and the rest of the notation as in eqs 
0 

(70),(72). 

Equation (164) becomes 

d 
f V(q) { X c 

m 
 J (kr

< 
 )H 

P 
 (kr ) + 	- 1) X c 

m  J  V 
 (kr < )H

V 
 (kr

> 
 )}clq 

o 	m=0 	 m=0 

CO 

= 4i X (-)mcmJp(W)cosp(2r-00)exp{-iipw} 	(165) 
m=o 

where r < ,r> 
 take values from the set {q,q'}. 

This is a Fredholm equation of the first kind of the type 

d 
f K(x,y) f(y)dy = g(x) , (0 	x 	d) 

with f(y) represen._ting the unknown function V(q), 

K(x,y) = X k u (x)v
m
(y) + X9. u'(x)1.0(y) 

m m 	m m m 
m 	 m 

g(x) = X a u (x) 
m m 

for the case of y > x; 

u,v,u',v' represent the functionsJp,H11,JV,HV  respectively and 

a,k,2, are numbers. 	The fact that the kernel K is non-symmetrical 

and that p v in the products of Bessel functions introduces a big 

problem in finding an appropriate expansion, as discussed in the 

previous subdivision, for the right hand side of eq. (165). 	Therefore, 

a direct numerical solution seems to be very difficult. 	However, as 
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we have seen before, the fact that in this type of integral equations 

the problem is ill posed, which means that a small perturbation on g 

can give large perturbation in f, gives us a certain degree of free-

dom in choosing a priori the function f hoping that the 'error' in g 

would be limited; this seems to be a plausible assumption since K 

here has the character of a smoothing operator, its effect being to 

smooth any roughness in the f(y) on which it operates. And above 

all the simple fact that we are looking for an engineering appli-

cation allowed me to take this step, namely to introduce an estimate 

of the function f(y) and then evaluate the quadrature of eqs (162) 

and (163). 	The function that has been chosen to substitute V(q) in 

these equations is the unperturbed value of the appropriate normal 

derivative of the incident field, a practice used elsewhere too (see 

e.g. Lacombe [4]). 

We put therefore 

3F 
V(q) = an (q) = -iksin(0-00) exp{-ikqcos(0-30)} 

from eq. (95), and note that from now on we are interested only in 

the region II which represents the protected surface of the sea or 

in other words the harbour area; of course the potential in the 

outer region can be evaluated readily through eqs (160) and (162) but 

it does not present much interest in practice. 	Hence the other 

pair of equations give 

2 	
co 

¶ 
F = F

II 	
X0 sin(0-00) f exp{-ikq cos(0-00)} 	(-)me

m
J
v
(kr) x 

o 	 m=o 

x H 
v 
 (kr 

>
)cosvwdq 	 (166) 
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where v = mn/0, 0 q d and r<,r>  choose among the values {q,r}. 

This is our final formulation of the solution to our problem 

and it forms the basis of the computations presented in the next 

chapter. 

We shall confine ourselves mainly to the case of r > q which 

means that the observation point has a distance from the origin 

larger than the maximum q i.e. the width d. There is no restriction 

in finding values of the potential near the gap, as eq. (166) shows, 

the only alteration being a mere change of symbols. This modifica-

tion will be discussed in section El. 

Our remaining task now is to compute the above equation and 

find results for various combinations of the values of r,w,00,d,O; 

this is presented in the following section. 
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C4 COMPUTING PROCEDURE 

	

C4.I 	Calculation of Bessel Functions  

As we have seen in the Introduction the characteristic that 

is of most importance to us is the diffraction coefficient, i.e. 

the ratio at any particular point of the actual maximum height of 

the waves to the corresponding height of the incident wave, which 

equals the unity as we have seen in section AI. The diffraction 

coefficient is expressed as in eq. (9) 

K = IF1 

or due to eq. (166) 

6 	N 
K = 

	

72sinc 	 m
-0
7w  

{f{cos(27xcosc) 1 (-1)
m
cmcos --- Jurn.(27p)J 

mn
(27x) + 

0  o na---0 	 7 	0 

N 
w n 

+ sin(27xcosc) X (-1)
m
c
m
cos 

mew 
 J 
mn 

 (27x)Y 
mn
(27p)}dx12  + 

m=o 
0 	0 

6 
+ {f{cos(27xcasc) 1 (-1)

m
c
m
cos mnw  J

mn
(27x)Y 

mn
(27p) - 

o m=o 
0 	0 

sin(27xcos0 
N 

m=o 
1 	J 

(167) 

(-I)mc m 	0 
cos --13m/ 

mn 
 (2nx)J m7 (2Tro}dx}2 

0 	0 

where we have now expressed all lengths in terms of the wavelength A; 

thus 6= d/X, x = q/X, p = r/X and c = 27 - (0-0), N a large integer. 

- 
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Our first task is to achieve the computing of Bessel functions 

of non-integral order. To do this I have used a computer programme 

developed by P.W. Milne and J.J. Russell in FORTRAN language at the 

C.S.I.R.O. Installation, Melbourne, Australia. 	This routine is used 

in conjunction with a subroutine evaluating the corresponding gamma 

function and it is based on a recurrence technique explained in 

Goldstein and Thaler [36]. 

In general the relation 

C
v-1

(Z) + C 	
2v 

v+1 	Z 
(Z) = — C 

v
(Z) (168) 

is used where C may be either J or Y. If v is a non-negative 

integer Y
o 

and Y
1  are found using the relations 

2 	
-1- 

7
(_)n 1 - 

J
2n 
n 

(Z) 
Yo(Z) = -4(log Z 	y).10(Z) + 2   ) n 	2  

n=1 

where y is Euler's constant = 0.5772... , and 

2 
jIyo - joy1 = nZ 	(Watson [15],§ 3.63), 

together with the recurrence relation (168). 

If the positive v is non integer Yv  is obtained from the relation 

J
v
cos(vn) - J

-v 
sin(vn) 

The above programme has been adapted to the requirements of the 

Imperial College Computer Centre. 

At first a simple test has been carried out to check the 

computed values of J and Y for specific values of v for which tables 

exist. 	The agreement was very good. The range of v extended up 

Yv 
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0 	(1) w (2) 

to 19 including fractional orders. 	For example we find for J1(210 

the number -0.1545 while by a linear interpolation from the tables 

we find -0.1542; or for a limited number of digits we have 

Y2(0.10) = -127.6 where the tables give -127.64. 

A second test followed to establish the summation procedure 

which has been performed on the values of J and Y as dictated by 

eq. (167). 	For this purpose a version of an addition theorem 

(Watson [15]) has been used. We have 

03 

Ho(Z) = J0(w)110 	II 1  (W) + 2 IJ0(w)Ho(W)cos(nX) 

where Z = (w2  + W2  - 2wWcosX)I 

with the notation of fig. 22. 

Fig. 22. 	The application of an addition theorem of Bessel functions 

Or 
CO 

110(Z) = nXocnJ0(w)H0(W)cos(nX) 

CO 

y (-1)ne
n
J
n
(w)Hn(W)cosnw 

n=o 
(169) 
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with 	Z = [(27r02  + (2np)2  + 2(27a)(27rp)coscd i  = 2nR(E) 

if w = 27a, W = 27rp. 

Putting p = 3.0, co= 60°, 	= 1.0 we have R = 4-1. 	Evaluating both 

sides of eq. (169) we find from left-hand side the number 

-0.166249421789 + 0.021348251872i 

and from the right-hand side 

-0.166249421789 + 0.021348251862i 

leading to a perfect agreement. The DO LOOP necessary for the 

summation had been repeated 20 times which proved to be enough for 

our order of accuracy that requires two decimal places for our final 

result K. However, it was found that with increasing d we had to 

take more terms of the series to assure small error; for example for 

= 5.0 more than 30 terms were needed, but for the results presented 

in the final chapter we have d = 3.0 at most so for these last cases 

26 terms were taken instead. 

C4.2 Evaluation of the Quadrature 

The summation of the series having been preformed, it remains 

	

to evaluate the definite integrals that occur in eq. (167). 	The 

number of pivots, i.e. points that divide the range of integration 

into small segments, needed to obtain the answer to the required 

accuracy is not known beforehand, therefore we cannot use Gaussian 

approximation formulas (quadratures); the Patterson algorithm DOIACF 

of the Nottingham Algorithms Group has been used instead, which uses 

the optimum addition of points to a quadrature formula. 

The routine evaluates a definite integral of the form 
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b 
f f(x)dx 
a 

using a method described in Patterson [37]. By a suitable change 

of variable 

2 	b+a 	b-a 	b+a 
b-a 	b-a' 2 t+ 

 
2 

the integral is changed to the form 

1 

f Q(t)dt 
-1 

which is then approximated by a quadrature formula 	AkQ(X), 
k=1 

where Ak  are the weights and Xk  are the pivots. The routine begins 

with the three-point Gauss rule and derives a new seven-point rule, 

three of which coincide with the original Gauss abscissae; the 

remaining pivots are chosen to give the greatest possible increase 

in accuracy. 	The procedure is repeated to produce 15,31,63,127 and 

255 - point rules if required. 	The integration is based on the 

successive application of these rules until two results are obtained 

which differ by less than a prescribed value RELACC or absolutely by 

less than a value ABSACC. 	In order to prevent unnecessary amount of 

calculation for some special values of the integral, both these 

parameters have been specified. An error parameter gives a failure 

message if any error is detected. 	The integrand, which in our case 

is the already computed series of Bessel functions multiplied by a 

circular function, is called by an external function command. 

A test programme operating on a simple Bessel function has 

been run at a first checking step. Use was made of the formula 
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a 
I J1 
	

1 
(bx)dx = — {1 - Jo(ab)} , a > 0 

which for a = 1, b = 2w gives the result 

I  r  -I; {1 - J0(2n)} = 0.124 

The routine gave the same result using 15 points in the range of 

integration. The difference between the last two successive 

estimates of the integral was 0.5606 x 10
8
. 

A second test was then carried out by computing the integral 

S 
f cos(2nxcosc)J

mu 
 (2nx)dx 

0 	
8 

for various values of the parameters d,c,0,m. 

The output reproduced the answer 0.124 for S = 1.0, 0 = n, c = 3n/2, 

m = 1 using again 15 points and obtaining relative error 0.561 x 10-8. 

A final checking has been performed on eq. (167) for 0 = n, 

S = 2, t = 3w/2, p = 3.0, w = 7/3. 	Under the same assumptions we 

have for this case 

2 

	

	2 

9n 4 f 
9F i 	

k 
f  r F(P) = 2 j — — H 

o
(kR)dx = T  Ho [kip2  + x2  + 2pxcosw]dx 0 	 0 

and 
2 

K = IFI = n {f J
o
(2nA2  + p2  + 2xpcosw)dx}2  + 

2 
+ {f Y

o
(27rIX2  + p2  + 2xpcosw)dx}21  

0 

which equals 4 — for p = 3, w = 600 . 
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Our equation (167) gives for that case the answer 0.2503... , 

while a parallel computing of the above relation gives the same 

result to the seventh decimal place. 

We now procede to obtaining results for our applications. 

Two sets of such results were sought; the first set was intended to 

be compared with our experimental results and the second to produce 

plots presenting the diffraction coefficient for different cases. 

All these have been included in the final chapter. 
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C5 ANOTHER APPROACH 

C5.1 	Some Theory of Matched Asymptotic Expansions  

As has been mentioned in section A2, an independent approach 

to 	those presented in subsection C1.1 occupies the rest of this 

chapter. The approach is based on a method known as matched asymp-

totic expansions and provides some checking of our main theoretical 

results of section C3. An elementary account of this method is given 

here. 

We can find the first hints of the method in the works of 

Rayleigh and Lamb; in fact eq. (37) is a direct result of Lamb's 

argument ([5], p. 532) that in the two-dimensional' problem of waves 

passing through an aperture and in the immediate neighbourhood of 

the aperture the motion 'must resemble the flow of a liquid through 

the same aperture' and an approximation is obtained by comparison 

with the results of the theory of the steady two-dimensional fluid 

motion as developed by the use of conformal transformations. 	The 

same procedure is used here as the basis of our method. 

The modern theory of matched expansions can be said to have 

been established by M. Van Dyke in his book 'Perturbation methods in 

fluid mechanics' [38]. 	In general the space where the solution of 

our problem applies is divided into two overlapping regions, the 

inner and outer region, and by a suitable choice of the variables we 

have to solve two independent problems, the inner and the outer.It is 

evident that for each one of these problems we lo-se some boundary 

condition which is replaced by the asymptotic matching principle which 
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states that the m-term inner expansion of the n-term outer expansion = 

the n-term outer expansion of the m-term inner expansion. This 

principle proposed by Van Dyke has been slightly modified in the more 

general work due to Fraenkel [39] where the necessity of grouping 

together logarithmic with algebraic terms is implied (see also [26], 

appendix). 

More formally if we denote by f(r;c) and *(R;c) the wave 

functions expressed in outer and inner variables r and R respectively, 

with r = ER, it is assumed that the function f(r;c) has an expansion, 

uniformly valid for r >> c = ka, a being a characteristic length of 

the problem 

f(r;c) ti 	I en(logE)mfn,m(r) 
	

as c 	0 	(170) 
n,m 

The angular parameer is suppressed in the above expressions of the 

wave functions because it should be common to each expansion; other-

wise the matching could not be performed. 

It is further assumed that the constituent functions f 	also 
n,m 

have expansions as r 0 of the form 

L f
n,m

(r) 	L ri  (logr)ja nijm 
	

as r 	0 	(171) 

i,j 

where the a's are numbers independent of r. 

Usually the numbers m,j are finite integers, while n,i are rational 

numbers. 

Similarly the inner potential Ip(R;E) is assumed to have an 

expansion of the same type valid for r << 1 

with 

11(R;c) ft, 	c(logc)qtp Pq(R) 

13,14 

as c 4- 0, r << 1 	(172) 
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L - k 
(R) 	L R (logR)

1
bpklq 	

as R co 	(173) 
1109c1 	k,1 

Under the above assumptions there is a common region of validity 

c << r << 1 

where the matching principle is to be applied. 	To describe this 

principle we use the notation f(N)  to denote the expansion (170) up 

to terms of order ell, and f(N'X)  to denote the function f(N)  written 

in terms of R = r/c and expanded as e 0, R fixed, up to terms of 

order cli; similarly for the function p. Now, the matching principle 

asserts that 

f(N,1.1) 	4(M,N) 	
(174) 

and enables us to find the coefficient of all terms of the series. 

C5.2 The Outer Problem  

C5.2.1 	Ocean. 	We choose for our purpose the low frequency range 

of the problem, a practice that in most cases shows that the result 

holds good for the intermediate frequency range as well. 	The problem 

involves two independent length scales d and A, therefore we see it 

as a singular perturbation problem which means that a single solution 

cannot be found valid throughout the flow field. 	We introduce the 

parameter c = kd and express the expansions of the wave function in 

terms of this parameter; as c -0- 0 it is clear that the field in the 

outer region of the ocean part (0 < w < 2n) will tend to the known 
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solution of the diffraction by a wedge fw, so we can assume an 

expansion for the outer approximation 

f(w,y) 	fw(wa) 	I gn(c)fn(xa) 
	

(175) 

where in f
w 

the incident plane wave has been incorporated, and 

g
n
(c) 4- 0 as a -+ 0. 

Some of the functions f
n 
will contain the behaviour of a line 

source at the origin, because at long distance from it the flow 

resembles that caused by a negative line source located at the open-

ing of the two breakwaters. Such a behaviour is expressed simply 

by 

	

- 4 
— H

o 
 (kr) 
	

(176) 

The difficulty that arises now is that when c is small enough but 

not zero the order of magnitude of the 'source field' becomes greater 

than that of the 'wedge field' which is the reverse to what happens 

when c = 0. 	This difficulty forced me to perform the matching of 

the two basic solutions to a low order, as we will see in subsection 

C5.4 

The asymptotic expansions of fw  and of (176) are respectively 

A + B(kr)
n/0 
 + C(kr)

27/0 
+ 	, kr 4. 0 	(177) 

, _ - (log2-Y) rt 	21T 	
+ 	log(kr) 	kr -+ 0 	(178) 

where A,B,C are constants that can be derived from eq. (73). 

