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ABSTRACT 

Certain relaxed, optimal control problems are shown to be 

equivalent to mathematical programs defined on constrained sets of 

Radon measures.This is re-expressed as a representation theorem for 

the measures,reflecting the derivation of the programs.The class of 

problems for which the equivalence is valid is exhaustively examined. 

Just as relaxed controls may be viewed as introducing convexity into 

the control and velocity sets,our measures achieve convexity in the 

set of admissible trajectory-control pairs. 

Application of duality results to the convex program produces 

a new necessary and sufficient condition for optimality in the 

control problem,in the form of a weakened,or relaxed,version of a 

previously known sufficiency criterion.Similar results had been 

achieved earlier only under the assumption of a regular feedback 

form for the optimal control.Finallv,the relationship of the new 

condition to the Maximum Principle and its utility as a practicable 

means of solving control problems are discussed and an illustrative 

example is presented. 
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THE STRUCTURE OF THE THESIS 

The contents of this thesis divide naturally, into two parts. 

The first,the derivation of a convex program related to an optimal 

control problem and the proof of their equivalence,is independent 

of the second.The development of the new necessary and sufficient 

condition is equally self-contained.apart from the use of the 

central equivalence result of part one.In view of this and the 

bewildering nature of existing results related to the new condition, 

the two parts are presented separately,with individual introductions. 

All appendices,however,are collected together after part two. 



- 12 - 

NOTATION 

Let X be a topological space . We denote the Banach space of 

continuous functions from X to R,with norm II f II = sup 1 
xEX f(x)  I / 

by C(X) . In every instance we deal with X is compact,in fact X c Rn, 

for some 1 < n < 00 . In this case the space of restrictions of 

differentiable functions from Rn  to R , to X , is denoted C1(X). 

The positive cone in C(X) is defined to be : 

P(X) A{fEC(X) : f(x) > OVxEXI 

C*(X) , the dual space of C(X) , is isomorphic to and identified 

with the space of finite Radon measures on X , frm(X) . The standard 

norm here is II p 11 = sup { Iffdpl : fEC(X) , lifIl<1 	, which 

generates the strong topology on C*(X).Other norms are introduced 

in the text . The positive cone in C*(X) is : 

13(1)(X)A{pEC*(X) : ffdp > OVfEP(X) l• 

For any A c .X , co(A) denotes the convex hull of A in X 
n 	 n 

co(A) = { E a.x. : x.EA,a.>0 , E a.=1 	. E6(A) denotes the closure i=1  1 1 	
i=1 

of co(A). If X is finite dimensional and A is closed , co(A) = co(A). 

N(A,E) denotes the E-neighbourhood of .A in X, 

{ x E X : Ilx-yll<E for some yEA}, the topology on X being 

generated by the norm !HI 

If p is a measure on X , the support of p is the smallest 

element of the Borel field on X such that the restriction of p to 

its complement is trivial . When p is a Radon measure on a 

topological space , supp{p} can be defined to be closed , i.e. a 

smallest closed set satisfying the above exists. (See §4.1) 

When A and B are two sets , 2(B) designates the complement of 

B and A\B &motes An(213).. 

. „ 
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Other frequently used symbols and abbreviations are : 

V 	. for all 

3 	there exist(s) 

a.a 	almost all 

a.c. 	absolutely continuous 

a.e. 	almost every ( t in [t0,t1] ) 	or 

almost everywhere ( in [t0,t1]  ) , depending upon the context. 

argmax[f] the argument of f maximizing f (over a specified set 

argmin[f] the argument of f minimizing f (over a specified set) 

cl(A) 	the closure of A 

diam(A) 	the diameter of A i.e.the maximum separation (in a metric 

space distance) of two elements in A. 

dist(A,B) Hausdorff distance between two sets (in a metric space); 

if A = {x} we write dist(x,B) . 

iff 	if and only if 

inf[f] 	the infimum of f (not necessarily attained) 

l.s.c. 	lower-semi-continuous 

max[f] 	maximum of f (attained) 

min[f] 	minimum of f (attained) 

M.P. 	Maximum Principle 

p.d.e. 	partial differential equation 

p.d.i. 	partial differential inequality 
1 if s > 0 

sgn(s) 	the signum function sgn(s) A 
-1 if s < 0 

span[G] 	the vector space spanned by G 

i.e. the space of all linear combinations of elements in G 

s.t. 	such that 

sup[f] 	the supremum of f (not necessarily attained) 

u.s.c. 	upper-semi-continuous 

w.r.t. 	with respect to 
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PART I 

THE EQUIVALENCE OF STRONG AND WEAK FORMULATIONS 

OF CERTAIN OPTIMAL CONTROL PROBLEMS. 
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Chapter 0 

INTRODUCTION 

Over the past twenty years a large body of literature concerned 

with the optimal control of systems described by ordinary differential 

equations has accumulated.By optimality is meant the minimization of 

a 'cost' functional associated with the admissible trajectory-control 

pairs of the system.Three themes have arisen ; the question of 

whether there exists an admissible pair achieving the minimum ; 

characterization of such a pair by means of necessary and/or 

sufficient conditions for optimality ; and the approximation of a 

minimizing pair,usually numerically,in the case where the exact 

solution is difficult to determine. Existence theory is dominated 

by convexity - to guarantee the existence of a minimand the 

velocity set is convexified by admitting relaxed controls andthe 

associated generalized trajectories. In the weak formulation of 

the control problem we take this one stage further,effectively 

introducing convexity into the combined trajectory-control set. 

The Maximum Principle is established as the most useful 

necessary condition,while the method of Dynamic Programming 

provides a verification condition.These are discussed in the 

second part of this thesis,where duality theory is applied to 

the weak problem to prove the necessity,as well as sufficiency, 

of a weakened version of the verification condition.The possibility 

of using this result to construct algorithms for the generation 

of sequences of pairs yielding at least decreasing cost,at best 

convergence to a minimizing pair,is included there. 

-0.1 - 
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The plan of part I is as follows.Chapter one concerns the 

fundamental form of the control problem to be studied,that of 

Lagrange,in which the 'cost' is an integral functional.The initial 

discussion centres around a restricted version called the 'Strong 

Problem' ,with fixed boundary ::f. nditions,satisfying a hypothesis 

due to McShane which guarantees the existence of a minimizing 

pair.These pairs define continuous linear functionals on a 

Banach space of continuous functions containing the cost integrand. 

The class of all such functionals is isomorphic to a space of 

Radon measures - in chapter two we use the essential features of 

admissible pairs to define a constraint set on this space, thus 

imbedding the control problem in one posed over a subset of 

Radon measures,the 'Weak Problem'. 

In turn this is embedded in a parametric problem in which 

the dynamics are an explicit side-constraint.We recognize this 

as a generalized probler in the Calculus of Variations, for which 

L.C.Young has derived powerful approximation and representation 

theorems which enable us to show that the parametric problem has 

a generalized curve solution ( chapters three and four ). 

Equivalence between weak and strong problems is concluded 

by constructing an admissible pair from the generalized curve, 

such that the value of the cost is preserved. 

A different approach may be taken,where approximations 

leading to this pair are derived directly from the weak problem. 

However, Young's results are not available in this non-parametric 

case and it is the existence of this developed theory of boundary 

conditions that allows us to extend our class of control problems 

to include those with variable end-points and additional constraints. 

- 0.2 - 
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Systems described by differential inclusions are also treated - 

it is noticed that the construction of an admissible pair is not 

affected by these generalizations. 

The final chapter deals with the difficulties encountered 

when the aforementioned hypothesis is relaxed.We conjecture that 

if the control problem has the property Q defined by Cesari then 

it is equivalent to a properly posed weak problem.The possibility 

of an equivalence theory for infinite dimensional systems is 

considered. 

- 0.3 - 
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Chapter 1 

THE LAGRANGE CONTROL PROBLEM - GENERALIZED CURVES 

(L) 

Our basic problem is the following: 

t 
1 

minimize f t(x(t),t,u(t))dt 
to 

)1(t) = f(x(t),t,u(t)) a.e. in [t0,t1] 

x(t
0
) = x

0 	
x(t 

1
) = x1 

 

u(t) E0cRm  a.e. in [t
0,t1] 

(1,1) subject to 

(L2)  

(L3)  

where t : R
n
x R x Rm 4. R and f : R

n 
xR x R

m 
 + R

n 
are continuous functions, 

t
0 
 ER,t

1 
 ER,t

0 
 <t x

0 
 ER

n
, x

1
ER

xi 
are given point andOisacompact 

 

subset of Rm. An ordinary admissible trajectory-control pair is an absolutely 

continuous function x(') : [t
0
,t

1
] R

n
, the state, which together with the 

control, a measurable function u(*) : [t0,t1] 	Rm  satisries (L2) and (L3). 

The name Lagrange Control Problem is given to (L) specifically in the case 

where the cost functional has the integral form (L1) and is dealt with in 

detail by Berkovitz [Ber.]. 

It is well documented that, even when a plentiful supply of admissible 

ordinary pairs exists there need not be one among them which solves (L), 

unless f(x,t,O) is a convex set in Rn  for all x, t and £(x,t,u) is convex in 

u, u E O. See, for example, [Ber. p. 42, 2.2(b)]. 

The natural remedy is to admit relaxed controls and their corresponding 

'generalized trajectories, concepts first introduced by Young [You 2] into 

the calculus of variations for the same purpose. A relaxed control is a 
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C*(0) valued function on it
0
,t

1 
u': t g

te
where 

t 	
p (o) a.e. in Et ,t 3 

o  

(S3) 

= 1 
	

a.e. in [t
0
,t

1
] 

and (I' : t 	fflt,u)dp
t
(u) is Lebesgue measurable for all (I) E C([t

0
it

1
])62), 

0 
i.e. a relaxed control is a probability measure on 0 for almost every 

t E Eto,t1],satisfying the measurability criterion. An admissible trajectory 

control pair is now an a.c. function x(*) : Ct0,t1]  4 
 e satisfying 

= ff(x(t),t,u)dp.t(u) a:e. in [to,ti] 
0 

(S2) 

x(t0) = x0 
	

x(t
1  ) = x1  

together with the corresponding relaxed control u : t pt  (satisfying (S3)). 

What we shall call the Strong Control Problem is : 

t
l  

(S) 

	 Minimize f re(x(t),t,u)a4t(u)dt 
to 
 0 

	 ( S 1 ) 

subject to (S2) and (S3) 

The set of admissible pairs will be denoted by S and the value of 
ti  

(S), that is inf{f fZdp,t
dt : (S2),(S3)}, by fl(S). Let us put forward the 

t
0 
 0 

hypothesis (H). 

- 1.2 - 



There exists a minimizing admissible sequence {xi(*),ui} 

t
1 

i.e. f ft(x(t),t,u)dg
it
(u)dt 	n(s) such that 

t
o 
 0 

xi(t) e A C  Rn, A compact, for all t E [t0,t1J, for i 

- 22 - 

• 

(H) 

sufficiently large. 

This hypothesis, naturally subsuming that of the existence of at 

least one adMissible pair, is precisely that which McShane uses to prove 

that there exists a pair {x0('),u0} e S such that 

t
1 

n(s) = f ft(xo(t)t'u)dp,ot(u)dt [MCS., thm. 2.7]. He also offers conditions to  n 

on f, 	under which (H) will be valid. 

Henceforth we restrict attention to admissible pairs where the trajectory 

is contained in A, i.e. we deal with the restrictions of 	to the 

compact set A x [to,ti] x O. This implies that admissible trajectories 

are Lipshitz continuous - continuity of f together with compactness and 

the nature of relaxed controls imply that X(*) is uniformly bounded almost 

everywhere on rto,ti]. 

It is pertinent to remark here that McShane's existence theorem(2.7) 

is derived for far more general boundary conditions than x(t ) = 
0 	N 0 

x(t
1
) = x

1
. These are used here to avoid obscuring the essentials of our 

proofs by unnecessary detail and more general conditions will be introduced 

at a later stage. 

- 1.3- 
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Chapter 2 

THE WEAK FORMULATION OF THE'OPTIMAL CONTROL PROBLEM 

Define A A A x [to,ti] and take any g c C(AxS/). Let fx(*),u1 e S 

be an admissible pair then clearly we can regard it as an element of 

C* (Axil) for the mapping 

t 

f g -} j jg(x(t),t,u)dpt(u)dt 
t
0 
 r2 

(2.1) 

is well-defined (by virtue of the measurability properties of t pt), 

linear in g and bounded (by compactness of AxO) hence continuous. Let 

us write the mapping as; 

g 	f gdp. 	4 e frm (Axil) n C* (Ax(l) 
Axil 

so that the strong problem can be thought of as: 

minimize f tdg over g e c*(Ax0) where g has representation 

,(2.1) for some fx(,),u1 c S. 

Examining the properties of such a measure g derived from an element 

of S it is noticed that: 

P c P*  (Axil) 

t0 
 

11)111 ' I 1 dt = t - t 
1 	0 t1  

for any (13,  e C1(A) 

	

f yx,t) 	(x,t)-f(x,t,u)dg =
1
,t

1
) 	;t0 

 ) b  
Ax0 

since the integrand is just c1-0)(x(t),t)]. 

- 2.1 - 
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A new optimization program can be introduced over the space of 

Radon measures : 

minimize f r(x,t,u)dp 
AxS2 

(W1) subject to 

E  P
0 
 (AxCI) 	111-111 < t1- t 1 t0 (112) 

f
t(x,t) + (Px(x,t)f(x,t,u)dp = 0 for all 4i  e C1(A) 

AxQ 
(W3) 

This is called the Weak Problem. If the set of p E C*(AxQ) 

satisfying  (W2) and (43) is denoted by W , W is non-empty since it 

contains S and,by definition,it is convex. (W) is consequently a 

convex program (e f.Edp being  linear in p) and can be subjected to 

the methods of convex analysis , as will be done in part 2 . 

(W) has been constructed to contain (S) i.e. W S , so that 

• < n(S). The remainder of this part of the thesis is devoted to 

proving  : 

Theorem (2.1, 

The problems (W) and (S) both have solutions and n(W) = 11(S). 

Furthermore,if {x(-),u} e S and solves (S) then p E W defined 

from {x(-),u} by (2.11 solves (W) . 	0 

It is not claimed that any solution to (W) solves (S) and in fact 

this is untrue if the solution to either problem is not unique. For, 

let {x
1  
.(-),u.} E S i = 1,2 both solve (S) then for 

O < a < 1 { ax
1
(-)+(1-a)x

2
(-),au

1
+(l-a)u

2 
} S but the corresponding  

apt + (1-a)p2 E W and solves (W), the addition being  in C*(AxQ) . 

It is equally true that unless S consists of just one element, 

S W . However a consequence of theorem (2.1) is the structural 

result : 

- 2.2- 
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Theorem (2.2) 

The extreme points of the weak * compact convex set W are contained 

in S. Thus W = ;;S. 

Notes  

(i) In the above we have used u alternately to denote a relaxed 

control function u : t pt  , for example when writing {x(*),u} E S 

and to denote points in S2 , the original control constraint set. It 

should be clear from the context which is meant , for example in 

fh(t,u)dpt(u) 	u is the dummy variable in S2 . The reason that u(") 

is not used to denote the control functions is that we wish to 

emphasize that they are not ordinary R
m 
valued functions but 

probability measure valued functi-ms. 

(ii) In the following section , §3.1 , we have also used u to mean 

a point in Q , or its generalization , a probability measure . Since 

the material in this section appears in isolation from the ideas of 

trajectories and controls , again no confusion should arise . 

- 2.3- 
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Chapter 3 

THE OPTIMAL CONTROL PROBLEM AS A 

PROBLEM IN THE CALCULUS OF VARIATIONS 

WITH SIDE-CONSTRAINTS. PARAMETRIZATION 

Motivated by a desire to apply Young's density results [You 1] 

directly, the weak formulation is rewritten as a parametric problem 

in the calculus of variations. This procedure is comprised of two 

stages; firstly the variational problem will be derived in non-

parametric form; it will subsequently be parametrized. 

.c3.1 The Weak-Variational Problem  

The central difficulty is defining a cost functional integrand in 

terms of the variables (x,t,X) instead of (x,t,u). Since A, 0 are 

compact, co f(x,t,0) is compact for each (x,t) E A and there exists a 

compact F C Rn  such that co f(x,t,0) C F for all (x,t) E A. In particular 

we shall choose a convex set F. For each {x(•),u} E S and almost every 

t E [t
0f
t
1
] k(t) e co f(x(t),t,0) c F. It should therefore be sufficient 

for our purposes to define the new integrand over AxF. 

Definition  

Take (x,t) E A, )1 e co f(x,t,0) and define t.(x,t,k) by 

t(x,t,X) A min te(x,t,u):X=f(x,tiu)) 	(3.1) 
tt 

When (x,t) E A, )1 E F\co f(x,t,0) take 

i(x,tM A Z(x,t,i7) where y e co f(x,t,0) and 

(3.2) 

is the minimand'of dist(k, co f(x,t,0)) 

- 3.1 - 
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Remarks 

(i) In (3.1) we interpret u as a probability measure on 0 rather 

than a point in 0. The set of u satisfying i1 = f(x,t,u) is closed 

and continuity of justifies writing min in (3.1). 

(ii) Convexity of co f(x,t,0) ensures that ir in (3.2) is unique i.e. 

t. is well defined on AxF. 

(iii) For all (x,t,k) E AxF, t(x,t,X) E co Z(x,t,Q), i.e. 

t(x,t,F) c co t.(x,t,0). Consequently L is bounded. 

Lemma (3.3) 

The function defined by (3.1) and (3.2) above is lower semi- 

continuous on AxF. 

Proof 
• 

Take any sequence{(ki,ti,Xi)} c AxF converging to (x,t01). Assume 

that )1 E F\co f(x.,t.,Q) for all i or )1. c co f(x
i
,t
i
.0) for ;all i•

1 1 	1 

since if this is not the case we can select two distinct subsequences 

where it is and deal with them separately. 

(a) lc. 1E F\co f(x.,t.,0). Let 1.r. be defined by (3.2). By Hausdorff 
1 	1  

continuity of co f(x,t,0) on A, { 1.} converges to y and ir E co f(x,t,g) 

is the minimand of dist (X,co f(x,t,0)). This case is therefore reduced 

to that of (b) below. Note that X = ir is not excluded here. 

(b)ic.1 
 Eco f(x.

1
,t.
1
,0). Again by Hausdorff continuity of co f(x,t,0) 

ummusthavekecof(crtrn).ByrernarkMorlecanselectu. as  

interpreted there such that t(x.,.t.,X ) = 	,u ), for every i. The 
— 1 1 i 	1 i i 

probabilitymeasuresp„1 
	1 
onOrepresentingu.lie in the unit ball of 

C*(0), which is w*  compact (Alaoqlu's theorem) therefore we can extract 

• at least one w* convergent subsequence. Let {uk} be any such sequence, 

w* 
uk 	u. 	Then 	f(xk,tk,uk) .4.  X and f(xletk,uk) 	f(x,t,u), that is 

= f(x,t,U). Thus 

- 3.2 - 
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i(x,t,k) < 1(x,t,u) = lim 1(xketk,uk) 
k->co 

This applies equally to all subsequences, so that 

1(x,tol) < lim inf Z(x ,t.,u ) = lim inf 
i 	i 	— .÷ co 	1 1 1  

0 

A simple example shows that need not be continuous. 

f(x,t,u) = u
3 
- u 	£(x,t,u) = u 

If k, is any sequence converging to —
1 

(-?=) from above, 
1 3 

lim inf 	= a ":1 1, 15 
1 1 1 

but 

1 2 	1 
= - 	-0,'58 

is defined over AxF and the non parametric "Weak Variational" 

problem is posed over Radon measures on AxF. 

-3.3- 
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minimize f t(x,t,k)dp 
AxF 

g E 1P(AxF), 	< t - t 
1 	0 

(t1171) subject to 

(WV2) 

(WV) 

f (4(x,t) + (Px(x,t)iidg = 4 for all (I) E Ci(A) 
AxF 

(WV3)  

f dist (X,f(x,t,11))dg = 0 
AxF 

(WV4)  

Lower semi-continuity of implies that (WV) is well-posed, since 

any lower semi-continuous function is the pointwise limit of a monotone 

non-decreasing sequence of continuous functions, fel say. For any 

admissible g these are g-integrable and the boundedness of £ enables 

us to bound U1}. Lebesgue's dominated convergence theorem implies 

is g-integrable and 

f tdg = lim f edg 
AxF 	AxF 

for all admissible g. 

Denoting this set of admissible measures satisfying (WV2), (WV3) 

and (WV4) by WV we see that the admissible elements W for (W) can 

'embedded' in WV. 

Proposition (3.4) 

If g e W then g defines an element g E WV such that 

f 2 dp < f dp 
AxF 	AxS2 

Hence fl (WV)' < -T1 (W) . 
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• 
Prbof 

Let g e W, g  e C(AxF). Define f gd5. by: 
AxF 

f g(x,t,k)4(x,td1) = f g(x,t,f(x,t,u))dg(x,t,u) 
AxF 	Ax0 

g(x,t,f(x,t,u)) is continuous therefore µ is well defined and 

(W2) = (WV2), (W3) =>.(WV3) while (WV4) is obvious. By definition of 

f t(x,t,k)di-i(x,tM = f Z(x,t,f(x,t,u))dg(x,t,u) 
AxF 	Ax0—  

< f L(x,t,u)du(x,t,u) 	0 
Axid 

Remarks 

(i) WV is non-empty. 

.(ii) (WV4) is the 'side-constraint' corresponding  loosely to the 

differential equation constraint in the strong  optimal control problem. 

(iii) Functions to replace have been defined in various ways by 

differec_t authors, a common one being  (3.1) with 2(x,t01) = + co if 

).c e F\co f(x,t,0). For this function (WV4) would be omitted because it 

is implicit in the requirement f Zdg < co. Contrary to the present trend 
AxF 

in optimization the explicit constraint formulation is more useful here. 

1 3.2 Parametrization 

An absolutely continuous change of variable t -+ a, namely one such 

dt(a) 
that t

▪ 

(a) = - da  is integrable, in the strong  control problem necessitates 

k(a)a  the following  replacements: 5i(t) 	1:T  and for g  E C(AxF) 

a(t ) 
1 	1 

f goc(t),t,k(t))at 	f goccol,t(a),
1767)

) I t(a),da 
t0 
	a(to) 

- 3.5 - 
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1/2 
A convenient parameter is a(t) = f (Ik(T)1 12  -1-1) dT, the arc length 

to  
along the curve (x(t),t). 

Note: 

(i) In the above the dot "." denotes differentiation with respect to the 

argument of the function over which it appears. When no argument is 

given i is a point in the same space as q, viz Rn  when q = x, R when q = t. 

(ii) In the sequel points in A C R
n+1 

will be denoted interchangably by 

(x,t) and y as will points Y = (X,t) in (another copy of) Rn+1  

Mimicry of these replacements in the weak variational problem produces 

the parametric problem. Firstly let us define on AxR
n+1 

1 

	 i o toc,4M i.  

