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ABSTRACT 

The present work was planned in cider to investigate 

the stability of free-convection boundary layer flows along 

an isothermal vertical plate. 

The disturbance differential equations which describe 

the stability of free-convection boundary layer flows were 

derived based upon linear stability theory and on the 

introduction of a perturbation stream function and a 

perturbation temperature function. The disturbance 

equations were rewritten in dimensionless form by the 

introduction of dimensionless variables. 

Quasilinearization and trial-and-error techniques 

were used to solve the boundary value problem associated 

with the solution of the disturbance equations for a range 

of Prandtl numbers 0.733 to 1000.0 and for a range of 

Grashof numbers 2 x 104  to 108. Neutral stability curves 

were obtained for each Prandtl number. 

The unknown boundary conditions and eigenvalues were 

determined with an accuracy of four decimal places. In 

order to obtain this accuracy the size of the integration 

step length, the value of the convergence criterion and the 

effective boundary layer thickness were optimized. 

Comparison of the neutral stability curves for different 

Prandtl numbers showed that the value of the Prandtl number 

influences the minimum critical value of the Grashof number. 

As the Prandtl number was increased it was observed that the 

minimum critical value of the Grashof number decreased. This 

effect was more pronounced for Prandtl numbers in the range 
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0.733 to 6.7 than for the range 6.7 to 1000.0. 

A kinetic energy balance equation for the disturbed 

motion was solved in order to find the importance of the 

buoyancy term in the disturbance differential equations. 

The solutions of this equation showed that omission of the 

temperature fluctuations for the purpose of solving the 

disturbance differential equations for Prandtl numbers of 

0.733 and 1.0 may be justified for wave numbers greater than 

0.35 but that for Prandtl numbers of 6.7 and greater the 

temperature fluctuations could not be omitted. 

Comparison of the phase velocities corresponding to the 

minimum critical Grashof numbers, with the maximum velocities 

of the basic laminar flows showed that the phase velocities 

of the disturbance were greater than maximum velocities of 

the basic laminar flows, consequently asymptotic methods 

cannot provide a reliable value of the minimum critical 

Grashof number. 

The results of the present work were in good agreement 

with experimental results obtained by other workers who 

studied artificially induced disturbances inside the boundary 

layer. 
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INTRODUCTION 
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1. INTRODUCTION  

Free-convective heat transfer manifests itself in different 

situations in technology and in the natural world around us 

and it becomes an important mode of heat transfer in many 

situations in which a hot body is immersed in a quiescent or 

slowly moving flow, such as a heated plate or cylinder in a 

stationary atmosphere. 

In free-convective heat transfer, temperature gradients 

in the fluid give rise to density variations and, hence, to 

fluid motion. Similar types of flow occur in rotating 

machinery, since centrifugal forces are proportional to fluid 

density and play a role analogous to that of gravity. 

The rate of heat transfer in a free convective situation 

depends on the nature of the motion of a layer of fluid adjacent 

to the body. The motion can be either laminar or turbulent. 

In practice, under certain conditions which favour the growth 

of small perturbations imposed on the basic laminar free-

convective flow, the fluid motion becomes unstable and transi-

tion from laminar to turbulent flow occurs. This transition 

has been studied experimentally as well as theoretically by 

many investigators throughout the years. These studies will 

be considered in detail in chapter 2 of this work. 

Experimentally, the instability of free-convective flow 

can be studied by the method of small perturbations. In this 

method a disturbance with a certain frequency is imposed on 

the basic laminar flow which is examined to see whether the 

disturbance is mr71ificd or dmrpcd out. This process of 

amplification or suppression can be described mathematically 
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by defining such a disturbance in a mathematical form and 

by inserting it into the equations which govern the disturbed 

basic flow. The growth or decay of the perturbation can then 

be determined. 

From the earliest studies of problems of instability 

[1,2,3,4] it can be concluded that the linearized small-

perturbation theory used for the prediction of transition 

from laminar to turbulent flow in forced convection is also 

applicable to free-convective flow [5,6]. 

The fundamental assumption that is made is that a 

perturbation imposed on the basic laminar flow is small and 

two-dimensional. It is evident [6,7] that this assumption is 

only true in the early stages of the transition process. 

Later, when the disturbance amplifies and becomes more 

complicated, three-dimensional effects emerge. 

In free-convective flow an imposed perturbation disturbs 

both the temperature and velocity distributions, furthermore, 

a 	temperature disturbance may amplify a velocity disturbance 

through density changes. 

Mathematically such coupling means that the equations 

expressing the velocity and temperature fluctuations must be 

solved simultaneously. 

A variety of methods have been used for solving disturbance 

differential equations for free-convection boundary layer 

flows. In the earliest work [8,9,10] the temperature fluctua-

tions were assumed to be negligible. This assumption reduced 

the disturbance differential equations for free-convection 

boundary layers to the ordinary form of the Orr-Sommerfeld 
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equation, which was solved by an asymptotic technique. 

Solutions have been obtained in the form of power series 

expanded about the location of critical layers in the boundary 

layers at which the phase velocity of the disturbance is 

equal to the velocity of the basic laminar flow. 

The theoretical results obtained from the asymptotic 

method were found to be incompatible with the existing 

experimental data. This shortcoming in the asymptotic 

method resulted in the adoption of a numerical approach to 

the problem. 

A number of difficulties are associated with the numerical 

techniques used for solving the problem of the instability of 

free-convection boundary layer flows [11-12]. However, the 

availability of high capacity computers invites further 

consideration of problem, hence the present interest in this 

work. 

The present work was planned in order to investigate the 

stability of free-convection boundary layer flows along an 

isothermal vertical plate. A quasilinearization technique 

and a trial-and-error technique were used to solve the 

boundary value problem associated with the solution of the 

derived disturbance differential equations covering a wide 

range of Prandtl numbers from 0.733 to 1000. 
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CHAPTER 2 

• LITERATURE SURVEY 
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2.1. Introduction  

The instability and the transition of fluid motion from 

laminar to turbulent flow in free-convection boundary layers 

has been the subject of many theoretical and experimental 

studies. 

These investigations have been mostly concerned with 

flow along flat plates and the application of linear stability 

theory to free-convection boundary layer flows. However, 

because of its complexity the instability of free-convection 

flows has received less attention than the instability of 

forced-convection flows and in most cases the effect of 

temperature fluctuations has been neglected. Also, only 

certain Prandtl numbers (Pr = 0.73 and 6.7) have been 

considered in the investigations. 

The present literature survey will be confined to 

instability studies of free-convection boundary layer flows 

along a vertical plate, although the instability of free-

convection boundary layers along inclined and curved surfaces 

will also be mentioned, whenever appropriate. 

2.2. Experimental Investigations  

The onset of turbulence in free convection boundary layers 

along a flat plate occurs when the Grashof number, based on the 

length in the direction of flow, has reached a critical value. 

The critical value of the Grashof number has not been obtained 

unambiguously by experiment. It has been found experimentally 

that a transition region exists in which the laminar flow starts 

to become turbulent and that turbulence develops gradually 
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with increasing distance from the leading edge. Among the 

earliest experimental studies of the transition from laminar 

flow to turbulence ir1 free convection boundary layers over 

heated vertical flat plates, the works of Griffiths and Davis 

[13], Schmidt and Beckman [14], Schmidt and Forsch [15], 

Herman [16-17], Saunders [18-19],and Eigenson [20) show that 

for air and water the transition region extends approximately 

from a Grashof number of 108 to 1010. 

Eckert and Soehnghen [21] gave the first detailed 

description of the transition process in the free-convection 

boundary layer of air along a heated vertical cylinder. They 

observed that at a certain value of the Grashof number, the 

flow in the boundary layer began to develop a wavy motion. 

This motion then rolled up and finally broke up, causing the 

boundary layer to become turbulent. These observations were 

made using a Mach-Zehnder interferometer. The critical 

Grashof number at which waves first appeared within the 

boundary layer was reported to be 4 x 108. Their observations 

were restricted only to a two-dimensional picture, hence only 

a limited understanding of the transition process was obtained. 

Fujii [22] studied the transition of free convection 

boundary layers of ethyleneglycol and water along a vertical 

cylinder. He made his observations using the schlieren method 

and the naked eye with small aluminium particles suspended in 

the fluid. lie reported that at a Rayleigh number (Gr x Pr) of 

4 x 10
9 

the laminar boundary layer became unstable and changed 

to a vortex street layer. Then vortices in the vortex street 

curled over and broke into a wavy motion and turbulence appeared 
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at a Rayleigh number of about 1010. He noted that the local 

heat transfer coefficients were scarcely affected by the 

development of the vortex street in the boundary layer, but 

were discontinuously increased by the transition to turbulent 

flow. 

Eckert, Hartnett and Irvine [23] used a smoke-trace 

technique to study the transition region in air adjacent to 

an isothermal vertical plate. Vortex formation and break up 

were studied visually and recorded in motion pictures. They 

first observed a two-dimensional wavy motion in the range of 

Grashof numbers of 0.05 x 109  to 6.3 x 109. Later, further 

along the plate, this wavy motion rolled up and eventually broke 

up at a Grashof number of 7.3 x 109. 

Szewczyk [10] used a dye injection technique to study 

the stability and transition of free-convection boundary layers. 

He performed his experiments with a vertical heated plate in 

a water tank. The temperature profile along the plate was 

determined from thermocouples imbedded in the plate. He 

neglected the effect of the small temperature gradient near 

the leading edge of the plate and observed that the dye 

streaks were at first continuous but that with increasing 

height along the plate they began to take on a wave-form 

before rolling up to form vortices. The vortices which at 

first appeared to be mainly two-dimensional, now began to take 

on some three-dimensional character. Several dye streaks with 

the same character joined together and created a vortex loop. 

Finally the vortex loop burst into hi h1 random notion. The 

vortices developed on both sides of the region of maximum 
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velocity within the boundary layer. The outer region far 

away from the surface of the plate was seen to become 

turbulent, while the ::low close to the surface remained 

fairly laminar. Szewczyk suggested that this occurrence 

must result from the strong instability caused by the point 

of inflection in the velocity profile outside the region of 

maximum velocity. From the above mentioned observations, 

he concluded that the transition zone in a free-convection 

boundary layer possesses a double-row vortex system and that 

the instability of the outer layer sets in first and impresses 

its effect on the inner layer and thus controls the development 

of the flow. 

Tritton [24] used a quartz fibre anemometer to study the 

. transition from laminar to turbulent flow of free-convection 

boundary layer flows on 	heated vertical and inclined plates 

surrounded by air. He reported that the quartz fibre 

anemometer failed to detect wave-like motion. However he 

stated that the transition region for a vertical isothermal 

plate started at aGrashof number of about 9 x 106, which was 

much lower than the values previously reported by other 

workers. The region of fully turbulent flow was reached at 

a Grashof number of about 1.5 x 109. 

The experimental investigations mentioned above were 

concerned with the onset of naturally occurring instability. 

The measured values of the Grashof number at the onset of 

transition were considerably different from those predicted 

by theoretical means. Consequently the available experimental 

data were not able to confirm either the applicability of linear 
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stability theory or the importance of temperature-velocity 

coupling in free-convection boundary layer flows. 

Polymeropoulos and Gebhart [5], in order to explain the 

discrepancy between experimental and theoretical results, 

reported that in the study of naturally occurring instability, 

the natural disturbances are too small to be detected at their 

initial stages of amplification and that these disturbances 

must be amplified within the boundary layer until they become 

large enough to be observed. In order to overcome this 

problem, they used the method of artificially-induced 

disturbances inside the boundary layer. This method had been applie 

successfully for forced convection flow over a flat plate by 

Schubauer and Skramstad [4]. In this method the oscillations 

are large enough to be detected and their wave number can be 

controlled. The results of an experimental study of the . 

behaviour of artificial disturbances produced by an oscillating 

ribbon in the free-convection boundary layer over a vertical.  

plate with uniform heat flux in pressurized nitrogen were 

presented in their paper. The boundary layer was observed 

using a Mach-Zehnder interferometer. Their results for the 

location of the neutral stability curve were in good agreement 

with the available theoretical results based on linear stability 

theory for air. 

Colak-Antic [7] studied the instability of artificially 

induced disturbances in free-convection boundary layer flows 

in air and in water over a vertical isothermal plate. The 

disturancosc‘,3.-0 introduced by a thin wire which was placed 

in the boundary layer and pulsed with an electrical signal. 



32 

A hot wire anemometer was used for the measurement of the 

disturbed velocity and for the determination of the 

amplification rates of the disturbances. Qualitative 

evidence was obtained for the existence of a temperature-

coupling effect at low Grashof and low wave numbers, but no 

results were given for the region in which the flow was 

neutrally stable. 

Dring and Gebhart [25] investigated experimentally the 

nature of disturbance amplification in the laminar free-

convection boundary layer on a vertical plate with uniform 

heat flux. The liquid used in the experiments was a silicone 

fluid (hexamethyldisiloxane). A hot-wire anemometer was used 

to obtain the amplitude and phase profiles of the disturbance 

velocities and a Mach-Zehnder interferometer was used to 

obtain the amplitude and phase profiles of the disturbances 

in the temperature field, the results of this work were in 

good agreement with linear stability theory. Dring and 

Gebhart also measured the amplification rate and disturbance 

amplitude growth and found that their measurements supported 

the hypothesis that natural disturbances arise from the 

frequencies at which the disturbances are amplified the most, 

rather than from the frequency at which disturbances first 

begin. 

Cheeswright [26] carried out an experimental study of • 

turbulent free-convection from a vertical plate. The first 

velocity fluctuation appeared in the boundary layer at 

Grof n=bcr ol o.1=t 	x 109. licnce, this Grashof number 

was considered to correspond to the starting point of transition. 



33 

There was no significant change in the temperature 

distribution within the boundary layer or in the local heat 

transfer rate until a Grashof number of 5 x 109 was reached. 

Major changes in the heat transfer rate and in the temperature 

distribution ended when the Grashof number reached a value 

of 8 x 109. Further changes in the heat - transfer rate and 

in the characteristics of the turbulent fluctuations were 

apparent at a Grashof number of 2 x 1010. These changes were 

considered by Cheeswright to be the end of the transition 

region because for Gr > 2 x 10
10 

the amplitude of the tempera-

ture fluctuations remained approximately constant. 

Vliet and Liu [27] studied the turbulent free convection 

boundary layer associated with a vertical plate immersed in 

water. The heat flux from the plate was uniform. They 

observed that the transition from laminar to turbulent flow 

occurred in the range 1012 < Ra < 10
14 where Ra = Pr.Grx  .Nu x' 

They concluded that the vortex street layer in the transition 

region decayed into a longitudinal-vortex-type structure and 

that the flow arising from a plate with uniform heat flux is 

more stable than that associated with an isothermal plate. 

2.3. Theoretical'  Studies  

The equations which govern the stability of free-

convection boundary layer flows along heated plates are 

equivalent to a complex system of linear differential 

equations of the sixth order involving two eigenvalues and two 

matching parameters. These equations, which are based upon 

linear stability theory, were first formulated by Plapp [8-9] 
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for the case of an inclined plate. He neglected the coupling 

between velocity and temperature disturbances and obtained 

the neutral stability curve for. free-convective heat transfer 

from a vertical isothermal wall to air (Pr = 0.72). His 

solution was based on an asymptotic technique which used a 

polynomial expression for the velocity of the basic laminar 

free convection boundary layer flow. 

The equations of Plapp were later rederived by 

Szewczyk [10] for the case of a vertical plate. Szewczyk 

made a theoretical study of the stability of the free-convection 

boundary layer arising from an isothermal plate at a Prandtl 

number of 10. He used an asymptotic technique in which 

expansions were made about both critical layers, although the 

coupling between velocity and temperature fluctuations was 

neglected. His calculations, based on the inner critical layer, 

showed that the flow in the boundary layer became turbulent at 

a value of G = 3.46 x 105, where G = 21/Z(Gr)1/4 	These results 

were significantly different from experimental data. He also 

carried out the instability calculation for the outer critical 

layer and found that the value of the critical Grashof number 

was reduced by a factor of 103. From these calculations he 

concluded that the instability arising from the outer critical 

layer is predominant and sets in well in advance of the 

onset of any possible instability due to the'inner critical 

layer. 

However, the results obtained by the use of asymptotic 

techniques were found to be incompatible with existing 

experimental data. This shortcoming of asymptotic techniques 
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and computational limitations caused a delay in the further 

treatment of the instability of free-convection boundary layer 

flows until very large digital computers becam3 available. 

Kurtz and Crandall [28] applied a finite-difference 

technique and integrated the uncoupled disturbance differential 

equationsusing a digital computer. The first numerical 

solutions were obtained for a Prandtl number of 0.733 for the 

case of an isothermal vertical plate. The results were 

significantly different from those obtained by Plapp [8-9]. 

Sparrow, Tsou and Kurtz [29] studied the effect of Prandtl 

number on the stability characteristics of the laminar free-

convection boundary layer adjacent to an isothermal vertical 

plate. The temperature-velocity coupling was neglected and 

numerical solutions were obtained, using the method developed 

by Kurtz and Crandall [28], for Prandtl numbers in the range 

of 0.733 to 7.0. They also obtained the following empirical 

relationship for the prediction of the critical Grashof 

number: 

Gr = Pr
3 Re/2/Y - fmax°16 

where 

Re = U. 6/v 

Umax is the maximum velocity 

is the boundary layer thickness 

v 	is the kinematic viscosity 

f'
max 

is the dimensionless maximum velocity defined as 

f' max 
	2v Gr 
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116  is the value of the similarity variable which 

corresponds to the condition U/Umax  = .01. 

Y GrPr 1/4 n is the similarity variable defined as n = x( 4  ) 

They concluded that the above relationship is valid for Pr > 5 

and as the Prandtl number tends to infinity the critical 

Grashof number varies as cube of the Prandtl number. 

In the theoretical studies which have been described, 

the velocity-temperature coupling was neglected. The work of 

Nachtsheim [11] was the first study which included coupling 

between velocity and temperature disturbances. He solved the 

coupled disturbance differential equations for free-convection 

boundary layer flows over a vertical isothermal pate. His 

calculations were carried out for Prandtl numbers of 0.733 (air) 

and 6.7 (water). The solutions were obtained by a numerical 

step-by-step forward integration procedure. The eigenvalues 

and missing boundary conditions were guessed and the boundary-

value problem was treated as an initial value problem for 

which not all the proper starting values were known but which 

had to satisfy conditions at the outer edge of the boundary layer. 

An analytical asymptotic solution of the disturbance differential 

equations was obtained for a large distance from the plate. This 

solution was then employed to provide boundary conditions at the 

outer edge of the boundary layer. The Newton-Raphson second-order 

process was used to obtain corrections to the eigenvalues and the 

starting values in order to satisfy the boundary conditions. 

Nachtsheim reported that for a Prandtl number of 6.7 and wave 

htii:11)CY:S great Jr ti1 Jfl 0.75 nu.,,icrical 	fulled to trcico the 

neutral stability curve, because the values of eigenfunctions at 
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the edge of the boundary layer changed markedly with each run 

even though the eigenvalues and the starting values were only 

changing in the eighth decimal place. By comarison of the 

coupled and uncoupled solutions at the same Prandtl number 

he found that coupling had a first-order destabilizing 

effect on the basic laminar free convection flow. However 

his values of the critical Grashof number were lower than 

the Grashof number at which finite disturbances had been 

observed experimentally. 

Knowles and Gebhart [30] investigated the effect of a 

thermal capacity coupling between the fluid and the wall on 

the instability of free-convection boundary layer flows 

along a vertical plate. They focused their attention on 

the boundary conditions for the disturbance temperatures 

and concluded that in the case of an isothermal plate with a 

large thermal capacity, the temperature disturbances must be 

zero at the surface of the plate but, on the other hand, if 

the plate possesses zero thermal capacity and has a uniform heat 

flux then the disturbances in the flux tend to zero. In 

addition they reported that as these two limiting cases 

cannot be easily attained, many practical situations lie 

between these two cases. Their calculations were carried 

out for a plate with uniform heat flux for the range of 

Prandtl numbers of 0.733 to 6.9. Solutions were also obtained 

for several values of the relative wall thermal capacity at a 

Prandtl number of 0.733. The applied numerical technique 

was similar to that used by Nachtsheim. Their results were 

in a good agreement with the existing experimental data for 

the onset of artificially occurring instability. 



38 

Hieber and Gebhart [12-31] studied the instability 

of the free-convection boundary layer flow associated with 

a vertical plate with uniform heat flux. The problem was 

solved using a numerical technique which had been employed 

by Mack [32] in his stability analysis of a compressible 

forced flow boundary layer. Hieber and Gebhart's study 

covered a range of Prandtl numbers of 0.01-100 and a large 

range of Grashof numbers dependent upon the value of 

Prandtl number. They reported that at small values of the 

Prandtl number the coupling effect can be ignored in the case 

of a plate with large thermal capacity, but that when the 

thermal capacity of the plate is small, coupling has a 

significant destabilizing effect. For moderate and large 

values of the Prandtl number, they found that a loop appeared 

in the neutral stability curve. They attributed the loop to 

the merging of two unstable modes. Their studies show that 

the velocity-temperature coupling is the predominant source of 

instability and that the stability characteristics become 

independent of the thermal capacity of plate as the Prandtl 

number tends to infinity. Using their numerical results and 

the available experimental data, they established an empirical 

correlation between the results of applying linear stability 

theory and the onset of naturally occurring instability. The 

accuracy of their results was within one decimal place. 

It may be concluded from the above literature survey that 

except for Hieber and Gebhart [12], who obtained solutions for 

a Prandtl number of 100.0, the only Prandtl numbers that.: have 

been considered in the investigations are those of air and 
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water. Unfortunately for a Prandtl number of 100.0, Hieber 

and Gebhart solved the disturbance equations for only a 

small part of the neutral stability curve. Although the 

numerical methods that were used by Nachtsheim [11] and Hieber 

and Gebhart [12] were complicated and required a lot of 

computation time, they failed to trace the neutral stability 

curves for high Prandtl numbers. Furthermore, the accuracy 

of the results of the above studies was mostly less than two 

decimal places. 

Thus, on the basis of the above study it is clear that 

since in important application the Prandtl number varies from 

10-2  in liquid metals to 104  in medium oils, changes in the 

mechanism of the onset of turbulence may be expected to 

occur over such a wide range of Prandtl numbers mainly 

because of the coupling of velocity and temperature 

fluctuation. Therefore, in any case it is essential to have 

a knowledge of the neutral stability curves for high Prandtl 

numbers in order to determine the effect of Prandtl number 

on the minimum critical value of the Grashof number and its 

corresponding values of the wave number and the phase 

velocity. In order to obtain solutions for high Prandtl 

numbers it is necessary to adopt more sophisticated numerical 

techniques. 
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CHAPTER 

THEORETICAL ANALYSIS 
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3.1. The Navier-Stokes, Continuity and Transfer Equation 

for Free-Convective Heat Transfer  

The basic differential equations from which the rate of 

heat transfer may be calculated express the physical concept 

of conservation. These equations are the momentum (Navier-

Stokes) equation, the continuity equation and the transfer 

equation. The derivations of the appropriate equations may 

be found in various standard texts [33, 34, 35, 36]. 

The equations which describe momentum and heat transfer 

in an incompressible Newtonian fluid when the heat generated 

by viscous dissipation is negligible and the only body force 

operating is that of gravity, are as follows: 

i) Navier-Stokes equation (for constant viscosity): 

DV 
p 	= p, - VP 	pV2 V 

ii) Continuity equation: 

V.V = 0 

(3.1.1) 

(3.1.2) 

iii) Energy equation (for constant thermal conductivity): 

DT_ K ,2, -  

where V is the velocity vector 

A is the gravitational vector 

p is density 

p is viscosity 

P is prosst:re 

T is temperature 

(3.1.3) 



p(V.V)V = pE - VP + 1JV2V 

V.V = 0 

(V.V)T = K V2T 
pC
P  
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C is the specific heat at constant pressure 

K is thermal conductivity 

• . by is substantial derivative and is defined as 

D 9 = 	(V.V) (3.1.4) 

For steady-state conditions, equations (3.1.1) to (3.1.3) 

may be written as: 

In free-convective flow, the fluid far from the body is 

stagnant. In the stagnant region, equation (3.1.5) becomes: 

= VPco 	 (3.1.8) 

where op denotes the value of the variable at infinity. 

By the introduction of equation (3.1.8) into equation 

(3.1.5) the following equation can be written: 

p(V.V)V = p - pcoR - VP + VP„, + UV2V 	(3.1.9) 

if it is assumed that the pressure distribution in the region 

of the free convective flow is impressed by the pressure 

distribution in the stagnant fluid, then 

V(P - Pc.) = 0 	 (3.1.10) 

and equation (3.1.9) becomes: 
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p(V.V)V = (p - p.)R + uV2V 	(3.1.11) 

The density, which is a function of temperature, may be 

expressed in terms of a Taylor's series relative to stagnant 

fluid conditions, 

ap 
P = Pco  4.  TT 

T 
(T - T.) +  	(3.1.12) 

  

thus, 

P - _  ap  
— DT Tc  

(T - T.) 	(3.1.13) 

   

the coefficient of volumetric expansion is defined by: 

1 4) 
13„ = — (a  T) 	 (3.1.14) 

P DT T. 

Hence, by substitution of equations (3.1.13) and (3.1.14) 

into equation (3.1.11) the following equation can be obtained: 

p(V.V)V = p.0.(T - T.) + pV2V 	(3.1.15) 

If it is assumed that temperature variations are not large, 

then Boussineq's approximation may be applied which enables 

the density to be treated as a constant (p = pa,) in all terms 

in the equation of motion [3.1.11] except that which arises 

because of the body force. 	For the same reason,the 

viscosity also can be considered as a constant (p = p.). 

Application of these assumptions results in the following 

equation: 

p.(V.V)V = 	- T.) + pV2V (3.1.16) 
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The boundary conditions for equations (3.1.6), (3.1.7) 

and (3.1.16) for free-convective heat transfer from an 

isothermal body immersed in a fluid can be expressed as: 

i) There is no slip of the fluid at the surface of 

solid body 

ii) The temperature is assumed to be constant at all 

points on the surface of the immersed body. 

iii) As the distance from the body increases, the velocity 

and temperature become asymptotic to their values in 

the undisturbed stagnant fluid. 

These conditions may be written as: 

At n = 0 	• 

	

V = 0, 	T = To • 

n 4 c° 	'V 4  0, 	T 4  T. 

where: 

n 	is the outward normal vector from the 

surface 

To 	is the surface temperature 

is the temperature in the stagnant fluid 

distant from the body 
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3.2. The Equations of the Instability of Free-Convection  

Boundary Layer Flows along a Vertical Isothermal Plate  

The method of small perturbations will be applied in order 

to examine whether a disturbance which satisfies the equations 

of continuity, motion and energy is amplified or damped out. 

A two-dimensional disturbance superimposed upon the basic 

laminar free-convection boundary layer flow may be expressed 

in terms of the perturbation quantities: 

cr(x,y,t), T(x,y,t) 	and P(x,y,t) 	(3.2.1) 

The instantaneous velocity components, temperature and 

pressure are: 

u = U + U (3.2.2) 

V = V V (3.2.3) 

T = T + T (3.2.4) 

p = P + P (3.2.5) 

where 

U is the vertical component of velocity of the 

basic laminar flow 

V is the horizontal component of velocity of the 

basic laminar flow 

T is temperature of the basic laminar flow 

P is pressure of the basic laminar flow 

The governing equations for a disturbed basic flow about 

a vertical place, in terms of instantaneous quantities,can be 

expressed in the coordinate system shown in figure [3.1] as 

follows: 



u a  v 73r.. = 
pc 
K V2T aT 	aT 	aT 

p 
(3.2.9) 
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DuDv 4. 	= 
Dx Dy 0 	(3.2.6) 

Du 4. 	Du 4. 	Du = - 1 	+ vV2u + g8(T - T.) 	(3.2.7) at 	Dx v  Dy 	p Dx 

Dv 	av 	av = + u 	v - 
p Dy 
!P. - vV2v (3.2.8) 

In order to simplify the problem, the basic laminar flow 

will be assumed to be a parallel flow so that the mean velocity U 

will depend only on the y-direction. Thus, 

DU = 
Dx 

0 (3.2.10) 

and from continuity equation (3.2.6): 

aV = 
Dy 
0(3.2.11) 

However, since there is no mass flux normal to the surface at 

the surface of the body then the velocity component, V, iss  

zero everywhere, 

V = 0 	 (3.2.12) 

The velocity component V is always non-zero in boundary layer 

flows [section 3.3.1] but in many cases its magnitude is 

negligible. 

These approximations can also be applied to free convection 

boundary layer flows [10] in which the dependence of the velocity 

component U on x-coordinate is much smaller than its dependence 

on the y-coordinate. 
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As far as the pressure is concerned, it will be assumed 

at first that pressure is dependent upon both the x and y 

directions. The dependence of temperature on the x-coordinate 

within the boundary layer is also small in comparison with 

its dependence on the y-coordinate, with these assumptions 

the quantities U, V, P and T may be expressed as follows: 

= U(y); 	V = 0; 	P = P(x,y); and T = T(y) 

(3.2.13) 

Hence, equations (3.2.2) to (3.2.5) may be reduced to the 

following forms: 

u = U + a 	 (3.2.14) 

.. 
v = v 	 (3.2.15) 

T = T + T 	 (3.2.16) 

P = P + P 	 (3.2.17) 

It is assumed that the variables (3.2.13) satisfy the Navier-

Stokes and energy equations, and it is required that the 

simplified variables (3.2.14) to (3.2.17) must also satisfy 

the Navier-Stokes equations. 

The superimposed fluctuating velocities (3.2.1) are taken 

to be "small" in the sense that all quadratic terms in the 

fluctuating quantities may be neglected with respect to the 

linear terms. 

