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- ABSTRACT

This thesis is concerned with the characberization
of the class of autocorrelation functions of binary
sequences, 1ts commections with the class of covariance
functions of binary discrete time stochastic processes,
known as unit processes, and the design of algorithms
for the generation of binary sequences with prescribed
antocorrelations,

A geomebtric approach to the characterization of
the class of autocorrelation functions of binary sequences
is-adépted; A detailed study of the properties of this
class of functions is carried out, leading to a better
vnderstanding of 1ts structure, Necessary and sufficient
conditions are derived for a function to be an element
of this class_ Motivated by practical applications, special
attention is given to the characterization of its finite
dimensional projections_ These tufn out to be bounded
convex polyhedra and their vertices have a number of
important properties,

A new characterization of the class of covariance
functions of discrete time unit processes is given and
its relations with the class of autocorrelation functions
of binary sequences are discussed

Two classes of algorithms are proposed with proven

global convergence and established rates of convergence



for the generation of binary sequences with any prescribed
number of autocorrelation shifts,

Some computational results are also presented .
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HOTATION

Class of positive semi-definite sequences (pn>n€ 7

with p =1

Class of autbocorrelation functions of binary
sequences, that is (pn)nezec if
X
p N

p. = lim _Zss with s, € {-1,1} for
T Wsw Nkoo FEC we 1)

k>0 and Sk=O for k<O _  Given that ph:p_n for all
n, we shall only consider the aubocorrelation

function defined for non-negative arguments, that

is (pn>n eINO .

Sometimes it will be convenient to establish
a one—to—one correspondence between this class

and a set of semi-infinite symmetric Toeplitz

matrices as follows

Po P4 P2 °°7 Pp 777
P4 Po P4 T Pneq 7T

P2 P14 Po 777 Pp-2 777

- - -
. . -

Pn Pn-q Pn-2 °°° Pb T
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= I C
-on

Definition on sectioh u 3 1.

Denotes convex hull, that is a class of linear
combinations where the coefficients are all non-—

-negative and add up to 1,

Class of p—-periodic matrices, that is mabtrices
whose elements aij satisfy the relation

a;. = tGZZ+_

1 ai+np,j+tp s Iy

Set of positive integers,

Set of positive integers and zero,

‘Denotes the projection of a matrix into the (nxn)

matrix in the upper left corner,

Subclass of autocorrelation funcbtions of periodic

bilnary sequences,

Class of semi—-infinite Toeplitz matrices,
Example: TU (that is TNU) is the class of

statlonary discrete-time unit covariances,

Class of discrebe time unit covariancegs that is

14
for all wen and for all t© 6@%, and E denotes

(Pij)i,j em% €U if Pij = EX;X, where Xt(vﬂ € {—1’1}

the expectation operator_

As above, the same can be saild about mavping



these functiong in a one—to—-one fashion on to
a set of semi-infinite symmebtric

matrices,
= U
n
Definition in section &4 3 1.

Definition in section 4 .3 1.

Set of positive and negative integers and zero,
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INTRODUCTION

In many engineering applications the need frequently
arises for a signal with a prescribed sutocorrelation
function, In the identification éf systems in the presence
of disturbances it can be shown that the accuracy bf
the debermination of the system characteristics is
determined, to some extent, by the choice of the input
signal vathe system under considération is iinear, |
time—invariant, stable, single iﬁput—single output, then
the 'optimal' iInput is most conveniently charactérized,A
for parvametric identification purposes, in the time
domain by its aubtocorrelation matrix.

The following simple example illustrates this
situation_  Consider a systenm described by the moving-

—average model

i

(1) v(t) 8oy + B Up g * L.t

t:O, 1,.-_, N

where v, is gaussian white noise, and the coefficients

a are to be egbimated from N observabions of

or---? ap—ﬂ
the input and oubtput,



Tquation (1) can be written in matrix notation as

(@) Y=Zg+ ¥

where Y is an lx1 vector of observations, X is an Nxp
matrix, and g is the vector of unknown coefficients
(ao, 815 ..s ap;_,]) . The covariance matrix of the least

squares estimator 4 of a is
—-1
v(a) = o [XTX] ,

and if the input <ut)t e Possesses an autocorrelation
. o ,

function (pg)nem with
o

u 1 i
po = 1lim L > u,u .
hal Mo w N 20 t7t+n ?
— 1
B u
Po P Pp—1
N “ ‘
“ :
™ N
then 1im NV(3)-= a° \ N
Ve | Pq

where <P§)nem denotes the autocorrelation function of
! . ,

the input (ut)JG E[No .

We would like to draw attention at this point to

the fact that we shall be using the words 'autocorrelation'

12



snd 'covarisnce' to refer to different concepts_ Their
definitionsg can be found in the section dealing with
notation  Sometimes in the literature the word auto-
correlation means a normalized covariance, but this is
by no means standard,

The covariance of the egtimator obviousgly tends
to O ags N>« _ One of the objectives of experimental
design is to increase the rate of convergence by
ﬁanipulating the input of the Sysﬁem under test , The
most widely used scalar measures of this 'rate of_.

convergence' are

(3) Trace [N’WWV(ﬁ)] , where VW 1is some weighting

matrix and

(4)-1ogdet [N V(é)]

Then the selection of the 'optimal' input becomes
an optimization problem on the set of admissible inputs,
However in our example it is clear that it is more
convenienv to'carry out the optimization with respect
to the input autocorrelation, because:

(a) (3) and (4) are convex functions of the input aubo-
correlation and therefore we can get a global optimum,
(b) The optimization is carried out in a space of

much lower dimension, that is, p <IN,

(¢) If we optimize with respect to the input, we are
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likely To get only locally optimizing inputs due to
the'hon—convexity of the functions (3) and (4) with
respect to (ut)t e -
This has beenosuggested by several asuthors, namely
G. C. Goodwin and R, L, Payne [3] and R, Mehra [6],
In the»idenﬁification example gilven above we see
that the information matrix depends only on the first,
e autocorrelation values of the input_, This suggests
that in general the required number of éutocorrelation.
shifts might be connected with the 'memory' of the
system_ In fact R, L, Payne-[?} has shown that the
information matrix can bé apprakimated to any desired
accuracy by the first few aubtocorrelation shifts of
the input . This is‘very-importanﬁ, because the selection
of the optimal input autocorrelation.thén becomes én
optimization problem on a subset of RY - the sst of thé
first n feasible autocorrelation shifts of the class
of admissible inputs — where n is determihed by the
desired accuracy . Furthermore we only need to loock at
partial-realizations of aubtocorrelation functibns,
that is, given a finite set of autocorrelation values
construct a signal whose autocorrelation matches these
values,

Very often the input signal is consbrained to

be binary, because of the relatively simple hardware



required for the generation, storing end processing
of these signals_ However the characterization of the
class of autocorrelation functions of binary signals
and methods'for generating binary signals with prescribed
autocorrélations was a previously unsolved problem
either in obntinuous or discrete time_
| This thesis will be conoernéd with the following'
problems: (i) The characterization of the class of
autocorrelation functions of discrete time binary
signals and in particular the class_of their finite
dimensional projections, (ii) The design of convergent
algorithms for the generation of binary sequences with
prescribed autocorrelations |

Our first attempt to solve these guestions was
algebraic, using the theory of linear recurring
sequences over the finite field with two elements,
GF(2) . This fits Quite naturally in the framework of
control theory in the sense that it involves an inverse
problem; In the theory of linear recurrent sequences
over GF(2) we are given the coefficients of a linear
recurrence and seek to compute the Solutions. In our
case a certain property of the solutions is prescribed
(their autocorrelations) and we wish to determine the
Qorresponding coefficients

Support to an algebraic approach also seemed to



be givenbby_uhe pioneering works of N _  Zierler [14]
end S_ W, Golomb»[2] on linear recurrent sequences,
which led to the important discovery of the so called
'pseudo reandom binary noise'; that is, periodic.binary
sequences of period p with a constant oub—of-phase
autocorrelation equal to —1/p. Such a property is
particularly useful in many engineering applications
such as radar ranging and telecommunications, This
type of signal is also particularly convenient to use
if the impulse response of a linear system is to be
determined using correlation methods, because its
impulsive autocorrelation avoids the deconvolution of
the Wiener-Hopf equation, However for parametric’
identification purposes a signal with an impulsive
autocorrelation is not necessarily optimum, because
the 'optimal' signal obviously depends upon the
optimality criterion that is adopted,

The algebraic treatment was abandoned because
of the difficulty in solving the inverse problem;
that is to find the order and the coefficients of tThe
linear recurrence over GF(2) having at least one
solution with the prescribed autocorrelation_ In the
absence of a general solution what is usually done is

t0 consider some sub-class of linear recurrences over

GF(2) and then to study the autocorrelation properties



of the generated sequences, See for example [5] where
the autocorrelation propérties of binary sequences
associagted with non-primitive irreducible polynomials
over GF(2) are studied, Howevér such type of approach
Would only provide'a partial answer to our problem,

Some eariy work of I, Shepp [8] on the class of
autocorrelation functions of binary sequences helped
us to gain insight into the structure'of this class
and strongly suggested that a geometric approach‘to
this problem WOuld be.fruitfui, This has proved to be
right .

A characterization of the class of autocorrelation
functions of binary sequences in terms of their finite
dimensionai projections has been obtainedf It 1s shown

that if (pn) is the autocorrelation of a binary

nE[NO
sequence then, for all mel, the vector (po, Prseeas Pm—1>
lies in a polytope, that is a bounded convex polyhedron,
whose vertices are autocorrelations of periodic binary

mrﬂ. We denote

sequences of periods not greater than 2
this polytope by I _C, Conversely if (ao, By s am—1>
belongs to this polybope then it can be extrapolated

o ap autocorrelation function (pn)neﬁ\TO of some binary
sequence; in other words there exists a binary sequence
(sn)nemO such that

. N
o, = lim L >  s.s.
pn» ¥>e N jzo =+ *FH

17



and aj:pj, 0L j<m1 ., Furthermore it is also shown that

(o) . can be chosen to be periodic, This is a
Pn/nem _ BeLLOCLE .

i

=

rather s&rprising result, in contrast with the case

of general positive semi—definite sequences, where it

does not necessarily hold. Algoriﬁhms for the calculation
of the vertices HmC and associated‘periodic binary
sequences are also given and have been used to calculate
‘IC, for some values of m, The calculation of the

vertices of HmC gave rise to some interésting mathematical
questions, namely the problem of selecting the vertices

of the convex hull of a finite number of points: bthis

is treated in some detéil.

A closely related‘dlass of functions, the class

of covarisnce functions of discrete time binary processes,
in short unit processes, 1s also characterized and its
connections with the class of autocorrelation funchtions

of binary sequences are discussed,

As far as the author is aware, the guestion of
convergent procedures for the partial realization of
aubocorrelation functions of binary seguences has not
been treated except in this thesis_ A number of
procedures have been suggested in the literature for
the generagtion of binary signals with given auto-—:

correlation or spectral properties, but no convergence

oroofs are available for them_ See for example [1], [@]

and [9}.



Two conceptual algorithms with proved convergence
to generate binary sequences with any préscribed number.
of autocorrelation shifts have been established,
Experimental evidence suggests vhat the conditions
imposed in the provposed conceptual algorithms can be
relaxed in a way that leads to more easily implementable
procedures that still ssem to converge_, This is the case
of an algorithm we propose which is a simplifigation
of one of our conceptual zlgorithms, It has worked very
satisfactorily in a large number of examples but so
far its converge has only been shown for the case whére
the prescribed number of autocorrelation values is not
larger than three,

. In addition %o the.application in systemé identific—
ation that was described earlier we believe that our
work will be of use in other arsas, Our characterization
of the class C in Terms of 1Ts finite dimensional
projections seems particularly sultable in the frequency
analysis of binary signals when Tthe power density
spectrum has to be calculated from the aubocorrelation
function, As one in practice has always a finite
measuring time this means that one has to face the
truncation effects of the correlation function on the
power density spectrum; see [10] for example , One way

to overcome this problem is to extrapolate the auto—

19



correlation function, The extrapolation is usually dohe
on the basis that the extrapolated values must give
rise to a positive semi-definite function, However if
we are dealing with binary signals, this condition is
not sufficient:bthey must also lie inside n.C, for all
m, which means that the knowledge of the‘polytopes

nmC is required in this case_
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CHAPTER 2

THE CLASS OF AUTOCORRELATION FUNCTIONS OF

BINARY SEQUENCES

2.1 Introduction

As described in the'previous chapter, one is
often faced in identification experiments with the
problem of having to generate a binary sequence whose
- first m autocbrrelation values match some v, yjeﬁﬂa
where v is in general the result of some optimization
problem, |

‘ There are other cases where one is given the
autocorrelation vector Eg;Bm and wishes to extrapolate
these to some further autocorrelation values or even
an entire autocorrelation function,

In any case the knowledge of the sebs IC, mel,
is required_rln this bhapter we shall be concerned with
the characterization of the sets HmC, and also the
characterization of the class C,

As a result of this study the structure of +the
class C has been clarified. |

To the aﬁthor's belief the two most interesting
results obtained are:

(i) 1,0 is a polybtope whose vertices are projections of



autocorrelation functions of periodic binary sequences
of periods not greater than o1

This property provides not only a feasible way
for generating the vertices of HmC (the number of
periodic binary sequences with a given period ig finite)
but it will also enable to prove convergence for two of
the algorithms described in chapter 4 for the partial
realization of autocorrelatioﬁ functions,
(ii) Given v eﬂﬁC there always exists a periodic
elemnent of C, <pn)n.emb’ such that I _p = v, This is a
rather interesting result in contrast with the general
case of positive semi~definite sequences for which it
can be shown (see section 2 .4) that points exist in HmA
which can not be extrapolated to a periodic element of A,

Attention is algo paid to the calculation of the
vertices of HmC_ HmC is a polytope and can therefore be
described in terms of its vertices_ Furthermore we shall
gee in chapbter 4 that the periodic binary sequences
associated with the Vertices of HmC can be used in the
generation of binary sequences with autocorrelalbions
matching L.p, for any given p in G, The selection of
the vertices of HmC gave rise to some interesting
mathematical guestions, namélyvthe problem of selecting
the vertices of the convex hull of a finite number of
points, Some methods to solve this problem are proposed

and some computational results are also presented,
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2,2 Preliminaries

Definition: Given a binary sequence (Sn>n€SNO’

s, e{-ﬂ,ﬂ] for all n, we define its autocorrelation

(PJ)J e [No by

Cp. = 14
P3 im

!

