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• ABSTRACT  

This thesis is concerned with the characterization 

of the class of autocorrelation functions of binary 

sequences, its connections with the class of covariance 

functions of binary discrete time stochastic processes, 

known as unit processes, and the design of algorithms 

for the generation of binary sequences with prescribed 

autocorrelations. 

A geometric approach to the characterization of 

• the class of autocorrelation functions of binary sequences 

is adopted. A detailed study of the properties of this 

class of functions is carried out, leading to a better 

understanding of its structure. Necessary and sufficient 

conditions are derived for a function to be an element 

of this class. Motivated by practical applications, special 

attention is given to the characterization of its finite 

dimensional projections. These turn out to be bounded 

convex polyhedra and their vertices have a number of 

important properties. 

A new characterization of the class of covariance 

functions of discrete time unit processes is given and 

its relations with the class of autocorrelation functions 

of binary sequences are discussed. 

Two classes of algorithms are proposed with proven 

global convergence and established rates of convergence 
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for the generation of binary sequences with any prescribed 

number of autocorrelation shifts. 

Some computational results are also presented. 
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NOTATION 

Class of positive semi-definite sequences (pn)ne Z 

with p =1 

C 	Class of autocorrelation functions of binary 

sequences, that is (Pn)n€ GC if  

1 	 	 sksk+n with sk  e (-1 11) for Pn N 	N k=0 

k;?,0 and sk=0 for k<0. Given that p.r1=p-n  for all 

n, we shall only consider the autocorrelation 

function defined for non-negative arguments, that 

is ( Pn)ri e fN 
Sometimes it will be convenient to establish 

a one-to-one correspondence between this class 

and a set of semi-infinite symmetric Toeplitz 

matrices as follows 

8 

Po P1 P2 

P1 Po  P1 

P2 Pi Po 

. 
Pn  

. • .  Pn-1 • 

Pn-2 

Pn Pn.-1 Pn-2 

ID • 



9 

C 
	

= H
n
C 

D Definition on section 4.3.1. 

Denotes convex hull, that is a class of linear 

combinations where the coefficients are all non-

-negative and add up to 1. 

MP 	Class of p-periodic matrices, that is matrices 

whose elements aij  satisfy the relation 

alj 	ai+np,j+tp / n,t e e 

fit 	Set of positive integers. 

U
o 	

Set of positive integers and zero. 

Denotes the projection of a matrix into the (nxn) 

matrix in the upper left corner. 

Subclass of autocorrelatign functions of periodic 

binary sequences. 

ClaSs of semi-infinite Toeplitz matrices. 

Example: TU (that is Tnu) is the class of 

stationary discrete-time unit covariances. 

U 	Class of discrete time unit covariances that is 

(pii)i, 0 _; Gm_ E U if pi j  = EXiX6  where Xt(w) E {-1 0 } a  
for all w 	and for all t e N

o and E denotes 

the expectation operator. 

As above, the same can be said about mapping 
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these functions in a one-to-one fashion on to 

a set of semi-infinite symmetric 

matrices. 

Wn 	Definition in section 4.3.1. 

Wi 	Definition in section 4_3.1. 

Set of positive and negative integers and zero. 
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CHAPTER 1  

INTRODUCTION 

In many engineering applications the need frequently 

arises for a signal with a prescribed autocorrelation 

function. In the identification of systems in the presence 

of disturbances it can be shown that the accuracy of 

the determination of the system characteristics is 

determined, to some extent, by the choice of the input 

signal. If the system under consideration is linear, 

time-invariant, stable,single input-single output, then 

the 'optimal' input is most conveniently chpraCterized, 

for parametric identification purposes, in the time 

domain by its autocorrelation matrix. 

The following simple example illustrates this 

situation. Consider a system described by the moving-

-average model 

(1) 	y(t) = aout 	alut_i  + 

t=0, 	N 

+ a 	+ p-1 u-p+1 	t 7  

where wt is gaussian white noise, and the coefficients 0 	, 

a0, —7  ap-1 are to be estimated from N observations of 

the input and output. 
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Eauation (1) can be written in matrix notation as 

(2) Y = Xa + W 

where Y is an Nx1 vector of observations, X is an Nxp 

matrix, and a is the vector of unknown coefficientS 

(aol a1' - 	ap-1 - ) The covariance matrix of the least 

sciunres estimator a of a is 

v( a) = 62  [xTxl -I  
, 

and if the input ( ) t e N possesses an autocorrelation 
0 

function (p11) 	with n n G N
o 

	

u 	1 ■ 	= lim   u
tut+n 

pn   
co N t= 0 

-1 

then lira NV (a) = 62 
N 

whereou)n e N denotes the autocorrelation function of n o 
the input (ut) t  e  

0 
We would like to draw attention at this point to 

the fact that we shall be using the words 'autocorrelation' 



and 'covariance' to refer to different concepts. Their 

definitions can be found in the section dealing with 

notation. Sometimes in the literature the word auto-

correlation means a normalized covariance, but this is 

by no means standard. 

The covariance of the estimator obviously tends 

to 0 as N÷.. 	One of the objectives of experimental 

design is to increase the rate of convergence by 

manipulating the input of the system under test. The 

most widely used scalar measures of this 'rate of 

convergence' are 

(3) 	Trace N WwIT(a) 
	

where W is some weighting 

matrix and 

(4)-1o9aet 	v(a)] 

Then the selection of the 'optimal' input becomes 

an optimization problem on the set of admissible inputs. 

However in our example it is clear that it is more 

convenient to carry out the optimization with respect 

to the input autocorrelation, because: 

(a) (3) and (4) are convex functions of the input auto-

correlation and therefore we can get a global optimum. 

(b) The optimization is carried out in a space of 

much lower dimension, that is, D‹<N.  

(c) If we optimize with respect to the input, we are 

1 3 
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likely to get only locally optimizing inputs due to 

the non-convexity of the functions (3) and (4) with 

respect to (u,) t E.E1 - 6 
This has been suggested by several authors, namely 

G. C. Goodwin and R. L. Payne [3] and R. Mehra [6]. 

In the identification example given above we see 

that the information matrix depends only on the first. 

p autocorrelation values of the input. This suggests 

that in general the required number of autocorrelatian .  

shifts might be connected with the 'memory' of the 

system. In fact R. L. Payne [7] has shown that the 

information matrix can be approximated to any desired 

accuracy by the first few autocorrelation shifts of 

the input. This is very important, because the selection 

of the optimal input autocorrelation then becomes an 

optimization problem on a subset of [Rn  - the set of the 

first n feasible autocorrelation shifts of the class 

of admissible inputs - where n is determined by the 

desired accuracy. Furthermore we only need to look at 

partial realizations of autocorrelation functions, 

that is, given a finite set of autocorrelation values 

construct a signal whose autocorrelation matches these 

values. 

Very often the input signal is constrained to 

be binary, because of the relatively simple hardware 



required for the generation, storing and processing 

of these signals. However the characterization of the 

class of autocorrelation functions of binary signals 

and methods for generating binary signals with prescribed 

autocorrelations was a previously unsolved problem 

either in continuous or discrete time. 

This thesis will be concerned with the following 

problems: (i) The characterization of the class of 

autocorrelation functions of discrete time binary 

signals and in particular the class of their finite 

dimensional 'projections. (ii) The design of convergent 

algorithms for the generation of binary sequences with 

prescribed autocorrelations. 

Our first attempt to solve these questions was 

algebraic, using the theory of linear recurring 

sequences over the finite field with two elements, 

GF(2). This fits quite naturally in the framework of 

control theory in the sense that it involves an inverse 

problem. In the theory of linear recurrent sequences 

over GF(2) we are given the coefficients of a linear 

recurrence and seek to compute the solutions. In our 

case a certain property of the solutions is prescribed 

(their autocorrelations) and we wish to determine the 

corresponding coefficients. 

Support to an algebraic approach also seemed to 
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be given by the pioneering works of N. Zierler [11] 

and S. W Golomb12] on linear recurrent sequences, 

which led to the important discovery of the so called 

'Pseudo random binary noise'; that is, periodic binary 

sequences of period p with a constant out-of-phase 

autocorrelation equal to -1/p. Such a property is 

particularly usefUl in many engineering applications 

such as radar ranging and telecommunications.. This 

type of signal is also particularly convenient to use 

if the impulse response of a linear system is to be 

determined using correlation methods, because its 

impulsive autocorrelation avoids the deconvolution of 

the Wiener-Horf equation. However for parametric' 

identification purposes a signal with an impulsive 

autocorrelation is. not necessarily optimum, because 

the 'optimal' signal obviously depends upon the 

optimality criterion that is adopted. 

The algebraic treatment was abandoned because 

of the difficulty in solving the inverse problem; 

that is to find the order and the coefficients of the 

linear recurrence over GF(2) having at least one 

solution with the prescribed autocorrelation. In the 

absence of a general solution what is usually done is 

to consider some sub-class of linear recurrences over 

GF(2) and then to study the autocorrelation properties 



of the generated sequences See for example [5] where 

the autocorrelation properties of binary sequences 

associated with non-primitive irreducible polynomials 

over GF(2) are studied. However such type of approach 

would only provide a partial answer to our problem. 

Some early work of L Shepp [8] on the class of 

autocorrelation functions of binary sequences helped 

us to 'gain insight into the structure of this class 

and strongly suggested that a geometric approach to 

this problem would be fruitful. This has proved to be 

right. 

A characterization of the class of autocorrelation 

functions of binary sequences in terms of their finite 

dimensional projections has been obtained It is shown 

that if (pn)n Cu- is the autocorrelation of a binary 

sequence then, for all meN, the vector (pc), pl,..., pm_i) 

lies in a polytope, that is a bounded convex polyhedron, 

whose vertices are autocorrelations of periodic binaly 

sequences of periods not greater than 2m-1  We denote 

this polytope by II C Conversely if (ao, a m • 	o' 11-1 am-1) 

belongs to this polytope then it can be extrapolated 

to an autocorrelation function (o ) n GET of some binary 
o 

 

sequence; in other words there exists a binary sequence 

(sn)neff  such that 
0 

 lim 	■ 
	s. s n 	 i N 	C°  1\T 

i^ 
 0 	

+n  

H 
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and a.,p. Ocj.5.:,;..m-1. Furthermore it is also shown that 

(on)neu  can be chosen to be periodic, This is a 

rather surprising result, in contrast with the case 

of general positive semi-definite sequences, where it 

does not necessarily hold. Algorithms for the calculation 

of the vertices limp and associated periodic binary 

sequences pre also given and have been used to calculate 

.11 mC, for some values of m The calculation of the 

vertices of Hm0  gave rise to some interesting mathematical 

questions, namely the problem - of selecting the vertices 

of the convex hull of a finite nUtber of points; this 

is treated in some detail. 

A closely related class of functions, the class 

of covariance functions of discrete time binary processes, 

in short unit processes, is also characterized and its 

connections with the class of autocorrelation functions 

of binary seauences are discussed. 

As far as the author is aware, the question of 

convergent procedures for the partial realization of 

autocorrelation functions of binary sequences has not 

been treated except in this thesiS.  A number of 

procedures have been suggested in the literature for 

the generation of binary signals with given auto-,  

correlation or spectral properties, but no convergence 

Proofs are available for them. See for example [1], [4] 

and [9]. 



Two conceptual algorithms with proved convergence 

to generate binary sequences with any prescribed number-

of autocorrelation shifts have been established. 

• Experimental evidence suggests that the conditions 

imposed in the proposed conceptual algorithms can be 

relaxed in a way that leads to more easily implementable 

procedures that still seem to converge. This is the case 

. of an algorithm we propose which is a simplification 

of one of our conceptual algorithms,- It has worked very 

satisfactorily in a large number of examples but so 

far its converge has only been shown for the case where 

the prescribed number of autocorrelation values is not 

larger than three. 

In addition to the application in systems identific-

ation that was described earlier we believe that our 

work will be of use in other areas Our characterization 

of the class C in terms of its finite dimensional 

projections seems particularly suitable in the frequency 

analysis of binary signals when the power density 

spectrum. has to be caldulated from the autocorrelation 

function. As one in practice has always a finite 

measuring time this means that one has to face the 

truncation effects of the correlation function on the 

power density spectrum; see [10] for example. One way 

to overcome this problem is to extrapolate the auto-. 
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correlation function. The extrapolation is usually done 

on the basis that the extrapolated values must give 

rise to a positive semi-definite function. However if 

we are dealing with binary signals, this condition is 

not sufficient: they must also lie inside 16C, for all 

m, which means that the knowledge of the polytopes 

ERIC is required in this case. 
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CHAPTER 2 

THE CLASS OF AUTOCORRELATION FUNCTIONS OF 

11-E2ISE24UENCES 

2.1 Introduction 

As described in the previous chapter, one is 

often faced in identification experiments with the 

problem of having to generate a binary sequence whose 

first m autocorrelation values match some v, v 

where v is in general the result of some optimization 

problem. 

There are other cases where one is given the 

autocorrelation vector veRm  and wishes to extrapolate 

these to some further autocorrelation values or even 

an entire autocorrelation function. 

In any case the knowledge of the sets 11 C, men-, 

is required. In this chapter we shall be concerned with 

the characterization of the sets H
m' 

and also the 

Characterization of the class C. 

As a result of this study the structure of the 

class C has been clarified. 

To the author's belief the two most interesting 

results obtained are: 

(i) H - C is a polytope whose vertices are projections of 
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autocorrelation functions of periodic binary sequences 

of periods not greater than 2m-1 

This property provides not only a feasible way 

for generating the vertices of llmC (the number of 

periodic binary sequences with a given period is finite) 

but it will also enable to prove convergence for two of 

the algorithms described in chapter 4 for the partial 

realization of autocorrelation functions. 

(ii) Given v E  HmC there always exists a periodic 

element of C, (p n)  nC-N , such that II p = v. This is a 
o 

rather interesting result in contrast with the general 

case of positive semi-definite sequences for which it 

can be shown (see section 2.4) that points exist in H mA 

which can not be extrapolated to a periodic element of A. 

Attention is also paid to the calculation of the 

vertices ofHm 
' 

C HCisapolytope and can therefore be 

described in terms of its vertices. Furthermore we shall 

see in chapter 4 that the periodic binary sequences 

associated with the vertices of H
mC can be used in the 

generation of binary sequences with autocorrelations 

matching rimp, for any given p in C. The selection of 

the vertices of H mC gave rise to some interesting 

mathematical questions, namely the problem of selecting,  

the vertices of the convex hull of a finite number of 

points. Some methods to solve this problem are proposed 

and some computational results are also presented. 
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2 2 Preliminaries  

Definition: Given a binary sequence (sn)n G 
sn e{-10) for all n, we define its autocorrelation 

(. pj)  j G No by 

N  
pj =  limy,   snsn+i 

LT+N n:=0 

if such a limit exists. It follows immediately that 

-1<pj<1, for all j. 

The autocorrelation can also be defined for 

negative shifts provided we set sn=0 for n<0. However 

we shall only consider the autocorrelation function 

defined for non-negative arguments because pi=p_j, for 

all j ebio . 

