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ABSTRACT 

This thesis describes a numerical model for predicting 

the behaviour of free-surface flows. An Eulerian 

finite-difference procedure is used to compute the 

hydrodynamics; and the free-surface is defined by the 

motion of a set of "Lagrangean particles". The 

conventional mass continuity equation is rearranged to 

form a volumetric or bulk-continuity equation. The 

use of this bulk-continuity relation allows the hydro-

dynamic variables to be computed over the entire flow 

domain. Thus, the free-surface boundary conditions are 

imposed implicitly and the problem formulation is 

greatly simplified. The gas regions of the flow can 

be treated as compressible or incompressible, and 

multiple free-surfaces can be simulated. Both two-

dimensional plane flows and axisymmetric flows can be 

predicted. 

An experimental study of wave motions generated in a 

perspex tank is also reported. The effects of the 

initial water depth and vertical barriers on the 

movement of waves across the tank are recorded 

photographically. The primary objective of this 

experimental work is to provide data with which to 

validate the numerical model. 

The numerical procedure is validated by comparing 

predicted results of a wide range of problems with 

analytical solutions, experimental data from the 
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literature and the results of the current experimental 

work. The procedure is shown to produce numerically 

accurate and physically realistic predictions of free-

surface flows. 
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PREFACE  

I have been a research student in the Heat Transfer 

Section of the Mechanical Engineering Department of 

the Imperial College of Science and Technology since 

September 1974. During these past three years I have 

been involved in the development of numerical procedures 

for the prediction of fluid-dynamic and heat-transfer 

problems. The primary objective of my work has been 

to produce better and more economical computational 

procedures which can be used to solve industrial 

problems. 

During the first year of my studies I became familiar 

with the SIMPLE (Semi-Implicit Method for Pressure-

Linked Equations), finite-difference procedure 

(Caretto, et al, 1972) being used by the Heat Transfer 

Section to solve elliptic flows. The EASI (Elliptic 

Axi-Symmetric Integrator) Program (Markatos, 1974)  

and the TRIC (Three-dimensional Recirculating 

Integrator in Cartesian coordinates) Program (Markatos, 

1974), which embody SIMPLE, were used to analyse the 

steady-state flow in shell-and-tube heat exchangers 

and steam generators. This early work provided a 

basic understanding of the finite-difference 

procedures. 

For the last two years, my research activities have 

been focussed on the development and validation of a 

numerical procedure to predict free-surface flows. 

The results of this work will be described in this 
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CHAPTER 1 

INTRODUCTION 

1.1 	THE PROBLEM CONSIDERED 

Free-surface flows are characterised by the interaction 

of two fluids which are separated by a distinct inter-

face. The fluids differ in phase and density; thus, 

free-surface flows are two-phase flows in which the 

phases are completely separated. Typical examples, of 

free-surface flows include the movement of slugs or 

bubbles through a liquid, the motion of surface waves 

on a body of water and the distortion of the surface 

of a liquid as it is being drained from a tank. 

This thesis describes the development and validation 

of a numerical model for predicting transient, free-

surface flows. Embodied in the model are an Eulerian 

finite-difference scheme to solve the hydrodynamic 

equations and a set of Lagrangean particles to mark 

the free surface. In general, the model is applicable 

to fully three-dimensional flows; however, for 

simplicity the work presented here is restricted to 

two-dimensional or axially-symmetric flows. The fluid 

properties are assumed constant within each fluid, and 

both surface-tension and mass transfer between the 

fluids are neglected. A typical flow arrangement is 

shown in Figure 1-1. 
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1.2 	PRACTICAL RELEVANCE  

Free-surface flows abound in nature, they are present 

in industrial equipment and processes, they occur in 

nuclear reactors and they may be found in spacecraft. 

Typical free-surface flows include: 

(a) the interaction of surface waves 

with structures, i.e. wave loading 

on an offshore oil platform; 

(b) the rapid expansion of a vapour 

bubble trapped in a nuclear 

reactor core;. 

(c) the sloshing of a liquid in a 

container; 

(d) the filling or draining of a tank 

with a liquid, especially under 

low gravity conditions; 

(e) the movement of gas and liquid 

slugs through a pipeline. 

(f) the flow of smoke in a corridor. 

Some of these flows are illustrated in Figure 1-2. 

To adequately design equipment and structures which 

must operate in a free-surface flow environment, 

industry must possess detailed information about free-

surface flow phenomena. Analytical methods cannot 
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produce solutions for viscous, free-surface flows in 

complex geometrical configurations, and experimental 

studies are expensive if not impractical. Thus, the 

ability to accurately predict the behaviour of free-

surface flows will provide a valuable design tool. 

A second use of a numerical procedure for analysing 

free-surface flows is the study of fundamental aspects 

of two-phase flow. Such a procedure would allow 

attention to be focussed on the interaction of two 

fluids near their common interface. For instance, 

the distortion of a gas slug moving in a pipe or the 

formation of a vapour bubble can be analysed in detail. 

The effects of various physical phenomena, such as 

gravity or gas compressibility, on the bubble or slug 

can be compared computationally much more easily than 

experimentally. 

1.3 	REVIEW OF PREVIOUS WORK  

Numerous works emphasising various aspects of free-

surface flows have been published in the literature. 

Most texts on fluid mechanics or hydraulics include 

discussion on wave motions, i.e. Lamb (1975), Wiegel 

(1964) and Ippen (1966). More complex analytical 

methods for predicting free-surface flows have been 

developed and reported; however, these are usually 

limited to relatively-simple geometrical configurations. 

In recent years, several numerical procedures, which 

are less restricted than analytical methods, have been 
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developed and applied to free-surface flows. This 

section will point out some significant numerical 

methods and some typical experimental studies of free-

surface flows. 

Numerical Methods 

Development of the MAC (Marker and Cell) Method at 

the Los Alamos Scientific Laboratory by Welch, Harlow, 

Shannon and Daly (1965) was the first extensive use of 

a numerical procedure to solve free-surface flows. The 

MAC method employs an explicit finite-difference 

scheme to solve the time-dependent Navier-Stokes 

equations for a viscous, incompressible fluid. 

Special features of the MAC method include the use of 

a staggered grid, the use of conservative forms of 

the equations of motion and the use of marker particles 

to denote the location of the liquid phase. The free-

surface boundary conditions are expressed by requiring 

Du and 9v to vanish at the surface, and the external 
@x 	Dy 

or gas pressure is applied directly to the free—

surface. 

Chan and Street (1970) modified the MAC method by 

improving the free-surface boundary condition. In the 

original MAC procedure, the free-surface boundary 

conditions are applied at the centres of the surface 

cells; however, Chan and Street found that this 

practice could produce a "ragged" surface. By 

applying the free-surface boundary conditions at the 
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surface itself rather than at the centre of the cells, 

they reduced some of the calculational instabilities 

and increased the accuracy of the computations. They 

produced very good predictions of solitary-wave motions. 

MAC was superceded by the SMAC (Simplified Marker and 

Cell) Method, (Amsden and Harlow, 1970). There are 

two basic differences between MAC and SMAC. First, 

SMAC does not solve for the pressure field directly, 

as does MAC; hence, the boundary conditions are 

greatly simplified. Secondly, the resulting Poisson 

equation for mass conservation needs only homogeneous 

boundary'conditions, and thus, is easier to solve. 

Moody (1970) developed a method for predicting free-

surface flows in which the pressure and body forces 

dominate. He assumed the fluid to be inviscid, in-

compressible and irrotational and used a finite-

difference scheme to solve for the velocity potential. 

Where the MAC and SMAC methods employed particles to 

locate the entire liquid phase, Moody places markers 

only on the free-surface. The hydrodynamic variables 

are computed only in the liquid region. 

Bradshaw, Kramer and Zich (1976) used the SMAC method 

to predict liquid reorientation in space-vehicle fuel 

tanks. They enhanced the method to allow a variable 

grid and incorporated surface-tension effects. 

A method for predicting low-speed, single:component, 
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two-phase flow was developed by Ramshaw and Trapp 

(1976). 	In order to maintain the steep gradients in 

density and enthalpy at the liquid-vapour interface, 

they rearranged the energy equation so as to remove 

the convective derivatives and used a modified donor-

acceptor differencing technique. Finally, noting that 

the spatial variation of momentum density, pu, is much 

greater than that of velocity, they chose to employ 

non-conservative forms of the momentum equations. 

This method is not suitable for problems in which an 

accurate description of the free-surface shape is 

required. 

Experimental Work 

• Street and Camfield (1966) studied the deformation of 

two-dimensional, solitary waves approaching a sloping 

beach. The phase shift and amplitude of solitary 

waves undergoing a head-on collision was measured by 

Maxworthy (1976). 

The collapse of liquid columns was studied by Martin.  

and Moyce (1951). They presented data for the 

velocity and location of the wave front. 

The space program has generated much interest in the 

areas of sloshing and low-gravity flows. Abramson 

(1966) provides a very useful summary of both analytical 

and experimental work related to the dynamic behaviour 

of liquids in moving containers. Nussle, Derdul and 
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Petrash (1965), Otto (1966), Gluck, Gille, Simkin and 

Zukoski (1966), Symons and Staskas (1971) and Aydelott 

(1976) all present data for the draining or filling of 

tanks of various shapes under low gravity cd-nditions. 

The effects of containing walls on the rise of large 

gas bubbles through a liquid were reported by Collins 

(1967). 

1.4 	CALCULATIONAL PROCEDURES USED IN THE  

PRESENT STUDY  

The theoretical prediction of transient, two-

dimensional, elliptic flows necessitates the 

simultaneous solution of the set of non-linear, partial-

differential equations which govern the conservation 

of mass and momentum. If the transport of other flow 

properties, such as energy, is to be accounted for, an 

additional equation for each additional property must 

be included. This system of equations is very complex, 

and in general, no closed-form analytical solution has 

been discovered. Therefore, the need for accurate 

and reliable predictions of real flow systems 

necessitates the development of numerical solution 

procedures. 

The work reported in this thesis is based on an implicit 

finite-difference scheme referred to as SIMPLE (Semi-

Implicit Method for Pressure-Linked Equations) (Caretto, 

et al, 1972, and Patankar and Spalding, 1972). SIMPLE 
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is an iterative procedure in which the velocity fields 

are calculated from a "guessed" pressure field, and 

then, "pressure-corrections" are computed from the 

continuity relations. These "pressure-corrections" 

are used to adjust both the pressure and velocity 

fields. The new fields are then used as "guesses" 

for the next iteration; after several iterations, 

the hydrodynamic fields are obtained. In the case of 

a transient flow, this iterative procedure is 

repeated at each "step" in time and the "guessed" 

values are taken as the results of the previous step. 

To compute free-surface flows, two modifications to 

the SIMPLE procedure are necessary. The first 

modification is the introduction of GALA (Gas And 

Liquid Analyser) (Spalding, 1974, and Spalding, 1976). 

The central concept of GALA is the replacement of the 

conventional mass-continuity equation with a volumetric 

continuity equation. The use of GALA permits the 

computation of the hydrodynamic variables over the 

entire flow domain (throughout the gas and liquid 

regions), so that the pressure and velocity fields 

are continuous across the free surface. Thus, 

because the free surface is not a boundary of the 

computation, the complex free-surface boundary 

conditions are imposed implicitly. The second 

modification is the addition of a set of massless 

particles to "track" the free surface. These particles 

are moved, at the end of each step in time, with the 
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local fluid velocities and the particle locations are 

then used to determine the local fluid densities. 

1.5 	OBJECTIVES OF THE STUDY  

The objectives of this study are listed below: 

(a) to develop a mathematical 

model and solution procedure 

capable of predicting the 

details of free-surface flows; 

(b) to validate the numerical 

accuracy of the solution pro- 

cedure by comparing predictions 

with known or analytical 

solutions; 

(c) to conduct an experimental 

investigation of wave motions 

on the surface of a liquid and 

compare these experimental 

results with predictions to 

validate the physical reality 

simulated by the model; 

(d) to demonstrate the potential 

of the model by presenting 

predictions of several additional 

free-surface flows. 
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CHAPTER 2 

MATHEMATICAL FORMULATION 

2.1 	INTRODUCTION  

The first step in analysing a fluid-dynamics problem 

is to write down, in mathematical form, the physical 

laws which govern the flow. These physical laws 

include the conservation of mass, momentum and scalar 

properties and any auxiliary relations necessary' 

to complete the system of equations. The 

physical laws are very general in natures however, 

when a particular flow is being studied, it is some-

times reasonable to neglect some of the mechanisms 

described by the general laws. This chapter 

presents the equations necessary to describe free-

surface flows and states the assumptions that are 

necessary to obtain these equations. 

2.2 	BASIC EQUATIONS  

The partial-differential equations which govern the 

transient, three-dimensional motion of a fluid are 

expressed below in vector notation. 

Conservation of Mass  

at 
	V . (p V) = o 
	

(2-1) 
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Conservation of Momentum 

at
p 	p(V.V) 	= -v p. 4- p 17  

- v x [ii(V x V)] 

+VUX 	211) v.V] + Sv  

Transport of a Scalar, cp 

p 21 	p(v.v) 	= v . (r 4)  vo 
at 

(2-2) 

(2-3) 

The symbols in the above equations represent: 

V 	the velocity vector, 

p 	the static pressure, 

the body-force vector, 

-(1) 	any scalar property, 

p 	the fluid density, 

V 	the dynamic viscosity, 

A 	the second coefficient of viscosity, 

the transport coefficient for the scalar 

property, (1), 

t 	time, 

' 
5—V S

(1) 
 any additional sources (or sinks) of the 

respective quantity, 

the vector differential operator. 

