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ABSTRACT  

Models of the form Xn+1 = A(Xn
) + Z

n+1 
are considered for time-

series {X
n} where {Z  n

}is an impulse sequence. Some conditions for 

stationarity and non-stationarity of such processes are given and it 

is shown by simulated realisations that these processes extend the 

range of behaviour available with linear autoregressive-moving average 

models. Methods for approximating the stationary distribution of a 

process are considered and expressions are found by which the exact 

moments, joint moments and densities of the stationary processes can 

be obtained in a wide range of cases. Moments and densities of .conditional 

distributions useful for prediction are also found. The results of these 

methods have been verified by computer simulations and these and other 

numerical results are given. The methods found can be extended directly 

to deal with multidimensional processes of the above form and this is 

discussed briefly. 
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1 	INTRODUCTION 

The models for a discrete-time time-series 

work are of the form 

considered in this 

Xn+1 = X(X ) + Zn+1 	(n = 	 (1.1) 

where X(x) is a function of a real variable and where the series izn 
is a sequence of independent and identically distributed random variables. 

This is a generalisation of the first-order linear autoregressive model 

X
n+1 - p = c[)1  (Xn  - p) + Zn+1 

	(n = 	-1,0,1,...), 	(1.2) 

where p = E(Xn), E(Zn) = 0 and 1411 < 1, and for which 

E(Xn+1IXn = x) = p + cf)1 	
- p 	 (1.3) 

One reason for considering models of the above form is that, although 

the linear form of (1.3) may be a good approximation for a particular 

real system, it is unlikely that it should hold exactly everywhere. It 

is therefore of interest to be able to treat situations in which this 

response is not necessarily linear and the model (1.1) is one way in 

which this can be done: it retains the constant variance, additive 

error structure of (1.2). 

In the above case functions X(x) which are "nearly linear" would 

be of most interest although there is no reason to restrict attention 

to such functions. By allowing functions further from linearity, some 

interesting types of behaviour can be obtained for realisations of the 

process (1.1). Some indication of this behaviour can be derived by 

consideration of the corresponding deterministic sequence fx
nI generated 

by 

xn+1 = A(n) 	Ga = 0,1,2,...) 	(1.4) 

For these deterministic sequences the roots of the equations 

X = (x), x = ACA(x)}, x = AIAD.(x)}], etc., 



play a large role in the. behaviour of the sequence. A root x* of the 

equation x = X(x) is called stable if the slope of X(x) at x* is strictly 

less than one in absolute value, for then the sequence (1.4) starting 

from a value in a neighbourhood of x* satisfies xn  x* as n 	A root 

of x = A(x) at which the slope of A is greater than one is unstable in 

that a sequence starting close to, but not exactly at, the root will 

tend to move away from it. Assuming that the sequence fznl appearing 

in (1.1) can take any real value but with a distribution concentrated 

in a region about zero, it is apparent that the behaviour of the process 

{Xn} can be described by saying that it remains in a region close to a 

stable root of the equation x = A(x) until a large enough value of the 

input sequence occurs when the process shifts to a location about a new 

stable root. However there is also the possibility of stable periodic 

cycles for the deterministic process and these would also have their 

analogues for the process (1.1). The types of behaviour that can be 

obtained from a deterministic process of the form (1.4) are very complex 

as has been described by May (1976), however in simple cases a general 

description of the behaviour of the stochastic process (1.1) can be 

given as above. There need not be a root of the equation x = X(x) (or 

of x = X{X(x)}, etc.) in a region for that region to be given fairly 

large weight in the marginal distribution of the stochastic process: 

it is enough that the line y = X(x) should be close to the line y = x 

for then, once that region is reached, the next few values of the 

process will also be in that region since X
/1+1 

= X(X
n
) = X

n 
with large 

probability. 

Some computer realisations of particular processes of the form (1.1) 

have been obtained and graphical representations of these are given in 

Chapter 6. Here the sequences are relatively short (151 values) but 

some of the above type of behaviour can be observed. More complicated 

types of behaviour would require longer realisations to be discernable. 

Figure 1.1 gives a realisation of the process (1.1) for which the distri-

bution of the input sequence is normal with zero mean and standard 

deviation one half, and for which 

-3.0 	< -3.5 or x > 3.5), 
X (x) = 

x + 0.5 	(-3.5 < x < 3.5). 
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SERIES VRLUES 	 SERIES VRLUES 

Figure 1.1: Realisation of autoregressive process with 

A (x) = x + 0.5 (-3.5 < x < 3.5) , = -3.0 (otherwise) , Z ft,  N (0 	. 
'4 



It is fairly clear that the model (1.1) can give rise to processes 

which could not be modelled by the more usual linear autoregressive-

moving average processes: this could be done only as far as second-

order. moment properties are concerned. Therefore, at the very least, 

these processes give a further wide class of models which could be 

fitted to approximate the behaviour of some real data series. 

A process of the form (1.1) will be called a (non-linear) auto-

regressive process and the function X(x) will be called the auto-

regression function of the process. It is not assumed that the distri-

bution of {z 
n
}is centred at zero. An associated process which may 

sometimes be more useful is the series {Y
n 

given by Y
n 
= X(X

n
) for 

which the following generating equation holds 

Y
n+1 	

X(y
n 
+ Z

n+1) 	On = 	-1,0,1,...), 	(1.5) 

and X
n+1 

= Y
n 
+ 
zn+1. 

The processes {X 
n 
}, {Y n} are equivalent in that 

the distributional properties of one can be found from the other. 

An example of a model of the form (1.5) has been given by Feller 

(1971, p.208). One version of this is that individual pieces of planking 

are cut in such a way that the angle between two supposedly parallel end 

faces is a random variable 8, independently and identically distributed 

for each plank. Suppose that in forming a length of planking the 

(n + 1)'st piece of planking is butted on to the preceding piece in such 

a way that its contribution, 
±8n+1, 

to the angle between the first and 

last faces of the total length of planking is of opposite sign to that 

of the total accumulated angle. If the absolute value of this angle is 

ipn after n planks, then!l = 1811 and 

11)n+1 = 	- 181.1+1 1 ! 

	
(3 = 1,2,3,...) 

which is comparable with (1.5) with Z
n+1 

= -18
n+1

1. Here the equivalent 

form (1.1) of the process is 

X
n+1 

	
len+1 1 
	

(n = 1,2,3,...) 

where the sequence {XII} gives the amount of under or over-correction at 

each stage. Feller gives the stationary distribution of the process. 
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A further example is given by a single server queue with Poisson 

arrivals and general service distribution. Let Xn  be the number of 

customers present immediately following the completion of service of the 

n'th customer and let Z
n 
be the number of customers arriving during the 

service of the n'th customer, then with 

U(x) = 
1 	> 0) 

0 	< 0), 

Xn+1 
	- (Xn)  + Z

n+1 
	671 = 

(Cox and Miller, 1965, pp.88,115). Another example in the same type of 

situation is given by the waiting time of a customer (Cox and Miller, 

1965, p.64; Tweedie, 1975a, §7). 

The model (1.1) can be generalised in an obvious way for multi-

dimensional processes and special cases of these include non-linear 

autoregressions with higher orders of dependence and also non-linear 

"moving-average" models. 
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STATIONARITY OF AUTOREGRESSIVE PROCESSES 

2.1 Autoregressive processes as'markov Processes  

In this chapter conditions are investigated for the stationarity of 

the non-linear autoregressive processes generated by models of the form 

Xn+1 = X(Xn
) + Zn+1 = . O., (2.1.1) 

where, here and throughout, the input series {Zn} is a sequence of 

independent and identically distributed random variables with common 

distribution function F (z). The function X(x) is assumed fixed, real 

and measurable, so that A(x) is a well-defined random variable for any 

random variable X. In model building applications only continuous or 

sectionally continuous functions would normally be used. 

In order to specify more exactly what is required of a model of 

the type (2.1.1) for it to represent a stationary (doubly infinite) 

sequence {x
n
; 	< n < 00}, consider a process of the same structure as 

(2.1.1) but starting at a finite time, say time zero, in some fixed or 

random state: that is a process {U
n
; n > 0} defined by 

Un+1 = X(Un) + Zn+1 	(ri = 0,1,2,...) 	(2.1.2) 

with U
0 
 having some fixed distribution and {Zn} having the same properties 

as before together with independence of U
0
. The sequence {Un} forms a 

Markov process on the real line having stationary transition probabilities 

P(Y'A)  = Pr[Un+1.
A 
 IUn = Y] 
	

(n = 0,1,2,...) 

which are given by (2.1.2), and an initial distribution given by that of 

U0. For these transition probabilities there may exist an invariant 

probability measure 'R(-) satisfying 

Ir(A) 	= f 71-(dy)P(y,A). 	 (2.1.3) 

If such an invariant measure exists then the probability structure of the 

singly infinite process (2.1.2) may be extended to form a well-defined 

probability measure for the doubly infinite process given by (2.1.1) 

(Rosenblatt, 1971, p.73). Such a process is then a stationary Markov 
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process. There may be more than one probability measure satisfying (2.1.3) 

and each distinct measure determines a different marginal distribution for 

the process (2.1.1). Thus the transition probability function P(y,A) and 

the particular invariant measure Tr(A) together determine a process for 

which (2.1.1) is a representation. 

The usual definition of stationarity assumes the existence of each 

of the joint distribution functions F., 	of (X. ,X. ,..X. ) 
11"-2""Lk 	

1
1  12  1k  

= 1i2,3,...), and requires that they satisfy the time invariance 

property 

F. 	. 
12,....ik 

F 	(1 = 0,±1,± ,...; k = 1,2,3,...). =  

(2.1.4) 

In particular this requires the existence of a distribution function Fx  

such that Fi  = Fx  for all i, and since 

F
n+1 

(x) = f FZ (x - A (u) ) drn (u) 

from the form of the process, Fx  must satisfy 

FX(x) = 	f FZ  (x - A(u))dFX  Cul ' 
	 (2.1.5) 

which is equivalent to (2.1.3) with Fx(x) =Tr[C-0,„xY). When an invariant 

measure 7(-) exists, the corresponding distribution function Fx  will be 

called a stationary or equilibrium distribution function. The existence 

of an invariant measure implies stationarity in the sense (2.1.4) with 

probabilities of events given for k > 1 and any n by 

Pr (Xn  E AO , Xn+1 E Al , 

 

`Xn+k Aki  

 

f irca)b) f P(xo,dx1) f P(Xl,dx2)...- f 	P(xk -2'dxk -1)  
A0 	Al 	A2 	-1 

P('lc-111'k).  

If there is no probability measure satisfying (2.1.31 there can be no 

stationary distribution satisfying (2.1.5) and so. there can be no 

stationary process generated by (2.1.1). 

There are two natural (and equivalent) .markov Processes corresponding 

to earn auboregressive process (2.1.1). These are the Markov ,,5rocess f.xl 
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itself, and the process {Yn} where 

Yn = A(Xn) 	
= 	-1,0,1,...) 

and hence 

Y
n+1 = X(Y + n+1 	(n = 

For the process 
n
} the transition probabilities are given by 

P
x
(x,A) = Pr[X

n+1
E A IXn = x] 

dFz(z) = J 	dFz(z) . 
z+X(x)eA 	zeA-X(x) 

(2.1.6) 

The transition probabilities for the process {Yri} are 

P (y,A) = Pr [Yn+1E  A I Y = y] 

=1 
dFz(z) =I-1 	

dFz (z) . 
X (y+z )e A 	zeX (A) -7 

(2.1.7) 

Here for sets A and real numbers x, 

A- x = {x':x+xie A}, A (A) = {x':X(x') E A}- 

It is clear that the state space of the process {Yn 
may be reduced to 

the range of A(x) on the real line if this is finite. Also if a 

stationary distribution exists for either of the processes {XII} or {Yri} 

then there is a corresponding stationary distribution for the other. 

Since the Markov processes on the real line include as a special class 

the Markov chains with denumerable state spaces, it is clear that such 

phenomena as recurrence, periodicity and closed sets of states should 

have their analogues in the wider class. These are discussed in section 

2.6 where some conditions for stationarity of the processes are also 

discussed. 

If it can be shown that the sequence {Un
}, given by the finite 

starting time process (2.1.2), converges properly in distribution (Feller, 

1971, p.248) for some initial distribution of U0, then the limit distri-

bution is a stationary distribution. When the process concerned is not 

periodic the convergence in distribution of {U 
n
}is a fairly natural 
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requirement for stationarity: if the distributions of the sequence 

converge to an improper distribution this corresponds to a positive 

probability of "drifting off to infinity". Using this type of criterion 

the stationarity of linear first-order autoregressive processes will be 

investigated in section 2.2. It will be shown that, even when the 

"slope" parameter is strictly less than one in absolute value, not all 

linear processes are stationary. In section 2.4 the non-stationarity 

of certain non-linear processes will be demonstrated: this will be done 

by showing directly that, for the processes concerned, there is a non-

zero probability of an event which has a natural interpretation as a 

"drift to infinity". This method can be extended to investigate more 

closely the rate of drift of non-stationary processes: this is done in 

section 2.5. 

Finally it may be remarked that (2.1.1) is not in general a "Markov 

process in the wide sense" (boab, 1953, pp.90,233) and hence the corre-

lations of (X
n
,
Xn+k) 

 in a stationary process will not necessarily: 

decrease geometrically with k. This is exemplified in section 2.3. 

2.2 Linear autoregressive processes  

2.2.1 In this section consideration is given to processes generated by 

X
n+1 

= bXn 
+ Zn+1 	

(n = . 	 (2.2.1)  

where it is not assumed that the independent random variables Zn  are 

centred at zero. To investigate the possible stationarity of such a 

process the corresponding finite starting time process (2.1.2) is set up, 

i.e., 

Un+1 = bUn + Zn+1 	
(n = 	 (2.2.2) 

By repeated substitution this expression is equivalent to 

= Z
n 
+ bz

n-1 
+ 	+ bn-1z

1 
 + briti 	(n = 
	(2.2.3) 

and the marginal distributions of these quantities are the same, by a 

simple relabelling, as those of 

U = 	
n-1 

n
* 	

7,1 + bZ, 	
b 	(n = n 	

b 
1.1 .0 
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It is required to know under what circumstances the sequence of random 
* 

variables {Un ; n > 11, and hence {U
n 	

1}, converges in distribution. 
 — • 

The sequence {S 
n
}is defined by 

Sn  = s (b) = z
1 
 + bZ2 + 	+ b

n-1
Z
n 	

= 1,2,3,...). 	(2.2.4) 

, Clearly if {Sill does not converge in distribution then neither does {Un Y, 
since bnU0  and Sn  are independent. However if {Sn

} does converge in 

distribution and Ibi < 1 then {U
n

1 also converges in distribution since 

bnU0  0 in distribution for any random variable U0. The quantities Theme quantities 

 are the partial sums of the random power series 	163-1Z., and 

in particular this is a random power series with independent and identically 

distributed coefficients. Therefore (Kawata, 1972, p.625; Lukacs, 1975, 

p.127) the sequence Sn(b) converges almost surely, and hence in distri-

bution, only for 

(i) Ibl < 1 if I log x dFizi(x) 
1 

(ii) b = 0 	if f log x dFizi(x) 
1 

Here F 1
2
1 denotes the distribution of IZI when Z has the distribution F 

and it is assumed that Z
n 
is not trivially zero with probability 1. Thus 

there are input distributions for which {Un} does not converge in distri-

bution for 0 < Ibi < 1. For example let F2  have a density f2, 

 

f (z) = 
0 (1z1 < e),  

(1zI > e),  

 

1 

then 

 

21z1(log lz1) 2  

CO 

f log x 	
I 

dF, (x) = 
1 	IZ 

r  dx  
x log x 

e 

- CO, 

A further example is given by Lukacs (1975, p.129). An additional result 

is that, with probability 1, E  b]-1Z cannot be continued outside its 
j=1 	j 

circle of convergence to form an analytic function of b (Lukacs, 1975, 

p.130; Kawata, 1972, p.629). Hence there is no natural way of defining 

an autoregressive process with parameter b (1b1 > 1) by extension from 

the case !b! < 1. 

< 03  

CO. 



{  
a 	2Bc b log 1b1  

1-b 	7r 1 - b2 

ax 

a 
1 -b 

(a # 1), 

(2.2.6) 

= 1) , 

16 

2.2.2 The stationary distribution of a linear process is usually most 

easily found in terms of its characteristic function 4x(s). If cl)z(s) 

is the characteristic function of the input distribution, 

( x(s) = S2 Cs)(1)x tbsl, 

CO 

= II 
z
(bns) , 	 (2.2.5) 

n=0 

where (Lukacs, 1970, p.58) the convergence, uniform in every finite 

.interval of s, of the infinite product is both necessary and sufficient 

for the convergence in distribution of Sn  of (2.2.4). Except in special 

cases it would usually be impossible to invert the stationary characteristic 

function (2.2.5) to obtain an explicit form for the stationary distribution. 

It may however be noted that if (1)z(s) corresponds to a stable distribution 

then (I)X(s) is also a stable distribution with the same exponent and whose 

other parameters may be obtained from infinite summations corresponding to 

(2.2.5). The general form for the characteristic function of a stable 

distribution (Lukacs, 1970, p.136) is given by 

log 4Z(t) = iat - oltla{1 + i 77-w(Itl,a)} Cc > 0;181 < 1; 0 < a < 2), 

where 	w(Itl,a) 

tan --- 2 1), 

c log log 1 t.1 (a = 1) . 7F 

The stationary characteristic function is then given, by (2.2.5), as 

log  (f) (t) = iat - cx1t1 {1 
 + ia x It w(Itl'')}  

where 

1  
cx - 	 x - a 

1- 	1- sgla(b) Io l a 
 

(2.2.7) 
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For the normal distribution (a = 2; w(It1,a) E 0) with mean a and 

variance a2, these give the well known result that the stationary 

distribution is normal with mean a/(_1 - b) and variance a2/(1 - b
2
). 

When the input distribution is a Cauchy distribution With density 

fz(z)  
w[ (z - a)2 + c

2
] 

 

the stationary distribution is of the same form with a replaced by 

a/(1 - b) and c by c/(1 - 1b1). This corresponds to the case a = 1, 

= 0. There is one further combination of parameters for which the 

corresponding stationary distribution can be written in terms of 

elementary functions. This is the case a = 1/2, 	= -1) 
t , 
1 log 4z(t) 	 7-7 ) (t) = iat - clt11/2{1 - i 	. The random variable Z having 

this characteristic function has the distribution of 2c2(W + a) where 

W has the density 

1 w-3/2 . 1 exp{- — 4w } 	
(4 > 0), 

{  

21/7-r fW  (w) 

(Lukacs, 1970, p.143). From formulae (2.2.5), (2.2.7) it can be seen 

that when 0 < b < 1 the stationary distribution is of the same form 

with the centering parameter a replaced by a/(1 - b) and the scaling 

parameter c2 replaced by c2/(1 - b
1/2)2. However if b is negative, the 

parameter 13X of the stationary distribution is 

(3x 
1 - 11)11'2  
1 + 1b11/2  

so that the distribution is not of the above form. 

Apart from the stable families of distributions, certain properties 

of the limiting distribution of Will generated by (2.2.2) have been found 

for one further case, namely that when the input sequence is two-valued. 

with each value having equal probability. The properties of such 

processes are the same, apart from a shift and change of scale, as those 

of the process with input sequence taking values +1, -1, each with a 

probability of one half. That is 

O 	 (w < 0) 
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Un+1 
= bu + Zn+1 

Pr (Z = 1) 	Pr (Z. = -1) = 1/2 . 

Since the effect of the term b
nU
0 
 in (2.2.3) vanishes, as n co, 

and b may be replaced by Ibl, the limiting distribution of {Un}  is a 

particular case of a symmetric Bernoulli convolution (Lukacs, 1970, 

p.64; Wintner, 1947, 563) and is one for which the following properties 

of the limiting distribution Fx  are known: 

(a) Fx is either purely singular or purely absolutely continuous 

when 0 < IbI < 1. 
1 

(b) Fx  is purely singular when 0 < Ibl < 7 . 

(c) when Ibi= 2 	X F is the uniform distribution on (-2,2). I 	'  
(d) when 1 > lb! > 	Fx  may be either purely singular or purely 

absolutely continuous, examples being 

(i) Ibl = 2-1/k for some integer k > 1, when Fx is absolutely 

continuous, 
r 1 r- 	1

'  (ii) Ibi = --(Y5 - 1) > — when FX is purely singular. 2 	2 

It is therefore clear that, in the. general non-linear case, when the 

input distribution has a discrete component the stationary distribution, 

if any, may have a singular component. However, if the input distribution 

is absolutely continuous then, since the stationary distribution must be 

the convolution of the input distribution with another, it follows that 

the stationary distribution is itself absolutely continuous (Lukacs, 1970, 

p.38). 

Suppose that the stationary distributions FX
(i) of the linear - 

processes {Xn
(i)} (i = 1,...,k) with input distributions F (i)  are known, 

where the processes are generated by 

X(i) = bX (i) 
 + Z

(i) 
n n+1 	n+1 (n = 	-1,0,1,... 	i = 1,... k). 

Then it is clear from (2.2.5) that the stationary distribution of the 

linear process (with the same parameter b) with an input distribution 

which is a convolution of distributions amongst the F (1)  is just the 

corresponding convolution of the FX 
 (i)1s. For example, let the input 

distribution have density 

Ga = 
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1 	r 	1 	 1 

	

fexpt 	- 1) 21 + exp{ - 	x + 1 )2 LI 
2V2717.0* 	2a 	2a 

2 2 ( 

(which corresponds to a conVolution of a discrete and a normal distribution) 

and let the process have parameter b = 1/2, then the stationary distribution 
4 is that of X = S + T where S is. N (0, Ta2  ) and T is uniform on (-2,2). 

Thus the stationary density is 

1  2 
	

1 	2 	1. 2-x -2-x 
f 	CK y }dy = — 	- 

47a* 
_2-exp{- 

2a*
2 	4 	a* 	a 

where a* = 2---a and (1)(.) is the standard normal distribution function. 

2.2.3 Even though the stationary distribution itself cannot, in general, 

be calculated, its moments are available directly from (2.2.5). Thus, if 

Km,X and Km,Z  are the cumulants of order m of the stationary and input 

distributions, they are related by 

(b icmn  ) KM,X 	m,z = 
n=0 

K 
 

1 - bm  
(m > 1 ) . 

Standardising the cumulants of the two series by their respective variances 

leads to the conclusion that the m ith order (m > 3) standardised cumulant 

of {Xn}, when generated by (2.2.1), is a factor of that of the sequence 

{Z
n
}. This factor is 

(1 - b2)m/2 
lm(b) - 

1 - b
m 

which approaches zero as b nears 1. Also lm(b) 0 as m = (b 0), 

while (1 (b) )1/m  -4- (1 - b2)1/2 as m 00. These formulae. indicate that 

the moments of the stationary distribution, when they exist, approach 

those of a normal distribution as b 1 - 0 or b -1 + 0. An alternative 

route to the same result is to consider a standardised version of the 

sequence (2.2.2) or (2.2.3): for example, when b > 0 let 

n = (1 + b + 	+ bn 
-1 U

n
. 

Then, for b / 1, n- - b
n+1 

U
n 

and when b - 1, W
n 
 - 	 

n + 1 Un 
1 - b 

 

1 
{ E 	. 

n + 1 	
+ 

L . 	
Z1 

=1 
. Under the usual conditions the central limit 
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theorem shows that when b = 1, W
n 

converges to a normal distribution, 

and it can also be shown that Wn converges in distribution for b > 0. 

If U
0  has the distribution F then .Wn = Wn(b) has the same distribution 

as Wn(b 
-1

). The convergence of W
n for b > 1 indicates that the non-

convergence of the distributions of Un  is due to their increasing 

dispersion since 

Un = 

(b > 1) 

(b = 	. 

This means that the distribution functions converge to a constant 

function - an improper distribution. 

Mallows (1967) considers the closeness to normality of the distribu-

tions of linear processes by a different approach, and also considers 

joint distributions. 

2.3 Non-linear processes equivalent to Markov Chains  

Besides the linear processes there is a further class of auto-

regressive processes for which the properties are easily found. If the 

autoregression function appearing in (2.1.1) takes on only a finite 

number of different values, then the process is equivalent to a Markov 

Chain with a finite number of states. Let 

L 	= n) 
	

(n = 	-1,0,1,...) 

and suppose that X(x) takes the values A1. ,X2  ...A on the sets • N 
A1,A2, ..., Am, where these form a partition of the real line. Then the 

probabilistic development of the sequence {Ln
} is given by the (N x N) 

matrix P whose elements Pij  are given by 

I?ij = Pr[Ln+1 = A. IL n = A.] 

= Pr[X. + Z
n+1  C A.] = PrfX(A. + Zn+i  .) = - A.] . 3 	 3 



fZ 	- Ai)  fX  (lc) 	(x e A.1
; k = 	, 

E fZ 	- X.)P.
(k-1)fX  (x) i3  3=1 

{fk (x ' y) = 
N 

E Ai; k > 2). 
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The properties ofxn 
then follow from the relation 

Xn+1 = Ln + Z n+1 
	Cr' = 

It is well known (Cox and Miller, 1965, p.80) that a stationary distribution 

for{ladisgivenbyPr[L=X.]=Tr.where 7 = (7 	. 7 )1  is any 
n • 	 ' N 

solution of 

7'p = 7', 

thenalso7i =Pr[Xn EA.1]. A stationary distribution of {Xn
} is then 

given  by the corresponding mixture 

N 
F (x) = 	E 7.F (x - 
X 	1. Z 	i 

i=1 

and, if the input distribution has a density fz, the stationary density is 

N 
fX(x) = 	

E 7.1fZ  (x -. A.). 
i=1 

The matrix Pk is the k-step transition matrix with elements P. ij
(k)  

such that 

3 (k) 
P1.. 	

= Pr[L 11+k = 	ILn  = 	(i,j = 1,...,N). 

Hence a stationary joint distribution of (LIII,Ln+k) is given by 

Pr[Ln 
 = A., Ln+k  = 3 	

(k) = 7.P.  ij 

The joint distribution of (Xn, Xn+k) can also be found: assuming the 

density functions exist, the joint density fk
(-,) of CX3a, Xn+k) 

 is given 

by 
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Define the conditional moments 

g 

then the moments 

E(x
n
) 	= 	pz 

E(x
n
xn+1) 	= 

E(X
nXn+k) 

For example, 

A(x) 	= 

Then the transition 

p 

and the stationary 

	

E[x  n I xn EE 	= 	EtX n i X(X ) 	= A.1 

xf
X (x) dx 	Ci = 	N), 

xEA.  

of the stationary process {Xn} are 

+E 	 = 	E 	, 

	

1 	1 1 

p E 	C. 	E A.u.ilE. z 	Tr.il 	l 

p E 7
i 	

. 	EE X.P.(k-1) 	(k 
Z  

let 

	

Al 	(x < x0  ), { 	X2 	> x0  ). 

matrix between the levels X 	A2  

FZ  (x0  - A1) 	
1 - FZ  (x0  - A1) 

FZ  (x0  - A2) 	1 - FZ  (x0  - X2  ) 

distribution of the process {Ln 

FZ  (x0  - A2) 

given by 

> 2)- 

is 

is given by 

- 1 

O-X1  )} 

(2.3.1) 

(2.3.2) 

(2.3.3) 

(2.3.4) 

When 

Tr2 = 1 1 	1 - FZ 	0 -A1) 	Fz(x-X2) 

The stationary distribution of the {X11} process is then 

FZ  (x-X1  )FZ  (x -X2  ) + FZ  (x-X2  ){1 - FZ 
F
X
(x) 	1 - Fz 	o (x -X ) + Fz 	0  (x -X2  ) 

and the moments and joint moments are given by the above formulae. 

the input distribution is normal the conditional moments 	may be f6und 

explicitly by a simple substitution. As a more specific example let 
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F

z

(x) = (1)(x/6) where (D(- ) is the standard normal distribution function 

and let x

o 

= 0, X1 = -X2, X2 > 0, so that the autoregression function is 

• •  

odd (about zero). Then 71 = Tr

2 

= 1/2 and 

1.  ' x 4.  X2 	

x - X, 

F

x 

(x) 	-2  {(DC 	) 	 , 

E2 = E[Xn  Xn  > 0] 

2 

A  a 
exP{ - 	

', 
 }+ x2 (“-`7) - .17 

= - . 

It follows that E(x) = E(X 3) = 0, var(X ) = a2 + X 2 and that 
n 

2 2 	4

n 	 2 

,, 
E(Xn 

4

) = 3a

4 

+ 

6

X

2 

a + X

2 

 . Hence E(X

n

2) - 3{var

(

X

n

)I
2 
 = -2X24_ 

' 

For the joint moments, E(XnXn+i) = X2E2, and, using the symmetry of the 

transition matrix P, which is 

o(x2 /,,-) 1 - (1)(x2/cr) 

1 - ocx2 /69(1)(x2 /6-) 

• , 

and of its powers P

k

, E(X

n

X

n+k

) = 

X2 2{P22
(k-1) - P

2(
k-1)

1 	

1. By definition, 

and using the symmetry, 

(k) 	(k) 

=

p(k-1) 	
(
k-1) 	

(k
-1) 	 (k-1)

P ) 
P

22 	

- P

21 	 21 

P

12 

+ P

22 

P

22

) - (P

21 

P

11 

+ P

22 - 21 

= (p

22 

(k-1) - p2)2c.. 1)

) 	-P21) = a 	

p.11. -1) 

4.20 X

2

/1s)- 1) . 

It then follows that 

E(X

n

X

n+k

) = A E (20 (A a)-. 1)k-1 	 1,2,3,...). 

• 2 2 	• 

(2.3.5) 

Thus the correlations p

0

,p

1

,p2, 	(in the usual notation) decrease 

geometrically from pi onwards. 

In the general case it can be seen from (2.3.2)-(2.3.4) by making a 

decomposition of P in terms of its eigenvalues (using a Jordan canonical 

P = 
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form, see Cox and Miller (19651, p.121), that the covariances can be 

expressed as a finite sum of terms involving powers of the eigenvalues 

of P. If P is first reduced to the transition matrix between the states 

given positive probability by the stationary distribution u and if the 
;m4444.412/44tia 

chain on this reduced state space is1not periodic then the covariances, 

covCXn, Xn+k),  can be written as the sum of a number of terms decreasing 

geometrically in absolute value to zero (with k) at different rates. If 

the chain is periodic then the covariances do not converge to zero for 

large k, but approach values depending on the residue of k on division 

by the period of the chain. 

2.4 Nonstationarity of non-linear processes  

2.4.1 In this section the possible nonstationarity of non-linear auto-

regressive processes is investigated. For the process under consideration 

X
n+1 = X (Xn) + Zn+1 Oa = 	-1,0,1,...), 

the corresponding finite starting time process 

n+1 
= 	 (Un  ) + Zn+1 	

= 	 C2.4.1) 

is set up and it is shown that, under conditions on X(x) and Fz(z), events 

of the type {U0  > 0, 1 
> 1, U2 > 2, U3 > 3, 	} have a non-zero 

probability. It is natural to interpret this event as the process 

"drifting to infinity". In section 2.5 the methods developed here are 

extended to study more closely the "rate of drift to infinity" of non-

stationary processes. 

2.4.2 	Define X
(+) 

 (x) = inf X(y) and, with h > 0, set 
Y>x 

sn  = FZ  { (n+1 )h - XC+) 611111 

where the usual conventions apply if X(y1 is not bounded below for y > x. 

It will be shown that the process {Lin} drifts off to infinity in the 

above natural sense under the condition that 

CO 

s
n 	converges. 	 (2.4.2) 

n=0 



= f Pr{U
n 
> 0(0+nh U 

n-1 
= u

n-1

}Pn- 
u
n-1

). (2.4.6) 

C
n-1 
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Suppose this condition holds. Then there is an integer ko, which may 

be negative, such that 

F
z
C(k+l)h.

(+) 
(kW) = s

k_ 
 < 1 	for all k > k

0  - 

	
(2.4.3) 

It will be shown that 

pr{u
n 
 > 0( +n)h; n = 0,1,2, 	 > 0 if Pr{U0  > kohl > 0 . 	(2.4.4) 

0 

Let U
n 

= O00 ,U
l'  ' 
. .. Un 
	— 
1 (n > 0) and let P

n
(-)•  be the probability 

masurefom 
	 3 
re.Doefinetheeventscn =0.>0(

0 
 +j)h; j = 0,1,.... nl 

and C = 
A 

C
n 
= {U. > (k0+j)h; j = 0,1,2,...}. Then,. since C C= C 

n+1--  n , 

Pr{U.
3 
 > ((

0 
 +j)h; j = 0,1,2,..} 	= lim Pr(C

n
). 

n-* 

Denote Pr(C
n
) by p

n
. Then, for n > 1, 

pn  = Pr(Cn) = PrIun  > ((0+n)h I Cn_i} 

(2.4.5) 

Because of the Markov structure of the process 

n -1, 
pr{u > ((

0 	
I +n)h Un-1 = u I = Pr{U

n 
> ((

0 
 +n)h I U

n-1 
= u

n-1} 

= PrIZ > ((
0 
 +n)h 	A.(u

n-1
)1 

> Pr [Zn
(+) 

> OC•+nlh - A 	 {(k
0 
 +n-1)h}] 

for u
11-1 

> (k. + n-1)h 

= 1 - s
ko+n -1 

Substituting this result into (2.4.6) gives 

> P 	(du
n-1

) = 
ci 

- s P 	

C 	

)13 	(it > 1) 
n — 	

- s 	
f  k0+n-1 	n-1 	 k+n-1 n-1 

n-1 
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and therefore 

n-1 
p
n 
 > p

0 	
Cl - s

k +j 
 II J 
	0 

Cn > 1) . C2.4.7) 

By (2.4.3), 0 < 1 - sk+j  < 1 Cj > O1 so that the sequence of products 

in (2.4.7) is non-zero and decreasing. Since the sequence {p 
n
}converges 

to the limit (2.4.5), 

pr{u,
3 
 > (s.

0 
 +j)h, j = 0,1,2,... p, n (1 - s, 

j=o 
(2.4.8) 

This infinite product either converges to a positive number or else it 

diverges to zero and it converges or diverges according to whether 

s
kn+j converges or diverges (Titchmarsh, 1939, p.14). Therefore, 

ge'd'ausse of the assumption (2.4.2), the right hand side of inequality 

(2.4.8) is strictly positive if p0  = Pr(U0  > k0h) > 0. 

It is clear that the same arguments apply to processes becoming 

increasingly large and negative. Defining X(-)  00 = sup X(y) and setting 
y<x 

to  = Pr (Z > - (n+l)h - X (-)(-nh)) 

= 1 - Fz{-(n+l)h - X (-) C-nh)1 
	= . 

it may be concluded that, if E  t converges, there is an integer k n=0 n 	 0  
such that the event {Un < 	

0
+n)h; n = 0,1,2,..} has positive probability 

whenever Pr{U
0 
 < - £0h} > 0. The number 2.

0' 
 which may be negative is 

such that 

-L 	< k 4.j 	1 	for  
0 

(2.4.9) 

Processes whose realisations have increasing absolute value with 

alternating signs can also be dealt with in a similar manner. Let 

X(-) (x) = infX(y) and X(+) (x) = supi Cy) and define 
y<x 	Y>x 

qn  = Fz{(n+l)h - X(_) C-nhll 	....1 f0f 1f Oew) 

rn = 1 - Fz{-(n+l)h - X
(+) nh)1 	(n = 	. 
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ca 

Then if n=..0 qn  and n0  rn  both converge, the event {U2  > (k.0  + 2.)h, •  

U2 	< -(k0  + 2j+1)h; j = 0,1,-1 has positive probability if . 	-- 3+1 
PrCU

0  > k0  hl > 0. Here k0 is any number such that 

#2j < 1, r
k +2j+1 < 1 for j > 0 . (2.4.1°) 

0 	0 

The condition that 
i.10 

q
n n=0 

rn should both converge seems somewhat 

strong since this imposes the same type of restrictions on the function 

X(x) at both extremes of the real line. It seems reasonable that a 

similar alternating drift +infinity should hold if X(x) = -x at one 

extreme with suitable conditions at the other. 

