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ABSTRACT 

The thesis reports the outcome of an experimental and numerical 

study of turbulent shear flows generated or affected by swirling motion. 

The theoretical exploration has covered a wide range of axisymmetric 

flows for which experimental data are available including flow near 

spinning cones, discs, cylinders and an annulus with rotating core tube. 

The turbulence models employed are a version of the mixing length hypoth-

esis and the two-equation energy-dissipation model. 

The development of turbulent shear layers on rotating surfaces is 

usually characterised by a strong effect of streamline curvature on the 

turbulence structure. To account for this curvature the mixing length 

which would prevail in the absence of swirl is made a linear function 

of the local 'swirling flow' Richardson number. The direct effect of 

streamline cdVature in the energy-dissipation model of turbulence is 

limited to a single empirical coefficient whose magnitude is directly 

proportional to the ratio of the time scale for significant rotational 

distortion to that of the energy containing turbulent motions. Agreement 

with available experimental data for these geometries is generally good. 

At high swirl rates, however, a few systematic differences between 

experiment and calculation become evident which are probably attributable 

to the non-isotropic nature of the effective viscosity in such complex 

strain fields. 

To supplement the scarce experimental data of flow near spinning 

surfaces turbulence and mean velocity measurements are reported of flow 

near an 80 degree spinning cone in still air. Agreement between cal-

culated and measured velocity and turbulence energy profiles at various 

spin Reynolds numbers is satisfactorily close. 
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CHAPTER 1 

INTRODUCTION 

1.1 The problem considered and the present contribution 

There are numerous practically important flows in the fields of 

turbomachinery and space projectiles where a fluid stream flows over a 

body rotating about its axis of symmetry. The rotating motion of the 

body generates shear stresses within the fluid imparting a swirl com-

ponent of velocity in the flow. Rotation of the flow may occur as an 

initial swirl or else through the action of a body force field. An 

important feature of most swirling flows is the existence of streamline 

curvature that introduces a pressure variation in a direction perpen-

dicular to the main flow. An engineer's principal hope of understanding 

and solving such complex flow problems is either through numerical 

computations or through laboratory simulations. The former approach has 

only been successful in laminar swirling flows where the transport prop-

erties are known. When, as is usually the case, the flow near the body 

is turbulent the analytic treatment of the rotating flows through 

numerical techniques is hampered because of the lack of information on 

the turbulent transport coefficients. For the relatively simple case of 

a turbulent core vortex, the values of turbulent viscosity suggested in 

the literature vary ten fold. Until the arrival of large, high speed 

computers and the development of a generalized turbulence theory the 

models of turbulence based on the eddy viscosity hypothesis will continue 

to be useful tools in the analytic prediction of complex turbulent pro-

cesses. 

Two such turbulence models extensively tested in the present study 

are a version of the mixing length hypothesis (MLH) and the two-equation 

energy-dissipation model. The numerical predictions of surface friction 
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and heat and mass transfer for axisymmetric two dimensional boundary 

layers over spinning cones, discs, cylinders and an annulus with rotating 

core tube are obtained employing these models of turbulence. Agreement 

with available experimental data for these geometries is generally good. 

The main objective here has been to determine what level of predictive 

accuracy may be expected with these models and to discover in what res-

pects the models require improvement (or replacement) to bring entirely 

satisfactory agreement. 

The development of universal turbulence models and their subsequent 

testing must rely heavily on the available experimental data. To this 

end, and to supplement the scarce experimental data near spinning surfaces, 

turbulence and mean velocity measurements near an 80 degree cone rotating 

in still air are obtained by hot wire anemometry. Agreement between 

calculated and measured velocity and turbulence energy profiles at various 

spin Reynolds numbers is satisfactorily close. 

1.2 Brief literature survey 

A comprehensive survey of rotating flows, and of the various pro-

cedures to predict them in existence up to 1958 has been provided by 

Dorfman (1). Another extensive review of subsequent advances in the 

field has been made by Kreith (2). Both the works contribute substantially 

to the understanding of swirling flows and are standard references. The 

field of rotating flows is so extensive that the present review limits 

attention to turbulent wall flows where there is a single predominant 

direction and diffusive fluxes are significant only normal to this direc-

tion; these flows are commonly termed boundary layer. Analytical treat-

ment of the flow field is discussed first, followed by a discussion on 

heat and mass transfer results, and then the available experimental data 

near spinning surfaces are reviewed. 
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Th. von Kgrm6n (3) investigated the turbulent boundary layer on a 

disc spinning in stagnant surroundings by solving the integral forms of 

the momentum equations. The variation of the tangential velocity com-

ponent through the boundary layer was assumed to obey the 1/7-th-power 

law and Blassius' friction formula for smooth pipes was used to calculate 

wall shear stress. The moment coefficient C 	was shown to be equal to 

0.146 Re
-1/5

. An approximate calculation based on the logarithmic vel-

ocity-distribution law was performed by Goldstein (4) who found the 

following formula for the moment coefficient: 

1.97 log (Re 	+ 0.03 . 

Dorfman (5), like Goldstein, using a logarithmic velocity distribution 

obtained the overall drag on the disc. His calculation procedure was 

based on the use of self similar solutions and the moment coefficient 

C 	was shown to be equal to 0.157 Re-1/5. Of the above three, Dorfman's 

results attained the best agreement with the experimental data. Kreith 

(6) generalized the turbulent boundary layer analysis of von Kgrm6n for 

a rotating disc to cones of arbitrary vertex angles. He assumed the 

following velocity profiles to be in accord with the 1/7-th-power law 

for turbulent flow field in the vicinity of the cone: 

U = U
o
(z/6)

1/7 
(1 - z/(S) 

and 

, 
V
0 
 = wx sina [1 - (z/(5)

1/7 
 J 

where Uo is a reference velocity obtained from shear stress relation. 

Performing a similarity analysis Kreith obtained a relation identical to 

von Kgrmgn's-for the moment coefficient i.e. CM  = 0.146 Re-1/5. Re 

here is the spin Reynolds number for the cone defined in the Nomenclature. 

The constant in this relation is about 7% below ':-.7,, Dorfman'svalue of 

0.157. Kreith's analysis and satisfactory agreement of his results with 

1 
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tha 
available experimental data thus showed that usual boundary layer 

assumptions can be used with satisfactory accuracy to analyze the flow 

and drag characteristics of cones with vertex angles between 60 and 180 

degrees in turbulent flow. 

Cham and Head (7) calculated the development of the turbulent bound-

ary layer on a disc rotating in free air, using tangential and radial 

momentum integral equations and an auxiliary equation of entrainment. 

In the calculations, circumferential velocity profiles were represented 

by a two parameter family, namely V
0
/rw = V /rw (H, R

e' 
z/011 ), while 

radial profiles were given by a quadratic expression of the type: 

U/rw = V
e 
 /rw(1-z/6)2  tan y. All the symbols are defined in the Nomen-  

clature. The entrainment, in dimensionless form, was assumed to be 

determined uniquely by the circumferential velocity profile. Cham and 

Head's calculations of entrainment and velocity-distributions were in 

good agreement with their detailed measurements on the rotating disc. 

From their experimental and theoretical results it was evident that the 

turbulent boundary layer on a rotating disc can be treated as a function 

of a single variable Re, the Reynolds number based on the radius. 

Parr (8) predicted the development of axial and circumferential momentum 

thicknesses on a rotating cylinder in an axial stream by solving the 

momentum integral equations. He obtained satisfactory agreement with his 

experimental data. Cham and Head extended their earlier method (7) to 

predict this flow situation. The mean velocity profiles were again 

represented by a two parameter family essentially similar to that used 

in their earlier study of flow near a rotating disc i.e. the profiles 

were specified by H and Re. The rate of entrainment of free stream 

fluid by the turbulent boundary layer was made a function of the velocity 

defect in the outer part of the layer and the ratio of circumferential 

to free stream velocity. Their method of calculation was a stepwise 
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forward calculation starting from given initial conditions which were 

obtained from Parr's experiment; the starting position for each calcu-

lation was downstream of the transition point in all cases. Cham and 

Head's calculated velocity profiles agreed closely with those measured 

by Parr. Their overall satisfactory agreement of calculated torque co-

efficient with experiment also showed that all their assumptions were 

justifiable and their integral method of solution should be sufficiently 

accurate for engineering purposes. Furuya et aZ. (10) solved the 

momentum integral equations with fourth order polynomial representation 

of velocity components to obtain fair agreement with their data of 

velocity field over a rotating cylinder in an axial stream. 

Recently, several workers have made use of finite difference pro-

cedures to predict swirling flows. Bayley and Owen (11,12) and Owen (13) 

obtained numerical solutions of the swirling, turbulent boundary layer 

equations using GENMIX, the finite difference procedure of Patankar and 

Spalding (14). The radial and circumferential shear stress components 

in the momentum equations were respectively expressed as: 

DU = 	aye  
and 

X,Z 	:X,Z az 	z,6 	z,6 az 

The effective viscosities p
x,z 

 and 
1-1z,0 

 were calculated from the 

following extension of Prandtl's (15) mixing length hypothesis (MLH): 

 

= p + 02.2  10 and 1.1 = 1.1 	ra2  z,0 

 

31/ 

  

x,z 

 

z 

 

• 

      

In the region close to the wall the Van Driest (16) damping function 

with K = 0.4 was employed i.e. 

x,z 	 x,z 
= p +pK2z2[1 - exp(-z47T— / 26p)]2  

aV 

z,6 
= u 4.pic2z2[1 - exp(-zVpT

z,6 
 /2611)]2  1-e . 

az 

au 
az 



- 12 - 

Far from the solid boundaries the mixing length k was assumed equal to 

half the spacing between two walls of the stator and rotor of a parallel 

disc system with radial outflow. The above authors obtained qualitative 

agreement of circumferential drag and radial pressure distributions 

between their predictions and their experimental measurements over the 

whole range of data. Quantitative discrepancies, however, brought to 

light the non-universality of their simple mixing length approach. 

Cooper (17) solved the continuity and momentum equations for the 

case of a free rotating disc by a two dimensional finite difference method. 

He modelled the Reynolds stress terms by a two layer scalar effective 

viscosity. In the layer close to the wall the effective viscosity was 

computed from the resultant of the radial and circumferential velocity 

gradients. The complete effective viscosity was calculated as: 

Peff 	p x,z 
	

pz,8 	
p 	pic2z2[1 - exp(-z/17/26p)]2  

	

r au, 	r 2 	
av0
,I [— 

	

3z
) 	az 

where K = 0.4, and T is the local effective shear stress. For the 

outer part of the layer the viscosity was assumed proportional to the 

circumferential velocity displacement thickness and an intermittency 

factor. Cooper started his computations at the centre of the disc and 

assumed a step transition from laminar to turbulent flow at spin Reynolds 

number of 3.04 )4  105. His predictions compared satisfactorily with the 

circumferential drag and velocity field data. 

Koosinlin (18) has very recently obtained numerical solutions to 

the problem of the flow past a rotating cylinder using an energy-length 

model of turbulence. The turbulence energy k and the product of tur-

bulence energy and length scale Kt are calculated by way of transport 

equations which are solved simultaneously with the conservation equa-

tions for the mean flow. The effective viscosity is then calculated 
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from the relation originally suggested by Kolmogorov (19) 

ii
eff = u 

 0.k2.9„ 
• 

The '10,102,' model has been extensively used for fully turbulent non-

swirling flows. But due to the uncertainty of the behaviour of kn,k9, 

in the sub-layer Koosinlin used the turbulent solution of the Couette 

flow equations for the inner boundary specification. A 'log-law' type 

relation was assumed for the circumferential and axial velocities for 

the case of a rotating cylinder in an axial stream. The same relation 

is also applicable to circumferential velocity on a disc (20) but not 

for the radial velocity. This is because the centrifugal forces acting 

in the radial direction are analogous to a strongly varying cross-stream 

pressure gradient. The radial velocity profile has a maximum close to 

the wall in the region where the flow is not fully turbulent. The pro-

file cannot therefore be described by a generally applicable relation 

like the log-law. For this reason, Koosinlin was unable to obtain 

reliable predictions for the disc flow using the 'Ic\aR,' model. Fairly 

good predictions of the boundary layer thicknesses and circumferential 

drag were obtained for the case of flow past the rotating cylinder by 

manipulation of the adjustable constants in the turbulence model. 

Koosinlin also proposed and used a turbulence model derived from 

an analySis of the differential equations for the Reynolds stresses to 

obtain numerical solutions for the case of flow past a rotating cylinder. 

Transport equations were solved for the energy and length scale but six 

Reynolds stress components were expressed in terms of implicit algebraic 

relations containing time averaged velocity components, the turbulence 

energy and its rate of dissipation, and the stresses themselves. The 

turbulence model was restricted to regions where the local turbulence 

Reynolds number was high. To overcome this restriction the near-wall 
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values of the two main Reynolds stresses -puve  and -pvew were deter-

mined from the modified van Driest mixing length expressions. Satis-

factory agreement with velocity field data of Furuya et al. and with 

Parr's measurements of axial and circumferential momentum thicknesses 

was achieved. The turbulence model, however, lacks universality as 

some of the coefficients in the model require different values for 

different flow situations to obtain satisfactory agreement between pre-

dictions and experiment. 

Turbulent heat transfer predictions for a disc rotating in stagnant 

surroundings were presented by Dorfman (5). He employed von Kgrmgn's 

(3) results for the frictional drag, assumed a quadratic variation of 

surface temperature, and applied Reynolds analogy. He solved the energy 

equation assuming a one parameter family of temperature profiles. The 

constants in this equation were determined by the application of Reynolds 

analogy. Dorfman concluded that the Nusselt number varies with Reynolds 

number to the 0.8 power, and with Prandtl number to the 0.6 power. 

Davies (21) solved the case of an isothermal disc in air. He assumed 

1/7-th-power velocity law and solved the integral radial momentum equa-

tion using von Kgrmgn's results to obtain the radial component of shear 

stress. The diffusivity of the radial momentum was then equated to the 

diffusivity of heat and the temperature equation solved to determine the 

heat transfer. Davies found similar dependence toDorfman's of Nusselt 

number on Reynolds number. Hartnett et al. (22) extended Davies solution 

procedure to non-isothermal discs, but equated the circumferential instead 

of the radial diffusivity of momentum to the diffusivity of heat. Their 

own predictions, along with those of Dorfman and Davies, were compared 

with the experimental heat and mass transfer data for isothermal discs 

rotating in stagnant surroundings. The predictions of Dorfman were the 

most reliable. 
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Tien (23) showed that the analytical treatment of Davies (21)to pre-

dict heat-transfer for isothermal discscovkLbe extended to obtain solu-

tions for non-isothermal cones, and also for discs and cones having a 

step distribution of surface temperature. Kreith (24) using law of 

the wall type velocity profiles (25) and Reynolds analogy solved the 

energy equation. He showed that the Nusselt number for isothermal cones 

varies with Reynolds number to the 0.8 power and with Prandtl number to 

the 0.75 power. 

The reliable experimental data for flows on spinning surfaces are 

limited; but they are none-the-less the only ones available for com-

parison with numerical predictions. The following review therefore 

covers the most reliable experimental measurements for the few geometries 

when several set of data are available. A table at the end of this sec-

tion establishes the different measurements available according to their 

relative value in developing and refining turbulence models. 

One of the earliest reported experiments is that of Theodorsen and 

Regier (26) who measured the drag on a disc rotating in still air. 

Their turbulent flow measurements and the more recent measurements of 

Owen (13) confirm Dorfman's numerical predictions. Measurements of the 

velocity field near a rotating disc in the laminar, transitional and 

turbulent flow regimes were made by Gregory et al. (27). They found the 

transition Reynolds number to lie between 2.7 x 105  and 3. x 105. 

Their tangential velocity profiles were in good agreement with Cochran's 

(28) predictions for laminar flow, but the agreement for the radial vel-

ocity profiles was not good. For turbulent flow, both the 1/7-th-power 

profile assumed by von K6rmgn (3) and the logarithmic profile assumed 

by Goldstein (4) represented well the circumferential velocity measure-

ments. The radial velocity profile was in good agreement with von 

K6rm6n's power law assumption close to the surface, but Goldstein's 
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logarithmic profile was superior away from the surface. 

Cham and Head (7) recently have reported comprehensive measure-

ments of the velocity field and entrainment into the boundary layer on 

a free rotating disc. These authors obtained good agreement with their 

calculations using the tangential and radial momentum equation with an 

auxiliary equation for entrainment. Erian and Tong (29) while reporting 

the only experimental measurements of turbulence quantities for a disc 

rotating in still air also measured the velocity field. Because of ex-

perimental difficulties their measurements were incomplete. 

Kreith et al. (30) investigated the transition characteristics of 

cones rotating in still medium. They found a rapid increase in the 

transition Reynolds number with increasing cone vertex angle. Kreith 

(24) also obtained a few measurements of the drag on a 60 degree cone 

rotating in still air. His experimental data substantiate well his 

theoretical predictions. 

Koosinlin (18) has recently obtained turbulent velocity field 

measurements on an 80 degree rotating cone. Due to the inability of his 

pressure sensing instrumentation to measure low dynamic pressures accurately 

there is uncertainty about his measurements in the outer part of the bound-

ary layer. 

Parr (8) and Furuya et aZ. (10) have measured the velocity distri-

bution on a cylinder rotating in an axial stream. The measurements have 

been well predicted by Cham and Head's (9) integral profile method. 

Extensive experimental data of annular, turbulent flow with rotating core 

tube have recently been obtained by Kuzay (52). The experimental studies 

of Kuzay were made in a vertical large gap annulus. The hydraulic diam-

eter was 76 mm and the radius ratio, r.
1/ro  was 0.56. For the first 14 

hydraulic diameters the axial flow developed over a stationary section of 

core tube. There followed a section of rotating core tube 36 hydraulic 
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diameters in length. In this configuration a series of experiments was 

made for Reynolds numbers from 17,000 to 65,000 and for rotational vel-

ocities of the core tube from zero to almost three times the bulk axial 

velocity. Outer wall static pressure and profiles of total pressure and 

flow angle were measured by means of total head probes. From these 

data profiles of static pressure and of axial and circumferential velocity 

were evaluated. One of the most striking features of the Kuzay data was 

that, provided the rotational velocity of the core tube was greater than 

the bulk axial velocity, the change in angular momentum from raito at the 

core tube surface to zero at the outer wall was confined, almost entirely, 

to the two sub-layer/buffer zones adjacent to each cylinder. The whole 

of the fully turbulent region was rotating at essentially constant angular 

momentum. 

The average turbulent heat transfer from an isothermal disc rotating 

in still air has been measured by Cobb and Saunders (31), McComas and 

Hartnett (32), and Dennis et al. (33). Mass transfer measurements at 

Schmidt number of 2.4 have been reported by Kreith et al. (34). Average 

mass transfer data at Schmidt number of 2.4 have also been reported by 

Tien and Campbell (35) for rotating cones of 60 to 180 degree vertex 

angles. Recently mass transfer data at high Schmidt numbers for a free 

rotating disc have been reported by Ellison (36) and Daguenet (37). The 

range of Schmidt numbers in Ellison's experiments extends from 34 to 

1300 while that in Daguenet's extends from 345 to 6450. Local heat trans-

fer coefficients on the rotating disc in still air have only recently 

been reported by Popiel and Boguslawski (38). Their measurements include 

laminar, transitional, and turbulent regions up to Reynolds number of 

6.5 x 105. 

The availability of reliable experimental data is of major importance 

in the effort to develop and test universal turbulence models. The follow- 



-18- 

ing table lists the different available measurements according to their 

relative value in developing and refining turbulence models. 

Table 1. Reliable measurements near spinning surfaces 

Reynolds 
stresses 
(1) 

Mean velocity 

(2) 

Local heat/ 
mass transfer 

(3) 

Average heat/ 
mass transfer 

(4) 

Cham-Head (7) Popiel- Cobb-Saunders (31) 

Erian-Tong (29) Boguslawski (38)  McComas-Hartnett (32) 

Koosinlin (18) Kreith (24) 

Parr (8) Kreith et al. (34)  

Furuya et al. (10) Tien-Campbell (35)  

Kuzay (52) Ellison (36)  

Daguenet (37)  

A glance at the table shows that most of the data are category 4, 

followed by mean velocity measurements. There are no reliable data at 

all of the Reynolds stresses near spinning surfaces, a deficiency that 

ought to be removed. 

1.3 Organisation of thesis 

This thesis is divided into five chapters, of which this introduc-

tion presents the first. 

The second chapter presents the relevant governing equations of fluid 

motion, the geometry and the nomenclature for swirling flows studied here. 

The derivation of the complete conservation equations is presented in 

Appendix 1. Included in this chapter is also a brief description of 

GENMIX, the computer program based on the finite difference procedure of 

Patankar and Spalding. 
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Chapter three containing the theoretical contribution forms the major 

portion of the thesis. The chapter is divided into six main sections. 

A brief description of the mixing length hypothesis for swirling flows 

is presented in the first section. This section is also concerned with 

the effect of stream line curvature on the mixing length. The reader is 

introduced to a 'swirling flow' Richardson number in this section. The 

energy-dissipation model of turbulence is presented in section two. The 

inclusion of the term containing the effect of stream line curvature 

and the complete governing turbulent transport equation set for swirling 

flow are respectively presented also in this section. The details of 

derivation are reserved for Appendices 2 and 3. Section three outlines 

the initial and boundary conditions; while section four lists some 

important computing details. Finally numerical predictions using the 

two turbulence models are systematically presented and discussed in detail 

in section five. Section six presents some concluding remarks on the 

performance of the two turbulence models. 

Chapter four contains a description of the experimental contribution. 

It begins with a description of the experimental rig, the hot wire instru-

mentation, and the measurement details. The results obtained are then 

presented and discussed. The details of the hot wire signal analysis are 

presented in Appendix 4. 

Finally chapter five summarizes the main conclusions from the present 

study. Recommendations are also made here for any possible further theo-

retical and experimental work. 
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CHAPTER 2 

THE GOVERNING EQUATIONS OF MOTION 

2.1 Geometry and the nomenclature for swirling flows 

Figure 1 illustrates the geometry and the nomenclature for swirling 

flows considered in the present study. An axisymmetrical co-ordinate 

system for swirling flows is considered in Appendix 1, where the deri-

vation of equations of motion is presented. The present work is confined 

to rotating cones, discs, and cylinders; for these geometries and flow 

situations the angle a has a constant value. The co-ordinates x, z, 

and 0 are respectively the streamwise, cross-stream and circumferential 

directions. U, W, and V
0 
are the respective velocity components in these 

directions. w represents the angular velocity of the spinning surface. 

2.2 The conservation equations 

The elliptic forms of the conservation equations for mass, momentum, 

stagnation enthalpy and chemical species which describe the present 

class of axisymmetric flows are presented in Appendix 1. The boundary 

layer forms of the mass, streamwise and swirl momentum equations for a 

uniform-property, axisymmetric turbulent flow may be written: 

3(rU) D(rW) _ 
ax 	Dz 

0 	 (2.1) 

2 pV 
3U 	3U 	3p 	1 a , 	au, 

PU — PW — = - 	+ — — Lrp 	—.I + 	sin ar3x 	Dz 	3x r 3z 	eff Dz 

3(rV) 	D(rV ) 

01 3 	

3(V
0
/r) 

pU 	 + nW 
ax 	 Dz 	r 3z 

[r3p
eff 3z 

(2.2) 

(2.3) 

where the notation is illustrated in Figure 1. The presence of swirl 

causes the static pressure to vary across the boundary layer. Provided 

the variation with x of the radius of curvature of the body is small, 
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Bp 	

pV2 e 
cos 

DZ 
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radial equilibrium may be assumed and hence: 

The effective viscosity of the fluid, peff, is taken as the sum of the 

molecular and turbulent contributions, i.e. 

Peff = P 	Pt 
	 (2.5) 

Equations (2.1) to (2.4) constitute a closed set provided the fluid prop-

erties are known and a means is provided for determining pt. The deter-

mination of turbulent viscosity is the subject matter of the next 

chapter. 

Heat and mass transfer rates from the surfaces are computed by solv-

ing the following equation for stagnation enthalpy h or the mass frac-

tion of chemical species m: 

A 

Dh 	Dh1 3 	r 	eff 911 
pU — + pW — = — — ir — — + U 	+ V T 

3x 	az 	r 3z 	
°eff 3z 
	Tx,z 	0 0,z 

Dm3m 	1 3 r Peff 3m, pU 	+ pW 	= — —
az 	r Dz 	a

eff 
Dz 

(2.6) 

(2.7) 

Again, the derivation details are given in Appendix 1. In the above, 

the effective Prandtl/Schmidt number a
eff' 

and turbulent values by 

Peff =  p + Pt aeff t 

is related to the molecular 

(2.8) 

Equation (2.8) rests on the supposition that the effective transport co-

efficients for enthalpy and species are the sum of their molecular and 

turbulent values. 
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2.3 Numerical solution of the governing equations 

Equations (2.1-2.4) and (2.6-2.7), together with the indicated 

auxiliary equations have been solved by means of GENMIX, the computer 

program based on the finite difference procedure of Patankar and Spalding 

(14). The success of the Patankar and Spalding finite difference pro-

cedure to solve two dimensional non-swirling flows has been established 

beyond doubt. The method is rapid and easy to use. The program deck 

used for the predictions presented here was developed from the simple 

disc version used by Koosinlin (18). The changes made to the original 

program of Patankar and Spalding are outlined in Appendix 5. The calcu-

lation procedure is well documented in reference (14) and it may there-

fore be sufficient only to outline the main features here. 

The central feature of the method is the novel specification of the 

cross-stream co-ordinate. This co-ordinate is a dimensionless stream 

function w defined as 

4'1  
w - 4. 

'vE 

where 	the stream function is defined by 

alp 
pU = 

r Dz 

(2.9) 

(2.10) 

pW = 	r ax 
	 (2.11) 

The quantities tp, and IpE  are the values of i  at the interior and 

exterior edges of the boundary layer. Thus, regardless of the width of 

the boundary layer, the co-ordinate w always lies between zero and unity. 

Changes in the width of the finite difference grid or hence changes in the 

thickness of the boundary layer are determined from the rate of entrain-

ment of fluid from the surroundings into the boundary layer. This prac- 
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tice confines the finite difference grid to the region of flow where the 

changes in the values of the dependent variables are relatively large. 

This feature results in great economy of computer time. 

The governing partial differential equations (2.2-2.3) and (2.6-

2.7) all possess the common form: 

a(1) 	DO 	a —  
ax 	

(a + bw) 	= 	
(c aw 

22-) d (2.12) 

where: a =/(4) 	) E 	I 

b= (rEthE rIthI)/(q)E 41i)  

eff/PIPE - I)2 aeff]  

Here (I) stands for the dependent variable and d is the source term 

on the right-hand side which does not contain 3O/aw. M
I 

and M
E 

are 

the rates of mass transfer across the I and E surfaces. The common 

form allows a common numerical treatment for all the dependent variables 

except Vo: only the exchange coefficients and the source term d are 

different for each dependent variable. 

It should be noted that in the momentum equation for the swirl direc-

tion (2.3) the source term on the right-hand side has been entirely 

suppressed by making rVe  the operand of the differentiations on the 

left and V
0 
 /r on the right. This necessitates some changes in the 

finite difference equations as outlined in (14). More details of these 

modifications and the computer program listing appear in Appendix 5. 

The finite difference equivalent of equation (2.12) is obtained by 

means of a micro integral method. Each term of the equation is integrated 

over a small control volume around each node bounded by adjacent constant 

x and constant w lines. On the assumption that (I) varies linearly 

with w between grid nodes and stepwise in the x-direction, each term 

appears as an integrated average over the control volume. The use of the 
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micro integral method ensures that the integral forms of the conservation 

equations are satisfied over any part of the boundary layer. The result 

of the integration yields the following finite difference equation: 

1 = A(1)
i+1 

+ 13(1)i-1 + C 
	

(2.13) 

where the subscript i designates a particular grid node. A, B and C 

are functions of the cross-stream grid spacing, the upstream values of 

4), and the coefficients of the differential equation (2.12). The set 

of equations (2.13) are solved to yield the values of the dependent vari-

ables in turn at each successive downstream grid location using a simple 

recurrence formula. In this way the solution progresses downstream in 

a marching fashion. Complete details of the above appear in reference 

(14). 

Before application of the above solution procedure to turbulent 

swirling flows the accuracy of the finite difference procedure applied to 

swirling flows is tested. Figure 2 compares the finite difference pre-

dictions of the laminar flow induced by a spinning infinite disc with 

the similar solutions of Cochran (28) for the velocity field and Sparrow 

and Gregg (40) for the thermal field. The thermal solution is for a uni-

form disc temperature with a fluid Prandtl number of 0.7. The finite 

difference predictions of the radial and circumferential velocity pro-

files and of the temperature profile, are scarcely distinguishable from 

the "exact" similar solutions, the maximum discrepancy being less than 

0.2%. 
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CHAPTER 3 

TURBULENCE TRANSPORT MODELS 

For turbulent flow calculations the effective viscosity peff  in 

equations (2.2-2.3) and (2.6-2.7) is taken as the sum of laminar and 

turbulent contributions i.e. 

neff = P Pt 
	

(3.1 ) 

The present task is to propose and test a formula for the turbulent 

viscosity pt• In simple language, the term 'turbulence model' is used 

to describe the means whereby the turbulent viscosity pt  is determined. 