M(M) = max[-i.,0] 	(3.5)' 

dist (=rf-,f(x,t,Q))1t1 	t # 0 
D(y,) = 

IIXI I 	 = • 0 

We notice that L, M, D and 4  y = t
(x,t)E +

x
(x,t)X, 4 E C1(A) arc 

all homogeneous in ir : for any a > OIL(y,a) = aL(y,Y) etc. and their 

n+1 
.7  values on Axil 	are captured in AxB, B the unit sphere W1111=1}  of  

Rn 

Lemma (3.6) 

L, M and D are well defined in the sense that they are single valued 

functions and their integrands w.r.t. any finite Radon measure g on AxB 

exist and are finite. 

Proof  

See Appendix 1. 	 0 

L(yri7) = 
0 	t = 0 
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The parametric problem is therefore well posed: 

minimize 	f L(Y,Y)dg over g E 14 (AxB) (P1)  subject to 
AxB 

f 	= A 	for all (/) E Ci(A) (P2)  
AxB 

(P) 

f 13(y,1.)4. = 0 (P3)  
AxB 

f M(y,r)dp. = 0 (P4)  
AxB 

The set of measures admissible for (P)'is denoted by P. 

Proposition (3.7) 

If t E WV then g defines an element g e P and 

. - 
f L(y,y)dg = f t(x,t,i)dg 
AxB 	AxF 

Consequently 11(P) < D(WV). 

Proof 

	

Take g E OW,  G(y,ir) = 	C(AxB). Define 

	 ,1.12 
f 	= f g(x,t,  	)tixi +1) dg 
AxB 	AxF 	1.'2 121  f.12 

(ix] +1) (Ixl +1) 

Then (WV3) 	(P2) and (WV4) 	(P3) for: 

f (I)yydµ = 	 Ott  + (1)xkcill. = f (I)t.1 + cpx314, = A(1) 	(P2),  
AxB 	AxB 	AxF 

Similarly for (P3). Furthermore 
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1 	. 1 2 1  
f M(M)dp, = f max[ 	2 	1/2 ,0)(1x +1) dp. = f Odp. = 0 

AxB 	 P.xF 	(1XI +1) 	 AxF 

(P4) 

and 

f L(y,Y)dµ = 	 = f t(x,t,X)dp, 
AxB 	 AxB 	t 	AxF 

0 

We have therefore established n (P) < n(WV) < Ti (W) < n (S). Theorem 

(2.1) will be proved by showing that n(P) = n(S). 
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Chapter 4 

SOLUTION OF THE PARAMETRIC PROBLEM 

j4.1 Properties of the Admissible Set P  

The support of any measure µ on a topological space X is defined as 

Defn. 4.1 

supp{g} = Z{VcX:V open and g(U)=0,. U open =1>UcV} 

i.e. the. support of a measure is the complement of the largest open 

g-negligible set in X. Evidently it is closed, which in our case where 

X = AxB is compact means that every 1.1. E P has compact support. 

An interesting example of a non-trivial measure on a compact space, 

which does not have a support, i.e. the support is trivial, is to be 

found in [Sell/ p. 45]. However, it is well known [Fre. Ch. 7] that a 

Radon measure is specified by its values on open sets (or closed or 

compact sets) in the topology of X. Consequently a non-trivial Radon 

measure always has a non-trivial support. (The measure in the above 

mentioned example is Bore'., it is specified only when its value on each 

Borel set is known.) 

Using the constraints (P2), (P3) and (P4) we shall now prove three 

results, the first concerning a restriction on the supports of measures in 

.P, the second on their norms, the last on the weak * closedness of P. 

Lemma (4.2) 

For all µ c P, supp{0 c {(y,Y)EAxB:-E>0,kcif(x,t,Q)1 

Proof 

See Appendix 2. 

Proposition (4.3) 

There exists K < m such that 	< K for all p E P . 
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• 
Proof 

Take any p E P then p E PG'  (AxB) implies !WI = f 1dg. From 
AxB 

(4.2) 

therefore 

f Ifldµ=  f au=  f cptt + 
AxB 	AxB 	AxB 

p for .flx,t) = t 
x 

f 	= 	t1 - t0 by (P2) 
AxB 

Further from (4.2) supp{p} c {(y,Y)EAxB: 11k11<kl1}  where 

k = maxilf(x,t,u)11 < 03. Therefore 
Axn 

	

1 • 1/2 	. 111111 	f 1dµ = f (likII+Itl
2 

 ) d4 	
2 
+It1

2 
)

1/2 
 = 1 in B. 

AxB 	AxB 

< f 	< f (k+1, 1q41 = (k+1) (t1-t0) 
AxB 	 AxB 

Putting K 	(k.+1)(t
1
-t
0
) gives the result. 	 ❑  

Proposition (4.4) 

P is weak-star closed. 

Proof 

Let {µ,}C P, 	
w* 

p. In the proof of lemma (3.6) in Appendix 1 it i  

is shown that D(y,i7) E C(AxB), similarly M(y,) and (Pyir for any (I) E C1 (A). 

So f 1)(y,)dp = lim f D(y,)dg = 0 and f Mdg = 0, f 	71:311 = Ach 
AxB 	 AxB 	1 	AxB 	Ax13 

therefore g E P. Thus P is sequentially wt closed - since C(AxB) is 

separable , P is w* closed . 	 0 

'We have shown that P is norm-bounded and weak-star closed. By 

Alaoglu's theorem , then : 

Theorem (4.5) 

P is weak * compact. 	 ❑  
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Remark  

The 'embedding' of S in W, W in WV and WV in P and the hypothesis 

H on S imply that P is non-empty. 

4.2 The Existence of a Solution to (P) 

We now know that we are seeking the minimum 	of f LdA over a 
AxB 

weak * compact set of measures A. A solution to this problem therefore 

exists if the map g 	f LdA can be shown to be weak * lower semi-continuous 
AxB 

on P. This is shown to be a consequence of the lower semi-continuity and 

boundedness of L. 

Theorem (4.6) 

Let {A,
n
} 	

w P, A 	A. For any F lower semi-continuous and bounded 

on AxB, f Fdp. < lim inf f FdAn. 
AxB 	n 4 	AxB 

Proof 

The proof follows directly from lemma (A2.2) in Appendix 2. 0 

Theorem (4.7) 

The parametric problem has a solution; there exists go  E P such that 

f LdA0  < f Ldv for all V E P. 
AxB 	AxB 

Proof 

A lower semi-continuous function on a compact subset of a topological 

space achieves its minimum there [Sch..). Ch. 4]. In the weak * topology 

on C*(AxB), 	f Ldp. is l.s.c. by (4.6) and P is compact (4.5). 0 
AxB 

Remarks 

(a) It is established in corollary (A2.6) that A-4  f dp. is l.s.c. even 
AxB 
— — 

in the case where L is not bounded. This has been done to show that the 
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.alternative definition of L yields existence just as above. 

(b) Proofs of lower semi-continuity are an important part of existence 

theory for optimal controls. Their increasingly dominant role can be 

seen in [JOTA]. 

f
4.3 A Generalized Curve Solution to (P) 

What does g
0 
 look like? In the light of Young's work on the 

solutions of parametric variational problems without side constraints 

and the (P3) and (P4) of (P), we expect to be able to select a generalized 

curve which does the job. Our expectations are fulfilled by proposition 

(4.13). A brief explanation of the ideas and notation in [You. 1], 

statements ( and in one, case an extended proof ) of relevant theorems and a 

translation into our notation are to be found in Appendix 3. 

Firstly, a definition of and representation theorem for generalized 

curves in R
n+1 

Definition (4.8)  

A generalized curve is a weak-star limit of a sequence of ordinary 

curves. 'Ordinary curves' may here be taken to mean piece--wise 

differentiable R
n+1 

valued functions. 

Representation Theorem (4.9) 

An element g E r (AxB') is a generalized curve iff there exists a 

Lipshitz continuous function y(G); 0 < a < 1 taking values in A and a 

collection {1.1aEP8(9} defined for almost all a with IlgaII  uniformly 

bounded satisfying (i) for every h E C(DAxB), a -* fh(a,i7)41.0.() is 

1 
(Lebesgue) measurable 	(ii) f Gdg = f fG(y(G),)dg (7)dc:r for all 

AxB 	0 B 

G E C(AxB) and (iii) 1.7(0 = Pdga 
 (r) ae G c [0,1]. — —  

The proof of this is to be found in [ You 1 , pp 171-178 ] 	0 
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First Approximation Theorem for P (4.10) 

Suppose µ E P (AxB) satisfies f 	ydµ = (P(y1  ) 	f(y0) V (1) 	C1(A), 
AxB 

then µ is the weak * limit of sequence {4i} in "AxB) where 

n
7 	

m 
- i 	i 

	

 i i 	r i i 

	

A. = L Cf.:1 + L 	.1.). i. 	3 -1 
j=1 	J 	j,=.1 3 3  

n 

L 	
i 

with 	L 1 = 1, a., 13. > 0, 
7 

1 
7(d 	• and each 4. has representation G 	fG(y(0.), 	)1y(a) Ida V G e C(AxB) (4.11) 

0 	ly(0
) 
 1 

for some continuous, piece-wise linear function y(U) 0 < a < 1 such that 

y(0) = y0, y(1) = y1. 	3 
Each V. has representation (4.11) with a similar 

Y(') but with y(0) = y(1). 

Proof 

See Appendix 3. 	 0 

Second Approximation Theorem for. P (4.12) 

urli • 
'If in the above we put P. A L eV.

i  
 then 11Pill 	0. 

1  — j=1 3. 3  
Proof 

Let g E P as in (4.10) and take V open in AxB, V D supp µ , 

dist(V, supp g) < 6 for some c > 0. Compactness of supp{g} ensures 

the existence of V. Putting U = AxB\V corollary (A2.4) of Appendix 2 

leads to 4i.(U) < E for isufficiently large. Positivity of pi  implies 

P.(U) < c. 
• 

supp{4} a {(y,Y):b.0,11k11<kM} (Lemma (4.2)) and V c N(supp{0,6) 

gives V c {(y,3,):I.EK+26,1 1k11<klil +(k+1)6}. Therefore 

f ItIdP1  = Jltldpi  + fltldpi  
AxB 	V 

< ft + 2cdpi  + fltldpi  

< f td pi  + fig - -Edp. .+ 2c f ldp, 

	

.._ 	PI 	
1 	1 AxB 	AxB ___ 	...._ 
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< 0 + 2c + 2c1Ipill 

because ipi  is closed, 0 < lid - t < 2. 

Similarly 

II*IldPi  = flIkIldPi 	IllkIldP 
AxB 

< fkRldpi  + f(k+l)cdpi  + 	< 1  
V 	V 

< 2kc(1+1Ipill) + (k+1)clIpill + E 

But llpill < < K so that: 

f ldpi  = f (11k1124.1i.1 2)dpi 	f 11k11 	lildpi  
AxB 	AxB 	AxB 

	

< (2(k+1)(1.+K) + (k+1)K+1;C 	0 

Out intuition confirms this: the constraint fMdp = 0 was designed 

to contain the support of 11 in {>01. A non-trivial closed curve 

cannot be so contained - P consists of weak star limits of structurally 

simple measures. 

The above development is based upon the relatively straightforward 

theory of real valued Radon measures on a compact subset of a finite 

dimensional space. Regrettably, at present it appears necessary to invoke a 

powerful theorem based upon vector valued measures on infinite dimensional 

spaces, to present our conclusions in their fullest generality. 

Theorem (4.13) 

Every member of P is a mixture of bounded generalized curves;  that is 

each p e P can be represented as fpdA(p) where A is a positive vector 

valued Radon measure on the space of generalized curves, with support in 

the subset of bounded curves. 

- 4.6 - 
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.Proof  

This appears as 'every generalized flow with a simplicial boundary 

is a mixture of bounded streams (generalized curves)" in [You 1, Thm(89.1) 

(ii) pp. 209-12]. The relationship of the terms in the two statements 

is explained in Appendix 3. 	 El 

Because (4.13) has been presented out of context an alternative 

proof valid where L is continuous and not dependent upon (4.13) will 

also be presented. 

Proposition (4.14) 

The parametric problem (P) admits a generalized curve solution. 

Proof 

Let go  be the optimal measure guaranteed by (4.7), with representation 

g
0 
 = fgdA(g) as above, with supp{A} denoted by X. A consists df 

generalized curves g, A almost all of which satisfy: fDdri = fMdp. = 0. 

For, supposing the contrary, there exists a set of curves A
l 
c A, 

pdp > c > 0 for g E Ai, f idA(171) > 0 which leads to 
Al 

 

fDdL0 
	

LfDd154A(µ) > f c. 	> 0, a contradiction. {1 is the unit 
X 	A 

constant function on the set of gen. curves.} 

Further, A almost all curves in A have endpoints y0, yl. Again, 

taking Al  of positive A measure to be a set of curves in A violating 

this at yl, find (I) E C1(A) with (1) = 0 outside an arbitrarily small 

neighbourhood of yl, 	= 1 at yl  then: 

1 = 	= fyago  = fjcbar dpdA(p) 

= f f(13,  cli1dA(4) 	f 	rdildA(µ) 
X-X 1 	1 

1 
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= f odA(p) 	f 1d4.0 = A(7tA
1 
 ) < 1 

X
1 	

X-X 

A being a unit mixture (measure) is derived from its being a limit 
n. 
I V of the sequence of unit measures L 1 . (This last result is where 

j=1 j  
(4.13) is most useful for if X contained elements other than generalized 

curves we could not assert that all elements of X have endpoints.) 

Lastly, using a similar contradiction, it is evident that the 

set of measures 7`
2 
= t4EX:iLd5gLd41 has positive A measure. Since 

A almost all elements in X2 
belong to P, there exists at least one 

r 
g c P, a generalized curve, such that iLdp < fLdg 0 • 0 

Proposition (4.15) 

In the case L continuous, (P) admits a generalized curve solution. 

Proof 

Take g as before, {4 } an approximating sequence ,.:s in (4.10), 
0 	i  n 4 4   

- 
(4.12): 4. A g. - p. = lice:p!... Positivity of II., M and D mean that 

	

1= 1 	1 i=1  j 3 	1 
, 

fDd. -4- 0, apt*. -* 0, while L bounded, Ilp.11. -> 0 implies 
Ai 	1 	 1 

	

lim lim fLdg 
1 	

. 
1 1 	

. 
The 4 vector a.

1  A 
	fldg. 

 == 

fLd171. 

fDd Ai 

n 
4 	 1 . . 

E 	
r 

R is a convex combination / a b 
j=1 j  j 

( * ) 

of vectors b. = 	f1d4.1. 

fLd 113  

r JIM A3  

r  
jMd4.

i  

Caratheodory's theorem tells us that [Roc 1, p. 153 3 

5 	5 
L 	

i 	r 
we can write a. = Lab where a, > 0, 	a = 1. Because of positivity 

j 	
L 

j=1 j  j=1  
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0, a-fmd45.- .+ 0 and, choosing a subsequence if necessary, it 

- caribearrariged.thatilim ai =a,limEtjjklgi:, lim 
3 	3 	J 	J  i 	i 	i 

all j = 1, ... 5. Discarding terms a. = 0, assume 
3' 

0(ILdgi: exist for 
3 
a.  > 0 then 

r 	r 	 r (a) iDd . -+ 0 	(b) pvidg. ÷ 0 	and (c) 	each sequence t .1 is 113 	 113  

norm-bounded. 

L -r 

	

So AdA  = lim Ad4 	i lim L  aiLdg. 
0 

	

i jr-1 3 	3  

5 - 
. 	a•  limfLd 

j= 3 i 113 

5 
r 

> 	a, lim iLdp.i 
k 

where k minimizes limiLdp.
i  

3 j=1 	i 

= lim fLdu
k  

5 	5 
for 	E a. = lim E (13.- 	= 1 

j=1 3 	i j=1 3 

5 

From (c), there exists a weak * convergent subsequence 	g
i 

with limit 

- 
g say. By definition g is a generalized curve: g E P for pdg = fMdia. = 0, 

= lim fq) 
yk  
Ydgi  = 4. Finally iLdg

0 
 > 

i 

Comments 

The proof of (4.15) may fail when L is only 1.s.c. It is possible 

- 
thatliminfiLdgi =liminffLdgi  >Adg

0 
 instead of(*). Ignoring this 

we could still select a generalized curve g as follows: proceed as above 

r 
until (c) is r 	 113  eached, then choose a subsequence along which each t .1 

j = 1, ... 5 is W* convergent, g
i W* 

171. .Choose g to minimize Ldp. over j. 
5 	 ÷ 

<
1 3 	

3 < lim inf 	 (**) 

— • 	-- 3= 
We expect a strict inequality in(*)to imply an equal inequality in(**) 

.but a proof has not been possible to date and it would appear that it can 

only be done using a result similar to (4.13). 
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Nevertheless, (4.15) covers a'large number of interesting problems; 

indeed it may be argued that discontinuities in L are evidence of an 

ill-posed control problem. They are caused by there being identical 

trajectories generated by distinct controls with different associated 

costs, so stipulating that each trajectory have unique cost, though not 

necessarily control, eliminates the possibility. 
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Chapter 5 

RECONSTRUCTION OF A SOLUTION TO THE OPTIMAL CONTROL PROBLEM 

5.1 Properties of a Generalized Curve Solving (P) 

It has now been established that (P) has a solution of the following 

form: {y(6),4a :0<6<1} (4.9) where: 

(i) y(a) is a Lipshitz continuous R
n+1 valued fn_of a, y(0) = y0  y(1) = y1. 

(ii) 40. is a uniformly bounded collection of positive Radon measures on 

B, measurable in the sense of (4.9) (i) and (ii). 

(iii) ir(a) = R7dvi0(1.7) a.e. in [0,1]. 
B 
1 

(iv) n(p) = f fl,(17(6),)dpu(l'oda. 
o B 

(v) supp{ga} c ((iciE):>001e-Ef(x(0),t(a),0)} a.e. in [0,1]. 

The last property is a consequence of the identical support constraint on 

all 4 e P. Writing down the integrals in (P) will facilitate our 

development: 
1 
f fe(x(6),t(6),XtEdqd4 (31,)d6 	 (P1) 
0 B 

1 
f(t) (x(a),t(0 ) )fkcig,(kiE)da + lc!) (x(U),t(G))1Edpa (ic'-E )da 
0 x 	B 	 0 t  

1 
f f dist(kA,f(x(6),t(6).0))1"Eld46 (klE)d6 	(=0) 	(P3) 
0B 

1 
f fmax[—E,0]d46 (k,i.)&5 	 (=0) 	(P4) 
0B 

(=LI)) (P2) 

The integrands are uniformly bounded in y = (Xii.) so we may safely assume 

that (v) holds for a E [0,1] and supp{la  }is contained in a subset of B 
• 1.1 satisfying c = ( 1t1 2 )12 

 > (1/1+k2 ) > 0, k being the sup of ilf(x,t,u)II on 

AXR. The difficulties associated with t = 0 in the definitions of L and D 

- 5.1 - 



- 45 - 

f•• 
are overcome 	jt if t(6) = 	dp,

a 
 = 0.,416  = 0, the zero measure. 

A more useful repiesentation of the generalized curve will now 

be given,assisted by a picture for the case n+1 = 3 

Allomeomorphism from R to Fa  ( As defined in the above diagram ) 

For (ic,'E) c R the ray p is defined as p = {(Z,)E Rn+1: 	= 	} , 

p n Fa  = {(z,i(a)) : i=i(a)isA } = {(.L(a)*/-E,(0)1 . Define p : R 	F
a 
 : 

(xii.) 4  (t(a)/-E)(k,t) , then p is .onto, one-to-one (since R is contained in a 

hemisphere of A) and continuous (because k < m). p is a homeomorphism 

from R to F
a 
 and has a continuous inverse p

-1 
 : F

a 
-± R. If R denotes 

the family of Borel sets on R, F the Borel sets on Fa, then p(R) = F 

-1 r  
and p (F) = R. Furthermore,.the space of Radon measures on (F

u' 
 F) is 

exhausted by {V=14-1a Radon measure on (R,R)} [Sch. 1, p. 37]. 

Take pati  A 	'i/i.(a)l-ta 	. (a) > f.) 	the product of 

(17.) = 0 
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a sequence of measures with support in a finite no.of points, XiVa-I  j=1 
say, where each Va  attaches weight V (Uj ) to a point y, E Ui  , with 
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a measurable function and a Radon measure. p.
UN is itself a positive 

Radon measure with support in R and when t(a) > 0, 111-L1NII - 1 i.e. 

g
aN 

is a unit measure. 

On F let v A 	p-1. For integrands H homogeneous in Rn+1 
 the 

. 
a a aN 

change of variable law [KT, §6.5] gives: 

i.e. 

r E(a) 

F 
11(ii.)civ = fri(p(i7))dg 	= 	())E./E(a)dp.

a a 	aN F a 

Further 

f H(ir)dV
a 
= fli(y)dp.a F- 

(5.1) 

• Remarks 

II"aII  = f ldVa  = f1dil6s, =IIµaN  H = 1 when E(a) > 0 
Fa  

(5.2) 

    

(i) if 11.6  = 0, va  = O. 

(ii) p(R) = F
a' 

supp{V
a

} = suppfilaNP-11 c gsuppfilON
}} 

i.e. supp{Va} c Fa  which is established by lemma A4.1. 

The localization lemma [You 1 (88.5)] tells us that any Radon 

measure VQ  on a compact space F can be written down as a finite sum of 

its restrictions to a finite number of measurable subsets of the space, 

whose union is the whole space. Taking these subsets sufficiently small 

i.e.. contained in small R
n+1 balls, we see that V is the w* limit of 

U3  measurable and u U3  = F
a 
 . Therefore 
 . 

n. 
;c(a) = f kdv 	= lim 

F 	 i j=1 3  

n 
,-Iirri yiv-

a
TEmfoo 	for some {u.} c 0 

i j=1 

n. . 
= i.(a) lim XIV6f(x(0),t(a),u.) 

i j=1 

J 
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ri But 	Va
j   = INaII = 1. Therefore 

j=1 

ii(U) c i.(0) co f(x(a),t(0),0) 	(5.3) 

The generalized curve solving (P) can be represented as ly(6),V6:0<6<11 

where V is a unit measure with support in a hyperplane in R
p+1 

orthogonal to the t axis. 

1)5.2 A Non-Parametric Curve Solving the Weak Variational Problem (WV) 
The function t : [0,1] -* [to,ti] is Lipshitz continuous and 

satisfies the conditions of the following change of variable lemma 

[You 1, pp. 180-181]. 

Lemma (5.4) 

Let t(U) 0 < 0 < 1 be Lipshitzian ,nondecreasing, t(0) = t 
— — 	0' 

t(1) = t
1 
and let E

0 
 denote the set of 0 where .E(0) = 0. Then there 

exists a Borel set E, m(E) = m([0,1]\E0) and a set T c [t0,t1] such that: 

(a) Tis Borel, m(T) = t0  - t1, t : E+Tis one-to-one. 

(b) In E and T respectively, 
d 

and 
51 g-'  the derivatives of t(U) and da 
at, 

the inverse function a(t) exist and their product is unity. 

(c) If (1)(0) is Borel measurable, bounded and vanishes in E0 
 and if in T 

0 

Now take the function t x(t) given by x(t) = x(a(t)) defined on 

Et0,t1
I. 