The above arguments do not depend essentially on the additive-error 

structure of the process but they also hold for a wider class of 

Markovian processes. Thus the conclusion (2.4.4) holds with 

s
n = sup Fritin+1  < (n+l)hlUn  = xl, 

x>nh 

and similar definitions may be made to deal with the other types of drift. 

2.4.3 It has been shown that there is a positive probability of the 

process (2.4.1) drifting to infinity in one or more of the ways described 

when the corresponding seriesEs,Etor E (q + r) converge. n=0 n n=0 n n=0 n 	n 
For ease of consideration the four types of term may be written in a 

common form. Let 0(x) be a nonnegative decreasing function, not 

identically zero, such that 0(x) T  0 as x m. Then 

(i) sn = G{p(nh) - (a+1)h} where G(x) = F (-x), 11(x) = X(+) (x), 

(ii) t
o = G{p (nh) - (n+l)h} where G (x) = 1 - F (x) p (x) = -X 

(-) (-x) , 

(iii) qn  = G(p (nh) - (n+l)h} where G (x) = Fz  (-x) , 1-1 (x) = X () (-x) 

(iv) rn = Gfu (nh) - (n+l)h} where G (x) = 1 - FZ  (x) 	(x) = -X (4.)  (x) - 

In each case G(x) is one of the tails of the input distribution function. 

Because of this common form only one case need be treated and this will 

be the first. 

It is clear that, for the series Es
n 
to converge, the condition 

s
n =61h) - 6[14-1)h) 	0 	as n 	00 

(+) 
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must hold. For this X(x) - x must be bounded below as x co.. Exact 

conditions for the convergence of the series depend on both the lower 

tail of Fz  and the behaviour of A(x) as x 4- co. Conditions on A(x) 

to ensure the convergence of Esn  under certain assumptions about Fz  

will now be given. Under these conditions there is a drift to infinity 

as defined by (2.4.4). 

Suppose that Fz  has a finite lower tail so that Fz(z) = 0 (z < -L), 

F (z) > 0 (z > -L). Then G(x) = 0 for x > L, and hence s = 0 whenever 
n 

A(+) 	
- (n+l)h > L. 	 (2.4.11) 

Thus a sufficient condition for the convergence of the series is that 

this should hold for all large enough n. Convergence implies that 

lim inf{A c_0(nh) - (n+1)11.1 
n400 

(Fz  (-L) > 0) 

> L 	(Fz  (-L) = 0). 

A sufficient condition for the convergence of Es
n for some h > 0, and 

hence for the result (2.4.4) to hold for some h, is that for some 

6 > 0 and some xo, 

X(x) > L + e + x 

Now suppose that Fz  has a power-like lower tail so that 

G(x) < cx
6 	

(2.4.12) 

for some c,6 > 0 and for large enough x. Then sn  <_ciA(.0(nh) - (11+1)111 

Let do  = X 	(rih) - (n+l)h, then Esn converges if Ed 
6  does. By 

selecting suitable series Ew which are known to converge and taking 
n 

d
n 
 < w 

n  , or equivalently dn  < wn 
-1/6

, bounds on the behaviour of X(x) 

to ensure convergence of Es
n 
can be found. Thus taking 

-6 

wn = an
- (1+e) 	

(e > 0) 	 (2.4.13) 

leads to the bound 
1+e 

X (x) > x + ax + h 
	

(2.4.14) 
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which when satisfied for large enough x for some h,a,e ? 0 ensures the 

positive probability of a drift to infinity for some initial distribution. 

Better bounds with the same property can be obtained from other series 

Ew
n. Thus the convergent series 

 

a (a,e > 0) 	 (2.4.15) 

 

n(log n)
1+e  

leads to the bound 

 

1+6 

A (x) > x + axl/S (log x) 
a
+ h. 

If now G(x) < c exp{-Sxq} for large enough x for some c,6,q > 0, 

then proceeding in the same way and bounding Eexp{-Sdnci} by suitable 

convergent series Ew
n 
gives bounds of the form 

do > {- 
1.

log w n}
1/q
. —  

The series given by (2.4;13) leads to the bound 

X (x) > x+ b (log x- k)
1/q 

+ h 
	

(2.4.16) 

-1/q 
for large enough x for some k and some b > z u 

Generally the longer the lower tail of the input distribution is, 

the more rapidly the function A (x) has to increase as x 03 to ensure 

the property (2.4.4) by the convergence of Esn. Thus if it is only 

assumed that G(x) < clog x)-1 for large enough x, the above methods 

produce the bound d > exp(c w -1). With w
n 
of the form (2.4.13) this 

n 	n  
gives 

X(x) > x + exp{ax
1+6

} + h 

for some a > 0, while a weaker bound derived from (2.4.15)  is 

X (x) > x + exp{ax (log x)
1+e 

 } + 

for large enough x for some a,s,h > • 
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2.4.4 In section 2.4.2, k
0 
 and k

0 
 are any numbers satisfying the 

appropriate condition (2.4.3), .(2.4.9). or (2.4.10). It is 

possible that the condition will be satisfied for all values of these 

numbers. For instance, when X(X) is bounded below on every finite range 

(so that X
(+)

(x) > -03) and F has an infinite upper tail (i.e. 

Fz(z) < 1 for all finite z), sk  < 1 for all positive and negative k. 

It follows that in this case the process (2.4.1) drifts, with positive 

probability, to plus infinity for every distribution of the initial 

value U
0 
 whenever Es

k 
converges. Similarly for the other types of 

drift there are wide classes of processes for which the drift property 

holds for any distribution of U0. The same conclusions follow if, for 

a fixed k
0 
 satisfying (2.4.3), some integer p and all distributions 

of U0, 

Pr [Up > k
0 
 h] > 0 . 	 (2.4.17) 

Thus for certain processes it can be shown that for no distribution 

of U
0 
 does the sequence {Un}, given by (2.4.1), converge in distribution 

and hence that there can be no stationary distribution. However in many 

cases it may only be possible to show this for a restricted class of 

initial distribution - typically those giving positive weight to suitable 

extreme values of U
0
. Indeed it may be the case that the process Cu)n  

converges in distribution for certain initial distributions while 

drifting to infinity for others. For example consider a process with 

2x 	> 2) 

X (x) = 
0 	(Ix' 	2)  

and with {z.} taking only values in I-1,11. Then, if the initial 
1 

distribution is such that U
0 
 takes only values in [-2,2], U

n 
= Z

n 
= 1,2,3,...), so that {Un} converges trivially in distribution. 

However if the initial distribution gives positive probability to the 

complement of [-2,2], then with exactly that probability the sequence 

{Un} diverges to ±o. 

It has been shown in Section 2.2 that there cannot be a stationary 

process associated with the linear autoregression function 7.(x) = bx, 

Ib' > 1, for any input distribution which is not concentrated entirely at 
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zero. With some restrictions on the input distributions the same 

conclusion holds for processes with_polynonial-like autoregression 

functions. By reversing the arguments of section 2.4.3 and seeking 

those functions G for which 

E G(X+)  (nh) - (n+l)h) < 
( n=0 

for a particular autoregression function, it may be shown that a process 

with an autoregression function satisfying 

A(x) > 1XCI 	xo; Y > 0; q > 1) 	(2.4.18) 

has a drift to infinity as defined by (2.4.4) if the lower tail of the 

input distribution satisfies, for some x
1
,c,d > 0, the bound 

G(x) = 	x 
q 

FZ(-x) < c K 
> x
1 ' 

or a slightly weaker bound 

1+8 

G (x) < c x-1/q(1og x) 	q  

(2.4.19) 

(2.4.20) 

Therefore, if this bound is satisfied and if either (2.4.17) holds or if 

s
k = G(11 	- (n+l)h) < 1 	for all k, 

there is no stationary process with an autoregression function satisfying 

(2.4.18).. Since the other types of drift to infinity may be dealt with 

in a similar way it may be concluded that, for an input distribution 

having infinite tails with exponential-like behaviour, i.e. if for 

some x0 
 

ax 0 < F (-x), 1 - F (x) < ce
- 	> x

0" 
- c a > 0) (2.4.21) 

then the autoregressive process (2.1.1) is nonstationary if any of the 

following hold for some xi, y, yl  > 0 and some q,cli  > 1: 
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(i) X(X) > 	> . 1)/ 

(ii) X (X) < -y IX I q 	< -x l) 
1 

A (x) > 1141 	Cx < 	and a (x) < 	I ql 	> 	) . 

Clearly the same conclusion holds with a slightly weaker bound than 

(2.4.21) and it also holds with q,q, restricted toa,q, > q0  > 1 and 

the bound on the tails of the distribution replaced by a power-like 

bound similar to (2.4.19), (2.4.20). 

2.5 Rates of Drift to Infinity  

The bounds obtained in section 2.4.3 are conditions for the process 

to have a drift to infinity with the property that 

Pr{U0  > koh, U1  > (k0  + 1)h, U2  > (ko  + 2)h, 	} > 0 

for some initial distribution. A drift to infinity might equally well 

be said to hold if 

Pr{U > x.; j = 	> 
j 

(2.5.1) 

where {x.}  is any sequence of real numbers such that x, co as j 

It is clear that the whole of section (2.4.2) holds when the sequence 

{jh} is replaced by any sequence {xn
}, whether or not x.-+ co as j 

Thus, for example, a sufficient condition for (2.5.1) to hold for some 

initial distribution is that E. sn 
should converge, where now 

n=0 

s
n =  FZ n+1  - (+) X 	n)) 	= 	-1,0,1,...) . 

It would appear that a weaker form of drift, say 

Pr{U. > c log (j+1); j = 	> O, 
7 

should hold under weaker conditions on l(x) than those obtained in 

section 2.4.3. However the above criterion that Esn 
should converge 

does not in general produce weaker bounds on the autoregression function. 
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The basis of the method is that A c+)n)  xn+1 
must tend to plus 

infinity sufficiently rapidly for Lsn  to converge, and this, together 

with the condition that x 	c° as n °°,.heavily restricts the 

combinations of functions A(x) and sequences {x
n
} for which a "drift 

to infinity" can be demonstrated by this method. In all, the condition 

for the drift seems somewhat inconsistent, for, if it is true that 

Pr{U. > x.; j = 	> O 	(2.5.2) 
7 	3 

and x. > x 	(j = 0,1,2,...), then it is certainly true that 
7 

Pr{U. > x. ; j = 0,1,2,...} > 0 , 
7 	3 

(2.5.3) 

and yet the method would fail to show this. For example let x. = x
0  in  

a case where (2.5.2) holds for an increasing sequence {x
j
}, then the 

appropriate series, Esn  say, is 

Es
n 	

= EFZ 	(+) tx - A 	(1‹0  )1 •  

which diverges whenever FZ  tx0 A(+)  (X0 
 )} 0. As a further example .  

consider the process with autoregression function A(x) = 	($ > 1) and 

for which the input distribution has an exponential lower tail, 

Fz(x) = c ex10[6x} 	< -x0; 6 > 0). Then the convergence of Esn  shows 
that (2.5.1) holds for {x 

n
}given by 

	

(i) 	x
n = ka 
	

u < a < a) , 

Or (ii) 	x
n 	

ka
n 
 + an 
	

(a > 0), 

but does not show that it holds for 

	

(iii) 	x 	= kan 	(0 < cc < 1) , 

or for (iv) xn = ka
n 
. 

Here k is a constant > 0. 

Some idea of the possible sequences {xn
} for which (2.5.1) holds 

for a particular process can however be obtained. For convenience it 

will be assumed that X 	(x) is strictly increasing and has an inverse 
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function A
(+
)1

(-) and it will also be assumed that G(x) = F7(-x), 

the lower tail of the input distribution, has an inverse G 1  

Let 	w be any convergent series and let {v 
n
} be any sequence of n=0 n 

real numbers. Then define 

-1 A, i„±) [vn+1 + G 
1 
 (w
n
1] 	(n = 0,1,...). 

Assuming that u
n 
 < v

n 
 On > 0), it can be shown that —  

CO 

E s
n 

= 	G
(+)(xn) - xn+11 < n=0 	n=0 

for any sequence {xn} satisfying un  < xn  < vn, and hence that (2.5.1) 

holds for such sequences. For, since G is decreasing, 

s
n = G (+) (xn) - xn+11 < G{A (4.) (un) - vn_Fl

1 

= G{G 1(w
n
)} = w

n 
. 

Hence Esn converges. It remains to determine for which sequences {v
n} 

 

• A(+) vn+1 + G
1
(wn  )3 < v n 

for some convergent series Ewn. It then. follows by the above.discussion 

that(2.5.3)holdsforanysequen satisfying x. < v. 	> 0). 
7 	— 7 

For example consider the linear process with exponential-tailed 

input distribution described above and let EN
n = Ea(n+1)

1+e  (s > 0). 

Then, since 

G
-1
(wn) 	+ log (n + 1) , 

where b is a constant depending on a,6, and c, the condition for {vn} 

to satisfy is that 

1 	 I E 
[v 	b + 	log(n+1)] < v 	(n = 0,1,2,...) a nfl 	 n 

for some constant b (possibly negative or zero) and some c > 0. Considering 

sequences {v
n
} of the form v

n 
= kan, this condition is satisfied for 
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1 < a < a but not for a < 1 or a ? B. The same conclusion also holds 

if the lower tail of the input distribution satisfies a power-like 

bound (2.4.12) but not if the lower tail G(x) decreases like 

Clog x)-1. Let F 00 = cClog ki)-1 	<_.1C
0 
 ), then G 1(u) = e

c/u 

and the above condition for the series {v } is, with w
n 
as before, n 

 jv 	+ exp{b(n+1)1+E 	< v B n+1 	 n Oa = 0,1,2,...) 

for some b,E > 0. It does not seem possible to find an increasing 

sequence satisfying this. The criterion that Es should converge 

does not demonstrate the nonstationarity of the linear process with 

this type of input distribution as does the theory of random power 

series in section 2.2. 

2.6 Decomposition of State Space and Stationarity  

2.6.1 Given the transition probability function PC-,-) of a Markov 

process {X 
 n
} on.a state space Q with a Borel field A , the (n+l)-step 

transition probabilities, 

(n+1) (x,A) = Pr[Xn+1E. A I X0  = 

are given, for all x E SZ and AE Ais by 

(n+1) 	(n) (x,A) = 	f P(x,dy)P 	(y,A) Ga = 1,2,3,...), 

and they satisfy the Chapman-Kolmogcrov equation 

(n+m) (x,A) = 	f PCn)(x,dy)P Cm)(y,A) 	(n = 1,2,3,...; m = 1,2,3,...). 

Results concerning the existence of a stationary measure for the 

process and the possible decomposition of the state space are available 

under the following condition CDoob, 1953, pp.190-218; Rosenblatt, 1971, 

p.117). There should exist a finite measure (fa') on sets AEA? , with 

(j)(Q) >. 0, an integer m > 1 and an E > 0 such that, whenever SCA) < e, 

P Cm) (x,A) < 1 - E 	for all x E n. 	(2.6.1) 
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This is Doob's Condition D. In effect the condition insists that from 

anywhere in the state space the process _moves with high probability in 

a fixed finite number of steps to a region near the "centre" of the 

state space (Tweedie, 1975a). 

Under this condition the following hold. 

(i) There exists an invariant probability measure 7 for the transition 

function P(-,-), i.e., 

f Tr (dy)P(y,A) = 7r(A) 
	

(2.6.2) 

The measure 4) is absolutely continuous with respect to it (i.e. 4)(A) = 0 

whenever 7r(A) = 0). 

(ii) There are at most a finite number of minimal invariant sets 

E. (.j = 1,...p). An invariant set is a set E with the property that 

p(11) (x,E) = 1 for all n > 1 and all x E E. 

A minimal invariant set is an invariant set which contains no non-empty 

invariant set with smaller measure under 4(.). If E is any non-null 

minimalinvariantsetitdiffers.frmasomeE.(above) by at most a set 
3 

of 4-measure zero. For any y E SZ 

lim P(n)(Y/ U E;) = 1  / 
n÷co 

so that a process commencing at any state y will remain outside the 

invariant sets for only a finite number of steps in its transitions 

(with probability 1). The set St - UE is transient in the sense that 
J 

lim Pte)  P 	(y,S1 - 	= 0 
3  n-K0 

(iii) Each minimal invariant set E. may be decomposed into a 

number, d., of disjoint cyclically moving sets C 	(i = 1,... 
1 

are such that, interpreting C(1 4.k  as Ciic  , 
7 

finite 

d.). 

These 

Pry, Cj.+1  ) = 
	

CYC C?; i "1,....di.  
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Civ)Toes.ohoyolioallYmovingsubsetc.i there corresponds a probability 

measure i3
(') such that 

lim P (n 
	md.-F ) C,E) 
	Trkj (El CI 	C. ; E E96e I 

wherek=m-f-i(modd.). The measures 7.j have the properties that 

ff. (C, ) = 11 

	

IT. 3 (E) > 0 	if cf)(Encii ) > 	0. 
1 	1 

(v) To each minimal invariant set E. there corresponds a probability 

measure 0(-) such that 

d. 
3 

RJ (E . ) = 1, w
j 
(E) 	

1 	j E 7. (E) 	(j = 1,...p), 
d
J 

n 
lira 1 	E P (m) (E ,E) 	

j 	E(E) 	(E E E.
3
; 	). 

n4o. m=1 

Cvi) For every E E 1, the measure q(E,') defined by 

n on) 

	

q(E,E) = lim 	E P (E,E) 

	

n->oo 	m=1 

is an invariant probability measure for the transition probabilities 

P(- ,*). A measure V(.) is an invariant'measure, i.e., a solution of 

(2.6.2) if, and only if, it is a linear combination of the measures 

!rJ(•). 

Consideration of condition (2.6.1) for the transition probabilities 

associated with the autoregressive processes shows that it does not hold 

for many of the processes of interest. Suppose that A(x) is bounded on 

every finite interval but is such that A Cx) -* -co as x -co (for example, 
1 A(x) = -ix), then for any finite measure 4) on the real line and any 

> 0 there is a set A = (-°,a) with (P(A) < c. Then, for the transition 

probabilities in the form (2.1.6), 

Px(x,A) 	
dFz Gz )  

zeC-°°,a)-a(x) 

	

F (a - (x) ) 	1 as x +  
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Hence (2.6.1) does not hold for m = - 1: it does not seem possible to 

make general statements about its validity for m > 2. In the particular 

case for which A(x) is linear, A(x) = bx (S) < Ib l < 1), and for which 

the input distribution is normal, N(0,1) say, the transition probabilities 

are known exactly. These are 

f 
P(InX  ) (x,A) = [27(1 

b2m)3  -1/2 
 

A 
p 

(Z"bmX) 	
dz 

2 (1-b
2m
) 

and, for any fixed semi-infinite set A, 

FCm)(x,A) 	1 	either as x +03, or as x X 

Thus the condition is invalid for what is, apparently, the simplest case. 

Clearly, for general autoregressive processes, a theory which applies 

(at least) to linear processes is needed. 

Nonetheless condition (2.6.1) can be shown to hold for the 

transition probabilities (2.1.6) of autoregressive processes which have 

uniformly bounded autoregression functions and input distributions 

which are strictly increasing everywhere (so that any value of Zn 
is 

possible): for then m can be taken as 1, and 4(.) can be defined by 

any strictly positive probability density. For other input distributions 

it seems possible to say little in general. 

2.6.2  A condition used by Harris (1956) (see also Rosenblatt, 1971, 

p.117) is that, for some non-trivial c-finite measure f45, for all points 

x e 12 and all sets AE 	with (I) (A) > 0, 

Pr[X
n
E A infinitely often IX0 

 = xl = 1. 	(2.6.3) 

Under this condition there is an invariant measure IP (pc) < c) such 

that (I) is absolutely continuous with respect to 4. An example would be 

the symmetric random walk on the integers. However this condition 

appears to be of little use since showing that it holds for a particular 

process would be difficult. The condition is known as 4r-recurrence 

(Tweedie, 1975a). Assumptions that lead to the conclusion that there 

does exist an invariant probability measure for the process are that SQ 

is a compact Hausdorff space and that the transition probabilities are 

weakly continuous (see below) (Rosenblatt, 1971, p.98). However the 
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real line is not compact so that this cannot be applied generally. It 

is of possible use if A(x) is of finite range or if the state space can 

otherWise be reduced to a compact set. A related theory which holds 

for locally compact state spaces, but with a further assumption, gives 

as a result the existence of a not necessarily finite invariant 

measure (Rosenblatt, 1971, p.102). The existence of a non-finite 

(finite) invariant measure corresponds to the recurrence (respectively, 

positive recurrence) of discrete state space Markov Chains. 

Tweedie (1975a) has obtained sufficient conditions for the 

stationarity of Markov processes. The first assumption is that the 

chain {X
n
} is ([)-irreducible for some non-trivial measure (I) on AD : 

that is 

C 0 

( CA) > 0 implies 	E 2-nP(n) Cx,A) > 0 for every x E Q. 	(2.6.4) 
n=1 

This just says that for every set A (cP(A) > 0) there is a positive 

probability of eventually entering that set from every point x in the 

state space. This condition implies (Tweedie, 1974) the existence of 

a measure M such that 

(i)
n
1 is M-irreducible, 

(ii) if B G 	is such that M(B) = 0, then M(B) = 0, where 

B 	: E 2-nP(n)(K,B) > 0). 
n 

B is the set of points x E:72 from which B can be reached. M can be 

constructed so that M(2) < 00 and so that it gives positive measure to 

any set which can be reached with positive probability from points of 

any set A with OA) > 0. The measure (15may be such.that it gives 

positive measure to subsets of a particular (possibly bounded) set and 

zero measure to sets which are disjoint to this set. Even with this - 

allowance it seems difficult in general to find a suitable measure to 

satisfy (2.6.4): consider the linear processes of section 2.2.2 for 

which singular measures are the natural measures. However the above 

condition can be shown to hold in some particular cases: it clearly 

holds for autoregressive prodesses on the real line, with transition 

probabilities in either of the forms (2.1.6), (2.1.7), whenever the . 

input distribution assigns positive probability to all sets of positive 

Lebesgue measure (with b baud al Lebesgue measure). 
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Under the assumption.of 11)-irreducibility the following dichotomy 

holds CTweedie, 1974, 1975a). Either 

(i) for every x E 52 and Ae 	with M(A) > 0 

CO 

E P )  (x,A) = 
n=1 

in which case the process is called recurrent, or 

(ii) there is a countable partition {A.} of n, 

	

n Ak  = 	k), U Ai  = 

such that, for every x E 52 and every A E Ot.)  with Aik.
J 
 for some j, 

CO 

E P (n)  (x,A) < co, 
n=1 

in which case the process {X  n
}is called transient. A similar result 

is obtained by Foguel (1966). 

If a process is (1)-irreducible and recurrent then there is a unique 

solution (up to constant multiples) of the invariance equation 

p (A) = 5 p (dy) P (y , A) . 

If the solution is a finite measure then the process {Xn
} is called 

ergodic or positive recurrent. Recurrence and ci)-recurrence (2.6.3) are 

closely related (Tweedie, 1975a, Lemma 2.2). If {Xil} is ergodic then 

the invariant measure, w say, satisfies the limit property 

1 E P (m)  (y,A) 	¶ (A) as n 	co 
m=1 

for all y E 52 excluding a set of M-measure zero. However if {X n
} is 

recurrentbutnotergodic,thenthereisapartition{K}of 52 such 

that for every A 	with AC K. for some j , 

1 
lim T1 	E P(m) (x,A) = 0 	for all x E 52. 
n->co 	m=1 
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Further, if the process is ergodic with invariant measure r, the 

expected recurrence time R(x,A) is finite for Tr-almost all xE A: 

here 

CO 

RCx,A) 	A E n P) (x,A) 
n=1 

with 

(n) 
AP 	(x,A) = Pr[X

n 	
A,`X. 	; 	= 1,...n-1 	

0 = A  

These definitions and results correspond to those of discrete state 

space Markov chains (Cox and Miller, 1965, §3.4). Tweedie (1975b) 

considers the effect of changes in the transition probabilities on the 

recurrence or ergodicity of a process. 

The transition law {P(x,')} is called strongly continuous if, for 

every A € 54 , P(x,A) is a continuous function of x. The law {P(x,-)} 

is strongly continuous if and only if fP(x,dy)g(y) is a continuous 

bounded function of x whenever g is a bounded measurable function on n. 
The transition law {P(x,-)} is called weakly continuous if fP(x,dy)g(y) 

is a continuous bounded function whenever g is a continuous bounded 

function (Tweedie, 1975a). 

In his paper, Tweedie (1975a) proves the results quoted below for 

strong continuity but notes that weak continuity suffices for normed 

state spaces which are complete in their norm. Examples of such spaces 

are finite dimensional Euclidean spaces, including the real line. The 

transition probabilities PX 
given by (2.1.6) are weakly continuous 

whenever A(x) is a continuous function of x (for any input distribution), 

while the transition probabilities P given by (2.1.7) are strongly 

continuous for any autoregression function A(x) whenever the input 

distribution is absolutely continuous. 

When the state space is a finite dimensional Banach space with 

norm 11'11, and the transition probabilities are ¢-irreducible and 

strongly or weakly continuous, a sufficient condition for the ergodicity 

of the process is the existence of constants k,c > 0 such that 

E{11x114.11 1 - i l x1111 	xn 	E (11XII 	k) 
	

(2.6.5) 
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and 

E{IlX
n+1

II Ix
n  = x} is bounded above for 11x11 < k. 

A sufficient condition for the recurrence of the process is the 

existence of a constant k > 0 such that 

Efllx.÷111 	11Xnli  I xn = YJ 	(11x11 	k). 	(2.6.6) 

More general conditions than the above can be given in terms of 

expectations of functions other than 	(Tweedie, 1975a). 

For autoregressive processes with transition probabilities given 

by (2.1.6) the conditions for ergodicity hold if the process is 

¢-irreducible, X(x) is continuous and there are constants k,c > 0 such 

that 

E{1X(x) + ZI - 	Ix'} < - e 	(1x1 > k), 	(2.6.7) 

where as usual Z denotes a random variable from the input distribution. 

Clearly this inequality holds if IX(x)1 < Ix' - EIZI - e for lx1 > k. 

When the transition probabilities are in the form (2.1.7) the 

conditions for ergodicity hold if the process is 41-irreducible with 

absolutely continuous input distribution and if there exist constants 

k,c > 0 such that 

E{IX(x + Z)I - I 
	

E 	(IXI > k). 	(2.6.8) 

Sufficient conditions for cases in which the expectations do not exist 

can be obtained from the generalisations mentioned above: these can also 

lead to weaker conditions than the above. 

Thus the existence of a stationary distribution is assured for some 

classes of autoregressive processes. As already noted a process is 

(P-irreducible if the input distribution has a strictly increasing 

absolutely continuous component. Although it is possible to demonstrate 

¢-irreducibility in other particular cases, it does seem to be a difficult 

condition to work with in general. Loosely speaking (I)-irreducibility 

ensures that the sets of the state space which take a continuing part in 

the process can be identified. 



43 

A sufficient condition for the ergodicity of a process with a 

normal input distribution is just (2.6.8) itself since then 

41-irreducibility holds. The condition ensures that if the process 

takes a large value then the next value is likely to be nearer the 

"centre" of the space, though in a much weaker sense than condition 

(2.6.1). 

For multi-dimensional autoregressive processes (2.6.5) or (2.6.6) 

can be applied for a suitable norm. Kesten (1976) has given an 

analysis of recurrence and transience for multidimensional processes 

based on cone-shaped sets. Tweedie (1976) gives a full account of the 

classifitation of general state space Markov Chains including the 

above material. 
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3 	SOME APPROACHES TO CALCULATING PROPERTIES OF STATIONARY DISTRIBUTIONS  

3.1 Introduction  

In the last chapter it was shown that, under certain conditions on 

X(•) and the distribution F of {Zn}, the non-linear autoregressive 

process given by 

X
n+1 = X(Xn

) + Z
n+1 
	 (3.1.1) 

has a stationary distribution; that is there exists a distribution F
X 

satisfying 

CO 

F (x) = J F2 	- X (17 ) dFx  (Y) 
	

(3.1.2) 

In some cases this solution is unique. Without assuming any particular 

set of conditions, it will now be assumed that a solution to this 

equation exists, and various ways of finding this distribution and its 

properties will be considered. Quantities associated with the stationary 

and input distributions will be distinguished by appropriate subscripts: 

thus px, 	stand for the respective means. 

The methods described for solving equation (3.1.2) are of two 

types. Methods of the first type, discussed in section 3.2, are based 

on the distributions of the finite-starting-time sequence {Un} 

described earlier. The second type of method attempts to exploit the 

invariance of the properties of X
n 
 (n = 	when the process 

has a stationary distribution to achieve a solution: that is it seeks 

FX directly as a solution of (3.1.2) rather than as a limiting distri 

bution as in the first method. This is described in section 3.3. 

However, to employ this second method effectively, the process (3.1.1) 

is imbedded in a family of processes which are considered together. 

Section 3.4 introduces one such family and properties of the stationary 

distributions are obtained by manipulation of the random variables of 

the processes. In Chapter 4 a different family of processes is used 

and the stationary distribution functions of the processes are considered. 

This is equiValent to imbedding equation (3.1.2) in a family of integral 

equations which are solved together. 
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3.2 Repeated Convolution. Methods  

3.2.1 As noted in section 2.1, if a sequence of random variables U
n 
, 

generated by the same mechanism as (.3.1.1) but starting at a finite 

time, converges in distribution, it does so to a stationary distribution 

for the process (3.1.1). For all fixed afstributions FO(u) for U0, the 

distributionsoftherandmuvariadesftJn/ generated by 

U' 
n+1 X (Un) + Z n+1 (n = 0,1,2,.. 

are given recursively by 

Fn+1(x) 	fFz(x - a (u) ) dFn  (u) 	(n = 0,1,2,...). 

This suggests, as one method for finding a stationary distribution 

FX for the process, the evaluation of the sequence of distribution 

functions (F
0,F1,F2'...  ) by numerical integration for some suitably 

chosen initial distribution F0. Whether or not the sequence of distri-

butions converges, the distributions Fi  calculated may be of direct, 

interest: for, if F0  corresponds to U0  taking a single value u0, say, 

then F. 	= 1,2,3,...) are the distributions required for making 

predictions of (KIro.1,Xn+2,...) given an observed value Xn  = uo  of the 

process (3.1.1). An alternative to this choice for F0  is to take a 

distribution with large dispersion giving positive weight to all parts 

of the real line. Should there be more than one stationary distribution 

for the process this would ensure that all regions having a positive 

probability under some stationary distribution could be found. The 

limit of the sequence of distributions, if one existed, would be a 

mixture of the stationary distributions. Other tactics, such as averaging 

over "time", could be adopted to deal with periodic processes. 

Once a stationary marginal distribution Fx  of the process fxril has 

been found, the stationary joint distributions of any finite collection 

(
,X
n+Z 	

Xn+2, ) can be found by further numerical integrations. 

	

i' 
, ... 	

k These integrations would be over the joint distributions of consecutive 

sequences (X
n
,
Xn+1, 

 ... Xn+Z); 
 these are given in terms of densities, 

with the obvious notation, by.  

(xo
,x....x) = f 2.7X(x)) 	

f (x 	(x0) ) fX(x0) . X ,X 	...X 

	

n n+1' 	n+2, 
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By performing further numerical integrations the moments and joint 

moments of the process {X 
 n
}under the stationary distribution can be 

calculated. Any aspect of the stationary process {X
n
} can thus be 

investigated by numerical methods when enough integrations are performed. 

The disadvantage of this method is that, being based entirely on 

numerical quadrature, it does not provide analytic expressions for any 

of the quantities required and thus no information as to the results 

for a particular autoregression function is available unless the above 

procedure is carried out for this function. Some problems arise from 

the numerical integrations themselves but these are purely procedural • 

and, in principle, there should be no difficulty in overcoming them. 

3.2.2 The above method is based on the assumption that, if F0  is a 

distribution close to the stationary distribution, then F1  given by 

F1  (x) = 
f Fz(x - X(u))dF(u) 
	

(3 .2 .1) 

will be closer. For suitable choices of F0 
 it might be possible to 

evaluate this integral analytically, or possibly the corresponding 

integral when densities exist. The distribution F0  would be chosen to 

be itself close to the stationary distribution and (3.2.1) would produce 

a distribution F1 
which, while not exactly the required distribution, 

would at least give some indication as to its properties. These 

properties would often be summarised by the moments and these would 

be approximations to the moments of the stationary distribution. Even 

when the integral (3.2.1) for the distribution cannot be evaluated it 

may be possible to perform the corresponding integrals for the moments 

exactly. For example, the approximation to the mean is 

f A(u)dF(u) + Pz  

or E[A(U) + Z], where U0  has distribution F and Z has distribution F . 
1
0 
2 

As a particular case let 	-i X(x) = exp{- x} and let the input 

distribution be N(0,1). Consideration of A(x) shows that the mean px  of 

the stationary distribution must satisfy 0 < ux  < 1 and that a reasonable 

guess would be px  = 0.6. The variance of the stationary distribution 

must be at least as great as that of the input distribution and the 

variance of a random variable (k(Xn
)) concentrated on [0,1] cannot be 
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greater than 1/4: hence 

1 < a
X
2 	var Xn+1 = var X(Xn

) + var Z
n+1 

 < 1.25. 

With the distribution F
0 
 chosen to be a normal distribution with 

mean p and variance a2, the integrals for the moments of the distribution 

F1 can be evaluated explicitly and give for the mean, variance and third 

central moment respectively 

P' 

a'
2 

pi 
3 

= 

= 

2 -1/2 	r 	1P 	1 
Cl + a2)exPl-- 

p 2 + 1, 

- 	31.1'0' 2 - 1) ,3  - P 	• 

1+0.2i 

2 -1/2 	1 211 
(2 + a ) exp{- .7 	2} 

2+a 

, 2 
-1/2 	r 	12111-..-} (3 + 	expt 	2 

3+a2 

One way of proceeding is to choose p,a2 so that p' = p and a'
2 
= a2 

and this solution can be found by an iterative substitution method using 

the first two equations. This gives the approximations 

p' = 0.62758, a'
2 
= 1.1060, p3 = -0.0193 

compared with the true moments 

px = 0.62756, aX
2  = 1.0995, p

3,X 
 = -0.0151. 

These moments have been calculated by a method to be described later and 

have been confirmed by computer simulations. The above procedure finds 

a normal distribution, the first two moments of which are left unchanged 

by the transformation X -- X(X) + Z. Since the stationary distribution 

is itself close to normal in this case, this may explain the apparent 

success of the method here. More generally F0  might be chosen as a 

mixture of distributions of tractable form. The above method of 

equating moments of the distributions before and after the transformation 

takes account of only these moments and no other properties of the 

distributions. 
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A similar method may be used to obtain approximate results for 

the joint moments of CKII,X
n+1

1 under the stationary distribution of the 

powers (3.1.1). This joint distribution is approximated by that of 

(Jo X(u
o
) + Z) where U0  has the approximate stationary distrihution 

F0. In the above example, the value found for the approximation to 

cov(X
n
,Xn+1) when F0  is 

N(p,a2) is 

2 a2 c' 	-a2(1 + a)-3/2 p exp{ - 
1  
--- 

p  
---4 2  PP' 2 
1-1-CY 

 1+c5 

and, with p,a2  chosen as above, this gives cov(X ,X ) = -0.2068 
n n+1 

compared with the true value -0.2056. 

Although the method is based principally on the one step ahead 

transformation of distribution, the choice of the initial distribution 

F0  is based on equating moments of the distributions at successive 

times. 

3.3 Invariance Methods  

An attempt will now be made to use the equivalence of the distri- 

butions of the random variables X,X(X) + Z to find the exact or 

approximate properties of the stationary distribution. Here X and Z 

are random variables from the stationary and input distributions 

respectively. 

One method of obtaining approximations for the moments of the 

stationary distribution is to use the well-known formulae approximating 

the moments of a function of a random variable. These are obtained by 

Taylor series expansions of powers of X(X) about the mean px  of X. 

Truncating the expansions at the usual point gives the approximations 

1  
E{ X (X) } = X (px) + 	crx

2 (2)
(Px) (3.3.1) 

and 2 2 varIX(x)1 = { Cl) (11x)) ax  . (3.3.2) 

where X(r) (x) is theetb. derivative of X(x) which function is assumed 

differentiable as often as necessary. Thus the following equations 

hold approximately 



2 (2) = X (11 ) 	— 
1 
a X x 	2 X 

+ pz, 
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q
X

2 
={ (1)(px)1

2aX
2 + az

2, 

and from these an approximation to the mean of the stationary 

distribution is as a solution of 

uX 	 2 
a
Z = 	tux) 	

Pz 
	2 

1 	0.
0.) 

