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ABSTRACT 

2 
In 1955 Haymrin (1955a) showed that if f(z) 	z + a z" + 

is a circumferentially mean univalent function in 1z1 < 1 then the 

limit 

a = lim (1-r)2M(r, f ) 
r4-1 

exists, and 

lim lanl 	a < 1 n n4-03  

unless f is a Koebe function. Hence there exists n
0 
 = n

0 
 (f) such 

that 

n nO(f)  

unless f is a Koebe function. 

We show in this thesis that if f(z) = z + a
2
z
2 
+ ... is weakly 

univalent in 1z1 < 1 then the limit 

a(6) = lim (1-r)21f(re10)1 
r+1 

exists, 0 < 6 < 27r ; a(0) = 0 except for a sequence 6 = 	, and 

a(0v ) < 1 

unless f is a Koebe function. 

We derive the expansion 

(1) < n 

(2) a = ne
iA
1
(1-1/n) 	-in6 

y a(0
v
)e 	+ o(1) (n -4- 03) 	, 
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"1 
where A1  (1-1/n) = arg{ f [ (1-1/n)e 	]} , and show that 

a 
lim —

n 	
a(0 ) 

n*00 

the limit existing if and only if a(0) = 0 except for a unique 00  . 

Hence we have (1) for f weakly univalent. We prove analogous results 

for non-zero weakly univalent functions and also general weakly p-valent 

functions. 

Hayman (1955b) showed that if a regular function 

00 

f(z) 	y a
n
zn  

no 

omits a sequence of values 	1 which lie on or near the negative 

real axis and satisfy 

1 

(3) l wk+l wkI = 
	2) 

then 

(4) = 0(n) 	, 	(n+ w) 

We show that the exponent 	in (3) may be replaced by any number 

less than 1 for (4) to remain true. We also show that functions of 

this form allow an asymptotic expansion of the form (2). 
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INTRODUCTION 

The thesis is divided into three chapters. 	In the first chapter 

we develop some general theory on the asymptotic behaviour of functions 

regular in Izl < 1 . 	We use these results in Chapter 2 to prove 

results about weakly p-valent functions and in Chapter 3 about functions 

omitting a sequence of values. 

We first give a short history of p-valent functions (§0.1) and 

functions omitting values (§0.2). 

0.1 p-valent functions 

Let 

CO 

f(z) = y a
n
zn  

n=o 

be regular in Izl < 1 . 	We define the maximum modulus, M(r, f) 

and the A-th integral means Ix(r, f) (0 < A < =) as follows: 

M(r, f) = max I f(z) I 	, 
1z1 =r 

0 < r < 1 

ix(r, f ) = * f (reie)IdO 	0 < r < 1 

Let p be a positive integer. f is said to be p-valent in 

1z1 < 1 if the equation f(z) = w has at most p roots (multiple 

roots being counted multiply) in Izl < 1 for any complex w . 

Cartwright (1935) proved that if f is p-valent in Izl < 1 then 

(0.1) 	M(r, f) < A(p)up(1-r)-21) 
	

0 < r < 1 



where A(p) is a constant depending only on p and u = max la
v
1 . 

0<v<ID 

(0.2) 	I
1 
 (r f) < A(p)u (1-r)1-213 	, 	0 < r < 1 	• 

He then showed that since 

27 

a
n 
= 1  

f(re
ie

)e
-ine

de 
arrr

n  
0 

it follows, on writing r = 1 - 1/n , that 

(0.3) 	lanl < A(p)ppn2P-1  

If. p = 1 , then f is univalent (schlicht). 	In this case (0.1) 

was first proved by Bieberbach (1916) and (0.2), (0.3) by Littlewood 

(1924). 

Spencer (1942) generalised the class of p-valent functions as 

follows: 

let W(R) denote the area (regions covered multiply being counted 

multiply) of that portion of the transform of IzI < 1 by w = f(z) 

which lies in the circle Iwl = R ; then if 

W(R) < pR2  

for all R > 0 , where p is a positive number (not necessarily integral), 

we say that f is areany mean p-valent (in the sense of Spencer). 

Spencer (1942, 1940) generalised (0.1), (0.2), (0.3) to mean 

p-valent functions. 	He proved (0.1) for p > 0 , (0.2) for p > 	, 

and (0.3) for p > 4 . 

Biernacki (1936) used Cartwright's result to prove 



Biernacki (1946) introduced a class of functions which were less 

general than Spencer's: 

let n(w) denote the number of roots (multiple roots being counted 

multiply) in 1z1 < 1 of the equation f(z) = w and let p be a 

positive number. Write 

27 

p(R) = p(R, f) =  
27 	n(Re )4 

0 

Then we say that f is circumferentially mean p-valent (in the sense 

of Biernacki) if p(R) < p for all R > 0 . 

Now if p is a positive integer and f is p-valent, then 

n(w) < p for all complex w and hence p(R) < p , (R > 0) . 	Thus 

a p-valent function is circumferentially mean p-valent. On the other 

hand, if p(R) < p , (R > 	, then 

L;R 

W(R) = 	p(p)dp2  < pR2 	, 	(R > 0) 

0 

Thus a circumferentially mean p-valent function is always areally mean 

p-valent. 

Hayman (1955a) (see also 1958) showed that if f is circumferentially 

mean p-valent then the limit 

(0.4) 	a = lim (1 -r)2PM(r, f) 
r-*1 

exists, and that, if p > 4 , then 

a  
lim 	 
n400 n

2P-1 	r(2p) 
(0.5) 

lanl 
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where r is the gamma function (see e.g. Titchmarsh (1938)). 

Hayman (1958) also obtained sharp bounds for (0.1) in two special 

cases. 	Here w denotes a real constant, 0 < w < 2n 

(i) if f(z) = ZP + a
p+1 

 ZP+1  + 	is circumferentially mean p-valent 

in Iz1 < 1 , where p is a positive integer, then 

(0.6) 	M(r, f) < rP(1-r)-2P 	, 	0 < r < 1 

unless f(z) = ZP(1-zeiw)-2P 

We note that if a suitable branch of f is chosen in a cut disk, 

then (i) holds for all p > 0 . 

(ii) if f(z) = a0  + a1z 	... is circumferentially mean p-valent and 

non-zero in 1z1 < 1 then 

(0.7) 	M(r, f) < la01[(1+r)/(1-r)]2P 
	

0 < r < 1 

unless f(z) = a0  [(14zeiw)/(1-zeiw
)]2p 

To prove (0.5), Hayman showed that f attains its maximal growth 

along a unique radius, 0 = 00  , (called a radius of greatest growth) 

and that 1 f I is relatively small away from a neighbourhood of 00  . 

He defined a major arc, y = (8:10-01 < k(1-r)} , where k is a large 

positive constant, and a complementary minor arc, yc  = [0,2nY\y , and 

proved that the contribution of the minor arc to the integral 

c 

a = 
1 	f(reie )e-inOdo 

n 2nr
n  

0 

is relatively small compared to the contribution of the major arc. 	It 

follows that the asymptotic behaviour of the coefficients is determined 

by the behaviour of the function on the major arc, as r 1 . 



Once bounds for a are obtained, asymptotic bounds for the 

coefficients follow immediately from (0.5). 	For the special case 

p = 1 , f(z) = z + a2z2  + . . , Hayman (1958) showed that 

(0.8) 	a < 1 

unless f is a Koebe function, i.e. f(z) = z(1-zeiw)Thus, for 

a fixed f , there exists n0  = n ( f) such that for n > n 0 
	n0( 	 0 ' 

(0.9) 
	

< n 

unless f is a Koebe function. 	This is usually referred to as the 

asymptotic Bieberbach conjecture. 	Bieberbach (1916) conjectured that 

if f is univalent in 1z1 < 1 and is normalised, i.e. f(z) = z + a2z2  + 

then lan1 < n 5  n > 2 equality holding if and only if f is a Koebe 

function. 	The best result to date is that of Horowitz. (1977) who proved 

that 

1/6 
lanI < 

n(225) < 1.0'691 n 3 tti-O 
n > 2 

For the case f(z) 0 0 , Hayman showed that 

(0.10) a < 4Ia I 0 	' 

unless f(z) = Hi+ze
iw)/(1-zeiw ]

2 
 , and hence 

(0.11) 	lanl < 4Iaoln 	, 	n > n0( f) 

unless f(z) = [(1+ze
iw

)/(1-ze
iw  )]2  . 

Eke (1965) extended (0.4), (0.5), (0.8) to the areally mean p-valent 

case of Spencer. 
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A generalisation of p-valent functions in a different direction 

was given by Hayman (1951): 

a function f is said to be weakly p-valent (p integral) in 

1z1 < 1 if, for every R > 0 the equation f(z) = w has either 

a) exactly p roots in 1z1 < 1 for every w on the circle lwl = R , or 

b) less than p roots in 1z1 < 1 for some w on the circle lwl = R ; 

multiple roots being counted multiply. 

It follows from this definition that a circumferentially mean 

p-valent function is weakly p-valent. The class of areally mean p-valent 

functions however neither contains nor is contained in the class of 

weakly p-valent functions. 

Extensions of (0.1), (0.6), (0.7) to the weakly p-valent case were 

provided by Hayman (1951) and of (0.2), (0.3) by Hayman and Weitsman 

(1975). 	Baernstein (1974) obtained sharp bounds for the means for the 

weakly p-valent version of (i) and (ii) above. 	In fact he obtained: 

(i) if f(z) = zP + a
p+1 

 zP+1  + is weakly p-valent in lzl < 1 

2R 
rPX 

Ix(r,f) < 	dO , 0 < X < 	, 0 < r < 1 , 
11-reie l 2PA  

0 

unless f(z) = P(1-zeiw)-213  

(ii) if f(z) = a
0 

a
1
z 	... is weakly p-valent and non-zero in 

lzl < 1 then 

,c1271-  

Ix (r, f) < Ia
O I

X 

0 

 

2pX 

 

de ,o<x<0.,o<r<1, 

   

unless f(z) = a
0 
 [(1+zelw)/(1-zeiN2P . 

In case (i), p = 1 , it follows that 
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la 
n
1 < ien 	n > 2 

and this is the best known estimate for general n . 

In Chapter 2 of this thesis we show that instead of having a 

unique radius of greatest growth as in the mean p-valent functions of 

Biernacki and Spencer, a weakly p-valent function may have infinitely 

many. We show that 

Ian, 	a(ev)  
lim 	 
/1+00 n2p-1 (2p-1)! 

5 

where the
v 

, v = 1,2,... are the radii of greatest growth of f , 

and a(0 ) = lim (1-041 f (reN1 . We also prove that if f has 
r-)-1 

more than one radius of greatest growth then the limit lim lanl/n2P-1  
n4.0 

does not exist. 	If however, f has a unique radius of greatest growth 

0 ' then this limit does exist and 

lanl 	ci.(0 ) 
0  

lim 	 
n2p-1 (2p-1)! 

We obtain sharp bounds for the special cases (i), (ii) using the 

sharp bounds for means obtained by Baernstein (1974). We have for 

p = 1 : 

(i) y a(e) < 1 

except when f(z) = z(1-ze
iw
)
-2 

 

(ii) C a(0v) < 41a01 

except when f(z) = a0[(1+ze
iw
)/(1-ze

iw
)]
2 
. 



Thus the asymptotic Bieberbach conjecture holds also for weakly 

univalent functions. 

0.2 Functions omitting a sequence of values 

Let 

f (z) = y a
n
zn  

n=0 

be regular in Izi < 1 and let {wk}  be a sequence of complex 

numbers such that rk  = Inc.' is monotonic increasing and rk  co as 

k . If 

f(z) 	wk 	k = 0,1,... 

what can we say about the maximum modulus, integral means, and 

coefficients of f ? 

Littlewood (1924) proved that if 

rk+l —
< Cr

k 

then 

M(r, f) = 0(1-r)
-A(C) 	

r 4.1 

where A(C) depends on C only. 

Cartwright (1935) showed that if 

rk+l 
rk 

then 
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M(r, f) = 0(1-r)-2-c 	r 4-1 	3 

for every c > 0 

Baernstein and Rochberg (197 17) 
	

have recently proved that 

under the hypothesis of Cartwright 

r,f) = 0(1-0-(1+6) 	, 	Ian' = 0(n1+6 ) 

for every c > 0 . 

Hayman (1949) obtained the following result, which is essentially 

best possible: 

if 

[log  (_aL-2.-)1 < 	, 
k=0 1.k 

then 

M(r, f) = 0(1-0-2 
	

r 

Littlewood (1924, see also 1944) showed, by considering the 

elliptic modular function, that if 

P(z) 0 0,1 

Q(z) = log[P(z)] 0 ±2Trik , k = 0,1,... 

R(z) 	[Q(z)] 
0  _4712K2  , k = 0,1,... 

then 

M(r,R) = 0(1-0-2  

I1(r'R) = 0(1-0-1 
	

r 1 	5 

2 



then 

and if R(z) = Yrnzn  , then 

= 0(n) , 	n 

Hayman (1955b) generalised these results in the following way: 

suppose that f(z) is regular in lzl < 1 and f (z) 
	

wk 

where {wk} satisfies 

arg wk  = 0(Iwk) 	; 

I  
wk+1

-W  = 	) , 

M(r, f) = 0(1-r)-2  

11(r, f) = 0(1-r)-1 	, 	(r 	1) 	; 

and if f(z) = Yanzn  , then 

l a.' = o(n ) 	, 	n 4-  co 

In Chapter 3 we generalise still further. We show that if 

2 < p < = , and 

(i) arg wk  = 0(Iwkl -1/13) 	; 

(ii) l wk+1-wkI = o(lwk1(13-1)113) 

then 

M(r, f) = 0(1-r)-2  

1(r f ) = 0(1-r)-1  

= 0(n) 	. 
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We also apply the theory of Chapter 1 to these functions and 

obtain 

lanl 	
a(0v) 

	

(2p-1)! 	' 

where a(e ) = lim (1 -r)21.f(reie )1 > 0 . 
r4-1 

lira 
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CHAPTER 1 

General Results 

1.0 Introduction 

Let f be a function regular in Izi < 1 and let p > 1 be a 

given integer. 	Suppose that for each 0 , 0 < 0 < 2Tr , the limit 

(1.1) 	a(0) = lim(1-r)211f(re18)1 exists, with 0 < a(0) < 
r±1 

We say that 0 is a radius of greatest growth of f if a(0) > 0 . 

If we are considering Ov 	v = 1,...,N say, then for convenience we 

write a = a(0v) . 