2.3 	COORDINATE SYSTEMS  

Predictions are presented in later chapters for both 

plane flows and axisymmetric flows. Figure 2-1 

illustrates the cartesian coordinate system (x,y,z) 
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x 

Cartesian coordinates (x, y, z) 

Cylindrical polar coordinates (r, 0, 0 

FIGURE 2-1 : COORDINATE SYSTEMS 
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and the cylindrical polar coordinate system (r,o,c). 

The mathematical model will be developed in cylindrical 

polar coordinates. It should be noted that equations 

written in cylindrical polar coordinates reduce to 

their cartesian counterparts at large radii. To 

simplify the notation, the symbols (r,e,0 are re-

placed by (y,z,x) and the new symbols rearranged as 

(x,y,z). Thus, x denotes the axial direction, y the 

radial direction and z the circumferential direction, 

and u, v and w are the respective velocity components. 

2.4 	ASSUMPTIONS AND MODIFICATIONS  

The equations (2-1, 2-2 and 2-3) must be simplified 

and arranged in a form suitable for numerical solution. 

The most obvious simplification is the limitation of 

the model to two space dimensions. Two-dimensionality 

implies that there is no variation of fluid properties 

or flow parameters in one of the coordinate directions. 

Neglecting variations in the circumferential direction 

for the cylindrical coordinate system yields an axi-

symmetric configuration. It makes no difference which 

direction is neglected in the cartesian system. 

In general, no other assumptions are necessary. 

However, many of the terms in equations (2-1, 2-2 and 

2-3) are not important in free-surface flows and they 

will be removed in the interests of computational 

efficiency and convenience. The remaining assumptions 

and modifications will be discussed in relation to the 
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particular equations to which they apply. 

Continuit Equation  

The continuity equation may be rearranged as 

Dp 	p(V.V) = Dt 

or 

v.v = 1 Dp 
p Dt 

(2-4) 

where DI ) is the "substantial" derivative and is 
Dt 

defined as 

D
Dt
( ) 	D(

at
)  + v/ 	(V( ) ) 	 (2-5) 

Rearrangement of the continuity equation from (2-1) to 

(2-4) is the GALA concept. There are two important 

differences between (2-1) and (2-4). First, the 

density does not appear on the left-hand side of (2-4), 

and second, (2-4) is written in terms of "volumetric" 

continuity rather than mass continuity. The 

substantial derivative of p is always zero for flows 

of incompressible fluids, and very often, both of the 

fluids can be considered incompressible. For 

instance, the compressibility of air is not important 

to the motion of surface waves on a body of water. 

When the compressibility of one fluid is important, 

as in the expansion of a high-pressure gas bubble, 

the right-hand side of (2-4) can be treated as a 

"source" of volume and computed approximately from a 
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suitable relation, such as 

PP
-k 

= constant. 	 (2- 5) 

Details of how the right-hand side of equation (2-4) 

may be approximated will be discussed in the chapter 

oh solution procedure. Thus, the continuity equation 

can be written as 

Du + 1 D(yv) _ R  
(2-6) ax y Dy 

where R is the rate of reduction of fluid volume, 

_ 1 Dp 
p Lit • 

Conservation of Momentum 

The majority of free-surface flows involve the inter-

action of a gas and a liquid. The liquid can always 

be assumed incompressible, thus, V.V is zero in the 

liquid regions. Frequently, the gas can also be 

assumed incompressible and V.V is zero throughout the 

flow domain. Since the momentum of the gas is very 

small with respect to the liquid momentum, and the 

viscous terms are not greatly important in free-

surface flows, the terms containing V.V can be 

neglected throughout the flow domain even if the gas 

is being considered compressible. It is also assumed 

that the fluid properties remain constant within each  

fluid. Subject to the above assumptions, the momentum 

equations can be written in Eulerian formulation as: 
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x-direction 

a(ou) 	a(puu)  4.  1 a(ypuv)  _ _ DP. 
at 	ax 	Y 	3Y 	DX 

	

[

a 2 u 	a 2u] 	au 

	

)< 2. 	aye 	Y ay 

+ 	p 8u 	Su  , 	 (2-7) 

y-direction  

a(pv) 	a(puv) 	(ypvv)  _ 	@ID 
at 	ax 	Y 	ay 	aY 

r2" + 2_21 + 	[D V 
-

v 
ax e aye Y ay y 

W2 

Py 
+ + 

V 	 (2-8) 

z-direction  

a(pw) 	a(puw)  + 1 a(ypvw) _ 
at 	ax 	Y 	ay 

	

[

3 2," 	3 2 wi 

	

ax e 	ay ej 

11 PIL4  _ 
Y Lay 

 

 

v + p—w + S w  

 

(2-9) 

The left-hand side of equation (2-7) contains the 

transient and convective flux terms for the u-velocity 

component, while the pressure gradient term, the 

viscous terms, the body-force term and the source term 

appear on the right-hand side. The y-direction 

equation,(2-8),is of the same form as equation (2-7) 

with the exception of the body-force term. In an 

axisymmetric system only axial body Forces are 

allowed; however, for a cartesian system there may also 
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be a y-direction body force. The z-direction or swirl-

velocity equation,(2-9),is not linked to x- or y-

direction equations by the pressure field. For plane 

flow, the z-direction momentum equation is trivial. 

Transport of the scalar, (I)  

It is only necessary to apply the assumptions that the 

fluid properties are constant within each fluid. The 

equation can then be written in Eulerian formulation 

as 

D(pcf, ) 	D(pu,19) + 1 3(yPv45)  
at 	3x 	ay 

ra2 4)  ÷ 
+ S 	 (2-10) 

Laxe 
	3Y2 	

ci) 

2.5 	THE GENERAL TRANSPORT EQUATION  

Inspection of equations (2-7, 2-8, 2-9 and 2-10) 

reveals that they can all be written in the same form 

as equation (2-10). In vector notation this form is 

3(C 	(p V (1)) 	1'4)  v2  cip 	sq) 	. 	(2-11) 9t 

Equation (2-11) is the standard form of the general 

transport equation that can be solved by the solution 

procedure to be described in the next chapter. 

There are four terms in equation (2-11); on the left-

hand side are the transient and convective terms and 

on the right are the gradient-diffusion and source 

terms. The source term is used to force all the 
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equations into the standard form. Not only real 

sources .of d, but all additional terms in the equation 

are contained in the source term. For instance, the 

body-force term, the pressure-gradient term and all 

viscous terms that are not included in the gradient 

diffusion terms have been absorbed in S q). 

2.6 	AUXILIARY INFORMATION  

To mark the free-surface a set of massless particles 

is spread along the interface. It is assumed that 

if the particles are placed on the free-surface 

initially, they will remain on the free-surface 

throughout the calculation. The particles move in 

accordance with the equation 

Dr _ 
Dt up 	 (2-12) 

where 7 is the position vector of the particle and 

U is the particle velocity. The set, or string, of 

particles is connected by straight-line segments to 

form the free-surface. 

To complete the specification of the mathematical 

formulation both initial conditions and boundary 

conditions are needed. The necessary initial 

conditions include the initial value of the flow 

variables, Vs, and the initial position of the free-

surface marker particles. The necessary boundary 

conditions are the values of the Vs along the 

boundary of the calculation domain as functions of 
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time. Details of how the auxiliary information is 

implemented in the solution procedure will be discussed 

in the next chapter. 

	

2.7 	SUMMARY  

The information presented in this chapter is summarised 

below. 

(a) The basic equations of transient, 

three-dimensional flow are 

presented. 

(b) The coordinate systems, Cartesian 

and cylindrical polar, to be 

used in the work reported in this 

thesis are defined. 

(c) The assumptions made in modifying 

the equation set for transient, 

two-dimension, free-surface flow 

are stated and the resulting 

equations are presented. 

(d) A standard transport equation is 

developed. 

(e) The auxiliary information necessary 

to complete the mathematical model 

is speciifed. 



36 

CHAPTER 3 

SOLUTION PROCEDURE 

3.1 	INTRODUCTION 

After the mathematical model has been defined, a 

solution procedure capable of extracting quantitative 

predictions from the model must be developed. An 

implicit finite-difference scheme has been selected 

to form the basis of the solution procedure presented 

in this thesis. The solution procedure may be 

divided into three parts. 

1 - Sub-dividing the flow domain into small, 

discrete regions by constructing a finite-

difference "grid". 

2 - Integrating the differential equations 

over the grid "cells", and then, solving 

the resulting finite-difference equations 

for the hydrodynamic variables. 

3 - Tracking the free surface. 

The details of the solution procedure are described 

below. 

3.2 	THE FINITE-DIFFERENCE GRID 

3.2.1 	General Concept  

The finite-difference grid is composed of intersecting, 

orthogonal grid lines which are spread over the 
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calculation domain parallel to the coordinate axes. 

Intersections of the grid lines are called grid 

nodes. These grid nodes provide reference locations 

for specifying the flow parameters. The grid lines 

may be spread non-uniformly to allow more grid nodes 

in regions where large gradients in the flow 

parameters are expected. However, once the grid 

spacings have been set they remain fixed during the 

solution processes. The grid is so chosen that the 

predictions will be as independent of grid spacing as 

is possible. 

3.2.2 	Location of the Flow Variables 

Figure 3-1 shows a typical grid configuration and 

identifies the locations at which the flow variables 

are "stored". The pressure and other scalar 

properties are stored at the grid nodes, but the 

velocity components are stored midway between the 

grid nodes. This "staggered-grid" configuration has 

three advantages. 

1 - The calculation of a continuity balance 

over the region surrounding a grid node 

is simple because the velocities normal 

to the boundaries of this region are 

located on the boundaries. 

2 - The pressures are located such that 

calculation of the pressure gradients 

that affect the velocity components is 
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FIGURE 3-1 : LOCATION OF THE VARIABLES ON THE FINITE- 
DIFFERENCE GRID 
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convenient. 

3 - The velocity components are located so as 

to simplify the calculation of convective 

fluxes for the scalar properties stored at 

the grid nodes. 

The dashed enclosures in Figure 3-1 show the manner in 

which the variable locations have been grouped for 

identification. 

3.2.3 	Control Volumes for Integration  

The differential equations are integrated over discrete 

regions of space to yield the finite-difference 

equations. These regions of space are called "control 

volumes". Because there are three different types of 

locations for the variables on the staggered-grid, 

there are three types of control volumes; "main" or 

grid node control volumes for the variables stored at 

each grid node, u-velocity control volumes for the u-

velocity storage locations and v-velocity control 

volumes for the v-velocity storage locations. 

Examples of each of these control volumes are shown in 

Figure 3-2. The boundaries of the grid-node control 

volumes lie half-way between the grid nodes; thus, 

the surfaces of these control volumes pass through 

the locations where the normal velocities are stored. 

The velocity control volumes are bounded in a similar 

way on the side perpendicular to the velocity 
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grid lines 	grid nodes 

SYMBOL 	CONTROL VOLUME 
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(1) u-velocity 
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(3) v-velocity 
	

v
E  

FIGURE 3-2 : DEFINITION  OF  THE CONTROL VOLUMES  
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component, but in the direction of the velocity 

component, the boundaries of the control volume pass 

through the grid nodes in front of and behind the 

velocity location. For an axisymmetric grid all of 

the control volumes are one radian "thick" in the 

circumferential direction and all cartesian control 

volumes are one length unit "thick". 

3.2.4 	Grid Boundaries 

Due to the staggered-grid configuration, two modifi-

cations to the near-boundary portions of the grid are 

necessary. First, the normal velocities near the 

grid boundary are stored on the boundary rather than 

in the normal staggered location. These boundary 

locations are shown in Figure 3-1. As a result of 

this modified location of the boundary velocities, 

the near boundary normal veloicty control volume 

must be modified. The near-boundary control volumes 

are illustrated in Figure 3-3. 

3.3 	THE HYDRODYNAMIC CALCULATIONS  

3.3.1 	The General Finite-Difference Equation  

The differential equations have been formulated by 

invoking the conservation laws over an infinitesimal 

control volume. The finite-difference equations will 

be developed by integrating the differential equations 

over a finite-control volume. In this section the 

general finite-difference equation for the transport 
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of cp is derived by integrating equation (2-10). 

Figure 3-4 shows the (P-location P, its neighbouring 

locations N, S, E and W and its control volume. The 

quantities an, un, pn, cib n  are taken as the prevailing 

values at the control volume face n (Figure 3-4) and 

similarly for the other three faces. The areas of the 

control volume faces are: 

an = rn Ay AS 

= rs Ay AS 

ae 
	rP  Ax AS 

and 

aw 
= rp  Ax AS 

(north face), 

(east face), 

(west face). 

(south face), 	(3-1) 

The volume of the control volume is 

V = r Ax Ay AO . 	 (3-2) 

The r's in equations (3-1 and 3-2) are the radial 

distances from the coordinate centre-line to the 

location denoted by the subscript. For cartesian co-

ordinates the r's are set to unity. AS is either one 

radian or a unit length, depending on the choice of 

coordinate systems. 

Transient Term 

To express the time-dependent term, 3(0)),  in finite- 
at 

difference form, it is assumed that the value of (1) 

at P prevails throughout the control volume. 
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AO = one radian 

FIGURE 3-4 : GRID NOMENCLATURE USED TO DEVELOP THE FINITE-
DIFFERENCE EQUATIONS 
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Integration of the time-dependent term over the control 

volume yields 

(p(1))  
at ti m 	Mo (I)P,o 

where 

M = p V/At 

(3-3) 

and the subscript o implies values from the beginning  

of the time step. 

Convection and Diffusion Terms  

If it is assumed that 4, p and F vary linearly between 

grid nodes, then the convective and diffusive fluxes 

across the west, w, face of the control volume are 

convective flux = a p (f) 
w w w 

diffusive 	flux = -aw  r(1),w  (gbp 	(Pw) 	 (3-4) 

Sx w  

The way in which (19w  is evaluated determines the type 

of "differencing" used for the convective term. The 

most obvious way to calculate (Iciw  is to linearly inter-

polate the values (Pp  and cl)w; this is commonly referred 

to as the "central-difference" formulation. However, 

because in the flows to be considered, the local 

Peclet number, pw  Uw (Sxw' will be much larger than 

Tlaw 
unity; the "upwind7difference" formulation will be 

used. Thus, (1)v, is specified as 
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cp w  = chw  if uw  > 0 , 

(1) w  = cbp 	if uw  < 0 	. 	 (3-5) 

The total convective and diffusive flux across the 

west face of the control volume is expressed below. 

