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ABBTRACT

2
In 1955 Hayman (1955a) showed thet if f(z) = z + a22° + o
is & circumferentially mean univalent function in |z| < 1 then the

limit

o = lim (1—r)2M(r,f )

1
exists, and
el
lim =0 <1 s
nso
unless f 1is a Koebe function. Hence there exists ny = no(f) such
that
(1) ol <n , n>nf)

unless f is & Koebe function.
We show in this thesis that if f(z) = z + aaza + ... 1is weakly

univalent in |z| < 1 +then the limit

a(8) = lim (1-r)2]f(zel®)]
r+l

exists, 0 <8 <27 ; a(8) = 0 except for a sequence 8 = 6_ , and

Za(ev) <1 ,
v
unless f 1is a Koebe function.

We derive the expansion

ir,(1-1/n) -ing
n {

(2) a_ = ne ¥ a(ev)e Vo4 o(l)} ,» (no>w)
v



I

, i6
where Al(l—l/n) =arg{ f [ (1~1/n)e l]} , and show that

e |an|

lim o = Z a(e\)) ’

>0 v
the limit existing if and only if a(@) = 0 except for a unique 6,
Hence we have (1) for f weakly univalent. We prove analogous results
for non-zero weakly univalent functions and also general weakly p-valent

functions.

Hayman (1955b) showed that if a regular function

f(z) = Z a zo
n=o -

omits a sequence of values {wk} which lie on or near the negative

real axis and satisfy

(3) ol |H

i+l Yk |

(k) la | =0(n) , () .

We show that the exponent 2 in (3) may be replaced by any number
less than 1 for (4) to remain true. We also show that functions of

this form allow an asymptotic expansion of the form (2).
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INTRODUCTION

The thesis is divided into three chapters. In the first chapter
we develop some general theory on the asymptotic behaviour of functions
regular in |z| < 1 . We use these results in Chapter 2 to prove
results about weakly p-valent functions and in Chapter 3 aboﬁﬁ functions

omitting a sequence of values.

We first give a short history of p-valent functions (§0.1) and

functions ocmitting values (§0.2).

0.1 p-valent functions

Let

f(z) = }§ az"
n=o n

be regular in |z| < 1 . We define the maximum modulus, M(r, f) ,

and the A-th integral means IA(r, f) (0 <A <®) as follows:

M(r, f) = max |F(z)] , O<r<1

2
|2|=r
on
I(r, ) =% | F(re*®)2a8 , o<r<1 :
| . |

Let p be a positive integer. f 1is said to be p—valent in
|z| < 1 if the equation f(z) =w has at most p roots (multiple
roots being counted multiply) in |z| < 1 for any complex W .

Cartwright (1935) proved that if f is p-valent in |z| < 1 then

(0.1) M(r, ) iA(p)up(l—r)—ep , O<r<l
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where A(p) is a constant depending only on p and u_ = max |a_| .
‘ Ov<p
Biernacki (1936) used Cartwright's result to prove

(0.2) Il(r, f) j_A(p)up(l—r)l‘QP , O<r<1l1 .
He then showed that since
2
a_ = 1l f(rele) —1n9de ,
2nr 0

it follows, on writing r =1 - 1/n , that

2p-1
(0.3) Ian| < A(p)upn P

. If p=1, then f is univalent (schlicht). In this case (0.1)
was first proved by Bieberbach (1916) and (0.2), (0.3) by Littlewood
(1924).

Spencer (1942) generalised the class of p—valent functions as
follows:

let W(R) denote the area (regions covered multiply being counted
multiply) of that portion of the transform of |z| <1l by w= f(z)

which lies in the circle |w| =R ; then if

W(R) < pR

for all R > O , where p 1is a positive number (not necessarily integral),

we say that f is areally mean p-valent (in the sense of Spencer).
Spencer (1942, 1940) generalised (0.1), (0.2), (0.3) to mean

p-valent functions. He proved (0.1) for p > 0, (0.2) for p > 3 ,

1

and (0.3) for p > &
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Biernacki (1946) introduced a class of functions which Wefe less
general than Spgncér's:

let n(w) denote the number of roots (multiple roots being counted
multiply) in |z| < 1 of the équatioh f(z) =w and let p be a
positive number. Write

2m-

p(B) = p(R, ) =2 | n(Re)ap .

Then we say that f is eircumferentially mean p-valent (in the sense
of Biernacki) if p(R) < p for all R > O .

Now if p 1is a positive integer and f is p-valent, then
n(w) < p for all complex w and hence p(R) <p, (R > 0) . Thus
a p~valent function is circumferentially mean p—valent. On the other

hend, if p(R) <p , (R > 0) , then

W(R) = plp)dp® <R , (rR>0) .

Thus & circumferentially mean p—~valent function is always areally mean
~ p-valent.
Hayman (1955a) (see also 1958) showed that if f is circumferentially

mean p-valent then the limit

(o.k4) | o = lim (l—r)ePM(r, f)
v r+1

exists, and that, if p > 4 , then

(005) lim n_l = = >
no n°P r(2p)
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where T is the gemma function (see e.g. Titchmarsh (1938)).

Hayman (1958) also obtained sharp bounds for (O.l) in.two special
cases. Here w denotes a real constant, O < w < 27 .
(1) if f(z) = Zp'+'gp+lzp+1 + ... 1s circumferentially mean p~valént

in ‘z|'< 1l , where p 1is a positive integer, then
(0.6) M(r, £) < rP(1r)? | o<r<1

unless f(z) = 7..p(1-zeiw)_2p .

We note that if a suitable branch of £ -is chosen in a cut disk,
then (i) holds for all p > O .
(ii) if f(z) = ay + &,z + ... 1is circumferentially mean p-valent and

non-zero in |z| < 1 then

(0.7)  Mr, £) < |ag| L) /(1-2)1®® |, 0<r<1

unless f(z) = [(1+zeiw)/(1—zeiw)]2p .

20
To prove (0.5), Hayman showed that f attains its maximal growth
along a unique radius, - 6 = 80 , (called a radius of greatest growth)
and that | fl is relatively small away from a neighbourhood of 80 .
He defined a major arc, y = {8:|8—80| < k(1-r)} , where k 1is a large

positive constant, and a complementary minor arc, Yc = [0,2r)\y , and

proved that the contribution of the minor arc to the integral

2m v
a_ = ln f(rele)e_lnede
onr 0

is relatively small compared to the contribution of the major arc. It
follows that the asymptotic behaviour of the coefficients is determined

by the behaviour of the function on the major arc, as r +~ 1 .
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Once bounds for o are obtained, asymptotic bounds for the

coefficients follow immediately from (0.5). For the special case

p=1, f(z)=1z% a222 + ... , Hayman (1958) showed that

(0.8) a < 1 .

unless f  is a Koebe function, 'i.e. f(z) = z(l—-zes‘w)_2 . Thus, for
a fixed f , there exists ny = no( f) such that for n > ny
(0.9)  lal<n

unless f is a Koebe function. This is usually referred to as the

asymptotic Bieberbach conjecture. Bieberbach (1916) conjectured that

if f is univalent in |Z| < 1 and is normalised, i.e. f(z) =z + a222 + ...

then |an| < n,n>2, equality holding if and only if f is a Koebe

function. The best result to date is that of Herowitz (1977) who proved

that
1/6
(o} N
|an| < n(%zg) < 1.0621n , n>?2 .
For the case f(z) # 0 , Hayman showed that
(0.10) a < hlaol R

unless f(z) = [(l+zeiw)/(1—zeiw)]2 , and hence
(0.11) |an| < hlaoln , n>n(f) ,

unless f(z) = [(l+zeiw)/(1—zeiw)]2

Eke (1965) extended (0.4), (0.5), (0.8) to the areally mean p-valent

case of Spencer.
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o~

A generalisation of p-valent functions in a different direction
was given by Hayman (1951):

a function f is said to be weakly p-valent (p integral) in
|z| < 1 if, for every R > O the equation f(z) = w has either
a) exactly p roots in |z| < 1 for every w on the circle |w| =R, or
b) less than p roots in lzl <.l for some w on the ecircle |w| =R ;

mﬁltiple roots being counted multiply. -

It follows from this definition that a circumferentially mean
p-valent function is weakly p-valent. The class of arealiy mean p-valent
functions however neither contains nor is contained in the class of
weakly p-valent functions.

Extensions of (0.1), (0.6), (0.7) to the weakly p~valent case were
provided by Hayman (1951) and of (0.2), (0.3) by Hayman and Weitsman

(1975). Baernstein (1974) obtained sharp bounds for the means for the

weakly p-valent version of (i) and (ii) above. In fact he obtained:
. . + . .
(i) if f(z) = 2P + ap+lzp 1, .+. 1is weakly p-valent in [z| <1
then
| 2m rpl
I)\(I‘,f)< —'—‘—'—i—é——é—ﬁde,0<)\<w,0<r<l,
0 |l—re :

unless f(z) =-zp(l—zelw)_2p ;

]

(ii) if f(z) = By * a2 * ... is weakly p-valent and non-zero in

|z| < 1 then

unless f(z) = [(l+zeiw)/(l—zeiw)]2p .

%
In case (i), p =1, it follows that



lanl < jen s n> 2 ’

and this is the best known estimate for general n .

In Chapter 2 of this thesis we show that instead of having a
unique radius of greatest growth as in the mean p-valent functions of
Biernacki and Spencer, a weakly p-valent function may have infinitely

many . We show that

Y
im
<o n2p—l

% a(ev)
(

2p-1)!

where the Gv , v=1,2,... are the radii of greatest growth of f ,

and a(ev) = lim (l-r)2P ]f(relQ0| . We also prove that if f has
r+1

more than one radius of greatest growth then the limit 1lim |an|/n2p_l

-

does not exist. If however, f has a unique radius of greatest growth

60 » then this limit does exist and

|an| a(eo)

(2p-1)!

lim
n-re

n2p-1
We obtain sharp bounds for the special cases (i), (ii) using the

sharp bounds for means obtained by Baernstein (1974). We have for

except when f(z) = [(1+zeiw)/(l—zeiw)]2 .

&
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Thus the asymptotic Bieberbach conjecture holds also for weakly

univalent functions.

0.2 Functions omitting a sequence of values

Let

f(z) = ] az"

n=0

be regular in |z| < 1 and let {Wk} be s sequence of complex

numbers such that r, = |Wkl is monotonic increasing and T, > ® as
k>, If
f(z) # W s E=0,1,...0

vwhat can we say about the meximum modulus, integral means, and
coefficients of f 2

Littlewood (1924) proved that if

Trep STy

then
-A(C)

M(r, f) = 0(1-r)

where A(C) depends on C only.

Cartwright (1935) showed that if

then
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M(r, f) = O(l—r)_g_E
for every e > 0 .

Baernstein and Rochberg (1977) have recently proved that
under the hypothesis of Cartwright

-(1+ +
L(r,£) = o) M) e | 2ol

for every € > 0 .

Hayman (1949) obtained the following result, which is essentially

best possible:

if

then

Littlewood (1924, see also 19LLk) showed, by considering the

elliptic modular function, that if

P(z) # 0,1

log[P(z)] # *2mik , k = 0,1,... :

O
—

[ .
~—

It

[a(z)1% # -br°%° |, k = 0,1,...

=)
—
N
~—
1}

then
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Hayman (1955b) generalised these results in the following way:
suppose that f(z) is regular in |z| <1 and f(z) # Wy s

where {Wk}' satisfies
: -3
(i) arg w, = O(IWkl ) s
‘ 3
Vil = 0w [F)

then

5 (I"‘)‘l) 5

Ianl =0(n) , no+eo

In Chapter 3 we generalise still further. We show that if

2 <p<e®,and

(1) arg w_ = o | |/P)

Wk+1_wkl . o(|wk|(P‘l)/P)

then
M(r, £) = 0(1-r)7°

I.(r,f) = O(l—r)_l
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We also apply the theory of Chapter 1 to these functions and

obtain
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CHAPTER 1

General Results

1.0 Introduction
Let f ©be a function regular in Izl <1 and let p>1 be a

given integer.  Suppose that for each 6 , 0 < 8 < 27 , the limit

(1.1) af8) = lim(l—r)zptf(reie)l exists, with 0 < a(8) < =
r>1

We say that 6 is a radius of greatest growth of f if «a(@8) > O .
If we are considering Gv » v=1,...,N say, then for convenience we
write a. = a0 ) .
v v
We choose a fixed e , 0 < e < w/2 . Then if Gv is a radius

of greatest growth of f we denote by Aﬁv) = AiV)(e) the domain

€ v 1 iev ™
{z : o < |1-ze | < peglt |arg(1-ze )] o< 5" s}' .

