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ABSTRACT

The thesis reports the outcome of an experimental and numerical
study of turbulent shear flows generated or affected by swirling motion.
The theoretical exploration has covered a wide range of axisymmetric
flows for which experimental data are available including flow near
spinning cones, discs, cylinders and an annulus with rotating core tube.
The turbulence models employed are a version of the mixing length hypoth-
esis and the two-eguation energy-dissipation model.

The development of turbulent shear layers on rotating surfaces is
usually characterised by a strong effect of streamline curvature on the
turbulence structure. To account for this curvature the mixing length
which would prevail in the absence of swirl is made a linear function
of the local 'swirling flow' Richardson number. The direct effect of
streamline cdvature in the energy-dissipation model of turhulence is
limited to a single empirical coefficient whose magnitude is directly
proportional to the ratio of the time scale for significant rotational
distortion to that of the energy containing turbulent motions. Agreement
with available experimentalldata for these geometries is generally good.
At high swirl rates, however, a few systematic differences between
exﬁeriment and calculation become evident which are probably attributable
to the non-isotropic nature of the effective viscosity in suech complex
strain fields.

To supplement the scarce experimental data of flow near spinning
surfaqes turbulence and mean velocity measurements are reported of flow
near an 80 degree spinning cone in still air. Agreement between cal-
culated and measured velocity and turbulence energy profiles at various

spin Reynolds numbers 1s satisfactorily close.
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CHAPTER 1
INTRODUCTION

1.1 The problem considered and the present contribution

There are numerous practically important flows in the fields of
turbomachinery and space projectiles where a fluid stream flows over a
body rotating about its axis of symmetry. The rotating motion of the
body generates shear stresses within the fluid imparting a swirl com-
ponent of velocity in the flow. Rotation of the flow may occur as an
initial swirl or else through the action of a body force field. An
important feature of most swirling flows is the existence of streamline
curvature that introduces a pressure variation in a directionAperpen-
dicular to the main flow. An engineer’s principal hope of understanding
and solving such cqmplex flow problems is either through numerical
computations or through laboratory simulations. The former approach has
only been successful in lamipar swirling flows where the transport prop-
erties are known. When, as is usually the case, the flow near the body
is turbulent the analytic treatment of the rotating flows through
numerical techniques is hampered because of the lack of information on
the turbulent transport coefficients. For the relatively simple case of
a turbulent core vortex, the values of turbulent viscosity suggested in
the literature vary ten fold. Until the arrival of large, high speed
computers and the development of a generalized tuerIBncé theory the
models of turbulence based on the eddy viscosity hypothesis wil; continue
to be useful tools in the analytic'prediction of complex turbulent pro- |
cesses.

Two such turbulence models extensively tested in the present study
are a version of the mixing length hypothesis (MLH) and the two-equation

energy-dissipation model. The numerical predictions of surface friction



and heat and mass transfer for axisymmetric two dimensional bourdary
layers over spinning cones, discs, cylinders and an annulus with rotating
core tube are obtained employing these models of turbulence. Agreement
with available experimental data for these geometries is generally good.
The main objective here has been to determine what level of predictive
accuracy may be expected with these models and to discover in what res-
pects the models require improvement (or replacemeﬁt] to bring entirely
satisfactory agreement.

The development of universal turbulence models and their subsequent
testing must rely heavily on the available experimental data. To this
end, and to supplement the scarce experimental data near spinning surfaces,
turbulence and mean velocity measurements near an 80 degree cone rotating
in still air are obtained by hot wire anemometry. Agreement between
calculated and measured velocity and turbulence energy profiles at various

spin Reynolds numbers is satisfactorily close.

1.2 Brief literature survey

A comprehensive survey of rotating flows, and of the varilous pro-
cedures to predict them in existence up to 1958 has been provided by
Dorfman (1}. Another extensive review of subsequent advances in the
field has been made by Kreith (2). Both the works contribute substantially
to the understanding of swirling flows and are standard references. The
field of rotating flows is so extensive that the present review limits
attention to turbulent wall flows where there is a single predominant
direction and diffusive fluxes are significant only normal to this direc-
tion; these flows are commonly termed boundary layer. Analytical treat-
ment of the flow fleld is discussed first, followed by a discuésion on
heat and mass tranfer results, and then the available experimental data

near spinning surfaces are reviewed.



Th. von K&rmé&n (3) investigated the turbulent boundary layér on a
disc spinning in stagnant surroundings by solving the integral forms of
the momentum equations. The variation of the tangential velocity com-
ponent through the boundary layer was assumed to obey the 1/7-th-power
law and Blassius' friction formula for smooth pipes was used to calculate
wall shear stress. The moment coefficient CM wa; shown to be equal to
0.146 Re-1/5. An approximate calculation based on the logarithmic vel-

ocity-distribution law was performed by Goldstein (4) who found the

following formula for the moment coefficient:

A . 1.97 log (Re VCMJ + 0.03 .
vC

M
Dorfman (5), like Goldstein, using a logarithmic velocity distribution
obtained the overall drag on the disc. His calculation procedure was
based on the use of self similar solutions and the moment coefficient
CM was shown to be equal to 0.157 Re—1/5. Of the above three, Dorfman’s
results attained the best agreement with the experimental data. Kreith
(6) generalized the turbulent boundary layer analysis of von K&rm&n for
a rotating disc to cones of arbitrary vertex angles. He assumed the
following velocity profiles to be in accord with the 1/7-th-power law

for turbulent flow field in the vicinity of the cone:

7 (1 = 2/6)

c
i

U (276"
0

and

1/7]

v wx sina [1 - (z/6)

]
where UO is a reference velocity obtained from shear stress relation.

Performing a similarity analysis Kreith obtained a relation identical to

=1/5

von Karman's-for the moment coefficient i.e. C., = 0.146 Re Re

M
here is the spin Reynolds number for the cone defined in the Nomenclature.
The constant in this relation is about 7% below %-:2Dorfman’'svalue of

0.157. Kreith's analysis and satisfactory agreement of his results with
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available experimental data thus showed thaghgsual boundary layér
assumptions can be used with satisfactory accuracy to analyze the flow
and drag characteristics of cones with vertex angles between 60 ard 180
degrees in turbulent flow.

Cham and Head (7) calculated the development of the turbulent bound-
ary layer on a disc rotating in free air, using tangential and radial
momentum integral equations and an auxiliary equation of entrainment.

In the calculations, circumferential velocity profiles were represented

by a two parameter family, namely Ve/rw = Ve/rw (H, R,, z/8;;), while

6’
radial profiles were given by a quadratic expression of the type:

U/rw = Ve/fw[1—z/6]2 tan y. All the symbols are defined in the Nomen-
clature. The entraimnment, in dimensionless form, was assumed to be
determined uniquely by the circumferential velocity profile. Cham and
Head's calculations of entrainment and velocity-distributions were in
good agreement with their detailed measurements on the rotating disec.
From their experimental and theoretical results it was evident that the
turbulent boundary layer on a rotating disc can be treated as a function
of a single variable Re, the Reynolds number based on the radius.

Parr (B8) predicted the development of axial and circumferential momentum
thicknesses on a rotating cylinder in an axial stream by solving the
momentum integral equations. He obtained satisfactory agreement with his
experimental data, Cham and Head extended their earlier method (7) to
predict this flow situation. The mean velocity profiles Were again
represented by a two parameter family essentially similar to that used

in their earlier study of flow near a rotating disc i.e. the profiles
were specified by H ard Re. The rate of entrainment of free stream
fluid by the turbulent boundary layer was made a functian of the velocity

bdefect in the outer part of the layer and the ratio of circumferential

to free stream velocity. Their method of calculation was a stepwise
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forward calculation starting from given initial conditions whicﬁ were
obtained from Parr's experiment; the starting positiun_for each calcu-
lation was downstream of the transition point in all cases. Cham and
Head's calculated velocity profiles agreed closely with those measured
by Parr. Their overall satisfactory agreement of calculated torgque co-
efficient with experiment also showed that all their assumptions were
Justifiable and their integral method of solution shoula be sufficiently
accurate for engineering purposes. Furuya et al. (10) solved the
momentum integral equations with fourth order polynomial representation
of velocity components to obtain fair agreement with their data of
velocity field over a rotating cylinder in an axial stream.

Recently, several workers have made use of finite difference pro-
cedures to predict swirling flows. Bayley and Owen (11,12) and Owen (13)
obtained numerical solutions of the swirling, turbulent boundary layer
equations using GENMIX, the finite difference procedure of Patankar and
Spalding (14). The radial and circumferential shear stress components

in the momentum equations were respectively expressed as:

_ ou _ 0
v,z Y,z 9z and "2,8 2,8 3z
The effective viscosities ux 5 and uz 5 were calculated from the

following extension of Prandtl's (15) mixing length hypothesis (MLH):

Vv

, |9
= 2 |9C = 2
u u o+ ph 5 and u uo* ph 37

X,2Z z| z,0

In the region close to the wall the Van Driest (16} damping function

with k = 0.4 was employed i.e.

. U
_ 2,211 - ST 2 |3y
My 2 u  +pk4z4[1 - expl(-z PT, / 26u)] "2
|ave|
= 2,2 - -2/ 2 | Z
H, 8 u  +pklz2[1 expl-z T, o /26u)] IBz | .
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Far from the solid boundaries the mixing length £ was assumed'equal to
half the spacing between two walls of the stator and rotor of a parallel
disc system with radial outflow. The above authors obtained qualitative
agreement of circumferential drag and radial pressure distributions
between their predictions and their experimental measurements over the
whole range of data. Quantitative discrepancies, however, brought to
light the non-universality of their simple mixing léngth approach.
Cooper (17) solved the continuity and momentum equations for the
case of a free rotating disc by a two dimensional finite difference method.
He modelled the Reynolds stress terms by a two layer scalar effective
viscosity. In the layer close to the wall the effective viscosity was
computed from the resultant of the radial and circumferential velocity

gradients. The complete effective viscosity was calculated as:

. -y = 2,211 - w2/, 2
Hopr | e, Mg n o+ pk4z4[1 exp(-zVpt/26u)]

2 WV, 2]z
[(%—U—J s (= ]
z 9z

where k = 0.4, and Tt 1is the local effective shear stress., For the
outer part of the layer the viscosity was assumed proportional to the
circumferential velocity displacement thickness and an intermittency
factor. Cooper started his computations at the centre of the disc and
assumed a step transition from laminar to turbulent flow at spin Reynolds
number of 3.04 X 10°. His predictions compared satisfactorily with the
cirdumferential drag and velocity field data.

Koosinlin (18) has very recently obtained numerical solutions to
the problem of the flow past a rotating cylinder using an energy-length
model of turbulence. The turbulence energy k and the product of tur-
bulence energy and length scale k& arecalculated by way of transport
equations which are solved simultaneously with the conservation equa-

tions for the mean flow. The effective viscosity is then calculated
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from the relation originally suggested by Kolmogorov (19)

1
= o+ . 2 -
Hors Wt ekTR

The 'k¥k2’ model has been extensively used for fully turbulent non-
swirling flows. But due to the uncertainty of the behaviour of Ckvk g
in the sub-layer Koosinlin used the turbulent solution of the Couette
flow equations for the inner boundary specification{ A 'log-law’ type
relation was assumed for the circumferential and axial velocities for
the case of a rotating cylinder in an axial stream. The same relatioh
is also applicable to circumferential velocity on a disc (20) but not
for the radial velocity. This is because the centrifugal forces acting
in the radial direction are analogous to a strongly varying cross-stream
pressure gradient. The radial velocity profile has a maximum close to
the wall in the region where the flow is not fully turbulent. The pro-
file cannot therefore be described by a generally applicable relation
like the log-law. For this reason, Koosinlin was unable to obtain
reliable predictions for the disc flow using the 'kvk%' model. Fairly
good predictions of the boundary layer thicknesses and circumferential
drag were obtained for the case of flow past the rotating cylinder by
manipulation of the adjustable constants in the turbulence model.
Koosinlin also proposed and used a turbulence model derived from
an analysis of the differential equations for the Reynolds stresses to
obtain numerical solutions for the case of flow past a rotating cylinder.
Transport equations were solved for the energy and length scale but six
Reynolds stress components were expressed in terms of implicit algebraic
relations containing time averaged velocity components, the turbulence
energy and its rate of dissipation, and the stresses themselves. The
turbulence model was restricted to regions where the local turbulence

Reynolds number was high. To overcome this restriction the near-wall
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values of the two main Reynolds stresses -puv and -pv,.W were deter-

8 ]
mined from the modified van Driest mixing length expressions. Satis-
factory agreement with velocity field data of Furuya et al. and with
Parr's measurements of axial and circumferential momentum thicknesses
was achieved. The turbulence model, however, lacks universality as
some of the coefficients in the model require diffgrent values for
different flow situations to obtain satisfactory agreement between pre-
dictions and experiment.

Turbulent heat transfer predictions for a disc rotating in stagnant
surroundings were presented by Dorfman (5). He employed von K&rmén's
(3} results for the frictional drag, assumed a quadratic variation of
surface temperature, and applied Reynolds analogy. He solved the energy
gquation assuming a one parameter family of temperature profiles. The
constants in this equation were determined by the application of Reynolds
analogy. Dorfman concluded that the Nusselt number varies with Reynolds
number to the 0.8 power, and with Prandtl number to the 0.6 power.
Davies (21) solved the case of an isothermal disc in air. He assumed
1/7-th-power velocity law and sulved the integral radial momentum equa-
tion using von Ka&rmédn’s results to obtain the radial component of shear .
stress. The diffusivity of the radial momentum was then equated to the
diffusivity of heat and the temperature equation solved to determine the
heat transfer. Davies found similar dependence toDorfman’s of Nusselt
number on Reynolds number. Hartnett et dZ. (22) extended Davies solution
procedure to non-isothermal discs, but equated the circumferential instead
of the radial diffusivity of momentum to the diffusivity of heat. Their
own predictions, alohg with thoée of Dorfman and Davies, were compared
with the experimental heat and mass transfer data for isothermal discs
rotating in stagnant surroundings. The predictions of Dorfman were the

most reliable.
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Tien (23) showed that the analytical treatment of Davies (21]t0 pre-
dict heat-transfer for isothermal discscouvid be extended to obtain solu-
tions for non-isothermal cones, and also for discs and cones having a
step distribution of surface temperature. Kreith (24) using law of
the wall type velocity profiles (25) and Reynolds analogy solved the
energy edquation. He showed that the Nusselt number for isothermal cones
varies with Reynolds number to the 0.8 power and with Prandtl number to
the 0.75 power.,

The reliable experimental data for flows on spinning surfaces are
limited; but they are none-the-less the only ones available for com-
parison with numerical predictions. The following review therefore
covers the most reliable experimental measurements for the few geometries
when several set of data are available. A table at fhe end of this sec-
tion establishes the different measurements available according to their
relative value in developing and refining turbulence models.

One of the earliest reported Bxperiments is that of Theodorsen and
Regier (26) who measured the drag on a disc rotating in still air.

Their turbulent flow measurements and the more recent measurements of
Owen (13) confirm Dorfman's numerical predictions. Measurements of the
velocity field near a rotating disc in the laminar, transitional and
turbulent flow regimes were made by Gregory et al. (27). They found the
transition Reynolds number to lie between 2.7 x 10° and 3. x 105,
Their tangential velocity profiles were in good agréanenﬁ with Cochrén's
(28) predictions for laminar flow, but the agreement for the radial vel-
ocity profiles was not good. For turbulent flow, both the 1/7-th-power
profile assumed by von Kérmédn (3) and the logarithmic profile assumed
by Goldstein (4) represented well the circumferential velocity measure-
ments. The radial velocity profile was in good agreement with von

K&rmdn's power law assumption close to the surface, but Goldstein's



-16 -

logarithmic profile was superior awéy from the surface.

Cham and Head (7) recently have repaorted comprehensive measure-
ments of the velocity field and entrainment into the bourdary layer an
a free rotating disc. These authors obtained good agreement with their
calculations using the tangential and radial momentum equation with an
auxiliary equation for entraimment. Erian and Tong (28) while reporting
the only experimental measurements of turbulence quantities for a disc
rotating in still air also measured the velocity field. Because of ex-
perimental difficulties their measurements were incomplete.

Kreith et al. (30) investigated the transition characteristics of
cones rotating in still medium. They found a rapid increase in the
transition Reynolds number with increasing cone vertex angle. Kreith
(24) also aobtained a few measurements of the drag on a 60 degree cane
rotating in still air. His experimental data substantiate well his
theoretical predictions.

Koosinlin (18) has recently obtained turbulent velocity field
- measurements on an 80 degree rotating cone. Due to the inability of his
pressure sensing instrumentation to measufs low dynamic pressures accurately
there is uncertainty about his measurements in the outer part of the bound-
ary layer.

Parr (8) and Furuya et al. (10) have measured the velocity distri-
bution on a cylinder rotating in an axial stream. The‘measurements have
been well predicted by Cham and Head's (9) integral‘pro¥ile method.
Extensive experimental data of annular, turbulent flow with rotating care
tube have recently been obtained by Kuzay (52). The experimental studieé
of Kazay were made in a vertical large gap annulus. The hydraulic diam-
eter was 76 mm and the radius ratio, ri/r0 was 0.56. For the first 14
hydraulic diameters the axial flow developed over a stationary section of

core tube. There followed a section of rotating core tube 36 hydraulic
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diameters in length. In this configuration a series of experiménts was
made for Reynolds numbers from 17,000 to 65,000 and for_rotational vel -
ocities of the core tube from zero to almost three times the bulk axial
velocity. Outer wall static pressure and profiles of total pressure and
flow angle were measured by means of total head probes. From these

data profiles of static pressure and of axial and circumferential velocity
were evaluated. One of the most striking features of the Kuzay data was
that, provided the rotational velocity of the core tube was greater than
the bulk axial velocity, the change in angular momentum from riw at the
core tube surface to zero at the outer wall was confined, almost entirely,
to the two sub-layer/buffer zones adjacent to each cylinder. The whole

of the fully turbulent regionvwas rotating at essentially constant angular
momentum.

The average turbulent heat transfer from an isothermal disc rotating
in still air has been measured by Cobb and Saunders (31}, McComas and
Hartnett (32), and Dennis ef ql. (33). Mass transfer measurements at
Schmidt nuhber of 2.4 have been reported by Kreith ez al. (34). Average
mass transfer data at Schmidt number of 2.4 have also been reported by
Tien and Campbell (35) for rotating cones of 60 to 180 degree vertex
angles. Recently mass transfer data at high Schmidt numbers for a free
rotating disc have been reported by Ellison (36) and Daguenet (37). The
range of Schmidt numbers in Ellison’s experiments extends from 34 to
1300 while that in Daguenet's extends from 345 to 6450. ‘Local heat trans-
fer coefficients on the rotating disc in still air bhave only repently
been reported by Popiel and Boguslawski (38). Their measurements includé
laminar, transitional, and turbulent regions up to Reyrnolds number of
6.5 x 10°.

The availability of reliable experimental data is of major importance

in the effort to develop and test universal turbulence models. The follow-
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ing table lists the different available measurements according to their

relative value in developing and refining turbulence models.

Table 1. Reliable measurements near spinning surfaces

Reynolds Mean velocity Local heat/ Average heat/
stregsses mass transfer mass transfer
(1) (2) (3) (4)
Cham~Head (7) | Popiel- Cobb=-Saunders (31)
Erian-Tong (29) | Boguslawski (38) | McComas-Hartnett (32)
Koosinlin (18] Kreith (24)
Parr (8) Kreith et al. (34)
Furuya et al. (10) Tien-Campbell (35)
Kuzay (52} _ Ellison (36)
Daguenet (37)

A glance at the table shows that most of the data are category 4,
followed by mean velocity measurements. There are no reliable data at
all of the Reynolds stresses near spinning surfaces, a deficiency that

ought to be removed.

1.3 Organisation of thesis

This thesis is divided into five chapters, of which this introduc-
tion presents the first.

The second chapter presents the relevant governing equations of fluid
motion, the geometry and the nomenclature for swirling flows studied here.
The derivation of the complete conservatilon equations is presenfed in
Appendix 1. Included in this chapter is also a brief description of
GENMIX, the computer program based on the finite difference procedure of

Patankar and Spalding.
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Chapter three containing the theoretical contribution forms the major

portion of the thesis. The chapter is divided into six main sections.
A brief description of the mixing length hypothesis for swirling flows
is presented in the first section. This section i1s also concerned with
the effect of stream line curvature on the mixing length. The reader is
introduced to a"swirling flow' Richardson number in this section. The
energy-dissipation model of turbulence is presented in section two. The
inclusion of the term containing the effect of stream line curvature
and the complete governing turbulent transport equation set for swirling
flow are respectively presented also in this section. The details of
derivation are reserved for Appendices 2 and 3. Section three outlines
the initial and boundary conditions; while section four lists some
important computing details. Fipally numerical predictions using the
two turbulence models are systematically presented and discussed in detail
in section five. Section six presents some concluding remarks on the
performance of the two turbulence models.

Chapter four contains‘a description of the experimental contribution.
It begins with a description of the experimental rig, the hot wire instru-
mentation, and the measurement details. The results obtained are then
presented and discussed. The details of the hot wire signal analysis are
presented in Appendix 4.

Finally chapter five summarizes the main conclusions from the present
study. Recommendations are also made here for any possible further ﬁheo-

retical and experimental work.
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CHAPTER 2
THE GOVERNING EQUATIONS OF MOTION

2.1 Geometry and the nomenclature for swirling flows

Figure 1 illustrates the geometry and the nomenclature for swirling
flows considered in the present study. An axisymmetrical co-ordinate
system for swirling flows is considered in Appendix-1, where the deri-
vation of equations of motion is presented. The present work is confined
to rotating cones, discs, and cylinders; for these geometries and flow
situations the angle o has a constant value. The co-ordimates x, z,
and 6 are respectively the streamwise, cross-stream aﬁd circumferential
directions, U, W, and Ve are the respective velocity components in these

directions. « represents the angular velocity of the spinning surface.

2.2 The conservation equations

The elliptic forms of the conservation equations for mass, momentum,
stagnation enthalpy and chemical species which describe the present
class of axisymmetric flows are presented in Appendix 1. The boundary
layer forms of the mass, streamwise and swirl momentum equations for a

uniform-property, axisymmetric turbulent flow may be written:

a(ru) N 2{rw)

ax 52 0 (2.1)
2
pV

3u 5U _ _dp .13 5U o _. ~

pU'E" + oW 9z Ix * r oz [rueff az] ¥ sin o (2.2)

o(rv,] o(rv,) a(V./r)
6 o) _ 13 .3 6
pU 9x + oW 9z T T 9z [ Yore 32 ] (2.3)

where the notation is illustrated in Figure 1. The presence of swirl
causes the static pressure to vary across the boundary layer. Provided

the variation with x of the radius of curvature of the body is small,
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radial equilibrium may be assumed and hence:
5, = " cos«o (2.4)

The effective viscosity of the fluid, ue is taken as the sum of the

£

molecular and turbulent contributions, i.e.
u = u + u't (2-5]

Equations (2.1) to (2.4) constitute a closed set provided the fluid prop-
erties are known and a means is provided for determining Hye The deter-
mination of turbulent viscosity is the subject matter of the next
chapter.

Heat and mass transfer rates from the surfaces are computed by solv-

ing the following equation for stagnation enthalpy h or the mass frac-

tion of chemical species m:

~ N u
oh sh _ 13 eff 9h
pU ax PW 3z r 3z [e c 3z UTx,z ' VSTS,Z] (2.8)
eff
u
am am 1 3 eff om
PUSx " ey © vz [ O pp 32 (2.7

Again, the derivation details are given in Appendix 1. In the above,

the effective Prandtl/Schmidt number OB is related to the molecular

£

and turbulent values by

Pors

ag

Y
ef f %

= K, (2.8)
g

Equation (2.8) rests on the supposition that the effective transport co--
efficients for enthalpy and species are the sum of their molecular and

turbulent values.
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2.3 Numerical solution of the governing equations

Equations (2.1-2.4) ard (2.6-2.7), togéther with the indicated
auxiliary equations have been solved by means of GENMIX, the computer
program based on the finite difference procedure of Patankar and Spalding
(14). The sﬁccess of the Patankar and Spalding finite difference pro-
cedure to solve two dimensional non-swirling flows has been established
beyond doubt. The method is rapid and easy to use. The program deck
used for the predictions presented here was developed from the simple
disc version used by Koosinlin (18). The changes made to the original
program of Patankar and Spalding are outlined in Appendix 5. The calcu-
lation procedure is well documented in reference (14) and it may there-
fore be sufficient only to outline the main features here.

The central feature of the method is the novel specification of the
cross-stream co-ordinate. This co-ordinate is a dimensionless stream

function w defined as

v b
w = — I oo : (2.9)
T |

where ¢ the stream function is defined by

ol = —:—% (2.10)

3y (2.11)
X

Hl=

W= -

The quantities wI and wE are the values of ¢ at the interior and
exterior edges of the boundary layer. Thus, regardless of the width of

the boundary layer, the co-ordinate w always lies between zero and unity.
Changes in the width of the finite difference grid or hence changes in the
thickness of the boundary layer are determined from the rate of entrain-

ment of fluid from the surroundings into the boundary layer. This prac-
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tice confines the finite difference grid to the region of flow where the
changes in the values of the dependent variables are relatively large.
This feature results in great economy of computer time..

The governing partial differential eguations (2.2-2.3) and (2.6-

2.7) all possess the common form:

29 36 _ 3 . 30
FV (a + bw) ™ - e (c 8w) + d : (2.12)
where: a = rimI/(wE - wI]

b = [rEmE - rImI)/(wE - wIJ

0
]

2 L2
ropUl e/ Llvg = ) Ueff]A

Here ¢ stands for the dependent variable and d is the source term
on the right-hand side which does not contain 9¢/9%w. ﬁl and ﬁE are
the rates of mass transfer across the I and E surfaces. The common
form allows a common numerical treatment for all the dependent variables
except Ve; only the exchange coefficients and the source term d are
different for each dependent variable. |

It should be noted that in the momentum equation for the swirl direc-
tion (2.3) the source term on the right-hand side has been entirely

suppressed by making rV the operand of the differentiations on the

9
left and Ve/r on the right. This necessitates some changes in the
finite difference equations as outlined in (14). More dgtails of these
modifications and the computér program listing appear in Appendix 5.

The finite difference equivalent of equation (2.12) is obtained by
means of a micro integral method. Each term of the equation is integrated
over a small control volume around each node bounded by adjacent constant
x and constant w 1lines. On the assumption that & varies linearly

with w between grid nodes and stepwise in the x-direction, each term

appears as an integrated average over the control volume. The use of the
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micro integral method ensures that the integral forms of the conservatiocn
equations are satisfied over any part of the boundary layer. The result

of the integration yields the following finite difference equation:

9, = A®, ., +BO . +C (2.13)

where the subscript i designates a particular grid node. A, B and C

are functions of the cross-stream grid spacing, the upstream values of

¢, and the coefficients of the differential eguation (2.12). The set

of equations (2.13) are solved to yield the values of the dependent vari-
ables in turn at each successive downstream grid location using a simple
recurrence formula. In this way the solution progresses downstream in

a marching fashion. Complete details of the above appear in reference
(14).

Before application of the above solution procedure to turbulent
swirling flows the accuracy of the finite difference procedure applied to
swirling flows is tested. Figure 2 compares the finite difference pre-
dictions of the laminar flow induced by a spipning infinite disc with
the similar solutions of Cochran (28) for the velocity field and Sparrow
and Gregg (40) for the thermal field. The thermal solution is for a uni-
form disc temperature with a fluid Prandtl number of 0.7. The finite
difference predictions of the radial and circumferential velocity pro-
files and of the temperature profile, are scarcely distinguishable from

the "exact” similar solutions, the maximum discrepancy being less than
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CHAPTER 3
TURBULENCE TRANSPORT MODELS

For turbulent flow calculations the effective viscosity Hopr in
equations (2,2-2,3) and (2.6-2.7) is taken as the sum of laminar and

turbulent contributions i.e.

u = U+ (3.1)

eff

The present task is to propose and test a formula for the turbulent

viscosity u In simple language, the term 'turbulence model' is used

£
to describe the means whereby the turbulent viscosity ut is determined.
Two such turbulence models considered and extensively tested in the
present study are the Prandtl's (15) mixing length hypothesis (MLH)

and Jones and Launder's (45) energy-dissipation model. Both the models
rest on a well argued assumption that the turbulence is characterized

by two quantities, a typical length scale % and a fluctuating veloéity

v. From dimensional reasoning the turbulent viscosity is thus given by

ut = const.pvi (3.2)

It is the different method of prescribing £ and V which differentiates the
mixing length model from the energy-dissipation model of turbulence. The

two turbulence models are separately discussed in detail next.

