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ABSTRACT

The forward problem in eiectrocardiography has been
attacked using a digital computer model of the human torso
that took into account the heart muscles, intracardiac
blood-mass, lungs, liver, great vessels, spine, sternum
and anisotropic skeletal muéc;es. Physically, this model
can be thought of as an assembly of discrete blocks of
conductors. By assigning an alpha-numeric character to
each conductor block according te its electrical properties,
the entire torso anatomy is represented as coded images in
the computer. The potential distributions in the model are
calculated by the method of finite~differences. The set of
finite-difference equations approximating the field
distribution is constructed by means of the numerical-
analogue developed in this study. These equations are solved
iteratively using the Gauss-Seidel method. A rapid
convergence of the solution is achieved by iterating firstly
on a coarser model and then improving the accuracies of the
solution on the finer model. The validity of this model was
demonstrated by comparing simulated body-surface distributions
with those observed on live subjects.

For applications to.the inverse problem, a matrix of
transfer coefficients relating the potentials on 26
epicardial segments to the potentials on 26 body-surface
sites were calculated from this model. Using this transfer

matrix, epicardial maps were reconstructed from in-vivo



body-surface measurements. The stability of the ihverse
solutions was found to be greatly improved by
a) carefully selecting the 26 body=-surface sites
in order to minimize fhe condition number of
the transfer matrix.
b) spatial smoothing of the surface data before
inversione.
¢) performing the inverse calculations using an
iterative process.
A comparison between the calculated epicardial potentials
and in-vitro data showed the results to be consistent.
This study has demonstrated the feasibility of an
unconstrained, evenly-determined inverse solution based

on epicardial potentialse
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CHAPTER 1

INTRODUCTION

This dissertation describes the development of a numerical
method for determining epicardial potentials from electrode
measurements taken on the body éurface. Hon~invasive studies of
this kind belong to the class of problems.in electrocardiography
known as the 'Inverse Problem'. Ideélly, the inverse problem is -
concerned with the reconstruction of a physiologically realistie
cardiac generator from electrical potentials recorded on the body
surface. A prerequisite to such an attempt is a valid quantitative
relationship between the heart sources and the tody-surface
potentials which they generate. To obtain such a relatioﬁship
constitutes the so called 'Forward Problem'. In this study, the
forward solution is found using a digital computer model of the
human torso. By simulating the conduction pathways in the human
body on a digital comppter, the corresponding body surface
distribution for any given source configuration can be calculated.
Hence, the required source~surface relationship.

The forward problem has in the past, been attacked in a great
variety of ways. These included analytical attempts in which the
human torso.is assumed to be a homogeneous conductor with highly
idealized geometries such as sbheres, spheroids, cylinders, etc.
(Yeh and Martinek, 1957; Okada, 1956). Solutions obtained using
such over-simplified models are grossly inadequate for the purpése

of realistic inverse studies.



In order to obtain a more accurate relationship between the
heart sources and body surface potentials, other workers constructed
tank models that took into account body shape and various internal
inhomogeneities. In such studies, a torso~shaped container made of
some non-conducting materiesl is filled with an electrolyte, usually
a saline solution. The desired internal inhomogeneities are then
simulated by introducing some porous strqctures so as to create
regions of different resistivity inside the saline-filled container.
Burger and Van Milaan (1946) used sand-bags and corks to simulate
the lungs and the spine. A most ingenecous idea of using a
3-dimensional matrix of interlocking plastic rods to vary the saline-
spaces inside the matrix structure was proposed by Rush (1971).

By frimming the edges of the rods, the density ratio of insulating
plastic to the conducting saline solution in each structure could
therefore be controlled. The twice life-size model he constructed
which took into account the heart muscle, the cardiac blood-mass,
The lungs, the liver, the great vessels, the spine, the ribs, the
subcutaneous fat and the anisotropic skeletal muscles must be the
most detailed modelling of the humén torso that has ever been
attempted. Although analogue devices of this kind are capable of
a high degree of realism, they are on the other hand, expensive to
build and cumbersome to use. Once constructed, their geometries or
resistivity ratios cannot be easily altered. For this reason, it
is unlikely that models of this kind will be used extemnsively for
electrocardiographic investigatiohs that involve‘changes in either
the torso geometry or the tissue resistivities.

Human subjects have also been used in forward studies. Body-

surface mapping of pacemaker impulses on cardiac patients with



implanted catheters have provided much insight inte the nature of
the trénsmission of electrical signals in the.human_body (Hamer,
Boyle and Sowton, 1965). Studies of this kind however, are limited
as the investigator has little or no control over'the positioning

of the catheter electrodes inside the patients.. Nevertheless, these
results provide invaluable data for testing the validity of other
mocdels. Cadavers offer a greater scope for more systematiec
investigations, but the results obtained are difficult to interpret
due to the changes in tissue resistivity after death.

The availability of large high-speed digital computers makes
it possible to attack this problem numerically. The earliest of
such attempts was made Gelernter and Swihart (1964). Using what
is essentially an intuitive approach, they derived an integral
equation for the charges that accumulate.at the interfaces between
regions of different conductivities. From these charges, the
potential at any surface point can be calculated from Coulomb's lawe..
The idea of such a solution is to replace the single integral
equation by a set of linear algebraic equations. These equations
relate the unknown charge density on an elemental surface area
to the charge density on every other surface elements. By solving
these equations iteratively on a digital coiiputer the unknown
surface charge densities are calculated.

An alternative.integral equation was later proposed by.Barr
et al;(1966). Unlike the Gelernter-Swihart equation which was
formulated in terms of charge densities, theirs was formulated
directly in terms of the interface potentials.  The integral
equation was then approximated by a éet of lizear equations that

relates the potential value at one surface point to the potential
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at every other surface point. As in the previous method, these
equations were solved iteratively using a digital computer.

Much of the work done to promote the integral-equation method
of solving the forward problem was carried out by Barnard, Duck,
Lynn and Timlake (1967). They made two important contributions:
that were to improve on the Gelernter-Swihart technique. First,
they derived a more accurate discrete approximation for the integral
equation which they claimed to possess better convergence
properties. Secondly, they introduced a deflation technique to
speed .up the convergence rate of the iterative process. Using
the improved technique, they successfully calculated the body-surface
potentials due to current dipole sources located inside a torso-
shaped volume-conductor which included lungs and intracardiac
blood~mass.

In spite of these extensive developments in the integral-
equation technique for solving forward problems, the solutions
obtained so far correspond to the simplest analogue modelse. The
reason of this lies in the limitations of the integral~-equation
techniques: In theory, these techniquescould be used to calculate
the potential distribution for volume-conductors of any geometrical
shapes and combinations of internal inhomogeneities. In practice,
the rapidly increasing costs of both human and computational
resources with shape complexity and internel inhomogeneities limits
all calculations to the simplest volume~-conductor configurations.
Moreover, anisotropicity in the volume-conductor cannot be accounted
by the integral~equation methods.

An alternative numerical approach based on the more common

‘but well established method of finite~differences is considergd
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in this study. Unlike the integral-eguation approach, the
solution obtained by finite-differences consists of point values
that are distributed throughout the entire volume of the conductor.
It appears at first sight that this method would require even
greater computational resources since it involves solution over the
entire 3-dimensional volume instead of only over the 2-dimensional
boundary surfaces in the case of integral-equation approach. But
as pointed out by Terry (1967), in the finite-difference
formulation, the potential at each volume-point is only related to
those of its nearest neighbours. In the case of the integral-
equation formulation, the potential at each surface-point interacts
directly with those at every other surface-points. Therefore,
although the matrix of the linear equations formulated by the
finite-difference method is considerably larger than the matrix of
linear equations formulated by the integral-equation methecd, it is
on the other hand extremely 'sparse'. That is, it contains a very
high density of zero elements. Numerically, it can be shown that
such a matrix is better suited to an iterative process. Moreover,
a theorem due to Collatz (see Hildefbrand, 1968) guarantees the
convergence of the finite-difference equations when either the
Jacobi or the Gauss-Seidel iteration is used. The matrices

derived from the integral-equations tend to be rather unstable

in practice.

The reason why the finite-difference method has not previously
found its way into the forward solution is that this method was
orginally developed for solving simple field problems in
engineering and physics. It has not been sufficiently developed

-to tackle the immensely more complex field problems encountered in
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human electrophysiology. Except.for simple field configurations,

- the mathematical formulation of the finite-difference equations ié
extremely difficult and in many cases, unknown. This problem was
overcome in this study by considering a straightforward resistive-
network analogue which leads to convenient finite-difference
equations. Being an analogue device, it can be used to sclve
extremely complicated field problems with the greatest conceptual
ease. Its main limitations like any other analogue devices are the
costs and the length of time required to construct the model,
However, by borrowing the simple physical concept of the network
analogue, it is possible to derive finite-difference equations for
the most complex field configurations without encountering any
mathematical difficulties. In essence, vhat has been accomplished
is the development of a 'numerical-analogue'! for calcﬁlating.
volume-conductor fields. This technique is so called because the
solutions are obtained numerically on a digital computer but with
a representation similar to an analogue model.

Unlike the forward problem in which the accuracy depends only .
on how realistic a model is used, tﬁe inverse problem on the other
hand has no unique solution. Over a century ago, Helmholtz
demonstrated that a given potential distribution on the surface of
a volume~conductor could arise from an infinite variety of sources.
Therefore, almost any kind of generators can be used to represent
the electromotive forces in the heart. The earliest attempt to
describe the heart activities used a single dipole which is fixed
in location but allowed to vary in direction and magnitude. The
inadequacies of this simple model have long been recognized.

In spite of this, it has remained until today, the basis of the



clinical ECG. In order to‘generate a more complete description

of the spatial and temporal behaviour of the electrical activities
- within the heart, the fixed dipole was replaced by more
sophisticated source configurations such as the moving dipole
(Gabor and Nelson, 1954), the multipole (Yeh et al, 1958;
Geselowitz, 1960) and the multiple-dipole (Fischmann and Barber,
1963; Bellman et al, 1964; Lynn et al, 1967), The moving dipole
as implied, is a single dipole that is allowed the freedom of
pogition, Its locations are indicative of the areas of major
activities. The multipole has no obvious physiological
siginificance. Nevertheless, it describes the body~-surface
distributions in a verj compact manner. By far the most attractive
is the multiple-dipole model., Here, a finite number of dipoles
are located at significant sites throughout the myocaraium. Each
dipole would therefore represent the net electrical activities in
its vicinity. Thus if the correct values of the moment of each
dipole could be determined, it would surely be of great assistance
to the clinical detection of cardiac disorders.

More recently, there has been a‘growing interest in
determining epicardial potentials as a possible inverse solution .
(Martin & Pilkington, 1972; Barr and Spach,-lé76). This approach
has two distinct advantages: In the first instance, no prior
assumption as to the physiological nature of the generator is
necessary. In the case of the multiple-dipole model, ‘the direction
of each dipole has to be carefully chosen in accordance with the
propagation of the depolarization waves. Secondly, inverse
solutions based on cpicardial potentials can be compared directly

with potential measurements taken on the heart surface. No such
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direct comparison between the dipole moments and experimental data
exists.

The imporfant question however, is whether knowlédge of
ebicardial potentials contribute to useful clinical information.
Isochronous maps of epicardial excitation obtained by Durrer et al.
(1965) showed a delay in the activation time for right ventricular
hypertrophy. Taccardi et ali:(1971) compared the epicardial
potentials obtained before and after coronary occlusions. In all
the cases, they observed a potential minimum located in the
ischaemic region during the TQ interval. This minimum persisted
for part of the QRS interval and was later replaced by a maximum
which lasted throughout the ST and T interval. And just before
thé'end of the T interval, this maximum disappeared and was once
replaced by a minimum. In a recent study by Spach et'al.(l975),
they discovered two distinct features in>the epicardial distributions
during ectopic sequences. These were a unidirectional spread of
the excitation wave from the ectopic focus during the early QRS
complex and a dominance of repolarization positive potentials
near the ectopic site during the ST-T interval., All these and
many other similar studies clearly suggest a wealth of clinically
useful information to be contained in epicardial distributions.

The greatest stumbling block to a clinically acceptable
inverse solution however, remains the inability of present day
techniques to reéolve with sufficient accuracies the heart sources
from body-surface recordings.' When the multiple-dipole model was
first tested by earlier workers, serious errors were demonstrated.
in the solutions. The magnitude of the dipole moments were either

unrealistically large or the directions of the dipoles were in
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contradiction with known plysiological events. In order to
obtain solutions in closer agreements with physiology,
contraints were imposed. The most commonly applied is that
of fixing the orientation of each dipole to the direction
of the pro?agation of the depolérization wvave~fronts. The
most extensively developed model of this kind is that of
Lynn et al.(1967). In addition to constraining the dipole
directions, they further restrict the dipole movements in
the solution to be non-negative, thus avoiding inward pointing
dipoles which are considered to be unphysiological in the
normal case at least. Other constraints included forcing each
dipole to follow a given time history (Bellman et al.l964) or
prescribing the dipole moment to be either 'on' or 'off' at
the appropriate periods in the heart cycle (Horan and Flowers,
1967; Barr et al.,1970). The stability of an epicardial-
potential inverse solution was considered by Martin and
Pilkington (1972). From their investigations using a system
of concentric spheres as the quel for the torso, they concluded
that it is not feasible to determiﬁe epicardial potentials from
surface measurements using an unconstrained solution. And in a
second paper (Martin et al, 1975), they discussed the use of a
statistical constraint in calculating epicardial potentials.
Applying constraints to inverse solutions hovever, are not
without their diéadvantages. Surely, the ultimate objective of
an inverse solution is to aid clinical detection of cardiac
abnormalities. To force an inverse solution to accept what is
normal may risk ex:luding the very abnomalities that are to be

- detected. An example is the case of cardiac abnomalities in
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which the excitation spreads inwards from the epicardium. To
use a multiple~dipole solution constrained to point outwards
only is clearly unrealistic in this situation.

Thé purpose in this study therefore, is to investigate
the feasibility of an unconstrained inverse solution based on
epicardial potentials. The research to achieve this goal consists
of two parts: The first of which is concerned with deriving a
valid forward solution and the second, an investigation of the
various factors that might influence the stability of the inverse
calculations. It is hoped that an accurately configured forward
solution combined with a carefully structured inverse calculation
will enable a stable and unconstrained inverse solution to be

found.
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CHAPTER 2
MATHEMATICAL STATEMENT OF THE PROBLEM

Much attention in electrocardiographic studies héve been
directed to two fundamental problems. These are the ‘'Forward
problem' and the 'Inverse problem'.

The forward study is concerned with calcuiating the body
surface potential distribution due to a given source
configuration located in the myocardium. The inverse study on
the other hand is concerned with the determination of the
activities of the heart generators (hence the physiological
state of the heart) from available potential measurements on

the body surface.

Statement of the Problem

These problems may be stated mathematically as follows:
Suppose the contribution to the potential at the point i on
the body surface from a unit strength generator (assumed to
be fixed in direction) in the j myocardial location is Tij
(Fig.2.1). Then the potential v, at the point i on the surface
due to an arbitrary source distribution (51’52’53"”811) is

~ given by,

n
vy = ZT.. 5: (2.1)

where 51’52’83"'°Sn are the values of the strength of the

generators in the myocardial locations 1,2,3,«.en. Similarly,
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Fig.2.1 : Myocardial to body surface transfer relationship

fhe potential at any other surface point can be calculafed by
superposing the contributioﬁs from all the heart generators.
Thus for m surface points on the body, the potentials at these
points can be related to the source generators using the

matrical equation,
v="Ts (2.2)

where v = (v1,v 3,...vm)'is a column vector containing the

5V
values of the body surfaqe potentials, s = (81,82;83,.-¢Sn)

is a column vector of the generator strengths and T is a
matrix of dimension (mxn) containing the transfer coefficiénts
betﬁeen the heart generators and the point locations on the

- body surface.

The purpose in the forward study is to compute the

matrix T which is clearly a function of the geometrical
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and electrical properties of the human torso. Once T is
calculated, it is then possible to determine the generator
strengths s for any given set of surface potentials v. The
latter constitutes the inverse problem which can be expressed

mathematibally as,

s5=T"¥v (m=n) (2.3)

Method of Overdetermination

Ideally, n surface measurements suffice to determine n
unknown heart generators. In practice, measurements are
subjected to errors which often result in gross uncertainties‘
in the solution. For this reason, the system in Eqn. 2.2 is
generally made considerably oﬁerdétermined. That is, taking
more measqrements than the number of generators (mdn): Clearly,
an overaetermined system cannot be solved by direct inversion.
Cn the_other hand, it is always possible to find the best
.'apffoximéte SOlutioﬁ in thélseﬁse that the square of the length

of the residual vector,

:_1::'1' -y ) (2.4)

is a minimum (the principle of least square). Minimizing |r|2
yields,
T'Tg = Ty . (2.5)

(see Lanczos, 1961).



W
o

The remarkable property of Eqn. 2.5 is that no matter how
strongly overdetermined is the original system, it will always

have a unique solution given by,

s = (0T M1y (2.6)
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CHAPTER 3

CALCULATION OF VOLUME~-CONDUCTOR FIELDS

3.1 Introduction

The aggregate of the passive tissues that support the
flow of currents resulting from the electrical activity in
the heart is generally referred to as the 'voluﬁe—conductor‘.
The electfical potehtial everywhere in tﬁe volume-conductor

satisfies Poisson's equation (Plonsey, 1969)
2 .
YV u = F(x,y,2) (3.1)

where F(x,y,2z) is the distribution of the cardiac gencrators.
The regions external to the myocardium are assumed to be free
from any electrical generators. In these regions, Eqne. 3.1l

reduces to

<7%u = 0 (3.2)

which is Laplace's equation.

The problem of solving these equations is a classical
one in mathematical physics known as the 'boundary value!
problems Except for a few of the éimplest field configurations,
these equations have no known analytical solufionsf For this
reason, vario;s approximate methodsof solution have to be used.
These may brdadly be classified into numerical techniques and
analogue simulations.

Before the advent of digital computers, analogue devices
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dominated the solution of boundary value problems. In analogue
v simulation, the original problem is replaced by an analogue
model which approximates its behaviour. The purpose of
constructing the analogue may be to increase or decrease the
physical dimension of the original system in order to ;acilitate
investigation, to improve the accessibility of the system to
probing devices by replacing, for example, a solid medium by
some fluid equivalent, or merely to avoid damaging the system
due to the invasive nature of the investigation.  Although
conceptually very simple,.analogue devices tend to be rather
cumbersome to use and expensive to build. Once constructed,
their geometries and other physical parameters cannot be easily
altered.

With large, high-speed digital computers becoming more
readily available, numerical techniques have largely replaced
the more cumbersome analogue devices. The approach here is to
approximate the single continuous partial-differential eguation
by a set of discrete linear algebraic egquations which can then
be handled on a computer. The‘main attraction of a numerical
method lies in its speed and economy in obtaining a solution
using general purpose computing equipment whick is widely
available. Of particular importance is the relative ease with
which any parameter of the problem may be altered. On the other
hand, the task of deriving an accﬁrate yet manageable replacement
for the original differential egquation can be most férmidable.

Indeed, solutions to some of the more complex field problems

still rely to a large extend on analogue methods.
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This chapter describes the development of a 'numerical-
analogue' for calculating volume~conductor fields. The
technique is so called because the solutions are obtained
numerically using a computer but with a representation
conceptually similar to a discrete analogue quel. In this
wvay, the advantages of both numerical technique and analogue

simulation are realized.
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3.2 The Method of Finite-Difference

The finite-differénce method is one of the most well
established numerical technique for solving potential field
problemsa. Solutions obtained using this method provide
potential values at discrete points (nodes) which are spaced
in some ordered manner throughout the whole of the field
region. The idea of the solution is as follows: At each
node, the potential which is initially unknown, is approximately
related to the potentials of the neighbouring nodes by a linear
algebraic equation. In this way, the single vartial-differential
equation is modelled by a set of linear eguations which can be

solved simultaneously for the unknown potentials.