, X
.___E S, S .
N+ =N n0 2% 7

if such a limit exists. Tt follows immediately bhat
~1<p; <1, Tor all . |

The autocorrelation can also be defined for
negative shifts provided we Set sn=O for n<<O_ However
we shall only consider the autocorrelation function
defined for pon—negative arguments because pJ:p_j, for
all J emb,

Let C denote the class of autocorrelation functions
of binary sequences, Consider ([fﬂ,ﬂ], TB) as a topo~-
logical space; that is the interval [—1,1] with the
topology inherited from the usual topology of R, Form -

]

the product space ([}1,1] , Tm) vhere Ty is the product

topology . Any element p in C is such that pozﬂ; There-
]
, Ty

with the topology inherited from TN- All the topological

fore C can be regarded as a subspace of ([—1,1}

notions of C will be with respect to this topology, unless
otherwise specified, Now it is clear that convergence
of a sequence of elements of C in the topology just

defined is the same as pointwise convergence



2.3 Properties of the Class C

The propertiles studied below will be used in our
characterization of HmO and also in establishing the
bridge bebtween the class C and the class of stationary
discrete time unit covariances, that is TU,

The results stated in lemmas 41 and % have already
been established by L, Shepp [4]. In view of their
importance in the subsequent results the full proofs

are given here,

Temma

The class C is compact

Proof

Iirst 1t 1s shown that C is closed,

Suppose then that the family of autbocorrelation
functidns, indexed by k, (pn>n€iN' converges pointwlse
to a sequence (p), ¢y -

Let (Sk)n(;N de%ote a binary sequence with auto-
correlation (Pn>n.€m'- By definition we have that for‘

all €>0 and a1y p051t1ve integer p there ex1sts a

number rk(s,p) such thatb

4 & k] |
; Z S nen <€ ’ »ll’l,<p y T I‘k(E,p)

m:

Now select a sequence of positive numbers (Ek)kfim



converging to O and define inductively another
sequence (nk)ke[N of positive integers converging to
0

» satisfying:
(1) (rk(gk’k)/nk>k€lN——-‘_> 0

G oy g/mdyew — O

Construct a new binary seqguence (Sj) as

J EKN0
follows:
arbitrary, for jgn,]

1

Sk
J"ﬁk

, for n, <J <Myeiq
Now it is shown that this sequence has auto—
correlation (Pn)n cl
0
Fix n GH\TO . From (i) and (ii) above and for N such

that 11k<N gnkm we have

T
B

N -1
k k-1 k
1S 1S ke ke k_k ,
— S s = — > s s + S5 + R(k)
N0 BOm T 4 m men LT momen

where R(k) — O as k goes to « | In fact l R(k)l is
bounded by nk;_,l/N + 21<:n0 AR
As k goes to <« we must still distinguish two

cases:

26



27

a) nk<:Nrgnk+rk(€k?k>r

= pg—q + R'(k) , where 1im R'(k) = O,

0 k-)—oo

Me

/]

— 8 8

R m+n0
Therefore

1
lim — S. 8. = p
oo N @D WM m+n0 no

b) 'n{+rk(sk,k)<CNs§n

1 k+1
N n, —n N-n
1 < k "k-1 k-1 k k "
— 2 SpPmen T P F P * R CORN
N m=0 0 N 0 - N 0
: N—nk 1
where lim R"(k) = O, Also lim ——=""— 5 1_ Therefore
K -+ o ks N
3
lim — S 8 = p .
N+e N m=0 00, )

This shows that C is closed, C is also compact,
because 1t is a closed subset of a compact space,
namely [—1,1]“,

This ends the proof of lemma 1 .
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Let (pn)nGEN be the'autocorrelatiop function of
the binary sequence (Sn>n.€mb° We show next that for
any given & >0 and n € NO there exists a periodic
binary sequence (un)u em with an autocorrelation

(Kn>n<5N and such that
. 0 _

"Pn - n‘ < &, |n|<; n;_

Lemma 2

P is dense in C

‘Proof
First we show that any point in C is an accumulation
point of P
Let (Pn)nmsm’ be the aubocorrelation of the
0
sequence (Sn)n.€m§ . We have that given § >0 and n € N,

there exists N( 6 ,n ) such that

&) Py~ ﬁ;éég 5. 8| <8 /8, IDJS;Db and N >N

We now define a periodic binary sequence (un)

n.em%
of period p, where p = max(N, n 4/s), as follows:
ui = Si i: O? /IQ 2’-90’ p—/lo
=1 pn—1
1 1
(2) Py, = — 25: u, u p.. — — S8, 8 -
n p k=0 kK k+n n p k=0 k™k+n
1 B
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From (1) and from the choice of p we have

1 p-n—1i

o - S, 5 < 8/2
n p %=0 k k+p

From (2) we then have

> Wy | < 8/2 + 8/ s lnlgno

We have shown that C is conbtained in the closure
of P, However CDP and C is closed_, Therefore C=closureof P

This ends the proof of lemma 2,

Another very important property of the class C is

as follows:

Lemma 3

The class C is convex.

Proof
We havée already‘shown that the class C is closed,
Therefore to show it is convex it suffices to show that,
for any two elements of C,(pr‘l)neﬁ\T and. (pﬁ AEM 9 the
0 0

function (pn>n€5N defined by
0
/| ] "
pl’l :E <pn * pn)

is again an element of C_ The proof will be made by

construction,



Let <Sﬁ)nﬁ5N0 and (sl'h—'L)neu\]-0 be binary sequences
with autocorrelation p' and p' respectively, Define a

new binary sequence (sn)nem-0 as follows:

; ' o .2
SIl"j(j“’l)/z s J(J ")<1’l_<a

"o, . .2 sy . .
Sn-j(3-1)/2-3 , 3°<n<i(G-1) + 25 , 3=1,2,....
Now it is shown thabt the aubocorrelation function
of this sequence is (p ), ey -
' 0

Pix meNO and assume.j(j—ﬂ)éngijz. Then we have

il -3 (3-1)/2 J(g=1/2
Ly s =t e e LTS e R
N n=0 N n=0 N n=0
where lR(j)[ is bounded by 4Jm/N, As j- = , and NN as

above, we have

N :
2;6 Snnem T B CPy * Pp ? = Py

since R(j) — 0, and J(j=1)/2N — 1/2
The same holds if 325§N1<j(j+1).' u

This ends the proof of lemma 3,

The next lemma tells us that the class C can be

studied by considering only zero mean binary sequences,



Lemma 4 ‘
#
Given a binary sequence (Sn)nfzmb with auto-
*
correlation function Cpn)nfsw , there always exists a

0
binary sequence (Sn)ne[N-0 such that

_ | "
and with autocorrelation (pn)

nem -
D .
Proof
= . N
-Refer to the proof of lemma 3 and set sﬁ:sn and
* .
gﬂ:—gn , for all n(ENﬁ, Then it immediately follows that

o +*
" the resulting sequence has autocorrelation (pn)niam' and
0

zero mean,
q,.e.,d

The convexity of the class C will play sn important.

role'ih the estabiiSHment of convergent algorithms for
the partiél realization of autocorrelation functians;

The properties stated in 1emmés 1-3 also hold for
the class of unit covariances and‘are easier to establish
for this class, With such important properties in common
it is not surprising that the classes C and U are

equivalent; this is showﬁ in chapter 3%,
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v.n.'

binary sequences of periods not greater than 2

2.4 Geometric Characterization of 11NY

As we have mentioned in the introduction to the

thesis, there are situations where the knowledge of

nCis required, namely in the selection of optimal

input aﬁtocorrelation functions, Therefore'a geometric
characterization of these sets is_invaluabie;

We start by establishing one of the main results
in thiévchapter. Loosely speaking it says that nnP is

contained in a polytope, that is a bounded convex poly-

. hedron whose vertices are autocorrelations of periodic

m—-

Theorem 1

'H<H < U - Mpn'P)) Dn_P.
m p=/] m )

In the proof of this theorem we shall make use

of the next two lemmas:

Lemma 1 _
Let (p ), ey be the autocorrelation function
of a periodic binary sequence (sn)n EN of even period p,
0

and such that pp/2 = =

Then

| o /L2~ .
| pm_=.£. gzg SiSi,y » for any mel
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Proof of lemma 4

99/2 =~ = s, = —Si+p/2 , for all i, Therefore

—] [ p/2— =1
1 E 1
Pm = 3 S "iiem 5‘{ Eég ®1®i+m 1570 “iiem T
| /2= -1 " .
1 v/ _ .
5 | /2=
~ = 4 S.9.
o 5 iTismg -
o q.e.d.
7 Lemma 2 , |
Let (Sn)nesw be an element of C_ Define the
: 0 )
o mxm dyadic matrices

_ i T, '
EI;, = CSi’°°°’ Si+m—’]) (Sis.'.d Si+m_./])-

If for some integers q and p we have

. 'k " . }
Hm—’]EI;,q 7 I.[111—/]]'31151’ d y k=1,,,.,p~1, and

q_ D+q
MqBg’ s = Ty yBg™' , then

y _ ]

Pra=1 o4 : -
> Eﬁa =D - » where p., i=0, . ,m~1
= q_ ]

1

L -

are the first m autocorrelation values of a periodic



binary sequence of period p or 2p depending on

(s
(s

q’ R Sm_l_q—"l

q.l_p’---,

Proof of lemma 2

Sq+p+m—1) respectively,

) being equal to or the negative of

Without any loss of generality assume gq=0_, Two

situations must be

(i) (Sos;.-asm—g)

(ii) (SOa...aSm_g)

(i) Define

a

considered:

periodic binary sequence (y.)

period p as follows:

From our assumpbtion we also have I, = S

(Spa...ssp+m_2)

_(Sp"--’$p+m—2)

n

yh = Sn ’ OS;ns;P—q

n’

n €N
0

O ¢np+m~2, Denote the autocorrelation function of

(yn)nelNo by (Pn)n e[No . AThen

Po P17 Pm-1

P
Po

—

(ii) This case

lemma 1',

Ti E’i yi+m—’1:|
—/] -
Nk
B i+m—~1
B _.‘ > e @ -
S [Si Si+m—’l:l
.../l . )
15|
p 1=0 S.
B 1+m=1

can be proved similarly, using

qoe'od‘

of
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‘We are now in a pos:Ltlon to give the proof of

theorem 1,

Proof of theorem 1

A1l we need to show is that if (pn)nElN is the
autocorrelation function of a periodic binary sequence
(s )n EIN , of period p, then there exists a finite
number oi' ‘periodic binary sequences (s )nG[N ,

i= 1,2,...,N, of periods not greater than ot m1 such that

N .
(PO" ’PIIJ""’I) €H { (Pl,.. ,'p;ll_./l),.-. (poa ,,,’,Pﬂ_/l)}

where (pn)n€|N denotes the autocorrelation of (sn nEIN ]

If p<2m 1 the result follows, So consider the

m—]

case whcre p>2 . By definition we have

P A Si [_Si Si+m-1:l
\E I | i}
P P =0 185,n
L Po _
=L@, BN,
P

If we consider the first 2m—2 +1 elements of the
sum in brackets on the right hand side we get for some

j and q, 0J,ap1

m,Jj _ m, Jj+q . . m-2
Hm—’IEs, = Hm—’IEs with O <J+q<2 and
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TprBa?? # 1, Ee?d™ for 1<k e,

Set P,=q. From lemma 2 we have that

A 1
- Po  Pq oeee Ppeq
4 _ .
2 EpYttop \\\\\:
; s 1 1
=0 7 P
T
Po

IR | ]
where (p;ll)ILEN is the autocorrelatibn‘ function of a

periodic binary sequence (S;Il)n cy defined as follows:
: . _

(i) if (s

j"‘°’sj+m—2) = (Sj+pq""’sj+p1+m—2) we set
the period of (S;ll)n ey €qual to p, and define
1 0 »

s,=8 for J<n<3+p,|-’l,

(ii) if (Sj"--,’sj+m-2) = _(Sj+p,|"-°’sj+p,|+m—2) we set

. 1 .
the period of (sn)n eNo equal to 2p,| and define

1 . . .
S, =%, for 3<n<3+p,|—’| , and

1 . : . _
S Sl’l"P/I for J+p,|<n<3+2p,| 1.

As far as the sum of the remaining matrices is

concerned, we can write

E§’1+L._+ Eg’j—q - Egaj+Pﬂ N

+ EMP _
S

+ Eg’p + Eﬁ’q + + Em’j_/I

_ wll, J+DP
_ES’ ,|+ oo g

pégfﬂ 53 [%i ... Si+m—{]

fl.=J+:p/I ,
i+m—-1

because (sn)n eN, has pe;riod .
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"For the sake of simplicity of presentation define

a new binary periodic sequence (un)n €m§ as follows:

(138 (ogup o eeer%gup 1) = (gapr -2 pegimas)

set the period of (un)ne[N.0 equal to (p—pq) and define

. =

i~ Sj+p/l+i s i=0,./l,.__,p—p,l—’l

(
then we set the period of (un)n.GNo equal to 2(p—pq)

(ii) if (sj+p1,...,sj+p1+m_1) = (85,000 2950 54mq)

and 1e# 0. =

1 Scj+p/l+i . ? i:O,/[,___,p_p/l_/l and

n. =

1 —ui—p+p/I 2 1=p_p/l 9 e oo ’2(p—p/l )—/l -

We can then write

[ ] [ 4 1 7]
Po P1 «ee Pm—q Po Pq «-o Ppe
\ : P \ :
: _ A : .
P4 b : .P/|
. .
| o _ | Po |

3|

i=0

We can again apply the same'procedure to the
second term on the right hand side of this equation

and obtain

p-p,~1 (—ui [%i e ui+m—{]
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]

Po Pq «ev Ppeq
\ : = +
P1
Po
2 2 2 ] .
p cee P
© P1 P =D, ~Do~1 | Vi Vi e« Viem—
Po \\\\\\3 R I '
+ — . + o— .
pf D Epre)
i+m—1
2 | _
Po

where (pl) €lN is the autocorrelatlon of a periodic

m—-2

binary sequence of period b, or 2p2, p2<2 , and

(vl)l ElN is a perlodlc binary sequence of period
(p-p,~ Pz) or 2(p p,~D,) .