The next step to be taken for further simplification is 

the use of the houndnry layer assumptions, These assumptions 

will be discussed in section (3.3.1). 
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By substitution of equations (3.2.14) to (3.2.17) into 

equations (3.2.6) to (3.2.9), the following equations can be 

written: 

i) 	Continuity: 

However, 

so that 

	

a(u + 	= 

	

ax 	ay 

DU 

0 

0 	(since U = U(y)) 

Du Dv = 
ax ay 0 	(3.2.18) 

ii) Motion equations: 

1) x-direction: 

• a m + 	(u 	u  
at 

a(IJ 	L) + 1-7 (-ag" + la)) 	. 
ax 	ay 

1 a (Pax 
   P) 	v D (U + 5) + 

a2 
 (U + .17))  + 	((T + T) — Too)  3x2 	Dy2 	' 

However,because the basic laminar flow is time independent: 

au _ 0 
also: 

aU 0 	(since U = U(y)) 

aU  u 	= 0 	(since U = U(y)) .57   

Da 
ti 	 0 	(quadratic term) TT7 



1 9P 4. \,1 2U 	uT - uT 0 S ax 	33, 

1 aP  P 

	

= 
ay 

 
0 

a —r 

ay
2 

= 0 

(3.2.22) 

(3.2.23) 

(3.2.24) 

0 	(quadratic term) 

0 	(since U = U(y)) 
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Hence, 

Du 4. 	au 4. 11. au = 	1 aP 	aP 	921-1 	92a 

U ax 	ay 	
- 	_  

at p ax p ax v(-7 
ax 	ay2) 

+ v a2U-- + ge,[(T + T) - T 	 (3.2.19) 
ay 

By application of the same procedure to the equation of motion in 

the y-direction and to the energy equation, the following equations 

can be obtained: 

2) y-direction 

• ay u  9v 
TT - u ax 

2- 	2- 
1 9P 	1 aP J.. 	9 v 	D _ 	_ 	v (--7 ' 	2) P DY 	P aY 	ax 

	ay2) (3.2.20) 

iii) Energy equation: 

g u g cf' 	K _
9  rf 	n2T  

7(Yyr 	 ) 
" p 9x 	9y 	9y 

(3.2.21) 

Because the variables in (3.2.13) satisfy the 

Navier-Stokes and energy equations, the following equations 

can be written: 
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By substitution of equations (3.2.22) to (3.2.24) into 

equations (3.2.19), (3.2.20) and (3.2.21), the governing 

disturbance partial differential equations for the instability 

of free-convection boundary layer flowsabout an isothermal 

vertical plate become: 

au uau 	au 7  77 = 	— ai; 	a2- u  + a .0 	p- 	-c  + 	u \)( 
77 --7 
vx 	ay ) 

(3.2.25) 

V

' U  
TT 9v 

= 
1 DP 	 2- 	2Ar - (9 

3x 

 v 
P y 	—) D 7  

a'i 	aT 	DTK 	D 2T  - 	2- T 71. + U ,57  + v 	(—z —z)  
p 3x ay 

(3.2.26) 

(3.2.27) 

A perturbation stream function y(x,y,t) which satisfies 

the continuity equation can be introduced: 

11,  (x,y,t) 	= 	(y)ei(ax-bt) 
	

(3.2.28) 

where ip(y) is a complex amplitude function of the disturbance, 

a  is a real positive quantity and represents the wave number of 

the disturbance, so that the wave length of the disturbance is 

21T A = --, the quantity b is a complex number which is expressed 
a 

as: 

b = br ib. 1 (3.2.29) 

where br is the circular frequency of the partial oscillation 

and bi  is an amplification factor which expresses the degree 

of amplification or damping of the disturbance. 

Another complex number can he defined as: 

c = —
b   = cr lc. 
a 

(3.2.30) 



51 

where cr  denotes the velocity of propagation of the wave in 

x-direction or the phase velocity and ci  again represents 

the degree of damping or amplification of the disturbance. 

In a similar manner a temperature perturbation may be 

expressed as: 

T(x,y,t) 	“y)ei(ax-bt) 	 (3.2.31) 

The amplitude functions of fluctuation p  and 	are assumed 

to depend only on the y-direction because it has been assumed 

that the basic laminar flow depends on the y-direction alone. 

From equation (3.2.28) the components of the perturbation 

velocity can be obtained as follows: 

u 	 @V 	i(ax-bt) = 
TT 

= Vt(y)e 

- iaV(y)ei(ax-bt) 

(3.2.32) 

(3.2.33) 

The derivatives of the components of the perturbation 

velocity and temperature with respect to time, and the x 

and y directions can be written as: 

- ibei  ax-bt)11) , (y )  

au 
ax 

2-
a u 

3X2  

iaei (ax-bt) 
4) (Y) 

= -a
2
ei(ax-bt) V'(Y) 



a2- 
T 

--7 
ax 

a 	aT 	2 i(ax-bt) 
TiF (.23-Tc) 	

-a e 	(Y) 
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2-  au 	i(ax-bt) 	i(ax-bt)fl, 
(y) 2 = 757 	T) = 	(e(Y)e 	) - e 

a; . -abei (ax-bt),p(y) 
at 

av 	a2ei (ax-bt4 (y)  
75; 

2-  
a v f avl 	a 

2 = 	(ax)  = ax 
a
2
e 

ax-bt)11)(y))  = ia3ei(ax-bt) 
gY) 

n2-  a 	. i(ax-bt4,(y))  v - 	= _ 	Niche 	
...jae.(ax-bt) Ipu(y)  

2 ri ̀ @y1 	aY ay 

at = -iabe
i(ax-bt)

E(Y) 

aT -_ jotei(ax-bt) (y)  

ay 

2-  
T 

ay 

a 	aT 
e
i(ax-bt) 

( ) 	V' (y) (3.2.34) 

By substitution of the relations (3.2.34) into the disturbance 

partial differential equations (3.2.25), (3.2.26) and (3.2.27), 

the following equations can be obtained: 

-ibe
i(ax-bt)

V(y) + Uiae
i(ax-bt) 	aU 

V(Y) 	
_ 

v 	- Y 

- I 	, 2 i(ax-bt) 	i(ax-bt) 
e 	(y) 	e 	tp"' (y) ) 	(3.2.35) 
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-abei (ax-bt) ,„
t.y) 	

u
a  2e  i(ax-bt)km. _ Y  T ay 

v(ia3ei(ax-bt)44y) laei  (ax-bt) e(y)) 
	

(3.2.36) 

(ax-b0 (+)
U  u(ictei(ax-b0)(12 

A  v 	
= K (  

-a2ei(ax-bt)(Y) 	e
i(ax-bt)

(y)) 
	

(3.2.37) 

The pressure terms in equations (3.2.35) and (3.2.36) can be 

eliminated by differentiation of equation (3.2.35) with 

respect to y and equation (3.1.36) with respect to x and by sub-

traction of the two resultant equations. Furthermore, with 

algebraic manipulation the above mentioned equations may be 

simplified to the following linear differential equations for 

the disturbed quantities. 

2 	"= iv   " 	 24 	io_ t(U-c)W-aq) - PU 	-—(e _2a0p+a0  
a 	 a 

E(U-c) - 1P(
3T
) = pCi 
	

- a
2 
 0 a

K  

p 

(3.2.38) 

(3.2.39) 

Equations (3.2.38) and (3.2.39) can be rewritten in 

dimensionless form by the introduction of the following dimension-

less variables: 

n 	6 

6 = x1/7/(GrO1/4 
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Grx = gSAT /v2 

ft = Ux/2v.i-67; 

T - T.  

To - 100 

= tincny.diGrx  

* 
= ERT0  - T.) 

c = cx/2v 

a* 
	

ad 	 (3.2.40) 

After substitution of the above dimensionless variribles into 

equations (3.2.38) and (3.2.39), followed by further 

rearrangement, the following equations can be obtained [8-10]. 

2 * w _e)(1)* _a* 	_efut_ 
ttu 	2 -" 	.4 

*G 	r  *(4)*  - 2a*  e +a*  e a ) - 

iSAt  /* 
a*Fr (3.2.41) 

* * 	n 	2 
(f'-c 	11)*Ht  = 	Pra7,Gr* (E*  - 	C') (3.2.42) 

where 

Gr*  = 2/2-  (Grx)1/4 	is the modified Grashof number 

Fr = Liv,„,2(Grx)/g6x2 	is the Froude number 

C 
Pr = - V 
	

is the Prandtl number 
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and 

	

p.At 	1  

	

(77E 	a*Gr* 

In equations (3.2.41) and (3.2.42), the effect of the 

temperature fluctuation appears in the function V: which 

couples the equations. If 	is set equal to zero, 

equation (3.2.41) reduces to the Orr-Sommerfeld equation. 

Equations (3.2.41) and (3.2.42) will be solved for the 

velocity disturbanceoP(n),and the temperature disturbance, 

E(n),across the boundary layer. In order to solve these 

equations a knowledge of the basic flow quantities fl(n), 

f"'(11), H'(n) is required. These quantities can be obtained from 

the well-known Schmidt and Beckmann equations which 

will be described in section (3.3.2). 

The six complex boundary conditions required for the 

solution of equations (3.2.41) and (3.2.42) may be expressed 

as follows: It will be assumed that the no slip condition 

may be applied at the surface of plate, i.e. 

	

at n = 0: 	= 0; 	i  * = 0; 	= 0 	(3.2.43) 

At large distances away from the wall (n 	-) the velocity 

and temperature disturbancestend to zero, i.e. 

n 	-: 	± 0; 	* 	0; 	0 	(3.2.44) 

The latter boundary conditions (3.2.44) cannot be used directly, 

because numerical integration cannot be made over an infinite 

distance. 	Thus the Lcundary conditions .ollich apply at an 

infinite distance from the plate must be replaced or approximated 
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by conditions which apply at a finite distance from the 

plate. In order to obtain these conditions, the outer edge 

of the basic laminar boundary layer flow is chosen to be at a 

finite distance, 	 = n  n 	edg' at which the values of f, 	H' 
•  

approach to within a specified deviation from zero. Therefore, 

at nnedg' 
 equations (3.2.41) and (3.2.42) can be simplified 
 

to the following form: 

tm  
11,* - 2a*2  ip * + a*4l* + c* = -ia*c*Gr*(1100- a*211)*) 	(3.2.45) 

 
- *(a*2  - ic*a*Gr*Pr) = 0 	(3.2.46) 

Tne general solutions of the system of equations (3.2.45) and 

(3.2.46) are [28]: 

* = clexp(a*n) + c2exp(-en) + c3exp(en) + 

c4exp(-en) + c5exp(y*T1) + c6exp(-y*n) 
	

(3.2.47) 

_c5(y*2 - a*2)(y*2  - 
exp(y*II ) + 

 

*2 	*2 	*2 	*2, 
c6 ( 	a  )(Y 	) exp(-y*fl) 	(3.2.48) 

Y*  

where 	13
*2 

= a
*2 - ia*Gr*c* 
	

(3.2.49) 

y*2 = (x2 - ia*G17*c*pr 	(3.2.50) 
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and c1,  c2, 	c6 are arbitrary constants. 

By elimination of the arbitrary constants in equations 

(3.2.47) and (3.2.48) a set of linear and homogeneous 

relations in the dependent variables and their derivatives 

can be obtained which are to be satisfied at the outer edge 

of the boundary layer [see appendix M. These relations are: 

Ye = 0 	 (3.2.51) 

* * 8* 

	

t 	
*2' * 

- a q) 	13
(

-  a
*2

IP)
* = 0 (3.2.52) 

Y 

n *2 / * 	
a
* 	

- 	(IP* + a
**
) 
  *= 0 (3.2.53) 

Y 

In the present work numerical integration was started from the 

surface of the plate using boundary conditions (3.2.43) and 

was terminated at the outer edge of the boundary layer using 

the relations (3.2.51) to (3.2.53). 

3.3. Equations for Free-convection Boundary Layer Flows  

The Navier-Stokes, continuity and transfer equations are 

extremely difficult to solve in the form in which they have 

been stated in section 3.1. The problem for free convection 

flows is more complicated than for forced convection flows, 

inasmuch as the governing equations are strongly coupled and 

must be solved simultaneously. In order to simplify the 

equations, the boundary layer assumptions can be introduced. 
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3.3.1. The Boundary Layer Approximations. 

The boundary layer approach [37] has proved to be useful 

in a variety of problems in fluid mechanics and has been 

successfully applied to free-convection flows [38,39,40,41,42]. 

The major assumptions of boundary layer theory are: 

The layer in the neighbourhood of the body in which 

the velocity and the temperature changes occur is assumed 

to be thin. The validity of this assumption depends upon 

the magnitude of the Grashof and Prandtl numbers. 

ii) This layer (to be more precise two layers, one for 

velocity and one for temperature) is much thinner than 

the dimensions of the body. 

These assumptions enable the Navier-Stokes and transfer 

equations to be simplified so that the resulting boundary layer 

equations are in a more readily solvable form. 

3.3.2. Free-convection Boundary Layers Equations for Heat  

Transfer from an Isothermal Vertical Plate. 

By the means of the above mentioned assumptions, the 

steady-state equations for the free7convection boundary layer 

flows associated with an isothermal vertical plate can be 

derived by making an estimate of the order of magnitude of 

each term in the dimensionless form of the momentum, continuity 

and transfer equations. Using the co-ordinate system shown 

in figure [3.1], equations (3.1. 6), (3.136) and (3.1.7) can 

be written in boundary layer form as follows: 



all DV = 
ax By 

0 

U 
DT + V DT = 	K 3

2
T 

ax 	ay 	ITC' —2.  
P DY 
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2 
au 	 au 	 u 

pcou TR- + p.V ay = p.0.(T - T.) + p. 
By 

(3.3.1) 

Furthermore, a stream function in the form of U = ay 

and V = - 
ax 
 can be introduced which satisfies the continuity 

equation. The resulting partial differential equations for 

momentum and energy in terms of the dependent variables i  and T 

can be reduced to ordinary differential equations by the 

similarity transformation: 

= 4vcx
3/4f(n) 
	

(3.3.4) 

T = H(n) 

where v is the kinematic viscosity of the fluid, c = 

and T
o 

is the temperature of the heated body. 

The ordinary differential equations obtained by this 

procedure are [43]: 

f + 3ff - 2f + H = 0 	(3.3.5) 

H + 3Prfff = 0 	 (3.3.6) 
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The associated boundary conditions are: 

n = 0: 
	

f = 0; 
	

f. = 0; 	H = 1 

(3.3.7) 
n  m: f 0; H 0 

Equations (3.3.5) and (3.3.6) will be solved in order to 

provide the basic laminar flow properties,f(n), (n) and their 

derivatives,which are required for solving equations (3.2.41) 

and (3.2.42). 

3.4. Kinetic Energy Balance of Disturbed Motion  

By application of the technique used by Schlichting [44] 

for forced convection boundary layer flows, an equation which 

governs the time rate of increase of the disturbance kinetic 

energy for unit volume of fluid moving with the basic flow 

can be obtained by multiplying equations (3.2.25) and 

(3.2.26) by a and v respectively, adding these equations, and 

using equation (3.2.18) to simplify the result. The following 

equation is obtained: 

D-2 	-2 	du 	aKr - aN 
Dt 2 	

- ( r k(u UT ax 	
) 

ay + 

A 
pnari 	pv(9CT 

- — 	) - ax 	9y 	DX Dx 

a ay -Du (u 	- uT7)] (3.4.1) 

Equation (3.4.1) can be transformed to dimensionless form using 

the relations (3.2.34) and (3.3.40). The resulting equation 

is then to be integrated with respect to n from n = 0 to n = 
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and with respect to 	over a wavelength A of the disturbance. 

This procedure yields the following energy balance equation 

for neutral disturbances [28] 

m 4 / 

- f f 	 )dn (e 	

- 

ei4)dn - 	-4)t 1" 1 	 * 	 1 1 
0 	 0 a Gr' 

03 

* 
	 [(a

*2* 
-

*
)
2 

▪ 

(„2,  
T 	r 	- eindn = 0 	(3.4.2) 

0 a
*Gr* 

The first integrand gives the rate at which the basic flow is 

working against the Reynolds stress arising from the disturbance, 

while the second integrand represents the work done by the 

buoyancy force and the last, integrand reveals the dissipation 

of the disturbance motion. 

Equation (3.4.2) not only provides a check on the 

solution of Equations (3.2.41) and (3.2.42) but it will also 

be very useful for interpretation of the results (Chapter 5). 

The following designators are used to abbreviate the 

integrands in equation (3.4.2): 

eRe 	- (VW' - lirW)f r 	r 

e
B

1  

	

- 	.1P8!) a*Gr* 	r 	1 1 

1 	_2  eD 	a'Gr" (a77 * 
	* 

- 

(3.4.3) 

(3.4.5) 

(3.4.6) 

Hence, equation (3.4.2) becomes: 

0.. 
	
d 	+ 

O 
olijn 	f 0 D 0 	 (3.1.7) 
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where eRe and eB 
and eD 

are the local values of the 

Reynolds stress, the buoyancy and the dissipation terms 

in energy balance of the disturbed motion respectively. 
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Figure 3.1 

An external free-convection flow 
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CHAPTER 4 

NUMERICAL TECHNIQUES  
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4.1. —Introduction  

The system of equations (3.2.41) and (3.2.42) are linear 

in the y-dependent parts of the perturbation stream function, 

11i(y), and perturbation temperature function, e(y), and their 

derivatives. The equations can be considered to be non-linear 

in the parametersand eigenvalues that can- be varied in the 

process of solution. Hence, these two equations can be 

treated as a non-linear set of two coupled ordinary differential 

equations. 

The only method by which the above mentioned equations 

can be solved is by numerical integration. Unfortunately, 

all the initial conditions for integration are not known and 

the problem is a boundary value problem. Hence, it is 

advantageous to use a quasilinearization technique and a 

trial-and-error technique in order to solve equations (3.2.41) 

and (3.2.42). These techniques will be explained in the 

following sections. 

4.2. Quasilinearization Technique  

4.2.1. Introduction  

Many problems in engineering and applied science are 

multipoint nonlinear boundary-value problems, in which all the 

initial conditions for integration are not given. Problems 

of this type are often very difficult to solve unless a 

method is used which will obtain the missing initial conditions 

in an efficient manner. 

This section presents a study of the numerical aspects 

of the use of quasilinearization for obtaining numerical 
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solutions. Theoretical aspects of the technique can be 

obtained from references [45,46,47,48]. 

The quasilinearization technique is essentially a 

generalized form of the Newton-Raphson method [appendix B] 

for functional equations. This generalisation will be discussed 

in section (4:2.2). By using this technique, the non-linear 

equations are first linearized and then the linearized equations 

are solved numerically using the superposition principle 

[appendix C]. The main advantage of this technique is that 

convergence to the solution of the original equation is 

quadratic so that very fast convergence can be obtained from 

poorly guessed initial values of the unknown boundary 

conditions. Computationally, quadratic convergence means 

that after a large number of iterations, the number of 

correct digits for the root X is approximately doubled for 

each iteration. For example, suppose the approximation to X 

has an accuracy of 0.01 at Kth  iteration then for large values 

of K the approximation at the (K+1) th  iteration has an accuracy 

of 0.0001. 

The quasilinearization technique has been used by Lee 

and Fan [49,50,51], Radhill and McCue [52], Diplock [53], and 

Harris [54] to solve boundary layer equations and these workers 

found that, in order to obtain a convergent solution with five 

figures accuracy only three to six iterations were needed for 

their problems. Convergence and monotonicity of the technique 

will be discussed in detail in section (4.2.3). 

The quasilinearization technique is generalized to deal 

with a system of differential equations in section (4.2.4). 

This technique is applied to problems of parameter estimation 
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in section (4.2.5). A brief review of difficulties arising 

in using the quasilinearization technique is presented in 

section (4.2.6). Finally, the technique is applied to the 

present problem in section (4.2.7). 
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4.2.2. Generalizing the Newton-Raphson Method to Functional  

Equations  

As was mentioned in section (4.2.1), the quasilinearization 

technique is essentially a generalized form of the Newton- 

Raphson method and may 	be discussed as follows: First, 

consider a non-linear first-order differential equation, 

	

dX - g(X,t) 
	

(4.2.1) 

Equations (4.2.1) can be expanded in the unknown function 

X(t) about the approximation X°(t) as follows: 

dX 	. Ste_ 	
dX° 

D(  —) UT  
dt - g(X,t) 	dt 	g(X°,t) 	ax  (x x°) - 

Dg(X°,t) (X-X°) 	 (4.2.2) 
DX 

where quadratic and higher terms in the Taylor's series have been 

omitted. 

In the same manner ' dX  can be expanded in the following 

form: 

D(dX°) 
dX - dX° 	dt  

af 	cwt 	DX (X-X0)  (4.2.3) 

When this is substituted into equation (4.2.2) the following 

expression is obtained: 

dX _ {7,(No,t)  
af 

o 
( X -X°) 

(1.2.1) 
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Also, the recurrence relation may be employed in order to 

obtain: 

(dX1 K+1 
= g(X

K
,t) + -)gccK t)  K+1 - 

X
K
) 

	

' 	(X 1:1t ) 	XK 
(4.2.5) 

which is the quasilinearization algorithm for the first-order 

differential equation stated in equation (4.2.1). 

The same procedure may be applied to the non-linear 

second-order differential equation: 

d2X _ ddX - 541-,X,t) 

The following relation can be obtained for this case: 

d2X K+1 	dX K K 	dX K+1 	dX K 
(7) 	= g((lt. 'X  't) 	((aT) 	- 4f)  ) dt' 

dX K K 	n ((dX1 K yK 
Og((c-I-F) ,X ,t) 	K+1 	K ugdti 	'')  

dX K 	 + (X 	- X ) 

9(aT) 	aXK 

(4.2.6) 

(4.2.7) 

where X(t) has been represented as X. 

It is obvious that the same procedure can be applied to 

higher order equations. But, since an Ith-order ordinary 

differential equation can be expressed by a system of I 

simultaneous first-order ordinary differential equations, it 

is not necessary to derive the quasilinearization algorithm 

for higher-order differential equations. This approximation 

scheme was originally developed by Kantorovich[55,561 and is 

called the Ncwton-Raphson-Kantorovich technique. 
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Bellman [45] and Kalaha [46] developed the Newton-

Raphson-Kantorovich technique by using "maximum operation" 

in order to prove that an original non-linear equation can 

be transformed into a set of linear equations. They called the 

method by which the non-linear equation is transformed the 

quasilinearization technique. 

4.2.3. Convergence and Monotonicity of the Quasilinearization  

Technique  

This technique possesses two important properties: 

I) Quadratic Convergence 

II) Monotonicity 

The quadratic convergence of this technique can be proved 

using an approximation of the Newton-Raphson type. The other 

property, monotonicity, also can be shown to be abstractly 

similar to the monotonicity of the Newton-Raphson method. 

These properties were proved for non-linear second-order 

differential equations by Bellman and Kalaha [47]. 

Analytically, for practical problems, these convergence 

properties cannot easily be obtained. However with the ready 

availability of modern computers, it is much easier to solve 

the problem and see if it converges than to try to find 

convergence properties. 
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4.2.4. Application of the Quasilinearization Technique to  

Systems of Differential Equations  

The Ith-order differential equation can be written as: 

X(I)  = f(t,x,x'....,xI-1) 	 (4.2.8) 

where I represents the Ith  differential. This Ith-order 

ordinary differential equation can be transformed to I first-

order ordinary differential equations by the following 

substitutions: 

, XI = X(I-1) 	(4.2.9) X 	X 	X2 = X' 	X3 = X" 	 1 

The I first-order non-linear ordinary differential 

equations can be expressed as: 

XI = f(t,X1,X2, 	XI) 

X' 	= X I-1 	I 

• 

X' = X3  3 

Xi = X2  

(4.2.10) 

The general form of the equations in the above system can be 

written as, - 

dXi  
TE- - fi(X1,X2, 	X t) 	i = 1,2,....I 	(4.2.11) 

With the boundary conditions: 

x(0) =xj,0 	j = 1,2, 	 

xq(tf) = x 	q = m+l,m+2,  	(4.2.12) 
q,f 



3f1 
	aft 
	

pf 

ax° 	ax2 
	

ax°  

3f2 	f 2 	f
2 

	

0 	0 	 XI ax2 Xi   

	

3 f I 	fI 	fI  

x° 	aX2 	aXI 
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where m < I and tf denotes the final value of independent 

variable t. 

Equations (4.2.11) and (4.2.12) may be expressed in 

vector form as: 

dX 
=  UT 	f(X,t) (4.2.13) 

where f and X are I-dimensional vectors with components 

X1,X2,....X, and fl,f2, 	fI respectively. 

If it is assumed that X°  is an approximate solution of 

equations (4.2.11), expansions can be made about X°  using 

Taylor's series. If terms of second and higher oreter are 

omitted the following equations are obtained: 

dX 
dt = f(X°,t) + J(X°)(X - X°) (4.2.14) 

where the Jacobian matrix J(X°) is defined by: 

,J(x°) = 

(4.2.15) 



3f 	af 

Xi 	DXK  
2 

aft 	.aft  

aXK 2 1 

f 2 	9f 2 
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The boundary conditions are still the same as those in 

equations (4.2.12). 

Equation (4.2.14) expresses a set of linear differential 

equations with variable coefficients which are functions of 

X°. There is no analytical solution of this system but it 

can be solved numerically with the aid of the superposition 

principle. 

Re-expanding equation (4.2.13) about a known vector X
1 

gives: 

dX2 

- f(X1,t)  + J(X
1
)(X

2 
- X

1
) 	(4.2.16) 

By application of the same procedure to X2,X3 	 , the 

following recurrence relation can be obtained: 

dXK+1  

dt 
f(xK,t) j(xK)(xK+1 xK

) 
 (4.2.17) 

K  
where J(X ) is the following Jacobian matrix: 

dt 

J(XK) - (4.2.18) 
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Note that K represents the number of iterations and that the 

function in the vector XK are considered to be known and the 

functions in XK+1 to be unknown. 

The boundary conditions for equation (4.2.17) are 

K X.+1  (0) 	= X.
,  0 j= 1,2,....m 

Xq
+1  (tf) = Xq,f 	q = m+1,m+2, 	I 	(4.2.19) 

As has already been mentioned, a system of linear ordinary 

differential equations of the boundary value type can be solved 

numerically with the aid of the principle of superrosition. 

There exists a set of particular solutions and n sets 

of homogeneous solutions to the system of equations (4.2.17) 

and (4.2.19), where n represents the number of missing initial 

conditions: If the vector X
P
K+1(t) is any solution of the 

equations: 

dXK+1  

—p 	= 1(1K,t) 	
J 

jr1K, 
k
rx1C_ x  +1 K, 

dt 	
_p  _ (4.2.20) 

which satisfies the conditions: 

K+1 X. (0) = X. 
JP ,0 = 1,2,....m 	(4.2.21) 

and the m vectors X
K+
q
1 are m sets of nontrivial and distinct 

—h 

solutions of the m vector equations: 
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dX1(4-1  
—hq  = j(xK)xK+1 
dt 	— 	hq 	

q = m+1,m+2....I 	(4.2.22) 

which satisfy the conditions: 

E 	aK+1  xK+1 q=m+1 q 	jhq (0) = 0 	 (4.2.23) 

Then, the general solution of equation (4.2.17), which 

satisfies the initial conditions (4.2.19), can be obtained by 

the use of the principle of superposition as follows: 

XK+1(t) = XK+1(t) 
—P 

E 	X1(+]: (t) 
J =1 —J 	

—h,J 
(4.2.24) 

where: 

XK+1(t) represents the particular solution of the system of 

equations (4.2.17) and is denoted by the subscript p. 

241,jK+1  (t) represents m sets of distinct non-trivial homogeneous 

solutions. These solutions are designated by the subscript h. 

K1 i a.+- is the m-dimensional superposition constant vector which 
3 
is determined by the use of the conditions which must be 

satisfied at the end of the region of the integration. 

The numerical procedure for obtaining the particular and 

homogeneous solutions can be explained as follows: The 

particular solution may be obtained by integrating equation 

(4.2.20) numerically with the following initial conditions: 



X.  K+1 (0) = 
JP 	

Xj,0 J = 1,2,....m 
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(4.2.25) 

XK+1(0) = 0 	q = m+1,m+2, 
ql)  

The m homogeneous solutions may be determined by integration 

of equation (4.2.21) using the following m sets of initial 

values, which is represented by a matrix with m columns and 

I rows. 

••••■■••■ 

1 0 0 . 0 

0 1 0 • • • 0 

0 0 1 

(0) 	= • (4.2.26) 

0 0 • • 1 

0 0 . • • • 0 

0 0 • • 

These m sets of initial values can also be expressed as: 

K+ 1 X(i)hj  (0) = 1 	for i = j 

(4.2.27) 

K+ 
X(i)hj 1 (0) = 0 	for i 

where i = 1,2, 	 ,I and j = 1,2, 	 ,m.  

The subscript i represents the particular variable and j 

represents a pari_icular sot of hoo eneous solutions. 
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Instead of the conditions expressed in equations (4.2.25) 

and (4.2.27), any other initial conditions can be used as 

long as the main boundary conditions are satisfied. When 

the particular and homogeneous solutions have been obtained, 

+1 the superposition constants (a. ) can be determined from 
3 

equation (4.2.24) using the final conditions (4.2.19). 

At the end of integration, t = tf, the following set of 

simultaneous algebraic equations can be derived: 

K+1 	K+1 
cK+1 Xmh  , (tf) a (4.2.28) 

1  where XmK,h  (tf) is the mxm square matrix. 

XK+1h(tf ) = m  

K+1 X(1)h,i(tf) 

X(2)h,i1  (tf) 

K+1 X(1)h,2(tf) 

 

K+1 X(1)h,m(t ) 

 

 

K+1 X(2)h,m(t ) 

 

K+1 	 K+1 X(m)h,i(tf) 	X(m)h,2(tf) 	 X(m)h,m(tf) 

(4.2.29) 

and cK+1 is the m-dimensional vector. 



X
1,f - X(1)

K+1(tf) 

X2,f - X(2)
K+1

(tf) 

Xm,f - X(m)
K+1(tf) 

(4.2.30) 
K+1 
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K+1 Since the matrix Xmhitf)  and the vector cK+1 are known, the 

unknown vector aK+1 can be obtained from equation (4.2.28). 

Thus, 

a
K+1 = K+1

(t)] 
-1 

c
K+1 

m,h f (4.2.31) 

Equation (4.2.31) can be solved very easily when m is small, 

otherwise for large m, matrix inversion can be used. 

Finally the general solution can be obtained by 

substitution of the numerical values of the homogeneous and 

the particular solutions and the superposition constants 

into equation (4.2.24). 

4.2.5. Application of the Quasilinearization Technique to  

Parameter Estimation  

One of the important applications of the quasilinearization 

technique is parameter estimation [51,52]. This approach is a 

useful tool for estimating the unknown parameters of 

systems of equations. 

However, as was mentioned in section (4.1) equations 

(3.2.41) and (3.2.42) are a linear set of two coupled 

differential equations in which the two eigenvalues and the 
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two matching parameters are considered to be variables thus 

giving rise to the nonlinearity of the equations. Hence, 

the quasilinearization technique will be used for estimating 

these parameters. 

The basic concept of parameter estimation is to consider 

the unknown parameters as a dependent variables in common 

with X and as functions of the independent variable, t. 

Thus, in addition to the governing equations, (4.2.11), the 

unknown parameters can be represented by the following 

differential equations: 

dP 
= 0. 	 (4.2.32) 

where P is a n-dimensional vector with components 

Pl,P2,....Pm. The application of parameter estimation to 

the present problem will be discussed in section (4.2.7). 

4.2.6. A Brief Review of the Main Difficulties Arising in the  

Use of the Quasilinearization Technique 

The main difficulties in using the quasilinearization 

technique are as follows: 

i) Difficulty in using the superposition principle  

This difficulty arises from the fact that in using the 

superposition principle, a set of algebraic equations must be 

solved. Thus the phenomenon of ill-conditioning in a set of 

algebraic equations may put a restriction on the use of the 

superposition principle. The ill-conditioning phenomenon 
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occurs frequently in physical and engineering problems. 

Several techniques have been proposed to solve systems of 

ill-conditioned linear equations [47,51,57]. In the present 

study, an orthogonalization procedure (appendix D] will be 

employed for overcoming this difficulty. 

ii) Storage and memory  

In a number of situations the use of quasilinearization 

may be limited by the storage capacity of the computer. 

This difficulty becomes more pronounced when there is need 

to use complex or double precision arithmetic. 

The storage requirements for solving a linear differential 

equation may be estimated as follows: 

If N is the number of grid points, I is the dimension 

of the dependent variable X, and n represents the number of 

missing initial conditions then nxI(N+1) values must be 

stored in the computer. For example; a typical problem in 

which 5 initial conditions are missing and I has a rather large 

value, i.e. 10, the use of double precision or complex arith-

metic along with a small integration step corresponding to 

N = 1000 will give rise to a storage requirement of 100000 

locations. This exceeds the available memory of all but the 

largest computers. 