Let C denote the class of autocorrelation functions 

of binary sequences. Consider (HO], TN) as a topo-
logical space; that is the interval [-1,1] with the 

topology inherited from the usual topology of R. Form 

the product space (PIOT, TN) where TN  is the product 
topology. Any element p in C is such that po=1L There-

fore C can be regarded as a subspace of (HOT, TN) 
with the topology inherited from TN. All the topological 

notions of C will be with respect to this topology, unless 

otherwise specified Now it is clear that convergence 

of a sequence of elements of C in the topology just 

defined is - the same as pointwise convergence, 
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2.3 Properties of the Class C 

The properties studied below will be used in our 

characterization of E
mC and also in establishing the 

bridge between the class C and the class of stationary 

discrete time unit covariances, that is TU. 

The results stated in lemmas and 3 have already 

been established by L. Shepp r4]. In view of their 

importance in the subsequent results the full proofs 

are given here. 

Lemma  

The class C is compact. 

,Proof 

First it is shown that C is closed. 

Suppose then that the family of autocorrelation 

functions, indexed by k, ( pn)n EN converges pointwise 

to a sequence (o ) s n N
o 

Let (sk)n 	denote a binary sequence with auto-  EN 

correlation ( pnk)n eta  By definition we have that for 

all c> 0 and any positive integer p there exists a 

number rk  (6 p) such that 

   

kI r  k k pn --> r u 
ss m+n m= 

E ‹P r> rk(E IP) 

   

   

Now select a sequence of positive numbers (Ek)k  EN 
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converging to 0 and define inductively another 

sequence (n ) -k - k C N of positive integers converging to 
o 

 

satisfying: 

(rk (Ek ,k)/nk)k e N 
	0 

(ii) (rik-1/nk) k C-N 

Construct a new binary sequence (s j) j e N as 

follows: 
arbitrary, for j 

s • = 

sk for n <j 
j-nk 	k 	k+1 

Now it is shown that this sequence has auto-

correlation (pn)n EST 

Fix no G No 
° 

From (i) and (ii) above and for N such 

that nk <N<nk+1 we have 

N 	 nk-nk-1 k-1 sk-1 s 	
N-nk 1 > 	 >  	 s s 	= 1 	 1 	sk s k 

m m+no 
+ R(k) 

N m=0 m m+no N m.0 	m m+no N m=0 

where R(k) 	> 0 as k goes to 	In fact I R(k) I is 

bounded by 	i/N + 2kno  /N. 

As k goes to co we must still distinguish two 

0 

cases: 
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a) 	<N (nk±rk(ck 

I > 	 s s k-1 + R'(k) 	where lim 	R' (k) = 0 
N m=0 m m+no 

= Pk-1  
k 

Therefore 

N  
aim 	>  s s 	- D

n  m m+no 	I o N 	N m=0 

k • +rk (6k'  k) <N‹.nk+1 

nk-nk-1 k-1 N-nk k I 	 s s   P 	p
no 

+ R"(k) 
N m=0 	m+no 	

n  

where lim R" (k) = 	
N-nk1 Also Um  	-> 1 . Theref ore 

k 	 k -4- 	N 

N  aim 1  ? sm
s 	n 

N 	N m-,0 	m+n0  Fn. 0  • 

This shows that C is closed. C is also compact, 

because it is a closed subset of a compact space,  

namely [-1 

This ends the proof of lemma 1 
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Let (pn)n ew  be the autocorrelation function of 

the binary sequence (sn)n EDT • We show next that for 

any given S >0 and no  G N
o there exists a periodic 

binary sequence (u ) 	with an autocorrelation n u o 
(Xn)n EN and such that 

0 

- xn  < S , In I < no • 

Lemma 2  

P is dense in C. 

Proof  

First we show that any point in C is an accumulation 

point of P 

Let ( )n E N be the autocorrelation of the 
o 

sequence ( s n )n. CfN 	We have that given >0 and no E • _ o 
there exists N( S ,no ) such that 

 

• 1 	N  
Pp.  N k=0 sksk+n 

 

  

(1) S /4 , Ini<no  and N_>_17T. 

   

We now define a periodic binary sequence (un)n Gu- o 
of period p, where p = max(N, no 4/ 6 ) as follows: 

u = si 	i= 0, 17  21 _, p-1. 

 

1 p-1  
Pn p k 

>  
0 	 ukuk+n = 

 

p-n-1  
pn p k >  0 sksk+n = 

(2) 

 

  

   

• I P-1  	 upik+  
n  P k=p-n  
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From (1) and from the choice of p we have 

A p-n-1  
Pn P k 	

sksk+n >=0  

 

< 6/2 

  

  

From (2) we then have 

1 P-1  

P k= 0 
	 ukuk+n  

  

    

We have shown that C is contained in the closure 

of P. However CDP and C is closed. Therefore C..dosureofF 

This ends the proof of lemma 2 

Another very important property of the class C is 

as follows: 

Lemma 3 

The class C is convex. 

Proof  

We have already shown that the class C is closed. 

Therefore to show it is convex it suffices to show that, 

for any two elements of C, ( Plat)  n. e 	and ( pn") n  e 	, the 
0 	 0 

function ( pn) n  c 	defined by 
0 

P = 	P") n 2 nn 

is again an element of C. The proof will be made by 

construction. 
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Let (s' n)n G 	and-  ( sn" )n G N be binary sequences 
o 	o 

 

with autocorrelation p' and p" respectively, Define a 

new binary sequence (sn)n 	as follows: 

sni-i(j-1)/2 	
j(i-1)nj2 

s n 

s" n-j(j-1)/2-j 	j2,<:n<j(j-1) + 2j 	j=1„2,„„„ 

Now it is shown that the autocorrelation function 

of this sequence is ( p ) n e N
o 

 

Fix m e lNo  and assume j (j-1) N ‹ j 2  Then we have 

N 	N-j(j-1)/2 	j(j-1)/2  1 	 s s 	= — 	s's' 	+ 1 	s"s" 	+ R(j) 
N n=0 n  n+m  N 	n=0 	n n+mN n=0 	n n+m 

• where IR(j)I is bounded by 4jm/N, As j+ 	and N as 

above, we have 

1 	 	 s s n n+m N n=0 
1 	, 
— (Pm  P" ) 
2 

since R(j) --> 0, and j(j-1)/2N 	›- 1/2, 

The same holds if j2<N<j(j+1). 

This ends the proof of lemma 3 

The next lemma tells us that the class C can be 

studied by considering only zero mean binary sequences, 
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Lemma 4 
4 

Given a binary sequence ( sn)n G N with auto- 
* 

correlation function (prt)neu- , there always exists a 

binary sequence (s )nen. such that 

1  N  

lim 	>  s. = 0 
N 1.0 

* 
and with autocorrelation ( pr )n  G 

QST 
0 

Proof 

Refer to the proof of lemma 3 and set sn.s and n 
s"n  ,-sn  , for all neN Then it immediately follows that 

the resulting sequence has autocorrelation (pnneN and 

zero mean. 
q.e.d. 

The convexity of the class C will play an important 

role in the establishment of convergent algorithms for 

the partial realization of autocorrelation functions. 

The properties stated in lemmas 1-3 also hold for 

the class of unit covariances and are easier to establish 

for this class. With such important properties in common 

it is not surprising that the classes C and U are 

equivalent; this is shown in chapter 3. 
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2.4 Geometric Characterization of H  C 

As we have mentioned in the introduction to the 

thesis, there are situations where the knowledge of 

H
nC is required, namely in the selection of optimal 

input autocorrelation functions. Therefore a geometric 

characterization of these sets is invaluable. 

We start by establishing one of the main results 

in this chapter. Loosely speaking it says that Hily is 

contained in a polytope, that is a bounded convex poly-

hedron whose vertices are autocorrelations of periodic 

binary sequences of periods not greater than 2m-1  

Theorem 
2m-1 

H m( U MP p=1 

 

 

P)) H P m • 

In the proof of this theorem we shall make use 

of the next two lemmas: 

Lemma  

Let 

of a periodic 

and such that 

Pn)n 6 ENT be the autocorrelation function 
0 

 

binary sequence n)n e 	of even period p, 
0 

pp/2  = -1. Then 

2 P/2 -1 
p i=0 	+m = 	> S s i 	for any m G 
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Proof of lemma 1  

for all i Therefore Pp/2 = -1 	 s. = si+p/2 /  

1 	Ip/2-1 
Pm = 	 s.si   s.s+m = ;" i=0 	i+m s.s. i=p/2  I l+m P 1=0 

p 	1.0 . .  	 ss 
i=p/2 1-P/2 1-p/2+m 

)(-s. 
p/2-1 	13-1  

2 
p/2-1  

= 	;> 	s.s. 
p 1=0 	i+m - 

q.e.d. 

Lemma 2 

Let ( sn)n G 	be an element of C Define the 

mxm dyadic matrices 

Exali  = (s. s 	) (s. i 15-1  i+m-1 	l•-•1  i+m-1 • 
If for some integers q and p we have 

II Emlq 
m-1 s Em.lk+q  -1 	k=1,...1p-1 1  and 

EPalq= 	E'P+q m-1 s 	m-1 sm 	then  

Po P1Pm-1 

p+q-1 	. 	• ?  Ensa , 	
P 	, where pi, 1=0,...1m-1 

• 

,=q 	pi  

Po 

are the first m autocorrelation values of a periodic 



P1 

Po 

Pm-1 
• p-1  

. 1 	 
p i.0 

*** Yi+m-d 
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binary sequence of period p or 2p depending on 

(sql...Ism+q_1) being equal to or the negative of 

(sq+10,...1 sq+p+m_i) respectively. 

Proof of lemma 2  

Without any loss of generality assume q.0. Two 

situations must be considered: 

(1) (sol"-lsm-2)  = (spl---lsp+m-2)  

(ii) 
	

= 

(i) Define a periodic binary sequence ( ̀Yn)n GN °f  
o 

 

period p as follows: 

yn  sn  , 0<n<p-1 

From our assumption we also have yn  = sn, 

0‹:n.c.p+m-2. Denote the autocorrelation function of 

(Ydn G N by  ( Pn)n G N • Then  
0 	 0 

  

= — 
1 p_f1 
p 

si 

si+m-1 

   

   

(ii) This case can be proved similarly, using 

lemma 1. q.e.d. 
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We are now in a position to give the proof of 

theorem 1 • 

Proof of theorem 1  

All we need to show is that if (pn)n EK  is the 0   

autocorrelation function of a periodic binary sequence 

(s )n EN  of period p, then there exists a finite n 	o 
number of periodic binary sequences (s) n n GIN 
i= 1,2, 	of periods not greater than 2 	such that 

(p05...I pm_i ) EH (o . :10  , . • • , 	) . • • , pNo  , • • • , 	)1 
where ( i41)n  € IN  denotes the autocorrelation of (s_n)n 6  

If p<2m-1 the result follows So consider the 

case whore p> 2m-1  By definition we have 

 

[7i 

 

  

  

1(EM50 	Elu l") —1 ) s 	s • 

If we consider the first 2m-2 +1 elements of the 

sum in brackets on the right hand side we get for some 

j and q, 0<j,q(p-1 

II 	Emli - II 	E11144-cl 
m-1 s 	m-1 s with 0 Kj+q<2m-2 and 
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H Em/i  / n 	Em,  +k for 1 <k <q-1 • s 	m-1  s 

Set pi.q. From lemma 2 we have that 

pl-1  
7 	Enal j+i = pi 
i.0 s  

	

I 	1 	1 

	

Po 	PI • • • Pm-1 
• 
1 

P1 

Po 

where ( pn)n G N is the autocorrelation function of a 

periodic binary sequence ( s1)n EN  defined as follows: 
0 

(1) if (sj, ...„sj+m_2) = (s. 	s j 	) we set J41311..., +pi+m_2 

equal to pi  and define 

(ii) if (s 	 ) -(s 	„ s 	) we set j • • -1s j+m-2 	j+Pl 	j+Pl+m-2  
the period of ( sn)n GN equal to 2p1  and define 

0 
sn=sn for j.< n (j+p -I and I 	, 
sIn.=-s1 	for j+p1<n<j+2p1-1 

As far as the sum of the remaining matrices is 

concerned, we can write 

Em11+ 	+ Em'i-1 	+ E1114-1-1D1 
S••• 	S 

Elnlj+Pl 
S 

p+j-I 

+ 

+ 
• • 

S • 

• • 

+ 

EM513  EMI1 

S 

• • 

Ode 

si- 	+m-'d 

Em, j*1 

i=j+Pl 

because (sn)n eN has period ID. 
0 

the period 
1 sn.sn for j 

of (snl)n ENo 
<n<j+pi -1 . 
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For the .sake of simplicity of presentation define 

a new binary periodic sequence (u )n EST  as follows: 

(i) if (s 
-1-11 	-Lj1

ra+ _1) = (si+p,...Isp+i+m_i) 

set the period of (unn  ) — equal to (p-p1) and defineESV 
o 

u. = s j+pl+i i-0 1 , - 1 1... p-p1-1  

(ii) if (sj+piI 	s.+12,1+m-1 ) 	-(si+p,...,sp+i+m_i) I0   
then we set the period of (un)nE 	equal to 2(p-p1) 

0 
and let u. = sj+p +i 	i=0,1 1 ...1 p-p1-1 and 

ui  = 	i=P-1011...12(P-p1)-1. 

We can then write 

     

p-p1-1 
+1 
P i=0 

 

ui  ui+m_l  

   

     

We can again apply the same procedure to the 

second term on the right hand side of this equation 

and obtain 



P-P1-P2-1  .1_ 1 
P 1=0 

[1 • • • vi+m-1 

Pm-1 
• 

P1 

Po 

+ p2 
v. 1 
• • 

v. i+m-1 

	

1 	1 	• 	1 

	

Po 	P1 • •• •• 	Pm-1 

where ( Pi) e N  is the 
o 

 

binary sequence of peri 

(v. ) .is a periodic EN  
(P-131-P2) or 2(p-P1-1)2). 

autocorrelation of a periodic 

od p2  or 2p2 , p2.< 2m-2 and 

binary sequence of period 

s. 

• 

EN . 	i s 1 • - - 	+m-1 
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And so on until, for some N E IN, we have 
N-1 

p - 7  pi  < 2m-2, since each pi  is greater than 0 

Denote the sequence we end up with by (si)1 €.N  and set 
N-1 

p - 	 P. • Two situations need still to be considered: 
i•=1 i 

(1) ( sN. ) . G 	has period pN  or 2pN .  

(ii) The period of ( sNi )i  EN  is a factor of pN  or 2pN . 

In both cases 

• 1=1 
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where (p.) e N . 	denotes the autocorrelation function of 
a 	o 

(s.). N 	At this stage we have 
0 

 

N D. 

= 	 1  
1=1 P 

 

where p =;>  p. and (pi) n 6 No 
, i.1,2,N are 

i=1 I  

autocorrelation functions of periodic binary sequences 

of period not greater than 2m  • 

This completes the proof of theorem 1. 

We are now in a position to give a geometric 

characterization of HmC for all m m eN 

Theorem 2 

HmC is a polytope, whose vertices 

vi".. . 1  vm-1 ) are given by o  

pi-1 

	 ssi 	, j.011,21...1m-1 
PI  

vj 	
• n=0 i n n+j 

where (s.,)n G N is a periodic binary sequence of period 

pi<2m-1  • 
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Proof 

We have already shown that C is convex and compact 

in the product topology. Therefore the set IImC is convex 

and compact in the usual topology of Rm. Then it 

immediately follows that 

2311-1  
H( rim( U NIP n P) )c n mC, 

p=1 
2m-1 

Note that H(H ( U NPflP)) is closed being the m p=1  

convex hull of a finite number of points. From theorem 1 

we have 

21"1-1  
H(lm( u NPn p))D 11 ny 

p=1 

• However P is dense in C (lemma 2, section 2.3). 