And so on until, for some NEN, we have

N-1 ) -
D - Z p; < om 2, since each p; is greater than O,

Denote the sequence we end up with by (s )1€lN and set

N-1

Py = P - 2 P;. Two situations need still to be considered:
17 | ~

(i) (SN)IEN has period py or 2py.

(ii) The period of (s ). is a factor of py or 2py.

elN

In both cases

—

—

N N N N N N
pN—’] 84 Ei .. i+m—-1‘ PO; p’] s Pm—’l
-l- ZO . = \ :
PN 1= N ' N
94 +m—1 Pq
.—' - N
Po




where.(pg)je[N denotes the autocorrelation function of
0

N .
(si)ielNo . At this stage we have.

o — .- —

i i i
PO p’] e e pm—’] PO p/' « oo pm_/‘
\\\\\: - = Pi \\\ \\\\\:
O =17 P
p ;
0 P;
N 5 :
where p = ;Z% p; and (Pn)ne;m' , 1=1,2,...,N, are
1= 0 :

autocorrelation functions of periodic binary sequences
'Qf period not greater than Qm—q;
This completes the proof of theorem 4,

We are now in a position to give a geometric

characterization of 1 C, for all m, meN,

Theorem 2

HmC is a polytope, whose vertices

a (ot i '
v, & (Vo’---’vm—ﬂ) are given by
| y p;—1
1 1 1 : )
i ;; “—5 n°n+j 3=°’“’2""’m_4

where <Si)n4;w is a periodic binary sequence of period

Pi< 2" .
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Proof

We have already shown that C is convex and compact
in the product topology ., Therefore the set HmC 1s convex
and compact in the usual topology of Rm, Then it

immediately follows that

H(T_( PN P))c T _C
m m e
. =1
2m—1
Note that H(L (U M’NP)) is closed being the
convex hull of a finite number of points_, From theorem -
we have
o :
- DA
LG WU SR IDED I

p=1
However P is dense in C (lemma 2, section 2.3),

Therefore closure (HmP) =1 ,C,

But this implies that
m—1
2
Hr (Uu. M nP))orn_c,
m m
p=1
o= |
U M’NP contains only a finite number of

p=1 .
uniformly bounded elements, Therefore

2m—1
Hho (U MPNP)) is a polytope,
m o

This completes the proof of theorem 2,
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We now state a very interesting result which is a

corollary of the previous theorem,

Theorem 3
A point (ao,aq,,,,,am_q) in T _C can always
be extrapolated to a periodic autocorrelation function of
a binary sequence, -
We wish to draw attention to the fact that (pn)nelNo
being a periodic element of C does not imply that it is
the autocorrelation of a periodic binary sequence_  For

-example 1t can be shown that the following function

17, n e%en
Pp = :
0, n odd
is the autocorrelation functioﬁ of a binary sequence,
although there is no periodic binary sequence with such
an autocorrelation, If fhere was one then it shoéuld have
period 2; However none of the four periodic binary

sequences of period 2 has that autocorrelétion.

Proof of theorem 3

Erom theorem 2 we have that

N - : .
(851845 . 08y ) = Zq % (Pgs + s Py
1=

' i . C s
where Zi:ai =1, a; 20, and (p ), enr is a periodic

autocorrelation



: , N . ’ . :
Sa i . v
Let Py = iZ=’|. 04 P ‘for all j€N . Then ij);je[No
is periodic, with Py=83 for 0<Jj<m1, and from the

convexity of C it is also in C,

The result stated in theorem 3 is rather surprising
in c‘ontrast“ with the case of_ general positive semi-definite
sequences where it does not néce-ssarily hold, This can
be shown as follows:

The extreme points of the set of po.ssible values of
p,l. and p, where Cpn)nelN is a positive semi-definite
sequence with p_=1 are tgle locus defined by (cos w, cos 2w)
for - ’_H <w< T, See figure 11, Suppose w, is irrational
in this range, Then cos W cos 2wo can only be the
second and third values of the sequence (cos nwo)nelN .
This follows from Bochner's theorem which states thato
for any positive semi-definite sequence Cpn)nelN. , with

0

=1
Po n

o =/ cos nw dG(w)

-1

for some unit measure on [-— I, I ],; so if G. were not
Dirac measure at w, then (p,l ,p2) would differ from
(cos W,, COS 2wo) . Hence (cos W,, COS 2wo) has no

~ periodic extension,
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In theorem 2 we gave a characterization of the
finite dimensional projections of C which is of interest
in practical problems_, For the sake of completeness we

now give a complete characterization of the class C,

‘Theorem 4 ,
(p e €C if and only if
0
gmfﬂ

e H(T_( U MPNP)), for all meN,
p=1

Proof .
The necessity of the condition follows from theorem 2,
To prove sufficiency we can use theorem %3, Then for each m
we have a periodic autocorrelation (p?)iEEN such that
p?:pi , i<m-1, But this means that (p)pey Is the

0

pointwise limit of a sequence of elements of C, Therefore

(pp)p cpy € Cs because C is closed (lemma 1, section 2,3),
0

2.5 Calculation of the Vertices of T C

The importance of these vertices has already been

pointed out in the introduction to this chapter . The

)

previous theorems have revealed that if (ao’aﬂ’--"am—ﬂ

is a vertex of HmC then there exists a periodic binary



ny

sequence (s,) of period D, p<2m—'/I such that

néeN
0

a S. S-. - .
ao a/l e o e m_/l 1 [l e o 0 Sl+m_/]

. =1}
\- 1> | N
P i=0

51 +m-1

Therefore a possible wéy of cdnstructing the vertices
and associated sequences with the smallest possible period
is to comstruct all the periodic binary sequences of
periods not greater than 2m~1 (there is only a finite
number of them) and their first m autocorrelation values
and then select the vertices of the convex hull of this
finite set of points, '

However we only need to consider a subset of these

sequences as the next lemma shows:

Lemma 4

If in the right‘hand side of expression (1) above
there are two matricésiwith equal (m-ﬂ)X(m—ﬂ) upper left
corners, then either (ao,aq,f;.,am_qj is not a vertex of
HmC or fhere exists a binary sequence with smaller period

with these autocorrelation values,
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Proof

If there are two such matrices ‘then we can express
(1) as a convex combination of two autocorrelation matrices
by lemma 2, section 2.4, If these matrices are distinct
then (ao’aﬂ}---éam—ﬂ) is not a vertex_ If they are equal

this means that there_exists a sequence with period less

than p and,with its first m éutocorrélation values equal

to (ao,aqa ...58~m_/|).
' g.e.d,

Bearing in mind this result an algorithm has been
implemented to generate a set of periodic binary sequences

of periods not greater than o1

and their fist m auto-
correlation values such that their convex hull is 1 C,
This is done in gppendix A,

The calculation of the Vertices of the convex hull
of a finite number of points in B® gives rise 50 a variety
of problems, particularly when the number of points is

"large‘. |

Suppose that one is given a finite set of points
pq,___,ﬁN and wishes to select the vertices of their
convex cover H {p1’°--’pN}- This polytope will be referred
as X, Three selection methods will now be propésed, The

discussion of their relative merits is given later,



I) Coordinate Rotation

Some results from convex set theory enable us to
select, by simple inspection, vertices of X, For example:
(i) The point with the largest or the smallest ith

component, i=1,2 m, is a vertex of X ; (ii) The

? e 0 e

farthest point from the origin is a vertex of X,
Although not all the vertices satisfy these
conditions in general we can still select them using

fact (i) above by a suitable set of rotations of the axis;

each vertex will satisfy (i) for at least one such rotation,

It can easily be shown that at least one such set of
rotations exists as follows: for each vertex v of X take
a Supporﬁing hyperplane m of X such that HVITX = Vv,

Tet one of the axis become orthogonal to this hyperplane .
Then vertex v satisfies condition (i) for this axis (we

are assuming an orthogonal basis)

II) Simplex Decomposition

This method relies on the fact that the vertices
of an n—-dimensional polytope lie in thé intersecfion of
at least n extreme supporting hyperplanes (or faces) .
This condition is particularly convenient for us, because
we already have a finite set of points from X containing

~its vertices, By 'extreme' supporting hyperplanes we
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mean supporting hyperplanes whose intersection with X
is a polytope with one dimension less than X, We call
this intersection a face, |

A straightforward way of constructing these extreme
supporting hyperplanes is to consider all possible
combinations of n points at a time from {Pq’---’PN} and
for those defining an hyperplane testing if it is a
supporting hyperplane of X, If yes it will be also an
extreme supporting hyperplane ,

We now give a procedure to compute the extreme
supporting hyperplanes that does not require us to
consider ail possible hyperplanes defined b& {pq,,__,pN}
and that substantially reduces the required amount of
work, In this method X is obtained as the iast element
of a finite (nested) sequence of increasing polytopes
defined in terms of theif boundaries. This procedure is
based on a paper by Degtyar’and Finkel'shteyn [2] where
a method to decompose a polytope as a union of disjoint
simplices 1s described,

To avoid minor technicalities assume H {pq’---’pN}
is a solid m-dimensional polyhedron, where m is the
dimension~of the vector p., i=1,_,,3N.

We now describe the algorithm:



Step 1 Set K=1,
Construct a simplex through n+1 of the given
points and denote it by polytope 1., Let us
call its faces the elements of the boundary,
For K>1 these boundary elements will not be
in general faces but n-1 simplices that are
disjoint subsets df the faces of polytope K,
In an attempt to enclose as many points of
{Pq’---’PN} as possible, to minimize the
required amount of work, it is suggested that
points are selected with as large or as small
components as possible,

‘Set J = {pq,.,.,pN}\\\{Set of vertices of pol&tope 1}

Step 2 Test if the first element of J is an exterior
point of polytope K, If not remoVe it from J
and repeate the same procedure for the next
element of J and so on (The boundary of each
intermediate polytope is known_ K Therefore to test
if a point belongs to one of them it is only
required to verify a set of linear inequalities) .
In the course of this, two situations are then
possible: (i) A point of J is eventually found
lying outside polytope K, say Rq' Then we define
polytope (XK+1) = H(polytope KLJEQ)’ remove point



Step 3

49

Rq from J and go to step 3. (ii) All the points
of J are points of polytope K, This means that
polytope K = H {P19---vPN} and therefore the
construction is finished,

Let us say that a collection of boundary elements

_ are affinely independent if they each lie in

distinct affinely independent hyperplanes_, Then
the vertices of H {pq,.,,,pN} are those boundary
element vertices that arve common to m affinely

independent boundary elements,

Here the boundary of polytope (K+1) is comstructed,
We start by separating the elements of the
boundary of polytope K into two disjoint classes:
Class A — This class contains those elements of

the Boundaryldefining'an hyperplane which produces
a closed half space containing polytope K and'pq,
Class B - Contains all the remaining elements

of the boundary,

 The elements of the boundary of polytope (K+1)

are the elements of the boundary of polytope K

in class A and the (m—1) dimensional simplices

Aconstructed as follows:

Each of them is defined by pq and (m—1) vertices

of an element of the boundary of polytope K in
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class A and in the intersection with an element

in class B,

Step 4 Set K = K+1 and go to step 2,

IID) Distance Minimization

This. procedure relies on the following property:
Given a set of points {p1,,_,,pN} we have that p; is a
vertex of H {pq,._.,pN}wif and only if the distance from
< to H {pﬂ"-"pi-ﬂ’pi+1’--;’PN} is greater than zero,

To éompute the distance from a point to the convex
hull of others it is required to solve, in principle, a
constrained minimization problem - in facﬁ‘a geometric

programming problem as follows:

.MZ .

e

min f(“qa...aai_q saifqa...ao"N) = “ Py ~ Ocjpj ”

. C

#

M

e -

subject Lo the constraints a. =1, aj;;O for all J.

J

[ )

#

Fortunately the constrained optimization can be

avoided by means of the following transformation:
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and then the problem becomes

| -E
mlnlmlﬁqu(ﬁq,...531_4,Bi+4,.,;,BN) ='" Py -~ 5?% - Pj" .
_Qver k J#i ZZ: Bi

Discussion of the proposéd methods

In the first method there is the problem of
constructing a suitable set of rotations of the axis; We
do not know of any way of doing it without making use of
.supporting hyperplanes, But if supporting hyperplanes need
to be considered then there is no point in using this
method because the second one is particularly suitable
for that purpoée_

We believe that the best way to appreciate the
elegance of Degtyar's and Finkel'shteyn's idea used in
the second method is to compare it with the rough procedure
of having to construct all the hyperplanes defined by
{91’---’pN} and tesf which of them are actually supporting
hyperplanes of H {Pﬂ’---’pN}- In Degtyar's pfocedure the
only subsets of {qu,,.,pN} we consider are the ones
whose points define an hyperplane containing a face of
the intermediate polytopes, Furthermore éach polytope in

this sequence strictly contains its predecessor_ Therefore



those éombinations of points of'{pq,__,,pN} defining
"hyperplanes slicing polytopes already constructed are no
longer possible and this is particularly significant when
the intermediate polytopes get bigger and bigger. Further-
mbfe at every'stage the method provides sufficient
conditions for a given set of_pbints to define a supporting
hyperplane of the polytope concerned. Therefore no time is
wasted in the construction of 'unnecessary' hyperplanes,
Furthermore if atveach step one tries to construct a.
polytope as large as possiblelit 1s more likely to enclose
‘more points of {an---aPN} and therefore reducing the
ﬁumber of polytopes required to reach H{Pq’---’pN}- We
have not tested this method numerically and therefore no
accurate comparison can be made with the third method
which we have dsed in the generation -of the results given
‘in the last section,

The third methbd is particularly attractive, because
of its simplicity of implementation and speed of execution,
We have used it in conjunction with the algorithm given in
appendix A to generate the vertices of HmQ for some values
of m, This method performed very well together with a
particular type of minimization algorithm (and some>speed
up features) using a 'pattern search' technique which does
not require gradient evaluations, The function minimization

is performed by constructing a sequence (cn)nJSN of points
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of H {P1’°'-’pi—1’Pi+1’---’PN} converging to the nearest
point of D; . A well known result in optimization theory
states that if a point p lies outside a convex set S, then

there exists a unique point in S, say s , such that
[o - sol <lp = s » Vses.

