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ABSTRACT 

Firstly, the theory of spot price behavior in commodity markets 

is considered. In this, particular reference is made to: 

(a) the effect of 'noise' on stable dynamic relationships 

between demand, supply and price where 'noise' stands proxy for numerous 

unspecified variables; 

(b) the application to the economic system of the theory of 

interacting populations. 

Secondly, a formulation of the theories of the term structure of 

interest rates is an operational form and in continuous terms is applied 

to the term structure of commodity prices. 

Thirdly, an analytical relationship is derived (by way of stochastic 

calculus) between the spot price, forward price and maturity in terms of 

fixed parameters, using the Black Scholes-Merton formulation of the 

option pricing model. 

Finally, the pricing mechanism for risky assets is considered as 

a control problem and price trajectories in time are derived as a 

solution to an optimal control problem. 
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CHAPTER I 

INTRODUCTION 

In this research report, we present some theoretical developments 

we have made on the following topics: 

(1) Development of some explanatory models for the behavior of 

spot prices in commodity markets. 

(2) Application of some theories of the term-stucture of interest 

rates to the problem of the term-structure of commodity prices. 

(3) Application of the capital asset pricing theory to the 

problem of the term-structure of commodity prices. 

(4) Forming the basis for developing a sound theory of viewing 

the financial and/or asset markets as a dynimnic control system. 

The problem of pricing of commodities touches the heart of many 

sectors of the economic and the political world. Questions about political 

autonomy, governmental intervention, industrial relations, the merits 

and demerits of cartels (either of the consumers or of the producers) 

and numerous other topics arise in this context. By the word 'commodity', 

we normally imply any of the soft and hard materials sold by auction 

in London and other leading centres of world trade. But the theories 

that are applicable to explain the behavior of the prices of commodities 

are equally applicable - sometimes with minor modifications - to the 

pricing of foreign exchange bonds and virtually to the pricing of every 

financial or physical asset traded by auction. 

Any aspect of pricing concerns the micro-economic segment of 

economic theory. The augmented effects of the behavior of commodity 

prices, foreign exchanges and the money markets concern the governmental 

agencies in charge of formulating and regulating the fiscal and monetary 
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policies and thus the economists concerned with the aggregate economy. 

The theoretical foundations for the present project are numerous 

and can be summarised under the following headings: 

(1) Applications of stochastic calculus in order to obtain refined 

formulations of some leading economic theories. 

(2) Applications of biological population models to the problem 

of price behavior. 

(3) Developing continuous time versions of some leading theories 

of the term-structure of interest rates. 

(4) Effect of noise - symbolising unspecified information - on 

the behavior of prices and on the criteria that are normally applied to 

model a stable behavior of prices. 

(5) Derivation of a version of the capital asset pricing theory 

that relates to the problem of the term-structure of financial and 

physical asset prices. 

(6) Deriving operational theories.of term-structure of commodity 

prices applying some of the above resultst 

(7) Application of modern control theory in the development of 

a theory of viewing the market mechanism as a control system. 

We believe that the applications of the above to tackling the 

problems we began with are authentic and complex enough to warrent this 

doctoral report. 
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Now, we present in detail the way the thesis develops in the 

following phases. 

First, we consider the behavior of spot prices in commodity markets,  

Under this topic, we deal with two approaches to the problem. The first, 

in Chapter (2), analyses the implications of a random noise input - 

which symbolises the effects of numerous unspecified and unspecifiable 

variables - for the Walrasian criterion of stable price behavior. Finding 

the Walrasian dynamics unsuitable under such circumstances, it goes on to 

examine the effect of such an input on the logistic model of price 

dynamics. The logistic model with stochasticity leads to reasonable 

probability density functions. The models are analysed for single and 

multiple market situations. The second approach, in Chapter (3), examines 

two dynamic models of spot price behavior in continuous time. Both of 

these are based on biological models of population changes of interacting 

species. That based on the prey-predator system leads to an undamped 

cyclical price behavior. That based on the epidemic model leads to a 

damped harmonic pattern. 

Secondly, we consider the continuous time formulations of some 

theories of the term-stucture of commodity prices. In Chapter (4), we 

apply the continuous time versions of the expectations model and the 

error-learning model of the term-structure of interest rates to the 

problem of the term-structure of commodity prices. Under the assumption 

of a random-walk model for the behavior of the spot price, the resultant 

formulae for forward prices are in terms of observable and historically 

measurable variables and hence are operational. In Chapter (5), we 

consider the implications for the term-structure of interest rates of 

the twin assumptions of a joint random-walk model for the movements of 

prices and of risk-averting behavior on the part of investors. Such a 
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consideration leads to the Sharpe capital asset pricing model for 

financial instruments. The results are applicable - with some minor 

modifications - to the term-structure behavior of commodity prices. The 

results are also operational and easily testable. We consider also the 

problem of the control of the supply of financial instruments - a 

problem faced by any Central (Reserve) Bank and the problem of equili-

brium term-structure of commodity prices, assuming the amounts of supply 

in this case to be speculative. 

. Thirdly, in Chapter (6), we examine a theory of the term-structure 

of commodity prices based on some recent work on rational option pricing 

theory. On the assumption of a general random movement of spot prices 

and a known term-structure of interest rates, we derive a term-structure 

of commodity prices, when the forwards are buyable on margin. The result 

is entirely in terms of observable variables. 

Finally, in Chapter (7), we consider the pricing mechanism for 

risky assets as a control system and derive the price trajectories in 

time as a solution to an optimal control problem. 

Each of the above chapters has a section surveying relevant 

literature and -relevant summary and conclusionS: 

In a final chapter, we present a general summary of the conclusions of 

the project And its possible extensions. 

Appendices explaining the mathematical content of the above 

formulations are presented at the end of the report. 

Knowledge obtained through this report has many useful extensions. 

The applications of biological models to the economic system - which is 

a new extension in itself - can be developed to obtain a dynamic 

equilibrium model of the total economic system. 
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Following the progress made in this project on the topic of 

formulating continuous time versions of some of the theories of the 

term-structure of interest rates and their applications to the problem 

of the term-structure of commodity prices, we can envisage the appli-

cation of similar ideas to other leading theories of the term-structure 

and the possibility of formulating unitary models of term-structure 

that relate to all financial and asset markets. 

Extending the simple beginning made in the project, it is possible 

to develop a general and sound theory of viewing the financial markets 

as a control system. It is also possible to apply the continuous-time 

capital asset pricing theory to the determination of the risk-structure 

of the assets and liabilities of any concern or financial project and 

thus to the development of a capital budgeting theory leading to a 

healthy matching of risk, return and time between assets and liabilities. 
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CHAPTER 2 

STOCHASTICITY AND THE STABILITY OF PRICE CHANGE 

1. Introduction 

The movement of the price of any commodity in a complex economy 

is governed by a host of factors - some of which affected by the very 

movement they cause. A complete model of the movement would be 

possible only on the basis of complete knowledge of the causal mechanism, 

interactions of the forces and their future variability. Such a model 

is untenable because of 

(a) the vastness of the information required 

(b) the rapidity of change in.the economic system, which 

makes any model, once put together, out of date very soon and hence in 

need of updating, and 

(c) the unpredictability of some of the variables. 
• 

2. Survey of Literature  

2.1 Economic Models: 

Barring such a complete model, one could, as a second-best attempt, 

try to formulate an approximate model of price behavior. One could, by 

using what could be termed as econometric methods, try to estimate the 

importance of certain variables with respect to the behavior of price. 

There one does not assess all the relevant variables but only those 

considered relevant after a prior economic reasoning - and thus the 

choice of the variables and hence the model is open to criticism as 

every line of economic reasoning has its critics. 

Iii a single linear equation model, the variables chosen must be 
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relatively 'independent' and must be individually predictable one 

period ahead or else be lagged one or more periods behind the price 

series. Thus in order to explain and predict price behavior, we 

must be able to predict several other variables. Such models are to 

be developed for each particular commodity. If one wants a model 

for commodity price movements as a whole, one has to solve the problems 

of weighting, aggregation and index7ation. The econometric_ way deals 

with the particular and not with the 'general'. The coefficients of 

linear regression are estimated according to the method of least squares 

and greater independence among the explanatory variables ensures that 

the estimates will be unbiased. Shisko (62), Hieronymus (30), Shepherd (61) 

and Fox (25) have published results of using such models for agricultural 

commodities. 

The above could 	be extended to simultaneous equation systems. 

Here the direction of causation is not unilateral. But, unless the 

results prove consistently superior to those obtainable by the single 

equation approach, the extra effort and expense involved in such a 

construct would hardly be justifiable. Witherell (74) has published 

results of such a model for the wool market, Weymour (72) for cocoa and 

Houck (31) for the soyabean-soyabean oil-sbyabean meal market. 