3.1 Mixing Tength hypothesis for swirling flows

Prandtl's (15) mixing length hypothesis (MLH) is one of the earliest
and simplest proposed prescriptions for the calculation of turbulent
viscosity, and has been widely used for non-swirling flow calculations.
The physical basis on which the mixing length concept rests is not correct

in all details, yet the model, because of its inherent simplicity and
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remarkable success, is still an attractive and useful proposition for
the design engineer. The utility of the mixing length hypothesis has
not been extensively explored for swirling flows. The hresent study
therefore aims to investigate systematically the validity of the mixing
length model for boundary layer flows near spinning éurfaces.

For non-swirling flows, the‘fluctuating velocity component v
appearing in equation (3.2) is presumed proportionai to the absolute

value of the gradient normal to the wall of the streamwise velocity

au

U, i.e. v =142 5

. With the constant set to 1, the expression for the

turbulent viscosity then becomes

3u

= 2122
pg’ BZ - [3-3]

M

Now, to account for the additional effect of swirl on the level of v

t
the following obvious simple extension of Prandtl's hypothesis is
employed in the calculation of turbulent viscosity:
d(V,./T) ;)3
au, 2 '~ "2
= 2 _— —
My pL [[az) + (r 53 ) (3.4)

An alternative way (shown in Appendix 2) of arriving at equation (3.4)

is to assume a local balance between the production and dissipation rates
of turbulent kinetic energy ('local=-equilibrium’) and to represent the
dissipation rate e by ®’%%.

The above formulation used in (41) appeared superior to earlier
proposals of Owen (13) and Lilly (42) in which the turbulént transport
coefficient for angular momentum was held to depend only on graqients in
swirling velocities, not axial ones. It should be noted that the gradient
of Ve/r and not of Ve is employed in the last term of the equation
(3.4) in order that He becomes zero for the special case of solid body
rotation. The chosen formulation implies that the turbulence is iso-

tropic and this is its least attractive aspect. But it does, however,
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retain the basic simplicity of the mixing length formulation. Nd new

physical constants are introduced.

3.1-1 The mixing-length distribution

Now all that remains in the determination of turbulent viscosity
My from equation (3.4) is the means to specify the mixing-length
across the layer. A two part algebraic specificatidn is adopted for the
distribution of mixing length & based on practices used by numerical
workers for predicting flows without swirl. In the region where the

presence of the wall affects the turbulence structure it is assumed that
L = xz[1 - exp(-D)] (3.5)

where, following the recommendation of Launder and Priddin (43), the

damping function D 1is taken as:

3712
D = z, 1, /2B (3.8)

+ &

when the variation of Tt across the viscous sublayer and 'buffer’
regions is negligible, equation‘(S.BJ is identical to Van Driest's (16)
proposal for the damping of the mixing length at low Reynolds numbers.
Launder and Priddin (43) have shown that the'inclusion of 13’2 gives
better predictions where there is a rapid change in 1 with 2z, as
occurs in transpired boundary layers and flows with severe streamwise
pressure gradient. It should be remarked that the local value of the
resultant shear stress vector appears in equation (3.8).

In the outer region &% 1is given by:
L = AS (3.7)
§ being the effective thickness of the boundary layer. The constants

k and A appearing in equations (3.5) and (3.7) are given the values

0.42 and 0.085 respectively, a consensus of values currently in use for
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plane external boundary layer flows. For internal flows, as discussed
later, A dis given the value 0.14. Equation (3.7) is used in place of
(3.5) at all positions further from the spinning surface greater than

that at which ¢ given by (3.5) first exceeds the value given by (3.7).

3.1-2 Effect of swirl on mixing length

When the above turbulence model was applied to.the calculation of
turbulent flows on spinning surfaces it was learnt that the strong in-
fluence of streamline curvature was not well reproduced because the
model did not take into account any direct influence of the swirl on the
mixing length g. Such shear flows with significant streamline curvature
arise in many practically interesting flows. The importance of this sub-
ject has stimulated much experimental work that has recently been com-
prehensively reviewed by Bradshaw (44). The experimental studies have
provided a qualitative understanding of the flow structure, the effect
of curvature being to diminish turbulent transport in flows where the
rate of change of angular momentum with radius is positive and vice versa.
By analogy with the effects of density stratification in atmospheric tur-
bulence Bradshaw (45) has proposed that the length scale in swirliné

flows be modified as follows
L= 20(1 - BRi) (3.8)

where 20 is the level of mixing length prescribed by equations (3.5-3.7)

above and Ri is the ’'swirl flow' Richardson number:

ZVecosa a[rVe]

2
Ri = r 9z (3.9)

oV /r

2

[—gﬂl . (p —2
z

]2

dz
which can be regarded as the ratio of the square of a typical frequency

scale of the circumferential velocity fluctuations to the square of a
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frequency scale of the turbulence in the boundary layer. Because the
circumferential velocity component is subject to centrifugal forces and
is balanced by normal pressure gradient this highly unstable situation
should give rise to large fluctuations. And if the frequency of turbu-
lence is represented by some eddy frequency scale then the gradienf of
the resultant velocity can represent an appropriate scale. Next section
and Appendix 3 in conjunction with the energy-dissiﬁation model of tur-
bulence discuss further the stability of a-turbulent eddy in curved
streamline flows. It should be noticed that cost¢ is zero for flow near
a spinning disc. In all the flows considered here (except the annulus
with rotating core tube) rV6 is maximum at the spinning surface and
decreases uniformly to the edge of the boundary layer. For these cases
the Richardson number is always negative and hence for positive B, % is
increased.

Predictions of the test flows were obtained for several values of
B in the range from 1 to 15. The results presented here are for two
values of B, 5 and zero. The latter corresponds with the 'standard’
model for flows without swirl, the former is approximately that which

gives the best overall level of agreement of predictions with measure-

ment.

3.2 Energy-dissipation model of turbulence

In the last few years a number of models of turbulent momentum trans-
port have been developed which take into account the effects of transport
on turbulence. Models of this kind achieve significantly greater breadth
of applicability than do the simple approaches based on mean flow quan-

tities alone like the mixing length hypothesis. Such models can be con-

1

structed by taking the turbulent velocity scale as k* in equation (3.2).

The turbulent viscosity formula then becomes
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. , .
Wy = const pk*% (3.10)

Thus, to determine My two differential equations for the turbulence are
formulated from which both velocity and length scale can be obtained.

The turbulence kinetic energy equation is, without exception, one of

those employed in these two-equation turbulence models. For the second
variable it is often easier to derive an eguation for some other guantity
which can be related to a length scale of turbulence. Several workers

have selected variables of the form kazb where a and b are constants.
Examples of these can be found in reference (46). One of the more success-
ful of these approaches is proposed by Jones and Launder (47) who solved

an equation for the dissipation rate of turbulence energy €, which can

be related to length scale by the formula
e = k32, (3.11)

This latter form has a number of advantages. This quantity appears
directly in the equation for k, and so calculating it removes the need
for any assumptions about this term. It is5 also a simple algebraic func-
tion of the fluctuating velocity gradients, and an exact equation can
therefore be readily derived.FrDm the Navier-Stokes equations. The use

of the e-equation as the means of determining the turbulent length. scale
was shown by Launder et al. (48) to give the best predictions of the two-
equation turbulence models tested for the case of free shear flows. Jones
and Launder (47) also applied this model to strnngly~acceierated flow and
subsequentiy to other low-Reynolds number flows (4%, 50). Applicatians

of the model for flows involving regions of recirculation appear in refer-
ence (49). For these reasons it is the Jones and Launder's low-Reynolds
number k-¢ model of turbulence that has been used in the present study.
It should also be pointed out that no applications of the model have been

reported, however, of its use to predict swirling flows, an omission that
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the present study remedies. The flows considered here produce very high
gradients of swirl velocity in the vicinity of the spinning surface
which in turn bring to prominence terms in the kinetic energy and dissi-
pation equations that have formerly been absent or of only small import-
ance. This extensive application thus provides a test of the generality
of the model for an important class of fluid flows.

Combining eduatibns (3.10) and (3.11) finally gives for the k-¢

model the turbulent viscosity formula as

My = Cupkz/e (3.12)
where, at low Reynolds numbers, the quantity Cu is a function of tur-
bulent Reynolds number as prescribed below; at high Reynolds numbers it
approaches a constant value. The two turbulence quantities appearing in
(3.12), Kk and € are obtained from the following pair_of transport

equations that are solved simultaneously with those governing the mean

flow behaviour:

u ou, aU, U,
Dk ] t ak i i J
p - [LE— + u) —;;;] + ( + )

Dt X 3 Yt Bx. ox. | Bx.
k| K A j i
2
9k _
- pe - 2u[ax.) (3.13)
3
e o2 |ley e |Lg, e, B
P Dt 3x G ax 1"t & . Bx 9%
3 € 3
32y ‘ :
2 . 2
_ pPE 1L
C, S *+ Cavm, (_—Bxkax.) (3.14)

The derivation details of the above equations are given in Appendix 2.
The empirical coefficients, after extensive testing, have been assigned
the forms and values giyen in the table below; the quantity Rt stands

for pk2/ue, the local Reynolds number of turbulence. A number of the

coefficients have undergone small changes from those proposed in (47) due
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to an overall reoptimisation for free shear flows (48). However, for the
flows considered here there would be only slight differences between the
behaviour reported here and that which would have been obtained with the

original set of coefficients.

Table 2. The empirically chosen coefficients

C1 C2 C3 Cu UK 0E

M .44 1.92[1.-0.3exp[-R§]] 2.0 D.Dgexp(-3.4/[1+Rt/SD]2] 1.0 | 1.3

3.2-1 Modification for streamline curvature

The k-£ model of turbulence presented so far assumes that there is
no direct influence of rotation on turbulence. The aim here has been to
build the idea of curvature dependence into the transport equation for
the length scale of turbulence. Therefore the effects of streamline cur-
vature in the present study are accounted for by makling one of the co-
efficients in the transport equation for energy dissipation rate a func-
tion of a dimensionless group similar in character to the rotational
Richardson number defined in section 3.1-2. Physical arguments in support
of this modification are developed in terms of distorting effect of rota-
tion on the length scale of energy containing motions. Complete details
of this development and the reasons for the inclusion of a new source
term in the transport equation for € are presented in Apperdix 3. Here

the complete modified dissipation rate equation is written below:

De _ 3 [EE . ) e . eu, 8Ui [aui . 8Uj]
Dt X, o] H X , 1 Kk 9%, 9x, 3% .
J € J J J 1
be? azui |
- CZT 1 - Cch] + Cs\mt [W)‘] (3.15)

where Ri 1s the dimensionless parameters;
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v 3(rv,)
k2 "o ;]
;; 2 i (3.18)

which again may be regarded as a Richardson number wherein the time scale
of the turbulence Kk/e now replaces the mean flow time scale appearing
in equation (3.9).

All coefficients in equation (3.15) retain the.values assigned to
them in Table 2 and the additional coefficient of the Richardsaon number
term CC is taken as 0.2 on the basis of extensive computer optimisation:
It should be noted that when the angular momentum of the mean flow in-
creases with radius Ri 1is positive and hence the new term will act to
enlarge the level of € and hence to reduce the turbulence kinetic
energy. Consequently the inclusion of the Richardson number dependent
term acts to diminish the turbulent viscosity (c.f. equation (3.12)).

The reverse effects are produced in a flow where a(rVe]/ar is negative.

3.2-2 The governing turbulence transport equation set for axisymmetric
swirling flow

The above sections have presented the turbulence transport equations
in Cartesian tensor notation. When it comes to obtaining numerical solu-
tions, however, it is strongly advantageous to convert to a co-ordinate
system in which the solid surface coincides with a surface on which one
of the independent variables is constant. For the flows on axisymmetric
surfaces considered here the system of polar co-ordinates. indicated in
Figure 1 is the obvious choice. When account is taken of axial symmetry
and the fact that significant gradients of the dependent variables occur
only in the direction normal to the surface the k and € equations

(3.13) and (3.15) may respectively be written:



- 34 -

u
3k 3k _ 1 93 t 3k
pU ™ pW 3z T 9z [P(UK *u) az]
vV /r 12
au, 2 g’ 2 ak?
*H, [[52) + (r 57 ) J pe - 2p (az ) N {(3.17)
ve, ople o a2 Jo e, e
P ax P 9z T 3z OE oz
e | 8u,2 Vg/T 2 pe?
+ C1 T ('a—z) + (r 37 ) - C2 —K- (1 - Cch]
1y 2
soom, 12 QY% BVS/PJZ ; (3.18)
37t }az 9z dz *

The algebraic details of the derivation of these equations are again
reserved for Appendix 2. It should, however, be noted that the above
system of equations differs from that of Jones and Launder (47) in that
extra source terms involving gradients of [Ve/r] appear in the equations
for k and €. Their appearance is due to the conversion of the Cartesian
tensor form of the equations to the present co-ordinate frame. For
example, the rate of production of turbulence energy.by meén strain

2

(BU] in the Jones and Laurder's ver-

for plane shear Tlows is simply u )

t

sion. But here this term is represented as

VvV /r
AU, 2 8’" .2
“t[(s'z" LT ]]
32U 2

in both the k and € equations. Similarly the term Cévut[__—] in
3z2

the original e-equation is now written as

2

. aV /r 3

3 au, 2 ' 2)°®
Cavut{a—z [(E] + (r o ) ] } .

It should also be remarked that the Reynolds number functions Cu and

82 and the coefficient C1 are slightly different from those proposed

by Jones and Launder (47). This, as pointed out earlier, is the result
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of an overall computer re-optimisation of coefficients reported in (48).
The values of Kk and € obtained from the solution of these
equations (3.17 and 3.18) enable the turbulent viscosity to be obtained

from equation (3.12), viz.

= 2
My Cupk /e .

3.3 Boundary and initial conditions

The boundary conditions for all flows computed and with both the
turbulence models considered here were as follows. For the mean velocity
field, both the axial and swirl velocities are set to zero at the edge
of the boundary layer except for the case of flow past a rotating cylin-
der, where for axial velocity free stream velocity U°° is the appro-
priate quantity. At the spinning surface U is set to zero and Ve to
r¢ where r and w are the local radius and the angular velocity of
the surface. These, and the boundary conditions for the other dependent

~

variables h and m may be summarized as follows:

z = 0: U = 0 F Ve = rw
~ ~ {(3.19}
h = h 3 m = m
w w
z = z U = 0 or U 3 V, = 0
edge ” ° (3.20)
h = h_ 3 mo=m_ '

While making predictions with the energy-dissipation_mﬁdel of turbulence,
the values of k and € are set to very small values at the outer edge
of the boundary layer as is appropriate to free stream conditions. Their
value is set to zero at the wall: for Kk +this corresponds with the

fact that velocity fluctuations must vanish at a rigid surface. To ex-
plain the reason for making € =zero at the wall it should fisst be noted

that within the viscous sublayer
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du, 2 3

ie—=) = 2p (

2
Bxk e ) ’ (3.21)

A proof is provided by Launder and Jones in (47). Thus if € stands for

" 1
Builz ) . 3K2

2
2y [Bz )

its vaiue obviously goes to zero as the wall is approached. Beyond the
viscous sublayer the term involving the gradient of k% is negligible
and then € represents the dissipation correlation u[§3§7§;;32. The
term 2u[8ké/az]2 is then subtracted from the right-hand side of the
kinetic energy eguation to compensate (cf. equation (3.17)). The reason
for this apparéntly circuitous route is that by using the homogeneous
boundary conditions on € it was ?oundvto be easier to devise a suitable
form for the e-transport equation. Further discussion on this matter is
provided in Appendix 2. |

Starting profiles of all dependent variables had, of course, to be
prescribed. In all cases estimates were baéed on experimental knowledge
of the dependent variable distribution in the same of similar flows.
Some further remarks on initial profiles for individual geometries appear
in the next section. The actual profiles of the dependent variables
[including k-e) used in the present study are listed in Appendix 5. It
should be emphasized however that in all the cases examined here the
predicted flow behaviour, in the regions where comparison is drawn with
experiment, is negligibly dependent upon uncertainties in the prescribed

initial profiles.

3.4 Some computing details

The system of differential equations (2.2-2.3), (2.6-2.7) and (3.17-
3.18), together with the indicated auxiliary equations have been solved

by means of the modified version of GENMIX, the computer program outlined
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in Chapter 2. The actual detailed modifications for swirling flows to
the computer program GENMIX are listed in Appendix 5. Here, some details
about computing times and grid node specification for the two turbulence
models are presented. For the case of flow over spinning discs and cones
computations were started near the centre or apex where the flow was
laminar, then the turbulent viscosity as calculated by mixing length
hypothesis or by the solution of the k and & equations was introduced
later at the point where experiments suggested that transition occurs.

For predictions with the mixing length model forty cross-stream
grid nodes were used nearly half of which werebconcentrated in the sub-
layer and buffer regions where gradients of dependent variables are
steepest. The step size normally used varied between 2 to 5% of the
boundary layer thickness. Computing time per run on a CDC 6600 computer
was typically 10 s. More details for some individual cases studied
appear under comparison of predictions and measurements in the next sec-
tian.

With the energy-dissipation model of turbulence seventy grid nodes
were used to span the boundary layer with a substantial concentration
very near the wall. This is about 60% more than is needed to obtain
grid independent results when the mixing length model is used. The for-
ward step nsed here was typically 2.5% of the boundary layer thickness
leading to computer times per run of about 50 s on the CDC 6600 computer.
Again, more specific details about some individual cases are given in the

next sectian.

3.5 Presentation and discussion of predictions

The numerical predictions obtainéd using the above turbulence madels
are compared with the available experimental data in this section. Since

several flow configurations are examined each flow geometry is separately
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discussed in detail. Some remarks on the performance of the two turbu-

lence models appear at the end of this section.

3.5-1 Flow near swirling disc

Comparison of predictions with measurements is drawn first for the
important limiting case of a spinning disc in still air. The Richardson
number Ri in this case is zero at all rotational speeds because the
radii of curvature of the streamlines are virtually parallel with the disc
surface. Calculations relating to turbulent flow near a spinning disc
using both models of turbulence are presented in Figures 3-8. Mean vel-
ocity profiles are shown in Figures 3 and 4, the experimental data being
those of Erian and Tong (28) and Cham and Head (7). Both components of
velocity are normalized with respect to the surface velocity. The ordi-
nate for Erian and Tong's experiment is z/w/v whereas in Cham and Head's
test case it is 2z/8,. All symbols are defined in the Nomenclature. The
shape of the profiles is distinctly different from those for laminar
flow in Figure 2. As in non-swirling Flowé, very steep velocity gradients
occur in the immediate neighbourhood of a wall because stresses there are
high but effective viscosities low. For both test conditions and with
both turbulence models extremely close agreement isbobserved between
measured and calculated components of swirl velocity. The axial velocity
using the mixing length model is well predicted for Cham and Head's experi-
ment and for values of zVw/v up to 20 in Erian and Tong's work. There-
after, however, the predicted velocity falls to zero much more quickly
than the measured. With the k-e model the axial velocity is in close
agreement with both the experimental data. To show the differences in
predicted behaviour clearly veloeity profiles with both the models are also
shown on the same Figures 3b amd 4b. It is uncertain which of the experi-

mental axial velocity profiles is more correct. It should be noted, how-
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ever, that in the region where there is disagreement between thé mixing
length predictions and Erian and Tong's data, the average velocity is
only about 3% of the disc velocity. It would thus seem unlikely that
failure to predict the mean velocity correctly would have noticeable
effect on surface heat and mass transfer coefficients.

To make accurate predictions of torgue Coefficient and Nusselt/
Schmidt number, the Reynolds number Ret at which the flow becomes tur-
bulent must be prescribed (when the distance x is so small that the
spin Reynolds number is less than Ret the flow is taken as laminar and
only the mean flow equations are solved). It may be expected that Ret
will vary a little from one apparatus to another because of detailed
differences in apparatus design. The practice here has therefore been
to choose the value of Re which seemed most consistent with any parti-

t

cular apparatus. For this reason different values of Ret have some-
times been adopted for nominally the same geometry.

The corresponding variation of torque coefficient with spin Reynolds
" number for the rotating disc is shown in_ Figure 5; Ret was taken as
2.8 x 10°, Predictions with both turbulence models are almost identical
and for this reason they are shown separately on two diagrams for com-
pleteness. The agreement with the measurements of Theodorsen and Regier
(26) is within 5% over the whole range spanned by these data. The more
reoeﬁt measurements of Kreith (24) and Owen (13) give values of CM
which are 5-10% higher than those of (26). Thus it is pfobably the case
that the predictions fall within the bounds of experimental uncertainty
for this flow.

Predictions of average heat and mass transfer rates for the rotating-
disc geometry are shown in Figures 6 and 7; the transition Reynolds num-
ber Ret was taken as 2.4 x 10° and 2.0 x 10° respectively, i.e. a

little lower than for the comparisons shown in Figure 5. For both the
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heat and mass transfer predictions Ot in equation (2.8) is given the
value of 0.8. The works of Kestin and Richardson (39) and Patankar and
Spalding (14) support this hypothesis for wall boundary layers. The
agreement of predictions with both the mixing length and k-& models
with the Nusselt number data of McComas and Hartnett (32) is complete
over the Reynolds number range explored; the data of Cobb and Saunders
(31) lie about 6% above this. The mass transfer predictions a€ Schmidt
number of 2.4 are satisfactory for spin Reynolds number below 5 x 105,
Above this value however, both the Tien and Campbell (35) data and those
of Kreith et al. (34) display a faster rate of increase with spin
Reynolds number than do the predictions. The average mass transfer pre-
dictions at high Schmidt numbers are compared with the data of Ellison
(36) and Daguenet (37) in Figure 7. Ellison's data covered the Schmidt
number range from 30 to 1000 at spin Reynolds number of 4.7 x 10°,
whereas in the experiments of Daguenet Schmidt number varied from 345 to
6150 at spin Reynolds number of 5.5 x 10°, Agreement of predictions
with both sets of data is close up to a Schmidt numbef of about 800,
thereafter the predictions fall progressively below the data of Daguenet.
Predictions with the k-e model are marginally closer to the data of
Daguenet than those with the mixing length model.

The relatively different behaviour for the heat and mass transfer
at high spin Reynolds number (Fig.6), it is believed, is probably asso-
ciated with the different molecular Prandtl/Schmidt number (0.7 and 2.4
respectively) and the effective viscosity becoming highly non-isotropic
as the level of swirl increases (some evidence of this is provided later).
If this is the case Figure 6 (and Figures 9-10 later) suggest that it is
in the immediate near wall region where viscous damping is important
that the turbulent transport coefficient is especially anistropic. For

the heat transfer data are well predicted while the mass transfer data are



not. Now for the present purposes the only significant difference
between the heat and mass transport process is that the near-wall region
offers proportionately a much greater resistance to masé transfer than
heat transfer. The different behaviour could be explained if it is in
the near-wall region that these turbulence models, so firmly based on
the notion of an isotropic effective viscosity, break down. It would be
valuable to extend the high Schmidt number data for higher spin Reynolds
numbers. Agreement with the data of Ellison and Daguenet as noted above
is satisfactorily close for the relatively low levels of spin Reynolds
number in their experiments.

Predictions of local heat transfer rate from a spinning disc are
compared with the very recent data of Popiel and Boguslawski (38} in
Figure 8. The transition Reynolds number was again takeﬁ as 2.4 x 10°.
Agreement of predictions using both the turbulence models with the local
Nusselt number data is satisfactorily close over the entire Reynolds num-
ber range explored. In the experiment, with laminar boundary layer the
disc surface was maintained almost isothermal; with transition boundary
layer it was isothermal within #1.5%; amnd with the turbulent boundary
layer it was isothermal within #3%. The predictions for the turbulent
boundary layer are within this *3% deviation with both turbulence models.
The small deviation of the measurements at low Reynolds numbers from
the predicted values is probably due to the free convection effects having

been neglected in the predictions.

3.5-2 Flow near spinning cones in still air

Predictions of convective transport from spinning cones of different
vertex angles are shown in Figures 89-12., It should be noticed that as
the cone angle diminishes the influence of streamline curvature becomes

more important. Predictions using both the turbulence models with and
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without respective curvature cofrection are separately compared with the

available experimental data. First, the predictions for the 120 degree

cone are compared with the naphthalene (Sc = 2.4} diffusion measure-

ments of Kreith et al. (24) and Tien and Campbell (35). No heat transfer

or torgue data appear to be available for the 120 degree cone! The two sets of

data display a similar behaviour to the disc data. ‘With a transition

Reynolds number of 2 x 10°, agreément of predictions with-measurements

is very close for Reynoldé number up to 4 x 10°; thereafter the data

display progressively higher levelsfof Sherwood number than the calculated

values. For both the turbulence models the inclusion of the curvature

correction term raises the Sherwood number by about 5% for spin Reynolds

number greater than about 3.5 x 10°, Predictions with the k- model

are marginally closer to the data than those with the mixing length model.
In the foregoing example the effect of streamliﬁe curvature on the flow

structure was relatively small and consequently only modest advantage seems

to be gained from using the swirl correction term with the mixing length

and the curved surface version of the energy-dissipation medel. The sig-

nificance of flow curvature increases as the vertex angle decreases. It

is seen from Figures 10-11 that substantially better agreement results

from use of the models with curvature correction terms included for the

B0 degree cone. All the BO degree cone predictions were made with transi-

tion set at Ret = 10°, a value which seemed most consistent with both

the heat and mass transfer data. Heat and mass transfer rates on a B0

dégree cone are shown in Figure 10. With both turbulence models in the

turbulent flow regime the heat transfer data fall approximatelybmidway

between the predicted curves with and without the cur&ature correction

term, the former giving values approximately 5% greater than mgasured.

The inclusion of the curvature term improves agreement with the mass trans-

fer data of Kreith et al. (34). Even so, there seems to be a trend, for

spin Reynolds numbers greater than about 3 x 10°, for the measured
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Sherwood number to rise more rapidly than the predictions indicate. This
behaviour is of course consistent with the 120 degree cone and the disc
data shown earlier. Again predictions with the k-e model are marginally
superior to those with the mixing length model.

Figure 11 shows the predicted torque coefficient for the B0 degree
cone compared with Kreith's (24) high Reynqlds number data. Here for spin

Reynolds number greater than about 3x10° the level of C, for B =5

M
is some 10-12% higher than in the absence of a swirl correction (B8 = 0).
With CC = 0.2 almost similar results are obtained for spin Reynolds

number greater than about 1.5 x 10°. Kreith's data certainly support
the higher values. At no point do the predicted values of CM for B =5

and CC = 0.2 differ from the measured by more than 8%, a figure which
lies well within the uncertainty limits of #12% estimated by Kreith.
Predictions with both the models without curvature correction give values
approximately 20% less than the measured values.

The only velocity profile data of flow on cones seem to be those
measured, -on the same 80 degree cone, by Koosinlin (18) and by the writer.
The former were obtained with a pitot tube, the latter with a hot wire
anemometer. The hot wire data are limited to the range: 5 < z/r/Re% < 30
the lower limit being set by the physical size of the hot wire instru-
mentation and the upper limit being that beyond which the measured values
lose significance due to large turbulence levels in the outer part of the
flow. The pitot tube data are also subject to increasing‘uncertaintyAin
the outer region assoclated with the small dynamic pressures and the
associated difficulty of identifying the direction of the resultant vel-
Dcity; The velocity profile data are compared with predictions in Figure
12. The inclusion of the swirl correction term in the respective turbu-
lence models raises the viscosity in the outer region; consequently the

tangential and axial velocities are higher. For the tangential velocity
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profile inclusion certainly improves the agreement with measureﬁent, both
sets of data essentially giving the same variation. For the component

of flow parallel to the cone surface, the two sets of data show differ-
ences comparable with the difference between predictions with and without
curvature term included. Somewhat better agreement is displayed closer
to the wall, however, by the predictions including curvature effects.
Overall it can be seen that the predictions with the k-& model here are
superior to those with the mixing length model. The predicted axial vel-
ocity with the mixing length model approaches zero in the outer region of
the boundary layer much more quickly than with the k-& model. Both the
data support k-e bredictinns. Complete details for the present sets of
data are provided in the next chapter where predicted and measured turbu-

lence energy profiles are also shown.

