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ABSTRACT 

A need existed in the Civil Engineering Department 

of Imperial College for the development of a computer 

based analysis procedure to provide solutions to a wide 

range of structural and continuum problems. A general 

finite element system was developed for the static linear 

analysis of one, two and three dimensional problems. The 

computer system incorporates flexible input and output 

facilities, an extensive library of finite element types, 

and an efficient solution processor, which are broadly 

described. The element library includes two new families 

of elements which are especially suitable for the analysis 

of thin plates in flexure and cellular structures in flexure 

and torsion. Details of the elements are given and the 

validity of the formulations is established by 'reference to 

the patch test. The accuracy and efficiency of the elements 

is demonstrated by extensive theoretical convergence studies 

and comparisons with model test results. 
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NOTATION 

C 	diagonal decay criterion 
crit 

Dn 	
extensional modulus matrix 

Df 	
flexural rigidity matrix 

E 	modulus of elasticity for an isotropic 

material 

E 
x 
 ,E
y 	

modulus of elasticity for an orthotropic 

material in the x and y directions respectively 

e 	eccentricity of a plate measured from the plane 

of the plate to the reference plane 

element nodal force vector 

I 
	unit matrix 

the Jacobian matrix 

vector of covariant base vectors 

4. 
vector of contravariant base vectors 

K 
	structure stiffness matrix 

Ke 
	

element stiffness matrix 

K' 
	stiffness matrix with respect to the 

local axes 

L 	area coordinates for a triangle 

M 	flexural moment components 

M
x 
 ,M
y 	

flexural moments per unit width perpendicular 

to the x and y axes, respectively 

xy 	
twisting moment per unit length perpendicular 

to the x axis 
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M
A
,M
B constraint matrices referring to the wanted 

and unwanted variables respectively 

M114 	nodal moments about the x and y axes 
xi yi 

respectively 

N shape functions 

P 	vector of applied nodal loads 

q distributed pressure acting on the surface 

of an element 

T 	superdiagonal transformation matrix 

T
e 	

transformation matrix for a plate with 

eccentricity 

t thickness of plate 

u,v,w 	global displacement components at a point 

W shape function array 

W
A
,W
B 	

partitions of the shape function array which 

• 

B 

xY 

.

▪ 	

, Y xz yz 

(s e 

A
,8 
B 

refer to the wanted and unwanted variables 

respectively 

constrained shape function array 

strain matrix 

shearing component of strain in the xy plane 

transverse shear strain components in the xz and 

yz planes respectively 

vector of global displacements 

vector of global displacements for an element 

element displacements associated with the 

wanted and unwanted variables 
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vector of displacements and derivatives 

at any point within an element 

strain vector 

12 

 

e. 

 

c ,e
y 	

normal components of strain in the x and 
x  

y directions respectively 

e
y 	

extensional strain components 

e
s 	

transverse shear strain components 

E
f 	

flexural strain components (curvatures) 

natural coordinate in the zeta direction 

Tj 	natural coordinate in the eta direction 

8
x 
 ,8
y 	

rotations of normals to the mid-surface about 

the x and y axes respectively 
a. 

ez 	rotation about the z axis 

✓ Poisson's ratio 

✓ Poisson's ratio for induced strain in the y 
xy 

direction due to a strain in the x direction 

for an orthotropic material 

✓ Poisson's ratio for induced strain in the x 
yx 

direction due to a strain in the y direction 

for an orthotropic material 

natural coordinate in the xi direction 

external potential energy 

stress vector 

normal components of stress in the x and y 

directions respectively 

extensional stress components 
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flexural stress components (moments) 

smoothed stress components 

aB 
	bending stress 

aDB 
	distortional bending stress 

aDW 
	distortional warping stress 

t 	shearing stress 
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CHAPTER 

GENERAL INTRODUCTION 

1.1 	INTRODUCTORY REMARKS 

In recent years there has been an increasing tendency 

for designers to employ cellular structural forms in, for 

example, the construction of offshore production platforms and 

medium and long span elevated highway bridges. 	This trend 

has been primarily due to the economic and functional 

advantages of cellular structures over other types of structure, 

together with a greater understanding of the structural 

behaviour. 

The procedure employed for the design of cellular 

structures, is to first perform a global analysis based on 

some static linear theory. 	In the case of plated steel structures, 

stiffeners and plate panels are then proportioned to exclude 

instability, or for concrete cellular structures, concrete and 

steel reinforcement sizes are then checked for allowable stress 

levels. A global static linear analysisf  is usually required 

for consideration of the unserviceability limit states of stress, 

fatigue, deflection and dynamic response. It is important that 

the analysis technique chosen enables the design engineer to 

to global ultimate load analysis is also required but as yet 
is not feasible with existing analysis techniques using 
the present generation of computing machines. 
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carry out an analysis economically with an accuracy sufficient 

for design purposes. 

Cellular structures have been analysed using techniques 

based on thick orthotropic plate theory,
B7,P8 

the grillage 

analogy,
L7 

thin walled beam theory,
V4 
 folded plate theory,

S9 

the finite strip method,
C7 

and the finite element method.
Zl 

Of these approaches the finite element method is the most general 

requiring a minimum of assumptions. 	In principle, it is 

applicable to the special features encountered in cellular 

structures, such as varying cross-sectional properties, 

longitudinal and transverse stiffening, random spacing of 

diaphragms and supports, and complex loading conditions. For 

these reasons the finite element method has been employed 

exclusively in the research into the analysis of cellular 

structures presented in this thesis. 

The basic theory and the application of the finite element 

method are well established,
B8,F1,M1,Z1 

but some detailed 

development is required for the analysis of certain static 

linear elastic structures. 	For example, cellular structures 

which are subjected to overall flexural and torsional perturbations 

and are idealized as an assemblage of thin extensional-flexural 

finite elements. 	For these idealizations, existing element 

formulations may not be able to represent such a structure 

efficiently, and convergence to the correct solution as the 

mesh is refined may not be guaranteed. Accordingly, this 

thesis is concerned in part with the development of extensional-

flexural elements that are especially applicable for the analysis 

a 
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of cellular structures. The formulation for these elements 

is based on the Displacement Method with assumed displacement 

and strain variations. The elements are justified theoretically 

by the patch test,- Vide section 1.4. 

The finite element method is general and can also, in 

principle, be applied to any other type of structural and 

continuum problem. Solutions can be obtained for problems 

that are of arbitrary geometry, and include complex boundary 

and loading conditions. The finite- element formulation can 

be extended to take account of, for example, dynamic response, 

01,Z1 
geometric and material non-linearities, 	and problems which 

C8 

may include all of these effects simultaneously. The 

versatility and power of the finite element method is clearly 

valuable to engineers for the solution of a wide range of problems. 

In an environment such as the Civil Engineering Department 

of Imperial College, there are many structural and continuum 

problems to be solved. It is unlikely that these will ever be 

a mathematical substitute for all model experiments, but compared 

with other mathematical techniques, the finite element method is 

capable of making the greatest impact and providing the solution 

to many problems. 

The development of a finite element capability involves 

four principle subject areas. 	These are: 

(i) 	Mechanics - derivation of finite element theory 

for new element models, convergence, spurious 

mechanisms and material behaviour. 
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(ii) System engineering - efficient system design 

and programming techniques for the development 

of finite element computer system(s). 

(iii) Numerical methods - efficient numerical 

algorithms and error analysis for the 

computation of the finite element results. 

(iv) Applications - comparisons with theoretical 

and experimental results for the verification 

of the finite element theory and computer 

system(s), and for information on the 

idealization of a problem to produce the 

required accuracy of results. 

Each of these subject areas is necessary to achieve an effective 

finite element capability as required in the Civil Engineering 

Department of Imperial College. An effective strategy is the 

development of a general purpose finite element computer system 

as opposed to many individual programs. Accordingly, this 

thesis is in part concerned with the development and implementation 

of such a computer system which incorporates flexible input and 

output facilities, an efficient solution technique, and a 

comprehensive range of finite element types. Furthermore, 

although at present restricted to static linear analysis, the 

modularity of the system would permit additional facilities to be 

easily incorporated and the system could be developed to take 

account of many other types of structural behaviour. 
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1.2 	FINITE ELEMENT FORMULATION 

The analysis of structural and continuum problems by 

the finite element method, involves approximating a region 

with an infinite number of variables by an assemblage of sub-

regions or elements. Each element may accommodate a simple 

displacement or stress variation, is of a simple geometric 

shape; and is connected to adjacent elements by nodes located 

at the vertices and sometimes along the element boundary. Each 

node may have several variables, thus the total number of 

variables for the whole structure is finite and can be solved 

numerically. The concept of the finite element method was 

introduced in 1956 by Turner et a1.
T4 

A basis for constructing a finite element approximation 

is the principle of minimum potential energy, which involves 

one displacement field u. The total potential energy it can 

be expressed as 

T 
w = 1 —fe DEdv - iv u

T
Fdv - i

s 
u
T
Tds = min 

2 v 

where E is the strain tensor, D the elasticity tensor, F is the 

vector of body forces, and T is the vector of surface tractions. 

The first term of eqn. 1.1 is the strain energy of the structure, 

whilst the remaining terms are the potential energy of the 

external loads. 	Eqn. 1.1 is subjected to the strain displacement 

relationship 

1 
= —

2
(Vu + (Vu) 

T) (1.2) 
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where V is the gradient operator, and to the geometric 

(kinematic) boundary conditions 

u = us 	 (1.3) 

where u
s 
are prescribed displacements on the surface boundary. 

The finite element displacement method involves 

constructing approximate solutions to eqn. 1.1 by dividing 

the volume V into elements, and approximating the displacement 

field u by interpolations within each element. 

For equilibrium to be ensured the total potential energy It 

must be stationary for variations of admissible displacements 

requiring 

A7 = 0 	 (1.4) 

where Aff is the total potential energy increment. It can be 

shown that this total potential energy increment can be 

expressed as 

Air = f AE
T

DE dv - Iv Au
T 
F dv - f Au

T 
T ds 
	

(1.5) 

The displacement field within any element can be 

interpolated in terms of the generalised nodal displacements (S 

by use of suitable shape functions N as 

U = NS 	 (1.6) 

By differentiation according to eqn. 1.2, the strains can be 

expressed in terms of the generalised displacements as 

e = BS 	 (1.7) 
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and B is the strain matrix. The displacement and strain 

increments can be obtained directly from eqns 1.6 and 1.7 as 

= NM 	 (1.8) 

and 

(1.9) 

Combining eqns 1.4, 1.5, 1.8 and 1.9 after some 

manipulation leads to 

AST  (Iv B
T 

DB dv) S - AST  Iv  NT  F dv - MT  Is NT  T ds = 0 

(1.10) 

and setting 

• K =IBT  DB dv andF=I NT  Fdv +f NT T ds 

and dividing through by AST  gives the general form of stiffness 

equation 

KS = F 	 (1.12) 

where K is defined as the stiffness matrix and F is the vector 

of nodal forces. This procedure for the formulation of the 

force-displacement equations for an element is termed the 

Displacement Method. 
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It can be shown that for equilibrium, the total 

potential energy 7 is not only stationary but a minimum. 

Therefore an approximate finite element solution based on the 

Displacement Method, will always give a value of total potential 

energy as an upperbound on the true total potential energy of 

the structure. 

In addition to the Displacement Method for the formulation 

of the force-displacement equations for an element, there are 

other methods which can be broadly catagorized as the Equilibrium, 

Mixed, and Hybrid methods. These approaches are summarised 

in Table 1.1which was originally compiled by Pian and Tong.
P6  

Of all these approaches the Displacement Method is the most simple 

and general to employ for the formulation of finite elements, 

and for these reasons has been adopted exclusively for the work 

in this thesis. 
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1.3 	NUMERICAL INTEGRATION 

The integrations of eqn. 1.11 can be highly complex 

and indeed often impossible to perform explicitly. As an 

alternative, the integrations can be computed numerically 

by a weighted summation of the matrix products at the 

appropriate integration points. Numerical integration is 

straightforward to implement, makes for clear concise computer 

programs, and thus considerably reduces the likelihood of a 

coding error. Furthermore, it does not necessarily reduce 

computational efficiency, particularly if higher order 

numerical integration can be avoided. Zienkiewicz et al
Z2 

have 

noted that for certain elements, performance can be considerably 

improved by using reduced order numerical integration rules. 

For these reasons numerical integration is an invaluable 

fundamental technique in finite element work and is employed in 

the proposed element formulations in this thesis. 
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1.4 	CONVERGENCE AND THE PATCH TEST 

Classically, for convergence to the exact solution, 

the assumed displacement field for an element should be 

continuous within the element domain and across the element 

boundaries, and should include rigid body motions. Also as 

a mesh of elements is refined the strain in each element will 

become nearly constant, the displacement field within each 

element should therefore be able to accommodate constant strain. 

If these classical requirements were to be fulfilled, finite 

element formulations would be restricted to fully conforming 

elements only. However, it has recently been established that 

a necessary and sufficient condition for convergence is that 

an element should pass the patch test.
17,110,58 

This test 

guarantees convergence for any type of finite element formulation 

including, for example, non—conforming elements, elements with 

singularities, and elements with discrete Kirchhoff constraints. 

Obviously, any element which satisfies both the compatibility 

and constant strain criteria would always pass the patch test. 

The patch test is simple to apply, and involves prescribing 

displacements to the external nodes of a patch of elements which 

correspond to a known but arbitrary state of constant strain. If 

the displacements of the unrestrained internal nodes correspond 

to the assumed displacement field, and the strains (or stresses) 

are constant at every point within the patch, the element will 

converge in the limit. In the author's opinion it is unwise 

to carry out an analysis with elements that do not pass the 

patch test for element geometries akin to those required in the 

finite element idealization. 
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The patch test can also be employed to test for 

spurious mechanismst. Again it is simple to apply and 

involves restraining a minimum of deflections to prevent rigid 

body motions, and applying to the patch boundary the force 

components computed in the previous test. If an element 

formulation can give a singular assembled stiffness matrix, 

then it is likely to occur during this test as opposed to later 

during an important analysis. However, even if this test is 

passed it may still be possible for mechanisms to occur and 

propagate throughout a large structure. 

The patch testing procedure that was adopted for the 

finite element research in this theis can be summarised as 

follows: 

(i) Select a patch of elements with rectangular 

geometry and unequal size. Prescribe the 

appropriate displacements for constant strain 

(stress) at all nodes. 	If the patch is in 

equilibrium the reactions at the internal 

nodes should be zero, and the strains (stresses) 

should be constanttt. 

(ii) Remove the prescribed displacements at the 

internal nodes and check that the displacement 

results are in accordance with the externally 

t  A perturbation that carries no strain energy 

fit  Say to six significant figures 
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prescribed displacement field, and that the 

strains (stresses) are constant
tt  

everywhere. 

(iii) Constrain sufficient displacements to prevent 

rigid body motions, apply the forces computed 

in (ii), and check that the strains (stresses) 

are again constant. 

(iv) Repeat (i) to (iii) for various element 

geometries including, square, parallelogram, 

trapezoidal and quadrilateral shapes. For 

a family of elements repeat (i) to (iii) for 

a mixed patch of elements consisting of several 

members of the family. Note that this stage 

is important since some elements may, for 

example, pass a quadrilateral patch test for 

constant strain, but contain mechanisms for 

square element geometry. 

(v) If it is expected that the element can accommodate 

a linear or higher order strain (stress) 

variation then a higher order or super patch 

test can be performed. The strain (stress) 

resultants throughout the patch will now be 

position dependent in accordance with the 

chosen strain variation. 	Repeat (i) to (iv). 

• 

tt Say to six significant figures 
• ■• 

t A perturbation that carries no strain energy 
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The importance of the patch test both in research and 

in practice cannot be over-emphasised. The primary roles 

that it performs are: 

(i) It establishes the range of element 

geometry for which fine mesh convergence 

is guaranteed for an element. 

(ii) To a certain extent it establishes the 

range of element geometry for which 

spurious mechanisms are not present. 

(iii) To a certain extent it establishes the 

validity of a computer program if an 

element is known to pass the patch test. 

(iv) It encourages adventurous research, 

justifies formulations in which variational 

crimes have been committed, and leads to 

a great deal of productive thought when a 

new formulation does not pass the patch test. 

For these reasons the patch test is important to all engineers 

who use the finite element method. 
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1.5 	OUTLINE OF THESIS 

Chapter 1 broadly introduces the requirement for the 

analysis of cellular structures by finite elements, the 

requirement for a general purpose computer system and 

finite element theory. 

Chapter 2 gives a brief description of the general 

purpose finite element computer system, and the application 

thereof to the analysis of two models. 

Chapter 3 describes in detail a new family of thin 

plate flexure elements, and several numerical examples are 

provided to establish the validity of the formulation. 

Chapter 4 describes in detail a new family of 

extensional elements. These elements are combined with 

the elements of the previous chapter to form extensional-

flexural elements that are particularly efficient in 

representing the behaviour of cellular structures subjected 

to overall flexural and torsional pertabations. Several 

numerical examples are provided to establish the validity of 

the formulation. 

Chapter 5 gives brief conclusions of an overall 

nature. 
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CHAPTER2 

IMPLEMENTATION OF THE FINITE ELEMENT COMPUTER SYSTEM 

2.1 	INTRODUCTION 

The finite element displacement method is a powerful 

analytical technique that can provide the solution to a wide 

range of complex structural and continuum problems. The 

basic theory is general and well established
Al,Z1,  and the 

matrix notation is convenient for the implementation of the 

method on digital computing machines. A virtue of the finite 

element method is the similarity of computer code required for 

various types of problems, thus the method can form a basis 

for the development of a general purpose structural analysis 

system. However, the computer implementation of the basic 

algebraic formulations requires many decisions which play a 

decisive role in the utility and longevity of the final computer 

system. These decisions require knowledge and experience in 

structural mechanics,numerical methods and system engineering. 

This chapter aims to describe some of the fundamental 

concepts behind the computer implementation of a general purpose 

finite element system, and the application thereof to the analysis 

of the two models. The system, developed by'the writer, is 

referred to as LUSAS which is an acronym for the London University 

Structural Analysis System. 	LUSAS has been developed for the 

linear static analysis of one, two and three dimensional structures, 

and contains a comprehensive range of elements which permit a wide 

range of modelling capabilities. The modularity of the LUSAS 
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system enables new capabilities to be introduced quickly 

and easily. From this point LUSAS forms a sound basis for 

future research and development requirements within the 

Civil Engineering department of Imperial College. 
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2.2 	REQUIREMENTS FOR A FINITE ELEMENT COMPUTER SYSTEM 

The requirements for a finite element computer system can 

be summarized as follows: 

(i) The development of a computer system is time 

consuming and laborious so independence from 

a particular operating system and computer 

installation must be essayed. Ideally the 

design of the computer system should be such 

that it could operate efficiently and be 

easily implemented on a wide range of 

computing machines, including for example, 

the new generation of mini computers. 

(ii) Most computing machines now operate in the 

multiprogramming mode, so it is desirable if 

the organisation of the computer system is 

such that it occupies a minimum of central 

memory. 

(iii) The design of the computer system should be 

modular and the coding clear and concise 

so that it can be quickly modified, updated 

or extended to incorporate new' facilities. 

(iv) The computer system should incorporate a 

range of external options so that the user has 

a measure of control over the internal 

computations. 
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(v1)* 	The computer system should have a 

comprehensive range of error diagnostics 

embedded in the computer code. 	These 

diagnostics should provide information on 

the validity of the data input, and give 

advice which may guide the user in his 

assessment of the suitability of the 

idealization. 

(vii) The computer system should be able to solve 

as wide a range of problems as possible, so 

that the user, knowing how to use the system 

for one class of problem, can easily solve 

any other. 

(viii) The versatility of the finite element method 

enables highly complex structural forms to be 

analysed, and this can require the solution 

of a large set of symmetric positive definite 

load-deflection equations. 	For large 

problems the solution of these equations 

becomes the most time consuming computational 

step, so it is important that the computer 

system includes an efficient solution scheme. 

Iterative procedures have not yet been 

developed sufficiently for the solution of 

static linear elastic equations encountered 

in the finite element method. The main 

problems with iterative solutions are that 
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they can be slow to converge, require 

non-productive trial runs to determine the 

correct acceleration factor and require 

the complete solution to be repeated for 

additional load cases. A direct solution 

scheme would be preferred because it is 

automatic and trouble free. 

(ix) 	The maintenance of a large computer system 

is time consuming so facilities should be 

provided to reduce this burden to a minimum. 
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2.3 	SOME FACILITIES PROVIDED IN THE FINITE ELEMENT 

COMPUTER SYSTEM 

In addition to the usual facilities provided in finite 

element computer systems the LUSAS system incorporates a 

number of special facilities some of which are described below. 

2.3.1 Machine independence and requirements 

A high degree of machine independence has been achieved 

by the use of ANSI fortran for all but a very small part of 

the computer system. 	The use of machine dependent functions 

and machine language subroutines was necessary to obtain a high 

degree of computational efficiency, but since these have been 

restricted to only a few critical sections the revisions 

required for implementation on an alternative computer installation 

would be minimal. 

The LUSAS computer system requires a minimum central 

memory equivalent to 25K of 60 bit words, within which a wide 

range of problems can be solved. The computer system has been 

successfully implemented on CDC 3300/6400/6500 machines using the 

Scope and Kronas operating systems and FUN, MNF and FTN fortran 

compilers. 

2.3.2 Modular internal data structure and dynamic vector array 

The internal data is organised in a modular way by the 

use of a single dynamic vector array which is divided into a 

string of data records. 	The lengths of the data records are 

determined automatically during execution according to the 

tAmerican National Standards Institute 
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individual problem requirements, and the positions of the 

first and last location of each record are recorded in a 

pointer table. This technique ensures an economical 

use of the available central memory and enables control 

information and numerical data to be transferred from one 

module of subroutines to another by a simple common statement 

containing the single dynamic vector array. This dynamic 

array also permits restart facilities to be easily incorporated 

by a simple transfer statement which saves the whole core image 

on secondary storage at any stage of the computations. A 

further advantage is that since the length of the dynamic vector 

array can easily be adjusted by the user according to the problem 

size, a minimum usage of central memory can be achieved at all 

times. 

2.3.3 Modular computer system structure 

The computer system is organised in a modular way by 

grouping subroutines into overlay modules each of which carries 

out a logical well defined task. The computer system consists 

of several of these overlay modules which are stored in a library 

on permanent disc file and brought in turn into the computer 

central memory. 	This overlay procedure allows consecutive 

modules to occupy the same area of central memory and therefore 

considerably reduces the total central memory requirements. 

The minimal core storage requirement of LUSAS has proved valuable 

in that it can operate within the limits of the Imperial College 

Instant Turnaround Computer Service of 25K central memory words, 

and within 18 seconds of central processing time on the CDC 6400 

computer. 
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2.3.4 Internal user control options 

The user has a measure of control over the internal 

computations of the computer system by the use of several options. 

For example, the user can specify the extent of data checking 

and terminate the problem immediately after the data processing, 

choose an exact or reduced numerical integration rule for the 

calculation of the element characteristic matrices and specify 

the amount and type of output. 

2.3.5 Flexible free format input 

LUSAS has been programmed to accept alphanumeric data 

input records in a free format field. Free format input has 

the advantage that it reduces the human effort in the preparation 

of data, obviates the need for special coding forms, and minimises 

input errors. Furthermore, free format is convenient for both 

time-sharing and remote batch access, and gives flexibility in 

the design of a self-explanatory data input command structure. 

Since the LUSAS command structure is consistent for all problem 

types,the user does not have to learn a different command 

structure for each new problem. 

Automatic data generation facilities are incorporated 

within the computer system, and these permit a wide range of 

structural forms to be input for analysis with a substantial 

reduction in the quantity of data input required. It is 

permissible, at no penalty, for elements or nodes to be 

numbered with gaps in the numbering. For changes during the 

design loop or construction sequence it is possible to overwrite 

areas of existing data and add new data if required without 

spending excessive human effort renumbering the whole mesh. 
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This is made possible by the incorporation of a facility 

whereby the user can specify the order in which the solution 

of the load-deflection equations takes place. Both the 

overwrite and specified solution order facilities also provide 

greater flexibility in the use of the data generation facilities. 

2.3.6 Comprehensive error diagnostics 

As the analysis proceeds the user is kept in communication 

with the computer system by a comprehensive range of error 

diagnostics. The computer system checks for sequencing of 

input, improbable input, wrong input, and issues advisory messages 

on the validity of the structure idealization and a map of the 

storage locations used in the dynamic vector array. 	If a non- 

fatal error is discovered the computer system will continue to 

process the remaining data to check for further errors, automatically 

suppress the solution and exit to the next problem. 	The total 

lengths, areas, and volumes of elements and the structure are 

output as an additional check on the problem idealisation. 

2.3.7 User program interface facility 

At any stage during the processing of the data input the 

computer system can be instructed, by the use of simple commands; 

to receive data from external fortran subroutines supplied by the 

user. Thus the integral system data generators can be supplemented 

by special purpose data generators which enable the user to quickly 

tackle complex modelling of any mathematically describable structure. 

External subroutines can also be supplied to post- 

process the stresses, displacements and reactions, and to output 

these results in an alternative format which may be more suitable 
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16. 

for the user's particular requirements. 	It would also be 

possible to write external subroutines that could convert the 

computer system for the analysis of simple non-linear or 

dynamic problems and multilevel substructure analysis. 

2.3.8 Flexible output facilities 

The user can suppress or call for certain areas of the 

output from an analysis, for example, the averaged nodal point 

stresses. 	The output of results can be either stress or 

force components and these can be relative to either the local 

element axis or the global system axis. The output of results 

for LUSAS has been designed to be compact, clear and self-

explanatory. 

2.3.9 Integral maintenance facilities 

The maintenance of a computer system is time consuming 

and is required when changes occur in the software or hardware 

of a particular computer installation, or if a failure occurs 

at the installation or in the computer system code. LUSAS 

contains integral diagnostics which protect the user from 

software or hardware failures. For example, when data is 

retrieved from secondary storage certain variables are 

always tested to ensure that their values lie within an expected 

range. If a failure does occur the progress of the computations 

can be easily monitored by the systems engineer by the use of 

the integral maintenance options and the failure point can be 

quickly located and corrected. 
Oa. 
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2.3.10 Incorporation of new facilities 

The modular structure of the internal data and computer 

system enables existing facilities to be quickly modified 

and updated to take account of unforseen applications, and new 

facilities to be easily added as new techniques become available. 
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2.4 	DESCRIPTION OF THE COMPUTER SYSTEM 

LB 
The computer system is divided into nine primary overlay 

modules, one of which is optional. Each overlay module,which 

consists of a group of subroutines that carry out a well defined 

task, is called in turn into the central memory by a simple main 

program, which remains in core throughout problem execution and 

contains the single dynamic vector array, Vide Fig.2.1. 	The 

length of the dynamic vector array is determined by two statements 

in this main program, and is easily adjusted by the user to suit 

each particular problem. The first four overlays process the 

data input, the fifth computes the segment lengths of the 

dynamic vector array required for the problem, the sixth retrieves 

data and computes the characteristic matrices for each element, 

the seventh assembles the structure stiffness matrix and solves 

the displacements for each load case by the frontal technique
11
, 

and the eighth uses the displacements to compute and output the 

stresses for each element, and the displacements and reactions 

for the structure. The ninth overlay module is optional and 

can be supplied by the user to post-process the results according 

to his particular requirements. The sixth overlay module is 

served by a subset of thirteen secondary overlay modules each 

of which contains a family of finite element subroutines for 

each particular structure type. A simplified flow chart of 

the primary and secondary overlay modules of LUSAS are given 

in Fig. 2.2 and the subdivisions of the dynamic vector during 

each phase of the analysis are shown in Figs 2.3 to 2.7. 



