ESTTMATION OF BPTCARDIAL ELECTRICAI POTENTIALS FROM BODY SURFACE MEASUREMENTS BASED ON A

 DIGITAL SIMULATION OF THE HMMAN THORAXA thesis submitted for the Degree of Doctor of Philosophy in the University of London

by
George Chiao.-Chi Lo

June 1977

Engineering in Medicine Laboratory
Department of Electrical Engineering
Imperial College of Science and Technology
London SW7

ABSTRACT

The forward problem in electrocardiography has been attacked using a digital computer model of the human torso that took into account the heart muscles, intracardiac blood-mass, lungs, liver, great vessels, spine, sternum and anisotropic skeletal muscles. Physically, this model can be thought of as an assembly of discrete blocks of conductors. By assigning an alpha-numeric character to each conductor block according to its electrical properities, the entire torso anatomy is represented as coded images in the computer. The potential distributions in the model are calculated by the method of finite-differences. The set of finite-difference equations approximating the field distribution is constructed by means of the numerical. analogue developed in this study. These equations are solved iteratively using the Gauss-Seidel method. A rapid convergence of the solution is achieved by iterating firstly on a coarser model and then improving the accuracies of the solution on the finer model. The validity of this model was demonstrated by comparing simulated body-surface distributions with those observed on live subjects.

For applications to the inverse problem, a matrix of transfer coefficients relating the potentials on 26 epicardial segments to the potentials on 26 body-surface sites were calculated from this model. Using this transfer matrix, epicardial maps were reconstructed from in-vivo
body-surface measurements. The stability of the inverse solutions was found to be greatly improved by
a) carefully selecting the 26 body-surface sites in order to minimize the condition number of the transfer matrix.
b) spatial smoothing of the surface data before inversion.
c) performing the inverse calculations using an iterative process.

A comparison between the calculated epicardial potentials and in-vitro data showed the results to be consistent. This study has demonstrated the feasibility of an unconstrained, evenly-determined inverse solution based on epicardial potentials.

CONTENTS

Page

ACKNOWLEDGEMENTS 6

1. InTRODUCTION 7
2. Mathematical statenent of the problem 17
3. CALCULATION OF VOLURE-CONDUCTOR FIELDS
3.1 Introduction 21
3.2 The Method of Finite-Difference 24
3.3 The Resistive-Network Analogue 29
3.4 A Proposed Numerical Analogue
3.4.1 Discrete Representation of a Volume-Conductor 32
3.4.2 Generalized Finite-Difference Equation 36
3.5 Solution by Iteration 45
3.6 Program Organization 51
3.7 Simple Validation Studies 52
3.8 Conclusion 61
4. A discrete anatomical model of the human thorax
4.1 Introduction 62
4.2 Anatomical Data 64
4.3 Adequacy of the Sampling Grid 69
4.4 Effects of the Various Internal Inhomogeneities 73
4.5 Comparison of Simulated and Observed Surface Potentials 75
4.6 Conclusion 77
5. AN INVESTIGATION ON THE FEASIBILITY OF AN UNCONSTRAINED INVERSE SOLUTION
5.1 Introduction 78
5.2 The Torso as a Spatial Filter 80
5.3 System Eigenvalues as Weight Factors 85
5.4 Optimization of the System Resolution 88
5.5 Feasibility Studies using a 2-D Torso Model 92
5.6 Conclusion 103
6. CALCULATION OF EPICARDIAI POTEITIALS FROM IN-VIVO SURFACE MEASUREMEINTS
6.1 Introduction 104
6.2 Forward Calculations 106
6.3 Inverse Calculations 110
6.4 Stability of Inverse Solution 118
6.5 Validity of the Inverse Calculations 120
6.6 Conclusion 123
7. CONCLUSION 124
A. PROGRAM DESCRIPTION
A. 1 Program Flow Diagrams 128
A. 2 Program Listings 130
A. 3 Variable Name List 139
A. 4 Data Format 141
A. 5 Sample Problem 142
B. TABLE OF BODY TISSUE RESISTIVITIES 147
C. COMPUTER DATA OF THE DISCRETE TORSO MODELS
C. 1 Data for the Irregularly Digitized Torso 149
C. 2 Data for Torso Digitized at One-Half Inch Grid 151
D. POTEHTIAI CONTRIBUTIONS FROM EACH EPICARDIAI: SEGMENT TO THE BODY SURFACE 152
E. EriCARDIAL POTENTIALS CALCULATED FROM IN-VIVO BODY-SURFACE MEASUREMENTS
E. 1 Solution by Direct Matrix Inversion 163
E. 2 Solution by Iterative Inversion 168
E. 3 Solution From Perturbed Data 173
REFERENCES 178

ACKNOULEDGEMENTS

I wish to thank my supervisor, Dr. D. M. Monro, for the advice and guidance he has given me throughout this project. I am also indebted to him for making available the necessary funds and computing facilities during this period of research.

I extend my gratitude to Professor B. M. Sayers, Dr. P. J. Bourdilition and my colleagues, in particular Mr. P. Cheung, Mr. M. Thai-Thein-Neigh and the late Mr. J. Branch for the many hours of fruitful discussions.

The constant encouragements from my parents and my wife, Jennifer, during this period of research has meant much to me.

Finally, I wish to acknowledge CIBA Laboratories, Horsham, England for their generous support.

CHAPTER 1

INTRODUCTION

This dissertation describes the development of a numerical method for determining epicardial potentials from electrode measurements taken on the body surface. Non-invasive studies of this kind belong to the class of problems in electrocardiography known as the 'Inverse Problem'. Ideally, the inverse problem is. concerned with the reconstruction of a physiologically realistic cardiac generator from electrical potentials recorded on the body surface. A prerequisite to such an attempt is a valid quantitative relationship between the heart sources and the body-surface potentials which they generate. To obtain such a relationsinip constitutes the so called 'Forward Problem'. In this study, the forward solution is found using a digital computer model of the human torso. By simulating the conduction pathways in the human body on a digital computer, the corresponding body surface distribution for any given source configuration can be calculated. Hence, the required source-surface relationship.

The forward problem has in the past, been attacked in a great variety of ways. These included analytical attempts in which the human torso is assumed to be a homogeneous conductor with highly idealized geometries such as spheres, spheroids, cylinders, etc. (Yeh and Martinek, 1957; Okada, 1956). Solutions obtained using such over-simplified models are grossly inadequate for the purpose of realistic inverse studies.

In order to obtain a more accurate relationship between the heart sources and body surface potentials, other workers constructed tank models that took into account body shape and various internal inhomogeneities. In such studies, a torso-shaped container made of some non-conducting raterial is filled with an electrolyte, usually a saline solution. The desired internal inhomogeneities are then simulated by introducing some porous structures so as to create regions of different resistivity inside the saline-filled container. Burger and Van Milaan (1946) used sand-bags and corks to simulate the lungs and the spine. A most ingeneous idea of using a 3-dimensional matrix of interlocking plastic rods to vary the salinespaces inside the matrix structure was proposed by Rush (1971). By trimming the edges of the rods, the density ratio of insulating plastic to the conducting saline solution in each structure could therefore be controlled. The twice life-size model he constructed which took into account the heart muscle, the cardiac blood-mass, The lungs, the liver, the great vessels, the spine, the ribs, the subcutaneous fat and the anisotropic skeletal muscles must be the most detailed modelling of the human torso that has ever been attempted. Although analogue devices of this kind are capable of a high degree of realism, they are on the other hand, expensive to build and cumbersome to use. Once constructed, their geometries or resistivity ratios cannot be easily altered. For this reason, it is unlikely that models of this kind will be used extensively for electrocardiographic investigations that involve changes in either the torso geometry or the tissue resistivities.

Human subjects have also been used in forward studjes. Bodysurface mapping of pacemaker impulses on cardiac patients with
implanted catheters have provided much insight into the nature of the transmission of electrical signals in the human body (Hamer, Boyle and Sowton, 1965). Studies of this kind however, are limited as the investigator has little or no control over the positioning of the catheter electrodes inside the patients. Nevertheless, these results provide invaluable data for testing the validity of other models. Cadavers offer a greater scope for more systematic investigations, but the results obtained are difficult to interpret due to the changes in tissue resistivity after death.

The availability of large high-speed digital computers makes it possible to attack this problem numerically. The earliest of such attempts was made Gelernter and Swihart (1964). Using what is essentially an intuitive approach, they derived an integral equation for the charges that accumulate at the interfaces between regions of different conductivities. From these charges, the potential at any surface point can be calculated from Coulomb's law. The idea of such a solution is to replace the single integral equation by a set of linear algebraic equations. These equations relate the unknown charge density on an elemental surface area to the charge density on every other surface e.ements. By solving these equations iteratively on a digital computer the unknown surface charge densities are calculated.

An alternative integral equation was later proposed by Barr et al.(1966). Unlike the Gelernter-Swinart equation which was formulated in terms of charge densities, theirs was formulated directly in terms of the interface potentials. The integral equation was then approximated by a set of liiear equations that relates the potential value at one surface point to the potential
at every other surface point. As in the previous method, these equations were solved iteratively using a digital computer.

Much of the work done to promote the integral-equation method of solving the forward problem was carried out by Barnard, Duck, Lynn and Timlake (1967). They made two important contributions that were to improve on the Gelernter-Swihart technique. First, they derived a more accurate discrete approximation for the integral equation which they claimed to possess better convergence properties. Secondly, they introduced a deflation technique to speed up the convergence rate of the iterative process. Using the improved technique, they successfully calculated the body-surface potentials due to current dipole sources located inside a torsoshaped volume-conductor which included lungs and intracardiac blood-mass.

In spite of these extensive developments in the integralequation technique for solving forward problems, the solutions obtained so far correspond to the simplest analogue models. The reason of this lies in the limitations of the integral-equation techniques: In theory, these techniques could be used to calculate the potential distribution for volume-conductors of any geometrical shapes and combinations of internal inhomogeneities. In practice, the rapidly increasing costs of both human and computational resources with shape complexity and internal inhomogeneities limits all calculations to the simplest volume-conductor configurations. Moreover, anisotropicity in the volume-conductor cannot be accounted by the integral-equation methods.

An alternative numerical approach based on the more common but well established method of finite-differences is considered

11

in this study. Unlike the integral-equation approach, the solution obtained by finite-differences consists of point values that are distributed throughout the entire volume of the conductor. It appears at first sight that this method would require even greater computational resources since it involves solution over the entire 3-dimensional volume instead of only over the 2-dimensional boundary surfaces in the case of integral-equation approach. But as pointed out by Terry (1967), in the inite-difference formulation, the potential at each volume-point is only related to those of its nearest neighbours. In the case of the integralequation formulation, the potential at each aurface-point interacts directly with those at every other surface-points. Therefore, although the matrix of the linear equations formulated by the finite-difference method is considerably larger than the matrix of linear equationsformulated by the integral-equation method, it is on the other hand extremely 'sparse'. That is, it contains a very high density of zero elements. Numerically, it can be shown that such a matrix is better suited to an iterative process. Moreover, a theorem due to Collatz (see Hilderbrand, 1968) guarantees the convergence of the finite-difference equations when either the Jacobi or the Gauss-Seidel iteration is used. The matrices derived from the integral-equations tend to be rather unstable in practice.

The reason why the finite-difference method has not previously found its way into the forward solution is that this method was orginally developed for solving simple field problems in engineering and physics. It has not been sufficiently developed to tackle the immensely more complex field problems encountered in
human electrophysiology. Except for simple field configurations, the mathematical formulation of the finite-difference equations is extremely difficult and in many cases, unknown. This problem was overcome in this study by considering a straightforward resistivenetwork analogue which leads to convenient finite-difference equations. Being an analogue device, it can be used to sclve extremely complicated field problems with the greatest conceptual ease. Its main limitations like any other analogue devices are the costs and the length of time required to construct the model. However, by borrowing the simple physical concept of the network. analogue, it is possible to derive finite-difference equations for the most complex field configurations without encountering any mathematical difficulties. In essence, what has been accomplished is the development of a 'numerical-analogue' for calculating volume-conductor fields. This technique is so called because the solutions are obtained numerically on a digital computer but with a representation similar to an analogue model.

Unlike the forward problem in which the accuracy depends only on how realistic a model is used, the inverse problem on the other hand has no unique solution. Over a century ago, Helmholtz demonstrated that a given potential distribution on the surface of a volumemconductor could arise from an infinite variety of sources. Therefore, almost any kind of generators can be used to represent the electromotive forces in the heart. The earliest attempt to describe the heart activities used a single dipole which is fixed in location but allowed to vary in direction and magnitude. The inadequacies of this simple model have long been recognized. In spite of this, it has remained until today, the basis of the
clinical ECG. In order to generate a more complete description of the spatial and temporal behaviour of the electrical activities within the heart, the fixed dipole was replaced by more sophisticated source configurations such as the moving dipole (Gabor and Nelson, 1954), the multipole (Yeh et al, 1953; Geselowitz, 1960) and the multiple-dipole (Fischmann and Barber, 1963; Bellman et al, 1964; Lynn et al, 1967). The moving dipole as implied, is a single dipole that is allowed the freedom of position. Its locations are indicative of the areas of major activities. The multipole has no obvious physiological siginificance. Nevertheless, it describes the body-surface distributions in a very compact manner. By far the most attractive is the multiple-dipole model. Here, a finite number of dipoles are located at significant sites throughout the myocardium. Each dipole would therefore represent the net electrical activities in its vicinity. Thus if the correct values of the moment of each dipole could be determined, it would surely be of great assistance to the clinical detection of cardiac disorders.

More recently, there has been a growing interest in determining epicardial potentials as a possible inverse solution (Martin \& Pilkington, 1972; Barr and Spach, 1976). This approach has two distinct advanteges: In the first instance, no prior assumption as to the physiological nature of the generator is necessary. In the case of the multiple-dipole model, the direction of each dipole has to be carefully chosen in accordance with the propagation of the depolarization waves. Secondly, inverse solutions based on spicardial potentials can be compared directly with potential measurements taken on the heart surface. No such
direct comparison between the dipole monents and experimental data exists.

The important question however, is whether knowledge of epicardial potentials contribute to useful clinical information. Isochronous maps of epicardial excitation obtained by Durrer et al. (1965) showed a delay in the activation tine for right ventricular hypertrophy. Taccardi et al.(1971) compared the epicardial potentials obtained before and after coronary occlusions. In all the cases, they observed a potential minimum located in the ischaemic region during the $T Q$ interval. This minimum persisted. for part of the QRS interval and was later replaced by 2 maximum which lasted throughout the $S T$ and T interval. And just before the end of the T interval, this maximum disappeared and was once replaced by a minimum. In a recent study by Spach et al.(1975), they discovered two distinct features in the epicardial distributions during ectopic sequences. These were a unidirectional spread of the excitation wave from the ectopic focus during the early QRS complex and a dominance of repolarization positive potentials near the ectopic site during the $S T-T$ interval. All these and many other similar studies clearly suggest a wealth of clinically useful information to be contained in epicardial distributions.

The greatest stumbling block to a clinically acceptable inverse solution however, remains the inability of present day techniques to resolve with sufficient accuracies the heart sources from body-surface recordings. then the multiple-dipole model was first tested by earlier workers, serious errors were demonstrated in the solutions. The magnitude of the dipole moments were either unrealistically large or the directions of the dipoles were in
contradiction with known plysiological events. In order to obtain solutions in closer agreements with physiology, contraints were inposed. The most commonly applied is that of fixing the orientation of each dipole to the direction of the propagation of the depolarization wave-fronts. The most extensively developed model of this kind is that of Lynn et al.(1967). In addition to constraining the dipole directions, they further restrict the dipole movements in the solution to be non-negative, thus avoiding invard pointing dipoles which are considered to be unphysiolosical in the normal case at least. Other constraints included forcing each dipole to follow a given time history (Bellman et al.1964) or prescribing the dipole moment to be either 'on' or 'off' at the appropriate periods in the heart cycle (Horan and Flowers, 1967; Barr et al.,1970). The stability of an epicardialpotential inverse solution was considered by Martin and Pilkington (1972). From their investigations using a system of concentric spheres as the model for the torso, they concluded that it is not feasible to determine epicardial potentials from surface measurements using an unconstrained solution. And in a second paper (Martin et al, 1975), they discussed the use of a statistical constraint in calculating epicardial potentials.

Applying constraints to inverse solutions however, are not without their disadvantages. Surely, the ultimate objective of an inverse solution is to aid clinical detection of cardiac abnormalities. To force an inverse solution to accept what is normal may risk exyluding the very abnomalities that are to be detected. An example is the case of cardiac abnomalities in
which the excitation spreads inwards from the epicardium. To use a multiple-dipole solution constrained to point outwards only is clearly unrealistic in this situation.

The purpose in this study therefore, is to investigate the feasibility of an unconstrained inverse solution based on epicardial potentials. The research to achieve this goal consists of two parts: The first of which is concerned with deriving a valid forward solution and the second, an investigation of the various factors that might influence the stability of the inverse calculations. It is hoped that an accurately configured forward solution combined with a carefully structured inverse calculation will enable a stable and unconstrained inverse solution to be found.

Much attention in electrocardiographic studies have been directed to two fundamental problems. These are the 'Forward problem' and the 'Inverse problem'.

The forward study is concerned with calculating the body surface potential distribution due to a given source configuration located in the myocardium. The inverse study on. the other hand is concerned with the determination of the activities of the heart generators (hence the physiological state of the heart) from available potential measurements on the body surface.

Statement of the Problem

These problems may be stated mathematically as follows: Suppose the contribution to the potential at the point i on the body surface from a unit strength generator (assumed to be fixed in direction) in the j myocardial location is T_{ij} (Fig.2.1). Then the potential $\mathrm{v}_{\mathbf{i}}$ at the point i on the surface due to an arbitrary source distribution ($s_{1}, s_{2}, s_{3}, \ldots s_{n}$) is given by,

$$
\begin{equation*}
v_{i}=\sum_{j=1}^{n} T_{i j} s_{j} \tag{2.1}
\end{equation*}
$$

where $s_{1}, s_{2}, s_{3}, \ldots s_{n}$ are the values of the strength of the generators in the myocardial locations 1,2,3,...n. Similarly,

Fig.2.1 : Myocardial to body surface transfer relationship
the potential at any other surface point can be calculated by superposing the contributions from all the heart generators. Thus for m surface points on the body, the potentials at these points can be related to the source generators using the matrical equation,

$$
\begin{equation*}
\underline{v}=T_{\underline{s}} \tag{2.2}
\end{equation*}
$$

where $\underline{v}=\left(v_{1}, v_{2}, v_{3}, \ldots v_{m}\right)$ is a coiumn vector containing the values of the body surface potentials, $\underline{s}=\left(s_{1}, s_{2}, s_{3}, \ldots s_{n}\right)$ is a column vector of the generator strengths and T is a matrix of dimension ($m \times n$) containing the transfer coefficients between the heart generators and the point locations on the body surface.

The purpose in the forward study is to compute the matrix T which is clearly a function of the geometrical

19

and electrical properties of the human torso. Once T is calculated, it is then possible to determine the generator strengths S for any given set of surface potentials \mathbb{V}. The latter constitutes the inverse problem which can be expressed mathematically as,

$$
\begin{equation*}
\underline{\underline{s}}=T^{-1} \underline{v} \quad(m=n) \tag{2.3}
\end{equation*}
$$

Method of Overdetermination

Ideally, n surface measurements suffice to determine n unknown heart generators. In practice, measurements are subjected to errors which often result in gross uncertainties in the solution. For this reason, the system in Eqn. 2.2 is generally made considerably overdetermined. That is, taking more measurements than the number of generators ($m>n$): Clearly, an overdetermined system cannot be solved by direct inversion. On the other hand, it is always possible to find the best approximate solution in the sense that the square of the length of the residual vector,

$$
\begin{equation*}
\underline{r}=T \underline{s}-\underline{v} \tag{2.4}
\end{equation*}
$$

is a minimum (the principle of least square). Minimizing $|r|^{2}$ yields,

$$
\begin{equation*}
\mathrm{T}^{\top} \mathrm{T}_{\underline{E}}=\mathrm{T}^{\top} \underline{v} \tag{2.5}
\end{equation*}
$$

(see Lanczos, 1961).

The remarkable property of Eqn. 2.5 is that no matter how strongly overdetermined is the original system, it will always have a unique solution'given by,

$$
\begin{equation*}
\underline{s}=\left(T^{\top} T\right)^{-1} T^{\top} \underline{v} \tag{2,6}
\end{equation*}
$$

CALCULATION OP VOLUME-CONDUCTOR FIELDS

3.1 Introduction

The aggregate of the passive tissues that support the flow of currents resulting from the electrical activity in the heart is generally referred to as the 'volume-conductor'. The electrical potential everywhere in the volume-conductor satisfies Poisson's equation (Plonsey, 1969)

$$
\begin{equation*}
\nabla^{2} u=F(x, y, z) \tag{3.1}
\end{equation*}
$$

where $F(x, y, z)$ is the distribution of the cardiac generators. The regions external to the myocardium are assumed to be free from any electrical generators. In these regions, Eqn. 3.1 reduces to

$$
\begin{equation*}
\nabla^{2} u=0 \tag{3.2}
\end{equation*}
$$

which is Laplace's equation.
The problem of solving these equations is a classical one in mathematical physics known as the 'boundary value' problem. Except for a few of the simplest field configurations, these equations have no known analytical solutions. For this reason, various approximate methods of solution have to be used. These may broadly be classified into numerical techniques and analogue simulations.

Before the advent of digital computers, analogue devices
dominated the solution of boundary value problems. In analogue simulation, the original problem is replaced by an analogue model which approximates its behaviour. The purpose of constructing the analogue may be to increase or decrease the physical dimension of the original system in order to facilitate investigation, to improve the accessibility of the system to probing devices by replacing; for example, a solid medium by some fluid equivalent, or merely to avoid damaging the system due to the invasive nature of the investigation. Although conceptually very simple, analogue devices tend to be rather cumbersome to use and expensive to build. Once constructed, their geometries and other physical parameters cannot be easily altered.

With large, high-speed digital computers becoming more readily available, numerical techniques have largely replaced the more cumbersome analogue devices. The approach here is to approximate the single continuous partial-differential equation by a set of discrete linear algebraic equations which can then be handled on a computer. The main attraction of a numerical method lies in its speed and economy in obtaining a solution using general purpose computing equipment which is widely available. Of particular importance is the relative ease with which any parameter of the problem may be altered. On the other hand, the task of deriving an accurate yet manageable replacement for the original differential equation can be most formidable. Indeed, solutions to some of the more complex field problems still rely to a large extend on analogue metrods.

This chapter describes the development of a 'numericalanalogue' for calculating volume-conductor fields. The technique is so called because the solutions are obtained numerically using a computer but with a representation conceptually similar to a discrete analogue model. In this way, the advantages of both numerical technique and analogue simulation are realized.
3.2 The Method of Finite-Difference

The finite-difference method is one of the most well established numerical technique for solving potential field problems. Solutions obtained using this method provide potential values at discrete points (nodes) which are spaced in some ordered manner throughout the whole of the field region. The idea of the solution is as follows: At each node, the potential which is initially unknown, is approximately related to the potentials of the neighbouring nodes by a linear algebraic equation. In this way, the single partial-differential. equation is modelled by a set of linear equations which can be solved simultaneously for the unknown potentials.

Approximation of the Laplacian

Consider for simplicity a two dimensional, linear, homogeneous and isotropic conducting medium S, superimposed on which is a uniform grid of interval h (Fig. 3.1)。 At an arbitrary node 0 , the potential must satisfy the equation

$$
\begin{equation*}
\left.\frac{\partial^{2} u}{\partial x^{2}}\right|_{0}+\left.\frac{\partial^{2} u}{\partial y^{2}}\right|_{0}=0 \tag{3.3}
\end{equation*}
$$

where u is the unknown potential function, and x and y are the Cartesian coordinates of space.

The object of the exercise here is to approximate Eqn. 3.3 by a linear algebraic equation expressed in terms of the potentials at the nodes $1,2,3$ and 4. This can be achieved by expanding the potentials at nodes $1,2,3$ and 4 about the potential at node 0

Fig. 3.1: Finite-difference representation in a uniform field region S.
using Taylor's series:

$$
\begin{align*}
& u_{1}=u_{0}+h u_{x}^{\prime}+\frac{h^{2}}{2!} u_{x x}^{\prime \prime}+\frac{h^{3}}{3!} u_{x x x}^{\prime \prime \prime}+\frac{h^{4}}{4!} u_{x x x x}^{\prime \prime \prime}+ \\
& u_{2}=u_{0}-h u_{x}^{\prime}+\frac{h^{2}}{2!} u_{x x}^{\prime \prime}-\frac{h^{3}}{3!} u_{x x x}^{\prime \prime \prime}+\frac{h^{4}}{4!} u_{x x x x}^{\prime \prime \prime}+ \\
& u_{3}=u_{0}+h u_{y}^{\prime}+\frac{h^{2}}{2!} u_{y y}^{\prime \prime}+\frac{h^{3}}{3!} u_{y y y}^{\prime \prime \prime}+\frac{h^{4}}{4!} u_{y y y y}^{\prime \prime \prime \prime}+ \\
& u_{4}=u_{0}-h u_{y}^{\prime}+\frac{h^{2}}{2!} u_{y y}^{\prime \prime}-\frac{h^{3}}{3!} u^{\prime \prime \prime}+\frac{h^{4}}{4!} u_{y y y y}^{\prime \prime \prime \prime}+ \tag{3.4}
\end{align*}
$$

Adding the first two equations and ignoring the terms to the power four and above yields,

$$
\begin{equation*}
h^{2} u_{x x}^{\prime \prime} \doteq u_{1}+u_{2}-2 u_{0} \tag{3.5}
\end{equation*}
$$

Similarly, for the last two equations,

$$
\begin{equation*}
h^{2} u_{y y}^{\prime \prime} \doteq u_{3}+u_{4}-2 u_{0} \tag{3.6}
\end{equation*}
$$

On substituting Eqn. 3.5 and Eqn. 3.6 into Eqn. 3.3, the required finite-difference approximation for the potential at the node O is derived:

$$
\begin{equation*}
u_{1}+u_{2}+u_{3}+u_{4}-4 u_{0}=0 \tag{3.7}
\end{equation*}
$$

The error introduced by neglecting the higher order terms in the Taylor series is of the order of h^{2}. Therefore, provided h is small, Eqn. 3.7 is a good approximation of Eqn. 3.3.

Solution of Laplace Equation as a set of Simultaneous Equations

The following example demonstrates the solution of a simple field problem using the method of finite-differences. Consider a conducting square rith its four sides held at potential values V_{a}, V_{b}, V_{c} and V_{d} respectively (Fig. 3.2). Applying the finite-difference approximation in Eqn. 3.7 to each of the grid points in the conductor yields a set of Iinear algebraic equations which can be expressed in the following matrical form:

Fig.3.2: Example illustrating the finite-difference method of solution in a conducting square.

It is easily verified that this set of equations is nonsingular and can therefore be solved simultaneously for the unknowns, $u_{1}, u_{2}, u_{3}, \ldots u_{9}$

Limitations of the Finite-Difference Method

The finite-difference approximation derived in Eqn. 3.7
applies only to nodes at the interior of a homogeneous conductor.

In the case of those nodes on the surface of the conductor or the boundaries between different media, The finitedifference equations are quite different. Therefore if a finite-difference computer program is to be useful, it must be able to identify the various nodal conditions and generate the appropriate finite-difference equation for each node in the conductor. For a simple problem where the field boundaries are straight lines or plane surfaces, identification of the various type of nodes is a straight forward matter. Moreover, numerous general finite-difference equations exist and are easily implemented to generate the required set of linear equations.

However, applications of the finite-difference method to the solution of volume-conductor field problems are somewhat limited. The reasons for this are two-fold: The first is that boundaries separating regions of different conductivity are not just simple plane surfaces but highly convoluted ones. To define these surfaces in the computer alone constitutes a major task of organization. The second reason is that many of the nodal configurations encountered in the volume-conductor have no known finite-difference equations. Although it is possible to simplify the problem by removing these nodal configurations, the validity of the solution is then in question.

3.3 The Resistive-Network Analogue

The idea of the resistive-network analogue consists essentially of approximating the original distributed field region by a network of interconnected resistors. The mechanism of the solution is in principle identical to the finite-difference method, although the original developments are entirely independent.

The Basic Network

Fig.3.3: A discrete approximation of the current pathways between P_{0} and P_{1} by an elemental block ABCD.

Consider the distributed conductor S, superimposed on which is a uniform grid (Fig. 3.3). If the flow of current between points P_{0} and P_{1} is assumed to be supported solely by the block conductor $A B C D$, then it is possible to remove this block and replace in its place, a resistor R having the same resistance value as that across the opposite sides $A D$
and $B C$ of the block without affecting too significantly, the overall pattern of current flow in S. Repeating this process to every adjacent grid points in S, the entire continuous conductor is replaced by a network of discrete components (Fig. 3.4).

The error introduced by this discretization process clearly depends on the grid size. In the limit as the grid interval is made smaller and smaller, the network analogue becomes once more the continuous, distributed conductor.

Nodal Equation

Fig.3.5: Basic network structure.

The resistive-network analogue was developed largely on an intuitive basis. In essence, its solution mechanism is similar to that of the finite-difference method. This is demonstrated by applying Kirchoff's law to the current flowing into node 0 in the network in Fig. 3.5, giving

$$
\begin{equation*}
\frac{V_{1}-v_{0}}{R_{1}}+\frac{V_{2}-v_{0}}{R_{2}}+\frac{v_{3}-v_{0}}{R_{3}}+\frac{V_{4}-V_{0}}{R_{4}}=0 \tag{3.9}
\end{equation*}
$$

In the case of a homogeneous, isotropic conductor, $R_{1}=R_{2}=$ $R_{3}=R_{4}$. Eqn. 3.9 now becomes

$$
\begin{equation*}
v_{1}+v_{2}+v_{3}+v_{4}-4 v_{0}=0 \tag{3.10}
\end{equation*}
$$

which is identical to the finite-difference equation derived in Eqn. 3.7.