3.5-3 Axial flow past spinning cylinders

The case of the external flow along a cylinder in which the cylirder
is rotating about its axis is discussed here. Measured mean velocity pro-
files by Furuya et al. (10) are shown in Figure 13 for the case where the
spin velocity at the surface of the cylinder is twice that of the axial
free stream. The axial velocity here is normalized with respect to the
free stream velocity whereas surface velocity is used for the swirl com-
ponent. The ordinate is z/6_ . The predicted solutions for B = 5 and

2X

CC = 0.2 are in close agreement with the measured profiles over the

whole of the fully turbulent region. Both turbulence models yield about
the same variations of velocity profiles. It should be noted, hOWBVBr,
that the calculated profiles seem to exhibit a steeper slope in the imme-
diate vicinity of the wall, especially the profile of circumferential vel-

ocity. The last feature is not entirely consistent with the variation of

momentum thicknesses 62x and 626 along the cylinder shown in Figure 14.
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Results using both turbulence models at three levels of Reynolds‘number
are shown, the lower two being those of Furuya et al. (10) and at the
highest Reynolds number, those of Parr {8). Results are almost identical
with both models?w$gr k-¢ being.marginally superior. The rate of
growth of swirl momentum thickness is evidently predicfed satisfactorily
for the cases where B =5 and CC = 0.2 {implying that the predicted
velocity profile in fact has the correct slope in the neighbourhood of
the wall)., Too large a rate of growth of axial momentum thickness is pre-
dicted, however, the discrepancy being especially large for Parr's high
spin rate data. An implication of the above result is that, to predict

the correct rate of growth for the axial and swirl boundary layers, a

non-isotropic effective viscosity would have to be used.

3.5-4 Flow through concentric annulus with rotating core tube

Finally, numerical predictions of fully developed turbulent flow
through>concentric annulus in which the core tube rotates about its axis
are compared with the extensive experimental data of Kuzay (52) which
span Reynolds number‘from 1.7 x 10% to 6.5 x 10% and with rotational
speeds of the core tube varying from zero to nearly 2.8. times the mean
axial velocity. In the experiments the hydraulic diameter D was 7.6 cm

H
and the radius ratio, r /rD was 0.56. The axial flow had 50 hydraulic

i
diameters whereas the tangential velocity had only 36 hydraulic diameters
for development lengths. For the first 14 hydraulic diameters the axial
flow developed over a stationary section of the core tube. Outer wall
static pressure and profiles of total pressure and flow angle were measurad
by means of total head probes. From these data profiles of static pressure
and of axial and circumferential velocity were evaluated. Before com-

parisons between measured and calculated distributions of these quantities

are made attention is first drawn to some interesting features of the
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experimental data and some novel pfactices which had to be incorporated
to predict flow of such complexity.

One very striking feature of the Kuzay data was that, provided the
rotational velocity of the core tube was greater than the mean axial vel-
ocity, the change in the angular momentum from riw at the core tube /
surface to zero at the outer wall was confined, almost entirely, to the
two sublayer/buffer zones adjacent to each Cylinder; The whole of the
fully turbulent region was rotating at essentially constant angular
momentum. This feature posed interesting questions‘;egarding the physical
models presented here, because in the applications presented so. far the
modifying effect of streamline curvature caused by equations (3.8) and
(3.18) was most marked beyond fhe buffer region. In the annular flow
sthied here, since the fully turbulent region was rotating at essentially
constant angular momentum and assuming that the predicted behaviqur
displays similar behaviour, the Richardson number would be virtually zero.
There would thus be a relatively small effect of swirl on the effective
viscosity according to (3.8) and (3.18), andehatever effects were present
would occur in the regions of low turbulent Reynolds numbers adjacent to
the walls. It thus appeared doubtful whether the models presented here
would be adequate for the annular flow geometry. Some detailed changes
which became necessary to incorporate with the models and otherwise are
discussed next.

For the application of the mixing length model a uniform level of

mixing length in the core region of the annulus 1s assumed i.e.

[ = XMr -r.)/2 {(3.22)
0 o i

Equation (3.22) is used in place of {3.5) at all positions from the
spinning core tube greater than that at which & given by equation (3.5)
first exceeds the value given by {3.22). To retain strict analogy with

equation (3.7) the coefficient X should be taken as 0.085. However
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while equation (3.7) was concerned with external boundary layers; the
present case is of an internal flow; in the latter flow turbulent mixing
in the core region is substantially greater than in the outer region of

a wall boundary layer. For this reason the apparent mixing length is
larger. A, therefore, is taken equal to 0.14 here; the value being
selected as that giving the best agreement with axial flow velocity pro-
files here. This is somewhat greater than 0.12; the value giving the
best agreement with friction factor for annular flow without swirl.

With the energy-dissipation model of turbulence no modifications
were required. The model was applied in its entirety as defined by
gquations (3.12), (3.17) and (3.18).

On the actual computational aspects it should be said that it proved
to be much more difficult to obtain numerical solutions for the present
class of flows than for the external boundary layer flows reported above.
The reason seemed to be due to the guess-and-correct method adopted in
(14) for internal flows for obtaining the change of static pressure over
oneg forward step. Except when the fully-developed state has been reached,
in flows with swirl, the streamwise pressure gradient is not uniform
across the flows and the practice of using "upstream” velocity profiles
to estimate cross-stream pressure variations tended to produce somewhat
irregular streamwise pressure changes, particularly near the walls. This
in turn would produce kinks in the axial velocity profile which would
then be amplified as the solution proceeded downstreém. |

In order to eliminate such unstable behaviour a number of checks
were placed on the solution. The forward step was limited to three per-
cent times the spacing between the walls of the annulus. Moreover, the
value of turbulent viscosity evaluated at each node for both turbulence
models ‘was "diluted” with the value from the corresponding node at the

previous step; the most successful ratio of new': old viscosity was

6:4. Finally, the swirl was introduced only gradually by successively
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increasing the rotational velocity of the core tube at each step until the
speed corresponding to experimental conditions was reached. Computations
were then carried downstream until the tangential stress ratios aon the

two walls satisfied within 5% the fully developed flow relation. Com-
puting times per run on a COC 6600 computer with the mixing length model
were typically 250 s, while with the energy-dissipation model they were.
typically 600 s.

The influence of the Richardson number correction on the predicted
flow behaviour is first examined. Figures 15 and 16 show the axial vel-
ocity and the angular momentum profiles for the experiment with the
largest relative swirl velocity: as before predictions for both models
are shown with and without the inclusion of the respective curvature
corrections. Evidently in both cases the inclusion of the swirl correction
does impraove agreement with experiment. Like the measurements, the cal-
culated angular momentum is nearly uniform over the central 80% of the °
flow; here, therefore, the swirling flow Richardson number is negligible.

Computed behaviour of axial velocity with B = 5 and -CC = 0.2 for
nine different conditions is compared with the Kuzay data (52) in Figures
17-189 while Figures 20-21 show the corresponding swirl velocity for the
six_swirling flow tests. Agreement between the measured and calculated
axial velocities is generally satisfactory although for the mixing length
maodel the calculated profile without swirl displays a rather too peaky
shape in the region of the velocity maximum. This feature is a peculiar
shortcoming of the mixing length hypothesis near velocity maxima or minima,
for according to eguation (3.4) the turbulent viscosity becomes.zero at
such stationary points. In contrast, a real turbulent flow exhibits
high levels of turbulent transport coefficient‘on the axis of a pipe or,
as here, near the velocity maximum in the annulus. The discrepancy largely

disappears when the swirl flow is appreciable because then the non-zero
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gradient of [Ve/rJ will ensure a substantial level of My even'when
oU/dr wvanishes. It should however be noted that no such shortcoming

is exhibited with the k-e¢ model of turbulence and the velocity profiles
are quite smooth.

Figure 20 shows that the swirling motion displays a quite different
behaviour. Although satisfactory agreement is obtained for a swirl ratio
z of 2.79 the numerical results exhibit nothing like the variation in
profile shape that the data do as the swirl ratio is reduced. Indeed
the experimental data superficially seem to suggest that as the relative
swirl rate falls the effective transport coefficient for angular momentum
falls likewise, in almost direct proportion. In other words the trans-
port coefficient associated with swirl is independent of the axial motion.
Intuitively this implied result seemed so unacceptable that it was
decided to re-examine a selection of the flows in which more attention
was given to the "developing flow"” regime. Here it must be noted that
the computations are not represented as definitive computations of the
developing flow situation principally due to the following reasons;

{1) the grid is insufficilently fine near the inner tube to resolve the
flow accurately near the start of the spinning section; (2) for stability
reasons the spin rate was built up, only gradually, over a number of
steps to full speed; (3) the mixing length distribution for fully
developed flow does not accurately predict the flow development region;
(4) the under-relaxation of viscosity may slightly delay the rate of full
development. All except (1) would tend to delay the approach of the com-
puted flow to the fully developed state. Nevertheless, one may‘expect
the predictions to display the correct general features of flow develop-
ment with, perhaps, the axial rate of development not matching precisely
the experiment. Figure 21 shows for three experimental conditions the

computed profiles of angular momentum at two intermediate stages of develop-
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ment (about 50 and 80 hydraulic diameters after the start of the spinning
section) as well as the fully developed profile. It is immediately evi-
dent that profiles at 50 hydraulic diameters (exact number about the
same with the two turbulence models) are in virtually complete agreement
with the experimental data. The predictions bring out clearly that the
rate of approach to fully developed flow is dependent on the magnitude
of the swirl ratio. It must be said, however, that‘the present results
cannot strictly distinguish the effect of velocity ratio from that of
mean axial Reynolds number. The latter parameter is known, however, to
exert only a weak effect on development rates in flows without swirl so
it is reasonable to expect its effect to be slight here as well. The
reason for the ratg of approach to fully developed state being dependent
on the swirl rétio is that the higher the swirl velocity the larger the
turbulence viscosity. The augmentation is especially large early in the
development where the effects of swirl are confined near the core tube.
The viscosity level 1s further augmented by virtue of the increase in the
modulus of the Richardson number as the swirl rate is increased. The in-
creased viscosity thus raises the rate of radial propagation of angular
momentum. With both the turbulence models the "developing” axial velocity
profiles at nominally 50 hydraulic diameters were only slightly different
from the fully developed ones shown earlier in Figures 17-19 and for that
reason are not shown again. Of course, the axial flow had had 14 diam-
eters more of development than the swirling flow ard the axial boundary
layers grow from both walls of the annulus. Thus, since the coupling of
the swiri flow with the axial is relatively weak, the latter diéplays al-
most fully developed state in about 50 hydraulic diameters, as nearly
required for non-swirling flows.

Finally Figure 22 shows the effect of swirl on the axial pressure

gradient,. normalized with respect to the value for no swirl. Evidently
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there is a steady rise in pressure gradient with swirl Velocity.A For
values of ¢ below 2 the agreement with predictions for B = 5 and

CC = 0.2 and measurements is close; at the highest swirl rates, how-
ever, it appears that the present models somewhat overpredict the influ-
ence of swirl. There is a need for further experimental data at higher
swirl rates to provide a conclusive test.

In conclusion the numerical study of flow in aﬁ annulus with rotat-
ing core tube using both the turbulence models has shown that the number
of hydraulic diameters needed to reach full development of the swirling
flow decreases as the rotational velocity of the core tube increases
relative to the mean axial velocity. At low spin rates, where the swirl
velocity makes only a minor contribution to the level of turbulent vis-
cosity, the flow requires in excess of 100 hydraulic diameters to attain

the fully developed state. Therefore, that of the Kuzay data only experi-

ments at the highest spin rates are near full development.

3.6-5 Concluding remarks

From comparisons of prediction with experiment presented above it
is clear that though some discrepancies have emerged the two turbulence
models considered here have been quite successful in predicting the overall
behaviour of turbulent boundary layers near spinning surfaces. For exter-
nal flows there is not much to choose between the two turbulence models,
both yield nearly identical results. Computing times with the mixing
length model are typically about 1/3rd of those required with the energy-
dissipation model of turbulence. For internal flows, however, some weak-
nesses became apparent in the mixing length model. The study of the
énnulus has shown that despite the success and conceptual simplicity the
mixing leﬁgth model lagks universality, for a different distribution of

mixing length was required to predict this flow satisfactorily. Ancther



endemic shortcoming of the mixing length hypothesis near velocity maxima
or minima has again been brought to light, for according to the hypoth-
esis the turbulent viscosity vanishes when the velocity gradient is zero.
In contrast, real turbulent flows exhibit high levels of turbulent trans-
port coefficients at such stationary points. The energy-dissipation
model of turbulence i1s free from such shortcomings, and required no

changes in any of the empirically chosen coefficients listed in Table 2.
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CHAPTER 4
TURBULENCE MEASUREMENTS ON A ROTATING CONE

Experimental data for turbulent wall swirling boundary layers are
extremely limited. Many of these data have been obtained for Reynolds
numbers which are less than fully turbulent and, in consequence, their
value to the research effort on the develdpment and testing of the tur-
bulence models is limited. The most useful data, as already mentioned,
are probably the measurements of mean velocity near a free spinning disc
by Cham and Head (7), and Parr's (8) measurements on a cylinder rotating
in a uniform axial air stream. The present .measurements are therefore
intended to augment the limited available data for the class of axi-

symmetrical turbulent boundary layers on spinning surfaces.

4,1 Description of the experimental rig

The chosen geometry of the spinning surface here is that of a cone
with vertex angle of 80 degrees. The same cone was used by Koosinlin
(18) for his velocity measurements by a pitot prohe.v The éone was
machined from four layers of 76 mm aluminium plates, secured together
by internal screws. The maximum variation recorded when the cone was
slowly rotated and its surface 'clocked' by dial indicator was #0.025 mm.
The cone was driven by a synchronous motor through a timing belt and
pulley arrangement offering a wide selection of precise rptational speeds.

The cone half-angle of 40 degrees was sufficiently large to ensure
the development of a boundary layer on its surface when rotating in stag-
nant surroundings. The substantial length of its conical surface of
35.6 cm permitted a significant range of fully turbulent spin Reynolds
numbers to be attained. Figure 23 shows the Reynolds numbers provided

by the apparatus as a function of surface position and rotational speeds
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up to the maximum safe speed for the cone of 1500 rpm. The'exteﬁt of the
laminar, transitional and turbulent regimes as established by Kreith et
al. (30) are indicated on the figure. To avoid spurious air currents

and to keep the measurement area free from smoke and dust particles etc.
the cone was enclosed in a 10' x 10' x 10" polythene cubical. Photo-

graphs 1 and 2 show the conical surface and the cubical respectively.

4.2 Instrumentaion and operating procedure

A simple schematic line diagram of the hot wire signal processing
equipment is shown in Figure 24. Two constant temperature series 55A01
DISA anemometers with 5 m type 0BA107 cables were used; the transducers
were DISA platinum plated tungsten53A25 straight sensor and 55A29 slant-
ing [4501 sensor. The signals from the anemometers were linearized

using DISA 55010 linearisers whose transfer function is

E = K(E2_ - A)"
out in

where EDut and Ein are respectively the output and inpqt signals. K,
A and m depend on the setting; K being dependent on the gain, A on
the zero setting and m on the exponent setting, although they are
mutually dependent. The mean value of the signal was obtained using DISA
52B30 true integrator connected to a SOLARTRON LM1420.2 digital volimeter
(DVM). The integrator was set to give an output voltage equal to

%TU/JEin dt. A value of 10-20 seconds for the time of integration, T,
wasofound to be suitable for the near wall region, but considerably longer
times were needed for the outer region as there the relative turbulence
levels become progressively higher and frequencies lower. The r.m.s.
value of the signal was measured with a DISA 55035 RMS voltmeter with

adjustable time constants. The output voltage from RMS voltmeter was

measured with a SOLARTRON LM 1420.2 digital voltmeter. The voltage meter
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built into the RMS voltmeter was not used except to decide when é change
in sensitivity was required.

The fluctuating output voltage from the anemometer was continuously
displayed on a dual beam oscilloscope during experiments so that any
abnormalities in the signal could immediatelyvbe detected. Before use
the anemometer coils required adjustment. A DISA dummy probe 55A0151
was connected at the end of the 5 m probe cable in place of the probe,
and the anemometer adjusted to give the correct readings in the turbu-
lence measurement mode. Fine adjustments were performed using the actual
probe and the built-in square wave generator. These adjustments were
made to produce optimum freguency response as determined by the output
waveform displayed on the oscilloscope. Complete details of this adjust-
ment procedure are given in DISA instruction manual. This adjustment
procedure was done only once; the anemometers were left in the stand-by
position between all tests. With the anemometer set to the "resistance
measurement” position, and all the resistance decades set to zero, the
- zero level was adjusted with a shorting probe to Keep the d.c. motor
near zero level. With the actual probe in position, the resistance was
measured adjusting the resistance decades until the resistance bridge was
in -balance. Typical cold resistance values were 3.4-3.48 ohms.

For the actual measurements an overheat ratio of 1.8 was used. The
anemometers, being of constant temperature type, maintained the resistance
of the heated wires at the set value (1.8 x cold resistanﬁe) automatically
throughout the tests.

The anemometers and probes weré linearised and calibrated with the
probe in the potential core of a calibration Jjet using a small on-line
Digital PDP8E computer. The turbulence intensity was less than 2% and the
velocity could be continuously varied from 0 +to 50 m/s by a speed con-

troller connected to the d.c. motor used to drive the fan. The calibration
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arrangement allowed rotation of the probe around a fixed point oh the axis
of the jet, one nozzle digmeter downstream of the exit. The output from
the 1inearizer was compared with the velocity measured by a pitot probe
placed in the same axial plane as the hot wire probe but about 5 mm apart.
Velocity was determined from the pitot tube data and the ratio of velocity
and linearizer output calculated for several values of velocity between

2 and 25 m/s. Exponent and zero settings of the linearizer were altered
until a satisfactory linearization was achieved; some typical linearized

values obtained are listed below:

Table 3. Linearization of E and U

U (m/S]( . E (from linearizer, volts) E/U
20.736 ‘ 3.7935 0.1830
19.077 3.4817 0.1825
18.205 3.3134 0.1821
164739 3.0430 0.1819
ha.saz 2.6511 | | 0.1811
12.418 2.2410 0.1805
11.268 2.0342 0.1805
10.140 1.8288 0.1805
'8.055 1.6359 0.18086

Two representative linearized plots for the two probes are also shown in

Figure 25, After linearization the relation between E and U 1is

E = SUeff (4.1)

where Ueff = f(a)JU with f(a) being dependent only on the yaw angle o.

With the cosine law of Champagne and Sleicher (53) the above relation

becomes

E2 = S2U2(cos?a + K2sin4a) (4.2)
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Thus the calibration determines both the calibration constant S and the
yaw factor K. For each value of velocity two values of o are needed
to determine S and K. Because the cosine law holds only for a limited
range of values of q,hangles of 300, 450; and 60° were chosen as they
are closer to the working values of «a for the present-flow situation.

For example, for o = 300 and 450 one gets for S2 and K2:

2E2(30) - E2(45)
2

54 = (4.3)

2 - oE2
2 . B3E2(45) - 2E2(30) (4.4)

2E2(30) - E2(45)

Typical values of S2 and K? were found to be 0.05 and 0.04 respectively.
The probes were calibrated before and after a set of measurements. A
deviation of less than 1.5% in the values of calibration constant S2
was called satisfactory. The wires were cleaned thoroughly with CCl4
before and after each run. These precautions resulted in very consistent
calibration parameters and reproducible self-consistent results.

A special traversing mechanism permitted the prdbe to be moved
parallel and normal to the conical surface in steps of 0.001 inch, and to
be rotated through +g0° with respect to a plane through the cone axis. .
The probe support holder could also rotate around its axis and had the
ball and spring mechanism to be locked exactly on any of the four pairs
of holes diametrically opposed; each hole separated Ffom the next one by
exactly w/4 radians. The probe holder also Had four‘lateral internal
screws at right angies to the support axis. These screws were used to
align the probe support on its centre line. This was accomplished using
the straight sensor by adjusting screws until the mean value of the signal
was independent of the position of the holder in any pair of holes. The
probe support holder had the freedom to be moved vertically upward and

downward, to be rotated in a vertical plane around the probe tip as its
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fixed centre, and to be locked in any fixed position. This enabied the

probe support holder to be aligned with the conical surface. The whole

assembly of the traversing mechanism was fixed on a platform with four

levelling screws. Photographs 3 and 4 show the complete assembly. The

traverse

surface,

was started when the probe support barely touched the conical

exact distance from the surface being determined by stainless

steel feeler gauges.

Measurements were made for five sets of conditions given in the

table below:

Table 4., Measurement parameters
w (rpm) | x/L Re

893 0.855 3.67 x 10°

1111 0.855 4,55 x 105

1111 0.930 5.44 x 103

1429 0.855 5.88 x 10°

1429 0.930 6.95 x 10°

The mean flow direction at any location was determined by rotating the

450 sensar parallel to the conical surface until the mean value of the

"signal at two diametrically opposed holes was within one percent of each

other. Therefore besides reading the angle 6 of the mean flow direction

and the perpendicular distance from the conical surféce fourteen different

readings
taken at
with the
straight

U, u2,

possible

corresponding to seven different positions of the sensors were
each station; twelve (six mean values and six r.m.s. values)

o} .
45° sensor and two (one mean value and one r.m.s. value) with the

sensor. This information enabled at each location the values of

g, w2, UVgs VW, and uw to be obtained as independent as

of the errors connected with the positioning of the probe. The
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seven positions of the wire in the streamline oriented co-ordinate system

{see Appendix 4) used were:

1. Wire coinciding with the 07 axis; 6 = 0 for example

ZA
U——-> O >
X

2. Wire in the X0Z plane; 6 = 45 .
3. Wire in the X0Z plane; 6 = -45°,
4. Wire in the XOY plane; 6 = 45°.
5. Wire in the XOY plane; 6 = -45°,
6. Wire in the bisector of XOY plane and X0Z; 6 = 45°.
7. Wire in the bisector of XOY plane and X0Z; 6 = -45°.

These seven positions gave respectively the mean and r.m.s. values of
the signal (viz. E1, E2, E3, E4, E5, EB6, E7 and et, e2, 93; e4, e5, eb,
e7) at each location. The details of the hot wire data processing analysis

are given in Appendix 4.

4,3 Presentation of results

Figures 26-50 represent velocity and turbulence measurement results
obtained in the present study. The spin Reynolds number fange varies
from 3.67 X 105 to 6.95 x 10° corresponding to rotational speed of
cone from 893 rpm to 1429 rpm. Figure 23 shows that the dimensions and
the speeds of the cone are large enough to ensure a substantial length
of fully turbulent flow. At the lowest rotational speed, due to thin
1

boundary layer, the normal distance traversed was only about z/r/Re’

equal to 20 while at the highest speed it was more than 45. The present
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hot wire data are therefore limited in the physical distance covered to
the range: 5 < z/r/Re% < 45 the lower limit being set by the physical
size of the hot wire instrumentation and the upper limit being that
beyond which the measured values lose significance due to the large rela-
tive turbulence levels in the outer part of the flow.

The measured velocity profiles are compared first with the numerical
predictions obtained using the k-¢ model of turbuience. At the lowest
spin Reynolds number of 3.67 x 10° close agreement is observed between
measured and calculated components of axial velocity-in Figure 26. The
calculated values with CC = 0.2 for value of z/r/Re% beyond 10 display
progressively higher values and fall to zero more slowly than the pre-
dicted values of axial velocity without curvature correction. The
measured values follow the latter trend. The agreement between the
measured component of swirl velocity and that calculated with curvature
correction is, however, satisfactorily close. The velocity profile data
measured on the same 80 degree cone at Reynolds number of 4.55 X% 10° by
Koosinlin (18) and those by the present writer are shown in Figure 31.
The former were obtained with a pitot tube, the latter with the hot wire
anemometer. The hot wWire data in this case are limited in the physical
distance covered to the range: 5 < z/r/Re% < 30. As pointed out earlier
that beyond this outer limit the measured values lose significance due to
the large relative turbulence levels in the outer part of the flow. The
pitot tube data are also subject to more uncertainty in this outer region
due to small dynamic pressures and the associated difficulty of finding
the direction of the resultant mean velocity. The inclusion of the swirl
correction term raises the turbulent viscosity in the outer region; con-
sequently the tangential and axial velocities are higher. For the tan-
gential velocity profile inclusion certainly improves the agreement with
measurements, both sets of data essentially giving the same variation.

For the component of axial velocity the two sets of experiments show dif-



ferences comparable with the difference between predictions with and with-
out the curvature term included. Somewhat better agreement is displayed
closer to the wall, however, by the prediction including curvature
effects. Figures 36, 41 and 46 display velocity profiles at higher

spin Reynolds numbers of 5.4 x 10°, 5.88 x 10° and 6.95 x 10° res-
pectively. It is seén that the inclusion of curvature correction improves
the agreement with measurements of the tangential velocity profile. For
the component of axial velocity profile, however, the overall agreement
between predictions and measurements worsens with higher spin Reynolds
numbers. Inclusion of curvature correction term gives satisfactory agree-
ment for z/r/Re% greater than about 20. Below this value, however,
there seems to be no substantial advantage with this correction. Making
this curvature correction term a function of perhaps spin Reynolds num-
ber and/or normal distance might give better agreement. The reason for
disagreement seems to be the concept.: of isotropic turbulent viscosity
incorporated into the present models, while the flow especially near wallsl
becoming highly non-isotropic as the swirl rate increases. It should be
mentioned here that Johnston'’s (54) three dimenslonal boundary layer data
also implied a strongly non-isotropic viscosity near the wall. As in
non-swirling turbulent flows the mean velocity profile data also seem to
indicate that very steep velocity gradients occur in the immediate neigh-
bourhood of the wall because stresses there are high and effective vis-
cosities low.

Comparisons of the variations of turbulence kinetic energy for the
present set of spin Reynolds numbers are provided in Figures 28; 33, 38,
43 and 48. The measured turbulence energy level is rather higher near
the cone surface than either calculated profile but falls more rapidly.
Although turbulence energy level decreased with the ordinate z/r/Re%,

the local turbulence level, relative to the local mean velocity, increased
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substantially with z. At the relatively lower spin Reynolds numbers
agreement with predictions is well within the experimental uncertainty.
Evidently the inclusion of the swirl correction term in the dissipation
rate equation raises the kinetic energy by diminishing €. The agree-
ment, consequently, with the experimental data at the middle set of spin
Reynolds numbers considered here is better up to z/r/Re% of approxi-
mately equal to 20. Thereafter, however, the datavlie in between the
predicted values with and without curvature correction. The measured
turbulence energy level at the highest spin Reynolds number of 6.95 x 10%
is 'in less satisfactory agreement for z/r/Re% up to about 30; there-
after somewhat better agreemenf with predictions is obtained for z/r/Re12
to about 45.

The turbulence intensities \[jzirw, ‘[zg;rw, and ;;>rm‘ at differ-
ent spin Reynolds numbers are shown in Figures 30, 35, 40, 45 and 50.
Intensities, like the velocity profiles, are normalized with respect to
the tangential velocity at the cone-surface. The ordinate as elsewhere
is z/r/Re%. It should be noticed that the intensities of the three vel-
ocities differ appreciably from one another over the main inner part of
the boundary layer. The degree of anisotropy increases towards the wall
and the condition of isotropy seems to approach in the remote regions of
the wall. In this swirl induced flow in stagnant surroundings, not
unexpectedly, the intensity of the circumferential turbulence velocity
component vé has the highest value; that of the radial component per-
pendicular to the surface w' has the smallest value. Although the com-
ponents do not show a maximum in the figures it seems that they.reach a
maximum value in the region very close to the conical surface. Since, due
to the physical size of the hot wire instrumentation, the present measure-
ments were taken outside the near wall region no definite quantitative

statements about the intensities in the constant stress layer can be made.
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But it should be noticed that the intensities measurements shown.here
are in roughly the same proportion to each other as the relative turbu-
lence intensities data of Klebanoff (55) in a boundary layer along a
smooth wall with zero pressure gradient and to the relative turbulence
intensities data of Laufer (56) in a pipe flow. It should further be
noticed that the present turbulence intensity profiles at various spin
Reynolds numbers exhibit reasonable self-cohsistency.