Aw  (1)w  - (Aw  - (apu)w) (Pp 	 (3-6) 

where 

A = aw (pw  + 
p 
wu w (central difference) 

Sx 	2 
w 

or 

A = aw rcp,w + p w  uw  , uw 
 > 0 ) 

Sxw  

A = aw r(I),w , uw < 0 ) 
(Sxw 

(upwind difference) 

Of course, similar expressions exist for the e, s and 

n faces of the control volume. 

Source Terms  

Sources of (f) are linearised so that they may be written 

in the form 

S(15 = S
O 
 + SP P 	 (3-7) 

The Complete Equation  

The finite-difference form of equation (2-10) can now 

be assembled from equations (3-3, 3-6 and 3-7). 
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M (1)13  - MO °P,O = AW OW 	(AW 	(aPu)w ) (I)13  

+ AE of  - (AE  - (apu)s) Cibp  

AN  oN  - (AN  - (apu)n ) (1)1i  

As  os  - (As  - (apu)s) Op  

+ Su
.
+ Sp  (pp (3-8) 

Equation (3-8) may be rearranged and simplified to 

yield the general finite-difference equation, 

Ap 	= AW  ow  + AE  oE  + AN  oN  + As  os  + Mo  (1)/3,0 	Su  , 

(3-9) 

where 

Ap  = A
N 

+ A
E 

+ A
N 

+ A
s 

+ M
o 
- SP • 

3.3.2 	The Momentum Equations  

The finite-difference equations for momentum are of 

the same form as equation (3-9); however, there are 

two differences. First, because the velocities are 

stored at the "staggered" locations (Figure 3-1), the 

momentum equations are formulated for the velocity-

control volumes (Figure 3-2). This simply means that 

the points P, N, S, E and W in Figure 3-4 represent 

velocity locations rather than grid nodes. The other 

difference is the presence of the special source term, 

the pressure gradient. If the pressure field was 

known, the momentum equations would be coupled only 

to each other, and thus, they could be solved 

independently of the other equations. However, the 

pressure field is not known in advance; therefore, the 
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momentum equations are solved by using a guessed 

pressure field. This guessed pressure field, p*, is 

usually taken to be the pressure field of the last 

time step. The velocity fields, u* and v*, that result 

do not satisfy continuity, but u*, 	and p* are 

corrected later in the solution procedure. 

3.3.3 	The Pressure-Correction Equation  

The u* and v* velocity fields, which were obtained 

from the solution of the momentum equations, must be 

corrected to account for the error introduced by the 

guessed pressure field, p*. Also, if the correct 

solution is to be reached, the p* field must be 

corrected during each cycle of the iterative 

procedure and the corrected pressures used as the 

guesses for the next iteration. These corrections 

are computed from the continuity equation. 

First, it is assumed that the corrected pressure is 

defined by 

P = p* 	 (3-10) 

where p' is the "pressure-correction". It then follows 

that the velocity fields are equal .to the solutions 

from the momentum equations, u* and v*, plus a term 

to account for the pressure gradient imposed by the 

pressure-corrections. Thus, the velocities on the 

faces of the control volume for grid node P are: 
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u
e 

= ue + 01-01  (pi; - 

u
w 

= uKAI  + D1L4j 	- 

Vn 	
+ DV 	

P 
(pi - n 

n  

es  (13  - PO 

(3-11) 

-7 /, 

where the D's are the pressure gradient coefficients 

from the respective momentum equations. 

The pressure-correction equation is formulated from 

the GALA or volumetric continuity equation (2-71. 

It is convenient to consider for the moment a one-

dimensional problem in which the volume source, R, is 

zero. Then, the finite-difference continuity equation 

is 

a
e
u
e 
- a u = 0 . 	 (3-12) 

w w 

Substitution .of equations (3-11) into (3-12) yields 

(aeDe 
+ a D

u
) p' = (a D

u
) pE  w w P 	e e  

+ (a -D
u
) p' + (a 

ww  
u* - a 

ee  
u*) 

w w W  
(3-13) 

The complete two-dimensional pressure-correction 

equation can now be written in the form 

+ A
N 1311 	AS 13`3 

P i  A
W W 

A 	13' 	A 	13'  
AP p 

E E+ 
+ S 	(3-14) 

u 

fi Equations (3-11) are truncated forms of the momentum 
equations. The complete form is 

uw =u1*+Duw (I W Y-- / Ai"-L-til)  
where i indicates the summation over the neighbouring 
velocity locations and the Ai's are the coefficients 
from the momentum equations. It is permissible to 
use these truncated equations because the pressure-
corrections tend to zero as convergence is approached. 
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where 

Ap  =AE
+A

W 
 +A +A

s
-S 

N 	P 

A
E 

= a Du  e e 

A = a D
u 

W 	w w 

A
N 

= a
n
D
n 

AS =a D
v 

s s 

and 

S = a u* - a u* + a V* - a v* + S 
w 	e e 	s s 	n n 	V • 

The S
V 
 and S terms are used to include the additional 

volume sources when R in equation (2-11) is not zero. 

These source terms are linearised in the form 

R = S
V 
 + S

P  pP   . 
	

(3-15) 

R is zero for incompressible fluids; however, if either 

fluid is compressible, 	1 , which 
(t-t

o
) 	(- 1 p Dt22) V dt 

is the rate of reduction of fluid volume within the 

control volume, must be represented in the R term. 

The substantial derivative of the density describes 

the density of the moving  fluid elements, but it is 

being integrated over a fixed control volume. This 

practice is not entirely consistent; however, the 

important contribution of this term is the net expansion 

of the fluid in the vicinity of the control volume. If 

the location of this expansion is displaced a small 

amount from its true location, the effect will be 

secondary. 
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Any reasonable p 	p relationship can be used to 

evaluate R. A simple, but very useful, example is 

the relationship expressed in equation (2-5) for a 

reversible, adiabatic process. 

3.3.4 	Solution of the Difference Equations  

The tri-diagonal matrix algorithm (TDMA), which is 

described in most numerical analysis texts (i.e., 

Roache, 1976), solves systems of equations of the 

form 

D. (p. = Ai  (pi+1  + B. (p1-  + C. 
	

(3-15) 

Equation (3-15) can be rearranged to produce 

(p i  = Ai 4)5_4.1  + Bt 	 (3-16) 

where 

A. - 	 
D - B. At 

B' 
D. - B.A! 
1 
	B1 A i-1 

and back substitution then yields the 4's. 

In the difference equations like equation (3-9), (1)17)  

is related to its four unknown neighbours(PN, (Ps, (PE  

and (pw. However, if attention is restricted to the 

control volumes along one grid line and the best 

available values are substituted for the cP's on the 

neighbouring grid lines, the equations for the f's 

along the grid line in question will be of the form of 

C
i  + B' 	B i-1 i 
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equation (3-15), and may be solved by application of 

the TDMA. In this manner a TDMA solution can be 

obtained for each x-direction grid line and then for 

each y-direction grid line. The equations for a 

"sweep" of the x-direction grid lines are 

Ap (1', = A 
	

+ Aw  (p1",/  + (ANON  + Ash + 	(3-17) 

where the terms in parentheses are known. The super-

script ' denotes the values obtained from the first 

sweep. Then the equations for the y-direction lines 

are 

Ap (1)/S = A 	cp + (AE11) + Awcpl'Ij  + Su) . 	(3-18) 

To obtain the solution for a (j) equation, several 

"sweeps" across the grid are necessary. 

3.3.5 	The Hydrodynamic-Solution Procedure  

Because the finite-difference equations are implicit, 

a simultaneous solution is necessary at each step in 

time to obtain the hydrodynamic fields. The difference 

equations have been forced into a linear form, but, 

the coefficients are functions of the dependent 

variables. Thus, the simultaneous solution must be 

of an iterative nature; the coefficients being 

frequently recalculated with the "best" available 

values of the dependent variables. The steps of the 

hydrodynamic portion of the solution procedure, which 

is based on the SIMPLE Method (Caretto, et al, 1972). 

are described below. 
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(1) Step Forward in Time  

The initial conditions are taken as the results of the 

previous time step. If the boundary conditions are 

time depedent, they must be updated. 

(2) Guess the Pressure Field, p*  

For the first iteration of a time step, 	is taken 

to be the previous time pressure field, po; otherwise, 

the pressure field from the previous iteration is 

used for p*. 

(3) Calculate u* and v* 

Coefficients computed from the most up-to-date values 

of the dependent variables and the guessed pressures 

are used to solve the momentum equations. The 

resulting u* and v* velocity fields do not, however, 

satisfy continuity. 

(4) Calculate p'  

The continuity errors produced by the u* and v* fields 

are used in equation (3-14) to calculate the 

pressure-corrections. 

(5) Correct the Pressure and Velocity Fields  

The pressure-corrections are used in equations (3-10 

and 3-11) to adjust the pressure and velocity fields 

such that local continuity is satisfied in all control 

volumes. 
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(6) 	Complete the Iteration  

If convergence has not been obtained, repeat steps 2 

to 5. 

The calculation of additional (p equations can be 

performed after the above sequence has been completed. 

Of course, if any of the additional q5 equations are 

coupled to the momentum equations, as is the energy 

equation when the density in a function of temperature; 

then those Vs should be computed after step 5, inside 

the hydrodynamic iteration loop. 

Finally, if the coefficients of the finite-difference 

equations incur large changes from one iteration to 

the next, the procedure can become unstable. The 

transient terms help to alleviate this problem by 

acting as a "natural" under-relaxation. However, in 

order to take larger steps in time, it is sometimes 

useful to directly under-relax the momentum equations. 

3.3.6 	Incorporation of Auxiliary Information  

Boundary Conditions  

The boundary conditions for the finite-difference 

equations are usually prescribed in one of two ways. 

Either the value of a variable or its normal gradient 

is specified at the grid boundary. For example, at 

stationary, impervious walls, the velocities are zero. 

However, at symmetry planes, the velocity gradients 

normal to the boundary are zero. The boundary 
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conditions may be time dependent, in which case they 

must be modified appropriately before starting each 

time step. 

Initial Conditions  

The initial fields of pressure, velocities and all 

additional (1)'s must be specified before the 

calculational procedure can start. The initial 

conditions for the second and subsequent steps in time 

are taken as the results of the previous time step. 

Thus, the computation of each forward step is in 

essence a separate problem, and the solution procedure 

may be easily stopped and restarted. 

Other Auxiliary Information  

The fluid properties, densities and exchange co-

efficients, are assumed constant within each fluid 

region. 	In control volumes containing both fluids, 

suitable weighted averages of the gas and liquid 

properties are used. This calculation of these 

average properties will be discussed in Section 3.4.2. 

Additional source terms for the individual equations 

must be incorporated as necessary. For instance, the 

buoyancy term must be in the axial-direction momentum 

equation for an axisymmetric geometry, but, in a plane 

flow, the gravitational vector may point in either 

coordinate direction or it may not be aligned with the 

axes. Other examples include the terms to represent 
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the momentum loss incurred by flow through a distributed 

resistance and the simulation of walls internal to the 

flow geometry, either impermeable walls or "leaky" 

walls. 

3.4 	FREE-SURFACE CALCULATIONS  

3.4.1 	Particle Tracking 

The free surface is marked by a "string" of massless 

particles. These particles are moved, according to 

equation (2-12), during each time step. The components 

of equation (2-12) in finite-difference form are 

Xp 	 Xp ,0  + UP At , 

Yp = Yp 0  + vp  At , 	 (3-19) 

where (xP'  yP  ) and (xP o'  yP 	 are are respectively the , 

new and old locations of the particle,and Up and VP  

are the instantaneous velocity components of the 

particle. The particle velocity components are 

evaluated at the old particle location (x 
P,o' YP,o)  

by linear interpolation of the four nearest velocities 

in the appropriate direction (see Figure 3-5). 

3.4.2 	Calculation of the Local Densities 

Not only are the marker particles a convenient way to 

display the free-surface configuration in the output 

from the computations, but they also provide a means 

of calculating the densities for the control volumes 

intersected by the free surface. 	The densities of these 
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grid nodes grid lines 

II 

vp  # 
Particle6-0' 

II 

	 X 

u-velocities used in interpolation 
procedure to obtain up. 

v-velocities used in interpolation 
procedure to obtain vp. 

FIGURE 3-5 : VELOCITIES  USED IN THE  INTERPOLATION OF THE 
PARTICLE VELOCITIES 
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free-surface control volumes are calculated by averaging 

the gas and liquid densities with a weighting factor 

based on the relative amounts of each fluid within the 

control volume. Two types of average densities are 

calculated, those representative of the whole control 

volumes and those representative of the control volume 

faces. 	Both types of densities are computed for each 

of the three kinds of control volumes defined in 

Figure 3-2. These "local" densities are needed to 

solve the hydrodynamic equations; the control volume 

densities are used in the transient terms, the body-

force terms, etc., and the densities for the control 

volume faces are used in the convective terms. 

The free-surface marker particles are grouped into 

"strings", such that each string of particles begins 

and ends at a grid boundary. Hence, there are as 

many strings of particles as there are separate inter-

faces; only one or two strings are necessary to 

describe most flows of interest. Figure 3-6 shows 

an illustrative example of a free-surface flow 

composed of two strings. Note that both strings may 

pass through a single control volume and a string may 

pass through the same control volume several times. 