We write here for reference the expansion of the Hankel function up 

to the sixth order of the argument 
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r  x2  x4  x6  

	

Ho(x) = Jo(x) + iY0(x) 	 + '1, 	— 	+ Tie 	9216 	• 

24 

	

x X r X 	x e x 	3A 

	

+ i [ 
n 

+ n log y 	Jog 7  + y - 1 + 32n  Clogtlog + y - 	- 

x6
t
rl x y 11 -- log — +  - 	+ 

23407r 2 	2 2 3 

The last two expansions are true in free space; here, where we have 

an occupied sector of the entire two-dimensional space of angle e, 

we must write instead of eqs (176) and (178) 

ni  
- 2(2n-0) Ho(kr) (179) 

ni  
- 2(2W-6) 2n

1 
 0 (log2 -y) + 1 

 log(kr) , kr 	0 	(180) - 

C5.2.2 Harbour. An observer far away in the lee of the breakwaters 

sees the flow as caused by a line source at the origin; consequently 

we will have corresponding expressions to eqs (170) and (180) of 

opposite sign 

E  ni + -2- Ho(kr) (181) 

i 0 
n 	1 	1 

-e  + — 2 + — (log2-y) - 	log(kr) , 	kr -3-0 	(182) 0  
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C5.3 The Inner Problem 

This is worked out in two levels of accuracy, the difference 

between them lying on the geometrical representation of the opening. 

First we deal with the less accurate reproduction of our original 

problem as approximated in fig. 23. 

X 

Fig. 23. The inner problem with the segment 08(=0A) not taken 
into account 

We have seen in subsection C5.1 that the basic inner solution 

comes from the corresponding two-dimensional fluid motion problem; 

in fact we give here results obtained by Harris [40] (see also Lamb 

[5], p. 75). 	By a suitable rotation of the co-ordinate system 

through an angle n - = na we get x,y in terms of the potential fir 

and the stream function p: 

I—B 
x 	13a(1-13)  	[ef3fcosB(p-0 + e(3-1)fcos(1-0(P-0] 	(183) O sin(1-n 

88(1-8)
1-B 

 [ Bf singp-10 - e(8-1)fsin(1-8)(P-n) 	(184) Y 	sin(1-8)n 

Ti It should not be confused with the velocity potential q5 of the 
unsteady state. 
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3 	1 
2 

When our angle 6 lies between 90
o 

and 180°, 	
4 

lies between —and — 
. 

An important point in this analysis is that the length of the segment 

OB is no longer independent (equal to d), but has the value 

(AB) = (OA) = csc(1-0)1r 

so that we always have (AB) = 2 independently of the angle 6. 

Writing eqs (183) and (184) in compact form with z = x + iy, w = f+ip 

we derive 

0 	1-B B (1-B) 	ea(w 	'(1 - e-w) sin(1-8)n (185)  

Moving now to a higher level of accuracy, we take into account 

the segment OB of the breakwater (1) and we try to find the corres-

ponding relation to eq. (185). From the Dictionary of Conformal 

Representations by Kober [41] we find through a Schwarz-Christoffel 

transformation that for this geometry 

r 	1 a-c 28-1 ac 	28-2 -21118 z 	
= 

iy 
= 28 w  w  (186)  28-1 e 

 2(1-0) w 

where a > 0 depends on the position of point B (fig. 23), and c > 0 

on the gap width. We no longer require OA to be equal to OB. 

Relation (186) maps the whole z plane with two semi-infinite slits to 

the half-plane p > O. 	This equation gives for the point B the co- 

ordinates 

xB = (-a)213-2r I 2  L 2a a  - 
a-c 	ac  

a + 
28-1 	2(1-8) ] ' YB = 

We require the point B to coincide with 0; therefore putting x = 0 

we find the value of a in terms of 8,c 

a = 1 	_ a  c 
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and our original eq. (186) becomes 

_ 
Z 	- 

r 	i 	_28 
+ 	

c 	28-1 8c2 	28-2] -27ria 
(187) "r ---- 

L 2a 
W 	1-8 w 	+ e 2(1-8) w 

describing the mapping of fig. 24. 

Fig. 24. 	The mapping of equation (187) 

For the point A we find easily the co-ordinates 

z = 28 
A 	c 	28(1-02 e-21rif3 

1 

so that in order to have lz
A
I = d, we put c = [2d8(1-02]25  (188) 

Obviously we need to express the function w in terms of z, so 

that we can easily obtain f = Re(w) which is of importance for our 

matching procedure. We return therefore to eq. (185) and try to 

inverse it; for this purpose we construct graphically the mapping it 

represents in fig. 25. 

Putting p = ir, we find the line 
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Fig. 25. 	The mapping of equation (185) 

z = 0(1-8)1-13 
eaf(1 + e-f) sin(1-8) Tr 

which has a minimum at the point B where 

df d {e 8f  + e 
(0-1)f} = 0 

whence 

= log 
1 ; a f

a  

We see from fig. 25 that for the ocean side we have Re(w) 	co; 

therefore as a first approximation we can ignore the second term in 

eq. (185) and find 

w ti - 73- logF(B)+iTI + 18— log z 

0(1-8)  
where F(8) = sin(1-0) 

or taking the real parts 
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1 	1 
- 

a 
- logF(8) + - log r 	, r = (ocean) 	(189) 

To the second order we have 

1-28 

A 0 
w n. -log 

A 
-+ - log {1 + (An 	} 

A 

with A = F(8)exp{-8ni} 

For the harbour side we have Re(w) -=, therefore ignoring the first 

term in eq. (185) we find to the first order 

W 
11

1 	ni 
+ —

1 
logz 	

1 	. 	1 
log A - 	 log F(8) +/r + 	logz 

8 	a1 	8-1 	1-0 

and taking the real part 

1'8 	a-1
1 	

4- log F(8) + 	log r , r = (harbour) 	(190) 

	

The task of inversing eq. (187) is more difficult. 	From fig. 

24 we see that for the ocean side we have Iwi >>1 for 	=, 

therefore we find accordingly, to the first order 

1 

w n. -(28z)28 

Substituting this value of w into eq. (187) we obtain easily for the 

second order 

w n. -(28z)!8 1-8 

We repeat the same procedure and find to the third order 

1 	1 
2a 	c 	c2 	28 w n., -(28z) 	- 113 	71.-71,y2 a - 1}(280 

and to the fourth 

1 	1 	- 1 - 3 
w 	n. 	-(28z)!8 - J - L(28z) 213 

- M(28z) 8 + 0[(28z) 20 ],lz14.3 

(191) 
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where we have put 

1-8 

L = J2q8 - 11 , 

M = J3  1 (1382  - 158 + 5) 

For the harbour side of the plane (x,y) we remark from fig. 24 

that for lzl + co we have Iwl << 1; therefore we treat the terms of 

eq. (187) in the reverse order of magnitude than previously. 	After 

successive approximations and some algebra I found 

1 
	

1 	3 

w ti (az)
2(a-1)t + N(oz)8-1  t2  + p(oz)2(S-1) t3  + • • • 1 z1 4  co (192) 

2 
where a = 

a 
— J 2 

t 	 w 
= exp { 

8
i
1
a  

8  J3 
- 4(1-0) 

72 
{a2J4 28  - 8(1 	-8) 
	4(1-0) 

Taking the real parts of eqs (191) and (192) we have respectively 

	

1 	1 	1 
W f 	-(28r)2a cos 	- J - L(28r)20 cos 1-1 	0 -3  - M(28r) 	cos 73- + 

r co, (ocean) 	(193) 

	

1 	1 	3  

f ti (ar)
2(a-1) cosw* + N(ar)0-1  cos2w* + P(ar)

2(a-1) 
cos3w* + 

N 

P 
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r 4-  0,, (harbour) 	(194) 

where w* - 
ure-27r0 

 

2(0-1) 

C5.4 The Matching  

Having the solutions of the inner and outer basic approxi-

mations at our disposal we can proceed to the matching of their 

expansions. 	Since our purpose is not a rigorous mathematical 

approach, but a rather rough answer to our original problem we shall 

perform a matching only of the first terms of the expansions; in 

fact a more detailed work would be in contrast with the restrictions 

of the method when applied to problems of intermediate range of the 

perturbation parameter e, where our case finds itself. 

A crucial point arises when trying to put the terms of eq. 

(175) in order of magnitude; indeed we have to find out if the first 

after the constant term in the f
w 

expansion of the wedge solution is 

more 'influential' than the source-like effect in the construction of 

the total field. 	Inspection of the equations of both inner expansions 

related to figs 23 and 24, together with work done in similar problems 

(Liu [42]) suggest that the source-like effect is more pronounced in 

the early stages of the approximation technique. 	So we have, in 

the usual notation, for the outer solution 

Ocean part  

1 
4  
i 

f 	f
w  - 
	

a H 
o
(kr) (195) 

where Q is a constant representing the strength of the line source 

to be determined by matching. 
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Harbour part  

1  f 	Q  1_13 i Ho  (kr) (196) 

The expansions of the above equations are respectively 

1 

f ti - 
iQ  (1 + 2i 	

-2' 	
1 	

2Qa 
(y + log 	+ — + — log r + B(kr)

28 
+ 

Tr 

kr 0 	(197) 

1 

with B = 
4(k)28 

e 	
0
o -in/4a cos - cos  

r (-L-) 	
2T3 	To  

28 

f 4( 1 
i(10) (1 + 2—rtl  (y + log 

2
)} - 1$1  6 log r, 	kr -4- 0 	(198) 

The inner problem has been solved for two degrees of accuracy; 

we shall use here both results for the sake of comparison. For the 

lower degree we have the expansions 

Ocean part  

. d'F(ej  
x+j -

2 	
exp{a[m(f+jp) + n]} + 	, mf+n « 1 (199) 

with m,n constants to be determined according to a method used by 

Newman [43] and j(ii) the unit in the complex planes of fig. 25. 

Harbour part  

d'F(a) 
x+jy=- 	2 

 exp(03-1)[m(f+jp) + nil + . , mf+n « 1 (200) 

In the above expressions d' represents the distance (AB). 

A factor exp{-jna} is omitted because the orientation of the two 

breakwaters plays no role any more since we decided to carry out the 

matching only to the terms of the expansions of order greater than 
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I/2a 
(kr) 	which do not bring  in the angle dependence. The above 

eqs (199) and (200) give respectively 

- 
1 	d'F(0) 	1 
— log 	n — logr + 	r+ co 	(201) 
Om 	2 m 8m 

1 	eF(a) 	
: (113)m logr + 
	(202) f 	log 	 , r co 

m 1-8 - 	2 

Carrying out a simple matching we equate the constant terms 

and the multipliers of the logr terms of eq. (197), with their 

counterparts in eq. (201), and obtain 

d,F(a) 	ill {1 4. .2_A. (y + log  -2)} 

	

-I log 	2 	= 	- 48 'n Om 

1Q 
Om 	2wO 

from  this system we find 

Q 
-2w 

ep(a) 	k iw 
log 	 + 	+ y + log  - 

2 

2w m  = 

From eqs (198) and (202) we get similarly 

d'F(0)  n 	iQ 	2i 
	 log 	 {1 + —Tr (y + log  -

2
) } 

{1-0)m 	2 	40-0 

from which by substituting the values of Q and m we obtain 

log  

	

d'F(a) 	I  
2 

 

n - 

 

where 

1 - a 

k in  I = y + log  - —2-  
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-2n(1 -8) 
Q 	d'E(5)  

log 	2 	+ I 
(203) 

Now, Q and m become 

m 	n 

We are primarily interested in the harbour region, therefore 

we find for it 

fti 	 H (kr) - 	
ni 

H (kr) 	
 

4(10) 	0 	- 2 o 	d'F(O 
log 

2 

[J2 + y2 

and If! = 
7  o  

4Uz + nzi 

(204) 

' 
where U = y + log 2 + log d F 2(8)  

and Jo 
 ,Yo 

 the usual Bessel functions of argument kr. 

In order to facilitate computation of a numerical result we 

1  that represents the ratio of wave height at a 
2 

particular point for two values of angle 8; we find easily 

f 
form the ratio 

f 

f1  
f
2 

4U2  + IT2] 1 

4114  + wZ 
1 

(205) 

   

We shall come again to this result during the discussion in subsec-

tion E2.2. 

If we wish to feed in more information about the details of 

the gap we should use eq. (187) which yields eqs (191) and (192) for 

the expansions in the ocean and the harbour side of the field respec-

tively; these substitute eqs (199) and (200) of the inner expansions. 

The potential is as if caused by a line-source located at the 
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point C in the w-plane of fig. 24; therefore we shall have generally 

F 	
1r ft. - 2 — loges + C 

where C is an arbitrary constant. 

From eq. (191) we have, after suppressing the factor exp{+2ri8}, 

1 

w ti (28z)
20 

whence 

1 	1 
log w 	3. log28 + -27 logz 

which gives 

1 	1 
F ft,  - 4na  logr + C 	4wa  log28 (206)  

For the harbour side we have from eq. (192) for the same as 

above co-ordinate system 

1 

w 	(az)
2(S-1) 

and 

lo2 w 	
1 	1 

logo + 	logz 
- 	2(0-1) 	2(8-1) 

which gives for the potential 

1 	 1 	 Fti 	
-- 	

logr + C + 	logo 
4r(1$) 	47(1-6) 

(207)  

If we put for convenience 

1  
C + 

4(1-8)r 
 loga = 0 

which is legitimate provided we keep C constant (see Tuck [44]), 

we find for eqs (106) and (207) 
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1  F 	
471(1-0) logr (208)  

1 	1 
F rt. - 4703  logr + I-7r  V (209)  

where 

0(1-0V = logd + 281og8 + 2(1-8)log(1-8) 	(210) 

We put as before F = mf+n and by equating the constant terms as well 

as the coefficients of logr-terms of the eqs (198), (197) and (208), 

(209), we find the relations 

Q I 
m 478 	0 27 

1 	1- - 1 Q 
470-0 m 	271 1-8 

1
v 
 n QI 1 
-  = + 4um 	28710 

- n = 	Q I 
m 	1-8 2Tr 

The excessive equation confirms our correct choice of the 

coefficient of Q in the outer ocean and harbour expansions. 	Solving 

the system we find easily 

m = - 1/2Q 

271(1-8)  
00-017 Q 
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4141 	7 

[ 4W + Tr 2  I 1  

	

2 	Z f 2 

If 

n = -I/4n(1-8) 

Substituting this value of Q into eq. (196) we obtain for the poten-

tial in the harbour side which is of interest to us 

inH
o
(kr) 

1 (211) 

 

2 	a(1-8)17 + 

on the assumption that the incident wave is of unit amplitude as 

already noted. The absolute value of f which represents the ratio 

of maximum wave height at a point to the corresponding height of the 

incident wave is found to be 

J2 + y2 
0  

where J
o 
 ,Y

o 
 the usual Bessel functions of argument kr and 

W = y + log -T  + 00-017, 	y Euler's constant (=0.5772...). 

As before we form the ratio of two absolute values of f at the same 

point and get 

f 	7 
4Wz + 12  

(212) 

A solution is thus found for the field in the harbour the 

orientation of which has not come into the equations because we have 

performed the matching procedure to the first order; repeating the 

technique to the next terms of the expansions will inevitably involve 

the factor B of eq. (197) which includes the cosines of both the 

angle of incidence and that of the observation point P(r,w). 

However, the results obtained above although qualitative rather to 
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this order can give an idea about the relations of the parameters 

involved and support in a way the solution of the theoretical 

investigation of section C3. 	Some comparisons and discussion on 

this subject is included in the final chapter (E2.2). 

To make easier the drawing of any conclusions there, we 

investigate here a little closer the function W that appears in 

eq. (212). 	It can be written as 

W = 1.722 + logd + 201og8 + 2(1-0)log(1-8) 	(213) 

where d= d/A as usual. 