The shear stress distributions at different spin Reynolds numbers
are displayed in Figures 28, 34, 39, 44 and 49. Self consistency of the
profiles is again evident. Shear stresses here have been normalized by

the sguare of the conical surface velocity rw. The shear stress vew
has the highest value at the measuring station nearest the wall and then
falls smoothly with increasing distance from the wall. Shear stress
uw has the smallest value at the measuring station nearest the wall and
displays some scatter. This also falls of with increasing distance from
the wall. Interesting behaviour, however, is exhibited by the stress
-GV;Z Its value increases for z/r/Re% of about 10, thereafter it
almost remains constant for z/r/Re% of approximately 25, and then falls
off with increasing distance from the wall like other shear stresses
V;W and uw. Beyond z/r/Re% of about 15 the shear stress GV; attains
relatively higher values than those of the other two components.
Finally,Figures 27, 32, 37, 42 and 47 display the coef%icient of cor-
relation VEWYVéw' for the different cases reported‘here; A roughly con-
stant value of approximately 0.53 may be observed over 75% of the boundary
layer with the coefficient tending to go to zero at the wall and at the
outer edge of the boundary layer. This result is again similar to that

found in high Reynolds number turbulent flow along a smooth wall with zero

pressure gradient examined by Klebanoff (55). A value of approximately
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0.5 is obtained for the correlation coefficient in the high Reynolds num-

ber turbulent boundary layer.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS
5.1 The theoretical contribution

The present research has shown that use of Prandtl mixing length
hypothesis and the energy-dissipation model of turbulence lead to
generally satisfactory predictions of flow near spinning surfaces pro-
vided the respective models are modified to account for the effect of
streamline curvature. The results have shown that the swirling flow
modification brings great improvement in predictive accuracy over the
standard versions of both the turbulence models. For external boundary
layers on spinning surfaces there is not much to choose between the two
turbulence maodels, both models producing almost identical results. The
mixing length model, however, with its simplicity and being much cheaper
to use, is still to be preferred for external flows. For internal flows,
however, the study of the annulus with rotating core tube has shown,
that as simple a turbulence model as mixing length lacks universality,
for a different distribution of mixing length is usually needed for each
new geometry considered. Another endemic defect of the mixing length
hypothesis near velocity maxima or minima has again been broughtto light,
for according to the hypothesis the turbulent viscosity vanishes when
the velocity gradients are zero. In contrast, real turbulent flows ex-
hibit high levels of turbulent transport coefficients at such stationary
points. The energy-dissipation model of turbulence being free from such
shortcamings 1s thus to be preferred for internal flows.

There are some other shartcomings in the predictions with both the
turbulence models at high swirling rates that should be noted. It has
been shown that at high swirl rates the present models predict too fast
a growth rate of axial momentum thickness along the spinning cylinder.

The underprediction of the rates of mass transfer from the spinning discs
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and cones perhaps finds its origin in a similar cause i.e. the effective
viscosity becoming highly non-isotropic as the level of swirl progressively
increases. It would be valuable to extend present experimental data of
high Schmidt numbers to higher swirl rates to help resolve this question.
Finally it may be concluded that to develop a model of turbulence
for predicting swirling flows near walls which possess significantly
greater universality than the present models one will require the aban=-
domment of the effective viscosity concept. The most promising route
seems to be one in which transport equations are solved for each of the
non-zero Reynolds stress components. Models of this kind have been
presented in references (B1) and (62) and by a few other workers. In
principle these models are capable of accounting for the non-isotropic
features of swirling turbulent flow that have eluded the present models.
Because of their much greater complexity however, they have as yet been
subject to little testing. Indeed apart from the vortex flow predictions
of (57) there seems to have been no calculations made of turbulent flows

near spinning surfaces, an omission that ought soon to be remedied.

5.2 The experimental contribution

The experimental data obtained in the present study should supplemeﬁt
the scarce available data for swirling, turbulent boundary layers near
walls. Some important points have emerged from the measurements. The
measurements of fluctuating quantities yield results which illustrate some
similarities between the turbulence structure of swirling beoundary layers
near walls and that normally found in high Reynolds number‘turbulent
boundary layer flows. The degree of anisotropy increases towards the
wall and the condition of isotropy seems to approach in the remote regions

of the wall. Anistropy also seems to increase with swirl rate.
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The hotwire data of the present study are limited in the pﬁysical
distance covered to the range: 5 < z/r/Re% < 45 the lower 1limit being
set by the physical size of the hotwire instrumentation and the upper
limit being that beyond which the measured values loose significance due
to large relative turbulence levels in the outer part of the flow. The
experimental difficulties associated with accurate positioning of the
probe and 1ts restricted access to the spinning surface suggest the use
of perhaps advanced laser-Doppler anemometry technigues for turbulence
measurements, especially in the immediate vicinity of the spinning sur-

face.
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NOMENCLATURE

leaning

constant in the transfer function of linearizer.
constants in the linear approximation of the instan-
taneous response equation of the linearized anemometer.
radius of fluid element from gentre of eddy.

parameter in modelled e equation.

average drag coefficient for disc and cone, and for

cylinder, i.e.

2 8

sw/ r2UV, sina dz/w?rd; fuvedz/wRZUm = 8/R
n} (]

respectively.

empirically chosen coefficients in the modelled ¢
equation.

coefficient in the definition of My

specific heat at constant pressure.

damping function in the mixing-length formula.
digital voltmeter.

hydraulic diameter, D0 - Di'

linearised hot wire signal = E + e.

fluctuating component of the electrical signal.

mass velocity vector.

shape factor, for disc,

pitch factor; specific enthalpy.

stagnation enthalpy.
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diffusional flux.
yaw factor; constant in the transfer function of
linearizer.

turbulence kinetic energy = %[:;-+ vg + wl).,

length of cone measured in the x-direction.

length scale of turbulence (e.g. mixing length); metric
coefficiént.

mixing-length hypothesis.

constant in the transfer function of linearizer.

mass fraction of chemical species.-

mass flow rate.

exponent in the Collis and Williams law.

local Nusselt number = ﬁu X Pr/cp(Tw - T Ju.

X

0
e -
[é./” rq), dx/roxo] xoPr/cp(Tw Tw]u.

8]

i)

average Nusselt number

static pressure.

Prandtl number.

heat flux.

radius of cylinder.

radial distamce from axis of symmetry.
spin Reynolds number, wrx/v.

value of Re at which transition occurs.
free stream Reynolds number, UWR/v.
UmDH/v.

local swirl flow Richardson number.
rate of generation»of chemical species.
turbulence Reynolds number, pk2/ue.

momentum thickness Reynolds number, V9911/V-



e’

Vv,
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calibration constant of the hot wire i.e. constant of
proportionality between the cooling velocity and the elec-
trical signal.

distance between two points in the general co-ordinate
system.

Schmidt number.

local Sherwood number, m x Sc/u(m. -m, ).
W % J.W Js®
)
average Sherwood number = |2 .f mrdx/x r | x_Sc
A ool o
(m, =m, Ju. '
JsW J,®

temperature; integral time scale.

shear stress.

velocity in the x-direction; instantaneous velocity.
free stream velocity.

mean axial velocity.

mean velocity.

fluctuating component in the x-direction; also component
in the streamwise direction of the fluctuating velocity.
fiuctuating velocities in the x, 6, z system.

rms of u.

fluctuating velocities in the x,y,z system.

velooity vector.

velocity in the circumferential direction.

fluctuating component of velocity in the tangential
direction.

rms of Vg*

velocity in the z-direction.

fluctuating component of velocity in the z-direction.
rms of w.

co-ordinate measured along the surface.



X, ¥, Z

Greek symbols

2%

28
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co-ordinate measured normal to the surface.

co-ordinates of streamline oriented system.

angle made by the x-direction with symmetry axis; vyaw
angle of the hot wire.
parameter in equation (3.8); pitch angle of the hot wire.
exchange coefficient.
angle of the limiting surface streamline with the main
flow direction i.e. tany = 1lim [U/Ve).

z>0
boundary layer thickness where U/Uw = 0,99.

momentum thickness for disc,
8

L “/.(rw - Ve)Ve dz.
(rw)? o

momentum thickness in the x-direction for cylinder,
§

u u
f U—m (1 E) dz.

[w}

swirl momentum thickness for cylirder,

)

f UV, dz/U_Ruw.

o}

rate of dissipation of turbulence enérgy..

angle of revolution about symmetry axis; yaw angle.
same as §,.

mixing-length constants.

dynamic viscosity of fluid.

kinematic viscosity of fluid.

3.14159
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Subscripts

eff
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density of fluid.

Prandtl or Schmidt number.

turbulent Prandtl number for thermal energy.
turbulent Prandtl number for turbulence energy.
turbulent Prandtl number for rate of dissipation.
shear stress.

dependent variable.

stream function.

rotational speed; dimensionless stream function.
swirl velocity/free stream velocity.

tangential velocity of the inner cylinder/mean axial

velocity.

effective value.

inner and outer edges of the boundary layer.
free stream.

indices relating to i, j and k directions.
inner

chemical species

mean

normal directions.

outer, maximum

dependent variable.

turbulent, tangential direction.
co-ordinate directions.

quantity non-dimensioned by {Tw/p]15 and v.

wall value.
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denotes time average.
rms value.

per unit area.
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APPENDIX I
DERIVATION OF THE CONSERVATION EQUATIONS

A general axisymmetrical co-ordinmate system is illustrated in the
figure below. The co-ordinates x and 2z designate the members of two
orthogonal families of surfaces of revolution whilé 6 represents the

angle of revolution about the symmetry axis from a reference plane.

REFERENCE PLANE

P
LINE OF CONSTAN
\ X AND Z
e re

O AXIS OF SYMMETRY

THE AXI-SYMMETRICAL CO-ORDINATE SYSTEM.

The distance ds between two neighbouring points in the field is related

to the increments in x, z and © by:
(ds)2 = (g dx)2 « (2 dz)2 + (zede)?- (A1.1)

where Qx, 22 and 26 are "metric coefficients”. If ©6 1is measured

in radians, 26 is then identical with the radius of curvature re.
For axisymmetrical flows considered here 23/936 terms will vanish, but
not the differentials with respect to x and z.

The radii T and rZ can be related to «a, Qx and 22. as

follows:

)
1 _ _ oo - 1 X

T = T Tox 5. 9z (A1.2)
X X X

and
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1 ) ) , .
r T3z (A1.3)
4

The radius r_, can also be written in terms of o and 2&'s

]
dr, = (sina)f dx + (cosalR _dz (A1.4)
6 X z
For the present axisymmetric flows, & =2_ =1, £ =r and r_=r
X z S X z

= oo,

The Conservation Equations

The general elliptic forms of the conservation equations for mass,
momentum, stagnation enthalpy and chemical species for the class of axi-
symmetrical flows considered here are presented below in vector notation.
The complete details are provided in Gosman et al. (59). The massive
amount of algebra has been left out in the following and all symbols are
defined in the Nomenclature.

The continuity equation:
divG = 0 ' (A1.5)

The momentum equation for each of the three directions:

- : _ _ sina
G.grad U div TX + (UG Tx].grad a + [VeGe Te’e] ,
- - 22 (A1.6)
% .
s _ _ _ coso
G.grad W div TZ (WG TZ).grad o + [VeGe Te,G] —?i;-
- éL.%E (A1.7)
z
G.grad (£, V) = div (2,T,) (A1.8)
G.grad f = —div[Jh+§thj+gkapurx+wrzfveTe]] (A1.9)

J
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and

G.grad mj = -div Jj + Rj | : | : : (A1.10)
Equations (A1.6-A1.10) pnséess fhe common form:

G.grad ¢ = -divJ  +d | | (A1.11)
where ¢ represents the depgndent variable and d is fhe source term.

»J¢ stands for the diffusive fluxes of enthalpy or mass; for laminar

flows the following gradient-type laws hold

dJ

h ~Ph Cp grad T | | (A1.12)

- J

. -T, grad m, ' - (A1.13)
J J g J

For momentum equations (A1.6-A1.8), the diffusive fluxes correspond to
the shear stresses and are represented by the symbol T. For laminar
fiow, the components of the shear stresses are connected with the

various components of the gradient of velocity, viz.

L RN, M2
Tx,x - “[z 90X * T 3 div V]
% X
_ .r2 W U2 .
T2 © Rlggp it -gdvVl
z z
T = u[ié-[U sine + W cosa) - = div V]
0,0 le ' 3
2 2
= T .. = *xd (U,,.z3 W
Tx,z Tz;x u[2 Bz;(z-) e % 53 )]
z X X z
2 \) ‘
- = 409 (8
Tx.e B Te,x u[2 X (2 )]
X 9
2 Vv
- = y[-83_ 8
T, ° To,- “[zz 3z [ze]]

In terms of the co-ordinates x, z and 6, equation (A1.11) takes the

form
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G G
x 3% z3 _ _ 1 9 3
j;'ﬁ;‘* E;'"E o gxzzle [Bx [QZEGJ@,X]\+ 3z (LXQGJ@,Z]]+ d (A1.14)

Parabolic Forms of the Equations

The general elliptic form 0% the conservqtian eguations presented
above may be cohsiderably simplified for the special case of boundary
layer flows where there is a single predominant direction of flow and the
diffusive fluxes are significant only at right-angles to this direction.
Thus, regions of recirculation are absent in boundary layer flows.

) Direction x is chosen to be the predominant direction of flow here.
Diffusive fluxes therefore are negligible in the x direction. The
equation for the conservation of momentum in the cross-stream direction
{A1.7) is normally ignored for non-swirling boundary layer flows unless
the surface curvature is large. For swirl velocities common in‘engineer-
ing practice, however, the last term in this equation is not negligible
except for the special case of a spinning disc where it is zero since
coso = 0. The convection terms are most probably negligible and the
diffusion term is certainly negligible as W 1is small evefywhere; The

following approximations are therefore valid:

G.grad W = 0,

UBx ao
[UG' - Tx].grad a = I——a

X

'WGX Sat '
(WG - Tz).grad a = -i:-s;(-

With these relations equations (A1.5 to A1.10) reduce to

d 9 _ ‘
Ix [lzﬁ.esx] + 37 [R'XR'SBZ) = 0 (A1.15)
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Sxau,Czau 12 [N |l _ 12
% 3x 2 93z L % 8, 3z L X,Z 0Z 2 X
X z x z 0 z X
WG V.G
X oo 6 . ‘
T a5t g sina . R (A1.186)
X 0
uG V G
. - Txoe, e
0D = T 32 7 % + g cosa (A1.17)
Tz X : 0
Gxa[zevel . Gzatzevel _ y ["x"e . LN
lxax 2232 lezle 9z 2 6,z oz
- zre’z szeve cosq] (A1.18)
G G A
x 8 . "z 3h _ _ 1 3 _—
L ax L 9z T2 T 37 [%eldy * Zhydy - UT,
X z X270 ‘ J
) - VeTe,z)] | | (A1.19)
Gx amj GZ amj 1 3 ) .
T 9x L. 3z  T1% E["x’?’er] * R, (A1.20)
X z X z 0
- Equations A1.16, A1.18, A1.18 and A1.20 possess the common form:
G G .. »
x 99 z3d _ _ 1 ]
T 3x % 9z % % 8 0z [y'xg'e‘]d),z] +d (A1.21)
X z Xz 0

For the tangential momentum equation the dependent variable zeve pre-
- served the common form of the equations. However, as pointed out earlier
in Chapter 2 it is numerically simpler and convenient to employ Ve/S?.e

as the dependent variable on the right-hand side, the diffusion anrd

source term are replaced by a single diffusion term:

3
Gx a[zevel . BZ BIZGVB] _ 1 3 Zxﬁe . G(Ve/le]
A ox L oz L 2 &, 3z 2 z,0 0z
X z X z 0 Z

(A1.22)
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For the present class of axisymmetrical swirling boundary layers the
angle o in the general orthogonal co-ordinate system has a constant
value. The metric coefficients lx and lz are both equal to unity
whereas {_ =r_ =r. Radii r

0 ) x

these simplifications the above equations reduce to the familiar forms

and r, extend to infinity. With

presented in Chapter 2.

U, U _, W o | |

-3? + F S1 + 3 + F cOosa 1] . . (A1.23)
oU ol 3 19 aU Vg ‘

9L ~9p e -2 — &3
Py ax W 4 X T Bz[r X,Z az] e 3 sina (A1.24)
- v2 )

ip  _ 0

3, - P 4 cosa (A1.25)
alrv,) alrv,] atv, /r)

6 60 _ 18 .3 6

oU—5—+ P —5; " raz [ I‘2,9 3z ] (A1.26)
ah oh 19 oh |

U=+ Pz = o [r[rh 7 U .t VeTe,z]] (Av1.27-)

. 3m am 19 am ‘ ' o
pU -5-; + pW '5; = - —z [rI‘j 3; v : (A1.28)

The generation term Rj in the absence of chemical reaction is zero in
equation (A1.20), and the contribution Zthj of the chemical components
in the stagnation enthalpy egquation is neglected.

For laminar flows Px 2 and FZ 6 simply represent the molecular

h
or Schmidt number of the fluid.

viscosity uw while T and Pj are equal to w/o; o 1is the Prandti

For turbulent flows Fx and Tz are the effective viscosity

’

6
Hops? ana Fh and Pj are the effective Prandtl or Schmidt number des-
cribed in detail in Chapters 2 and 3. Except for the inclusion of ueff
and ceff the components of the mean velocity satisfy the same egquations
as those which are described by the corresponding velocity components in

laminar flows.
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APPENDIX 2
DERIVATION OF k AND e EQUATIONS

The general conservation equations for axisymmetric flows presented
in Appendix 1 form the starting point for the derivation of the turbu-
lence energy equation. Steps outlined in (60) by Launder and Whitelaw
are closely followed in the derivation and modelling of different terms.

The continuity equation in vector notation, presented in Appendix 1,

can be written:
divG = 0 ' (A2.1)

expanding and using relations (A1.2) and (A1.3) one gets

1 9 9 _
m " [RZRGGXJ + Nz (‘Q‘X‘Q‘GGZ]] 0 (A2.2)
X676
G G; G, 3, G, G,
X e X, — sing * + — + — poso. = O (A2.3)
X r r z r iy
z 0 X 6

Now the instantaneous values are decomposed into a time average and a

fluctuating quantity, e.g.

G = G+ G " (A2.4)

v = V+ v (A2.5) .
p = -5 * p' (A2.6)

For simplicity overscore — is omitted in the following and the time
average is simply represented as G, V or p. Substituting (A2.4) and
(A2.5) into (A2.3) yields

oG G G oG G G

X e X, X sino + I - coso +
X r T 9z r r
z 6 X 6

i’ G’ B! .G G’ G’
_x+_x_+._xsj_na+ 2+—£+—2'CDSG = ] (A2.7)

9X rz re 9z rx re

Time averaging (A2.7) and employing the usual properties of fluctuating

H



quantities gives

oG G G oG G G
X X X .
+ —t —— g +
X r r
z 6

cosa = 0 (A2.8)

Substracting (A2.8) from (A2.7) one gets

oG G’ G’ oG G' G'
X X X .,

w——t —— + —— 5ipna +

9x r r

z 6

cosa = 0 (A2.9)

The streamwise momentum equation in direction x is written as (Ref.59):

1 pwz'-Tz z pvg-Te 6 GxU—Tx X BZX
< div [SZ,X(GU—-TX)] - - - - sina - — 5
X z 6 X
1 .9p _
+ I—'gg = 0 (A2.10)
X )
The first term on the left-hand side can be written as
1 . 1 1 9 .
L [} - S LN B -
o div [ . (GU T )] T T )'Bx [zxzzzetexu TXJX]]

X X xz8

+ 32 G u-T )]
9z Xx 8 "z X,2Z

or

5 G U-T \ 9%
= (B U-T ) +| Zp2eX) X
3x X X, X [¥A

X 9x

G _U-T (G U -T )
X X X X X, X

3 + L

sina + 3 (6 U-T )
dz z X

r, rq »Z
Z[GZU-TX'Z] (G U-T ]
+ N — 22 cosa (AZ.11)
r r
X . 8
Substituting (A2.11) into (A2.10) gives
0 G U_Tx X Gxe_T X 9
(G U-T ) +-ZX Zalg XX sina + ~—(G_U-T )
X X X, X r r 9z z X,
z 6
2(6 U-T ) (G U-T ) G W-T
Z X 2Z Z Xs 2 Z Zs2
&+ + cosa -
r r r
X 6 z
G V=T
08 9,8 cina + 2B - g (A2.12)
r oX
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Substituting relations (A2.4-A2.8) into the above equation yields

.[GX+G£)(U+U?J = [Tx,x+T;,x]

g—-[[s +G')(U+U") - (T +T' )] +
X X X X, X X, X ra2

(GX+G;](U+U’) - [TX X+T); xJ 3
* - *"— sina + = [(G_+G!) (U+U) - (T_ _+T! )]
ry 9z z z XsZ X,Z

2[(G_+G*I(U+U")]- (T _+T ), (G_+G!)(U+U') - (T _+T )
4 z X, Z X, Z Y4 z X, Z

2 L4 L JZ

+ + cosa
r, Ty
' ' - ’ 1 ! -
(GZ+GZ](W+W ) [Tz,Z+TZ,Z] [Ge+Gel(Ve+V8] (T6,6+Té,6] ]
~ - sS1ino
ro Ta
v oep) = 0 (A2.13)
5% (P*P )

Multiplying equation (A2.13) by U' and rearranging yields

g—-[s UUT+G_U'2+G UU'+G UL =T U'-T' U'] - [(B +B’)(U+U")
X X X X X X, X XX X X

b

, G UU'+G U'2+GUU'+GU U -T  U'-T? U’
o, ou X X X X X 5 X X, X
- (T, _+Tr )] *
XsX  X,X IX r

z

G UU'+G U'2+G'UU’+G'U'U’'-T U'-T' U’
X X X X XX »

+ - = sino
6

a_
9z

+

[G_UU'+G_U'2+G3UU"+BUU" +G U 2-T  U'-T! _U']
z r4 ! X, Z X5 Z

’

. oli’
Tx,z] 9z

[G_U+G_U'+G'U+G'U"'-T
Tz oz z0 "z X,Z

G_UU’+G_U'2+G3UU"+G4U'2-T  U'-T’ U’
Z Z X X, Z

s Z )

+ 2
r

X
G UU'+G_U'2G_UU'+G'U*2-T _U’'-T U’
y4 4 4 Z X, Z X, Z
+ coso
Tg
G_WU'+G_U'W'+G3WU'+G'wW'U’  T_ _U’'-T’ _U’
Z 4 Z Z,2 Z, 2

r r
4 z

’ VYA I IR ) - VT ’
i GeVeU +GeVeU +GeyeU GeVeU 'Te,eU TS.SU cing

s B,y B - g (A2.14)
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The conservation equation in the cross-stream direction =z is written

as

pU2-T pV2-T
j;-div [2 (Gw-T )] - x.x __ 8 8.8 cosao
z z r r
z X 5]
GZW—TZ z aR’z 1 9
- 2 + —22 - 9 (A2.15)
2 9z 2 z
A z

z
The first term on the left-hand side can be expanded i.e.

1. _1 )3
E’_.dl\/ [QZ[GW TZ]] T 03 _35;{222226[GXW-T2’XJ]
z z xz°8

&IA

9
¥ ?z [ZZZXRB[GZW—Tz,zllz
or
3 GXW-T x GXW—T
= (G W-T ) +2 22X Z:X sino
X X Z,X r r
z 5]
3 G W-T 822 GZW-T
+ 5—-[G W-T_ ) + = - + 222 cosa
z 'z z, 02 - Ty
z
G W-T
. z zZ,Z
r
X

- G W-T « G W-Tz %
2 G W-T, )+ 2 S = sina
X X z, r r
z 0
5 G W-T G_W-T
+ —(G W-T } o+ z X coso + z S
9z z Z, r r
) X
G U-T G.V_-T
. X xx 08 6,8 .03 _ 4 (A2.18)
rx re 9z )

Again substituting the relations (A2.4-A2.6) into (A2.16) and multiplying

by W' yields:



3—{6 WW'+G W'2+G"WW' +G W' W'-T  W'=-T' W')
X X X X X ZyX Z  Z,X

- (G W+G W'+G'W+G'W'-T -7 ] 3ﬂ~
X X X X Z,X Z,X 09X

G_WW'+G W' 2G WW' +G W' Wp-T_ -T* W’
X X X X Z,X Z,X

+ 2 2
r
Z
G WW'+G W'2+G WW'+G'W'W'-T  W'-T*' W’
X X X X Zs X Z,X .
+ sino
Ts

+

S (MWW G W 24GI W G W W T W =T’ W)
9z 'z z z z z,Z z,Z

2 »

- (G W+G W'+G'W+G'W'-T -T' ] éﬂ_
z z z z z,Z2 Z,Z 9z

G WW'+G W'2+G'WW'+G ' W'W'-T W'-T' W’
z z z z zZ,Z ZsZ
+ coso
Ll re

G_UW'+G_U'W'+G UW'+G U W' =T W'-T’ W’
X X X X XX Xy X

r
X

’ 'R W +R ' T = VLT WY
GeVeW +GeVew +GeVew +G6V6w Te,ew +Te ew

>

- = coso
0
G_WW'+G_W'2+GWW'+G'W'W'-T_ _W'-T' W' 3 -
+ Z Z Z Z Z, Z,2 + w) __p_ + w| p = 0
r 9z 9z
X
(A2.17)
The conservation equation for tangential momentum is writtén as:
1 -
Eg div[le[GVe TeJ] = 0 (A2.18)
or
1 1 9 ] _
IR 5§{lzle“e[6xve Tx,e)] * az[leele[szve Te,z]] =0
6 "x'z'8
or
GV -T GV -T
(VAR S . . LA X% sing
IX X 8 XxX,6 r r
z )
GV -T GV -T
+ gy -1 )28 8z, 5. 28 2,8 5, - o (A2.19)
9z z 6 8,z r r
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Substituting relations (A2.4-A2.6) into (A2.138) and multiplying by

VB
gives:
' 12 ’ ' (. ' ’
[G VeVe+GXV +G V V +G’ VeVe TX,GVB TX,BVB]
aVé
- 9 VA= ~T? —_—
[GxVB+vad+GxVB Tx, Tx e] ax
' 12 [
+ [G \ V +GXVe +G V V +G! VGVB TX,eVe TX eVB]/I‘
' 2 ’ ' YT
+ 2[G V ' +GXVe +G! V Vv +GXVBVB TX BVe T eVe] 51na/re
' 12 ' ' ' _ YT '
+ [GZVBVB+GZVe +G’ VeVe+G V'V TB ZVB Te,zVe]
BVé
- ’ ) 1 ' - ’ e
[GZV9+GZV0+GZV6+GZVB TG,Z TB,Z] 32
] 2 ’ ' YT '
+ (G VeVe+GZV +G V6V6+G V! V T ,ZVO TS,ZVGJ/PX
+  2(6 V V!+G V'2+G V V‘HSWNV' T V!-T' "V!)cosa/r = 0 (A2.20)

66 z6 66 .86 z,8°0 0

Equations (A2.14), (A2.17) and (A2.20) are now added together. Convec-

tive, diffusive, productive and dissipative terms are explicitly written

out below:
Convective terms
S (6 U'2)+G U'2/p +G U'2sina/r, + o—(G_U'2) +26_U'2/r
oX X X z X 6 9z "z z X
+ G U'%gina/r + 3—-[G W'2) + 26 W'2/r + G W'2sina/r
z 6 IX X X z X 0
+ g—{G W'2) + G W'2/r + G_W'%cosa/r, + E—IG KD
9z z z X z ) ax X 8
v 2 12 ?____ 12 12
+ vae /rZ + ZGXVe sina/re + az[GZVe J GZVe /rX

)2
+ ZGZVB cosu/re

If k' is set equal to (U'2 + W'2 + Vé2]/2 the above terms can be

simply written as
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2 E—{G k') + 26 k'/r + G W'/r + 2G k' sino/r. + 22—(6 k")
ax X X y4 X y4 X .8 9z 2

+ 26 k'/T + G U'?2/r + 26_k' cosa/r. + G V!
z X z X z 8 z 8

ok’ ok’

Gx X Gz 0z

These can be further written as

o6 oG
= 2K' (—=+ G /r_+ G sina/r + —2
oX X' Tz X 8 0z
+ (6 2K g Ny s w2/ +6 U2
X 9X z 90z X z z X

+

2 12 s
GZVe cosa/re + GXVe 51na/re

Preductive‘and diffusive terms

These terms are grouped as follows:

oG

2 cosa/re

+ G /r + G cosa/r.)
Z X z 6

v == s e Y gy Ly gy« gru
ox X ox X 99X X 9X oX Z 9z
: 36
+ GIUI a_U_ + le aw + GIWI a_hl_ + WWI ___)i
z 0z X 99X X oX oX
| W’ 3 L 3W 3G,
- GIW S W S(GIWY) ¢ GIW S+ G SE e W =2
X 9X oX X Z 9z z 9z 9z
V! 3V 3G’ BV’
- ' oW’ va__ WL ] 8 IAVA) 8 ’ X _ ' 8
GoW oz * W gz (G W )+ GVe 5= * BVe 3x * Yo¥s 3% 7 BV 3%
V! oV 3G’ YA
v 26V + BV, —2 BV — ¢ v v 2 - BV, —2 v 2(6rV)
6 9x X 6 z 6 3z zZ 86 3z 6 86 9z z 8 9z 6 3z z 5

] ’
syt 2BL Ly BB L gur2r s GrUT2/r + G'UU'/r G'UU'cosa/r
z X z X z X z 6

oX 0z

+ G'U’2 cosa/r, + G'UU'/r_+ G'U’'2/r_ G'UU’
z 6 X z X z X

- GlUle/r - GIUIW/I-. - G'W'U'/I" - G'V!Ul
z z z z z z 6 6

- G'V!'U'sina/r, + G'WW'/r_ + G'WW'/r_ + G'W'
6 6 6 X z X z X

+ G'WW!sina/r. + G'W'2sina/r. +: G'WW'cosa/r
X 6 X 6 z 6

TN NL 12 - LN - g
+ szw /rx + sz /rx GXUW /rX G%U W /rx

sina/r. + G'U'2 sina/r
6 X 6
3 - y 1
51na/re GGVGU sina/re
2/r + G'W'2/r
z X z

+ G'W!'2cosa/r
z 6

- ’ ]
Gevew cosa/re
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R IVIINL] IVERVE w2 '
Gevew cosa/r6 + vaeve/rZ + GXV6 /r + G’ V6V651na/r + G V6V651na/r

MW r2a4 ] ] "nye2 XV
+ GXV6 51n0t/r‘6 + szeve/rx + GZVe /r + G Vevecosa/r + szevecosa/r6

VR VAN
+ GZVe cosa/r6 + GZVe cosa/re.