For n> 1 we write

16
I'=l—l/n ’ z =r.e s
n : n n
a(n) = n"QP.f(z ) R
v n
_ (n)
Av(rn) = arg o ,
and set . a(n)
n _ v
fv (z) = -i8  2p ’
(1-ze V)

)

(n)

Thus a ~° , lv(rn) and fin (z) are defined for n > 1 and using (1.1)

we have that

lain)l >

\Y) 2 (n > m) .
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Our_first result .1s
THEOREM (1.1)

Suppose that

F(z) = of az’

n=0

is regular in |z| < 1 and satisfies (1.1). Suppose also that f

satisfies the fbliowing:

(1.2) If 8, is a radius of greatest growth of f , then, as

n +~« uniformly for z € Aév)(e) R

fl2) @)

(1.3) For some A > 1/(2p) ,
Tin (1-0)PM 7 (2, £) < T,
r>1

where C 18 a constant.

Then we have

(1.4) a(8) = 0 , except for a sequence 6 = 0, » and
(1.5)  Fa)<c, =2HRIMC
: g % ™M1 r(Ap-2 g

Theorem (1.1) says that the set E = {6:a(8) > 0} is countable.

N(n) +to be the number of radii

Thus, given n > 0 , we may define N
of greatest growth of f for which a(8) > n . It follows that N is{inte and

increases as n decreases. Let ev s V=1,...,N , be such that
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@ 2 @y > eev 0 > M. For v=1,...,N and K a large positive

constant we define

v, = {9=|9"9\,| < K(1-r)} , ch = [oem)\y

N
e
Y = U Yv s Y = [O:2W)\ Y >
v=1
% i '
and let y,  be the set of ret® , for which 6 € Y, + We denote the

closure of a set E by (E)!'

With the above notation we have

THEOREM (1.2)
Suppose that § satisfies the hjputneses of Theorem (1.1) , (1.3)

being satisfied for some X <1 , and also the following:
(1.6) Given n > 0 , there exist constants N , K , r such that

| Fe™®)| <n(1e)™® o <r<1, €4

(1.7) If ej,ek are any two radii of greatest growth of f ,

Aj(rn) = Ak(rn) +0o(1) , (n-e)

We then have

oyl L0
(1.8) Tim —2 = 2
nii n2pm1 (2p-1)!

Further, if f has more than one radius of greatest growth we have

(7 alo,)?)?

S v
. Lim S = >
N 'n2p 1 (2p—l)!
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and so lim [anl/ does not exist.

n2p-l

n>o A

The probf of Theorem (1.2) is based on the proof of the corresponding
result for circumferenfially mean p-valent functions by Hayman (1958,
Chapter 5), the essential difference between the two proofs béing that a
circumferentially mean p-valent function has a unique radius of greatest
growth whereas a function which satisfies the hypotheses of Theorem (1.2)
may have infinitely many.

Chapter 1 is in four sections.

In the first section we prove Theorem (1.1). We show in the
second section that the contribution of the "minor arc", y° , is
relatively small compared to the "major arc", vy , and then prove

Theorem (1.2) for the case when 7/ has no radii of greatest growth,

ice. a(B) =0 for all 6 in [0,27) . 1In 51.3 we derive the formula
n =, (2p-1)!

2p-1 ir (r) -in6
a EL—p——-—~e 1 n { Z o e Vo4 oo(1) } ,  (nre) .
Y

In §1.4 we apply a result of Diophantine approximation theory to

—inev
c(n) = % o e
and show that
1im |e(n)| = c(o) =} s
nroe \Y
- 2y3
lim |e(n)| = inf |e(n)] < (} a,”) .
n+o n>0 v

We then conclude the proof of Theorem (1.2).
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1.1 Proof of Theorem (1.1)

We need the following

LEMMA (1.1)
For 3 <A <o and e, > 0 , define
(1.10) R IolesA) = {(5x.2)/[gl(gx_l)]}l/(2l—l) .

Then if K >3, and 3 <r <1 , we have

—_de . 1
K(1-r)<|8]|<m ll-releIQA
i6|2

Now |l-re A [(l—r)2 + hrsin2(%6)]l ,and for 3 <r <1,

0<98 <7, we have

a2 2\A
(1.11) [(1-r) + hrsin®(30)]” > (%E%—) 3_(9—) .
™ >

Hence, with J. defined by (1.10), we have

0]

o v
ae A de 1
' |1—-1~eie|2>"i ’ g2 (Fer<d)
K(1-r) K(1-r)
A ae
<o 52
K(1-r)
- 5! . 1
-1 — A—
(2A-1)[K(1—r)]2x 1 2(1—r)2 1
for K> J, . Similarly we have
-K(1-r) , .
ae < 1 ]
) - Py 2 < r < l a2 K 2— J
I l_rele l 2\ (l—r)'2>‘ 1 0]

-
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This proves Lemma (1.1).

Let ev , V= l,..;,NO , be NO redii of greatest growth of f

and fix X with 1/(2p) < A < = . Then given €, >0 we choose

J.=J (el,pk) as in (1.10) and with KX 235 3 <r <1, we choose

,(Yv ) C An(v)(e) C {z:|z] < 1}

* (v)
for all large enough n and r <r<r, , where Y, o An (e) ,

r =~ are defined in 81.1.

From (1.2) we have

) nf M) 22— ), zen Vo),
v)2p

and hence, given ¢, > O , we can choose n, = no(e2,l) such that for

2 0

n>n, o,

5@ > e £ M@ L reven,

2 0

A) >n. so thaet for n > n

We can also choose n, = n_(e 0 1

1 172

(n)lx )a A

> (1_82 v

We now choose r sonear 1, r > r. > 3 say, that the Y, &re

1
disjoint. We then have
w NO
1 16, (A 1 10y jA .
= | f(re )| a0 > 5 Z | f(re )| ase
v=l
- Y,
2 N K(1-
(1-¢,) zo N (1-r) 16
> ——— o — e A~
e v=1 Y 16 2pA

-K(1-r) |l‘r?



[}
e
!

i6)2pi i

provided that =n > n, -

So from Lemme. (1.1) we have for K 234 s 3 < r,<r<l,
~
(1.11) =\ | f(ze®) a0 >

27
-

N w
(1-e,) ZO o de _ €1
27 v=1 Vv _TT | l—rele 2p>\ (l_r ) 2p>\—l
We have from Hayman (1955a, page 280) -that
)
' : l 2pA
1 ae T(Ap—3)(1
(1.12) on RECTESSME (), (p‘) » Tl

and hence, given 53 > 0 there exists r. > r such that for

2 1
ry <r«<1
m ' _ 3 _.y1-2pA
1 a8 (1 53)T(kp 3)(1-r)
L . .
o . l_rele|2px 2T(z)T(pA)
Since €] » €5 » €5 BTE arbitrary, we have, using (1.3)

A B 2r(2)T(pA)
g av :_Cl =C . F(Ap-; .

Since NO is arbitrary we deduce the countability of the set

E = {6:a(6) >0} and hence

A
Z a(8) j_Cl
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by a standard argument.

This completes the proof of Theorem (1.1).

1.2 The minor arc, «°©

If

: ' n
f(z)= 7 8 2 ,
' n=0

then we have, on writing =z = ret® ,
m
f(rele)e—lne

Eﬂrna = de .
n

-

In this section we use (1.6) to show that the contribution of the minor
arc, Yc , to the above integral is reluiively small compared to the
contribution of the major arc vy . We then prove (1.8) for the case
when f Thas no radii of greatest growth, i.e. we prove

[a.| = of , (n =+ ) .

n
We prove first

LEMMA (1.2)
Suppose that f(z) <s regular in |z| < 1 and satisfies (1.1),
(1.3) and (1.6).  Then, given n, X, sothal o<y¢1,1/C1p) < X<, we

can  choose constanbs K, €4 Such that  for 6 <y e

5 | £ (ret®) a0 < b t(2-r)T72P

¢
Y

We fix A , 1/(2p) <A <1 . Then it follows from (1.6) that

given n > O there exist constants N , K , T such that for 0 € Yc s
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lf(rele)l<__rl_.; . r < r<l1
(1-r)?P

Also, using (1.3), we can choose r. > r. such that

1 0
P
L) .
|f(rele)l)\d6<—-i“£-—— r. <r<1
2pA-1 ? 1
— (1-r)

Now g

S | f(reie)|d6 = g | f(reie)|1—>‘| f(reie)|>\d6
: ‘ Je

C
Y

C
Y
< nl_x . G
(1-r)2P17A) (g y2RA-L
- hﬂCnl_x
(1—1')21)”1

We 't\’\“s hewe

; A -2p
S‘| f(ret®)]as < dnon (1-r)1EP rp<r<l

C
Y

as required.
If f(z) has no radii of greatest growth, then a(6) =0 for

a1l 6 and so y° = [0,2r) . Using (1.6) we see that given n > O,

there exists r with —

| f(rele)| < n(l—r)-zp , (ry<r<l1;0<86<2n)

0]
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From Lemma (1.2) we have

™

2nrn|an|'§_ | f(reie)lde < hﬂﬁab(l-r)l—ep sy T

, g S.r<1il

=T

n
) > & for n > 2 we have

We put r =1 - 1/n and since r" = (1-1/n

la | = o), (maw)

as required.

1.3 An asymptotic formula for a,

THEOREM (1.3)

Suppose that f satisfies the conditions of Theorem (1.2). Then

2p-1  ir (r.) -in6
aﬁ = TEE:ETT e T D {-g ae v+o(l)} , (n > =) .

We assume that there are an infinite number of radii of greatest
growth. If there are only a finite number the discussion is simpler.

Given n > 0 we choose N = N(n) as in §1.0.. Then for v = 1,...,N

we have
-8, o -img
(1-ze Y)"P = ) ce zZ R
m
m:
where
2p—-1
(m+2p-1)! m
= v .
°m m!(2p-1)! (ep-1)! ° (m > )

With the notation of §1.0 we have



. - —im6
¢ (n) _ (n) 9 m
fv (z) = o, ) c e z .
m=0
and it follows that
(n)
() —inev o g' fv (z)dz
c %, € 2ni n+l *
|z]=xr *
Thus
-in@ i
omrle o (Mg = .fv(n)(rele) 839 L v =1,...,N
-
Now
n
~ 2ﬂrnan = f(rele)e_lnbde R
-7
so we have
N ~ind m .. N . .
(1.13) 2ﬂrn[an—cn Z av(n)e V] = [f(rele) - Z.fv(n)(rele)]e 1n6de
=1 =1
-7
Let K , r, be the constants of (1.6). Then with ¥, , yvc N
Yc defined as in §1.0 we have
T N
15 (rei®)- [ 5 (P (ret®)) 00
-1 \)"l
N . .
f_ Z g |f(rele) _fv(n)(rele)ide
v=l
YV .
. N .
+ § If (re*®)]ae + |f (n)(rele)lde
(¢} V= (o] v
Y Y\)
=1, +I,+ I,
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Now
_ oy, () ag
I3= Il i8,2p »
=1 |l—re
K(1-r)<|8|<m
and |av(n)| -+ av' as n-*+e» , v=1,...,N , so we choose oy such
‘that for n > Ny
(n) :
o, ] < 20 v = 1,...,N

a6 n
ll-re.elgp < (1—1-)21)_1 s %‘< r <l
K(1-r)<|6|<m ,
We take Z a, =a . Then a < « in view of (1.5) with A =1 .
v
Thus for n > nO and % <r <1
N
(1.14) I, <27 a.n(1-r)t P
3 BTV
v=l
< 2an(1-r)1 74P .

~Next, we have from Lemma (1.2) that we can choose ry = ro(n) > 3
such that for Ty <r<1 and n > n,
' : 1A -
- (1.15) S 1f (re*®)]as < kmcn (1-r)tTER
c

Y

where C is the constant of (1.3).