The range of values of a that is of interest to us is 1/2 < B < 3/4 

and we can see from eq. (211) that for any two of these values 

0
1 

>
2 we must have (fl( > (f

2( which means (W2( 	1 IW I through 

eq. (212). 	Equation (213) can readily lead to the conclusion that 

if W
1 
 > 0, W2 

> 0, we must satisfy the inequality 

Bilogal  + (1-01)log(1-81) < 821002  + (1-82)1002 	(214) 

A rough plot of the function 

Y(B) = Blog0 + (1-8)log(1-8) 

is necessary at this stage. We note first that its minimum value 

occurs for 

dY 
= 0 = log0 - log(1-B) 

dB 

whence 80  = 	and the corresponding value of Y is 

Y . 	= -log2 = -0.693 
nun 

We see also that 01°0 tends to zero when B tends to zero from 
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positive values (see Hardy [45]). 	Finally we easily find that the 

function (1-6)log(1-0) is the mirror image of the O1og0 relative to 

the S = i line. We can now readily draw a rough plot of the 

function Y = Y(8) as in fig. 26. 

2Y d 
Evaluating —2- we deduce that there are no points of deflection 

dO 

in the interval 1/2 < B < 3/4 and consequently for al  > a2  we have 

Y
1 
 (a) > Y

2
((3) for the same interval. 	Therefore inequality (214) 

cannot hold for these values ofs which in turn means that we are not 

allowed to put W > 0, or in terms of the gap width we must always 
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Fig. 26. 	Graphical representation of Y(8) = 13100 + (1-0)log(1-6) 

haves<0.4;thiscorr"por isto thetairdratunvalues ofy,y..--0.693 
ran 

while the safer value is 6 < 0.31 which corresponds to the maximum 

value of Y for the interval under consideration, Y
max 

= -0.562. More 

will be said in subsection E2.2 where we shall see in addition that 
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the calculated source strength Q can form a type of transmission 

coefficient of energy through the gap for various values of the 

angle e between the two breakwaters. 

Concluding the present chapter we note that the solution of 

the wave function in the harbour (eq. (211)) is consistent with the 

inner solution, because its limit for kr + 0 is exactly equation (208) 

which after substituting F(8) by 

1 
mf + n = - — f 	 

2Q 	4x(1-0) 

gives 

f 
ti logr + I  

8(1-8)V + I 
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CHAPTER D 

EXPERIMENTS 
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DI OUTLINE OF THE CHAPTER 

In this chapter we are dealing with the experiments conducted 

to verify the theory exposed in the previous chapter. Some 

theoretical considerations of aspects frequently met in wave experi-

ments in basins and in particular those of interest to us occupy the 

next section while the remainder is devoted to describing the experi- 

ments actually carried out. 	So in section D2 brief notes are 

included about the theory of the wave maker, the filters that are 

usually put in front of it, the wave 'anomalies' by which we mean 

secondary waves that are present in the basin caused by any source 

such as harmonics of the wave generator, instability of the wave 

form etc. and finally something is said about the absorbing beaches 

and reflection from them. We refer only to those conclusions from 

the general discussion outlined above, that could be applied if 

possible in section D3. There we describe the problem due to various 

factors that emerged during the experiments as well as the remedies 

that were thought suitable, the equipment used and the experimental 

procedure followed. 
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D2 GENERAL CONSIDERATIONS 

D2.1 The Wave Generator  

There are two main classes of mechanical wave generators that 

are used in laboratory studies: the first is the moveable wall type 

machine generally moving harmonically in the direction of the wave 

propagation and the second is the plunger-type wave maker, which 

generates waves by oscillating vertically in the water surface. In 

the first category are included the piston and paddle type wave 

generators; in view of the fact that the work has been carried out 

with a plunger-type wave maker we shall limit our discussion to this 

type of machine which has been studied by Wang [46]. Nevertheless 

until this recent publication many papers had appeared dealing with 

the former type of wave generators, some of which are an important 

contribution to a full investigation of the problem. Having in mind 

that our plunger can be approximated by a paddle-type wave maker and 

that the conclusions drawn for the latter are quite general we also 

quote here briefly some results of studies by Biesel and Suquet [47] 

and Ursell et al. [48]. 

The problem consists, in simple terms, of finding the wave 

characteristics when the shape and motion of the wave maker are known 

and vice-versa i.e. determining the shape and motion of the machine 

when waves of given characteristics are to be generated. The 

substance of this theory is presented in an article by Havelock [49]. 

The orbits of the water particles in a sinusoidal wave motion 

are well known from the hydrodynamic theory of first order for 
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infinite or finite depth (see e.g. Lamb [5]). 	To obtain such a 

motion we should presumably have harmonic motion of the generator, 

a justifiable assumption. However the system water waves-generator 

allows for interactions between its components and it is here that 

the difficulty arises. Assuming as usual an inviscid and incom-

pressible fluid and irrotational flow over infinite depth we seek a 

solution of the equation 

A+ = 0 

satisfying the following boundary conditions: 

(a) the linearized free-surface condition; 

(b) normal velocity of the fluid at the plunger surface is equal 

to the velocity component of the forced oscillation in that 

direction; and 

(c) at large distance from the plunger the disturbed surface 

behaves like outgoing progressive waves (radiation condition). 

Early works dealing with the partial solution of this problem 

have been summarized by Schuler [50]. 	Following here a procedure 

by Wang [46] we assume that the physical plane of the two-dimensional 

model can be conformally mapped in a unit-circle, thus permitting the 

representation of the solution as a superposition of source and 

multipole potentials at the origin. The solution is general includ-

ing any shape of the plunger provided it can be conformally transformed 

in a quarter of the unit-circle presented in fig. 27. 

The final result is somewhat complicated but it takes into 

account the fact that the motion of the plunger is prescribed as 

s
o
sinat vertically, thus permitting boundary condition (b) to be 
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free surface 

smooth curve 

s.sinot 

unit circle 

Fig. 27. Conformal transformation of a plunger 

written as 

ax 
— 	=. s

o
acosat — as 	 as 

where s is the vertical displacement and IP the stream function 

conjugate to the required velocity potential 4). 	This condition can 

lead to evaluation of coefficients of the solution $, from which the 

amplitude ratio equation can be deduced, i.e. the ratio of the maxi-

mum wave amplitude to the corresponding plunger amplitude; this 

equation shows that for a given plunger geometry the ratio depends 

a2 
only upon the frequency parameter ---b. 

Experiments made by the same investigator give a satisfactory 

deviation of only 6.5% from the theory although it has been assumed 

that the depth is infinite. 	The theory suggests that we ought to keep h/do  

above a limiting value, 	 in order to 

apply its results; this value decreases with increasing do/b and 
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increases with increasing sectional area coefficient p of the plunger 

at mean position (p = plunger section area under mean water 

surface/bd
o
). At the above-mentioned experiments the ratio h/d

o 

was below the minimum value; nevertheless the agreement was good as 

already noted. 

An assumption that was found to be reasonable is that the 

height of the generated waves at large distance depends only upon the 

depth, width and sectional area of the plunger, which means that the 

wave elevation is not sensitive to the geometrical details of the 

body other than its principal characteristics. 	This conclusion 

has been noted many years ago by Biesel and Suquet [47] while analy-

sing the paddle-type wave maker, a good approximate of the plunger; 

they suggest that at distances greater than three times the depth of 

the channel the irregularities due to any defective form of the 

generator are negligible. 

Their analysis shows further that a moving wave maker is 

capable of reflecting an incident wave as a stationary wall, a fact 

that 	requires the use of filters as 	will be seen in the next 

subsection. 	In addition to these reflections, other deformations 

that persist far from the wave generator are due to higher harmonics 

and higher order phenomena which will be studied later in this section. 

Finally we make a note related to the diffraction of the 

generated wave around the edges of the wave maker. This fact has 

two effects; firstly it is likely that interfering waves be intro-

duced and secondly the amplitude is maintained only in a certain 

region whose breadth decreases with increasing distance from the wave 

generator. 	A sketch is presented in fig. 28 of section D3 where we 

apply the information gained in the present section to our actual 
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experiment. 

D2.2 Wave Filters  

It will be seen in the following subsection that apart from 

the first-order sinusoidal wave, on which the preceding theory is 

based, there are other sorts of waves present; of course it would 

be fortunate if we could eliminate all these parasitic (relative to 

our viewpoint) waves, or at least some of them. 

A common technique to achieve this is the use of some kind of 

wave filter running along the straight wave front that is to be 

filtered. It is to be remembered that we are dealing with the 

generation of two-dimensional waves. 	In general two types of 

filters can be distinguished: 

(a) filters that reflect small amount of the energy of the 

impinging wave while they absorb a substantial amount of it, 

and 

(b) those that are mainly reflective and do not dissipate a great 

proportion of the whole energy. 

The energy balance can be stated as 

Ei 
	

E
t 
+ E

r 
+ E

a 

where E. 	the energy of the incident wave, 

E
t 	

the energy of the transmitted wave, 

E
r 	

the energy of the reflected wave, 

E
a 	

the energy absorbed by the filter. 

Clearly for the same incident and transmitted waves the balance will 

160 



be determined by E
r 
and E

a
, where for the type (a) of filters ('dissi-

pative') we have Er  small, Ea  large and for the type (b) ('reflective') 

E
r 

large, E
a 
small. 

The dissipation of energy that occurs in the 'dissipative' 

filters comes mainly from generation of turbulence when the wave 

passes through the filter; this turbulence can be convected downstream 

and be another source of inconvenience when taking measurements.. 

The idea underlying the other type of filter is that it tends 

to allow through it more of the energy associated with the long 

wavelengths than of the energy associated with the short wavelengths. 

The disadvantage of this filter is that in order to be of any 

practical use in diminishing the harmonics, it has to present a small 

percentage of openings to the wave front. This leads to
n
-uniformity 

in the wave pattern immediately downstream of the filter due to the 

pronounced diffraction; these patterns may need to travel over a 

distance of several wavelengths to die out completely usually by 

interactions along the lines of symmetry of the components of the 

filter. 	Some compromise between these two opposing factors has to 

be made for each individual case, the task being not always an easy 

one. 

A kind of 'dissipative' filter that was used in the Neyrpic 

Laboratory, Grenoble, France, is described by Biesel [51], where we 

see that in order to have both,i.e. transmitted wave of measurable 

height even after diffraction around a breakwater say, and some good 

effect on the harmonics sent out by the wave maker,we need a very 

powerful wave machine indeed. 	It is also said in the same article 

that for example for 50% reduction of the height of the fundamental 

wave the first harmonic will be reduced to 1/7.1 of its original 
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height. 	It may be of some interest to note there the corresponding 

value that we get from an imaginary filter of the 'reflective' type 

consisting of a thin screen which is interrupted by a series of 

vertical, equal and equidistant slits. Applying for the moment the 

result obtained by Lamb ([5], § 306) for the acoustical case we find 

the value 1/7 compared with 1/7.1 of Biesel's; for this value we have 

for the wavelength X = 2.14 x (distance between two consecutive slits) 

if the width of a slit is one tenth of this distance. 

This simple example should serve if anything to illustrate how 

difficult it is to construct a 'reflective' filter for the wavelengths 

usually employed in the laboratories. The relatively small free 

cross-section offe--red to the wave front demands distance of many 

wavelengths downstream for the disturbed uniformity of the wave to 

be re-established. 

Of course the above example from the theory of sound is far 

from rigorous in this case. The main reasons, apart from the lack 

of finite thickness of the wall which could be allowed for, are 

(a) in water waves there is a free surface which carries the waves 

that we try to filter whereas in acoustics there is not; and 

(b) we have a variation of the wave characteristics with water 

depth especially in small and intermediate values of wave-

length whereas in sound we suppose uniformity along each and 

every plane. 

Unfortunately therefore, the theoretical results and information 

gained from the study of the general theory of diffraction through 

apertures in acoustics, electromagnetism etc., cannot in general be 

applied to the study of the filters of water waves (see e.g. Tuck [52]). 
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The gap is partly filled with experimental studies of confi- 

gurations resembling wave filtering devices. 	The simplest cases 

seem to be a straight row of vertical (a) circular and (b) rectan-

gular cylinders. The first of these cases has been examined from a 

different point of view by Costello [53], whence we quote the result 

of the nearly linear dependence of the transmission factor on the 

steepness of the wave that passes through the structure, a conclusion 

not far away from both the results of Lamb as noted above and of a 

recent work by Grane and Kohlhase [54] on the second of the above 

cases, where they find linear dependence. In this last paper several 

shapes of wall-element have been studied and the variation of the 

transmission coefficient with the wall thickness is found to be small 

especially for small ratios of the solid face to the whole area 

presented to the wave front. 

We see in general that the sound theory results are more 

sensitive to wavelength changes than the experiments on reflective 

C 	
obstructions of water waves would suggest. 	Nevertheless it was 

felt that a region more liable to an application of the sound theory 

would be the comparison of the shape and distribution of holes on 

the would-be filter which for simplicity is supposed to be a vertical 

wall. 	A limited study was therefore carried out, a brief account 

of which runs as follows. 

7 
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The notion of conductivity is borrowed from Rayleigh [11] 

where he defines it as a constant c for each 	shape of the hole,- 

such that the ratio of the wave energy that gets through to the 

energy of the incident wave measured on the area of the hole is 

2c2/7r. 	For the circle we have c = 2R, R radius of the circle, 

for the ellipse 

e4 e6 )jr; 
c = 2 — [1 + — + — + 

64 64 

a is the area of the ellipse and e its eccentricity. We deduce 

immediately that if the eccentricity is small, the conductivity of 

an elliptical hole is nearly the same as that of a circular aperture 

of equal area. Among various forms of aperture of constant area 

the circle has the minimum conductivity which gives, transmitted 

energy = 0.81 x (incident energy). 

The same applies if we compare one circle with n equal circles 

of the sametotalareaacting independently; we find that the conducti-

vity of the n circles is greater than that of the one; nevertheless 

the energy transmission coefficient remains the same. 	In practice 

one would expect slightly greater coefficient because the holes do 

not act independently especially when their distance is small. 

In general therefore the more the opening is elongated the 

greater will be the transmission coefficient, while when the opening 

is broken up there is no or very small change to this coefficient. 

The above hold under the theoretical assumption of zero thickness of 

the wall. When it has a finite thickness t we have from Rayleigh 

again 

c 
nR2  
t + a(t) (215) 
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where 1.370R < a(t) < 1.698R and a = 1.64R for most cases, for a 

circular hole with both ends open. 

The results obtained above for zero thickness are no longer valid 

because 	after simple calculation we get from eq. (215) 

transmitted energy 	2R2  
incident energy on the void area - (t 	for one hole, 

while for n holes of the same total area we find the same ratio 

equal to 

2R2 	2R2  
(tom + 02  < n > 1 

Our conclusion therefore for the case of finite thickness, 

which is of interest in application, is that the energy transmission 

coefficient increases when the opening is elongated and decreases 

when the opening is broken up to more than one aperture of the same 

shape with the original and of total area equal to it. Unfortunately 

we have not at our disposal the relevant formula for the conductivity 

of any shape other than the circular when t > 0; so it is difficult 

to compare e.g. two ellipses with one circle of the same wall thick-

ness. 

From 	simple considerations and the above theory I have 

developed two semi-empirical formulas relating the ratio 

force on a perforated plane wall_ 
	to the ratio of perforated 

force on the rigid wall 

area to the whole area a, in two cases: 

(1) 	n circular holes, thickness of wall t 
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= _ 0.5  0.707  

t/r7 + 5 
la, a = 1.6 	1.7 

(2) 	holes of any shape of conductivity c and area a 

R' 
R = 1 	0.5 + 0.4 -c- ] a  

vi; 

The above expressions are related to our filtering problem which is 

finally answered in subdivision D3.1.3. 	Incidentally these semi- 

empirical formulas compare well with other more sophisticated theory 

and with experiments (see e.g. Kenny et al. [55], fig. 3, p.334). 

D2.3 The Waves in the Basin  

D2.3.1 	Instability. 	The Stokes wave
1 

which has been assumed for 

this report suffers from instability. The comparatively recent 

discovery of this is attributed mainly to Benjamin [56]. 	Non-linear 

dispersive systems, as the case of the water, can carry periodic, 

progressive wavetrains of finite amplitude and steady waveform. 	In 

water waves when there are present 'parasitic' waves of small ampli-

tude and of frequencies and wave numbers close to those of the funda-

mental, gradual disintegration of the original wavetrain can occur. 

The problem is a practical one as well because such sidebands can be 

picked-up by the wavetrain from the background noise spectrum that 

is transferred to the water through the wave maker; this has been 

verified experimentally as reported in the above-mentioned paper. 