	

We choose a fixed e , 0 < c < Tr/2 . 	Then if Av  is a radius 

of greatest growth of f we denote by A(v) = (v)(E) the domain 

-ie 	-Jo 
: 171 <11-ze vl<*;larg(1-ze 	1))1 < 2 ir- - 6) . 

For n > 1 we write 

rn = 1 - 1 
	zn = rne 

ie
v 

a(n) = n--2P  f (z
n
) 

Av(rn) = arg av
(n) 

 

and set (n) 

f
(n)

(z) - 	
a
v  

v -18 2p 
(1-ze v) 

( Thus a
v
n)  , 

we have that 

n and f(n)(z) are defined for n > 1 and using (1.1) 

la(n)I 	
av 	

(n 	co) 
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Our first result is 

THEOREM (1.1) 

Suppose that 

00 

f (z) = y a
n
zn  

n=0 

is regular in 1z1 < 1 and satisfies (1.1). 	Suppose also that f 

satisfies the following: 

(1.2) 	If 0v is a radius of greatest growth of f , then, as 

( n 00 uniformly for z E An
v) 
 (c) , 

(z) ti f 
(n)

(z) 

(1.3) 	For some a > 1/(2p) 	, 

lim1-r)2PA-1IA  (r, f) <*C 

where C is a constant. 

Then we have 

(1.4) 	a(0) = 0 , except for a sequence 6 = 6v  , and 

(1.5) 	aX < Cl 
- 2T(1)1"(-ka)c  

v — 
 

r(Ap-0 

Theorem (1.1) says that the set E = {0:a(6) > 0} is countable. 

Thus, given n > 0 , we may define N = N(n) to be the number of radii 

of greatest growth of f for which a(0) > n . 	It follows that N ■s.co■■te. c.flA 

increases as n decreases. 	Let 0v , v = 1,...,N , be such that 

r-4-1 



lim 
n 	 -1 400 n11  

lan i 	G  a( 0 v )  

(2p-1)! 

-20- 

a
l 1 

a
2 
 > ... a

N > 
n . 	For v = 1,...,N and K a large positive 

constant we define 

= {0:10-0
vI < K(1-r)} , yvc  = [0,270\yv 

	5 

N 
= 

V=1 

C 	r  
I = 1.0,271)\ y 

• 

and let yv be the set of re
le 

, for which O E y
v 
. We denote the 

closure of a set E by (E)' . 

With the above notation we have 

THEOREM (1.2) 

Suppose that f satisfies the h&putheses of Theorem (1.1) ; (1.3) 

being satisfied for some A < I , and also the following: 

(1.6) 	Given n > 0 , there exist constants N , K , ro  such that 

If(reie)1 < n(1-r)-2P  , r
o
<r<1 	E yC ; 

(1.7) 	If e.,ek  are any two radii of greatest growth of 
f 

j  

then 

A.(r 
n
) = Ak(rn) + o(1) 	, 	(n 	. 

We then have 

(1.8) 

Further, if 	 has more than one radius of greatest growth we have 

(y a(ev)
2
) 

(1.9) 	lim 	n 	< 	 n .n2p-1 	(2p-1)! 

a 
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and so lim la
n
1/n2p-1  does not exist. 

n-)-00 

The proof of Theorem (1.2) is based on the proof of the corresponding 

result for circumferentially mean p-valent functions by Hayman (1958, 

Chapter 5), the essential difference between the two proofs being that a 

circumferentially mean p-valent function has a unique radius of greatest 

growth whereas a function which satisfies the hypotheses of Theorem (1.2) 

may have infinitely many. 

Chapter 1 is in four sections. 

In the first section we prove Theorem (1.1). 	We show in the 

second section that the contribution of the "minor arc", yc  , is 

relatively small compared to the "major arc", y , and then prove 

Theorem (1.2) for the case when f has no radii of greatest growth, 

	

i.e. a(0) = 0 for all 0 in [0,2,i) . 	In §1.3 we derive the formula 

n
2p-1 	iX1(rn 	r ) 	-ine 

■ a
n (2p-1)! e 	

L a 	v e 	+ 0(1) 1 , (n-**,) = 
 

In 51.4 we apply a result of Diophantine approximation theory to 

-in0
v 

c(n) = y a
v
e 

and show that 

lim lc(n)1 = c(o) = X av  
n4. 

lim IC( )1 = inf In(n)1 < (X av
2 

 )2  
n- 	n>0 

We then conclude the proof of Theorem (1.2). 
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1.1 Proof of Theorem (1.1) 

We need the following 

LEMMA (1.1) 

For 	< A < 00 and c
1 

> 0 , define 

(1.10) 	Jo  = J 	,x) = {(5A.2)/LE  (2x_i)]}l/( 2X-1) 

Then if K > J
0 
 and 	< r < 1 , we have 

de< 
	

e
1  

K(1-r)<101<lr I1-reiel2A 
	

(1-r)
2X-1 

Now 11-rei0 	=[(1-r)2 	4rsin2( )1 A  , and for 	< r < 1 , 

0 < 6 < Tr , we have 

(1.11) 	[(1-r)2  + 4rsin2(30)1 x  
(4r02 1X  (02)X  
C27) 1 	 • 

5 

Hence, with J0  defined by (1.10), we have 

IT 	 7 
de  

2A < 5A 	de 

	

ie l 	— 

	

1 1-re 1 	2
X 

K(1-r) 	 K(1-r 0  

(i < r < 1) 

< 5A 	de 

K(1-r) ° 

5
A 	

1  

(2X-1)[K(1-r)]
2X-1 2(1_r)2A-1 

for K > J0  . Similarly we have 

c -K(1-r) 
e
1 	 dO 	< 	1 

11-re
10 2A 	

2 < r < 1 	K > J 
(1-r)2A-1 

5  
	0 1  

-TT 
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This proves Lemma (1.1). 

Let ev  , v = 1,...,N0  , be No  radii of greatest growth of f 

and fix X with 1/(2p) < X < 00 . 	Then given el  > 0 we choose 

J0  =J0(61 
 ,pX) as in (1.10) and with K>J0 	i<r< 1 , we choose  

e = e(K) so that 

an(v) ( 6) C {z :izI < 1} 

for all large enough n and rn < r < r 	
A
n(v)(E) 2n , where yv  , 

rn are defined in 51.1. 

From (1.2) we have 

a (n) 

f(z) 	
v 	

(n4°0  ) 
(n)

(z) - 	
(v) 

, 	, z E An 	(e) -IS 
(1-ze v)213  

and hence, given e2 > 0 , we can choose n0 = n0(e2'
X) such that for 

n > n0 ' 

I 	 (z) I X  > (1-6
2
)15v(n)  (z) 	1 < v < N  0 • 

We can also choose n1 
= n
1
(6

2'
X) > n0  so that for n > n1 

(n)IX f 	\ > (1-e2)av 	
, 1 < v < N 

— — 0 

We now choose r so near 1 , r > r1 > 	
say, that the yv 

are 

disjoint. We then have 

cc TT 

	 N
O  1 -21 	I f (reie ) I Ade > Tir  I 	I f (reie ) I xae 

V=1 
-7 	 I v 

(1_62)2 No  K(1-r) 

a
X 	de  > 

v 27 	=1 v 	11-reiel2PX 
-K(1-r) 

• 



(1-e )
2 CO u - 	

2 	r 
Z. 

 

a  
-7 K(1-r)<181<iT 1-re"1 2P  27 	v=1 	 X  

dO  

provided that n > n
1 
 . 

So from Lemma. (1.1) we have for K > J0 ' 
	< r

1 
 < r < 1 , 

(1.11) 	271. 	I f (reie  

(i_e )2 	No 	NI TT 

A 	
dO 	e1  

27 v1 av 	
11-reie 12pX 	(1-1.)2pX-1 = 

We have from Hayman (1955a, page 280)-±hat 

(1.12) 	1 ic 

11-re 

de 	r(Xp- Wl-r)1-2pX 
2u 	iel2PA 2r(Or(pX) 	, r 1 

and hence, given e
3 
> 0 there exists r2 > r

1 
such that for 

r2 < r < 1 

7f 
1 	dO  

211-  f 	i0 2P X > 
11 -re -n 

1-e )r(Xp-i)(1-r)1-2PA  
2r(f )r(pa) 

Since el , 
e2 , e

3 
are arbitrary, we have, using (1.3) 

2r(i)r(pX)  av
X < Cl 

= C . r(Xp-i) 

Since NO  is arbitrary we deduce the countability of the set 

E = {0:a(0) >0} and hence 

G a(0)
A 
< C1 

-IT 
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by a standard argument. 

This completes the proof of Theorem (1.1). 

1.2 The minor arc, 

If 

f(z) = y azn 
n=0 

n 

then we have, on writing z = re
ie 

, 

7 

c / 

. 27rna
n 
= 	fkrel0 

)e-ine 
 de 

In this section we use (1.6) to show that the contribution of the minor 

arc, y
c 

, to the above integral is reluLiveiy small compared to the 

contribution of the major arc y . We then prove (1.8) for the case 

when f has no radii of greatest growth, i.e. we prove 

lanl = o(n213-1) 	, 	(n 	00 %  ) 

We prove first 

LEMMA (1.2) 

Suppose that f(z) is regular in 1z1 < 1 and satisfies (1.1), 

(1.3) and (1.6). 	Then, given n, 	s. that Q < (1 , 11(2p) < X c 1 4  vrg 

Ca V\ 	ChooSe 	CA)1\st..a. 	K ) fi 	Sc-‘A 	that 	'Cur rA tf<1 

c

I f (reie  )1de < 474 )6(1-r )1-4  
c 

Y 

We fix A , 1/(2p) < A < 1 . 	Then it follows from (1.6) that 

given n > 0 there exist constants N , K '  r0  such that for 0 E yc 
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f (rei0) I < r0  < r < 1 • 

Also, using (1.3), we can choose r1  > r
0  such that 

Tr 

f(re l e  )1 de < 4

r)2Px-1 	
r1 < r < 

1 
'7r  

	

f (re ie ) I de = 	I f (rel.°  )I1-A  I f (rele ) I xcie 

1-A 

< 5 	Ti 	I f (rei0 )1 X cie 
(1-r)P 

Ti

I  

1-A 	
47C 

(1-r)213(1-2)  (1-r)2PX-1  

470n1-A  

(1-r)2P-1  

We thus  

f(reie) de < 47CTI (1-r)1-2P 
	

r1 
< r < 1 

yc 

as required. 

If f(z) has no radii of greatest growth, then a(e) = 0 for 

	

all 0 and soyc  = [0,27) . 	Using (1.6) we see that given n > 0 , 

there exists r0  with 

I f (re") I < 11(1-r)-21) 
	, 	(r0  < r < 1 ; 0 < e < arr) 	. 

-Tr 

Now 
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From Lemma (1.2) we have 

11.  
2nril lan  1 < 
	I f (reil3) 1de < 444b(1- — ; 

1-2p 
r0  < r < 1 . 

We put r = 1 - 1/n and since rn = (1-1/n)n  > 4 for n > 2 we have 

lanl = o(n2p-1) 	, 	(n 	co) 	, 

as required. 

1.3 An asymptotic formula for an  

THEOREM (1.3) 

Suppose that f satisfies the conditions of Theorem (1.2). Then 

	

n
p-1): e 

2p-1 	iX1(rn 	
ave 

) 

	

-ine

v
+0 (2(1)1 , (n co) 

We assume that there are an infinite number of radii of greatest 

growth. 	If there are only a finite number the discussion is simpler. 

Given n > 0 we choose N = N(n) as in §1.O. 	Then for v = 1,...,N 

we have 

-10
v 	-im0 

	

- 	r (1-ze 	p = 	c
m
e 	vzm  

where 

(m+21D-1): 	m 	2p-1 c 	(m c°) m m!(2p-1)! 	(2p-1): 

m=0 

With the notation of §1.0 we have 



-28- 

-ime 
fv

(n)(z) = 	(n) y c e 	vzm 

m=0 

and it follows that 

f v (n)(z)dz (1.0  -inev 	1 
cnav‘ i e 	2ffi zn+1 

1z1=r 

Tr 

27r cnav 
(n)e-ine  v (n)(re10 )ede 	, v = 1,...,N 

—1r 

IF 

2Trrnan = 	f(rei0 )e-in6de 

so we have 

Thus 

Now 

(1.13) 2Trrn [an-cn 	
a

v
(n)e

-ine  v i  
v=1 

N 	\ 	4 
[ f r e

40 
 - Xi v"11 (re-Lu

n  
ne-ined0 . 

v=1 

Let K , r0  be the constants of (1.6). 	Then with yv  , yvc , y 

yc defined as in 51.0 we have 

-ir 

N 
[f(rei8 )- y f oli ( re"),e-inedo 

,=1 v 

N 
< y 	if (re") - f v(n)(re10 ) 1de 

v=1 
Yv  

If (rete ) 1de + 	SI  V v(n)(reie ) 'de 
Jc 	 v=1 	c 

Yv 

= I1 + 12 + 13 



n 	< r < 1 
1 -r)213 1 	' 
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Now 

I = y la
(n) 	de  

11-reie l 2P 3 v=1 v 
K(1-r)<101<7 

and lav(n)I 	
a 	as n 	, v = 1,...,N , so we choose n0  such 

that for n > n 0 

< 2av  
= 5 ...5N 

With A = p and E
1 
 = n in Lemma (1.1) we have 

de  

K(1-r)<I01<7 11-reiel2p < 

We take y a
v 
= a . 	Then a < co in view of (1.5) with A = 1 . 

Thus for n > n0 
and 	< r < 1 

(1.14 ) 
N 

1
3 
< 2 y av.71(1-r)1-2 -D v=1 

< 2an(1-r)1-213  • 

Next, we have from Lemma (1.2) that we can choose r0  = r (n) > 2 

such that for r < r < 1 and n > n 
0 

	no 

(1.15) 	If(rei°)Ide < 471-Crj A(1-r)1-213  

Y 
 

where C is the constant of (1.3). 