Approximation of the Laplacian

Consider for simplicity a two dimensional, linear,
homogeneous and isotropic conducting medium S, superimposed on
which is a uniform grid of interval h (Fig. 3.1). At an

arbitrary node 0, the potential must satisfy the equation

)

211 .
2 = O . (303)
ax

o Oy

whereAu is the unknown potential function, and x and y are
the Cartesian coordinates of space.
The object of the exercise here is to approximate Eqn. 3.3
by a linear algebraic equation expressed in terms of the potentials
at the nodes 1,2,3 and 4. This can be achieved by expanding the

potentials at nodes 1,2,3 and 4 about the potential at node O
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Fig. 3.l: Finite-difference representation in

a uniform field region S.

using Taylor's series:

h ] h2 tt h. ;l' h1+ rr1t
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(3.4)
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Adding the first two equations and ignoring the terms to the

power four and above yields,

10
hZu

AT 2uO (3.5)

Similarly, for the last two equations,
n2u | L u, + u, - 2u (3.6)
3 Ly 0 *

On substituting Eqne 3.5 and Eqne 3.6 into Eqn. 3.3, the
required finite-difference approximation for the potential

at the node 0 is derived:
L R R huo =0 (3.7)

The error introduced by neglecting the higher order
terms in the Taylor series is of the order of h2 .
Therefore, provided h is small, Eqne. 3.7 is a good approximation

of Bqne 3.3

Solution of Laplace Equation as a set of Simultaneous Equations

The following'example demonstrates the solution of a
simple field problem using the method of finite-differences.
Consider a conducting square with its four sides held at
potential values V_, V., V_ and V, respectively (Fige 3.2),
Applying the finite-difference approximation in Eén. 3.7 to
gach of the grid points in the conductor yields a set of
linear algebraic equations which dan be eﬁpressed in the

following matrical form:
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u=V,

1 2 3
u=Vo L 5 6 U=V,
7 8 9

Fige3.2: Example illustrating the finite~difference

method of solution in a conducting square.

b 1 |
+H - -1 Uy Vot Yy
-1 +4 <1 - u v
2 a
-1 +h4 -1 Uz Va VL
-1 +h = -1 uy, vy
-1 -1 +b4 -1 -1 ug| = |0 (3.8)
-1 =1 +4 -1 ug vb
- +4 <1 u7 Vc + Vd
- -1 +’+ -1 u8 c
-1 -1 +h ug va + v
L - - -

It is easily verified that this set of equations is non-
singular and can therefore be solved simultaneously for the

unknowns, u1,u2,u3,...u9.

Limitations of the Finite~Difference Method

The finite~difference approximation derived in Eqn. 3.7

applies only to nodes at the interior of a homogeneous conductor.



28

In the case of those nodes on the surface of the conductor

or the boundaries between different media, The finite~
difference equations are quite different. Therefore if a V
finite~difference computer program is to be useful, it must
be able to identify the various nodal conditions and generate
the appropriate finite-difference equation for each node in
the conductor. Tor a simple problem where the field boundaries
are straight lines or plane surfaces, identification of the
various type of nodes is a straight forward matter. Moreover,
numerous general finite-~difference equations exist and are
easily implemented to generate the required set of linear
equationse.

However, applications of the finite~difference method to
the solution of volume-conductor field problems are somewhat
limited. The reasons for this are two-fold: The first is that
boundaries separating regions of different conductivity are
not just simple plane surfaces but highly convoluted ones.

To define these surfaces in the computer alone constitutes a
major task of organization.  The second reason is that many of
the nodal configurations encountered in the volume-conductor
have no known finite-difference equations. Although it is.‘ 
possible to simplify the problem by removing these nodal
configurations, the validity of the solution is then in

question.
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3.3 The Resistive-Network Analogue

The idea of the resistive-network analogue consists
essentially of approxiﬁating the original distributed field
region by a network of intérconnected resistors. The
mechanism of the solution is in principle ideﬁtical to the

finite-difference method, although the original developments

P

are entirely independent.

The Basic Network

Fige3+3: A discrete approximation Fige3.4: A resistive-network
of the current pathways between approximation of a distri-
Py and P, by an elemental block buted fisld region S.
ABCD,

Consider the distributed conductor S, superimposed on’
which is a uniform grid (Fig. 3.3). If the flow of current

between points PO and P, is assumed to be supported solely

1
by the block conductor ABCD, then it is possible to remove
this block and replace in its place, a resistor R having the

same resistance value as that across the opposite sides AD
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and BC of the block without affecting too significantly, the
overall pattern of current flow in S. Repeating this process
to every adjacent grid points in S, the entire continuous
conductor is replaced by a network of discrete components
(Fige 3.4).

The error introduced by this discrétization process
clearly depends on the grid size. In the limit as the grid
interval is made smaller and smaller, the network analogue

becomes once more the continuous, distributed conductor.

Nodal Equation

Fige3.5: Basic network structure.

The resistive-network analogue was developed largely on
an intuitive basis. In essence, its solution mechanism is
similar to that of the finite-difference method. This is
demonstrated by applying Kirchoff's law to the current flowing
into node O in the network in Fig. 3.5, giving

V,- V Vo~V Vo-V,. V-V
1 0 N 2 0O N 3 0 N 4 0 = 0 (3.9)

R1 A R2 R3 R4
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In the case of a homogeneous, isotropic conductor, Rf: R2=

R3= R4. Eqn. 3.9 now becomes

v, ¥ v2 + v3 + V- hvo = 0 (3.10)

which is identical to the finitendifferenée equation derived
in Eqn. 3.7

It can be shown that such similarity exists for all nodal
configurations. Indeed, the resistive-network can be regarded
as computing mechanism with the resistors connected in such a
way that the operations indicated by the finite-difference

equations are carried out,

Limitations of the Resistive-Network Analogue

The network analogue may be an extremely versatile device
for solving field problems, but the number of resistors required
to construct an adequate network representation of the volume-
conductor makes this approach totally impractical for present
study. Moreover, the interior of a 3-dimensional network
structufe cannot be easily accessed. This makes investigation
and repositioning of any internal generators extremely

difficult,



3.4 A Proposed Numerical-Analogue

The numerical-analogue to be developed in this section
consists of a hybrid between the finite-difference method and
the resistive-network analogue. The purpose is to simplify
the implementation of the finite-difference meéthod for
calculating volume-conductor fields. This is achieved in two
distinct stages. The first of which is concerned with the
efficient organization of the volume-conductor data on the
digital computer. In the second stage, a general finite-
difference equation is derived using what is essentially a

network representation of the conductor.

%.4.1 Discrete Representation of a Volume-Conductor

One of the main factors limiting the use of numerical
techniques in solution of volume-conductor fields is the
difficulty in representing a complex geometrical shape on
the computer. In the case where the boundaries of the given
conductor are straight lines (Fige 3.6), defining these

boundaries is a simple matter. However, with more convoluted

Fige3.6: Conductor with recti=- Fige3.7: Conductor with more

linear boundaries. - complicated boundary shapese.
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boundary shapes as shown in Fige. 3.7, the exercise of
describingvthe geometries rapidly becomes more difficult.

The most common and straightforward approach of defining
such shapes on the computer is to use the position coordinates
of a series of points distributed along the boundaries

(Fig. 3.8). Such a method becomes extremely tedious when the

9

Fige3.8: Piece-wise approximation Fig.3.9: A discrete representation

number of points is large.

of the conductor boundary. of the conductor,.

The method proposed in this section consists of replacing
the original conductor by a discrete approximation as shown in
Fig. 3.9. The discretization process is most easily performed
with the aid of a graph paper superimposed on top of the

conductor. By assigning an alpha-numeric character corresponding

m m
ma mmm
mmn nmno
mmn nnn
mrnni nnn
rmnnA nnn
mnnin nnn
m'mnn inn
mnnnnnﬂl"n ;mn nnn
mm 1011 nnnn am
nnnri .mmmnnnnmmmm
mmmmrmmmﬂm'ﬂmmmmmmmrr
mimmnmmmuoine mmnmn

Fig.3.10: Coded image of the

discrete conductor.
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to the electrical property in each 'cell! in Fig. 3.9, the
conductor is therefore represented in a coded form (Fig. 3.10),
which is readily entered into the computer. The efficiency of
data input can further be improved by compressing the data in

each row in the following manner:

Row Data: “-AAAAAABBBBAAAAAAAABBBAAo XXX

Input Format: 2-,6A4,4B,34,3Bjececee

meaning 2 bits of blanks, 6 bits of conductor with property A,

4 bits with property B and so on.

Representation in Three-Dimensions

These ideas are easily extended to three dimensionse.
Instead of approximating the conductor by small conducting
squares, here, the volume-conductor is represented as cubes.
Fig. 3.11 shows an impression of a discretized human torso.

The discretization process is essentially the same as
before and is organized as follows:

1) Divide the 3-D conductor into horizontal slabs of
thickness equal to the digitization interval (Fig. 3.12b).

2) Digitize each slab by means of a 2-D grid superimposed
on top of that slab (Figs 3.12c)e

3) Finally, construct the coded image for each slab by
assigning the appropriate alpha-numeric code to eéch
discrete cube (Fig. 3.12d).

In this way, the entire 3-D volume-conductor is represented as

successive planes of coded images in the computer.
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Fige.3+11: A physical impression of a discretized human torso

Fige3a.12a Fig.3-12b

el u _~
P
el e
o
al 1
TTT |
L L] .
i .
! .
|
Fig.3.120 Fi803-12d
Fig.3.12: Illustration of the stages in the discretization
a throe dimensioconal velume-conductor,



3.4.2 Generalized Finite-Difference Eguation

This section describes the development §f a generalized
finite-difference equation for setting up the linear equations
necessary to model the volume-conductor numerically.

Consider the general nodal configuration in a 2-dimensional
discretized conductor (Fig. 3.13),s where A,B,C and D are four
neighbouring elemental conductors with different electrical
properties. The finite-diffe;ence equation for this nodal

configuration has the general form:

Kqug + K2u2 + K3u3 + Kpuy - (K4+K2+K3+K&)uo =0
(%.11)
} ! [
I | i
- - 3 -- 5
D A []RB
- - | Rzl ] R‘Ll
2 | 0 1 —-Z—-i | L § 1
c | s I
- - T - - T
! 1 |
| i |
Fige3.13: A general nodal Fige3.14: A general network
configuration. o configuration.

To derive the coefficients K1,K2,K3,K4 in Egn. 3.11 using the
mathematical approach described in Sec. 3.2 is extremely tedious,
On the other hand, a resistive network analogue for this nodal

configuration can easily be constructed (Fige 3.14). The only
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problem that remains is to determine the values of the
resistances R1,R2,R3;and R4 which can then be substituted into
the nodal equation in Eqne. 3.9 to obtain the required finite-~

difference formula:

P 1u R QUL ;1 Ju,. =0
R.1 7 R52 © R;3 T RMA 1211?42123121+ 0

(3.12)

Notice that the resistance values of the network analogue
are just the reciprocals of the finite-difference cbefficients

in Eqne. 3.11l. It would therefore be more appropriate to

. . _1 -:I_ --.1 —:In
consider the conductances G1_ R1 9 GZ_ Ra ’ G3_ R3 and G4- R4

instead of the resistances in the network analogue. This, as

will become clearer, greatly simplifies the developments to be

discussed in the remaining parts of this section,

Coefficients for the Basic Equation

Recalling from Section 3.3 that the conductance G1

approximates the current pathway WXYZ between PO and P1

(Fige 3.15). However, this block consists of one half WXP P,

with property A and the other half POP1YZ.with property B.

In this case, it would be more sensible to regard G1 as a

parallel combination of two conductances GA and G,, where GA

B

represents the conduction pathway WXP1PO between PO and P1,

and GB represents the pathway POP1YZ. Similarly, all other

conductances in the network analogue can be represented in

this manner. The purpose of using such a representation is
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Wi- - - - - |x
Po ﬁ;—G—wh 1
—1 64—
-6+’

ZfF - - - - Y

1 Fig.3.16: Network illustrating

by two parallel components the relationship between the

Fige3.15: Replacement of G

GA and GB.‘ individual component and the
elemental conductors A,B,C,D
in Fige3e13.

‘that it is now possible to relate each elemental discrete
conductor to an elemental network configuration (Fig. 3.16).
The importance of this will be reaiized in the later
developments in this section.

The immediate advantage however, is that the finite-
difference equation for the nodal configuration in Fige 35.13
can be easily derived from the network analogue in Fige 2.16

to be:

(GA+GB)u1 + (GC+GD)u2 + (GA+ GD)u3 * (GB+GC)u4

- Z(GA+GB+GC+GD)uO =0 {Je13)

Expressed in this form, the finite-difference equation for
any arbitrary node O can be computed given the conductivities

of the four surrounding elemental blocks A,B,C and De.
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Equation for Non-Uniform Grid

The use of a regularly distributed finite-difference grid
vis often in practice, inefficient. Whereas a given grid interVél
may not be adequate to represent certain parts of the field
region, it may on the other hand.be unnecesséfily fine in other
parts. In order to minimize the number of nodes (hence the size
of the system of linear equations) for a required acéﬁracy, non-
uniform grids are often used so that the grid densities may be

adjusted to suit the local field conditione

>
D L A
i T 2
2 0 1 G
— L G
<—-L2 Ly + y 2y n 7
1 6.}
X
X
b Fig.3.18: Equivalent Network
Fige3.17: Non-uniform grid for a rectangular elemental

conductor

Consider a non-uniformly distributed grid configuration,
Fig. 3.17. Each discrete element A,ByCyD .seecs. may no lbnger
be a square. Consider the element n, whose x and y dimenéions
are L, and Ly respectively (Fig. 3.18). If the conductivity
of the element is Gn’ then it can be shown that the values of

the x and y components in the equivalent network are:

L L
3 = ilc G = i—’ie (3.1k)
x J
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The finite-difference equation for the nodal configuration

in Fig. 3.17 can therefore be expressed as:e=

1 1 1
31(L3GA+L4GB)u1 + 32(L4GC+L G lu, + T (L,]G +L.G )u2

3072 T I TATTD
+ 1 .
34(L1GB+L2GC)u4 ~[kg=0  (3.15)

where the quantity []denotes‘the sum of the coefficients of L

ua, u3’ ul‘.O

Equation for Anisotropic Conductor.

” //”
l E
: I~ ,/
k (V>
!
|

Fige3.19: A sketch of a Fige3420: A discrete representation
typical muscle layer. of the anisotropic muscle layer.
The 'flow~lines' The heavy lines indicate pathways
indicate high con- connected by high conductive
ductive pathways. components.

Océassionally, it may occur that the given conductor is
aﬁisotropic. In the case where the conductivity varies from
one principal axis to another, the difficulty is easily dealt
withe A more difficult situation arises when the variation

in conductivity follows no consistent direction. Such aniso=-



41

tropicities occur for example in skeletal muscles where the
conductivity along the muscle fibres is an order of magnitude
greater than in the transverse direction and there is no
specific direction in which these fibres lie. A sketch of a
typical muscle layer is shown in Fig. 3.19. The 'flow-lines'
indicate pathways of high conductivity.

The method proposed here to simulate such anisotropicity
is a natural extension to the'numerical-analogue. The field
concerned is discretized and approximatea in the usual network
form. Highly conductive pathways are then laid into the
network to create the effects of anisotropicity. These are
represented by the heavy thick lines in Fig. 3.20. It is
ciearly seen that the smaller the discretization interval is
made, the more accurate will be the approximation.

Consider the network in Fige. 3.20 with a high conductive
pathway through it. Such a network can be constructed using
discrete elements whose equivalent networks consist of

different conductive components (Fig. 3.21). To derive the

7
Gn

G‘r; n |62
3
Gn

Fige3.21: System for identifying
each component in an aniso-

tropic elemental conductor.
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finite~difference equation in this case requires each individual
conductance to be identified. This can be achieved by labelling
the conductances in each element as indicated in Fig. 3.21.

The finite-difference equation now becomes:

1 - A 3 . a0 1o b2
L1(L3GA+L4GB)u,' + LZ(LLFGCd-LBGD)ua + L}(L,IGA+L2GD)u3
1 L 2 ‘ '
34():,1GB+L2<}C)ul+ -[Jog= 0 (3.16)

where [:]denotes the sum of the coefficients of u1,u2,u3,u4.

Equation in 3-Dimensions

The developments described above are easily extended to
%-dimensions. Here, each discrete elemental conductor is
represented by a 3-dimensional network structure as shown in
Fige 3.22. It is however, not essential to identify eacﬂ

individual conductance in this network for calculating volume-

Figes3.22: Equivalent network
for a three~dimensional

elemental conductor.
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Fig.3.23: Diagram illustrating the
directions of anisotropicities in
the upright human torso.

conductor fields. The reason is that the anisotropicity in
the upright torso occurs only in the horizontal planes

(Fige 3+23). Therefore, it is only necessary to define the

1

five ratios, Gn:

Ga:GB:GL":G5 for an elemental conductor n as
n"n’ n°n

defined in Fig. 3.22. The finite-~difference equation for a

\
\

G

N\
(s}

?
|
1
|
|

=
e i R

I
-

/

Fig.3.24: Nodal configuration in a three-dimensional

volume~conductor.
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node O at the corner of eight neighbouring cubes A,B,C,D,E,T,G

and H (Fig. 3.23) is therefore given by,

1 3 3 1
1(L3L G +L L6GB+L4L6GC+L4L G )u1

[ B

SAT3 5D

[l B

1 3 3 1
2(L3L5GE+L3L6GF+L4L6GG+L4L5GH)u2

(L1LSGA+L1L6GB+L2L6GF+L2L5GE)u3

sl

3

4(L1LSGD+L1L6GC+L2L6GG+L2L5GH)uh

o B

1 .
+ 55(L1LBGA+L1L&GD+LZL4GH+L2L3GE)u5

1
+ Ig(L1L3GB+L1L4G0+L2L4GG+L2L3GF)u6

[]uo = 0 (3.17)

where [] denotes the sum of the coefficients of U alsgeeeslpe
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3«5 Solution by Iteration

The solution of a partial-differential equation using
the finite-difference method has been reduced to the solution
of a set of simultaneous equations which can be expressed in

the matrical form,

Au = b (3.18)

vhere A is a matrix of the finite~difference coefficients, u
is a column vector containing the unknown potentials and b is
a column vector of known values. The resultant matrix A is
often very large (an_order of 10,000 is necessary for an
adequate representation of the torsc volume-conductor).
However, A is also extremely 'sparse'. That is, it contains

a high density of zero elements.. In a 3~dimensional conductor,
the maximum number of non~zero elements in each row of the A

matrix is seven. A typical configuration of a matrix formulated

Fige3.25: & typical matrix configuration formulated
by the finite-difference method.
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by finite-differences is shown in Fig. 3.25, only that it is
usually of much larger order.

It is clearly seen that to attempt to solve such a
system of equations using a direct method of elimination
would rapidly 'fill-up' those places which are initially zero.
And to attempt to implement such a method on a computer is
uneconomical on storage locations. For this reason, an
iterative method in which the sparsity of the matrix is fully

exploited, is generally used.

Jacobi and Gauss-Seidel Iteration

Variations of iterative procedures applicable to the
system in Eqn. 3.18 are numerous. The most well known being
the Jacobi and the Gauss—-Seidel schemes. In the Jacobi
iteration, the solution is found by successive applications of

the process:

k+1 1 k k k
u1 - a11(b1 had a12u2 ot a13u3 - aeecve ™ a,]nun)
uk+1 = -1—(b - a uk - a uk - a uk)

2 as, 2 2171 2373 Teres 2n ' n
L ¢ S L -a W )
n a ., B n1 1 n2 2 *°°°° nyn-1 n-1

(3.19)

where k is the index of itefation.
The Gauss=-Seidel method is a refinement of the Jacobi

process. It consists of replacing in each stage of the
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iteration, the most recently available estimates:

k+1 1 K K
u1 = -é.—:l‘;(b1 had a12u2 bad a13u3 eeseas * a1nun)
k+1 1 k+1 k K,
u, =g (b2 = apqUy = Bpglg cees = aanun)
22
kel | 1y o k+1_'a LK+ - a ety
Yo T a B = Zp1t n2 2 °°° n,n-1"n-1

(3.20)

This scheme has two distinct advantages over the previous one
in that the solution converges much more rapidly and the
instantaneous updating of the estimates means that it requires
only half the storage locations of the Jacobi method.

Invariably, the Gauss-Seidel scheme is preferred.

Convergence Theorem

An iterative scheme is only useful if the process converges
to the true solution. The condition for the convergence of the
Jacobi and the Gauss-Seildel methods are given in a theorem due
‘to Collatz (see Hildebrand, 1968), which states that for an
(nxn) system, the iterative processes will converge if A
possesses the following two properties:

1) The matrix A does not contain a (pxq) submatrix

of zeros such that p+q2 n.