To overcome this problem Belman F47,58,59] suggested that 

first the guessed initial values X°(t), 0 < t < tf  can be 

assumed to be constants or simple functions of the independent 

variable t. These functions should be expressed in a way which 

requires only a fairly small amount of computer memory. 

Secondly, instead of storing every calculated value of the 

previous iteration at every grid point, only the initial values 
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obtained from the previous iterations need be stored. Then 

if it is necessary to determine the value of XK(t) at each 

grid point, the folloqing differential equation can be 

integrated: 

dXK   ar_ = f(xK-1  ,t) + gxK-1)(x1(  - XK-1) (4.2.33) 

using the known initial conditions X
K
(0) which have been 

determined from the previous iteration and which have been 

stored in the computer. By application of the above 

procedure computer memory requirements are reduced at the 

expense of consuming more computer time. 

iii) Monotonic convergence  

Theoretically the quasilinearization technique requires 

positive and convex properties for convergence and this seems 

to impose a severe limitation on its usefulness. Although 

this monotonic convergence does not always exist, the technique 

works well in practice and it converges very rapidly with even 

poor initial guesses [51,52]. 

4.2.7. Application of the Quasilinearization Technique to 

the Present Problem  

The quasilinearization technique will now be applied, 

in order to obtain the solutions of equations (3.2.41) and 

(3.2.42). The problem is represented by a non-linear set of 

two coupled ordinary differential equations along with the 

appropriate boundary conditions. In order to simplify the 

notation, equations (3.2.41) and (3.2.42) are rewritten without 
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asterisks as follows: 

= 	[iaGr(f - cl + 2a
2
] - ti flf - c)(iaGra2) + 

/// 

(a2)2 + iaGrf] - E (4.2.34) 

E = EL(f - c)(iaGrPr) + a2] - (iaGrPr11]11) 	(4.2.35) 

with the boundary conditions 

11)(0) = 0. 	ip(0) = 0. 	E(0) = 0. 

IP(-) 4-  0. 	IP'(c°) 	0. 	E(..) 4  O. 	(4.2.36) 

the eight new variables y can be defined as: 

y(1) = 

y(2) = 

Y(3) ' 

y(4) 

Y(5) = E 

y(6) = 

y(7) = iaGr 

y(8) 
= a2 

(4.2.37) 

In order to simplify the Jacobian matrix, the parameters 

a and Gr were replaced by iaGr and a
2
. The quantities iaGr 

and a
2 
together with cr  and ci  constitute four real parameters 

in equations (4.2.34) and (4.2.35), of which two must be 

specified and the other two (eigenvaiucs) must be determined 

in the process of solution. The eigenvalues which 
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were chosen in the computations were (i-zGr,
2
), but it would have 

been possible to use other combinations of parameters such as 

(cr,ci) or (cr,a
2
). 

The system of equations (4.2.34) and (4.2.35) can now 

be written as a set of eight first-order ordinary differential 

equations: 

dgl)  . y(2) 

dy(2) = y(3)  
dn 

(4.2.38) 

4(3)  = y(4) 

dy(4)  = y(3)[y(7)(f-c) 	2y(8)] - y(1)[(f-c)y(7)y(8) 
do 

/// 

(Y(8))2 	Y(7)f] - Y(6) 

dY(5) - 
do 	Y(6)  

dy(6) 
 - dn 	y(5)[(-c)((Pr)Y(7)) +Y(8)] - (Pr)Y(7)(H)Y(1 ) 

dy(7) 
- 0. 

dn 

L18_1  
d 	

- 0. 
n 

with the boundary conditions rewritten as: 
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y(1)0  = 0. 

y(2)0  = 0. 

Y(5)o = 0. (4.2.39) 

y(1).  0. 

Y(2). 0. 

y(5). 4  0. 

The subscript in equations (4.2.39) represents the points at 

which the boundary conditions are known. 

Equations (4.2.38) may now be linearized using the 

recurrence relation (4.2.17). By performing the necessary 

differentiation, the Jacobian matrix is found to be: 



o 1 o 0 

o 0 1 0 

0 0 0 1 

-[(ilc)Y(7) 
2 [Y(7)(i-c) 

Y(8)+(Y(8)) 0 
+2y(8)]  

0 

+Y(7)(f)] 

0 0 0 0 

-(Pr)Y(7)(14) 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 

0 0 0 

0 0 0 

D(,3)(1:-C)-  [ 2Y(3)-Y(1)Y(7) 

-1 (f)Y(1)-Y(8) (f-c)-2y(8) 

Y(1)(f-c)) Y(1)] 

0 0 0 

0 [(Pr)Y(5)(i-c) -y(5) 

] 
-(F1OY(1)(g)] 

0 0 0 

0 0 0 

(4.2.40) 

0 

0 

0 

0 

1 

[(1-c)(Pr) 

Y(7)-Y(8) 

0 

0 
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By substitution of the matrix (4.2.40) into equations 

(4.2.33) the following set of equations is obtained: 

n K+1 - y(2)1(+1  

dy(2)
K+1 	

y(3)1(+1 
dn 

dy(3)
K+1  

= y(4)1(+1  
do 

dy(4) 	_y(1)K+1y(7)K y(8)K (f_c) - y(1)K+1(y(8)
K
)
2 
- 

dn 

/11   
Y(1)

K+1 
 Y(7)

K 
 f 	Y(3)

K+1 
 Y(7)

K 
 (f-c) 	2Y(3)

K+1
Y(8)

K 	
Y(6)

K+1 

y (7)1(+1y (3)K(i c) 	 y(7)K+1y(8)Ky(1)Ka_c) - y(7)K+1y(1)Ki* 

- Y(7)KY(3)1((i-c) 	Y(7)KY(8)1(Y(1)1(( -c) 	Y(7)KY(1)Kfli/  

• 
K+1 	K 	K+1 	K 	K 	K+1 	K 	K 

+ 2Y(8 ) 	Y(3) 	- y(8) 	y(1) y(7) (f-c) - 2y(8)y(8)y(1) 
 

- 	

2Y(8)KY(3)K 	Y(8)
K
Y(1 )

K
Y(7)

K
(f-c) 	2Y(8)

K
Y(8)KY(1)

K 

dy(5)K+1 
= y(6)

K+1 
do 

dy(6)
K+1  

- Y(1)
K+1

Y(7)
K
(Pr)(11) Y

K+1
(5)Y(7)

K
(f-c)(pr) dn 

Y(5)
K+1

Y(8)
K 

Y(7)
K+1

Y(5)
K
(f-c)(Pr) - Y(7)

K+1
Y(1 )

K
(Pr)(H) 

-y(7)
K 
 y(5)

K 
 (f-c)(Pr) + y(7)

K
y(1)

K
(Pr)(111 - y(5)

K
y(8)

K+1
+y(5)

K
y(8)

K 

dy(7)K+1  
do 

= 0. 	 (4.2.41) 
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dy(8)1(4-1  - 0. 

conditions 

dry 

with the boundary 

Y(1)K0+1  = 0. 

y(2)K+1  = 0. 

Y(5)10(+1  = 0. 

y(1):1  4 0. 

y(2)1.(0+1  4 0. 

Y(5)!(01-1  0. (4.2.42) 

This set of linearized equations (4.2.41) and (4.2.42) may 

now be solved by the superposition principle. 

The homogeneous form of equations (4.2.41) can be written 

as: 

• ay(11K+1 

do 

dy(2)
+1  

do 

dy(3)1(+1 

dry 

= y(2)
K+1  

y(3)K+1 

= y(4)1(4-1 

dy(4)K+1  = y(1)
1+1

y(7)
K
y(8)

K
(f-c)-y(1)

K+1
y(8)

K
y(8)

K 
- 

Y(1 )
K+1

Y(7)
KfK+1 	K 

Y(3) 	Y(7) (17-c) 	2v(3)
K+1

Y(8)
K 
- 
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y(6)K+1 	y(7)K+1y(3)K(t.c)  - y(7)K+1y(8)Ky(1)K(f_c) 

-Y(7)
K+1

Y(1 )
K
f 	2Y(8)

K+1
Y(3)

K 	
Y(8)

K+1 
 Y(1)

K 
 Y(7)

K 
 (f-c) 

-2y(8)1(4-1 y(8)Ky(1)1(  

dy(5)
K+1 

_ y(6)K+1 

dy(6)K+1  
do - Y(1)

K+1
Y(7)

K
(Pr)(H) 	Y(5)

K+1 
 Y(7)

K 
 (f-c)(Pr) 

y(5)K+1y(8)K y  
(7)

K+1
Y(5)

K
( -'c)(Pr) - Y(7)

K+1
Y(1)

K
(Pr)(H) 

y(5)Ky(8)K+1 

dy(7) K+1  
do 	- 0. 

tbqs.) 1 = o. 
do 

(4.2.43) 

The boundary conditions for these equations may be arbitrarily 

chosen but must be non-trivial. 

The solution of the system of equations may now be written as: 

8  

Y(1)
K+1

(n) = Y(I)
K+1

(n) 	E a-
K+1 

 Y(I).1, .
K+1

(1) 
j=1 

(4.2.44) 

where y(I4+1(n) for I = 1, 	8 is the particular solution 

and represents one complete solution of the system of equations 

K+1 
(4.2.65), and y(I)h,j(n) I = 1,2,....8 and j = 1,2,....8, are 

homogeneous solutions which represent the eight distinct non-

trivial solutions of the homogeneous equations (4.2.43). The 

subscript j denotes the jth homogeneous set of equations and 
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I the Ith variable. Since the system consists of eight 

first-orderdifferentialequation presents eight 

superposition constanzs. 

Theoretically, the eight superposition constants can be 

obtained by the calculation of one particular solution and 

eight distinct non-trivial homogeneous solutions. However, 

since three out of eight initial conditions are known, the 

number of homogeneous solutions can be reduced to five. 

Thus, the set of homogeneous equations must be integrated 

five times and five superposition constants are needed. 

Applying the above mentioned simplification, equation 

(4.2.44) becomes: 

5 
Y(I)K+1(n) = Y(I)K+1(n) + E J+1 	K+1 

j=1 3 
	
Y(I)

K+1 
 (TO 	(4.2.45) 

The initial conditions for the particular and homogeneous 

solutions are: 
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K+1 (0) 

K+1 
4,1(°)  

= 

y(1)
K+1

(0) 

Y(2)p+1(0) 

v(3)p+1(0)  

y(4)K+1(0) 

Y(5)
K+1

(0) 

Y(6)p
+1

(0) 

Y(7)1p(+1(0) 

Y(8)p+1(0) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

(4.2.46) 

(4.2.47) 

K+ 
Y (1)h1 1 (0) 

K+1 
y(2)h,/(0) 

y(3)h;
+1  ;(0) 

y(4)
K
,1
1 
 (0) 

11 

K+1 
Y(5)h,1(0)  

K+1 
Y(6)h,l(0)  

K+1 
Y(7)h,1(0) 

1 
Y(8)h 1 (0) 
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K+1 
4,2°)  

y(l)h,2K+1  
(0) 

Y(2)h+2 2(0) 

K+ 
Y(3)h,2

1  
(°) 

y(4)h,2K+1  (0) 

Y (5)h,2

• 1 

 
(°) 

Y(6)h,2

• 1 

 
(0)  

Y(7)h,2

• 1 

 
(0)  

Y(8)h 
K 1(0) 

0 

0 

0 

1 

0 

0 

0 

0 

(4.2.48) 

    

    

  

y(1)hK,31  (0) 

K+1 
y(2)h,3(0) 

K+1 
Y(3)h,3(0)  

y(4)h,3K+1  (0) 

K+1 
Y(5)h,3(0)  

K+1 y(6)h,3(0) 

Y(7)h,3
1  
(0) 

y(8)h,3

• 1 

 
(0) 

o

- 

0 

  

K+1 
Yh,3(°) = 

    

 

0 	(4.2.49) 

    

  

0 

  

  

1 

  

  

1 o 

  

  

0 . 
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K 1 
Y(1)h,4(0) 

K+1 
Y(2)h,4(0) 

K+1 
Y(3)h,4(0)  

K+1 
Y (4)h,4(0) 

Y(5)h,
K+1  4(0) 

K+ 
Y(6)h,4

1  
(0) 
• 1 

Y(7)h,4(0)  
K+1 

Y(8)h,4(0)  

K+1 
Zh,4°)  = 

0 

0 

0 

0 

0 

0 

1 

0 

(4.2.50) 

■••••••, 

      

      

K+1 
4,5(0)  = 

y(1)h,5
K+1

(0) 

Y (2)h ,5• (0)  

Y(3)h,5

• 1 

 
(0) 

K+ y(4)h,s1  (0) 

Y(5)h,5

• 1 

 
(0) 

K+1 y(6)h,5(0) 

K+1 
Y(7)h,s(0)  

K+1 
y(8 )h,5(0) 

  

0 

0 

 

   

(4.2.51) 

   

    

   

0 
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Equations (4.2.46) to (4.2.51) reveal that the original 

set of boundary conditions at n = 0 are automatically satisfied. 

The next step in obtaining the solution is to search for 

a procedure which can be used to calculate the five unknown 

superposition constants. At 	00, by the use of equations 

(4.2.42) and (4.2.45), the following relationships can be 

obtained: 

K+1 	K+1 	K+1 	K+1 	K+1 	K+1 	K+1 y(l)p  M+al  y(l)h,l(0.)+a2  y(l)h,2(00)+a3  y(l)h,3(..) + 

K+1 	K+1 	K+1 	K+1 a4  y(l)h,4(.)+as 	= 0 	(4.2.52) 

K+1 	K+1 	K+1 	K+1 	K+1 	K+1 
y(2)

K+1
(c0)+al  y(2)_ 	(c0)+a2  y(2)h,2(m)+a3  y(2)h,3(w) + 

h,1 

aK+1y(2)K+1(.)+aK+1y(2)K+1(.) = 0. 
h,5 

(4.2.53) 

Y(5)
K K+1 	K+1 K+1 (5)K+1(.)+,K+1y(5)(1+1(.) 

1y
(s)h,14.a2  y h,2  1 ,  

Yl ip  

K+1 	K+1 	K+1 	K+1 
a4  y(5)h,4(0,)+a5  y(5)h,5(0.) = 0. 	(4.2.54) 

Equations (4.2.52) to (4.2.54) represent three algebraic 

K+1 K+1 K+1 K+1 K+1 equations with five unknowns al  , a2  , a3  , a4  , a5  . 

However, it must be noted that, in order to solve this set of alge-

braic equations, other relationships between the unknown quantities  

in equations (4.2.42) to (4.2.46) must he introduced. At the 

surfcce of plate, n = 0, the following expressions can he 

obtained from the seventh and eighth equations of the set of 
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equations (4.2.45) and from the initial values expressed by 

expressions (4.2.46) to (4.2.51). 

x(7) +1 	aK+1 
4 

(4.2.55) 

y (8)1

1

-1. 1 = aK+1 5 (4.2.56) 

Since both y(7)K+1 and y(8)
K+1 are constant functions, it is 

obvious that the expressions (4.2.55) and (4.2.56) are true 

not only for n = 0 but also for 0 < n < c° : 

Y(7)
K+1 

 (n) 	= al(4-1  4 (4.2.57) 

y(8)K+1(n)  aK+1 5 (4.2.58) 

the five superposition constants can now be calculated using 

the previously obtained particular and homogeneous solutions 

of equations (4.2.52) to (4.2.54) and (4.2.57) to (4.2.58). 

After the five superposition constants have been determined, 

equations (4.2.45) can then be used to determine the "updated" 

solution y
K+1(n) from y.K(n). The procedure is then repeated 

until there is no further change in the values of y(n) from 

one iteration to the next. 

From the form of equations (4.2.45), it can easily be 

K+1 K+1 K+1 concluded that a1 ' a2 	and a3 	are the three unknown 

K 	K 
initial conditions y(3)0

K+1  , y(4)0
+1 
 and y(6)0

+1 
 ,respectively. 

As was mentioned in section (3.2) it is not always 

possible to use the boundary conditions at infinity and these 
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boundary conditions can be replaced by the relationships 

(3.2.51) to (3.2.53). This problem has been discussed in 

more detail in Chapter (3). 

The procedure for obtaining the required numerical 

solution can be summarized as follows: 

Initial guesses of the solutions for y(1)°(n), y(3)°(n), 

y(5)°(n), y(7)°(n) and y(8)°(n) must be chosen (values of 

y(2)K(n), y(4)K(n), y(6)K(n) are not required during the 

solution procedure for the (K+1) th  iteration). These initial 

guesses may be arbitrary or may be solutions of a similar 

problem which happen to be available. Particular and 

homogeneous solutions can be then computed by integration of 

the set of equations (4.2.41) and (4.2.43) with the appropriate 

initial conditions. The integration may be started from the 

surface of body, n = 0, to the outer edge of the boundary layer, 

nedg' 	In Chapter (5), the effect of choosing different values of 

the variable'nedg' will be discussed. Furthermore, the five 

superposition constants can be obtained from equations 

(4.2.52) to (4.2.58). Then by the use of equations (4.2.45), 

the new approximation to the solution may be calculated. The 

procedure can be continued in the same manner described above 

in order to obtain new particular and homogeneous solutions 

and new superposition constants. If the difference between 

the new values of these constants and the values obtained from 

the previous iteration is within the required accuracy the 

computation can be stopped. 
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4.3. Trial-and-error Technique  

4.3.1. Introduction 

A trial-and-error method based on linear interpolation 

is frequently used to solve boundary value problems. Green 

[60] used this technique to find the missing initial conditions 

for the solution of the boundary layer equations for forced 

convection. Pandya [61] also employed this technique in an 

attempt to find two unknown missing boundary conditions for 

pure free convection. Generally, it has been reported that 

this technique possesses a relatively slow convergence rate 

and that for a large number of problems the technique does not 

converge unless the values of the guessed missing conditions 

correspond closely to the values of the unknown conditions. 

4.3.2. The Application of Trial-and-error Technique to the  

Present Problem 

As was mentioned in section (4.1), the system of equations 

(3.2.41) and (3.2.42) is linear in the y dependent parts of the 

perturbation stream function, gy), and perturbation temperature 

function, (y), and in their derivatives. In section (4.2) 

the parameters and eigenvalues were considered to be variables 

during the process of obtaining a solution. In this section 

parameters and eigenvalues are treated as constants so that 

equations (3.2.41) and (3.2.42) become a linear fourth-order 

ordinary differential equation and a linear second-order 

differential equation, respectively. These equations can be 

treated as a si:th-order ordinary differential equation. 

The same procedure and the same notation as was used in 
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section (4.2.7), can be applied in order to reduce the 

sixth-order ordinary differential equation into a set of 

six first-order ordinary differential equations. 

The system of equations (3.2.41) and (3.2.42) may 

be written as: 

d 7(.1 1) = y(2)  

dy(2)   
dri - y(3)  

dy(3) = y(4) 

dy(4)   
- y(3)[iaGr(f-c)+2a

2
] - y(1)[(f-c)(iaGr)(a

2 
 ) + (a

2)2 

+ (r)(iaGr)] + y(6) 

_LLD_ - (6) 
dfl 	Y' 

dy(6) _ y(5)[(f-c)(Pr)(iaGr)+a2] - (Pr)(iaGr)Ay(1) 
do 

(4.3.1) 

The boundary conditions for the above equations are those 

given in (4.2.39). Since the ordinary differential equations 

(3.2.41) and (3.2.42) are linear and homogeneous and the 

boundary conditions (4.2.39) are also homogeneous, it is 

permissible to put y(3)0  equal to some convenient fixed value. 

Physically, this means that the arbitrary scale of the 

disturbance level is fixed. For simplicity y(3)0  will be 

taken to be unity. 
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The initial conditions can be written as: 

y(1)0  = 0 

yr,2)0  = 0 	
(4.3.2) 

Y(3)0 = 

Y(5)0 = 0  

The system of equations (4.3.1) with the initial conditions 

(4.3.2) can be solved by the principle of superposition. 

Solution of equations (4.3.1) can be represented by: 

6 
Y(I) (11) := 

j
:E
1  ay(I)h, . (n)  = 3 (4.3.3) 

with the initial conditions given by equations (4.3.2). It 

can be shown that the first, second and fifth integration 

constants are zero and that the third constant is unity. 

Thus, only three sets of homogeneous solutions and two 

superposition constants are needed. Equation (4.3.3) may be 

simplified as: 

y(I)(n) = y(I)h,/(n) + a2y(I)h,2  + a3y(I)h,3 	(4.3.4) 

The initial conditions for the homogeneous equations are: 

y(1)h1(0) 

y(2)h,/(0) 

Yh,1(o)  = Y(3)h,1(0) 

Y(4)11,1(0) 

Y(5)h1(0)1  

y(6)h,/(0)! 

[:1 

 

 

1 

0 

0 

0 

 

(4.3.5) 
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xh, 2 (°) = 

Y(1)h, 2(0) 

Y(2)h,2(0) 

Y(3)h,2(°)  

Y(4)h,2(0) 

Y(S)h,2(0)  

Y(6)h, 2 (0) 

 

0 

0 

0 

 

(4.3.6) 

   

    

    

     

4,3(°) = 

Y(1)h,3(0) 

Y(2)h,3(0) 

Y(3)h,3(0) 

Y(4)h,3(0) 

Y(5)h,3(0) 

Y(6)h,3(0) 

 

0 

0 

0 

0 

0 

1 

(4.3.7) 

     

     

The initial conditions (4.3.5) to (4.3.7) automatically 

satisfy the original initial conditions (4.3.2). 

The numerical solution procedure is straightforward 

and is as follows: 

For given values of aGr and a
2 
a real and imaginary 

parts of the complex quantity c were guessed and the set of 

differential equations (4.3.1) integrated across the boundary 

layer from n = 0 using the initial conditions (4.3.5) to 

(4.3.7). When the values of the homogeneous solutions at 

the edge of boundary layer have been obtained the integration 

conztants a2  and a3  are determined by application of the two 

relationships (3.2.52) and (3.2.53). The remaining relation-

ship (3.2.51) is used to provide a check on the numerical 
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solutions of equations (4.3.1). The correct values of the 

real and imaginary parts of c are obtained by the use of an 

iterative process as follows: 

If the left hand side of the relationship (3.2.51) is 

set to x (instead of to zero) then: 

1 

(fl edg) 	Y“nedg)  = X 
	

(4.3.8) 

If the assumed values of the real and imaginary parts of c 

give 

E(nedg) 	Y“nedg) = X / 0 

The value of c then can be changed to c + Acr, where Ac is 

a small complex quantity. By repeating the integration a new 

value for x can be obtained: 

C(nedg) 	Y“fl edg)  = X 	4  

Then, by approximating the partial derivatives to finite 

differentials: 

D r _ 

and by applying one of the Cauchy-Riemann relations (appendix D): 

3(C(nedg) 	Y(nedg))r  = a(C(nedg) 	YCOledglii 
acr 	 C. 

so that by using simple linear extrapolation an improved value 

for c can be obtained. 
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The process is repeated until x is within the required 

accuracy. Values of x of 1 x 10-2  to 1 x 10-10  were 

investigated and results will be discussed in Chapter S. 

4.3.3. Simplification of the Present Trial-and-error  

Technique  

The trial-and-error technique has been used by 

Nachtsheim [11] and by Dring and Gebhart [25] for solving 

the equations which describe the stability of vertical 

natural convection boundary layers. Their approach for 

solving the problem was that for fixed value of wave number, 

ck, and modified Grashof number, Gr, values for two of the 

complex missing initial conditions and the phase velocity, c, 

were guessed, and then the governing equations were integrated 

from surface of the wall to edge of boundary layer, i.e. 

three complex values were guessed. 

Obviously the above approach requires a lot of computation 

time and complicated procedure must be used to obtain a better 

approximation to guessed values. In the present work the 

problem was simplified because only the phase velocity c was 

guessed rather than guessing three complex values. 
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4.4. Numerical Integration Technique  

The two main integration techniques, which are commonly 

used for numerical integration, are predictor-corrector 

type methods and single-step methods. 

The single step methods are self-starting but the 

predictor-corrector techniques require values of the function 

at a number of previous steps, in order to proceed to the 

next point. Therefore a single-step technique must be used 

to calculate the initial points before a switch can be made 

to the predictor-corrector method. Computationally self 

starting (single-step) techniques require little storage 

space when proceeding from one step to the next, since the 

information from previous steps may be overwritten. 

The number of functions that must be evaluated in single 

step methods are more than in predictor-corrector methods, 

but, as reported in reference [53], for a given accuracy 

single-step methods are faster than predictor-corrector 

methods because the extra function evaluations that are 

necessary for single-step methods are not the most significant 

factor in determining the computer time required. Also, 

changes of integration step length in single-step methods do 

not require extra programming, and the storage requirements 

are less than those required for the predictor-corrector method. 

The Runge-Kutta method [62] was used in the present work. 

This method is a fourth order single-step technique in which 

the truncation error is of the order of h5, where h is the 

step length. This method requires four function evaluations 

for each step. 
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. /4, 	/ 
In the present study the coefficients f, f and H in 

equations (3.2.41) and (3.2.42) were evaluated implicitly 

at the point at which the function was evaluated. 
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• 'CHAPTER 5 

RESULTS AND DISCUSSION 
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Results and Discussion  

In this chapter the accuracy of the numerical solutions 

will be discussed first, this will be followed by a detailed 

presentation of results and discussion. Finally, the results 

will be compared with available data. 

5.1. The Accuracy of the Numerical Solutions  

The accuracy of the numerical solutions depends on the 

accuracy of the Runge-Kutta numerical integration technique, 

and on the numerical techniques used to predict the unknown 

boundary. conditions. 

The Runge-Kutta integration technique was tested in the 

usual manner by varying the integration step length. Because 

of the complexity of the eigenvalue profiles, 

and because of the limited size of the computer memory, the 

accuracy of the solutions was chosen to be within four decimal 

places. Smaller integration step length sizes were used in 

region 0<n<1 because of the sharp variation of eigenvalue 

profiles in the region of the wall. 

Table F.1.(a) shows the effect of varying the step 

lengths on the predicted values of the six unknown parameters 

for a Prandtl number of 1.0 and for a value of the product of 

the wave number and the Grashof number (aGr) of 8.0. The values 

of the six unknown parameters tp(0)r, 40)1, ((0)r, (0)i, cr  

and ci  are compared for a number of different step lengths. 

From Table F.1.(a) it can be seen that the solutions for step 

lengths of 0.1 for 0<n<1 and 0.2 for 1<n<8 are very different 

to those for step lengths of 0.02 for 0<n<1 and 0.04 for 1<n<8. 

The differences then become smaller for the subsequent solutions 
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as step length is reduced. For step lengths of 0.02 for 

0<n<1 and 0.04 for 1<n<8 the solutions are close to those for 

step lengths of 0.01 for 0<n<1 and 0.02 for 1<n<8. A further 

reduction of step length to 0.008 for 0<n<1 and 0.016 for 

1<n<8 brought no further changes in the predicted values up 

to four decimal places. 

Table F.1.(b) shows the solutions for a Prandtl number 

of 1.0 and for a large value of aGr = 75.0. It can be seen 

that the solutions for step lengths of 0.008 for 0<n<1 and 0.016 

for 1<n<8 are little different to those for step lengths of 

0.006 for 0<n<1 and 0.012 for 1<n<8. Therefore, in remaining 

calculations for values of aGr>50.0 step lengths of 0.01 for 

0<n<1 and 0.02 for 1<n<8 were used and for values of aGr<50.0 

step lengths of 0.008 for 0<n<1 and 0.016' for 1<n<8 were 

employed. The need to use smaller step lengths for large 

values of aGr is not surprising because the oscillatory 

behaviour of eigenvalue profiles at large values of aGr is 

more pronounced. 

For a Prandtl number of 0.733 because of the similar 

behaviour of the solutions to those for a Prandtl number of 

1.0, step lengths of 0.01 for 0<n<1 and 0.02 for 1<n<8 and 

0.008 for 0<n<1 and 0.016 for 1<n<8 were used for values of 

aGr<50.0 and aGr>50.0 respectively. 

The effect of varying the step lengths for a Prandtl 

number of 6.7 and aGr = 7.0 is shown in Table F.1.(c). It 

can be seen that the values of the six predicted variables 

are different for larger step lengths of 0.125 for 0<n<1 and 

0.25 for 1<n<8 and 0.0625 for 0<n<1 and 0.125 for 1<n<8. The 

reduction of step lengths from 0.0125 for 0<n<1 and 0.025 for 
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1<n<8 to 0.01 for 0<n<1 and 0.02 for 1<n<8 results in no 

further change in the predicted values to four decimal places 

accuracy. For a large value of aGr = 21.5 and a Prandtl 

number of 6.7, Table F.1.(d) shows that, similar to the case 

of Prandtl number of 1.0, smaller step lengths are required. 

Step lengths of 0.0125 for 0<n<1 and 0.025 for 1<n<8 and 

0.01 for 0<n<1 and 0.02 for 1<n<8 were used during the 

calculations for aGr<15.0 and aGr>15.0, respectively. 

Because of the results obtained for a Prandtl number 

of 6.7, step lengths of 0.0125 for 0<n<1 and 0.025 for 1<n<8 

and 0.01 for 0<n<1 and 0.02 for 1<n<8 were studied in order 

to investigate whether the same integration step lengths as 

had been found satisfactory for a Prandtl number of 6.7 could 

be used for large values of the Prandtl number of 100.0 and 

1000.0. As can be seen in Tables F.1.(e) and F.1.(f), it was 

found that increasing the Prandtl number had no influence on 

the step length that was required for integration. 

The second important variable in the integration is the 

value of n  at the effective edge of the boundary layer, nedr 

As was mentioned in Chapter 4, integration was started from 

the surface where n = 0 and terminated at the edge of boundary 

layer, nedg. In fact, n
edg 

is the effective infinity in 

solving pure free-convection boundary layer flow equations. 

In practice, the asymptotic boundary conditions will be 

satisfied more accurately 
asnedg  becomes progressively larger. 

However, once a certain value 
ofnedg 

 is reached, there is only 

a very small improvement in the results when the value of Tied°. 

is further increased, and in some cases this even causes 

instability in numerical integration. 
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Table F.2.(a) presents the effect of varying the 

magnitude of n
edg 

for a Prandtl number of 0.733 and a value 

of the parameter aGr of 51.3. The changes in the values of 

the six predicted parameters decrease rapidly as the value of 

is increased and eventually almost constant values are nedg 

attained for the parameters for values of nedg greater than 7.0. 

The corresponding results for the same Prandtl number, 

Pr = 0.733, but for a different value of aGr of 6.6 are 

presented in Table F.2.(b). As can be seen from the table, 

the value of aGr has an influence on the value of nedg  that is  

required for the integration. For the small value of aGr 

of 6.6 the parameters approach constant values as the value 

of fledg approaches 8.0. 

For a Prandtl number of 6.7 and aGr = 21.0, Table F.2.(c) 

shows that by increasing the value of nedg  the values of the 

unknown parameters become constant when nedg  is greater than 

6.0. 

Table F.2.(d) presents the effect of varying the magnitude 

of nedg for a Prandtl number of 6.7 and for a different value 

of aGr of 4.8. It can be seen that constant values for the 

parametersareobtainedatvaluesofni eag greater than 7.5. 