It can be shown that such similarity exists for all nodal configurations. Indeed, the resistive-network can be regarded as computing mechanism with the resistors connected in such a way that the operations indicated by the finite-difference equations are carried out.

Limitations of the Resistive-Network Analogue

The network analogue may be an extremely versatile device for solving field problems, but the number of resistors required to construct an adequate network representation of the volumeconductor makes this approach totally impractical for present study. Moreover, the interior of a 3-dimensional network structure cannot be easily accessed. This makes investigation and repositioning of any internal generators extremely difficult.

3.4 A Proposed Numerical-Analogue

The numerical-analogue to be developed in this section consists of a hybrid between the finite-difference method and the resistive-network analogue. The purpose is to simplify the implementation of the finite-difference method for calculating volume-conductor fields. This is achieved in two distinct stages. The first of which is concerned with the efficient organization of the volume-conductor data on the digital computer. In the second stage, a general finitedifference equation is derived using what is essentially a network representation of the conductor.

3.4.1 Discrete Representation of a Volume-Conductor

One of the main factors limiting the use of numerical techniques in solution of volume-conductor fields is the difficulty in representing a complex geometrical shape on the computer. In the case where the boundaries of the given conductor are straight lines (Fig. 3.6), defining these boundaries is a simple matter. However, with more convoluted

Fig.3.6: Conductor with rectilinear boundaries.

Fig.3.7: Conductor with more complicated boundary shapes.
boundary shapes as shown in Fig. 3.7, the exercise of describing the geometries rapidly becomes more difficult.

The most common and straightforward approach of defining such shapes on the computer is to use the position coordinates of a series of points distributed along the boundaries (Fig. 3.8). Such a method becomes extremely tedious when the number of points is large.

Fig.3.8: Piece-wise approximation of the conductor boundary.

Fig.3.9: A discrete representation of the conductor.

The method proposed in this section consists of replacing the original conductor by a discrete approximation as shown in Fig. 3.9. The discretization process is most easily performed with the aid of a graph paper superimposed on top of the conductor. By assigning an alpha-numeric character corresponding

Fig. 3.10: Coded image of the discrete conductor.
to the electrical property in each 'cell' in Fig. 3.9, the conductor is therefore represented in a coded form (Fig. 3.10), which is readily entered into the computer. The efficiency of data input can further be improved by compressing the data in each row in the following manner:

Row Data:	$\quad-$ AAAAAABBBBAAAAAAAABBBAA......
Input Format:	$2-, 6 A, 4 B, 8 A, 3 B, \ldots \ldots$

meaning 2 bits of blanks, 6 bits of conductor with property A, 4 bits with property B and so on.

Representation in Three-Dimensions

These ideas are easily extended to three dimensions. Instead of approximating the conductor by small conducting squares, here, the volume-conductor is represented as cubes. Fig. 3.11 shows an impression of a discretized human torso. The discretization process is essentially the same as before and is organized as follows:

1) Divide the 3-D conductor into horizontal slabs of thickness equal to the digitization interval (Fig. 3.12b).
2) Digitize each slab by means of a $2-\mathrm{D}$ grid superimposed on top of that slab (Fig. 3.12c).
3) Finally, construct the coded image for each slab by assigning the appropriate alpha-numeric code to each discrete cube (Fig. 3.12d).

In this way, the entire $3-D$ volume-conductor is represented as successive planes of coded images in the computer.

35

Fig.3.11: A physical impression of a discretized human torso

Fig.3.12: Illustration of the stages in the discretization of a throe dimonsional volume-conductor.

3.4.2 Generalized Finite-Difference Equation

This section describes the development of a generalized finite-difference equation for setting up the linear equations necessary to model the volume-conductor numerically.

Consider the general nodal configuration in a 2-dimensional discretized conductor (Fig. 3.13), where A, B, C and D are four neighbouring elemental conductors with different electrical properties. The finite-difference equation for this nodal configuration has the general form:

$$
K_{1} u_{1}+K_{2} u_{2}+K_{3} u_{3}+K_{4} u_{4}-\left(K_{1}+K_{2}+K_{3}+K_{4}\right) u_{0}=0
$$

(3.11)

Fig.3.13: A general nodal configuration.

Fig.3.14: A general network configuration.

To derive the coefficients $K_{1}, K_{2}, K_{3}, K_{4}$ in Eqn. 3.11 using the mathematical approach described in Sec. 3.2 is extremely tedious. On the other hand, a resistive network analogue for this nodal configuration can easily be constructed (Fig. 3.14). The only
problem that remains is to determine the values of the resistances R_{1}, R_{2}, R_{3} and R_{4} which can then be substituted into the nodal equation in Eqn. 3.9 to obtain the required finitedifference formula:

$$
\begin{equation*}
\frac{1}{R_{1}} u_{1}+\frac{1}{R_{2}} u_{2}+\frac{1}{R_{3}} u_{3}+\frac{1}{R_{4}} u_{4}-\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}\right) u_{0}=0 \tag{3.12}
\end{equation*}
$$

Notice that the resistance values of the network analogue are just the reciprocals of the finite-difference coefficients in Eqn. 3.11. It would therefore be more appropriate to consider the conductances $G_{1}=\frac{1}{R_{1}}, G_{2}=\frac{1}{R_{2}}, G_{3}=\frac{1}{R_{3}}$ and $G_{4}=\frac{1}{R_{4}}$ instead of the resistances in the network analogue. This, as will become clearer, greatly simplifies the developments to be discussed in the remaining parts of this section.

Coefficients for the Basic Equation

Recalling from Section 3.3 that the conductance G_{1} approximates the current pathway $W X Y Z$ between P_{0} and P_{1} (Fig. 3.15). However, this block consists of one half WXP P_{0} with property A and the other half $P_{0} P_{1} Y Z$ with property B. In this case, it would be more sensible to regard G as a parallel combination of two conductances G_{A} and G_{B}, where G_{A} represents the conduction pathway $W X P_{1} P_{0}$ between P_{0} and P_{1}, and G_{B} represents the pathway $P_{0} P_{1} Y Z$. Similarly, all other conductances in the network analogue can be represented in this manner. The purpose of using such a representation is

Fig.3.15: Replacement of G_{1} by two parallel components G_{A} and G_{B}.

Fig.3.16: Network illustrating the relationship between the individual component and the elemental conductors A, B, C, D in Fig.3.13.
that it is now possible to relate each elemental discrete conductor to an elemental network configuration (Fig. 3.16). The importance of this will be realized in the later developments in this section.

The immediate advantage however, is that the finitedifference equation for the nodal configuration in Fig. 3.13 can be easily derived from the network analogue in Fig. 3.16 to be:

$$
\begin{align*}
\left(G_{A}+G_{B}\right) u_{1} & +\left(G_{C}+G_{D}\right) u_{2}+\left(G_{A}+G_{D}\right) u_{3}+\left(G_{B}+G_{C}\right) u_{4} \\
& -2\left(G_{A}+G_{B}+G_{C}+G_{D}\right) u_{0}=0 \tag{3.13}
\end{align*}
$$

Expressed in this form, the finite-difference equation for any arbitrary node 0 can be computed given the conductivities of the four surrounding elemental blocks A, B, C and D.

Equation for Non-Uniform Grid

The use of a regularly distributed finite-difference grid is often in practice, inefficient. Whereas a given grid interval may not be adequate to repiresent certain parts of the field region, it may on the other hand be unnecessarily fine in other parts. In order to minimize the number of nodes (hence the size of the system of linear equations) for a required accuracy, nonuniform grids are often used so that the grid densities may be adjusted to suit the local field condition.

Fig.3.17: Non-uniform grid

Fig.3.18: Equivalent Network
for a rectangular elemental conductor

Consider a non-uniformly distributed grid configuration, Fig. 3.17. Each discrete element $A, B, C, D \ldots$ may no longer be a square. Consider the element n, whose x and y dimensions are I_{x} and I_{y} respectively (Fig. 3.18). If the conductivity of the element is G_{n}, then it can be shown that the values of the x and y components in the equivalent network are:

$$
\begin{equation*}
G_{x}=\frac{I_{Y_{G}}}{I_{x}}{ }_{n}, \quad G_{y}=\frac{I_{x}}{L_{y}}{ }_{n} \tag{3.14}
\end{equation*}
$$

The finite-difference equation for the nodal configuration in Fig. 3.17 can therefore be expressed as:-

$$
\begin{align*}
\frac{1}{L_{1}}\left(I_{3} G_{A}+I_{4} G_{B}\right) u_{1} & +\frac{1}{L_{2}}\left(I_{4} G_{C}+L_{3} G_{D}\right) u_{2}+\frac{1}{L_{3}}\left(I_{1} G_{A}+L_{2} G_{D}\right) u_{2} \\
& +\frac{1}{L_{4}}\left(L_{1} G_{B}+L_{2} G_{C}\right) u_{4}-[] u_{0}=0 \tag{3.15}
\end{align*}
$$

where the quantity [] denotes the sum of the coefficients of u_{1}, u_{2}, u_{3}, u_{4}.

Equation for Anisotropic Conductor.

Fig.3.19: A sketch of a typical muscle layer. The 'flow-lines' indicate high conductive pathways.

Fig.3.20: A discrete representation of the anisotropic muscle layer. The heavy lines indicate pathways connected by high conductive components.

Occassionally, it may occur that the given conductor is anisotropic. In the case where the conductivity varies from one principal axis to another, the difficulty is easily dealt with. A more difficult situation arises when the variation in conductivity follows no consistent direction. Such aniso-
tropicities occur for example in skeletal muscles where the conductivity along the muscle fibres is an order of magnitude greater than in the transverse direction and there is no specific direction in which these fibres lie. A sketch of a typical muscle layer is shown in Fig. 3.19. The 'flow-lines' indicate pathways of high conductivity.

The method proposed here to simulate such anisotropicity is a natural extension to the numerical-analogue. The field concerned is discretized and approximated in the usual network form. Highly conductive pathways are then laid into the network to create the effects of anisotropicity. These are represented by the heavy thick lines in Fig. 3.20. It is clearly seen that the smaller the discretization interval is made, the more accurate will be the approximation.

Consider the network in Fig. 3.20 with a high conductive pathway through it. Such a network can be constructed using discrete elements whose equivalent networks consist of different conductive components (Fig. 3.21). To derive the

Fig.3.21: System for identifying each component in an anisotropic elemental conductor.
finite-difference equation in this case requires each individual. conductance to be identified. This can be achieved by labelling the conductances in each element as indicated in Fig. 3.21. The finite-difference equation now becomes:

$$
\begin{gather*}
\frac{1}{I_{1}}\left(I_{3} G A+I_{4} G_{B}^{1}\right) u_{1}+\frac{1}{I_{2}}\left(I_{4} G_{C}^{3}+I_{3} G_{D}^{1}\right) u_{2}+\frac{1}{L_{3}}\left(I_{1} G_{A}^{4}+I_{2} G_{D}^{2}\right) u_{3} \\
\frac{1}{I_{4}}\left(I_{1} G_{B}^{4}+I_{2} G_{C}^{2}\right) u_{4}-[] u_{0}=0 \tag{3.16}
\end{gather*}
$$

where [] denotes the sum of the coefficients of $u_{1}, u_{2}, u_{3}, u_{4} *$

Equation in 3-Dimensions

The developments described above are casily extended to 3-dimensions. Here, each discrete elemental conductor is represented by a 3 -dimensional network structure as shown in Fig. 3.22. It is however, not essential to identify each individual conductance in this network for calculating volume-

Fig.3.22: Equivalent network for a three-dimensional eiemental conductor.

Fig.3.23: Diagram illustrating the directions of anisotropicities in the upright human torso.
conductor fields. The reason is that the anisotropicity in the upright torso occurs only in the horizontal planes
(Fig. 3.23). Therefore, it is only necessaxy to define the five ratios, $G_{n}^{1}: G_{n}^{2}: G_{n}^{3}: G_{n}^{4}: G_{n}^{5}$ for an elemental conductor n as defined in Fig. 3.22. The finite-difference equation for a

Fig.3.24: Nodal configuration in a three-dimensional volume-conductor.
node 0 at the corner of eight neighbouring cubes A, B, C, D, E, F, G and H (Fig. 3.23) is therefore given by,

$$
\begin{align*}
& \frac{1}{L_{1}}\left(L_{3} L_{5} G_{A}^{1}+L_{3} L_{6} G_{B}^{3}+L_{4} L_{6} G_{C}^{3}+L_{4} L_{5} G_{D}^{1}\right) u_{1} \\
+ & \frac{1}{L_{2}}\left(L_{3} L_{5} G_{E}^{1}+L_{3} I_{6} G_{F}^{3}+L_{4} L_{6} G_{G}^{3}+L_{4} L_{5} G_{H}^{1}\right) u_{2} \\
+ & \frac{1}{L_{3}}\left(L_{1} L_{5} G_{A}+L_{1} I_{6} G_{B}+L_{2} L_{6} G_{F}+L_{2} L_{5} G_{E}\right) u_{3} \\
+ & \frac{1}{L_{4}}\left(L_{1} L_{5} G_{D}+L_{1} L_{6} G_{C}+L_{2} L_{6} G_{G}+L_{2} L_{5} G_{H}\right) u_{4} \\
+ & \frac{1}{L_{5}}\left(I_{1} L_{3} G_{A}+L_{1} L_{4} G_{D}+L_{2} L_{4} G_{H}+L_{2} L_{3} G_{E}\right) u_{5} \\
+ & \frac{1}{L_{6}}\left(L_{1} L_{3} G_{B}+L_{1} L_{4} G_{C}+L_{2} L_{4} G_{G}+L_{2} L_{3} G_{F}\right) u_{6} \\
- & {[] u_{0}=0 } \tag{3.17}
\end{align*}
$$

where [] denotes the sum of the coefficients of $u_{1}, u_{2}, \ldots u_{6}$.

3.5 Solution by Iteration

The solution of a partial-differential equation using the finite-difference method has been reduced to the solution of a set of simultaneous equations which can be expressed in the matrical form,

$$
\begin{equation*}
A \underline{u}=\underline{b} \tag{3.18}
\end{equation*}
$$

where A is a matrix of the finite-difference coefficients, \underline{u} is a column vector containing the unknown potentials and b is a column vector of known values. The resultant matrix A is often very large (an order of 10,000 is necessary for an adequate representation of the torso volume-conductor). However, A is also extremely 'sparse'. That is, it contains a high density of zero elements. In a 3-dimensional conductor, the maximum number of non-zero elements in each row of the A matrix is seven. A typical configuration of a matrix formulated

Fig.3.25: A typical matrix configuration formulated by the finite-difference method.
by finite-differences is shown in Fig. 3.25, only that it is usually of much larger order.

It is clearly seen that to attempt to solve such a system of equations using a direct method of elimination would rapidly 'fill-up' those places which are initially zero. And to attempt to implement such a method on a computer is uneconomical on storage locations. For this reason, an iterative method in which the sparsity of the matrix is fully exploited, is generally used.

Jacobi and Gauss-Seidel Iteration

Variations of iterative procedures applicable to the system in Eqn. 3.18 are numerous. The most well known being the Jacobi and the Gauss-Seidel schemes. In the Jacobi iteration, the solution is found by successive applications of the process:

$$
\begin{align*}
& u_{1}^{k+1}=\frac{1}{a_{11}}\left(b_{1}-a_{12} u_{2}^{k}-a_{13} u_{3}^{k}-\cdots a_{1 n} u_{n}^{k}\right) \\
& u_{2}^{k+1}=\frac{1}{a_{22}}\left(b_{2}-a_{21} u_{1}^{k}-a_{23} u_{3}^{k}-\cdots a_{2 n} u_{n}^{k}\right) \\
& \vdots \\
& \vdots \tag{3.19}\\
& u_{n}^{k+1}=\frac{1}{a_{n n}}\left(b_{n}-a_{n 1} u_{1}^{k}-a_{n 2} u_{2}^{k} \cdots \cdots-a_{n, n-1} u_{n-1}^{k}\right)
\end{align*}
$$

where k is the index of iteration.
The Gauss-Seidel method is a refinement of the Jacobi process. It consists of replacing in each stage of the
iteration, the most recently available estimates:

This scheme has two distinct advantages over the previous one in that the solution converges much more rapidly and the instantaneous updating of the estimates means that it requires only half the storage locations of the Jacobi method. Invariably, the Gauss-Seidel scheme is preferred.

Convergence Theorem

An iterative scheme is only useful if the process converges to the true solution. The condition for the convergence of the Jacobi and the Gauss-Seidel methods are given in a theorem due to Collatz (see Hildebrand, 1968), which states that for an ($n \times n$) system, the iterative processes will converge if Apossesses the following two properties:

1) The matrix A does not contain a ($p \times q$) submatrix of zeros such that $p+q \geqslant n$.
2) The magnitude of each diagonal element in A must be at least as large as the sum of the offdiagonal. elements in that row, and in at least
one case, is larger than that sum.
The matrix formulated by finite-difference method does not have any zero element in its diagonal. Therefore, it cannot possess a ($p \times q$) submatrix of zeros with $p+q \geqslant n$. Moreover, the diagonal element in each row is formed from the negative sum of the off-diagonal elements in that row. In solving this system, the boundary condition requires that the potential of at least one node be known. This means the removal of at least one row and one column of the matrix A. Consequently the second condition is also satisfied.

Therefore, the solution of the finite-difference equations. is guaranteed to converge when either the Jacobi or the GaussSeidel iterative scheme is used.

Acceleration of Convergence.

It is seen clearly from the processes in Eqn. 3.19 and Eqn. 3.20 that when A is sparse, the 'propagation' of the solution will be extremely slow. In other words, a large number of iterations is required for the solution to settle to a satisfactory accuracy. The extrapolated Gauss-Siedel method provides a very simple but nonetheless effective way to accelerate the convergence of the solution. Here, a new value of the estimate is extrapolated from two most recent estimates in the following manner:

$$
\begin{equation*}
\bar{u}_{i}^{k+1}=u_{i}^{k}+w\left(u_{i}^{k+1}-u_{i}^{k}\right) \tag{3.21}
\end{equation*}
$$

where \bar{u}_{i}^{k+1} is the extrapolated estimate and w the 'acceleration factor'. For $1>w<2$, the convergence rate is increased. And for some value \%opt which is different for each problem, the convergence becomes most rapid. This optimum acceleration factor can be estimated using the empirical formula (see Binns and Lawrenson, 1973),

$$
\begin{equation*}
w_{\text {opt }}=\frac{2}{1+(1-c)^{\frac{1}{2}}} \tag{3.22}
\end{equation*}
$$

where c is defined as the limiting value of the ratio of the absolute values of the maximum changes in the estimate occuring on successive iterations when the acceleration factor is unity:

$$
\begin{equation*}
c=\operatorname{Ltt}_{k \rightarrow \infty} \frac{\max \left|u_{i}^{k+1}-u_{i}^{k}\right|}{\max \left|u_{i}^{k} \cdot u_{i}^{k-1}\right|} \tag{3.23}
\end{equation*}
$$

Although any arbitrary value may be used as the initial estimate for $u_{1}^{(0)}, u_{2}^{(0)}, u_{3}^{(0)}, \ldots . u_{n}^{(0)}$, on the other hand a considerable amount of computing time can be saved if these initial estimatos are made as close to the final solution as possible. This fives rise to a scheme to speed up convergence by obtaining firstly, an approximate solution on a coarse grid and then using this solution as the initial estimate for the final system.

Convergence error

There is no means by which the error at each step of the
iteration can be calculated. However, an upper bound to the error e_{m} in the solution can be estimated using the following formula (see Milne, 1953),

$$
\begin{equation*}
e_{m}=\frac{r R^{2}}{4 h^{2}} \tag{3.24}
\end{equation*}
$$

where R is the radius of a sphere which just encloses the volume-conductor, h is the grid interval and r is the maximum residual in the solution.

51

3.6 Program Organization

A complete description of the computer program for implementing the numerical-analogue is given in Appendix A. The program is organized into four phases of operations which are briefly described below:

PHASE1 - The purpose of PHASE1 is to read and unpack the volume-conductor data and store them on file TAPE1. The program assumes the input data to be arranged in the manner described in Sec. 3.4 .1 .

PHASE2 - This phase scans the coded data on TAPE1 and generates the finite-difference nodes for the conductor. These are stored on file TAPE2.

PHASE3 - PHASE3 is concerned with constructing the set of finite-difference equations using data on TAPE1 and TAPE2. These equations are stored on file TAPE3.

PHASE4 - This phase reorganizes the data on TAPE3 for efficient iteration. The potential at each node is calculated using the Gaussmseidel method. The solution is stored on file TAPE4.

3.7 Simple Validation Studies

The validity of the numerical-analogue is investigated in this section by comparing the solutions obtained using this method with those obtained analytically.

Dipole in a Sphere

The formula derived by Frank (1952) to calculate the potential distribution inside a homogeneous conducting sphere due to two point current sources provides an ideal volumeconductor solution against which the validity of the numericalanalogue can be demonstrated.

Fig.3.26: Two point current sources arbitrarily located inside a homogeneous conducting sphere, one octant of which is shown.

Consider two point current sources $+I$ and $-I$ arbitrarily
located inside a homogeneous conducting sphere S of radius R and conductivity G. The potential at any point within S can be determined from the formula,

$$
\begin{equation*}
V=\frac{I}{4 \pi G}\left(\frac{1}{r_{b}}=\frac{1}{r_{a}}+\frac{R}{b r_{b i}}-\frac{R}{a r_{a i}}+\frac{1}{R} \operatorname{In}\left[\frac{r_{a}+R-a \cos \varnothing}{r_{b}+R-b \cos \theta}\right]\right) \tag{3.25}
\end{equation*}
$$

where

$$
\begin{aligned}
r_{a} & =\left(r^{2}+a^{2}-2 r a \cos \varnothing\right)^{\frac{1}{2}} \\
r_{b} & =\left(r^{2}+b^{2}-2 r b \cos \theta\right)^{\frac{1}{2}} \\
a r_{a i} & =\left(R^{4}+r^{2} a^{2}-2 \operatorname{Rracos} \varnothing\right)^{\frac{1}{2}} \\
b r_{b i} & =\left(R^{4}+r^{2} b^{2}-2 R r b \cos \theta\right)^{\frac{1}{2}}
\end{aligned}
$$

and the parameters R, r, a, b, \varnothing, and θ are as specified in Fig. 3.26.

Fig.3.27: Two symmetrically placed current sources, $+I$ and $-I$ in the equatorial plane of a conducting sphere S.

The dis'rr:bution for the case of two current sources symmetrically placed in the equatorial plane (Fig. 3.27)

Fig.3.28: Potential distribution in one-quarter of the equatorial plane for the source configuration in Fig.3.27 calculated using Eqn.3.25.

Fig.3.29: Numerical-analogue solution of the potential distribution for the source configuration in Fig.3.27.
is shown in Fig. 3.28. Because of the symmetry of the isopotentials about the x and y axes, only one-quarter of the equatorial plane is shown. The dotted circle shows the region inside which Eqn. 3.25 has no solution.

The same problem is now attacked using the numericalanalogue. A discrete spherical conductor is constructed from elemental cubes of dimension $\frac{R}{15}$. The potential distribution calculated by the numerical-analogue for the same source configuration is shown in Fig. 3.29.

Notice that in spite of the rather coarse representation of the sphere, the solution obtained still agrees very closely with the one obtained analytically.

Boundary Condition

It is well known that when an isopotential line crosses a boundary between two regions of different conductivity, it must be 'refracted' according to the relation,

$$
\begin{equation*}
\frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{g_{1}}{g_{2}} \tag{3.26}
\end{equation*}
$$

where g_{1} and g_{2} are the conductivities of the two regions, θ_{1} and θ_{2} are the angles which the tangents to the isopotential make with the boundary at the point of crossing (Fig. 3.30).

This boundary condition provides a simple means of testing the validity of the numerical-analogue solution of inhomogeneous fields. Fig. 3.3la and Fig. 3.31b show the potential

Fig.3.30: 'Refraction' of isopotential line at the boundary between two different media.
distributions in one plane through two inhomogeneous conductors. In both cases, it is seen that the isopotentials crossing the inhomogeneity interfaces satisfy the relation in Eqn. 3.26.

Anisotropicity

A demonstration of the validity of the numerical-analogue for calculating anisotropic fields is now discussed. Consider the case in which the conductivities in the principal axes, x, y, and z are all different. The Laplacian for such an anisotropic conductor is,

$$
\begin{equation*}
g_{x} \frac{\partial^{2} u}{\partial x^{2}}+g_{y} \frac{\partial^{2} u}{\partial y^{2}}+g_{z} \frac{\partial^{2} u}{\partial z^{2}}=0 \tag{3.27}
\end{equation*}
$$

where g_{x}, g_{y} and g_{z} are the conductivities in the x, y and z directions respectively. The problem in Eqn. 3.27 can be transformed into one involving isotropicity using the transformation,

$$
\frac{g_{1}}{g_{2}}=0.5
$$

$$
\frac{\tan _{1}}{\tan \theta_{2}}=0.49
$$

$$
g_{1}=1.0 \quad g_{2}=2.0
$$

Fig.3.31a

$$
\begin{aligned}
\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}} & =0.2 \\
\frac{\tan \theta_{1}}{\tan \theta_{2}} & =0.206
\end{aligned}
$$

Fig.3.31b

Fig.3.31: Calculations of conductivity ratios from the angles the isopctentials make with the boundaries separating two regions of different conductivities.

$$
\begin{equation*}
x^{\prime}=\frac{\left(g_{y} g_{z}\right)^{\frac{1}{2}}}{g} x \quad, \quad y^{\prime}=\frac{\left(g_{x} g_{z}\right)^{\frac{1}{2}}}{g} y \quad, \quad z^{\prime}=\frac{\left(g_{x} g_{y}\right)^{\frac{1}{2}}}{g} z \tag{3.28}
\end{equation*}
$$

where x^{\prime}, y^{\prime} and z^{\prime} are the new systems of coordinates. The potential gradients are related by

$$
\begin{align*}
& \frac{\partial u}{\partial x^{\prime}}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial x},=\frac{G}{\left(g_{y} g_{z}\right)^{\frac{1}{2}}} \frac{\partial u}{\partial x} \tag{3,29}\\
& \frac{\partial^{2} u}{\partial x^{\prime}}=\frac{g^{2}}{\left(g_{y} g_{z}\right)} \frac{\partial^{2} u}{\partial x^{2}} \tag{3.30}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial y \prime^{2}}=\frac{g^{2}}{\left(g_{x} g_{z}\right)} \frac{\partial^{2} u}{\partial y^{2}} \quad, \quad \frac{\partial^{2} u}{\partial z^{2}}=\frac{g^{2}}{\left(g_{x} g_{y}\right)} \frac{\partial^{2} u}{\partial z^{2}} \tag{3.31}
\end{equation*}
$$

Substituting Eqn. 3.30 and Eqn. 3.31 into Eqn. 3.27, yields

$$
\begin{equation*}
\frac{g_{x} g_{y} g_{z}}{g^{2}}\left(\frac{\partial^{2} u}{\partial x^{\prime}}+\frac{\partial^{2} u}{\partial y^{\prime}}+\frac{\partial^{2} u}{\partial z^{\prime}}\right)=0 \tag{3.32}
\end{equation*}
$$

which clearly is an expression for an isotropic conductor.
In this exercise, a numerical-analogue solution for an anisotropic conductor is computed. The isopotentials through a plane of the conductor is shown in Fig. 3.32. The same problem on the other hand, can be solved assuming isotropicity by using the coordinate transformation:

$$
\begin{equation*}
x^{\prime}=\sqrt{6} x, y^{\prime}=\sqrt{3} y, z^{\prime}=\sqrt{2} z \tag{3.33}
\end{equation*}
$$

which means calculating the potentials in an equivalent

Fig.3.32: Numerical-analogue solution for an anisotropic conductor.

Fig.3.33: Solution to the same problem in Fig. 3.32 obtained by calculating the potential distribution in an equivalent isotropic conductor. The required solution is derived by an inverse coordinate transformation.
isotropic conductor with dimensions $\sqrt{6}: \sqrt{3}: \sqrt{2}$:(Fig. 3.33). The solution to the original problem is derived by a simple inverse transformation.

It is seen clearly that the solutions obtained by the
two independent methods agree.

61

3.8 Conclusion

The development of a numerical-analogue for calculating volume-conductor fields was described in this chapter. The method is distinct from the finite-difference method and the resistivemetwork analogue in that it combines the latter two methods in such a way that the advantages of both methods are realized.

The validity of the numerical-analogue was also demonstrated by comparing its solutions with those obtained by other means.

CHAPTER 4

A DISCRETE ANATOMICAL MODEL OF THE HOMAN THORAX

4.1 Introduction

In the preceeding chapter, a numerical procedure for calculating the electrical fields in a volume-conductor has been described. Now, a valid digital representation of the human thorax must be derived for applications to the forward problem in electrocardiography.

The choice of an appropriato sampling grid is fundamental to this problem. Ideally, the grid interval should be made as small as possible for two reasons: The first is that the errors introduced by the finite-difference approximation vanish in the limit as the grid interval is made smaller and smaller. Secondly, a fine grid allows greater geometrical details to be resolved, hence a more realistic representation of the human torso. In practice, the limitations of speed and storage of a given computer will ultimately limit the resolution of the chosen grid.

Furthermore, it is not necessarily sensible to exploit the available computing resources to the limit for the reason that the accuracy of the solutions does not depend on the grid size alone, but also on the values of the tissue conductivities used in the simulation, In the present study, these values are taken from published sources. The problem here lies in the difficulties of estimating the accuracies of the published data due to the
inconsistencies between results obtained by different groups of investigators (see Appendix B). The differences ranges from 70\% for liver to some 400% for muscular tissues. Moreover, repeated measurements for the same tissue obtained by Rush et. al.(1963) showed deviations in the results ranging from 14\% for liver to 30% for muscles.