We now choose e = e(K) > 0 so that for v = 1,...,N 

(y
v 
) C (v)(e) for large n . 	Then (1.3) shows that 

f(z) rbf v
(n)

(z) 	(n 	co) 
	

E  Yv 
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This means that given C > 0 , there exists n
1 

= n
1
(C) such that 

for n > n
1 

If  (z) - 
f (n)

(z)I < W,(n)(z)I 
	

E iv 

Hence 

I
I

= 	c 	(rei°  )-f
v
(n)(reie  ) I de < c 

v=i 	 v=1 
Yv 

(n)(rei8 )Ide 

CN

K(1-r) 

	

 la  (1)1 	de 	
N 

< 	7 la  krui 	de  

L Iv 	I 	iel2p 	Livi 	1 1 4 	• v=1 	
-K(1-r)-1-re 	

v=1 	1 1-reie l 

It follows from (1.12) that given e > 0 we can choose 

, 	 , 
ri  = ri(c ) > r0  such that for r1  < r < 1 

de <  (11-c )27a(p-i)(1-r)
1-2p 

1-re 
 

-n 
r(i)r(p) 

is arbitrary we deduce that 

, 
I
1 

= o(1-r )1-2p 5 	r 	1 

Combining (1.13), (1.14), (1.15), (1.16) and putting r = 1 - 1/n 

we see that 

(n1  -ine 
	2p1 

rnla -c X a 	_l v < {2an+4wCn2+o(1)}n 
n n

v=1 
v 

as n 

For v = 1,...,N 
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Av(rn) = Al(rn) + o(1) 

and 

lav(n)I = av  + o(1) 	(n 	co) 

in view of (1.7) and (1.1) respectively, so we have 

\N., 
a (n)e-inev 	L 

is (r ) N 	-ine .e lnr a e 	v + o(1) 	(n 	co) 	. 
V L  v=1 	v=1 v 

cn 

 

Since 

C l 
i), + 0(1)/ n2p-1  

as n 00 it follows that 

rn la - ce 	n L  r 
n 	n 

is (r ) Co 	-ine 

v=1 v 
ae 
	vl 

iX (r ) N 	-ine
vl + rnicne

iX (r ) 00 	-in() nl 	1 n r 	1 n r < r la  - cne 	L, a
v
e 	 L ave 	

vi 

v=1 	 v=N+1 

1n -ine 
f2an+lo 	

l 

	

rCn2+o(1) + , 	r  
-1)! 	w 

y a
v
e 	v 

2p 
v=N+1 

 

n2P -1  

 

rn (n 	c°) 	• < 12an+4TrCn -I-  (2p-1): v=N+l av 	c)(1)1 n2P-1  

Since a < 00 we have 

Co 

pN  = 	a -Y- 0 	as 	N 	co 
v=N+1 

Now rn = (1-1/n)n 	I > 	(n > 2) , and n is arbitrari 	small; so on 

letting n tend to zero we obtain 
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n2p-1 1
(rn) 	-in0

v an  =
n 	(2p-1)! e 	a

v
e 	+ 0(1) 

v=1 
(n 	c°) 

This completes the proof of Theorem (1.3). 

1.4 Proof of Theorem (1.2) 

We need the following result, due to Dirichlet, which can be 

found e.g. in Niven (1963, page 13). 

LEMMA (1.3) 

Given any N real numbers el,...,O N  there exist infinitely 

many sets of integers (a1,...,aN,n) with n positive such that 

In0
v 
- 2nav < n-1/N , 	v = 1,...,N 

We can now prove 

LEMMA (1.4) 

For v = 1,2,... Zet ev  satisfy 0 < 0 < 2n and let av  > 0 

be such that av ?. av+1 and Yav 
= a < 	. Then if 

-Ina
v c(n) =Yae 

we have 

lim Ic(n)1 = a 
n+00 

and 

inf Ic(m)1 	(/ ctv2) lim Ic(n) 	 5 

n4o. 	m e N 

where N is the set of non-negative integers. 

We again assume that there are an infinite number of radii of 
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greatest growth. 	If there are only a finite number the discussion is 

simpler. 

Given c > 0 we choose N so large that 

y av < c v=N+l 

From Lemma (1.3) there exist integers (a1 
 ... a

N' 
 n) such that 

I nev 
- 2Tra

v
I < n -1/N 
	

v = 1,.•.,N 

Having fixed N , we choose n so large that n
-1/N < E . We thus 

have 

V 
- 27avI < 6 	

V = 1,...,N 	5 

from which it follows that 

le-inev-11 = le-i(n8V-27aV)
-11 < lei6-11 = 2sin(6/2) < c 

and so for any non-negative integer no  

  

-i(n+n0  )ev 	-in0v 
Ya e 	- 	ave v=1 	v=1 

<
v 

ca 
v=1 

  

  

We thus have 

+ 2 1 a 
v=N+1 

v 
 

. -i(n+n0)0v 
. -in00v 

a
v
e 	- r a

v
e 

v=1 	v=1 

-i(n+n
0
)0

v 	
-in0v 

G=1 
a e v 	

- 	a
v
e 

v=1 	v=1 

< 6(a + 2) 
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Hence, given any E > 0 and n
0  we can choose n arbitrarily large 

such that 

(1.17) 
	

Ic(n+n0)-c(n0)1 < e(a+2) 

If n
o = 0 this gives 

Ic(n)1 > c(0) - e(a+2) 

for arbitrarily large n , while le(n)1 < c(0) for all n . 	Thus 

lim Ic(n)I = c(0) 	. 
n+co. 

We will now prove that 

(1.18) 	a = lim Ic(n)1 = inf Ic(n)1 = 
n+00 	n>0 

Evidently 13 < a • 	On the other hand, given E > 0 , there exists 

n0  = n0 
 (E) such that 

Ic(n0)I < f3 	e 

and so by (1.17) we can choose n arbitrarily large such that 

le(11-1-n0)1 < Ic(n0)1 	c(a42) < 	e(a4-8) 

We thus have a < S + E(a+3) . 	Since e is arbitrary we deduce 

a < 13 and so a = 3 as required. 

To obtain a bound for a we obtain a bound for the average of 

Ic(n)I over all non-negative integers. 	We prove first that 
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1 IC-1 
	cc 

(1.19) 	1P(K) = 	Yavapcosn(6 
P 
 -6 

v
) 	± 0 as 

 

n=0 p,v=1 

Given c > 0 we choose N = N(c) so large that 

a < c 
v=N+1 v  

We write 

03 

a a cosn(6 -6 ) = 
p ,v=1 p v 	p v 1  

P.Ov 

where /
1 

is taken over all terms with p < N and v < N and /
2 

over the remainder. Then 

N 	00 	00 	N 	co 

122I f_ 2 ap 	y a, 	 v y a 	X a + 	X a
p 	

X a 
p=1 	=N+1 	P=N+1 v=1 	u=N+1 v=N+1 

v 
 

< c(2a + c) 

Now 

K-1 N \ 1 Nv K-1 

K 	Ia
p
a
v
cosn(8

p
-e

v
)Laalcosn(0 v) ) 

n=0 p,v=1 p,v=1 
p  v

n=0  
pOy 

N 	K71 ein(611-61 
= 	V a a Rq K p,v=1 P v 	n=0 

P0v 

N 	sin(K-i)(6 -6) 
= -27( 	

11 v  
X a a 	 + 1 

P,v= 	
i 

1 P 	sini(8 
P  -
8 
v
) 

Piv 
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so we have 

 

K1 

n1-0 Xl +121 

 

111)(KI = 

  

Isin(K-i)(0 -8 )1 

2K 

	

+ 	+ E(2a+E) < — a a 	P v  
P v 	-0 )I  

v 
POu 

Each term in the sum is bounded and there are only a finite number 

of terms; so we choose K0= K0  (e) so large that for K > K0 , the sum 

is less than 	We thus have for K > K0 
 

tP(K) < e(2a4-6+1) 	. 

Since e is arbitrary we deduce (1.19). 

Now for any n > 0 

Ic(n)1 = fa v 
2 +  a a cosn(0

p v
-e 

p v 

	

v=1 	p,v=1 
p0v 

From Cauchy's inequality 

	

(
2.  K-1 	K K-1 

y 	Ic(n)I 	2  < 	Ic(n) 2  

	

n=0 	n=0 

so we have 

K-1 	( K-1  
1Z 	Ic(n)1 	- 1 	2 

y 	a 	laacosn(0 -13 ) 
n=0 	K  n=0 v=1 v 	p,v=1 P v 

	u v) 

p0v 

co 	

) 2  

= 	y 2 + Ip(K) 2 

v=1 

Now i(K) 4- 0 as K co from (1.19) so we have 



For 

F a e 
v=1  
(4-1)1 

laI 	-,- 
lim A  = llm 4=1 
it w3  h 	tl" 
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1 	00 K-1  r I / 	r 2 infic(n)1 < 	z  ickn)1 	z a 
n>0 	K-° K  n=0 	v=1 v  

This completes the proof of Lemma (1.4). 

Theorem (1.2) now follows from Theorem (1.3) and Lemma (1.4). 

   

Y
v 1c(n)1 	v=1  

(2p-1)! 	(2p-1)! 
= lim 

n4-00 

Also, if there are N radii of greatest growth, with 2 < N < 00 , 

lanl 	( N • 
lim 	. hn)1  lim 	1 	7 a  2 

2p-1)! 	(2p-1): 	t 
n+00 n

2p-1 
n- 	v=1 

1  a l 
n+00 n 

= im Ic(n)1 	
lanl 

v 

	

(2p-1)! =1 	n v 	(2n-1)' 	2p-1 
400 '  

and so limbn
lin

2p-1 does not exist. 
n+00 
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CHAPTER 

Weakly p-valent Functions 

2.0 Introduction 

We define a function f(z) regular in Izl < 1 to be weakly 

p-valent (Hayman [19511) there if for every R > 0 the equation 

f(z) = w has either 

(i) exactly p roots in 1z1 < 1 for every w on the circle 

R or 

(ii) less than p roots in IzI < 1 for some w on the circle 

lwl = R ; multiple roots being counted multiply. 

In this chapter we show that a weakly p-valent function satisfies 

the hypotheses of Theorems (1.1) and (1.2) and hence the conclusions of 

those theorems. 	We have in fact 

THEOREM (2.1) 

Suppose that 

CO 

f (z) = 	a
n
zn  

n=0 

is weakly p-valent in 1z1 < 1 and has q zeros there, where 

0 < q < p . 	Then for each A , 0 < 0 < 2Tr , the limit 

a(e) = lim (1-r)2Plf (rei6) I 
r4-1 

exists. 	Further, a(0) = 0 , except for a sequence 0 = Ov  , and 

a(0 )
1/(2p) < TrB(q)11 1/(2P)  

V v  

where p = max lav I and B(q) is a constant depending only on q 
q 0<v<q 
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The condition 0 < q < p is a consequence of weak p-valence 

(see e.g. Hayman and Weitsman [1975, page 131]). 

THEOREM (2.2) 

With the above hypotheses 

Y a(%)  lanl 

	

2p-1 	(2p-1): 

Further, if f has more than one radius of greatest growth 

	

Ian, 	\ a(ev)2) 

lim 	 

	

2p-1 	/:2p-1): 

and so lim la
n
1/n2P-1  does not exist. 

n+00 

Equality need.not hold in the second part of Theorem (2.2), since 

the function 

f(z) = [(1+z
2
)/(1-z

2
)]
2p 

shows that the left-hand side may be zero. 

We also consider special cases of weakly p-valent functions. 	We 

have 

THEOREM (2.3) 

Suppose that 

	

f (z) = zP 	+ 	y 	a zn  
n=p+1 n  

is weakly p-valent in lzl < 1 and has p zeros at the origin. 	Then 

/(2p) < 1 • 

lim 
n->-co n 

n-+00 n 
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Further, Ia(ev) < 1 „ except when f(z) = zP(1-zeiw)-21)  . 

It follows from Theorem (2.2) that for a function f satisfying 

the hypotheses of Theorem (2.3) there exists n0  = no(f) such that 

for n > n0 ' 

n(n2-1)(n -22)...(n2-(p-1)
2
)  

(2p-1): 

with equality if and only if f(z) = zp(1-zeiw)-211) 	In particular, 

if p = 1 we obtain lanl < n for all n > n0 
 (f) unless f is a 

Koebe function. 

THEOREM (2.4) 

Suppose that 

CO 

f(z) = 	anzn  
n=0 

is weakly p-valent and non-zero in Izi < 1  . 	Then 

v  a,e 	
) g  

\l/(2p) < 
k
',pi

1a 
 1,1/(2p) 

vi 	
— 	01  

Further, Ya(ev) < 411E1.01 , except when f(z) = [(1+zeiw)/(1-zeiw)]2p  

Thus, if we write 

F (z) = [(1+z)/(1-z)1 213  = ci A
n,p

zn 
n=0 

we have that for a non-zero weakly p-valent function f there exists 

n
0 
 = n

0 
 (f) such that for n > n0 

 (f) 

— la IA 0 n,p 
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with equality if and only if f(z) = a
0
Fp(zeiw) . 	In particular, 

if p = 1 , we obtain lanl < 4Ia0ln for all n > n0(f) unless 

f(z) = agi(zeiw) . 

Chapter 2 is divided into five sections. 	In the first section 

we prove Theorem (2.1). 	In the second and third sections we show 

that (1.7) and (1.6) hold for weakly p-valent functions so that 

Theorem (2.2) follows from Theorem (1.2). 	In §2.4 we prove the sharp 

Theorems (2.3) and (2.4) using recent results of Baernstein (1974). 

In the last section we look at some examples of weakly univalent 

functions. 	The first example shows that the constant 1/(2p) in the 

inequality (Theorem (2.4)) 

1/(2p) 	p 	1/(2D) a(0) 	< (4 1E1,01) 	- 

for non-zero weakly univalent functions is best possible. 	The second 

function is an example of a weakly univalent function which has an 

infinite number of radii of greatest growth. 

2.1 Proof of Theorem (2.1) 

We first show that (AM exists. We need the following 

LEMMA (2.1) 

Suppose that f(z) is weakly p-valent in lzl < 1 and f( ) 0 0 

for 1 - 28 < I z I < 1 , where 0 < 8 < 	. 	Then for 0 < 0 < 271-  

and 1 - S < IzI < 1 we have that 

) 2p 
(  1-r 	

je If(re ) 
r+26-1 

decreases with increasing r . 

The proof of Lemma (2.1) for circumferentially mean p-valent 

functions given in Hayman (1958, page 95) is based on the inequality 



(2.1) 
f (z)  
f(z) 

4p  

1- z — 	2 I I 

  

Since this inequality also holds for weakly p-valent functions (Hayman 

1951, page 174) the argument for Lemma (2.1) is identical to that for 

the circumferentially mean p-valent case. 

We now take 6 , 0 < 6 < 	, so that f(z) 	0 in 1 - 26 < Izi < 1 . 