One could include adaptive models - exponential smoothing, 

Box-Jenkins models etc. - as belonging to the econometric group of 

models. Such adaptive models are - unlike those above - purely predic-

tive, since they do not use explanatory variables. They are attempts 

at forecasting the future levels of a price series on the basis of an 

understanding of how it had behaved in the past. Empirical work on the 

application of such, models in the area of commodity price forecasting 

has been minimal. (See Granger and Labys (28) for an exhaustive 

coverage of the above topic.) 
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2.2  General Models: 

We now turn to consider models that are general since they stem 

from consideration of the presumed speculative nature of all commodity 

markets. By definition, speculative markets cannot produce a price 

series having predictable patterns, for if they did, they would have been 

arbitraged out of existence by the numerous keenly anticipative partici-

pants that such markets ought to have if they are to live up to the 

economist's definition of them. Thus a random movement in prices is 

the theoretically expected price series in such markets. Samuelson (51) 

derives such a result from a general stochastic formulation of anticipated 

behavior. Bachelier (EU) derives a similar result as early as 1900, 

using stochastic calculus. Working (77) compares a randomly generated 

price series with several actual ones and found the similarity rather 

remarkable. But, in commodity markets, the random walk hypothesis has not 

met with the universal acclaim it enjoys in the stock market. But, then 

again, the criticisms are not consistent in themselves either. Working (78) 

reports a tendency for serial correlation in prices for Chicago corn, 

wheat and rye futures. Larson (39) suggests the existence of some linear 

dependence in the futures prices of corn. Both Houthakker (32) and Schmidt 

(60) 	have investigated the use of simple filter trading rules and 

because of the apparent profitability of. such rules, suggest that the 

random-walk model is incorrect. In a first study, using a so-called 

filter rule, Alexander (. 2) suggested that the random walk model was 

incorrect. But in light of subsequent criticism about the practicability 

of his filter rule, withdrew most of his conclusions ('3). Finally, in 

a very complete and careful study, Fama and Blume (21) reach the conclu-

sion that the results obtained from the particular class of trading rules 

that they used do not in any way contradict the random-walk model. In 

view of the mixedness of opinions, obviously further empirical work is 

needed to clarify the position of the random-walk model. But, perhaps 
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the theoretical requirement for such a result to hold, i.e., numerous 

keenly anticipative participants, does not hold for commodity markets. 

It may be that, as Houthakker argues, price deviations are watched in 

commodity markets by relatively few, rather old-fashioned traders and 

thus the markets are too unsophisticated for all predictable patterns 

to be completely eliminated by active arbitrage(32). 

In this :part- we consider a method of approach to the problem of 

price behavior. We start from the premise that the function of price 

is to equilibrate supply and demand, which are necessary functions of 

,price and of other variables. The effect of other variables on price 

will be through the twin scissors of supply and demand. At a given form 

of the supply/demand twin functional, there is only one clearing price. 

The change of this price occurs because either the demand function or 

the supply function.or both change due to change in the value or the 

importance of one or more of the parameters. There must be a new 

equilibrium price and this price will have to be finite, i.e., the 

change in price cannot be explosive, after a while it will settle down 

to the new equilibrium value - for prices are not seen to explode to 

infinity or zoom down to negative values. This kind of response of 

price to a step change in parameters is considered by stability theory. 

There are several-. stable relationships in economic theory (51) 

which relate the rate of price change to the discrepancy between supply 

and demand. We will choose the simplest of them called the Walrasian 

criterion. It is algebraically similar to the others. Our interest is 

not so much in itself but in the way such a criterion - and hence 

such criteria - respond to a constantly changing environment. Though 

considered stable for estop change in parameters, we are interested in 

finding out how such a criterion behaves under constantly changing 

differential between supply and demand - and a change taking place in 
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such a manner that is not predictable, (if it were, one could build a 

purely deterministic dynamic model - which, as we saw 	was 

impossible even on the basis of complete knowledge). We shall assume 

that this change occurs in the form of new information arriving on the 

scene and we consider this input, to simplify analysis, as a Brownian 

input. (59) (see the mathematical appendix for guidance through the following.) 

3. The Simple Walrasian Criterion: A simple criterion for stable price 

adjustment is the Walrasian one of linear dependence of rate of price 

change on excess demand. 

dP = dt 	11(ciD 	q ) wt H (Q) 	(1) 

where 

and 

t 

H 

cIS 

price 

time 

a monotonically increasing function with H(0) = 0; H' > 0 

quantity in excess demand 

quantity supplied 

q : quantity demanded 

Let qs  and (ID  be entirely functions of price, i.e., there are 

no shift variables. (This is a simple assumption). 

qD 	D (P) 

cI 	
S

S = (P)  

Equation 1 becomes 

dP 
= H(D(P) - S(P)) 

dt 

For the given twin functional (2), there is only one equilibrium price 

at which D(P) = S(P) and hence 

„Tt- = H(0) dP 	0 

Call the equilibrium price Pe. Expanding (3) in Taylor series around 

(2)  

(3)  
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P
e
, and omitting terms of orders higher than the 

dt 
dP 

X(De  - S
e
) (P 	P

e
) 

where 

De 	
dD dS 
dP P=Pe; Se (c)P=Pe; and A = (.311) =  > 0 dal.  and this has the solution 	 Q0  

P(t) = Po + (P
e 
 - P

o
) eX (Dp

e 
- Sp

e
)t 
	

(5) 

which will be stable if and only if 

(Dpe - Spe) < 0 
	

(6) 

which will be true for any simple demand-supply functions - negative 

sloping demand curve.  and upward sloping supply curve.Solet us assume this 

the validity of the above inequality and thus the stability of equation (3). 

We will now see how the dynamic behaves under an additive Gaussian input. 

Lets) = P - Pe, and r = (Sp  - DP) > 0. Then (4) becomes 

dt = -Arp 	 (7) 

But p cannot be less than (-Pe), in which case P, the price, will have 

to be negative. Thus (7) cannot accommodate an additive Gaussian input, 

which will make it 

dp = Xrp + i< t > dt (8) 

where i <t > is a Gaussian noise input - and thus can range from -c0 

to 00, which p cannot. Thus we cannot superimpose a random input into 

the Walrasian model. (56) 

4. A Logistic Model  

So as a simple alternative to the Walrasian dynamic, let us 

consider the following model of proportional price change. 

(dP) 
• dlnP  H(qp  - qs) 	(9) 

dt dt 

(4) 
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where t, H, qD, qs, P are as defined earlier. Now if Pe is the 

equilibrium price, expanding (9) around Pe  in Taylor series as 

before 

dln
dtP = X(D

e 	
S
e
)(P - P

e
) 
	

(10) 

where A, DP
, P 
Se are defined as earlier. 

Let r = Se
P 	P - D.  

Equation (10) becomes 

dt = PP Xr(1 - Pe) 	A > 0 

Equation 11 is a Verhulst-type logistic equation. It solution with and 

initial price Pc), is 

	

0 	0 -XrP et -1 

P (t) = Po(—P  + (1 - P
) e 

	

Pe 	pe 

If in equation (12), as t co, P(t) will tend to Pe  if r > 0. Thus 

the stability criterion for the logistic model is the same as that of 

the Walrasian. 

. Logistic Model with Stochasticity  

Let us assume that r > 0. Let us now consider the effect of a 

simple independently additive random input with incremental mean zero 
2 

and incremental variance a on the logistic model. This can be 

represented as (27). 

d
dt
lnP  

- Xr(Pe - P) + a i< t> 

where i< t> is a standard Brownian noise, 

Or 

dP 
dt - XrPP

e 
(1 --

e
) + oPi< t > 

(12) 

(13)  

(14)  
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Through mathematical analysis (see ref: ), eg. 14 can be 

and it can be shown that as tiro*, the limit distribution for 

(14) can be evaluated. And hence the limit distribution for P is, 

F (Po , ) 	1 	(P 	0 
Py 	

0
(0) [ pe 	exp(-0 — ) e  ) (15) 

where 0 - 2XrP
e 

 2 	, and y is the gamma function. (15) has a prob- 
a 

ability density for P entirely on the positive real line. (0 < P > 00 

And the most probable price at t = 00, it can be shown, will be 

lower than P
e
. Thus the logistic model behaves reasonably under a 

simple Gaussian input. 

6. Time Density Functions  

If one, then, infers that (14) represents the way in which 

prices do change, then it will be interesting to study, instead of 

the steady state density functions of (15), the time- dependent 

density functions of P. The latter may be useful in understanding 

the term-structure of commodity prices. 

The general time-dependent density solution to (14) is unavailable. 

Let us consider, instead, two 'special' cases. 

6.1 (a) Price P far below Pe: The Random Walk Model  

2
P  Let P

e 	
co; then in (15), a(P) = kP 	

a
, and b(P) = a2P2. 

The assumption is quite preposterous, but the conclusion is interesting. 

Hence in the transformed variable y, we get g(y) = 6., and equation (16) 

becomes 

(1i g) 	1/2 3 2g  
Dt 	ay a 	2 

8y 
(17) 
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Equation (17) is the diffusion equation for a simple random walk. Its 

solution, when transformed back into P is 

2 F(--- 
o ' 	

1 t) = 	 exp 1[' (1n-
O
- e -kt } ) 2/2a 

P(2Trta2) 	 (18) 

0 < P > co 
	(19) 

The mean of P at t is 

2 
<P(t)> = P°exp f(k + 2 	 (20) 

This is the distribution of the so-called random-walk theory of price 

movement. Thus, from what we have done so far, we derive a famous theory of 

price movement. 
6.2 (b) 	P fluctuating around Pe  

Let -; = 1. Then, the transformed variable y, (y =-1n(--)) a  

is small enough for e67  = (1 + ay). Then, a(y) = -ky and equation (17) 

becomes 

aa . a 	a2g 
TiT (kgy) 	'2 ay2 
	

(21) 

(21) describes an Ornstein-Uhlenbeck process in y. The solution of (21) 

in the original variable P is 

12 , t) = 	 k(lnu)2 	 o 	 exp 	(22) P 2 
'Ira 2P2(1 - 

e-2kt) 	a (1 - 
e-2kt  ) 

where 

u 	(P )(Pe) e-kt 

Pe po 

The mean of P at time t is 

e (Pe) 
exp(-kt) 

<P(t)> = P (---) . 
P 	a2 

exp (---) (1 - eT2kt) which as t ÷ co 
a2 Lk = Peexp  4k 

Which of the 'special' cases is more 'correct' is an important 

question. Assuming the pure expectational theory of forward pricing 

to be valid, one could use the term-structure of commodity markets 

to answer that question. 