2.4.1 Data processors

The data input for LUSAS has been designed to be

compact, self-explanatory and in a free format field. A free

format SUbroutine and a data generation subroutine reside

in the central memory during the data processing phase. The

alphanumeric characters in each column of an input record are

read by the free format subroutine and assembled into complete
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numbers, words and special characters. The free format routine

therefore accepts any combination of numbers, words and special

characters and provides for flexibility in the design of the

input record formats.

The first data input card for any problem must be a

PROBLEM header card which is followed in turn by chapters of

numerical data each of which is identified by the appropriate

header cards. Any number of problems can be solved in the same

computer run, and the last card of a series of problems must be

and END card. The problem card is followed by the specification

of the STROCTURE type, the UNITS to be used throughout the

problem and any OPTIONS which may be required by the user. The

first chapter data input requires the header card < type>

ELEMENT NODES followed by a list of element numbeLs and node

numbers for that element type. For structures which are idealized

wi th mixed element types the header card and numerical data

are repeated for each element type. A list of the element types

for the various classes of structure which are currently available

in LUSAS are given in Appendix 1. The node numbers of
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any element can be overwritten by the node numbers of a new 

element even if the number of nodes is different, and gaps can 

be left in the element numbering sequence if required with no 

penalty in central memory requirements. 

The main generation routine which resides permanently 

in the central memory during the data processing phase, can be 

used to generate data for any input chapter. 	This scheme, 

hereafter referred to as incremental generation, is based on the 

ASKA
A7 

topological generation procedure for elements, but is 

more powerful, applies to all types of data input records, and 

has been reorganised in a simplified format as follows: 
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where 

are a list of integer or real numbers 

A.n are a list of increments to be added at the ith 
• m 

level 

M ,h are a list of increments of increments to be added 
• m 

at the ith level 

AA,n 	are a list of increments of increments of increments 
• n 

to be added at the ith level 

R. is the number of repetitions at the ith level 

A.R. is the increment at the jth level to be added to 
3 i 

the repetition at the ith level 

This scheme has been previously described with examples by 

Lyons, Cassell and Hobbs
L6 and can generate, for example, an 

array of element and node numbers, a stack of node coordinate 

lines with quadratic or cubic spacing, and element properties, 

support conditions and loading which may have linear, quadratic or 

cubic variations. 

The solution of the structure load deflection equations 

in LUSAS is carried out - by a random access frontal solution 

technique. 	This solution technique, as with many others, 

requires that the equations are reduced in a certain order to 

keep the front width (akin to bandwidth), and thus the total 

number of arithmetic operations, to a minimum. 	For the frontal 

solution,this is controlled by the order in which the elements 

• are presented. 	A useful facility is provided in LUSAS in 

• the next data chapter, whereby the ordering of the elements may 

be controlled by the user according to any one of the following 

procedures. 
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(i) For most structures it is possible to number 

the elements across the narrow direction of 

the structure and the solution can be carried 

out accordihg to ascending element order. In 

this case the header card SOLUTION ORDER ASCENDING 

is inserted or assumed as the default procedure if 

no card is provided. 

(ii) For certain structures it may be convenient 

for the solution to be carried out according to 

the order in which the elements were presented 

or generated. 	In this case the header card 

SOLUTION ORDER PRESENTED is inserted. 

(iii) For other structures it may be convenient to 

assign certain numbers to elements to simplify 

the data input for automatic generation or to 

add new element numbers for mesh refinement 

without renumbering the whole mesh. In this 

case the header card SOLUTION ORDER is inserted 

and the element solution order can then be 

specified as data. 	The data supplied by 

the user, is in accordance with the horizontal 

looping facility which expresses the series 

i + k, i + 2k, i + 3k, ... j, 

where i and j are positive integer element 

numbers and k is a positive or negative integer, 

• 
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as 

j, k 

As a special case, the series may consist of 

only i. 

r 
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The next data chapter is for the specification of the 

coordinates of each nodal point and the header card required 

is NODE COORDINATES. The input that follows this header card 

can include numerical data such as a node number and its 

coordinates punched on each card , alphanumeric data as required 

by the coordinate generation schemes provided in LUSAS, or 

numerical data as required by a user-supplied subroutine. The 

incremental generation scheme mentioned previously can be employed 

here, and can generate, for example, lines of nodes with equal, 

quadratic or cubic spacing between the nodes with straight, 

quadratic or cubic shapes. The coordinates of any node can be 

overwritten by new coordinates, dummy nodes not associated with 

elements can be specified, and gaps can be left in the node 

numbering sequence if required with no penalty in central memory 

requirements. These facilities have proved valuable for mesh 

refinement and give flexibility in the generation of data. 

The main feature of the coordinate generation facilities 

is the Zienkiewicz and Phillips' scheme for curvilinear mapping 

of parabolic quadrilaterals
Z3 
 . This scheme allows a unique 

coordinate mapping of curvilinear and cartesian coordinates in 

two and three dimensions by using the shape functions of the 

eight node isoparametric quadrilateral element.
Zl  
 The input 

data required is the header card QUADRILATERAL SPACING, the node 

number and coordinates of each corner point, and the coordinates 

of a point along each side of the quadrilateral. The side points 

control the grading of the mesh in any direction and can distort 

the quadrilateral to have curved parabolic sides. 	It should be 

noted that the side points are not necessarily coincident with 
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a node. 	If the coordinates of the side points are not specified 

the computer system assumes the coordinates for the centre of 

each side and the corresponding mesh generated is a quadrilateral 

with straight sides and equal spacing. The distortion of the 

quadrilateral can be quite severe, even to the point of two sides 

lying on a straight line. However, corner angles must not be 

greater than 180°  otherwise non-uniqueness of mapping may result. 

This arrangement of data input for curvilinear mapping has been 

L6 
described previously by Lyons, Cassell and Hobbs. 

The next data chapter is for the specification of element 

elastic properties or rigidities and requires header cards such 

as PLATE PROPERTIES or BEAM RIGIDITIES. The horizontal looping 

facility is employed here for the specification of several elements 

with identical properties or rigidities. The incremental 

generation facility can also be employed and can be useful for 

generating element properties or rigidities that have linear, 

quadratic or cubic variations. 	Overwriting is permitted, as is 

the specification of dummy element properties or rigidities. 

The penultimate data chapter is for the specification of 

support node conditions and requires the header card SUPPORT NODES. 

The support conditions for each variable at a node may be specified 

as free'(F), restrained (R) with a prescribed displacement of 

zero or a positive or negative value, and spring (S) with a 

positive spring stiffness constant. 	The horizontal looping 

facility is employed here for the specification of several nodes 

with identical support conditions. 	The incremental generation 

facility can also be employed and can be useful for generation 

prescribed displacement or spring constants that have linear, 
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quadratic or cubic variations. Overwriting is permitted, as 

is the specification of dummy support nodes. 

The ultimate data chapter is for the specification of 

the load conditions and requires the header card LOAD CASE. The 

computer system will accept any number of load cases providing 

there is sufficient central memory available. The load types 

incorporated at present are concentrated loads, uniformly 

distributed loads, constant body forces and body force potentials. 

The horizontal looping facility is employed here for the 

specification of several nodes or elements with identical loads. 

The incremental facility can also be employed for the generation 

of loads that have linear, quadratic or cubic variations. 	If 

the same node or element number is specified more than once the 

computer system takes the sum of these values as the load case. 

The specification of dummy loads is permitted. 

The data card following the last load case item must be 

an END card or a PROBLEM and for the next problem. However, 

both of these cards instruct the computer system to output 

a summary of the data and, providing there are no errors, to 

proceed with the sequence of computations required to solve the 

problem. 

After the data input has been read and stored in the 

dynamic vector array, vide Fig. 2.3 to Fig. 2.5,, the computer 

system computes the segment lengths of the dynamic vector 

required for the pre-solution, solution and post-solution phases. 

For the information of the user a map of the various segment 

lengths is provided, together with the maximum length of dynamic 

vector required. 	If the length of the dynamic vector specified 
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by the user is insufficient for the problem, the computer 

system issues an error message, terminates execution and exits 

to the next problem. 

The computer system now proceeds to form a list of active 

node numbers, equation numbers and front destinations, and a 

list of active support node numbers as shown in Fig. 2.3. 

The array of element node numbers is coded to contain the 

appearance code numbers for the node and variables, and the array 

of node coordinate numbers is coded to include the number of 

variables at each node and the position of the node in the array 

of active node numbers. All of these arrays include single 

computer words which contain several integer values. This 

technique, referred.to here as integer;compaction, is shown in 

Fig. 2.5 and saves valuable central memory without any significant 

effect on the computational efficiency of the computer system. 

The compact structure of the data storage scheme permits all data 

for a large number of elements to be stored in the central memory, 

as opposed to secondary storage devices. This has the advantage 

of high speed data retrieval during the formation of the individual 

element records. 

For a dynamic vector array size of 27K, the maximum number 

of elements that the computer system could accommodate with respect 

to data storage requirements would be, for example: 

4 node Isoparametric plane stress elements 
	

1900 

4 node ISOBEAM flat shell elements 
	

1400 

8 node semiloof doubly curved shell elements 
	

600 

20 node Isoparametric solid elements 
	

300 
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2.4.2 Pre-solution processor 

The pre-solution processor simply retrieves data stored 

in the dynamic vector array and assembles each of the individual 

element records in turn. Each element record includes arrays 

of the element node numbers, number of variables at each node, 

node destinations, support node destinations, node appearance 

codes, node coordinates, elastic properties, thermal properties, 

support values, support codes whether free,restrained or spring, 

constant body forces, body force potentials, nodal initial stresses 

and strains, node numbers for each variable, equation numbers, 

front destinations and variable appearance codes, vide Fig.2.3. 

This data is then transferred to the appropriate secondary element 

overlay module where the element stress matrices are computed and 

written onto tape, the stiffness matrix is computed, and the element 

load vector due to constant body forces and body force potentials 

is calculated. Control is then returned to the primary overlay 

module where the stiffness matrix and element load vectors are 

modified in accordance with the support conditions. The 

concentrated loads for nodes making their last appearance are 

added into the element load vector, and the second element record 

which contains the solution data, including the element load vector, 

is transferred to tape followed by the element stiffness matrix. 

2.4.3 Random access front processor' 

The computational procedure of the finite element displacement 

method requires the solution of the matrix equation 

K6 	= 	P 	 . (2.1) 



50 

where K is the coefficient or structure stiffness matrix, (S 

is the vector of unknown diSplacements, and P is the vector of 

applied loads. 	This matrix equation constitutes a set of 

perhaps several thousand simultaneous equations, the coefficient 

matrix of which is symmetrical, positive-definite and banded 

about the diagonal. Theoretically the various direct solution 

algorithms that have been developed to date are similar, but 

their computer implementation differs significantly. 	Thus the 

principle scientific discipline involved is that of system 

engineering, and it is in this area that considerable research 

has been carried out in the quest for efficient equation 

solvers. F2,12,M3,M4,W1 

The algorithm which solves a set of linear algebraic 

equations with the minimum of arithmetic operations is Gaussian 

elimination, or one of its closely associated techniques. 	For 

symmetric positive-definite equations, Gaussian elimination is 

guaranteed to be numerically stable irrespective of the order in 

which the equations are eliminated, and with floating point 

arithmetic a pivotal search is unnecessary. 

Virtually all structure stiffness matrices, as found in 

the finite element method, are not only banded about the diagonal 

but exhibit areas of sparsity within this band. 	The fundamental 

requirement for the efficient solution of these structure equations 

is to avoid superfluous arithmetic operations on the zeros. 

Basically there are two ways of handling sparsity: 
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(i) In the data structure by exluding all zero 

coefficients from storage. 

(ii) In the computations by excluding all operations 

on zero coefficients. 

Each approach has its advantages, but it is not clear which is 

to be preferred in general. 

An elegant solution procedure for avoiding the zero 

coefficients within the band of a structure stiffness matrix is 

frontal technique,as developed by Irons
Iland Bamford M1. The 

computer algorithm is based on Gaussian elimination and takes 

advantage of both the symmetry and sparsity found in structural 

stiffness matrices. Large variations of local bandwidth are handled 

in a compact area of central memory, and numerical operations on 

zeros are essentially avoided. Consequently, the method is 

Particularly efficient for finite elements with side nodes, or for 

bifurcated structures, when re-entrant sparseness occurs. The 

solution proceeds according to the ordering of the elements for 

which there is an optimum, and the node numbering is irrelevant. 

In general, element ordering is more natural and straightforward to 

use than node ordering, especially when a computer system is enhanced 

with a reordering option. For these reasons, the frontal technique 

has been incorporated into the general finite element computer 

system described here, together with a user specified solution 

order facility. 	Irons
Il has presented a detailed description 

and Fortran listing of the frontal technique and it is from this 

that the present solution routine has been-developed. 
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The principle of the frontal solution is indicated by 

the Gaussian algorithm itself. The elimination of
r 
for row 

at. 

r of a system of equations leads to a modification of the 

coefficients in the remaining rows according to 

K. K 
lr rj  

K. * = K. 
ij 	ij rr 

K. P 
lr r Pi 	P

i rr 

(2.2) 

(2.3) 

where the modifications are only for non-zero admissible pairs 

The elimination reduces the matrix K to an upper 

triangular matrix. 	TheterMsK..13 
 for the overall stiffness 

matrix and P. for the overall load vector are the sum of the 
1 

individual element contributions, and need not be fully summed 

when the above modification is executed. However, it can be 

seen from the expressions that the terms Kir (which is equal 

to Kri 
by symmetry), K

rj
,  K

rr 
and P

r 
of row r, must be fully 

summed before
r 

can be eliminated. 	It therefore does not 

matter in which order the element contributions are added to 

K..ij and P.1
, or in which order the S

r 
are eliminated provided 

that row r is fully summed. Also the only variables required 

in the central memory are the active coefficients of13 and 

the active terms of P. which are to be modified. 
1 

The coefficients 

of K..ij form a densely populated triangular array which excludes 

the zeros outside the band and this is often smaller than the 

corresponding triangle of coefficients required for a band algorithm. 
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These coefficients continually change but the frontal technique 

avoids disturbing 'the active variables residing in core by using 

the rows and columns vacated by recently eliminated equations. 

Thus the frontal technique continuously alternates between the 

assembly of the element contributions to form the overall stiffness 

matrix, and the elimination of completed equations. 	The reduced 

equations are saved on secondary storage to be retrieved later for 

the back-substitution phase. 	The dimension of the triangle of 

stiffness coefficients is termed the front width, and this changes 

as the solution proceeds. 	It is important that the element 

stiffness matrices and load vectors are introduced into the central 

memory in an optimum order to keep the front width to a minimum. 

The maximum area of central memory required for a solution is 

dependent on the maximum front width. 

The back-substitution phase reads the element records and 

reduced equations from tape in reversed order and calculates 

the displacements according to 

S
n  

Pn* 
(2.4) 

K * nn 

j=n 
and S. = (P. - 	E 	K. (5.)/K..* for i < n 

1 	1 j=i+1 13  3 11 

where n is the total number of unknown displacements. 

The housekeeping for the frontal solution procedure can 

be briefly illustrated by reference to the simple structure shown 

(2.5) 

in Fig. 2.8, which has only one variable at each node. 
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Element number 1 with variables 1,2,6 is introduced into 

the central memory and its coefficients are assembled into 

locations in the overall stiffness and load vectors in 

accordance with its destination vector (1,2,3). 	Since variable 1 

appears for the last time it is eliminated and the reduced 

equation preserved on backing storage. The positions of the 

active variables remaining in core are [0,2,6 . 

Element number 2 with variables 2,3,7 is now introduced. 

Variable 2 already has a place in the second location, variable 3 

is new so is given the vacant place in the first equation, and 

variable 7 is also new so is given a place in the fourth location. 

The destination vector for element number 2 is thus (2,1,4). 

Since variable 3 appears for the last time it is eliminated and 

the reduced equation preserved on backing storage. The position 

of active variables remaining in core are [ 0,2,6,7 ]. 

Finally, element number 3 with variables 2,.7,6 is 

introduced and since all of these variables are already active 

the destinations are obviously (2,4,3). 	All of these variables 

appear for the last time and accordingly are eliminated. 

From the preceding example it can be seen that the maximum 

size of problem is limited by the amount of central memory 

available for the overall stiffness and load vector arrays. 	The 

random access front processor implemented in LUSAS is organised 

to provide a maximum amount of storage for these arrays, by segmenting 

the dynamic vector array for each phase of the solution,as shown 

a 
	 in Fig. 2.1i. 	The elimination phase for the first solution is 

critical and the only arrays used in addition to the overall 

stiffness and load arrays are the arrays for the current active nodes 
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and variables, the array for element record 2 which consists 

essentially of element loads, and the buffer array which is used 

for element stiffness matrices and reduced equation coefficients 

consecutively. 	The latter action is possible since the element 

stiffness coefficients are immediately assembled into the overall 

stiffness matrix as they appear in core, leaving the equation 

buffer free to receive the next set of reduced equation coefficients. 

For elements with large stiffness matrices, for example, the 32 

node isoparametric solid element with 4656 stiffness coefficients, 

the buffer length is minimised by fragmenting the stiffness record 

into several shorter records. With these core saving arrangements 

up to 95% of the dynamic vector array is available for the overall 

stiffness matrix and load vectors. 

The frontal solution processor implemented can take account 

of elements with different numbers of variables at each node. This 

has been achieved by operating with the destination and appearance 

code for each variable instead of each node of the element. This 

approach is more efficient in that there is a greater likelihood 

of finding a vacant position in the front for a single variable 

than a vacant position for a node with a particular number of 

variables. Also this approach has greater flexibility and can 

accommodate, for example, the coupling of individual variables. 

The implementation of such facilities involves modifications 

to only the pre-processing routines which must determine the 

appropriate destination and appearance codes of each variable. 

Every tape reading operation after the initial forward 

elimination process, must access the records in reversed order. 

10 
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The original version of the frontal program required the computer 

action BACKSPACE-READ-BACKSPACE, but this is costly both in 

peripheral and central processing time . 	In the present program 

this action was avoided by a simple modification which involves 

the use of random access disc transfers. 	The frontal solution 

procedure requires the tape records to be accessed sequentially 

by both forward and backward reading. If during the creation of 

a series of records ,the random access position of each record is 

stored with the following record, and so on; then the series of 

records can be read backwards because as each record is read the 

position on disc of the next record is given. This procedure 

is completely dynamic because only the exact length of each record, 

which varies throughout the solution, is transferred to disc. This 

procedure has the advantage of being straightforward to implement 

and does not require the use of further valuable central memory 

locations. 

The computational efficiency of the front processor was 

improved further by the incorporation of a machine code subroutine 

of the innermost reduction loop. 

The success of implementing both the random access and machine 

code subroutine facilities can be judged from the following example. 

The problem was a shell roof which was idealised with a mixed 

mesh of beam and shell elements, and required the solution of 

1512 equations with a maximum front width of 108. 	The computer 

tOf the order of 30x the cost of a READ statement for a 

CDC6500 computer 
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used was a CDC6500 and the total problem costs included data 

pre-processing, the assembly of the element characteristic 

matrices, the solution of equations and the output post-processing 

phases. A comparison of computer costs with and without the 
a 

machine code and random access facilities are given in Table 2.1. 

The refined diagonal decay criterion for the estimation 

of round-off damage, as suggested by Irons, was incorporated into 

the frontal solution. During the forward elimination process 

the diagonal stiffness terms decrease monotonically but remain 

positive. If the final pivotal value is small compared with 

the proceeding values ill-conditioning would be suspected. In 

the program each time a diagonal term is modified during the 

elimination, its initial value squared is accumulated into an 

extra overall load vector. 	The criterion is that ratio of the 

square root of this sum divided by the final value of the diagonal 

should not exceed a certain value 

Ccrit 

{E(K..)
2
} 

3.1 

 

K.. (final) (2. 6) 

If C
crit 

is greater than 10
4 then ill-conditioning is suspected 

but the solution continues. 	If 
Ccrit 

is greater than 10
11 fatal 

ill-conditioning is assumed, and the solution is terminated. 

The program prints out the node number and variable which caused 

the problem to enable the user to perhaps correct the fault. 
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2.4.4 Post-solution processor 

The post-solution processor retrieves from tape, the 

overall solution vector of displacements, and calculates and 

outputs the element stresses, displacements at each node and 

reactions to earth, for each load case. 	There are several 

output options available which may be required by the user 

including, element stresses with respect to the element local 

coordinates, as opposed to system coordinates, averaged nodal 

stresses, and force components as opposed to stress components. 

The output is concise and self-explanatory with many texts. 

External user supplied subroutines can be incorporated 

into the computer system to post-process and output the results 

in accordance with the user's particular requirements. 	Since 

the element records, reduced equations and element results for 

a problem are stored on disc, it would be possible for the 

user to update the element load vectors or stiffness matrices 

and resolve. 	This would enable simple non-linear or dynamic 

problems to be tackled. 
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2.5 	THE FINITE ELEMENT LIBRARY 

The finite element types implemented in the computer 

system include joint elements, spar and beam elements, 

extensional elements, flexural elements, axi-symmetric elements, 

extensional-flexural plate elements, doubly curved thin shell 

elements, doubly curved thick shell elements and solid three 

dimensional elements. A list of the element types currently 

available, together with,details of the permitted data input 

is given in Appendix 1. 

2.5.1 Standard elements 

The characteristic matrices of nearly all of the standard 

elements incorporated in the computer system are computed using 

numerical integration. A detailed description of most of the 

Zl 
elements can be found in the text by Zienkiewicz. 

2.5.2 Special elements 

LUSAS contains several elements that have been specially 

developed for use in the analysis of plates in flexure and 

cellular structures. 	These are: 

(i) A simple quadrilateral element ISOFLEX 4t 

which is efficient for the analysis of 

thin plates in flexure. 

(ii) A simple triangular element ISOFLEX 3t  which, 

in conjunction with the elements of type (1), 

is suitable for use in the analysis of thin 

tSee Chapter 3 
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plates in flexure which require mesh 

refinement or have irregular boundaries. 

(iii) A curvilinear quadrilateral element 

ISOFLEX 8 which is efficient for the analysis 

of thin plates in flexure with curved 

boundaries. 

(iv) A curvilinear triangular element ISOFLEX 6t 

which, in conjunction with the elements of 

type (iii), is suitable for use in the 

analysis of thin plates in flexure which 

require mesh refinement or have irregular 

boundaries. 

(v) A quadrilateral extensional-flexural element 

ISOBEAM Ott which is efficient in representing 

the overall behaviour of cellular structures 

in flexure. 

(iv) 	A triangular extensional-flexural element 

ISOBEAM 3
t*which, in conjunction with the 

elements of type (v), may be suitable for the 

analysis of skewed cellular structures in 

flexure. 

(vii) 	A curvilinear quadrilateral extensional-flexural 

element ISOBEAM 6
tt 

which in addition to being-

very efficient in representing the overall 

behaviour of cellular structures in flexure, 

is particularly suitable for curved structures 

See Chapter 3, 

*It should be 
this element 

•MSee Chapter 4 

emphasised that although the formulation is given, 
has not been tested numerically 
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or for use in rapidly varying stress 

fields. 

(viii) A curvilinear triangular extensional-

flexural element ISOBEAM 5 which, in 

conjunction with elements of type (vii), 

may be suitable for use in the analysis of 

skewed cellular structures in flexure. 

2.5.3 Incorporation of new elements 

New improved finite element formulations are continually 

appearing in the literature. The flexibility and modularity 

of the computer system is such that new elements can be quickly 

and easily incorporated and tested. 	Since the computer system 

is based on a dynamic vector array principle there are no 

limitations to the maximum number of element nodes, size of 

stiffness matrix, number of geometric properties, and number of 

material properties, providing a sufficient area of computer 

central memory is available. Also the number of variables can 

vary from node to node but must be in the range 0 to 7 inclusive. 

tt See Chapter 4 

* It should be emphasised that although the formulation is given, 
this element has not been tested numerically 
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2.6 	VERIFICATION OF THE COMPUTER SYSTEM 

The verification of LUSAS has been made by reference 

to results obtained from the patch test,
17,110 

classical 

theory, other numerical techniques, and model experiments. 

This section briefly describes some applications of LUSAS. 

2.6.1 Doubly curved arch dam under hydrostatic pressure 

The El Altazar dam was the subject of theoretical and 

model studies at Imperial College.
W7 

Details are shown in 

Figs 2.9 and 2.10. 

The dam and valley socket was idealized with hexahedronal 

and pentahedronal elements, Fig. 2.11, and analysed using 

LUSAS. The results given for displacements and stresses, 

Figs 2.12 and 2.13, compare well with an alternative finite 

element analysis
B4  which employed the Ahmad thick shell element. 

2.6.2 The analysis of a thin intersecting cylindrical shell 

problem — T--joint 

The analysis of thin intersecting cylindrical shells 

presents problems in finite element analysis because of the 

geometric discontinuity at the junction. Early attempts 

included idealizations comprised of flat extensional-flexural 

elements with three translations and three rotations as the 

nodal variables.
G3 It was found that a large number of these 

elements were required to represent the curvature of the 

cylinders, and that inaccuracies occurred at the junction due 

to connecting artificial extensional rotation variables in 

one cylinder, to the flexural rotation variables of the. other 
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cylinder. 	Recently however, Irons14-16 had developed 

a doubly curved thin shell element which overcomes these 

earlier difficulties, and this element has been incorporated 

in LUSAS. 

The T-joint model, Fig. 2.14, was tested experimentally  

and analysed using LUSAS. 	For the analysis the model was 

idealized as an assemblage of 60 thin shell elementsJl Fig. 2.15, 

and this coincides with a mesh used by other investigators. 

It can be seen that the finite element and experimental results 

are in close agreement. 

2.6.3 Other models 

Further models that have been analysed using LUSAS include 

a straight three cell box girder bridge model (section 4.8.5), a 

straight multicell bridge model (section 4.8.6), a curved single 

cell box girder bridge model (section 4.8.7), a shear wall
Ll 

 

a stiffened diaphragm 
D3  
, a stiffened plate, 	and and a composite 

bifurcated bridge.
02 

 

2.7 	CONCLUSIONS 

A general computer system has been developed which can 

be used for the analysis of a wide variety of linear elastic 

structures. 	The computer system incorporates flexible free 

format input facilities which include powerful automatic data 

generation and comprehensive error diagnostics, an extensive 

range of finite element types, an efficient solution processor, 

and flexible output facilities. 	Its practical application 

has been illustrated by reference to the analysis of two models. 
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CHAPTER3 

THIN PLATE FLEXURE ELEMENTS 

3.1 	INTRODUCTION 

In the finite element analysis of plates with arbitrary 

boundaries or shells comprised of flat plates, triangular and 

quadrilateral flexural elements having three variables at the 

vertices are commonly used. 	Elements with this simple nodal 

configuration have the advantage of being readily incorporated 

into computer systems which accept only elements with a constant 

number of variables at each node. They can also be used in 

conjunction with the standard grillage beam element for the 

analysis of, for example, a ribbed plate. 