Therefore closure (HmP) = n me• 
But this implies that 

2m-1  n  
11(Irm( U 	nP))D Tt mC 

p=1 

2m-1 

U NP fl P contains only a finite number of 
p=1 

unifOrmly bounded elements. Therefore 

2m-1 

H(H ( U raPnP)) is a polytope. m p=/  

This completes the proof of theorem 2. 
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We now state a very interesting result which is a 

corollary of the previous theorem. 

Theorem 3  

A point (aolall...l am_i) in HialC can always 

be extrapolated to a periodic autocorrelation function of 

a binary sequence. 

We wish to draw attention to the fact that (pn)n 
 0 

being a periodic element of C does not imply that it is 

the autocorrelation of a periodic binary sequence. For 

example it can be shown that the following function 

1 5 n even 

Pn  
0 	n odd 

is the autocorrelation function of a binary sequence, 

although there is no periodic binary sequence with such 

an autocorrelation. If there was one then it should have 

period 2. However none of the four periodic binary 

sequences of period 2 has that autocorrelation. 

Proof of theorem 3  

From theorem 2 we have that 

(a a 	a 	)   ai(Pol ›- 11.." m-1 i=1 

where >  ai  = 1, ai;?-0, and (p) n n EST  
o 

autocorrelation. 

i ) 
• • • Pm-1 

is a periodic 
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N 

	

Let p . = >  a. p . 	for all j No Then (p .) . i=1 	j 	 a a € 0 

is periodic, with prai  for 0<j <m-1 , and from the 

convexity of C it is also in C. 

The result stated in theorem 3 is rather surprising 

in contrast with the case of general positive semi-definite 

sequences where it does not necessarily hold. This can 

be shown as follows: 

The extreme points of the set of possible values of 

p1  and p2  where ( on-  )n G 
N is a positive semi-definite 
o 

sequence with p0=1 are the locus defined by (cos w, cos 2w) 

for - lT  <la < 	See figure 11. Suppose wiz)  is irrational 

in this range Then cos wo, cos two  can only be the 

second and third values of the sequence (cos nw ) o n ESVo 
• 

This follows from Bochner's theorem which states that 

for any positive semi-definite sequence (pn)n eu5  with 0   

po=1  

.Pn =/ 	cos nw dG(w) 

for some unit measure on [- 	, II ]; so if G . were not 

Dirac measure at wo  then (pi  , p2) would differ from 

(cos wo, cos 2wo  )• Hence (cos wo, cos two) has no 

periodic extension. 

- 
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In theorem 2 we gave a characterization of the 

finite dimensional projections of C which is of interest 

in practical problems. For the sake of completeness we 

now give a complete characterization of the class C. 

Theorem 4 

Pn)n 6 H  e if and only if 
0 

2321-1  
H(Hra( U MP 11 P)) for all m 6 N, 

p=1 

Proof 

The necessity of the condition follows from theorem 2. 

To prove sufficiency we can use theorem 3. Then for each m 

we have a periodic autocorrelation (pDi GIN  such that 

pi= pi  , i(m-1. But this means that (pn)n eta  is the 

pointwise limit of a sequence of elements of C. Therefore 

(pn)n cN  G Ci  because C is closed (lemma 1, section 2.3). 
0 

2.5 	Calculation of the Vertices of II mC 

The importance of these vertices has already been 

pointed out in the introduction to this chapter. The 

previous theorems have revealed that if (a 	a ) a' a  1 1  — , m-1 

is a vertex of 11mC then there exists a periodic binary 



Ci si  • • • 

(1) 

si+111...1  am-1 
• 1D-1  • 

a1 	p i=0 

ao 
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sequence n n E N
o 

of period p, p<2m  such that 

Therefore a possible way of constructing the vertices 

and associated sequences with the smallest possible period 

is to construct all the periodic binary sequences of 

periods not greater than 2m-1  (there is only a finite 

number of them) and their first m autocorrelation values 

and then select the vertices of the convex hull of this 

finite set of points. 

However we only need to consider a subset of these 

sequences as the next lemma shows: 

Lemma 1  

If in the right hand side of expression (I) above 

there are two matrices with equal (m-1)x(m-1) upper left 

corners, then either (a
01  a1' — "am-1 ) is not a vertex of 

HmC or there exists a binary sequence with smaller period 

with these autocorrelation values. 
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Proof 

If there are two such matrices then we can express 

(1) as a convex combination of two autocorrelation matrices 

by lemma 2, section 2.4. If'these matrices are distinct 

then (aolai ,...,am_i) is not a vertex. If they are equal 

this means that there exists a sequence with period less 

than p and with its first m autocorrelation values equal 

to (aola1l...,am_1). 

q.e.d. 

Bearing in mind this result an algorithm has been 

implemented to generate a set of periodic binary sequences 

of periods not greater than 2m-1  and their fist m auto-

correlation values such that their convex hull is mC• 

This is done in appendix A. 

The calculation of the vertices of the convex hull 

of a finite number of points in Rill  gives rise to a variety 

of problems, particularly when the number of points is 

'large'. 

Suppose that one is given a finite set of points 

p1,...1 pm  and wishes to select the vertices of their 

convex cover H fp1,...1 pN). This polytope will be referred 

as X. Three selection methods will now be proposed. The 

discussion of their relative merits is given later. 
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I) Coordinate 'Rotation 

Some results from convex set theory enable us to 

select, by simple inspection, vertices of X. For example: 

(i) The point with the largest or the smallest ith 

component, i=1,21 ...,m, is a vertex of X ; (ii) The 

farthest point from the origin is a vertex of X. 

Although not all the vertices satisfy these 

conditions in general we can still select them using 

fact (i) above by a suitable set of rotations of the axis; 

each vertex will satisfy (i) for at least one such rotation. 

It can easily be shown that at least one such set of 

rotations exists as follows: for each vertex v of X take 

a supporting hyperplane Hy  of X such that Evil X = v. 

Let one of the axis become orthogonal to this hyperplane. 

Then vertex v satisfies condition (i) for this axis (we 

are assuming an orthogonal basis). 

II) Simplex Decomposition 

This method relies on the fact that the vertices 

of an n-dimensional polytope lie in the intersection of 

at least n extreme supporting hyperplanes (or faces). 

This condition is particularly convenient for us, because 

we already have a finite set of points from X containing 

its vertices. By 'extreme' supporting hyperplanes we 



mean supporting hyperplanes whose intersection with X 

is a polytope with one dimension less than X. We call 

this intersection a face. 

A straightforward way of constructing these extreme 

supporting hyperplanes is to consider all possible 

combinations of n points at a. time from fp1,...1p0 and 

for those defining an hyperplane testing if it is a 

supporting hyperplane of X. If yes it will be also an 

extreme supporting hyperplane. 

We now give a procedure to compute the extreme 

supporting hyperplanes that does not require us to 

consider all possible hyperplanes defined by {p11...,pN} 

and that substantially reduces the required amount of 

work. In this method X is obtained as the last element 

of a finite (nested) sequence of increasing polytopes 

defined in terms of their boundaries. This procedure is 

based on a paper by Degtyar and Finkel'shteyn [2] where 

a method to decompose a polytope as a union of disjoint 

simplices is described. 

To avoid minor technicalities assume H tpl,...,pN) 

is a solid m-dimensional polyhedron, where m is the 

dimension of the vector pi, i=1,...,N. 

We now describe the algorithm: 

4'7 



Step  Set K.1. 

Construct a simplex through m+1 of the given 

points and denote it by polytope 1. Let us 

call its faces the elements of the boundary. 

For K>1 these boundary elements will not be 

in general faces but n-1 simplices that are 

disjoint subsets of the faces of polytope K. 

In an attempt to enclose as many points of 

fpl,...,pN) as possible, to minimize the 

required amount of work, it is suggested that 

points are selected with as large or as small 

components as'possible. 
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Set J 	pN  \ f Set of vertices of polytope I) 

Step 2 	Test if the first element of J is an exterior 

point of polytope K. If not remove it from J 

and repeate the same procedure for the next 

element of J and so on (The boundary of each 

intermediate polytope is known. Therefore to test 

if a point belongs to one of them it is only 

required to verify a set of linear inequalities). 

In the course of this, two situations are then 

possible: (i) A point of J is eventually found 

lying outside polytope K, say pg. Then we define 

polytope (K+1) H(polytope KUM, remove point 
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p from J and go to step 3. (ii) All the points 
q 
of J are points of polytope K. This means that 

polytope K = H {p1,...,pN) and therefore the 

construction is finished. 

Let us say that a collection of boundary elements 

are affinely independent if they each lie in 

distinct affinely independent hyperplanes. Then 

the vertices of H {p1,...,pN} are those boundary 

element vertices that are common to m affinely 

independent boundary elements. 

.Step 3 	Here the boundary of polytope (K+1) is constructed. 

We start by separating the elements of the 

boundary of polytope K into two disjoint classes: 

Class A - This class contains those elements of 

the boundary defining an hyperplane which produces 

a closed half space containing polytope K and p . 

Class B - Contains all the remaining elements 

of the boundary. 

The elements of the boundary of polytope (K+1) 

are the elements of the boundary of polytope K 

in class A and the (m-1) dimensional simplices 

constructed as follows: 

Each of them is defined by p and (m-1) vertices 

of an element of the boundary of polytope K in 
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• ," 

class A and in the intersection with an element 

in class B. 

Step 4 	Set K = K+1 and go to step 2 

III) Distance Minimization 

This procedure relies on the following property: 

Given a set of points tp11...1 p0 we have that pi  is a 

vertex of H {1)11... 	) if and only if the distance from 

pi  to H {pi, 	11)5_+1' ...1 pN) is greater than zero. 

To compute the distance from a point to the convex 

hull of others it is required to solve, in principle, a 

constrained minimization problem - in fact a geometric 

programming problem as follows: 

 

N  
>  a .P • 
j=1 
j4i 

 

min f(al,...lai_ilai+1,...laN  

 

   

N  
subject to the constraints ;>  oc. = 1 5 	0 > a.0 for all j. ---"" 

j=1 a 

Fortunately the constrained optimization can be 

avoided by means of the following transformation: 

_ 0 /( 	
'-1 
rq2 
.1.1 
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and then the problem becomes 

  

N  
Pi- 	

Oa 
	 Pal 

j=1 N  2  
	 Rn  
n=1 
nti 

  

minimize f(Dil.. 

over RN-1  
2 -1 3 P i+1 3  • • • RN) 

 

Discussion of the proposed methods 

In the first method there is the problem of 

constructing a suitable set of rotations of the axis. We 

do not know of any way of doing it without making use of 

supporting hyperplanes. But if supporting hyperplanes need 

to be considered then there is no point in using this 

method because the second one is particularly suitable 

for that purpose. 

We believe that the best way to appreciate the 

elegance of Degtyar's and Finkel'shteyn's idea used in 

the second method is to compare it with the rough procedure 

of having to construct all the hyperplanes defined by 

I
p1l ...1 pN1 and test which of them are actually supporting 

hyperplanes of H (p1,...1pN}. In Degtyar's procedure the 

only subsets of {p1l...1 pN) we consider are the ones 

whose points define an hyperplane containing a face of 

the intermediate polytopes. Furthermore each polytope in 

this sequence strictly contains its predecessor. Therefore 
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those combinations of points of {pil...I px} defining 

hyperplanes slicing polytopes already constructed are no 

longer possible and this is particularly significant when 

the intermediate polytopes get bigger and bigger. Further-

more at every stage the method provides sufficient 

conditions for a given set of. points to define a supporting 

hyperplane of the polytope concerned. Therefore no time is 

wasted in the construction of 'unnecessary' hyperplanes. 

Furthermore if at each step one tries to construct a 

polytope as large as possible it is more likely to enclose 

more points of {p1,...1pN} and therefore reducing the 

number of polytopes required to reach 11{pil...1 p0. We 

have not tested this method numerically and therefore no 

accurate comparison can be made with the third method 

which we have used in the generation -of the results given 

in the last section. 

The third method is particularly attractive, because 

of its simplicity of implementation and speed of execution. 

We have used it in conjunction with the algorithm given in 

appendix A to generate the vertices of IlmC for some values 

of m. This method performed very well together with a 

particular type of minimization algorithm (and some speed 

up features) using a 'pattern search' technique which does 

not require gradient evaluations. The function minimization 

is performed by constructing a sequence (cnn eN of points 
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of H [pl,...l pi_ilpi+11...1 pN) converging to the nearest 

point of pi. A well known' result in optimization theory 

states that if a point p lies outside a convex set S, then 

there exists a unique point in SI  say so, such that 

II P - so 	 IIP - 6.. 	Vs es. 

Furthermore the hyperplane passing through so  and 

orthogonal to vector p-so  is a supporting hyperplane of J. 

This result suggested the inclusion of the following 

'speed up' feature in this algorithm: Every no  iterations, 

no  EN, it is checked if the hyperplane orthogonal to vector 

cn-pi, at pi, produces an open half space containing 

H tpil...,pi_ilpi+1,...1pN). If pi  actually lies outside 

the convex hull this eventually becomes true, and there-

fore there is no need to carry on with the minimization 

procedure. This feature was introduced in the algorithm 

and it was found that it greatly reduced the required 

amount of iterations when pi  was a vertex. no  should be 

fixed initially. The reason why we do not make no=1 is 

because this test is a waste of time when the point 

actually lies inside the convex hull. Therefore its 

choice is the result of a compromise depending on our 

'feeling' about the point under test. 

Obviously the minimization procedure becomes slower 

as the dimension of the space increases, and there will 
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be a stage where it will be convenient to divide 

H tp1,...,pi_ilpi+11...,pxj into a union of as many 

disjoint convex hulls as necessary to make the minimiz-

ation procedure feasible in each of them. Needless to 

say that as soon as a point is found not to be a vertex 

it should be immediately discarded from the definition of 

the convex hull because it is the number of these points 

that determines the dimension of the space we are 

optimizing over 

If N is very large and only a few of the given 

points are actually vertices of their convex cover then 

the second method might be worth considering. However for 

small values of N the third method is undoubtly much 

faster than the second. 

As far as the accuracy of method 3 is concerned, we 

have that when it decides that a point is a vertex, a 

separating hyperplane is actually produced. For points 

'very' close to the boundary of H {191, ..,pN  the decision 

will depend on the prescribed limits of accuracy. 



L 

P1 

Po 
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2,6 Connections with the Frequency Domain 

Although the first n autocorrelation shifts do not 

completely characterize the discrete time signal they 

provide us with valuable information about the number of 

frequencies it contains. In fact it can be shown [3] that 

the nxn matrix 

where (io )k 6N  denotes the autocorrelation of the signal -1 	o 
(uk)k eN  5  is positive definite if and only if the support 

of the spectral distribution of (uk)keN  has at least 

n points, that is, the signal contains at least n frequencies. 

The signal is then said to be persistently exciting of 

order n. 