It follows immediately that a(0) exists, since 

(1-r) 2P kr(reie), 	a(e) 

r+26-1 	(26)2P 

as r 	. 

With the notation of 51.0 we have 

LEMMA (2.2) 

Suppose that f is weakly p-valent in Izi < 1 and that ev 

is a radius of greatest growth of f . Then, as n 4  , uniformly 

for z E An
(v)

(e) , 

f (z) ti f v
(n)

(z) 

The proof of Lemma (2.2) for circumferentially mean p-valent 

functions is given in Hayman (1958, page 108). 	Since it is also based 

on the inequality (2.1) the proof extends to weakly p-valent functions. 

We now quote the following result of Hayman and Weitsman (1975, 

Theorem 6). 

LEMMA (2.3) 

Suppose that 

f(z) = y anzn  
n=0 
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is weakly p-valent in lzl < 1 and that f(z) has q zeros there, 

so that 0< q < P • 
	Then for X > 1/(2p) and 0 < r < 1 we have 

12pA A 2p (1+2p)Y-1/(2p) 271 ,f Tr  If (re i0  ) I xdo < 	213x 2pA-1  ) B( q) 	u [Tr 2 	(1-r)1-213X  

-Tr 

where B(q) is a constant depending only on q and = max la I . 
0<v<q v  

We now prove the second part of Theorem (2.1). 

As in the proof of Theorem (1.1) we have from (1.11) and (1.12) 

that given positive constants El  , E2 
 , E3  

there exists r2 
such 

that for r
2 

< r < 1 , A > 1/(2p) 

IT 
1 	1 r , 	ie 1 A 

4r 	

N 2 0 	-E3)1(AP-i) E1 
2f(i)f(Ap) 	2TT 

-. 7-1.1  _Try kre ) 1 de > (1-c2rlav'  	
(1-r)1-213X  

Now f(ApA) = r(Ap+i)/(Xp-2) so we have from Lemma (2.3), since 

61 	c2 ' 63 
are arbitrary, that 

'  

N0 	2pABk 

	

, q)  ,213X  p L  Ar 
7 	

m 2p,(1+2p)
2
iA-1/(2p)ru xp) 

< 
v=1 " 	r(xp+) 

This is true for 1/(2p) < A < 03 and so by continuity it is true for 

A = 1/(2p) . 	We thus have 

NO  
r 	1/(2p) 	nly,), 1/(2p) 
L a 
v=1 v 	— ‘4-  

and since N0 
 is arbitrary we deduce the countability of E and 

y a(01/(2p) < 	 1/(2p) 
mn(c1)11 

E 

by a standard argument. 	This proves Theorem (2.1). 
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2.2 The argument of a 
(n)  

LEMMA (2.4) 

Let e . , Ok  be any two radii of greatest growth of a function 

f(z) weakly p-valent in Izl < 1 . 	Then if rn  = 1 - 1/n , and 

arg av
(n) 

 = A(rn) 
	

v = j ,k 

we have 

x
j
(r
n
) = A

k(r) + o(1) 	, 	co) 

We take cS , 0 < d < z , so that f(z) 0 0 in 1 - 26 < Izl < 1 . 

We choose 0 	so that a(0 ) = 0 and cut the annulus 1 - 26 < IzI < 1  0 
ie0  i0

0  
0 

from (1 - 20e 	to e 	. Denote the annulus minus the cut by A . 

Then br(z)11/P  is regular in A and so weakly 1-valent there. 	We 

restrict ourselves in the proof to 1 - 26 < r < 1 and prove the lemma 

for p = 1 , since otherwise we may consider [f(z)]1/P  instead of f(z) . 

Assume 0 < a < a . 	Given n > 0 satisfying 0 < n < i(a /a.) 
k — j 	 k 

choose n0  = n (n) so large that for v = j,k and n > n0  

D 	

0 	 0 

A
n
(v)
(n) C  {1z1 < 1} . 	For v = j,k let 

ie 	—ie 
z = 56

n
(v)(Z) E e v{r 

n  + n Ze 	v} 

so that 

—10
v 	

—ie 
1 — ze 	=A 1/ l - Ze 	v) 	; 

thenA
n
(v)

(n) in the z-plane corresponds in the Z-plane to 

	

-10-1 	
-i0 

Lie(v)(n) = fz:n<11-ze 	v i<n ;Iarg(1-Ze 	v)1<7112-0 	. 
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(V) fi 	tr  (v) 	(n) (v Thus, for Z E A* 	k2ni , 	Lkia 	(Z).1 and i v 	[kil  (v)( Z)] are 

defined for n > n
0 • 

Now w
n
(v) =f

v
(n) 

 [ft
n
(v) 

 (Z)] maps A
(v)(n) 1-1 and conformally 

onto the domain 

(v)  (n) 	(n)1 2n2.1w  (v)i< l a  (n)1_-2n2.  Dn 	(n) = {wn 	.la
v 	In 	<1 	In 	5 

	

n 	I 

largwn(v)-arga (n 1<n-20  

Choose n
1 
= n

1
(n) > n

0  so that for n > n1 

v < lav(n)I
< 2a

v 	v = j,k 

Then for n > n
1 

f , 	a
k 

(2n)14 < 211 < 	< 
ak
(n)  

a.(n)  
yak k < 4  < 	< 4 

a 	k 2n j 

   

so that the regions D
n
(j)(2n) and 'JD

n
(k) 

 (2n) overlap and meet the 

circle 1w1 = R ,where 

• 
(n)a k(n)In2 

il \ For v = j,k let 3A*(v)  (n) denote the boundary of A*(v)  ln) • 

Then fk.
n (v)(Z)] maps as (v)(in) onto a closed curve r (v)(n) in 

the wn
(v)

-plane. We show first of all that we can choose n
2 = n2(n) > n1 

such that for n > n
2 , rn(v)(n) does not meet Dn(v)(n) . 	Let the 

shortest distance from (D
n
(v)(n)) 	(the closure of D (v)(n) ), to the 

complement of D
n(v)(irl) be dn

(v)(71) . 	Then 

2 
d
n
(v)(n) = la (n)1 n2 n .min(sin 

2  I 	(n)I 2 3  > —11 a 	n n 



If y(n) p,11(V)( z ) ]-1-v(n) [kn(V) , -o x ,  kz 	= Igrnei0n1 1 	1  

ie 
 

v)2 

	-18 , 

(1-Ze v)" (1-Z
o
e v) 

-i0 

10
v 	

1Z-Z 112-(Z+Z
0 
 )e 	v 1 

= 1f(r
n
e 	) 

i8 

11-Ze 

-8 v
1 211-Z

o
e 	v 1 2  

18 
lf(r e v)1(5

1 
 n(4-n) 

-i0 
11-Ze v1

2
(2n)

-2 
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i 
since n < 1 . 	Put 	= el

5 
 • 	In view of Lemma (2.2) there exists 

n
3 
= n

3
(s) > n

2 
such that for Z E 8A0(v)(in) and n > n

3 

Ifkil(v) (z)]-fv (n) [tn(v) ( z)]1 < elf v (n) [kn(v) (z)]1 

< in5la  ( )1 112( in)  -2 

in3l av(n)I n2 

< d (v)(n) 	. 

Next let Z
0 

be any point of A*
(v) 

 (2n) . 	Let 261  be the 

distance of (A*(v)(2n)) 	from the complement of A* 
v  (n) and 

define y = {Z:1Z-Z01=61} . 	Then 

n
2 
< 2n . —

2 
. n<261 =2nsinn <2n

2 

Tr 

and for Z E y 

-ie 	-ie 	-ie 	-ie 

1(1-Ze 	)+(1-Zoe v)1 = 12(1-Z
0e 	

v)+e 	v(Z
o
-Z)1 

> 4n - n2  = n(4-n) 

Thus for Z E y and n > n3  
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> Ifv(n)12.n(v)(z)112115(4-n) 	• 

Again from Lemma (2.2) we can choose n4  = n4(n) > n
3 

such that 

for all n > n4  and any Z E y 

1 n(v)(z)l-fv(n)  Etn(v)(z)] I < 2715(4-n) Ifv(n)  k n(v)  (z)] 1 

< I 
	
(n)ix  (v)(z)14  (n)ut 

n 
 (v)(z 0)i 	. 

We apply Rouche's Theorem in the form given e.g. in Ahlfors (1953, 

.1 page 152) to y , fEkn(\))(Z)] - fv
(n)  [Qn(v)  (Z0)1 and 

r 	\ 
f
v
(n)

n
(y)(Z)] - fv 

(n)  it
n 
(V)  (Z

0 
A and conclude that f[2.n

(.9)(Z)] 

takes the value f
v
(n)  [56n

(v)  (Z0 
 )] at -Inst once in A*

(v)(n) . 	This 

holds for every Zo  E Av  (2n) and n > n4  where n4  depends on n 

only and not on Zo  . 	Since f
v
(n)[9,

n
(v)(Z)] maps A*(v)(2n) 1-1 

f  
and conformally onto Dn

(v)  (2n)  we have that for all n > n4  , 

f[2,
n
(\)(2)] takes every value in Dn(v)(2n) at least once in A

*(v)(n) . 

It follows from Hayman (1951, Lemma 4) that there exists Ro  = R0(f) such 

that for R > R0 
 f omits at least one value wR

(lwR
1=R) in Izl < 1 . 

Thus, if wR 
satisfies 

l av(n)In2(202 < R  < lav(n)In2(20-2 

it must satisfy 

largwR  - argav
(n) - 71 < 4n 

Putting R. = la.(n)ak(n)
I n2  we have for n > n4  

(n) 
largwa  - argav 	- v = j,k 

and so 
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largaj(n)-argak(n)I = lAi(rn)-xk(rn)1 < 8n 	n > n4  

Since n  can be chosen as small as we please, we deduce Lemma 2.4). 

2.3 The minor arc 

We now show that (1.6) holds if f is weakly p-valent. 

LEMMA (2.5) 

Suppose that f(z) is weakly p-valent in lzl < 1 . 	Then, given 

> 0 there exist constants K,r0  such that for r < r < 1 and 

0 e yc 

If(rei0)1 < 	1 2 
(1-r) P  

where yc  is defined as in §1.0. 

Choose 6 , 0< 6 < 2 , such that f(z) 	0 for 1 - 26 < Izi 

Given n > 0 , choose N = N(n) as in §1.0. 	We consider two cases: 

I. 6 : K(1-r) < 10-6v1 < K(1-R) = 62  (1 < v < N) where 

R,K will be fixed below; 

II.  0(v) + 62  < 0 < 6
(v+1) -62 

	
(1 < v < N - 1) 	, 

— — — — 

0
(N) + 6 < e < e

(1) + 27 — 6 

	

2 — — 	2 ' 
( where the 0(v)  (1 < v < N) are the 0v  (1 < v < N) with 

(1) 	(2) 	(N) 0 	< 0 	< ... < e 	. 

Case I. 

We choose K = K(n) so that 

102p . 2a1 
1 

K2p 
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As in Lemma (1.1) we have (see (1.11)) 

i(0-0v)(0-0v) 2 1-re 	12 
5  

and so for 1 - S < r < 1 , > K(1-r) , (1 < v < N) we get 

(2.2) 
2av 	52p . 2a 

11-re 
i(e-e 

v  )1213 - 
K2p(1-r)2p 

52p . 2a 
	 . 22p (r+26-1  K2p(i_r)2p 

2p 

{r+26-1-, 1 2P  < 
T671-r0 

since av La1 . 

Having fixed K we choose c = e(K) so that 

(yv
* t 

C A (N)(e) 	(1 < v < N) 

for all large n and rn < r  < r2n . 	
Then, by Lemma (2.2) we have, 

as n -9- 	, uniformly for z e (yv  ) 

11-ze
-10 v

1 2111.(z)1 	av  

Hence we can find n0 
 such that for n > n0  and re

ie  E 

(1 < v < N) , 

2a 
(2.3) 	If(reie)1 < 	v  

i(0-8 ) 
11-re 	1 2P  

,1 
YV  1 

Taking R = r2n a" e)  0  
that 	\S)-9.31 = V,(q-(1) > we 
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hove 	{,hat 	■R e a 	satisfies 	(2-2),(2.-1) C■ A. a 01,tazvl 

2-1D 

(R+127511-1) 	f( eie )1 < 	 
(26)

2p  

From Lemma (2.1) we have for R < r < 1 , 

1- 	2P (1-r)2Pli(reie)1 < (r+26-1)2P( 	li(Rei°) I R+26-
R  
1/ 

(r+26-1)  2p  

	

<n 	
< 

26 

as required, since we shall later fix r with R < r
0 
 < 1 . 

Case II. 

For the purposes of this argument we let 	 (N+1) = 0(I) + 27r and 

consider the set 

r = {e:o(v) + 6
2 
 < 6 < 8(v+1) - 62}  — — 

On rv we have 

lim (0.32; 2  (2.4) 	 1) P1f(Peie)1 < 	 
p+1 	(26)2P  

• 

For m > 1/6 let p = 1 - 1/p . 	If for some p we have for all 

o E ry 

2p 
( 1- pp ) 	• 0 Igp el )I < 	 
p +26-1 	,2  2p (5) 

then from Lemma (2.1) 
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(
l_p  ) 2p

1f(peie)1 p+26-1 

1-p 

p +26-1 

2p 

(.f(P p  ei6)1 

for p <p<1,0EF
v and so 

2pl f(pei0 )1 < 

for p < p < 1 , 6 e ry , which is our result. 

We thus suppose contrary to this that for each p there exists 

(1) E F 	such that 
P 

(  1-p )2P 	icf) 
(2.5) 	1.1 	Igp e 	11)1 > 	 

p +26-1 	, 
k26)

2p 
 

(v) 
Let (1) 	be a limit point of the sequence (4) 	. 	It follows from 

(2.5) and Lemma (2.1) that for each fixed p 

1.4) (  1-p 	) 2P 1f(pe /1)1 > 	 p+26-1 	' (26)2P  
1 - 6 < p < p 

If p is fixed the result holds for all large p and by letting p 00 

we have (I)
u

(v) and 

4 
 (v)  (  1-p  )2P  

p +26-1 	
Igpe4 	)1 2:  n 

 2p 	
1 - d < p < 1 

(26) 

which contradicts (2.4). 	So (2.5) is false for 1 - l/p = pp  < p < 1 

and some p > 1/6 . 