For the present class of axisymmetric boundary layers Ty and r,
approach infinity and rg = T Therefore the above terms can be simpli-

fied as:

Production and diffusion

aV VvV
vak' v?ﬁ_'_ L a_U [XVX] __Q,__e - TR} .
GX X + GZ 7 + GZU [az] + GZV6 (az = cosa) GGU V651na/r

— ’ ? — ? 1 ] s
G W'V cosa/r + G' V6V651na/r + GZVGVecosa/r GGVGU sina/r

N ITLAVARY ) - RIVIINL "Wy r2a1 "2
GGU V651na/r Gevew coso/r + GXV6 sina/r + GZV6 coso/r

+U'§.El.+wi_a_p_i.
Ix

3z
or
v v
) ’
= G' BK + G, ak + G'U' [ﬂ] + GIV' [_e__icos(x]
X ax z 3z z 3z z 6 9z r
\Y)
6 . apv apv
- LY B L L it
pVGU = sina + U ™ + W T
Dissipative terms
o, % Ty
U 22X Ly osipe/r - U 222 o0 U' cosa/r + T! _U'coso/r
ax X, X az X, 2Z . 6 6
aT! BTZ 5
- W —2X -7 Wsina/r - W’ = - T' W'sipa/r + T! W' cosa
Ix ZsX 9z Z,2Z 6,0 ,
CLIV BTé 5
- ’ L - ’ - ’ - ]
Ve x 27 ’6V651na/r V6 3z 2T ,evecosa/r .

Now time averaging all the above terms yields



Vv v —
Bk . g @Y - 2 -8 - g 2K
pﬁ¥' N GzU [82) sze (82 r cosa) Gz az
, op’ . .
- W 3 - Dissipation (A2.21)

The complete discussion on modelling of different terms in the above
equation appears in (60) and (61). The interaction between the mean
‘and fluctuating motion leads to transfer of energy from the mean to the
fluctuating motion, thus, representing production of turbulence energy
by the first two terms on the right-hand side. Now the following

approximations are made:

ay

-GZU utfgzl (A2.22)
Vv \Y
6 0
TV = ——  —
GZV6 uttaz = coso)
a[Ve/r]
= ut[I‘ 57 (A2.23)

The group of dissipation terms € is modelled as 'bk3“92. Following
the practice for non-swirling flows it is presumed that the diffusion
of Kk by turbulent motions and pressure fluctuations obeys the gradient

type law i.e.

u
(r _t

Diffusion of k = — 2 3k, (A2.24)
T 9z ck 9z

where OK is a 'turbulent Prandtl number' for the turbulence energy,
which is assumed to have a constant value. Such an approximation has
previously been proposed independently by a number of workers, e.g.
Prandtl (62), Emmons (63).

With the above relations the complete turbulence energy equation

for the present class of flows can be written:

ak ak 13 M. 8k
pU P + pW Nz = BZ[I‘[}J + E}—" EZ—
1
. 3y.2 BVe/I‘z 3 K22

(r

ut [[E] + Nz ) ] - pe 'fZ]J['B-Z—] ~(/'\2.25]
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Ni=

ok
z

3 ] in the above

The reasons for the inclusion of the extra term 2p(
eguation have been pointed out in Chapter 3 and in references (47) and

(81].

Mixing Tength viscosity formulation

It is interesting to note that if a local balance between the pro-
duction and dissipation of turbulence energy is assumed (i.e. convection
and diffusion of Kk negligible, sometimes called the condition of 'local-

equilibrium’) eguation (A2.25) reduces to:

oV, /r -
3 2 8 2
b I:(—a%] ¢ (=2 ]= oe (A2.26)

From relations

©
x
NI

e = k32,9 and o = 2
it can be seen that
T o3 U3 (A2.27)

%2 here has the dimensions of a length scale. Equations (A2.26) and
(A2.27) can be combined to give the final form of the mixing-length

viscosity formula presented in Chapter 3, i.e.

1
. Vv /r :
U, 2 g’ .2
= 2 —
My pL [[az] + (r 57 ) ]

(A2.28)

The equation for the dissipation~rate of turbulence energy

The exact equation for € in the general co-ordinate system con-
sidered earlier is a little more difficult to derive. The derivation in
general tensor notation .and in cartesian form has been provided by Priddin
[845 and Jones (61) respectively. The formal derivation of the e~equation

is therefore not included here. The modification of the Jones e-equation
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to the present axisymmetric co-ordinate system is, however, presented
below. The eguation for the dissipation-rate of turbulence kinetic

energy may be derived by manipulétion of the Navier-Stokes eguations.

In cartesian tensor notation this may be achieved by first differentiating
the momentum equation for uy with respect to Xj’ multiplying by

(2v aui/ale and finally averaging. The result is:

A 2
.D_E. = Vv _9_26— - 2\, u ﬁ. __a_Uij__
Dt 3% ,ax m 9X, 0X,0X
J 73 i im
ol du, du au, ou
- oy J J m o, i i
ax ax, ox ax . OX
m i m
du, du_ ou 32U, 2
ax X, OX X OX,
i i m m i
ou ou
_ @ J m op
9% [% Ym %, ¥ Ox. ax.] : (A2.29)
m i i i

The terms on the right-hand side (except first) of the above equation
require closure assumptions to close the equation. There is no direct
experimental evidence about any of the terms and closure therefore in-
volves a substantial amount of speculation. The proposed approximations
for the different terms are detailed in (81), (64) and by several other

workers. Here, the final form of the e-equation is written, i.e.

De _ 3 (u + EEJ e | . C E.aui an - BUj
P bt % g ax. M K ox. \3x. | Ox,
J € J J J i
pez azUi 2
= Cp =+ Cawuy W—; ‘ . (A2.30)

The empirical coefficients have been assigned the forms and values given
in Chapter 3.
When the above dissipation rate equation is specialized to plane

boundary layer conditions it reduces,to:
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u ' 2 2
De _ 3_ _ty 3¢ £ @Yy ¢, e=
PET T 3% [[“ * 08] Bz] NS UMl vt B
21 2
+ Cyvn, B2 (A2.31)
3z2

When the above equation is used for axisymmetric boundary layers the
second and last term clearly need modification, which is as follows.

The exact term in equation (A2.28) which reguires modification is

du 32Uj
2v um 9X, OX,0X
i i "m
22u, P
. . = - —_—
which is approximated to C3vvt[§x.3x ] or
i "m
du, AU, 3u, 72 :
wu 3 o e [ 2 (A2.32)
m 3%, 9X.oX 3V | ox. ox :
i i m i m

For plane boundary layers the right-hand side simply reduces to

3 AU, |2
'C3\)\)t [_3—2 [5‘2"]]

For axisymmetric boundary layers considered here it has been shown earlier

that
1
oU, 2 v, /r o|*
5—4- = 97 2y (A2.33)
xm 9z 3z

Therefore equation (A2.32) becomes

2
Bu, 3% V_/r ]t
—-J'—_j'.. = - __8__ __B_L_J_z 6
2V Uy Bxi Bxiaxm C3vvt 3z &323 + (r 57 ) (A2.34)

Finally, substituting relations (A2.33) and (A2.34) into equation (A2.31)
yields the e-equationvfor the present axisymmetric, swirling boundary

layer flows, i.e.
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. _ TR
9€ de _ 109 t, de
pU 99X v oW 3z T oz [r(u * Gel 32]
. : 3V _ /r
3 au. 2 6’ .2
* oG [(52] S P ]]

V. /r 112
- AR I I 1T D R M
27 3% e ] 9z | 9z 3z

(A2.35)

It should be noticed that the k-&£ equations presented here also possess

the common form of equation (A2.21) i.e.

G G
I 5
T3 - T TT o 57 Wt s, )t d

X
zx z X z 6
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APPENDIX 3
MODIFICATION IN k-¢ TURBULENCE MODEL FOR STREAMLINE CURVATURE

When the k-& turbulence model as represented by équations (3.12),
(3.13) and (3.14) was applied to the calculation of turbulent flows on
spinning surfaces it was found that the strong influence of curvature
was not well reproduced. This shortcoming in the model was corrected,
as shown by equation (3.15), by the introduction of a "source” term in
the transport equation for e. Physical support for the inclusion of
such a term may now be inferred formally by the argument developed below.
More pertinent details also appear in (64) and (65).

Consider an idealised turbulent eddy circular in cross-section in
the plane of rotation following a curved mean streamline as indicated

in the Figure below. It is assumed that the eddy has length scale &,

Yo MEAN STREAMLINE

g

IDEALISED EDDY

Wi~

velocity scale k* and is undergoing an infinitesimal rotation of &¢,
during which a fluid element at 1, radius a from the eddy céntre,
moves to point 2. The effect of shear forces on the eddy development
for the moment is neglebted and the eddy is assumed to be small (i.e.

% << r) and hence no influence of the eddy on the mean centrifugal

pressure field is allowed. Although the mean flow will follow the
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curved streamline pattern indicated in the Figure above there will be
migration across the mean streamlines due to rotation of the body. In
line with the idealisations mentioned above, it is assumed that the
total pressure of the eddy fluid remains constant during translation.
Thus

Py * %DVS,Z = pp t %sz (A3.1]

The radial distance travelled by the fluid element during rotation 6&¢

is a singd¢p. The static pressure at 2, p, is therefore given by

P, = p1 * a singd¢ %% (A3.2)

Thus, if the total pressure of the fluid element remains constant, sub-

stituting relation (A3.2) into (A3.1) yields

pVZ = pV2 - 2 a singds %g- : (A3.3)

Now, in general, Ve 5 will be different from the value of \/e of the
neighbouring fluid at the same radius. Therefore the centrifugal force

per unit area will differ from that of the surrounding fluid by an

amount Aps; given by

WV,
2 3 2

_ PYe,p Pl * gy 2 sindée) -
APZ T r . - (A3.4]

Substituting from (A3.3) and neglecting terms of the order &¢2 yields

pv2 V2 2oV 3V
B _ 2 . 3 6 ) s
bz = g p e sIngSh gn t E m 5 g e singd
or
VYY) '
. - . 1 9p B _ 6
Ap, = 2a sing&¢ [r SF-f = 3F ] (A3.5)

On assuming that the mean flow is in radial equilibrium i.e.

Iz pV%/r it is thus readily seen that the centrifugal pressure differ-

ential acting on the element at 2 1is
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pV o '
App, = =2a sin¢&¢ + 5 (A3.6)
. 2 r

r

in the radially outward direction. The torque acting on a turbulent eddy
about its centre is therefore given by

2
DVe DVe ave
S8M = -2a sin¢d¢ = + a singda

r odr

Likewise, for all other elements in the eddy, the displacement by the
turbulent motion will disturb the particles from their state of centri-
fugal pressure equilibrium. Thus, integrating for the whole eddy the

net torque acting on it due to the mean flow curvature is

27 2

DVe BVe
M = =2—]V, =+ r o~— f f sin2¢d¢a2da (A3.71
r2 e r

¢=0 “a=0

It is assumed that for small eddy size Ve does not vary greatly over

the eddy. Formal integration yields

pV oV
Mmo= -3 Gy, Y
3 1"2 §] 31"
ar
V, a(rVv,)
. .2 3 8 6 :
M = 3 pL = 5T {A3.8)
or simply
vV, a(rVv,)
231"
r

Now, the average angular momentum of the energy containing turbulent

1 ‘
motions is proportional to pk®22. So if, in addition to a transport

LU

equation for k, the turbulence model also provided one for k*22 one
should expect this equafion to be of the form:
3 VvV, a(rv, )
D(k*22) vo3 0 Gl
N — = -_— + LN ] -
i C'2 T (A3.9)
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where coefficient C' would be determined from experiment and the dots
denote the terms that would be present in a uni-directional form of the
equation.

In the present work the 'second’' turbulence transport equation is
one for the dissipation rate, €, not for k%£2. It is, however, easy

to transform from one variable to the other by noting that
e = k32/3

Therefore equation (A3.9) becomes

T
DK K=
¢2 . . I‘9/2\—/2 B[I‘Ve] .
Dt e3 r2 or |
or
972
712 V B[PV ]
k %% - ¢ X "E'ar o ... (A3.10)
€3 €3 I‘2

The coﬁ%ant C 1is adjusted as necessary at each stage in the derivation.
After further simplifying equation (A3.10) it is thus deduced that the
transport equation for flows with significant curvature should run

2
De _ kVe B[rVe] .

oL T 3% . (A3.11)

In practice it is convenient to link the new 'source'’ term with the main
2
decay term in the € eguation. That term then becomes Cj %? (1—CCRi],

and the complete dissipation rate equation may then be written

°BF T B [[u e -95‘] e e R
Dt X , o " 93X, k  9x, 9x, )
X3 *3 IR I
£2 32Ui 2
—-CZR-—K [1"CCR:L] + Cg\)ut [ng (A3.12)

where Ri is the dimensionless parameter
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which may be regarded as a Richardson number wherein the time scale of
turbulence k/e now replaces the mean-flow time scale appearing in
equation (3.9). All the coefficients in equation (A3.12) retain the
values assigned to them in Chapter 3 and the additional coefficient of the

Richardson number term, CC, is taken as 0.2 on the basis of extensive

3(rV,)

computer optimisation. It should be noted that flows in which 3;——9—
' a(rv,)

is positive are relatively more stable, and when T is negative,

relatively less stdble than the corresponding flow with straight stream-

lines.
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APPENDIX 4
HOT WIRE SIGNAL ANALYSIS

A method of analysing hot wire signals by a linearized set up to
obtain mean and fluctuating quantities is described and evaluated. The
material presented here draws heavily on references (66) and (67). It
has been pointed out in Chapter 4 that the transfer function of a DISA
58D10 linearizer is

m

E = K(EZ - A) (A4.1)
in

out

where EDu and Ein are respectively the output and input signals;

t
K, A and m depend on gain, zero and exponent setting respectively.
The use of such a linearizer implies that the law of Collis and Williams

(68) is to be employed for the anemometer transfer function, i.e.

_ n
E,, = biUj

+ b2 (A4.2)
an

£F

Substituting the above relation into equation (A4.1], the relation for the '
linearizer becomes

_ _ m/n _
E = EDut = Kblueff + by A (A4.3)

By manipulating the setting of the linearizer to obtain m=n, A =‘b2

and calling S = 1/Kbj; yields the linearized relation

Ueff = SE ‘ (Ad4.4)

The velocities acting on a hot wire are shown in the Figure below. o«

here is the yaw angle and 8 the pitch angle. If the wire weré infinitely
long, only the normal components Un1 and Un2 would contribute to

heat transfer. The cooiing would also be independent of the pitch angle.
In practice, however, finite length (about 200 to 300 diameter long) to
‘diameter ratio and the wire supports give rise to non-zero tangential

cooling and Un acts differently from Un2 (69). This can be incor-

1
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porated into Champagne et al. (53) relation such that

2
Ueff

2 22 252
Uz, * heUz, + KU (A4.5)

PROBE

HOT WIRE IN GENERAL VELOCITY FIELD

where K is the yaw factor and h the pitch factor. U the effective

eff’
cooling velocity described by relation (A4.5) as indicated earlier is pro-

portional to the electrical signal for a linearized system. Therefore

combining equations (A4.4) and (A4.5) gives

L2 = U?[cos?alcos?s + hZsin?) + K2sinZa]

= E2g2 (A4.8)
In order to separate the influence of yaw and pitch one can write:

‘U ..(a) = U2(cos2a + K2sin2a) for B (A4.7)

eff

U}
a

and

i}
a

U2(cos?B + h2sin2B8) for « (A4.8)

Ueff(BJ

Equation (A4.B8) allows experimental determination of the value of S,
h, and K by measuring electrical signal for different velocities in a
very low turbulent field and the corresponding velocity with a pitot
probe in three different spatial positions at the same location, i.e.

a=0, B=0; a=0,B8=mn/4; o=mr/4, B = 0.
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The response equation

The Figure below shows a wire placed in an xoz plane. a is the
angle between the mean flow direction and the normal to the wire.

Expressing the instantaneous velocity U in terms of mean velocity U

Z
N N
)
4‘9 \
&
L v 060' x(y :
C‘o \)\G J’\/)
% pi e
o) aQ
PROBE —— [U+u) X

HOT WIRE IN THE XOZ PLANE

and the fluctuating components u, v, and w the normal and tangential

components of the cooling velocities are:

u = (U + u) cosa + V sina
n1

Un2 -ov

Ut = ~(U + u) sina + v cosa

Substituting the above relations into equation (A4.5) yields the response

equation as:

u = SE = {[[U'+ u) cosa + v sinal? + h2w?
eff

)
2
+ K2[v cosa -~ (U + u) sina]2} (A4.9)

The mean velocity U is obtained from the signal E whereas the fluc-
tuating velocities are obtained from the signal e2 = (E - E)2.
Different methods to obtain these two signals from the above non-linear

equation have been discussed in (66). The method outlined below follows
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the same path with some modifications introduced here (70).

Equation (A4.9) can be rearranged to give

SE = U cosa(] + %-% %-tana]
u u
2 2 2
h - ) - k2L - tana - £ tana)?
1+ 80s7e U U U . (A4.10)
(1 + %-+ % tana)?2
U U

The above equation is linearized by recasting it into the following
form:

SE = U cosa(1 + %—+ g-tanu]
u u

2 2
a+b h g— + K2 (% - tana - g-tana)z]
cosa U2 u U

+

tanu]] (A4.11)

ci<

the coefficients a, b, c© and d are calculated by the least squares

approximation such that

1

2 2 . z
h {— +K2 (é - tana - % tana) 2
cos?a U U U
1 +
(1 + %-+ g-tanalz
u u
2 2
h %L-+ Kz[g-- tana - = tana)?
cos?a U2 U U
=la b T
(1 + =+ = tana)?
H U
and
2

(1 + %-+ < tana)” ‘c o+ d(%-+ g-tana)

U U ‘U U

are satisfied for the actual range of working values for the present vari-
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ables.

SE

Equation (A4.11) 1s expanded to give

Ucosa[(a*bck?tan?a) + %-[a + 3bcKk2tan?a + bdK?tan?a)
0 .

Y(atane - 2bck?tana + bck?tande + bdKZtan3a)
u

2
%E{Schztanza + 3bdk2tan?a)
u

2 [ ’
Y (bck2 - 2bck2tan2q - 2bdK2tan2e + bdK2tan%a)
U2

2
¥ (bdh2/cos2a) + “(-4bck2tana - 2bdK2tana +2bck2tanda 4bdk2tanda)
u2 u?

3

, 3
%—{chztanza + 3bdK2tanla) + %j[chztana + bdK2tana- 2bdk2tanda)
us U3

3
Wihck2 + bdk2 - 2bcK2tan2q - BbdK2tan2e+ 2bdK2tanto)
TE

2 ) '
Y7V (-2bcK2tana - 4bdk2tana + bck2tanda + SbdkZtan3a)
TE

UWZ[b h2 2 2 2 vw? 2 2 2 2
= ché/cos4a + bdh#/cos<a) + = (bch?tana/cos“a + bdh4tana/cos<a)
U U
ut vt uv3
—(bdK2tan?a) + ::[bdKztanza] + —(2bdK2tang - 2bdK2tan3q)
ut u ut
3 2,2
SV -2bdK2tana + 2bdk2tanda) + ———(bdK2 - 4bdK2tan2q + bdk2tan“a)
T ut
2,2 2,2
U (bdh2/cos?a) + ~——(bdh2tan2a/cos2a)
U‘-I- . U'-}
2
UY: (2bdh?tana/cos2a)] (A4.12)
u

2

Now the response equations to get U, U: V% w® uv, uw and vw by
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placing the hot wire in different pdsitions are presented below. For
instance, the response equation (A4.12) for o =0 in plane xoz after

time averaging reduces to

— 2 2 2 42
U [a + “—(bck?) + 2(bch?) + 22 ¥o(pgp2)

SE = T
U U2 uz y2
+ %—E%‘—N-[Zbdhzl + R] ' (A4.13)

uz u?

where
2 . 2 2,,2
R = S (bek? + bdk2) + 2% (boh? + bdh2) + LY (bdK2)
TE us ut

and it can be shown (70) that R representing the remaining terms in
equation (A4.13) is negligible, being of the order ~0.002. It has been
mgntioned earlier that rms values are evaluated from the relation

;;'= E;-- EZ. The final set of eguations for different wire positions.

to obtain the desired quantities is presented below. E;, e; etc.

refer to the mean and rms value of the signal in different wire positions.

a. Wire in the xoz plane; ¢ =g

— — 2 2 2 2
SE1 = U la + Sp(bck?2) + Z(boh?) + =7 Yy(bdh2)
0 0 TRT
+ 2y S (2bdh2) ] (A4.14)
TRY)
and
- -2 2 2 2
s2ef = U [(1-a2) + =5 + (K2 - 2abok2) + “-(h? - 2abch?)
TR 0

2 2 2 2 2
+ = T(-2abdK2) + Sn 2(-2abdh2) + Ly 2o(-2bcK2bch?)
TRy 0° o TR
2 w2 Gv uv Uw Ow
+ o3 Zo(-bchZbeh?) + S S(-2abdk?) + 22 ¥(-4apdh2)

TallT] TRy TR
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y — —
W Y2 ~2bohZbdh?) + Ty S5 S5(-4bch2bdh?)
u u u U u
w2 u? w? 9 12y L. UW UW UW UW
=7 =3 —zl-bdh?bdh?) + = = = —=(-4bdhZbdh?)
u”u u® Ut Ut u
Wza\—/d.m 2 2
=5 =5 —3(-4bdh?bdh?) ]
ututu

b. Wire in the xoz plane; o = 45° and o = -45°

2 2
fe> + e3s°

+

+

ez - 9%15

_2
U {[1 + K2-(a + bcK?)(a + bck?]

%5[1 + K2 - 2(a + bck?)(3bck? + 3bdk2)]
U
vZ 2 2 2 2
—[1 + K= - 2(a + bcK?)(-bcK* - bdK?)]
U
2
—[2n? - 2(2bch?)(a + bck?)]
U
u W2 2 2 2 2 2
— = [-2(a + bck?)(2bdh®) - 2(2bch?)(3bK%c + 3bK2d)]
T
V2 —\r:l: 2 2
— = [-2(a + bck?)(2bdh?) - 2(-bck?2 - bdk2)(2bch?)]
TlT :
2y Tp(-4bch?bch?) + =5 =2 [-4(a + bck?) (2bdh?)]
T u“u
25 Lxl-ata chthzbthJ]§
U U

2oy

u [2 - 2K2 - 2(a + bcK2)(2bdk2 - 2bck2)]

02 ‘

uv

oy
u

;’z .
— [-2(a + bcK2)(4bdh2)]
u

(A4.15)

(A4.18)

(A4.17)
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c. Wire in the xoy plane; o = 45° and o = -45°,

S22 2 -
fe, + esp = U {[1 + K2 - (a + bck?)(a + bck?)]
+ = [1+ K2 - 2(a + bok?)(3bck? + 3bdk2)]
u
+ = [1+ K% - 2(a + bck?)(-bck? - bdk?2)]
0
'—2_ .
+ = [2h2 - 2(2bch?) (a + bek?)]
0
2 2
+ = [-2(a + bck?)(2bdh?) - 2(2bch?)(3bck? + 3bdk?)]
TR,
v2 w2
+ % [-2(a + bek?) (2bdh?) - 2(-bck? - bdK2) (2bch?) ]
TR,
V2 2 VT
+ Z; Iy (-4bch?beh?) + 3 S5 -4(a + bek?) (2bdh?)
TY TR,
+ I3 L-4a + chZJ(zbdhzl]} (A4.18)
TREY -
— W
i - efs® = U {7Z[2-2k2 - 2(a + bek?)(2bdK? - 2boK?)]
— =
v ool 2(a ch2][4bdth]€ (A4.19)
TRlY

d. Wire in the plane bisector of xoy and xoz, o= 45° and o= -45°
(i.e. wire parallel to the bisector of the 1st and 3rd quadrants

of the xoz plane).

-'—2 .
@é * 9%82 = U {[1 + K2 - (a + bcK2)(a + bck?)]

[1 + K2 - 2(a + becK?) (3bck?2 + 3bdK2)]

C||l:|
[N 2 N
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— [1 + k2 - 218 + bcK2)(-bck2 - bdK2)][2h2 - 2[2bcH2)[a+ch2J]

Z— [1 + K2 - 2(a + bck2)(~-bck2 - bdk2)][2n2 - 2(2bch2)(a+bck?2)]

20
Y5 1+ K2 - 2(a + bck2)(-bok2- bdK2)-2h2+ 2(2bch2)(a + bok?2)]
u
u2 v? |
—5 = [-2(a + bck2)(1bdh?2)-2(2bch?) (3bK%: + 3bk?2d) ]
2000
u2_ w2 2 2 2 2
— = [-2(a +bck2) (1bdh2)-2(2bch?) (3bK2c + 3bK2d)]
20° U
v2_ v2 oK 2 2 2 2 2 2ha k2
—5 =5 [-2(a + bck?)(2bdh2)-2(-bck 2-bdk 2) (2bch?2) - 4bch2bch
4U° U
- 4(a + bck2)(2bdh2)]
W2—
~— =5 [-2(a + bck2)(2bdh?) - 2(~bcK2-bdK2) (2bch?)
40
- 4bch2bch? - 4(a + bck?2)(2bdh2)]
V2 w2 )
—5 =5 [-2(a + bok?)(2bdh?)-2(~bck?2 - bdK2?)(2bch?) - 4bchZbch?
20° U
+ 4(a + bck2)(2bdh?)]
u? vw

Friey [-2(a + bck2)(2bdh2) =-2(2bch?) (3bKéc+ 3bk2d)]
us u

¥¥ %% [2ta + bck?2)(2bdh2) + 2(-bcK?2 - bdK2)(2bch?2)

u u

- 4bch2bch?]

