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ABSTRACT

Models of the form X o= AlX) + 2 are considered for time-
n+ : n n+

1

series'{xh} where'{zn} is an impulse sequeice. Some conditions for
stationarity and non-stationarity of such processes are given and it

is shown by simulated realisations that these processes extend the

range of behaviour available with linear autoregressive-moving average
models. Methods for approximating the stationary distribution of a
process are considered and expressions are found by which the exact
moments, joilnt moments and densities of the stationary processes can

be obtained in a wide range of cases. Moments and densities of conditional
distributions useful for prediction are also found. The results of these
methods have been verified by computer simulations and these and other
numerical results are given. The methods found can be extended directly
to deal with multidimensional processes of the above form and this is

discussed briefly.
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1 INTRODUCTION

The models for a discrete—time time—series'{xi} considered in this
work are of the form ‘

X . = ,x(xn, vz, = ... =1,0,1,...) (1.1)

n+l 1

where A(x) is a function of a real variable and where the'series'{zn}
is a sequence of independent and identically distributed random variables.

This is a generalisation of the first-order linear autoregressive model

Xn+1 -u = qSl(Xn - \].1) + Zn+1 n=...~-1,0,1,...), (1.2)

where u = E(Xn), E(Zn) = 0 and |¢l| < 1, and for which
E(Xn+1lxn =) = pu+ ¢l(x - w . : (1.3)

One reason for considering models of the abowve form is that, although
the linear form of (1.3) may be a good approximation for a particular
real system, it is unlikely that‘it should hold exactly everywhere. It
is therefore of interest to be able to treat situations in which this
response is not neéessarily linear and the model (1.1) is one way in
which this can be done: it retains the constant variance, additive
error structure of (1.2).

In the above case functions A(x) which are "nearly linear" would
be of most interest although there is no reason to restrict attention
to such functions. By allowing functions further from linearity, some
interesting types of behaviour can be obtained for realisations of the
process (1.l). Some indication of this behaviour can be derived by
consideration of the corresponding deterministic sequence.{xn} generated
by

X = ,A(Xn) {h =0,1,2,...}. - (1.49)

n+1

For these deterministic sequences the roots of the equations

x=2Ax, x=xA}, x=2rAM{Ax)}, etc.,



play a large role in the behaviour of the sequence. A root x* of the
equation x = A(x) is called stable if the slope of A(x) at x* is strictly
less than one in absolute value, for then the sequence (1.4) starting
from a value in a neighbourhood of x* satisfies xn + x* as n > ®. A root
of x = A(x) at which the slope of A is greater than one is unstable in
that a sequence starting close to, but not exactly at, the root will

tend to move away from it. Assuming that the sequence~{Zﬁ} appearing

in (1.1) can take any real value but with a distribution concentrated

in a region about zero, it is apparent that the behaviour of the process
'{Xn} can be described by saying that it remains in a region close to a
stable root of the equation x = A(x) until a large enough value of the
input sequence occurs when the process shifts to a iocation about a new
stable root. However there is also the possibility of stable periodic
cycles for the deterministic process and these would also have their
analogues for the process (1.1). The types of behaviour that can be
obtained from a deterministic process of the form (l.4) are very complex
as has been described by May (1976), however in simple cases a general
description of the behaviour of the stochastic process (1.1) can be
~given as above. There need not be a root of the equation x = A(x) (or
of x = X{A(x)}, etc.) in a region for that region to be given fairly
large weight in the marginal distribution of the stochastic process:

it is enough that the line y': A(x) should be close to the line y = x

for then, once that region is reached, the next few values of the
process will also be in that region since Xn

probability.

1 = A(Xn) = Xn with large
Some computer realisations of particular processes of the form (1.1)
have been obtained and graphical representations of these are given in
Chapter 6. Here the sequences are relatively short (151 values) but
some of the above type of behaviour can be observed. More complicated
types of behaviour would require longer realisations to be discernable.
Figure 1.1 gives a realisation of the process (1.1) for which the distri-
bution of the input sequence is normal with zero mean and standard

deviation one half, and for which

: -3.0 {x < -3.5 oxr x > 3.5),
A x) =
x + 0.5 (-3.5 < x% < 3.5).
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Figure 1.1: Realisation of autoregressive process with

' . X 1
Ax) = x + 0.5 (-3.5 < x £ 3.5), = -3.0 (otherwise), Z "~ N(O,7).



It is fairly clear that the model (1.1) can give rise to processes
which could not be modelled by the more usual linear autoregressive-
moving average processes: this could be done only as far as second-
order moment properties are concerned. Therefore, at the very least,
these processes give a further wide class of models which could be
fitted to approximate the behaviour of some real data series.

A process of the form (1.1) will be called a (non-linear} auto-
regressive process and the function A(x) will be called the auto-
regression function of the process. It is not assumed that the distri-
bution of'{Zn} is centred at zero. BAn associated process which may
sometimes be more useful is the series.{Yn} given by Yn =_A(Xn) for

which the following generating egquation holds

Yn+l = )\(Yn + Zn+l) n=...-1,0,1,...), (1-'5)

and Xl =Y 2 The pr0cesses'{xn},'{25} are equivalent in that
the distributional properties of one can be found from the other.

An example of a model of the form (1.5) has been given by Feller
(1971, p.208). One version of this is that individual pieces of planking
are cut in such a way that the angle between two supposedly parallel end
faces is a random variable 0, independently and identically distributed
for each plank. Suppose that in forming a length of planking the
(n + 1) 'st piece of planking is butted on to the preceding piece in such

a way that its contribution, ien ; to the angle between the first and

+1
last faces of the total length of planking is of opposite sign to that
of the total accumulated angle. If the absolute value of this angle is

wn after n planks, then wl = lell and

Yoep = (¥ - Ienﬂll (n=1,2,3,...) ,
which is comparable with (1.5) with 241 = —[en+1[. Here the equivalent
form (1.1) of the process is

%o = Ix D= lo (n=1,2,3...)

where the segquence {Xn} gives the amount of under or over—correction at

each stage. Feller gives the stationary distribution of the process.
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A further example i; given by a single server queue with Poisson
arrivals and general service distribution. Let Xn be the number of
customers present immediately following the completion of service of the
n'th customer and let Zn be the number 0f customers arriving during the

service of the n'th customer, then with

{; 1 (x > 0)
L o (x < 0),

xn - U(Xn) + Zn+l (n =0,1,2,...)

U(x)

Xn+l
(Cox and Miller, 1965, pp-88,115). Another example in the same type of
situation is given by the waiting time of a customer (Cox and Miller,
1965, p.64; Tweedie, 1975a, §7).
The model (1.1) can be generalised in an obvious way for multi-
dimensibnal processes and special cases of these include non-linear
autoregressions with higher orders of dependence and alsc non-linear

"moving-average" models.
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2 STATIONARITY OF AUTOREGRESSIVE PROCESSES

2.1 Autoregresslive processes as Markov Processes

In this chapter conditions are investigated for the stationarity of
the non-linear autoregressive processes generated by models of the form

X = AMx) + 3, n=..., -1,0,1,...} (2.1.1)

n+l 1

where, here and throughout, the input series.{zh} is a sequence of
independent and identically distributed random variables with common
distribution function Fz(z). The function A(x) is assumed fixed, real
and measurable, so that A(X) 1s a well-defined random varlable for any
random variable X. In model building applications only continuous or
sectionally continuous functions would normally be used.

In order to specify more exactly what 1s required of a model of
the type (2.1.1) for it to represent a stationary (doubly infinite)
seguence {Xn; ~w < n < «}, conslder a process of the same structure as
(2.1.1)} but starting at a finite time, say time zero, in some fixed ox

random state: that is a process'{Un; n > 0} defined by

U, = MU+ 2z,

a1 (n =0,1,2,...) (2.1.2)

1
with U, having some fixed distribution and'{Zn} having the same properties
as before together with independence of Uo. The sequence-{Uh} forms a

Markov process on the real line having stationary transition probabilities

P(y,n) = Pr[Un+

16'-A lUn = y] (n =0,1,2,...)

which are given by (2.1.2), and an initial distribution given by that of
UO. For these transition probabilities there may exist an invariant
probability measure (-} satisfying

n(a) = f mw(ay)B(y,n). (2.1.3)

If Sﬁch.an invariant measure exists then the probability structure of the
singly infinite process (2.1.2) may be extended to form a well-defined
probability measure for the doubly infinite process given by (2.1.1)

(Roserblatt, 1971, p.73). Such a process is then a stationary Markov
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process. There may be more than one prbbability measure satisfying (2.1.3)
and each distinct meaSuré determines a different marginal distribution for
the process (2.1.1). Thus the transition probability function P(y,A) and
the particular invariant measure 7(A} together determine a process for
which (2.1.1) is a representation.

_The usual definition of stationarity assumes the existence of each
of the joint distribution functions F, i, i of (xi X reX. )
k = 1,2,3,...), and requires that they satisfy the time invarian%e

property

F, . . = P, R th = 0,%1,%2,...; k=1,2,3,...).
Llrlz,....lk 11+h,....1k+h )

(2.1.4)

In particular this requires the existence of a distribution function Fx

such that Fi = FX for all i, and since

F & = ) F,(x = A(w))dF_(u)

from the form of the process, FX must satisfy
= - ) ' '
F (%) [ Fytx = A(w)ar, () (2.1.5)

which is equivalent to (2.1.3) with Fx(x) =n[{~»,x)]. When an invariant
measure T(-) exists, the corresponding distribution function FX will be
called a stationary or eguilibrium distribution function. The existence
of an invariant measure implies stationarity in the sense (2.1.4) with
probabilities of events given for k > 1 and any n by

Pr[Xn €'AO,X£+1IE Al,...?.,xn¥k€§ AkJ

= £ m(ax)) f P(xo,dxl).£ Py @) oeen | POG_oedi o)
o Ay 2 Bp-1

P (}ﬁ{—l'Ak) .

If there is no probability measure satisfying (2.1.3) there can be no
stationary distribution satisfying (2.1.5) and so there can be no
statlonary process generated by (2.1.1).

There are two natural (and equivalent) Markov Processes corresponding

-

ra the Markov progcess {Xpr

o

"to =ach autoregrassive process (2.1.1}. These
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itself, and the process.{Yn} where

¥ o= Ax)  (n=..., -L,0,1,...)

and hence

Y =A(Yn+ Zn+) (,'n= es ey —l,O,l,..?).

n+l 1

For the process'{xn} the transition prcobabilities are given by

P | =
LR Prix , € A lx ==

1

j dFZ(z) = X dFZ(z) . - (2.1.6)
z+A (x)eA zeA-2 (x)

The transition probabilities £for the process'{Yn} are

PY(y,A) Pr[Yn+l€ A lYn = y]

aF,(z) = ar, (z) . (2.1.7)

Xl(y+z)eA j‘zel—l(A)ﬁy 2

Here for sets A and real numbers x,
A-x = {x':x+tx'€B’}, A ) = {x':A(x") € A},

It is clear that the state space of the proéess-{Yn} may be reduced to
the range of A(x) on the real line if this is finite.‘ Also if a
stationary distribution exists for either of the processes‘{xn} or.{Yn}
then there is a corresponding stationary distribution for the other.
Since the Markov processes on the real line include as a specilal class
the Markov chains with denumerable state spaces, it 1s clear that such
phenomena as recurrence, periodicity and closed sets of states should
have their analogues in the wider class. These are discussed in section
2.6 where some conditions for stationarity of the processes are also
discussed.

If it can be shown that the sequence'{Uh}, given by the finite
starting time process (2.1.2), converges properly in distribution (Feller,
1971, p.248) for some initial dist;ibution of UO, then the limit distri-
bution is a stationary distribution. When the process concerned is not

periodic the convergence in distrxibution of {U ! is a fairly natural
. n :



14

requirement for stationarity: if the distributions of the sequence
converge to an improper distribution this corresponds to a positive
probability of "drifting off to infinity". Using this type of criterion
the stationarity of linear first-order autoregressive processes will be
investigated in section 2.2. It will be shown that, even when the
"slope" parameter is strictly less than one in absolute value, not all
linear processes are stationary. In section 2.4 the non-stationarity
of certain non-linear processes will be demonstrated: this will be done
by showing directly that, for the processes concerned, there is a non-
zero probability of an event which has a natural interpretation as a
"drift to infinity”. This method can be extended to investigate more
closely the rate of drift of non-stationary processes: this is done in
section 2.5.

Finally it may be remarked that (2.1.1) is not in general a "Markov
. process in the wide sense" (Doob, 1953, pp.90,233) and hénce the corre-
lations of (Xn'xn+k) in a stationary process will not necessarily :

decrease geometrically with k. This is exemplified in section 2.3.

2.2 Linear autoregressive processes

2.2.1 In this section consideration is given to processes generated by

X = bX + 2
n n

n+l (n = eeey —l'o,l,---.) (2.2.1)

+1
where it is not assumed that the independent random variables Zn are
centred at zero. To investigate the possible stationarity of such a
process the corresponding finite starting time process (2.1.2) is set up,
i.e.,

U = bU_ + Z
n n

n+l

+1 (n=0,1,2,...). | (2.2.2)

By repeated substitution this expression is equivalent to

U = Z + bZ
n n

+ . +b" s s N mo=1,2,3,...), (2.2.3)
n 1 (0]

~1

and the marginal distributions of these quantities are the same, by a

simple relabelling, as those of



15

It is required to know under what circumstances the sequence of random
variables‘{Un*; n z_i}, end hence.{Un; n i l}, convergesvin distribution.
The sequence {Sn} is defined by
S = 8 (b)) = Z +DbZ + ... +bn"lz n=1,2,3,...). (2.2.4)
n n 1 2 n :
Clearly ifl{S } does not converge in distribution then neither does {Un*},
since b" Uo and S are independent However if {S } does converge in
distribution and lb[ < 1 then {U *} also converges in distribution since
b" Uo * O in distribution for any random variable Uo. The quantities
Sn(b) are the partial sums of the random power series jzl bJ—lZJ, and
in particular this is a random power series with independent and identically
distributed coefficients. Therefore (Kawata, 1972, p.625; Lukacs, 1975,
p.127) the sequence Sn(b) converges almost surely, and hence in distri-
bution, only for

(1) lbl < 1 if log x dF!ZI(x) < @

(ii) b =0 if

Y8 H— 8

log x dFlZl(x) = @,

Here F denotes the distribution of IZ! when 2 has the distribution Fy

2|
and it is assumed that Zn is not trivially zero with probability 1. Thus
there are input distributions for which'{Un} does not converge in distri-

bution for O < [bl < 1. For example let F, have a density fz,

£y, (z) =‘{f-. -0 | (Jz] < e,

1
2 (IZI ._>_.e)'
2|z| (1og|z|)

then

©dx
{ log x dFl l(X) = % 1o

[ “*-8.

A further example is given by Lukacs (1975, p.129). An additional result
is that, with probability 1, jil bj_lzj cannot be continued outside its
circle of convergence to form an analytic function of b (Lukacs, 1975,
p-130; Kawata, 1972, p.629). Hence there is no natural way of defining
an autoregressive process with parameter b (}b[ > 1) by extension from

the case Ib[ < 1.
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2.2.2 The stationary distribution of a linear process is usually most
easily found in texms of its characteristic function ¢X(s). It ¢Z(s)

is the characteristic function of the input distribution;

9y (s) ¢ZCS)¢X(bsL

© ,

I o¢,m"%) | (2.2.5)
n=0
where (Lukacs, 1970, p.58) the convergence, uniform in every‘fihite
_interval of s, of the infinite product is both necessary and sufficient

for the convergence in distribution of Sn of (2.2.4). Except in special
cases it would usually be impossible to invert the stationary characteristic
function (2.2.5) to obtain an explicit form for the stationary distribution.
It may however be noted that if ¢Z(s) corresponds to a stable distribution
then ¢X(s) is also a stable distribution with the same exponent and whose
other parameters may be obtained from infinite summations corresponding to
(2.2.5). The general form for the characteristic function of a stable

distribution (Lukacs, 1970, p.136) is given by
’ N . ' o . t :
log ¢Z(t) = iat - cltl {1+ i3 TET~w(ltl,a)} (c :_0;[8[ <1 0<ax<2),

tan 32 (o # 1),

where w(lt],d) =
%109 lt] (@ =1).

The stationary characteristic function is then given, by (2.2.5), as

where
a - - )
1-b (.0-75 1)!
a, = . (2.2.6)
a 28¢c b log bl ‘
1-b  w 2 (@ =11,
1-b
: o i
e g o g—azIl® @27

X 1= !b[u ' X 1 - sgn(b) !b}a
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For the normal distribution (d = 2; w([t],d) = 0) with mean a and
variance o2, these give the well known result that the stationary

| distribution is normal with mean a/(1 -~ b) and variance 02/(1 -vbz).

When the input distribution is a Cauchy distribution with density

£ (z) = = )

z rlz - a)2 + &2

]

the stationary distribution is of the same form with a replaced by
la/(l - b) and ¢ by c/ (1 - ]b]f; This corresponds to the case o = 1,
B = O. There is one further combination of parameters for which the
corresponéing stationary distribution can be written in terms of
elementary functions. This is the case d =1/2, B8 = -1

log ¢,(t) = iat - cltll/2{1 - i T{h&. The random variable Z having
this characteristic function has the diétribution of 2c2(w + a) where

W has the density

1 W—3/2

' 1
exp{- 5=} w > 0),
2/7 e

fW(W) =
o] (w < 0),

(Lukacs, 1970, p.143). From formulae (2.2.5), (2.2.7) it can be seen
that when O < b < 1 the stationary distribution is of the same form

with the centering parameter a replaced by a/(1l - b) and the scaling
b1/2)2

parameter c2 replaced by c2/(1 - . However if b is negative, the

parameter BX of the stationary distribution is

1/2

g = L= el
X 1+]1o|l/2

so that the distribution is not of the above form. v

Apart from the stable families of distributions, certain properties
of the limiting distribution of'{Un} generated by (2.2.2) have been found
for one further case, namely that when the input sequence is two-valued
with each value having equal probability. The properties of such
processes are the same, apart from a shift and change of scale, as those
of the process with input sequence taking values +1, -1, each with a

probability of one half. That is
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It

o

(&
=

+

N
=

Un+1 (n = .011121-.-})"

Pr(zi 1}y = _Pr(Zi =-=-1) = 1/2.

Since the effect of the term prO in (2.2.3) vanishes, as n > <,
and b may be replaced by Ib|, the limiting distribution of'{ﬁn} is a
particular case of a symmetric Bernoulli convolution (Lukacs, 1970,
p.64; Wintner, 1947, §863) and is one for which the followingvprOPerties

" 0of the limiting distribution Fx are known:

(a) Fy is either purely singular or purely absolutely continuous

when O < |b| < 1.

(b) Fy is purely singular when O < ]bl < %-.
(c) when lb{ = %y Fx is the uniform distribution on (-2,2).
(d) when 1 > [b! > %- FX may be either purely singular or purely

absolutely continuous, examples being

(1) bl = 2—]'/k for some integer k > 1, when F, is absolutel
. - X Y
continuous,
(ii)» lbl = %{/3 -1) > %y when FX is purely singular.

It is ther=fore clear that, in the general non-linear case, when the
input distribution has a discrete component the stationary distribution,
if any, may have a singular component. However, if the input distribution
is absolutely continuous then, since the stationary distribution must be
the convolution of the input distribution with another, it follows that
the stationary distribution is itseif absolutely continuous (Lukacs, 1970,
p.38).

(1)

of the linear
(1)
2

Suppose that the stationary distributions Fy

processes'{xn(l)} (i =1,...,k) with input distributions F are known,

where the processes are generated by

) o gy By W)

i+l n il n=...-101... ; i=1,... k)-

Then it is clear from (2.2.5) that the stationary distribution of the
linear process (with the same parameter b} with an input distribution

. . . . i
which is a convolution of distributions amongst the FZ( )
corresponding convolution of the Fx(l)‘s. For example, let the input

is just the

distribution have density
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! 5 ‘ - 2
[exp{ -~ == (x - 1)} + exp{ - —= x + 1)°)]
2/2ma 20° : 20°

(which corresponds to a convolution of a discrete and a normal distribution)

and let the process have parameter b = 1/2, then the stationary distribution

is that of X = 8 + T where S is N (O, %—02) and T is uniform on (-2,2).
Thus the stationary density is
1 2 2 1, 2-x —2-x
—— [empl- =5 x - )ty = 7 {2 - a5}
4v2ma* -2 20+ g

where g% = 5::0 and ¢(-) is the standard normal distribution function.
3

2.2.3 Even though the stationary distribution itself cannot, in general,
be calculated, its moments are available directly from (2.2.5). Thus, if
Km,x and Km’Z are the cumulants of order m of the stationary and input
distributions, they are related by

Lol K
mn

I (b k ) =

m,X =0 m,%

m,Zz

K

(m > 1).
1-b"
Standardising the cumulants of the two series by their respective.variances
leads to the conclusion that the m'th order (m > 3) standardised cumulant
of‘{xn}, when generated by (2.2.1), is a factor of that of the sequence
-{Zn}. This factor is

1 - bz)m/z
lm(b) m
1 -b
which approaches zero as b nears 1. Also 1m(b) >0 asm=+ > (b # 0),
while (1m(b))l/m > (1 - bz)l/2 as m - =, These formulae. indicate that

the moments of the stationary distribution, when they exist, approach
those of a normal distribution as b> 1 -~ 0 or b » -1 + Q. An alternative
route to the same result is to consider a standardised version of the
sequence (2.2.2) or (2.2.3): for example, when b > 0 let

n,~-1

W = (1+b+ ... +Db") U.
n n

Then, for b # 1, W ¥‘l—:—§———
Doy -t

= = U
Un and when b 1, Wn a+1 ’n

n .
{z z, + UO}. Under the usual conditions the central limit
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theorem shows that when b = 1, W converges to a normal distribution,
and it can also be shown that W, converges in distribution for b > O.
If U, has the distribution F, then W= Wh(b) has the same distribution
as Wh(b—l). The convergence of W for b > 1 indicates that the non-
convergence of the distributions of Un is due to their increasing

dispersion since

n+l
b - 1
- >
b -1 Wﬁ b 2
U =
n
(n + 1) Wn b =1).

This means that the distribution functions converge to a constant
function - an improper distribution. )
Mallows (1967) considers the closeness to normality of the distribu-~

tions of linear processes by a different approach, and also considers

joint distributions.

2.3 Non-linear processes equivalent to Markov Chains

Besides the linear processes there is a further class of auto-
regressive processes for which the properties are easily found. If the
autoregression function appearing in (2.1.1) takes on only a finite
number of different values, then the process is equivalent to a Markov

Chain with a finite number of states. ILet
L =)\(X ) (n= 3 _l'O’l,..-)
n n

and suppose that A(x) takes the values’xl,xz, ...,AN on the sets
ByrByr eeey AN' where these form a partition of the real line. Then the
probabilistic development of the sequence'{Lh} is given by the (N x N)

matrix P whose elements Pi. are given by

Pij = Pr[Ln+l ==»)\j Ln =-AiJ

1

Prli; + 2 1€ AjJ = Pr_[)\.(}\i tZ,
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The properties of {Xn} then follow from the relation
= L + Z (n= LIRS —l'O'l;o-o)_.

It is well known (Cox and Miller, 1965, p.80) that a stationary distribution
for {Ln} is given by Pr[Ln = )\i] =T, where T = (Tfl,-.-."TN) ' is any

solution of
T T P —_ T ] ’

then also T, = Pr(X € A;1. A stationary distribution of {Xn} is then
given by the corresponding mixture
N
= I m - '
Fx(x) iFz(x _ }\i) '

i=1

and, if the input distribution has a density fZ' the stationary density is

N
£.0 = I mE (x4,
i=1
. k . . . . (k)
The matrix P is the k-step transition matrix with elements P:Lj
such that
) - _ {4 =
Pij = Pr[Ln-l-k . Aj Ln = i] (i,5=1,...,N).

Hence a stationary joint distribution of (Ln,Ln +k) is given by

Prin, = Ay Ly = A1 o= mE

The joint distribution of (X, X _,.) can also be found: assuming the
density functions exist, the joint density fk(‘,') of (Xn, Xn+k) is given
by

£,y - A E () (xe A k=11,
fk(XIY)
(k-1)

([ e B

£,y ~ >\j)Pij x ) (xe B k2> 2).

j=1



22

Define the conditional moments

[
1l

elx | x €31 = BIx CRIEER

g x£, (x) dx (L=1,.00 M), (2.3.1)
XGEAi

then the moments of the stationary process'{xn} are given by

E(Xn) = uZ + I vixi = I ﬂigi ' . (2.3.2)

EXpXney) = Mgk M8y DA TE " 233
o, {k-1) L

E(XX ) = WImE +IL ;\jpij mE (k2 2). (2.3.4)

For example, let

A o e<x),

Ax) =

5 (x 3_x0).

Then the transition matrix between the levels Al, Ay is

Folxy = A4} 1 -Fylxy = 2y)

| Fy(xy = A,) 1- Fz(xo - A,)

and the stationary distribution of the process'{Ln} is given by

m = FZ(XO f>A2) v n, =1-7
1 1 - FZ(XO—Al) + FZ(xO—A2)

The stationary distribution of the'{xn} process is then

17770 "2°
1 - FZ (xo—Al) + .Fz (xo—Az)

FZ(X—K JE_ (X —=A)) + FZ(X—XZ){l‘_ Fz(xofkl)}

Fy (x) =

and the moments and joint moments are given by the above formulae. When
the input distribution is normal the conditional moments g; may be found

explicitly by a simple substitution. As a more specific example let
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Fy (x) = ®(x/0) where ®(-) is the standard normal distribution function

and let x, = 0, Al = fhzi A, > 0, so that the autoregression function is
odd (about zero). Then wl = “2 = 1/2 and
. X + AZ X - A
Fx(x) = —{‘I’( —) + ‘I’C“‘—'—")}
£, = EIx_|x > o]
\ 2
X
e . 1 - 1
- Legt-2200, wlh -3,
2m (o}
El = _Ez hd
It follows that E(X ) = E(X 3) =0, var{(X ) = 02 + A 2 and that
4 22 4" 2

E(Xn4) = 30" + 6A,70" + A,” . Hence E(X 7) - B{Var(xn)}z = fzkz4-
For the joint moments, E(ann+l) = AZEZ’ and, using the symmetry of the

transition matrix P, which is

2N, /e) 1 - 20 fe)

1- o (A, /) 2\, o)

- and of its powers Pk, E(xn n+k) = A E {P(k -1 zik 1)} By definition,.
- and using the symmetry,
(k) k) _ o (k-1) p =11, (k -1, (k-1)
Paa TP = (B TPy b Puy TRyl = (B TPy v Py Fyy)
(k-1) _ (k 1) _ oo k-1) | (k-1)
Pz Y@y Pyt = By Pa !
-(2@(12/53— 1) .
It then follows that o
EGX X ) = Mg (2006 0T = 1,2,3,..0) (2.3.5)
n*n+k B A-Aa .

Thus the correlations PorPyrPyr =o- (in the usual notation) decrease
_geometrically from pl onwards.
In the general case it can be seen from (2.3.2)-(2.3.4) by making a

decomposition of P in terms of its eigenvalues (using a Jordan canonical
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form, see Cox and Miller (1965}, p.121), that the covariances can be
expressed as -.a finite sum of terms involving powers of the eigenvalues
of P. If P is first reduced to the transition matrix between the states
. given positive probability by the stationary distribution T and if the
‘chain on this reduced state space iéi:ggcgé;igéic then the covariances,
cov(xn, Xn+k)’ can be written as the sum of a number of terms decreasing
~geometrically in absolute value to zero (with k) at different rates. If
the chain is periodic then the covariances do not converge to zero for
large k, but approach values depending on the residue of k on division

by the period of the chain.

2.4 Nonstationarity of non-linear processes

2.4.1 In this section the possible nonstationarity of non-linear auto-
regressive processes is investigated. For the process under consideration

X =A(_Xn) +Zn+ (n=0'-' "'1,0,1,--o),

n+1 1

the corresponding finite starting time process

4] = A(U) + 2
' n n

el n=0,1,2,...) .. (2.4.1)

+1
is set up and it is shown that, under conditions on A(x) and Fz(z), events

of the type'{UO >0, U >1, U2 > 2, U3 > 3, ceenen } have a non~-zero

1
probability. It is natural to interpret this event as the process

"drifting to infinity". In section 2.5 the methods developed here are
extended to study more closely the "rate of drift to infinity" of non-

stationary processes.

2.4.2 Define »A(+)(x) = inf A(y) and, with h > O, set
¥>x
s, = Flrldh -2 (nh) } h=...., -1,0,1,...),

where the usual conventions apply if A(y)} is not bounded below for y > x.
It will be shown that the process {U } drifts off to infinity in the

above natural sense under the condition that

L s converges. o (2.4.2)
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Suppose this condition holds. Then there is an integer kO' which may

be negative, such that

F,((c+1)h - A

= < > - .
(+)(kh)) Sy 1 for all k f-kO (2

It will be shown that
pr{u_ > (c tnth; n = 0,1,2,.....} > 0 if pi:{uo >kl >0 . | (2.

Let U" = (UgsU ,e-e- U ) (n > 0) and let P_(-) be the probability

measure fgr u”. Define the events Cn =~{Uj > (k0+j)h; j =0,1,.... n}t

and C = A:B Cn = {Uj > (ko+j)h; j = 0,1,2,i..}. Then, . since Cn+l§; c

pf{uj > (kg*idh; 3 = 0,1,2,..} = lim Pr(c ). (2.

ne

Denote Pr(cn) by P, - Then, for n > 1,

4.3)

4.4)

r

4.5)

4.6)

Pn = Pr(Cn) = Pr{Un > (k0+n)h l Cn—l}
= [ Pr{u > k+mh | "= (@™, (.
n O n-1
c
n-1
Because of the Markov structure of the process
Pr{iu > (k 4n}h | U “l un—l} = pr{U > (k +n)h| U =u_ .}
n 0 n 0 n-1 n-1
= priz > (kytndh = Afu )}
2 Priz > (ki +nlh —__A(+){(Jco+n—l)h}]
for woq > (kO + n-1)h
= 1-35 .
k0+n—1
Substituting this result into (2.4.6) gives
n-1 .
p, > (- Sk0+n-l) .Cf CR_f@ ) = Q- Sko+n-1’Pn-1 n > 1),

n-1
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and therefore

n—1
P . 2p, T Q-5 ..} n>1) . _ (2.4.7)

3=0 k0+3

By (2.4.3), 0 < 1 - 21 ( 2 0) so that the sequence of products

S .
k +] o
in (2.4.7) is non-zero and decreasing. Since the sequence {pn} converges
to the limit (2.4.5),

o«

' > 3 = v -
Pr{uj e +3n, 3 0,1,2,...1} > py ji[o (1 Sko+j

) . (2.4.8)

This infinite product either converges to a positive number or else it
d%verges to zero and it converges or diverges according to whether

L Sy +5 converges or diverges (Titchmarsh, 1939, p.14)} Therefore,

ﬂzgausg of the assumption (2.4.2), the right hand side of ineguality
(2.4.8) is strictly positive if Py = Pr(Uo > koh) > 0.

It is clear that the same arguments apply to processes becoming
=)
A

increasingly large and negative. Defining (x) = sup A{y) and setting

Y

Pr(z > -~ (n+Lh = A ) (=mn))

rr
It

1-Fl-tbn =2 em)) = 1,010,000

(=24

it may be concluded that, if nEO 0

such that the'event'{Un 5_—(20+n)h; n = 0,1,2,.}} has positive probability

t converges, there is an integer 2

whenever Pt{UO < - zoh} > 0. The number 20, which may be negative is
such that ' »

tp. +4 <1l for j __>_o . (2.4.9)
O .
Processes whose realisations have increasing absolute value with
alternating signs can also be dealt with in a similar manner. Let

Ay ) = infAly) and A (%) = suph (y) and define
y<x Y>x

%n

F{(nt1)h - A _, (-nh)} (n=.... -1,0,1,...) ,

)

i

H
il

1 - F{-(n+l)h - A (mh)} = .... =1,0,1,...) .
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o

i Z
Then if qn and n=0

Uy S (k +2j+L)h: § = 0,1,...} has positive probability if
Pr(UO > koh) > 0. Here k, is any number such that

r both converge, the event {U > (ko + 24)h,
3

T q s <1, r \ <1 for j>0. ' {2.4.10)
: +2 +25+ - "
kyt4d ko 2q 1
<
The condition that EO q, s nEo r should both converge seems somewhat

strong since this imposes the same type of restrictions on the function
- A(x) at both extremes of the real line. It seems reasonable that a
similar alternating drift to infinity should hold if A(x) = —-x at one
extreme with suitable conditions at the other.
The above arguments do not depend essentially on the additive-érror
structure of the process but they also hold for a wider class of

Markovian processes. Thus the conclusion (2.4.4) holds with

s. = sup Pr{U

< (ntl)h U = x},
n x>nh n

n+l

and similar definitions may be made to deal with the other types of drift.