7. The Multimarket Situation  

In a many-commodity situation, equation (9)'becomes 
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dP. 

1 ) dlnP. 
 

dt 	dt 	
H.(Q,(P

1 
 ,P
2  , 
	Pn)) 	 = 	 (24) 1 1  

withHi >(3,Eli(0)=0.a.rid 12_1  being the excess demand function for 

commodity i .in terms of all prices. If the vector !Pei represents 

equilibrium, expanding (24) around equilibrium 

dlnP. 

dt
e j=1 

13 3 

	

1 
 - H. 	a.. (P. - P.) 
	

(25) 

where X. = H1.
e
> 0, and a

eij 
=
(a 

Qi 1 ap.) P. = P? 
3 	3 	3 

The equation system (25) will be stable if the real parts of the 

roots of the characteristic equation 

la - all = O 	 (26) 

are negative. (75) 

As before, let us assume the stability conditions. Following 

the single market case, let 

(@Qi  
7.7) = -r <.O ori  

Let p. = P. - P.. Equation (25) becomes 

n dint). 	
X. 

1  = 	.rPe - 	rP 	+ 
A
. 	E a.

e  
.P. 

i 	13 D dt 	i 	i 	i j=1 
jai 

or 
P 	n e  dP. 

	

1 = X rPiP. (1 - e) ;-) + X.P. 	E a.
1
.p. 

1 
i 	1 	1 1 dt 	P. 	j=1 	3 3  

j#i 

Equation (28) resembles the Volterra-Lotka equation for the growth 

in populations of n interacting species. If the ae matrix were 
ij 

(27)  

(28)  
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antisymmetric, it would correspond to a prey-predator system. But 

without detailed knowledge about the ae matrix, we could only say that 

(28) represents an interacting system. 

As before, let us represent the influence of unspecified 

variables by adding a noise term to the right hand side of the dynamic 

equation. Equation (28) becomes 

dP. 	P. 1 	e 	1 
- X.rP.P.(1 - --) + P. dt 	1 1 1 	e 	1 P. 

1 
j=1 e 
	

Ui(t)} (29) 

jAi 

where U.(t) represents a Gaussian noise input 

When n is large and when each P and hence 9. is influenced by 

a differential equation such as (29) with an independent noise input, 

then, by central limit theorem, one can represent the terms within 

square brackets on the right hand side of equation (29) by a single 

tnr_x noise term with incremental mean m and incremental variance Q2. kLuoi 

Dropping stbscripts, equation. (29) becomes 

dP 
—
dt 

= XrPeP (1 - --) + P (m + ai (t) ) 
Pe 

where i(t) is a standard Brownian noise. 

If we let 

k = XrP
e + m 

and.  

K = Pe  (1+ 	 
XrPe  

Pek 

XrPe  

equation (30) becomes 

d = kP(1 - 	+ aPi(t) 
dt 

(30)  

(31)  
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which is exactly similar to equation (14) considered above. Thus 

a similar discussion to the one made above could be made with similar 

conclusions. 

The multi-market analysis leads to some equations of interdependent 

price behaviour that resembles some equations arrived at in biology 

for representing price behaviour. Our next chapter will have more to 

say on biological population models and some of their applidations to 

studying price behaviour. 

8. Summary 

The above analysis suggests that the logistic equation of price 

dynamics may be a more suitable description of price dynamics - as it 

is able to sustain unspecifiable and random influences and yet exhibit 

reasonable price behaviour. The behaviour of prices in multiple market 

situations leads to results similar to the single market case. 

The way the above model considers price changes relates closely 

to the geometrical propagation of biological populations - as a result 

of natural birth rates and death rates. Stocks of goods are similarly 

consumed and grown and hence price - determined by the prices of supply 

(birth) and demand (death) thus exhibits the cyclical movement of 

numbers observable in my normal species. The interdependence of the 

market place may also be seen as similar to the interdependence of the 

species in biology. The progress in this manner of viewing populations 

made in mathematical biology could be related with benefit to the 

examination of prices. 
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CHAPTER 3 

SOME APPLICATIONS OF BIOLOGICAL POPULATION MODELS TO THE PROBLEM OF PRICE 

BEHAVIOR 

1. Introduction 

In this chapter, we examine certain applications of dynamic 

biological population models to the problem of spot price behavior. 

Some applications of ecological models to economic problems have been 

witnessed recently in economic literature. Samuelson (3g) has applied 

a mathematical model of biological population behavior developed by 

Lotka WO and Volterra (72) to derive a universal mechanism for 

explaining the business cycle. Conservative oscillations are deduced 

by posititing  competition and ignoring limitations imposed by scarcity 

of resources, and by applying a prey-predator model developed by 

Volterra and Lotka. Generalisations to more than two species are cap-

able of solutions through applications of the mathematical language of 

classical statitistical mechanics. However, a recognition of limited 

space and inorganic matter makes such generalisations inapplicable. (57) 

Introduction of simple diminishing returns leads to damped motions that 

are kept cyclically alive by shocks of the weather and exogeneous 

elements. Applying to the stock market; Kerner's (35) treatment - 

using the therniodynamic constructs of canonical ensembles - of the 

Volterra-Lotka system of equations for describing the movements of 

interactive populations, La Violette (38) proves a strong evidence of 

predator-prey behavior in stock-market trend-fluctuations. 

In the following pages, we will be developing, on the basis of 

certain economic assumptions, models of price behavior. The equations 

that stem from the assumptions resemble the equations that describe 

population behavior in an interactive ecological system. It is clear 

that such an analogy may seem unwarranted. But we feel that, starting 
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from this simple one market analogy, one can develop a more detailed 

dynamic equilibrium model of a complex, interactive economic system 

and the strides made in the ecological field can be of great help in 

this development; moreover, the biological models are particularly 

useful in analysing situations where unforseeable variables - which 

could be considered random - play an important role. 

2. The Prey-predator system:  

There is a system of equations of the Volterra-Lotka kind (16) in 

biology known as the pre-predator system. The equations are 

ds 
dt = jS - kSD 

(1) 

dD 
dt 

DS - mD 

In (1), S represents the population of the prey species, which in time 

dt gains a number jsdt in its population due to birth - but loses due 

to predation by the predator species D, a number kSDdt in the same 

duration. The predator, D, in the same period gains an amount 

proportional to the loss of S it predates upon i.e. DSdt but loses 

due to death the amount mDdt. The system has an equilibrium point, where, 

dt 	dt 
ds 	dD 	0 

and from (1), 

D
e 

= j/k ; 	S
e 
 = 

where D
e 
and S

e 
 are•the equilibrium populations. 

If we let, 
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E = D - De 
and fl = S - Se  , the deviations from the 

equilibrium, the dynamics of population change as represented in (1) 

can now take the form , 

dfl   
dt = 
	k (Se  + 11) c 

.(2) 

and 
	

de 	, e 
dt 
	kD 	E) 

If we consider points close to equilibrium only and neglect the non-

linear terms, we get, 

- 
dt =  

and 	 (3) 

de =  kj  n 
dt 	k " 

3. Economic model 1: 

Assume the following - 

(1) At any time, the producer suppliers of a commodity adjust the 

intended output of a commodity at a rate proportional to the difference 

between prevailing price and felt equilibrium price i.e. the price at 

which, etc. If S is the supply, Se is equilibrium supply, P is the price 

and Pe the equilibrium price, a mathematical representation of this 

assumption, 

dt = Xl(P Pe) X1  > 0 
	 (4) 

Let n denote (S - Se); then 
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dfl = 	,, „e, 
dt 	Al‘z- 

(2) At any time, the rate of change of price is proportional 

to the negation of stress supply i.e. 

d (P - Pe) 
dP 	-A

2 
(S - Se) 

dt 

	

	 n > 0 dt 
(5) 

-A
2
n 

(3) At all times, demand D is a linear dealing function of price, 

i.e. 	D = a - bP 
	

b > o 	(6) 

or c = excess demand = D - D
e 
= - b (P - Pe) 

and hence, 	= 
dt 	

- b (P 
dt
P ) 
 

4. 	Simplification :- Model (1) is a complete system. From that, 

the trajectories of S, D and P are solvable. We can also make the 

following modification of the model in order that it resembles the 

prey-predator system. 

dfl =  
dt A1

(P Pe) 

-
1  

d(P - Pe) 
and since 	 

dt 	
- An 

de _ 
therefore, 

dt 	
A
2
bn 

(7) 

(8)  

(9)  

Equation (7) and (8) form a simple differential equation system. 
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5. Interpretation.: 

Model (1) is analogous to the prey-predator system considered 

above. With our economic axioms, it would be tantemount to viewing 

the market place as a struggle between the supply or producer 

side of the scenario - similar in its endeavour to the prey or victim 

of the jungle, and the demand - a consumer side of the market as 

similar in being to the predator in the jungle. In our symbolid 

notation in both models, S refers to the Supply and the prey; P refers 

to the demand and the predator. Close to equilibrium, both can be 

viewed as a relationship between the excess functions e and n . 