Because of these results, values of nedg not smaller than 8.0 

were used throughout this work for Prandtl numbers of 0.733, 

1.0 and 6.7. This restriction ensured that a small safety 

margin was included. 

For Prandtl numbers of 100.0 and 1000.0, the values of 

and 	were arbitrarily set to zero at a pre-specified value 

of n for the remainder of the region of integration. This was 

necessary because of the build-up of round-off errors which 
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caused the solution to "blow up". The solution "blew up" 

very rapidly once the round-off errors were transmitted through 

to hydrodynamic equation (3.2.41). It was found that when 

E and 	were set to zero at a value of n less than 4.0 no 

convergence of the solution could be achieved. Also, the 

solution "blew up" if a value of n greater than 6.0 was 

chosen. Therefore, values of n equal to 4.5, 5.0 and 5.5 

were examined where the E and were set to zero. It was 
me.0 

observed that the rapid convergence/\obtained at n = 4.5. 

---,Thus, throughout the work, 	and 	were set to zero at 

n = 4.5 for Prandtl numbers of 100.0 and 1000.0. 

It was interesting to note that when 	and E are set to 

zero the assumption is made that the buoyancy effect no longer 

affects the hydrodynamic equation (3.2.41). This is because 

at high values of the Prandtl number the thermal boundary 

layer thickness is thinner than the hydrodynamic boundary 

layer thickness and the velocity-temperature coupling is more 

noticeable in the region near the wall than regions far from 

the wall. 

The build up of round-off errors was also encountered by 

Diplock [53] and Harris [54] in their solution of the inter-

action of free and forced convection and the free convection 

boundary layer equations respectively for large values of 

Prandtl number or Schmidt number. 

Table F.2.(e) shows the effect of varying the magnitude 

of 
 nedg for a Prandtl number of 100.0 and for a value of 

aGr = 23.60 when the values of 	and 	were set to zero at 

= 4.5. It can be seen that by increasing the value of nedg 

the values of the unknown parameters become constant when pedg 
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is greater than 12.0. 

Table F.2.(f) presents the effect of varying the 

magnitude of nedg for a Prandtl number of 100.0 but for a 

different value of aGr of 9.95 when the values of 	and E 

were set to zero at n = 4.5. It reveals that for the smaller 

value of aGr of 9.95 constant values of the parameters are 

obtained at values of nedg greater than 13.0. 

Tables F.2.(g) and F.2.(h) show the effect of varying 

the magnitude of nedg for a Prandtl number of 1000.0 and for 

values of aGr = 30.07 and aGr = 11.35, respectively, when the 

values of E and C were set to zero at n = 4.5. As can be seen 

from Tables F.2.(g) and F.2.(h), constant values of the 

parameters were obtained at values of nedg = 13.0 and 

n
edg = 14.0, respectively. Because of the above mentioned 

results, values of gedg  not smaller than 14.0 were used for 

Prandtl numbers of 100.0 and 1000.0. 

As was mentioned in section (3.2), equations (3.2.41) 

and (3.2.42) were integrated from the surface of the plate, 

= 0, to the effective edge of the boundary layer, In nedg' 

using the trial-and-error method the missing boundary conditions 

were found at nedg by application - of relationships (3.2.52) 

and (3.2.53). Relationship (3.2.51) was used as the 

convergence criterion, since it also must be satisfied, i.e. 

the value of X, 1-1-Y0 = X, must be sufficiently small [see 

section (4.3.2)]. 

In a series of tables F.3.(a) to F.3.(g), the effects 

of using different convergence criteria for both high aqd low 

values of aGr and for Prandtl numbers of 0.733 and 1.0 are 
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shown. The tabulated results show that for low values of 

aGr, aGr>40.0, convergence of the missing boundary conditions 

to five decimal places was achieved when the stated convergence 

criterion wa.7 1 x 10-3. Convergence was usually obtained 

after three or four iterations. For larger values of 

aGr, aGr>40.0, even a specified convergence criterion of 

1 x 10-2 produced extremely accurate predictions of the 

unknown boundary conditions to an accuracy within six decimal 

places and convergence was achieved after four or five 

iterations. 

Tables F.3.(h) to C.3.(m) show the effect of using 

different convergence criteria upon the missing boundary 

conditions for a Prandtl number of 6.7 and for different 

values of aGr. It can be seen that a convergence criteria 

of 1 x 10-3 and 1 x 10-2  yielded very accurate results and 

convergence was obtained after three or four iterations. 

For larger values of aGr, aGr>25.0, the number of iterations 

required increased and eight to ten iterations were needed 

when the convergence criterion was specified to be 1 x 10
-3
. 

When the value of the convergence criterion was set to less 

than 1 x 10-3 convergence could not be achieved. 

In Tables F.3.(n) to F.3.(p) the effects of using 

different convergence criteria for a Prandtl number of 100 

and for different values of aGr are studied. Once again 

for aGr<20.0 convergence of the missing boundary conditions 

to four decimal places was achieved with a convergence 

criterion of 1 x 10
-2. Similar to the case of a Prandt; number 

of 6.7 and for values of aGr>20.0 the number of iterations 

increased and for a specified convergence criterion of 1 x 10-2, 
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at least ten iterations were needed. For a Prandtl number 

of 1000.0 because of the similar behaviour of the solution 

to Prandtl number of 100.0, a convergence criterion of 

1 x 10-2 was used. 

In using the quasilinearization technique, the super-

position constants were calculated using - relationships (3.2.51) 

and (3.2.52). These constants were compared with those of the 

previous iteration. If they were within the required accuracy 

the computation was stopped. The accuracy was chosen to be 

within four decimal places. The effects of instability in 

the numerical solution procedure were found to be much greater 

for high Prandtl numbers than for low Prandtl numbers. 

Stability was achieved for Prandtl numbers greater than 100.0 

and for large values of aGr>20.0 by initial integration of 

the equations out to a small value of nedg'  Then, once  

convergence had been obtained, the value of n
edg 

was increased 

and the quasilinearization method applied again. 

5.2. Stability Results for Air, Prandtl Number of 0.733, 

and Prandtl Number of 1.0  

The results of a stability analysis are usually presented 

in the wave number, Grashof number-plane (a, Gr-plane) on 

which the neutral stability curve, ci  = 0, is drawn. The 

minimum value of the Grashof number for points on this curve 

is called the minimum critical Grashof number. If a Grashof 

number, Gr, and disturbance wave number, a, are chosen, 

reference to the a, Gr-plane stows whether or not the 

disturbance will be amplified. 
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In the present study the points on the neutral stability 

curve were obtained by plotting the imaginary part of the 

phase velocity, ci, against the Grashof number, Gr, while 

holding the disturbance wave number constant [see figure 5.1]. 

Although this method is easy to apply, it is an indirect 

method of obtaining points on the neutral- stability curve. 

This disadvantage can be attributed to the choice of the 

phase velocity, c, as an eigenvalue. A direct procedure would 

be to set the imaginary part of phase velocity, ci, to zero, 

and then to attempt to find the proper relationship between 

the remaining parameters; wave number, a, the real part of 

phase velocity, cr, and the Grashof number, Gr, by solving 

the disturbance equations (3.2.41) and (3.2.42). This 

procedure possesses two major disadvantages: first, since 

the value of the imaginary part of the phase velocity, ci, 

is set to zero, there is no longer a relationship between 

remaining parameters which are chosen as eigenvalues. But, 

if for example,the real part of the phase velocity, cr, and 

the imaginary part of the phase velocity, ci, were taken as 

eigenvalues, the Cauchy-Riemann relation could be used for 

improving the values of the eigenvalues for the next iteration 

[see section (4.3)]. Secondly, the disturbance equations may 

not have any solutions which satisfy the condition ci  = 0. 

For example; for the case of plane Couette flow, the disturbance 

equations have no solution for ci  = 0 [11]. In the present 

work reference to figure 5.2 shows that solutions for ci  = 0 

exist only for certain ranges of values of the wave number, a. 

Figure 5.2 shows the neutral stability curve for the 

case of a Prandtl number of 0.733. It can be seen that the 
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Figure 5.1. The plot of phase velocity, ci, against Grashof 
number, Cr, .t a wave numher,- a, of 0.76 for 
a Prandtl nunber, Pr, of 0.733. 
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minimum critical value of the Grashof number iS 64.5. The 

detailed solutions for the neutral stability curve for a 

Prandtl number of 0.733 are presented in Tabl,: F.4.(a). 

The table shows that the closest calculated point to the 

minimum critical Grashof number is at a Grashof number of 

64.470, and at a wave number of 0.17 with a phase velocity 

of 0.25856. 

Figure 5.3 shows the neutral stability curve for a 

Prandtl number of 0.733 in the phase velocity, Grashof number-

plane (cr, Gr-plane). A comparison of this figure with 

figure 5.4 reveals that for values of the wave number, a, 

less than 0.14, the phase velocity of the disturbance, cr, 

is greater than the maximum velocity of the basic flow so 

that, consequently, there are no critical layers. This 

result is in contrast to the results which have been obtained 

by the use of the Orr-Sommerfeld equation for forced-

convection boundary layer flows [63]. 

The solutions of the disturbance equations (3.2.41) and 

(3.2.42) for a Prandtl number of 0.733 and for the neutral 

stability curve are presented in figures 5.5 to 5.36. The 

computer program which was used for solving the disturbance 

equations, calculated and printed out the real and imaginary 

parts of the eigenfunctions (y,0 and their derivatives as 

well as the corresponding eigenvalues. Examination of these 

figures shows that as the value of wave number, a, increases, 

the plots of the eigenfunctions and thei:• derivatives change 

shape and the oscillatory behaviour of the curves becomes more 

pronounced. Reference to these figures shows that for smaller 
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Figure 5.3 - Neutral stability curve for air, Prandtl number 
of 0.733, in Cr, Gr-plane. 
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Eigenfunctions for air, Prandtl number of 0.733. 
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Eigenfunctions for air, Prandtl number of 0.733. 
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Eigenfunctions for air, Prandt1 number of 0.733. 

a 
a .. 

a . 

~ 

PR:O."13 
GR=119.20 

FIG. 5.22 

i 

a: 0.350000 
PHH~E vELeCITy CR=O.liBSCO 
PH"SE VELOCITy CI: -O.CaCDOS 

.0'·.-OO----~I.-OO----11.-0-~--~,r.o-~----.r.o-0----~T.-OO--~6.00 
~DRP1"L OISHl~'LE FRO~ PLlnE-T) 

o ., .. 
n .. .. 

o .. 

PR=O.i3 
G~:119.20 

FIG.S.21 

,-
t4J. 

1 

o 
D ... 

D .. .. 

a ... 
lila 
Z 
o 

D 
a 

FIG. 5.24 .PR=O.73 

, 
~ 
r 

WRVE NUMBER a. = a .4S0000 
PHRSE VELOCITY CR=0.16IB39 
PHRSE VELOCITY CI=O.OOOOOI 

... +-----,-----~-----r----~-----~ 
'0.00 1.00 2.00 !.OO LOO S.OO 6.00 

D 
D .. 
~ 

." 

D .. 

D .. 

-; 

., 

.. 
<> ., 
'0,"0 

NORMRL OISTRNCE FROM fLRTE- T) 

FIG • 5.23 
PR=C.i3 

IHh'E NUMB!' R a: 0.4S0000 
PHRSE VELOCITy CR:0.I&1939 
PH~SE VfLO~ITY (1:0.000001 



f 1G. 5 7.6 
PR.:0.73 
GR=120.69 

0 

//I 

tn6  
0  
0 
ro  
z - = 

Wo 

00 

NAVE NUMBER 	C4.0.550000 
PHASE VELOCITY CR=0.155478 
PHASE VELOCITY CI.0.000003 

140 	240 	340 	4.00 	5.00 
NORMAL DISTANCE FROM PLATE-n 

6.00 '0.00 

NAVE NUMBER a .0.650000 
PHASE VELOCITY CR.0.154731 
PHASE VELOCITY C1=-0.000001 

FIG. 5.28 
PR.0.73 
GR.142.62 

'0.00 	1.00 	2.00 	3-00 	4.00 	5.00 
NORMAL DISTANCE FROM PLATE- n 6-CO 

(136  

0 

Z • 
O 

00  
WO 

FIG. 5.27 PR.0.73 
GR.142.62 

7.• 

NAVE NUMBER et .0.650000 

PHASE VELOCITY CR.0.154731 
PHASE VELOCITY C1.-0.000001 

FIG. 5.25 PR.0.73 
GR.120.69 

NAVE NUMBER 	et .0.550000 
PHASE VELOCITY CR.0.1554713 
PHASE VELOCITY CI.0.000003 

1.40 	2 40 	3.00 	4.00 	5.00 
NORMAL DISTANCE FROM PLATE-'n 

6.00 

0. 

2 
'0.00 140 	240 	3.00 	4.00 	543 	6.00 

NORMAL DISTANCE FROM PLATE- n 

124 

Eigenfunctions for air, Prandtl number of 0.733. 
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values of the wave number, a, the wave caused by the 

imposition of perturbations is not confined to the boundary 

layer, n<nedg, but extends into the stationary region with a 

slow exponential decrease in amplitude with distance. As the 

wave number, a, becomes larger, the wave becomes confined to 

the boundary layer. It is of interest to note that for 

a>0.35 the plots of the eigenfunctions are similar to those 

which were obtained by Nachtsheim [11] for the case when the 

effect of temperature fluctuations was not included. For a 

justification of these results the energy distribution curves 

will be examined. Before this examination is made, it should 

be recalled that two basically different kinds of instability 

arise in free-convection boundary layer flows. One kind 

results from the tendency for motion to occur in a stratified 

medium when a heavier fluid overlays a lighter fluid [6]. This 

type of instability is called "thermal instability". The other 

kind of instability is related to the shearing motion of the 

basic laminar flow and to the existence of a mechanism for 

transferring energy from the basic laminar flow to the disturbed 

motion via the Reynolds stress [11]. This is called 

"hydrodynamic instability". 

Figures 5.37 to 5.52 show the energy distributions [see 

section (4.6)] for a Prandtl number of 0.733 for the neutral 

stability curve. Examination of the energy distributions for 

a small wave number of 0.04, figure 5.38, shows that the 

buoyancy term in the energy balance of tie disturbed motion 

is very important because it is the only term which gives a 

positive contribution to the energy of the disturbed motion 
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Energy distributions for air, Prandtl number of 0.733. 

eRe= Reynolds stress 	eD  = Dissipation 	eB  = Buoyancy 
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Energy distributions for air, Yrandt1 number of 0.733. 

eRe= Reynolds stress 	en  = Dissipation 	eB  = Buoyancy 
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Energy distributions for air, Prandtl number of 0.733. 

eRe = Reynolds stress 	e
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Energy distribution for air, Prandtl number of 0.733. 

eRe= Reynolds stress 	eD  = Dissipation 	eB  = Buoyancy 

- . 	 ... 
C. eB 	 b 
7 	 7-  

,-. - 	 ,-8- 
 z 	 z cr 	 z 

>- 

	

e
og 	 coo  o• 

0? 
z 	 z 

0 
- - .-- . 
cL 0 	 0_0 o•-■ • 	 .-* • N 	 N 
N 	 0 
0. 

	

. 	
-0 

	

8 	 .g N • 	 N. N 	 N 
W W 2 	 W •1-1.- 	 1 ,••• N. 	 0.: 
(,)%; 	 N, 0 	 0 .-J 	 , 0 	 0 z.,. 	 zo .. 	 ,... .• 	 .8 

FIG. 5.50 
PR:0.73 

GR=216.46 

Re 

WAVE NUMBER a :0.750000 
PHASE VELOCITY CR=0.1571374 
PHASE VELOCITY C1=0.000003 

1.00 	2.00 	3.00 	4.00 	5.00 	6.00 
NORMAL DISTANCE FROM PLATE- n 

I.- • 	 ,... • 

2 	 2 
Q a s. 
00 	 00 OLI 
m •• 	 0 • W•• 	 03. 

2 
6.-. 	 0

... 1.-• ••• 	 ),-.
9'  a: 	 a a.c 	 Q. 0 ..-. • 

N 	 0 tr■ 	 1.0 
.... 

00 	 00  . 
01.. ,.n.   

N u") 
W w w 	 a 

••-••• 
V1, 	 1.0•:? 
tn .0 
 1.13 • 

0 	 0 -.I 	 -J 0 	 0 So 	 Zen ,..c 	 ....clo w,..; 	 wc; Cr . 

FIG. 5.51  
P11=0.73 
GR=246.58 

▪ WAVE NUMBER a :0.700000 
PHASE VELOCITY CR=0.156B4I 
PHASE vELoclIr 01=0.000001 

0.00 	1.00 	2.00 	1.00 	4.00 	560 	6.00 
NORMAL OANCE FROM PLATE- 

WAVE NUMBER 	Ct 0.760000 

PHASE VELOCITY CR,0.158496 
PHASE VELOCITY Ch - 0.000000 

0.00 	1.00 	2.00 	9.00 	1.00 	5.31 	6.00 
NORMAL DISTANCE FROM PLATE -  II W 



132 

whereas the Reynolds stress term is actually subtracting 

energy. Figure 5.45 shows that at an increased wave number 

of 0.35 both the buoyancy term and the Reynolds stress term 

give positive contributions to the energy of the disturbed 

motion and only the dissipation term subtracts energy from 

it. From figures 5.51 and 5.52, it can be seen that for a 

large wave number of 0.76, the positive energy is contributed 

mostly by the Reynolds stress term. It can be concluded that 

since the buoyancy term becomes unimportant at large wave 

numbers the neglect of the temperature fluctuations for the 

purpose of solving the disturbance equations could be a good 

assumption for values of the wave number, a, greater than 

0.7. For moderate values of the wave number, 0.35<a<0.70, 

figures 5.45 to 5.49 show that the neglect of the temperature 

fluctuations may be justified. However, for values of the 

wave number less than 0.35 the temperature fluctuations 

introduce instability and the buoyancy force plays a dominant 

role in the instability of the flow. 

The above mentioned conclusion is also supported by an 

examination of the neutral stability curves obtained with 

and without the inclusion of the effects of temperature 

fluctuations. Figure 5.53 shows a comparison of the neutral 

stability curve obtained when temperature fluctuations are 

included, as in the present study for a Prandtl number of 

0.733, with the neutral stability curves obtained when 

temperature fluctuations are not included. It can be seen 

that at low wave numbers, a<0.35, the results with temperature 

fluctuations are distinctively different from the results 

without temperature fluctuations. At higher wave numbers, 
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a>0.35, the curve with temperature fluctuation resembles 

the curve without temperature fluctuations. 

Figure 5.54 shows the neutral stability curve for a 

Prandtl number of 1.0 drawn in the wave number, Grashof 

number-plane (a, Gr-plane). The minimum critical value 

of the Grashof number is located at a Grashof number of 61.0. 

The detailed solutions for the neutral curve for a Prandtl 

number of 1.0 are tabulated in Table F.4.(b). It can be seen 

that the closest calculated point to the minimum critical 

Grashof number is at a Grashof number of 61.35, and at a 

wave number of 0.14 with a phase velocity of 0.26661. 

Figure 5.55 shows the neutral stability curve for a 

Prandtl number of 1.0 in the phase velocity, Grashof number-

plane (cr, Gr-plane). A comparison of this figure with 

figure 5.56 reveals that for values of a less than 0.16, 

the phase velocity of disturbance wave, cr$  is greater than 

the maximum velocity of the basic flow, hence, there are no 

critical layers. 

Figures 5.57 to 5.76 and 5.77 to 5.86 show the solutions 

of the disturbance equations and the energy distributions, 

respectively, for a Prandtl number of 1.0. The discussion of 

these figures is exactly similar to that for a Prandtl number 

of 0.733. Examination of the energy distributions for values 

of the wave number less than 0.35, figures 5.77 to 5.80, 

shows that the buoyancy term in the energy balance of the 

disturbed motion is the only term which gives a positive 

contribution to the energy of the disturbed motion. Figure 

5.81 shows that for a wave number of 0.35 both the buoyancy 

term and the Reynolds stress give positive contributions to 
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gr1 	Figure 5.54. Neutral stability curve for a Prandtl number 
of 1.0 in a, Gr-nlane 
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Eigenfunctions for a Prandtl number of 1.0. 
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Eigenfunctions for a Prandtl number of 1.0. 
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Energy distributions for a Prandtl number of 1.0- 
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Energy distributions for a Prandtl number of 1.0. 

eRe= Reynolds stress 	eD  = Dissipation 	eB  = Buoyancy 
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Energy distributions for a Prandtl number of 1.0. 
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the energy of the disturbed motion. Figures 5.84 to 5.86 

reveal that for values of the wave number greater than 0.65 

the positive energy 	contributed mostly by the Reynolds 

stress term. 

5.3. Stability Results for Water, Prandtl Number of 6.7  

The neutral stability curve in the wave number, Grashof 

number-plane (a, Gr-plane) for the case of a Prandtl number 

of 6.7 is shown in figure 5.87. It can be seen that the 

minimum critical value of the Grashof number is 43.0. The 

detailed solutions for the neutral stability curve for a 

Prandtl number of 6.7 are given in Table F.4.(c). The closest 

calculated point to the minimum critical Grashof number is at 

a Grashof number of 45.0, at a wave number of 0.45, and at a 

phase velocity of 0.15465. 

Figure 5.88 shows the neutral stability curve for 

Prandtl number of 6.7 in the phase velocity, Grashof number- 

plane (cr, Gr-plane). A comparison of this figure with 

figure 5.89 shows that all the points on figure 5.88 

represent eigenvalues which possess the property that the 

phase velocity of the disturbance wave is greater than the 

maximum velocity of the basic flow. 

The real and imaginary parts of the eigenfunctions and 

their derivatives and the corresponding eigenvalues are 

presented in figures 5.90 to 5.107. These figures show that 

in a manner similar to that when the Prandtl number has a 

value of 0.733 for low values of the wave number the disturbance 

wave is not confined to the boundary layer and extends into 

the stationary region with a slow exponential decrease 
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Figure 5.87. Neutral stability curve for a Prandtl number 
of 6.7 in a, Gr-plane. 

  

0 

O 

   

O 
co 
O  

0 
N 
O  

 

  

  

0 

0 

O 

 

O 
v-II 

O 

 

  

0 0 

cb.00 

 

50.00 100.00 150.00 200.00 250.00 300.00 

MODIFIED GRRSHOF NUMBER , GR 

 



a=0.04 
a=0.075 

a=0.20 

a=0.30 

a=0.45 

a.0.60 

a=0.75 
a=0.80 

N 

Or  

O 
O 
O 

CD 
O 
O 

O 

O 
O 

cb.00 

148 

Figure 5.88 - Neutral stability curve for water, 
P=ndt1 n=bcr cr: 6.7, in C

r'  Cr-plane. 
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of 6.7 from Schmidt and Beckmann equations. 
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Eigenfunctions for water, Prandtl number of 6.7. 
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Eigenfunction for water, Prandtl number of 6.70. 
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Eigenfunction for water, Prandtl number of 6.70. 
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magnitude. As the wave number increases, the wave becomes 

confined to the boundary layer and the eigenfunctions start to 

oscillate. An examination of these figures shows that the 

results of the present work are considerably different from 

those when the effects of temperature fluctuations are ignored. 

For a clarification of the reason for this difference the 

energy distribution curves 5.108 to 5.115 will be studied. 

These figures show that the buoyancy term in the energy 

balance is the only term which gives a positive contribution 

to the energy of the disturbed motion and that the Reynolds 

stress term does not play an important role in the energy 

balance. Thus, it can be concluded that the buoyancy term 

provides most of the energy input into the disturbed motion, 

so that the omission of the temperature fluctuations cannot 

be justified. The neutral stability curves with and without 

temperature fluctuations are compared in figure 5.116. It 

can be seen that the present work gives a minimum critical 

Grashof number which is much lower than that obtained 

without temperature fluctuations. 

5.4. Stability Results for Prandtl Numbers of 100.0 and  

1000.0  

Figures 5.117 and 5.118 show the neutral stability curve 

for a Prandtl number of 100.0 in the wave number, Grashof 

number-plane (a, Gr-plane) and in the phase velocity, Grashof 

number-plane (cr, Gr-plane), respectively. Table F.4.(d) 

presents the detailed solutions of the disturbance equations 

for the neutral stability curve for a Prandtl number of 100.0. 

This table shows that the closest solution to the minimum critical 
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Energy distribution for water, Prandtl number of 6.70. 

eRe= Reynolds stress 	eD  = Dissipation 	eB  = Buoyancy 
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Energy distributions for water, Prandtl number of 6.70. 
eRe= Reynolds stress 	eD  = Dissipation 	e
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Figure 5.117. Neutral stability curve for a Prandtl number 
of 100.0 in a, Or-plane. 
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value of the Grashof number is at a Grashof number of 33.71, 

and at a wave number of 0.70 with a phase velocity of 0.06123. 

A comparison of figure 5.118 with figure 5.119 shows 

that all the points on figure 5.118 possess the property that 

the phase velocity of the disturbance wave is greater than the 

maximum velocity of the basic flow. 

Figures 5.120 to 5.135 show the real and imaginary parts 

of the eigenfunctions and of their derivatives and the corres-

ponding eigenvalues for a Prandtl number of 100.0. 

The energy distributions of the disturbed motion for a 

Prandtl number of 100.0 are shown by figures 5.136 to 5.143. 

It can be seen that, in a manner similar to the case when the 

Prandtl number is 6.7, the buoyancy term in the energy balance 

of the disturbed motion is the only term which gives a positive 

contribution to the energy of the disturbance motion, hence, 

the effect of temperature fluctuations cannot be ignored when 

the Prandtl number is 100.0. 

Figures 5.144 and 5.145 show the neutral stability curve 

for a Prandtl number of 1000.0 in the wave number, Grashof 

number-plane (a, Gr-plane) and in the phase velocity, Grashof 

number-plane (cr, Gr-plane), respectively. The detailed 

solutions for the neutral stability curve for a Prandtl 

number of 1000.0 are tabulated in Table F.4.(e). The table 

shows that the closest calculated point to the minimum critical 

value of the Grashof number is at a Grashof number of 33.0, 

and at a wave number of 0.6 with a phase velocity of 0.0410. 

Once again, a comparison of figure 5.145 with figure 

5.146 shows that all the points on figure 5.145 possess the 

property that the phase velocity of the disturbance wave is 
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Figure 5.119. Velocity profile for a Prandtl number of 
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Eigenfunctions for a Prandtl number of 100.0 
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Eigenfunctions for a Prandtl number of 100.0. 

HAVE NUMBER a =0.500000 
PHASE VELOCITY CR:0.064672 
PHASE VELOCITY CI:0.000004 

'040 	1.00 	2 .00 	3.00 	4 .00 	5 43 	640 
NORMAL DISTANCE FROM PLATE- r, 

PR:Iu0.00 FIG-5.127 
bH=35.10 



Eigenfunctions for a Prandtl number of 100.0. 

PE 

4 	
Is.5•129 

0,4 

1 

e. 

L WAVE NUMBER 	cc.0.600000 
PHASE VELOCITY CR.0.062909 
PHASE VELOCITY C1.-0.000012 

1.00 	2.00 	3.00 	4 	40 C O0 	6 .00 
NORMAL DISTANCE FROM PLATE- n 

FIG- 5.131 
pR.L'o.mn 
OR:33.71 

.10 

1 

r 

40, 

WAVE NUMBER 	a =0.700000 
PHASE VELOCITY CR.0.061238 
PHASE VELOCITY [I.-0.000068 

0 

'040 	e40 	i40 	3.00 	440 	5'40 	5.00 
NORMAL DISTANCE FROM PLATE- n 

165 

WAVE NUMBER a  :0.700000 
PHP3E VELOCITY CR=0.061238 
PHASE VELOCITY CI.-0.000050 

'oxo 	1'x3 	i4a 	3.00 	400 	$40 	640 
hORMAL DISTANCE FROM PLATE- n 

FIG. 5.128 
PR.I00.00 

2.C7 	340 	440 	5.13 	640 
DISTANCE FR:11 PLATE-  Tl 

WAVE NUMBER 	a  .0.600000 
PHASE VELOCITY CR.O.CG2009 
PHASE VELOCITY C1.-0.000012 



6'.D0 

Eigenfunctions for a Prandtl number 

°' 

of 100.0 

1 -E., 

166 

8 
n r 

PR=100.00 
CR.35.00 

FIG. 5.133 

1 

WAVE NUMBER 	a  =0.800000 
PHASE VELOCITY CR=0.0596I3 
PHASE VELOCITY CI.0.000014 

1.00 	2.00 	3.03 	4.00 	5.00 	6.00 
NORMAL DISTANCE FROM PLATE- n 

FIG-5.135 
PR=I00.00 
CR.36.44 

HAVE NUMBER 	a=0.900000 
PHASE VELOCITY CR=0.056104 
PHASE VELOCITY ciro.onall 

1.00 	2-CC 	3.00 	4. ',ICI 	5.00 
NORMAL DISTANCE FROM PLATE-fl 

0.0 

a 

0 

a 

No 

a 

z • ris 
Do 
z 
0. 

WO 

O 

O 

FR=100.00 FIG• 
5.134 

GR=36.44 

11 r  

'r 

PR.100.00 
CR.35.00 

O 

O 

'0.03 

FIG. 5.132 

WAVE NUMBER a  =0.800000 
PHASE VELOCITY CR=0.050813 
PHASE VELOCITY CI:0.00001 4  

1.00 
fORMAL2  .1; 31 STAN3Cf OFROM1.F7ATE -)f 

WAVE NUMBER 	a  =0.900000 
PHASE VELOCITY CR.0.0581.14 
PHASE VELOCITY CI.D.000011 

6.00 	 •07 	0.00 	4.CC 	5.02 	6.00 
NORMAL DISTANCE FROM PLATE- T1 



FIG. 5.136 
PR=100.00 
CR=248.75 

eB  

HAVE NUMBER 	a .0.040000 
PHASE VELOCITY CR:0.073061 
PHASE VELOCITY CI:0.000006 

FIG. 5.139 
PR=I00.00 
GR=35.10 

0 

Zo 
cc . 
O 
CD 
CD 

Z,"1 
o9 
•-•0 
OC 
a 
No 
tr39 
•-•o 
O 

trio 
10 • 
CC 1 

CO. 
0. 
-1 - 
O. 

)- 

0 

0 	HAVE NUMBER 	a  =0.500000 
PHASE VELOCITY CR=0.054672 
PHASE VELOCITY C1=0.000004 

0 
'0.00 	0.60 	1.60 	2%40 	3.20 	400 	4.60 

NORMAL DISTANCE FROM PLATE- ri  

FIG. 5 * 138 PR.100.00  
GR.43.33 

0 

U 
zo 
1.0 
0 
= 
03 
Z. 
o9 

a 
a 
NO 
co. 

CCD

O  

WAVE NUMBER 	0c:0.300000 
PHASE VELOCITY CR.0.068557 
PHASE VELOCITY C170.000008 

'0.00 	0.00 	1.60 	7.40 3.20 	4.00 	4.80 

FIG.5.137 
PR=I00.00 
GR=I04.00 

WAVE NUMBER 	Ct=0.100000 
PHASE VELOCITY CR.0.072658 
PHASE VELOCITY C1=0.000014 

D.60 	1.60 	2.40 	9.20 	4.00 	4.60 
NORMAL DISTANCE FROM PLATE- n 

167 

Energy distributions for a Prandtl number of 100.0. 
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Energy distributions for a Prandtl number of 100.0. 
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Figure 5.144 - Neutral stability curve for a Prandt] 
number of 1000.0 in a, Gr-plane. 
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Figure 5.145 - Neutral stability curve for a 'Prandt1 
number of 1000.0 in cr, Gr-plane. 
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greater than the maximum velocity of the basic flow. 