2) The magnitude of each diagongl element in A must

be at least as large as the sum of the off-

diagonal. elements in that row, and in at least
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oné case, is larger than that sum,

The matrix formulated by finite-difference method doe§ not
have any zero element in its diagonale. Therefore, it cannot
possess a (pxq) submatrix of zeros with p+q ) n. Moreover,
the diagonal élehent in each row is formed from the negative
sum of the off-diagonal elements in that row. In solving
this system, the boundary condition requires that the potential
of at least one node be known. This means the removal of at
least one row and one column of the matrix A. Consequently
the second condition is also satisfied.

Therefore, the solution of the finite-~difference equations -
is guaranteed to converge when either the Jacobi or the Gauss-

Seidel iterative scheme is used.

Acceleration of Convergence.

It is seen clearly from the processes in Egn. 3.19 and
Eqn. 3.20 that when A is sparse, the 'propagation' of the
solution will be extremely slow. In other words, a large
number of iterations is required for the solution to settle
to a satisfactory accuracy. The extrapolated Gauss-Siedel
method provides a very simple but nonetheless effective way
to accelerate the convergence of the solution. Here, a new
value of the estimate is extrapolated from two most recent

estimates in the following manner:

o+ 1 k k+1 k
u, = u, + wlu, ‘= u.)
i i i

(3.21)
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where ﬁ?+1 is the extrapolated estimate and w the 'acceleration
factor'. For 1>w<2, the convergence rate is increased. And
for some value wopt which is different for each problem, the
convergence becomes most rapid. This optimum acceleration
factor dan be estimated using the empirical formula (see Binns
and Lawrenson, 1973),

s
W m Ty
Pt 4 4 (1-c)Z (3.22)

where ¢ is defined as the limiting value of the ratio of the
absolute values of the maximum changes in the estimate occuring

on successive iterations when the acceleration factor is unitys

, k+1 kl
max [u, = W,
i i

¢c =Lt
k -0 max Iu?-_u§-1| (3.23)

Although any arbitrary value may be used as the initial

(0) u(0) (0) (0)
1

estimate for u Uy ,u3 1eeesul, 7y ON the other hand a
considerable amount of computing time can be saved if these
initial estimates are made as close to the final solution as
possibles This gives rise to a scheme to}speed up convergence
by obtaining firstly, an approximate solution on a coarse grid

and then using this solution as the initial estimate for the

final system.

Convergence error

There is no means by which the errorat each step of the
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iteration can be calculated. However, an upper bound to the
error e in the solution can be estimated using the following

formula (seec Milne, 1953),
em = (3~2L")

where R is the radius of a sphere which just encloses the
volume~conductor, h is the grid interval and r is the maximum

residual in the solution.
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2.6 Program Organization

A complete description of the computer program for
implementing the numerical-analogue is given in Appendix A.
The program is organized into four phases of operations

which are briefly described below:

PHASE1

The purpose of PHASE1 is to read and uapack the
volume~conductor data and store them on file
TAPE1. The program assumes the input data to

be arranged in the manner described in Sec. 3ole1.

PHASE2 - This phase scans the coded data on TAPE1 and
generates the finite~difference nodes for the

conductor. These are stored on file TAPEZ2,

PHASE3 is concerned with constructing the set

PHASES =
of finite-~difference equations using data on
TAPE1 and TAPE2. These equations are stored
on file TAPE3.

PHASELF - This phase reorganizes the data on TAPE3 for

efficient iteration. The potential at each
node is calculated using the Gauss-Seidel

method. The solution is stored on file TAPEL.
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3.7 Simple Validation Studies

The validity of the numerical-analogue is investigated
in this section by comparing the solutions obtained using this

method with those obtained analytically.

Dipole in a Sphere

The formula derived by Frank (1952) to calculate the
potential distribution inside a homogeneous conducting sphere
due to two point current sources provides an ideal volume-
conductor solution against which the validity of the numerical=-

analogue can be demonstrated,

Z

Fig.3.26: Two point current sources arbitrarily
located inside a homogeneous conducting sphere,

one octant of which is showne

Consider two point current sources +I and -~I arbitrarily
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located inside a homogeneous conducting sphere S of radius R
and conductivity G. The potential at any point within S can

be determined from the formula,

/
1 1 1 R R 1. Tt R - acosd
V = y= — o = o mm—— w m——— } = I
"G \r, T br, . ar . R 77 |r,+ R - bcos®d
o} a bi ai b
(3.25)
where
1
r = (0% + a° - 2racos®)®

T ='(r2 + b2 - 2rbcos€)):2L

“b
ar,; = (RL+ + r2a2 - ZRracosﬁ)%
br . = (R + r%b2 = 2Rrbeose)?

bi
and the parameters R, r, a, b, @, and © are as specified in

Fige 3.26.

Equatoriatl plane

Fige3.27: Two symmetrically placed current
sources, +I and -I in the equatorial plane
of a conducting sphere S,

The distribution for the case of two current sources

symmetrically placed in the equatorial plane (Fig. 3.27)



Fig.3.28: Potential distribution in one-quarter of the
equatorial plane for the source configuration in Fig.3.27

calculated using Eqn.3.25.

Fige3+29: Numerical-analogue solution of the potential

distribution for the source configuration in Fig.3.27.
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is shown in Fige 3.28. Because of the symmetry of the
isopotentials about the x and y axes, only one~guarter of
the equatorial plane is shown. The dotted circle shows the
region inside which Egn. 3.25 has no solution,

The same problem is now attacked using the numerical=
analogue. A discrete spherical conductor is constructed

from elemental cubes of dimension The potential

i -
distribution calculated by the numerical-analogue for the
same source configuration is shown in Fig. 3.29.

Notice that inspite of the rather coarse representation

of the sphere, the solution obtained still agrees very closely

with the one obtained analytically.

Boundary Condition

It is well known that when an isopotential line crosses

—

a boundary between two regions of different conductivity, it

must be ‘'‘refracted' according to the relation,

tan 01 _ El

tan 6, g8 (3.26)

where 84 and g, are the conductivities of the two regions,

0, and ©, are the angles which the tangents to the isopotential

1 2
make with the boundary at the point of crossing (Fig. 3.30).
This boundary condition provides a simple means of testing

the validity of the numerical-analogue solution of inhomogeneous

fields. Fig. $.3la and Fig. 3.3lb show the potential
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Fige3.30: 'Refraction' of isopotential line

at the boundary between two different media.

distributions in one plane through two inhomogeneous conductors.
In both cases, it is seen that the isopotentials crossing the

inhomogeneity interfaces satisfy the relation in Eqn. 3.26.

Anisotropicity

A demonstration of the validity of the numerical-analogue
for calculating anisotropic fields is now discussed. Consider
the case in which the conductivities in the principal axes, Xy ¥
and z are all different. The Laplacian for such an anisotropic

conductor is,

(3.27)

where B g and g, are the conductivities in the x, yand z

¥
directions respectively. The problem in Eqn. 3%.27 can be
transformed into one involving isotropicity using the

transformation,
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Fig.3.31a

= 00206

Figo3031b

Fige.3.31: Calculations of conductivity ratios from the
angles the isopctentials make with the boundaries

separating two regions of different conductivities.
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1 ' 2 %
(g g5 )7 (g 5 )% (g.8.)
T o . i A < A
g g 8 :
(3.28)
where x', y! and z' are the new systems of coordinates.
The poténtial gradients are related by
du =2udx =__ & 2u
ox'  dx ox! % ox (3.29)
(gygz)
2
2 g 2
du = 22 (3.30)
$ ~
ox (gygz) dx
Similarly,
2 2
62u = & 82u ’ 82u = & azu
2
ay@ (g,8,) ay° 3z+2 (e,8,) 9z
(3.31)
-

Substituting Eqn. 3.30 and Eqne 3.31 into Eqn. 3.27, yields

88y, [3%u =+ Qig + QEE =0 (3.32)
g? ox1 2 ay'z az'z

which clearly is an expression for an isotropic conductore.

In this exercise, a numerical-analogue solution for an
anisotropic conductor is computed. The'isopotentials through
a plane of the conductor is shown in Fige 3.32. The same
problem on the other hand, can be solved assuming isofropicity

.by using the coordinate transformation:
x'=%6x , y'=[3y , 2'= [2uz (3.33)

which means calculating the potentials in an equivalent
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£

L A=y
X

/
e :gy:gz = 1,0:2,0:3.0

Fige3.32: Numerical-analogue solution for an anisotropic conductor.
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x'=V6x , y'=V3y , z'=/2z

/

I/

e X

Fige3.33: Solution to the same problem in Fig.3.32 obtained by

calculating the potential distribution in an equivalent isotropiec

conductor. The required solution is derived by an inverse co=

ordinate transformatione.
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isotropic conductor with dimensions /6 : 3 : [2 :(Fige. 3.33).
The solution to the original problem is derived by a simple
inverse transformation.

It'is seen clearly that the solutions obtained by the

two independent methods agree.
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3.8 Conclusion

The-development of a numerical-analogue for calculating
‘volume~conductor fields was described in this chapter. The
method is distinct from the finite-difference method and the
resistive~network analogue in that it.combines the latter two
methods in such a way that the advantages of both methods are
realized.

The validity of the numerical-analogue was also demonstrated

by comparing its solutions with those obtained by other means.
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CHAPTER 4

A DISCRETE ANATOMICAL MODEL OF THE HUMAN THORAX

4.1 TIntroduction

In the preceeding chapter, a numerical procedure for
calculating the electrical fields in a volume-conductor has
been described. HNow, a valid digital representation of the
human thorax must be derived for applications to the forward
problem in electrocardiographye.

The choice of an appropriate sampling grid is fundamental
to this probleme Ideally, the grid interval should be made as
small as possible for two reasons: The first is that the
errors introduced by the finite-difference approximation vanish
in the limit as the grid interval is made smaller and smaller,
Secondly, a fine grid allows greater geometrical details to be
resolved, hence a more realistic representation of the human
torsoce. In practice, the limitations of speed and storage of a
given computer will ultimately limit the resolution of the
chosen grid.

Furthermore, it is not necessarily sensible to exploit the
available computing resources to the limit for the reason that
the accuracy of the solutions does not depend on the grid size
aloﬁe, but also on the values of the tissue conductivities used
in the simulation. In the present'study; these values are taken
from published sources. The problem here lies in the difficulties

of estimating the accuracies of the published data due to the
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inconsistencies between results obtained by different groups of
investigators (see Appendix B). The differences ranges from 70%
for liver to some 400% for muscular tissues. Moreover, repeated
measurements for the same tissue obtained by Rush et. al.(1963)
showed deviétions in the results ranging‘from 149% for liver to
30% for musclese.

It is therefore difficult to justify the applications of
vast computing resources for the purpose of minimizing the errors
due to grid size when the validity of published conductivities is
somewhat questionable. For this reason, it is more sensible to
emphasize when constructing the torso model, on the sconomy of

achieving a solution rather than on the numerical accuracies.



4,2 Anatomical Data

The data on which the model is based is obtained from an
atlas of the anatomical cross-sections of human body prepared
bylsymmington (1956). These cross-sections were made from a
male cadaver sectioned at approximately one inch interval.

For the purpose of this study, two additional cross-sections

in between the planes of the atlas were interpolated by hand.
Cross-sections corresponding to the torso slabs shown in Fig.

b,1 were digitized using the grid configuration shown in Fige

4,2. The completé specification of the digitizéd torso cross-
sections is shown in Fige. 4.3%a and Fige 4.3b. The corresponding
coded images of these cross-sections can be found in Appendix C.1.

The coded image for a model digitized at a coarser grid of
one-half inch is also given in Appendix C (Appendix C.2). The
purpose of using two models is to reduce the computational time
required to obtain a solution. This is achieved by iterating'
firstly on the coarse model and then using this solﬁtion as the
initial pguess for the pvotential function in the finer model. 1In
this way, the proolem of slowly converging solution for the fine
model is overcome.

The conductivity ratios for the codings used in the model
are given in Table 4.l. These were derived from the set of tissue
resistivity data obtained by Rush et al.(1963). Tﬁe reasons for
using their data is that firstly, this is the most recently
available and also one of the most complete set of measurements.
Secondly, their measurements were made with electrocardiographic

applications specifically in mind.
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— 7§

Figehe1: Diagram illustrating the various

slabs used in the discrete model.

———t
in,

Fig.4.2: Configuration of the sampling grid.
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SLAB 16
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BREHNED

SLAB 15

Fig.lte3b: Slab 11 to Slab 17 of the discretized torso sections.
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Table 4,1: Table of codings and their conductivity ratios.

TISSUE RESISTIVITY CODING CONDUCTIVITY RATIO
(ohm~-cm)

Human Trunk Le3 T 1.0

Blood 162 M/V 2.8

Heart 377* H 1.2

Lung 2100 L 0.2

Liver 700 R 0.6

Skeletal 2300 high (Refer to Fig.3.22 for anisotropic

Muscle 150 low representation)
o' @ & ot &

1 3.0 3.0 0.2 0.2 3,0
2 0.2 3.0 3,0 0,2 3.0
3 0.2 0.2 3.0 3,0 3,0
L 3.0 0.2 0,2 3,0 3,0
5 3.0 0,2 3.0 0.2 3.0
6 0.2 3.0 0.2 3.0 3.0

®* The resistivity of the heart is taken to be the geometric
mean of the high and low values given by Rush et al.(1963).



69

4.3 Adequacy of the Sampling Grid

There is no simple analytical means of determining the
magnitude of the errors introduced by the finite grid size.
'The only practical method is to compare the solutions obtained
at various grid sizes. Using the solutions obtained at two
different grid sizes, jhe exact solution can be estimated by
Richardson's extrapolation mefhod (see Vitkovitch, 1966) which
is briefly described below.

Assuming that the potential function does not contain
derivatives higher than the order four, then the error introduced

by the finite-difference approximation for a grid size ha is,

, 1.2
Mhh a
uo-ua=
L

(4.1)

where u, is the potential at a given node, u, is the exact
potential and M4 is the magnitude of the fourth order derivative.

Similarly, the error due to the grid size hb is,

2
Hyhy (&.2)
u_ =-1u =
(o] b l+ ’

Eliminating the quantity Hh from the above équations gives:

2
hau - h, u

a .

- (ha3)

p ol
T’ o

- h

From the extrapolated exact solution, the error introduced by
either grid size can therefore be estimated.
Inorder to ecunomize on computional resources, the

investigation that follows will be restricted to a two-dimensional
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cross-sectional model of the human torso.

Fig.‘4.4 shows the same torso crdss-section digitized at
different grid sizés, three of which, Fig. h,hé, Fig. L. hb and
Tige t.ltc are digitized using regular grids of one~-sixth inch,
one-third inch and one-half inch respectively. The fourth,

Fig. h.hg is digitized using an irregular grid yith the sampling
density greater around the cardiac region, because here the
potential function varies the most rapidly.

The electrical potential distribution for each model is
calculated for the same source configuration. In each case, the
iteration is terminated when the upper bound for the error in the
solution as determined from Egn. 3.2k is less than 0.001%. The
maximum difference between the solution obtained using the one-
sixth inch grid and the one-third inch grid is of the order of
3%. Substituting this into Egn. 4.3 gives an estimated
discretization error of some 1% for the one-sixth inch model and
Lej for the one-third inch one. Similarly, error for the one=~half
inch model is estimated to bé some 10%. As the grid interval for
Fig. 4.4d is irregular, it it not possible to use this technique
to estimate its discretization error. However, since the maximuﬁ
differenée between.the solution for this mbdél and that for the
one-third inch one is only some 0.3%, it is therefore unlikely
that the error here would be greater than 4.5%.

The cohputional time required for each of theée solutions
is shown in Table 4.2. When the grid size is reduced from one='
third inch to one-sixth inch, the computional time is increased

by a staggering amount of 1600%. The corresponding improvement in
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Fig.lt.ha: One-sixth inch grid. Fig.hk.lb: One-third inch grid.

Fig.hk.lc: One~half inch grid. Fig.4.4d: Irregular grid.

Fig.h.lt: Digitization of the same torso section using different
grid sizes. The heavy thick lines are isopotentials due to a

sinusoidally varying votential distribution on the heart surface.

Table 4.2: Computational time and estimated error for

different grid sizes.

GRID SIZE COMPUTATIONAL TIME ESTINATED ERROR

(inech) (sec.) (%)
One-sixth 80 1
One-third 5 L
One-half 1 10

Irregular : 2.5 5




T2

the numerical accuracy on the other hand is only some 4% which
hardly justifies the large difference in the computicnal costse.
A further reduction ofISO% in the computional cost can be
achieved by using the irregular grid in Tig. 4.4d.

Althoﬁgh this investigation is carried out using two-
dimentional models, the results nevertheless do provide useful
indications as to the adequgcies of the discrete three-dimensional

torso model described in the previous section.
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L. L Effects of the Various Internal Inhomogeneities

3

The discrete modei of the human torso developed in Section
L.,2 includes all the internal inhomogeneities that could be
resolved by the grid. It is relevant to enquire whether all
the inhomogeneities are necessary. If not, then clearly it
would be sensible to simplify the model accordingly.

For this investigation fhe surface distribution for five
models with varying degree of complexity in their anatomies
vere used. These are showm in Fig. 4.5.

It is observed that the introduction of intracardiac
blood-mass enhances greatly the magnitudes of the surface
maximum and minimum. This observation is in close agreement
with the results obtained by Barnard et al.(1967). Two
interesting features are observed when the lungs are introduced.
The first is a slight clockwise rotation of the surface
potentialé and the second is a 'focusing'! effect towards the
front of the torso. The rotation of the potentials can be
explained by the difference in mass between the left and the
right lungs, whilie the focusing effect can be accounted for by
the low resistive pathways through the gaps separating the two
lungs. A further rotation of the isopoteﬁtials is observed when
the liver is introduced. This once again, is due to the non-
uniform displacement of currents in the torso. The effects of
tﬁe spine, the sternum and the great vessels are to increase
the irregularities in the isopotentials. A drastic change in the
pattern of the surface potentials is observed.when the aniso=

tropicity of the skeletal muscles is introduced. This includes a



SURFACE POTENTIAL DISTRIBUTIONS FOR
DIFFERENT MODELLING ASSUMPTIONS

FRONT ' BACK FRONT BRCK FRONT BACK

(R) (B) - (C)

BACK

(D) (E)

MODELLING ASSUMPTIONS

(R) - HOMOGENEQUS ISOTROPIC TORSO-SHAPED VOLUME CONDUCTOR °
(B) - AS [(R) + INTRACARDIARC BLOOD MARSS

(C) - RS (B) + LUNGS

(D) - RS (C) + G.VESSELS, SPINE. LIVER AND SKEL.MUSCLE
(E) - RS (D) BUT WITH ANISDTROPIC SKEL. MUSCLE

Figure 4.5

reduction in the magnitudes of the surface poténtials and an.
increase in sgparation of the maximum and minimum. This is
not unexpected since the effect of a low resistive pathway
parallel to the body surface is to disperse any localized
concentration of the surface-currenfs.

Since 1t is shown that 21l the inhomogeneities contribute
to the body surface potentials in a significant manner, it can
therefore be argued that the data accumulated in Section 4.2

are justified in the complexities of the internal inhomogeneities.
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4.5 Comparison of Simulated and Observed Surface Potentials

In this section, the data of the torso model accumulated
in this chapter is used to calculate catheter potentials on
the body surface of cardiac patients with pacemakers implanted
in their right ventricles. These simulated sﬁrface potentials
are then compared with those actually measured on the patients!
torsos. ’

The measurements of Hamer et al.(1965) from implanted
pacing catheters provide an ideal basis for comparisone. They
recorded from several cardiac patienté with implanted pacemakers
in their right ventricles, the maénitudes of the pacemaker
impulses at various sites on the patients' torsos. TFrom these
recordings, they reconstructed isopotential maps of what is
effectively a dipole source located in the right ventricle.

From their information of the locations and orientations of
the catheter tips in the patients, the corresponding surface
distributions were computed using the torso model derived in this
chapter. The simulated surface potential distributions and those
reconstructed by Hamer et al.(1965) are showr in Fig. 4.6. It is
seen that a close agreement in all the majer features between the
two sets of distributions can be found. This indicates quite
strongly the validity of the model data accumulated in this.

chapter.
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COMPARISONS BETWEEN SIMULATED AND
EXPERIMENTALLY OBSERVED CATHETER POTENTIALS
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(R).(B).(C) - BODY SURFACE POTENTIAL DISTRIBUTION PRODUCED BY CRATHETER IMPULSES
( REDRAWN FROM HAMER., BOYLE AND SOWTON. 1865 )

(11.02),(3) - SURFACE DISTRIBUTION OBTRINED BY SIMULATION

Figure k.6
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L,6 Conclusion:

A digital computer model of the human torso which took
into account the intra-cardiac blood-mass, the great vessels,
the heart muscle, the lungs, the liver, the spine, the sternum
and the anisotropic skeletal nmuscles has been dérived. The
validity of this model was demonstrated by comparing surface
potentials computed from the model with those obtained ’
experimentally.