Elements with a linear stress response 

= f(1,x,y) 	 (3.1) 

are known to have a good performance. A conforming plate 

flexure displacement element, with only the lateral displacement 

and its two first derivatives at the vertices, cannot 

accommodate this linear stress response because there is only 

sufficient information to define a linear variation of the 

tangential rotation along each side as opposed to the required 

quadratic variation. 	It is possible that a hybrid formulation 

could succeed, but as an alternative, a higher order element 

could be created by the introduction of a midside node at which 
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a tangential rotation is specified.
B2,A4,R1 	

This additional 

rotation variable would have the minor disadvantage of 

producing an element with different numbers of nodal variables, 

but this is preferable to the use of higher order derivatives, 

which require special treatment for abrupt changes of plate 

thickness or properties. 	If the departure from linearity of 

the midside tangential rotation is used instead of the absolute 

value 
R1

, then such an element can still be used in conjunction 

with a standard grillage beam element, simply by constraining 

this variable to zero in the presence of a beam. A midside 

node can also be used to define curved element boundaries and 

this gives an improved geometric definition for many structures. 

A unified formulation which includes triangular and 

quadrilateral elements with the aforementioned nodal configurations 

does not exist. Furthermore, nearly all individual formulations 

to date fail to satisfy the requirements for thin plate flexure 

elements. 

The classical requirements for thin plate flexure elements 

are that the assumed displacements should be continuous within 

each element and across the element boundaries, and should provide 

every state of constant curvature including rigid body motions. 

Also, the Kirchhoff thin plate theory, in which normals to the 

middle surface remain straight and normal to the mid-surface. 

during deformation, is required to exclude shear deformations. 

In the displacement formulation, if these requirements are 

fulfilled then the principle of minimum potential energy is 
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valid, and convergence to the correct solution is ensured. 

However, Irons
18 has shown that it is impossible to specify 

simple polynomial expressions for shape functions that ensure 

both displacement (C
0) and slope (C

1
) continuity, when only 

three variables are prescribed at the element vertices. 

Consequently earlier attempts to produce satisfactory elements 

included formulations which either introduced complex functions 

to satisfy slope continuity, or violated this requirement 

precipitating precarious convergence characteristics. For 

example, the fully conforming triangles of Bazeley et al 
Bl 
 and

Clough and Tocher
C4, and the fully conforming quadrilaterals of 

Clough and Felippa
C2
and Veubeke

V1,B3, 
 all require complex 

computer code, whilst the simple non-conforming triangle also 

by Bazeley et al has limited convergence properties. 

The hybrid method, pioneered by Pian
P4

, avoids the 

difficulties encountered with the conventional displacement 

formulations, and some of the more notable work has been carried 

out by Allman
A4,A6, 

 Severn and Taylor
S6

, WolfW6, and Torbe and 

Church
T2. However, hybrid elements are prone to spurious 

mechanismst C3,W6  , and the formulation is often cumbersome, but 

it is generally recognised that they are capable of providing 

accurate solutionsP5. 

In recent years, it has been established that a necessary 

and sufficient condition for convergence to the correct solution 

is that an element should pass the patch test.
17,110,S8  This 

test in itself does not remove the difficulties encountered with 

t A purtabation which carries no strain energy 
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the formulation of plate flexure elements, but it does broaden 

the search to include for example, non-conforming elements, 

elements with approximately integrated energy, and elements in 

which the Kirchhoff requirement for thin plates is imposed 

discretely. Regrettably there are relatively few simple 

elements which pass the patch test. 

Irons and Razzaque
19,R1 have developed synthetic versions 

of Allmans triangular elements which are based on an incompatible 

displacement formulation with smoothed derivatives. These 

elements pass the patch test and are coded into a shape function 

subroutine, but the higher order element cannot accommodate 

curved boundaries. 

A radical approach for the formulation of plate flexure 

elements is to proceed initially from the basic equations of 

t 
elasticity and allow shear deformations to occur.F4,K1,M6,S7,T2,U1  

The Kirchhoff hypothesis for thin plates is then invoked by 

applying constraints at discrete points within the element domain, 

for example, at the nodes, the boundaries, or the Gauss 

I3-6,W5 	13,R2,B2 
points. 	Irons and Razzaque 	used this technique 

to formulate a higher order quadrilateral with a good performance, 

but this element does not pass the patch test for quadrilateral 

geometry. 

In this chapter a formulation is given for a family of 

thin plate flexure elements, hereafter referred to as the 

ISOFLEX elements. These elements belong to the second generation 

t Note also the extensive work based on Ahmads' stacked shell 

element.
A3,B4,C6,H1,P3,R2,T1 
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of isoparametric elements and have an extensive ancestry. 

The formulation is based on the three-dimensional formulation 

originally given by Ahmad et al
A3

, Uses reduced integration 

techniques presented by Zienkiewicz et al
Z2

, and employs an 

essential modification to invoke the Kirchhoff normality 

hypothesis at discrete points within the element, similar to 

that developed by Irons.
13-6 

The ISOFLEX elements may have 

tapering thickness and curved boundaries, and have the simplest 

nodal configurations Fig.3.1, which allow the standard grillage 

beam element to be incorporated into an idealisation. They 

fulfil the requirements for convergence because even a mixed 

mesh of triangular and quadrilateral elements of arbitrary 

geometry passes the patch test. 	Furthermore, there are no 

limitations such as low rank or spurious mechanisms. The 

performance of the ISOFLEX family is demonstrated by extensive 

convergence studies and comparisons with various classical 

solutions, and it is shown that the elements can be used with 

confidence even in rapidly varying stress fields. The ISOFLEX 

elements are a unified formulation which can be easily 

implemented from a single compact shape function subroutine, 

and compared with previous elements they are also computationally 

efficient. 
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3.2 	REQUIREMENTS FOR THIN PLATE FLEXURE ELEMENTS 

The requirements for thin plate flexure elements may 

be summarised as follows: 

(i) The elements should be capable of being used 

in triangular and quadrilateral form and 

should be capable of representing tapering 

thickness and curved boundaries when necessary. 

In general quadrilateral elements are 

preferred requiring less data preparation and 

computer output and for a given number of 

variables can give greater accuracy. Triangular 

elements are occasionally required when the 

element size is refined in the vicinity of 

rapidly varying stress fields, or for 

irregular boundaries. 

(ii) The nodal configuration should be simple and 

permit the standard grillage beam element to 

be incorporated into an idealization. 

Second or higher order derivatives should be 

avoided and low order elements should have a 

constant number of variables at each node. 

(iii) As a mesh of arbitrarily shaped elements is 

refined, convergence to the correct solution 

should be ensured. 	With certain provisos, 

the existence of fine-mesh convergence for 

an element can be established by the patch 

test. 
17,110. 

 The convergence of a mesh 
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11. 

comprised of both triangular and 

quadrilateral elements should also be 

established. 

(iv) The equations produced should not be ill-

conditioned and fail for certain geometries. 

(v) The coarse mesh performance should be such 

that if an idealization is in error the 

results are not unreasonable. 

(vi) The element(s) should be easy to implement 

and computationally efficient. A shape 

function subroutine is easy to implement, 

and reduced numerical integration invites 

computational efficiency. 	Ideally, it 

should be possible to code a family of 

elements into a single compact shape 

function subroutine thus saving a substantial 

area of computer core. 

(vii) The stresses should be available at the 

nodes to be consistent with the majority of 

finite element system output schemes. Sometimes 

stress output at the Gauss points is acceptable 

if the accuracy is improved.B5 
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3.3 THEORY FOR CONSTRAINED THIN PLATE ELEMENTS 

The derivation commences with the three dimensional 

equations of elasticity which include shearing deformations. 

Thus the in-plane and lateral displacements u, v and w are 

specified independently, and are in coordinate directions 

shown in Fig.3.2. The Kirchhoff hypothesis for thin plates 

without shearing deformations is then invoked discretely by 

applying constraints to the displacement field. 

3.3.1 Basic assumptions 

The basic assumptions for a plate including shearing 

deformations are 

(i) The deflections are small 

(ii) Lines originally normal to the mid-surface 

remain straight during the deformations 

(iii) Stresses and strains normal to the mid-surface 

are always negligible 

For thin plates the additional assumption required is 

(iv) Lines originally normal to the mid-surface 

remain normal during the deformations, i.e. 

zero shear strain. 

3.3.2 Derivation of the thin plate theory 

.From the basic assumptions for a plate with transverse 

shearing deformations, the displacements of any point x, y 

and z in the plate can be specified as 
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where e and e are the rotations of the normals to the 
x 	y 

mid-surface with the sign convention of Fig. 3.2. 

From this definition of displacements the strain 

components can be expressed as 

Du 
Dx 

@1/ 
ay 

9u 
ay 

aw 
+ 

+ 

9v 
ax 

Du 
3z 

Dv 
3z 

(3.3) 

ax 

aw
ay 

where c is the in-plane strain components and s 
the transverse 

n 
 

shear strain components. 

Combining eqns 3.2 and 3.3 for the in-plane 

components of strain gives 
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Noting that e
x 

= — av and e = b-;  , the rotational 

derivatives E
f 

can be rewritten as 

2
u  

3x3z 

3
2
v  

Ef 
= 	4

3173z 

D
2
u  

ayaz 

(3.5) 

The displacement field is now constrained to effectively 

exclude transverse shear strains as required by the Kirchhoff 

hypothesis, vide assumption (iv), by the technique described 

in a subsequent section. 	The evaluation of the element 

stiffness matrix now involves only in-plane stress and strain 

products. The in-plane stress components Un  are given by 

the usual equation 

(In = Dn En (3.6) 

where D
n 

is the conventional membrane modulus matrix where 

-01 
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dx dl 0 

dl dy 0 

0 	0 	dxy 

(3.7) 

  

with dx = dy - 	E  
1-V 

2 
 

dl = 
1-V

2

E  
dxy - 

2(1+V) 

for an isotropic material, in which E is the elastic modulus 

and V Poisson's ratio. 

From the variational principle of minimum potential 

energy the contribution of the internal stresses to the energy 

functional is the volume integral 

1 p 
--Je

T  
21Inn dv  

Substituting eqns 3.4 and 3.6 into this integral, expanding 

and rearranging gives 

-2- 1 Iv  EnT  Crn  dv = 1 fife
T 
a dxdydz 

n n 

III = 
1 	

zEf
T 
Dn z 
	dxdydz 

2 

1 
—jj c

f
T  

ID z
2 
dz 	dxdt 

2 

(3.8) 

(3.9) 

(3.10) 
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The innermost integral contains the coordinate z which can be 

integrated explicitly before the integration with respect to 

x and y. Thus the energy integral may be rewritten as 

1 
of  af  dxdy 

where o
f 

= D
f 

Ef 

and D
f = IDnz

2 
dz 

so that the final integration may be carried out with respect 

to x and y only. 

The generalised stress vector CY
f 
represents the 

conventional flexural stress resultants of thin plate theory 

of = {My, Mx ,Mxy  }
T  

(3.11) 

(3.12) 

(3.13) 

(3.14) 

and the generalised strain vector Ef  represents the conventional 

curvatures. Since the transverse shear strains are only constrained 

to be approximately zero, these strains are more appropriately 

termed pseudo-curvatures. 	For approximately zero shear, 

Du 
	ax 
	Dv 	3w 

= - — Dx and --- = - 	, eqn. 3.5 becomes Dz 

• 

D
2
v 	D

2
w  

DyDz 
> - < 	, 	(3.15) Dy? 

D
2
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2
v

2  D
2
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The integration of eqn. 3.13 gives the conventional flexural 

rigidity Df where 

Dx D1 o 

Df Dl Dy 0 (3.16) 

0 0 Dxy 

for orthotropy with respect to the x and y axes and in the 

case of an isotropic material reduces to 

Et3 
Dx = Dy 	

12 (1-v2) 

D1 
Et

3 

12(1-V
2 

(3.17) 

Dxy = 
Gt
3 

Et
3 

12 
24(1+V) 

where t is the plate thickness and G the membrane shearing 

modulus. 

The formulation now follows the standard displacement 

method
Zl. The displacement field can be expressed in terms 

of a set of discrete nodal displacements 
(se 

by use of suitable 

shape functions N. 

N Se 	 (3.18) 

Suitable constraints are applied to exclude shear strains and 

from eqn. 3.15 the flexural strains are defined as 
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a 

BS° 	
(3.19) 

where B is the strain matrix which also includes shear 

constraints. 

The element stiffness matrix can be derived from 

the principle of virtual work from eqns 3,11 and 3.19 as 

a 
er  

K
e 

= JJ B
T 
 D B dxdy (3.20) 

where D is the flexural modulus matrix, eqn. 3.16, with the 

suffix now removed for convenience. 

3.3.3 Unconstrained displacement fields 

The unconstrained nodal configurations and coordinate 

systems are shown in Fig. 3.3. 	The discrete nodal 

displacements for the ith node are chosen as the mid-surface 

displacement w.
1 
 and the two rotations of the normal 0 and e 

xi 	Yl 

By employing suitable shape functions Ni, the global 

displacement field, eqn. 3.18 , can be written as 

 

n 
= •E 	=  Ni  S. 1 (3.21) 

a 
where n is the total number of nodes. For variable thickness 

elements, defined by nodal thicknesses t,, the displacements 

at a point E in and distance z above the mid-surface, can be 

given by expanding eqn. 3.21 as 
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(3.22) 

(3.23) 

The symbol A refers to the departure from linearity of the 

value with respect to the values at the corner nodes. The 

departures from linearity are 

AS. = 	
1 	

E S (Z-m+1) 
i=2.. 1  

where 2, to m refers to the two corner nodes at the extremities 

of the side of the midside node j, or all corner nodes for 

the central node j. 

(3.24) 

Alt 
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3.3.4 Hierarchical shape functions 

Hierarchical shape functions take account of the 

variables specified as the departure from linearity. For 

the triangle the shape functions are conveniently defined in 

area coordinates L at each node i as 

N. = L. 

	

1 	1 

	

Ni 
	3 

	

4L 	L. 
i-3 -3 

N
i 
= 27L

1
L
2
L
3 

for i = 1,2,3 

for i- -= 4,5,6 and j = 5,6,3 

for i = 7 

(3.25) 

The area coordinates can be defined in terms of the natural 

coordinates as 

L1  = 

L2 = 	 (3.26) 

L3 = 1 - - n 

For the quadrilateral elements the hierarchical shape 

functions are defined in natural coordinates as 

V 

= 2-(1.f. )(1-En ) N. 	 for i = 1,4 
1 4 o o 

Ni 	2 
= 1 --(1-  2  ) (1+n

o
) 	for i = 5 and 7 

(3.27) 
Ni  = 1 	

o)(1-n
2 
 ) 	for i = 5 and 8 

N. = (1.- 2 ) (1-n2) 	for i = 9 

where E0  = Ui  and no  = nni. 

U 

%.• 
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With the definition of the functions N established 

eqns 3.21 and 3.22 define a unique variation of the 

displacements within the element and over any external face 

and full C
o continuity between adjacent elements is maintained. 

3.3.5 Hierarchical mapping and the Jacobian matrix 

It is now necessary to establish the relationship between 

the Cartesian and natural curvilinear coordinate systems. 	The 

x and y coordinates and thickness t at a point 	on the mid- 

surface can be given in a special form as 

where the hierarchical shape functions N are in terms of the 

natural ,7-1 coordinates and the summation is taken over n nodes 

on the element periphery which are sufficient to define the 

element geometry. When midside nodes are require the nodal 

iT 
coordinates (x,y,tii 

become the departures from linearity 

{Ax, Ay, At}T  which are calculated simply as 



81 

             

             

Ax 

Ay 

At 

  

x 

  

x 

y 

t 

      

          

(3.29) 

          

   

2 

  

2 

   

        

  

t 

 

2, 

 

t 
m 

 

             

             

where i is now a midside node and 2, and m are the adjacent 

corner nodes. 

This special form of coordinate transformation, referred 

to here as hierarchical mapping, permits the same shape functions 

to be adopted for the definition of the displacement field as 

for the geometry. Furthermore, the same shape functions apply 

for the geometry of both the straight edged elements defined by 

corner nodes only, and the curvilinear elements defined by 

corner and midside nodes. This approach saves computer time 

compared with an alternative subparametric formulation
Z1 

which 

would require the computation of two sets of shape functions. 

The shape functions are in terms of the natural 

coordinates and therefore it is now necessary to establish the 

analytical process for calculating the strain derivatives of 

eqn. 3.15 which are expressed in Cartesian x, y coordinates. 

Since the thickness of these elements is variable and 

the mid-surface planar the geometry is a special case of 

a three-dimensional solid element. 	The transformation 

relationship can therefore be expected to contain zero products 

which could be avoided in the numerical process with an 

explicit derivation, and to be similar to the two-dimensional 

relationship. For comparison both the two-dimensional and 

special three-dimensional transformation relationships will 

now be derived. 

Ol• 
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From the chain rule the relationship between the natural 

and Cartesian derivatives in two-dimensions can be written in 

matrix notation as 

a 

a 
an 

   

(3.30) 

   

  

a 
ay 

     

     

      

where J is defined as the Jacobian matrix. The components of J 

can be found numerically for any position 	within the element 

from eqn. 3.28 as 

n 

[a] = E 
i=1 

N. 
1 	1 

a 	ac 

N. 
1 	1 

an 	an 

(3.31) 

where x., y. are the x and y coordinates for corner node i or the 

Ax and Ay coordinates for midside node i. The summation is only 

for nodes on the element periphery. 

Inverting the Jacobian in eqn. 3.30 gives the two-

dimensional transformation relationship explicitly as 

1 

ay.  
TrT 

Cy 
— 

a  
ac 

a 
Dx 

an 
9x 

det[JJ 

ax ax 31. an a 
an ay an a an Y ay 

(3.32) 

where det 
ax 	3Y 	-  

= 	an 
ax 
an 	a 



• 

• For the three-dimensional transformation relationship 

the natural coordinate C is introduced for convenience. 	The z 

coordinate at any point ,11,C is now given by 

z = 2 c 
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(3.33) 

where the thickness t of the element at the same point is given 

numerically by eqn. 3.28. 	From the chain rule in matrix 

notation 

DC 

an 

a 

        

        

        

ax By az  
BE BE 9E 

ax By 9z 
an 	an 	911 

 

ax 

a 
By 

az 

     

 

= EJ1 

    

  

By 

 

(3.24) 

     

       

ax ay az 
"TC 

  

_ az _ 
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Inverting the Jacobian gives 

By az By az By az By az By az By az 
an aC DC an aC aE aE aC 3E an an 9E 

1 1 ax az ax az 9x az ax 9z ax az 	
— 

ax az 
[J] det [j] BC an 	— an a aC a ac aC an DC DC an 

ax By ax By ax By ax By 3x By ax By 
an ac BC an 9 BC DC a DC an BE 

0.35Y 

A geometrical interpretation of the Jacobian is that the rows of 

J constitute three vectors which are tangential to the coordinate 

curves ,r1,C at the point of intersection and are known as the 

covariant base vectors; the columns of J
-1 

constitute three vectors 

which are normal to the coordinate surfaces = constant, n = constant 

and c = constant and are known as contravarient base vectors. 



where J
E  

respectively, 

Since 

and ix ac 
3x 

3z -57  

By 
3n 

ax 
Dr1 

0 

9x 

3z 
3C 

3z 
BC 

By 

By 
3 

3x 

3x 

3z 
BC 

3z 
3C 

0 

3y 	,. 
) 

By 
a 

ax 

Dri 

ax 

3z 

an 

3z 

By 
Dfl 

By 

an 

3x 

3x 
an 

3z 
D 

3z 

3n 

By 
aE 

-1 

• [J] - et D1 

where det 

1 

(3.38) 

84 

Mathematically the relationship between the Jacobian J and 

its inverse can be written as 

J 

[J] = (3.36) J 
11 

and 
[j]  -1 1 	 [ 

Ti* det [JI 

(3.37) 

r 
L 3 r, 	/ 3* i 

• 

etc. are the covarient and contravariant base vectors 

and the symbol * signifies a vector cross-product. 

x and y are functions of and fl only, the derivatives 

must be zero, and the inverse Jacobian can be 

simplified to 

No- 
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Air 

On inspection, it can be seen that the first 2 x 2 

partition is identical to the inverted two-dimensional 

	

Jacobian, eqn.3.31. 	Noting from eqn.3.33 that 	= 
a 

and from eqn. 3.38 that az = 	
at = z at etc. and 

 2 Dx 	t ax 

substituting these expressions into eqn. 3.38 gives 

1 	3y 	1 	ay

an 	 t2 

2z at 

L. 	

_ 

r .1 

	

det J 	det [J] 

1 	ax 	1 	ax _ 

 

2z at 

det rJI 	det an 	 DE - t2 ay 
(3.39) 

where the first 2 x 2 partition is identical to J-  for the 

two-dimensional Jacobian. Noting that eqn. 3.39 gives 

3 	t 3 
= 	, the final relationship for the Cartesian x and 

y derivatives in terms of the natural and n derivatives is 

      

  

	

t 	1 
1 	ay' 	1 	ay 1 	z at 

I 

	

1 an 	Di 	1 1 aE I t 3x det Di 	det  
I 

I 

	

I 	I 

1 	 Dx i 	1 	ax  1 _ z at _ 	,., 
det EJ] ' I det [J] 	

t ay 
I 

   

    

  

DE 

a 
3n 

az 

 

   

   

  

(3.40) 

    

    

      

The physical interpretation of eqn. 3.40 is that for variable 

thickness an in-plane strain component, for example E
x ax  , 

includes a small strain contribution from the change of u over 

the thickness. 	When the plate is constant thickness this 

contribution vanishes. 



	

N. 	N. 

	

1 	1 
x y t 

@x Dy at 
aE 3E DE 0 

n 

i=l yi 

aN. aN. 1 	1 
a a; a; 

aN. aN. 
1 	1 

an an an 
ax ay at 
an an an 
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For numerical convenience eqns 3.28 and 3.31 can be 

combined and expanded to include the necessary components to 

create the transfdrmation relationship of eqn.3.40 as 

0 

0 

t. 

(3.41) 

where as before the i nodal values are summed over the nodes on 

the periphery and midside nodes are present the nodal 

coordinates become the departures from linearity. 

3.3.6 Strain-displacement relations 

It is now possible to derive the relationship between 

the flexural strains and the discrete nodal displacements. 	The 

transformation relationship, eqn. .3.40 , can be regarded as the 

standard two-dimensional transformation with a variable thickness 

correction. 	Thus the flexural strain components,eqn.3.5, 

can be written in the form 

D
2
u a

2
v 

a 

au 
ax 

au 

av 
ax 

av 
ay- 

z 

t 

at 
ax 

at 
ay 

3u 
' 

av 
axaz 

a2u 

axaz 

9
2
v az az 

ayaz ayaz - 	ay 
3D 2D 

(3.42) 



3
2
u  

axaz 

3
2
v 

of =< alrz 

2
u 	

2
v  

ayDz axaz 

n 

i=1 
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where all the derivatives to the right involve only the 

two-dimensional transformation. Since the displacement field 

will be constrained to have approximately zero shear strains, 

the second derivatives in z can be dealt with by noting that 

au_ 	
and 

 Dv 	aw 
ria  – a — 

az 	ax 	az 	ay 
Eqn.::3-.42- now becomes 

2 
Du 

2 
Dv a

2
u a

2
v 

1 
+ 

at 
ax 

at 
ay} 

aw 
[ ax ' 

aw 
axaz 

2 
u 

axaz 

a
2
v 

axaz 

2 
3 u 

axaz 

2 
3 v 

ay 

ayaz ayaz ayaz ayaz 

(3.43) 

The plate flexure strain-displacement relationship can now be 

written from eqns.3.15, 3,22, 3.40. and 3.43 as 

1 at 
aN
i

t. W. 

t 	
0 

3x ax 	t ax 
4_ _ 

1 at 
aN
i  ti 

a
mi 	

0 
t ay ay 	t ay 

-1 at aN.  
t Dy ak 

t. aN.1 t. aN. 
Lill 
t ax i t 	ay 

1 D 
9N.

at 
ax Dy 	1 

x 

e 
y 

(3.44) 

where the summation is taken over all nodes n and derivatives are 

found from the standard two-dimensional relations. 	In matrix 

from eqn. 3.44 becomes 



N. 	0 	0 

0 1. 0 	t N t 

1 
4. 

0 	- t  N ti  0 

0 	0 

0 	0 

t. aN. 
1 	1 
t ax 

ti 'ON 
t 9y 0 

t. aN. t. aN. 
1 	1 	1 	a. 
t ax t ay 

0 
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Ef = B', • 
	

B!
1
, 	B' 

n 1  

   

  

(3.45) 

   

    

    

    

Or E 	Be f (3.46) 

where B. is the submatrix relating the flexural strains at 

any point 11 to the displacement components of node i. 

3.3.7 Shape function array 

It is now possible to relate all the displacements and 

derivatives at any point x,11 within the element to the discrete 

nodal displacements. 	Using eqns 3.22 and 3.44 gives 

w 

au 
az 

av 

aw  

aw  

-5Tc 

'37 

a
2
u  

axaz 

3
2
v 

ayaz 

a
2
u 	a

2
v  

TiT; axaz  

1 
ax 

N. 
1 

ay 

1 at 
aN
i 

tax x 

a. 1 pt N1  
t ay ay 

1 at 
aN 

TE ay ax 

1 a t aN  i 
t ax ay 

n 

i=1 

< 
x 

(3.37) 

0 
_ 
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or more concisely 

.5 	= 	w6  e 
	

( 3 . 4 8) 

The use of a shape function array is numerically convenient 

since on extracting the appropriate rows any element matrix 

can easily be formed. However the shape function array has 

yet to be constrained to preclude shear strains. 

3.3.8 Kinematic constraints 

The unconstrained nodal variables for the triangular and 

quadrilateral elements, Fig. 3.3 are now reduced to the 

constrained nodal configurations, Fig. 3.1, by the application 

of sets of independent shear constraints. 	The 20 unconstrained 

variables for ISOFLEX 6 and ISOFLEX 3 triangles require 8 and 11 

constraints respectively, and the 27 unconstrained variables for 

the ISOFLEX 8 and ISOFLEX 4 quadrilaterals require 11 and 15 

constraints respectively. 	If these constraints were enforced so 

that the shear strains were exactly zero throughout an element domain 

then the Kirchhoff requirement for thin plates would be satisfied 

exactly. 	Howevef, the constraints adopted here are enforced so 

that the shear strains are zero at discrete points within an element 

domain,but since an element gains only a small quantity of shear 

strain energy the Kirchhoff requirement is effectively satisfied. 

Furthermore, the unconstrained variables and applied kinematic 

constraints are such that the elements pass the patch test for 

arbitrary triangular and quadrilateral element geometry. 

■■• 
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(i) 	The midside translation and rotation - 2 constraints along 

each edge 

It can be verified that a planar beam element can be 

formulated in a similar manner to the technique proposed in this 

chapter by specifying unconstrained nodal variables at three nodes 

as (w, 
pz 
 ) i = 1,3 with quadratic variations of w = f (x2) and 

911 	, 	, 
az 
— = f (x2). 	If the two variables at the central node are 

eliminated by constraining the shears to be zero at the two Gauss 

points, and the integration for the element stiffness is carried 

out using the two point Gauss rule, then the resulting element 

stiffness matrix is identical to that given by the standard 

formulation based on a variation of w = f (x3) with explicit 

integration. 

For the ISOFLEX elements the transverse tangential shear 

strain yt  is constrained to zero at the two Gauss points on each 

edge of the element. 	If each edge is imagined to be a narrow 

beam then these constraint positions are ideal in accordance with 

the optimum constraint positions for the corresponding beam element. 