Furthermore the hyperplane passing through o and
orthogonal to vector P8, is a supporting hyperplane of.J.
This result suggested the inclusion §f the following
'speed up' feature in this aigorithm: Every ng iterations,
n, €N, it is checked if the hyperplane érthogonal to vector

CnPi>

at P; produceé an open half space contéining .
H {p1’---’Pi—ﬂ’Pi+1’°--’PN}; If i actually lies outside
the convex hull this eventually becomes true, and there-
fore there 1s no need to_carry on with the minimization
procedure, This feature was introduced in the algorithm
and it was found that it greétly reduced the required
amount of iterations when p; was a vértex. nolshould be
fixed iﬁitially, The reason why we do not make n =1 1is
because . this test is a Waste'ofAtime when the pbint
actually lies inside the convex huil_ Therefore its
‘choice is the result of a compromise depending on our
'feeling' aboﬁt the point under test,

Obviously the minimization procedure becomes slower

-as the dimension of the space increases, and there will



be a étage where it will be convenient to divide

H {Pﬂ’---’pi-ﬂ’pi+1’---’pN} into a union of as many
disjoint convex hulls as necessary to make the minimiz-
ation procedure feagible in each of them, Needless to

éay that as soon as a point is found not to be a vertex
it should be immediately discarded from the definition of
the convex hull because it is the number of these points
that determines the dimension of the space we are
optimizing over, )

If N is very large and 6nly a few of fhe given
points are actually vertices df their convex cover then
the second method might be worth considering, However for
small values of N the third method is undoubtly much
faster than the second, |

As far as the accuracy'of_method 3 is concerned, we
have that when it decides that a point is a vertex, a
separating hyperplane 1s actually produced, Forbpoints
'very' close to the boundary of H {pq,__.,pN} the decision

will depend on the prescribed limits of accuracy,



55

2,6 Connections with the Frequency Domain

Although the first n autocorrelation shifts do not
completely characterize the discrete time signal they
provide us with valuable information about the number of
frequencies it contains, In fact it can be shown [5] that

the nxn matrix

=J
>

where (Pk)k:EN' denotes the autocorrelation of the signal
(uk)kGSN , 1s p051t1ve definite if and only 1f the support
of the spectral distribution of (uk)kGN has at least
n points, that is, the signal contains at least n frequencies,
The‘signal is then said to be persistently exciting of
order n, |

This notion is useful in connection with identific-
ation problems where it is necegsary to have some conditions.
on the input to get consistent.estimates..See for example [1]_
Particularly in the case of parametric identification it
is required to have persistent excitation of some finite
6rder, depending on the number of parameters to be

identified,



2.7 Computational Results

In this section the vertices of n,C, and associated
periodic binary sequences are given for values of m up
£o 6, These results have been generated by a computer
program that makes use of method 3 as described in section
2.5. |

Denote each element of T _C by.(po,pq,,,,,pm_q),
Because Po is always equal to 1 we shall implicitly assume
all the points of T_C in the linear msnifold Po=1 and
therefore regard them as elements of Bm—ﬂ.

The shapes of H3C and H4C are depicted in figures
11 and 12_respectively_ |

- It can be seen that fhe vertices of HmC, m<5, are

aléo arquitype covariances, that is of the form
Py :-%—aré sin cos 2m}, -2 <AL % The cofresponding
values of A are also indicated, 'p' denotes the period
of the periodic extrapolation of the vertex, with the

shortest period,

The results are now given in the tables below,
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Vertices omeC A 19) . Periodic extrapolation : Cpn)nel\To Associated periodip sequenf:e
1 0 1 (1,1,...) (1,...)
-1 172 2 11,1, .. (1,1, ..
(1,1 o | 1y .0 1,..
(0,-1) 1/4 4 (1,0,-1,0,1,...) (1,1,=1,=1,...)
(1,71 1/2 (11,1, ... ,1,...)
(1,1,1) 0 1 (1,1,...) L (1,...)
(1/3,=1/3,=1) /6| 6 (1,1/3,=1/3,=1,=1/3,1/3,1, ... (151,1,=1,1, =1, .. )
(0,-1,0) 1/8 4 (1,0,-1,0,1,..) (1,1,-1,-1, ...)
(=1/3,=1/3,7) VAR (1,=1/3,=1/3,1, ... (1,151, ...)
(=1,1,-1) 1/2 2 (1,-1,1,...) 1,-1,...)
(1,1,1,1) 0 1 (1,1,...) (1,...)

(.5,0,=.5,~1) 8| 8. | (1,.5,0,-.5,-1,-.5,0,.5,1,...) (1,1,1,1,=1,1,=1,=1, ...)
(1/3,=1/3,=1,=1/3) | 1/6 | 6 (1,1/3,1/3,=1,=1/3,1/3,15 .. ) 11,7, 1,=1, ...
(0,-1,0,1) 1/4 4 (1,0,-1,0,1,...) (1,1,=1,=1,...)
(=1/3,-1/3,1,=1/3) | 1/3 3 (1,=1/3,=1/3,1,...) (1,1,=1, ...
(-.5,0,.5,~1) 38| 8 (1,-.5,0,.5,~1,.5,0,=.5,1, ...) (1,=1,1,=1,=1,1,=1,1, ..)
(=1,1,=1,1) 72| 2 (1,115 .. 1,1, ..
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Periodic extrapolation :

"3/77"1/7a/|/775/7,/|/77/| %6 .)

"/I,’l,—’l,_..)

Il

Vertices of 10 A op <-pn)n_€N0 Associated periodic sequence
(1,1,7,1,1) 0 11 (1,1,...) (1,...
(;6,_é,—_2,-,6,-1) 110110 | (1,.6,.2,-.2,-.6,=1,=.6,=.2,.2, .6,7,...) | (1,1,1,1,1,=1,-1,=1,-1,-1, ...)
(.5,0,=.5,=1,~.5) 178 | 8 | (1,.5,0,-.5,-1,-.5,0, .5,1,...) (131,1,1,=1,=1,=1,=1, ...)
(1/3,=1/3,=1,=1/3,1/3)  [1/6 | 6 | (1,1/3,71/3,=1,=1/3,1/3,75...). (1,1,9,71,=1,=1, ..)
(2,-6,-6,.2,0 /5| 5] (,.2,-.6,-.6,.2,1,...) (11415151, L)
(0,-1,0,1,0) 4/ 1 4 | (1,0,-1,0,1,...) | (1,1,=1,=1,...)
(-.2,-.6,.6,.2,-1) 3/10(10 :<4,-_2,—,6,,6,_2,—4,;2,,6,—,6,-;2,4,,,,) -<4,4,—4,1,4,—4,i1,4,-4,41,,,
(-1/3:-1/3:0,=173,=17%) (173 | 3 | (,-1/3,-1/3,1, .. | (1,150
(-.5,0,.5,~1,.5) B | 8| (1,-.5,0,.5,71,.5,0,-.5,1,..) (131,=1,1571,=1,1,71,5 ...
(- .6,.2,.2,-.6,1) 25| 5| (-6, .2, 2,-6,1,.. 1,1y )
(=1,1,-1,1,1) 12 | 2 '<4,—4,4,,,,) | U,
(1/3,=1/3,=1/%,-1/3,1/3) | — | 6 | (1,1/3,=1/3,=1/%,=1/3,1/3,14....) (1,1,1,1,=1,=1,...)
(-1/3,=1/3,1/3,=1/3,=1/2) = | 6 | (1,-1/3,-1/3,1/3,=1/3,=1/3,1,...) (1,15,71,1,=1,=15,.)
(=1/7,3/7,=1/7:s=1/7:3/7) | — 7 (’l,—"1/7,5/7,‘4/7,-4/7,5/7,~1/7,’l,...) ' (1,1,1,1,=1,1,=1, ...
(1/7,3/7,4/7,—1/7,45/7) - |14 '(4,4/%,5/7,4/7,—4/7,—5/7,—1/7,—4,-4/7, (1,1,1,1,7,-1,1,=1,-1,-1,-1,

o
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CHAPTER 3

THE CLASS OF UNIT COVARIANCES

3.1 Introduction

In 1955, B, Mcmillan [2]lgave a characterization
of the class of unit covariances, However, the conditions
of his characterization are not easy tb verify .,

A more explicit characterization is given in this
chapter that clarifies the structure of the class U, The
kej argument in the proof of this new characterization
is the faét that U is compact in the product topologij
This is. shown by means of a result in functional analysis
known as the_Aléoglu theorém. '

The realizatidhs of any discrete time stochastic
biﬁary process, in short'a'unit process, are binary
séquences_ Tt is therefore natural to raise the guestion
about the links between the claés of ﬁnit covariances
(ensemble averages) and the class}of autocorrelation |
functions of binary sequences (time averages) , The latter
has already been studied in the previous chapter,6 We
IShall see that the sub-class of stationary discrete time
unit covariances is equivalent to the class of auto-
correlations»of binary sequencés.

The connections between the class of clipped
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gaussian processes and the class of unit processes are

also discussed,

% .2 Characterigzation of the Class of Unit Covariances

In 1955 B, Mcmillan [2]'characterized the class U

as follows:

Theorem
‘CPi,j)i,j emiéll if and only if Pi’i:1 for all
' m m
ieWand > 3 p; 85 +=0 VmeN and all corner-
_'.‘L=/| a:’l ’J sd . . -

~positive matrices {aij}’ i, j=1,...,m, where a matrix
. .} is corner—positive if as .x.x. =0 for
(a3, 3} _ P ‘T (o M

_every sequence (Xq,...,Xm> with Xiziﬂ, i=1, 2,..., m

We are unawaré of Mcmillan's origihalvproof which
was never published , However, L, Shepp‘gave an elegant
proof in [4], which is reproduced.in appendix B,

. For the sake oflcompleteness we mention a papér
by E, Masry [1] where a characterization of a subclass
of unit covariances associated with~renewal processes

is given,



Our characterization of the class U is now given:
Theorem 2

(pi,j>i,j €WéU if and only if

m
{pi,j}nleH:{E?""’ Egm—ﬂ} for all me€ N, where {pi,j}m

is an mxm matrix with (i,J)th element equal to Pi. 3 and
R 9

% +
EI].I_I = eiei 3 eiz(X/l’a--’ Xj’-"', Xm)’ Xi——/l.

An immediate consequence of this theorem is that
nmU is a polytope, for all m_, For example, for m=3 we

have that 1,U is the convex hull of the 'points':

5
] 1] M [ 1] [11]
o= 1] =111 B = |1 =114
K 111 4 EEE
W [1aa] [1a 1] [ [1a4] [194
B = | Co=laaal B al 0 T =
d ] 4] 41 1]

The matrices E? are in fact vertices of their
convex hull, If we regard each of them as an element
of Em? we have thaf'they lie on the surface of a sphere
with radius m’ and centre at (0,..,, O). n U is a convex
and closed set, This means that the class of unit
covariances is convex and closed under pointwise limits
(product topology) .

Another interesting property of HmU is that it is

~a neighbourly polytope that is a bounded convex polyhedron

62
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where any pair of vertices is connected by an edge, This

is shown in appendix B,

Theorem 1 and theorem 2 have to be necessarily
equivalent because they characterize the same object,
We now show this is in fact true,

A1l the results about cones and polarity to be
used in this proof can be found in [5].

Let's start by-establishing a one-to—one
correspondehce between the class of mxm matrices and

g

. This enables us td identify the trace of the product
of tﬁo matrices with the inner product.of the associated
vectors, |

Denoterby (CP)m the‘class of mxm corner—positive'
matrices, From the definition .of a corner—positive matrix
we have that (-CP)™ is the polar cone of
{E?,_,,, Ezm_ } , VmeN,

The polar cone SP of a set SCR™ is defined as

{ye r™ yTxéO B VXGS}.
From theorem 1 we have that the set of matrices
{pi j}m is the polar cone of (-CP)m, Vm€EN, Therefore
?

{Pi,j]m belongs to the polar of the polar of

{E?,..., Ezﬁrq}3 Vm €N, which can be shown [5] to be
the conical (or positive) hull of {E?,..., Emm-q}?
: 2



This implies that
_ v '2m~1
R G o B >0, V1
oo gn = & @B 5 @0, VA,

However, the main diagonal elements of the matrices
on both sides of this equality are equal to 1, This

implies that we must also have

2m—1
o, =1
im 1
. ' m
But this means that {pi,j}m € H {E?,..., Egm—ﬂ} )

Vm €N, which is precisely the statement of theorem 2,

q.e.d,
Next wé show that U is compact Thié result will
be of use in the direct proof‘of theorem 2, The |
topological concepts concerning the class U are referred
to the product topology. Similar considerations to those
made in chapter 2 about the topology of the élass of
autocorrelation functions of binary sequences can be

made here

Lemma

- The class U is compact

64
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Eroof

We start the proof of this lemma by showing that
U is closed,

Suppose thefefore (pn) is a sequence in U converging
pointwise to a limit f, |

Consider the sample space of binary sequences
n= {—1, 1}“_ Endowed with the product discrete topology
it is compact Hausdorff, -

Since each pne'U there exist probability measures
P' on the corresponding Borel field such that

p?,j = erindPn R
Xi being the ith coordinate of X,

Each P determines a positive linear functional i
of unit norm (In(1)=1) on C(n) ., Since the set of positive
linear functionals of unit norm is a closed subset of
the unit ball, it is compact in the weak—star topology
| by Alaoglu's theorem [5] and so there exists a sub-
sequence from (IV) converging to a limit I,

By the Riesz representation theorem [5] there is
a probability measure P such that I(g) =./~gdP for all
g in C(n) |

Since Xin is continuous and pIl converges point-

wise to f we have

£35 = f X;X P



But this means that £ is a unit covariance,
U is compact because it is a closed subset of
Pﬂ, 1]“, which 1s a compact space,

This ends the proof of the lemma ,

An immediate consequence of this lemma is

Corollary
The subclass of stationary unit covariances,
TU, is compact_ -
[
We are now in a position to give a proof of

- theorem 2,

Proof of theorem 2

The necessity of both conditions is obvious, since
Pi,i = E(X?) = E(1) = 1, and from the definition of
covariance we have

2111—’1
pi,j'= EX;Xy = é%% aﬁ x? x? , i,igm ,

where aﬁ is the sum of the probabilities of symmetric
realizations of the vector of the first m random
variables that is (Xq,..,, X .