(1.1 X)1 

1 	
(2) 

	

X 	(4IX) 
	

2 	
(3.3.3) 

with an approximation for the variance given by 

aX
2 	

(1) 

a 2 

	

(IIX)1
2 • 
	 (3.3.4) 

For the example, used also in section 3.2.2, for which 

X(x) = exp{ - 2=x2} with input distribution N(0,1), the approximation 

for the mean is as a solution of the equation 

[1 + 
	p2 - 1 	2 

2 	

e 1 2 

2 - 
- 3i  e 

This solution is rapidly found by repeatedly substituting approximations 

into the right-hand side. The approximations for the mean and variance 

are found to be 0.4715 and 1.217 respectively compared with the exact 

results 0.6276 and 1.099. The root of the equation p = X(p) is 0.7531 

so that the modification (3.3.3) of this equation has resulted in a 

change in the right direction but one that is rather too large. 

The approximations derived by this method require the solution of 

equation (3.3.3) for 	this is a disadvantage for it is not clear 

when the equation would have exactly one solution. Also as has been 

seen, in this case at least, the approximations compare unfavourably 

with those obtained earlier. It may be noted that the only information 

used about the input distribution is its mean and variance. 

In view of the poor results at this order of approximation one 

might attempt to extend the result by equating moments of higher order._ 

If the series are truncated to retain terms of order not greater than 3 

(relative to the scale of X) then, for a normal input distribution the 

equations reduce exactly to (3.3.3) and (3.3.4). However retaining terms 

of 4'th order gives the equations 
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1 2 (2) 	1 	(31 	1 	(4) 
11X 	+ 2 aX X 	+ 6 P3xx 	574 P4xx 	PZ (3.3.5) 

	

2 	2 (1)2 	 (1) (21 	1 X a
x 

= a
x 

X 	+ p 	+-(.11
4X
-a
X
4
.)
X(2)2 +p

1  	X(/1 
 X

(3) + a
z
2 

	

3X 	 3 4X 	• 

	

(1) 3 	4 (1)2 (2) 
P3X P3XX 	+ 3 

	
-aX  )X 	

+ p
3Z 2 X 

p 	= p 
X(1)4+ 

 61a 
2X(1)2 

 + p X 	+ (1) (2) 1 X + 4 (2)2 1 	(1) (3) 2 

	

4X 	4X 	X- 	3X 	4 4X
-a 

 X ) 	3 X 	X l6+p4Z 

, = u 4X 
	

2
J  A. Cl)  4 

+ 6[a
x
2 
- a aZ

2 
 + P 4Z 

where A and its derivatives are evaluated at 	and 
p3X,p4X 

are the third 

and fourth central moments of the stationary distribution. For a fixed 

value of 	thelast three equations lead to a quadratic equation for 
aX
2 

and from this 
p3X,p4X 

can be found. Using these quantities to 

substitute in (3.3.5) produces a new approximation for the mean 	and 

thus an iterative scheme of solution is obtained. 

Unfortunately this does not seem to be an improvement in the method. 

For the above example the method converges to a solution for the first 

four moments as 

0.62600, 0.7948, -0.2220, 1.9022 

compared with their true values 

0.62756, 1.09945, -0.0151, 3.6154. 

The second root of the quadratic for aX
2 is near -121 when pX 

is at the 

above solution. The approximation for the mean seems good but equally 

good approximations are found by inserting any reasonable values for 

px,ax2,p3x,p4x  into the right-hand side of (3.3.5). Taking px  = 0, 

a
X
2 = 1, p = 0, p

4X 
= 3 in the example gives 0.625 for the mean. 

The Taylor series expansions however are based on the assumption 

that CK - pX ) and its moments are small although in this situation it is 

not clear what this might mean. The usual applications of formulae 

(3.3.1) and (3.3.2) are to quantities derived from samples of size n, say, 
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and the sizes of the terms in the expansion are compared with n
1 

(as n -- 00) (Kendall and Stuart, 1969, p.232). In particular r'th 

order moments are usually comparable with n
r/2. For the present use 

there is no such parameter available and therefore the truncation of 

the expansions as above is not really justified. Possibly a truncation 

based on different reasoning would be better. It may be noted that the 

approximations obtained from (3.3.3) and (3.3.4) are exact when the 

autoregression function is linear, and this might suggest that the 

method should work for functions which are nearly linear or for which 

the variance of the stationary distribution is small so that the 

function is effectively linear in the most important regions. In the 

next section a method is introduced for incorporating a parameter in 

terms of which expansions may be made. 

3.4 A family of processes with changing input variance  

3.4.1 Consider the autoregressive process 

Xn+1 = X(Xn
) + Zn+1 	(n = 	-1,0,1,...) 	(3.4.1) 

as before, where it is now assumed that the input distribution has 

zero mean and moments of all orders and that A(x) is continuously 

differentiable. If the variance a 2  of the input distribution is zero 

then the process {XII} is generated by 

= A(X n) 	(n = 	-1,0,1,...) . 	(3.4.2) x
n+1  

The assumptions needed are that the equation x = A(x) has exactly one 

root, E say, which is "stable", and that there are no periodic stationary 

sequences satisfying (3.4.2) so that the only possible stationary 

sequence is that which takes the fixed value E(E = X(E)). 

Now suppose that the variance of Zn  is very small. Then the above 

assumptions make it reasonable to assume that the variance of the 

stationary sequence is correspondingly small. If there were more than 

one possible stationary process satisfying (3.4.2) this would not 

necessarily hold. It is also reasonable to assume that the stationary 

distributions change continuously as the scale of the input distribution 

changes. This suggests considering the family of processes {xn(a)} 

generated Qv 
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Xn+1(a) = A Xn(a)} + aZn+1 
	= 	-1,0,1,...) 

	
(3.4.3) 

for a in some interval containing 10,1]. For the present it is assumed 

that the same values of the input sequence are used to generate the 

sequences {Xn(a)} for different a. By considering a version of (3.4.3) 

starting in the remote past with the same value for each sequence indexed 

by a, it is reasonable to expand Xn(a), for each n, as a power-series 

in a. Thus 

	

(0) 	(1) 1 2 (2) Xn(a) = Xn 	+ aX
n 	

+ —
2 a Xn 	+ 

This may be substituted into (3.4.3) giving the expansion 

n 
(0) 	(1) 	1 2 (2) 	(0) 	(1) 	2 (2) 
X 	+ aX 	+ a X 	+ 	 - X (X 	) + (aX 	+ 1 — a X + 	) X (1) (X(0) ) 
n+1 n+1 2 n+1 	n 	2 n 

1 	(1) 	1 2 (2) + --(aX 	+ — a X + 2 n 2 n 
2X  (2)(0) (Xn  ) 

+ aZn+1
. 

The equating of powers of a in this expression leads to formulae 

X(0) = X(X(
n
0)). Intuitively at least, if all the 

generating the sequences {X
n
(0) 

 1, tx
n
(1) 

 j, etc. 

are to be stationary then each of {X
(0)

1, {Xn
1) 

 1, 
n+1 

	
, , 	, 
	

( The first of these is 

With this assumption the sequence sequences {X

n(a)} 

tXn 
s 	

e tc., must also 

	

{Xn 	
must take the 

(2), 

(0), 

fixed value E and then the other expressions become, with X and its 

derivatives evaluated at 

be stationary. 

X(1) (1) (1) +Z 
n+1 = X Xn 	n+1 

X(2) 
 

n+1 = X
(1)X(2) + X(2)X

(1)2 

( X(3)  = X(1)  X
n
3)  + 3X(2)x(1)X(2) + X(3)X(1)3 

n+1 	n n 

(3.4.4) 

(3.4.5) 

(3.4.6) 

X(4) = X(1)X
n
4) + 

n+1 
 (2) 

1
r 	 1 + 4X

n
(1)  X

n
(3)

I + 6X(3) Xn
(1)2 Xn(2)  + (4)x(1)4 3X

n(2) 2 
 

(3.4.7) 

The sequences {Xn
(r); n = 	-1,0,1...}. 	(r = 0,1,2,...) will be 

referred to as the component processes of {Xn(a); n = 	-1,0,1...}. 

Since Z , is independent of XiK(a) (k < r) for all cc, it must also be 
• 
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independent of X
k
(r) n; r = 0,1,2,....). However it is clear that 

for k fixed, Xk(r) (r = 0,1,2,...) are dependent amongst themselves 
1) 	(2) 

because, for example, Xk
(1) enters into the generation of Xlc,(4.1, Xk+1, 

( Xiv3)i.1, etc. Because of the stationarity of the sequences the moments 

of the component processes at different times may be equated, and, by 

suitably multiplying the above equations together and taking expected 

values in the resulting expressions, these moments may be found when 
I A(1)(u l 	1.  

3.4.2 	Define qr  = (1 
-(1)r)-1 

(r = 1,2,3,...) and pl  =
(1)

qi, 

P2 = X  
(2) 

c12, p11 = X
(1)2q2, and more generally for k subscripts 

p 	 (r1) (r2) 	(rk) = A A 
ri,...rk 

	A 	qr
1
+r
2
+...rk 

Then the moments of the random variables Xn
(r) may be found in the 

following order 

E (X n1)  ) = 0, 

E (X (1)2) = a -2aZ
2 
 ' 

(1)3 
E (Xn 	) = q3p 3z  , 

( 
E (Xn

1)4 
 ) = q4 (V4, Z 	6P11a Z

4) = q4
s
4
, say, 

(2) 	2 Ecx
n 

) = q
1
p
2
a
Z 

(1) (2) 
E(X X ) =q2P12P3Z n n 

( E (Xn3)  ) = 611(3p12 p2 + P3)113Z 

(1) 2 (2) 	4 E (Xn 	Xn ) = q3 (13112S4 cl1P2aZ ) ci3s4,  say, 

(2) 2 	 (1) (3) E(Xn 	 E(Xn  Xn  ) = q2(2P12s4 	P22s4)1 	) = c12(31312s:1 	Pl3s4)' 

( E(X
n
4)  ) = q1  {6(3p2 p12  + p3  )s4  + (4p2

p13 + 3p2
p22 + 

Here, for example, E(X(2)2), E(X 	Xn
(3)  ), E(X 	X 	) and E(X

(1)4) are 
n(4) 	

n 
(1) 	

n 
(1)2 

 n 
(2) 	

n 
all needed to find E(X

n 	). 

In order to find approximations for the moments of the process {Xn} 

given by (3.4.1), which is {X n
(1)}in (3.4.3), there are two choices. 
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The first is to express the particular moment of Xn
(a) as a power-series 

in a and to truncate this at some particular power of a and set a = 1. 

For example 

( 	1 2 	1 3 ( var (Xn (a) ) = var + aXn
1)  + -a X(2)  + -a x3) n + . . ) 

2 n 6  

= (1) 	3 	(1) 	(2) 	1 4 	(2) var(X 	) + a cov(Xn 	n  , X 	) + -a 	
n var(X ) n   

1 4 	(1) 	(3) 	1 5 	(2) 	(3), -a + 	cov(X
n 

, Xn  ) + -a cov(Xn 
,Xn ) + 	 3 	6 

which, truncated to exclude powers greater than 4, gives the approximation 

a 2 = var (X (1) ) + coy (X (1) , X (2) ) + 
1 
 var (X 	) 	1 cov (X 	, X 	) 	(3.4.8) 

x n n 	n 
(2) 3 
	n 

(1) 
n
(3) 

 

The alternative is to approximate the random variable Xn  directly by 

truncating the expansion of Xn(a) at a convenient power. Truncating this 

after the second power of a gives an approximating random variable as 

(1) 1 (2) 
n 

= E + X
n 

+ Xn  

and this gives as an approximation to the variance 

Cx
2 = var.  (>1n) = var(X(1) )  + cov (X

n
(1)  ,xn

(2)  ) 	1 var CX 	) . 
4 	n

(2) 

By comparison with (3.4.8) it is readily seen that this is not an 

expansion correct to any particular power of a; this happens in general. 

However this method of truncating the expansion of Xn(a) has the 

advantage of always producing approximations for the moments which are 

always the moments of some proper random variable. Thus the approximations 

for the variance obtained in this way are always non-negative, which is 

not true of those found by the first method. If the input distribution 

is symmetric cov(X(1),X(2)) = 0, and so in these cases the first few 

approximations for the variance must increase. 
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3.4.3 Approximations for joint moments of the stationary process {XII} 

may also be found, for example, by approximating the joint distribution 
(0). 	(1) 	12v  (2) „ (0) 	(1) 

of (Xn (a)  'Xn+k (a)  ) by that of (Xn  + axn  'ri+k (14'n+k 1 2 ,,‘ 
-a Xnv4i+k). In the same way as before the following expressions are 2  
obtained for k > 1 

(1) (1) cov(Xn ,X (1)) = • X 	q Cl)k a 2 
2 Z 

(2) (1) 	(1)k cov(X ,X = n n+k X q213123Z' 

cov(Xn
1) 

,Xn+k
2 ) = A(1)2k (1) 

q3113Z' 

cov(Xn ,Xn+k) 	si  
. A 

2P121-13Z + x(1)k-1(1  - X
(1)k

) 2)q1q3113,Z' 
(1) 	(2) 	_ (1)k_ 

cov(X(2) ,X(1)2) = X
(1)2k (

c1 s' -qqpa
4
), 3 4 	1 2 2 Z 

cov(Xn ,Xn+k) . 
	 (1 - X

(1)k )
X(2)clici3s:1  (2) 	(2) 	x(1)k-lr, (1) 	I, 

1̀̀  	q2 -̀P12s:4 + P22  s4) + 

- (1 + X
(1) 

- X(1)k)q1
2p2

2aZ
4
1' 

These may be used to approximate cov(Xn(a),Xn+k(a)) by 
, (1) 	1-a  2X  (2) 	Cl ) 	1-*  2X 	) (2), 

covtaXn 
+ 	aX 	+ 	(since X(a) = is fixed). In 2 n ' n+k 2 n+k 

particular, for k = 1, this gives 

cov(Xn(a)' n+1(a)) = 
2 (1)q a  2 + .a3 (1)q p 	+ 1X(2)q 

2 Z 	2 12 2 3,Z 

4.  1 41, (1) 	(2) 	2 2 41  
Lit 	q2"-P12s1  4 	P22s4) 	- 	q3 

 
s1  4 	ql P2 aZ 

and, to the same order in a, 

4.1. 1 	I, var(Xn (a ))= a2 cl2aZ
2 
 +a3cI2P 12 3Z 4-  4a 142` 2̀12s:4 P2 

- q12p2
26
Z
41. 

Hence 

corr (Xn  (a) , Xn+1 Ca) ) 
1 C213 3,Z 

	2 (2)  
-aA q 	( 	g3s4 -q1P2aZ (1)  2 	4  

  

  

+ 21,,  (2- s+- s
2
r,2a

A
1 

cl2aZ+aq2P12113Z 4 "2 '12 4 '22 4 '1'2 Z 

2 4 
(1) 	

X(2)q
33Z 	1 2 A 

(2) 
 cl3s,14-q1P2aZ-2P12  

= A 
	

+ 
1 
-a 	+ -a 	 + 

2 	4 
g26 Z. 	q2aZ

2 
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3.4.4 In the special case that X(1)(E) = 0, the random variables 

Cr)  Xn 	may be expressed in terms of a. finite number of the values of the 

input sequence (Z11). Thus, from C3.4.4)-(3.4.7), 

X(1) = Z n+1 	n+1 

-(2) = X(2)X
(1)2 	(2) 2 
n n+l 	= X Z

n 

( X(3) = 3X2) 2  Z
n
Z2 
n-1 

 + X C3)  Z 3 
n n+1 

(4) 
Xn+1 = X

(2)3
(3Z

4 
+ 12ZZ

n-1Z2 
	

(2) (3)  n-2) + X 	(4Z
n
Z3 
n-1+ 6Z2n

Z2 
n-1) + n-1 	n  

(4) 4 
Zn  

From expressions such as these it would be possible to find the exact 
( 	1 (2) distribution of any of the random variables E +. Xn
1) 
 , C+Xn

(1)  + —x , 2 n 
E + X(1)1 (2) 	1 (3) + 1.5.X 	+ -Xn 1 6 n ' 	which approximate the random variable 

X
n 
= x

n(1) = E r. 
 x Cr).  It would also be possible to find approximations 

for the joint distributions of the sequence {X  n}by the same method. 
, When X(1) LE) # 0 each Xn

(r) 
(r = 1,2,3,...) may be expressed as a 

summation involving an infinite number of -(Z
n
,Z
n-1

,Z
n-2, 
	) and, if 

a similar method to that above is to be applied, it is not clear whether 

some truncation of these series would be suitable. 

3.4.5 An alternative method of finding the stationary marginal distri-

bution would be to attempt a series expansion of the stationary distri-

butions of the {Xn(a)} processes. Once again a truncated version of 

this expansion is not the same as the distribution of a truncated 

expansion of Xn(a); indeed it is generally not a distribution fundtion 

at all. However the truncated version may be easy to find. Let 

FX(xm), 4X(sm) denote the stationary marginal distribution function 

and the corresponding characteristic function of the process {Xn(a)} 

given by (3.4.3). Then 

X 
sX(x)dF 	. 

cpx  ; co  = 	eisx 	, 
dFxLx;a) = 4)z(as) ex;a) 	(3.4.9) 

Expanding Fx  and 4) as power series in a, 

FX  (x; • a) = FO (x) + aF1  (x) + a2F2(x) + 
	

(3.4.10) 

(1)x (s  'a) 	q50 (s) 	'14)1(s) 	(s)  
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and assuming that 	hass moments of all orders to that 4)z(s) is contin- 

uously differentiable, these equations may be solved formally by 

equating powers of a. However this leads to expansions in terms of 

the Dirac delta function and its derivatives. The function F
0  (x) is 

a unit step function at and, when pz  = 0, F1(x) = 0, and 

2 

dF2(x) = 

2 q cr 
S Cl) 	+ (S(2) (x- O }dx . (3.4.11) 2 

The expansion (3.4.10) of the distribution function does not give 

a useful approximation as it stands; however it may be employed to 

produce other more useful approximations. Inserting the power series 

expression into (3.4.9) produces for the characteristic function 

2 

4)X(sIa) = (I) (as){eis 	
a2 q2z  CiA C2)P1s 

	X
(1)2

s
2)eisg 
	... 

This is not a power series expansion but, on truncating and setting 

a = 1, it gives a function to which corresponds the approximation 

1 	2 (1) 	(- 
fX (x) 	fZ 	 P1P2az fZ (x-U 	

1 
 Pllaz

2 
 f Z

2) 
 (x-°  

for the stationary marginal density function in terms of the input 

density function fz. 

In other methods, to be presented in chapter 4, it will be seen that 

expansions of distribution functions F(x;a) in powers of a involve 

derivatives of F(x;0) with respect to x. In this case F(x;0) is a step 

function so that, in one sense, the 6-functions appearing in (3.4.11) 

are caused by this choice of F(x;0). An alternative is to consider a 

rescaling of Xn(Q) given by 

W n (a) - 
xn  (a) - 

a 

Then corresponding to (3.4.3) is the generating relation 

n+1(a) = 1 {A(E 	aWn(a)) - El + n+1 	
Cm = 	-1,0,1,...). 

a 

q a 
Cs) = {D. C2)  q1  s - s

2} 	22Z elks 



Here a is any fixed real number and {Zn 
may have any mean. Once again 

{Un(1)} corresponds to the process {Xn
} given by (3.4.1). The same 

methods may then be applied and similar approximations obtained provided 

that the equation x = X(x) - a has a single root Ea (and also that the 

discussion earlier applies) and that IX(1)  (Ea)1 < 1. Obviously these 

conditions may hold for many different values of a. The question of 

the choice of a will not be discussed except to suggest that it be 

chosen so that the first order approximations to the mean and variance 

a + (11 + a)/{1 -X
(1)(Ea)1, a 

2  /ft - (1)2(Za)1, respectively) should 

be close to some intuitively reasonable values. 

The reason for the assumption that there is only one stationary 
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As a 0, this becomes 

W
n+1

CO) = X (E)W(0 ) + Z
n+1 
	Oa = 	-1,0,1,...), 

so that in this case F (x,0) is a non-degenerate distribution function 

being the stationary distribution of a linear autoregressive process. 

3.4.6 In the above three assumptions have been made, first that the 

input distribution has zero mean, secondly that the equation x = X(x) 

has a single root E with the conditions discussed in section 3.4.1 

holding, and thirdly that IX(1)(E)1 < 1. The first two assumptions 

may be weakened considerably by forming, instead of (3.4.3), the family 

of processes {U
n(a)} given by 

Un+1(a) = X (Un (a) ) - a + a (Zn+1 + a) 	
(n = . .. -1,0,1, ... ) . 

sequence {Xn} satisfying 

= A(x n) 	(n = ...,-1,0,1,... , 	(3.4.12) xn+1  

is so that there is only a small effect on the stationary distribution 

caused by introducing a small-scale additive error. That is, the 

stationary distribution of the process 

x
n+1 

= X (X ) + Z n+1 	(n = 	-1,0,1,...) 	(3.4.13) 
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is almost the same as that of 13.4.12) when the scale of the Z-sequence 

is small. When there is more than one stationary sequence {Xn} 

satisfying (3.4.12) any mixture of the corresponding distribution is 

also a stationary distribution. The problem is to know which of these 

mixtures is the limiting stationary distribution of (3.4.13) as the 

scale of {z n
}decreases to zero. This limiting distribution must be 

from the equations 

X(0) = CX(°)) n+1 

(1) (0) (1) X 
(1) 

= X 	(X
n 

)X
n 

+ Zn+1 n+1 

X
(2) 	(1) 	(0) 	( ) 	(2) (x (0) ) X 

(1)2 
n+2 = X (Xn n n 	n 	

, etc. 

However there are cases in which it is clear which mixture of 

stationary distributions is appropriate. Suppose that X(x) is odd 

about zero, X (-x) = -X(x), and that the equation x = X (x) has three roots, 

one at zero and the others at E and -E, and suppose that 1(1) (E)I < 1 

and IX(1)(0)1 > 1. Suppose further that the distribution function of the 

input sequence is symmetric about zero. Then clearly the stationary 

distribution is itself symmetric about zero, and, as the variance of the 

input distribution decreases, the stationary distribution becomes more 

concentrated about the roots E and -E but not about zero since this 

root is "unstable". Hence it may be concluded that the appropriate 

distribution for {X(0)} is given by 

br{ X (C))  = } 	= p 
n 

X (0)
1 . -El = 

with 	 taking the same value as Xn X
n+1 
(°) 	(1 (with probability 1). Thus  n{x

(0)1 

is completely deterministic. One way of proceeding is to first find the 

required moments conditional on X
(0). These are essentially those found 
n 

 earlier when Pr{X (0)= E/ = 1. Because of the above assumptions 

X(1)(K°41))) = X 
 11)  (E) whether X°In 

 = E or -E. Therefore, with the same 
n  

notation as before, 

( 
known in order to find the moments of the components Xn

01  , X
n
(1)  , X

n
(2) 

 



q4 (P4Z 
4 

P11aZ ) 

(2) (X
(0)

)a 
 2 

n Z 

E(x (1) I x (0) )  
n n 

=  0, 
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(x  C1) 2 I X CO) ) = q a 2 
2 Z 

E oc  (1) 3 X CO) ) = 0, n n 

E  (1) 4 I CO) X• n ) = 

E oc  (2 ) I x  (0) ) 
n n 

E (X (1) X  (2) I X  oco ) 	0, 	E (3) I X (0) ) = 0, n n n 	 n n 

E (x  (2) 2 	(0) 
Xn ) =  cl2q3c14 z (1+X (1)3 ) 

, 	( + 2X (1) (1+3X (1)-2X C1) 2+3X  (1) 3) q1az
4; 

 tX (2)  tAn
0)  ) 

Since X (2) 	= 
	(2) (-E) , the following formulae for the unconditional 

moments hold. 

(1) 	(2) 	(3) E(Xn ) = ECXn ) = E n = 0, 

(1) 2 	 , (1)3 ECXn ) = q2aZ
2 , E4Xn ) = 0, 

(1) 4 E (X  (1) 4) = q
4 (414Z + 6p (1) (2) E n Xn )  = 	0, 

,tv  ( 	 111  (1)3 
“'n

2)2\ 	
q2c13P2211/  4Z4_ 

	) + 2X (1) (1+3X  (1) -2X  (1) 2+3X  (1) 3) qicsz  , 

The following moments are also required 

E (X (0) ) = E (X 	X (
n
1)  ) = 0, E(X 	) = 	2 

	

n 
CO) 	

n
(0) 2 

E(X C0 ) X (2) ) 1ID 2EaZ
2

- n n 

From these it may be seenthat the mean of any truncation of 
CO) + X

n 
(1)  + — 1 

2 Xn 
(2) Xn = Xn 	 + ... is always zero and that the variance of 

the truncation X = X (0) • + X (1) 
	1 (2) + — x 	is 

	

n n 	n 	2 n 
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, var(X
n
) = 2  + q

2 	
+ q 	(2)

(Z)losz
2 

1 	• 	 4 	(2) 	2 + 	q 	(1+A (1)3) + 2A(1)(1+3A (1)-2A(1)2+3X(-1)3)q  a }{A 	cul  
4 2 3 	4Z 	 1 Z 

With the extensions described in this subsection, approximations for 

the moments of the process (3.4.1) can be found in some circumstances, 

a major requirement being that the autoregression function is continuously 

differentiable. It is also required that there should be a suitable root 

of an equation of the form x = X(x) - a. In the next two chapters a 

method is found which relies on much less restrictive conditions. 
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4 	FAMILIES OF PROCESSES WITH VARYING AUTOREGRESSION FUNCTION  

4.1 Introduction  

In the last chapter various methods of approximating the stationary 

distribution of an autoregressive process were discussed. The method 

Of section 3.4 was to consider the required non-linear process, 

Xn+1 = A(X n 
 ) + Zn+1 
	(n = 	-1,0,1,...), 	(4.1.1) 

as one of a family of processes X
n(a)} generated by 

Xn+1(a) = X (X (a) + aZn+1 

	

= 	-1,0,1,...). 	(4.1.2) 

In this chapter the process (4.1.1) is imbedded in a different family of 

processes. This new method does not have the disadvantages of the 

previous method which needed restrictions on the possible stationary 

distributions of the process XII+. = ADC ) Ga = 	-1,0,1,...) and on 

the derivative of A(x). In section 4.2, power-series expansions of the 

values of the processes are used to approximate the moments of the 

processes by the same method as used in section 3.4. In sections 4.4 

and 4.5 a solution for the distribution of the stationary process is 

found by using a power series expansion for the stationary distribution 

functions of the family of processes. A similar method is used in 

section 4.6 to give expressions for conditional distributions of the 

processes.. The expressions derived in this chapter are used later to 

give practical procedures for calculating the moments and distributions 

of the processes. 

The family of processes (4.1.2) allows the scale of the input 

process to vary continuously. Earlier this was shown to be equivalent 

to considering the family of processes fla
n
(a)} generated by 

• w
n+1

(a) . 1 IA {E + awn (a) 1 - 	+ n+1 (n = 	-1,0,. ..) 

where = A(0. In this family the autoregression function itself is 

allowed to vary. This suggests defining a family of processes (Xn(13)} 

generated by 

(3) 	P{Xn($);Vr + +1 	+1 (n = 	-1,0,1,...), (4.1.3) 



63 

where P(x;a) is a suitable family of functions of x, indexed by B. 

These should have the properties that, for fixed x, p(x;a) varies 

continuously with 5 and that p(x;1) = X(x), the required autoregression 
function. Further l(x;0), which will be called the initial autoregression 

function, should be such that the corresponding process, {X
n(0)}, has a 

stationary distribution which is known: this will be called the initial 

(stationary) distribution and the process {X n(0)} will be called the 

initial process. Other requirements are that the process {Xn(B)1 

should be stationary for every a in some interval covering [0,11 and 

that the properties of the processes should change continuously with B. 
It may be noted that the choice 

u (x;a) = 	+ a-1  [x{E + 8cx—E0 -- 	 (4.1.4) 

corresponds to the process {E + W
n(a)} with {W (a)} as above. In this 

case E = A(E). An obvious extension of this is to choose 

p(x;a) = X(E)4B{E + a(x-E)} - X(E)], where now E is not necessarily 

a root of x = 2(x). This does not correspond to a family of processes 

with a varying scale input distribution unless E = ACE). After some 
consideration it can be seen that there would be a discontinuity, at 

= 0, in the behaviour of the processes {X 
 n
(6)}if the equation, 

x = X(x), has more than one root. This is because the equations 

x = p(x;a) will all, except for a = 0, also have more than one root. 

The above modification does not overcome this problem. 

A good choice for p(x;a), and the one that will be most used from 

now on, is given by 

11(x;a) = a + bx + a{X(x) - a - bx} 	(4.1.5) 

where a and b are two fixed real numbers, arbitrary except that the 

initial process (with autoregression function a + bx) should be 

stationary: for most input distributions this just means Ibi < 1, see 

section 2.2.1. Thus the family of processes {X
n
(a)1 under consideration 

is generated by 

Xn+1(a) = a + bxn (0) + a[A{Xn(a)} - a - bXn(8)1 + Zn+1 	
(4.1.6) 

= a + bXn(a) + afaXn(a)} 
	

zn+1 
	(n = 	-1,0,1,...) . 
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In the next section the method of section 3.4 will be applied to this 

family of processes. For this it is assumed that exactly the same 

sequence {Zn} is used in the generation of each process {Xn(B)}. In 

the method to be described later, involving expansions of the stationary 

distribution functions, this assumption need not be made. 

4.2 Power-series expansion of the process itself  

4.2.1 By formally taking derivatives throughout (4.1.6), and setting 

a = 0, expressions are found for the components {X
n
(r)} of the 

expansion of the processes {xn(S)}, where 

( 	( X
n
(f3) = X(0) + 	n1)  + 1 — B2 X2) 

n + 2  (4.2.1) 

Let 

dn  A 
(n) 

(x) = 	A (x) 	A (x) = A (x) - a - bx 
d x 

where it is assumed that the derivatives exist. Then the formulae 

obtained are 

CO) X (0) a + bX 	+ Z 
n+1 	n+1 

(1) = bx
(1) 

 + A
cx(o)

) n+1 	n 	n 

(2) (1) Xn+1 = bX
(2) 

+ 2A 	(Xn
(0) 

 )X 	, etc. 
n
(1)  

C4.2.2) 

(4.2.3) 

Again Z11.1.1  is independent of all random variables with smaller subscript. 

Here {X(0)1 is a linear autoregressive process (equation 4.2.2) and, as 

such, has known properties. By the same method as used in section 3.4, 

the moments of the other component processes are found to be 

(1) 	
1 1 b 	n E(X

n 
) - 	El A (X CCI)  -  
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E (X (2))(2) ) = 	2 E[A (1) (X (0) )x (1) 
1-b 	n n 

2 	(1) 	(0) • 	(1) 	(0) 
1-13 E• A n ) {bX 	+ A (X 	) ,  n-1 	n-1 

CO 

2 E brEIA (1) (x (0) ).A cx (0) 	, 
r=0 1-b 	 n+1 n-r 

(1) where reliance is made on the asymptotic independence of Xn
(0)  , Xn-k for 

large k. Since the joint distributions of the process {Xn(-0 ) } are known, 
the above expectation may (theoretically at least) be calculated. 
Similarly 

03 

	

(1) 	(0) cov[Xn, A (Xn )1 = 	E b cov[ A (X (0) ) ,A (X (0) )1 , 
r=0 n+1 	n-r 

	

, (1) 	b2 	, (1) 	 (1) A (0) , 	A (0) vartXn ) = b vartXn ) + 2b cov[X
n 

,A[X
n 

).1 + varEACA 	)J n. 
CO 

= 2 	E br  cov [ A (x (°) ) A (X (nr°)  )1 + var [ A (X (°) )1 } (4.2.4) n+1 	- 
1-b 	r=0 

1 	 ())] . = 	E b lricov[A(X (0)
),A(Xn-r 2 	 n 1-b r=-40  

(0) (1) 	 ) cov (Xn ,Xn ) 	cov[Xn . A (X (0) 	. 
1-b2 (4.2.5) 

From these approximations for the stationary moments of the 
process {Xn} = {Xn

(1)} are available, these being based on truncations 
of the expansion (4.2.1) of Xn (a) . Thus 

(0) 	(1) 	1 2 (2) X (0) ) + _L E[A(X(°)  EfX 	+ 
n 	

OX
n 

+ -- aX 1= E 2 n 	n 1-b 

02 	c'aE brE A  (1) (x  (0) )mx  (0) )1  
n 1-b2 r=0 	 +1 	n-r  

and 

(0) 	2013 	(0) 	(0) , 1 var{Xn
(0)  + 13X (1) = var (Xn ) + 	cov[Xn , A tAn ] 

13 ." 1- 
2 e3 	I 	I 

b ir I  COVIA n (°) ) /A (°) )] n-r 1-b2 r=-to 

(4.2.6) 
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In the same way approximations for the joint moments can be found. 
From (4 . 2.3) , for k >', 1, 

X (1) = 	Z br-1A (X (0) 	k (1) 
n+k-r ) + b Xn , n+k r=1 

and hence, using (4.2.5) , for k > 1, 

(4.2.7) 

cov (X (1) ,X (0) ) = 	br- lcovIX (0)  ,A (X (0) ) I + bk b cov [X (0) , A (X (0) )1 n+k n r=3. 	 1_b2 	n  

= 
k-1 
E bk-r-1 	(0) (0) cov [A (X 	) ,X 	3 + bk+1 covEX (0) ,A (X (0) )3 

r=0 n+r n 1-b2 n n  

cov (X (1) , X (0) ) = b cov (Xn
1) ,X n

0+
k-1 ) 	bk cov (Xn

(1)  , Xn(0)  ) 

k+1 b (0) 	(0) cov[Xn 	A (Xn )3 - 
1-b2 

For k > 1, (4 .2. 7) gives 

co , cov (X (1)  ,x (1)  ) = 
k-1 

E 	bk+k-r-lcov [A (X (0) ) , A (X (0) )] + bk var Lan.(1)  ) 

	

n+k n 	 n+r 	n- k-1 r=0 9.=0 

co  
1 	z lb  I q-k+1 I _ bk4-q+1) cov I A (X (0)  ) A (x (0)  ) + bk 	(1) var (X 	) 

1-b2  q=0 	 n+1 	n-q 

1 (E(blq-  k+1 	bk+q+1) cov [A (X (0)  ) , A (x (0) ) + bk  var (X (°) ) } 
1-b2 	 n+1 	n-q 

on using (4.2.4) . From these the approximation coy (X (0) + n 
(1)  , X (0) +(3X  (1) ) n+k n+k 

for cov (Xn  (a) , Xn+k  (a) ) can be calculated. Using also the expression for 
the variance, the approximation for the correlation is 

k-1 k-r-1 	(0) 	(0) corr (Xn  (E3) ,Xn+k  (a) ) 	bk  + {Rb 	covfXn  ,A (Xn+r ).3 
r=0 

cc. + a2 	ig-k+1 b " a+k+1 

	

L 	- 	covl A (X (0) , A (X (°) l/var IX (°) + 	(1)  j 
1-b2  q=0 	 n+1 	n-q 
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For k = 1, this is, to order 2 in a, 

co) 	
(0))] covIX ,A(X n 	n + a 

q=0 

bq coy' A CX 	, A Cx (D). )3 	2b 	covIX,(i°)., A (x1(1°)  )3 y • n+1 n-q  

varIX
(0)] 	1-b2 varl (0)] 

The moments of higher order truncations of (4.2.1) may be found in 

the same way, but the resulting  expressions become increasingly complicated. 