Two such turbulence models considered and extensively tested in the 

present study are the Prandtl's (15) mixing length hypothesis (MLH) 

and Jones and Launder's (45) energy-dissipation model. Both the models 

rest on a well argued assumption that the turbulence is characterized 

by two quantities, a typical length scale £ and a fluctuating velocity 

v. From dimensional reasoning the turbulent viscosity is thus given by 

p
t 

= const.pvt 
	

(3.2) 

It is the different method of prescribing g and V which differentiates the 

mixing length model from the energy-dissipation model of turbulence. The 

two turbulence models are separately discussed in detail next. 

3.1 Mixing length hypothesis for swirling flows 

Prandtl's (15) mixing length hypothesis (MLH) is one of the earliest 

and simplest proposed prescriptions for the calculation of turbulent 

viscosity, and has been widely used for non-swirling flow calculations. 

The physical basis on which the mixing length concept rests is not correct 

in all details, yet the model, because of its inherent simplicity and 
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remarkable success, is still an attractive and useful proposition for 

the design engineer. The utility of the mixing length hypothesis has 

not been extensively explored for swirling flows. The present study 

therefore aims to investigate systematically the validity of the mixing 

length model for boundary layer flows near spinning surfaces. 

For non-swirling flows, the fluctuating velocity component v 

appearing in equation (3.2) is presumed proportional to the absolute 

value of the gradient normal to the wall of the streamwise velocity 

U, i.e. v = R DU 
aZ . With the constant set to 1, the expression for the 

   

turbulent viscosity then becomes 

     

P  t 
02,2 9U 

az • (3.3 ) 

     

Now, to account for the additional effect of swirl on the level of p
t 

the following obvious simple extension of Prandtl's hypothesis is 

employed in the calculation of turbulent viscosity: 

(Ve/r) 2

112 p
t 
= 02  [(21

az
)2  + (r 	 
 az 

(3.4) 

An alternative way (shown in Appendix 2) of arriving at equation (3.4) 

is to assume a local balance between the production and dissipation rates 

of turbulent kinetic energy ('local-equilibrium') and to represent the 

dissipation rate e by t3132. 

The above formulation used in (41) appeared superior to earlier 

proposals of Owen (13) and Lilly (42) in which the turbulent transport 

coefficient for angular momentum was held to depend only on gradients in 

swirling velocities, not axial ones. It should be noted that the gradient 

of V
6 
 /r and not of V

0  is employed in the last term of the equation 

(3.4) in order that pt  becomes zero for the special case of solid body 

rotation. The chosen formulation implies that the turbulence is iso-

tropic and this is its least attractive aspect. But it does, however, 
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retain the basic simplicity of the mixing length formulation. No new 

physical constants are introduced. 

3.1-1 	The mixing-length distribution 

Now all that remains in the determination of turbulent viscosity 

lit from equation (3.4) is the means to specify the mixing-length 

across the layer. A two part algebraic specification is adopted for the 

distribution of mixing length 2, based on practices used by numerical 

workers for predicting flows without swirl. In the region where the 

presence of the wall affects the turbulence structure it is assumed that 

St = icz[i - exp(-D)] 
	

(3.5) 

where, following the recommendation of Launder and Priddin (43), the 

damping function D is taken as: 

3/2 
z +T 	/26 

when the variation of T 	across the viscous sublayer and 'buffer' 

(3.6) 

regions is negligible, equation (3.6) is identical to Van Driest's (16) 

proposal for the damping of the mixing length at low Reynolds numbers. 

Launder and Priddin (43) have shown that the inclusion of T3/ 2  gives 

better predictions where there is a rapid change in T with z, as 

occurs in transpired boundary layers and flows with severe streamwise 

pressure gradient. It should be remarked that the local value of the 

resultant shear stress vector appears in equation (3.6). 

In the outer region St is given by: 

Q = AS 	 (3.7) 

(5 being the effective thickness of the boundary layer. The constants 

K and A appearing in equations (3.5) and (3.7) are given the values 

0.42 and 0.085 respectively, a consensus of values currently in use for 
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plane external boundary layer flows. For internal flows, as discussed 

later, X is given the value 0.14. Equation (3.7) is used in place of 

(3.5) at all positions further from the spinning surface greater than 

that at which k given by (3.5) first exceeds the value given by (3.7). 

3.1-2 	Effect of swirl on mixing length 

When the above turbulence model was applied to the calculation of 

turbulent flows on spinning surfaces it was learnt that the strong in-

fluence of streamline curvature was not well reproduced because the 

model did not take into account any direct influence of the swirl on the 

mixing length L. Such shear flows with significant streamline curvature 

arise in many practically interesting flows. The importance of this sub-

ject has stimulated much experimental work that has recently been com-

prehensively reviewed by Bradshaw (44). The experimental studies have 

provided a qualitative understanding of the flow structure, the effect 

of curvature being to diminish turbulent transport in flows where the 

rate of change of angular momentum with radius is positive and Vice Versa. 

By analogy with the effects of density stratification in atmospheric tur-

bulence Bradshaw (45) has proposed that the length scale in swirling 

flows be modified as follows 

= o(1 - 8Ri) 
	

(3 .8) 

where 2,
o 

is the level of mixing length prescribed by equations (3.5-3.7) 

above and Ri is the 'swirl flow' Richardson number: 

Ri = 

2V
8
cosa a(ry

e
) 

r2 	az 
(3.9) 

   

aV /r 
(
au
)
2 

(r 
e 

 )
2 

Dz 

which can be regarded as the ratio of the square of a typical frequency 

scale of the circumferential velocity fluctuations to the square of a 

az 
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frequency scale of the turbulence in the boundary layer. Because the 

circumferential velocity component is subject to centrifugal forces and 

is balanced by normal pressure gradient this highly unstable situation 

should give rise to large fluctuations. And if the frequency of turbu-

lence is represented by some eddy frequency scale then the gradient of 

the resultant velocity can represent an appropriate scale. Next section 

and Appendix 3 in conjunction with the energy-dissipation model of tur-

bulence discuss further the stability of a turbulent eddy in curved 

streamline flows. It should be noticed that cosa is zero for flow near 

a spinning disc. In all the flows considered here (except the annulus 

with rotating core tube) rV
6 
 is maximum at the spinning surface and 

decreases uniformly to the edge of the boundary layer. For these cases 

the Richardson number is always negative and hence for positive 13, 2  is 

increased. 

Predictions of the test flows were obtained for several values of 

13 in the range from 1 to 15. The results presented here are for two 

values of (3, 5 and zero. The latter corresponds with the 'standard' 

model for flows without swirl, the former is approximately that which 

gives the best overall level of agreement of predictions with measure-

ment. 

3.2 	Energy-dissipation model of turbulence 

In the last few years a number of models of turbulent momentum trans-

port have been developed which take into account the effects of transport 

on turbulence. Models of this kind achieve significantly greater breadth 

of applicability than do the simple approaches based on mean flow quan-

tities alone like the mixing length hypothesis. Such models can be con-

structed by taking the turbulent velocity scale as k2  in equation (3.2). 

The turbulent viscosity formula then becomes 
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Pt 
= const pk5k 	 (3.10) 

Thus, to determine p
t two differential equations for the turbulence are 

formulated from which both velocity and length scale can be obtained. 

The turbulence kinetic energy equation is, without exception, one of 

those employed in these two-equation turbulence models. For the second 

variable it is often easier to derive an equation for some other quantity 

which can be related to a length scale of turbulence. Several workers 

have selected variables of the form K
a
R
b 

where a and b are constants. 

Examples of these can be found in reference (46). One of the more success-

ful of these approaches is proposed by Jones and Launder (47) who solved 

an equation for the dissipation rate of turbulence energy E 	which can 

be related to length scale by the formula 

= 012/Q 
	

(3.11) 

This latter form has a number of advantages. This quantity appears 

directly in the equation for k, and so calculating it removes the need 

for any assumptions about this term. It is also a simple algebraic func-

tion of the fluctuating velocity gradients, and an exact equation can 

therefore be readily derived from the Navier-Stokes equations. The use 

of the E-equation as the means of determining the turbulent length scale 

was shown by Launder et al. (48) to give the best predictions of the two-

equation turbulence models tested for the case of free shear flows. Jones 

and Launder (47) also applied this model to strongly accelerated flow and 

subsequently to other low-Reynolds number flows (V, 50). Applications 

of the model for flows involving regions of recirculation appear in refer-

ence (45). For these reasons it is the Jones and Launder's low-Reynolds 

number k-E model of turbulence that has been used in the present study. 

It should also be pointed out that no applications of the model have been 

reported, however, of its use to predict swirling flows, an omission that 
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the present study remedies. The flows considered here produce very high 

gradients of swirl velocity in the vicinity of the spinning surface 

which in turn bring to prominence terms in the kinetic energy and dissi-

pation equations that have formerly been absent or of only small import-

ance. This extensive application thus provides a test of the generality 

of the model for an important class of fluid flows. 

Combining equations (3.10) and (3.11) finally gives for the K-e 

model the turbulent viscosity formula as 

p
t 	

C
p
pk2/e 
	

(3.12) 

where, at low Reynolds numbers, the quantity C 	is a function of tur- 

bulent Reynolds number as prescribed below; at high Reynolds numbers it 

approaches a constant value. The two turbulence quantities appearing in 

(3.12), k and e are obtained from the following pair of transport 

equations that are solved simultaneously with those governing the mean 

flow behaviour: 

Dk _ Pt 
P  Dt 	axe 

 (
T
k
.  + 11)  ax 	11t ax 1  (axe + ax

J 	
ax ) 

1 
ak2 2  

- pc - 2p( —) 
ax. 

De 	E 
Pt 	

BU. au. DU. 
De _ a 

	

	 1 1 
(— + ) — + C p — — ( + 

P  Dt 	ax. 	a 	
p 

ax. 	1 t K ax. ax. 	ax. 

	

J 	e 	J 	J 	J 	1 

Pet 
a2u.  
, 	1  

- 
C2  K C3vPt axKj ax.) 

(3.13) 

(3.14) 

The derivation details of the above equations are given in Appendix 2. 

The empirical coefficients, after extensive testing, have been assigned 

the forms and values given in the table below; the quantity Rt  stands 

for pk2/pe, the local Reynolds number of turbulence. A number of the 

coefficients have undergone small changes from those proposed in (47) due 

ak 	
DU. 	U. 	U. 
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to an overall reoptimisation for free shear flows (48). However, for the 

flows considered here there would be only slight differences between the 

behaviour reported here and that which would have been obtained with the 

original set of coefficients. 

Table 2. 	The empirically chosen coefficients 

C
1 

C
2 

C
3 

Cu 
  

a
K 

a 
e 

1.44 1.92(1.-0.3exp(-Rp) 2.0 0.09exp(-3.4/(1+Rt/50)2) 1.0 1.3 

3.2-1 	Modification for streamline curvature 

The K-e model of turbulence presented so far assumes that there is 

no direct influence of rotation on turbulence. The aim here has been to 

build the idea of curvature dependence into the transport equation for 

the length scale of turbulence. Therefore the effects of streamline cur-

vature in the present study are accounted for by making one of the co-

efficients in the transport equation for energy dissipation rate a func-

tion of a dimensionless group similar in character to the rotational 

Richardson number defined in section 3.1-2. Physical arguments in support 

of this modification are developed in terms of distorting effect of rota-

tion on the length scale of energy containing motions. Complete details 

of this development and the reasons for the inclusion of a new source 

term in the transport equation for e are presented in Appendix 3. Here 

the complete modified dissipation rate equation is written below: 

Dc _ a 	 t 	
Ell
t 
 U. U. DU. 

De  
P  Dt 	ax. 	ad 

+ C
1 K ax. 	+ 

ax. 	ax. 

	

J 	e 	 J 	J 	1 

D2u.  p62 
- C

2 K 
(1 - C

c
Ri) 	

( 	 
axax

j
) 

k 
 (3.15) 

where Ri is the dimensionless parameter; 
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k2 Ve 	D(rVe) 

e2 r2 	
Dr  

(3.16) 

which again may be regarded as a Richardson number wherein the time scale 

of the turbulence k/e now replaces the mean flow time scale appearing 

in equation (3.9). 

All coefficients in equation (3.15) retain the values assigned to 

them in Table 2 and the additional coefficient of the Richardson number 

term C
c 

is taken as 0.2 on the basis of extensive computer optimisation',. 

It should be noted that when the angular momentum of the mean flow in-

creases with radius Ri is positiVe and hence the new term will act to 

enlarge the level of e and hence to reduce the turbulence kinetic 

energy. Consequently the inclusion of the Richardson number dependent 

term acts to diminish the turbulent viscosity (c.f. equation (3.12)). 

The reverse effects are produced in a flow where 3(rVe)/Dr is negative. 

3.2-2 The governing turbulence transport equation set for axisymmetric 
swirling flow 

The above sections have presented the turbulence transport equations 

in Cartesian tensor notation. When it comes to obtaining numerical solu-

tions, however, it is strongly advantageous to convert to a co-ordinate 

system in which the solid surface coincides with a surface on which one 

of the independent variables is constant. For the flows on axisymmetric 

surfaces considered here the system of polar co-ordinates indicated in 

Figure 1 is the obvious choice. When account is taken of axial symmetry 

and the fact that significant gradients of the dependent variables occur 

only in the direction normal to the surface the k and e equations 

(3.13) and (3.15) may respectively be written: 
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(3.17) 

(3.18) 

The algebraic details of the derivation of these equations are again 

reserved for Appendix 2. It should, however, be noted that the above 

system of equations differs from that of Jones and Launder (47) in that 

extra source terms involving gradients of (Ve/r) appear in the equations 

for K and C. Their appearance is due to the conversion of the Cartesian 

tensor form of the equations to the present co-ordinate frame. For 

example, the rate of production of turbulence energy by mean strain 

3U 2  
for plane shear flows is simply Pt() in the Jones and Launder's ver- 

sion. But here this term is represented as 

av /r 
pt  [

au
3z)

2 	
(r 	 3z 

2u 2 
in both the K and e equations. Similarly the term in C3vut( 

 aZ2  

the original c-equation is now written as 

2 

{ 	

aV /r  T } 
C3  upt 3z 2-- [(-2L3z1)2  + Cr 3ze ) 	• 

It should also be remarked that the Reynolds number functions C 	and 

C
2 

and the coefficient C
1 

are slightly different from those proposed 

by Jones and Launder (47). This, as pointed out earlier, is the result 
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of an overall computer re-optimisation of coefficients reported in (48). 

The values of K and c obtained from the solution of these 

equations (3.17 and 3.18) enable the turbulent viscosity to be obtained 

from equation (3.12), viz. 

Pt 
= C

P
pK2/c 

3.3 	Boundary and initial conditions 

The boundary conditions for all flows computed and with both the 

turbulence models considered here were as follows. For the mean velocity 

field, both the axial and swirl velocities are set to zero at the edge 

of the boundary layer except for the case of flow past a rotating cylin-

der, where for axial velocity free stream velocity U.  is the appro-

priate quantity. At the spinning surface U is set to zero and V
8 
 to 

rw where r and w are the local radius and the angular velocity of 

the surface. These, and the boundary conditions for the other dependent 

variables h and m may be summarized as follows: 

	

z = 0 : U = 0 	; 	V0  = rw . 	. 	 (3.19) 
h = h

w 
; 	m = m 

 

z = zedge • 0 or U 	V
e 

h = h 	 ; 	m = m cc 

(3.20) 

While making predictions with the energy-dissipation model of turbulence, 

the values of K and E are set to very small values at the outer edge 

of the boundary layer as is appropriate to free stream conditions. Their 

value is set to zero at the wall: for K this corresponds with the 

fact that velocity fluctuations must vanish at a rigid surface. To ex-

plain the reason for making a zero at the wall it should Sant be noted 

that within the viscous sublayer 
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au. 2  
5 2  

1-1( 	= 2p (
ak 

Dxk 
(3.21) 

A proof is provided by Launder and Jones in (47). Thus if c stands for 

Du i 2 	;k2  2 
p(—) - 2p () 

Dx
k 	Dz. 

its value obviously goes to zero as the wall is approached. Beyond the 

viscous sublayer the term involving the gradient of k2  is negligible 

and then e represents the dissipation correlation p(aui/Dxk)2. The 

term 2p(3k2/Dz)2  is then subtracted from the right-hand side of the 

kinetic energy equation to compensate (cf. equation (3.17)). The reason 

for this apparently circuitous route is that by using the homogeneous 

boundary conditions on e it was found to be easier to devise a suitable 

form for the c-transport equation. Further discussion on this matter is 

provided in Appendix 2. 

Starting profiles of all dependent variables had, of course, to be 

prescribed. In all cases estimates were based on experimental knowledge 

of the dependent variable distribution in the same or similar flows. 

Some further remarks on initial profiles for individual geometries appear 

in the next section. The actual profiles of the dependent variables 

(including k-c) used in the present study are listed in Appendix 5. It 

should be emphasized however that in all the cases examined here the 

predicted flow behaviour, in the regions where comparison is drawn with 

experiment, is negligibly dependent upon uncertainties in the prescribed 

initial profiles. 

3.4 	Some computing details 

The system of differential equations (2.2-2.3), (2.6-2.7) and (3.17-

3.18), together with the indicated auxiliary equations have been solved 

by means of the modified version of GENMIX, the computer program outlined 
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in Chapter 2. The actual detailed modifications for swirling flows to 

the computer program GENMIX are listed in Appendix 5. Here, some details 

about computing times and grid node specification for the two turbulence 

models are presented. For the case of flow over spinning discs and cones 

computations were started near the centre or apex where the flow was 

laminar, then the turbulent viscosity as calculated by mixing length 

hypothesis or by the solution of the k and c equations was introduced 

later at the point where experiments suggested that transition occurs. 

For predictions with the mixing length model forty cross-stream 

grid nodes were used nearly half of which were concentrated in the sub-

layer and buffer regions where gradients of dependent variables are 

steepest. The step size normally used varied between 2 to 5% of the 

boundary layer thickness. Computing time per run on a CDC 6600 computer 

was typically 10 s. More details for some individual cases studied 

appear under comparison of predictions and measurements in the next sec-

tion. 

With the energy-dissipation model of turbulence seventy grid nodes 

were used to span the boundary layer with a substantial concentration 

very near the wall. This is about 60% more than is needed to obtain 

grid independent results when the mixing length model is used. The for-

ward step used here was typically 2.5% of the boundary layer thickness 

leading to computer times per run of about 50 s on the CDC 6600 computer. 

Again, more specific details about some individual cases are given in the 

next section. 

3.5 Presentation and discussion of predictions 

The numerical predictions obtained using the above turbulence models 

are compared with the available experimental data in this section. Since 

several flow configurations are examined each flow geometry is separately 
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discussed in detail. Some remarks on the performance of the two turbu-

lence models appear at the end of this section. 

3.5-1 	Flow near swirling disc 

Comparison of predictions with measurements is drawn first for the 

important limiting case of a spinning disc in still air. The Richardson 

number Ri in this case is zero at all rotational speeds because the 

radii of curvature of the streamlines are virtually parallel with the disc 

surface. Calculations relating to turbulent flow near a spinning disc 

using both models of turbulence are presented in Figures 3-8. Mean vel-

ocity profiles are shown in Figures 3 and 4, the experimental data being 

those of Erian and Tong (29) and Cham and Head (7). Both components of 

velocity are normalized with respect to the surface velocity. The ordi-

nate for Erian and Tong's experiment is z417,7\7 whereas in Cham and Head's 

test case it is z/d2. All symbols are defined in the Nomenclature. The 

shape of the profiles is distinctly different from those for laminar 

flow in Figure 2. As in non-swirling flows, very steep velocity gradients 

occur in the immediate neighbourhood of a wall because stresses there are 

high but effective viscosities low. For both test conditions and with 

both turbulence models extremely close agreement is observed between 

measured and calculated components of swirl velocity. The axial velocity 

using the mixing length model is well predicted for Cham and Head's experi-

ment and for values of D477 up to 20 in Erian and Tong's work. There-

after, however, the predicted velocity falls to zero much more quickly 

than the measured. With the k-c model the axial velocity is in close 

agreement with both the experimental data. To show the differences in 

predicted behaviour clearly velocity profiles with both the models are also 

shown on the same Figures 3b and 4b. It is uncertain which of the experi-

mental axial velocity profiles is more correct. It should be noted, how- 
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ever, that in the region where there is disagreement between the mixing 

length predictions and Erian and Tong's data, the average velocity is 

only about 3% of the disc velocity. It would thus seem unlikely that 

failure to predict the mean velocity correctly would have noticeable 

effect on surface heat and mass transfer coefficients. 

To make accurate predictions of torque coefficient and Nusselt/ 

Schmidt number, the Reynolds number Re
t at which the flow becomes tur-

bulent must be prescribed (when the distance x is so small that the 

spin Reynolds number is less than Ret  the flow is taken as laminar and 

only the mean flow equations are solved). It may be expected that Ret  

will vary a little from one apparatus to another because of detailed 

differences in apparatus design. The practice here has therefore been 

to choose the value of Re
t 

which seemed most consistent with any parti-

cular apparatus. For this reason different values of Ret  have some-

times been adopted for nominally the same geometry. 

The corresponding variation of torque coefficient with spin Reynolds 

number for the rotating disc is shown in Figure 5; Re
t 

was taken as 

2.8 x 105. Predictions with both turbulence models are almost identical 

and for this reason they are shown separately on two diagrams for com-

pleteness. The agreement with the measurements of Theodorsen and Regier 

(26) is within 5% over the whole range spanned by these data. The more 

recent measurements of Kreith (24) and Owen (13) give values of CM  

which are 5-10% higher than those of (26). Thus it is probably the case 

that the predictions fall within the bounds of experimental uncertainty 

for this flow. 

Predictions of average heat and mass transfer rates for the rotating-

disc geometry are shown in Figures 6 and 7; the transition Reynolds num-

ber Re
t 

was taken as 2.4 x 105  and 2.0 x 105  respectively, i.e. a 

little lower than for the comparisons shown in Figure 5. For both the 
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heat and mass transfer predictions ut  in equation (2.8) is given the 

value of 0.9. The works of Kestin and Richardson (39) and Patankar and 

Spalding (14) support this hypothesis for wall boundary layers. The 

agreement of predictions with both the mixing length and K-e models 

with the Nusselt number data of McComas and Hartnett (32) is complete 

over the Reynolds number range explored; the data of Cobb and Saunders 

(31) lie about 6% above this. The mass transfer predictions at Schmidt 

number of 2.4 are satisfactory for spin Reynolds number below 5 x 105. 

Above this value however, both the Tien and Campbell (35) data and those 

of Kreith et al. (34) display a faster rate of increase with spin 

Reynolds number than do the predictions. The average mass transfer pre-

dictions at high Schmidt numbers are compared with the data of Ellison 

(36) and Daguenet (37) in Figure 7. Ellison's data covered the Schmidt 

number range from 30 to 1000 at spin Reynolds number of 4.7 x 105, 

whereas in the experiments of Daguenet Schmidt number varied from 345 to 

6150 at spin Reynolds number of 5.5 x 105. Agreement of predictions 

with both sets of data is close up to a Sbhmidt number of about 800, 

thereafter the predictions fall progressively below the data of Daguenet. 

Predictions with the k-e model are marginally closer to the data of 

Daguenet than those with the mixing length model. 

The relatively different behaviour for the heat and mass transfer 

at high spin Reynolds number (Fig.6), it is believed, is probably asso-

ciated with the different molecular Prandtl/Schmidt number (0.7 and 2.4 

respectively) and the effective viscosity becoming highly non-isotropic 

as the level of swirl increases (some evidence of this is provided later). 

If this is the case Figure 6 (and Figures 9-10 later) suggest that it is 

in the immediate near wall region where viscous damping is important 

that the turbulent transport coefficient is especially anistropic. For 

the heat transfer data are well predicted while the mass transfer data are 
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not. Now for the present purposes the only significant difference 

between the heat and mass transport process is that the near-wall region 

offers proportionately a much greater resistance to mass transfer than 

heat transfer. The different behaviour could be explained if it is in 

the near-wall region that these turbulence models, so firmly based on 

the notion of an isotropic effective viscosity, break down. It would be 

valuable to extend the high Schmidt number data for higher spin Reynolds 

numbers. Agreement with the data of Ellison and Daguenet as noted above 

is satisfactorily close for the relatively low levels of spin Reynolds 

number in their experiments. 

Predictions of local heat transfer rate from a spinning disc are 

compared with the very recent data of Popiel and Boguslawski (38) in 

Figure 8. The transition Reynolds number was again taken as 2.4 x 105. 

Agreement of predictions using both the turbulence models with the local 

Nusselt number data is satisfactorily close over the entire Reynolds num-

ber range explored. In the experiment, with laminar boundary layer the 

disc surface was maintained almost isothermal; with transition boundary 

layer it was isothermal within ±1.5%; and with the turbulent boundary 

layer it was isothermal within ±3%. The predictions for the turbulent 

boundary layer are within this ±3% deviation with both turbulence models. 

The small deviation of the measurements at low Reynolds numbers from 

the predicted values is probably due to the free convection effects having 

been neglected in the predictions. 

3.5-2 	Flow near spinning cones in still air 

Predictions of convective transport from spinning cones of different 

vertex angles are shown in Figures 9-12. It should be noticed that as 

the cone angle diminishes the influence of streamline curvature becomes 

more important. Predictions using both the turbulence models with and 
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without respective curvature correction are separately compared with the 

available experimental data. First, the predictions for the 120 degree 

cone are compared with the naphthalene (Sc = 2.4) diffusion measure- 

ments of Kreith et aZ. (24) and Tien and Campbell (35). No heat transfer 

or torque data appear to be available for the 120 degree cone: The two sets of- 

data display a similar behaviour to the disc data. With a transition 

Reynolds number of 2 x 105, agreement of predictions with measurements 

is very close for Reynolds number up to 4 x 105; thereafter the data 

display progressively higher levels of Sherwood number than the calculated 

values. For both the turbulence models the inclusion of the curvature 

correction term raises the Sherwood number by about 5% for spin Reynolds 

number greater than about 3.5 x 105. Predictions with the k-s model 

are marginally closer to the data than those with the mixing length model. 

In the foregoing example the effect of streamline curvature on the flow 

structure was relatively small and consequently only modest advantage seems 

to be gained from using the swirl correction term with the mixing length 

and the curved surface version of the energy-dissipation model. The sig- 

nificance of flow curvature increases as the vertex angle decreases. It 

is seen from Figures 10-11 that substantially better agreement results 

from use of the models with curvature correction terms included for the 

60 degree cone. All the 60 degree cone predictions were made with transi- 

tion set at Re
t 

= 105, a value which seemed most consistent with both 

the heat and mass transfer data. Heat and mass transfer rates on a 60 

degree cone are shown in Figure 10. With both turbulence models in the 

turbulent flow regime the heat transfer data fall approximately midway 

between the predicted curves with and without the curvature correction 

term, the former giving values approximately 5% greater than measured. 

The inclusion of the curvature term improves agreement with the mass trans- 

fer data of Kreith et al. (34). Even so, there seems to be a trend, for 

spin Reynolds numbers greater than about 3 x 105, for the measured 



-43- 

Sherwood number to rise more rapidly than the predictions indicate. This 

behaviour is of course consistent with the 120 degree cone and the disc 

data shown earlier. Again predictions with the K-c model are marginally 

superior to those with the mixing length model. 

Figure 11 shows the predicted torque coefficient for the 60 degree 

cone compared with Kreith's (24) high Reynolds number data. Here for spin 

Reynolds number greater than about 3x105  the level of CM  for 8 = 5 

is some 10-12% higher than in the absence of a swirl correction (a = 0). 

With C = 0.2 almost similar results are obtained for spin Reynolds 

number greater than about 1.5 x 105. Kreith's data certainly support 

the higher values. At no point do the predicted values of CM  for 8 = 5 

and C = 0.2 differ from the measured by more than 8%, a figure which 

lies well within the uncertainty limits of ±12% estimated by Kreith. 

Predictions with both the models without curvature correction give values 

approximately 20% less than the measured values. 

The only velocity profile data of flow on cones seem to be those 

measured, on the same 80 degree cone, by Koosinlin (18) and by the writer. 