02 Tw : W2 v
= = labenZoch2]+ 2 2 [abch2boh?]
U= u u-: u .
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. E%E.Hgi.[-4[a + beK?2) (2bdh?) ]
207 20
. “_‘z’ﬂ [4(a + becK2)(2bdh?)]
-2 =2
ucu
¢ MW [o4(a + bek?) (2bdh2)] | (A%.20)
207 U

Egquations (A4.14) to (A4.20) were solved by Gauss-Siedel (successive
approximations) method to yield the desired quantities, U, u?, v?2, w2,
uv, uw and vw, in the streamline oriented system. Finally these

qguantities are transformed to the fixed co-ordinate System by simple

trigonometric relations given in (69).

Analysis of the propagation of error in measurement

An analysis of the propagation of the random error is not difficult
because the guantities to determine are of the sameorder of magnitudeaS)
and are strongly linked with,the measured gquantities provided.at each
- location a suitable set of orientations of the probe is c¢hosen.

It has been shown earlier that equation (A4.10) is linearized by
a least squares approximation to the form given by equation (64.11].
Another approach suggested by Rodi (639) and Durst and Rodi (71) is to
square the equation (A4.10) and then take the time average. Here the
two methods are briefly compared. The complete step by step details can
be found in (6B). To keep the analysis brief only U} :;, ;E: ;;:and
uv are evaluated. Final results, however, are tabulated for all quan-
tities measured here. To simplify the analysis further it willlbe
assumed that no error is associated with the calculation of the pitch and
yvaw factors and that théy are zero and 1 respectively.

For the squared method of (68) the time mean response equation with

the above simplifications reduces to
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I— | . J— '
E252 = y2 + w2 +cosZa(U + u? - v2) + sin 20 uv (A4.21)

for a wire located in the xoy plane.

To extract U. u?, v2, w? and uwv only four wire positions are
sufficient, namely
1a plane xoz; o = 0
2. plane xoz; o = w/4

3. plane xoy; o = w/4

4, plane xoy; o = -n/4

Substituting these values into equation (A4.21) gives the set:

— ;- —

EZs2 = (U + u?) + v2

— L, = = —

E%SE = (U + u?) ¢ vZ + w?

— S _ (A4.22)
2 —

E§S§ = (U + u?) + iv %2+ w? 4+ uv

) 2 - S —

EESQ = AU + u?) + vZ + w2 - v

where Ei is the mean value of the squared signal from the linearized
anemometer and Si is the calibration constant determined from the rela-

tionship U=ES in a very low turbulence level flow field. For simpli-
1 = 2 » =— 2, = 2 i = = : i = = .
city let Mi Eisi’ Xy U + u<; xj uj where j 1 v, 2 =w;

and xy = uw. The equation set (A4.22) then becomes:

xp = 3(3M] - 4My + Mg o+ M)
Xog = %['Ml + 4M2 - M3 - Mq)
(A4.33)
xg = 5(-Mj + M3 + My)
xy = 5M3 - My)

and the variaﬁion Gxi associated with the variation &M. 1is:
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GXI = %(36M1 - 46M2 + 6M3 + SMQJ
xp = B(-6My + 48My - &My -  &M,)
(A4.24)

5X3 = %['GMI + 5M3 + GMu]

GXu = %(5M3 - GMq]
Expressing this in terms of fraction variation e.g.

8x 1 i 1 - My Can &My . M3 o My

X1 3M, - 4M, + M3 + My 1™ 2 ™M, 37, % My

and finally the limits of confidence interval will be:

|6x1 ] 1 " | &M,y | fam, | lamg | [emMy]

X1 A ] 2N T M2 T s et M My

Now it is assumed that the measurement error is always the same i.e.

o] ]
M, M
1

and therefore

GXI 3M1 - 4M2 + M3 + Mu &M

5 = EDEE Wy Mul ey (A4.25)

Similarly for the other components (dropping the absolute sign for sim-

plicity)

GXZ Ml + 4M2 + M3 + Mq &M

_— = v [A4-26]
X1 =My o+ amy - Mg - M M

5X3 Ml + M3 +_Mu &M

—;;' = [Fy + M3 + Fiy] o (A4.27)
SXu M3 + MH

. &M (A4.28)

Xy M3 - M, ™M
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From equation (A4.28) it can be seen that if M3 = M, the fractional
egrror is infinite. This is because in this situation the value of the

shear stress is zero and even for small values the fractional error will

e 2
be infinite. Now, u? = x; - U ; therefore
_— 2
suz _ X1 4]
u2 uz u
or ‘rewriting
- , 2
2 6x1 T
L e e | ., (A4.29)
2 1 - _2 2 T _2
H u2/0 U u2/0

2 — ' —
Since U and u? appear always linked, the information about U is

obtained by linearizing the response equation by Champagne’s (53) series
development when a wire is located in the xo0z plane with o - 0; the
resulting equation when third order terms are neglected is:

SE = 00+ 2020

and following the above procedure it can be deduced that:

- 2 - 2
if the second order term like US(x/U ) is neglected. Assuming E2 = E .

Nj-=

and ES = M* one gets

&M
M

N =
cl|g

substituting the above relation into equation (A4.29) yields

1 aM, + 4My + M3 + M, 1
. M

-_é] [BMp - 4My + Mg + My  — o | M
u2/0 u2/U

[=c]
o
[\

1

(1 +

g
N

u2

Finally, if the turbulence intensity is denoted by T the complete

cl
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set for the evaluation of the confidence interval of the calculéted values
is:

M

1
= S (A4.30)
., 3M) + 4My + M3 + My
CITRANER IR L (A4.31)
— 27 [3Mp - aMp + Mg + M 5 [ M
u2 T L
v = et t N em v (A4.32)
— [-My + 4M3 - M3 - My M .
v2 '
o2 MMt (A4.33)
— [-Mp + M3+ My| M |
2
e My + M
8 3 M
. ] W (A4.34)
uv

Following exactly the above procedure the corresponding set for the present

method (equations A4.14 - A4.19) is

M

-(S_—Li = ';—W (A4.35)
U

2 o

Wt . %I'Vi (A4.36)
2

u

é!i = 2 * M s (A4.37)
— 2My - M, M :
2 . .

v

é&é = s * M (i) (A4.38)

—_— 2My - My M ' ‘

2

W

—_— |V|3 + |V|,4

Suv M—:——M"‘—%lli (A4.38)

o M3 = M|

whére it should be noted that Mi = e% Si.

In order to determine &M/M,
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it was assumed that each measurement carries an error of 1%. Therefore

for the calibration rig

U = ES
lss| _ [sEl . |eu]
= = = 0.02
and since M = F252 = g2g2
oMo JeE?| 5 |85
M — 5
E2
")
[se?] , 2 5] 0.05
— 5
82

The values of Mi with the above assumptions for the squared method are
determined from the equation set (A4.22) whereas for the present method
they are obtained from equations (A4.14-A4.19). The results obtained
are shown in the following Table. The values for the stresseé uw and
vw for the squared method are of the same order of magnitude as those
for uv. More detailed results are given in (B6B6).

The present method has also been compared with the series develop-
ment of Champagne et al. (53) in (66), where for a turﬁulence level of
50% it has been concluded that the present method is much superior to the
series method. The accuracy of the series developmentvmethod progressively

becomes worse as the turbulence level rises.
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TABLE. Comparison of random error in the measurements.

Turb. Squared method (%;—* 100) Present method-(%? * 100)
level | U u? v2 w2 w | U uz | v2 | w2 |uv |uw |vw
20% 2.5 544 285 140 72 2.5 5 15 1 15 15 15 15
25 " | 385 | 195 | 95} s0 | " | " L L B
30 " | 267 | 146 | 70} 37 | " | " A L
35 " 1208 [116 | 55| 30| " | " mprm |
40 " 169 | 97 | 46| 25| " | " A N N
45 " 143 | 84 | 39 22| » | A L A
50 "o l125 | 75 | 3520 " | L L L L
55 " 111 | es (31|18 | " |" N L L L
60 " |100 | 62 |28 |18 | " |~ L L L A
65 " 92 | s8 |26 |15 | " |~ A A L A
70 " 85 | 55 [25 s | " | L L A L

Systematic errors in the approximated form of the response equation

For simplicity the quahtity inside square brackets of equation
{(A4.10) is represented by (1+A). The gquantity A 1is always positive
since all the terms are squared and the denominator is generally higher
than the numerator either due to the quantity 1 or because K2 is
very small (~0.02). This guantity A bhas been approximated by Champagne
et al. (53) by the first two terms of the MacLaurin series expansion.
When the best linear fit is compared with the true Qalue it is found that
the maximum deviation for 0 s A< 1 1s 1.09% whereas with the series
/approach it is 6.,06%, and for 0 < A £ 1.5 (corresponding to turbulence
level of about 50%) the twowvaiues are 1.,95% and 10.95% respectively.

The denominator inside square brackets may be for simplicity written
as (1+B)_2. When B approaches -1 the expression between brackets

increases very rapidly, there an approximation of the gquadratic typeis
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poor representation in such regions; However, the term under tﬁe square
root is weighted by (1+B} that tends to zero as rapidly as the denominator
in the square root term. Therefore the influence of a bad representation
is damped down. Ribeiro (70) has shown that with these approximations
turbulence intensities above 50% could be treated. However, the occurrence
of the reversion of the velocity direction will influence the probe to
distort the flow field. Therefore measurement results with turbulence
intensities in excess of 50% should be carefully interpreted because of

the inability of the wire to handle reverse flow.

Effect of finite size of the wire

When an infinitely long cylindrical wire of resistance R is located
in a flow field the heat balance equation reads:

dTW ) : E2
Cn 9T RI4 - s = = S (A4.4D]

where Ch is the heat capacity of the wire, I is the current passing
through the wire and S represents a sink term expressing the heat
removed by the flow field. If the wire is maintained at a constant tem=-

perature through adequate control of I equation (A4.40) simply reduces‘

to

r—wd = S (A4.41]

R, now being a constant as it is only dependent on the temperature. " Thus
in order to determine the trangﬁsnction of a hot wire of infinite length

s has to be determined. The dimensionless groups that affect the steady
heat transfer (expressed in terms of Nusselt number) are the Reynolds num-
ber, the Prandtl number, the Grashof number and the dimensionless overheat

ratio of the wire [Tw-Ta]/Ta, Tw being the wire temperature and Ta

the flow temperature. In most practical situations where hot wire anem-
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ometry is used the buoyant effects are negligible. Thus
Nu = Nul[Re, Pr, [Tw-TaJ/Ta]

Several forms of the above relation have been suggested according to the
type of fluid:; for steady flow of air Collis and Williams (68) found
that the experimental values are well ecorrelated by the empirical

equation

m
Ud,n Tw-Ta
Nu = [A + B[-—v—) 111 + (A4,42)

d being the wire diameter. The coefficients A, B, nand m are inde-
pendent of the Reynolds number inside the limited range of Reynolds num-

ber, e.g. for 0.02 < Re < 44, A = 0.24, B = 0.56, n = 0.45 and

m 0.177; and for 44 < Re< 140, A =0, B =0.48, n = 0.51 and

m 0.17. The discontinuity at Re = 44 has been explained as due to

the occurrence of vortex shedding (72). In actual situations the flow is

unsteady. However following Corrsin (73) and Ribeiro (70) the steady flow

approach is justified in the present situation. |
Equations (A4.41) and (A4.42) are only applicable to infinite wires.

In practice their finite size makes the temperature distribution non-

uniform. If x 1is a co-—ordinate along the wire and radial temperaturel

gradients are neglected the conduction term changes the form of the

equation (A4.40)

, | | |
%—%tkw S—i) = RI2 - g , (A4.43)

® is the local overheat [Tw-Ta] now, R and s are local values
dependent on 6. In order to integréte the above equation the two source
terms must be expressed in terms of 6. Champagne et al. expressing the
sources to be guadratic expressions in terms of the overheat ratio pro-

posed a solution of the form:
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éL = f;[fysinh fyx - cosh fax] + (f7 + 1) (A4.44)
0
where f; and f, are functions of the velocity field, the current
through the wire and the dimensions and electrical properties of the wire.
Their measurements of temperature distribution agree within 10% of
equation (A4.44). Champagne et al.'s results indicate that for typical
probes with &£/d = 200 operating in typical conditions of overheat
ratio of .8 the temperature is kept within 2% in a central region of
100 diameters for velocities as low as 5 m/s. Another very important
conclusion from their measurements is that for wires not perpendicular
with the velocity the température distribution changes only slightly
near the prongs. Thus the cooling that arises in such circumstances is
not due to dependence on o of the end conduction losses but is due to
cooling by the tangential component of the velocity. It is therefore

for this reason that effective cooling velocity is written as

Ugee = UgeelUpr Uyl

Hinze (75) has suggested above relation of the form

=
M=

- 2 2o42
Ueff U(cos<a + K<4sin<a)

2 212
(Un + K UtJ
The above equation is still not satisfactory because of the influence of
the shape and dimensions of the probe. The form of the equation which

reasonably accounts-for these effects and used here has been suggested

in (69) as equation (A4.6) i.e.

B
Ugpe = UlcosZa(cos2B + h2sin2a) + K2sin2a]?
or
1
= 2 2112 211212
Uers [ufy + U, + KAUE]

The symbols appearing in the above equation have already been explained

at the beginning of this Appendix.
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APPENDIX 5
COMPUTER PROGRAM MODIFICATIONS

This Appendix describes the changes made to the origipal program

GENMIX of Patankar and Spalding (14). Minor changes (such as changes |

in the specification of total number of steps etc.) are not pointed ouf
explicitly; these, as the exact programming of other changes, may be

seen from the complete program listing following this guide.

. Chapter 0

Extra variables addedbto the subroutine MAIN are: DUDY, PML,

REFRDF, REYT and RTU. DUDY simply indicates dU/dy; PML. stands for

Prandtl mixing length. REPRDF indicates the Vélue_of,spih Reynolds nu
" bers at which profiles are deéired. REYT and RTU repreééﬁf turbulence

Reynolds '‘number 1in Chapter B of MAIN-prbgram.

Apart ffnm these additions, fhe Dther-changes-ware to increase th
dimension of the profile quantities from 43 to 100. The épmmon block
- GM4 was deieted,'and in its place common blocks SWFT4, SDGRCE, visco,
VISC and AVER were inserted. The quantities in these bloﬁks following
the general scheme of GENMIX are self explanatary. For inéfance‘EMUTU
stands for turbulent viscosity while EMULAM is lamipar viscosity. An

1
additjxwﬁcommon block, DATA, specified the values of REPRDF.
Chapter 1-2
These chapters; are essentially the same as in thevoriginal MAIN.
CDmment‘cards‘héve been inserted to explain any changes. It should be

noted that for geometries considered here the index KRAD takes the val

1.

[
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Chapter 3

This chapter contains the dependent variables used in the program.
Two new dependent variables F(3,I) and F(4,I), respectively repre-
senting the turbulence kinetic energy and its local rate of dissipation,
have been introduced here. It should be noted that F(1,I) array here
represents the product of circumferential velocity and radius. Other

variables, with comment cards, are self-explanatory.

Chapter 4

This chapter lists the values of the material constants.used in
the calculations. EMU(I), EMULAM(I), EMUTUR(I)}, EMUEFF(I), RHO(I) and

a
REYT(I) are also initilized here.

Chapter 5

In fhis chapter initial values of all the dependent variables are
prescribed. W here stands for the angular velocity and RETRAN 1is the
transition Reynolds number. XU and XULAST for the calculations are
calculated from the relation

x2 sinaw
v

Re =

~

Simple initial profiles for U, Ve and h are introduced here.

Initial profiles of k and e are specified in the next chapter.

Chapter 6

This chapter differs from the one in the GENMIX version. The reader
is introduced to Prandtl’'s mixing length model of turbulence here. Mixing
length constants k and A afe assigned the values 0.42 and 0.085
respectively. The formulation of the turbulence model is given in Chapter
3. FORTRAN statements appearing here are straightforward. The initial

profiles of turbulence energy and its local rate of dissipation are also
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calculated here. The initial profile of k is specified as a parabolic
function of the boundary layer thickness, modified by a damping function

near the wall, viz.

= - - 2 - * *2
k Koo [1 - expl-z /711)2][1 - 2Az* + Az*2]
T 1- kedge
* = - = P ——————————
where =z Z/Zedge’ kmax —T and A ”
OCU max

For the initial profile of dissipation rate it was assumed that

_ 2
€ = Cupk /ut

where Cu was taken as 0.09. It has been mentioned already that in all
the cases examined here the predicted flow behaviour was negligibly
dependent upon uncertainties in the prescribed initial profiles.

It should be noted that the values given to K and‘ € for wall
and external boundary nodes are very small, i.e. F(3,1) = F(4,1) =
1.E-20 and F(3,NP3) = F(4,NP3} = 1.E-20. FORTRAN statements to print

the initial profiles of k and e are also included here.

Chapter 7
Here the size of the forward step DX 1is simply calculated as
DX = FRADX*Y(N)

where FRADX is assigned some value (0.06 in this case) in Chapter 2 of
MAIN. There is another criterion listed here to control the step size,
i.e.

1
dx" = (p1)? %F = 100

but in all the calculations presented here the first criterion was suf-

ficient to control the step size changes.
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Chapter 8

This chapter is much shorter than that of GENMIX, because the
variety of boundary conditions are not required for the present case.
The I-boundary is always taken to be a wall - the E-boundary may be a
wall or a free boundary. TAUI, TAUE, RMI, RME, INDI, INDE, AJI(J) and
AJE are set here. FORTRAN statements expressing the formulation of
cross-stream pressure gradient also appear here in array SU(1,1I). It
is recalled that
Ve

3, - ~p coso
If the value of 9p/dx 1is known along the I boundary, the value along

any line is simply
z, )
pV2
opy . @By, 3 8
(=), = [x]I+8x f = cosadz
s]

To overcome the difficulty of not knowing the changes in Ve/r at the
grid point where 9p/9ax is to be evaluated the rate of change appro-

priate to the previous interval was taken, not merely as a first guess
but as the final value. Simple trapezoidal integration scheme is used

to formulate the above expression into FORTRAN statements.

Chapter 9

This chapter is considerably shorter than that of GENMIX, and con-
tains nothing new. A criterion to control step size by a simple entrain-
ment formulation appears here but was never used in the present calcu-

lations.
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Chapter 10

Chapter 10 provides the output from the program. Self-explanatory
expressions for the station variables such as Reynolds number and Nusselt
number are given here. Subroutine PROFIL to print profiles of the depen-

dent variables is also called from here.

Chapter 11-12

The operation of these chapters is similar to that of GENMIX except
the program termination statements of Chapter 11 have been absorbed into

Chapter 12. The statement CALL STRIBE(3) also appears here.

Subroutine AUX

This subroutine lists all the steps in the calculation of turbulent
viscosity My by the k-£ model of turbulence. Source term arrays SU,
SD, SUU and SBU for the variables are also filled in this subroutine.
The operation of this subroutine is as follows.

The first sequence of statements (1-10) gives the values of all the
constants used in the k-£¢ model. The formulation of turbulent viscosity

is presented next as:

=
ot
t

C pk2
up /€

where » 0.09 exp[-3.4/(1 + Rt(SDJZ]

The FORTRAN statements expressing these expressions are straightforward.-
The value of turbulent viscosity calculated at cell boundaries is then
added to the laminar value already in array EMULAM. The effective Prandtl

numbers are calculated next. For later use is modified by multi-

Hers
plying it by r/6y.
The entrainment rate RME is calculated next in the same way as in

GENMIX, except it is controlled by the circumferential velocity here.
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The remaining sections of the subroutine calculates source terms for

all the dependent variables. The DD loop 84 calculates the source term
pVZ

-dp/dx + stne for the streamwise momentum equation. Statements 220

to 242 fill source term arrays for the A and m equations. Source
terms for k and € equations are calculated next. The source term

arrays SU(3,I) and SU(4,I) are set to zero first. The variable DUDY
dv. /r
8
dz °

1
similarly represent second derivatives. DKDY represents dk®/dz. The

is used to represent dU/dz while DVDY is DZUDY and D2VDY

values of these derivatives are calculated separately for mid regions
(3 to NP1) and I and E boundaries. The FORTRAN formulation of these
expressions is straightforward and needs no further elaboration here.
The DO loop 100 actually calculates source terms. The source term, for

instance, for the k-equation is

2 3V/r2 :
1H:&3U] + (r 0 ) |- pe - Zu(a;

Ni=

2
)

3z 9z d

PJ3 DJ3

Rate of production of turbulence energy by mean strain is calculated as
PJ3. Similarly DJ3 represents dissipation of energy terms in the k-
equation. Similar notation (PJ4 and DJ4) is used to evaluate expressions
in the e-equation. The streamline curvature correction is included in

the final calculation of DJ4 as
DJ4 = DJ4*(1 - AR*RCHSDN)

where AR 1is the coefficient CC and RCHSON stands for Richardson num-
ber. Both the source terms are subject to a stabilising procedure, whereby
the total source for ¢, SLI +'SD'¢D is set to either Su¢D/¢u or

ZSU - SU¢D/¢>u depending on the sign of SLl (= PJ-DJ). Finally, the

sources are multiplied by rdy for the axisymmetric case.
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Subroutine PROFIL

This subroutine is used to print the desired output. First sequence
of statement (10-11) defines the station variables. WRITE statement 23
prints quantities 1like x, Reynolds number, Nusselt number and friction
factor etc. The second part of this subroutine is concerned with the
print out of profile variables like z[w/v]%, U and Ve etc. There

is nothing fancy about the FORTRAN statements appearing here and are easy

to understand.

Subroutine WF

This subroutine provides "wall functions” required by the Patankar-
Spalding procedure. Near the wall, since fluxes of momentum, mass and
energy are significant only in the normal direction and the transport
of these quantities by convection is negligible, the partial differentiai
equations of Chapter 2-3 reduce to ordinary ones. In this Couette flow
region these equations can be solved to yield simple algebraic relations
" which relate the fluxes of these quantities at the wéll to conditions at
the grid node adjacent to the wall. These algebraic relations are called
"wall-functions”. For example for the streamwise momentum equation it

can be easily shown that

T v2
Xa W = _U_ - ..._z_ [.?—p -p ..2 Sinal
oU2 pUz 2002 9x r

Similar relations for the other variables V A and m can be readily

el

derived. The flux of k 1is zero, and for e it is given by

1

- 0.5*A3(1.-B3)*ez/Uk
oERe

where A3 and B3 are equal to 1.92 and 0.3 respectively.
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Subroutine STRIDE

This subroutine is the core of the Patankar-Spalding solution pro-
cedure, and as such has been left unchanged for the most part. Minor
changes due to the elimination of the source term from the eguation for

swirl velocity, V are, however, outlined below.

e’

The momentum equation for the swirl direction as explained in (14)

may be expressed as

a(rv.) alrv,) 3(v,./r)
6 8" _ 3 lop2_ 8 °
ox * (a + bw) oW T Jw [Cr W ]

It should be noticed that this equation differs from the standard form,
in that rVe is the operand of the differentiations on the left and

Ve/r is that on the right. This necessitates some modifications to tﬁe
expressions for the finite-difference coefficients. The complete details
are given in [14]} here, the sequences of statements altered in STRIDE
are listed. First attention is drawn to the mid-region coefficients

AD, BD, and DF in DO loop 3004. According to the procedure described in
(14) T* in FORTRAN statement for AD is multiplied by (r,/r, )2. T*
and T: are similarly modified in FORTRAN statements for BD and DF. For
grid point 2, the modified ADF, BDF and DF appear after statement 8005;

for NP2 they follow statement 2318. These modifications are straight-

forward and follow the procedure outlined in reference (14).
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PROGRAM DISCON(INPUTOUTPUTTaAPES=INPUTsTAPE6=0UTPUT)

CHAPTER 0 o=mm="====c—emesseccsomcs somercoceocoocoo we=-==OIMENSIONS AN

DIMENSION DUDY(100)«PML(100) ¢REPROF (S) ¢REYT(100)sRTUC(ION)
COMMON/GENFRAL/ZAJE(10) e AJT(10) ¢ CSALFAWDPDX(100) +DX9EMUEIONY o
1F(5¢100)9FS(B93nn) oHeIFINGJINDE(10)9INDIC(10) 4 ISTEPCITESTLIUTRAP
PKEX o KTNgKRAD«NyNFQoNPHINP I sNP2yNP39OM(100) +PET9PR('3) «PREF(S4100),
3PSTEWPSTIWR(100) dRHO(100) JRME,RMIZRN15+RU({100)9R25+SD(S54100)
4S11(59100) e TAUE 4 TAUTIoU(100) 9 XDy XUsY(100) s YESYI

COMMON/SWFT4/AK«ALMGy IPRINT s IPROFyITRyITURByWSNALFAZRENOLD
COMMON/SOURCE/SUU(100) +SDUC1I00) 9P (100) +PP(100)90MD(100) 4OMP (100)
COMMON/ZVISCO/ZEM AM(100) 9FMUTUR(100) sEMUT(100) yEMUEFF (100)
COMMON/VISC/RATIN(100)

COMMONZAVER/ZENUR ,ENSQRE

DATA REPROF/2,ES.9.,93E54¢2,E6/

UNSHROUDED DISCS AND CONES IN STILL AR,
TURBULENCE MODEL&

1 MIXING LENGTH HYPOTHESIS,

2 LOW RE ENERGY~nISSIPATIQON

PROGRAM | BHARAT I SHARMA
JULY 1975 |

HAPTER ) ey L T Yy repeyme—y Y L T ) '--—---------—-----------—----—-—-CONTRO

IFIN=n

ITEST=0

IUTQAP:O

IPROF =1

IPRINT=50

HEAT TRANSFERyITP=1sea MASS TRANSFER,ITR= 2...
1TR=]

ITR=2 5 :
LAMINAR FLOW,ITURB=]1  TUPBULENT FLOWyITURB=2
ITURE=]

JoASS=0

CHAPTEQ ? —--unW———---a---------P-o-------------------- ------- -GQID AND

FRADX=0406

Nz90

N=40

N=70

NPl=N41 , :
NP2=N+2 \
NP3=N+3

OM(1)=0,0

OM{NP)=]e0

POWFR=140

PAWER=P,0

DN 10 I=2¢NP2

OM(T)=(FLOAT(]= ?)/FLOAT(N))°“(I.‘PONER)
On 11 T=29NP2

OMD(I)=OM(Te¢1)=ON{T)
OMB(T)=0M(T+))=0M(Im])

ISTEP=D

LASTEP=5000

CSALFA=0e5
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CSALFA=0486603
CEALFA=040 ]
SNALF8=SQRT(1.0~CSALFA#CSALFA)

IF(ITR,EQe2) PRID)=244
IF(ITR,EQe2) Hel,D
Dn 40 I=19NP3
PREF(141)=PR(1)
PREF(241)=PR(2)
RHO (1) =RHONP3
EMU(I)=EMUNP3
EMULAM(T) =EMUNP3
EMUTUR(1)=0, _
EMUEFF (1) =EMULAM(T)
EMUT(T)uO.
RaTIO(1)=0,
c----------~--—----TURnULENCE MODEL CONSTANTS
PR(3)=1.0
ppfﬁ’—lo
PREF (29 1) =PR{4)
PREF (49 1)=PR{4)
. ReYT(1)=0¢.
40 CANTINUE

TWALL=10040

W=3500.0%6.284/6040

W=288, .