4.2.2 In the special case that b = 0 the equations for the components 

of X
n(8) are 

(0) 
X
n+1 = 

a + Z 
n+1 ' 

X (_1) 
A (X 

(0) 
 ) n+1 

(1) (0) (1) X  (2) 
n+1 	2A 	(X 

(0)
)xn  

X
n+1 

= 3A(1)  ( 	))X(2)  + 3A (2) (X (0) )X (1) 2 (3) 

	

n n 	n n 

(4.2.8) 

Hence the values of the sequence" {X
n
U3}  I are independent with distribution 

given by (4.2.8), and, substituting  amongst the equations, gives 

X (2) 
2A (1)  (x (0)  ) A oc (0) ) n+1 n 	n-1 

	

X (3) 	6A
(1) 

(X
(o)

) A (1) (X (0) )A (X Co) ) + . 3A (2) (X (0) ) tA (o) 
 )}2 

	

n+1 	n • 	n-I 	n-2 	n 	n-1 

The expansion of {X n(43)} is then given by 

Xn+1((3-) = a + Zn+1  + BA(a+Zn
) + B2A(1) (a+Zn1A(a+Zn_i) 

+8 
	(1) (2) 	 , 2 

(a+Zn)A
(1) (a+Z 	)A(a+Zn-2

) + 
1 
2* 	n 	n-1 n-1 
	A (a+Z)A(a+Z)1 

(4.2-9) 

corr (Xn( (3) , n+1 	= 
varIX CO} ).] 
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Approximations for the stationary moments of the process {Xn(1)} can 

be found directly from this. Thus 

(0) 	(1) 	1 2 (2) 	1 3 (.3) E(Xn  + 0Xn  + 5- a xn  + -6- Xn  ) = Efa ÷ Z1 + 

+ 	(a+Z) 1 (.5 + a2E{A (1)  (a+Z)} + 	fE{A(1)  (a+Z) 1.3 2 ) 

1 3 	2, < (2), Et A (a+z) 	A (C1-1-A 

, 	„ and, letting X = X(0) +0X 	+ 1 02X
n 
(2) 

n 
(I) 

n n 	2 

r Var(Xn ) = var(Z) + 52  vartA(a+Z)1 

+ 203  oov{A(a+Z), (1)(a+Z)1E{A(a+Z)} 

+ 04[var{A(a+Z)}E{A(1)(a+Z) 1 + E{A(a+z) 2}var{A(1)(a+Z)}] . 

(4.2.10) 

Also, for joint moments, 

cov(211+1,2n) = 	cov{Z,A(a+Z)} + 02E{A(a+Z)}coviZ,A(1)(a+Z)1 

+ 3E1A(1)(a+Z)Tvar{A(a+z)} 

4 	(1) + 0 EU\ 	(a+Z)1E{ A (a+Z) }coy{ A (a+Z) ► A 	(a+Z) I , 	(4.2.11) 

(4.2.12) 

covk+ = 0 	(k > 2). 

Taking instead a truncation of (4.2.9) to order 3 in a would introduce 

a term in 64 into the approximation for the variance and a term in a
3 

into the approximation for each covariance of lag up to 3. In this 

sense (4.2.10) is correct to order R3 and (4.2.11-3) are correct to 
2 order 2 as approximations to the variances and covariances of {Xnta}. 

Clearly the approximations for the moments are of a much simpler 

form when b = 0 than otherwise and the simplicity carries over when 

other approaches are used, as will be seen later. 

A 	A 
cov(Xn+2

,X
n = 0

2
E A 

(1) (a+Z) }coy{ Z (a+Z) } , 
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4.3 Power-series expansions for'the stationary distribution  

4.3.1 In this section the stationary distributions, F(x;B), of the 

processes {X
n
(a)} are considered. It will be assumed that the family 

of stationary distributions is expressible as a power-series in B, 

convergent at B = 1. It is not clear exactly when this will hold but 

it seems a reasonable assumption to make in some cases. There are 

certainly some families of autoregression functions {u(x;B)} and input 

distributions F for which the assumption holds. Let the input sequence 

be normally distributed with zero mean and variance a 2  and let ftl(x;a)1 

be given by 

11(x;a) = a0  + box + af(a1  -a0  ) + 1-bo 

with (b01, 1 1b11 < 1. Then the stationary distributions F(x;B) are normal 

with mean and variance given by, respectively, 

a0 + a(a1-a0) 
2 

Z  

  

1 - { 0 +0(b1  b0)} 	1 - {b0+a(b1 -bo)} 

In this case not only is {F(x;B)} continuous in B but also it is possible 

to make a power-series expansion in B, convergent whenever 

+ a(b1-b0
)1 < 1. 

4.3.2 The stationary distributions F(x;B) of the processes given by 

(4.1.3) must satisfy 

F (x; a) 
	

f Fz{x - u (y; B) }F  (dy; , 	 (4.3.1) 

and one method of finding the required distribution FCx;1) is to expand 

F(x;B) as a power-series in a and to equate powers of a in the above 

expression. In fact it is more convenient to work with the corresponding 

characteristic functions: this also has the advantage of avoiding the 

ambiguity of the definition of distribution functions at isolated points. 

Let $(s;B) be the characteristic function corresponding to FCx;a) and 

let 4x(s) correspond to the stationary distribution Fx(x) required. 

Then (px(s) = gs;1). 



(s ; ) = 2w ff expusp(x0) - ixt}()(t;Odt dx. 4)z(s) 
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In this section expressions for the first few terms in the 

expansions will be derived to show how the method works. In a later 

section a more complete expansion will be derived and some attention 

will be given to its validity. For the present various assumptions 

will be made for convenience: it will be assumed that all distributions 

involved possess densities which are continuously differentiable. 

Under certain circumstances, for instance if .(s;8) is absolutely 

integrable (with respect to s), the characteristic functions .(s0) 

must satisfy the equation, equivalent to (4.3.1), 

For the particular choice of p(x0), 

(x0) = a + bx + 8 (X (x) - a - bx) = a + bx + 811. (x) 

this equation is 

.(s;8) = gbZ(s) 
 

fi exPlix(bs-t) + isa + isNi(x))(lat;e,)dt dx. 

Let .(s;8) 
CO 

= 	E r(s)f3r, then 
r=0 

isa 
() e 	Z(e)  fr 	

{iasA(x)}j 
Ear(s)Or  — 	jjexp{ix(bs-t)} E 	 E 8 (t)edt d 

2w 	j=0 	r=0 

Equating  powers of a gives, for r > 0, 

eisa (s) 	 isA(x)lj ff 
8r  (s) =  	exp{ix(bs-t)} E . 

r-] 
 (t)dt dx. 

The term for j = 0 in this expression may be readily found, giving 

o (s) = e
isa

.z(s)00(bs) 
	

(4.3.2) 

27 	 j=0 	j= 

and, for r > 1, 
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0r 	= e
isa 

z (s)0r  obs) 

isa e 	(s) r {isA (x) } 
IfexP{ix(bs-t)} E 	j! 	

6r- j (t)dt dx 
j=1 

(4.3.3) 
2Tr 

The solution to (4.3.2) is 

r 
00 (s) = H eisba oars) = exp{isa/(1-b)} n c z(brs 

r=o 	 r=0 

where the infinite product converges since 00(s) is the characteristic 

function of the stationary distribution of the initial process 

X
n+1

(0) = a + bX
n
(0) + Zn+1 (n = 	-1,0,1,...), 

a linear process, see section 2.2.2. Let fo(x) be the density corres-

ponding to 00(s). 

Since (p(s;0) is, for every $, continuous at s = 0 with g5(0;0) = 1 

and 00(0) = 1, it is assumed that each 0r
(s) is continuous at s = 0 

with 0r(0) = 0(r > 1). Since lbl < 1 this implies, for r > 1 and all s, 

0r(b
ns) 	0 as n -4- co. Using this limit, iteration of equation (4.3.3) 

gives, for r > 1, 

pt  (s) 	r {ib sA(x)}j  

	

0r(s) = E 	flexp{ix(bk+is-t)} E 	 r-j (t)dtdx, 
j!  £=0 2Tr 	j=1 

where 

	

pk(s) 	eisbma,
y 	= 	risa(1-b 	) 

 1 	II ¢Z  (ams)z  vw s) 	expt1 
	

bk+1 

m=0 
 

m=0 

60  (s) 

Oo
(b

k+1
s) 

(4 . 3. 4) 

(4.3.5) 

The function f(s) is the characteristic function of a random variable 

Y given by 

y
n 	a + bY 	+ Zn 	(n = 0,1,...,k) , 

n-1 
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with Y_1 = O. Let pt (y) be the density corresponding to pk (s): then 
pt  Cy bk+1  x) , which appears later, is the density of Y2,  when 	= x, 
and p (y - bk+lx) f0  (x) is the stationary joint density, at lag 9, + 1, 
of the initial (linear) process. 

The expression (4.3.4) for Or  does not involve Or  on the right-hand 
side. Thus, since 00  is known, this formula gives 01,8 2  ,0 3  - - - 
successively in terms of the earlier functions. For r = 1 (4.3.4) gives 

co p (s) 
e l  (s) = E 	R 	f f exp{ ix (bL+1s-t)}ib2'sA (x)00  (t) dt dx 

R=0 2Tr 

OZ. 

= E p (s)f exp{ ixbk+ls} ibksA (x) fo (x) dx. 
R=0 

If f (x) is the inverse Fourier transform of 01W , 

cc 

(4.3.6) 

f1  (y) = - E f bt 	pp, 	- bk-Flx) A (x) f0  (x) dx  
aYR=0 

R1  (y,x)A (x) f0  (x)dx 	 (4.3.7) 

where 

CO 

1 (Y,x) = - E bt aY p (y - bt-Flx) 
k=0 

(4.3.8) 

On taking the inverse Fourier transform of er  (s) , (4.3.4) leads to 

where 

r 
fr  (Y) = f E R. (lrix) {A (x) }if . (x) dx 

j=1 3 	 r---] 
(r > 1) 

-1) j 	
j 

Rj CY' 	
( 	

b 	-27. p (11  - bt+lx) . 	> 1). 
J! k=0 317 t 

Hence in particular 

f2  Cy) 	1Cy ,x)ACx)f1(xldx + 	(y,x) {A (x) }2f0 (x)dx 	(4.3.9) 
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and so, to the second order in (3, the density of FCy,8) is 

f (Y;13) LY. f0(y) + a fi  (y) + a 2f2  (y) 

with f1 and f2 given by (4.3.7), 04.3.9) respectively. This approximation 

has been found to sometimes give negative values. 

Approximations for the moments of the stationary distributions may 

be obtained either by differentiating the approximation for the charac-

teristic function or by integrating the above approximation for the 

stationary density. These lead to the following approximations for the 

mean, p(a), and variance, cs2(R), of the process {Xn(a)1. 

p(13) = p0  + lib  fA(x)f0  (x)dx 

2 
1 -b ffA(x)A(y)R1 

 (y,x)f
o
(x)dx dy 

a2  (B) = 	
2b a 2 + 	(x 0 )A(x)f0  (x)dx 1-b 

 

2 [ 2b f (y-po) A (x) A (y)Ri  CY,x) fo  (x)dx dy 
1-b 

1 	 {A(x)}2f0 	1 b (x)dx -{ 	fA(x)f0  (x)dx12.1 
1 -b2 

(4.3.10) 

(4.3.11) 

where p0, a
0
2  are the mean and variance of the density fo(x). If ACy) 

is differentiable it is possible to simplify the expressions slightly 

by an integration by parts. The above approximation for the variance 

need not be positive. 

4.3.3 It was seen in section 4.2.2 that the choice b = 0 leads to a 

great reduction in the complexity of the expressions derived by the 

method. used there. This is so also for the present method. Choosing 

b = 0 means that the initial approximation for the autoregression 

function X(x) is now a constant function C= a) rather than a linear 

function (= a + bx). Hence, given that some linear function will usually 

be a better approximation to 1(x) (in some sense) than simply a constant 

function, it is clear that restricting b to be zero will lead to a worse 

approximation for the stationary distributvn in the sense that more terms 
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will be needed to attain the same accuracy. However the relative 

simplicity with which these terms may be calculated when b = 0 seems 

to outweigh this disadvantage when more than just one or two terms are 

needed by a choice of b 0. Indeed, for many input distributions, 

the case b = 0 may be the only one for which the stationary distribution 

of the initial (linear) process can be found explicitly, see section 

2.2.2. 

When b = 0 the above formulae reduce to 

0 (s) = eisa4 (s), f0  (y) = f 	- a) 

and, for r > 1, 

isa e  
Or (s) = 	

Z 	fix 
(s) 	• 	

•t1 
r  { isA (x) 

} 
j 

27r 	E 	0r-j(t)dt dx 

= 6 (s)  f z fisA (x) 	f 	(x)dx 

	

0 	
j=1 	3- 	r-j 

r  F  

f  (Y. 	
c-)j , 	j 

 f
0 (Y) f fA(x)}i f r_i (x)dx 

	

) = E 	
j 	dj 

j=1 	dy 	-00 

where now A(x) = A(x) - a. These lead to the following expressions for 

the first few terms of the expansion of the density f(x;a), where these 

have been written in terms of the initial density f0  and integration by 

parts has been employed. 

f1  (y) = -f
o(1)(y)f {X (x) - a}fo(x)dx, 

f2  (y) = -fc(;1)  (y) f x (1)  ()of°  (x)dxf 	(x) 	a}f0 00ax 

1 ( 
fo
2) 
 (y) f 	(x) 	al 2 f0 (x)dx, 

f 3  (y) = -f (1)  (y) 	(1)  (x) fo  (x)dx}2 	(x) - a fo(x) ax 

_ 1 Cl) 	
J 
r 

A 
 (2) (x) f

0 
 (_x) x  

.  f{X (x) - a 
2 

(x)dx 



-(2)'% fA (1)(x).{“x) - a + 	17  f0  (x)dx. {A(x) - a}fo(x)dx 
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C3) kY)'-' fi2Jx) - 0 0 (x)dx- 

Expansions for the mean and variance, to order 3, are 

P(a) = E{Z + a} + e.E{A(Z + a) - al 

2 + (3 E{ X (Z + a) - a}E{ X (1)  (Z + a) 

+3 E{X(Z + a) - a}lE{A(1) (Z + a)132  + 1 3E[{X(Z + a) - a}2  lE{X (2)  (z+a)} 

a
2
(13) 	var (Z) + B 2 var{ a (Z + a)} 

+ 2/33  E{x(z + a) - a} cov“ 	+ a) - a, X (1) (+ a) ) . 

Note that the approximation (4.2.10) for the variance is the same as this 

except that a term of order B4 has been added. However the extension of 

the above method to terms of order 4 would yield not only this term but 

another term also of order 4. (this is essentially cov(X(1),X(3)) where 
Br ,, 

X(P.) = E 	X'
r 
 ' as in section 4.2.2). The earlier approximation has 

n r: n 
the advantage of always being positive. 

4.3.4 Equation (4.3.4) gives an alternative integral equation for the 

characteristic functions 4)(s0): thus 

00 p o(s) 
(s; B) = o

(s) + E 	
2Tr 	

ffexp{ix(b241s-t)}[exp{ ib sA(x)} -114(tO)dtdx. 
Z=0 

The equivalent equation for the stationary density function is 

00 
f(y;f3) = fo(y) + E 	(p{y-bZ+1x-bk13A(x)) - p{y-b

k+1x}]f(x;f3)dx. 
Z=0 

When b = 0 this reduces to the equation 

CO 

f(y;B) = f0 (y) + 5 If0  (-17-$A(x)) - f0 (y)ifCx;(31d.x, 
-CO 

and this is equivalent to 

f(170) = J  f0(y—P,Mx))ftx;(3)(3.)c, 
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which is just the equilibrium equation for the density of the process 

{Xn WO since f0  (y) = fzCy-a). However the interpretation of the 

equation is not clear when b 0. 

4.3.5 In this section the approximations for the moments produced by 

section 4.3.2 are considered for a simple case in which they can be 

evaluated simply and for which the true values are known. Let 

A(x) = a* + b*x and let the input distribution have zero mean and 

variance az2  . Then the true mean and variance of the stationary 

distribution are 

11* 

2 a 
= a* a*2 	Z 

1-b* 	1-b*2 1 

respectively. Suppose that the method of section 4.3.2 is applied with 

a and b not necessarily taking their correct values a*, b*. Then the 

approximations to the mean p* are, from (4.3.10), to zero, first and 

second powers of f3, 

 {a* + b*-b lab 'b 1-b 	1-b a}  

b*-b 	b*-b 

	

{a*  + (-37.7;)a* + 	2 al 1 -b 	1 -b 

respectively. For comparison of the approximations their ratios to the 

true value are taken and the terms grouped appropriately: this gives, 

respectively, 

b*-b 	b*-b 	a b*-b 2 
-b 

2 11 - ' 1 	Y 	1 + 01- - 1) a* 	a* 	1-b 	a* 1-b 

b*-b 2 a b*-b 3 1 + 01- - a* 	 b 	a* 1 b 

These expansions are appropriate when the initial autoregression function 

is specified in terms of its intercept and slope. However it may be 

more natural to specify the slope of the line together with the mean,1-10, 

of the initial process. In this case appropriate expressions for the 

comparison of the three approximations are 



77 

PO 	b*-b 	PO —c-„ 1 - 	(1 - 	
(7. 7c

b- 
it 	 1 -b 	- * 	7-7)2 

	
P*0 

 

•  From these it can be seen that, provided b < 1 Co + 1), the method 2 
gives an improving sequence of approximations for the mean and further 

that if either the slope, b, or the mean, Po, are chosen correctly then 

the approximations found using these initial values are exact. 

A similar comparison may be made for the approximations to the 

variance of the stationary distribution. The initial, first and second 

order approximations are 

2 	2 az az 2b (b*-b)  , 

1-b
2 1 

1-b
2 

1 - b
2 

2 
az 

 

{l + 2b(b*-b) 	(1+3b2)(b*-b)2,  

1-b2 1 - b
2 

Cl - b2)2 

respectively. The ratios of these to the true value a*2 are 

b*  2-b2  (6*-b)2. 	2b(b*+b)  , 1 	1 	{1 + 	1 
1-b2  - 	1 - b

2 
1 - b

2 

Cb*-b 
2 

3. 1 	{1 + 3b + b2 (b* + b) } 

respectively. Once again the method produces an improving sequence of 

approximations when b is sufficiently close to b*. However the errors 

of the initial and first approximations are of the same order when 

either b* or b is zero. 

4.3.6 Even for low order terms many of the expressions of section 4.3.2 

are not particularly simple even when the conditional density ptCy) can 

be written explicitly. Suppose that the input distribution is normal 

with zero mean and variance az
2, then 4)z,09,f0,psz.  and pz  can be found. 

In particular, setting p0 = a/(1-b) and ao  = az
2
/(1-b

2
) 

p2  (y) = {21T(1-b 	)a 0 	exp 	
0  2Z+2 2 -1/2 	ly - p

k+1)
1
2 

 

2 	2i+2 	CR > 0) 
2a0 (1-13 	) 

1 - b 



2a
0

2 
	`2.=0 1+ao(1-b

2k+2 
 )1 
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1 When the autoregression function is A(x) = exp.
r  T - x21 the first 

correction term f
1  (y1 (4.3.7) to the density f0 

(y) can eventually be 

.shown to be given by fl (y) = D Fl(y) where 

Fl(y) = -1 exp 
Y2Trao  

I - 	01') 	(Y -110)12  
1/2 "PL

] 
-2f1„222.4.2)1  

CY -P 	00
11' 	

k+1 
cf0 

110 	b2 CY-P

0 

) 
1-b 

1-b2 

The approximation to order one for the mean is, from either (4.2.6) or 

(4.3.10), with = 1, 

+1 (1+a 2)-1/2 expf- 
PO 1-b o 

2 
PO  

2 (1+a
o 

 

a - bp
o
] 

 

11 	 
1- 1b 	

0 2 -1/2 	0 
exP{- 	bp 	.2

2 (1+a0  ) 

The next term in the expansion is, from (4.2.6), 

CO 

1_ (0) 2 brE [(exp(- 1  x 	) - a-bX
(0)
n-r

H-X(0)exp(- n+l 
	X(012) - 

2 n-r 	 2 n+1 1-b2 r=0 

where the joint density fr+1(x,y)  of CK(0),X(0)) is the product of 
n-r n+1 

f
o (x) and pr (y-b

r+1
x) . 

4.4 The marginal characteristic function  

4.4.1 In section 4.3 a solution was obtained by formal methods for 

4Cs0), the characteristic functions of the stationary distributions of 

the processes {x  0)}given by (4.1.6). Here it is shown that this 

expression satisfies the necessary equations for the characteristic 

functions of the stationary processes. 

In finding the solution for the characteristic functions 4)(s0) it 

seems natural to work with the Fourier transforms of the functions 

Aj(x) (j = 1,2,3,...). However these need not exist since it is not 

even assumed that A(x) 0 as x ±=. There are several ways of 

avoidng this difficulty. One possibility is to approximate the 

2 

[(1+a 
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autoregression function by another function or sequence of functions 

such that the Fourier transforms involved for these new processes 

all exist and have other suitable properties. Other possibilities 

are the use of Generalised Fourier Transforms (Titchmarsh, 1937, p4) 

or the theory of distributions (generalised functions). However, here 

some restrictive conditions are placed on A(x) to ensure good properties 

for the Fourier transforms. No conditions are then needed on the input 

distribution. It would also be possible to demonstrate the validity of 

the solution (in a slightly different form) by placing conditions on 

the input distribution with much. less restrictive conditions on the 

autoregression function. 

In section 4.6 a different approach leads to a different form for 

the solution (1)(s0) which avoids forming the Fourier transforms mentioned 

and which, at least when b = 0, is equivalent to the present solution. 

This method indicates that the solution should hold under a wide range 

of conditions. 

4.4.2  The expressions found in section 4.3.2 can be rearranged to give, 

as the possible solution for the characteristic function (1)(s;13), the 

formulae 

co 

()(s;f3) 	=(s) 	+ 	I 	RNOGs) 
O 	N=1 

N 	co 

N(s) = 	I 	I 	(ib%)iT(N11)0oft+is" 
j=1 k=0 

(N,j) 	1 

is' iH k k 

(Drs)  

(N = 1,2,3,—) 

(1 < j <N 

(Q > O). 

(4.4.1) 

(4.4.2) 

(4.4.3) 

(4.4.4) 

(4.4.5) 

T(s) 	= 	fL.(u)6 	(s-u)du 27j! 	3 	N-j 

with 

sb  Oa ts) = exp1 	11 	f
r
s) 

r=0 

	

isa(1-b 	)1 	Q 
p 	(s) = expl 	1b 	r=0 
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The functions L.(u) are the Fourier transforms of the functions Aj(x), 

L. (u) 
	

A (x) eiuxcbc 	(j > 1) . 	 (4.4.6) 

As has been stated, these Fourier transforms do not in general exist for 

all real values of the argument: expressions for T(11,i),„‘  equivalent 

to the above are 

(N,3) (s) - I 	
j 

r 
jeaggix(s-t)}Ai(x)0 	(t)dt dx 

Zni! 	N-j 

• feisx Ajc.)dFN_ j (x)  
isx e dF

qv . tx- where 8 (s) = 
f 	

) Thus it is not essential to work with the 

Fourier transforms since these alternative expressions are available. 

However they would be more complicated to use since 8 (s) would have 
to be inverted to give F q. • it is not clear when this can be done. 

Equations (4.4.2), (4.4.3) give expressions for 81,82,03, ... in 

turn. Since 0
0 is known, (4.4.3) gives 

T(1,1) and with this (4.4.2) 

gives el- • then using (4.4.3) again gives T(211), T (22)  and these are 

used by (4.4.2) to give 82. Proceeding in this way the sequence 

60(s), 61(s),  62(s) , 	 is given. 

4.4.3 One way of ensuring that the integral appearing in formula (4.4.3) 

exists is to place conditions on A(x) so that L (u) decreases rapidly at 

infinity and then no condition need be put on the distribution of the 

input random variables. The behaviour of the functionsLjCu) at infinity 

is related to the smoothness of A(x) throughout its range CTitchmarsh, 

1937, p.174). Assume that A(x) may be extended into the complex plane 

to a function, A(z), analytic in a strip, -c1  < Imz < c2  (c1,c2  > 0), 

containing the real axis and that 

CO 

f I A (x+iy) l dx < 	 < 	< c2).  

Then by changing the contour of integration it may be shown that for any 

c, 0 < c < min(ci,c2) there are. constants A,B such that 

I L.(u)I < BAJe
clul < u < 	(4.4.7) 
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A fixed c > 0 is chosen. Also under these assumptions the inversion 

formula holds 

.1X 
A j  (X) = 

27T 
— jLj  ( .3.) e 

-11 
 du < x < 	(4.4.8) 

Using (4.4.7) and the inequality 

ik e  -hluldu =  j itilke7hlu-Yldu j lu+yi  

< flulk 	
i'du= e hlY1  . 

hk+1 
(h > 0), (4.4.9) 

it may be shown that the following bound for 8N(s) holds for N > 1 

N-1 isij 
Cs ) I < KA

N 	
E 	 d 	(1+K) 
j=1 j!  

IsIN, clbs1 
Ye 	r 

INT! 
(4.4.10) 

where d = {c(1 - 1b1)}-1, K = Bd{7(1 - 10}-1  and where the summation 

appearing is zero for N = 1. If the bound holds it follows that the 

series (4.4.1) is absolutely convergent for lying in a certain interval 

about zero. 

Firstly, since 80(s) is a characteristic function, 

IT (11j) (s )I < -24
3. 
7 fIL.(u)I I80 (s-u)Idu 

3 

< 
1 

f BAje-c l 
2Trj ! 

BA3  . 2 
j:27r 

However, in order to obtain a bound with a manageable form, the following 

inequality (which holds since c-1 = d(1 - IhI) < d) is used 

IT(j,j) (s) I  < BdA
j  cis! 	(j > 1). 	 (4.4.11) 

In particularT
(1,1)

(s)I < BdA7r
1ecIsl 

and hence, from (4.4.2), 

1 
I 

181(s)I < E 	Ibk  sl IT (1,1) 
7 

Q=0 	
Op2+1  s)1 < E 	BdA  cb2+1 sl 

2=0 

03 

< E IslIbl 
BaA c 	BdA 	

Isle IT e 	7(1 - 2=0 2=0 



1111'1  BcIAN*-".  c bs1 
1- b ( 	7r(N*+1): e  
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Thus (4.4.10) holds for N = 1. Assume that (4.4.10) holds for 

N = 1,...N*, then, for j 	1 and 1 < N < N*, 

IT(N+j'j)(s)1 <  27r 	
JIL.(u)110 

N
(s-u) Idu 

j: 	3 .  

< 1 	rBA je7c lu KAN 
- 27 j: J K 

N
E
1 1 s-ulIP d N-p(1+K) 	+ 	s N-p-1 	S"uIN1 e  -clbs-bu , 

p=1 	 N! 

Using the inequality -clul - clbs-bul < -c(1-1b1)1u1 - clbsl, the 

following is obtained by applying (4.4.9) with h = c(1 - Ibl) = d 1: 

< BAN+jKr  N-1 Np 

	

	N+1, -clbsl+c(1-1131)1s1 N-p- p+1 ITCN+j,i) (.5)1 	LK E d 	(1+K) 	12d 	+ 2d 	se 
- p=1 

2BAN+JKd
N+l 	(1+K)N-1-1 (K. 	+ 1) ecisi  2Trj! 	(1+K) - 1  

BdK N+j N 	N- 	1 1 

	

= 	.Ad(1+K) l c  e 	Ij > 1; 1 < N < N*). 	(4.4.12) 

The expression (4.4.2) defining 6N*4_1(s) involves the terms 

T(N*+1,j) (s) 	= 1,...N*+1). For j = N*+1 the term is bounded by 

(4.4.11) while the bounds for the terms for j = 1,...N* are provided 

by (4.4.12) since here 1 < N = N* + 1 - j < N. Thus, using also the 

inequalities 

Iblki < Ibl k 
	> 1), eclbk+is 	

e
clbs1 

N*+1 co 

	

1 811*+1(s)I < E 	E 	IT(N*1-11j)(331+1s)1 
j=1 Q=0 

- j=1 
 1- lb 1 j:71-  

	

< E 	1s l j  BdK AN*+1dN-j+1 (1+K)N*-je
c lbs1 N* 

N*+1 	N* Is 	N*+1-j 	N*-j 	IsIN*+1  , clbs1 
= KA 	.(K E 	d 	

C1+1° 	(N*+1): le 	
(4.4.13) 

j=1 
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This is (4.4.10) for N = N* + 1, hence the bound holds for all N > 1. 

Since (4.4.10) holds, another bound is 

eN(s)1 < [ K
2{Ad (1+K) }N  

expf lel 	
KA is  NI N 

1 + K 	d (1+K) + 

N and this implies that E13 18
N(s)I converges for a satisfying 

1< tAdtilqw -1. It would be unreasonable to expect this interval 

to be a good indication of the region of convergence of the series (4.4.1) 

since it takes no account at all of the input distribution. Further 

many of the inequalities on which it is based may be improved considerably. 

The interval is 

< 	
c2(1-1b1)3  

A{c(1-1b1)2 	arr -1} 

however, since A and B depend upon c, this does not imply that the series 

(4.4.1) converges for all $ when A(z) is an entire function. 

4.4.4 If F(x;5) is the marginal stationary distribution function of the 

process fXn(01 generated by (4.1.6), then (f)(s;8), the corresponding 

characteristic function, must satisfy the equations 

4(s;f3) = f eisxdF(x;(3) 

= cz(s) f explis{a + bx. + $A(x)}.1dF(x;a) 

where 4) (s) is the characteristic function of the input distribution. 

Under the assumptions already made about A(x), the exponential may be 

expanded as a series and the integral and summation reversed, giving 

¢(s;a) = h(s) E fexp{is(a+bx)) Cis&  Ai  (x)dF (x; a) 
j=0 

isa 	i 
= 	(e) {else 	E  e 	(iO  

ct) 	2n 	j! 	)Livu4 (bs-u; 	(4.4.14) 
j=1   

where this last follows on substituting for AJ(x) from (4.4.8) and using 

the absolute integrability of the resulting double integral to justify 

reversing the integrations to give (4.4.14). 
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The argument giving expression C4.4.13) shows that the infinite 

series defining each ON(s) is absolutely convergent and hence that 

changing the order of integrations and summations involving these 

terms is justified. Substitution of the series (4.4.1) for 4)(e0) 

into the right hand side of (4.4.14) and use of the relations (4.4.2-5) 

leads, after a little manipulation, to the conclusion that 4(s;0) as 

defined does satisfy the above equations. 

4.4.5 The special forms of the above expressions for 4)(s;(1) in the 

important special case when b = 0 are now given. Firstly 

00(s) = p (s) = eisa(!) z (s) 	 > 0 

TCN' J)(0) T(N,j)(s) appears only as T 	(0) this will be replaced by 

T(N,j). Then (4.4.2) becomes 

ON(s) = o
(s) E (is)JT(N,j) > 1), (4.4.15) 

j=1 
 

and T(NJ) is given by 

aq.j) = 2 fL.(u)0
N-3  

.(-u)du 
173 : 

Substituting for ON  in this expression gives 

 

P (0) 
J 

(.j = N 

 

 

T
CN,j) 

 

(4.4.16) 

where 

N-
E
j 
T (M-j,n)P  (n) 

n=1 

P. (n) = 1  .11.(u)(-iu)n  
7 	2Trj : 	00  (-u) du 

j < N), 

(j > 1; n > 01. 

 

This expression for P(n) may be written in various other equivalent ways 

when the required quantities exist; thus alternatives are 
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P 	
1 e DnAj(x)  

dF
o
) 

j 
(n) = 

j: 	Dx
n 

• J. 
A i c.,,c) a f

0 
 (x) 

dx 
axn 

= 1 do 

 "

r 

j!  dyn  
(m+y)dF

0(x)]y=0 (4.4.17) 

The last alternative turns up in a natural way in the method described in 

section 4.6.2. The derivatives exist for all n if either A(x) or F
0  (x) 

is continuously differentiable and if the integral exists. Here F
0  is 

the stationary distribution of the initial process and in this case 

F0  (x) = F (x-a). 

The expression for ¢(s:6) can be written in the form 

()Cs;) = 0
(s)h(s;6) 

= N 
h(s;) = 1 + E 	E aNus)jT(N,j). 

N=1 j=1 
(4.4.18) 

4:5 Joint characteristic functions  

4.5.1 The marginal distribution of the process (4.1.1) is given by the 

characteristic function 4)(s; 1) as found in section 4.4 and, once this 

is known, the joint stationary distribution of any finite collection of 

values (Kri,Xn4.2„  , ...,Xn+n  ) can be found immediately. For the pair 
1 

(Xn,Xn+k)  this would involve integrating the joint stationary distribution 

of CKri,Xn+1,... ,X11.4.k) which is known from the structure of the process and 

the marginal distribution. Thus it would be necessary first to invert 

the characteristic function and then to perform a number of integrations: 

it is doubtful whether even the first step of inverting ¢(s;1) could be 

performed analytically except in very special cases. An alternative 

which is discussed in this section is to continue to consider the required 

process {X
n
} as one of the family of processes {X

n
(.6)} and to obtain the 

joint distribution of (X11(6), X
nk

(8)) as an expansion in powers of B. 

This is a natural extension'of the method for finding the stationary 

marginal distribution and, in the next chapter, leads to simple procedures 

for calculating the moments of the stationary joint distributions. 
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4.5.2 The solution 

 
(P(s;a) = s

o
(s) + E BNeN Cs). 

N=1 

(where 8N
(s) are given by (4.4.2-6)) for the stationary characteristic 

functions of the processes {Xn
(B)} may be used as a basis for determining 

the stationary joint distributions. Let 4k(s,t;a) and Fk(x,y;$) denote 

the joint stationary characteristic and distribution functions of 

ocil(a),x
n+k

(B)). Then, for k > 1, 

q5k(s,t0) = ff expfisx + itylFk(dx,dy0) 

'Z(t)ff exp[isx + it(a+by+BA(y)l]Fk_1(dx,dy0). 

This gives, on making a power-series expansion in a and using (4.4.6), 

for k > 1, 

j  
k (s,t ;a) = 	(t)feita k-1 
	3 
(s,bt;a) + 	

(ita)  
i) 	

r L3 (u)4)k-1 (s,bt-u;a)  
j=1 

This defines 4,k(s,t;B) recursively for increasing k commencing with 

4,0(s,t0) = 4)(s+t;0. 

The coefficients of an expansion in powers of 0 of ck(s,t;f) may be 

identified by equating powers of a in the above equation. Thus 

cf,k(s,r40 = e0,k(s't) 	E 	N 6N,k(s't)' 
N=1 

eN,0 (s,t) = eN(s+t) 
	> 0) 

00,k (s,t) = e
ita

(1)Z 	0,k-1 
(s,bt) 

(4.5.1) 

(4.5.2) 

(4.5.3) 

With (4.5.2) and (4.4.4) this gives, for k > 1, 

k-1 
00,k (s ,t 	1 

= exp{ (s
b

+t) a  
} II 	Z et) 11 4)z  (bn  (s+bkt) ) 

-  m=0 	n=0 

which is the joint characteristic function of CKI1(0),Xn+k(0)) from the 

initial linear process. The other coefficients ON,, (N > 1; k > 1) are 

given by 

CO 



80,k(s,t) = 

{ exp{i (s+t)a}4)z  (s+t) = 00  (s+t) 	(k = 0) , 

exp{ (s+t) a}q5z  (s) yhz  (t) = eo  (s) eo  (-0 

(4.5.6) 
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N 
O N,k (s,t) 	eita Z 	+ E (it) 3R„(..N1j)(s,bt)1 

j=1 

where, for k > 1, 

(4.5.4) 

N,j)  L3  .(u)8 	. 	(1 < j < N). 	(4.5.5) 'lc 	s,t) = 
7r 2j: 	N-3,k-1 -uldu  

j) Note that R(N,j)(s,t) = T , (s+t) where T(Nli)(*) is given by (4.4.3). 

Since 8
N
(s) given by (4.4.2) satisfies, for N > 1, 

6 (s)  = eisa 
(bs){8N(bs) 	E 	(is) iT (N'i)  (bs)}, 

j=1 

the above formulae imply that, for all k > 0, 

eN,k op , t) = eN  (t) 	( k(0, t; 	= 40(t0). 

Obviously this should hold since the marginal distributions of Xn(B) and 

X
n+k(a) are the same by the stationarity assumption. 