The former were obtained with a pitot tube, the latter with a hot wire 

anemometer. The hot wire data are limited to the range: 5 < z/r/Re2  < 30 

the lower limit being set by the physical size of the hot wire instru-

mentation and the upper limit being that beyond which the measured values 

lose significance due to large turbulence levels in the outer part of the 

flow. The pitot tube data are also subject to increasing uncertainty in 

the outer region associated with the small dynamic pressures and the 

associated difficulty of identifying the direction of the resultant vel-

ocity. The velocity profile data are compared with predictions in Figure 

12. The inclusion of the swirl correction term in the respective turbu-

lence models raises the viscosity in the outer region; consequently the 

tangential and axial velocities are higher. For the tangential velocity 
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profile inclusion certainly improves the agreement with measurement, both 

sets of data essentially giving the same variation. For the component 

of flow parallel to the cone surface, the two sets of data show differ-

ences comparable with the difference between predictions with and without 

curvature term included. Somewhat better agreement is displayed closer 

to the wall, however, by the predictions including curvature effects. 

Overall it can be seen that the predictions with the k-c model here are 

superior to those with the mixing length model. The predicted axial vel-

ocity with the mixing length model approaches zero in the outer region of 

the boundary layer much more quickly than with the k-e model. Both the 

data support K-e predictions. Complete details for the present sets of 

data are provided in the next chapter where predicted and measured turbu-

lence energy profiles are also shown. 

3.5-3 	Axial flow past spinning cylinders 

The case of the external flow along a cylinder in which the cylinder 

is rotating about its axis is discussed here. Measured mean velocity pro-

files by Furuya et al. (10) are shown in Figure 13 for the case where the 

spin velocity at the surface of the cylinder is twice that of the axial 

free stream. The axial velocity here is normalized with respect to the 

free stream velocity whereas surface velocity is used for the swirl com-

ponent. The ordinate is z/6
2x
. The predicted solutions for 13 = 5 and 

C = 0.2 are in close agreement with the measured profiles over the 

whole of the fully turbulent region. Both turbulence models yield about 

the same variations of velocity profiles. It should be noted, however, 

that the calculated profiles seem to exhibit a steeper slope in the imme-

diate vicinity of the wall, especially the profile of circumferential vel-

ocity. The last feature is not entirely consistent with the variation of 

momentum thicknesses 6
2x 

and 820 along the cylinder shown in Figure 14. 
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Results using both turbulence models at three levels of Reynolds number 

are shown, the lower two being those of Furuya et al. (10) and at the 

highest Reynolds number, those of Parr (8). Results are almost identical 

Mwae 
with both models, for k-E being marginally superior. The rate of 

growth of swirl momentum thickness is evidently predicted satisfactorily 

for the cases where (3 = 5 and C = 0.2 (implying that the predicted 

velocity profile in fact has the correct slope in the neighbourhood of 

the wall). Too large a rate of growth of axial momentum thickness is pre-

dicted, however, the discrepancy being especially large for Parr's high 

spin rate data. An implication of the above result is that, to predict 

the correct rate of growth for the axial and swirl boundary layers, a 

non-isotropic effective viscosity would have to be used. 

3.5-4 	Flow through concentric annulus with rotating core tube 

Finally, numerical predictions of fully developed turbulent flow 

through concentric annulus in which the core tube rotates about its axis 

are compared with the extensive experimental data of Kuzay (52) which 

span Reynolds number from 1.7 x 104  to 6.5 X 104  and with rotational 

speeds of the core tube varying from zero to nearly 2.8- times the mean 

axial velocity. In the experiments the hydraulic diameter DH  was 7.6 cm 

and the radius ratio, r./r
o  was 0.56. The axial flow had 50 hydraulic 

diameters whereas the tangential velocity had only 36 hydraulic diameters 

for development lengths. For the first 14 hydraulic diameters the axial 

flow developed over a stationary section of the core tube. Outer wall 

static pressure and profiles of total pressure and flow angle were measured 

by means of total head probes. From these data profiles of static pressure 

and of axial and circumferential velocity were evaluated. Before com-

parisons between measured and calculated distributions of these quantities 

are made attention is first drawn to some interesting features of the 



-46- 

experimental data and some novel practices which had to be incorporated 

to predict flow of such complexity. 

One very striking feature of the Kuzay data was that, provided the 

rotational velocity of the core tube was greater than the mean axial vel-

ocity, the change in the angular momentum from r2iw at the core tube 

surface to zero at the outer wall was confined, almost entirely, to the 

two sublayer/buffer zones adjacent to each cylinder. The whole of the 

fully turbulent region was rotating at essentially constant angular 

momentum. This feature posed interesting questions regarding the physical 

models presented here, because in the applications presented so far the 

modifying effect of streamline curvature caused by equations (3.8) and 

(3.18) was most marked beyond the buffer region. In the annular flow 

studied here, since the fully turbulent region was rotating at essentially 

constant angular momentum and assuming that the predicted behaviour 

displays similar behaviour, the Richardson number would be virtually zero. 

There would thus be a relatively small effect of swirl on the effective 

viscosity according to (3.8) and (3.18), and whatever effects were present 

would occur in the regions of low turbulent Reynolds numbers adjacent to 

the walls. It thus appeared doubtful whether the models presented here 

would be adequate for the annular flow geometry. Some detailed changes 

which became necessary to incorporate with the models and otherwise are 

discussed next. 

For the application of the mixing length model a uniform level of 

mixing length in the core region of the annulus is assumed i.e. 

0 
= A(r - r.)/2 

o (3.22) 

Equation (3.22) is used in place of (3.5) at all positions from the 

spinning core tube greater than that at which k given by equation (3.5) 

first exceeds the value given by (3.22). To retain strict analogy with 

equation (3.7) the coefficient A should be taken as 0.085. However 
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while equation (3.7) was concerned with external boundary layers, the 

present case is of an internal flow; in the latter flow turbulent mixing 

in the core region is substantially greater than in the outer region of 

a wall boundary layer. For this reason the apparent mixing length is 

larger. 	A, therefore, is taken equal to 0.14 here; the value being 

selected as that giving the best agreement with axial flow velocity pro-

files here. This is somewhat greater than 0.12; the value giving the 

best agreement with friction factor for annular flow without swirl. 

With the energy-dissipation model of turbulence no modifications 

were required. The model was applied in its entirety as defined by 

equations (3.12), (3.17) and (3.18). 

On the actual computational aspects it should be said that it proved 

to be much more difficult to obtain numerical solutions for the present 

class of flows than for the external boundary layer flows reported above. 

The reason seemed to be due to the guess-and-correct method adopted in 

(14) for internal flows for obtaining the change of static pressure over 

one forward step. Except when the fully-developed state has been reached, 

in flows with swirl, the streamwise pressure gradient is not uniform 

across the flows and the practice of using "upstream" velocity profiles 

to estimate cross-stream pressure variations tended to produce somewhat 

irregular streamwise pressure changes, particularly near the walls. This 

in turn would produce kinks in the axial velocity profile which would 

then be amplified as the solution proceeded downstream. 

In order to eliminate such unstable behaviour a number of checks 

were placed on the solution. The forward step was limited to three per-

cent times the spacing between the walls of the annulus. Moreover, the 

value of turbulent viscosity evaluated at each node for both turbulence 

models'was "diluted" with the value from the corresponding node at the 

previous step; the most successful ratio of new': old viscosity was 

6:4. Finally, the swirl was introduced only gradually by successively 
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increasing the rotational velocity of the core tube at each step until the 

speed corresponding to experimental conditions was reached. Computations 

were then carried downstream until the tangential stress ratios on the 

two walls satisfied within 5% the fully developed flow relation. Com-

puting times per run on a CDC 6600 computer with the mixing length model 

were typically 250 s, while with the energy-dissipation model they were 

typically 600 s. 

The influence of the Richardson number correction on the predicted 

flow behaviour is first examined. Figures 15 and 16 show the axial vel-

ocity and the angular momentum profiles for the experiment with the 

largest relative swirl velocity: as before predictions for both models 

are shown with and without the inclusion of the respective curvature 

corrections. Evidently in both cases the inclusion of the swirl correction 

does improve agreement with experiment. Like the measurements, the cal-

culated angular momentum is nearly uniform over the central 80% of the 

flow; here, therefore, the swirling flow Richardson number is negligible. 

Computed behaviour of axial velocity with 0 = 5 and Cc  = 0.2 for 

nine different conditions is compared with the Kuzay data (52) in Figures 

17-19 while Figures 20-21 show the corresponding swirl velocity for the 

six swirling flow tests. Agreement between the measured and calculated 

axial velocities is generally satisfactory although for the mixing length 

model the calculated profile without swirl displays a rather too peaky 

shape in the region of the velocity maximum. This feature is a peculiar 

shortcoming of the mixing length hypothesis near velocity maxima or minima, 

for according to equation (3.4) the turbulent viscosity becomes zero at 

such stationary points. In contrast, a real turbulent flow exhibits 

high levels of turbulent transport coefficient on the axis of a pipe or, 

as here, near the velocity maximum in the annulus. The discrepancy largely 

disappears when the swirl flow is appreciable because then the non-zero 
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gradient of (V
0 
 /r) will ensure a substantial level of p

t 
even when 

8U/2r vanishes. It should however be noted that no such shortcoming 

is exhibited with the k-c model of turbulence and the velocity profiles 

are quite smooth. 

Figure 20 shows that the swirling motion displays a quite different 

behaviour. Although satisfactory agreement is obtained for a swirl ratio 

c of 2.79 the numerical results exhibit nothing like the variation in 

profile shape that the data do as the swirl ratio is reduced. Indeed 

the experimental data superficially seem to suggest that as the relative 

swirl rate falls the effective transport coefficient for angular momentum 

falls likewise, in almost direct proportion. In other words the trans-

port coefficient associated with swirl is independent of the axial motion. 

Intuitively this implied result seemed so unacceptable that it was 

decided to re-examine a selection of the flows in which more attention 

was given to the "developing flow" regime. Here it must be noted that 

the computations are not represented as definitive computations of the 

developing flow situation principally due to the following reasons; 

(1) the grid is insufficiently fine near the inner tube to resolve the 

flow accurately near the start of the spinning section; (2) for stability 

reasons the spin rate was built up, only gradually, over a number of 

steps to full speed; (3) the mixing length distribution for fully 

developed flow does not accurately predict the flow development region; 

(4) the under-relaxation of viscosity may slightly delay the rate of full 

development. All except (1) would tend to delay the approach of the com-

puted flow to the fully developed state. Nevertheless, one may expect 

the predictions to display the correct general features of flow develop-

ment with, perhaps, the axial rate of development not matching precisely 

the experiment. Figure 21 shows for three experimental conditions the 

computed profiles of angular momentum at two intermediate stages of develop- 
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ment (about 50 and 90 hydraulic diameters after the start of the spinning 

section) as well as the fully developed profile. It is immediately evi-

dent that profiles at 50 hydraulic diameters (exact number about the 

same with the two turbulence models) are in virtually complete agreement 

with the experimental data. The predictions bring out clearly that the 

rate of approach to fully developed flow is dependent on the magnitude 

of the swirl ratio. It must be said, however, that the present results 

cannot strictly distinguish the effect of velocity ratio from that of 

mean axial Reynolds number. The latter parameter is known, however, to 

exert only a weak effect on development rates in flows without swirl so 

it is reasonable to expect its effect to be slight here as well. The 

reason for the rate of approach to fully developed state being dependent 

on the swirl ratio is that the higher the swirl velocity the larger the 

turbulence viscosity. The augmentation is especially large early in the 

development where the effects of swirl are confined near the core tube. 

The viscosity level is further augmented by virtue of the increase in the 

modulus of the Richardson number as the swirl rate is increased. The in-

creased viscosity thus raises the rate of radial propagation of angular 

momentum. With both the turbulence models the "developing" axial velocity 

profiles at nominally 50 hydraulic diameters were only slightly different 

from the fully developed ones shown earlier in Figures 17-19 and for that 

reason are not shown again. Of course, the axial flow had had 14 diam-

eters more of development than the swirling flow and the axial boundary 

layers grow from both walls of the annulus. Thus, since the coupling of 

the swirl flow with the axial is relatively weak, the latter displays al-

most fully developed state in about 50 hydraulic diameters, as nearly 

required for non-swirling flows. 

Finally Figure 22 shows the effect of swirl on the axial pressure 

gradient, normalized with respect to the value for no swirl. Evidently 
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there is a steady rise in pressure gradient with swirl velocity. For 

values of c below 2 the agreement with predictions for 13 = 5 and 

C = 0.2 and measurements is close; at the highest swirl rates, how-

ever, it appears that the present models somewhat overpredict the influ-

ence of swirl. There is a need for further experimental data at higher 

swirl rates to provide a conclusive test. 

In conclusion the numerical study of flow in an annulus with rotat-

ing core tube using both the turbulence models has shown that the number 

of hydraulic diameters needed to reach full development of the swirling 

flow decreases as the rotational velocity of the core tube increases 

relative to the mean axial velocity. At low spin rates, where the swirl 

velocity makes only a minor contribution to the level of turbulent vis-

cosity, the flow requires in excess of 100 hydraulic diameters to attain 

the fully developed state. Therefore, that of the Kuzay data only experi-

ments at the highest spin rates are near full development. 

3.6-5 	Concluding remarks 

From comparisons of prediction with experiment presented above it 

is clear that though some discrepancies have emerged the two turbulence 

models considered here have been quite successful in predicting the overall 

behaviour of turbulent boundary layers near spinning surfaces. For exter-

nal flows there is not much to choose between the two turbulence models, 

both yield nearly identical results. Computing times with the mixing 

length model are typically about 1/3rd of those required with the energy-

dissipation model of turbulence. For internal flows, however, some weak-

nesses became apparent in the mixing length model. The study of the 

annulus has shown that despite the success and conceptual simplicity the 

mixing length model lacks universality, for a different distribution of 

mixing length was required to predict this flow satisfactorily. Another 
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endemic shortcoming of the mixing length hypothesis near velocity maxima 

or minima has again been brought to light, for according to the hypoth-

esis the turbulent viscosity vanishes when the velocity gradient is zero. 

In contrast, real turbulent flows exhibit high levels of turbulent trans-

port coefficients at such stationary points. The energy-dissipation 

model of turbulence is free from such shortcomings, and required no 

changes in any of the empirically chosen coefficients listed in Table 2. 
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CHAPTER 4 

TURBULENCE MEASUREMENTS UN A ROTATING CONE 

Experimental data for turbulent wall swirling boundary layers are 

extremely limited. Many of these data have been obtained for Reynolds 

numbers which are less than fully turbulent and, in consequence, their 

value to the research effort on the development and testing of the tur-

bulence models is limited. The most useful data, as already mentioned, 

are probably the measurements of mean velocity near a free spinning disc 

by Cham and Head (7), and Parr's (8) measurements on a cylinder rotating 

in a uniform axial air stream. The present measurements are therefore 

intended to augment the limited available data for the class of axi-

symmetrical turbulent boundary layers on spinning surfaces. 

4.1 Description of the experimental rig 

The chosen geometry of the spinning surface here is that of a cone 

with vertex angle of 80 degrees. The same cone was used by Koosinlin 

(18) for his velocity measurements by a pitot probe. The cone was 

machined from four layers of 76 mm aluminium plates, secured together 

by internal screws. The maximum variation recorded when the cone was 

slowly rotated and its surface 'clocked' by dial indicator was ±0.025 mm. 

The cone was driven by a synchronous motor through a timing belt and 

pulley arrangement offering a wide selection of precise rotational speeds. 

The cone half-angle of 40 degrees was sufficiently large to ensure 

the development of a boundary layer on its surface when rotating in stag-

nant surroundings. The substantial length of its conical surface of 

35.6 cm permitted a significant range of fully turbulent spin Reynolds 

numbers to be attained. Figure 23 shows the Reynolds numbers provided 

by the apparatus as a function of surface position and rotational speeds 
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up to the maximum safe speed for the cone of 1500 rpm. The extent of the 

laminar, transitional and turbulent regimes as established by Kreith et 

al. (30) are indicated on the figure. To avoid spurious air currents 

and to keep the measurement area free from smoke and dust particles etc. 

the cone was enclosed in a 10' x 10' x 10' polythene cubical. Photo-

graphs 1 and 2 show the conical surface and the cubical respectively. 

4.2 Instrumentaion and operating procedure 

A simple schematic line diagram of the hot wire signal processing 

equipment is shown in Figure 24. Two constant temperature series 55A01 

DISA anemometers with 5 m type 06A107 cables were used 	the transducers 

were DISA platinum plated tungsten55A25 straight sensor and 55A29 slant-

ing (450) sensor. The signals from the anemometers were linearized 

using DISA 55010 linearisers whose transfer function is 

E
out 

= K(E? - A)m  
in 

where E
out 

andEin are respectively the output and input signals. K, 

A and m depend on the setting; K being dependent on the gain, A on 

the zero setting and m on the exponent setting, although they are 

mutually dependent. The mean value of the signal was obtained using DISA 

52630 true integrator connected to a SOLARTRON LM1420.2 digital voltmeter 

T 	 in 
1 

E. dt. A value of 10-20 seconds for the time of integration, T, 
0 

was found to be suitable for the near wall region, but considerably longer 

times were needed for the outer region as there the relative turbulence 

levels become progressively higher and frequencies lower. The r.m.s. 

value of the signal was measured with a DISA 55D35 RMS voltmeter with 

adjustable time constants. The output voltage from RMS voltmeter was 

measured with a SOLARTRON LM 1420.2 digital voltmeter. The voltage meter 

(DVM). The integrator was set to give an output voltage equal to 
T 
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built into the RMS voltmeter was not used except to decide when a change 

in sensitivity was required. 

The fluctuating output voltage from the anemometer was continuously 

displayed on a dual beam oscilloscope during experiments so that any 

abnormalities in the signal could immediately be detected. Before use 

the anemometer coils required adjustment. A DISA dummy probe 55A0151 

was connected at the end of the 5 m probe cable in place of the probe, 

and the anemometer adjusted to give the correct readings in the turbu-

lence measurement mode. Fine adjustments were performed using the actual 

probe and the built-in square wave generator. These adjustments were 

made to produce optimum frequency response as determined by the output 

waveform displayed on the oscilloscope. Complete details of this adjust-

ment procedure are given in DISA instruction manual. This adjustment 

procedure was done only once; the anemometers were left in the stand-by 

position between all tests. With the anemometer set to the "resistance 

measurement" position, and all the resistance decades set to zero, the 

zero level was adjusted with a shorting probe to keep the d.c. motor 

near zero level. With the actual probe in position, the resistance was 

measured adjusting the resistance decades until the resistance bridge was 

in balance. 	Typical cold resistance values were 3.4-3.48 ohms. 

For the actual measurements an overheat ratio of 1.8 was used. The 

anemometers, being of constant temperature type, maintained the resistance 

of the heated wires at the set value (1.8 x cold resistance) automatically 

throughout the tests. 

The anemometers and probes were linearised and calibrated with the 

probe in the potential core of a calibration jet using a small on-line 

Digital PDP8E computer. The turbulence intensity was less than 2% and the 

velocity could be continuously varied from 0 to 50 m/s by a speed con-

troller connected to the d.c. motor used to drive the fan. The calibration 
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arrangement allowed rotation of the probe around a fixed point on the axis 

of the jet, one nozzle diameter downstream of the exit. The output from 

the linearizer was compared with the velocity measured by a pitot probe 

placed in the same axial plane as the hot wire probe but about 5 mm apart. 

Velocity was determined from the pitot tube data and the ratio of velocity 

and linearizer output calculated for several values of velocity between 

2 and 25 m/s. Exponent and zero settings of the linearizer were altered 

until a satisfactory linearization was achieved; some typical linearized 

values obtained are listed below: 

Table 3. 	Linearization of E and U 

( 
U 	(m/s) E (from linearizer, volts) E/U 

20.736 3.7935 0.1830 

19.077 3.4817 0.1825 

18.205 3.3134 0.1821 

16v739 3.0430 0.1819 

14.642 2.6511 0.1811 

12.418 2.2410 0.1805 

11.268 2.0342 0.1805 

10.140 1.8288 0.1805 

9.055 1.6359 0.1806 

Two representative linearized plots for the two probes are also shown in 

Figure 25. After linearization the relation between E and U is 

E = SU
eff 
	 (4.1) 

where U
eff 

= f(a)U with f(a) being dependent only on the yaw angle a. 

With the cosine law of Champagne and Sleicher (53) the above relation 

becomes 

E2  = S2U2(cos2a + K2sin2a) 	 (4.2) 
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Thus the calibration determines both the calibration constant S and the 

yaw factor K. For each value of velocity two values of a are needed 

to determine S and K. Because the cosine law holds only for a limited 

range of values of a angles of 30
o
, 45 , and 60

o 
were chosen as they 

are closer to the working values of a for the present-flow situation. 

For example, for a = 30°  and 45°  one gets for S2  and K2: 

SL 
	2E2(30) - E2(45) 	 (4.3) 

U2  

K2 	
3E2(45) - 2E2(30) 	 (4.4) 
2E2(30) - E2(45) 

Typical values of S2  and K2  were found to be 0.05 and 0.04 respectively. 

The probes were calibrated before and after a set of measurements. A 

deviation of less than 1.5% in the values of calibration constant S2  

was called satisfactory. The wires were cleaned thoroughly with CC14  

before and after each run. These precautions resulted in very consistent 

calibration parameters and reproducible self-consistent results. 

A special traversing mechanism permitted the probe to be moved 

parallel and normal to the conical surface in steps of 0.001 inch, and to 

be rotated through ±90°  with respect to a plane through the cone axis. 

The probe support holder could also rotate around its axis and had the 

ball and spring mechanism to be locked exactly on any of the four pairs 

of holes diametrically opposed; each hole separated from the next one by 

exactly 7/4 radians. The probe holder also had four lateral internal 

screws at right angles to the support axis. These screws were used to 

align the probe support on its centre line. This was accomplished using 

the straight sensor by adjusting screws until the mean value of the signal 

was independent of the position of the holder in any pair of holes. The 

probe support holder had the freedom to be moved vertically upward and 

downward, to be rotated in a vertical plane around the probe tip as its 
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fixed centre, and to be locked in any fixed position. This enabled the 

probe support holder to be aligned with the conical surface. The whole 

assembly of the traversing mechanism was fixed on a platform with four 

levelling screws. Photographs 3 and 4 show the complete assembly. The 

traverse was started when the probe support barely touched the conical 

surface, exact distance from the surface being determined by stainless 

steel feeler gauges. 

Measurements were made for five sets of conditions given in the 

table below: 

Table 4. 	Measurement parameters 

w (rpm) x/L Re 

893 0.855 3.67 x 105  

1111 0.855 4.55 x 	105  

1111 0.930 5.44 x 	105  

1429 0.855 5.88 x 	105  

1429 0.930 6.95 x 	105  

The mean flow direction at any location was determined by rotating the 

45
o 

sensor parallel to the conical surface until the mean value of the 

signal at two diametrically opposed holes was within one percent of each 

other. Therefore besides reading the angle 8 of the mean flow direction 

and the perpendicular distance from the conical surface fourteen different 

readings corresponding to seven different positions of the sensors were 

taken at each station; twelve (six mean values and six r.m.s. values) 

with the 45
o 

sensor and two (one mean value and one r.m.s. value) with the 

straight sensor. This information enabled at each location the values of 

u2 v2 w2,  
0 	.0 	 uv0, ve 14, and uw to be obtained as independent as 

possible of the errors connected with the positioning of the probe. The 
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seven positions of the wire in the streamline oriented co-ordinate system 

(see Appendix 4) used were: 

1. 	Wire coinciding with the OZ axis; 8 = 0 for example 
Zn 

U --> 	0 

PROBE 
X 

2.  Wire in the 	XOZ 	plane; 	8 = 45°. 

3.  Wire in the 	XOZ 	plane; 	8 - -45°. 
4.  Wire in the 	XOY 	plane; 	8 = 45°. 

5.  Wire in the 	XOY 	plane; 	0 = -45°. 

6.  Wire in the bisector of 	XOY plane and XOZ; 8 = 45°. 

7.  Wire in the bisector of 	XOY plane and XOZ; 8 = -45°. 

These seven positions gave respectively the mean and r.m.s. values of 

the signal (viz. El, E2, E3, E4, E5, E6, E7 and el, e2, e3, e4, e5, e6, 

e7) at each location. The details of the hot wire data processing analysis 

are given in Appendix 4. 

4.3 Presentation of results 

Figures 26-50 represent velocity and turbulence measurement results 

obtained in the present study. The spin Reynolds number range varies 

from 3.67 x 105  to 6.95 x 105  corresponding to rotational speed of 

cone from 893 rpm to 1429 rpm. Figure 23 shows that the dimensions and 

the speeds of the cone are large enough to ensure a substantial length 

of fully turbulent flow. At the lowest rotational speed, due to thin 

boundary layer, the normal distance traversed was only about z/r/Rei  

equal to 20 while at the highest speed it was more than 45. The present 
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hot wire data are therefore limited in the physical distance covered to 

the range: 5 < z/r/Re2  < 45 the lower limit being set by the physical 

size of the hot wire instrumentation and the upper limit being that 

beyond which the measured values lose significance due to the large rela-

tive turbulence levels in the outer part of the flow. 

The measured velocity profiles are compared first with the numerical 

predictions obtained using the k-c model of turbulence. At the lowest 

spin Reynolds number of 3.67 x 105  close agreement is observed between 

measured and calculated components of axial velocity in Figure 26. The 

calculated values with C = 0.2 for value of z/r/Re2  beyond 10 display 

progressively higher values and fall to zero more slowly than the pre-

dicted values of axial velocity without curvature correction. The 

measured values follow the latter trend. The agreement between the 

measured component of swirl velocity and that calculated with curvature 

correction is, however, satisfactorily close. The velocity profile data 

measured on the same 80 degree cone at Reynolds number of 4.55 x 105  by 

Koosinlin (18) and those by the present writer are shown in Figure 31. 

The former were obtained with a pitot tube, the latter with the hot wire 

anemometer. The hot wire data in this case are limited in the physical 

distance covered to the range: 5 < z/r/Re2  < 30. As pointed out earlier 

that beyond this outer limit the measured values lose significance due to 

the large relative turbulence levels in the outer part of the flow. The 

pitot tube data are also subject to more uncertainty in this outer region 

due to small dynamic pressures and the associated difficulty of finding 

the direction of the resultant mean velocity. The inclusion of the swirl 

correction term raises the turbulent viscosity in the outer region; con-

sequently the tangential and axial velocities are higher. For the tan-

gential velocity profile inclusion certainly improves the agreement with 

measurements, both sets of data essentially giving the same variation. 

For the component of axial velocity the two sets of experiments show dif- 
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Terences comparable with the difference between predictions with and with-

out the curvature term included. Somewhat better agreement is displayed 

closer to the wall, however, by the prediction including curvature 

effects. Figures 36, 41 and 46 display velocity profiles at higher 

spin Reynolds numbers of 5.4 x 105, 5.88 x 105  and 6.95 x 105  res-

pectively. It is seen that the inclusion of curvature correction improves 

the agreement with measurements of the tangential velocity profile. For 

the component of axial velocity profile, however, the overall agreement 

between predictions and measurements worsens with higher spin Reynolds 

numbers. Inclusion of curvature correction term gives satisfactory agree-

ment for z/r/Rel  greater than about 20. Below this value, however, 

there seems to be no substantial advantage with this correction. Making 

this curvature correction term a function of perhaps spin Reynolds num-

ber and/or normal distance might give better agreement. The reason for 

disagreement seems to be the concept of isotropic turbulent viscosity 

incorporated into the present models, while the flow especially near walls 

becoming highly non-isotropic as the swirl rate increases. It should be 

mentioned here that Johnston's (54) three dimensional boundary layer data 

also implied a strongly non-isotropic viscosity near the wall. As in 

non-swirling turbulent flows the mean velocity profile data also seem to 

indicate that very steep velocity gradients occur in the immediate neigh-

bourhood of the wall because stresses there are high and effective vis-

cosities low. 

Comparisons of the variations of turbulence kinetic energy for the 

present set of spin Reynolds numbers are provided in Figures 28, 33, 38, 

43 and 48. The measured turbulence energy level is rather higher near 

the cone surface than either calculated profile but falls more rapidly. 

Although turbulence energy level decreased with the ordinate z/r/Re2, 

the local turbulence level, relative to the local mean velocity, increased 
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substantially with z. At the relatively lower spin Reynolds numbers 

agreement with predictions is well within the experimental uncertainty. 

Evidently the inclusion of the swirl correction term in the dissipation 

rate equation raises the kinetic energy by diminishing c. The agree-

ment, consequently, with the experimental data at the middle set of spin 

Reynolds numbers considered here is better up to z/r/Re2  of approxi-

mately equal to 20. Thereafter, however, the data lie in between the 

predicted values with and without curvature correction. The measured 

turbulence energy level at the highest spin Reynolds number of 6.95 x 105  

is in less satisfactory agreement for z/r/Re2  up to about 30; there-

after somewhat better agreement with predictions is obtained for z/r/Re2  

to about 45. 

The turbulence intensities 	u2/11---rw,  A 
	

' v2/rw, and w2/rw, at differ- 

ent spin Reynolds numbers are shown in Figures 30, 35, 40, 45 and 50. 