The real and imaginary parts of the eigenfunctions and 

of their derivatives and the corresponding eigenvalues for a 

Prandtl number of 1000.0 are presented by figures 5.147 to 

5.154. 

The energy distributions of the disturbed motion for a 

Prandtl number of 1000.0 are shown by figures 5.155 to 5.158. 

An examination of these figures shows that, in a manner similar 

to the case when the Prandtl number is 100.0, the buoyancy term 

in the energy balance of the disturbed motion is the only term 

which gives a positive contribution to the energy of the 

disturbed motion. 

S.S. The Influence of the Prandtl Number on the Neutral  

Stability Curves  

The neutral stability curves for Prandtl numbers of 

0.733, 1.0, 6.7, 100.0 and 1000.0 in the wave number, Grashof 

number-plane (a, Gr-plane) are compared in figure 5.159. This 

figure shows that the shape of the neutral stability curves 

for Prandtl numbers of 0.733 and 1.0 are different from those 

obtained for the larger values of the Prandtl number of 6.7, 

100.0 and 1000.0. There is a development of a nose-shaped 

piece on the neutral stability curves at Prandtl numbers of 

0.733 and 1.0. The presence of the nose-shaped piece can be 

attributed to the changing roles of the buoyancy and Reynolds 

stress terms in the energy balance equation as the wave number 

changes. As discussed in section 5.2 for Prandtl number of 

0.733 and 1.0 and for wave numbers less than 0.25 the buoyancy 

term in the energy balance of the disturbed motion is important 
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Figure 5.159 - Neutral stability curves for Prandtl 
numbers of 0.733, 1.0, 6.7, 100.0 and 
1000.0 in a; Gr-plane. 
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because it is the only term that gives a positive contribution 

to the energy of the disturbed motion whereas the Reynolds 

stress term subtract:: energy. For wave numbers greater than 

about 0.25 the sign of the Reynolds stress term is reversed 

and at wave numbers greater than 0.35 the energy contributed 

by the Reynolds stress term is much larger than that contri-

buted by buoyancy terms. Thus, the change in the shape of 

the neutral stability curves for Prandtl numbers of 0.733 and 

1.0 at wave numbers around 0.35 is caused by the changing 

magnitudes of the buoyancy and Reynolds stress terms in the 

energy balance of the disturbed motion. For values of the 

Prandtl number of 6.7, 100.0 and 1000.0, the buoyancy term in 

the energy balance of the disturbed motion is the only term 

which gives a positive contribution at all ranges of the wave 

number and the Reynolds stress term does not make a positive 

contribution. Consequently a nose-shaped piece is not present 

on the neutral stability curves for Prandtl numbers of 6.7, 

100.0 and 1000.0. 

Another interesting feature of the behaviour of the neutral 

stability curves is that at low values of the wave number the 

increase in the Prandtl number is accompanied by an increase 

in the critical value of the Grashof number while for high 

values of the wave number this effect is reversed. This may 

be because at low values of the wave number the Reynolds 

stress term subtracts energy from the disturbed motion and 

has a stabilizing effect, secondly as the Prandtl number is 

increased the stabilizing effect of the Reynolds stress term 

increases. Thus, at low values of the wave number as the 

Prandtl number is increased the critical value of the Grashof 

number increases but at high values of wave number this effect 

is reversed. 
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5.6. The Influence of the Prandtl Number on the Minimum 

Critical Value of the Grashof Number  

The neutral stability curves for Prandtl numbers of 

0.733, 1.0, o.7, 100.0 and 1000.0 in a, Gr-plane are shown 

in figure 5.159. The minimum critical value of the Grashof 

number are marked on the individual curves. An examination 

of this figure shows that as the Prandtl number is increased, 

the minimum critical value of the Grashof number decreases. 

This effect is more pronounced for Prandtl numbers in the 

range 0.733 to 6.7 than for the range 6.7 to 1000.0. 

Figure 5.159 also shows that as the Prandtl number is 

increased, the value of the wave number corresponding to the 

minimum critical Grashof number increases. This increase is 

more noticeable for low values of the Prandtl number. 

Figure 5.160 shows the neutral stability curves for 

Prandtl numbers of 0.733, 1.0, 6.7, 100.0 and 1000.0 in 

Cr, Gr-plane. A comparison between the neutral stability 

curves shows that as Prandtl number is increased the value 

of the phase velocity corresponding to the minimum critical 

Grashof number decreases. This effect is more pronounced for 

Prandtl numbers in the range 0.733 to 100.0 than for the 

range 100.0 to 1000.0. 
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Figure 5.160 - Neutral stability curves for Prandtl 
numbers of 0.733, 1.0, 6.7, 100.0 and 
1000.0 in cGr-plane. 
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5.7. Comparison of the Present Results with the Existing  

Experimental Results  

In order to assr.-ss the reliability of the present work, 

the neutral stability curves for Prandtl numbers of 0.733 and 

6.7 are compared with the experimental results of the other 

workers. There have been no experimental results for neutral 

stability curves for Prandtl numbers of 1.0, 100.0 and 1000.0 

with which the present results can be compared. 

Figure 5.161 shows a comparison of the neutral stability 

curve for Prandtl numbers of 0.733 with the experimental 

results which have been obtained by other workers. Before 

examining figure 5.161, it is worth considering that the 

experimental investigations of the stability of the free-

convection boundary layer flows over a vertical plate [see 

Chapter 21. These investigations have involved the observation 

of natural and artificial oscillations. Figure 5.161 shows 

that the experimental results of Polymeropoulos and Gebhart 

[5] based on the observation of artificial oscillations are 

in agreement with the present theoretical results. The 

experimental results of Eckert and Soehghen [21], Lock et al. 

[64] and Polymeropoulos [65] based on the observations of the 

natural oscillations, are also shown in figure 5.161 which 

reveals a considerable disagreement with present results. 

The explanation of this disagreement is outlined as follows: 

First , natural oscillations are too small to be detected 

during their inj_tial stages of amplifications [5], consequently 

the observation of natural oscillation alone does not give 

any definite information either on the location of the neutral 

stability curve, or on the question of the applicability of 
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linear stability theory to free-convection boundary layer 

flows. Secondly, natural disturbances arise out of 

disturbances at the most amplified frequencies, rather than 

from a disturbance at the frequency which first begins to 

amplify [29], consequently all of the points which have been 

obtained for natural instability [see figure 5.161] lie in 

the unstable part of the stability plane and, in particular, 

in the regions which would be reached by disturbances of 

frequencies which amplify at a high rate. 

The experimental results for Prandtl number of 6.7 are 

compared with the results of the present work in figure 5.162. 

It can again be concluded that the experimental results of 

Knowles and Gebhart [30] based on the observation of the 

artificial oscillations are in agreement with the present 

results but the other workers' results based on the natural 

oscillations are not in agreement. 

Figures 5.163 and 5.164 show a comparison of the neutral 

stability curves for Prandtl numbers of 0.733, 1.0, 6.7, 100.0 

and 1000.0 using the quasilinearization and the trial-and-error 

techniques which reveal that the results of the trial-and-error 

technique are in good agreement with the quasilinearization 

technique within one per cent accuracy. 
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9— 	Figure 5.163 - A comparison between the neutral stability 
curves of present work 'using. the.quasi-
linearization technique with those using 
trial-and-error technique. 
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Figure 5.164 - A comparison between the neutral stability 
curves of present work using the quasi-
linearization technique with those using 
trial-and-error technique. 
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CHAPTER 6 

CONCLUSIONS 
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The results of the present study may be summarized 

as follows: 

1) The disturbnice differential equations which govern 

the instability of free-convection boundary layer flows along 

an isothermal vertical plate have been derived. The 

derivation was based upon linear stability theory and on the 

introduction of a perturbation stream function and perturbation 

temperature function. These equations were rewritten in 

dimensionless form by the introduction of dimensionless 

variables. 

2) The disturbance differential equations were solved 

by two different techniques: 

i) A quasilinearization technique was used to solve 

the boundary value problem associated with solution of the 

two ordinary disturbance differential equations. The 

disturbance differential equations were solved for a range 

of Prandtl numbers 0.733 to 1000.0 and for a range of Grashof 

numbers 2 x 104  to 108. 

ii) A trial-and-error technique was developed by the 

use of Cauchy-Riemann relations. This technique was employed 

for solving the disturbance differential equations for the 

ranges of Prandtl number and Grashof number stated above. 

For the trial-and-error technique very accurate estimates of 

the unknown parameters were needed in order to obtain a 

solution, while in the application of the quasilinearization 

technique only crude initial guesses were required. It was 

found that when accurate initial guesses were provided the 

trial-and-error technique required less computation time 

than the quasilinearization technique for the same accuracy. 
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Therefore, the quasilinearization technique may be used to 

supply initial guesses which can then be used in the trial-

and-error thus saving computation time. 

3) A computer program was written to solve the boundary 

value problems associated with the disturbance differential 

equations. This program was written in a general form and 

may be adapted to solve boundary value problems not necessarily 

associated with the problem of the instability of the free-

convection boundary layer flows along a vertical plate. 

4) The unknown boundary conditions and eigenvalues were 

determined with an accuracy of four decimal places. Within 

this accuracy the size of the integration step length, the 

value of the convergence criterion and the effective boundary 

layer thickness were optimized. 

5) Neutral stability curves were obtained in the wave 

number, Grashof number-plane (a, Gr-plane) and in the phase 

velocity, Grashof number-plane (Cr, Gr-plane) for Prandtl 

numbers of 0.733, 1.0, 6.7, 100.0 and 1000.0. 

6) A comparison of the neutral stability curves for 

different Prandtl numbers showed that the value of the Prandtl 

number influences the minimum critical value of the Grashof 

number. As the Prandtl number was increased, it was observed 

that the minimum critical value of the Grashof number 

decreased. This effect was more pronounced for Prandtl numbers 

in the range 0.733 to 6.7 than for the range 6.7 to 1000.0. 

7) It was found that as the Prandtl number was increased, 

the value of the wave number, a, corresponding to the minimum 

critical Grashof number, increased. The increase was more 

noticeable for low values of Prandtl number. 
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8) A comparison of the neutral stability curves in 

the phase velocity, Grashof number-plane for different 

Prandtl numbers revealed that as the Prandtl number was 

increased, the value of the phase velocity corresponding to 

the minimum critical Grashof number decreased. This effect 

was more pronounced for Prandtl numbers in the range 0.733 

to 100.0 than for the range 100.0 to 1000.0. 

9) A kinetic energy balance equation for disturbed 

motion was solved in order to find the importance of the 

buoyancy term in the disturbance differential equations. It 

was found that neglect of the temperature fluctuations for 

the purpose of solving the disturbance equations for Prandtl 

numbers of 0.733 and 1.0 may only be justified for wave 

numbers greater than 0.35. However, for Prandtl numbers of 

6.7 and greater it was found that the temperature fluctuations 

introduce instability at all values of the wave numbers. 

10) The minimum critical Grashof numbers were found to 

correspond to values of the wave number at which the phase 

velocity of the disturbance wave was greater than the maximum 

velocity of the basic laminar flow, consequently no critical 

layers were found to exist. Therefore, asymptotic methods 

in the form of expansions about the critical layers cannot 

provide.a reliable value of the minimum Grashof number. 

11) The neutral stability curves for Prandtl numbers 

of 0.733 and 6.7 were compared with the experimental results 

obtained by other workers based on artificial oscillations. 

The comparison showed that the experimental results were in 

good agreement with predicted curves. Thus it may be concluded 

that linear stability theory can be used for the prediction of 
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the instability of free-convection boundary layer flows. 

12) It is to be hoped that some future work will be 

directed towards:- 

i) obtaining the neutral stability curves for the 

range of the Prandtl numbers of 1.0 to 6.7 which can be 

useful in an interpretation of the influence of the Prandtl 

number on the neutral curves. 

ii) a study of the instability of free-convection boundary 

layer flows along curved surfaces. 



191 

APPENDIX A 

CONDITIONS TO BE SATISFIED AT THE EDGE OF 

BOUNDARY LAYER 
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Conditions to be satisfied at edge of boundary layer  

The technique used by Brown 	 in reference 

[66] is used to eliminate the arbitrary constants in 

equations (3.2.47) and (3.2.48) in order to obtain a set 

of linear and homogeneous relations in the dependent 

variables of equations (3.2.41) and (3.2.42) and their 

derivatives, which are to be satisfied at the edge of the 

boundary layer. 

In order to satisfy the boundary conditions 	(3.2.44), 

it is necessary that c1  = c3  = c5 	= 0. Further, in order 

that the solutions 	(3.2.47) and (3.2.48) agree with the 

numerical solution of equations (3.2.41) and 	(3.2.42) 	is 

obtained by numerical integration when n it is = ledg' 
necessary that 

= clexp(an 	+ c2exp(- edg' 	anedg) + c3expOn edg' + c4exp(-5n edg' 

	

c 5exp(Ynedg)  + c6exp(-ynedg 
	 (A-1) 

Thus: 

Ip. c1tlexp(cl,  
eag

)_c2aexp(-I, neag)+ c3riexp(Rn ed  ) - 

c4Rexp(- fledg)  + c5yexp(yri edg)  - coexp(-yfl edg) 

(A-2)  

	

qi=c1a2exp(ari,)+ c2a 2exp(-an 	) + c.3. 	pD 2exfl eag 	 eag 	 edg )  

c413 2exp(-3T-I edg ) + c5y 2exp(yri edg ) + co2exp(-yn edg) 
(A-3)  
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= c1  a
3
exp(an 

ea  
,
g 
 ) - c2a

3 
 exP(- anedg) + c3133exp(f3nedg) - 

c4f33 
	

"ea 
exp(- 	,

g) + c5y
3 
 exp(yn

ea  ,g 	
e
3 

) - c 	exp(-yn 
edg' 

 (A-4) 

(Y
2
-a

2
)(Y

2
-R

2
)exP(Yr1edg) 

+c6 

(Y 2-a 2)(I 2 2 -a )exp(-yn edg)
= -c5 

(A-5)  

_c5(y2_a2)(y2_2)exp(ynedg) - c6(y2_a2)(y2_...2. 
JexP(-Ynedg) 

(A-6)  

The left hand sides of equations (A-1) to (A-6) are obtained 

from numerical integration of equations (3.2.41) and (3.2.42) 

from n = 0 to n= 
nedg' 

 The solution of equations (A-1) to 
.  

(A-6) gives the arbitrary constants (ci,c2,...,c5). Since 

ci  = c2  = c5  = 0,the three determinants that give 

cl, c3, and c5  must be vanish. Hence, 

p 	1 	1 	1 	1 	1 

11; -a 13 -3 	Y 	-Y 

II; a2 2 2 	y2 	2 
Y 

/I, 	3 	3 	3 	3 	3 
p-a 	13 	-3 	Y 	-Y 

cy.2_a2)(y.2_2) 	(.1,2_ a . 
2_A  0 	0 	0 	 )(Y -1B 

Y 	Y 

0 	0 	0 	_(y2_a2)(y2_ f3 2) 	_(y2_a2)(y2_ 

(A-7)  
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Equation (A-7) to (A-9) can be reduced to: 

- a IP 	f3 (1P - a 2 ) 

e *  * a 11) 	e26* 	a*1P*) 	 Y 	
** 

e + Ye = 0 

0 

0 
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APPENDIX B 

NEWTON-RAPHSON METHOD 
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Newton-Raphson Method  

Let X°  be an approximate root of the single algebraic 

equation: 

f (X) = 0 	(B-1) 

Suppose that the exact root is: 

X = X°  + h 	 (B-2) 

where h is a small quantity. By substitution of equation 

(B-2) into (B-1), 

f(X°  + h) = 0 	(B-3) 

Consider the following assumptions: 

i) f(X) is convex function 

ii) The root X is simple 

iii) f(X) < 0 

Function f(X) can then be represented by figure (B-1). The 

equation (B-3) can be expanded by Taylor's Theorem, 

f(X°+h) = f(X°) + hf(X°) + 1/2h2f(X°) + 	 = 0. 

(B-4) 

If h is small, the terms in h2,h3,... can be neglected, so 

that 

f(X°) + hf(X°) = 0. 	(B-5) 
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This yields the second approximation: 

xl = X° 	f(X°), 
f(X°) 

(B-6)  

The process is repeated at X1 leading to a new value X2 and 

so on, then the general relation can be written as: 

X K+1 = X K 	f (XK) 

f(X1() 
(B-7)  

Now some of the important properties of the Newton-Raphson 

method will be discussed as follows: 

i) There is no solution to equation (B-7) if f(XK  ) = 0 

ii) It is clear from figure (B-1) that 

Xo<X1<X2< 	 <X 	(B-8) 

This property of equation (B-8) is known as monotonic 

convergence, and analytically follows from the inequalities: 

 
f(X

K
) 	O. 	f(X

K 
 ) < 0 
	

(B-9) 

If f(XK)<O, thus the initial approximation X°  is not part of 

the monotonic sequence, but the sequence X1,X2, 	XK  is 

still monotonic convergence. It can easily be shown that 

this monotonicity also exists for a concave function, i.e. 

f(X)>0, which is an important property computationally. 

iii) Another property of the Newton-Raphson method, 

which is even more important computationally is the quadratic 

convergence of this method. This can be demonstrated as 

follows: 
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Equation (B-7) can be written as: 

x1(4.1  - x = XK 
	f (X

K
) 
 - X 

'  
f(X

K 
 ) 

thus, 

	

X
K+1 

- X = X
K f(X

K
) 
	

(X fp)  

	

f(XK) 	
f (X) ) 

Hence, 

X
K+1 

- X = (I) (X
K
) - (I) (X) (B-10) 

The Taylor's series expansion of equation (B-10) is: 

X
K+1 

- X = (X
K+1 

 -X)q)(X) + 

 

) 	 Pe) (B-11) 
2 

where X0  < X
K 
< e < x 

Since (1)(X) can be expressed as: 

(X) _ f(X)f(X)  

i(X)2  
(B-12) 

Therefore, 

Hence . 

IXK+1  - x l  < RIXK  - XI
2 	

(B-13) 

1,/ 
where R = max.IMO)P2 is a bound dependence on f(X). 

Furthermore, 

X
K+1 

- X
K  = (p(XK) - (1)(XK-1) 

K K-1 2 , 
= 

(XK-XK-1) (XK-1)
+ (X -X 	)  Ci)(0) (B-14) 



R1 = max. 	
I  f(e)  

x <8<x 	f(e) 0— — L. 

 

(B-18) 
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where XK-1 < 0 <XK, which leads to 

/I 	1' 
(xK+1-xK) = (xl<-xK-1)f(X

K-1  )f(XK-1  ) 	(XK  -XK-1 -)2  ti)(0)  
i(XK-1)2 	2 

(B-15) 

Equation (B-34) yields: 

f(X1(-1'  K 	K-1 = X - X 
f(X1(-1) 

Hence, 

  

   

(X1(1-1-xl() 	(xK_xK-1)2 K-1 f(X 	111(0) 
f(XK-1) 

(B.16) 

   

   

Thus, 

1̀ 11A  
/ xK+1_,

A
K

I 	
1,K_xK-112 (B-17) 

where 

This quadratic convergence is not only important because 

of the computing time, but also because of round-off error 

which is likely to increase as the number of iterations 

increases. 

The above mentioned method can be easily generalized to 

the higher dimensions, Bellman and Kalaha [47], as fellows: 

Considering a system of simultaneous equations 

fi(X1,X2,....xN) = 0. 	i = 1,2,....N 

(B-19) 
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or in a vector form 

F(X) = 0. 

Taking X°  as a initial approximation 

F(X) = F(X°) 
	gx°)(x-x°) 

where J(X°) is a Jacobian matrix: 

aff. 
J(X°) 	(zi )x=x0  

(B-20)  

(B-21)  

(B-22)  

From equation (B-21) the new approximation can be expressed 

as: 

• xl = x0 - J.(x011. (x0) 	

(B-23) 

This can be written in general form as: 

X
K 

= X
K-1 

- J(X
K-1

)
- 
F(X

K-1
) 
	

(B-24) 
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Figure B.1 

f (X) 

Newton-Raphson method. 
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APPENDIX C 

THE SUPERPOSITION PRINCIPLE 
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The Superposition Principle  

The superposition principle supposes that one particular 

solution and several non-trivial homogeneous solutions are 

obtainable. The complete solution is the weighted sum of 

these solutions. 

Consider the following linearized ordinary differential 

equations with variable coefficients: 

K+1 ,K 	K K+1 XK) dt 	 - f(X ,t) + J(X ).(X 	- (C-1)  

with the boundary conditions: 

Xi+1  (0) = Xio 	i = 1,m 

(C-2)  

X
K+1(tf) = Xtf 	q = m+l,n 

Any solution of these equations constitutes the particular 

solution 

K+1 	K+1 X  Xip  (t), X2  (t), 	 np 
1(t) 	(C-3) 

By removing from the particular equations anything not 

containing XiK+1  , i = l,n a set of homogeneous equations is 

obtained. 

K+1 	+„ 
Now let Xilij  (t), X2

K
Hj 

Ltj, 

 

XK . nH31 (t) ' 

 

j = l,n be any set of n non-trivial and distinct solutions of 

the homogeneous equations. Then the solution of equation (C-I) 

is represented by: 

+1 	K+1 X. (t) = X. (t) + E 	X15+(t)  i = 1,n 	(C-4) 
1 	a.p j=1 	11-13 
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wheretheunknownconstantsal 	will be determined using 

the boundary conditions, the subscript i represents the ith 

th. variable and subscript j represents 3 	homogeneous solution. 

If initial conditions used in obtaining the above particular 

and homogeneous solutions, satisfy the given initial 

conditions of the problem, then the number of distinct and 

non-trivial homogeneous solutions required is reduced by the 

number of initial conditions satisfied. This leads to a 

considerable saving of computation time. By means of the 

initial conditions in (C-2), equations (C-4) are reduced to: 

K 	
n-m 

XK+1 i  (t) = X.+1  (t) + E J+1  )P1-(t) 1p iHj 
j=1 3  

i = 1,n 

(C-5) 
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APPENDIX D 

ORTHOGONALIZATION OF VECTOR SETS 
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Orthogonalization of Vector Sets [67]  

It is often desirable to form an orthogonal set of 

S linear combinations of original vectors from a set of S 

linearly independent vectors ul,u2, 	u
s. It is also 

convenient to normalize the vectors in such a way that each 

is a unit vector. The following procedure is a simple one 

and it can be extended to other similar problems. 

First select any one of the original vectors, say 

v1  = u1  and divide it by its length, then the first member 

of desired set can be obtained 

el  (D-1) 

next choose a second vector, say u2, from the original set 

and write v2  = u2  - ce1. The requirement that v2  be 

orthogonal to e/  leads to determination of 

(e1'v2)  = (el'u2) 	c(el - el 
	0 

or 

(el'u2)  

so that 

v2 	u2  - (e1,u2)el 
	 (D-2) 

Since e1 
is a unit vector, the familiar geometrical inter-

pretation of the scalar product in two or three dimensions 

leads to the statement that (el ,u2) is "the scalar component 

of u2 in the direction of e1
" and hence that in equation (D-2) 
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we have "subtracted off el  component from u2” 

The second member, e2, of the desired set of orthogonal 

unit vector is obtained by dividing v2  by its length 

e 
v2 

2 	2.717Yr2r 
(D-3) 

in third step write 1r3  = u3  - clef  - c2e2. The requirement 

that v3  be simultaneously orthogonal to el  and e2, then 

determines value of c1 and c2 which are in accordance with 

the geometrical interpretation described above, and there 

follows 

v3 	u3  - (el,u3)ej  - (e2,u3)e2 	(D-4) 

so that the "e1 and e2 components" of u3, are subtracted off. 

The third required vector e3  is then given by 

e3  
v3  

Q (v3) 
(D-5) 

A continuation of this process finally determines the sth 

member of the required set in the form of 

where 

v5 
es 	z(vs) 

s-1 
v2 	us - E (eK,us)eK  

K=1 

(D-6)  

(D-7)  

This method which is often called the Gram-Schmidt orthogonali-

zation procedure, would fail if and only if at some stage vr  = 0. 

But this would mean that ur  is a linear combination of 
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ei,e2,....er_i  and hence a linear combination of ui,u2,... 

ur-1' in contradiction with the hypothesis that the set of 

u's is linearly independent. 

It is seen that this procedure permits the determination 

of an orthonormal basis (a basis comprising mutually of 

the orthogonal unit vectors) for a vector space when any 

set of the spanning vector is known. 

When the vectors ul,....us  are complex, the same 

procedure clearly applies if the Hermitlien products and the 

lengths are used throughout. 
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APPENDIX E 

CAUCHY-RIEMANN EQUATIONS  



210 

Cauchy-Riemann Equations  

Let f(z) be a function of the complex variable 

z = x + iy. Then write 

f(z) = u(x,y) + iv(x,y) 	 (E-1) 

where u and v are real functions of the two real variables 

x and y. 

Suppose that equation (E-1) is differentiable. Then 

it can be shown that if u,v satisfy the equations 

Du 	Dv 
ax = ay 

au 
'37 

av 
Tfc 

we have 

f(z) - f(zo) = u(x,y) - u(xoyo) + i(v(x,y) - v(xo,yo) 

where zo  = x o  + iyo. 

Since f(z) is differentiable, [f(z) 	f(zo)]/(z-zo), 

it must approach a unique limiting value when z 	zo  from any 

direction. First the case when z approaches zo  along a line 

parallel to the real axis is considered, i.e. z = x + yo. 

Hence 

f(z) .- f(zo) 	u(x,y0) - u(x0,y0) 	v(x,y0) - v(xo,yo) 
	 + 

x 	xo 	x - xo  Z - Z 
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and taking the limit as z 	zo  gives 

f1(zo
) 	au 

ax 	1  ax  (E-4)  

The same result must be obtained when z approaches zo  along 

a line parallel to the imaginary axis, i.e. when z = xo + iy. 

In this case 

f(z) - f(z o  ) 	u(xo,y) - u(xo,y_) 	ifv(x o  ,v) 	v(xo  ,yo  )  
z - z 	i(Y 
	 + 

yo) 	1(y - yo) 

Thus 

f 1 (zo) = — 	Du + Dv 
ay ay (E-5)  

Equating real and imaginary parts of equations (E-4), (E-5) 

gives the Cauchy-Riemann equations (E-2) and (E-3). The 

above proof shows that when a function of a complex variable 

is differentiable, its real and imaginary parts satisfy the 

Cauchy-Riemann equations. 
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APPENDIX F 

TABLES OF RESULTS 



71(0)÷fl(1) 
c
r 	C. 

/1, 

H 	 11)(0)r  

n(1)-"edg 

4% 
111(0) 	E(0)r 	6(0)i  

0.1 0.200 -.10677 -1.02778 0.54968 -1.64521 0.26673 -.00212 

0.05 0.100 -.10771 -1.03562 0.54493 -1.63868 0.26723 -.00256 

0.02 0.040 -.10986 -1.05309 0.53601 -1.64411 0.26767 -.00270 

0.01 0.020 -.11107 -1.05749 0.53341 -1.64446 0.26774 -.00275 

0.008 0.016 -.11109 -1.05751 0.53339 -1.64452 0.26776 -.00277 

TABLE F.1. The effect of the integration step length on the predicted values 

of 4)(0)r, 111)/(0)i, E(0)r, t  (0)1 Crand  c. '  

Table F.1.(a)  

Pr = 1.0 
	

aGr = 8.0 	a = 0.02 
	

neda = 8.0 
	

Convergence criterion 1x10
-4 



Table F.1.(b)  

Pr = 1.9 aGr = 75.0 	a = 0.65 n
edg 

= 8.0 	Convergence criterion 
1 x 10-4  

H iii 
11) (0) r  ;(0)i 	(0)r 	(0)i 	cr 	c. 

n(o)4.n(1) 1111)±fledg 

   

0.100 0.200 -2.22815 0.35228 -.83155 -.18614 0.13927 -.00809 

0.050 0.100 -2.29247 0.25424 -.82891 -.12480 0.14009 -.00781 

0.020 0.040 -2.29927 0.18605 -.82335 -.09022 0.14041 -.00765 

0.010 0.020 -2.30177 0.16143 -.82071 -.07920 0.14047 -.00758 

0.008 0.016 -2.30292 0.15541 -.81961 -.08412 0.14050 -.00751 

0.006 0.012 -2.30309 0.15521 -.81942 -.08372 0.14052 -.0075- 



Table F.1.(c)  

Pr = 6.7 aGr = 7.0 	a = 0.02 n 	= 8.0 	Convergence criterion 
edg 	

1 x i0-4  

H of 
1P(0)r 

4`, 
11) (0) i  1(0) r 	(0)3i 	Cr 	c. 

n(o)÷n(1) n(1)-"edg 

0.1250 0.250 0.04183 -.10695 1.99911 -.90799 0.21038 -.00932 

0.0625 0.125 0.04211 -.09935 1.97653 -.93220 0.20899 -.00732 

0.0250 0.050 0.04222 -.09947 1.95956 -.94682 0.20830 -.0065,-) 

0.0125 0.025 0.04226 -.09950 1.95418 -.95130 0.20807 -.00631 

0.0100 0.020 0.04227 -.09953 1.95391 -.95152 0.20800 -.00630 



c
r 

11(0)±n(1) 	11(1)÷fledg 

H 6/ 	6v 
1(0)r 	4)(0)i 	(0)r 	6 1 ) (0)i  

0.1250 0.250 0.21453 -2.24919 5.40006 -4.76311 0.14584 -.00013 

0.0625 0.125 0.31930 -2.23391 5.45128 -4.99837 0.14606 -.00091 

0.0250 0.050 0.36695 -2.24162 5.44766 -5.16330 0.14611 -.00143 

0.0125 0.025 0.38250 -2.24384 5.44575 -5.21530 0.14614 -.00161 

0.0100 0.020 0.38202 -2.24462 5.44521 -5.21912 0.14615 -.0016J 

0.0080 0.016 0.38200 -2.24469 5.44519 -5.21919 0.14615 -.00170 

Table F.1.(d)  

Pr = 6.7 aGr = 21.5 	a = 0.6 nedg = 8.0 Convergence criterion 
1 x 10-4  



Table 	F.1.(e) 

aGr = 11.70 a = 0.04 edg = 14.0 
Convergence criterion 

1 x 10-3  
Pr = 100.0 

H /// /1 
11)(0) 1  “O) i  cr 	c

J- 
:. 