Xy  =SQRT(REPROF (1) #EMUKIN/SNALFA/W)
XLAST=SQRT (REPROF (3) #EMUK IN/SNALFA/W)
Re1)sXU®SNALFA

XT#O.“SS
Xl=0.93
X1=X1#04356%3,294R

c RETRAN IS TRANSITION REYNOLDS NUMRER,
RETRAN=3.ES
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KRAD=1
KiN=1
KeXzse
_CHAPTER 3 emmmwmec=—ua mmwmmesemome=oremcosccneee—oDEPENDENT VARIABLES SE
c Utl)=RADIAL OR AXIAL VELOFITY
¢ Ftleyl)=CIRCUMFERFNTIAL VELOCITY#RADIUS
of F(2s1)=STAGNATION ENTHALPRY
c F(3+1)=TURBULENCE KINETIC ENERGY
¢  Ft4s1)=RATE OF DT1SSIPATION
(o} FS(191)=CIRCUMFFRPENTIAL VELOCITY,
of FS(2+1)=TEMPERATURE
NEQ=3
NPH=NEO=1 . '
CHAPTFR fwmemm=me=ee-MATERIAL CONSTANTS(S I UNITS)
CP=26012,4
EMUNPAa=]1,E225E=5
RHONP2=0.075 "
EMUKIN=EMUNP3/RHONP3
A MG=h,085
PR(1)=1.0
PQ(E) Na.72
H=PR(2)

CHAPTER 5‘--ﬁ-‘"---‘---""‘-'-"_—--'-'-‘-------f-.‘-'~-v--—INITIAL co

P
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RETRAN=? ,8ES
RETRANZ=Z,44ES
Do 51 I=19NP3
R(IY=R(]1)
DPDX(T1)=0.0
Ir(OM(I)eLT,.e2) GO TO 52
UtI)=n,25%(1.0e0M{I))#R (1) 4W

G0 TO 53

52 UlI)-OM(I)“R(I)*W

53 CONTINUE
F(le I)-(lo-OM(I)#*.SBS)*W*R(l)“R(I)
Sty I)-O.n
Sn{lyI)=0
SUU(TI)I=0. 0
SnU(I)-o 0
SU(?QT)-0.0
'sn(a,r) 0D
FS(2+T)=TWALLH#(1,0m0M(I)) _
Fk2,1)=CP“FS(291)+.S*(U(I}*U(I)*(F(I:I)/R(I))9“2)
IF(ITR.EQe2) F(241)=1.0~0M(I)

c INITIAL SOURCE TFRMS FOR K-E

SU(39T)=0s
SA(3s1)=00
SUlaeT)=00
SN{4yY)=00
Ff3’1,=loE'15
Fl4eI)=1eE=1S

&1 CONTINUE
U(2)=n,25%U(3)
Ut2)=n,5%U(3)
UtNP2)=0.5%U (NP Y
RESQ=SORT (REPROF (1))
DFLTA=4,43%R(1)/RFSQ
Pel= .h43“RHO(NP1)%W*R(l)%oS/RFSQ
PSIT=n,0 .
PSIE=PSII+PEL -
RENOLN=WH#R (1) #XU/EMUKIN
c WeITE STARTING CONDITIONS,
. WRITE(ARy59)RHO(NP3) sEMU(NP3) yDELTAIPET s XUsR (1) s CSALFASRENOLD ¢ W
59 FORMAT(6H INPUT«12E10.3)
CHAPTER § mewmwrterrccccecnrcrcsres snmmmennceccnenew=e=THERMODYNAMIC PR

60 CNNTINUE
ARSU2=4BS(UL2))
IF(ABSU2.6T, UI(3))U(2)=U(2)/ARSU2#0,9%U(3)
65 CNHNTINUE
Dn 61 I=19»NP3
EMU(I) =EMUNP3
EMUEFF (1) SEMUTUR (1) +EMULAM(])
61 FS1eD)=F(1y1)/R(I)
63 CONTINUE

Cem=wmm-=eca-TRANSITION FROM (AMINAR TO TURBULENT
IF (RENOLD +LT. RFTRAN)GO TO 69
IPASS=IPASS+)

c PRANDTL MIXING LFNGTH MODEL Or TURBULENCE.,
Do 62 I=lsNP3
1YL=NP3=]
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CIF(FO1IYL) WGE. JO1#F(1s1))6Gn TO 64
62 CONTINUE
64 12=IYL
I1=12=1
YUSY (D) (Y (I2) v (21 (e 0l#F (1o ) =F(19I1))/(F(1012)mF(1y11))
AKK=0,42
ALMG=0,.085
AIMGYL =ALMGHYL
EMUNP3I=EMU (NP3)
RHONPI=RHO (NP 3)
APLUS=EMUNP3#26./SORT (RHONP3)

DN 55 1=3+NP}
YR=Y(1el)=Y(])

L YMELSE(Y(I)eY(147))
RM=5#(RII)$R(T+7))
DVIDY=(UI¢l)=UlT1))/YD
DV3DY=RM#(FS(1e4T41)/R(I41)=FS(14yI)/R(I))/YD
DUDY (1) =SORT (DVINY##24DV3NY##2/PREF (141))
YPLUS=SART (EMUEFF (1) ®DUDY (I))#YM/APLUS
T221 ¢=EXP (=YPLUS)
PMLI(T) =AKK#YM#TD : '
IF(PML(I) «GTe ALMGYL)PML (I)=aLMGYL.
EMUT (1) =RHONP3#PML (1) #PML (1) #pUDY (I)
IS(EMUTII) HLT, i.E'30)EMUT(I)=10E'30
RATIO(T)=EMUT(T)/EMULAM(])

Cro-eemweeean==CALCULATION OF INITIAL K-E PROFILES
IF(ITURB +EQ. 2)c0 TO 66

1F(ISTEP +LEe 5000)G0 TO 66
NFQ=§

NPH=NFQw]

RENP3=1040
AK‘S.A
85=50.

tM=0,09
F!3!1)=0n
F(ﬁpl):ﬂ. :

Fi3yNP3)=l,.E~20
FlesNP3)=14E=20

Jz=0

TAUS=AJI (1Y /R (1)

TAUR= (TAUSH#TAUS+TAUI#TAUI)##0,5
FuX=TAURZ (RHONPRESQRT(CM) )
Ck2=]1.=F (34NP3) /EMX
CK]l==p, #CK2

Z=Y (1) /Y (NP3)

SkINUS=ABS (TAUR/RHONP3)
SKINU=SQRT (SKINUS)

CYPLUS=Y (1) #SKTNUZEMUKIN
F(3s41)2(le=EXP(w(YPLUS/11,)#%#2))8#FMX
F(391)=F(3e1)%(1,¢CK1I#Z4+CK2#Z4Z)

) IF(EMUT(T) oLTe 04)REYT(I)=no
57 CANTIMUF
IF(EMUT(Y) oLE. 7,)GO0 TO &8
J=J+l A
T=EXP (=AK/ {1, %REYT(I)/BK) a#2)
RTU(T)Y=REYT(T)
REYT(1)=EMUTI(T)/(CM#TEEMULAMI(T))
TR (ABS(RTUCI)I/ZRFYT(I)m1,) oGT, 1+EwS 4ANDe J +LTe 50)G60 TO B7
58 CONTINUE , -
- IF(YPLUS oGTe 50, ¢ANDe REYT(1) oLT. RENPI)REYT (I)=RENP3
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IF(REYT(I) «GT. fo)FlasT)=RHO(I)®F(3,1)#%2/ (EMULAM(T)#REYT (1))
IF(F(asI) «EQe 0,)F (49I)=F(491=1)
SKINUS=ABS (TAUR/PHONP3)
Sk INU=SQRT (SKINUS)
AA=F (3+1)/SKINU#&? ,
AAATF (49 1) #EMUKTN/ (SKINU#&4) -
. WRITE(6eS56)TaZsYPLUS»AALAAAWRATIO (D) WREYT(I)
56 FORMAT(IS516E10,3)
66 CONTINUE
55 CONTINUE

54 CANTINUE

69 CNHNTINUE
R{1)sXU#SNALFA
calLl STRIDE(Y)

CHAPTER 7 mem oo om0 g o0 50 00 0 0 0 50 o e m o 0 O 0 0 0 m FORWAR
IF(ISTEP «EQ, n)NX=FRADX®Y (N)
DX=FRADX#Y (N)

IE(ISTEP +EQ, 0160 TO 70
TAUS=AJI(1)/R( 1) ,

TaUR=(TAUSHTAUS+TAUI#TAUL)##0,5
DXPLUS=150
DXPLUS=200,
DHX=EMUNP3/SQRY (TAUR®RHONP3) #nXPLUS
IF(DX oGTe DDX)DX=DDX
IF(DX oLTe XULAST=XU)GO To 70
DX=XULAST=XU 7

U IFMDX oLTe 14E=30)DX=1,E~30

70 CONTINUE
XnzXUenX

H CHAPTER B8 reem=rescccmcmnenennnpqensmercsere=ue=eAD JUST LONGITUDINAL CON

e IF(1ISTEP.6T.0) @0 TO BO

. TAUI=N.0

,i TAUE=N,.0

! RuY=0,0

RME=(Q,0
Do 81 J=1+5
INDICD =]
INDE(U) =]
Agl(Jy=0,0
AJE(J)=0,0
81 CONTINUE
80 CoaNTINUE

¢ CR0SS STREAM PRESSURE GRADIENT TERM, PRESSURE AT E BOUNDARY KNUWN,
i IF(CSALFASEQ.0,.N) GO TO 85
Do B2 I=1NP3
A2 SH(1e1)=RHO(II#FS (19 1) #FS(141)/R(1)*CSALFA
P(Np3)5000
PINP2) =P (NP3)
DO 83 I=2¢NP}
L=NP3~1
Li=Lel ,
83 PILIZPILI) =¢B#(SU(LaL)*SULLTII®IY(LYI) =Y (L))
DA B4 L=29¢NP2
JEC(ISTEPLEQ,0) PP(L)=P(L)
DPOX(L)=(P(L)=PP L)) /DX
R4 Po(L)=P (L)
85 CONTINUE

CHAPTER § semmmmesesemecsmmeccmocn=,ceeen==TRANSPORT AND ENTRATNMENT PRO
CALL AUX

o oy s i . . . RS [ J L . G - o e e r e e e e C e g
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ADJUSTMENT OF FORWARD STEP

IF(RMT EQ. O¢ oANDe RME ,EQe 0.)GO TO 86
FRA=0,05

DNX=FRA®PEI/ABS(PMI=RME)

1£(DX +LTe DDX)GN TO 86

DX=DDX

XnaXUenX

CANTINMUE

call STRIDE(2)

U(1)=n.

UNP3)=0,0

FeloNP3)=0,0

Ftlel)=WHR(1)#R(T)
F2e1)=CP#FS(2,1)+¢54FS(1,1)#FS(1ls1)
IF(ITR,EQe2)F(2¢1)=10e0
F(2eNP3)=CPHFS(2,NP3)

IF(ITR.EQe2) F(2,NP3)=0.0

F(3s1)=0,0
F{34NP3)=0,0
Fteel)=0e0
F(6yNP3) =040

éHAPTER 10 ----’-"-----—--"-------------'---------—----—.-—----———_u-i--ﬂ-w

-

RENOLND=W#R (1) #XU/EMUKIN
IF(ISTEP «EQ, n)NSUM=0,0
QWALL=AJI(2) = (F(141)/R(1))*(AYI(1)/R(1))}/PR(2)

IF(ITR LEQ. 2)awall=AJl(2)

ROWALL=XU#QWALL
IF (RENOLD +GT. PFTRAN)QSUM:QSuMoRQWALLGDx

£ 110m1]19 memmemceccsccenmcmccccemne cnmmn——— rermmam—= emmme—e———— emmmmen

IF (REMOLD«LT+REPROF (IPROF)) Go TO 120

111 CANTINUE

IPROF=IPROF+]
CaLL PROFIL())

c 120 1?9 --—--”----——---"--—'-;----,----"———-------u----—--_--_---_---QT

120 Ir(ISTEP/IPRINT*TPRINT NE,ISTeP) GO TO 130

IF(QENOLD oGT, PFTRAN)GO TO 123

E]UMEN, 0

ENUR= ROWALL*PR())/(CP*TWALL“FMULAM(NP3))

IF(ITR +EQe 2)ENURZRAWALL#PR(Z)/(F(291)#EMULAM(NP3))
ENSQRE=ENUR/SQRT (RENOLD)

QL AM=RQWALL®XU

Go TO 129

123 CONTINUE

QMEAN= (QLAM 2, #QSUM) /XU &5
EMUR=QMEAN#XU#PR (2) / (CP#TWALLAEMULAM (NP3))

IF(ITR LEQ, 2)ENUR=QMEAN®XUSPR(2)/(F (24]1)#EMULAM(NP3))
ENSQRE=ENUR/RENO| D##0,8

129 CALL PROFIL(2)
130 CANTINUE

CHAPTER 12 - s o ew o o en - .-----------ﬂ--ﬁﬂq.---ﬂn----------.---------------

IF(RENOLD +GTe 1,9E6)IFIN=]
IF(ISTEP,GT.LASTFP) IFIN=)
IF(XU.GT«XULAST) IFIN=]
Ie(IFINL,EQ.1)- 6O TO 150
CaLL STRIDE(3)

6o TO 60

150 CANTINUE

- e e n e A e emn meeeam e min e s __..uim,—-_mw
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SUBROUTINE AUX

DIMENSION DUDY (100)sD2UDY (100)sDVDY(100)+4D2VDY(100) ¢DKDY (100) s
1F3(100)+RDY(100) REYT(100)
COMMON/GENERAL/AJE(10) 9 AJT(10) 9 CSALFASDPDX(100) 4DXsEMU(L100)
1F(59100) oFS(59100) 9 HIIFINGINDE(10) sINDI(10) s ISTEPLZITEST IUTRAPS
PKEXyKINgKRADGNyNEQoNPH NP Y yNP2 9 NP33OM(100) sPETIPR(5) PREF (G4100U) 4
3PSIEWPSITIR(100) ,RHO(100) yRMERMIyRN1G4RU(100) 1R259SD(54100) s

4S1N(Se100) yTAUE«TAUTWU(L100) o XD XUsY(100) 9 YEWYI

COMMON/SWFT4/AK « ALMG IPRINT g IoROF 4 ITReITURBoWeSNALFA(RENOLD
COMMON/SOURCE/ZSULI(100) +SDUL10A) «+P(100) sPP(100)90MD(100) 4OMP(10U)
COMMON/VISCO/ZEMIILAM(100) 9 MUTYR(100) EMUT(100) »EMUEFF (100)
COMMON/ZAVER/ENUR (ENSQRE
FAR UNSHROUDED RATATING SURFARES,
THE CTRCUMFERENTIAL VELOCITY DETERMINES THE LAYER THICKNESS
AND CONTROLS THE ENTRAINMENT, 4
0 u"F"--"‘"-"'----f"--"“"--'-------'---------"---"---9--—-9—0-”-LOCA
IF(ISTEP «GT. 0)c0O TO 10
CM=z0,409
Ak=344
RK=5000
C eK=2,N
AT=1064

- A2=2,.0

Aq=1,07
835003
Cazl.n
PRT=0,9
PRTK= lu
pPTE 103
IPASS=N
CONTINUE

3n W W o " o e B W W, - o - -----wpwuw---------.----------_--qMOD

IF(ISTEP «LEs 5000)GO T0 12

IF(ITURB #EQ. 1)R0 TO 21

DO 15 I=39NP]

Fi3el)=AMAX]YI(F(3,1)40,0)
FlosI)=AMAXL(F(441)91,Em1R)

IF(F(4ay]) oEQe 1,E=15)F(3,1)=n,

CONTINUE

IPASS=TPASS+]

Dn 18 T=3¢NP]

REYT (1) = RHO(I)&F (3e1) 882/ (F (4, I)*EMULAM(I))
T=EXP (=AK/ (1,+REYT(I)/BK) ##2)

Z=EMUTUR(])
EMUT(T)=CMUTHRHO (I)#F (341) 822 /F (441)
CANTINUE

CONTINUE

werrmaw=nEFFECTIVE VISCOSTTY AT MID POINTS

DO 19 I=2WNP2

EMUTUR (1) =EMUT (T)

EMULAM(T) =054 (FMULAM(T+]) +EMYLAM(T))
EMUEFF (1) =EMUT(T)«EMULAM(T)
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19 EMU(T)=EMUEFF(T)
EMU(NP2) =EMUT (NP2) «EMULAM (NP2}
EMU(1)=EMULAM(])
DO 20 I=29NP2
IF(NER LEQ, 2)G0 TO 20
PREF (29 1) SEMU(T) / (EMULAM(T) /PR (2) +EMUT (1) /PRT)
PREF (3¢ I} SEMU(T) /(EMULAM(T) /PR (3)+EMUT (1) /PRTK)

OPREF(4+])=EMU(T)/ (EMULAM (1) /PR (4) +EMUT (I) /PRTE)

?0 CONT INVE
€ 21730 w==eweerrweeea MODIFICATION OF EMU ARRAY

21 Dn 22 1=2'NP}

22 EMULT)I=EMULTI)/Z(Y(I+1)mY(I})

EMU (NP2)=EMU(NP?) /YE
Do 23 I1=2'NP}

23 EMUCIY=EMU(I)#n.5# (R(I)+R(I+1))
C"---"----.t-"-'-“---g---'----'p--'—-----------——-----v-—--_--_-—-----_
c: e e N e e T, L . et e e e ee e ra e eneeeENTRATNMENT

Ut IM=n,01 _
RAT=ARSI(F(LsNP1)=F (19NP2))/F(14+1)
TF(RATSLTULIM) #MU(NP1)=gMU(NP1)*RAT/ULIM
RME"‘ZQ“EM UINP1) )

CHAPTER 2 o 0 0 00 o S0 o e T O gy D Oy S Yy W D o W WP O T O e LY R T L .
: Dn 84 I=2+NP2
84 F(Sql)'(-DPDX(I)oRHO(I)“Fs(I!I)*FS(I I)/R(I)*SNALFA)/(RHO(I)*U(I))
PnN8=PE1/B40
SUU(2)=PDB* (3.#F (542) +F (5,3))40M(3)
Do 86 I=3NP])

|
k

86 SUU(T) =PDB# (3 #F (Se1)#0MP (1) +F (SeT1=1)#OMD(I=1)+F (59T +1)#0OMD(T))
SUU(NP?)—PDB*(3-*F(5’NP2)tF(S NP1))#OMD(NP])

c .'-.-.~----------—--------------‘.---.‘------qq--—-----------_-.._---,,
IF(NEQ,EQs2) GO TO 235
IF(ITR +EG, 2) GO TO 24}
Do 220 I=1 NP3
i SD(I!I)=U(I)“U(I)
220 SH(2+T)=FS(1s1)#ES(1s])
Do 23n I=24NP}
SA(3s1)=50(1, Ibl)-SD(loI)+SD(2oI‘l)wSD(29I)
SD(3+T)=EM U(I)I#SD(3eI) ags (], =~1e/PREF(2s1))
FRee 54 (FS{1y1)erg(lelel))
230 SU(311)‘SD(39I)*FMUEFE(I)#FS“FS*CSALFA
S1}{391)=0e0
SU(3+NP2) =040
DO 240 I=24NP2
. SN(247)=040
2460 SUL291)=SU(341)=cy(391~))
. 6n TO 235
24l Dn 2473 I=24NP?
. Su(2e11=00
243 SN(2+7)=040
235 CONTIMUE
DO 242 I=1NP3
SNU(T)1=060
SU(191)=040
SN(1e1)=040
242 CONTINUE

IF(ITURR +EQ, 1)R0 TO 120
IF(ISTEP oLEs 5000)GO TO 120

c POELIMINARIES FOR SOURCE TERMS FOR KeE

e e ‘..‘“A.A“:‘," T e e e S e n . g
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Dn 1 1=2sNP2
FMUT (1) =EMUTUR(T)
?1(!)-0. » . : )
IF(F(3+s1) oNEs 0,)F3(I)=F(391)*SART(ABS(F(3+1)))/ABS(F(3+1))
SU(3e1)=00 v
SnN(397)=0
SY(beT) =00
SH(4yT)=00
1 CONTINUE
RDY (NP3) =0,
DUDY (NP3) =0,
D2UNY (NP3) =0,
DVDY(MP3)=0.
D2VDY (NP3) =0,
DKDY (NP3)=0,
DD 2 1=3¢NP)
RM=0,5# (RIT)+R(T+1))
BYP=Y(I+1)=Y(1])
RYM=Y (1) =Y (I~1)
By=BYn+BYM
Ti=BYM/ (BY®#BYP)
To=RYP/ (BY#BYM)
RAY(I)1=0e5%R(I)# (Y{I+1)=Y (I=1))
DUDY(I)=T1“(U(I*1)—UtI))*TZ*(U(I)-U(I ~1))
DAUDY (1) ={(U(Te1)mU(I))I /(Y (I¢ 1) =Y (1)) m(U(I)mU(I=1))/(Y(T)=Y(I=1)))
1/7(0,54BY)
DVDY(T)=RM#(T1#(FS(191+1) /R{141)=FS(LaI)/R(I))*T2#(FS(14T)/R(I)
1=FS(lelI=1)/R(Im1)))
D2VDY (1) =RM# (((FS(1sI+1)/R(I*1IFS(19I)/R(INI/Z(Y(I41) =Y (1)) m(
z IFS(19T) /R(II=FS (14 I=1)/R(T=1)) /(Y (1)=Y(I=1)))/(0.5%#8Y))
R DKDY(T)=T l*(F3(I¢1)-F3(I))*TZ»(F3(I)-F3(I~1))
2 CANTIMUE

1 ¢ SPECIAL TREATMENT OF HALF INTERVALS AT I AND E BOUNDARIES
C——---O-O"--" ------------ T O o - 1 BOUNDARY

IF(ABS(F(302)) «GEe F(393) eORe ABS(F(492))eGEe F(443))G0 TO 5

ROY (2)=0,5% (R(2) +R25) #Y]

RT=0.5%(R(])+R25)

DUDY (2)=(0eB# (U(2)+U(3)) = (1)) /Y1

D2UDY (2) = (U =i (2)) /(Y (=Y (2))=TAUI/EMULAM(1)) /YT

DVDY (2)=RI% (0,58 (FS(1e2) /R(2)+FS(1+3)/R(3))=FS(1s1)/R(1))/YI

TAUS=AJTI (1) /R (1)

DAVDY (2)=(RI#(FS(193)/R(3)~FS(142)/R(2))/(Y(3)=Y(2))+TAUS/

1EMULAM(1)) /YT )

DKDY (2)=(SQRT (0,88 (F(392) «F(3,3)))=SQRT(F(3,41)))/Y1
| e rmmemererreamane ceenemnnanee_~=E BOUNDARY

5 CONTINUE

IF(ABS(F(34NP2)) .GEe F(3,NPl) +ORe ABS(F(44NP2)) +GE, F(4sNP1))

1GO TO: &

RDY(NP2)=0.5%# (R(NP2) #RN15) #YE

R ,5# (RN1IS4R(NP3))

DUDY (NP2) S (U(NP2)0,5# (UINP1) «U(NP2))) /YE

DAUDY (NP2 =( (U(NP2)=U(NP1})) /(Y (NP2)=Y(NP])))/YE

DUDY (NP2)=RE  #(p,S5#(FS(1,NP1)/R(NP1)+FS(]yNP2)/R(NP2)) =

IFS(IpNP3)/RtNP1))/YE

D?VDY(NPZJ‘RE“(FG(IoNPB)/P(NPQ)-(FS(l'sz)/R(NPZ)-FS(loNpli/Q(NP

11))/7(Y(NP2)=Y (NP1))) /YE

DKDY (NP2)S(SARTI(F(3sNPI) ) uSQART(S*(F(3¢NPY1)+F (3,NP2}})))/YE
C--P“""—.-"—""---""'-----"--"’--"--"-"J:‘b

6 CONTINUE n
EMUT (2) =0+ 25%EMUT (3)
EMUT (NP2)=0,2545MUT (NP])
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~IlI=

Fl302)50e25% (3.4 (342)¢F(293))
FU3oNP2)=0,25% (3, 8F (34NP2) +F (3+NP1))
Fla92)=0a25% (3.%F (442)4F (443))
FlraeNp2)=0,25% (3, %F {4yNP2)«F{4NP1))

c-----------w—-------—_-—ﬁ- ————— —-—,,,—-—J-:;

C PJ3----—"'~*------"-'-'------PRODUCTION

C DJ3w-f--""-- ------ -, - DTSSIPATION
Do 100 I=2,NP2 :
IF(F(351) eLEe0N. +ORe F(4,I) ,LEa 0,)GO0 TO 100
PUI=EMUT (DY #(DUDY LIV #DUDY (1) +nVPY (1) #DVDY (1))
DJ3I=RHO(I)#F (4, I)#CK“EMULAM(I)*DKDY(I)*#E
SU(B'I)“PJB-DJ?

v SQ(B!I)-*ABS(SU(101))/F(3,I)

SI(391)=5U(341)+aBS({SU(3s1))

PJa=ATH#F (49 1)/F (29 1)¥PJ3¢p2#EMULAM () #EMUT (1) # (DUDY (T)#D2UDY (1) +
lDVDY(I)*(DZVnY(I)¢DVDY(I)/RM“(R(IOI)*R(I))/(Y(I+1)-Y(I))))**?/
2IRUDY (T ##2+DVUDY (1) #%2) /RHO ()

REYT(T)=RHO(I)&#F (3,1) 42/ (F(4,1)#EMULAM(T))

FN3=),=B3®EXP(~(REYT(I)/C3) ##p)

DJGs=AISF (G, I)##?ﬁRHO(I)“FN3/F(3'I)

RCHSON=0

ARE0, |
D.J&4=DJ4# (1 ¢ =ARERFHSON)
Si{4s 1) =PJ4=NJs
Sn(aor)--ARStSU(A,I)J/F(4 I
SU(AQI)-SU(49I)*ABS(SU(ﬁvI))
100 CONTINUE
D0 118 J=34NPH
Do 110 I=2sNP2
SU(JrT)=SUJ Iy #RDY (])
O SPA(JeT)=SD(Je 1) #RDY ()
110 CONTINUE
Cree===-REDFFINITION NF VARTABLES BaCK TO POINTS 2 AND NP2
Do 11) J=34NPH
F(Jva)'tao“F(dq9)-F(J93))/3.
111 FJaNP2)Y =4, %F (J,NP2)eF (J,NP1)) /3,
120 CONTINUE
Re TURM
END

SUBROUTINE PROFT| (1P)

DIMENSION REYT(100)
_CnMMDN/GENERnL/AQE(lo),AJ1(105,CSALFA;DPDXIIOO).DXoE“U(IOO)o
1F(50100)9FS(54100) 9HoIFIN,INDE(10) 9 INDI(10) sISTEPSWITEST IUTRAPY
2KEXsKINoKRADyNyNEQeNPHyNPY ¢ NP2y NP3s0OM(100) «PETYPR(S) yPREF(54100),
3PSIEWPSIIWR(100) ,RHO(100) s RMERMI+RNL1SsRU(100) 9yR2S9SN(5+,100) «
4S11(59100) sy TAUEZTAUTSU(IN0) ¢ XD, XUsY (100) s YE9Y]

CQMMONISWFTa/AK.ALMG'IPRINT InROF ¢ ITRyITURB )W, SNALFARENOLD

COMMON/SOURCE/SUU(IOO)pSDU(lOn)oP(IOO)oPPCIOO)oOMD(IOO)oOMP(IOUJ

COMMON/VISCO/FMUL AMCL100) opMUTIR(L100) 4EMUT(100) s FMUEFF (100)

CAMMON/VISC/RATTAC(CL100)

COMMOM/AVER/ENUR,ENSORE

c [ edhedeal Rk bk KL ] T UR S5 UV A8 AN 0 BB o, TG W L, O L d T L B 2 L 2T ¥ J LA L A X T T ¥ X KX

EMUKIN=EMU (NP3) /RHO (NP3)