Thus, given n > 0 , there exists uv  = uv(n) such that for 

1- 1/uv 
 < p< 1 and 0 E Fv  we have 

( l—p)2P1 5( peie )1 < 
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1 
Then for r0  < r < 1 and 0 E y

c 
we have 

I f(reie)1 < 	
fl  

(1-r)213  

This completes the proof of Lemma (2.5).  

2.4 Proof of Theorems (2.3) and (2.4) 

It follows from Hayman (1951, Lemma 3) that if f satisfies the 

hypotheses of either Theorem (2.3) or (2.4) then [f(z)]1/P  is weakly 

1-valent and so we may prove both theorems for p = 1 , since otherwise 

we may consider a branch of [f(z)]1/13  instead of f(z) . 	We use an 

argument similar to the proof of Theorem (2.1) but instead of using 

Lemma (2.3) we use sharp bounds for the means which were obtained by 

Baernstein (1974). 

We prove Theorem (2.3) first. 	We need 

LEMMA (2.6) [Baernstein, 1974, Theorem 4] 

Suppose that 

This is true for v.= 1,...,N , so we let r0 = max{R,pppN
} . 

CO 

• f(z) = z + X an
zn 

n=2 

is weakly univalent in Izi < 1 . Then for 0 < A < 

71.  

ie IA 	rAde  
If(re 	de < 	, 	(0 < r < 1) 	. 

11-re e l 2X  
-7 	-7 

As in the proof of Theorem (1.1) (equation (1.11)) we have for 

	

N0 
 radii of greatest growth and a fixed 

	
that given el  > 0 , 

e2 > 0 there exist J0 
 = J0 (el'  A) and r0 

 = r0 (c2' 
 A) such that for 

K > J0 ' r0 
 < r < 1 , 
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c  
1f(rel 1 de > (1-E2)2 y av  

7 
dO  
i 

I 
	(1-1.)2X-1 

-7 	v.1 	-7  11-re  

Since r < 1 we have from Lemma (2.6) 

7 
0 

dA 	 de 	El  
av

A 	
-ffi1-rei0 2X 

11-reiel2A 	v=1 	(1.7r)
2X-1 

Since E1' E2 
are arbitrary we have 

N0  
(2.6) 	y avA < 1 

v=1 

This is true for 	< A < co and so by continuity it is true for 

X = 	. 	Now if 

NO   
y av-

1  
 = 1 

v.1 

for any A > z , we must have No  = 1 . For if N0 
 > 1 we choose A 

satisfying  i < A < A and obtain 

N0 11 	N0 X 
L E a 	> L  a 	. 1 v  - 

v1 	v.1 v 

which contradicts (2.6). 	It is an open question whether 

N0  i 
y a = 1 
v=1 

implies No  = 1 . 
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It follows from Hayman (1951, Theorem X) that weakly univalent 

functions of the form 

03 

f(z) = z + L a
n
zn  

n=2 

with one radius of greatest growth and 

lim (1-r)2M(r, ) = 1 
r+1 

are Koebe's functions. 	Since E is countable and (2.6) holds for 

any N0  Theorem (2.3) follows. 

To prove Theorem (2.4) we need the following result again due to 

Baernstein (1974, Theorem 6). 

LIMA 2.7 

Suppose that 

f(z) = y a
n
zn  

n=0 

is weakly univalent in 1z1 < 1 and f(z) 0 0 there. 	Then for 

0 < X <co 

("r  lf(rei0) XdO < la
0

A
4S:1_1  

-Tr 	

1. 

 

   

2X 

do 	, (0 < r < 1) 	. 

 

l+reie 

 

 

1-re 
 

 

    

Again we have (equation (1.11)) for N0 
radii of greatest growth 

and a fixed A > i that given el> 0 , e
2 
> 0 , there exist 

J
0  = J0' 

(e 	) and r0  = r0(e2,X) such that for K >Jo  , r0  < r < 1 , 
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Tr  

	

N
0 	

W 	

6 
1  

If(reie )1 XdO > (1-6
2
)2  y avx de  

	

v=1 	11-re
10 2X 

(1-r)
2X-1 

ff 	 -Tr 

Now 11+re
i012X 

< 4
X 

for r < 1 and so we have from Lemma (2.7) 

de 	
6 

(41a
0
1)1 

i6 2a > (1-62)2 NY.0avA l fIT 	
de 

 2X 
11-re 	v=1 

-Tr 	 _71. 1 1-re I 	(1-r )
2X-1 

Since 6 
	6

2 
are arbitrary we have 

X N
O / a \ 

G
v  

v=1 	
41a

0
1 	

< 1 

Arguing as in the proof of Theorem (2.3) we have 

(41a1 
< 1 

..) 	0 
 

and 

a 

-T—Tv  l a 	< 1  
v 0 

except when f(z) = a0[(1+ze1w)/(1-zeiw)]2  . 

In this case 

O( a
v 

	2 

Y 	41a 1 	= 1  
v=1 	0 

does not imply N0 = 1 as the first example of §2.5 shows. 	This 

completes the proof of Theorem (2.1). 

) 2 



r+1 l+r+...+rn-li 

l+r  
a(0v) = lim 

n 2 
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2.6 Some examples of weakly univalent functions 

Any function f(z) subordinate to [(1+z)/(1-z)}2  in Izl 

is a non-zero weakly univalent function in Izl < 1 . 	Thus if w(z) 

satisfies the conditions of Schwarz's Lemma, then 

f(z1  tltw(z1  2  
' 	1 -w(z) 

is a function which is weakly univalent and non-zero in Izl < 1 . 

Example 1. 

Suppose that w(z) = zn  , n > 2 . 	Then 

2 
f z ) = 	1+z I 

1-z
n  

has n radii of greatest growth and Ov  = 2v7/n , v = 0,1,...,n-1 , 

are such that 

10 
a(0

v
) = lim (1-r)21f(re V)! > 0 

r+1 

For v = 0,1,...,n-1 we have 

Thus 

/ a( 0)2 = 2 
v=1 

This example shows that in the inequality of Theorem 2.4) 



Now 

ie 
(1-r)2(1+w(re v))2  

(1-w(re v))
2 

a(0
v
) = lim 

r÷1 

- 57 -  

the exponent 1./(2p) cannot be replaced by any smaller quantity. 

Example 2. 

Suppose that 

(z+1)/(z-1) 
-

-1 
w(z) = e 

1 - 
-1

e
(z4-1)/(z-1) 

Then f(z) = [(1+w(z))/(1-w(z))]
2 has an infinite number of radii of 

greatest growth and 

2vni4-1) 
v 
= ara 	, 	v = 0,±1,... 

are such that 

a(0
v  

= lim (1-r)21f(reiNI > 0 
r÷1 

v = 0,±1,... 

  

2 

 

= lim 
r+1 

i0 v) 1 4. w(re  
i0 , 

wt lre v) 

9 

    

where 

ie 
3 ( 

w (reie 
	re v) 
v) = w' Dr 



and 

lim w (re 
iev)12 = 4 1+e-1 

r+1 	 1-e
-1  

—10
v —4 

I 1—e 	1 
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ie 
lim w(re v) = 1 
r+1 

so 

-1 
a(0

v
) = 1-e 

 1+e-1 

-i0
vi4 -e 	I 	, 	V = 

Also 

, 	% 

	

v 
= 2tan 1  k2ffv) - Tr ti 	1/(nv) 	5 

and 

-ie 
11-e 	vI = 12sin(iev) 
	

V ÷ CO 

SO 

Il
-e -10 v 1 4 	(71.4v4)-1 

Thus 

a(ev) 	Tr4(1+e 1)2 • 
(1-e ) 	-4 -1,2 

V -} 

and a(0v)2  converges. 

We see from this example that Xa(0v
)
X 

diverges for X = 4 , so 

+ 00 

that the exponent in Theorem (2.1) cannot at any rate be replaced by 

1/(4p) . 
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An example of a weakly univalent function which is not derived 

from subordination is the function which maps the unit disk onto the 

infinite covering surface of the plane slit from 0 to -1 and from 

-i to 00 along a ray of argument -n/2 . 
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CHAPTER 3 

Functions omitting a sequence of values 

3.0 Introduction 

A family F of functions regular in 1z1 < 1 is called normal 

[Montel (1927)] if, given any sequence fn  E F , either fn(z) 

at each point z in Izl < 1 or else there exists a subsequence f n 

such that f
n (z) converges uniformly in Izl < p , for every p , 

0 < p < 1 . 

It follows that if F is normal, then there exists a constant 

B = B(F) > 0 such that the following holds: 

(3.1) 	if f E F and Mon < 1 , then If(z)1 < eB  

for Iz1 < 2 . 

For otherwise we could find a sequence f
n 
E F such that If

n
(0)1 < 1 , 

but 

Mn = sup If (z)I -›* 
 l
illn 
z1<  

Thus no subsequence f n  (z) is uniformly bounded, nor, sg, fortiori, 

uniformly convergent in lz1 < 2 . 

A family F of functions is said to be invariant in Izl < 1 if 

(3.2) 	f (z) E F , Iz01 < 1 , A real implies 

(2 f 20 ) eiA 

\1+7 Z 0 

	
F 

Conditions (3.1) and (3.2) together give 

(3.3) 	f( z) E F , 1z11 < 1 , Iz21 < 1 , If(z1)1 < 1 , If(z2)1 > eB 
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implies 

zl z2  
1-z1z2 

For if f(z) E F then 

zi-z 
g(z) = f( 	) E F 

1-z z 1 

by (3.2). 	Hence if Ig(o)I = If(z1)1 < 1 , it follows from (3.1) 

that Ig(z)I < eB  for Izl < 	. 	Thus, if 

Ig(z2)1 = 
z1
-z2  

1-z1z2 

> e 

   

we must have 

zl z2  

1-z
1
z
2 

1 
2 

Following Hayman (1955b) we call a family F of functions f 

satisfying (3.3) a uniformly normal or normal invariant family. 

If f E F and f(z) 0 0 for Izl < 1 we write 

CO 

g(z) = logf(z) = y g
n
zn 

n=0 

CO 

h(z) = [g(z)]2  = y hnzn  
n=0 

Thus g(z) , h(z) are defined for Izi < 1 . 

Hayman (1955b) shows that 
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lg(reie)I= 0(1)/(1-r) 	, 	Ih(reie)1 = 0(1)/(1-r)2  , 

r t 1 

uniformly in 6 , 0 < 6 < 27 , and that 

B(g0,X) 
IX(r'g) <_ 	 

(1-r)X-1 
, 	X > 1 

I
x
(rh 

B(h0 ,X) 

(1-r)2X-1  

We show (Theorem (3.3)) that the limits 

S(6) = lim(1-r)Ig(rei0)1 , 	* (3 (6) = lim(1-r)lu(rei°)I 
r+1 	 r+1 

where g = u+iv , and a(6) = lim(1-r)21h(reie)1 exist, 0 < 6 < 27 . 
r+l 

If a is a radius of greatest growth of h we show (Theorem (3.1 )) 

that 

(3.4) 	argh(rei') = o(1)(mod27) 	, 	r 	1 

The analogous result for g is that 

argg(reie) = o(1)(mod27) 	or 

7 + o(1)(mod27) 

depending on 6 . 	The behaviour of g is thus similar to the 

behaviour of functions with positive real part. We quote a result of 

Hayman (1961) to show this. 

THEOREM A 

Suppose that 
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T(z) = 1 t 

is regular in lzl < 1 and satisfies u > 0 there. 	Then the limit 

a(0) = lim 1-r  T(reie) 
r+1 l+r  

exists. 	The set of distinct values 0 = 0
v 

in < 0 < 2.ff for 

which -  a
v 
= a(6v) 	0 is countable and 

av 
> 0 , la

v 
< 1 . 	Further, 

we have, as r 1 , 

and for 

M(r,T) = 2[max(al)+o(1)](1-r)-1  

Ix(r,) = C [la Ai-o(1)](1-r)1  

5 

where 

cx  A-lr[i(x-1)]/{r(Dr(ix)1 = 

(3.4) is a much stronger result than the one for weakly p-valent 

functions where, if f is weakly p-valent, a(0) > 0 , and 

argf(rei8) = A(r) , then X(r) is slowly varying as r 1 . 	This is 

proved for circumferentially mean p-valent functions in Hayman (1958). 

The result follows for weakly p-valent functions in the same way. 

This enables us to dispense with the a
v
(n) and define 

h
v
(z) = -ie 

(1-ze 
v)2 

a
v 

where a(9v) > 0 . 	We show (Lemma (3.9)) that 
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h(z) ti  hv(z) 	, 	z -4- e 10v 

-5.0 v  
uniformly in each angle larg(1-ze 	)1 < r/2 - e , (e > 0) , and 

hence, using Theorem (1.1) prove the following: 

THEOREM (3.1) 

Suppose that f E F , where F is a normal invariant family, and 

that f(z) 	0 in Izi < 1 . 	Then if h(z) = [1ogf(z)]2  , we have 

that the limit 

a(8) = lim (1-r)21h(re10)1 
r4-1 

exists, 0 < 0 < 27 . 	Further, a(0) = 0 , except for a sequence 

8 =
v 
, and 

/ 	N a(8 ) vA < B(h  0X)' 
< A < • 

We then show that (1.6) [the minor arc] holds for h and use 

Theorem (1.2) to prove 

THEOREM (3.2) 

With the hypotheses of Theorem (3.1) we have that if 

h(z) 	y h
n
zn  

n=0 

then 

Ih n 
lim = a(8v) 
n- 

Further, if h has more than one radius of greatest growth 
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111.1 
lira 	< (y ,24( e )2 

n 	, v. 
n4-= 

and so 1im lh 1ln does not exist. 
n400 

Hayman (1955b) also proved the following: 

THEOREM B. 

Let {1} be a class of Riemann surfaces spread over the w-plane 

satisfying: 

(3.5) 	R is simply connected. 

Let F be the family of functions f(z) = eg(z)  , where w = g(z) 

maps 1z1 < 1 one-to-one conformally onto one of the surfaces R . 

Then F is a normal invariant family if and only if there exists a 

number A such that the following holds: 

(3.7) 	if iv is any point in the w-plane, w = u + iv , then 

the radius, d(v) , of any schlicht circle centre iv contained in R 

satisfies 

d(v) < A • 

A natural question is the following: 

if the schlicht disks of Rg , centre the imaginary axis, are not 

bounded, but do not tend to infinity "too rapidly" as v 00 , w = u + iv , 

what can we say about the asymptotic behaviour of g and hence h ? 