71(0)÷n(1) 	11(1)411edg 

1P(0)1, 

	

0.1250 	0.250 

	

0.0625 	0.125 

	

0.0250 	0.050 

	

0.0125 	0.025 

	

0.0100 	0.020 

0.03468 

0.03498 

0.03509 

0.03511 

0.03512 

-.04212 

-.04907 

-.04920 

-.04923 

-.04925 

6.50301 

6.48010 

6.46838 

6.46311 

6.46287 

0.60131 

0.57682 

0.56183 

0.55682 

0.55641 

	

0.08358 	0.00297 

	

0.07420 	0.00190 

	

0.07360 	0.00113 

	

0.07337 	0.00091 

	

0.0730 7 	0.00086 



Table 	F.1.(f) 

aGr = 	27.0 a = 0.80 nedg  = 14.0 Convergence criterion 
1 x 10-3  

Pr = looOD 

H /// 
ip(0)r  

h% 
IP(0)i  (CO)r  E(0)i  cr  ci 

n(0)÷n(1) 
n(1 )4-nedg 

0.1250 0.250 .35117 -.35919 9.48107 4.73457 .05927 .00101 

0.0625 0.125 .45213 -.34413 9.53210 4.51116 .05951 .00032 

0.0250 0.050 .52017 -.35264 9.52612 4.37667 .05967 -.00018 

0.0125 0.025 .53692 -.35611 9.52417 4.32123 .05971 -.00036 

0.0100 0.020 .53611 -.35701 9.52390 4.31812 .05972 -.00041 

0.0080 0.160 .53609 -.35709 9.52386 4.31808 .05972 -.00042 



Table F.2. The effect of the value of nedg on the predicted values of 

Iii 	Iii 
(0),, c

r and c- 1 

Table F.2.(a)  

Pr = 0.733 	aGr = 51.3 	a = 0.45 	H = 0.008 (0<n<l), 0.016 (1<n<8) 

	 Convergence criterion 1 x 10
-4 

nedg 

b% 

“0)r 	 

5.0 -2.25936 0.10317 

5.5 -2.26154 0.10421 

6.0 -2.26231 0.10460 

6.5 -2.26259 0.10472 

7.0 -2.26269 0.10480 

7.5 -2.26271 0.10482 

,,, 	6(0)r.  

-.84869 

-.85040 

-.85103 

-.85122 

-.85134 

-.85137 

(0)i  Cr Cr 

0.00303 0.16152 -.00036 

0.00074 0.16176 -.00021 

-.00004 0.16185 -.00015 

-.00035 0.16188 -.00014 

-.00044 0.16189 -.00013 

-.00047 0.16189 -.00013 



Table F.2.(b)  

Pr = 0.733 
	

aGr = 6.6 
	

a = 0.075 	H = 0.01 (0<n<1), 0.02 (1<n<8) 

Convergence criterion 1 x 10
-4 

nedg 

4% 	b% 	/ 
11)(0)r 	111(0)i 	E(0)r 	E/(0)i 	C

r 	
ci  

5.0 0.00100 -.72460 o.51937 -1.16319 0.30632 -.00313 

5.5 0.00785 -.66095 0.53822 -1.11759 0.31121 -.00121 

6.0 0.01008 -.63005 0.54648 -1.09560 0.31365 -.00027 

6.5 0.01104 -.61434 0.55056 -1.08447 0.31490 0.00019 

7.0 0.01155 -.60625 0.55266 -1.07877 0.31556 0.00043 

7.5 0.01181 -.60257 0.55365 -1.07617 0.31586 0.00053 

8.0 0.01192 -.60201 0.55391 -1.07530 0.31592 0.00055 



Table F.2.(c)  

Pr = 6.7 	aGr = 21.0 
	

a = 0.6 	H = 0.01 (0<n<1), 0.02 (1<n<8) 

Convergence criteron 1 x 10
-4 

Tiedg 

/1/ 
ip(0)r  

4/ 
11)(0)i  ‘ (0)r  / E(0)i  cr c. 

5.0 0.38294 -2.24426 5.44747 -5.21613 0.14613 -.001(1 

5.5 0.38264 -2.24402 5.44633 -5.21569 0.14614 -.001(1 

6.0 0.38256 -2.24391 5.44596 -5.21546 0.14614 -.001(1 

6.5 0.38251 -2.24386 5.44582 -5.21536 0.14614 -.001(1 

7.0 0.38250 -2.24388 5.44577 -5.21531 0.14614 -.001(1 

7.5 0.38250 -2.24384 5.44575 -5.21530 0.14614 -.001(1 

8.0 0.38250 -2.24384 5.44575 -5.21530 0.14614 -.001(1 



Table F.2.(d)  

Pr = 6.7 
	

aGr = 4.8 
	

a = 0.04 	H = 0.0125 (0<n<1), 0.025 (1<n<8) 

Convergence criterion 1 x 10
-4 

nedg 
/// 
tp(0)r  

/// 
tp(0)i  / E(0) r  (0)i  cr  ci  

5.0 0.05530 -.09555 1.74370 -.99023 0.20919 -.00673 

5.5 0.04862 -.08689 1.72813 -.97211 0.21049 -.00627 

6.0 0.04447 -.08127 1.71843 -.96065 0.21131 -.00599 

6.5 0.04191 -.07703 1.71251 -.95347 0.21183 -.00581 

7.0 0.04033 -.07542 1.70886 -.94893 0.21215 -.00571 

7.5 0.03936 -.07397 1.70662 -.94605 0.21236 -.00565 

8.0 0.03936 -.07397 1.70662 -.94605 0.21236 -.00565 



Table F.2.(e)  

Pr = 100 
	

aGr = 23.60 	a = 0.70 	H = 0.01 (0<n<l), 0.02 (1<n<14) 

Convergence criterion 1 x 10
-4 

nedg 

1/, 
11)(0)r  11)(0)i  F;(0)r  (0)i  cr c. 

8.0 0.40621 -.29772 9.22461 3.49482 0.05963 -.00091 

9.0 0.40610 -.29685 9.21403 3.49344 0.06042 -.00054 

10.0 0.40570 -.29649 9.21370 3.49205 0.06091 -.00028 

11.0 0.40550 -.29627 9.21357 3.49187 0.06112 -.00016 

12.0 0.40540 -.29613 9.21345 3.49177 0.06120 -.00010 

13.0 0.40535 -.29609 9.21340 3.49171 0.06123 -.00006 

14.0 0.40535 -.29609 9.21340 3.49171 0.06123 -.00006 



Table F.2.(f)  

Pr = 100.0 	aGr = 9.95 
	

a = 0.04 	H = 0.0125 (0<n<l), 0.025 (1<n14) 

Convergence criterion 1 x 10
-4 

riedg 
till (0) 	• 

 

E(0) r 	g(o) i  C T 	 c. 

  

8.0 0.03160 -.04510 5.53173 0.17049 0.07208 -.00198 

9.0 0.03240 -.04437 6.53089 0.16962 0.07304 -.00102 

10.0 0.03288 -.04392 6.53004 0.16914 0.07353 -.00049 

11.0 0.03312 -.04368 6.52980 0.16890 0.07378 -.00021 

12.0 0.03324 -.04356 6.52967 0.16878 0.07390 -.00007 

13.0 0.03330 -.04350 6.52961 0.16872 0.07395 -.00001 

14.0 0.03333 -.04347 6.52959 0.16870 0.07396 0.000005 



6.(0)i 

5.97472 

5.97387 

5.97349 

5.97332 

5.97324 

5.97321 

5.97321 

Cr c. 
1 

0.03595 -.000105 

0.03655 -.000045 

0.03685 -0.00015 

0.03700 -.00005 

0.03707 -.00001 

0.03710 0.000014 

0.03710 0.000014 

Table F.2.(g)  

Pr = 1000.0 
	

aGr = 30.07 	a = 0.90 	H = 0.01 (0<n<l), 0.02 (11n< 15) 

Convergence criterion 1 x 10
-4 

nedg ;(0)r  4(0)i  ((0)r  

9.0 0.70032 -0.42322 9.59372 

10.0 0.69970 -0.42254 9.592'80 

11.0 0.69938 -0.42218 9.59243 

12.0 0.69922 -0.42202 9.59225 

13.0 0.69914 -0.42194 9.59216 

14.0 0.69910 -0.42191 9.59213 

15.0 0.69910 -0.42191 9.59213 



Table F.2.(h)  

Pr = 1000.0 	aGr = 11.35 
	

a = 0.04 	H = 0.0125 (0<n<l), 0.025 (1<n<35) 

Convergence criterion 1 x 10
-4 

nedg 
(ri(0)r  ihO)i  (0)r  c

r 
c. 

9.0 0.04419 -.04402 6.91621 0.18472 0.04432 -.00011 

10.0 0.04327 -.04319 6.91571 0.18346 0.04545 -.00063 

11.0 0.04269 -.04264 6.91492 0.18273 0.04595 -.00031 

12.0 0.04239 -.04236 7-6.91457 0.18236 0.04624 -.00015 

1.3.0 0.04224 -.04222 6.91436 0.18222 0.04641 -.00008 

14.0 0.04216 -.04215 6.91426 0.18214 0.04650 -.00002 

15.0 0.04213 -.04211 6.91421 0.18210 0.04655 0.000008 
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Table F.3. The effect of variation of the convergence criterion 

on the predicted values of 11)(0)r, ip(0)i, E(0)r  

and (0)i  

Table F.3.(a)  

Pr = 1.0 	aGr = 10.0 	H = 0.01 (0<n<i), 0.02 (1<n<8) 

nedg = 8.0 

Convergence 
criterion 

/1/ 
11)(0) r  

/ 

(0)i 	e ,p 	(0), 

1 x 10-1 	-.295696 	-1.192017 	0.422965 	-1.837846 

1 x 10
-2 

	

-.296023 	-1.191222 	0.422642 	-1.836232 

1 x 10
-3 

	

-.296499 	-1.190246 	0.422559 	-1.835627 

1 x 10
4
/ 	-.296498 	-1.190243 	0.422560 	-1.835625 

1 x 10
-10  

	

-.296496 	-1.190242 	0.422562 	-1.835624 

Table F.3.(b)  

Pr = 1.0 	aGr = 20.0 	H = 0.01 (0<n<1), 0.02 (1<n<8) 

nedg  = 8.0 

Convergence 
criterion 

4)(0)r 	(0)1, 

 

 

1 x 10
-2 

	

-1.242515 	-1.315850 	-.252807 	-2.182972 

1 x 10
-3 

	

-1.243294 	-1.315408 	-.253664 	-2.182238 

1 x 10
-4 

	

-1.243296 	-1.315408 	-.253667 	-2.182237 

1 x 10
-8 

	

-1.243296 	-1.315408 	-.253667 	-2.182237 
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Table F.3.(c)  

Pr = 0.733 	aGr = 43.3 	H = 0.01 (0<n<1), 0.02 (1<n<8) 

n 	= 8.0 
edg 

Convergence 
criterion 

/1/ 	//I 
tp (0) r 	(0)i.  (o), 	(so) i  

1 x 10
-2 

1 x 10
-3 

1 x 10
-4 

-2.334374 

-2.334374 

-2.334374 

-.076053 

-.076054 

-.076054 

-1.087878 

-1.087879 

-1.087879 

-.078892 

-.078891 

-.078891 

Table 	F.3.(d) 

aGr = 92.6 H = 0.008 (0<n<l), 	0.016 	(1<n<8) Pr = 0.733 

nedg = 8.0 

Convergence 
criterion 

/1/ 

tp (0) r  ;(o) i 	 /(0) r  

1 x 10
-2 

1 x 10
-3 

1 x 10
-4 

-2.407675 

-2.407675 

-2.407675 

0.396336 

0.396334 

0.396334 

-.636164 

-.636163 

-.636163 

-.143490 

-.143490 

-.143490 

Table 	F.3.(e) 

aGr = 116.8 H = 0.008 (0<n<l), 	0.016 	(1<n<8) Pr = 0.733 

nedg  = 8.0 

Convergence 
criterion 

11)(0) r 	ip(0)i 	6(0) r  

1 

1 

1 

x 

x 

1. 

10
-1  

10
-2 

10 

-2.505072 

-2.504070 

-2.504070 

0.620371 

0.620371 

0.620371 

-.603466 

-.603467 

-.603467 

-.241194 

-.241194 

-.241194 
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Table F.3.(f)  

Pr = 0.733 	aGr = 194.0 	H = 0.008 (0<n<1), 0.016 (1<n<8) 

= 8.0 nedg 

Convergence 
criterion 

(o)r 	 (o) i 	(0)r 	c (0) i  

1 x 10
-1 
 

1 x 10
-2 

1 x 10
-3 

-2.765087 

-2.765087 

-2.765087 

1.379021 

1.379018 

1.379018 

-.556569 

-.556569 

-.556569 

-.511254 

-.511254 

-.511254 

Table F.3.(g) 

aGr = 238.0 H = 0.008 (0<n<l), 0.016 	(1<n<8) Pr= 0.733 

= 8.0 
nedg 	 

Convergence 
criterion 

 

(o) i 	(o),  

 

1 x 10
-1  

1 x 10
-2 

1 x 10
-3 

-2.896378 

-2.896375 

-2.896375 

1.806945 

1.806944 

1.866944 

-.535212 

-.535213 

-.535213 

-.630194 

-.630195 

-.630195 

Table 	F.3.(h) 

Pr 	= 	6.7 aGr = 5.4 H = 0.0125 (0<n<l), 0.025 	(1<n<8) 

nedg = 8.0 

Convergence 
criterion 

, (c))1. 	 (o) i 	 ( ) i  

1 x 10
-2 

1 x 10
-3 

1 x 10 

1 x 10
-5 

0.040476 

0.040439 

0.010439 

0.040439 

-.081070 

-.081051 

-.081052 

-.081052 

1.783867 

1.783780 

1.783781 

1.783781 

-.949303 

-.949280 

-.949281 

-.949281 



H = 0.0125 (0<n<l), 0.025 (1<n<8) 

= 8.0 nedg 

aGr = 7.625 Pr = 6.7 

Convergence 
criterion 

-.782690 

-.782692 

-.782693 

-.782693 

0.316604 

0.316604 

0.316604 

0.316604 

1 x 10-2 

1 x 10-3 

1 x 10-4 

1 x 10-5 

2.110014 

	

2.110042 	1.102351 

	

2.110041 	1.102350 

2.1100041 1.102350 

1.102342 

Convergence 
criterion 

Table F.3.(i)  

1 x 10-2 

1 x 10-3 

1 x 10-4 

1 x 10-5 

0.077757 

0.077766 

0.077766 

0.077766 

-.186064 

-.186070 

-.186071 

-.186071 

Table F.3. (j).  

H = 0.0125 

= 	8.0 nedg 

Pr = 6.7 aGr = 10.8 (0<n<l), 0.025 	(1<n<8) 

(0) i  

3.207060 -2.254298 

3.207061 -2.254299 

3.207061 -2.254300 

3.207061 -2.254300 

Table 	F.3. (k) 

H = 0.01 

n. 	
= edg 	8.0  

(0<n<1 0.02 (1<n<8) Pr = 	6.7 aGr = 16.0 

Convergence 
criterion 

/1/ 
,p(0) r  /// 

11) (0) i  (0)r  (0) i  

-7 
1 x 10 0.10916C -1.4611SS 4.32-1022 -3.555262 

1 x 10-3 0.409158 -1.461160 4.324020 -3.555271 

1 x 10-4 0.409158 -1.461160 4.324020 -3.555271 

230 
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Table F.3. (1)  

Pr = 6.7 	aGr = 23.0 	H = 0.01 (0<n<1), 0.02 (1<n<8) 

nedg = 8.0 

Convergence 
criterion 

iii 
Ip(0)r  

//V 
11)(0) i  

0.252920 

0.252927 

0.252926 

-2.362100 

-2.362101 

-2.362101 

5.396645 

5.396670 

5.396671 

-5.413396 

-5.413400 

-5.413400 

Table F.3. (m)  

Pr = 6.7 	aGr = 34.0 	H = 0.01 (0<n<1), 0.02 (1<n<8) 

edg = 8.0 

Convergence 
criterion 

/1/ 
11)(0) r  . 11)/(0) i.  F(0) r 	 (0). 

-.539119 

-.539122 

-.539123 

-.539123 

-3.313967 

-3.313995 

-3.314001 

-3.314002 

5.817129 

5.817172 

5.817182 

5.817182 

-7.710943 

-7.711062 

-7.711083 

-7.711084 
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Table F.3. ('n)  

Pr = 100.0 	aGr = 6.0 	H = 0.0125 (0<n<1), 0.025 (1<n<8) 

nedg = 14.0  

Convergence 
criterion 

/// 

t' (0) r 
1/1 
11)(0) i 	E(0) r 	1(m i  

1 x 10
-1 
 

1 x 10
-2 

1 x 10
-3 

0.025479 

0.026561 

0.026564 

-.028459 

-.028463 

-.028464 

6.216778 

6.229509 

6.229510 

-1.082179 

-1.090698 

-1.090702 

Table F.3. 

Pr = 100.0 

(o) 

aGr = 17.55 H = 0.01 (0<n<1), 	0.02 (1<n<8) 

nedg = 14.0  

Convergence 
criterion 

/// 	 /1/ 
11) (0) r 	11)(0)i 	 (0)r 	6(0)i  

1 x 10
-1  

1 x 10
-2 

1 x 10
-3 

0.236559 

0.236421 

0.236418 

-.201614 

-.201166 

-.201169 

8.517355 

8.515257 

8.515260 

1.958726 

1.961794 

1.961796 

Table F.3. (p) 

H = 0.01 (0<n<l), 	0.02 (1<n<8) Pr = 100.0 aGr = 32.8 

= 14.0 
nedg 

Convergence 
criterion 

;(,) (o), 	;(o) i 	(o), 	(o) j_ 

1 x 

1 x 

1 x 

10
-1  

10
-2 

10
-3 

0.669027 

0.668993 

0.668995 

-.450309 

-.450230 

-.450227 

9.456580 

9.456098 

9.456101 

5.514023 

5.514251 

5.514253 



Table 

Table 

F.4. 	The values of a and its corresponding values of Gr, aGr, cr, 

boundary conditions IP(0)r, 	1P(0)i, 	1(0)r, 	(0)i_  on the neutral 

F.4.(a) 	 Prandtl number of 0.733 

ci  and the missing 

stability curve. 

a Gr aGr  Cr 
c. 1P(0)r  4)(0)i  E(0)r  (0)3_  

.040 141.125 5.645 0.34003 0.44 x 10
-4 

0.05020 -.31500 0.59182 -0.83089 

.075 88.666 6.65 0.31352 0.46 x 10
-4 0.00756 -.63364 0.54621 -1.11005 

.140 66.142 9.26 0.27368 -.78 x 10-5  -.44931 -1.27640 0.12693 -1.64606 

.150 65.266 9.79 0.26842 0.21 x 10
-4 

-.57568 -1.35392 0.01264 -1.71059 

.170 64.470 10.96 0.25856 -.55 x 10
-5 

-.86327 -1.46396 -.24763 -1.79793 

.180 64.555 11.62 0.25390 -.25 x 10-4 -1.02086 -1.49201 -.39008 -1.81681 

.190 65.053 12.36 0.24937 0.35 x 10
-5 

-1.11863 -1.49912 -.53898 -1.81651 

.250 75.880 18.97 0.22441 0.23 x 10
-5 

-2.10759 -1.08707 -1.35261 -1.38222 

.350 119.200 41.72 0.17850 -.78 x 10
-5 -2.33602 0.05979 -1.12884 --.07255 

.450 114.489 51.52 0.16183 0.83 x 10
-6 

-2.26368 0.10623 -.84868 -.00185 

.550 120.690 66.38 0.15547 0.33 x 10
-6 

-2.30026 0.18623 -.71633 -.04073 

.650 142.615 92.70 0.15473 -.14 x 10
-5 

-2.40826 0.39723 -.63591 -.14401 

.700 165.114 115.58 0.15584 0.89 x 10
-6 

-2.24980 0.60895 -.60527 -.23579 

.750 215.960 161.97 0.15787 0.31 x 10
-5 

-2.26610 1.06318 -.57282 -.4081- 

.760 246.579 187.40 0.15849 -.64 x 10
-9 

-2.74314 1.31460 -.56014 -.49125 

.760 303.552 230.70 0.15883 -.90 x 10
-6 

-2.87625 1.73623 -.53862 -.61193 



Table F.4. (b) Prandtl number of 1.0 

a Gr aGr r  c. 1 

/// 

tp(0) r  (0) i  

0.040 139.45 5.578 0.32500 0.35 x 70
-3 

0.05393 -.25303 

0.075 85.00 6.375 0.30192 0.16 x 10
-4 

0.05522 -.50855 

0.140 61.35 8.590 0.26661 0.62 x 10-4 -.16410 -1.10306 

0.250 65.00 16.250 0.22343 0.10 x 10
-5 

-1.64860 -1.16233 

0.350 149.65 52.380 0.16683 -.26 x 10
-4 

-2.45105 0.16335 

0.450 136.89 61.600 0.15082 0.31 x 10
-4 

-2.35023 0.14978 

0.550 140.36 77.200 0.14403 -.20 x 10
-4 

-2.37091 0.19456 

0.650 161.76 105.150 0.14230 -.96 x 10
-6 

-2.48829 0.36596 

0.700 183.71 128.600 0.14275 -.39 x 10
-5 

-2.57827 0.54328 

0.750 226.40 169.800 0.14390 0.73 x 10
-5 

-2.72093 0.88314 

1(0) r 	“0) 4  

	

0.71182 	-.853195 

0.71315 -1.10085 

0.50296 -1.70636 

-1.03011 -2.28143 

	

-1.26524 	-.11022 

	

-.94501 	-.08955 

	

-.81351 	-.16280 

	

-.74972 	-.30995 

	

-.73162 	-.42423 

	

-.71248 	-.60271 



Table F.4. (c) 

Prandtl number of 6.7 

a Gr aGr cr ci  tp(0)r  tp(0) i  “04 E (e) i  

0.020 

0.040 

0.075 

0.200 

0.300 

0.450 

0.600 

0.750 

0.830 

275.50 

141.50 

80.06 

39.80 

34.40 

34.35 

38.33 

45.32 

48.37 

5.51 

5.66 

6.005 

7.96 

10.32 

20.25 

23.00 

33.99 

38.70 

0.21568 

0.21073 

0.20284 

0.18091 

0.16831 

0.15465 

0.14521 

0.13846 

0.13667 

-.31 x 10-5 

-.29 x 10-4 

-.38 x 10
-4 

0.99 x 10
-6 

0.64 x 10
-6 

0.27 x 10
-4 

-.26 x 10
-5 

0.14 x 10
-5 

0.50 x 10
-5 

0.02208 

0.04129 

0.07582 

0.20964 

0.32063 

0.42660 

0.25293 

-.53827 

-.95744 

-.04562 

-.08490 

-.15477 

-.44468 

-.75554 

-1.42515 

-2.36211 

-3.33139 

-3.51928 

1.75120 

1.81157 

1.94307 

2.53945 

3.16746 

4.30431 

5.39668 

5.81803 

5.71936 

-.87873 

-.95174 

-1.01'273 

-1.63052 

-2.21866 

-3.50228 

-5.41340 

-7.71081 

-8.3773 



Table F.4. (d)  

Prandtl number of 100.0 

a Gr aGr Cr 
C. 1 tp(0)r  11)(0)i '(0)r  “O) i  

0.04 

0.10 

0.30 

0.50 

0.50 

0.70 

0.30 

0.90 

248.75 

104.00 

43.33 

35.10 

34.00 

33.71 

35.00 

36.44 

9.95 

10.40 

13.00 

17.55 

20.40 

23.60 

28.00 

32.80 

0.07396 

0.07265 

0.06857 

0.06467 

0.06291 

0.06123 

0.05961 

0.05810 

0.56 

0.14 

0.83 

0,35 

-.11 

-.67 

0.13 

0.11 

x 

x 

x 

x 

x 

x 

x 

x 

10
-5 

10
-4 

10
-5  

10
-5 

4 
10 

4 
10 

4 
10 

4 
10 

0.03333 

0.05078 

0.12266 

0.23641 

0.31183 

0.40535 

0.52335 

0.66900 

-0.04347 

-0.06209 

-0.12611 

-0.20117 

-.24554 

-.29609 

-.36662 

-.45023 

6.52959 

6.77400 

7.65007 

8.51526 

8 	88203 

9.21340 

9 36696 

9.45610 

.1(870 

.22371 

.7772 

1.'6180 

2.€8264 

3.49171 

4.46903 

5.55143 



Table F.4. (e)  

Prandtl number of 1000 

a Gr 	aGr 	•cr 	ci  
1/.1 

ip (0) r  0(0) i  E (0) r  F:(0) 

	

0.04 
	

283.82 
	

11.35 
	

0.05212 
	

0.23 x 10
-5 	

0.04213 -0.04211 	6.91421 0.18210 

	

0.30 
	

43.33 
	

13.15 
	

0.04655 
	

0.81 x 10
-5 	

0.14568 -0.11757 	7.92132 0.81210 

	

0.60 
	

30.00 
	

18.10 
	

0.04100 
	

0.12 x 10
-4 	

0.33148 -0.23231 	9.11210 2.89121 

	

0.90 
	

33.44 
	

30.07 
	

0.03710 
	

0.13 x 10
-4 	

0.69910 -0.42191 	9.59213 5.97321 
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F.5. Functions f and H and derivatives for various Prandtl 

numbers from Schmidt and Beckmann equations 

F.5.(a) Prandtl number of 0.733 

n f f f H H 

0.0 0.0000 0.0000 0.6741 1.0000 -.5080 

0.5 0.0649 0.2238 0.2465 0.7477 -.4953 

1.0 0.1949 0.2745 -.0149 0.5139 -.4303 

1.5 0.3244 0.2348 -.1222 0.3246 -.3228 

2.0 0.4254 0.1685 -.1324 0.1913 -.2130 

2.5 0.4941 0.1088 -.1035 0.1073 -.1281 

3.0 0.5370 0.0657 -.0695 0.0583 -.0725 

3.6 0.5660 0.0339 -.0386 0.0273 -.0350 

4.2 0.5807 0.0169 -.0200 0.0126 -.0164 

4.8 0.5879 0.0082 -.0099 0.0057 -.0076 

5.4 0.5914 0.0040 -.0047 0.0025 -.0035 

6.0 0.5932 0.0021 -.0022 0.0011 -.0016 

6.8 0.5943 0.0010 -.0008 0.0003 -.0006 

7.6 0.5949 0.0006 -.0002 0.0000 -.0002 

8.0 0.5951 0.0005 -.0001 0.0000 -.0001 
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F.S.(b) Prandtl number of 1.0 

n f f f H H 

0.0 0.0000 0.0000 0.6421 1.0000 -0.5671 

0.5 0.0610 0.2089 0.2208 0.7189 -.5488 

1.0 0.1809 0.2502 -.0263 0.4638 -.4589 

1.5 0.2975 0.2083 -.1203 0.2684 -.3197 

2.0 0.3859 0.1450 -.1233 0.1422 -.1907 

2.5 0.4441 0.0904 -.0928 0.0708 -.1020 

3.0 0.4791 0.0524 -.0602 0.0339 -.0509 

3.6 0.5016 0.0254 -.0321 0.0136 -.0210 

4.2 0.5122 0.0116 -.0158 0.0053 -.0084 

4.8 0.5169 0.0049 -.0075 0.0020 -.0034 

5.4 0.5187 0.0018 -.0034 0.0008 -.0013 

6.0 0.5194 0.0004 -.0014 0.0002 -.0005 

6.8 0.5194 0.0000 -.0010 0.0000 -.0004 

7.4 0.5193 0.0000 -.0005 0.0000 -.0003 

8.0 0.5193 0.0000 -.0001 0.0000 -.0002 
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F.5.(c) Prandtl number of 6.7 

Ti f f 
..„, 
f H 

/ 
H 

0.0 0.0000 0.0000 0.4547 1.0000 -1.0408 

0.5 0.0388 0.1244 0.0866 0.4986 -.9016 

1.0 0.1041 0.1259 -.0500 0.1588 -.4397 

1.5 0.1595 0.0943 -.0658 0.0319 -.1154 

2.0 0.1989 0.0648 -.0508 0.0044 -.0188 

2.5 0.2257 0.0435 -.0352 0.0005 -.0022 

3.0 0.2436 0.0289 -.0237 0.0000 -.0002 

3.5 0.2554 0.0192 -.0159 0.0000 0.0000 

4.0 0.2633 0.0127 -.0105 0.0000 0.0000 

4.5 0.2684 0.0083 -.0070 0.0000 0.0000 

5.0 0.2718 0.0055 -.0046 0.0000 0.0000 

5.5 0.2741 0.0036 -.0031 0.0000 0.0000 

6.0 0.2755 0.0023 -.0020 0.0000 0.0000 

6.5 0.2765 0.0015 -.0013 0.0000 0.0000 

7.0 0.2771 0.0010 -.0009 0.0000 0.0000 

7.5 0.2775 0.0006 -.0006 0.0000 0.0000 

8.0 0.2777 0.0004 -.0004 0.0000 0.0000 
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F.5.(d) Prandtl number of 100.0 

n f f H H 

0.00 0.0000 0.0000 0.2517 1.0000 -2.191 

0.10 0.0011 0.0205 0.1626 0.7815 -2.166 

0.20 0.0039 0.0332 0.0952 0.5709 -2.018 

0.30 0.0076 0.0402 0.0749 0.3836 -1.704 

0.40 0.0118 0.0434 0.0176 0.2341 -1.276 

0.50 0.0162 0.0442 0.0002 0.1287 -.8393 

0.60 0.0206 0.0437 -.0087 0.0634 -.4837 

0.70 0.0249 0.0426 -.0126 0.0280 -.2440 

0.80 0.0291 0.0413 -.0413 0.0111 -.1088 

0.90 0.0331 0.0399 -.0142 0.0039 -.0428 

1.00 0.0371 0.0385 -.0140 0.0012 -.0149 

1.50 0.0546 0.0320 -.0119 0.0000 0.0000 

2.00 0.0692 0.0265 -.0101 0.0000 0.0000 

3.00 0.0912 0.0180 -.0071 0.0000 0.0000 

4.00 0.1061 0.0121 -.0049 0.0000 0.0000 

5.00 0.1160 0.0081 -.0033 0.0000 0.0000 

6.00 0.1226 0.0053 -.0022 0.0000 0.0000 

8.00 0.1297 0.0022 -.0010 0.0000 0.0000 

10.00 0.1326 0.0008 -.0005 0.0000 0.0000 

12.00 0.1335 0.0002 -.0002 0.0000 0.0000 

14.00 0.1336 0.0000 -.0001 0.0000 0.0000 
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F.5.(e) Prandtl number of 1000.0 

H 

0.00 0.0000 0.0000 0.1450 1.0000 -3.9660 

0.10 0.0006 0.0102 0.0647 0.6096 -3.7310 

0.20 0.0018 0.0142 0.0209 0.2847 -2.6280 

0.30 0.0033 0.0152 0.0032 0.0944 -1.2200 

0.40 0.0048 0.0152 -.0019 0.0213 -.3596 

0.50 0.0063 0.0150 -.0028 0.0032 -.0672 

0.60 0.0078 0.0147 -.0029 0.0003 -.0080 

0.80 0.0107 0.0141 -.0028 0.0000 0.0000 

1.00 0.0135 0.0136 -.0027 0.0000 0.0000 

1.40 0.0187 0.0125 -.0025 0.0000 0.0000 

1.80 0.0235 0.0115 -.0023 0.0000 0.0000 

2.20 0.0279 0.0106 -.0022 0.0000 0.0000 

2.60 0.0320 0.0098 -.0020 0.0000 0.0000 

3.00 0.0358 0.0090 -.0019 0.0000 0.0000 

3.60 0.0409 0.0080 -.0017 0.0000 0.0000 

4.20 0.0454 0.0070 -.0015 0.0000 0.0000 

5.00 0.0505 0.0060 -.0012 0.0000 0.0000 

7.00 0.0603 0.0039 -.0008 0.0000 0.0000 

10.00 0.0691 0.0022 -.0004 0.0000 0.0000 

14.00 0.0752 0.0011 -.0002 0.0000 0.0000 

18.00 0.0786 0.0007 0.0000 0.0000 0.0000 

22.00 0.0809 0.0005 0.0000 0.0000 0.0000 
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APPENDIX G 

COMPUTER •PROGRAMMES  
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G.1. The User's Guide to the Computer Programmes  

The numerical techniques which have been employed to 

solve the disturbance differential equations have been 

presented in chapter 4. The numerical solutions of a number 

of problems have been calculated with the aid of a digital 

computer. 