It is therefore difficult to justify the applications of vast computing resources for the purpose of minimizing the errors due to grid size when the validity of published conductivities is somewhat questionable. For this reason, it is more sensible to emphasize when constructing the torso model, on the sconomy of achieving a solution rather than on the numerical accuracies.

4.2 Anatomical Data

The data on which the model is based is obtained from an atlas of the anatomical cross-sections of human body prepared by Symmington (1956). These cross-sections were made from a male cadaver sectioned at approximately one inch interval. For the purpose of this study, two additional cross-sections in between the planes of the atlas were interpolated by hand. Cross-sections corresponding to the torso slabs shown in Fig. 4.1 were digitized using the grid configuration shovn in Fige 4.2. The complete specification of the digitized torso crosssections is shown in Fig. 4.3a and Fig. 4.3b. The corresponding coded images of these cross-sections can be found in Appendix C. 1.

The coded image for a model digitized at a coarser grid of one-half inch is also given in Appendix C (Appendix C.2). The purpose of using two models is to reduce the computational time required to obtain a solution. This is achieved by iterating firstly on the coarse model and then using this solution as the initial guess for the potential function in the finer model. In this way, the proolem of slowly converging solution for the fine. model is overcome.

The conductivity ratios for the codings used in the model are given in Table 4.1. These were derived from the set of tissue resistivity data obtained by Rush et al.(1963). The reasons for using their data is that firstly, this is the most recently available and also one of the most complete set of measurements. Secondly, their measurements were made with electrocardiographic applications specifically in mind.

Fig.4.1: Diagram illustrating the various slabs used in the discrete model.

Fig.4.2: Configuration of the sampling grid.

SLAB 1

sLab 5

SLAB 6.

SLab 7

SLAB 10

Fig. 4. $3 \mathrm{a}:$ Slab 1 to Slab 10 of the discretized torso sections.

Fig. 4.3b: Slab 11 to Slab 17 of the discretized torso sections.

Table 4.1: Table of codings and their conductivity ratios.

TISSUE	RESISTIVITY (ohm-cm)	CODING	CONDUCTIVITY RATIO				
Human Trunk	463	T	1.0				
Blood	162	M/V	2.8				
Heart	377*	H	1.2				
Lung	2100	L	0.2				
Liver	700	R	0.6				
Skeletal Muscle	$\begin{aligned} & 2300 \text { high } \\ & 150 \text { low } \end{aligned}$	(Refer	to Fig. 3.22 for representation)			anisotropic	
			G^{1}	G^{2}	G^{3}	G^{4}	G^{5}
		1	3.0	3.0	0.2	0.2	3.0
		2	0.2	3.0	3.0	0.2	3.0
		3	0.2	0.2	3.0	3.0	3.0
		4	3.0	0.2	0.2	3.0	3.0
		5	3.0	0.2	3.0	0.2	3.0
		6	0.2	3.0	0.2	3.0	3.0

* The resistivity of the heart is taken to be the geometric mean of the high and low values given by Rush et al.(1963).

4.3 Adequacy of the Sampling Grid

There is no simple analytical means of determining the magnitude of the errors introduced by the finite grid size. The only practical method is to compare the solutions obtained at various grid sizes. Using the solutions obtained at two different grid sizes, the exact solution can be estimated by Richardson's extrapolation method (see Vitkovitch, 1966) which is briefly described below.

Assuming that the potential function does not contain derivatives higher than the order four, then the error introduced by the finite-difference approximation for a grid size h_{a} is,

$$
\begin{equation*}
u_{0}-u_{a}=\frac{M_{4} h^{2} a}{4} \tag{4.1}
\end{equation*}
$$

where u_{a} is the potential at a given node, u_{0} is the exact potential and M_{4} is the magnitude of the fourth order derivative. Similarly, the error due to the grid size h_{b} is,

$$
\begin{equation*}
u_{0}-u_{b}=\frac{M_{4} h_{b}^{2}}{4} \tag{4.2}
\end{equation*}
$$

Eliminating the quantity H_{4} from the above equations gives:

$$
\begin{equation*}
u_{0}=\frac{h_{a}^{2} u_{b}-h_{b}^{2} u_{a}}{h_{a}^{2}-h_{b}^{2}} \tag{4.3}
\end{equation*}
$$

From the extrapolated exact solution, the error introduced by either grid size can therefore be estimated.

Inorder to ecunomize on computional resources, the investigation that follows will be restricted to a two-dimensional
cross-sectional model of the human torso.
Fig. 4.4 shows the same torso cross-section digitized at different grid sizes, three of which, Fig. 4.4a, Fig. 4.4b and Fig. 4.4c are digitized using regular grids of one-sixth inch, one-third inch and one-half inch respectively. The fourth, Fig. 4.4d is digitized using an irregular grid with the samgling density greater around the cardiac region, because here the potential function varies the most rapidly.

The electrical potential distribution for each model is calculated for the same source configuration. In each case, the iteration is terminated when the upper bound for the error in the solution as determined from Eqn. 3.24 is less than 0.001\%. The maximum difference between the solution obtained using the onesixth inch grid and the one-third inch grid is of the order of 3%. Substituting this into Eqn. 4.3 gives an estimated discretization error of some 1% for the onemsixth inch model and 4% for the one-third inch one. Similarly, error for the one-half inch model is estimated to be some 10\%. As the grid interval for Fig. 4.4d is irregular, it it not possible to use this technique to estimate its discretization error. However, since the maximum difference between the solution for this model and that for the one-third inch one is only some 0.3%, it is therefore unlikely that the error here would be greater than 4.5\%.

- The computional time required for each of these solutions is shown in Table 4.2. When the grid size is reduced from onethird inch to one-sixth inch, the computional time is increased by a staggering amount of 1600%. The corresponding improvement in

Fig. 4.4a: One-sixth inch Erid.

Fig.4.4c: One-half inch grid.

Fig. 4.4b: One-third inch grid.

Fig.4.4: Digitization of the same torso section usine different grid sizes. The heavy thick lines are isopotentials due to a sinusoidally varying potential distribution on the heart surface.

Table 4.2: Computational time and estimated error for different grid sizes.

$\underset{(\text { inch })}{\text { GRID SIZE }}$	computarional time (sec.)	ESTILATED ERROR (\%)
One-sixth	80	1
One-third	5	4
One-half	1	10
Irregular	2.5	5

72

the numerical accuracy on the other hand is only some 4% which hardly justifies the large difference in the computional costs. A further reduction of 50% in the computional cost can be achieved by using the irregular grid in Fig. 4.4d. Although this investigation is carried out using twodinentional models, the results nevertheless do provide useful indications as to the adequacies of the discrete three-dimensional torso model described in the previous section.
4.4 Effects of the Various Internal Inhomogeneities

The discrete model of the human torso developed in Section 4.2 includes all the internal inhomogeneities that could be resolved by the grid. It is relevant to enquire whether all the inhomogeneities are necessary. If not, then clearly it would be sensible to simplify the model accordingly.

For this investigation the surface distribution for five models with varying degree of complexity in their anatomies vere used. These are shown in Fig. 4.5.

It is observed that the introduction of intracardiac blood-mass enhances greatly the magnitudes of the surface maximum and minimum. This observation is in close agreement with the results obtained by Barnard et al.(1967). Two interesting features are observed when the lungs are introduced. The first is a slight clockwise rotation of the surface potentials and the second is a 'focusing' effect towards the front of the torso. The rotation of the potentials can be explained by the difference in mass between the left and the right lungs, while the focusing effect can be accounted for by the low resistive pathrays through the gaps separating the two lungs. A further rotation of the isopotentials is observed when the liver is introduced. This once again, is due to the nonuniform displacement of currents in the torso. The effects of the spine, the sternum and the great vessels are to increase the irregularities in the isopotentials. A drastic change in the pattern of the surface potentials is observed when the anisotropicity of the skeletal muscles is introduced. This includes a

SURFACE POTENTIAL DISTRIBUTIONS FOR DIFFERENT MODELLING ASSUMPTIONS

(A)

(B)

(C)

(D)

(E)

MODELLING ASSUMPTIONS
(A) - HOMOGENEOUS ISOTROPIC TORSO-SHAPED VOLUME CONDUCTOR
(B) - AS $(A)+$ INTRACARDIAC BLOOD MASS
(C) - RS $|B|+$ LUNGS
(D) - AS $([)+G . V E S S E L S$. SPINE. LIVER AND SKEL.MUSCLE
(E) - RS (D) BUT WITH ANISDTROPIC SKEL. MUSCLE

Figure 4.5

reduction in the magnitudes of the surface potentials and an increase in separation of the maximum and minimum. This is not unexpected since the effect of a low resistive pathway parallel to the body surface is to disperse any localized concentration of the surface currents.

Since it is shown that all the inhomogeneities contribute to the body surface potentials in a significant manner, it can therefore be argued that the data accumulated in Section 4.2 are justified in the complexities of the internal inhomogeneities.

4.5 Comparison of Simulated and Observed Surface Potentials

In this section, the data of the torso model accumulated in this chapter is used to calculate catheter potentials on the body surface of cardiac patients with pacemakers implanted in their right ventricles. These simulated suriace potentials are then compared with those actually measured on the patients' torsos.

The measurements of Hamer et al.(1965) from implanted pacing catheters provide an ideal basis for comparison. They recorded from several cardiac patients with implanted pacemakers in their right ventricles, the magnitudes of the pacemaker impulses at various sites on the patients' torsos. From these recordings, they reconstructed isopotential maps of what is effectively a dipole source located in the right ventricle.

From their information of the locations and orientations of the catheter tips in the patients, the corresponding surface distributions were computed using the torso model derived in this chapter. The simulated surface potential distributions and those reconstructed by Hamer et al.(1965) are showr in Fig. 4.6. It is seen that a close agreement in all the major features between the two sets of distributions can be found. This indicates quite strongly the validity of the model data accumulated in this chapter.

COMPARISONS BETWEEN SIMULATED AND

 EXPERIMENTALLY OBSERVED CATHETER POTENTIALS
(A)

(1)

(2)

(3)

```
    (A).(B).(C) - BODY SURFACE POTENTIAL DISTRIBUTION PRODUCED BY CATHETER IMPULSES
    ( REDRAWN FROM HAMER. BOYLE AND SOWTON. 1965
    (1).(2).(3) - SURFACE DISTRIBUTION OBTAINED BY 5IHIULATION
```

Figure 4.6

4.6 ConcIusion.

A digital computer model of the human torso which took into account the intra-cardiac blood-mass, the great vessels, the heart muscle, the lungs, the liver, the spine, the sternum and the anisotropic skeletal muscles has been derived. The validity of this model was demonstrated by comparing surface potentials computed from the model with those obtained. experimentally.

In order to speed up the convergence of the solution, a coarser model was also constructed so that an initial estimate of the solution could be obtained economically. Using this estimate as the initial guess in the finer model, the number of iterations required to achieve the solution is greatly reduced.

78

CHAPTER 5

AN INVESTIGATION ON THE FEASIBILITY OF
 AN UNCONSTRAINED INVERSE SOLUTION

5.1 Introduction

The purpose of this chapter is to investigate the feasibility of an unconstrained inverse solution based on recovering epicardial potentials from surface measurements. Previous workers (Barnard et al., 1967; Brody and Hight, 1972; Martin and Pilkington, 1972) have demonstrated the inherent difficulties in such an approach due to the highly ill-conditioned property of the heart-surface transfer matrix T defined in Chapter 2. The effect is that presence of snall perturbations in the measurement vector v in the equation,

$$
\begin{equation*}
T \underline{s}=\underline{\underline{v}} \tag{5.1}
\end{equation*}
$$

will lead to serious errors to be observed in the solution vector s. They also attempted overdetermination of the problem but met with little success in obtaining a valid solution.

In order to overcome this problem, various constraints were imposed by past workers on their inverse solutions. These constraints are usually based on some prior knowledge of the valid solution. For example, Barnard et al.(1967) constrained the dipole moments of their multiple-dipole solution to be non-negative, so avoiding soiutions with
'invard pointing' dipoles which are held to be physiologically unrealistic in normal cases. Another form of constraint which was introduced by Martin and Pilkington (1972) in their epicardial solutions assumed a prior knowledge of the statistics of the solution vectors.

However, a constrained approach is not without i.ts disadvantages. Clearly, the ultimate objective in the inverse solution is to aid diagnosis and detection of abnormalities. To constrain the solution in order to fit what is a valid result for the normal may risk excluding solutions which are correct for the abnornal. For example, in certain cardiac abnormalities, the excitation spreads outside-in which clearly would be misrepresented by a solution that constrains the dipoles to point outwards.

It is for this reason that this chapter is devoted to the study of the heart-surface transfer relationship in the hope that such investigations may lead to a formulation of an unconstrained inverse solution.

5.2 The Torso as a Spatial Filter

The distribution of body-surface potentials $g(p)$ can be related to the epicardial distribution $f(s)$ by the integral equation,

$$
\begin{equation*}
g(p)=\int_{S} K(p, s) f(s) d s \tag{5.2}
\end{equation*}
$$

where $K(p, s)$ represents the body transfer characteristics and the integration is over the heart surface. The problem in inversc electrocardiography is to infer $f(s)$ from knowledge of $g(p)$. Ideally, this is achieved by a simple inverse transformation of Eqn. 5.2. In practice however, $g(p)$ is obtained by measurements which are subjected to errors such as positional uncertainties, physiological noiso and measurement errors. The result can be to cause the solution to oscillate wildly.

Twoney (1965) proposed an elegant technique for investigating problems of this kind. He showed that the success of inferring $f(s)$ from $g(p)$ when the latter is subjected to noise depends on the shape of $K(p, s)$. This is most clearly illustrated by the. Fourier transform of the kernel $K(p, s)$:

Spectral Kernel

Consider the Fourier transform pair,

$$
\begin{align*}
& f(s)=\int_{-\infty}^{\infty} F(w) e^{-j w s} d s \tag{5.3}\\
& I(w)=\int_{-\infty}^{\infty} f(s) e^{j w s} d s \tag{5.4}
\end{align*}
$$

Substituting Eqn. 5.3 in Eqn. 5.2 qives,

$$
\begin{equation*}
g(p)=\int_{S} K(p, s)\left[\int_{-\infty}^{\infty} F(w) e^{j w s} d w\right] d s \tag{5.5}
\end{equation*}
$$

As the function $K(p, s)$ must vanish outside the area of integration, the limits of integration can be extended to $\pm \infty$. And reversing the order of integration yields,

$$
\begin{equation*}
G(p)=\int_{-\infty}^{\infty} \bar{g}(p, w) F(w) d w \tag{5.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(p, w)=\int_{-\infty}^{\infty} K(p, s) e^{j w s} d s \tag{5.7}
\end{equation*}
$$

known as the spectral kernel is the Fourier transform of $K(p, s)$ with respect to the variable s.

In most physical systems, $K(p, s)$ is a smooth function of s. The corresponding spectral kernel $\Phi(p, w)$ becomes a function uhich decreases rapidly with increasing $|w|$. A simple example to illustrate the rapidly declining function of $\bar{\Phi}(p, w)$ in the volume-conductor was given by Martin and Pilkington (1972).

Case of Two Concentric Spheres

They considered the case of a highly idealized model of the torso represented by two concentric spheres embedded in an infinitely homogeneous medium (Fig. 5.1). The inner sphere represents the heart while the outer sphere represents the torso.

For any given distribution of potential V_{s} on the surface of the inner sphere, the potential V_{p} generated on the outer sphere can be calculated using Poisson's Integral equation:

Fig.5.1: Two concentric spheres of radius a and d embedded in an infinitely homogencous medium.

$$
\begin{equation*}
v_{p}=\int_{S} \frac{\left(d^{2}-a^{2}\right) v_{s}}{4 \pi a r^{3}} d s \tag{5.8}
\end{equation*}
$$

where

$$
\begin{equation*}
r=\left(a^{2}+d^{2}-2 a d \cos \theta\right)^{\frac{1}{2}} \tag{5.9}
\end{equation*}
$$

Because of the symmetry of the systen, Eqn. 5.8 can be reduced to an integration over one variable by making use of the relation,

$$
\begin{equation*}
\delta s=2 \pi a^{2} \sin \theta \delta \theta \tag{5.10}
\end{equation*}
$$

The kernel of this system then becomes

$$
\begin{equation*}
K(c, \theta)=\frac{\left(c-c^{3}\right) \sin \theta}{2\left(1+c^{2}-2 \cos \theta\right)^{3 / 2}} \tag{5.11}
\end{equation*}
$$

where the constant c is the ratio a / d.
A family of the spectral kernel for the various a / d ratios is shown in Fig. 5.2. Clearly, the spectral kernel has the

Fig.5.2: A family of spectral Kernel for various a/d ratios.
characteristics of a 'low-pass' filter. The degree of filtering depends on the distance from the source to the surface.

Interpretation

Inspite of the rapidly decreasing values of $\Phi(p, w)$ as $|w|$ increases, in theory the values only become vanishingly small. Therefore provided the system is totally fres from noise and $g(p)$ can be measured precisely, the function $f(s)$ can be accurately retrieved. In practice however, the system is. subjected to noise which is represented by the shaded region in Fig. 5.2. The consequence of this is that the information which can be extracted is now limited to some frequence range ($-q,+q$) for which $\bar{q}(p, w)$ is greater than the noise level. The number of independent parameters that can be inferred from $g(p)$
according to Shannon's sampling theoren is 2q. Attempt to infer more parameters is to seek information outside the filter 'window' which will only lead to large high frequency oscillations in the solution.

To summarize:

1) A volume-conductor has the characteristic of a 'low-pass' spatial filter. The further the source is from the surface, the greater is the filtering effect.
2) Consequently, only a filtered version of the epicardial potential function can be inferred.
3) For a 'useful' bandwidth of qHz , not more than 2 q independent epicardial generators can be determined.
4) To attempt to infer more epicardial generators will only lead to high frequency oscillations in the solution.

The arguments of this section provide no indication as to the feasibility of an inverse solution, nor do they allow a measure of the errors likely to occur in the solution. Nevertheless, they illustrate the mechanism by which epicardial potentials are transferred to the body surface and outline the inherent limitations of inverse solutions.

5.3 System Eigenvalues as Weight Factors

A more quantitative way to investigate the effect of noise on inverse solution is to consider the eigenvalues of the system transfer matrix T. The system equation (Eqn. 5.1) can be rewritten to account for noise:

$$
\begin{equation*}
T(\underline{s}+\underline{\underline{q}})=(\underline{\underline{y}}+\underline{e}) \tag{5.12}
\end{equation*}
$$

where e is the error vector associated with the measurements of \underline{v}, and f is the resultant error vector in the solution $\underline{\text { s. }}$ The crucial question here is whether the relative smallness of e will result in relatively small f . The answer to this question depends on the relative magnitudes of the system eigenvalues.

Orthogonal Transformation

Consider the error relation,

$$
\begin{equation*}
\mathrm{T} \underline{\hat{I}}=\underline{e} \tag{5.13}
\end{equation*}
$$

Assuming for the moment that T is symmetric. Under this condition, T can be diagonalized by a proper rotation of the reference system (see Lanczos, 1961):

$$
\begin{equation*}
U^{\top} T U=D \tag{5.14}
\end{equation*}
$$

where U is an orthogonal matrix and D is a diagonal matrix containing all the system eigenvalues,

$$
D=\left[\begin{array}{lllll}
d_{1} & & & \tag{5.15}\\
& d_{2} & & \\
& & & & \\
& & & & \\
& & & d_{n}
\end{array}\right]
$$

The rotated system now becomes,

$$
\begin{equation*}
D \underline{f}^{\prime}=\underline{e}^{\prime} \tag{5.16}
\end{equation*}
$$

where $\underline{e}^{\prime}=U^{\top} \underline{e}, \underline{f}^{\prime}=U^{\top} \underline{\underline{P}}$.
The length of the error vectors are not affected by this transformation。 That is, $|e|=\left|e^{\prime}\right|$ and $|f|=|i|$.

Error Magnification

The importance of the system eigenvalues in determining the errors in the solution is demonstrated clearly by the relation,

$$
\begin{equation*}
f_{i}^{\prime}=\frac{e_{i}^{\prime}}{d_{i}} \tag{5.17}
\end{equation*}
$$

The problem arises when d_{i} is very small. The result of dividing the error e_{i}^{\prime} by a very mall number is a very large value of f_{i}^{\prime}. As shown by Lanczos (1961), the critical quantity here is the ratio of the largest to the smallest eigenvalues,

$$
\begin{equation*}
C=\frac{d_{\max }}{d_{\min }} \tag{5.18}
\end{equation*}
$$

which is known as the 'condition number' of the system. This number provides an unper bound to the magnification of the percent error in the solution. The greater the condition number, the less likely is the chance of a successful solution in the presence of noise.

Non-Symmetric System Matrix

The case where T is non-symmetric is complicated by the fact that the eigenvalues are likely to be complex. This problem is overcome by premultiplying the system matrix by its transpose:

$$
\begin{equation*}
T^{\top} T(\underline{E}+\underline{f})=T^{\top}(\underline{V}+\underline{e}) \tag{5.19}
\end{equation*}
$$

The effect of this as mentioned in Chapter 2 is to minimize the length of the residual vector in the solution. If the system is evenly-determined in the first instance. (that is T is square), then this minimization has no effect on the solution. The importance of this operation however is that the new system matrix $\mathrm{T}^{\top} \mathrm{T}$ is once again symmetric and thus amenable to the error analysis doscribed in this section.

5.4 Optimization of the System Resolution

The 'low-pass' filter characteristic of the volumeconductor implies that the magnitude of the condition number will depend on the dimension of the system matrix. The smaller the system matrix, the smaller will be the condition number. This is because in a small system, information is extracted from the low-frequency region of the spatial filter Where the signal-tonoise ratio is large. This leads to the impression that the only means of achieving a stable unconstrained inverse solution is to reduce the size of the system matrix until the condition number is sufficiently small. As will be demonstrated in this section, a carefully selected configuration of the measurement locations can greatly improve the system condition number.

Position for Maximum Resolution

Fig.5.3: Diagram illustrating the system impulse response.

The effect of low-pass filtering is to generate a smoothed version of the epicardial distribution on the body surface. Consider two impulse Eenerators S_{a} and S_{b} at locations a and b on the epicardial surface (Fig. 5.3). Fach generator vill generate a unit response having the ceneral shape V_{a} and V_{b} on the body surface. Assuming that these are the only sources, then the optimal body-surface locations for resolving these sources are at P_{1} and P_{2} respectively. This is clearly illustrated in the following example:

Assuming the contribution to P_{1} and P_{2} due to unit impulse at a is (0.6,0.1). Similarly, the contribution to these two surface points due to a unit impulse at b is ($0.1,0.6$). Whe system equation in this case is,

$$
\left[\begin{array}{ll}
0.6 & 0.1 \tag{5.20}\\
0.1 & 0.6
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

where $\left(S_{1}, S_{2}\right)$ are the impulse strengths and $\left(V_{1}, V_{2}\right)$ are the potentials at P_{1} and P_{2} respectively. For simplicity, assume a source values of $(1.0,1.0)$. The resulting surface values are therefore ($0.7,0.7$). If in measuring these values an error of say, $(+0.01,-0.01)$ is encountered, then in the inverse calculation the values (1.02,0.98) are obtained for the generators. This represents some $\pm 2 \%$ error.

On the other hand, consider the case of two badly selected locations at P_{1}^{\prime} and P_{2}^{\prime}, the system equation of which is say,

$$
\left[\begin{array}{ll}
0.025 & 0.020 \tag{5.21}\\
0.020 & 0.025
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]
$$

Here $\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ are the potentials at P_{1}^{\prime} and P_{2}^{\prime}. For a source values of (1.0,1.0), the surface potentials are (0.045,0.045). Subjecting these observations to the same error ($+0.01,-0.01$), the error in the inverse solution this time is $\pm 200 \%$, which renders the solution totally useless.

Relation to Condition Number

The same conclusion on the errors in the solutions can be arrived at by considering the system condition number. The aigenvalues in the first example are 0.7 and 0.5 . The condition number for this system is therefore 1.4. Consequentiy, for the $\pm 1.4 \%$ error in the observations, the predicted error in the inverse solution is therefore some $\pm 2 \%$, which agrees with the error in the above example.

The eigenvalues in the second example are 0.045 and 0.005 . This gives the system a condition number of 9. The percent error in the observation is some $\pm 22 \%$. The predicted error in the solution here is some $\pm 200 \%$, which once again is in agreement with the errors in the example.

Smoothed Errors

If it is assumed that the measurements can be made accurate to 1%, then for a 10% accuracy in the solution, the system condition number must not exceed 10. In practice however, the errors in the observations are of a smooth nature. Typically, the surface potentials are reconstructed from a limited number of sampling electrodes. This usually constitutes the most

91

significant source of errors. On the other hand, errors due to interpolations are of a smooth kind. As a consequence, the system condition number may now be one or even two orders larger, yet giving a solution that is stable. The reason is that the system is less sensitive to low-ixequency erxors. To illustrate this point, consider once again the ill-conditioned equation (Eqn. 5.21). This time, the observations are subjected to an absolutely smooth exror, that is a d.c shift, of $(+0.01,+0.01)$. The resulting inverse solution has a value of (1.22,1.22), which contains only a 22% errore Notice that inspite of a condition number of 9 , the percent error in the solution has xemained unchanged.

This example demonstrates quite clearly the noed to interpret the system condition number more carefully. In actual fact, the system condition number gives the upper bound of the percent error magnification in the inverse solution. With low frequency errors, the magnification can be considerably less. This suggests therefore, that it is always a good practice to smooth out the high frequency fluctuations in the measurements before attempting the inverse calculation. Such a procedure may not increase the accuracy of the solution, but it does however yield a more stable sointion.

5.5 Feasibility Studies using a 2-Dimensional Torso Model

In this section, the feasibility of an unconstrained inverse solution is investigated using data obtained from model calculations. A block diagram describing the procedure of the investigation is shown in Fig. 5.4

Fig.5.4: Block diagram illustrating the investigation procedure.

Fundamental to the investigation are the questions:

1) The number of epicardial generators that can be unambiguously inferred from surface meacurements.
2) The optimal sites for making these observations.
3) The highest spatial harmonic of the epicardial distribution that can be resolved from surface measurements.

Because of the enormous amount of computing resources

93

required for such studies, a practical solution is to limit the investigations to a 2-dimensional model of the human thorax.

Forward Calculations

The 2-dimensional, one-sixth inch Erid model of the torso constructed in the preceeding chapter is used in the forward calculations in this section. Sinusoidally varying potentials of various harmonics are applied to the heart-surface as test distributions. Fig. 5.5 shows the model surface distributions for the first four harmonics.

model. Frequency-response

—— SOURCE DISTRIBUTION

Fig.5.5: Model frequency-response for the first four harmonics.

Notice the 'low-pass' nature of the torso is clearly demonstrated by the rapidly decreasing magnitude of the surface distributions as the harmonic number increases.

94

A sequence of random numbers scaled to 1% of the peak-topeak value of the test signals are added to the surface distributions in order to simulate the exrors in the real system. These 'noisy' surface potentials provide the data for testing the feasibility of recovering, within some specified accuracy, the original test distributions.

The Equivalent Generator

The equivalent cardiac generators are represented by equal epicardial segments, the potential over each of which is assumed to be constant, having a value equal to the mean of the potentials over that segment. This is the same as approximating the epicardial distribution by a step function as shown in Fig. 5.6.

Fig.5.6: Step function anproximation of the epicardial potential distribution.

The accuracy of such an approximation clearly depends on the number of segments used and the harmonic content of the epicardial potentials. If the highest harmonic number in the distribution is N, then according to the sampling theorem, $2 N$ segments suffice to
represent the distribution. The original analogue function can be recovered from the step function by a smoothing process. A suitable technique is as follows:

1) Decide on the number of points required to represent the smoothed function. Preferably, this should be K such that K / N is an integer, where N is the number of segments in the step function.
2) Set up an array of numbers ($x_{1}, x_{2}, \ldots x_{K}$) with the first K / N values equal to S_{1}, the second K / N values equal to S_{2} and $s 0$ on. $S_{1}, S_{2}, \ldots S_{N}$ are the values of the step function at segraent $1,2, \ldots \mathrm{~N}$ respectively.
3) Smooth the values in the array. For example,

$$
\bar{x}_{i}=\left(x_{i-1}+2 x_{i}+x_{i+1}\right) / 4
$$

where \bar{x}_{i} is the nev value of the ith point.
4) Restore the power in each segment by adding a constant C_{1} to all the values in segment $1, C_{2}$ to all the values in segment 2 , and so on, where

$$
c_{1}=s_{1}-\frac{N}{K} \sum_{i=1}^{K / N} x_{i} \quad, \ldots . e \text { etc. }
$$

5) Repeat steps 3 and 4 until the required degree of smoothness is achieved.

A simple example illustrating this process is shown in Fig. 5.7.

$$
\begin{aligned}
\text { Fig. } 5.7: & \text { Diagram illustrating the process of } \\
& \text { recovering the analogue function from } \\
& \text { the step function. }
\end{aligned}
$$

Inverse Solutions for 4 Heart-Segment Model

The feasibility of inferring 4 epicardial generators is presently investigated. Three system matrices were constructed, one for each of the following electrode configurations:

1) Electrodes placed at 4 equally spaced locations.
2) Electrodes placed at locations where the contribution
from each heart generator is the maximum.
3) Overdetermination by a factor of 3. That is, taking three times as many measurements as is theoretically required.

Fig. 5.8 shows these electrode configurations in relation to the surface contribution from each heart generator.

Fig.5.8: Electrode configurations and their relation to the generator contributions.