Lemma (5.5) 

x(*) is well defined, single valued and Lipshitz continuous on [t0 
 ,t 

1
]. 

t 	1 
fl 	

da ' 
	

i r
t) A (I)(a(t))— then j tP(t)dt = f(1)(0 )d0. 

dt 	0 0 
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Proof 

a -4- t(a) is continuous on [0,1] so assumes all values in [t
0
,t

1
]. 

Consequently a(t) is non empty for all t and x(t) is defined. Suppose 
a . 	a 

a
2 
 > a then 11x(G2  )-x(a1 	

< )11 	1211X(a)11dG < ki2i.(a)da = k(t(G2)-t(G )) i 	
— a1 	a 	1 

1 	1 
i.e. if t

1  = t(G1), t2 = 
t(a2) 11x(t

2
)-x(t

1 
 )11 < k(t

2.- 1  
). 	0 

With E and T as in (5.4) define a family of mappings Ta, a E F 

T 	RnX{(0)1 	Rn  : (iE,(a)) .4- 21(k) = k/i(a) dt 

For each t e T define a Radon measure on R
n 
by: 

(5.6) 

-1 
gt = va(t)Ta(t) 
	 (5.7) 

while for t E T
c 
set g

t 
= 0. 

Proposition (5.8) 

(a) supp{iit} c f(X(t),t,O) for all t E T. Otherwise supp{1V = 4. 

(b) Let h c C(AxF) (F as in Ch. 3, not Fa) then H(t) A fh(Tc(t),i.-„k)d t
(1) 

F 
is measurable. 

(c) x(t) = Adri a.e. 
F t  

Proof 

(a) By lemma A4.1, supp{rld c  Ta(t)(supp{Va(t)}) for t E T. 

T
a(t)

(suppN
a(t)

1)  cT
a(t)

CF
u(t)

] = f(x(a(t)),t(a(t)),O) by definition. 

When t E T
c
, g

t- 
= 0 so supp{ii

t
} = (1). 

(N.B. the purpose of §(5.1) was to make the mapping Ta  as simple as 

possible.) 

(b) Let M be any measurable set (in the a-field of R* the extended real 

-1 
numbers). We have to prove H (M) c a-field of Et

0
,t

1
] i.e. measurable 

- 5.5- 
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1 
H (M) = {t:H(t)e4} = {t:fh(Tc(tr,t,;)4.

t(X)EM} 

= {tET:fh(Taco )dVa(t)EMI U {tac:OEM} 

= ta(YEE:fh(x(0),t;0),k/(a))dvaeM1) u T2  

= t(ICTEE:ltE(a)fh(.)t(a)dvaeM1) U T2  

= t(facE:1/i.(d)fh(x(0),t(6),31/)i.dga M}) U T2  

= 	)UT2 =T uT 1 	1 	2 

where 

T2 = 
ITC 

if 0 M 

1 
(I) otherwise 1 

is measurable because g is 

measurable in the sense of (4.9) (i) and (ii). Thus T1 and T2 are 

measurable, hence H
-1 

 (M). 	 0 

(c) For almost all t E Tc, x(t) = 3I(a(t)) = -E(a(t)) = 0. When t E T, 

x(t) = >1(6(t)) = )l(a)/(a)1 =6(t) 
and Aclii A f 	31/i.(a)dv

aft) 
= 

t — F 	FG(t) 
)1 (a) / (a)

cy=a (t) • 

Note 

In (b) and (c) the convention adopted in §(3.2) is adhered to. 

We have arrived at a generalized curve 6i(t),Tit:t0<t<til which 

by (a) and (c) above and because g
t 
is a unit measure a.e. in Ct ,t 1, 

0 1-  

satisfies x(t) E CO f(x(t),t,Q) for almost every t. It remains to show 

that the cost functional evaluated along this curve yields n(p), 
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Proposition (5.9) 

t
l  

f fe(X(t),t,X)dTit(X)dt = fl(P). 
t
0 
 F 

Proof  

Lemmas A4.2 and A4.3 show that the change of variable lemma (5.4) 

remains true when cl) is Lebesgue measurable and not necessarily Borel 

measurable. 

Let 4) = flu) A ft(x(0),t(a)01/-E)idila(xiE) then 
B h, 

(i) Let t be the pointwise limit of the sequence {x.
i  / as in chapter 3. 

For all Cr E [0,1], fla) is the (non-uniform) limit of 

4/i(e) A fti(x(a),t(U)01/i)-Edua(ii,..t) so by (4.9) (i) and the dominated 

convergence theorem, O(a) is Lebesgue measurable. 

(ii) pa = 0 in Eo 	
(a) = 0 in E0. 

41 satisfies the conditions of the lemma and in T 

4)(t) = (1)(0*(t))5-d
12-  = 221ft(x(a),t(a)kfidga(k, )1

la
=0,
(t) t dt B- 

= 
 at
da  

	

t(x (g) ,t (a) 	(a) ) (a)cav (;c,)]1 dt -r 	a 	i=a(t) 
a 

= teci(t),td.04t 	a.e. in [t0,t1] F 

The result follows by applying (5.4). 	0 

We conclude from (5.8) and (5.9) that the generalized curve 

r-  @ A t(t),A(t):to<t<til is admissible for the weak variational problem 
t 

and f1  fe(T(t),t,1.0dT1
t
(1)dt = n(P) < now). @ is a solution to (WV)  

t
o 
 F 

and we have shown that the weak-variational and parametric problems 
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are equivalent. 

f 5.3 Completion of the Proof of Equivalence  

Put x0(t) = 	ft6i(s),s,,I)dr1
s
ds then 

o
(t) = ft(X(t),td')dilt a.e. in [t

0it1] F 

xo  (t) • 

Consider the augmented state variable x(t) = 	satisfying 

t0 F 

x(t) 
x(t) = fg(X(t),t,X)dil

t 
a.e. in [t

0
,t

1
] (5.10) 

F 	A rx,t1 
where g(x,t,5)  . Let T be a set of full measure in [t

o
,t] 

such that (5.10) holds for all t e T. 

Take t e T and suppose p has finite support in F, i.e. 

_ N 	N t  
g
t 
 =X(18(k

i
)whereXa.=1 and k. E suppfil

t
1 C f(X(t),t,Q). We 1 	1 

i=1 	i=1 _ 	/ 
cant.hreforeselectu.e0suchthatk=f(x(t),t,uJand. i  

1 	 1 

t 6i CO it,k) 	Tc(t) 1 	1 

r(x,t,u) 
(x,t,u)] ~ 

Setting f(x,t,u) = 	, f is continuous and we find: 
f  

x(t) = X a.g(X(t),t,X.) 
i=1 

N 
. 	a.f(x(t),t,u.) 
i=1 

SO 

1,4 

X(t) E CO f(x(t),t,0) 	(5.11) 

Lemma (5.12) 

Given any l.s.c. function t and a finite positive measure p
t 
with 

compact support, there exists a sequence of measures {pi} with finite 

support in supp{ild with: 
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4. 11:171.t andIed. 41 -4-ledil
t 

Proof 

A slight modification of the standard construction suffices. 

Take a sequence of finite subcovers of suppili.
t
J by balls of diminishing 

4  N 

	

radius, {U4:1 i 	i = 1, 2, ... The collection of differences 
3 j=1' 

Ai: = Ui.A u Ui
k
-is a collection of Borel sets covering suppCil

t
1. 

3 	3  kij 

	

 
Letc0- 	. andchooseclAi.,a minimand of 'WO over 

	

3 	3 	3 	N 
cl i. Such Ici  exist because .E. is l.s.c. Define g. = Iicti.;8(X14 ). Ai 	

3 	— 1 	j=1  J 	J 

SinceAi,j=1,...N
i 
 are disjoint and diam(A

i
)-1, 0 as i4.co, 

3 	 3 

w* - µi ' 
//t 

Further; 
N 	N. 
N, ._ 	. 	I  r 	.i ,e44. = y a't()12-) . y j,t(x.)dA — 1 	3.— 3 t 

	

j=1 3— 3 	j=1 A. 
3 

N 
< yl f.t(k)d

gt = flak — j=1 A. 
3 

, - 
By (A2.2) lim inf Adg. > itdg

t 
hence lim ftdp.. exists and equals 

i co 	i400 
fzdk. 	 ❑  

Note 

(5.12) is not true in general when more than one l.s.c. function 

is involved. 

For any t E T select {p.)  according to (5.12) so that 
_ i 

..:. 	 r Z(x(t) t X) , 
x(0=11-111x6'13-111.1[—'''.-JdAk). For each i, since g. has i — 	x 	Pi  

i 	i 
finite support: 

x. E co f(x(t),t,O) 
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Therefore 

X(t) E CO f(X(t),t,n) 

i.e. 

x(t) E co Ci(X(t),t,0) 	(5.13) 

since f is continuous and f is compact. 

Invoking Fillipov's lemma [You 1 p. 297] there exists a relaxed 

control ■5 satisfying the differential equation 

.01 (t,x(t)) = (ft(x(t),t,u)dV
t
(u), ff(ii(t),t,u)dT) (u)) 

0 

a.e. in Et
0
,t

1
] 
	

(5.14) 

The generalized curve {x(t),Vt:ta<t<ti} (still called @) Satisfies 

the differential equation and endpoint constraints (S2) with relaxed 

control u : t V
t' 

supp{v
t
} c 0, satisfying (S3). @ is admissible for 

the Strong Control Problem. By design: 

t
i  

n(s) < f ft(((t),t,u)6
t
(u)dt 

to  C2 

x-
0
(t

1 
 ) 

t 
1 

= f A(Tc(t),t,;)401)dt 
to  

= fl(P) 

@ solves (S) and the Strong Problem is equivalent to the Parametric one: 
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n(s) > n(W) > n(wv) > n(P) = n(s) 

@ with suitable measure, solves every problem. 

.15.4 Realities Behind the Equivalence  

We began by regarding curves @ E S as linear functionals on 

C(Ax0) (our attention is restricted to @ with trajectories contained 

in A) and then devised a set of Radon measures on ADM, namely W, which 

is convex. In the weak * topology on C*(AxCl), W is closed and co S c W 

where co denotes the closure of the convex hull. Replacing t with any 

othet q E C(AxS1) take g E W and µ E P the induced measure given in 

proposition (3.7). The structure theorems of chapters 4 and 5 apply 

equally to g as to µp, so that the machinery of the previous sections 

will turn out two elements (al, @2  E S with @1q < gq and @2q > gq. If 

there is equality in either of these, we may have @1  = @2, otherwise 

they are distinct. 

N.B. 

Two elements emerge because µ is not necessarily the minimand of 

11,2 over P. (Q is the homogeneous integrand on AxB corresponding to q 

on Axil.) Thus the single element @1  produced exactly as in chapters 4 and 

5 may 	satisfy @,q < gq but then it is easy to see that there must be •- 
an @2 E 

S with gq < @
2
q. 

Proposition (5.15) 

For any q E C(Axi)) and g c (if there exist V1, V2  c co S such that 

- V
1 
 q < Pq and V

2 
>mg. 	 0 

- 5.11 - 
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Structure Theorem for the Weak Control Problem (5.16) 

co (S) = W 

Proof 

Since co(S) c W suppose g E W but g K co J. {g} is compact in 

C*(Ax0) and co(S) is closed and convex. The very general separation 

theorem [RS, p. 130] states the existence of a separating hyperplane 

q c C(Ax0), the predual, gq > 0, Vg < 0 for all V E co S. This is 

absurd in view of (5.15) so p e co(S). 	❑  

The measures in W are just positive unit mixtures of generalized 

curves in S, with none more complex nor exciting. 

Comments  

(i) The route by which we have arrived at this is similar to that 

travelled by Young in deriving (4.10). While a more direct.derivation 

would be welcome, it may not be possible. 

(ii) In the light of theorem (4.13) which is virtually the above in 

parametric form, this structure may not appear so remarkable. However 

one should point out again that for a wide class of f (the r.h.s. of the 

differential equation) (4.13) is unnecessary, we get by with the more 

elementary (4.10). 

We can now complete the proof of theorem (2.2). The extreme points 

of the convex setW are those points g E W not contained on any segment 

{ag1+(1-a)g2:0<a<1} defined by distinct gi, µ2 e W. When W is closed 

such points always exist. Since S and W = co(S) are both weak-star 

compact in.C*(Ax2), which with the corresponding weak topology is locally 

convex , applying the following theorem proves (2.2) . 

- 5.12 - 
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Theorem (5.17) 

If A is a compact subset of a locally convex space , such that 

co(A) is compact , then each extreme point of co(A) is an element of A . 

Proof  

See [ Shf , corollary 10.5 ] 	 0 

Thus : All extreme points of W are in S . 	(2.2) 

Notes  

The extreme points of W are central to Rubio's approach to 

equivalence [ Ru 1 ] . The minimum of ftdp over W can be taken at an 

extreme point . W is approximated by means of Wk  where Wk  involves 

k coustraints of the form le + ef dp = Ae 1 < i < k , where 

{ :i=112,...} is dense in C
1
(A). The extreme points of Wk 

are neasures 

with support in a finite number n
k 
 < k+1 of points in Ax0 . 

It is then to be shown that these points approximate a polygonal 

arc aml that the sequence of arcs generated as k=1,2,... contains a 

. subsequence convergent in some sense to a generalized curve solving 

the weak problem . 
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Chapter 6 

GENERAL BOUNDARY CONDITIONS 

The development so far has been for ordinary differential systems 

within a reasonably wide class, namely the dynamic and cost functions 

f and t are required to be continuous. Largely to ease presentation the 

boundary conditions are given by two fixed points in R
n+1

, (x
0 
 ,t 
0
) and 

(x
1
,t

1
). We shall now investigate the formulation of 	weak and 

parametric problems when the final time condition for the control problem, 

x(t1) = x
1, is replaced by (x(t

1
),t

1
) e r where r is a closed subset of 

R
n+1

. Proofs of equivalence are extended to this case, which includes 

problems such as minimum-time control. 

A simultaneous relaxation of the initial condition is also 

considered. 

j 6.1 Posing  .a Convex Problem  

We replace the problem (S) with the following (for convenience 

also labelled (S)): 

t
1 

minimize f 	ft(x(t),t,u)dut(u)dt 
to  0 

k(t) 	= ff(x(t),t,u)d4t(u) 	a.e. 	in [to,ti] 

(S1)  subject to 

0 
(S) (S2)  

(x0,10) 	fixed, 	(x(t
1
),t

1
) 	e r 

u : t 	a relaxed control satisfying (S3)  

t and f as before. r is the target, a closed subset of R
n+1

; for 

definiteness take (x
0  ,t0  ) 
	r, otherwise in case t > 0 the optimal 
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solution is trivial. Assume at least one trajectory connects (x
0 
 ,t
0 

 ) 

and r. 

Hypothesis H, of the existence of a bounded minimizing sequence 

of curves contained in A (now possibly more general than AxUt0,t1]), a 

n+1 _ 
compact subset of sr , permits us to restrict our attention to a 

compact subset of 1' (still labelled r) contained in the cone (x0,t0) + P, 

P = {(x,t) E R
n+1 

: t > 0, Nil < kt} where k = suplif(x,t,u) I I < 	• 
Ax0 

Points outside (x
0 
 ,t
0 
 ) + P are not reachable, i.e. for all admissible 

trajectory-control pairs (x('),u(*)) E S (x(t),t) E (x0,t0) + P, for all 

t >to. 

Note 

Solving (S) implicitly involves determination of the final time t1. 

The class of problems of form (S) includes minimum time problems, £ = 1. 

Encouraged by the achievements in the fixed end-point case, let us 

retrace the course of Chapter 2. Regarding an admissible element 

(x(*),u(*)) E S as an element g E C*(Ax0) once again we see that 

g E P(A361).  

1101 = Pldt = t
1 
- t

0 
t
1 

for any (1) EC1(A) 

-f t(c,t) + x
(x,t)f(x,t,u)ap = 4 x1,t1) — 0 

 ,t
0 
 ) where 

AxO 

(x1
,t1 ) e r is the endpoint of the augmented trajectory (x(*),e). 

Unless the endpoints for (S) are essentially fixed, i.e. there is 

only one reachable point in 1', the class of A E Pea
(Ax0) satisfying (c) is 

not convex. For if pi, p.2  satisfy (c) with (xl,t1) 	(x2,t2) E 1', respectively, 

then g = 1 11  + 1/242  does not satisfy (c) for any (x,t) e F, 
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f (13t 	()xfcill = 11(1)(x1't71) 	114)(x2't2) 	
4(x0,t0) 
	

(d) 
Ax0 

To obtain a convex weak program, enlargement of the class of 

admissible measures is necessary.. (d) suggests convexification of the 

boundary condition, to give the following: 

minimize f t.(x,t,u)dg  
Ax) 

g  e P(Ax0), 1141 <T - t 
1 	0 

(W) 

(W1) subject to 

(W2)  

3 a probability measure on r such that V (I) e Cl(A) 

(W3) 

f pt ( x,t) + ( x ( c,t)f(x,t,u)dp. 	f0x,t)d0 - flx 
o
it 
0
) 

Axid  

where T1 = max {t1: (x1
,t

1
) e r} < 00 

The space of probability measures is closed under the formation of 

convex sums, hence convexity of (W). 

By construction S c W, so n(S) > 11(W). The question is again whether 

W is essentially larger than S. We expect a negative answer, for if the 

first stage of convexification carried out in the preceeding  chapters 

did not lower the problem value, the second stage should be similarly 

well behaved. This confidence is borne out below. 

Remark  

Convexity is essential to the analysis in part 2. Here, if (W) were 

posed with the restriction that the 0 be measures concentrated at single 

points in r i.e. 1.1. satisfy (c) above, compactness of r implies the existence 

of a solution to (W), whence a generalized curve solution can be constructed 
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exactly as before. The equivalence of (W) and (S) for this restricted 

(W) is a trivial consequence of previous results. 

j'6.2 The Parametric Problem  
Neither the well-posedness of th3 parametric problem (P) nor the 

'imbedding' of (W) in (P) [props. (3.4) and (3.7)] are affected by the 

generalized, boundary condition. 

min f 1,(y,Y)d4 over p. E P (AxB) 
AxB 

(P1) subject to 

3 p, st f 	(y)i7d4 = f(y)(10 - (1)(x0,t0) V (I) 	C1(A) 	(P2) 
AxB Y 

f D(y4')dg = 0 	 (P3) 
AxB 

f 	= 0 	 (P4) 
AxB 

Notation  

If a positive measure g (generalized flow in Young's terminology) 

solves (P2) for a probability measure P., we denote the boundary of g 

by ag = 0 because (x0,t0) is fixed. 

Properties of the admissible set P, given in §s (4.1) and (4.2) are 

unchanged. Recall: 

Lemma (4.2) 

For all 4 E P supp{4} c f(y,Y) e AxB : t > 0 
)
X E if(X,t,C2)1. 

Proposition (4.3) 

There exists K < 00 such that Ilµi
I  
< K for all p. E P. 

(P) 
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Theorem (4.7) 

The parametric problem has a solution, A0  say. 

Previously we applied Young's boundary value theory to the generalized 

flow 0  ,satisfying (P2), (4.2) an (4.3) to obtain various useful 

representations for 40, (4.10), (4.12) and (4.13). We are, with some 

effort. able to extend these to the present case. Derivations of the 

following theorems are contained in Appendix 5. 

Approximation Theorem for P (6.1) 

Each A c P is the weak * limit of a sequence tuil in P6)(AxB) where 
n. 	n. 
ri J j 	ri j 	j g. --Lapt.witilLa.---1, c? > 0 and, each A. has representation 

1 	i i 	1 	i 	i j=1 	j=1  
1 	 • 

ir (a) 	. G 	
I 

fG(y(a), i
iT(0) 

 )1y(u)ida v G E C(AXB) 
0 

(6.2) 

for some continuous, piece-wise linear function y(a) 0 < a < 1 st. 

y(0) = (x
0' 

 t 0 ) and y(1) --- 

Proof 

Appendix 5, thm. (A5,5) 	 0 

Representation Theorem for P (6.2) 

Each 4 E P is a unit mixture of jets, almost all of which are 

bounded generalized curves. 

Proof  

Appendix 5 thm. (A5.8 ); also for dafn. of jet. 	0 

The effort of course goes into (6.2) and if one is prepared to 

restrict equivalence proofs to problems where L is continuous, it need 

not be made. Then however, (6.1) would pose the following dilemma: it 

appears to imply (6.2), yet (6.2) is not true for all consistent flows 

(notes and comments, p. A5.8 et seq). Proving (6.2) removes the uneasy 

feeling. 
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Proposition (6.3) 

The parametric problem (P) admits a generalized curve solution. 

Proof 

In case L is continuous, using (6.1) proceed along the lines of 

Prop. (4.15). Since W* convergence of a sequence of generalized curves 

implies convergence of their endpoints, the extracted g is admissible 

and falgo  > fLdll 

Otherwise (6.2) can be employed in a proof similar to that of 

Prop. (4.14). 	 0 

j6.3 Reconstruction of a Solution to the Optimal Control Problem  

The generalized curve µ solving (P) has the same properties as 

that solving the fixed end point program and proof of equivalence is 

completed as before. 

So: 

11(P) = n(W) = ri(s) 

Convexification has been completed without reducing the value of the problem. 

Control problems arise where both initial and terminal points are 

constrained to lie in closed sets r
0 
 and r1. The generalized boundary 

condition on the flow in W is then: 

3 prob. measures 00  and 131 on r0  and r respectively such that 
 1 

= f f 	()xfail 	Of3  1 - f 	0 A0 1 	Fo 

The likelihood of equivalence being true is discussed at the end of 

Appendix 5. 
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Chapter 7 

EXTENSIONS TO A WIDER CLASS OF DYNAMIC CONSTRAINTS 

The power of our approach is demonstrated by the immediate 

extension of the conclusions (of chapters 4, 5, and 6) to any case 

of additional constraints which can be expressed as fQdp. = 0 for 

some Q > 0 in the weak and parametric forms. State constraints are 

a typical example. 

Control problems associated with differential inclusions 

F(x,t), F a set valued function, are also treated. 

7.1 Additional Constraints  

In this and the following section fixed 	endpoint problems are 

discussed since the dynamic constraints are not as important as 

boundary conditions in proN.Ing equivalence, i.e. any constraint change 

leaving (4.14) valid also does not affect the validity of (6.3). 

In the definition of P there are two constraints (P3) and (P4), 

each being a statement that_ the integral w.r.t. p. of particular 

homogeneous positive continuous integrands D(y,) = dist(1/,f(x,t,Q))1i1 

and M(y,) = max[-t,07 be zero. Take (P5) to be any similar constraint 
• 

G(y,Sr)dp. = 0 	 (P5) 
AxB 

then, assuming that the constraint in (S) which leads to (P5) yields 

a non-empty admissible set, the results of chapters 4 and 5 go through 

unaltered. 