In order to speed up the convergence of the solution, a
coarser nodel was also constructed so that an initial estimate
of the solution could be obtained.economically. Using this
estimate as the initial guess in the finer model, the number
of iterations required to achieve the solution is greatly

reduced.
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CHAPTER 5

AN INVESTIGATION ON THE FEASIBILITY OF

AN UNCONSTRAINED INVERSE SOLUTION

5.1 Introduction

The purpose of thié chapter is to investigate tﬂe
feasibility of an unconstrained inverse solution based on
recovering epicardial potentials from surface-measurements.
Previous workers (Barnard et al., 1967; Brody and Hight,
19723 Martin and Pilkington, 1972) have demonstrated the
inherent difficulties in such an approach due to the highly
ill~conditioned property of the heart-surface transfer
matrix T defined in Chapter 2. The effect is that presence
of small perturbations in the measurement vector v in ﬁhe
equation,

Ts = ¥ (5.1)

will lead to serious errors to be observed in the solution
vector s. They also attempted overdetermination of the problém
but met with little success in obtaining a valid solution,

In order to overcome this problem, various constraints
were imposed by past workers on their inverse solutionse.
Thése constraints are usually based on some prior knowledge
of the valid solution. For example, Barnard et al.(1967)
constrained the dipole moments of their multiple-dipole

solution to be non-negative, so avoiding soiutions with
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'inward pointing' dipoles which are held to be physiologically
unrealistic in normal cases. Another form of constraint

which was introduced by Martin and Pilkington (1972) in their
epicardial solutions assumed a prior knowledge of the
statistics of the solution vectors.

However, a constrained approach ié not without its
disadvantages. Clearly, the ultimate objective in the inverse
solution is to aid diagnosis and detection of abnormalities.
To constrain the solution in order to fit what is a valid
result for the rormal may risk excluding solutions which are
correct for the abnormal. For example, in certain cardiac
abnormalities, the excitation spreads outside~in which clearly
would be misrépresented by a solution that constrains the
dipoles to point outwardse.

It is for this reason that fhis chapter is devoted to the
study of the heart-surface transfer relationship in the hope
that such investigations may lead to a formulation of an

unconstrained inverse solutione
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5.2 The Torso as a Spatial Filter

The distribution of body-surface potentials g(p) can be
related to the epicardial distribution f(s) by the integral

eQuation,
g(p) = fx(p,s)f(s)as (5.2)
S

where K(p,s) represents the body transfer characteristics

and the integration is over the heart surface. The problem

in inverse electrocardiography is to infer £(s) from knowledge
of g(p). Ideally, this is achieved by a simple inverse
transformation of Eqn. 5.2. In practice however, g(p) is
obtained by measurements which are subjected to errors such

as positional uncertainties, physioclogical noise and measurecment
errors. The result can be to cause the solution to oscillate
wildly.

Twomey (1965) proposed an elegant technique for investigating
problems of this.kind. He showed that the success of inferring
f(s) from g(p) when the latter is subjected to noise depends on
the shape of K(p,s). This is most clearly illustrated by the

Fourier transform of the kernel K(p,s):

Spectral Kernel

Consider the Fourier transform pair,

f(s) f FTw)e_jwsds (5.3)

T (w)

[“#tere3%as (5.4)

-~ 00
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Substituting Eqn. 5.3 in Egn. 5.2 qives,

glp) = L;K(p,s) [[:F(w)ejwsdw] ds (5.5)

As the function X(p,s) must vanish outside the area of
integration, the limits of integration can be extended to

+c0. And reversing the order of integration yields,

o

g(p) = J'&'(p,w)lr(w)dw (5.6)

o
where

E(p,w) = j K(p,s)ejwsds : (5.7)

known as the spectral kernel is the Fourier transform of
K(p,s) with respect to the variable s.

In most physical systems, K(p,s) is a smooth function of
s. The corresponding spectral kernel #(p,w) becomes a function
vhich decreases rapidly with increasing |wl. A simple example
to illustrate the rapidly declining function of 3(p,w) in the

volume-conductor was given by Martin and Pilkington (1972).

Case of Two Concentric Spheres

They considered the case of a highly idealized model of
the torso represented by two concentric spheres embedded in an
infinitely homogeneous medium (Fig. 5.1). The inner sphere |
represents the heart while the outer sphere represents the torso.
For any given distribution of potential VS on the surface
of the inner sphere, the potential Vp generatéd on the outer

sphere can be calculated using Poisson's Integral equation:
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Fig.5.1: Two concentric spheres of radius
a and d embedded in an infinitely

homogenecous medium,

2 2
v, = (a-a)V; 4g (5.8)
3 hnarj
where
r = (224 a°- 2adcosg)’12‘ (5.9)

Becaugse of the symmetry of the system, Eqn. 5.3 can be reduced
to an integration over one variable by making use of the

relation,

o0s = Enaasing 60 (5.10)
The kernel of this system then becomes

(¢ = cB)SinO
3
2(1 + % 2c0080)7%

K(Q’Q) = (5011)

where the constant ¢ is the ratio a/d.
A family'of the spectral kernel for the various a/d ratios

is shown in Fig. 5.2. Clearly, the spectral kernel has the
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characteristics of a 'low-pass' filter. The degree of filtering

depends on the distance from the source to the surface.

Interpretation

Inspite of the rapidly decreasing values of &(p,w) as |wli
increases, in theory the values only become vanishingly small.
Therefore provided the system is totally fres from noise and
g(p) can be measured precisely, the function f(s) can be
accurately retrieved. In practice however, the system is.
subjected to noise which is represented by the shaded region in
Fige 5.2. The consequence of this is that the information which
can be extracted is now limited to some frequence range (~-q,+q)
for which Z(p,w) is greater than the noise levels The number

of independent parameters that can be inferred from g(p)



accor&ing to Shannon's sampling theorem is 2q. Attempt to infer
more parameters is to seek information outside the filter 'window'
whicﬁ will only lead to large high frequency oscillations in thé
solution,

To summarize:

1) A vblume«conductor has the characteristic of a 'low=-pass!
spatial filter. The further the source is from the
surface, the greater is-the filtering effect.

2) Consequently, only a filtered version of the epicardial
potential function can be inferred.

%) For a 'useful' bandwidth of qHz, not more than 2q
independent epicardial generators can be determined.

4) To attempt to infer more epicardial generators will only
lead to high frequency oscillations in the solution.

The arguments of this section provide no indication as to the
feasibility of an inverse solution, nor do they allow a measure of
the errors likely to occur in thé solution. Nevertheless, they
illustrate the mechanism by which epicardial potentials are
transferred to the body surface and outline the inherent

limitations of inverse solutions.
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53 System Ligenvalues as Veight Factors

A more quantitative way to investigate the effect of noisge
on inverse solution is to consider the eigenvalues of the system
transfer matrix T The system equation (Eqn. 5.1) can be

rewritten to account for noise:
T(g+f) = (v+e) (5.12)

- where g is the error vector associated with the measurements

of ¥, and f is the resultant error vector in the solution s.

The crucial question here is whether the relative smallness of

e will result in relatively small f. The answer to this question

depends on the relative magnitudes of the system eigenvaluesa.

Orthogonal Transformation

Consider the error relation,

L = e (5.13)

~ Assuming for the moment that T is symmetric. Under this condition,

T can be diagonalized by a proper rotation of the reference system

(see Lanczos, 1961}):
UTTU = D (5.14)

where U isan orthogonal matrix and D is a diagonal matrix |

containing all the system eigenvalues,

D = . (5.15)




The rotated system now becomes,

Df' = @! (5.16)

where e' =U'e , £' = UL »
The length of the error vectors are not affected by this

transformation. That is, |e| = |e!' and [£] = ] .

Error Magnification

The importance of the system eigenvalues in determining
the errors in the solution is demonstrated clearly by the

relation,

£, =% | (5.17)
d

The problem arises when di is very small. The result of
1
dividing the error ey by a very small number is a very large
L]
value of f, . As shown by lanczos (1961), the critical quantity

here is the ratio of the largest to the smallest eigenvalues,

d .
min

d
C = % (5.18)
which is known as the 'condition number' of the system. This
number provides an urner bound to the magnification of the
percent error in the solution. The greater the condition

number, the less likely is the chance of a successful solution

in the presence of noise.
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Non;Symmetric System Matrix

The case where T is non-symmetric is complicated by the
fact that the eigenvalues are likely to be complex., This
problem is overcome by premultiplying the system matrix by its

transpose:
T P(g+f) = TT(v+e) (5.19)

The effect of this as mentionéd in Chapter 2 is to minimigze
the length of the residual vector in the-solution° 1f the
system is evenly-determined in the first instance.(that is
T is square), then this minimization has no effect on the
solution. The importance of this operation however is that
the new system matrix T'T is once again symmétric and thus

amenable to the error analysis described in this section.
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S.4 Ovtimization of the System Resolution

The 'low-pass' filter characteristic of the volume~
conductor implies that the magnitude of the condition number
will depend on the dimension of the system matrix. The
smaller the system matrix, the smaller will be the condition
number., This is because in a small system, information is
extracted from the low-freqﬁency region of the spatial filterx
where the signal-to-noise rati; is large. This leads to the
impression that the only means of achieving a stable unconstrained
inverse solution is to reduce the size of the system matrix
until the condition number is sufficiently small. As will be
demonstrated in this section, a carefully selected configuratibn
of the measurement locations can greatly improve the szystem

condition number.

Position for Maximum Resolution

s, S5

a3

Fig.5.3: Diagram illustrating the system impulse

response.
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The effect of low-pass filtering is to generate a smoothed
version of the epicardial distribution on the body surface.
Consider two impulse generators Sa and Sb at locations a and b

on the epicardial surface (Fig. 5.3). Each generator will

generate a unit response having the general shape Va and V. on

b
the body surface. Assuming that these are the only sources,
then the optimal body-surface locations for resolving Fhese
sources are at P,1 and P2 respectively. This is clearly
illustrated in the following example:

Assuming the contribution to P1 and P2 due to unit impulse
at a is (0.6,0.1). Similarly, the contribution to these two

surface points due to a unit impulse at b is (0.1,0.6). The

systen equation in this case is,

0.6 0.1 S v .
L P (5.20)

0.1 0.6 s2 v2

where (51,82) are the impulse strengths gnd (V1’V2) are the
potentials at P1 and P2 respectively. For simplicity, assume
a source values of (1.0,1.0). The resulting surface valﬁes are
therefore (0.7,0.7). If in measuring these values an error of
say, (+0.01,-0.01) is encountered, then in the inverse calculation
the values (1.02,0.98) are obtained for the generators. This
represenfs some 32% Eerror.

On the other hand, consider the case of two badly selected

'
locations at P1 and P2 s the system equation of which is say,

0.025 0.020 S v;
(5.21)
0.020 0.025 S, vé ,
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Here (V1,V2) are the potentials at P1 and P2 « For a source
values of (1.0,1.0), the surface potentials are (0.045,0.045).
Subjecting these observations to the same error (+0.01,-0.01),

the error in the inverse solution this time is i200% s Which

renders the solution totally useless.

Relation to Condition Number

The same conclusion on the errors in the solutions can be
arrived at by considering the system condition number. The
eigenvalues in the first example are 0,7 and 0.5. The condition
nunber for this system is therefore 1.4, Consequently, foxr the
i1.4% errér in the observations, the predicted error in the
inverse solution is therefcre some tz%, which agrees with the
error in the above example.

The eigenvalues in the second example are 0.04:5 and 0.005.
This gives the system a condition number of 9. The percent error
in the observation is some +22%. The predicted error in the
solution here is some iZOO%, which once again is in agreement

with the errors in the example.

Smoothed Errors

If it is assumed that the measurements can be made écéurate
to 1%, then for a 10 accuracy in the solution, the system
condition number must not exceed 10. In practice however, the
errors in the obsgervations are of a smooth nature., Typically, -
the surface potentials are reconstructed from a limited number

of sampling electrodes. This usually constitutes the most
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significant source of errors. On the othér.hand, errors due to
interpolations are of a smooth kind. As a consequence, the
system condition number may now be one or even two orders larger,
yet giving a solution that is stable. The recason is that the
system is less sensitive to low-frequency errors. To illustrate
this point, consider once again the ill-conditioned equation
(Eqn. 5.21). This time, the observations are subjected to an
absolutely smooth error, that is a d.¢ shift, of (+0,01,+0.01).
The resulting inverse solution has a value of (1.22,1.22),

vhich contains only a 22% error. MNotice that inspite of a
condition number of 9, the percent error in the solution has
remained unchanged.

This example demonstrateé quite clearlyvthe need to interpret
the system condition number more carefully. In actual fact, the
system condition number gives the upper bound of the percent error
magnification in the inverse solution, With low frequency errors,
the magnification can be considerably less. This suggests
therefore, that it is always a good practice to smooth out the
high frequency fluctuations in the measurements before attempting
the inverse calculation. Such a procedure may not increase the
accuracy of the solution; but it does however yield a more stable

soiwtion.
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S5¢5 Feasibility Studies using a 2~Dimensiona1 Torso lodel
1[

In this section, the feasibility of an unconstrained inverse
solution is investigated using data obtained from model
calcuiations. A block diagram describing the procedure of the

investigation is shown in Fig. 5.4

Set u : :
epicargial | Model Surface FORWARD
distribution calculation distribution PROBLEM
noise
| » INVERSE
s T v PROBLEM

Fig.5.4: Block diagram illustrating the investigation

procedure.

Fundamental to the investigation are the questions:
1) The number of epicardial generators that can be
unambiguously inferred from surface meacurements,
2) The optimal sites for making these observationse.
3) The highest spatial harmonic of the epicardial
distribution that can be resolved from surface
measurementss

Because of the enormous amount of computing resources
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required for such studies, a practical solution is to limit the

investigations to a 2-dimensional model of the human thorax,

Forward Calculations

The 2-dimensional, one-sixth inch grid model of the torso
constructed in the preceeding chapter is used in the forward
calculations in this sectione. Sinusoidally varying potentials
of various harmonics are applied to the heart-surface as test
distributions. TFige 5.5 shows the model surface distributions

for the first four harmonics.

MODEL FREQUENCY-RESPONSE

__FRONT . BRCK

———— OSOURCE DISTRIBUTION
SURFACE DISTRIBUTION

. Fige5.5: Model ffequency-response for the first four harmonics.

Notice the 'low-pass' nature of the torso is clearly
demenstrated by the rapidly decreasing magnitude of the surface

distributions as the harmonic number increasese.



A sequence of random numbers scaled to 1% of the peak-to-
peak value of the test signals are added to the surface
distributions ip order.to simulate the errors in the real system.
These 'noisy' sufface potentials provide the data for testing
the feasibility of recovering, within some specified accuracy,

the original test distributions.

The Equivalent Generator

The equivalent cardiac generators are represented by equal
epicardial segments, the potential over each of which is assumed
to be constant, having a value equal to the mean of the potentials
over that segment. This is the same as approximating the epi-

cardial distribution by a step function as shown in Fig. 5.6

Fig.5.6: Step function anproximation of the epicardial

potential distribution.

The accuracy of such an approximation clearly depends on the
number of segments used and the harmonic content of the epicardial
potentials. If the highest harmonic number in the distribution is

N, then according to the sampling theorem, 2N segments suffice to
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represent the distribution. The original analogue function caﬁ
be recovered from the step function by a smoothing process.
A suitable technique is as follows:
1) Deéide on the number of points required to represent
the smoothed function. Preferably, this should be K
such that K/N is an integer, where N is the number of
segments in the step function.
2) Set up an array of numbers (x1,x2,°.e XK) with the first
K/N values equai to Sq, the second X/N values equal to S2
and S50 on. S1’82’°°° SN are the values of the step

function at segment 1,2,... N respectively.

3) Smooth the values in the array. For example,

"xi = (xi_1+ 2xi+ xi+1)/h

where ii is the new value of the ith point.
4) Restore the power in each segment by adding a constant
C1 to all the values in segment 1, 02 te all the values

in segment 2, and so on, where
1 1 E X, 9 ssess 2tCe

5) Repeat steps 3 and 4 until the required degree of

smoothness is achieved.

A simple example illustrating this proccess is shown in

Fig. 5e7.
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STEP FUNCTION
APPROXIMATION ===

SMOOTH ) ]

RESTORE

L. _ __ Restose

SMOOTH ) }

Fige.5.7: Diagram illustrating the process of
recovering the analogue function from

the step function.

Inverse Solutions for 4 Heart=-Segment Model

The feasibility of inferring &4 epicardial generators is
presently investigated. Three system matrices were constructed,
one for each of the following electrode configurations:

1) Electrodes placed at 4 equally spaced locations.

2) Electrodes placed at locations where the contribution
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from each heart generator is the maximum.

3) Overdetermination by a factor of 3. That is, taking
three times as many measurements as is theoretically
required.

Fig. 5.8 shows these electrode configurations in relation to

the surface contribution from each heart generator.
o )

GENZRATCR CONTRIBUTIONS

0.1

k/ T 5
o,,,\ /‘\‘ .
”—\ /

’rvrﬁ>

—A -8

S4
ELECTRODE CONFIGURATIONS
1 L 1 1 Equally apaced
L L L L Optimally spaced

L1 L L L1 Ll Equally spaced overdetermined

Fig.5.8: Electrode configurations and their relation

to the generator contributions.

The inverse solutions for these 3 systems are calculated
using the ‘'noisy' surface distributions from the previous
forward calculations.as data. These solutions are represented

graphically in Fig. 5.9. Since only 4 epicardial segments are
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used, the highest resolvable harmonic is 2. The solutions from
electrode configurations2 and 3 are stable.and it is not
difficult to see that a good representation of the original
distributions can be recovered by smcothing the step soiutions
in the manner described previously. On the other hand, the
solution from configuration 1 is highly unstable. An
investigation of the system.eigenvalues revealed that this
system has a condition number of 235. The condition numbers

for electrode configurations 2 and 3 are 3 and 25 respectively.

System 1

System 2

XvA System 3

Fig.5.9: Inverse solutions for a L4-segment heart

using 3 different system equations.

It is not difficult to see why the system stability is increased
by overdetermination since the chances of covering the optimal

sites are increased using a large number of electrodes.



99

Inverse Solution for greater number of Heart Segments

The same inverse calculations were performed for systenms
with 6,8,10 and 12 epicardial segments. Table 5.1 lists the

condition numbers for all the systems investigatede.

Table 5.1: System condition numbers.

No. of Heart Equally Optimally 3X Over-
Segments Spaced Spaced determined
b 235 3 25
6 475 6 80
8 1175 4o 364
10 36410 73 540
12 1359610 1117 6480

The sizes of the condition numbers in column 1 of Table.5e1
indicates clearly the unlikely success of an unconstrained
solution using evenly-determined systems with arbitrarily
selected sampling sites.

Solutions for the 6,8 and 10 heart-segment models are shbwn
in Fig. 5.10, Fig. 5.11 and Fig. 5.12 respectively for eclectrode
configurations 2 and 3. The solutions are stable up to 10 heart
segments. Beyond that, the solutions begin to oscillate wildly.

Notice that the condition numbers for the overdetermined

- gystems are one order of magnitude larger than the corresponding
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Fige5.10: Solution for G=segment heart.
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System 2 with smoothed data

Fig.5.12: Solutions for 10 heart-segments
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systems using optimallj selected electrode sites. In spite of
this, the solutions are stable while those for the evenly-
determined systems at the same order of condition numbers are
unstable. This is because in evenly-determined systems, the

solutions are found by the process,

-l (5.22)

wvhich as discussed in Section 5.3, favours high frequéncy
fluctuations. On the other hand, solutions obtained using the

method of overdetermination ;

s = (TTT)'rTy ' (5.23)

are such that the errors are minimized in the least~square sense
(see Lanczos, 1961),

From the solutions, it is also seen that the first 3
harmonics of the epicardial distributions can be quite
accurately recovered using the 6 heart~segment systems. The
accuracies of retrieving the higher harmonics using systems with
greater number of heart segments are limited by the system
stabilities. This problem is somewhat improved by smoothing the
data slightly before attempting the inverse calculations (Fig.