Furthermore. boundary constraints have the advantage of being 

identical for two adjacent elements even though -the computation 

is repeated. The direction of the tangent at each Gauss point 

for curvilinear or straight element boundaries is given by the 

covarient base vectors J or J , eqn. 3.36. 
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(ii) The two rotations at the centre - 2 constraints 

The work done during a rigid body displacement of an 

element is zero requiring the shear forces in the x and y 

directions to be zero. These shear forces can be found by 

integrating the shear stresses over the element area and 

since stresses are proportional to strains this reduces to the 

• following integrations 

1 Yxz dA  = ° 

I yyz  dA = 0 

oP. 

These integrations are computed numerically. 

(iii) The central lateral deflection - 1 constraint 

From vertical equilibrium 

B 
Ivy dA = f( Byxz 	

yyz ) dA = 0 
y 

(3.49) 

(3.50) 

(3.51) 

and Green's theorem can be used to give a transformed version 

a 	 which avoids second derivatives
15 

as 

f yn  dS 	 (3.52) 

where y is the normal shear strain and dS is around the 

periphery. 	This integral is computed using the two point 

Gauss rule along each edge of the element. 	This constraint 

applies to the quadrilateral elements only since the addition of 

a central lateral displacement variable to the triangular elements 
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did not affect their performance. 	For the quadrilateral 

element to pass the patch test it is an inescapable requirement 

that it should respond with w as a quadratic in x and y14-6 

A quadrilateral element has x = f(1,E,n,n) and on expanding 

2 , 
w = x

2
, the term t, n

2 
 appears. This term is provided here by 

the central variable for w which uses the bubble function 

(1 - 2)  (1 - n
2). 

(iv) 	Mid-side rotation - 1 constraint on each edge 

For the lower order elements the tangential rotations 

are enforced to be linear along each edge of the element simply 

by excluding the midside tangential rotation at, the departure 

from linearity, from the element computations. 

Extracting the appropriate rows from the shape function 

array, eqn. 3.47 , transforming the edge shears and integrating 

the shears over the area and around the periphery gives for the 

quadrilaterals, for example, 

Ytl 

• 

Yt8(6) 

YxzdA  

Y dA yz 

y ds 
n 

1  0 

	MB] 	SA

0 	11x16 11x11 SB 

(8x12) (8x8) 

(3.53) 

where 6A  are the variables for the required nodal configuration 

and SB 
are the unwanted variables, and the array sizes in brackets 

• 
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refer to the triangles. After transforming the columns of 

M for the tangential and normal rotations at the midsides the 

variables 
(SA 

 and SB are 

-CS 	1 A ' B = 	ex, 
1 	tj 

(3.54) 

(014i. Ae 
n
) 	Aexkyk Awk1 

where i refers to corner nodes, j refers to midside nodes and 

k refers to the central node. 

From eqn. 3.53 the unwanted variables can be expressed 

in terms of the wanted variables as 

B 	
- MB-1  MA A (3.55) 

Rearranging the columns of the unconstrained shape function 

array, eqn. 3.47 , to coincide with the wanted and unwanted nodal 

variables, and introducing the above expression gives 

{e} 	 w m 1 m 	{6  
A 

BB 
	A (3.56) 

Or 

w tse 	
(3.57) 

where 	W
C 

= W
A 
 - W

B 
M
B
1 
 MA 

and is the constrained shape 

function array which gives the displacements and strain variables 

at any point ,n within the element in terms of required element 

variables Se. 



• The inversion of the matrix MB followed by a matrix 

multiplication for the product MB
1 MA  can be avoided and solved 

collectively by a scheme suggested by FaddeevaF2. The product 

is equivalent to the solution of n systems of a special form 
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MB - MA 

0 

 

(3.58) 

   

where I is the square n by n unit matrix which is the same size 

as MB
. By annulling all the rows in the lower left corner, and 

by the addition of suitable linear combinations of the first n 

rows, the product MB
1 MA  is obtained in the lower right corner. 

This can be accomplished by the ordinary forward elimination of 

the Gauss process. 

3.3.9 Numerically integrated stiffness matrix 

Introducing the standard expression 

dxdy = 1J1 gdri 	 (3.59) 

and noting that B is a function of 	eqn. 3.20 can be 

rewritten in the form 

+1 +1 
Ke  = I I BTDBIJI ddrj 

-1 -1 
(3.60) 

or in submatrix form 

+1 +1 m  
K. = I 	ED B. 131 dEdri 
i3 -1 -1 i 	3 (3.61) 

• 
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Mb 

where K. is a typical submatrix linking nodes i and j. When 

evaluating the triple product B.D B. advantage should be taken 
3 

of the sparsity of B and D thus saving many unnecessary matrix 

manipulations. 

The integration of the stiffness coefficients is carried 

out numerically, and eqn. 3.61 is replaced by a weighted summation 

of the values at certain points in the element 

	

K
e = E w 	(E ,n )] 

i=1 P 	P P 

where [E( 
P 

 ,n P): = B
T 
 DBIJ1 is evaluated at the appropriate 

sampling points
P 
 , n

P 
 and w is the corresponding weight 

coefficient at this point. 

3.3.10 Nodal and distributed loading 

As with other finite element displacement models, the 

force-displacement relationship takes the form 

Ke  Se 
p  

	

F
e 
=K 	+ Fe  

(3.62) 

(3.63) 

where Fe represents a set of unique nodal forces required to 

maintain equilibrium at Se  = 0. Those forces may be associated 

with external surface tractions, - body forces and initial strains. 

In the present context we will consider only the following 

constituents: 

e 	-e 	 e 
F = F

1 
 + F

2 (3.64) 

'where , 2 Fe
1  F

e  are the consistent nodal forces associated with 

concentrated nodal loads and distributed pressures, respectively. 

a 
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The vector Fe  will consist of three force components 

for corner nodes and one for a midside node. Thus for example 

-e 
F
1 

: > with F. = 1 

-e 
F. 

e F = for corner nodes 

(3.65) 

	

or F. 	= {AM .} 	for midside nodes 

	

1 	xi 

where AM
{ 
is associated with the departure from linearity of 

the tangential rotation AOT, but since this has no physical 

significance it will, in general, be neglected. 

The consistent nodal forces F2 
due to a distributed 

pressure q over the area of an element can be determined simply 

as 

e 	r  T 
F = - J

A 
W q dA 

F
n 

(3.66) 

a 

where dA is the infinitesimal surface area dxdy, and W here 

refers to the first row of the shape function array for the 

lateral deflection. 	The integration is carried out numerically and 

concurrently with the stiffness integration. 	In general q 

will vary over the surface of an element and must therefore be 

interpolated from the values specified at the nodes as 

q = E N
i 
 q. 

i=1 
(3.67) 



• where N. here refer to the standard shape functions for an 

element with n nodes as opposed to the hierarchical shape 

functions mentioned previously. 
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3.4 	REDUCED NUMERICAL INTEGRATION AND SPURIOUS MECHANISMS 

The reduced numerical integration rules adopted here 

permit an economical evaluation of the element integrals, and 

the resulting stiffness matrix gives an improved structural 

response over the correct order of integration±. 	The 

reduced numerical integration employed here is the three-point 

rule for the triangles and the four-point rule for the 

quadrilaterals
Zl (i.e. 2 x 2 Gauss points).. However, to 

prevent spurious mechanisms the stiffness of the higher order 

quadrilateral is integrated by a five-point rule suggested by 

Irons
16 

as 

1 1 	 4 
I f f ( E,n) gdri =a f (0,0) + E bf (±B,±B) 

	

-1-1 	 1 

4 where b =(1 - 4 — a)and B = (3b)
-1/2, and with .a = 0.2 becomes 

	

1 1 	 4 
frodEcin = 0.2f(0,0) + 0.95 E (±0.59234888, 

	

-1-1 	 1 

• 
(3.68) 

(3.69) 

±0.59234888) 

Ideally the stiffness matrix for an element should have 

a rank of (the number of nodal variables) - (the number of rigid 

body notions available)
14
. 	The ISOFLEX plate flexure elements 

therefore require a rank of 

tFor Gaussian integration in one dimension n points gives exact 

values for the integral of a polynomial of degree 2n-1. 
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•Ir 

9 - 3 = 6 for ISOFLEX 3 

12 - 3 = 9 for ISOFLEX 6 

12 - 3 = 9 for ISOFLEX 4 

16 - 3 = 13 for ISOFLEX S 

Since each integration point can contribute at most 3 (the 

rank of the modulus matrix) the integration rules mentioned 

previously should provide adequate rank thus avoiding spurious 

mechanisms. 

• 
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3.5 	STRESS SMOOTHING 

Since reduced numerical integration has been adopted 

for the evaluation of the element integrals it is natural 

to expect these integration points to be the most appropriate 

stations for sampling the stresses. 	These points have the 

added attraction of enabling the element stress matrices to 

be evaluated concurrently with the stiffness matrix thus 

avoiding further entries to the shape function subroutine and 

Increasing the computational efficiency. 	For the higher 

order quadrilateral, for numerical convenience, the stresses 

are sampled at the four corner points of the five-point rule. 

Although the integration points give the most accurate 

stresses, nodal values may be more convenient. 	These nodal 

values are obtained by a linear and bilinear extrapolation 

of the values at the integration points, and is equivalent to 

a least squares best fit of the nodal values, vide Appendix 2. 

The three integration points for the triangles, or 

the four integration points for the quadrilateral are used 

to construct a fictitious triangular or quadrilateral element 

subdomain. 	Since the stresses are assumed to vary linearly 

or bilinearly, the smoothed stresses both inside and outside 

of the fictitious element subdomain are given as 

n 
a = 	E 	N. a. 

1 1 i=1 

where a is the smoothed stress at, for example a node of the 

element,N.
1 
 are the linear or bilinear shape functions, and 

O. are the stress values at the n vertices of the fictitious 
1 

element. 

(3.70) 
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3.6 	NUMERICAL RESULTS 

Various numerical examples were selected to establish 

the validity and generality of the proposed formulation. 

3.6.1 Patch tests 

All the elements of the ISOFLEX family pass the patch 

test with rectangular, parallelograms and arbitrary triangular and 

quadrilateral geometry, Figs 3.4 to 3.6. A mixed mesh consisting of 

all the elements of the family, Fig.3.7, also passes this test. 

In this case, at the element interfaces between the lower and 

higher order elements, the departure from linearity of the midside 

rotation was constrained to zero to ensure at least C0 continuity. 

The ISOFLEX 8 element passes a super patch test of a 

complete cubic displacement perturbation (linear flexural strains) 

with quadrilateral geometry and 2 x 2 Gauss quadrature. 

Although the numerical integration rules adopted are of 

sufficient order to prevent an individual element mechanism, a 

Collective mechanism may have occurred. To guard against this 

possibility the patch tests of Figs 3.4 to 3.6 were repeated in a 

different form. Only sufficient boundary constraints to prevent 

rigid body motions, namely the translations and rotations at node 

number 1, were prescribed, together with the forces (reactions) 

already computed from the previous tests. If there was any 

danger of a singular assembled matrix then this procedure would 

encourage it to occur. Since all the elements gave constant 

stresses to an accuracy of six significant places for these 

exacting tests, it is reasonable to assume that a collective 

mechanism is unlikely to occur for other element shapes. 

R 

,Yr 
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3.6.2 Square plate convergence studies 

These convergence studies were carried out for the 

simple case of a thin isotropic square plate of side 

length k, Poisson's ratio V = 0.3 and flexural rigidity D. 

The boundary conditions were taken as simply supported or 

clamped around the entire periphery, and the load cases 

considered were a central concentrated load or a uniformly 

distributed load. 	Taking advantage of the double symmetry, 

only one quarter of the plate was analysed with meshes 

varying as 1 x 1, 2 x 2, 4 x 4 and 8 x 8 elements. The 

finite element results for deflections, averaged nodal moments, 

reactions and external potential energy are given in 

Tables 3.1 to 3.10 and are plotted against the total number 

of variables for one quarter of the plate before enforcing geometric 

boundary conditions in Figs 3.11 to 3.22. In all cases the results 

converge to the exact analytical solutions given by 

Timoshenko
T3 and the convergence is rapid compared with the 

other finite element results.
A4
'
A6
'
C2
'
R2 The distribution of 

moment within the elements along the centre line of the plate 

is given for 2 x 2 and 4 x 4 meshes in Tables 3.11 to 3.18. . 

and plotted in Figs 3.23 to 3.38. In all cases these results compare 

t A measure of element performance is the change in external 

potential energy Tr given by 

= E{p}T  {w} 
n 

where p is the load and w the displacement at each node, 

and the product is summed over the whole plate. 
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well with the analytical solutions given by Timoshenko and 

a 16 x 16 finite difference solution
pl 

For the triangles 

the smoothed nodal moments within the elements adjacent to 

the centre line of the plate are more accurate than the 

averaged nodal moments. For all of .the elements, it can be 

seen that the moment values at the Gauss points on the element 

boundary, which are easily obtained from the smoothed nodal 

moments, given very good accuracy. 

The prediction of moments in the vicinity of a point 

load is a severe test for finite element solutions, since the 

values tend to infinity, but even here the results shown 

are in excellent agreement with the exact analytical solutions. 

The convergence of a simply supported square plate with 

a central point load is compared for various finite element 

formulations. The central deflection is plotted against the 

total number of variables for one quarter of the plate in 

Fig. 3.39. 	It can be seen that the convergence characteristics 

of the ISOFLEX elements are satisfactory. 

3.6.3 Clamped disc 

To demonstrate the accuracy of the curvilinear members of 

the ISOFLEX family when used to idealize a structure with 

curved boundaries, a clamped disc under concentrated and uniform 

loading was analysed. Taking advantage of the axi-symmetry 

one quarter of the plate was idealized with a coarse mesh of 

three curved ISOFLEX 8 quadrilaterals, or six curved ISOFLEX 6 

triangles. 	The deflection and moment profiles are shown 

in Figs 3.30 to 3.41 and, considering the coarseness of mesh, 

are in good agreement with the exact theoretical values. 
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3.6.4 Tapered beam 

To demonstrate the ability of the formulation to 

deal with variable thickness structures, a simple cantilever 

beam with a tapering thickness was analysed using eight ISOFLEX 4 

elements, Fig. 3.8. 	The theoretical answer for deflection 

is 6,725 (using Simpsons rule with five stations along the 

length of the beam to integrate the virtual work equation) 

compared with the finite element solution of 6,663. 	The 

former value would become smaller with more integration stations. 

3.6.5 Skew rhombic plate with two edges simply supported 

A comparitive study was made on a skew rhombic plate of 

side 9,, uniform thickness t, an angle of skew of 60°, and 

Poisson's ratio of.0.31, subjected to a uniformly distributed 

load, Fig. 3.9. 	The central deflection and flexural moment 

for the ISOFLEX elements were comoared with a finite difference 

solution and the 
ARIA4,A6,R1 

triangle. 	Table 3.19 summarises 

the results. 	The smoothed nodal moments slightly overestimate 

the central value of the moment Mx
, so it could be expected that 

the moments at the integration points would given even greater 

accuracy. 

3.6.6. Acute skew rhombic plate with all edges simply supported 

To establish the response of strongly distorted quadrilateral 

ISOFLEX elements, a comparative study was made of a thin acute 

skew rhombic plate with simply supported edges around the entire 

periphery, Fig. 3.10. 	The acute angle of skew was 30°, the 

side length was 9., and Poisson's ratio %) was taken as 0.3. 	Under 
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a,uniformly distributed load q, the flexural moments are 

infinite in the obtuse corner for Kirchhoff's theory, and 

no exact solution exists. 	This example is regarded as the 

most difficult of all thin plate flexural problems. MorleyM7 

uses a series expansion with coefficients determined by the 

least squares method and these results are precise'. The 

plate is idealised with mesh divisions of 2 x 2, 4 x 4, 8 x 8 

and 16 x 16 elements for both the ISOFLEX 4 (with 27, 75, 243 

and 867 unknowns) and the ISOFLEX 8 (with 39, 115, 387 and 1411 

unknowns), with the quadrilateral elements specialised to 

rhomboids. 	For comparison, the results obtained by SanderW6 

using the quadrilateral element derived by de VeubekeV1 are used. 

The vertical displacement w and two principal bending moments 

M' and M' in the centre of the plate are given in Table 3.20, 

and plotted against the total number of equations including geometric 

boundary constraints, Figs 3.42 to 3.43. 	The results for 

the ISOFLEX quadrilaterals are good for both displacements 

and averaged nodal moments (the moments at the integration 

points would give even greater accuracy). On the other hand 

the influence of the singularity on the results of the 

Veubeke's displacement model is such that even with a system of 
* 

more than 1,000 equations the errors-are significant. Fig. 3.44 

shows how the elements are able to represent the singularity. 

The distribution of the principle moments M', M' is plotted 
x y 

for the ISOFLEX 4 model (16 x 16 mesh, 867 unknowns), the 

ISOFLEX 8 model (16:x 16 mesh, 1,411 unknowns) and the 

de Veubeke quadrilateral (14 x 14 mesh, 1,095 unknowns). The 
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■ 	 results of the ISOFLEX elements are good, whereas the 

results for the Veubeke quadrilateral are such that it 

could not be used to predict the MF moments; even the sign is 

wrong. 	It should be noted that Wolf
W6, who has also analysed 

the same plate with a hybrid model based on a quadratic 

expansion for the moments, and cubic displacements and linear 

normal rotations along the element boundary, achieved a similar 

accuracy to the ISOFLEX results. 	However, this was only 

made possible by enforcing stress boundary conditions of zero 

normal moment within the elements around the boundary of the 

plate. 	If this constraint, which is inconvenient to implement, 

was not enforced, this element also produced poor results. 

3.7 	CONCLUSIONS 

(i) A formulation for a general family of thin 

plate flexure elements has been developed. 

The elements may be used in triangular or 

quadrilateral form and are capable of 

representing plates with tapering thickness 

and curved boundaries. 

(ii) The simple nodal configurations require a 

minimum of data preparation and allow the 

standard grillage beam element to be 

incorporated into an idealization.— 

(iii) The criteria for convergence is satisfied 

and there are no limitations such as low 

rank and spurious mechanisms. 
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(iv). 	The results of the numerical examples 

establish the validity of the formulation 

for an extensive range of thin plate 

problems, and the results are good even for 

coarse mesh idealizations. 

(v) 	The ISOFLEX elements are a unified 

formulation which can be easily implemented by 

a single compact shape function subroutine, 

and are computationally efficient. 
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CHAPTER4 

EXTENSIONAL-FLEXURAL ELEMENTS FOR 

THE ANALYSIS OF CELLULAR STRUCTURES 

4.1 	INTRODUCTION 

The analysis of cellular structures by the finite element 

method requires specialised element formulations if results of an 

accuracy suitable for design purposes are to be achieved with 

economy. Cellular structures such as certain offshore production 

platforms and modern elevated highway bridges, are essentially an 

assemblage of spatial plates subjected to flexural pertabations, 

and can therefore be idealized by planar extensional-flexural 

finite elements. The nodal configuration of such elements should 

be chosen for user convenience, and there are obvious advantages if 

the elements are capable of accurately representing the beam action 

of the webs with only a single element over the depth and a small 

number of elements along the length of the structure. Since for 

cellular structures the evaluation of the element stiffness matrices 

is usually the most expensive computational step, it is important 

that the element formulation is computationally efficient. 

Extensional-flexural elements with three translations and 

three rotations as variables at the vertices are commonly used for 

the analysis of cellular structures. Elements with this simple 

nodal configuration have the advantage of being readily incorporated 

into finite element systems which accept only elements with a constant 

number of variables at each node, and transformations from the local 

to the global coordinate system are straightforward. These elements 

can also be used in conjunction with the standard space beam element 

for the analysis of, for example, a steel box girder bridge section 

with eccentric stiffness or cross-bracing. Such extensional- 
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flexural elements require an extensional element formulation with 

two translations and an in-plane rotation at the vertices. 

Extensional elements with this simple nodal configuration are 

proposed in this chapter. 

If a single quadrilateral extensional element with two 

translations and a rotation at each of the vertices is used to 

idealise a beam, beam action cannot be reproduced accurately. 

The reason for this inadequacy is that the nodal variables for 

such an element are only sufficient to define a linear variation 

of longitudinal displacement along the length of the beam instead 

of the quadratic variation required by beam theory T3 A higher 

order element with the required longitudinal displacement variation 

could be created by the introduction of a midside node on the 

longitudinal edges at which a tangential displacement variable is 

specified. This additional variable would have the minor 

disadvantage of producing an element with different numbers of 

nodal variables, but this is preferable to the use of higher order 

derivatives which require special treatment for abrupt changes of 

plate thicknesses or properties. Furthermore, if the departure 

from linearity of the midside tangential displacement is used 

instead of the absolute value, then such an element can still be 

used in conjunction with a standard beam element, simply by 

constraining this variable to be zero in the presence of a beam. 

A higher order element with beam performance could reduce the 

overall cost of an analysis since fewer elements would be 

required along the length of a structure. 	A midside node can 

also be used to define element boundaries that are curved in-plane, 
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and this gives an improved geometric definition for many 

structures. Higher order elements with such an additional 

midside node are also proposed in this chapter. 

Early attempts to create elements suitable for the 

analysis of cellular structures employed standard extensional 

elements with only the two translations u and v as nodal variables. 

When these elements were combined with flexural elements, 

difficulties were encountered in the transformation of the 

resulting elements from the local to the global axes, and an 

expensive fine mesh division was required for satisfactory 

results. To overcome these problems several authors developed 

extensional elements with an additional in-plane rotation ez 

as a nodal variable. Abu-Gazaleh
A2 
 developed a rectangular 

1 	911 
element with the in-plane rotation 0z 

= 
2
- ( 	- 	) at each 

 ax 	ay 

node and this element was extended to a quadrilateral shape 

W4 
by William. The use of this nodal rotation invited small 

angular discontinuities between the element edges at a node and 

17,110,58 
the element does not pass the patch test, 	for convergence 

even for a rectangular shape. Macleod
M5 

developed a rectangular 

av 
element with the nodal rotation Az 

taken alternatively as @x 

and - 	around the element, but these variables are not 

suitable for cellular structures because the web and flange 

elements would separate in the presence of shear. Lim et al
L3 

and Sisodiya et al
S5 simultaneously developed a quadrilateral 

element with the nodal rotation Oz  taken as 
3v 
Dx 

This element 

had a biased displacement field and could approximate the web beam 
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action with a relatively coarse mesh, but an expensive numerical 

integration rule was required for the evaluation of the element 

stiffness matrix. Moffatt
M2  and Fam and TurkstraF6  have 

Dv 
recently developed elements with u,v, -57c- and E as nodal variables. 

These elements possess an accurate beam response but they cannot 

accommodate a discontinuity in the longitudinal strain for abrupt 

changes of plate thicknesses or properties. An expensive 

numerical integration rule was also required here for the evaluation 

of the element stiffness matrices, and the nodal variables chosen 

14-6 
would require a special beam element. Irons 	has developed a 

doubly curved shell element, but for cellular structures the 

additional computational expense associated with the double 

curvature would be unwarranted since in general cellular structures 

are an assemblage of flat or almost flat plates. The question 

arises therefore as to whether accurate and economical extensional 

elements can be formulated with the simple nodal configuration 

of three variables at the vertices and an additional midside 

variable for higher order elements. 

In this chapter a formulation is given for a family of 

extensional elements which, when combined with the flexural 

elements of the previous chapter, are particularly efficient for 

the analysis of cellular structures. 	These elements hereafter 

referred to as the ISOBEAM family, form the beginning of a second 

generation of isoparametric extensional elements. 	The proposed 

formulation employs a biased displacement field, a reduced 

numerical integration rule
Z2, and includes incompatible displacement 

modes
W3 for additional performance. The ISOBEAM elements may have 
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tapering thickness and boundaries that are curved in-plane 

and have the simplest nodal configurations, Fig. 4.1, which 

allow the standard space beam element to be incorporated into 

an idealisation. 	The triangular extensional elements are 

degenerated quadrilaterals. The elements fulfil the requirements 

for convergence for rectangular, parallelogram and trapezoidal 

element shapes,and no limitations such as low rank and spurious 

mechanisms have been noted. The formulation given includes 

anisotropic plate properties and can take account of stacked 

eccentric plates. The performance of the ISOBEAM elements is 

demonstrated by convergence studies and comparisons with 

classical solutions and experimental results. 	It is shown that 

only a few high aspect elements are required along the length of 

a structure and a single element over the depth of the web, to. 

provide accurate results even in the vicinity of a support or wheel 

load. The ISOBEAM elements are a unified formulation which can 

be easily implemented from a single compact shape function 

subroutine, and they are also computationally efficient. 

In parallel with the development of the new element family 

there is a need for information on the problem of the idealisation 

of a structure. The mesh divisions required for an idealisation 

will be indicated in this chapter by reference to convergence 

studies and the analysis of several cellular structures, and the 

results are compared with theoretical and experimental values. 
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4.2 	REQUIREMENTS FOR ELEMENTS FOR THE ANALYSIS OF CELLULAR 

STRUCTURES 

The requirements for finite elements suitable for the 

analysis of cellular structures may be summarised as follows: 

(i) The elements should be capable of being 

used in triangular and quadrilateral 

form and should be capable of representing 

tapering thickness and boundaries curved 

in-plane when necessary. 

(ii) The nodal configuration should be simple 

and permit the standard space frame 

element to be incorporated into an 

idealisation. 	Second or higher order 

derivatives should be avoided and low 

order elements should have a constant 

number of variables at each node. 

(iii) As a mesh of arbitrary shaped elements 

is refined, convergence to the correct 

solution should be ensured. With 

certain provisos the existence of 

fine-mesh convergence for an element can 

be established by the patch test.
17,110 

(iv) The equations produced should not be 

ill-conditioned and fail for certain 

element geometries. 
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(v) The coarse mesh performance should 

be such that if an idealisation is in 

error the results are not unreasonable. 

(vi) Since for cellular structures the 
a 

evaluation of the element stiffness 

matrices is usually the most expensive 

computational step, it is important that 

the element formulation is computationally 

efficient. 

(vii) Ideally the element family should be 

coded into a single compact shape function 

subroutine. This would ensure easy 

implementation and also save a substantial 

area of fast core storage. 

(viii) The extensional element displacement and 

stress fields should be biased to take 

account of the higher order variations of 

displacements and stresses in the 

longitudinal direction of a cellular 

structure relative to the transverse 

direction. 

(ix) The stress components should be available 

at the nodes. 
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4.3 	THEORY FOR CONSTRAINED EXTENSIONAL ELEMENTS 

The theory given in the subsequent section introduces 

a new approach for the formulation of extensional elements. 

The variation of a displacement and its derivative within the 

element are specified independently by suitable shape functions. 

These independent variations are then constrained to be 

compatible at discrete points within the element domain. The 

element formulations proposed here have a good performance and 

require only a low order numerical integration rule for the 

evaluation of the element stiffness matrix. 

4.3.1 Unconstrained displacement fields 

The unconstrained nodal configuration and coordinate 

systems are shown in Fig. 4.2. 	The discrete nodal displacements 

for the ith node are chosen as the global translations u and v 

Dv 

D3.c 

rotation of a line n = constant at each node. 

By employing suitable shape functions Ni 
the global 

displacement field and the in-plane rotation derivative can be 

written independently as 

n _ 
d = 	E N. (S. 	 (4.1) 

i=1 

or in expanded form is 

1,r 

and the local in-plane rotation ez  - which refers to the 



0 
n 
E 
i=1 

N, 
1 

0 	N. 
1 

oV 
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(4.2) 

where n is the total number of nodes. For midside nodes 

the' discrete nodal displacements become 

u 	Au 

4 AV > 

A
av 
Dx, 

where the symbol A refers to the departure from linearity of 

the value with respect to the values at the corner nodes. 