(a) Existence: (P5) does not affect the closedness of P. Minimization 

once again takes place over a. w* compact set, guaranteed non-empty by 

the above assumption. 
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(b) Generalized Curve Solution to (P): The. proof of (4.14) as before, 

with the inclusion of the (obvious) fact that A almost all curves µ in 

any admissible mixture satisfy fGdii = 0. Alternatively (4.15) goes 

throughbyconsideringthe5_17ectora..Ef1471.41,d51,frid171.4MdPI,;!GdT.t.] 

(c) Reconstruction can only be studied when the original constraint is 

given. A state constraint gives an illustrative example. Suppose in 

addition to .the constraints (S2) and (S3) the generalized curves in S 

are required to satisfy: 

g(x(t),t) < 0 for all t E [t0,t1] 	(s4) 

This is equivalent to 

t
1 

f max[g(x(t),t),O]dt = 0 
t0 

 

which becomes 

f max[g(x,t),O]dA = 0 	 (W4) 
.Axc 

f max[g(x,t),O]dp. = 0 	 (wv5) 
AxF 

f max[g(x,t),01Mdpt = 0 	 (P5) 
AxB 

Taking G(y,i) = max[g(x,t),0]1.EI let µ be the optimal generalized curve 

found in (b), i.e. µ = {y(G),4 :.O<U<1}.. — — 

1 
fmax[g(x(G),t(a)),0]FdpdU = 0 
0 	B 

Or 

or 
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It is easy to see that this goes to 

ti 
f maxig(Tc(t),t)]dt = 0 
to 

upon a change of variable, which completes the demonstration in this 

case. 

Notes 

(i) We have studiously avoided a combined state and control constraint 

of the form fg(x(t),t,u)dg 
t 
 (u) < 0 a.e. t E [t0  ,ti]. 1. Here one would 

 _ 	ft 

define g(x,t,X) = supfg(x,t,u):k=f(x,t,u)) which might only be upper 

semi-continuous, in which case so would G(y,1.7) and P may not be weak 

star closed. When g is continuous we are able to proceed as above but 

taking care that in the change of variable a t and the use of 

Fillipov's lemma, g is treated like is. 

(ii) Any finite number of constraints similar to (S4) and (P5) can he 

dealt with in the same way. 

7.2 More General Control Constraint Sets  

Suppose that instead of u(t) E c, a compact subset of R
n
, we are 

given u(t) E 0(x(t),t) where each c(x,t) is compact and there exists 

	

a compact 0 0 	u 	0(x,t). What conditions on 0(•,') ensure that our 
(x,t)EA 

programs are well defined? 

Hausdorff continuity in (x,t) is sufficient in all cases. More 

interestingly if Q(-,.) is upper semi continuous on A , i.e. for all 

(x
0 
 ,t
0 

 ) E A , given 6> 0 	] 	> 0 : Q(x,t) c N [S-2(x
0 
 ,t
0 
 ),E] for 
 

(x,t) E N[(x
0 
 ,t
0 
 ),(5] , then 	dist(k,f(x,t,Q(x,t))) and 2.(x,t,k) are 

1.s.c. ; which is surficient for the results of Chapters 2 to 6 to 

be valid . 
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• 
This is generally the condition used in existence theorems in 

optimal control for it implies that (in our case) the set valued 

function 

Q(x,t) A co f(x,t,Q(x,t)) 

has property (Q) [C.S.] 

Comment  

If the alternative definition of with t = co on F\Q(x,t) is 

used, upper semi-continuity of 0(x,t) is sufficient for to be l.s.c. 

f 7.3 Differential Inclusions  

A differential inclusion is an extension of the notion of an 

ordinary differential equation, in which the r.h.s. of the equation 

becomes a set valued function [Bri. 1]. 

X(t) = f(x(t),t) 	X(t) e E(x(t),t) where E : Rn+1 	Kn 	(7.4) 

some subset of the power set of R . We shall take the collection of 

compact subsets of R
n 

for K
n
. 

An ordinary solution to (7.4) is any absolutely continuous Rn  valued 

function x(*) such that X(t) e E(x(t),t) a.e. t e Et
0
,t

1
1. A generalized 

solution will satisfy X(t) = f
nt

(X) a.e. t E [to,ti] where g : t 4-  gt  

is measurable and each gt  is a probability measure with supp{gt} c E(x(t),t). 

Let us take E(-,') Hausdorff continuous and uniformly bounded 

on A , then analogous to the strong control problem we can pose : 
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1 
minimize f. f t(x(t),t,k)4tt(k)at 

to Rn 
(I1) subject to 

	

k(t) = f Xdpit(X) a.e. t E Etorti],X(to) = x0, X(t ) = x1 	(I2) 
1 	1 

Rn  

measure suppfg
t
1 	E(x(t),t) 

1r

for some measurable g : t + gt, ;It  a probability 

(13) 

where tis continuous : R11+1  xR 	R1, t0, t1, x0
, x

l 
are fixed. 

Notes  

(i) Any differential equation can be regarded as a differential inclusion. 

(ii) The essential difference froM a control point of view is that 

whereas the derivative lc = f(x,t,u) is continuously parametrized by u, 

no such parameter exists for X E E(x,t) in general. 

The weak problem has no counterpart here. We go on to: 

minimize f t(x,t,X)dg  
AxE 

0 
.11 	P (AxE), 111111 < t- t 

1 	0 

(RI1) subject to 

(WI2) 

(WI) 

f t(,!,t) + (1)x(x,t)kdil = 64 for all (I) E C'(A) 	(W13) 
AxE 

f dist(X,E(x,t))dli = 0 	(WI4) 
AxE 

Here A arises from an hypothesis H and E is any compact set in R
n 

containing E(A). Admissibility of the integrand dist(X,E(x,t)) can be 

proved along the same lines as before (lemma (3.6)(b)). 

(I) 

■ 
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The similarity of (WI) and (WV) is so complete we hardly need write 

down the parametric problem corresponding to (I), nor need we justify 

the following: 

Theorem (7.5)  rim = 

Chapter 4 can be written with just one amendment, E(x,t) replaces 

f(x,t,0). From chapter 5 we need only sections (5.1) and (5.2). 

Notes  

(i) The admissible sets I and WI for (I) and (WI) respectively are 

related by WI = co 1 

(ii) More general endpoint constraints and further dynamic constraints 

may be incorporated into (I) as in the preceeding sections. 

(iii) Among the interesting dynamical systems which may be cast as 

differential inclusions are those described by inequalities 

f
1
(x,t) < x < f

2
(x,t) 
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Chapter 8 

DISCUSSION AND FUTURE DIRECTIONS 

1 8.1 Simplifying the Proofs  

Much of the material in the previous chapters has a more simple 

derivation, if one is satisfied with the restriction £ > c > 0. in 

case the end times are fixed, this is no loss of generality - if 

is any integrand, 

produce the same answer. 

The details of the structure of P. are no longer relevant to the 

equivalence proofs, for example instead of showing that the elements 

of P contain no non-trivial closed curves, one can merei ignoi.e their 

contribution to f LdjL0  = f Ld171. + f Ldp > f Ldp., p being the closed 
AxB 	AxB 	AxB 	AxB 

curves, because it is positive. 

This applies equally to both proofs of the existenc- of a 

generalized curve solving (P). 

Unfortunately this sacrifices being able to prove W = co(S) for by 

neglecting part of g we cannot ensure the existence of V2  as in 

proposition (5.15). 

8.2 Difficulties Posed By Unbounded Control Constraint Sets and  

Infinite Time Problems  

It is crucial for the existence of a solution to the parametric' 

• problem (P) that we are able to show that the admissible set P is w* 

compact or at least that in performing the minimization we can restrict 
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attention to a w*  compact subset of P. In chapter 4 this is done by 

showing that for any g.E P supp{g} c. {(y,i7):>0,11E-Ef(x,t,Q)1 c {(y,i7):-E>0, 

'where k = maxllf(x,t,u)II < co, then fnag = Adg = t1  - to  
AXit 

and fliddg < k(t
1  -
t
0 
 ) to give I Ig! I = idg < (k+1) (t1-t0) < m. 

For the infinite time case t
1 

= co and w*  compactness is irretrievably 

lost. Indeed in the study of the existence of solutions to infinite time 

control problems, the weak topology (or w*  if generalized curves are 

viewed as linear functionals) is found to be too strong and is usually 

replaced by a 'weak compact' topology i.e. g
n 

w g if g f gf for all 

f E C(Ax0) with compact support. For us this would mean a complete 

reworking so it will not be pursued further. See Ma]. 

Compactness can also be lost when Q, the control constraint set, 

is unbounded, for then even if k = sup Ilf(x,t,u)11 < co, f(x,t,.Q) need 
Ax.ft 

not be closed i.e. compact. A solution is not impossible however: 

in many cases we can call upon lower closure results developed for the 

control existence problem by Cesari and others [CS], to demonstrate that 

our admissible sets are closed. Combined with growth conditions of the 

form 	> 0, Ilf(x,t,u)112  <ke(x,t,u) + 1P (t) for all (x,t,u) E Axil, 

some k < co and summable 4), and the assumption that at least one control-

trajectory pair exists which has finite cost, we can restrict attention 

to a compact subset of P. For if this cost is no  then the non-empty 

subset of P, {gEP: f Lap<no} is closed and norm bounded i.e. weak * compact. 
AxB 

• . 
For g 	 x P and (x,t,X,t) E supplgl, 	tf(x,t,Q) so 

112 	
I

12 	112 
11k11 < tl 	Ilf(x,t,u)11 	for all u st 	= f(x,t,u). Therefore 

11k112  < . 2(ke(x,t,u)+11)(t)) for all such u and by definition 

ilkil 2  < R12 (ke(x,t,X/i.)+11)(t)) so 
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I 11)111d4 	( 1 II*112d11)1/2  
AxB 	AxB 

< 	I lqici,(17,s7)dg 	I 1q 21p(t)dg) 
AxB 	AxB 

< (k f L(y,i7)dp+ f 11)(t)dg) 1/2  since ItI 2<ItI < 1 on B 
AxB 	AxB 

t1 
(kno-4-T) 	T = f ip(t)dt = f ipdp 

	

to 	AxB 

Further f Hag = t1  - to  and 
AxB 

= flag < jI IxI I + 14* = (kno+T) 1/2  + t i  - to  < .. The parametric 

problem therefore has a solution, which can be taken to be a generalized 

curve, {y(6),ga :0<a<1}. We are now faced by the fact that points (1,0) 

may lie in supp{46} even when ga  0: previously such a possibility was 

automatically excluded. 

Let U be an 6 neighbourhood of the subset {(1,0) :11k11 =1} in B 

1 
no  > f fL(y(a),)cipa (1.7)d6  

0 B 

> f fL(y(a),i7)dg6 (y)da 
0 U 

since L > 0 

Now L(y(U),Y) = Z(x(a),t(0),1/t)I -E1 > 	1(1131112/112-flt (a)))1/k, therefore 

> 1/k j 1[11k11 2  /1-E1-1-Elip(t(0))1dg 	-E)dCY 
0— 	

a 
0 U 

1 
> 1/k f (1-0 2/c g (11)(15 - a 

0 • 

So given any d > 0 we can choose E sufficiently small that g6 (U) < (S in L1[0,1]. 

- 8.3 - 



-72- 72 - 

supp{ld c f(X1E)03:-E>0} and 	= 	= 0 therefore imply 
B 

supp{pd c {(k,0)} c U for all c > 0, i.e. Aa(U) < S or km) = 0. 

This is what we require for the reconstruction of solutions to the 

optimal control problem - the trajectory x(t(cY)) is absolutely continuous, 

there being no discontinuities caused by impulse control measures. 

Remarks  

(i) It may be necessary to define go, A 0 whenever i.(a) = 0, before 

proceeding with the construction of solutions to the weak variational 

problem. 

(ii) A solution to (S) can then be obtained from the above mentioned 

lower closure results which are generalizations of Fillipov's lemma. 

(iii) Among others, linear quadratic problems satisfy the growth conditions. 

An alternative approach to these difficulties has been taken by 

Rubio, for aproblem in the calculus of variations. He rsTlaces.the original 

problem by a sequence of problems (W
k
) say wherein the derivative has 

constraint II II < k k = 1, 2, ... A growth condition enables him to 

show that the solutions of the (W
k
) converge in the appropriate sense to 

a 'solution' to the original problem. Unfortunately this 'solution' does 

not necessarily satisfy the boundary conditions. See [Ru 2]. 

8.3 Future Extensions  

The equivalence of control problems for systems with dynamics 

described by ordinary differential equations or inclusions with convex 

programs over Radon measures has been given. What other dynamics can be 

considered? 

Central to our development is Young's theory of generalized flows and 

their boundaries. It applies to flows on AxB where A and B are the unit 
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cube and unit sphere of R
n+1 

and compels us•to consider only systems 

where the state x(t) and its derivative )1(t) are points in Rn, or 

perhaps sets of points in Rn. An example of the latter are set-valued 

differential equations. 

Consider the differential inclusion k(t) a E(x(t),t). If a is 

the- set of all absolutely continuous trajectories x(*) emanating from r 0 
at t

0 
and ending in r1 at t1  and solving the differential inclusion, 

define S(t) = lx(t):x(')ea}. Then S(•) is a solution of the set-valued 

d.e. 

(t) = E(s(t)) S(t
o
) = r 	s(t ) = F1  1 (8. 1) 

Note that the above merely provides an interpretation of (7.4), c.f. [Bri 1]. 

The limitations of set valued differential equations are immediately 

apparent. There is no interaction between trajectories in a i.e. no 

mixing or diffusion and set valued d.e.'s play no role in either stochastic 

system theory or partial differential equations. For these and many other 

system varieties a theory of generalized flows on functica spaces is 

awaited. 

8.4 Conclusions  

In chapters 2 to 5 we proved the equivalence of the value of a problem 

of optimal control with that of a convex program on a set of measures. The 

merits of our roundabout approach became apparent when we extended these 

results to problems with general boundary conditions (chapter 6) and 

dynamics (chapter 7). In doing.so we discovered the relationships W = co (S) 

between admissible sets. The limits of applicability were explored in 

the opening sections of this chapter and were found to coincide roughly 

with the limits of existence theory for optimal controls. 

- 8.5- 



-747 

Apart from the intrinsic interest of the relationships between 

the measures and trajectories, the convexity of the weak problem renders 

it a suitable object for the application of duality theory. The value 

if the dual program will be the same as that of the weak one, hence also 

the control problem. This is the subject of Part II, and leads to quite 

general necessary and sufficient conditions for optimality. 
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PART II 

NECESSARY CONDITIONS OF RELAXED 

DYNAMIC PROGRAMMING FORM 

While the notion of problem equivalence is quite recent, 

characterization of necessary and sufficient conditions for 

optimality has produced a very full literature. Much of the 

material on Dynamic Programming is derived heuristically, 

problems are often ill-posed and results imprecisely stated, 

therefore a detailed introduction is given to avoid this and 

to properly distinguish the different concepts. 
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Chapter 9 

INTRODUCTION 

We want to characterize optimal solutions to control problems 

involving the differential equation : 

*(t) = f(x(t),t,u(t)) 	u(t) e 	(9.1) 

and cost functional : 

J(u(-)) = $e(x(t),t,u(t))dt 	 (9.2) 

Relaxed -ontrols u(') are admitted in (9.1) , where the relations 

are to hold for almost all t in an interval [t0,t1] . In various 

particular problems [t0,t1] may be fixed a priori or determined as 

part of the solution , through satisfaction of boundary conditions 

on the state x . 
t
1 Our aim is to minimize J(u(-)) =
t e(x(t),t,u(t))dt over all 
0  

 

admissible controls u(-) . Of course admissibility of u(*) involves 

admissibility of the associated trajectory.x(*) . 

9.1 _:The'Bellman Equation  

In [Be] Bellman considers the following class of problems : 

for each (x
0 
 ,t
0 

 ) e Q = R
n
x(-40,T] , 

minimize ft1 t(x(t),t,u(t))dt subject to (9.1) with initial, condition to 
x(to) = x0 . The ...:ost function is : 

W(x ,t ) A inf .{ ft1 t(x(t),t,u(t))dt } 
0 0 — 	t

0  
(9.3) 

Note . 

T is as ;_::fore . We are assuming that from the (x
0 
 ,t

0 
 ) considered 

there exists a trajectory intersecting r at time t1  < T ; clearly t1  

will be a function of (x
0 
 ,t

0 
 ).For other (x

0 
 ,t

0 
 ) put W = co . 
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For the case W C Cl(Q) it is easy to show heuristically that 

W
t
(x,t) + W

x
(x,t)f(x,t,u) + £(x,t,u) > 0 on (int Q)x0 (9.4) 

Equality holds for almost all t along any optimal trajectory i.e. 

W
t
(x
'
t) + minEW

x
(x,t)f(x,t,u)+t(x,t,u)] = 0 on int Q 	(9.5) 

which is known as the Bellman or Dynamic Programming equation. 

In the presence of terminal constraints Q should be defined as 

_n+1 n 
Q A {(x,t)ett 	j an admissible trajectory from x at time  t, to r) 

(x(t
1
),t

1
) E r being the constraint . Although in general W C0 (Q) classes 

of problems where (9.5) is justifiable in some sense have been isolated. 

Theorem (9.61 

For the family of fixed end time, free end point problems with f 

and 2. Lipschitz continuous in x, W is locally Lipschitz on Q = R
n
.L.[To,T] 

for any T0. By Rademacher's theorem it is differentiable except on a 

set of R
n+1 

Lebesgue measure zero. [FR p. 85]. 

Statements of this nature can be obtained in the general case only 

by complex constructional hypotheses. 

Definition  

0 	0 
A feedback control is a function u(*,.):Q -* 0, Q C  Q such that 

for each (y,$) c Q
0 
 there is a unique solution to x = f(x,t,u(x,t)) with 

x(s) = y. u(*,*) must be measurable or smoother. 

We require an optimal feedback control, a feedback control such 

0 
that for every (y,$) E Q the above trajectory is optimal with optimal 

control u(x(t),t) , t c Es,t
1 

. Thus 
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t
1 

W(y,$) = f
s 

t(x(t),t,u(x(t),t))dt 

Differentiability of W depends upon differentiability of t1  and x w.r.t. 

initial conditions (y,$), t(e) w.r.t. (x,u) and u(*) w.r.t. (x,t). The 

last is the most difficult to check. 

The support function U(p,x,t) is defined for p 6 Rn  by 

U(p,x,t) = arg sup[pf(x,t,u)+e(x,t,u)] 	(9.7) 
1161 

Suppose U e Cl(Rn\fOlxQ) then if the partial differential equation 

Vt(x,t) + Vx
(x,t)f(x,t,U(V.,x,t))+Z(x,t,U(Vx' 

 x,t))=0 

(x,t) E int Q, V(x,t) = 0 on r 
(9.8) 

  

has non-characteristic initial data (final data) it has a solution on 16.  

and U(V
x
(x,t),x,t) is an optimal feedback control. We notice that 

V = W E C1(Q) even though U(Vx,x,t) is differentiable only when V E C2(Q). 

Determination of U is generally known as synthesis. Ignoring £ 

(e:g. in time optimal case .e. = 1) a necessary and sufficient condition 

for U E C1(Rn\{0}xQ) is that f(x,t,ce) be convex with strictly positive 

Gaussian curvature. In [H] Hermes shows that when f(x,t,O) is just convex 

the system dynamics can be approximated arbitrarily closely by h(x,t,u) 

with h(x,t,Q) satisfying the above condition. The relationship between 

this approximation, the corresponding solutions of (9,8) and our work 

is detailed in a later chapter. 

Boltyanskii has developed the notion of a feedback control with an 

admissible set of discontinuities. He hypothesizes the existence of sets 
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. 
S
0 
 c'S

1 
 c ... c S

n 
c Q,'S, i-dimensional and relatively closed in R

n+1
. 1 

Some may be empty. The components (disjoint subsets) of S.\Si-1 and 
 

Q - Sn are called cells and are required to be relatively open subsets 

of smooth manifolds. The feedback control u(x,t) has discontinuities 

relative to S. contained in S 	and gives rise to unique trajectories 
1 

	S
. 

which pass through a only a finite number of cells before reaching the 

smooth terminal manifold r c Q - S
n
, their transitions from cell to cell 

being governed by various requirements according to the types of cell 

entered and left ([FR] Ch. 4 §6). When an optimal feedback control 

verifies this array of assumptions, the cost functional W is of class 

C1  on Q - Sn i.e. except on a smooth manifold of dimension < n+1. 

It is evident that these conditions can only be verified for each 

example sepw:ately; in practice the maximum principle is used to 

construct a suspected optimal feedback control and associated S. i = 0, 
1 

n. Unsatisfactory as this may be, it is similar to the extension 

of Caratheodory's method Young uses to get a least time sufficien, 

condition [You 3] and may he the best that can be done. A point of 

interest is that Caratheodory's method, an extension of the classical 

field of extremals, has been used by Osborn to validate dynamic 

programming in the calculus of variations [Os]. It should follow that 

an admissible optimal feedback control exists wherever the extended 

method applies but this is not the goal fr our work. 

Confronted by these difficulties Pronozin investigated necessary 

conditions for the smoothness of W, for minimum-time transfer to the 

origin controllers. His results have been used to construct examples 

having discontinuous W and as a guide to setting up sufficient 

for our results to go through. They are related to the reachability 

properties of the system. 

criteria 
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Theorem (9.9) ([Pr]) 

Let f = f(x,u) be Lipschitz in x, continuous in u and suppose a 

solution to the control problem exists for each initial point in P, 

, r  
the projection of Q onto x space R

n
. Then if n > 2,W E C(P), C1  (P\{0}) 

implies f(0,0) has no corner points and 0 E co f(0,0). If f(0,0) has 

a corner at u* (a) f(0,u*) = 0 	discontinuous at x = 0 (b) f(0,u*) # 0 

and W c C(P) 	along each optimal trajectory there are points at which 

W is non-differentiable. 

Theorem (9.10) 

W is Lipshitz on P iff 0 e int co f(0,0). 

Such is the current state of the art in dynamic programming. 

f (9.2) Verification Theorems 

Fix the initial point (x0,t0) in the control problem for (9.1) and (9.2). 

An admissible pair (x(*),a(*)) is a solution of (9.1) satisfying x(to) = x0  

(x(t1),t1) c r for some t1 	t0. Take A any closed region in R
n+1 

containing 

the trajectory points 1(x(t),t) : to  < t < td. Motivated by (9.4) is: 

Theorem (9.11) 

If (I) c Cl(A) satisfies the partial differential inequality 

Yx,t) + (Px(x,t)f(x,t,u) - t(x,t,v) < 0 on AxO, flx,t) > 0 on r n A 	(9.12) 

whilst cb(x(ti),t1) = 0, (1)t(x(t),t)+Iox(x(t),t)f(x(t),t,u(t)4(x(t),tr u(t)) = 0 

(9.13) 
almost everywhere in [to,t,], for the admissible pair (x(*),u(e)), then 

(x(*),u(*)) is optimal with respect to all admissible pairs with trajectories 

contained in A. 