This notion is useful in connection with identific-

ation problems where it is necessary to have some conditions.  

on the input to get consistent estimates See for example [1]. 

Particularly in the case of parametric identification it 

is required to have persistent excitation of some finite 

order, depending on the number of parameters to be 

identified. 
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2.7 Computational Results  

In this section the vertices of Hm1  C and associated 

periodic binary sequences are given for values of m up 

to 6. These results have been generated by a computer 

program that makes use of method 3 as described in section 

2.5. 

Denote each element of HmC by (po,p1,...1 pm_i  

Because pc)  is always equal to 1 we shall implicitly assume 

all the points of HmC in the linear manifold pel and 

therefore regard them as elements of R111-1  

The shapes of H C and TIBC are depicted in figures 

11 and 12 respectively. 

It can be seen that the vertices of H mC, m<51  are 

also arquitype covariances, that is of the form 

=1  arc sin cos 2nnX, 	The corresponding 

values of A are also indicated. 'p' denotes the period 

of the periodic extrapolation of the vertex, with the 

shortest period. 

The results are now given in the tables below. 



m Vertices of IImC X p Periodic extrapolation : ( on- ) n e N
o 

Associated periodic sequence 

1 0 1 (1,1, ,..) (1, . ,..) 
2 

-1 1/2 2 (1 	-1 0, ., ..) (1 ,-1 , ...) 

(1,1) 0 • 1 (1 0 , ...) (1, ...) 

3 (0,-71) 1/4 4 (1,0,-1,0,1, ...) (1,1,-1,-1,...) 

(-1 ,1) 1/2 2 (11-1,11 ,..) 	 . (1,-1,...) 

(1 71 11) 0 1 (1,1, ...)  (1, ...) 

(1/3,-1/3,-1) 1/6 6 (1 71/31-1/31-11-1/311/311, ...) (1,1,1,-1,-1,-1,•„,_) 

4 (0,-1,0) 1/4 4 (1 10,-1 	0,1 , . 	.,) (111 ,-1,-1, ...) 

(-1/31-1/3,1) 1/3 3 (1  )-1/31-1/311  , ...) (1,17-1 ,...) 

(-1,1 ,-i) 1/2 2 (11-1,1,...) (1,-i,...) 

(1,1,1,1) 0 1 (1,1,...) (1, ...) 	• 

, 	( 	57 07 -.51-1) 1/8 8 (1, .5101-.51-17-•510, .5111 • • .) (1,1 00 1-11-11-1,-11  ...) 

(1/31-1/3,-1,-1/3) 1/6 6 (1 0/3,-1/3,-1,-1/3,1/3,1 , ...) (1,1,1,-1,-1,-1, ...) 
5 (0,-1,0,1) 1/4 4 (1,0,-1.,0,1, ...) 

(-1/31-1/3711-1/3) 1/3 3 (1 ,-1/37'1/30, ...) (1,17-1, ...) 

(-.570, .51-1) 3/8 8 (1  7 -. .5707 .51 -.1 1 .570 7 ... .571  7 ...) (1 1 "-'1 11 1 '''1 1 "'1 11 1 "'"1 11 7  ...) 

(-1 11 1 -1 	1) 1/2 2 (1,-1 ,11  ...) (1,-i,...) 



m Vertices of 11 mC X p Periodic extrapolation : ( pn)n  e  No 
 

Associated periodic sequence 

(1,1,1,1,1) 0 1 (1,1, ...) (1, ...) 

( ,.6, .2,- .2,-.6,-1) 1/10 10 (1, .6, .2,- .2,-.6,-1,-.6,- .2, „2,.611,...) (1,1,111,1,-1,-1,-1,-1 7 -1, ...) 

(.5,05-.5,-11-.5) 1/8 8 (11 .5,0,- .5,-1,-.5,0, .511, ...)• 	. (1,1,1,1,-11-1,-11-1, ...) 	. 

(1/31-1/31-11-1/371/3) 1/6 6 (1,1/31-1/3,-1 ,-1/3,1/3,11  ...) 	, (1,1,1 ,-1 ,-1 ,-1 , .. 	) 

( .2,-.6,-.6, .2,1) 1/5 5 (1, .2,- 	6,- .6, .2,1, ...) 	1 (1,1,1 ,-1 ,-1 ,...) 	_ • 

(0,-1,0,1,0) 1/4 4 (1 ,0,-.1 ,0,1 , ...) 	 • (1,1,-11-1„) 

6 (-.2,-.6, .6, .2,-1) 3/10  10 ' (1 1- .2,- .6, .6, .2,-11 .21-  •61-..6,-.2,11  ...) (1,1,-1,1,1 ,-1 	L. 	. 	-1,-1, ...) 

(-1/3,-1/311 ,-1/31-1/3) 1/3 3 (1,-1/3,-1/3,1 , ...) (1,1,-1,...) 	- 	. 

(-.51O7.51-11.5) 3/8 8 (1 ,-.5,0, .5,-1 	.5,01-.5,1, ....) (1,11-1,1,-1,-1 	1,-1, i..) 

(-.61 .2, .2,-.6,1) 2/5 5 (1. ,-.6, .2, .2,-.6,1 	...) (1,19-1,11-1,...) 

(-1,1,-1,1,-1) 1/2 2 (11-1,1,...) 	 , (1,-1, ...) 

(1/31-1/35.-1/3,-1/3,1/3) - 6 (111/31.-1/31-1/31-1/311/311  I- • .) 

(-1/3,-1/3,1/3,-1/3,-1/3) - 6 (1 ,-1/3,-1/3,1/31-1/31-1/3,1, ...) (1111-111,-11-1, ,,..) 

(-1/7,3/71-1/7,-1/733/7) - 7 (1 ,-1/7,3/7,-1/7,-1/713/7,-1/7,1 , ...) 	. (1 ,i 0 0 ,-1 0 ,-1, ...) 

(1/7 On 71/71-1/71-3/7) - 14. . (1 11/70/711/77-1/77-3/77-1/71-1 7 -1/71 (1 7111 ,111 7 -1711-1 7 -17 -1  )-11 
-3/71-1/711/713/711/7111...) -111,-1,...) 
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CHAPTER 3  

THE CLASS OF UNIT COVARIANCES 

3.1 Introduction 

In 1955, B. Mcmillan [2] gave a characterization 

of the class of unit covariances. However, the conditions 

of his characterization are not easy to verify. 

A more explicit characterization is given in this 

chapter that clarifies the structure of the class U. The 

key argument in the proof of this new characterization 

is the fact that U is compact in the product topology. 

This is shown by means of a result in functional analysis 

known as the Alaoglu theorem. 

The realizations of any discrete time stochastic 

binary process, in short a unit process, are binary 

sequences. It is therefore natural to raise the question 

about the links between the class of unit covariances 

(ensemble averages) and the class of autocorrelation 

functions of binary sequences (time averages). The latter 

has already been studied in the previous chapter. We 

shall see that the sub-class of stationary discrete time 

unit covariances is equivalent to the class of auto-

correlations of binary sequences. 

The connections between the class of clipped 
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gaussian processes and the class of unit processes- are 

also discussed. 

3.2 Characterization of the Class of Unit Covariances  

In 1955 B. Mcmillan ] characterized the class U 

as follows: 

Theorem 1  

(pi,  p i5i 	cu.  if and only if pi i=1 for all 

m m 
i E IN and E 2: pi  

i=1 j=1 	" 
emEN and all corner- 

-positive matrices [aii), i,j=1,... m, where a matrix 

m m 
{a.1, .} is corner-positive if 2: 	a. 	for 

i=1 j=1 1° 
every sequence (xl,...,xm) with xi=t1, 1=1 	in 

We are unaware of Mcmillan's original proof which 

was never Published. However, L. Shepp gave an elegant 

proof in [4], which is reproduced in appendix E. 

For the sake of completeness we mention a paper 

by E. Masry [1] where a characterization of a subclass 

of unit covariances associated with renewal processes 

is given. 
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Our characterization of the class U is now given: 

Theorem 2 

Pilj)il j cEr  EU if and only if 

fpi,jina  EH fErial ..., E2m._11 for all me N, where fpildm  

is an mxm matrix with (i,j)th element equal to pilj, and 

Em  = eie1 	e..(x 	xi,..., xm  ), x..±1. 

An immediate consequence of this theorem is that 

HmU is a polytope, for all m. For example, for m=3 we 

have that 

.E1 	= 

3 

1 

1 

1 

-1 

H
3
u is 

[1 1 1] 

[i /I 

the 

= 

convex 

I 	I 	
1_ 

1 	1 	1 

1 	1 	1 

1 -1 	1 
-1 	1 -1 
1 -1 	1 

hull of 

. 	/1 	= E 2 

= 	• 

1 

1 

-1 

-1 

the 'points': 

[1 1 -1] 
. 

1'17 

1 

1 

=1 

1 
-1 
-1 

1 

1 

-1 

-1 
1 
1 

-1 

-1 

1 

-1 
1 
1 

Mematriceseare in fact vertices of their 

convex hull. If we regard each of them as an element 

of IRm2  we have that they lie on the surface of a sphere 

with radius mz and centre at (0,,.,, 0)•  H mU is a convex 

and closed set. This means that the class of unit 

covariances is convex and closed under pointwise limits 

(product topology). 

Another interesting property of HmU is that it is 

a neighbourly polytope that is a bounded convex polyhedron 
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Where any pair of vertices is connected by an edge. This 

is shown in appendix B. 

Theorem and theorem 2 have to be necessarily 

equivalent because they characterize the same object. 

We now show this is in fact true. 

All the results about cones and polarity to be 

used in this proof can be found in [5]. 

Let's start by establishing a one-to-one 

correspondence between the class of mxm matrices and 

R 	This enables us to identify the trace of the product 

of two matrices with the inner product of the associated 

vectors. 

Denote by (CP)m  the class of mxm corner-positive 

matrices. From the definition of a corner-positive matrix 

we have that (-CP)m  is the polar cone of 

fEin  

	

1 5 • . 	EMBa...1 • 5  V la E. [N.  
2 

The polar cone SP of a set SCIR is defined as 

	

f
y C ERn 	I yTx5...--;0 	x E Sl. 

From theorem we have that the set of matrices 

fpi,j)m 
 is the polar cone of (-CP)m, erne IN. Therefore 

tpi,j)m  belongs to the polar of the 'polar of 

emG[NT, which can be shown [5] to be 

	

2 	' 

	

the conical 	(or positive) hull of 	Em  
2m-11* 



64 

This implies that 

2 	m-1 

{Pi dm   alE11: 	al 

However, the main diagonal elements of the matrices 

on both sides of this equality are equal to 1. This 

implies that we must also have 

2m-1  
m = 1 

l=1 

But this means that m 
pildm  E H 1  El  m-1 

VmeN, which is precisely the statement of theorem 2 

q.e.d. 

Next we show that U is compact. This result will 

be of use in the direct proof of theorem 2. The 

topological concepts concerning the class U are referred 

to the product topology. Similar considerations to those 

made in chapter 2 about the topology of the class of 

autocorrelation functions of binary sequences can be 

made here. 

Lemma 

The class U is compact. 
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Proof  

We start the proof of this lemma by showing that 

U is closed. 

Suppose therefore (pn) is a sequence in U converging 

pointwise to a limit f. 

Consider the sample space of binary sequences 

fl= 	Endowed with the product discrete topology 

it is compact Hausdorff. 

Since each pnG U there exist probability measures 

Pn  on the corresponding Borel field such that 

pni 	f XiXi  dPn  

X. being the ith coordinate of X. 

Each Pn  determines a positive linear functional In  

of unit norm (In(1).1) on C(n). Since the set of positive 

linear functionals of unit norm is a closed subset of 

the unit ball, it is compact in the weak-star topology 

by Alaoglu's theorem [3] and so there exists a sub-

sequence from (In) converging to a limit I. 

By the Riesz representation theorem [3] there is 

a probability measure P such that 1(g) 	gdP for all 

g in C(n) 

Since X.Xj  is continuous and pn 
 converges point-

wise to f we have 

fla .. = fX.Xa.dP  • 
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But this means that f is a unit covariance. 

U is compact because it is a closed subset of 

Ell] 1  which is a compact space 

This ends the proof of the lemma. 

An immediate consequence of this lemma is 

Corollary 

The subclass of stationary unit covariances, 

TU, is compact. 

We are now in a position to give a proof of 

theorem 2. 

Proof of theorem 2  

The necessity of both conditions is obvious since 

p
1,1  = E(Xi) = E(1) = 1,- and from the definition of 

covariance we have 

2m-1  
• • = EX.X. = 	

,m k k 	. 1 
P110 	a 	k=i  —k xi xj 	4.5.gm 

where 4 is the sum of the probabilities of symmetric 

realizations of the vector of the first m random 

variables that is (X1 • • • 5 Xm) • 

We now prove sufficiency. 

If piljim eH [2111 _, Emm...41 then we have that 
2 ' 

the (semi—infinite) matrix 
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fPi,ilm 

[Pi,ilm 

{Pi,ilm ." (Pi,J1m 0.11. 

also belongs to the convex hull of the (semi-infinite) 

matrices 

E-1.11 	• • • ET • . • 

ET 	. • • 	• • • 

• 
• 
• 

2m-1 i.1 21..., Em  i 

This means that 11m  is the covariance matrix of a 

periodic unit process of period m, whose realizations 

are the first lines, and their negatives,  of the semi- 

-infinite matrices Em  with the sum of their probabilities 

given by the coefficients 4 of the above convex 

combination. 

Denote one such process by (Xnm  )nEIN and the 

elements of the matrix Rin  by V Tc11- By construction we 

have Vm  1 k =' Pilj 1  1.i mod.m, k.j mod•  m • 
1 
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Then if conditions of theorem 2 are satisfied we 

have that, Vl,k 

Yl,k 

 

Pl,k as m 

 

But it has already been shown that the class U 

is closed under pointwise limits. Therefore (p
i 
 .) 
l a 

is a unit covariance. 

This ends the proof of the theorem. 

In the previous chapter it has been shown that the 

class of periodic autocorrelation functions of binary 

sequences was dense in C. The next theorem shows that 

.a similar result holds in TU (subclass of stationary 

unit covariances). 

Theorem 3 

The class of discrete time stationary periodic 

unit covariances is dense in TU. 

Proof 

From the proof of sufficiency of theorem 2 it 

follows that a stationary unit covariance is the point-

wise limit of a sequence of periodic unit covariances 

but not necessarily stationary. 

Let Cpn-nfi\T  denote the given stationary unit Edo  

covariance and by using the same procedure as in the 



jr 	x3(w,$)d, = 
SlxX 
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proof of theorem 2 construct a sequence of periodic 

unit covariances 

(Va. j ----- 	)>(pn)nG 

Denote by (Xn)n  e 

(Y7  .) ,a i,j EN 
N  (pointwise  

N  a periodic 

of period m such that 

convergence) as m 

unit process with 

covariance WI  . ,0
) 
 il j EN 

By 'randomizing time' we derive a stationary 

periodic process (Xnm)n EN  from (Rnin)n N  as follows: 

Let Xmn(w s) 	n Ym+s ( w) , where S is an unif ormly 

distributed random variable on X= 101  1 1 	1  m-11 and 

independent of (561) 	• nneN 

Then we have for given i j E N: 

Jr V'i+s 	j (w) 5cm+s (w)  dllfl  dp.X  (by independence) = X n . 