This departure from linearity is defined as 

1 A
6i 

-
i 
-(S

2, 
+ Sm) 2 (4.4) 

where 2, and m refer to the two corner nodes. 
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4.3.2 Hierarchical shape functions 

The hierarchical shape functions used here take account of the 

variables specified as the departure from linearity. The 

hierarchical shape functions are defined in natural 

coordinates as 

1 
Ni  = 71-(1 + %)(1 + no) for i = 1,4 

(4.5) 

1 
Ni  = 

2
-(1 - 2 ) (1 + Flo) for i = 5,6 

where 	= ui  and no  = nni  

4.3.3 Additional incompatible displacement modes 

In general the addition of incompatible displacement Modes 

violates interelement compatibility. However since the 

Magnitudes of the modes are selected by requiring that the total 

strain energy of the element is a minimum, guaranteed convergence 

could be expected for some element geometries. 	Accordingly, 

for an improved element performance the following incompatible 

modes were included in the quadrilateral element formulations. 

The incompatible modes added to the displacement field of 

eqn. 4.2 are 

I 
u = E Ni  a. 

 1 
1 

(4.6) 

I 
v = E N. 

J 3 

a 



(4.8) 

n 
E N. 

1=1 
1 
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where i = 1,2 and j = 1 for the four node quadrilateral 

and i = 1 and j = 1 for- the six node quadrilateral 

and the displacement amplitudes a. and 	are additional nodeless 

variables in the global directions. The incompatible shape 

functions N
I 

are defined as 

Ni = (1 -
2
) 

(4.7) 

NI2  . (1 - E
2
) 

These incompatible displacement nodes are shown in Fig.4.3. 

4.3.4 Hierarchical mapping and the Jacobian matrix 

It is now necessary to establish the relationship between 

the Cartesian and natural curvilinear coordinate systems. The 

x and y coordinates and thickness t at the point E,n within the 

element can be written in a special form as 

U 

TaberethellierarchicalsbapefunctiOnsN.at each node are 

in terms of the natural 	coordinates and the summation is 

- taken over n nodes sufficient to define the element geometry. 

When midside nodes are included the nodal coordinates 

,T 
fx,Y,tti  become the departures from linearity {Ax, Ay, At}i 

which are defined simply as 
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I

x 

 Y 

t 

 

   

1 

 

(4.9) 

 

=_- 

   

   

2 2 

       

where i is now a midside node and 2, and m are the adjacent corner 

nodes. 

Since the shape functions are in terms of the natural 

coordinates it is necessary to establish a relationship to calculate 

the Cartesian derivatives for the components of the strain matrix. 

From the chain rule in two dimensions 

  

Immo/ 

  

+/- 

ax 	ay 
a 	a 

ax 	ay 
an 	an 

  

= D-1 4.10) 

      

where J is defined as the Jacobian matrix. 

Inverting the Jacobian matrix in eqn. 4.10 gives the 

required transformation relationship as 

        

      

4 

1 
de t [J] 

_ Y an 	ac 

 

aE 	an 
ay ax (4.11) 

     

 

ax 	ax 
an 	a 

 

a 	an 
ay 	ay 

 

      

       

For numerical convenience the coordinates and the components of 

the Jacobian matrix at any point ,1-1 within the element can be 

computed collectively from eqn. 4.8 as 
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Ar 

41. 

       

x 	y 

ax ay at 
aE aE 

ax ay at 
an an an 

x 
= E 

i=1 

  

N. N N, 
i 1 	1 

a . .N. 	all. 
NI 1 I  
aE aE aE 

DN.. pii DN
ii 	i 

an •an an 

x. 0 0 
1 

0 y 0 

0 t. 

(4.12) 

  

1.1■■••■ 

   

where as before the i nodal values are summed over the 

nodes defining the element geometry and when midside nodes are 

present the nodal coordinates become the departures from linearity. 

For incompatible modes the Jacobian is calculated at the 

origin so that the elements will pass the patch test for 

shapes, including rectangles,parallelograms and trapeziums
T6
. 

4.3.5 Kinematic constraints 

The unconstrained nodal variables and the incompatible 

displacement variables when present, are now reduced to the 

constrained extensional nodal configurations, Fig.4.1 by the 

application of appropriate sets of independent constraints. 

(i) 	The midside normal displacement and in-plane rotation — 

4 constraints 

The constraints for these variables are enforced in a 

discrete fashion so that the displacement field and in-plane 

rotation derivative which are specified independently, eqn.4.2, 

become effectively linked. From the first two lines of eqn.4.2 

the in-plane rotation can be obtained by differentiation and must be 

expressed in the local axes in the line T--= constant. This local 

axes is defined by the vectors LT, and j (see previous chapter) and so 
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(4.13) 

A 
J . J 	J . j 
E 	E E 

J . J 	J . 
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MIL 

A 	A 
where J are the covariant and j the contravariant unit base vectors. 

aNi  
On solving eqn. 4.13 the local derivative ax — is found and hence 

the in-plane rotation derivative 
ax 
 canbe obtained as 

-4- 	A
1  

a x 	N. av  
E 	U. . j 

= 	ax 	1 
E 	i=1 	E 

(4.14) 

where U.
1 
 is the vector of displacements at node i. 

The in-plane rotation derivative found above and the in-plane 

rotation derivative specified in eqn. 4.2 are now t.:onstrained to 

be identical at the Gauss points along the top and bottom edges 

of the element 

av 	917 
3xE 	D>c 

0 	(4.15) 

Expanding eqn. 4.15 from eqns 4.2 and 4.14 for each side Gauss 

point gives 

av 	av 
axe  - axe 1 

A 	. 	> 
1 1 	

S 

[MA t 14131 [613 
4x14 	4x4 

(4.16) 
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where S
A 
a
r
e the variables for the required nodal configuration 

and S
B 
are the variables to be discarded. The columns of M 

are transformed for the tangential and normal displacements at 

the midside nodes, the displacement vector is 

Dv {6 	; 6 
 }
7' = { 01, v.,  

A 	B 	 3x, Dx 

(4.17) 

where i refers to the corner nodes and j to the midside nodes. 

Rearranging eqn. 4.16 gives an expression for the variables 

to be discarded as 

-1 
= 

B 	
- 
 MB MA (SA 

(4.18) 

If W is the shape function array, which is constructed from the 

values and derivatives of the u and v variations, ean. 4.2, 	then 

introducing expression 4.18 gives 

{e} -1  
= EW - W M_ MA  ] {SA}

A 	B 	A 
(4.19) 

Or 	S 	= 
w 6e 	 (4.20) 

where S is a vector of displacements and derivatives at any 

point Er r) within the element, We 
is the constrained shape function 

array and de  are the required element variables. 

. . . Au'. . i  (Av,A 	) 	-} 
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(ii) 	The incompatible displacement amplitudes - 2 or 3 constraints 

When incompatible displacement modes are required the 

constraints imposed are that the external forces associated with 

the nodeless displacement amplitudes should be zero. The new 

shape function array, eqn.4.20 is expanded to include the two 

or three columns corresponding to the incompatible displacement 

modes. The force displacement relationship requires the computation 

of the rows of the stiffness matrix which correspond to the 

incompatible displacement amplitudes 

and hence 

and 4.22 

Or 

where 

The 

the 

* 

(Sa 

new 

as 

, 

components 

tut 

= 

au 
ax 

shape 

L  

	

= L A  K 	I 	Ka 	- 1  
a 

	

3x12 	3x3 

-1 - KCt 	KA  (SA  

function array is now given from eqn. 4.20 

	

 [Wc  - WCt 	Kat  KA  ]{6A  } 

* 
= 

* 

	

of 6 	are 

au 	av 	av r 	I ay 	ax ' ay 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

and W
d 

is a 6 x 12 or 6 x 14 shape function array, the size of 

which depends on the element chosen. 
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The inversion of the matrices MB 
and K are avoided 

by the collective scheme mentioned in the previous chapter. 

4.3.6 Degenerate triangles 

The ISOBEAM triangles are formed from the quadrilateral 

elements by specifying two nodes at one end of the quadrilateral 

to be coincident, and combining the variables at that node. 

However to ensure the compatibility of variables at this degenerate 

node the in-plane rotation 
ax 
 wasemployed as opposed to —

9v 
. 

9x, 

The degenerate end of the quadrilateral was chosen to be adjacent 

to the longest sides of the triangle to preserve the beam action, 

and this can be carried out automatically in the shape function 

subroutine. The use of degenerate triangles is acceptable 

providing values of and fl, for which the shape function array 

may be required, lie within the element domain. 	Additional 

incompatible modes are not acceptable in this case. These 

triangular members of the ISOBEAM family are proposed but as yet 

have not been investigated numerically. 

4.3.7 Strain-displacement relation 

The strain components in two-dimensions can now be related 

to the discrete nodal displacements by extracting the appropriate 

rows from the shape function array. The two-dimensional strain 

components are defined as 

. 3u 4  av 
xy 	Dy 	3x 

(4.26) 
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and in terms of the nodal displacements 

B 
(se 

(4.27) 

where B is the strain matrix which is formed from the shape 

function array. 

4.3.8 Stress-strain relation 

The stress components a in two-dimensions are related 

to the strain components E by the familiar equation 

D (4.28) 

where D is the extensional modulus matrix. 	This modulus matrix 

can be written as 

dx 	d
11  

(4.29) dl 
 

0 	0 
xy 

where for an isotropic material 

dx = dy = 	 
1-0

2 

VE  

1-V
2 

d 
xy 

2(11-V) 

(4.30) 
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in which E is the elastic modulus and V is Poisson's ratio. 

For an orthotropic material in which the principal directions 

of orthotropy coincide with the X and Y axes the modulus matrix 

is given by 

d
x 

Ex 

1-V V 
xy yx 

E 
y 

1-V V xy yx 

(4.31) 

dl = 

V 	E xy y 

1-V V 
xy yx 

xy 
	G 

where E
x 
and E are the elastic moduli and V and V are Poisson's

y 	 xy 	yx 

ratios with respect to the x and y axes, and G is the shear 

modulus. 

The stress components can be related to the discrete 

nodal displacements by combining eqns4.27 and 4.28 

U = D B Se 	 (4.32) 

and advantage should be taken of the sparse nature of D to avoid 

any unnecessary multiplications during the evaluation of this 

matrix product. 



• 
127 

4.3.9 Numerically integrated stiffness matrix 

The element stiffness matrix is defined as
Zl 

	

Ke  = fBT  D B dv 	 (4.33) 

Introducing the standard expression 

	

= tIJI dE dry 	 (4.34) 

and noting that B is a function of E,11, eqn.4.33 can be 

rewritten in the form 

+1 +1 
BT  Ke =ffB DBtIJI dE do 

-1 -1 

or in submatrix form 

+1 +1 
= f I BT DB. tIJI dE 311 Kij 
  

-1 -1 
(4.36) 

whereK..
13 
 is a typical submatrix linking nodes i and j. When 

evaluatingthetripleproductB.DB. advantage should be 

taken of the sparsity of D thus avoiding many unnecessary matrix 

manipulationS. 

The integration of the stiffness coefficients is carried 

out numerically, and eqn.4.36 is replaced by a weighted 

summation of the values at certain points in the element 

n 
K
e 

= 	E 	w 	f( 	T1 ) 
p=1 P 	P 

where [f(E ,11 )1 E BT DBtplis calculated at the appropriate 
P P 

sampling points
P 
 , T1

P 
 and W

P 
 is the corresponding weight 

coefficient at this point. 

(4.37) 
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4.4 	REDUCED NUMERICAL INTEGRATION AND SPURIOUS MECHANISMS 

The reduced numerical integration rule adopted here 

permits an economical evaluation of the element stiffness matrices. 

The four point Gauss rule is used for all elements of the ISOBEAM 

family. 

The stiffness matrix should have a rank of (the number of 

nodal variables) - (the number of rigid body motions available)
14
. 

The ISOBEAM elements therefore require a rank of 

9 	- 3 = 6 for ISOBEAM 3 

11 	- 3 = 8 .. n 5 

12 	-- 3 = 9 II II 4 

14 	- 3 = 11 ti 11 6 

Since each integration point can contribute at most 3 (the rank 

of the modulus matrix) the four point integration rule could 

provide adequate rank thus avoiding spurious mechanisms. 

ti 
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4.5 	STRESS SMOOTHING 

Since reduced numerical integration has been adopted 

for the evaluation of the element stiffness matrices, it is 

natural to expect the integration points to be the most 

appropriate stations to sample the stresses. These stations 

enable the stress and strain matrices to be evaluated 

concurrently with the stiffness matrix thus reducing the number 

of entries to the shape function subroutine and increasing the 

computational efficiency. 

The stress values at the integration points are the 

B5 
most accurate, but nodal values may be more convenient for the 

interpretation of results. The nodal values are obtained by 

a bi-linear extrapolation of the integration point values and 

is equivalent to a least squares best fit of the nodal values, 

vide Appendix 2. The integration points are used to construct 

a fictitious quadrilateral element subdomain and the smoothed 

stresses both inside and outside of the subdomain are given 

as 

at 

ti 	
4 

= 	E N. a. 
1 1 

i=l 
(4.38) 

where a 
rt, 
 is a smoothed stress at, for example, a node of the 

element, N. are the bi-linear shape functions, and a. are 
1 	 1 

the stress values at the four vertices of the fictitious 

quadrilateral element. 
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4.6 	EXTENSIONAL-FLEXURAL ELEMENTS 

The extensional elements described in this chapter and 

the flexural elements of the previous chapter are now combined 

to form thin flat extensional-flexural elements in space. 	Since 

both the extensional and flexural element formulations take 

account of curved boundaries the resulting ISOBEAM shell elements 

may also have boundaries that are curved in-plane. 	The element 

orientation in space is taken as the least squares best fit of 

the corner nodes. The element stiffness matrices are evaluated 

and combined in the local coordinate axes, where the local x 

direction is defined by the first two element nodes and the local 

y direction lies in the element plane. When the global element nodes 

are not coplanar the orientation of the local element axes can be taken 

as the least squares best fit plane. The relationship between local 

nodal variables 6' and global variables S is given as 

= TS 	 (4.39) 

where T is the super diagonal transfdrmation matrix 

T
1  0 0 0 

T 	= 0 T
2 0 (4.40) 

0 Q T
3 0 

0 0 0 T
4 

The matrix T. is a 6 x 6 transformation matrix of direction 
1 

cosines where i is for each corner node. 	By the rules of 

orthogonal transformation the global stiffness matrix K is 

4 	 obtained from the local stiffness matrix K' as 
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K = T
T 
K' T (4.41) 

• 

When evaluating this triple produce advantage should be taken 

of both the sparsity of T and K' thus avoiding many unnecessary 

matrix manipulations. 
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4.7 	STACKED PLATES 

For a stack of extensional-flexural elements each 

with an eccentricity of e from a nodal plane,the relationship 

between the local element variables S' and the global variables 

S is given at each node by 

6' = T 6 
e (4.42) 

where T
e 

is the transformation matrix for eccentricity defined 

by 

1 0 0 0 e 0 

0 1 0 -e 0 0 

0 0 1 0 0 0 (4.43) 

0 0 0 1 O 0 

0 0 0 0 .1 0 

0 0 0 0 0 1 

where e is the eccentricity and is measured from the plane of 

the plate to the reference plane. This transformation is valid 

for small eccentricities. 

• 
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4.8 	NUMERICAL RESULTS 

Various numerical examples were selected to establish 

the validity and generality of the proposed formulation. . The 

performance of the degenerate triangular elements was not 

investigated numerically. 

4.8.1 Patch tests 

Both quadrilateral elements of the ISOBEAM family pass 

the patch test with rectangular, parallelogram and trapezoidal 

element geometry, Fig. 4.4. 

4.8.2 Straight cantilever beam 

The in-plane performance of the ISOBEAM 4 and ISOBEAM 6 

elements was tested by analysing a cantilever beam, Fig.4.5. 

The beam was idealized with one mesh division over the depth 

and from'l to 4 elements along the length and the results are 

given in Table 4.2 and compared the engineers theory of bending 

ETB including shear deformation. It should be emphasized that 

for ISOBEAM 4 the longitudinal stress is approximately constant 

over the length of the element and for improved results an 

extrapolation procedure could be used for the values at the support. 

However, for ISOBEAM 6 in which the stresses vary linearly along 

the length of the element, the values can be obtained directly. 

The shear stress values were obtained from the average of the 

four corner node values for both element types and this result is 

satisfactory. 	For the ISOBEAM 6 element the values for 

deflection w, longitudinal stress ax
, transverse stress 6y  and 

shear stress a are satisfactory for a single element idealization 
xy 

with an element aspect ratio of 8 to 1. 



134 

4.8.3 Curved cantilever beam 

The performance of the ISOBEAM 4 and ISOBEAM 6 elements 

when used to idealize a curved structure was tested by analysing 

a curved slender cantilever beam, Fig. 4.6. 	The beam was 

idealized with one mesh division over the depth and from 2 to 8 

elements along the length and the results are given in Table 4.2 

and compared with the engineers theory of bending ETB,excluding 

shear deformations. 

The penalty for using the straight sided ISOBEAM 4 element 

for a curved structure is not significant for the deflection 

values, and the stress values would be improved if an extrapolation 

procedure were employed. For the ISOBEAM 6 element the results 

for the vertical deflection w and the longitudinal stress 6x, 

are satisfactory for a two element idealization with an element 

aspect ratio of 13.35 to 1. 

4.8.4 Straight single cell box girder 

The first three dimensional structure to be considered 

was a straight single cell box girder of uniform thickness, 

Fig. 4.7. 	This girder was analysed for fixed end conditions 

with diaphragms assumed to have infinite stiffness in-plane to 

prevent distortion and infinite stiffness out-of-plane to 

prevent warping. The loading was a concentrated load on one 

web at midspan. For the analysis this load was separated into 

flexural and distortional components so that the results could 

be compared with those obtained using the elementary theory of 

bending ETB, and beam on elastic foundations analogy BEF
B6 

respectively. 
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The girder was idealized with both ISOBEAM 4 and ISOBEAM 6 

elements with one mesh division over the width and depth, and 

from 2 to 16 mesh divisions over the length of the girder, 

Fig. 4.8. 	The values at the midspan for the deflection w
F 

and the longitudinal stress aF- caused by the flexural component 

of load, and the distortional warping stress u
DW 

and transverse 

distortional flexural stress u
DF 

caused by the distortional 

component of the load obtained using the various mesh divisions, 

are given in Table 4.3. 	It can be seen that the finite element 

results converge to the same value with ISOBEAM 6 giving the 

highest rate of convergence. It should be noted that the ETB 

and BEF results do not agree exactly with the converged finite 

element results because these techniques involve additional 

simplifying assumptions not made in the finite element analyses. 

It should be emphasized that for ISOBEAM 4 the longitudinal 

extensional strain is approximately constant over the length of 

the element and for improved results an extrapolation procedure 

couldbeusedforuF andam values directly under the load. 

However, for ISOBEAM 6 in which the strains vary linearly along 

a 
the length of the element, the peak values can be obtained 

directly. 	The difference in computer cost between the two 

elements for this structure was negligible. 

4.8.5 Straight three cell box girder bridge model 

A straight three cell bridge model, Fig. 4.9, was 

analysed with ISOBEAM 4 and ISOBEAM 6 elements. 	This model is 

a 1/60 scale representation of an approach span to the lower 

Yarra Bridge, Melbourne and was constructed in perspex
M2
. 

Details of the model and instrumentation are given in Fig.4.10. 



a 
136 

The model was loaded eccentrically with a point load applied 

to a cantilever at midspan, Fig. 4.9. 

Taking advantage of symmetry only one-half of the model 

was analysed using the idealization shown in Fig_ 4.11 for both 

element types. In both cases the diaphragm was represented 

by ISOBEAM 4 elements and the support stiffnesses were 

transformed to the nodes at the outer webs on the assumption 

that the diaphragm was infinitely rigid in its own plane. 

The experimental results of the displacements and strains' 

are given in Figs 4.12 to 4.14. These results compare 

favourably with the finite element results, Figs 4,13 to 4.15. 

The strain results for both elements are similar and it should 

be noted in particular that the formulations accommodate a linear 

variation of transverse extensional strain over the depth of 

the webs, Fig. 4.15(c). 	This strain variation would not be 

present if the formulation had not included incompatible 

displacement modes. Finally it should be noted that good 

results have been obtained for a structure which includes an 

abrupt change in thickness of the inner webs. 

a 	
4.8.6 Straight multicell bridge model 

Experiments have been conducted at the Transport and 

Road Research Laboratory on a six-cell perspex model
D2
. 	The 

model was simply supported at both ends and subjected to a central 

point load applied to the top flange. For the finite element 

analysis a coarse mesh idealization of one-quarter of the model 
a 

Mr 
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was chosen, Fig. 4.16. 	It should be noted that for an 

accurate analysis in the vicinity of the stress concentration 

a localized fine mesh would be required. 

It can be seen that the experimental values and the 

finite element results, Fig.4.17 are in general in good 

agreement for deflections, longitudinal extensional strains and 

transverse flexural strains. Although no experimental results 

were available directly under the applied load it could be 

expected that high peak values would be present due to the 

exceptionally thin walls and small contact area of the applied 

load. However, in a concrete bridge the cell walls would be 

thicker and the load would be applied over a less concentrated 

area (a train of wheel loads for example). 	In this case, for 

design purposes, a coarse mesh analysis should be adequate, but 

a static equilibrium check of longitudinal stresses should 

always be performed. 

4.8.7 Curved single cell box girder bridge model 

Further experimental verification of the proposed finite 

a 	element formulations was provided by reference to experimental 

results obtained from a-curved single cell model
L3 

shown in 

Fig.4.18. 	The model was idealized with a coarse mesh of 4 by 2 

by 1 for both the ISOBEAM 4 and ISOBEAM 6 elements , Fig. 4.19. 

The experimental results are given in Fig.4.18 for a point 

load of 100 lbf placed over the outer web at the midspan. The 

finite element results for both elements agree well with the experimental 
a 

values, Figs 4.20 to 4.21. It should be noted that it was necessary 

to use an extrapolation procedure to obtain the results shown 

for ISOBEAM 4 whereas the results for ISOBEAM 6 were obtained 

directly. 
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4.9 	CONCLUSIONS 

A formulation for a family of triangular and 

quadrilateral extensional-flexural elements has 

been proposed. The formulation has been 

developed for triangular and quadrilateral 

elements that are efficient in representing 

the special geometric properties and structural 

behaviour of cellular structures. The geometric 

properties of the elements take account of 

boundaries curved in-plane and tapering thickness. 

(ii) The simple nodal configurations require a minimum 

of data preparation and allow the standard space 

beam element to be incorporated into an 

idealization. 

(iii) The criteria for convergence for the quadrilateral 

elements is satisfied for rectangular, parallel-

ogramic and trapezoidal element geometry and can 

therefore be used for the analysis of right, 

skewed and trapezoidal cellular structures. 

Numerical studies have not been conducted for 

the proposed formulation for the triangular 

elements. 

(iv) Theoretical and experimental results for 

several cellular bridge structures were used 

as a basis for determining the accuracy of 

the proposed quadrilateral elements. 	Reliable 
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results were obtained for displacements and 

extensional-flexural stresses with as few as 

one mesh division over the depth and four 

to six mesh divisions over the length of a 

structure. 	In particular it should be noted 

that these elements provide an accurate 

estimation of the extensional transverse and 

shear stresses in addition to the longitudinal 

stresses in the webs. 

(v) A comparison of results between the ISOBEAM 4 

and ISOBEAM 6 elements indicate that for a 

similar computer time they are equally efficient. 

The higher order element, ISOBEAM 6, has the 

advantage of accommodating curved boundaries, 

requires fewer elements and data input, and the 

stress components are available directly without 

an extrapolation procedure. 

(vi) The ISOBEAM elements are a unified formulation 

which can be easily implemented by a single 

compact shape function subroutine, and are 

computationally efficient. 
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GENERAL CONCLUSIONS 

5.1 	SUMMARY OF WORK 

The work described in this thesis has involved the development 

of the following: 

(i) The LUSAS general finite element computer system for 

the analysis of a wide range of static linear 

structures. 

(ii) The ISOFLEX family of elements which are particularly 

efficient in representing the structural response 

of thin plates in flexure. 

• (iii) The ISOBEAM family of elements which are particularly 

efficient in representing the structural response of 

cellular structures subjected to flexural and 

torsional perturbations. 

5.2 	CONCLUDING REMARKS 

A general finite element computer system, LUSAS, has been 

developed and the application of this system to various structural 

problems has been described. These problems represent a wide range 

of static linear structures having various geometries, boundary 

conditions and loading conditions. In each case the finite element 

results compare well with the theoretical and experimental results, 

thus establishing the overall validity of the computer system and 

emphasizing the versatility of the finite element method. The LUSAS 

computer system could therefore be utilized for parametric studies 

of many static linear structures for the formulation of design rules. 

By virtue of its modularity, flexibility and efficiency, the 

LUSAS computer system forms a sound basis for the continued development 

of a general analysis system within the Civil Engineering Department 

of Imperial College. 	Possible developments are, for example, 

• 
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incremental techniques for the dynamic response of structures including 

material and geometric non-linearities. 	In addition, singular finite 

elements could be developed and incorporated for the analysis of crack 

propogation as found in fatigue problems. The computer system has 

also been organised so that a multilevel substructure facility could 

be quickly and easily introduced for the analysis of large structures 

with similar superelements or bifurcations. The addition of these 

facilities would enable the finite element method to be applied to many 

problems encountered in, for example, the field of OFFSHORE ENGINEERING. 

In recent years many finite element formulations have appeared 

in the literature, but to date these have not included formulations 

for a family of thin plate flexure elements or a family of extensional- 

flexural elements. 	These element families which incorporate many 

useful features may prove advantageous to engineers who nowadays have 

to decide not whether a problem can be solved but which elements should 

be used. The accuracy, efficiency and easy implementation of the 

proposed element families are persuasive features. 

The field of application of the present element formulations 

is wide. Since both element families converge to the correct 

solution with very coarse meshes, and since they are computationally 

efficient, they could be effective for the study of non-linear 
• 

extensional-flexural plate problems, including geometric and material 

• non-linearities. A special purpose computing system could be 

assembled and developed from the LUSAS modules for this purpose. 

Although the proposed element formulations are justified by the 

patch test, the theoretical basis is obscurred by the application of 

kinematic constraints and the use of inexact numerical integration. 

If the true theoretical basis could be established a more systematic 

approach to the development of these incompatible elements would be 

advantageous to future research. Perhaps the concept of substitute 

shape functionsZ4would apply here. 
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Appendix 1 
TRI GU 1.1111 P LANE K.:RnIZANE. ELEM:NT 

'Number of nodes 	3 

Degrees of freedom 	u,v at each node 

Displacement field 	linear 

References 	Cl 21 

STRESS OUTPUT 

Standard x ,ayxy m ,a axmi. ,e at centroid n 
Option 	 N ,N ,N 	N 	, e at centroid x y xy max min 

DATA INPUT 

STRUCTGRE 	 plane stress/strain 

OPTION 	 local stresses 

NOEE COORDINATES 	x, y at each node 

PLATE PROPERTIES 	E ,E 	t orthotropic x y 
RIGIDITIES 	C ,C ,C ,C1,0 orthotropic x y xy 

CL 	 P P at any node x y 
CEF 	 X,Y for element 

TRM3 

TRM I3 

TRM6 
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a 

a. 