The above expressions give the expansion in powers of B of the joint 

characteristic function of the pair (Xn(B),X
n+k

(B)) from the stationary 

process {Xn
(B)}. Joint characteristic functions of larger (finite) 

collections of values from the process can also be found in the obvious 

way. 

4.5.3 The special form of the above expressions in the case b = 0 will 

now be given. Formulae (4.5.2), (4.5.3) give 

(N,j) 	(,j) 	 ,j) 
Since Rk 	appears only as Rk 	(s,0) this is written as Rk 	(s). 

Then (4.5.4) becomes 

N 
°N,k (s,t) = 00(t)fON k_1(s,0) + E (it)iRk(N1j)(s)} 

j=1 
(N,k > 1) . 

This implies thatN,k (s,o) = N,k-1(s,0) = N,0 (s,O) = N
(s) using 

(4.5.2). Hence 
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N,k (s,t) = eo(t){0NCs + 	(it) -i 
	i) 
Rk  1-  (s) 	,k > 1) . 	(4.5.7) 

Let the functions P.(y,$) be defined by 

1 
. 

r 	sx P. (y,$) = -77 ) el 	A (x+y)dF(x) 
3 

This is equivalent to the formula 

P. (y,$) =27r 	
e iu  L.(u)00  (s-u)du j!   

(j > 1). 	(4.5.8) 

(j > 1) 

when Ai  is written in terms of its transform. Then 

(n) 	
an 

n 3 P. (0,$) = 	P.(ys)Iy=0 17 3  
(4.5.9) 

= 1 f 
2Trj: 

-iulnLi (u)0 (s-u)du 

and the quantities P(n) used earlier (equations 4.4.16-7) are given by 

(n) 	(n) P
7
. 	= P. 	(0,0) > 1; n > 0). 

Using these quantities it is possible to substitute for ON,k  in formula 

(4.5.5) for Rk 'j)  to obtain the expressions 

j=1 

P (0)  (0 ,$) 
3 

n ()
NUJ T(N_j,n) 	n 

 q (is)q  Pj  n-q) ),$) 
n=1 	q=0 

(N,j) 
Rk 	(s) = 

Cj = 
tic = 1), 

(1< j < N) 

(4.5.10) 

(j = N) 
(k > 2) . 

< j < N) B 	
(s)pN-j (0) + 

N-j 	3 	n=1 —k-1 
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With (4.5.6-7), (4.5.1) becomes, for k > 1, 

cP (s,t;t3) = 00  (s) e0  (t) 	E f3 0 (t){ eN  (21 + E (it) iRk(Nii) (s)} 
N=1 	 j=1 

co N 
= 00 0c-1( 02;B) + E 	E (3N (itliRk(Nsj  (2)1- 

N=1 j=1 
(4.5.11) 

ag ,j) An alternative and useful form can be obtained by defining TJ 
	

(s) 

j 	 (N, j ) Rk 	is 	= 80  (s )Tk 	(s). 

00 N 
(6c (s,t;fi) = 00(s)00 (t){1 + E 	E e(is) 	(N,j) 

N=1 j=1 

by 

Then 

m N N 	,j (N,j), ti + E 	E 	(it) Tk 	tsis 
N=1 j=1 

where 

P (0) (0,$)/80 (s) 

(4.5.12) 

= N) 
(k = 1), 

 

N-j 
E T 

n=1 
N-j,n) n 

0 
n) (is)q{P !1.1 	(0,$)/e0 (s) 	(1Sj<N) 

3 

(N,j) Tk 	(s) = 

  

(4.5.13) 

P. ( 0) 

	

3 	 (J = N) (lc, >2 ) . 
Nj , ÷ NEj 

T  

	

P (, 	E (is)nT (N-- i on) 	N- • ( Jtrik 	(n ) 	
(1 kls)P. j<N) 

n=1 	 3 n=1 
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4.6 Stationary distribution as the limit Of conditional distributions  

4.6.1 In section 4.4 the stationary characteristic functions ¢(s;B) 

were found by using the identity of the distribution of X
n
(B) and 

X
n+1(a) when the process is stationary. Now the distribution is found 

as that obtained by conditioning on an event increasingly far in the 

past. This method avoids the assumptions of both section 4.2 and 

section 4.4 and leads also to expressions for conditional characteristic 

functions. However, it has not been extended to give expressions for 

joint characteristic functions similar to those found in section 4.5. 

For the process (Xn(B)) generated by (4.1.6) let 

and 

Then 

and 

yn (8) 	= 	bxn(a) 	8A{xn(8)} 

Z
n 	= 	a + Zn 

Xn+1(a) 	= 	Yn(B) + Zn+1 

Y
n+1

(a) 	= 	blYn(8) + Z*n+1  

(n = 	-1,0,1,...). 

+ BA{Y 	(B) + Zn+1* 	} 	Oa = 

(4 . 6.1) 

Here the random variables Yn(8), Zn+1 
are independent for each n. Let 

(p y(s;B) denote the stationary characteristic function of Yn
(B) and let 

cbz*, FZ* 
be the characteristic function and distribut ion function of Zn

. 

Then Os;B), the characteristic function of X
n
(0, is given by 

d?Cs;B) = ( *(s4yis;B). 

The function 

ee,y,o(s;Y:B) = 1,0,0(s ,y) = e
isy 	 C4.6.2) 

is, trivially, the conditional characteristic function for each n and 

of Yn(B) given that YnCB) = Y. Using (4.6.1) the conditional characteristic 

function of Y
n+1 

 (B) given that Yn 	= y is 

cPy,1(s;170)  = f L0,0 (s,by+bz+BA(y+z))dFz*(z). 
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Because of the definition (4.6.2) the integral may be expanded as a 

power series, giving 

(s;Y;$) = 	
j Ai  (y+z)  L (

0
j ) (s,by+bz)dFZ* cz Y,1 	j

)1 
! 	,0  j=0 

where 

L(
0
j)(s,y) = 	L 	(s,y) (j > 0). Then, writing ,0 

ayj 0, w.  

I A 	
0 

(y+z)  L(j)(s,by+bz)dFZ*(z), Lj,1(s;y) = 	.1 3. 	0, (4.6.3) 

the conditional characteristic function is 

CO 

(Py l(S;Y;f3) 	= 	E 	(s;y). 
j=0 	3'1  

Because of the convolution-like form of (4.6.3),(s,y) is continuously Lj,1  

differentiable (with respect to y) if one or both of A(-) or Fz*(-) are. 

It will be assumed that there is a Taylor series expansion for L. 1  (s,y) 3, 
about any point in the y-range. Then, extending the notation as required, 

the conditional characteristic'fundion of Yn+2(R)  given that Yn(.B) = y is 

5.yi2(s;y; 13 ) = E OiL. ,(s,by+bz+3A(y+z))dF
z*(z) 

j=0 	3"4  

j+  
E z 
j=0 k=0 

k 	/1..N A (174-zi L!') (s,by+bz)dFz,(z) 
3,1 

00 	. 
E ,(s0Y) 
j=0 	3'4  

where Lj,2(s,y)  is given by an integral over the distribution FZ*. 

The above procedure may be repeated, obtaining the conditional 

characteristic function of Y
n+m+1

($) given that Yn 	
= y as 

CO 

4Y,m+1(s;Y;13)  = I OL. 11 (13/17) 
j=0 	3'+1  

where L
j,m+1

(s,y) is given in terms of L. (s,y) the corresponding functions 
sm 

from the previous step. This relation is given by 



> 

where 	L. (s,y) = 3,0 

Cj = 0) ,  
(4.6.5) 

eisy 
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f 

L.  ,m+1 (s , y) = E f L :9 A  (s ,by+bz) AP(  7 +z)  dF
Z* (z ) (j ,m 	0), (4 . 6. 4) 

p=0 

9P  and where, L!9)(S,Y) = ---- L. Cs,Y) 
3,m 	ayP J'm 

(j,m,p > 0 . 

Then, by the assumption of stationarity, when the processes are 

not periodic 

c5,y(s:0 = lim E 12)1,- (s,Y) 
3,m mom j=0 

(4.6.6) 

since this is the limit as m m of the conditional characteristic function 

of Yn(a) given that Yn-m 	= y. It follows that the right hand side of 

(4.6.6) should be independent of y unless the process has more than one 

stationary distribution. Even if the process is periodic with more 

than one possible stationary distribution, for any fixed y the stationary 

distribution is defined by the characteristic function 

1  M CO 

y (3; 3) = lirn 	 E 	E 	 j,m (S,17) 

M4= 	m=1 j=0 

It is not possible to find L. (s) = lim L. (s,v) directly as a 
Jim 	3,m - 

	

solution to (4,6.4) since, taking into account that L. 	is  independent 
]?" 

of y, the equation becomes 

L. 	(s) 	L.(s)dF 	(z) E L. 	(s) 
3,c0 	' 	Z* 	3,m 

which is trivially satisfied by any function L. (s.). Thus the solution 
3,w 

must be found explicitly using (4.6.5). Equation (4.6.4) is easily 

solved for L0,n 	
(n > 0) since these are given by 

L0,m+1(s,y) = 5 L0,m  (s,by+bz)dFZ*  (z) 	Cm  > 0) 

and, since L 0,0(s,y) = e
isy, this leads to the formula 

Z* 	

n 
L
0,n 

(s,y) = 	11 (I) 	(ars)e
isb y 

r=1  
(n > 1). 	(4.6.7) 
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The limit of this as n e° is independent of y. 

By repeated substitution in (.4.6.4) the following set of formulae 

may be derived. Define for j,m,p > 0, 

(p) 
(s ,y) = f L p) (s,by+bz) (

v+z
)  dF

z* (2) 3,m,o 	3,m 	
g 

 

(s ,y) = j,m,q 	(s ,by+bz) dFz*  (z ) 3,m,q-1 Cq = 1,2,3,...).  

Then 

m j 
L. j,1(s,Y) = •nE=0 	2,;Ppj,m_n,n(s,Y) m+  

This gives the coefficient of all in terms of those of lower order. 
However it does not seem possible to find the limit as m 00 of L. (s,y) 

J'm 
explicitly. 

Define 

1 	 (n = 0), 

q.,(s )  = 
(n > 1) . 

These are related to the quantities pn(s), used earlier in (4.3.5) and 

(4.4.5), by 

pn(s) 
	

(s) pn  (s). 

Then, using (4.6.7) and (4.6.8), 

,m+1(s ,y) 
	E z  (s,y ) = 	

Cl) 
,y) 

0,m-n,n 	0,n,m-n 
n=0 	n=0 

(4.6.9) 

where, for q > 0, 

2,
(1) 	, 	 ,.. 	q+1 

= p- 	m s expi 
m (
o y + b

q+1
z0 + bqz1 	) 

0 ,m q 

q 
.A(bqy + bqz0 

 + bq-lz1 
 +...+z ) II dFZ*  (z.) . 

i=0 

(j > 1; m > 0). 	(4.6.8) 
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SubStituting this in (4.6.9) 

min  
L1,111+1(s,y) 	f 

	n 
/ P*(s)ib

n
s j expfisb OD

m-n+1 y + b 	1:viz.)} 
n=0 	 j=0 

mrn 	m-n 
mr A(b n  y + E bjz.) II dF, 

j=0 3  i=0 	1  
q 

The distribution of E b3Z1' tends, as q -+ co , to the stationary 

distribution F0 
	

=0 
of 	the initial process {X (D)} given by 

X
n+1

(0) = a + bX
n(0) + Zn+1 

= bXn
(0) + Z*

+1 
 , 

n 

and hence 

CO 

lim L1,171+1 05,y) = p*(s)ibns 	exP fibn-llsx1A(x)dF (x). 
mtc° 	n=0 

4.6.2  Once again the expressions simplify greatly when b = O. Formula 

(4.6.4) becomes 

L
j,m+1

(sty) = 	E L(q)
q,m

(s,O)P (y) 
j- q=0 

(j ,m > 0) . 	(4 . 6.10) 

where 	P (y)  = r  A - (y+z  dF
Z* (z) q: 

and in particular P
0 
 (y) = 1. From either (4.6.7) or (4.6.10) 

e
isy 	= 0 

L0,n (s,y) 
	

(4.6.11) 

 

Hence (4.6.10) becomes, for j 

(is) P. (y) (xrt = 0) , 

Lj,m+1(s,y) = j-1 
(.q)
q  E L. j-,m

(s,o)P Cy)  q=0 

(4.6.12) 
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From this, 

Li,i(s,y) = is P1(y) 

L1,2(s,y) = L11(s,O)P0 (Y) = is P (0) 

	

andL1!
(s 1Y) 	L1,m (s,O)P0 (y) = L1,m (s,0) 	= 2,3,....). 

Thus, for m > 2, L
1,m(s,y) is independent of y and L1,m(s,y) = L1,1 (s,0)- 

> 2). It may be shown that, for all j, 

	

Lj,j4r(s,y) 	L. 	(s,O) 	Cr > 1) 
J,J 

andthusthatL..(s,y) is independent of y for r > 1. Suppose that 
3,3-1-r 

this is true for j = 1,...j*-1. Then 

L (g) 
= 0 = 1,...j*-1; r > 0), 

and hence (4.6.12) gives, for r > 0, 

Lj*,j*-1-x+1(s,Y) = L3. .-f (s,O)P (y) = L 	. 	(s,0 
*,3*x 	0 	j-, ,3-, +r 

Hence L*,j*-Fr+1(s,y) = L 	(s,0) j j*, j* 
(r > 0). 	(4.6.13) 

However note that L. 	Cs,Y) is not independent of y. Because of these 
J*,J* 

results (4.6.12) now becomes, for j < 1, 

0-e0P.C10- 	= 0), 

Lj,m+1(s,y) = 
jim 	

(s,O)P (y) 	(j > m > 1), 	(4.6.14) 
3--qm 

q=0 

sL. 	(s,0) = L. .( ,0) 	> j). 
,m 	3,3 

dy 

-1) 	d
n 

n 
DeDefinee 	= 	{P.(y)}

y=0 
(1,j > 0), then as can be seen by snbstitution 

in the above, 
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r1  Cr2  ) 	(r3) 	Cr ±1)1) 

j,m+1
1s,y) = L.(s,0) + E(is) p

r 
	Pr 	PrPr 	Pr 	Cy) 

im 	l 	mm+1 

where the summation is over all sets of (zn+1) integers r1,...rm+1 

such that r1 + r2 +... + rm+1 = i. Note that L. 
0  Cs,y) is given by 3,0 

(4.6.5) and hence that L. Cs,y) = o Cj > 1). 
J,0 	

Therefore 

r1 (r2) (r3 	n ) ) CO) 
L. 05,0) = 	Cis) P 	P 	P 	P 	< m< j) 
Jim 	n=1 	

r1  r2 	rn-1 rn 

where now the combined summation is over all sets of n < m integers 

Cri,...rn  > 1) satisfying r1  + 	+ rn  = j. 

ag, Let T 	j)  , N > j > 1, be given by (4.4.16), i.e. 

T(N#3) 
P (o) 
3 

(j = N), 

N-j 
(N-1 ,n) &I) E T 	- 	P 	(1 < j < N), 

n=1 

then 
) 	p T 	

) i) 	P (0)P 1 ' 	= P P 
rl r2 	rk 

where the summation is over all sets of k > 1 integers (ri,...,rk  > 1) 

satisfying r1  + r2  + 	+ rk  = N and rk  = j. With these restrictions k 

can be no larger than N-j+l. By comparison, it can be seen that, 

LN,m(s,0) = 

and, in particular, 

N 
E 	(isOT(N'i)  

j=N+1-m 
(1 < 	< N) 

CN > 1). 
N 

LN,N(s.0) = E (is)
iT(N'i)  

j=1 

Because of the results (4.6.13) and (4.6.11) the limit in (4.6.6) becomes, 

if conditions of uniform convergence hold, 



CO 

(s;$) = 1 E a
N
L (s,0) 
NN N=1 

	

N 	
j (N,j) = 1 + E E N 

 (is) T 
N=1 j=1 

	

= 1 + E E 	NU-sliT(N,j) 
j=1 N=j 

Then (4.6.5) gives 

$,(s;$) = e
isa

ff, (s) { 1 	E N(is)j
T 
N'j)} 

N=1 j=1 
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(4.6.15) 

(4.6.16) 

(4.6.17) 

and this is exactly the same result as (4.4.18), obtained by a different 

method. 

	

The irr-step conditional characteristic function of 	given 

that Yn(3) = y is, for m > 1, 

N 
/.,m(s;y;$) = 1 + E $ LN,m(s,y) 

N=1 

and using the above results this becomes, for M > 1, 

m-1 
(p y,m(s;y;$) = 1 	a

N
L
N,N

(5,0) +
N,m

(s,y) 
N=1 	N=m 

m7. N 	 N 
(1\1, • = 1 + E

1 
 E aN  (is) jT 	i) + E 	E 	el  (is) jT :1) 

N=1 j=1 	N=m j=N+2-m 

	

N . r1 Cr2) Cr3) 	(rm) 
+ r 	13. (Ls) P 	P 	...P 	P (y) 	(4.6.18) 
N=m r

1
+...+r

m
=N 	r1  r2 	r 	r m-1 m 

r. >1 

Here the first two summations are empty for m = 1. A particular case, the 

conditional characteristic function of Yn+m(a) given that Yn
($) = 0 

(eguivalently,.A{Xn(a)} = 0), is found by identifying the last part of 

the above expression as 

r 	(g,r ) N. m T 	m  

N=m rm=N+1-m 
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This gives 

Y,m(s;O:B) = 
N 	co N 

, 
+ 
m-1  
E 	E BN  Cis1jT01j1 +LE 

N=1 j=1 	N=m j=N+1-m 
cisljT (N.j)  

(4.6.19) 

co- j+m-1 
= 1 + 	E 	BN(ioJTON.7)  

j=1 

This may be compared with (4.6.16). 

The same result for the stationary characteristic function has been 

found in two ways, firstly by considering the process (4.1.6) when it is 

in equilibrium and secondly by considering the process at two points in 

time which become increasingly separated. This second method requires 

that the functions 

P. (y) = 	
{A(y+z)}i  dF

Z* (z) • 3 
(j > 1) 	(4.6.20) 

should be continuously differentiable, a condition which holds when 

either or both of A(x), FzCz) are continuously differentiable. The 

function A(x) need not be bounded at ±, although this condition was 

necessary for the existence of L.tu) in section 4.4. The convergence 

of the series obtained has not been demonstrated but clearly the 

validity of the interchange of limits 

co j+m-1 03  
lim E 	E 	BN(is)

jT
(N,j) 	E aNuojTCN,j) 

n+00 j=1 N=j 	j=1 N=j 

is necessary. Since the convergence of the series and its validity as 

a solution to the problem have been demonstrated to hold in some circum-

stances it is not unreasonable to assume that, whenever the series and 

others derived from it converge, they converge to the correct answer. 

Results obtained by making this assumption have been checked by 

simulations in some cases, see. Chapter 6. 
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4.7 Choice of constants  

The constants a and b appearing throughout have been arbitrary 

(except for the condition ibl < 1). The choice b = 0 considerably 

simplifies the formulae involved and greatly reduces the amount of 

calculation needed to find the solution (P(s;$) to any given order in B: 

in many cases this would be a reasonable choice to make. There then 

remains the constant a. Although this too is arbitrary, it affects 

the speed of convergence, and indeed the convergence itself, of the 

series. Hence a may need to be chosen with some care. 

It is reasonably clear that the sequence {(1)y,111(s:y;(3); m = 

will converge fastest to its limit (1S1(s;$)  if the value y is a typical 

(rather than extreme) value of Yn($)  under the stationary distribution. 

For otherwise, starting at an extreme value, the succeeding values 

Y/1+1($),  n+2(0),..  would take some time to drift back to the more 
probable regions of the process {Yn(0)}. Comparing (4.6.15) with 

(4.6.18) and (4.6.19), it can be seen that, for any m, dys;$) agrees 

with 
Y,m(s;y:$) in terms up to a

m-1 and with 4) Y,m  (s;00) in terms up 

to order m. Thus it might be expected that the series (4.6.15) would 

converge well if Y
n(0) = 0 is a very likely, or. at least typical, value. 

Usually the process of interest has B = 1 and so a good choice of a is 

such that 

Yn(1) = A(Xn(1)) = X {xn(1)} - a = 0 	(4.7.1) 

is a typical event under the stationary distribution of {xn (1)}-Efxd. 
This requirement gives some form to the intuitive idea that a is best 

chosen so that the graphs of y = X(x) and y = a are close. 

However, even with the above condition, a is still a dispoSable .  

constant and quantities derived from truncations of (1)(s;$) in (4.6.17) 

may all be found for different choices of a. Since the true values of 

these quantities should all be independent of a, this provides a check, 

not only on whether the series have converged, but also on the validity 

of the algorithms used to calculate these quantities. 

Equation (4.6.20) may be written as 

P. 	= 1 — f {A (z + a + y) - a}idF (z) 
j j! 
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and, since the final expressions depend only on the derivatives of this 

at zero, it seems that, if Fz  is constant over certain regions of the 

line, the values of A(x) may be changed on corresponding regions without 

affecting the solution. It has been assumed that a Taylor series 

expansion of P,(y) about zero converges over a region large enough to 

cover all values {A(z + a) - a} where z is a point of increase of Fz. 

(An even stricter condition may be needed to ensure convergence of the 

series for ¢(s;6).) There still may be some regions where the values of 

A(x) may be changed without affecting the validity of the method and it 

is intuitively reasonable that this should be the case. For, suppose 

that the stationary process never visits a certain set, then the auto-

regression function may be changed on this set without affecting the 

invariance of the original distribution. If the autoregression function 

and input distribution are such that there are two or more different 

stationary distributions, it is possible that the above property would 

allow these distributions to be calculated by using different choices 

of a where, as discussed above, the choice of a would identify the 

particular stationary process (equation (4.7.1)). 

It is clear that, in some sense, the closeness of the line y = .X(x) 

and the initial autoregression function y = a + bx affects the convergence. 

of the series derived. It has been seen that the choice b = 0 greatly 

reduces the work of finding each coefficient and thus that, even at the 

expense of evaluating more coefficients, taking b = 0 is best in many 

cases. However, when the "overall slope" of X(x) (in relation to the 

unknown stationary distribution) is near ±1 the approximation of y = X(x) 

by y = a is poor, and an extremely large number of terms in the expansion 

of powers of 6 may be required with the choice b = 0 and this may not 

always be best. In particular if A(x) is very close to some line a + bx, 

then choosing these particular values for a and b may result in only one 

or two terms in the expansion being required. 

The following formula for 61(s) in (4.4.1) is obtained by both 

methods presented, i.e. from (4.4.2-6) and from section 4.6, 

1 (s) = 	
ibk

sp (s)f A(x)e
ib. sx

dFo(x) • 
6 

k=0 

(4.7.2) 

This illustrates two difficulties involved in a choice b # 0. Firstly 

the stationary distribution F
0 
 of the initial (linear) process must be 

known: only in special cases can this be written in explicit form 
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(section 2.2.2). Secondly there is the evaluation of the infinite 

summation appearing in (4.7.2): this cannot generally be done explicitly 

unless A(x) is a linear function. The expressions for  e (s) each 

contain N infinite summations. It is usually not of interest to find 

4)(s:a) itself but only quantities derived from it;  for example, moments 

of the processes are given by the derivatives (with respect to s) at 

zero. The same difficulties arise when dealing with the corresponding  

expansions. 
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MOMENTS AND OTHER DISTRIBUTIONAL PROPERTIES 

5.1 Introduction  

The problem of finding the stationary distribution of non-linear 

autoregressive prodesses has been considered and this has led to 

expressions for the characteristic functions of the marginal and joint 

distributions. These have been given in Chapter 4. Although, in 

principle, the characteristic functions completely determine the corres-

ponding distributions, the expressions found are not directly of use as 

they are in the form of infinite series. However, from the expressions 

for the characteristic functions, expansions can be derived for quantities 

of interest such as the moments and joint moments of the stationary process 

and for the stationary distributions themselves. These are considered 

here and lead to simple computational procedures for calculating the 

stationary moments and distributions. The most useful procedures 

considered are based on the family of processes with varying auto-

regression function starting from the process of independent and identically 

distributed values {X 
n(0)} given by 

n+1
(0) = a + Z

n+1 
= 	-1,0,1,...). 

5.2 Expansions for moments and joint moments  

5.2.1 In Chapter 4 the coefficients ON(s) in the expansion 

CO 

cf)(s;) = E 
N=0 
	N ) 

of the stationary characteristic functions of the processes {xn(a)} 

(generated by (4.1.6)) have been given. Then, provided the moments exist, 

- 3 	 k 3
k 

E{X
k
(f3)} = 	

k 	
(s; f2.) 1 	= 	

N C
-il 

kN
(s)! 

8s 	s=0 Is=0 N=0 	2s 	s=0  

CO 

= k!{3N0 (k)  (0)- 	 (5.2.1) 
N=0 
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where 

k k C-i) 
6N (-5 ) = 	k: ask eN csi (N,k > 0). 

k, In particular MO°
(k)  (0) = EiXn 0)1, the moments of the initial process. 

The extra factor of (-i)k/k: is used here and later in order to simplify 

the expressions obtained. 

For the family of processes {xn(13)} corresponding to the family of 

autoregression functions p (x; 9) = a + bx + 9{X (x) - a - bx} , the coefficients 

0N(s) are given by (4.4.2-6). Using these and defining for k > 0, 

T (14'i) (k)  (s) 
k k T k.N,J) (s)  

k: ask < N , 

k (k) 	(-i)k  3 (s) = 
3sk  > 0) 

the expression for e Ck) ) Cs) is found to be, for k > 0, N > 1, 

N 	min (k,j ) k-q 
(k) (s) = E 	E 	E 	E 

b (2-1-1) (k-q-p)+q2 (ibs ) j-q(j) 

j=1 2=0 q=0 	p=0 .T  (N j ) (k-q-p) 0a2.+1
s)pit, 

(p) 
 (s) 

and hence 

min (N,k) q k-j 
e (lc)  (o) = 	E 	E 	E b (2÷1) (k— j—p )÷ j9'T 	(k—i-13)  (0)p (2)  (0) 

j=1 	2=0 p=0 

min (N ,k) co k-j 
E 	E 	(2+1 ) p+j2.T (1\1', j) (p) 	(k-j-p) CO) p z 	(0). 

j=1 	2=0 p=0 
(.5.2.2) 

The terms p (P)  (0) are essentially moments of the distributions described 

af ter (4.3.5). The cumulants K .00 of these distributions are related to 
J
* 

 
those of the random variables Zn = a + Zn, j  Of say, by 

K, 
(Z) 1 - b (/+1) 

1 - bi  
K. 
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Using the expressions relating non-central moments to cumulants (Kendall 

and Stuart, 1969, p.68) the infinite summation over the index A appearing 

in C5.2.2) may, in principle, be evaluated analytically so that this need 
("i ) P  aP be no problem. However, defining ) (u) 	L.(12), 
PI 

 
au 

T(111j) CP)  (s) = 	1. fL (140 (P1  

	

27TD: 	N-j 

= -1°) 	e 	(s-u) 27r3; 	j 	N-j 

and thus it can be seen that the quantities T(Nii)(P)(0) cannot be 

evaluatedwithoutfindinge
N-ju) for all u (these are given by (4.4.2)). 

Because of.the much greater simplicity obtained by taking b = 0 this has 

not been pursued. It is however possible that using either a numerical 

integration or an expansion about zero of part of the integrand would 
( provide an effective method for calculating the coefficients O
N
k) 
 (0) of 

powers of f3 in (5.2.1). 

In section 4.2 the first terms in expansions of the means and 

variances of the family of processes were given. The infinite expansions 

for the moments produced by the different methods would be the same,- 

however formulae (4.2.6) onwards choose a natural way of truncating the 

expansions which is not equivalent to a truncation to a fixed power of B. 

For the methods employed here there are two other possible ways of trun-

cating the series. Firstly the expressions for the moments about zero 

may be truncated to a fixed power of O and then these approximations 

used in forming central moments. Secondly the expressions for the 

central moments may themselves be truncated to a fixed power of B. 

These two procedures lead to different approximations of which the 

second is better but the first more convenient for computations. 

5.2.2  For the characteristic function of the marginal distribution of 

the stationary process 

X
n+1(e) = a + alxfx ncan,  - 	+ Z

n+1 	(n = 	-1,0,1,...), 	(.5.2.3) 

which is (4.1.6) with b = 0, the following formulae were derived in 

section 4.4.5 
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4)(s;5) = eisa¢z(s)h(s;5) = e (s)h(s;) 	(5.2.4) 

where h(s;5) = 4(s;) is the characteristic function of 

Yn(5) = plAiXn(511 - a] and is given by 

0o N 

	

h(s;B) = 1 + E 	E BN(isOT(N,j) 
N=1 j=1 

	

co 	co 

	

1 + E 	E f3N USOT (\1'j  . 	 (5.2.5) 
j=1 N=j 

The quantities T(N,j) are given recursively by 

T(N,j) 

P (0) 
J 

N"
Z
j 
T (N-j,h)P  (n) 

n=1 	3  

( j = N), 

(1 < j < N), 

(5.2.6) 

with Pin)  (j > 1; n > 0) defined by (4.4.17). From these, expressions 

for the moments of the two processes
n1, A (Xn

)} can be found from 

the following with a = 1. Let 

h (r) (s ;5) =  h(s;5) r: asr 

Dr 

then 	ELY:(5)3 = E(5-IXf.Xn(s)) - Jr)a 

= r:h (r)(0; 51. 	 (5.2.7) 

From (5.2.5), 

1 	Cr = 0), 

h (r) (0;5) = N CM,r) E 8 T 
N=r 

(5.2.8) 

r r  
( Defini

n
g 0

o
r)  (s) = (

r
i)
: 	 r 80

(s) (r > 0) it follows from (5.2.4) that 
as 

 



and 

(1,0 	
a 9.4-m 

 
hk 	Csit;B) 	t!m! 	Q m 

as at 
(s,t;B). 

E{Xr(13)} = 
3r 

44s;a11 r as s= 

Cr) 
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r 
(r -Z = r! 	0o 

Z=0 

(.2.) )11 	(0;13) (r >O) . 	(5.2.9) 

The means of the processes IY
n(B11, IXn(BO are 11 (a) = hci

)co;al 
( and 11X () = o
1)  (0) 	h (1) (0 0) respectively, and then the central 

moments are given by 

r 	. -11v($)1 
EI{YnCf3) - Py(a)lri = 	E h(r-3  00;) 

j=0 
	Y.1 

 
> 2), (5 2 10) • • 

r. 	0)1i  
E({xn(a) 	

% 
Px(B))ri = r: E 	(0;$) 	

X.
Cr > 2) . 	(5.2.11) 

j=0 

5.2.3 It is clear that expressions for the joint moments of the {x (a)}

processes can be found from the formulae (4.5.1-5) for the joint character-

istic functions when the family of autoregression functions is the general 

one starting with a line of slope b and intercept a. However, since these 

expressions suffer from the same disadvantages as do the formulae for the 

marginal moments, they will not be given. Once again the choice b = 0 

provides a workable set of formulae. In this case the joint characteristic 

functions are given by (4.5.12-3), namely, 

(11k (s,t;) = 60 (s)80 (t )hk (s,t;5) 
	

(k > 1) • 	(5.2.12) 

N  
where hk(s,t;5) = h(s; ) + E 	E fr

m
(it)iT(M'i)(s). 

N=1 j=1 

Define, for £,m > 0, 

(2,m) 	(-±) x+m 	a
t+m 
 

c'ic 	(sit") = 	t!m! 	R 
m  (f)k(s,t;f3) , 

as at 
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 C3) } Then 	EfXn (a ) 
m 
n+k ca)J- =:m:4)k

2,m)  00,0;13) 

2, m 
(5.2.13) where 	, j5k(J4 'n11  (.0,0; a) = 	z 	eoCz—P1  CO) 8ora-(gi hk(P1(1)  (0,0;13,1 . 

p=0 q-0 

,m} The quantities hk 	(0,0;B) C2,m > 0) are given by 

,0) hk 	C0,0; i3) = 11(9.) (10;a) 	> 1; 2 > 0) 

and for k,m > 1, Z > 0, 

CO 

hkQ 'm) (o,o; a) = 	E 
N=m 

(N,m) (2.) 
(0) 

k 
(5.2.14) 

where 	
, 

T 	(s) - (N,j) (2) 	(-i) A. a2 
T CN,j) (s) k 

	

as 	k (1 < j < N; 	> 0; k > 1) . 

From (4.5.13) the quantities T(Nd) (k)  = (Ni j) (Z)  (0) are given by, 
for 2, > 1, 

Q
j 

(0,2) 	 (N = j) 

N- j mink (n)T (N-j,n)Q (n-q,2-q) (N > j) 
n=1 q=0 

(5.2.15) 
(N = j) 

P j  
N-j 

Tk-1 
(0) T 	 E (N-j 	 (N-j ,n) (Z) (n) P. 	(N > j) 

n=1 

(„N,j)(Z) Tk 

(k = 1) 

(k > 2), 

where the term 

(n, 
J 

T CN-i  ' k) 	is zero if 2, > 
Cn) (...i)  2 	a t 	pi 	(o, s) 

N-j , and where 

s.0 

(x+y)dFo (x) 

y, s=0 
> 1; n,t > 0) (-i) 

2 as 

2 	a  n4-2 

00  Cs) 

f eisjcAi  
j aynDs2 eisx,

`'4n0 ` 1 
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(11,0) 	 (Li) (Z) with . 	= • 	> 1; n > 0). The terms Tk 	for I = 0 are 

given by 

T (m'  j ) (4) = T(N j)  
k (ft = 0; 1< j <N; k> 1) 	 (5.2.16) 

and hence 

C 0 
(0,m) hk  (0,0;$) = 

N=m  

ag,m) h Cm)  (0; f3) = hicCra 1°  (0,00) (m,k > 1). 

Assuming that 12' 	can be found, with (5.2.6), (5.2.15) gives a simple (n 
 

(g,j)(k) recursive procedure for calculating the numbers Tk 
Cl < j < N; k > 1; it > 0) and hence the moments and joint moments of 
the processes, by (5.2.13). 

Because of the zero value appearing in (5.2.15) it can be shown 

that 

T(N,j)(Z) = 0 k (N-j < k; 0 < N-j < k -2) 

and therefore the number of terms appearing in the summation in (5.2.15) 

can be reduced. 

5.2.4 There are no practical difficulties in turning the formulae of 

sections 5.2.2 and 5.2.3 into computer algorithms. The infinite summations 

appearing in (5.2.8) and (5.2.14) are power series in $ which enter 

linearly into equations (5.2.7), (5.2.9), (5.2.13) giving the moments and 

joint moments (about zero) of the processes. Therefore it is convenient 

to obtain these moments correct to a power, N* say, of a by truncating 
( 

the series for h
(r)(D;$) and hkk,m) (0,00) to that same power. However, 

approximations for central moments formed from these approximations for 

moments about zero are not truncations of the corresponding expansions 

to any fixed power of $ since the approximation for the mean enters 

non-linearly, see equations (5.2.10), (5.2.11). 

Suppose that it is required to form the moments of the process up 

to order N* in $ and that marginal moments up to degree J* and joint 

moments, E[X($)0+k  co], for <L* and m < m* are required. For n 
convenience assume that J* > L*,M* and that L*,M* # 0: simple modifications 

cover any exceptions. Then the following procedure is available and is the 
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basis of the numerical results described in Chapter 6. 

(i) Choose a number a. 

(ii) Find 8
0
j)  (0) for 0 < j < J*. 

Cn (iii) Form P. )p 	for 0< n< N*-j, 1 	j 	, 0 < 	< N* 	< < L*, Q3 
(n,56) 

noting that Q (n,OY  = Om). 
- 

(iv) Form T ' 8) for 1 < j < N < N*, in the order 

T(1 1) 

T(2,1) T(2,2),  ,  

T(3,1), T(3,2) ,T(3,3) 

T(4,1),T(4,2),T(4,3),T(4,4) , etc. 

In fact T(N,j) need only be calculated for 1 < j < N < N* 1, and for 

1 < j < J* when N = N* if J* < N*. 

Cv) From these form the approximations h(j'°  for h(j)  

0 < j < 3*, where 

0;8) for 

h
(3,0) 

 

(j = 0), 

(1 < j < N*), 	(5.2.17) 

> N*). 