1 ak << c, E = 1 or (kh)3  which ever is the smallest. 
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Using the second-order theory of the Stokes wave we allow for 

non-linear interaction between each of the two parastic waves with 

the first harmonic of the primary wave, thus producing two new waves. 

The pair of interactions becomes resonant when the argument of each 

one of the new waves coincides with the argument of the side band of 

the other pair of interaction; then we have instability. 	This 

requirement is found to be for water waves of depth h 

kh > 1.363 	 (216) 

The distance required for such an instability to develop in a 

frictionless fluid is much greater than 1/2k3a2  from the wave maker, 

a being the amplitude of the fundamental wave. 

The above analysis applies to one-dimensional propagation of 

straight-crested water waves. 	Investigation for the two-dimensional 

problem of the - same waves shows that instability can occur for values 

kh < 1.363 in directions forming an angle tp 0 0 with the direction of 

propagation (Hayes [57]). 	Practically we can have instability for 

kh > 0.5 for various values of tp; for example for kh = 0.5 instability 

occurs only along the direction tp = 24°, the maximum range of 4) for 

which instability occurs is about 0 < < 42°  for kh = 2, while the 

limit of this range is about 0 < 	< 35.2°  for very large values of 

the number kh. 

D2.3.2 	Secondary waves. 	Apart from frequencies that can be trans- 

ferred incidentally in the wave system and lead to instability as 

shown in the previous subdivision, it is likely that first and higher 

harmonics emanate from the wave maker itself, being a by-product of 

its motion which is supposed to be very close to sinusoidal. 

167 



In laboratory experiments with waves over a horizontal bed 

the fundamental wave is accompanied by one or more extra wave crests 

of a smaller height and with a lower propagation speed. We shall not 

go into details of the theoretical interpretation of the phenomenon 

that had caused several disagreements; instead we will adopt one 

view point and follow the account of Hulsbergen [58], where he 

supposes generation of water waves by a piston-type wave maker moving 

sinusoidally, but the results are assumed to be applicable to our 

case as well. 

The existence of a free wave of half the period of the funda-

mental emanating from the wave machine is accepted, as predicted by 

Fontanet [59] in his second-order theory of the wave maker. This 

free wave of period T/2 and celerity CF  interacts with the fundamental 

Stokes-wave (T,C), which is supposed to consist of its three compo- 

nents (T,C), (T/2,C), (T/3,C). 	The products of the interaction are 

shown to be two waves (T,C1), (T/3,C2)with C1  = IcA / T, 

aX T 
C2  - 1.1.(1  ty , X being the fundamental wavelength and XF  = as < X. 

We now have three different pairs of waves each of which forms 

by vectorialaddition the corresponding harmonic of the wave record 

we get from the experiment. In each pair both waves have equal 

period as follows 

Stokes Wave 	 Record  

fundamental (T,C) + (T,C1) 	 A
l 

1st harmonic (T/2,C) + (T/2,CF) 1st harmonic free wave 	A
2 

2nd harmonic (T/3,C) + (T/3,C2) 	 A
3 

With respect to the amplitudes we see that if we denote by 

a that of the fundamental we can evaluate it through the experi- 
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mental results of the spatial variation of Ai  using the relation 

a = i(A
1
m
ax + A l 

where reflection does not interfere. 

For the amplitude of the Stokes first harmonic we have 

a2 = i(A—L 
max  + 
	min) 

and for the first harmonic free wave 

aF = i(A2ma — A 	) x 	2 min 

Similarly for the second harmonics 

a3 = ](A3 max A3 min) 

and for the amplitude a; of the wave (T/3,C2) 

af 
3 = (A3 max A3  min)  

From the same source [58] and for the first harmonic we get 

for a typical value of the ratio depth/A = 0.20, aF  = 0.5a2  and 

a2  
aF  = 0.5 --- 	whence a2  = a2/h, h depth of still water. 	For greater 

values of h/A the components of the first harmonic A
2 

decrease 

further. 	The small component a' of the fundamental A
1 
 is difficult 

1  

to be measured especially for Ursell's parameter (= 2aA2/h3) less 

than 28, because then the reflection from the beach appears to be 

the dominating feature..  

D2.3.3 	Attenuation. 	Hunt [60] calculated the dissipation of 

energy caused by the boundary layers of the rigid faces of a channel 

where the larger part of the dissipation occurs. 	Thus viscosity 
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causes through dissipation of energy a slight attenuation of the wave 

height. 	If we describe this attenuation by a damping factor 

exp{-Dx}, it is found that for a progressive wavetrain, with the 

usual notation 

D kr2v)i  kB + sinh2kh  
= 	:f-/ 2kh + sinh2kh 

(217) 

where B is the width of the channel and v the kinematic viscosity. 

A far less important dissipation of energy occurs due to the 

existence of a boundary layer at the free surface. It can be shown 

(Lamb [5]) that the amplitude decreases as 

aexp{-D'ot} , 	where D' = 2vk2/a 	 (218) 

so that the damping of the waves reduces their amplitude to a fraction 

exp{-4Trv(k3/g) } of the initial value after one period. 	The analysis 

is valid only if the thickness of the boundary layer is small compared 

with the wavelength, that is if (Batchelor [61]) 

vkl II  

4n2g2  
<< 1 	 (219) 

D2.4 Reflection from the Beach 

To simulate the conditions of the open sea we have to have a 

kind of wave energy absorber at the end of any wave basin, so that 

we do not have any reflection of the waves from the end wall. 

Perfect absorption being impossible in practice we seek for the 

structure that gives minimum reflection for the characteristics of 

the individual case with which we are concerned. 	In general sloping 
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beaches give quite good results. 

The finite dimensions of any laboratory wave basin are bound 

to produce surges of the water body as a second-order effect. 	In 

particular starting and stopping of the wave maker cause a sort of 

impulse, the effects of which persist for some time. 	When the 

steady state has been reached we are left with the incident wavetrain, 

and that reflected from the beach. The incident is the sum of the 

primary wave generated by the wave maker and the reflection from it 

of the primary wave partially reflected by the beach. 	The reflected 

wavetrain consists only of the primary wave reflected by the beach. 

It is clear that we have ignored any subsequent reflections from 

both the beach and the wave machine; this is plausible because even 

if we assume perfect reflection from the wave maker we come to very 

small amplitudes of the primary wave after its second reflection from 

the beach, of the order of e2  which is negligible provided that the 

reflection coefficient of the beach Cr is small which is usually the 

case. 

The regions close to the wave maker and the beach suffer from 

effects of this proximity and therefore care must be taken so that 

measurements be taken in the middle of the wave basin. 

The amplitude of the recorded oscillation being A, we have 

at a distance x from the wave maker and under the above assumptions 

the following (Ursell et al. [48]), 

A = 	+ ccos(2kx + 6) + ccos6] 	 (220) 

where a is as usual the amplitude of the primary or fundamental 

wave, and 

c,6 parameters depending on beach characteristics and length 
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of basin. 

It is found that the reflection coefficient of the beach can 

be expressed as 

A
Max 

— A . 
c
r 

= 	
min 

A
max 

+ A . 
min 

 

(221) 1 + ccos6 

We need to take measurements at least along a distance of half the 

wavelength of the incident wave which equals the wavelength of the 

variation of A as predicted by eq. (220);thus cr  can be obtained. 

The amplitude a is given by 

a 
A  

- A 
1 + ccosd (222) 

where A denotes the average of the recorded amplitude over half a 

wavelength of the primary wave. 
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D3 EXPERIMENTAL EQUIPMENT AND PROCEDURE 

D3.1* Equipment Used and Factors Affecting the Measurements  

D3.1.1 Wave Basin. 	A general layout of the basin where the experi- 

mental work took place is shown in fig. 28; the model is not yet 

shown. The floor is nearly horizontal and the walls are formed by 

precast concrete kerbstones that allow for a maximum usable depth of 

water of about 38 cm. The energy absorbers can be seen along the 

three sides of the basin, the floor and the walls of which are covered 

by a heavy polythene sheet. In the constant depth region a reference 

grid oflmxlmsquare was marked on the floor and labelled as in 

fig. 28. 	Line AA coincides with the back face of the plunger; line 

33 is the perpendicular to it at the mid-point. 

Part of the preliminary experimental work included in this 

subsection, such as calibrations, measurements of reflection coeffi-

cient etc., was carried out together with Mr R.W.P. May whom I thank 

for his co-operation. 	He has found [62] that the floor of the basin 

was not quite horizontal; therefore we took measurements of the 

vertical distance of several points of the bottom from an arbitrary 

reference level. 	The results are given in Table I. 	Point G corres- 

ponds to the pointer gauge located at one end of the basin to measure 

still water level at any time when the wave generator was not opera- 

ting. 	The other points refer to the grid crossings of the corres- 

ponding row and line. 

The average of the values in the table, excluding point G as 

being far from the 'working' area, is 72.19 cm which means that we 
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point altitude (cm) point altitude (cm) 

G (pointer-gauge) 72.03 C3 72.20 

Al 72.15 C4 72.25 

A2 72.00 C5 72.40 

A3 72.00 DI 72.18 

A4 72.12 D2 72.37 

AS 72.34 D3 72.38 

Cl 72.18 D4 72.28 

C2 71.92 D5 72.22 

Table 1. 	Levelling of basin floor 

have to add 0.16 cm to the actual reading of the pointer-gauge at 

G to get an average value of the water depth in the basin. 

The various 	parts 	of the basin, e.g. the beach, the wave 

maker etc. are discussed separately, in the rest of this subsection. 

D.3.1.2 Wave height measurement. 	This was done with the aid of a 

frequency modulation unit, a wave gauge and a recorder. The gauge 

was a simple capacitance-wire device consisting of a double length 

of coated wire suitably isolated from a metal rod that kept it into 

position, which has to be the vertical when taking measurements. 

The wire is partially immersed and so, together with the surrounding 

water, form a kind of capacitor, the coating acting as dielectric. 

As waves pass the gauge, the change of water depth alters the capaci-

tance, producing an effect on the carrier signal fed into the gauge 

through an oscillator. 	This signal after leaving the gauge is 

converted from alternating to a direct voltage output through a 
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transducer. The frequency modulated signal arrived finally at the 

recording unit which translated the frequency changes into a 

proportional change in the output voltage, which in turn activated 

a thin beam of ultra-violet light. The actual recording was made 

on a moving light-sensitive paper where the position of the beam, 

which moved always on a straight line, was registered in time, thus 

producing the function n(t) of the water elevation at one point of 

the basin. The recorder has virtually no inertia, the maximum trace 

speed of the light beam being 25,000 cm/sec [62], thus capable of 

recording easily much steeper waves than those used in the experiment. 

The wave gauge has to respond linearly to the height of the 

wave profile so that the record we get represents the waves undis-

torted. A calibration was therefore carried out to find the curve 

of the wave gauge, i.e. the change that produced in the final record-

ing a known change of water level for the full range of water depths 

that the length of the gauge allowed. A measuring cylinder with a 

pointer gauge was used and three wave gauges were tested. The curve 

for the best of these appears in fig. 29; the maximum deviation from 

the linear law is 0.1 cm. The settings of the frequency modulation 

unitkept constant throughout the calibration; it was found later that 

for a different set of settings one gets different conversion factor, 

i.e. slope of the straight line in fig. 29. 	However it was required 

only that the settings be kept constant throughout the experiment as 

long as we were interested in relative wave heights. 

D3.1.3 Wave maker and waves produced. 	As shown in fig. 28 the 

wave generator is of the plunger type and is driven by an asynchronous 

electric motor of power 1 HP, through a variator of gear ratio 22.1 
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which can set the period of the wave maker anywhere between its two 

limits. 	A three-phase starter is included in the system. 	The 

stroke of the plunger could be adjusted to produce the desired wave 

amplitude. 

The section of the front face of the plunger has a point of 

mild discontinuity and care was taken to keep this point well below 

the water surface when generating waves, otherwise non-uniform waves 

would appear. 

Another point of some concern was that either end of the wave 

maker left a gap of about 65 cm between it and the nearest wall 

perpendicular to its axis. This could result in leakage around the 

ends of the plunger which together with diffraction effects discussed 

in subsection D2.1 reduced somewhat the 'working area' of the basin. 

The precaution taken was two-fold: firstly we put some straw bales 

at both ends of the wave maker so as to reduce leakage and diffraction 

effects and secondly the model was built and the measurements were 

taken in a central area of the basin when the wave crests appeared to 

be straight. 

When exposing some elements of the theory of the plunger-type 

wave maker (subsection D2.1), we have found that the amplitude of 

the generated wave is a function of the stroke of the wave maker and 

its speed; indeed in our case the stroke could be altered by changing 

the eccentricity of the drive. 	The speed, or frequency, was measured 

from the chart recording where the paper speed is known and checked 

from time to time against the frequency found by counting the number 

of immersions of the plunger over a known period of time. 

Another result of the theoretical notes included in the 

preceding section was that the wave form is not sensitive to the 
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geometry of the plunger after a distance of say 3h, h water depth, 

from it. This has been taken into account whenever measurements 

were taken, thus establishing another boundary to our 'working area' 

(see fig. 28). 

We have seen also that the moving wave maker acts as a 

stationary reflecting surface to waves travelling towards it 

(subsection D2.1). 	This remark together with the fact that the 

wave generator is bound to produce higher than the fundamental 

harmonics (subdivision D2.3.2), calls for closer investigation of 

the form and behaviour of the generated waves. 

In our experiments the amplitude a of the fundamental wave 

was about 1.4 cm, the wavelength about 68 cm and the water depth 

38 cm; therefore the parameter 2aX2/h3  gives a value not greater 

than 0.3 which is much less than 28, a kind of criterion for the 

importance of the free first harmonic (D2.3.2). 	The conclusion that 

the amplitude aF  of this harmonic is not so important for our measure-

ments is supported by Ursell et al.([48]) where it is shown that the 

maximum difference of amplitude recordings is 

A 	- A. 	= 2a{1 + 0(c2)} 
max 	min 

where now c = a
F
/a << 1, and naturally e2  is of negligible order. 

In order to assess how the waves in the basin behaved as 

regards the first and higher harmonics we took at a given point 

recordings of waves of various frequencies by altering the setting 

of the variator and the stroke of the wave machine. 	The records 

were examined visually and some analyzed through a Fourier analysis 

computer programme compiled by Mr May. 

It was desirable while being in the region of the sinusoidal 
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wave theory (2aX2/0<15) to use waves with high steepness so that 

the diffracted waves would be of measurable amplitude; on the other 

hand the harmonics should be kept to a minimum, thus justifying the 

use of first order linear theory. The amplitude of the first har-

monic varies like a2; by diminishing the amplitude a of the funda-

mental wave the reflection coefficient of the main beach increased 

because, as we shall see in the next subdivision, the greater the 

steepness of the wave the greater absorption its energy suffers from 

a reflecting slope. We had therefore to compromise taking into 

account also other factors,mainly the capacity of the wave generator 

and the actual form of the produced wave, which should be as close 

as possible to a Stokes wave. The stroke of the generator was thus 

adjusted to produce waves of double amplitude 2A = 2.75 cm for the 

constant depth of 38 cm as noted before. The next step was to 

decide about the frequency of these waves. 

Above a certain limit the machine started to vibrate ; 

on the other hand the wave crests became 'spilling', so it was 

decided to use frequencies lower than the above limit corresponding 

to a period of about 0.6 sec/cycle. 	The range of periods 

0.6-0.8 sec/cycle was investigated for the same point of the basin 

located near D3, i.e. the crossing of the lines DD and 3-3 (fig. 28). 

Two speeds of the recorder paper were used, the high speed giving a 

more or less undistorted form of an individual wave and the low speed 

enabling us to follow the variation of the wave height over many 

wave crests passing by the semi-immersed wave gauge. 	This was 

mounted by a clamp on a vertical rod supported by a horizontal plate 

on the bottom of the basin; this arrangement was found to have 

negligible effect on our recordings provided it was suitable positioned. 
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The water depth was kept always at about 38 cm. 	Comparison of the 

recordings led to the decision that a period of 0.66 sec/cycle 

(variator setting 150) be used. 	The wavelength is A = 1.561x0.662  = 

0.68 m < 2h = 2x0.38 = 0.76 m, so we are in the deep water waves 

region. 	Parts of the recordings are reproduced in fig. 30. 