We now prove sufficiency.

If {pi’jhneIi{E§3_._, Ezm_q} then we have that

the (semi-infinite) matrix



|
=
e

also belongs to the convex huli of the (semi-infinite)

matrices

,i=1, 2,..., 227

‘Egli-

This means that R is the covariance matrix of a
pefiodic unit process of period m, whose realizations
are the first lines, and their neéatives, of the semi-
—injinite matrices E?, with the sum of their probabilities
given by the coefficients aﬁ of the above convex
combination,

Denote one such process by (X§>nJEN' and the
elements of the matrix R° by 7§,1_ By construction we

have VT x = 1=i mod m, k=j mod . m,
b

Pi,5
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Then if conditions of theorem 2 are gsatisfied we

have that, VY1,k
—Tm
Yi,k —>PLx #SO>=.

But it has already been shown that the class U
is closed under pointwise limits, Therefore Cpi,j)i,jeﬂﬂ
is a unit covariance,

This ends the proof of the theorem_

In the previous chapter it has been shown that the
- class of periodic autocorrelation functions of binary
. sequences was dense in C, The next theofem shows that
. a similar result holds in TU (subclass of stationary

unit covariances) ,

. Theorem 3%

The class of discrete time stationary periodic

unit covariances is dense in TU,

Proof

From the proof of sqfficiency of fhéorem 2 it
follows that a stationary unit covariance is the point-
wise limit of a sequence of Peribdic unit covarlances
but not necessarily stationarﬁ_ |

Let (pn)n.em; denote the given stationary unit

covariance and by using the same procedure as in the



pro'of of theorem 2 construct a sequence of periodic

unit covariances (Y of period m such that

,J)l J e(N
M

(y. ) (pn)ne(N (po:.ntw:.se convergence) as m - «,
Denote by (X ) cw @ perlodlc unit process with

covariance (Yl J):L jew
By 'randomizing time' we derive a stat:.onary
periodlc process (x& )n ey from (Xn)n cpy @ follows:

Let Xm(w s) = X

n+s(w), where S is an uniformly

distributed random variable on X= {O, Touuus m—’l}' and
. =M
independent of (Xn)nEH\T .

Then we have for given i,j€cl:

m.,m m m
E(XiXJ.) =/ Xi(w,s) Xj(w,s}du =

=M m B
]f 1+s<w) XJ+S(W) apdp (by :Lndependence) =

=4 Hg] v
m §=0 1+8,g+8S
But the last expression is an average over m

consecutive terms of a 'sequence' of period m, There-

fore the process (XIIrll)n€lN is stationary.

Now assume without any loss of generality that
m >j>i_, Then we have

m—1 ' m—-1

/‘ Y = -—m - .
o £, Yi+s,j+s T m SZZ Y541, s+1+j-i (by stationarity)
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m-1-(j-1) . _ n—

_ 1 m Pyl
T m gg% Ys+1,s+1+a-1 * s:éé%j—i) Ys+1,s+1+j—1

i
|-

(m-j+idpy_y + (§-1) pm_j+i}

This reveals that, for any given i,j €W,

E(X?X?)-——a pj—i , as m> o

The proof of theorem % is complete,

3.5 Relations Between the Class of Unit Covariances

and the Class of Autocorrelation Functiong of

Binary Sequences

Our starting point in establishing the links

between C and U is the following

Lemma 1
The autocorrelation function of a periodic

binary sequence is also a stationary unit covariance,

Proof
Let (Pn>nﬁZN denote the autocorrelation function
of the periodic binary sequence (sn)n €N5 of period p,
that is
1 B
Pn =_§'£;6 Siem S5 -



7

Now define a sample space Q comprising all the
. s . i
ith shifted versions of (Sn)nfsms’ denoted by (Sk)kzeﬁk’
i=1,..., P, and assign probability 1/p to each of them,
Let CXk)kesm'be a stochastic process defined on
this space, where each Xk is a coordinate variable in
0, that is Xk(sl)=si y 51511, The covariance of this

process 1s given by

Mo

1
EXXye,1) =3

P oatel oA g e =
2 Sk Sl TP 2 Skei Tkelei T P2

1=" i

0
N

This completes the proof of lemma 1,

The realizations of a unit process with a periqdic
covarlance are periodic binary sequenceé'a,s._ Further;
more if the process igs stationary we have that the
probability of realizations that are a shifted version
of each other is equal, This gives rise to the following

result

Lemma 2
Every stationary periodic unit covariance is
a convex combination of autocorrelations of periodic

binary sequences,

Proof
Let (Xn)nwzm.denote a stationary periodic unit

process 6f period p and covarlance (pn)ne[N .
0



Partition the sample space of this process into disjoint

events Ai, i=1, 2, , &, where each.Ai comprises all

the realizationg that are a shifted version of each
other, and denote their period by P; .

Denote each sequence in A; by (X;’J)

nely
. . 1,3 1,7
J=1,..., P; and such that x %= nlj-ﬂ
- Then we can write
| t | pCa) Pl
= XX, . dp = ) l-ZX%JX,J
P ﬁ1+---+At P 2o P2 ;71 Tk
t LL(A) Py
1,1
= gé% :éj X1+J -1 Xl+k+3—1
T
where > p(4;) » BCAD
i=1
g . .
1 i,1 1 1 - i
But 75; %2; Xllj—ﬂ l+k+a—1 = Px

where (P;)nﬁim' ig the autocorrelation of any sequence -
0

in Ai- Therefore

b : |
1
i i;; m(hdpe , VEEN

that is, (Pn)nelN is a convex combination of auto-
correlatlon functlons of periodic blnary sequences,

This ends the proof of lemma 2,
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The properties of the classes C and TU we have
established so far enable us to establish an important

" relation between these two classes as follows:

Theorem

The classes C and TU are equivalent,

This means that (pn)ne[N is a discrete time
statlonary unit covariance if and only if there exists

a binary sequence (sn)nelNo such that, ‘dn.em%

A word of warning: the above theorem is not an

ergodicity statement

Proof

Tt has been shown in chapter 2 that P is dense
in C;'This result, together with lemma 1 and the fact
that both C and TU are convex and closed, imply that
c CTU . |

From lemma 2 we have that the class of stationary
periodic unit covariances is contained in C; But theorem
3 in section 3,2 states that this ciass is dense in TU,
Therefore TUCC, —

This ends the proof of the theorém,



Once we have shown that C and TU are equivalent
and given that the generation of the vertices of nmU
is extremely simple, it is nafural to raise the question
why should we take then the burden of having to generate
the vertices of HmC ?

That is necessary mainly because: ’
(i) The binary sequences associated with the vertices
of HmC can be used as 'generétors' of bihary sequences
with prescribed autocorrelations,
(ii) The characterization in terms of the matrices E?
does not provide the answer to the question:

Given a finite set of values (a,, U 8y q)

such that

O | e, )

is there any (p ), ¢y € C such that p =a , O<ngw1 ?
0

Unless we can show that

I 70 21 Tn U -
m m m *

Obviously—HmTUCZHmT@mU. Although a considerable
effort has been made we have not yet been able to prove
if the reverse inclusion is true, We strongly believe

that the reverse inclusion might also be true, We have
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verified that it is tfue for values of m up to 4 and

we can find no arguments contradicting this assumption.
(iii) To extrapolate the autocorrelation function of

a binary signal,6 We already know that if a signal is
binary it is not sufficient that fhe extrapolated
-values give rigé to a positive semi-definite sequence ,
It muét also lie inside]ImC,lfor all m, which means

the knowledge of the polybtopes HmC is required,

(iv) If an opbimization problem needs to be carried

out in'nmC, for some m, for example in an identification
expefiment, as described in chapter 1, then the knowledge

of the boundary of]ImC is required and it can be defined

in terms of the vertices,

3.4 FExamples of Unit Covariances

(i) A Markov Process
This example is due to B, Mcmillan,

Let (Xn)nfEN'be a two—state.Markov process with
X, € {—fy,'l}, Vn, and
p , if Xh # Xﬁﬁq

p(an Xn—-’l) =

(1-p) , if X =X _,

(X =1) = 1/2.
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Then (Xn) is a stationary process ahd then

nell
we write EXme+n=pn. |

Now we compute the covariance function of +this
process,

Assume n >0,
Pp = BEQX X = p(X X =1) - p(X X ==1) |
p(XOXn=1) = prob, of the trajectories (Xo’---’ xn)
with an even number of Jumps, that is
n\ . 1l,,__\n-1
p(X X, =1) = i ( )p (1-p) ’

1=0 1

(1 even) '

n, if n is even
where P = .
n-1, if n is odd

Similarly for p(XOXn:—ﬂ). Therefore
N | .
k -k
Py = ;40 Gf:l) (-p)* (1=p)™7F

Inl|

 If we assume n€.Z then we can write Py = %,

where o=(1-2p) .,
In figure 11 we plot the locus of (p,,p,),

-1<a <1 together with 1.U,

3



(ii)‘The Arc-Sine Law
Let (Xn)neim be a Gaussian process with covariance

- - *
function (pn) . Define a new process (Xn)n_em'by<

nelN
0

1, if x>0
-1, if x, <0

N ,
X 1is called a 'Clipped Gaussian Process' and its
+*
covariance (Pn)n_em'is given by the well known arc—sine
. 4]
law:

. P
arc sin -2

I . p o)

® 2
le 2

It is well known that the class of covariances of

‘gaussian distributed weakly stationary processes with

EXi:ﬂ, EX =0 for all n is equal to the class of positive

semi-definite sequences (Yn) , with Yo=1.

nel
0
The Bochner-Herglotz representation theorem states

that for each such sequence there exists a unique F

such that

/l
' =J/” cos 2InA dF(A) for all n,
0

This means that the extreme élements of this

class are of the form (cos 2Ini) , 0A <,

nelN
_ 0
For example the parametric equations of the

boundary of the two—dimensional projections of the
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elements of this class are

X, = cos 21\

X5 = COS amd oA,
This parabola is also depicted in figure 11,
Of interest is the fact that the locus of the
points P(X) 2 (pq(X),p2(K)) , where

Pq(x) -2 arc sin (cos 2mn})
i |

p, (M) =.§%arc sin (cos 4mnd) , OKASE

I

is the boundary of I,TU, Furthermore we have that

3

- P(0) = (1,1)
p(1/4) = (0,-1)
P(1/2) = (-1,1)

thatrié, the vertices of HBTU occur for A 6{0,1/4,1/2].
-This natu:ally gives rise to the question: Are
the elements of TU clipped gaussian processes?
For H4C we still have that the 2/1 arc sin image

of the line I defined by

X, = cos 2nA
L= 4{x, = cos 4nA |
X, = coS 6IA o<A<E,

5 2

is a polygonal curve whose vertices are the vertices
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of m,C, The vertices occur for values of

i
re{0,1/6,1/4,1/3,1/2}. But this does not show that

340 is the image of the convex hull of L because

2/0 arc sin (.) is a non—-linear function,
In fact the following counter—example shows that
the image of L by 2/1 arc sin (.) is strictly contained

in H4C'

Congider the following point on the boundary

-of HAC:

173(1,1,1) + 2/3(0,-1,0) = (1/3,-1/%,1/3) .

Ite inverse image is

(sin 1/6,-sin 1/6,sin 1/6) = (.5,-.5,.5).

But B _
1 D -5 D
1 S,
-det . = =1 .6875
1 .
/‘

which means that there is no positive semi-definite

sequence (p_ ), With
0

Po = 1
Pq = D
Po = =5

-PB=.5
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Therefore we have that the class of clipped
gaussian processes is strictly contained in the class

of stationary unit covariances,
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CHAPTER 4.

ATGORITHMS FOR THE GENERATION OF BINARY SEQUENCES

WITH PRESCRIBED AUTOCORRELATIONS

4 4 Introduction

In this chapter we shall look at the following
problem: Given a vector of autocorrelation values
(a,, CYI amrﬂ) inn_C we wish to construct a binary
sequence (sn)nelN0 such that

N ' '
- 13 1 -
gy = 1%1%31«,—1_\1— igo 5§ Si.k ‘O~<k<m 1.

Bagically two different types of algorifhms will
be presented which appear to be original,

The question of generating binary sequences with
prescribed autocorrelations was previously unsolved,
although it arises very often in engineering practice;
in the introduction to this thesis we have already seen
an example where such a situation occurs,

A problem related to this is discussed, in terms
of the frequency domain, iﬁ‘a paper by van den Bos [1}
where he presents a procedure to construct binary

“periodic signals with their power distributed over
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- selected frequencies in a presCribed way, He uses a
trial.and error procedure, but no convergence proof
is given for thié method, nor is a characterization
for the class of feasible spectral distributions,

When we started looking into this problem it
seemed to us quite natural to solve it by means of the
fheory of shift registef sequences or linear rééurrent
sequences over GF(2), that is the finite field with two
elements, Although this approach wouldkrestrict us to
periodic sequences, this is no obstacle given that the
class of autocorrelation functions of these sequences
is dense in C_, Presented this Way it is an inverse
problem: One wishes to find the order and the coefficients

of an equation in order that it has at least oné.soiution
’with a prescribed property. In order to solve this
problem we need to know:.