Proof 

For any admissible pair considered, (R(.)T)), 

1 
f £(x(t),t,u(t))dt > f il)t+4)xfdt = flx(ti),t1)4(x0,t0) 
t0 	t0 

> -¢(x ,t ) 0 0 

- 9.5 - 
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For the particular pair j 11(x(t),7t,u(t))dt = -¢(x ,t ). to 	0 0 0 

Theorems such as (9.11) are known generally as verification theorems - 

(x(*),u(*)) is suspected of being optimal, if ¢ satisfying (9.12) and 

(9.13) exists, it is. Such a crude result (there is not even the hypothesis 

that an optimal pair exists - it does because we admit relaxed controls) 

inevitably flounders upon its assumption, does such a ¢ e CI(A) 

Before answering this question the following must be made clear. 

(9.14) There is no a priori or necessary relationship between any 

verification function ¢ and Bellman's function W, though if ¢ verifies the 

optimality of (x(*),u(*)) then W(x(t),t) = - ¢(x(t),t), t E [t0,t1]. If 

the initial point (x0,t0) of the problem is altered, a different ¢ may be 

needed or may cease to exist i.e. W(x
0 
 ,t
0  ) =-(I)(x ,t ) (x0 

 ,t
0 
 ) at best. 

0 0 
Existence of ¢ can depend upon choice of A; if A contains no trajectories 

other than x('), (9.11) is trivial. 

Despite this most attempts to guarantee the existence of verifying 

functions ¢ have looked to the Bellman function. Indeed sufficient conditions 

like (9.11) have been proved for problems with admissible feedback controls, 

[FR, p. 97]. 

We escape these restrictions by demonstrating the existence of a 

r 
sequence t¢ .1-  each ¢

i 
satisfying (9.12) and with (9.13) satisfied in the 

limit as i 00. Moreover to existence of such a sequence is necessary 

for optimality as well as sufficient. Unified necessary and sufficient 

conditions are the ultimate aim of all optimality theory - ours apply 

more widely than any others. 

9.3 Structure of the Remainder  

Chapter 10 describes the control problem of interest and its equivalence 

with a weak problem, proved in Part 1. Then in chapter 11 we reformulate 
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the weak problem as a convex problem. This bas a dual program for which 

we evaluate the functionals, the conjugates of those in the original 

program. Since the conjugates satisfy the conditions of a thoerem of 

Rockafellar , the dual has the same value as its dual which is of course 

the original program. The structure of the conjugate functionals yields 

our results. Some extensions and examples occupy chapters 12 and 13. 

Chapter 14 is devoted to a discussion of alternative derivations of the 

results and their relationship with the better known necessary condition, 

the maximum principle. Included here is a discussion of the computational 

potential of the new conditions. The final chapter presents conclusions 

for the thesis as a whole, indicating where future research may lead. 

- 9.7- 
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Chapter 10 

THE CONTROL PROBLEM OF LAGRANGE 

10.1 Formulation  

The notation used in the following is that of part I. In contrast 

to the equivalence theorems,for which the statements for general problems 

are immediatly apparent,application of duality theory to simple 

problems does not reveal the most general structure. Consequently we 

adopt as a model the Lagrange problem with 'free' terminal point (by 

which we mean the constraint r includes more than a single point) and a 

state constraint.To avoid convexity assumptions relaxed controls are 

ti 
min f ft.(x(t,,t,u)dgt(u)dt 	(Si) subject to 

to  n 

admitted. 

(S) 

(t) = ff (x (t),t,u)dgt (u) a.e. in [t
0 
 ,t

1 
 1 
" 

(S2)  

x(t
o
) = x0 	(X(t

1
)it

1
) E r 

u(*) : t gt  a relaxed. control satisfying 

(S3)  

At e P (0), 	Ig
t
1 = 1 a.e. in [t

0
,t

1
] 

g(x(t),t) < 0 for all t in [t
0
,t

1
] 	(S4) 

Without loss of generality we.can suppose g(v,$) < 0 on F. 

Invoking the hypothesis H as modified for the free end point, there exists 

a compact set A c R
n+1 

containing a minimizing sequence of augmented 
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• 
trajectories, i(xi  (t),t):to<t<t

i
}. Implicit in this is the existence 

of an admissible control-trajectory pair (x(.),.,u(.)) (all trajectories 

are now considered augmented) and the boundedness of tt, the terminal 

time for any optimal pair. A can be enlarged to a cube, to satisfy the 

derivation of equivalence, containing as large a compact subset of r as 

desired. If F is compact or has compact projection onto the t-axis, the 

original hypothesis suffices since t
1 
is automatically bounded. 

We remark again that H permits the existence of an optimal pair to 

be demonstrated. 

5 10.2 The Equivalent Weak Problem  
Let us recapitulate the pertinent definitions and conclusion of 

part I. There (chapter 2) the strong optimal control problem (S) was 

imbedded in an optimization program over the space of Radon measures on 

Axf2 (we agree not to distinguish between these measures and the linear 

functionals on C.(Axcl) which they represent), called the Weak Problem, (W). 

The set of admissible elements for (S), generalized curve:3, and for (W), 

measures, are denoted by S and W respectively. 

minimize f t(x,t,u)dg 
Axil 

(WI) subject to 

µe Pa)(Ax0), 	11411 < T - to 	 (W2 ) 

(W) f yx,t)+cpx(x,t)f(x,t,u)dp. = .1.(x,t)d0(x,t)-($)(x0,t0) 
Ax0 

(W3) 

for some prob. meas. (3 on r cors to !J., V ct, e Cl(A) 

f max[g(x,t),O]dp. = 0 	 (W4) 
Axci 
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S c W so 11(W) < n(S). Remarkably, the constraint (W2) and the 

boundary condition (W3) restrict elements of W to being unit mixtures 

of curves in S, i.e. W = ;4:4). Now fl(W) = 11(S) and we can use 

characterizations of solutions to (W) to characterize those of (S). 

N.B. T in (W2) can be defined as 	max[t] or 	max(t]. 
( (x,t)EA 	x,t)Er  

- 10.3 - 
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• Chapter 11 

A FENCHEL PROGRAM AND ITS DUAL 

j11.1 Recasting the Weak Problem as a Fenchel Program  

W c C*(Ax0) is a convex set defined by three constraints, (W2), (W3) 

and (W4), and can be written as W
2  n W3 4 

 where 

W2  A 41.cc*(Axn):1E1,8,1iAll<T-t0  } —  

W34  AfAcC*(Ax0):g satisfies (W3) and (W4)I 

On C*(Ax0) with the weak * topology, define p : C* R U {4.0D} and 

q : C* 	{-co} u R by 

I

f .2dµ ;f g e W
2 

P (g) = 	
Ax0 

+ co 	if otherwise 

q = 
peW 

3,4 

if otherwise 

Proposition (11.1) 

p is lower semi-continuous and convex and q is upper semi-continuous 

and concave. The set Wc*:p(1.1)#+.0,q(A)-0.1 is non-empty. 

Proof  

W2 
and W

34 
are closed convex subsets of C*. We prove that W

3,4 
is 

closed - the remaining properties are obvious. Take a generalized 

sequence {A :peD, D a partially ordered set} in W3,4 converging weakly * 

to p0 
 E C*(Ax0). To each A , by the axiom of choice, corresponds a 

probability measure f3, on r, the boundary of p . The unit sphere in C*(P) 



1 

 f tap A AEW 
Axid 

p (A) - q (p.) = 

4 otherwise 

- 88 - 

contains 0 :pED) and is Weak * coffipact hence 0 :pED) has a weak * 

accumulation point R. 

For any (PECi(A), c> 0 there is a p E D such that 

If + fa( - 	1 < 6/2,  II003p-(30)1 St (1) x 	gp gO) 	
< c/2 so 1.4txfdA

0
-C 03 -(1)(x ,t )11 

0 0 0  

f (ht+4
xfag -Efq)d0p  -Ox0  ft0 

 )31 ! 6/2 + 6/2 = e. 

So f(pt  + 4,xfdp0  = foi30  - cp(x0,t0) i.e. 110  E W3,4. 

The restrictions of p and q  to their effective domains W and W
3,4 

are linear and continuous;  the semi-continuity, convexity and concavity 

properties follow from the definitions and the closedness and convexity 

of these domains. 

The set is W
2 

n W3,4 = W, the non-empty set of feasible elements 

for (W). 	 0 

N.B. It is apparent that: 

and the weak problem can be put into .Cenchel program form, 

(W) minimize {p(11)-q(A)1 over A E C*(Ax0). 

Remark: 

We have followed the usual approach of writing convex constraints 
• 

into semi-continuous functionals with convex effective domains W
2 
and W

3,4* 

Our choice of these two sets is determined by the utility of the corresponding 

dual program, for if p is defined on C*, q  on W, the dual is trivial, the 

same as (M. 

11.2 Evaluation of Conjugate Functionals 

The pairing  of C*(Ax0) with w* topology and C(AxO) with uniform 

- 11.2 - 
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topology as topological spaces in duality makes it natural to consider the 

conjugate (dual) functionals of p and q. 

1)*() Q sup{ f 04-p(p.):AEC*(Axn)1 	(11.2) 
Ax0 

q* (E) 	inf{ f Cdg-q(A):11EC*(Ax0)} • 	(11.3) 
Axil 

where C E C(Ax0). 

The structures of W2 and W3,4 can be used to find explicit evaluations 

of p* and q*. 

Proposition (11.4) 

p* (E) = maxf[E(x,t,u)-Z(x,t,u)] :(x,t,u)eAx.01.(T-to) 	for all 

+ 

	

1h 	h > 0 
E E C(Ax0), where h A 	for any h E C(AX0). 

	

 
0 	h < 0 

Proof 

p* (E) = sup{fE-tdp.:4EW2} 

= sup{f(t...-Je.)+41.-f(E-Z)-dingEP45,111-1.11<T-tol 

Positivity of p implies f(-,e)dp = 0. Choosing p with support in 

{ (x, t,u) cAxn: ( 	(x, t,u) >01 

p*(E) = sup{f( -t.)+dp:pEP6,11pil<T-to} 

< max{[(x,t,u)-Z(x,t,u)]+:(x,t,u)EAxn }.(T-t ) 0 

Equality is achieved by taking p with support in arg maxEC-,Q+  (I) with 

norm (T-t
0 

 ) 
'  

0 

- 11.3 - 
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A corollary to equivlence in part I is W = co(S), a strong statement 

about the structure of measures u e W. 

W 	A {AcC*(AxQ): 
3,4 = 

(i) ¢t-'=¢ 	= f¢d0-¢(x0,t0) for 
Axil 	x  

some prob. meas. P. on r corr. to A, V 	E C1(A) and 

(ii) j max[g(x,t),0]dp=0}. 
Axil 

When It E (U, the probability measure a has support in the reachable 

subset R (x0  , t0  ) n r, 

R(x
0 
 ,t0 

 ) A {(x,t)eA:?. a trajectory-control pair (X(.),.,;(.))ES 

with x(t)=x}. 

The various notions of reachability associated withthe measures in W
3,4 

are discussed in appendix 6, where the following is proved. 

Theorem (11.5) 

In the absence of state constraints and assuming there is a fixed 

neighbourhood11(0,e) of zero in Rn, N(0,e) c  co f(x,t,O) uniformly in 

(x,t) E A then to any probability measure 0 on r there corresponds a 

A 6 W3,4. 

Henceforth it is assumed that r is reachable in the original sense 

or that we are dealing only with its reachable subset. 

Define 1.̀ = {EC(Axil):=¢t+cpxf for some ¢ E Cl(A)}. 

- 11.4 - 
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Proposition (11.6) 	 • 

(a) q* () > - co on ;17);TI[D,G(x,t)] 	( G(x,t) = max[g(x,t),0] ) 

(b) q* () = - co otherwise 

i 
(c) if 	= lim[cp

t
+4)
x
z+a1  G] in C(Axil) then 

q*(C) = limEmin 	(Pi(x,t)-(1)i(x0,t0)]. 
i4 (x, t) cr 

Proof 

(a) E 	cpt  + cpxf + aG'c spanC(1),G1 for some a E R 

q* (E) A inf[ f 04:PEW3,4] 
Ax 

= inf[10x,t)(10-0x0,t0):a any prob.meaF.on r] 
r 

= min 	4(x,t) - 4(x 
0 
 ,t
0 

 ) 
(x,t)cr 

E span[(1),G] is dealt with in (c). 

(b) spanC4),G]. Since spanD,G] is a linear subspace of 

C(Ax0) 3 ahyperplane separating it from 	i.e. j.1 E C*(Ak0) s.t. 

f = 0 for 4 E spanD,G1 

AdTi. < 0 	(see for example [Tay],) 

So for any A c W3,4, 	> 0, p + (3)1 E W3,4  and 

- 11.5 - 
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q*(C) = infEiCdg:gEW3,4] 

= inf[0.10F1:0>03 

q* 	 - co 

(c) 	Take C = lim E
i 

= lim 0
t 
+ 0

x
i 
 f + a

i' 
 G strongly in C(Ax0) 

	

i-).00 	i-rco 
As the conjugate of an upper-semi-continuous function not everywhere equal 

to - co, q* is itself u.s.c., i.e. 

q*(C) > lim sup q*(C
i
) = lim supEmin

i
(x,t)-1)(x

0 
 ,t
0 
 )1 

i 	i 	(x,t)cr 

• 
But r is reachable, so if (x

i 
 ,t
i 
 ) is a minimand of 01(x,t) over r, 

n i jp. cWcW34 
such that .10

t
+cpxfdpi 	0(x

i
,t
i
) - 4)(x

0 
 ,t
0 
 )V0. Thus 

(1*(0 = inf[fCdg:gEW3,4] 

< limf dt1  = 

i.e. 

q* (C) < lim[min 	0 (x,t)-0
i(x ,t )1. 

i (x,t)Er 	
0 0 

Combining the two inequalities completes the proof 

Remarks  

(1) In general ja in (b) is not positive, for 

is positive. So g + OF1 W, which is why we wrote 

terms of W and W 
2 	3,4* 

(2) The role of reachability is seen in (c). 

measure reachability in appendix I are designed to 

without the original reachability assumption. 

example when C itself 

the Fenchel program in 

The definitions of 

let (c) go through 

- 11.6 - 
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f
11.3 Dual Program  

The dual functionals p* and q* give rise to a mathematical program 

on C(Ax0). 

(D) 	maximize {q*(0-p*(E)) over E e C(Axn) 

The study of such dual programs was, initiated by Fenchel for the case 

where the original, and hence the dual program, is defined on a finite 

dimensional space. For any such pair of convex programs, 

q*(E)-p*(E) < fEdg-q(g)-fWg+p(g) = p(11)-q(P) 

i.e. 

n (D) < n (W) 

Fenchel showed that if the relative interiors of the effective 

domains of p and q have a common point then there is no 'duality gap' 

i.e. 

n (D) = n (w) 	 (11.7) 

Though this is not true in arbitrary topological spaces, Rockafellar 

has given a version which is: [Roc. 2, Thm. 1]. 

Theorem (11.8) 

If either p or q is continuous at some point where both functions 

are finite, then (11.7) is true. 

Further, if the underlying spaces are in duality , the theorem is 

true with p* and q* replacing p and q in the statement [Roc, 2, cor, 2]. 

In our original problem the effective domains of p and q are W2  and 
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W
3,4 

respectively; in the w* topology neither of these sets have interior 

points i.e. p and q are nowhere continuous. However, p* is continuous 

on C(Axil) and q is not everywhere equal to -co. The dual of C*(AxQ) with 

weak * topology is C(Ax0) i.e. they are in duality and the theorem 

applies: n(D) = n(W). 

Note: In the application of duality theory (D) has been taken as the 

primal problem, with dual (W). (D) does not necessarily have a solution 

but solutions to (W) have already been constructed. 

11.4 The Value of the Weak Problem  

The value of (D) is computed using (11.4) and (11.6). 

11(D) = suPfq*(E)-P*(0:6C(Ax0)} 

= supfq*(0-p*():csT;11[1),G(x,t)i} 

= sup{lim[min 	(x,t)-4) (x
0 
 ,t
0 
 )] - (T-t

0 
 ). 

i400 (X,t)Er 

max 	Elim i(x,t)+4)i(x,t)f(x,t,u)-11G(x,t)-t(x,tr u)]
+
) 

(x,t,u)cAxQ i->co 

the supremum being taken over sequences 4
i
} c C1(A) and fa c R. 

Continuity of max 	[h(x,t,u)]
+ 

w.r.t. h enables us to interchange max 
(x,t,u) 	 (x,t,u) 

and lim above. Therefore 

n(D) = sup ( ,a):(PEC1(A)acR} 	(11.9) 

where 

- 11.8 - 
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1,0 Amin 	[(1)(x,t)-(1)(x0,t0)] - (T-t0). 
(x,t)er 

	

max 	4jx,t)-+¢x(x,t)f(x,t,u)+aG(x,t)-t(x,t,u):14.  
(x,t,u)cAxe 

Positivity of G makes z(4),a) a monotone non-increasing function of 

a for fixed (1). Let G+  = t(x,t)cA:G(x,t)>0} and G° = A\G 	t(x,t)EA:G(c,t)<0. 

If (x,t) E G
+
, for any (1), decreasing a sufficiently 

(P t(x,t) + (1)x(x,t)f(x,t,u) + aG(x,t) - t(x,t,u) < 0 

V (x,t,u) c Axe, because the function on the l.h.s. is uniformly 

continuous (its domain Axe is compact). 

So 

n(D) = supfz(0:(pEc1(A)1 	 (11„.10) 

where 

+ - z(4) g min 	[40(x,t)-0x0,t0)] - max 	f-t] (T-t ) ,* 
(x,t)cr 	(x,t;12)EG

O 
 xe tx 
	0  

Consider the set T A 4cCi(A):4)(x,t)>0 on r, cpt+cpxf-2<0 on G°xe}. 

If ¢ E 'F and ([)(x,t) > b > 0 on r then (1)-b E 'P and we therefore always 

assume 4)(x,t) = 0 for some (x,t ) c r. Note that -[(1)(x0,t0)-b] > -¢(x0,t0). 

When (1) E T therefore 

n(D) > z(4)) = min 	[(1)(x,t)-4)(x0 
 ,t
0 
 )i = -(1)(x

0 
 ,t
0  ) 
	(11.11) 

(x,t,)cr 

On the other hand, if cp c C1(A), defining 

k A max 0t
(x,t)44 (x,t)f(x,t,u)-t(x,t,u)j > 0 

(x,t,u)EG xe 
and 

- 11.9 - 
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(P(x.t) 	(1)(kiE) - min * [fly's)] + k(T-t), (7) E C1  (A) 
(y,$)EF 

(f)(x,t) > k(T-t) > 0 V (x,t) E r 

St  Sxf -t= 4t + Sxf -t-k<Oon G°362. 

So T E 'Y, while 

	

z(0) = min 	ES(x,t)-S(xo,t0)] 
(x,t)EF 

	

= min 	[Ox,t)+k(T-t)] - Oxo,t0) - k(T-to) 
(x,t)EF 

	

> min 	[4(x,t)] - (1)(x
0 
 ,t
0 
 ) - k(T-t0  ) = z4) 	(11.12) 

(x,t)EF 

Combining (11.11) and (11.12) 

11(D) = sup{z(S):SET} = sup{-S(xo,t0):(1)ETI. 

Finally, 11(D) = n(W) = 7-1(S) ((S) the control problem) yields: 

Theorem (11.13) 

The value of the relaxed control problem (S) is equal to 

sup{-S(x0,t0):SEC1(A),4>0 on r, (1)J(1)xf—e.<0 on ex01. 

Comments: 

(1) Theorem (11.13) does not assert the existence of a S e T solving 

n(S) = -0x0,t0), just a sequence {S} c T such that n(S) = lim -S(xo, 

Even if a solution to (D) exists, one can only claim that E is 
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continuous. More generally it will be discontinuous. Of course if 

Ti(s) 	-4(x0,t0) then 	= cpt  + cpxf does solve (D).. 

(2) For problems without state constraints the same result obtains with 

0 
G replaced by A. Inclusion of a constraint widens the class of 

admissible cl) E T since the defining inequalities are required to hold 

over smaller sets in Axil. The obvious conclusion that constrained problems 

have higher values emerges. 

(3) Multiple state constraints gi(x(t),t) < 0 i = 1, 	M are easily 

handled, replacing G0 
	

i 
with in G.

0  
. Other constraints which fit into the 

M
1  

framework of part I, even involving the control variable u, are similarly 

dealt with. 

Note 

The hypothesis ensuring the existence of at least one admissible 

control-trajectory pair also ensures that G
0 
 is non-empty . 

G°  = {(x,t) e R
n+1 : max[0,g(x,t)] = 0 } i.e. G

0 
 is the inverse image 

of the closed set 0 } under the continuous map (x,t) + max[0,g(x,t)] . 

Therefore G
0  is closed , hence compact as it is contained in A . 
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Chapter '12 

NEW NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMALITY 

We now have sufficiently sharp tools for a complete characterization 

of solutions to the strong  control problem. That a solution exists is 

an essential part of the equivalence proofs (part I, §5.3);  together 

with the value theorem (11.13) this enables us to assert the existence of: 

(12.1) an admissible control-trajectory pair 63(*),',Tc(*)) satisfying  

(S2), (S3) and S(4), with terminal time t1, .17.1 	t 	Tit. 

(12.2) A sequence {(1)i} c T = {4EC1(A):PO on r,
t
-11)
x
f-..e<0 on G0x0} such 

that 

tl  

(12.3) 	f ft.((t),t,u)d1.1t
(u)dt = n(S) = limf-(Pi(x ,t )1. 

0 0 to n 	 i400 

Theorem (12.4) 

An admissible pair 01(,),,,x(0) with terminal time t
1 
solves the 

control problem if and only if 

limft-)4i(x(t),t)+A(Pi(x(t),t)f(x(t),t,u)-/(x(t),t,u)idut(u)1 = 0 i400 	t 	x 

(12.4)(a) 

strongly in LICto,ti] and limW(x(t.1),t1)] = 0 	(12.4)(b) 

for some sequence O
i
l E T. 

Proof 

(a) Sufficiency is an obvious extension of the verification theorem (9.11). 

(b) Necessity, Take (u(*),',x(0) an optimal pair and {(I)
i
} c T a sequence, 

as in (12.1) and (12.2). Then for each i = 1, 2, ... 

- 12.1 - 
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i.i 
	i 	. 

f 14);.(2qt) ,t).-4(pi  ()--c (t) ,t)f (Tc(j.),t,u)dp.
t
(u)3dt = (Pi  6i(i1), 1)-(Pi(x ,t ) x 	 0 0 to 	0 

i.e. 

1 	i 	4 - 
liMf Dr+f(rfd15. 3dt = limDP (x(t1)t1)] - lim[e(x ,t )3 t x t 	 0 0 
i t 

	

	12 
0 

t 

(by (12.3)) 

therefore 

= limW(x(t1
).,t1)] + f ft.(x(t),t,u)dilt

dt 
i 	 tO 

E
1 . 

limf [TIt..-4(qhf-Z)61.t]dt = himW(X(E.1),-.E1)] 
i t0  

i 	- - - 	 - - 
But 4)

t 
+ (I)f - 	< 0 and T (x(t1  ),t1 

 > 0 therefore lim[()
i 
 (x(t1

),.L.
1
)] = 0 

and 
1 	. 	. 

lim[f [ 3jf(cif-t)dirit]dt = 0 
i 0 t 

Non-positivity of the integrand imelies that the sequence of functims 

{t4WWtxf-ZdTtt  31 - 
(x(t),t) converges strongly to the zero function in 

Lt[t01
]. 	 0 

Note . 