5.12).
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5.6 Conclusion

The investigations in this chapter have shown that it is
feasible to infer up to the 5th harmonic of the epicardial
poteﬁtials in a 2-dimensional torso model using unconstrained
inverse solution. It is not uanreasonable to éssume that
similar results would exist in the 3-dimensional case although
the spatial resolution may be poorer. The important échievemeﬁt
in this chapter, nevertheless, is the insight into the inverse
problem provided by this investigation. It is also shown that
the ability to resolve the epicardial distributions is greatly
improved by,

1) carefully selecting the sites of electrode

measurements, The optimal sites being those
where the contribution from each generator
in turn is the maximume.

2) overdetermination of the problem.

%) smoothing the data before inversion.

Althéugh not mentioned in the investigations, clearly, over-
determination of the problem is most effective when all the

optimal sites are included in the electrode configuration.
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CHAPTER 6

CALCULATIONS OF EPICARDIAL POTENTIALS FROM

IN=-VIVO SURFACE MEASUREMENTS

6.1 Introduction

The investigations in the previous chapter showed that an
unconstrained inverse solution is feasible using simulated data
on a 2-dimensional model of the human torso. In this chapter
this investigation is extended to more realistic 3-dimensional
torso model derived in Chapter & using surface data measured in-
vivo.

For the purpose of the forward calculations, the surface.of
the heart is divided into 26 approximately equal arcal segments.
These are configured in three rows of eight segments round the
heart and two polar capse. The transfer of the electrical
potentials from each segment to the body surface is calculated
using the digital model of the torso constructed in Chapter 4,

The system transfer matrix relating the potentials on 26
epicardial segments to 26 body surface locations is then
constructed from the forward solutions. These 26 body surfacev
locations are selected from sites where the contribution from
each epicardial segment is the maximum. This ensures that the
system condition number is kept to a minimum.as discussed
earlier.

The surface data used in the inverse solutions were obtained

 from the collection of surface ECG maps acquired by Monro'. A

1 A private communication.
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complete description of the data aquisition and mapping
procedure of the surface ECG is found in his publication,

Monro et al.(1974).
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6,2 TForward Calculations

The surface of the heart is segmented into 25 approximately
equal areas. These are arranged in three rows of eight segments
around the heart and two polar caps, one at the apex and the

other, the basal region of the heart (Pig.6.1). The advantage

~Anterior Posterior
Fige6.1: Segmentation of the heart-surface into 26
discrete areas.

of using such a configuration is that these segments can be

mapped into a regular pattern on a cylindrical surface as shown

25 25
1 2 3 4 5 6 i 8
9 10 11 12 13 14 15 16
17 18 10| 20 21 221 23| 24
26 26
Anterior Postefior

Fige6.2: Cylindrical projection of the 26

epicardial segments,
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in Fig. 6.2. This greatly simplifies the task of reconstructing
the epicardial distrubutions in the later stage of the
development. Furthermore, as demonstrated by Monro et al (1974),
a configufation of this kind can be unfolded into a two
dimensional array that repeats along the rows and the columns

(Fig. 6.3). The importance is that this array is now directly

25125 25 25 25 25 25 25

9110 11 12 13 14 15 16
17118 19 20 21 22 23 24
26|26 26 26 26 26 26 26
21(22 23 24 17 18 19 20
13114 15 16 9 10 11 12
56 7 8 1 2- 3 4

Fig.6.3: A repetitive 2-dimensional array obtained

by 'unfolding' the closed heart surface.

amenable to a 2-dimensional discrete.Fourier'transform, thus
opening the possibility of future spectral analysis on the
epicardial distribution.

The potential transfer from these segménts to the body
sqrface is calculated using the numerical technique developed
in Chapter 3 and the anatomical model of the thorax described in
Chapter 4. The calculations are made for each segment in turn

by applying a unit potential over the segment concerned and
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iero potential everywhere else on the heart surface. The
resulting body surface distribution is listed in Appendix D.

From the forwvard calculations a system matrix is constructed
which relates the potentials on the epicardial segments to the
potentials at 26 locations on the body surface. These locations
are selected to correspond to the sites where the potential
contribution from each segment is the maximum. Fig. 6.4 shows

the positions of these locations on twé planes which represents

CHEST BACK
8 25 : 6
o . c o .
o 4
5 3 &
¢ % o o
1 12 13 4 53
[ 3
16
o]
lo% 309 20
I;l “s
24 22
o [>] -]
26 203

Figs6.4: Locations on the body-surface where the transfer

relationships are conmputed.

the cylindrical projection of the front and the back of the body
surface. The forward transfer matrix for this configuration is

given in Table. 6.1.
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Table 6.1: The forward transfer matrix.

k1 109 80 13 13 39 48 56 44 70 32 zi 8 b 18 28 43 23 21 16 19 24 34 126 46

6
35129 101 13 10 30 35 ho 47109 48 21 6 5 10 13 27 52 20 18 12 15 19 27 103 39
1k 58 223 kO 17 30 29 23 13 51111 83 141 5 72 6 10 21 3% 40 13 11 1é 12 92 27
12 38 1ho sh 29 k2 36 25 9 27 75129 22 8 11 7 10 16 27 71 2k 47 16 15 96 38
15 35 65 32 k1 722 60 36 12 20 27 64 32 17 23 13 16 21 20 63 41 35 32 27 112 64
19 39 55 24 34 83 76 46 15 22 22 43 24 17 28 18 19 24 19 L6 34 35 36 33 123 62
20 39 46 17 27 80 83 53 17 24 19 32 19 17 34k 23 23 28 20 39 32 37 b2 W1 113 67
33 63 50 12 16 51 64 66 32 40 20 21 1N ‘10 25 29 34 W1 23 27 23 30 39 52 117 65
34107 614 8 8 25 31 37 69113 3k 15 6 5 12 17 45 80 35 18 1k 19 25 W1 26 55
19 105 12% 11 7 17 20 21 35171 95 22 4 3 6 8 25 77 59 17 9 11 13 20 59 37

8 38194 31 10 16 15 12 9 57 20106 8 3 4 4 28 87 50 10 8 8 9 k5 28

~ @\

7 2b 119 6 22 27 23 15 6 23108 183 20 6 ? 5 15 sk 121 23 1 12 11 57 39
11 27 58 35 39 53 Lk 26 9 17 30 92 43 16 18 10 14 20 22 106 55 37 31 24 83 76
13 27 37 17 28 66 62 35 13 18 17 35 27-25 39 20 2b 29 23 55 52 58 57 Lk 79 94 -
16 31 34 13 22 6% 69 k2 16 21 15 26 19 22 47 28 .29 33 23 43 W1 5k 62 s5b 79 90
20 36 32 10 15 48 58 48 23 28 15 19 13 15 38 37 41 45 28 34 34 48 63 75 75 96
16 35 25 7 10 29 35 35 27 33 15 14 9 10 25 29 64 22 M1 35 35 52 67 96 52 132
13 3% 235 5 6 18 21 21 33 57 22 1M 6 6 14 18 85 141 20 29 25 38 SO 77 35 135
8 25 23 3 b 10 12 12 22 71 4 13 3 3 8 9 59 205170 29 17 2% 30 M1 21 125
3 10 20 4 3 5 6 5 6 26 83 k2 3 2 4 3 19 91331 111 13 15 16 17 11 146
h 9 20 10 11 172 15 9 4 8 19 60 20 7 9 5 12 20 49 352 61 33 25 19 24 17
7 16 2k 12 17 31 28 17 9 13 % 37 26 15 19 11 23 33 35127 89 71 54 39 41 185
9 18 22 9 14 33 33 21 12 16 12 24 19 18 28 16 32 W1 35 70 7?5 89 79 57 h2 170
10 21 22 8 13 33 35 25 15 19 12 19 15 16 32 21 4O 48 36 53 60 83 87 71 b4 157
28 87129 25 21 50 52 47 23 51 44 2 12 2 13 12 16 26 20 28 17 17 19 22 154 36
51 12 4% 5 12 13 10 9 16 16 16 7 6 11 9 3% 22108 103 L5 51 48 &b 19 306



110

6.3 Inverse Calculations.

Also superimposed on the two body surface planes are
the locations where the ECG neagurements for surface mapping
were taken (Fig. 6.5). The data required for the inverse

calculations were recovered from these measurements by means

CHEST | EACK
) o b} g =
o © [ Q J Q [+ o
o] o [») Or [ o] s} a
] o 0 Q fa v} o] [+
< JNOUURIIIS .1 .G (o] e & o -

Fig.6.5: Locations on the body surface where surface

measurenents are takene.

of the 'band-limited' interpolation procedure described by.
Monro ef al.(1974).

Fig. 6.6 shows 20 frames of body surface isopotential
maps for a normal subject taken at 2msec. intervals. The
corresponding potential values on the 26 epicardial segment

for each frame is calculated using the unconstrained solution.

s=1"y | (6.1)

where T is the system matrix given in table 6.1, X is the
surface data on the 26 surface locations shown in Fige 6.4

and 8, the calculated potential values on the 26 epicardial
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segnents., TFrom the inverse solutions, epicardial isopotential
maps ware'reconsuructed using the smoothing technique described
in the previous chapter, except that here, the process is in

two dimensions. These maps are shown in Fig. 6.7. In order to
Aid interpretation of the epicardial poteantial maps, the various

regions of the heart surface as projected onto the c¢cylindrical

surface is shown in Fig. 6.8,

BASE BASE

Sy,

™~ LA/

RA
RV
LV RA

APEX APEX

Fig.6.8: Diagram illustrating the cylindrical

projection of the heart surface.
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6.4 Stability of Inverse Solution

Serious errors were observed in the inverée solution
when the validity of Equation 6.1 was first tested. This
was later discovered to be due to the iimited accuracies in
which the exact inverse of the matrix T 6anvbe computed., The
effect of the errors in the inversion is to cause large
oscillating values in the solution. This is clearly seen in
the listing of the inverse calculations in Appendix E.1.

This problem was overcome by using an iterative method
of solving the system equation. In an iterative scheme, the
solution is obtained by successive approximations which in
the limit approaches the exact solution. Such a process is
relatively unaffected by the machine resolution. Because of
the manner in which the system matrix is constructed, the
elements along the diagonal are either the largest or of the
samne order as the largest element in each row. This makes the
system equation directly amenable to the Gauss-Seidel iteration
previously described in Section 3.5. The solﬁtions obtained
using this method is given in Appendix E.Z2.

There remains however, the question of the magnification
of the percentage error exvected in the solution. 4&n eigenvalue
analysis showed that the system has a condition number of 2104,
In the worst case therefore, the percentage error in the solution
woﬁld be some 2000 x the percentage error in the data. Assuming
the magnitude of the surface potentials to be of the order of -
+1mV, then for a +10uV error in the measurements, the error in

the solution would therefore be some.ZOOO%. But as diséussed
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in the previous chapter, the magnification of the error in a
practical'system can be considerably less.

A nore useful test of the system stability is to perturb
~the surface data by some.noise and observe if the error in the
solution remains within an acceptable limit. The inverse
calculations in Appendix E.2 were repeated with 1OuV of noise
added to the surface data. This is shown in Appendix E.3.

An investigation of the inverse solutions showed that the noise
level is everywhere of the order of 100uV. Since the values of
the inverse solution are an order of magnitude larger than the
surface data, the percentage noise level therefore, has remain
virtually unchanged. In other words, there is virtually no
deterjioration in the signal-to~noise ratio in the calculated
epicardial potentials in spite of the fact that the system's

condition number in some 2000,
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6.5 Validity of the Inverse Calculations

The validity of the inverse calculations is somewvhat
impossible to verify without an accurate and complete picture of
the actual epicardial potentials of the same subject to compare
with. In-vivo epicardial measurements are beyond the scope of the
present study. And even then, it is uncertain whether the
epicardial distributions wouid remain unchanged in an open=-chest
experiment.

However, several research workers have previously ﬁapped the
epicardial potentials for the canine heart (Taccardi and Marchetti,
1965; Spach et al., 1975). Although the excitation of the canine
heart is known to differ from the human heart, nevertheless, there
exists a large degree of correspondence between them (Currer et al.
1965). A rough estimate of the validity of the inverse solution
can therefore be obtained by comparing the reconstfucted epicardial
nmaps with published maps of the canine heart.

One such experiment was conducted by Taccardi and Marchetti
(1965) in which an isolated dog's heart was immersed in a Ringer's
bath. An exploring electrode was then rotated around the heart,
mapping the potentials on a cylindrical surface enclosing the
heart. Fig. 6.9 shows the canine maps redrawn from Taccardi at
four instances in the QRS c¢ycle corresponding approximately to
Frame number 81, 91, 101 and 121 of the calculated human epicardial
mapse

It should be noted that the dog's heart in the experiment was
suspended in an ﬁpright position with both atria superior to the

ventricles. Normally, the heart in the body lies on its side.
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The map of the various epicardial regions for the inverse
calculations is illustrated in Fig. 6.8. The map for the
¢ylindrical projection of the heart surface in the experiment is
shown in fig. 6.10. At the beginning of the QRS cycle, both sets
of maps show the presence of a potential maximﬁm directly over the
right ventricle and a minimum over the left ventricle. About half-
way between the Q-R interval, the potential maximum over the right
ventricle is replaced by a minimum in both maps. Another minimum
is found over the right atrium and a maximum over the left
ventricle. DBoth sets of maps agree very closely in these features.
At the instant of the R-peak, both maps show the rizght ventricle
and the right atrium to be negative while the left ventricle and
the left atrium to positive. However, the calculated map shows
two minimum, one over the right ventricle and the other over the
right atrium. This feature is also observed in the surface map.
The canine map on the other hand showed only one miunimum over the
right ventricle. This difference could be due to several factors
ranging from the electrophysiological difference between the human
and the canine heart to simply the fact that in the experiment, the
epicardial potentials were mapped ‘'remotely', resulting in the loss
of spatial resolution. The two maps agree once more at the end of
the QRS complex with a potential maximum appearing over the right
ventricle and a minimum over the left ventricle.

.These results are also in agreement with the findings of

Spach and Barr (1975).



Fig.6.9: Epicardial maps of the canine heart.

(Redrawn from Taccardi and Marchetti).

i P

RV LV
LV RY

APEX APEX

Fig.6.10: Conjectural diagram illustrating the projection

of the dog's heart onto the mapping cylinder.
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6.6 Conclusion

In this chapter, the transfer function between 26
vepicardial segments and 26 body surface locations was
calcﬁlated. Using this transfer relationship, epicardial
potentials were reconstructed from in-vivo surface ECG maps.
The validity of the inverse 6alculations was demonstrated
by comparing the reconstructéd epicardial maps with published

maps of the canine heart.
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CHAPTER 7

CONCLUSION

This dissertation is concerned with two fundamental
problems in electrocardiography, namely the forward problem

and the inverse problem.

Forward Solution

The forward problem was approéched using a digital computer
model of the human torso based on the numerical-analogue developed
in this study. Physically, the model can be thought of as an
assembly of discrete blocks of conductors. Each block is assumed
to”be homogeneous but not necessarily isotropic. In order to
represent the torso anatomy on the computer, each discrete blocki
is assigned an alpha~numeric character corresponding to the
electrical property cf that block. In this way, the entire.B-
dimensional torso structufe is represented as coded images in
the computer. The éotential at each node in the model is
calculated by the method of finite-differences. A set of linear
algebraic equationsrelating the potential at each node to the
potentials at neighbouring nodes is constructed using the general
finite-difference equation formula derived in this study. This
set of equations is then solved iteratively using the accelerated
Gauss-Seidel method. Because of the enormous number of eguations
involved, the convergence of the solution can be extremely slow

indeed. By using a coarser model to obtain an initial estimate
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of the solution and then improving the accuracy of this solution
on the finer model, the amount of computational time required to
‘achieve a solution is greatly reduced.

The vélidity of this model was demonstrated by comparing
simulated body-surface distributions due to a catheter located
inside the heart with those actually observed on cardiac-patients

with implanted pacemakers.

Inverse Solution

The inverse problem on the other hand, was approached by a
careful investigation of the factors that could lead to an
unstable solution. It was shown that the torso can be regarded
as a kind of spatial filter to the potential transfer from the
heart to the body surface. This filter is of a 'low~pass' nature.
Consequently, the spatial resolution of the cardiac generators is
limited to the 'bandwidth' of this filter., To attempt to resolve
cardiac genérators outside this bandwith will only lead to
instability. A carefully chosen configuration of genefators will
therefore greatly increase the chances of a successful inverse
solution. It was also demonstrated thdt a well selected body-
surface locations for constructing the epicardial to body-surface
transfer matrix will enhance the stability of the inversion. The
optimum body sites being those where the contribution from each
generator is the maximum. The transfer matrix so constructed has
amongst the smallest condition number.

Other procedures proposed for improving the stability of the

inverse calculations included sPatial smoothing of the data before
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- inversion and using an iterative procedure to calculate the
inverse solution. Smoothing may be useful because the low-pass
characteristic of the torso means that in the inverse |
transformation the high frequency components are magnified in a
much greatef proportion than the low frequency ones. Consequently,
any high frequency noise in the data c0u1d be disproportionally
magnified rendering the solution totally useless. The limited
resolution of the computer word introduces a similar kind of
instability in direct inversion of the system matrix, Here, the
noise is a numerical one caused by rounding off during the -
computation. This problem is overcome by using an iterative
process to obtain the inverse solution vhere the stability of
the solution is relatively unaffected by the machine resolution.
Epicardial potential distributions at 2msec. intervals were
calculated from in-vivo body surfacé measurenents. The
reconstructed epicardial maps were shown to be grossly consistent
with those found in the literature. The stability of the inverse
solutions vas tested by adding random noise to the surface data.
The solutions showed virtually no deterioration in their signale-

to-noise ratios.

" In conclusion, this study has demonstrated the feasibiiity
of an unconstrained inverse solution based on recovering the

epicardial potentials.
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APPENDIX A
PROGRAM DESCRIPTION
A computer program for calculating volume-conductor fields

based on the numerical-analogue developed in Chapter 3 ias

described, The Program is organized into four phases as.follows:

PHASE1 - Unpacks the input data into coded cross-
sectional images.

PHASE2 ~ Generates the finite~difference nodes.

PHASE3 . Constructs the set of finite-~difference
equations.

PHASEL ~ Solves the set of equations iteratively

using the Gauss~Seidel method.
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Program Flow Diagrams

Read

command

Execute ?
PHASE1

Execute 3
FHASEZ

Execute
PHASEM

?

PHASE1

Reed model
dimension

Read one row
of packed data

Unpack data and
store on TAPE1

Print coded
irages

.L—Pnﬁiflj'

| PHASE2

PHASE}

PHASEY

Read data specifying
node-plane configu=~

ration

Read in
TAPE1 data

Scan code-planes
and label dodes

Store node-plane
on TAPE 2

Print
node-planc




( PHA@

Read data specifying:
» Sampling intervals
« Conductivity ratios

Read in TAPE1

and TAPE2 data

Construct finite=-
difference equation
for each node and
store on TAPZ3}

Any more
data
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PHASEL

Read data specifying:
« No. of equations

« Generator configu-
ration

Max. iteration
time and cycle

Reorganize TAPE3 data
for efficient itera-
tion. Reorganized
data stored on TAPE?

Initialize solution
vector

Estimate optimun
acceleration factor

Perform Gausg~Seidel
iterations

Calculate maximum

residule

Store solution
on TAPEL
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A.2 Program Listings
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50 70 1
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[
C WRITE UMFRCEED DATA OMTD TRFEL
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FEALIS, 10000 IF
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i
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IFILE FEAD INITIAL ZOLMTION YECTOR FROM TAFE4 IF IFILC 1
FAREAY IIII‘IEH TIon:

S HAME DIMENZTION
-0 « I20OcF CE s MELIFFD
IHOTGS. TCONT CHEBLUFFS
Hio0s 100 L=
MOLs IZCCE CHIGEMY
S SHEC .

COrMan H'DEE‘r‘ID”)’I'DCF(*'IRH\;IHDDE(IRO) 1EONT €1 o)
COMMOH ACD S » ICO 8D s HODCEED « ISOCE <28 » NODE(200)
COMMOM H ot n0on

9ET

C  FORMAT ZTATEMENMTE

[

1000 FDFHHTf‘rI

1010 FORMAT <
1020 FORMATC luF-

é04ﬂ
SN0
S

FORMAT 0
FORMAT L
FORMAT L7
FOSMAT 7

s ee9 /)

HEDOM =7+ 173
MREMH =< I7)
MAGHI TLLES
FORMAT S ITINE =315 ,; 5
FORMAT ¢ eI RESIDULE =7»E10,32
FORMAT ¢© NODE KUMEERS OF GEMERATORS: 7)
FORMAT {or” s+eee  END FHAZES ee+ess’ s /)

FEINT 200

[ =1 T LDHD\TI)
FEMIND 2

FESINDG 4

FEWIMD 7

C INITIALIZE “ALUES

Qo0

MELUFF=10D
HiM=0

IRE]

EF=1

READ IN DATA ETFECIFYING SEHERATOR CONFIGURATION



DG

IS

A0

LO N

ﬂERDI-chUO)HE@H
FrIHT S0L 0. HEDH

:_." 1IIIIH MSEM
‘H-dlEH

‘:"IH.
oo od H"l-HuEH .