2.4.3 It has been shown that there is a positive probability of the
process {2. 4 1) drifting to lnflnlty ln one or more of the ways described

% Z E + v .
when the corresponding series n=0 n =0 tn or - (qn rn) converge
For ease of consideration the four types of ternlnmy be written in a
common form. Let G{(x) be a nonnegative decreasing function, not

~ identically zero, such that G(x) + O as x > «. ‘hen

I
I

(1) s G{u(nh) - (n+l)h} where G(x) = F,(=x), n(x) =i, (&),

n (+)
(ii) t = G{p(nh) = (n+l)h} where G(x) =1 - F,(x), ulx) = -2 ) {(-x),
(iii) q = G{p(nh) - (n+l)h} where G(x) = FZ(—X), p(x) = 1(?)(*3),
(iv) r, = G{u(nh) - (n+l)h} where G(x) = 1 - F, (x), px) = —Kc+)(x) .

In each case G(x) is one of the tails of the input distribution function.
Because of this common form only one case need be treated and this will
be the first. ‘

It is clear that, for the series an to converge, the condition

s, = G\ )(nh) - (n+¥l)h) > 0 as n >«
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must hold. For this A(x) - x must be bounded below as x * ®. Exact
conditions for the convergence of the series depend on both the lower

tail of’FZ and the behaviour of A(x) as x + ». Conditions on A (x)

to ensure the convergence of Xsn under certain assumptions about Fy,

will now be given. Under these conditions there is a drift to infinity
as defined by (2.4.4). ‘

Suppose that F, has a finite lower tail so that Fz(z) =0 (z <-L),

FZ(z) >0 (z > -L). Then G(x) = 0 for x > L, and hence sn O whenever

Ay @) - ()b > L. | €2.4.11)

Thus a sufficient condition for the convergence of the series is that

this should hold for all large enough n. Convergence implies that

A > L (FZ(“L) >0) ,
lim inf{)\(+) (nh) - (n+l)h}

- > L (F,-L) = 0).

A sufficient condition for the convergence of ZSn for some h > O, and
hence for the result (2.4.4) to hold for some h, is that for some

€ > O and some xo,
AX) 2L +e+x x> x)) .
Now suppose that FZ has a power-1like lower tail so that

Gx) < xS (2.4.12)

for some ¢,§ > O and for large enough x. Then s §_§{h

-4
- +1 -
2y (nh) - (n+1)h}
Let dn = A(+)(nh) - (n+1l)h, then an converges if Zdn does. By

selecting suitable series Iw_ which are known to converge and taking

n
dn—s < W, or equivalently d W 1/6, bounds on the behaviour of A(x)

to ensure convergence of Esn can be found. Thus taking
- (1+g)
an

w =

n (.E > O) . (2.4.13)

leads to the bound
1l+e

AX) > x + ax S + h (2,4.14)
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which when satisfied for.-large enough x for some h,a,€ > O ensures the
positive probability of a drift to infinity for some initial distribution.
Better bounds with the same property can be obtained from other series

an. Thus the convergent series

z 2 (a,e > 0) - (2.4.15)
1+€ .
n(log n) '
leads to the bound
1+e

8 §
4 (Log x) + h.

Ax) > x + ax

If now G(x) < ¢ exb{—éxq} for large enough x for some c,8,q > O,

then proceeding in the same way and bounding Zexp{—édnq} by suitable
convergent series an gives bounds of the fomrm

1 1/q
a > { 3 log wn} .

The series given by (2.4.13) leads to the bound

/4

A(®) > x + b(log x - k)l +h : {2.4.16)

for large enough x for some k and some b > 5“l/q.

Generally the longer the lower tail of the input distribution is,
the more rapidly the function A(x) has to increase as x > ® to ensure’
the property (2.4.4) by the convergence of an. Thus if it is only
assumed that G(x) < c(log x)-l for large enough x, the above methods
proauce the bound dn > expl(c wn—l). With W of the form (2.4.13) this

~gives
A®) 2 x + exp{axl+s} + h

for some a > O, while a weaker bound derived from f{2.4. 15) is
A (x) > x + exp{ax(log x)l+8} +h

for large enough x for some a,e,h > O.
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2.4.4 In section 2.4.2, kO and 20 are any numbers satisfying the
appropriate condition (2.4.3), (2.4.9) or (2.4.10). ‘It is

possible that the condition will be satisfied for all values of these
numbers. For instance, when A(x) is bounded below on every finite range
(so that A(+)(x) > =) and F, has an infinite upper tail (i.e.

Fy(z) < 1 for all finite z}, s < 1 for all positive and negative k.

It follows that in this case the process (2.4.1) drifts, with positive
probability, to plus infinity for every distribution of the initial
value Ub whenever Is convergesQ Similérly for the other types of

v k
drift there are wide classes of processes for which the drift property

holds for any distribution of UO' The same conclusions follow if, for
a fixed ko satisfying (2.4.3), some integer p and all distributions
of UO'
> > . ' 2.4.17
Pr[Up k,hl > 0 | ( 17

Thus for certain processes it can be shown that for no distribution
of UO does the sequence-{Un}, given by (2.4.1), converge in distribution
and hence that there can be no stationary distribution. However in many
cases it may only be possible to show this for a restricted class of
initial distribution - typically those giving positive weight to suitable
extreme values of U,. Indeed it may be the case that the process‘{Un}
converges in distribution for certain initial distributions while

drifting to infinity for others. For example consider a process with

2x (=] > 2)
A

I

o] tx] <2

and with {Zi} taking only values in [-1,1]. Then, if the initial
distribution is such that U0 takes only values in I-2;2i: G, =2,
n=1,2,3,...), so that {Un} converges trivially in distribution.
However if the initial distribution gives positive probability to the
complement of [~2,2], then with exactly that probability the sequence
'{Un} diverges to iw. '
It has been shown in Section 2.2 that there cannot be a stationary

process associated with the linear autoregression function Alx) = bx,

[b| > 1, for any input distribution which is not concentrated entirely at
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zero. With some restrictions on the input distributions the same
conclusion holds for proéesses with polynomial-like autoregression
functions. By reversing the arguments of section 2.4.3 and seeking
those functions G for which

o

I G\
n=0

= (ntl)h) < =
t+)tnh) ( Yh)
for a particular autoregression function, it may be shown that a process

with an autoregression function satisfying

A(x) Z.qu (x > X4 Y > 05 q > 1) (2.4.18)
has a drift to infinity as defined by (2.4.4) if the lower tail of the
input distribution satisfies, for some xl,c,G > 0, the bound

1+8

_=)
G{x) = F,{-x) <cx 4 (x > xl) , (2.4.19)
or a slightly weaker bound
1+6.
Gx) < ¢ x'l/q(log %)~ 9 x> ox) (2.4.20)

Therefore, if this bound is satisfied and if either (2.4.17)Y holds or if

s, = G

x (nh) - (n+l)h) < 1 for all k,

(+)
there is no stationary process with an autoregression function satisfying
(2.4.18). Since the other types of drift to infinity may be dealt with
in a similar way it may be concluded thaﬁ, for an input distribution
havingvinfinite tails with exponential-like behaviour, i.e. if for

some X

(o]

0 < FZ(-x), 1 - FZ(x) < ce & x > Xy €. > 0) {(2.4.21)

then the autoregressive process (2.1.1)} is nonstationary if any of the

following hold for some x

17 Yr Yy > O and some q,ql > 1:
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1) At 2yxt &> ox)),
(11) A < —y|x|T (x< ~x,)

q
@iH) AG) 2 v[x|T < -x) andaG) <oy lxl TG x) .
Clearly the same conclusion holds with a slightly weaker bound than
(2.4.21) and it also holds with q,q; restricted to g,q; 2 4, > 1 and

the bound on the tails of the distribution replaced by a power-like
bound similar to (2.4.19), (2.4.20).

2.5 Rates of Drift to Infinity

The bounds obtained in section 2.4.3 are conditions for the process
to have a drift to infinity with the property that

Pr{Uo > kghy Uy > (kg + Db, Uy > (kg + 2)h,...-.} > o‘
for some initial distribution. A drift to infinity might equally well
be said to hold if

Pk{Uj > x5 3= 0,1,2,...} > © (2.5.1)

where'{xj} is any sequence of real numbers such that Xy > @ ag j > ®,
It is clear that the whole of section (2.4.2) holds when the sequence
"{jh} is replaced by any sequence {xn}, whether or not xﬁ—)- ® as j > o,
Thus, for example, a sufficient condition for (2.5.1) to hold fox some
initial distribution is that I sn should converge, where now

n=0

s = FZ(X

n n+l - A(+)(xn)) n= ... -1,0,1,...) .

It would appear that a weaker form of drift, say
Pr{u, > ¢ log (3#+1): 3 = 0,1,2,...} > 0O,
should hold under weaker conditions on A(x) than those obtained in

section 2.4.3. However the above criterion that an should converge

does not in general produce weaker bounds on the autoregression function.
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The basis of the method is that A x ) - x must tend to plus

T (#) "n n+l _
infinity sufficiently rapidly for Esn to converge, and this, together
with the condition that.xn + ® as n > °, heavily restricts the
combinations of functions A (x) and seqpences‘{xﬁ} for which a "drift
to infinity" can be demonstrated by this method. In all, the condition

for the drift seems somewhat inconsistent, for, if it is true that

p’r{Uj > x5 3= 0,1,2,...} > 0 (2.5.2)

*
and x. > x. (3
J— 3J J

0,1,2,...), then it is certainly true that

. *
Pr{Uj > .Xj ; J = olll2lo--} > o, (2-5-3)

' *
and yet the method would fail to show this. For example let x, = xo_in
a case where (2.5.2) holds for an increasing sequence‘{xj}, then the
" .
appropriate series, an say, is

Y= zr,dx - A }
an = IF,ixg - (+)(XO) '

which diverges whenever FZ{XO - A(+)(xo)} # 0. As a further example .
consider the process with autoregression function A(x) = 8x (B > 1) and
for which the input distribution has an exponential lower tail,

F,(x) = ¢ exp{6x} (x < -x_; 6 > 0). Then the convergence of Is  shows

that (2.5.1) holds for'{xn} given by

n

{i) x

(1L <o < B),
n

ka

kg™ + an (a > 0),

or (ii) X
n
but does not show that it holds for

(ii1)  x = ko' 0 <o <),

kg™ .

or for (iv) x
n

Here k is a constant > O.
Some idea of the possible sequences>{xn} for which (2.5.1) holds
for a particular process can however be obtained. For convenience it

will be assumed that A(L)(x) is strictly increasing and has an inverse



-34

-1
+) -
the ;gwer tail of the input distribution, has an inverse G ~(-).

function A (+) and it will also be assumed that G(x) = F (rx),

Let nEO-wn be any convergent series and let {v } be any sequence of
= ’ n

real numbers. Then define

-1 -1 o |
uo= ALY Ivo +6 6] (m=0,1,...).

Assuming that u_ < v_ (n > O), it can be shown that

n n

o ]

T s = I GiA

n (xn) T % bee
n=0 n=0

(+) n+l

for any séquence‘{xn} satisfying u j_xn j_vn, and hence that (2.5.1)

holds for such sequences. For, since G is decreasing,

s = G{K(+)(xn) - xn+l} < G{A(+)Cun) - Vn+l}

= cletw ) =w .
n n

Hence Is  converges. It remains to determine for which sequences {v }
: n

-1

Ay

+ Grl(wn)J <V

nt+l n

for some convergent.series LW . It.thez follows by the*above-discussion

that (2.5.3) holds for any seguence {xj } satisfying xj' g.vj (3 > 0).
‘For example consider the linear process with exponential-tailed

input distribution described above and let zwn = 2a(n¥1)l+€ (e > 0).

Then, since

G "w) = Db+ =pr=1logn + 1),

where b .- is a constant depending on a,§, and ¢, the condition forA{vn}

to satisfy is that

%-[v + b +‘1 te

ntl 3 log(n+1)1] v, n=0,1,2,...)

for some constant b (possibly negative or zero) and some g > O. Considering

sequences'{vn} of the form vn = kan, this condition is satisfied for
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1 <o < 8 but not fora <1 or @ > B. The same conclusion.also holds
if the lower tail of the'in‘put distribution satisfies a power-like

bound (2.4.12) but not if the lower tail G(x) decreases like
(log x)_l. Let Fz(x) = c(log |xl)'_l x < xo), then G_-]'Cu)'= ec/u

and the above condition for the series {vn} is, with wn as before,

[v

» 1+e '
4y Texebm)T T < v (n = 0,1,2,...)

1

]
for some b,e > 0. It does not seem possible to find an increasing
sequence satisfying this. The criterion that an should converge
does not demonstrate the nonstationarity of the linear process with
this type of input distribution as does the theory of random power

series in section 2.2.

2.6 Decomposition of State Space and Stationarity

2.6.1 Given the transition probability function P(.,-)}) of a Markowv
process {Xn} on-a state space ) with a Borel field $A(’ , the (n+l)-step

transition probabilities,

pOt) (ay = Prix_,. € A]xo = x1,

+1

are given, for all x € Q and A€ 543 by

1;2;3"o-)p

i

PO ) = rxane® ,a) (n
Q

and they satisfy the Chapman-Kolmogorov equation

P (n+m)

(x,8) = fP('n) (,x,dy)P(m) (y,2) nh=1,2,3,e.; m=1,2,3,...).

Q
Results concerning the existence of a stationary measure for the
process and the possible decomposition of the state space are available
under the following condition (Doob, 1953, pp.l90-218; Rosenblatt, 1971,
p-117). There should exist a finite measure ¢ {(-) on sets A€ SA? » With

$(Q) > O, an integer m > 1 and an € > O such that, whenever ¢ (A} < €,

p ™ (x,A) <1 - for all x& Q. (2.6.1)
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This is Doob's Condition D. In effect the condition insists that from
anywhere in the state space the process _move-s with high probability in
a fixed finite number of steps to a region near the "centre" of the
state space (Tweedie, 1975a).

~ Under this condition the following hold.
(i) There exists an invariant probability measure w for the transition

function P(-,-), i.e.,

] m@ayrly,a) = w@) (2.6.2)
9/
The measure ¢ is absolutely continuous with respect to 7 (i.e. ¢ (A) =
whenever w(A) = 0).
(ii) There are at most a finite number of minimal invariant sets

Ej (j = 1,...p). - An invariant set is a set E with the property that
)(x,E) =1 for all n > 1 and all x € E.

A minimal invariant set is an invariant set which contains no non-empty
invariant set with smaller measure under ¢(-). If E is any non—null
minimal invariant set it differs from some Ej (above) by at most a set -

of ¢-measure zero. For any YE Q

1im ™ (g, UE) = 1,
N
so that a process commencing at any state y will remain outside the
invariant sets for only a finite number of steps in its transitions
(with probability 1). The set Q - UEj is transient in the sense that
J

lim P(n) (y.Q —UEj) = 0 y& Q).
J

n-e.

(iii) Each minimal invariant set Ej may be decomposed into a finite

number, dj, of disjoint cyclically moving sets c 3 i=1,... dj).

j J
These are such that, interpreting C d i 2 Ck ’
Py C:.I y =1 (yécj;i=1....d)-
rvisl ' i ! 3
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(iv) To each.cyclically'moving subset Cij there corresponds a probability

measure ﬂij(-) such thatv
{nd,+m) . .
me o o@EE = nl@ GecliE e &)
n-e '

where k = mt+i (mod dj). The measures wij have the properties that
rled = 1, @ >0 ifdE{lch) >o.

(v) To each minimal invariant set Ej there corresponds a probability

feasure 79 () such that

4
. . s .
PEy) = 1, PE = = I n,9@®  (=1,...p),
J .. 1 -
i i1 ,
1 n (jn) .
Lim= 1 P (E,E) = @E E€E;Eed).
nse O omel J

(vi) For every £ € Q, the measure g(£,-) defined by

n (
gq{€,E) = 1lim 1 I P
n
: n-> m=1

) &,E)

is an invariant probability measure for the transition probabilities
P(-,*). A measure w(-) is an invariant measure, i.e., a solution of
(2.6.2) if, and only if, it is a linear combination of the measures
wj(-).

Consideration of condition (2.6.1) for the transition probabilities
assoclated with the autb:egressive processes shows that it does not hold
for many of the processes of interest. Suppose that A(x) is bounded on
every finite interval but is such that A(x) -+ -» as x > - (for example,

Ax) = %'x), then for any finite measure ¢ on the real line and any
£ > O there is a set A = (-w,a) with ¢(A) < e. Then, for the transition

probabilities in the form (2.1.6),

— dr_ (z)

P (—XrA) =S
X zel-=,a)-Alx)

= FZLa -»A(x))v+ 1 as x > -=.
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Hence (2.6.1) does not hold for m = 1l: it does not seem possible to

make general statements about its validity for m > 2. In the particular
case for which A(x) is linear, A(x) = bx (0 < Ib[ < 1), and for which

the input distribution is normal, N(0,l) say, the transition probabilities

are known exactly. These are

- A 2
2 ,n) = r2m@ - b2 [ expl - EEEL g,

a 2 1-p")
and, for any fixed semi-infinite set A, .

(m)

PX (x,a) ~ 1 either as x > +®, or as x > -,

Thus the condition is invalid for what is, apparently, the simplést case.
Clearly, for general autoregressive processes, a theory which applies
(at least) to linear processes is needed.

Nonetheless condition (2.6.1) can be shown to hold for the
transition probabilities (2.1.6) of autoregressive processes which have
uniformly bounded autoregression functions and input distributions
which are strictly increasing everywhere (so that any value of Zn is
possiblej: for then m can be taken as 1, and ¢{(-) can be defined by
any strictly positive probability density. For other input distributions

it seems possible to say little in general.

2.6.2 A condition used by Harris (1956) (see also Rosenblatt, 1971,
p.117)} is that, for some non—trivial o-finite measure ¢, for all points

xe Q@ and all sets aesh with ¢(a) > O,

Pr[Xnts A infinitely often XO =x] = 1. (2.6.3)
Under this condition there is an invariant measure ¥ (W (Q) < =) such
that ¢ is absolutely continuous with respect to Y. An example would be
the symmetric random walk on the integers. However this condition
appears to be of little use since showing that it holds for a particular
process would be difficult. The condition is known as ¢-recurrence
(Tweedie, 1975a). Assumptions that lead to the conclﬁsioﬁ that there
does exist an invariant probability measure for the process are that {
is a compact Hausdorff space and that the transition probabilities are

weakly continuous (see below) (Rosenblatt, 1971, p.98). However the
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real line is not compact so that this cannot be applied generally. It
is of possible use if A(x) is of finite range or if the state space can
otherwWwise be reduced to a compact set. A related theory which holds
for locally compact state spaces, but with a further assumption, gives
as a result the existence of a not necessarily finite invariant
measure (Rosenblatt, 1971, p.102). The existence of a non-finite
(finite) invariant measure corresponds to the recurrence (respecti&ely,
positive recurrence) of discrete state space Markov Chains.

Tweedie (1975a) has obtained sufficient conditions for the
stationarity of Markov processes. The first assumption is that the _
chain {Xn} is ¢~irreducible for some non-trivial measure ¢ on ¢¥ : é

that is

8

2 Pp () (x,A) > O for every x & Q. (2.6.4)
1 . . _ o

$(A) > O implies

™

n

This just says that for every set A (¢(A) > 0) there is a positive

probability of eventually entering that set from every point x in the

state space. This condition implies (Tweedie, 1974} the existence of

a measure M such that

&8 -{Xn} is M-irreducible,

(ii) if B ¢ is such that M(B) = O, then M(B) = O, where

B = {x:2%2
n

—nP(n)(x,B) > o}.

B is the set of points x €Q from which B can be reached. M can be
constructed so that M(Q) < = and so that it gives positive measure to
any set which can be reached with positive probability from poinﬁs of
any set A with ¢(A) > O. The measure ¢ may be such. that it gives
positive measure to subsets of a particular (possibly bounded) set and
zero measure to sets which are disjoint to this set. Even with this ~
allowance it seems difficult in general to find a suitable measure to
satisfy (2.6.4): consider the linear processes of section 2.2.2 for
which singular measures are the natural measures. However the above
condition can be shown to hold in some particular cases: it clearly
holds for autoregressive processes on the real line, with tramsition
probabilities in either of the forms (2.1.6), (2.1.7), whenever the
input distribution assigns positive probability to all sets of positive

Lebesgue measure (with ¢ based om Lebesgue measure) .
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Under the assumption .of ¢-irreducibility the follawing dichotomy
holds (Tweedie, 1974, 1975a). Either

(1) for every x €  and AesAz with M(a) > O

[=+]

L P
n=1

(n) (x,4) = o,

in which case the process is called recurrent, or
(1i) there is a countable partition. {Aj} of R,
AjﬂAk =@ # k), UAJ. = qQ,
such that, for every x < Q@ and every Aeglb with A CC Aj for some j,

[+

I P
n=1

{n)

(x,a) < =,

in which case the process‘ {Xn} is called transient. A similar result
is obtained by Foguel (1966).
If a process is ¢-irreducible and recurrent then there is a unique

solution (up to constant multiples) of the invariance equation
p@) = [ pl@ay)ply,n.

If the solution is a finite measure then the process {Xn} is called
ergodic or pasitive recurrent. Recurrence and ¢-recurrence (2.6.3) are
closely related (Tweedie, 1975a, Lemma 2.2). If {x_} is ergodic then
“the invariant measure, w say, satisfies the limit property

n

L P
m=1

8=

(m)_(y’

A) > w(A) as n >«

for all v € Q excluding a set of M-measure zero. However if {Xn} is
recurrent but not ergodic, then there is a partition' {Kj} of Q@ such

that for every A & §Ag with ACC Kj for same j,

n .
P(m) (x,a) = 0O for all x € Q.
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Further, if the process is ergodic with invariant measure 7, the
expected recurrence time R(x,A) is finite for m-almost all X € A:

here

with

AP(n) (x,A) = Pr[Xné A,“Xié A; 1i=1,...n"1 XO = x].

These definitions and results correspond to those of discrete state
space Markov chains (Cox and Miller, 1965, §3.4). Tweedie (1975h)
considers the effect of changes in the transition probabilities on the
recurrence or ergodicity of a process.

The transition law {P(x,°)} is called strongly continuous if, for
every A € ¢¥ R P(X,A) is a continuous function of x. The law'{P(x,-)}
is strongly continuous if and only if fP(x,dy)g(y) is a continuous
bounded function of x whenever g is a bounded measurable function on .
The transition law {P(x,-)} is called weakly continuous if fP(x,dy)g(y)»
is a continuous bounded function whenever g is.a continuous bounded
function (Tweedie, 1975a).

In his paper, Tweedie (1975a) proves the results quoted below for
'~ strong continuity but notes that weak continuity suffices for normed
state spaces which are complete in their norm. Examples of such spaces
are finite dimensional Euclidean spaces, including the real line. The
transition probabilities PX given by (2.1.6) are weakly continuous
whenever A(x) is a continuous function of x (for any input distribution),
while the transition probabilities PY given by (2.1.7) are strongly
continuous for any autoregression function A(x) whenever the input
distribution is absolutely continuous.

When the state space is a finite dimensional Banach space with
norm ll"[, and the transition probabilities are ¢-irreducible and
strongly or weakly continuous, a sufficlent condition for the ergodicity

of the process is the existence of constants k,e > O such that

eOllx 11 - x|l | %, =xt<-c dlxll>w @-6.5
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and
Efllxn+1|[ Ixn = x} is bounded above for l[kl} < k.

A sufficient condition for the recurrence of the prdcess is the

existence of a constant k > O such that

e([|x_ 0l - x| |x =xtso  dlxl] > w0, (2.6.6)

More general conditions than the above can be given in terms of
expectations of functions other than ||'I| (Tweedie, 1975a).

For autoregressive processes with transition probabilities givén
by (2.1.6) the conditions for ergodicity hold if the process is
¢~irreducible, A(x) is continuous and there are constants k,e > O such

that
E{A ) +z] - x|} <-¢ (x| >n), (2.6.7)

where as usual Z denotes a random variable from the input distribution.
Clearly this inequality holds if |A(x)]| < |x| - E|2] - € for |x]| > k.
When the transition probabilities are in the form (2.1.7) the
conditions for ergodicity hold if the process is ¢~irreducible with
absolutely continuous input distribution and if there exist constants

k,e > O such that
e{|Atx + 2)] - x|} <=-¢ (]x] > K. (2.6.8)

Sufficient éonditiOns for cases in which the expectations do not exist
can be obtained from the generalisations mentioned above: these can also
lead to weaker conditions than the above.

Thus the existence of a stationary distribution is assured for some
classes of autoregressive processes. As already noted a piocess is
¢-irreducible if the input distribution has a strictly increasing
absolutely continuous component. Although it is possible to demonstrate
p-irreducibility in other particular cases, it does seem to be a difficult
condition to work with in general. Ioosely speaking ¢-~irreducibility
ensures that the sets of the state space whi;h take a cbntinuing part in

the process can be identified.
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A sufficient condition for the ergodicity of a process with a
normal inéﬁt distribution is just (2.6.8) itself since then
¢-irreducibility holds. The condition ensures that if the.process
takes a large value then the next value is likely to be nearer the
"centre" of the space, though in a much weaker sense than condition
(2.6.1).

For multi-dimensional autoregressive processes (2.6.5) or (2.6.6)
can be applied for a suitable norm. Kesten (1976) has given an
analysis of recurrence and transience for multidimensional processes
based on cone-shaped sets. Tweedie (1976) gives a full account of the

classification of general state space Markov Chains including the

above material.
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3 SOME APPROACHES TO CALCULATING PROPERTIES OF STATIONARY DISTRIBUTIONS

3.1 Introduction

In the last chapter it was shown that, under certain conditions on -
~A(-) and the distribution F, of {Zn}, the non-linear auto:égressive

process given by

l (_'n .= ce oy _1'011’000) . (301.1)

Xn+l - A(Xn) * Zn+

has a stationary distribution; that is there exists a distribution Fx

satisfying

[ lx = Alyhrar, ). (3.1.2)

-0

Fx(x)

In some cases this solution is unigue. Without assuming any particular
set of conditions, it wiil now be assumed that a solution to this
equation exists, and various ways of finding this distribution and its
properties will be considered. Quantitieé associated with the stationary
and input distributions will be distinguished by appropriate subscripts:
thus Uyr Wy stand for the respective means.

The methods described for solving equation (3.1.2) are of two
types.. Methods of the first typé, discussed’in section 3.2, are based
on the distributions of the finite-starting-time sequence.{Un}
'described earlier. The second type of method attempts to exploit the
invariance of the properties of Xn th=..., -1,0,1,...) when the process
has a stationary distribution to achieve a solution: that is it seeks
FX directly as a solution qf (3.1.2) rather than as a limiting distri-
bution as in the first method. This is described in section 3.3.
However, to employ this second method effectively, the process (341.1)
is imbedded in a family of processes which are considered together.
Section 3.4 introduces one such family and properties of the stationary
distributions are obtained by manipulation of the random variables of
the processes. .In Chapter 4 a different family of processes is used
and the stationary distribution functions of the processes are considered.
This is equivalent to imbedding eguation (3.1.2) in a family of integral

equations which are solved together.
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3.2 Repeated Convolution Methods

3.2.1 As noted in section 2.1, if a sequence of random variables {Un},
generated by the same mechanism as (3.1.1) but starting at a finite
time, converges in distribution, it does so to a stationary distribution
for the process (3.1.1). For all fixed distributions Eb(dl for U ,vthe

. 0]
distributions of the random variables'{Un} generated by

B = A) + 2 . (n

Sl L 0,1,2,...) ,

are given recursively by

F o &) = [r (x-2x(u))aF (v (n =0,1,2,...).

This suggests,.as one method for finding a stationary distribution
FX for the process, the evaluation of the sequence of distribution
functions (FO’Fl'FZ"" ) by numerical integration for some suitably
chosen initial distribution Fg- Whether or notvthe sequence of distri-
butions converges, the distributions F. calculated may be of direct
interest: for, if FO corresponds to UO taking a single value Uy say,
then Fi (i =1,2,3,...) are the distributions required for making

predictions of (X given an observed value xn‘= u. of the

n+l'xn+2"°') 0]
process (3.1.1). B2An alternative to this choice for F. is to take a

distribution with large dispersion giving positive wegght to all parts

of the real line. Should there be more than one stationary distribution
for the process this would ensure that all regions having a positive
probability under some stationary distribution could be found. The

limit of the sequence of distributions, if one existed, would be a
mixture of the stationary distributions. Other tactics, such as averaging
over "time", could be adopted to deal with periodic processes.

Once a stationary marginal distribution Fx of the processi{xn} has
been found, the stationary joint distributions of any finite collection -
(Xn'xn+l P oene Xn+l ) can be found by further numerical integrations.
These in%egrations %Ould be over the joint distributions of consecutive
sequences (Xn'xn%l'
with the obvious notation, by.

. es Xn+l); these are given in terms of densities,

£ X X (xo,xl,....le = fz(xlfl(xz_

n+l’ " " “ntl 1

))-----é-fz(xi—kao))fX(xo)-
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By performing further numerical integrations the moments and joint
moments of the process'{Xn} under the stationary distribution can be
calculated. BAny aspect of the stationary processv{xn} can thus be
investigated by numerical methods when enough intégrations are performed.

The disadvantage of this method is that, being based entirely on
nume:ical guadrature, it does not provide analytic expressions for any
of the quantities required and thus no information as to the results
for a particular autoregression function is available unless the above
procedure is carried out for this function. Some problems arise from
the numerical integrations themselves but these are purely procedural

and, in principle, there should be no difficulty in overcoming them.

3.2.2 The above method is based on the assumption that, if FO is a
distribution close to the stationary distribution, then Fl given by

Fi(x) = [ Byl = A(u))dF, () ' (3.2.1)

will be closer. For suitable choices of FO it might be possible to
evaluate this integral analytically, or possibly the corresponding
integral when densities exist. The distribution Fy would be chosen to
be itself close to the stationary distribution and (3.2.1) would produce
a distribution'Fl which, while not exactly the required distribution,
would at least give some indication as to its properties. These
properties.would often be summarised by the moments and these would

be approximations to the moments of the stationary distribution. Even
when the integral (3.2.1) for the distribution cannot be evaluated it
may be possible to perform the corresponding integrals for the moments

exactly; For example, the approximation to the mean is
[ Atar ) + uy

or E[A(U ) + Z1, where U has distribution FO and 2 has distribution F
As a particular case let A(x) = exp{— ;-xz} and let the input
distribution be N(0,1). Consideration of A(x) shows that the mean Hy of
the stationary distribution must satisfy O <My < 1 and that a reasonable
~guess would be p, = 0.6. The variance of the stationary distribution
must be at least as great as that of the input distribution and the

variance of a random variable (A(Xn)) concentrated on [0,1] cannot be
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greater than 1/4: hence

l<62='varx' = wvar A(X ) + var Z
- —_ n ‘ n n

<
. 1 < 1.25.

+1

With the distribution Fq chosen to be a normal distribution with
mean Y and variance 02, the integrals for the moments of the distribution
F, can be evaluated explicitly and give for the mean, variance and third

central moment respectively

2
-1 : 1
Bt o= 1+ o2 /zexp{— 5 2} '
1+o
2 - 2,=1/2 1 2p° 2
o'® = 2+ 0%) lexpl- 3 2}‘ w41,
2+0
- 2.-1/2 1 3p? 2 3
py = (3 +a7) exp{ - 5 } - 3" (@'“ -1) - p'".
3 2 2
3+o
N . . 2 | SE— !2 2
One way of proceeding is to choose y,0° so that p' =y and '™ = ¢

and this solution can be found by an iterative substitution method using
the first two equations. This gives the approximations

2

u' = 0.62758, o'‘ = 1.1060, uy = -0.0193

compared with the true moments

= 0.62756, 0.2 = 1.0995,

X = -0.0151.

Hy “3,x
These moments have been calculated by a method to be described later and
have been confirmed by computer simulations. The above procedure finds

a normal distribution, the first two moments of which are left unchanged
by the transformation X - A(X) + 2. Since the stationary distribution

is itself close to normal in this case, this may .explain the apparent
success of the method here. More generally FO might be chosen as a
mixture of distributions of tractable form. The above method of
equating moments of the distributions before and after the transformation
takes account of only these moments and no other properties of the

distributions.
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A similar method may be used to obtain approximate results for
the joint moments of (Xn'xn+l) under the stationary distribution of the
powers (3.1.1). This joint distribution is approximated by that of
(UO,X(UO) + 2) where U has the appfoximate stationary distrihution
FO. In the above example, the value found for the approximation to

. 2, .
a
COV(Xn,Xn+l) when Fy is N(e,a”) is

ci = —02(1 + 02) 3/2 p exp{ - %— I 2} = - 5 up?
1+0 1+c
and, with u,oz chosen as above, this gives cov(Xn,Xn+l) = —0.2068

compared with the true value -0.2056.
Although the method is based principally on the one step ahead
transformation of distribution, the choice of the initial distribution

FO is based on equating moments of the distributions at successive

times.