However, this flexibility is included to generalise 

the calculations, and it is important to keep in mind 

that details of the free-surface shape on a scale 

much smaller than the dimensions of the control 

volumes cannot be accurately predicted. Finally, the 
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strings of particles are not allowed to cross either 

themselves or other strings. 

The particles are numbered consecutively along the 

strings such that an observer moving from particle k 

to particle k+1 (see Figure 3-6) always sees gas to 

his right and liquid to his left. Each time the 

particles are moved the calOulational procedure 

inserts additional particles midway between any two 

consecutive particles that are separated by a distance 

greater than a prescribed maximum,S
1
(see Figure 3-7(a)), 

and removes particles which are closer than a 

prescribed minimum, (S2  (see Figure 3-7(b)). Also, 

the redundant particles in a configuration like the 

one depicted in Figure 3-7(c) are removed if c is 

sufficiently small. As particles are deleted and 

inserted, the particle numbering is adjusted to 

maintain an orderly arrangement consistent with the 

example in Figure 3-6. 

To calculate the local densities, the percentage of 

liquid present in each control volume and at each 

control volume face is computed from the particle 

locations. It is a straightforward procedure to 

determine which control volumes contain particles. 

Figure 3-8 illustrates a free-surface control volume 

and the particles along the portion of the string 

that passes through the control volume. The volume 

of fluid between the particle string and the face of 

the control volume nearest the y-axis is divided into 
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(a) A new particle is added midway between two particles 
(i.e. 18 and 19) if 6 exceeds the maximum spacing, S. 
The particles are then renumbered to account for the 
new particle. 
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49 	53 (53)(54) 
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(55)(56)(57) (58) 56 
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(b) Particle 53 is deleted if 6 is less than the minimum 
spacing, 62. The particles are renumbered to account 

for the deleted particle. 

(c) Particle 34 is deleted if E is smaller than a pre-
determined size. The particles are then renumbered 
to account for the deleted particle. 

FIGURE 3-7 : PARTICLE DELETION AND ADDITION PROCEDURES 
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Typical free-surface 
configuration 

positive segments x=0 

negative segments x=0 

Summation of all the segments gives (a) the volume of 
liquid in the control volume if the sum is positive, or 
(b) the volume gas in the control volume if the sum is 
negative. 

FIGURE 3-8 : CALCULATION PROCEDURE FOR LOCAL DENSITIES  
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segments as shown. The volume of these segments may 

be expressed .as 

v
seg 

where 

(y
k+1 	- 

the 	x's 

yk)  (rk+1  rk) 
k+1+xk)]- 	x

B 
(3-21) 

and 	the 

2 

and y's 	are coordinate 

2 

locations 

r's are radial distances for cylindrical coordinates 

and unity for cartesian coordinates. Obvious adjust-

ments to equation (3-21) are necessary for the first 

and last segment in the control volume. The factor 

(yk 	yk,i) will make Vseg positive when the segment 

is filled with liquid and negative when the segment 

is filled with gas. Thus, it is only necessary to 

algebraicly sum the segment volumes (the liquid 

segments add and the gas segments subtract) and 

divide the result by the total volume of the control 

volume to obtain the percentage of liquid present. 

If the result is positive, then it is the per cent 

liquid in the control volume; however, if the result 

is negative, the per cent liquid is produced by 

adding unity. This procedure can handle any free-

surface configuration in which the particle strings 

do not intersect themselves or each other. The per-

centage of liquid on a control-volume face is 

calculated in a similar manner. Once the percentage 

of liquid is known the density can be computed from 

the simple relation 

p
avg 

= apz  + (1-a) pg 	 (3-22) 
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where 

a E per cent liquid. 

The effective viscosity needed to calculate the shear 

stresses may be averaged in the same manner as the 

control volume face densities. 

Finally, the calculational procedure must be able to 

distinguish whether a control volume, which does not 

contain any particles, is filled with gas or liquid. 

The fluid region containing such a control volume is 

bounded by the nearest free surf'ace. Hence, the 

particle nearest the control volume and its two 

neighbours form a segment of the bounding interface. 

These particles are denoted a, b and c where a is 

the lowest numbered of the three particles, and c the 

highest. The control volume is identified by the 

geometrical centre, m. A set of coordinate axes 

(x1 ,y')
Pq 
 can be constructed so that the origin is 

located at a point p and the x' axis passes through 

the point q by translating and rotating the (x,y) 

coordinates. 

x 

(x-y
p)(xq-Yp) 	(Y-Y

P 
 )(Y

q 
 -Y

P 
 ) 

( 3-23) 

   

1/(x 
q 
-x 

 P 
)2  + (y 

q 
-y 

P
) 

t
When the nearest particle is on the end of a string, 
the three particles at the end of the string are 
used. 
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(Y-Y
P 
 )(x

q  -
Y
P 
 ) - (x-xp)(y -Y p) q   

y1 - 

1/1(x 
q 
 -x )2 - (y 

q 
 -y 

p
)2 

Then, to decide which fluid the control volume contains, 

it is sufficient to know the sign of y' 	, y' 	, 
ab 	bc 

yi; 	and yi'3 	. 	For instance, if y' 	< 0, y' 	< 0, 
ac 	ac 	 ab 	be  

	

Y'm 	< 0 and yl'3 	> 0 as in Figure 3-9, the control 
ac 	ac 

volume around m contains gas. There are sixteen 

possible combinations of the y"s which can be worked 

out easily. 

	

3.5 	SUMMARY OF THE SOLUTION PROCEDURE  

The complete solution procedure is summarised below. 

(1) Set the Initial Conditions  

The necessary initial conditions include the hydro-

dynamic fields and any additional (I) fields,as well as 

the initial locations of the free-surface marker 

particles. For the second and subsequent time steps, 

the results of the previous time step are the initial 

conditions. 

(2) Step Forward in Time. 

(3) Set the Boundary Conditions. 

(4) Calculate the Local Densities. 

The local densities are computed from the free-surface 

particle locations. 
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LIQUID 
x' 
bc 

 

control volume 

FIGURE 3-9 : PRIMED COORDINATE SYSTEMS USED TO DETERMINE  
DETERMINE WHICH FLUID IS PRESENT IN A CONTROL 

VOLUME. WHICH CONTAINS NO PARTICLES  
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(5)s 	Compute the Hydrodynamic Fields  

The hydrodynamic fields are computed by the procedure 

outlined in Section 3.3.5. 

(6) Move the Free-Surface Particles  

The particles are moved with the new velocity fields. 

(7) Output Results. 

(8) Return to Step 1 and repeat for each additional 

time step. 
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CHAPTER 4 

EXPERIMENTAL WORK 

	

4.1 	INTRODUCTION  

Validation of the numerical model requires the 

comparison of predictions with experimental data. 

Some experimental results for free-surface flows are 

available in the literature; however, to complement 

the computational portion of this study, an 

experimental investigation of wave motions has been 

included. Waves generated in water contained in a 

perspex tank were filmed with a cine' camera. Prints 

of individual frames of the cin4 film can be easily 

compared with the computed results for each time step. 

Comparisons with the experimental results can determine 

first, how well the model predicts the correct 

amplitude and forward speed of the wave, and secondly, 

how well the model can predict the wave shape. 

	

4.2 	EXPERIMENTAL APPARATUS 

The experimental apparatus consists of a perspex tank 

and column arrangement as shown in Figures 4-1 and 4-2. 

The column is situated at one end of the tank so that 

there is a gap between the bottom of the column and 

the floor of the tank. The vertical position of the 

column can be adjusted to change the height of this 

gap. Near the top of the column is a 0.1016 M diameter 

hole which is fitted with a removable cover plate and 
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FIGURE 4-1 : DIAGRAM OF THE EXPERIMENTAL APPARATUS  
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FIGURE 4-2  : OVERALL VIEW OF THE EXPERIMENTAL APPARATUS  
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"0" ring assembly. A vacuum line is connected to the 

top of the column, and finally, the tank is partially 

filled with water. 

A wave can be generated in the tank quite easily. 

First, the air pressure above the water surface in the 

column is reduced via the vacuum line, and water is 

drawn up into the column. Then, removal of the cover 

plate and "0" ring assembly allows the air in the upper 

portion of the column to return to atmospheric 

pressure and gravitational acceleration causes the 

water stored in the column to rush down, through the 

gap at the bottom of the column and into the tank. 

The rush of water from the column produces a wave in 

the tank. The size and speed of the wave can be 

altered by adjusting the depth of water in the tank, 

the initial water level in the column and the size of 

the opening at the bottom of the column. Further, 

baffles can be inserted in the slots shown in Figure 

4-1. 

The experimental results were recorded with a Bolex 

16H 16mm dine camera. After the water levels in the 

tank and column had been adjusted for a particular 

run, the cine camera was started and the wave was 

initiated by removing the cover plate from the hole 

at the top of the column. The camera was run until 

the initial wave had rebounded from the end of the 

tank. Blue dye was added to the water to improve the 

contrast between the water surface and the background. 
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Ideally, the experimental results should be free from 

all physical effects not modelled by the computational 

procedure described in the previous chapters. Thus, 

to ensure the two-dimensional nature of the waves, the 

tank was made 0.3048 meter wide. The curvature of the 

water surface is sufficiently large to remove the 

effects of surface tension. Finally, the Reynolds 

number of the flow through the opening at the bottom 

of the column is of the order of 10 5; however, it is 

assumed that turbulence will not significantly affect 

overall motion of the wave. Thus, the wave motion is 

dependent primarily on the inertial and gravitational 

forces. 

Experimental errors may arise both when the cine film 

is exposed, and when measurements are taken from the 

film. The time scale of the results is affected by 

the consistency of the film speed. Calibration of 

the camera showed that the actual film speed was 54 

frames per second. To ensure a constant film speed, 

the camera was started approximately one second before 

the wave was initiated. The camera was placed 8 meters 

away from the tank and a 75mm, 1.9f auto lens was used 

in order to reduce the photographic distortion and to 

produce "two-dimensional" images on the film. The 

largest errors were introduced during the measurement 

of the quantities defined in Figure 4-3. These 

measurements were taken from the projected images of 

individual frames of the cine film. The error incurred 
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AMP 	amplitude of the wave 
LOC 	location of the wave crest 

CH 	height of liquid in column 

FIGURE 4-3 : DEFINITION SKETCH FOR THE MEASUREMENTS  
TAKEN FROM THE CINE FILM  
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in these measurements is of the order of five to ten 

per cent. 

4.3 	EXPERIMENTAL RESULTS  

More than thirty experimental runs were filmed. From 

these, four typical runs were selected for presentation 

and comparison with the computations. Details of these 

four runs are given in Table 4-1. Several frames from 

the cine film of Run No. 4 are shown in Figure 4-4. 

As the wave moves across the tank, it first becomes 

very turbulent on the back side, and then it breaks 

forward very slightly. Impact of the wave on the end 

wall produces a run up of approximately twice the 

height of the approaching wave. Finally, a reflected 

wave forms and begins to move back across the tank. 

The measured data (as defined in Figure 4-3) for Run 

No. 4 are presented in Figure 4-5. A sequence of frames 

from Run No. 11 is shown in Figure 4-6. Run No. 11 

has a greater initial depth of water in both the tank 

and the column than does Run No. 4; thus it produces 

a larger wave. Again, the wave is turbulent on the 

back side, but in Run No. 11 the wave does not break 

forward at all. Upon impact with the end wall the 

Run No.11 wave forms a tall, thin sheet of water up 

the end wall. The measured data for Run No. 11 are 

presented in Figure 4-7. For the other two typical 

runs a baffle 0.085 meters high was placed 1.08 meters 

from the column end of the tank (slot G in Figure 4-3). 

The initial water level in the tank for Run No. 8 
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(Figure 4-8) was just below the top of the baffle. 

RUN NO. 4 8 11 13 

Initial water height in column (M) .335 .302 .553 .591 

Initial water depth in tank 	(M) .076 .076 .137 .135 

Baffle location from column 
(M) 

end of tank 
- 1.08 - 1.08 

Baffle height 	(M) - .085 - .085 

Gap height (at bottom of 
(M) 

column) 
.523 .523 .523 .523 

TABLE 4-1 : INITIAL CONDITIONS FOR THE EXPERIMENTAL  

RUNS  

Run No. 8 is very similar to Run No. 4 before the wave 

approaches the baffle. Because the baffle is 

protruding above the water surface, the Run No. 8 wave 

breaks over the baffle and falls into the quiescent 

water behind the baffle. Figure 4-9 presents the 

measured data for Run No.. 8. 	Run No. 13, shown in 

Figure 4-10, has an initial depth of water in the tank 

which is sufficient to submerge the baffle; hence, the 

wave does not break over the baffle. Instead it 

approaches the baffle with a constant amplitude and 

then rises to "climb" over the barrier. Behind the 

baffle the wave first loses amplitude and then impacts 

and runs up the end wall forming a thin, vertical 

sheet of water, as does Run No. 11. The measured data 
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for Run No. 13 are presented in Figure 4-11. 

4.4 	Summary  

In this chapter the experimental investigation has been 

discussed. First, the equipment and experimental 

procedures were described. Then some typical experi-

mental results were presented. In Chapter 7 these 

experimental results will be compared with predictions 

obtained from the numerical model. 
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CHAPTER 5 

PREDICTIONS TO COMPARE WITH ANALYTICAL RESULTS 

5.1 	INTRODUCTION  

A numerical solution procedure, must possess three 

qualities. 	It should be capable of: (a) producing 

numerically accurate results, (b) realistically 

simulating physical processes, and (c) analysing flows 

of engineering and scientific interest. This and the 

following two chapters are devoted to evaluating how 

well the numerical model and solution procedure 

described in Chapters 2 and 3 accomplish these goals. 

In this chapter the numerical accuracy of the solution 

procedure is checked by comparing predictions of four 

flows with analytical solutions. These flows are 

tabulated along with some pertinent data in Table 5-1. 