FERD D G0 HOD CHDY

FREIMT 1000y HOD D

RLEHOO M+ F -1
PEHUtJ-lnnn--HDﬂCfIﬁ I=KFskKLD
FFRINT Q000 ¢HODECID s I=KFsKLD

V——lL+1
1 COMTIME
CEHD---IHHH--I QZECls s I= 1,HFEﬂ\
FRIMT 2030
FRINT lnuuka SOCECI) o I=1 s HGEMD

READ 1IN DATE TRECIFYING MAX. ITERATIOM TIME AMD CYCLE

FEAD S -;f”“l"ITIHE ITHAX
CPRINT 2040 ITIMES ITHMAK

. FEOFGAMIZE EQUATIONS OM TSFE3 FOR EFFICIENT ITERATIOM

[0 100 ME=1sMHEON
FERDI I 1010y INGs cICDCI s ACO{ID s [=1265D

EEMOYE EMJATIONS FOR HORES EELONGIMG TO SENERATORS

DG 10 E=1.FL ¥
10 IF{IMG.ER, HODEKX250 TO 100

COMPUTE nd. OF COEFFICIEMTS IN EQUATION

PO T=10
I 3 Y )
20 IFCICOCI) JHE. 0 KOUNT=KOUHT+1
f=r+1
INGHE (M =100
TCOMT oo =k CUNT

MORMALIZE CDEFFICIENTS

=0,
IO 0 I=1sKOUNT
D ERARIESAR A ER=T R B
[FRET CTID LT, L E-20060 TO S0
D7) 40 I=1,kKGUHT
40 ACOCI =RCCY T 22N
S0 DD A0 I=1.E00NT
CICCEFYIsMma=120010
S0 FCOEFCIsMa=Aal00I)

WRITE INTO A BELUFFER ARKAY

l

Qo0

e lwluly]

IF BUFFER FULL DUMP IMTO THRFE?

IFM.ME.MBUFF> 30 TO 100 )
WRITECT> INODEs ICOMY ICOEF s ACOEF
HLM=H0M
M=0

100 COMTIMUE
WRITE«T> IMODEs ICONT» ICOEF» RCOEF
HLIM =M+

INITIALIZE Z0LUTION YECTOR
IFCIFILE. hE.l)hD TO 105
FEARD (41 1 HED
FEAD T3 10300 (50l s I=1s HEQMD
30 70 119

105 DO 110 Is1sMHERN

Wil =0,
F=0
115 0 120 HM=1.13EH

Er=H0D i

00 130 MHi=1sKK

l=K+1
120 & CHODE CEX» =FLOAT CISOCE (KD

BESIN ITERATIONE
COMFUTE OFTIMUM RCCELERATION FACTOR

IT=ITHMAS-13 .
g a0 ITER=1sIT
150 FEHIHD v

H.:U

ME=MELFF
150 RERTITY INGDEs ICONTs ICOEFs ACOEF
HT=HT+MEUFF
IFHT. 5T, HHW‘HE HUM+MEBLFF-NT
-k ME

170 'G{TINHE
IFCABT 0 —M 0 IFLY ) 5T . HEM) ¥KH=AES (XX~
120 COMTINHUE
IE T, LT HUM 50 TO 160
S.HE.ITOG0 TO 200

KLIFLYS

LET



(e wlw]

(e wln]

ACCELERATED GRAUSE-ZEIDEL ITERATIONS

ITHAH=ITMR*-IT
0 250 ITER=1, ITMAX
FEINT«ITER
210 SEWMIMD 7
MT=n
ME=MEBUEF
220 FERD T INCOE ICONT s ICDEF: RCOEF
MT=HT+MELUFF
IF T GT . HUMY MESHUMEMERFF-NT
DO za40 k=1sME
‘rL IuUu K

oy Ipr+HrDEFrk,Jk>¢m<'z
230 nuIHH~

H-IFL'~ H+le¢x*fIFL\—f’)

240 CONTIMUE

IFMT, LT U500 TO 220
TECOMDCTEN

iFs T;-Tl.b:.FLDHTilTINE))hD TO
SE0 COMTIRUE

CDMPUTE fANIMIM RESIDULE

H~—VEUFF
270 RERLGT: IMODE, ICONT, ICOEF s ACOEF
HT=HT+MLSF
IFCHT AT HUMs ME=HUM+HMELFF - NT
Do ozen 4 1E
TFL=110DE CJKd
=TOOMT W

ICCEF <k

ARCOER

232 'DnTIN”t
SIFLY eR-

:k'a.JL)O [N

AR LT REBE (AR Y KEX=AES (¥X)
4= I DHTIH”:

IFCHT.LT.HUMSGO TO 270

n

[y}

(]

a0

END OF ITERATIONS
PRINT 2050 XK
STORE 3GLUTICH YECTOR ON TAPES

HMRITE <4 1000 NEGN

WEITE G4y 10300 GI{ID s I=1 . MNEQHD
300 PRINT 2000

RETURN

oI

8BET
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As3 Variable Name List

VARIABLE NAME

DESCRIPTION

Program
control KOMAND

Array containing execution sequencee.

NSLAB Number of slabs,
IBIT Y-dimension of sampling grid, .
PHASE1 JBIT X~dimension of sampling gride.
NUM Array of number of times a coding is repeated.
KODE Array containing the coding sequence,
Ir Qutput listings suppression indicator.
NONO No. of codings for which no equations are
generated. '
NENO No. of codings for which the nodes are labelled
with a negative sign to facilitate
PHASE2 identification of specific regionse.
NO Array containing codings for no equations.
NI Array containing codings for ~ve nodes. .
IP Output listings suppression indicator
STN Array of sampling ratios in the Z-direction,
STI Array of sampling ratios in the Y-direction.
STJ Array of sampling ratios in the X-direction.
PHASE? . . ’
NCODE Number of codings used.
ICODE Array containing the codings used,
SEG ' Array of conductivity ratios of the codings.
NEQN Number of equations generated. This is
specified from the output of PIASE2,
NGEN jumber of generators, Fach generator is made
PHASEL up of one or more nodes,
NOD Array containing the number of nodes for each
generator.
NODE Array containing the node numbers which

constitute the generators.
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ISOCE Array containing the generator strengths.
ITIHE Maximum iteration time in seconds.

PHASEL ITMAX Haximum iteration cycle,
IFILE Indicator to read in the initial solution

vector from previous TAPEL4,
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At Data Format

CARD STRUCTURE FORMAT

Program AN AN - . '

control KOMAND(1) KOMAND(2) ; 2000+ KOMAND(10) 10(4A6,1X)
NSLAB,IBIT,JBIT | _ 315
NUM(1),KODE(1) 360... NUNM(20),KODE{20) 20(I2,A1)

PHASE1 . (NSLAB x IBIT) sets .
NUM(1) ,ZODE(1) y o a0 e WNUM(20),KODE(20) .
Ip ) 15
NONO, NENO 215
HO(1) ,H0(2) y 00 es. NO(NONO) LO(A1,1X)

; a

PHASE2 NE(1) ,NE(2) yee... NE(NENO) 5O(A1, 1X)
Ip 15
STH(1),8TN(2)yeeees STH(NSLAB) 20Fk .1
STI(1),5TI(2) -« STI(IBIT) 20Fk .1
STI(1),873(2) yecess STI(IBIT) 20%4 .1

PHASE3 NCODE 5
ICODE,SEG(1),SEG(2) 3e00as SEG(S5) A1,4X,575,.2
. NCODE sets .
ICODE,SEG(1),SEG(2)y4ee.s SEG(5) :
NEQN 15
NGEN 15
NOD I5
NODE(1) ,NODE(2) 4+ +.. NODE(NOD) 1615
. NGEN sets .

PHASEY : : :
NOD .
HNODE(1) ,NODE(2) yees+. NODE(NOD) *
ISOCE(1),ISOCE(2)yeeee. ISOCE(NGEN) 1615
ITIHE, ITHAX 215
IFILE

5




A.5 Sample Problenm

The following example illustrates the application of the
computer program for calculating the potential distribution
due to a dipole source located in the centre of a conducting
sphere which is embedded inside a solid c¢ylinder. The
conductivity of the sphere is three times greater than that
of the cylinder. Tig. A.l sﬁows the manner in which the

conductor is digitized.

//\ ‘“f’“z

\ — 3 / \
/ — 4 '
. S 5 B
6 \ /
/ N /
N ~ /|
\\\\h‘<,f///

Fig.A.1: Discretization of the volume-conductor.

What follows illustrates the input data structure and

outputs from the program.
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tr000 EVETUTE FHATEY  +saee

3

CARTE 1 FHATELPHATEZ HILARE = & IBRIT = 12 JBIT = i
CRETE 2 A 12 12
Chrrl 2 1z
CRA&D 4 4 T 4 TLAR MUMFEP 1
CAmD S 2 2
CRel A z 4
CarDh 7 . 1
LAarD 2 1 1
CArD 1 ol |
CA®D 10 1 1
CTARD 11 2 3% 2
Casn 12 2 3y e
TARD 12 4 43 4
CArRD 14 12
CAFD LS 12
CAaRD 1o 4 4% 4 .
CAFD 17 2 zs 2
CAFD B 2 B8% ¢
DS (N &) 1 103 ¢t
CRRD 20 1 4% 2M 48 2
CHED 217 1 4% 21 43 ¢
CRPDr 22 1 1631
CA=D 3 2 32

BUNES S 2 2% 2

w0 2% 4 4% 4
TREDR 2A 12
CARD 27 2
CAFD 22 4 42 o
CARD 29 2 &% 2
TRET XD 2 ;2
CRRD 21 1 EM 4%
CA%D 32 1 4M 35 1
CHFD 33 1 32 41 35 i
CAFD 24 1 3% 2M 435 1
CARD 3% 2 a5 2
CAFD 35 2 3% 2 3
oA 27 4 4% 4

——

PN NN
LN TN
- e

3

LR
as 2
2 2
48 4

TO MO £ TUTY w= s e g () TY o [0 MO

——
-

SLAR MUMEER 4

n.
La YD

-

4 3
2 s
2 &y
- 1 B
=13 1 43 1
a7 t 4% = 1
CRED 53 1 1035 1
CRED 59 2 aF &
CHED &0 2 8’% 2
DRSS US| 4 4% 4
CRED A2 12 °
CHED &3 12
VAT £4 4 4% 4
CARD AS 2 av e
CARD Ak 2 3%'e
CAFD AT 1 193 1
CARD &5 it tos 1 5
CARD &9 1 105t
CARD TR 1 145 ¢t
CHRFPD SR 8’32
CAR 2 882 33
4 43 4 32
p=3 IS

—

—
—
) 17 5 Ly

M

e It It I R IV IR B Rt S O s s 1Y

LU N DA L LY T e
~
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TLAE MIMEEP )

or

fn i 0
n oD
f £ 0 0
1l ? 202 060
il ] 2]
2 200 o
n 0 0
&7 210 20z
0 1] - n 1}
00 Zar R4 ET4 211 204
ki a 0 ~-n n 0
s+ 0s  EHT PHASEL  s+24e 01 E2ay 2T 212 205
) n X -1 o 0
0z = Z7A ze2 212 e2ns
] 1] 0 -n ] 0
3T e 27V &k Z&T 214 207
0000 EUECUTE PHRTEZ ++ses [ 0 f 1] a 1] Qa
N z2a? 2 2R7 234 215 0
] ¥ ] ] 1} 0
HOHO = 1 HEMOQ = 1 2l 2 28T 218 h]
HOCD = - 0 0 0 0 0
HE<Id) =M ] e i3 0 0
o [ 0 0 0 0 0 0 0 0 [ ] 0
0 noed 57 45 35 24 o ft 0 ft [ 1]
Q 0 0 0 0 0 a 0 0 n [ 0 o
3 T oeB SRO47 24 2519 ) a 312 202 0
0 0 n 0 n 0 0 0 0 0 o 0 0
0 @3 30 T0O99 942 37 25 1A 7 0 1% 210 0
0 0 0 ] 0 ] 0 a s 0 ] 1} 0 n
370 21 F1 OE0 4% 327 17 3 1 FE0 1L 204
n n L n n 0 ¢ 0 f 0 { o n 0
33 31 &2 s vl =0 2% 2R i ) & FE1 312 303
0 0 0 N 0 0 o 0 ] ] " 0 b}
A Gz 22 TR OBsg 51 40 @R 210 3 FES 212 308
0 n [ 0 0 f n n [ b [ 0 nooo
1o 9232 R4 T4 83 OS2 41 30 20 11t 3 2E3 319 307
0 0 b 0 i o 0 n 0 0 0 0 0 o
101 3¢ 35 75 44 S3 42 21 &1 ey S JERE NS BRI
[ 0 0 I} 0 0 o 0 (] 0 0 0 n 0
¢ 33 28 To K5 S4 43 22 22 13 JES 25 n
n it 0 0 0 D ] Q 0 0 0 1 9 0
0 %n 37 77 en 25 44 33 23 14 0 D 317 0
n u 0 n n 0 ( o 0 0 0 [l 0 1}
] 0 DT AT SA 4% 34 0 0 0 0 0 0
¢ a i} 0 n 0 0 g [ 0 0 0 0 0 0 0 ] 0 0 0 1] 0
[} 0 0182 192 147 136 129 3 0 a [\ 0 AT 4AL 49D 423 422 0 f 0
i n a 0 0 0 0 0 N Q n 0 0 0 0 a Q 0 Q 0 0
0132 130 t7) 19% 142 127 1235 1'% 107 0 [ AT 4R 451 440 437 419 W10 o
0 0 a 0 f 0 ] 0 [ Q fy ] 0 0 0 0 a 0 0 ] 0
0 tan 181 171 180 14% 132 137 117 193 a 0ogaz 474 3D 453 a4 470 420 S11 0
a O n 0 0 0 n i (] 0 n 0 0 L B =0 =a =q 0 [ 0 0
192 131 122 172 141 150 139 122 113 103 102 ST 43t Q5T 4TS g a2 442 471 421 412 405
0 0 0 [ I (R ] a N ul i a - =~ =N =0 =N 0 ] 3]
Pa% 122 1232 173 142 191 140 122 113 110 V0% SNZ $ES ATE AT 459 443 432 482 413 A0
0 0 U U 0 0 D Q [y 0 - =0 =) =) -0 0 [ Q
200 193 183 174 183 152 140 120 120 111 10 S03 b33 BET ATT ann J4SS Jd44 4R 4233 414 407
n il ] noo=f ~0 =0 n [} 0 0 0 n 0
201 154 18% 179 184 153 148 121 181 112 0% 4 415 9402
0 0 0 0 a 0 a 0 n a i} 0 0
202 195 18 178 16S 199 1a% 132 132 112 10 L5
0 0 0 i (] 0 ] n 0 Q a. f 0
0135 137 177 145 199 194 133 323 114 0 417 0
0 [ [ 0 2 0 n 0 o 0 \ N 0
B O13F 133 1TE AaT 194 145 131 184 (1S Y 413 [\]
0 Q 0 1 fi Al n 0 @ i ] n n
0 D17 183 157 146 133 0 [i] 0 n n
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APPENDIX B

TABLE OF BODY TISSUL RESISTIVITIES*

Mean resistivity in Ohm-Cm.

TISSUE Kaufman Burger Schwan Burger Rush
and and and and Abildskow
Johnston {van Milaan Kay van Dongen and

MeFee
Blood 208 160 100 160 162
Liver 506 840 700
Lung 744 1120 2100
Fat 2060 15005000 2500
Heart 216 965 563high

2521ovw
Skeletal L70nigh 675high | 2500high
muscle 2301ow 24Slow 1501 0w
Human b1s Le3
trunk

* Table taken from Rush et al. (1963).
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APPENDIX C

COMPUTER DATA OF THE DISCRETE TORSO HMODELS
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Data for the Irregularly Digitized Torse
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APPENDIX D

POTENTIAIL, CONTRIBUTIONS IFROM FACH EPICARDIAL SEGMENT
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APPENDIX E

FPICARDIAL POTENTIALS CALCULATED FROM

IN~VIVO BODY~SURFACE MEASUREMENTS
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Solutions by Direct Matrix Inversion
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EPICARDI&L POTENTIALS

-22 -22
218 -0
°162 7
L7 ) 2

6 6

B300Y-SURTAGE POTENTIALS

] 9
-4 ~13
51 +8

1¢3 59
27 27
ZPICARDIAL
L7 47
fSw -1
16 9
25 4
11 11

-22 =22

-171 298

3 -36

- 34

6 6
FRAYE 31

g 0

-8 0

64 12

B4 88

27 27
SOTENTIALS
47 47
=178 77

45 13

-11 156

14 11

(NICROVOLTS)

12
10

10

12

25

32

13

12

32

(10 HICROVILTS)

-2z -22 -2t
-173 .-ax 393
=577 634 =1045

52 -195 293
6 6 6
{NICROVOLTS)

3 o G
2 2 i
30 5o 32
30 57 62
27 21 27

(10 MICROVOLTS)

47
228
-6b72
-126

11

47 47
-597 641
1956 -422%
175 426

11 11



10
IR

88

53

430
—;ﬁﬁ
435
-201

21

12
1€
55
66

50

47
~1935
628
-278

25

10

=51

9y

11

53

10

-117

FRAME 41

10

-53

B00Y~-SURTACE POTENTIALS

10

53

EPICARDIAL POTENTIALS

430

-432

146

-3

21

BODY-SURTACE POTENTIALS

430

=35

12 12
-111 -1%6
0 10

67 74
56 50
EPICARDIAL
447 447
-169 =49
27 53
3L -6
25 ‘ 28

430 430
-616 166
11 13
-9 g2
21 21
FRAPE 51

12

-€6

5V

92

50

iz

b ¥:]

55

75

50

POTENTIALS

Hu7

447

554

-133

=133

164

(MICROVOLTS)

10 10
“1a 22
60 7h
62 137
53 53

10

60

pXVRA

53

{1t MICRAOVILTS)

430 430 430

-665 269 -123

32% 289 =584

~324 253 210
21 21 21
(4ICROVOLTS)
12 12 32
20 25 -30
69 76 L 23
72 100 80
59 53

(16 HICROVILTS)

447 447
-749 2
63 935
4L =677
25 25

L1'Y4

659

~918

19

25

13

38

10

22

194

~1908

376

-216

20

20

22

-1332

205

~119

B20Y~SURTACS POTENTIALS

13 13
~53 -33
-8 =27

18 27

22 22

EPICARDIAL
106 4il4
226 2

«113 11

55 -5

20 20

BODY-SURTACE POCTENTIALS

8 ]
-25 =2
-32  -36

-3 2

2 0

EPICARDIAL
-35 =35
257 ty
-118 -3
39 g
120 L2

FRAVE 61

13 13
-32 8
44 12
&4 49
22 22
POTENTIALS
iCa 124
“461 w34
79 ~100
g -125
238 29
FRAME 71

8 8

-6 8

22 -30

8 -16

0 0
POTENT IALS
-35 =35
-283 723
4o 336

-8 6
12 12

(MICROV3ILTYS)

13

33

N
(L]

i3

30

61

NN

22

13

-8

33

27

22

(10 HICRQVOLTS)

104

~441

33

412

29,

194

71

405

-537

20

1cn

755

-372 -

232

20

tMICROVOLTS)

3

8

13

(10 HICRO/JILTS)

-35

-477

315

-165

12

-35

299

-229

227

12

=35



4 ) 4 4 4
e 0 53 76 32
27 -30 -0 74 -13
-27 =13 ¢ 3 -33
2 -2 ez =2 =2
EPICAROIAL POTENTIALS
-223 =223 ~-223 =223 -223
-1082 406 18 - 108 651
37 -158 16 7 -117
-8 54 15 1 ~2u4
18 16 18 18 18
FRAME 91
BODY-SUPTACE POTENTIALS
“62 =62 =32 =62 -62
=130 ~278 =431 ~148 257
-27 -146 -4 592 3by
38 38 2214 481 447
68 88 38 88 83
EPICARPOIAL POTENTIALS
1212 1212 1212 1212 1212
-246 -1320 57 -3827
871 306 9 726 -1562
-950 137 16 =13 =342
243 263 293 243 243

BOOY-SURTACE POTENTIALS

FRAME "85

1685

{MICROVOLTS)
4 6. 4
0 10 -38
0 =10 -2
-33 -6 =6
-2 -2 =2
(1{ MICROALTS)
-223 =223 ~-223
-412 382 514
262 -23% =80
334 =307 114
18 18 18
(wICRQVOLTS)
-62 =62 =62
130 -12% =223
271 53 =50
274 173 36
33 88 88

{10 MICROVILTS)

1212

3119

in42

243

=247

1212 1212

4327 -1882 -1004 -1

1931

243

66

5119
995
3952
-452¢

274

106
115
153
125

103

1836
-2299
1799
11693

=15

RIDY~SURTACL POTINTIALS

66

-776 -1831 ~1689

36

=270 -425°0
125 =12
300 330

EPICARDIAL POTENTIALS

5119

-2143

311

471

274

800Y-SURTACE POTENTIALS

24

103

EPICARDISL FOTENTIALS

1636

-1238

-15.