The net growth of excess of the supply or prey species, n , is 

negatively proportional to the excess of the demand-predator species, 

as is both economically and biologically logical. The net growth 

of the demand or predator species 6 is proportional to the excess 

of the supply species n . 

The role played by price is obvious.In the animal kingdom, 

the prey-predator relationship is obvious.In economics, price hides the 

neatly 	viewable direct relationship between consumption and 

supply. The higher the supply with any given demand schedule the 

lower the price and hence the greater the quantity demanded. The 

higher the demand with any given supply schedule the higher the price 

and therefore the greater the quantity supplied. 

6. Solution: 

Differentiating (a), 

d2c b  an  — 
dt
2 	1 dt 

(10) 

C . 
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(10) represents a simple harmonic motion in E . Assume that 

e= 0 at t = O. The solution to (10) is, 

= 	A sin A
1
X
2 
t. 

Because .y the way price relates to excess demand, the significance 

to price trajectory of the above is that, 

P (t) = Pe 

    

- k sin ✓A1A
2 
t (12) 

where k is a constant. 

Viewing the market place as a prey-predator system between S and 

D leads to C simple harmonic motion of price. i.e. to a cyclical 

price behaviour. But, to quote Samuelson, (there is at least 

one serious objection to a non-damped system. If on them were 

superimposed random influences - due to unspecified variables - 

the price vice explode: 

A nearly cyclical price behavior is observed. By viewing the 

market as a prey-predator relationship in S and D, we do get an exact 

cycle in price. Many other explanations of cyclical price behaviour 

expectational and others - are possible. Ours is a new one - 

bringing in a biological analogy and trying to verify it by reference 

to economic theory. But like all results that predict a non-damped 

exact cycle, it is incapable of adjustment to noise. In the next 

model, by bringing in a simple-delay, we hope to arrive at a new 

hypothesis - which resembles an epidemic relationship in S and D - 

and thus leads to a damped harmonic in price - which is capable of 

adjustment to noise and still be re'asonably.stable. This is then a 
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more exact model of the market mechanism. 

7. Model (2): 

If we alter the assumption (1) of the previous model to include 

a lagged response of the rate of change of supply i.e. 

d(P - tPe)  dS _ 
dt 	

A
1
(P - Pe) + A

3 	d 	A11  A3  > o 

then equations (13) and (5) represent a complete model. 

In terms of fl  and e , 	they become, after manipulation, 

do 	Al  
dt 	

X
3
X
2
n  

and 

dt 
de 	

2
bn 

8. The Epidemic Model and its interpretation.  

In biology there exists a second volterra-Lotke type relationship 

between two species S and D which leads to a similar set of relationships 

between the excess functions Ti  and E to that in (14). This is the 

"epidemic" model. 

Here the growth functions of S and D are, 

dS 
dt P CISD  (15) 

and 

dD = BSD - rD 
dt 

(13) 

(14) 

The set of equations (15) describe a two-species interaction system 
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where S, the strek of susceptibles in an epidemic (or the supply 

ineconomics) is being continuously added to at a constant rate 

and consumed, due to attack by the infective species D (or the 

consumer species D), at a rate proportional to SD. The growth 

function of D is as in the last model. 

To see how the equations (15) relate to equations (14), we 

need to consider the behaviour of (15) - which represent an epidemic 

relationship bitween supply and demand, near equilibrium. 

Let n = s - Se and E = D - De, the general excess functions, 

(15) becomes, 

an 2 e 
a = a(De  -(D +E) 

and 
(16) 

dE 
=  dt 	0(D +E)n 

which near equilibrium and without the nonlinear terms, will lead 

to 

an 
dt 	= a D n 	aS C 

and 	 (17) 

dE 
dt 

= $Deri 

Equations (17) correspond exactly to the equations (14) 	model 

(2) - which was a result of a modified version of the set of 

axioms of model (1). Thus the epidemic model could be arrived at 

both via sound economic reasoning or via a straight postulate of an 

epidemic interdependence of S and D. 

9. Solution: 

Differentiating the second equation of (17), 
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an 

at
e 	= A 

2
b 
dt 

X1  
= 

A2b 
( 	b e-  A3 2n ) 

But, 1 	de 
A
2b dt 

Therefore 
d
2 

d
2 
C 	de 

+ A
3
A
2 dt + A1A2e = 0. 	(18) 

(18) is a homogeneous, linear second order differential equation 

of the type, 

de 

dt
2 	

a — + Re 6 = 0 	 (19) 

which has its solution dependent on whether 

4A 
a = 2 > 

	

	> 	1  4R i.e. if X
2 2  

A3 

This is an empirical question. But the exponential solution (when 

a
2 

4R) and the cyclical solution (when a2 = 4R) could be ruled out 

a priori-because of their illogicality as models of price behaviour 

in that they would imply etc., so we could assert that the solution 

to (19) will take the form, 

at 
- - 	Ra

2 

= A e 2 
2 

which represents a damped harmonic motion in .6 and thus a damped 

sinusoidal motion in price. Thus the epidemic model of S and D 

interaction - which could also be derived as shown through economic 

reasoning. 

d2
E 

d2
E 

(20) 
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This system is stable because both E and Ti÷ zero and P ± Pe  

ceteris paritons, as t co and is thus capable of non explosive 

price behaviour. If extraneous influences like weather impinge 

on the market as random inputs, this system is capable of some 

behaviour. Such lag or dissipative damping is needed to ensue 

an ergodic state under shock effects. 

10. Summary.  

In this chapter, we understand that it is possible to explain 

cyclical price behavior observed in the market place through a 

biological interpretation. The analogy of a predator-prey system 

representing supply-demand interaction leads to an undamped 

cyclical price behavior (which is untenable). The introduction of 

economic lags leads to the possibility of an analogy to the epidemic 

model studied by biologists and leads to a damped harmonic motion 

of price. This is also tractable with stochastic noise input 

representing unspecified and unforeseeable influences. These can 

be extended to multiple market situations and to an understanding 

of the trade cycle and its possible correctors. More empirical study 

is needed. 
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CHAPTER 4 

 

SOME APPLICATIONS OF THE TERM-STRUCTURE OF INTEREST RATES TO THE 

TERM-STRUCTURE OF COMMODITY PRICES (RISKS NEUTRALITY). 

1.  

 

Introduction 

 

    

In this chapter, we wish to discuss the term structure of 

commodity prices. For this purpose, we will be applying certain 

theories of the term structure of interest rates. 

Let the price (spot) of a commodity at any time t be x(t) and 

the price of a contract promising delivery of one unit of the same 

commodity T units of time ahead be P(T,t). The movement of x(t)in 

the future is uncertain and hence the value of one unit of the com-

modity at time (t + T) is uncertain as well. 

2. Pure expectations hypothesis: 

A simple model of the relationship between x(t) and P(T,t) 

would be to say that P(T,t) represents the expected value at time 

(t + T) of the random variable x(t). A similar theory was proposed 

for the term structure of interest rates by I. Fisher (23 ) and was 

developed further by F. Lutz ( 41). The difficulty in testing this 

hypothesis is that the expectations of market participants are not 

directly observable. One either sees if the forward rates (prices) lead 

future short rates as T.J. Sargent (50) and others have done, or one 

uses the actual (ex-post) short rates for a given period in place of 

the rate expected (ex-ante) at some time earlier to prevail during the 

present period (as Culbertson (17) and others have done) in order to test 

the hypothesis. Neither is a correct test for the hypothesis itself. 

To state the theory operationally, we need to state it entirely 
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in terms of observable variables. It is clear that if one posits a 

stochastic dynamic model for x(t), then one can state the expected 

value of x(t+T) in terms of x(t), an observable. For this purpose, 

we propose to use the well-accepted random walk hypothesis of price 

movement, which says that the generating process for x(t) is governed 

by the stochastic differential equation 

dx/x = dlnx = ccdt + adz 	( 1 ) 

where cc is the incremental mean of the 'return' due to price change and 

and a is the incremental variance of the same. Z is a process of inde-

pendent Gaussian increments, i.e., E(dz(t)dz(s)) = 0 if t T  s 

E(dz(t))2  = dt. 

It can be shown that with the above dynamics, the expectation of 

the spot price T periods from the present time in terms of the present 

value of x is (16) 

a2 
E(x(t+T)) = x(t)e(¢+ 7 7) T ( 2 ) 

Applying the pure expectations hypothesis, it leads to the operat- 

ionally varifiable equation that 
2 

P(T,t) = x(t) e(cc+ a)T 
	

( 3  ) 

The truth of the random-walk hypothesis is independently verifiable and 

if true, cc and a estimatable from historic data. 	Then equation ( 3 ) 

is entirely in terms of measurables, as P(T,t) and x(t) are directly 

observable at time t. 