In Chapter 6 predicted results are compared with 

experimental data to test the physical reality of the 

computations and some additional flows of interest are 

presented in Chapter 7. 

All of the computations presented were produced with 

the SPLASH (SIMPLE Program for Liquid and Air Systems  

Hydrodynamics) Computer Program, which embodies the 

solution procedure described in Chapter 3. SPLASH is 

written in standard FORTRAN and requires no special 

features of a particular computer. The amount of 

storage required by the program depends on the number 



WATER 

PLUG 
U-TUBE 

SPHERICAL 

BUBBLE 

PERIODIC 

WAVE 

Coordinate System Cartesian Cartesian Cylindrical Cartesian 

Grid 22 x 3 22 x 3 17 	x 	17 22 	x 	17 

Type of Grid Spacing Uniform Uniform Uniform Non-Uniform 

Number of Particle Strings 2 2 1 1 

Number of Particles at Start 6 6 100 100 

Number of Particles 	at Finish 6 6 130 111 

Maximum Time 	Sec 0.026 1.0 0.05 2.625 

Time Step 	(At) 	Sec 0.0001 0.005 0.0005 0.025 

Number of Time Steps 260 200 100 105 

Number of Iterations per 
Time Step 10 10 12 10 

Direction 	of Gravitational 
Acceleration 

- - x 

Density of Gas 	Kg/m3  1.198 1.198 1.198 1.198 

Density of Liquid 	Kg/m3  1000. 1000. 1000. 1000. 

Viscosity of Gas 	Nt Sec/m2  0 0 10
-3 

 10
-3 

Viscosity of Liquid Nt Sec/m2  0 0 10
-3 

10
-3 

Computational Time CDC 6600 Sec 20 25 300 480 

TABLE 5-1 : PERTINENT DATA FOR THE PREDICTIONS PRESENTED IN CHAPTER 5  
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of grid points allowed for; the storage requirement 

varies from 20000 words of memory for a 15 by 15 grid 

to 40000 words for a 37 by 22 grid. The predictions 

reported in this and the following chapters were 

computed on various CDC machines using the FTN 

optimization compiler. All computational times are 

quoted in terms of CDC 6600 seconds (or minutes). 

5.2 	ACCELERATION OF A LIQUID PLUG  

Presentation  

A "plug" of water confined to one-dimensional motion 

in a uniform channel behaves like a solid body. If 

a constant force (pressure drop) is applied to the 

plug (see Figure 5-1), it will accelerate at a constant 

rate. The conservation of mass and momentum require 

that 

9u = 0 
3x 

and 

Du. uau 	_ 1 3p 
at 	3x 	-15 @x (5- 1) 

The displacement and velocity of the water plug can 

be expressed as 

t2  
x(t) = (PL - PR' 20L 

and 

(5-2) 

u(t) = (PL - PR' pL 	• 	 (5-3) 
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FIGURE 5-1 : DEFINITION OF THE WATER PLUG PROBLEM 
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FIGURE 5-2 : COMPUTATIONAL DETAILS FOR THE WATER PLUG PROBLEM 
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The grid and geometry used in predicting the motion of 

the water plug are shown in Figure 5-2. The solution 

was run for 260 time steps of .0001.  seconds each, 

which required approximately 20 seconds of CDC 6600 

time. The predicted velocity and displacement of the 

water plug are shown with the analytical solutions 

(equations 5-2 and'5-3) in Figures 5-3 and 5-4. 

Discussion  

Examination of Figures 5-3 and 5-4 confirms that the 

model can accuPately predict the one-dimensional motion 

of the water plug. Of course this is a simple 

problem, however, the results verify the model and 

solution procedure in two ways. First, the solution 

procedure solved the simplified hydrodynamic equations 

correctly. Secondly, the particle-tracking procedure 

moved both faces of the water plug independently 

without deforming the plug. 

5.3 	LIQUID OSCILLATIONS IN A U-TUBE 

Presentation  

In the absence of friction, the oscillatory motion of 

a liquid in a U-tube, as shown in Figure 5-5, obeys 

the familiar equation for undamped, second-order 

motion, 

apL d2x  - - 2 ap gx 	 (5-4) 
dt2  

The symbols in equation (5-4) are defined in Figure 5-5. 
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FIGURE 5-5 : DEFINITION  OF THE U-TUBE PROBLEM  
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Subject to the initial conditions 

 _d_xl 
x(0) = x

o 
	and 
	

= u = 0 
t=0 

the solution to equation (5-4) is 

x(t) = xo  cos [/P t] 	 (5-5) 

and it follows that the liquid velocity is 

dx 	1?.a. x sin ( V- 1  t) dt = u(t)  = L o • (5-6) 

The grid arrangement and coordinate system necessary 

to predict the U-tube oscillations are shown in 

Figure 5-6. The x-coordinate is "bent" so that it 

lies along the centre line of the U-tube. In the left 

leg the gravitational acceleration is in the positive 

x-direction, however, it is in the negative x-direction 

in the right leg. There are no gravitational effects 

in the lower section of the bend which connects the 

legs. 

The computations were run for 200 time steps and 

required approximately 25 seconds on the CDC 6600. 

The computed displacements of the liquid surfaces are 

compared with equation (5-5) in Figure 5-7. Note that 

the displacements are relative to the x-coordinate 

defined in Figure 5-6. Figure 5-8 shows the variation 

of liquid velocity with time as computed compared 

with equation (5-6). 
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Discussion 

The predictions agree well with the analytical solution. 

This agreement supports the results presented in the 

previous section, and thus, further validates the 

ability of the numerical model to correctly predict 

one-dimensional, free-surface flows. Additionally, the 

comparisons presented in Figures 5-7 and 5-8 demonstrate 

that the time scale of the periodic behaviour of the 

liquid is computed accurately. 

5.4 	GROWTH OF A SPHERICAL BUBBLE 

Presentation  

The growth of a spherical bubble in a liquid medium 

(i.e., a point source of gas or a perfectly symmetric 

explosion) is a one-dimensional flow in spherical 

coordinates. If q is the rate at which gas volume is 

created within the bubble, then from continuity, the 

bubble radius varies according to the relation 

3 r 3 (t) = r 3  + 
47r 

 q At o  (5-7) 

The growth of a spherical bubble was computed as a 

two-dimensional, axi-symmetric flow. A 17by 17 uniform 

grid as shown in Figure 5-9 was used for the 

computations. Growth of the gas bubble was simulated 

by adding a source of gas volume in the main control 

volume at the centre of the bubble and specifying the 

appropriate velocity profiles along the outflow 
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FIGURE 5-9 : DEFINITION SKETCH AND COMPUTATIONAL DETAILS 
FOR SPHERICAL BUBBLE PROBLEM 
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boundaries. These outflow velocities were specified 

so as to represent the one-dimensional spherical 

motion of the fluid on the two-dimensional cylindrical 

grid and at the same time exactly balance the source 

of gas volume being generated within the bubble. The 

predictions were carried out for 100 time steps which 

required approximately 300 seconds of CDC 6600 time. 

Figure 5-10 shows the surface particle locations 

compared to the results of equation (5-7). 

Discussion  

This problem is included to demonstrate that the 

solution procedure can accurately predict the movement 

of a two-dimensional free-surface across the 

computational grid. Prediction of the bubble growth 

presents two problems. First, it is necessary to 

simulate the spherical nature of the bubble with 

cylindrical control volumes, and secondly, the gas 

created inside the bubble must push the denser liquid 

across the flow domain. As a result the predicted 

velocity fields exhibit recirculation zones inside the 

gas-bubble; however, Figure 5-10 shows that the bubble 

shape is predicted quite accurately. The effect of 

the automatic particle addition procedure can be seen 

by examining Figure 5-10. The string of particles is 

about twenty per cent longer after 100 time steps than 

it is after 50 time steps; but because particles were 

added, no gaps appear in the particle string. 
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5.5 	PERIODIC WAVE MOTION  

Presentation  

The last problem to be presented in this chapter is 

the periodic movement of a small amplitude wave in a 

deep tank; see Figure 5-11. If the tank is very deep 

with respect to the wave amplitude, the resulting 

wave motion can be described quite well by linear 

wave theory. The classic linear solution for the 

interface displacement, n, (Lamb, 1975, or Ippen, 

1966) is 

n(Y,t) = a sin(ky) cos(wt) 

where 

w = [gk tanh (k H)1 

k = 27 
1 

1 = 4L = wave length 

(5-8) 

and a, L and H are defined in Figure 5-11. 

Figure 5-12 shows the 22 by17 non-uniform grid used 

to compute the periodic wave motion. The grid lines 

have been concentrated near the free-surface to yield 

a more accurate prediction of the free-surface motion. 

The computations were run for one wave period, 2.5324 

seconds. This required 105 time steps and consumed 

about 480 seconds of CDC 6600 time. 

The computed shapes of the wave free-surface at 

approximately each fifth of a period are shown in 
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Figure 5-13. In Figure 5-14 the surface elevations 

at y = 0 and at y = 2L are plotted versus time. The 

linear solution (equation 5-8) is also shown in 

Figure 5-14. 

Discussion  

The sequence of computed wave shapes in Figure 5-13 

shows the wave oscillating through one complete period. 

On the whole the wave maintains a sinusoidal shape; 

however, a small irregularity appears on the last 

"frame" of Figure 5-13. At about y = L, there is a 

small bump on the wave surface. The fluid should 

rotate about the point (x = H, y = L) and the velocity 

at (H, L) should be zero. However, because the 

finite-difference procedure is concerned with 

quantities averaged over finite regions of space, 

the velocities computed for the point (H, L) will not 

necessarily be exactly zero. This error is insignifi-

cant to the overall flow, but it does cause the free-

surface particles near y = L to "drift" about slightly. 

The automatic particle-deletion procedure will remove 

particles that drift too far out of line with respect 

to their neighbours. 

The analytical solution given in equation (5-8) is 

based on linearised free-surface boundary conditions; 

however, a real wave exhibits a non-linear behaviour. 

The non-linearities, which are included in the numerical 

procedure, cause the crests of the wave to be higher 
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FIGURE 5-13  : FREE-SURFACE SHAPES FOR PERIODIC WAVE MOTION  



S
U

R
FA

C
E
 E
L
E
V
A

T
IO

N
  

1.0 	1.5 

5.8 	  

0.0 	0.5 

6.5 

---- --LINEAR SOLUTION (EQUATION 5-8) 

PREDICTIONS 6.4 3. 

end of one 

2 6.3 

6.0 

5.9 

6.1 

6.2 

- 

2. 

	r 

period, 
2.5324 sec. 

-3 
2.0 2.5 

Time (sec.) 

FIGURE 5-14 : SURFACE ELEVATION AT y=0 AND y=2L FOR THE PERIODIC WAVE  



116 

than those of the linear counterpart and the trough to 

be shallower. Figure 5-14 shows these effects. It 

also shows that the frequency of the computed wave is 

quite accurately predicted. 

5.6 	SUMMARY  

In this chapter predictions of four problems have been 

compared with analytical solutions. These comparisons 

verify the model and solution procedure in three ways. 

First, the accurate prddictions for the water plug, 

the U-tube and the periodic wave demonstrate the 

ability to correctly solve the basic equations of 

motion. Secondly, the computations for all four 

problems, but especially the spherical bubble problem, 

show that the particle-tracking procedure moves the 

free-surface correctly. Finally, the results of the 

U-tube and the periodic wave calculations verify that 

the solution procedure can properly predict periodic 

motion and maintain the correct time scale. 
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CHAPTER 6 

PREDICTIONS TO COMPARE WITH EXPERIMENTAL RESULTS 

	

6.1 	INTRODUCTION  

In this chapter predictions of wave motions are 

compared with experimental results. First, predictions 

for the movement of the wave-front produced by a 

collapsing column of liquid and the impact of a 

solitary wave on a vertical wall are compared with 

data taken from the literature. Finally, the experi-

mental results presented in Chapter 4 are compared 

with calculations. Details of the computations are 

tabulated in Table 6-1. 

	

6.2 	COLLAPSE OF A LIQUID COLUMN  

Presentation  

Gravitational acceleration causes a liquid to seek the 

lowest possible level or position of minimum potential 

energy; hence, a "column" of water will not "stand up" 

on a flat surface. Instead the column will collapse 

and form a thin layer. The reduction in column height 

and the outward movement of the liquid front have been 

measured by Martin and Moyce (1952) for several 

columns of different initial shapes. Figure 6-1 shows 

a typical collapsing column and defines several 

dimensionless quantities that Martin and Moyce used 

to present the data. The liquid columns are identified 

by the initial section shape (rectangular or semi- 
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n2 =1 

a=0.05715 

COLLAPSING COLUMNS 

semi-circular 

a=0.0508 

n 2=1 	n2=4 

a=0.8 	a=0.028575 

Coordinate System 

Grid 

Type of Grid Spacing 

Number of Particle Strings 

Number of Particles at Start 

Number of Particles at Finish 

Maximum Time 	Sec 

Time Step 	(At) 	Sec 

Number of Time Steps 

Number of Iterations per 
Time Step 

Direction 	of Gravitational 
Acceleration 

Density of Gas 	Kg/m3  

Density of Liquid 	Kg/m3  

Viscosity of Gas 	Nt Sec/m2  

Viscosity of Liquid Nt Sec/m2  

Computational Time 	CDC 6600 Sec 

Cartesian 

22 	x 	17 

Non-Uniform 

1 

257 

500 

2.05 

0.025 

82 

10 

Y 

1.198 

1000.0 

1x10
-5 

1x10
-3 

700 

Cartesian 

37 	x 22 

Non-Uniform 

1 

65 

500 

0.8 

0.01 

80 

8 

Y 

1.198 

1000.0 

1x10
-5 

1x10
-3 

365 

Cartesian 

37 	x 22 

Non-Uniform 

1 

161 

500 

0.66 

0.005 

132 

5 	, 

Y 

1.198 

1000.0 

1x10
-5 

1x10
-3 

800 

Cartesian 

22 	x 	17 

Non-Uniform 

1 

100 

402 

0.3 

0.005 

60 

8 

Y 

1.198 

1000.0 

1x10
-5 

1x10
-3 

215 

TABLE 6-1 : PERTINENT DATA FOR THE PREDICTIONS PRESENTED IN CHAPTER 6 	(contd. overleaf) 
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1 

177 

288 

1.5 
0.01 
150 

10 

Y 

1.198 

1000.0 

1x10
-5 

1x10
-3 

1600 

Cartesian 
37 x 22 

Non-Uniform 

1 

209 

259 

1.5 
0.01 
150 

12 

Y 

1.198 

1000.0 

1x10
-5 

1x10
-3 

1725 

Cartesian 
37 x 22 

Non-Uniform 

1 

177 

447 

1.3 
0.01 
130 

10 

Y 

1.198 

1000.0 

1x10
-5  

1x10
-3 

1300 

Cartesian 
37 x 22 

Non-Uniform 

1 

209 

320 

1.5 
0.01 
150 

10 

Y 

1.198 

1000.0 

1x10
-5 

1x10
-3 

1540 

TABLE 6-1 : PERTINENT DATA FOR THE PREDICTIONS PRESENTED IN CHAPTER 6  
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circular) and size (2a x n2a, where a is the semi-base 

length). 