We now choose € = e(K) > 0 so that for v = 1,...,N

* N
(Yv ) C Aiv)(e) for large n . Then (1.3) shows that

O R I O B e N
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This means that given & > O , there exists n, = nl(E) such that

>
for n nl

If(z) - fv(n)(z)l < EIf\)(n)(Z” , 06€y

Hence
N
Il = 2 g‘lf(rele)—fv( )(re |d6 < E 2 S |f (n)(r )lde
v=1 : v=1
Y\J Yv
N () K(l‘r) ™
=€ 1 fo, e g, 2

v=l —K(l—r)|1—rel P v=a _1mre™ [P

It follows from (1.12) that given e >0 we can choose

%
r, = rl(e ) > r, such that for r, <r <1
m * -
a0 . (axe)onr(p-3)(1-r)1 %P
3 1
l—releiEP r(3)r(p)
-7
Since & is arbitrary we deduce that
(1.16) I, = o(l-r)l-zp , r->1 .

Combining (1.13), (1.14), (1.15), (1.16) and putting r =1 - 1/n

we see that

n n) *inev 3 2p-1
r Ian—cn Z o e | < {2an+hncnZ+o(1) In“P .



and

in view of (1.7) and (1.1) respectively, so we have

N —-ind ix.(r ) N —-inb

To, e Ve Tae T Vo) , (new)
L%y v

=1 v=1

Since
- 1 2p-1
°n {(2p—l)! * O(l)} n

as n > 1t follows that

0 1Al(rn) o -iné
rla - c_e Yo e
n n )
'\)—
0 1Al(rn) N —1n6v 0 1Al(rn) oo —1n9v
<r lan -ce ) o e | + v |c e ) o e
v=l n v=N+1
1 n ® —-1inf _
< {2an+thn2+o(l) + Tzf%:fyr Y ae v } nZP 1
ERTEE ey Y
3 " v 2p-1
< i2anf]+1rCn + m! _ a + o(l)} n P , (n + «) .
v=N+1
Since a < » we have
Pp = z av—>0 as N = o .
v=N+1
Nov r"=(1-1/n)">1 , (n>2) , and n is arbitrarily small; so on

letting n tend to zero we obtain
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2p—lv i (r )( = -ind
_ . n 1™n v ®
*n T (2p-1)¥ © vzl“ve voll)f » (noe)

This completes the proof of Theorem (1.3).

" 1.4 Proof of Theorem (1.2)

We need the following result, due to Dirichlet, whigh can be
found e.g. in Niven (1963, page 13).

LEMMA (1.3)

Given any N real numbers 6 0. there exist infinitely

12N

many sets of integers (al,...,aN,n) with n positive such that
Inev - 2nav| < n_l/N ) v=1,...,N
We can now prove
LEMMA (1.4)
For v =1,2,... lLlet ev satisfy 0 <0 < 2r and let a > 0
be such that A, 2oL and Zav =a <o . Then if
~1in8
c(n) = Z o e
v
we have
1im |c(n)| = a
n® :
and
. o\ 2
lim |e(n)| = inf |e(m)| < ( ) o »
n->o2 m €N v

where N <s the set of non-negative integers.

We again assume that there are an infinite number of radii of
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greatest growth. If there are only a finite number the discussion is

simpler.

Given e > 0 we choose N so large that

From Lemma (1.3) there exist integers (al,...,a )  such that

i

|ne_ - 2ma_| < N T
\Y \Y

Having fixed N , we choose n so large that n—l/N < g . We
have
nev - Znav < € ’ v=1,...,N N
from which it follows that
—inev -i(nev—Eﬂav) ie
e -1] = |e -1] < |e -1 = 25in(§/2) <€
and so for any non-negative integer n,
N —1(n+no)8v N N N
Z a e - Z a e < e Z e, < ea .
v=l1 v=l v=
We thus have
| . .
1(n+n0)8v iny8,
) o e - a e
=] V=
N -i(n+n.)@ N -in 6
< Z o e v . Z a e OVl 4 2
- v v
v=1 V=

< egla + 2) .

thus

?
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Hence, given any ¢ > 0 and n, e can choose n arbitrarily large

such that

(1.17) lc(n+n )—c(n0)| < gla+2) .

0

If n, = 0 this gives

lc(n)l > ¢(0) - e(a+2)
for arbitrarily large n , while |c(n)| < c(0) for all n . Thus

lin |c(n)l = c(0) .

n-<e
We will now prove that

(1.18) a = 1lim |c(n)| = inf |c(n)| =8 .

n->oo : n>0
Evidently B8 < a . On the other hand, given € > O , there exists
ng = no(e) such that

letn )] <8 +e
and so by (1.17) we can choose n arbitrarily large such that

|c(n+n0)| < |c(n0)| + e(at+2) < B + e(a+3) .

We thus have o < B + e(a+3) . Since e is arbitrary we deduce
@ < B and so o =B as required.
To obtain a bound for o we obtain a bound for the average of

lc(n)l over all non-negative integers. We prove first that



NIH

‘ K-1 oo
(1.19) p(K) = ) 7 oo« cosn(e -6 )} +0 as K+ oo
, n=0{ u,v=l v

u#v

Given € > O we choose N = N(e) so large that

Joa <e .
v=N+1 ¥

We write

E a o cosn(e -0, = Z + Z . .
K, v=1 Hv
u#v

where Zl is taken over all terms with <N and v <N and 22

over the remainder. Then

N ©o N =+ [+
H=1l - v=N+1 H—N+l =] u=N+1 v=N+1
< e(2a + ) .
Now
1 K-1 N 1 N K-1 '
i o a cosn(eu—ev) =z ) oo ) cosn(e -6 )
n=0 p,v=l H Uy v=1 n=0
p#v ' pFV
N K-1 in(e —ev)
== J aaRe] J e
u,v=l n=0
TEY

& e {Sin(.K'%”%"ev)w} ,

2K s(o -
1sv=l u v 51n§(6u ev)
p#Fv
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S0 we have

< + 1 + e(2a+e)

1 g lsin(K—%)(eu—ev)|
v

- 1 -
2K L=l Ismz(eu ev)l

u#Fv

Each term in the sum is bounded and there are only a finite number
of terms; -so we choose Kb= Ko(e) so large that for K > K, , the sum

is less than e . We thus have for K > KO

P(K) < e(late+l) .

Since € is arbitrary we deduce (1.19).

Now for any n > O

P—A'ﬂ
t~1 8
Q
+
MS
Q
Q
0
e}

w
2
<D
l
G)
v
Pf—t

From Cauchy's inequality

K-1 2 K-1
(-;— ! Ic(n)l) <x L le@l®

n=0 n=0

SO we have

= L
=~
o~ |
I..J
o
2
I
—
|+
t~ 0
I..J
I,
1 o~1 8
Q
no
+
r~18
Q
Q
0
O
mn
2.
an
I
c:
V
W“J
iV e

(It ewe)

Now ¢(K) >0 as K-+ from (1.19) so we have
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B > 5\3 .
infle(n)] < lim ¥ Y le(n)] i( } o ) .
n>0 Ko - n=0 v=l ¥

This completes the proof of Lemma (1.4).

Theorem (1.2) now follows from Theorem (1.3) and Lemma (1.L4).

For :
_ ® -inf
' a e
- la | - e Y
““'“T“E“ = {im - .
o gy B | - (op=1)1
o ()] L
—— |c(n) v=1
= 1lim = .
e (2P7L)! (2p-1)!

Also, if there are ‘N radii of greatest growth, with 2 < N < =,

la | N - z
. n . le(n)] 1 ( é) 2
lim - = lim T < — Z o
e 21 e (2p-1)! = (2p-1)! vep ¥
< L g o = lim.lgigll- = lim lani
(2p-1)! w1V n (2p-1)! o n29—1

and so limle:a,n|/n2P-l does not exist.
n-»oo
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CHAPTER 2

Weakly p-valent Functions

2.0 Introduction
We define a function f(z) regular in [z| < 1 to be weakly
p-valent (Hayman [1951]) there if for every R > O the equation

f(z) = w has either

(i) exactly p roots in |z] <1 for every w on the circle
|w| =R or

(11) less then p roots in |z]| < 1 for some w on the circle
]w| = R ; multiple roots being counted multiply.

In this chapter we show that a weakly p-valent function satisfies
the hypotheses of Theorems (1.1) and (1.2) and hence t.ﬁé conclusions of
those theorems. We have in fact |
THEOREM (2.1)

Suppose that

18 weakly p-valent in |z| < 1 and has q =zeros there, where

0O<q<p. Then for each 6 , 0 <8 <2 , the limit

a(6) = lim (l—r)eplf(reie)l
r+1

0 , except for a sequence © =6 _, and

exists. Further, of(8) N

1/(2p) 1/(2p)
% a(e, ) P 5_nB(q)uq P

where y_ = max Iavl and B(q) <8 a constant depending only on q .
O<v<qg
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The condition O < g < p 1is a consequence of weak p-valence

(see e.g. Hayman and Weitsman [1975, page 131]).

THEOREM (2.2)

With the above hypotheses

o] L)
Lin 2111 = ?2—1)' y
e 2P p-1)!

Further, if f{ has more than one radius of greatest growth

el (f ?)’

1in 2p l - 2p— ! ?

2p-1

and so lim Ianl/n does not exist.

nre
Equality need not hold in the second part of Theorem (2.2), since

the function

shows that the left-hand side may be zero.
We also consider special cases of weakly p-valent functions. We

have

THEOREM (2.3)

Suppose that
n=p+l
is weakly p-valent in |z| < 1 and has p zeros at the origin. Then

1/(2p)
E u(ev) P <1
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Further, Za(ev) < 1, except when f(z) = zp(l-zeim)_zp .

It follows from Theorem (2.2) that for a function f satisfying

the hypotheses of Theorem (2.3) there exists n, = n

o f) such that

o!

with equality if and only if f(z) = zP(l—zelw)—QP . In particular,
if p =1 we obtain |an| <n for all n > no(f) unless f 1is a

Koebe function.

THEOREM (2.4)

Suppose that

f(z) = Z a 2"
n=0 n

is weakly p-valent and non-zero in |z| < 1 . Then

) a0 )/ (22) < (12|q | )2/ (20)

Further, Ja(8 ) < hplao| , except when f(z) = [(14ze ) /(1-2e1%)] %P .

Thus, if we write

= - 2p=°° n
RORNCENCI I

we have that for a non-zero weakly p-valent function f there exists

n, = no(f) such that for n > no(f)

lopl < leaglay, o s
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with equality if and only if f(z) = aOFP(zelm) . In particular,

if p =1, we obtain |an| < h|a0|n for all n > no(f) unless

f(z) = agF (zeim)

1 .
Chapter 2 is divided into five sections. In the first section
we prove Theorem (2.1). . In the second and third sections we show
that (1.7) and (1.6) hold for weakly p-valent functions so that
Theorem (2.2) follows from Theorem (1.2). In §52.4 we prove the sharp
Theorems (2.3) and (2.4) using recent results of Baernstein (lQTh).
In the last section we look at some examples of weakly univalent
functions. The first example shows that the constant 1/(2p) in the
inequality (Theorem (2.4))

Z Ol(ev)l/(EP) 5_(uP|ao|)l/(2P)
v

for non-zero weakly univalent functions is best possible. The second
function is an example of a weakly univalent function which has an

infinite number of radii of greatest growth.

2.1 Proof of Theorem (2.1)

We first show that o(6) exists. We need the following

LEMMA (2.1)

Suppose that f(z) is weakly p-valent in |z| <1 and f(z) # 0
for 1-285<|z|] <1 ,where 0<8§<3 . Thenfor 0<8 <2m

and 1 -6 < |z| < 1 we have that

2p
1-r i®
(;:m) ()]

decreases with increasing r .

The proof of Lemma (2.1) for circumferentially mean p-valent

functions given in Hayman (1958, page 95) is based on the inequality
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_bp

(2.1)
1-|z|?

f' 2
f(z)

Since this inequality also holds for weakly p-valent functions (Hayman
1951, page 1T4) the argument for Lemma (2.1) is identical to that for
the circumférentially mean p-valent case.

| We now take 6 , 0.< 6 < 3 , sothat f(z) #0 in 1 - 28 < |z| <1 .

It follows immediately that o(6) exists, since

- 2p ;
1-r ie ale
(r+26—l) [ re0] ¥ (25)2P

as r >+ 1.

With the notation of §1.0 we have

LEMMA (2.2)
Suppose that f ie weakly pvalent in |z| <1 and that o
- i8 a radius of greatest growth of f . Then, as n > = , uniformly

for =z € An(v)(s) ,

f(z) mfv(n)(z)

The proof of Lemme (2.2) for circumferentially mean p-valent
functions is given in Hayman (1958, page 108). Since it is also based
on the inequality (2.1) the proof extends to weakly p-valent functions.