3.3 Invariance Methods

An attempt will now be made to use the equivalence of the distri-
butions of the random variables X,A(X) + Z to find the exact or ;
approximate properties of the stationary distribution. Here X and Z
are random variables from the stationary and input distributions
respectively. ‘

One method of obtaining approximations for the moments of the
stationary distribution is to use the well-known formulae approximating
the moments of a function of a random variable. These are obtained by
Taylor series expansions of powers of A(X) about the mean By of X.

Truncating the expansions at the usual point gives the approximations

2.(2)

EAG} = Alw) + 5 0, A7) Guy) - (3.3.1)
and var{A(X)} = {Acl)(uxl}zcxz. : (3.3.2)

where A(r)(x) is the r'th derivative of X(x) which function 1s assumed
differentiable as often as necessaryQ Thus the following equations

hold approximately
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1 2
. k(ux) + 59y A

(2)

=
il

Cux). + Mo

gy (1) 2_2 2
o =" wdte  + g,
and from these an approximatioh to the mean of the stationary .

distribution is as a solution of

1 ] )\(2) (-Ux) 2
U = Alu,) + oy, + 3 g, (3.3.3)
X . X 2 .
| 2t 0Way? E
with an approximation for the variance given by
2
0.’ = i (3.3.4)
% . _ .3.
1- _{A(l) () 32 ' :

X

For the example, used also in section 3.2.2, for which
CA(x) = exp{ - %-xz} with input distribution N(0,1), the apprcximatidn
for the mean is as a solution of the equation
| 2 12
R e

2
2 —H

1 - p,é_
This solution is rapidly found by repeatedly substituting approximations
~into the.rightfhand side. The approximations for the mean and variance
‘are found to be 0.4715 and 1.217 respectively compared with the exact
results 0.6276 and 1.099. The root of the equation p = A(u) is 0.7531
so that the modification (3.3.3) of this equation has.resulted in a
change in the right direction but one that is rather too large.

The apprdximatiéns derived by this method require the solution of
equation (3.3.3) for Wyt this is a disadvantage for it is not clear
when the equation would have exactly one solution. Also as has been
seen, in this case at leaSt, the approximations compare unfavourébly
with those obtained earlier. It may be noted that the only information
used about the input distribution is its mean and variance.

In view of the poor results at this order of apéroximation one
might attempt to extend the result by equatiﬁg moments of higher order.,
If the series are truncated to retain terms of order not greater than 3
(telati&e to the scale of X} then, for a normal input distribution the

equations reduce exactly to (3.3.3) and (3.3.4). However retaining terms

of 4'th order gives the equations
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we=A+So A(Z) +%~u3xxc3i + %Zf“4xk(4) + | (3.3.5)
0 2 = zek(l)z .\ u3xA(l)AL21 N %{p4x_qx4lk(2)2 N %ngxht;)X(3i N 0Zz
Wy = u3xk(i)3 . %{p4x-cx4)l(1yzkczl +uy,
Hax = “4xx(1)4+ 6loy A2y “3-x>‘u-)}‘(2)+ "*“4x X Hr %2 g FHaxh (;) 102 7z M4z
- 4x>‘cl)4 * 6[0x2 - 022]022 T Mgz

whéreAA and its derivatives are evaluated at Hy and M are the third

‘ ax'Max
and fourth central moments of the stationary distribution. For a fixed
value of By the last three equations lead to. a quadratic equation for
ze and. from this Mg ey can be found. Using these quantities to
substitute in (3.3.5) produces a new approximation for the mean My and
thus an iterative scheme of solution is obtained.

Unfortunately this does not seem to be an improvement in the method.
For the above example the method converges to a solution for the first ’

four poments as

0.62600, 0.7948, -0.2220, 1.9022
compared with'their true values

0.62756, 1.09945, -0.0151, 3.6154.

The second root of the quadratic for o is near -121 when Uy is at the

X
above solution. The approximation for the mean seems good but equally

~ good approximations are found by inserting any reasonable values for
1% 2tu H

XX "U3xTTAX A

Oy = 1, Uay = O, My = 3 in the example gives 0.625 for the mean.

U into the right-hand side of (3.3.5). Taking u, = O,

The Taylor series expansions however are based on the assumption
that (X - u ) and its moments are small although in this situation it is
not clear what this might mean. The usual applications of formulae

(3.3.1) and (3.3.2) are to quantities derived from samples of size n, say,



51

: . . . -1
and the sizes of the terms in the expansion are compared with n
(as n > @) (Kendall and Stuart, 1969, p.232). In particular r'th
: r/2

order moments are usually comparable with n . For the present uéev
there is no such parameter available and therefore the truncation of
the ekpansioné as above 1is not really justified. Possibly a truncation
based on different reasoning would be better. It may be noted that the
appfoximations obtained from (3.3.3) and (3.3.4) are exact when the
autoregression function iz linear, and this might suggest that the
method should work for functions which are nearly linear or for which
the variance of the stationary distribution is small so that the
function is effectibely linear in the most important regions. 1In the
next section a method is introduced for incorporating a parameter in

terms of which expansions may be made.

3.4 A family of processes with changing input variance

3.4.1 Consider the autoregressive process

X = A(X) + 2 n=... -1,0,1,...) (3.4.1)
n n

n+l +1

as before, where it is now assumed that the input distribution has
zero mean and moments of all orders and that A(x) is continuously

Z

differentiable. If the variance o 2 of the input distribution is zero
then the processv{xn} is generated by '

Xn+l = A(Xn) n= ... -1,0,1,...) . (3.4.2)

The assumptions needed are that the equation x = A(x) has exactly one
root, & say, which is “étable", and that there are no periodic stationary
sequences satisfying (3.4.2) so that the only possible stationary
sequence is that which takes the fixed value £(§ = A(E)).

Now suppose that the variance of Zn is very small. Then the above
assumptions make it reasonable to assume that the variance of the
stationary sequence is correspondingly small. If there were more than
one possible stationary process satisfying (3.4.2) this would not
necessarily‘hold. It is also reasonable fo assume that the stationary

distributions change continucusly as the scale of the input distribution

changes. This suggests considering the family of processes {Xn(a)}

SOOI T LA -

. )
canararad Dy
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(@) = ’A{xn(a)} + 0% (n=..., =1,0,1,...) (3.4.3)

Xn+l n+l

for o in some interval containing [0,1]. For the present it is assumed
that the same values of the 1nput sequence are used to generate the
sequences {X (a)} for different o. By considering a version of (3.4.3)
starting in the remote past with the same value for each sequence indexed -
by o, it is reasonable to expand Xn(a), for each n, as a éower-series
in o. Thus

(o) . (1)

X () = X + aX
n n . n

+LC{.2X (2) + aees
2 n

This may be substituted into (3.4.3) giving the expansion

(O) (1) 1 2 (2) _ (0) 1y , 1 2 (2) (1) ,_(0)
n+1 + aXn+1 + 5 o xn+l + iees = A(Xn Y+ (axn + 5 ¢ Xn + ...)A (Xn )
i, (1) 1 2 .(2) 2, (2) _(0)
+ 2(axn 5 eTX + .ee) A (xn )
+ ... + oz

n+l’

.The equating of powers of o in this expression leads to formulae

generating the sequences {X(O)} {x(l)} etc. The first of these is
52; = A(X(O)) Intultlvely at least, if all the sequences {X_(a)}

1 2 '
are to be stationary then each of {X(O)} {X( )}, {X; )} etc., must also
be stationary. With this assumption the sequence {X © }} must take the
fixed value £ and then the other expressions become, w1th_l and its

derivatives evaluated at &,

o) (1) (1)

- .4,

n+1 A Xn + Zn+1 . G 4)

x2 = W@, A(z)x(l)z ’ (3.4.5)

n+1 . n n

<3 A(l)x(3) . 3A(2)x(1)x(2) N >\(3)}((1)3 (3.4.6)

n+1 : n n n n

L8 _ @ (@) (2)2 (), ) (3), (12, (2) , 5 (@) (14

X2 = A X | + A {3x +4x X } + 6A X TR X
(3.4.7)

The sequences'{xn(r); n=...-1,0,1l...} (r~= 0,1,2,...) will be

referred to as the component processes of'{Xn(a); n=...=-1,0,1...}.

Since Z_ . is indespesndent of X_(a) {(k < n) for all «, it must also be
a+l o -~ - : :
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(x)
k v
for k fixed, xk(r) (r =0,1,2,...) are dependent amongst themselves

because, for example, Xk(l) enters into the generation of Xéi; Xéii,

3
X£+1, etc. Because of the stationarity of the sequences the moments

independent of X (k *n; r=0,1,2,....). However it is clear that

of the component processes at different times may be equated, and, by
suitably multiplying the above equations together and taking expected

values in the resulting expre551ons'these moments may be found when

1
h B @ <.
3.4.2 Define gq_= (1 - (l)r)—l (= 1,2,3,...) and p, = A(l)ql’
p, = A(Z)qz, Py < A(l)zqz, and more generally for k subscripts
(rl) (r,) (r,)
p. r = A A ceasa U 4y 4 .
1"k I M 3

(r)

Then the moments of the random variables Xn may be found in the

following oxrder

EMéD)==O,

E(Xél)z) = q2°z2'

B3 = a,,

E(X(l)4’ = qly,p 6p11°z4) = G840 S
ex*) = qp0,”

E(Xél)xéz)) P PLEY

E(Xé3)) = 4y 08P ,Py * Pl

E(X(l)Zg(Z)
n

- 4y = q.s
o ) = A3(Py1,8, * 9P0, ) = 43S, say,

(2)2
E(Xn ) = q2(391254 + p1354),

- ' (L), (3)
) = q2(291254 + p2254), E(xn xn

R ,
E(X ) = ql{6(3pzp12 + pgy)sy + (4p,pyg * 3PP,y * pyls,l

(1) ( 3) (1)4

(2)2)' E(X
n())_

Here, for example, E(X ), E(X and E(X ) are

(1)2 (2)
X

all needed to find E(X
In order to find approx1matlons for the moments of the process {X }

given by (3.4.1), which is {Xn(l)} in (3.4.3), there are two choices.
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The first is to express the particular moment of Xn(a) as a power-series
in o and to truncate this at some particular power of o and set a = 1.

For example

(1) —lu2X(2) + lOL3X(3) +

var (@) = var(s + ax P+ 7% 4 2ol ced)
= dzvar(xél)) + d3 cov(x(l) Xé2)) + %u4 var(XéZ))

"o pe = g

W]

+ —u4 cov(X(l), XCB)) + }dS cov(X( ) <3)) +
n n 13)

which, truncated to exclude powers greater than 4, gives the approximation

o 2 . var(X(l)) + cov(x

(1) ne) 1 (2) 1 (1y _(3)
X X
% n

) + n var(X ) +—3-cov(Xn

). (3.4.8)
The alternative is to approximate the random varisble Xn directly by
truncating the expansion of Xn(a) at a convenient power. Truncating this
after the second power of ¢ gives an approximating random variable as

(1)

X = £+ X
- n

1y
n 2 "n

and this gives as an approximation to the variance

UXZ ='var(§n) = var(Xil)) + cov(Xél) (2)) + 7 var(X(2)

By comparison with (3.4.8) it is readily seen that this is not an

expansion correct to any particular power of d; this happens in general. 
However this method of truncating the expansion of Xn(a) has the
advantage of always producing approximations for the moments which are
always the moments of some proper random variable. Thus the approximations
for the variance obtained in this way are always non—negative, which is

not true of those found by the first method. If the input distribution

(2)

is symmetric cov(X(l),X ) = 0, and so in these cases the first few

approximations for the variance must incCrease.
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3.4.3 Approximations for joint moments of the stationary piocess.{x }

may also be found, for example, by approxlmatlng the joint dlstrlbutlon
(0} (1) 1.2 2y () 1)
of (X (o), X (a)) by that of Cx tox U+ eTX X ot aX ot

5& X( )). In the same way as before the following expressions are

obtalned for k >1

R I L)
cov(X£2),X§ii) = .A(l)kq2p12ﬁ3zr
cov(X(l) Xéiiz) = l(l)qu3u3Z,
cov(X(l) (i;) _  1(1)kq2P12“3z w1 (l)k)l( ) 1q3 -
cov(XQZ),xéiiz) = i(l)zk(q3sé - qlq2p20Z4),
cov (X(Z) (f;) - l(l)k_l{l(l) (2912 é +py8,) + (- (1)3)A(2) 1qBSa
- Q@ +_A(l) - x(l)k)qlzpzzcz4}.
These may be used to approximate cov(x (a),Xx . (¢)) by
cov(dx(l) + %azxéz),axéii + %azxéii)ILSane X(O)-— £ is fixed). In

partlcular, for k = 1, this gives

2, (1)

cov(x (a),x . (a)) = a”A qchZ +>d3(A(l) (2)

APy, + l d3lH3

(l) ' (2 ) _ .2 2 4
4, (21,8 + Pyy8,) * AT d sy = 9P, 0, )

+ Z“ { z

and, to the same order in «,

: 2 2 3 : 14 , 2 2 4
- - o, }.
var(X (a))= 0%qy0," + aTq,py uy, + qo (a4, (2P ,8) + Pys,) T d Py 0, )

Hence

S| 24
‘ ‘ (1) %01(21q3“3 z+Za2{A(2) 4% Py, }
’corr(xn(a),xn+l(a)) = AT 5 — 1 2
dpd 5 tea,P 12“3Z+Zu {q2(291254+P2254) qlpzdz}
2) 2 . 24 2
@) 1. A d3M5y 1.2.1, N qlpch_ZPlz(pBZ/cZ)
=X + 5 > t Zo > + ...

9% - 9y,
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» ) () = O, the random variables

may be expressed in terms of a finite number of the values of the

3.4.4 In the special case that
x(r)
n X .
input sequence {Zn}. Thus, from (3.4.4)-(3.4.7),

) _
xn+l B Zn+l
2 _ @@ 21, 2
n+l : n : n
3y _ 2)2_ 2 L (3, 3
Xn+l = 3 ann-l +‘lA Zn _
(4 _ (@34 2 (2), (3) 3 2.2 (4) 4
X 1 A Bz _, + 122,242 ) +A7TAT 4z 7+ 6z 2 1) A2

From expressions such as these it would be possible to find the exact

distribution of any of the random variables £ +‘X(l), £ + X(l) + iXéz),

n n 2
£ + Xél) + %XQZ) + %x(3), ... which approximate the random variable
1
n .
for the joint distributions of the sequence {Xn} by the same method.
When A(l)(g) # O each Xn(r) (r =1,2,3,...) may be expressed as a

summation involving an infinite number of {Zn,Zn_ yeeew.} and, if

1"%n-2
a similar method to that above is to be applied, it is not clear whether

some truncation of these series would be suitable.

3.4.5 An alternative method of finding the stationary marginal distri-—
bution would be to attempt a series expansion of the stationary distri-
butions of the'{Xn(a)} processes. Once again a truncated version of
this expansion is not the same as the distribution of a truncated
expansion of Xn(d); indeed it is generally not a distribution function
at all. However the truncated version may be easy to find. Let
FX(x;d), ¢X(s;d) denote the stationary marginal distribution func;ion
and the corresponding characteristic function of the process‘{Xn(d)}

given by (3.4.3). Then
¢X(s;&) =feisxdFX(x;oc) = ¢Z(oas) fei-sMX)dE"X(x;c.x) . (3.4.9)

Expanding F_, and ¢X as power series in g,

X
Fx(x;a) = F () + oF () + aze(x) + ... (3.4.10)
dglsia) = 4ols) + ad (s) + aPp (s) + ...

n
X = Xn(l) = I ;T‘Xn(r)- It would also be possible to find approximations
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and assuming that FZ has moments of all orders to that ¢Z(s) is contin-
uously differentiable, these equations may be solved formally by
equating powers of &. Howevér this leads to e#pansions in terxrms of
the Dirac delta function and its derivatives. The function FO(XI is
a unit step function at £ and, when B, =0, Fl(x) = 0, and

2

o q.a .
¢2 (S) - {l)\ (2)qls - 52} 222 elES
2
L% 2 (D 2}, _,
ar, (x) = 5 {(-2"q 877 Geg) + 87 (x-E) Jax . (3.4.11)

The expansion (3.4.10) of the distribution function does not give
a useful approximation as it stands; however it may be employed to
produce other more useful approximations. Inserting the power series
expression into (3.4.9) produces for the characteristic function
2

. q.0 .
¢X(s;u) = ¢Z(us){elsg + o2 -EEE‘&iA(Z)pls - 1(1)252)8155

+ ... }
This is not a power series expansion but, on truncating and setting
o =1, it gives a function to which corresponds the approximation

1 2 (1)

£,0%) = £,(x = B) = 5 pp0, F, (E) - > ‘”cx -£)

2 ll Z Z
for the stationary marginal density function in terms of the input
density funétion fz. |

In other methods, to be presented in chapter 4, it will be seen that
expansions of distribution functions F(x;t) in powers of d involve
derivatives of F(x;0) with respect to x. In this case F(x;0) is a step
function so that, in one sense, the 8—functions appearing in (3.4.11)
are caused by this choice of F(x;0). An alternative is to consider a
rescaling of Xn(m)‘given by A

X (@) - £

W (C!) - __I’L___ .
n o

Then corresponding to (3.4.3) is the generating relation

() = i-{ug + awnam ) + 3z th=..-1,01,....

Wn+l n+l
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As o + 0, this becomes

©) (g)wn(o) + Z n=...-1,0,1,...),
n

Wh+l +1

so that in this case Fw(x,o) is a non-degenerate distribution function

being the stationary distribution of a linear autoregressive process.

3.4.6 In the above three assumptions have been made, first that the
input distribution has zero mean, secondly that the equation x = A(x)
has a single root & with the conditions discussed in section 3.4.1
holding; and thirdly that_lkcl)ti)l < 1. The first two assumptions

may be weakened considerably by forming, instead of‘(3.4.3), the family

of processeét{Un(a)} given by

ﬂﬁﬁw =_kwnwn-a+amm1+al n=...-1,0,1,...).

Here a is any fixed real number and'{zn} may have any mean. Once again
{Un(l)} corresponds to the process {xn} given by (3.4.1). The same
methods may then be applied and similar approximations obtained provided
that the equation x = A{x) - a has a single root §_ (and also that the
discussion earlier applies) and that IA(l)(Ea)l < 1. Obviously these |
conditions may hold for many different values of a. The question of

the choice of a will not be discussed except to suggest that it be
‘chosen so that the first order approximations to the mean and variance
€, + gy + a)/{1 fl(l)(Ea)}, czz/{l - A(l)z(ga)}, respectively) should
be close to some intuitively reasonable values.

The reason for the assumption that there iskonly one stationary

sequence'{xn} satisfying

Xn+l = . }\(,Xn) (,n = ...,—1,0,1,...), (_3-4.12)
is so that there is only a small effect on the stationary distribution
caused by introducing a small-scale additive error. That is, the
.stationary distribution of the process

h= ..., =1,0,1,...) (3.4.13)

Xn+l - ~A(Xn) * Zn+l
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is almost the same as that of (3.4.12) when_the scale of the Z-sequence
is small. When there is more than one stationary seqpence.{xn}
satisfying (3.4.12) any mixture of the corresponding distribution is
also a stationary distribution. The problem is to know which of these
mixtures is the limiting stationary distribution of (3.4.13) as the
scale of'{Zn}vdecreases to zero. This limiting distribution must be

known in order to find the moments of the components Xéol, X(l), Xéz)

o

from the equations

o _ (0)
Xn+l - -A(xn )
(v _ W, o, 1)
xn+l = A (xn )xn + Zn+l
x2) o ) 0@ @) (00 M2 e,
n+2 : n n : n n

However there are cases in which it is clear which mixture of
stationary distributions is appropriate. Suppose that X(x) is odd )
about zero, A(-x) = -A(x), and that the equation x = A(x) has three roofs;
(1) (E)I <1
(O)I > 1. Suppose further that the distribution function of thé

one at zero and the others at £ and -, and suppose thatllk
andle(l)
input sequence is symmetric about zero. Then clearly the stationary
distribution is itself symmetric about zero, and, as the variance of the
input distribution decreases, the stationary distribution becomes more
concentrated about the.roots E and —f but not about zero since this

root is "unstable". Hence it may be concluded that the appropriate

distribution for.{xéo)} is given by

P'r{erO) =g} = p’r{xrfm = -g} =—;—
with ngi taking the same value as Xéol (with probability 1). Thus'{XQO)}
is completely deterministic. One way of proqeeding is to first find the
required moments conditional on XGD). These are essentially those found
earlier when Pi{xéo) =g} = 1. Banuse of the above assumptions
_ A(l)(XéO)) = A(l)(g) whether Xéol = £ or ~f. Therefore, with the same

notation as before,
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|, ()
M | x

= o,

px M2 ] x©) q2°z2 ’

ECXI&D?’IX(O = o,

.E(xrgl)l; IX(O)) = q4(u4z + 6p11 24),

E(Xf)' 3‘:&0)’ - qlc.l-z}\(z)(xrimlazz’

E(xm (2) | x¢ x! - o, gx® )y = o,
n n

E(X(z)z i Y = q2q3q4{}142(1+}\(1)3)

(1)

o) a3 Mgy (12,5, (13

024}{A(2)(X(O))}2 .
n

(2) (2)

Since A —A (-&), the following formulae for the unconditional

&)

moments hold.

cx(l)) - ELX(Z)) - E(X{'B)) - o,
n n n
(12, _ 2 (1)3, _
EX ) = gy, E(X ) = 0,
Jae 4 (1) (2, .
(2)2, 13, (1) (1y ., (12 ,,(1)3 4
EGX %) = q2q3p2 {n4z (L+2 7777) + 20777 (1432 7 =22 +3) )a,0, },
The following moments are also required
E(X(O)) - E(x(o)x(‘l)) = o, E(X(O)Z) - EZ'
n n n
), (2) _ 2
E(Xn X -) = 9,P,E0,
From these it may be seen that the mean of any truncation of
X = X(O) + X(l) + L x(z) + ... is always zero and that the variance of
n n n 2°n

the truncation X = x(0) + X('l) + (2) is
n n n 2 n
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(2

“ 2 ) 2
var(Xn) = E° + q2{1 + qIEA (E)}OZ

(1)3 (2)

(1) (1y2 A(l)3

A +3

1 :
* qp959, Ty, (1FATTY + 22

(1+3X @) -2

ya,0, HA P @112 .

With the extensions described in this subsection, approximations for
the moments of the process (3.4.1) can be found in some circumstances, |
a major requirement being that the autoregression function is continuously
differentiable. It is also required that there should be a suitable root
of an equation of the form x = A(x) - a. In the next two chapters a

- method is found which relies on much less restrictive conditions.
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4 FAMILIES OF PROCESSES WITH!VARYING AUTOREGRESSION FUNCTION

4,1 Introduction

In the last chapter various methods of approximating the stationary
distribution of an autoregressive process were discussed. The method

of section 3.4 was to consider the required non~linear process,

(.'n. = e —l'o'lyo--)' (4-1.1)

xn+l = >\(Xn) +Zn+1

as one of a family of processes'{xn(a)}_generated by

(@) = A& (@) + oz
n n

xn+l

+1 {n=...-1,0,1,...). | (4.1.2)

In this chapter the process (4.1.1) is imbedded in a different family of
processes. This new method does not have the disadvantages of the
previous method which needed restrictions on the possible stationary

a1 = A(Xn) (h=...-1,0,1,...) and on

the derivative of A(x). In section 4.2, power-series expansions of the

. distributions of the process Xn

values of the processes are used to approximate the moments of the
processes by the same method as used in section 3.4. In sections 4.4
and 4.5 a solution for the distribution of the stationary process is
- found by using a power series expansion for the stationary distribution
functions of the family of processes. A similar method is used in
section 4.6 to give expressions for conditional distributions of the
' processes. The expressions derived in this chapter are used later to
give practical procedures for calculating the moments and distributions
of the processes.

The family of processes (4.1.2) allows the scale of the input
process to vary continuously. Earlier this was shown to be equivalent

to considering the family of processesA{WnLd)} generated by

1 .- = ... - '
(a) = E{,\{g+awnm)}-gj +Z n= ... =1,0,0se..),

Wn+l +1

where £ = A(g). 1In this family the autoregression function itself is
allowed to vary. This suggests defining a family of processes‘{xn(e)}
generated by ’

X ,1(3) = u{xqcs);s} + 7 n=...-1,0,1,...), (4.1.3)

n+l
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where U(x;B) is a suitable fémily of functions of x, indexed by B.

These should have the properties that, for fixed x, 1(x;B) varies
continucusly with 8 and that u(x:1) = A(x), the required autoregreséion
function. Further n(x;0), which will be called the initial autoregression
function, should be such that the corresponding process,.{xn(o)}, has a
stationary distribution which is known: this will be called the initial
(stationary) distribution and the process-{xn(p)} will be called the
initial process. Other requirements are that the process {Xn(B)}

should be stationary for every B in some interval covering [0,1] and

that the properties éf the processes should change continuously with 8.

It may be noted that the choice
WixsB) = £ + B TIME + Bx-D)} - £] (4.1.4)

corresponds to the process {§ + Wn(a)} with {Wﬁ(a)} as above. In this
case £ = A(E). BAn obvious extension of this is to choose

pix;g) = A(E)+f§&k{i + B(x-E)} - A(£)], where now £ is not necessarily
a root of x = A{x). This does not correspond to a family of processes

with a varying scale input distribution unless & A(E). After some

consideration it can be seen that there would be a discontinuity, at

8 = 0, in the behaviour of the processes'{xn(B)} if the equation,
x = A(x), has more than one root. This is because the equations
x = p(x;B) will all, except for B = 0, also have more than one root.

The above modifiéétion'does not overcome this problem.
A good choice for u(x;B), and the one that will be most used from

now on, is given by
u(x;B) = a + bx + B{A(x) - a = bx} (4.1.5)

where a and b are two fixed real numbers, arbitrary except that the
initial process (with autoregression function a + bx) should be
stationary: for most input distributions this just means [bl < 1l, see
section 2.2.1. Thus the family of processesb{xn(B)} under consideration

is generated by

Xpr1 8

i

a + bx (B) + BIAM{X (B)} - a - bx_(B)] + Z »
n » n n nt+l 4.1.6)

n=...~-1,0,1,...) .

it

a + bxn(B) + BA{xn(B)} + zn+1
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In the next section the method of section 3.4 will be applied to this
family of processes. For this it is assumed. that exactly'the same
Sequence'{Zn} is used in the generation of each process‘{XnCB)}. In
the method to be described later, involving expansions of the stationary

distribution functions, this assumption need not be made.

4.2 Power-series expansion of the process itself

4.2.1 By formally taking derivatives throughout (4.1.6), and setting
B = 0, expressions are found for the componentsv{xn(r)} of the

expansion of the processesl{xn(B)}, where

SRR (o) 1)y | 1 .2.(2) .
xn(e) = xn +an +2an Foene (4.2.1)
Let
. n
,A(n)(X) =-d—I;A(x),,A(x) = A{x) —a-Dbx,
dx

where it is assumed that the derivatives exist. Then the formulae

obtained are

£© (0)

= . . R .4. .
a1 a +bX " +Z (4.2.2)
N Y ) o | (4.2.3)
n+l n : n
@) _ .2, L, ) (o), (1)
Xn+l = bxn + 27 (Xn )Xn , etc.
Again 2 41 is independent of all random variables with smaller subscript.

Here'{xéo)} is a linear autoregressive process (equation 4.2.2) and, as
such, has known properties. By the same method as used in section 3.4,

the moments of the other component processes are found to be

(1)) 1

_ ' (0)
B, = T-p BAGY

)R
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(2), _ 2 (1) (0 (1)
E(Xn ) = ‘1B E[A (Xn )Xn ]
- .2 E[A(l)(}((o)){bx(l) + A(X(O) 1
1-b & n
_ E%E 5 brEIA(l)(X(O))A(X(O))J ,
r=0
where reliance is made on the asymptotic independence of x;oi, Xéfi for

large k. Since the joint distributions of the process'{xéo)} are known,
the above expectation may (theoretically at least) be calculated.
Similarly

() ()

T x ©) ©)
mﬁx, = z brmﬁAmmﬂbAmmﬁj'

r=0

var(x(l) = b2 var(xél)) + 2b cov[xél),A(xéo))] + var[A(Xéo))]

(O)

-——-{2b 2 bt cov[A(x

1) A(x( ))] + var_[A(X(o))]} (4.2.4)
15 =0 B

(0) (O)

= — I blr'cov[A(x ), A(X )] ’

cov(x(o),x(l) = -2 cov[X(O)
n n b2 n

Ax©
. n

)1 . (4.2.5)

From these approximations for the stationary moments of the
process‘{Xn} E'{Xn(l)} are available, these being based on truncations

of the expansion (4.2.1) of Xn(B).‘ Thus

. (0) (1 . 1,22, _ _, 00 £ ©0)
E{Xn +3xn +2an }-—E(Xn) E[A(x )1
82 T (1) (o) ©),,
r 2= 1 pTE M & T A 2] (4.2.6)
1-b” r=0
and
var{x(o) + Bx(l)} = var(x(O)) +'28b ,A(X(O))]
n n
1-b
2 @

8 Z‘blrlcov_[A(X: Hoaxy L

1-b" r=-=

+
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In the same way approximations for the joint moments can be found.’

From (4.2.3), for k 21,

« A .
w r-1, (0} k(1) |
X = r—'z:l BY A ) b X, (4.2.7)

and hence, using (4.2.5), for k > 1,

)

k
1
cov(x(ii,x(o)) = % bY cov[XéO?,A(Xéii)r] + bk 5 cov[X( ),A(X(O))]
. . rzl - . 1-b™ .
k~1 ' k+1
=0 n 1-b
1)y oy, _ (1) () _ .k (1) (0
cov(X ’ n+k) = b cov(x xn+k—l) = b cov(xn ,xn )
k+1
= 2 cov[x(o) A(x(o))] i
1-b
For k > 1, (4.2.7) gives
W @, 1 e (0) © | )
cov (X ,X )= X I b coviA(X ),A(X )] + b var(X ) -
n+k n+x ,
r=0 =0
1y el pktarly o (2)1),1\(3( )1 & pE var(X( )
1-b~ g=0
= (wlaketly B covin x (D)), A(x“”)] + 5% varx{© ’)}
1-b
on using (4.2.4). From these the approximation cov (X (O)+BX( ), X(Sll er(x}-});)

for cov(xn(B), Xn+k(B)) can be calculated. Using also the expression for

the variance, the approximation for the correlation is

k-1
- k-r-1
corr(x_(8),X  (8)) b+ {8 T b covIX( O
n n+k =0
o p2 © I
+ £ g (b'q‘.kﬂl FEH VIA(X(O)) A(x )]}/var[xw) + er&l)] .

l—b2 g=0
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For kX = 1, this is, to order 2 in 8,

_cov[X(o},A(X(O))]
n n

varIX(O)l]
n

'corr(Xn(B),Xn+l(B)) = Db + B

o (0} » 1y (O ©0) , (01, N2
. 32{ o COVIAGE ), A )1 2D (colen A )J) }

Z b 5 -
CO)J 1—b2 var[X(o)]

=0 varlX
4 ‘a L n n

The moments of higher orxder truncations of (4.2.1) may be found in

the same way, but the resulting expressions become inCreasingly complicated.

4,2,2 In the special case that b = O the eguations for the components
of X (B) are
n

(0

O - arz, | (4.2.8)
TR
x3) . 3w @0, 3A(2)’(xr§°’)xrgl)2 :

-

Hence the values of the sequence Xéo)} are independent with distribution

given by (4.2.8), and, substituting amongst the equations, gives

2y _ (1) ., (0) (0)
Xy = 2077 THAX D)
«(3) _ (1) ), , @, (o) (o) (2) . (0} (0},,2
X0 = 6ATTX TOAT O CIDA® TE) + 30T (X A “)}

The expansion of-{Xn(B)} is then given by

2, (1)
xn+1(&) =a+z ..+ BA(a+Zn) + B7A (a+zn)A(a+zn_l)
3. (1) (1) 1.(2) 2
+ BTIAT (atz O T (arz IAatZ ) + 5 A (a+z ) {Aa+z _ )17

F oerene . _ (4.2.9)
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Approximations for the stationary moments of the process'[xn(l)} can
be found directly from this. Thus

© , ) 122 |1 ,303)

E(Xn n 2 n 3] n )

= Efla + 2} +
+ Bl @216 + 8250 @ezy) ¢ 82 @imn?)

+ 2 B rM s 21 E { A% ar2)}

2, (2)

© , g L 1@,

L)
and, letting X =X
: n n

+ %-B
led 2 .
var(xn) = var(z) + B var{A(a+z)}
+ 28° cov{A(a+Z),_A(l)(a+Z)}E{A(a+Z)}
+ 84[vaf{A(a+Z)}E{A(l)(a+Z)2} + E{A(a+Z)2}vaf{A(l)(a+Z)}] .