The essential point is that a verification sequence {(1)1} exists, 

so that the verification condition becomes necessary for optimality . 

- 12.2 - 
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Chapter 13 

DYNAMIC PROGRAMMING FOR A WIDER. CLASS OF PROBLEMS 

In this chapter we shall extend the results of chapters 11 and 12. 

j13.1 The Problems of Mayer and Bolza 	t
1 

If instead of the integral cost .functional f t.(x(t),t,u(t))dt there 
to  

is a terminal cost, x(x(t1),t1) the control problem is said to be in Mayer 

form 

min x(x(t1),t1) 	 (S1) 

(S) 

subject to (S2) and (S3) (orLdtting state constraints) 

When x c C1(A), (S) can be written in Lagrange form, 

(S) 

1 
mint f[xt(x(t),t)+ 

to  

(x(t),t)f(x(t),t,n)34.t(u)dt 	(Si) 

subject to (S2) and (S3) 

Note: 

Since (x
0 
 ,t
0 
 ) is fixed we can put x(x

0 
 ,t
0 
 ) = 0 

therefore 

n(s) = sup{-(1)(x0,t0):49cT},. 

Here 	T = {(PcC1(A):4)2 on r, ycPxf-Xt-Xxf<0 on AxQ} 

- 13.1 - 
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Put 

= flicC1(A):4)>-x on r, ipt-hpxi<o on AxPl 	(13.1) (a) 

Then 

	

(I) =T+xsince 4)€(1. 	+xET 

X(zo,t0) = 0 	implies n(S) = sup{-4)(x0,t0):00 	(13.1) (b) 

(13.1)(a) and (b) constitute the expected generalization of the well 

known verification theorem for Mayer problems but are valid only in case 

X E Cl(A). Suppose x E C(A), define (I) as in (13.1)(a) and 

	

n L sup{ 4(x0rt0) . 	6  (I) }  

For any admissible pair, 4) E. 41) 

t
i 

t 
f

t
+4)
x
fdt=4)(x(t

1
),t

1
) - 4)(x

0 
 ,t
0 
 ) < 0 

0 
therefore 

t 

x(x(t ),t ) > -4)(x(t ),t ) > -11)(x 	) 1 	oo 

n(s) > 
	

(13.2) 

Given E > 0 we can obtain x E C (A) c C1(A) approximating x uniformly 

on A 

i.e. 	(x,t)-x(x,01 < c for all (x,t) c A. 

Let (S) be the Mayer problem with ; replacing X. ny (13.1)(b) 

/1( .) = sup{-11)(x0,t0):11)E:0 

- 13.2 - 
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- 	-- - 	• - 
A {IPEC4(A):11)>-X on r,t x f<0 on Axil} 

Uniformity of approximation implies that if IP E 41, gl c e 	, so 

n  > sup{-T(xoft0)-E:TpED = n(s)-e 

and 

ri() > n(s)-c, hence n > n(s) - 2c 
	

(13.3) 

(13.2) and (13.3) prove the value theorem for the Mayer problem with 

arbitrary cost function x  E C(A). 

j
t1 

The most general cost functional is t
t(x(t),t,u(t))dt + x(xit1),t1) 
0  

 

in which case (S) is known as a Balza problem, for which the value is 

1(s) = sup{-t(x0,t0):(W1) 

• T A f(PcC1(A):P-X on r, ¢t+cPxf-t<0 on Axil}. 

This value theorem leads immediately to necessary and sufficient 

conditions for optimality, as before. 

Remark: Existence results for Mayer problems are to be found in [McSi. 

§ 13.2 Differential Inclusions  

Recall the control problem where the dynamical system is described by 

a differential inclusion, (I), and the suitably posed weak problem (WI). 

In §(6.3) we showed n(I) = 	By writing (WI) as a Fenchel program 

and applying  the duality results, the value of (I) is obtained. 

I1(I) = sup{z(cP,a):(1)ECt(A),acR) 

- 13.3 - 
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z(q),a) A min 	[(1)(x,t)-(1)(x0(7)] - (T-to (x,t)cr 

	

max 	[() (x,t)+4) 
x
(x,t)ic+a distU,E(x,t)i-t(x,t,X)]+  

(x,t,i)cAxE 

The. dynamic constraint dist[x,E(x,t)] can be treated similarly to the 

state constraint in §(11.4). 

n(I) = sup{-4(x0,t):4ET} 

T A {0C1(A):11)>0 on r, yx,t)+cpx(x,t)k-t(x,t01)<0 v (x,t)EA 

keE(x,t)} 

The partial differential inequality can be written formally as 

4 (X,t)-1-4)x(X,t)E(X,t)-t(X,t,E(x,t)) < 0 V (X,t) E A 

§ 13.3 nternative Forms When State Constraints are Present  

In (S) the state constraint is g(x(t),t) < OVterto,till. Suppose 

g is differentiable, then another state variable xn+1 
can be considered, 

Xn+1(t) = gt
(x(t),t) + fa 

x
(x(t),t)f(x(t),t,u)dA

t
(u) a.e. in [t0,t1] - 

xn+1
(t0) = g(x0 

 ,t
0 
 ) = x 

n+1.0 

Denote the augmented state (x,x1.0.1) by x etc. The alternative form of (S) 

is 

- 13.4 - 
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,1 
min 	jt.(x(t),t,u)dp.tl . 1 u)dt 

to 

• p 
x = if(x(t),t,u)di,i

t
(u) a.e..in [t , 

0t 1 

(x(t1),t1) E r x(t0) = x0 
 

.0 a relaxed control 

xn+1 (t) < 0 for all t in Et0  ,t1  1 — 	' 

(5) 

(S1) subject to 

(S2)  

(S3)  

(S4)  

r = f(x,x
n+1

,t):(x,t)EF, x
n+1.

<0). TakeAcR
n+2 

 a suitable set as before. 

The value theorem appears as: 

(S) = sup{4' 	^ co,t0): TI 	4€7} 

nJ 
T 

• 

A {4)EC1(A):4)>0 on F, 4

- 

)t+4)2f-.2<0.on ex0 (13.4) 

= A n {xn+1—<0)  

Compare (13.4) with (11.13). To any 4) E v-one can define: 

(1)(x,t) = q)(x,g(x,t),t) E T, for 4 > 0 on I' 

and 

(Pt 	
4
xf  - 4  = "1-)t gt 	f(1xCr'xf -4 

n+1 	n+1 
 

Further, 

=(T. + 7;4 - 4 < 0 on G())62 
t x 

-4)(x
0 
 ,t
0 
 ) = -4)(x

0 
 ,g(x

0 
 ,t
0 
 ),t

0 
 ) = 4')(Z

0 
 ,t
0 

 ) 
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However there is no obvious means of constructing E 'Y from any 

given (1) c T. Thus the class T is essentially no larger than T and 
1.4 

characterizations of optimality by T may yield more information than the 

original theorem (12.4). 

In establishing the value theorem it was argued that at any point 

(x,t) e G
+
, taking a sufficiently negative, cPt  + cpxf + aG(x,t) - t < 0, 

for any (P. For the same reason, the inequalities 

t 
+ f - 	< 0 on G

o 
	C1  (A) 

x 

(pt  + cpxf - t < y max[0,g(x,t)] on Ax0 for some y 	(13.5) 

N 

are equivalent. The same applies to the p.d.i. defining T. (13.5) is 

useful in that it indicates the relationship of our necessary condition to 

the known one, the Maximum Principle (see appendix 7). 

- 13.6 - 
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Chapter 14 

THE NEW NECESSARY CONDITION 

We shall briefly examine the relationship of the new necessary 

condition with the Maximum Principle, including derivation of results 

similar to ours which may prove more useful in this direction, and the 

application of dynamic programming conditions to designing optimal 

control algorithms. 

f 14.1 The Maximum Principle  

For ease of presentation let us consider control problems (S) where 

t and f are continuously differentiable with respect to x and which has 

ordinary optimal trajectory-control pairs (x(*),u(*)). Further, assume 

the Fenchel dual problem (D) has a solution cp E C
2(A), so that (3.4) 

holds with {(p) replacing {¢Z.}.  The strength of this assumption 

apparent from the introduction. 

(1)
t
(x(t),t) +

x
(x(t),t)f(x(t),t,u(t)) - ,e(x(t),t,u(t)) = 0 

and 
a.e. in [t. t ] 

0' 1 

¢'(x,t) + x
(x,t)f(x,t,u) - t(x,t,u) < 0 on Axil 

imply 

ax 4E4)t  1-11)x  f4 	(x(t),u(t)) -11 	1 = 0 	a.e. in [t
0
,t

1
] 

i.e. 

4)tx+(Pxxf+(Px
f
xx] (x(t),u(t)) 74 0 

Defining p(t) d (I)
x 
(x(t),t), p(.) is absolutely continuous on Et

0
st

1
] and 

- 14.1 - 
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satisfies 

b(t) = Sxt.(x(t),t) + 4,xx(x(t),t)f(x(t),t,u(t)) 

b(t) = -p(t)f
x
(x(t),t,u(t)) +

x
(x(t),t,u(t)) a.e. in [t

0 
 ,t

1 
 ] 

.(x(t1
),t

1
) =.0, 4,(x,t) > 0 on r imply that 

P(t )Dx(t1
)t

1
)-(y
'
s)] < 0 	(y,$) c r 

Set 

H(x,t,u,P) A pf(x,t,u) - £(x,t,u) 

Theorem (14.1) 

Suppose (x(*),u(*)) is admissible for (S). A necessary condition 

for optimality of (x(*),u(*)) is the existence of p : [to,ti] 4'e, 

absolutely continuous, satisfying: 

IS(t) = -Hx(x(t),t,u(t),P(t)) a.e. in Ct
0,t1] 
	

(14.2) 

p(t )C(x(t1
),t

1
)-(y,$)] < 0 FF (y,$) E r 

	
(14.3) 

H(x(t),t,u(t),p(t)) > H(x(t),t,v,p(t) for all v 

and almost all t 	Et
0
,t

1
] 	(14.4 ) 

(14.1) is generally known as the Maximum Principle (or Pontryagin's 

Principle) Civics] while (14.2) and (14.3) are referred to as the adjoint 

equation and transversality conditions respectively. The principle is 

true for a wider range of problems than the assumptions necessary for the 

formal derivation above and an important question is whether or not (12.4) 

- 14.2 - 
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contains the M.P. in any generality. 

Little is known about the convergence of the maximizing sequence 

1.4 except along the optimal trajectory where the limit is absolutely 

continuous, 

lim 	(x(t),t) = lim[cp1+41f] 	=7e(x(t),t,u(t)) 
t x 	(x (t) ,u (t) ) i4.00 

Taking the value function of (S) as a guide to the sort of limit 

function to expect, examples indicate that even along the optimal 

trajectory lim (1)i need not exist, i.e. the trajectory runs along a i÷m  x 

discontinuity of the value function (this example is presented in §(14.4)). 

Let t and f be continuously differentiable w.r.t. x and, if 

r necessary, replace the sequence 1) / with another, such that 4) e C2(A). 

Given e > 0 choose i sufficiently large that along the optimal trajectory 

(x(-),u(.)) 

0 >
tx 	(x(t),u(t)) 

> -c except in T 	[t
01  
,t,i, m(T) < 

Comparing x(t) with x(t+6), 6 sufficiently small 

41-4115i  
t X 	(x(t),u(t)) 	t 'x

f-Z]l 
(x(t+6),u(t)) 

> -E 
 

If u(') is a.e. continuous and t is a point of continuity 

x(t+6) = x(t) + 6f(x(t),t,u(t)) + 0(6) where lim 0(6)  4-  O. 

Formally, we obtain, 

i 	i 	,1 6[((1) 	+(I) 	f+cp
i 
 f 	)f_11 

tx 	 x x x 	(x(t),u(t)) + 0(6) > -c  

- 14.3 - 
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So if pi(t) x(t) in the limit as i 

lim[(p +pi fx-tx)f]l(x(t),u('t)) 
= 0 a.e. in [t

0 
 ,t 

1' jam 
(14.5) 

When each component of f(x(t),u(t)) is strictly bounded away from zero, 

uniformly in t, (14.5) yields the adjoint equation. At present this 

unsatisfactory ad hoc assumption seems unavoidable, when deriving the M.P. 

from our necessary condition (12.4).. 

14.2 Hermes Approximation for Time Optimal  Control  

From an entirely different approach to ours, Hermes has arrived at a 

very similar conclusion, specifically for time optimal control, where 

= 1. Briefly, the line of thought in [He] is that given a 'convex' 

dynamical system, 

31(t) = f(x(t),t,u(t)) u(t) E 0 compact 	(S1) 

R(x,t) A.{f(x,t,u):ue0} a compact convex subset of Rn, satisfying the 

Fillipov conditions [He p. 415] (subsumed by hypothesis H in part I) there 

exists an c approximate equivalent system (defined below) . 

x(t) = hc(x(t),t,v(t)) v(t) E Vc  . 	(S1c) 

such that the support function Uc  E Cl(Rn\{0}xA) 

U (p,x,t) A arg sup[p.h
c
(x,t,v)+1] 
	

(9.7c) 

vEV 

(S1e) is said to be e approximately equivalent to (S1) if 

- 14.4 - 
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, 
R (x,t) A {h (x,t,v):vcV

c 
 } 	R(x,t) and in the Hausdorff sense 

dist(Rc(x,t),R(x,t)) < c for all (x,t) E A 

For i*(p) Q arg supEp.r] to be continuously differentiable on.  n\{01 
rER 

it is necessary and sufficient that R be compact, with a smooth boundary 

having strictly positive Gaussian curvature at all points (this implies 

strict convexity of R). The desired approximation is therefore found in 

proving: 

Theorem (14.6) 

For any e > 0 there exists an e approximate system equivalent to 

(S1) with dynamics x E he(X,t,V) v E V(E) where: 

	

(1) 	V(e) is the unit ball in Rn, Bn. 

(ii) he  is-C" on AxBn  and h (x,t,..) is 1-1 V (x,t) E A. 

(iii) R
e 
(x,t) has smooth boundary with positive Gaussian curvature. 	0 

Hermes concludes with 

Theorem (14.7) 

Let e(k) 	0 as k co. If x
k
(.) is the time optimal trajectory when 

(Si) is replaced by (Sle(k)) then {yk(.)} is equicontinuous and has a 

uniformly convergent subsequence, converging to x(*), the time optimal 

trajectory for the original problem. 	 ❑  

Denote 
he(k) 

by h
k 

etc. Assuming the final data are non-characteristic, 

uniformly in k, the p.d.e. 

Vt
(x,t) 	V

k
(x,t)h

k
(x,t,U

k
(V
k
,x,t)) 	1 - 0 

(14.8) 

(x, t) E int A, V
k
(x,t) = 0 on r 

- 14.5 - 
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has a solution V
k 

Cl(A) for each k = 1, 2, ... and the cost of the 

kth problem is V
k
(x
0 
 ,t
0 
 ). Taking the subsequence in (14.7), 

n(s) = lim v
k
(x
0  t

0) 
k+co 

Thus V
k 

corresponds to -(1)
k 

determined from our dual (D). 

Further by definition of U
k 

and h
k 

Vt(x,t) + V
k
(x,t)h

k
(x,t,v) + 1 < 0 V (x,t,v) E AxV(k) 

and 

V
t
(x,t) + V(x,t)f(x,t,u) + 1 < 0 V (x,t,u) e Axn 

The e-approximate equivalence technique provides an alternative proof 

of the relaxed dynamic programming principle in the case of time optimal 

control of a convex system. Bridgland [Bri 2] has extended the principle 

to the more general 'minimum miss-distance problem' and there can be little 

doubt that the general Lagrange problem for non-convex systems admitting 

relaxed controls is amenable to the same treatment. This proof is in 

many ways superior to ours, for it offers the possibility of constructing 

the sequence {V
k
}, once a general method for constructing h

k 
is found. 

(See [He pp. 424-6] for f = g(x,t) 	h(x,t,)u.) These Vk  are exact for 

the e(k) approximate-equivalent problem, 

k k 
[Vt

+Vx
h
k 
 -1] = 0 on [t

0' 1 
t
k
] 

(x
k 
(t)U

k 
(V (x (x

k 
(t) , t) ,x (t, ,t) ) 

  

-and therefore p
k
(t) A V

k
x(x

k
(t),t) solves the approximate adjoint equation 

k 	k 	k . 
P (t) = -p (t)hx(x (t),u

k
(t)) 

- 14.6 - 
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Derivation of a maximum principle depends upon the convergence of the r.h.s. 

in the appropriate topology. 

Despite this, the e approximate technique will remain a theoretical 

tool as numerical implementation of any algorithm constructing h
k
, U

k 
will 

be costly and numerically unstable as e O. 

f 14.3 Lower Bounds 

A major difficulty in the design of any sequential algorithm for 

optimization is the choice of a stopping criterion. For the program 

(R) 	min{R(x)=xeR} 

i 0 
an algorithm may generate a sequence of points {xi = 0,1,2...} x given, 

with x
i 

E R or 'nearly' in R and, frequently, {R(x
i 
 )} a monotone decreasing 

sequence. The design objective is lim R(xi) = n(R) but of course in practice 
i4,00 

the algorithm must be stopped at a finite value of i, chosen such that 

IR(xi)-n(R)1 is small. The difficulty is that n(R) is not known until (R) 

is solved, in which case the algorithm is superfluous. Stopping must be 

judged from convergence of the values R(xi) alone and care taken to avoid 

stopping at spurious, far from optimal points. 

Alternatively, n(R) can be replaced by a lower bound n < n(R), provided 

In-n(R)1 is small. For the strong control problem (S), theorem (11.13) 

presents such a possibility: 

n(s) = sup{-flx0,t01 	P :¢ECI(A),0 on F, cpt+4)xf-t<0 on G
0 
 x0 

Ostensibly we do not have to solve (S) to determine n(S) or a 'good' 

lower bound n and in a few simple problems this may be so, when some 

- 14.7 - 
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• 

guesswork produces a suitable (P. Otherwise • is constructed, using 

another algorithm; from an isolated perspective the vicious"circle is 

complete, our bootstrap snaps. 

The seeds of duality germinate only if both programs are present. 

Let the original algorithm generate {x
i
(-),u(.)}, admissible pairs for 

(S) and the other, 	admissible for the dual (D). For all i, j: 

i t 
ro(xi (t),t,u)dp.i(u) >11(s) > -4) cx ,t t  — 	 0 0 t

0 
 0 

The obvious stopping criterion for both algorithms is nearness of the 

outer terms. Conceptually satisfactory, this scheme is inefficient even 

for programs where dual algorithms are known; to date the seeds have not 

borne fruit. 

The theory of inequalities remains in the 3rd world of mathematics, 

underdeveloped and exploited principally for the enrichment of other 

areas, as Holders inequality is used to demonstrate the duality (LP)* = Lq, 

1
-+-= 1, p > 1. For partial differential inequalities, Lakshmikantham 
P q 

and Leela [LL] and Plis [P] have proved some comparison theorems with the 

objective of bounding the solutions of the corresponding p.d.e.'s.Applying 

these to 4)
t 

+ (I)
x
f - £ < 0 produces crude results: -4)(x0 

 ,t
0 
 ) < f

t  f
Z(t)dt 

 0 
where £(t) is £(x,t,u) evaluated along any trajectory. The state of the 

art does not admit anything better. 

14.4 An Example  

The following time optimal control problem satisfies the conditions 

of theorem (9.9) and has a discontinuous Hellman function . 

- 14.8 - 
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X
1 
= x

2 
+ u

1 	
x1(0) = x

10 

X2 = -x1 + u2 	
x
2
(0) = x

20 

min{tl:x1  (t)
1=x2 1  

(t)=01, admissible controls being measurable functions 

(u1(.),u2(*)) with (ul(t),u2(t)) E 0 a.e. t, 0 as indicated: 

u
1 

1 

Optimal controls will be computed using the Maximum Principle. 

H = X1
(x
2
+u

1
) + X

2
(-x

1
+u2

) - 1 

A 
= 1 -H = 2 

	
A
1 
= a cos t + b sin t 

1 
SO 

X
2 
= -H

x 
= -X

1 	
A
2 
= b cos t - a sin t 

2 

The optimal controls satisfy u = arg max X7v 
V E 0 

Since A rotates clockwise, taking A initially at (00/a2+b2) the control 

is: 

- 14.9 - 
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u = (0,2) - 	t 	[0,u/21 	1 

u = (0,0) , 	t c [112,4 	2 

u = (sin t, cos t + 1) 	t E (1r, 21r] 	3 

The controls have two switching points every period (21.0. The 

origin is reachable only from the first and fourth quadrants since 

in the 3rd quadrant xi  < 0 	;c
1 
= x

2 
+ u1  < 0 

in the 2nd quadrant x2  > 0 	X
2 
= -x1 + u2 

 > 0 

This is the cause of the discontinuity in the 'cost to go' function, 

i.e. even in a neighbourhood of the target set {(0,0)} there are (x,t) 

such that (0,0) j int f(x,t,0). This indicates a relationship between 

measure reachability and continuity of the 'cost to go' function though 

none has been established as yet. 

The following pictures emerge from the solution of the problem for 

various initial points. 

- 14.10 - 
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• 

0   Optimal Trajectories 

Constant 'time to go', 
t1  , contours. 

• • • • • - Control switching arcs 

(0,0) to sinusoidal form 

02 	(0,2) to (0,0) 

J. sinusoidal form to (0,2) 
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It can be seen that there is indeed an optimal trajectory @ lying 

along the discontinuity of the Bellman function W (see thm..(9.9)). 

Consider the initial point (2,-2) on this trajectory. Choose for 

A the square [0,2] x [-2,0] then Ax[0,7/2] contains the augmented optimal 

trajectory from (2,-2,0), since the origin is reached at t = ¶12. 

The function (I) A t - k/4[(x1-2)2+x22] satisfies: 

t 
+

x
f - 1 < 0 on Ax[0,712]x0 

with equality along the trajectory and Aci) = 00,0,7/2) - 02,-2,0) = 112. 

(I) is a suitable choice for the verification theorem (9.11). 

(I) is very different from the Bellman function, the reason being that 

solves the partial differential inequality only over Ax[0,7/2]x0, while 

the optimal trajectories. from initial points not on the curve considered 

above are not contained in Ax[0,q21. Therefore (1) will not verify 
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optimality of such trajectories. 