The inverse solutions for these 3 systems are calculated using the 'noisy' surface distributions from the previous forward calculations as data. These solutions are represented graphically in Fig. 5.9. Since only 4 epicardial segments are
used, the highest resolvable harmonic is 2. The solutions from electrode configurations 2 and 3 are stable. and it is not difficult to see that a good representation of the original. distributions can be recovered by smoothing the step solutions in the manner described previously. On the other hand, the solution from configuration 1 is highly unstable. An investigation of the system eigenvalues revealed that this system has a condjtion number of 235 . The condition numbers for electrode configurations 2 and 3 are 3 and 25 respectively.

Fig.5.9: Inverse solutions for a 4-segment heart using 3 different system equations.

It is not difficult to see why the system stability is increased by overdetermination since the chances of covering the optimal sites are increased using a large number of electrodes.

Inverse Solution for greater number of Heart Segments

The same inverse calculations were performed for systems with $6,8,10$ and 12 epicardial segments. Table 5.1 lists the condition numbers for all the systems investigated.

Table 5.1: System condition numbers.

No. of Heart Segments	Equally Spaced	Optimally Spaced	3 Over- determined
4	235	3	25
6	475	6	80
8	1175	40	364
10	36410	1117	548
12	135960		

The sizes of the condition numbers in column 1 of Table. 5.1 indicates clearly the unlikely success of an unconstrained solution using evenly-determined systems with arbitrarily selected sampling sites.

Solutions for the 6,8 and 10 heart-segment models are shown in Fig. 5.10, Fig. 5.11 and Fig. 5.12 respectively for electrode configurations 2 and 3. The solutions are stable up to 10 heart segments. Beyond that, the solutions begin to oscillate wildly.

Notice that the condition numbers for the overdetermined systems are one order of magnitude larger than the corresponding

Fig.5.10: Solution for 6 segment heart.

System 3

Fig.5.it: Soiution for 8-segment heart

Fig.5.12: Solutions for 10 heart-segments
systems using optimally selected electrode sites. In spite of this, the solutions are stable while those for the evenlydetermined systems at the same order of condition numbers are unstable. This is because in evenly-determined systems, the solutions are found by the process,

$$
\begin{equation*}
\underline{s}=T^{-1} \underline{v} \tag{5.22}
\end{equation*}
$$

which as discussed in Section 5.3 , favours high frequency fluctuations. On the other hand, solutions obtained using the method of overdetermination,

$$
\begin{equation*}
\underline{E}=\left(T^{\top} T\right)^{-1} T^{\top} \underline{v} \tag{5.23}
\end{equation*}
$$

are such that the errors are minimized in the least-square sense (see Lanczos, 1961).

From the solutions, it is also seen that the risst 3 harmonics of the epicardial distributions can be quite accuratel.y recovered using the 6 heart-segment systems. The accuracies of retrieving the higher harmonics using systems wi.th greater number of heart segments are limited by the system stabilities. This problem is somewhat improved by smoothing the data slightly before attempting the inverse calculations (Fig. 5.12).

103

5.6 Conclusion

The investigations in this chapter have shown that it is feasible to infer up to the 5th harmonic of the epicardial potentials in a 2-dimensional torso model using unconstrained inverse solution. It is not unreasonable to assume that similar results would exist in the 3 -dimensional case although the spatial resolution may be poorer. The important achievement in this chapter, nevertheless, is the insight into the inverse problem provided by this investigation. It is also shown that the ability to resolve the epicardial distributions is greatly improved by,

1) carefully selecting the sites of electrode measurements. The optimal sites being those where the contribution from each generator in turn is the maximum.
2) overdetermination of the problem.
3) smoothing the data before inversion. Although not mentioned in the investigations, clearly, overdetermination of the problem is most effective when all the optimal sites are included in the electrode configuration.

CHAPTER 6

CALCULATIONS OF EPICARDIAL POTENTIALS FROM
IN-VIVO SURFACE NEASUREMENTS

6.1 Introduction

The investigations in the previous chapter showed that an unconstrained inverse solution is feasible using simulated data on a 2-dimensional model of the human torso. In this chapter this investigation is extended to more realistic 3-dimensional torso model derived in Chapter 4 using surface data measured jnvivo.

For the purpose of the forward calculations, the surface of the heart is divided into 26 approxinately equal areal segments. These are configured in three rows of eight segments round the heart and two polar caps. The transfer of the elcctrical potentials from each segment to the body surface is calculated using the digital model of the torso constructed in Chapter 4.

The system transfer matrix relating the potentials on 26 epicardial segments to 26 body surface locations is then constructed from the forvard solutions. These 26 body surface locations are selected from sites where the contribution from each epicardial segment is the maximum. This ensures that the system condition number is kept to a minimum as discussed earlier.

The surface data used in the inverse solutions were obtained from the collection of surface ECG maps acquired by Monro. A 1 A private communication.

105

complete description of the data aquisition and mapping procedure of the surface ECG is found in his publication, Monro et al.(1974).

6.2 Forward Calculations

The surface of the heart is segmented into 26 approximately equal areas. These are arranged in three rows of eight segments around the heart and two polar caps, one at the apex and the other, the basal region of the heart (Fig.6.1). The advantage

Anterior

Posterior

Fig.6.1: Segnentation of the heart-surface into 26 discrete areas.
of using such a configuration is that these segments can be mapped into a regular pattern on a cylindrical surface as shown

25			
1	2	3	4
9	10	11	12
17	18	19	20
26			

Anterior

25			
5	6	7	8
13	14	15	16
21	22	23	24
26			

Posterior

Fig.6.2: Cylindrical projection of the 26 epicardial segments.

107

in Fig. 6.2. This greatly simplifies the task of reconstructing the epicardial distrubutions in the later stage of the development. Furthermore, as demonstrated by lionro et al (1974), a configuration of this kind can be unfolded into a two dimensional array that repeats along the rows and the colums (Fig. 6.3). The importance is that this array is now directly

Fig.6.3: A repetitive 2-dimensional array obtained by 'unfolding' the closed heart surface.
amenable to a 2-dimensional discrete Fourier transform, thus opening the possibility of future spectral analysis on the epicardial distribution.
. The potential transfer from these segments to the body surface is calculated using the numerical technique developed in Chapter 3 and the anatomical model of the thorax described in Chapter 4. The calculations are made for each segment in turn by applying a unit potential over the segment concerned and

108

zero potential everywhere else on the heart surface. The reculting body surface distribution is listed in Appendix D.

From the forward calculations a system matrix is constructed which relates the potentials on the epicardial segments to the potentials at 26 locations on the body surface. These locations are selected to correspond to the sites where the potential contribution from each segment is the maximum. Fig. 6.4 shows the positions of these locations on twó planes which represents

Fig.6.4: Jocations on the body-surface where the transfer relationships are computed.
the cylindrical projection of the front and the back of the body surface. The forward transfer matrix for this configuration is given in Table. 6.1.

109

Table 6.1: The forvard transfer matrix.

41	109	80	13	13	39	48	56	44	70	32	21	8	6	14	18	28	43	23	21	16	19	2'4	34	125	46
35	129	101	13	10	30	35	40	47	109	48	21	6	5	10	13.	27	52	29	18	12	15	19	27	103	39
14	58	223	40	17	30	29	23	13	51	111	83	11	5	7	6	10	21	34	40	13	11	12	12	92	27
12	38	140	54	29	42	36	25	9	27	75	129	22	8	11	7	10	16	27	71	24	17	16	15	96	38
15	35	65	32	41	72	60	36	12	20	$2 ?$	64	32	17	23	13	16	21	20	63	41	35	32	27	112	64
19	39	55	24	34	83	76	46	15	22	22	43	24	17	28	18	19	24	19	46	34	35	36	33	123	62
20	39	46	17	27	80	83	53	17	24	19	32	19	17	34	23	23	28	20	39	32	37	42	41	113	67
33	63	50	12	16	51	64	66	32	40	20	21	11	10	25	29	34	41	23	27	23	30	39	52	117	65
34	107	61	8	8	25	31	37	69	113	34	15	6	5	12	17	45	80	35	18	14	19	25	41	76	55
19	105	124	11	7	17	20	21	35	171	95	22	4	3	6	8	25	77	59	17	9	11	13	20	59	37
8	38	194	31	10	16	15	12	9	57	200	106	8	3	4	4	8	28	87	50	10	8	8	9	45	28
7	24	119	46	22	27	23	13	6	23	108	183	20	6	7	5	7	15	54	121	23	14	12	11	57	39
11	27	58	35	39	53	44	26	9	17	30	92	43	16	18	10	14	20	22	106	55	37	31	24	83	76
13	27	37	17	28	66	62	35	13	18	17	35	27	25	39	20	24	29	23	55	52	58	57	44	79	94
16	31	34	13	22	64	69	42	16	21	15	26	19	22	47	28	29	33	23	43	41	54	62	54	79	90
20	36	32	10	15	48	58	48	23	28	15	19	13	15	30	37	41	45	28	34	34	48	63	75	75	96
16	33	25	7	10	29	35	33	27	33	15	14	9	10	25	29	64	72	41	35	35	52	67	96	52	132
13	34	23	5	6	18	21	21	33	57	22	11	6	6	14	18	85	141	70	29	25	38	50	77	35	135
8	25	23	3	4	10	12	12	22	71	48	13	3	3	8	9	59	205	170	29	17	24	30	41	21	125
3	10	20	4	3	5	6	5	6	26	83	42	3	2	4	3	19	91	331	111	13	15	16	17	11	146
4	9	20	10	11	17	15	9	4	8	19	60	20	7	9	5	12	20	49	352	61	33	25	19	$2{ }^{1}$	171
7	16	24	12	17	31	28	17	9	13	14	37	26	15	19	11	23	33	35	127	89	71	54	39	41	185
9	18	22	9	14	33	33	21	12	16	12	24	19	18	28	16	32	41	35	70	75	89	79	57	42	170
10	21	22	8	13	33	35	25	15	19	12	19	15	16	32	21	40	48	36	53	60	83	87	71	44	157
28	87	129	25	21	50	52	47	23	51	44	38	12	7	13	12	16	26	20	28	17	17	19	22	154	36
5	11	12	4	5	12	13	10	9	16	16	16	7	6	11	9	34	72	108	103	45	51	48	44	19	306

6.3 Inverse Calculations.

Also superimposed on the two body surface planes are the locations where the ECG measurements for surface mapping were taken (Fig. 6.5). The data required for the inverse calculations were recovered from these measurements by means

Fig.6.5: Locations on the body surface where surface measurements are taken.
of the 'band-limited' interpolation procedure described by Monro et al.(1974).

Fig. 6.6 shows 20 frames of body surface isopotential maps for a normal subject taken at 2msec. intervals. The corresponding potential values on the 26 epicardial segment. for each frame is salculated using the unconstrained solution.

$$
\begin{equation*}
\underline{s}=T^{-1} \underline{v} \tag{6.1}
\end{equation*}
$$

where T is the system matrix given in table $6.1, V$ is the surface data on the 26 surface locations shown in Fig. 6.4 and \underline{s}, the calculated potential values on the 26 epicardial

111

Fig.6.6a: Body-surface maps. Frame 1-71.

112

Fig.6.6b: Body-surface maps. Frame 81-151.

Fig.6.6c: Body-surface maps. Frame 161-191.

Fig.6.7a: Epicardial maps. Frame 1 - 71.

Fig.6.7b: Epicardial maps. Frame 81-151.

Fig.6.7c: Epicardial maps. Frame 161-191.
segments. From the inverse solutions, epicardial isopotential maps were reconstructed using the smoothing technique described in the previous chapter, except that here, the process is in two dimensions. These maps are shown in Fig. 6.7. In order to aid interpretation of the epicardial potential maps, the various regions of the heart surface as projected onto the cylindrical surface is shown in Fig. 6.8.

Fig.6.8: Diagram illustrating the cylindrical projection of the heart surface.

6.4 Stability of Inverse Solution

Serious errors vere observed in the inverse solution when the validity of Equation 6.1 was first tested. This was later discovered to be due to the Iimited accuracies in which the exact inverse of the matrix T can be computed. The effect of the errors in the inversion is to cause large oscillating values in the solution. This is clearly seen in the listing of the inverse calculations in Appendix E. 1.

This problem was overcome by using an iterative method of solving the system equation. In an iterative scheme, the solution is obtained by successive approxjinations which in the limit approaches the exact solution. Such a process is relatively unaffected by the machine resolution. Because of the manner in which the system matrix is constructed, the elements along the diagonal are either the largest or of the same order as the largest element in each row. This makes the system equation directly amenable to the Gauss-Seidel iteration previously described in Section 3.5. The solutions obtained using this method is given in Appendix E. 2 .

There remains however, the question of the magnification of the percentage error expected in the solution. An eigenvalue analysis showed that the system has a condition number of 2104. In the worst case therefore, the percentage error in the solution would be some 2000 x the percentage error in the data. Assuming the magnitude of the surface potentials to be of the order of $\pm 1 \mathrm{mV}$, then for $a \pm 10 u V$ error in the moasurements, the error in the solution would therefore be some 2000%. But as discussed
in the previous chapter, the magnification of the error in a practical system can be considerably less.

A more useful test of the system stability is to perturb the surface data by some noise and observe if the error in the solution remains within an acceptable limit. The inverse calculations in Appendix E. 2 were repeated with louV of noise added to the surface data. This is shown in Appendix 1.3. An investigation of the inverse solutions showed that the noise level is everybhere of the order of 100 uV . Since the values of the inverse solution are an order of magnitude larger than the surface data, the percentage noise level therefore, has remain virtually unchanged. In other words, there is virtually no deterioration in the signal-to-noise ratio in the calculated epicardial potentials in spite of the fact that the system's condition number in some 2000.

6.5 Validity of the Inverse Calculations

The validity of the inverse calculations is somewhat impossible to verify without an accurate and complete picture of the actual epicardial potentials of the same subject to compare with. In-vivo epicardial measurements are beyond the scope of the present study. And even then, it is uncertain whether the epicardial distributions would remain unchanged in an open-chest experiment.

However, several research workers have previously mapped the epicardial potentials for the canine heart (Taccardi and Marchetti, 1965; Spach et al., 1975). Although the excitation of the canine heart is known to differ from the human heart, nevertheless, there exists a large degree of correspondence between them (Lurrer et al. 1965). A rough estimate of the validity of the inverse solution can therefore be obtained by comparing the reconstructed epicardial maps with published maps of the canine heart.

One such experiment was conducted by Taccardi and larchetti (1965) in which an isolated dog's heart vas inmersed in a Ringer's bath. An exploring electrode was then rotated around the heart, mapping the potentials on a cylindrical surface enclosing the heart. Fig. 6.9 shows the canine maps redrawn from Taccardi at four instances in the QRS cycle corresponding approximately to Frame number $81,91,101$ and 121 of the calculated human epicardial maps.

It should be noted that the dog's heart in the experiment was suspended in an upright position with both atria superior to the ventricles. Normally, the heart in the body lies on its side.

121

The map of the various epicardial regions for the inverse calculations is illustrated in Fig. 6.8. The map for the cylindrical projection of the heart surface in the experiment is shown in Fig. 6.10. At the beginning of the QRS cycle, both sets of maps show the presence of a potential maximum directly over the right ventricle and a minimum over the left ventricle. About halfm way between the $Q-R$ interval, the potential maximum over the right ventricle is replaced by a minimum in both maps. Another minimum is found over the right atrium and a maximum over the left ventricle. Both sets of maps agree very closely in these features. At the instant of the R-peak, both maps show the richt ventricle. and the right atrium to be negative while the left ventricle and the left atrium to positive. However, the calculated map shows two minimum, one over the right ventricle and the other over the right atrium. This feature is also observed in the surface map. The canine map on the other hand showed only one minimum over the right ventricle. This difference could be due to several factors ranging from the electrophysiological difference between the human and the canine heart to simply the fact that in the experiment, the epicardial potentials were mapped 'remotely', resulting in the loss of spatial resolution. The two maps agree once more at the end of the gRS complex with a potential maximum appearing over the right ventricle and a minimum over the left ventricle.

These results are also in agreement with the findings of Spach and Barr (1975).

Fig.6.9: Epicardial maps of the canine heart.
(Redrawn from Raccardi and Narchetti).

Fig.6.10: Conjectural diagram illustrating the projection of the dog's heart onto the mapping cylinder.

123

6.6 Conclusion

In this chapter, the transfer function between 26 epicardial segments and 26 body surface locations was calculated. Using this transfer relationship, epicardial potentials were reconstructed from in-vivo surface ECG maps. The validity of the inverse calculations was demonstrated by comparing the reconstructed epicardial maps with published maps of the canine heart.

CHAPTER 7

CONCLUSION

This dissertation is concerned with two fundamental problems in electrocardiography, namely the forward problem and the inverse problem.

Forward Solution

The forward problem was approached using a digital computer model of the human torso based on the numerical-analoçue developed in this study. Physically, the model can be thought of as an assembly of discrete blocks of conductors. Each block is assumed to be homogeneous but not necessarily isotropic. In order to represent the torso anatomy on the computer, each discrete block is assigned an alphamumeric character corresponding to the electrical property of that block. In this way, the entire 3m dimensional torso structure is represented as coded images in the computer. The potential at each node in the model is calculated by the method of finite-differences. A set of linear algebraic equationsrelating the potential at each node to the potentials at neighbouring nodes is constructed using the general finite-difference equation formula derived in this study. This set of equations is then solved iteratively using the accelerated Gauss-Seidel method. Because of the enormous number of equations involved, the convergence of the solution can be extremely slow indeed. By using a coarser model to obtain an initial estimate
of the solution and then improving the accuracy of this solution on the finer model, the amount of computational time requixed to achieve a solution is greatly reduced.

The validity of this model was demonstrated by comparing simulated body-surface distributions due to a catheter located inside the heart with those actually observed on cardiac-patients with implanted pacemakers.

Inverse Solution

The inverse problem on the other hand, was approached by a careful investigation of the factors that could lead to an unstable solution. It was shown that the torso can be regarded as a kind of spatial filter to the potential transier fron the heart to the body surface. This filter is of a 'Iov-pass' nature. Consequently, the spatial resolution of the cardjac senerators is limited to the 'bandwidth' of this filter. To attempt to resolve cardiac generators outside this bandwith will only lead to instability. A carefully chosen configuration of generators will therefore greatly increase the chances of a successful inverse solution. It was also demonstrated that a well selected body. surface locations for constructing the epicardial to body-surface transfer matrix will enhance the stability of the inversion. The optimum body sites being those where the contribution from each generator is the maximum. The transfer matrix so constructed has amongst the smallest condition number.

Other procedures proposed for improving the stability of the inverse calculations included spatial smoothing of the data before

126

inversion and using an iterative procedure to calculate the inverse solution. Smoothing may be useful because the low-pass characteristic of the torso means that in the inverse transformetion the high frequency components are magnificd in a much greater proportion than the low frequency ones. Consequently, any high frequency noise in the data could be disproportionally magnified rendering the solution totally useless. The limited resolution of the computer word introduces a similar kind of instability in direct inversion of the system matrix. Here, the noise is a numerical one caueed by rounding off during the computation. This problem is overcome by using an iterative process to obtain the inverse solution where the stability of the solution is relatively unaffected by the machine resolution.

Epicardial potential distributions at 2nseco intervals were calculated from in-vivo body surface measurements. The reconstructed epicardial maps were shom to be grossly consistent with those found in the literature. The stability of the inverse solutions was tested by adding randon noise to the surface data. The solutions showed virtuelly no deterioration in their signal-to-noise ratios.

In conclusion, this study has demonstrated the feasibiiity of an unconstrained inverse solution based on recovering the epicardial potentials.

APPENDIX A

PROGRAM DESCRIPAION

A computer program for calculating volume-conductor fields based on the numericalmanalogue developed in Chapter 3 is described. The Program is organized into four phases as,follows:

```
PHASE1 - Unpacks the input data into coded crossm
    sectional images.
PHASE2 - Generates the finite-difference nodes.
FHASE3 - Constructs the set of finite-difference
    equations.
PHASE4 m Solves the set of equations iteratively
    using the Gauss-Seidel method.
```


A. 1 Program Flow Diagrams

A. 2 Program Listings

FFRGRFM FIMITE CITFUT, DUTFUIT, THFE1, TAFEE, TAFES, TAFE4, THFES, TAFEG
E
F\&DGFHM FIHITE EDNFUTEIS THE ELEITFIGHL FQTENTIHL IISTFIEMTIDA IH H YOLUE-GEHLHETDF USITG THE NETHOI DF FIHITE-IIFFEFEHEES.
THE FFGGFAM IS DEGAHIZEH INTD 5 FHASES DF DFEFATIGHS:
40 EALL FHFEE4 su FFITTSO10 10 FFIH EMIT

FHASE GGFIS THE IMTA DIA TAFE 1 AHI GEHEFATES THE FINITE-
FHASES GEDEFHTES THE SET CF FIHITE-MIFFEFENCE EOUATIGHS
FHASES GODH THE IHTA DH THFE1 HIGI THFEE.

THE SET DF CHUHTIOHE ITEFATIUELY USIGO THE GAUSS
THE ESEGUTIGH EEQUEMCE DF THE FFOGEAM IS ILEFIHET EY A
EMAGAGELE:

FHHEE • FHA: 4
I!FUT FGFMAT DF THE EDMAFHE GAFI IS $10 G I E 1 \%$

WHTH HAHE, FHASE, FHASEE, FHASES', PHASE4',
$\frac{C}{5}$
E FOFIFT STATENEMTS
1 10日 FCEMAT \& 1 GFE, 1%)

E

IM: =
1 IHCI=I:TII+1
$[\square]=1,5$
$\mathrm{k}=\mathrm{I}$

E EDTHIME
FFlilf simg. IHI
ETTO 1
$\approx \operatorname{OTO} 10, ~ 20,30,40,50, K$
10 HALL FHASEI
$\because 0$ OHCO
EO EGLL FHASES
30 GULL FHASES
EDTO

s＿bergitirie fhrsei

```
FHESEI FEATS APII IMFACKS THE COMFEESSEI FDRM DF CDDED IMRGES
    FHII STGFE THE IIHTA DH THFEI
    HEAE PFEGIFIE THE MMEEF DF SLAES
    EEIT FFEIFIES THE \(\because\)-IITAENSIOH DF THE GEII
    GEIT SFEIFIES THE \(X\) THAETEIDH OF THE GFI
```



```
    KDIE FRFF\% GHTAIMING THE TOLINGS IH EAEH OF THE SEOUENGE
        Grab ThE THE SEDUENEE
```



```
AFE:G DIHENSIDHE
            HEFHG HAGE
                    HFFHG
IE
IE
            \(I E\)
\(H\)
\(H\)
            トロロ
                            19. DE EAFII EDLBME
```



```
                            MF. 14. GF EGIE SEDUEHGES IH \(A\) ROD
```



```
        IHTF IE EOT'
F FEHAT ETFITEMEHTS
10 On FOFMHT O+5
    1010 FCF:HAT EOCIE, H1)
    10:O FGFMRTGBA, GLAE HMEEF , , IEN
```



```
    SUEOFDFHAT M
\(\stackrel{E}{8}\)
    F:EAD IH FFFASETEFS SFELIFYIHIS THE HD. DF SLFES FNI THE GRID
    DIHEHEIGH
        FFIHT SnOM
            FEbICHi
```



```
            IIFITEG, 1 UHDGELAE, IEIT
            FFIHT ZOI O,HEIGE,IEIT,JEIT
\(\stackrel{E}{E}\)
    EGIA LIUF TO REFI IN EQIED IHTA
            ID \(\mathrm{O} 0 \mathrm{HE}=1, \mathrm{HLFE}\)
            I们 \(\mathrm{I}=1\), IEI
            ID \(\quad 1=1, I E I\)
    \(510 \div 0=1 E(1)\)
```



```
\(E\)
\(E\)
\(C\)
DHFFILK IMTA
    KK =
    ज口 \(10 K=1\), E0
    \(L=1114 \ll\)
```

IF（L．LE．D）GO TO E0
I口 $10 \mathrm{~K}=\mathrm{i}$ ．
K $=\mathbb{K}+1$

10 EOHTINE

$$
30 \text { EOHT IHILE }
$$

FEFT C 10001

EUIITI 1

IO 40 HS=1, HELAE
if $40 \quad H S=1$, HELA
I口 $40 \quad 1030,15$

40 COHTIHIIE
FETHEN
EHI

SUEFRUTINE FHASEE

THOE HIIES THAT EELDHE IH THE FIELI.
THE IHFIIT IATA FES OH THFE1
THE HOLE MUREFS FIHI THEIF FQSITIOM IH THE FIELI REE STCEEI
CH TRFEE.

HO. QF EOLIHES FDE WHICH HDIES YSE FFEFIXED EG -VE SIEN

IF GFFFES LISTING QF MDLE FLATES IF IP=0
HFFFY IIMEDEIGHS
HFEFG PAME
151
$15 E$
10
11
14
Mim
lin
ild
il

E
itg EaFrat 40 (A1, 1\%)
GEO FDFHET EOR1

EDEO FDFRFT O
FDFHFT $\because, ~ E \% E C U T E$ FHFSEE

E
E
E
FQFMAT STHTEMEHTS
000 FQEHAT © $O S$

```
HDEHEIDRT
```

HDEHEIDRT
IEIT:JEIT
IEIT:JEIT
IEIT-1,IEIT-1)
IEIT-1,IEIT-1)
(IEIT-1)
(IEIT-1)
(IFIT-1)
(IFIT-1)
CIENO

```
                            CIENO
```


EELIITI 1
FEAITHE
FEDIIT：
FERIIC， 1000 H ISLAE，IEIT，IEIT
FEFI， 1 OGM HEHD HENE
FFIMT EU1M，HOHE MEND
IF＇indim．EG．日eso TO

1 IF TETHE EM．OiSQ TI EEAIIE， 1010 GNE GD，$I=1$ ，NEND FRIHT \because OU，（TE（I）$I=1$ ，MEND）
－REFIGE 10010 IF
IHITIFLIZE URLUES
$I I=I E I T-$
roven
HE＝HSLFE +1
M19 19 ＝1．IEIT
TO $10, I=1,1 E I T$
$101 \mathrm{CO}, 1$＝IE
EEGIH LDOF TD EEHERATE NOIE PLFME
In $1: 50 \quad 15=1,14$
Lu Ey $I=1$ ，IEIT

IF H．HE．HELGB Ta 40
ID $\mathrm{OG} I=1$, IEIT
$3010=1, \mathrm{y}=\mathrm{IE}$
GDT0 E
FEAT IH DHE SLAE aF GODED SECTIDN
40 I口 $501=1$ ，IEIT
EO FEHIC1，10ED（IEE（I，D，，I＝1，，IEIT）
60 IV $130 \mathrm{I}=1.1$
IO $130 \quad 1=1,1$
$M 19=I E 1 \subset 1=1$
$M 6=I G(I+1+1)$

$M C=I G 1+1 \cdot+$
$n=15=1$
$1<7=10<1+1$
$M 6=1-1+10(1)$
CHEGE IF HONE TD EE GEHERATED
IFCDIR．EQ．BED TD 50
I口 $80 \mathrm{~K}=1,8$

70 EOMTIHE
－5DTDE日
－EDHTMHE

90 HロU $=120+1$

```
```

CHELK IF HONE TO EE FSSIGNED -vE

```
```

CHELK IF HONE TO EE FSSIGNED -vE
IFTENQ.EO. O%GO TD 110
IFTENQ.EO. O%GO TD 110
ID 100 }<=1,
ID 100 }<=1,
IFHEK,EO.NEGKOSG TO 1EO
IFHEK,EO.NEGKOSG TO 1EO
10MGOHTIHME
10MGOHTIHME
10 HEI,J=HOM

```
```

 10 HEI,J=HOM
    ```
```



```
```

 130 EGHTINUE
    ```
```

 130 EGHTINUE
 E MEITE FODE-F!GHE OHTL THFES

```
```

E MEITE FODE-F!GHE OHTL THFES

```
```



```
```

C

```
```

C
LIST MOLIE FLAHES
LIST MOLIE FLAHES
IFCIF.EO.GBD TD 1EO
IFCIF.EO.GBD TD 1EO
FGINT EOEG
FGINT EOEG
ug 170 1=1, 1,
ug 170 1=1, 1,
IO 1+0 I=1,II
IO 1+0 I=1,II
140 HGI)=H\&IEIT-I,N

```
```

 140 HGI)=H&IEIT-I,N
    ```
```



```
```

 FFIHTT EOH,MM(I),I=1,II)
    ```
```

 FFIHTT EOH,MM(I),I=1,II)
 LI口 1F0 T=1,15
 LI口 1F0 T=1,15
 MgIEOI=1,II
 MgIEOI=1,II
 140m(1)=N0[1,NC,1000

```
```

140m(1)=N0[1,NC,1000

```
```



```
```

170 EDITIHWE

```
```

170 EDITIHWE
LEM EOTTINHIE
LEM EOTTINHIE
FFIHT E.10, HOLO
FFIHT E.10, HOLO
FFIMT 2040
FFIMT 2040
FFIMT 2U
FFIMT 2U
E EHII

```
```

 E EHII
    ```
```

SUEROUTINE FHASES
E CH
PHASE4 CDMFUITES THE MATFIX OF FINITE-DIFFERENCE CDEFFIGIEMTS
AHII STORES THE GLEFFIEIENTS DN THFES.
STH FEEFY GOHTHIHIHG THE RMTIDS OF SLAE THISKHESSES
STI AREAY COHTHINIHG THE FHTID
STI BEFAY COHTHIHIHE THE RHTIDS DF GRII IHTERUALIH

WGOLE HD. OF GODIHGS IEED IH THE IIGITIZATIUH
NGQLE NO.DF EDIIHGS USEI IH THE IIGITIZATILH
GOHDUETDE
GFEAG EOMTHIMIMG THE EDHMETYITY RATIOS OF THE COLIHGS
SEG AFFHY
FFFAG HATE
STH
STI
STG
secone
ICDRE
IE1, IEE
GIDEF:IGDEF