• 

TRIANGULAR PLA E KIERRANE ELEMENT 

Nurber of nodes 	3 

Degrees of freedom 	u,v at each node + a,f3 at centre 

Displacement field 	linear + higher order incompatible modes 

References 	 Z1 and authors developments 

STRESS OUTPUT 

Standard 	 a AF ,T 	,5 	,e at centroid X y xy max min 
Option 	 Nx,Ny ,Nxy ,Nmx,N.in,o at entroid 

DATA INPUT 

STRUCTURE 	 plane stress/strain 

OPTION 	 local stresses 

NODE COORDINATES 	x,y at each node 

PLATE PROPERTIES 	E ,E ,G,v,e, t orthotropic x y 
RIGIDITIES 	C ,C ,C ,C ,e orthotropic x y xy 1 

CL 	 P x  ,Py  at any node 

CBF 	 X,Y for element 

TRIANGULAR PLANE MEYBRANa ELEMENT 

Number of nodes 	6 

Degrees.of freedom 	u,v at each node 

Displacement field 	quadratic 

References 	 21 

STRESS OUTPUT 

Standard 	 0,a,a,a,/,':1 at each node 
x y xy max min 

DATA INPUT 

STPUCTUP.E 	 plane stress/strain 

OPTION 	 local stresses 

NOUN COORDINATES 

PLATE PROPERTIES 

RIGIDITIES 

x,y at each node 

E ,E ,G,v,e, t orthotropic 
x 7 

CC ,c ,C ,0 orthotropic 
x y xy 1 

CL 	 P 
x 

 ,P
y 
 at any rode 

CBE 	 X,Y for element 

Elements available for analysing 
plane stress and plane strain problems 



QUADRILATERAL PLANE MENMRANE ELEMENT 

Number of nodes 	4 

Degrees of freedom 	u,v at each node 

Displacement field 	linear + selected higher terms 

References 	11 

STRESS =purr 

Standard 	Q .0 ,T ,0 	,0 . ,0 at each node 
x y xy max min 

Option 	N ,N ,N ,N 	,N 	,43 at each node 

DATA INPUT 

STRUCTURE 	plane stress/strain 

OPTION 	local stresses 

NODE COORDINATES 	x,y at each node 

PLATE PROPERTIES 	Ex,Ey,G,v,9, t orthotropic 

RIGIDITIES 	C ,C ,C ,C1,9 orthotropic 
x y xy 1,  

CL 
	p 

x 
 ,P
y 
 at any node 

CHF 
	

X,Y for element 

0DM6 

TRM10 

ODMI4 

• g• 

.* 
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TRIANGULAR PLANE M,K1RANE FLEMENP 

Number of Nodes 	10 

Degrees of freedom 	u,v at each node • 

Displacement field 	cubic . 

References 	Si 

STRESS OUTPUT 

Standard 	0 
x 
 0 
y  ,T xy 

,0max ,0min .9 at each node 

DATA INPUT 

STRUCTURE 	plane stress/strain 

OPTION 	local stresses 

NODE COORDINATES 	x,y at each node 

PLATE PROPERTIES 	E
x
,E
y
,G,V,9, t orthotropic 

RIGIDITIES 	C 
x 
 ,C 

 y 
,C 

 xy ,C1 
 ,e orthotropic 

CL 	P ,P at each node 
x y 

CHF 	X,Y for element 

QUADRILATERAL PLANE EEMBRANE ELEMZNT 

Number of Nodes 	4 

Degrees of freedom 	u,v at each node + , which are eliminated 

Displacement field 	linear + higher order + incompatible modes 

References 	W3 

STRESS curPur 

Standard 	0x,01,,Tx.1,/max,amin,0  at each ncdo 

Option 	N
x'
N
y
,Nxy,N

m
ax,Nmin

,9 at each node 

DATA INPUT 

STRUCTURE 	plane stress/strain 

OPTION 	local stresses 

NODE COO2DINATES 	x,y at each node 

PLATE PROPERTIES 	E ,E 	t orthotropic 
x y 

RIGIDITIES 	C
x
,C
y
,C
xy
,C
1
,0 orthotropic 

CL 	P 
x 
 ,P
y 
 at any node 

CRP 	X.Y for element 

Elements ovailatpte for analysing 
plane strcS5 ctncl plane strain problems 



STRESS OUTPUT 

Standard F
X 
 ,F at each node 
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QUADRILATFRAL PLANE MFM2tRaNN ELE=T 

Number of nodes 

Degrees of freedom 	u,v at each node 
1 

Displacement field 	quadratic + selected higher order terms 	1 

References 	11 

STRESS OUTPUT 

Standard
x Py

,Txy,0max,0
min,e  at each node 

DATA INPUT 

STRICTURE 	plane stress/strain 

OPTION 	local stresses 

NODE COORDINATES 	x,y at each node 

PLATE PROPERTIES 	0 ,0 ,G,v,e, t orthotropic x y 
RIGIDITIES 	C ,C ,C ,C ,E) orthotropic 

x y xy 1 

P ,P at any node 
x y 

X,Y for element 

QUADRILATERAL PLANE MEMBRANE ELEMENT 

Number of Nodes . 	12 

Degrees of freedom 	u,v at each node 

Displacement field 	cubic + selected higher order terns 

References 	Zl 

STRESS OUTPUT 

Standard 	0
xy

,Uxy,0m
ax,0m

in,0 at each node 

DATA INPUT 

STRUCTURE 	plane stress/strain 

OPTION 	local stresses 

NODE COORDINATES 	x,y at each node 

PLATE PROPERTIES 	E ,E ,n,V,9, t orthotropic 
x y 

RIGIDITIES 	C
x 
 ,Cy ,Cxy ,C1,9 orthotropic 

CL 	P x ,P
y 
 at any node 

CBF 	X,Y for element 

JOINT ELEMENT 

JOINT2. 
Number of nodes 	2 

Degree's of freedom 	u,v at each node 

Displacement field 

References 	authors developments 

Notes 	connects two nodes, which may be coincident 
by orthogonal set of springs 

DATA INPUT 

STRUCTURE 	plane stress/strain 

OPTION 	as required 

NODE COORDINATES 	x,y at each node 

JOINT RIGIDITIES 	r 	, 0 
x y 

CL 	P ,P at any node 
Y y 

Elements avWlable for analysing 
plane.stress and plane strain problems 

+NO 

• 

CL 

0DM12 

ODME3 



STRESS OUTPUT 

Standard F
x 

axial force 

DATA INPUT 

' STRUCTURE 

ELEMZNT NODES 

NODE COORDINATES 

BEAM RIGIDITIES 

plane frame/stress 

element and node numbers and R and F 
end conditions 

x,y at each node 

EA, EI, GA 

UDL 

• Standard 

DATA INPUT 

STRUCTURE 

NODE COORDINATES 

BEAR RIGIDITIES 

S',M!, M,  z x y 

grillage/plate bending 

x,y at each node 

EI,GJ,GA 

PeMx,My  at any node 

RI 
z
, load/unit length 

•■• 

• 

wy  
STRAICMT PLANE TRUSS 111:mErr 

BAR? 
Number of nodes 	2 

XI 	Degrees of freedom 	u,v at each node 

Displacement field 	linear 

References 	- 	P2 

DATA INPUT 

STRUCTURE 	plane truss/stress/strain 

OPTION 	as required 

NODE COORDINATES 	x,y at each node 

BEAM RIGIDITIES 	EA 

Px  ,Py  at any node 

STRAIGHT PLANE FRAME BEAM ELEMENT 

Number of nodes 	2 

Degrees of freedom 	u,v,0 at each node 

Displacement field 	cubic 

References 	P2 

STRESS OUTPUT 

Standard 	F'
x' y 

F'
' z 
M. forces and moments at each 

node 

BEAM2 

CL 	P 
x 
 ,P 

 y 
 ,M
z 
 at any node 

UDL 	 W
x 
 ,W
y 
 load/unit projected length 

STRAIGHT GRILLAGE ELEMENT 

Number of nodes 	2 

Degrees of freedom 	w,e ,e 
x y 

Displacement field 	cubic 

References 	P2 

STRESS INPUT 

GRID2 

Elements available for analysing plane truss 
plane frame and grillage problems 

159 a 



DATA INPUT 

STRUCTURE 	space membrane 

OPTION 	local stresses 

NODE COORDINATES 	x,y,z at each node 

2 
PLATE PROPERTIES 	E

x 
 ,E
y 
 ,G,V,O, t orthotropic 

Px,Py,Pz  at any node 

X,Y,Z for element 

CL 

CEP 

References Zl and authors developments 

QDSM4 
QUADRILATERAL SPACE MEMBRANE ELEME/rf 

1 
TRIANGULAR SPAcE MEN RRANE EI.EMENT 

Numl,er of nodes 	3 

Degrees of freedom 	u,v,w at each node 

Displacement field 	linear 

References 	Cl and authors developments • 

STRESS OUTPUT 

Standard 	,I;cy  CI,„ax,15„,„in,0 at centroid 

Option 	NX, 	Nsax, Nmin,0 at centroid 

DATA INPUT 

STRUCTURE 	space membrane 

OPTION 	local stresses 

NODE COORDINATES 	x,y,z at each node 

PLATE PROPERTIES 	E
x 
 ,E
y 
 ,G,V,O, t orthotropic 

TRSM3 .  

Px,Py,Pz  at any node 

IC,Y,Z for element 

TRIANGULAR SPACE MEMBRANE ELEMENT 

CL 

03F 

Number of nodes 	3 

Degrees of freedom 	u,v,w at each node + a,8 which are 
eliminated 

Displacement field 	linear + higher order incompatible modem 

TRSMI3 

STRESS OUTPUT 

Standard 	a'' 
	' 	, 
Cl' T. 	Cl max ,amin ,6 at centroid 

x y xy  
Option N', N' ,N 	,N 	,eat centroid 

x: y xy max min 

DATA INPUT 

STRUCTURE 	space membrane 

OPTION 	local stresses 

NODE COORDINATES 	x,y,z at each node 

PLATE PROPERTIES 	Ex,  E 
y
, G,V,O, t orthotropic 

I 
I CL 	P

x 
 ,P 
y 
 ,P
z 
 at any node 

i  CHF 	X,Y,Z for element 

160 

a 

4 

a 

Number of nodes 	4 

Degrees of freedom 	u,v,w at each node 

Displacement field 	linear 

References 	Z1 

STRESS OUTPUT 

1 
, Standard 

1 Option 

a,  a,  T. 	o 	,a 	6 at centroid 
x,  y,  xy,  max min 

NX
N., N', N' , N 	N 	, 6 at centroid 

, y xy MAX min 

Elements available for analysing 
space membrane problems 



CL 

CBF 

Px,Py,Pz  at any node 

X,Y,Z for element 

CL 
1 

Px,Py,Pz  at any node 

1 
QUADRILATERAL SPACE MK:BANE 	 UT 

STRESS OUTPUT 

Standard 	 • x 0'x  0.y T.y , 0 	.0 	• 0 at centroid , 	max min 
. Option 	N'. N', N' ,N,N,eat centroid 

x" y xy max min 

DATA INPUT 

STRUCTURE 	space membrane 

OPTION 	local stresses 

NODE COORDINATES 	x,y,z at each node 

PLATE PROPERTIES 	E 
X 
 ,E 
y
,G,V,O, t orthotropic 

, . 
STRAIGHT SPACE TRUSS ELEMENT 

BARS2 

• 

AD. 

Nether of nodes 	2 

XI • Degrees of freedom 	u,v,w at each node 

• Displacement field 	linear 

References 	P2 

STRESS OUTPUT 

Standard 	r' axial force 
X 

DATA INPUT 

STRUCTURE 	space truss/membrane.  

OPTION 	as required 

NODE COORDINATES 	x,y,z at each node 

REAM RIGIDITIES 	EA 

• 

Elements available for analysing 
space membrane problems • 

161 

DS1,114.  
Number of nodes 

Degrees of freedom 

Displacement field 

References 

4 

u,v,w at each node and a,a which are 
eliminated 

linear + higher order incompatible modes 

W3 



T RB3 

AK 

rk• 

or 

6 

0 OB4 
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• 

TRIANGULAR PLATE BENDING ELENINT 

Nu=ber of nudes 	3, 

Degrees of freedom 	w,8 ,8 at each node 
x y 

Displacement-  field 	cubic with derivative smoothing 

References' 	this thesis 

STRESS OUTPUT 

Standard 	a
x  ,Cy 

,*t
xyrax ,smin , 

e at each node 

Option 
	

Ny, M., M.y. M.„tx, MSin, 0 at each nodd 

DATA INPUT 

STRUCTLME 	 plate bending 

OPTION 	local stresses 

NODE COORDINATES 	x,y at each node 

PLATE PROPERTIES 	E ,E ,C,U,8, t orthotropic 
x y 

RIGIDITIES 	D ,D ,D ,D , e orthotropic 
x y xy 1 

CI 
	

P
z 
 ,N
x 
 ,M
y 
 at any node 

UDL 
	

"z 

QUADRILATERAL PLATE BENDING ELEMENT 

Number of nodes 	4 

. 	Degrees of freedom 	v.0.0 at each rode 
x y 

Displacement field 	cubic + higher order terms 

References 	this thesis 

• 
STRESS OUTPUT 

Standard 	 e at each node 

Option 	M
y 
 ,M
x 
,M
xy 
,Mmax ,Mmin , O at each node 

DATA INPUT 

STRUCTURE 	plate bending 

OPTION 	 local stresses 

NODE COORDINATES 	x,y at each node 

PLATE PROPERTIES 	E ,E ,G,V,e, t orthotropic 
x y 

RIGIDITIES 	D
x
,D
y
,Dxy ,D

1
,e orthotropic 

CL 	Pz,M.,My  at any node 
• 

CBF 	 Wz 

JOINT ELEMENT 

JOINT 2 
Number of nodes 	2 

Degrees of freedom 	w,8 ,8 at each node 
x y 

Displacement field 

References 	authors developments 

Notes 	connects two nodes, which may to 
coincident, 1-4 orthogonal set of springs 

STRESS OUTPUT 

Standard R ,M , 
z x

M  y 

DA1A INPUT 

STRUCTURE 	 plate bending/grillage 

OPTDai 	as required 

NODE COORDINATES 	x,y at each node 

00/NT PROPERTIES 	 , Ye; K3;, e 

CL P_, H M at any node 
z x y 

X 

Elements available for (analysing 
thin plate flexure problems 

AY 



()USD /./ODSD 

STRESS OUTPUT 

Standard 

Option 

DIATA INPUT 

STRUCTURE 

OPTION 

NODE COORDINATES 

PLATE PROPERTIES 

CL 

clip 

0' 0'y• c' 	for extensional/flexural 

stresses 

NY,N' N'  Nxy for extensional/flexural y'  
stresses 

Shell 

local stresses 

x,y,z at each node 

Ex,Ey,G0.),e, t.,tb  orthotropic 

P ,P ,P ,M ,M ,M at any node 
xyzxyz 
X,Y,Z for element 

QDSB 6 / QDSE3I6 
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QUADRILATERAL FACiT SHELL EIXMENT 

Number of nodes 	3 

Degrees of freedom 	u,v,w a x,Oy.0z at each node 
DisplacomentfieId 	linear 4. higher order incompatible modes 

References 	this thesis 

Notes 	a biased element with beam performance 
for cellular structures 

QUADRILATERAL FACET SHELL ELEMENT 

Number of nodes 	6 

Degrees of freedom 	u,v,w,e x ,0 
 y 
 ,9
z 
 at corners, u' midside 

Displacement field 	linear + higher order incompatible modes 

References 	this thesis 

1 Notes 	a biased element with beam performance 
for cellular structures 

STRESS OUTPUT 

Standard 	a', ay' ,.a' 	for extensional/flexural 
x 	xy 
stresses 

Option 	N', N', N' 	for extensional/flexural 
x y xy 
stresses 

DATA INPUT 

STRUCTURE 	shell 

OPTION 	local stresses 

NODE COORDINATES 	x,y,z at each node 

PLATE PROPERTIES 	S ,E y,G,V,e, t
m
,tb orthotropic x  

CL 	P ,P,P ,M ,M ,M at any node 
xyzxyz 

CBF 	X,Y,Z for element 

BMS2 
SPACE FRA-.7. ELEMENT 

Number of nodes 	2 + 1 for definition of local xy plane 

Degrees of freedom 	u,v,w,e ,O ,e at first two nodes 
X y z 

Displacement field 	cubic 

References 	P2 

Notes 	eccentricity included for ribbed plates 

STRESS OUTPUT 

I Standard 

DATA INPUT 

STRUCTURE 

OPTIW 

NODE COORDINATES 

BEAM RIGIDITIES 

CL 

F. 	S. , S. , Ex  
. , M

y  
. , 14

z
,  

xyz  

space frame/shell 

local stresses 

x,y,z at each node 

FA, El , ET , GJ , GA , GA 
y z x y z 

PS,P5,,,Pz,Mx,My,M at each node 

Ir 

• 

• 

AIR 

Elements available for analysing 
shell and space frame structures 



8 

u,v,w at corners, e,v,w,01,02  at. sides 

effectively cubic 

14-16 

Numher of nodes 

Degrees of freedom 

Displacement field 

References 

ODTS& 

STRESS OUTPUT 

Standard 0., O., O. 	for extensional/flexural 
x y xy 

stresses 

DATA INPUT 

STRUCTURE 

NODE COORDINATES 

PLATE PROPERTIES 

thin shell 

x,y,x at each node 

F.x 
 
,E

y 
 ,G,V,e,t 

Px,Py ,Pz/M1,m2  at nodes 

P at any node 

CL 

BFP 

11',4 

QVADR1LATERAL TRIN SHELL ELEMENT 

Elements meltable for analysing three - 
dimensional thin curved shell problems 

U 

a 



STRESS OUTPUT 

Standard Ux ,01,0z.Txy.TyeTzx  at each node 

JOINT2 ' Number of nodes 	2 + 2 to define local x,y,z spring 
directions 

• Degrees of freedom 	u,v,w at each node 

Displacement field 

References 	 this thesis 

Notes 	 connects two nodes, which may be coincident 
by an orthogonal set of springs. Nodes 3 
and 4 must be restrained if not part of 
the structure 

' STRESS OUTPUT 

Standard 	 F' 	F' , F' at each node .xyz 

DATA INPUT 

STRUCTURE 	 solid 

OPTION 	 as required 

NODE COURDINATES 	x,y,z at each node 

JOINT RIGIDITIES 	, X' , 	stIffnesses x y z 

CL 	 P x  ,P  y  ,Pz  at any rode 

165 

Elements available for analysing three-
dimensional thick shell problems 

1C 

PENTIURIEMOVAL ELEY.IiT WITH CURVED 

Number of nodus 	12 
Degrees of freedom 	u,v,w at each node 
Displacement field 	linear + quadratic 
References 	 Z1 

DATA INPUT 

STRUCTURE 	 solid 
OPTICS 	 as required 
NODE COORDINATES 	x,y,z at each node 
SOLID PROPERTIES 	E,V isotropic 

CL 	 P x  ,P  y  ,Pz  at any node 
CHF 	 X,Y,Z for element 
BFP 	 p, At at any node 

BEXAHEDRONAL ELEMENT WITH CURVED EDGES 

Number of nodes 	16 

Degrees of freedom 	u,v,w at each node 

Displacement field 	linear + quadratic + higher order 

References 	 Z1 

HEX16 

Standard 	 -U O 	,T ,T ,T at each node x y z xy yz zx 

DATA INPUT 

STRUCTURE 	 solid 
OPTION . 	 as required 

NODE COORDINATES 	x,y,z at each node 

SOLID PROPERTIES 	E,V isotropic 

CL 	 Px,Py ,Pz at any node 

CHF 	 X,Y,Z for element 
BFP 	 P, At at any node 

JOINT ELEMENT 

PEN12 
6 



u,v,w at each node + a,B,Y, which are 
eliminated 

Degrees of freedom 

10 • 

STRESS °INPUT 

Standard 0 ,0 ,o ,T ,T ,T 	at each node 
x y z xy yz ax 

T:.:11AHEDHONAL ELEMENT WITH SMNIGWV 

Numier of nolett 	4. 

Degrees of freedom 	u,v,w at each node 

Displacement field 	linear 

References 	Z1 

STRESS ourPur 

Standard 	a pa y .0 .Txyyz 
,T 

 xx 
 at each node 

x 	z  

DATA INPUT 

STRUCTURE 	solid 

OPTION 	as required 

NODE COORDINATES 	x,y,z at each node 

SOLID PROPERTIES 	E,V isotropic 

CL 	Px  .Py  ,Pz 
 at any node 
 

CBS' 	X,Y,Z for element 

P. At at any node 

TETRAHEDRONAL ELEM.Eiqr WITH STRAIGHT EDGES:  

Number of nodes 	4 

Displacement field 	linear + higher order incompatible modes 

References 	Z1 and authors developments 

STRESS OUTPUT 

Standard 	o ,a ,T ,T at each node 
x y z xy yz zx 

DATA INPUT 

STRUCTURE 	solid 

OPTION 	as required 

NODE COORDINATES 	x,y,z at each node 

SOLID PROPERTIES 	E,V isotropic 

CL 	Pr,Py,Pz  at any node 

CBF 	X,Y,Z for element 

EFT 	P, At at any node 

TET4 

EPP 

TETRA1MDRONAL ELEMENT WITH CURVED EDGES 

Number of nodes 	10 

Degrees of freedom 	u,v,w at each node 

Displacement field 	quadratic 

References 	Zl 

DATA INPUT 

STRUCTURE 	solid 

OPTION 	as required 

NODE COORDINATES 	x,y,z at each node 

SOLID PROPERTIES 	E,V isotropic 

CL 	P 
x 
 ,P 
y
,P at any node 

CRF 	X,Y.Z for element 

PEP 	P, At at any nolo 

2 

TET10 
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Elements available for analysing 
three -dimensional srAid problems 



PEN 6 6 
Pv_NIKAIIEDIZAL ElEn:Nr WITH STRA1WIT 

x  at each rode 
STRESS OUTPUT 

Standard 	 a 
x 

.0  y ,D  z ,T 	y P xy  

DATA INPUT 

STRUCTURE 	 solid' 

OPTION 	 as required 

NODE COORDINATES 	x,y,z at each node 

SOLID PROPERTIES 	£,V isotropic 

Degrees of freedom u,v,w at each node + a,9,Y which are 
eliminated 

Displacement field 	linear + higher order + incompatible modes 

References 	 Zl and authors developments • 

STRESS OUTPUT 

Standard 0x  ,ay  ,a z ,T 
 xy 

,T 
 yz 

,T 
 zx at each node 

167 
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Numher of nodes 

of fTendOM 

Displacement field 

References 

6 

u,v,w at each node 

linear + selected higher order terms 

11 

p x ,P  y ,P2 
 at any rode 

X,y,z for element 

P, At at any node 

CL 

CBE 

. REP 

PENTRAHEDRAL ELEKINT WITH STRAIGHT EDCES 

Number of nodes 	6 

DATA INPUT 

STRUCTURE 	 solid 
OPTION 	 as required 

NODE COORDINATES 	x,y,z at each node 

SOLID PROPERTIES 	E,v isotropic 

CL 	 P ,P ,P at any node 
X y z 

CRP 	 X,Y,2 for element 

BFP 	 P, At at any node 

PENTRAHEDPAL ELEMENT WITH CURVED EDGES 

Number of nodes 	15 

Degrees of freedom 	u,v,w at each node 

Displacement field 	quadratic + selected higher order terms 

References 	 Z1 

STRESS OUTPUT 

PEN15 
12 

a ,0,0 	 at each node 
X y z xy yz zx 

15 Standard 

DATA INPur 

STRUCTURE 	 solid 

OPTION 	 as required 

140'..,E COORDINATES 	x,y,z at each node 

SOLID PROPERTIES 	E,v isotropic 

CL 	 p ,p ,P at any node 
x y z 	 . 

CBE • 	 X,Y,Z for element 

DFP 	 P, Lt at any node 

PENI6 

13 

• 

Elements available for analysing 
three-dimensional solid problems 



1 
HEX.alEDRONAL ELENINT WITH ST1LUCHT EDGHS 

Number of nodes 	8 

Degrees of freedom 	u,v,w at each node 

Displacement field 	linear + selected higher order terms 

References 	Zl 

STRESS OUTPUT 

Standard 0,0 .6 	.1 	at each node 
y Z xy yz zx 

Number of nodes 

Degrees of freedom 

7 
Displacement field 

8 

u,v,w at each node + 6,8,Y which are 
eliminated 

linear + higher order + incompatible modes, 

SEXAHEDRONAL ELEMENT WITH CURVED EDGES 
HEX20 

Elements available for cinulysing 
three --dimensional solid problems 

if 

of 

a 

DATA INPUr 

STRUCTURE 	solid 

OPTION 	as required 

NODE COORDINATES 	x,y,z at each node 

3 SOLID PROPERTIES 	E,V isotropic 

CL 	Px,Py,P.z  at any rode 

CRF 	X,Y,Z for element 

SEP 	P, At at any node 

HEXAHEDRONAL ELEMENT WITH STRAIGHT EDGES 

STRESS OUTPUT 

.Standard 	6
x 
 ,6
y 
 .0 ,T xy ,Tyz ,T at each node 
z 	zx 

DATA INPUT 

STRUCTURE 	solid 

OPTION 	as required 

NODE COORDINATES 	x,y,z at each node 

SOLID PROPERTIES 	E,V isotropic 
3 

CL 	Px,Py,Pz  at any node 

CBF 	X,Y,Z for element 

BFP 	P, At 

7 

Number of nodes 

Degrees of freedom 

7 Displacement field 
References 

Notes 

STRESS OUTPUr 

19 Standard 

20 

u,v,w at each rode 

quadratic + selected higher order terms 

Zl 
extrapolated stresses 

,6 ,0 ,T ,T ,T 	at each node 
x y z zz yz zx 

DATA INPUT 

STRUCTURE 	solid 

OPTION 	as required 

3 NODE UllDRDINAlES 	x,y,z at each node 

SOLID PROPERTIES 	E,V isotropic 

CL 	P ,P ,P at any node 
X y z 

CDR 	X,Y,Z for element 

REP 	Pdlt at any node 

HEX8 

168 
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• 

TAX3 

LY 

rX 

STRESS OUTPUT 

Standard G.,0y,Or.',Oxy  at centroid 

CL 

CBF 

P ,P at any node for 1-radian 
x y 
X,Y for element 

CL 

CHF 

P 
x 
 ,P
y 
 at any node for 1 radian 

X,Y for element 

QAXE. 
QUADRILATERAL AXI-SYMEETRIC ELEMENT 

STRESS OUTPUT 

Standard x 
,C
y 
 ,C z ,Cxy at nodes 

TRIANGULAR AXI-SYMMETRIC ELEMENT 

Number of nodes 	3. 