We now quote the following result of Hayman and Weitsman (1975,

Theorem 6).

LEMMA (2.3)

Suppose that
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is weakly p-valent in |z| <1 and that f(z) has q azeros there,

so that 0<q<p . Then for A > 1/(2p) and O <r <1 we have

™

i 2
-

where B(q) <s a constant depending onZy’on q and uw_= max |a | .
O<vzq

We now prove the second part of Theorem (2.1).

As in the proof of Theorem (1.1) we have from (1.11) and (1.12)

that given positive constants €1 » €5 5 Eg there exists r, such
that for r, <r < 1, Ax>1/(2p)
m™ N S 1
. 0 (i-e_)I'(Ap-3) ¢
1 641X __ e A 3 o1 __yl-2pA
o lf (re ) l dae > (l 62) Zla\) 2I,(%)I,(}\P) o (l I')
-

Now T(Ap-3) = T(Ap+i)/(Ap-3) so we have from Lemma (2.3), since

€ 5 €5 > 63 are arbitrary, that
2
Ar 2 1+2 A-1/(2
o opa(q)®Phy MrPPp(1+2R) A1/ (20) 4y ()
Fat< 4
v=1 " T(Ap+3)

This is true for 1/(2p) < A < » and so by continuity it is true for

A =1/(2p) . We thus have

N
Xoa 1/(2p)
v

v=1

< 1/(2p)
< ﬂB(q)uq ,

and since N. is arbitrary we deduce the countability of E and

by & standard argument. This proves Theorem (2.1).
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2.2 The argument of av(n)
LEMMA (2.L4)
Let ej s 0y be any two radii of greatest growth of‘a>function
f(2) weakly p-valent in |z] <1. Then if r,=1- 1/n , and
n
arg o (n) = )\\)(rn) > v = 73,k s
we have

We take & , 0 <8< 3 , s0that f(z) #0 in 1-28< |z] < 1.

We choose 8, so that o(0
ieo ieo
from (1 - 28)e to e . Denote the annulus minus the cut by A .

O) = 0 and cut the anmulus 1 - 28 < |z| <1

Then [f(z)]l/p is regular in A and so weakly l-valent there. We

restrict ourselves in the proof to 1 - 28 < r <1 and prove the lemma

for p =1 , since otherwise we may consider [f(z)]l/p instead of f(z)
k

Assume O < ¢ i_aj . Given n > 0 satisfying O < n < %(ak/aj)

choose n, = no(n)_ so largé that for v = jJ,k and n>n

0
(\))1 C -t
A, (3n) C{]z| <1} . For v =j,k let
10 ~10
(v) Y 1 v
z Qn (z) e {rn - Ze } R
so that
-i0 1 —ti
1- ze ==(1 - Ze ) ;
) n
then An(v)(n) in the z-plane corresponds in the Z-plane to

(v) ' T -ie,,
Ay '(n) = {Z:n<]1—Ze |<n ; |arg(1-Ze )|<w/2—n} .
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Thus, for Z € A*(V)(%n) R f[zn(V)(z)] and ‘fv(n)[zn(“)(z)] are

defined for n > n, -

Now wn(v) =_fv(n)[gn(v)(z)] maps A (v)(

# n) 1-1 and conformally

onto the domain

0,51, e, ) <, () 07202,

b}

4
-
1

(v) (n)
Iargwh argo, |<m-2n}

Choose nl = nl(n) > nO so that for n > nl

a < Iav(n)| < Eav » v =7,k .

hv S

Then for n > nl

1 b
(2n)h<2n<ha.< w1 < j<h<-l?< (_1-)

(k)(

so that the regions Dn(J)(2n) and 'Dn 2n) overlap and meet the

circle |w| =R , where

(V)(1 ) .

For v =j,k let 234, 31N denote the boundary of A4, 3N
Then f[zn(“)(z)] maps aA*(v)(%n) onto & closed curve Fn(v)(%n)_ in
the wn(v)—plane. We show first of all that we can choose n, = nz(n) > n,
such that for n > Ny s rn(V)(%n) does not meet ‘Dn(v)(n) . Let the

shortest distance from (Dn(v)(n)) (the closure of Dn(v)(n) ), to the

complement of Dn(v)(%n) be dn(v)(n) . Then

(

n)|n2n2.min(sin?,%)

> g-|a (n)|n2n3

T v ’
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5 .

since n < 1 . Put € = 3n In view of Lemma (2.2) there exists

n., = n3(e) > n. such that for Z €& BA*(v)(in) and n > n

3 2

3

170, O an-£, P | < s D M

%n5|av(n)|n2(%h)_2

| A

n3la, (™ a2

(v) ‘
<d Vi) .

Next let Z, be any point of A*(v)(En) . Let 28 Dbe the
|
distance of (A*(v)(Qn)) from the complement of A*(V)(n) and
define vy = {Z:IZ—ZO|=61} . Then
n2 < 2n . g-. n < 28, = 2nsinn < 2n2
m -1
and for Z € vy
—ie\) —iev —iev —iev
| (1-Ze )#(1-z. e V)| = |2(1-2.e V)+e (Z.-2Z)|
0 0 0
2
> bn - n% = n(k-n)
Thus for Z € y and n> ng
|f (n)[l (V)(Z)]-f (n)[2 (V)(Z )]l - |f(r eiBV)I 1 _ 1
v n v n 0 n —iev 5 —ti 5
(1-Ze ) (l—Zoe )
—ti
o, |z-zgll2-(z+z)e
= [f(re V) r —r
Vi, o2
|1-ze  *|“[1-Ze |

i6 ,
|£(x e V)léln(h-n)

-i@
I1-ze  V|%(2n)7°
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> 14,5 1) ()1 20 (4en)

vV

Again from Lemme (2.2) we can choose n) = nh(n) > ng such that

for all n > ny and any 2 € v
1512, (@15 P M@ | < endtem 4,0 1 V|
< va(n)[Zn(V)(Z)]_fv(n)[zn(V)(ZO)]|

We apply Rouché's Theorem in the form given e.g. in Ahlfors (1953,

page 152) to v , f[zn(")(z)] - fv(n) [zn(")(z )] and

0
f (n)[zn(v)(z)] - fQ(n)[zn(v)(ZO)] and conclude that f[Zn(v)(Z)]

AY)
takes the value f (n)

y [zn(“)(z )] at least once in A*(v)(n) . This

0
*
holds for every ZO S Av (2n) and n > ny, where ny, depends on n
- )

; (), (v)
v

only and not on ZO . Since

and conformally onto Dn

[zn (z)] maps A, 2n) 1-1

(v)(

on) we have that for all n > n), >

f[zn(v)(z)] takes every value in Dn(v)( (v)(

2n) at least once in Ay n)

Tt follows from Hayman (1951, Lemma L) that there exists R. =R (f) such

0 0

that for R > Ry § omits at least one value WR(IWRI=R) in Jz| <1 .

Thus, if Ve satisfies
)i 2 2 2 -2
Iav(n)ln (en) <R < Iuv(n)ln (2n) s
it must satisfy

|argwR‘— arguv(n) - 7| < bn .

Putting R = Iu. o

2
3 X n we have for n > nh

Jsk ]

<
]

largwR - argav(n) - wl < Iy .

and so



- 148 -

(n) (n)l

|arguj '—arguk =_[Aj(rn)—xk(rn)| <8 , n-> n),

Since n can be chosen as small as we please, we deduce Lemma (2.L4).

2.3 The minor arc

We now show that (1.6) holds if f is weakly p-valent.

LEMMA (2.5)
Suppose that f(z) s weakly p-valent in |z| <1 . = Then, given
n > 0 there exist constants K,r, such that for ry<r <1 and
IS yc |
#lre®)] « =D,
(1~r)“P -

where +° is defined as in §1.0.

Choose & , Q.< § <3, such that f(z) #0 for 1 - 26 < |z] < 1.

Given n > O , choose N = N(n) as in §1.0. We consider two cases:

I. 6 : K(1-r) < |6-6 | < K(1-R) =6, (1< v <N) where

R,K will be fixed below;

II. e(v) +6,28 g_e(V+l) - 8, (1<v<N-1) s
N 1 '
ol 4 5, < @ <o 4oy - 5,
where the e(V) (1 <v<N) arethe 6  (1<v <N with
o(1) . (2 < ¢(M
Case I.

We choose K = K(n) so that

10°P . 2a

x°P
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As in Lemma (1.1) we have (see (1.11))

i(e-6 ) -8 \ 2
|1-re “le.zﬁ 5“)

and so for 1 =8 <r<1, |6-6 | >K(1-Tr), (1L<v<N) we get

\)_ -
20 52P 20
(2.2) 5 <
: - i(e-8 ) — 2D/.__\2p
|1-re v l2p K™ (1-r)
2p
< > ) 2av 2p (r+26-l) 2p
2
28

k2P (1-r )P

< r+28-1.. . ep
n 26(1-r) *

since o < a

v 1°

Having fixed X we choose e = e(K) so that

!

v, V' co Ve aevem

for all large n and ro <r< r2n . Then, by Lemma (2.2) we have,

¥ 1
as n + @ , uniformly for z € (y )

1Bv 2p
|1-ze [Pl (2)] + o .

Hence we can find n, such that for n > no' and rell € (Yv ),

Taking R = réno ond 8 such thadl 8.8\ = K(4-R) | we
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hove that  Re'® satistles  (22),(2:3) ond

obtéin

2p .
(___1;3_) T F(RYD) | «

From Lemma (2.1) we have for R <r <1,

. 2p .
2 0 2 1-R 9
(1-r)“P|f(re™)| < (r+25-1) p('ﬁ;ggji) |f(Re™) |

r+25-1) °P
<n|\FH) <

as required, since we shall later fix . .r. with R <r_ < 1.

0] 0

Case II.

N+1) _ (1)

For the purposes of this argument we let 8( 8 + 21 and

consider the set

= rg.g(V) (vil) _
r, = {6:8 +6,28 <8 62} .
On Tv we have
(1 \ %P i9 n
(2.4) lim (p+26-l) |f(pe™")| < —
p>1 (28)

For u > 1/8 1let P, = 1-21/n . If for some u we have for all

BET
v

1-p - 2p
S T flo o190 L
<0u+26—1> [#lo,e 1 < (26)2°

then from Lemma (2.1)
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L 2p ‘g 1 \2® .
-p 1 u 16
(p+25"l) [£Cee™)] < ( pu+25-l> [#(p,e™)]

€
for pu <p<1l,28 Pv and so
2 - 16
(1-p)“P|F(pe™™)| < n

for Py <p<l,®8 E'Pv , which is our result.
We thus suppose contrary to this that for each u there exists

¢ € Pv such that

3]
. 5 .
(2.5) (__E_p_}l__) p‘f( l¢u)l n
2.5 p e > — .
+26— - 2
PyreoTt " (26)%P
Let ¢(v) be a limit point of the sequence '{¢u} . It follows from

(2.5) and Lemma (2.1) that for each fixed 1y

2p i¢ n
Lo U —_— -
(p+25-l) If(pe )| z (25)211 1 § < p < p}l

If p 1is fixed the result holds for all large u and by letting W > =
(v)

we have ¢u +~ ¢ and
2p . (v)
1-p ) i¢ n__ -
( vy | f(pe )| 2'(26)2P s, l=-8<p <'l ,

which contradicts (2.4). So (2.5) is false for 1 - 1/u = Py <p <1
and some u > 1/8
Thus, given n > O , there exists W, = uv(n) such that for

1 - l/uv <p<1l and 6 E PV we have

(1-p)%P| f(pe™®)| <n .
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This is true for v = 1,...,N , so we let r_. = max{R,p. ,...50 }
0 ¥y Uy
Then for ry <r <1 and 6 € YC we have
1 n
|f(rele)| < 5 .
(1-r)“P

This completes the proof of Lemma (2.5).

2.4 Proof of Theorems (2.3) and (2.4)

It follows from Hayman (1951; Lemma 3) that if f satisfies the
hypotheses of either Theorem (2.3) or (2.4) then [f(z)]l/p is weakly
1-valent and so we may prove both theorems for p = 1 , since otherwise
we may consider a branch of [f(z)]l/p instead of f(z) . We use an
argument similar to the proof of Theoré;>(2.l) but instead of using
Lemma (2.3) we use sharp bounds for the means which were obtéinedvby

Baernstein (197h4).