```
                                    IINEHEIDR:
                                    M&LAE+E)
CIEIT
```

GEIT
GODDE+1. 5
TIEDEE
GIEIT-IEITO
G

FOFHAT STHTEHEHTS
E
1000 FDFMAT C1EIS
1010 FOFMAT EOF4.

3日G FDFHAT \& FATID DF STEF SIZES IH K-IIFEGTIDH'
OUGO FDFMAT F FARTID DF GTEF

C^{-}
FFFIHT 3 OD
FFEINT 3010
FEITNTI
EEUTHII
EEWIHO
FEMIHIS
$\stackrel{C}{E}$
REFII IH IFITA
FEATI 1 , 1000 OHELAE: IEIT, JEIT
$H S L=H S L A E+1$

IIE＝IEIT－1

FFITIT EniA
FFIHT 101 \quad ，（STHeI）$I=E, H S L$ ）
FEFIT： 51016 （STI《I），I＝1，IEIT）
FFIMT 3 GE
FFIMT 1010，（TT（I），I＝1，IEIT）

FFINT EuSu

THIC $19=1$ ．
THCHE L＋$=1$ ．
EEATHE1 GODDHEDE
FFIITY Fidn，NEDRE
FRITI BiEn
 IF SESB＋i，シo．日T．0．）万D T0 こ0
$\mathrm{IO} 10 \mathrm{I}=\boldsymbol{E}, \underline{S}$
10 －EER＋1，1－cES $(k+1: 1)$
FFIfit znen，ICODE（K），（SEG（K＋1， 1 ），$I=1,5)$
Ea ERITITME
30 OET 0
30 EE5 $1,1=0$ ．
I1． $40 I=1,1 E I T$
I口＋0 $1=1:-6$
40 IGきcI，$=1$
I口
（5） $\mathrm{HE}(\mathrm{I}, 1 \mathrm{~B}=0$

EEGIH LDOF TD TEAH FOR NODES
IO $1=0 \quad I=1, H \mathrm{~L}$
In En $I=1$ ，IEIT
60161 I，$=16 E I, d$
$\operatorname{mog}_{10} I=1 \cdot I I E$
$00 \quad 70 \quad 1=1,11 E$

IF！IS．HEASLGOTD 100
In $I=1$ IIE
$5015<1, J=0$
IO $\because 01=1$ ，IEIT
ID $-71=1.1 E I T$
30 IGEI， $10=1$
G0 TO 140
 ID $110 \mathrm{I}=1$ ，IEIT

$\stackrel{E}{E}$ COMVEFT COIIHES IHTO COHDMETIYITY AIIRESSES
TO $130 \mathrm{I}=1, \mathrm{IFIT}$
IO $1301=1$, IEIT

IGECI， $\mathrm{O}=\mathrm{C}+1$
GETD 100
120 EOMTINE
$140 \mathrm{DO} \mathrm{IO} \mathrm{I}=1$ ．IIE
IU $1 E 0 \quad 1=1, \square E$

$\square \square T=0$
C EDMFUTE THE FIMITE－DIFFEFENCE GQEFFIEIENTS
GALL EDEI：I，IS，KOUPT，IIE，IUE）

180 cПHTIMME
190 ant rade
FFINT E030
FETBEH
EETIG
EIGF
IEF
THIS SUE FQUTIHE CDMFUTES THE FIHITE DIFFERETICE CDEFFIGIENTS
पण EOMOD HROEF
Ta $E 0 \mathrm{~K}=1$ ，

$10 \mathrm{H}=\mathrm{H} 1 \mathrm{Cl}, \mathrm{D}$
IFCH．E日G）
$I I=I E 1 \subset I \cdot D$
$11=1 \mathrm{C} 1 \mathrm{I}, \mathrm{I}+\mathrm{y}$
$\mathrm{K}=\operatorname{IC}(1+1: 1+1)$
L $=1 \mathrm{C}$（I＋1， I

GUT0 f

$I I=I \in 1(I, I)$
$k=16=(1,-1+1)$
$L L=I C E<I, 1)$

的Tロ

1ニけに：1•1－1）
IFMOIGOBQ TO $B 0$
$I I=I G 1 \cdot I+1,1)$
$1=[6 \cdot I \cdot 1)$
$\mathrm{F}=16=1,1$.
$L L=16 こ C I+1, O$

0 IF： $1+1$

IFCT．EOQ
$I I=I C 1<I+1,1+1)$
$J=161, I+1\rangle$
$L L=[G E I+1, I+1)$

507口70

IF：＝
IF：N．EG．OGOTQ E0
$1=+1$（I $+1, \mathrm{y}$
$a=1,1(1+1 \cdot, 1+1)$
－ $1-1-1+1+1+1$

60 Y 1
IF•H．EO－0GOTO E0
II＝IGこと， 1
$1,1=15$ EI， $1+1$
$\mathrm{K}=\mathrm{I} \mathrm{E} \cdot \mathrm{I}+1,1+1$ ）

ITJEF（KDUNT＝IFES（H）
so brictinge
EliL

SUEROUTINE FHASE4

FHASE4 EOHFUTES THE FQTEHTIRL DISTFIEUTIGHS EY SQLYIHG
THE FINITE－IIFFEFENGE EDHATIDHS GH THFES ITERHTIVELY
JSIHE THE GRUSE－SEINEL METHDI
NEDH HD．DF EGUATIDPS IH THFES
MEEH HO．DF GETEFATOE

ISDEE FREAG EDHTHIHIHG THE MBGHITIDES OF THE GENEFHTORS
ITME MBNIMOH ITEFHIIDH TINE IH SEGHIS
ITHHE MHYDM IDO OF ITEFATIONS
IFILE FEAI IHITIHL EDLUTIGH ？ETTOE FFDM TAFE4 IF IFILE＝1
FFFFH IIIEHEIDHS

FOD．IG
HOL．ISCOE
（GIDEN）
GEOH

FDRTAHT STATEMEMTS
1000 FロFMAT（1EIS
1010 FDFHAT（IE日GE，FT．$)$ ）

3G1 FEFHATS HEDH $=, 13$

GOEO FGFMGT：RQUE HUMEEFS OF GENEFATGRS：

FEINT SOMO
EHLL SEGOHICTI
FEGITH ：
FERMIIE
$\stackrel{C}{E}$
INITIFLIZE UHLIES
ME1FF $=100$
$+1+1 \cdot 0=0$
$r=0$
$\mathrm{F}=0$
$\mathrm{~K}=0$
$\stackrel{L}{2}$

FFITT S010，HEDH
EEALC，IGOUPHEET
FFIMT OOEO，IVEA
FFITH SGE

FEAR S， 1 Bitation（
FEINT 1 gig，MOE

EMU $1014 D E(I), I=K F, K L$

$1 \mathrm{cof} L+1$

FEIMT SOSO
FREMT 1 OHO，（ISQEE（D），$I=1$ ，WGEN
FEAI IH UATE SFEGIFYIME MFX．ITEFATIDH TIME AHD EYCLE
FEHIME．ODG ITIME，I TMA：
FF：IHT SO40．ITIHE，ITHAB
EDFGHMIZE EDUATIDIS DA TAFES FQR EFFICIENT ITERATIDR
$10109 \mathrm{CE}=1$ ，UEN

EEGD：V EDUATIDHE FQF HOLES EELDHBIVE TD GENERATORS
10 IG $10 K=1, K L$
10 IF \＆THE．ED．MOIE KOED TO 100
EDAFUTE HD．DF EDEFFILIEHTS IH EDUATIDH

$$
r 0 u t i t=1
$$

ing $E=10$.

Ar＋
ITDATMOECHO
E HBFIALIEE GDEFFICIENTS
－-110
$30514=519+30010$
IF（HESEUMO．LT．1．E－20）50 TO 50
$\mathrm{Ib} \quad 4 \mathrm{I}=1, \mathrm{KL} \mathrm{CH}$

GU HOEF（I，M $=$ OHOCI
E
E MFITE IHTD F EUFFEF ARFRY

E IF EUFFEF FILL MIMF IMTD THFET
IF（M．NE．MEDFF）ED TD 100 WRITE © IMDIE，ICDMT，ICDEF，ACDEF

$\mathrm{H}=0$
100 EOHT IMIS
WRITE \boldsymbol{B} IMDIE，ICCMT，ICDEF，ACDEF $+11+r=r+1+1+m$
IMITIFLIzE solitidiv vector:
IF \&IFILE. TGE. 1) Ba TD 105

GOTO 115
$105 \mathrm{IO} 110 \mathrm{I}=1$, NEDH
$110 \times 6=0$.
$k=1$

115 IO 120 H＝1．HEE
$\mathrm{Kk}=1 \mathrm{OLC}$
$\mathrm{ID} 1 \Xi 0 \quad \mathrm{H}=1=\mathrm{Kk}$ ビード＋1

$\stackrel{C}{C}$
－EESIH ITEFATIDHS
COFUTE DFTIFIM FMCELEFAT IDH FACTDR
IT $\mathrm{T}=\mathrm{ITMF}<1 \mathrm{~B}$
1 IU EDG ITEE＝1，IT
$\mathrm{E}=\mathrm{B}=1$
$\square=0$
$1+T=0$
HE＝FEIFF

$H T=H T+H E U F F$

IO $1=\mathrm{B}=1 \cdot \mathrm{H}$
$I F L=1$ UQIUE 1 N\rangle

QETFL $=0$
MD 170 O $=1, \mathrm{KK}$

$\because C F L=X F L+F C D E F(K, J K)+X C D$
170 EOATIAME

180 EOLT 1010
IF HI LT HWMOGQTQ $1 \epsilon 0$
IFITEG－NE．ITSO TD EDO

$0 \mathrm{C}=1$.

$200 \times 1=\times x$
E HEGELEFATEM GHUSS－SEIDEL ITEFRTIDHS
ITMA $\mathrm{S}=\mathrm{I}$ TMA X －IT
ID ESG ITEF：$=1$ ，ITMAK
FFIIT．ITEF
210 FEDIHI 7
$H T=0$
$M E=M E H F F$
ここ0 FEFIG，IWIUE，ICDIT，ICDEF：RCDEF
$H T=H T+H E H F F$

$\stackrel{I}{2}-10=1,14 E$
FK＝OEOHTく，
XIFL $\because=1$
ID $20 \mathrm{~F}=1, \mathrm{KK}$
－IEOEF K ，JK
$\because I F L S=\therefore I F L Y+\operatorname{HCDEF}(k, J K)+x(1)$

zEr GDHTIBUE
CEMFUTE MAGIMM FESIMULE
EO FEUIMD ？
$\mathrm{HT}=1$
$\mathrm{H}=1$

270 FEF［GFIUDUE，ICOMT，ICDEF：BCDEF
$H T=H T+M E: T=F$

$\underset{T}{ }=10 \mathrm{H}=1, \mathrm{ME}$

$\%=0$.
$\overparen{H}=1$.
In EEO $\mathrm{K}=1$ ，KKK
$\vec{A}=\mathrm{H}+\mathrm{AE} \mathrm{CEF} \mathrm{K}, \mathrm{M})$
I＝ICDEFAR IS
$\therefore=\therefore \because+H C D E F(k, j k)+2(1)$
283 EGITIHEE

290 ECHTIME
IF（HT．LT．HUMG日 TD 270

C EMD DF ITEFATIDHS
C STORE SLLUTICH YERTDF OM THPEA
MRITE 4,1 GOONEON
WFITE（4，10SO）Q（I），I＝1，NEON
30 OFFIFT EOGO
EETUEH
단
A. 3 Variable Name List

VARIABLE NAME
DESCRIPIION

| Program control | KOMAND | Array containing execution sequence. |
| :---: | :---: | :---: |
| PHASE1 | NSLAB | Number of slabs. |
| | IBIT | Y-dimension of sampling grid. |
| | JBIT | X-dimension of sampling grid. |
| | NUM | Array of number of times a coding is repeated. |
| | KODE | Array containing the coding sequence. |
| | IP | Output listings suppression indicator. |
| PHASE2 | NONO | No. of codings for thich no equations are generated. |
| | NENO | No, of codings for which the nodes are labelled with a negative sien to facilitate identification of specific regions. |
| | NO | Array containing codings for no equations. |
| | NE | Array containing codings for |
| | IP | Output listings suppression indicator |
| PHASE3 | STN | Array of sampling ratios in the Z-direction. |
| | STI | Array of sampling ratios in the Y-direction. |
| | STJ | Array of sampling ratios in the X-direction. |
| | NCODE | Number of codings used. |
| | ICODE | Array containing the codirgs used. |
| | SEG | Array of conductivity ratios of the codings. |
| PHASE4 | NEQN | Number of equations generated. This is specified from the output of PIIASE2. |
| | NGEN | Number of generators. Each generator is made up of one or more nodes. |
| | NOD | Array containing the number of nodes for each cenerator. |
| | NODE | Array containing the node numbers which constitute the generators. |

| | ISOCE | Array containing the generator strengths。 |
| :--- | :--- | :--- |
| PIIASE4 | ITIME | Maximum iteration time in seconds. |
| | IFILE | Maximum iteration cycle. |
| | | Indicator to read in the initial solution |
| | vector from previous TAPE4. | |

A. 4 Data Format

CARD STRUCTURE
FORHAT

| Program control | $\operatorname{KOMaND}(1), \mathrm{KOMand}(2), \ldots \ldots \operatorname{KOMand}(10)$ | $10(A 6,1 X)$ |
| :---: | :---: | :---: |
| PHASE1 | NSLAB, IBIT, JBIT | 315 |
| | $\operatorname{NUM}(1), \operatorname{KODE}(1), \ldots . \operatorname{NUM}(20), \operatorname{KODE}(20)$ | $20(12, A 1)$ |
| | : (NSLAB x IBIT) sets | |
| | $: \quad \operatorname{NUM}(1), \operatorname{KODE}(1), \ldots \ldots \operatorname{NUM}(20), \operatorname{KODE}(20)$ | : |
| | IP | I5 |
| PHASE2 | NONO, Meno | 2 L 5 |
| | MO(1) , $\mathrm{NO}(2), \ldots . . \mathrm{NO}$ (NONO) | 40(A1, 1X) |
| | NE(1) , $\mathrm{NE}(2), \ldots . . \mathrm{NE}(\mathrm{NENO})$ | 40(A1, 1X) |
| | IP | I5 |

| Phase3 | $\operatorname{STN}(1), \operatorname{STN}(2), \ldots \ldots \operatorname{STN}($ NStAB $)$ | 20F4.1 |
| :---: | :---: | :---: |
| | $\operatorname{STI}(1), \operatorname{SII}(2), \ldots . . \operatorname{STI}(\mathrm{IBIT})$ | 20 F 4.1 |
| | $\operatorname{STJ}(1), \operatorname{STJ}(2), \ldots \ldots \operatorname{STJ}(J B I T)$ | 20\%4.1 |
| | NCODE | I5 |
| | ICODE, $\operatorname{SEG}(1), \operatorname{SEG}(2), \ldots . . \operatorname{SEG}(5)$ | A1,4X,575.2 |
| | : NCODE sets | - |
| | $: \stackrel{\text { ICODE }, \operatorname{SEG}(1), \operatorname{SEG}(2), \ldots . \operatorname{SEG}(5)}{ }$ | : |
| PHASE4 | NEQN | I5 |
| | NGEN | I5 |
| | NOD | I5 |
| | $\operatorname{NODE}(1), \operatorname{NODE}(2), \ldots . . . \operatorname{NODE}(\operatorname{NOD})$ | 16 I 5 |
| | : NGFN sets | ! |
| | : | : |
| | NOD | : |
| | NODE (1), $\mathrm{NODE}(2), \ldots . . \mathrm{NODE}$ (NOD) | |
| | ISOCE (1), ISOCE (2),..... ISOCE(NGEN) | 16 I 5 |
| | ITIME, ITHAX | 215 |
| | IFILIE | I5 |

A. 5 Sample Problem

The following example illustrates the application of the computer program for calculating the potential distribution due to a dipole source located in the centre of a conducting sphere which is embedded inside a solid cylinder. The conductivity of the sphere is three times greater than that of the cylinder. Fig. A.l shows the manner in which the conductor is digitized.

Fig.A.1: Discretization of the volume-conductor.

What follows illustrates the input data structure and outputs from the program.

**** EHIFHASE! ****

**** EMEKITE FHAGES *****

HDHO $=1$ HEHQ $=1$
$110(I)=$
$H E(I)=1$

| $1)$ | $0 \cdot$ | 0 | 6 | \therefore | 5. | 6 | \therefore | 0 | i | ＂ | 0 | 10 | π | 111 | 10 | 11 | 19 | 10 | 9 | 0. | 0 |
| :---: |
| 0 | 4 | $\cdot 4$ | 5 | \pm | 5 | \therefore | 5 | 4 | 4 | 0 | is | 7 | 8 | 9 | 11 | 12 | 11 | 9 | 8 | 7 | 0 |
| 0 | 4 | 4 | 4 | 5 | 5 | 5 | 1 | 4 | 4 | 4 | 0 | ； | 7 | 10 | 13 | 15 | 13 | 111 | 7 | 6 | 0 |
| 2 | 2 | 3 | 3 | 4 | 4 | 4 | 3 | 3 | 2 | 2 | 3 | 4 | $\dot{5}$ | 10 | 17 | Es | 17 | 10 | ε | 4 | 3 |
| 1 | 1 | 1 | 2 | $\overline{7}$ | 2 | \because | 2 | ${ }^{1}$ | 1. | 1 | z | E | 4 | 7 | 16 | 27 | 16 | 3 | 4 | 2 | z |
| 0 | 0 | 0 | 0 | 9 | is | \cdots | 0 | \bigcirc | 0 | 9 | \square | 1 | 0 | \because | 0 | 9 | 0 | 1 | 9 | 9 | 0 |
| －1 | －1 | -1. | －1 | － | －2 | －シ | －1 | －1 | －1 | -1 | － | － | －4 | － | -15 | －29 | －1\％ | － | $-+$ | － | $-z$ |
| －1 | -2 | -3 | －3 | -4 | －4 | －4 | －3 | －？ | －こ | －1 | -3 | －4 | － | －19 | -17 | － | -17 | －10 | － | －4 | －3 |
| 0 | $\rightarrow 3$ | －4 | －4 | －5 | －5 | － | －4 | －- | －3 | 0 | i | －5 | －7 | －9 | -13 | -15 | -15 | －4 | －7 | － | 0 |
| 0 | －4 | －7 | －5 | －5 | -5 | -5 | －5 | －4 | －4 | 4 | 0 | -7 | －7 | \cdots | －11 | －11 | －11 | －3 | -7 | -7 | 0 |
| 0 | 0 | 0 | －5 | －5 | －t | －6 | －5 | 『 | 0 | 0^{1} | 0 | a | 0 | －11 | -10 | －11 | -10 | -10 | 0 | 0 | 0 |

| 0 | 0 | 0 | 11 | 11 | 12 | 11 | 11 | 0 | 0 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 7 | 3 | 10 | 12 | 13 | 12 | 10 | 3 | 7 | 0 |
| 0 | 7 | 3 | 11 | 16 | 20 | 16 | 11 | 3 | 7 | 0 |
| 3 | 5 | 7 | 12 | 25 | 43 | 25 | 12 | 7 | 5 | 3 |
| 2 | 3 | 5 | 11 | 31 | 100 | 30 | 11 | 5 | 3 | 2 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| -2 | -2 | -5 | -11 | -30 | -100 | -30 | -11 | -5 | -2 | -2 |
| -3 | -5 | -7 | -12 | -25 | -43 | -25 | -12 | -7 | -5 | -3 |
| 0 | -7 | -3 | -11 | -15 | -20 | -16 | -11 | -3 | -7 | 0 |
| 0 | -7 | -3 | -10 | -12 | -13 | -12 | -10 | -8 | -7 | 0 |
| 0 | 0 | 0 | -10 | -11 | -12 | -11 | -10 | 0 | 0 | 0 |

147

APPENDIX B

TABLE OF BODY TISSUE RESISTIVITIES*

Mean resistivity in Ohmocm.

| TISSUE | Kaufman and
 Johnston | $\begin{array}{\|c\|} \text { Burger } \\ \text { and } \\ \text { van Kilaan } \end{array}$ | Schwan and Kay | $\begin{array}{\|c} \text { Burger } \\ \text { and } \\ \text { van Dongen } \end{array}$ | Rush Abildskov and MoFee |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Blood | 208 | 160 | 100 | 160 | 162 |
| Liver | 506 | | 840 | | 700 |
| Lung | 744 | | 1120 | | 2100 |
| Fat | 2060 | 1500-5000 | | | 2500 |
| Heart | 216 | 965 | | | $\begin{aligned} & 563 \mathrm{high} \\ & \text { 25210w } \end{aligned}$ |
| Skeletal muscle | | $\begin{aligned} & \text { 470high } \\ & \text { 2301ow } \end{aligned}$ | | $\begin{aligned} & \text { 675high } \\ & 24510 \mathrm{w} \end{aligned}$ | $\begin{aligned} & \text { 2300high } \\ & \text { 1501ow } \end{aligned}$ |
| Human | | 415 | | | 463 |

* Table taken from Rush et al. (1963).

148

APPENDIX C

COMPUTER DATA OF THE DISCRETE TORSO MODELS

C. 1 Data for the Irregularly Digitized Torso

Co2 Data for Torso Digitized at OnemHalf Inch Grid

152

APPENDIX D

POTENTIAL CONTRIBUTIONS FROM EACH EPICARDIAL SEGMENT
TO THE BODY SURFACE

153

FRONT SEGMENT 2

BACK

| 62 | 70 | 77 | 36 | 95 | 100 | 98 | 88 | 72 | 56 | 45 | 41 | 38 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 81 | 69 | 78 | 89 | 102 | 109 | 107 | 93 | 73 | 53 | 43 | 39 | 37 |
| 60 | 69 | 79 | 93 | 109 | 119 | 116 | 97 | 72 | 50 | 40 | 37 | 35 |
| 59 | 68 | 79 | 97 | 117 | 129 | 122 | 91 | 58 | 39 | 35 | 33 | 32 |
| 55 | 63 | 75 | 91 | 108 | 116 | 105 | 70 | 38 | 25 | 25 | 27 | 29 |
| 49 | 55 | 63 | 72 | 72 | 64 | 51 | 33 | 18 | 12 | 15 | 20 | 23 |
| 43 | 46 | 51 | 51 | 44 | 35 | 25 | 17 | 10 | 7 | 10 | 16 | 19 |
| 38 | 38 | 39 | 38 | 34 | 29 | 22 | 16 | 11 | 8 | 10 | 14 | 16 |
| 35 | 35 | 34 | 32 | 29 | 26 | 21 | 17 | 14 | 12 | 12 | 14 | 15 |
| 33 | 33 | 32 | 30 | 28 | 25 | 21 | 18 | 15 | 13 | 13 | 15 | 16 |
| 32 | 31 | 30 | 29 | 27 | 24 | 21 | 19 | 16 | 15 | 15 | 15 | 16 |
| 30 | 30 | 29 | 27 | 26 | 24 | 21 | 19 | 18 | 16 | 16 | 16 | 17 |
| 29 | 29 | 28 | 27 | 25 | 23 | 21 | 20 | 18 | 17 | 17 | 17 | 17 |

| 38 | 38 | 38 | 39 | 41 | 43 | 46 | 49 | 52 | 55 | 57 | 59 | 62 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 37 | 36 | 37 | 38 | 39 | 42 | 45 | 48 | 51 | 53 | 56 | 58 | 61 |
| 35 | 35 | 35 | 36 | 37 | 40 | 43 | 46 | 49 | 52 | 55 | 57 | 60 |
| 32 | 33 | 33 | 33 | 35 | 37 | 40 | 43 | 47 | 50 | 53 | 55 | 59 |
| 29 | 30 | 30 | 31 | 32 | 34 | 37 | 40 | 44 | 47 | 50 | 53 | 55 |
| 23 | 28 | 27 | 28 | 29 | 31 | 34 | 37 | 40 | 43 | 46 | 48 | 49 |
| 19 | 22 | 24 | 26 | 27 | 29 | 32 | 34 | 37 | 39 | 42 | 43 | 43 |
| 16 | 19 | 21 | 23 | 25 | 27 | 29 | 32 | 34 | 35 | 37 | 38 | 38 |
| 15 | 17 | 19 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 33 | 34 | 35 |
| 16 | 17 | 19 | 20 | 22 | 23 | 25 | 27 | 29 | 30 | 32 | 33 | 33 |
| 16 | 18 | 19 | 20 | 21 | 23 | 25 | 26 | 28 | 29 | 31 | 31 | 32 |
| 17 | 18 | 19 | 20 | 21 | 23 | 24 | 26 | 27 | 28 | 29 | 30 | 30 |
| 17 | 18 | 19 | 20 | 21 | 22 | 24 | 25 | 27 | 28 | 28 | 29 | 29 |

154

| | | | | | | RONT. | | | | | | EGMENT | 5 | | | | | | BACK | | | | | | |
| :---: |
| 16 | 16 | 16 | 16 | 16 | 17 | 19 | 21 | 26 | 33 | 38 | 40 | 39 | 39 | 38 | 37 | 35 | 32 | 28 | 25 | 22 | 20 | 19 | 17. | 17 | 16 |
| 16 | 15 | 15 | 15 | 15 | 15 | 17 | 19 | 25 | 33 | 39 | 41 | 40 | 40 | 39 | 37 | 35 | 32 | 28 | 25 | 22 | 20 | 18 | 17 | 26 | 16 |
| 16 | 15 | 14 | 14 | 14 | 14 | 15 | :7 | 23 | 33 | 40 | 42 | 40. | 40 | 39. | 37 | 35 | 31 | 28 | 24 | 21 | 19 | 18 | 17 | 16 | 18 |
| 15 | 14 | 13 | 12 | 11 | 11 | 11 | 13 | 18 | 30 | 39 | 42 | 40 | 40 | 39. | 37 | 34 | 30 | 26 | 23 | 20 | 18 | 17 | 16 | 16 | 15 |
| 14 | 13 | 12 | 10 | 9 | 8 | 7 | 7 | 10 | 22 | 34 | 39 | 39 | 39 | 37 | 35 | 32 | 28 | 24 | 21 | 19 | 17 | 16 | 16 | 15 | 14 |
| 13 | 12 | 11 | 9 | 7 | 6 | 5 | 4 | * 5 | 10 | 21 | 29 | 32 | 32 | 33 | 32 | 28 | 25 | 22 | 20 | 18 | 16 | 15 | 15 | 14 | 13 |
| 12 | 11 | 9 | 8 | 6 | 5 | 4 | 3 | 3 | 5 | 11 | 20 | 24 | 24 | 28. | 27 | 24 | 22 | 20 | 18 | 17 | 15 | 14 | 13 | 13 | 12 |
| 11 | 10 | 9 | 7 | 6 | 6 | 5 | 4 | 4 | 5 | 9 | 14 | 28 | 18 | 21 | 20 | 20 | 19 | 17 | 16 | 15 | 14 | 13 | 12 | 12 | 11 |
| 10 | 10 | 9 | B | 7 | 6 | 6 | 5 | 5 | 6 | 8 | 11 | 14 | 14 | 15 | 15 | 15 | 14 | 24 | 13 | 12 | 12 | 12 | 11 | 11 | 10 |
| 10 | 10 | 9 | 8 | 7 | 7 | 6 | 6 | 6 | 6 | 8 | 11 | 13 | 13 | 13 | 14 | 13 | 13 | 13 | 12 | 12 | 12 | 11 | 11 | 10 | 10 |
| 10 | 9 | 9 | 8 | 8 | 7 | 7 | 7 | 7 | 7 | 9 | 11 | 12 | 12 | 12 | 13 | 13 | 12 | 12 | 12 | 11 | 11 | 11 | 11 | 10 | 10 |
| 10 | 9 | 9 | 8 | 8 | 8 | 7 | 7 | 7 | 8 | 9. | 10 | 11 | 11 | 12 | 12 | 12 | 12 | 11 | 11 | 11 | 11 | 11 | 10 | 10 | 10 |
| 10 | 9 | 9 | 9 | B | 8 | 8 | 8 | 8 | 8 | 9 | 10 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 12 | 11 | 10 | 10 | 10 | 10 |

SEGMENT 6

| 51 | 50 | 49 | 47 | 47 | 47 | 48 | 50 | 58 | 63 | 69 | 73 | 76 | 76 | 79 | 81 | 83 | 83 | 80 | 75 | 69 | 63 | 59 | 55 | 53 | 51 |
| :---: |
| 50 | 49 | 47 | 45 | 43 | 43 | 43 | 45 | 50 | 58 | 36 | 71 | 75 | 75 | 78 | 81 | 33 | 83 | 80 | 75 | 68 | 62 | 58 | 54 | 53 | 50 |
| 49 | 27 | 45 | 42 | 40 | 38 | 37 | 39 | 44 | 54 | 63 | 88 | 73 | 73 | 77 | 80 | 83 | 84 | 91. | 75 | 68 | 81 | 57 | 54 | 52 | 49 |
| 48 | 45 | 42 | 37 | 33 | 30 | 20 | 28 | 31 | 43 | 55 | 64 | 70 | 70 | 74 | 77 | 80 | 81 | 78 | 72 | 65 | 59 | 55 | 52 | 50 | 48 |
| 45 | 42 | 38 | 32 | 26 | 21 | 18 | 15 | 16 | -7 | 42 | 54 | 65 | 65 | 70 | 73 | 74 | 75 | 72 | 67 | 61 | 56 | 52 | 50 | 48 | 45 |
| 41 | 37 | 32 | 26 | 20 | 15 | 11 | 9 | 8 | 13 | 26 | 41 | 53 | 53 | 61 | 66 | 66 | 66 | 64 | 60 | 56 | 52 | 49 | 47 | 44. | 41 |
| 36 | 32 | 27 | 22 | 17 | 14 | 10 | 8 | 6 | 8 | 17 | 31 | 41 | 41 | 50 | 55 | 58 | 58 | 57 | 55 | 51 | 48 | 45 | 42 | 40 | 36 |
| 32 | 29 | 25 | 21 | 18 | 15 | 13 | 10 | 9 | 9 | 16 | 25 | 32 | 32 | 40 | 43 | 47 | 49 | 48 | 47 | 45 | 43 | 40 | 37 | 35 | 32 |
| 30 | 28 | 25 | 22 | 19 | 17 | 15 | 14 | 13 | 13 | 17 | 22 | 26 | 26 | 30 | 33 | 35 | 36 | 36 | 36 | 36 | 35 | 35 | 33 | 32 | 30 |
| 29 | 28 | 25 | 22 | 20 | 18 | 17 | 15 | $14{ }^{-\cdots}$ | : 5 | 18 | 22 | 25 | 25 | 28 | 31 | 33 | 33 | 34 | 34 | 34 | 33 | 33 | 32 | 31 | 29 |
| 29 | 27 | 25 | 22 | 21 | 19 | 18 | 17 | 16 | 16 | 19 | 22 | 25 | 25 | 27 | 29 | 31 | 31 | 32 | 32 | 32 | 32 | 31 | 31 | 30 | 29 |
| 28 | 27 | 25 | 23 | 21 | 20 | 19 | 18 | 18 | 28 | 20 | 22 | 24 | 24 | 26 | 28 | 29 | 29 | 30 | 30 | 30 | 30 | 30 | 29 | 29 | 28 |
| 27 | 26 | 25 | 23 | 22 | 21 | 20 | 19 | 19 | 19 | 21 | 22 | 23 | 23 | 25 | 26 | 27 | 28 | 29 | 29 | 29 | 29 | 29 | 27 | 28 | 27 |

FRONT SEGMENT 9
BACK

| 32 | 35 | 37 | 38 | 36 | 33 | 28 | 23 | 19 | 15 | 13 | 13 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 32 | 36 | 39 | 41 | 40 | 36 | 29 | 23 | 19 | 14 | 13 | 12 | 13 |
| 33 | 65 | 41 | 45 | 45 | 40 | 31 | 23 | 17 | 13 | 12 | 12 | 12 |
| 34 | 39 | 46 | 55 | 57 | 47 | 33 | 21 | 13 | 10 | 10 | 11 | 12 |
| 34 | 41 | 51 | 65 | 70 | 58 | 36 | 18 | 9 | 7 | 8 | 10 | 11 |
| 33 | 41 | 52 | 64 | 63 | 49 | 29 | 15 | 7 | 4 | 0 | 8 | 10 |
| 32 | 38 | 47 | 51 | 45 | 34 | 22 | 13 | 9 | 4 | 5 | 8 | 9 |
| 30 | 33 | 36 | 37 | 34 | 28 | 20 | 14 | 9 | 6 | 6 | 8 | 9 |
| 28 | 30 | 31 | 30 | 28 | 24 | 20 | 15 | 12 | 9 | 8 | 9 | 10 |
| 27 | 28 | 29 | 28 | 26 | 23 | 19 | 16 | 13 | 11 | 10 | 10 | 10 |
| 26 | 27 | 27 | 27 | 25 | 22 | 19 | 16 | 14 | 12 | 11 | 11 | 11 |
| 25 | 26 | 26 | 25 | 23 | 21 | 19 | 17 | 15 | 13 | 12 | 12 | 12 |
| 25 | 25 | 24 | 23 | 22 | 21 | 19 | 17 | 15 | 14 | 13 | 13 | 13 |

| 13 | 14 | 14 | 15 | 17 | 19 | 21 | 23 | 26 | 28 | 30 | 31 | 32 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 13 | 13 | 14 | 15 | 16 | 18 | 21 | 23 | 26 | 28 | 30 | 31 | 32 |
| 12 | 13 | 14 | 14 | 16 | 18 | 20 | 23 | 26 | 28 | 30 | 31 | 33 |
| 12 | 12 | 13 | 14 | 15 | 17 | 20 | 23 | 25 | 28 | 30 | 31 | 34 |
| 11 | 12 | 13 | 14 | 15 | 17 | 19 | 22 | 25 | 27 | 39 | 31 | 34 |
| 10 | 11 | 12 | 13 | 15 | 17 | 19 | 22 | 24 | 27 | 29 | 31 | 33 |
| 9 | 11 | 12 | 13 | 15 | 17 | 19 | 21 | 24 | 26 | 29 | 30 | 32 |
| 9 | 10 | 12 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 30 |