(vi) The approximations for EtY:(0), Er4(0) may then be formed 

by analogy with (5.2.7) and (5.2.9). 

The joint moments may be found recursively, the following steps 

being repeated for k = 1,2,.... 

(vii) Form TCM'j)(2')k 	for 1 .c j < N < N* and 1 < 9. < L* using (5.2.15)- 

(2,,m) (viii) Form the approximations h(z,m) for hk 	(0,0,a) for 0 .< Q < L*, 

0 < m < M* by 

h(°'m)  = h(ra'0) 	> 0 , 

N* ,NT  (N,rr) (Z) 

N=m Tk 
(2, > ; 1 < m < N*) 

h m) = (5.2.18) 

0 	 > 1; m > N*). 
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(ix) The approximations for the joint moments may then be formed 

from (5.2.13). 

These steps may be repeated for increasing k as far as is required. 

It is possible to arrange computer calculations of step (vii) so that 

the quantities T
k
(N ,j) (it) overwrite those of the previous value of k, 

and thus no limitation of space is imposed when calculating moments at 

large lags. Approximations for central moments can be found by formulae 

(5.2.10-1) and the equivalent formulae for joint moments. 

It can be seen from (5.2.17) that the approximation for E{.q„(3)} is 

zero whenever j > N*, the first term in the full expansion being of order 

O. This term in the expansion of E{Yj(13)} = $EI
IA(Xn($)) 	a1li] is 

j=511.(jr7) 	= aj fAj(x)dF0(x) = ajE[{A(a+Z) 	a}i]. 	(5.2.19) 

; From (5.2.18) it can be seen that, similarly, the terms h 111' )  

contributing  to BIX(OXm
+k  CO] are zero for m' > N*, though this is not 

true for the index V. It would always be sensible to choose N* > J*,M*, 

and also presumably N* > L*;  usually N* would have to be much larger 

than the degree of the moments to be calculated. 

In an obvious manner the equivalent approximations for the moments -

to orders lower than N* in $ can be found from (5.2.17), (5.2.18) without 

recalculating  the T-arrays. This provides a check on the convergence of 

the power-series and a guide to the accuracy of the approximations for 

the moments. By inserting  different values of a in (5.2.17-8) the 

moments of any of the processes 

Xn+1(a) = a 	a.{A(Xn(0) - a} + Zn+1 (n = 	-1,0,1,...) 

may be obtained rather than just those of the process {Xn(1)}. 

All the above assumes that the power series (5.2.8) and (5.2.14) 

converge for the particular values of a and a chosen. It has been 

found in practice that this is not always so, but that the properties 

of the process with autoregression function X(x) can often be found by 

making  some other choice of the constant a. This constant needs to be 

chosen with some care;  see sections 4.7 and 6.2. A possible procedure 

is to choose a on the basis of results obtained using several trial 

values of a to calculate just the marginal moments for small J* and N*. 



,m) 
gk (0,0;$) . N (N,m) 

N=m 
ilk 

CO 

111 

5.2.5 An alternative but equivalent set of expressions for the joint 

moments may be derived from (4.5.111, i.e., 

ck(s,t;a) = e (t)gk  (s,t;a) 

N 
where gk(s,t;(3) = ¢(s;a) + E 	E BN(it)JRI(cNij)  Cs). 

N=1 j=1 

(2,,m) 	(N i) a) Cs) 	 c 	) , Define g 	Cs,t;a) and Rk  ' 	v5.1 analogously to hk ,m Ls,t;a) and 
T'j) (23 (s) ; then k 

(111-111 1  ) (0) g (2.,m1 k 	00,0 0) = 	eo  m1=0 
(0,00) 

where 	gk 	(0,0;a) = )CO:a) CX > 0) and, for m > 1, 

(N,m)(2,) 	it(N,m)(2. The quantities Rk  ) CO) are given for X > 1 by 

(0,2.) 

J 
P . Ci = N)  

Cj < N) 

 

 

 

(k= 
N-j miran,Z) 
E 	

in\ T 	
3

(N-j,nyn-qpi-q) 

n=1 q=0 
(1,1 ,j) (2,) 

r P  (0) €2,)  e 	(0) 3 0 

min(X,N-j) PCO) 
	(2,-n 

D 	0 
P 	E 	0 (0 

n=1  

Cj = N) 

(k > 2) 
N7j,n) N-j 

+ E R (1\1-i ,n) 	C11) 	. P
i 	

(3 < N) 
n=1 

and, for X = 0, R(N,j)(1) = T(N,j)  (k > ; 1 < j < N) 
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A (n, R) 	C-i) 	9, 	
(n) re, A Here P. 	= 	---P. (O, s1 

7 	k! 	X 3 Ds 

(--i) 	'a
n R  

R.! 	nas 	3 ay 	y,s=0 

	

an-I4 	isx • 
n fe 	A3  (x+y)dF (x) 	(j > 1; n,.9, > 0). 

	

ay as 	 0 

(5.2.20) 

Clearly the sets of expressions (5.2.12-16) and the above must be 

equivalent.Thequantitiesp.Cn ,k) ,Q(n,Z)  are related by 

(n) 

------ 
2.  

----- 0 (s) 
(n,2,) 	(-i)k 	

PJ 
(0,$) 

3

} 

2! 

 

as  0 	8 (s) s=0 

(n) 

	

k a k 	3 1.1[P. 	(0,$) 

0 	k! 	

} 
(0) (-I) 

= 	E 8 
(R-k) 	

ask 	9(s) k=0 	 s=0 

(2,-k) 	(n,kl = E e 	(0)  Q 
k=0 0 	

3 
 

> 1; nik > 0). 	(5.2.21) 

The algorithm derived from (5.2.12-16) has the advantage that it 

leads naturally to an approximation for the joint densities of the process 

ixn 	see the next section, and it also has a simpler form. However it 

nn 
Oa k) 	a1  R'  ' 	. . 	--=- ux Ai  (x+y) dF0 (x) 1 	(j > 1; n,k -> 0). 
3 	jX: 	n 	• 

ay 	y=0 

Nonetheless, as will be seen later, when the input distribution is normal 
M (TI the numbers (2  . 	have a very simple expression in terms of P(n) so that 

in this case they may be eliminated from the right-hand-side of (5.2.15) 
(N,j)(11 giving an expression for Tk 	in terms of just p?-1). 

3 

s=0 

requires the quantities Q(n,R) which have a relatively more complicated 

expression compared with that for P (n,9,) . The expression (5.2.20) can be 
reduced to 
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5.3 Expansions'for marginal*andjoint'distributions 

5.3.1 Methods of obtaining approximations for the stationary distribution 

functions of the processes {X n(6)} will now be considered. This will.only 

be done for the family of processes generated by (5.2.3). Similar 

expansions could be made, theoretically at least, for the more general 

family of processes for which the initial process is a linear auto-

regression: the first few terms of such expressions have been given in 

section 4.3.2. 

The expansion for the characteristic function of the stationary 

distribution is 

00 	N 
4)(s;(3) = 80(s) [1 	Z 	E 3N

(is)
j
T(N,j)) 

N=1 j=1 
(5.3.1) 

and the problem is to invert this to obtain the corresponding distribution. 

Suppose that the integrals 5 ( z  (s) s ,Pds are finite for all p > 0. Then 

the input distribution has a density function fz(z) which is continuously 

differentiable everywhere and the initial density f0(z) = fz(z-a) has 

the same property: let f(r)(z) denote the r'th derivative. Since the 

input distribution has a density so too does the stationary distribution. 

Let this density be fx(x:). Then formally inverting (5.3.1) gives 

0* N 
fx(x:13) = f0(x) + E 	E eN (-1) i f 3) (x)T (111j)  

N=1 j=1 
(5.3.2) 

co 

= f0(x) + E
0 (x) E NT►j) 

j=1   N=j 

Thus the approximation for the density to order N* in a is 

( 
fx(x;13) 	f0 (x) 	

N* 	
J E (-1) fo

i)  (x)
* 

 f3NT 
j=1 	N=j 

N* 
f0  (x) 	

E 	( j)  (x) h (i ,0) 
j=1 

(5.3.3) 

where h(3'0) is given by (5.2.17). Therefore the algorithm given earlier 

can easily be extended to calculate approximations, to any required power 
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of a, for the marginal density of the stationary process. This approxi-

mation is not in general positive everywhere. 

There does not seem to be a natural interpretation of the above 

formula When f is not continuously differentiable everywhere. However 

it may be interpreted as the result of formally inverting the characteristic 

function 

N 
ys;0 = 1 + E E aNus)iT(N'i)  

N=1 j=1 
(5.3.4) 

to give the density f (y;$) a representation as an infinite series 

composed of derivatives of the delta function' 

f CY:13) = 6 Cy) 	E 	E BN (-1) j6  tj) (17)T (N,3) • 	 (5.3.5) 
N=1 j=1 

The expression (5.3.2) is then the formal convolution of fz(x-a) with 

this density. This suggests that a better approximation for the 

stationary distribution may be found by constructing alternative approxi-

mations to the distribution having characteristic function (5.3.4) and 

then forming the convolution of these with the initial distribution. It 

seems intuitively better to use ordinary functionS rather than generalised 

functions, as in (5.3.5), for the distribution of Yn(B). One possibility 

is to express (5.3.4) as the product of the characteristic function of a 

normal distribution with a further series in (is)3. This would lead to 

an expression for fy(y;13) as a series of derivatives of normal distri-

btions and it would be natural to truncate this series according to 

powers of 5. A second possibility would be to approximate the distribution 

by a discrete distribution. This might be done by fitting such a 

distribution to the approximations for the moments of Yn(a) produced in 

section 5.2.4. To form a final approximation for the distribution of 

Yn(a) it would seem best to firSt form a good approximation for the 

stationary distribution of Xn((3) and then to transform this using 

Yn 	= aEX{Xn (13)}-  a].  

5.3.2  Once a stationary distribution of {x (a)} is found the joint 

distribution of (XII(P), X 	(13)) follows immediately. If the input 
n+1 	A 

distribution has a density and an approximation fx(x;fi) for the stationary 

density is available then an approximation for the joint density 

2_ (x,y;8) is 
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A 	 A  
fi(x,y;$) = fz[y {a-1-$CX(x) 	a)})fx(x;$) . 	(5.3.6) 

This is possibly the best way of approximating this distrtbiton but it 

is not easily generalised to pairwise distributions at larger lags. 

The method that produced the approximation (5.3.3) for the marginal 

density can be extended to obtain approximations for the joint densities 

at any required lag. From (5.2.12) 

ca 

cbk rt; 	= e (s)e ct) z 	E (Jot  (i-orahCttral  (0,0;$) 	ck 0 0 	 _ , 
L=0 m=0 

and thus, corresponding to (5.3.1), an expression for the joint density 

fk 	y-$) of CKII($),Xn+k Ca)) is 

op 	a) 

Z=0 m=0 
) 

+ ( ,m) 	 ) 	(m) (0,00)fob) 	)f0  (y) • 

Truncating this to a fixed power, N*, in $ gives 

N* 
2,+mh(2,,,m) 	(m) fk  (x y-$) = E 	E (-1) 	f 	(x)fo (y) 

Z=0 m=0 
(5.3.7) 

where .11(9"m)  is given by (5.2.18). There is still an infinite summation 

for the Z-index since h(Q'm)  is non zero for all 2, (when 1 < m < N*). 

It is therefore necessary to choose some method of truncating this 

summation and one way of doing this is to use the approximation 

L* N* h(2,,m) (2,) 	Cm) fk (x,y;S) = 	 k+m E (-1) 	f0 	)fo (y) . 
2=0 m=0 

(5.3.8) 

This uses the quantities hCZ,m) 	< Q < L*; 0 < m < N*) which can be 

found from the algorithm given in section 5.2. 

Given that these approximations for the joint and marginal densities 

of the stationary process are available, it is then easy to calculate the 

conditional density of Xn+k($), given Xn(43), and also the conditional 

density of Xn(13) given Xxliit C$1 (by using the approximations) with the 

formulae 

fk (x,y;f3)/{fx (y ; }, fk(x,y; $)/{fx (y;$)} 
	

(,5.3.9 ) 

respectively. The forward conditional density is required for predicting 

Xnl-kco from observed values of Xn ' (al however the backward conditional 
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densities describing the distribution of past values given the current 

value do not seem to be of such immediate statistical interest. 

An alternative expression for the forward conditional density can 

be found from the formulae obtained in section 4.6 for the conditional 

charaCteristic functions. The conditional characteristic function of 

Xn+m+1 	given that Yn($) = y is, for m > 0, 

e
isa

(1) Cs) Y m (5;y0) = 00(s)¢ 
111
(s;y;$) 

,  

where ¢y,m(s;$) is given by 04.6.18) and is the conditional characteristic 

function of Yr14111($) given Yn($) = y. Here Yn($) = $11{Xn($)} and 

X
n+1

($) = Yn(a) n+1' hence the conditional characteristic function of 

Xn+m+1($), given that Xn(a) = x, is 

00  (-04)y  (s; f3A Cx) ; f3) = 00  (s)q y ,ra  Cs; aa 	- 	; 	• 

It is possible to formally invert these expressions to obtain expansions 

for the conditional densities. For m = 0 this involves inverting the 

characteristic function 0
0  (s)expfis$(X(x) 	

a)} which gives the 

conditional density 

	

1(ylx) = f (y - a - B{X(x) - a}). 
	(5.3.10) 

For the cases m > 1, (I)Ym  (s;y;$) is given by (4.6.18) in terms of powers  
of Cis), and therefore the conditional densities can be obtained in terms 

of derivatives of f0  or 	Expanding the term P 0A(x)1 in (4.6.18) in P
r 

powers of a and rearranging gives, for in > 1, 

j+m-1 
(N,j) 	(j) fm+1(ylx) = f(y) + E 	$NT 	C-1) f

o 
(y) 

j=1 N=j 
CO 

E 	E 	
Cr2) 	Crm) Crm+1)  {A(x)}  r

1 
(r
1
) 

+ 

	

	$N(r..1) if 	(y)P
rl 

...P
r 	

Pr 	
'x'in+11 N=m+1 r +...+rm+1

=N 1 	
m-1 m 

k.>1 i.— . (5.3.11) 
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Alternatively it may be better to leave this in its original form 

03- .j+m-2 
full_

1 ylx)= f0(y) 	Z 	BITT(N'il  (71)jf 
0  
(j)  (y) 

j=1 N=j 

m 	r Cr 1 	Cr ) 	(r )  
+ E 	E 	8N(71)  lf  1 (y)p  2 ....p M p 0A(x)1.  

r N=m r1+...+rm=N 	- 	
0 	r 	r 	

m 1 	m71  

r.>1 a.— 

From these conditional densities alternative expressions for the 

joint densities can be found using (5.3.2) for the marginal density. 

Using (5.3.10) produces a better approximation for the joint density at 

lag 1 than (5.3.8) possibly because there is no further error due to 

truncation once the marginal density is found. However, for lags greater 

than 1, using (5.3.11), (5.3.12) would necessitate a further truncation: 

in this sense (5.3.12) might well give better results than (5.3.11). An 

advantage of these forms is that truncating to a fixed power of R leads 

Immediately to finite summations, unlike (5.3.7). 

5.3.3 Consider expressions (5.3.2) onwards in the special case when 

the initial density is normal with zero mean and unit variance. Then 

the expansion of the density is of the form 

x1 2 - 	w 

fX(x;(3) = 	
2 	

u 11. (x) A3  
j=0 

where H-(x), j > 0, are Hermite polynomials. Such series are considered 

by Kendall and Stuart (1969; pp.155-63). It is known that, when 

fX(xu3) is a normal distribution with zero mean and variance greater 

than two, the above series does not converge. Such a case arises when 

applying the method of section 5.3.1 to a linear autoregression with 

slope greater than 1/1/Y. Nonetheless applying (5.3.3) for increasing 

does converge. 

Let the autoregression function be X(x) = Xx, A constant with 1A1 < 1, 

and let the input distribution be N(0,1). Then, with the choice a = 0, 

the stationary density of the process' {x11(3)}, generated by 

Xn+1(° = 	Xn(.0 + z1.14.1, is 

(1_

6v

2x2)1/2 • 1 
fX (x; 	-  	exp{- 7 (.1-e..

2
X
2
)x
2
}. 	(5.3.14) 

2 

(5.3.12) 

(5.3.13) 
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and ks;$) is the characteristic function corresponding to this. The 

terms A.($) in (5.3.13) may be identified from 
3 

o(s) 	
-43
2
X
2
s
2 

 exp 	 E. (is:) Aj(B), 
2(1-8

2
A
2
) 	j=0 

0% 	.4)(s;f3) (15 (s; B) 

giving 

8212 
A2j (B)  - 1  -{ 	 

2! 2 (1-B2A2) 

and thus (5.3.12) is 

, A2j-1-1(3) = 0 	= 0,1,2,....), 

- 1  -x2 
fx(x; 	= e 

2 (10  1 •ifL 	622 y • 
j=0 2j j! 2(1-$2A2) 

(5.3.15) 

It is possible to show that (5.3.15) converges to (5.3.14) if 

1a2A2/
(1-1320.r 	 a2 A2 )1 < 1, or equivalently if 	2  , the same result as 

that mentioned above. 

However, in the form that is used (i.e. 5.3.3) the series (5.3.15) 

is truncated to a fixed power of $. Hence the sequence of values actually 

found for the approximation to the density is the sequence of truncations 

of (5.3.14) expressed as a power series in B. This sequence converges 

for IBA < 1. 

5.4 Basic Quantities  

5.4.1 To use either of the algorithms of section 5.2 one of the sets of 
(n,k) 	(n,Z) 	 (11,2,) numbers . 	rP 	must be 	by Qj 	 Qj  

the first algorithm are given by 

(_i)g, an+g 	f el. x Aj(x+y)dFo(x) 
- 	 (j > 1; n,R, > 0), 

j!k: 
ay
n
De

P, 	f e 	d.F
0 

isx__ (x) 	y, s=o 
(5.4.1) 

while those required by the second form are given by a relatively simple 

expression 

 = ------- - 

Orl,A) 	/
j!ki 	an 

 
(x+y)dE'o(x) 	(j a 1; n,>0). 

y=0  
(5.4.2) 
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In both cases A (x) = X(x) - a and F0 (x) = FZ -- Cxa). The other numbers 
(n) .= . (n Q j ,0) =. 	(11 Pi ,0) required, P i , are included in both the above sets. 

The two sets are related by the equality C5.2.21), and from this or 

directly from (5.4.1) 

(n ,0)(n) =1 	n 
Qj 	= P . 	 { 

	

3 	3! 
ay
n (xi-y)dFoCx) }y-o 

Q n,l) 1 an 
n Dy 	

f (x-1-10)Ai (x+Y)dFo(x)}y_o 

Cn,2) 	
j12 

8n r r , 	2 
Qj 	 tx-po) - a027 A3 (x+y)aF0 (x) 	, 

ay 
n 

Qj 
(n 3) 	1 	an 	 (x_p )3 - 36 2 cx_ij 	_ 	A j (x+y)dp (x) y.o, 

j.3, n 	0 	0 	3,0 O 
ay 

where 	2 
p0' , a0 ' 

p3 0 are the mean, variance and third central moment of 
,  

the initial distribution F0. 
0 

as explicit functionals of A(x), 

Q
(n,k)  [A(x)] = . 
3 	 Qj 

For any constant c and functions Al (x) , A2 (x) 

Q jUlik) tcAi (x).] = c3Q3 1" IA (1)1 

	

(n,Z) 	cP (11,k) 
Q. 	IA]. (x) 	c) = 	E 	

37 P- 
-7r Q. 	IA

1 
(x)] 

P  p=0 

	

R.) 	 APi(x) 	A2i-P (x) 
Qi 	IA (x) + 	(x) 	= 	Z 1 - P! 	Li-p)! p=0 

(5.4.3) 

(5.4.4) 

(5.4.5) 

Further, if A1(x) A2 Cx) = 0 everywhere, so that at least one function is zero 

at each point, 

Q (!
Q

A) 	 (xi 	 , 
• IA (x) + A Cx).] = Q • 	IA Cx13 + • 	(x)] . 	(5.4.6) 
3 	1 	2 	 Q3 

(n Certain useful relations can be found by writing Q. ig of (5.4.1) 
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In particular a useful relation, since A (x) = 1(x) - a, is 

(x) 	= J C-s) lp  (n 9.)  Q ' (x1.7
p= 01  13! -P 

(5.4.7) 

however it should be noted that the functionalQ3 	I itself depends 

upon a. Exactly similar expressions hold for the functionals 
P7 ,R 11  IA (x) = P. 	of (5.4.2). 
3 

Some relations for simple functions are 

cj  

3  

0 	(otherwise), 

(n,R) x]. 	I 	= Q3 

(0,Z) 
Q j-n 

0 

,,2.) P Gnt) 	(0 = P 	(x) = 	f xk+j-ndF (x) 
3 	J 	(3 -n)..V. 	o  

	

(i+j-n) P (0,.0) [ x] 	(k 	j-n > 0). 

In the above formulae the definitions (5.4.1), (5.4.2) have been 

extended to include values of the index j = 0 in the natural way 

1 	 ( (n = Z = 0 , 	{ 60
k) 
(0) 	(n = 0) , 

,(n,12.) f 	 p(n ,9')  ..= 
0 	 0 

0 	(otherwise) . 	 0 	(otherwise). 

( 	(1\1 
5.4.2 Some useful results about the quantities Q,in, Z) T,j1for 

special classes of autoregressive processes can be established. Suppose 

that the autoregression function “x) is odd about a point a, that is 

	

(x+a) - a = - (-x+a) - a} 	< x < .0) , 
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and suppose further that the input distribution is symmetric about zero. 

When these conditions hold this number a is a natural choice for the 

number a required by the algorithm of section 5.2. In this case it is 

easily seen from 05.4.1) and 05.4.21 that 

Cj > 1; n,2 > Olt 	C5.4.8) 

and (n,k) 	n+k+j (n,k) 

	

d P, 	= C-1) 	. 

	

3 	
P3 (j > 1;  n,i > 0), 

These imply that 

411,9,) = 0 	when n + k + j is odd 

and in particular that 

P(  n) 
	

0 
3 

when n + i is odd. 

Then from (.5.2.6) and (5.2.15) it can be shown that 

(i) T
(N,j) = 0 unless N and j are both even 	(5.4.9)  

(.ii) 	(4)  = 0 unless (a) k is odd, N is even and j,i are both odd 

or both even 

or 	(b) k is even and N,j,k are all even or all odd. 

It is clear that, when the autoregression function is odd about some 

point, making use of these results can greatly reduce the computational 

effort required by the methods of section 5.2. Similar identities may be 

demonstrated for the quantities R
.(N,5)(1) involved in the expressions of 

section 5.2.5. 

From (5.4.9) and expression (5.2.17) it can be seen that the 

approximations for odd degree moments of the marginal distribution are 

all zero and that the approximations to order (2N* + 1) in 5 for the even 

degree central moments are the same as those to order 2N*. It may also 

be concluded that the quantities h. 	of C5.2.18) for any k satisfy 

CZ m) 
h ' 	= 0 unless k + m is even. 



122 

Hence the approximations for EIXg(13)-.Xn+k($)] are all zero unless k and 

m are both even or both odd. Again the sequence of approximations for 

the other joint moments to increasing orders of a are equal in pairs. 

It is possible to make use Of special relations among the numbers 

Q, (4,k) in another special case, this time when the autoregression 

function is even about some point; that is 

(x+a) - a = A C-x+a) - a 	< X < CO ) 

for some value a. Here this value is not in general a natural choice 

for the arbitrary value a required by the algorithm, however it may be 

possible to use it. If the input distribution is again symmetric about 

zero then, corresponding to (5.4.8), the following holds 

( ,k) 	(...1
)n+kn(n,k) 

Qin 
(.j > 1; n,k > 0) 

so that 

ChM 
Qj 	= 0 for n + R odd 

and in particular Pin) = 0 for n odd. Then it can be shown that 

(N,j) T 	= 0 

T 
j (.Q,) = 0 

unless N - j is even 

unless N - j + 2, is even (k > 1). 

It may then be concluded that the sequences of approximations to the 

moments about zero are equal in pairs, but that the sequences for the 

central moments are not if (5.2.10-11) are used). 
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5.5 Normal input distribution  

5.5.1 A class of autoregressive processes which might be of particular 

interest is that for which the input distribution is normal: Reasons 

for this interest would be mainly those which lead to the importance of 

the normal distribution throughout statistics; thus each value of the 

input sequence might be considered the result of a large number of small 

and independent effects. Considering the simplicity of the distributional 

properties of linear autoregression processes with normal input distributions 

it might be thought that the properties of non-linear processes might be 

relatively more simple to find than those of processes whose input distri-

butions are non-normal. Some simplification does occur but the main 

effect of this is to simplify slightly the expressions leading to the 

joint moments. It is possible that for other particular input distributions 

similar simplifications might be found. 

Suppose that the input distribution is normal. Then the initial 

distribution is also normal with mean p
o' 

say, and variance equal to that 

of the input distribution, a2 say. With some rearrangement, for any auto-

regression function X(x) (A (x) = A(x) - a). 

feisxA7(x+y)dFo(x) 1 	
2 2 s 	*- 1 ----- 	r--- - 	2 	2 s + 	+ is(z-y) - 	0 )

2
1/1
j(z)dz, 

f .IsxdF
0  (x) 	v2mu 	 2a 

1= 	fexp - 	(z-y-p -isa2)2110(z)dz, 0 3.70- 	
' 

2u
2 

and hence, for n,Z, > 0 and j > 1, 

(n,Z) 	(-1)
Zn+k 

Qj  j:2! 
3y

h.
as

2,  

feisxAj(x+v)dFo(x) 

reisxdF 
0 
 00 y,s = 0 J  

 

cr  
2Z P (n+Q) = -- . 

 

(5.5.1) 

where, as before, 

(a) = 't 
1  -21.1 Aj(x+y)dF0(x)} • y-_ 0 7- Dy n 
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In this case these quantities are 

(n) 	z-p 
f AJ 	1 	[ 	1 P. 	= 
j  3! an 	

- 2 P0)
2}dz. 

"Fa 	2cr 
(5.5.2) 

The result (.5.5.1) may be used to simplify the algorithm given earlier 

for this special case. For then, instead of calculating . 	for Qit) 
j 

0 < n < N* - j, 1 < j < N* and 0 < 2, < L*, it is sufficient to calculate 
Cn) 

	(n, Q) P, 	for 0 < n < N* + L* - j, 1 < j < N* and to replace Q 	when it J  

occurs by the expression (5.5.1) giving in particular as part of (5.2.15) 

N-j min(n,Z)(  

(k-q)! j 
n1 (N-j,n) a201,q) 

P
(n+2.-2q) E 	E 	 (j < N 

n=1 q=0 

This appears to be the only structural simplification that occurs. 

However the other quantities required by the algorithm, namely 

8(j) = e(j)(o) (j = 0,1,...), can be found by simple formulae in this 

special case. If the input distribution has mean pz  and variance a2, 

then the initial distribution has mean UO  = a + 	and 

a2  s2  ip
0 2 P 2 O 1  

a 
80(s) = exp{ips - 77} = exp{- la2( s  

	

2 	• 
2a 

Then 

(ia  , n (n) 	(n) 8 	= 8 	(0) 	(-i)n  do  

	

n 00 (s) s=0 - 
	 H (- 

zu°
) 

 
0 	n! 	 (n = 0,1,2,...). 

ds 	1 	n! n a  

The Hermite Polynomials satisfy the recurrence formula 

Hn(x) = xHn-1(x) - (n-1)Hil- (1). 
(n > 2) 	(5.5.3) 

with HO  (x)= 1, Hl  (x)Using this a recurrence formula for 0 611  is 

• e(n) 	 1  {11 n-1) 	a2e(n-
} n "0 (n > 2) 

with the initial values given by 8(0)  = 1, e(1) 	po. It is also easy to 

calculate the initial density and its derivatives required by the procedures 

of section 5.3 for finding the stationary marginal and joint densities. 

T(N,j)(Z) 1 

a22 P (Z) , 
Q. 3 (j = N) , 
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5.5.2 For specific autoregression functions it may be possible to obtain 

explicit expressions for P 1„ from (5.5.21 for example. However it is 

often more appropriate to look for simple recurrence relations for 

calculating these numbers. The relations C5.4.3-61 are useful for 
Cn computing the functionals P l, for particular autoregression functions 

from those corresponding to simpler forms. using the functional notation 

of section 5.4.1, the Quantities Cr/) corresponding to an autoregression Pi  

function X*(x) 	c, with the choice of the arbitrary constant a, can be 

found from 

(n) 	 P c-a ) 	(n) EX* Cx) + 	 C 
- el = 	E ------- P . [X* (x) ] 

13: 	3-P p=0 
(5.5.4) 

In the following examples the input distribution .is normal with zero 

mean and variance a2, so, for the choice of constant a, the initial 

distribution is N(a,c2). For the autoregression function A(x), the 

quantities required are Pj(n)EX(x) - a] Cj > 1; n > 0) which are given by 

(5.5.4) and 

( 
P!nl[ 	1 	dn

(x)1 = 	xjz) exp {- 	(z - a - y)2}dz 1ItC1 (5.5.5) 
j= V 27u dyn 	 2a  

It is sometimes also convenient to consider the functionals 	EX (x)] (Y)0. 
3' 

where here the notations of earlier sections are combined, 

1 	j  ( z) 	1 	2 	• 
Pi[X(x)..1ty) = 	• 	f 	exp{ - 	- a - y) }dz. 

/H771cr 	3' 	2a
2 

The initial density is 

 Cx f0(x) = 	
1 	exp{ 	

12 	- a)2}  

a 2a )27 

and the initial distribution function, F0  W, is given by F0  0 	 a 
where 0(*) is the standard normal distribution function. In the following 

it is often necessary to calculate (numerically) derivatives of F0  at 

specified points. This can be done in a simple manner by using recurrence 

relations among the derivatives. Let 

F0 	
dn
n (x) - 	F0 (x) 

dx 
(n > 0) , 
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then, using the recurrence relation (5.5.31 for the Hermite polynomials, 

the following generating formula holds 

-o 	
• 	. - C11  Cx) = (- 	

-11 
{ (x-al 	exl -1- ea-21F On-2)  (xll 	ea > 31 	(5.5.6) 

a2 

) 	(2) 	 a) with Fo  Cx) = foCx), FD (x) = - --10(x). It is sometimes more 
q convenient to work with Go

el ) 	defined by 

GCn)  (x) = (7-1)n 	F0(x) = (-11nF(n)(x) 0  
. dx 

dx

n  
or,
) 
 equivalently, 	 (-x) =  

d n F0(-x 0 
 Go (x) is 

The recurrence relation for the 

G(n 	1 . ) ex) = 	((x-a)G -1)  Cn 	Cx) - ea-2)G(n-2)  (x)1 	(n > 3) 	(5.5.7) 0 	a2 	0 	0 

a 

	

with GC1) (x) = - Cx), (2) 	x- 
2 (x) - 	f0 (x). 

Q 
 

Example 5.1 Suppose X(x) is of the form 

< x < x2), 

0 	(otherwise) , 

where rxx21 may be a finite or semi-infinite interval. In this case, 

for j > 1, 

2 j 

1x  
(x)] Cy) = P. (17) = 1 
	

12 (z -a -y)
2ldz, 

3 7 	)5Tra 1 J * 	2a 

j! TF0  ex2  -y) - F0  (x1  -y)}. 

x 

Then (n) 	(n) an • pax)] = P. 	- ---ip.(y)1 P3 	 -0 
dy
n 3 

P ea ; 	 ea) ea) 	(n) 	
) 	G 	1 1 3 j: 0 2 0 1 

, and using the above definitions 

> 1; n > 01. 	(5.5.8) 
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The recurrence relation (5.5.7) provides a simple method of calculating 

these quantities. Note that those depend on a, since for example 

G(0°)(x) = F0 	J 
(x) = (Dec; . To form P 11)1X(X)-aj similar procedures to 

• 
the above may be applied directly to the function X(x) - a, otherwise 

(5.5.4) may be employed, noting that 

0), 
Cn ) 

Po  [-3 = 
0 	(otherwise) 

(5.5.9) 

This is not (5.5.8) with j = O. The following are found. 

j-(c-a)j 	 (c-a) pP)[X(x) +c-a3 	
(p+c-a) 	

lc2{G0() 	G0 x1)1 A- j: 	 j= 

and, for n > 1, 

P(n) 	(p+c-a)j-(c-a)j 
 CG

(n)
(x ) - G

(n)
(x )1  i-  

J 
[X(x)c-a) - 

j= 	0 	2 	1 

(j > 1) 

(j > 1) . 

These may be Checked directly from (5.5.5) for the function X(x) 	c - a 

which is 

p+c -a 	< x < x2
) 

(x) 	c - a = 
c - a 	(otherwise) . 

Example 5.2 From the above formulae the quantities P, corresponding to 

any step-function may be found. Let -00  = x0  < xl  < x2  ...< 	< xic = 

be a partition of the real line and let the function X(x) be of the form 

X(x) = pk  for x E (xk_i,xk), 

where pk  (k = 1,...K ) are K specified constants. Then using the obvious 

extension of (5.4.6) and the result (5.5.8), 

K p 
Pi(n)  IX (x)J = 	E

k
, 	(xi() - G0 	-.k-1(11) 	)1 	> 0; j > 1) . 

 k=1 



Alternatively, using the special values of 	and xx, 
. 	. 

p 3 	 J 7 	
K CO) 	K-1 	- 1-1 k+1G 	1 + PLO) Xt 6C) 	= Z- ) 

	

	 3! k=1 
Cj > 11, 
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j 

PJ

) 
 IX oc)] = 

K-1 Pk 	
! 
Pk+1  

k=1 	
j 

 
(n 	1; j > 1 

The quantities P [X (x) - a] actually required by the algorithm can be 

seen to be equivalent to the above with pk  replaced by pk  - a, k = 1,...K. 

Example 5.3 Let X (x) be the function 

{ Xx + p 

0 	

Cx, < X < X2), 

X (x) = 

(Otherwise) , 

where X,p are constants. Then, for j > 1, 

1 	
-7,-11

2 
(X z+p ) 3  exp {- P • [X (x) Cy) = 	

1 (z-a-y) 2 } 	= R. Cy) - 
/Trra 	x1 	 2a2 

(5.5.10) 

This has been denoted R  .(y ) rather than P. Cy) since a recurrence relation 

for generating P.51) [A(x)] (j > 1; n > 0) can be formed by defining 

	

x2 	1 1 f exp{- R0  (y) = 

	

-1.17a xi 	2a2 (z-a-y) 2 }dz 

= GO (x2-y) - GO (x1-1/) 

whereas, to accord with 15.5.8), P IX Cx)) (y) = 1. 

On integrating by parts, (.5.5.10) gives 

R1(y) = Cu 	Aa + Ay) Ro  (y) + Aa
2 

 f 
(1) 

 (x2-y) - Go
CI ) 
 CK -y) 1 

 R.
3 
 (y) = 	, 	+ as + Xy)Rj-1  (y) + X2a2

Rj-2 CY11 

Xa2 j-1 (11 	 1 ( 
{ 00c2+P) 	Go (x2-y) - (Ax + ) 	Go1)  (xi-y) 1 	 (j > 2). 



Let R)  dn r R - 	(y) 1 
d n 3 Y=0 y  

= 3.(111  IX W.] 

> 9), 

Cj > 1;  n > 0). 
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Then, from the above, for n > 0, 

R(n) = G (n)  (x) - 0 0 2 0 1 

(n) 	(n-1) 	2 (n+1) 	(n+1) R 	= (p+Xa)R 	+ XnR 	+ xa fc
o 	

(x2) - Go 

{(p+Xa)Rn)  + XnR(.11-1) 	x2a2R(n)1 
3 	3 	3-1 • 	3-1 	3-2 

2 
f(Xx +p) j-1(n+1) 

CK ) 
j! 	2 	0 	2 

1 1 (n+1) 
xl+P )-- GO 	(1)  Cj > 2 

Here the terms containing  a factor with superscript (n-1) are zero for 
• n = 0. These provide recurrence relations for calculating the numbers 

XXP (n) [ 001 and then (5.5.4) may be used to calculate P )  ( l (x)-a] . 
3 • 	 3 - 

This can also be used to calculate the appropriate numbers PP)  for any 
function of the form 

Xx + + c 	(x1  < x < x2 ) ' 

c 	(otherwise). 