We prove Theorem (2.3) first. We need

LEMMA (2.6) [Baernstein, 1974, Theorem 4]

Suppose that

[>e]

f(z) =z+ ) anzn

n=2
is weakly univalent in |z| <1 . Then for 0 < A<w
m m A
16492 r db
| f(re™”)|"de < T (0<r<1) .
]l—re ] :

As in the proof of Theorem (1.1) (equation (1.11)) we have for

N, radii of greatest growth and a fixed A > 3 that given e, >0,

=J( A) and ry = ro(ez,k) such that for

> 0 there §x1st JO o\Eq2

K z'JO » ro <r=«< 1,
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™ | : NO ™ c
642 2 o as - 1
[f(xe™)|"a0 > (1-,)" Zl“v 16)2% 2A-1
— v= _p |17Te | (1-r)

Since r < 1 we have from Lemma (2.6)

m ‘ NO m .
qe 5 (1_82)2 z o A de _ 1

v=l v l-re
=T

Since € » €, are arbitrary we have

(2.6) !
v=l1 ¥

This is true for 3z < A < ®» and so by continuity it is true for

A=3 . Now if
NO \
z @, =1
v=1
for any A > 3 , we must have N, =1 . TFor if N, > 1 we choose

0 0

1
satisfying 3 < A < A and obtain

N, N
0 ' 0
A A
vzldv > Zldv =1 )

which contradicts (2.6). It is an open question whether ‘

N

° 3
'vzl S

implies NO =1.

)\l
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It follows from Hayman (1951, Theorem X) that weakly univalent

functions of the form

f(z) =z + 7 a 2
n=2 n

with one radius of grestest growth and

lim (,1—r-)2M(r, fy=1 ~

r>1

are Koebe's functions. Since E is countable and (2.6) holds for
any N, Theorem (2.3) follows.
To prove Theorem (2.4) we need the following result again due to

Baernstein (1974, Theorem 6).

LEMMA 2.7

Suppose that
.

~

f(z)= ) az"
n=0 o

Us weakly univalent in |z| <1 and f(2) #0 there. Then for

0<A<m
ui _ L 16 22
1F(ze®) |20 < [a|*|  |[EEE| a8 , (0<r<1) .
— 70 16
— T l-re

Again we have (equation (1.11)) for N, radii of greatest growth

and & fixed X > 3} that given e, > 0 , e, > 0 , there exist

1 2

J. = JO(EI?A) and r. =71 (ez,A) such that for K> J, , T

o 0 o <r<1X1l,

0
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tw NO al i
164 A 2 A de
|f(xe™ )| a0 > (1-e,) ) o i6l2k -

&1

2x-1
)

v=1 1l-re

- —r (1-r

Now l+rele|2x g_hx for r <1 and so we have from Lemma (2.7)

' N NO' b .
A a0 _ 32 oo A a 1
(hlaol) i-reiGIQA > (1 e,) vglav -

=T

Since €, » €, are arbitrary we have

N A

Llwg) o

‘Arguing as in the proof of Theorem (2.3) we have

< v
——
(=]
~——
ol
| A
H

and

except when f(z) = [(1+zeiw)/(1—zeiw)].2

%o

In this case

does not imply N, =1 as the first example of §2.5 shows. This

o)
completes the proof of Theorem (2.4).
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2.6 Some examples of weakly univalent functions

Any function f(z) subordinate to [(l+z)/(l—z)]2

in |z| <1
is a non-zero weakly univalent function in |z]| < 1 . Thus if w(=z)

satisfies the conditions of Schwarz's Lemma, then

2
_Vltwlz
Flz) _{. )}

1-w(z

is & function which is weakly univalent and non-zero in |z| < 1 .

Example 1.

Suppose that w(z)

n
F(z) = { 1+2 }
’ l—zn

i
N
S
v
N

Then

has n radii of greatest growth and Bv = 2vr/n , v = 0,1,...,0-1 ,

are such that

2 iev
a(6 ) = lim (1-r)°|f(xre V)| >0 .
Voo
For v =0,1,...,0-1 we have
. n 2
ale ) = lim§ L n—l} = _1}5
Voo 1 L Lt n
Thus
T 3
}ale))® =2

This example shows that in the inequality of Theorem (Q{h)



_57_

the exponent 1/(2p) cannot be replaced by any smaller gquantity.

Example 2.

Suppose that

_ o1 (z41)/(2-1)

@) /(1) |

w(z) =
1

Then f(z) = [(l+w(z))/(l—w(z))]2 has an infinite number of radii of

greatest growth and

2vrit+l
ev & L2vwi—l) ’ v = 0,%l,...

are such that

ale ) = lim (1-r)?|f(re*®™| > 0, v =0,:1,...
v
-l
Now
i8
2 V42
a(ev) = 1im (1-r) (l+w§ge ))
r-1 (l‘W(I‘e '\)))2
ie ) 2
. |1+ w(re
= 1lim 5 ,
+1 ! Y9
r v (re V)
where
) i6
. i6 v
W (re V) = BW(I‘G ) :

or



lim w(re Vy =1
r+1

and
2
' 16 fo -16

lim |w (re v)l2 =2 e_l |1-e V] 4 s

1 1-e
so

. 2 .
-1 -16
1- L
a(ev) = ('—“Q:I) |1-e vI » VvV =20,%1,... .
l+e ,
Also
- .

6, = 2tan ~(2mv) - 7 v - 1/(wv) , Vo> ,

and
—iev
. (1
1l-e | = |251n(§ev)| Ve s v .

so

1-e vlh&(nhvh)—l sy Vo w .
Thus

| ~1,2
‘ 1- -l
a(e)'\aﬁe_ie-v sy Vo w® R
v 'n'(l+e ) :

Mt

and = ) a(ev) converges.
v ‘

We see from this example that Z“(BQ)A diverges for A = & , SO
that the exponent in Theorem (2.1) cannot at any rate be replaced by

1/(Lp) .



An example of a weakly univalent function which is not derived
from subordination is the function which maps the unit disk onto the
infinite covering surface of the plane slit from O to -1 and from

-i to « along a ray of argument -m/2 .
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CHAPTER 3

Functions omitting a sequence of values
3.0 Introduction

A family F of functions regular in |z| <1 is called normal
[Montel (1927)] if, given any sequence fn € F , either fn(z) > o
at each point z in |z] < 1 or else there exists a subsequence fn

: o 1Y
such that fn (z) converges uniformly in |z| < p , for every »p ,

P
O0<p<l1l.
It follows that if F is normal, then there exists a constant

B = B(F) > 0 such that the following holds:

(3.1) if £ €F and [f(o)] <1, then |f(z)| < &

for |z| < 3§ .

For otherwise we could find a seguence fn € F such that Ifn(o)l <1,

but’

M= sUp1|fn(z)| >,
|z[<3

Thus no subsequence fn (z) is uniformly bounded, nor, & fortiori,
. _ o !
uniformly convergent in- |z| < 3 .

A family F of functions is said to be invariant in |z| < 1 if

(3.2) f(z) €F , |zO| <1, A real implies

f (i +2 ) Al e F
1472

Conditions (3.1) and (3.2) together give

B
(3.3) f(z) €F , |Zl| <1, |22| <1, If(zl)l <1, |f(22)| > e
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implies

For if f(z) € F , then

2,72
glz) = § — € F
l—zlz

by (3.2). Hence if |g(o)| If(zl)[ <1, it follows from (3.1)

that |g(z)]| < e® for |z| <3 . Thus, if
z, -2 -
la(z,)] = [F| === ]| 2 &
: 1—zlz2

Following Hayman (1955b) we call a family F of functions f
gsatisfying (3.3)va uniformly normal or normal invariant family.

If f €EF and f(z) # 0 for ]zl <1 we write

Y gz

logf(z)
n=0 n

m
—

o]
~

]

Z h z"
n=0 =

[a(z)]2

=
—
o]
~
1]

Thus g(z) , h(z) are defined for |z] <1 .

Hayman (1955b) shows that
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ie
)

lg(re*®)| = 0(1)/(1-r) , |n(re™®)| = 0(2)/(2-r)% ,

r+1 )

uniformly in 6 , 0 < 8 < 21 , and that

. Blgg»2)
I,(r,g) 5_71:;3;:5 ,
B(hO,A)

(l_r)QA—l

I, (r,h) <

A s A > 3 .

We show (Theorem (3.3)) that the limits

8(6) = Lin(1-r)|g(re'®)| , 6%(6) = Lim(1-r)[u(re®)|
r->1 - 1

where g = u+iv , and a(8) = lim(l—r)2|h(rele)| exist, 0< 6 < 21 .
r>l

If ® 1is a radius of greatest growth of h we show (Theorem (3.4))
that

(3.L4) argh(reie) = o(l)(m§d2n) , r=>1 .

The analogous result for g 1is that

argg(rele) = o(1) (moa2m) or
7 + o(1)(mod2m)
depending on 6 . The behavicur of g 1is thus similar to the
behaviour of functions with positive real part. We quote a result of

Hayman (1961) to show this.

THEOREM A

Suppose that
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¥(z) =1+ } bnzn =y + iv
n=1

is regular in |z| < 1 and satisfies u > O there. Then the limit

a(8) = 1im r Y(re

ie)

1 lfr

exists. The set of distinct values 6 = o, in 0<86 <21 for
which @ = a(év) # 0 s countable and a > o, Zav <1 . - Further,
we have, as r + 1 ,

M(r,¥) = 2[max(av)+o(l)](l—r)—l

and for A > 1,

5,6 = ¢ (s Mol (1),

where

¢, = 2ROV AT}

(3.4) is a much stronger result than the one for weakly p-valent
functions where, if f is weakly p-valent, o(8) > 0 , and
argf(reie) = A(r) , then A(r) is slowly varying as r -+ i . This is
proved for circumferentially mean p—valent functions in Hayman (1958).
The result follows for weakly p-valent functions in the same way.

(n)

This enables us to dispense with the @, and define

where a(ev) >0 . We show (Lemma (3.9)) that



h(z) ~ hv(z) , z>e R
-i8
uniformly in each angle |arg(l-ze v)l <y /e-¢, (¢ >0), and

hence, using Theorem (1.1) prove the following:

THEOREM (3.1)
Suppose that f € F , where F <is a normal invariant family, and
that f(z) #0 in |z| <1 . Then ©f h(z) = [logf(z)]2 , We have

that the 1limit

a(8) = Lim (1-r)%|n(re®)]
r+1
extsts, 0 <0 < 2 . Further, a(8)_= 0 , except for a sequence
8 = Bv s and

A
% a(6 )" < B(hg,d) 5 B <A <o

We then show that (1.6) [the minor arc] holds for h and use
Theorem (1.2) to prove

THECREM (3.2)

With the hypotheses of Theorem (3.1) we have that if

h(z) = néo hnz ,
then

iyl

lim —= = ) a(ev)

N> v

Further, if h has more than one radius of greatest growth



and so lim |h |/n does not exist.
n->oo

Hayman (1955b) also proved the following:

THEOREM B.
Let {R} be a class of Riemann surfaces spread over the w-plane

satisfying:

(3.5) R s simply comnected,

Let F be the family of functions f(z) = eg(z) , where w = g(z)
maps |z| < 1 one-to-one conformally onto one of the surfaces R .
Then F is a normal imvariant family if and only if there exists a

number A such that the following holds:

(3.7) if iv 1is any point in the w-plane, w = u + iv , then
the radius, d(v) , of any schlicht circle centre iv contained in R

satisfres
a(v) < A

A natural question is the following:

if the schlicht disks of Rg , centre the imaginary axis, are not
bounded, but do not tend to infinity "too rapidly" as v > , w=u + iv ,
what can we say about the asymptotic behaviour of g &and hence h ?

To answer this question we define a new family of functions

G = G(A,u) in the following way:
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Let A,y be constants satisfying
(3.8) A>0 3 O0<uc<l ,

and let {R} = {R(A,u)} be the class of Riemann surfaces spread

over the w-plane satisfying (3.5) and the following:

(3.9) if iv is any point on the imao)ulvxo\ry oxis (n the w-plene | then
the radius, d(v) , of any schlicht circle centre iv contained in

R satisfies
a(v) < a(1 + |v]¥) .

We then define G = G(A,u) to be the family of funétions g
where w = g(z) maps |z| <1 one-to-one conformally onto one of the
surfaces R . We also define H = H(A,p) to be the family of
functions h , where h = g2 and g € G(A,u) .