Intensities, like the velocity profiles, are normalized with respect to 

the tangential velocity at the cone-surface. The ordinate as elsewhere 
1 

is z/r/Re2. It should be noticed that the intensities of the three vel- 

ocities differ appreciably from one another over the main inner part of 

the boundary layer. The degree of anisotropy increases towards the wall 

and the condition of isotropy seems to approach in the remote regions of 

the wall. In this swirl induced flow in stagnant surroundings, not 

unexpectedly, the intensity of the circumferential turbulence velocity 

component v(; has the highest value; that of the radial component per-

pendicular to the surface w' has the smallest value. Although the com-

ponents do not show a maximum in the figures it seems that they reach a 

maximum value in the region very close to the conical surface. Since, due 

to the physical size of the hot wire instrumentation, the present measure-

ments were taken outside the near wall region no definite quantitative 

statements about the intensities in the constant stress layer can be made. 
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But it should be noticed that the intensities measurements shown here 

are in roughly the same proportion to each other as the relative turbu-

lence intensities data of Klebanoff (55) in a boundary layer along a 

smooth wall with zero pressure gradient and to the relative turbulence 

intensities data of Laufer (56) in a pipe flow. It should further be 

noticed that the present turbulence intensity profiles at various spin 

Reynolds numbers exhibit reasonable self-consistency. 

The shear stress distributions at different spin Reynolds numbers 

are displayed in Figures 29, 34, 39, 44 and 49. Self consistency of the 

profiles is again evident. Shear stresses here have been normalized by 

the square of the conical surface velocity rw. The shear stress vow 

has the highest value at the measuring station nearest the wall and then 

falls smoothly with increasing distance from the wall. Shear stress 

uw has the smallest value at the measuring station nearest the wall and 

displays some scatter. This also falls of with increasing distance from 

the wall. Interesting behaviour, however, is exhibited by the stress 

uvo. 	Its value increases for z/r/Re2  of about 10, thereafter it 

almost remains constant for z/r/Re5  of approximately 25, and then falls 

off with increasing distance from the wall like other shear stresses 

vow and uw

- . 

	Beyond z/r/Re2  of about 15 the shear stress uv
0

- attains 

relatively higher values than those of the other two components. 

Finally Figures 27, 32, 37, 42 and 47 display the coefficient of cor-

relation v
e 
 w/v'w' for the different cases reported here. A roughly con-

stant value of approximately 0.53 may be observed over 75% of the boundary 

layer with the coefficient tending to go to zero at the wall and at the 

outer edge of the boundary layer. This result is again similar to that 

found in high Reynolds number turbulent flow along a smooth wall with zero 

pressure gradient examined by Klebanoff (55). A value of approximately 
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0.5 is obtained for the correlation coefficient in the high Reynolds num-

ber turbulent boundary layer. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 The theoretical contribution 

The present research has shown that use of Prandtl mixing length 

hypothesis and the energy-dissipation model of turbulence lead to 

generally satisfactory predictions of flow near spinning surfaces pro-

vided the respective models are modified to account for the effect of 

streamline curvature. The results have shown that the swirling flow 

modification brings great improvement in predictive accuracy over the 

standard versions of both the turbulence models. For external boundary 

layers on spinning surfaces there is not much to choose between the two 

turbulence models, both models producing almost identical results. The 

mixing length model, however, with its simplicity and being much cheaper 

to use, is still to be preferred for external flows. For internal flows, 

however, the study of the annulus with rotating core tube has shown, 

that as simple a turbulence model as mixing length lacks universality, 

for a different distribution of mixing length is usually needed for each 

new geometry considered. Another endemic defect of the mixing length 

hypothesis near velocity maxima or minima has again been broughtto light, 

for according to the hypothesis the turbulent viscosity vanishes when 

the velocity gradients are zero. In contrast, real turbulent flows ex-

hibit high levels of turbulent transport coefficients at such stationary 

points. The energy-dissipation model of turbulence being free from such 

shortcomings is thus to be preferred for internal flows. 

There are someother shortcomings in the predictions wIth both the 

turbulence models at high swirling rates that should be noted. It has 

been shown that at high swirl rates the present models predict too fast 

a growth rate of axial momentum thickness along the spinning cylinder. 

The underprediction of the rates of mass transfer from the spinning discs 
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and cones perhaps finds its origin in a similar cause i.e. the effective 

viscosity becoming highly non-isotropic as the level of swirl progressively 

increases. It would be valuable to extend present experimental data of 

high Schmidt numbers to higher swirl rates to help resolve this question. 

Finally it may be concluded that to develop a model of turbulence 

for predicting swirling flows near walls which possess significantly 

greater universality than the present models one will require the aban-

donment of the effective viscosity concept. The most promising route 

seems to be one in which transport equations are solved for each of the 

non-zero Reynolds stress components. Models of this kind have been 

presented in references (61) and (62) and by a few other workers. In 

principle these models are capable of accounting for the non-isotropic 

features of swirling turbulent flow that have eluded the present models. 

Because of their much greater complexity however, they have as yet been 

subject to little testing. Indeed apart from the vortex flow predictions 

of (57) there seems to have been no calculations made of turbulent flows 

near spinning surfaces, an omission that ought soon to be remedied. 

5.2 The experimental contribution 

The experimental data obtained in the present study should supplement 

the scarce available data for swirling, turbulent boundary layers near 

walls. Some important points have emerged from the measurements. The 

measurements of fluctuating quantities yield results which illustrate some 

similarities between the turbulence structure of swirling boundary layers 

near walls and that normally found in high Reynolds number turbulent 

boundary layer flows. The degree of anisotropy increases towards the 

wall and the condition of isotropy seems to approach in the remote regions 

of the wall. Anistropy also seems to increase with swirl rate. 
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The hotwire data of the present study are limited in the physical 

distance covered to the range: 5 < z/r/Re2  < 45 the lower limit being 

set by the physical size of the hotwire instrumentation and the upper 

limit being that beyond which the measured values loose significance due 

to large relative turbulence levels in the outer part of the flow. The 

experimental difficulties associated with accurate positioning of the 

probe and its restricted access to the spinning surface suggest the use 

of perhaps advanced laser-Doppler anemometry techniques for turbulence 

measurements, especially in the immediate vicinity of the spinning sur-

face. 
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NOMENCLATURE 

Symbol 
	

Meaning 

A 	constant in the transfer function of linearizer. 

a, b, c, d 	constants in the linear approximation of the instan- 

taneous response equation of the linearized anemometer. 

a 	radius of fluid element from centre of eddy. 

parameter in modelled e equation. 

average drag coefficient for disc and cone, and for 

cylinder, i.e. 

8 

ifElTr 	r2UV
e 

sina dz/w2r5; 	UV
8
dz/wR2Uco  = o2e

/R 

o o 

respectively. 

C1, C2, C3 	empirically chosen coefficients in the modelled e 

equation. 

Cu 	coefficient in the definition of pt. 

cp 	specific heat at constant pressure. 

damping function in the mixing-length formula. 

DVM 	digital voltmeter. 

D
H 	

hydraulic diameter, Do  - Di. 

E 	linearised hot wire signal = E + e. 

e 	fluctuating component of the electrical signal. 

G 	mass velocity vector. 

H 	shape factor, for disc, 

8 	d 

iiV 

	V a 
	—) 

 
. 	u7,  d z 	..---(1 - 	) dz R   no 	no 

o 

h 	pitch factor; specific enthalpy. 

CC 

h 	stagnation enthalpy. 
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diffusional flux. 

K 	yaw factor; constant in the transfer function of 

linearizer. 

k 	turbulence kinetic energy = 2(u2  + v2  + w2). 

L 	length of cone measured in the x-direction. 

length scale of turbulence (e.g. mixing length); metric 

coefficient. 

MLH 	mixing-length hypothesis. 

m 	constant in the transfer function of linearizer. 

m. 	mass fraction of chemical species.- 

th 	mass flow rate. 

n 	exponent in the Collis and Williams law. 

Nu 	local Nusselt number = (5" x Pr/c 
P 
 (T

w 
 - T )p. 

x 

(3  Nu 	average Nusselt number = 2 	1-.(5" dx/r 
o  xo  x0  Pr/cp(T w  -T  00)p. 

p 	static pressure. 

Prandtl number. 

(511 	 heat flux. 

R 	radius of cylinder. 

r 	radial distance from axis of symmetry. 

Re 	spin Reynolds number, wrx/v. 

Re
t 	

value of Re at which transition occurs. 

free stream Reynolds number, U.R/v. 

ReM 	U
m
D
H
/v. 

Ri 	local swirl flow Richardson number. 

R. 	rate of generation of chemical species. 

R
t 	

turbulence Reynolds number, ok2/pe. 

6 	
momentum thickness Reynolds number, Ve6 111" 
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S 	calibration constant of the hot wire i.e. constant of 

proportionality between the cooling velocity and the elec-

trical signal. 

s 	distance between two points in the general co-ordinate 

system. 

Sc 	Schmidt number. 

SH 	local Sherwood number, M
w x Sc/p(m w - m c°). j, xo  

SH 	average Sherwood number = 2 
J 
 Mrdx/x r x Sc 

o o 	o 
0 

(m. 	- m. 	)P. 
J,14 	J,c° 

T 	temperature; integral time scale. 

shear stress. 

U 	velocity in the x-direction; instantaneous velocity. 

free stream velocity. 

U
m 	

mean axial velocity. 

71 	 mean velocity. 

u 	 fluctuating component in the x-direction; also component 

in the streamwise direction of the fluctuating velocity. 

u, ve, w 	fluctuating velocities in the x, e, z system. 

u' 	rms of u. 

u, v, w 	fluctuating velocities in the x,y,z system. 

V 	velocity vector. 

V
0 	

velocity in the circumferential direction. 

6 	
fluctuating component of velocity in the tangential 

direction. 

v'
0 	

rms of vo. 

W 	velocity in the z-direction. 

w 	fluctuating component of velocity in the z-direction. 

w' 	rms of w. 

x 	co-ordinate measured along the surface. 
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z 	co-ordinate measured normal to the surface. 

x, y, z 	co-ordinates of streamline oriented system. 

Greek symbols 

a 	angle made by the x-direction with symmetry axis; yaw 

angle of the hot wire. 

a 	parameter in equation (3.8); pitch angle of the hot wire. 

1" 	exchange coefficient. 

Y 	angle of the limiting surface streamline with the main 

flow direction i.e. tang = lim (U/Ve). 
z40 

6 	boundary layer thickness where U/U, = 0.99. 

62 	momentum thickness for disc, 

6 
1 	/- 

(rw)2 I  0 

momentum thickness in the x-direction for cylinder, 

6 
r U j ir  ( 1 - —

u ) dz. 
U co 

0 

swirl momentum thickness for cylinder, 

d
/' 
 UV

0 
dz/U mRw. 

0 

e 	rate of dissipation of turbulence energy. 

0 	angle of revolution about symmetry axis; yaw angle. 

011 	same as 62. 

k,A 	mixing-length constants. 

p 	dynamic viscosity of fluid. 

v 	kinematic viscosity of fluid. 

7f 	3.14159 

(rw - V0 
 )V

0 
 dz. 

6
2x 

a
20 
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p 
	 density of fluid. 

a 
	Prandtl or Schmidt number. 

at 
	turbulent Prandtl number for thermal energy. 

c/k 
	 turbulent Prandtl number for turbulence energy. 

a 
	turbulent Prandtl number for rate of dissipation. 

T 
	shear stress. 

(I) 
	 dependent variable. 

stream function. 

rotational speed; dimensionless stream function. 

swirl velocity/free stream velocity. 

tangential velocity of the inner cylinder/mean axial 

velocity. 

Subscripts 

eff 	effective value. 

I, E 	inner and outer edges of the boundary layer. 

free stream. 

j, k 	indices relating to i, j and k directions. 

inner 

j 	chemical species 

m 	 mean 

n1, n2 	normal directions. 

0 	outer, maximum 

0 	dependent variable. 

t 	turbulent, tangential direction. 

x, z, 8 	co-ordinate directions. 

quantity non-dimensioned by (T
w
/p)i and v. 

w 	wall value. 



-73- 

Superscripts 

..-. 
	 denotes time average. 

rms value. 

P1 	 per unit area. 
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APPENDIX I 

DERIVATION OF THE CONSERVATION EQUATIONS 

A general axisymmetrical co-ordinate system is illustrated in the 

figure below. The co-ordinates x and z designate the members of two 

orthogonal families of surfaces of revolution whit ia 0 represents the 

angle of revolution about the symmetry axis from a reference plane. 

REFERENCE PLANE 

THE AX I—SYMMETRICAL CO-ORDINATE SYSTEM. 
The distance ds between two neighbouring points in the field is related 

to the increments in x, z and 0 by: 

(ds)2  = (txdx)2  + (tzdz)2  + (ted0)2 	 (A1 .1) 

where 	2
x
,

z and 2, are "metric coefficients". If O is measured 

in radians, to  is then identical with the radius of curvature re. 

For axisymmetrical flows considered here a/ao terms will vanish, but 

not the differentials with respect to x and z. 

a,
x 

and t
z 

as 

(A1.2) 
xx x z 

The radii 

follows: 

r
x 

and 	r
z 

can be related to 

1 Ba 1 
DR,

x  
r ax 9. 	Q Bz  

and 
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Dk
z 1 	as 	1  

kDz 	k k 3x 
z 	z 

 
x z 

The radius r
0 

can also be written in terms of a and k's 

dr
0 
 = (sina)k

x
dx + (cosa)k

z
dz 

(A1.3) 

(A1.4) 

For the present axisymmetric flows, k
x 

= k
z 

= 1, k
0 
 = r and r

x 
= r

z 

CO. 

The Conservation Equations 

The general elliptic forms of the conservation equations for mass, 

momentum, stagnation enthalpy and chemical species for the class of axi-

symmetrical flows considered here are presented below in vector notation. 

The complete details are provided in Gosman et ca. (59). The massive 

amount of algebra has been left out in the following and all symbols are 

defined in the Nomenclature. 

The continuity equation: 

div G = 0 	 (A1.5) 

The momentum equation for each of the three directions: 

G.grad U = div Tx  + (UG - Tx).grad a + (VeGe  - T0,0) 

1 ap 
▪ 9. ax 

x 
(A1.6) 

G.grad W = div Tz  - (WG - Tz).grad a + (VeGe  - Te,_) 	 
s 

8 r 

1 Dp 
-  

kz Dz  

G.grad (ke  Ve) = div (keTe) 

G.grad ri = -div[J
hi  
+Eh

j  Aj  +J -(uTx  WT z+ve TO  )] 

sina 
r0 
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G.grad m. = -div J.
J 
 + R.

J 	
(A1.10) 

Equations (A1.6-A1.10) possess the common form: 

G.grad 	= -div Jo  + d 	 (A1.11) 

where 0 represents the dependent variable and d is the source term. 

J stands for the diffusive fluxes of enthalpy or mass; for laminar 

flows the following gradient-type laws hold 

Jh = -r
h 
C
p 
grad T 

= -Ti  grad m. 

For momentum equations (A1.6-A1.8), the diffusive fluxes correspond to 

the shear stresses and are represented by the symbol T. For laminar 

flow, the components of the shear stresses are connected with the 

various components of the gradient of velocity, viz. 

2 DU 
Tx,x = 

p[T157  + T2W  - - 2  div V] 
x 	x 

2 aw 2U 2  p[ az 	--r— - -5- div V] Tz,z 

2 	2 
= 	(U sina•+ W cosa) - 	div V] 

	

T9,0 	
3 

= T 
	= pr x 	(U )  .z 	)i  

	

x,z 	z,x . 	Lk
z 

3z. 	2,
x 

3 
3x 

 ( ZW 

z 
' 

r
T - 
k6 	r

y 
— = T 	P L 

	

x,6 	6,x 
6 

.20 a 	ve  
= T 	

1-41-57 (-2711  

	

z,8 	0,z 

In terms of the co-ordinates x, z and 8, equation (A1.11) takes the 

z 	z 

form 
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Gx 34) 	
G
z 34) 	a 

x 
ax

z 
az k 	2. Eax (2'2133 	) 4, 

	

)x, 	(2' 2'03  4) 	)3+  d  
x z 	

x 	,z (A1.14) 

Parabolic Forms of the Equations 

The general elliptic form of the conservation equations presented 

above may be considerably simplified for the special case of boundary 

layer flows where there is a single predominant direction of flow and the 

diffusive fluxes are significant only at right-angles to this direction. 

Thus, regions of recirculation are absent in boundary layer flows. 

Direction x is chosen to be the predominant direction of flow here. 

Diffusive fluxes therefore are negligible in the x direction. The 

equation for the conservation of momentum in the cross-stream direction 

(A1.7) is normally ignored for non-swirling boundary layer flows unless 

the surface curvature is large. For swirl velocities common in engineer-

ing practice, however, the last term in this equation is not negligible 

except for the special case of a spinning disc where it is zero since 

cosy = 0. The convection terms are most probably negligible and the 

diffusion term is certainly negligible as W is small everywhere. The 

following approximations are therefore valid: 

G.grad W = 0 , 

Da 
(UG - I ).grad a = 

UG
x 

k 3x 
x 

 

(WG - T ).grad a = 	
x 

z 
 

x 
3x 

With these relations equations (A1.5 to A1.10) reduce to 

WG 

re. 	n 1 	ro 0 171 1 
ax 	

+ az 
'-x-Erz' 

0 	 (A1 .1 5) 
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G
x 3U 	

G
z DU 	1 	a [ x

2, 
 0

r 	
au 

2
x 
3x 	2, az 

- 

2,
x
t
z
Z
O 

az
z 	

x,z az 

WG 	V G 
x as 	0 0 

• Rx 57 	
sins 

••• 
1 3p 

UG
x  as 	

V
0
G
6 _ 	 cosa 

k
z 

Dz
x 

ax 	Re 
 

_ 1''3p 

kx 3x  

(A1.16) 

(A1.17) 

G
x
3(2,

e
v
e
) 	G

z
a(t

6
V
8

) 	2 
1 	3 	x 6 

2, 3x 	k 3z 	Z
x
Z
z 	

az 	2 	r 	

3(it, 
0
V
6
) 

e,z az 

]- 2r
esz 

2,
x
2
e
V
0 
cosy (A1.16) 

G ^ 
x an 	Gz a; 	1 	 a 

	

+ _ 	[2, 2„ (3 + Ehj - UT 
2,3xiaz-2,k2,3zx6h 	

3  
. jj 	x,z 

x 	z 	x z 0  

- v T 
6 6,z 

(A1.19) 

G am. G am. 
x 	J_ 	a , 

x 
ax

z 
az

xz
Z 3z x

2, J
j
] 4-  Rj  

Equations A1.16, A1.10, A1.19 and A1.20 possess the common form: 

G
x 31)

G
z 	1 

+ 	= - 	 
x 

ax 	2
z 

az 	t
x 

 2, 
z 

 2,
8 
 3z [kxk6j(D,z3 	d  

(A1 .20 ) 

(A1.21) 

For the tangential momentum equation the dependent variable £0V0  pre-

served the common form of the equations. However, as pointed out earlier 

in Chapter 2 it is numerically simpler and convenient to employ V8/k8  

as the dependent variable on the right-hand side, the diffusion and 

source term are replaced by a single diffusion term: 

G 3(Z V ) 	G 3(2,
6 	
V
0
) 	2. 9,3 	3(V /k ) 

z 	 ] 
x 	0 0 	 1 	x 0 	a e  
2
x 	

ax 	Z
z 	

az
xz0 

3z
z 	

z,0 	3z 

(A1.22) 
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For the present class of axisymmetrical swirling boundary layers the 

angle a in the general orthogonal co-ordinate system has a constant 

value. The metric coefficients 2.
x 

and 2,
z 

are both equal to unity 

whereas 2
6 
 = r

0 
= r. Radii rx and r2 extend to infinity. With 

these simplifications the above equations reduce to the familiar forms 

presented in Chapter 2. 

DU U  
ax 	

3W 
— + — 

r 	3z r 
sina + — + W — cosa 

V2  3U 	DU 	_ Dp 4.  1 3 rr 	211
-] +p —e 

 sins pu — + pw 	= 
ax 	ax 	r 3zL  x,z 3zr 

V2  
- Bp 	0 
—  
az = p r 

—cosa 

B(rV ) 	3(rV ) 
3[1.3r 	

(V
e
/r ) 

 pU 	 pW 	 
ax 	az 	- r 3z 	z,0 	az 

a; 	
t a r 	an pU — + pW — = 	r(F — + 

UTx,z 
+ VT

0,z)] 3x 	az 	r az 	h az 	6 

(A1.23) 

(A1.24) 

(A1.25) 

(A1.26) 

(A1.27) 

am 	Dm 	1 	r 

j 3z, 
am 

pU 3x 
— + pW 3z 
	r az — = — — LrF 	 (A1.28) 

ThegenerationtermR.in the absence of chemical reaction is zero in 

equation (A1.20), and the contribution Eh.J. of the chemical components 
J J 

in the stagnation enthalpy equation is neglected. 

For laminar flows F 	and rz,0 simply represent the molecular 
x,z 

viscosity p while rh  and r. are equal to p/a; a is the Prandtl 

or Schmidt number of the fluid. 

For turbulent flowsx,z  and  rz,0  are the effective viscosity 

peff,andrh andr.are the effective Prandtl or Schmidt number des-

cribed in detail in Chapters 2 and 3. Except for the inclusion of peff  

and a
eff 

the components of the mean velocity satisfy the same equations 

as those which are described by the corresponding velocity components in 

laminar flows. 
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APPENDIX 2 

DERIVATION OF k AND e EQUATIONS 

The general conservation equations for axisymmetric flows presented 

in Appendix 1 form the starting point for the derivation of the turbu-

lence energy equation. Steps outlined in (60) by Launder and Whitelaw 

are closely followed in the derivation and modelling of different terms. 

The continuity equation in vector notation, presented in Appendix 1, 

can be written: 

div G = 0 	 (A2.1) 

expanding and using relations (A1.2) and (A1.3) one gets 

1  [3 (k 
tx2,09..0 ax 	z

t G 
6x

) + 	(.9, 31 G ) 	= 	0 
xOz 

 (A2.2) 

3G 	G
X 	

3G 
sins 

X 
 
z + z + z 

cosy = 0 	(A2.3) 3x 	r
z0 	

3z 	r
x 6 

Now the instantaneous values are decomposed into a time average and a 

fluctuating quantity, e.g. 

G = U + G' 
	

(A2.4) 

V = V + V' 
	

(A2.5) 

P = 15  + 
	

(A2.6) 

For simplicity overscore — is omitted in the following and the time 

average is simply represented as G, V or 13. Substituting (A2.4) and 

(A2.5) into (A2.3) yields 

DG 	G 	G 	 3G 	G 
+ — + x  sina + — + z — + — cosy + 

ax
x 
 rz 	3z rex 

3G' 	G' 	G' 	aG, 	G' 	G' 
x  + x +)! sina + —z  + z  + z  cosa = 0 	(A2.7) 

x r 
3x 	rz 	Dz 	r 6 	6 

Time averaging (A2.7) and employing the usual properties of fluctuating 
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quantities gives 

3G 	G 
x 	

aG
z 	z 	z 

G 	G
x 	x 

— — sing + 	+ — + — cosa 	0 	(A2.8) 
ax 	r

z0 	
az 	r

x 0 

Substracting (A2.8) from (A2.7) one gets 

aG' 	G' 	G' 	3G 	G' 	G' 

az
z  

+ — + — 
0 
sing + — + —z + — cosa 

ax 	r 	
x 

z 
	rz 
 r6 

= 0 	(A2.9) 

The streamwise momentum equation in direction x is written as (Ref.59): 

pW2-T 	pV2-T 	G U-T 	ak 
1 	 z,z 	0 6,0 	x x,x  x 

div [Z (GU-T 	 sin 
Qx 

 
xx

)] - 	 at. 
r
z 	

r
e 
	£2 	ax 

+ - - 
Z 3x 

= 0 	 (A2.10) 
x 

 

The first term on the left-hand side can be written as 

1 
d iv [Z

x 
(GU-T

x 
) ] 	I 	 — [Z Z 	(G U-T 	)] Z

xx 
k
x
2
z
Z
0 
 ax 	xze x 	x,x 

3 
+ 	2 (G U-T 	)] 
az 	x e z 	x,z 

or 

a, 	
G U-T 	) ak 

	

= — fG U-T 	) + 	x,x 	x 

ax x x,x 	k2 

	

x 	ax 

+ G 
x 
U-T

x,x  4. 
(G 

 x  U  x 
 -T 

 x,x 
 ) 

r
z 	

r
e 	az z x,z 

sins + 	(G U-T 	) 

2(G U-T 	) 	(G U-T 	) 
z  x,z 	z x,z 	

(A2.11) 

	

+ 	 + 	 cosa 
r
x 	

r
e 

Substituting (A2.11) into (A2.10) gives 

	

G U-T 	G U -T 
,x x 	x,x 	x x x  

U-T 	) + 	 sing + 
2-(G U-T 	) 

3x x x,x 	rz 	re 3z z x,z 

cosa 
2(G U-T 	) 	(G U-T 	) 
z x,z 	z x,z  

G W-T 
z z,z 

r
x 0 	

r
z 

G V-T 
0 0,0   Bina + —Dp = 0 	 (A2.12) 3x 
6 
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Substituting relations (A2.4-A2.6) into the above equation yields 

r 	
.(G +6')(U+W) - (T 	+T' 	) 

ax 
L(G x  +G')(U+U') - (T 	+T' 	)]+ 	x x 	 x,x x,x  

x 	 x,x xpx 	 r2 

(G x  +G')(U+U') - (T x
, x +1"  ) 	a x 	 x,x  

sina + 	+G')(U+U) - (T 	+T' 	)] r 	az z z 	x,z x,z 

2[(G +G')(U+U')]- (T 	+T' 	). 	(G +G')(U+U') - (T 	+T 	) z z 	 x,z x,z 	z z 	 x,z x,z 
r 	 r x 

	

(G 
z 
 +G')(W+W') - (T z,z +Tz,z' 	) 	(G86  +G 1 )(V0  +V') - (Te e8  +T'  0  ) 

sina 
r2 	 re 

+ — 3x (p+p') = 0 	 (A2.13) 

Multiplying equation (A2.13) by U' and rearranging yields 

[G ULP+GU12+G'ULP+G'U'U'-T 	U'-T' U'] - [(G +G')(U+W) x ax x 	 x,x x,x 	 x x 

	

G U1P+G
x
U' 2+G'UW+GIU'U'-T 	U'-T' U' au' 	x 	 x,x 	x,x  - (T 	+T' )] x,x x,x ax + r 

z 

G UU'+GU'2+G'UU'+G'U'U'-T U'-T' U' 
x 	x  x,x x,x 

sina 
re  

a
z  

[G z UU'+GzU'2+GpUl+G'UU'+G'U'2-T  x,z  U'-T' U'] 2 az 	 x,z 

- [G U+G U'+G'U+G'U'-T 	-T' 	] 31.1'  zzzzx,z x,z az 

GUU'+GU'2+G'UU'+G 1 U 12-T U'-T' U' 
+ 2 z 	z  

r
x 

G UU'+GU' 2GUU'+Gq172-T U'-T U' 
z 	z 	z  x,z 	x,z  cosa 
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G
z
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66 	80 	808 6 	0,0 	6,8 	

sina 
r
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ap 	3p' + U' 
a 
 + U' 	= 0 	 (A2.14) 

	

x 	ax 

cosa 
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The conservation equation in the cross-stream direction z is written 

as 

	

pU2-T 	pV2-T 
div [k

z
(GW-T

z
)1 - 	

x,x 	or 0,0  
cosa 

z 	 r
x 0 

G
z
W-T

z,z 
 Dk z 
	1 Dp 

9,2 	az 	TZ-; 3z 
z 

0 	 (A2.15) 

The first term on the left-hand side can be expanded i.e. 