| 10 | 11 | 12 | 13 | 15 | 16 | 18 | 20 | 22 | 24 | 26 | 27 | 28 |
| 10 | 11 | 13 | 14 | 15 | 17 | 18 | 20 | 22 | 23 | 25 | 27 | 27 |
| 11 | 12 | 13 | 14 | 15 | 17 | 18 | 20 | 22 | 23 | 24 | 26 | 26 |
| 12 | 13 | 14 | 15 | 16 | 17 | 18 | 20 | 21 | 22 | 24 | 25 | 25 |
| 13 | 13 | 14 | 15 | 16 | 17 | 18 | 20 | 21 | 22 | 23 | 24 | 25 |

SEGMENT 11

SEGMENT 12
FRONT
BACK

| 21 | 21 | 21 | 22 | 24 | 27 | 32 | 39 | 50 | 64 | 68 | 65 | 58 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 21 | 21 | 21 | 21 | 23 | 26 | 31 | 39 | 55 | 76 | 75 | 70 | 60 |
| 20 | 20 | 20 | 20 | 21 | 24 | 30 | 40 | 61 | 87 | 36 | 75 | 62 |
| 20 | 19 | 19 | 18 | 19 | 21 | 28 | 42 | 83 | 130 | 111 | 83 | 53 |
| 19 | 18 | 17 | 16 | 15 | 17 | 23 | 41 | 107 | 133 | 140 | 22 | 62 |
| 18 | 17 | 15 | 14 | 13 | 13 | 16 | 30 | 95 | $: 70$ | 128 | 79 | 57 |
| 16 | 15 | 14 | 13 | 12 | 12 | 13 | 19 | 43 | 65 | 51 | 55 | 49 |
| 15 | 15 | 13 | 12 | 12 | 12 | 12 | 14 | 19 | 26 | 32 | 37 | 38 |
| 15 | 14 | 14 | 13 | 12 | 12 | 12 | 12 | 14 | 16 | 21 | 26 | 28 |
| 15 | 14 | 14 | 13 | 13 | 12 | 12 | 13 | 14 | 16 | 19 | 23 | 25 |
| 15 | 14 | 14 | 13 | 13 | 13 | 13 | 13 | 14 | 16 | 19 | 22 | 23 |
| 15 | 14 | 14 | 14 | 13 | 13 | 13 | 14 | 14 | 16 | 18 | 20 | 21 |
| 15 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 15 | 16 | 17 | 19 | 20 |

| 58 | 53 | 48 | 43 | 38 | 34 | 30 | 27 | 25 | 23 | 22 | 22 | 21 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 60 | 53 | 48 | 43 | 38 | 33 | 29 | 26 | 24 | 23 | 22 | 21 | 21 |
| 62 | 54 | 48 | 43 | 37 | 32 | 28 | 26 | 24 | 22 | 21 | 21 | 20 |
| 63 | 54 | 47 | 42 | 36 | 31 | 27 | 24 | 23 | 22 | 21 | 20 | 20 |
| 82 | 52 | 45 | 39 | 34 | 29 | 26 | 23 | 22 | 21 | 20 | 20 | 19 |
| 57 | 49 | 42 | 36 | 31 | 27 | 24 | 22 | 21 | 20 | 19 | 19 | 18 |
| 49 | 44 | 37 | 32 | 28 | 25 | 23 | 21 | 20 | 19 | 18 | 17 | 16 |
| 38 | 36 | 30 | 27 | 25 | 23 | 21 | 20 | 19 | 18 | 17 | 16 | 15 |
| 28 | 26 | 24 | 22 | 21 | 19 | 18 | 18 | 17 | 16 | 16 | 15 | 15 |
| 25 | 24 | 22 | 21 | 20 | 19 | 18 | 17 | 17 | 16 | 16 | 15 | 15 |
| 23 | 22 | 21 | 20 | 19 | 18 | 17 | 17 | 16 | 16 | 16 | 15 | 15 |
| 21 | 21 | 20 | 19 | 18 | 18 | 17 | 16 | 16 | 16 | 15 | 15 | 15 |
| 20 | 19 | 19 | 18 | 18 | 17 | 17 | 16 | 16 | 16 | 15 | 15 | 15 |

157

SEGMENT 14
 BACK

| 11 | 10 | 9 | 8 | 8 | 7 | 7 | 7 | 8 | 10 | 13 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 10 | 9 | 8 | 7 | 7 | 6 | 7 | 8 | 10 | 13 | 15 | 17 |
| 11 | 10 | 9 | 8 | 7 | 6 | 6 | 6 | 7 | 9 | 13 | 15 | 17 |
| 11 | 10 | 9 | 7 | 6 | 5 | 5 | 4 | 5 | 8 | 12 | 16 | 18 |
| 11 | 10 | 8 | 7 | 5 | 4 | 3 | 3 | 3 | 6 | 11 | 16 | 19 |
| 11 | 10 | 8 | 7 | 5 | 4 | 3 | 2 | 2 | 4 | 9 | 16 | 20 |
| 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 3 | 8 | 14 | 19 |
| 10 | 10 | 8 | 7 | 6 | 6 | 5 | 4 | 4 | 5 | 8 | 13 | 16 |
| 10 | 10 | 9 | 8 | 7 | 7 | 6 | 6 | 6 | 7 | 9 | 12 | 14 |
| 10 | 10 | 9 | 8 | 8 | 7 | 7 | 7 | 7 | 7 | 9 | 12 | 13 |
| 10 | 10 | 9 | 9 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 12 | 13 |
| 10 | 10 | 10 | 9 | 9 | 9 | 8 | 8 | 8 | 9 | 10 | 12 | 13 |
| 11 | 10 | 10 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 10 | 12 | 12 |

| 16 | 17 | 17 | 17 | 17 | 16 | 15 | 14 | 13 | 12 | 12 | 11 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 17 | 18 | 18 | 18 | 10 | 17 | 16 | 14 | 13 | 12 | 12 | 11 | 11 |
| 17 | 19 | 19 | 19 | 19 | 18 | 16 | 15 | 14 | 13 | 12 | 11 | 11 |
| 18 | 20 | 21 | 21 | 21 | 19 | 17 | 16 | 14 | 13 | 12 | 12 | 11 |
| 19 | 21 | 23 | 23 | 23 | 21 | 19 | 17 | 15 | 13 | 12 | 12 | 11 |
| 20 | 23 | 25 | 25 | 24 | 22 | 20 | 17 | 15 | 14 | 12 | 12 | 11 |
| 19 | 23 | 25 | 25 | 24 | 22 | 20 | 17 | 15 | 14 | 12 | 11 | 10 |
| 16 | 20 | 22 | 23 | 22 | 20 | 18 | 16 | 15 | 13 | 12 | 11 | 10 |
| 14 | 17 | 18 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 |
| 13 | 15 | 17 | 17 | 17 | 16 | 15 | 14 | 13 | 12 | 12 | 11 | 10 |
| 13 | 15 | 16 | 16 | 16 | 15 | 14 | 14 | 13 | 12 | 11 | 11 | 10 |
| 13 | 14 | 14 | 15 | 15 | 14 | 14 | 13 | 12 | 12 | 11 | 11 | 10 |
| 12 | 13 | 14 | 14 | 14 | 14 | 13 | 13 | 12 | 12 | 11 | 11 | 11 |

FRONT SEGMENT 15

| 25 | 23 | 21 | 19 | 16 | 15 | 14 | 13 | 14 | 16 | 18 | 21 | 23 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 25 | 23 | 21 | 18 | 16 | 14 | 12 | 12 | 12 | 15 | 19 | 20 | 23 |
| 26 | 23 | 21 | 18 | 15 | 16 | 11 | 10 | 11 | 13 | 17 | 20 | 23 |
| 26 | 23 | 20 | 17 | 13 | 11 | 9 | 8 | 8 | 11 | 16 | 20 | 24 |
| 25 | 24 | 20 | 16 | 12 | 9 | 7 | 5 | 5 | 8 | 13 | 19 | 24 |
| 27 | 24 | 20 | 16 | 12 | 9 | 7 | 5 | 3 | 5 | 11 | 18 | 23 |
| 26 | 23 | 20 | 16 | 13 | 10 | 8 | 6 | 4 | 4 | 9 | 16 | 21 |
| 26 | 24 | 20 | 17 | 15 | 13 | 11 | 9 | 8 | 7 | 11 | 16 | 20 |
| 25 | 24 | 21 | 19 | 17 | 15 | 14 | 12 | 11 | 11 | 14 | 17 | 19 |
| 25 | 24 | 21 | 19 | 18 | 16 | 15 | 14 | 13 | 13 | 15 | 18 | 20 |
| 25 | 24 | 24 | 20 | 19 | 17 | 16 | 15 | 15 | 15 | 16 | 18 | 20 |
| 25 | 24 | 22 | 20 | 19 | 19 | 18 | 17 | 16 | 16 | 18 | 19 | 20 |
| 25 | 24 | 22 | 21 | 20 | 19 | 19 | 18 | 16 | 16 | 19 | 20 | 21 |

$\begin{array}{lllllllllllll}23 & 25 & 27 & 28 & 29 & 30 & 31 & 30 & 29 & 28 & 27 & 27 & 25\end{array}$ $\begin{array}{lllllllllllll}23 & 26^{\circ} & 28 & 29 & 31 & 32 & 33 & 32 & 31 & 29 & 28 & 27 & 25\end{array}$ $\begin{array}{lllllllllllll}23 & 26 & 29 & 31 & 33 & 35^{\prime} & 35 & 24 & 32 & 30 & 29 & 28 & 25\end{array}$ $\begin{array}{lllllllllllll}24 & 27 & 30 & 33 & 37 & 39 & 39 & 36 & 34 & 31 & 30 & 28 & 26\end{array}$ $\begin{array}{lllllllllllll}24 & 28 & 32 & 37 & 42 & 44 & 43 & 40 & 36 & 33 & 30 & 29 & 26\end{array}$ $\begin{array}{lllllllllllll}23 & 28 & 34 & 39 & 45 & 47 & 46 & 42 & 38 & 34 & 31 & 29 & 27\end{array}$ $\begin{array}{lllllllllllll}21 & 27 & 33 & 40 & 45 & 47 & 46 & 43 & 39 & 35 & 31 & 28 & 26\end{array}$ $\begin{array}{lllllllllllll}20 & 25 & 31 & 37 & 41 & 43 & 43 & 40 & 37 & 34 & 30 & 28 & 26\end{array}$ $\begin{array}{lllllllllllll}19 & 24 & 28 & 32 & 35 & 37 & 37 & 35 & 33 & 31 & 29 & 27 & 25\end{array}$ $\begin{array}{lllllllllllll}20 & 23 & 27 & 30 & 33 & 34 & 34 & 33 & 32 & 30 & 28 & 27 & 25\end{array}$ $\begin{array}{llllllllllll}20 & 23 & 26 & 29 & 31 & 32 & 32 & 31 & 30 & 29 & 20 & 26 \\ 25\end{array}$ $\begin{array}{lllllllllllll}20 & 23 & 25 & 27 & 29 & 30 & 30 & 30 & 29 & 28 & 27 & 26 & 25\end{array}$ $\begin{array}{lllllllllllll}21 & 23 & 24 & 26 & 27 & 28 & 28 & 28 & 25 & 27 & 26 & 25 & 25\end{array}$

SEgMENT 18

| 41 | 41 | 41 | 39 | 37 | 34 | 30 | 27 | 23 | 21 | 20 | 21 | 22 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 42 | 43 | 43 | 42 | 40 | 37 | 32 | 27 | 23 | 20 | 20 | 21 | 22 |
| 43 | 44 | 45 | 45 | 43 | 40 | 35 | 28 | 22 | 15 | 19 | 20 | 22 |
| 45 | 47 | 49 | 53 | 55 | 53 | 45 | 33 | 22 | 16 | 10 | 20 | 22 |
| 48 | 52 | 57 | 69 | 81 | 86 | 78 | 55 | 29 | 15 | 10 | 20 | 23 |
| 55 | 61 | 72 | 94 | 126 | 155 | 163 | 127 | 63 | 20 | 18 | 22 | 25 |
| 62 | 71 | 87 | 115 | 155 | 190 | 206 | 173 | 91 | 31 | 21 | 26 | 28 |
| 68 | 76 | 92 | 116 | 141 | 164 | 178 | 162 | 109 | 52 | 33 | 33 | 34 |
| 71 | 78 | 90 | 106 | 120 | 130 | 136 | 129 | 106 | 73 | 49 | 42 | 40 |
| 71 | 78 | 88 | 101 | 111 | 118 | 121 | 116 | 100 | 74 | 53 | 47 | 44 |
| 72 | 77 | 66 | 90 | 103 | 108 | 110 | 105 | 93 | 73 | 57 | 50 | 48 |
| 73 | 77 | 84 | 90 | 95 | 98 | 98 | 95 | 86 | 72 | 60 | 54 | 52 |
| 73 | 77 | 62 | 87 | 90 | 91 | 90 | 87 | 82 | 74 | 62 | 57 | 54 |

| 22 | 23 | 24 | 25 | 26 | 28 | 31 | 33 | 36 | 38 | 40 | 41 | 41 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 22 | 23 | 24 | 25 | 26 | 28 | 31 | 34 | 36 | 39 | 41 | 42 | 42 |
| 22 | 23 | 24 | 25 | 27 | 29 | 31 | 34 | 37 | 40 | 41 | 43 | 43 |
| 22 | 23 | 25 | 26 | 27 | 30 | 33 | 36 | 39 | 41 | 43 | 44 | 45 |
| 23 | 24 | 26 | 27 | 29 | 31 | 34 | 38 | 41 | 43 | 45 | 46 | 40 |
| 25 | 26 | 27 | 29 | 31 | 34 | 37 | 40 | 43 | 45 | 48 | 51 | 55 |
| 28 | 28 | 30 | 32 | 34 | 36 | 39 | 42 | 46 | 49 | 53 | 57 | 02 |
| 34 | 33 | 36 | 37 | 38 | 41 | 44 | 47 | 50 | 54 | 59 | 63 | 68 |
| 40 | 41 | 42 | 43 | 45 | 48 | 50 | 54 | 57 | 59 | 63 | 67 | 71 |
| 44 | 45 | 45 | 47 | 48 | 51 | 53 | 56 | 59 | 61 | 65 | 68 | 71 |
| 48 | 48 | 49 | 50 | 51 | 53 | 56 | 58 | 61 | 63 | 66 | 70 | 12 |
| 52 | 52 | 52 | 53 | 54 | 56 | 58 | 61 | 63 | 65 | 60 | 71 | 73 |

159

$\begin{array}{lllllllllllll}24 & 22 & 21 & 19 & 18 & 17 & 16 & 17 & 20 & 25 & 31 & 35 & 37\end{array}$

| 24 | 22 | 21 | 19 | 17 | 16 | 15 | 16 | 18 | 25 | 32 | 36 | 39 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllllll}24 & 23 & 21 & 18 & 16 & 14 & 13 & 14 & 17 & 24 & 33 & 39 & 41\end{array}$
$\begin{array}{lllllllllllll}25 & 23 & 21 & 18 & 15 & 13 & 11 & 11 & 14 & 2+ & 25 & 43 & 47\end{array}$

| 26 | 24 | 21 | 18 | 15 | 12 | 9 | 8 | 10 | 23 | 42 | 55 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 55 | | | | | | | | | | | |

| 28 | 26 | 23 | 20 | 17 | 15 | 12 | 10 | 9 | 22 | 57 | 76 | 70 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 | 28 | 26 | 23 | 21 | 19 | 17 | 15 | 14 | 25 | 61 | 87 | 84 |
| 32 | 31 | 29 | 27 | 26 | 25 | 24 | 24 | 26 | 34 | 63 | 86 | 88 |
| 34 | 33 | 32 | 31 | 31 | 31 | 32 | 33 | 37 | 46 | 66 | 81 | 86 |
| 35 | 35 | 34 | 33 | 33 | 34 | 35 | 37 | 40 | 49 | 65 | 77 | 81 |
| 37 | 36 | 36 | 36 | 36 | 37 | 38 | 40 | 44 | 51 | 64 | 74 | 77 |
| 38 | 38 | 37 | 38 | 38 | 40 | 41 | 44 | 47 | 53 | 53 | 70 | 73 |
| 39 | 39 | 39 | 39 | 40 | 42 | 44 | 46 | 49 | 54 | 62 | 67 | 70 |

$\begin{array}{llllllllllll}37 & 38 & 37 & 35 & 33 & 21 & 29 & 28 & 27 & 26 & 25 & 25 \\ 24\end{array}$
$\begin{array}{lllllllllllll}39 & 40 & 39 & 37 & 34 & 32 & 30 & 28 & 27 & 26 & 26 & 25 & 24\end{array}$
$\begin{array}{lllllllllllll}41 & 42 & 41 & 38 & 36 & 33 & 31 & 23 & 23 & 27 & 26 & 26 & 24\end{array}$
$\begin{array}{lllllllllllll}47 & 46 & 44 & 42 & 38 & 35 & 32 & 30 & 29 & 28 & 27 & 26 & 25\end{array}$
$\begin{array}{lllllllllllll}55 & 51 & 50 & 47 & 43 & 38 & 35 & 32 & 30 & 29 & 28 & \text { ci } & 26\end{array}$
$\begin{array}{lllllllllllll}70 & 63 & 57 & 52 & 47 & 42 & 30 & 35 & 33 & 31 & 29 & 24 & 28\end{array}$
$\begin{array}{lllllllllllll}84 & 76 & 67 & 57 & 51 & 45 & 40 & 37 & 35 & 33 & 31 & 30 & 30\end{array}$
$\begin{array}{lllllllllllll}88 & 92 & 74 & 63 & 55 & 49 & 44 & 40 & 37 & 35 & 34 & 33 & 32\end{array}$
$\begin{array}{lllllllllllll}86 & 83 & 76 & 67 & 60 & 54 & 49 & 44 & 40 & 38 & 36 & 35 & 34\end{array}$
$\begin{array}{lllllllllllll}8! & 79 & 73 & 60 & 60 & 54 & 49 & 45 & 42 & 40 & 37 & 36 & 35\end{array}$
$\begin{array}{lllllllllllll}77 & 75 & 70 & 65 & 59 & 54 & 50 & 46 & 43 & 41 & 39 & 37 & 37\end{array}$
$\begin{array}{lllllllllllll}73 & 71 & 68 & 63 & 59 & 54 & 50 & 47 & 44 & 42 & 40 & 39 & 38\end{array}$
$\begin{array}{llllllllllll}70 & 69 & 66 & 62 & 58 & 55 & 51 & 4.7 & 45 & 43 & 41 & 3 y\end{array}$

160

SEGMENT 22

SEGMENT 23

| | | | | | | ROMT | | | | | | GME | 24 | | | | | | BAC | | | | | | |
| :---: |
| 53 | 50 | 46 | 41 | 35 | 27 | 26 | 23 | 21 | 22 | 24 | 25 | 27 | 27 | 30 | 32 | 33 | 36 | 39 | 42 | 46 | 49 | 52 | 53 | 54 | 53 |
| 54 | 51 | 47 | 42 | 35 | 29 | 24 | 21 | 19 | 20 | 23 | 25 | 28 | 28 | 30 | 32 | 34 | 37 | 40 | 44 | 48 | 51 | ${ }^{\circ} 54$ | 55 | 56 | 54 |
| 56 | 53 | 49 | 43 | 35 | 28 | 23 | 19 | 17 | 10 | 20 | 25 | 28 | 28 | 31 | 33 | 35 | 38 | 41° | 46 | 50 | 53 | 56 | 57 | 58 | 56 |
| 60 | 57 | 52 | 45 | 36 | 28 | 20 | 15 | 13 | 15 | 20 | 25 | 29 | 29 | 32 | 34 | 37 | 40 | 44 | 49 | 53 | 57 | 59 | 61 | 62 | 60 |
| 66 | 64 | 59 | 52 | 41 | 30 | 20 | 13 | 9 | 11 | 18 | $? 5$ | 30 | 30 | 33 | 36 | 40 | 44 | 49 | 54 | 59 | 63 | 65 | 65 | 65 | 68 |
| 76 | 77 | 73 | 64 | 54 | 43 | 30 | 19 | 11 | 9 | 17 | 27 | 32 | 32 | 36 | 39 | 44 | 49 | 55 | 60 | 66 | 69 | 71 | 72 | 74 | 76 |
| 87 | 89 | 85 | 76 | 66 | 55 | 42 | 29 | 18 | 13 | 19 | 30 | 35 | 35 | 38 | 44 | 49 | 54 | 59 | 65 | 71 | 75 | 79 | 81 | \$3 | 87 |
| 94 | 96 | 94 | 87 | 77 | 68 | 56 | 45 | 35 | 27 | 29 | 36 | 40 | 40 | 44 | 50 | 56 | 60 | 66 | 73 | 78 | 82 | 87 | 90 | 52 | 24 |
| 97 | 98 | 96 | 92 | 86 | 79 | 70 | 61 | 52 | 44 | 42 | 44 | 47 | 47 | 52 | 58 | 64 | 69 | 75 | 82 | 87 | 91 | 93 | 95 | 86 | 97 |
| 97 | 97 | 96 | 92 | 87 | 81 | 73 | 65 | 50 | 51 | 4B | 49. | 51 | 51 | 56 | 81 | 66 | 71 | 77 | 83 | 88 | 91 | 93 | 95 | 96 | 97 |
| 96 | 96 | 95 | 91 | 87 | 82 | 76 | 69 | 63 | 57 | 54 | 54 | 55 | 55 | 59 | 64 | 66 | 73 | 78 | 83 | 86 | 91 | 93 | 93 | 96 | 95 |
| 96 | 96 | 94 | 91 | 87 | 83 | 78 | 73 | 67 | 62 | 59 | 59 | 59 | 59 | 63 | 66 | 71 | 75 | 79 | 83 | 87 | 90 | 92 | 94 | 95 | 96 |
| 95 | 95 | 93 | 91 | 88 | 84 | . 80 | 75 | 71 | 60 | 63 | 62 | 62 | 62 | 65 | 68 | 72 | 76 | きこ | 84 | 87 | 90 | 92 | 94 | 93 | 45 |

161

SEGMENT 25

$\begin{array}{lllllllllllll}116 & 122 & 127 & 134 & 142 & 148 & 152 & 154 & 153 & 146 & 135 & 129 & 123\end{array}$ $\begin{array}{lllllllllllllllll}123 & 118 & 122 & 128 & 135 & 140 & 143 & 143 & 144 & 139 & 129^{\circ} & 123 & 118\end{array}$ 1101141171421271301321331331281201115114 $\begin{array}{lllllllllllllll}105 & 107 & 109 & 107 & 104 & 103 & 100 & 96 & 92 & 97 & 104 & 105 & 103\end{array}$

| 97 | 97 | 95 | 86 | 76 | 69 | 59 | 50 | 45 | 57 | 75 | 84 | 91 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 83 | 80 | 75 | 64 | 52 | 40 | 31 | 23 | 18 | 25 | 42 | 60 | 72 |
| 70 | 65 | 59 | 50 | 39 | 30 | 22 | 15 | 11 | 13 | 25 | 43 | 55 |
| 60 | 56 | 49 | 42 | 36 | 30 | 24 | 18 | 15 | 14 | 22 | 34 | 43 |
| 54 | 51 | 46 | 40 | 36 | 31 | 27 | 23 | 20 | 19 | 24 | 30 | 35 |
| 52 | 49 | 45 | 40 | 36 | 32 | 28 | 25 | 23 | 22 | 26 | 31 | 34 |
| 50 | 48 | 44 | 40 | 36 | 33 | 30 | 27 | 25 | 25 | 27 | 31 | 34 |
| 48 | 46 | 43 | 39 | 37 | 34 | 31 | 29 | 28 | 27 | 29 | 32 | 34 |
| 47 | 45 | 42 | 39 | 37 | 35 | 33 | 31 | 30 | 29 | 30 | 32 | 33 |

BACK
$\begin{array}{lllllllllllll}123 & 121 & 122 & 163 & 164 & 124 & 123 & 121 & 119 & 117 & 115 & 115 & 116\end{array}$ $\begin{array}{lllllllllllll}118 & 118 & 117 & 118 & 1: 9 & 119 & 118 & 116 & 115 & 111 & 112 & 112 & 113\end{array}$ $\begin{array}{lllllllllllll}114 & 111 & 112 & 113 & 114 & 114 & 113 & 112 & 116 & 169 & 108 & 169 & 110\end{array}$ $\begin{array}{lllllllllllllllllllll}103 & 104 & 104 & 104 & 104 & 104 & 104 & 104 & 103 & 103 & 103 & 104 & 105\end{array}$ $\begin{array}{lllllllllllll}91 & 55 & 93 & 92 & 51 & 91 & 92 & 93 & 94 & 95 & 97 & 98 & 97\end{array}$

| 72 | 79 | 82 | 80 | 79 | 80 | 81 | 82 | 84 | 87 | 89 | 87 | 83 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 55 | 64 | 67 | 69 | 71 | 72 | 73 | 75 | 76 | 76 | 77 | 75 | 70 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 35 | 40 | 43 | 45 | 47 | 49 | 52 | 54 | 55 | 56 | 57 | 56 | 54 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 34 | 38 | 41 | 43 | 45 | 47 | 49 | 51 | 52 | 53 | 54 | 54 | 52 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 34 | 37 | 39 | 41 | 43 | 45 | 47 | 49 | 50 | 51 | 51 | 51 | 50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllllll}34 & 36 & 38 & 40 & 41 & 43 & 45 & 46 & 48 & 49 & 49 & 49 \\ 48\end{array}$
$\begin{array}{lllllllllllll}33 & 35 & 37 & 39 & 40 & 42 & 43 & 45 & 46 & 47 & 47 & 47 & 47\end{array}$

| , | FRONT | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 66 | 62 | 58 | 53 | 47 | 42 | 39 | 37 | 38 | 43 | 50 | 56 | 60 |
| 68 | 64 | 59 | 53 | 46 | 41 | 37 | 34 | 35 | 42 | 51 | 57 | 63 |
| 70 | 86 | 61 | 54 | 46 | 39 | 34 | 32 | 32 | 40 | 51 | 59 | 66 |
| 73 | 69 | 64 | 56 | 48 | 40 | 33 | 28 | 28 | 38 | 52 | 63 | 71 |
| 79 | 76 | 70 | 64 | 56 | 46 | 37 | 30 | 28 | 39 | 58 | 76 | 81 |
| 91 | 89 | 85 | 81 | 81 | 79 | 76 | 70 | 62 | 67 | 90 | 109 | 107 |
| 103 | 105 | 103 | 104 | 110 | 117 | 225 | 130 | 147 | 178 | 172 | 157 | 140 |
| 117 | 120 | 124 | 129 | 136 | 147 | 167 | 195 | 246 | 296 | 261 | 211 | 180 |
| 126 | 129 | 135 | 144 | 155 | 172 | 196 | 228 | 267 | 307 | 290 | 245 | 211 |
| 13: | 135 | 142 | 151 | 162 | 277 | 199 | 227 | 258 | 290 | 278 | 242 | 214 |
| 137 | 141 | 148 | 157 | 167 | 180 | 199 | 222 | 247 | 271 | 263 | 256 | 214 |
| 143 | 147 | 153 | 162 | 272 | 184 | 200 | 213 | 236 | 253 | 248 | 230 | 215 |
| 146 | 51 | 159 | 6 | 76 | 86 | 00 | 214 | 228 | | 3 | 226 | 16 |

| BACK | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | 63 | 63 | 63 | 63 | 63 | 64 | 65 | 55 | 67 | 68° | 68 | 65 |
| 63 | 65 | 66 | 65 | 65 | 65 | 66 | 67 | 68 | 69 | 70 | 70 | 68 |
| 66 | 68 | 69 | 68 | 67 | 67 | 68 | 69 | 70 | 71 | 72 | 72 | 70 |
| 71 | 73 | 74 | 74 | 73 | 72 | 73 | 73 | 74 | 75 | 75 | 75 | 73 |
| 81 | 81 | 82 | 83 | $\varepsilon 2$ | 80 | 80 | 80 | 81 | 81 | 80 | 79 | 79 |
| 107 | 99 | 94 | 94 | 92 | 90 | 89 | 89 | 89 | 88 | 87 | 89 | 91 |
| 140 | 122 | 114 | 108 | 103 | 99 | 97 | 96 | 96 | 97 | 98 | 100 | 103 |
| 180 | 154 | 143 | 130 | 122 | 116 | 112 | 110 | 109 | 110 | 111 | 113 | 117 |
| 211 | 183 | 171 | 157 | 2.49 | 141 | 134 | 129 | 126 | 125 | 124 | 124 | 126 |
| 214 | 194 | 178 | 166 | 157 | 149 | 143 | 137 | 234 | 131 | 130 | 131 | 131 |
| 214 | 298 | 183 | 172 | 164 | 156 | 149 | 144 | 140 | 138 | 136 | 136 | 137 |
| 215 | 201 | 189 | 178 | 171 | 263 | 156 | 151 | 146 | 144 | 142 | 142 | 143 |
| 226 | 204 | 192 | 183 | 175 | 168 | 161 | 155 | 151 | 148 | 147 | . 246 | 145 |

162

APPENDIX E

EPICARDIAL POTENTIALS CAICULATED FROM IN-VIVO BODY \rightarrow SURPACE MEASUREMENTS

163

E. 1 Solutions by Direct Matrix Inversion

FRATE 1

| | Body-SUR=ACE rotentials | | | | (YICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| 13 | -24 | 0 | -4 | 4 | 4 | 13 | -12 |
| -2 | 0 | - 8 | -4 | -6 | 36 | 24 | 4 |
| -12 | -6 | -4 | 12 | 16 | -6 | 0 | 33 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

EPICAROIAL POTENTIALS (10 MICROVOLTS)

| -0 | -0 | -0 | -0 | -0 | -0 | -0 | -0 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -1311 | 215 | -11 | -13 | 161 | -153 | -92 | 676 |
| 214 | -85 | 13 | 3 | -168 | 775 | 59 | -402 |
| -71 | 23 | -7 | 0 | -3 | -6 | -179 | 142 |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |

FRAME 11

| | S00Y-SUP= ACE | | POTENTIALS | | (YICROYOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| 25 | -10 | 8 | 0 | 10 | 13 | 25 | 12 |
| 16 | 10 | 2 | 16 | 2 | 20 | 38 | 6 |
| 0 | 10 | -6 | 18 | 6 | -9 | 16 | 48 |
| 8 | 8 | 8 | 8 | 8 | s | 8 | 8 |

EPICAFOIAL POTENTIALS (10 HICROVOLTS)

| -51 | -51 | -51 | -51 | -51 | -51 | -51 | -51 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -1178 | 189 | 4 | -106 | 189 | 21 | -294 | 871 |
| 225 | -79 | 7 | 11 | 50 | -709 | 959 | -1076 |
| -115 | 35 | -3 | 3 | -102 | 365 | -550 | 335 |
| 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |

FRAYE 31

| | BOOY-SUR=ACE | | POTEMTIALS | | (YICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
| 38 | -4 | -13 | - 8 | 0 | 2 | 2 | 4 |
| 51 | 51 | + 8 | 64 | 12 | 30 | 50 | 32 |
| 57 | 103 | 59 | 64 | 38 | 30 | 57 | 62 |
| 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 |

EPICAROIAL DOTENTIALS (10 MICPOVDLTS)

| 47 | 47 | $i 7$ | 47 | 47 | 47 | 47 | 47 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -485 | -54 | -1 | -178 | -77 | 228 | -597 | 641 |
| 225 | 16 | 9 | 45 | 45 | -647 | 1756 | -1227 |
| -217 | 25 | 4 | -11 | 156 | -125 | -175 | 425 |
| 111 | 11. | 11 | 11 | 11 | 11 | 11 | 11 |

| | 309Y-SUP:ACE | | POTENTIALS | | (Micfovolts) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| 44 | -5i | $-1: 7$ | -53 | 4 | 10 | 22 | 0 |
| 88 | 94 | 30 | 85 | 51 | 60 | 74 | 60 |
| 116 | 110 | 1:6 | 92 | 32 | 62 | 107 | 101 |
| 53 | 53 | 33 | 53 | 53 | 53 | 53 | 53 |
| | Epicardial potentials | | | | (16 microvolis) | | |
| 430 | 430 | 430 | 430 | 430 | 430 | 430 | 430 |
| -386 | -432 | -35 | - 816 | 166 | -665 | 269 | -123 |
| 435 | 146 | +3 | 111 | 13 | 326 | 289 | -584 |
| -201 | -3 | -4 | -9 | 92 | -324 | 253 | 210 |
| 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |

FRAFE 51

| | BODY-SUR - ACE POTENTIALS | | | | (MICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 12 | 12 | 12 | 12 | 12 | 12 | ± 2 |
| 16 | -111 | $-1+6$ | -66 | 18 | 20 | 25 | -30 |
| 55 | 0 | 10 | 5\% | 55 | 69 | 76 | 41 |
| 66 | 67 | 74 | 92 | 75 | 72 | 100 | 30 |
| 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