(4.2.10)

Also, for joint moments,

(1)

'cov(ﬁn;l,ﬁn) = B cov{Z,A(a+Z)} + BZE{A(a+Z)}COV{Z,A (a+z)}
+>B3E{A(l)(a+Z)}vaﬁ{A(a+Z)}
+ 8% (a+2) 1E(A (a4 ool tarz , A D) (i)}, (4.2.11)
A 2_ ., (1) : . -
coviX_,.,X )=B"E{A (a+2z) }eov{Z, A (a+2) }, (4.2.12)
n+2 n X .
cov(§n+k,§n) - 0o k > 2).

Taking instead a truncation of (4.2.9) to order 3 in B would introduce
a term in 64 into the approximation for the variance and a term in 33
into the approximation for each covariance of lag up toc 3. 1In this
sense (4.2.10) is correct to order 83 and (4.2.11-3) are correct to
order Bz'as approximations to the variances and covariances ofi{xn(B)}.
Clearly the approximations for the moments are of a much simpler
form when b = O than otherwise and the simplicity carries over when

other approaches are used, as will be seen later.
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4.3 Power-series expansions for the stationary distribution

4.3.1 In this section the stationary distributions, F(x;B), of the

proéesses-{xn(s)} are considéred. It will be assumed that the family

of stationary distributions is expressible as'a power—series in B,
convergent at § = 1. It is not clear exactly when this will hold but

it seems a reasonable assumption to make in some cases. There are
certainly some families of autoregression functions‘{ﬁ(x;B)} and input
distributions FZ for which the assumption holds. Le£ the inpu£ sequencé
be normally distributed with zero mean and variance O 2 and 1et.{u(X;5)}

Z
be given by

ux;B) = a, + box + B{(al~ao) + (bl—bo)x}

with |bol, lbll < 1. Then the stationary distributions F(x;B8) are normal

with mean and varxiance given by, respectively,

2
a, + B(al ao) OZ

r .

. . . . _ 2
1 - {bO+B (bl—-bo)} 1 - {b0+B(bl bo)}

In this case not only is {F(x;B)} continuous in B but also it is possible
to make a power-series expansion in B, convergent whenever

. + - < 1.

b, + Bl b )| <1

4.3.2 The stationary distributions F(x;B) of the processes given by

(4.1.3) must satisfy
F(x;8) = [ F {x - u(ysB)IF(dy;8), | (4.3.1)

and one method of finding the required distribution F(x;1) is to expand
F(x;B) as a power—series in B and to equate powers of 8 in the above
expression. In fact it is more convenient to work with the corresponding
characteristic functions: this also has the advantage of avoiding the
ambiguity of the definition of distribution functions at isolated points.
Let ¢ (s;B8) be the characteristic function corresponding to F({x;8) and
let ¢X(s) cérrespond to the stationary distribution Fx(x) required.
Thenv¢x(s) = ¢(s;1). o -
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In this section expressions for the first few terms in the v
expansions will be derived to show how the method works. In a later
section a more complete expansion will be derived and some attention
will be given to its validity. For the present various assumptions
will be made for convenience: it will be assumed that all distributions
involved possess densities which are continuously differentiable.

‘Under certain circumstances, for instance if ¢(s;B) is absolutely
integrable (with respect to s), the characteristic functions ¢ (s;8)

must satisfy the equation, equivalent to (4.3.1),

¢ (s)
27

dp(s;8) = ff exp{lsu(x B) - ixt}é(t;B)dt dx.
For the particular choice of ﬁ(x;B),

p(x;B) = a+bx +B(A(x) —a=-Dbx) = a+ bx+ BA(x)

this equation is

¢ (s)
p(s;8) = ff exp{ix(bs-t) + isa + isBA(x)}¢ (t;B)dt dx.
Let ¢(s;B8) = L 6 (s)B , then
r=0
p © o 0,0) o {ishGa} e
Zer(s)B - —i ffexp{lx(bs -t)} X er(t)B dt dx.

2r j=0 jl r=0

Equating powers of 8 gives, for r > O,

¢ (s) r  {ish(x)}3

6, (s) = ————— [ exp{ix(bs-t)} I
X .

: 2% , 3=0. j:

6 . (t)dt ax.
r=j

The term for j = O in this expression may be readily found, giving
: . isa . )
Bo(s) = e ¢Z(s)60(bs) (4.3.2)

and, for r > 1,
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er (s) = elsa¢z(5) er(bS)

isa

%% _(s) oz {ish ¥
Z . -
4 e ffexp{ix(bs-t)} L ————6__.(t)dt ax (4.3.3)
2T : =1 3. =
j .
The solution to (4.3.2) is
it isbra r : : > x
by(s) = T e o_(b"s) = exp{isa/(1-b)} I ¢_(b s),
. 7" Z ,
=0 - r=0

where the infinite product converges since Go(s) is the characteristic

function of the stationary distribution of the initial process

(0) = -a+t bxn(o) + Zl‘H‘ (h= ... —llolll"°)l

Xn+l 1

a linear process, see section 2.2.2. Let fo(x) be the density corres-
ponding to eo(s).

Since ¢ (s;B8) is, for every B, continuous at s = O with ¢ (0;8) = 1 -
and BO(O) = 1, it is assumed that each Gr(s) is continuous at s = 0
‘with 8 _(0) = 0(r > 1). Since |b| < 1 this implies, for r > 1 and all s,
Gr(bns) - 0 as n > =, Using this limit, iteration of equation (4.3.3)

gives, for r > 1,

| © py(s) g r {ib*sh(x) ) o
o, (s) = L [fexplix(d™ "s-t)} = — o__,(t)atax,  (4.3.4)
=0 2m 3=1 3+ 3
where
£ L 4m y AL 2
pz(s) = 1 vele a¢Z(bms) = exp{&ﬁééigg———l} i ¢Z(bms)
=0 : : m=
8 _(s)
0]
= (4.3.5)
6, ")

The function pz(s) is the characteristic function of a random variable
Y, given by '

an = a + an_l + Zn n = O,l,...,g) ’
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with Y_, =0. Let chy) be the density corresponding to pz(s): then

+ . . -
Pz(y - bg lx), which appears later, is the density of YZ when.Y_l =X,
and pR(y —'b£+lx)fo(x) is the stationary joint density, at lag £ + 1,

of the initial (linear) process.

The expression (4.3.4) for ér does not involve 6 _ on the right-hand

side. Thus, since %6 is known, this formula gives 91,92,93, “-- v
successively in terms of the earlier functions. For r = 1 (4.3.4) gives
© p {s) _ R . _
8,(s) = 1 —— [fexp{ix 6 s-t)}ibtsn ()6, (t)at ax
=0 27
=z pz(s)f exp{ ixb? ls}ibzsA(x)fo(x)dx. (4.3.6)

if fl(x) is the inverse Fourier transform of el(s),

ot 23 g+l :
B = - £ [P opyly = b TR)AG) £ (x)ax
2=0
= .'L, Ry (v, %) A (x) £ (x) ax (4.3.7)
_where
R {y,x) = - £ b¥2=p (y-p*ly 4.3.9)
1 =0 Yy "4

' Oh takiné the inverse Fourier transform of erLs), (4.3.4) leads to

r i
- | 3
£ = 551 Ry (ysx) (M) FE s () ax (x> 1)
where
B R % [ |
Rj(y,x) =4 %2 L b 'QT'PR(Y - b2+lx)A G >1.
It =0 3y

Hence in particular

£, =] R ARE G+ R0l e 4.3.9)
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and so, to the second order in B, the density of F(y,8) is
~ 2
£ly:B) = £,(y) + BE, (¥} + R7E,(x)

with fl and f2 given by (4.3.7)}, (4.3.9) respéctively. This apprc%imation
has been found to sometimes give negative values. ’

'Approximations for the moments of the stationary distributions may
be obtained either by differentiating the approximation for the charac-
teristic function or by integrating the above épproximation for the
stationary density. These lead to the following approximations for the

mean, u{B), and variance, 02(8), of the process'{xn(B)}.

WB) = ug + o [AGIE () ax

2
+ 5= [AAEIR) (v x)E () ax ay (4.3.10)
2 2 2b
o“(8) = 0," + 8 5 [ x-ud A)E, (x)ax

1-b
+ g° [-%- [fu) A AR, (7,30 £y (x)dx dy
1-b

1 2 T 12
= finey fO(;{)qx -1 5 J‘Agc)fo(x)ax}] (4.3.11)

1-b

‘where ud; 002 are the mean and variance of the density fb(x);' If Aly)
is differentiable it is possible to simplify the expressions slightly

by an integration by parts. The above approximation for the variance

need not be positive.

4.3.3 It was seen in section 4.2.2 that the choice b = O leads to a
great reduction in the complexity of the expressions derived by the
method used there. This is so also for the present method. Choosing -

b = O means that the initial approximation for the autoregression
function A(x) is now a constant function (= a) rather than a linear
function (= a + bx). Hence, given that some linear function will usually
be a better approximation to A(x) (in some sense) than simply a constant
function, it is clear that restricting b to be zero will lead to a worse

approximation for the stationary distributbn in the sense that more terms
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will be needed to attain the same accuracy. However the relative
simplicity with which these texms may be calculated when b = O seems

to outweigh this disadvantage when more than just one or two terms are
needed by a choice of b # 0. Indeed, for many input distributions,

the case b = 0 may be the only one for which the stationary distribution
of the initial ({(linear) process can be found explicitly, see section
2.2.2,

When b = O the above formulae reduce to

0,() = &% (s), £,0y) = f,ly - a)

and, for r > 1,

1sa¢ (s)
e sA(X)}
8 (s) =ij explixt} I ==X 0,4 (t)dt ax
j=1
4 3
=6 0s) f I lasaod o g
. ji r=j
.o9=1
. IR
£ ly) = I [ (.:.”, — £ (y)f {A(x)}3 .(x)dx]
j=l J' dyj J
where now A(x) = X(x) ~ a. These lead to the following expressions for

the first few terms of the expansion of the density f(x;B8), where these
have been written in terms of the initial density fo and integration by

parts has been employed.

W = £ @] e - alg e,
5,00 = £V pf 2P oz maxf (e - ale toax
+ 2P wf 0w - ¥’ toax,
g0 = £ () 2P g e [t - aleyax
1 .(1) (2 320 g o
- 35 c)f ) G f )ax. . f{Ax) - al £ (x)dx
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(2) (1)

+ £ DY D - alggtax. [ - adegGaax

-e i w [0 - as .

Expansions for the mean and variance, to order 3, are

W@) = E{Z+ a} + BE(A(Z + a) - a}
+ %0z + ) - aen Y @ 4 a))
+ 33}3{;\@ + a) - ‘a}[E{Au) z+ a)n? + —;— B3E'[_{Mz +a) - a}Z]E{X(Z) (z+a) }
o2(8) = var(z) + 8% var(A(@ + )}

+ 2B3E{A(Z + a) - a} covid (@ + a) - a,_k(l)(z +a)l.

Note that the approximation (4.2.10) for the variance is the same as this
except that a term of oxder 84 has been added. However the extension of
the above method to terms of order 4 would yield not only this term but
another tegg alsoc of order 4. (this is essentially cov(Xél),X£3)) where

Xn(B) = L ;7-X£r) as in section 4.2.2). The earlier approximation has '

the advantage of always being positive.

4.3.4 Equation (4.3.4) gives an alternative integral equation for the
characteristic functions ¢ (s;B): thus
® p,(s)

d(s;8) =6 (s) + I
(@] 2=0 27

[fexp{ix " s-t)} lexplib Bsh ()} -11¢ (t;8)dtax.

The equivalent equation for the stationary density function is

2+1

£lyif) = £,0p) + on [p, {y=b

x-b¥8A ()} - pg{y—b“lth(x,-s)dx.
2, .

When b

O this reduces to the equation
£(yiB) = £,(y) + [ [£,(y-BAG)) ~ £ 7)1 £ (x;8)dx,

and this is equivalent to

£ly;8) = [ £ (y-BA(X))E(xiB)ax,
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which is just the equilibrium equation for the density of the process
-{Xn(S)} since fo(y) = fz(y-a). However the interpretation of the

equation is not clear when b # 0.

'4.3.5 In this section the approximations for the moments produced by
section 4.3.2 are considered for a simple case in which they can be
evaluated simply and for which the true values are known. = Let

_A(X) = a* + b*x and let the input distribution have zero mean and

s 2 & .
variance UZ . Then the true mean and variance of the stationary

distribution are

g 2

a* o%x2 = Z

4
1-b* 1-p»2

u*F o=

’

respectively. Suppose that the method of section 4.3.2 is applied with
@ and b not necessarily taking their correct values a*, b*. Then the .
approximations to the mean p* are, from (4.3.10), to zero, first and

second powers of B,

a 1 b*-b

= ———. [, *
Ho. 5 Tp & tip &
1., . b*b . b*-b 2
1p (& + Gpar + G el

respectively. For comparison of the approximations their ratios to the
true value are taken and the terms grouped appropriately:_this gives,
respectively, '

Ko
a { _b b}’ 2

a* 1-b

a b*-b a ,b*-b
1+ (a* - 1) Ll—b ) — )

a* '1-b

2 _a b*b.3

— =)

a b*-b
L+ G- DEHD) - w85 -

These expansions are appropriate when the initial autoregression function
is specified in terms of its intercept and slope. However it may be
more natural to specify the slope of the line together with the mean,llo,
of the initial process. In this case appropriate expressions for the

comparison of the three approximations are
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i M ) u
O b*-b O b*=h K 2 ¢]

From these it can be seen that, provided b < (b* + 1), the method
gives an improving sequence of approximations for the mean and further

that if either the slope, b, or the mean, u_, are chosen correctly then

o
the approximations found using these initial values are exact.

A similar comparison may be made for the approximations to the
variance of the stationary distribution. The initial, first and second

order approximations are

2 2
g 0'

Z 2b b)

2! 2 - ¥

1-b 1-b 1- b

g 2

Zz-{l + 2b(b*—§) + (1+3b )(b*-b) }
1-b 1-b - b )

respectively. The ratios of these to the true value 0*2 are

2,2 —h) 2.

;- b ]o2 R - b; (14 2b(b*+b) }
1-b" -  1-b 1-b°
{b*-b) 3. 2

1 - ——-—*3~ {1 + 3b + b“(* + b)}

1 -Db

respectively. Once again the method produces an improving sequence of

. approximations when b is sufficiently close to b*. However the errors

of the initial and first approximations are of the same order when

elther b* or b is zero.

4.3.6 Even for low order terms many of the expressions of section 4.3.2
are not particularly simple even when the conditional density pg(y) can
be written explicitly. Suppose that the input distribution is normal

with zero mean and variance ¢ 2, then ¢ ,8 ,f (g and p, can be found.~

Z
In particular, setting My = a/ (1-b) and 0dq = 2/(J_-b )
2042,  2,-1/2 Ay -, a-p""™y?
p,{y) = {2n(i-b Yoy} exp | - 2542, (L >0} .
(l b :
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When the autoregression function is A (x) = exp{; %-xz} the first

correction term fl(y) {4.3.7) to the density-fo(y) can eventually be

. v 3
_Show? to be given by fl(y) = SE-Fle) where
2 .
Cym? e ble g™ g )32
P ly) = exp{- > '}( L 2 2§+2 1/2 eXP[— —> zo' }
210, 20, 2=0 {1402 (1-b>" %)} 2{1407 (1-b°"*2)}

5 _
. gy . b,(y-po) )

The approximation to order one for the mean is, from either (4.2.6) or

(4.3.10), withg =1,

2
1y n -
ug + "E* [(1+o 2) l/zexp{- 0 5 }- a - buO]

21+ ")

0
1 2.-1/2 Yo
= E:E-[(l+do )y T Cexpl- 5 ~}- bu ] .
2(1+0 )

The next term in the expansion is, from (4.2.8),

_i__. x @2y _ (0) (0) _1 (o2, .
02 rEO b El}exp( N X et 5 X 09 §}]
( (o)

where the joint density f (x,y) of (X

f (x) and P, (y—br+l ).

) is the product of

4.4 The marginal characteristic function

4.4.1 In section 4.3 a solution was obtained by formal methods for
¢ (s;B), the characteristic functions of the stationary distributions of
the processes'{XnCB)} given by (4.1.6). Here it is shown that this :

expression satisfies the necessary equations for the characteristic

functions of the stationary processes.

In finding the solution for the characteristic functions ¢ (s;B) it
seems natural to work with the Fourier transforms of the functions
‘ Aj(x) ( = 1,2,3,...). However these need not exist since it is not
even assumed that A(x) +~ O as x ~ +o, There are several ways of

avaidng this difficulty. One possibility is to approximate the .
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autoregression function by another function or sequence of functions
such that the Fourier transforms involyed for these new processes

all exist and have other suitable properties. Other possibilities

are the use of Generalised Fourier Transforms (Titchmarsh, 1937, p4)

or the theory of distributions (generalised functions). However, here
some restrictive conditions are placed on Alx) to ensure good properties
for the Fourier transforms. No conditions are then needed oh the input
distribution. It would also be possible to.demonstrate the validity of
the solution (in a slightly different. form) by placing conditions on
the input distribution with much less restrictive conditions on the
autoregression function.

In section 4.6 a different approach leads to a different form for
the solution ¢ (s;8) which aveoids forxrming the Fourier transforms mentioned
and which, at least when b = 0, is equivalent to the present solution.
This method indicates that the solution should hold under a wide range

of conditions.

4.4.2 The expressions found in section 4.3.2 can be rearranged to give,

as the possible solution for the characteristic function ¢ {s;B), the

formulae
$(s;B) = SO(S) + & B SN(S) . {(4.4.1)
N=1
oo L 3, (M,9) ,, o+l o
By(s) = & & (ib s)dp Nt sip, (s) (N =1,2,3,...) (4.4.2)
j=1 2=0 _
279! | N-j . >3 = Ny .
with
isa ® r
GO(S) = exp{ijgﬁ I ¢Z(b s) _ . (4.4.4)
r=0
2+1 2
_ isa (1-b ) r
pQ(S) = exp{——i~:-g——~—& i ¢Z(b s) (2 > 0). | (4.4.5)

r=0
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The functions Lj(u) are the Fourier transforms of the functions_Aj(x),
L, () = | A et™ax (G > 1). A . (a.4.6)
As has been stated, these Fourier transforms do not in general exist for

all real values of the argument: expressions for T(N'J)(s) equivalent

to the above are

N, 3) _ .1 e (e 3
T (s) = 2wj:.ffexp{1x(s £) 1A (x)eN_j(t)dt dx
1 . .
=57 Ve
where Gq(s) = felsxqu(x). Thus it is not essential to work with the

Fourier transforms since these alternative expressions are avallable.

However they would be more complicated to use since eq(s) would have

to be inverted to give Fq; it is not clear when this can beAdone.-
Equations (4.4.2), (4.4.3) give expressions for 61,62,63, ces in

(1,1)

turn. Since eo is known, (4.4.3) gives T and with this (4.4.2)

. . . . 2
gives 61: then using (4.4.3) again gives T(z'l), T(z' )

and these are
used by (4.4.2) to giw 62. Proceeding in this way the sequence

60(5), 61(5), 62(5) sess+. 1S given,

4.4.3 One way of ensuring that the integral appearing in formula'{4.4.3)
exists is to place conditions on A(x) so that Lj(u) decreases rapidly at
infinity and then no condition need be put on the distribution of the
input random variables. The behaviour of the functions Lj(n) at infinity
is related to the smoothness of A(x) throughout its range (Titchmarsh,
1937, p.174). Assume that A(X) may be extended into the complex plane

to a function, A(z), analytic in a strip, —cy < Imz < ¢, {c 1Sy > 0),

1
containing the real axis and that

[+

f4lA(x+iy)]dx < o (fcl <y <cy.

Then by changing the contour of integration it may be shown that for any

c, 0 cx min(cl,c2) there are constants A,B such that

oy < madeelul (o <u <. (4.4.7)
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A fixed ¢ > O is chosen. Also under these assumptions the inversion

formula holds
P s = frime™an e s <) O (4.4.8)

Using (4.4.7) and the inequality

f |u+y|ke_h!u!du = f Iu]kefh!u—YIdu

-—C0 1

< flu!k e”h{lul“]ﬂ}du = ehlyl 2k

hk+l

(th >0), (4.4.9)

it may be shown that the following bound for eN(s) holds for N > 1

N-1 i e N '
log(s) ] < 512 g3 a1, J%!—}eclbs,l (4.4.10)

A

KAN{K b3
j=1

where d = {c(1 - lbl)}-l, K = Bd{7(1 - |bl)}—l and where the summation
appearing is zero for N = 1, If the bound holds it follows that the

series {4.4.1) is absolutely convergent for B lying in a certain interval
about zero.

Firstly, since Go(s) is a characteristic function,

lT(j'j)(5)| < 3 f!Lj(u)!ieo(s~u)|du

j —cju - BAj .
f BA~e | Idu = S12m

[o N[

S 2 i

-0

However, in order to obtain a bound with a manageable form, the following

inequality (which helds since c_l = dall - |b]) < @) is used

- 3
29 (g < e <lsl G > 1. (4.4.11)

(lr l) -1

In particular IT eC]S‘ and hence, from (4.4.2),

(s) | < Baaw

«©

5 ]b'Q'S‘ lT(l:l) (bg'+ls) l <z

9, (s)
ll I 2=0 2=0

1A

2+1
o] 5] * B2 ol el

l le ibsl

{A
™

o«
® I -‘—TT
l—
=0 T 7 (



Thus {4.4.10) holds for N = 1. Assume that (4.4.10) holds for

N=1,...N*, then, for j > 1 and 1 5 N 5 N¥%,

2033 ()] <« 2= flrg ] o ts-w fau

— 273!

N-1

82

. .t o lP el ST B . _
< 1 _{BAJe c!ulKAN{K T lsp'l;\] dN,p(l+K)N p-1 + lsN1'1| le c[bs buldu.

= 2mj! =1

Using the inequality —clu‘ - clbs;bul 2 -c(l-]b[) lu‘ - c]bs‘, the

following is obtained by applying (4.4.9) with h = c(1 - |b‘) = d—]':
. N+j _ _ e _ )
IT(N+3,3)(S)] < BATURG NEL GNP g NP 1Pl oatlyg clos|+etidu ] |s]
- 27mj. -
p=1
_ 2 g™ o™l 13 clsl
2n3! TU(I4K) - 1 »
- I;LI; M o™ teelsl s 1 1 < w <. (4.4.12)

The expression (4.4.2) defining @

* 4

(4.4.11) while the bounds for the terms for j = 1,...N* are provided

by (4.4.12) since here 1 < N = N* + 1 - j < N*.

inequalities
' 2+1
b2 < [b|* g1, B sl eoles]
N’H"l © . )
[eN*+1(S)t < k z [b'q‘s]3 lT(N*+1IJ) (b2+ls)l
j=1 =0

1A

3=1

*
BdAN'+l

N*+1
sl .
1-|b| T w@*+1)!

c|bs|

+

N* 3 . .

* | * 4] — *—

AT T S X S b JE PECE
j=1 3’

(s) involves the terms

N* 3 o e .
. s|7 BAK JN*H1N*-JH1 g N jclbs|
1-1b} j+7

+3) (s) {j =1,...N%+1). For j = N*+1 the term is bounded by

Thus, using also the

+ lslN'+l 1eS lbsi )

{4.4.13)
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This is (4.4.10) for N = N* + 1, hence the bound holds for all N > 1.
Since (4.4.10) holds, anothEr bound is

2 AN . NN
‘K {ad(1+K) } ls| A |s| ] c]bsl
leN(S)]f.[ 1+ K exp{ d(_1+K)}+ NI -€

and thlS lmplles that If |e (s)l converges for B satisfying

lg] < {Ad(l+KJ} . It would be unreasonable to expect this interval

to be a good indication of the region of convergence of the series (4.4.1)
since it takes no account at all of the input distribution. Further

many of the inegqualities on which it is based may be improved considerably.

The interval is

8] <« —<oa=loh?
alc(1-b)? + B 1}

14

however, since A and B depend upon c, this does not imply that the series

(4.4.1) converges for all B when A(z) is an entire function.

4.4.4 If F(x;pg) is the marginal stationary distribution function of the
process'{Xn(s)} generated by (4.1.6), then ¢ (s;8), the corresponding

characteristic function, must satisfy the equations

]

b (s;:8) f eisxdF(X;B)

o5(s) [ explis{a + bx + BA(x)}]1dF (x;8)

where ¢Z(s) is the characteristic function of the input distribution.
Under the assumptions already made about A(x), the exponential may be
expanded as a series and the integralband summation reversed, giving

[+-]

¢5(s) I fexp{ls(a+bx)}
j=0

(158)

6 (s3R) A3 e ar e 8)

(-]

. 1sa (isg)d
$y(5) {5 msig) + T —i@— foy (g s=usprau}  (4.4.14)
. j=1

2n

where this last follows on substituting for_Aj(x) from (4.4.8) and using
the absolute integrability of the resulting double integral to justify

reversing the integrations to give (4.4.14).
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The argumenﬁ giving expression (4.4.13) shows that the infinite
series defining each éN(s) is absolutely convergent and hence that
changing the order of integrations and summations involving these
terms is justified. Substitution of the series (4.4.1) for ¢(s;8)
into the right hand side of (4.4.14) and use of the relations (4.4.2—5)
leads, after a little manipulation, to the conclusion that ¢ (s;B8) as

defined does satisfy the above equations.

4.4.5 The spacial forms of the above expressions for ¢(s;B8) in the

important special case when b = 0 are now given. Firstly

_ isa
eo(s) = pl(s) = e ¢Z(s) (& > 0).
Since T(N'J)(s) appears only as T(N'j)(o) this will be replaced by
T(N’j). Then (4.4.2) becomes
N C (N,5)
o(s) =6 (s) I (is)lr™ ") N> 1), (4.4.15)
(0] . -
=1
and T(N'j) is given by
(Nrj) _ 1 . _ .
T = zﬂj:ij (W84 (-w)du (1<3j<N.

Substituting for BN in this expression'gives

pj“” G =M,

T('ij) = (404016)
N~
g e Impld 5o,
n=1 J

where
S G S ) i—iu)ne (-wdu  (j > 1; n > O).
3 2n3! j o - T =

This expression for P;n) may be written in various other equivalent ways

when the required quantities exist; thus alternatives are
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n,Jj i
P.(n) = ']:T“,[ Th L) I(IX) dFo(x)
J J‘ ax
n '
. 3 £ (%)
= L On dx
j: | 33
1 a5
= 57 T U v e el (4.4.17)

dy

The last alternative turns up in a natural way in the method described in
section 4.6.2. The derivatives exist for all n if either A(x) or Fy (%)
is continuously differentiable and 1f the integral exists. ' Here FO is
the stationary distribution of the initial process and in this case

FO(x) = Fz(x—a).

The expression for $(s;8) can be written in the form

¢ {s;8)

Go(s)h(S;B)

(=}
1+ I
N=1 j

g¥ (15y I N3

1

his;8) (4.4.18)

[ o~

4.5 Joint characteristic functions

4.5.1 The marginal distribution of the process (4.1.1) is given by the
characteristic function ¢(s; 1) as found in section 4.4 and, once this
is known, the joint stationary distribution of any finite collection of
values (Xn,X ; ee-rX ) can be found immediately. For the pair

n+l n+
(Xn'xn+k) this Would involve integrating the joint stationary distribution

of (Xn' Xn+l n+k
the marginal distribution. Thus it would be necessary first to invert

resesX ) which is known from the structure of the process and
the characteristic function and then to perform a number of integrations:
it is doubtful whether even the first step of inverting ¢ (s;1) could be
performed analytically except in very special cases. An alternative
which is discussed in this section is to continue to consider the required
process {xn} as one of the family of processes'{xn(ﬁl} and to obtain the
joint distribution of (XnLB), Xn+kCB)) as an expansion in powers of 3.
This is a natural extension of the method for finding the stationary

marginal distribution and, in the next chapter, leads to simple procedures

f

v

for calculating the moments of the stationary joint distributions.

h
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4,5.2 The solution

[+

N
$(s;8) = 6 (s) + L B0 (s)
o w1 ¥

(where SN(S) are given by (4.4.2-6)) for the sta‘tionary characteristic
functions of the processes {xn(B)} may be used as a basis for determining
the stationary joint distributions. Let d>k(s,t;8) and Fk(x.y;B) denote
the joint stationary characteristic and distribution functions of

(Xn(B) ,Xn+k(8)). Then, for k > 1,

¢y (s,£;8) = ” explisx + itylF (dx,dy;B8)

[}

¢Z<t)}j explisx + it{a+by+BA(y)}IF, _; (dx,dy;B).

‘This gives, on making a power-series expansion in B and using (4.4.6),

for k > 1,

ita

k_l(s,bt;B) + i

ita
o o7
J

(i§§)3f N

¢ (s,t:8) = ¢Z(t){e ; j(u)¢k_1(s,bt-u;3) dul.

1l
This defines q)k(s,t;s) recursively for increasing k commencing with
c;;o(,s,t;g) = ¢{s+t3p).

The coefficients of an expansion in powers of g of ¢k(s,t;s) may be

identified by equating powers of 8 in the above equation. Thus

o]

b ls,ti8) = 0, (s,8) + 1 Blag (s,E), (4.5.1)

- ’ N=l ’

GN,O(S,t) = g, (s+t) (N > 0) (4.5.2)
_ ita ,

0 (5,81 = P (Roy (s,bE) G2 1) (4.5.3)

with (4.5.2) and (4.4.4) this gives, for k > 1,

k-1 o

_ i(s+t)a m n k,
eo,k(s't) = exp{-———-———l p— } 1_1 ¢, (b t) _1-1 ¢Z(b (stb t)},
m=0 n=0

which is the jjoint characteristic function of (Xn(o) ,Xn+k(0}) from the

initial linear process. The other coefficients g, , (N > 17 k > 1) are

R

gilvan by
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O S8 = eita¢Z(t){5N,k_lLs,bt) + Jg (it) R}:N'])(s,bt)} (4.5.4)
where, for k > 1,

RJEN,j) (s,t) = ij IL (.u)GN jlk_l(s,tfu)au d<j=<N. (4;5.5)
Note that R{N;j)(s,t) = T(N’j)(s+t) where T(N'j)(') is given by (4.4.3).

Since SN(s) given by (4.4.2) satisfies, for N > 1,

. . N . .
B (s) = elsacpz(bs'){eN(bs) + 1 (as)Ie M) gy,
j=1

the above formulae imply that, for all k > O,
BN’k\O,t) = eN(t), ¢k(0,t;3) = ¢(t;8B).

Obviously this should hold since the marginal distributions of Xn(B) and
X +k(8) are the same by the stationarity assumption.

The above expressions give the expansion in powers of B of the joint
characteristic function of the pair (Xn(B),Xn+k(B)) from the stationary’
process {Xn(B)}. Joint characteristic functions of larger {finite)
collections of values from the process can also be found in the obvious

. way.

4,5.3 The special form of the above expressions in the case b = O will

now be given. Formulae (4.5.2), (4.5.3) glve

i

exp{i(s+t)a}¢z(s+t) = 80(5+t) (k = 0),
(s,t) = - (4.5.6)
exp{i(s+t)a}¢z(s)¢z(t) = so(s)eo(t) (k > 1).

O IS

Since RéN'j) appears only as RéN'J)(S,O) this is written as RﬁN'j)(s).

Then (4.5.4) becomes

N
= Loy (N,3)
N k(s t) e (t){e (.s,O) + T @8RS (s)} G;,k > 1).

j=1
This implies that eN’k(s,O) = eN,k-I(S'O) = GN,O(S'O) = eN(s) u51ng-
(4.5.2). Hence
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N .
- ' . 3N, 3) v
GN,k(s,t) = eott){eN(s) + jil 1) R (s)} N,k > 1). (4.5.7)

Let the functions Pj(y,s) be defined by

Pily,s) = %_-,-j S prar ) G2 1. (4.5.8)

This is equivalent to the formula

= (oiuyn e e ' .
Pj(y,s) 2731 f e Lj(u)eo(s u)du G 21

when Al is written in terms of its transform. Then

(n) " |
P."" (0,s) = - PjCy,s) y=0 | (4.5.9)
oy
1 .
= n5 f { 1u}nLj(u)60(s-u)du
and the quantities P;n) used earlier (equations 4.4.16-7) are given by
Pj(n) = P:§n) (0,0) (3 21; n>0).
Using these quantities it is possible to substitute for GN x in formula
. ’
(4.5.5) for RéN'J) to obtain the expressions
pl® (0,s) G =
3 (k = l)r
N-3 s n /n _
g pWN-3m) g (q) 1) D io,5) (12§ <m
n=1 g=0 . J
RéN'j)(s) = (4.5.10)
' eo(s)P.w) G =N |
J x > 2).
' © "3 -3, )
6 . ()2 + I R ' (s)P, 1<3 <N
N-3 3 n=1 -1 J
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With (4.5.6~7), (4.5.1) beconmes, for k z_l,

1£3B) = 8 (s)e ) + © 8 e (£){o (s) + z )3 (N'J)(s)}
N=1 3= )
> N ¥ N, 3) , |
=e(ﬂw&s>+z z:scnﬂﬁ'an. (4.5.11)
N=1 j=1

An alternative and useful form can be cbtained by defining TéN'J)(s)

sy = o P ().