0(GxW-Tz,x 
)] 

1 
div [k

z 	k kkk 	z 
Z X Z 

(GW-T )] 	= 	1 	1 	a 
k
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zsx
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Therefore equation (A2.15) becomes 
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Dx(G x
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r 
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z 0 

G W-T 	G W-T 
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r
x 
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x x,x 

G V -T 
8 0 0,8 	DID . 

cosa + 	0 	 (A2.16) 
re  r

x 

Again substituting the relations (A2.4-A2.6) into (A2.16) and multiplying 

by W' yields: 
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2
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x 	x 

 
x,x 	x,x 

rx 

G V W'+G V'W'+G'V W+GIV'W-T 	W'+T' W' 00 	00 	Be 	Oe 	0,0 	0,0  
r0  

cosa 

/2MP, G
• z 	z 	z 

W 	
z 	z,z 	z,z 	Dp 	3p' WW'+GW +GW +GW W -T 	W'-T' W' 

+W 	+ w' 
r
x 	 az 	az 

sina, 

= o 

(A2.17) 

The conservation equation for tangential momentum is written as: 

k
1 di = v[t

0 
 (GV

0 
 -T
0  )
] = 0 	 (A2.18) ),0  

or 
D  

2, 	

r 
Lk 2, 	(G V -T 	)1 + 	2, 2, (G V 	)] 	= 0 9, 	z 0 0 x 	x,e 	az xe 	z 0 0,z 0 2, x2, z e 

or 
G 
x  V  -Tx,0 	

G 
x 
 V 

	

(G V -T)+ 	 + 2 	-Tx,0 sins 
ax x 0 x,0 rz e 

G V -T 	G V -T 
z 0 0,z 	z 0 z,0 cosa = 0 	(A2.19) + --(G V -T 	) + 	 + 2 3z z 0 0,z 	r

x 0 
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Substituting relations (A2.4-A2.6) into (A2.19) and multiplying by V6 

gives: 

2
—(G V V'+G V'2+G'V V'+G'V'V'-T 	V'-T 	V') 
ax x 	x 	x 	0 x 	0 x,0 0 x,0 

avi 

- (6 V +G VV+G'V'-T 	-T', ) 
x 0 

x 
	x0 x,8 x0 ax 

+ (G V V'+G V'2+PV V'+G'V'V'-T , V'-T 	V')/r 
x 	0 x 6 	x 0 0 x 0 0 xe e x,0 0 	z 

+ 2(G V V'+G V'2+G'V V'+G'V'V'-T 	V'-T' V') sina/r 
x 0 0 x 6 	x 	0 x 0 0 x,0 0 x,00 	 0 

+ 1)--(G V V'+G V'2+G'V V'+G'V' 
az z60 z0 z6 z0 

V'-T' V') 
0,z 8 6,z e 

- (G V +G V'+G'V +G'V'-T 	-T' ) 
z8 z0 z0 z0 0,z 0,z az 

+ (G V V'+G V'2+G V V'+G'V'V'-T 	V'-T' V')/r 
z00 z0 zee zee 0,z0 0,z0x 

+ 2(G V V'+G V'2+G'V V4G'Vf‘P+T 	V'-T' -V")cosa/r 	0 	(A2.20) 
z 60 z6 	z0 8 z60 z,0 0 z,6 0 

Equations (A2.14), (A2.17) and (A2.20) are now added together. Convec-

tive, diffusive, productive and dissipative terms are explicitly written 

out below: 

Convective terms 

ax 
---(G 

x 
 U'2)+GxU'2/f  z +G 1112sina/r0 

	
a  

+ ---(G 
z
U'2) +26

z
U'2/r

x x 	3z  

+ G
z
U'2sina/r0 

	
a  

+ --(G 
x 
 W'2) + 2G

x
1412/r

z 
+ G

x
W2sina/r 

ax 	 0 

+ 14 
T.;z 	z 	x 	z 

'2) + G14'2/r + G1412cosa/r + ---(G V'2) 
0 	ax x 0 

+ G V'2/r + 2G V'2sina/r + —(G V'2) + G V'2/r 
x 	z 	x 	e 	

2 

az z e 	z e 	x 

+ 2G V'2  cosa/r Z 
	0 

If K' is set equal to (U'2  + W'2  + V'
0
2)/2 the above terms can be 

simply written as 

DV' 
0 
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2 
a
—(G 

X 
 K') + 2G 

X 
 K'/r

Z 
 + G 

X 
 W'/r

Z 
 + 2G

x
k' sina/r

0  + Dzz 
 K') 

DX  

+ 2G
z
kYr

x 
+ G

z
U'2/r

x 
+ 2G

z
K' cosa/r

e 	G 
z0  
V'2  cosa/re 

, 	ak' 
- u

z x ax 	az  

These can be further written as 

DG
x 	

DG 
+ G /r + Gsina/r + —

z 
+ G /r + Gcosa/r ) 

x 	 z 
= 2K' I

Dx 	x z 	0 	3z 	z x 	0 

3k 	DK 
+ (Gx Dx' + G

z 	
+ G

x
W'2/r

z 
 + G 

z
1.1 12/r

x 

'  

G 
ze  
V'2  cosa/re 	G 

x
V'2  sing/re 

Preductive and diffusive terms 

These terms are grouped as follows: 

UU' 
Dx 

DU 	3U' 	DU' 	3 	DU' 
+ G'U' — + G'U — G'U 	+ U' 	+ G'U 
x Dx x Dx 	x Dx 	3x 	z 3z 

' 	
3G' 

+ G'U' 
au 
—+ G'W DW —+ n,w ,  aw  

z 	3z 	x Dx 	-x-  3x 	
WW' ax

x 

3G' 

	

DW' 	3W' 	DW 	z 
- G'W 	+ W'—(G'W') + G'W —+ G'W' 	 + WW' 

x Dx 	Dx x 	z Dz 	z Dz 	Dz 

DV' 	ay 	 DG' 	ay' 
DW'  

- G'W 	+ W' -4G ,w , ) 	G'V --+ G'V' 	+ V V' 	G'V 
z 3z 	Dz z 	x e 3x

0 	
x 0 3x

0 	
0 	Dx - x 0 Dx 

DV' 	DV 	DG' 	DV' 
a 

+ V' --(G'V') + G'V 	G'V' 	+ V V' 	z 	G'V 	
0 

+ V' 
2

(G'V') 
0 Dx x e 	z 0 Dz 	z 0 Dz 	e e az 	z e 3z 	0 Dz z 0 

+ W' 	+ G'U'2/r + G'U'2/r + G'ULP/r 	G;UU'cosa/re  
Dx 	3z 	x 	z 	x 	z 	

x 
 

+ G'U'2  cosa/r0 
	x 
+ GIULP/r

z 
 + G'U'2/rz 

	x  
G'UU' sina/r

0 
 + G'U'2  sina/r 

x 	x 

- G'U'W'/r - G'U'W/r - G'W'U'/r - G'V" sina/r - G'V U' sina/r z 	z 	z 	z 	z 	z 	0 6 	0 	0 0 	0 

- G'V'U'sina/r + G'WW'/r + G'WW'/r + G'W'2/r + G'W'2/r 
0 	0 	x 	z 	x 	z 	x 	z 	x 	z  

+ G'WW'sina/r + G'W'2sina/r
0 
 +'G'WW'cosa/r

6 
 + G'W 2cosa/r 

+ G'WW'/r + G.W12/r - G'UW'/r - G'U'W'/r - G'V W'cosa/r z 	x 	z 	x 	x 	x 	x 	0 0 	0 



3T' 
x 

-U' 	,x 
 

DT' 
T' U' sina/r 	U' 	x,z  
x,x 	 3z 

T' 	U' cosa/r + T' U'cosa/r 
xpz 	6,0 Dx 
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- G'V'W'cosa/r + G'V V'/r + G'V'2/r + G'V V'sina/r + G'V V'sina/r 
00 	e 	x e e z 	x0 	z 	x e e 	6 	x 0 6 	6 

+ GPVP2sina/r + G'V V'/r + G'V'2/r + G'V V'cosa/r + 'V'V cosa/r 
x 0 	6 	z60x 	z0 	x 	z00 	0 	z06 	8 

+ GIzVP02cosa/r
e 	z6 

+ GPVP2cosa/ro. 

For the present class of axisymmetric boundary layers rx  and rz  

approach infinity and re  = r. Therefore the above terms can be simpli-

fied as: 

Production and diffusion 

3V V 
Dk' 	Dk' 	 DU 	 0 	0 

G' 	+ G' 	+ G'U' ( ) + G'V' ( 	- —cosa) - G'U'V sina/r 
x Dx 	z az 	z 	3z 	z 0 az 	r 	0 	0 

- G'
0
W'V

0 
 cosa/r + G'V'V

6 
 sina/r + G'V'V

0 
 cosa/r - G

6 
 V'U'sina/r 

x 8 	z 0 	0 

- G'U'V'sina/r - G'V'W'cosa/r + G'V'2sina/r + G'V'2  cosa/r 
0 	0 	6 6 	x 0 	z 0 

Dp' 	913 1  
+ U' 

Dx 	Dz 

or 

3 
Dk' 	

V 	V 
= G' — + G' Dk' + G'U' DU  + G'V' 	

o 	
o cosa) ( 	- -

.17
- 

x Dx 	z az 	z 	Dz 	z 0 az 

- pV'U' 
0

sina + U' P'  + W' 
e 	r 	Dx 	Dz 

Dissipative terms 

DT' 	 DT 
z,x 	 z,z 

- W' 	T' W'sina/r 	W' 	 
3x 	 zpx 	 Dz 

T' W'sina/r + T' 
0
W' cosa 

DT' 
- V' 3x

x,6 	2T' V'sina/r - 
8 	x,6 e 

T' 
6,z  2T' V'cosa/r . 

0 az 	z,0 0 

Now time averaging all the above terms yields 
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v av 
au 	 DK' = - G'U' ( --) - G'V' ( 	- 	cosa) - G' 

Dt 	z 	az 	z 8 3z
o 

-- cosa 	
z Bz 

' p 
- W' 3 
	

- Dissipation 	 (A2.21) az 

The complete discussion on modelling of different terms in the above 

equation appears in (60) and (61). The interaction between the mean 

and fluctuating motion leads to transfer of energy from the mean to the 

fluctuating motion, thus, representing production of turbulence energy 

by the first two terms on the right-hand side. Now the following 

approximations are made: 

au 
-G'U' = p

t
( 

av
0 

V
8 

z e 
-G'V' = t(3z 	

— coca) 

p
t
(r 	 

az 

D(V
e/r) 

(A2.22) 

(A2.23) 

The group of dissipation terms e is modelled as rbk312/k. Following 

the practice for non-swirling flows it is presumed that the diffusion 

of k by turbulent motions and pressure fluctuations obeys the gradient 

type law i.e. 

1 D 	Pt 3K 
Diffusion of k =—(r—) (A2.24) 

where a
k 

is a 'turbulent Prandtl number' for the turbulence energy, 

which is assumed to have a constant value. Such an approximation has 

previously been proposed independently by a number of workers, e.g. 

Prandtl (62), Emmons (63). 

With the above relations the complete turbulence energy equation 

for the present class of flows can be written: 

	

, 3k 	3K 	1 	db )  3K, 

	

pU — 	+ pvv 	= 	Lr(ii + 

	

ax 	az 	67 	
k 3z 

31/ /r 2 	302 aU 2  P
t 	z 

	(r 	
a z 

) ] - pc -(211 
Dz 

(A2.25) 
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The reasons for the inclusion of the extra term 2p( k 2 	
in the above 

equation have been pointed out in Chapter 3 and in references (47) and 

(61). 

Mixing length viscosity formulation 

It is interesting to note that if a local balance between the pro-

duction and dissipation of turbulence energy is assumed (i.e. convection 

and diffusion of k negligible, sometimes called the condition of 'local-

equilibrium') equation (A2.25) reduces to: 

aVir 2 
Pt  [(az

au
)
2 	

(r 
az 	) 	= PE 

From relations 

(A2.26) 

= k3'2 /Q 	and 	ut  = pk2k 

it can be seen that 

p t 
	1) 2,413 0113 	 (A2.27) 

2 here has the dimensions of a length scale. Equations (A2.26) and 

(A2.27) can be combined to give the final form of the mixing-length 

viscosity formula presented in Chapter 3, i.e. 

aver 2

1

2  

pt = 	
[(-az 
au
)
2 

A-  (r azu 	) (A2.28) 

The equation for the dissipation-rate of turbulence energy 

The exact equation for e in the general co-ordinate system con-

sidered earlier is a little more difficult to derive. The derivation in 

general tensor notation and in cartesian form has been provided by Priddin 

(64) and Jones (61) respectively. The formal derivation of the e-equation 

is therefore not included here. The modification of the Jones c-equation 



2 k 	1  
pe2 , c  

3x,3x. 
C 

N 3 
(A2.30) 
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to the present axisymmetric co-ordinate system is, however, presented 

below. The equation for the dissipation-rate of turbulence kinetic 

energy may be derived by manipulation of the Navier-Stokes equations. 

In cartesian tensor notation this may be achieved by first differentiating 

multiplying by the momentum equation for ui with respect to x. j, 

(2v Du./ax.) and finally averaging. The result is: 

26 	au. a2u. 
Dc  
Dt 	v ax.Dx. 	

2v u
m ax. ax.ax 

J J 	1 	m 

DU. 	au. Du 	Du. au.] 
2v 	j m +  

axm 	axi  ax. 	ax. 3x 
3 m 

au. Du 3u. 	(  Dzuj  )2  
J m J - 2v 	2v2 	 

3x. 3x. ax 	Dx Dx. 
a. 1 m 	m 

a 
3u. 	au

m Dp 
u 	v 

ax 	umm 3x. 	ax. 3x. 
1 	1 1 

(A2.29) 

The terms on the right-hand side (except first) of the above equation 

require closure assumptions to close the equation. There is no direct 

experimental evidence about any of the terms and closure therefore in-

volves a substantial amount of speculation. The proposed approximations 

for the different terms are detailed in (61), (64) and by several other 

workers. Here, the final form of the 6-equation is written, i.e. 

V E 	1 	1 4. 	J t, ac 	
aU. (a, U. 	au. 

DE _ @ 
[(11  + ;—.) -.T.-] + CIPt Tax 	Dx. ' ax. 

	

P Dt - ax. 	 j 	j 	1 

	

J 	c 	J 

2 

The empirical coefficients have been assigned the forms and values given 

in Chapter 3. 

When the above dissipation rate equation is specialized to plane 

boundary layer conditions it reducesIto: 
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P — = — [(P + 	+ Clp 	( ) 	C,) 
of 	3z 	a 3z 	t K @Z 	k 
Dc 	Pt ac 	c 	2 	pc2 

B2u 2 
+ 

Dz2 

C 

(A2.31) 

When the above equation is used for axisymmetric boundary layers the 

second and last term clearly need modification, which is as follows. 

The exact term in equation (A2.29) which requires modification is 

au. a2u. 
2v um Dx. Dx3x3   1 1 m 

a2u. ]2 

which is approximated to = -C3vvt ax
i
Dx 	or 

m 

Du. 
J  2v um Dx. Dx.Dx 

1 	m 

a 	
DU.
3 
 ]2. 

-C3vvt T): ( 'W  ) - [ 1 m 
(A2.32) 

For plane boundary layers the right-hand side simply reduces to 

3 312  
-C3vvt [T ' 

(
57' 

For axisymmetric boundary layers considered here it has been shown earlier 

that 

@U. au 2 	DVe/r
1 

ax 	(r Dz m 

Therefore equation (A2.32) becomes 

	

au.a2u a 	au 2 	DVe/r 
	 - -C3vvt  az [ (az) + (r 3z 	) 2v u

m ax. Dx.Dx 
m 

2 

(A2.33) 

(A2.34) 

Finally, substituting  relations (A2.33) and (A2.34) into equation (A2.31) 

yields the c-equation for the present axisymmetric, swirling  boundary 

layer flows, i.e. 



t 	e 
+ — 
a az 
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De 
pU 

ax 

BE 
pW — = 

az 
1 	a 
r 3z 

r(11 

2  
av

e
/r 

aU 
+ C p (—) + 

t az 	az 

DV ir 2.112  E2 	a 	U 2 	0  
— 

- C2 

p 

 K 	C3vPt 	a 
p

z
) + Cr 

az 

(A2.35) 

It should be noticed that the K-e equations presented here also possess 

the common form of equation (A2.21) i.e. 

	

G
x a(1) 	

G
z a(1) a 

J 	] +d 

	

x 
ax 	k

z 
az =

xz0 
az 	x 0 (1),z 

1 
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APPENDIX 3 

MODIFICATION IN k-c TURBULENCE MODEL FOR STREAMLINE CURVATURE 

When the k-c turbulence model as represented by equations (3.12), 

(3.13) and (3.14) was applied to the calculation of turbulent flows on 

spinning surfaces it was found that the strong influence of curvature 

was not well reproduced. This shortcoming in the model was corrected, 

as shown by equation (3.15), by the introduction of a "source" term in 

the transport equation for c. Physical support for the inclusion of 

such a term may now be inferred formally by the argument developed below. 

More pertinent details also appear in (64) and (65). 

Consider an idealised turbulent eddy circular in cross-section in 

the plane of rotation following a curved mean streamline as indicated 

in the Figure below. It is assumed that the eddy has length scale 2, 

velocity scale 0 and is undergoing an infinitesimal rotation of 4, 

during which a fluid element at 1, radius a from the eddy centre, 

moves to point 2. The effect of shear forces on the eddy development 

for the moment is neglected and the eddy is assumed to be small (i.e. 

k << r) and hence no influence of the eddy on the mean centrifugal 

pressure field is allowed. Although the mean flow will follow the 
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curved streamline pattern indicated in the Figure above there will be 

migration across the mean streamlines due to rotation of the body. In 

line with the idealisations mentioned above, it is assumed that the 

total pressure of the eddy fluid remains constant during translation. 

Thus 

P2 	11)1,2  = pi + ipVti 	 (A3.1) 

The radial distance travelled by the fluid element during rotation 4 

is a sin04. The static pressure at 2, p2 is therefore given by 

p2  = pl + a sincp4 3p-57 	 (A3.2) 

Thus, if the total pressure of the fluid element remains constant, sub-

stituting relation (A3.2) into (A3.1) yields 

pV2 	= pV2  - 2 a sincp4 2L:)  0,2 	6 	Dr (A3.3) 

Now, in general, V0,2  will be different from the value of Ve  of the 

neighbouring fluid at the same radius. Therefore the centrifugal force 

per unit area will differ from that of the surrounding fluid by an 

amount Apt given by DV
e  a sin0302  

, 
2 P(V + 0 Dr  

AP2 	r r  (A3.4) 

Substituting from (A3.3) and neglecting terms of the order 42  yields 

	

fV2 	 pV2  2pV BV 

	

e 	2 	
(p4 

Dio 	01 	0 	0 	Ocp Apt = 	a sin 	- 	 a sin 

	

r r 	Dr r 	r Dr 

or 

[r 
1 Bp 	

pv, av 
Apt = -2a simpdcp --1-- + 	e 

Dr r Dr (A3.5) 

 

On assuming that the mean flow is in radial equilibrium i.e. 

Dr = pV20/r it is thus readily seen that the centrifugal pressure differ-

ential acting on the element at 2 is 



or 

V 	 (rV0  ) 271.  ,3 0 
M = - —px 

3 r2 ar 
(A3.8) 
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[

2 
(31/
--E-  pV° ° 

1V„ 
42 = -2a sin04 	+ 

r2 
r p r (A3.6) 

in the radially outward direction. The torque acting on a turbulent eddy 

about its centre is therefore given by 

[ z 

pV pV DV 
0 0 0 (SM = -2a sin0Scp — 
r 	r Dr 
+ -- a sin0a 

Likewise, for all other elements in the eddy, the displacement by the 

turbulent motion will disturb the particles from their state of centri-

fugal pressure equilibrium. Thus, integrating for the whole eddy the 

net torque acting on it due to the mean flow curvature is 

pVn 	DVe 
	fQ 

M = -2 	V
e 

+ r 	- 
?" 

r2 	
Dr 

l f 
sin204)a2da 

(I)=0 	a=0 

(A3.7) 

It is assumed that for small eddy size Ve  does not vary greatly over 

the eddy. Formal integration yields 

27r 	pV
0 - 	 (—) (V + r 

VO
) 

3 
ar 

r2  

or simply 

V a(rV ) 
M. 0  ° 

r2 3r  

Now, the average angular momentum of the energy containing turbulent 

motions is proportional to WO. So if, in addition to a transport 

equation for k, the turbulence model also provided one for k29,2  one 

should expect this equation to be of the form: 

1 , 	1/ o(ev)  - c 	° 
D(rV

e
) 

 
Dt 	r2 °r 

(A3.9) 
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where coefficient C' would be determined from experiment and the dots 

denote the terms that would be present in a uni-directional form of the 

equation. 

In the present work the 'second' turbulence transport equation is 

one for the dissipation rate, e, not for k R.-.)  . It is, however, easy 

to transform from one variable to the other by noting that 

cc k3/2/2. 

Therefore equation (A3.9) becomes 

D(k2 K3  9/2 V0  D(rVo) 
C R  

E3 r2 ar Dt 

or 

912 V a(rV ) 
k 

3  
7/ 2  De 

U 	
0 

" 	
ar 0 Dt 7r 	

K

3 r2 	
+ 	 (A3.10) 

The coAant C is adjusted as necessary at each stage in the derivation. 

After further simplifying equation (A3.10) it is thus deduced that the 

transport equation for flows with significant curvature should run 

DE 
kV2  9(rV

0 
 ) 

=   

Dt 	C  r Dr (A3.11) 

In practice it is convenient to link the new 'source' term with the main 

62 
decay term in the 	equation. That term then becomes C2  7  (i-ccRi), 

and the complete dissipation rate equation may then be written 

Pt De 	
p c U. 	U. 	au 

De _ a 	 t 1 

Dt 	
ax [(p + —) 	+ C 	(a7

1 
 ax  

J. 
a a 
6 	J 	j 	j 

2 	a21.1 
	)

2 
-C2
„  

(1-CcRi) 	r 
-3vPt (Dx ax 

k j 

where Ri is the dimensionless parameter 

k2 Vo  a(rV0) 

E2 r2 , 	ar 

(A3.12) 
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which may be regarded as a Richardson number wherein the time scale of 

turbulence k/E. now replaces the mean-flow time scale appearing in 

equation (3.9). All the coefficients in equation (A3.12) retain the 

values assigned to them in Chapter 3 and the additional coefficient of the 

Richardson number term, C
c
, is taken as 0.2 on the basis of extensive 

D(rV ) 	
ar 

is positive are relatively more stable, and when 	Dr 
	 is negative, 

relatively less stdblethan the corresponding flow with straight stream-

lines. 

9(rV ) 
0 

computer optimisation. It should be noted that flows in which 	 
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APPENDIX 4 

HOT WIRE SIGNAL ANALYSIS 

A method of analysing hot wire signals by a linearized set up to 

obtain mean and fluctuating quantities is described and evaluated. The 

material presented here draws heavily on references (66) and (67). It 

has been pointed out in Chapter 4 that the transfer function of a DISA 

55E110 linearizer is 

E
out 

= K(E1
n 
 - A)m 
	

(A4.1) 

where E
out 

and Ein  are respectively the output and input signals; 

K, A and m depend on gain, zero and exponent setting respectively. 

The use of such a linearizer implies that the law of Collis and Williams 

(68) is to be employed for the anemometer transfer function, i.e. 

E
an 

= b U
n 	

+ b, 
eff 

(A4.2) 

Substituting the above relation into equation (A4.1).,the relation for the 

linearizer becomes 

m/n 
E = E

out 
= Kbilieff  + b2 - A (A4.3) 

By manipulating the setting of the linearizer to obtain m = n, A = b2 

and calling S = 1/Kbi yields the linearized relation 

U
eff 

= SE 
	

(A4.4) 

The velocities acting on a hot wire are shown in the Figure below. a 

here is the yaw angle and 0 the pitch angle. If the wire were infinitely 

long, only the normal components Unl  and U
n2 

would contribute to 

heat transfer. The cooling would also be independent of the pitch angle. 

In practice, however, finite length (about 200 to 300 diameter long) to 

diameter ratio and the wire supports give rise to non-zero tangential 

cooling and U
n1 

acts differently from U
n2 

(69). This can be incor- 
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porated into Champagne et al. (53) relation such that 

u2 	u2 	h2 u2 	K2 u2 
ef-F 	n1 	n2 

(A4.5) 

 

HOT WIRE IN GENERAL VELOCITY FIELD 

where K is the yaw factor and h the pitch factor. Ueff, the effective 

cooling velocity described by relation (A4.5) as indicated earlier is pro-

portional to the electrical signal for a linearized system. Therefore 

combining equations (A4.4) and (A4.5) gives 

U2ff 	
U2[cos2a(cos2a + h2sin2P) + K2sin2a] e 

= E2S2 
	

(A4.6) 

In order to separate the influence of yaw and pitch one can write: 

U
eff

(a) = U2(cos2a + K2sin2a) for P. = 0 
	

(A4.7) 

and 

U
eff(0) 	

U2(cos28 + h2sin2(3) for a = 0 
	

(A4.8) 

Equation (A4.6) allows experimental determination of the value of S, 

h, and K by measuring electrical signal for different velocities in a 

very low turbulent field and the corresponding velocity with a pitot 

probe in three different spatial positions at the same location, i.e. 

a = 0, S = 0; a = 0, S = 7/4; a = 7/4, 8 = 0. 
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The response equation 

The Figure below shows a wire placed in an xoz plane. a is the 

angle between the mean flow direction and the normal to the wire. 

Expressing the instantaneous velocity U in terms of mean velocity U 

HOT WIRE IN THE XOZ PLANE 

and the fluctuating components u 	v, and w the normal and tangential 

components of the cooling velocities are: 

U
n1 

= (rl + u) cosa + v sina 

U
n2 	

w 

U
t 	

-(U + u) sina + v cosa 

Substituting the above relations into equation (A4.5) yields the response 

equation as: 

U
eff 

= SE = 	[(U + u) cosa + v sina] 2 + h2.1,42 

+ K2[v cosa - (r.r + u) sina]2 
	

(A4.9) 

The mean velocity U is obtained from the signal E whereas the fluc- 

tuating velocities are obtained from the signal e2  = (E - E)2. 

Different methods to obtain these two signals from the above non—linear 

equation have been discussed in (66). The method outlined below follows 
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the same path with some modifications introduced here (70). 

Equation (A4.9) can be rearranged to give 

SE = 	
u 	v 

cosa(1 + — + — tana)  
U U 

(-) - K2(-v- - tana 	tana)2  
cos2a 6  

2 	2 w  h   

(1 + —u  + --V  tana)2  
L1 	U 

(A4.10).  

The above equation is linearized by recasting it into the following 

form: 

SE = "LT cosa(1 ++ 	tana)  
U U 

a  

2 	2  
+ b 	

h 	
W + K-9 

 ( V 
— - tana - 	tana)2  

cos2a 62  

 

  

+ d (-u- + -v- tana)] 	 (A4.11) 
il 6 

the coefficients a, b, c. and d are calculated by the least squares 

approximation such that 

2  h w2. ,) V 
+K' (— - tana - 	tana)2  

cos2a 1:12  

(1 + u  + -tana)2  
U 6 

h2  w2 
+ K2(-1- - tana - 7 tana)2  

cos2a 62  

(1 —
u 

— tana)2  
6 0 

_2 u V 	u V 
(1 + — 	tana) 	= c + 	+ — tana) - - 

6 	u 	L1 	L1 

+ b 

are satisfied for the actual range of working values for the present vari- 
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ables. 