Example 5.4  If it is required to compute the numbersP j  for a function 
which is sectionally linear this may be done by splitting X(x) - a into a 
number of functions, each of which is linear on an interval and zero 
elsewhere. Suppose X(x) is the function 

X (x) = Xkx + pk 	for x E (xk_l ock ) 

K 

where -co = x0 < x1 < x2 ....< x 	< x = 03. Write X(x) - a = E Xk  (x) ' K-1 	 k=1 

where, for k = 1,...K, 

(xk-1 < x < xk,  

xk = 
0 	 (otherwise) . 

X (x) 



Then 

(n) 
XP • 	[ (x) - 

K 
P! )̀t E. 	*(x).] 3 k=1 k 
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K * 	' = 	P. IX (x).] j  k=1 	k  

and the numbers P.
Cn ) 

[X*(x)] can be found from the recurrence relations j 
in example 5.3 with Cx1,x2) replaced by (xk_i,xk) and with (AAL) replaced 

by Ckk,uk-a). 

Example 5.5 Let the autoregression function be a linear function, i.e. 

X (x) = Ax + p 	—W < X < co; X 	0). 

Then, by using suitable generating functions, it may be shown that 

P3
(
.
n) 
[Xx + p 	= 	X 

j 
(-ia) 

j-n 

3 	
i O■a+

a
p-a)  ) H. 

(j-n)! 	-n 	X 
> n) 

> j). 

Making use of the recurrence relation for Hermite Polynomials it may be 

shown that 

(n) P. 	n
S. 
3-n 

where 

sn = (xa +p - a) S
n-1 

+ x22 Sn-2 }/n 	(n > 2) 

and So = 1, S1 = a 4. p - a. 

Example 5.6 Let X(x) be given by 

X(x) = 	
expc7 	w2 	C—co < x < 001 

< j) 
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where w > 0. Then, for j > 1, 

3  1 	
2 	2 	 2  P [A, 	

X 
(x)) Cy) = 	 exP{- 	jw (z-d) --- 	(z-a-y1 

3 J--  T2wa -m 	2a2 

AJ 	1 	r  jw2 (y+a_d)  2 
j! Ow  2 2 	1/2 ex  IL  a +1) 	2(jw2 a2 +11 

and hence, for j > 1 and n > 0, 

AJ 	(iw2)  n/2 
P

n) 
[X(x)3 = 	

iw2 ) 1/2 
exp  :1ELZJI! 

J. , 2 2 	n+1/ a  [( 
Ow a +1)-  /2 n jw

2a
2+1 	2(jw202+1) 	• 

Using (5.5.3) simple recurrence relations for these quantities can be 

found and then Pin)  [A (x)-a]can be found using (5.5.4). 

(a ) Example 5.7 In order to calculate the quantities P. for more 
3 

complicated functions (5.4.3) can be used. This is, for any two 

functions xi(x), X2(x) and j > 1, 

P (n) [x (x) + x2 Cx) ] = 	I 	
1 	p  (n) [AP 1,1 AJ (x) ' 1 	p• (j -p) 	1 - 1 	2 

P=0  

Thus, for example, for the autoregression function 

1  
X(x) = A 	

1 	
2 x expf- --w1

2 	t 	2 	1 (x-d11
21 	X2x expf- 	22 x7 (d2)

2
lr 2  • 

it is enough to be able to calculate 

(n) k 	1 2 P1  Ex expf- 	(x- d)  Cn > 0; k > 0) 	(5.5.11) 

for these are essentially the terms of the summation with k = pki  + (j-p)k2, 
w2 = pw12 	Ci-p)w22  and d = {pw12a1  + (j-p)w22d2  w2  )/ 	= 0,... j1. After 

some manipulations with generating functions it is possible to show that 

1
(n) (n > 01 of (5.5.111 are given by 

	

0 	min(n,k1 
Cn 	 w2  (a-d ) 	E 	k!  

P 	m exp 1 	2 	(k-q1: 	- n+k+1 
21- 	q=0 

2 2 a+da w 	(F,a(d-a).} H • -}H 
k-q 	GT 	T 

wh 
	2 	2 2 , wnere T = 1 G W LT,W > 0). 
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NUMERICAL RESULTS 

6.1 Introduction  

In Chapter 5 numerical procedures were given for calculating sequences 

of approximations for the moments, joint moments and densities of stationary 

non-linear processes. While these procedures have been justified in 

restrictive circumstances (section 4.41 it is natural to try to apply 

them to a much wider range of processes: in either case it remains to 

determine the numerical behaviour of the algorithms. In the next section 

the role played by the arbitrary constant a is examined. The results of 

these numerical algorithms are compared with those obtained from simulations 

in section 6.3 and also with the exact results which are known for some 

processes. Throughout, only processes with a normally distributed input 

sequence are considered, and the algorithm is that based on the choice 
b = 0 rather than the more general case which appears intractable. 

6.2 Role of the arbitrary constant  

In the algorithm of section 5.2 the arbitrary constant a appears. 

Different values of a correspond to different families of approximating 

processes ixn(3)1-  

n+1 	= a + IA{Xn(01 - a] + n+1 
	Cn = . 

For each family the expression generating the process {Xn(1)} is the 

same. However, while the exact moments of these processes are the same 

(but see section 4.7), the sequences of approximations to the moments 

are not. Thus the choice of a may well affect the speed of convergence 

of the procedure. 

In Table 6.1 the sequences of approximations are given, according 

to the highest power of $ included, for the mean of three different 

processes with several different choices of the constant a. For each of 

the processes considered the input distribution is normal with zero mean 

and unit variance: since the mean is zero it is natural to interpret the 

constant a as the approximation of zero order in EL The autoregression 

function of the process in Table 6.1(a) is X(x) = exp{- 
1  
--x

2  }. For this 2 
process the approximations converge rapidly for a good choice of a, the 

sequence having converged to eight decimal places at the eleventh term 
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ORDER APPROXIMATIONS TO MEAN 

0 0.0 0.3 0.6 0.62756 0.9 1.2 
1 .7071 .6914 .6462 .6408 .5775 .4933 
2 .7071 .6508 .6373 .6381 .6613 .7025 
3 .6050 .6161 .62622 .62634 .62137 .6194 

9 .62832 .627595 .62756067 .62756075 .6275672 .62717 
10 .62832 .627546 .62756060 .62756058 .6275610 .62764 
11 .62731 .627557 .62756062 .62756062 .6275593 .62761 
12 .62731 .627563 .62756062 .62756062 .6275613 .62751 

14 .627644 .62756015 .62756065 .62756034 
16 .627533 .62756069 .62756061 .62756434 
18 .627570 .62756061 .62756062 .62756023 
20 .62755750 .62756062 .62756040 
22 .62756166 .62756067 
24 .62756027 .62756063 

r  Table 6.1(a): A(x) - exPl-  1 

ORDER APPROXIMATIONS TO MEAN 

0 0.0 0.6 0.9 1.02412 1.2 1.5 
1 1.4142 1.2925 1.1550 1.0880 0.9867 0.8058 
2 1.4142 1.0240 1.0225 1.0524 1.1130 1.2253 

3 .5977 .9010 1.0065 1.0143 1.0036 .9950 

12 -0.1544 1.0159 1.024187 1.024133 1.024143 1.0227 
13 2.5950 1.0198 1.024174 1.024114 1.024097 1.0254 

14 2.5950 1.0315 1.024067 1.024120 1.024129 1.0236 

15 -1.0719 1.0227 1.024136 1.024121 1.024116 1.0240 
16 -1.0719 1.0205 1.024127 1.024120 1.024121 1.0245 

18 3.8221 1.0247 1.024123 1.024120 1.024188 

20 -2.7116 1.0249 1.024119 1.024041 

22 6.0123 1.0232 1.024120 1.024116 

24 -5.6364 1.0247 1.024120 1.024137 

1 Table 6.1 (b) 	X (x) = 2 exp{- 	x 
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ORDER APRROXIMATION TO MEAN 

0 1.5 1.8 1.9 2.0 2.5 3.0 3.3 

1 1.76 2.10 2.21 2.32 2.85 3.27 3.47 

2 2.04 2.44 2.56 2.68 3.18 3.47 3.57 

3 2.50 2.78 2.87 2.95 3.26 3.43 3.51 

4 2.86 3.07 3.12 3.18 3.34 3.43 3.48 

5 3.29 3.33 3.32 3.31 3.30 3.38 3.44 

19 3.326 3.3117 3.3051 3.3012 3.3076 3.3178 3.3043 

20 3.356 3.3136 3.3063 3.3029 3.3045 3.3195 3.3093 

21 3.370 3.3121 3.3071 3.3052 3.3030 3.3203 3.3139 

22 3.365 3.3109 3.3076 3.3063 3.3025 3.3177 3.3201 

23 3.354 3.3081 3.3068 3.3065 3.3025 3.3128 3.3242 

24 3.331 3.3063 3.3072 3.3074 3.3031 3.3090 3.3223 

25 3.309 3.3057 3.3069 3.3071 3.3038 3.3077 3.3164 

Table 6.1(c): A(x) = 4 - 4 expl- 174  

Table 6.1 Approximations to the means of the processes 

Xn+1 = A(xn) 	Zni-11 Zn  ', N(0,1), 

to different orders of a and for various choices of the 

constant a, a = zero order approximation, 

for a = 0.6. Although here the difference is small it appears that the 

sequence for a chosen to be very close to the mean converges marginally 

less quickly than that for a = 0,6. It seems generally true that the 

Choice of a to be the mean of the process would not necessarily be best, 
even if this were known in advance. For table 6.1(b) the autoregression 

1 
function is 1(x) = 2 expf- -i x2  1. Here making the choice a = 0 leads to 

a sequence of approximations for the mean which does not converge; the 

approximations apparently oscillate with increasing magnitude, possibly 

about some central value. In this case the best choice of a appears to 
be near the value eventually found for the mean, i.e. 1.02412, although 

the best speed of convergence of the sequence is considerably slower 
than that attainable for the first process. The autoregression function 
for the process of Table 6.1(c) is 1(x) = 4{1 - expCL x2)}. Here the 
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convergence of the approximations is much slower than for either of the 

other two processes and the best choice of the arbitrary constant a 

appears to be near a = 1.9, whereas the mean of the process, to which 

the sequence converges, is about 3.3. Usually the sequences converge 

while oscillating about the final value and this oscillation can be 

fairly slow. 

In section 4.7 the question of the best choice of the constant a 

was discussed and it was concluded that, for a randoM variable X having 

the stationary distribution, a should be a "typical" value of X(X). 

This should be interpreted as being only a vague guide for choosing a. 
1 For the process of Table 6.1(a) 	-i A(x) = exp{- 2x2}, the value a = 1.2 

is well outside the distribution of A(X) and yet the corresponding 

sequence of approximations does converge. However for the process of 

part (0) of the table, with A(x) = 2'expf- 1 2 1, the value a = 0 is 

just on the boundary of the distribution in question and yet this leads 

to a seauence of approximations which diverges. Below in Table 6.2 are 

given the mean px, variance ax
2, coefficient of skewness 

y = E{(X -
X
)3/a

X
3}, and the correlation p at lag 1 of the process 

(Xn1 and also the skewness yx  of the process {X(Xn)}. 

A(x) 
11 X 

u
X Y p - 	Yx 

r 	1 	' expi7 .7ix2  f 

2 expe. -t- x2} 

c 	1 	i 4-4 expt- -Tx2j 

.628 

1.024 

3.306 

1.10 

1.49 

2.14 

-0.013 

-0.007 

-0.73 

-.187 

-.430 

.64 

-.481 

-.038 

-1.9 

Table 6.2:  see text 

These were all calculated by the process under consideration from sequences 

of approximations which had converged to at least the number of figures 

given. The skewness of the third process is large and negative and so is 

that of the process {A(Xn)}: thus the relevant distribution (of A CX)) has 

a heavy lower tail and this may explain why the best choice of a is 

considerably lower than the.  ean. 

Zt appears to be generally true that the convergence of the sequences 

of approximations for the moments is slow when the variance of the process 

is appreciably larger than that of the input process or when the lag 1 

correlation of the Iro..1-:ss is large (compared with 0.6, sav). 
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Considering the power-series in B for the means of the first two 
1 of the above processes with X(x) = exp{- 

1  
--x2 	

2 }, X(x) = 2 exp{- -x
2  } 

2  
respectively and with the choice a = 0 in both cases, it is clear that 

that for the second process is the same as the power series for the first 

but with replaced by 2B. That is, the sequences in the tables are the 

partial sums of the same series at B = 1 and B = 2. Hence it follows 

that the corresponding power series converges at B = 1 but diverges at 

B = 2. It has been found numerically that the series converges at 

= 1.5 Calthough only very slowly) but a more accurate estimate of the 

radius of convergence is not available. 

In Table 6.3 the sequences of approximations for further moments 

of the particular process 

1 2 	
. X

n+1 = 2 exp(- — X ) + Zn+1 	= -1,0,1,...) 2 n 

with Zn N(0,1) are given. In the column denoted '4' are the 

lag 1 moments are the approximations for E[(X
n - X)

2
(Xn+1 - pX)1 and 

so forth, where px  is the mean of the process. Here the approximations 

to a particular order for the central moments have been calculated from 

the approximations to the same order for the moments about zero as 

produced by the algorithm of section 5.2. The arbitrary constant was 

Chosen as a = 1.0. All the sequences for the moments converge at 

roughly the same rate with those for moments of higher degree converging 

slightly more slowly. This seems to be generally true. Each sequence 

had converged by the twentieth term. 

, approximations for E{(X
n - IIX)

4 
 I and in the column denoted '2,1' for 
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ORDER APPROXIMATIONS FOR CENTRAL MOMENTS 

DEGREE = 1 2 3 4 

10 1.024094 1.490149 -0.013445 6.304928 

15 1.024122 1.490184 -0.013088 6.304585 

20 1.024120 1.490188 -0.013080 6.304587 

CENTRAL MOMENTS AT LAG 1 

1,1 1,2 2,1 2,2 

10 -0.640986 0.111988 -0.503209 2.475243 

15 -0.640914 0.112328 -0.503232 2.475301 

20 -0.640911 0.112325 -0.503235 2.475300 

CENTRAL MOMENTS AT LAG 2 

1,1 1,2 2,1 2,2 

10 0.289313 -0.030621 0.198550 2.207313 

15 0.289447 -0.030466 0.198698 2.207149 

20 0.289457 -0.030463 0.198695 2.207147 

Table 6.3: Approximations for moments of process 
, 1 
2 , Xn+1 = 2 expt- - X n

2.t + Zn+1 	Zn N(0,1) with a = 1.0. 
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6.3 Comparison with simulation results  

6.3.1 The algorithm of section 5.2 provides values for the moments 

and joint moments of non-linear autoregressive processes. Although the 

Correctness of these values has not been proved analytically, they have 

been verified by computer simulation for several different processes. 

Taking into account the availability of unbiased estimators, it 

was decided to work with the joint cumulants of the process, and in 

particular, with the cumulants K
ijk 

of (Xri,x
n+1,Xn+2)  under the 

stationary distribution. Only twelve different combinations of the 

triple subscript (i,j,k) are chosen, namely (0,0,1), (0,0,2), (0,1,1), 

(1,0,1), (0,0,3), (0,1,2), (0,2,1), (1,0,2), (2,0,1), (0,0,4), (0,2,2), 

(2,0,2). Clearly, because of the assumed stationarity, many of the 

cumulants are equal, for example K 	= K.= 
	= K 	etc., 

100 	010 K001, K012 	120' 
and the above avoids such combinations. The values of the cumulants 

are found from the values for the central moments produced by the 

algorithm and these are compared with the estimates of the cumulants 

obtained from simulations. 

The estimates for the cumulants are based on the corresponding 

k7-statistics (Kendall and Stuart, 1969, pp.280, 308) which are exactly 

unbiased if a number of independent samples of the random vectors 

concerned are available. In the present situation, that of estimating 

from simulated series, it is convenient to use triples (X
3
. ,X. 	,X 	) 
h 3h+1 jh+2 

= 1,2,3,...) which because of the stationarity of the series are 

effectively independent for large enough h. In order to increase the 

precision of the estimates of the cumulants it is possible to use the 

known structure of the process to relate the cumulants K. 
	
of 

(X11,X
n+1

,Xn+2 to those,Kijk  say, of the triple (X11,Xn+1'A(Xn+1))  and 

to estimate these cumulants instead. When the input distribution is 

normal with zero mean and variance a2, using the independence of Z 
n+2 

and (X11,Xn+1) 

K..13k = K13.k unless i = j = 0 and k = 2, 

= K* 	2 
K002 002 a .  

Letting avet•) denote the average of a number of terms of the same form 

as those inside the parentheses but spaced far apart in the series, the 

estimate kob1 of the mean C:=001) of the process 
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ave(X 
n 
 ) = ave{A(X

n-1 
 ) + Z 

n
1 = ave{X(X

n-1
11 + ave(Z

n1 k001 = 	•  

is replaced by the estimate 

k801 = ave{A(xn-1)}- 

If the average is composed of N terms, then (approximately, since the 

terms are only approximately independent) 

1 var (k
001 	N 

) = -ivar{A(X
n
)} + a2J 

1 
var(k*

001 	N 
) = varfA(X 

n
)1, 

so, depending on the relative sizes of var{A(X
n
)} and a2, the difference 

in precision of the estimates can be considerable and the above modifi-

cation of the estimator is always worthwhile. The same sort of reduction 

in variance holds for the other k-statistics as can be seen from the 

expressions for the variances and other cumulants of the k-statistics 

given by Kendall and Stuart (1969, pp.290,311). These expressions for -

the variances of the k-statistics could be used to derive estimates of 

their precision: however values of higher order cumulants are required 

and these are not available if the theoretical values produced by the 

algorithm are in doubt. The procedure actually adopted is to form the 

k-statistics separately for several independent simulations and to take 

the sample mean, and its standard error based on the variation between 

the samples, as the final estimate of the cumulant and an estimate of 

its precision. 

In the simulations performed, for given integers N, h, p the specified 

autoregressive process is used to generate values Xn, A(Xn) for 

n = 1,...,(N+p)h starting from a fixed number X0. Of these the first ph 

values of Xn  are discarded. Then from the N triples (Xn,Xn.1.1.,X(Xn4.1)) 

= x-11+1; r = p,...N+p-1) the twelve k-statistics are formed. The 

precision of these estimates can be improved by calculating each 

k-statistic for each of the h sets of N triples, namely {(XndEn+Idt(xn+1)); 

n = rh+j; r = p,...N+p-11 (.j = 1,...h). Then unbiased estimates of the 

cumulants are formed by taking the average of the h. values of each 

k-statistic. In general the terms in each average are not independent 

so that the variance of the resulting estimate is not necessarily reduced 
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by a factor h 1
, though itis. decreased. Whether it is better to adopt 

this procedure, or to calculate each k-statistic just once and to 

increase the size of N in order to obtain a better estimate, depends 

both on the amount of dependence amongst the terms of the series and 

on the cost of generating the further terms required for the longer 

sequence. The cost of computing h sets of k-statistics from N triples 

is about the same as that for computing one set from Nh triples'. For 

the simulations here the average of h k-statistics was taken as the 

estimate for the cumulants, though this may have been the wrong choice. 

Once estimates of the cumulants have been found the whole procedure is 

repeated with an independent input series. Because of the discarding 

of the initial section of the series the choice of X
0  is of little 

importance (except that it should not be too extreme) and a convenient 

value to take is that of the last term of the previous series, namely 

X
(N-Fp)h. In all the procedure is applied to M independent sections of 

the process producing M independent estimates of the twelve cumulants. 

For each of the cumulants a final estimate is provided by the mean of 

the M independent estimates and an estimate of its variance is given by 

the obvious estimate based on the sample variance of the M estimates. 

For large N the k-statistics are approximately normally distributed 

and taking the average of h values results in a distribution closer to 

normality. Hence each set of M estimates of the cumulants is a set of 

independent and identically distributed observations from an approximately 

normal distribution and thus the sample variance of each set is approxi-

mately distributed as x2 with M-1 degrees of freedom. 

The processes simulated required normally distributed random 

variables for the input series and pseudo-random variables for these 

were generated by the 'Fast' method of Marsarglia, Maclaren and Bray 

(1964): the subroutine used for this was programmed in Fortran by 

Mr. M.C. Pearce and the uniformly distributed pseudo-random variables 

required by the procedure were obtained from the standard RANF function 

as implemented on the CDC 6400/Cyber 7314 system at Imperial College 

(Atkinson and Pearce, 1976). For each different process simulated a 

different value was chosen (haphazardly) for the initial seed for the 

RANF function so that essentially different input sequences were generated 

and used for the different processes. Of course the different sections 

of the same process were generated using independent sets of input 

values: in fact these were taken as the continuation of the sequence 

used for the earlier sections. 
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The k-statistics themselves were calculated using an updating 

technique found by expressing the particular k-statistic based on n 

triples in terms of the n'th triple and k-statistics based on the 

first (n-1) triples. This reduces the possibility of truncation errors 

arising from adding and subtracting relatively large sums of powers 

and products to form the cumulants by the standard formulae (Kendall 

and Stuart, 1969, p.84). For the relatively moderate sizes of N and 

(N < 2000), the particular processes simulated and the length of the 

computer word used (equivalent to about 14 decimal significant figures), 

the effect of this would probably be of no importance for the accuracy 

required. 

For all four processes simulated the input distribution was normal 

with zero mean and unit variance. The autoregression functions for the 

four processes are given below in Table 6.4 together with the values 

p, N, h and M used for each simulation. The computer time taken by each 

of these simulations was between 300 and 350 seconds. 

AUTOREGRESSION FUNCTION p N h M 

(i)  

(ii)  

(iii)  

(iv)  

1 
 X (x) = exp (- ' T x2) 

1 
X (x) =T x{1 + exp (- -11 x2) } 

1 	1 	2 
A (x) = x{-- 2 	2 - exp (- — x ) } 

1 
A (x) 	._,.. fx + , T 	(for -1.5<x<l) 

-1.0 	(otherwise) 

2 

2 

1600 

1500 

1600 

1700 

12 

14 

14 

14 

21 

21 

21 

21 

Table 6.4: see text 

Tables 6.5(a)-(d) give the results of the simulations. The values 

for the cumulants found from the algorithm under test are given together 

with their estimates from the simulations. Also given are the absolute 

value of the difference between these values and the estimate of the 

standard error of the simulation result. For two of the processes the 

autoregression function is odd about zero and, since the input distri-

bution is symmetric, it is therefore known that the cumulants of odd 

total degree are all zero. Using this fact could have resulted in more 

accurate estimates of the other cumulants as well as a saving in computing 

time. However this was not done: the results produced for these known 

cumulants are a partial check on the simulation and estimation procedures. 
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Cumulant value from 
algorithm 

simulation 
estimate difference' 

standard 
error 

001 .627561 .627957 .000396 .000401 

002 1.099454 1.099512 .000058 .000159 

011 -.205555 -.204810 .000745 .000561 

101 .033657 .033174 .000483 .000483 

003 -.015102 -.015140 .000038 .000075 

012 .045580 .045309 .000271 .000263 

021 -.292949 -.293319 .000370 .001617 

102 -.006883 -.006690 .000193 .000157 

201 .044806 .045542 .000736 .000988 

004 -.010992 -.011014 .000022 .000062 

022 .002316 .003064 .000748 .000598 

202 -.011322 -.011434 .000112 .000193 

Table 6.5(a): Simulation results for process with autoregression function 

A(x) = exp (- 
1  - x2 ), 	Zn rd N (0,1) . 2 

Cumulant value from 
algorithm 

simulation 
estimate difference' standard 

error 

001 0.0 .00193 .00193 .00260 

002 1.65597 1.65659 .00053 .00108 

011 1.02333 1.02426 .00092 .00199 

101 .64436 .64427 .00010 .00172 

003 .0 -.00292 .00292 .00196 

012 .0 -.00477 .00477 .00272 

021 .0 -.00790 .00790 .00409 

102 .0 -.00318 .00318 .00205 

201 .0 -.00465 .00465 .00325 

004 -.51426 -.51522 .00096 .00219 

022 -.82743 -.82759 .00016 .00531 

202 -.49864 -.49729 -00134 .00396 

Table 6.5(b): Simulation results for process with autoregression function 
1 • , 	, 

A 	2 (x) = 	+ exp(2- 1 x2 )1, Zn 	N(0,1). 2 
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Cumulant value from 
algorithm 

simulation 
estimate differencel 

standard 
error 

001 0.0 -.00008 .00008 .00040 

002 1.10855 1.10966 .00111 .00052 

011 .19407 .19659 .00252 .00114 

101 '.04620 .04746 .00126 .00067 

003 .0 -.00050 .00050 .00067 

012 .0 -.00104 .00104 .00136 

021 .0 -.00191 .00191 .00257 

102 .0 .00012 .00012 .00092 

201 .0 .00082 .00082 .00170 

004 .07741 .07925 .00184 .00111 

022 .37629 .38385 .00756 .00437 

202 .08318 .08592 .00274 .00186 

Table 6.5(c): Simulation results for process with autoregression function 
• 1 

(x) = 	2 	exp (- 1 x2 ) } , 	Zn 	U(0,1).  ti 
2 

Cumulant value from 
algorithm 

simulation 
estimate difference standard 

error 

001 -.18216 -.18207 .00009 .00113 

002 1.65098 1.65191 .00093 .00078 

011 .24206 .24453 .00247 .00119 

101 -.02125 -.02343 .00218 .00137 

003 .25630 .25701 .00071 .00130 

012 .26524 .26559 .00035 .00058 

021 -1.00506 -1.01074 .00268 .00257 

102 .05030 .05040 .00011 .00120 

201 -.25849 -.26047 .00198 .00272 

004 -.48992 -.49234 .00242 .00230 

022 -.00245 -.00486 .00241 .00208 

202 -.21442 -.21475 .00033 .00177 

Table 6.5(d): Simulation results for process with autoregression function 

X(x) = x 0.5 for -1.5 < x < 1, = -1.0 otherwise, Zn  % N(0,1 
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(Further checks on the cumulant estimation procedure were made using a 

process of independent normal pseudo-random values.) 

The estimates of the cumulants produced by the simulations agree very 

well with the values produced by the algorithm of section 5.2. The 

differences between the two values are within just over two (about A) 

standard errors of zero, the accuracy of the algorithm being verified to 

two or three decimal places for the different cumulants. More formal 

tests could be applied based on the ratios of the differences to the 

standard errors which would be distributed approximately as Student's t 

with M-1 = 20 degrees of freedom. The estimates of the different cumulants 

for the same process are not independent so that the tests for the 

cumulants cannot easily be combined. 

6.3.2 Besides the comparison with the results of simulations, the 

algorithm for determining the moments of non-linear autoregressive processes 

may be validated by using it to generate the moments of processes whose 

properties are known. 

The simplest processes that can be used for this purpose are the 

linear processes. The sequences of approximations for the moments all 

converged to the correct values for all linear stationary processes (with 

normal input distributions) that were tried. In fact it can be shown 

algebraically that the algorithm gives the correct results for the moments 

of any linear process (with any input distribution possessing moments of 

all orders) with slope strictly less than one in absolute value. 

It is also possible to calculate the exact stationary distribution 

for certain other non-linear processes: those for which the autoregression 

function takes on only a finite number of distinct values, see section 2.3. 

In particular the moments and covariances of the process {x11) with a two-

level, odd about zero, autoregression function can be calculated when the 

input distribution is normal (equation 2.3.5). This has been done for 

several different processes and the theoretical values agree exactly (to 

8 decimal places anyway) with the values determined from the algorithm. 

For processes for which the autoregression function X(x) is either 

equal to x or to zero, the first covariance and the variance obey a simple 

relationship and this holds also for the approximations produced by the 

algorithm. 
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6.4 Results for some specific processes  

Figures 6.1-6 give simulations of various processes and the 

approximations for the stationary densities given by the methods of 

Chapter 5. Part (a) of each figure consists of a computer realisation 

{Xn, n = 0,-150} of the process concerned together with plots of 

X
n+1 gainst X

n 
and of X

n+2  against Xn for the series obtained. In the 

first of these a graph of the autoregression function is also given. In 

part (b) of each figure some densities associated with the stationary 

processes are plotted. The marginal density of the process is shown in 

the lower left-hand part of the diagram and above it is a contour plot. 

of the joint stationary density of (Xn,Xn+1). This was obtained from 

the approximation for the marginal density using formula (5.3.6). At 

the top right-hand side of the diagram is a contour plot of the joint 

density of (Xn,Xn+2): this was obtained from formula (5.3.8) based 

essentially on the approximations for the joint moments. Below this 

plot the two-step ahead predictive densities are given, these being 

obtained from the joint density of (X ,X ). In each of the contour 
n n+2 

diagrams the levels of the contours drawn are at 0.1, 0.05, 0.01, 0.005, 

0.001, 0.0005 and 0.0001 units of joint probability density. Not all of 

these contours appear on every diagram when the density is moderately 

dispersed but the outside contour always corresponds to 0.0001. 

For each of the six processes the input distribution was normal 

with zero mean and unit variance. Were the processes linear the two-step 

ahead predictive densities would also be normal with only the mean 

depending on the value on which the process is conditioned. This is 

clearly not so for these non-linear processes. For the processes of 

figures 6.5 and 6.6 the autoregression function is discontinuous and the 

joint densities should reflect this. The joint density at lag 1 of the 

process of figure 6.5 has been drawn by a computer program taking into 

account the discontinuity whereas that in figure.6.6 has not allowed for 

the discontinuity. The difference can be clearly seen. For both of these 

processes the joint density at lag 2 should also have a discontinuity but 

the method adopted for these approximations does not deal too well with 

these discontinuities. It is evident that, for the process of figure 6.5, 

the predictive densities conditioned on any value less than zero should 

be the same. However for the approximations given this is not quite so; 

the densities conditioned on values nearest zero are further from the 
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other pairs of densities which are themselves almost coincident. It is 

interesting that the predictive density conditioned on a value at zero 

which is produced by this method should coincide with the marginal 

density. It is clear that the algorithm of Chapter 5 does not distinguish 

between autoregression functions differing at a single point but, in this 

case at least, the approximations produced behave as if the autoregression 

function were defined to take a value halfway between the left- and 

right-hand limits at the discontinuity. It seems likely that first 

forming approximations for the conditional densities and then using the 

approximation for the marginal density to form the joint density would 

yield better results. However the method used here is easier to program 

and approximations for joint moments of any order can be calculated at 

the same time. In using the other method sets of conditional moments 

would be available. 

Figure 6.7 gives an example of the backward in time conditional 

densities of Xn given Xn+1 
for the autoregressive process with 

1 • 	1  X(x) = x{1 exp(- x2  )} and with input normally distributed with 

zero mean and unit variance. The fine line on this diagram is the 

marginal density of the process. Clearly the backward process cannot be 

represented as a non-linear autoregression since the variance and shape 

of the conditional distributions vary. However the backward processes 

are Markov Processes with one-step transition probabilities given by 

these backward conditional densities. 

All the above approximations for the densities have been obtained 

by the method of Chapter 5 with J*, L*, M* and N* always chosen to be 

about 21. 

In figures 6.8-10 some examples of the spectra of non-linear auto-

regressive processes are given. Approximations for the covariances of 

a particular process can easily be obtained from the algorithm described 

in section 5.2.4 and from these the corresponding approximation for the 

spectral density function can be formed in the obvious way. In the 

examples given here it has not been found necessary to include covariances 

at lags greater than twelve or thirteen. Also given in each diagram, as 

a fine line, is the spectrum of a first-order linear autoregressive 

process having the same variance and lag 1 covariance as the non-linear 

process of that figure. The process corresponding to figure 6.8 has 

autoregression function 
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Figure 6.7: Backward conditional densities at lag 1 for autoregressive 
1 • 	1 2 process with X(x) = — 2 x{1 	exp(- 	x )1, Z ti  N(0,11- 
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3 	0 

1/4. 
(otherwise). 

alga  = 

(-1.5 < x < 1.0), 

(otherwise), 
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the autoregression function of the process of figure 6.9 is 

x + 0.5 	(-2.0 < x < 1.5), 

A2(x) = 
-1.5 
	

(otherwise), 

and that corresponding to figure 6.10 is 

(-2.0 < x < 2.0), 

Again the input distribution is the standard normal distribution. The 

first two processes can each be described as being like a random walk 

with upward drift and with a threshold level such that once this is passed 

the process returns to a low level. Thus the processes should rise 

slowly and drop sharply once the threshold is reached. This behaviour is 

just discernable in Figure 6.6 although, because of the relatively large 

variation of the input process, it is somewhat obscured. Figure 1.1 

gives a realisation of a similar process for which this type of structure 

is much more clearly apparent. Unfortunately the sequences of approxi-

mations for the moments converge only slowly, if at all, for processes 

for which this behaviour is more distinct and so the spectra cannot be 

calculated. If the structure described above does underlie the behaviour 

of the processes it would be expected that the spectra would reflect this 

by having a peak located away from zero, or at least a region of relatively 

high spectral density compared with a linear process. The spectra for the 

processes with autoregression functions Al  and A2  both have a peak away 

from zero. The maximum in figure 6.8 is near 0.127 although the maximum 

value is only 0.0004 larger than that at zero. The maximum of the 

spectrum in figure 6.9 is near 0.187. For these two processes the spectra 

are fairly different from the spectra of the linear process also shown in 

the diagrams although this is possibly because of the special structure 

of the processes. The spectra of many other processes have been found to 

be close to the spectra of the fitted first-order linear autoregressive 

processes, an example being given in figure 6.10. It is clear that, if 

the spectrum of a process is close to that of a first-order autoregressive. 
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process, it would be difficult to distinguish between the two processes 

using only second order moment properties. 

The approximations for the covariances used in the calculation of 

the spectra in figures 6.8-10 are given in Table 6.6. For each of the 

first two proceSses the autocovariance function has a damped oscillatory 

behaviour even though the first correlation is positive. The moments 

of the first process have been partly checked by simulation (Table 6.3(d)) 

and simulation and density plots for the second process appear in 

figure 6.6. 

lag autoregression function 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

X1  X2 X3 

1.65098 

0.24206 

-0.02125 

-0.0192 

-0.00291 

0.52 x 10 3 

0.28 x 10
-3 
 

0.32 x 10-4 

-0.10 x 10-4 

-0.42 x 10 5 
- 

-0.29 x 10 6 

0.19 x 10-6 

0.56 x 10 7 

2.21893 

0.58111 

0.04384 

-0.0720 

-0.0468 

-0.0135 

0.48 x 10-3 

0.25 x 10 2 

0.13 x 10-2 

0.29 x 10 3 

-0.6 x 10
-4 

-0.1 x 10 3 

-0.2 x 10 4 

1.85998 

0.85998 

0.41509 

0.200 

0.0967 

0.0467 

0.0226 

0.0109 

0.53 x 10
2 

0.25 x 10 2 

0.12 x 10-2 

0.59 x 10-3 

0.29 x 10 3 

0.14 x 10 3 

Table 6.6: Covariances of processes in figures 6.8-10. 
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7 	STATISTICAL TREATMENT OF NON-LINEAR AUTOREGRESSIVE PROCESSES  

7.1 Estimation and testing  

7.1.1 The theoretical problem of estimation for non-linear autoregressive 

processes is relatively simple when the process is assumed to be one of a 

suitably parameterised family of such processes. Maximum likelihood 

estimators may be used and the usual results about the asymptotic 

properties of their distributions (as the length of the observed series 

increases) are available under fairly general conditions. 

Suppose that the unknown autoregression function X(x) is one of the 

family of functions x(x0), with A 	= A(x;60  ), and suppose that the 

input distribution has a density of the form fz(z;iL). Here 0,1P may be 

vector parameters. Suppose that a series of observations (x0,...,x11) 

are obtained from a stationary process whose mechanism is one of the 

processes (indexed by 6,) 

n+1 =A (Xn;0) + Z n+1 	= 0,1,... N-1) 

with {Z1,...Z1,1} independent of xo  and independent amongst themselves with 

common density fz(z,0. Two possible ways of analysing this problem are 

either to treat x
0 
 as being fixed, effectively taking distributions 

conditional on this value, or to treat x
0 
 as having the stationary 

distribution of the process under consideration. Let fx(x0,1J) denote 

the stationary density. In the first case the likelihood function is 

N-1 
II fZ 

(xn+1 
- X(xn;6);11)) 

n=0 
(7.1.1) 

and in the second there is an additional factor fx(x0:6,10. The contribution 

of this term is negligible asymptotically and, since in general it would 

be difficult to evaluate, it may be convenient to discard it for moderately 

large N. In other situations, for example for a sample consisting 'of many 

relatively short sections of independent series, such factors might have 

considerable importance. 