CF=0, n

e g v e e = e . [REEP R ‘. e e iR B e RRd xS
E
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DO 10 Y=2e¢NP2
CF=CF+(F{lyT)+F (7o141))#0MD(])
CF=y5#CFRPET#25, 736/ (RHO(NP3) sWeW#R (1) #85) # SNALFA
EN=2,4PEI/ (RHO(NP3) #WaR (1) ¢#3)
THETA=0.0
OE:L‘T Az=0,0
F11=FS(1el)
DM=FS(1+2)7U(2)
FIM=(F11=FS(192))%0M
Do 11 I=3sNP2
Fi1= FS(le1)
op=F11/0(I)
FiP=(F11=F11)#nP
THETA=THETA+ (F1MeF1P)#0OMD (Tm1)
DELTA=DELTA+ (DM 4DP )#OMD(I=1)
Dm=DP
FiM=F1P _
THETA=SH#PEI#THFETA/ (RHO(NP3)#p (1) #F11#F1])
OFLTA=,5%PEI#DFLTA/ (RHO(NP3) #R (1) %F1])
RYHETA=WH#R (1) #THFTA/EMUKIN
HFORM=THETA/DELTA
TAUS=AJI(LI/R(1) '
WRITE(6+23) ISTEP,XUsR(1) +yRENOLD, ENQHFORM,CF PEI»TAUI,TAUS,

1ENURGENSQRE$F 1)

ST TTRASR I R L

-.‘--—-".--------’---------.... 2 A A A A 2 2 2 T 2 3 & 1 & A L X ¥ ¥ ¥ T T ¥ L T L 1 J

IF(IP,FQs2) GO To 100
C93601204
TWALL=FS(2+1)

‘WRITE (6924)

UR=SART (TAUI/RHO (NP3))
UT:SQQT(TAUS/RHO(NPS))
YR=UR/FMUKIN
YT=UT/EMUKIN

WWeSART (W/EMUKTN)
WR2eFS(1s1l)#FS(1,1)

DO 12 I=1+NP3

W=y (T)

WysWleww

WPzW)eWW
Waz=Wl/THETA
Na-U(I)/Fll
WE=FS(1+1)/F11
Wa=W]l#YR
N&:SQRT(U(I)“U(T)+FS(1OI)%FS(1’I))
wh=wha/F11
W7=U (1) /UR
WazWleYT
F1I=F11=FS(1,1)
WasF11/UT .
UBES=(TAUI#TAUT+TAUS#TAUS) ¢#, 25/RHO (NP3) ##,5
YRES=URES/EMUKIN
W10=W1#YRES
W]l SAORT(FII#F)1T+(1)#U(])) ZURES
TRL—(F(EOI)-O.R“(U(I)*U(I)O(F(I ID/R(I))#a2)) /CP
w12 =TRL/TWALL
IF(ITR +EQe 2)W12=F(2y1)/F (201)
VRATIO=F1I/(U(1)414E=10)
IF(IQEQ.NPS) GO 70 14
TAURES= (FS(1elel)mFS(19I)y®a2 (U(I*I)-U(I)l°”2

4 b
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TAURES=TAURES#60 ,6/(Y(I¢1)=Y (1)) #EMUEFF (I)
_ TRATIO=(FS(1, 1¢1)-FS(1 I))/(U¢I¢1)—U(I)‘1.E-ln)
14 CONTIMUE
WRITE(6923) oW1 o Wb o WS WO WT o WRIWI W09 W1) ) TAURESsVRATIO W] 2
12 CONTINUE
IF(ITURRLEQ.1) 6N TO 16
WRITE (64+28)
DO 18 I=3sNP]
WIEY (T)HWW |
WY=Y(1)/(R(1)/SQRT (RENOLD))
Wo=EMUTUR(Y) ZEMULAM(T)
W2=EMUT (1) /EMULAM(T)
WazEMUEFF (1) ZEMULAM(])
TAUS=AJI(L)/R(1)
TAUR=(TAUI#TAUT+TAUS*TAUS)#%0,5
SKINUS=ARS(TAUR/RHO(I))
Sk INU=SORT (SKINUS)
Was=F (341)/SKINU®a2
WaeF (341)/(F118F11)
WESF (6o 1) #EMUKIN/ (SKINUB#,)
wﬁ=RATIO(I)
wv-RHO(I)“F(S-I)*#EI(F(4;1)*EMULAM(I))
WRITE(6¢29) TaW1aW2eW3 WGy WSy Wy WT
18 CONTINUE
OF g 0 00 W0 g S 0 W0 T TD B B e VD gy DD D WY D 0y GO DN L, PGPS e TP s G P U D D B B S U TV W W AE G A S @ B @
17 CONTINUE
16 CONTINUE

WRITE(6y26)
23 FORMAT(I5¢12F10.12)
24 FARMAY (# GRID Y v1i/We V3/HR Y1 Vi
1 Y3« V3e YRES+ URES+ TAURES VRATIO TAURAT
210 &)y _
26 FARMAT(# STEP XU R RE (NO ENTRAIN HeFORM
| CF PEY TAUI TAUS NU/SHR C=NU/RE WR
2) '

28 FORMAT(# GRID Y.SQ(W/V) EMYT/L  EMUE/L F(3s1) Fit4el)
~ 1 RATIN REYT =)
29 FORMAT(ISeTEL10,3)
100 CoNTINUE
ReTURN
END

SUBROUTINE WF (Js11912+I390UT1,0UT2+0UT3)
COMMON/GENERAL /4, JE (10) yAJT (10) 9CSALFAJDPDX(100) ¢DXsEMU(100) 4
1F(S9100)sFS(5¢100) oHeIFIN,INDE(10) 9 INDI(10)+ISTEPZITEST,IUTRAPRY
2KFX 9 KIN9KRAD 4Ny NF09NPHoNP1’NP29N93,0M(100),P&IoPR(S)oPRFF(%oIOO).
APSIEYPSITIR(100) JRHO(100) yRME,RMI4yRN1SyRU(100) sR25+5D(5+100) s
4S11(5¢100) s TAUEZTAUT ur100,.xo XUsY(100)sYE,YI
COMMON/SWFT4/AKsALMGY IPRINT s IPROF g ITRy ITURBy W, SNALFARENOLD
CﬂMMON/SOUPCE/SUU(IOO)oSDU(lOn)oP(IOG)oPP(IOO)oOMD(lDﬂ).OMP(lOD)
COMMON/ZVISCO/ZEMULAM(100) s EMUTLIR(100) s EMUT(100) s EMUEFF (100)
GFNERAL WALL FUNFTIONS FOR LLAMINAR SWIRLING FLOWS,.

FOR AXTAL AND TANGENTIAL vELOCITIES,FOR STAGNATION ENTHALPY,

FOR MASS TRANSFER, FOR SHROUDED AND UNSHROUDED GEOMETRIES.

g TN W W gy wn O 0 g P A D R W DT TR DS Or UD o O N R L G B an PO g S S0 T G G 00 B0 G5 W e W e P UD EP BD ¢F um e TR 00 BN A8 - an M wy o o

126=13=1/11

o b om0
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JNASH= J¢1
6o T0 (100'2009100'4009400)anASH

CHAPTER 1 mmemr wemcmcpemercsceqmes semene-enc=aeRADIAL VELOCITY, NO MAS
100 UREF=,8#(U(12)+1(13))
RHOREF=45% (RHO(12) +RHO(13))
RREF=.R4#(R(12)+R(13))
RRUREF=RREF#RU (125)
YREF=YT¢ (YE=YT)#nNM(I1)
VREF=,54% (EMULAM(12) ¢EMULAM(I3))
RE=UREF #RHOREF #YREF/VREF
FI1=F (111} /R(11)

CFa5= 58 (F(1912)/R(I2)4F(1,13)/R(I3))
DBXREF=,5%(DPDX(12) +DPDX(1I3))
szYRFF/(RU(12:)uuREF)u(DPXREF-RHOREFansuFas»SNALFA/PREF)
S=1,0/RE=FP/240
OyT1=,5=FP#RE/12,0
OUT2=S#RRUREF )

OUT3I=OUTZ2*UREF /RREF
EMU(I?5)=VREF*RRFF/ABS(Y(I3)-Y(IZ))
ReTURN
CHAPTFR 2 wmerme eecccrccccccmcme=an,, '~"-’---'-CIRCUMFERENTIAL VELOCITY,
200 CONTINUE
FP=F258YREF#SNALFA IZ.IRREF/tFZS-FII)
OUTI=n.0
60 YO 210
- 300 CONTINUE
- CHAPTER 3memmerrreccrccenena=STAGNATION ENTHALPY
] Fé’ﬂ)an
OT1=(H=1s)#,5¢ (YREFRUREF 4F25¢F25) /601244
_ IF(ITR «EQe 2)0UTI=0.0
210 CONTINUE
S=1./RF/PR{U)mFP
B QUT2=S4RRUREF
B OUT3=0UTR/RREF
. ReTURHN
CHAPTER 4 ===r=remcccccccsccaccpcee ceeakenf
400 S=0, '
A3=]1,092
4 R3=0,3 A
RMREF=RMI* (RME=RMI)#0OM(I1)
BM=RMREF /RRUREF
FIREF=0.5%(F(3412)+F(3413))
FGREF=045% (F(4aT2)+F (4913))
FRD==A3%(1l.~B3)*F4REF*YREF/ (UREF*RHOREF #F 3REF)
A FSO=FSO#RHOREF
i IF(J FQe 3)GO Tn 410
S=1,/(PR(J)#RE) +n,5#FSO
IF(J EQe &)GO To 410
S=l,/(PR(JI®RE)
IF(BM LEQs 0)GO TO 410
S=BM/ (PR{J)®# (EXP (BM#RE)wl ,))
410 0TY=n,
OUT2=S#RRUREF
OUT3I=OUT2/RREF
PREF (Je125)=PR (J)
RETURN ‘
END -

o e vt i e A« o o8 : RN 4. B .. C e .. - .‘ ' . .. _. e e e . Cmm e e e e et e ;,”,_,W
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SUBROUTINE STRIDE (ISW)

DIMENSION A(5+100)+AUL100)+B{59100)4BUC100)+C(54100),CUC100)
IFDIFE(S) oFDIFTI(8) +GE(5) 467 (S) ,TTPF (5)
COMMON/GENERAL/AJE(10) 9AJT (10) 9CSALFALDPDX(100) 9yDX9EMU(100)
1F(5¢100)9FS(S9100) sHeIFINJINDF(10) 9 INDI(10) oISTEPZITEST,JUTRAPY
2KEXsKTNyKRAD ¢ NoNEQaNPHINP 1 #NP>9NP390M(100) s PETsPR(5) 4PREF (54100 4
3PSIEYPSIIIR(100) 4RHO(100) sRME,RMIZRN15sRU(100) sR259SD (54100} s
6511(59700) s TAUE W TAUTSU(100) 9 XD XUsY(100) 9YE oY1
CO“MOM/SOURCE/SUU(IOO)oSDU(lOO)9P(100)'PP(100),0MD(100,'OMP(IOD)
CnWMON/VISCO/FMH;AM(100).EMUTuR(IOO);EMUT(IOO)oEMUEFFrloo)

GO TO (100042000,3000)¢ ISW

LRI

c FORwe s KRAD=104 0o KTNZ1 0 e KEX=2040R(1)eGTe0scnes

Ca&&##é@#*&&&#»&*a*###&a#*#uou#&»#&aaua STRIDE ] #ossossssacatdan
1000 IF(ISTEP.GT.O) 50 TO 1100
] OM(1)=0,
OM(2) =0
OM(NPPY=1e
OM(NP3)=140 . ,
OMIz=540M(3) ~
0ME-.RG(1-~OM(NP1))
BPI=0,5
BPE=1 0
. Yil)=0, ) '
Crwemmre—mrceeerercacasememes  CALCYLATION OF RHO®Y 1S wecceceeea- —————
1100 D0 1101 I=14NP3
1101 RUCTI)=RHO(T) #U(T)
RU3=RU(3I)
RUN1=RUINP])
DO 1102 I=24NP)
RU(I)-.S*(RU(I)*PU(Itl))
IF(RU(2) oLFe N.YRU(2)=1eF=20
IE(RU(I).GT.O.)GO T0 1102
 IF(ITEST.EQ,0) WRITE(6,41200)
1200 FORMAT(25HAN RU 1S ZERO OR NEGATIVE)
1 ) lv$U(3gI)sSD(BoI).SUt4.I)’SD(4.I)
ottt dpansiatirad STRIDE
1250 FORMAT(IS912E10.17) '
WQITE(A 125031, Y(I>.PU(I>.U(I)ertle),F(E.I)thsql),FtaoI).EVUTtI}
ITEST=1
 IFIN=Y
1102  CONTINUE )
g---r—-.w-lh-_-.--"-"'F'-"--"'“""" FALCULATION OF Y 'S AND R 'S Lkl oot L]
L wwecwrcccccorteccce- memetecer e n, sereeen. YIS FOR PLANE GEOMETRY
5 Y1=PEI#OMI/Z(rPT#DY(2))
{ Y(3)=YI+PEI4OM(3) /(RU(2) +RU3)
' Y(2)=2.0%YT=Y(3)
DO 1103 IS4 9NPY
1103 Y(I)zY(I=1)+PET# (OM{I)=OM(I=1))/RU(I=1)
YN1S=Y (NPL)¢PET®# (14=0M(NPY) )/ (RU(NP1) *RUN])
Yr=PET#OME/ (BPF#RU(NP1))
Y(NP3)=YN1SeYE
_ Y(NP2)=2,0%YN1S=y (NP])
C wewmescscecmeccecrceeace== YIS AND RIS FOR AXISYMMETRICAL GEOMETRY
h IF(CSALFASEQ.0.) GO TO 1110
C =rmesmrmcoemer s e emer s cssenms m=n=ce=  (SALFA NE ZERO
CNSD2=.5%CSALFA
1105 R1D2=,5#R(])
RYD2SNA=R102#R1N2
D0 1104 I=24NP3
Y(I)eY(1)/(R1D2+SQRT(ABS(R1D25Q+COSD24#Y(1))))

et e et ks sy

Eaa,
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1104 Rr!) ZR(1)¢Y(1)8CSALFA
' Y1=YI/(R102+SQRT (ABS(R1D25Q+CnSD24Y])))
. YM1S=YN15/(R1D2+SQRT(ABS(R1025Q+COSD2%#YN1S5)))
1107 R25=R(1)+YI4CSALFA
RNIS=R (1) +YNIS#CSALFA
YeeY (NP3)=YN1S
. RFTURN.
1110 Dn 1111 I=2NP3
_ YgI):Y(I)/R(I)
1111 R(I)=R(})
YrsYI/R(1)
YNISEYNIS/R(])
R35=R (1)
RN1S=R(])
YE=Y (NP3)=YN1S
~ RFTURN , - ,
Gt steBeRrOREEREbas RO OREdaRsEatas § T R 1 DE 2 BepotRetBEELEB D
2000 PY=PETI/DX ' ' '
G=RMI~RME
P54=.#5&PX
. PG=PX+G
PGD4=,254PG
RMID2=.58RM]
GDA4=, 2545
. _BOMP=0M(3) »OM(2)
PGOMP=PGD4#BOMP
P4LOMP=PD4HROMP
e rE e an et E e r e e e n e en e memmmme  GRID POINT 2

wemeeeoemmeccerecmccemceemcenerescmmvn TAUIy BRI, T1

CaLL WF(0919293+RPIsT1sTAUI)
ermmmemem e et meneeene BOUNDARY cOEFFICIENTS FOR VELOCITY
2002 HLP=PMID?~GDA&(OM(Z)*OM(B))
) CAHLP=ABS (M|_P)
THLP=HLPsHLP
TP=EM U(2)
TTP:TP+AHLP+ABS(TP-AHLP)
AD=TTP=THLP=T1=PrOMP+,5#S5pU(2)
BR=2 8 (T) ¢RMT)
CR=P4OMPH# (3, #U(2)+U(3) ez, #S5U1(2)
DU=AD#BD+PX#BOMP A2, #SDU(2)
AlI(2)=4D/0V
BUI(2)=RD/DU
cu(2)=Cco/0u
et e st e cmnemer=rme=nn . ROUNDARY COEFFICIENTS FOR F!S
IF(NEN.EQel) GO TO 2304
DN 2300 J=14NPH
ToF2=TP/PREF (Jy2)
TYPF(J)=TPF2+AHLP+ABS (TPFp=AH P)
CALL WF(Jr192¢3+0FDIFI(N oTIFsGI(U))
IF(INnI(J).EO.Z) GO TO 2303
JI(J)-GI(J)*(F(J'l)-.S*(F(Jo>)¢F(J.3))—FDIFI(J))
AL L DAL LI PP LT e L ELEL P P === COEFFICIENTS
8005 IF(JNFel) GO Tn 2302
ADF=TTPF (J)#R254R25/R(3) /R (3) THLP»TIF®R (1) #R (1) /R (3) /R(3) ~PGOMP
BnF 2. H(T1IFeRMT)
DFe3, #PGOWP¢THLP¢TTPF(J)*RZS“RZS/R(Z)/R(E)*TIF*R(I)*R(I)/R(Z)/H(E)
60 TO R110
2302 ARF=TTPF(J) =THLP=TIF=PGOMP+,545D(J12)
BNF=2,4(TIF+RMI)
DF=ADF¢BDF +PX#ROMP=2,4#SD (U9 2)
8110 CANTINUE
T==T1F#FDIFI (J)
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Bo TO 2305
2303 AAF=TTPF(J)=THLP=PGOMP+,545D (Js2)
BOF=0.
DF=ADF ¢PX#ROMP=2,4SD (Jv2) sRMI#2,
TaRMI“F(J’l)*AJIlJ)“R(l)
2305 TTS3.4F (J12) ¢F (Je3)
CNF=P4OMPH#TT+2,4(T+SU(Js2))
AtJs2)=ADF/DF
_ B{Je2)=BOF/DF
2300 CtJe2)=CDF/DF .
c, - 2 8 gy S A O A T G e P B P A 2 e o -~ - - - GRID POINT NP2
c.------..-----------w------------.-—-—-Oo; TAUE' BPE, TNP3
2304 IF(KEX.NEel) GO TO 2003
2003 TNP3=0,
IF (KRADLEQ,1) RPF-(R(NPB)*(S.QRU(NP3)#RU(NPI))*3.*RN1G#
_ 1 (RU(NP3) »RU(NP1))) /6, /(R(NP3)+ RN1S)/RU(NP1)
C ==ecercccmcwc=tecwcee. BOUNDARY CoEFFICIENTS FOR VELOCITY
2310 BOMM=OM(NP2) =0OM(NP])
HLM=RMID2=GD4% (OM(NP1) +OM (NP2))
AHLM=ARS (HLM)
THLM=HLM+HLM
TM=EM U(NP1) _
TTM=TMe AHLM¢ABS (TM=AHLM)
PGOMM=PGD4#BOMM
P4 OMM=PD 64 #*BOMM
An=2.% (TNP3=RMF)
: BASTTM+ THLM=TNP3.PGOMM +,5%SDij(NP2)
t CN=P4OMM® (3, #U (NP2) sU(NP1)) +2+0%#SUU(NP2)
: DUSAD+BD+PXEBOMM  »2,#5DU (NP2)
Ay (NP2)=aD/DU :
BU(NP2)=BD/DU
CU(NP2)=CD/DU
IF(MENRGEQel) RFTURN
 =mwecermccearmccceeeca= BOUNDARY COEFFICIENTS FOR F!S
DO 2320 J=1.NPH
TMF=TM/PREF (JsNPY)
TTMF= TMF ¢ AHLM+ABS (TMF=AHLM)
2311 TMP3F=0,
_ FAIFE(J)=0,
L ==wresmcescerecaceeo. ewmmememamemmaee=e=ee  COEFFICIENTS
2318 IF(JMEL1) GO Tn 2312
ANF=2,# (TNP3F=RMF)
BRAF=TTMF#RN1G#RN]S/R(NP2) /R (Np2) + THLM=« TNP3F#R (NP3) #R (NP3) /R (NP1} /
1 R(NPY) »PGOMM
DF-B.*PGOWM-THLMoTTMF*RNIR*RNlS/R(NPE)/R(NPZ)¢TNP3F*R(NP3)“R(NP3)
1 /R(NP2) /R(NP2)
60 Y0 ROO3
2312 AnF=z=p, #(TNP3F~RMF)
BAF=TTMF + THLM=TNP3F=PGOMM4 ,5%5D (JyNP2)
_ DF=ADF+RDF+PX&ROMM=2,#SD (JyNP>)
8003 CONTINUE .
T==TNPIF4FDIFE (J)
GO TO 2315
BAF=TTMF ¢ THLM=PGNMMe ,54SD tJyNp2)
DF=BDF+PX#ROMM=2 ,#SD (J9NP2) =RME®Z,
T=rRMFF (JyNP3) =AJE (J) ¥R (NP3I)
2315 TTE3,4F (JINP2) +F (JsNP1)
CNF=P4OMMRTTe2 #(T+SU(JsNP2))
, ATJeNP2) =ADF/DF
. B(JsNP2)=BDF/DF
] 2320 C(JeNP?)=CDF/DF
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RETURN _
ChBshEbatataRIBBItIGBRIBBERBGRNGNORGRRE S T R I D F 3 dsvsonoscoabatdae

3000 DO 3005 I=3sNP)
ROMM=2BOMP
ROMP=0OM(T+1)=0M(I)
BOM=BOMMe 1 1oMP
BOMT3=ROM#~,
PGOMM=PGOMP
PEOMP=PGD4#BOMP
PnDM:px*ROM
THLM=THLP
_ HLP=RMID2=aD4# (OM(Is1)+0M(]1))
THLP=HLP+HLP N
_ _AHLP=ABS (HL P)
TTM=TTP
- TP=EM UILT)
TTP=TP+AHLP+ABS(TP=AHLP)
AR=TTP=THLP=PGOMP
BAaTTU+ THLM=PGOMM v
CR=PD4&® (BOMT3#(J( 1) +BOMP#U (141)+BOMM#U(I=1)) T #2.8#SUU(T)
DU:AD‘BD‘pROM -EO*SDU(I)
AUCTY=AD/DUI
BU(I)=BD/Dii
‘ cu(Iy=cbsnu
(ol --,-.g----f.-“--------—---------------'-'ﬂ START OF J Loop
IF(NEQ.EN.1) GO TO 3005
) , o 3004 J=7,NPH
3002 TTMF=TTPF())
3003 TEF=EM U(I)/PREF(Je1) ‘
TTPF () =TPF+AHLP4ARS (TPF=AHLP)
IF(J.NE.1) GO Tp BOO8
RPE, 5#(R{I)*R(T+1))
RME, G (R(I)+R(T=1))
ANSTTPF (J) #RPERP /R (141) /R(I+1y=THLP=-PGOMP
1 BASTTMF4RMERM/R(Tw]) /R(I=]) ¢+ THLM=PGOMM
! DEEPGNA*ROMTI e TH) P=TH Me (TYPF (J) #RPH#RP+TTMF#RM#ERM) /R(T) /R (T)
. 6n TO ROO9
8008 CANTINUE ,
ARETTPF (J) =THLP=PGOMP
RR=TTMF + THL MaPROMM
DF=AD+RD&PBOMm2, #SD (Jy 1)
8009 CONTINUE
Cn"PDa“(BOMT?*F(loI>+BOMP#F(J I*l)*BOMM*FtJ,I 1)) ¢2,85U(Js 1)
A(Je1)=AD/NF
B(Jr1)=RD/NF
3004 ClJrT)=CN/NF
3005 CONTINMUE
3 IF(KEX ,FQRe2a ANNLRU(NP3) (NEL 0o ) UINP3)=U(NP3) =DPDX (NP3)#DX/RU(MP3I)
‘ o e L L L L w===  SOLVE FOR DOWNSTREAM U 1S «ecascreccce=co-
3047 RU(2)=RU(Z2)#U(1)+cU(2)
Do 3048 1=34NP2
Tzle=BU(I)$AU(TeY)
AO(IY=AUCT) /T , ,
3048 BN =(RUIT)#RU(T=1)+CU(I))/T
DO 3050 IDASH=2,MP2
I=N04710ASH
Ut =AUl #UT+1) +BULT)
3050 CONTINUE
_ IF(NEQ.EQelY GO TO 3060
Crearncsccracemrencccacer=res  SOLYE FOR DOWNSTREAM F 1S eccccsmmcemneo.
DO 3320 J=19NPH
BtJe2)=B(Je2)2F (Je1)+C(Je2)
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Fig.| GEOMETRY AND NOMENCLATURE FOR SWIRLING FLOWS.



_151_

-——— SPARROW [40Q]
COCHRAN [28]

‘.\ ® FINITE DIFFERENCE
\ PREDICTIONS

5
AN Re< 2.5x10

‘o\ T-
[ J
ol T

g
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Fig. 3(a) TURBULENT FLOW VELOCITY PROFILES
NEAR A SPINNING DISC.
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Fig. 6(b) AVERAGE HEAT AND MASS TRANSFER FROM
A DISC ROTATING IN STILL AIR.
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Fig. 8(a) LOCAL HEAT TRANSFER FROM A SPINNING DISC IN STILL AIR.
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Fig. IOla) HEAT AND MASS TRANSFER FROM SPINNING 60
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SPINNING CYLINDER.




' ~I73-

8t ® FURUYA [10], Re=6.0Ox IO4
\ Q=20

\ —_——— C=0

\ ¢ k-€

| Ve/rw

O |
0.2 0.4 0.6 0.8
Ufrw

Fig. 13(b) VELOCITY PROFILES IN FLOW PAST
SPINNING CYLINDER.



=5,

MLH

20

o)}

THICKNESS

3
2x x 1O - AXIAL MOMENTUM

3
_(c%x|o)
X o ®» O N

MOMENTUM THICKNESS
O _n

@®

6

%6 x1G - CIRCUMFERENTIAL

R

x/R

Fig.14(a) MOMENTUM THICKNESS DEVELOPMENT FOR
FLOW PAST SPINNING CYLINDER.



3

x10 -AXIAL MOMENTUM

62)(

3

3
e XIO -CIRCUMFERENTIAL

%

THICKNESS
N

o

-175-

———C.=0. C=0.2; k-¢

NN
O mn

®

o)

R
o _® O

o O N

oA

MOMENTUM THICKNESS (C,, X1O)
O ~ =

o

R

X/ R

Fig. [4(b) MOMENTUM THICKNESS DEVELOPMENT FOR
FLOW PAST SPINNING CYLINDER.



<:||<:

-176~

KUZAY(52] Rem L gy
06 ° 17192 279
———— =0
MLH
0.4} =5
0.2+
O | i | ]
02 0.4 0.6 0.8 1.O
r-r
|
o i
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Fig. 38 TURBULENCE ENERGY PROFILES NEAR AN 8O SPINNING CONE.
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Fig.41 VELOCITY PROFILES NEAR AN 8O SPINNING CONE.
w=1429 rpm.
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Fig.43 TURBULANCE ENERGY PROFILES NEAR AN B8O SPINNING CONE.
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-60¢-



50

o U
[n] [ ) A ) ’
40 A vy
(n] o A
o w
o ® A 5
Re=5.88x10
30 s] ° A
4 o ® A
r/Re’? o . ° . A R
] ® A
20 a] [ A
(m] ® A
s] o A
a] ® A
D ® A
IO o ° A
o L] A
(] ® A
O ] | | | | I i |
| 2 3 4 5 2 6 7 8

Fig. 45 RELATIVE

i vé,w’/rw x10

TURBULENCE INTENSITY PROFILES NEAR AN 80 SPINNING CONE.

-0Ic-



-2II-

40} | ® PRESENT DATA,Re=6.95XI0 .
|

\ ——— G=0
\ k-€
C=0.2

30 |\
z
r/Re'2

20 |

50 <

40

30}

r/Re1/2

20 -

O l | —
002 004 006 008 O.10 O.12
Ulrw

Fig.46 VELOCITY PROFILES NEAR AN 8O SPINNING CONE,
w=1428 rpm.
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Fig. 48 TURBULENCE ENERGY PROFILES NEAR AN 80 SPINNING CONE.




50

A ] ® ® u_ve
40} : ° 8 VoW
o A ® —
o Uw
o s . Re=6.95x |0’
. 30 |- o A °
r/ReV2 ' o A °
o A ®
a ®
20+ o A A.
u)
® A
o ° A o
(n] A
JoR = o A
) (w] ®
o ®
o 1 ‘ ] : 1
0.5 .0 : 1.5

2 3
V. vgw,uw/rwzx 1O

Fig.49 SHEAR STRESS PROFILES NEAR AN 80 SPINNING CONE.
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Fig.50 RELATIVE TURBULENCE INTENSITY PROFILES NEAR AN 80 SPINNING CONE.
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