_ - -nT -m 
0 + s j+ s •  

But the last expression is an average over m 

consecutive terms of a ' sequence ' of period in There- 

fore the process (X)n GN  is stationary,  n  

Now assume without any loss of generality that 

M :>j 	Then we have 

1 m-1 	1 m-1  -m _ 	= 	y V-  — 	— > 
M 	Yi+s,j+s m 	 s+1,s+1+j-i (by st at ionarity) 

s=u 	s=v 



70 

m-1-0-1) -m 	 >--- 	„--m 
s=0 	Ys+1,s+1+j-i s=m_o_i)  is+1,s+1+j-i 

= 	 (j-i) pm_ j+il 

This reveals that, for any given iljeu, 

1 a 	pj_i  , as M-± co 

The proof of theorem 3 is complete. 

3.3 Relations Between the Class of Unit Covariances 

and the Class of Autocorrelation Functions of  

Binary Sequences  

Our starting point in establishing the links 

between C and U is the following 

Lemma  

The autocorrelation function of a periodic 

binary sequence is also a stationary unit covariance. 

Proof 

Let ( ron)n 	denote the autocorrelation function 
o 

 

of the periodic binary sequence (sn)n E1N of period p, 

that is 

p-1 7-  s.l  s. • p . 	+n 1=0 
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Now define a sample space fl comprising all the 

denoted by (sk) k 	, 
0 

1/p to each of them, 

Let (Xkk E1N be a stochastic process defined on 

this space, where each Xk  is a coordinate variable in 

_a, that is Xk(si)=4 , siEn_ The covariance of this 

process is given by 

1 Pi i 	1 P  
E(XkXk+l) y 	sk+, 	.? 

1 -k+i sk+1+i = P1 

This completes the proof of lemma 1, 

The realizations of a unit process with a periodic 

covariance are periodic binary sequences a,s., Further-

more if the process is stationary we have that the 

probability of realizations that are a shifted version 

of each other is equal, This gives rise to the following 

result 

Lemma 2 

Every stationary periodic unit covariance is 

a convex combination of autocorrelations of periodic 

binary sequences, 

Proof  

Let (Xn)n  co\T  denote a stationary periodic unit 

process of period p and covariance (pn)n  
0 

ith shifted versions of (snne N 

i.11 „,, p, and assign probability 
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Partition the sample space of this process into disjoint 

events Ai, i=1, 2, 	t, where each A. comprises all 

the realizations that are a shifted version of each 

other, and denote their period by pi. 

Denote each sequence in Ai  by (407 3)ne  

, 	pi  and such that xni, j =xn+j_i - 

Then we can write 

t 
X = 

i=1 µ(A•) Pi  . 	. 	. 	.1 
pit >7  XI5 a 

j=1 

{ 

t gA,) Pi . 
= 7- 	n I  T xi'l  xi l l  
i=1 Pi j=1 14- j-1 l+k+j- 

t 
where >--  µ(Ai) = 1 	p(Ai),..0. 

i=1 
Pi 

But 1  > xi l l  xi l l  j=1 1+j-1 1+k+j-1 

where (pni)n.  E 	 is is the autocorrelation of any sequence 
0 

in A.  Therefore 

t , 
Pk = 	 P,CA--)pk 	Vk E\To i=1  

that is, (pn)n u. is a convex combination of auto-

correlation functions of periodic binary sequences. 

This ends the proof of lemma 2. 
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The properties of the classes C and TU we have 

established so far enable us to establish an important 

relation between these two classes as follows: 

Theorem 

The classes C and TU are equivalent. 

This means that (pri)neu. is a discrete time 

stationary unit covariance if and only if there exists 

a binnry sequence (snneN such that, 	 EETo  
o 

N  
lim 	> Si si+n • N i.0  

A word of warning: the above theorem is not an 

ergodicity statement. 

Proof  

It has been shown in chapter 2 that P is dense 

in C.'This result, together with lemma and the fact 

that both C and TU are convex and closed, imply that 

cC:TU. 

From lemma 2 we have that the class of stationary 

periodic unit covnriances is contained in C. But theorem 

3 in section 3,2 states that this class is dense in TU. 

Theref ore TU C C 

This ends the proof of the theorem. 



C H • • • 1 Em  
2m-11 

Once we have shown that C and TU are equivalent 

and given that the generation of the vertices of limU 

is extremely simple, it is natural to raise the question 

why should we take then the burden of having to generate 

the vertices of nmC ? 

That is necessary mainly because: 

(i) The binary sequences associated with the vertices 

of II
m
C can be used as 'generators' of binary sequences 

with prescribed autocorrelations, 

(ii) The characterization in terms of the matrices ET 

does not provide the answer to the question: 

Given a finite set of values (a0, all..., am_i) 

such that 

is there any (pn)n 	C C such that pn.aia  0<n<m-1 ?EST 

Unless we can show that 

%I  TU 9 TIE U 
M m • 

Obviously 11
m
TUCII m Til

m  U•  Although a considerable 

effort has been made we have not yet been able to prove 

if the reverse inclusion is true, We strongly believe 

that the reverse inclusion might also be true, We have 
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verified that it is true for values of m up to 4 and 

we can find no arguments contradicting this assumption. 

(iii) To extrapolate the autocorrelation function of 

a binary signal. We already know that if a signal is 

binary it is not sufficient that the extrapolated 

-values give rise to a positive semi-definite sequence. 

It must also lie inside TI mC for all m, which means 

the knowledge of the polytopes 11303C is required. 

(iv) If an optimization problem needs to be carried 

out in nriaC, for some m, for example in an identification 

experiment, as described in chapter 1, then the knowledge 

of the boundary of 11 13C is required and it can be defined 

in terms of the vertices. 

3.4 Examples of Unit Covariances  

(i) A Markov Process.  

This example is due to B. Mcmillan. 

Let (Xn) neN  be a two-state Markov process with 

Xn,1 J Vn, and 

p 1  if Xn / n..1  
p(Xn1 Xn_i ) = 

(1-p) 	if Xn  

P(Xn.1) = 1/2 . 
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Then (Xn  )n e [L\T is a stationary process and then 

we write EXmXmi-n pn- 
Now we compute the covariance function of this 

process. 

Assume n:>0. 

Ra  = E(XoXn) = p(x0n.1) 7 p(X0Xn.-1) 

p(X0X11.1) = prob•  of the trajectories (x0,..., xn) 

with an even number of jumps, that is 

p(XoXn=1) = Z (n).  pl(1-p)n-1  1.o \11  
(1 even) 

if n is even 
where 1.1 

n-11  if n is odd 

Similarly for p(X0Xn.-1 Therefore• 

>111  (11. ) (_ok (1_p)n-k 
k=o 	/ 

If we assume ne Z then we can write pn = cc 

where a-(1-2p) 

In figure 11 we plot the locus of (p1  P 

-1 <a -<1 together with n 3T.T .  
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(ii) The Arc-Sine Law 

Let (X n)n e IN  be a Gaussian process with covariance 

function ( pn)n e [N. . Define a new process (Xn)n EtT  by 

if xn>0 

Xn = 

if xn‹.. 0 

X is called a 'Clipped Gaussian Process' and its 

covariance (pn)n fao  is given by the well known arc-sine 

law: 
2 	Pn.  

. pn  = — arc sin 

It is well known that the class of covariances of 

gaussian distributed weakly stationary processes with 

EX2=1 EXn  =0 for all n is equal to the class of positive  
semi-definite sequences ( yn)n EENT 	with y0=1 • 

0 
The Bochner-Herglotz representation theorem states 

that for each such sequence there exists a unique F 

such that 1 
yn = 	cos 21InX dF( X) for all n. 

This means that the extreme elements of this 

class are of the form (cos 2rinX)n€ET 5 0<X  <
"-./

1 

o 
	• 

For example the parametric equations of the 

boundary of the two-dimensional projections of the 

Po 
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elements of this class are 

x1 	
cos 211X 

x2 = cos 4HA. 
	, < X <1 

This parabola is also depicted in figure 11. 

Of interest is the fact that the locus of the 

points P(X) A (p1(X),p2(X)) , where 

p ( ) 2-arc sin (cos 2nnX) 
rr 

p (X) 	arc sin (cos 4ilnX) 	0,<X<2 
II 

is the boundary of n
3 
 TU
' 
 Furthermore we have that 

P(0) . (1,1) 

P(1/4) = (01-1) 

P(1/2) 	(-1,1) 

that is, the vertices of II3TU occur for x eio0/40/2 1. 

This naturally gives rise to the question: Are 

the elements of TU clipped gaussian processes? 

For 1140 we still have that the 2/H arc sin image 

of the line L defined by 

cos 20t 

x2  = cos Li-HX 

= cos 6HX 	0,X-<3.. 

L 

is a polygonal curve whose vertices are the vertices 
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of 114C• 
The vertices occur for values of 

XE(011/611/4,1/311/2), But this does not show that 

114C is the image of the convex hull of Z because 

2/11 arc sin (.) is a non-linear function, 

In fact the following counter-example shows that 

the image of I by 2/11 arc sin (.) is strictly contained 

in 11 C 
4 - 

Consider the following point on the boundary 

of 114
C: 

1/3(1,1,1) + 2/3(0,-1,0) . (1/31-1/311/3), 

Its inverse image is 

(sin 11/6,-sin 11/6, sin 11 /6) = ( .51-.51  .5) 

But 
r-- 

det, 

1 	.5 	-.5 	.5.  

1 .5 -.5 

	

1 	.5 
= -1 ,6875 

which means that there is no positive semi-definite 

sequence (pn)nEK  with 0   

po  1 

p1  = .5  

P2 = -5  
P3 = .5 
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Therefore we have that the class of clipped 

gaussian processes is strictly contained in the class 

of stationary unit covariances. 
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CHAPTER 4  

ALGORITHMS FOR THE GENERATION OF BINARY SEQUENCES 

WITH PRESCRIBED AUTOCORRELATIONS 

4.1 Introduction 

In this chapter we shall look at the following 

problem: Given a vector of autocorrelation values 

(a0, all..., am-1) in il itiC we wish to construct a binary 

sequence (snneff such that 

N 
ak = lim 1 >  	 si  s1. 	0 	m-1 +k N.* 	N i.0 

Basically two different types of algorithms will 

be presented which appear to be original. 

The question of generating binary sequences with 

prescribed autocorrelations was previously unsolved, 

although it arises very often in engineering practice; 

in the introduction to this thesis we have already seen 

an example where such a situation occurs. 

A problem related to this is discussed, in terms 

of the frequency domain, in a paper by van den Bos [1] 

where he presents a procedure to construct binary 

periodic signals with their power distributed over 
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selected frequencies in a prescribed way. He uses a 

trial and error procedure, but no convergence proof 

is given for this method, nor is a characterization 

for the class of feasible spectral distributions. 

When we started looking into this problem it 

seemed to us quite natural to solve it by means of the 

theory of shift register sequences or linear recurrent 

sequences over GF(2), that is the finite field with two 

elements. Although this approach would restrict us to 

periodic sequences, this is no obstacle given that the 

class of autocorrelation functions of these sequences 

is dense in C. Presented this way it is an inverse 

problem: One wishes to find the order and the coefficients 

of an equation in order that it has at least one.  solution 

with a prescribed property. In order to solve this 

problem we need to know: .  

(i) If there is any linear recurrence with such 

a property. 

(ii) If the answer to (i) is yes, how can we 

determine the order and the coefficients of that 

recurrence, without having to go through all possible 

combinations? 

The inverse problem seems very difficult to answer 

in an algebraic framework and, as far as we know, it 

has not been yet solved. 
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What is usually done is to solve a direct problem: 

Given a certain class of polynomials over GF(k) one 

studies the autocorrelation properties of the sequences 

generated by the elements of that class. Such type of 

approach has been very fruitful in some areas. For 

example N. Zierler [2] and S. W. Golomb [3] have 

discovered the so called 'pseudo random binary noise' 

that is periodic binary sequences with a constant out 

of phase autocorrelation equal to -1/p where p denotes 

the period of the sequence, when studying the properties 

of the sequences associated with primitive polynomials 

over a finite field. This became perhaps the most 

important and well known subclass of binary sequences. 

We can also mention another study on these lines of 

thought made by J. Lee [k] and [5] on the autocorrelation 

properties of the sequences associated with non-primitive 

irreducible polynomials over GF(2) which have direct 

application as codes. However an attempt along these 

lines would only provide a partial answer to our problem. 

Our experience has shown that the theoretical 

problems involved with the generation of unit covariances 

are somewhat easier than the ones concerning the 

realization of autocorrelation functions. One may think 

then of generating unit processes with prescribed 

covariances, because we have already seen that the classes 

C and U are equivalent, and then use their realizations 
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as the desired binary sequences. However this is not 

quite so, because the prescribed covariance might give 

rise to a non-ergodic process, which means that the 

time averages do not equal the ensemble averages. Take 

for example the unit covariance ( ion)neu  such that: 
0 

There' are only four possible realizations of a 

unit process with this covariance, as follows: 

= 

Y2 = 

Y3  

4 Y = 

1, 1, 	1, with period 1 

-1 , -1 , -1 , 	... 1 

1,  -1 1, 	-1, 2 

1, -1, 	1, 	. 2 

and all with probability 1/4. However the fautocorrelations' 

of these realizations, that is, their time averages (o) ILICET
o 

i=1, 21  31  4 are 

1 	2 Rn  = 	, for all n. 

1 n even 
3
rn 

_ 
- ha = 

-1 1  n odd. 

This means that there is no realization of the 

above process with autocorrelation equal to its 
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covariance. This is sometimes overlooked in the 

literature and can lead to wrong conclusions. That is 

the case of a method based on the so called arc sine 

law and a factorization theorem that is often suggested 

for the generation of binary sequences with prescribed 

autocorrelations. It is as follows: 

Given the desired autocorrelation function (pn)neu- 1  

another function (pn, )neu  is constructed by setting 

RL = sin 11 pn/2 Then if C pn)n E NT is a positive semi- 
o 

-definite sequence all it is required is a normal 

stochastic stationary process with covariance Pni )n E IV° 
Such a process can be obtained as the output of a 

linear dynamical system driven by Gaussian white noise 

provided (p1;.)neu  gives rise to a rational 
o 

density in e". See for example Astrom [6]. 
density gP(w) of a process with covariance 

spectral 

The spectral 

(Pn)n C 	is  
0 

defined as 

0' (w) 	1 	 e-inw Pn  ' 
2 n n.- 

This procedure is summarized in the diagram below: 

Clipping 
Circuit 

white noise 

    

Y.; 

 

Linear 
System 

  

     

      

Yt 
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The output of the clipping circuit is defined as 

, if y; 

if y.L < 0 

and its covariance (pn)neK  is related with the input 
0 

covariance (Pnr)n € N by 
0 

 

pn
2-arc sin Pn  

Pto  

as we have seen in chapter 3. 

From what has been said above we see that this 

procedure is only suitable to realize unit covariance 

functions and not autocorrelations of binary sequences. 