Equation (A4.11) is expanded to give 

SE = TiCosa [(a+bcK2tan2a) + -u- (a + 3bcK2tan2a + bdK2tan2a) 
U 

+ (atana - 2bcK2tan2a + bcK2tan3a + bdK2tan3a) 

U 

u2  
+ ---(3bcK2tan2a + 3bdK2tan2a) 

U2  

v2  
+ ---(bcK2  - 2bcK2tan2a - 2bdK2tan2a + bdK2tan4a) 

U2  

w2 
+ --(bdh2/cos2a) + 11--\L(-4bcK2tana - 2bdK2tana +2bcK2tan3a.4bdK2tan3a) 

52 	U2  

3 
3  v 

+ 1-(bcK2tan2a + 3bdK2tan2a) + ---(bcK2tana + bdK2tana- 2bdK2tan3a) 

03  

uv3  
+ ---(bcK-  + bdK2  - 2bcK2tan2a - 6bdK2tan2a+ 2bdK2tan4a) 

53  

u2v  
( 2bcK2tana - 4bdK2tana + bcK2tan3a + 5bdK2tan3a) 

uw2  
(bch2/cos 2a + bdh2/cos 2a) + 

vw2
(bch2tana/cos2a + bdh2tana/cos2a) 

53 	 63  

u4  
---(bdK2  tan2a) +(bdK2tan2a) + 

11\2.
(2bdK2tana - 2bdK2tan3a) 

U4 	64 	54 

u3v( 2bdK2tana + 2bdK2tan3a) + -----(bdK2  - 4bdK2tan2a + bdK2tan4a) 
U4  

u2w2 	v2w2 
	(bdh2/cos2a) + 	(bdh2tan2a/c0e2a) 
54 	54 

2 
+ 
uVW 
-----(2bdh2tana/cos2a)] 
04 

(A4.12) 

Now the response equations to get U, "61, 	w; uv, uw 

- 

and vw 

- 

by 
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placing the hot wire in different positions are presented below. For 

instance, the response equation (A4.12) for a = 0 in plane xoz after 

time averaging reduces to 

v2 w2 
SE = 	[a + -7--(bcK2) + 	+ 2-2  --.12-(bdh2) 

52 	52 52 

where 

uw uw 
+ 	+ R] 

52 52 
(A4.13) 

uv2 	uw2  
(bcK2  + bdK2) + 	+ bdh2) + 

u2v2
(bdK2) 

63 	63 	64 

and it can be shown (70) that R representing the remaining terms in 

equation (A4.13) is negligible, being of the order '1,0.002. It has been 

mentioned earlier that rms values are evaluated from the relation 

e2 = E2 - E . The final set of equations for different wire positions 

to obtain the desired quantities is presented below. El., el etc. 

refer to the mean and rms value of the signal in different wire positions. 

a. 	Wire in the xoz plane; a = 0 

SEl 	 v2 	w2 	u2 w2 
= 	--2 [a + 	-(bcK2) + --2( bch2) + -2- --2-(bdh2) 

U U 

 

UW uW(2bdh2)] + --- -2 2 (A4.14) 

and 

U U 

u2 v2 	w2 
S2e2  = U [(1 1 	[(1-a2) + ___ .1. ___(K2 - 2abcK2) -2 	-2 	+ -2(h2 - 2abch2) 

U 	U  

U2 V2 	2 
	
v2  W W 	2 2 

+ 7-7(-2abdK2) + u2 	+ =7 --(-2bcK2bch2) 
UT U

T 	
U
T UT 	

u 62 
 

w2 -- 
2 w2 

+ ---(-bCh2bch2) 4. 2 
UV Uv 
- ---- (-2abdK2) + 21- (-4abdh2) - -2  

U U 	U U 	U2 U2  

 



, 	, 	7 2 	 , 7 ,2 	2 	2  77 1,1 
+ -2bch2bdh2) + 	.=i(-4bch2bdh2) 

U U U 	U U U 

▪ 2
2

_14.
2

11
2
_14_
'
(-bdh2bdh2) 	

uw uw uw uw(_ 
2 2 2 2 4bdh2bdh2) 2 2 2 2 

U UUU 	UUUU 

2 2 — U 	 UW 
▪ --2 — 

W UW 
-2 --2 --2( -4bdh2bdh2) 

U UUU 

b. 	Wire in the xoz plane; a = 45°  and a = -45°  

2 2 
re2
2 	

e
2
3)S 	= U [1 + K2-(a + bcK2) (a + bcK2] 

+ 
u!
41 + K2  - 2(a + bcK2)(3bcK2  + 3bdK2)] 62 

v2 
+ [1 + K2  - 2(a + bcK2) (-bcK2  - bdK2)] 72" 

U 

W2  n 
+ [2h4  - 2(2bch2)(a + bcK2)] 

U 

U2  w2 
1.
r 

-2-  -2- -Z la + bcK2)(2bdh2) - 2(2bch2)(3bK2c + 3bK2d)] 
U U 

V w 2 W2 

+ U 

	

	

[-2(a + bcK2)(2bdh2) - 2(-bcK2  - bdK2)(2bch2)] 2 2 
U 

77. 
w2 w 	I.  uw uw 

[-4(a 
2 

+ -2T(-4bch2bch2) 	— — -4(a + bcK2)(2bdh2)] 
U U 	

2 2 6  
U U 

vw v2[-4(a  
+ bcK2)(2bdh2)]  

U U 

(A4 .15) 

(A4.16) 

	

2 	2 2 	-2  

	

N2 
	UV - ep = U '72'4  2 - 2K2  - 2(a + bcK2)(2bdK2  - 2bcK2)] 

uv w2  
• 72- 	[-2(a + bcK2)(4bdh2)] 	 (A4.17) 

U U 
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c. 	Wire in the 

_2 
= 	U 	i 

xoy 	plane; 	a = 45° 	and a = -45°. 

[1 	+ K2 	- 	(a + bcK2)(a 	+ bcK2)] 

	

2 	2 

	

N4 	
2 

u2  
+ -2 [1 + K2  - 2(a + bcK2)(3bcK2  + 3bdK2)] 

U 

w2 
+ 

v2  

[1 + K2  - 2(a + bcK2)(-bcK2  - bdK2)] 

+ -2 [2h2  - 2(2bch2)(a 	+ bcK2)] 

U 

u2 v- 2 

U
2 

[-2(a + bcK2)(2bdh2) - 2(2bch2)(3bcK2  + 3bdK2)] 
U 2 

— — 
2 V2 w [-2(a + 	L-2(a + bcK2)(2bdh2) - 2(-bcK2  - bdK2)(2bch2)] 

U 

— — 
v2 v 	u

2 
 uv 2 v 

+ 77z -71 (-4bCh2bch2) + 	-4(a + bcK2)(2bdh2) 2 
U U 	U U 

vw vw 
4L + bcK2)(2bdh2)] 	 (A4.18) 

U U 

g - eip2  = U 62[2-20 - 2(a + bcK2)(2bdK2  - 2bcK2)] 

 uw v- 

- 

2.  + 
62 62 

2(a + bcK2)(4bdh2)] 	 (A4.19) 

d. 	Wire in the plane bisector of xoy and xoz, a= 45°  and a= -45°  

(i.e. wire parallel to the bisector of the 1st and 3rd quadrants 

of the xoz plane). 

2 	2 	__2 
(e6 + e71S

2 
 = U j [1 + K2  - (a + bcK2)(a + bcK2)] 

u2 
17 [1 	K2 - 2(a + bcK2)(3bcK2  + 3bdK2)] 
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v2  , 
+ 	[1 L1 + K2  - 2 	+ bcK2) ( -bcK2  - bdK2) [2h2  - 2( 2bch2) (a+bcK2) 

2U 

w2 
+ K2  - 2(a + bcK2)(-bcK2  - bdK2)] [2 -S2  - 2(2bch2)(a+bcK2)]  

2U 2  

vw 
+-2 [1 + K2  - 2(a + bcK2) (-bcK2- bdK2)-2h2+ 2(2bch2)(a + bcK2)]  

U 

U2 V 2 r 
I.-2(a + bcK2)(1bdh2) -2(2bch2) (3bK2c + 3bK2d) 2 

2U U2  

— — 
U2 w2 

 [-2(a l-2(a  +bCK 2 ) (1 bdh2) -2(2bch2) (3bK2c + 3bK2d) 2 
2U U2  

— — 
V2 v2 r 

I.-2(a + bcK2) (2bdh2)-2(-bcK2-bdK2)(2bch2) - 4bch2bch2  2 
4U U2  

- 4(a + bcK2)(2bdh2)]  

w2 w2 r 
2 --2 L-2(a + bcK2)(2bdh2) - 2(-bcK2-bdK2) (2bch2) 

4U U 

- 4bch2bch2  - 4(a + bcK2)(2bdh2)] 

- 2 w2 
[-2(a + bcK2) (2bdh2)-2(-bcK2  - bdK2) (2bch2) - 4bch2bch2  

202 

+ 4(a + bcK2)(2bdh2)]  

u2   U 	VW 
L
r 
-z(a + bcK2) (2bdh2) -2( 2bch2) (3bK2c+ 3bK2d)] 

U 

- 

U 

vw vw 2  
[2(a + bcK2) (2bdh2) + 2(-bcK2  - bdK2)(2bch2) 

U U 

- 4bch2bch2] 

— _ 
2 — 	• 	,,,,2 ----„ 

V UL  
+ — 	[4bCh2bCh2]+ y :-:-,1--  [4bch2bch2] -2 -2 U U 	 U: U 
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uv uv 
2 -2 [ 4(a + bcK2)(2bdh2)] 

2U 2U 

uv uw + -62 — j2 [4(a + bcK2)(2bdh2)] 

uw uw 
-2 -2 (-4(a + bcK2)(2bdh2)] 
2U U 

(A4.20) 

Equations (A4.14) to (A4.20) were solved by Gauss-Siedel (successive 

approximations) method to yield the desired quantities, U, u2, v2, w2,  

UV, uw and vw, in the streamline oriented system. Finally these 

quantities are transformed to the fixed co-ordinate system by simple 

trigonometric relations given in (69). 

Analysis of the propagation of error in measurement 

An analysis of the propagation of the random error is not difficult 

because the quantities to determine are of the same order of magnitude as)  

and are strongly linked with,the measured quantities provided,at each 

location a suitable set of orientations of the probe is chosen. 

It has been shown earlier that equation (A4.10) is linearized by 

a least squares approximation to the form given by equation (A4.11). 

Another approach suggested by Rodi (69) and Durst and Rodi (71) is to 

square the equation (A4.10) and then take the time average. Here the 

two methods are briefly compared. The complete step by step details can 

be found in (66). To keep the analysis brief only 	u2, v2, w2: and 

uv are evaluated. Final results, however, are tabulated for all quan-

tities measured here. To simplify the analysis further it will be 

assumed that no error is associated with the calculation of the pitch and 

yaw factors and that they are zero and 1 respectively. 

For the squared method of (69) the time mean response equation with 

the above simplifications reduces to 
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E2S2  - v2 	w2 +cos2a(U
-2 
 + u2  - v2) + sin 2a uv (A4.21) 

for a wire located in the xoy plane. 

To extract 	U. 

sufficient, 	namely 

u2, 	v2, 	w2 	and 	uv 	only four wire positions are 

1.  plane xoz; a = 0 

2.  plane xoz; a = n/4 

3.  plane xoy; a = n/4 

4.  plane xoy; a = -n/4 

Substituting these values into equation (A4.21) gives the set:

2  
-Js2 = (D2, -u2) 
1 1 

2 	
_2 

E22
2  = i(U + u2) 	v2 , 1w2 

(A4.22) 

E3
2 
 S3
2  

= le + U2) + 1V 2+ w2  + uV 

,2, 	_2 

	

i(u 	u ) „ 1v2 	2 	17 w  _ 7 
L-404 	

2 
 

where E2  . is the mean value of the squared signal from the linearized 

anemometer and S. is the calibration constant determined from the rela- 

tionship U = ES in a very low turbulence level flow field. For simpli-
2 — 

cityletM.=E.2  S • x. = U + u2;xj  = u? where j = 1 = v, j = 2 =w; 

and x4 = uv. The equation set (A4.22) then becomes: 

X' = 1(3M1 - 4M2 + M3 + M4) 

X2 = 1(-M1 + 4M2 - M3 - M4) 

(A4.33) 

	

2(-M1 	M3 	M4)  

x4 = i(M3 - M4) 

andthevariationSx.associated with the variation SM. is: 



(A4.24) 

6X3 = i(-6111 + SM3  + 6114 ) 

Xi 
16m11 	16m21 	I 6m3 I 	1 6m4 I 

	

4Mn 	 

	

` 	M2 +
113 	M

3 
	M4 	

114 M1  

xi 

(SX3 

x3 

m4 (SM 
(A4.27) 

M4I M 

I-M1 4112 

111 M3 

I -M1 M3 

(5x2 	MI  + 4M2  + M3  + M4 
(A4.26) 

- M3 - m41 	m 

(SM 
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dx1 = 1(36M1  - 46112  + 6M3  + 04) 

6x2  = 1(-dMi + 46112 - SM3 - 61'14 ) 

(Sx4 = 1 (03 - 04) 

Expressing this in terms of fraction variation e.g. 

- 3111 -  
4112 + M3 	-4 
	m 	3111  111  - AM --2 112  

▪ 

M3 11.3"1- 

and finally the limits of confidence interval will be: 

1 3m1 -4memem4 

Now it is assumed that the measurement error is always the same i.e. 

16mi l 	16m1 

M. 
1 

and therefore 

Xi 
6M1 	6M2 	03 1 

M4  114  

(SX1 3111 4112 M3 M4 csm 

1 3M1 4M2 M3 M4I M 
(A4.25) Xi 

Similarly for the other components (dropping the absolute sign for sim-

plicity) 

6x4 	M3 + M4 	611 

1

- 	

M3 - m41 	m X4 (A4.28) 
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From equation (A4.28) it can be seen that if M3  = M4  the fractional 

error is infinite. This is because in this situation the value of the 

shear stress is zero and even for small values the fractional error will 

be infinite. Now, u2  = xl  - U ; therefore 

6U2 6X
1 02  

U2 	u2 	u2 

or rewriting 

d 	
dxi 1 	

2 
u2  

) + 	
1  

2 	Xi  _2 — 2 
Lit/U2 	U U2/U 

(A4.29) 

_2 

	

Since U 	and u2  appear always linked, the information about U is 

obtained by linearizing the response equation by Champagne's (53) series 

development when a wire is located in the xoz plane with a = 0;  the 

resulting equation when third order terms are neglected is 

SE = 1.1-(1 + 1u2/U ) 

and following the above procedure it can be deduced that 

	

SES 	di" 

	

ES 	U 

_2 
if the second order term like TA(x2/a ) is neglected. Assuming E2t = E 

and ES = Mz one gets 

1 (5M 	SU 

= 

substituting the above relation into equation (A4.29) yields 

1 	3M1 + 4M2 4' M3 + M4 	1 

	

6u2 	 611 
' 	) i om   — — = [1 + 

— 2 1.3"1 - 4M2 + M3 + M4 I 	— 2 	M 
u2/U 	 u2/U u2  

117  
Finally, if the turbulence intensity 	 is denoted by T the complete 

U" 



M1 M3 M4 6w2 

w2 

SM  
1 -Ml 	M3 	M41 	11  

(A4.33) 

v2  

Sv2 	2112  + Mi 	SM
I

- 	

2112 - M11 	M 
(A4.37) 
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set for the evaluation of the confidence interval of the calculated values 

is: 

SU — 1 SM 
2 M 

du2 [(1  + 1 )  3M1 + 4112 + M3 + M4 	1 	SM 
T2) 13M1 4112 M3 M4I 	T2 	M 

u2 

(A4.30) 

(A4.31) 

6\12 
	

MI 4112 Mg  M4 SM 

v2 
	1 -m1 	4113 - M3  - 114I 	M 

	 (A4.32) 

M3 4' M4 OuV _ 	 SM 

uv 	1M3 - M41 	M 
(A4.34) 

'Following exactly the above procedure the corresponding set for the present 

method (equations A4.14 - A4.19) is 

	

617 	SM 
- 2 M 

	

Sue 	OM 
— M 
u2  

(A4.35) 

(A4.36) 

6w2 2M3  + Mi 	  SM 

I 2113 - M11 	M 
(A4.38) 

w2 

Suv M3 M4 6m 

1 113 M4I M 
(A4.39) 

UV 

where it should be noted that M = e1  Si. In order to determine SM/M, 



-119- 

it was assumed that each measurement carries an error of 1%. Therefore 

for the calibration rig 

U = ES 

1 651  _ 1 6E1  + 16U1  = 0.02 

	

S 	E 

and since M = E2S2 = e2S2 

	

6M 	16E21 	2  165  

	

M 	s 
E2  

1 6e2116S1  + 2 	- 0.05 

e2 

The values of Mi with the above assumptions for the squared method are 

determined from the equation set (A4.22) whereas for the present method 

they are obtained from equations (A4.14-A4.19). The results obtained 

are shown in the following Table. The values for the stresses uw and 

vw for the squared method are of the same order of magnitude as those 

for uv. More detailed results are given in (66). 

The present method has also been compared with the series develop-

ment of Champagne et aZ. (53) in (66), where for a turbulence level of 

50% it has been concluded that the present method is much superior to the 

series method. The accuracy of the series development method progressively 

becomes worse as the turbulence level rises. 



-120- 

TABLE. Comparison of random error in the measurements. 

, 

Turb. 
Squared 	method 	(.

,_O_
'-(..- * 	100) 
x 

ox Present method (— * 100) 
x 

level 1.7 u2  v2 w2 uv U u2  v2 
w2 — 

uv 
— 
uw 

— 
vw 

20% 2.5 544 285 140 72 2.5 5 15 15 15 15 15 

25 ,, 365 195 95 50 IP 11 
" 

PI 11 Pt PP 

30 II  267 146 70 37 ft IP 1P PI PO Pt 11 

35 It  208 116 55 30 IP PI PP PP IP PP II 

40 PI  169 97 46 25 11 IP Pt fp IP ft PI 

45 II  143 84 39 22 IP IP IP PP IP PP It 

50 IP  125 75 35 20 11 11 11 11 IP II IP 

55 11  111 68 31 18 IP IP IP PP 1P Pt P1 

60 PP  100 62 28 16 11 II IP PP It II IP 

65 11  92 58 26 15 11 /I IP tl 11 11 t1 

70 PI  85 55 25 15 PP ft 11 It II Pt 11 

Systematic errors in the approximated form of the response equation 

For simplicity the quantity inside square brackets of equation 

(A4.10) is represented by (1+A). The quantity A is always positive 

since all the terms are squared and the denominator is generally higher 

than the numerator either due to the quantity 1 or because K2  is 

very small (q,0.02). This quantity A has been approximated by Champagne 

et aZ. (53) by the first two terms of the MacLaurin series expansion. 

When the best linear fit is compared with the true value it is found that 

the maximum deviation for 0 	1 is 1.09% whereas with the series 

approach it is 6.06%, and for 0 .; A < 1.5 (corresponding to turbulence 

level of about 50%) the two values are 1.95% and 10.95% respectively. 

The denominator inside square brackets may be for simplicity written 

as (1+6)
-2
. When B approaches -1 the expression between brackets 

increases very rapidly, there an approximation of the quadratic type 
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poor representation in such regions. However, the term under the square 

root is weighted by (1+B) that tends to zero as rapidly as the denominator 

in the square root term. Therefore the influence of a bad representation 

is damped down. Ribeiro (70) has shown that with these approximations 

turbulence intensities above 50% could be treated. However, the occurrence 

of the reversion of the velocity direction will influence the probe to 

distort the flow field. Therefore measurement results with turbulence 

intensities in excess of 50% should be carefully interpreted because of 

the inability of the wire to handle reverse flow. 

Effect of finite size of the wire 

When an infinitely long cylindrical wire of resistance R is located 

in a flow field the heat balance equation reads: 

dTw 	E2 
c
m dt 

= RI2  - s = — - s (A4.40) 

where cm is the heat capacity of the wire, I is the current passing 

through the wire and S represents a sink term expressing the heat 

removed by the flow field. If the wire is maintained at a constant tem-

perature through adequate control of I equation (A4.40) simply reduces 

to 

E2  
R 

= s 	 (A4.41) 

R, now being a constant as it is only dependent on the temperature. Thus 

Te r 
in order to determine the transfunction of a hot wire of infinite length 

s has to be determined. The dimensionless groups that affect the steady 

heat transfer (expressed in terms of Nusselt number) are the Reynolds num-

ber, the Prandtl number, the Grashof number and the dimensionless overheat 

ratio of the wire (T
w-Ta)/Ta, Tw being the wire temperature and T

a 

the flow temperature. In most practical situations where hot wire anem- 
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ometry is used the buoyant effects are negligible. Thus 

Nu = Nu[Re, Pr, (Tw-Ta)/Ta] 

Several forms of the above relation have been suggested according to the 

type of fluid; for steady flow of air Collis and Williams (68) found 

that the experimental values are well correlated by the empirical 

equation 

Nu 
[ 

Tw-T 

 im 

a  
= 	[A + B(L )rl

] 
	- 1 + T

a 
(A4.42) 

d being the wire diameter. The coefficients A, B, n and m are inde-

pendent of the Reynolds number inside the limited range of Reynolds num-

ber, e.g. for 0.02 < Re < 44, A = 0.24, B = 0.56, n = 0.45 and 

m = 0.17; and for 44 < Re < 140, A = 0, 8 = 0.48, n = 0.51 and 

m = 0.17. The discontinuity at Re = 44 has been explained as due to 

the occurrence of vortex shedding (72). In actual situations the flow is 

unsteady. However following Corrsin (73) and Ribeiro (70) the steady flow 

approach is justified in the present situation. 

Equations (A4.41) and (A4.42) are only applicable to infinite wires. 

In practice their finite size makes the temperature distribution non-

uniform. If x is a co--‘ordinate along the wire and radial temperature 

gradients are neglected the conduction term changes the form of the 

equation (A4.40) 

nd2  d x 
	

de) --(kw d 
	

= RI2  - s 
4 	x (A4.43) 

0 is the local overheat (1-
w
-T
a
) now, R and s are local values 

dependent on 0. In order to integrate the above equation the two source 

terms must be expressed in terms of O. Champagne et al. expressing the 

sources to be quadratic expressions in terms of the overheat ratio pro-

posed a solution of the form: 
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0 
e 
0 

= f1[f2sinh f2x - cosh f2x] (f l 	1 ) (A4.44) 

where fl and f2 are functions of the velocity field, the current 

through the wire and the dimensions and electrical properties of the wire. 

Their measurements of temperature distribution agree within 10% of 

equation (A4.44). Champagne et al.'s results indicate that for typical 

probes with 2./d = 200 operating in typical conditions of overheat 

ratio of .8 the temperature is kept within 2% in a central region of 

100 diameters for velocities as low as 5 m/s. Another very important 

conclusion from their measurements is that for wires not perpendicular 

with the velocity the temperature distribution changes only slightly 

near the prongs. Thus the cooling that arises in such circumstances is 

not due to dependence on a of the end conduction losses but is due to 

cooling by the tangential component of the velocity. It is therefore 

for this reason that effective cooling velocity is written as 

U
eff 

= U
eff

(U
n 

Ut) 

Hinze (75) has suggested above relation of the form 

n 	I 
U(cos2a + U

eff 	
K2sin2a)2  (U2 	+ K4U2)2  =  

The above equation is still not satisfactory because of the influence of 

the shape and dimensions of the probe. The form of the equation which 

reasonably accounts-for these effects and used here has been suggested 

in (69) as equation (A4.6) i.e. 

U
eff 

= U[cos2a(cos28 + h2sin2a) + K2sin a 2 

or 

1 
U
eff 

= N2 
n1 
 h2u2

n2 
 K2u2]2 

The symbols appearing in the above equation have already been explained 

at the beginning of this Appendix. 
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APPENDIX 5 

COMPUTER PROGRAM MODIFICATIONS 

This Appendix describes the changes made to the original program 

GENMIX of Patankar and Spalding (14). Minor changes (such as changes 

in the specification of total number of steps etc.) are not pointed ou 

explicitly; these, as the exact programming of other changes, may be 

seen from the complete program listing following this guide. 

Chapter 0 

Extra variables added to the subroutine MAIN are: DUDY, PML, 

REPROF, REYT and RTU. DUDY simply indicates dU/dy. PML stands for 

Prandtl mixing length. REPROF indicates the value of. spin Reynolds nu 

bers at which profiles are desired. REYT and RTU represent turbulence 

Reynolds .number in Chapter 6 of MAIN.program. 

A 
Apart from these additions, the other changes were to increase th 

dimension of the profile quantities from 43 to 100. The common block 

GM4 was deleted, and in its place common blocks SWFT4, SOURCE, VISCO, 

VISC and AVER were inserted. The quantities in these blocks followin 

the general scheme of GENMIX are self explanatory. For instance EMUT 

stands for turbulent viscosity while EMULAM is laminar viscosity. An 

additionic
l  
ommon block, DATA, specified the values of REPROF. 

Chapter 1 -2 

These chapters: are essentially the same as in the original MAIN. 

Comment cards have been inserted to explain any changes. It should b 

noted that for geometries considered here the index KRAD takes the val 
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Chapter 3 

This chapter contains the depdndent variables used in the program. 

Two new dependent variables F(3,I) and F(4,I), respectively repre-

senting the turbulence Kinetic energy and its local rate of dissipation, 

have been introduced here. It should be noted that F(1,I) array here 

represents the product of circumferential velocity and radius. Other 

variables, with comment cards, are self-explanatory. 

Chapter 4 

This chapter lists the values of the material constants-used in 

the calculations. EMU(I), EMULAM(I), EMUTUR(I), EMUEFF(I), RHO(I) and 

a 
REYT(I) are also initillized here. 

Chapter 5 

In this chapter initial values of all the dependent variables are 

prescribed. W here stands for the angular velocity and RETRAN is the 

transition Reynolds number. XU and XULAST for the calculations are 

calculated from the relation 

Re 
x2  sinaw 

 

Simple initial profiles for U, V
6 
 and h are introduced here. 

Initial profiles of K and e are specified in the next chapter. 

Chapter 6 

This chapter differs from the one in the GENMIX version. The reader 

is introduced to Prandtl's mixing length model of turbulence here. Mixing 

length constants K and X are assigned the values 0.42 and 0.085 

respectively. The formulation of the turbulence model is given in Chapter 

3. FORTRAN statements appearing here are straightforward. The initial 

profiles of turbulence energy and its local rate of dissipation are also 
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calculated here. The initial profile of K is specified as a parabolic 

function of the boundary layer thickness, modified by a damping function 

near the wall, viz. 

k = k
max 	

- exp(-z /11)2][1 - 2Az* + Az*2] 

1 - k
edge  

pC3 
where z* = z/z

edge
;  K

max 
= --r and A - 

k
max 

For the initial profile of dissipation rate it was assumed that 

= C pk2/1.1t 

where C 	was taken as 0.09. It has been mentioned already that in all 

the cases examined here the predicted flow behaviour was negligibly 

dependent upon uncertainties in the prescribed initial profiles. 

It should be noted that the values given to k and 	for wall 

and external boundary nodes are very small, i.e. F(3,1) = F(4,1) = 

1-E-20 and F(3,NP3) = F(4,NP3) = 1.E-20. FORTRAN statements to print 

the initial profiles of k and 6 are also included here. 

Chapter 7 

Here the size of the forward step DX is simply calculated as 

DX = FRADX*Y(N) 

where FRADX is assigned some value (0.06 in this case) in Chapter 2 of 

MAIN. There is another criterion listed here to control the step size, 

i.e. 

1  = (pT) (11.  = dx 	100 

but in all the calculations presented here the first criterion was suf-

ficient to control the step size changes. 
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Chapter 8 

This chapter is much shorter than that of GENMIX, because the 

variety of boundary conditions are not required for the present case. 

The I-boundary is always taken to be a wall - the E-boundary may be a 

wall or a free boundary. TAUI, TAUE, RMI, RME, INDI, INDE, AJI(J) and 

AJE are set here. FORTRAN statements expressing the formulation of 

cross-stream pressure gradient also appear here in array SU(1,I). It 

is recalled that 

Dp = 
pVL 
 0 

cosa 
az 

If the value of Dp/ax is known along the I boundary, the value along 

any line is simply 

z. 

,, 	1 P, 
-- = - - 3x
P1  i 	ax 1 	

ax I 
,D 	

f 1 2 
y 

l 	
e 
cosadz 

To overcome the difficulty of not knowing the changes in Ve/r at the 

grid point where ap/ax is to be evaluated the rate of change appro-

priate to the previous interval was taken, not merely as a first guess 

but as the final value. Simple trapezoidal integration scheme is used 

to formulate the above expression into FORTRAN statements. 

Chapter 9 

This chapter is considerably shorter than that of GENMIX, and con-

tains nothing new. A criterion to control step size by a simple entrain-

ment formulation appears here but was never used in the present calcu-

lations. 

0 
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Chapter 10 

Chapter 10 provides the output from the program. Self-explanatory 

expressions for the station variables such as Reynolds number and Nusselt 

number are given here. Subroutine PROFIL to print profiles of the depen-

dent variables is also called from here. 

Chapter 11-12 

The operation of these chapters is similar to that of GENMIX except 

the program termination statements of Chapter 11 have been absorbed into 

Chapter 12. The statement CALL STRIDE(3) also appears here. 

Subroutine AUX 

This subroutine lists all the steps in the calculation of turbulent 

viscosity pt  by the K-6 model of turbulence. Source term arrays SU, 

SD, SUU and SDU for the variables are also filled in this subroutine. 

The operation of this subroutine is as follows. 

The first sequence of statements (1-10) gives the values of all the 

constants used in the k-c model. The formulation of turbulent viscosity 

is presented next as: 

p
t 

= C pK2/6 

where 	Cu  = 0.09 exp[-3.4/(1 + Rt(50)2] 

The FORTRAN statements expressing these expressions are straightforward.• 

The value of turbulent viscosity calculated at cell boundaries is then 

added to the laminar value already in array EMULAM. The effective Prandtl 

numbers are calculated next. For later use p
eff 

is modified by multi-

plying it by r/Sy. 

The entrainment rate RME is calculated next in the same way as in 

GENMIX, except it is controlled by the circumferential velocity here. 
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The remaining sections of the subroutine calculates source terms for 

all the dependent variables. The DO loop 84 calculates the source term 
pV2  

-dp/dx + 	simm for the streamwise momentum equation. Statements 220 

to 242 fill source term arrays for the 	and m equations. Source 

terms for K and c equations are calculated next. The source term 

arrays SU(3,I) and SU(4,I) are set to zero first. The variable DUDY 
dV0/r 

is used to represent dU/dz while DVDY is 	
dz 
	 . D2UDY and D2VDY 

similarly represent second derivatives. DKDY represents dk2/dz. The 

values of these derivatives are calculated separately for mid regions 

(3 to NP1) and I and E boundaries. The FORTRAN formulation of these 

expressions is straightforward and needs no further elaboration here. 