Then

where

2,3

o N . .
by (5,858) = o ()0 ({1 + 2 2 g ieyIz®rY)
N=1 j=1
© N N 5 (N,5)
+ 13 gl e}  (4.5.12)
N=1 j=1
(0) : . =
P, (0,8)/8,(s) G =n
k = 1),
- N3 p (3,m) 2 (n~q)
) e z (n) (is)3p," 2 (0,5)/8,(s)} (1<j<N)
n=1 v q=0 4 J
Y (s) = <§ - (4.5.13)
) o
2 G=M x> 2).
S 0y N3 LO-3,m T mdn) o)
o s’ Im) z ‘I'k 1 Xs )Py (123 <)

=1 n=1
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4.6 Stationary distribution as the limit of conditional distributions

‘ éiﬁ;l In section 4.4 the stationary characteristic functions ¢ (s;8)
were found by using the identity of the distribution of X (8) and
l(B) when the process is stationary. Now the distribution is found

as that obtained by conditioning on an event increasingly far in the
past. This method avoids the assumptions of both section 4.2 and ,
section 4.4 and leads also to expressions for conditional characteristic
functions. However, it has nof been extended to give expressions for
joint characteristic functions similar to those found in section 4.5.

For the process {Xn(B)} generated by (4.1.6) let

Yn<8) = bx_ (B) + BA{xn(B)}
*
and Zn = a + Zn n=...-1,0,1,...).
*
Then xn+1(8) = Yn(B) + zn+l
) . * *
and ¥ L8 = b{yn(s) + zn+1} + BA{yn(s) + zn+1} n=...~1,0,1,...).

(4.6.1)

*
Here the random variables Y (8}, 2 are independent for each n. Let

n+l
¢, (s:8) denote the atablonary characterlstlc function of Y (8) and let
bpwr Fz* be the characteristic function and distribution functlon of Z .

Then ¢ (s;3), the characteristic function of Xn(B), is given by
$(s:iB) = ¢,,(s)d,(s:B).
The function

(s;y;8) = I o(siy) = tSY (4.6.2)

is, trivially, the conditional characteristic function for each n and B

of Yn(B)‘given that Yn(B) =y, Using (4.6.1) the conditiconal characteristic

function of Y (8) given that Y (B) = y is
n+l n-

¢Y,l(s’y;8) = f LO'O(s,by+bz+BA(y+z))sz*(z).
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Because of the definition (4.6.2) the integral may be expandéd as a

power series, giving

. o . X '
¢ (s;yiB) = f r gl A‘4¥iEL' L(J] (s,by+bz)dF_. (z),
Y,1 7 o0 3! 0,0 Z*
where . :

() 37 |

L (s,vy) = — L (s,y} (j > 0). Then, writing

0,0 ay] 0,0 -

L., . (s;y) = f Aj( f2) L(j)( by+bz)dr, , (z) (4.6.3)
j,1°1 31 Yp,0 'SrPY*Toz)dE, Az}, -0

the conditional characteristic function is

I ™8

BJL.,I(S:Y).

$ (s;y:B) =
?vl o J

J

Because of the convolution-like form of (4.6.3), L (s,y) is continuously

. j.1
differentiable (with respect to y) if one or both of A(-) or Fz*(') are.
It will be assumed that there is a Taylor series expansion for Lj l(s,y)

14
about any point in the y-range. Then, extending the notation as required,

the conditional characteristic function of v 2(B) given that Y (B) =y is

+

K

]

fl

¢Y'2(s;y;3) BJLj’l(vaY+bZ+5A(Y+Z))dFZ*(Z)

0

. [+] [+] . k
Jorop pR AR 1 U9 pyineyar,, ()
j=0 k=0 ke 3.l

il

m -
T BlL. L (sey)
j=0

where Lj 2(s,y) is given by an integral over the distribution Fpwe
’

The above procedure may be repeated, obtaining the conditional

characteristic function of Yn +1(B} given that Yn(B) =y as

+m

<o

(s;y;B) = I BIL (s,y)

¢ .
+1
3=0 J.m

Y,m+1

where Lj m+1(s,y) is given in terms of Lj m(s,y) the corresponding functions
) :

r
from the previous step. This relation is given by
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J P, S
) = T [1E (s pyrn) T ap 2) Gamzol, G.6.4)

L. . '
J,mtl p=0 Jj~p.m b.

'Y (i = 0), .
where L, (s, = 4.6.5
5,087 ¢ )
o G >,
v) P .
and where L.° ' (s,y) = L, ({s,y) (jym,p > 0).
J.m ayP J.,m -

Then, by the assumption of stationarity, when the processes are

not periodic

=4 s

y(s:8) = lim z  glL. (s,y) (4.6.6)

. j,m

My =0

since this is the limit as m + « of the conditional characteristic function
of Yn(B) given that Yn~m(8) = y. It follows that the right hand side of
(4.6.6) should be independent of y unless the process has more than one
stationary distribution. Even if the process is periodic with more
than one possible staticnary distribution, for any fixed y the stationary

distribution is defined by the characteristic function

1 M o .
¢Y (s.;e) = lim ﬁ' Z N BJI-M m(SIY) .
Moo m=1 j§=0 3

It is not possible to f£ind Lj °°(s) = lim Lj m(s,y) directly as a
[ r
solution to (4.6.4) since, taking into accgunt that L. o is independent
14
of y, the eguation becomes

L. ({s) = f Lj,m(s)sz*(z) = L.,m(s)

which is trivially satisfied by any function L, °°(s_). Thus the solution
’

must bé found explicitly using (4.6.5). Equation (4.6.4) is easily

soclved for L n(s,y) {n > O) since these are given by

o,
= 4
Lo,m+l(s,y) j Lolm(s,by bz)sz*(z) (m > O)
. isy X
and, since LO O(s,y) = e , this leads to the formula
’
n r isbny
LO,n(s'y) = I ¢Z*<b s)e (n > 1). (4.6.7)

r=1
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The limit of this as n * @ is independent of y.
' By repeated substitution in (4.6.4) the following set of formulae

may be derived. Define for j,m,p 2_0,

Eépiro(s,y) = f L (s by+bz) A‘MGF « (2)

(p) _ (» _
zj’m'q(er) = f ,m, g1 ,by+bz)sz*(z) | (@ =1,2,3,...)-
Then
jom+l n=0 p=1 j=p,mn,n s fal}

This gives the coefficient of Bj in terms of those of lower order.
However it does not seem possible to find the limit as m + « of Lj,m(s’y)
explicitly.
Define
1 (n = 0),
prls) =

n

no¢,,®s) (n > 1).
r=1

These are related to the quantities pn(s), used earlier in (4.3.5) and
(4.4.5), by

Pais) = by (S)Q:(S) .

Then, using (4.6.7) and (4.6.8),

m

m
g o) s,y) = & 2tV (s,y) 4.6.9)

— O n,m-n
n=0 0 m-n,n n=0 r

Ly oy (89

where, for q > O,

9,(1) (s,y)

O/m,q

., m C . . m g+l agtl
p;(S)lb ] j exp{isb (b~ "y + b zy + qul+...+bzq)}

_ a
A%y + % T b4z T AR, (z) -
o] 1 1=0 i
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Substituting this in (4.6.9)

n o _ m-n
L () = I pr(s)ib”s [ explish™ " o p & plz)}
’ n=0 -  §=0
N A m-n
A" "y + I bz} I sz*(zi) .

J3=0 1 =0
a . ‘ '
The distribution of I bJZ* tends, as g *+ @ , to the stationary

distribution FO of 1=0 the initial process'{xn(o)} given by

X (o) =

u

+ . = ) + *
+ bxn(O) Zn bxn(o) Zn+

n+l +1 1’
and hence
. > ., n s . ntl
lim L (s,y) = I p*(s)ib's j explib ~sx}A(x)dF_(x).
. 1,m+1 -0 n (o]

4.6.2 Once again the expressions simplify greatly when b = 0. Formula

{(4.6.4) becomes

b ‘
s = a) .
Lj'm+l(a,y) = qio Lj_q'm(s,O)Pq(y) (j,m > 0). (4.6.10)
o]
- A= (y+z)
where P, ) f oy (2)

and in particular Po(y) = 1, From either (4.6.7) or (4.6.10)

eiSY . (n = 0),
Ly (s.y) = , (4.6.11)

0,
1 n > 1).

Hence (4.6.10) becomes, for j 3_1,

(is)JPj ty) (m = 0),
= 4.6.12
Lj o+l (S’y) j-1 (4.6 )
(q) ,
L Lj_qlm(s,O)Pq(y) (m > 1).

g=0
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From this,
Ll,l(s,y) = is Pl(y)
Lllz(,s,y) = Lll(,s,O)Po(_y) = is Pl(O)
and Ll,nﬂ-l(s’y) = Ll’m(s,ol}?ocyl = Ll'm(s,O)' m = 2,3,....).

Thus, form > 2, L. (s,y) is independent of y and L m(SIY) =1, 1 (s,0)
’

1,m
(m > 2). t may be shown that, for all j,

1,

L, = L, . (©] >

]'J_!_r(SIY) J,J(sl ) (r__l)

and thus that Lj j'*_1'(s,y) is independent of y for r > 1. Suppose that
’

this is true for j = 1,...3*-1. Then
) (S,O) =0 (q = lr-_o-j*_'l; r Z_O)l
and hence (4.6.12) gives, for r >0,

(s,O)PO(y) = L., . (s,0).

(S;Y) J*'J*+r

L., . fa
J*,]*+r+1 L]*'J*""r

Hence L.,

gx,grape1 SrY) = Ly, (8,00 2O . 4.6.13)

However note that Lj* j*(s,y) is not independent of y. Because of these
1

‘results (4.6.12) now becomes, for j < 1,

(is)JPj (y) (m = 0),
S g . .
Lj'm+1 (s,y) = qio Lj_q,m(s,O)Pq(y) (3>m> 1), (4.6.14)
L, (s,0) =1L, .(s,0) (m> 7).
Jm ']
. ) _ _a" ) : s
Define P ' = ~—— {P, (y)} (n,j > 0), then as can be seen by substitution
i n 37 y=0 ="

in the above, dy



L l(s,y) = L.

j.mt Je

where the summation is over all sets of (m+1) integers r

such that r, + ¢

1 2+...

(4.6.5) and hence that L.

m
L, (s,0 =
j.m

! n=1

+ r

IL(s) PR

%6

r, (rz)

(r3)- (x_..)
(s,0) + L(is) P P

r ......Pr ) P
1 2 'm

o
, g 17 Ty = L
ey S d Note that Lj’o(s,y) is given by

5 O(s,y) =0 (j > 11. Therefore
!

r, {r.) (r

1 2 trn)

P P('O)

r r
n-1"n

)
: a<m<
1 2

where now the combined summation is over all sets of n < m integers

ves > i i
(ryre..x > 1) satisfying r

Let T(N'j)
T(N,j) -
then
T(N,:x) 5 P(0)P
1

+ ... ¥+ ¢

1 n= 3

;, N> 3j>1, be given by (4.4.16), i.e.

(0)

Pj (3 =N,
N-j s .
n=1 ]

{xr.) (r )
1 ....Prkl

2 k

where the summation is over all sets of k > 1 integers (rl,...,rk > 1)

satisfying ry 5

can be no larger than N—j+1.

N

+ ¥r. *t .. + X

=Nand zr = With these restrictions k

X x - I-
By comparison, it can be seen that,

(is)jTGN'j)

Ly n(s,o) = L<m ﬁ_N)
- j=N+1-m
and, in particular,
N . .
L (s, 0y = I (is)jT(N’j) N> 1).
N,N =1 -

Because of the results

(4.6.13) and (4.6.11) the limit in (4.6.6) becomes,

if conditions of uniform convergence hold,
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N C
$,(s;8) = 1+ ¥ B8 L_(s,0)
Y- N=1 NN
© N K e
= 1+ 3 1 gVe)dp®eR
N=1 j=1
=1+ 1 1 g usiptd
j=1 N=}
Then (4.6.5) gives
isa, , . = N N 5,3
plsig) = % () {1+ £ I g (is)lrIy
N=1 j=1

and this is exactly the same result as (4.4.18), obtained by a

method.

The m—step conditional characteristic function of Yn+m(8) given

that ¥ (3} =y is, form > 1,

(s;v:8) = 1+ ¢ BNL
N=1

N,m(s’y)

and using the above results this becomes, for m 3_ i,

m-1 co

“ N N
{s:v; = +
¢Y,mv°l§l'8) 1+ N.El B LN,N(S’O) Nim 8 LN,m(SIY)
ml N L) N
s ! .
=1+ 3§ 1 gusyde®I 4L ¢ g
=1 j=1 N=m j=N+2-m
© r. () ()
. 2 3
+ I I BN(lS) lPr Pr eeoP
=m r1+...+rm=N 1l 2
r.>l
l——,
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(4.6.15)

(4.6.16)

(4.6.17)

B1\1(is)j,r(1\r.-j)

(rm)
Pr
m—-1l "

y)

different

(4.6.18)

Here the first two summations are empty for m = 1. A particular case, the

conditional characteristic function of Yn+m(8) given that Yn(B) =0

(equivalently,‘ﬁ{xn(s)} = 0), is found by identifying the last part of

the above expression as

© N N x (N,rm)
z z 8 (is) T ) .

N=m r =N+1l-m
m
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This gives

ml N . ) ®» N . _
by psi0:i8) =1+ L I LANTIREL LR DR S 8% (i) I (V-3
” N=1 j=1 N=m j=N+l-m
(4.6.19)
©  F+m-1
=1+ X x BN(iS)JT(L £33}
i=1

This may be compared with (4.6.16).

The same result for the stationary characteristic function has been
found in two ways, firstly by considering the proeesé (4.1.6) when it is
in equilibrium and secondly by considering the process at two points in
time which become increasingly separated. This second method requires

that the functions
j .
By = [ {A¢ ’j’?)} ar,, (2) (3 > 1) (4.6.20)

should be continuously differentiable, a condition which holds when
either or both of A(x), FZ(z) are continuously differentiable. The
function A{x) need not be bounded at #», although this condition was
necessary for the existence of Lj(u) in section 4.4. The convergeﬁée
of the series obtained has not been demonstrated but clearly the
validity of the interchange of limits

©  j+m=1 N

lim oz g%us)ie™IA o
m j=1 N=j 3

pX BN(is)jT(N'j)
1 N=j

[T 3¢ R 1}

is necessary. Since the convergence of the series and its validity as

a solution to the problem have been demonstrated to hold in some circum—
stances it is not unreasonable to assume that, whenever the series and
others derived from it converge, they converge to the correct answer.
Results obtained by making this assumption have been checked by

simulations in some cases, see Chapter 6.
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4,7 Choice of constants

The constants a and b appearihg throughout have been arbitrary
(except for the condition |[b| < 1). The choice b = O considerably
simplifies the formulae involved'and greatly reduces the amount of
calculation needed to find the solution ¢ (s;B) to any given order in B:
in many cases this would be a reasonable choice to make. There then
remains the constant a. Although this too.is arbitrary, it affects
the speed of convergence, and indeed the convergence itself, of the
series. Hence a may need to be chosen with some care.

It is reasonably clear that the sequence.{éytm(s;y;S);'m =1,2,3,...}
will converge fastest to its limit ¢Y(s;8) if the value y is a typical
(rather than extreme) value of Yn(B) under the stationary distribution.
For otherwise, starting at an extreme value, the succeeding values
Yn+l(8), Yn+2(8),... would take some time to drift back to the more
probable regions of the process {Yn(B)}. Comparing (4.6.15) with
(4.6.18) and (4.6.19), it can be seen that, for any m, ¢Y(S;B) agrees
with ¢Y

~—

r it

(s;vy;B) in terms up to Bm—l and with ¢Y m(s:O;B) in terms up
to order m. Thus it might be expected that the ;eries (4.6.15) would
converge well if Yn(B) = 0 is a very likely, or at least typical, value.
Usually the process of interest has 8 = 1 and so a good choice of a is

such that
v ) = AKX (Q)) = A x,i1)} -a = o0 (4.7.;)

is a typical event under the stationary distribution of {Xn(l)}é {Xn}.
This reguirement gives some form to the intuitive idea that a is best
chosen so that the graphs of y = A (x) and y = a are close.

However, even with the above condition, a is still a dispoSable_
constant and quantities derived from truncations of ¢(s;B) in (4.6.17f
may all be found for different choices of a. Since the true values of
these quantities should all be independent of a, this provides a check,

" not only on whether the series have converged, but also on the validity
of the algorithms used to calculate these quantities.

Equation (4.6.20) may be written as
i

- f {Mz +a+vy) - é}deZ(z)

P. =
5@ 3
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and, since the final expressions depend only on the derivatives of this

at zero, it seems that, if F, is constant over certain regions of the

line, the values of A (x) mayzbe changed on corresponding regions without
affecting the solution. It has bezen assumed that a Taylor series
-expansion of Pj(y) about zero converges over a region large enough to
cover all values {A(z + a) - al where z is a point of increase of F,.
(An even stricter condition'may be needed to ensure convergence of the
series for ¢ (s;B).) There still may be some regions where the values of
A(x) may be changed without affecting the validity of the method and it

is intuitively reasonable that this should be the case. For, supposSe
that the stationary process never visits a certain set, then the auto-
‘regression function may be changed on this set without affecting the
invariance of the original distribution. If the autoregression function
and input distribution are such that there are two or more different
stationary distributions, it is possible that the above property would

. allow these distributions to be calculated by using different choices

of a where, as discussed above, the choice of a would identify the
particular stationary process (equation (4.7.1)).

It is clear that, in some sense, the closeness of the line v = A (x) '
and the initial autoregression function y = a + bx affects the convergence.
of the series derived. It has been seen that the choice b = O greatly;
reduces the work of finding each coefficient and thus that, even at the
expense of evaluating more coefficients, taking b = O is best in many
cases. Howsver, when the "overall slope” of A(x) (in relation to the
unknown stationary distribution) is near %1 thebapproximation of y = A(x)
by v = a is poor, and an extremeiy large nuxbexr of terms in the expansion
of powers of B may be required with the choice b = O and this may not
always be best. In particular if A(x) is very close to some line a + bx,
then choosing these particular values for a and b may result in only one
or two terms in the expansion being required.

The following formula for Bl(s) in (4.4.1) is obtained by both
methods presented, i.e. from (4.4.2-6) and from section 4.6,

= 5 ¥ ey
8, (s) = on ib"sp, (s)f Alx)e aF, x) - (4.7.2)

This illustrates two difficulties involved in a choice b # O. Firstly

the stationary distribution F_ of the initial (linear) process must be

0
known: onlv in special cases can this be written in explicit form
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(section 2.2.2). Secondly there is the evaluation of the infinite
summation appearing in (4.7.2): this canhot generally be done explicitly
unless A(x) is a linear function. The expressions for SN.(s) each
contain N infinite summations. It is usually not of interest to find

¢ (s;B) itself but only quantities derived from it; for exauple, moments
of the processes are given by the derivatives (with respect to s} at
zero. The same difficulties arise when dealing with the corresponding

expansions.
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5 MOMENTS AND OTHER DISTRIBUTIONAL PROPERTIES

5.1 Introduction

The problem of finding the stationary distribution of non—linear
autoregressive processes has been considered and this has led to |
expressions for the characteristic functions of the marginal and joint
distributions., These have been given in Chapter 4. Although, in
principle, the characteristic functions completely determine the corres—
ponding distributions, the expressions found are not directly of use as
they are in the form of infinite series. However, from the expressions
for the characteristic functions, expansions can be derived for quantities
of interest such as the moments and joint moments of the stationary process
and for the stationary distributions themselves. These are considered
here and lead to simple computational procedures for calculating the
stationary moments and distributions. The most useful procedures
considered are based on the family of processes with varying auto—
regression function starting from the process of independent and identically

distributed values {Xn(o)} given by

xn+1(o) = a+ zn+1 n= ... -1,0,1,...).

5.2 Expansions for moments and joint moments

5.2.1 In Chapter 4 the coefficients BN(s) in the expansion

<«
N
¢{s;B8) = ¢ BBN&)
N=0
of the stationary characterxistic functions of the processes'{Xn(B)}

(generated by (4.1.6)) have been given. Then, provided the moments exist,

X k3 ' Kk _a" |
E{XT(R)} = (-i) m d(s; 8} = I B (.—l) k N( s)
n 3s s=0 N=0 ls=0
T g%, (0) (5.2.1)

N=0



103

where
k k .
(k) =) D :
GN (s} = T ——Bsk BN(s) LN,k_é_o).

In particular k:éék)(o) = E{Xitd)}. the moments of the initial process.
The extra factor of (~i} /k! is used here and later in order to simplify
the expressions obtained.
For the family of pr?cesseS. {Xn(B')} corresponding to the family of
autoregression functions u{x;8) = a + bx + 8{A(x) - a - bx}, the coefficients

eN(s) are given by (4.4.2-6). Using these and defining foxr k > O,

o ok Lk .
p @3 &)L 2d) 2 a3 () (L<3<M,

k. k - -

as
. k k
(x) I G Y ; ~
e, (s) = o * pg(S) (2 > 0},
as
(k)

the expression for 8 (s) is found to be, for k > 0, N > 1,

N
N o« min(k,j) k-g :
6 gy - £ I L £, @+1) (k-q-p)+ad

N (ib's)3 79
j=1 2=0 g=0  p=0 d

'T(N,J) {k-g-p) (b'q'+ls)p£ (p) (s)

and hence

min (N ,k) e k-3
MO z I I p @) &k-3-p)+jL,(N,3) (k=3-p) ©p,
j=1 2=0 p=0

(k)

6 (p)

(0)

min(N,k) o k-jJ
I > b(2+l)p+3£T(N,J)(p)CO)pz(k—j—p)(ol.
j=1 2=0 p=0

(5. 2-2)

The terms pch)(o) are essentially moments of the distributions described
after (4.3.5). The cumulants Kj(l) of these distributions are related to

*
those of the random variables Zn = a + Zn' Kg say, by
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Using the expressions relating non-central moments to cumulants (Kendall
and Stuart, 1969, p.68) the infinite summation over the index & appearing
in (5.2.2) may, in pr1n01ple, be evaluated analytlcally so that this need

LP @),

be no problem. However, defining L(p)t 1 =
p! S P J

2N 3) (o)

' 1 , (P
(s) 2131 ILj(u)GN_j(s—uldu‘

= m J'L(P)(u)e 5 (s—wdu
and thus it can be seen that the gquantities T(N 3)(P)(0) cannot be
evaluated without finding BN_j(u) for all u (these are given by (4.4.2)).
Because of. the much greater simplicity obtained by taking b = O this has
not been pursued. It is however possible that using either a numerical
integration or an expansion about zero of part of the integrand would
provide an effective method for calculating the coefficients B( )( 0) of
powers of B in (5.2.1). 4
In section 4.2 the first terms in expansions of the means and

variances cf the family of processes were given. The infinite exXpansions
for the moments produced by the different methods would be the same,
however formulae (4.2.6) onwards choosea natural way of truncating the
expansions which is not equivalent to a truncation to a fixed power of 8.
For the methods employed here there are two other possible ways of trun-
cating the series. Firxstly the expressions for the moments about zero
may be truncated to a fixed power of B and then these approximations
used in forming central moments. Secondly the expressions for the
central moments may themselves be truncated to a fixed power of 8.

These two procedures lead to different approximations of which the

second is better but the first more convenient for computations.

5.2.2 For the characteristic function of the marginal distribution of

the stationary process

X 8 = a+ B,[A{xnte)} ~al +2Z ., n= ... =-1,0,1,...), (5.2.3)

which is (4.1.6) with b = O, the following formulae were derived in

section 4.4.5
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$(s;8)

e'%%, ()n(s:8) = 8 (s)h(s;8) (5.2.4)

where hi{s;B) = ¢Y(s;8) is the characteristic function of
Y (8) = F’-“‘{Xn(s” - al] and is given by

© N . .
1+ % b BN(.J'.S)JT(N'J)

N=1 j=1

h{s;B)

= 1+ & 3 gV(sydpW.a3d (5.2.5)

The quantities T(N’J)

Pj (3 =n,
N3 . ' | | (5.2.6)
N 3 n) L<i<m,
n=1 J -
{n)

with Pj (3 > 1; n > 0) defined by (4.4.17). From these, expressions
for the moments of the two processes {Xn}, {2 (xn)} can be found from

the following with 8 = 1. Let

_iy I T
R sip = L2 he;p (r > 0),
Y. X
s
then ElY_(8)] = E@ DX ()} - af)
= ' (0;8). (5.2.7)
From (5.2.5),
1 ir =0,
(x) _ o (5.2.8)
=Y
ey, _ i) oF

Defining 95 (s) — 6 (s} (r > 0) it follows from (5.2.4) that

as
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. ) e a
B (@)} = 0T = gs;8) = 145 058y,
os s=0
-2 L) o '
=r: L 8 (0Yh 77 (0;8) (x>0} . (5.2.9}
2=0

The means of the processes {Y (B)} {X (B)} are By 8y = h(l)(o;ﬁ}
and Ry (8) = (1)(0) + h(l)(O,B) respectlvely, and then the central

moments are given by

L r {- My (3)}3
BB - w @) = 1t 2 0TV o —E— 22, (5.2.10
. j=O .
. , T e {- My, . (8)}3 v
BI{X_(8) - u (B)}) = r! £ ¢ 77 (0;8) ——]———- x >2) . (5.2.11)
3=0 '

5.2.3 1t is clear that expressions for the joint moments of the'{Xn(B)}
processes can be found from the formulae (4.5.1-5} for the joint character-
istic functions when the family of autoregression functions is the general
one Starting with a line of slope b and intercept a. However, since these
expressions suffer from the same disadvantages as do the formulas for tiﬁe
marginal moments, they will not be given. Once again the choice b = 0
provides a workable set of formulae. 1In this case the joint characteristic

functions are given by (4.5.12-3), namely,

o (s,8:8) = 6,(s)8 (t)h (s,t:8) k > 1), (5.2.12)
' = N ™, 3)
where hy (s,t:8) =h(s;8) + I I 8 (i’r NI (s).
' N=1 j=1

Define, for &,m > O,

L+m 2+m
(% ,m) (—1) R
i) (s,t;B) = — ¢, (s,t38) ,
k 2Lim! Bsgatm k
and
&+m f+m
(2,m) o (=1) ) .
hk (Slt;B) - R::m-l 2' m hk(.Srt,B)-

3s 9t



Then E{xi(s)xr;kca)} = 2!m5§]§2'm) (0,0;8)
& m _ {(m—
where ¢}E£'ml (©,0;8 = L L Bcg’q‘ p) (0} BO (83 hk(P

p=0 q=0

,m)

The quantities h.é (0,0;8) (¢,m > 0) are given by
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‘D (5:0;8) . (5.2.13)

> o,0i = a0 k21 220
and for k,m > 1, & > O,
nt™ 0,08 = 1 TP, (5.2.14)
N=r
(N, 3) (2) A L T N
where Ty 2 (s) = ——— 73 (g) (L<3<N; 2>0; k >1).
FERI =42 = =
From (4.5.13) the gquantities 'I'k(N’j) (2) = TéN’j) (%) (0) are given by,
for L > 1,
Qj(O,K) (N = 3j)
. . (k = 1)
N-j min(n,%) s I
( z L (n)T(N 3rm) g n=q,2-q) o> 3
_ n=1 a=0 e L
T]iNrj)» (z)z ﬁ (5.2.15)
' o) (N = 3)
. N"‘j = ’ (k 2'_. 2) r
3 n=1 k-1 3j A

-3, 4) is zero if & > N-j, and where

{n)
1) iy % o {:Pj (0, s)
% s=0

j LI N 8 (s)
f ej's'xl\J (x+y) daF (x)

where the texrm T

Q

(-iyh g™t

3Te L n. %) 1sx ‘
By. 3s f e™Tar (x)

y,s=0

(j ?_l; n,2_>_0).
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with Qén'o) = P§n) (3 > 1; n> 0). The terms TéN'J)(%) for & = O are
given by ‘ ' '
p 3B B gm0 1 em k2D  (5.2.16)
and hence
%™ o,0m = z g% = 2™ =0 0,08 @k2D.
N=m :
Assuming that Q§n'£) can be found, with (5.2.6), (5.2.15) gives a simple
recursive procedure for calculating the numbers TéN'J)(z}

(1 <3j<N; k>1; & > 0) and hence the moments and joint moments of
the processes, by (5.2.13).

Because of the zero value appearing in (5.2.15) it can be shown
that

T]iN,J) () _ 4 (N-j < 25 O < N-j < k-2)

and therefore the number of terms appearing in the summation in (5.2.15)

can be reduced.

5.2.4 There are no practical difficulties in turning the formulae of

sections 5.2.2 and 5.2.3 into computer algorithms. The infinite summations -
appearing in (5.2.8) and (5.2.14) are power series in f which enter
linearly into equations (5.2.7), (5.2.9), (5.2.13) giving the moments and
joint moments (about zero) of the processes. Therefore it is convenient

to obtainAthese moments correct to a power, N* say, of B by truncating

) (0:8) ana nt*™

approximations for central moments formed from these approximations for

the series for h (0,0;B) to that same power. However,
moments about zero are not truncations of the corresponding expansions
to any fixed power of B since the approximation for the mean enters
non-linearly, see eguations (5.2.16), (5.2.11).

‘ Suppose thét it is required to form the moments of the process up
to order N* in B and that marginél_moments up to degree J* and joint
moments, E[Xi(B)X:+k(B)], for & < L* and m < M* are required. For
convenience assume that J* > L*,M* and that L* M* # O: simple modifications

cover any exceptions. Then the following procedure is available and is the
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basis of the numerical results described in Chapter 6.

() Choose a number a,

(i) Find 937} (0) for 0 < 3 < I%.
(iii) Form P.(n)'Q.(n,SL)

3
noting that Q'(n,oi = pin),
,3)7

for 0 < n S N*j, 1 < j<N* O< 2 <0L¥

{iv) Form T for 1 < j £ N < N*, in the order

T(l,l)'
o2, 1) ’ o (2:2),
T(3,l)' T(3,2)’T(3,3),

T(4,l) ’T(4,2) ,T(4'3) ’T(4,4) , etc.

In fact T W, 3)

need only be calculated for 1 < j < N < N* - 1, and for
1 < j < J*% when N = N* if J* < N*.

(3,0)

{v} From these form the approximations h for h(J) (0;8) for

0 < j < J*, where

1 ('J = 0)1‘
(3,0 _ N* a ‘
h - z QNT(N'J) (1 <3 < n*), (5.2.17)
=]
o] (3 » N*).

(vi) The approximations for Eng(B)]r lE[_xfl(B)J may then be formed
by analogy with (5.2.7) and (5.2.9). .

The joint moments may be found recursively, the following steps
being repeated for k = 1,2,....
v, 3) (2)

(vii) Form Tk for 1 2 jJ « N < N* and 1 < ¢ < L* using (5.2.15).

(viii) Form the approximations hu"m) for h}il’m) (0,0,8) for 0 < ¢ < L*,
0 <m < M* by
p o _ oy @m0 (m » 0),
N* N (N ¢ .
p g™ (2> 1; 1 <m < N%
N=m .
p Coem) (5.2.18)

0 (2 > 1; m > N¥).
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(ix) The approximations for the joint moments may then be formed

from (5.2.13%.

These steps may be repeated for increasing k as far as is required.
It is possible to arrange computer calculations of step (vii) so that

the quantities TﬁN’J)(R)

and thus no limitation of space is imposed when calculating moments at

overwrite those of the previous value of k,

large lags. 2pproximations for central moments can be found by formulae
(5.2.10-1) and the equivalent formulae for joint moments.

It can be seen from (5.2.17) that the approximation for E{Yg(B)} is
zero whenever j > N*, the first term in the full expansion being of order

B). This term in the expansion of E{Yi(B)} = BjEI{k(Xn(B)) - é)}j] is

j1p3p3:3) j!Bij(O) = 8 P eoar 0 = pdEliA @) - A}l (5.2.19)
From (5.2.18) it can be seen that, similarly, the terms h(ﬁ:m')
contributing to E{Xi(glxs+k(3)1 are zero for m' » N*, though this is not

true for the index g2'. It would always be sensible to choose N* > J* M*,
and also ptesumably N* » L*; usually N* would have to be much larger

than the degree of the moments to be calculated.

In an obvious manner the equivalent approximations for the momentsz
to orders lower than N* in 8 can be found from (5.2.17),.(5.2.18) without
recalculating the T-arrays. This provides a check on the convergence of
the power-series and a guide to the accuracy of the approximations for
the moments. By inserting different values of R in (5.2.17-8) the

moments of any of the processes

(.n = e "1,0,1,...)

n+l

X01(8) = a+ gAG (8) - a} +37

may be obtained rather than just those of the process'{xn(l)}.