With these definitions, the case p =0 in (3.9) corresponds to

condition (3.7) of Theorem B and hence the family of functions f = &% |

with g € G(A,u=0) is a normal invariant family. For the rest of this

chapter we shall denote by B,B.,B constants depending on A,u

13Bose e

only, and by B(go),B(gO,A),... , constants depenqing on A,u,gj 3

A,u,go and A ; and so on. Our results are

THEOREM (3.3)

Suppose that h € H(A,u) , where A,n satisfy (3.8). Then If

the limit
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a(8) = 1im (l—r)2|h(reie)|
r+1 . :

exists, 0 <6 < 2r ; o(6) =0 except for a sequence 6 = Gv , and

é a(ev)x < B(hy,))

for all X\ > max{3,u} .

THEOREM (3.4)

With the above hypotheses

and if h has more than one radius of greatest growth,

b,

lim — 3 < {Z a(e\,)2}é :

nH»e v

and hence 1lim [hn|/n does not exist.
n>ro

We prove our results for 0 < p <1 , so that u =0 is a special
case.

Chapter 3 is divided into eight sections. In the first section
we derive a bound for |gl[ , where g(z) =) gnzn . In §3.2 we show
that |

M(r,g) < Blgg)/(1r) 5 Mlr,n) < B(hy)/(1-r)

In §3.3 we show that the limits
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8(8) = 1im (l—r)lg(reie)l .
S r+l

B*(S) = lim (l—r)lu(reie)l ,
1

a(8) = 1im (1-r)%|n(re®®)|
r>1
exist, 0 <6 < 2 , where g=1u + iv . In §3.4 we prove that if
i6 ' '
a(Bv) > 0 then arg h(re ) = o(1)(mod2r) , r>1. Hence, if we
define
%y
hv(z) = -i6 5 ’
(1~ze V) -
we have
iBV
h(Z) v h\)(Z) ’ Zz > e ’
_iev :
uniformly for z in |arg(l-ze )| < n/2 - ¢ . In 83.5 we derive
a bound for the means IA(r,h) . We prove that for A > max{3,u}
. B(h.,A)
IA(r,h)'f_-——-i%SF:f s O<r«<1l .
(1-r)

In §83.6 we complete the proofs of Theorems (3.1) and (3.3). In
§3.7 we show that (1.6) (the minor arc result) holds for h , and then
in the last section we complete the proofs of Theorems (3.2) and (3.L4).

The generalisation from e® € F , where the schlicht disks of Rg
are bounded, to g € G(A,n) , gi&es the generalisation of Hayman's
result on functions omitting values mentioned in §0.2. Thus if

2<p<w and h(z) #w where {wk} satisfies

k b



arg w, = o(|w

_and

|W _ Wkl = O(,wkl(P“l)/P)

K+1
then since o = (-»\)Vz e G(A;12/f) we have

M(r,h) = 0(1-r)™°
1,(r,h) = o(1-r) "t

and

Ihnl = 0(n)

3.1 The bound for |g. |

THEOREM (3.5)

Suppose that g € G(A,n) , where A,u satisfy (3.8). Then if

[e+]
gz) = ngo €nzn > By T o+ s
we have
lg | < 2l]a] + B (gg|" + 1)} ,

where B, 18 a constant depending only on A,u .

Let w = g(z) map |z| < 1 one-to-one conformally onto a
Riemann surface Rg lying over the w-plane satisfying (3.5), (3.6),
(3.9), and let Dg be the domain in the w-plane which is the projection

of Rg .
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We suppose with no loss in generality that o« > 0 , 8 >0 , for
otherwise the proof of Theorem (3.5) proceeds along the same lines.

We let w =1u + iv and define

Al = {w&Dg : u= 0} ;

A, ={wE€Dg:u=Aa (l+|v|u)} s
2 et

A3 ={w€Dg : u Z_Al(l+|v|u)} ,

where Al is defined below.

We quote the following result of Hayman (1964, Theorem 6.8)

LEMMA (3.1)
Suppose that ¢ 18 a normal imvariant family of functions regular
in |z| < 1. Then there exists a constant C depending only on ¢

such that for

¢(z) = ] ¢nzn€(1> ,
n:".
we have
(3.10) |61 < 2ug{loguy + C} ,
and
- 2C
(3.11) M(r,¢) < uo(l+r)/(l r).exp —I-:f;) ,

where u, = max{l,|¢0|} .

We now prove
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LEMMA (3.2)

There exists a positive constant A, = Al(A,u) such that g € G ,

2] <1, lz,l <1, glzy) €4, glz,) €8, imply

Z17%) ;
- 23
l—zlz2
We let
. 2,72 2,72,
g(z) = g —— > 23 =T s
l—zlz l—-zlz2
so that g € G , g(zl) = glo) € A, > and
7. —2
A l 2 A
glz,) = g( — = g(z3) €A
1l-z. 2
172

To proceed further we need to apply Ahlfor's Theory of Covering
Surfaces (Ahlfors (1934), see also Hayman (1964, Chapter 5)).

Let g(o) = ivy be any point in A, .  We may suppose with no

loss in generality that Yy > 0 , since otherwise the discussion is

similar. We choose v, > Vv, such that

170
——— ettt l s
ba(1+v. M)
1

and write 4, = A(1+vlu) . Since g€ G, g(z) has no simple island
over |w*ivl| < dl . Then the mapping

w* - olz) - g(z)—lvo ) w=iv,

hdll hdll

takes



w = iv into 'w

l =l ]
. - *

w = iv, into w =0 s
. : > *

w = 1(vl—8dl) into w = -1 R

and ¢(z) has no simple island over
* 1
Iw -n[ < g », n=0,%1 .

This is true since Ivl—8dl[ <V -

Now ¢(z) is regular in |z| < 1 , and so has no islands at all

. ,

over ]w I > 2 . It follows from Hayman (1964, Theorems (5.5), (6.2)
and (6.5)) that such functions ¢ form-a normal invariant family. We
may thus apply Lemma (3.1).

If [23| < 1, is such that I¢(23)| > exp(2C) , where C 1is

Zg s
the constant of Lemma (3.1), we have from (3.11), since  [¢(0)| =0 ,

that
20|z3|
exp(2C) 5_|¢(23)| 5_M(|23|,¢) < expi iz z R
and hence
|25]
1—2 21 ’
3
;
. . > .
l.e ]Z3| > 2
This is true for any ivO € Al . We now show that we can choose

Al such that

{w : |w-iv.| = hAeeC(l+|vO|u)}

0

does not meet A2 = {w =utiv : u = Al(l+|v|u)} .
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Choose v, such that hAe20(1+lv ") < %|v |vsv,.We consider

2

two cases: (i) |v0|> |v2| , (ii) |VO| f.lvgl .

Case (1).

|vol > |v2| . In this case we choose A2 such that
A2(1+|%v0|u) > 8Ae20(1+|vo|u)

Then if w =u + iv € A2 , we have

|v] > %|v0| implies A2(1+|v|“) > A2(1+I%Vol”)_> 8A'e2,c(1+|vo|u)

v] < 3lvgl implies [w-ivg| > 3|vg| >4ae®(2+|v ")
Case (ii).
|v0| §;|v2| . In this case we choose A3 such that
2C
8Ae (l+|v2|u) < A3

Then for all w € A2

umivy| > 8ae”0(1+]v,|") > Bae”C(1|v M)

B . . .
We choose A, max(Ae,A3) Then if g(o) Ay
we have |z3| > 3.

Translating back to f we have that if f(zl) € A

then

as required.

9. é(z3) €A

3

. f(zz) € A

3

b
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We divide the proof of Theorem (3.5) into two cases:

Case (a) 0 <a <A (1+8%) ; case (b) a > Al(l+Bu) , where

1
Al is the constant of Lemma (3.2).
Case (a).
H
0 <a<a(1487) .

As in the proof of Lemma (3.2), we choose v, > B  such that

1
v, - B = hA(l+vlu)_, write dl = A(l+vlu) , and apply Lemma (3.1) to
_ glz)-iB
o(z) = 357
1

Now

|¢(O)| = S |¢v(o)|=.l_g_l(_

hdl hdl

so we have from (3.10),

|67 (0)] < 2uy(loguy+C) ;

where = max{1,|¢(0)]|} .

"o
If o g_hdl we have Wy =1 and hence

/

e, |
1

< 2C )
udl

i.e. lgll_g 2¢(v,-8)

vl~B
Now ——— >+ 1 as B + » s0 we may choose Ah such that
4a(1+6")

(v,=8) < 4 (1+8")
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We now have
u
g, | < 2B, (1+8")

where Bl = CAh .

If ba, <a <A (146") we have

Igll < 2a {log (ﬂ%I) + C}

FA

=h

§.2Al(l+8u) {log(

since dl 3_A(l+8u) .

Thus —_—
e, < 28,148")

= +
where Bl Al{ log A c }

This completes the proof of case (a) of Theorem (3.5).

Case (b).

u
o > A (14687) .
We need the following

LEMMA (3.3)

Suppose that ¢(z) = 0,

lz| < 1. Then if

#(z) = I o2, b =a+is

we have

(z) + ivl(z) 18 regular and ul(z),> 0 in



(3.12) lo)] <20,

and ©f |z| =t < 1, we have

T
ot (2) %+ v, (2)-8]

1
The proof of (3.12) is well known (see e.g. Titchmarsh, 1938,
page 194). To prove (3.13) we note that

Co(z)-¢
u(z) = 0

¢(Z)+¢O

satisfies the conditions of Schwarz's Lemma and hence

¢(Z)_¢O

¢(2) 46,

lzl s

iA

so that

'|./\

ia
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62048617 = |8(2)-0, |2
|¢(z)+3012 + |¢(z)-¢0|2

2aul(z)

oPou (2) %4 [v, (2)-g) 2

as required.

We now prove case (b) of Theorem (3.5).

Let p Dbe the largest positive number such that

u(Z) >0 s ‘Z‘ <p

s

where g(z) = u(z) + iv(z) If p > 17, Theorem (3.5) follows from

Lemma (3.3) with B, =0. If p<1l,let r<p bethe largest

positive number such that
u(z) > A1(1+|v(z)|u) »  lz] <r

There exists 6 , 0 < 6 < 27 , such that

u(reie) = Al(l+|v(reie)lu)

i.e. g(rele) S A2'. Consider the function

¢(z) = ul(Z)+iV1(z) = g(pz) = ulpz)+ivipz)
Now ¢(0) = g(0) = g, and ul(z) >0, |z] <1, so we apply Lemma
(3.3), with z = (r/p)eie , and obtain

2u(rele)

i6)2

[+

(3.14) = <

ptr 2

[+ +u(re 2

+[v(rei6)—8]
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i6
There exists 0, such that u(pe l)

= 0 , and, by hypothesis
i0 i6
ulre 1) _>_A1(l+IV(re HM )

i@

i.e. glre 1y e We thus have from Lemma (3.2) that

3‘.

X 51
(3.15) Tpr 2 2

Combining (3.14) and (3.15) we obtain

1-p< 8u(re19)a
—— y s 2
a2+u(rele)2+[v(rele)—812
i0 : —
where glre™) € B, -
Also, we have, by Lemma (3.3),
[6'(0)] = plg'(0)] < 2a
Thus
1o
Using (3.15) we see that
> ..%il;_: 1 +_5311.‘_> 1
P — l#sr 2 l+sr -~z
Hence
(3.16) lgq | < 20{1 + 2(1-p)}
i6
ARl {1 * 3 iguz(zre )uie > } >
o“+u(re™ )+ [v(re )-8l

where g(rele) €4, .
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We thus have, that given gy = & * iB , with o > Al(l+8u) s

we need to show that if w =u + iv is any point of A2 , then

l6ua2

a2+u2+(v-8

2 < B (1+]gy")

where B, is a constant depending only on A,p . We shall assume Bq21,

We may suppose with no loss in generality that |g0| =R is greater
than some absolute constant A, .  For ir R §_A5 we have
a <R §fA5 §_A5(l+8u) >

which is case (a) of Theorem (3.5) withw{-\5 instead of Al .

We suppose first that lvl < 3R . Then
H
= +
u Al(l |v| )
< A (1+(3r)") ,
and hence

l6uﬁ2 ' u
< 16u < 16A (1+(3R)") .

2 2

o +u2+(v—B)
We choose A, such that 16Al(1+(3R)“) 5A6(1+|g0|“) .