Predictions were made for four column configurations: 

rectangular sectioned columns, 

RSC1 n2  = 1 	, a = 0.05715 m 

RSC2 n2  = 1 	, a = 0.08 m 

RSC3 n2  = 4 	, a = 0.028575 m 

semi-circular sectioned column, 

SSC1 	n2  = 1 , 	a = 0.0508 m. 

Non-uniform grids were used in computing each of the 

four collapsing columns. The grid point locations are 

tabulated in Tables 6-2, 6-3, 6-4 and 6-5. In the x-

direction the grid points are concentrated near the 

initial location of the liquid column and in the y-

direction they are concentrated near the bottom (y=0) 

portion of the flow domain. The calculations were 

run, either until all of the liquid was contained in 

the bottom row of main "cells" or control volumes, or 

unLil the wave-front reached the end of the grid. 

Computational times in CDC 6600 minutes were approximately 

11.6 minutes for RSC1, 6.0 minutes for RSC2, 13.3 minutes 

for RSC3 and 3.6 minutes for SSC1. 

A sequence of section profiles for a square column RSC1, 

is shown in Figure 6-2 and a similar sequence for the 

semi-circular column, SSC1, is shown in Figure 6-3. The 

velocity vectors are also included in Figures 6-2 



TIME = 0.00 SEC 

TIME 	= 	0.10 	SEC 

TIME 	= 	0.20 	SEC 

• • • ■1,  
I 

TIME 	= 0.30 SEC 

TIME 	= 0.40 SEC 

TIME 	= 0.50 SEC 

TIME = 0.60 SEC 

TIME = 0.70 SEC 

TIME = 0.80 SEC 

FIGURE 6-2 : PREDICTED SECTION PROFILES AND VELOCITY VECTORS 
FOR RECTANGULAR COLLAPSING COLUMN,  

n2  = 1, a = 0.05715 M 
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TIME = 0.05 SEC 

TIME = 0.10 SEC 

TIME = 0.15 SEC 

TIME = 0.20 SEC 

TIME = 0.25 SEC 

TIME = 0.30 SEC 
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FIGURE 6-3 	PREDICTED  SECTION PROFILES AND VELOCITY VECTORS 
FOR SEMI-CIRCULAR COLLAPSING COLUMN,  

n2  = 1, a = 0.0508 M 
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I x I y 	J Y 	J 	Y 

1 0.000 12 0.275 	1 0.00 	12 	0.040 

2 0.015. 13 0.325 	2 0.001 	13 	0.046 

3 0.035 14 0.375 	3 0.003 	14 	0.052 

4 0.0425 15 0.425 	4 0.005 	15 	0.058 

5 0.0575 16 0.500 	5 0.075 	16 	0.066 

6 0.070 17 0.575 	6 0.010 	17 	0.070 

7 0.090 18 0.650 	7 0.014 

8 0.115 19 0.750 	8 0.018 

9 0.140 20 0.850 	9 0.022 

10 0.175 21 0.950 	10 0.028 

11 0.225 22 1.000 	11 0.034 

TABLE 6-2 	: GRID USED TO PREDICT RECTANGULAR COLLAPSING 

COLUMN, 	n2 	= 	1, 	a 	= 	0.05715 	meters 	(RSC1) 

I x I x 	J 	_y_ 

1 0.0 21 	5.0 	1 	0.0 

2 0.05 22 	5.3 	2 	0.02 

3 0.20 23 	5.6 	3 	0.05 

4 0.40 24 	5.9 	4 	0.08 

5 0.60 25 	6.2 	5 	0.12 

6 0.80 26 	6.5 	6 	0.20 

7 1.00 27 	6.8 	7 	0.28 

8 1.20 28 	7.1 	8 	0.36 

9 1.4 29 	7.4 	9 	0.44 

10 1.7 30 	7.7 	10 	0.52 

11 2.0 31 	8.0 	11 	0.60 

12 2.3 32 	8.3 	12 	0.68 

13 2.6 33 	8.6 	13 	0.76 

14 2.9 34 	8.9 	14 	0.82 

15 3.2 35 	9.2 	15 	0.88 

16 3.5 36 	9.5 	16 	0.94 

17 3.8 37 	10..0 	17 	1.0 

18 4.1 

19 4.4 

20 4.7 

TABLE 6-3 : GRID USED TO PREDICT RECTANGULAR COLLAPSING 

COLUMN, n2  = 1, a = 0.8 meter (RSC2) 



I x  

125 

I 	x 	J  _ 	Y 

1 0.0 23 	0.3 	1 	0.0 

2 0.005 24 	0.325 	2 	0.003 

3 0.01 25 	0.35 	3 	0.006 

4 0.015 26 	0.375 	4 	0.009 

5 0.02 27 	0.4 	5 	0.012 

0.025 28 	0.45 	6 	0.015 

7 0.03 29 	0.5 	7 	0.02 

8 0.035 30 	0.55 	8 	0.025 

9 0.04 31 	0.6 	9 	0.03 

10 0.045 32 	0.65 	10 	0.035 

11 0.05 33 	0.7 	11 	0.04 

12 0.06 34 	0.75 	12 	0.05 

13 0.07 35 	0.85 	13 	0.06 

14 0.09 36 	0.95 	14 	0.07 

15 0.11 37 	1.0 	15 	0.08 

16 0.13 16 	0.09 

17 0.15 17 	0.10 

18 0.175 18 	0.11 

19 0.2 19 	0.12 

21 0.225 21 	0.13 

21 0.25 21 	0.14 

22 0.275 22 	0.15 

TABLE 6-4 : GRID USED TO PREDICT RECTANGULAR COLLAPSING 

COLUMN, n2  = 4, a - 0.023575 meter (RSC3)  
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1 

2 

3 

4 

0.0 

0.004 

0.012 

0.020' 

1 	0.0 

2 	0.001 

3 	0.003 

4 	0.005 

5 0.028 5 	0.007 

6 0.036 6 	0.009 

7 0.044 7 	0.012 

8 0.052 8 	0.015 

9 0.060 9 	0.02 

10 0.070 10 	0.025 

11 0.080 11 	0.03 

12 0.090 12 	0.036 

13 0.105 13 	0.042 

14 0.12 14 	0.048 

15 0.135 15 	0.056 

16 0.15 16 	0.065 

17 0.165 17 	0.070 

18 0.18 

19 0.195 

20 0.21 

21 0.23 

22 0.25 

TABLE 6-5 : GRID USED TO PREDICT SEMI-CIRCULAR COLLAPSING 

COLUMN, n2  = 1, a = 0.0508 meter (SSC1) 
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and 6.3. Comparisons of the predictions with the 

experimental results of Martin and Moyce for the non-

dimensional wave-front location, Z, and column height, 

H (see Figure 6-1), are presented in Figures 6-4 through 

6-9. The zero times for the experimental results were 

adjusted, before presentation, to agree with the zero 

times of the computed results. This adjustment, which 

did not exceed 0.02 seconds, is reasonable because of 

the uncertainty about the zero times expressed by 

Martin and Moyce. 

Discussion  

The results shown in Figures 6-4 through 6-9 demonstrate 

that the numerical procedure can accurately predict 

the collapse of a liquid column. The computed values 

for both the wave-front location and the height of the 

column top compare very well with the experimental 

results of Martin and Moyce. Not until the liquid has 

spread into a thin film occupying only one or two rows 

of control volumes along the "bottom" of the grid (for 

example RSC1 after T = 7, and RSC2 after T = 9) or 

until the wave front has entered the last grid cell in 

the x-direction and is approaching the end of the grid 

(SSC1 after T = 3), do the predictions differ 

significantly from the experimental results. The 

"long time" solution for the dam-break or collapsing-

column problem (Stoker, 1957), yields 2. as the 

asymptotic value for the non-dimensional wave-front 

velocity, dZ . Martin and Moyce reported the maximum 
dT 
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Experimental data 
(Martin & Moyce, 1952) 
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FIGURE 6-5 : H  VERSUS T FOR RECTANGULAR COLLAPSING COLUMN,  

n2  = 1. 
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NON-DIMENSIONAL TIME T 

FIGURE 6-6 : Z VERSUS T FOR RECTANGULAR COLLAPSING COLUMN,  

n 2  n = 4. 
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n 2 
	4 

FIGURE  6-7 : H  VERSUS 1  FOR RECTANGULAR COLLAPSING COLUMN,  

2 	4 n = 4. 
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surge velocities for the rectangular sectioned columns 

as follOwat 

n 2  a (m) dZ 
T (max.) 

	

0.05715 
	

1.62 

1 
	

0.1143 
	

1.66 

4 
	

0.028575 
	

1.62 

The values obtained from the present computations are: 

n 2 a 	(m) LIZ 	(max.) dT 

RSC1 1 0.05715 1.61 

RSC2 1 0.08 1.68 

RSC3 4 0.028575 1.55 

SSC1 1 0.0508 1.39 

Thus the wave-front velocity is 	also predicted quite 

accurately. Overall, the predictions agree very well 

with the experimental data reported by Martin and 

Moyce. However, as is always the case with numerical 

computations, the results could be enhanced by 

employing a finer grid, especially in the lower, right-

hand portion of the flow domain. 

Very little can be asserted to validate the predicted 

free-surface shape for the collapsing columns. Martin 

and Moyce presented four photographs for a rectangular 

n2  n = 1 columns however, they did not specify the times 

to which the ph6tographs relate. These four surface 

shapes are shown in Figure 6-10 along with several 

surface profiles from the predictions. Even though 
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FIGURE 6-10 QUALITATIVE COMPARISON OF FREE-SURFACE SHAPES FOR RECTANGULAR COLLAPSING COLUMN
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the illustrations in Figure 6-10 can only be compared 

qUalitatiV§iy; they db §OggPat that the frefEJ=gUi4d6P 

shape is predicted reasonably well. 

6.3 	SOLITARY-WAVE RUN-UP ON A VERTICAL WALL  

Presentation  

Shallow water waves can be approximated analytically 

as solitary waves. The solitary wave stands entirely 

above the nominal liquid level and the wave height is 

not necessarily small in relation to the total liquid 

depth. A solitary wave can travel for a considerable 

distance along a uniform channel with little or no 

distortion (Lamb, 1975). Laitone's second 

approximation for the solitary wave, as reported by 

Wiegel (1964), is given below. 

Wave speed: 

	C 	
El + 	ho  - 3  (h°) 21 

ET; - 	7 do 	20 do  
(6-1) 

Wave profile: 

= d
o 

+ h
o 

sech2  (Awx - ct) 

3 
ho  (-EP) sech2  (Awx - ct)[1 - sech2  (Awx - ct)] 

0 
(6-2) 

h h 
where Awx = x 	 4 o 

	

-a— 	8 (1 - 	do  ) 
0 	0 	0 

h 
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Liquid velocities: 

. u 	h
01 

 ho 	3  h0  y2  
sech2  (Awx 	ct) do 	• 4. 	do  - 7 do  doe 

2 	V3 
9 ' + T12 	1 	47  77 sech4  (Awx - ct) (6-3) 

v 	h 3/2 

1- /3-  (—d2) 	Y— sech2  (Awx - ct) 
VETI; 	0 	d

o 

. tanh (Awx - ct) 
3 

h
o 	1 

h 
1 - 	

o ry  ) 
d
o 

- 

7 d 'd 
0 0 

  

  

° -2 + — () sech
2 
 (Awx - ct) d 	/— 

o 	d
o 

(6-4) 

  

Figure 6-11 shows a sketch of a solitary wave and 

defines the free water level, do, the wave height, h
o, 

and the wave run-up, R. 

The movement of a solitary wave and its impact on a 

vertical wall were simulated with the numerical procedure. 