3. Yield and payment schemes: 

But the above is a naive hypothesis. It does not take into account 
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the payment and yield structures of the forward markets. We posit that 

as a market competing for funds with other commodity and financial for-

ward markets, its profit or yield structure is identical with - (in the 

absence af risk, that is) - that of the riskless yield structure for 

capital - which is knowable at any time in the shape of the yield curve 

of the gilt-edged bond market. Let y(T) be the 'yield' for a maturity 

of T time units. This represents a relationship between cash flows in 

the present and in the future up to T time units for the present, e.g., 

if P(T,t) is the price of a bond at time t that promises to pay a coupon 

at the rate of r(T) per period until T periods from t and at time (t+T) - 

the time of maturity - yields the nominal value of the bond P, the yield 

y(T) of the above payment scheme is given by the relationship (73) 

P(Tit) = 	e-y(T)tr(T)dt 	e-y(T)T 
	

( 4) 
0 

The commodity forward market - by our assumption of riskless perfect 

competition - has the same yield structure as the gilt-edged market but 

a different payment scheme. If P(T,t) is the price of a contract prom- 
r) 

ising to deliver one unit of the commodity T periods from t, the follow- 

ing payment scheme applies 

1. A proportion f of P(T,t)-  is payable at t. 

2. There are no coupon payments 

3. At time (t+T) the remainder of the contracted price, i.e. (1-f) 

P(T,t) is payable and one unit of commodity of value x(t+T) is 

receivable and immediately saleable at the same price. (We are 

assuming that there are no transaction costs, tax considerations, 

or differentials between buying and selling prices). 

Now x(t+T) is an uncertain variable at time t. But if the above 

payment scheme and the riskless yield for maturity , i.e., y(T), is 
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taken to be consistent with the expected spot price at (t+T) -(one 

version of the expectations hypothesis), then, from equation (4 ) 

f(P(T,t) = e
y(T)T 

(E(x(t+T)) - (1-f)P(T,t)) 
	

( 5 ) 

or 	P(Tit) 
e-Y(T)T E(x(t+T)) 

(f+(l-f)e-Y(T)T  ) (6 ) 

Again, to make the expectations term in equation ( 6) operational, 

if we fall back on the dynamics of the random-walk, we can apply equation 

( 2) to get 

2 

Q2 (cc+ —2  - y(T))T x(t)e  
P(T,t) = 

(f + (1-f)e-Y(T)T) 
( 7 ) 

Once again, equation ( 7 ) is entirely in terms of measurables and 

observables - and i8 therefore testable. 

4. The error learning model: 

Next we wish to look at 'QL modified form of the error-learning 

hypothesis, originated with respect to the term'structure of interest 

rates, by Meiselman. (44) 

At any time t, there is the spot price x(t) and a forward price 

for delivery of goods T time periods front, i.e., P(T,t). Now, at the 

next time unit, there will be the spot price x(t+l) and a price for 

delivery of goods at (t+T), a forward price P((T-1),t+1). At time (t+T), 

P(0,t+T) = x(t+T). In the original form, the error-learning hypothesis 

has it that the forward price each period gets adjusted by a factor pro-

portional to the error in forecasting - the spot price. The model was in 

time-series form and its statement in the context of commoditiy pricing 

would be 
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P(T-l,t+1) - P(T,t) = a (x(t+i) - xim) 	Et 	( 8) 

where 

f3 	: 	proportionally constant 

e
t 	

: error-terwECE
t 
 ) = 0, E(e

t
c
s
) = 0 (if t 

1   

or (a
'
)
2 
(if t = s) and x

1 
 (t) is the forecast of 

of x(t+1) made at time t. 

Meiselman made the above model a test of the unbiased expectations 

hypothesis. He posited that in so far as there was no constant term in 

addition to the terms already on the right hand side of the equation ( 8 ), 

proving the validity of the above model was tantamount to proving the 

unbiased expectations hypothesis. The truth or the fallacy of this 

statement (for a rebuff, see Wood ( 76)) or the empirical valididty s of 

equation ( 8 ) (for results of tests, se Van Horne ( 71) and Grant (29 )) 

does not concern us here - for we are interested in quite a different 

statement of the above hypothesis. We make the following modifications: 

1. We posit that learning takes place'in continuous time. 

2. Since the forward rate P(T,t) tends.to x(t) as T.+0, (and to make 

the hypothesis independent of the nature of the forecasting 

procedure), we state that changes in forward price are proportional 

to changeS in spot price. In Meiseman's model in continuous time, 

this really implies that the best estimate for next moment's price 

is this moment's price. (49) 

3. We introduce a discount factor dependent on the maturity T as the 
1 

proportionality factor fi - i.e., the discounted absolute value of 

changes of price for all maturities are the same, and equal to the 

change in spot price, i.e., 	= e
rT 

where r is the discount 

: - factor. 
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The hypothesis can now be stated as 

dP = e
rT 

dx + a dz 

1 
where dz is similar to dz defined earlier. 

Now instead of resorting to forecasting and the errors in it, to 

get the r.h.s. in equation 9, we define the dynamics of dx as before, 

(the random-walk assumption in equation ( 1 )), i.e. 

dx/x = dln x = mdt + adit 	(1) 

Because of equation ( 9 ) and because of the terminal condition 

P(T=O,t) = x(t), we see that P is FUNCTIONALLY dependent only on x 

and T. The other parameters in the relationship are constants like r, 

or a. From stochastic calculus, if P is a function of two variables, 

x and T(symbolisable as P(x,T)), and if one of them, in this case, x, 

is stochastic, with its generating equation as given in equation ( 1 ), 

then the total differential of P is given by (34 ) 

(DP) 	(3P) 	1 	2 2 (a
2
P) dP - ax dx 	

aT 	2 
dt + 	a x 	2 dt 

ax 
 

(10 ) 

Equation (10) is so because (a) dT = -dt and (b) (dz) 2  has the 

dimension dt. (37) 

Substituting for dx in equations ( 9 ) and (10) and replacing 

equation ( 9 ) in equation (10 ) in place of dP, we find that on taking 

expectations on both sides, we get 

2 
O 	

«x— 
P) 	tap) 	

a 
2 
 x 

 2 3  P 	rT 
x 

aT 	3x 	2 	ax 

	

2 	cce 
 

The initial condition for equation (11), which is a parabolic 2nd order 
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partial differential equation is, as we saw earlier, 

P (X, T = 0) = X 	0 < x < 	 ( 12, ) 

The solution of the above is (79) 

ccr 
(2«+ r - «e

- (s + r) T)P(T,t) = x(t) 
cc ( + r) 

( 13 ) 

5. Conclusions.  

Here we have derived some directly testable statements using 

continuous time analysis of three well known term structure theories 

and developed them in the context of commodity markets using stochastic 

calculus. The theories are the simple expectations hypothesis, with 

the yield and payment scheme of the market place and the error - 

learning hypothesis. We have not reported here the similar approach 

to the fourth - the preferred habitat scheme, as this has been insufficiently 

developed here. Both the stochastic analysis and the continuous time 

perspective are original contributions. With the random walk assumption 

of spot price behaviour, the model is directly operational and testable.. 

The models as stated so far in the low market context (84) have been 

period studies and econometric in nature. The nature of all econometric 

analysis is their imprecise statements and lack of direct verifiability; 

secondly they demand 'expectations' data which are not satisfactorally 

obtainable. Our approach avoids this difficulty and states the 

theorem in purely observable variables - as price data or such 

historically measurable and averageable quantities as the random walk 

coefficients. We have not reproduced our empirical results - which 

were fruitless. However our contribution in these areas has been the 

stochastic formulation with continuous time analysis which merely puts the 

theories described into firm, directly testable forms. 
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CHAPTER 5 

THE TERM STRUCTURE QUESTION UNDER RISK AVERSION 

1. 	Introduction.  

The purpose of this chapter is to put forward a new view 

about two standard hypotheses about the term structure of 

commodity prices. 

2. Assumptions.  

1. There are no taxes, transaction costs or problems with 

indivisibilities. 

2. Buying and selling prices are the same (this might in 

fact follow from (1), i.e., absence of transaction costs). 

3. Trading takes place in continuous time. 

3. Purpose. 

The two theories we will be looking at are : 

1. pure expectations hypothesis; 

2. risk-premium hypothesis. 

Our purpose is one of putting these in an easily testable form and 

(a) to derive control parameters by which the central supplier can 

decide on the amount of supply of different instruments to get the 

desired yield curve, and (b) to get equilibrium curves - with a 

speculative supply of instruments. Actually, we will study these 

supply/control ideas mainly with respect to the second (risk premium) 

bypothesis - as it is the commonest and strive merely to put the first 
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one in a testable format. 

4. Characteristics of the market. 

At any time t, there are N instruments i, i = 1 to N; each 

has a time to maturity Ti, and without loss of generality TilTi, 

for i = 1 to N - 1. Each has a price P
i 
or P(T); interest payments 

are at the rate r. or r(T.) per unit per stock until maturity. 

The current price is P. 

5. Price Dynamics: 

Out starting point will be an assumption whose ultimate 

validity must be based on empirical evidence. We hypothesise that the 

prices of all instruments follow an N-dimensional log normal random-

walk in continuous time - i.e., the dynamics of each Pi  in time is: 

dkn P. = dPiP. dt + (S(T.) dq (t,T.) 
1 	1 1 	1 	1 

where p(Ti) or pi  is the instantaneous expected mean,
2
(T
i
) is the 

expected variance and dq(t,Ti) is a standard Gauss-Wiener process for 

maturity Ti. The multi-dimensionality comes from positing that the 

dq's for different maturities at any time are correlated with 

COlaCtaci0="Til = p..dt (with pii = 1) 1] (2) 

e : expectation operator 

It is clear from the above that dq has a dimension of dt in the mean 

square. This is a characteristic of the Gauss-Wiener process (a 

characteristic which we will soon exploit). However, we assume that 

there is no serial Correslation among the unanticipated returns (4F/p) 

of anv of the assets, i.e., 

(1) 
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(a) dq(s,Ti) dq(t,Ti) = 0 for s # t for all i,j 

(b) • dq(s,Ti) dz(t) = 0 	for s 	t for all i 

where dz is a std. Gaussian noise. Equations ( 3 ) follow from the 

several efficient market hypotheses of Fama ( 20 ) and Samuelson ( 52) • 

If Ti  is continuous, P(T = 0) = P with no uncertainty, i.e. 6(T = 0) = 0. 