Furthermore it requires (p)nc 	to be a positive semi- n 	ff
o 

-definite sequence where p:L = sin Hpn/2 and (pn)neN  is 

the prescribed autocorrelation. As we have seen in one 

of the examples given in chapter 3, this is not always 

true and therefore only a subclass of unit covariances 

can be realized by this method. 

We now propose a convergent algorithm for the gener- 

ation of binary sequences with prescribed autocorrelations. 

4.2 Type Algorithm 

This method takes advantage of the convexity and 

compactness of HILIC and the properties of its vertices. It is 

shown that the prescribed autocorrelation can be realized by 

a suitable interspersion of the binary sequences whose 
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autocorrelations are vertices of HmC 

We know that 

N 
(a0, a 	a 	) = >----- a . ( i  p 	p o' 1 ' • • - ' m-1 	o 	1 • • • 	pmi  -1)  ' i=1 

N 
with a. .›.-0 °ca. 	 an = 1 1  N<m+1 1  and that there exist 

1,1 
periodic binary sequences ( s)n E &T with autocorrelations n 	o 
( pn)n e ta  and period pi<2111-1  i=1 1  2 	1  N. 

For the moment assume that the coefficients of 

the above convex combination  are rational numbers Then 
wecanwritea„

pI
.A. vdaere pi  and qi  are  positive 

integers. Denote by M the least common multiple of 

• • • 	ci-N • • 

	

Set ai  = E./F1-  Define a new sequence ( s ) 	by n o 
interspersing the sequences ( sn)n EN ' setting for j=1 12, 

L <n <L+ l  j -n-(11-cal  ) L/M 	 a  

(5) 

2 - . L+Ec j <n<L+(c-5-ci  +67c2) j sn-(11--6, ) 	a 
• 
• 
• N-1 
sn- li+j 	 Fc <n <U 

t" 1 '" 	-1 
(N-FG L 1M- (0Z 	+0GN- 	) N' 	 i=1 

Sn  = 

where L=Nj (j-1)/2 and U=Mj ( j +1 )/2 Recall that 

i = j(j+1)/2. 
1.1 

Now we show that the sequence so constructed has 

the desired autocorrelation. 
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Take T e QV such that 
k-1 

	

Mj(j-1)/2 + j 	Fc..<T,<_Mj(j-1)/2+ j  	
i=1 1=1 

Then we can write 

T 	ii(j+1)/2 
>  snsn+t  = 	s s 	+1 	

1 1 

1 	n n+t 

6k....1j(j+1)/2 	akj(j-1)/2+A 
k-1 k-1 k k 

1 
sn  sn+t  + 	

n=1 	snsn+t 
n=  

6k.+1j(j-1)/2 	Teuj(j-1)/2 	• 

	

k+1 
sn+t  
k+1 	N N } 

 	• 	sn 	> •-• + 	nsn+t + 0(1), 
n=1 	 1 	S 

k-1 
with oGt<m-1 and A = T-Mj 	j ---.. 	 • i=1 

In 0(1) we include the effect of cross product 

terms of the form slii s1  ill  
• 

For a given j (and T as above) 10(1)1 is bounded by 

2mNj/T N 2jm2/T which goes to zero at the rate of 1/j, 

. when j+ 	, because T grows at the rate of a 

	

Since. (j+1)/2T 	 aim , and Eli T 03 

aiC roi/aT >  
T 	oc, 	3- 

with 141.5.:;N and T as above, we have that 

lim .- 7  s s 	7"1 

	

_ 	4. 
aN  

T-+ 	n=1  n /14.t 	Pt 	p = a n + 	N N 
M t 	lrt 	-NPt 

which means that (sn)n eta  has the desired autocorrelation•  

q.e.d. 
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So far we have assumed that the coefficients cc. a. 7  

1.1, 	N, in the above expression (*) were rational 

numbers. For the case where some of them are irrational 

the problem can be solved by approximating the irrational 

coefficients by rational ones, the degree of approximation 

depending on the desired accuracy, and then by applying 

the above method with these coefficients. 

Although this method is a feasible procedure for 

practical implementation algorithms of the next type 

have the advantage of being easier to implement, 

particularly on a computer and of not making use of any 

a priori knowledge of the structure of nmC. They are 

iterative procedures where k consecutive terms of the 

desired sequence are selected at each iteration, with 

k being some fixed integer. Furthermore, loosely 

speaking, they are constructed in a way that converges 

as fast as possible. Convergence in the method above 

might be rather slow. Think for example of situations 

wherethereisatleastoneo 	pi 	 q. i 

'very large' 



4.3 Type 2 Algorithms 

In this section we shall discuss iterative 

procedures for constructing binary sequences with 

prescribed autocorrelations. For didactic reasons we 

shall discuss first a procedure convergent in a subset 

of 113C, and then show how it can be generalized not 

only to the entire class H 3C but also to IV, for 

any m 6 IN. 

4 .3 .1 An algorithm for generating binary sequence s with 

prescribed autocorrelations that is convergent on a 

subset of 11
3

C 

We need some preliminary considerations before we 

proceed. 

Given a binary sequence (sdn 61N  its auto-

correlation function (Pk)k 6E- has been defined as 

N • 
= urn2_ 7 s s 

N-* 	N 1,1,0  n n+k • 

Define 
T-k 1 cT

k   snsn+k ' k T 
T n=o 

Then we can write 

1 c n+1 	 n + 	-n+1 n+1 	n+1 



where c = c1 c2) and u = (u v ) 	(s n 	n,  n 	 n 	n,  n 	ns 	snsn-2 
We note the sequence (cn)n E N can be specified in terms 

of (un)n EN, because  n  v = u nu n-1. 

Define 

- _ 	 un+i 
1 ' 

m 1=1 

u 	1 >7 v  1 ( 	
i=1 n+i). mln m i=1  	 n+I m— 

With the substitution vn=unu 	.14111n can be regarded 

as a function of u n+m.  
Let Wm n denote the restriction of Wm n to un=+1 

and W- n  its restriction to un=-1 •  m  

Obviously the range of Wmln is the same as that 

of Wm 1 and we denote it by Dm. Define Dm similarly. 

The appearance of D1' D2' 3 D4- and  D+ is shown in 4 
figures 1, 2, 3 and 4. We have used the fact that 

vn+1 unun+1  to- generate these figures. Then the rule is: 

If step n is to the right (ori 1) step (n+1) is NE or SW. 

If step n is to the left (un=-1) then step (n+1) is NW 

or SE It also follows that Dm is the reflection of 

Dm about the vertical axis • 
+ 	 + Let Wm denote the convex hull of Dm and W; that 

_ . 
	

+  
of Dm  Let Wm

i  denote the intersection of Wm with Wra. 

The appearance of W2' 3 Wi and W  is depicted in figures 

5, 6 and 7. 

From the definition of Wmn it follows that the 

convex hull of its range tends to H
3
C as m goes to 00 1  

because the vertices of n 
3
C are autocorrelations of 
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periodic binary sequences of period not greater than 4. 

Therefore Wm also tends to B.
3

C as m tends to cc,  

We now establish the algorithm. 

Suppose p = (p11 p2) is the prescribed vector of 

autocorrelations Let (-c2n)neN be the sequence generated 

by the expression 

1 	 c 	+ 	 112n+1 	112n+2)  2n n+1 	2n+2 

. where u211+1  and  u2n+2 are chosen to minimize the Euclidean. 

norm of (c2n+2  - p), given that the values of 92n and  

u2n have been previously determined. 

Proposition 

If pew2  then cn)neN  converges to p, for 

all initial values, at the rate of 0(n 2) 

In the proof of the proposition we shall make 

use of the following lemma: 

Lemma 

Consider the triangle {a,b,c} and a point d on 
, 2 side (b,c). Then min.(11c-a 2111b-al2)‹. II 	b-cg

2
. 

Proof  
+ 2(d- a)T(b_d) 

il e_al2 ild_av2 ilc_de 2(d_a)T(c_d)  

But either (d-a)T(b-d)< 0 or (d-a)T(c-d)<0. Since 

ilc-dRilb-cil and Hb-d11.50b-cil the result follows. 
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We are now in a position to prove convergence 

for the algorithm. Since 

11 -211+1 < (2  + Ilan11)/(n+1)  

we need consider only the convergence of the sub- 

sequence Cc2n• ) ‘- n e N 

Proof  

Assume that u2n.+1 and therefore that 

2.2n+2 6  
n c 

2n 
 4. 1 w

2  
+ ) 

• We shall denote the vector --- - n+1 	n+1 

addition of sets in the usual, way, that is for example 

a + B 	a + b : all b CB}. Two possibilities must be 

considered: 

(i) 	2n + 1 W2+  n+1 	n+1 

Let x denote the intersection of the line segment 

(plc2n 	 ) c2n ) with the edge of n/(n+1 	1/(n+1)W2  which 

is closest to p (see figure 8). 

Let V denote the closest vertex to p on this edge 

Then by the lemma 

11V-P112<11L-P12 
d2/(114.1)2 

where d is the diameter of W2 (Note that d/(n+1) is 

the diameter of n/(n+1)c2n  + 1/(n+1)W2) But from the 

definition of c2n+2  we have that c2n+2  is either V or  

a point closer to p, namely a vertex of 

n/(n+1)c2n 1/(11+1)W2 or n/(n+1) c2n. 



Then 
il ic  ... 12 4. d2/(n4.1 )2 

	

Now pc - pp.;n/(n+1) c2n - 	; this follows 

	

- 	121 
from the fact that x is the closest point to p of 

n/(n+1 )c2n  1/(n+1)4 on the line joining p to c2n  

	

and that the point p+n/(n+1)(c 	p) on this line 

lies inside n/(n.+.1)c2n  + 1/(n+1)14 • Therefore 

11-92n+2 - PH
2 	

n2/(n4-1)2 11 -22 	pil2 -I- d2/(111-1)2 (*) 

(ii) penl(n 1)22n  -I- 1/(n+1)W2 

In this case we have 1 71  c2+2  - pil22/(n+1 ) 2  

The same arguments hold if u2n. -1 and 

2n4.2 C (n/(n+1)c2n  + 1/(n+1)W2); in particular 

inequality (*) still holds. 

Therefore we have for all 22n and all pew2  

(n+1)2II 
2n.2 +2 	< n2 II c2n 	d2 

(n-1)2  11 c2n-2 	p112  + 2d2  

. . . 

1122 	PII 2 	-1)d2  

and therefore lic2n  - _o converges to zero as n goes 

to co at the rate of 0(n-2). 



Denote by Di 

onvex hull of 

the range 

Di  Finally m 
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4.3.2 A convergent algorithm to _generate binary 

sequences with any prescribed number of autocorrelations 

If the vector of prescribed autocorrelations has 

dimension greater than two, it is still possible to 

implement iterative procedures leading to a convergent 

solution on the same lines of thought as above. 

Before proceeding we need to extend some of our 

previous definitions to Rk1  for k greater than two. 

Let Wm ' mCINT, denote a function with domain 

defined as follows: 

	

1 	 

	

W = — 	 u j m m  . 	--+k-1 
J=1 

where u. = (sisi_11 	siSi_k) , and siE f-1 11) 

for all 

Denote by 0 the restriction of Wm to the jth 

	

possible value of (s  k-1' 	). this vector can 

only 	

sk-2'.--1  o ' 	an  

only assume 2k distinct values. 

of Wi  and let fl denote the c 

set 	2k  
n sli 

j=1 a  

In the generalization of the algorithm of section 

4.3.1 to the k-dimensional case, k>21  we shall make use 

of the following results: 
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Lemma 1  

The convex hull of the range of Wm  converges 

toilk+1C as m tends to infinity. 

Proof  

The result follows from the fact that Hic4.1 C is 

a polytope whose vertices are autocorrelations of 

periodic binary sequences of periods not greater than 

2k as it has been shown in chapter 2. 

Lemma 2  

Consider a polytope P lying in an hyperplane in 

k R with vertices yi 	yp. Let x denote a point in P 

and y any other point in Ric. Assume min (Hy - vi (I I... 
H- 

11/ - vpil) . Hy - vi 	Then 
o 

vi 11 
2 	

Lc11
2 	

d
2 

o 

diameter of P. 

where d is the 

Proof  

All we need to show is that there exists a vertex 

v of P such that 

<(x — ),( — )> 

If not <(vi- x) , (y - x):> <0 for all vi  which 

would imply <:(y x),(y x)> <0, for all y in P, 

which is impossible since x GP. 

Then we have that 11 v - y112<lix 	11 2  + v 	2-t 11 2  

and the result follows. 



for all initial values, at the rate of 0(n 1-) 

If p enm  than (cn)n Eta  converges to p 
o 
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Given a binary sequence n)n e a- define 

T-k 

	

k 	N 

	

cT 	/  snsn+k T n= o 
for k I T EN, 

	

and set c 	c1  m (, - 	cm) • 

The algorithm of section 4.3 I is now extended to 

the k-dimensional case, k >2 

	

Let p E ( p1  p2 	pk) be the prescribed auto- 

correlation vector Let ( sn)n  E  ENT  be the binary 

sequence generated by 

m 
n s m (n+1) 	 n+1 -=mo n 	 >  ( smo n+ j mo n+j-1 • • • o m n+m o o j.i 

. • • • 5 smo n+o mo n+j-k)  

where sm n+1 ' • • • , sm n+m are chosen to minimize the 

	

0 	0 	0 
euclidean norm of cin (n+i  )- p given that cm n  and 

o ' 	 o 
s1'• • • ' sm 	have been previously determined, 

 0 

Proposition 



98 

Proof 

Since illn+1 	2n11 <(mo(I c n il + m k)/(n+m ) for 

1<mo , we need to consider only the convergence of the 

subsequence (2m n)nEIN 

Then assume that (sm n'...1 sm n+1-k) takes its 

jth possible value, 1<j‹.2
k 
 and therefore that 

; 
+ 	) E 	c cuL

n+m
Lo 	

-mo n 	mo 

	

n+1 	n+1 

the addition of sets is defined as in section 4.3.1. 

Two possibilities must be considered: 

(i) 	p y/ 	 2 + 
n+1 m n n+1 o 	Lo  

Let x denote the intersection of the line segment 

(,cm ) with the boundary of n/(n+1)2m n + 1/(n+1)saj o m
o • 

which is closer to p and let v denote the closest vertex 

to p on the face containing x. Then by lemma 2 we have 

that 

IP - IT-112<Ix 	PI2 	id./(n+1)2  

wheredisthediameterofjotethat da./(n+1) is 
i 	

_a 
o 
 (Note  

the diameter of n/(n+1) iqi n + 1/(n+1) Ili  ) . o mLo  
From the definition of 2mbn we have that 2m n+m is 

o o 
either v or another point of Dm  closer to p. Therefore 

c) 

HcmD n+mo -  P112‹: 111(  - 012+ (12/(n+1)2  

	

- 	j 
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We also have that 

	

P 	n+1 aino P 	; this follows from the 

fact that x is the close st point to p of 

n/(n+1)cm n + 1/ (n+1 ) nm on the line joining p to cm n o o 
and that the point 'p + n/(n+1) (-cm n- p) on this line lies 

inside n/(n+1)-cm n + 1/(n+1 ) m 5 because p mj by 
0 

 
0 

assumption Then 

2 2 

	

II
n+m - p 	n2/ (n.+1 ) 2 II cra n- 	+ d2 n+1 )2 

0 	0 	 I 	0 

(ii) p c  	1 
	 _a - (n+1 	-Tao n  n+1 mo ) 

2 In this case we have cm 	- p 112 < d ./(n+1 )2 
o n+m  o 

Therefore we have for all cmn  and p Gam  
0 

 

(n+1 )2 II cm  n÷in 	2 	n2 H .sin n- 	+ d2 
o o 	 o 

(n_i)  2 llam (n-1)  _ fil  + 2 2 
o 

< amo  P 112 4- 
	d2 

where d=max(d1 	d ) 	and. therefore II c - k 5 	 m n 2 
converge s to zero at the rate of 0(n 1)  

q.e .d 
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This algorithm can be used to generate binary 

sequences with the prescribed vector of autocorrelations 

anywhere in the interior of 11k01  for any k, provided 

one selects ma such that 11m  contains p ; by lemma 1 
o 

we have that this is always possible. 