Equations (6-1, 6-2, 6-3 and 6-4) were used to define 

the initial conditions for the wave. Three runs were 

made for the h o  /do  ratios of .25, .4 and .6. 	A 37 by 22 

grid was used for each run. The grid used for the 

ho/do   = .4 run is shown in Figure 6-12; the grids for 

the other runs had the same relative spacings, but the 

overall grid dimensions were adjusted with respect to 

the size of each wave. Time steps of 0.02 second were 

used and each run consumed approximately 31 minutes of 

000 6600 time. 



maximum 
run-up 
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FIGURE 6-11 : DEFINITION SKETCH FOR SOLITARY WAVE, 
RUN-UP PROBLEM 
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1 
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2 3 	4 5 7 	8 9 10 11 

J y 3 
13 4.842 25 8.163 1 0.0 12 1.323 
14 5.119 26 8.439 2 0.063 13 1.449 
15 5.396 27 8.716 3 0.189 14 1.575 
16 5.672 28 8.993 4 0.315 15 1.701 
17 5.949 29 9.269 5 0.441 16 1.827 
18 6.226 30 9.546 6 0.507 17 1.953 
19 6.502 31 9.823 7 0.693 18 2.079 
20 6.779 32 10.10 8 0.819 19 2.205 
21 7.056 33 10.38 9 0.945 20 2.331 
22 7.333 34 10.65 10 1.071 21 2.457 
23 7.609 35 10.79 11 1.197 22 2.502 
24 7.886 36 10.92 

37 11.07 

0 1 

1 	0.0 
2 	0.277 
3 	1.383 
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12 	4.556 

FIGURE 6-12 : GRID USED TO PREDICT SOLITARY WAVE MOTION,  
h /d = 0.4 0 0 
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The movement of the ho/do   . .4 wave is illustrated in 

Figure 6-13, which shows the predicted free-surface 

shapes and velocity vectors for several time steps. 

The predicted wave run-up is compared with the experi-

mental results of Maxworthy (1976) and Street and 

Camfield (1966) in Figure 6-14. The phase shift of 

the reflected wave is shown in Figure 6-15 along with 

results measured by Maxworthy. Figure 6-16 shows the 

computed velocity profile under the wave crest before 

and after the wave impacts the wall. Also shown on 

Figure 6-16 are the analytical velocity profiles of 

McCowan and Laitone (from Wiegel, 1966) and the experi-

mental results of Daily and Stephan (from Chan Street 

and Strelkoff, 1969). 

Discussion  

The predictions for the solitary wave agree very well 

with the available experimental results. Figure 6-14 

shows that the maximum wave run-up is predicted 

accurately. The results presented in Figure 6-15 

indicate that the predicted wave moves with the correct 

celerity, and that it is reflected from the wall with 

a negative phase shift. The magnitude of the predicted 

phase shift is somewhat smaller than that measured 

by Maxworthy. There are two possible reasons for this 

discrepancy. First, the time step size, At, used for 

the computations may have been too large. Hence, even 

though the calculations were quite stable, the 

predicted wave motion during the impact with the wall 
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could have been falsely accelerated. Secondly, as 

Maxworthy indicates, it is difficult to generate 

single, solitary waves, thus, his results could have 

been affected by the presence of secondary waves. 

The horizontal velocity beneath the crest of the 

predicted wave (Figure 6-16) has the same magnitude as 

the experimental measurement of Daily and Stephan (from 

Wiegel, 1964). 	Further, the analytical solution of 

McCowan (which, according to Wiegel, best describes 

the velocity profile beneath the crest of a solitary 

wave) agrees well with the computed profiles for both 

the advancing wave and the reflected wave. Note that 

the initial velocity profile is identical to that of 

Laitone. Finally, the wave profiles presented in 

Figure 6-13 show that the simulated wave moves 

smoothly and that the advancing and reflected waves 

possess the characteristic shape of a solitary wave. 

6.4 	WAVE GENERATION: EXPERIMENTAL RESULTS OF THE  

PRESENT STUDY  

Presentation  

Predictions were made for the four experimental waves 

presented in Chapter 4. The computations were performed 

with'a 37 by 22, non-uniform grid (see Figure 6-17). Each 

computation was run until the wave had reflected from 

the end wall of the tank. This required 150 0.01 

second time steps and approximately 29 minutes of CDC 

6600 time. Atmospheric pressure was maintained in the 

top row of main control volumes by making the air in 
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0 	0/ 	0.2 
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x 	I 

0.4 

x 

0.6 

J 
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0.02 22 0.80 2 0.0125 
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0.52 35 1.31 15 0.3000 
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FIGURE 6-17 : GRID USED TO PREDICT EXPERIMENTAL WAVES  

0.8 

0.6 

0.4 

0.2 

0.0 

T 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

I 	 



146 

these cells infinitely compressible. The wall 

separating the column from the remainder of the tank 

and the baffles in Runs No 	8 and 13 were simulated 

. by zeroing the appropriate normal velocities and 

accounting for the wall friction via the source terms 

for the velocities parallel to the wall. 

The "measured data", defined in Chapter 4, for the 

wave amplitude, wave-crest location and liquid height 

in the column are compared with the predictions in 

Figures 6-18 through 6-21. The computed wave profiles 

and velocity vectors are shown for Runs No. 4, 11, 8 

and 13 in Figures 6-22, 6-23, 6-24 and 6-25 respectively. 

Finally, the predicted wave forces exerted on the end 

wall of the tank are presented in Figure 6-26. 

Discussion  

Overall, the predictions of wave amplitude, wave-crest 

location and liquid height in the column agree with the 

experimental results (Figures 6-18 through 6-21). The 

decrease of liquid height in the column is predicted 

very well for all four runs. The computed wave 

amplitude during the impact of the wave on the end wall 

is too small, especially for Runs No. 	11 and 13. 	This 

results because the grid near the end of the tank is 

not fine enough to "see" the thin sheet of water which 

runs up the end wall. Because the wave in Run No. 4 is 

smaller, it does not form a thin sheet of water up the 

end wall-of the tank; and hence, the wave amplitude is 
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predicted more accurately. The increase of amplitude 

caused by the Wa‘oPP moving rivet' thP baffle Pah Plaatqy 

be seen in the predictions of Runs No. 8 and 13. The 

proper movement of the wave crests indicates that the 

wave speeds are predicted correctly. The timescale 

of the predicted results, particularly for Runs No. 8 

and 13, differs somewhat from that of the experimental 

results. This is due to the difficulty of defining 

zero time for the experimental results-  and to the 

inconsistency in the film speed of the cine camera. 

It should also be noted that obtaining the data from 

the cine film, especially for the motion near the end 

wall, was quite tedious; hence, the experimental results 

are subject to at least. 5 per cent error. 

The predicted wave shapes (Figures 6-22 through 6-25) 

exhibit the same basic characteristics as do the photo-

graphs of the experimental waves (Figures 4-4, 4-6, 4-8 

and 4-10). However, there are some significant 

discrepancies. Consider first Run No. 4 (Figures 4-4 

and 6-22). During the first quarter of a second, the 

predicted wave shapes match the data quite wells 

however, after a time of 0.3 second the computed wave 

appears to have a smoother surface than the real wave. 

As time progresses, the real wave develops a steep 

front, a flat top and a sharp dip in the trailing edge 

and breaks forward slightly as it moves across the tank. 

The predicted wave maintains a more rounded shape and 

does not break. The predicted and experimental results 
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show better agreement as the waves approach and impact 

the end of the tank. The frames TIME = 1.111 (Figure 

4-6) and TIME = 1.10 (Figure 6-22) agree very well. 

Also, the run-up which occurs during the following three 

frames is predicted correctly. Similar observations 

can be made for Run No. 11 (Figures 4-6 and 6-23). 

However, because the initial water levels in both the 

tank and the column are higher than for Run No. 4, a 

larger wave is formed and the impact on the end wall 

of the tank produces a thin "tongue" of water which 

runs up the end wall. This tongue or sheet of water is 

not predicted correctly because the grid spacing near 

the end of the tank is too coarse. In Run No. 8 

(Figures 4-8 and 6-24) there is a baffle located at 

slot G in Figure 4-1. The baffle extends slightly 

above the initial water level in the tank. Since the 

initial water levels in Run No. 8 are approximately the 

same as for Run No. 4, the two waves are similar 

during the early stages. However, as the wave in Run 

No. 8 approaches the baffle, the amplitude increases. 

This increase in amplitude is predicted and can be seen 

in Figure 6-24 and Figure 6-20. Finally, both the 

real wave and the simulated wave leap over the baffle 

and plunge into the quiescent water behind. Run No. 13 

(Figures 4-10 and 6-25) also has a baffle; however, the 

initial water depth in the tank is sufficient to cover 

the baffle. As with the other runs, the predictions 

for Run No. 13 are smoothed and rounded in comparison 

to the real wave. RUn No. 13 produces the thin tongue 
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of water on impact with the end wall of the tank as 

does Run No. 11) thus the maximum wave amplitude is not 

predicted correctly. Qualitatively,agreement between 

the predicted wave shapes and the real wave shapes is 

quite good; however, some details of the wave shapes 

have been smoothed out in the predictions. 

The smoother, more rounded shapes of the predicted 

waves are a result of neglecting turbulence phenomena. 

The flow of water issuing from the bottom of the 

column forms a turbulent wall jet along the bottom of 

the tank; however the mathematical model only accounts 

for laminar diffusion. This neglect of turbulence 

produces two errors. First, without the turbulent 

diffusion of momentum, the jet does not spread upward 

as rapidly as it should. Thus, not enough momentum is 

transferred to the upper part of the wave, and this 

portion of the wave cannot accelerate properly. 

Secondly, because the jet does not lose its momentum, 

it penetrates too far underneath the wave. This over-

penetration of the jet acclerates the water in front  

of the wave and further distorts the wave shape. The 

bulk motion of the wave is determined primarily by the 

inertial and gravitational forces; but, the turbulence 

generated by the flow of liquid from the column does 

influence the shape of the wave. 

Frequently, the main objective in studying wave motions 

is to determine the forces which are exerted on a 

structure by the wave. Some examples include the wave 
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loading on bridges, oil platforms or sea walls. To 

demonstrate that this type of information is readily 

available from the computations, the predicted force 

exerted by the waves on the end wall of the tank was 

calculated and is presented in Figure 6-26. The forces 

are calculated by, first, multiplying the pressures 

stored along the end wall of the tank by the surface 

areas over which they act on the wall to obtain the 

local forces, and then summing these products to obtain 

the total force on the wall. The initial hydrostatic 

load is subtracted from the total force. Run No. 13 

produces the largest force because it has the largest 

difference between initial water height in the column 

and water height in the tank. Run No. 11 produces 

almost as large a force as Run No. 13. Figure 6-26 

shows clearly that the baffle in Run No. 13 causes a 

delay in the initiation of the load, but the force then 

increases more rapidly than that of Run No. 11. Run 

No. 4 produces a much smaller force than Runs No. 11 

and 13. Also, the slower speed of the wave due to the 

lower water level in the tank delays the impact. Run 

No. 8 is affected by its baffle more than Run No. 13. 

All of the runs exhibit a double peak in the force 

versus time curve. The first peak is produced by the 

initial wave impact. After the initial impact, water 

is piled up against the end wall. When the vertical 

acceleration of this "piled-up" water diminishes, its 

mass produces an additional hydrostatic load and, thus, 

creates the second peak in the force curve. 
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6.5 	SUMMARY  

In this chapter computations have been compared with 

experimental results. These comparisons show that 

the numerical procedure can accurately simulate the 

physics of wave motions. For the collapsing columns 

and the solitary waves, both the bulk motions of the 

fluids and the free-surface shapes were predicted 

well. Predictions of the experimental waves presented 

in Chapter 4 were very good; however, it was noted 

that the turbulence present in the experimental flow 

Was not modelled in the computations. This neglect of 

turbulence produced some discrepancies between the 

actual and predicted wave shapes. 
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CHAPTER 7 

PREDICTIONS FOR OTHER FLOWS OF ENGINEERING INTEREST 

7.1 	INTRODUCTION  

In the last two chapters predictions have been compared 

with analytical results and experimental data to test the 

credibility of the model and solution procedure. The 

predictions presented in this chapter demonstrate the 

flexibility of the model and solution procedure to 

handle various flows of interest. The problems to be 

discussed are listed in Table 7-1. 

7.2 	FILLING AND EMPTYING OF TANKS.  

Presentation  

Tanks and containers frequently have to be filled with 

a liquid or emptied. In some instances it is necessary 

for these processes to be carried out in a low or zero 

gravity environment. Thus, several computations were 

made for a tank being filled and emptied. An axi-

symmetric tank 0.6 meters high and 0.5 meters in dia-

meter was considered. The initial water level in the 

tanks being drained was 0.47 meters, and the liquid 

was removed at a constant volumetric flow rate through 

a 0.1 meter diameter hole in the centre of the tank 

bottom. The tanks being filled, initially contained 

water to a depth of 0.22 meters. The computations 

were made on a 14 	12 uniform grid. Time steps of 

0.1 second for the emptying tanks and 0.005 second for 
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the filling tanks were used. The calculations required 

approximately 1.5 CDC 6600 seconds per time step. 

Six runs were made: (1) a draining tank with normal 

gravity, (2) a draining tank with zero gravity, (3) a 

draining tank with an internal baffle and normal 

gravity, (4) a draining tank with an internal baffle 

and zero gravity, (5) a filling tank with normal gravity 

and (6) a filling tank with zero gravity. The surface 

profiles and velocity vectors are shown in Figures 7-1 

through 7-6. 

Discussion  

Figure 7-1 shows that the liquid drains from the tank 

in a reasonable manner. The gravitational force keeps 

the liquid surface flat until a time of about 9.0 

seconds. At 9.0 seconds, near the centreline the free-

surface begins to dip down and by 10.0 seconds a gas 

core has extended into the drain hole. Essentially 

all of the liquid is removed from the tank. In 

contrast, Figure 7-2 shows that the absence of gravity 

causes the central gas core to form very quickly. 

Indeed, after only 5.0 seconds the outflow from the 

tank is almost completely gas while a "pile" of liquid 

is left in the outer portion of the tank. This results 

because, without the influence of gravity, the liquid 

does not seek its lowest level. 

The effect of an internal baffle on the flow of liquid 

from the tank is illustrated in Figures 7-3 and 7-4. 