All the above assumes that the power series (5.2.8) and (5.2.14)
converge for the particular values of B and a chosen. It has been
found in practice that this is not always so, but that the properties
of the process with autoregression function iCx) can often be found by
making some other choice of the constant a. This constant needs to be
chosen with some care; see sections 4.7 and 6.2. A possible procedure
is to choose a on the basis of results obtained using several trial

values of a to calculate just the marginal moments for small J* and N*.
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'5.2.5 An alternative but equivalent set of expressions for the joint

moments may be dexived from (4.5.11), i.e.,

b (s,t:8) = O_(t)gy (s, t:B)

whers gy (s,t:8) = $(s;8) + I - (J.t)Rk’J)(s)

(k >

N=1 j=1
Define gg"m) (s,t;B) and R @31 () (s} analogously to h}iﬁ,m) (s,t;8) and
T}EN'J)('Q' (s); then '
(2,m) B '), (2m)
6 '™ (0,0:8) = em! I 6 g™ 0,0:8)
| [ .
m'=0 °
where ('Q' o) {0,0; ;8)
B) = q> (O,B) (¢ > 0) and, for m > 1,
(% ,m) . % N_(N,m) ()
95 (0,0;8) = Z 8 Rk
The quantities PjiN'm) @ _ Rk(N'm) ) (0) are given for & > 1 by
p 0r#) (5= N
J
(k
T (n> g N=3,n)p (=g, 2=q) (3 < N
n=l g=0 4 J
(N, 3) (‘z)_‘{
R =
(0), 2, ;=
Pj SN {0) (3 = M
L5 min (%,N-3)
) "N (g=n), (N=5,n) jom) () ) .
pj b % (O§T + z Iﬁc-« 3 (j
n=1

(4,3 @) _ L 0%9)

and, fm:,?,=0,Rk (k »'1; 1 <3j <N

1)

2)

N)

’
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NS A
Here P?n’%) = ,(2%) E—E~P$n)(o,s)
) Tooest §=0
n+£ :
_ C-l)
= Tt T z{P LY’S)} _
dy 9s yv,s=0
(—i)g an+2 p isx
= ?‘T. T‘T{f s AJ (x+y)dFo(X)} G >1 n,L >0).
T 3y ds’ v ,5=0 :

(5.2.20)

Clearly the sets of expressions (5.2.12-16) and the above must be'

equivalent. The quantities Pgn L) Q;n,Z)

(n)
(,8) (—1) Z . (0,8)
J ! NEE eo(s) 5=0

are related by

os
(n)

B 2 (2-k) (—i)k 5 k ] (0,s)
= I 8 (0 k! k 8 (s)

k=0 © 2s 0 s=0

Y tex) (k)
= I e )0, e (G > 1; n,2 > 0). (5.2.21)

k=0

The algorithm derived from (5.2.12-16) has the advantage that it
leads naturally to an approximation for the joint densities of the process

'{X (B)}, see the next section, and it also has a simpler form. However it

(n,2)

requires the quantities Q which have a relatively more complicated

(n,2)

expression compared with that for Pj . The expression (5.2.20) can be

reduced to

- y=o

Nonetheless, as will be seen later, when the input distribution is normal

the numbexs Q(n P2 have a very simple expression in terms of P§n) so that

in this case they may be eliminated from the right-hand-side of (5.2.15)
(N, 3) () )

- giving an expression for Ty in terms of just P
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5.3 Expansions for marginal‘and‘joint‘distributions

5.3.1 Methods of obtaining approximations for the stationary distribution
functions of the processesi{xn(sl} will now be considered. This will only
be done for the family of processes generated by (5.2.3). Similar
expansions could be made, theoretically at least, for the more general
family of processes for which the initial process is a linear auto—
regression: the first few terms of suchAe¥pressions have been given in
section 4.3.2.

The expansion for the characteristic function of the stationary
distribution is

© N

§isiB) = 8 (s)[L + I £ 8 (is)IT
N=1 j=1

o, 3, (5.3.1)

and the problem is to invert this to obtain the corresponding distribution.
Suppose that the integrals f ¢Z(sl]slpds are finite for all p > O. Then
the input distribution has a density function fZ(z) which is.continﬁously
differentiable everywhere and the initial density f (z} = fz(z-a) has

()

the same property: let (z) denote the r'th derlvatlv Since the

input distribution has a dan51;y so too does the stationary dlstrlbutlon.
Let this density be fx(x,B). Then Lormally inverting (5.3.1) gives

® N . . .
S 4 T E e“c-u?’féj’cx)wmff” , (5.3.2)

£ (x;8)
X N=1l j=1

"

£,00) + I {(=1) f"J)CX) g gNp O3y
j=1 N=j

Thus the approximation for the density to order N* in B is

N* Gy N on,g)
FoeGe) £ + £ 1IEN ez gVeNed?,
X o} . o
J=1 N=j
n (31, .. (3,0)
= £, (x) + ZLl)f](x)h]' , (5.3.3)
=1
where h(j'o) is given by (5.2.17}. Therefore the algorithm given earlier

can easily be extended to calculate approximations, to any required power
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of g, for the margihal density of the stationary prbcess. This aéproxi—
mation is not in general positive everywhere.

ThHere does not seem to be a natural interpretation of the above
formula when fZ is not continuously differentiable everywhere. Howe&er

it may be interpreted as the result of formally inverting the characteristic

function
= Ny i, (N, ) | '
pplsig) = 1+ £ 1 g tsylz) (5.3.4)
: N=1 j=1

to give the density fY(y;B) a representation as an infinite series
composed of derivatives of the delta function:
© N

£.yip) =8t + 1 1 g1
N=1 j=1

Y (gyp W3 ' (5.3.5)

The expression (5.3.2) is then the formal convolution of fz(x-a) wiph

this density. This suggests that a better approximation for the
stationary distribution may be found by constructing alternative approxi-
.mations to the aistribution having characteristic function (5.3.4) and
then forming the conﬁolution of these with the initial distribution. It
seems intuitively better to use ordinary functions rather than generalised
functions, as in (5.3.5)}, for the distribution of Yn(B)- One possibility
is to express (5.3.4) as the product of the characteristic function of a
normal distribution with a further series in (is)j. This would lead to

‘an expression for fY(y;B) as a series of derivatives of normal distri-
bitions and it would be natural to truncate this series according to

powers of 3. A second possibility would be to approximate the distribution
by a discrete distribution. This might be done by fitting such a
distribution to the approximations for the moments of Y (8) produced in
section 5.2.4. To form a final approximation for the distribution of
Ynts) it would seem best to first form a good approximation for the
stationary distribution of X,(8) and then to transform this using

Y, (8) = sIA{x, (B)} - al.

5.3.2 Once a stationary distribution of'{Xh(B)} is found the joint
distribution of (Xn(ﬁ), Xn+l(8)) follows immediafe}y. If the input
distribution has a density and an approximation fx(x;B) for the stationary
density is available then an approximation for the joint density

£ <,v;8) is
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B CyiB) = (5.3.6)

. - . N A .
Iy - {atB (A (x) - a)}JﬁX(X;B) .
This is possibly the best way of approximating this distrubiton but it
is not easily generalised to pairwise distributions at larger lags.
The method that produced the approximation (5.3.3) for the marginal
density can be extended to obtain approximations for the joint densities

at any required lag. From (5.2.12)

-3

o an™ ™ ©0,0:8)
£=0 m=0

o«

= eocs)e (ty L

‘bk(stt;B) o

& > 1),

and thus, corresponding to (5.3.1)}, an expression for the joint density

£, 06,v38) OF (X (B),X_ (8)) is
fleyiB) = B I 0 * P 0,088 02 () .
=0 m= '

Truncating this to a fixed powexr, N*, in 8 gives

*
~ © N

-+ L n
Fouyi®) = £ (-1’ mhu”m)fé Vg™ ) (5.3.7)
- o}
£=0 m=0
where h(z’m) is given by (5.2.18). There is still an infinite summation

for the i~-index since h(l,m)

is non zero for all % (when 1 < m < N*).

It is therefore necessary to choose

summation and one way of doing this

some method of truncating this

is to use the approximation

L* N*
Booyim) = 1z DFTREMW geW (5.3.8)
2=0 m=0

This uses the quantities htl'm)

(0 < 8 2 L* O<m< N*) which can be
found from the algorithm given in section 5.2. A

Given that these approximations for the joint and marginal densities
of the stationary process are available, iﬁ is then easy to calculate the
conditional density of Xn+k(6l given Xn(B), and also the conditional

density of X (g) given Xn+k(ﬁl (by using the approximations)} with the

formulae
£, 00y 8L/ {E, (ri8) Y, £ G, viB)/{E, (yiB)) (5.3.9)
respectively. The forward conditional density is requirxed for prediCting

n+k(8) from observed values of X, (81, hOWeve* the backward condltlonal



116

densities describing the distribution of past values given the current
value do not seem to be of such immediate statistical interest.

An alternative expreésiOn for the forward conditional density can
be found from the formulae ohtained in section 4.6 for the conditional
characteristic functions. The conditional chafacteristic function of

xn+m+1(8l given that Yn(B) =y is, for m i_o,

isa

e ¢Z(S)¢Y'm(s;’y78) = GOLSMY’mLS;‘Y:B)

where ¢Y m(s;B) is given by (4.6.18) and is the conditional characteristic
X . .

function of Yn+m(8) given Yn(B) =Y. Here Yn(B) = BA{Xn(B)} and

Xn+l(8) = Yn(B) + Zn+l'

Xn+m+l(8)‘ given that Xn(B) = x, is

hence the conditional characteristic function of

920y (78100 38) = 85 (s)dy (siB0M(x) - a)iB).

It is possible to formally invert these expressions to obtain expansions
for the conditional densities. For m = O this involves inverting the
characteristic function 90 Cs)ex,;p{isﬁ(k (x) - a)} which gives the

conditional density
£,7[x) = £y -a-8x) - ah). © (5.3.10)
For the cases m > 1, ¢, (s;yiB) is given by (4.6.18) in terms of powers
1

of (is), and therefore the conditional densities can be obtained in terms

of derivatives of £, or £,. Expanding the term Pr.{BACX)} in (4.6.18) in-

powers of B and rearranging gives, for m > 1, n
o j+m-1 . . g
£ o=t + x oz g3 enIeH g
mt+l (o] . .. (o]
3:]_ N=j
« - r
r. {r.} (x.,) (r)y (x_ ) A
+1° {Ax)}
+ z 8N (1) lfo Vi 2..p mp wl (80D}
r r r o :
N=m+l r_+...+r =N 1 m-1 m m+l
1 m+l .
ry2l (5.3.11)
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Alternatively it may be bhetter to leave this in its original foxm

@ G4+m-2 .
J (3)

: NG NL,GY, L]
fm_l(le): foly) + L T BT J (—-1)3f0 (y)
=1 N=j y
o r. (r.) (r,) (r) | .
+ I z 8N (-1) lfO 1 (y)p 2 B mB {8A(x) 3.
N=m Lyte. .4y =N - 1 T
m -
r.>1l
- -

(5.3.12)

From these conditional densities alternative expressions for the
joint densities can be found using (5.3.2) for the marginal density.
Using (5.3.10) produces a better approximation for the joint density at
lag 1 than (5.3.8) possibly because there is no further error due to
truncation once the marginal density>is found. However, for lags greatér
than 1, using (5.3.11}, (5.3.12) would necessitate a further truncation:
in this sense (5.3.12) might well give better results than (5.3.11). ﬂAh
advantage of these forms is that truncating to a fixed power of R leads

immediately to finite summations, unlike (5.3.7).

5.3.3 Consider expressions (5.3.2) onwards in the special case when
the initial density is normal with zerc mean and unit variance. Then

the expansion of the density is of the form

-%.32 w
H, A 5.3.13
o = O B En®) ¢ )

where Hj(x), j > O, are Hermite polynomials. Such series are éonsidered
by Kendall and Stuart (1969; pp.155-63). It is known that, when
fx(x;s) is a normal distribution with zero mean and variance greatexr
than two, the above series does not converge. Such a case arises when
applying the method of section 5.3.1 to a linear autoregression with
slope greater than 1/V/2. WNonetheless applying (5.3.3) for increasing N*
does converge.

Let the autoregression functionvbe'l(x) = AX, X constant withAIA] <1,
and let the input distribution be N(0,l). Then, with the choice a = 0,'
the stationary density of the process'{xn(g)}( generated by
xn+l(8) = len(ﬁ) + Zn+l' is

2,2\ 1/2 :
_ (1-87A ol 2.2 2 ; .
£, x;8) = < oy ) exp{- 3 (1-8"A")x"}, 7 (5.3.14)
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and ¢ (s;8) is the characteristic function corresponding to this. The

terms Aj(ﬁ) in (5.3.13) may be identified from

e 2,22 @
b ts:8) = S218L exp{ £ A252}= r tsyda, @),
o 2(1-8°2%) 4=0 J

~giving

2,2 ' .

1 B i L ,

A,.(8) = —-{j j} A, .(B) =0 G =0,1,2,....)
2 ! ’ 4 A4 ’
j 2" a-g22) 29+1

and thus (5.3.12) is

1 . '
=% ® S S e SR ¢ |
fx(x;B) = e N Hz.(x) Tr:f-———757?—} . (5.3.15)
| j=0 I 1" \20-8%2%) ,

It is possible to show that (5.3.15) converges to (5.3.14) if
[lez/(l—ﬁzkz)l < 1, or equivalently if szz < %-, the same result as
that mentioned above. :

However, in the form that is used (i.e. 5.3.3) the series (5.3.15)
is truncated to a fixed power of f. Hence the sequence of values actually
found for the approximation to the density is the sequence of truncations

of (5.3.14) expressed as a power series in f. This sequence converges '
for |Bx] < 1.

' '5.4 Basic Quantities

5.4.1 To use either of the algorithms of section 5.2 one of the sets of

numbers an'z),Pén’g) must be found. The guantities an'g) required hy
the first algorithm are given by
tn,2) (-1)% PR f elsgAJ(X+Y)dFO(x)
R s —— (3>1; n,&>0), (5.4.1)
Je%e ay"es , fe arF, (x) Y .s=0 ' '

while those required by the second form are given by a relatively simple

expression

S n . ’
2P gy 5 ) e, )

(3 »1; n,2 > 0). (5.4.2)
] J 9y y=0 E _
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In both cases A(x) = A(x) - a and Fo (x} = F_(x~a). The other numbers
) _ 0,0 - (n,0) B |
reguired, PJ Q:| PJ , are included in both the above sets.

The two sets are related hy the equality (5.2.21), and from this or
directly from (5.4.1) |

@0 _ pln) 1 {f AJ (ery)dF G0 }

;| 73 3t y=0

Y

(n;1) _ 1 3"
Q.! =——.--——- {f (x~-u )AJCX+y1dF (x)}

J . a

Y

o) “‘L—'?'—{f[(x-u 12 - o 21 ey aF ()}

J 3:2 ay o . o 0 y=0 ’

(n,3) _ __l________ _ 2, _ 3
o5 "7 = 5T 7 {f teen)® - 30,7 o) ny oI Gey)ar Y
where u o 0’0 I TN are the mean, variance and third central moment of

the initial distribution FO.

Certain useful relations can be found by writing Q(n’ ) of (5.4.1)
as explicit functionals of A(x),
(n 2:) - (1112')
J A x)] = Qj .
For any constant ¢ and functions Ay (x), A,(x),
{n,2) _ i . (n,2)
] v
Q(n’m ) +ec]l = L = an ') 601, (5.4.4)
p=
. N ) i-p
' J A (x} . A (x}
(n,2) - (n, 2.) 2
Qj FIAl(x) + Az(x)] = pfo Ql { 'Pl - Gopr ! 1 . . (5.4.5)

Further, if Al (x_)A2 x) =0 everywheré, so that at least one function is zero
at each point,
(n,8) (n,2)

0" M I )+ ny1 =

n,2)

[Al(x}J + Qj [Az(x)] . (5.4.6)
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In particular a useful relation, since Alx) = A(x) - a, is

3. (4P
oM p-al = & E2 ol gy, | (5.4.7)
however it should be noted that the functional QJ?”’“I ] itself depends

upon a. Exactly similar expressions hold for the functionals

Pén"“ ] = P;n"“ of (5.4.2).
Some relations for simple functions are-
-3
C
- (n=0,2=0),
Q?'l)ICJ = { I
0 (otherwise),
02" 1) SEXP
oM 1 =
(o} (n > J) '
(n,2) _ t0,2) R WY G 2 b o}
R R B s =~y ol B
— 9'+j-n (0;0) s
= ( 2 )P£+j~n[xl (L + j-n > 0).

In the above formulae the definitions (5.4.1), (5.4.2) have been

extended to include values of the index j = O in the natural way

Q(,n,l)___ v P(nlz)__:
° o
0 (othexwise) . (o} (otherwise) .
s 2 ,3)
5.4.2 Some useful results about the quantities Q:.En' ), T(N 3 for

special classes of autoregressiye processes can be established. Suppqse.

that the autoregression function }(x)} is odd about a point a, that is

Alxta) - a = -{A(-x+a) - a} (-= < x < =),
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and suppose further that the input distribution is symmetric about zero.
When these conditions hold this number a is a natural choice for the
number a required by the algorithm of section 5.2. In this case it is
easily seen from (5.4.l)band (5.4.2) that .

(Il:z) n+2‘+j (-'U:Z)

Qj = Lfl) QJ G >_ 1; n,2 -?T'O)' (5.4.8)
and Pj(n'“ = c—l)m“jpjfn'“ (3 > 1; n,2 >0),
These imply that

Q§n'2) 0 when n + & + j is odd

and in particular that
P, = 0 when n + j is odd.

Then from (5.2.6) and (5.2.15) it can be shown that
(N,3) _ .
T = 0 unless N and j are both even (5.4.9)

TéN'j)LR) = O unless (a) k is odd, N is even and j,& are both odd

or both even

oxr (b} k¥ is even and N,3j,% are all even or all odd.

It is clear that, when the autoregression function is odd about some
point, making use of these results can greatly reduce the computational
effort required by the methods of section 5.2. Similar identities may be

(w,3) (R)

demonstrated for the quantities Rk involved in the expressions of

section 5.2.5.

From (5.4.9) and expression (5.2.17) it can be seen that the
approximations for odd degree moments of the marginal distribution are
all zero and that the approximations to ordér {2N* + 1) in 8 for the even
degree central moments are the same as those to order 2N*. It may also

(&,m)

be concluded that the guantities h of (5.2.18) for any k satisfy

(—zlm)

h = 0 unless & + m is even.
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Hence the approximations for EIXi(B)XZ (8)] are all zero unless 2 and

m are both even or both odd. Again th;kéequehce of approximations for

~the other joint moments to increasiné orderé of B are equal in pairs.
It is possihle to make use of special relatiéns among the numbers

Qj(n,JL)

function is even about some point; that is

in another special case, this time when the autoregression

Alxta) - a = Al-x+a) - a (~= € X < )

for some value a. Here this value is not in general a natural choice
for the arbitrary wvalue a required by the algorithm, however it may be
possible to use it. If the input distribution is again symmetric about

zero then, corresponding to (5.4.8), the following'holds

an.g) - (?l)n+2Q§n,2) (G > 1; n,2 > 0)
so that
an,l) = O for n + & odd
and in particular P;n) = O»for n odd. Then it can be shown that
T(N'j) =0 , unless N - j is even
TﬁN'j)(E) = 0 : unless N - j + £ is eveq (x :.l).

It may then be concluded that the sequences of approximations to the
moments about zero are equal in pairs, but that the sequences for the

central moments are not (if (5.2.10-11) are used).
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5.5 ©Norxmal input distribution

5.5.1 A class of autoregressive processes which might be of pafticular

interest is that for which the input distribution is normal. Reasons
for this interest would be mainly those which lead to the inportance of
the normal distribution throughout statistics; thus each value of the
input sequence might be considered the result of a large number of small
and independent effects. Considering the simplicity of the distributidnai
properties of linear autoregression processes with normal input distributions
it might be thought that the properties of non-linear proceéses might be
relatively more simple to find than those of processes whose input distri-
‘butions are non-normal. Some simplification does occur but the main
effect of this is to simplify slightly the expressions leading to the
» joint moments. It is possible that for othex particular input distributions
similar simplifications might be found.

Suppose that the input distribution is normal. Then the initial
distribution is also normal with mean Ho? say, and variance equal to that
of the input distribution, 02 say. With some rearrangement, for any auto-

regression function X(x) (A(x) = A({x) - a),

felsxhj(x+y)dFo(x)

2 .
’ : \ 1 2
T . fexp{—ipos + Qsim + is(z~y) - —*Eiz—y—po) I (z)az,
[ e Far tx) V210 20°
- fexp{« ~£5 (z—y-uo~isoz)2}A3(z)ch
2ng 20 ,

and hence, for n,2 > O and 3 21

isx,j
(n,8) _ (-1)% AR fe A (x+y)dFO(x)

Q

2%
= G’ - P?ni‘z) ’ (5.5.1)
3

where, as before,

(n) 1 a7 : -
P, = T T {fAj(x+y)dFO(x)}y=

1
J 3. dy

.

0
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In this case these quantities are

i

(n) 1 M) 1 {Z““O] ! 2,
P. e e H — lexp{~ =—(z-p_)“laz. (5.5.2)
3 /55& { J. Cn nt ¢ - 202 : (o]

The result (5.5.1) may be used to simplify the algorithm given earlier
(n,?)
J
O<n<N*=-3j,1<j<N*¥andO< & <L* it is sufficient to calculate
P(n) ’ (n,2)
3 3
occurs by the expression (5.5.1) giving ‘in particular as part of (5.2.15)

for this special case. For then, instead of calculating Q for

for 0 < n < N* + L* - j, 1 <j < N* and to replace Q when it

022

n Pj(z) (3 = N),
L0 3) (2 _ .
1l
NZ] ml?(n,z) ny_(N~-3j,n) Uz(ﬁ Q) (n+2-2q) ,
s T "&:—)‘.— . , (3 < N).
n=1 qg=0 4 - 3

This appears to be the only structural simplification that occurs.
However the other quantities required by the algorithm, namely
6(j> = aéj)(o> (3 = 0,1,...), can be found by simple formulae in this
special case. If the input distribution has mean H, and variance 02,

then the initial distribution has mean U = a + By, and

o
. 2
2.2 ip i
. c’s 12 0,2 0
2y = -2 - - - — —_—
By(s) = explings > = expl- 30%(s 5"+ —=t.
o 2a
Then
. . iy
CY N € I o B Ll o 0 N
6 - BO (O) - n: n eo(s) S:O - ] Hn( G ) (n had O;l[2,.-~)~

ds n-

The Hermite Polynomials satisfy the recurrence formula

= - - > .5.
H_ (%) an_l(x) (n l)Hh_z(x) n>2) (5.5.3)
with B (x) = 1, Hltx) = X. Using this a recurrence formula for etn) is
e(n) _ l_{u 8(n—l) + Gze(n—2)} > 2)
n 0
. . . (0) (1) _ . :
with the initial values given by 8 = 1, 8 = uo. It is also easy to

calculate the initial density and its derivatives required by the procedures

of s2ction 5.3 for fianding the stationary marginal and joint densities.
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5.5.2 For specific autoregression functions it may be possible to obtain
explicit expressions for Pén), from,{5.5.2l for example. However it is
often more appropriate to look for simple recurrence relations for

calculating these numbers. The relations (5.4.3-6} are useful for

computing the functionals P§n) for particular autoregression functions
from those corresponding to simpler forms. Using the functional notation
' (n})

of section 5.4.1, the quantities Pj corresponding to an autoregression
function A*(x) + ¢, with the choice of the arbitrary constant a, can be

found from

J P
?j.(n’_u*(x) +c-al = I %?—)—-P;‘_‘;[l*b:)l - (5.5.4)

p=0

In the following examples the input distribution is normal with zero
mean and variance 02, so, for the choice of constant a, the initial
distribution is N(a,cz). For the autoregression function A(x), the

(n)

guantities required are Pj [A{x) = al (3 > 1; n > 0) which are given by

{(5.5.4) and

(n) Y SN I L1 NP S
2N DT = =% e (- =5 (2 - a-yilaz Jyo (5-5:5)

o n !
Y 270 Ay - 2q

It is sometimes also convenient to consider the functionals Pj[ACX)](y),

where here the notations of earlier sections are combined,

3
, 2
PG Iy) = —— [ A e - = (2 - a -y Haz.
J V2ma ~ 2° 2a
Tha initial density is
1 1 2
{ - - —— -
£, x) exp{ > x - a7}

210 2g
and the initial distribution function, Fo(x), is given by Eb(x) = @@%E%
~ where ¢(+) is the standard normal distribution function. 1In the following
it is often necessary to calculate (numerically) derivatives of FO at
specified points. This can be done in a simple manner by using recurrence
relations among the derivatives. Let

n
F 6o = S—r ) (20,

0
dx
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then, using the recurrence relation (5.5.3) for the Hermite polynomials,
the following generating formula holds

= - Bear®™™ e + e P Wl mrza Gse
a : : ;

with Féll x) = £,(x1, Fé’zl x) = —A-b%’-)-fo (x). It is sometimes more
convenient to work with G(;“n } (%) def?.ned by

=), , _ nd _ n_, (n)
Gy (x) = (-1) -—r-;Fo(x) = (-1} Fy (x)
dx
o ) _a - : '
or, equivalently, GO (-x) = Y FO (-x). The recurrence relation for the
G(n) x) is o dx |
(o]
o™ o = = U a)Gén-l) G - 26 P Wl mzw (5.5
o]
. (1) _ (2) _ X-a
with G, (x) = fo(x), GO x) = 2 fo(x)-

Example 5.1  Suppose A(x) is of the form

g (x; < x < x5),
A(x) =

(otherwise) ,

where [xl,le may be a finite or semi-infinite interval. In this case,
for j > 1,

X .
P.IAK)](y) = P.(y) = —= f 1) epi- Lo
J J Joms % 3¢

2
5 (z-a-y) }dz,
20 .

3 ,
= -g‘-,— {Fyxymy) - Folx)-y)}.

Then Pj(n)_[}\(x)] = P(n

n .
; ) _ :_yK{Pj ) }Y=0 » and using the above definitions
() _ I, () oy,
Pj o= 37 {GO (X2) . GO (Xl)-}

(3 >1; n>0). (5.5.8)
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The recurrence relation (5.5.7) provides a si.niple method of calculating
these quantities. Note that these depend on a, since for example

Gcg‘o) x) = Fo x} = @@%ﬁ) . To forxrm Pj(n)_IA. {(x)—-a) similar procedures to
the above may be applied directly to the function A(x) - a, otherwise

(5.5.4) may be employed, noting that

1 (n = 0) ]
Pc()n)[‘l _ (5.5.9)

(0] (otherwise)

This is not (5.5.8) with j = 0. The following are found.

P9 [\ () +e-al = (urema))-(c-a) {c.(x) - G (x)} + tea)? (5 > 1)

i 3! 02 01 3! 1z

and, for n > 1,

(n) (ure=a)I-(c=2)3  (n) (n) .
Py [A(x)+c-al = = 3T é-a - {Gon (x,) - Gorl (=)} G2y .

These may be checked directly from (5.5.5) for the function Alx) + ¢ - a
which is

p+c-a (xl < x < xz) ’

Alx) + ¢~ a =
c-a (otherwise) .

Example 5.2 = From the above formulae the quantities Pj(n) corresponding to
i t '—f i 14 . - = < 0.6< < =
any step-‘function may bes found Let - xo x1 < X, ‘ xK—l xK @

be a partition of the real line and let the function A(x) be of the form

Ax) = u for x € (xk__l.xk),

where My (k = 1,...K ) are K specified constants. Then using the obvious

extension of (5.4.6) and the result (5.5.8);

j
XK
(n) _ k . (n) _ . (n) : ‘ s
Py IAx)] = L =T {ey " &) - 6 ey >0; 3 _:1)».

k=1
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Alternatively, using the special values of %q and Kyer

3] 3 :1

K-1 W~ - W

PPy = 1 Kk uﬁ»+—— G > 1),
k=1 -

3 3

k-1 .~ ~=H
(n)[)\(xll = I —]i-"—.—k'ﬂ'- O(xkl . n>1; 3>1).

A o T

The gquantities P:%n )_[A {(x) — a] actually required by the algorithm can be
seen to be equivalent to the above with,pk replaced by wo—a, k=1,...K..

Example 5.3 Let A(x) be the function
AX + '(xl<x<x2),
Ax) =

o} (Otherwise),

where X,y are constants. Then, for j > 1,

: 2 .
PG y) = o oenw? ent- =5 ez = i) . (5.5.10)

210 X1 . Zq

This has keen denoted R (v) rather than P (v) since a recurrence relation

(n)

for generating Pj [A(x)] (3 >1; n>0) can be formed by defining

X
2
1 2
Ryy) = L | expt- =5 (z-a-y)“}az
2T Xy 20

= GO(x2~y) - Go(xl"Y)
whereas, to accord with (5.5.9), PO[)\(x)] ) =

On integrating by parts, (5.5.10) gives

(1) )

R (y) =+ Aa + AR () + Aat{G " () = 5t Gy}

-]5-{(_u+)\a+)\y)R 2 -l-)\GR L}

Rj (¥)

2 R
+%ﬂ%mﬂ#mwbuww m&m} G > 2.
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) _ & .'
Let R, = i {Rj(y) }Y=0 (n,3 2 0,
\4
- 2. o G >1:n20).
Then, from the above, for n > O,
(n) _ _ () _ ()
Ry =Gy %)) - Gy (x,}
R{n) = (_-)J-‘-!-.)\a)Ro(n) + )‘nROCn—l) + )\0,2{Go(_n+l) x,) - Génﬂ) (xl‘)}
(n) _1 ., (n) (n~1) 2 2_(n)
Ry =% {(“+)‘a)Rj—1 + MR, T+ A0 Rj_z}
2 . ' '
A j-1_ (n+1) _ j-1_(n+l) ,_ - .
+ 31 {.(?\x2+u) Gy (xz) Qxl+u) Gg (xll} (3 > 2).

Here the terms containing a factor with superscript (n-1) are zero for
n = 0. These provide recurrence relations for calculating the numbers
Pj(n)_[,\ {x)1 and then (5.5.4) may be used to calculate Pg‘n)_[)\ (x(;;a] .
This can also be used td calculate the appropriate numbers Pj for any
function of the form

Ax+1j+c (x. < x < %),
e = | | 1 2

c (otherwise) .
Example 5.4 If it is required to compute the numbers Pj(n) for a function
which is sectionally linear this may be done by splitting A(x) — a into a
number of functions, each of which is linear on an interval and zero

elsewhere. Suppose A(x) is the function

A = A x oy for x € (x /%)
: L
— = ceen = o, Wri -a = L
where Xy € Xp <X, <X < e Write A{x) - a oy A X},

where, for k = 1,...X,

R G, 4 <x<x) .

I

A (x)

~ %

o) (otherwise) .
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Then
(n) (h.l K
P Ax)} —~al = Pl L Oax(x)]
;| ;| - K
X ,
= 1 2™ ploo]
k=1 I

(n)

and the numbers Pj -D‘It (x)] can be found from the recurrence relations

in example 5.3 with (xl,xz) replaced by (xk_l,xk) and with (A,u) replaced
by O‘k'“k_a) .
Example 5.5 Let the autoregression function be a linear function, i.e.

CoAalkx) = ax +oqp (~» < x < ®=; A #O).

Then, by using suitable generating functions, it may be shown that

s yd™n ; -
3 (J-—n)! J=n AT
o (Il > j)'

Making use of the recurrence relation for Hermite Polynomials it may be

shown that

(n) n

P = S. <

] A Jj—n (n 3
where

2 2
= — +

S, {Qa + y - a) Sn~l Ao sn_z}/n (n > 2)

andS=l,S=}Aa+uA—a.i

Example 5.6 Let X(x) be given by

Alx) =) expl- %_;w2 (x—d).z} (=0 < %X < =)
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where w2 » 0. Then, for j > 1,

P.IA()](y) = f expl - —-Jw (z-a)% - 2= (z-a-y)?}az,
J /“cr — 20?
_ a3 1 oxp [ - 307 Grrama)®
o (jw202+1) 1/2 2(3w202+1)

and hence, for j > 1 and n > O,

(n) __’___j_ (jw )n/2 ( w2 )1/2 W (a—
Pj [A(x)] = = /2 H —_— (a~d) exp 5

1
2+ (jw262+1) jwzcr. +1 Cjw a +l)

Using (5.5.3) simple recurrence relations for these quantities can be
(n)

found and then PJ

[A{x}-a] can be found using (5.5.4).