Two computer programmes have been developed. The 

programme 1 and the programme 2 solve the disturbance 

differential equations by the quasilinearization and trial-

and-error techniques respectively. 

The programmes are written in FORTRAN IV language, and 

in their present form may be run on CDC 6600 and CDC 6400 

computers which work with fifteen significant figures on 

single precision. In order to run them on other machines 

some modifications may be necessary. Both programmes have 

been written so that the only changes required from run to 

run are in the data input. All of the data are read in from 

data cards. 

Section G.2 presents a list of the FORTRAN symbols which 

are used in programmes together with their meanings. The 

flow charts are presented for main programmes in section G.3. 

The complete programme listings are presented in section G.4. 

The function of each subroutine in the programmes is described 

in the listing. Therefore the user should not find difficulty 

in understanding and using the programmes. 
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G.2. List of Symbols Used in the Computer Programmes  

FORTRAN Symbol 	Meaning  

K K+1 
A 	a

l 
- a

l 

ABETA 	f3
2 

AGAMA 	Y
2 

ALFAG 	iaGr 

ALFAS 	
a2 

K a
K+1 

B 	a2  - 1 

K - a
K+1 

C 	a3   
3 

K 
Cl 	a1 

 

K 
C2 	a

2 

K 
C3 	a

3 

0K C4 	-4 

C5 
	

a
5  

CONST(5)
K+1 K+1 K+1 K+1 

a
K+1 

a
l 

, a
2 

, a
3 

, a
4 , 5 

CS 	Phase velocity, c. 

D 	a
4 
- aK  

5 

DELMAX 	Stepwise increase of the effective 

infinity 

E 	 a
K 
 - a

K+1 
5 

ERMINA 	Prescribed accuracy for A. 

ERMINB 	Prescribed accuracy for B. 

ERMINC 	Prescribed accuracy for C. 

ERI'IIND 	Prescribed accuracy for D. 

=I= 	Proscribed accuracy for E. 
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FORTRAN Symbol 	Meaning 

FF 

FFF 
/fr 

FFFF 

GR 	Grashof number, Gr. 

GUESS(8) 	Original guesses to solution if no 

approximation is available. 

H 	Current integration step length. 

HS(10) 	Array which contains the variable 

integration steps. 

IEXTEND 	Set to 1 if the effective infinity is 

to be increased at any time. 

IPRINT 	If a print out of the solution is 

required every iteration. 

IX 	The number of step changes specified 

for the numerical integration. 

JWRITE(10) 	Print out control; the results are 

printed every JWRITE(I) steps at a 

step length HS(I). 

MM 	The number of separate problems to be 

solved for the current run. 

MMAX(5) 	Current maximum number of integration 

steps. 

N 	Number of first order equations to be 

solved. 

NC 	Iterticn counter. 
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FORTRAN Symbol 	Meaning  

NCMAX 	Maximum number of iterations allowed. 

NHMG 	Number of homogeneous sets to be solved. 

NMAX(10) 	The total number of iterations allowed. 

PR 	Prandtl number, Pr. 

TT 

XMAX 	nedg 

XXMAX 	nedg max 

Y(6) 	Y(I), I = 1,6 

YD(6) 	Dummy array in subroutine RKINT 

YG(6) 	Y(I), 1,6 

YH(6) 	Dummy array in subroutine RKINT 

YH(p(3,6,1000)Y(I)h  (T) 	I = 1,6; h = 1,NHMG 

n = 1,XMAX 

YI(6,6) 	Initial conditions for homogeneous 

sets of equation 

YK(6,1000) 	Y(I)K(71)  

YL(6) 	Y(I)K  at the point where the function 

is evaluated 

YP(3,1000) 	Y(I)K+1(fl), I = 1,5; n = 1, XMAX 

ZMAX(1O) 	The value of X at which the change of 

integration step length is to be made. 
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at iteration NC 
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complete solution 
required 

Set iteration 
count, NC, to 
zero 

Flow Diagram G.3.1. Subroutine MAIN for Programme 1. 
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Flow Diagram G.3.2. Subroutine MAIN for Programme 2. 
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C•44'- C.4.1. LISTINC, nr= THE COvPUTFR PROGRA'mlEl. 
(74=*- OUASILINEA2I7ATI,w TIC Hn11OUF. 

PoOGRAM MAIN (IN0UT=10011OUTPUT=1001.T4RE5=INRUT,TAPF6=OUTPUTI 
1TARE6?) 
DimFNSION HS(10),NMAX(10) 
DIMENSION FF(500),EFF(R00),TT(800),EE(100).FEE(100),PP(100) 
COMPLEX 	YK(8.9nr) )0(H(8)+Y(171),YG(8).YD(8),YL(8)' 
COMPLEX A.9.C.D1r.C1IC2,C3,C4qC9,CONST(10),YI(8'6) 
cnmpt_Fx ACO,FICO.cCO,OCOIECOIGRIPP,CS, ALEAGIALEAS,AGAA,ARFTA 
COMMON /STI/A.9,C.D.F.ERmINA.FRmINT1.FRMINCIFAMIND'ERMINF,Nc,NC".".AX 
CoM'I0N/ST2/OELmAX.IEXTFND.IPPINT+ISTEUP. 

IXXMAX.XmAY.JWRITrr(1C).7mAX(IO) 
COMmON/ST1/CONST.HS,NNIAX,YI.IX 
cnmmON/ST4/YK.YH,Y,Yr,*YD,YL 
COMmON/ST6/XINHmr;.M+N 
COMmON/ST7/ACO,RcnIce7.0,pc0lFc3 
cnmmom/sTR/FF,F-FF.TT,7F,FEE,10P 
COMmON/ST(3/ALEAG.ALFAS+AGAvAlAeETAIGPIPP,CS 
ComMCN/STIO/NR+ND.DND 
EXTERNAL YGRDI 
Nn =0 
Pn=(.7717,.) 
PAD 	xxmAx.r.)=-LmAx.TPpINT .IEXTEND.NOMAX 
Pc'AO(9,1?-34)(FF(1),=EE(1),Pn(I).1=1.80 ) 
17=-AO(E,12) FE(n1),Fc-F(R1),PP(.91) 
CALL STAPT(n) 
OND=1. 

I? CONTINUE 
1\I D= 
NR=NR+1 
N=R 
NW4G=9 
mv=1 

r4f.*** 	Iq THE NUmR=r) nF cOmnLFTE SOLUTIONS TO 	SOLVED DURING THE 
PmESNT COnUiFn DUN. 
ne,  4 NIP.'n=1, 
CALL 

(-7*** S-TUD DEFINES A muMn:=',7) OF CONTROL VARIARLES AND PHYSICAL PARA"'FT7-P' 
(7-- vh-4ICH flc-SCnImF Ttar  5r7-5Tv. 

1 
C4"* -!f-* UnDATING OF THE ITERATION COUNT FOR THE CURRENT SOLUTION. 

1,1ITc-(6,4444)NC,NCAX 
CALL SOLVE 

Cy -'1-* S-1LVF CALCULATL7S A NF.! AnnnXImATION TO THE SOLUTION USINGTHE 
01 AS 	TFCHNIOUE. 
IE(NC.EO.1) 	Tr) 2 

cn=(fl...) 

(7c7=(.47).) 
A= CCNST(1)-C1 

A=-A 
CC - 1ST( ?)-C? 

In (m.LT.0.) R=-R 
C- coNST( -1)-E-1 

n- rnNsT(/4)-(74 
• TP(n.LT.0.)n-,n 



251 

F= CONST()-C 
IF (F.LT.O.) E=-F 
I=(A.LF.FRmINA.ANr-,•P.LF.FRMINfl) IPRINT=0 
IF(C.LF.FRMINC.AND.D.LE.ERMIND) IPPINT=O 
IF(F.LF.EPMINE) 	IPRINT=0 

C**** CnNVERGENCE CHECK AND PRINTOUT CONTROL. 
2 C]=CONST(1) 
CP=CONST(2) 
C-1=CONST(3) 
C4=CONST(4) 
C=CONST(c.7) 
X=0. 
Yv(1.1)=(0.,04 ) 
Yv(2,1)=(0.40.) 
Nev(riql)=coNST(1) 
Y-,-:(411)=CONST(2) 
Yv(9.1)=(0.40.) 
Yle(6.1)=cONST(3) 
Y‹(741)=CONST(4) 
Yk-(811)=cONST() 
Ir(ipp1NT.FO.C) CALL WRITOUT 

C** -"•- WDITOUT CALLED IP RFnuIPn TO PRINT OUT THE TARLE OF RESULT. 
IF(IPRINT.P0.0) CALL PLOT1 

C**** PLOT] CALLED IF DFOUIDFD TO PLOT THE IGENFUNCTIONS. 
IF(IPRINT.F0.0) CALL PLOT? 

C's*** (0.__OT? CALLFO IF nPOUIPFD TO PLOT THE ENEPGY DISTRIBUTION. 
CALL UPDATE 

C**** UDDATF IS CALLED IF THE SOLUTION REQUIRES UPDATING 
GO TO 12 
CALL FNPLOT 
STOP 

100 FORMAT(2F10.54211.12) 
1234 FnPmAT(PE10.9) 
1235 FnDmAT(3F10.5) 
4444 FnPMAT(1X,PI9) 

FmD 
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C**** G.4.2. LISTING OF THE COMPUTER PROGRAMME2. 

C**** TRIAL-AND-ERROR TECHNIQUE. 

PROGRAM MAIN . (INPUT=1001 ,OUTPUT=1001 ,TAPE5=INPUT,TAPE6=OUTPUT, 
ITAPE62) 
DIMENSION FO(100).YKR(6+360) ,YK1(6,360),YREY(360)+YDIS(360)+YBOU( 
1360) 
DIMENSION HS(10).NMAX(10) 
DIMENSION FE(9r)0).FEE(00),TT(900).FE(100),EFF(100).Pp(100) 
COMPLEX 	YK(6,9(10 ).YH(6),Y(6)+YG(6)+YD(6),YL(6) 
COMPLEX AgReC1ICP,CONST(10).YI(6,6) 
COMPLEX AC0.9CO.00O4DCOsECO,GR.PR.CS. ALFAG,ALFAS,AGAMA.ABETA 
COMMON/STI/A,ERMTNA.EPMIN9INC.NCMAX,6 
COMMON/STp/DELMAX.IEXTEND.IPRINT.ISTEUP,  

IXXMAX.XmAXIJWPITm-(10).ZmAX(10) 
COMMON/ST3/CONST,HS.NmAX.YI.IX 
COMMON/STA/YKO(H,Y,YG,YD'YL 
COMMON/ST6/X.NHMn4M+N 
COMMON/ST7/ACO,BCO,CCO.DCO.ECO 
COMmON/STR/EF.FEE,TT.FF.FEE.PP 

COMMON/STWALEAG,ALFAS.AGAMA,APIFTA.GR,PR.CS 
COMMON/STIO/N9.Nn,ONn 
COMMON/STII/FO 

COMMON/STIP/YPEY,YDIS.YROU 
EXTERNAL YGRDI 
NR =0 

PR=(.7331.0) 
READ (99100) XXMAX,DFLMAX,IPRINT .IEXTENDoNCMAX 
REAn(9.1234)(EE(I)gEFF(I),PP(I),I=1 ,80 ) 
READ(9,1235).EF(S1)•EEE(81)+PP(81) 
CALL START(0) 

DND=1. 
1? CONTINUE 

Nn=0 
NR=NR+1 

N=6 
NHMG=7 

mm=1 

C*** my t9 THE NU'19712 nF  cxwa)LFTF SOLUTIONS TO FIE SOLVED DURING THE 
C Y3  PpFSFNT cOnUTFR PuN. 

IF( NR.E0. 1 ) 
IF(NR.F0.2 ) 
IF(NR.E0.3 ) 

IF(N9.E0.4 ) 

TE(N9.E0.5 ) 
1F(N.E0.6 ) 
IF(MR.E0.7 ) 

IE(NR.FO.P ) 
IF(NP.FO.0  ) 
IF(N9.F0.10) 

IF(N9.EQ.11) 
IF(N5.E.0.12) 
IF(N9.E0.13) 
IF(NH.E0.14) 

Or TO 70 

GO TO 71 
Go TO 72 

GO TO 73 
GO TO 74 

(7n TO 75 
GO To 76 
GO TO 77  
GO TO 78 
GO TO 79 
GO TO 80 
co To  81 
GO TO H? 
Go To 83 

IF(NR.F0.15) GO TO n4 
TF(N9.Fo.16) GO TO 89 

IC' (NR.F0.17) GO TO 4 
70 CONTINUE 

..q)  

,ALFAG=(.0+F...65 ) 
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ALEAS=(,009625..0) 
Gn TO 90 

71 CONTINUE 
C.=(.14003 +.0) 
ALFAG=(.09,640) 
ALFAS=(.0016..0) 
GO TO 90 

7? CONTINUE 
Cc=(.27368 ..0) 
ALFAn=(.0,9,2600) 
ALFAS=(.01064.0) 
GO TO 90 

73 CONTINUF 
CS=(.26843 ..0) 
ALFAG=1.0+9.79(0) 
ALFAS=(.02254.0) 
GO TO 90 

74 CONTINUE 
C=(.29859 $.0) 
ALEAG=1.0.10.961 
ALFAS=(.0p899.0) 
GO TO 90 

79 CONTINUE 

ALFAG=(.0,11.6P) 
ALFAS=(.0324$.0) 
GO TO 90 

76 CONTINUE 
CS=(.24937,.0) 
ALFAG=(.0,12.36) 
ALEAS=(.0361..0) 
GO TO 90 

77 CONTINUE 
Cq=( o2p440,,7) 
ALFAG=(.0.18.97) 
ALFAS=(.06291.0) 
GO TO 90 

78 CnNT/NUF 
Cqm7(.178ci0+.01 
ALEAG=(.0q4).72) 
ALEAS=(.1229,4 0) 
GO TO 90 

79 CONTINUF 
C=(.161830..0) 
ALFAn=(.0.E1.5,) 
FAc=(.20pE..0) 

GO TO 90 
.80 CONTINUF 

cc=(.147F-1..(7 ) 
ALEAG=(.0466.38) 
PLI_F4=(.302E1.0) 
Gn TO 00 

Al CONTINUF 
Cs=(.1547:11..C) 
ALFAC,=(.0.02.70) 
Atp- A,:=(.42:19,.n1 
Gn TO 00 

0.*7.) rnNTT!sqlr7 

Cc,17(.1''FF1111'.0) 
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ALFAG=(.0.115.98) 
ALFAS=(.4900.,0) 
GO TO 90 

83 CONTINUE 
Cc=(.197874..0) 
ALFAG=(.04161.97) 
ALFAS=(.5625..01 
GO TO PO 

34 CONTINUE 
•Cc=(.1RR9099.0) 
ALFAS=(.5776,,0) 
ALFAG=(.0.187.4) 
GO TO 90 

85 CONTINUE 
ALFAS=(.5776..0) 
ALFAG=(.0.p30.7) 
Cc,=(.198.828..0) 

90 CONTINUE 
Nn=ND+1 
DO 4 NUMR=1,MM 
CALL SETUR 

C**** SETUP DEFINES A NuMRER OF CONTROL VARIABLES AND PHYSICAL PARAMETER 
C**** WHICH DFSCRIRE THF SFSTEM. 

1 NC=NC+1 
C**** UPDATING OF THF ITERATION rOUNT FOR THE CURRENT SOLUTION. 

WRITF(6.4444)NC,NrMAX 
CALL SOLVE 

c**** SnLVF CALCULATES A NEW APPROXIMATION TO THE SOLUTION USING THE 
C**** TDIAL-AND-ERROR TECHNIQUE . 

1F(NC.F0.1) GO TO 2 
C1=(0.,0.) 
rp=(0..0.) 
A= CONST(1)—C1 
ip(A.LT.0.) A=-A 
R= CONST(2)-C2 
IF (R.LT.0.) R=-R 
IE(A.LE.ERMINA.ANr).R.LE.FRmINB) IPRINT=O 

C-L** CrNVEROFMC7 CHC.,=" ANn PRINTOUT CONTROL. 
WnITF(6.10C6) Atal 

2 C1=CONST(1) 
C2=CONST(2) 
X=0. 
Yle(1.1)=(0.,C.) 
Y.c(2,1)=(0.+0.) 
Yv(7141)=(1.,0.) 
\IV ( /4 ! ) =r7nNsTc 
yv(.1)=-(0.90.) 
Yv(6,I)=CONST(2) 
1r (Nn.FO.4) (- ALL JJQTTOuT 

C**** WmIToUT CALLED IF REQUIRED TO PRINT OUT THE TARLE OF RESULT.  
IF (mn.ro.A) Cf.LL PLOT1 

C' *** PLOT1 CALLED IF R=QUIRED TO PLOT THF IGFNFUNCTIONS. 
IF (NDeFQ.4) CALL. PLOT? 

C4-* :- 	OTp CALLED IF mOUIRFO TO PLOT THF ENERGY DISTRI9UTION. 
IF(Nfl.LF.7) GO TO on 

Go TO 12 
CALL FNPLOT 

(-1 r^1 

Inc FoPmAT(2E10,9,II.I2) 



1234 FOPMAT(8F10.5) 
1239 FORMAT(3F10.5) 
4444 FORMAT(1X,PI9) 
1 006 Fr1RMAT 	(6X, *A =*,F17.10,5X,#B =* IF17. 1 0/) 

END 

255 
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SURROUTINF SETUP 
DIMENSION FF(900).FFE(500).TT(900).EE(100),EEE(100),PP(100) 

DIMENSION HS(10),NMAX(10) 

COMPLEX 	YK(6,500 )0(H(6),Y(6),YG(6),YD(6),YL(6),YI(646),CONST(10 

1).GUrSS(10),A,R 

COMPLEX GR,PR,CS,ALFAS,ALFAG.AGAMAgARETA 

COMMON/ST1/A,ERMINIA'FRmIN9INC.NCMAX,R 
COMMON/STP/DELMAX.IEYTEND,IPPINTIISTEUP. 

1XXMAX,XMAX,JNPITE(10).ZMAX(10) 

COMMON/ST3/CONST,HSoNMAXIYI,IX 
COMMON/ST4/YK,YHIYIYG,YD,YL 
COMMON/ST6/X,NHYG,M,N 

COMMON/STEVFF,FFE.TTIFEIEFE,PP 

COMMON/ST9/ALFAG,ALFAS'AGAMA,ABETA.CR+PRICS 

COMMON/ST1O/NR,ND.OND 
AC,AMA=ALFAS-CS-Y,ALP'AG*PP 
ARETA=ALFAS-CS*ALEAG 

HS(1)=.01$HS(2)=.02SHS(3)=0.02SHS(4)=HS(9)=*02 
ZmAX(1)=1.1;ZMAX(2)=4,TZMAX(73)=6.TZMAX(4)=8.$ZMAX(51=XXMAX 

JWPITF(1)=9SJWPITE(2)=JWPITF(3)=JWPITE(4)=JWPITE(5)=9 
Nr=0 

DO 3 K=1,100,10 
KI=K+P 

NC=NC+1 
KW=-1 

Dn 3 L=K,K1 

IF(NC.GT.10)G0 TO 16 

ARA=CEF(NC+1)-FE(NC))/10. 

11PR=(EF(NC+1)-FEFINC))/10. 
4PC=CPP(NC+1)-PP(NC))/10. 

KK=KK+1 
E(L)==F(NC)+APAA1.!eK 

FFF(L)=FFE(NC)+Anc)*KK 

TT(L)=PP(Nc )+ARC*k-K 
3 CONTINUE 

K=U 

16 DO 4 <=1 ,24919 
K1=K+4 

NC=NC+1 

'<v=-1 
Dn 4 L=k-IKI 
An9=(PFP-(NC+1)-FP-=(NC))/9. 
AnAt.:(=-F(NC+1)-(KtC))/. 

AnCr_(FDD(NC+1)-(NC))/. 
Ke=k-v+1 

Kn=L+100 
Fr=( .( 0)=FF(Nr7)+AP!'.*KK 
FFE(K0)=LEF(NC)-4.- 

TT(K0)=PP(NC)+,19(-*KK 
4 CnNTINUE 

IY=9 . 
XN'AX=ZmAX(4) 
A=(1..1.) 

9=-(14•1.) 

NNMG=1 
(;ticc,(1)„(1...1)mGtv=cc(711,(.r-7.-.1)4.(7 12)=I.,.-.ci)SC;( 1 (4)=(.1 
11-1.)1AC,UFS)=( 1 . -7. ) S(7-tF'S ( 6 ) ( 1 . 

GLIFSSEP VALUES Tn RE cUPIDLI=fl IE RFOUIPFfl. 

EDNIrNA=1.F-6 ¶ F1N1INR=1.E-6 
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C**** LIMITS FOP CONVErr-ENCF FOP ACCEPTA9LF SOLUTION. 
NmAX(1)=((ZmAX(1)+1.F-5)/HS(1))+1.00001 

C**** CALCULATIONS OF THE NuMBEP OF STEPS TO BE MADE AT EACH STEPLENGTH. 
WDITF(6.1000) PP 
WpITF(612000) 	HS(1).ZMAX(1).NMAX(1) 

C**** PINT OUT OF STEP DATA FOR CHECK. 
Do 6 K=P.IX 
NmAX(K)=(((ZMAX(K)-ZmAX(K-1))+1.F-9)/HS(K))+WAX(<-1) 

6 WPITF(6.2000) HS(K).ZmAX(K).NmAX(K) 
IF(IFXTFND.F0.1.0P.ISETUP.FC.1) IX=4 

YI(111)=(0..0.)$YI ( 1.2)=(0.,0.)56YI(193)=(1.+0.)sY1(1.4)=( 0.90.)1Y1 
1 ( 1.9)=(0.90.)sYI(196)=(0..0.) 
YI(2.1)=(0.10.)$Y1(2.2)=(0..0.)sYI(2.3)=00.40.)$YI(2.4)=(1.10.)$YI 

1 (2.9)=(0,90.)SYI(2,6)=(0.9 0.) 
Y1(3,1)=(0.10.)syT(3,2)=(0..0.)$Y1(3.9)=(0..0.)$YI(3,4)=(0..0.)$YI 

1(7.9)=(0,.0.)TNI(716)=(1.+0.) 
C**** INITIAL CONDITIONS FOP THE HOMOGENEOUS SETS. 

Nr=0 
c**** Sr.T THE ITFOATION COUNT. 

Jv=NMAX(IX) 
WmITF(6.1002) JK 
DO 7 M=1.JK 
DO 7 1=1.6 

7 Yle(i.m)=GUESS(I) 
PpTURN 

1 000 FoRmAT(IX,* pp= *,F11.5,F10.9) 
2000 FoRmAT(IX.?(F10.915X),I9/) 

1 002 FoRmAT(1X,* JK = *41) 

END 
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SURROUTINF SOLVE 
DTMFNSION FE(900),FFF(900),TT(900)9FE(100) ,FEE(100).PP(100) 
nimENSION HS(10),NMAX(10) 
cnmPLPY. YHo(3.6,-17o) 
cnmPLFx ALFA 
COMPLEX OCSIA 
cnmPLFx AP 
COMPLEX GRIPR,CS.ALEAS,ALEAG+AGAMA9A9ETA , ALFAO ,ABETO, AGAm0 
COMPLEX YK169900 19YH(6),Y(6).YG(6),YD(6),YL(6)9HY1IN(6),HY2IN(6) 

1 ,HY7IN(6), HY4IN(6)9HY9IN(6),HY6IN(6),cONST(10) ,YI(616) 
COMPLEX MARO.MRROIMORO.MAROP,MBROP04090P 
COMMON/ /YHO 
COMmON/ST7/CONST,HS ,NMAX9Y1,IX 
COMMON/ST4/YK.YH,y9YG,YD,YL 
comm7rl/sT6/x,NHmr,,m,N 
cnmmoN/sTA/FF,FFF. ,IT,FE,FER,pp 
COMMON/ST9/ALFAG,ALFaS.AGAmA ,ABETA,GR•PRsCS 
COMMON/ST10/Ncl,No,DND 
FXTFPNAL YGPD1 
M=0 

C**** M IS THE STEP CONUTER. M=1 AT SURFACE OF BODY. 
X=0. 
IX=4 
DO 8 L=19IX 
H=HS(L) 
NmAX(4)=169 
MmAX=NmAX(L) 
m=m+1 
mooTH=0 
Ir(mOPTH.FO.0) no To 99 
CPLL ORTHO 

99 CoNTINUF 
DO qNH=1.NHMG 
IF(m.GT.1) GO TO 1 
DO 9 1=19N 

• Y(1)=Yr(NH9I) 
(7,-) TO 2 

1 CnNT1NUF 
Tin 21 I=19N 

21 Y(1)=YHO(NH,TIm) 
2 CALL RKINT (H,YGDnd) 

c**** PvINT STFPS FROM X TO X+H. 
on 7 1=1 ,N 
Ln=M+1 

7 YHO(NH.1.1.0)=Y(I) 
• CONTINUP 

IF(m.LT.","mAY) (7,0 TO 7 
• CONTINUF 

mmAX=-11 
nn IINH=14NP-Amr; 
HyliN(NH)=YHO(NIH'iqmmAX) 
HY2IN(NH)=YHC(NH.2,MMAX) 
HV'iTN(NH)=YHO(NH.,.MmAX) 
HYAIN(NH)=YHO(NH,4971mAX) 
HYSTN(NH)=YHOLNH.q+MmAX) 

11 CoNTINUr 
ALFAO=CSORT(ALFAS) 
AnETO=CSORTCARFTA) 
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ArAM0=COPT(AGAMA) 
MARO=HY4IN(1)+ALEAO*HY7IIN(1)-ARETA*HYPIN(1)-ARETA*ALFAQ*HY1IN( 1) 

1 +(AGAmA/(AGAMA-ALFAS))*HY9IN(1)+(ALFAO/(AGAMA-ALFAS))*HY6IN( 1) 
MAR0=-mA90 
MpRO=HY4IN(2)+ALFAO*HY1IN(P)-ARFTA*HYPIN(2)-ARETA*ALEAO*HYIIN(2) 

1+CAGAMA/(AGAmA-ALFAS))*HY9INIP)+(ALFAO/(AGAmA-ALFAS))*HY6IN(2) 
MrRO=HY4IN(1)+ALFAO*HYIN(7)-ARETA*HYpIN(3)-AF.iFTA*ALFAO*HY1IN(3) 

1+(AGAMA/(ACAMA-ALEAS))*HY9IN(1)+(ALFAO/(AGP.PA-ALFAS))*HY6IN(3) 
MAROP=HY4IN(1)+ARETO*HY3IN(1)-ALFAS*HYPIN(1)-ALFAS*ABETO*HVIIN(1 

I)+(AGAmA/(AGAMA-ARETA))*HY5IN(1)+(ARFTP/(AGAMA-ABETA))*HY6IN(1) 
mAPOP=-YA9OP 
MnROP=HY4IN(2)+ARPTO*HY3IN(2)-ALFAS*HYpIN(2)-ALFAS*A9FTO*HY1IN(p 

1)4-(AGAMA/(AGAMA-AmETARY9 IN(2)+(APFT0/(AGAMA-A9ETA))*HY6IN(?) 
mC9OP=HY4IN(1)+AnpTO*HY3INC3I-ALFAS*HY2IN(3)-ALFAS*ApETO*HVIIN(3 

1)+(AGAmA/(AGAMA-ApETA))*HY9IN(3)+(AFFTO/(AGAMA-APETA))*HY6IN(3) 
CONST(2)=C(MARO*mpB0P)-(mAqOP*MR90))/((m990P*vcR0)-(mApo*mc9OP)) 
CONST(1)=CmA90-(mrBO*rONST(2)))/M990 

C***1$-  CALCULATION OF THE CONSTANTS. 
WPITF(6.1001) CONST(I) 
WDITp(6.1004) CONST(?) 