Assuming that maximum likelihood estimators 0,$ can be found from, 

the likelihood equations derived from (7.1.1) the question arises as to 

their distributions. Provided that the problem is regular (Cox and 

Hinkley, 1974, p.107) these estimators have an asymptotic multivariate 

normal distribution benLred at their true values. The information matrix 
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associated with the j'th observation is (Cox and Hinkley, 1974, p.300) 

i.(0,170) = 

3,06 	J,81P 

j'elP 	3,14) 

2 

i. = -E{— log f 	A (X.;0)}
2 
 IX = 

	

00 	2 	Z 	ae 	3 	0 	0 ;Z 

a2 

	

3,E4 	
- ,7-i -5-1-1; log fz  (Z;IP) 	A(X.j  ;0) IXo  =x0l 

2 
i3,44 = -E{— log f (Z;11)1 

where it is assumed that 04 are single parameters and where z denotes a 

random variable with density fz(z;i). In forming the total information 

matrix i (AM = E i4(04), it is convenient to replace the conditional 
1- J  

expectationsaPPeabovebyexPectationstreatingX.as if had the 

stationary distribution. Since the process is stationary this is a good 

approximation for large N. Hence to terms comparable with N, 

.0e 
(7.1.2) i.(0,111) = N 

where 

• 32 
1.00 = -E{— log f 

aZ 
;110.1-E[{..--D0 	'A(x.e)}

2
J .  

2 

1.011) = - Dz D 
log f (2,11)) }El— a  A (X; en , IP  

2 
= - a- log fZ  (Z:4) }, 

and where X has the stationary density fx(x;04). The results when 8,11) 

are vectors are easily obtained. 
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For example let the input density be normal with zero mean and 

variance p. Then the information matrix (7.1.2) reduces to 

1P 1EIO--- A(X0)}21 

N 

0 
-2 

2 tP 

and hence the asymptotic variance of the estimate of 0 is 

a 
var(g)= 11)/(NE[{-3-7 A(X;0)}

2  ]) , 

and var(T) -2e" • 

Also in this case the likelihood equations simplify to 

N-1 

E {xn.1-1 	X(xn101  -507  n=0 
)(rx n'  -a 	= o , 	 (.7.1.3) 

1 N-1 2 
=  N E {xn+1 X(xn0)} • 

n=0 

In particular, when A(x;0) is linear in the parameter 0, X(x10) = OX(x) say, 

then 

and 

N-1 	N-1 
= { E xn+1X(xn)}/ E {X(xn)} n=0 	n=0 

(7.1.4) 

var(g) = 	111  

NE[X2(X)] 

Once the maximum likelihood estimators have been found, their 

covariance matrix may be approximated by that of the asymptotic distribution 

given by inverting the matrix (7.1.2). Since this matrix is itself a 

function of 0 and IP these would usually be replaced by their estimators 

to produce a quantitative estimate for their variation. To do so involves 

evaluating expectations of certain functions under the stationary 

distribution corresponding to 6,$. These could possibly be obtained from 

the algorithm described in Chapter 5. An alternative would be to estimate, 
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2 	N-1 
1 	2 for example, E[A (X) ] by -N 	(x11), producing as an estimate for the  

A 	n=0 
variance of 8 in (7.i.40, 

N-1 
est[var(g)] 	T{ E A'(x

n
')}-1  . 

n=0 

Such approximations for the estimator variances would then not require 

the evaluation of the expectations under the stationary distribution. 

Thus, to the extent that the process under consideration can be 

assumed to be of a particular known parametric form, the problem of 

estimation for non-linear autoregressive processes can be met by maximum 

likelihood procedures. 

7.1.2 Assuming that, for a particular set of data, a non-linear auto-

regressive process is thought to hold, an appropriate form for the para-

meterisation of the model must be found. It may first be remarked that 

the structure of the likelihood function (7.1.1) is exactly that which 

would be obtained from a regression experiment with observations 

xl,...xm  at the values of an independent variable t1,...tN, with 

t, = 	for which the following holds 

x. = X(t,;0)ej 	(j = 1,...,N ) , 

with the observation errorsej  having the density f (•;1J). This suggests 

employing least squares estimates for the (vector of) parameters 8. In 

the scalar case, with fz(-;1) having zero mean, this leads to the least 

squares estimate 3 given by 

N-1 
E {x 	- X(xn'  -0)} — DO X(x n

;8) = 0 . 
n=0 

(7.1.5) 

This estimate coincides with the maximum likelihood estimate when the 

input distribution is normal (compare (7.1.3), (7.1.5)). The comparison 

with the ordinary regression situation suggests that, if the densities 

f (- ;41) are not too far from normal, little is lost in terms of efficiency 

by using the least-squares estimate rather than the maximum likelihood 

estimate. The least-squares estimates are always available and do not 

depend on estimating parameters of the input distribution when fz(*;*) 

has zero mean; in fact the only assumptions needed about this distribution 
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are that it have zero mean and finite variance. Beran 01976) gives an 

adaptation of the procedure for non-normal distributions and linear 

processes. 

In considering the parameterisation of the autoregression function 

it would often be natural to ensure that the linear functions (of x) 

are included amongst the family . (x;0) as a special subspace of the 

parameter space: in this way likelihood ratio tests for the presence of 

a non-linear part to the autoregression function may be constructed. 

These tests would be expected to perform well in testing against non-

linear functions of the type used in their construction. In the same 

way as with ordinary regression, the form of the autoregression functions 

actually fitted would be regarded as being only an approximation to the 

shape of the "true" autoregression function. 

A possible natural choice for the family of functions X(xp0) is the 

family of quadratic (and, more generally, polynomial) functions: with 

0 = (1,0a), 

X(x; ata,Y) = a + ax + yx2  . 	 (7.1.6) 

As was shown in section 2.4.4, a process with such an autoregression 

function, with y # 0, would be non-stationary for almost all input 

distributions, exceptions being finite tailed distributions for special 

ranges of the parameters a, a, y. However even for non-stationary 

processes the maximum likelihood estimators may still be defined though 

the asymptotic properties above no longer hold. Since only a finite 

number of observations are available, stationarity has little relevance 

except in providing the asymptotic distributions for the estimates. The 

function estimated from the family of functions (7.1.6) would anyway be 

regarded as just an approximation over some central range to the actual 

autoregression function. Here a possible curvature in the autoregression 

function is approximated locally by a quadratic function: further poly-

nomial terms could also be included to extend the range behaviour covered. 

An alternative approach to testing for non-linearity of the auto-

regression function would be to atteut.Lt to fit it by linear functions 

over different sections of the range. If the ends of the sections are 

taken as prespecified constants and if the function is not constrained 

to be continuous this leads to simple estimates of the slope and intercept 

parameters of each section and a likelihood ratio test for the equality of 
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the parameters of the different sections gives a simple test for 

non-linearity. 

Just as in the ordinary regression situation, the calculation of 

least squares estimates is greatly simplified if the functions A(x;0) 

are chosen to be linear in the parameters in the vector 0, and other 

considerations concerning the form of the regression functions apply 

here also. An orthogonalisation of the model might be attempted: for 

the model (7.1.6) let 

N-1 	N-1 	N-1 	N-1 
i = 1- z xi, s2  = 1. E (xi  )7) 2  , t = E (x . --;) 3/ . E. (x --)7) , N 

i=0 1
' 	N 	1 	1=0 i N. 	i=0 

then the usual orthogonalisation leads to the model 

X* (x; a* *,Y*) = a* + E3* (x--;) 	y*E (x-x) - t(x-37) - s2] . 

While this might be used to calculate the estimates of the parameters in 
--  the original model, regarding x, s2  , t as fixed, and to calculate the 

estimated autoregression function, the parameters in this model are 

difficult to interpret since they are connected to the "real" parameters 
 by the sample quantities x, s2  , t. -However the above type of ortho-

gonalisation would help to avoid the occurrence of numerical errors in 

calculating the least squares estimates. Checking of the model by 

examination of the residuals, r. = x. . - A (x  115), can also be extended i- 
from the ordinary regression case. 

One basis of a non-parametric approach would be to estimate the 

joint stationary density of (X 
n,X ) by a suitable kernel estimate 

formed from the sample {(xi,xi.4.1); i = 0,...N-1}. Here the sample pairs 

are not independent but the stationarity of the process would enable a 

consistent estimate to be formed. 

7:2 Identification and'Prediction  

7.2.1 In the above it is assumed that, somehow, it is known that a 

specific model, namely a first order non-linear autoregressive process 

should be fitted. Clearly some way of deciding which type of model is 

to be used is needed and it is natural to try to extend the identification 

procedure of Box and Jenkins (1970, Ch.6) to fill this requirement. It 

would be difficult to give a complete description of a procedure which 
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would purport to distinguish between linear and non-linear autoregressive 

processes having different. orders of dependence on past terms, especially 

if autoregressive-moving average and non-stationary (integrated) 

processes of various types are also to be considered as possibilities. 

Here a simple and fairly obvious generalisation of the Box-Jenkins 

procedure is given. 

The following extended notation for partial correlation coefficients 

will be used. 

p(x,Y) = corr (X, Y) 

p(X,Y; U ,...Uk) = corr(X - alUi  ... -akUk, Y - 
1U1 	BkUk) 

where 	ak, (31,— (3k  minimise var(X - a1U1.. -akUk) and 

var(Y - a1u1"..skUk). Also, for partial regression coefficients 

f3(X,Y) = cov(X,Y)/var(Y), 

a(X,Y; U1,...Uk) = cov(X,Y-a1U1...-e. Uk)/var(Y-BlUi...-akUk) , 

and for partial error variances and covariances, 

a2(Y) = a(Y,Y) = var(Y) 

62 ;17...0k) = var(Y-131
U1...-akUk) 

a(X,Y;131,...Uk) = cov(X-a1U1...-akUk, 

where again 	minimise var(Y-131U1...-akUk) and al,...ak  minimise 

var(X-alUi...-akUk). This notation is more cumbersome than the usual 

notation but is more convenient for the purposes here. The following 

relations hold (Kendall and Stuart, 1973, p.338). 

a(X,Y;U ...0 11 	k 	(X,Y;U1,...0k-1
) 

a2(U ;U ...0 	) k 11 	k -1 

a(x,u ;u 	..0 	)a(Y u -u . k 	k-1 	k' 	-1 

(7 .2.1) 
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13(1(17;U1''''Uk = cr(X1Y;U11—Uk)/a2  Y;1111—Uk)/ 	
(7.2.2) 

• p (x, ;u1,...uk ) = a (x;Y;p1,...uk )/{cs (x;131,...uk)a2  (i;u1,... 	11/2  

(7.2.3) 

The above, which are not the usual recurrence formulae for partial 

correlation coefficients, give a useful form for computation. Formula 

17.2.1) is the equivalent to the "sweeping-in" of the variable Uk  in a 

multiple regression situation. An iterpretation of.the partial correlation 

coefficients is given by 

2 a (X;Y,U
11 

 ...Uk) = 2(X:U1- ,..0k  ){1 - p2(X,Y;U1" 
,...0

k  ) 
(7.2.4) 

Hence p2 is the fractional reduction in error variance achieved by 
including the variable Y in the regression of X on Ui,...Uk. The above 

expressions all hold for any random variables X,Y,U1,...0k and not just 

for multivariate normal distributions. 

In a time series context, interest may be in predicting the value 

X 	ofastationaryseries{X.} by a linear function of other variables 
n+1  
U(n 
1 	k 	 1 	k ),...0

(n), where here the index n denotes time and U(n) ...0
(n) are 

random variables for which ObServed values are available at time n. Then, 

to minimise the mean square error of prediction, the best linear predictor 

X
n+1 

of X 	is 
n+1 

n+1 

= ux 	G ln) {Uk) 	4n) }4. 	I- 
 (n)IU (n) 	(n),  

 k 	k 	.k  

where 	PX = E(Xn  ), 1111)  = E(U
n)) 
	(i = 1,...k), 

and a 	= a(xn+1 ,U
(n); U(2

n) 	U(n)) 
1 	k 

) 
13, 2 	= B (Xn+12 ' 

,U (n) - U (n) '3k 	' U (n) ...0  (n) ) etc. 1  

(n ) 
The mean square error of prediction is then a2(Xn+1 ;U

(n),...0k  ). The 1  
best, not necessarily linear, predictor of Xn+1 

(minimising mean square 

error) is the conditional expectation E(X n+1 
I U
1 
) 	k ,.. .0 Cr') ). • Though the 

) 	(n) 
variables U3. (n  ,...Uk  may be any set of relevant quantities, here they 

will be restricted to be stationary functions of the past values (up to 

time n) of the series {X.}. In this case the correlation, regression and 

variance coefficients above are invariant to shifts of time scale. 
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7.2.2 The Box-Jenkins procedure commences by approximating the covariance 

structure of the process by the corresponding sample quantities. Usually 

this is just done for the ordinary covariances, cov(X ,X ), but sample 
(n) 	 / 	(1.1) 	In+k 

estimates of the quantities a(ui ,U, 	= cov(U
i(n;

Un-) = covCU
(n1-h)+h)) 

	

- 	3 
oanalsobeformedforanystationaryfunctionsU.of the data series.]  

3 
Here the same notation will be used for the estimated and theoretical 

values. The above formulae may be applied just as well to the estimated 

covariances and the quantities $(.,.),p(.,.) derived by C7.2.1-3) will be 

estimates of the partial regression and correlation coefficients. 

The standard method proceeds by considering the two sequences of 

coefficients CBox and Jenkins, 1970, p.64), 

ph = pCXn
,Xn-h) 
	

Oa = 0,1,2,...) 

hh, X  n-h n-1 n-2' 	n-h-1-1) ;X 	,X 	...X = 0,1,2,...) 	(7.2.5) 

The reason for studying the sequence (Phh  is essentially that, if the 

process {Xn
} is generated by a linear autoregressive process giving X 

in terms of X
n-1'

...X
n-p 

only, plus an additive input, then, for any input 

distribution, theoretically 

0 	> pl.  

The problem of deciding on the number of terms to fit in a linear auto-

regressive process is analogous to the problem of deciding which set of 

independent variables to include in a multiple regression situation (Box 

and Jenkins, 1970, p.64). Considering the set of partial correlation 

coefficients (7.2.5) is really a short-cut to considering more extensive 

sets of coefficients 

e.g. 	p(x n  ,x n-  ;Xn-1,..Xn-q 
	34. h = qt1,qt2,...1 

Or 	PCX ,X 	iX 	. ) (i 	> 0; 	= 1,2,3,...; 
n n-h n-i

1 	n-a. 	1 
h / i1 	). 1  2' 	q 

These last coefficients give (by their square) the value of including the 

term x
n-h 

into an existing prediction formula for Xn 
in terms of 

Xn-i ...Xn-i . 
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Having put the problem into a regression-like situation it is natural 

to consider introducing polynomial type terms into the prediction equations 

and this is likely to be appropriate if the process is a non-linear 

autoregressive.process. Clearly terms other than polynomials can be 

considered. Including polynomial terms in the above procedure is the 

same as considering prediction formula of the type 

Xn =c+ 1x +...+ X 	+y X2 +y x X +...+y X2 + n-1 	p n-p 	11 n-1 	12 n-1 n-2 	qg n-q 

(7.2,6) 

and, intuitively at least, such predictors would be expected to perform. 

well if the estimated autoregression function (the right-hand side of 

(7.2.6)) is close to the true function for values of (X 	,X 	...) 

	

n-1 n-2' 	• 
which occur most often. Clearly it is perfectly, respectable to fit a 

polynomial predictor even though a process with such an autoregression 

function would be non-stationary. 

It would be possible to decide which subset of a number of lagged 

linear and polynomial terms to include in the prediction formula by the 

standard iterative procedures of stepwise regression. However in this 

time-series context it may be reasonable to suppose that if a term 

Xn-q appears in the prediction equation then so should all of 

Xn-1"—Xn-q+1' or it may be that an equation containing only terms 
linear in the series values is to be preferred to one containing non-

linear terms. Also a cubic term in a lagged variable would probably not 

be-  included unless the same variable appeared as linear and quadratic 

terms as well. In any case, as far as the prediction mean square error 

is concerned, the value of including a term into, or excluding a term 

from, a prediction equation is given by the corresponding partial 

correlation coefficient or, equivalently (by 7.2.4), by a pair of partial 

error variances. This would mean considering partial correlation 

coefficients such as 

2 v 	v  
CXn'- -1;  

2 
1"  

	

pCX ,X3 - X 	,X 	1.—X 	,x  n n-1' n-1 n-2n-qn-1 

2 ...Xn-q)  p(Xn,X:11 -2 ;Xn-1,Xn- 
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or, starting from a non-linear predictor, 

2 	3 
P(X ,X 	; X 	,X 	,X 	

)
, 

n n- n-1 n-1 n-1 

P(X 0X 	• X 	,X
2 

,X 	X n n-3' n-1 n-1 n-1' n-2 

Two points concerned with the above calculations are, firstly, that 

when sample values are used for the above procedure it would usually be 

necessary to adjust the estimates of the prediction variances in the 

usual way to take account of the number of parameters fitted. Secondly 

the estimates of the parameters (i.e. the estimated regression coefficients) 

are not exactly those which would be obtained by the least squares method 

(Anderson, 1971, §5.4). 
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MULTIDIMENSIONAL PROCESSES 

8.1 Introduction  

In earlier chapters one dimensional processes have been considered. 

Here the same methods are applied to multidimensional processes to enable 

properties of their stationary distributions to be calculated. 

Let the process {XII} taking values in a d-dimensional vector space 

be defined by 

X4+1 = X(Xn) + Zn+1 
	Oa = 	-1,0,1,...) 	(8.1.1) 

where AC-) is a d-dimensional vector-valued function of a d-dimensional 

vector variable and where {Z
n} is a sequence of independent and identically 

distributed d-dimensional vector-valued random variables. The, components 

of each Z
n-vector need not be independent amongst themselves. Much of the 

discussion of stationarity in Chapter 2 applies also to multidimensional 

processes so that conditions for the existence of stationary processes 

with the above representation can be obtained. 

Analogues of the methods suggested in Chapter 3 can obviously be 

developed but here only the generalisation of the successful algorithm 

Obtained by varying the autoregression function is given. There are 

several ways in which a generalisation of the family of autoregressive 

processes (4.1.6) may be introduced, for it would be possible to introduce 

a separate parameter for each dimension. However it seems simplest to 

work with just a single parameter, and this is done. This may be 

inappropriate if some dimensions of the autoregression function are 

exactly linear. 

Considering the values of the process as column vectors, a possible 

family of autoregression functions is 

p(x;0) = a + B'x + B[A(x) - a - B'xJ, 

where a is an arbitrary but fixed d-dimensional column vector and B is 

a dxd matrix, arbitrary excepting that the initial process (corresponding 

to 	0), 

Xn+1 (0) = a + B'X
n
(0) + Z

n+1 
	(n = 	-1,0,1,...) 
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should be stationary: for well behaved distributions this would usually 

imply simply the condition 'deb BI < 1. Properties of the initial 

stationary distribution can be found using characteristic functions. 

If 80  (s), (1)Z 
 Cs) are the characteristic functions of the initial 

stationary distribution (of {XII(0)}1 and of the input distribution 

respectively, where s is a d-dimensional vector variable, then 

80(s) = kleXPCis'Xn+1  Co))} = E{exp(is'a + is
I BT Xn(0) + is'Zn+ )1 

= exp { 
	

} 6 0 OBs14)Z  Cs1 

CO 

= exp {la' (I-13)-151 n ,z(Brs)  

r=0 

in exactly the same way as for the one dimensional processes. Even for a 

normally distributed input it does not seem possible to evaluate this in 

a simple form for general B (Anderson, 1971, p.181). If the covariance 

matrix of the input distribution (whether normal or not) is C, that of 
co 

the initial linear process is E B'rC Br. 
r=0 

For the general choice of B it is possible to derive direct 

analogues of formulae (4.4.1-6) giving the terms in an expansion in 

powers of 13 of the stationary characteristic functions 4(s;) of the 

processes 

X
n+1 	

= a + Ri xn() + a.1 X(Xn()) - a - B'Xn(a)1 	Zn1 (n = . . -1,0,1,...). 

08.1.2) 

The derivation is not given here but the formula can be found in exactly 

the same way as for the one-dimensional processes. Using the notation 

introduced in the next section this can be done reasonably simply. 



178 

8.2 Vector notation  

The following notation will he used. For a real or complex one 

dimensional function f of a vector variable x = Cx...x
dl' and a 

vector r of integers, r = (ri,...rdl
1 
 Cri > 0), define the symbol for 

the derivative 

r
1d ,r 	a 

2--- f (x)   fcxls...xd DX rd 
axil 

r 
l Dx 2 	.3x 1 2 . d 

For a vector-values function g(x) = Cgi(x), g2(x),...gd(x))' of a vector 

variable define, with r as above, 

,r Dr g(x) = r g1(x)  ' 
ax  ax 	ax 

(x)}: 

Define factorial and combinatorial coefficients for vectors of integers 

n  = Cn1"..nd)', r  = Crl,'.'rd)', by 

n! =n1 ..nd! , 

n; 

( 

	na 

 r1  

l) (

r2  

2)...(

rd 

 
(n-r)".r: 

 

n :11 '...n ' 1 2' d" 

  

  

• 

 

 

On -r )!...(n -r )1.r 	..r 11 	dill'. 	d' 

  

Define for vectors x = 	r = (ri,...rd)' the powers 

 

r
1 
 r2 	rd d r. 

= x x2 2 ''' xd = 	H x' i=1 1  

411dforniatricesPi=ia-lj 1),M = {M..}, 

  

m
dd 

	mi, 
j 

= amllam 12 II 	add 
= 	a. . 

11 12 	ij i,j=1 
(8.2.1) 



aq  
F(Ax) 

ax(1  

R1 
AR 	F (ui 

R! 	au
R1 

R'1=q u=Ax 
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Since for scalar a and vector x, 

(ax) r = Caxl 
r • rd 	

r1t.+rd r axd) = a 	x , 

it is natural to define ar  = a - 	s-4  for r = Cr11...rd1 1  and a 

scalar. It follows from the above definition that.xn= 
xmill 

where 

x,m,n have the same dimension and x is scalar. 

The following formulae can be shown to hold. Here j and q are 
d-dimensional vectors of integers, j1  is a scalar integer, A is a pxd 

matrix, r is a p-dimensional vector of integers and x is a d-dimensional 

(continuous valued) vector. 

aq j  
X = 

ax { j!  
(j-q)! 

(j > q) ,  

(otherwise). 

 

(at x)j1  = 

1' 	q 	j 1-q'l 

(j -q11): 
a a'x) (j1  > 

ax 

 

(otherwise) 

aq  
) r 	5.1 	r: 

AR CM) 
r-Rl 

ax 

This summation is over all pxd matrices R of non-negative integers satisfying 

the constraints R'l = q, R1 < r. Here and elsewhere 1 represents a vector 
of ones of suitable dimension for multiplication where it occurs. 

Inequalities between vectors are taken to hold coordinate by coordinate. 

Similarly if F(u) is a function of a p-dimensional variable 

R! (r-R1)! 

It may be noted that (9.2.11 implies that, for the identity matrix I 

and the matrix 0 composed entirely of zeroes, 

1 (if R is diagonal), 

(otherwise), 
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1 	 (R = ) , 
0R 	

O 	(otherwise) . 

For the "ordinary" scalar power it is natural to take 

I 	 Ga = 0), 

(otherwise) 

and for any matrix A, AO = I. 

For vectors m,n, the symbol 

n n
1  n2 nd 

E 	will mean 	E 	E 	... 	E 
m=0 	m1=0 m2=0 	m 

d 
 =0 

E will mean E 	E 
m=0 	m1=0 m2=0 

Then it may be checked that, for a function h (possibly vector valued) 

of a d-dimensional vector, 

h (x) 
r r 
X
, a --; 

r=0 " aur  

Also, for the functions f,g, one of which is scalar valued, the derivative 

of the product h = fg is given by 

n 	n 	r 	,n -r , 
h(x) = 	(n) 	f(x) 	tg(x), 

3x 	r r r 3x
n-r  

=0 	Dx 

where n and r have the same dimension as the variable x. 

For two vectors a,t the following expansion holds 

a rt  r exp{aI t} = E 
r! r=0 

3 exp{a7t) = ar  exp{a't}. 
atr 

u=0 
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Integrals involving a vector variable x will be denoted by 

C 	)dx = ff 	f  c Idx dx ....dx 1 2 	d 

and in the following these integrals will always be taken over the entire 

d-dimensional space. For a probability distribution function F(x) of a 

d-dimensional variable, the characteristic function is given by 

clqs) = f exp{is'x} dF(x), 

where s is a d-dimensional vector variable, and the inversion formula 

f f(x 	1 
) 	expi—isIx14) Cs) ds 

(2,7)
d j  

ad 
often holds if F(x) has the density f (x) = F(1)(x)   F(x 	x) ax1...xd 	1" . d 

8.3 Expansions for distributional quantities  

8.3.1 On writing A(x) for the vector function of vector variable x 

defined by 

A(x) = X(x) - a - 131 x, 

the equations that the characteristic function ¢(s;f3) of the process 

{Xn(0), given by (8.1.2), must satisfy are 

¢(e;(3) 	f eis'xdF(x;6) 

= 	Cs) fexp{is'(a B'x 	aA(x))1(1F(x;13). 	C8.3.1) 

Then making an expansion of (1)(s;6) similar to (4.4.1), namely 

c°  N 
¢(s;f3) = 00(s) + E P, 8N(s) 

N=1 

the following formulae, defining the coefficient functions 8N(s), can be 

shown to satisfy C8.3.1): 
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0
N
(s) = 	E 	E 	(iB s)j T(N,j) (B2,1-1 s)p (s) 

1<.j11<N Z=0 

T
(N,j 

(s) = 	
1  

f L.(u)eOs-uldu 
j:(27 )d 	3 	N-j 11 

where 

a (s) = exp{ial (I-8) ls} 	(P z(Brs) 
r--0 

Q 
P (s) = 11exp{ia'Brs}q5z(BI's) 

r=0 

and 

= 1,2,3,...) 

(8.3.2) 

(.1 < j'l < N), 

= 0,1,2,...) 

L.Cu) = fAj(x)eluxdx 
	(j'l > 1) . 

Here the quantities N,Q andr are scalar integers, whereas j is a vector of 

integers. For example T(N,j) Cs) may be written more fully as 

T
(N,j 

(s) = T ,s2 ,...sd) < 

As before, important simplifications take place when B is chosen to 

have special values. There appear to be two distinct cases when this 

happens. In the first B is identically zero and in the second B is non-

zero, but such that the powers BA are zero for 2. > Z, > 1 say. In either 

case the infinite summation in (8.3.2) reduces to a finite summation. 

Only the first case will be treated here although the second might also 

be useful. 

Exactly as in section 4.4.5 the above formulae can be reduced to 

the following when B = 0. 

“s;f3) = (s)hCs0), 

co 

where h(s0) = 1 + E 	E 	e(is) 
N=1 1<j'l<N 

(N,j) 

 

(8.3.3) 

P (0) 
3 

 

U11 = N) 

 

T CN,j - E 	T(N-j'1,n) (n) 

'1<N-i l l 
(3. < j '1 <N) 

 



exp{it'a}4)z  (t)eo,k_i(s,at) .c. 

e 0,k(s,t) 

8(s+t) (k 
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p
3
(n) 	1 	an 

 
ri f CA (x+y) } dF0 tx) ] y=0 -- 

 ay 
(8.3.4) 

Here 80  (s)= exptis' 04Z  Cal and F0 (x) = z (x-a) - 
As in section 4.5.2, formulae for the joint characteristic function 

(f)k  (,s,t;13) of (XII  (E3) ,Xn+k (8) ) can be obtained. In the general case 
(3. 	0), 

k (s,t;) = 60,k  (s,t) + E. B N,k (s,t) 
N=1 

where 

(s t) = ON (s+t) 	(N > 1) 

eN,k (s,t) 
j 	

(s,Bt) } (N ,k > 1) 'a4) , 	 (it) Pk  = eit 
	

Z (t) ( 13N,k-1(sHt) + 	E 
1<j'l<N 

(N,j) 	1  Pic 	(set) - d  jr  Li  Cu) ON_i 	(s , t-u) du 
j! (27r) 

j '1 < N;  k> 1 

When B = 0, the formulae corresponding to (4.5.12-3) are 

4)0,s,t;f3) = 00(s)00 (t) h(s;f3) + E 	E 	aNuejT(N,j)csq 
N=1 1.1j' 1<N 



(t > 2) 

PCO) 	E 	(is)nT(N-j'1,n) + 	z 	T(N 
1
-j'1,n) (s)p(n) 

3 	 k-  
1<n'l<N-j'l 	1<n'l<N-j 11 

(j '1 = N) P(0) 
3 
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Q

1<n'l<N-j'l 

E3  

. (0) CO,$) 	 0 

(H-j' 1,n) n 

q=0 
IN 	ci flCis) Q. 1040,s1 	Cl < j'l < NI 

11 = N) 

Ot = 1) , 

T(N,j)(s)= 

< j'l < N) 

Here 

Qj _y,$) j!Eics) f 
eis')C j(x+y)dro(x) 

O 

n 
(n) 	

a 
and 	. (0,$) = 	Q.(y,$) Q 	n 

ay 

Clearly the methods of section 4.7 could also be employed and it 

follows that h(s;0) given by (8.3.3) is the stationary characteristic 

function of the multidimensional process given by 

Yn+1(3)  = °A{  Yn(S) + a + z11.4.1} 
	(n = 	-1,0,1,...) 	(8.3.5) 

= 0.11{ xn (a) }. 

8.3.2 • From the above formulae, expressions for moments and joint moments 

of the stationary processes can be derived, just as in Chapter 5. For the 

Choice B = 0, the following hold. 

r 	r2 
2 	

r, 

d 
E{Y:(0)} = E{Y 	(0)Y. 	n 	(a) ... n"4  (0)1, n,l

1 
 

= r: (r,0), 

y=0 



1 	 Cr 11 = 0) , 

E 	i3NT (N s r) 	 Cr'1 > 1) 
N=r ' 1 

h (r,O) (8.3.6) 
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where 

E{X:(B)) = r! 	• 	(0)h(c11°)  (rq) 
0 q=0 

r  r where 00(r) (s ) 	(-1) 	a 
e (..9)  

asr 0 

rn  
E{X'Q' 	XIII  (i3) } = Min! E 	E 0 LA.-9)  (0) 0 (in-q)  (0)h (P ,q) n n+k 	 0 	0 p=0 q=0 

where 

(8.3.7) 

(8.3.8) 

co 
hl(c.Z,m) 	E 	fiNT  (N,m) (Z) 

N=m' 1 

and where, for 	1 = 0, T (Ntin) (Z)  (N,m) , and for Q'1 > 1, 

Q3 	 (j '1 = N) 

min (n ,.Q) 	 = 1) 
E 	(h)T (N-j 1 ,n) (n-q, k-q) (1<j 1 < N) 

1<n ' l<N-j '1 	q=0 

T (N.j) (—Z) 
k 

O 
	

Cj '1 = N) 
(k > 2) 

P(0) T. 	 E 	T (N-j'1,2) + 	 (N-j1 1 ,n) (50 Ca) . 	 P . 3 	 k-1 	3 
:1<n'l<N-V1 	 Cl < j'1 < N) 

where T = 0 	> N-j1 1), 

Qc
n,g) 	 an+k 	1 

3 	
t  _is 	j 

j ! 	ayn s.9, 8.(s) 	A (x+y) dF0  Cx) 
y,s=0.  

and where min (n, Q) = {min (ni  , ) min (n2 , Z2) ... min (nd ,Zd) P . These are all 



 

X1(x1) + yx2 

x1 

 

 

and with F ,z2) having a degenerate second compOnent, 

< 0), 
F 	,z ) = Z 1 2-  

GZ  (z1) 
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exactly analogous with the formulae for the one-dimensional case. 

Moments and joint moments, corresponding to a choice B / 0 can be 

found from the expresSions for the characteristic functions using the 

formulae for derivatives given earlier. The expressions obtained are 

then of a form equivalent to (5.2.2) and, like these, appear impractical 

for use unless special circumstances hold. 

8.4 An Example  

In order to demonstrate the interpretation of the above notation 

consider the 2-dependent process {Xi}, assumed to be stationary, defined 

by 

= x1  (x n  ) + yX 1 
 +. Z

n+1 	(n = 	-1,0,1,...) . 	(8.4.1) x
n+1 	n-  

This can be written as a multidimensional process {CX
n,11Xn,211}  

generated by 

x
n+1,1 

= A 
n,1

) 	
YXn,2 
,+ Z

n+1 

=  X
n+1,2 	

X
n,1  

where {Zn} has the distribution function G (z) and characteristic function 

It(s), say. This process is equivalent to (8.1.1) with d = 2, X(x) given by 



1 y =0 
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Then choosing a = (a ,a2  

 A (x1  ,x2  ) = X (x1) 	ix2 	al' 42 (x1ix 	x - a2 , 

(X2 < a2), 

(x2  > a2  ). 

Also 4)z (si,s2) = *z (si) and 

80 (s1'  s2  ) = exp{i(siai  + s2a2)}ii2 (51) 

(r11r2)  
so that 8o 	(0,0) defined by (8.3. 7) is given by 

r2 (_i)1 r 
a (r1,r2 ) 	 a2 	
r1 is1a.1 8o 	(0,o) = 	 {e 	(s )1 0 	 r2:.  r 	 1 1: 	r 	Z1 	 s1  =0 Ds1  

The quantities Pin) of 0.3.4) are given by 

(nrn2) 	1 	n1+112  P. . 	= 	, 	I{ 
10 2 	31.32" nl n2 ay1 ay2  

J2  xity1)+y(x2ty2)--a 1(x1+y1-a2) dF(xx2) 

Y1=Y2=0  

= 
jl1j2!  

n 1+n 2 a f{A1  • +a1  +y1  )+ 
j1 	 j2 

- (a2  +v2  )-al 	(x1  +a1  tY1  -a2  ) 	dGZ  (x1  ) n l 	n2 
ul,2 Y1 
, 

y1 
 =0 

n2 

   

  

)+Ya2-al j21(il-n2)! nl aY 

   

j1  	n2 ,(n1,0) 

(j1-n2)! 	.ja.-n2rj2 < 31) 

0 	 (otherwise). 
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Clq The formula for T ,j1  now is 

(N,j1,j2)  T  

(0,01 
71,72 

 

= N) , 

 

(N-j -j ,n1,n ) (n1,n2) 
T 

12 

 

 

1<n +n <N-j j 1 2— 1 2 

(1 ' ji+j2 ' N) . 

and h(x'0)  given by (_8.3.6) is 

(r r 0) 
h l' 2" 

1 

0'1 	a N 
Og,r1ir2) 

T 

Crl,r2  = 0) , 

(r1  +r2  > 1) 

N=r1+r2 

It may be noted that moments of the process (.8.4.1) can be obtained 

either from the moments of the first component process {Xn,1(1)}  or from 

the moments of the transformed process {Yn,2(1)} of (8.3.5), 

n+1,2 	= (3 A { n,1(a),X11,2(01 = I3{Xn,1 	- a2}. 

The first method leads to 

r1 	1 	(r 	,0) (4 ,0,0,0) 
E{Xn  = E{X 4(1)} = rl! 	E 	

00 1 l h 1  
q1=0 

while the second leads to 

r2 	r2 	(O,r2,0,0) 
E{(Xn  - a2) } = E{Y n,2  (1) } = r2

ili 

where the numbers h are formed with = 1. It is not obvious that these 

two expressions are equivalent. From the paixwise moments of the two 

dimensional process, given by (8.3.8), it is possible to find any moments 

of the form 

ZAmm 1 2 1 2 E xn xn-1xn+kxn+k-1} 	(21,22,m1, ni > 0; k > 1) 

for the process (X,1} given by ,(8.4.1). 
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