To answer this question we define a new family of functions 

G = G(A,p) in the following way: 
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Let A,p be constants satisfying 

( 3.8) 
	

A > 0 ; 0 < p < 1 

and let {R} = {R(A,p)} be the class of Riemann surfaces spread 

over the w-plane satisfying (3.5) 	and the following: 

(3.9) 	if iv is any point on the. tmat 0,7 ctxis Ln the mol- plane the  
the radius, d(v) , of any schlicht circle centre iv contained in 

R satisfies 

d(v) < A(1 t Iv1P) 

We then define G = G(A,p) to be the family of functions g  , 

where w = g(z) maps Izi < 1 one-to-one conformally onto one of the 

surfaces R . We also define H = H(A,p) to be the family of 

functions h ,where h = g
2 

and g  E G(A,p) . 

With these definitions, the case p = 0 in (3.9) corresponds to 

condition (3.7) of Theorem B and hence the family of functions f = eg 

with g  E G(A,p=O) is a normal invariant family. 	For the rest of this 

chapter we shall denote by B,B1,B2,... constants depending  on A,p 

only, and by B(g0),B(g0,X),... , constants depending  on A,p,g0  ; 

A,p,g0  and X ; and so on. 	Our results are 

THEOREM (3.3) 

Suppose that h E H(A,p) , where A,p satisfy (3.8). 	Then if 

co 
h(z) = / hnzn 

n=0 

the limit 
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a(6) = lim (1-r)21h(re10)1 
r-0-1 

exists, 0 < 6 < 27r ; a(6) = 0 except for a sequence e = ev  , and 

2 a(e  ) < B(h X) 
V 

v 	0' 

for all X > max{i01} . 

THEOREM (3.4) 

With the above hypotheses 

Ihn 
n lim 	

l 	
2.  
, a 	

) 
n4-0 V 

and if h has more than one radius of greatest growth, 

lim n 

lhn < 	a(0v)2 	, 

and hence lim I hn1/n 
does not exist. 

n÷00 

We prove our results for 0 < p < 1 , so that p = 0 is a special 

case. 

Chapter 3 is divided into eight sections. 	In the first section 

we derive a bound for 1g11  , where g(z) = y gn
zn . 	In §3.2 we show 

that 

M(r,g) < B(g0)/(1-r) 	; M(r,h) < B(110)/(1-r)2  

In §3.3 we, show that the limits 
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e(0) = lim (1-r)Ig(rei0)1 	, 
r+1 

	

(e) = lim (1-r)lu(reie)1 	5 
r+1 

a(0) = lim (1-r)21h(re10) 
rl 

	

exist, 0 < 0 < 2n , where g = u f iv . 	In §3.4 we prove that if 
ie v  

a(0v) > 0 then arg h(re 	) = o(1)(mod2ir) , r 	1 . 	Hence, if we 

define 

hv(z) = 
a
v  
-ie 

(1-ze v)2 

we have 

h(z) ti hv(z) 
	

z 	eiev 

uniformly for z in larg(1-ze 	v)I < n/2 - c . 	In §3.5 we derive 

a bound for the means IA ' (r h) . We prove that for 	> nax{Lu} 

B(h0,x) 
I(r,h) < 	 

(1-r)2x-1  
0 < r < 1 

	

In §3.6 we complete the proofs of Theorems (3.1) and (3.3). 	In 

§3.7 we show that (1.6) (the minor arc result) holds for h , and then 

in the last section we complete the proofs of Theorems (3.2) and (3.4). 

The generalisation from eg  E F , where the schlicht disks of Rg 

are bounded, to g E G(A,11) , gives the generalisation of Hayman's 

result on functions omitting values mentioned in §0.2. 	Thus if 

2 < p < 0. and h(z) # wk , where {w
k} satisfies 
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arg wk  = 

and 

wk+1 	= 0( w k  I (P-1)/ P) 

then 	ser\ct 
	(- ‘,\)1/1  G G ( A, 1-  2 /e) we have  

M(r,h) = 0(1-r)-2  

I1  (r h) = 0(1-r)-1  

and 

i hn l = 0(n) 

3.1 The bound for Igl i 

THEOREM (3.5) 

Suppose that g E G(A,p) , where A,p satisfy (3.8). 	Then if 

g(z) = y gnzn 
	g 

0 = 
a  + iR  n=0 

we have 

Igli < 211 a1 	Bi(lgolP + 1)} 

where B1 is a constant depending only on A,p . 

Let w = g(z) map 1z1 < 1 one-to-one conformally onto a 

Riemann surface Rg lying over the w-plane satisfying (3.5), (3.6), 

(3.9), and let Dg be the domain in the w-plane which is the projection 

of Rg . 
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We suppose with no loss in generality that a > 0 , S > 0 , for 

otherwise the proof of Theorem (3.5) proceeds along the same lines. 

We let w = u + iv and define 

Al 
	w E Dg : u = 0} 	, 

A2 
	w E Dg : u = Al(l+Iv111)} 

A
3 
= {w E Dg : u > A1  (1+1v111)} 

where Al is defined below. 

We quote the following result of Hayman (1964, Theorem 6.8) 

LEMMA (3.1) 

Suppose that 	is a normal invariant family of functions regular 

in Izi < 1 . 	Then there exists a constant C depending only on 0 

such that for 

CO 

0(z) = G nzn E 0  
n=0 
	5 

we have 

	

(3.10) 	logpo  + C} 

and 

	

(3.11) 	M(r,(p) < po
(l+r)/(1-r) 	2Crl .exp 

where po  = max{1,14)01} • 

We now prove 
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LEMMA (3.2) 

There exists a positive constant Al  = Al(A,p) such that g E 

1z11  < 1 , 1z21 < 1 , g(z
i) E Al  , g(z2) E A

3 
imply 

z1  z2  

1-z1

- 

z2 

We let 

g(z) = g 
zi  z2  

Z
3 
 = 	 

1-z1

- 

z2 

so that g E G , g(zi) = g(o) E Ai  , and 

( 

,.,  
g(z2) = g 	_zi-z2 - g(z

3) E 
 A
3 1-z1z2 

To proceed further we need to apply Ahlfor's Theory of Covering 

Surfaces (Ahlfors (1934), see also Hayman (1964, Chapter 5)). 

Let g(o) = iv0  be any point in Al  . We may suppose with no 

loss in generality that v0  > 0 , since otherwise the discussion is 

similar. We choose v1 > v0  such that 

V -v 
1 0  - 1 

4A(14-vili ) 

and write d1  = A(14.v1/1 ) . 	Since g E G , g(z) has no simple island 

over lw-ivil < d1  . 	Then the mapping 

g(z)-ivo  w-ivo  
w  = (I)(z)  - 	4d1i 1i 

takes 
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w = iv1 into w = 1 

w = iv
0  into w = 0 

w = i(v1-8d1) into w = -1 

and cf)(z) has no simple island over 

lw -111 < 4 
	

n = 0,±1 

This is true since Iv1-8d11 < v1  

Now cp(z) is regular in Izl < 1 , and so has no islands at all 

. 
over lw I > 2 . 	It follows from Hayman (1964, Theorems (5.5), (6.2) 

and (6.5)) that such functions (I) for.m-n normal invariant family. 	We 

may thus apply Lemma (3.1). 

If z3  , 1z31 < 1 , is such that 14(z3)1 > exp(2C) , where C is 

the constant of Lemma (3.1), we have from (3.11), since 14(0)1 = 0 , 

that 

2C1z31 
exp(2C) < 1.1)(z3)1 < M(1z31,0 < exp{i_ tz3i  

and hence 

Iz31 
1-1z31 ->- 1  

i.e. 	1z
3 
 1 > z . 

This is true for any iv0 
 E A1 . We now show that we can choose 

A
l 

such that 

{w : 1w-ivo l = 4Ae2C(1+1v01 11 )1 

does not meet A2 = 	= u+iv : u = A1(1+1v111)1 . 
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L   
Choose v

2 
such that 4Ae

2C 
 (1+Iv 1 11 ) < iIv I ,v>,v,.We consider 

two cases: (i) 	1v
0 
 1> 1 	< 0 — (ii) 	Iv 0l 	Iv2 I • 

Case (i). 

Iv01 > Iv2 I • 	In this case we choose A
2 

such that 

A
2
(1+ 
	

lu) > 8Ae2C(1+1v01 /1 ) 

Then if w = u + iv G A
2 , 

we have 

Iv' > ilvol implies A
2
(1+1v1P) 	IP) > 8Ae2C(1+1v01 11 ) 

Iv' < ilv
0 
 1 implies 1w-iv01 >

o
1 >4Ae2C(1+1v

0  I
P ) 	. 

Case (ii). 

Ivo l 
	

In this case we choose A
3 

such that 

821e2C(i+I v2r)  < A3 	
• 

Then for all w E A
2 

lw-ivol > 8Ae2C(1+1v21 11 ) > 8Ae2C(1+1v0l P ) 

We choose A
l 
= max(A2,A3) . 	Then if g(o) E Al  , g(z3) 

E 
 A3  s 

we have lz3l 	• 

Translating back to f we have that if f(z
1
) E Al 
	

f(z2) E A3  , 

then 

zl-z2  

1-z z 
1 2 

as required. 
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We divide the proof of Theorem (3.5) into two cases: 

Case (a) 0 < a < A1(1+01) ; Case (b) a > Al(l+e) 	, where 

Al  is the constant of Lemma (3.2). 

Case (a). 

0 < a < A1( 
— — 1 a") 

As in the proof of Lemma (3.2), we choose vl  > a such that 

v1 - a = 411(1+v1 	, P) 	write d1 = A(l+v1 	, P) 	and apply Lemma (3.1) to 

q)(z) = qz)710  dli 

so we have from (3.10), 

W(0)1 < 2p0(logp0+C) 

where po  = max{1,14)(0)1} . 

If a 1 we have po = 1 and hence 

I 

I glI  

1 1 2C 

i.e. 	1g112C(v1-13) 

v1-13 Now 

	

	1 as B co so we may choose A4  such that 
A-A(1+01) 
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We now have 

< 2B
1
(1+611) 

where B = CA 

	

1 	4 ' 
If 4d

1 
< a <A

1
(1+61 ) we have 

Igll < 2a j log (4—)  + Ci 

< 2A
1 
 (1+13/1 ) t log ( 	+ C 

since d
1 

A(141) 

Thus 

1 g
1 

1 
-< 2B

1(l+f311 ) 

where B1  =A1  log (i+A 
1) + C 

This completes the proof of case (a) of Theorem (3.5). 

Case (b). 

a > A
1
(1+611) . 

We need the following 

LEMMA (3.3) 

Suppose that (1)(z) = u1(z) + ivi(z) is regular and 111(z) > 0 in 

	

izi < 1 . 	Then if 

03 

q(z) = / (prizn  
n=0 

(1)
0 
 = a + if3 

we have 
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( 3.12) 
	

10
1
1 < 2a 

and if lzl = t < 1 , we have 

1-t 	
2u1(z)a 

(3.13) l+t 	a2+u (z)
2
+[v (z)-0 

2 
1 	1 

The proof of (3.12) is well known (see e.g. Titchmarsh, 1938, 

page 194). 	To prove (3.13) we note that 

o(z)—(1) 
11(z) = 	 

o(z)440  

satisfies the conditions of Schwarz's Lemma and hence 

IzI 

  

so that 

   

1 

2 

2 

1- 
1+ Z - 

 

 

 

 

 

1 + 

    

   

1 

    

   

1 + 
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1.(z)q0 1 2  - 1gz)-(02  
lo(z)40 1 2 	10(z)-40 1 2  

2au1(z) 

2 	2 	2 
a +u

1 
 (z) +[v

1 
 (z)-f3] 

as required. 

We now prove case (b) of Theorem (3.5). 

Let p be the largest positive number such that 

u(z) > 0 	, 	IzI < p 

where g(z) = u(z) + iv(z) . 	If p > 1-7 Theorem (3.5) follows from 

Lemma (3.3) with B1  = 0 . 	If p < 1 , let r < p be the largest 

positive number such that 

u(z) > A1(1+1v(z)1P) 	, 	Izi < r 

There exists 0 , 0 < 0 < 271.  , such that 

u(reie) = A
1(1+Iv(rei6)1P) 

i.e. g(rei ) E A2  . 	Consider the function 

0(z) = ul(z)+iv,(z) = g(pz) = u(Pz)+1v(Pz) 

Now (1)(0) = g(0) = gl  and ul(z) > 0 , Izi < 1 , so we apply Lemma 

(3.3), with z = (r/p)eie  , and obtain 

2u(rei0)a 
(3.14) 	< 	  

p+r — a2411( reie  ) 2+ [v( rei0 ) -0]  2 
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"1 
There exists 01 

such that u(pe 	) = 0 , and, by hypothesis 

10 	i0 
u(re 1) > A1(1+Iv(re 1)IP) 

10, 
i.e. g(re j") E A . We thus have from Lemma (3.2) that 

(3.15) 2=E__ 
1-pr — 

Combining (3.11 ) and (3.15) we obtain 

1 - p < 	8u(re
ie
)a  

a
2
+u(re

i0)2+[v(re
i0
)-6]

2 

where g(rele) E A2  . 

Also, we have, by Lemma (3.3), 

I v(0)1 = 	g'(0)I < 2a 

Thus 

Ig1  < I 	2a 1 + 211--  — 

Using (3.15) we see that 

_ 	. 
P  — 1 2  1+1r — 2  

Hence 

(3.16) 	Ig
1 
 < I 	2a{1 + 2(1-p)} — 

< 2a 1 + { 	
a2.4.u(rei0)24.[v(rei0)_tfl 

16u(re10)a 

where g(rei0) E A2  . 
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We thus have, that given g0  = a + i$ , with a > Al(l+e) , 

we need to show that if w = u + iv is any point of A2  , then 

16ua  < B (1+Ig IP) 
a 2+u 2 
	%2 	1 	0 

where B
1 

is a constant depending only on A,p . We AAR asswevNe  1101, 

We may suppose with no loss in generality that Igol = R is greater 

than some absolute constant A5  . For if R LA
5 

we have 

a < R < A < A5  (141) 

which is case (a) of Theorem (3.5) with _A5  instead of Al  . 

We suppose first that Iv' < 3R . 	Then 

2 

U = 

< A
1  (I+(3R)P) 

and hence 

16ua2  
2 2 , a +u +kv- 

2 
 < 16u < 16A

1 
 (1+(3R)11) 

— —  

We choose A6 
such that 16A1(1+(3R)P

) < A6  (1+Ig IP) .  