A Fourier analysis done by Mr May showed that for a wavetrain 

of the above frequency and of amplitude about 3.3 cm we get for the 

fundamental and the two first harmonics the ratio of their amplitudes 

like the numbers 1:0.026:0.020, where from the first and second 

harmonic the Stokian components have been subtracted. We see clearly 

that the contribution of the first and higher non-Stokian harmonics 

to the total amplitude is negligible, especially for our case where 

the amplitude of the waves is less than half of the above. 	It 

appeared therefore that use of filters in front of the wave maker to 

eliminate the free harmonics produced by it, would not be advisable 

because it would be very difficult to maintain the amplitude of the 

fundamental wave as high as 1.4 cm. 	We did not want further reduc- 

tion of the amplitude in order to keep low the percentage of the 

absolute experimental errors, e.g. the deviation of the wave gauge. 

These errors are dominant over the relative errors, e.g. first harmonic, 

which are low in our case. 

Having in mind the difficulties that the construction of an 

effective filter presents as well as the above considerations I 

decided not to use filters in front of the wave maker. 	The problems 

associated with filters have been discussed in subsection D2.2 where 

we noted the disturbed pattern of the waves downstream of the filter 

and the need for very powerful wave generator, a conclusion reached 

above by another way. 
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In subdivision D2.3.1 we pointed out some comparatively 

recent results on the instability of wavetrains. 	It was noted that 

the distance required for an instability of the kind examined to 

start developing is greater than 1/2k3a2  which in our case gives 

about 34 m. 	Given that the effective length of the basin is under 

10 m it is evident that there is no sufficient length from the wave 

maker for such an instability to develop, therefore it is not taken 

into account. 

D3.I.4 Beach and wave reflection. 	The sloping beach at the far - 

end of the basin was constructed of impermeable metal sheet mounted 

on a heavy frame resting on the bottom of the basin. The slope was 

5.8 degrees. 	As may be seen in fig. 28, along the two long sides 

of the basin there were put wooden slopes, steeper than the main 

beach, at an angle of 34 degrees; the aim was to absorb the reflected 

waves from the front faces of the two breakwaters. More about these 

slopes will be said in the next subsection where the actual model 

and problems associated with it will be described. 

Straw bales were placed where pronounced discontinuities of 

the boundary occurred (fig. 28), namely at both ends of the wave 

maker and where the side slopes met the main beach. 	The purpose of 

putting bales was to smooth the discontinuities thus eliminating any 

diffraction effects due to these and at the same time absorbing any 

waves travelling towards them. 	We have already pointed out the 

problem caused by a wave generator not spanning the full width of 

the channel in reducing the area of uniform wave crests; the bales 
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at both ends of the wave maker helped to minimize this effect. They 

were constructed of chicken-wire in the form of hollow circular 

cylinders lightly filled with straw. 	The diameter of the base 

circle was 0.32 m and their height 0.87 m. 

Whatever the precautions,thereis always bound to be some sort 

of reflection mainly along the direction of the wave propagation and 

this reflection we have tried to evaluate by applying eq. (221). 

Measurements were taken at 5 cm intervals and finally a figure of 10% 

for the reflection coefficient was found for the period of 0.66 sec 

that was used throughout the experiment. This coefficient is the 

ratio of amplitudes of the reflected to the incident wave. 

The variation of wave amplitude with distance from the wave 

maker is due to the partial reflection of the incident wave from the 

beach which causes a partial standing wave system in the basin. The 

measurement of the wave height against distance is given in fig. 31. 

We see that the wavelength of the height variation is very close to 

the theoretically predicted X/4 = 68/4 = 17 cm. 	Niche's formula 

r2Bs i  
[63]based on the ratio of the wave steepness to the number (--3-] sin2a, 

where 8 is the slope of the beach, underestimates in our case the 

reflection coefficient giving an answer of about 6%. 	Greater devia- 

tions from Niche's results have been recorded in the past; in Ursell 

et al. [48] for example we see that for wave steepness over 0.01 the 

formula underestimates the reflection coefficient found experimentally 

and for steepness below 0.01 overestimates it. 	The steepness of our 

wave was 2.75/68 = 0.04 therefore an underestimation using Niche's 

method was probable. 

A recording at low speed for a given point over a period of 

fifteen minutes from the starting of the wave maker revealed that 
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the recorded amplitude varied considerably with time until it reached 

a rather stable condition. 	The first part of these deviations was 

attributed to the initial disturbance of the wave maker which started 

moving from rest thus creating a Cauchy-Poisson type of situation; 

this part lasted for about one minute. 	The smaller deviations, that 

persisted for more than ten minutes, were thought to be due to the 

excitation of surges along the basin and so a considerable time to 

reach a steady,more or less,state was needed. 	A third cause of 

deviations from the average amplitude that did not die out during the 

whole of the recording time was probably the transverse waves travel-

ling across the direction of propagation of the fundamental wave. 

A little more about this effect will be said in subdivision D3.1.6. 

To avoid the above cause of inaccuracies in the measurement 

of the wave amplitude, it was decided to leave the generator working 

at constant frequency for 13 minutes before any measurements were 

taken. 

D3.1.5 Attenuation of the wave height. 	It has been explained in 

subdivision D2.3.3 that the attenuation of the waves due to viscous 

effects can be described by two parameters D, D' depending on the 

boundary layers at the fixed and free boundary respectively. 	If we 

denote the wave amplitude by al, a2  at two positions xl, x2  we have 

accordingly 

-(D+D')(x -x ) 
a
2 

= a
l 
e 	2 1 (223) 

From eqs (217) and (218) we obtain for our case (v = 0.011 cm 2/sec): 

D = 5.88 x 10 4m 1, D' = 0.507 x 10-4m 1  while the condition (219) 

gives the requirement 
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2.51 x 10
-7 

« 1 

which is valid in our case. 

The absolute error involved in our measuring procedure was 

estimated at about 0.1 cm. 	Therefore if we wish the attenuation to 

be just detectable, we get from eq. (223) x2-xl  = 3.13 m. 	The point 

closest to the wave maker 
	

that we took measurements was x1 
= 

3h = 3 x 0.38 = 1.04 m, so that x2  = 1.04 + 3.13 = 4.17 m. 	This 

is the maximum distance from the wave generator where the damping 

of the waves cannot be measured. 	Since almost all the points we 

took measurements were within the above distance, the damping effect 

was neglected altogether. 

D3.1.6 	Other effects. 	It may be seen in the general layout of 

the basin (fig. 28) that along the two edges of the main beach 

parallel to the axis of the basin pieces of metal sheet have been 

secured vertically to prevent leakage of the breaking waves at these 

edges of the beach which would result in undesirable scattering. 

The comparatively large width of the basin gives room for any 

waves across the main propagation to develop. 	Such transverse waves 

have been mentioned already in subdivision D3.1.4; they may be due 

to three-dimensional causes such as (a) seepage past the edges of 

the wave maker (see subdivision D3.1.3), (b) dissipation along the 

side absorbers, (c) three-dimensional instabilities as examined in 

subdivision D2.3.1. 	These three dimensional effects are difficult 

to be predicted and are too small to be measured. 

Finally it may be worth noting that before each measurement a 

small amount of wetting agent was applied around the wave probe to 
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reduce the effect of the surface tension of the water on the readings 

as well as the effect of any capillary waves present. 

D3.2 The Model  

In any experimental study dealing with diffraction around some 

configuration of vertical plates the problem of the wave reflected 

by these is present. The waves generated by the wave maker are 

reflected by the model breakwaters towards the wave machine where 

they are again reflected, thus building a resonant wave 

system that does not simulate either the reality or the theory that 

is going to be checked. 

Experiments on diffraction around a semi-infinite breakwater 

or through a gap in a screen encounter the above problem. 

Investigators on these topics have used a practical method that 

separates geometrically the incident wave from its reflection by the 

barrier(s) (see e.g. Putnam and Arthur [8], Blue and Johnson [10]). 

According to this plates are put vertically parallel to the direction 

of propagation covering the distance from the tip(s) of the break- 

water(s) to the wave generator. 	These plates are often called 

splitters for obvious reasons. The waves reflected by the model are 

thus isolated in a region separated from the area where measurements 

are to be taken; it is assumed that this region is of no interest. 

The effect of separating the incident from the reflected wave has 

been proved to be of minor significance for the cases of one or two 

co-planar semi-infinite breakwaters especially for great distances 

behind the opening. 	This has been verified experimentally and so 

the arrangement is justified. 
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It was thought originally to apply the same method to our 

experiment. 	The corresponding theoretical problem, sketched in 

fig. 32, has not been solved so far, although results exist for 

simpler similar cases as when two faces of the wedges are in line 

(see e.g. Nussenzueig [64] or Teague and Zitron [65]). 	An extension 

of these theories to include our case seemed possible at least in 

principle. However,a closer investigation revealed many difficul- 

ties in obtaining the solution. 	This fact combined with the 

apparent complexity of our original solution found in subdivision 

C3.3.3 that does not allow for a separate treatment of the reflected 

and incident wave components, called for an alternative arrangment. 

This is shown schematically in fig. 33. 

vs7  

(1) 

A 

(2) 

Fig. 32. 	An arrangement with splitters 
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Six absorbers had been placed along the sides of the basin to 

receive the reflected waves. 	The inclined position of the break- 

waters relatively to the incident waves gave the opportunity to 

direct the reflected waves towards the long sides of the basin where 

the energy absorbers were. These were mainly impermeable wooden 

slopes as said in subdivision D3.1.1. 	At the two corners of the 

basin between the side slopes and the plunger straw bales serve as 

absorbers. 	A limiting case is shown in fig. 33, where the reflected 
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Fig. 33. 	Reflections by the two breakwaters 

'rays' from the two tips 0 and A of the plates can just pass by the 

edges of the wave maker not reflected by it. 

To reduce the many possible positions of the two screens we 

define a priori the values of x > 3h and a as well as the variables 
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0 and d (see fig. 33); then simple geometrical relations give the 

position of the breakwaters through the following equations 

m = x tan 2a 

s =t-m+dcos(a + 

n= t - m - s = 6.10 - m - s 

y = - s/tan2(a + 0) 

This set of equations defines the limiting case we have already 

discussed. 	Of course we may have many positions of the breakwaters 

fulfilling the requirement of only one reflection of the generated 

wave, by a suitable increase of angles a and a with simultaneous 

adjustement of the distances m, n, d. 

A practical rule of finding the position of the two screens 

may run as follows: 

(a) Give a value to 0 

(b) Find (180°  - 8)/2 = T 

(c) Fix angle a in the range T < a < 2T 

(d) Draw two lines BB' and CC' from the ends of the wave maker at 

angles 2a and 2(180°  - 0 -a) = 2a. 

(e) Put a line segment of value d', less than d to be on the safe 

side, between the lines BB' and CC' so that if forms an angle 

a+6 with the wave maker. 

(f) Extend d' to the full length d and finally draw the screens (1) 

and (2) at angles a and 8 respectively as in fig. 33. 

The actual position of the model in our experiment is shown in 

fig. 34. 	The material used was 3 mm thick steel plates of an 

inverse T-shape section 48 cm high. 	Four lengths of 2 feet and four 

191 



2) 
t 

60°  

F 

- - 

-3-: 

	 A 
1  

r•—•• ..... 

1 	...... 

. • -• 

t- 
' a 5  A -\.y  

slope 

scale 1 :50 

co-ordinates 
of breakwater tips Cm) 

0 	CC + 0.215 , 2-2+ 0.44 	gap  widths 

caseI 	A CC + 0.55 , 33 b1 1 wavelength - 0.68-  
d1 	_ 0.641  =0.944 

d2 	1.25 case II 	CC • 0.58 , 3-3+ 0.555 wavelength 0.68 - 1.845 

60' 

wave maker  

31.  

fi 

I. 

5 

fi B 

ri 

Fig. 34. The model in place 

192 



of 3 feet were provided. 	Solving a multivalue simple geometrical 

problem as explained above I placed the two model breakwaters as in 

fig. 34. 	One angle 0 was used throughout the experiment because 

among other reasons explained in the following subsection the 

elements of the two breakwaters that were resting on the side absorbers 

of the basin could not fit to more than one slope. 

The angle between the two screens was 0 = 120°  and the angle 

of incidence c = 240°. 	Two gap widths could be obtained by lifting 

and putting away one 2 feet long element of the screen (2). 	Thus 

we had 

d
1 
 = 0.642 m 	or 	d

1 
 = 0.944 

d
2 
= 1.255 m 	or 	d

2 
= 1.845 

The leakage of water through the lines of contact between the 

metal elements was prevented by using waterproof tape and plasticene. 

D3.3 Description of Experimental Procedure  

The experiment was conducted to provide a direct comparison 

with the results of the theory; the experimental results are presented 

and discussed in subsection E2.3. 

The measurements of the wave height were taken by using the 

equipment described in subdivision D3.1.2. 	The wave gauge was 

mounted on a metal beam spanning the whole width of the basin and 

resting on the side walls. 	As noted already, before taking any 

measurement a time of about 13 minutes was allowed to elapse from 

the moment the generator was started. 	A simple calibration of the 

gauge was performed after each measurement. 	The wave parameters 
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throughout the experiments were 

water depth 	38 cm 

wave period 	0.66 sec/cycle 

wavelength 	68 cm 

incident wave height 	2.75 cm 

In the region between the wave maker and the model strong 

reflections by the side slopes were experienced initially that were 

upsetting the incident wave pattern. 	To reduce this effect straw 

bales were put along the slopes as indicated in fig. 34. 	This 

arrangement worked quite well as may be seen from the wave recordings 

at points along the opening where waves of virtually constant height 

were present (see fig. 35). 	This suggested that littleif any 

disturbance caused by the subsequent wave reflections taking place 

in the 'weather side' passed through the opening and interfered with 

the wave pattern in the leeside which was to be measured. 

It was planned originally that three cases of different 

and 6 should be studied experimentally. 	However, practical reasons 

dictated reducing the cases to two of the same 0 but different 6. 

One of the reasons has been explained in the previous subsection. 

A second one was that a variation of the experimental set—up should 

have to be of considerable magnitude at least of the order of the 

experimental error (10-20%), so that we could measure any effect due 

to such a change. 	The problem of finding a new position of the two 

barriers with its additional limitations mentioned earlier produced 

solutions where both the gap width and the distance of the plates 

from the wave maker were large and so reducing very much the area 

where acceptable measurements could be taken. 
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Fig. 35. 	Wave recordings at points along the opening; cases I and II (see figs 36,37) 



On the other hand comparisons at angles e different from the 

above were carried out with other theories (section E2); it was 

decided therefore to restrict experimentalinvestigations 

to 	the following two separate cases. 

Case I 	0 = 120°, 	6 = 0.944, 	c = 240°  

Case II 	0 = 120°, 	6 = 1.845, 	c = 240°  

The measurements were taken at the following points (pm) the 

positionsof which are presented in figs 36 and 37. 

Case I 

point 1 2 3 4 5 6 7 

w(o)  120 120 120 86 101 113 60 

P 0.448 0.596 0.626 1.324 1.575 1.000 1.412 

point 8 9 10 11 12 13 14 

w(o)  
21 14 35 23 42 73 96 

P 1.690 2.618 2.735 3.071 2.440 2.381 2.880 

point 15, 16 17 18 19 20 21 

w(o)  109 97 107 80 58 45 28 

P 3.540 4.290 4.920 3.617 3.408 3.510 3.981 

point 22 23 24 25 26 27 

w(o)  10 6 98 85 66 47 

P 3.142 3.000 5.765 4.920 4.520 4.594 

Case II 

point 1 2 3 4 5 6 7 

(0(0) 120 120 120 110 19 26 50 

p 0.382 1.295 1.603 2.365 2.352 2.720 2.280 
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point 8 	9 	10 	11 	12 	13 	14 	15 

89 	107 	94 	110 	83 	51 	35 	72 

2.487 3.019 3.840 4.830 3.473 3.222 3.660 3.473 

w(o)  

P 

point 16 	17 	18 	19 	20 	21 	22 	23 

65 	49 	45 	87 	95 	101 	81 	31 

4.515 4.560 4.650 5.050 5.570 5.980 4.810 5.140 

w(o)  

P 

point 24 	25 	26 	27 	28 	29 	30 

60 	18 	10 	47 	94 	68 	85 

2.678 3.660 3.142  0.941 1.103 1.369 0.529 

The diffraction coefficient measured is presented in figs 

68 and 69. 