Now suppose that |v| > 3R . We choose Bl > A6 " such that

(v=8)° _ |v]®

>
16Al 13l

Then



< B (1 + |gg")

This completes the proof of case (b) of Theorem (3.5). Hence

Theorem (3.5) is proved in all cases.

3.2 The maximum modulus

Our next result is
THEOREM (3.6)

Suppose that g.=u + iv € G(A,u) , h € H(A,u) and

glz) = ] gz, n(z)= ] hnzn
n=0 n=0

Then we have for |z,| =r <1,
(3.11)  lg'(z)] < _1_2;2 {lazg)| + B, (Jalzg) " + 1)}
and
B(g,) B(hy)
(3.18) M(r,g) < . 3 M(r,h) < > R
. o (1-r)

where B, ts the constant of Theorem (3.5).

To prove (3.17) we apply Theorem (3.5) to

zO+Z 2
g( — ) = u(zo) + iV(ZO) + (1-r )g'(ZO)Z + ...
l+zoz
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which also belongs to G , since G is an invariant family. To

prove (3.18) we fix 6 , 0 < 6 < 21 , and put

R(r) = Ig(reie)| + B,

1e)| < |g(rele)| and R(r)> R,21 So that

Then from (3.17) we have, since [u(re

lg(rele)lu + 1 <2R(r)" , that

(3.19)  R'(r) <25

{R(r) +2B1R(r)“} , O0<r<1l
. l-r

We integrate this expression from O to r and obtain

1-u
R(r) +oB, T4
log e < (1-u)log \1—_; ;
R(0)™ 7 +2B
1
so we have for 0 <r <1,
1-u
1- 1- l+r
R(r)~ ¥ +2B, < (R(0) H +2B,) LE) ,

N . .
and hence, a fortiora

R(r) < (R(0)L7 +2Bl)l/(l-u) (%)

.We thus have, uniformly in 6 , 0 < 6 < 27 , that ‘ 
|g(re®®)]| < Blg)/(r) , O<r<1
énd hence
|h(reie)v| < B(h

This completes the proof of (3.18) and hence Theorem (3.6).
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3.3 The existence of B(8) , B*(e) and af(8)

We can now prove
THEOREM (3.7)
Suppose that g =u + iv € G(A,u) and h €EH(A,) . Then for

each 6 , 0 < 8 < 2n , the limits

(3.20) B(6) = 1lim (l—r)lg(reie)l ,
r>1

(3.21) B*(e) = lim (l—r)|u(reie)| R
>l

(3.22) a(6) = lim (1—r)2|h(reie)|
r>1

exist.

The proof of Theorem (3.7) depends upon the following.

LEMMA (3.4)

Suppose that g =u + iv € G(A,n) . Then, with B, = hBl/(l-u) »

2
we have for a fized 8 , 0 < 8 < 2n , that both

(£2) latre®®)] + B,(2-r)* 7"
and
(ﬁ) [u(reie)l + Be(l—r)l_u

decrease as r + 1, 0<r <1.

We fix 6 , 0< 8 < 2r . Then from Theorem (3.6) we have



This yields

' : B, (1-u)
d 1- 8 2
or i(l+;) Ig(rel )l} 5.(l—r)ﬂ

We integrate both sides from r. to r O<r. <r, <1l and obtain"

1 2°? -1 2
1-r ) . 1-r .
2 : 16 _ 1-p 1 16 _ 1-u
(l+r2 [g(ree )|+B2(l r2) < (l+r2) |g(rle )I+B2(l r;)

This proves the first part of the lemma..
The second part of Lemma (3.4) follows in the same way as part 1,

since we have from Theorem (3.6), that
16 B.(1-

; 16 2lulre
lut(re*®)] < |g"(xe®)] <
l—r2 (l—r)l+u

Theorem {3.7) now follows from Lemma (3.4), since B2(l—r)l—u e

as r > 1 , and evidently

1-r i6 g(e)
(l+r) le(re™)| > =5 » >l ’
1 8 8" (e) |
-r i
\T5) It > 825 e
where O 5_8*(8) < B(8) <= . (3.22) now follows from (3.20).

3.4 The argument of h(reie)
THEOREM (3.8)

Suppose that g € G(A,u) and h = g2 . Then if 6 s a radius of

greatest growth of h , we have
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.argh(reie) = &rg[g(reie)]2 = o(1)(mod2r) , r 41

To prove Thedrem (3.8) we need the following.

LEMMA (3.5)
Suppose that g = u + iv € G(A,u) . Then if B(8) > 0, we have
v(reie)
) =O(l) LY r_).l 5
i6
ulre )
and

Clearly B*(G) < Bg(8) . Suppose that O g B*(B) < gp(o) .

Chooge 7= (’\-ﬂ*(&)//?.(@))/3._r\\en there .ex{sscs r°=(°(':1) such bhai

|u(reie)| <Q¥vﬂg(reie)| » rg<r<l .

Now u < 1 , so we choose ry > ry SO that

B (lg(re'®)["1) < nle(xe’®)] , r<r<1

It follows from (3.17) that

) r. <r<l1l

Thus

1+r

(Ej]-n |g(re’®)]|

decreases, rl <r<1, where 0 < n 51/3, and hence g(8) =0 ,

%
contradicting the hypothesis g(6) > O . Thus g (8) = g(8) .

Thus if Rg(8) > O we have



u(rele)2

: - 1 > r—+1,
u(rele)2+v(rele)2

which shows that

i6
X_(_I_'i_l =0(l) R r > 1

M(reie)

This proves Lemma (3.5).

Theorem (3.8) now follows from Lemma (3.5). For

i6 v(reie)
tan arg g(rew ) =————%*+>0 as r-~>1 ,
16
ul{re™)
arg h(rele) = arg[g(rele)]2 = 2arg g(rele) R
and ton =0 implies 2¢ =2n1 , n integral.

This completes the proof of Theorem (3.8).

Now suppose that 6 satisfies s(ev) >0 . We define T,

in the following way:

6
-1, if lim arg g(re V) = w(mod2m) ,
1
T i
v i6
+1 , if 1lim arg glre °) = O(mod2m).
r+1

We quote the following result (see e.g. Nevanlinna, 1970,

page 65):

LEMMA (3.6)
Let the function w(g) be regular and bounded .y |arge| < (m-e)/2 ,
(e > 0) , where the Jordan arc & , which ends at the origin § =0, is

located. Then if w(g) has a limit a as £ > O on P s then
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lim w(g) = a .
&0

uriformly in each angle |argg| < w/2 - € .

We define

, Tva ' o
gy(2) = ——gg— s nla) =——p—
(1-ze ) (1-ze )

and prove the following:

LEMMA (3.7)

2

Suppose that g € G(A,u) , h = g~ and 6, satisfies a(ev) >0 .

-

Then

glz) v g (z) , h(z) v (z) , z+e v ,

-18
uniformly in each angle |arg(l-ze V)| <w/2-¢€ , (e > 0) .
-16 "iev
We let & = (1-ze V)/(1+ze ) map |z| <1 onto Re & >0,

16
so that z = e v corresponds to £ = 0O and

-i6 i0
s et = (3] | (58] <

is regular in |argé| < (w-e)/2 and |4- Z&*w“’l:O('\'Y) theve Thug tn wiew

w(¥)

i

of (218 w(f) s bounded n larq T| ¢ (m-g)/7 . New

~iev iev
lim (1-ze Jg(z) = B(ev) s Z = re >
ib
zre ¥

from Theorems (3.7) and (3.8), so if we apply Lemma (3.6) to



g = {5;Reg>o,1mg=o} .

we have that

lim w(g) = (6 ) ,
£+0
uniformly in each angle IargE] < w/2 - e . Translating back to the
i6 '
Zz-plane we have, as z * e v .
g(z) v g (z)
and hence
n(z) vh(z)
-i6

uniformly in each angle Iarg(l—ze v)l < 7m/2 ~ €.

This completes the proof of Lemms (3.7).

3.5 The integral means

THEOREM (3.9)

Suppose that g € G(A,n) y where 0 <u<1l, and h = g2 . Then

for 0<r<1,

.
2

(3.23)  I,(r.e) 5%(—?1—_%] , A > max(l,24)
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(3.24) I,(r,h) 5;§lﬁi?%;§% » A > max{3,u} .

(1-r

g
For the case u = 0 , functions f = e , where g € G(A,u) form

a normal invariant family. Hayman (1955b, Theorem 5) proved Theorem (3.9)

for this case.
We thus.prove Theorem (3.9) for the case O < u < 1 .

(3.24) is an immediate consequence of (3.23). For

L (r,h) = I, (r,e)

We may prove (3.23) for some A < 1l + . For if
B 0
I,(rse) i’([ ()ill > A=A <14y >
1-r

and Ae > Al s Tthen

The proof of Theorem (3.9) for 0 < p < 1 runs along the same
lines as the proof for the case u =0 . We first quote the following

result (see Hayman (1955b), Lemma 3):

LEMMA (3.8)
Suppose that g =u + iv 1is regular in |z| < 1 . Then for

lL<i<2,
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A

I, (re) - |g(0) |} < 27 (L, (ru)-[u(0) "} , 0<r <1

Now
lul* < {log 7/ (1+]e®8)}* + {Llog/(1+|e 28|)}* ;

s0 1f we define

2n .
T, (r,f) = —;; {log ¥ (1+]f (re*?) [2}>‘de -
o

we have

I (r,u) < T

A (r,e®) + TA(r,e_g)

A

Also, if g€ G , then -g € G , so to derive a bound for IA(r,g) we

need to derive a bound for TA(r,f) , where f =e® . To do this, we
quote the following special case of a general identity due to Spencer

(1943) [see Hayman (1955b), Lemma 2] .

LEMMA (3.9)

Suppose that Y (R) = [log(l+R2)]A y1<rs2, and

2

(3.25) ¥(R) = —l‘—“—*—'—-é—)-g—[log(lme)];"e + i—z—g[log(lme)]}‘—l .
(14R°) (1+R°)°
Then for 0 <r <1,
on . r 2n ] .
r < (JF(xei®) ]dae = | tat\ w(|F(+e*®)])[Fr(te*?)|%as
dr
0, 0 0

We can now prove
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LEMMA (3.10)

Suppose that g € G(A,u) , where O <u<1, and f =8 . Then

for X > max{1,2u} we have

It follows from Theorem (3.6) that Lemma (3.10) holds for

0<r=<1l/e. Again from Theorem (3.6) we have

. i6
|f|(tele)|2< hf(te

2 . .
<1t)2 (ulte™®) 48, (Ja(te™®) [P41)12

where g=u+iv , f =¢e% .

Using Lemma (3.9) we have for 1 <\ < 2,

: an
(3.26) = L\ ([F(ze'®) a0
0

am
¥( If(rele) | )hlf(reie) |2{ Iu(reie) |+B1( Ig(reie) [H41) }2ae ,
0

r
< —_—
T (1r?)?
where Y¥(R) is given by (3.25).
To obtain a bound for the integrand of (3.26) we look at the
behaviour of the integrand as R = If(rele)l tends to O, . We write

: L 2 '
T = igklikzélg_ [Log(1+R%)] 172 + __MART [1og(l+R2)]A-l}{Iu|+Bl(|g|u+l)}2 .
(1+R)

(14»122)2

Case (a). R~>0. This implies e" > 0 , i.e. u~> =@, |g] > = .
Thus

ehu[log(l*-e = 0(1) sy U> - o >
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2u)]A—l|ul2

eeu[log(l+e = 0(1) > u-+ - ™ )

and so we have
' 2
I < B(A)(lg]|“M+1)

- . - u .
Case (b). R+, This implies e -+ 4= , i.e. u > 4 |g| > o

50 we may replace u by %log(1+R2) and obtain
' - 2
T < A(A-1){[1og(14R*)1*+B()) [Log(1+r%)] l|g|“} + B(A) g

Now

2 A-1 3 —

[1og(1+e < (2|g|+1og2)}“_1 < B(\)|g|® >

SO we have

M 400 (6]

T < A(A-1){ [Log(1+r9)1*4B (1) |g
Altogether, we have

T < A(A=1)1 [20g (1481 M4B(0) [g| ™71 + BV (Jg] 41)

We now suppose that A < 1+ u , so that A +pu - 1< 2u. This

yields
2m
(3.21)  rr T\ W (1H(re®) | )as
0
21 21
<3 rg)g v([F(ze*®)Das+B(0) | [a(re®®) a0
-

0 0
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where

A

(3.28) y(R) = UA(A=1)[10g(1+R%)1* + B(X)

We now derive a bound for Igu(r,g) .