The DO loop 100 actually calculates source terms. The source term, for 

instance, for the k-equation is 

ay /r
)
2
- pc - 2u( .) 2  P

au
-)
2 	

(r 	 
t 3z 	az 	az 

PJ3 	DJ3 

Rate of production of turbulence energy by mean strain is calculated as 

PJ3. Similarly DJ3 represents dissipation of energy terms in the K-

equation. Similar notation (PJ4 and DJ4) is used to evaluate expressions 

in the 6-equation. The streamline curvature correction is included in 

the final calculation of DJ4 as 

DJ4 	DJ4*(1 - AR*RCHSON) 

where AR is the coefficient C
c and RCHSON stands for Richardson num-

ber. Both the source terms are subject to a stabilising procedure, whereby 

the total source for (I), Su  + Sp.cpc, is set to either Sucycpu  or 

2S
u 

- S
u
(1)/4)

u 
depending on the sign of S

u 
(= PJ-DJ). Finally, the 

sources are multiplied by rdy for the axisymmetric case. 
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Subroutine PROFIL 

This subroutine is used to print the desired output. First sequence 

of statement (10-11) defines the station variables. WRITE statement 23 

prints quantities like x, Reynolds number, Nusselt number and friction 

factor etc. The second part of this subroutine is concerned with the 

print out of profile variables like z(w/v)2, U and V0  etc. There 

is nothing fancy about the FORTRAN statements appearing here and are easy 

to understand. 

Subroutine WF 

This subroutine provides "wall functions" required by the Patankar-

Spalding procedure. Near the wall, since fluxes of momentum, mass and 

energy are significant only in the normal direction and the transport 

of these quantities by convection is negligible, the partial differential 

equations of Chapter 2-3 reduce to ordinary ones. In this Couette flow 

region these equations can be solved to yield simple algebraic relations 

which relate the fluxes of these quantities at the wall to conditions at 

the grid node adjacent to the wall. These algebraic relations are called 

"wall-functions". For example for the streamwise momentum equation it 

can be easily shown that 

Vn  2  
XW 	

pUz 
 z  (.1E -p 	sina) 

pU2 	2pU2  

Similar relations for the other variables V0, R and m can be readily 

derived. The flux of k is zero, and for e it is given by 

1 - 0.5*A3(1.-B3)*ez/Uk 
o Re 

where A3 and B3 are equal to 1.92 and 0.3 respectively. 
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Subroutine STRIDE 

This subroutine is the core of the Patankar-Spalding solution pro-

cedure, and as such has been left unchanged for the most part. Minor 

changes due to the elimination of the source term from the equation for 

swirl velocity, Ve, are, however, outlined below. 

The momentum equation for the swirl direction as explained in (14) 

may be expressed as 

8(rV
o) 	

3(rV ) 	D(V a 2  8  + 	0 
a + bw) 	[cr 

ax 	3w 	Dw 	3w 

It should be noticed that this equation differs from the standard form, 

in that rV
0 is the operand of the differentiations on the left and 

V/r is that on the right. This necessitates some modifications to the 

expressions for the finite-difference coefficients. The complete details 

are given in (14); here, the sequences of statements altered in STRIDE 

are listed. First attention is drawn to the mid-region coefficients 

AD, BD, and DF in DO loop 3004. According to the procedure described in 

(14) T: in FORTRAN statement for AD is multiplied by (r4./r4.4.)2. T* 

and T* are similarly modified in FORTRAN statements for BD and DF. For 

grid point 2, the modified ADF, BDF and DF appear after statement 8005; 

for NP2 they follow statement 2318. These modifications are straight-

forward and follow the procedure outlined in reference (14). 
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PROGRAM DISCON(IMPUTeOUTPuT,TAPES=INRUT,TARE6=OUTRUT) 

CHAPTER 0 	 DIMENSIONS AN 
DIMENSION PUDY(100)1PmL(100)9pEPROF(5),REYT(100),RTU(10n) 
CfrAmON/GENERALIAJE(10),AJT(10),cSALFA,DRDx(100),Dx,EmotiOn). 
IF(5+100),FS(,)nn).H.IFIN,INDE(10),INDI(10),ISTERIIIEST.IUTRAP,  
2KrX,KTN,KRAD.NOFQ.NRH,NP1INP;',NP3,0M(100),PE7,RRLD,PRFF(5,100), 
3PSTE.PSII.R(100),PHO(100),RNE,RHI.RN15,R1)(100),R2595D(5,100). 
4S6(e100),TAUE,TAUI0(1061,X0,XU,Y(100),YE,YI 

COMMON/SWFT4/AK.ALMGORRINTIIIRROF,ITR,ITURB,W,SNALFA,RENOLD 
COMMON/SOURCF/SUU(100),SDU(100),P(100),PP(100),DMD(100),OMP(100) 
COMMON/VISCIVEMUIAM(100),EMUTuR(100),EMUT(100),EMUEFF(100) 
CnMMON/VISC/RATTn(100) 
CAMMON/AVER/ENUR,ENSORE 
DATA PERROF/2.Eg.9,93E512,E6/ 

C 
C 	UNSHROUDED DISCS AND CONES IN STILL AIR, 
C 
C 	TURBULENCE MODFL5 
C 	1 MIXING LENGTH HYPOTHESIS, 

2 LOW RE ENERGYe4NISSIPATIoN 
C 
C 	PROGRAM 	BHARAt I SHARMA 
C 	JULY 1975 
C 
C 
CHARTER 1 	 CONTRO 

ITEST=M 
I6TRAP=0 
IPROF=1 
IPRINT=CO 

C 	HFAT TPANSFEPOTR=1*.. MASS TRANSFER,/TR=?„,„ 
ITR=1 
ITR=2 

C 	LAMINAR FLOW,ITUP8=1 	TURBULFNT FLOW,ITURB=2 
ITORB71 
IRASS=0 

CHAPTER ? 	  
FDADX=0,06 
N=90 
N=40 
N=70 
N61=N+1 
No2=N+2 
Np3=N+3 
Dm(1)=n0 
Om(NP1)=1.0 
POWFR=1,0 
PnWER=P.0 
Do 10 1.=2,Nr>p 

10 Om(I)=IFLOAT(I-?)/FLOAT(N))**(1.*ROWER) 
On 11 T=2tNR2 
omD(/)=0M(1.1).0m(I) 

11 0"(I)=0M(14 1)...0m(I1.1) 
ISTER=0 
LASTER=5000 
CSALFA=0.5 

GRID AND 
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COtLFA=0.86603 
CALFA=0.0 
SNALFA=5QRT(1.0-ESALFA*CSALFA) 

KRAD=1 
0\1=1 
KFX=2 

CHAPTER 3 	- 
C 
	.. 	 

U(I)=RADIAL OR AXIAL VELOCITY 
C 	Fil,1)=CIRCUmFERFNUAL vELOCITY*RADIUS 

F1201=STAGNATTON ENTHALPY 
C 	F(3.I)=TURBULENCF KINETIC ENERGY 
C 	F(40)=RATE OF RTSSIPATION 

Fs(i,T)=ciRcumFFpENTIAL VELOCITY, 
C 	FS(20)=TEMPERATURE 

NFO=3 
NriH=4F0-1 

CHAPTER 4 	MATERIAL CONSTANTS(S I UNITS) 
CR=60i2.4 
EmUNR3=1.225Ew5 
RHONP1=0.075 
EmUKIN=EMUNP3/RHONP3 
Ai:MG=45.085 
PR(1):=1.0 
PC2)=0.72 
H=PR(2) 
IF(ITR.E0.2) PR(3)=2.4 
ItITR.EQ.2) H=1.0 
DO 40J=1,NP3 
-PEF(1,I)=RR(1) 
PEF(2.I)=PR(2) 
R1:40(/)=RHONP3 
EMU(I)=EMUNP3 
EmULAm(I)=ENIUNP3 
EmUTUR(I)=o, 
EmUEFR(I)=EMULAm(I) 
EMUT(I)=0. 
RATIO(I)=0. 

	TUR6ULENCE MODEL CONSTANTS 

DEPENDENT VARIABLES 5E 

Pp(3)=1.0 
P0(4)=I•0 
PREF(2.I)=FR(4) 
PPEF(40)=FR(4) 
RrYT(I)=0. 

40 CnNTINUE 
CHAPTER 5 	 

 

INITIAL CO 

 

 

TVIALL=100•0 

  

C 

   

 

W:=3500.0*6.284/60.0 
Ws;2/38, 
Xu 	=5ORT(REPROF(1)*EMUK/N/sNALFA/W) 
XuLAST=SORT(REPRoF(3)*EMUKIN/5NALFA/w) 
Ri1)=XU*SNALFA 

XTFO.n55 
X1=0.443 
X1=X1*0.356*3.2gF18 

 

C 	RFTRAN IS TRANSITION REYNOLDS NUMBER. 
RrTRAN=3,E5 

 

    



RETRAN=2.8E5 
RFTRAN=2.4E5 
DO 51 I=1,NP3 
R(T)=P(1) 
DPDX(/)=0,0 
IE(OM(I).LT.,2) 	GO TO 52 
U(I)=(1.25*(10w0m(I))*R(1)*W 
GO TO 53 

52 Uti)=0m(I)*R(1)*W 
53 CONTINUE 

Foo1=(1.-om(T)4*,535)*w4R(1)*R(I) 
sit(1o)=o.n 
sii(1•T)=0.0 
SUU(I1=0.0 
SnU(I)=0.0 
SO(29I)=0,0 
So(20)=0.o 
F(20)=TOALL*(1in-Om(I)) 
Fi2,1)=CP*FS(20)+,5*(U(.1i*U(I)*(F(11I)/R(I))**2) 
IE(ITP•EQ.2) F(2.1)=1.0-0m(I) 

C 	INITIAL SOURCE TERMS FOR K..E 
SU(39T)=0. 
S;(3,T)q0. 
SO(40)=0. 
Sr(49/)=0. 
F(3,1)=1.E.,15 
F(4,I)=1.E1.15 

51 CONTINUE 
u(2)=171.25ou(3) 
1.02)=n.s*v.(3) 
u(vP2)=nes*u(NPli 
PEso=soRT(REpRorri)) 
DELTA=4,43*R(1)/PESO 
PrI=.443*RHO(NP3)*W*R(1)*is3/RESO 
POT=6,0 
PSIE=PSII+REI 
RrNOLr=w*R(1)*XU/EMUKIN 

C 	WRITE STARTING CONDITIONS. 
wRITE(6,59)RHD(Np3),EmU(Np3)10ELTAIPEI•xU,R(1),CSALFA,RENDLD,w 

S9 FORMAT(6H /NPUT412E10.3) 
CHAPTER 6 	 THERMODYNAMIC PR 

60 CoNTINuE 
ARSU2=ABS(U(2)) 
Ii*(ABSU2OT, U(3))U(2)=U()/ApSU2*0,9*U(3) 

65 CoNTINUE 
Dr 61 T=1,NP3 
ENU(I)=EMUNP3 
EmUEFE(I)=EMUTUP(T)*EMULAM(I) 

61 FS(10)=F(III)/R(I) 
63 CONTINUE 

C 	TRANSITION FROM LAMINAR TO TURBULENT 
IF(RENOLD 	PETRAN)G0 TO 69 
IPASS=/PASS4.1 

RRANDtt. MIXING LENGTH MODEL OF TURBULENCE. 
Do 62 icl,NP3 
IYL=NP3-I 



I(F(),IYL) OF. .0141F(191))G0 TO 64 
62 CnNTINUE 
64 

I1=12-1 
YL=Y(T1)4(Y(I2)*Y(I1))*(.01*n1.1)-F(1,I1))/(F(III2).F(1.11)) 
AKK=0.42 
ACMG=0.0B5 
Al:MGYL=ALMG0YL 
EmUNP1=EMU(NP3) 
RHONP=RHO(NP3) 
APLUS=EMUNP3*26m/SORT(RHONP3) 

On 55  T=3.NP1 
Y17)=Y(T*1)-Y(I) 
Ym=45*(Y(I)+Y(T+T)) 
RM=45*-(P(I)4,P(T+1.)) 
DV1OY7(0(I4, 1)-0(T))/YD 
DV3DY=RM*(FS(10+1)/R(I.1i ,F5(10)/R(I))/YO 
DUDY(T)=SOPT(DV16y**2•Dv3nY**7/PREF(1,I)) 
YRLUS=SORT(EMUEFF(I)*DUDY(I))‘Ym/APLUS 
TP=1.-FXP(..YPLUS) 
PmLIII=AKK*YM*T2 
IO(PML(I) .GT. ALMGYL)PML(/)=ALMOYL. 
EmUT(T)=RHONR3*PrqL(I)*PML(I)*DUDY(I) 
Ii(EMOT(I) .LT. 1.E-30)EMuT(I)=1.E'w30 
RATIO(T)=EMUT(V/EMULAM(I) 

C.,. 	w 	CALCULATION OF INITIAL K. PROFILES 
ii(ITURB .EQ. 2)(O  TO 66 
iF(ISTEP .LE. 5000)G0 TO 66 

NFO=5 
NPH=NFOrl 
RrNP310.0 
AK=3.4 
BK=50. 

EM=0.09 
F(3,1)=0. 
F(4.1)=0. 
F(30ND3)=1.E-20 
F(6,NP3)=1.E...20 
J=0 
TAUS=AJT(I)/R(1) 
TAUR=(TAU5*TAUS+TAUI*TAUI)**0.5 
FmX=TAUR/(PH0NP14+5ORT(CM)) 
Ck2=1.-F(3,NP3)/FmX 
th?1=.2.*CK2 
Z=Y(I)/Y(NP3) 
SKINUc=A85(TAUR/RHONP3) 
5/NU=soRT(SKINUs) 

YPLOqm1Y(I)*SKImU/EMUKIN 
F(3,I)=(1.-EXP(-(yPLUS/11.)**7))*FMX 
F(30)=F(3,I)*(1.+CK1*Z+CK2*Z4Z) 

IF(FmUT(I) 	0.)REYT(I)=0. 
57 CnNTP4UF 

IF(EMUT(I) .LE. F1.)G0 TO s8 
J:i4J+1 
T=ExPc.AK/(1.4PEYT(I)/8K)411,2) 
Rii(I)=REYT(I) 
4FYT(T)=EMUT(I)/(CM*T*EMULAM(T)) 
IF(A8S(PTU(I)/PFyT(I)-1,) .GT. 	.AND. J 	50)GO TO 57 

48 CO4TINUE 
Ii"(YPLUS .GT. 50. .AND. REYT(t) .LT. RENP3)REYT(I)=RENP3 
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I(RCYT(I) .GT. 6,)P(40)=RHO(I)*F(3,I)**2/(EmULAm(I)*REYT(I)) 
ICE(4,1) ,EQ. 00F(40)=E(4,T-1) 
SKINUS=ABS(TAUR/PHONP3) 
SiCINU=SORT(SKINus) 
Ai=F(30)/SKINu**2 
A4A=F(4,I)*EMUKTN/tSKINu*44) 
Wp/TE(6,56)I,Z,YpLUS,AA,AAA,RATIO(I),REYT(I) 
FORMAT(75,6E10,3) 

66 CrNTIMUE 
55 CONTINUE 

54 CONTINUE 
69 CONTINUE 

R(1)=xU*SNALEA 
CALL sTRIDE(1) 

CHAPTER 7 	 
ICISTEP .EQ, 0)nx=FRADX'Y(N) 
Dx=ERAOx*Y(N) 
Ii(ISTEP .EO, 0)p,0 TO TO 
TAUS=AJI(I)/R(1) 

TAUR=ITAUS*TAUS+TAUI*TAUI **0.5 
DxPLUS=150 
DxRLUS=200, 
OnX=EMUNP3/SpRT(TAUP*RH0NR3)*DXPLUS 
IF (DX .GT. DOX)Dx=DDx 
IE(DX .LT. XULAST-XU)G0 To 70 
Dx=XULAST.PXU 
Tr(Dx .LT. 1.E-10)DX=1,Em30 

70 _CONTINUE 
xr;;=Xu+DX 

CHAPTER B "" 	 • w  
I(ISTET.GT.0) nO TO 80 
TAUI=0,0 
TiUE=6,0 
RuI=0,0 
RUE=0.0 
O0 81 JP1•5 
INDICA -41 
INDE(J)=1 
Au (J)=0,0 
AJE1J)=0,0 

81 CONTINUE 
80 CONTINUE 

FORPIAR 

ADJUST LONGITUDINAL CON 

C 	CROSS STREAM PRESSURE GRADIENT TERM, PRESSURE AT E BOUNDARY KNo4N, 
Ir(CSALFA.E0.0,0) GO TO 85 
DO 82I=1,NP3 

A2 Su(1,7)=RHO(I)*FS(1,I)*FS(1,I)/R(I)*CSALFA 
pl(NP3)=0.0 
PCNP2)=P(NP3) 
DO 83 I=2,NP1 

L1=0.1 
83 P(L)=P(LI)-.5*(Su(190 4SU(19LT))0(Y(L1).,Y(L)) 

On P4 L=2,NP2 
1.(ISTEP.E0.0) RP(L)=P(L) 
DPDX(L):(P(L)-PP(L))/DX 

84 PP(L)=P(L) 
85 CONTINUE 

CHAPTER 9 	 TRANSPORT AND ENTRATNmENT PRO 
CALL AUX 
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ADJUSTMENT OF FORWARD STEP 

,E0, 0.  *AND. RME .EQ. 0.)G0 TO 86 
F6A=0,05 
D6X=FPA*PET/ABS(PMI.RME) 

.LT. DDX)G0 TO 86 
Dx=opx 
x6=xt.ox 

86 CnNTINUE 

CALL STRIDE(2) 
U(l)gno0 
041531=0,0 
F(10103)00,0 

F191)=W*R(1)*R(f) 
F(2,1)=CP*FS(2,1)4,5*FS(11,1)*FS(1,1) 
IP:IITP,E0.2)F(2,1)=1.0 	• 
F(2tNP3)=CP*FS(2eNP3) 
1(TTR,E092) F(2,NP3)=0,0 

F(391)=090 
F(3,NR3)*0.0 
F(491)=0,0 
F(401P3)=0.0 

CHAPTER 10 	  
RFmoLn=W*R(1)*x0/EmUKIN 
Ii.(ISTEP .EQ. rOnSUm=0.0 
MIJALL=AJ1(2)-(F(1t1)/R(1))*(AJI(1)/R(1))/PR(2) 
1F(ITP ,E0. 2)owALLLIAJ1(2) 
R(WALL=XU*QWALL 
IF(RENOLD .GT. RETRAN)ASUM=QS0M+RQWALL*DX 

C 110.119 	  
IF(REMOLD.LT,RERROF(IPROF)) GO  TO 120 

111 CONTINUE 
IPROF=IPRoF.01 
CALL PROFIL(1) 

C 120e.129 	  

   

   

 

ST 

 

120 T(ISTEP/IPRINT*TPRINT.NE.ISTEP) GO TO 130 
Ia'(RENOLo 'GT, PFTRAN)GO TO 123 
()Um.10,0 
EYUR=RowALL*PR(?)/(CP*TWALL*EmULAm(NP3)) 
I(ITP 	2)ENuR=POwALL*PR(;)/(F(2t1)*EMULAm(NP3)) 
ENSORE=ENUR/SORTRENOLD) 
OCAMtROWALL*XU 
GO ID 129 

123 CONTINUE 
OmEAN=(0LAm+P,*()sum)/XU**7 
EmtP=omEAN*xU*PP(2)/(cP*TwALL4EMULAM(NP3)) 
I4;(ITP .EQ. 2)ENuR=GmEAN*xUoap(2)/(F(2,1)*EmULAm(NP3)) 
E,AORF=ENUR/RENOLD**068 

129 CiALL PPOFIL(2) 
130 Cn4TINUE 

CHAPTER 12 	 
1F(REMOLD .GT. ),9E6)IFIN=1 
Ii;(1sTEPOT.LASTrP) IFIN=1 
IF(XU.GT.XULAST) IFIN=1 

nO TO 150 
CALL STRIDE(3) 

Gn TO 60 
150 CnNTINUE 



—138— 

STOP 

END 

SUBROUTINE AUX 

DIMENSION DUOT(100),D2UDY(100),DVDT(100),D2VDY(100),OKDY(100), 
1F3(100),RDY(100).REYT(100) 
COMMON/GENFRAL/AJE(10),AJI(10),CSALFA,DPDX(100)4DX,EMU(100)t 
IF(59100),FS(51100),H,IFIN,/NDF(10),INDI(10)1ISTEPOTESTOUTPAP, 
2KEX,KIN,KRAD,N4NFO.NPH,NP1,NR?INR3,0M(100),REI,PR(5)9PREF(5,100). 
3PSIE,FSII,R(100),RHO(100),RME.RMI,RN15,RU(100),R25,SO(5,100), 
4SU(5000)0TAUE4pTtUI,U(100),XD,XUtY(100)oYEIPYI 
COMMON/SWFTA/AK,OLMOtIRRINT,IpROF,ITR,ITURB$W.SNALFA•RENOLD 
COMMON/BOURCE/SUM100),SOU(106).R(100),PR(100),OMD(100),ONP(100) 
COMMON/VISCO/EMM1,AM(100),FMUT0R(100),EMUT(100),EMUEFF(100) 
COMMON/AVER/ENUReENSORE 

LOCA 

C. 	FOR UNSHROUDED ROTATING SuRFArES. 
C 	THE CIRCUMFERENTIAL VELOCITY DETERMINES THE LAYER THICKNESS 
C' 	AND CONTROLS THE ENTRAINMENT, 
C 1.40 	  

IF(ISTEP .GT. n)no TO 10 
CMFO.n9 
AK=3,4 
OK=56,0 
i•K=2,n 
Ai-=1.44 
A?=2.0 
Aq=1.0P 
”:00 
C121,0 
P;iT=019 

PO•F=J.3 
IPAsSro 

i0 CnNTINuE 

C 21-30 
IF(ISTEP .LE. 50160)(30 TO 12 
/r(ITuRR .E0. 1)P0 TO 21 
DO 15 T=3,NP1 
F(30)=ANAXI(F(1.I)00,0) 
F'(40)=AMAX1(F(4.I),1.E...1c) 
IF(E(4,I) .EO. 1.E.15)F(30)=n. 

15 CONTINUE 
IPASS=IPASS+1 
Do 1ST=3,NPI 
RrYT(I)=RHO(I)*F(30)**2/(F(4,I)*EMULAM(I)) 
Ts:EXP(...AK/(1.+REYT(I)/BK)i02) 
ZixEMUTUR(I) 
EmUT(T)=CM*T*RHO(I)*F(39I)**2/F(411) 

18 CoNTINUE . 
12 CoNTINUE 

..... 	VISCOSITY AT MID POINTS 

DO 19 T=2,NP2 
EmUTUP(I)=EMUT(T) 
EmULAm(I)=41.s*(EmuLAM(I*1)+EMuLAM(I)) 
EmUEFF(T)=FmUT(I)4EMULANI(/) 

MOD 
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19 EmU(I)=EMUEFF(f) 
EmU(NO2)=EmUT(N0 )+EMULAm(NP2i 
EmU(1)=EMULAM(1) 
Do 20 I=2,NP2 
IONE0 .EQ. PAGO TO 20 
PpEF(2,I),TEmU(T)/(EMULAm(1)/Pp(2)+EmUT(I)/PRT, 
PREF(3.1)=Emu(T)/(EmULAm(i)/PR(3)+EmUT(I)/PRTK) 
pREF44,I)=EmU(T)/(EMULAM(I)/pR(4)+EmUT(I)/PRTE) 

20 CONTINUE 
C 2130 	MODIFICATION OF EMU ARRAY 

21 On 22 T=29Npi 
22 EmU(I)=EmU(/)/(Y(I+1)-Y(I)) 

EmU(NP2)=EmU(NP2)/YE 
Do 23 I=2,NR1 

23 EmU(I)=EmU(I)*ne*CR(/)+W(I+l)) 

   

ENTPAINmENT 
U0m=n.01 
RAT=A8S(F(1,NP1).F(1,NP2))/F(1,1) 
Ii(RAT,LTipULIm) pmU(NP1)=EmU(NPI)*RAT/ULIm 

U(NP1) 

CHAPTER 2 	  
Do 84 i=2•NP2 

84 F(511I)=J-DPDX(1).RHO(I)*FS(1,I)*FS(1,I)/R(I)*SNALFA)/(RHO(II*U(I)) 
PO8=RFT/8.0 
SOU(2)=RD8*(3.*r(5,2)+F(5,3))40M(3) 
Do 86 I=3,NP1 

86 SUU(1)=PDB*(3.*F(S,1)*OmR(I)+F(51I-1)*OmD(I-1)+F(51I+1)*O1MI)) 
SuU(NP2)=PD8*(3.*F(59NP2).F(5,NP1))*OMD(NR1) 

C 4.10  

 

 

Ir(NEo.E0.2) GO To 235 
IF(ITR .EQ. 2) Go TO 241 
Do 22n I=1,NP3 
Sn(10)=U(I)*U(T) 

220 So(20)=F5(1,I)*FS(1,I) 
. DO 23n T=2,NP1 

Si;(3,i)=50(1.1.11-,S0(10)+So(20+1)-SO(2,T) 
Sn(3,7)=EM U(I)*SD(39I)*•5*(1.-1•fi'REF(2,I)) 
F=45*(FS(1,0).4psf1ti,l)) 

230 Su(30)=SO(391)-pmUEFF(I)4F5*F5*CSALFA 
S6(3,1)=0.0 
S6(3•NP2)=0.0 
DO ?4n  /=2,NR2 
S6(20)=0.0 

240 Su(20)=SU(3.11-5u(30-1) 
Go TO 235 

241 Do 243 I=2002 
_ 502,11=0.0 

243 Sn(29f)=0.0 
235 CONTINUE 

DO 24? I=1,NP3 
SoU(I)=0.0 

. 	S11(1,7)=0.0 
_ So(1,1)=0.0 

242 CONTINUE 

OtiTuRR *EQ. lin() TO 120 
Ii(ISTEP eLE. Soo0)00 TO 120 

POELIMINARIES FOR SOURCE TERMS FOR K-E 
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Do 1 i=2,NR2 
rMUT(I)PEMUTUR(f) 

Fi(I)=0. 
0(F(3,I) .NE. n0F3(I)grOtIi*SQRT(ABS(F(39I)))/ABS(F(30)) 
SU(30)=0. 
S6(391)=0. 
S6(40)=0• 
SO(4,I)=0. 

1 CONTINUE 
RDY(NP3)=0. 

DUDY(NP3)q0, 
D2UDY(NP3)=0, 
DVDY(NP3)=0. 
C*410Y(NP3)=0. 
OKDY(NP3)=0, 
DO 2 1=3,NP1 
RM=0.9*(R(I),R(T41)) 
8YR=Y(T+1)-,Y(I) 
PYM=Y(T)-Y(I..1) 
81;146Y04RYM 
Ti=BYm/(BY*BYP) 
15=PYR/(BY*SYM) 
RISYM=0.5*R(I)*(Y(I.1)wY(I..1)) 
DUDY(7)=TI*1U(T 4i)grU(I))4,T2*(U(T)..U(Ir.1)) 
DkJOY(I)=((UtIel)-41(I))/(Y(I.O.Y(I))...(U(I)...U(I...1))/(Y(I)....Y(I.,1))) 

1/(0.5*RY) 
DVDY(I)=RM*(T1*(FS(1,14,1)/R(I+1) ,-FS(1,I)/R(I))+T2*(FS(10)/R(1) 

1.F;S(10•1)/R(I.1))) 
02VDY(I)=RM*(((Fc(1,I+1)/R(I.1).FS(19I)/R(I))/(Y(1+1).Y(I))...( 
1F019T)/R(I).•FS(10...1)/R(j...1))/(Y(I)...Y(I..1)))/(0.5*BY)) 
DKOY(T)=T1*(F3(I.1)..F3(I))4,T2‘IF3(I)+F3(I.1)) 

2 CoNTINUE 

SPECInL TREATMENT OF HALF INTFRVALS AT I AND E BOUNDARIES 
	 T 	BOUNDARY 
0(ABS(F(3,2)) .SE. F(393) Op, ABS(F(4,2)).GE. F(4,3)1O0 TO 5 
R6Y(2)=0,5*(R(2)+P25)*YI 
0-1:0415*(R(1)+R2) 
DODY(2)=(0.5*(U(2)4, U(3)),-01))/YI 
OPUDY(2)q(CU(3)+U(2))/(Y(3)..Y(2))-TAUI/EMULAM(1))/YI 
DVDY(2)=RI* (0,;*(FS(192),R(2)*FS(1,3)/R(3))-Fs(111)/R(1))/y/ 
TiUs=AJT(1)/R(1) 
0voY(2)=(P1*(FS(1,3)/R(3)-FS(1,2)/R(2))/(Y(3)-Y(2))*TAus/ 
lEmULAm(1))/Yi 
DKDY(2)=ISORT(0.*(F(3,2)+F(3,3)))-SQRT(F(3,1)))/YI 
	 E BOUNDARY 

5 CONTINUE 
I'OCABS(F(3,NR2)) .GE. F(3,NP1) ,OR. ABS(F(4,NP2)) .GE. F(4,NR1)) 
160 TO 6 
RDY(NR2)=0.5*(R(NP2)+RN15)*YE 
RFt045*(RNI5eR(NP3)) 
DUDY(NP2)=CUINP31.0.5*(U(NP1)+U(NP2)))/YE 
DPUDY(NP2)=((U(NP2)P.U(NR1))/(Y(NP2)-Y(NRI)))/YE 
DVOY(NP2)=RE *(6.5*(FS(10P1)/R(NF1)*FS(I,NR2)/R(NP2))... 