The wave gauge was calibrated at frequent intervals and the 

deviations noted were not great, of the order of 5% where some part 

of the maximum absolute uncertainty of 0.1 cm (see D3.1.2) might have 

been present. 

14(0) 
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CHAPTER E 

RESULTS AND DISCUSSION 
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El 	RESULTS 

Application of the computing procedure explained in section 

C4 gives the wave heights at any point P(r,w) for various combina-

tions of the parameters of the problem: angle between the two break-

waters 8, width of opening between the two breakwaters d, angles of 

incident plane wave c = 2n + 6 - 00. Although the theory puts no 

restriction on the above values the results obtained cover the cases 

most likely to be encountered in practice. Accordingly I limited 

6 in the range < 6 < n and w in the range 0 .1 w .1 8 which means 

that we are interested in the region leeside of the breakwaters.r was 

kept 	d so that information over the unlimited area d r < 

0 .5 w .0 was obtained; as already mentioned the basic equations (166) 

can be used after a slight modification to produce results applicable 

in the region 0 < r < d, 0 w 	8. 

The relevant equation for this region is 

F(r,w) = 
w 2 

-  
AO 

sine[ f exp{-ikqcosc} X Hine
m  J nm

(kr)H
mn 	6 
(kq)cos — wdq 

r 	m=o 	

M7T 

0 	6 

r 
+ f exp{-ikqcosC} X (-)

m
c
m
J(kq)

r
H 	

IT 

o mn(kr)cos 
M
— w dq 

m=o 

whence the diffraction coefficient K = 	is derived 

7T2 

0 
1F1 = - — sine (Re2+Im2)1  

d 	. 	p 	. 	d 
with Re = lcosqnq  +fsinqJY+ 

p
fsinq JY 

q 	q o o  
d 	,P  

Im = -fsinqJJ + ] cosqJY+fcosq JY 
q 	q 	q o o 	P 
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where the integrands are written in reduced notation; for example 

cos q JY
q 
 stands for cos(27rqcosC) / (-)

m
c 
m  J  um 	e (2-Tro)YmIT 	

mw 
(2Trq)cos ---ci)dq, 

m=o 
6 	6 

etc. 

However the field close to the opening was not thoroughly 

investigated for the following reasons: 

(a) In this region higher-order effects due to the proximity of 

the two edges bounding the gap are of considerable importance and the 

linear theory tends to be inadequate. 

(b) Our approximation of the velocity as being uniform along the 

gap, when 'viewed' from small distance may give results deviating from 

the true value more than could be accepted (Bouwkamp remarks on this 

also [12], p. 52). 

(c) In general the limited area close to the entrance of a harbour 

as defined above, is less important to the engineer than the rest of 

the sheltered area where the various harbour installations are built. 

However, given the above limitations, some values of the 

diffraction coefficient were calculated for the field close to the gap 

for the cases of relatively large opening and are presented together 

with the rest of the results. 	This was done to check the continuity 

and consistency of the theory and to get an idea about the values of 

K in the above-mentioned region for the cases that should give more 

reliable information,i.e.big gaps. These results suggest a smooth and 

consistent transition across the r = d arc as can be seen in the 

relevant tables and figures. 	They also provide a source of infor- 

mation for the engineer since the discrepancies with the experimental 

results are not great as 	will be seen in the next section, despite 
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the reservations expressed above. 

Twenty seven cases of different combinations of the variables 

6,d,c have been treated. Contours of equal wave height have been 

drawn at intervals of one tenth of the height of the incident wave 

represented by unity. 	The following values of the three parameters 

of the structure and of the position of the observation point P(r,w) 

were used: 

0 = 90, 120, 145 degrees 

d = 1, 2, 3 wavelengths 

c = 200, 250, 270 degrees 

w = 0, 20, 40, ... , 6 degrees 

r = d, d+X, 	, d+9A 

In the nine cases with d = d/A = 3.0 for which the field near the 

gap has been calculated different w and p were used as shown in the 

following tables. 

The numerical results are presented in tables 2-28 and graphs 

with plotted contours in figs 38-64. 
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0 = 900, 	6 = 1.0, 	= 2000  

\P 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.154 0.076 0.041 0.024 0.015 0.010 0.007 0.005 0.004 

20 0.116 0.095 0.094 0.089 0.083 0.079 0.074 0.070 0.067 

40 0.150 0.194 0.176 0.158 0.144 0.133 0.124 0.117 0.110 

60 0.307 0.252 0.200 0.169 0.150 0.135 0.125 0.116 0.109 

80 0.501 0.274 0.210 0.177 0.156 0.140 0.129 0.120 0.113 

90 0.582 0.275 0.210 0.177 0.156 0.141 0.130 0.121 0.113 

Table 2. 	Diffraction coefficient at points (p,w) 



e = 9o°, 	o = 1.0, 	C = 2500  

I)  .\\ A 
,o,\  
" \ 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.538 0.695 0.678 0.635 0.594 0.557 0.526 0.499 0.475 

20 0.692 0.615 0.506 0.434 0.383 0.347 0.319 0.294 0.278 

40 1.037 0.718 0.547 0.455 0.397 0.356 0.326 0.302 0.282 

60 1.010 0.468 0.334 0.273 0.237 0.212 0.194 0.180 0.168 

80 0.681 0.235 0.167 0.136 0.117 0.104 0.095 0.088 0.082 

90 0.561 0.208 0.149 0.122 0.105 0.094 0.085 0.079 0.074 

Table 3. 	Diffraction coefficient at points (p,w) 



8 = 90°, 	6 = 1.0, 	= 270°  

'\\\, ; 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.1358 1.255 1.092 0.969 0.876 0.805 0.748 0.701 0.662 

20 1.014 0.667 0.503 0.418 0.365 0.329 0.302 0.281 0.264 

40 0.825 0.393 0.270 0.217 0.187 0.167 0.152 0.141 0.132 

60 0.751 0.267 0.183 0.149 0.129 0.116 0.106 0.099 0.093 

80 0.418 0.074 0.039 0.027 0.021 0.017 0.015 0.013 0.012 

90 0.418 0.065 0.033 0.021 0.015 0.011 0.009 0.007 0.006 

Table 4. 	Diffraction coefficient at points (p,w) 



6 = 900, 	a = 2.0, C = 200°  

(I \:  2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 
(0)  

0 0.097 0.105 0.086 0.066 0.050 0.038 0.029 0.023 

20 0.084 0.046 0.068 0.074 0.074 0.071 0.067 0.064 

40 0.176 0.125 0.075 0.069 0.074 0.078 0.081 0.082 

60 0.213 0.319 0.319 0.296 0.273 0.254 0.238 0.225 

80 0.676 0.482 0.386 0.331 0.295 0.268 0.248 0.232 

90 0.831 0.478 0.382 0.328 0.292 0.266 0.246 0.230 

Table 5. 	Diffraction coefficient at points (p,w) 



8 = 90°, 	d = 2.0, 	C = 250°  

P 

w 
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.651 0.534 0.358 0.230 0.160 0.138 0.143 0.157 

20 0.453 0.546 0.679 0.715 0.710 0.690 0.666 0.641 

40 1.099 1.113 0.895 0.730 0.618 0.539 0.481 0.436 

60 1.111 0.495 0.280 0.196 0.155 0.131 0.115 0.104 

80 0.646 0.206 0.139 0.111 0.095 0.084 0.076 0.070 

90 0.649 0.211 0.148 0.120 0.103 0.092 0.083 0.077 

Table 6. 	Diffraction coefficient at points (p,w) 



6 = 900, 	d = 2.0, 	= 270°  

\\\\:\ 

(o)  
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.762 1.105 1.295 1.347 1.338 1.305 1.263 1.219 

20 1.278 1.126 0.879 0.698 0.576 0.491 0.429 0.384 

40 1.019 0.601 0.400 0.305 0.253 0.220 0.197 0.181 

60 0.639 •0.288 0.215 0.181 0.160 0.146 0.134" 0.126 

80 0.529 0.115 0.065 0.047 0.037 0.032 0.028 0.025 

90 0.445 0.086 0.047 0.032 0.023 0.018 0.015 0.012 

Table 7. 	Diffraction coefficients at points (p,w) 



= 90° 
	

= 3.0, 	= 200°  

(o 

\:\ 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.08 0.11 0.041 0.052 0.074 0.077 0.072 0.064 0.055 

20 0.080 0.062 0.081 0.084 0.077 0.067 0.056 

30 0.17 0.12 

40 0.140 0.074 0.104 0.111 0.101 0.087 0.073 

60 0.25 0.29 0.289 0.205 0.271 0.304 0.310 0.307 0.299 

80 0.761 0.655 0.539 0.469 0.421 0.385 0.357 

90 0.64 0.89 1.003 0.633 0.520 0.453 0.408 0.374 0.347 

Table 8. 	Diffraction coefficient at points (p,w) 



e = 9e, 	6 - 3.0, 	C = 250°  

6\ 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.60 0.56 0.498 0.263 0.270 0.359 0.410 0.428 0.426 

20 0.612 0.516 0.448 0.535 0.632 0.697 0.732 

30 0.71 0.77 

40 0.928 1.231 1.128 0.926 0.752 0.619 0.520 

60 1.14 1.14 1.115 0.544 0.323 0.251 0.217 0.194 0.178 

80 0.844 0.230 0.130 0.093 0.075 0.063 0.056 

90 1.00 1.23 0.543 0.121 0.069 0.047 0.035 0.028 0.023 

Table 9. 	Diffraction coefficient at points (p,w) 



6 = 90°, 	d = 3.0, 	= 270°  

.\\c\ C: 
(o)  

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 1.05 1.05 1.148 0.837 0.770 0.923 1.085 1.201 1.275 

20 0.999 1.115 0.971 0.781 0.621 0.499 0.407 

30 0.87 0.88 

40 1.132 0.770 0.494 0.340 0.252 0.198 0.162 

60 1.05 0.97 0.842 0.317 0.133 0.080 0.066 0.062 0.060 

80 0.601 0.158 0.091 0.066 0.053 0.046 0.040 

90 0.86 0.83 0.469 0.097 0.056 0.039 0.029 0.023 0.019 

Table 10. 	Diffraction coefficient at points (p,w) 



0 = 1200, 	6 = 1.0, 	4 = 2000 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.098 0.085 0.075 0.067 0.061 0.056 0.052 0.049 0.046 

20 0.089 0.060 0.044 0.035 0.030 0.026 0.023 0.021 0.019 

40 0.073 0.023 0.026 0.030 0.031 0.031 0.031 0.030 0.029 

60 0.071 0.108 0.110 0.103 0.096 0.090 0.085 0.080 0.076 

80 0.206 0.224 0.189 0.165 0.147 0.135 0.125 0.116 0.110 

100 0.414 0.278 0.216 0.183 0.161 0.146 0.134 0.125 0.117 

120 0.587 0.281 0.216 0.182 0.161 0.145 0.134 0.124 0.117 

Table 11. 	Diffraction coefficient at points (p,w) 



e . 120°, 	6 =1.0, 	= 250°  

\w (o) 
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.149 0.032 0.052 0.067 0.074 0.077 0.077 0.077 0.076 

20 0.213 0.218 0.217 0.208 0.197 0.187 0.177 0.169 0.162 

40 0.514 0.558 0.508 0.460 0.421 0.390 0.365 0.343 0.325 

60 0.853 0.714 0.577 0.491 0.434 0.392 0.361 0.335 0.315 

80 1.035 0.606 0.443 0.362 0.313 0.280 0.255 0.236 0.220 

100 0.943 0.391 0.283 0.232 0.202 0.181 0.165 0.153 0.143 

120 0.634 0.289 0.219 0.184 0.161 0.146 0.134 0.124 0.117 

Table 12. Diffraction coefficient at points 0,0 



6 = 120°, 	6 = 1.0, 	C = 270°  

N\\\\:\ 

(0)  
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.542 0.564 0.532 0.496 0.464 0.437 0.413 0.393 0.375 

20 0.582 0.540 0.473 0.421 0.382 0.351 0.327 0.307 0.290 

40 0.811 0.665 0.547 0.471 0.418 0.380 0.350 0.326 0.306 

60 1.003 9.642 0.475 0.388 0.334 0.297 0.270 0.249 0.232 

80 0.909 0.361 0.231 0.178 0.148 0.129 0.116 0.105 0.098 

100 0.548 0.108 0.060 0.043 0.034 0.029 0.025 0.023 0.021 

120 0.414 0.069 0.040 0.029 0.024 0.020 0.018 0.016 0.015 

Table 13. Diffraction coefficient at points (p,w) 



0 = 120°, 	6 = 2.0, 	4 = 200°  

\:130)  2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.073 0.048 0.033 0.022 0.015 0.011 0.007 0.004 

20 0.046 0.057 0.061 0.059 0.056 0.053 0.050 0.047 

40 0.079 0.042 0.023 0.026 0.033 0.036 0.038 0.039 

60 0.067 0.101 0.084 0.062 0.045 0.033 0.024 0.018 

80 0.179 0.123 0.168 0.182 0.182 0.178 0.172 0.166 

100 0.415 0.454 0.386 0.338 0.303 0.277 0.257 0.241 

120 0.839 0.486 0.389 0.335 0.299 0.272 0.252 0.236 

Table 14. Diffraction coefficient at points OM 



e  = 1200, 	a = 2,0, 	C = 250°  

.\\cir:\ 
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.197 0.079 0.040 0.053 0.071 0.082 0.090 0.095 

20 0.304 0.325 0.303 0.271 0.241 0.215 0.193 0.175 

40 0.451 0.282 0.296 0.348 0.382 0.399 0.405 0.405 

60 0.630 0.903 0.904 0.832 0.757 0.693 0.640 0.595 

80 1.282 0.902 0.591 0.428 0.335 0.277 0.237 0.208 

100 0.806 0.217 0.134 0.111 0.099 0.091 0.085 0.081 

120 0.737 0.280 0.211 0.177 0.156 0.141 0.130 0.121 

Table 15. 	Diffraction coefficient at points (p,w) 



= 0 = 120°, 	6 = 2.0, 	2700  

P  .\i\ (J 	 ' 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 
(0)  

0 0.579 0.476 0.386 0.315 0.262 0.221 0.189 0.164 

20 0.340 0.333 0.402 0.447 0.469 0.477 0.477 0.472 

40 0.704 0.904 0.899 0.838 0.773 0.713 0.662 0.618 

60 1.283 0.921 0.603 0.416 0.305 0.233 0.186 0.152 

80 0.769 0.315 0.242 0.210 0.187 0.170 0.157 0.146 

100 0.695 0.227 0.129 0.093 0.074 0.062 0.055 0.049 

120 0.451 0.089 0.053 0.039 0.031 0.027 0.023 0.021 

Table 16. 	Diffraction coefficient at points (p,w) 



0 = 120° 
	

= 3.0, 	C = 200°  

P 

70)  1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.10 0.05 0.015 0.019 0.029 0.034 0.037 0.38 0.039 

20 0.066 0.048 0.032 0.023 0.021 0.022 0.023 

30 0.06 0.08 

40 0.066 0.061 0.038 0.024 0.026 0.032 0.036 

60 0.13 0.11 0.067 0.086 0.052 0.028 0.033 0.044 0.051 

80 0.123 0.172 0.113 0.073 0.074 0.087 0.098 

90 0.24 0.27 

100 0.371 0.512 0.501 0.461 0.425 0.394 0.369 

120 0.65 0.90 1.018 0.643 0.529 0.462 0.416 0.382 0.355 

Table 17. 	Diffraction coefficient at points (p,w) 



e = 120°, 	d = 3.0, 	C = 250°  

t\P 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.37 0.32 0.200 0.103 0.047 0.043 0.064 0.082 0.096 