(n)

Example 5.7 In order to calculate the quantities Pj for more

complicated functions (5.4.3) can be used. This is, for any two
functions )4 (x), Az(x) and j » 1,
() 3 1 (n)

P, [)\l(x)+>\2(x)] = 3

b j-p
== ny x)hy T 6]
J o p=0 pi{i-p):

Thus, for example, for the autoregression function

k k

- _ 1 1.2 2 2 . 1.2 2
ax) = A % exp{ 5 Wy (x—dl) 1+ A % exp{ >V, (x=d,) },

it is enough to be able to calculate

2y 1ept- 3 u? e (n>0; k> 0) (5.5.11)

for these are essentlally the terms of the summatlon with k = pkl + p)k

w2 = pwl2 + (,]—p)wz and 4 = {pw12 l + (3 p)w }/w (p =0,... j). After
some manipulations with generating functions it is possible to show that
](-n) (n > 0) of (5.5.11) are given by

min(n,k)

2 o {_ w2(.a—d)2} ;LK (n) (i0) ¥ %" 7d
1 2T2 q=0 k-q)! \qg Tn+k+1

. 2 2
. atdd B} w(d—a)
'Hk_?q{l : G"cw }ﬂrr-q - T a.}

2
where t7 = 1 + crzw2 {t,w > Q).
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6 NUMERICAL RESULTS

‘6.1 Introduction

In Chapter 5 numerical procedures were given for calculating sequences
of approximations for the moments, joint moments and densities of stationary
non—iinear processes., While these procedures have been justified in
restrictive circumstances (section 4.4) it is natural to try to apply
them to a much wider range of processes: in either case it remains to
determine the numerical behaviour of the algorithms. In the next section
the role played by the arbitrary constant a is examined. The results of
these numerical algorithms are compared with those obtained from simulations
in section 6.3 and also with the exact results which are known for some
processes. Throughout, only processes with a nbrmally distributed input
sequence are‘considered, and the algorithm is that based on the choice

b = 0 rather than the more general case which appears intractable.

6.2 Role of the arbitrary constant

In the algorithm of section 5.2 the arbitrary constant a appears.
Different values of a correspond to different families of approximating

processes {Xn(B)}

X a8 =a+pMx (®}-al +2z2 . (=..-1,01,...).

For each'family the expression generating the process'{xh(l)} is the
same. However, while the exact moments of these processes are the same
(but see section 4.7}, the seqguences of approximations to the moments
are not. Thus the choice of a may well affect the speed of convergence
of the procedure.

In Table 6.1 the sequences of approximations are given,vaccording
to the highest power of 8 included, for the mean of three different
processes with several different choices of the constant a. For each of
the processes considered the input distribution is normal with zero mean
and unit variance: since the mean is zero it is natural to interpret the
constant a as the approximation of zero order in 8. The autoregression
function of the process in Table 6.1(a} is A(x) = exp{- %—xz}. For this
process the approximations converge rapidly for a good choice of a, the

sequence having converged to eight decimal places at the eleventh term
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ORDER APPROXIMATIONS TO MEAN
o 0.0 0.3 0.6 0.62756 0.9 1.2
1 .7071 .6914 .6462 .6408 .5775 .4933
2 .7071 .6508 .6373 .6381 .6613 .7025
3 .6050 .6161 - .62622 .62634 .62137 .6194
9 .62832 .627595  .62756067 .62756075 .6275672  .62717
10 .62832 .627546  .62756060 .62756058 .6275610  .62764
11 .62731 .627557  .62756062 .62756062 .6275593  .62761
12 .62731 .627563  .62756062 .62756062 .6275613  .62751
14 .627644  .62756015 .62756065  .62756034
16 .627533  .62756069 .62756061  .62756434
18 .627570  .62756061 .62756062  .62756023
20 62755750 .62756062 .62756040
22 .62756166 .62756067
24 .62756027 .62756063
Table 6.1(a): A(x) = exp{- %—xz}»-
1
ORDER APPROXTMATIONS TO MEAN
) 0.0 0.6 0.9 1.02412 1.2 1.5
1 1.4142 1.2925 1.1550 1.0880 0.9867 0.8058
2 1.4142 1.0240 1.0225 1.0524 1.1130 1.2253
3 .5977 .9010 1.0065 1.0143 1.0036 .9950
12 -0.1544 1.0159 1.024187 1.024133 1.024143  1.0227
13 2.5950 1.0198 1.024174 1.024114 1.024097  1.0254
14 2.5950 1.0315 1.024067 1.024120 1.024129  1.0236
15 ~1.0719 1.0227 1.024136 1.024121 1.024116  1.0240
16 ~1.0719 1.0205 1.024127 1.024120 1.024121  1.0245
18 3.8221 1.0247 1.024123 1.024120  1.024188
20 ~2.7116  1.0249 1.024119 | 1.024041
22 6.0123 1.0232 1.024120 1.024116
24 . -5.6364 1.0247 1.024120 ©1.024137
Table 6.1(): A(x) = 2 expl~ 5 x°).




134

25 3.309 3.3057 "3.3069 3.3071 3.3038

ORDER - APPROXIMATION TO MEAN

0 1.5 1.8 1.9 2.0 2.5 3.0 3.3

1 1.76  2.10  2.21  2.32 2.85  3.27 3.47
2 2.04  2.44 2.56 2.68 3.18 3.47 3.57
3 2.50 2.78  2.87  2.95 3.26 3.43 3.51

4 2.86 3.07 3.12  3.18  3.34  3.43  3.48

5 3.29 3.33 3.32  3.31  3.30 3.38  3.44
19 3.326  3.3117 3.3051 3.3012 3.3076 3.3178 3.3043
20 3.356  3.3136 3.3063 3.3029 3.3045 3.3195 3.3093
21 3.370  3.3121 3.3071 3.3052 3.3030 3.3203 3.3139
22 3.365 3.3109 3.3076 3.3063 3.3025 3.3177 3.3201
23 3.354 3.3081 3.3068 3.3065 3.3025 3.3128 3.3242
24 3.331 . 3.3063 3.3072 3.3074 3.3031 3.3090 3.3223

3.3077 3.3164

Table 6.1(c): A(x) = 4 - 4 exp{- T x%}.

Table 6.1 Approximations to the means of the processes

X = ,X(xn) + Zn

+1

tc different orders of B and for various choices of the

canstant a, a = zero order approximation.

for a = 0.6. Although here the difference is small it appears that the

sequence for a chosen to be very close to the mean converges marginally

less quickly than that for a = 0.6. It seems generally true that the

choice of a to be the mean of the process would not necessarily be best,

even if this were known in advance. For table 6.1 () the autoregression

function is A (x) = 2 exp{- %-xz}. Here making the choice a = Q0 leads to

a sequence of approximations for the mean which does not converge; the

approximations apparently oscillate with increasing magnitude, possibly

about some central value. In this case the best
be near the value eventually found for the mean,
the hest speed of convergence of the sequence is

than that attainable for the first process. The

choice of a appears to
i.e. 1.02412, although
considerably slower

autoregression function

for the process of Table 6.1(c) is A(x) = 4{1 ~ exp(~ Z-xz)}. Here the
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convergence of the approximations is much slower than for either of the
other two processes and the best choice of the arbitrary constant a
appears to be near a = 1.9, whereas the mean of the process. to which
the sequence converges, is about 3.3. Usually the sequences converge
while oscillating about the final value and this oscillation can be
fairly slow.

In section 4.7 the question of the bhest choice of the constant a
was discussed and it was concluded that, for a random variable X having
the stationary distribution, a should be a "typical" value of A(X).
This should be interpreted as being only a vague guide for chbosing a.
For the process of Table 6.1(a) A({x) = exp{- %-xz}, the value a = 1.2
is well outside the distribution of A(X) and yet the corresponding
seguence of approximations does converge. However for the process of
part (b) of the table, with A(x) = 2'exp{- %-xz}, the value a = 0 is
just on the boundary of the distribution in question and yet this leads
to a sequence of approximations which diverges. Below in Table 6.2 are

. . 2 . s
~ given the mean Hys Variance c.”, coefficient of skewness

X
Yy = B{(x - UY)3/0X3}' and the correlation p at lag 1 of the process

'{Xn} and also the skewness Y, of the proeess {kan)}.

A (x) Ky ze Y . P - Yy
e 1 p ' . _
exp{~ 5 X" | | .628 1.10 -0.013 ~-.187 .481
2 exp{- = x°} 1.024 1.49  -0.007 -.430  -.038

¢ 1 2 -
4-4 exp(- T x°J 3.306 2.14  -0.73 .64 1.9

Table 6.2: see text

These were all calculated by the process under consideration from sequences
of approximations which had converged to at least the number of figures
~given. The skewness of the third process is large and negative'and so is
that of the process IA(Xn)}: thus the relevant distribution (of A(X)) has
a heavy lower tail and this may explain why the best choice of a is
considerably lower than the mean.

It appears to be generally true that the convergence of the sequences
of approximations for the moments is slow when the variance of the process
is appreciably larger than that of the input process or when the lag 1

corralation of the process is large {comparsed with C.5, sav).
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Considering the power~series in B for the means of the'first two
of the above processes with X (x) = exp{- %422}, Alx) =2 exﬁf; %-22}
respectively and with the choice a = O in both cases, it is ciear that
that for the second process is the same as the power series for the first
but wiﬁh 8 replaced by 28. Thzt is, the sequences in the tables are the
partial sums of the same serxies at 8 = 1 and B8 = 2. Hence it follows ‘
that the corresponding power series converges at 8 = 1 but diverges at
B = 2. It has been found numerically that the series converges at
B = 1.5 (although only very slowly} but a more accurate estimate of the
radius of convergence is not available. v

In Table 6.3 the sequences of approximations for further moments

of the particular process

X =2 expi- %xnz) +2 . = ...-1,01,...)

with z, N{0,1) are given. In the column denoted '4' are the
approximations for E{(xn - ux)4} and in the column denoted '2,1' for
lag 1 moments are the approximations for E[(Xn - uX)Z(Xn+1 - uX)] and
so forth, where My is the mean of the process. Here the approximations
to a particular ordexr for the central moments have been calculated from
the approximations to the same order for the moments about zero as
produced by the algorithm of section 5.2. The arbitrary constant was
chosen as a = 1.0. All the sequences for the moments converge at
roughly the same rate with those for moments of higher degree converging
slightly more slowly. This seems to be generally true. Each sequence

had converged by the twentieth term.



137

ORDER APPROXIMATIONS FOR CENTRAL MOMENTS .
DEGREE = 1 2 -3 4
10 1.024094 1.490149 -0.013445 6.304928
15 1.024122 1.490184 ~-0.013088 6.304585
20 1.024120 1.490188 -0.013080 6.304587
CENTRAL MOMENTS AT LAG 1
1,1 1,2 2,1 2,2
10 ~-0.640986 0.111988 -0.503209 2.475243
15 -0.640914 0.112328 -0.503232 2.475301
20 -0.640911 0.112325 -0.503235 2.475300
CENTRAL MOMENTS AT LAG 2
lll 112 2,1 2;2
10 0.289313 -0.030621 0.198550 2.207313
15 0.289447 -0.030466 0.198698 2.207149
20 0.289457 -0.030463 0.198695 2.207147
Table 6.3: Approximations for moments of process
» 1,2 ’ X _
Rie1 = 2 expi{- 3 xn } o+ Zn+l’ Zn v N(O,1l) with a = 1.0.
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6.3 Comparison with simulation results

6.3.1  The algorithm of section 5.2 provides yalues for the moments
and joint moments of non-linear autoregressive processes. Although the
correctness of these values has not been proved analytically, they have
been verified by computer simulation for several different proéesses.
Taking into account the availability of unbiased estimators, it
was decided to work with the joint cumulants of the process, and in
particular, with the cumulants Kijk of (Xn'xn+l'xn+2 |
stationary distribution. Only twelve different combinations of the

)} under the

triple subscript (i,j,k) are chosen, namely (0,0,1), (0,0,2), (0,1,1),
t,0,1), (0,0,3), (0,1,2), (0,2,1), (1,0,2), (2,0,1), (0,0,4), (0,2,2),
(2,0,2). Clearly, because of the assumed stationarity, many of the

= K s K , etc.,

100 - ¥o10 T ¥oo1’ ¥oiz T 120
and the above avoids such combinations. The values of the cumulants

cumulants are equal, for example K K

are found from the values for the central moments produced by the
algorithm and these are compared with the éstimates of the cumulants
obtained from simulations.

The estimates for the cumulants are based on the corresponding
k-statistics (Kendall and Stuart, 1969, pp.280, 308) which are exactly
uhbiasad if a number of independent samples of the random vectors l
concerned are available. In the present situation, that of estimating

)

£ il i it i ni iple . . .
rom smnulated series, it 1s convenient to use triples (X3h'x3h+l'xgh+2

(j = 1,2,3,...) which because of the stationarity of the series are
effectively independent for large enough h. In order to inCrease the
precision of the estimates of the cumulants it is possible to use the
known structure of the process to relate the cumulants Ki. of

* Jk

(Xn,x ) to those, Kijk say, of the triple (xn,xn+l,k(xn+l)) and

n+1 %042
to estimate these cumulants instead. When the input distribution is

. . 2 . .
normal with zero mean and variance ¢~, using the independence of Zn+2
)

and (Xn'Xn+l

* ) = 4 = =
Kijk Kijk unless i i 0 and k 2,
2
= g% + .
“oo2 = X002 T ¢

Letting ave(-) denote the average of a number of terms of the same form

as those inside the parentheses but spaced far apart in the series, the

estimate k . of the mean (= k
0oL

001) of the process
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koo = avelX ) = avé{}(xn;ll + Zn} = aVé{A(Xn_il} + avel(z )

is replaced by the estimate

k* = ave{) x )}

001 1
If the average is composed of N terms, then (approximately, since the
terms are only approximately independent)

var(kOO ) = %{var{A(Xn)} + GZJ '

1

var(kaOI) = %-vat{A(Xn)},
s0, depending on the relative sizes of vaﬁ{A(xn)} and 02, the difference
in precision of the estimates can be considerable and the above modifi=-
‘cation of the estimator is always worthwhile. The same sort of reduction
in variance holds for the other k-statistics as can be seen from the
expressions for the variances and other cumulants of the k-statistics
‘given by Kendall and Stuart (1969, pp.290,311). These expressions for
the variances of the k-statistics could be used to derive estimates of
their precision: however values of higher order cumulants are required
and thesa are not available if the theoretical values produced by the
‘algorithm are in doubt. The procedure actually adopted is to form the
k-statistics separately for several independent simulations and to take
the sample mean, and its standard error based on the variation between
the samples, as the final estimate of the cumulant and an estimate of

its precision.

In the simulations performed, for given integers N, h, p the specified

autoregressive process is used to generate values xn( A(Xn) for

n = l,...,(N+p)h starting from a £ixed number XO. Of these the first ph
values of X_ are discarded. Then from the N triples (Xn,xn+l,k(xn+l))

(n = rh+l; r = p,...N+p~-1) the twelve k-statistics are formed. The
precision of these estiﬁates can be improved by calculating each

k-statistic for each of the h sets of N triples, namelyA{(Xn,Xn+l}l(Xn ));

+1
n = rh+j; r = p,...N+p-1} (j = 1,...h). Then unbiased estimates of the
cumilants are formed by taking the average of the h values of each
k-statistic. In general the terms in each average are not independent

so that the variance of the resulting estimate i1is not necessarily reduced
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by a factor h—l, though it is decreased. Whether it is better to adopt
this procedure, or to calculate each k-statistic just once and to
increase the size of N in order to obtain a better estimate, depends
both on the amount of dependence amongst the terms of the series and

on the cost of generating the further temms required for the longer
sequence. The cost of computing h sets of k-statistics from N triples
is about the same as that for computing one set from Nh triples. For
the simulations here the average of h k-statistics was taken as the
estimate for the cumulants, though this may have been the wrong choice.
Once estimates of the cumulants have been found the whole procedure is
repeated with an independent input series. Because of the discarding
of the initial section of the series the choice of XO is of little
importancé (except that it should not be too extreme) and a convenient
value to take is that of the last term of the previous series, namély
X(N+p)h' In all the procedure is applied to M independent sections of
the process producing M independent estimates of the twelve cumulants.
For each of the cumulants a final estimate is provided by the mean of
the M independent estimates and an estimate of its variance is given by
the obvious estimate based on the sample variance of the M estimates.
For large N the k-statistics are approximately normally distributed

and taking the average of h values results in a distribution closer to
normality. Hence each set of M estimates of the cumulants is a set of
independent and identically distributed observations from an approximately
normal distribution and thus the sample variance of each set is approxi-
mately distributed as Xz with M-l degrees of freedom.

The procasses simulated reguired normally distributed random
variables for the input series and pseudo-random variables for these
were generated by the 'Fast' method of Marsarglia, Maclaren and Bray
(1964): the subroutine used for this was programmed in Fortran by
Mr. M,C. Pearce and the uniformly distributed pseudo~random variables
required by the procedure were obtained from the standard RANF function
as implemented on the CDC 6400/Cyber 7314 system at Imperial College
{Atkinson and Pearce, 1976). For each different process simulated a
different value was chosen {(haphazardly) for the initial seed for the
RANF function so that essentially different input sequences were generated
and used for the different processes. Of course the different sections
of the same process were generated using independent sets of input
values: in fact these were taken as the continuation of the sequencé

“usad for the earlier sections.
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The k-statistics themselves were calculated using an updating
Vtechnique found by expressing the particular k-statistic based on n
triples in terms of the n'th triple and k—statistics based on the
first (n-1) triples. This reduces the poésibility of truncation errors
arising from adding and subtracting relatively iarge sums of powers
and products to form the cumulants by the standard formulae (Kendall
and Stuart, 1969, p.84). For the relatively moderate sizes of N and .
(N < 2000), the particular processes simulated and the length of the
computer word used (eguivalent to about 14 §ecima1 signifiCant figures),
the effect of this would probably be of no importance for the accuracy
required.

For all four processes simulated the input distribution was normal
with zero mean and unit variance. The autoregression functions for the
four processes are given below in Table 6.4 together with the values
P, N, h and M used for each simulation. The computer time taken by each

of these simulations was between 300 and 350 seconds.

AUTOREGRESSION FUNCTION P . N h M

(i) A (x) = exp(- %xz) v 2 1600 12 21

. ' 1 .. 1 2

(11) Ax) = E'x{l + exp (- 3 % )} 2 1500 14 21

(iii) A(x) = x{—;‘ - exp(~ = x2>} 2 1500 14 21

1

Giv) AGx) = {X + 5 (for —1.5<x<1) 2 1700 14 21

-1.0 {otherwise)

Table 6.4: see text

Tables 6.5(a)—(d) give the results of the simulations. The values
for the cumulants found from the algorithm under test are given together
with their estimates from the simulations. Also given are the absolute
value of the difference between these values and the estimate of the
standard error of the simulation result. For two of the processes the
autoregression function is odd about zero and, since the input distri-
bution is symmetric, it is therefore known that the cumulants of odd
total degree are all zero. Using this fact could have resulted in more
accurate estimates of the other cumulants as well as a saving in computing
time. However this was not done: the reéults produéed for these known

cumulants are a partial check on the simmlation and estimation procedures.
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cumilant] 0 e estimate | |difference S eror
ool 627561 .627957 .000396 .000401
002 1.099454 1.099512 .000058 .000159
o1l ~.205555 ~.204810 .000745 .000561
101 .033657 .033174 .000483 .000483
003 -.015102 -.015140 .000038 .000075
012 .045580 .045309 .000271 .000263
021 -.292949 -.293319 .000370 .001617
102 ~.006883 -. 006690 .000193 .000157
201 .044806 .045542 .000736 .000988
004 ~.010992 -.011014 .000022 .000062
022 .002316 .003064 .000748 .000598
202 ~.011322 -.011434 .000112 .000193

Table 6.5(a):

Simulation results for process with autoregression function

A = e 3 X0,z v NO,L.

Cumulant ‘Ziégiiiizm Ziiziztion difference StZiizid
001 0.0 .00193 .00193 .00260
002 1.65597 1.65659 .00053 .00108
o011 1.02333 1.02426 .00092 .00199
101 .64436 .64427 .00010 .00172
003 .0 -.00292 .00292 .00196
012 .0 -.00477 .00477 .00272
021 .0 ~.00790 .00790 .00409
102 .0 ~.00318 .00318 .00205
201 .0 ~.00465 .00465 .00325
004 ~.51426 -.51522 .00096 .00219
022 ~.82743 -.82759 .00016 .00531
202 -.49864 -.49729 .00134 .00396

Table 6.5(b)

: Simulation results for process with autoregression function

Ax) = %—k{l + expG % xzil}, 2z ~ N(0,1).




143

Cumulant value_from ‘simglation ,ldifferencel“ ' standard
, algorithm estimate _ exrroxr
01 0.0 -.00008 .00008 .00040
002 1.10855 1.10966 .00111 .00052
011 .19407 .19659 .00252 | .00114
101 .04620 .04746 .00126 .00067
003 .0 ~.00050 .00050 -000867
0l2 .0 -.00104 .00104 -00136
021 .0 -.00191 .00191 .00257
102 .0 .00012 .00012 .00092
201 .0 .00082 .00082 .00170
Q04 .07741 .07925 .00184 .00111
022 . 37629 .38385 .00756 .00437
202 .08318 .08592 .00274 .00186

Table 6.5(c):

Simulation results for process with autoregression function

Ax) = k{%'~ exp (~ %-xz)}, z, "~ N(O,1).
Cunulant value.from simglation difference[ standard

algorithm estimate error
o1 -.18216 ~.18207 .00009 .00113
002 1.65098 1.65191 .00093 -00078
0l1 . 24206 .24453 .00247 .00119
1lo1 ~-.02125 -.02343 .00218 .00137
003 .25630 . 25701 .0Q071 .00130
0l2 .26524 . 26559 .00035 .00058
021 ~1.00806 -1.01074 .00268 .G0257
102 .Q5030 .05040 -.Q0011 .Q0120
201 -.25849 -.26047 .00198 .00272
004 -. 48992 ~.49234 .00242 .00230
022 -.00245 ~-.00486 .00241 -.Q0208
202 -.21442 -.21475 .00033 -.Q0177

Table 6.5(d):

Simulation results for process with autoregression function

'A(x) =x + 0.5 for -1.5 < x <1, = —-1.0 otherwise, zn n N(O,l).
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(Further checks on the cumulant estimation procedure were made using a
process of independent normal pseudo-random values.)

The estimates of the cumulants produced by the simulations agree very
well with the values produced by the algorithm of section 5.2. The
differences between the two values are within just over two (about 2%)
standard errors of zero, the accuracy of the algorithm being verified to
two or three decimal places for the different cumulants. ﬂore formal
tests could be applied based on the ratios of the differences to the
standard errors which would be distributed approximately as Student's t
with M-1 = 20 degrees of freedom. The estimates of the different cumulants
for the same process are not independent so that the tests for the

cumulants cannot easily be combined.

6.3.2 Besides the comparison with the results of simulations, the
algorithm for determining the moments of non-linear autoregressive processes
may be validated by using it to generate the moments of processes whose
properties are known.

The simplest processes that can be used for this purpose are the
linear processes. The sequences of approximations for the moments all
converged to the correct values for all linear stationary processes (with
normal input distributions) that were tried. In fact it can be shown
algebraically that the algorithm gives the correct results for the moments
of any linear process (with any input distribution possessing moments of
all orders) with slope strictly less than one in absolute value.

It is also possible to calculate the exact stationary distribution

. for certain other non-linear processes: those for which the autoregression

function takes on only a finite number of distinct values, see section 2.3.
In particular the moments and covariances of the procass'{XS} with a two~
level, odd about zero, autoregression function can be calculated when the
input distribution is normal (equation 2.3.5). This has been done for
several different processes and the theoretical values agree exactly (to
8 decimal places anyway) with the values determined from the algorithm.
For processes for which the autoregression function A(x)} 1s either
equal to x or tovzero, the first covariance and the variance obey a simple
relationship and this holds also for the approximations produced by the
algorithm. ‘
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6.4 Results for some specific processes

Figures 6.1-6 give simulations of various processes and the
approximations for the stationary densities given by the methods of
Chapter 5. Part (a) of each figure consists of a computer realisation
{xn, n = 0,...150} of the process concerned together with plots of
Xn+l_against Xn and of Xn+2_against Xn for the series obtained. In the
first of these a graph of the autoregression function is also given. In
part (b) of each figure some densities associated with the stationary
brocesses are plotted. The marginal density of the process is shown in
the lower left-hand part of the diagram and above it is a contour plot.
). This was obtained from

n+l
the approximation for the marginal density using formula (5.3.6). At

of the joint stationary density of an,X

the top right-hand side of the diagram is a contour plot of the joint

density of (Xn,xn+ ): this was obtained from formula (5.3.8) based

essentially on thezapproximations for the joint moments. Below this
plot the two-step ahead predictive densities are given, these being
obtained from the Jjoint density of (Xn,xn+2). In each of the contour
diagrams the levels of the contours drawn are at 0.1, 0.05, 0.01, 0.005,
0.001, 0.0005 and 0.0001 units of joint probability density. Not all of
these contouis appear on every diagram when the density is moderately '
dispersed but the outside contour always corresponds to 0.0001.

For each of the six processes the input distribution was normal
with zero mean and unit variance. Were the processes linear the two-step
ahead predictive densities would also be normal with only the mean
depending on the wvalue on which the process is conditioned. This is
clearly not so for these non-linear processes. For the processes of
figures 6.5 and 6.6 the autoregression function is discontinuous and the
joint densities should reflect this. The joint density at lag 1 of the
process of figure 6.5 has been drawn by a computer program taking into
account the discontinuity whereas that in figure 6.6 has not allowed for
the discontinuity. The difference can be clearly seen. For both of these
processes the joint density at lag 2 should also have a discgontinuity but
the method adopted for these approximations does not deal too well with‘
these discontinuities. It is evident that, for the process of figure 6.5,
the predictive densities conditioned on any value less than zero should

be the same. However for the approximations given this is not quite'so;

the densities conditioned on values nearest zero are further from the
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other pairs of densities which are themselves almost coincident. It is
interesting that the predictive density conditioned oh a value at zero
which is produced hy this method should coincide with the marginal
density. It is clear that the algorithm of Chapﬁer 5 does not distinguish
between autoregression functions differing at a single ‘point but, in this
case at least, the approximations produced behave as if the autoregression
function were defined to take a value halfway between the left- and .
right-hand limits at the discontinuity. It seems likely that first
forming approximations for the conditional densities and then using the
approximation for the marginal density to form the joint denéity would
yield better results. However the ﬁethod used here is easier to program
‘ and approximations for joint moments of any order can be calculated at
the same time. In using the other method sets of conditidnal moments
would be available. |

Figure 6.7 gives an example of the backward in time conditional

densities of Xn given X for the autoregressive process with

A x) = %—k{l + exp(~ %-zzi} and with input normally distributed with
zero mean and unit variance. The fine line on this diagram is the
marginal density of the process. Clearly the backward process cannot be
‘represented as a ndn—linearvautoregression since the variance and shape
of the conditional distributions vary. However the backward processes :
. are Markov Processes with one-step transition probabilities given by
these backward conditional densities.

All.the'above approximations for the densities have been obtained-
by the method of Chapter 5 with J*, L*, M* and N* always chosen to be
about 21, '

In figures 6.8-10 some examples of the spectra of non-linear auto-
regressive processes are given. Approximations for the covariances of
a particular process can easily be obtained from the algorithm described
in section 5.2.4 and from these the corresponding approximation for the
spectral density func¢tion can be formed in the obvious way. In the
examples given here it has not been found necessary to include covariances
at lags greater than twelve or thirteen. Also given in each diagram, as
a fine line, is the spectrum of a first-order linear autoregressive
process having the same variance and lag 1 covariance as the non-linear
piocess of that figure. The process corresponding to figure 6.8 has

autoregression function
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x + 0.5 (-1.5 < x 5 1.0),

}sl(X) =
-1.0 (otherwise),

the autoregression function of the process of figure 6.9 ig

x + 0.5 (-2.0 < x 5 1.5),

Az(x) =
-1.5 (otherwise),

and that corresponding to figure 6.10 is

x - {-2,0 < x < 2,0},

AB(X) = 0 (otherwise).

Again the input distribution is the standard normal distribution. The
first two processes can each be described as being like a random walk

with upward drift and with a threshold level such that once this is passed
the process returns to a low level. Thus the processes should rise

slowly and drop sharply once the threshold is reached. This behaviour is
just discernable in Figure 6.6 although, because of the relatively large
variation of the input process, it is somewhat obscured. Figure 1.1

gives a realisation of a similar process for which this type of structure
is much more clearly apparent. Unfortunately the sequences of approxi-~
mations for the moments converge only slowly, if at all, for processes

for which this behaviour is more distinct and so the spectra cannot be
calculated. If the structure described above does underlie the behaviour
of the processes it would be expected that the spectra would reflect this
by having a peak located away from zero, or at least a region of relatively
high spectral density compared with a linear process. The spectra for the
processes with autoregression functions..)\1 and AZ both have a peak away
from zero. The maximum in figure 6.8 is near 0.12m although the maximum
value is only 0.0004 larger than that at zero. The maximum of the
spectrum in figure 6.9 is near 0.18w. For these two processes the spectra
are fairly different from the spectra of the linear procéss also shown in
the diagrams although this is possibly because of the special structure ‘
‘of the processes. The spectra of many other proceéses have been found to
be close to the spectra of the fitted first-order linear autoregressive
processes, an example being given in figure 6.10. It is clear that, if

the spectrum of a process is close to that of a first-order autoregressive
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process, it would be difficult to distinguish between the two processes
using only second order moment properties.

The approximations for the covariances used in the calculation of
the spectra in figures 6.8-10 are given in Table 6.6. For each of the
first two processes the autocovariance function has a damped oscillatory
behaviour even though the first correlation ié positive.r The moments
of the first process have been partly checked by simulation (Table 6.3(d))

and simulation and density plots for the second process appear in

figure 6.6.
lag autoregression function
A Ay Ay

0 1.65098 2.21893 . 1.85998

1 0.24206 0.58111 0.85998

2 -0.02125 0.04384 0.41509

3 ~0.0192 -0.0720 0.200

4 -0.00291 ~0.0468 0.0967

5 0.52 x 10 ° -0.0135 0.0467

6 0.28 x 10> 0.48 x 10°° - 0.0226

7 0.32 x 1074 0.25 x 10 2 ' 0.0109

8 ~0.10 % 10 ¥ 0.13 x 10 2 0.53 x 10 2
9 -0.42 x 107 0.29 x 107>  0.25 x 1072
10 -0.29 x 10°° ~0.6 x 10 ° 0.12 x 10 2
11 0.19 x 1079 -0.1x 10°° 0.59 x 10>
12 0.56 x 107/ -0.2 x 10°% 0.29 x 10 °
13 ' 0.14 x 10°°

Table 6.6: Covariances of processes in figures 6.8-10.
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7 STATISTICAL TREATMENT OF NON-LINEAR AUTOREGRESSIVE PROCESSES

7.1 Estimation and testing

7.1.1 The theoretical problem of estimation for noh—linear autoregressive
ptocesses is relatively simple when the process is'aSSumed'to be one of a
suitably parameterised family of such processes. Maximum likelihood
estimators may be used and the usual results about the asymptotic
properties of their distributions (as the lehgth of the observed series
increases) are available under fairly general conditions. _

Suppose that the unknown autoregression function A (x) is one of the
family of function$ A (x;6), with A (x) = A (x;8), and suppose that the
input distribution has a density of the form fz(z;w). Here 9 ,¥ may be
vector parameters. Suppose that a series of observations (xo,...,xN)’
are obtained from a stationary process whose mechanism is one of the

processes (indexed by 6,¥)

X = X(Xn;e) + Zn

nl (nh=0,1,... N-1)

+1

with'{zl,i;{zﬁ} independent of %5 and independent ambngst themselves with

‘common density fZ(z,w). Two possible ways of analysing this problem are

either to treat xo

conditional on this value, or to treat X5 as having the stationary

distribution of the process under consideration. Let fx(x;9,¢) denote

as being fixed, effectively taking distributions

the stationary density. In the first case the likelihood function is

N-1 v
n25 fZ(xn+l ~‘A(xn;8);w) (7.1.1)
and in the second there is an additional factor fx{xo;9,$). The contribution
of this term is negligible asymptotically and, since in general it would ‘
be difficult to evaluate, it may be convenient to discard it for moderately
large N. In other situations, for example for a sample consisting of many
relatively short sections of independent series, such factors might have
considerable importance. ‘

Assuming that maxinum likelihood estimators §,$ can be found from
the likelihood equations derived from (7.1.1) the guestion arises as to
their distributions. Provided that the problem is regular (Cox and
Hinkley, 1974, p.107) these estimators have an asymptotic multivariate

normal diztribution cenbrad at their true values. The informatlon matrix
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associated with the j'th observation is (Cox and Hinkley, 1974, p.300)

- "3,08 t5, 00
ij(B,W) =
B ERY
: 2 ‘ L .
i5,00 = 55 tos e miidy 2 5,9 g = )
2 S
1j'e¢ = —E{ Zaw log fZ(Zﬁw)}EIsgfl(Xj;e)] XO = xO]
.32 ,

Y500 T “E{“‘"awz log £,(z;1)}

where it is assumed that 6,) are single parameters and where Z denotes a
random variable Wiﬁh density fz(z;w). In forming the total information
matrix 1 e,y) = & ij(e,u), it is convenient to replace the conditional
expectatlons appegrlng above by expectations treating xJ as if had the
stationary distribution. Since the process is stationary this is a good

approximation for large N. Hence to terms comparable with N,

T Yoy
i (BIW) = N » (,7.1'2)
Loy Lo
where
: = -] {43—2- log f£_(2; )}E[{E'— )\(X°e)}2_l
fee T TEIT 3199 o A4 35 X '
. g2
l.e¢ = {BZBw log f (z, w)}EI l(X 811,
52
l-l,lﬂ,b = —E{;;'z— log fZ(ZHP)}:

and where X has the stationary density fX (x;0,9). The results when 9,y

are vectors are easily obtained.
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For example let the input density be normal with zero mean and

- wvariance y. Then the information matrix (7.1.2) reduces to

-1_.;:9 2
¥ E[{'é-a'}\(X;G)}] o]

1
o 2l

L- .

and hence the asymptotic variance of the estimate of 0 is

var®)= y/ et a0

and var(p) = 2%—- .