This example clearly illustrates the pitfalls of attempting to 

construct verification functions from Bellman functions. 

iF
14.5 Conclusions  

It has been shown how duality theory may be applied to a convex 

program equivalent to an optimal control problem , to produce new 

necessary conditions for optimality in the latter , in terms of a 

r sequence of continuously differentiable functions 14 /. The most 

important question not resolved in the thesis is that of the convergence 

of this sequence . The example in the preceeding section shows that 

the Bellman function offers little guidance here , that in some 

problems where it is discontinuous , differentiable verification functions 

exist. Recent unpublished work by the author indicates that a slightly 

r 
weaker result is true in general , namely that the sequence tctl Y can be 

. selected to converge to a Lipshitz continuous function (I) . There 

are reasons to believe that this is the best possible result, that is , 

stronger conclusions cannot be valid for the entire range of control 

problems considered. 
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Appendix 1 

.Proof of Lemma (3.6) 

(a) t(x,t01) is defined on AxF, F compact, convex andis lower 

semi-continuous and bounded there by the values £(x,t,u), u a probability 

measure on Q. Convexity of F enables us to extend to AxR
n 
in the same 

way as it was extended to AxF in (3.2), maintaining ldWer semi-continuity 

and the bounds, written 11(x,t,ii) 

4x,t,k/i.)1q is defined and 1.s. 

sequencesuchulat.E. .+0 then 

1 < k < co on AxR
n
. Thus L(y,) = 

r" 
c. on AxR

n+1 
 Vit=0/. Let {(y i

)} be any 
. — 

IL(m)I < klt. 	0 	 (A1.1) 

• 
By definition L(y,Y) = 0 when t = 0 so L(y,y) is defined and l.s.c. 

on AxR
n+1 
 hence on AxB. 

Note 

If we had used the definition of mentioned in remark (iii) following 

Proposition (3.4), the limit 1L(y.
1, i

)1 would depend upon the behaviour of 

If (k.,.) E B, 	0' 11)1./.E.11 	co and t(x.,t. k./.) 	... for 
1 1 	1 1 	— 1 	1 1 	— 1 1 1 1 

large i. Therefore limIL(y.,ir.)1 = 00. However, allowing bl ,-E.) not i 

restricted to B we can choose k so that It(x ,t.,k 	)1 < k and 

limIL(y.
1
,.)1 = 0. Therefore L will not be homogeneous unless we agree 

to the convention 0.00  = 0. 

Schwartz [Soh 1 p. 25] gives the following definition: 

Definition (A1.2) 

Let p. be a Radon measure on a topological space X and H : X ÷ Y where 

Y is a Hausdorff topological space. The mapping H is said to be Lusin 

p-measurabl if for every compact set K c X and every 6 > 0 there exists a 

K6  c K with 11( K\K6) < 6 and such that H restricted to K6  is continuous. 

- A1.1 - 
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He proves [Sch. 1, p. 287: 

Theorem (A1.3) 

A lower semi continuous function f on X having values in .17 (extended 

real line) is Lusin 4-measurable for every Radon measure 4. 	❑  

These results guarantee the existence and uniqueness of f Ldg for 
AxB 

all g E C*(AxB). Roundedness of L on AxB implies f Ldg < 03 for finite g. 
AxE 

(b) D(y,i7) 

(i) We show that dist(p,f(y,0)) is continuous on R
n+1 

x R
n
. Let 

{(yilPi)} 	(y,p). Compactness of f(y,c) for each y E R11+1  allows us to 

choose u. E Q and that dist(p.,f(17,0)) = 111D.-f(Y.,u.)11 and to extract 1 	 1 1 1 

a convergent subsequence f(y..P.Fu
i 	

(y,p,u), for some u 	Q. If u
o 1  

is such that dist(p,f(y,Q)) 

11 < 4m11Pi-f(Yiru0)11 11p-f(y,u)11 =iii  Ipi-f(y.,u.)11 and limIlpi-f(yirui) i i  i4co 	i400 
= 11p-f(y,u0)11, which follows from continuity of 11.11 and f. Thus 

lim 	
1 

dist(p
1
.,f(y.,e)) = dist(p.f(y,e)). This is independent of the 

k+co 
particular subsequence so the original sequence fdist(pi;f(yi3O))} is 

convergent, to dist(p,f(y,Q)) as required. 

(ii) By (i) D(y,) is continuous on A)03\a=01. Supose now that 

{(17A)}4- (Y.(1,0))EMB,chooseu.En, arbitrarily if t. = 0 such — —   

that D(y.,.). = 11k.g- -f(Yi'11i)11 1.1 = 1
lsgn(-E

i
)X
i
-f (y

i
,u
i
)1i.

i1 11 i i 

	

	1  1 	1 
1 s > 0 

where sgn(s) = -1 s < 0' — 	Let k < 00 be an upper bound for Ilf(y,u)11 on 
{ 

Axe, then: 

- kltil < D(yi , i) < 	 kl i l 	 (A1 . 4 ) 

The definition D(y(X,0)) = P11 therefore implies that D is 

continuous at t = 0, therefore on AxB. 	f Ddg exists and is finite for 
AxB 

finite 4. 

= 1113-f(Y,110)11 then 1 1p-f (y,u0) 11 < 

- A1.2 - 
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(c) M(y,Y). Clearly M is continuous on Axa. The result is 

immediate. 	 0 

Notes  

(i) The definitions of L, M and D ensure their homogeneity in y E R
n+1

1 

viz L(y,aY) = aL(y,i'7) for all a > 0. We have been careful to cover the 

case a = 0. 

(ii) (A1.1) actually gives L 1.s.c. on AxR
n+1

. 

- A1.3 - 
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Appendix 2 

. Proof of Lemma (4.2) 

(a) Let QE  A {(y,)eAx13:m(y,)>E}. We must prove that g(QE) = 0, 

for all E > 0. Suppose the contrary then there exists f E C(AxB) 

such that f fdu # 0 and, possibly by changing a sign, f fdu > 0. 
QE 	 9E 

Compactness of AxB gives for K sufficiently large: If(y,1.7)1 < KE but: 

0< f fclu< K1 Cdu<Kf Mdu < K f Mdu = 0. 
Q6 	QE 	Q 	AxB 

The contradiction establishes that 

supp{ji} c {(y,i7)eAxB:M(y,)<0} = {(yMeAxB:-E>0} 

(b) Repeating this for D (the sets QE  are open because M, D are 

continuous) 

supp{u} c {(Yrir):D()<0} = {(YM:D(y,Y)=0} 

which can be expressed as supp{u} c {(y,7*):Ae-Ef(x,t,0)}. 

Lemma (A2.1) 

Let g be l.s.c. on a metric space X. Then there exists a sequence 

{f
n
} of continuous functions on X, f

n 
+ g i.e. {f

n
} is monotone non-

decreasing and pointwise convergent to g. Futhermore if g is continuous 

on a compact subset K1  c X, fn 
 + g uniformly on K1. 

Proof  

Ash shows that f
n 
 (x) A inf{g(z)+nd(x,z)} is continuous and f

n 
4' g, d 

 = 
zeX 

being the metric on X. [Ash o. 222-3]. 

Take r1 as stated, g A fn 
 - g, a monotone non-decreasing sequence 

gn 
 + 0. For. any E > 0,.x E K1, 3 n(x) such that gn(x)(x) > -6/2. g

n
(x),  

is continuous on K
1 
therefore for each x 3 a nbd U

x 
 of x such that for 

y E u
x 

n K
1 
g
n(x)

(y) > g
n(x)

(x) - 6/2 > -E. U = {U
x:xeK1

} is an open 
1 

- A2.1 - 
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covering of K1  - choose a finite subcover {Ux  :i=1,...M} define 

N = max n(xi) < °I  then for every y E Kl
, n > N because of monotonicity 

1<i<M   

of g
n
, g

n
(y)

N
(y) > gn(x.)

(y) where i is such that y c U
x 
 i.e. g

n
(y)'> - c 

and convergence is uniform on K1 . 	 0 

Note 

The uniform convergence result is Dinis theorem. 

Lemma (A2.2) 

Letgbei—s-c.andboundeclorl acomPactinetricsPaceX/ fPI.la- 
w* 

sequence of finite positive Radon measures on X, pi 	p, p a finite 

measure. Then pdg < lim inf 

Proof  

From theorem (A1.3) g is Lusin p measurable. Since X is compact, 

identify K in defn (A1.2) with X, anu select K6  as defined there. Take 

fn  1' g as in (A2.1) with K1  = K6. For all i sufficiently large: 

fgdp. > ff
n 
 dp. 

—  
X 	X 

> ff
n
dp C 

X 

11, positive 

w* convergence of pi  to p 

f fn 	- e-  611fiall  by construction of K, 
K, 

> f gdp 6(1+ 111111)  - 611fnil 	by (A2.1) suff.large n 

> f gd4 	6(14-1 1A11) - 6(11f n 114- 11 g11 ) 

Therefore 

lim inf fgdji. > fgdu  i X X  
a 

- A2.2 - 
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Corollary (A2.3) 

X, {gi}, g as in (A2.2). Take h any upper semi-continuous bounded 

function on X/  A open/  B closed, A,B c X. 

(a) lim sup fhdg. < fhdg 
i X 1  X 

(b) lim inf g. (A) > g(A) 
1 -

i 

(c) lim sup g,(B) < p(B) 

i  • 4  
Proof  

(a) h is u.s.c. iff -h is l.s.c. The result follows from (A2.2). 

(b) (c) Denote the characteristic functions of A, B by XA, XB  respectively 

A open ---->xA  l.s.c., B closed .--->x13  u.s.c. 	 0 

Corollary (A2.4) 

X, {g 
1}, g as in (A2.2). Let A be any open subset of X containing 

suppfg} then lim gi(A) exists and equals g(A). 

Proof 

For any Borel set A containing supp{g}: 

g(A) = fldg = lim fldg. 
X 	1  

> lim sup 	 . fld4 
i A 1  

= lim sup µ• (A) 
1 

When A is open, by (A2.3)(b) 

lim sup µi  (A)> lim inf µi  (A) > g(A) > lim sup µi  (A) 

For sufficiently large i therefore p,
1
(X\A) < C. 
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Corollary (A2.6) 

The boundedness condition on the l.s.c. function g in (A2.2) can 

be omitted. 

Proof  

X compact, g 1.s.c. but not bounded, implies that g = co on an 

open set A c X (g is bounded below). Supp{A} is compact so if 

A n supp{g} = 4), g is bounded on supp{g} and (A2.2) can be applied. 

Otherwise A(A) = k > 0 (the case A n.suppfill # 0 and A(A) = 0 is ruled 

out by defn of support for A open) and for i large gi(A) > k/2 (A2.3(b)). 

fgdg. = = fgdg. 	 0 
X 1  X 

Comments 

(i) An example shows that (A2.2) is the best possible general result. 

Take 1 	0 < x < x 
0 

g(x) = 

0 	x
0 
 <x< 1 
 — — 

a l.s.c. function • 

asequenceofRadonmeasures.defined by f fdA. = f(x ), A defined 
41 	[0,1] 1 i 

by f  fdA = f-(x0) ) where x. + x0 
	1 	0 
and x. < x.. Therefore 

[0,1] 

lim inf 	f gdA. = lim inf g(x.) = 1 > 0 = g(x 
o
) = 	f gdA 

i [0,1] 1 	 [0,1] 

(ii) This example shows that A D supp{p} is essential to (A2.4) for 

A = (0,x0) yields Ai(A) = 1, A(A) = 0. 

(iii) If g is bounded and continuous µ almost everywhere i.e. g 

continuous except on a set A with g(A) = 0 then 

lim inf fgdA. = lim sup fgdA. = f gdp, 	[Ash p, 196-8] 
i X 1  iX 1 X 
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The example in (i) illustrates the difference between Lusin p 

measurability and p a.e. continuity. g is Lusin p measurable, indeed 

for all compact K c E0,1] the set K6  can be taken to be {x0} then 

g(K\{x 1) = 0 and 
0 	gl{x } 

is continuous (any function restricted to a 
0 

point is continuous). However g is not continuous p a.e. - this 

requires continuity at x0  i.e. in a neighbourhood of x0. 

Lemma (A2.7) 

If g is l.s.c. and bounded on a metric space X and p is a Radon 

measure absolutely continuous w.r.t. Lebesgue (Borel) measure then 

g fgdp is weak * continuous at p. - 
X 

Proof 

Denote Lebesgue (Borel) measure by m. To any 6 > 0 we can find 

B compact)  containing discontinuities of g, m(B) < 6 (Lusin m measurability 

of g). Absolute continuity of p implies p(B) < E, c > 0 small'if 6 is 

small. Thus g is p a.e. continuous and comment (iii) yields the 

result. 
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Appendix 3 

. 	. 
Introduction to the Theory of Generalized Flows and Boundaries 

Take A the unit cube in Rn  B the unit sphere in Rn. Denote points 

in AxB by (x,X). The elements of Pe(AxB) are called generalized flows. 

A segment is the flow corresponding to a directed line segment between 
N 

two points in A. A simple polygonal arc is a sums, of segments whose 1  1 
representative directed line segments join continuously to form a 

polygonal arc in A.. A simple closed polygon is the flow corr. to a closed 
N 

polygon in A. A polygonal flow is a sum Xa.
1
s.
1 
 of segments with coeffts. 1   

a. > 0. 
1 — 

The boundary of any generalized- flow V is the restriction of V to 

exact integrands (1) x(x);‹, (j) e C1(A), and is denoted 8V. When V . is a segment 

from x0  to xl , fcP(x))1dV = (1)(x1 ) - 4(x0):- the boundary is represented 

by the points x0, xl. A boundary corresponding to a polygonal flow is 

called simplicial. Evideni:ly a simple closed polygon V has, boUndary 9%) = 0: 

this is the general definition of a closed flow. 

We shall term a mixture any flow which is a sum with positive 

,coefficients of polygonal flows. A mixture can always be regarded as a 

polygonal flow but it is more useful in many cases to regard them as 

mixtures of arcs and closed polygons. 

Theorem (A3.1) 
N 

A polygonal flow p is closed iff it is expressible as a mixture y cipi  
i=1 

with each pi  a digon or simple closed polygon, ci  > 0. 

(A digon is a closed polygon comprised of two oppositely directed 

segments.) 	 0 

Theorem (A3.2) 

Let p be a polygonal flow with the same boundary 9p = Dso  as a 

segment s0. Then p = p'.+ p" where gyp" = 0 and p' is a mixture Yc,p. of 
1 

afilliteric""ilaplepolygorialarcsst 
3p. = Ds pi 	 lc. = 1,  
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It is not immediately evident from Young's brief indication of a 

proof that c. > 0 nor that p" > 0 i.e. p" is gen.flow. In fact the 
1 

contrary might be thought to be indicated so I shall give a proof. 

Proof 

p = X a
1
s
i 
 ap = aso  so  the directed segment fiom Po  to Q0. 

i=1 
Arrange the segments si  so that they have no interior points in common 

and st. 0 < P 	Q.- 1— 2. — 	— M 	 1 	i 

Select P
k 

different from P
0 
 and Q

0 
 (if there are no such P

k 
the theorem 

is trivially true) and choose a continuously differentiable 4  such that 

(poP, ;) > 0 and op.) = (t)(Q.) = 0 for all other P., Q.. Then 
1 	1 

• p( x*) 	y a(HP ) - y a.(I)(P
k 
 ) = it(Q0) - (P(P0) = 0 

iEI 1 	k 	jeJ 3   

where I is the index set of segments ending at Pk  and where J is the 

index set of segments starting at P
k' 

I n J = 44). Therefore 

L a - y a = 0 
icI 1 	jeJ 

This means that if a segment ends (begins) at Pk 
different from P0, 

Q
0 
 , at least one other begins (ends) there. 

Take sl. At each end (assuming neither are Po  or Q0) take si, sj, 

resp. such that Qi1  = P1, Q
l  = Pic  From the 'free' ends P

it
, Qii  take 

sit, s 32  
. resp. such that Qi2  = Pil. Qii  = Pj2- 

Pb

ti  

• 
go 

- A3.2 - 
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If we ignore closed polygons this process stops when the endpoints 

coincide with either or both of P0, Q0. The resultant simple polygonal 

arc r
1 
satisfies one of: 

Dr
1 
 = 0, 	Dr

1 
 = Ds

0  , 
	

1 = 
-Ds

o 

Because we do not allow r1 to contain (properly) any closed polygons 

eachs.1 
 is used at most once inthe construction and a

1 
 < a., i = 1, 2, ... M 
-- I 

impliesp= ar
1 
+Ib.s 	b=a-a> 0, i.e.p= a

1 1 
r +p pa 

1 	i=1 
1 i 	i 	i 	1 — 	 1,  1 

polygonal flow, Dp1  = Dp - alDri  = Os°. If a = 0 the theorem is proved, 

for then a
1 
> 0 implies Dr

1 
 = as

0  a1 
 = 1. Otherwise we repeat the 

•  

above construction with p
1 
replacing p, by reordering the b. st 

0 < b
2 
<b

3 	
... < b

M 
 and noting that the boundary Oso' a / 0, implies  

. the same structure on the segments si  as pso  does. Each ..!. epetition leaves 

the remaining term a mixture of at least one fewer segments: we stop when 

this number reaches 0 or, as above, when a = 0. At this stage we have: 

P= X .r p  
j=1  J j 	N 

pN  a polygonal flow Dp
N 
= 0, c > 0 j = 1, ... N (<M) and Dr. = Dso  or 

j 	_ 3 
ar

3 	 3 
= -so  3 = 1, ... N. If Dr. = -D

o 
j = 1, ... N then ap = -aso' 

c = /c. > 0, a contradiction. Thus if Dr. = 7Dso, 3 k st ar
k 

= Ds
o
. 

1 	 . 3 	N 
Add d(r -Fr.), d = min(c.,c ), to pN, subtracting it from 1 c.r., reducing 

k 3 	3 k 	 j=1 3 3  
the number of terms in the sum and keeping bN  = 0. We can therefore 

combine all r. st ar.
3 
 = —DS

0 
 with r

k 
st ar

k 
=

o 
 to get 

3  

p = y c.r. + p 
j=1 3 3 	N- 

arj  = Ds
0 	

apN  = 0 0 

This proof subsumes that of (A2.1). 
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Theorem (A3.3) 

In order that a generalized flow g0  posess a simplicial boundary 

00  it is necessary and sufficient that g0  be the limit of a polygonal 

flow with the same boundary. 

(The proof in [You 1] is based upon an Enlargement Principle - the 

infimum of pf0  is the same when p is allowed to be any gen_flow with 

boundary 130  as when.p is a polygonal flow with the same boundary - and 

art elementary separation theorem.) 	 0 

The proof of theorem (4.9) emerges from relating the boundary 

conditions on elements of P to the previous three theorems. 

Proof of Theorem (4.10) 

(P2) is just f (I)ydµ = 4(y1) - c(y0) for all (I)E C1(A). P is 
AxB Y  

comprised of gen.flows 	c P®(AxB) with this boundary corresponding to 

a segment. Combining (A3.1), (A3.2) and (A3.3) each 4 E P is the weak 

star limit (for this is the meaning of limit in (A3.3)) of a sequence 

ri 	i 	ri 	i 	ri i 
1  
A. 	L 	L 	L + 	where 	a. = 1, a

i > 0 i 
> 0,,g are simple 

j=1  3 	
3=1 	

3 
3=1 3  

polygonal arcs with the same boundary as the segment andVj  are simple 

i closed polygons. The structure of 4., V given in (4.10) is now 
3 

obvious. 	 0 

Caution  

It may be necessary to redefine A, since A above is the unit cube. 

Our purposes are equally well satisfied by any cube containing A, these 

exist because A is compact and in the event there is no difficulty. 
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Appendix 4 

. 
:Lemma (A4.1) 

Let M : X 4.  Y be a continuous, 1-1!, onto mapping of a topological 
• 

space X onto a topological space Y, g a radon measure on X. Then 

supp(gM
-1

) c M supp(g). 

Proof 

A c Y open, A c 2(M supp(g)) c  M2(supp(g)) because M is onto 

therefore 

1 	 1 n  
M (A) 	M M16(supp(A)) = 2(supp(A)) because M is 1-1 

Since M is continuous, M
1
(A) is open i.e. g(M

1
(A)) = 0 

therefore 

therefore 

i.e. 

1 	 1., 
AM (A) = 0 i.e. A c 2(supp(gM )) 

2 (M supp (pi) ) c 2  (supp (p.11 1 ) ) 

supp(gM 
-1

) c M supp(A) 0 

Proof that Lemma (5.4) is True when (I) is Lebesgue Measurable but not  

Necessarily Borel  Measurable  

Lemma (A4.2) 

Let f be absolutely continuous, strictly increasing, with an a.c. 

increasing inverse f
-1

, g measurable, then gof A g(f) is measurable. 

N.B. 

In general the composition is not measurable unless g is Borel 

measurable, i.e. f continuous, g measurable does not imply gof measurable. 

(See [Ha, p. 831 for a counter eg,) 

Proof 

We must show that for any Borel set a, (gof)
-1 

 (a) is measurable. 
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-1 	-1 	-1. 
Let = g (a) then (gof) (a) = f (S) is measurable (but once again 

not Borel). Since Lebesgue measure is regular [KT p. 86] 3 a Borel 

set y st. y c 13, m(13\y) = 0. 

f 1(0) = f 1 (y) u f -1(B\y) 

B\y is measurable hence fAy c i u Ii  for some collection of intervals Ii 
N
1  

rN 	 - 
satisfying I. n I. 	eh i i j,i, m(I.)<E . Absolute continuity of f-1 

I ], 
	

i=1 1 

implies m[f
-1 

 (i2I.Ii)] < 6 for C sufficiently small, i.e. f
-1

(P,\y) is 
• 

measurable with measure 0. f
-1

(13) is measurable as y is Borel, so f-1 (f3) 

is measurable. 	 ❑  

ti 	
Proof of (5.4) 

We have (j) : [0,1] 4' e measurable; a : [to,ti] .4- [0,1] of bounded 

variation, strictly increasing. (I) and a are adapted in tbe following 

sense: 3 Borel setsTc[t
0
,t

1
],Ec[0,1] s.t.m(T) = t

1 
-t

0' 
 a is 

absolutely continuous on T, m(E) = m([0,1]\E0) for a measurable set Eo  

on which (I) vanishes. Without altering the results we can assume E =2E. 

Let A be any Borel set in Rn,  

-   ((pool1 	1 (A) = a
1
(0

1
(A)) = a 03

1 2
) = a

-1 
 (B ) u a 

1 	
1 (82)  

where B
1 
c E, B

2 
= 	a

1
(B
2
) is measurable because 4), E

o 

{4) if 0 	A. 

E o if 0 E A. 

are Borel. Because a, G
1 
satisfy the conditions of the previous lemma. 

on E, G
1
(13

1
) is measurable. Thus (4)0a)(t) = (Ha(t)) is measurable. 

This is all we require, 	 0 

- A4.2 - 
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Appendix '5 

CONSISTENT FLOWS - REPRESENTATIONS AS MIXTURES 

• A5.1 Consistency of Flows in P  

The concepts of generalized flow and boundary were introduced in 

appendix 3. Under addition and multiplication by scalars the class of 

simplicial boundaries is a vector space, denoted by Eo, for which we can 

define the norm: 

4r, 

1131 = ini.{11g11 : g a gen. flow, Dg = 01 (A5 .1) 

where 	is the usual norm'in C*(AxB). (Remember that gen. flows are 

in the positive cone of C*(AxB), allowing more general elements in (A5.1) 

may alter the following development considerably.) 