IFS(1,NP3)/R(NP3))/YE 
D?VDY(NP2)=RE*(rS(IINP3)/p(NP3)...(FS(1,NR2)/R(NP2)...FS(19NR1)/R(NP 

11))/(Y(NR2).y(Np1)))/yE 
Dkrf(NR2)=CSORT(F(39NP3)).SGRT(.5*(F(31NP1)+F(30P2))))/YE 
	J=4 

6 CONTINUE 
EMUT(2)=0.25*EmUT(3) 
EmUT(NP2)=0.25*EMUT(NR1) 
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f"3,2)=0.25*(3.*i(3,2)+F(1113)i 
F(301P2)=0.25*(3.*F(3,NP2)+F(1,NP1)) 
r(492)=0925*(3.*F(4,2)+F(40)) 
F(4,NP2)=0.25*(3.*F(4,NP2) 4,F(40P1)) 

• J=3 
PJ3 	 • PRODUCTION 
0,13 	 DiSSIPATLON 
Do 106 I=2,NP2 
IP"(F(3,I) .L.F.O. OR. F(4,I) ,LE. 00G0 TO 100 
RJ3=EMUT(I)*(DUO!(I)*DUDY(I)+OVDY(I)*DVDY(I)) 
DJ3=RHO(I)*F(410)+CK*EMULAM(I)*DKOY(I)**2 
SO(30)=PJ3..D..13 
Sn(30)=•ABS(SU(1.1))/F(30) 
SO(3,1)=SU(30)+ABS(SU(391)) 

P44=AT*F(40)/F(30)*Pj3+,12*EmULAM(I)*EMUT(1)*(DUDY(I)*D2UDY(/)* 
10vDY(T)*(D2V0Y(I)+DVOY(T)/RM*iR(I4.1)-R(I))/(Y(I+1)-.Y(1)$))**2/ 
20;110Y(I)**2+0VflY(I)**2)/RHO(F) 
RFYT(I)=RHO(I)*F(391)**2/(F(4,I)*EMULAM(I)) 
FN3=1..,,R3*EXP(..(PEYT(I)/C3)**?) 
DJ4=A30T(49I)**24RHO(I)*EN3/E(3,I) 
PCHSON=0. 

Dj4=DJ4*(140.AR*PFHSON) 
SIJ(4,1)=PJ4..0J4 
S6(40)=—ARS(SU(ix.,I))/E(4,1) 
SU(40)=SO4,I)*ABS(SU(4,/)) 

100_CONTINUE 
00 110 J=3,NPH 
DO iln I=2,NP2 
Sii(J,T)74:SUCJor)*POY(I) 
Sn(J,T)=SD(J,I)*PDY(I) 

110 CONTINUE 
	REDFTINITION nr VAPTARLES RACK TO POINTS 2 ANO NP? 

pc) 111 J=3+NPH 
F(J,2)=44.*F(J.2)•F(J,3))/3s 

111 F(J,NP2)=14**F(J.NP2),..F(J,NP1))/3. 
120 CONTINUE 

RrTURN 
END 

SUBROUTINE PROFI[(1P) 
DIMENSION REYT(100) 
00MMON/GENERAL/AJE(10),AJI(10i9CSALFA,DPDX(100),Dx•E4U(100), 
1Ff5,100),FS(5,100),H,IFIN,INOF(10),INDI(10),ISTEP,ITEST,IUTRAP, 
2KFX,K/N9KRADIN,NrooPHOP1OP2OP3,0M(100),PEI,PR(5),PREF(51,100). 
3PSIE•PSII0(100),P110(100),RME,RMI,RN15•RU(100)0259SD(5,100). 
4S11(5,100),TAUE,TAUTO(100),XD,XU,Y(100)1YE,YI 
COMMON/SWFT4/AK,ALMG,IPRINT,I;ROFIITR,ITURB,WISNALFA.PENOLD 
CommON/soURCE/sW(100),SOWIOnhP(100),PP(loo)loMD(loo),OmP(100) 
CommON/vISCO/EmuLAm(loo),FmUTHR(100),EmUT(ion),EmUEFF(100) 
Cn4moN/VISC/RATTn(100) 
CommON/AvER/EN0P,ENS0RE 

C UPI • 

       

       

EmUKIN=EMU(NP3)/PHO(NP3) 
0=0,0 
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DO 10 T=2+NP2 
10 CF=CF.(F(10)+F(1,I+1))*OmO(I) 

CF=45*cF*PET*25,136/(PHO(mP3)*w*W*R(1)**5) * SNALFA 
2N=2**PEI/CRHO(NP3)*W*P(1)**3) 
THETA=0.0 
DELTA=0.0 
Fi1=Fs(1.1) 
Dm=FS(192)/U(2) 
Ffift(FliwFS(1,7))*DM 
00 11 T=3,NP2 
F11=FS(1,I) 
DP=F1I/U(1) 
FTP=(F11-F1I)*op 
THETA=THETA+(F1m*F1P)*OmD(I-1) 
DELTA=DELTA+(Dm *DP )*Om0(I-1) 
Dm=Dp 

11 Fii=F1P 
THETA=*5*PEI*THFTARPHO(Np3)*p(1)*F11*F11) 
OFLTALI*5*PEI*DFLTA/(PHO(Np3)*P(1)*F11) 
RTHETA=w*P(1)*TmrTA/EmUKIN 
HFORm=THETA/DFLTA 
TAUS=AJI(1)/P(1) 
WP/TE(6.23)ISTFP,XU,R(1),RENOLD,EN•HFoRM*CF,PEI,TAUI*TAuS, 

1ENUP*ENSOPE,F11 

I(IP.F.0.2) GO To 100 
Cg6012,4 
TwALL=FS(2,1) 

WRITE(6924) 
UP=SOPT(TAUI/RHO(NP3)) 
UT=SOPT(TAUS/PHO(NP3)) 
Yp=OR/FmUKIN 
YT=UT/FIAUKIN 
Ww=SOPT(W/FMUKTN) 
WP2pFs(1,1)*FS(1,1) 
00 12 T=1,NF'3 
WT=Y(f) 
Wi*=wimoll 

i6=i4l*W W 
w=1,41/THETA 
w4r1U(7)/F11 
k.=FS(1.I)/F11 
W6741*YP 
Wi„=SORT(U(T)*U(1)+FS(19I)4FS(T,I)) 
w6=w6/F11 
wT=u(T)/uR 
Wol=wl*YT 
FiX=F11-FS(10) 
WogF11/UT 
UDES=ITAUI*TAUT+TAUS*TAuSi**,25/RHO(NP3)***5 
YPES=uRES/FMuKiN 
wio=wi*TREs 
Wi1=SoPT(F1i*F1I+u(T)*U(I))/UpES 
Ttit.=(F(20)-0.5*(WI)*U(I)4.(F(1,I)/R(I))**2))/Op 
Wi2=TRL/TwALL 
IOTTP .EQ. 2)w12=F(291)/F(2t1) 
VPATIo=F1I/(U(1)*loE-10) 
Ii*(I*E0OP3) GO TO 14 
TAUPES=(FS(104.1)-FS(1,I)i**2 	(U(I4,11-0I))**2 



TiURES=TAUREs**n,5/tY(Ie1)0.Y(T))*ENUEFF(I) 

TRATI0=IFS(10.1).FS(1,I)i/tUiI+1)-U(I)*liEwln) 
14 CONTINUE 

WRITE(6,23)/Ipw1tw4,W5,W6,w7,W89W9,W10,W11,TAURESeVRATIO,W)2 
12 CONTINUE 

0(ITORB.E0.1) .0,0 TO 16 

Wp/TE(6,28) 
DO 18 I=3,NP1 
WicY(t)*WW 
WT=Y(i)/(14 (1)/SORT(RENOLD)) 
W=EMUTUR(I)/EmuLAM(I) 
W2=EmuT(I)/ENULAN(I) 
Wi=EmuEFP(I)/ENuLAN(I) 
TAUS=AJI(1)/P(1) 
TiUR=(TAUI*TAUT*TAUS*TAUS)**0,5.  
SKINUsr4ABStTAUP/PHO(I)) 
SK/NU=SORT(SK/Nus) 
WZ=F(10)/SKINU**P 
14=F(3,I)/(F11*Fi1) 
W=P(49I)*EMUKIN/(SKINU**4) 
Wi.pRATIO(I) 
wiLTRHO(I)*F(3,I)**2/(F(49I)*EmULAM(I)) 
Wi)/TE(6,29)I,W1iw2,W3,W4045,W6liw7 

18 CONTINUE.  

17 CONTINUE 
16 CONTINUE 

WPITE(6926) 

23 FoRmAT(I5,12E10.1) 
24 FORMAT(* GRID 	Y 	vl/WR

"/" 	
Yl* 	vie 

1 Y3+ 	V3e 	YREse 	URES+TAURES 	VRATIO 	TAJRAT 
210 *) 

26 FORMAT(* STEP 	XU 	R 	REeN0 	ENTRAIN 	HwFORM 
1 	CF 	PET 	TAUT 
2) 	

TAUS NU/SHR C=NU/PE WR* 

28 FORMAT(* GRID Y,SO(W/V) EMUT/L EMUE/L' 	F(30) F140) 
°ATI° REYT *) 

29 FORMAT(15,7E10,3) 
100 CONTINUE 

RFTURN 
END 

SUBROUTINE WF(J,I102,I3IpoUT1,0UT290UT3) 
COMMON/GENERAL/AJE(10),AJI(10),CSALFAOPDX(100),DX,EMU(100), 
1F(5,1n0),FS(5210n),H,IFIN,INDF(10),INDI(10),ISTEPIITESTI,IUTPAP. 
2KFX,KTN,KRAD,NliNF09NPHIINP1OP29NP3,0N(10°),PE/,PR(5),PREF(!itla0),, 
3PsIE,PSII,R(100).RHO(100),RME,RNI,RN15,RU(100),R25,SD(5.1n0), 
4S6(5e100)gTAUE,TAuI,U(100),xD,Xu,Y(100)#YE,YI 
CoMNON/SWFTA/Ak.iLNG,IPRINT,IpROF,ITP,ITURB,w,SNALFA I,RENOLD 
CoMNON/SOURCE/SUU(100),SUU(10n),P(100)+RP(100),OND(10n)0MP(100) 
CoMNON/VISCO/ENULAN(100).FNUTuR(lo0),ENUT(100),ENUEFF(ion) 

C 	GFNERAL WALL FUNi-TIONs FOR LAMINAR SWIRLING FLOWS, 
C. 	FOR AXIAL AND TANGENTIAL vELOcITIES,FoR STAGNATION ENTHALPY. 
C 	FOR MASS TRANSFER. 	FOR SHROUDEO AND UNSHROUDED GEOMETRIES. 
C 

128=13-1/11 



Go TO (100.200,300.400,400).JnAsH 

RADIAL VELOCITY. NO MA5 

STAGNATION ENTHALPY 

CHAPTER 1 	 -- 
100  Ur-;.EF=.!4*(U(I2)+U(I3)) 

RkiREE=45*(RH0(12)+RHO(I3)) 
RriEFE.-.5*(R(IP)+P(I3)) 
RRUREE=PREF*RUCI5i 
1, EF=NiTil(YE-YI)*nM(11) 
V6EF=.50(EmULAm(T2)+EmULAm(I3)) 
RE=UREF*RHOREF*YPEFIVREF 
Fil=F(101)/R(T1) 
F5=-.(F(1.I2)/P(I2)+F(1,13)/R(I3)) 
DriXREE:.5*IDPDX(T2).DPDX(I3)) 
Fp=YREF/(RU(I25)*UREF)*(DpXREE-RHoREFI*F25*F25*SNALFA/PREF) 
Sm1.0/RE..FP/2.0 
06T1=45-FP*RF/12,0 
OuT2=s*RRUREF 
OuT3=0UT2*UREF/RREF 
EmU(I25)=VREE*RREF/ABSCYCI3i-y(I2)) 
RETURN 

CHAPTER   CIRCUMFERENTIAL VELOCITY, 
200 CONTINUE 

FPE.F2*YREF*SNALEA 	/2,/RREF/(F25-F11) • • 
OUT-1=n.0 
GO TO 210 

300 CONTINUE 
CHAPTER 3 	 

Fp=0.ri 
06T1=4H-1.)*.5*(HREF*UREF.F25*F25)/6012.4 
Ir(ITR .EQ. 2)OUT1=0.0 

210 CONTINUE 
S=1./PE/PR(J)-EP 
OUTP=s*RRUREE 
OuT3=0UT2/RRFF 
RETURN 

CHAPTER 4 	  
400 Ski. 

An=1,o2 
S1=003 
RmREF=RMI.(RME.Pm/)*OM(I1) 
Bm=PmPEE/RRUPFE 
F3REF=0,5*(E(3,1,)*F(3,13)) 
F4REF=0.5*(F(4.T)+F(4,13)) 
Fs0=wA3# (1.-83)*E4REF*YREE/(UREF0RHOREF*F3REF) 
EsO=Fs0*RHORFF 
IFAJ ,FO. 3)G0 To 410 
S.;1,/(PR(J)*RE)ori,5*FS0 

.EQ. 4)G0 To 410 
S=1,/(PR(J)*RE) 

.EQ. 0)GO TO 410 
SmBm/(PR(J)*(EXP(Bm*RE)..1.)) 

410 OuTlE.n, 
0uT2=s*RRUREF 
OuT3=OUT2/RREE 
PoEF(J.I25)=PR(J) 
RETURN 
END 



1100 DO 1101 I=1,Np3 
1101 RU(T)=RmO(I)*U(T) 

RU3=RU(3) 
RoN1=RU(NP1) 
DO 1102 /=2:NP1 
RO(I)g.5*(RU(I)+RUCI+11) 
TO(PU(p) .iF, 0.)RU(2)=1.F-20 
IECRU(I).GT.0.)Go TO 1102 
IF(ITEST,E0,01 wpTTE(6,1200) 

1200 FoRmAr(25HAN RU TS ZERO op NEGATIVE) 
1,SU(3.T.),SD(3,I).SU(40),SD(4,I) 

**********i***‘******** STRIDE 
1250 FoRmAT(I5912E10.1) 

wo/TE(6,1 250)TiY(I),PU(1),U(r),F(10),F(20)9F(39I).F(4.i),EmUT(T) 
ITEST=1 
IFIN=1 

1102 CoNTINUE 
C   CALCULATION OF Y IS AND R IS 	 

	 YIS FOR PLANE GEOMETRY 
YT=FET*OmI/(PFI*RU(2)1 
y(3)etT+pEI*OM(1)/(RU(2)+RU3) 
Y(2)=?.o*YT-Y(3) 
Do 1103 I=4,NP1 

1103 Yil1=Y(I-1)+PET*(oM(I)-0m(I-1))/RU(1-1) 
Ym15=y(NP1)+PEI*0.-0M(NP1)1/(RU(NP1)+RUNI) 
Y'F=PEi*OmE/(APF*pu(NP1)) 
Y(NP3)=YN15.0,,E 
Y(NP2)=2.0*YN15-Y(NR1) 
	 YIS AND RIS FOR AXISYMMETRICAL GEOMETRY 
IF(CSALFA.EQ.0.1 GO TO 1110 . 

CSALFA NE ZERO C 	 
CoSD2=.5*CSALFA 

1105 R1D2=45*R(11 
R1D2Sor.R102*R1n2 
On 1164 1=2,NP3 
Y(/)gy(T)/(R1D2+sORT(ABS(p1D2sQ+CosD2*y(/)))) 

C 
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SUBROUTINE STRInFA/SW) 
DIMENSION A(5.10n),AU(100),B(5,100).BU(100),C(5.100),CU(100). 
1FnIFE(,FDIFic),GE(5)9Gi(5),TTPF(5) 
CommOm/GENERAL/AJE(10),AJT(10),CSALFA,DPDx(100),Dx•EMU(100), 

1F'(5,11o0)+FS(5,10o).14,IFIN,INDF(10),INDIC10),ISTER,ITEST,TUTRAp, 
2I<EX,KTN,KRAD,NINFooPH,NP1,NP2,NP3,0m(1001,RET,PR(5),PREF(5.100), 
3PSIE,pSTI0(100),Rmo(100),RME,RmI,RNI51RU(100),R25,50(5.100). 
4S6(5,100)9TAuE.TAU/0(100)0(0,XutY(100),YE,YI 
CommON/SOURCE/SUU(100)1S0u(106),R(100).PP(100),OmD(lon),OmP(100) 
COMmON/VISCO/EMu1_AM(100).EmUTuR(100),EMUT(100),EmUEFF(100) 
GO TO (1000,2000,3000), ISW 

FOR...KRA0=1...KTN=1.4,41KEX=2...R(1),GT n 

c*iii.***i**************4************4*** S T R I D E 1 ****************- 
1000 I(ISTFP.GT1,0) Go TO 1100 

OM(1)=0. 
Om(2)=0, 
Om(NP2)=1. 
Om(NP3)=1,0 
OmI=eti0m(3) 
OmELT,*(1.-0M(NPf)) 
BPI=0.5 
BPE=1.0 
'61)=0. 

CALCULATION OF RHO*U IS C 

7-7 



1104 RiI)=P(1)+Y(I)*CSALFA 
Yi=YI/0102+SORT(ABS(R1D2sQ+CoSD2*YI))) 
YN15pYN15/(R1D2+SORT(AB5(002.0+COSO2*YN15))) 

1167 R25=R(1)+YI*CSALFA 
Rm15=P(1)+YM15*CsALFA 
Yr=Y(mP3)-YN15 
RFTURN.  

1110 On 1111 I=24NP3 
Y(7)=Y(I)/R(1) 

1111 RI)=R(1) 
YTPYT/R(1) 
YN1SAYN15/R(1) 
FtS=R(1) 
p0.5=P(1) 
YF=Y(NP3)-YN15 
RFTURM 

o*********************************0.4***• sTRIDE2 ***a************  
2000 PY=PEI/DX 

G=RMI.RME 
R64=05*PX 

PG=PX4G 
PG04=.4,25*PG 

RMI02=1,5*RmI 
GO4R,25*G 
80mP=OM(3)..0M(2) 

PsOMPOGDA*ROMP 
P4OMP=PO4*ROMP 
	 GRID POINT 2 
	  TAW, BPI, Ti 

CALL WF(0,1,203+RPI,T1,TAUI) 
	 BOUNDARY COEFFICIENTS. FOR VELOCITY 

2002 	HLP=RMID2-nO4*(0m(e).0m0)) 
AHLP=ABS(HLP) 

THLP=HLPsHLP 
TP=EM U(2) 

TtP=TP+AHLP+ABS(TPI.AHLR) 
Ao=TTP.THLP..T1-RGOMN•5*SOU(2) 
86=2.*(T)+RMI) 
CrY=P4OMP*(3.*U(2)+U(3))+2.*SUu(2) 
DU=AD*RD+RX*ROmP.2.*5DU(2) 
A6(2)pa0/DU 
56(2)=RD/DO 
CU(2)=CD/OU 

C 
	

BOUNDARY COEFFICIENTS FOR F'S 
Ii(MEo,E4.1) GO TO 2304 
Dm 2300 J=1,MPH 
T6F2=TP/PREF(J,2) 
TtPF(J)=TPF24,AHLpeA8S(TPF2-AHLR) 
CALL WF(J,1,2,3,FDIFI(J),t1FInI(J)) 
IOINPI(J).E0.2) GO TO 2303 
AjI(J)=GI(J)*(F(,)91)...5*(F(J)+F(J,3)).PFDIFI(J)) 

C 	  COEFFICIENTS 
8005 IF(jeNF.1) GO To 2302 

AnF=TTPF(J)*R2*P25/R(3)/pt3).THLP-TiF*R(1)*R(1)/R(3)/R(3).PGomP 
Bil-F=2,*(T1FeRmI) 
Di=3.*PeomPoTHLP4TTPF(J)*R25*R25/R(2)/R(2)+TiF*R(i)*R(1)/R(2)/H(2) 
Gn TO R110 

2302 AFq•=TTPF(J)-THLP.T1F.PGOMP+.5*SD(J,2) 
RiiF=2,*(T1F+RMI) 
DF=ADF4,8DF.I.PX*ROmP-20SD(J•2) 

8110 CONTINUE 
Tc....T1F*FDIFI(J) 



C 
C 	 
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GO TO 2305 
2303 AnF=TTPF(J)-THLP-PGOMP4 05*SD(j92) 

BDF=O. 
(*.t..ADF+PX 0POMP.2.*SD(Jt2)4.RMI42. 
T=RMI*F(J+1)+AJI(J)*R(1) 

2305 Tic3s4r(J,2) 4,F(J,3) 
CnF=R40mP*TT 4.2.*(T+SU(J,2)) 
0J.2)=ADF/OF 
43(J,2)=SOF/OF 

2360- C(J*2)=CDP/DF 
	 GRID POINT NP2 
TAUEI BRE' TNP3 

2364 ii"(KEX,NE.1) GO TO 2003 
2003 TmP3gt1. 

li.- (KRAD,E0.1) RRF=IR(NP3)4(5.4RIJ(NP3)+RU(NR1)1 43.*RN15* 
1 	(RU(NR3)+Ru(NR1)))/6./(P(NR3)* RN15)/RU(NP1) 
	 BOUNDARY COEFFICIENTS FOR VELOCITY 

2310 Bomm=om(NR2)-0m(mPl) 
HCM=RmTD2-GDA*(0m(NP1)+OM(NP2)) 
AHLH=ASS(HLM) 
TwLM=HLw+NLM 
Tm=E4 U(NP1) 
T'im=Tm+AHLm+ABS(Tm-AHLM) 
PGOMM=PGD4*BOMM 
P40MM=PD4*SOMM 

Eliir-TTm+THLm.TNP3-RGOMm +,5*SOu(NP2) 
CO=P4OMM*(30W(NP2)+U(NP1)) 	+2.0*SUU(NP2) 
-DU=AD+BD+PX*80mM .2.*SDU(NP2) 
AO(Nop)=AD/DU 
By(NPR)=BD/DU 
Co(NR;)=0/Du 
IF(NFQ,EQ.)) RFTURN 

allo M■ w l1.P 

 

BOUNDARY COEFFICIENTS FOR F'S 

 

DM 23f) J=1,NPH 
TMF=TM/PREF(J,NP1) 
TTMF=TMF+AHLM+103SITMF.AHLM/ 

2311 ImP3Fr.0. 
F6IFE(J)=0, 

C 	  COEFFICIENTS 
2318 Ii(J.NE.1) 	GO In 2312 

AnF=2,*(TNR3F-Rmr) 
BnF=TTMF*RN15*RN15/R(NP2)/R(NR2)+TNLIANTNP3F*R(NP3)*R(NP3)/R(NR1)/ 

1 	R(NR1).RAnmm 
Dr=3,*RooMm-THLmeTTmF*PN15*RN15/R(NP2)/R(NP2)+TNP3F*R(NP3)*R(NP3) 

1 	/R(NP2)/R(NP2) 
Gn TO P003 

2312 AnF=2,*(TNP3F-Rmr) 
BnF=TTmr+THLm.TNR1F.RGOmM+.5*cD(J,NR2) 
DF=ADF+BDF4Rx*Romm-2.*SD(J9NP7) 

8003 Co4TINUE 
T=..T4P3F*FDIFE(J) 
GO TO 2315 

2313 AnF=o. 
BrIlF=TTmF.THLm-PGomm,6.5*SD(J9NP2) 
Dir.sor+RX0ROmm.R.*SO(J,NP2).RmE*2. 
T....1-Rmr*F(J,NP3)-AJE(U) 0R(NR3) 

2315 TT=3,‘F(J,Np2)*F(j9NR1) 
CnF=R40mm*TT 4,2,*(T+SU(UOR2)) 
i0J,NPP)=ADF/OF 
B(j,W2)=8DF/OF 

2320 C(J9NO2)=CDF/OF 
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RFTURN 
c**ii*******************************4*** sTRIDE3 

3000 DO 3005 I=3,NP1 
POMM=Bomp 
ROmP=Om(I+T)woM(I) 
80M=80mmePomP 
80mT3=801,4*i, 
pGOMM=PGOmP 

Pr;OmPpGo4*R0mP 
pp0m=px*80m 
TI:iLM=THLP 

HLP=RMID2-GD4*(0M(I4).60M(I)) 
THLP=HLPemLP 

AHLP=APS(HCP) 
TTM=TTP 

TP=EM 
TfP=TP+AHLP+A8S(TP-AmLP) 
A6=TTp.THL.p.pGomp 
8n=TTm+THLme.PGOmm 
Cri=PD4*(80mT3*u(T)+80mP*U(1+1)-4, 80mM*U(I-1)) 
DU=AO+80+PPOm 	-2,*SOU(1) 

AU(I)=AO/nu 
Bu(I)=Ro/nli 
CuMgco/no 

***a************ 

.2.*SUU(I) 

START OF J LOOP 
/F(NEO,F0.i) GO TO 3005 
no 3004 j=j,NPH 

3002 TTMF=TTPF(J) 
3003 TPF=Em WII/PRFF(J0) 

.TTPF(J)=TPF.AHLP,APS(TPF-AHLP) 
T(J.NE.1) GO T0 8008 
Rawv5*(R(1)+P(I+i)) 
Rm=45a(R(I)+R(T-t)) 
An=TTPF(j)*RP*RP/R(I+1)/R(I+1)-THLP-PGOmP 
B6=TTmp*RM*Pm/P(T.1)/R(I-1)+THLM-PG0mM 
OFePGn4*80mT3+THIP-THLm+ 	(TTPF(J)*Pp*PP4TTmF*pm*Pm)/R(i)/P(T) 
GO TO-  P009 

8008 CnNTINUE 
ArimTTpF(J).THLp.PG0mP 
pr;=TImF4THLm”PG0mm 
Dr....404,PD+PROm.-2.0- SD(J,I) 

8009 CnNTINUE 
Cn=PD4*(80mT3*F(J,T) 480mPi$F(J,I4.1)+60mM*F(J1I-1))+2.*SU(J,I) 

A(J,I)=Ao/oF 
B(J,I)=80/nF 

3004 	C(JO)=CD/nF 
3005 WITINUE 

I(KEY,FQ.2.ANn.PU(NR3).NE•00U(NP3)=U(NP3)-DPDx(NP3)*DX/PU(NP:A) 
SOLVE FOR DOWNSTREAM U IS 	 

SOLvE FOR DOWNSTREAM F IS 
DM 3320 J=1,NPIA 
8(J92)=8(Ji2)*F(J,1)+C(J,2) 

C 	  
3047 802)=811(2)*U(1)+CU(2) 

On 3048 I=3,NP2 
T=1.-po(I)*AU(T-T) 
Au(I)=AUCI)/7 

3048 811(7)=IBUID*BU(T-1)+CUCIO/T 
DM 30r) IDAsH=2,mp2 
I=N+4-TDASH 
U0)=AU(I)*U(/+1)48U(/) 

3050 CnNTINUE 
Ii-(NEn.E0.1) GO TO 3060 



c...44) 

AXIS OF SYMMETRY 
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Fig.! GEOMETRY AND NOMENCLATURE FOR SWIRLING FLOWS. 
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Fig. 2 LAMINAR FLOW NEAR A SWIRLING DISC: 
VELOCITY AND TEMPERATURE PROFILES. 



• 

-152- 

40 

I0 

5 
• ERIAN [291, Re.9.93x 10 

MLH 

0.2 	0.4 	0.6 	0-8 	1-0 	I 2 
Vei rw 

30 
w 

50 

40 

30 

zrZy  

20 

I0 

0.02 0.04 0.06 0.08 0.10 0.12 
Uirw 
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o ERIAN [29], Re=9.93 x 105  
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Fig. 3(b) TURBULENT FLOW VELOCITY PROFILES 
NEAR A SPINNING DISC. 
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Fig. 4(b) TURBULENT FLOW VELOCITY PROFILES 
NEAR A SPINNING DISC. 
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A DISC ROTATING IN STILL AIR. 
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Fig. 8(a) LOCAL HEAT TRANSFER FROM A SPINNING DISC IN STILL AIR. 
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Fig. 10(a) HEAT AND MASS TRANSFER FROM SPINNING 600  
CONE IN STILL AIR. 
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Fig. 10(b) HEAT AND MASS TRANSFER FROM SPINNING 600  
CONE IN STILL AIR. 
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