Also in this case the likelihood equations simplify to

N—l_ . 3 .
I {x g = Mx 30} gz Al ;8) = o, (7.1.3)
n=0
N-1 .
a - l_‘ . _ .A 2
b=g box 7 Mx 0T .
n=0

In particular, when A(x;0) is linear in the parameter 0, A(x;8) = 81 (x) say,
then '

. N1 | N-1 "
e ={1z xn+lk(xn)}/ T {A(xn)} ’ (7.1.4)
. n=0 =0

and

var (§) = ——-—-—%—-——
NE[A® (X)]

Once the maximum likelihood estimators have been found, their
covariance matrix may be approximated by that of the asymptotic distribution
~given by inverting the matriﬁ (7.1.2). Since this matrix is itself a
function of €& and ¥ these would usually be replaced by their estimators
to produce a quantitative estimate for their wvariation. To do so involves
evaluating expectations of certain functions under the stationary
distribution correéponding to 5,$. These could pbssibly be obtained from

the algorithm described in Chapter 5. An alternative would be to estimate,
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N-1 :
2..A2(xn), producing as an estimate for the
n=0

1

for example, E[XZ(X)FJ by N

. A
variance of 8 in (7.1.4),
_ N-1
~ " - =1
estivar(6)] = y{ I Az(x Yr 7.
n
n=0
Such approximations for the estimator variances would then not require
the evaluation of the expectations under the stationary distribution.
Thus, to the extent that the process under coﬁsi&ération can be
assumed to be of a particular known parametrié form, the problem of
estimation for non-linear autoregressive processes can be met by maximum

likelihood procedures.

7.1.2 Assuming that, for a particular set of data, a non-linear auto-
regressive process is thought to hold, an appropriate form for the para-
meterisation of the model must be found. It may first be remarked that
the structure of the likelihood function (7.1.1) is exactly that which
would be obtained from a regression experiment with observations -
xl,...xN at the values of an independent variable tl,...tN, with

ti =Xy qv for which the following holds

Xj = A(tj;e) + Ej (3=1,...,0M,

with the observation errors Ej having the density fzi’;w). This suggests
employing least squares estimates for the (vector of) parameters 8. In
the scalar cass, with fZL';w) having zero mean, this leads to the least
squares estimate 0 given by

N-1 . 3 .
r {x —Mxn,-e)}—a-gx(gn;e) = 0. (7.1.5)

n=0 n+l
This estimate coincides with the maximum likelihood estimate when the
input distribution is normal (compare (7.1.3), (7.1.5)). The comparison
with the ordinary regression situation suggests that, if the densities
fZ(';w) are not too far from normal, little is lost in terms of efficiency
by using the least-sguares estimate rather than the maximum likelihood
estimate. The least-squares estimates are always available and do not
depend on estimating parameters of the input distribution when fZ(';wj

has zero mean; in fact the only assumptions needed about this distribution



-169

are that it have zero mean and finite variance. Beran (1976)_gives.aﬁ
adaptation of the procedure for non-normal distributions and linear
processes. »

In considering the parameterisation of the autoregression function
it would often be natural to ensure that the linear functions {of x)
are included amongst the family A(x;9) as a special subspace of the
parameter space: in this way likelihood ratio tests for the presence of
a non-linear part to the autoregression function may be constructed.
These tests would be expected to perform well in testing against non-
linear functions of the type used in their construction. In the same
way as with oxdinary regression, the form of the autoregression functions
actually fitted would be regarded as being only an approximation to the
shape of the "true" autoregression function.

A possible natural choice for the family of functions A(x;8) is the
family of quadratic (and, more generally, polynomial) functions: with
6 = (a,8,Y),

) )\(xf uIBIY) = 0‘ + Bx + 'YX2 . o (7.1.6)

As was shown in section 2.4;4; a pfocess with such an autoregression
funétion, with v # 0, would be non-stationary for almost all input
distributions, exceptioné being finite tailed distributions for special
ranges of the parameters d, 8, y¥. However even for non-stationary
processes:the maximum likelihood estimators may still be defined though
 the asymptotic properties above no longer hold. Since only a finite
number of observations are available, statiorarity has little relevance
except in providing the asymptotic distributions for the estimates. The
function estimated from thevfamily of functions (7.1.6) would anyway be
regarded as just an approximation over some central range to the actual
autoregression function. Here a possible curvature in the autoregression
function is approximated locally by a quadratic function: further poly-~
nomial terms could also be included to extend the range behaviour covered.
An alternative approach to testing for non-linearity of the auto-
regression function would be to attempt to fit it by linear functions
over different sections of the range. If the ends of the sections are
taken as prespecified constants and if the function is not constrained
to be continuous this leads to simple estimates of the slope and intercept

parameters of each section and a likelihood ratio‘test for the equality of
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the parameters of the different sections gives a simple test for
non-linearity.

- Just as in the ordinary regression situation, the calculation of
least squares estimates is greatly simplified if the functions A(x;é)
are chosen to be linear in the parameters in the vector é, and other
considerations concerning the form of the regression functions apply

here also. An orthogonalisation of the model might be attempted: for
the model (7.1.8) let

N-1 N-1 N-1 N-1

— 1 — 2 ;- =2
X = i X,, 8 = 'I—\I- I (Xi—X) , £ = 1L (Xi—x) 3/ i__z::o (xi"X) ’

Z=

i=0 * i=0 i=0

then the usual orthogonalisation leads to the model
AE(xzak,B%,y*) = a% + 8% (x=%) + Y*[(x-%)2 - t(x-x%) - s°].

While this might be used to calculate the estimates of the parameters in
 the original model, regarding §; sz, t as fixed, and to calculate the
estimated autoregression function, the parameters in this model are
difficult to interptet since they are connected to the "real" parameters.
by the sample guantities ;} sz, t. However the above type of ortho-
~gonalisation would help to avoid the occurrence of numerical errors in °
calculating the least squares estimates. Checking of the model by
examination of the residuals, r; =%, - A(xi_l,é), can also be extended
from the ordinary regression case.

One basis of a non-parametric approach would be to eétimate the
joint stationary density of (Xn,xn+l) by a suitable kernel estimate
formed from the sample {(xi,xi+l); i =0,...N-1}. Here the sample pairs
are not independent but the stationarity of the process would enable a

consistent estimate to be formed.

7.2 Identification and Prediction

7.2.1 In the above it is assumed.that, somehow, it is known that a
specific model, namely a first order non-linear autoregressive process
should be fitted. Clearly some way of deciding which type of model is

to be used is needed and it is natural to try to extend the identification
procedure of Box and Jenkins (1970, Ch.6) to fill this requirement. It

would be difficult to give a complete description of a procedure which
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would purport to distinguish between linear and non-linear autoregressive
Processes having different orders of dependence on éast terms, especially
if autoregressive-moving average and non-stationary (integrated)
processes of variéus types are also to be cOnsidered as possibilities.v
Here a simple and fairly obvious generalisation of the Bo%—Jenkins
procedure is given.

The following extended notation for partial correlation coefficients

will be used.
p(X,¥) = corr(X,Y)

O(X,Y;‘Ul,...Uk) = corr(X - 0,0, ... —ou U, Y - BlUl... SkUk)

where Gyreee Oy Bl,... Bk minimise var(X - alUl... -akUk) and

var (Y - BlUl...SkUk). Also, for partial regression coefficients
B(X,¥) = covi{X,Y)/var(Y),
B(X'Y;>U1"'°Uk) = cov(x,Y—BlUl...-BkUk)/var(Y-BlUl...—BkUk) ’
and for partial error variances and covariances,
2 ' _
o (¥Y) = oglY,Y) = var(y)

eev=B. U )

2, _ _
o (YfUl""Uk) = var (Y BlUl kY%

0 (X, Y30y 40020, ) = cov(X-ulUl...—akUk,Y-BlUl...-BkUk)

1Y1 1/ - % minimise

varLX—alUl,..—akUk). This notation is more cumbersome than the usual

i ere inimis - .o d
where_;galn Blf Bk.mlnlmlse var (Y-8.U BkUk) and o

notation but is more convenient for the purposes here. The following

relations hold (Xendall and Stuart, 1973, p.338).

: G(X,Uk;Ul,.-.Uk_llq(?,Uk;Ul,;..U )

, k=1
O (X, %50, .. U ) = 0K, YU, T ) - > .

g (Uk;Ull - .Uk"‘l)

(7.2.1)
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It

: e 2
B(x,z;ul,...uk) o(X,Y;U ,...Uk)/a (Y;Ul,...Uk), c7.zf2)

1

B . 2 2,0 v y1/2
O R AR IEICI % AP U VAT STUAVRRRUB L (x,ul,...uk)}

| (7.2.3)

The zbove, which are not the usual recurrence formulae for partial
correlation coefficients,_give a useful form for computation. Formula
(7.2.1) is the equivalent to the "sweeping-in" of the variable U in a 
multiple regrassion situation. BAn iterpretation of .the partial correlation
coefficients is given by o

2 _ 2 R P ' | .
o“ (%Y, U y...0, ) = 07 (%50 . UL - e K, YU .l T ) Bl (7.2.4)

1’
Hence p2 is the fractional reduction in error variance achieved by v
including the variable Y in the regression of X on Ui""Uk' The above
expressions all hold for any random variables X,Y,Ul,...Uk and not just
for multivariate normal distributions.

In a time series context, interest may be in predicting the value

X 41 of a stationary seriesl{Xi} by a linear function of other variables |
U{n),...Uén), where here the index n denotes time and Uin),...Uén) are

random variables for which observed wvalues are available at time n. Then,

to minimise the mean square error of prediction, the best linear predictor
"~ - )

Xn+l of xn+l is

N
xn+1

i

uy o+ B{n){uin) - ﬂ{n)}+ cev F Bén){uén) - uén)}

{n)

i

(n)

where = E(Xn), u = E(U; ) (i =1,...k),

My

B(n)

(n) (n) (n)
1 U

= B (X el 7U2 res ety ),

and n+l 1l

i = px u™; oy

{n) U(n) (n)
n+t1’72 7 "1 73

,...Uk }, etc. .

(n) (n)
n+l’Ul re- Uy Y-
(minimising mean square
. . . My
error) is the conditional expectation E(Xn+1|Ul ye+.U_ ). Though the

k .
variables Ufn),...Uén) may be any set of relevant quantities, here they

will be :estricted to be stationary functions of the past values (up to

The mean square error of prediction is then 02(X The

best, not necessarily linear, predictor of X

time n) of the series {xi}. In this case the correlation, regression and

variance coefficients above are invariant to shifts of time scale.
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7.2.2 The Box-Jenkins procedure commences by approximating the covariance
‘structure of the process by the corresponding sample quantities. Usually

this is just done for the ordinary covariances, cov(x ' X +k)’ but sample

(n) (n)) cov (U ,U(n))._CV(U(THh) §n+h)

3 J
can also he formed for any statlonary functions Uén) of the data series.

estimates of the quantities GOU )
Here the same notation will be used for the estimated and theoretical
values. The above formulae may be applied just as well to the estimated
covariances and the quantities B(.,.) P lere) derived by (7.2.1-3) will be
estimates of the partlal regression and correlation coefficients.-

The standard method proceeds by considering the two sequences of

coefficients (Box and Jenkins, 1970, p.64),

P =P /X 1} (h = 0,1,2,...)
é ‘,1 = p(—X 'x hl n—- ll’xn__zl"'xn_h_l_l) (h = 01112!-") (.7-2-5)

The reason for studying the sequence ¢hh is essentially that, if the
pProcess {Xn} is generated by a linear autoregressive process giving Xn

in terms of Xn_l,...xn_p ogly, plus an additive input, then, for any input
distribution, theoretically

¢hh = Q (h > p).

The problem of deciding on the number of texrms to fit in a linear auto—
regressive process is analogous to the problem of deciding which set of
independent variables to include in a multiple regression situation (Box
and Jenkins, 1970, p.64). Considering the set of partial correlation
coefficients (7.2.5) is really a short-cut to considering more extensive

sets of coefficients

e-g- p K . .o q\\‘ H —qll q|2‘... .
(A lx ]l l' X ) (- - l h l ! . )'
.o e . } 1 PP | > 7 - > . wg
oxr p()‘. ’X ] ,X .« r X ( ’ O h 112131

1 q B pigee.cigde

These last coefficients give (by their square) the value of including the

term Xn-h into an existing prediction formula for Xn in terms of
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Having put the problem into a regression-like situation it is naturai
to consider introducing polynomial type terms into the prediction equations
and this is likely to be appropriate if the process is a non-lineaxr
autoregressive process. Clearly terxms other than polynomials can be
considered. Including polynomial terms in the above procedure is the
same as considering prediction formula of the type )

2 | 2

Foooty X + e

X =c+ ot
c+BiX BXnp t Y11%n-1 T Y12%0-1%0-2 g’ n~q

n P n—P

(7.2.6)

and, intuitively at least, such predictors would be expected to perform.
well if the estimated autoregression function (the right-hand side of
(7.2.6)) is close to the true function for values of (Xn_l, n_z,...)_
which occur most often. Clearly it is perfectly respectable to fit a
polynomial predictor even though a process with such an autoregression
function would be non-~stationary.. V

It would be possible to decide which subset of a number of lagged
linear and polynomial temms to include in the prediction formula by the
standard iterative procedures of stepwise regression. However in this
time-serieé context it may be reasonable to suppose that if a term
Xn_.q appears in the prediction equation then so should all of

X _qr---X + or it may be that an equation containing only terms

~linear inntg; series values is to be preferred to one containing non-
linear terms. Also a cubic term in a lagged variable would probably not
be included unless the same variable appeared as linear and quadratic
terms as well. In any case, as far as the prediction mean sgquare error
is concerned, the value of including a term into, or excluding a term
from, a prediction equation is given by the corresponding partial
correlation coefficient or, equivalently (by 7-2.4), by a pair of partial
error variances. . This would mean considering partial correlation . '

coefficients such as

: 3 -
p(xn'xn-l' xn—-l'xn-~2""xn-q)'
. 3 N . 2
. : cse ¢ X
P X g Z-1"%n-2" xn—q' =12
p (X ,x:3 X X Lee--X ),
n' "n-2'""n-1'""n-2 n-q
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or, starting from a non-linear predictor,

2 3
p(anXn_zr xn—l'xn—l'xn—ll'

2 3
p(Xn’xn—3' xn—l'xn~l'xn—lfxn—2l -

Two points concerned with the above calculations are, firstly, that
when sample values are used for the above procedure it would usually be
necessary to adjust the estimates of the prediction variances in the
usual way to take account of the number of parameters fitted. Secondly.
the estimates of the parameters (i.e. the estimated regression coefficients)

are not exactly those which would be obtained by the least squares method
(anderson, 1971, §5.4}).
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8 MULTILDIMENSIONAL PROCESSES

8.1 Introduction

In earlier chapters one dimensional processes have been considered.
Here the same methods are applied to multidimensional processes to enable
properties of their stationary distributions to be calculated.

Let the prccess‘{xn} taking values in a d-dimensional #ector space

he defined by

X = A (X} + 2
. n n

n+1 nh=...-1,0,1,...} (8.1.1)

+1
where ) (-} is a d-dimensional vector-valued function of a d-dimensional
vector variable and where {Zn} is a sequence of independent and identically
distributed d-dimensional vector-valued random variables. The components
of each Zn-vector need not be independent amongst themselves. Much of the
discussion of statlonarity in Chapter 2 applies also to multidimensional
processes so that conditions for the existence of stafionary processes
with the above representation can be obtained. k

Analogues of the methods suggested in Chapter 3 can cobviously be
develépéd but heré only the generalisatién of the successful alqorithmv:
cbtained by varying the autoregression function is given. There are
several ways in which a generalisation of the family of avtoregressive
processes (4.1.6) may be introduced, for it would be possible to introduce
a seéarate parameter for each dimension. However it seems simplest to
work with just a single parameter, and this is done. This may be
inappropriate if some dimensions of the autoregression function are
exactly linear.

Considering the values of the process as column vectors, a possible

family of auto:egression'functions is
p(x;B8) = a+ B'x + B[A(x) - a - B'x],

where a is an arbitrary but fixed d-dimensional column vector and B is
a dxd matrix, arhitrary excepting that the initial process (corresponding

= ! = ... =1,0,1,...
xn+1(0) a+ B Xn(O) + Zn+l (n ‘ 1OsL, )
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should be stationary: for well behaved distributions this would usually ‘
imply simply the condition [det B[ < 1. Properties of the initial
stationary distribution can be found using characteristic functions.

1f So(s), ¢Z(s) are the characteristic functions of the initjal
stationary distribution (of {Xn(D)}) and of the input distribution

respectively, where s is a d-dimensional vector variable, then

,1)}

8 (s)

g P B | 11 = T ] S PN} T4 et
o E{exp (is Xn+l(Q))} E{exp(ls a+ is'B'X (0) + is'z .

exp {ia's} EO(BS)¢Z(SI

i

o
exp {ia' (1-B) Ts} T ¢Z(Brs)
r=0Q
in exactly the same way as for the one dimensional processes. Even for a
normally distributed input it does not seem possible to evaluate this in
a simple form for general B (Andsrson, 1971, p.18l). If the covariance
matrix of the input distribution (whether normal cr not) is C, that of
(>4

the initial linear process is £ B'*c B .

) =0

For the general choice of B it is possible to derive direct

analogues of formulae (4.4.1-6) giving the terms in an expansion in
powers of B of the stationary characteristic functions ¢(s;B} of the

processes

X (B =a+B'X (8) + B{atx_(8)) ~ a - B'xn(e)} 2,

1 (I’. T s e _1'0,15.-.)v-

(8.1.2)

The derivation is not given here but the formula can be found in exactly
the same way as for the one-dimensional processes. Using ‘the notation

introduced in the next section this can be done reasonably simply.
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8.2 Vvector notation

The following notation will be used. For a real or complex one

dimensional function £ of a vector variable x = (x ,...xdl' and a

1 ,
vector r of integers, r = Lrl,...rdf (ri > 0), define the symbol for

the derivative

rl+. ..+rd
Br @ . -
-;;:]'.‘-fc{) =. r r f(xl,...xd).
1., 72 *a

Bxl sz ...Bxd

For a vector-values function g(x)} = _(gl(x) ' 9y (x) ,..v.gd(x))' of a vector

variable define, with r as above,

r ar ar '
"";:" g(.X) = { I gl (X) AN A ’ _-_; gd(x) }~
ax ox 9x

Define factorial and combinatorial coefficients for vectors of integers

»n = (nl,...nd)', r %-(rl,...?d)', ?yv

1 — 1 1
n. - nl- n2. ...nd. 7
(n) _ n! (P} P2 "3
= e— = cea P
r (n-r)}'r: ri iz, £4
1 2 1 1
niingl...ngt

- ] — ] 1 1
(nl rl)....(nd rd).rl....rd.

. Define for vectors x ='(xl,...xd)‘, r = (rl,...rd)‘ the powers

Xr = Xrlxr2 | xrd = i Xr’i
172 "7 7a i
i=l

and for matrices A = {a..}, M = {M, .},
ij i3

a m,.
mo_ M1 M2 "aa i3

L 8.2.1
211 %12 234 i3 ¢ )

il
=
]
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Since for scalar ¢ and vector X,

r r r

) +ootr
ex)f = (ox.) 1 veo (o) d_ o 1 d‘x '
1 a ,
_ r rl+...rd .
it is natural to define o = o for r = (rl,...rd)' and o
scalar. It follows from the above definition that Lk = xp+n where

x,m,n have the same dimension and *" is scalar.

The following formulae can be shown to hold. Here j and g are
d-dimensional vectors of integers, jl is a scalar integer, A is a pxd
métrix, r is a p-dimensional vector of integers and x is a d-dimensional

(continuous valued) vector.

ot 1 >

B G-q1 ¢t = (3 > 4qa),

__a.xj =

0x o] (otherwise).

s j.;~q'l
l q L] l ) 1]
d jl Gra' D) a®(a'x) (3; 2q'L),

— (a'x) = .

axt : S |
x o) _ D (otherwise) .
—EE ax” = ¢ 9 r_ AR(Ax)r-Rl

qu : R R! (r-r1l}: )

_ This summation is over all pxd matrices R of non-negative integers satisfying
the constraints R'l = gq, Rl i r. Here and elsewhere 1 represents a vector

of ones of suitable dimension for multiplication where it occurs.
Inequalities between vectoxrs are taken to hold coordinate by coordinate.

Similarly if F(u) is a function of a p—dimensional variable

q gt Rl
Zrmo = @1 LafZora :
ax 3 - R'l=q u u=

It may be noted that (8.2.1) implies that, for the identity matrix I

and the matrix @ composed entirely of zeroes,

R ‘{ 1 (if R is diagonal),

0 (otherwise),
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1 ' R = 2),

o] (otherwise) .
.For the "ordinary" scalar power it is natural to take

I | (m = O)p

Fol (otherwise} ,

and for any matrix A, AO = L,

For vectors m,n, the symbol

n nl n2 nd
z will mean L % ses
m=Q ml=0 m2=0 md=
and
o o0 o«
I  will mean N L ces z .
m=0 ml=0 m2=0 md=0

Then it may be checked that, for a function h (possibly vector valued)

of a d-dimensional wvector,

©® T r

he) = & I -i’-;h(u) .
r=0Q ° 9u u=0

Alsd,‘fpr the functions £,g, one of which is scalar valued, the derivative

of the product h = fg is given by

' an ) n n vaI 8n~r
~nt = 1 (r) T £l g,
oxX =0 ox~ . ox

where n and r have the same dimension as the variable x.

For two vectors a,t the following expansion holds

© o rr
exp{a't} = I i
=0 )
and
2T
— exp{a’t} = a  exp{a't}.
st¥ _
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Integrals involving a vector variable x will be denoted by
[o e =ff oo f ¢ axaxy....axg

and in the following these integrals will always be taken over the entire
d-dimensional space. For a probability distribution function F{x) of a
d-dimensional variable, the characteristic function is givén by

b (s) / exp{is'x} dF (x),

where s is a d-dimensional vector variable, and the inversion formula

£(x) = —=t = f exp{-is'x}¢ (s)ds
(2m)
(1) ad. v
often holds if F(x) has the density f(x) = F (x) = e P (X, po-eaX ) e
' Bxl...axd 1 d

8.3 Expansions for distributional guantities

8.3.1 On writing A(x) for the vector function of vector variable x

defined by
Ax) = A(x) - a-B'x,

the equations that the characteristic function ¢ (s;8) of the process

'{Xn(S)}, given by (8.1.2), must satisfy are

¢(s;8) = f eis'xdFLX;B)

d,(s) fexp{is'(a + B'x + BA(x))}dF (x;B). . (8.3.1)

'Then‘making an expansion of §(s;B) similar to (4.4.1), namely

[ B

N
¢(s;B) = o6 (s) + B B, (s)

7
=

the following formulae, defining the coefficient functions GN(s), can be

shown to satisfy (8.3.1):
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©

o (s) = T I uets) Iz ™3 g le), (s N =1,2,3,...)
1<571<N 2=0 - (8.3.2)
2™ () = —E— [ e, (-uldn (1< 3'1 <Ny,
31 (2m) ] '
where
6,(s) = explia’ (1-8) Ys} T 4, (Bs)
» ' r=0
| 2 i} |
P (s) = 1 exp{ia'Brs}q‘)ZLB s) (2 =0,1,2,...)
and
L = I3 () e ax 1> 1.

Here the guantities N,% andr are scalar integers, whereas j is a vector of

(N,3}

integers. For example T (s) may be written more fully as

T(N’j? (s) Tmrjl'le".jdl, (Sy4850-.084) (1.2 3y%ig*-etig £ M.
As before, important simplifications take place when B is chosen to

have special values. There appear to be two distinct cases when this

happens. In the first B is identically zero and in the second B is non-

zZero, but such that the powers Bl are zero for 2 Z_QI > 1 say. In either

case the infinite summation in (8.3.2) reduces to a finite summation.

Only the first case will be treated here although the second might also

‘be useful. L '

Exactly as in section 4.4.5 the above formulae can be reduced to

the following when B = d.

$(s:B) = 90(5>h(5;3):,
where his;8) =1+ L ) BN(iS)jT(N'j) (8.3.3)

N=1 1<j'1<N

p§0) I
o 00,32
- =
L lsnt -3t 3 ,
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and
pnl .1__-—3—111[' ) M ar 01 . (8.3.4)
J j! Byn - VO “y=0

Here 85(s) = explis'alé,(s) and F (x) = F,(x-a).

As in section 4.5.2, formulae for the joint characteristic function
¢ (s,t;B) of (x (B),X ,, (B)) can be obtained. 1In the general case
R # a8, ‘

@

_ N
o (s,t58) = Sork(s,t) + L B ele(s,t),
N=1
where
exp{it'a}e,(tde | . (s,Bt) k> 1)
B (s+t) - &k =0)
_eN,o(S’t) = GN(s+t) | FN > 1)
By (508) = e % ) g 8y oy (S/BE) + I 1o le™ 3 s By Lk > 1)
’ ! 1<3'1<N
(Nrj) __ 1 - $ 1 -
Ry 7 (s,t) = ——— f LWy oy pp(sitmwdn @ <3'1<N; k2> D).

jleme
When B = @, the formulae corresponding to (4.5.12-3) are

b rtie) = oo @ {neim + 3 1 @unig® P @)
. | N=1 1<j'1:<N
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'Q;O)(o,s) (3'1 = N
' k =1),
( (N~-3'1,n) n
i ) _ o
Z T I (_n)(is)qQ.(n‘ql(o,sl (d<3'1 <N
1sn'1<N-3'1 q=0 S !
~,3)
Tk (s)-ﬁ
| P;O) G'1=1m -
L | k> 2) .
PFO) 5 (is)nT(N—j'l,n) + 5 T(N—j'l,n)(S)Pgn)
J k-1 3

1<n'l<N-j'1 1<n'l<N-j'l1

(1 <3"1<N

Here .
1 is'x,j,
Q5 tyss) T T [ e "n) xrydrar, ()
n
and Q.(n1 (0,8) = —-?-—Q-(.Y'S) ’ .
J PN _
Y y=0

Clearly the methods of section 4.7 could also be employed and it
follows that h(s;B) given by (8.3.3) is the stationary characteristic
function of the multidimensional process given by

Y8 =BA{ ¥ () +a+z o} (n=...-1,0,1,...) (8.3.5)

n+l +1

BAL X_(®)}.

8.3.2 ' From the above formulae, expressions for moments and joint moments

of the stationary processes can be derived, just as in Chapter 5. For the

choice B = ¥, the following hold.

.
E{Yn(B)} =

i
=
~
2}
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where_
1 (r'1 =0) .,
p 0 _ . (8.3.6)
g gNpNeT) ('1 > 1)
N=r'l ‘
T L (r=q) (q,0}
E{xX(8)} =r! T 0 F T (on'dCt,
n 0]
a=0
RS S o
where eér) (s) = SR 2 4 (o . (8.3.7)
Y. r O
ds '
R, o m Gep) — (p,q) |
E{xn(B)Xn+k(B)} =2m! T L ;T (08, (O)n, =’ (8.3.8)
: p=0 g=0
where
h‘gﬂ,,m) 1 BNT]:Nlm) (2)
: N=m'l »
and where, for 2'1 = O, TliN’m) (&) _ T(N’m), and for &'1 > 1,
tho,z) G't=wm
. k = 1)
min (n,2) ) o
z % (H)T(N'J‘lln)an“q'Q“q) (lijtl < N)
1<n'1<N-j'1 q=0 q 3 :
(N,3) (2)
T, =
o) (3't = N)
(k >2),
(0) _(N—-j'1,8) (N-3'1,n) () _(n)
Pj T + X Tk—l Pj
1<n'1<N-j'1 I <3'1<N)
wﬁére T(N_.j'l"q'.) =0 (&'l > N-j'1),

48 ntl .y .
(n,g) _ (=i) ) 1 is'x j
Q4 = 5Ta D {eo(s) [ e A (x+y)dFO(x)}

. Y ,S=0,

and where min(n,%) = {min(nl,Q.l), min(,nz,lz), min(nd:f'd)}'. These are all
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exactly analogous with the formulae for the one-dimensional case.
Moments and joint moments corresponding to a choice B # @ can be
found from the expressions for the characteristic functions using the
formulae for derivatives given earlier. The expressions obtained are
then of a form equivalent to (5.2.2} and, like these, appear impractical

for use unless special circumstances hold.

8.4 An Example

In order to demonstrate the interpretation of the abowve notation

consider the 2-dependent process"{xh}, assumed to be stationary, defined
by

Xn+1 = Al(xn) tyX _, tZ n=...-1,0,1,...) . (8.4.1)‘

1 n+l

¥}

This can be written as a multidimensional process'{(xn l,xn 5
F 4 r

~generated by

Xn+1,l = vkl(xn,l) * Yxn,2>+ zn+1

Xn+l,2 = Xn,l
- where {Zn} has the distribution function GZ(z) and characteristic function

‘ ¢Z(s), say. This process is equivalent to (8.1.1) with d = 2, A(x) given by

. Al(xl,x2)1 Al(xl) + YxX,
Aix) = '

‘ Az(xl,.xz)_l | Xy
énd with thzl,zz) having a degenerate second component,

o] o (22 < 0),
FZ(zlrzz) =

Gz(zl) (z, > 0).



187

Then choosing a = _(.al,a2) '

Ry Gegaxg) = Al F vy = age MGG axg) = xg - ey

FO(x) = FO(Xl'XZ) =
GZ(xl - al). ‘ (3(2 > a2).

Also dJZ(_sl,sz) = \J)Z(_sl) and

bolsyisy) = exp{l(,slal + szazl}wz(sl) .
(rl,rz) .
so that 80 (0,0) defined by (8.3.7) is given by
r .
2 r r
(r ,r.) a A 1 is.a
6 1772 (0,0) = 2 . (~-i) ) {e 11112 (s.)} .
Q r.. r,! r Z 1
2 1 1 s_=0
9s 1
1
The quantifies P;n) of (_8H.3.4) are given by
(n, ,ny) ' 1 anl+n2 } 3y 3,
303,  3.%3.0 n. n [ by 4y Legty ) -a) “lxpbyy-an) TdF ) (x) x,)
1772 1°-2 1 2 .
Ay oy
1 -2 =y =0
Y177,
1 'Bn1+n2 : ' jl j2
T35, T n] n [ Leyrag sy Dy lagty ) -ad “legtagdyy-a)) 746, (x))|
Byl ay2
Y1=Y2=o
n n - ) .
= 1'2 ) . f{k (x.+a_+y.)+ya -;a }3l n2Cx +a_+y.-a )jsz ()
COREC TS R T LA R e RS R o ] 17917¥17%2 z' %1
2 12 1l A
Y
v -0
Yy
2t
——-—-—-——-—Jl. ynzp(nl’O) n, < 3;)
—= - . . <
(31 nz) ! 310,03, 2 1

o} (otherwise).
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N, 3)

The formula for T now is

0,0 P
PSQ'.l (j.+3j, = N},
i J-23 1“2
. . 1'-°2
(N,3.,3,)

o120
- (M-3 ~j,/n,,n.) (n_,n )
1 -°2°71"72 2% . .
5 po- L p, T (T <3.+5. <N,
.. Jy733 T2
l§p1+n2§N-jl-32

(r,0)

and h given by (8.3.6) is

(r,,x,,0,0) 1 trysr, =0,
h =

It may be notea that moments of the process (8.4.1) can be obtained
either from the moments of the first component process {X . (1)} or from

n,l

the moments of the transformed process'{Yn 2(1)} of (8.3.5),

’

The first method leads to

r

r r . 1 (r -q‘ ,0) (.q ¢0,0,0)

. 1, _ 1 _ ' 171 1
E{Xn } E{Xn’l(l)} = Iy Z; 60 h

q,=0

1 -
while the second leads to
r, ' r, (D,rZ,O,O)

; —— = : — '
B{OY, - ay) “} = B{Y,",(1)} = ryth '

where the numbers h are formed with 8 = 1. It is not obvious that these
two expressions are egquivalent. From the pairwisé'moments of the two
dimensional process, given by (8.3.8), it is possible to find any moments:
of the form | .

Ay oy
By X1 % nnnik-17 (Bprfyrmyemy 2 0i k > 1)

for the processg {xn} given by {8.4.1).
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