| | EPICARDIAL POTEUTIALS | | | | $(10 \mathrm{miCp} 0$ OJLTS | | |
| 447 | 447 | $4 \div 7$ | 447 | 447 | 447 | 447 | 447 |
| -1935 | -189 | -49 | -739 | 554 | -749 | 2 | 659 |
| 628 | 27 | ;3 | 118 | -133 | 63 | 935 | -918 |
| -278 | 36 | -16 | 1 | -193 | 46: | -677 | 419 |
| 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |

| frame 61 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | coor-Sur=ace | | POTENTIALS | | (MICROVOLTS) | | |
| 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
| 25 | -53 | -33 | -32 | 8 | 3 | 30 | -8 |
| 38 | $\because 8$ | -27 | 44 | 12 | 33 | 41 | 33 |
| 10 | 18 | 27 | 44 | 40 | 13 | 44 | 27 |
| 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |

EPICAROIAL POTENTIALS (IA HICROVOLTS)

| 104 | 104 | $1: 4$ | 164 | $1: 4$ | 104 | 104 | 104 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| -1908 | 226 | 0 | -461 | 1.34 | -444 | 71 | 755 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 376 | -113 | 11 | 79 | -100 | 39 | 405 | -372 |
| -216 | 55 | -5 | 0 | -125 | 412 | -537 | 232 |
| 20 | 20 | 20 | 20 | 20 | 20. | 20 | 20 |

FRARE 71

| | gojy-Sup:ace potentials | | | | (MICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 8 | 8 | 8 | 8 | 3 | 3 | 8 |
| 20 | -25 | -2 | -6 | a | 0 | 18 | \% |
| 22 | -32 | -36 | 22 | -30 | 2 | 12 | 3 |
| 0 | -9 | 2 | 8 | -16 | -27 | 2 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

EDICAROIAL POTENTIALS (IO MICRONOLTS)

| -35 | -35 | -35 | -35 | -35 | -35 | -35 | -35 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -1332 | 257 | 14 | -293 | 723 | -477 | 299 | 546 |
| 205 | -118 | -3 | 49 | $-3: 6$ | 315 | -229 | -89 |
| -119 | 39 | 0 | -8 | 6 | -165 | 227 | -52 |
| -12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |

| | BOOY-SUR - ACE | | potentials | | (MICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| E | 0 | 53 | 76 | 32 | 0 | 10 | -38 |
| 27 | -30 | -10 | 74 | -13 | 0 | -10 | -2 |
| -27 | -13 | ? 0 | 8. | -33 | -33 | -6 | -6 |
| -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 |
| | EPICAROIAL POTENTIALS | | | | (16 MICRONLTS) | | |
| -223 | -223 | -2?3 | -223 | -223 | -223 | -223 | -223 |
| -1082 | 406 | 18 | 108 | 651 | -412 | 382 | 514 |
| 37 | -158 | -16 | 7 | -117 | 262 | -234 | -80 |
| -98 | 54 | 15 | 1 | -244 | 334 | -307 | 114 |
| 18 | 16 | 18 | ± 8 | 18 | 18 | 18 | 18 |

FRAPE 91

frame 101

BOOY-SUR:ACS POYENTIALS (YICROVOLTS)

| 66 | 56 | 56 | 66 | 66 | 65 | 66 | 66 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -67 | -776 | -1831 | -1689 | 521 | 484 | 132 | -110 |
| ± 30 | -270 | -1255 | 164 | $1: 34$ | 793 | 484 | 174 |
| 278 | 125 | -12 | 687 | 943 | 771 | 602 | 324 |
| 340 | 300 | 330 | 300 | 325 | 306 | 334 | 306 |

EPICARDIAL POTENTIALS $1: 0$ MICROVOLTS) $\begin{array}{llllllll}5119 & 5119 & 5119 & 5119 & 5119 & 5119 & 5119 & 5119\end{array}$
$995-5143 \quad 538-17499 \quad 22154-13779 \quad 6713-6039$
$3952311 \quad-28 \quad 2382-1149912031 \quad-290 \quad 2980$
$\begin{array}{llllllll}-4528 & 471 & -257 & 27 & 1654 & 614 & -2683 & 1645\end{array}$
$\begin{array}{llllllll}274 & 274 & 274 & 274 & 274 & 274 & 274 & 274\end{array}$

FRAME 111

| | BOOY-SUP: ACE | | Potentials | | (YICPOVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 106 | 106 | 136 | 10 E | 106 | 105 | 106 | 106 |
| 115 | -27€ | -638 | -630 | 55 | 167 | 214 | 92 |
| 153 | -85 | -635 | -301 | 139 | 209 | 235 | 192 |
| 125 | 24 | -139 | 0 | 157 | 167 | 209 | 157 |
| 103 | 103 | 133 | 103 | 103 | 103 | 103 | 103 |

EPICARDIAL EOTENTIALS (10 MICROVOLTS)
$\begin{array}{llllllll}1836 & 1836 & 1835 & 1376 & 1836 & 1836 & 1836 & 1836\end{array}$
$-2299-1239 \quad 79-5034 \quad 6371-5275 \quad 399+-196 \mathrm{~S}$

$\begin{array}{llllllllllllll}-1593 & 159 & -130 & 15 & 322 & -667 & 915 & -332\end{array}$
$\begin{array}{ccccccccccccccccc}-15 & -15 & -15 & -15 & -15 & -15\end{array}$

| | FRAME 121 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | BODY-SUP:ACE. | | Potentials | | (MICROVOLTS) | | |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 25 | -19 | 35 | 150 | 41 | 13 | 8 | -16 |
| 30 | -24 | 0 | 94 | -18 | -9 | -12 | 30 |
| -2 | -3 | 30 | 0 | -8 | -36 | 12 | Q |
| 6 | 6 | 6 | 6 | . 6 | 6 | 6 | 6 |
| | EPICARDIIL POTENTIALS | | | | (1: MICRO.13LTS) | | |
| -348 | -348 | $-3+8$ | -348 | -348 | -343 | -348 | -348 |
| -2396 | 744 | -12 | 629 | 48 | 215 | -293 | 1316 |
| 140 | -266 | -7 | -54 | 87 | 115 | -403 | 155 |
| -54 | 69 | ≥ 5 | 2 | -183 | 77 | 109 | -111 |
| 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |

FRANE 131

BODY-SUR:ACE POTENTIALS (MICROYOLTS)

| -8 | -8 | -8 | -8 | -3 | -8 | -3 | -8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 135 | 260 | 38 | -4 | -16 | -33 |
| -2 | -16 | 33 | 135 | -46 | -33 | -33 | -10 |
| -38 | -19 | 36 | -16 | -32 | -72 | -24 | -30 |
| -12 | -12 | -12 | -12 | -12 | -12 | -12 | -12 |

EPIGAROIAL POTEHTIALS (10 MICROVOLTS)

| -705 | -705 | -725 | -765 | -705 | -705 | -705 | -705 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -3311 | 1186 | -33 | 1495 | -334 | 1201 | -1295 | 2503 |
| 73 | -377 | -2 | -164 | 700 | -1095 | 717 | -1185 |
| 79 | 77 | 43 | 5 | -374 | 520 | -561 | 265 |
| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |

FRAME 141

| | SOOV-SURFACE | | POTENTIALS | | (AICROYOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -25 | -25 | -25 | -25 | -25 | -25 | -25 | -25 |
| -8 | 24 | 236 | 301 | 53 | -10 | -53 | -41 |
| -16 | -22 | 117 | 178 | -33 | -25 | -38 | -24 |
| -41 | -12 | 31 | 8 | -20 | -80 | -30 | -48 |
| -13 | -13 | -13 | - $\ddagger 3$ | -13 | -13 | -13 | -1 |

EPICARDIAL POTENTIALS (10 MICROVOLTS)

| -813 | -813 | -813 | $-8: 3$ | -913 | $-8: 3$ | -813 | -813 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -2686 | 1144 | -26 | 1703 | -1361 | 1755 | -2053 | 2711 |
| -92 | -344 | -12 | -178 | 807 | -1304 | 1273 | -1541 |
| 141 | 65 | 53 | 3 | -401 | 528 | -727 | 359 |
| 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

FRAME 151

BODY-SUR:AGE POTENTIALS (YICROVOLTS)

| -30 | -30 | -30 | -30 | -30 | -30 | -30 | -30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -27 | -25 | $2: 1$ | 346 | 50 | -18 | -62 | -55 |
| 22 | -32 | 138 | 235 | -10 | -32 | -33 | -30 |
| -41 | -12 | 30 | 24 | -27 | -51 | -22 | -41 |
| -10 | -10 | -10 | -10 | -10 | -10 | -10 | -10 |

EPICAPDIAL POTEHTIALS (10 MICROVOLTS)

| -866 | -866 | -536 | -866 | -866 | -866 | -865 | -965 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -4419 | 1444 | -53 | 1882 | -1322 | 2354 | -2663 | 3315 |
| 175 | -452 | 4 | -189 | 1243 | -2525 | 2430 | -2575 |
| 34 | 107 | 31 | 9 | -665 | 1295 | -1619 | 765 |
| $3 i$ | $3 i$ | $3 i$ | 30 | $3 i$ | $3 i$ | 30 | 30 |

| | FRAPE :61 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | BOOY-SUR: ACE | | Potentials | | (YICROVOLTS) | | |
| -38 | -38 | -38 | -38 | -38 | -38 | -33 | -38 |
| -16 | -46 | 239 | 419 | 98 | 10 | -76 | -82 |
| -33 | -48 | 174 | 315 | 16 | -4 | -32 | -38 |
| -46 | -19 | 115 | 51 | 0 | -41 | -13 | -50 |
| -6 | -6 | -6 | -6 | - -6 | -6 | -6 | -6 |

EPICAROIAL POTENTIALS 110 MICROYOLTSI
$\begin{array}{llllllll}-975 & -975 & -975 & -975 & -975 & -975 & -975 & -975\end{array}$

| -5479 | 1552 | -74 | 2171 | $-1: 573$ | 2593 | -3576 | 4852 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 278 | -515 | 11 | -201 | 1408 | -2516 | 3013 | -3250 |
| 18 | 129 | 74 | 11 | -344 | 1560 | -2066 | 982 |
| 49 | 49 | 49 | 49 | 49 | 49 | 49 | 49 |

FRAME 171

BODY-SUR:ACE POTENTIALS (MICROVOLTS)

| -53 | -53 | -53 | -53 | -53 | -53 | -53 | -53 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -74 | -96 | 220 | 536 | 150 | 12 | -107 | -124 |
| -64 | -67 | $2: 1$ | 447 | 48 | 10 | -48 | -72 |
| -60 | -38 | $1 \div 6$ | 101 | 55 | -16 | -16 | -67 |
| -8 | -8 | -8 | -8 | -8 | -8 | -9 | -8 |

EPICAROIAL POTENTIALS (10 MICROVOLTS)
$-1137-1137-1137-1137-1137-1137-1137-1137$ $\begin{array}{llllllll}-7 C 89 & 2031 & -35 & 2452 & -1173 & 2637 & -4343 & 5935\end{array}$

| 483 | -658 | 18 | -198 | 1285 | -2559 | 3617 | -4173 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -114 | 185 | 37 | 9 | -371 | 1860 | -2658 | 1349 |
| 76 | 76 | 76 | 76 | 76 | 76 | 76 | 76 |

FRAME 181

| | BODY-SUP: ACE | | POTENTIALS | | (YICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -80 | -80 | -90 | -8u | -30 | -80 | -80 | -80 |
| -132 | -138 | 217 | 687 | 212 | 22 | -160 | -196 |
| -101 | -124 | $2 \div 0$ | 628 | 117 | 13 | -72 | -114 |
| -90 | -72 | 132 | 178 | 51 | -8 | -27 | -92 |
| -. 13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 |

EPIGAROIAL POTENTIALS (10 MICROVOLTS) $-1364-1304-1334-1304-1304-1334-1304-1304$
$\begin{array}{llllllll}-7937 & 2258 & -123 & 2943 & -1+62 & 3313 & -5184 & 6994\end{array}$ $\begin{array}{llllllll}52 i & -731 & 17 & -205 & 1923 & -3639 & 4973 & -5174\end{array}$ $\begin{array}{lllllll}-196 & 230 & 1 \geq 8 & 13 & -1369 & 2607 & -3314\end{array} 1787$
$\begin{array}{llllllll}132 & 132 & 132 & 132 & 132 & 132 & 132 & 132\end{array}$

FRAFE 191

BODY-SUR:ACE POTENTIALS (MICROVOLTS)

| -106 | -106 | -136 | -106 | -106 | -106 | -106 | -106 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -189 | -207 | 139 | 837 | 298 | 40 | -212 | -245 |
| -130 | -152 | 231 | 787 | 198 | 67 | -76 | -135 |
| $- \pm 61$ | -74 | 234 | 271 | 134 | 51 | -12 | -103 |
| -6 | -6 | -6 | -6 | -6 | -6 | -6 | -6 |

EPICARJILL DOTENTIALS (IE MICROYOLTSI
$-1394-1394-1334-1394-1334-1394-1394-1394$
$-9435 \quad 2545-154 \quad 3325-1078 \quad 350 ?-6098 \quad 8125$

| 723 | -846 | 29 | -204 | 1762 | -3147 | 5756 | -5853 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -400 | 294 | $1+9$ | 19 | -1559 | 3403 | -4826 | 2245 |
| 182 | 182 | 132 | 182 | 192 | 182 | 182 | 182 |

E. 2 Solutions by Iterative Inversion

FRAFE 1

FRAME $1:$

| | BOOY-SUP-ACE POTENTIALS | | | | (MICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12. |
| 25 | -10 | 8 | 0 | 10 | 18 | 25 | 12 |
| 16 | 10 | 2 | 16 | 2 | 20 | 38 | 6 |
| 1 | 11 | -6 | 13 | 6 | -8 | 16 | 48 |
| 8 | 8 | 8 | 8 | 6 | 8 | 8 | 8 |

| | EPICLROIAL POTENTIALS | | | | 116 | MICROVOLTS) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| -29 | 4 | 1 | -3 | 16 | 14 | 27 | 23 |
| -0 | 1 | 2 | 3 | 7 | 60 | 70 | 2 |
| -4 | -3 | 1 | 7 | -7 | -14 | -6 | -11 |
| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |

3OOY-SURFACE POTENTEALS (YICROVOLTSI

| 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 20 | -25 | -6 | 2 | 5 | 10 | 25 | 4 |
| 24 | 4 | -12 | 40 | 4 | 10 | 32 | 8 |
| 13 | 20 | 6 | 22 | 36 | 1 | 18 | 32 |
| 8 | 8 | 8 | 8 | 8 | 3 | 8 | 8 |

EPIGAROIAL POTENTIALS (さE MIGQOVOLTS)

| -73 | -7 | -2 | -3 | -0 | 5 | 23 | 14 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -22 | -7 | 1 | 9 | 12 | 3 | 49 | -3 |
| -13 | -17 | 1 | 23 | 2 | -2 | -9 | -1 |
| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |

FRAME 31

BOOY-SUP:AGE POTEUTIALS (YICROVOLTSI

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38 | -4 | -13 | -8 | 0 | 2 | 2 | 4 |
| 51 | 51 | 48 | 64 | 12 | 30 | 50 | 30 |
| 57 | 103 | 39 | 64 | 88 | 30 | 57 | 62 |
| 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 |

EPICAKOIAL POTENTIALS (1: MICPOMLSS)

| -5 | -5 | -5 | -5 | -5 | -5 | -5 | -5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -33 | -17 | -7 | -29 | -33 | -14 | -14 | 7 |
| 12 | 5 | 0 | 10 | 2 | 45 | 65 | 25 |
| 63 | 13 | 17 | 29 | 22 | 27 | 9 | 34 |
| 21 | 21° | 21 | 21 | 21 | 21 | 21 | 21 |

FRATE 4:

| | booy-SUP:ACE potentials | | | | (YICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 10 | 10 | 10 | 10 | 10 | $1 i$ | 15 |
| 44 | -51 | -137 | -53 | 4 | 10 | 22 | 0 |
| 83 | 94 | 30 | 85 | 51 | 60 | 74 | 60 |
| 116 | 110 | $1 ; 6$ | 92 | 83 | 62 | 107 | 101 |
| 53 | 53 | 33 | 53 | 53 | 53 | 53 | 53 |

EPICAROIAL POTENTIALS (IS MICRO:JLTS)

| -0 | -6 | -0 | -0 | -0 | -0 | -0 | -0 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -157 | -92 | -39 | -120 | -35 | -9 | 3 | 11 |
| -10 | -14 | -3 | 2 | -0 | 130 | 101 | 86 |
| 92 | 28 | 27 | 39 | 29 | 27 | 44 | 90 |
| 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 |

FRAME 51

booy-sur ase potentials (yicrovolts)

| 12 | 12 | 12 | 12 | ± 2 | ± 2 | 12 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 16 | -111 | $-1 \% 6$ | -66 | 18 | 20 | 25 | -30 |
| 55 | 0 | 10 | 57 | 55 | 69 | 76 | 41 |
| 66 | 67 | 74 | 92 | 76 | 72 | 100 | 60 |
| 50 | 50 | 70 | 50 | 50 | 50 | 50 | 50 |

EDICARDIAL POTENTIALS (10 MICROVOLTS)
$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

| -296 | -126 | -56 | -139 | 5 | 0 | 11 | -3 |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| -108 | -44 | -21 | -7 | -4 | 189 | 114 | 50 |
| 9 | -16 | 2 | 20 | 39 | 40 | 56 | 38 |
| 24 | 24 | 34 | 24 | 24 | 24 | 24 | 24 |

FRATE 74

BODY-SURFACE POTENTIALS (ATCROVOLTS)

| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | -25 | -2 | -6 | 8 | 0 | 18 | 0 |
| $2 \overline{2}$ | -72 | -16 | 22 | -36 | 2 | 12 | 13 |
| 0 | -6 | 2 | 8 | -16 | -27 | 2 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |.

EOICARDIIL POTENTIALS (10 MICPOVOLTS)

| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -67 | -2 | -2 | -14 | 12 | 1 | 17 | 16 |
| -30 | -12 | -3 | 3 | -11 | -9 | 16 | 25 |
| -33 | -29 | -7 | $=3$ | -56 | -43 | -26 | -11 |
| , 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |

FRAME 81

| | 300Y-SUR=ACE | | POTENTIALS | | (HICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 8 | 0 | 53 | 76 | 32 | 0 | 10 | -38 |
| 27 | -3! | -16 | 74 | -43 | 7 | -13 | -2 |
| -27 | -13 | 20 | 8 | -33 | -33 | -6 | -6 |
| -2 | -2 | - 2 | -2 | -2 | -2 | -2 | -2 |

| | EPICASOIAL POTENTIALS | (10 MICROVOLTSI | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0 | -0 | -0 | -0 | -0 | -0 | -0 | -0 |
| -14 | 37 | 27 | 131 | 56 | -7 | 1 | -4 |
| -5 | 9 | 22 | 38 | 73 | -50 | -46 | -40 |
| -48 | -20 | 8 | 43 | -76 | -82 | -54 | -58 |
| 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |

FRANE 91

SOUY-SURFACE POTENTIALS (MICROJOLTS)

| -62 | -62 | -52 | -62 | -62 | -62 | -62 | -62 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -130 | -278 | -431 | -148 | 257 | 130 | -124 | -223 |
| -27 | -146 | -4 | 598 | 441 | 271 | 50 | -50 |
| 38 | 38 | 221 | 481 | 447 | 274 | 178 | 36 |
| 88 | 88 | 38 | 88 | 88 | 80 | 88 | 88 |

EPICAPOIAL POTENTYALS $(10$ MICROVOLTS)

| -83 | -83 | -93 | -83 | -83 | -83 | -83 | -83 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -870 | -436 | -156 | -402 | 343 | -96 | -294 | -323 |
| -474 | -184 | -31 | 83 | 345 | 405 | -237 | -607 |
| -331 | -177 | 10 | 299 | 218 | 35 | -105 | -346 |
| 181 | 181 | 181 | 181 | 181 | 181 | 181 | 181 |

FRAME 101

| | GOJY-SUR=ACF. | | F PCTENTIALS | | (4IEROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 66 | 66 | 56 | 66 | 66 | 66 | 66 | 66 |
| -67 | -776 | -1831 | -1689 | 521 | 484 | 132 | -1:2 |
| 139 | -2イ0 | -1230 | 164 | 102\% | 793 | 484 | 171 |
| 278 | 125 | -12 | 687 | 943 | 771 | 602 | 324 |
| 300 | 300 | 330 | 300 | 306 | 300 | 300 | 300 |

EPICARDIIL POTENTIALS (10 MICROJLTS)

| 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -2023 | -1462 | -836 | -3227 | 1355 | 225 | 47 | -138 |
| -1593 | -932 | -575 | -446 | -234 | 2655 | 763 | 164 |
| -838 | -1025 | -422 | -34 | 1219 | 847 | 570 | 85 |
| 138 | 138 | 138 | 135 | 133 | 138 | 139 | 133 |

FRAME 111

BODY-SUR=ACE POTENTIALS (HICROVOLTS)

| 106 | 106 | 136 | 106 | 106 | 106 | 106 | 106 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 115 | -276 | $-6: 8$ | -630 | 55 | 167 | 214 | 92 |
| 153 | -85 | -655 | -301 | 139 | 219 | 235 | 182 |
| 125 | 24 | -139 | 0 | 157 | 167 | 209 | 167 |
| 103 | 103 | 133 | 103 | 103 | 103 | 103 | 103 |

EPICAROIAL POTENTIALS 110 MICROVOLTS

| 61 | 81 | 31 | 81 | 81 | 81 | 81 | 81 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -504 | -454 | -270 | -1129 | 222 | 275 | 300 | 220 |
| -543 | -361 | -237 | -242 | -329 | 1644 | 613 | 633 |
| -226 | -419 | -243 | -200 | 395 | 371 | 356 | 296 |
| -54 | -54 | -54 | -54 | -54 | -54 | -54 | -54 |

FRAFE 121

| | GOOY-SUP:ACE POTENTIALS | | | | (MICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 25 | -18 | 35 | 150 | 41 | 13 | 8 | -16 |
| 30 | -24 | 0 | 94 | -18 | -8 | -12 | 30 |
| -2 | - $\mathrm{B}^{\text {d }}$ | 3 C | 0 | -8 | -36 | 12 | 0 |
| 6 | 6 | 6 | б' | 6 | 6 | 6 | 6 |

EPIGAROIAL POTEMTIALS (1S MICROVOLTS)

| -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -60 | 61 | 50 | $26 E$ | 78 | -0 | -2 | 7 |
| 3 | 21 | 39 | 63 | 127 | -89 | -54 | 41 |
| -32 | -14 | 16 | 64 | -64 | -71 | -48 | -36 |
| 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |

FRAFE 131

BODY-SUR:ACE POTENTIALS (YICPOVOLTS)

| -8 | -8 | -8 | -8 | -8 | -8 | -8 | -8 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 2 | 135 | 260 | 38 | -4 | -16 | -33 |
| -2 | -16 | 93 | 135 | -46 | -3.3 | -33 | -10 |
| -38 | -18 | 35 | -16 | -22 | -72 | -24 | -30 |
| -17 | -12 | -12 | -12 | -12 | -12 | -12 | -12 |

EPICAPEIAL POTENTIALS (ic MICROVOLTS)

| -10 | -10 | -10 | -10 | -10 | -10 | -10 | -10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -17 | 137 | 77 | 467 | 60 | -22 | -35 | -25 |
| 75 | 74 | 90 | 103 | 158 | -211 | -110 | -79 |
| -8 | 40 | 79 | 95 | -120 | -125 | -104 | -97 |
| 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |

FRAME 151

BOOY-SUR=ACE POTENTIALS (MICROVOLTS)

| -32 | $-3 i$ | $-3 i$ | $-3 i$ | $-3 i$ | -32 | -30 | -30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -27 | -25 | 231 | 346 | 60 | -18 | -62 | -55 |
| 22 | -32 | 138 | 235 | -15 | -32 | -33 | $-3 i$ |
| -41 | -12 | 30 | 24 | -27 | -51 | -22 | -41 |
| -10 | -10 | -10 | -10 | -10 | -10 | -10 | -10 |

Ericardill potentials (10 microvolts)

| -30 | -30 | -30 | -30 | -30 | -30 | -30 | -30 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -111 | 143 | 117 | 609 | 76 | -52 | -110 | -87 |
| 65 | 89 | 178 | 149 | 287 | -294 | -156 | -196 |
| -23 | 55 | 77 | 154 | -155 | -171 | -142 | -156 |
| 144 | 44° | 74 | 44 | 44 | 44 | 44 | 44 |

FRATE 161

| | BOOY-SURFACE POTENTIALS | (NICROVOLTS) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -38 | -38 | -38 | -38 | -30 | -38 | -35 | -38 |
| -16 | -46 | 239 | 419 | 98 | 10 | -76 | -82 |
| -33 | -48 | 174 | 315 | 16 | -4 | -32 | -38 |
| -46 | -18 | 115 | 51 | 0 | -41 | -13 | -50 |
| -5 | -6 | -6 | -6 | -6 | -6 | -6 | -6 |

EPICAROIAL POTENTIALS (10 MICROYOLTS)

| -39 | -39 | -39 | -39 | -39 | -39 | -39 | -39 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -180 | 143 | 133 | 733 | 140 | -64 | -141 | -102 |
| 54 | 98 | 131 | 187 | 381 | -251 | -186 | -255 |
| -41 | 63 | 77 | 202 | -161 | -192 | -170 | -202 |
| 62 | 62 | 52 | 62 | 62 | 62 | 62 | 62 |

FRAFE 171

EOOY-SURFACE POTENTIALS (MICROVOLTSI

| -53 | -53 | -73 | -53 | -53 | -53 | -53 | -53 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -74 | -96 | 220 | 536 | 150 | 12 | -107 | -124 |
| -50 | -67 | 211 | 447 | 48 | 10 | -43 | -72 |
| -60 | -38 | 146 | 101 | 55 | -16 | -15 | -67 |
| -8 | -8 | -8 | -8 | -8 | -8 | -8 | -8 |

| | EPICARDIAL POTENTIALS | (10 MICROIOLTS) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -57 | -57 | -37 | -57 | -57 | -57 | -57 | -57 |
| -334 | 141 | 137 | 925 | 219 | -95 | -204 | -188 |
| 16 | 103 | 152 | 248 | 519 | -310 | -273 | -437 |
| -97 | 53 | 131 | 280 | -176 | -214 | -221 | -289 |
| 93 | 93 | 33 | 93 | 93 | 93 | 93 | 93 |

FRAFLE 131

EニOY-SURFACE POTENTIALS (MICROVOLTS)

| -80 | -80 | -30 | -80 | -80 | -80 | -80 | -80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -132 | -139 | 217 | 687 | 212 | 22 | -150 | -195 |
| -101 | -124 | $2+0$ | 628 | 117 | 13 | -72 | -114 |
| -76 | -72 | 182 | 178 | 51 | -8 | -27 | -92 |
| -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 |

EPICARDIAL POTENTIALS (IC MICROJOLTS)

| -84 | -84 | -34 | -84 | -84 | -84 | -84 | -84 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -484 | 127 | 196 | 1177 | 301 | -138 | -302 | -294 |
| -38 | 104 | 232 | 329 | 711 | -458 | -412 | -663 |
| -193 | 38 | 153 | 385 | -244 | -325 | -318 | -1427 |
| 136 | 136 | 136 | 156 | 136 | 136 | 136 | 136 |

FRAFE 191

3ODY-SUEFACE POTENTIALS (MICROVOLTS)