A consequence of (A3.3) is that the infimum may be taken over. 

polygonal flows g when $ E Eo. (A5.1) is defined for the boundary of any 

g c C*(AxB) in general 1@g1 < lighl- On the elements of C*(AxB) however ) --) 

we have been using a norm corresponding to weak * convergence, Id', so it 

is necessary to introduce a new norm to connect convergence of measures 

with that of their boundaries. 

IIgII' A max0g1 1,N1] 	 (A5.2) 

is known as the consistent norm of g c C*(AxB), Consistent convergence 

therefore implies w* convergence of the measure and norm convergence of 

its boundary, 

Consistent limits of sequences of polygonal flows will be called 
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ti 

135 - 

consistent flows and their boundaries, consistent boundaries. This 

class of boundaries, denoted by E, is an extremely useful completion of 

the incomplete space Eo  since the class, of flows with boundaries in 

E is also complete. 

Notes 

(i) (A5.1) is well defined. An arbitrary non positive g c C*(AxB) can be 

written g = g/  - A2, gi, 42  e P (AxB) disjoint, and for any positive 

measure there is a negative one with the same boundary, hence g3 
e P0, 

DA3  = -Dg2  so Dg = 	Al 	g3  e 

(ii) It is obvious from the definition that consistent flows are positive 

i.e. that they are indeed flows. 

Theorem (A5.3) 

Take g a generalized flow with 9g.  E E, then g is consistent. [You 1, 

thm. (86.1) p. 201]. 

Proof 

g
1 
 such that 8g = 8g

1 
 and g

1 
 is the consistent limit of 

{pi}, 
 p. 

polygonal, i.e. 8g1  = Dpi  - 8q., Ilgillj 4. 0. Thus 8g +'7.qi  = Dpi  so 

g  4- ci. j.sulev  w* limit ofpolygornaflows{rjwith3r=Dpi.Select r 
1 	j 	j 

such that lig+q,-r, I' < !NW' then lg-r, l u  < 211 . 1 1 , ' and l'ag-rol = 
1 j 	1 	j 	(11 	.1 

kit 	lIclill'. 	 0 

In chapter 6 a set P of flows A with boundaries 8 (§(6.2)) was 

introduced. A constructive demonstration of their consistency is given. 

Construction (A5.4) 

Take g E P with corresponding boundary 3, i.e. 

f (1) Ydg = .14)(Y)d - 4)(y0  ) 
	V 	E C1  (A) 

AxB 
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, 
• where 0 is probability measure on r. 

N. 
Let {V 1.1 = 1, 2, 	be a sequence of partitions of r J=1' 

into disjoint Borel sets such that max{diam(r): j=1,...N.} 4.  0 as 
1 

a 4 °. (cf. lemma (5.12).) Denote the segment from y to y, y, y c A 

by s(y,y). It is clear that the flow p defined by 

A fs(yo,y)a(y) r 

has boundary 5. Efgdp A Hgds(y0,y)(15(y)] 
r 

Put ai  = f ap and choose any arbitrary yi.-  e ri. As in (5.12), 
r 

	

i 	i 	 3 	i 
3 

N
i 4 , 

	

y 
4 
 (y:) 	R in c*(r). Now the map y > jgds(y ,y) is continuous 

j=1 	J 	 0 

r i 
in y for every g, so weak * convergence of L a (S(y ) to 5 implies that p., 

7 
j=1  

therefore: 

14.—api1 = laq.1 < 11(1.11 — 

N. 
1 

= f f Ji lds ,y) (y) 
j=1 r. AxB 

— 
N. 
1 

< max diam (r) 	f.d0(y) 
1 

j=1 r. 

= max diam (r.) 
3 

i.e. lap-Dpi l 	0 and by definition pi  converges consistently to p. 

is consistent because p. are polygonal, so Dp = 5 is a consistent I  

N. 

Lt  defined by p.=L a.s(y ,y,), converge weak * to p. 
'1 	

j=1 J 	
0 3 

N. 

Further, the flow qi  d 	 P api  1 3 	qi 
j=1. r. 

- A5.3 - 
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boundary. Consistency of u follows from (.A.5.3). 	0 

A5.2 Approximation and Representation. 

Theorem (A5.5) 

Each g E
N 
 P is the consistent limit of a sequence of polygonal 

flows q. = L
1 
 a.q, with a. as before and.each q. is a simply polygonal 

1 	j=1 3 3  

) arc from y
0 
 to y

i 
r containing no closed proper subarcs. 

Proof 

Since u is consistent it is the limit of a sequence of polygonal 

nows{61,}..Lety.=DID.-Del., p, as above,•a simplical boundary. 
1 	1 1 1 i 

Since p. and ii  converge consistently, Ii. I -,- 0 and there are polygonal 

flows {ri} with Sri  = yi  and 
.. 
, + r. 

i — 1 	qi 1 	1 

satisfies: 

<'Iri  II' —  

and 

aqi = Dpi  

write.q.
1 
 =q

i 
 + pi  where qi  contains no closed proper subarcs and 

Nli  = 0. The constraints (P3) and (P4) on u imply that 1II  Pi ll 4" 0 

hence 11 Pi  II ' 	0  ( 1 1 ' 1 1 is stronger than 11'111)-  Thus qi  converges 

consistently to u and aqi  = api. Since qi  contains no closed proper 

subares it is possible to join the segments comprising 	
i 

qi to • qi  

satisfying the statement of the theorem. 	❑  

Note  

(1) The original approximating sequence {^,}, the elements of which qi  

might not even have boundaries admissible for (P), has been replaced 

by a sequence fqi) in which. each element is a convex combination of 

- A5.4 - 
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ti 

simple polygonal arcs. 

(2) (A5.5) is stronger that theorem (6.1) in that consistent convergence 

has been proved. 

Recall that in the fixed end point case we had to use a powerful 

representation theorem to find a generalized curve solving (P) where L 

was discontinuous, namely that every flow with a simplical boundary is 

a mixture of generalized curves (theorem (4.13)). Although not all 

consistent flows are such mixtures, it can be shown that each member of 

P is. 

Defn. (A5.6) 

The measure glE, the restriction of a generalized curve 

g : {y(a), g 
a
:0<v<1} to a set E, a countable union of intervals in  -- 

[0,1], is known as a jet. 

The most general representation theorem for consistent flows is 

the following: 

Theorem (A5.7) 

Every consistent flow is a Riesz mixture of bounded jets. 

Proof 

[You 1, Thm 89.1 (iii) pp. 209-12.] 	0 

We improve this to: 

Theorem (A5.8) 

Every A E P is a Riesz*mixture of bounded jets, almost all of which 

are generalized curves. 

Proof  

Take g E P then by (A5.3) and (A5,7) we can write 

A = fyadA(a) 

- A5. 5 - 
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, 
where each ya  is a jet and X is a Riesz measure on a parameter set Z. 

Suppose not almost all ya  are generalized curves then there is a set of 

parameters Y c Z, A(Y) > 0 and for all.a E Y, ya 
is not a qeneralized 

curve. 

We have previously obtained 

N 
ri ii 

. 11=consistentlim 4.= 
co 	 co 

consistent lim L a.4 
1 	 3 i 4- 	 j=1 

ri where L a = 1 and each 4 is a simple polygonal arc from y0  to y. c T. 
j=1 j 	

0 	3 

j.1 satisfies fMdp. = fDdi.1 = 0 where M and D are positive, therefore for any 

E > 0,6 > 0 for i sufficiently large 

y 	< d, I. A {jc{1,...N
i
}4Md4, fDd4j3:>E} 

— 
j(I 

P 
The constraints Map,. < e, 	dp.. < e imply a norm bund on 1.1j. p

—  

= f 	+ f 
3  t<0 3  t>0 3  

= 2f+ f-Ed 
t<0 	3 	

43 

= 2 jMd4. + t
i
. - t to 

 

< 2e +T - t0  

because 

M = max[-,0] = 

> 0 

-E. < 0 

 

   

N 

- A5.6 - 
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With k A max 	f(x,t,u), 
(x,t,u) 

f I 	= 	f 	I 	 S 	11)1,1 
' 	 ' 	IIX1I>kll 	' 

When Ilk' I > kltl  

D = dist(1/t,f(x,t,0)) 

> dist(XtE,Uk) 	U
k 

the n-ball of radius k 

likll 	i.e. [1,111 < kltl + D 

Thus 

< 	f . R1,511.!- 	f ki-E1 Dd A3  

3 

Ad41: 

< k(2c+T-t
0 
 ) + c 

Finally 

11411 = fld111:3  = filk ii 2  

< Mkt' 	R1411.-  ‹. (1+k) (2c+T-t0) + c 

Let us relabel the index set fl<j<Ni:j/Iil as {j=1,2,...Mi} Mi  < Ni. 

The norm bounds imply that each sequence {4:i=1,2,...} j = 1, 2, ... (for 

different j the sequences may start at different i e.g. the M.+1
th 

i 	i+2 
. sequence is p.m

+1  
il., 1.11/ +2,—) has a weak * convergent subsequence. By 

the usual diagonal procedure we can extract a subsequence (still labelled 

iforconvenience)suchthatp..16.2.ia.i  piandalli11_tare weak * 
== j=1 3  3 	

3 

3  — 11X11kiti 	3. 	I IXII>kiti 

- A5.7 - 
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• • 
convergent. The g, being simple polygonal arcs, converge to generalized 

.curves and g therefore converges to a mixture of generalized curves, g 

say. 

It is clear that g = µ + fy(a)dX(a) + fy(a)dA(a) where X c Z 
Y 	'X 

accounts for the components of the mixture not in Y or'in (the representation 

of) g. But this means that 

X(Y) < lim sup L a. < 
i 	jcI. 3  

i 

which is arbitrarily small. The proof is now complete. 

A5.3 Evidence for the Wider Validity of (A5.8) 
N 

	

Associated 	 a segment 
i=1   

from y.10 
	Yil  to 	are two measures S0  and al  on A representing the boundary 

of P. Bo  = y ci6(yi0), $, = y ciS(yil) and f4y9dp = f4x1131  - .1.0$0  for 
i=1 	i=1 

all (1) E Cl(A). $0  and 01  are positive, have finite support and have the 

V 
	sametotalvariation, NYc.ralso finite. 

i=1 
Extending the class to consistent flows, the boundary representation 

remains the same:
0 
 and 0

1 
are positive and have the same total variation 

but neither this nor their supports need be finite. For example, a jet 

y formed by removing a countable number of arcs from a curve g can be 

00 

written y = X i=1g. where g, is a subarc from y.
10 
 to y.1. Evaluating 

1 	1 
 
N 	 00 

fcpS'rdy=limY(4)(Yi  l)-- (Hyi0 )) < co we see that y ly. -y. I < co is 
Y 	14--)-00  i=1 

i=1 11 0 
co 

necessary. For a jet this is immediate since G IY.1 	— < - 1  Y. I 	lig!' < ', Here  
i=1 • 

0
0 
 and 0

1 
have countable supports and total variation 	1 = 00. 

- A5.8 - 
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Regarding  representation, the class of consistent flows divides 

into two subclasses, those with boundaries represented by finite measures 

and those with boundaries represented by infinite measures. 

Proposition (A5.9) 

A consistent flow can be written as a Riesz mixture of curves 

(precisely, jets, almost all of which are curves) if and only if its 

boundary is finitely represented. 

Proof 

Suppose A, a consistent flow, has finitely represented boundary. 

Writing  pt = fy
a
dX(a) as in (A5.3) 

• Cs  

fa)yydµ = ff(p rcly dX(a) 
Y a 

0 

= f 	(4)(41) - 4 (y70»dx(a) 
i=1 

= fcpds, - f(1)d 0  P.0, 131  finite 

Denoting the total variation of the boundaries associated with ya  by 

TV(a) we find TV(13
1
) = TV(s0) = fTV(a)dX(a) < M. If ya 

is a jet TV(a) = 00 

so X almost all y
a 

are curves. 

Conversely if TV (01) = TV(80) = ce not almost all ya 
can be curves. 	0 

Comments  

Unlike (A5.8) the above is achieved without reference to constraints. 

The necessary properties of admissible elements for the parametric problem 

and their implications can be separated as follows: 

Dynamic Constraints (P3) and (P4) imply norm boundedness of P hence 

the existence of a solution to (P). 

♦ - A5.9 - 
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Boundary ConditiOn (P2) implies representation of solution as a 

mixture of curves hence the generalized curve solution. 

1 A5.4 Problems With Free Initial and Final Times  
These were mentioned at the end of chapter 6 and are generalizations 

of (P) to the case where the boundary condition (P2) is: 

Ydp = 1 4d131 
- 

130 AxB 	r
1 0 

11.
0
,

1 
probability measures. 

It is apparent from the preceeding discussion that any generalized 

.$L 
flow with this boundary representation where TV(y = Tv(a0) < - is a 

consistent flow. P is still comprised of consistent flows satisfying 

(P3) and (P4). From (A5.3) and the above comment, free initial and 

final time problems have generalized curve solutions and equivalence of 

weak and strong problems is established as before. 

Note: 

A generalized flow with boundary represented by infinite ao, aI 

will not be consistent unless the supports of f3o, 131  satisfy some condition 

like those of a jet, viz. / m. 11 10 

- A5.10 - 
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. 
Appendix 6 

MEASURE REACHABILITY 

In §11.2 we encountered the possibility of a morb general definition 

of reachability than that associated with the control problem. State 

constraints not being present, the original definition of the reachable 

set of a control system (S2), (S3), from the initial point (x0,t0), is: 

R(x
o
,t
o
) 
A 

ox,t)EA: 3 a trajectory control pair (Tc(.),.,13(.))ES 

with x(t)=xl 
	

(A6.1) 

The reachable set R(x
0 
 ,t
0 
 ) and its intersection with the target 

R(x
0 
 ,t
0 

 ) n I' are dependent upon 
0 
 ,t
0 
 ) except under very special 

circumstances and their exact evaluation is generally impossible. Their 

removal from the statements of proposition (11.6) et seq. is therefore 

desirable. 

Recall the proof of (11.6)(c). There, given a probability measure 

a on r, we required the existence of a 11 E C*(Axc) such that for all 

E CI (A) 

Axc2 
$t(x,t) + 	fflx,t)a(x,t) - (1)(xo,t0) 

(A6.2) 

A is not restricted to being positive for if it were, the structural result 

of part I implies existence of positive µ corresponding to a iff 

supp{g} c R(x0,t0) n F. 'There are two possible definitions of measure 

reachability: 

- A6.1 - 
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.Defn. (A6.3) 

The (measure) reachable set R
1 is the set of all probability 

measures 0 on A such that a g satisfying (A1.2) (with A replacing I') exists. 

Defn. (A6.4) 

The (measure) reachable set R
2 is the set of all points (x1

,t
1
) E A 

such that g E C*(Axf1) satisfying I cpt  + •.xfdp = cp(xl,t1) - $(x0,t0) exists. 
Axil 

Remark 

All prob. measures 0 on R2  are contained in R1  and R2  = A implies 

R1 is the set of all prob. measures on A. Very little is known about the 

structure of measures g satisfying (A1.2) for arbitrary so we adopt 

definition (A6.4) and look for conditions giving R2  = A. 

We proceed through an example: 

x=u. 	lul < 	x(0) = 0 	(A6.5) 

Here R(0,0) = {(x,t):t>0, xEC-t,t]l. In particular at time 1 the possible 

states of (A6.5) lie in [-1,1] = R say 

(1) x(t)=t 	x=+1 

(2) x(t)=2-t t:140 x=-1 

(3) x(t)=2+t t:0÷1 x=+1 

- A6.2 - 
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Take the measure formed by integrating along (1), (2) and (3): 

i.e. 

	

1 	 0 	 1 
= ft(t,t,1)dt 	ft.(2-t,t,-1)41b +f ,e(2+t , t,1)dt 

	

0 	 1 

	

1 	1 	1 
ftd4 = fe(t,t,1)dt - ft.(1+s,l-s,-1)ds + ft..(2+t,t,l)dt 

	

0 	0 	0 
therefore 

1 	1 
f$ + $ udg = f$

t
(t,t) + $ x (t,t)dt - f-$ (1+s,1-s) 

0 

	

t x 	. 	0 s  

1 
-$
x
(1+s,1-s)ds + f$

t
(2+t,t) + $

x
(2+t,t)dt 

0 

= $(1,1) - $(0,0) + $(2,0) - $(1,1) + $(3,1) - $(2,0) 

= .(3,1) - $(0,0) 

So (3,1) E R2. 

Repetition of this construction indicates that any point (x,t) is 

reachable. Even points (x,0) e R2. 

Notes 

(A6.6) 

   

(1) The above µ is not positive. 	Let 

0 x < 1 	x > 2 

A x-1 1 < x < 3/2 i.e. t > 0 

2-x 3/2 < x < 2 

then 
1 

= -1+s-lds - f2-(1+s)ds = - 1/4. 
0 

(2) Arc (2) highlights the restrictiveness of positivity, t decreases 

along (2) i.e. admitting general measures admits arcs going backwards in 

time. 

- A6.3 - 
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Theorem (A6.7) 

Assume there is a neighbourhood N(0,e) of zero in R , 

N(0,e) c co f(x,t,r) uniformly in (x,t) E A, then R2  = A. 

Proof 

Select (x,t) E A and S > 0 suff.small that o(x-x0) E N(0,e), 

i.e. +8(X-x0) E co f(x,t,n) V (x,t) E A, and 	- t0  = 1/S - 2n for  

some integer n. The measure ii. is constructed as before, with arcs @i; 

ic = +8(x-x ) 	x (t) = x + (i-1)S(X-x ) + (t-t0) -x ) i odd 
1 	0 	i 	0 	0 	0 

t :± to t 

Xi  = -(56-x0) 	xi  (t) = xo  + j_6(X-x0) - (t-t0)8(X-x0) 

t : ii ÷ t 0 

for then 

x
2n+1 (t) x

o 
+ 2nd(X- ) + (t - ) 

x0 	0 	x0 

i.e. 

(E) = x + X - x = X x
2n+1 	0 	0 

g consists of integrating along @i, @2, 	@
2n+1 

and (x,t) is reached 

by the non-positive g. (x,t) is arbitrary so the proof is complete. 	0 

(A6.7) implies theorem (11.5). 

More specialized results are available when the velocity set does 

not satisfy the conditions of (A6.7). 

Theorem (A6.8) 

Suppose r = Ex[t0 ,t1" 1 where E c R
n 
is compact and 

(i) t1 
is so large that (x,t) C R(x

0 
 ,t ) for some t 	tl, for each x E E 

-(ii) 0 e co f(x,t,n) V x E E, t E [tory. 

Then 1' c R2, 

i even 

• 
- A6.4 - 
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Proof  

Let (x,t) e r. By (i) 3 an admissible curve @1  from (x0  ,t0  ) to 

(x,t
f
) for some t

f 
 < t1 

 

If t
f 
 < t by (ii) there is an admissible curve @

2 
(X = 0 on [t

f
,t]) 

so (x,t) c R(x0,t0) c R2. 

Suppose t
f 
> t. Let @

3 
be the time reversing arc A = 0 from t

f 
to t. 

Then (x,t) is reached by the measure consisting of @
1 
and @

3
. 0 

(A6.8) applies to time optimal problems where the target, e.g. the 

origin, is to be reached in the shortest possible time, for then we can 

always pose the problem over a time interval sufficiently long for (i) 

to hold and (ii) is true if the problem is to be meaningful. 

- A6.5 - 
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. 
Appendix 7 

For state constrained control problems the value theorem can 

be written in several forms, the original (11.13),(13.4) or (13.5). 

Combining the idea behind (13.5) with (13.4) 

	

n(s ) = sup{-4(Z0,t0):(1 
	

(A7.1) 

where 

T A f(hccl(A):4>0 on I', ,t+.51f-L<y max[0,xn+1] on Ax0, some y} 

n 	2 m. 
Suppose Q (1)e C (A) and a corr.seq.{y } solving (2.1). Adding 

constraints increases the value of a problem so we can assume y
i 
> 0. 

If {yl}  is bounded, replace it with the limit of any convergent subsequence, 

y say. Let (X(.),u(.)) be an optimal trajectory control pair and put 
feJ 

i'(t) A 4Tc(x(t),t). The trajectory is comprised of two kinds of arc, 

interior arcs x
n+1

(t) < 0 and boundary arcs x
n+1

(t) = 0. 

(i) Interior arcs: by (12.4) and defn of T: 

0 along 6c(.),u(-)) 
'-"xx7 +.7  (1 	1-kc t; 

i.e. 

1,(t)  = 	(7_4 . 471,7- + 
TtX XX X X 

Define 11)(t) A 41(t),...07n(t)) = (1)x ,X  (t) A IPn+1
(t) = (1)x 	Then if 

p(x,t,u) A gt(x,t) + gx(x,t)f(x,t,u) 

and 

11)(t) 

• 

“t) 

= -11,fx  + 

= -lpfx  
n+1 

= -1)(t)fx x 

+ tx 	= 0 
n+1 

A(t)px  +  x 

1

.- (A7,2) 

1 

• - A7.1 - 
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. 

the rhs, being evaluated along (x(.),u(.)). 

(ii) Boundary Arcs: for finite y the subdifferential of y maxE0,xn+11 
•  

at xn+1 = 0 is the set @ril = {(0

n  

,P):O<P<Y,On=[0,...,0]cRnl 	R

n+1 

When 

{yl} above is unbounded, put Dm = {(0n,0):0<13<c }. Now 

(I) 	(1)--f 	- 	E Dm, 	becoming 

tx 	xx 	x x 	x 

*(t) = -*(t)f
x 

-X(t)p + 

x x 

(A7.3) 

X(t) c [0,y] or [0,03] as the case may be 

We have formally arrived at the Maximum Principle for state 

constrained problems. 

Theorem (A7.4) 

Suppose (x(.),u(.)) is admissible for (S). A necessary condition 

for optimality of (x(*),u(')) is the existence of * : rto,y 	absolutely 

continuous, and X(-) : Cto,ti] R of bounded variation, satisfying: 

1P (t) = E-*(t)f
x 
 -X(t)1D

X (x(t),u(t)) 

while for all v E 

[* (t)+A(t)gx (x(t),t))[f (x(t ),t ,u(t))-f (x(t),t,v)] 

- it.(x(t),t,u(t))-,e(x(t),t,v)] > 0 

Further A(.) is monotone increasing and constant along interior arcs. 	0 

- A7.2 - 
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Remarks • 

  

(1) The transversality conditions have been omitted from the statement 

since they are quite complicated and of little interest to us. 

(2) When y is finite, X is absolutely continuous. 

(3) If X does have discontinuities, the formalism breaks down because 

	

" 	2 " 
A(t) = x 	(x(t),t) so 4 	C (A). That A is of bounded variation is not 

n+1 
really an immediate consequence of (A7.3) either. 

(4) Nevertheless the form S. 	(x(t),t) for X(t) may be significant, 
xn+1 

for the lack of a characterization of X(t) has greatly impeded the 

solution of state constrained problems until now. 

(5) Since (A7.1) is equivalent to (13.4) we do not have to find y to get 

, which need only satisfy: 4t  + 4);cfz - ,e; < 0 on Gi3xQ G0  = An {x n+1-<0). 

4 	 - A7.3 - 
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