(i) If there is any 1inear”iecurrence with such
.a property .

(ii) If the answer to (i) is yes, how can we
determine the order and the coefficients of that
recurrence, without having-ﬁo go through all possible
combinations?

Thé inverse problem seems very difficult to answer
in an algebraic framework and, as far as we know, it

has not been yet solved,
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wnat is usually done is to solve a direct preblem:
Given-a certain class of polynomials over GF(k) one
studies the autocorrelation properties of the sequences
generated by the elements of that class_, Such type of
‘approach has been very fruitful in some areas, For
example N, Zierier [2] and S, W, Golomb [3} have
discovered the so called 'pseudo'random binary noise'
that is periodic binary sequences with a constant out
ofbphase autocorrelation equal to —4/p where p denotes
the period of the sequence, when studying the properties
of the sequences associated with primitive polynemials
over a finite field,. This became perhaps the mqst-
important and well’known'subciass of binary sequences,
We can also mention another study on these lines of
thought made by J, Lee [4] and [5] on the autocorrelation
properties of the sequences associated with non-primitive
irreducible polynomials over GF(2) which have direct
application as codes, However an attempt along these
lines would only provide a partial'answer to our problem,

Our experience has shown that the theoretical
problems involved with the generation of unit covariances
are somewhat easiler than the ones concerning the
realization of autocorrelation functions, One may think
then of generating unit processes with prescribed
covariances, because we have already seen that the classes

C and U are equivalent, and then use their realizations



as the desired binary sequences, However this is not
quite‘so, becaﬁse the prescribed covariance might give
rise to a non—ergodic process, which means that the
time averages do not equal the ensemble averages_'Take
for example the unit covariance (Pn)nASN such that:
O, n odd
Pn = '

1, n even

There are only four possible realizations of a

unit process with this covariance, as follows:

with period 1

Yg—"/‘a -1, =1, ... : " 1
Yz =1 <1 1, <1, . e 2
Y4—"qa 1, =1, 1, ... ’ ” 2

and all with probability 1/4, However the 'autocorrelations'’

of these realizations, that is, their time averages (plll)ne[N
0

i=1, 2, 3, 4 are
Pp = Pp =1, for all n,

1, n even

51
{1
o°
|

-1, n odd,

This means that there is nc realization of the

above process with autocorrelation equal to its

8
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covariance, This is sometimes overlooked in the
literature and can lead to wrong conclusions, That is
the case of a method based on the so called arc sine
law and a factorization theorem that is often suggested
for the generation of binary sequences with prescribed
autocorrelations, It is as follows:

Given the desired autocorrelation function (p,) e »
another functlon (Pn)nwsm' is constructed by setting
Pp = sin Tp /2, Then if (pn>n15N is a p051t1ve semi-—
~definite sequence all it is requlred is a normal
stochastic stationary process with covariance (plil)rl(EIN .
Such a process can be obtained as the output of a
linear dynamical system driven by Gaussian white noise
provided (Pﬁ)nwzm' gives rise to a rational spectral
density in elw. See for example Astrom [6], The spectral
density @'(w) of a process with covariance (;)]f,]_)l,leu\-[0 is
defined as

+4

g =L S T

21 N=— o

This procedure  is summarized in the diagram below:

- > ' )
white noise Tinear It Clipping

System Circuit > Iy
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The output of the clipping circuit is defined as
1 4 if y% =0
yt=
-1, if yL <O

and its covariance (pn)nerN is related with the input
0

uwmﬁame(%pnem by
0

p
%fhéam:ﬁn_g

I pL
as we have seen in chapter 3,

From what has been said above we see that this
procedure is only suitable to realize unit covariance
fﬁnﬁtions and not autocorrelations of binary sequences,
Furthermore it requires (pr‘l)neﬂ\TO to be a positive semi-
-definite sequence where Pﬁ = sin Hpn/2 and <Pn)n€{No is
the prescribed autocorrelation, As we have seen in one
of the examples given in chapter %, this is not always
true and therefore only a subclass of unit covariances
can be realized by this method,

We now propose a convergent algorithm for the gener-

ation of binary sequences with prescribed autocorrelations,

4 2 Type 1 Algorithm

This method takes advantage of the convexity and
compactness of HmC and the properties of its vertices, It is
shown that the prescribed autocorrelation can be realized by

a suitable interspersion of the binary sequences whose
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autocorrelations are vertices of HmC.
We know  that

N . . .
(ao’ aqa..-, i ) = Z O‘i(pza P3|.,.-..3-PIJI.1_/|)3 ()

i=1
with a, 20 , Z’I o = 1, N<m+1, and that there exist
1=

periodic binary sequences (Sl:‘LJ_)IJ_e[[\T with autocorrelations

- 0 .
m-1 . 2

i -
<'Pn)n€lNo and period p; L2 , i=1, N

9 ¢« ae? -

For the moment assume that the coefficients of
the above convex combination are rational numbers_, Then
we can write o = pi/qi, where 1] and qQ; are positive
integers, Denote by M the least common multiple of

q_/”..a, QN.

Set oy = o /M Define a new sequence (s )IlelN by
interspersing the sequences (s )nelN , setting for a 1,2, ...
0
( y ,

Sn—(M—&,])L/'M K L<n<L+oc,|J

82 - L, I, i n I (G, +E) (%)
s - n-(1-0,) L/ M-, §° 1 S q T/ d
n ‘ ' :

N - N~

_ o . Ly _ -
Sn—(M—ocN)L/M—J(a/I.F? "+°°N—1)’ +3 _f;locl <n<

where L=Mj(j=1)/2 and U=Mj(j+1)/2, Recall. that
d ..

> 1= g3(i+/2,

i

Now we show that the sequence so constructed has

the desired autocorrelation,
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Tgke TEWN such that

k=1 k
Mi(3-1)/2 + ] 'Zq a, <T<MI(G-1)/2 + § 2 By
1= 1:’]

Then we can write

5,3(3+1)/2

T
1 1 1.1
_T—f?_;l SnSn+t = T ; Asnsn+t e
bzk_qj(j+’l)/2 . &kj(j—’l)/2+A
k-1 k-1 k k
Ceee ¥ I;l Sp Snet * ng’l Snn+t *
o, .. 3(3-1) /2 od(3-1)/2
+ O('k+’lz: o sk+/lsk+/l + + aN Z SNSN + 0(1)
' A7 n n+t o P n " n+t ?
k-1

with o<t<m~1, and A = T-Mj(3-1)/2 - § 2 &; .
1=

In 0(1) we include the effect of cross product

1
k*

For a given j (and T as above) |0(1)| is bounded by

terms of the form s;Lls i#l

2mNj/T = 2jm2/T which goes to zero at the rate of ’i/j,
2

when j » -« , because T grows at the rate of J
Since . j(j+1)/2T — w./M , and
" i T o i

Ri(j-’l)j/ZT ‘W OC:'L/M )

with 1<Li<N and T as above, we have that

Ql

N

o .
1 1 N 1 N
o Pe ety P T %Py TeeT Py

. 1
lim — E S. s =
Mo w T4izq 2 n+t

=

which means that: (Sn)nelN has the desired autocorrelation,
. o . .

q.e.d.
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So far we héve assumed that the coefficients di s
i=1, 2,..., N, in the above expression (#*) were rational
numbers, For the case where some of %hem are irrational
the problem can be sol&ed by approximating the irrational
coefficients by rational ones, the degree of approximation
depending on the desired accuracy, and then by’applying
the above method with these coefficients,

Although this method is a feasible procedure for
practical implementation algorithﬁs of the next type
have the advantage of being easier to implement,
particularly on a computer and of not making use of any
.a _priori knowledge of the structure of Hmc- They are
iterative procedures where k consecutive terms of the
vdesired sequence are selected at each iteration, with
k being some fixed integer, Furthermore, loosely
sﬁeaking, they are constructed in a way that converges
és fast as possible. Convergence in the method above
might be rather slow, Think for example of situations
where there 1s at least one oci=pi/qi with.pi and Q;

'very large'
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4. % Type 2 Algorithms

In this section we shall discuss iterative
procedures for constructing binary sequences with
prescribed autocorrelations, For didactic reasons we
shall discuss first a procedure convergent in a subset
of HBC’ and then show how it can be generalized not

only to the entire class 1l ,C but also to n.c, for

5
any me,

4.%3,1 An algorithm for generating binary sequences with

prescribed autocorrelations that is convergent on a

subset of HBQ

We need some preliminary considerations before we
proceed,
Given a binary sequence (sn)neu_\.Io its auto-

correlation function <Pk)k€ZN has been defined as
0

N
. 1
= 1lim — S8

Pk Now N g;% n"n+k

Define
T-k
k 1 .
°p =3 nzb 8,5,k » KT EN,

Then we can write




' 1 2
where ¢ = (c ,c) and u = (u,,v, ) = (s; 8, ,8.5 _5).

We note the sequence (c )ne;m.can be specified in terms

n
of (un)nelN’ because v =u,u

nn-1"°
Define
g jul /1 m q &
Yan T 2 s T 2 P g 2 e
With the substitution V=W 4y Wh,n can be regarded

as a function of Upy.oas U

n+m -
+ - -
Let wﬁ,n denote the restriction of Wﬁ,n to qn=+1
and Wﬁ,n its restriction to unz—ﬂ,

Obviously the range of'w; n igs the same as that
9

o gt ‘ . + . - L
of Wm,,1 and we denote it by Dm, Define Dm similarly,
The appearance of D;, D;, D; and D; is shown in

figures 1, 2, 3 and 4, We‘have used the fact that

=u_1u
Yn+1™"n"n+1

If step n is to the right (uh;ﬂ) step (n+1) is NE or SW,

to generate these figures, Then the rule is:

If step n is to the left (un=—1) then step (n+1) is NW
or SE, It also follows that D; is the reflection of

D> about the vertical axis,

Let W; denote the convex hull of D; and w; that

of D;_ Tet w; denote the intersection of w; with W_

The appearance of wl, w; and wi is depicted in figures

5, 6 and 7.7
From the definition of Wﬁ n it follows'that the

b

convex hull of its range tends to I.C as m goes to =,

3

because the vertices of I C arevautocdrrelations of

3



periodic binary sequences of period not greater than 4,
Therefore w; also tends toIlBC as m tends to « |

We now establish the algorithm,

Suppose p = (pq,p2) is the prescribed vector of
autocorrelations, Let (Ezn)nezm'be the sequence generated

by the expression

n 1

c = —— Co * (u
2n+2 n+1 an P 2N+

+

Yop o)

. Where Uspiq and Uspe2 are chosen to minimize the Euclidean

norm of (g, ,» = P), given that the values of ¢, and

Usy, have been previously determined,

Proposition

-

If Eewg then (En)nEIN converges to p, for

1
all initial values, at the rate of O(n °),

In the proof of the proposition we shall make

use of the following lemma:

Lemma |
Consider the triangle {a,b,c} énd a point d on
side (b,c), Then min.(“c—au2,”b—aj2).<;Hdraﬂ2 +[]b—cﬂ2,
Proof
Jo-al®

le-al®

la-al® + [v-al® + 2(a-a)T(v-a)

la-al® + Je-al? + 2(a-2)T(c-a)

But either (d-a) (b-d) < O or (d-a)  (c-d)<O, Since
Je-d] <] o-cl and |b-d| <[ b~c] the result follows,

92



We are now in a position to prove convergence

for the algorithm, Since
| &aer = 2] < (2 + gl J/aen)

we need consider only the convergence of the sub-—

sequence (92n>n€[N'

Proof

Agsume that u2n=+1 and therefore that

‘ n T
Consp € [ Sop + — w2 )_ We shall denote the vector

An+1 n+
addition of sets in the usual way, that Is for example

a + B = {g +Db: all beB], Two possibilities must be

—

considered:
; 1 +
(1) »p 2o+ LW
- ﬁ/n+’l en n+1 ‘ 2

Let x denote the intersection of the line segment'
. . ) + .
(p,cp,) with the edge of n/(n+1)e, + 1/(n+1)W, which
is closest to p (see figure 8),

Let V denote the closest vertex to p on this edge,

Then by the lemma

[-pl2 <lxpl® + a/(ae1)?

where d is the diameter of W5, (Note that d/(n+1) is
the diameter of n/(n+1)g2n + 4/(n+4)w§)_ But from the
definition of Consp We have that c, - is either V or
a point closer to p, namely a vertex of

n/(n+1)92n + 1/(n+1)w§ or n/(n+1)92n,

93



Then

[eonia = 7<= = ) + &/@n? .