5113

FRAVE 101

66 66 65

521 Gay
164 1724 793
687 L3 774
300 327 3t

5119 5119 5119

$18=17499 22154-43779

-28

=257

274

116

-613

=655

-139

113

2382-11499 12031

27 1654 614
274 274 274
FRA¥E 111

10€ 106 1805
-630 55 167
-301 139 209

0 157 167

143 1e3 103

{MICROVILTS)
66 66
132 =110
434 174
602 324
33¢ 3NN

(L0 MICROVOLTS)

5119 5119

;713 -603%

=290 2980

-2683 1646
274y 274

(MICROVOLTS)

10e 106
211t 92
235 182
209 157
103 193

(10 MICROYOLTS)

1875 1326 1836 1836 1836 1336
79--5034 6371 -%5275 390+ -19¢¢
22 596 =2718 4184 -2044 2522

=134 1€ 322 -667 915 =312

-{5 ~15 -~15 -15 ~-15

-15



25

33

-348
-2396

140

11

-8

-~12

=705
-334(
73

79

BOOY=-SURTACE POTENTIALS

4 4
-13 35
-24 0

-3 3¢
6 6

EPICARDIAL

~348 =348
Tht =12
-266 =7

69 25
11 11

BODY-SURTACE POTENTIALS

-8 -8
2 135
-16 33
~18 36
-12  -12
EPICAROI;L
~705 =735
itge  -33
-377 -2
77 43

8 8

FRANME 121

oo
150 61
9y -13

8 -8

6 6
POTENTIALS
-348 =348
629 48
-5, a7

2 -183

11 u
FRAME 131

-8 -3
260 38
135 -u6
-16 =32
-12  -12

POTENTIALS

-705 =705
1495 -334
-164 700
5 -374
) 8

1686

(MICROVOLTS)

4 y 4 -25
13 8 .-16 -8
-9 -12 30 ~15

-36 12 ¢ Ny

6 6 .6 -13

(17 MICROYILTS)

=348 =348 =348 -813
215 =29% 1316 ~268¢%
115 ~-408 156 ~92

77 109 =111 141
11 11 i1 24
{NICROVILTS)

-3 -3 -8 . ~-30
-4 =16 -33 ~27
-33 «33 -10 22
-72 -2% =30 -4
-12 ~12 ~12 ~-10

(10 MICROVILTYS)

=705 -705 =-705 -866
1261 -129% 2503 4419
~-109S 717 -11A5 175
Szr -561 266 3

3 ] 8 2

FRAME 14L

300Y-SURTACZ POTENTIALS {HICROYOLTS)

-25 =25
24 216
-22 1\r
-12 51
-13 -13
EPICARDIAL
-813 -8Ll3
1144 =26
~344 ~t2
63 53
2h 24

B0DY-SURTACE POTENTIALS

-39 -3g
-25  zit
-3z 138
-12 30
-10 -10

LPICARDIAL

-366 -356
1464 =53

452 4
107 31

RO 1Y

-25 -25
301 53
176 =33
8 -20
-:3 -13
POTENTIALS
-823 -913
1763 -1361
~178 807
3 ~u0t
24 24
FRAME 151

~-30 -30
346 6%
235 -10

24 -27
~10 ~10

POTENTIALS

=866 =~-866
1882 -1321
=189 1243

9 -66%

30 30

-25 =25 25

=10 =53 -41

{10 MICROVOLTS)

-813 -813 =813
1755 -2053 2711
-1304 1277 -15%;
528 727 359

24 2h 24

{HICROVOLTS)

-30  -30 -39
-18  -62 =55
-32  -33 =30
51 =22 -4
-16  -10  -10
(18 MICROVSLTS)
-866 =865 =965
2054 -2663 3315

-2525 2430 -2575
1295 «1618 765

kP 30 30



BODY-SURTACE POTENTIALS -

~33 -38 -38
-16 -6 219
=33 -438 1%%
=48 =13 L5
-6 -6 -€
EPICARDIAL

=975 =975 =975
-5479 1552 -4
278 =515 11

18 129 74

49 49 +9

BODY~-SURZACE PCTENTIALS

-53  -53 =32
-7% =96 220
-6t -87 211
~60 -38 136
-8 -8 -8

EPIZARDIAL

-1137 -1137 -1137

-7089

2031 =35
483 =658 18
-1y 186 37

76 76 76

FRAFME 161

16%

{MICROVOLTS)
~38 =38 =35 <-33 -38
419 98 10 <Te  -82
315 16 -4 -32 =38
51 0 -41 =13 =50
-6 . -6 <b =B  =b
POTENTIALS (10 MICROYOLTS)
-975 =975 =975 =975 =975
2174 ~1373 2593 -35756 A5z
-201 1408 -2516 3013 -3250
11 -804 1560 -2066 982
49 49 49 43 49
FRAKE 171
(MICROVOLTS)
=53 ~53 =53 =53 =53
536 150 12 =107 ~12b
447 68 10 =48 =72
104 55 =16 =16 67
-8 -8 -3 -8 -3
POTENTIALS (10 MICROVOLTS)
~1137 «1137 = 1137 ~1137 ~1137
2452 1173 2637 -4343 5935
-195 1285 =2559 3617 -4173
9 <371 1366 -265¢ 1349
76 16 76

7€ 76

=132

-104

=13¢4

-7937

S2v

~196

~1086

-189

=130

-1394

~9435

723

=400

182

FRAME 181

BODY-SURTACE POTENTIALS

-30 ~30 -84 -30
-138 217 687 212
-124 240 628 117

-72 132 178 51

=13 -13 =13 -13

EPICARDIAL POTENTIALS

=1304% -1304 -1204 -1304

2256 =123 2943 -1462

-731 L7 -255 1923

230 128 13 -1369

132 132 132 132
FRAFE 191

BOOY-SURTACE POTENTIALS

-106 =136 =106 =106
-207 139 837 298
-162 251 787 198
-7 234 274 13y

-6 -6 -6 -6

EPICARDIAL POTENTIALS

-1394 =1334 -1394 -1374

2545 -4534 3325 -1073

=846 29 =204 1762
294 149 19 -1539
132 182 132

182

(4ICROVOLTS)
-83 =80 -80
22 =160 =196
13 =72 =~114
-3 -27 -32
-13 -13 =13

(10 HICROYOLTS)

-1334 1304 =130
3313 -5184 994
-3637 4975 -5174
2607 -3814 1787
132 132 132
{HICROVOLTS)
-106 =166 ~106
4o =212 -245
67 © =76 ~135
51 -~12  ~-103
-6 -6 -6

(L HICROVOLYS)

~1394 ~1394% ~1394

35302 ~6098 8125
-3147 5756 =-5863
Ju33 ~4820 2245
182 182 182



E.2 Solutions by Iterative Inversion

FRANE 1 ' : FRANE 21
BOOY-SURTACE POTENTIALS  (MICROVOLTS) ' 300Y-SURTACE POTENTIALS  ('lICROVOLTS)

s 6 3 6 3 6 6 6 ' 12 12 1z 4z 12 12 iz 12
13 -24 ¢ -4 4 b 13 -12 20 -2 -6 2 & 10 25 4
-2 0 -8 -4 -6 36 24 4 24 4 =12 &0 4 10 32 8

12 -6 -4 12 16 -6 2 33 17 25 6 2r 12 i 13 32

0 0 8 - 0 ) 0 0 s 8 8 3 8 3 8 3

EPICAROIAL POTENTIALS (17 HICROVOLTS) EPICARDIAL POTENTIALS (10 MICROVOLTS)
3 33 3 3 3 3 3 5 5 5 5 5 5 5 5
-59 -0 -1 -8 8 s 15 13 -3 -7 -2 -3 -0 5 23 1
-1z -2 -2 -2 <7 133 48 8 .22 -7 1 9 12 3 e -3
-9 -6 -4 =5 5 4 -6 -19 -3 -17 1 23 z -2 -3 -1
1 1 L 1 1 1 1 1 9 9 9 9 9 9 9 9

FRAME 11 ' ‘ ' FRAME 31

BODY-SURTAGE POTENTIALS  (NICROYOLTS) 800Y-SUPTAGE POTENTIALS  (MICROVOLTS)
12 12 1z 12 1z 12 12 12 9 0 0 0 ) 0 3 0
25  -10 0 6 10 18 25 12 38 -4 -13 -8 0 2 2 4
6 to 2 16 2 20 3 6 51 51 48 es 12 30 50 30

t 1) -s 13 6 -8 16 43 7 4¢3 39 64 88 30 57 62

8 s s s s 8 s 8 27 271 “27 27 2r 2r 2t 27
EPICAROIAL POTENTIALS  (4( HICROVOL;S) ZPICARDIIL POTENTIALS (13 MIGRO/OLTS)

6 6 3 6 6 6 6 6 5 =5 5 <5 25 a3 <5 5

-29 4 1 -3 16 14 27 23 -33 si7 -7 29 =33 -1s  -1u 7

-0 1 2 3 7 60 70 2 12 5 e 10 2 41 65 25

-4 -3 1 7 -7 ~1n -5 -11 _ 63 13 it 29 22 27 9 3

5 5 5 5 5 5 5 5 V21 200 24 24 21 21 2t 2



10

45

ag

1iv

53

-2

-157

-18

92

29

12

16

55

66

50

-296

-108

24

169

FRAPE L1

BORY=SURTACE POTENTIALS
10 i0 10 10 12 12

-£1 -137 =53 % 10 22
94 30 85 51 64 74
110 136 92 83 62 107

53 53 53 S3 53 53

EPICARDIAL POTENTIALS

-0 -0 -a -Q -0 -0
~92 -39 =120 =35 -9 3
=14 =3 2 -0 130 10t

28 27 39 29 27 44

29 29 29 29 29 29

FRAFE S8

BODY-SURTAGE POTENTIALS

12 12 12 12 2 12
-111 -146 -66 18 20 25
0 16 57 55 69 76

67 74 92 76 712 100

50 30 50 50 50 S0

EPICARDIAL POTENTIALS

b 1 1 1 1 b
~12t =50 =139 5 n 11
) -21 -7 -4 133 114

~16 2 20 39 40 56 .

2h 4 24 24 24 24

(MICROVOLTS)

i

53

(16 HICROVILTS)

-0

i1

86

k1]

29

(4ICROYOLTS)

12
-30
41
80
59

(10 HICROVILTS)

50

38

24

13

22

13

FRANE 61

B3OY-SURTACE POTENTIALS (4ICROVILTS)

i3 13 13 i3 i3 13 13
.53 =33 -32 8 3 30 -8
-i8 =27 Wy 12 33 44 §$

18 27 44, 40 13 44 27

22 22 22 22 22 22 22

EPICARDIAL POTENTIALS (10 MICROYOLTS)

5 5 5 5 5 s 5
~3 -1 =69 =2 2 2 16
-2t -3 6 -6 83 62 55
-33 -5 21 3 1 6 ~16

13 L3 13 13 13 13 13

FRAVE 74

BODY=-SURTACE POTENTIALS {AICROVIOLTS)

8 8 8 8 8 8 8
-25 -2 <6 8 0 18 0
-1z -6 22 -3 2 12 13
-3 2 5 -16 =27 2 )
0 [ 0 0 0 0 a

EPICARDIVL POTENTIALS (10 MICROYVILTS)

I 4 4 4 4 4 . I
-2 -2 -14 12 1 17 16
-12 -3 3 -1 -9 16 25



7
=27

-2

=0

-4¢

13

-62
-130
=27
38

38

-83
-870
47t
-334

181

800Y-SURTACE POTENTIALS

4 4
0 53
-3¢ -0
-13 29
-2 .2
EPICAROIAL
-0 -0
37 27

9 22
-2C 8
13 13

B0DY~SURTACE POTENTIALS

-62 =32
-278 =431
~146 -4
38 221
s 38
EPICARDIAL
-33 83
~436 =136
“184 =31
-177 40
181 191

FRAME 81

4

32

POTENT IALS

-0

%6

73

=76

13

FRAME 91

=62

257

bigd

W47

88

POTENTIALS

-83

343

345

218

170

(MICROVOLTS)

4 " 4

g 10 ~38

-2 =2 -2

{10 MICROVOLTS)
-0 -0 -0
-7 t -

~50 =86 =40

13 13 13

{MICROVOLTS)

-62 -62 ~62

139 -124 -223

271 50 ~50

27h 178 35

33 88 88

(10 MICROVOLTS)
-83 ~83 -83

-96 -294 -323
405 =239 -607

35 =105 ~346

1314 ia1 131

200Y-SURFAGE PCTENTIALS (4ISROVOLTS)

66 56

-776 -1831 ~1689

~Z70 ~425¢
125 =12
300 33¢
EPICARDIAL
9 9
-1462 =836
-932 =535
-1026 -w22

138 138

BODY-SURTACE POTENTIALS

106 136
-27¢ -6:8
-85 «655
2t ~139
103 133
EPICAROIAL
31 3t
454 =270
=261 -257
-419 =243

=54 =34

POTENTIALS

66 66 66
48y 132 =148
793 484 171

771 602 324

(10 HICRONILTS)
9 9 9

226 &7 -138
2655 763 1CW -
847 570 85

133 133 133

(HICROVOLTS)

106 106 106
187 214 92
219 235 132

167 209 167

{10 MICROVOLTS)
81 81 81

296 300 220

104y 643 633

371 356 296



25

36

-2

-8

-1C

-17

-8

26

B0DY-SURTACE POTENTIALS

4 4
~-18 3%
=24 0

-8 3C

6 6

EPICARDIAL
-1 -1
61 50
21 39

~14 16
15 15

BODY-SURTACE POTENTIALS

-8 -8
2 135
-16 83
-18 35
-12 -2
EPICARCIAL
-10 -9
137 37
740 30
50 49

20 20

FRAME 128

4

150

9%

I

41

~18

-3

POTENT IALS

-1 -1

2ee 78
63 127
Y 1
15 15

FRAYE 131

-3 -8
260 38
135 -us
-16 =22
-12 12

POTENTIALS
-16 10
%67 B2
103 183

95 -126
20 20

171

{HICROVOLTS)
I 4 4
13 8 =16

-8 =12 30

(12 MICROVOLTS)

-1 -1 -1

(MICROVOLTS)
-8 -8 -8

-4 ~16 =33

-33 -33 -10

-12 -12 ~12

(16 MICROVOLTS)

-10 -10 -10

-22 =35 -25
-211 =110 =79
=125 -~104 -97

249 20 20

-8

=16

=il

-3

=27

22

FRAKE gLy

BOOY=-SURTACE POTENTIALS {MICROVILTS)

=25 =25 =25 ~-25 -25 =25 -25

24 206 301 53 ~10 =53 =4y

-22 117 178 =33 .25 ~38 =24
-12 51 8. =20 =80 =30 =hB
-13  -13 =13 -13 =13 ~13  -13

EPICARDIAL POTENTIALS (10 MICROVILTS)

-24 =24 =24 -24 =24 =24 =24

149 139 536 81 =45 -9 ~57

87 35 124 232 =223 -144

52 33 118 ~-433 -~153 -138 -129

31 3t 31 31 31 31 31

FRAME 151
300Y-SURTACE POTENTIALS (NICROVOLTS)
-3 1 -38 -2G - -30 -3¢

-~25 201 346 60 -18 -b62 -55
~32 138 235 =16 =32 =33 -3l

-12 30 24 -27 -5

-
U
n
~n
1
L ad
3

-10 -t0 ~10 -10 -19 -190 -10

EFICARDIAL POTENTIALS {19 HICROVOLTS)

-30 -30 -30 =30 =30 =30 =30
143 117 609 76 =62 -110 =87
89 118 149 287 =294 =156 =196
§5 77 1S54 =155 -171 =142 -156

e a4 Hy bt Ly L AN

-147



BODY=SURFACE POTENTIALS

-38 =38
=46 219
-48 174
-18 115
-6 -6
EPICARDIAL
-39 -39
143 133
98 131
63 37
62 52

BOOY-SURFACE POTENTIALS

-53 =33
-36 220
-67 231
-38 146
-8 -8
EPICARDIAL
-57 =37
L 137
163 152
53 421
93 13

FRAME 161

-38 -38
419 98
315 16
51 0
-6 -6
POTENTIALS
-39 -39
T733 140
187 3818
202 -161
62 62
FRAME 171

-83 53
536 150
47 ue
101 55
-8 -3
POTENTIALS
“57 =57
926 219
248 519
280 -176
93 933

172

{MICROVOLTS)
-38 =33 -38
10 =76 =82
-4 =32 =38
-41 =13 =50
-6 b =6

(13 MICROYOLTS)

-39 =33 -39

-64 =141 =102

-251 =186 =265

-192 =170 =202
62 62 62
{HICROVOLTS)

-53 -53 =53
12 -137 -124
10 43 72

-16  -15 =67
-3 -8

-8

(10 MICRO/OLTS)

-57

=35

=310

-214

23

=57

-204

-273

=224

93

-57

-188

=437

-289

3

-132

-103

=106

-189

- 130

=101

-6

-111
-700

~117

-273

ECOY-SURFACE POTENTIALS

~-80 -39
-135 217
“124 230

-7z 182

-13 -3
EPICARDIAL

-84 -3%

127 136

106 232

38 153

136 136

B0DY-SURFACE POTENTIALS

-106 -136
~207 139
-162 251
-74 234
-6 -6
EPICARDIAL
-1l -i1
92 208’
90 233

5 172
179 179

FRAME 131

-80 =80
687 212
628 117
178 51
-13  -13

POTENT IALS
-84 -84

1177 301
329 714
385 -244
135 136

FRAFE 191

-10¢ -106
837 298
787 198
271 134
-6 =5

POTENTIALS

-111 -111
124 by3
405 919
4?2 =232
179 179

(HICROVOLTS)'_
-81 -89 -3
22 ~160 ~196
13 =72 =1itd
-3 -27 -9z
-13 -13 ~-13

(1C MICRO/OLTS)

-84 -84 -84
-138 =302 -29%
-458 =412 =663 -
-325 =318 427
136 136 136
(MICROVOLTS)
-16a ~126 =176
40 =212 -245
67 =75 =135
51 ~-12 =103
-6 -6 -6

(10 MICROVOLTS)

-111
-175
-u&u
-337

1793

-111

-339

=503

-363

179

-111

=41t



173

Es.3 Solutions from Perturbed Data

FRAME L . . FRAKE 21

. BODY-SURACE POTENTIALS  (MICROVOLTS) . BODY-SURTACE POTENTIALS  (SIGROVOLTS)
-2 =2 «2 =2 =2 =2 ez a2 : 2 2 2 2 2 2 2
9 =28 9 -3 2 9 1 -6 13 =36 14 8 -1 132 -4
-1 =5 =15 3 -0 26 18 10 32 4 .19 37 1 7 33 2
-15 L e 20 24 -7 a1 35 15 17 6 22, 33 -7 3 éq
4 4 4 4 4 4 4 4 6 5 6 6 6 6 6 6

EPICARDIAL POTENTIALS (4 HICROVILIS) EPICARDIAL POTENTIALS (10 MICROVOLTS)
2 =2 2 =2 =2 =2 =2 =2 -q -0 -9 -0 -0 -8 =0 -0
-73 6 8 -9 0 2 9 1. —ar -13 -h ‘-s -19 -3 31 9
17 -2 -t =0 -5 89 3 17 S30 =11 -0 8 4 =5 83 =17
-9 -1h 6 -2 8 1 -1 =30 -18  -23 -2 20 8 =7 -2 ¢
" 4 4 4 4 4 4 A 9 9 9 9 9 9 9 3