Degrees of freedom 	u,v at each node 

Displacement field 	linear 

References 	El 

DATA INPUT 

STRUCTURE 	axi-symmetric solid 

NODE COORDINATES 	x,y at each node 

MATERIAL PROPERTIES EA) for element 

TRIANGULAR AXI-SYMNETRIC ELEMENT 

Number of nodes 	6 

Degrees of freedom 	u,v at each node 

Displacement field 	quadratic- 

References 	21 

STRESS OUTPUT 

Standard 	a,a ,a ,a 	at nodes 
x y z xy 

DATA INPUT 

STRUCTURE 	axi-symmetric solid 

NODE COORDINATES 	x,y at each node 

MATERIAL PROPERTIES E,V for element 

X 

Number of nodes 	4 

Degrees of freedom 	u,v at each node 

Displacement field 	linear + higher order 

References 	21 

DATA INPUT 

STRUCTURE 	axi-symmetric solid 

NODE COORDINATES 	x,y at each node 

MATERIAL PROPERTIES E,V for element 

CL 	P ,P at any node for 1 radian 
x y 

CBP 	X,Y for element 

Elements available for analysing 
axi * symmetric solid problems 

TAX6 

Ay 



STRESS OUTPUT 

Standard Orx,dy,O.,oxy  at nodes 

170 

Elements available for analysing 
three dimensional solid problems 

QUADRIITTERAL AXI-SYMMETRIC ELEMENT 

3 

X 

Number of nodes 	8 

Degrees of freedom 	u,v et each node 

Displacement field 	quadratic + higher order 

References 	El 

DATA INPUT 

STRUCTURE 	axi-symmetric solid 

Nom COORDINATES 	x,y at each node 

MATERIAL. PROPERTIES E,V for element 

CL 	P x ,P
y 
 at any node for 1 radian 

CBF 	X,Y for element 
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APPENDIX2 

A2.1 GENERAL PROCEDURE FOR SMOOTHED NODAL STRESS VALUES 

It has been demonstrated by Barlow
B5 

that optimal 

ti 	points for calculating accurate stresses exist within finite 

element domains, and that these points often coincide with 

numerical integration points. Although whenever possible 

the stresses should be sampled at these optimal points, 

this is not always compatible with the output schemes of 

finite element computer systems, and is often not convenient 

for the interpretation of results when nodal values may be 

preferred. 

Nodal stress values can be obtained by extrapolation 

of the stress values at the integration points. The 

procedure described here gives smoothed nodal values that are 

the least squares best fit of the unsmoothed nodal values, 

H1,H2 
and these give consistently superior results. 	Also 

the proposed procedure is easy to implement, and can be applied 

to all finite element models with optimal stress locations at 

points other than the nodes. 

Consider the parabolic distribution of a typical stress 

Ci() for a one dimensional element
H2

, Fig. A2.1. 	The straight 

line 6(E) represents the smoothed stresses and is defined 

uniquely by the values of the stress at the two Gauss points 
1 

(± 1/-5 ). On changing the scale of the coordinate axis by 

• 
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10- 

putting C = C1/ , points 1 and 2 now have coordinates 

= ±1. 	The smoothed stress agi) can now be calculated 

quite simply at any position c along the element from the 

linear interpolation formula 

• 2 
a = 	E 	N. 6. 

i=1 
3 3 

(A2.1) 

where the shape functions are 

N. =-
1 
(1 + C I  Ct.) with 	= ±1 

j 2 	3 

For the smoothed stresses at the extremities of the element 

coordinates of.  C' = ±13-  were inserted. 

This extrapolation procedure can be visualised by 

imagining the stress sampling points to be the nodes j _of 

a new fictitious element where the smoothed stress values 

a. are known. Then, by the use of appropriate shape functions, 

usually an order of one less than the original element shape 

functions, the smoothed stresses a can be calculated inside 

or outside of the fictitious element domain, for instance 

at the nodes i of the original element. 

For a parabolic quadrilateral element with eight 

nodes, there are four optimal stress sampling points, located 

at the 2 x 2 Gauss points, Fig. A2.2. 	A fictitious 

quadrilateral element can be constructed with four nodes j 

which are coincident with the optimal stress points. If 

the stresses are assumed to vary bi-linearly, for any point 



 

inside or outside of this fictitious element domain, the 

smoothed stresses are given as 
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Al■ 

 

 

4 
a = 	E N. 6, 

3 3 j=1 
(A2.2) 

with 
1 

N. = 4 —(1 + 	( 1 + 	n'.) 
3 

(A2.3) 

For the smoothed stress values at node 1 of the parent element, 

for example, the natural coordinates are C' = - /5 and 

n,  = - 11, and for node 5 C' = 0 and fl' = - 11, and so on. 

Clearly, this stress smoothing procedure can be easily 

extended to apply to one, two and three dimensional elements 

where optimal stresses are available at points other than 

the nodes. 



,r t 
a 

fS 

Model 'Variational 
Principle 

- Assumed Inside 
Each Element 

Along inter-element 	'Unknowns 
boundary 

in Final 
Equations 

'References 

Compatible Minimum Continuous Displacement Nodal displacements Mg 
Potential displacements compatibility Melosh 
Energy . 

El 	. 
Equlli- Mini.mum Continuous and Equilibrium bound- (i) Stress Elias 

brium Complement- equilibrating ary tractions parameters M9 M10 
ary Energy stresses (ii) Generalised 

nodal 
displacements 

Morley 
V3 

Veubeke 

Hybrid I Modified 
Complement- 
ary Energy 

Continuous and 
equilibrating 
stresses 

Assumed compatible 
displacements 

Nodal displacements Pian 
P7 

Hybrid II Modified Continuous Assumed equilibra- Displacement- Y1 
Potential 
Energy 

displacements ting boundary 
tractions 

parameters and 
boundary forces 

Yamameto 

Hybrid III Modified Continuous Assumed boundary Nodal displacements T5 
Potential ' 
Energy 

displacements tractions for each 
elements and assumed 
boundary 
displacements 

Tong 

1  H3 
Mixed Reissner s Continuous Different combina- Different combina- Herrman 

Principle stresses and 
displacements 

tions of boundary 
displacements and 
tractions 

tion of boundary 
displacements and 
tractions 

Table 1.1 
	

Classification of finite element methods P6 
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JD 

• 
Type of code for innermost 
reduction loop, and tape 
reading action 

Standard 
Fortran,& 
BACKSPACE- 
READ- 
BACKSPACE 

Machine 
code, & 
random 
access 
disc 

Percentage 
saving 

C
en

tr
a
l 
p

ro
ce

ss
in

g  
ti

m
e  
(s

ec
s)

 

Forward elimination 164 122 27 

Backsubstitution 19 11 40 

Total for problem 287 236 18 

Total problem cost 
(central processing time 59.3 44.7 25 
+ I/0) 

Table 2.1 Comparison of computing costs for the solution of a 

problem with and without the machine code and random access 

facilities. 
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Mesh in a symmetric quarter 

Total number of unknowns 

1 x 1 

12 

2 x 2 

27 

4 x 4 

75 

8 x 8 

243 

Theory 

Central deflection w Mesh 1,043 1,105 1,145 1,156 

x 10.P12/D A (0.899) (0.953) (0.987) (0.997) 1,160 

= energy n Mesh 1,007 1,132 1,151 1,157 

TE
D

 
LO

A
D  (element/theory) B (0.868) (0.976) (0.992) (0.997) 

Corner reaction Mesh 114 1,092 1,160 1,201 

x 10-4 P .A (0.094) (0.896) (0.952) (0.985) 1,219 

(element/theory) Mesh 875 1,173 1,222 1,221 

B (0.718) (0.962) (1.002) (1.002) 

UN
IF

O
RM

L
Y

 D
IS

T
R

IB
U

T
ED

 
LO

A
D

 

Energy n - Mesh 1,056 1,532 1,661 	- 1,692 

x 10-6  .q16  /D A (0.620) (0.900) (0.976) (0.994) 1,702 

(element/thoery) esh 908 1,504 1,654 1,690 

:B (0.533) (0.884) (0.972) (0.993) 

Central deflection w esh 4,225 4,062 4,062 4,062 

x 10-6  .q14  /D A (1.040) (1.000) (1.000.) (1.000) 4,062 

(element/theory) 1 esh 3,632 4,063 4,069 4,064 

:B (0.894) (1.000) (1.002) (1.000) 

Central bending ..,.. esh 6,761 5,074 4,819 4,786  
-.q12  moment 	Mx  x 10 A (1.411) (1.059) (1.006) (0.999) 4,790 

(element/theory) esh 5,444 5,211 4,935 4,835 

B (1.137) (1.088) (1.030) (1.009) 

Corner twisting 	Mesh 3,379 3,428 	- 3,325 3,276 

moment 	M
xY 
 x 10-5q1 	A (1.040) (1.055) (1.023) (1.008) 3,250 

.(element/theory) 	fesh 1,822 2,750 3,086 3,198 

' 1 	B (0.561) (0.846) (0.950) (0.984) 

(* Nodal average of values extrapolated from integration points) 

Table 3.1 Simply supported square plate under central 
- concentrated load and uniformly distributed load. ISOFLEX 3 result 
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Mesh in a symmetric quarter 

Total number of unknowns 

1 x 1 

12 

2 x 2 

27 
4 x 4 
75 

8 x 8 

243 

Theorl 

Central deflection w Mesh 3,154 5,190 5,492 5,579 
x 10-6p1

2
/D A (0.563) (0.927) (0.981) (0.996) 5,600 

= 	energy 	Tr Mesh 2,262 4,908 5,428 5,561 
(element/theory) B (0.404) (0.876) (0.969) (0.993) 

CO
N

 
C

EN
 

Edge bending Mesh 1,126 1,275 1,25 7 1,257 
,, 

moment 	M
Y 
 x10-4P A (0.896) (1.014) (1.000) (1.000) 1,257 

(element/theory) Mesh 475 963 1,110) 1,173 
B (0.378) (0.766) (0.883) (0.933) 

U
N

IF
O

RM
LY

  D
IS

TR
IB

U
T

ED
 

LO
A

D 

Energy 71-  Mesh 2,629 3,710 3,857 3,886 
 x 10 .q14  /D A - 

(element/theory) Mesh 943 3,151 3,698 3,843 

B 

Central deflection w Mesh 1,051 1,279 1,267 ,1,267 
x 10-6q14/D A (0.834) (1.015) (1.006) (1.006) 1,260 
(element/theory) Mesh 377 1,108 1,231' 1,257 

B (0.299) (0.879) (0.977) (0.998) 

Central bending Mesh 3,075 2,929 2,402 2,313 
moment 	Mx  x10- q12  A (1.331) (1.268) (1.040) (1.001) 2,310 
(element/theory) Mesh 2,059 2,402 2,357 2,311 

B (0.891) (1.040) (1.020) (1.000) 

Edge bending Mesh 3,754 4,893  5,078 5,117 
moment 	M

Y 
 x10-5.q12 A (0.732) (0.954) (0.990) (0.997) 5,130 

(element/theory) Mesh 792 3,417 4,181 4,626 
B (0.154) (0.666) (0.815) (0.902) 

(* Nodal average of values extrapolated from integration points). 

Table 3.2 Clamped square plate under central concentrated 

load and uniformly distributed load. ISOFLEX 3 results 
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•i. 

Mesh in a symmetric qUarter 

Total number of unknowns 

1 x 1 

17 	' 

2 x 2 

43 
4 x 4 
131 

8 x 8 

451 

Theory 

Central deflection w Mesh 1,056 1,143 1,161 1,163 

x 10-.5p12/D A (0.910) (0.985) (1.001) (1.003) 1,160 

= 	energy it Mesh 1,060 1,155 1,167 1,166 

TR
A

I 

(element/theory) B (0.914) (0.996) (1.006) (1.005) 

Corner reaction Mesh 441 782 750 873 

x 10-4P A (0.362) (0.642) (0.615) (0.716) 1,219 

(element/theory) Mesh 703 608 934 1,092 . 

B (0.577) (0.499) (0.766) (0.896) 

U
N

IF
O

RM
LY

  D
IS

T
R

IB
U

T
ED

 
LO
A

D
 
 

Energy n Mesh 1,056 1,543 1,672 1,700 
x 10-.6q16/D A (0.620) (0.907) (0.982) (0.999) 1,702 

(element/theory) Mesh 1,017 1,547 1,671 1,699 

B (0.598) (0.909) (0.982) (0.998) 

Central deflection w Mesh 4,225 4,127 4,097 4,080 

x 10-.6q14/D A (1.040) (1.016) (1.009) (1.004) 4,062 

(element/theory) Mesh 4,068 4,126 4,098. 4,081 

B (1.001) (1.016) (1.009) (1.005) 

Centr,4 bending Mesh 6,762 5,410 4,965 4,836 

moment 	Mx 	

•5 

x10 	ql

2  

A (1.412) (1.129) (1.037) (1.010) 4,790 

(element/theory) Mesh 5,438 4,948 4,833 4,800 

B (1.135) (1.033) (1.009) (1.002) 

Corner twisting Mesh 3,378 3,353 .  3,158 3,131 

moment 	Mxy  x10
-5q12 A (1.039) (1.032) (0.972) (0.963) 3,250 

(element/theory) Mesh 3,716 3,814 3,620 3,446 

B (1.1b3) (1.174) (1.114) (1.060) 

(0 Nodal average of values extrapolated from integration points) 

Table 3.3 Simply supported square plate under central concentrated 

load and uniformly distributed load. 	ISOFLEX 6 results 
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AP- 

01. 

Mesh in a symmetric quarter 
Total number of unknowns 

1 x 1 
17 

2 x 2 
43 

4 x 4 
131 

8 x 8 
 451 

Theory 

Central Deflection w Mesh 3,154 5,323 5,590 5,631 

x 10 6PL2/D A (0.563) (0.951) (0.998) (1.006) 5,600 

= 	energy Tr Mesh 3,164 5,399 5,640 5,657 

R
A

TE
I 

LO
A

I 

(element/theory) B (0.565) (0.964) (1.007) (1.010) 

Edge bending Mesh 1,126 1,263 1,238 1,244 
' 	- 

moment 	M 	x 10 	.P 

(element/tK 	

4

eory) 

A 

Mesh 

(0.896) 

695 

(1.005) 

1,173 
(0.985) 
1,242 

(0.990) 
1,265 

1,257 

B (0.553) (0.933) (0.988) (1.006) . 

UN
IF

O
R

M
L

Y
 D

IS
T

R
IB

U
T E

D
 L

O
A

D 

Energy 	Tr 

x 10-7.q14/D 

Mesh 2,629 3,854 
A 

3,937 3,925 

(element/theory) Mesh 1,307 3,659 3,917 3,926 

B 

Central deflection w Mesh 1,051 1,277 1,280 1,275 

x 10-6.q14/D A (0.834) (1.013) (1.016) (1.012) 1,260 

(element/theory) 	. Mesh 527 1,233 1,279 1,276 

B (0.418) (0.979) (1.015) (1.013) 

Central bending Mesh 3,076 2,712 2,425 2,333 

moment M x A (1.332) (1.174) (1.050) (1.010) 2,310 -5 x 10 	. ql  2 

(element/theory) Mesh 2,312 2,425 2,332 2,301 

B (1.001) (1.050) (1.010) (0.996) 

Edge bending Mesh 3,754 4,786 5,021 5,063 

moment My x 10.5q12  A (0.732) (0.933) (0.979) (0.987) 5,130 

(element/theory) Mest. 1,258 4,105, 4,939 5,130 

B (0.245) (0.800) (0.963) (1.000) 

(* Nodal average of values extrapolated from integration points). 

Table 3.4 Clamped square plate under central concentrated load 
and uniformly distributed load. 	ISOFLEX 6 results 
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"L. 

Mesh in a syuuuetric quarte 
Total number of unknowns 

1 x 1 
12 

2 x 2 
27 

4 x 4 
75 

8 x 8 
243 

Theory 

Central deflection 	w 
x 10-5.P12/D 1,069 1,146 1,157 1,159 1,160 

EN
T R

A
I 

RA
L  

 L
C = 	energy u 

(element/theory) 

(0.922) (0.988) (0.997) (0.999) 

Corner reaction 

x 10 4  P 618 913 1,124 1,195 1,219 
(element/theory) (0.507) (0.749) (0.922) (0.980) 

UN
IF

O
RM

LY
  

D
IS

T
R

IB
U

T
E

D
 L

O
AD

 

Energy it 

x 10-6.q16/D 977 1,516 1,657 1,689 1,702 

(element/theory) (0.574) (0.891) (0.974) (0.992) 

Central deflection 	w 

x 10-6.q14/D 3,906 4,051 4,061 	- 4,062 4,062 

(element/theory) (0.962) (0.997) (1.000) (1.000) 

Central bending 

moment 	M 	x 10-5.q12 Mx 
6,093 5,124 4,873 4,809 4,790 

(element/theory) (1.272) (1.069) (1.017) (1.004) 

Cornet twisting 
moment Mxy  x 10-5.q12  

3,281 3,423 3,333 3,279 3,250 

(element/theory) (1.009) (1.053) (1.025) (1.009) 

0 Nodal average of values extrapolated from integration points) 

Table 3.5 Simply supported square plate under central concentrated 

load and uniformly distributed load. ISOFLEX 4 results 
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Mesh inasymmetric quarter 
Total number of unknowns 

1 x 1 
12 

2 x 2 
27 

4 x 4 
75 

8 x 8 
243 

Theory 

Central deflection w  

x 10-6.P12/D 6,250 5,440 5,573 5,603 5,600 

A
T

E
D

 C
EN

  
L
O

A
D

  

. energy It 

(element/theory) 

(1.116) (0.971) (0.995) (1.000) 

Edge bending 

moment" 	My  x 10-4.P 1,500 1,277 1,259 1,256 1,257' 
(element/theory) (1.193) (1.016) (1.002) (Q.999) 

U
N

IF
O

R
M

L
Y

 D
IS

T
R

IB
U

T
E

D
 LO

A
D

 

Energy 	it 

X 10-7. q14/D 

(element/theory) 
3,906 3,837 3,874 3,887 

Central deflection w 

x 10-6. q14/D  1,562 1,245 1,261 1,264 1,260. 

(element/theory) (1.239) (0.988) (1.000) (1.003) 

Central bending 

	

. 	-5  

	

moment 	Mx  x 10q12  4,875 2,509 2,368 2,311 2,310 

(element/theory) (2.110) (1.086) (1.025) (1.000) 

Edge pending 
5 moment My  x 10-.q12  

(element/theory) 
3,750 

(0.730) 

4,738 

(0.923) 

5,007 

(0.976) 

5,097 

(0.994) 

5,130 

,(* Nodal average of values extrapolated from integration points) 

Table 3.6 	Clamped square plate under central concentrated load 

and uniformly distributed load. 	ISOFLEX 4 results 
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• 

• 

Mesh in a symmetric quarter 
Total number of unknowns 

1 x 1 
16 

2 x 2 
39 

4 x 4 
115 

8 x 8 
387 

Theory 

Central deflection w 
x 10-5.P12/D 1,188 1,162 1,160 1,160 1,160 

TE
D  
C
EN

T 
L
O
AD
 
 

= 	energy .ff  

(element/theory) 
(1.024) (1.002) (1.000) (1.000) 

Corner reaction 
x 10-4.P  130 967 1,160 1,204 1,219 

(element/theory) (0.107) (0.793) (0.952) (0.988) 

UN
IF
OR
ML

Y 
D
IS

TR
IB
UT
E
D
 L
OA
D 

Energy 7 
X 10-6. q16/D 1,055 1,525 1,657 1,702 1.702 
(element/theory) (0.620) (0.896) (0.974) (1.000) 

Central deflection w 
x 10-6. q14/D 4,219 4,070 4,063 4,062 4,062 
(element/theory) (1.039) (1.002) (1.000) (1.000) 

Central bending 	- 
moment 	Mx 	x 	10-5.412  6,771 5,164 4,876 4,810 4,790 
(element/theory) (1.414) (1.078) (1.018) (1.004) 

Corner twisting 
moment 	M

xY 	
x 	10-5q12  3,938 3,470 3,336 3,280 3,250 

(element/theory) (1.212) (1.068) (1.026) (1.009) 

(•%. Nodal average of values extrapolated from integration points) 

Table 3.7 	Simply.supported squarg plate under central concentrated 
load and uniformly distributed load. 	ISOFLEX 8 results with four 
point numerical integration. 

. 	. 
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Mesh in a symmetric quarter 
Total number of unknowns 

1 x 1 
16 

2 x 2 
39 

4 x 4 
115 

8 x 8 
387 

Theor-.%., 

' • 
Central deflection w 

x 10-6P12/D 6,250 5,688 5,617 5,612 5,600 

E
N
TR
AT
E]
  

R
AL
 L
O
A
]
  

= 	energy n 

(element/theory) 

(1.116) (1.016) (1.003) (1.002) 

Edge bending 

moment 	Iv., x 10-4P 1,500 1,322 1,261 1,256 1,257 

(element/theory) (1.193) (1,052) (1.003) (0.999) 

U
N
I
F
OR
M
L
Y
 D
I
S
TR
I
B
UT
E
D
 
L
OA
D
 

Energy n 

x 10-7. q14/D 

(element/theory) 
• 

3,906 3,961 3,896  3,892.  

- .- 
Central deflection 	w 

x 10-6.q14/D 1,563 1,298 1,267 1,265 1,260 

(element/theory) (1.240) (1.030) (1.006)  (1.004) 

Central bending 

moment 	Mx  x 10-5812  3,875 2,747 2,383 2,312 2,310 

(element/theory) (2.110) (1.189) (1.032) (1.001) 

Edge ,bending 

moment IN1, x 107?q12  3,750 4,893 5,012 5,095 5,130 

(element/theory) 0.731) (0.954) (0.977) (0.993) 

. A 

0 Nodal average of values extrapolated from integrating points) 

Table 3.8 	Clamped square plate under central concentrated load 

and uniformly distributed load. 	ISOFLEX 8 results four point 

numerical interpretation 

• 

• 

lot 
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• 

Mesh inasymmetric quarter 
Total number of unknowns 

1 x 1 
16 

2 x 2 
39 

4 x 4 
115 

8 x 8 
387 

Theory 

Central deflection w 
x 10-5  .P12  /D 1,171 1,158 1,160 1,161 1,160 

E
N

TR
A1

 
RA

L  
L
( 

. 	energy 	n 
(element/theory) 

(1.009) (0.998) (1.000) (1.001) 

Corner reaction 

x 10
-4 P 833 903 1,097 1,146 1,219 

(element/theory) (0.683) (0.741) (0.900) (0.940) 

UN
IF
OR
ML
Y
  
D
I
S
TR
IB
UT
E
D
  L
OA

D 

Energy 	it 

x 106.q16/D 1.050 1.524 1.658 1,692 1 702 

(element/theory) (0.617) (0.815) (0.974) (0.994) 

Central deflection w 
x 10-6  .q14  /D 4,201 4,067 4,064 4,065 4,062 

(element/theory) (1.034) (1.001) (1.000) (1.001) 

Central bending 
moment 	Mx  x 10-5g12  6,670 5,133 4,870 4,811 4,790 

(element/theory) (1.392) (1.072) (1.017) (1.004) 

Corner twisting 
5 moment 	Mme,x 10-  Al2  

(element/theory) 
3,882 

(1.194) 
3,455 

(1,063) 
3,329 

(1.024) 
3,276 

(1.008) 
3,250 

(* Nodal average of values extrapolated from integration points) 

Table 3.9 	Simply supported square plate under central concentrate 
load and uniformly distributed load. ISOFLEX 8 results with five 
point numerical integration 
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Mesh inasymmetric quarter 
Total:number of unknowns -., 

1 x 1 
16 

2 x 2 
39 

4 x 4 
115 

8 x 8 
387 

Theory 

Central deflection w 

x 10-6  P12  /D 6,154 5,640 5,608 5,614 5,600 

1\I
TR
A
TE

E 
Z
A
L
  
L
O
A
I
 

= 	energy it 

(element/theory).  

(1.098) (1.007) (1.001) (1.002) 

Edge bending 

moment 	M
Y 
 x 10-4 P 1,447 1,299 1,255 1,255 1,257 

(element/theory) (1.151) (1.033) (9.984) (9.984) 

U
N
I
F
O
R
M
L
Y
 
D
IS
TR
I
B
U
TE
D
 L
OA
D
 

Energy 7  
X 10-7.814/D 

(element/theory) 

3,847 3,931 3,892 3,871 - 

Central deflection w _ 

x 10-6.814/D 1,539 1,287 1,266 1,266 1,260 

(element/theory) 	• (1.221) (1.021) (1.004) (1.004) 

----- 

Central bending 

moment 	Mx  x 107.q12  4,801 2,708 2,375 2,312 2,310 

(element/theory) (2.078) (1.172) (1.028) (1.000) 

Edge bending 

moment My x 10-5.q12  3,693 4,831 4,993 5,092 5,130 

(element/theory) (0.770) (0.942) (0.973) (0.993) 

(* Nodal average of values extrapolated frold integrating points) 

Table 3.10 	Clamped square plate under central concentrated load 

and uniformly distributed load. 	ISOFLEX 8 results with five point 

numerical integration. 
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't. 

Element 
model 	• 

Deflection w x 10 	pl 6' 
along centre line at x/1 

0.125 0.25 0.375 0.5 

ISOFLEX 	3 A  

Mesh 367' .713 1,004 1,145 

Mesh 

B 

367 715 1,008 1,151 

ISOFLEX 	6 A  

Mesh 370 719. 1,014 1,161 

Mesh 

B 

370 720 1,017 1,167 

ISOFLEX 	4 367 714 1,005 1,157 

. 	ISOFLEX 	8 

Five point integration 

367 714 1,006 1,160 

TheoryT3 

16 x 16 FDD1  
367 

367 

714 

715 

1,007 

1,009 

1,160 

1,167 

Table 3.11 Deflections along centre line of simply supported 

square plate under concentrated central load. 4 x 4 mesh (one 

quarter plate) 
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i. 

. 	. 

Element 
model 

Deflection w x 10 6q14/D 
along centre line of x/1 

0.125 0.25 0.375 0.5 

ISOFLEX 3 

Mesh 

A 

1,627 2,943 3,779 4,062 

Mesh 

B 

1,618 2,935 3,778 4,069 

ISOFLEX 6 
Mesh 

A 

1,638 2,964 3,809 4,096 

Mesh 

B 

1,638 2,964 3,809 4,098 

ISOFLEX 4 1,622 2,937 3,775 4,062 

ISOFLEX 8 
Five point integration 

1,624 2,940 3,778 4,064 

Theory T3 

16 x 16 FD Dl  1,623 2,938 3,776 4,062 

Table. 3.12 Deflections along centre line of simply 

supported square plate under uniformly distributed 

load. 	4 x 4 mesh (one quarter plate) 
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111 

• 
Element 

model 

• 

Deflection 	w 	x 	10-6p126 
along 	centre 	line 	of x/1 

0.125 0.25 0.375 0.5 

ISOFLEX 3 
Mesh 

A 

762 2,465 4,398 5,492 

Mesh 
B 

728 2,406 4,325 5,423 

ISOFLEX 6 

1 

Mesh 
A 

.780 2,498 4,452 5,590 

Mesh 
B 

773 2,498 4,466 5,639 

ISOFLEX 4 771 2,465 4,372 5,573-  

ISOFLEX.  8 

Five point integration 

771 2,468 4,393 

• 

5,608 

Theory T3  - - - 5,600 

Table 3.13 Deflections along centre line of clamped square 

plate under concentrated central load. 4 x 4 mesh (one quarter 

plate) 
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• 
Element 

model 
Deflection 	w x 10-6ql44) 
along 	centre 	line 	at x/1 

0.125 0.25 0.375 0.5 

• 

ISOFLEX 	3 

Mesh 
A 

272 757 1,131 1,267 

Mesh 
B 

255 726 1,096 1,231 

ISOFLEX 	6 
Mesh 

A 

283 768 1,144 1,280 

Mesh 

B 
278 765 1,141 1,278 

ISOFLEX 	4 277 755 1,126 1,261 

ISOFLEX 	8 
Five point integration 

279 759 1,131 1,266 

Theory T3  - - 1,260 

Table 3.14Deflections along centre line of clamped square 
plate under uniformly distribUted load.4 x 4 mesh (one 

quarter plate). 

t. 
og 



• 	 it a 	 • 

. 