We found that in practice we can simplify this 

procedure by selecting only one new term of the binary 

sequence at each iteration without convergence being 

lost. However the rate of convergence decreases as the 

number of prescribed autocorrelations increases. This 

is apparent in the two numerical examples of application 

of this algorithm given in appendix C. In the two 

dimensional example the 'error' at the 100th iteration 

is already smaller than the error .at the 450th iteration 

in the five dimensional case. 

The simplicity of the one step ahead iterative 

algorithm and the satisfactory way it works in practice, 

particularly for small dimensions, are enough to 

motivate a study of its convergence properties. However 

such a study is difficult because the number of search 

directions at each iteration is limited to two and 

because the criterion being used in the selection of 

the terms of the sequence, the minimization of an 

euclidean norm, gives rise to a complicated behaviour. 

To avoid these difficulties we have decided to modify 

the selection criterion of the terms of the sequence 
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and this has enabled us to establish a first order 

iterative algorithm with a linear rate of convergence 

if the prescribed autocorrelation vector is in the 

interior of 11 3C
, 
This is done in the next section 

4,3,3 One step ahead iterative methods 

An infinite number of 'n-steps ahead' iterative 

procedures can be obtained by changing the selection 

criterion of the terms of the sequence, However, they 

all have certain basic features in common and we shall 

discuss next some of them for the case where n=1, 

Set a a (1,1), b E (-1,1), C E (-1 1-1), d E (1,-1) 

and e E 1(c+d), 

Given the first p+1 terms of a binary sequence 

(sn)n E N
o 

we have already defined 

= cp+i 	
1 

- 	c 
p+1 D 

+ 
p+1 

 u 
—1241 

where u = (s s 	s s 	) c = (c1  ,c2) and -P 	P P-1' P P-2  ' -P 	P' P 

p- k 1 k  c — >  p p n=o  snsn+k k {1 1 2 

Expression (*) can be rewritten as 

= 	(u 	c ) —1D-F1 -P p+1 	-P 

(*) 
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which means that 

the values _1_(a 
P+1 

1 	- 	) (see 
P+1  

the change (.9.104.1 	cp) can only take 

c ) _1_(b - c ) _1_(c 	c ) or 
-P  p+1 -P  p+1 -P 

figure 9) and that II cp+1  - cid is 

bounded by 2V2/(p+1) if cp  ex {2.,12,a,1} 

Given that at each iteration only one term of the 

sequence is selected, there are only two possible choices: 

(i) if spsp-1=  +1 , then 12,3+1  can only take the 

value a or c 

(ii) if sP sP-1 
 = -1 	then up+1  is either b or d . 

We also have that 

u
a) 

= a 

U„ = 

or b) implies up+1  6{1,a} (or 6 [L1A}) 

d) implies up+1  42,1} (or 6 fl,21). 

This shows that the occurrences of the values 

a and d for 	are interlaced: between two consecutive 

values of p for which up  = c there is exactly one value 

of p for which up  = d, and vice-versa. We also have that 

c = l(p a + pbb + pcc + pad) where pa, pb, pc and pd p p  a 

are the number of occurrences of the respective values 

I, h c and 1 in the first p steps, and by the argument 

just given we have that pc  and pd  differ by at most one 

Therefore we have the following result: 

Proposition 

The triangle H {a,b,e} is a domain of 

attraction for any 'one-step ahead' iterative algorithm. 
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We now give a convergent iterative algorithm for 

generating binary sequences with at most two prescribed 

autocorrelation values. As we shall see, this method 

has the advantage, besides its simplicity, of having a 

linear rate of convergence. 

Denote by p the bi-dimensional vector of prescribed 

autocorrelations and by Sa  and Sb  the lines (p,a) and 

(p1b) respectively. These lines will act as switching 

lines for the sequence (cn)n  IN generated by the algorithm. 

Let A and C denote the half planes produced by Sb  containing 

respectively a and c, and B and D denote the half planes 

produced by Sa  containing b and d respectively. 

Now the algorithm is as follows: 

The binary sequence (snn ei\T is constructed term 

by term. The first two terms are selected at random. When 

p terms have already been selected sP+1 is chosen so that 

(i) up+1 	a if cp  C or u 1- P1 = 6 if c
P 

 6 A for the - 	-    

case where spsp-1:-- 

(ii) u1)+1 = b if c
P 
 D or up+1  = d if cp  G B for the 

-  	- - 

case where sP s
P-1 

 = -1 

This is a first order algorithm if we regard 

the 'state' as being (c1 c2
P' 

 s P sP-1 ) The 'state space' 
 

can be taken to be the disjoint union of two squares 

of side 2 on each of which spsp-1 takes a constant value. 
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The following results will be of use in the proof 

of convergence of the algorithm: 

Lemma 1  

An upper bound on the minimum value of m such 

that. > 	1   >X, Xl a G IR, is given by the smallest 
n=ni  n+a 

integer greater than (ni+a)e - (1+a). 

Proof  

We have that 

i+a

iu  
> 1 jr‘ 

x+a+1 • 

> 1 	 ax 
ni 	n.-1 • 

fin1 
a+1  dx - log m+a-vi  

n.+a 
. n 71 xi_ i  

The result follows. 

Lemma 2 

If two consecutive terms of the sequence 

(c_n)nev- , generated by this algorithm, say cn  and 

lie on opposite half planes produced by one of n -1,  
o 

 

the lines Sa  or Sb  and gn 	EH t alb,c,d1, then for 

all n greater than no  the distance from cn  to that 

line is not greater than 4V-2-/no , provided p is an 

interior point of H{alb,e}. 
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Proof 
We shall prove the result for line S. By 

symmetry the same result holds for Sa. Please refer 

to figure 10. 

From the definition of (21))p eN we have that if 

cn  E H {a,b,c,d} then cn  is also in H talb,c1d1 for all 
o 

n greater than no  We also know that 

Ilc120.1 	.210 11 r: HERO 	cp11/(p+1) where up  e{2,12,21d} 

for all p. Therefore if ep GH {a,b,c,d} then 

Dep+1  - Rid< 2\i/(p+1) since 2V is the diameter of 

H 

First let us assume that SID  is crossed from half 

plane A into half plane C at stage no , that is cn  
0 

is in A and en is in C•  Then the distance from c to no 
Sb  is less than 211-27no . But from the definition of the 

algorithm it follows that un+1  does not take the value 

c while cn  is in half plane C and takes at most once 

the value d ; in this case en  may be driven away from 

Sb  but by not more than 4V-f/no , if d lies in half plane C. 

However the occurrence of the values a or b for un  

bring en  closer to Sb, 

Now assume that Sb  is crossed at stage no  from 

C into A. The only possibility that needs to be discussed 

is when d is in half plane A and cn 	• falls in AB While 
0 

 

cn  remains in AB, En  takes the values c and d alternat-

ively and from the corollary in appendix D we have that 
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the associated cn  's will lie in two lines intersecting 

at the point e=i(c+d). This situation is illustrated 

in figure 10. Therefore if 'ID GH talb,el the distance 

from 2n 
to S10 for all n>no 

 and 2n. in A will be at 

most 2V /n
o 

This ends the proof of lemma 2. 

In the discussion of convergence of this algorithm 

it will be convenient to adopt the following definition 

of neighbourhood: 

Definition 

Given a positive real number 6 , we define 

a 6  -neighbourhood of p as the.set of points within a 

distance of less than 6 from lines Sa  and Sb. 

We are now in a position to prove convergence 

for the algorithm. To simplify matters suppose that 

.21  is an interior point of H {alb,c,d} This ensures 

that in all the subsequent iterations en  is also 

inside the square H falb,c1 d1 and therefore less than 

2V-2- away from any of its vertices. Although the case 

in which ci  is outside H talblc,11 is uninteresting, 

it is easy to show that, for all cl, en  eventually 

falls in H {albl el d} provided the prescribed auto-

correlation is neither a nor b. 
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Proposition 

Suppose p is an interior point of H {a,bl e} 

and al  is an interior point of the square H fa,b1 c1 d). 

Given 8 >0 the sequence (en) n eta  generated by the 

algorithm remains in a 8 -neighbourhood of p for all n 

greater than k1/ 8+ k2  , where k1  and k2  are constants 

depending only on p. 

Proof  

Take n
o G N such that no >4V2/ 8. We now study the 

behaviour of the algorithm after iteration no . Recall 

that we have the square H ta,b,c,d) divided in four 

regions namely AB, AD, BC and CD. 

While cn  , n>n01 remains in the same switching 

region as cn  three possibilities must be considered: 

(i) n• +1 constantly equal to a 

(ii) n+1 constantly equal to b 

(iii) 1▪ 14.1 assuming the values c and -(5. alternatively. 

From appendix D it follows that in (i) and (ii) 

the points cn, n>no , lie on a straight line containing 

a or b, respectively, and that in (iii) the iterations 

of the form c2n, n>n0/2 lie in a straight line containing 

vertex e. Furthermore it follows from the definition of 

the algorithm that the region containing cn  does not 
0 

contain the vertex which the subsequent en's are heading 
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to, provided p is neither a nor b nor e , which is true 

by assumption. Then we have that there exists a positive 

ci,depending only on p such that 

11 2n+2 	2-1111 > c1/(n+2) 	n>n
o • 

But this implies that at least one of the lines 

Sa or Sb  will be crossed at some later stage, say ni , 

because the series >  1 is divergent. From lemma 1 we have 
n=1 n 

	 c, 
	 > 2V-2-  if m > (1 + n° )  e4V-2-/c1 - (1 + --Q) 

n=1 2n+n 	2 	2 
0 

and therefore n1  will be less than (2+no) eLIVT/E  1 - 2 

In case (i) we have that Sb  was crossed at stage' 

nl' and therefore 2n 
falls either in AB or AD, If c n1 1 

falls in AD then En +1 2- and then En, n>n1+1, will 1 
remain constantly equal to b; then by similar arguments 

we have that Sa will be crossed at a stage not later 

than (2+n1) e \/-2/c2 - 2 where c2 plays a role similar 

to E If c falls in AB then un,  n>n 	takes the 
1- 	 n1 	n' 	1 , 

values c and d alternatively until AB is left either 

by crossing Sa  or Sb. A similar discussion applies for 

case (ii). 

While cn  remains in half plane B the values c, d 

and a occur for un  in the following sequence: ...1c1 d1c, 

dI al a,...l alcl d,c1 d,...1c,d1a1 ...,al cI dl .., the values 
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a occurring when cn  falls in region BC. 

We also know that (c114.1  - cn) = (a - 211)/(n+1). 

if un+1 	a and (cn+2 - n = 2(e - cn  )/(2+n) if 

= c and un+2  - d 

Since p is an interior point of H al b, e }, there 

exists a positive E3, depending only on p such that the 

projections of (e - cal) and (a - cn) on Sb  along edge 

(a,e) will be greater than e
3* 

By the same reasoning as above we have that Sa  

will then be crossed at a stage not later than 

(2+n1  ) 
e0/2/E3  - 2. 

It then follows that at an iteration not later than 

SV2/E 	4V2/c no e 	+ 2(e 	- 1), E = min(E1)  E2, e3 5  ) cn  will 

have crossed lines Sa  and Sb, and by lemma 2 it will 

remain inside a neighbourhood of p of size 4V2/no  

This ends the proof of proposition. 

Comments  

(i) We have assumed in this proposition that p 

was an interior point of H {albl e}. However it can be 

shown on similar lines that the algorithm still converges 

if p lies on the edges (a,e) or (bl e). 

(ii) In contrast to the general multi-step method 

of section 4.3.2 , the rate of convergence is asymptoticaly 

0(1/n) rather than 0(1/n1). 
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(iii) The rate of convergence of this algorithm 

is global in the sense that it holds for all 6 and not 

just for S sufficiently small. It has also an obvious 

'inverse form': 

{
II Qn — P ii < min 

2V-2-, 
k
1  

- In - k2 
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CHAPTER 5 

FURTHER RESEARCH 

In this thesis a study of the autocorrelation and 

covariance properties of deterministic and stochastic 

binary sequences has been made within a geometric framework. 

The inverse problem of generating binary sequences 

with prescribed autocorrelations has also been treated. 

It would be of interest to extend these results to 

the more general case of generating sets of sequences not 

only with prescribed autocorrelations but also with cross-

correlations. We have already pointed out in the introduction 

to the thesis that the input signals have a significant 

bearing upon the achievable accuracy in identification 

experiments, and that for single input-single output linear 

systems the optimal input is most conveniently characterized 

by its autocorrelation matrix. However if the system under 

consideration has several inputs it can be shown that the 

'optimal' input signals are not only characterized by their 

autocorrelations but also by their crosscorrelations. We 

also believe that the generation of signals with prescribed 

autocorrelations and crosscorrelations will have important 

applications in areas like telecommunications. 
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The extension of the characterization of the class 

of autocorrelation functions to the class of cross-

correlation functions appears to offer few problems but 

the important question of determining the set of feasible 

crosscorrelations for a given set of fixed autocorrelation 

shifts does not seem so clear. 

' Also of interest is the determination of the extreme 

elements of the class of covariance functions of continuous 

time unit processes. It has been shown that such a class 

is convex and compact. Therefore any element in this class 

can be represented as a convex combination of extreme 

elements. The question of uniqueness of such a represent-

ation deserves further investigation, but judging from . 

L. Shepp's work it is highly unlikely that this unique 

representation exists. 



APPEND DC A 

An algorithm is given to generate a set of points 

whose convex hull is II mC for any value of na, 

Algorithm 

Step 1 	Select the desired value of m and define 

X 	° x 	(x 	 ) 11 k E ENT, l lk 	11k 11k' •••' xl Ik+m-2-  
Set i=1 and xi1=1, 1=11 ...1m-1. 

Go to step 3. 

Step 2 
	

Construct X(i 11) such that X(i l l) 	X(k11) 

1<k<i, 

Step 3 	Set n=m 

Step LI- 	Set j=n—m+2 and x. =x. i l j 

Step 5 	Compare X(i,j) with X(i lk), 1.<k<j. There 

are two possible cases: 

	

5,1 	X(i,j) 4 X(i,k), 1<k<j, 

Then set n=n+1 and go to step LI-. 

	

5,2 	X(i,j) 	X(i lko ), for some ,ko  l<ko< j. 