Thus S(T) depends on T. But otherwise 6 is a nonstochastic function of 

T only (i.e., is independent of P). 

6. Certainty Model (aside) 

Before we go head long into our different hypothesis, let us first 

consider what happens under certainty; assume too that there 

are no risks. 	Then, under our assumptions, the return over any  

interval must be identical for all instruments. Take an interval dt; 

without risk 	the only return over dt is via capital gains. Let G(i) 

be the return by capital gain alone with instrument i over dt 

G(i) = dPi/Pi  

Pidt (from 1) 

= -pidT (for dt = -dT) 	( 4 ) 

which is the same for all i. 

i.e., p
i 

must be the same for all i; let u(Ti)  = R for all i. Then 

from equation ( 1  ) 

dP(T)/P(T) = Rdt 

= 	RdT 
	 ( 5 ) 

(3) 
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Integrating 

P(T) 

T  

T.(T)/P(T) = -R 	dT 

( 6 ) 

or P(T) = 	e-RT , where is the spot price. 

will be the term structure that follows from certainty (and no 

coupons) and this is a 'flat' yield curve. For, if y(T) is the yield 

for maturity T, f(T) are coupons, y related to P by 

T -y(T)t 
P(T) = 	e 	r(T) dt + e

-y(T)T 

0 
(7 ) 

In the above case, r(T) = 0; that y(T) = R for all is the 

result of certainty. 

Market homogeneity  

We posit that the market has one common view point for the values 

of 	and 	for all i and for all. We can rationalize this as the 
ij 

point of view of one rational representative investor. This saves us 

aggregation problems. 

7. Hypothesis No. One - Pure Expectation again 

This holds that with coupon payments and uncertainty of prices, 

the certainty model provides a reasonable approximation if it. is 

modified now to say that the expected return over any interval is 

identical for all instruments. Let us see what this leads to. Over 
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a period dt, any instrument i can now have a coupon return and capital 

gain summing to R(i,dt), equalling 

r(Ti) 
R(i,dt) = dP.'P + 	 dt 

i i 	Per.) 

and from ( 1 ) 

r(T.)dt 
s(R(i,dt)) = p.dt + 	1  

P(T.) i 

= (P. + P(Tl)  i 

( 8 ) 

( 9 ) 

where 	: expectation operation). 

v. + 
Thus the hypothesis has it that the sum ( 1 	 ) must be 

P(T )1 

equal at any time for all i. At any time, all P's and r's are 

observable. p
i 
are known from history. Thus testing 

	the constancy 

of 

+ 	(T.-)) 

P(T.) 

is easy enough at any time, the test gaining more significance the 

larger the number of instruments. Thus we have here an easily testable 

version of the expectations hypothesis, 

8. Hypothesis No. Two - Risk Aversion  

We mean to derive a version of the Sharpe risk premium model of 

capital asset pricing - but by a different route. (5) 

Assume that an investor faced with an uncertain return R over a 

period of time has the following utility function (Tobin (68) and 

Markowitz (43)). 

u(R) = R - bR
2 
	 ( 10) 
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where U(R) is the utility of return R. 

His expectation of u(R) is, 

c(P(R)) = c(R) - be(R2) 

Let E = c(R) 

and S
2 
 = c(R - E)2 

= c(R2) - E2 

Then 	
(u(R)) = c(R) - be (R2) 

= E - b(E2 + S2) 
	

(12) 

But our investor has a choice of N instruments and his problem 

is one of division of his wealth between these. Let us say that he 

devotes a fraction Wi of his wealth to instrument i, s.t. 	W.
1 
 = 1. 

Now, over period dt, the return on instrument i, is, as we saw from 

equation ( 8 ) 

R(i,dt) = dP./P. + r./P. 
1 1 1 1 

ri  

P 
= (p. + 	dt +

i 
dq(t,T.) 

a. 

and the investor's net return R over dt is, 

R(dt) = E W. R(i,dt) 
. 1 

Let us apply equation (12) to equation (14) 

E = c(R(dt)) = c . 1  W.01(i,dt) 1  

.( 13) 

(14 ) 

E W,
1
c(R(i,dt) 

1  



r = 	r.   
i  4W.(p. + 	

) dt, (from equation ( 13 ) 
1 1 P1 

i 
( 15) 
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r. 	

P 

r 
E2 	E E 	

. 
. 
. 13 2. P 

+ —)(p. + — ) (dt) (from equation ( 15)) 
1 3 .3.

3 	2 
 

	

i 	3 
( 16) 

S
2 = E(R - E)

2 
 

from equations ( 13) , ( 14), and ( 15) 

c i j 
E  W.W. (R(i,dt) - e(R(i,dt))) 

1 3 

W 313  dq 	1 dq(t
! 
 T.) 

j  

which, from equation ( 2) (Gauss-Wiener theory) 

( 17 ) = 	W.W.p..6.d dt i j 1 	1J 1 j 

Thus, 

e(u(R)) = E - b (E2  + S2 ) 

r. 
1 

= .W.
1 
 (p, 	

P )' dt .  1 

	

r. 	r. 
- 
b i i 	P. 3 1 	

• 1 
W.W. (p. + — ) (p. + — ) (dt) 2 

1 	. 	3 	P. 
1 

E 
1 3 13 1  - 	b 

1 
 . W.W. p..S.d. dt 

	

3 	3 
(18 ) 

Thus (u(R)) is a function of the period over which R is reckoned. 

Let us posit that the investor wishes to maximise c(u(R)) over an 

infinitesimal dt -.or which is the same thing - he wishes to maximise 



d(e(u(R))  
dt 

or the rate of change e(u(R)). Now, 
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d(e (u(R)) 
dt 

r. 
W. (u. + 1 1 1 P. 1 

( 19)  - b i j 1 	1 3 ij 

(The second term containing (dt)2  drops out). 

Thus, although e(u(R)) = E - b(E
2 + S2) 

de(u(R)) _ dE _ b  dS2 

dt 	dt 	dt 

R)) u1 
Thus max. de(dt 	= max. dE/dt - b dS2/dt 

( 20)  

( 21)  

= max. 
. 	r. 

i W. (1-1. + — . 	1 i 	P.1 ) 
 i 

- b E. . W.W.P..8.6. 1 3 1 	13 1 3 

subject to i W. 	1 

In the lagrangian form equation ( 22) becomes, 

r•. 
Max.W 	P 

L = EW.(p. + —) -bEEW.W.p..6.S. . 	.1 1 	. 	1 3 13 1 3 
1 	1 	1 

(22) 

( 23)  

+ ME W. - 1) 

Taking the partial derivative of L, w.r.t. W. in equation (23 ), 

we get 
r. 

3L/8W 	= (p. + 	-bE 1 	P 	W3
P
13
..6(i) d (j) ( 24)  

= 0 
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As we saw earlier, the expected rate of return for instrument i 

over dt is 

r. 
x(i) = (u 	) i P. (25) 

Let us posit that the risk premium for instrument i is denoted by Z(i). 

Equation 24) implies that 

Z (i) = E 
. W. p . .8.8 . 
j 3 13 	3 	 (26 ) 

Thus 	Xli) - b Zi  = - A 	 ( 27) 

= certainty equivalent yield for all i. 

This is the interpretation of the Lagrange multiple; thus equation 

( 27) is a statement of the Sharpe capital asset pricing model.. 

Testing equation ( 27) is now a simple matter. We do not have 

the problems of White ( 73) of estimating P
E
, (In his notion; P

i 

• 
with the expected value of P.) 	complicated risk-premia. In our 

case, at any time, Wj's,ri's and Pi's are known and pi,di, pij  are 

estimated from history. Once we calibrate for b and A, over two 

instruments, we can check their validity'for the rest at any time. 

9. Control: of the supply of instruments 

Equation ( 23) can be used for 'control' as well. Let us 

first put it in a 'vector' form. 

Let S denote the vector of supply of instruments 

Let P 'denote the vector of prices 

Let W denote the vector wealth-fraction 
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= P,
7
S.
.3
/EP.S. 
 . 

Let p denote the vector of returns 

Let i denote the vector of coupons 

Let i denote the vector of unity 

Let R denote the vector (r./P ) 
i 

Let V denote the matrix (p13 ..d1.S3.) 

Equation ( 23) becomes, with the above notation 

Max L = ( u  + R)' W - b 141' V W + X(I' W - 1) 	( 25) 

Differentiating w.r.t. W and A, we get 

+ R) - 2b V W + XI = 0 

and 	I'W - 1 = 0 
	 ( 26) 

Solving for W, we get 

-1 	-1 
=i1 v 	- - v  } Cu+ R) + 	 2b 	- 	 -1 - i'V 	i 	I' V.'''.  I 

( 27) 

Thus given any desired term structure, the only unknown vector on the 

right hand side of equation ( 27), i.e. P becomes known and thus the 

1 r  
vector W becomes known. But 14 = W diag P }g, where W

o 
is the 

o 
total invested wealth. Thus 

S = W
o 
{ Diag } 	W 
	

( 28) 

Thus the central supplier or state knows the correct amounts of supply of the 

instruments to achieve desired P (given that these are market clearing 

prices) given a knowledge of the total investible money supply. 