TIME r. 0.0 SEC 1 

I 

TIME = 6.0 SEC 
1. 1 

TIME 	10.0 SEC 	TIME = 11.0 SEC 

' I 

TIME = 2.0 SEC 

	-•1 

TIME = 6.0 SEC 

	 1' 1  TIME = 4.0 SEC 1  1 

	J 
TIME = 9.0 SEC 

TIME = 12.0 SEC 

177 
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Comparing Figures 7-1 and 7-3 shows that in the 

presence of gravity, the baffle has little effect on 

the liquid surface until the surface actually reaches 

the baffle. However, in the absence of gravity the 

behaviour of the free surface is changed completely 

by the presence of the baffle (compare Figures 7-2 and 

7-4). Thus, the presence of the baffle allows much 

more liquid to be removed from the tank before gas is 

ingested into the outlet. It is obvious that the 

liquid behaviour in a zero gravity environment can be 

influenced tremendously by the presence of baffles or 

other obstacles. Such obstacles, whether they are 

impermeable or porous, can easily be simulated by the 

present numerical procedure. 

Finally, Figures 7-5 and 7-6 illustrate the process 

of filling a tank with liquid. The results presented 

in Figure 7-5 show that ripples form on the liquid 

surface and move radially outward, but overall, the 

surface remains relatively flat. However, Figure 7-6 

indicates that, in the absence of gravity, the in-

coming liquid produces a "pile" over the inlet. 

It should be noted that surface tension, which is not 

included in computations presented in this thesis, 

becomes a very significant force in zero gravity 

systems. However, if the characteristic dimensions 

of the free surface are large (as in these tank flows) 

- and the gravitational acceleration is small, but 

finite, the importance of surface tension is minimized. 
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7.3 	LIQUID SLOSHING IN A TANK  

Presentation 

When tanks containing liquids are bumped or undergo 

sudden acceleration, the liquid sloshes back and forth. 

Computations were performed to simulate the sloshing of 

liquid 0.47 meters deep in 1.2 meter wide by 1.2 meter 

high tank which was suddenly decelerated from a 

constant velocity of one meter per second to rest at 

zero time. A 14by 14 uniform grid was used for the 

calculations and 160, 0.01 second, time steps were 

carried out. The computations required 290 seconds of 

CDC 6600 time. Figure 7-7 presents the free-surface 

profiles and velocity vectors for the sloshing liquid. 

Discussion  

The sudden deceleration of the tank causes the liquid 

to rush, first to the right side of the tank and then 

back to the left side. Of course, the sloshing will 

continue until the energy transferred to the liquid by 

the sudden deceleration of the container is dissipated. 

The free-surface distortions shown in Figure 7-7 appear 

to be reasonable. In this example a simple step 

function was used to define the lateral velocity of 

the tank) however, any continuous function could be 

employed. 
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7.4 	DISTORTION OF A SUBMERGED BUBBLE  

Presentation  

The motion of an air bubble rising in a tank of water 

was simulated. The 0.07 meter diameter bubble was 

initially spherical and its centre was 0.078 meters 

from the bottom of a 0.3 meter diameter tank. The 

tank was 0.3 meters high and filled with water to a 

depth of 0.26 meters. The initial velocity fields 

were taken to be zero. 

The computations were performed with a 22 by 17 

uniformly-distributed grid. Two strings of particles 

were necessary, one to define the bubble and one to 

define the liquid free-surface near the top of the 

tank. The calculations were run for 100 time steps 

of 0.0025 seconds, and consumed 300 seconds of CDC 6600 

time. 

A special feature of the bubble calculations is the 

allowance for compressibility of the gas. This is 

accomplished by using equation (2-5) to define the 

volumetric sources (R in equation 2-6) for each main 

control volume containing gas. The compressibility of 

the gas causes the bubble volume to increase as the 

bubble rises through the decreasing hydrostatic 

pressure field. 

The bubble shapes and velocity vectors are shown in 

Figure 7-8. 
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FIGURE 7-8 : BUBBLE RISING THROUGH A LIQUID  
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FIGURE 7-8 : (CONTINUED) 
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Discussion  

As the bubble rises through the liquid it rapidly 

distorts from its initial spherical shape. First the 

bottom flattens, and then, a tongue of liquid cuts 

into the bottom of the bubble. In the last frame of 

Figure 7-8 the bubble is almost toroidal with most of 

the volume contained in the toroidal portion. 

According to Walters and Davidson (1963) this toroidal 

portion should separate from the top part of the 

bubble and then break into several small bubbles. The 

top part of the bubble then forms the familiar 

"spherical cap" bubble. However, because the solution 

procedure does not consider surface tension, the 

bubble cannot separate. Qualitatively, the predicted 

movement and distortion of the bubble agree with the 

description given by Walters and Davidson. Figure 

7-9 compares the calculated movement of the bubble 

centroid with experimental data presented by Walters 

and Davidson. The bubble rise velocity is predicted 

accurately. The predicted height of the bubble along 

the centre-line is compared to data from Walters and 

Davidson in Figure 7-10. The agreement between the 

predictions and the experiments does not match well 

at later times. This is due to the coarseness of the 

grid; there are not enough control volumes between 

the top and bottom of the bubble to correctly simulate 

the relative motion of these points. Overall, 

considering the coarseness of the grid, the behaviour 
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of the bubble is simulated well. 

7.5 	RAPID EXPANSION OF A HIGH-PRESSURE BUBBLE  

Presentation  

The final computation to be presented is the rapid 

expansion of a high-pressure bubble, such as a vapour 

explosion in a nuclear reactor core. A 4.8 meter 

diameter bubble, at an initial pressure of 200 

atmospheres, was allowed to expand in a pool of water 

15 meters in diameter and 17.3 meters deep. The air 

above the free surface was maintained at atmospheric 

pressure. 

The computations were made on a 22 by 17 uniformly-

spread grid. Approximately 670 seconds of CDC 6600 

time were necessary to perform 120 time steps of 0.001 

second each. Gas compressibility is handled in the 

same way as for the bubble in Section 7.4. The bubble 

shapes and velocity vectors are shown in Figure 7-11. 

Figure 7-12 shows the increase in bubble volume and 

decrease in bubble pressure versus time. 

Discussion  

The early growth of the bubble is essentially radial; 

however, in the later stages the bubble assumes an 

egg shape. The egg shape results because the bubble 

can push the liquid upward easier than outward or 

down toward the bottom of the tank. The free surface 

begins to erupt above the bubble as the bubble continues 
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FIGURE 7-11  : (CONTINUED)  
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FIGURE 7-12 : BUBBLE PRESSURE AND VOLUME VERSUS TIME  
FOR HIGH PRESSURE GAS BUBBLE 
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to grow. The predicted growth of the bubble appears 

to be quite plausible. 

7.6 	SUMMARY  

In this chapter several interesting flows have been 

presented to demonstrate the scope and flexibility of 

the numerical procedure. Of particular interest is 

the ability of the procedure to simulate the gas 

compressibility and multiple free-surfaces. 
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CHAPTER 8 

CONCLUSIONS 

8.1 	ACHIEVEMENTS OF THE PRESENT WORK  

The achievements of the work presented in this thesis 

can best be summarised in relation to the objectives 

stated in Section 1.5. 

(a) A mathematical model and solution 

procedure capable of predicting free-

surface flows were developed and are 

presented in Chapters 2 and 3. 

Special features of the method 

include the use of massless particles 

to define the free-surface and the use 

of a volumetric, rather than mass, 

continuity equation. This latter 

feature allows the free-surface 

boundary conditions to be handled 

implicitly. 

(b) The comparison of predictions with 

analytical results presented in 

Chapter 5 demonstrates the ability of 

the numerical procedure to accurately 

solve the finite-difference equations 

which describe the hydrodynamics. Also, 

it is verified that the particle-

tracking procedure is reliable. 
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( c ) 
	

An experimental study of wave motions 

was carried out and is reported in 

Chapter 4. The results of the present 

experimental study and experimental 

data taken from the literature were 

compared with predictions. These com-

parisons showed that the numerical 

model simulated the physics of free-

surface flows very well. However, it 

was noted that because the numerical 

procedure does not account for 

turbulence phenomena, it could not 

predict the details of the experimental 

wave profiles accurately. 

(d) 
	

A wide range of free-surface flow 

predictions has been presented to 

demonstrate the versatility of the 

procedure. 

8.2 	TOPICS FOR FUTURE CONSIDERATION 

Now that the basic numerical procedure for simulating 

free-surface flows has been developed and validated, 

attention can be concentrated on extending the 

capability and flexibility of the method. Several 

particular areas where more development is needed will 

be outlined below. 



199 

Turbulence  

In Section 6.4 it was shown that turbulence phenomena 

can affect the behaviour of a free-surface flow. Thus, 

the development of a turbulence model which can 

adequately describe the turbulent transfer of momentum 

in a free-surface flow is needed. Perhaps a simple 

model in which the effective viscosity is merely a 

function of distance from the tank bottom would suffice 

for the wave motion in Section 6.4. However, it may be 

necessary to use a more general turbulence model. In 

any case, it should be remembered that the computation 

of transient flows is expensive; and thus, use of the 

simplest, adequate turbulence model is mandatory. 

Surface Tension 

To predict the behaviour of a free-surface flow in 

which the the radius of curvature of the free-surface 

is small (e.g., the movement of very small bubbles) or 

in which the body forces are very small (e.g., a zero-

gravity environment), it will be necessary to include 

the effects of surface tension. Surface tension can 

be added to the numerical procedure by including 

additional source terms in the momentum equations to 

represent the forces imposed by the surface tension. 

Inclusion of surface tension in the procedure should 

be a straightforward, but tedious, task. 
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Three-Dimensional Computations  

The solution procedure can readily be extended to 

predict three-dimensional flows. However, there are 

two serious drawbacks; excessive computer time and 

computer storage. If the expenses of making transient 

three-dimensional computations can be justified, the 

conversion to three-dimensionality is primarily a 

matter of FORTRAN programming. Indeed, similar programs 

to predict the three-dimensional hydrodynamics and 

heat transfer already exist. However, the particle-

tracking and density-calculation procedure must be 

suitably modified to account for the third dimension. 

Note that the free-surface will become a surface of 

particles rather than a string of particles. 

Mass Transfer between the Fluids 

If phase change or mass transfer between the fluids is 

to be simulated, a relevant equation of state must be 

employed to compute the volume of fluid which is 

changing phase. Then, after the surface is moved by 

the hydrodynamic velocities for each time step, it 

must be moved again to account for the volume of fluid 

which has undergone phase change. The primary 

difficulty will be to prevent the particle strings from 

crossing each other or themselves as a result of the 

movements related to the phase change. 
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NOMENCLATURE 

SYMBOL 	 MEANING  

a 	 area of a control volume face, 
local identifier for a 
specific particle, 
wave amplitude, 
bubble radius, 
width of collapsing columns 

A 
	

finite-difference coefficient, 
TDMA coefficient; 

local identifier for a 
specific particle; 

B 
	

TDMA coefficient, 
body force; 

c 	 wave velocity, 
local identifier for a particle; 

C 	 TDMA coefficient; 

d 	 nominal liquid depths 

coefficient for pressure-
gradient term, 
TDMA coefficient, 
height of distorted bubble; 

E 	 grid location east of P; 

g 	 gravitational acceleration; 

h 	 instantaneous liquid height, 
wave height; 

H 	 average height of liquid, 
non-dimensional height of 
liquids 

k 
	

ratio of specific heats, 
wave number, 
particle index; 

1 	 wave length; 

length, 
half widths 

m 	 particle identifiers 

M 	 mass contained in a control 
volume; 
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SYMBOL 	 MEANING  

used to define initial height 
of liquid column; 

grid location north of P; 

	

p 
	 pressure, 

paint used in defining a set 
of coordinate axes; 

	

P 
	

grid location of current 
interest; 

	

q 
	 point used in defining a set 

of coordinate axes, 
volumetric rate of fluid 
creation at a point source; 

	

r 	 radius, 
radial coordinate, 
particle position vector; 

	

R 
	

rate of reduction of fluid 
volume (compressibility term 
for continuity equation), 
wave run-up; 

	

s 	 location of bubble centroid; 

	

S 	 grid location south of P, 
source term; 

	

t 	 time; 

	

T 	 non-dimensional time; 

u x-direction velocity component; 

✓ v-direction velocity component, 

volume, 
velocity vector when used with 
overbar; 

w z-direction velocity component; 

	

W 	 grid location west of P; 

	

x 	 coordinate direction; 

	

y 	 coordinate direction; 

	

z 	 coordinate direction, 
wave-front location; 

	

Z 	 non-dimensional location of 
wave-front; 
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SYMBOL 	MEANING  

Greek Symbols  

a 	 per cent by volume of liquid; 

r 	 transport coefficient; 

6 	 distance related to particle 
deletion; 

angle related to particle 
deletion; 

coordinate direction, 
wave-front location; 

height of wave surface above 
average liquid depth; 

0 	 coordinate; 

A 	 second coefficient of viscosity; 

dynamic viscosity; 

p 	 density; 

T 	 non-dimensional time; 

( 	 any scalar quantity; 

w 	 wave frequency. 

Subscripts  

avg 	 averages 

B 	 bottom of control volume 
(minimum x-dimension of control 
volume); 

e 	 for east control volume face; 

E 	 for grid location to the east 
of P; 

g 	 for gas) 

1 	 for liquid; 

L 	 left-hand sides 

for north control volume faces 
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SYMBOL 	MEANING  

Subscripts (contd.)  

N 
	

for grid location to the north 
of P; 

0 
	

initial; 

relating to a particle; 

R 
	

right-hand side; 

for south control volume face; 

S 
	

for grid location to the 
south of P3 

relating to the u-velocity; 

relating to the v-velocity; 

w 	 for the west control volume 
face; 

W 	 for the grid location to the 
west of P; 

(i) relating to the scalar, qh; 

Superscripts  

guessed quantities (pressure, 
p*) or quantities based on 
the guessed quantities (u*, 
v*); 

corrections to be added to 
guessed quantities; 

overbar indicates the quantity 
is a vector. 