Two situations must again be considered 

5,2,1 If ko >1 go to step 6, 
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5.2.2 If k0 =1 the vector 1    xi k  (xi j-1 k=1 	l  

ki_m_i) satisfies the given necessary 

conditions in lemma I (section 2.5) to be a 

vertex of TInC• 

Comment: The components of this vector are also the 

first m autocorrelation valuds of the periodic binary 

sequence, of period j-1, with j-1 consecutive 

terms equal to (x. x. 	) or of the periodic 
111,.." 1,j-1 

sequence, of period 2(j-I 	with 2(j-I) consecutive 

terms equal to (xi,11...1 	-xill,..., 

dependingonbeing equal to or the negative of x xi 	 i j ll 	• 

Step 6 	Two situations are possible 

6.1 	If 	 x. x.1  .. 	set x 	=-x. . and go to step 5. ,a iln 	i ,n 	1 , a , 

6.2 Otherwise look for the greatest 

such that x.1  =x. 	
Two cases must ,1 1,1-m+2 • 

again be considered: 

6.2.1 If there is no such 1 go to step 7. 

6.2 ,2 If such an 1 exists set n=l x1. 	4 and ,n 1 

go to step 5. 

Step 7 	Set i=i+1. If i":>2m-2  stop;  otherwise go to 

step 2. 

Comment: When step 7 is reached all possible periodic 

binary sequences starting with xiol..., x, 	and 
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satisfying the conditions given in lemma 1 (section 2,5) 

have been considered. Therefore a new starting value 

should be selected. 
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APPENDIX B 

Theorem 

nU is a neighbourly polytope, for all n E EN 

Proof 

2U is a line segment and II3
U is a tetrahedron 

and theref ore neighbourly polytope s We shall prove 

the result by induction, fix n >3 , Fix i, j 

LetVij 	 nU n {m : mij.1} Then precisely half 

of the 2m-1 vertices of II nU lie on V ij ' • the remainder 

lie strictly to one side of the hyperplane 	: mii.1} 

and are in Vij  = IInU n 	: mii. 	Now define the 

projection operator IT such that 

: nnu 

that is the linear map obtained by removing the ith row 

and column from a matrix R C n
U• Then we have 

Ek-1 
 , some 1 < k <2n-2  

Furthermore Vi j
11 	Er31  , Hence n i  maps 

the 2n-2  vertices of V-!.j  onto the 211-2  vertices of i 
IIn-1U in a one-to-one fashion. 

Therefore under the assumption that II n_iU is 

neighbourly V+ii  is also and by a similar argument so 

is Vla. .  • 
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We note at this point that the edges of V-1: ij 

are also edges of 11 U because ij  (and V1  a.) is the 

result of the intersection of HnU with a supporting 

hyperplane. Furthermore any pair Ek, El of vertices 

ofylieeitherinVIj orVij for some i,j , ji. 

From the above arguments it follows that the 

line segment connecting any pair of vertices of EnU 

is an edge of H
n
U• Since 11

3
U is neighbourly it follows 

by induction that H
n
U is also neighbourly for n>3. 

faml. 

q.e.d. 
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APPENDIX C  

In this appendix two numerical examples of 

application of an iterative algorithm, similar to the 

one described in section 40.2, are presented; in this 

algorithm only one new term of the sequence is selected 

at each iteration. 

The cost at iteration n is defined as 

with c and p  as defined in chapter 4. n 

EXAMPLE NO.1 
THE PRESCRIBED AUTOCORRELATION VECTOR IS 
A( 1)= .1000000 
A( 2)= .6000000 
ITERATION OF ORDER 	6 

1)= .5000000 
C( 2)= 
COST= .4807402 
ITERATION OF ORDER 
C( 1)= .2857143 
C( 2)= .1428571 
COST= .4934262 
ITERATION OF ORDER 	8 
C(•1)= .1250000 
C( 2)= .2500000 
COST= .3508917 
ITERATION OF ORDER 	9 
C( 1)-= 	0 
C( 2)= 
COST= .2848001 
ITERATION OF ORDER 	10 
C( 1)= -.1000000 
C( 2)= .4000000 
COST= .2828427 
ITERATION OF ORDER 	15 

1)= .1333333 
C( 2)= .4666667 
COST= .1274369 
ITERATION OF ORDER 	20 
C( 1)= .0500000 
C( 2)= .5000000 
COST= .1118034 
ITERATION OF ORDER. 	30 
C( 1)= .0333333 
C( 2)= .5333333 
COST= .0942809 
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ITERATION OF ORDER 	40 
C( 1) = . 075 u0 CI 
C( 2)= .5500000 
CacT= .0559017 
ITERATION OF ORDER 	50 
C( 1)= .1000000 
C( 2)= .5600000 
CURT= .0400000 
ITERATION OF ORDER 	60 
C( 1)= .082:3333 
C( 2)= .5666667 
COST= .0372678 
ITERATION OF ORDER 	70 
C( 1)= .1000000 
C( 2)= .5714286 
COST= .02:::5714 
ITERATION OF ORDER 	80 
C( 1) = 	0875000 
C( 2)= .5750000 
COST= . 02795 us 
ITERATION OF ORDER 	90 
C( 1)= .1000000 
C( 2) = 	. 5 f. 	f f.  
COST= .0222222 
ITERATION OF ORDER 100 
C( 1)= .0900000 
C( 2)= .5800000 
COST= .0223607 
THE GENERATED 'F:.:EPUENCE IS 
1. -1. -1. -1. -1. -1. 1. -1. 1. -1. 1. 1. 1. 1. 1. 
1. 1. -1. 1. -1. 1. 1. 1. 1. 1. 1. -1. 1. -1. 1. 

-1. -1. -1. -1. -1. -1. -1. 1. -1. 1. -1. 1. 1. 1. 1. 
1. 1. 1. -1. 1. -1. 1. 1. 1. 1. 1. 1. -1. 1. -1. 
1. -1. -1. -1. -1. -1. -1. -1. 1. -1. 1. -1. -1. -1. -1. 

-1. -1. 1. -1. 1. -1. 1. 1. 1. 1. 1. 1. 1. -1. 1. 
-1. 1. 1. 1. 1. 1. 1. -1. 1. -1. 

EXAMPLE NO.2 
THE PRESCRIEED AUTOCORRELATION VECTOR IS 
A( 1)= -.2000000 
A( 2)=. 	.2000000 
A( 3)= -.2000000 
A( 4)= .2000000 
A( 5)=-1.0000000 
ITERATION OF ORDER 	10 
C( 1)= .3000000 
C( 2)= .2000000 
C( 3)= -.1000000 
C( 4)=. -.2000000 
C( 5)= -.3000000 
COST= .95392:92 
ITERATION OF ORDER 	50 

1)= -.1000000 
17( 2)= .2000000 
C( 2:)= -.1800000 
C( 4)= 	1200000 
C( 5)= -.8200000 
COST= .2218107 
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ITERATION OF ORDER 100 
( 1) = -.1500000 

C( 2)= .2000000 
C( 3)= -.1900000 
C( 4)= .1600000 

5)= -.9100000 
COST= .1109054 
ITERATION OF ORDER 150 
C( 1)= -.16667 
C( 2)= .2000000 
C( 3)= -.1933333 
C( 4)= .1733333 
C( 5)= -.9400000 
CO5ZT= .072:969 
ITERATION OF ORDER 200 
C( 1)= -.1750000 
C( 2)= .2000000 
C( :7)= -.1950000 
C( 4)= .1800000 
C( 5)= -.9550000 
COS-1= .0554527 
ITERATION OF ORDER 250 
C:( 11)= -.1800000 
C( 2) = . 20000 00 
C( 	-.1960000 
C( 4)= .1840000 
C( 5)= -.9640000 
COST= .0443621 
ITERATION OF ORDER :::00 
C( 	= 	18:33:3:33 
C( 2) = .2000000 
C( 3)= -.196667 
C( 4)= 	.1:::667 
C( 5)= -.970.0000 
COST= 
ITERATION OF ORDER 350 
C( 1)= -.1857143 
C( 2)= .2000000 
C( 3)= -.1971429 
C( 4)= .1885714 
C( 5)= -.9742857 
COST= .0316872 
ITERATION OF ORDER 400 
C( 1)= -.1875000 
C( 2)= .2000000 
C( 3)= -.1975000 
C( 4)= .1900000 
C( 5)= -.9775000 
COST= .027726::: 
ITERATION OF ORDER 450 
C( 1)= 	1888889 
C( 2) = 	2000000 
C( 3)= -.1977778 

	

( 4) = 	.1911111 
C( 5)= -.9800000 
COST= .0246456 
ITERATION OF ORDER 500 
C( 1)= -.1900000 
C( 2)= .2000000 
C( :=)= -.1980000 
C( 4)= .1920000 
C( 5)= -.9820000 
cas:T= .0221811 
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THE GENERATED 2EOUENCE 
1. -1. 1. •1. 1. 1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1.•  1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 

-1. 1. -1. -1. -1. 1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 
1. -1. 1. 1. 1. -1. 1. -1. -1. -1. 1. -1. 1. 1. 1. 
-1. 1. -1. -1. -1. 
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APPEND EC D  

Lemma 

Let (sn)13.6u-o be a periodic sequence of period p 

and autocorrelation function Con- ne N Then for any 

given m 6N the sequence ck 0  +np)n € N lies on a straight o  
line passing through p for any fixed ko  1 < k o  ‹p, where 

P  74- 	PI 3  • • • / PM)  / 	=--- Cen' • • • I en) and 

. s 
ci 	C n i sn+1-1 n+1 
n1 n+1 n + 	 

n+1 

Proof  

All we need to show is that for all n E N there 

exists X CR such that (cko+np - -eko)  =X(2 - _ck  ). 

From the definition of en we can write 

k o +np 
stst-i  npck  

ci 	- ci 	t=k 0 +1 	 np 	p. 	ck0  i ) 

	

k o+np k 	k o +np 	k o+np 1  

because (sn)n eN has period p and by definition 
o 

4  ko +p 
= P t.ko s ts t-i 	pi. 

The result then follows. 

'23 
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Corollary 

If (sn)n€ (a.  is ' eventually periodic' that is 

there exist natural numbers no  and p such that 

s for all m>no  and n [N-o I  then snp+m 	 ( ----c k o+np)n. E 11.0  
also lies in a straight line passing through p, provided 

no,<ko< no+p. 

Proof  

ci k o+np 

We have seen that 

k o+np E stdt_i  

	

p t=ko  +1 		npck. 

k 0  +np 	p 	ko +np 

ko  +np 
If ko  no  then p 	stst_i  npi  t Tc. +1 

The result follows. 



125 

APPEND= E 

Theorem (B. Mcmillan) 

p CU if and only if p(0)=1 and 
N N 
2: 	p(n-m)A ;?0, 
m=1 n=1 
for every N, and all corner-positive matrices fA'11  

mln=1,...N, where a matrix knnj is corner-positive if 

N N 
>I EAnancmcn ° m=1 n=1 
for every sequence (e11...,EN), with ci=±1, 1=1, 2,...IN. 

L. Shepp's proof of this theorem is now reproduced 

below. 

Proof 

The necessity of both conditions stated in Mcmillan's 

theorem is easily proved, since 

p(0) = E(X222) = E(1) = 1 

and N N 	N N  

T- P(n-rn Amn = E() 	A  j n j m=1 n=1 	m=1 n=1 m  

The last inequality is an immediate consequence 

of the fact that (Amn ) is corner-positive. 

To prove sufficiency of Mc Millan's conditions, 

let us consider a given function p(n), n=0, ±1,..., and 

ask the question: under what conditions is it possible 
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to define a unit process {Xn.}  with covariance function p ? 

Since the covariance function determineS the two-

-dimensional distributions P{Xm,_61, Xn=c2}, the question 

can be expressed in the equivalent form: given the one-

-dimensional and two-dimensional distributions, when 

can an extension be made to the higher dimensional 

distributions? 

It will be useful to formulate the question in 

still another way. Let us regard Xn  as a coordinate 

variable in the space, fl of all infinite sequences of 

±1's; that is /1.f(...1x../1  xo, 	xi.±1, is 

the set of all possible realizations of a unit process. 

Then our goal is to find a probability measure P on the' 

space n. such that 

E(XmXn) 	XmXm+nd.P. p (n) 	(1) 

where p is given. Let 0(n) be the set of all continuous 

functions on n. The operator E is defined by p for 

those functions in C(1) which are of the form XmXn. 

If we can find the desired probability measure P, then 

E will be extended to all of. C(11). On the other hand, 

the converse of this statement follows from the Riesz 

Representation Theorem, which asserts that if E is a 

functional defined on C(-) which is linear and positive 

(g?-. 0 = E(g).0), with E(1)=1, then E is given by an 

integral with respect to a probability measure. Thus 



N 
Zoc.g.>0 
1=1  

N  
' >  mE(g):;?-0 

i=1 1 	-L  
(2) 
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our goal is to determine under what conditions one can 

extend an operator E, which is defined by (1) on the 

set G of functions XmXnil-n.1 to a positive, linear 

functional defined on all of C(11). 

We shall use the following elegant result which 

I first discovered in a paper by H. G. Kellelererl. 

Lemma 1 	Let E be a functional defined on a subset C 

of c(a), where 1 GG and E(1)=1. Then a linear positive 

extension of E to WO exists if and only if for any 

g1,...IgN6G and any real numbers a
ll...locN, 

The necessity of this condition is clear. To 

prove sufficiency, let M be the linear space spanned 

by G; 	the space M ={2locigi} of all linear 

combinations of functions in G. Define E on M as follows: 

E(Z ocigi) = 	ociE(gi) 
	

(3) 

Note that E is well-defined on M; i.e., independent of 

representation, since if Taigi=0, then>  aiE(gi)=0. 

1 H. G. Kellerer, 'Verteilungsfunctionen mit Gegebenen 

Marginalverteilunger', Zeitscrift fur Wahrscheinlichkeits-

theorie, 3, 1964, pp. 247-270. 



E satisfies the conditions 

a) E is linear on M 

b) IE(g)l< ll gll 	where g = sup I g I 
over n_ 
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Condition (a) is an immediate consequence of the 
definition (3) To prove condition (b), note that 

i!aigi <1 	sup I locigi I and since 1 e G I it follows 
over n. 

from (2) that 

E(±Eaigi) < sup I Eaigi l E(1) 

or 	I E (Zaigi)l< 

 

Yorigill  

 

From conditions (a) and (b) it follows by the Hahn-
-Banach theorem that there is an extension of E on M 

to a linear functional E on C(n) with f EgI < 11g11 

V g 6 C(n) But the latter condition implies that E is 

positive on C (n) for if 0 <g<1 then 

1/2 - E(g) = 2(1/2-g) < V1/2-gil < 1/2 

We now return to the proof of McMillan' s theorem. 

In this case, G = {XiXi }. Furthermore, 1 eG since Xn2=1 

and E(1)== p(0) = 1 Now, the condition 
N N  

> a. .X .X _>.,0 for all -±1 values of the Xi is 
i=1 j=1 13 1 3 
equivalent to the conditicn that faii i is a corner- 
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-positive matrix. But then condition (2) of the lemma 

becomes 

N  N 
	 ck..x.x.o 1.1 J.1  io 

N  N 
	 >  2= 

±.1 j.i 

N N  
= >  	 a—PU-0 0  

i=1 j=1 

But this is exactly McMillan's condition. 
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