20 0.288 0.280 0.229 0.179 0.141 0.118 0.107 

30 0.32 0.31 

40 0.244 0.353 0.360 0.300 0.229 0.174 0.143 

60 0.60 0.65 0.746 0.742 0.968 1.054 1.048 1.004 0.949 

80 1.315 1.036 0.607 0.359 0.229 0.162 0.129 

90 1.19 1.14 

100 0.959 0.511 0.321 0.238 0.193 0.164 0.144 

120 1.03 1.23 0.569 0.124 0.073 0.053 0.041 0.034 0.029 

Table 18. Diffraction coefficient at points OM 



e = 120°, 	6 = 3.0, 	C = 270°  

\:1(1) 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 
(o)  

0 0.60 0.52 0.327 0.179 0.105 0.110 0.140 0.166 0.186 

20 0.519 0.525 0.453 0.373 0.310 0.269 0.248 

30 0.54 0.55 

40 0.604 0.757 0.946 1.017 1.016 0.982 0.935 

60 0.88 1.01 1.329 1.053 0.656 0.400 0.264 0.200 0.175 

80 0.962 0.554 0.287 0.152 0.089 0.062 0.055 

90 1.08 0.96 

100 0.594 0.293 0.188 0.139 0.112 0.095 0.083 

120 0.84 0.83 0.493 0.100 0.061 0.045 0.036 0.031 0.027 

Table 19. 	Diffraction coefficient at points (p,w) 



0 = 145°, 	a = 1.0, 	C = 200°  

\\\\N:LL\N 
(o)  

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.044 0.040 0.036 0.033 0.031 0.029 0.027 0.026 0.025 

20 0.051 0.044 0.038 0.034 0.031 0.029 0.027 0.025 0.024 

40 0.070 0.051 0.040 0.033 0.028 0.025 0.023 0.021 0.019 

60 0.078 0.029 0.012 0.009 0.010 0.011 0.011 0.012 0.012 

80 0.061 0.077 0.084 0.082 0.078 0.074 0.071 0.067 0.064 

100 0.159 0.198 0.174 0.153 0.139 0.127 0.118 0.111 0.104 

120 0.361 0.271 0.213 0.181 0.160 0.145 0.134 0.124 0.117 

140 0.557 0.281 0.216 0.182 0.161 0.145 0.134 0.124 0.117 

145 0.585 0.281 0.216 0.182 0.161 0.145 0.133 0.124 0.117 

Table 20. 	Diffraction coefficient at points (p,w) 



e - 145°, 	8 .. 1.0, 	4 - 250°  

P 

\\\\\ 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.214 0.148 0.118 0.101 0.090 0.082 0.075 0.070 0.066 

20 0.180 0.095 0.063 0.047 0.038 0.032 0.028 0.026 0.023 

40 0.163 0.178 0.185 0.182 0.178 0.167 0.160 0.154 0.148 

60 0.382 0.450 0.422 0.388 0.358 0.334 0.313 0.296 0.281 

80 0.726 0.666 0.557 0.483 0.430 0.391 0.361 0.337 0.317 

100 1.005 0.664 0.499 0.413 0.360 0.322 0.295 0.273 0.255 

120 1.033 0.472 0.341 0.281 0.244 0.218 0.200 0.185 0.173 

140 0.704 0.321 0.244 0.205 0.181 0.163 0.150 0.139 0.131 

145 0.656 0.314 0.240 0.202 0.178 0.161 0.148 0.137 0.124 

Table 21. 	Diffraction coefficient at points (p,w) 



6 = 145°, 	d = 1.0, 	C = 270°  

P 

63  (
o
) 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

'0 0.177 0.177 0.169 0.159 0.150 0.142 0.135 0.129 0.124 

20 0.249 0.248 0.232 0.215 0.201 0.188 0.178 0.169 0.161 

40 0.469 0.464 0.423 0.386 0.356 0.331 0.311 0.294 0.279 

60 0.764 0.675 0.574 0.502 0.451 0.412 0.381 0.357 0.336 

80 0.990 0.685 0.520 0.430 0.373 0.333 0.303 0.280 0.261 

100 0.973 0.447 0.297 0.232 0.195 0.171 0.153 0.140 0.130 

120 0.660 0.159 0.093 0.069 0.057 0.049 0.043 0.039 0.036 

140 0.359 0.057 0.030 0.020 0.015 0.013 0.011 0.009 0.008 

145 0.396 0.056 0.030 0.020 0.016 0.013 0.011 0.010 0.009 

Table 22. 	Diffraction coefficient at points (p,w) 



A = 1450, 	6 = 2.0, 	C = 200°  

;\ 

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.054 0.050 0.046 0.043 0.040 0.038 0.036 0.034 

20 0.044 0.033 0.025 0.019 0.016 0.013 0.011 0.009 

40 0.017 0.019 0.026 0.029 0.030 0.029 0.028 0.028 

60 0.066 0.052 0.032 0.018 0.010 0.007 0.008 0.010 

80 0.048 0.073 0.081 0.073 0.064 0.055 0.048 0.042 

100 0.168 0.080 0.090 0.112 0.121 0.124 0.124 0.123 

120 0.290 0.394 0.359 0.322 0.293 0.270 0.251 0.236 

140 0.783 0.490 0.392 0.337 0.301 0.274 0.254 0.237 

145 0.839 0.487 0.390 0.336 0.300 0.273 0.253 0.236 

Table 23. 	Diffraction coefficient at points (p,w) 



0 = 145°, 	(5 . 2.0, 	C = 2500  

p  

o 
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.254 0.219 0.196 0.178 0.164 0.152 0.143 0.135 

20 0.174 0.116 0.084 0.068 0.060 0.056 0.054 0.053 

40 0.157 0.200 0.206 0.197 0.184 0.171 0.159 0.148 

60 0.387 0.246 0.154 0.147 0.171 0.192 0.207 0.217 

80 0.467 0.708 0.798 0.788 0.750 0.707 0.667 0.631 

100 1.211 1.060 0.778 0.601 0.490 0.416 0.363 0.325 

120 0.993 0.284 0.123 0.079 0.064 0.058 0.055 0.053 

140 0.662 0.291 0.220 0.186 0.164 0.149 0.137 0.128 

145 0.764 0.295 0.223 0.188 0.166 0.151 0.139 0.130 

Table 24. 	Diffraction coefficient at points (p,w) 



145°, 	 = 2.0, 	C = 270°  

P  .\\( i 

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.233 0.229 0.223 0.215 0.207 0.199 0.191 0.184 

20 0.273 0.237 0.202 0.173 0.151 0.134 0.120 0.108 

40 0.313 0.174 0.147 0.171 0.195 0.213 0.224 0.230 

60 0.542 0.765 0.826 0.813 0.778 0.738 0.700 0.664 

80 1.246 1.063 0.795 0.608 0.484 0.399 0.339 0.295 

100 0.956 0.330 0.190 0.166 0.157 0.149 0.142 0.136 

120 0.693 0.314 0.196 0.146 0.119 0.102 0.090 0.082 

140 0.360 0.078 0.043 0.029 0.022 0.018 0.015 0.013 

145 0.443 0.076 0.042 0.029 0.022 0.018 0.015 0.013 

Table 25. 	Diffraction coefficient at points (p,w) 



0 . 145°, 	d = 3.0, 	= 200°  

:\\\ci\\, 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.06 0.06 0.053 0.048 0.043 0.040 0.037 0.035 0.033 

20 0.020 0.014 0.015 0.017 0.019 0.020 0.021 

30 0.06 0.02 

40 0.042 0.037 0.027 0.018 0.011 0.007 0.005 

60 0.05 0.05 0.030 0.048 0.045 0.035 0.024 0.016 0.009 

80 0.040 0.065 0.070 0.053 0.035 0.022 0.014 

90 0.14 0.11 

100 0.107 0.126 0.132 0.102 0.071 0.049 0.036 

120 0.28 0.33 0.319 0.336 0.397 0.396 0.379 0.360 0.342 

140 0.928 0.656 0.538 0.469 0.422 0.387 0.359 

145 0.65 0.89 1.027 0.645 0.531 0.463 0.417 0.383 0.356 

Table 26. 	Diffraction coefficient at points (p,w) 



0 = 145°, 	6 = 3.0, 	= 250°  

J\:
ILI  1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.13 0.15 0.172 0.160 0.155 0.150 0.145 0.140 0.135 

20 0.118 0.083 0.053 0.032 0.017 0.010 0.012 

30 0.24 0.16 

40 0.128 0.169 0.169 0.152 0.131 0.111 0.093 

60 0.32 0.36 0.231 0.208 0.277 0.295 0.280 0.252 0.220 

80 0.699 0.533 0.626 0.771 0.848 0.874 0.873 

90 0.70 0.85 

100 1.183 1.285 0.963 0.683 0.492 0.365 0.279 

120 1.25 1.03 0.945 0.550 0.393 0.311 0.262 0.228 0.204 

140 0.483 0.133 0.077 0.054 0.042 0.035 0.030 

145 1.04 1.25 0.599 0.116 0.065 0.046 0.036 0.030 0.025 

Table 27. 	Diffraction coefficients at points (p,w) 



0  = 145°, 	d  = 3.0, 	C = 270°  

t\C)P  
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

0 0.23 0.25 0.267 0.251 0.242 0.232 0.224 0.216 0.208 

20 0.191 0.132 0.085 0.054 0.036 0.031 0.035 

30 0.38 0.26 

40 0.257 0.325 0.329 0.303 0.266 0.229 0.194 

60 0.57 0.69 0.599 0.528 0.670 0.795 0.863 0.889 0.891 

80 1.273 1.272 0.986 0.712 0.511 0.371 0.275 

90 0.96 1.03 

100 0.926 0.621 0.430 0.299 0.212 0.155 0.116 

120 1.03 1.06 0.670 0.280 0.223 0.184 0.157 0.138 0.124 

140 0.336 0.092 0.052 0.036 0.027 0.022 0.019 

145 0.82 0.82 0.513 0.088 0.049 0.034 0.027 0.022 0.019 

Table 28. 	Diffraction coefficient at points (p,w) 
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E2 COMPARISONS 

E2.1 With Previous Work  

Results that could be compared with ours are known only for 

the special case 8 = 180°  where the two breakwaters lie on the same 

plane. At the short wavelength limit a comparison can be done with 

Penney and Price's method (subdivision B3.1.1) that assumes inde- 

pendent functioning of the two branches (1) and (2). 	At the large 

wavelength limit qualitative checks and observations can be made with 

the help of the asymptotic expansions theory (section C5) or Lamb's 

method (subdivision B3.1.1). 

The general outlook of the graphs especially those of wide 

angle 0 reveals shapes similar to Lacombe's 'diffraction leaves' [4]; 

for smaller angles 0 however the picture becomes confused although 

traces of the 'leaves' can be detected in the closed elongated 

contours. 

In fig. 65 our theory is compared with results based on Penney 

and Price's method as presented in Figure 2-42 of the Shore Protection 

Manual [66]. 	The major deviations between the two theories are only 

presented because unavoidable tracing errors put limitations on the 

presentation of very small deviations; we can note for example that 

the curve K = 0.4 of the graph against which our theory is compared 

is plotted obviously non-symmetric although the theory it is based on 

predicts symmetry. 	The case covered is of 0 = 180°, S = 2.0, 

= 270°  and very good agreement is found. 	The deviations noted are 

in accordance with the corresponding deviations of the exact solution 
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of Morse and Rubinstein [2] from the same Penney and Price's theory 

which is approximate but is acceptable for gap widths larger than 

about two wavelengths. 	A qualitative comparison of two diagrams 

obtained by the above theories, exact and approximate, can be found 

in the discussion by M.E. Stelzriede in Johnson's paper ([67], fig. 

19). 

A means of cross-checking for the same case of co-planar break-

waters and normal incidence is provided by our fig. 40 where the case 

6 = 90°, d = 1.0, c = 270°  is presented. 	This can be interpreted 

as being half the picture of the case 6 = 180°, d = 2.0, c = 270°, 

because screen (1) of the former case occupies the axis of symmetry 

of the latter thus not changing the wave pattern. We find firstly 

that our theory is reproduced and secondly that a direct comparison 

of the values of the diffraction coefficient at corresponding points 

along breakwaters (1) and (2) of fig. 40 with the values given in 

the diagram of the Shore Protection Manual (our fig. 65) based on 

Penney and Price's method gives very good agreement. 	In fact we 

get at points along breakwater (1) the values 

p = 

Penney and Price's 
method: 

Present method: 

and for breakwater 

p = 

Penney and Price's 
method: 

Present method: 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

1.32 1.23 1.11 0.97 0.88 0.81 0.76 0.71 0.66 

1.36 1.26 1.09 0.97 0.88 0.81 0.75 0.70 0.66 

(2) 	the values 

1.0 2.0 3.0 4.0 

0.44 0.06 0.01 0.01 

0.42 0.07 0.03 0.02 

This agreement suggests that our assumption for the velocity along 
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the gap is close to reality and it tends to include the effect of 

the reflected wave as well. 	This effect has been taken into account 

in the above derivation of the values by Penney and Price's method. 

The exact theory, again in the case of 0 = 180°, is used for 

comparisons covering in fig. 66 a relatively small opening of X 

while in fig. 67 we have an oblique approach of the incident wave. 

Graphs after Carr and Stelzriede [1] presented by Johnson [68] have 

been reproduced in the above figures together with the results of the 

present theory for the corresponding cases defined in the figures. 

Again the major deviations between the two theories are. shown. 

In fig. 67 an approximation proposed by Johnson has been 

included. 	This is simply the application of Penney and Price's 

method, as modified by Blue and Johnson, for an imaginary gap formed 

by the projection of the actual opening on the line perpendicular to 

the wave propagation. The theory for the normal incidence is applied 

then for the gap of breadth - dsin00  with the usual notation. 

The comparisons presented in figs 66 and 67 show overall good 

agreement between our results and the existing theory, which it must 

be added is represented by its asymptotic form i.e. not strictly the 

exact solution but a good approximation at points where the radius 

of curvature of the wave crest is as little as about three wavelengths 

(Carr and Stelzriede [1]). 

E2.2 With the Theory of Section C5  

We have seen that the results obtained in section C5 by using 

principles of the theory of matched expansions are not suitable for 

a point-to-point direct comparison with the main solution presented 
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in section C3. 	This is more so due to the low order of terms taken 

into account during the matching procedure. 	So the final equation 

giving the velocity potential does not include the parameter of angle 

of incidence which means that we are in the large wavelength region 

where the corresponding theory of sound waves applies. 

However,we can attempt an indirect checking by establishing a 

quantity T relative to the transmission factor of energy often used 

at such studies of propagation of waves through passages. 	Following 

the notation of section C5 we put 

T = IQ! 

where Q denotes the strength of the source we had put at the wedge 

apex when doing the matching. 	Using the definition by Carr 

and Stelzriede ([1], p. 121) we write 

0 
f H2(r,Ordw 

T - 
0 

 

 

H.
2   d 
in 

where Hin is the height of the incident wave and H(r,w) the wave height 

at the point (r,w). 	This relation can be written 

T = 6 X K2 
	

(224) 

where ic.isthediffraction eoefficientatthepointil.of the arc 

(0,c40<w<0.IfK.is assumed uniform over the arc, eq. (224) 

gives 

T = er)  K2  = 	1f126 
	 (225) 

From eq. (211) --or the corresponding eq. (204) of the theory 

with the approximation to the gap geometry-- we deduce after introdu- 
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J2(kr) + Y2(kr) ti 
.o 	11.2p 

for large kr, 
1 

• • • 

cing the expansion 

1f12  = p 4144  + Tr4  

1 	 , 
(or 

P 4U4  + Tri ) 

Thus eq. (225) becomes 

1 	0 	1  

6 4W4  + w2 	(or 6 4Uz + n4  ) 
(226)  

where W = y + log(n6) + 281°0 + 2(1-$)log(1-$), 2n$ = 2n-0 

1-$ 
d'F(8) 	B8(1-  

U = y + log + log 	2 	
' F°) 	

0
sin(1-$)w 

which combined with eq. (224) gives 

0  
4142  + n2  

p X K? 0. 
i  1 1. 