10. Equilibrium term structure under speculatiVe supply 

If, instead, as normally in commodity markets,_ supply of instruments is 
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fixed by speculation and 

= {k.p.} as well, where k is the vector of slopes of 
1 1 

supply 

= Diag {T }17 
	

(29 ) 

Then from equation (28 ), 

1 
T1-1 	_1  V - i'iV {Diag 	= W {Diag 

(TI + 12b(v 	
I' .V-1  I 

v 1/I i 
	 ( 30) 

Thus, the P inherent in the solution of equation ( 30) represents 

the equilibrium price structure. 
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11. Summary.  

The above have self evident implications. The combined 

assumptions of a joint random walk of prices and risk aversion lead 

easily to the Sharpe capital asset pricing model; what is more, under 

our analysis, it lends itself in an easily verifiable form. The 

second important consequence of the above - and this depends on the 

empirical success of the first - is that it enables the centre to 

control the supply of instruments to get the derived term structure 

effect with greater precision. As to the application for commodity 

prices, it perhaps leads to a formation for the first time, of the 

theoretically 'correct' term structure under speculative supply and this 

is in a 'testable' form. The amount of data required precluded one form 

conducting the verification that in all markets, supply is a result of 

a central authority plus speculation, could be investigated as a 

combination of the two. 

In this chapter, we proceeded to understand the problem of the 

term structure of commodity prices based on the assumption of a 

representative investor, with a quadratic, risk-averting utility function, 
• 

a speculative supply function and a random movement of prices - as may be 

expected in a healthy auction market. We derive both the risk premium - 

certainty equivalent and expected return form of the Sharpe Capital 

asset pricing model but also, based on a speculative supply of 

instruments - an equilibrium term, structure of prices. 

The test ability of the term structure model is different-

Althouqltesting has not been attempted here, the model is in a testable 

format. 

The quadratic ability function as inherent in our approach leads 

to a model which depends on particular levels of wealth. If we employ 

the Merton-Samuelson approach (83) we could derive a model which is 

free of time. There, the particular fraction of wealth invested in 

risking assets is independent of the level of wealth. The testability 
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of their model is free of the burden of averaging information over 

time - which we need to have. 

Merton (82) in a recent work develops his ideas further to 

produce an inter-temporal, continuous time asset pricing model. He 

also uses a random walk of price behaviour too. His analysis is based 

on continuous time analysis, stochastic calculus - and their application 

which is different from the simpler maximisation of expected utility and the 

further Lagrangian analysis we have employed. 

The approach to the term structure of commodity prices here is 

new. The application of the CAPM to this problem too is new. 

The CAPM rules out short sale. In our approach - this problem 

does not arise. Short sale is allowable in commodity markets. In 

the Merton approach, there is no restriction on short sale too. 
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CHAPTER 6 

THE RISK-STRUCTURE OF COMMODITY PRICES UNDER RATIONALITY 

1. Introduction  

There have been so far a number. of theories of the term structure 

of commodity prices. The purpose of this chapter is to present what 

may be called a theory of the risk structure of commodity prices. 

In a seminal paper, Black and Scholes ( 15) presented a complete 

general equilibrium theory of option pricing which is particularly 

attractive because the final formula is entirely a function of observ-

able variables. Therefore, the model is subject to direct empirical 

tests, which_ is then (14)performed with some success. Merton ( 45) 

clarified and extended the Black-Scholes model. While options are 

highly specialised and relatively unimportant financial instruments, 

both Black and Scholes ( 15) and Merton ( 46 ) recognised that the 

same basic approach could be applied for assets in general. Black ( 13), 

in a recent paper, has applied the option pricing principles of his 

original paper with Scholes ( 15), to the problem of commodity option 

pricing. He also derives formulae for the values of forward contracts 

in terms of future prices and other variables. (See also (10)) 

We are concerned with arriving at a testable theory of the term 

structure of commodity prices based on some of the above work. 

Consider the forward price quotation at time t for actual delivery 

of goods at time (t 	. Let us denote the forward price by F(t,T). 

Let the spot price at time t be denoted by x(t). At the next period, 

we will have a new spot price x(t + 1) and for the same goods to be 

delivered at time (t + T), a new forward price F(t + 1, r - 1). Thus we 

will have a series of spot prices x(t), - - x(t + n) - - x(t + T) and 
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a series of forward prices (F(t,r), - - F(t + n, t - n), - - F(t + T,0). 

At time (t + T), by definition, F(t + T,O) = x(t + T). In this paper, 

we wish to derive a general relationship between these two series which 

converge at maturity ( 53). (also (12)) 

2. Assumptions  

1. Trading takes place in continuous time. 

2. There are no restrictions on short sale. 

3. There are no transaction costs and buying and selling prices 

are identical. 

4. The term structure of interest rates is known with certainty 

as a function of maturity T; let the certain interest rate 

functional be R(T). 

5. The forward goods are buyable on margin. I.e., if the forward 

price at t for maturity T is F(t,T), it requires a down-payment 

at t of kF, (0 < k < 1), with the remainder payable on maturity 

at (t + T). It is clear that with continuous discounting, the 

effective price of the forward goods at t is kF + (1 - k)Fe-R(T)T 

where R is the interest rate. Let us denote this effective price 

by W. 

3. The Derivation of an analytical term-structure 

Let us posit that the spot prices are generated by the general 

stochastic differential equation 

dx = m(x,t) dt + a(x)dz 
	

( l ) 

where a(x,t) is the instantaneous change in x as a function of x and 

. 
t; (a(x))

2  is the instantaneous variance of the change as a function 

of x; dz is the standard Gauss-Wiener process. We wish to derive a 

relation between F(t,T) and x(t). Let us posit this functional dep-

endence we are seeking by denoting F(t,T) as F(x,T). Thus F is 

functionally dependent on the variables x and T - and other parameters 
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presumed to be constant. With this functional representation, from 

Ito's lemma, we can write the stochastic differential equation for F 

as (34 ) 

dF = Fdx + 11F (dx)2  + F d X 
 

XX 	T T 
( 2 ) 

which, from ( 1 ) and from the fact that dt 	-dT and (dz)2 = dt 

and after omitting terms with powers of dt higher than one, becomes 

dF = tE x̀cc(x,t) + 12F a
2 
(x) - F } dt + F

x
a(x)dz xx T 

3 

and since the effective price of forward holdings , W, is 

W = F(k + (1 - k)e-R(T 
	

( 4 ) 

then 

dW = (k + (1 - k)e-R 	T  )dF + (1 - k)e-R(T)TF(R(T) 	TRI  (T))dt 

( 5 ) 

Now consider forming a portfolio consisting of spot, forward 

and riskless bond holdings, such that the net aggregate investment 

in the portfolio is zero. This is possible by financing long positions 

through short sale and borrowings. Let f
1 
be the amount of investment 

in spot, f2  in forward and f
3 
in riskless bond holdings, with f

3 
= 

-(f1 + f2). Let (dRet) be the instantaneous return to the portfolio. 

Then 

dW dRet) = f1 d xx — + f2 W  + f3R ( T) dt 

dx 
= f1  (XX - R(T)dt) 

dF 
(1 - k)e-R(T)T(R(T) + TP)dt 

+ f
2 (--IF 	

(6) 

(k + (1 - k)e
-R(T)T 	R(T)dt) 
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dx f1 (—x 
- R (r) dt) ( 7 ) 

+ f 	+ 	  dF ((1 - k)e-R(T)TTR 1 (T) - kR(T)) dt) 
2 F 

(k 	(1.- k)e..711(T)T 

which, from equations (1 ) and ( 3 ), 

f 
(cc(x,t) - R(T)x) + -1(F cc(x,t) 	12a2 (x)F 	- F F x 	 xx T 

((1 - k)e-R(T)T  ,TR y (T) - kR(T))F  

(k + (1 - k)e-R(T)T) 

	} dt ( 8 ) 

F  
— a (x) — F Fx  CT (X) } dz 

Suppose the portfolio strategy f i  = f i* is chosen such that 

the coefficient of dz is always zero and thus the return is non-

stochastic. But, due to arbitrage, this certain return on a port-

folio with zero net investment, can only be zero. i.e. 

a
x 	

f 2* 
f l* (x) 	

F 	
• FX  a(x) = 0 	(no risk) ( 9  ) 

f 1 * 	 f 2* 
(cc(x,t) - R(T)x) + 	(Fxcc(x,t) + 	cc

2  (x)Fxx  -FT 
 

((1 - k)e-R(T)T  TR' (T) 	kI(T))F  ) = 0 
(k + (1 - k)e-R(T)T) 

(no certain return) 

From ( 9), it follows that, 
f 2* 

(xFx ) f1* = 

( 10) 

and, incorporating in equation ( 10) and simplifying, 
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f
2
* 

(lia
2(x)F 	+ R(T)x Fx 

((1 - k)e-R(T)TTW(T) - kR(T))F  
El4  xx 

(k + (1 - k)e
-R(T)T

) 

( 12) 

If we are to have a nontrivial solution wherein not all f.* are zero, 

then it follows that the expression in brackets in equation ( 12) 

equals zero. I.e., 

2, 	((1 - k)e-R(T)TTR'(T) - kR(T))F  
51 F = a (x)F + R(T)xF + 

T 	 XX 	(k + (1 - k)e-R(T)T, 
x 

(13)  

Equation ( 13) is a second order parabolic differential equation of 

the function F(x,T), with the initial condition, as we saw earlier, 

F(x,T = 0) = x 	 ( 14) 

By transforming the spot-price variable into the new variable 

y, where y = lnx and seeing if the transformed function F(y,T) is 

seperable in y and T, i.e.,' of the form F(y,T) = y(y)T(T), (which 

it is), one finds that the solution to the differential equation ( 13) 

with the boundary condition ( 14) is ( 79) 

F(x,T) = 

	

	 ('15) 
(k + (1 - k)e

-R(T)T
) 

Of course, the above result could have been more easily arrived 

at from a simpler assumption that the forward and spot markets are 

priced in such a manner that the returns in all maturities are the 

same. Then 

dx 	dW 
W 

dF 	(1 - k)e
-R(T)T(R 

 (T) + TRI (T))d 
	( 16) 

k + (1 - k)e-R(T)  
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or 

dln(F/x) = - dln (k 	(1 - k)e
-R(T)T) 
	

( 17) 

At T = 0, Fix = 1. Integrating (17) from 0 to T, 

F(x,T) = 

 

x 

  

(k + (1 - k)e-R( T T
) ( 18) 

which is the same as the result ( 15). 