C**** POINT OUT THE VALUES OF THE CONSTANTS. 
DO 10 M=2,MMAX 
DO 10 I=1 ,N 
NieK(I,M)=YHO(1+I.M)+CONST(1)*YHO(2.I,M)+CONST(2)*YHO( -3.I'M) 

10 CONTINUE 
C-1,-*** CALCULATE THE NFL' SOLUTION 9Y SUPERPOSITION. 

Flo=Ar;AmO*YK(9.mmAx)+YK,I6IIN'mAX) 
ALFA=CSOPT(ALEAS) 
Gn=ALFA/ALEA 
WmITP(6.44) ALEA,c,R.CS 

44 PORN/1AT (IX.ALFA.2(E19.9),)X.*GR* ,?(E15.8)11Xy*CS*92(E19.8)) 
WpITF(6,1009) 	PP 

1005 FORMATC35X.*BR=*.p(F17.10)) 
FIPP=REAL(90) 
RoI=AIMAG(PIR) 
CR=REAL(CS) 
C,--:A=AImAG(rS) 
WnITP (6.12) Nmo,,,, 

12 FORMAT (2c-:Y.N7= 4 1:Nr)=-1f,i) 

Tc-(Nr).rO.1) 	Go Try 7h 
TP(No.EO.P) GO To 31 
IP(NO.PO.:1) GO TO 32 
TP(mn.P-0.4) GO TO 33 

30 CONTINUE 
PDR1=RPR 

P011=901 
CcP1 =CS0  
CcA1=CSI 
CS=CS+(.0000001+.0) 
r;r1 TO 1, 

31 rr)NTINUc' 
RnO2=F7100 
9n/p=RDI 

cc.D?,:ro 
CSIP=CSI 
CS=CS+C-,0000CM:..0C0001) 

Tfl 
32 Cr)NTTNIU---7  

RPR3=RRR 
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Rmi3=p;DT 
ccp1=rsp 
CCI3=CST 
RDPr)P=RPPP-9Qrl 

Rp/Do=RPIP-R011 
BOPOI=RPP3-RPPI 

CSPD1=CSP2-CS1-Z1 
CSPDP=CSP3-CSP1 
CSIDI=CSI2-CSII 
CCI0P=CSI1-CSII 
flop1=-APP1 

RDI1=-APT1 
DCSP=NRPIP1*RPIDT)-(PRII*PIPPOI))/(RPPDP*PRIOI-RPIDP*FIRROI) 
DrS1=(9PPI-DCSP*RPROP)/9PPOI 

OrSPZ=OCSP*CSPr)I 
QrSIZ=QCSI*CSIn2 
DrSIA=(.0,1.)•r)CSTZ 
cc.,=c4-(,0,-.00000Q1) 
CS=CS+DCSRZ+DCSIA 

33 CONTINUE 
C**** CAUCHY-PIEMANN EQUATION. 

RETURN 

1003 FORMAT(EXI*P-CONCT(1) 	=*,E17.104.*I-CONST(1) 	=*,E17.10) 

1 004 FORMAT(6X.*P-CONT(2) =*,E17.10,c;X,*I-CONST(2) 	=*,E17.10) 
FWD 
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SuBROUTINF WRATOUT 
D/MENSION F0(100).YKR(69360) .YKI(6.160).YREY(360),YDIS(360),YBOU( 

17160) 
DIMENSION HS(10).NMAX(10) 
DIMENSION FF(9o0),FFF(00),TT(500),EE(100).EEE(100),RP(100) 
CoMPLFX YHO(146.170) 
COMPLEX 	YK(6.RO1-  ),YH(6),Y(6).YG(6),YD(6)1YL(6),Y1(616),CONST(10 

1) lAoR 
CnMPLEX GRODRICS.ALFAS.ALEAG,AGAMA.ABETA,ALFAO,ABETO.AGAMQ 
cnwioN/ /YHO 
COMMON/Sii/A,EWINA+ERMINB,NCINCMAX,B 
COMMON/ST2/DELMAX,IEXTEND+IPRINT,ISTEUP,  
IXXMAX.XMAX,JWRITF(10).ZMAX(I0) 
COMmON/ST3/CONST.HS1NmAX,YIIIX 
COMMON/ST4/YKO(H,Y+YG9YDIYL 
COmY.ON/ST6/X,NHMr;.m,N 
roMmoN/STP/FF,FEE.TT,FE.FEE,RP 
COMMON/ST0/ALFAG,ALEAS.AGAMA.ARETAIGR,PRICS 
CriMmON/ST10/NB+Nn,DND 
CommON/ST1I/E0 
COMmON/ST1p/YpFY,YDIS.YROU 

C**** WRITOUT,PRINTS OUT THE VALUES OF THE SOLUTION IF REQUIRED. 
C4*** KNJ IS THE NUMBER OF THE GRID LINE AT WICH THE PRINT OUT BEGINS. 
c**** Km IS THE FINAL GRID NUMBER. 
C**** Kt IS THE STERAIISF INCREASE AT WHICH INTERMEDIATE VALUES ARE 
C4*** PRINTED. 

mo=0 
ALFGR=AIMAG(ALEAr,) 
ALFAR=PEAL(ALFAS) 
Wr,ITr-(6.1001) 
KN=1 
J4!RITF(1)=10  
X.,-HS(1)*JWRITm'(1) 
IY=7 
nn 	L=1 ,IX 
KL=NmAX(L) 
Kt/ =_"'R TE(L) 

ipprnm=:3 
IP-(IPs'RPCP,NE.0) or7TuoN 
DO I m=KN•KL+Km 
X=X+HS(L)*Km 
Wn4TF(6.1002) Xt(YKCIIM),I=1+3) 

1 CoNTINUF 
KN=Nmi!X(L)+JRIT(L+1) 

2 cnNTrNUP" 
WrnIT(6,10071) 

X=-HS(1)*JWRITF(I) 
no 	L=1,IX 
K1=NmAX(L) 
k-m=31YRITE(L) 

0 

X=X4-I'S(1.)4K 
WRITE(/—, 00?) X,(yK(I.M),I=4,6) 
CoNTINRJ= 

0 -"N, =N1-1.X(L)-4-1T17-- (L-4-1) 
WnIT=C6.1004) 
Km=1 
X7-HS(1)*JWPITF(1) 



262 

pn 3 L=1,IX 
KL=NMAX(L) 
Km=JWRITE(L) 

Dn4 m=KNIKL.KM 
mn=m,P+1 

nn S 1=14N 

YleR(1gm)=P7AL(YK(!qm1) 
yie/(/,y)=AlmAG(Y(I.NA)) 

9 CnNT1NUE 
YoFY(m)=-(YR(2,m)*Yle1(1,M)-YKI(21M)*YKR(1.M))*FO(MP) 

YDIS(M)=-(1/ALFGP)*(M.FAR*YKR(1.My-YKR(3,M))**2+(ALFAR*YKI(1 1 M)-  

lYvI(14M))**2) 
YROU(M)=-(1/ALFGR)*(YKR(9,M)*YKR(2,M)+YK1(5,M)*YKI(2.M)) 
X=X+HS(L)*KM 

41D1TE(6,10')9) X,YPEY(M),YDIc(M).YBOU(M) 

4 CnNT1NUF 

KN=NmAX(L)+JVIPITr'(L+1) 

(--INTiwc: 
pm-Tupm 

1 001 FoRmAT(9x,IHx.10x,6HR-Y(1),IPx,6H1-Y(1),12x,6HR-Y(2).12x,6H1-y(2). 
111,x,rmp-y(1),12x.r,HI-y(3)) 

1 003 FnPmAT(9x.iHx,)ox,6HP-Y(4),12x.6HI-Y(4),12x16HR-Y(5),1Px+6H1-y(9),  

112x46Hp-Y(6),I2x,6Ht-Y(6)) 

1 00P FORN4AT (2X,E8.9.6(1X,P- 17.10)) 
1 004 F('RmATC9X,IHX,10X,16HREYNOLDS STRESSE•18X.11HDISSIPATI0N.18X,BHBuO 

1YANCY) 

100 FnPMAT(2X.FR.9,3(10X,F17.10)) 

END 
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SUBROUTINE PLOT) 

DIMENSION XX(100).YYR(100),  YYI(100) 
DIMENSION HS(10).NMAX(10) 
DIMENSION FF(5C0).EFF(900),TT(900),FE(100)+EEE(100),PP(100) 
COMPLEX YHO(3,5,R,00) 
COMPLEX 	YK(6,900 ),YH(6),Y(6).YG(6)•YD(6),YL(6),YI(6,6)+CONST(10 
1) $4.c1 

COMPLEX CR.PRqCS.ALFSJALFAG9AGAMA,ARETA.ALFA 
COMMON/ /YFO 

COMMON/ST1/A,ERMINAIERMINB.NC.NCMAX,5 
COMMON/ST2/DELMAX,IFXTEND,IPRINT,ISTEUP, 
1XXMAX,XM4Y,JWRITP(10),ZMAX(10) 

C0MM0N/ST3/CONST,HS,NMAXIYI,IX 
COMMON/ST4/YK.YH,Y+YGIYD,YL 
COMMCN/ST6/X,NHMG.MqN 
COMMON/STR/FF,EFF,TT,FE.FEPODP 
COMMON/STP/ALFAG,ALEAS,AGAMAgABETA.GR,PRICS 

COMMON/STI0/NRINr),DN7) 
C**** EIGENFUNCTIONS. 

P0=AImAG(GR) 
ALFA=CSORT(ALEAS) 

ALF=REALCALFA) 

CSR=PEALCCS) 

CSI=AIMAG(CS) 
JWRITF(I)=10 

IX=3 
FY1=,0 
nx2=I. 
FY1=-1. 
DY2=e6 
XCALF=1./oX2 
XADD= -FXI/DX? 
YcCALr=1./DYP 
YADD= -FYI/DY? 
X0=9. 
no 3 T=1 ,6 
M V = 0 

KM= 1 

X=-HS(I)*JWRTTF(1) 

IP(I.NE.1.AND.I.NE.4) GO TO 4 
IP(I.NE.1) GO TO 

IF (NR.F0.1) GO TO n 
IF (NIR.ro.) GO TO 
IF (r\!R.F0.0) 	GO TO 0 
IF (Nr;.F0.11) GO TO n 
GO TO 7 
Cr1NT/NUE 
YO=P. 
Yn=2. 
Jr (NR.F0.1) GO TO R 
CALL N'WDA('P- 
Gr■ Tn P 

7 rONTINU= 
Yo=-1-1, 

F3 CONTINUE 
CALL PLnT(xn,Yo.-.7) 

9 coNTIMUF 
Yo=13. 



264 

(-ALL PLOT( .°0(09-3) 
6 CONTINUE 

CALL AXIS(.09.0.24H NORMAL DISTANCE FROM PLATE- 9-29.6.1.09EX19DX2 
1) 

CALL AXIS(.09.0914HEIGENFUNCTIONS914.10.990.9 EY19DY2) 
CALL SYMROL (2.3.1 0.9.1493HEIG+.0.1) 
CALL SYM9OL(1.9P,R1.1/1.-4HDR=1.093) 
CALL SYMROL(1.10.1.14.7.HGP=9.013) 
CALL SYMROL(1.+1.1 9.1a91RHWAVE NUMRER 	=4.0,18)  
CALL SYMROL(I.9.R 1.14918HPHASE VELOCITY CR=1.0.18) 

CALL SYNI9OL(1 .9.9 1.14,18HPHASE VELOCITY CI=9.0918) 
CALL NUMRER(1.429P.89.141PR9.042) 
CALL NUMREP(1.42.9.51.149RP,.492) 

CALL NUMRER(3.9691.19.141ALF90096) 
CALL NUMREP(73.961.6 9.14,CSR1.096) 

CALL 'UMRFR(3.96,.5 9.149CSI9.096) 
4 CONTINUE 

DO 2 L=11IX 
KL=NmAX(L) 
Km=jwpITE(L) 
DO 1 M=KNO<L.KM 
MV=MV+I 
X=X+NS(L)-W-KM 
XX(MV)=X 

YYR(MV)=REAL(YK(I04 )) 
YYI(MV)=AImAG(YK(I1M)) 

1 CONTINUE 

KN=NMAX(L)+JWPITE(L+1) 
2 CONTINUE 

CALL ARKIST(XX,YYR,1960.17i09XSCALE.YSCALE.XADO,YADD.291) 
CALL APKIST(XX,YvI91960,10.XSCALE,YSCALF,XADD.YADD9291) 

71 CONTINUE 
Pc-TUPN 
END 
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SUAPOUTINF PLOT? 
DIMENSION XX(100) 
DIMENSION YRFY(3F>0),YnIS(360)+YROU(360) 
DIMENSION YPF(IO0),YOI(100),YA0(100) 
DIMENSION HS(10),NMAX(10) 
COMPLFX 	YK(6,900 ),YH(6),Y(6)+YG(6).YD(6)0(L(6)0(I(6'6),CONST(10 
1) *A,A 

COMPLEX GP,PP,Cc...ALFAS.ALFAG.AGAYA,ARETA4ALFA 
COMMON/ST1/AvEnmINA,FPMINFAtNC.NCMAX,R 

COMMON/ST2/OELmAX.IFXTEND.IPRINT.ISTEUP, 
1XXMAXOCMAXIJWRITr(10),ZMAX(10) 
COMmON/ST7/CONSTIHSiNMAX.YI,IX 
COMMON/ST4/YK,YHOY+YG,eDgYL 

COMMON/ST6/X,NHMG,M,N 
COMMON/ST9/ALFAG.ALFASsAGAMA.ABETA,GRIPR.CS 
CnMMON/STIO/NRIND,DMD 
COMMON/STI2/YPFY,YDIS■Y9OU 

C4*** FMERGY OISTPIRUTTONS. 

Po=AIMAG(C,P) 

ALFA=CSOPT(ALFAS) 
ALF=PAL(ALFA) 

csp=PFAL(CS) 
(-,I=AlmAG(CS) 
JWPITE(1)=10 

IX=3 
FX1=1,0 
DX2=1. 
IF(NR.LF.8) DY2=.05 

1='(NP.LF.R) FY1=-.2 
IE(Nm.GT.A) FYI=-.024 
TE(NIAGT.A) 0Y9=,004 

IE(NR.GT.I1) DY2=.001R 
Ir(NA.GT.11) EYI=-.01P6 
XACALr=1./OXP 
XAnn= -FX1/!-)X2 
YCCALF=1./DY2 
YADn= -FYl/r)y? 

X0=0. 
MV=0 
Km=1 

X=-HS(I)*JWPITE(1) 

Ir (NR.F0.1) GO TO 
Ir (NR.EO.P) GO TO 0 
IF(FLOAT(Nn)/2 .P'O.FLOAT(Nn /2)) GO TO 9 
C,o TO 7 

0  CoNT/NUP 
X0=2. 
ynt7p. 

it (NR.E0.1) GO TO A 
CALL NEWDAr_p.  
Go TO A 

7 CONTINUr 

Y0=-1 1. 
P cnNTTNUr7 

CALL PLOT(XO,Y04-7) 
c;r1 To 
f---,r‘!T1^ 7  
Yo=17. 
CALL PLOT(.0,YQ,-3) 
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6 CINTINUF 
CALL AXIS(.0..0,29H NORMAL DISTANCE FROM PLATE— .-29.6.9.0.FX1,DX2 

CALL AXIS(.04,0,717HREYNOLDS STRESSE,DISSIPATIUN,BUUYANCY,37,10.,90 
1.,FY140Y2) 
CALL SYMBOL (2.3.10.0.14,7HFIG1.0,3) 
CALL SYMROL(I.19.RI.IZE,3HPR=te0.3) 
CALL SYMROL(1.40.9.14,71HGP=9.043) 
CALL SYMROL(1.0.11014418HWAVE NUMRFR 	=1.0.18) 
CALL sYwioL(1.,.11 +.14918HPHASE VELOCITY CR=9.0,18) 
CALL SYMROL(1.g. 	q.14918HPHASE VELOCITY C1=1.0,18) 
CALL NUMRFR(1.4.P.Roo14,PR,.0,2) 
CALL NUM9FP(1.42,P.5,.14,RP..4,2) 
CALL NUMREP(3.56,1.1+.14,ALF+.0,6) 
CALL NUNIRFP(3.96..8 9.14,CSR,.0$6) 
CALL NUMRFR(3.960.5 1.14,CSIg.0+6) 
D') 2 L=1 ,IX 
KI =NMAX(L) 
Km=JIMITF(L) 

nn 1 m=KNJ,KL,Km 

MV=MV+1 

X=X+HS(L)*KM 
XY(MV)=X 
NonE(mV)=YRrY(M) 

YnI(MV)=YDIS(M) 
YnO(MV)=YROU(M) 

I CONTINUE 

KN=NMAX(L)+JWRITP(L+I) 

2 CnNTINUF 
CALL ARKIST(XX,YPP 9 1960,30,XSCALE.YSCALE,XADD,YADD1291) 
CALL APKIST(XX9YO1.1.60,10,XF,CALE,YSCALE,YADD.YADD,291) 
CALL ARKIST(XX,YR0q1+60,30,XF:CALE,YSCALE,XADD,YADD92,1) 
PP.TURN 
ENT) 
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SumIPOUTIN UPDATE 
DimENSION FE(ROO),FFP(00),TT(900).FE(100),FEE(100).PP(100) 
DIMENSION HS(10),NMAX(10) 
COMPLEX 	YK(8.90C ).YH(8).Y(8),YG(R),YD(8),YL(8)4YI(818)+CONST(1 0 
1) 
COMmON/STP/DFLmAX.IEXTENDIIPRINTIISTEUP. 
1XxMAX,XMAX.Jv!RIT---(10)ZMAX(10) 
CoMmON/ST7VCOST.H:SersplAX,Y1,1X 
CoMmON/ST4/YKIYH,Y.YG.YD.YL 
COMMON/ST6/X,NHMc,.Moq 
EXTERNAL YGRD2 
IF (iPXTENO.F0.1) GO TO 7 

C**** EXTENSION OF EXISTING SOLUTION RY SIMPLE EXTRAPOLATION. 
T=(ISFTUP.NF.0) no TO 1 

C- *** SFT UP THE INITIAL GUESS. 
RETURN 

1 DO 3 I=1.N 
3 Y(I)=YK(I.1) 

C**** Sm-T ALL VALUES OF THE Y'S AT THE SURFACE. 
M=1 
IY=9 

C**** IX IS THE NUMBER OF CHANGES OF STEP. 
X=0. 
DO 6 L=1.IX 
H=HS(L) 
N!vAX=NmAX(L) 

C**** SFT STEP LENGTH AND AHE NUMBER OF STEPS. 
4 M=M+1 

CALL RKINT (H.YGPD1) 
C**** STEP TO NEXT POINT USING THE NON-LINEAR EQUATIONS. 

DO 5 I=1.N 
5 Yk-(1,m)=Y(I) 

c**** SPT UP THE STOPFn FIPST APPROXIMATION TO THE SOLUTION. 
IF (,'.1.LT.!vmax) GO TO 4 

c**** IF WF HAVE NOT PF'ACHFfl THE LIMIT OE STFPS.PFTURN TO PKINT. 
6 (7,-)NTI-7 

IEDIT7(641:)(1 n) ISr-rTum 

X=-Hs(1)*JWPITE(1) 
DO 61 L=1.IX 
KL=NmAX(L) 
Km=JWPITF(L) 
DO 6? m=KN.KL+Km. 
X=X4HS(L)*k"m 

62 WnIT='(6,1002) X,(YK(I.m),I=I+8) 
KrI=Nimvx(L)+JwRIT(L+1) 
(7 -)r-TINLE 
IsETUP=0 
Pr-TUnr\' 

7 mA=NmAX(IX) 
IX=9 
IoRINT=I 
Xn!AX=XmAFLmAX 

C*47r, UnDATE THE FFFFC'rIV 	INFINITY. 
IE(XMAX.LF.XXN'AX) GO TO 8 

,„ 	1  
RI-TURN 

F' m!,,..AX(IX)=((X'IAX-7',AX(4))+1.F-l/HS(5)+NMAX(4) 
mPAAX=NmAX(IX) 
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C4*** U0DATF NUmmFP OF STEPS AT STEP LENGTH4. 
Do Q 1=14N 
nn 9 M=mA,MmAX 

9 Yv(1,m)=YK(I.MA) 
10 RETURN. 

1 002 FoRmAT(IX,Q(2X.F1n.9) 
1 000  FORMAT(1H1,1X1*NON-LINFAR INITIL VALUE PROBLEM *15X1 *ISTUP*II5) 

END 
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SUBROUTINE OPTHO 

DIMENSION HS(10),NMAX(10) 
COMPLEX YHO(3.6.500),YI(6.6) .CONST(10) 

COMPLEX ABH0(6).ARBH(6)+ACH0(6),ACCH(6).ADHQ(6).ADDH(6) 

COMPLEX AYH(6),RYH(6),CYH(6)+DYH(6),EYM6),FYH(6).AH0(6)09H0(6) 
ICH0(6).AAH0(6),BRHO(6),CCH0(6 )IAY,BY,CY,DY.EY.FY ,YHA(6)IYHE(6), 

IYHC(6) 
COMMON/ / YHO 

COMMON/ST3/CONST,HSoNMAX.YNIX 

COMMON/ST6/X.NHMG.M,N 
C*** OPTHOGONALIZATION TECHNIQUE. 

DO 1 1=1.N 
1 AYH(I)=YHO(1,I,M)*CONJG(YHO(III,M)) 
AY=CS0PT(AYH(1)+AYH(2)-1-AYH(3)+AYH(4)+AYH(5)+AYH(6)) 

DO 2 I=1 +N 
YHO(1.I.M)=YHO(1,11M)/AY 

YI(1+I)=YT(1.I)/AY 
P BYH(I)=YHO(1,I,M)*CONJG(YHO(2iI,M)) 

BY=BYH(I)+HYH(P)+RYH(1)+DYH(4)+5YH(5)+5YH(6) 
PPY=PEAL(9Y) 

DO 4 I=1,N 

AHO(I)=PRY*YHO(1,19M) 

A4H0(I)=YHO(241,m)-AHO(I) 
4 CYH(I)=AAHO(I)*CONJG(AANO(I)) 

CY=CSOPT(CYH(1)+CYH(2)+CYH(3)+CYH(4)+CYH(5)+CYH(6)) 

DO 9 I=I.N 
APHO(I)=PAY*Y1(1,T) 

AR9H(I)=YI(2gI)-4RHO(I) 
Yi(2./)=ARPH(1)/CY 

5 YHO(2,I ,M)=AAHO(I),CY 
nn 6 T=I'm 

6 DYH(I)=YHO(1.104)*CONJG(YHO(1,I,M)) 
DY=DYH(1)+DYH(2)+OVH(71)+DYH(4)+DYH(5)+DYH(6) 

RnY=PFAL(nY) 

on 7 I=I.N 
RHO(I)=PDY*YHO(1.1iM) 

7 FYH(t)=YHO(2,I,M)4CONJG(YHO(7,■14M)) 

EY=EYH(1)+FYH(9)-1-FYH(2)+FYH(4)+EYH(9)+EYH(6) 

R=Y=op'AL(y) 

	

nn 	1=14N 
(71.40(1)=Dc'Y*YHO(P.T+m) 

EimHOCI)=YHO(7410,1)-PHO(1) 

crHo(t)=RPHo(1)—(7H0(1) 

0 FvH(T)=ccHn(l)crwJGcrf-Hoct» 
Fv.csnDT(FyH(1)+FyH(2)+FyH(2)+FYH(4)+Fm(s)+FyH(6)) 

Dr) 10 1=14N 
ArHC(1)=pc-y:e-y!(2,T) 

ArCH(T),onyYT(lqi) 

AnHO(I)=Y1(111)-ArCH(1) 

AnnH(I)=A7)w0(I)-Ae-H0(I) 

YT( -14T)=Ann,-1(1)/c7Y 

1 0 Ywncl.r.m),:rcHnci)/Fy 
Ig0TT7(74)N1 

627A Fr,Q^AnT(p,-;) 

VipITF(6,1000) (YHO(1.I.M),YHO(2,I,M),YHC(311M),I=1+N) 

WDIT:7(6.10C0) (YT(111),YI(771.1).Y1(7.1),I=14N) 

'" 	" 	7 ( 	( 	< 	1 	. 1 	) ) 
1,? -runm 

EMC) 
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SURROUTINF RKINT (HIYGRD) 
COMPLFX AC0.BCOsCCO,DCO.ECO,GR,PR,CS, ALEAG,ALFAS,AGAMA.ARETA 
COMPLEX 	YK(6.9OO ),VH(6).Y(6).YG(6)+YD(6),YL(6) 
DIMENSION AFF(-;0n),AFFE(OO).ATT(O0) 
DIMENSION FE(900).FFF(500).TT(500).EE(100).EEE(100),PP(100) 
COMMON/ST4/YK.YH.V•YG•YDIYL 
COMMON/STF/AFF,AFFF,ATT 
COMMON/ST6/X.NHMG.M4N 
COMMON/ST7/ACO.BCO'CCO.DCO.ECO 
COMMON/STR/FF.FFF.TT.FE.FEE,PP 
COMMON/ST9/ALFAG.ALFASIAGAMA.ARETAIGR.PR.CS 

C4*** RINGF-KUTA SINGLE STEP INTEGRATION ROUTINE. 
no 1 J=1,N 
Yn(J)=Y(J) 
ATT(M)=TT(M) 
AEF(M)=FFCM) 
AF-FF(M)=FFF(M) 

C**** FUNCTION EVALUATION AT POINT X. 
CALL YGRD 
Del ? J=19N 
YG(J)=YG(J)*H 

? YH(J)=YG(J) 
X=x+n,*H 
DO 4 1=11? 
DO 3 J=1,N 

3 Y(J)=YD(J)+.9*YG(J) 
AFF(m)=(FE(m)+EF(m+1))/2. 
AFFF(m)=CEFF(M)+FPF(m+1))/?. 
ATT(M)=(TT(M)+TT(m+1))/p. 

C**** FUNCTION EVALUATION AT HALF STEP. 
CALL YGRD 
DO 4 J=I.N 
YG(J)=YG(J)*H 

4 YH(J)=YH(J)+2.*YG(J) 
X=X+0.9*H 
DO 	J=1.N 
• Y(J)=YO(J)+vG(J) 

Ar-F(I,A)=FF(Y+1) 
Arl-Fr(m)=FFF(M+1) 
ATT(m)=TT(m+1) 

C**** FUNCTION EVALUATION AT X+H. 
CALL YGRD 
DO 6 J=1 ,N 

C**-r,4 CALCULATION OF THE CHANGE IN EACH Y. 
YH(j)=(VH(j)+H*Yr",(J))/6. 
Yn(J)=YD(J)+YH(J) 

r**-§* VA.LUt7 OF v.S AT X4-1-1 
• Y(j)=VOCJ) 

p=-TURN 
END 
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SuRPOUTINP Y(;PD 1 

DIMENSION AFE(90o),AFFF(900),ATT(00) 
DIMENSION FF(00),FFF(500),TT(500).FE(100),EEE(100)+PP(100) 
COMPLEX YK(6.500 ),YH(t4.)0e(6),YG(6),YD(6),YL(6) 
COMPLEX ACO.BCOICCO,DC04ECO.GR.PR.CS. ALFAG,ALFAS,AGAMA,ABETA 

COMMON/S1-4/YK,YH,Y9YGO(DIYL 
COMMON/ST9/AFF.AF=FIATT 

COMMON/ST6/X,NHM(7.M*N 
C'IMMON/ST7/ACO,RCqqCCO.DCO.FOO 
CION/STFVFF,FFP.TT,FF,EFE.PP 
COMMON/STP/ALFAG.ALFAS,AGAMA,ARETA,GRIPP.CS 

(7**** Hr■MOGENrOUS FOUATIONCs 
c***4 ToIAL-AND-FPPOR TPCHNIOUE. 

Yn(I)=Y(?) 
Yn(2)=Y(3) 
Ye7,(3)=Y(4) 

CALL LIZEAN 
NOT,(4)=(ACO)*Y(1)-PCO#Y(1)-CCO*Y(6) 
Yn(9)=Y(6) 

Yn(6):: DCO*Y(9)-=*(70*Y(1) 
PrTURN 

EMD 
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SURPOUTINF LIZEAN 

DIMENSION AEF(900),AEEE(900)+ATT(q00) 
DIMENSION FF(500),FFF(500),TT(500),EE(100),EEE(100),PP(100) 

COMPLEX ACO.BCOICCO,OCO,ECO.GR.PR.CS9 ALFAG.IALFAS,AGAMA,ABETA 
COMMON/ST9/AEF.APFF,4TT 
CoMMON/ST6/X,NHMG,MIN 
COMMON/ST7/ACOIRCrI,CCO,DCO,FC0 
COMMON/STA/EF,EEc- ITT.7F,FEE.PP. 
CnMMON/ST0/.11LEb.G,ALFAS.AGAMA,A9ETA.GP.PR,C9 

	

Ar0 	=(ALFAG)*(AFF(M)-CS)+2*(ALFAS) 
RrO=(.AFF(M)-CS)*(ALFAG)*(ALFAS)+(ALFAS)*(ALFAS)+CAFFF(M)*ALFAG) 

	

CrO 	=11.0,0.0) 

DrO. =ALFAS4-(AEE(M)-CS)*(PP*ALFAG) 

	

11 Fr° 	=PR*ALFAC*ATT(m) 
PP- TUPN 
FWD 
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SuRROUTINE YGRr)2 

DIMENSION AFF(90O),AFFF(900),ATT(900) 

DIMENSION FF(500)IFFF(500).TT(900),EE(100),EEE(100),PP(100) 

COMPLEX 	YK(Ft'soo )011H(A)1Y(q),Yo(p),YG(8),YL(8) 

COMPLEX ACOO9CO,c-CO.00O,ECO,GP,PP,CSI ALFAG,ALFAS,AGAMA,ABETA 
COMMON/ST4/YK.YH,y1YG,YogYL 

COMMON/STF/AFF,AFp-FIATT 

COMMON/ST6/X.NHM(;.MIN 

cnmmON/ST7/ACOIRco,CCO4DCO.Fc0 

CoMmON/STFVFF+FEF.TT,FEIFFF,PP 

COMMON/STO/ALFAG.ALFAS,AGAmAgABETA.GP+PR+CS 

c**** LINEAPIZED NON-HOMOGENEOUS EQUATIONS. 

C**4'-* QI)ASILINEARIZATION TECHNIQUE. 
Y(.:(1)=Y(p) 

Yr;(?)=Y(3) 

Yr:(3)=Y(4) 

Yr,(4)_-Y(1)*YL(7)*YL(A)*(AFF(M)-CS)-Y(1)*YL(8)*YL(8)-Y(1)*YL(7)*  
IAFFF(M)+Y(2)*YL(7)*(AFF(M)-c)+P*Y(-1)*YL(A)-Y(6)+Y(7)*YL()*(AFF(M 

1)-(75)-Y(7)*YL(R)*yL(1)*(AFF(M)-CS)-Y(7)*YL(1)*AFEF(M)-YL(7)*YL(7 
1)*(Arr(M)-c5)+YL(7)*YL(R)*YL(1)*(AFF(M)-CS)+YL(7)*YL(I)*AFFF(M) 

1-1-Y(8)*YL(2)-Y(R)*YL(1)*YL(7)(AFF(M)-CS)-PY(8)*YL(8)*YL(1)-2YL( 

1r)*YL(1)+YL(8)*YL(1)*YL(7)(AFF(M)-CS)-pYL(8)*YL(8)*YL(1) 

Yr:(9)=Y(6) 
YO(6)=-Y(I)*YL(7)*PP*ATT(M)+Y(9)*YL(7)*(AFF(M)-CS)*PR-Y(5)*YL(8) 

1+Y(7)*YL()*(AFF(M)-CS)*PR-Y(7)*YL(1)*PR*ATT(M)-YL(7)*YL(5)*(AEF( 

IM)-C)*PP+YL(7)*YL(1)*PR*ATT(M)-YL(9)*Y(8)+YL(9)*YL(8) 

Yr;(7)=0.0 
Yn(A)=0.0 

PP'TUPN 

Fron 
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SURPOUTINF YOPO1 
DIMENSION AFF(00),AFFF(900).ATT(900) 
DIMENSION FF(990),FFF(900).TT(900).EE(100),EEE(100).PP(100) 

COMPLEX 	YK(8.00 )011H(8),Y(8),YG(R),YG(8) 1 YL(8) 

COMPLEX ACO,BCO,CCO.DCOIECO.GR.PR.CS. ALFAG.ALFAS,AGAMAJAPETA 

COMMON/ST4/YK.YH.Y,YG.YD.YL 

COMMON/ST9/AFF.AFFF,ATT 

COMMON/ST6/X.NHMG,M+N 
COMMON/ST7/ACO.RCO'CCO0DCO.FC0 

COMMON/STR/FF.FFP,TT,FE,FEE.PP 

COMMON/STr)/ALFAG.ALFAS.AGAMA,A9FTA.GP.PP.CS 

C**** HOMOOFNEOUS EQUATIONS. 

CAC*** QUASILINEAPI7ATION TECHNIQUE. 

Yr;(I)=Y(P) 
Yr;(P)=Y(71) 
yr.74(1)=Y(4) 

Ner;(4)=—Y(1)*YL(7)*YL(A)*(AFF(M)—CS)—Y(1)*YL(8)*YL(8)—Y(1)*YL(7)*  
1AFFE(M)+Y(7i)*YL(7)*(AFF(M)—OS)+P*Y(3)*YL(8)—Y(6)+Y(7)*YLI3)*(AFF(M 

1)—CS)—Y(7)*YL(8)*YL(1)*(AFF(M)—CS)—Y(7)*YL(1)*AFFF(M) 

I +2Y(A)*YL(1)—Y(R)*YL(1)*YL(7)( AFF ( M)—CS)-2Y ( 8)*YL( 8)*YL( 1) 

YO(9)=Y(6) 

• vG(6)=—Y(I)*YL(7)*PR*ATT(M)+Y(q)*YL(7)*(AFF(M)—CS)*PR—Y(9)*YL(8) 

1+Y(7)*YL()*(AFF(M)—CS)*PP—Y(7)*YL(1)*PR*ATT(M)—YL(5)*Y(8) 

Yr:(7)=0.0 
Yr4(9)=0,0 
RFTUPN 

FND 
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