Now suppose that Ivl > 3R . 	We choose B1  > A6  such that 

(v_02 ivi2 

16A1 	B1  

Then 
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16ua2 B1  a2(1+1v1P) a2 
 

5- < B (1 + 	 
a 2+u 2+l , v-%13)

2  	
1.7 1 2 	— 1 	) 

1 (1 + 	 
(3R)2 

< B1
(1 + Ig 	) 

This completes the proof of case (b) of Theorem (3.5). 	Hence 

Theorem (3.5) is proved in all cases. 

3.2 The maximum modulus 

Our next result is 

THEOREM (3.6) 

Suppose that 	= u + iv E G(A,p) , h E H(A,p) and 

r 	 r g(z) = G gnz
n 	h(z) =Lhzn  

n=0 	n=0 n  

Then we have for 1z0  = r < 1 , 

(3.17) 

and 

(3.18) 

Ig t(z0)1 	22 tlu(z0 	B1(1g(z0)11 	1)1 -r 

B(go) 	B(h,) 

M(r,g) < 1-r 	M(r,h) < 	 
(1-r)2 

where B1  is the constant of Theorem (3.5). 

To prove (3.17) we apply Theorem (3.5) to 

Z
o
+Z ) 

g 	 = u(zo) + iv(zo) + (1-r2
) i(zo)z + 1+zoz 

a2 
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which also belongs to G , since G is an invariant family. 

prove (3.18) we fix 	, 0 < 0 < 2n , and put 

R(r) = 1g(rei0)1 + B1  

Then from (3.17) we have, since 	u( rei0  ) 1 < 1g( r eie  )1 and 1Y(r)>. 	 1 so 014 t 

Ig(rei0 )111 	1 <2R(r)P  , that 

(3.19) 	R'(r) < 	22  {R(r) +2B1R(r)P1 	, 	0 < r < 1 
1-r 

We integrate this expression from 0 to r and obtain 

R(r)111  +2B1  
log 	< (1-p)log

1-r R(0)1_u +213

1 	-- 

so we have for 0 < r < 1 , 

R(r)lP  +2B1  < (R(0)1 P  +2B1) 

and hence, a fortiori 

R(r) < (R(0)1  -P 4.2B  )1/(1-p) (lr) 1 	\-
+
r / 

We thus have, uniformly in 0 , 0 < 0 < 2n , that 

Ig(rei0)1 < B(g0  )/(1-r) 
	, 	0 < r < 1 

and hence 

1h(rei0)1 < B(h0)/(1-r)2 
	

0 < r < 1 

l+r 1-p 
1-r 

This completes the proof of (3.18) and hence Theorem (3.6). 
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3.3 The existence of 13(0 , e(e) and a(0) 

We can now prove 

THEOREM (3.7) 

Suppose that g = u + iv E G(A,p) and h EH(A,p) . Then for 

each e , 0 < 0 < 27 , the limits 

	

(3.20) 
	

S(o) = lim (1 -r)Ig(rei0)1 
r÷1 

	

(3.21) 
	

13 (0) = lim (1-r I (rei0 )I 
	

, 

r-0-1 

	

(3.22) 
	

a(0) = lim (1-r)21h(rei0)1 
r4-1 

exist. 

The proof of Theorem (3.7) depends upon the following. 

LEMMA (3.4) 

Suppose that g = u + iv E G(A,p) . 	Then, with B2  = /031/(1-11) 

we have for a fixed 0 , 0 < 0 < 27 , that both 

(1-r \ I , 	ie  
gkre  )1 B2(1-

r)1-11  

and 

lu(re18)1 + B2(1-r)1P  

decrease as r fi 1, 0< r< 1 . 

We fix 0 , 0 < 0 < 27 . 	Then from Theorem (3.6) we have 
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Igo( 	
21g(rei0)1 	B2(1-p) 

rei°)  
1-r

2 	
(1-r)1+P  

This yields 

24(1-r\ \1r) Ig(rei0) ar 
B2(1-p) 

(1-r)m  
• 

We integrate both sides from r1 to r2  , 0 < r1  < r2 < 1 and obtain 

( 1-r2

+ 
 

14-r
2
) Igkr2eie)1+B,(1-r )1-

P < (1-r1 

e 2 	l+r2 
Ig(rieie)I+B

2
(1-r1)1-il 

This proves the first part of the lemma._ 

The second part of Lemma (3.4) follows in the same way as part 1, 

since we have from Theorem (3.6), that 

11-°(rei8)1 < Igl(reie)I < 2I11(rei8)1 	
B2(1-11) 

1_2 	l+p 1, (1-r) 

Theorem (3.7) now follows from Lemma (3.4), since B2(1-r)111  J. 0 

as r 1 , and evidently 

Ig(rei0)1 ÷ Me) 

	

' 	2 

	

(1+1;-) lu(reie)I 	
a* 

 2
(0)  

where 0 < (3*(8) < go) < 00 • 	(3.22) now follows from (3.20). 

3.4 The argument of h(reie) 

THEOREM (3.8) 

Suppose that g E G(A,p) and h = g2  . Then if e is a radius of 

greatest growth of h we have 

r I 

r 1 
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argh(re 	= arg [g(rei0)]2  = o(1)(mod2rr) , r + 1 

To prove Theorem (3.8) we need the following. 

LEMMA (3.5) 

Suppose that g = u + iv E G(A,p) . 	Then if g(o) > 0 , we have 

 

- o(1) 	r 	1 

and 

  

(6) = g(e) 	, o < e < arr 
• 

Clearly 0*(0) < 0(0) . 	Suppose that 0 ;< 0*(0) < g(o) . 

Choose 	0-fax.caviumv3.17;Nen Ellef c 	ro =f000 suck Mat 

lu(reie)1 <1..2'2g(rei0)1 
	

r0  < r < 1  

Now p < 1 , so we choose r1  > ro  so that 

B (1g(reie)1 1-1+1) < ri l g(rei0)1 	r1 < r < 1 

It follows from (3.17) that 

Thus 

2o-1n 1 ( ie < 	I g (re 	 < r < 1 , r 1 1-r
2 

(1-
+ r
r r 1g(rei0)1 

\ l 

decreases, r1  < r < 1 , where 0 < n 0/3, and hence 0(0) = 0 , 

contradicting the hypothesis 0(0) > 0 . 	Thus g* (e) = go) . 

Thus if go) > 0 we have 
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u(rei0)2 

u(re
i0
)
2
+v(rel0 )

2 -* 1 	' 
 

r 	, 

which shows that 

  

— 0 (1) 	, r+1 

This proves Lemma (3.5). 

Theorem (3.8) now follows from Lemma (3.5). 	For 

ie 	v(re
i0)  

tan arg g(re ) = 	+ 0 as r + 1 
u(rei0) 

arg h(rei0) = arg[g(reie 
	

= 2arg g(rei0) 

and to 4 0 implies 	2 4) = 2n1I , n integral. 

This completes the proof of Theorem (3.8). 

Now suppose that 0v  satisfies 	(13 x)) > 0 . 	We define T
v 

in the following way: 

i0 
-1 , if lim arg g(re V) = n(mod21r) 	, 

r+1 
T 

 ie 
if lim arg g(re 'V) = 0(mod27r) 

r+1 

We quote the following result (see e.g. Nevanlinna, 1970, 

page 65): 

LEMMA (3.6) 

Let the function w(E) be regular and boLtnded 	largEl < (71--0/2 , 

(e > 0) , where the Jordan arc R , which ends at the origin E = 0 , is 

located. 	Then if w(E) has a limit a as E 4- 0 on k , then 
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lim w(0 = a 

uniformly in each angle larg0 < n/2 - E . 

We define 

g,(  
T 13, 

) 	
V V  

-i0 
(1-ze v) 

hv (z) - 
a
v 

-ie 2 
(1-ze 

 

and prove the following: 

LEMMA (3.7) 

Suppose that g E G(A,p) , h = g2  and 0
v 

satisfies a(0
v
) > 0 . 

Then 

ie 
g(z) ti  gv

(z) 	, h(z) ti  h
v
(z) 	, z÷e v  

-ie v  
uniformly in each angle larg(1-ze 	)1 < n/2 - E , (c > 0) . 

-ie 	-ie 
We let E = (1-ze 	v)/(1+ze 	v) map lz1 < 1 onto Re c > 0 , 

ie 
so that z = e v  corresponds to E = 0 and 

(1-ze -ie v)g(z) 	[(1-g) 101 
i+c g U..fc e 	\*.I(T) 

is regular in largE1 < (tv-E)/2 and 14- Ze7` 	zt)(1-1r) them 	v■ew 

° 	(2,1a) 	v3( r) 	■5 	1z.ovAckeck ■.,v1c'orc'A 	< (1T-E)/2 . Now 

-i0 	 ie
v 

lim (1-ze 	v)g(z) = e(e ) , z = re 
ie

v 
z÷e 

from Theorems (3.7) and (3.8), so if we apply Lemma (3.6) to 
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and 

w() = 
Ei_) ) ie  

g 1+ 

Q = {E:ReE>0,IME=0} 

we have that 

lim w(E) = 13(0v) 
E÷0 

3 

uniformly in each angle largEl < 7/2 - e . 	Translating back to the 
ie 

z-plane we have, as z 	e 	2 

g(z) ti  gv(z) 

and hence 

h(z) ti hv(z) 

-10_ 
uniformly in each angle larg(1-ze 	v)I < 7/2 - e. 

This completes the proof of Lemma (3.7). 

3.5 The integral means 

THEOREM (3.9) 

Suppose that  g E G(A,p) , where 0 < p < 1 , and h = g2  . Then 

for 0 < r < 1 , 

)X 
(3.23) 	IA(r 	

B[g(0,1) g) 	 , 	X > max{1,2p} 
(1-r)A- 



(3.24) I (r h) < X ' 	— (1-r)2X-1 
A > max{ oll 

B[h(o),x] 
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For the case p = 0 , fdnctions f = e , where g E G(A,p) form 

a normal invariant family. 	Hayman (1955b, Theorem 5) proved Theorem (3.9) 

for this case. 

We thus prove Theorem (3.9) for the case 0 < p < 1 . 

	

(3.24) is an immediate consequence of (3.23). 	For 

IX ' (r h) = I2X
(r'

g) 

We may prove (3.23) for some A < 1 + p . 	For if 

)] 
Ix  (r g) < 

B[g(0  
7 	X = X

1 
 < 1 + p 

(1-r)X-1 
5 

and X2 > X1 , 
then 

-X 
Ix rg) <. M(r,g) 2 1, 

(r g)  

2 	Al 

Now M(r,g) < B(g )/(1-r) from Theorem (3.6), so we have 

1-X
2 

Ix  (r,g) < {B(g0)}
2-X1B(g

o
)(1- 

. 	2 

The proof of Theorem (3.9) for 0 < p < 1 runs along the same 

lines as the proof for the case p = 0 . We first quote the following 

result (see Hayman (1955b), Lemma 3): 

LEMMA (3.8) 

Suppose that g = u + iv is regular in izi < 1 . Then for 

1 < X < 2 , 
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I
x
(r,g) - Ig(0)1 A  <{I

X 
 (r,u)-1u(0)Ix 	, 0 < r < 1 

X1  

Now 

1111A < {log  r(1ide2g1 )}' 	{log/(1-F1e 29)}x 	5 

so if we define 

2.n.  

TA(r,f) = - .ir 	{log i(1+1f(reie)12}Ade 

0 

we have 

I
X
(r
'
u) < T

X
(r
'
eg) + T

X 
 (r e 

Also, if g E G , then -g E G , so to derive a bound for Ix(r,g) we 

need to derive a bound for T
x
(r,f) , where I = eg . 	To do this, we 

quote the following special case of a general identity due to Spencer 

(1943) [see Hayman (1955b), Lemma 2] . 

LEMMA (3.9) 

Suppose that -k(R) = [log(1+R2)]X  , 1 < A < 2 , and 

4X(X-1)R
2 

	

2 X-2 4x 	2-1 

) 
(3.25) 	tY(R) = 	[log(l+R )] 	+ 	[log(l+R )J 2,2 	, 	) 2,2 

(1+R 	1+R  

Then for 0 < r < 1 , 

r 	 (if(reie)l)de = 	tdt 	T(If(tei6)1)1.0(teie)12d0 	. dd r 	

s  arr 	 r 	a 

o, 	 0 	0 

We can now prove 
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LEMMA (3.10) 

Suppose that g E G(A,p) , where 0 < p < 1 , and f 
	

Then 

for A > max{1,2p} we have 

■ Br T(r
'  ) < 	'

g(0)A] 	, 	0 < r < 1 
(1-r) 

It follows from Theorem (3.6) that Lemma (3.10) holds for 

0 < r < 1/e . 

	

	Again from Theorem (3.6) we have 

1 2 < 41f(tei0)12  In(teie) 	ie 

	

{ Ulte--11+10! (I 	ie,ip 	2 
(1....t 2)2 	I 	,1 -1 ig■te )1 +1)} 

where g = u + iv , f = eg  . 

Using Lemma (3.9) we have for 1 < A < 2 , 

2ff 

(3.26) d 

r 
 dr -T:(11(rei8)1)de d  

10 

2Tr 

T(If(reie)1)41f(reie) 12{111(rei0)1+B 
1 
 og(rei0)1114.1)12de 

(1-r2)2  0  

where T(R) is given by (3.25). 

To obtain a bound for the integrand of (3.26) we look at the 

behaviour of the integrand as R = If(rei0)1 tends to 0,0,  . 	We write 

I =   [og(1+R2)]X-2 4. 	WiR2 x 	{I I B (I IP  ) 2 . 

	

Llog(l+R2 	u + 	g +1 } 
(1+R2)2 	(1+R2)2  

Case (a). 	R 	0 . 	This implies eu 	0 , i.e. u 	-Co, IgI 	- • 
Thus 

e4u[log(1+e2u )0-21u1 2  = 0(1) 	, 	U 	— Co 
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2u r 	/ 
e ilogkl+e 

A-1
lui

2 
= 0(1) 	, 	u 	- co 

and so we have 

I < B(A)( (g1
2p 

 +1) 

Case (b). 	R 	. 	This implies eu 	+= , i.e. 