FRAME 11 : o " FRARE 3t
BODY~SURTACE POTENTIALS QHICRUVULTS) BODY-SURTACE POTENTIALS (MICROVOLTS)Y

9 9 9 9 9 9 9 9 , -2 -2 -2 =2 =2 =2 =2 -2
16 -0 8 2 18 21 22 18 3 1 -5 -14 6 -2 -1 0
23 bt 13 2 16 &2 7 S, 56 36 63 i1 35 4)  2A
3 3 -3 25 12 ~17 10 44 55 98 76 6s 91 26 64 70
13 13 13 13 13 13 13 13 35 35 35 35 35 35 35 35

EPICARDISL POTENTIALS (10 nrcaovoLfsy ZPICARDIIL POTENTIALS (10 HICROVOLTS)
" 4 % 4 A 4 b 4 _ -6 =6 <6 =6 =6 =B =6  ~b
-7 4 1 e 35 45 22 11 ? -19  -18 =7 41 =16 -18 -19 8
0 1 2. 3 10 4 77 2 22 10 9 - 8 1 60 LY 21
10 =4 D 4 -4 =19 =18 =5 68 13 L9 29 24 27 11 28



174

FRAFE &1 FRAFE 61
BODY-SURFAGE POTENTIALS  (MNIGROVOLTS) BODY-SURTACE POTENTIALS  (HICROVOLTS)
19 19 19 19 19 19 19 19 TN 14 LY 14 14 14 b 14
36 -42 =115 =59 12 15 19 1 33 =61 -30 =34 6 15 25 -4
T 39 a1 50 55 73 af 39 -19  -25 36 12 49 51 31
100 415 135 161 77 52109 93 1 12 34 47 7 e 23 45 18
55 55 55 55 55 55 55 55 - 12 12 12 12 12 12 12
EPICARDIAL POTENTIALS (10 MICROVOLTS) - EPICARDIAL POTENTIALS (10 MICROYOLTS)
5 5 5 5 5 5 5 5 _ 6 6 5 6 6 6 % )
-135 =98 ~%0 <-130 -16 -9 -0 ] -162 =27 -16 73 -5 12 .20 17
-12  -10 -3 -8 -2 109 112 105 . =53 19 -8 -2 -1 1 83 51
96 35 28 2y 22 1s . 39 75 -2¢  -30 -5 15 6 10 1y =27 .
29 29 29 29 29 29 29 29 13 13 13 13 13 13 13 13
FRAME 51 | ' FRAVE 71
800Y~SURTAGE POTENTIALS  (MICROVOLTS) 80DY-SURTAGCE POTENTIALS  (MICROVOLTS)
17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
11 -103 -147 -72 23 21 31 -32 28 =35 -2 -1i§ 1 -4 P2 IS
53 6 18 B4 w7 76 66 - 37 19 -39 -39 30 38 6 9 13
6l 67 59 97 81 66 91 72 -4 -1t 11 6 =13 -33 9 8
56 58 5% 58 58 53 58 58 -8 -0 -0 -0 -9 -9 -8 -0
EPICARCIAL POTENTIALS (19 MICROVOLTS) EPICAROTIAL POTENTIMLS (10 HICROVOLTS)
] 5 ] 5 5 s 5 s 9 9 9 9 9 9 9 ]
-279 -~122 -32 -152 15 3 15 =12 -92 -8 -5 =23 -5 0 23 23
<101  ~43 -28 -7 -9 209 99 34 . -5 =12 -3 4 -19 5 9 22
9 -12 5 23 31 35 u3 33 . T.39 -28 -3 20 -58 -47 =32. =18

26 26 26 26 26 26 26 26 5 5 5

v
w
w
wn
v
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15

3%

83

-394
-472

-33¢

BODY-SURTACE POTENTIALS

=5 -5
] 55
-3y ~15
-7 19
-7 -7
EPICAFDIAL
-7 -7
37 29
3 22
-25 6
15 15

BODY~-SURTACE POTENTIALS

~66

-287

-14¢

31

a3

=56

~43t,

"FRAPE 81t

-5 =5
83 31
77 -2t
15 -34
7 -7
POTENTIALS
-7 -7
1z s2
40 71
49 -89
15 15
FRAME 91

~66

-157

-66

262

435

452

83

EPICARDIAL POTENTIALS

-86
‘;31
=131
=175

181

-36

-156

-30

-86

-429

32

-86
355
342

216

178

(MICROVOLTS)
-5 -5 -5
-y 1 =38
(] -9 -t
=33 -13° f“
-7 -7 -7

(10 MICROVOLTS)
-7 -7 -7
-9 -11 -16
-57 -50 -52
-38 -63 -73
15 15 15

(NICROYOLTS)
=66 -6a -66
132 =114 -244
272 43 -54
27y 175 L33
83 a3 a3

(L0 HICROVOLTS)

-85

-89

40h

393

181

-86
-28%

-2u%

108

181

- 86
=315
-519
~352

181

57

141

276

297

-2002

~1586

-836

139

11t

116

146

117

96

87

-602

-536

L-222

LI

BO0Y-SURTAGE POTENTIALS

57 37
-767 ~1827
~271 -125)

12% -5

297 237
EPICARDIAL
Y 4
~1459 =834
-928 =534
-1021 =422
139 139

BODY~SUFRTACE POTENTIALS

11y

=275

-85

24

96

iLh

~6141

~656

-139

36

EPICARDIAL

a7

-449

-355

~412

37

-239

FRAYE 101

57 57
-1631 513
156 1l28
697 945
297 297
POTENTIALS
4 b
-3212 1034
=445 =234
-42 1221
139 133
FRANME 111

114 114
-632 51
-29¢ 131

-3 155

a6 9
POTENTIALS
&7 37
1133 210
-244  -326
-195 386
-54 =54

(HICROVILTS)

57

491

793

777

297

57

125

488

607

297

57
-112
172
327

297

(10 MICROVOLTS)

% b "
231 39 -133
2649 768 103
850 576 81
133 139 139
(HIGROVOLTS)
114 11h 114
173 213 9
21 226 ' 179
163 207 169
96 9% ; a6
(10 41620VOLTS)
o7 a7 a7
210 300 215
1052 583 627
366 352 28
-54 =54 =54



3c

32

-55

-6

-2

-4

-3

-3t

7

-t

26

BODY=SURTACE POTENTIALS

8

37

FRAME 128

8

143

3
38
~-18

-12

EPICARDIAL POTENTIALS

1

62

2h

16

BOOY~SURTACE POTENTIALS

1 1
-3 135
-18 89
-13 38
- EL
EPICAROIAL
-3 -3
wms  1lC.
78 33
43 32
20 20

b3

b9

39

17

L6

1 1
.255 67
61 119
€2 -71
16 16
FRAME 131

-4

1

37

-4

POTENTIZLS

-3

477

10€

99

20

-3

59

198

-113

20

176

{MICROVOLTS)
3 8 8
? 3 -21

-4 -5 29

(12 MICRONLTS)

b § i 1
-6 -8 6
~79 ~43 i3
-79 ~54 ~-27

{MICROYILTS)

1 L 1
-1 =7 =34
-43 =32 15
-62 -28 =34

-y -l -ly

.

(10 MICROVOLTS)

-3 -3 -3
-25 =25 =31
-251 -107 9%
-118 =104 ~196
20 20 20

-32

-5

=130
59
-32

45

BOOY~SURTACE POTENTIALS

-3 -2
23 2%
-25 138
-7 58
-
EPICARDIAL
-27 =27
4o 138
a5 32
47 38
30 30

BODY-SURTACE

-38 -8
=33 136
-27 129
-20 75
-15 L5
EPICARDIAL
=35 =36
138 117
85 138
48 74
45 45

FRANME 148

=31 =31
29¢ b
1638 -4
6 -19
-5 -5
POTENTIALS
-27 =27
527 60
120 217
11+ -133
30 30
FRAVE 151
POTENTIALS
-38 -38
353 68
239 -7
24 =21
~15 ~1i5
POTENTIALS
-36  -36
€22 96
152 298
155 ~151
45 45

(4ICROVOLTS)

fJi ~31 ~31
-3 -53 ~33
-24 -29 -31
-71 -20 ~52
=5 -5 -5

{13 HICROVOLTS)

-27 '-2? -27
-37 -83 ~63
=212 ~120 -165‘
=142 =123 -111

30 30 30

(HICROYOLTS)
-39 -38 -38
-13 =52 -38
-24 =36 -35
~42  ~14 =45
-15 =15  -1%
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~-36 ~-36 =36
=59 -39 -38
-266 =151 =213
~163 =133 ~-167



-~36

~180

s7

63

-5

-356

ie

~106

94

300Y~SURTACE POTENTIALS

-32 =32
=45 239
~h3 1314
=22 113
2 2
EPICARDIAL
-36 =36
142 134
pYUM 133
67 100
63 33

B0DY-SUPTACE

=58 ~>8
-106 228
-59 137
=47 138
-6 b
EPICARDIAL
-60 =50
168 157
103 153
43 i
94 4

FRAFE 161

-32 -32
424 16
321 10
54 -9
2 2
POTZNTIALS
=36 -36
740 158
189 386
206 -177
63 63
FRA®E 3174
POTENTIALS
-58 -53
539 158
447 47
111 49
-6 -6
POTENTILLS
-60  -60
ER3 Y 235_
248 522
277 =187
34 94

177

{HICROVOLTS)
-32 =32 =32
15 -7 -7
-3 -2 -ub
-35 =13 =58

2 2 2

(10 MICROVOLTS)

-36 =36 =36
-67 -132 -102
-272 -172 -285
-197 -163 -199
63 63 62
(HICROVOLTS)
-58 =53 =58
18 =105 -116
15 -56 -72
-11 -19  -62
-6 -6 .=b

(10 HICROVOLTS)

=60

=95

=296

=221

94

~60

=2y

=339

~22%

94

-60

=197

=443

296

94

-125

-3

-9

-195

136

-112

=189

~122

-116

-723

~121

-276

180

RODY~SURTAGE POTENTIALS

-77  ~r7
-143 213
-121 22

=77 175

-3 -9
EPICARDIAL

-82 =32

123 133

103 201

b1 156

136 136

BOOY~SURTATE POTENTIALS

=112 =112
=216 133
-162 252
-68 224
1 i
EPICARDIAL
=116 =115
96 239
89 233

4 17¢
18¢0. 130

FRAFE 131

-77  -77
678 208
631 Lih
17z 53
-9 -9
POTENTIALS
-82 -82
1160 294
328 TOb
389 245
136 136
FRAKE 191

-112 -112
846 295
783 189
279 142

1 i
POTENTIALS

-116 =16

1439 435
405 304
4ET? =234
140 180

{4ICROYOLTS)
~77  -77 .77
31 -169 -198
5 -78 -116
-17  -~36 =87
-9 -9 -3

(15 HICROVOLTS)

=82 -82 ° =-82
-127 :312 -295
“489 =425 =669
-330 =323 ~424
136 136 136
(MITROVOLTS)
=112 =112 =112
30 =207 -2‘0'4‘
76 =72 =136
43 -20 -67
i i 1

(10 MICROVOLTS)

~1156

~179

-373

=339

184

-116

~3%%

-497

=375
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-116



178

REFERENCES

Barnard, A.C.L., Duck, I.M. and Lynn, M.S. (1967). The
application of electromagnetic theory to electrocardiography I.
Derivation of the integral equations. Biophys. J. Vol. 7,
peo Uli3-~62,

Barnard, A.C.L., Duck, I.M., Lynn, M.S. and Timlake, W.P. (1967).
The application of electromagnetic theory to electrocardiography
iI. DNumerical solution of the integral equationse. Biophys. Je

Vol, 7, pe 463=91,

Barr, R.C., Pilkington, T.C., Boineau, J.P. and Spach, M.S. (1966),
Determining surface potentials from current dipoles with
application to electrocardiography. IEEE Trans. bilo-meds Engnge
BME=-13, p. 88-92,

Barr, R.C., Pilkington, T., Boineau, J. and Rogers, C. (1970).
An inverse electrocardiographic solution with an on-off model.
IEEE Trans. bio-med. Engnge BME-17, p. 49~57.

Barr, R.C., Spach, l.S. and Herman~Giddens, G.S. (1971).
Selection of the number and positioﬁs of measuring locations for
electrocardiography. IEEE Trans. bio-med. Engng. BME-18, p. 125

-138.

Barr, R.C. and Spach, M.S. (1976). Inverse solutions directly
in terms of potentials. In 'The theoretical basis of
electrocardiology'e p. 294-304, Clarendon Press, Oxford.

Bellman, R., Collier, C., Kagiwada, H., Kaloba, R. and Seclvester,
R. (1964). Estimation of heart parameters using skin potential

measurements, Communs. Asso. Comp. Mach. Vol. 7, p. 666~8,

Binns, K.J. and Lawrenson, P.J. (1973). Analysis and computation

of electric and magnetic field problems. Pergamon Press, Oxford.



179

Burger, H.C. and van Milaan, J.B. (1946). Heart vector and leads.
Br. Heart J. Vol. 8, p. 157-61; (1947), Vol. 9, p. 154-8; (1948).
Vol. 10, p. 229-33. '

Brody, D.A. and Hight, J. (1972). Test of an inverse electro-
cardiographic solution based on accurately determined model

data. IEEE Trans. bio-med. Engnge. BNE=19, p. 221-3,

Durrer, D., Roos, J.P. and Buller, J. (1965). The spread of
excitation in canine and human heart. In ’Electrophysiology'

of the heart', p. 203-214, Pergamon Press, Oxford,

Durrer, D., van Dam, R. Th., Treud, G.E., Janse, M.J., MNeijler,
F.L. and Arzbaecher, R.C. (1970)., Total excitation of the
isolated human heart. Circulation Vol.41, p. 399-912.

Fischmann, E.J. and Barber, M.B. (1963). Aimed clectrocardio-
graphy. Model studies using a heart consisting of six

electrically isolated areas. Am. Heart J. Vol. 65, p. 628-7.

Frank, E. (1952). Electric potential produced by two current
sources in a homogeneous conducting sphere. dJ. Appl. Phys.

Vol. 23, p. 1225,

Gabor, D. and Nelson, C.V. (1954), Determination of the resultant
dipole of the heart from measurements on the body surface. Jo.

Applo Phys- Vol 25, Pe 4q3‘16n

Gelernter, H.L. and Swihart, J.C. (1964). A nmathematical-
physical model of the genesis of the electrocardiograma
Biophys-: Je. Vola l‘", De 285—5010

Geselowitz, D.B. (1960). MNultipole representation for an
equivalent cardiac generator. Proc. Inst. Radio Engrse. Vol. 48,

Pe 75"90

Geselowitz, D.B. (1967). On bioelectric potentials in an

inhomogeneous volume~conductor. Biophys. J. Vol. 7, pe 1o



1860

Hamer, J., Boyle, D. and Sowton, E. (1965). The transmission
of electrical forces from the heart to the body surface.
Br. Heart J. Vol. 27, p. 365-73. '

Hildebrand, F.B. (1968)., Tinite~difference equations and

simulations. Prentice-Hall, New Jersey.

Horan, L. and Flowers, N. (1967). Simulation of the sequence
of the ventricular activation and the choice of an inverse

solution. Ded. Res. Enghg. Vol. 6, po 28-35.
Karplus, W.J. (1958). Analog simulation, MeGraw-Hill, New York.
Lanczos, Ce. (1956). Applied analysis. Prentice-Hall, lNew Jersecy.

Lanczos, Ce (1958). Iterative solution of large-scale linear
systems. J. Soc. Indust. Appl. Math. Vol. 6, p. 91-109,

Lanczos, C. (1961). Lincar differential operators. Van Nostrand,

London.

Lo, G.C.C and Honro, D.M. (1976). Simulation of electric fields
in the human thorax. In 'Advances in cardiology' Vol. 21,

S. Karger, Basel,

Lynn, M., Barnard, A.C.L., Holt, J. and Sheffield, L. (1967).
A proposed method for the inverse problem in electrocardiography.
Biophys. Je Vol. 7, p. 925-45. '

Martin, R.0. and Filkington, T.C. (1972). Unconstrained

inverse electrocardiography: Epicardial potentials. IEEE Trans.
bio-med. Engng. B¥E=19, p. 276~85,

Milne, W.E. (1953). DNumerical solution of differential equations.

Wiley, New York.



181

Monro, D.M., Guardo, R.A.L., Bourdillion, P.J. and Tinker, J.
(1974). A technique for simultaneous electrocardiographic

surface mapping. Cardiovasce. Res. Vol. 8,.p. 688~700.

Nelson, C.V. and Geselowitz, D.B. (1976). The theoretical basis

of electrocardiology. Clarendon Press, Oxforda.

Nicholson, P.W. (1967). Experimental models for current conduction
in an anisotropic medium. IEEE Trans. bio-med. Engng. BHE-14,

Pe 55

Okada, R.H. (1956). Potential produced by an eccentric current
dipole in a finite-length circular conducting cylinder. IRE

Trans. Med. Electron. Vol. 7, p. 1k,

Plonsey, R. (1966). Limitations on the equivalent cardiac

generator. Biophys. J. Vol. 6, p. 163-173.
Plonsey, R. (1969). Bioelectric phenomena. McGraw-Hill, New York.

Plonsey, R. and Heppner, D.B. (1967). Consideraticns of quasi-~
stationarity in electrophysiological systems. Bull. Math.
Biophys. Vol. 29, p. 657,

Rogers, C.L. and Pilkington, T.C. (1968). The solution of over-
determined equations as a multistage process. IEEE Trans.

bio~med. Engng. BME-15, p. 179~35.

Rush, S. (1970). An inhomogeneous anisotropic model of the
human torso for electrocardiographic studies. Ied. Biol.
Engngc\ VOl. 9’ P. 201-’11.

Rush, S., Abildskov, J.A. and McFee, R. (1963). Resistivity of
body tissues at low frequenciles. Circulation Res. Vol. 12.
p. 40-50,



182

Selvester, R.H., Palmersheim, J. and Pearson, R.B. (1971).
VCG inverse model for prediction of myocardial diseases.

In '"Vectorcardiography 2', p. 54=65, North-Holland, Amsterdam.

Spach, M.S. and Barr, R.C. (1975). Ventricular intramural and
epicardial potential distributions during ventriculaf activation
and repolarization in intact dog. Circulation Res. Vol. 37,

Po 243-257.

Spach, M.S8. and Barr, R.C. (1976). Analysis of ventricular
activation and repolarization from intramural and epicardial
potential distributions for ectopic beats in the intact dog.
Circulation Res. Vol. 37, p. 830-843,

Symington, J. (1956). An atlas illustrating the topographical

anatomy of the head, neck and trunk. Oliver and Boyd, London.

Taccardi, B. and Marchetti, G. (1965). Distribution of heart
potentials on the body surface and in artificial conducting
media. - In 'Electrophysiology of the heart', p.203-21%k,

Pergamon Press, Oxfiord.

Taccardi, B., Musso, E. and Ambroggi, L. (1971). Potential
fields of normal and ischemic hearts during rest, ventricular
excitation and recovery. In !'Vectorcardiography 27, p. 142-5,

North-Holland, Amsterdam.

Terry, F. (1967). Comparison of iterative techniques for solving
Neumann problems. Proc. 20th Ann. Con. Engng. Med. Biol. Vol. 9,
Pe 21 05.

Twomey, S. (1963). On the numerical sclution of Fredholm integral
equations of the first kind by inversion of the lincar system

produced by quadrature. J. Asso. Conp. Mach., Vol. 10, p. 97-101.

Twomey, S. (1965). The application of numerical filtering to the
solution of integral equations encountered in indirect sensing
measurements. J. Franklin Inst. Vol. 279, p. 95-109.



183

Twomey, S. and Howell, H.B. (1963)., A discussion of indirect
sounding nethods, with special refercnce to the deduction of
vertical ozone distribution from light scattering measurements.

Mon. Weather Rev. Vol. 91, p. 65966k,
Vitkovitch, D. (1966). TField analysis. Van Nostrand, London.

Volynskii, B.A. and Bukhman, V.Ye. (1965). Analogues for the

solution of boundary-value problems. Pergamon Press, @xforde.

Yeh, G.C. and Hartinek, J. (1957)., The potential of a general
dipole in a homogeneous conducting prolate spheroid. Ann,
New York Acad. Sci. Vol. 19, p. 293=308, \

Yeh, G.C., Martinek, J. and de Beaumont, H. (1958). iultipole
representation of current generators in a volume conductor.
Bull. I“ﬁatl’la BiOph}]Bu VOl. 20. p. 203—16.