$-106-106-106-10 E-106-106-196-196$
$-189-207 \quad 139 \quad 837 \quad 298 \quad 40-212-245$
$\begin{array}{lllllllllllllllllll}-130 & -162 & 251 & 797 & -75\end{array}$
$\begin{array}{llllllll}-101 & -74 & 234 & 271 & 134 & 51 & -12 & -103\end{array}$
$\begin{array}{lllllllll}-6 & -6 & -6 & -6 & -6 & -5 & -6 & -6\end{array}$

EPICAROI:L POTENTIALS (10 MICROVOLTS)
-111 -111 -11:-111 -111 -111 -111 -111
$\begin{array}{llllllllllllllll}-700 & 92 & 208 & -1724 & -399 & -430\end{array}$
$\begin{array}{llllllll}-117 & 90 & 233 & 405 & 910 & -404 & -503 & -555\end{array}$
$\begin{array}{lllllllllll}-273 & 5 & 1.2 & 472 & -232 & -337 & -363 & -539\end{array}$
$\begin{array}{llllllll}179 & 179 & 179 & 179 & 177 & 179 & 179\end{array}$

FRAME 1

| | BODY-SURFACE POTENTIALS | (MICROVOLTS) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 |
| 9 | -28 | 9 | -3 | 2 | 9 | 10 | -6 |
| -1 | -5 | -15 | 3 | -0 | 26 | 13 | 10 |
| -15 | 1 | -9 | 26 | 24 | -7 | -1 | 35 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |

EPICAROIAL POTENTIALS (1: HICROVILS)

| -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -73 | 6 | 0 | -9 | 0 | 2 | 9 | 10. |
| -17 | -2 | -1 | -0 | -5 | 89 | 31 | 17 |
| -19 | -14 | -6 | -2 | 8 | 1 | -14 | -30 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |

FRAFE 11

EPICAROI:L POTENTIALS (10 MICROVOLTS)

| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -7 | 4 | 1 | 0 | 35 | 15 | 21 | 11 |
| 0 | 1 | 2 | 3 | 10 | 44 | 77 | 2 |
| -10 | -4 | -0 | 4 | -4 | -17 | -18 | -5 |
| 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |

FRAME 21

JODY-SUR=ACE POTENTIALS (YICQOVOLTS)

| 2 | 2 | 2 | 2 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 13 | -34 | -14 | 0 | -1 | 1 | 32 | -4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 32 | 4 | -19 | 37 | 1 | 7 | 39 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

15 17 0 22, $33 \quad 29$

| 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

EPICAROIAL POTENTIALS 110 MICPOVOLTS)

| -0 | -0 | -0 | -0 | -0 | -1 | -0 | -0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -93 | -13 | -4 | -6 | -19 | -3 | 31 | 9 |
| -30 | -11 | -0 | 6 | 4 | -5 | 63 | -17 |
| -18 | -23 | -2 | 20 | 0 | -7 | -21 | 4 |
| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |

FRAPE 31

BODY-SUR-ACE POTENTIALS (YICROVOLTS)
$\begin{array}{llllllll}-2 & -2 & -2 & -2 & -2 & -2 & -2 & -2\end{array}$
$\begin{array}{llllllll}46 & 1 & -5 & -14 & 6 & -2 & -1 & 0\end{array}$

| 54 | 56 | 36 | 63 | 11 | 35 | 41 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllll}54 & 98 & 76 & 64 & 91 & 26 & 64 & 70\end{array}$
$\begin{array}{llllllll}35 & 35 & 35 & 35 & 35 & 35 & 35 & 35\end{array}$

EPICAROIAL DOTENTIALS 110 MICPOVOLTS)

| -6 | -6 | -6 | -6 | -6 | -6 | -6 | -6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -19 | -10 | -7 | -41 | -16 | -18 | -19 | 8 |
| 25 | 10 | 9 | 8 | 1 | 60 | 44 | 21 |
| 68 | 19 | 69 | 29 | 24 | 27 | 11 | 28 |
| 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |

FRAME 41

| | B0DY-SURFACE | | potentials | | (MICROVSLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
| 34 | -42 | -1] 5 | -59 | 12 | 15 | 19 | 1 |
| 97 | 92 | 39 | 81 | 50 | 55 | 79 | 67 |
| 100 | 115 | 135 | 101 | 77 | 52 | 109 | 93 |
| 55 | 55 | 55 | 55 | 55 | 55 | 55 | 55 |

EPICAROIAL POTENTIALS (10 MICROVOLTS)
$\begin{array}{llllllll}5 & 5 & 5 & 5 & 5 & 5 & 5 & 5\end{array}$

| -135 | -90 | -10 | -130 | -16 | -9 | -0 | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -12 | -10 | -3 | -1 | -2 | 109 | 112 | 105 |
| 96 | 35 | 28 | 34 | 22 | 15 | 39 | 75 |
| 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 |

FRAME 51

BDOY-SUR ACE POTENTIALS (MICROVOLTS)

| 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 11 | -103 | -147 | -72 | 23 | 21 | 31 | -32 |
| 53 | 6 | 18 | 64 | 47 | 76 | 60 | 37 |
| 64 | 67 | 59 | 97 | 81 | 56 | 91 | 72 |
| 58 | 58 | 58 | 58 | 58 | 53 | 58 | 58 |

| 5 | Cill potentials | | | | (1) MICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| -279 | -122 | -32 | -152 | 15 | 3 | 15 | -12 |
| -101 | -43 | -20 | -7 | -9 | 203 | 90 | 34 |
| 9 | -12 | 5 | 23 | 31 | 35 | 43 | 33 |
| 26 | 26 | 26 | 26 | 26 | 26 | 25 | 26 |

FRAME 61

| | BDOY-SURFACE POTEHTIALS | | | | (HICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 |
| 33 | -61 | -30 | -34 | 6 | 15 | 25 | - |
| 39 | -19 | -25 | 36 | 12 | 40 | 51 | 31 |
| 1 | ± 2 | 34 | 47 | 41 | 23 | 45 | 18 |

EPICAROIAL POTENTIALS (10 MICROVOLTS)
$\begin{array}{llllllll}6 & 6 & 6 & 6 & 6 & 6 & 8 & 6\end{array}$

| -162 | -27 | -16 | -73 | -5 | 12 | -20 | 17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -59 | -19 | -8 | -2 | -11 | 110 | 83 | 51 |
| -26 | -30 | -6 | 15 | 6 | 10 | 14 | -27 |
| 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |

FRAME 71

BODY-SUR:ACE POTENTIALS (YICROVOLTS)

| 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | -35 | -8 | -15 | 1 | -4 | 23 | -17 |
| 19 | -39 | -30 | 30 | -38 | 6 | 9 | 13 |
| -4 | -14 | 11 | 6 | -13 | -33 | 0 | 8 |
| -0 | -0 | -0 | -0 | -0 | -0 | -0 | -0 |

EPICAFOIAL POTENTISLS (1S MICROVOLTS)

| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -92 | -8 | -5 | -23 | -5 | 0 | 23 | 28 |
| -45 | -12 | -3 | 4 | -19 | 5 | 9 | 22 |
| -39 | -26 | -3 | 20 | -59 | -47 | -32 | -18 |
| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |

175

FRAPE 81

BOOY-SUR =ACE POTENTIALS (MICROVOLTS)

| -5 | -5 | -5 | -5 | -5 | -5 | -5 | -5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0 | 35 | 03 | 31 | -4 | 1 | -38 |
| 37 | -34 | -15 | 77 | -21 | 0 | -9 | -4 |
| -27 | -7 | 19 | 15 | -34 | -33 | -13 | -4 |
| -7 | -7 | -7 | -7 | -7 | -7 | -7 | -7 |

EPICAFOIAL POTENTIALS (10 MICROVOLTS)

| -7 | -7 | -7 | -7 | -7 | -7 | -7 | -7 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -16 | 37 | 29 | 142 | 52 | -9 | -11 | -16 |
| -10 | 8 | 22 | 40 | 71 | -57 | -50 | -52 |
| -47 | -25 | 6 | 49 | -89 | -88 | -63 | -73 |
| 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |

FRANE 91

| | BOOY-SUR=ACE POTENTIALS | (MICROVOLIS) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -66 | -66 | -56 | -66 | -66 | -66 | -66 | -66 |
| -122 | -287 | -434 | -157 | 262 | 132 | -114 | -214 |
| -21 | -146 | -1 | $6 i 2$ | 435 | 272 | 48 | -54 |
| 34 | 31 | 223 | 4,77 | 452 | 274 | 175 | 41 |
| 83 | 83 | 33 | 83 | 83 | 83 | 83 | 83 |

| | EPICAROIAL POTEMIIALS | (10 MICROVOLTS) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -86 | -86 | -36 | -86 | -86 | -85 | -86 | -86 |
| -894 | -431 | -136 | -429 | 355 | -89 | -284 | -315 |
| -472 | -181 | -30 | 82 | 342 | 405 | -244 | -519 |
| -336 | -175 | 42 | 313 | 216 | 31 | -106 | -352 |
| 181 | 181 | 131 | 181 | 181 | 181 | 181 | 181 |

FRAME 101

| | EOOY-SUREACE POTENYIALS | | | | (4ICROVULIS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 57 | 57 | 37 | 57 | 57 | 57 | 57 | 57 |
| -58 | -767 | -1827 | -1681 | 513 | 491 | 126 | -112 |
| 141 | -271 | -123 | 156 | 1228 | 793 | 488 | 172 |
| 276 | 120 | -5 | 697 | 945 | 777 | 607 | 32.7 |
| 297 | 297 | 237 | 297 | 297 | 297 | 297 | 297 |

EPICAROIIL POTENTIALS (10 MICROYOLTS)

| -2002 | -1459 | -834 | -3212 | 1034 | 231 | 39 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -1536 | -928 | -534 | -445 | -234 | 2649 | 768 |
| -836 | -1021 | -422 | -42 | 1221 | 850 | 576 |
| 139 | 139 | 139 | 139 | 139 | 133 | 139 |

FRAME 111

BODY-SUF:ACE POTENTIALS (MICROVOLTS)

| 114 | 114 | 114 | 114 | 114 | 114 | 114 | 114 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$116-275-610-632 \quad 51 \quad 17 J \quad 213 \quad 98$

117 | | 24 | -139 | -3 | 155 | 163 | 207 | 169 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllll}96 & 96 & 76 & 96 & 96 & 96 & 96 & 96\end{array}$

EPICARDIAL POTENTIALS (10 YICPOVOLTS)

| 87 | 87 | 37 | 87 | 87 | 87 | 87 | 87 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -502 | -449 | -259 | -1133 | 210 | 210 | 300 | 215 |
| -536 | -355 | -235 | -241 | -336 | 1552 | 533 | 627 |
| -222 | -412 | -239 | -195 | 356 | 366 | 352 | 284 |
| -54 | -54 | -54 | -54 | -54 | -54 | -54 | -54 |

FRAFE 121

BODY-SUR:ACE POTENTIALS (MICROVOLTS)

| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 38 | -15 | 37 | 143 | 38 | 7 | 3 | -21 |
| 32 | -16 | 8 | 93 | -18 | -4 | -5 | 20 |
| 5 | -3 | 28 | 8 | -12 | -39 | 9 | 9 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

| 1 | EPICAROIAL POTENTIALS | | | | (1: MICROOMLS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| -55 | 62 | 49 | 255 | 67 | -6 | -8 | 6 |
| 9 | 24 | 39 | 61 | 119 | -79 | -43 | 13 |
| -27 | -9 | 17 | 62 | -71 | -79 | -54 | -27 |
| 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |

FRAME 131
goor-sur:ace potentials (microviltsi

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -6 | -3 | 175 | 265 | 37 | -1 | -7 | -34 |
| -2 | -18 | 99 | 140 | -37 | -43 | -32 | -15 |
| -44 | -13 | 38 | -16 | -31 | -62 | -28 | -34 |
| -4 | -4 | -4 | -4 | -4 | -4 | -4 | -4 |

EPICAROIAL POTENTIRLS (10 MICROVOLTS)

| -3 | -3 | -3 | -3 | -3 | -3 | -3 | -3 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -36 | 145 | $1: 6$ | 477 | 59 | -25 | -25 | -31 |
| 77 | 78 | 33 | 10ε | 198 | -251 | -107 | -96 |
| -4 | 43 | 32 | 99 | -113 | -118 | -101 | -136 |
| 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |

FRANE 141
bOUY-SURFACE POTENTIALS (HIGROVOLTS)

| -31 | -31 | -21 | -31 | -32 | -31 | -31 | -31 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -15 | 23 | 205 | 296 | 44 | -9 | -53 | -38 |
| -19 | -25 | $1: 8$ | 168 | -44 | -24 | -29 | -31 |
| -32 | -7 | 58 | 6 | -19 | -71 | -20 | -52 |
| -5 | -5 | -5 | -5 | -5 | -5 | -5 | -5 |

| | EPICARDIAL POTENTIALS | | | | (1] HECROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -27 | -27 | -27 | -27 | -27 | -27 | -27 | -27 |
| 22 | 149 | 138 | 527 | 65 | -3? | -83 | -63 |
| B7 | 85 | 32 | 120 | 217 | -212 | -120 | -165 |
| -16 | 47 | ; 8 | 111 | -133 | -142 | -123 | -111 |
| 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |

| | BODV-SUR=ALE POTENTIALS | | | | (HICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -33 | -38 | -38 | -35 | -3a | -39 | -38 | -38 |
| -37 | -33 | 136 | 353 | 68 | -19 | -52 | -35 |
| 12 | -27 | 129 | 239 | -7 | -24 | -30 | -35 |
| -48 | -20 | 75 | 24 | -21 | -42 | -14 | -45 |
| -15 | -15 | -15 | -15 | -15 | -15 | -15 | -15 |

EPICAROIAL POTENTIALS (10 HICROVOLTS)

| -36 | -35 | -36 | -36 | -36 | -36 | -36 | -36 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -130 | 138 | 117 | 622 | 96 | -59 | -99 | -98 |
| 59 | 85 | 138 | 152 | 298 | -265 | -151 | -213 |
| -32 | 48 | 74 | 155 | -151 | -163 | -133 | -167 |
| 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 |

FRAPE 171

| | BODY-SUP: ACE | | potentials | | (MICROVOLTS) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -58 | -58 | -58 | -58 | -58 | -58 | -53 | -58 |
| -78 | -104 | 22 e | 539 | 158 | 18 | -105 | -116 |
| -62 | -59 | 177 | 447 | 47 | 15 | -56 | -72 |
| -61 | -47 | 138 | 111 | 49 | -11 | -19 | -62 |
| -6 | -6 | - 6 | -6 | -6 | -6 | -5 | -6 |

EPICAROLAL POTENTIELS (10 MICROVOLTS)

| -60 | -60 | -30 | -60 | -60 | -60 | -60 | -60 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -356 | 148 | 155 | 931 | 238 | -95 | -252 | -197 |
| 10 | 103 | 133 | 248 | 522 | -295 | -390 | -443 |
| -106 | 45 | 113 | 277 | -187 | -221 | -224 | -295 |
| 94 | 94 | 34 | 94 | 94 | 94 | 94 | 94 |

FRAME 191

| | BOOY-SUR=ACE POTENTIALS | (4IORONOLTS) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -112 | -112 | -112 | -112 | -112 | -112 | -112 | -112 |
| -189 | -216 | 130 | 846 | 295 | 30 | -207 | -244 |
| -122 | -162 | 232 | 783 | 189 | 76 | -72 | -130 |
| -96 | -68 | 234 | 279 | 142 | 43 | -20 | -97 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

EPICAROIAL POTENTIALS (10 MICPOVDLTS)

| -116 | -116 | -115 | -116 | -115 | -115 | -116 | -116 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -723 | 90 | 239 | 1439 | 435 | -179 | -394 | -406 |
| -121 | 89 | 233 | 405 | 304 | -373 | -497 | -323 |
| -276 | 4 | 170 | 467 | -234 | -339 | -375 | -533 |
| 180 | $180 \ldots$ | 130 | 180 | 180 | 183 | 180 | 180 |

REPERENCES

Barnard, A.C.I., Duck, I.M. and Lynn, M.S. (1967). The application of electromagnetic theory to electrocardiography I. Derivation of the integral equations. Biophys. J. Vol. 7, p. 443-62.

Barnard, A.C.L., Duck, I.M., Lynn, Mos. and Timlake, Hop. (1967). The application of electromagnetic theory to electrocardiography II. Numerical solution of the integral equations. Biophys. J. vol. 7, p. 463-91.

Barr, R.C., Pilkington, T.C., Boineau, J.P. and Spach, M.S. (1966). Determining surface potentials from current dipoles with application to electrocardiography. IEEE Trans. bionmed. Engng. BME=13, p. 88-92.

Barr, R.C., Pilkington, T., Boineau, J. and Rogerg, C. (1970). An inverse electrocardiographic solution with an on-off model. IEEE Trans. bio-med. Engng. BME-17, p. 49-57.

Barr, R.C., Spach, M.S. and Herman-Giddens, G.S. (1971). Selection of the number and positions of measuring locations for electrocardiography. IEEE Trans, bio-med. Engng. BME-18, p. 125 -138.

Barr, R.C. and Spach, H.S. (1976). Inverse solutions directly in terms of potentials. In The theoretical basis of electrocardiology'. p. 294-304, Clarendon Press, Oxford.

Bellman, R., Collier, C., Kagiwada, H., Kaloba, R. and Selvester, R. (1964). Estimation of heart parameters using slsin potential measurements. Communse Asso. Comp. Mach. Vol. 7, p. 666-8.

Binns, K.J. and Laurenson, P.J. (1973). Analysis and computation of electric and magnetic field problems. Pergamon Press, Oxford.

Burger, H.C. and van Milaan, J.B. (1946). Heart vector and leadso Br. Heart J. Vol. 8, p. 157-61; (1947). Vol. 9, p. 154-8; (1948). Vol. 10, p. 229-33.

Brody, D.A. and Hight, J. (1972). Test of an inverse electrom cardiographic solution based on accurately determined model data. IEEE Trang. bio-med. Engng. BME-19, p. 22.1-8.

Durrer, D., Roos, J.P. and Buller, J. (1965). The spread of excitation in canine and human heart. In 'Electrophysiology of the heart', p. 203-214. Pergamon Press, Oxford.

Durrer, Do, van Dan, R. Th., Treud, G.E., Janse, M.J., Neijler, F.L. and Arzbaecher, R.C. (1970). Total excitation of the isolated human heart. Circulation Vol.41, p. 399-912.

Fischmann, E.J. and Barber, A.B. (1963). Aimed clectrocardiography. Model studies using a heart consisting of six electrically isolated areas. Am. Heart J. Vol. 65, p. 628-7.

Frank, E. (1952). Eloctric potential produced by tro current sources in a homogeneous conducting sphere. J. Appl. Phys. Vol. 23, p. 1225.

Gabor, D. and Nelson, C.V. (1954). Determination of the resultant dipole of the heart from measurements on the body surface. J_{0} Appl. Phys. Voi. 25, p. 413-16.

Gelernter, H.L. and Swihart, J.C. (1964). A mathematicalphysical model of the genesis of the electrocardiogram. Biophyse J. Vol. 4, p. 285-301.

Geselowitz, D.B. (1960). Kultipole representation for an equivalent cardiac generator. Proc. Inst. Radio Engrs. Vol. 48 , p. 75-9.

Geselowitz, D.B. (1967). On bioelectric potentials in an inhomogeneous volume-conductor. Biophys. J. Vol. 7, p. 1.

Hamer, J., Boyle, D. and Sowton, E. (1965). The transmission of electrical forces from the heart to the body surface. Br. Hearì J. Vol. 27, p. 365-73.

Hildebrand, FoB. (1968). Finite-difference equations and simulations. Prentice-Hall, New Jersey.

Horan, L. and Plowers, N. (1967). Simulation of the sequence of the ventricular activation and the choice of an inverse solution. Ned. Res. Engng. Vol. 6, p. 23-35.

Karplue, W.J. (1958). Analog simulationo HeGrah-Hill, New York.

Lanczos, C. (1956). Applied analysis. Prenticemhall, New Jersey.

Lanczos, C. (1958). Iterative solution of large-scale linear systems. J. Soc. Indust. Appl. Math. Vol. 6, p. 91-109.

Lanczos, C. (1961). Linear differential operators. Van Nostrand, London.

Lo, G.C.C and Honro, D.M. (1976). Simulation of electric fields in the human thorax. In 'Advances in cardiology' Vol. 21, S. Karger, Basel.

Lynn, M., Barnard, A.C.L., Holt, J. and Sheffield, L. (1967). A proposed method for the inverse problem in electrocardiography. Biophys. J. Vol. 7, p. 925-45.

Martin, R.O. and Filkington, T.C. (1972). Unconstrained inverse electrocardiography: Epicardial potentials. IETE Trans. biomed. Engng. BKTB-19, p. 276-85.

Milne, W.E. (1953). Numerical solution of differential equations. Wiley, New York.

181

Monro, D.M., Guardo, R.A.L., Bourdillion, P.J. and Tinker, J. (1974). A technique for simultaneous electrocardiographic surface mapping. Cardiovasc. Res. Vol. 8, p. 688-700.

Nelson, C.V. and Geselowitz, D.B. (1976). The theoretical basis of electrocardiology. Clarendon Press, Oxford.
 in an anisotropic medium. IEEE Trans. biomed. Engng. BMEw-14, p. 55.

Okada, R.II. (1956). Potential produced by an eccentric current dipole in a finite-length circular conducting cylinder. IRE Trans. Med. Electron. Vol. 7, p. 14.

Plonsey, Re (1966). Limitations on the equivalent cardiac generator. Biophys. J. vol. 6, p. 163-173.

Plonsey, R. (1969). Bioelectric phenomena. McGraw-hill, New York.

Plonsey, R. and Heppner, D.B. (1967). Consideraticns of quasistationarity in electrophysiological systems. Bull. Nath. Biophys. Vol. 29, p. 657.

Rogers, C.J. and Pilkington, T.C. (1968). The solution of overdetermined equations as a multistage process. IEPE Trans. bio-med. Engng. BME-15, p. 179-85.

Rush, S. (1970). An inhomogeneous anisotropic model of the human torso for electrocardiographic studies. Med. Biol. Engng. Vol. 9, p. 201-11.

Rush, S., Abildskov, J.A. and McFee, R. (1963). Resistivity of body tissues at low frequencies. Circulation Res. Vol. 12. p. 40-50.

Selvester, R.H., Palmersheim, J. and Pearson, R.B. (1971). VCG inverse model for prediction of myocardial diseases. In 'Vectorcardiography 2', p. 54-65, North-Hiolland, Amsterdam.

Spach, M.S. and Barr, R.C. (1975). Ventricular intramural and epicardial potential distributions during ventricular activation and repolarization in intact dog. Circulation Res. Vol. 37 , p. 243-257.

Spach, M.S. and Barr, R.C. (1976). Analysis of ventricular activation and repolarization fron intranural and epicardial potential distributions for ectopic beats in the intact dog. Circulation Res. Vol. 37, p. 830-843.

Symington, J. (1956). An atlas illustrating the topographical anatomy of the head, neck and trunk. Oliver and Boyd, London.

Taccardi, B. and Karchetti, G. (1965). Distribution of heart potentials on the body surface and in artificial conducting media. In 'Electrophysiology of the heart', p.203-214, Pergamon Press, Oxford.

Taccardi, B., Musso, E. and Ambrogei, L. (1971). Potential fields of normal and ischemic hearts during rest, ventricular excitation and recovery. In 'Vectorcardiography 2', p. 142-5, North-Holland, Amsterdam.

Terry, F. (1967). Comparison of iterative techniques for solving Neumann problems. Proc. 20th Ann. Con. Engng. Med. Biol. Vol. 9, p. 21.5.

Twomey, S. (1963). On the numerical solution of Fredholm integral equations of the first kind by inversion of the linear system produced by quadrature. J. Asso. Comp. Nach. Vol. 10, p. 97-101.

Twomey, S. (1965). The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements. J. Franklin Inst. Vol. 279, p. 95-109.

Twomey, S. and Hovell, H.B. (1963). A discussion of indirect sounding methods, with special reference to the deduction of vertical ozone distribution from light scattering measurements. Mon. Heather liev. Vol. 91, p. 659-664.

Vitkovitch, D. (1966). Field analysis. Van Nontrand, London.

Volynskic, B.A. and Bukhman, V.Ye. (1965). Analogues for the solution of boundarymalue problems. Pergamon Press, oxford.

Yeh, G.C. and Martinek, Jo (1957). The potential of a general dipole in a homogeneous conducting prolate spheroid. Ann. New York Acad. Sci. Vol. 19, p. 293-308.

Yeh, G.C., Martinek, J. and de Beammont, H. (1958). iultipole representation of current generators in a volume conductor. Bull. Math. Biophys. Vol. 20. p. 203-16.