Now |x - E“gn/(nvl) “ Copn = p“ ; this follows
from the fact that x is the closest point to p of
n/(n+’|)._c;2rl + ’I/(n+’|)W:2L on the line joining p to Con
and that the point pwn/(n+1)(c,, = p) on this line
lies inside n/(m—’l)_c_arl + ’I/(n+’|)W:2L . Therefore

2 2 2 v 2 2 2
| onez = 217 < B7@n? | gy = pP + @/ en)® ()
(ii) _Ben/(ru.-’l)_c_&,l + ’I/(n+’|)W5

In this case we have |Son42 = p“2< d2/(n+’|)2,
The same arguments hold if Uy, ==1 and

925+2 € <n/(n+’|)_c_2n + 1/ (n+1)V, > s in particular

inequality (%) still holds,

Therefore we have for all Co, and all p €W:2L

n
@) Jepnp = PP < 0% | ooy = p° + &

< (2% | ey - pI? + 287

N

< Jep - p° + (a-d®

gnd therefore ” Cop ~ ﬁ” converges to zero as n goes

‘to ® at the rate of O(n—?) .
q.e.d

ou
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4 . %,2 A convergent algorithm to generate binary

sequences with any prescribed number of autocorrelations

If the vector of prescribed autocorrelations has
dimension greatef than two, it is still possible to
implement iterative procedures leading to a convergent
solution on the same lines oﬁ'thoUght as above,

Before proceeding we need to éxtend some of our
previoﬁs definitions to Rk, for k greater than two,

Let wh , ﬁlemg.denote a function with domain

}m+k

{~1,1 defined as follows:

1 ..m .
Wm =— J%] -“-l-j+k—’l .

where u. = (Sisi—ﬂ’ 81840144 Sisi—k) , .and 55 € {—1,4}
for all i, _ '

Denote by WJ the restriction of W_+to the jth
possible value of (Sk-ﬂ’ S)mDd e us s,); this vector can
only assume 2k distinct values, Denote by D% the range

of w% and let $1i denote the convex hull of Di

. Finally
set v 2k .
Qy = I)%
3=

In the generalization of the algorithm of section
4.3 1 to the k-dimensional case, k>2, we shall make use

of the following results:
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Lemma 1
The convex hull of the range of wm converges

toll C as m tends to infinity,

k+1

Proof

The result follows from the fact that.nk+qC is

a polytope whose vertices are autocorrelations of

periodic binary sequences of periods not greater than
k

2™ as it has been shown in chapter 2,
Lemma 2

Consider a polytope P lying in an hyperplane in
R® with vertices Yireeer X Let x denote a point in P

p.
and Y any other point in Bk

. Assume min <”X -V, ", e
oo JY 7 Vpl) = Y 7 vy |- Then

]2 + d2 , where d is the

2
Jx-% IP<[Y-z
diameter of P,

Proof
A1l we need to show is that there exists a vertex

v of P such that : .
| <(x-x,k-x> >0,

If not <((yi— x),(y = x)> <0 for all v; which
would imply <(y - x),(y - x)> <O, for all y in P,
which is impossible since x€P,

v - x|

Then we have'that[|y - I"2<§"§ - x"2 + |

and the result follows,
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Given a binary sequence (sn)n GINO define

Kk q oK
Cp = E 2 S, Sn4k , for k,TEMWN, '
1 k
and set ey = (Cm,..., Cm).

The algorithm of section 4 3 .1 is now extended to
the k-dimensional case, k>2,

Let p = (p’l’ P2y eees pk) be the prescribed auto-
correlation vector, Let (S_II)IIGU.\TO be the binary
sequence generated by

T
_ n - 1 '
= e C + ———( Z (Smon_,.jsmon_,.j_/]a...

¢
~m (n+ —-m n
0 ( 1 n+- 0 m(J 11+1r1(J

ceed sm(J 11+;jsmo n+j—k> )

s are chosen to minimize the

. Where Sm°n+’l S 0ens m n+m

euclidean norm of ¢ - p given that gﬁ and

m (n+1) !
S0 Sqv..es Smon have been previously determined,
Proposition
If peny than (En)neﬂ.\T converges to p

0
for all initial values, at the rate of O0(n °),



Proof

Since "9n+1 - gn“ s;(mqngn“ + mok)/(n+m0) for

1<:m0, we need to consider only the convergence of the

subsequence (gmo n)n EN "

Then assume that (s ) takes its

_ mon’°--’ Sm0n+’l--k
jth possible value, 1<3j<2" and therefore that

'n 1 .35 )
oyt — 0 ;
n+41 mbn n+- n% ’

gm n+m € (
0 0
the addition of sets is defined as in section 4.3 1,

Two possibilities must be considered:

) p (e ——0) )

n+1 n+1 [4

Let x denote the intersection of the line segment

Sopn * ’l/(n+’l)_(1§1

(E’Em.n) with the boundary of n/(n+1)c
0 . . ,

which 1s closer to p and let v denote the closest vertex

to p on the face containing x, Then by lemma 2 we have

that
2 2 2 2
lp - <z - pl® + a5/ (ne1)

where d; is the diameter of nY . (Note that a5/ (n+1) is
0

the diameter of n/(n+1)c . + 1/(n+1)£1% ).

0 0

From the definition of gmbn m D+

elther v or another point of D& closer to p, Therefore
0 .

2 2. 2,0 N2
|en nem =PI |2 7 [T @/ (e D

we have that ¢ is

98



. We also have that

; this follows from the

[z - ol <—

n+1

fact that x is the closest point to p of

n/(n+1)g' + 1/(n+1)11% on the line joining p to [
m,n 0 - 0

and that the p01nt p + n/(n+1) (c - p) on this line lies

IIl

inside n/(n+1)gm0n + 1/(n+1);1mb, because p eflgb by
assumption, Then

|, nem = 17 275 2y o= ] + Gy aen)®
0 0 ‘ 0

. 13
(i) pe(n_c_mn+ Qf;]l\

- \n+1 n+l o/
In thi ; 2 2
s case we have "Cm - p” dj/(n+1)
0 0
Therefore we have for all gmbn and Pea,
2 2 2 2
@) o pin 8] P 2 27 2] ¢ @
< )% (uoy = )7+ 207
_ 0

<l - ol + e
0

where d:max(dq,,_,,dzk) , and thgrefore ”gmbn—_ﬂu
_a
converges to zero at the rate of O(n 2).

q.e.d
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This algorithm can be used to genérate binary
sequences with the prescribed vector of autocorrelations
anywhere in the interior of HkC’ for any k, provided
one selects m sﬁch that Lo contains p ; by lemma 1
we have that this is always %ossible,

H We found that in practice we can simplify this
procedure by selecting only 6ne new term of the binary
sequence at each iteration without convergence being
lost, However the rate of converéence decreases_as the
number of prescribed autocorrelations increases, This
is apparent in the two numerical eXamples of application
" of this algorithm given in appendix C, In the two
dimensional example' the 'error' at the 100th iteration
is already sméller than the error at the 450th iteration
in the five dimensional éase.‘ ]

The simplidity of the oné step ahead iterative
algorithm and the satisfactory way it works in practicé,
particularly for small dimensions; are enough to
motivate a study of its convergence properties, However
such a sfudy_is difficult because the number of search
directions at each iteration is limited to two and
because the criterion being used in the selection of
the terms of the seguence, the minimization of an
euclidean norm, gives rise to a complicated behaviour,
To avoid these difficulties we_have decided to modify

the selection criterion of the Terms of the sequence
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and this has enabled us to establish a first order
iterative algorithm with a linear rate of convergence
if the prescribed autocorrelation veétor is in the
interior of N_,C, This is done in the next section,

5

4 3 3 One step shead iterative methods

~ An infinite number of 'nQéteps ahead' iterative

procedures can be obtained by_changihg the selectioﬁ
criterion of the terms of the sequence, However, they
all have certain basic featufes in common and we shall
discuss next some of them for the case where n=1,

Set a = (1,1, b= (1,1, ¢c= (-1,-1), 4 = (1,-1)
and e = %(c+d> . N

Given the first p+1.terms of a binary sequence

(Sn)nESN we have already defined
o .

= p 1 . 3%
Sp+1 -~ Sp * - L ()
e 12
where u, = <Spsp—1’spsp—2)’ Cp = (cp,cp) and
k _ 1%
cp = 5-326 S Sniic 9 k:6{1,2}.

Expression (#) can be rewritten as

/l
Copq — &y =— (u . —-¢c)
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which means that the change (gp - gp) can only take

the values ___(a -c), —(b -2¢c), _1_(9 - c) or
p+1 P pe p+1 P

(d - c ) (see figure 9) and that ” S &

p| *°

p+1
Given that at each iteration only one term of the

sequence 1s selected, there are only two possible choices:

(1) if s.s__,= +1 , then u -

P p-1"
value a or ¢,

p+1 can only take the.

(ii) if Sp5p1™ -1 , then Upg ;s either b or 4.

We also have that

u, = a (or b) implies Up e{

IQJ
bw—'
~
Q
H
m
——
o’
el
—
—’

U, =g (or @) implies L e{b,é} (or ¢ {g,g}).

This shows that the occurrences of the values
¢ and 4 for u, are interlaced: between two consecutive

values of p for which gp = ¢ there is exactly one value

of p for which u, = d, and vice-versa, We alsc have that

=] |
Sy = 5(pa_a_L + Ppb + P& + pyd) where P,» Pyps P, and Dy
are the number of occurrences of the respective values

a, b, ¢ and d in the first p steps, and by the argument

Jjust given we have that p, and p, differ by at most one,
c d

Therefore we have the following result:

Proposition
The triangle H { b,g} is a domain of

attraction for any 'one-step ahead' iterative algorithm,



10%

We now give a convergent iterative algorithm for
generating binary sequences with at most two prescribed
autocorrelation values, As we shall see, this method
has the advantage, besides its simplicity, of having a

linear rate of convergence,

Denote by p the bi-dimensional vector of prescribed
éutocorrelatiOns and by Sa and 8, the 1inesr(g,g) and
(p,b) respectively, These lines will act as switching
lines for the sequence (gﬁ)nfam.generated by the algorithm,
Lét A.and C denote the half planes produced by Sb containing
respectively g and ¢, and B and D denote the half planes
produéed by Sa containing b and d reépectively.

Now the algorithm is as follows:

The bingry sequencev(sn)rlem% is constructed berm

by term_, The first two terms are selected at random, When

p terms have already been selected Sp+ is chosen so that
(1) Upq = 2 if gi)ec oT U4 = & if QPE.A for the
se where s_s__,= 1
case P p1 _ o .
(ii) Upiq = b if ngED OF Uy, q = 4 if ngEB for the
case where s =

p p-1"

This is a first order algorithm if we regard

e : 1 2
the 'state' as being (cp,cp,spsp_q)_

can be taken to be the disjoint union of two squares

The 'state space'’

takes a constant wvalue.

- of side 2 on each of which s_s
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The following results will be of use in the proof

of convergence of the algorithm:

Lemma 1

An upper bound on the minimum value of m such

m .
that > 1 <A, A,a€R, is given by the smallest
N=n; n+a :

integer greater than (ni+a)eX = (1+a),

Proof

We have that

1=n; i+a - x+a+
l .
m
J/P 1 dx = log m+a+]
n. -1 X+a+] n,+a

The result follows,

Lemma 2
If two consecutive terms of the sequence

(gn)niENA, generated by this algorithm, say gno and

[ lie on opposite halprlanes produced by one of

0
the lines S, or 8 and ¢ €H{a,b,c,d}, then for

n =1
0 .
all n greater than n the distance from ¢, to that

‘line is not greater than 4V§/no, provided p is an

interior point of H{g,p,g}.
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Proof . ,
'We shall prove the result for line S | By

symmetry the same result holds for Sa Please refer

to figure 10,
From the definition of (gP)P ¢y We have that if

c, € H{a,b,c,d

= _} then ¢ is also in H {g,b,g,g} for all

n greater than ﬁo_ We also know that

Coiq = Soll = | Ypeq ~ S|/ (P+1)  where u € {a,b,c,d
p+1 P p+1 D P
for all p, Therefore if ¢ €H {g,p,g,g} then

"9p+1 - gpnsg 2V2/(p+1) since 2V2 is the diameter of

First let us assume that Sb is crossed from half

plane A into half plane C at stage n&, that is ¢ -
0

is in A and c is in C, Then the distance from ¢ to
' 0

0
S, is less than 2V§7n0_ But from the definition of the

algorithm it follows that u does not take the value

1+
¢ while ¢ 1s in half plane C and takes at most once
“the value 4 ; in this case Qn may be driven away from

Sb but by not more than 4V§7no, if 4 lies in half plane C,

However the occurrence of the values a or b for Yy,

bring ¢ closer to Sb
Now assume that Sb is crossed at stage n, from
C into A, The only possibility that needs to be discussed

is when d is in half plane A and ¢, falls in AB, While

n
0
[ remains in AB, u. takes the values ¢ and d alternat-

ively and from the corollary in appendix D we have that
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the associated c,'s will lie in two lines intersecting
at the point e=2(c+d) . This situation is illustrated
in figure 10, Therefore if p€H {g,g,gi}the.distance
from ¢ to Sb, for all n>n and ¢ in A will be at

This ends the proof of lemma 2,

most 2V§7n0

In the discussion of convergence of this élgorithm
it will be convenient to adopt the following definition

of neighbourhoodi

Definition

Given a positive real number ¢ , we define
- a § -neighbourhood of p as the.set of points within a

distance of less than ¢ from lines Sa and Sb_

We are now in a position to prove convergence
for the'algorithm, To simplify matters suppose that
[ is an interior point of H {g,g,ghg} . This ensures
that in all the subsequent iterations [ is also
inside the square H {g,h,g,g} and therefore less than
2V2 away from any of its vertices, Although the case
in which (¥ is outside H {g,g,g,g} is uninteresting,
it is easy to show that, for all Sy &y eventually
falls in H {a,b,c,d} provided the prescribed auto-

correlation is neither a nor b,
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 Proposition

and ¢, is an ihterior point of the square H {g,g,g,g}.
'Given § >0 the Sequence (En)nEEN generated by the

algorithm remains in a ¢§ —neighbourhood of p for all n
 greater than k,/ 8+ k, , where k, and k, are constants

depending only on p,

Proof | .

Take noe N such that nd>>4V§7 S_ We now study the
behaviour of fhe algorithm after iteration n . Recall
- that we have the square H {g,h,g,g} divided in four
regions namely AB, AD, BC and CD, -

While [ n:>n0, remains in the same switching
region as ¢, ‘three possibilities must be considered:

: 0

(1) u, .4 constantly equal to a

(i1) u

N+ constantly equal to b

(1ii) w4

assuming the values ¢ and 4 alternatively,

From appendix D it follows that in (i) and (ii)
the points Cho n:>n0, lie on a stréight line containing
a or b, respectively, and that in (iii) the iterations
of the form Sons n:>no/2 lie in a straight line containing
vertex e, Furthermore it follows from the definition of
ﬁhe algorithm that the region containing [ does not

0
contain the vertex which the subsequent gn‘s are heading
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to, provided p is neither g nor b nor ¢ , which is true

by assumption, Then we have that there exists a positive

sﬂ,depending only on p such that

[Sniz = Sl > e/(id) , n>n

But this implies that at least one of the lines
S or Sb will be crossed at some later stage say n,,
because the series zz:—— is divergent, From lemma 1 we have
n=1 I

€

1 . n n
Z > 2\/—2— if m > (’1 + -2—0) e/-l-Vé-/‘e,] - (/] + ?0)
n="1 .