(227)  

(or 
4Uz 	+ 7Z  

= p 	K? 0. ) 
i  1 1 

In these equations Oi  represents the measure of the ith portion 

of the angle 0 which has been divided in many small angles in order 

to facilitate the original integration. 	If we take
1 
 = 0

2 
= 	= 

0. 	= 0, then eq. (227) becomes 

0  
4W2  + n4  

- OP G  K? i  
(228) 

It is reminded that the equations displaying the symbol U originate 

from the symmetric breakwaters case, while those with W come from the 

treatment of the asymmetrical case (see section C5). 	When 0 = n both 
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. groups of equations coincide and give for the transmission factor 

T 1 

   

4(y+log --L 
,76  
T)
2 
 + 7

2 	
3.272 + 0.8441ogd + 1.2721og26 

which coincides with Lamb's result ([5] p. 533, eq. (22)). 

For d = 0.1 the last equation gives a transmission factor of 

1.24. 	The ratio of this factor associated with an angle 6 to the 

corresponding one of the angle 6 = 7 is 

ms 2 
e 4(y + log —4 ) + 

T
n 	

n
4W2  + 72  

with the obvious alternative of the symmetrical case, where W is 

replaced by U. 

The quantity W (or U) contains the information of the geometry 

of the opening combined with the position of the two screens that 

form it; in other words it represents something similar to the effec-

tive size of a hole (see Tuck [52]) or the conductivity of an orifice 

(Rayleigh [11], see also the historical introduction to the same 

work by R.B. Lindsay). 

It is possible to use the above knowledge for a comparison 

with our main theoretical results, by applying  eq. (228) taking the 

following precautions. 

We have found elsewhere that the asymptotic theory can be 

applied up to about.d = 0.3. 	Therefore it was thought advisable to 

check at this least unfavourable value of the breadth of the opening. 

Further since the incidence of the original field played no role, 

an approach of the incident wave symmetrical to both breakwaters 
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seemed promising because this was the case when 8 = w (normal inci-

deuce) where our equations of the matched expansions theory coincided 

with well founded results as shown above. 	Finally we cho-se a 

rather long radius p = 10.0 to allow the diffracted wave to regain 

itsuniformityalcalgthecrest,sothatnotmanypointsP.should be 

required. 

We cho--se therefore for the checking through eq. (228), 

8 = 120° 	or 	E3 = 2/3 

6 = 0.3 

= 240°  

p = 10.0 

and 	8 = 10
o 

We found for these values 

= 2/3, 6 = 0.3) = -0.755, and the left hand side of eq. 

(228) gave the number 

120  
- 9.87 12.15 

The computer programme of the main theory for the same values 

givesthediffractioncoefficientlCat the points P.(p,w.) as 

follows 

w.( o) 10 20 30 40 50 60 70 80 90 

K. 
1 

(J.( 	) 

0.122 

100 

0.118 

110 

0.112 

120 

0.106 0.098 0.092 0.086 0.081 0.077 

K. 
1 

0.074 0.073 0.072 

Now the right hand side of eq. (228) gives 
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10 x 10.0(1q + K; + ... + q2) = 10.67 

which corresponds to an average diffraction coefficient K = 0.094 

while the left hand side gives for the same coefficient the value 

K = 0.091 the two values differing by less than 3%, which suggests 

a good agreement of the two totally different theoretical approaches. 

E2.3 With Experimental Results  

Figures 68 and 69 present the diffraction coefficient measured 

at the points defined in subsection D3.3; they also contain curves of 

equal wave height drawn from the theoretical results for the cases 

I and II considered. The comparison between experiment and theory 

is easy. 	We see that for the majority of the points the agreement 

is good. 	In fact we find that for both cases about 85% of the 

measurements agree very well with the predicted values. 	The points 

with great discrepancy were concentrated in the lee and close to 

breakwater (1); it was believed that for these points, apart from 

other sources of error present all over the area of measurements, the 

proximity of the side slope responsible for the absorption of the 

waves travelling from the point 0 along the lee of the adjacent arm 

was affecting the measurements. 	Furthermore in this area we had 

small wave heights which relatively increased the inevitable absolute 

experimental error. 

The rest of the measured diffraction coefficientswereclose to 

the predicted values. 	In case I a maximum deviation of 13% is found. 

In case II a maximum of 16% occurs. 	These errors cannot be consi- 

dered as great when compared with other experimental studies done in 
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the same field of diffraction of water waves. 	Putnam and Arthur 

[8] report an error of 12%, Blue and Johnson [10] more than 20% while 

Blue in his PhD thesis records a considerable scattering of experi-

mental results of up to 90% for diffraction through a gap ([9], fig. 

23). 

The main sources of wave height error in our experiments were 

(a) reflection from the main beach reaching a maximum of 10% 

(subdivision D2.13); 

(b) 1st harmonic component of the wave about 3% at maximum 

(subdivision D3.1.3). 

The main sources of absolute error were 

(a) the non-linearity of the wave gauge 0.1 cm at maximum; 

(b) other errors associated withe the measuring procedure 0.05 cm. 

Considering the above sources of possible error we conclude that a 

figure of about 15% is a quite acceptable value. 

A minor source of discrepancy was the vibration of the places 

under the wave action. 	The maximum amplitude of the vibrating plate 

at the water surface was of the order of 0.1 cm. 	The reduced stiff- 

ness of the structure presented to the waves, resulted in a slight 

increase in the wave heights in the lee of it. 	Some leakage also 

occurred at the bottom underneath the side absorbers transferring a 

small proportion of the undulations in front of the plates to the 

lee of them. 	Other possibilities of uncertainties were examined but 

their overall effect was found to be insignificant; these were 

(a) 	Abnormal conditions along the gap due to the consecutive 

reflection in the seaward area. 	As noted already the 

measurements taken along the gap showed no significant change 

of amplitude with time at the same point (fig. 35). 	Therefore 
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it was assumed that no parasitic waves entered the area of 

measurements through the gap. 

It is reminded that the Rayleigh approximation that forms the 

basis of our theory is self-consistent and the values of the 

velocity assumed in the aperture are reproduced by the solution 

(subdivision C3.3.1). 	Furthermore the continuity of the 

velocity potential and its normal derivative holds across the 

aperture as 	is easily shown (eqs (141) and (142) with a 

slight modification to the geometrical optics terms). 

(b) 	Viscous separation at the tips of the plates forming the 

aperture. Small spirals were observed at the edges of the 

opening due to the detachment of the shear layer. These 

spirals were alternat--ely occupying both sides of the plates 

following the frequency of the fundamental wave. They were 

comprising vorticity shed from the boundary layers on the two 

surfaces of the plates, which vorticity carried away from the 

edge by the fluid. Due to the limited strength of the spiral 

vortex sheet, the phenomenon had no significant effect on the 

measurements. 
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E3 RELATED STUDY 

E3.1 	Numerical Solution  

As has been noted in subsection C1.4, we speak of numerical 

methods whenever the numerical treatment is applied on the basic 

integral equations that can describe any diffraction problem (see 

C1.1, C3.3.2). 	One of the first attempts to adapt to electronic 

computing the solution of diffraction problems through integral 

equations involving Hankel functions can be found in Biesel and 

Ranson [69] (see also Gallagher et al. [24]). 	Any such method 

applied to our problem leads to severe difficulties exposed elsewhere. 

The main cause of these is the unbounded nature of the two break-

waters. This means that if we limit the length of the two barriers 

and close the leeside opening along a ficticious shore, we can 

successfully apply a numerical method. 	In this way we arrive at a 

more or less specific harbour configuration that displays no variables 

whatsoever; a small change in the geometry of it or a change of the 

incidence of the wave will call for a new solution starting again 

from the basic equations. 

We can easily see therefore that the numerical methods are 

Suitable for application on a specific harbour alignment either having 

already been constructed or undergoing the final study stage of its 
such 

design. 	In contrast, an analytical method ras the one used in this 

work is advantageous during the preliminary stages of a study as well 

as for drawing theoretical and practical conclusions by varying one 

or more parameters of the problem and observing the changes of the 
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wave pattern caused by it. A little more about the method used and 

the results gained is to said when pointing out some engineering 

aspects in the next section. 

E3.2 Wave Spectra  

In reality ocean waves are wind generated and so they are not 

of simple sinusoidal form of constant height and direction of propa- 

gation. Wind generated waves in the ocean 	propagate in two 

dimensions and display a wide range of frequencies and amplitudes. 

Thus the term wave of classical theory is replaced by the wave 

record(s) out of which the wave spectra are drawn by statistical 

methods and give us an idea of the parameters of the wavetrains under 

consideration, e.g. the average wave height. 

It would be desirable to know whether the classical diffraction 

theory and particularly the theory developed in this work, based on 

the assumption of only one sinusoidal wave present at a time, can be 

applied with sufficient accuracy for a realistic wave spectrum. 

It is evident that the discipline of stochastic processes will 

be invaluable at this new formulation under which the assumption is 

made that the motion must still obey the classical equations. 	A 

furhter assumption is generally accepted, namely that the wave records 

are ergodic, that is that averages over a single representative record 

may replace the averages over an ensemble of records. 	Under these 

assumptions it has been shown by W.J. Pierson, Jr. that a linear 

forecast is generally possible (see e.g. the account by Kinsman [70]). 

This means that having sufficient information of the waves at a point 

A we can specify statistical parameters enough to estimate the 
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behaviour of the waves at a point B, provided that the mechanism of 

determining the wave at B from that at A is known in the classical 

theory. 	A difficulty in determining resonant frequencies of a 

harbour by using regular rather than irregular waves (see e.g. 

Ouellet and Morin [71]) is not present in our case because of the 

infinite nature of the two breakwaters that do not form a semi-closed 

boundary with one opening which would lead to resonance. 

It seems now possible, at least in principle, that our theory 

can be applied in more complicated wave regimes closer to reality by 

making use of the laws of statistics. 	Indeed a simpler diffraction 

problem has been treated in such a way by Mobarek and Wiegel [72]. 

They investigated the simple semi-infinite breakwater under a two-

dimensional wave spectrum by applying the well-known classical theory 

to the components of the spectrum and adding the results for a given 

point. They give evidence supporting the linearity of the diffrac-

tion process and conclude that the knowledge of the wave spectra can 

be used together with the classical theory to predict the energy spec-

tra of waves in the lee of a breakwater within an accuracy acceptable 

for many engineering problems. 

Application of statistical methods has been made also to the 

refraction problem of predicting the wave spectrum at a point of the 

sea surface of different water depth from that of another point for 

which the spectrum is known (Pierson et al. [73]). 

,E3.3 	Diffraction Forces  

The diffraction of waves by fixed bodies immersed in the fluid 

occurs generally with the simultaneous imposition on the body of a 
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hydrodynamic pressure force. From Bernoulli's equation 

P Dt
= -gz - 	- i(grad02  + C 

0 
 

Po 
the water density 

the pressure p can be obtained from the velocity potential cP and 

includes a linear and a quadratic term $. Thus, if is harmonic in 

time, there will generally be a linear harmonic pressure force and a 

second-order force. The first-order oscillatory force should domi-

nate second-order components in the case of most fixed bodies. 

The linear wave force can be decomposed into a component 

associated with the incident wave potential and a component associated 

with the diffraction potential. The diffraction force is the more 

difficult component to evaluate because it requires that the diffrac-

tion potential first be obtained. 

Calculation of forces on structure can therefore be carried 

out from the knowledge of the total velocity potential that our theory 

gives. 	Such structures can be either the elements of the breakwaters 

themselves, where a decomposition of the field into incident and 

diffraction is appropriate, or any other structure in the lee of the 

breakwaters. 	A numerical integration of the pressure p will yield 

the linear term of the force as mentioned above by making use of the 

relations generally employed for this purpose 

p
o
g 

F
x 

= ifpdz 1(s)ds = 	tanhkh sca(s)1(s) ds 
-h 

0 	Pog 
F = ¢ f p dz m(s)ds = 	tanhkh ¢a(s)m(s) ds 

-h 

where a(s) is the surface elevation along the circumference s of the 
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structure and (1,m) is the directional cosine of the inward normal 

to s. 

The phase difference c between the various points of compu-

tation can be evaluated from the relationship 

= arg{F} 

where F the wave function. 

The knowledge of c is essential when calculating instantaneous forces. 

E3.4 Littoral Processes  

The presence of a breakwater can upset the previously existing 

regime of the littoral transport in three ways: 

(a) It poses a physical impermeable barrier to any transfer of 

material across it. 

(b) Through the diffraction mechanism it changes the energy distri-

bution on the sea surface which in turn modifies the driving 

force of any littoral movement. 

(c) The diffraction due to the breakwater changes the direction of 

propagation of the waves which as a result may attack the 

shoreline at an angle, thus generating longshore currents 

resulting in littoral movements again. 

The knowledge of the diffraction pattern of the waves for any 

serious study of littoral processes is therefore of great importance. 

In general a breakwater initially causes littoral drift to 

deposit on the shore in its lee by reducing the wave forces that 

cause littoral transport. 	As material is deposited a seaward 
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projection of the shore is formed in the still water behind the break- 

water. 	If the barrier is offshore, then the projection of the shore 

advances and acts in turn as a groin which causes the updrift shore- 

line to advance. 	If the offshore breakwater is long enough, 

relatively to its distance from the shore,to act as a complete lit-

toral barrier the depositing action may continue until the shoreline 

reaches the breakwater (Shore Protection Manual [66]). 

The places of erosion and accretion, the shape of the deposit 

and changes with time can be studied when we know more or less 

precisely the wave energy distribution or in other words the solution 

of the diffraction problem. 

E3.5 Further Study  

A possible extension of the present work could be tried along 

the lines discussed in subsection C3.2. 	A random sea could be 

simulated by an appropriate spectrum to which the diffraction proce-

dure could be applied with the aim of predicting the energy spectrum 

at any point in the lee of our breakwaters (1) and (2). 

Another possibility is the more sophisticated approximation of 

the velocity along the opening. 	The amplitude of this velocity has 

been taken unity all over the gap in this study; for instance a 

parabolic distribution of this amplitude may prove closer to reality. 

Denoting by q(r) this amplitude normal to the opening and using a 

normalisation relation e.g. 

d 
f q(r)dr = 

with d the gap width as usual, 
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we find for the parabolic distribution 

cl(P*) = 61)*(1 P*) 

where p* = r/d is the distance of a point in the opening from the 

origin expressed in gap widths. 	Various other distributions might 

be tried. 
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E4 CONCLUSION 

By examining the figures where some results are presented it 

is not easy to form clearcut rules and principles covering the 

diffraction phenomenon due to two converging breakwaters. However, 

I would make the following general remarks regarding the features 

of the process. 

(a) The decisive factor affecting the degree of protection that 

the breakwater arms offer to their lee is the angle of incidence. 

The smaller the angle that the propagation of the incident wave forms 

with the lee of one breakwater, the greater the disturbance in the 

region close to the relative barrier. 

(b) In general the larger the opening the greater the disturbance 

in the harbour area. 

(c) The resulting diffraction pattern is more sensitive to the 

angle of wave approach than to the angle 0 between the two barriers. 

(d) With decreasing 0 the wave heights increase along the leeward 

side of the arm more exposed to the incident wave. 

(e) The greater the 'distance' between the two breakwaters - which 

depends on the distance of their tips as well as on their angle - the 

less effect the two'independent' diffraction patterns have on each 

other. 	Comparing for instance fig. 40 with fig. 46 we see that for 

the larger breadth of opening the wave pattern is closer to that of 

a semi-infinite breakwater with incident wave normal to it than is 

the pattern for the small gap width. 

It was shown in subsection C3.I that the application of the 
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results of the diffraction problem for a semi-infinite screen to the 

case where two barriers forming an angle are present is not satis-

factory for many combinations of angle of incidence and gap width. 

Therefore this study supported by good comparisons evidence (section 

E2) can be regarded as a first step toward the full investigation of 

the diffraction of water waves due to two converging semi-infinite 

breakwaters. 	Such an investigation could provide the engineer with 

new understanding of the principle features of the diffraction pro-

cess due to a configuration that is frequently encountered in harbour 

or other coastal works. 	Furthermore, aided by the use of tables 

and charts of diffraction coefficient the harbour engineer would be 

able to predict more accurately the regions of least energy intensity 

suitable for moorings, docks and other facilities. 

The applicability of the present method was pointed out in 

subsection E3.1 in regard particularly with preliminary studies; 

the five parameters of the equations are at the disposal of the 

design engineer who can try more than one solution to determine the 

optimum gap width, angle between the arms, angle between the break-

waters and the prevailing sea, and areas of least agitation in combi-

nation of course with other non-hydraulic factors. 
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