Element 
models 

Moments 4i. x 10-4  p along centre line at location x/l, 
, 	these nodal values refer to smoothed distribution in elements 

Element 1 Element 2 • Element 3 Element 4 

0 0.125 0.125 	10.25 0..25 0.375 0.375 0.500 

. ISOFLEX 3 A  

Mesh -17 -270 -146 -581 -473 -1,211 -1,071. -3,203 

Mesh 
B -80 -315 -235 -600 -619 	. -1,062 -1,200 -3,385 

ISOFLEX 6 

Mesh 
A -27 -234 -268 -572 

• 
-595 -1,221 -1,204 -3,341 

Mesh 
B 51 -218 -155 -561 -477 -1,211 -1,302 -3,499 

ISOFLEX 4  -8 -231 -249 -566 -601 -1,247 - 	785 -3,701 

ISOFLEX 8 
Five point integration 

4 -245 -226 -601 -514 -1,321 - 	746 3,736 

Theory T3 

16 x 16 FD01  
0 

0 -245 -245 -593 -593 

1,221 

-1,251 

-1,221 

-1,251 

- 

-4,619 

Table 3.15 Distribution of moments in elements along centre line of simply 
supported square plate under concentrated central load. 4 x 4 mesh (one quarter plate) 0 



a 

Element 
models 

. 

Moments Mk x 10-5q12 along centre line at locations x/l,these 
. 	nodal values refer to smoothed distribution in elements 

Elements 1 Elements 2 Elements 3 Elements 4 

0 0.125 0.125 0.25 0.25 0.375 0.375 0.500 

ISOFLEX 3 A  
Mesh -32 -2,761 -2,407 -4,111 -3,798 -4,752 -4,535- -4,839 

Mesh 
B -16 -2,726 -2,542 -4,103 -3,981 -4,714 -4,707 -4,935 

ISOFLEX 6 
. 	. 

Mesh 
A -238 -2,924 -2,707 -4,456 -4,071 -5,059 -4,715 -5,089 

Mesh 
B -345 -2,487 -2,833 -3,909 -4,205 -4,622 -4,853 -4,832 

ISOFLEX 4 -122 -2,808 -2,595 -3,992 -3,986 -4,671 -4,669 -4,873 

ISOFLEX 8  

Five point integration 

-176 -2,563 -2,636 -3,961 -4,009 -4,655 -4,870 -4,678 

• 
Theory T3 ' 

16 x 16 FDD1  
0 

0 

- 

-2,486 

- 

-2,486 

- 

-3,887 

- 

-3,887 

- 

. 	-4,579 

- 

-4,579 

-4,790 

-4,785 

Table 3.16 Distribution of moments along centreline of simply supported 
square plate under uniform load. 4 x 4 mesh (one quarter plate) 



• 	 I t 
	 • 

Element 
models 

— 	 . 

Moments Mx  x 10-4p along centre line at location x/l, these 
nodal values refer to smoothed distribution in elements 

.1 
Element 1 Element 2 Element 3 Element 4 

0 0.125 0.125 0.25 0.25 0.375 0.375 0.500 

ISOFLEX 3 

Mesh 
A 1,257 523 517 11 +92 -675 -539 	' -2,682 

Mesh 
B 1,208 514 547 14 -21 -510 -649 -2,834 

ISOFLEX 6 
Mesh 
A 1,238 633 523 78 +11 -652 -654 -2,797 

Mesh 
B 1,407 527 615 28 +119 -665 -751 -2,961 

ISOFLEX 4 1,260 498 514 30 -8 -701 -240 -3,162 

ISOFLEX 8 	' 

Five point integration 
1,255 493 

- 

543 18 +82 -779 -200 3,199 

Theory T3  

16 x 16 FDD1  1,257 - - - - - - 

Table'3.17 Distribution of moments in elements along centre line of clamped square 
plate under concentrated central load. 4 x 4 mesh (one quarter plate) 



* 

Element 
models 

Moments Mx x 10-5q12 along centre line at locations x/l, these 
, 	nodal values refer to smoothed distribution in elements 

Element 1 Element 2 . 	Element 3 Element 4 

0 0.125 0.125 0.25 0.25 0.375 0.375 0.500 

ISOFLEX 3 	
• A 

 

Mesh 5,078 906 717 -1,318 -1,135 -2,225 -2,042 -2,415 

Mesh 
B 4,753 1,047 998 -1,198 -1,172 -2,119 -2,129 -2,357 

ISOFLEX 6 

Mesh 
A 5,021 1,178 960 -1,210 -1,182.  -2,277 -2,120 -2,538 

Mesh 
B 5,623 885 770 -1,146 -1,378 -2,072 -2,272 -2,332 

- 

ISOFLEX 4 5,008 804 877 

, 

-1,195 -1,199 -2,118 -2,120 -2,368 

ISOFLEX 8 	.  4,993 825 880 -1,218 -1,198 -2,126 -2,118 -2,375 

Theory T3 - 
16 x 16 FDD1  

5,130 

• 

- - - - - - -2,310 

Table 3.18 Distribution of moments in elements along centre line of clamped 
square plate under unform load. 4 x 4 mesh (one quarter plate) 



194 

Mesh 	over 	whole 	plate 2 x 2 4 x 4 
16 x 16 
Finite 
difference 

Central 

deflection 
w 

x 10-6ql2/D 	- 

(element/ 

finite 

difference) 

AR I 7,230 

(0.910) 

7,718 

(0.971) 

7,945 

ISOFLEX 	3 7,323 

(0.922) 

7,786 

(0.980) 

ISOFLEX 	6 
• 

8,293 
(1.044) 

8,089 
(1.018) 

ISOFLEX 	4 7,730 

(0.973) 

7,925 

(0.997) 

ISOFLEX 	8 

Five point 
intezration 

7,944 

(1.000) 

7,936 

(0.999) 

Central .,.. 
moment 	Mx  

x 10-5ql2 

(element/ 

finite 

difference) 

. 	, 

ARI 7,602 

(0.793) 

9,172 

(0.957) , 

9,589 

ISOFLEX 	3 10,151 

(1.059) 

9,813 

(1.023) 

ISOFLEX 	6 11,113 

(1.159) 
9,973 

(1.0400 

ISOFLEX 	4 10,308 

(1.075) 

10,191 

(1.063) 

ISOFLEX 	8 

Five point 
integration 

11,626 

(1,212) 

10,090 

(1.052) 

( Nodal average of values extrapolated from integration points) 

Table 3.19 	Skew rhombic plate, two edges simply supported, 
values of deflection and moments at centre for various elements. 



Mesh 	over 	whole 	plate 2 x 2 4 x 4 8 x 8 16x16 Theory 

Central 

deflec
7
tion w 

x 10ql/D 

(element/theory) 

ISOFLEX 	4 5,635 

(1.381) 

4,670 

(1,145) 

4,279 

(1,049) 
4,207 

(1.031) 
4,080

1  

ISOFLEX 	8 

Five point 
integration 

6,825 

(1,673) 

4,917 

(1.205) 

4,371 

(1.071) 

4,242 

(1.040) 

Central 
principal 

er  
moment M

I 
 max 

x 10-502 

(element/theory) 

ISOFLEX 	4 2,231 

(1.168) 

2,583 

(1.352) 

1,932 

(1.012) 
1,949 

(1.020) 
1,910 

ISOFLEX 	8 

Five point 
integration 

3,687 
(1.930) 

2,249 

(1.177) 

1,979 

(1.036) 

1,954 
(1.023) 

Central 
principal 
moment M Imin 

x 10-5ql2 

(element/theory) 

ISOFLEX 	4 1,477 

(1,368) 

1,672 

(1,548) 

1,142 

(1.057) 

1,148 

(1.063) 	' 1,080 

ISOFLEX 	8 

Five point 
integration 

1,952 

(1.807) 

1,689 

(1.564) 

4306 

(1,209) 

1,166 

(1.080) 

(V: Nodal average of 'values extrapolated from integration points) 

Table 3.20Acute skew rhombic plate, all edges simply supported, 

values of deflection and principal moments at centre for various 

elements. 

44- 
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AD. 

Description 
of values 

, 

 Number 
' 	of 

elements 
along 
length 

Finite element analysis Engin-. 
eer 
beam 
theory 
ETB 

ISOBEAM 4 
value (element/ 
theory) 

ISOBEAM 6 
value (element/ 
theory) 

Vertical 1 -192.0 	) -192.0 	) 
deflection w 2 -192.0 	)(1.000) -192.0 	)(1.000) 192.0 
at free end 4 -192.0 	) -192.0 	) 

Longitudual 1 -3.000) -3.000 	) 
stress 0 2 -3.000 	)0 .000) -3.000 	)(1.000) -3.0 
at A 4 -3.000 	) -3.000 	) 

Longitudual 1 -3.000 	) -3.000 	) 
stress Orx  2 -3.000 	) 	1.000) -3.000 	) (1.000) -3.0 
at B 4 -3.000 	) -3.000 	) 

Transverse 1 0.0 0.0 	) 
stress 0- 2 0.0 	(1.000) 0.0 	)(1.000) 0.0 
at B 	Y 4 0.0 	) 0.0 	) 

• 
Shear stress 1 0.0 0.0 	) 
CXy  at C 2 

4 
0.0 	(1.000) 
0.0 

0.0 	)(1.000) 
0.0 

0.0 

LO
A

D
 C

A
S
E

 2 	
• 	

•  

Vertical 1 1560.3(0.753) -2052.0 	(0.991) 
deflection 2 1940.9 	(0.937) -2063.8 	(0.997) 2071.0 
at free end 4 2036.6 	(0.983) -2067.3 	(0.998) 

Longitudual 1 -24.00 	(0.500) -48.00 
stress OF, 2 -36.00 	(0.750) -48.00 	)(1.000) -48.0 

X  at A 4 -42.00 	(0.875) -48.00 	) 

Longitudual 1 -24.00) -24.00 	) 
stress 0-x  2 -24.00 	)(1.000) -24.00 	)(1.000) -24.0 
at B 4 -24.00 	) -24.00 	) 

Transverse 1 -0.063 -0.063 
stress 0-  2 +0.125 	- +0.125 	- 0.0 
at B 	Y 4 0.070 +0.070 

Shear stress 1 -1.000 	) -1.000 	) 
Cr 	at C 
xy 

2 
4 

	

-1.000 	)(1.000) 

	

-1.000 	) 

	

-1.000 	) 	(1.000) 

	

-1.000 	) 
-1.0 
average 

Table 4.t Straight cantilever beam results 
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k. 

• 

Description 
of 
values 

Number 
of 
elements' 
along 
length 

Finite element analysis Beam 
theory 

ISOBEAM 4 
value (element/ 
theory) 

ISOBEAM 6 
value (element/ 
theory) 

Lo
ad

 C
as

e  
1
 	

I  

Vertical 
deflection w 
at free end 

2 
4 
8 

	

-1823.5 	(1.052) 

	

-1756.3 	(1.013) 
-1739.6 (1.003) 

	

-1728.0 	(0.997) 

	

-1733.0 	(0.999) 
-1734.0 (1.000) 

1,734 

Longitudual 
stress Cr, 
at A 	X  

2 
4 
8 

	

-3.173 	1.058) 

	

-3.040 	1.013) 

	

-3.010 	1.003) 

	

-2.844 	(0.948) 

	

-2.962 	(0.987) 

	

-2.990 	(0.997) 
-3.000 

Lo
ad

 C
as

e  
2 

Vertical 
deflection w 
at free end 

2 
4 
8 

-43,869 	(0.947) 
-45,730 (0.988) 
-46,182 (0.997) 

-45,653 (0.986) 
-46,261 (0.999) 
-46,326 (1.001) 

-46,300 

Longitudual 
stress 	fix' 
at A 

2 
4 
8 

	

-123.3 	(1.197) 

	

-100.4 	(0.975) 

	

-102.4 	(0.994) 

	

-101.8 	(0.988) 

	

-102.8 	(0.998) 

	

-103.0 	(1.000) 
-103.0 

Table 4.2 Curved cantilever beam results 

11- 
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MESH 

FE 	ETB 	* 
WF 	- WF 100 x 

F 	ETB - 0F 100 x 

FE 	CBEF 0 	- 0 DW 	DW 100 x 

OFE, ..(5E0IF 
DF 

x 100 ETB 
WF 

ETB 
OF 0E1B 

F F 	• 

ISOBEAM 4 ISOBEAM 6 ISOBEAM 4 ISOBEAM 6 ISOBEAM 4 ISOBEAM 6 ISOBEAM 4 ISOBEAM 6 

2 x 1 x 1 - 	87.0 - 	3.0 - 100.0 +0.6 - 46.1 41.1 - 48.2 - 	27.3 

4 x 1 x 1 - 	21.9 - 	1.0 - 	50.1 +0.8 - 43.2 - 20.0 - 	22.5 1.8 

8 x 1 x 5.8 0.5 - 	25.2 +0.4 - 33.2 - 	9.8 - 	1.5 7.2 

16x 1 x 1.8 0.5 - 	12.8 -0.5 22.1 - 	5.0 4.4 + 	7.1 

ETB 3 
* Note: W = W1 	W1 177ET  + Tm. where A is area of web 

Table 4.3 	Straight single cell box fixed ends. 	Effect of mesh size on 
displacements and stresses at midspan for flexural and distortional components 
of eccentric point load at.mid-span 
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OVERLAY (0,0 ) 
COMNON ELPA (5000) 
NLPZ 5C.‘,C0 

CALL OVERLAY (1,0) 
CALL OVERLAY (2,0) 
CALL OVERLAY (3,0) 
CALL OVERLAY (4,0) 
CALL OVERLAY (5,0) 

NO 
	ts all doto 

car eat? 

YES 

CALL OVERLAY (6,0) 

CALL OVERLAY (7,0) 

CALL OVERLAY (6,0) 

Declare dynamic vector 
array in blank common 
and total length NLPZ 

. Data processing 

Pre—solution processor 

Solution processor 

Post - solution processor 

< Has user overlay 
been requested 

	tv-  NO 

< YES 	Is there another 
problem? 

YES 	CALL OVERLAY (9,0) 

User post-solution 
' processor 

NO " 

( STOP 

Fig 21 Flow diegram of mcin .program 

overlay of the LUSAS computer system 
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OVERLAY ( 2,0) Data processing 2 
Node coordinates 
Coordinate generation 
Free format, generation and user interface 

OVERLAY (3 Cl-Data processing 3 
Element etostic properties or rigidities 
Element thermal properties 
Support nodes and conditions 
Free formotigenerction and user interface 

OVERLAY (4,0)-Data processing 4 
Load cases 
Concentrated bodes 
Body force potentials 
Uniformly distributed loads 

Surface pressures 
Free formot,generation and user interface 

OVERLAY (5,0)-Data processing 5 
Compute dynamic array areas 
Code destinations and appearances 

' Code equation and front numbers 
Summary of data and map 

   

     

 

OVERLAY (6,0)-Pre-sotution process 
Retrieve element data 
Element stiffness matrix-tape 1 
Element records - tape 2 

Element stress/strain matrix at nodes- tape 2 

   

   

OVERLAY (6,1) - OVERLAY (6 ,13) 
Element family secondary 
overlays 

   

   

    

    

 

CNERLAY (7,0)- Solution process 
Frontal solution 
Element :cod vectors - tape 1 
Element stiffness segments- tape 1 
Reduced equations - tape 4 

Solution displacements - tape 3 

OVERLAY (8,0)- Pcst - solution process 
Solution displacements - tone 3 
Element records - tope 2 
Element stress/strain matrices - tape 2 
Output element stresses 
Output distic:errierts and reactions 
Option cvricge stresses ct nodes 
Element resuits - toae 

   

OVERLAY ; 9,01- Use cost processor 
Element :results - tape 
Element records - tope 2 

Fig 2.2 Primary and secondary overlay 

structure of the LUSAS computer system 
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r 	I t Pik ft 

ELPAINLPA DURING DATA PROCESSING 
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/ node 
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eNOOVZ 

ELPA / NLPA DURING PRE- SOLUTION 
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J2 .110 	J17 ./16 

11 	11 
.115 .112 
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J9 J4 	J3 JC 
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element 
record 1. 
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Active node 
numbers 

NEO 
Equation 
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NDSPT, 
Active support 
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Element 
node 
numbers 

Load 
cases 

Support 
node 
conditions 

Element 	. 
thermal 
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Element 
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Element 
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Node 
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MxTVAN 
L S GM A X 

1 

INDIVIDUAL ELEMENT RECORDS 

1, 	 12 	

1 

L3 	 1.4 	

;
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; 	 1  

1_6 	 L7 	 LS 	 L9 1.10 

Fie-.eat 
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LNODV 
Etenit notes for 
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Elem't load 
cases.  

/ 
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Fig 2.3 Dynamic vector array during data processing and pre-solution 
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Fn th node group 

Coordinates 

[
Node number 
Number of variables 
Node destinations 

J3 
Element numbers 
J4 

Fn th element set 

Element numbersi 
Number of variables at each node —1  

{Element type. Number of nodes 
[Stress type. Total dot 

	 Element name 

	 fflumber of elements in set.  
L.Number of Gauss points 

Support nodes 
.11G 

n th support group 
.115 

1 L F 

Load 

J15 

cases 

Support condition 
constants prescribed 
for each variable 

and increment 
support node numbers 

for type of support 
each variable 

.117 

{F irst,last values(spring 
displacements) 

case 

of 

{Code 
for 

f---n th load 

r• 1 st load type set 

1 st group 

Load values-1  

First, lost and increment 
of element or rode rbmbers 

1---51-1104D1 
	Load type 
	 Number of loads 
	 Number e groups for load type 
	 Position of next load type 

Fig 2.4 Data structure for arrays during data processing 

202 

Y 
	

X 

Elastic properties 

J10 	 2nd g-oup 	 r-1st group 

i--n th property set 
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Licit' this property type 

Properties --t 
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Number of variables 

Active rode 
numbers ( NODS) 

Position in support 
nodes if suxort 

Active node number 

  

4 
	

5 
	

1 

Equation number and 
front destination (NEO) 

Equation number 
Front 

destination 

  

Number of variables 

Active support node 
number ( NO5PT ) 

Support node number 

9 
	

1 

Element node 
number (NLPA) 

rNode appearance code number 

Node number 

 

Appearance code 
number for each variable 

   

NOOVZ 

    

I Number of variables 

    

AP 
Node coordinate 
number (NLPA) 

 

Node number 

 

Position in active 
node numbers 

      

4 
	

5 

Node and variable appearance code numbers • 

Inactive 
Intermediate appearance 

0 
= 	i 

Last appearance = 2 
First and last appearance = 	3 
First of several 	appearances = 4 

Fig 2.5 Computer word structure for various arrays after 

integer compaction at end of data processing 
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N2 NOAX0 N9AXZ NLPZ 

I, 1 
ELPA 

Solutions for current toad cases 7  
ELPA 
Running displacements 
for current load cases 

; 
: 
: 
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I 	I 
r 	1 
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E05 
Equation coefficients H 

NSOLVE • MAXPA NSOLVE NVABZ 

Fig 2.5 Dynamic vector array during frontal solution 
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NACNDZ 	NAC SRI 	NODVZ e NACNDZ 	NVABZ ISCMAX INODVZ•NACSPT ts o riNACNO2 

 

NDFMM 1 NDSS eMXiNDZ 
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p i 	t s V c-(  

I4LPA f ELPA DURING POST— SOLUTION PROCESS FOR RESULTS 

MI 11 
(M2) 

1 

13 14 15 16 17 15 19 110 
NLPZ 

In I 

Individual 
em elent 

record 1 

In dividual 
element 
record 2 

DISP 
m' Elet 

dips. 

STRESS 
Elem't nodal 
stresses/strains 

STRSG 
rn Ele't Gaus pt. 

stresses/strains . 

SG 
m Elet stress 

matrix 

. NODS 
Active node 
numbers 

NDSPT 
Active support 
node numbers 

FM-ISO 
Global solution 
disp't vector 

MIS 
Solution 
displ vector 

REACT 
Reactions at 
support nodes 

AVSTR  
Avercae 
SlreS.',..^S 
attcdes 

pr 

/ 
/ 

, 

VARIABLE NAMES 

1.5GMAX 2 maximum length of combined individual element records 
MXTVAR = maximum length of element record 2 
NACNDZ a total number of active nodes (nodes with variables) 
NODVZ 	= maximum number of variables at a node 
NACSPT = total number of active support nodes 
MAX PA 	= maximum number of variables that appear in the solution front 
NSOLVE = number of load cases to be processed during first solution phase 
NRESOL = number of loud cases that can be processed during resolution or bock substitution phase 
MAXTAP = maximum size of buffered element stiffness records or equation coefficients 
NVAEIZ 	= total number of equations for problem 
NE'MAX 

▪ 

maximum number of variables for an element 
NDSS 	= total number of stresses and strains at a point 
MXLNOZ 

▪ 

maximum number of element nodes 
MXGP 	= maximum number of Gauss points for an element 
NSG 	= maximum size of element stress matrix 
ND 	= maximum number of stresses at a point 

Fig 2.7 Dynamic vector array during post- solution process for results 	 0 
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Element number Element variables Element 
destination vector 

Position of variables in current 
overall stiffness 	matrix 

1 1 2 2 3 1.  2 6 

2 2 3 7 2 1 4 3.  2 6 7 

3 2 7 6 2 4 3 24. 64 74 

Element contributions complete, variable eliminated 

Fig 2.8 Simple example of housekeeping 

in the frontal solution procedure 
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Fig.2•15 	Thin intersecting cylindrical shell idealization 
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ISOFLEX 3. 	 ISOFLEX 4. 

ISOFLEX 6. 	 ISOFLEX 8. 

   

Nodal. variables 
w 

= ex 
ey 

for corner nodes 

  

51 = IAO -Fli for midside nodes 

• Fig 3.1 The ISOFLEX family and nodal configurations 

••• 
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Fig 3.2 Global co-ordinate system and sign convention 
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Fig 3.4 Rectangular patch test 
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Fig 3.5 Parallelogram patch test 
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Constant moment state: 
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 Mx 	1 	0.3 0 
My = 0.3 1 0 
Mxy 0 0 0.35 

Finite element results: 

w = 151.0 at node 13 
Mx = -11.6 
My = -14.4 
Mxy= 3.5 

at all nodes 

  

Fig. 3.  6 	Quadrilateral patch test 



Fig 3.7 	Mixed patch Test 
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Fig 3.8 Tapered beam example for variable thickness 
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Fig 3.10 Acute skew rhombic plate with 454 mesh 

shown. All edges simply supported. 
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Fig 3.11 
	

Convergence of deflections for a 
square plate. ISOFLEX 3. Mesh A. 
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Convergence of deflections for a 
square plate. 1SOFLEX 3. Mesh B 
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square plate. I5OFLEX G. Mesh A. 
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configuration and coordinate systems 
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Fig 6.3 Incompatible displacement modes 
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Displacements at node number 8 

Fig 4.4 Extensional patch test 
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1=a•0 

E= 1, V =0.2, t= 1.0 

Fig 4.5 Straight cantilever beam 

Fig 4.6 Curved cantilever beam 
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(a) DIMENSIONS OF GIRDER 

2 	 /4 

F24 

Bending component 	 Distortional component 

(b) LOADING ON GIRDER AT MID- SPAN 

Fig 4.7 Straight single cell box girder 

• Details of girder I v= 0.2) and loading 
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mesh divisions 
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SUBDIVISION OF FLANGE INTO ELEMENTS 

Fig 4.6 Straight single cell box girder 

Finite element idealization 

Cross sectional 
arrangement 
of nodes 
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1.5 in by 8-Gin 
perspex block 	 

0.875in diameter 
steel cylinder 

0.030in thick 
steel plate 

SECTION A-A SHOWING GENERAL 
ARRANGEMENT OF SUPPORT SYSTEM 

SECTION B- B 

Fig 4.9 Straight three cell box girder bridge 
rn r rt nntni!,.; nf mndo cmci 
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(b) SECTION A-A SHOWING POSITION OF STRAIN GAUGES 

Fig 4.10 Straight three colt box girder bridge model. Instrumentation of model 
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SECTION A-A 

Fig 4.11 Straight three cell box girder bridge 

model. Finite dement idealization 
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(a) LONGITUDINAL STRAINS ( x 106 ) 

bad reading 

TRANSVERSE STRAINS (x 106) 

Fig 4.12' Straight three cell box girder bridge model. 

Experimental values of strain at section AA 

for model under eccentric point load at mid-span 
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---- Solution using ISOBEAM 4. 
	 Solution using ISOSEAM 6. 

o 	Experimental values 
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_10r  

-20 
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$ 

Fig.4.13 Straight three cetl box girder bridge model. Longitudinal 

deflection profile along top of vertical web nearer load 

for model under eccentric point load at mid -span. 
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in x103  
----Solution using ISOBEAM 4 
	 Solution using ISOBEAM 6 

0 	Experimental values 

Fig 4.14 Straight three cell box girder bridge model. 

Displacements at centre cross-section for 

model under eccentric point load at mid-span 
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Load cantilevered 
from this side 

(a) LONGITUDINAL OUTER SURFACE STRAINS 

(b) TRANSVERSE FLEXURAL STRAINS 

(c) TRANSVERSE EXTENSIONAL STRAINS 

Fig 4.15 Straight three cell box girder bridge model. 

Distribution of strains at section 5.5in from mid-span 

for model under eccentric point load cit mid -span. 
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0 Position of point load 
Dimensions are in mm 
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Fig 4.16 Straight multicell bridge model. 

Coarse finite element idealization 
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444.8N 
thickness of flange and webs =6-35mm 
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Solution using ISOBEAM 4 

	 Solution using ISOE3EAM 6 

o Experimental values 

} with six mesh divisions 
over length of model. 

Fig. 4.17 Straight muiticell bridge model. Displacements 
and strains at centre cross - section for model 
under point load at centre. 
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(c) TRANSVERSE STRESSES (lbf / in2 ) 

Fig 6.18 Curved single cell box girder bridge model. 

Experimental values of stress at centre section 

for model under eccentric point load at mid-span 
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SECTION A A 

Fig 419 Curved single cell box girder bridge model. 

Finite element idealization In x 3x1 mesh ) 
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Scale of 	0 	1 
displacements1 

x l0! ins 

Solution using ISO BEAM 4 

Solution using ISOBEAM 6 

Experimental values 

Fig 4.20 Curved single cell box girder bridge model. 

Displacements at centre cross-section for 

model under eccentric point toad at mid-span 



276 
Tensile stresses 
shown as positive 

(a) DISTRIBUTION OF LONGITUDINAL EXTENSIONAL STRESSES 

Flexural stresses 
plotted on tensile 
face of element 

(b) DISTRIBUTION OF TRANSVERSE FLEXURAL STRESSES 

Solution using ISOBEAM 4. (For (a) values of mid - points 
of longitudinal sides of elements were extrapolated, and 
averaged where appropriate. For (b) nodal values were 
averaged where appropriate ) 

	 Solution using ISOBEAM 6. 

o 	Experimental values 

Fig 6.21 Curved single cell box girder bridge model. 

Distribution of stresses at centre cross-section 

r!,70- 	 noint load at mid-span 
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Fig. A 21 Smoothed and unsmoothed stress 

distribution for a I -D parabolic element 

Ficticious element domain 

Stress sampling 
at points 1—vIl! 

Fig.A 2.2 Stress sampling points for a 

parabolic quadrilateral and 

ficticious element domain 