2n+n
0

and therefore n, will be less than (2+no) e4VE7€q

In case (i) we bave that Sb was crossed at stage’

n,, and therefore [ falls gither in AB or AD, If Sy
1 1
falls in AD then En1+1 = ¢ and then u , n>n,+1, will

remain constantly équal to b; then by similar arguments
we have that Sa will be crossed at a stage not later
than (2+n1) e4V§752 - 2 where e, DPlays a role similar

T .
to eq,,*f an falls in AB then u., n>n,

, takes the
values ¢ and d alternatively until AB is 1eftleither
by crossingSa or Sb_ A similar discussion applies for
case (ii),

While ¢ remains in half plane B the values ¢, 4

and a occur for u, in the following sequence: c,d,c,

o e e )02

,d,a, a,c,d the values

—_ 96 e 0 90929 e 2 IX%.2%20% e 0 e

. d’aﬂg, e 3.%3-6—9.@.79.9@
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of a occurring when ¢, falls in region BC,

We also know that (cn 1" gn) = (a - gn)/(n+1)

ifu . =aand (¢ - gy = 2(e = ¢)/(2+m) if

Since p-is an interior point of H-{g,g,g}, there

exists a positive e,, depending only on p such that the

59
projections of (e —:gn) and (a - ¢ ) on S along edge

5-

By the same reasoning as above we have that Sa

(a,e) will be greater than e

will then be crossed at a stage not later than

.(2+n ) eLL\[—_/E

It then follows that at an iteration not later than

n068V§ e 4 2(e wVa/e _ 1y,

have crossed lines S, and 8, and by lemma 2 it will

= min(eq, €5 55), [ will

remain inside a neighbourhood of p of size 4V§7n°

‘This ends the proof of proposition,

Comment s

(i) We have assumed in this proposition that P
was an interior point of H.{g,p,g}. However it can be
shown on similar lines that the algorithm still converges
if p lies on the edges (a,e) ér (b,e).

(ii) In contrast to the general multi-step method

of section 4 3.2 , the rate of convergence is asymptoticaly

0(1/n) rather than O(’l/n%) .



(iii) The rate of convergence of this algorithm

is global in the sense that it holds for all § and not

just for & sufficiently small, It has also an obvious

'inverse form':

- : 1
"gn PII < min EVEZ -

k

|n - k2| )
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CHAPTER 5

FURTHER RESEARCH

In this thesis a study of the autocorrelation and
covariance properties of deterministic and stochastic
binary sequences has been made within a geometric framework,

The inverse problem of-generating binary sequences
with prescribed autocorrelations has also been treated,

It would be of interest to extend these results to
the more general case of generating sets of sequences not
only with‘prescribed autocorrelations but also with cross-—
correlations, We.have already pointed out in ‘the introdﬁction |
to the thesis that the input signals have a significant
.bearing upon the achievable accuracy in identification
experiments, and that fof single input-single output linear
gsystems the optimal input is most conveniently characterized
by its autocorrelation matrix, However if the system under
consideration has several inputs it can be shown that the
'optimal' input signals are not only characterized by their
autocorrelations but also by their crosscorrelations, We
also believe that the generation of signals with prescribed
autocorrelations and crosscorrelations_will have important

applications in areas like telecommunications,
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The extension of the charécterization of the class

- of aufocorrelafion functions to the class of cross—
correlation functions appears to offer few problems but
the important question of determining the set of feasible
crosscorrelations for a given set of fixed autocorrelation
shifts does not seem so clear,

Also of interest is the'determination of the extreme
elements of the class of covariénce functions of continuous
time unit prqceéses_ It has been shown that such a class
is convéx and compact, Therefore any element in this class
can be represented as a convex cbmbination of extreme
elements, The question of uniqueness of such a represent-
ation deserves'further investigation, but judging from .

' L. Shepp's work it is highly unlikely fhét this.unique

- representation exists,



'APPENDIX A

An algorithm is given to generate a set of points

whose convex hull is]ImQ , for any value of m,

Algorithm

Step 1 Select the desired value of m and define
a
X1,e = %1, w0 e 000 ¥ papp) > LEEN,
Set 1=1 and Xi,].:/], 1=/]9.-.9m-/] .

Go to step 3%,

Step 2 Construct X(i,1) such that X(i,1) # X(k,1),
1<k <i, ’
Step 3 Set n=m
Step 4 Set J=n—m+2 and Xi,n:Xi,j
. Step 5 Compare X(i,Jj) with X(i,k), 1<k<J, There

' are two possible cases:
5.1 X(4,3) 4 X(i,k), 1<k<3,
Then set n=n+1'aﬁd go to step 4,
5.2 X(i,3) = X(i,ko), for some k , 1<k < J.
Two situations must again be considered

5.21 If k$:>1 go to step 6,

114
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. N .—1
5.2.2 If k =1 the vector &
° §=1 k=1

) satisfies the given necessary

*i,k (Xi’k,...a

conditions in lemma 1 (section 2.5) to be a

vertex of M_C,
m

Comment: The components of this vector are also the
first m autocorrelation values of the periodic binary
sequence, of period j-1, with j—1 consecutive

terms equal to <Xi,1’i"’ Xi,j—ﬂ) or of the periodic
sequence, of period 2(j-1), with 2(j-1) consecutive

terms equal t0 (X: ,,..., -x
1,1

Xi d=10 TEi 4 eeer Xy gog)

"being equal to or the mnegative of x.

depending on Xi,ﬂ i,

Step 6 Two situations are possible

6./] If Xi,jzxi,n Set Xi,n= i,j,

6.2 Otherwise look for the greatest l,m<l<n

-X and go to step 5,

such that Xi,l

again be considered:

=X.

T cases mush
i,1-m+2 - wo case s

6.2.,1 If there is no such 1 go to step 7,
6.,2,2 If such an 1 exists set n=1, Xi,n=—xi,j and
go to step 5,

Step 7 Set i=i+1, If i'>2m"2 stop; otherwise go to

step 2,

Comment: When step 7 is reached all possible periodic

binary sequences starting with Xi,ﬂ’---’ Xi,m—ﬂ and
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satisfying the conditions given in lemma 1 (section 2. 5)
have been considered, Therefore a new starting value

should be selected;
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APPENDIX B

The orem

10U is a neighbourly polytope, for all n€N,

II2U is a line segment and HBU is a tetrahedron
and therefore neighbourly polytopes, We shall prove
the result by induction, Fix n>3, Fix 1i,j<n, i#J.

+ A . _ .
Lej V.. = ]InUﬂ {1"[ : mij_’l} . Then precisely half

1d
of the 2™ vertices of T U lie on V':.:J.; the remainder

lie strictly to one side of the hyperplane {M : mij=’l}

and are in Vij = HnU N {M : mij= --’l}_ Now define the

projectidn operator m such that
i nU—n__ U
n n=1"?
that is the linear map obtained by removing the ith row

and column from a mabtrix R € M U, Then we have
HlEIi = Elkl__—/] , some ’l<k§2n_2_
Furthermore V“iLJ.ﬂ (Hl)-,]EgL ED . Hence Hi maps

1
the 2n—2 vertices of V;j onto the 211-'2 vertices of
Hn—’lU in a one-to—one fashion,
- Therefore under the assumpbion that I n—’lU is

neighbourly V;j is also and by a similar argument SO
. is Vij'
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We note at this point that the edges of v;j
I + - .

are also edges of _nU because Vij (and Vij) is the

result of the intersection of HnU with a supporting

hyperplane, Furthermore any pair EII;,E? of vertices

3 . . . + - . A

of T U lie either in vij or Vij for some i, , J#i,
From the above arguments it follows that the

line segment connecting any pair of wvertices of HnU

is an edge of I U, Sincell 5U is neighbourly it follows

by induction that I U is also neighbourly for n>5,

q-.e .d-
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APPENDIX C

In this appendix two numerical examples of
application of an iterative algorithm, similar to the
one described in section 4 % ,2, are presented; in this
algorithm only one new term of the sequence is selected
at each iteration,

The cost at iteration n is defined as "Qn - pu

with g, and p as defined in chapter 4,

|
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APPENDIX D

Lemma
Tet csn)nelNobe a periodic sequence of period D

and autocorrelation function (p ) Then for any

nelN -

given m €N the sequence (c

—k°+np)n€[L\T° lies on a straight

line passing through p for any fixed k,, 1<k, p, where

1 n
p= (pgs.uny )y Sy = (Cpyan.y ) and

ci P Sn+1-i ®n+
n+1 n+1 ° n+1
Proof

A11 we need to shc_)w is that for all n€ N there

exists AER such bthat (c

k ,+np -.9-1{0) = Mp =g ).

From the definition of c;i we can write

k,+np i
S,8, . = npc
tTUE=-i k np ( —ci)

Pi k. /°

i i = t= D+/| -
k +np - k,+np °

Cx +np ~ %k

because (sn) has period p and by definition

new
0

ik.ﬁp

8.8, . = P..,
D £ t5¢-1 = Pi

The result then follows,

12%
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_ Corollary

If (Sn)ne o, is 'eventu.ally periodic' that is
there exist natural numbers n, and p such that
Sppem = Sm for all m>n, and nelN,, then (9k°+np)n€[N°
also lies in a straight line passing through p, provided

n, <k, <n,+p,

Proof
We have seen that
- | k,+np
> Sy S, s i
i i p  tok,4q U UL NRC
°k,4np ~ %k T
° k,+np D ko +np
k,+np
If k,>n, then a D SiSi.s = NPs
Pk, +1

The result follows,
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APPENDIX E

Theorem (B, Mcmillan)
;>€U'if and only if p(0)=1 and
Z Z p(n—m)A >0,

m=7 n=" : _
for every N, and all corner-positive matrices {Aﬁn}’

m,n=1,,,.N, where a matrix {Amn} is corner-positive if

Z Z A 0

m="1 n="1
for every sequence (eq,__.,sN) with es=t1, i=1, 2,,..,N,

L. Shepp's proof of this theorem is now reproduced

',below.

Proof
The necessity of both conditions stated in Mcmillan's

theorem is easily proved, since

p(0) = E(X5) = E(1) =

N N
> Y plarm)A = (‘Z ZAmnXan>>o

m="1 n=", mn="1 n="1

The last inequality is an immediate consequence
of the fact that {Amn} ié corner—positive, |

To prove sufficiency of Mc Millan's conditions,
let us consider a given function p(n), n=0, #1,, .,, and

ask the question: under what conditions is it possible



to define a unit process {Xn} with covariance function p ?

Since the covariance function determines the two—
-dimensional distributions P{Xm=€q’ Xn=52}, the question
can be expressed in the equivalent form: given the one-
—dimensional and two—~dimensional distributions, when
can an extension be made to the higher dimensional
distributions?

| It will be useful to formulate the question in
still another_way, Let us regard Xn as a coordinate
variable in the space, N of all infinite sequences of.
t1'g; that is Il:{(_;_,x_q, X0 xq,.._)}, Xi=t1, is
the set of all possible realizations of a unit process,
Then our goal is to find a pfobability measure P on the

space .» such that

E(X X)) = f X X dP=p(n) 1)
where p is given, Let C(£) be the set of all continuous
functions on N, The operator E is defined by p for
those functions in C(0) which are of the form Xan.
If we can find the desired probability measure P, then
E will be extended to all of C(0)_  On the other hand,
the converse of this statement follows from the Riesz
Representation Theorem, which asserts that-if E is a
functional defined on C(Q) which is linear and positive

(g> 0 = E(g) =0), with E(1)=1, then E is given by an

 integral with respect to a probability measure, Thus

126
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our goal is to determine under what conditions one can
extend an operator E, which is defined by (1) on the
set G of functions X X, to a positive, linear
functional defined on all of C(q0),

We shall use the following elegant result which

I first discovered in a paper by H, G, Kellelererq

Lemma 1 Let E be a functional defined on a subset C
of C(n), where 1 €G and E(1)=1, Then a linear positive
extension of E to C() exists if and only if for any

| gq,...,gNJEG and any real numbers aq,;,f,aN,
. |
Z 0= Zoc E(g;) >0 (2)

. The necessity of this condition is.clear_ To

“ prove sufficiency, let M be the linear space spanned

by G; i.e., the space M ={Z:aigi} of all linear
combinations of functions in G, Define E on M as follows:

E(C a;8;) =2 a;E(g;) (3)

Note that E is well-defined on M; i,e,, independent of

representation, since if Zocigi=0, then ZaiE(gi)zo_

1 H, G, Kellerer, 'Verteilungsfunctionen mit Gegebenen
Marginalverteilunger', Zeitscrift fur Wahrscheinlichkeits-
theorie, 3, 1964, pp, 247-270,
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F satisfies the conditions

a) E is linear on M

b) |B(e)|<|sl , where | g = sup | g
. over 0.

Condition (a) is an immediate consequence of the
definition (3)_ To prove condition (b), note that

ijfaigisgﬂ; supljiaigil, and since 1 €G, it follows
over.n

from (2) that

E(*) a585) < supliiaigilE(ﬂ) = “Z:aigi“

or = (Z“igi>| <[ Lo

From conditions (a) and (b), it follows by the Hahn-
~Banach theorem that there is an extension of E on M
to a linear functional E on c(n), with [Fe] < el
Vg €C(), But the labtter condifion implies that E is

positive on C(n), for if 0Lg<<1, then

172 - B(g) = B(1/2-g) < |1/2-g] < 1/2 = E(g) =0

We now return to the proof of MclMillan's theorem,
In this case, G = {Xij}- Furthermore, 1 €G since Xi:ﬂ,

and E(1)== p(O)
N N

1, Now, the condition

&y &, “agfa%y 20 for a1l #1 values of the X, is

equivalent to the conditicn that {aij} is a corner-—



-positive matrix, But then condition (2) of the lemma
becomes

N 4 N N |
7 o XX 20 => 2 ) o JE(XXL)
e BRER e : ‘

N

"But this is exactly McMillan's condition,

129 |
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