, 
so we may replace u by ilog(l+R

2 
 ) and obtain 

U 	+c° 	I g I + 

I < X(X-1){[log(1 +R2)] A+B(A)[log(l+R2e-ilell + B(X)1g1 2t1  

[log(l+e2u)] -1  < (2Igi+log2)\-1  < B(X)1(&-1  

I < A(A-1){[log(l+R2)] X+B(X)IgI A-1-11-1} + B(A)ig1 2/1  

Altogether, we have 

I < X(X-1){[log(1+R2)] X+B(A)1g1 X411-11 + B(X)(1g1 2P+1) 	. 

We now suppose that A < 1 + p , so that A + p - 1 < 2p . 	This 

yields 

(3.27) 

c4 21r 

r  dr 
d 

r 
 d 

NL (Igreie Wde dr 
0 

2 
2ff

Y(If(reie )l)de+B(A)Ig(reie )1 211d0 
(1-r ) 

0 	 0 

r
2 2 

Now 

so we have 
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where 

(3.28) 	y(R) = 4A(X-1)[log(l+R2)] X  + B(A) 	. 

We now derive a bound for I
2p

(r,g) . 

Let v satisfy max{1,2} < v < A . 	Given E > 0 arbitrarily 

small there exists K(E) such that 

IvI 2P 
 < EIvIv + 

K(E) 	. 

We have from Lemma (3.8) that 

Iv (r,g) < Ig(o)l v  + T)1"7.  fIv(r,u)-1u(0)1v1 

and hence 

I
2p
(r,g) < EI

v
(r,g) + K(E) 

< E{Ig(o)lv  + 	Iv(r,u)} + K(E) 

< )3,1( go, v ) Iv  ( r ,u) + 	Elg(0)) . 

We thus have, taking v = A , that 

d d 
r' dr r  dr 

2i 

(Igrei8 ) Ode 

0 

2 	
)2n 

r 	y(If(rei8 )1)de+Bil(go,A)E 	lu(rei0 )I XdO+K4e)41(0 

(1-r2)2 	
0 	 0 

27r 

rt 	y ( v(ce 3)t)ok6 Ei(„x)E[71;(ff) 4Tx(f, V-01 \1■1(€ 'MA)/ 
(,1-srl.)1  

-1-11.‘S 	ev.A41), .),Acks 	\r4tt\.\ 414- LIAste.act o..( 4 3  So l 	we. cke.4■Ae 

Tx*  
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we_ have. 

	

d d 	 2 
r dr  —r  dr   TX  (r,f) < 	

r 	([ 11.x(x-1)+EB(g0'  X)ITX  (r f )+B(A. ,E 
(1-r2 )2 

where B2.( ,e)q(0)}1--B( X) + 	e i c(o)) , 

Putting x = log(1/r) y = 	r ) we obtain 

BIA,c4 cS(0)  
dx 

< WA-1)+631(go ,X))-i 	
x

2 	• (3.29) 2 — 

Wt 	write -7 -:. *( X- TYof, 1/ 2/4 3) ark  cmt Z t 	 er■ 

dz 

	

= (X-1+n)xX-2" y + 21/4-1" LIZ
dx 	 dx 

(2-2( X -111 ) dz ) ' -(x+n)(x+11-1)x-(x+n+1)Y 	xl-X-n d2Y  
dx 	 dx2 • 

Using the bound for d2  y/dx2  in (3.29) we get 

d 	2-2(X+n) dz 	I 	 r 
dx 	 dx 	16')%go,Ai-n [2A-1+rd 	Y  

xX+n+1 X-En+1 • 

We. choose 	so that eB1(g0'  X) = n [2X-1+n] . 	We then have 

d( 2-2(X+n) dz 	B3(X,9(e)  
dx \x 	dx) 	xX+n+1 	• 

Now x = 1 corresponds to r = 1/e , so z , dz/dx are bounded at 

x = 1 from Theorem (3.6) . 	We integrate twice from x0  to 1 , 

0 < x0  < 1 , and deduce 

z < B(g X) 	, — 4 0' 	0 < x0  < 1 • 
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Hence 

114gO'X)  
Y — A-1+n 0 < x< 1 • 

We thus have for max{1,20 < A < 1 + p that 

-)k  
Tx(r,f) < B(g A)(1-r) 

1-X-n 
4 0' 

and hence 

I
x
(ru) < B(g

0 
 ,A)(1-r)i-X-11  

4  

Using Lemma (3.8) we deduce 

IA 	5 
(r,g) < B(g0' A)(1-r)1-X-1 

Now if 0 < p < 2 , then 

1 e < r < 1 

l/e < r < 1 

max{1,20 < A < 1 + P 

B(g X) 
I (r g) < I 	(r 	< s 0'  
2p 	1+11 	— (1-r)211 

and if 	< p <. 1 , then 

B(g0 , X) 
I
2p 

(r,g) < I
2p+n 

(r,g)  (1-r)2/1-1+2fl  

We may thus suppose i < p < 1 , for if 0 < p < 	the argument 

is similar. 

we have 

It 	-Cot\ o.,,,)s and then 

B(g0,X) 
I (r,g) < 2p 	— (1...r)2p-1+27z • 

We thus have, from (3.27), that for 1 < 2p < X < 1 + p , 
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d 	d r — dr r  dr — TX  (r,f) 

B(g, 

(1-r

,X) I r
2 

4X(X-1)T (r, f) + 	5 u   
(1-r2)2 [ 	X ' 
 (1-r)211-1+2 

Putting x = log(1/r) , y = Tx(r,f) as before, we get 

B(g ,X) 
(3.30) 	< X(X-1' -JL + 	 2 — 

x 0- 21+2 	0 < x < 1 '1/ 	' dx 	x
2 

We now put z = xX-1y and deduce 

d ( 2-2X dz1 
x) dx 	d 	= -A(A-1)x-X-1y x1-X d2y  

dx  

Using the bound for d2  y/dx2  in (3.30) we obtain 

d ( 2-2X dz 	(X+20-2) 
dx x 	Vg0'A)x  0 < x < 1 

Again, z , dz/dx are bounded at x = 1 (r = 1/e) , from Theorem (3.6), 

so we integrate first from x0  to 1 , 0 < x0  < 1 , and deduce 

1 -(X+20-2-0 
c(2 	- 	dz 	< B(,

850'
x) 

otx 	 dxo 	—  5  
\•43M1ZIO 

Replacing x0  by x we get 

dz X){ dx 	6 0' 
+ 	cX-(1)kki.2.1-1) 

0 < x < 1 

Integrating again from x0  to 1 , 0 < xo  < 1 , we get 
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- z x= x= X, -xp 4  z 

X -  2/1A-2')/ 

ThUS, for A > 24 +2fl , we have 

z < B(7g0 ,A) 	0 < x < 1 

Now 	1.1 	4,(\-2/A) so this holds for A > 2p . We thus have for 

< 	< A < 1 ± p , that 

B(g A) 

	

T (r,f) < 	1  °' 

	

— 	,A-1 (log 1/r) 
'1/e < r < 1 

11(1. hence 

B(g ,A) 
T (r I) < 1 	° 
A ' 	— (1-r)A-1 

5 	1/e < r < 1 • 

Now this is true for l < 1 + p . 	If A2 
 > 1 + p we have, with 

p 

An-A, 
T (r, f) < (log i(l+M(r ,f)2)}  c 	m 	r%  
A2 	

— 
1  

1-r 	
. TA

(r f) 
1 

 

<B(go
)A2-x1B(g0'  A1 

 )(1-r)1-A2 

B(go)  A
2
-X1 

Theorem (3.6). 

This completes the proof of Lemma (3.10) and hence Theorem (3.9). 
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3.6 Proof of Theorems (3.1) and (3.3) 

Theorem (3.3) contains Theorem (3.1). 	Theorem (3.3) follows 

immediately from Theorems (1.1), (3.7) and (3.9), and Lemma (3.7). 

Theorems (3.7) shows that a(0) exists, 0 < 0 < 27 ; Lemma (3.7) 

shows that  (1.2) holds for h E H(A,p) ; Theorem (3.9) shows that 

(1.3) holds, where p = 1 . 	Thus the conditions of Theorem (1.1) are 

satisfied for functions h E H(A,p) and Theorem (3.3) follows. 

3.7 The minor arc 

We have proved that if h E H(A,p) , 0 < p < 1 , then 

E = 10:a(0)>01 is countable. 	Thus, given n > 0 , we define N = N(n) 

.o be the number of radii of greatest growth of h for which a(0) > ri
2 
, 

tend hence a(0) > fl . 	Let 0v , v = 1,...,N be such that 

> a
N  > n . 

	For v = 1,...,N and K a large positive 

constant ye define 

V 
0:10-0

v
I<K(1-r)1 ; 

N 
U yv 
v=1 

C 
y = [0,27)\ I 

and let y
v 

be the set of re
10 for which 0 E y

v 
. We denote the 

as ,I 
closure of yv  by (yv  ) . 

We now prove 

LEMMA (3,11) 

Suppose that g E S(A,p) and h = g2  . Then, given n , 

n < 1 s  there exist K , r
0 

such that for r0 
< r < 1 and 

r 
0 	^Y 	9 

> R > 1. — 	— 

• 
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Ig(reie)1 < 	 
(1-0 	

Ih(rei0)1 < 	 
(1-r)2  

We prove the first inequality, since the second follows immediately. 

Given 1.1 Y  0 < n < 1 , we define N = N(n) as above. 

We consider two cases: 

I. 0:K(1-r) < 10-0v1 < K(1-R) = 62(1 < v < N) , where R,K will 

be fixed below; 

II. 0
(v) + 6

2  < 0 < 0
(v 1) - 6

2  (1 < v < N - 1) — — 	—  

0
(N) 

+ 62  < 0 
<0(1) + 2ff - 62 '  

where the 0(v) , (1 < v < N) are the Ov  , (1 < v < N) , with 

2 0(3) < 6()  < 	<
(N) 

Case I. 

We choose K = K(n) so that 

10
1 n 
K < 

As in Lemma (1.1) (see equation (1.11)) we have 

1(6-e ) 	10-ev  I 
1 1-re 	I 	5 

and so for z < r < 1 , Ie-0v 1  
>K(1-r) (1 < v < N) we have 

(3.31) 
10(3v  v  

11-re
5-(0-0v)1 	K(1-r) 

10(3
v( l+r) 

K 1-r/ 

< n (14.r\ 
4 \l-r/ 



1g(reie ) 1 + B2(1-r)1-4  < 	 
l+r

1 
(r.eis )1 + B

2 
 (1-r

1  )
111  

1  

1-r
1 
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since e
v 	

e
1 
. 

Choose e = e(K) and R
0  > 
	so that 

is —ie  
(yv  ) C {z:larg(1-ze 	v)1 < n/2 - c}C lz:lz1<1 

R
0 
 < lzl < 1 

We have, from Lemma (3.7), uniformly for rel 
 

E ( Tv 	, that 

i(0-0 ) 
11-re 	v 11g(rei6 )1 	ev  

We choose R > R
0 
 so that for R < r < 1 , re

ie  E (y *) 1
* 

 ) 5 

i(0-0v ) 
(3.32) 	11-re 	11g(re

ie
)1 < 2(1_ 

B2
(1-r)1P  < 4 

We need to show that if R < r < 1 , then 

6 E 10:X(1-r)<10-0v 1<K(1-R)1 implies 	1g(rei')) < n/(1-r) 	. 

Let r
1, 	

satisfy R
1

< r
1 

< r , 10-0
v1 

= K(1-r ) . Then r 
1 	1

e
ie 

 

satisfies (3.31), (3.32) and we have 

(1 
---) 1g(r1  ei0 )1 < 

From Lemma (3.4) we have 

2 
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Hence, a fortiori 

1-
41 Ig(rei0)1 < in , K(1-r) < le-ev l < K(1-R) 
(  

R < r < 1 

and so 

g(reie )1< (12r) 

This completes the proof of Case I of Lemma (3.11). 

Case II. 

For the purposes of this argument we let 	
(N+1) = 

and consider the set 

r
v 

= {0:0(y) 
	2 < 6 < (v+1) - (S

2
} 

 — — 

On 1'v we have 

(3.33) 	lim 	Ig(pei0)I + B2
(1-p)111} < 

l+p p÷1 	
2 

Let p = 1 - 1/p , p > 2 . 	If for some u we have that for all 

0 E r 

C
( 1-p”  ) 	i0 

	+ 
	1- 	- 

I g( ppe ) I 	B2(1-pp) 	< 1)- 
Ap  2 

then from Lemma (3.1k) 

ft) Ig(Pe 0 )1 + B2(1-p)1-11  < 
1— p 

A u  
(p ei0)I + B (1- )111  2 Pp 

n 
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and hence 

(1 -P)1g(Pei())1 < 
	p < p < 1 

which is our result. 

We thus suppose contrary to this that for each u there exists 

ep Er v such that 

i0 
(3.3k) 	

111 a ( l-PP) 	( 	1-1 )1 + B2(1--p ) 	2  g,p e 
l+p 

(v) 
Let 	be a limit point of the sequence {0v

} . 

It follows from (3.34) and Lemma (3.4) that for each fixed p 

(1 
	

n 
2) I 5-(pe

i0 	
+ B2(1-p)

1p 	
2  

l+p  < p < P 

If p is fixed the result holds for all large p and by letting 

p 	co  we have 0 -* (v)  and 

(v) 
1g(pe-LY 	)1 + B2(1-P)1-11  > 2 l+p 

2 < p < 1 — 	5 5 

which contradicts (3.33). 	So (3.34) is false for 1 - 1/p = pp  < p < 1 

and some p > 2 . 

Thus, given n > 0 , there exists pv  = pv(n) such that for 

1- l/pv 
< p < 1 and 0 E rv 

we have 

\
( Ig(Pe )1 	B2(1-p)1- 

11 < 

2 l+p/ 

and hence 

1g(pei0)1 < 	 (1-p) 

5 
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This is true for v = 1,...,N , so we let r0  = max{R,p
pUN

1 . 

Then for r
0 
< r < 1 and 8 E yc we have 

Ig( rei0 ) 1  < (12r ) 

This completes the proof of Lemma (3.11). 

3.8 Proof of Theorems (3.2) and (3.4) 

Theorem (3.1k) contains Theorem (3.2). 	Theorem (3.4) now follows 

from Theorems (1.2), (3.8), (3.9) and Lemma (3.11). 	For Theorem (3.9) 

shows that (1.3) holds for some X < 1 and h E H(A,p) , Lemma (3.11) 

shows that (1.6) holds, and Theorem (3.8) shows that (1.7) holds. 	Thus 

the conditions of Theorem (1.2) hold for h E H(A,p) and hence 

Theorem (3.4) follows from Theorem (1.2). 
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