Let v satisfy max{l,2u} < v <X . ~ Given € > 0 arbitrarily
small there exists K(e) such that
I\)

|v]?* < e|v|® + K(e)

We have from Lemma (3.8) that

Iv(r,g) < lg(o)|v +:):)_l {Iv(r,u)—lu(o)lv} s

and hence

IQu(r,g) < er(r,g) + K(e)

ellglo)[” + 337 I (rsu)} + K(e)

|A

< B,\(go,v)elv(r,u) + Ig(s)%w)).

We thus have, taking v = X , that

’ 2n
r,-((i—i; r é—il-; S'Y(lf(rele)l)de
: 0

) ' 2m . on .
< r2 5 & g y(|F(re®?)] )d0+B1(gO,>\)sX |u(rele) |Ade+Kq( e)q(o\)}
(1-r°)

0 0

2

- (4tee*®) s ) T
(1 2} Y (e ) A s + BR,(a, )E[‘];\((;f)& x((}t/{)]-\\(,\(e_‘g(g\)}l

Vhs ;“&%u&\;ty halds  wdh  1¢ astead of ) Se f we dedine

*
Ty (v, ) = Ty Go8) + T, )
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we  have
2 ¥ f)<—f——{[u( ) e f
r3o T g O | _'(1—r2)2 A(a-1 +eB$gO,X)]TA(r, ){%‘A,ejgb»},

where B£A,%ah»¥3(k) + K*e)gkd),

. *
Putting x = log(l/r) , vy = Tx(r,f) , we obtain

2
(3.29) L < (1) 4epgyn) H + Basal)
dx X X

We weite 3= T - max[Ly«I) and  put 2= 'xx—‘h?(y"*ﬂusf\

dz _ (,_ A=2+n A-1l+n dy
ax = (A-lm)x yrx ax ’

_ _ e 2
4 (xg 2(A+n) %) = =(A+n) (A+n-1)x (“nﬂ)y s xiAN LY 5
dx

Using the bound for dgy/dx2 in (3.29) we get

JL.(XQ_Q(X+H) QE) i {eB#gO’A)_n[QA_1+n]}_J[___ + EﬂE;ﬁ;&Qﬂ{

+1+ +n+
dx dx xx n+l XA n+l

\We choose & so that eBégO,A) = n[2a-14n] . We then have

4 (xe-e(Hn) 2&) < B0, 3()

dx dx —-xk+n+1

l/e , so z , dz/dx are bounded at

Now x =1 corresponds to r

X = 1 from Theorem (3.6) . We integrate twice from x

0 to 1 ,

0 < Xq < 1 , and deduce

.2 f_gégo,k) ) 0<x,<1
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Hence

ny B(gys1)

_—m‘n—' s 0<x<1l .
X

We thus have for max{l,2u} < A <1l+y that

X -A- ' '
T(r,f) < Blg ,M)(1-r)** | 1/e<r<1
A %0 , - .
and hence
- 1-A-
I (r,u) < Bégo,)\)(l—r) AT 1le<r<l
Using Lenma (3.8) we deduce
1-A-n .
Ix(r,g) < %égo,l)(l—r) , mex{l,2u} <A <1 +y
Now if O < u < 3 , then
B(g,\)
v 5 -0 .
Loy (728) < Tpp(ro6 T (1-p)®" ’
and 1f 3 < u < 1, then
L (r.g) < 1 (r.g) < %(go,XJ .
2u %0 = T2u4n ~ l_r)2u-l+2n

We may thus suppose 3 <u<l, forif 0 <y < 1 the argument

is similar. It £ oWNowis thot ” = (- 20) end then
we have
(o) B(go,k)
I, \Ts8) £ % T
2u (l"l’)2u 1+27

We thus have, from (3.27), that for 1 <2u <A <1 +u,
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a4 4
T T ar Al
2 B(g,s1)
—r - — 350" "
= (1-r2)2 {M(A 1T, (r,6) + (1-7)2H 1427

Putting x = log(l/r) , y = Tx(r,f) as before, we get

> B(g,A)
ay 1)L 570" °
(3.30) 5 < AMA-1)-5 + Spaiaay 0 0 <x=1 .
dx b’ X

Vie now put =z = xl_ly and deduce

2
) = =A(A-1)x A ly + A Q_%
dx

-8 (xe—ek dz
dx dx

Using the bound for dzy/dx2 in (3.30) we obtain

(A+2u+27)

i(xz—zx ﬂ) < Blg ,\)x , 0<x<1

dx dx 5°0

Again, =z , dz/dx are bounded at x =1 (r = 1/e) , from Theorem (3.6),

50 we integrate first from x. to 1 , 0 < x_ < 1 , and deduce

0 0
1-(A+2u+27)
2-2 () -
az - ’xo,)\éa < B(g.,A) *o ' .
AX by o4 dx, — 5207
\*}«12*}-\
Replacing X by x we get
d A= (Qme29-9
?éa'Bb(gosl){\ . 1 + X » 7= } s O<x<1

Integrating again from x. to 1 » 0<x <1, we get.

0 0
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-l

Zlx=q T Plx= %, 7 ”Be(%°,x\{"'°‘o
Thus, for A > 2u +2n , we have
zf_B_'(gO,A) , 0O0<x<1
Now 273 2(X\-2~) so this holds for A > 2u .
L o< 2p < A< 1+ u , that
B§go,k)
Tk(r,f) < =) , l/e <r <1
(log 1/r)
and hence
Bj(gO’A) ’
7 (r,f) < , lle<r <1 .
A — A-1 -
(1-r)
Now this is true for A <1+ . If A, 21+
3 < e n
: 0.2 '
7. (r,f) < {log ¥ (1+M(r,f)<)} T. (r,f)
A - A
2 - 1
Aa—A
271
B(g,) ;
1 Tl (r,f)
1
AE-A l—AE
g_B(go) Bégoakl)(l-r)

by Theorem (3.6).

A2
A- Ko L

Am-27

4

We thus have for

¥ we have, with

This completes the proof of Lemma (3.10) and hence Theorem (3.9).
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3.6 Proof of Theorems (3.1) and (3.3)

Theorem (3.3) contains Theorem (3.1). Theorem (3.3) follows
imnedisiely from Theorems (1.1), (3.7) and (3.9), and Lemma (3.7)..
Theorems (3.7) shows that a(f) exists, 0 <8 < 271 ; Lemﬁa (3.7)
shows that (1.2) holds for h € H(A,u) ; Theorem (3.9) shows that

(1.3) holds, where p =1 . Thus the conditions of Theorem (1.1) are

satisfied for functions h € H(A,u) and Theorem (3.3) follows.

3.7 The minor arc
We have proved that if h € H(A,u) , 0 < u < 1 , then
&= {8:c(6)>0} is countable. Thus, given n > 0 , we define N = N(n)

2

Lo be the number of radii of greatest growth of h for which afe) >n

nnd hence B(8) > n . Let 8, s v =1,...,N be such that

B, 26,2 ..c 28y >n . For v=1,...,N and K a large positive

conghant we define

v, = {8:]e- |<k(1-r)}

N
y= U vy 5
=1 v
c
vy~ = [0,2m)\ v s

i i
end let v = be the set of rele for which 6 € Y, We denote the

% * 4
closure of y by (Yv ).

We now prove

A (3,11)

Suppose that g € G(A,u) and h = g2 . Then, given n ,

< w < l, there exist K , r, such that for r, <r <1 and

0 0
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|g(reie)] < E 3 Ih(reie) < —10 )
(17r) l (l—r)2

We prove the first irequality, since the second follows immedistely.

Given n , 0 <n <1, we define N = N(n) as above.

We consider two caseés:

I e:K(1-r) < [e-8 | < K(1-R) = 6,(1 < v <N , where R,K will

be fixed below;

+ 8, <8 <8 + 2 — 62 .

where the

,» (L < v <N) are the 8, » (L <v <N, with
e(J.) < e(2) < )

< olX

case L.

We choose K = K(n) so that -

108

A
==

As in Lemma (1.1) (see equation (l.ll)) we have

i(e—ev)I X lo-o,,|

S

Il—re

and so for 3 <r <1, |6—6v| >K(1-r) (1 < v < N) we have

2B 108
(3.31) 6 ST
|l—re v ' K(1-r)
) lOBv (JiEE)
K 1-r

3
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since < B, .
B\) - 1

Choose ¢ = ¢(K) and Ry > 3 so that
- it

\Y

(v e {z:]|arg(l-ze V)| < /2 - ¢}C {z:]z]<1}

RO < lzl < 1 .

Ve have, from Lemma (3.7), uniformly for re18 € (y )!

v
i(e-6_) .
v 16
| 1-re g(re™)| » B,, .
We choose R > Ry so that for R<r <1, ret® € (v
i(e_ev i8
(3.32) |1-re |lg(re™™)| < 28,
; oyl _n
82(1 I') < )-'-

We need to show that if R < r < 1 , then

6 & {G:K(l—r)i|6-ev|iK(l-R)} implies |g(re'®)| < n/(1-r) .

Let r,,8 satisfy R <1 <r, oo | = K(1-r)) .

satisfies (3.31), (3.32) and we have

1-r .
" 16 n
(g2 loteil <7

Trom Lemma (3.4) we have

l+r

|A
==
+

]
N |=

1

. . 1-r_ .
(52) leteei®] # 3,00 < (£22] lategel®)] + 5

Then r ele



~ 100 -

Hence, a fortiori

(-) Ig(reie)l < 3n , K(1-r) < le—evl < K(1-R) ,

R<r«<l .

and so

s <y

This completes the proof of Case I of Lemma (3.11).

Case 11. .
For the purposes of this argument we let 6(N+l) = e(l) + 27
and consider the set
_ ra.alv) (v+1)
r, = {e:e +6,<0<8 8,1} .
On 7T we have
v
. ( 1- 10 1-
(3.33) lim i'ﬁ——2> Ig(pel )| + B (1~p) U} <4 .
1+p 2 2
p+l
Let P, = 1-1/u , u>2 . If for some p we have that for all
B ET
v
1-p .
__v.) 10 o VTR D
(l_',pu |8(Dpe )l + B2(l Dp) < )
then from Lemms (3.4)
20 |g(pe™®) | + B, (1-p) 7 ) 1 )| + By(a-p )7
(l+p lalpe 2' P = ey |alp &™) ] *+ Byll-p
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and hence
" _
(1-p) |g(pe™)| <n p, <P <1 R

which 1s our result.

We thus suppose contrary to this that for each u there exists

¢ € Tv such that

!
1-p i
U U PR S TR |
(3.3h) ( l+pu) lg(pue )| + By(1 pu) %5 .
Let ¢(v) be a limit point of the sequence ‘{¢v} .

It follows from (3.34) and Lemma (3.4) that for each fixed p

(l— ) lg(pel¢p)| +B(1p) >, Fcp<p .
1+p 2 =2 = =z i

If p is fixed the result holds for all large u and by 1etting
| (v)

U+« we have ¢U > ¢

and
(v)
i-p ¢ )ik n 1
(l+p> lg(pe )|+ B,(1-p) >5 s z<p<l s

which conﬁradicts (3.33). So (3.34) is false for 1 - 1/p = Py <P < 1
and some u > 2 .

Thus, given n > O , there exists b, = pv(n) such that for
1- l/”v <p<1l and 6 € Pv we have

1~9) i8 1w _n
o lglpe™ )| + By(1-p)" " < 3 ,

and hence

lstee')] < (imp) '
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Then

This

3.8

from

shows that (1.3) holds for some
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is true for v = 1,...,N » SO0 we let

for ry<r <1l and 6 €+° we have

]g(re (1-r)

completes the proof of Lemma (3.11).

Proof of Theorems (3.2) and (3.4)

Theorem (3.4) contains Theorem (3.2).

r_ = max{R,p. ,....0 .} .
0 M1 et

Theorem (3.4) now follows

Theorems (1.2), (3.8), (3.9) and Lemma (3.11). For Theorenm (3.9)

A <1 and h € H(A,u) , Lemma (3.11)

shows that (1.6) holds, and Theorem (3.8) shows that (1.7) holds. Thus

the conditions of Theorem (1.2) hold for h € H(A,u) and hence

Theorem (3.4) follows from Theorem (1.2).
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