4. Summary. 

Under the 'rationality' assumption of pure hedging, the risk 

terms disappear completely and we have, hence, a pure relationship 

between spot and forward prices. This would be valid if markets were 

perfect with numerous keenly anticipative participants and the 

investors were rational, risk-averting and logical mathematicians. 

These assumptions are never upheld in commodity markets with their 

sparesness of enthusiasm and their element of irrational, speculative, 

risk preferring conditions. 

The rationality approach to hedging' was first studied with regard 

to options by Black and Scholes. The forward contract is viewable 

as a call option (i.e. an option to buy ahead with a known price). 

Alexander (2) and Malkiel and Quandt (81) express in matrix form the 

content of a forward or a call option contract. Their approach to 

representing the logic of risk-bearing of the contract mechanism is 

beautiful. Call options - like forward Contracts - eliminate risk. 

As we pointed out, we borrowed our analysis from studies of the call 

option. 
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- CHAPTER 7 

Risky Asset Pricing Mechanism as a Control System  

1. Introduction 

In this chapter, we postulate that the price mechanism in 

risky asset markets can be looked upon as a control system and the 

price trajectories in time as a solution to an optimal control 

problem. 

Let us first present the hypothesis graphically before pro-

ceeding with the mathematics. We hypothesise that a security market 

can be visualised as below: 

Current security 

prices 

- - - refers to 

extraneous influences 

Excess supply 

(premium) 

or demand 

Security supply 

function 

Dynamics of 

price change 

Fig. 1 
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2. Assumptions  

1. Let us ignore the dotted lines and say that (a) the initial 

wealth Wo is known and wealth, at any time thereafter is 

governed entirely by the consumption decisions and the fortunes 

of the investment (in securities) decisions taken up to then 

from the time of beginning, and, (b) the supply function is 

known as a function of price and time. (We will release these 

assumptions later as a result of the nature of the solution we 

get for the simpler problem). 

2. Consumption/savings and investment decisions are taken as to 

maximise (discounted, expected) utility over a horizon T (which 

can be co; from Bellman's optimality theorem, a subtrajectory of 

an optimal trajectory is still optimal over its horizon). The 

u tility function is a (ny) function of consumption. (11) 

3. The dynamics of price change are a Walrarian function of excess 

physical demand. (This assumption too can be altered). 

3. 'Objective Function  

The variable we are interested in is price. Let us view this 

as the state variable. What is (are) the control variable(s)? As a 

simple beginning, let us say that there is only one investible security 

and it yields a certain interest, It Then there are two uses only to 

money: 

(a) consumption, and, 

(b) investment in the safe security (return yielding). ' 

If wealth at any time is W(t) and consumption C(t), then, because we 

assume that the investor is at all times constrained by the amount of 

wealth he began with at time to, his changes in wealth, consumption 
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and return are at any time governed by the relation, (a tautology). (54) 

dW/dt = W(t)r - C(t) 	 ( 1 ) 

(which in discrete time will be 

C(t) = Wt.)- 116 + 	 ( 2 ) 
(1 + T) 

With this constraint on C(t), the investor maximises the function 

5 T 

- pt J = Max C(t) 	e 	U(C(t))dt 

o 

or incorporating the constraint 

T 

J = Max W (t) 	e- pt U ( rW - dW/dt) dt 

o 

( 3)  

( 4)  

where 	U 	utility function 

p : discount factor 

T : horizon time 

Equation ( 4 ) is a standard calculus of Variations problem and with any 

specific utility function we can work out the optimal trajectory for 

C(t) as a function of W(t), which in turn can be a function of Wo and 

t, (because of the certainty of return on the security). Thus, the 

control variable in this case is C(t) which could be worked out given 

the utility fn, (W - C) at any time going to buy the safe asset. 

4. Risky Assets  

Now, in addition to the safe asset, let us introduce another 

asset that makes every El invested in it at t return as £Z at (t + 1), 
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where Zt is a random variable whose distribution 

P(Ztaz) = P(z) 

is known. 

Now the investor has another (control) decision. He must, as 

before, make the consumption/savings decision at any time. Now, in 

addition, he must also decide on the fraction wt. of every £1 of 

investment (savings) that he should put in the risky asset, (1 - wt) 

going to buy the safe asset. The consumption constraint is now 

dW(t) 
= W(t) Nit(Zt 	+ (1 - wt)r) - dt 6 

0 < 	1. 	(no short sale) 

Again, the constraint could be introduced in the objective function 

J, which is now an expected (not absolute) maximum because of the 

stochasticity of Zt, as 

,
T 

J = Max (Ct, w t) E 	(1 + p') -'t u(c(t)) 
o 

( 7  ) 

C(t) constrained by ( 6  ). Thus the maximum must be over two control 

variables C(t) and W(t). Solution of ( "7) will lend to the trajectories 

(in terms of W(t)) of C(t) andW(t) . (6) 

5. Control Theory  

Before proceeding with the solution, it is perhaps appropriate 

to make clear the control terminology that we are using. In any optimal 

control problem, we have the following: (30) 

1. Initial value of state variable (call it x) at to. I.e., 

x(to) = xo (known). x can be a vector. 

5 
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2. Let u be the vector of control variables. The feasible reg-

ion of u at any time must be known (and compact) and out of 

this region, we must choose one set of values. 

3. Given x and u at any time, the rate of change of x, i.e., 

dx/dt must be calculable, i.e., 4114t = f(x, 5, t) where 

f is a known function. (f can be stochastic). 

4. u at any time must be chosen (out of feasible values) so as 

to maximise an objective functional over a horizon T. 

J = Man u(t) 	I(x,i3,t)dt 
	

( 8  ) 
to 

where I is known as the intermediate function. (See (17)) 

6. Analogy to the market 

Now, let us see if Fig. 1 represents a control problem. 

(a) We know the initial conditions of price (of risky security) and 

Wo. Thus condition (1 ) is met. (Denote price by P). 

(b) The feasible values of C (t) are given by (6) and for W  (t) we have 

04 wt4:1. Thus condition (2) is met for our ; is (Ct,wt). 

(c) The dynamics of price change are given by the Walrasian. This 

needs to be elaborated. Assume that as a solution to (7 ), we 

get C(t) as a function of igt,t) and w;t as a function of (gt,t). 

Then,wt(Wt - Ct) represents the amount of money that goes into 

the purchase of risky security. Let D be the physical demand; 

the PxD represents the money value of risky securities. Then 

PxD = wit (Wt - Ct) 

or 	D = w t/P (Wt - Ct) 
	

( 9) 

Let S(P,t) be the supply function. Then, from the Walrasian, 
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dP/dt = X(D - S) 

= X( 
wt  -- (wt - Ct) - S(t,P)) (A 0) 

	
( 1.o ) 

Since Ct and wt are known as functions of Wt,knowing Wo, the 

r.h.s. in (10) will be a random (because the risk of the return) 

function of Wo and t and P. Thus the dynamics are known and cond-

ition ( 3 ) is met. 

(d) The control variables Ct and Wt are chosen so as to maximise ( 7 ) 

subject to ( 6.). i.e., Our intermediate function is the utility 

function. 

Thus in Fig. 1. , we have an optimal control problem. 

7.. Solution  

The proper solution to ( 7 ) is to be found in the reference.(54) 

Here, we will merely indicate the process of solution. In discrete 

time, ( 6) becomes 

W(t.+. 1)  
Ct = Wt - w't) (1 + r ) +w tZt 

where the objective functional 

Jt(Wo) = Max (Ct,wt) E tE0  (1 + p) -t  U(Ct) 	(12 ) 

This is a stochastic dynamic programming problem. Assuming that Zt's 

are independent, i.e. 

co 
E F(Zt) = 	' F(Zt) dP (ZtIZt - 

=11 

 co  
F (Zt) dP (Zt) ,0   (13) 

Zo) 
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one can solve (12 ) subject to (11 ) through Bellman's recursive 

equations to the relations 

Ct* = g
T-t 

(Wt) 

and 	wt-* = fT-E (Wt) 
	

(14) 

which are the optimal consumption and portfolio decision (whose func-

tional nature depends upon the nature of the utility function). 

8. Bernoulli Case  

Let us now move from the above generalities to a specific utility 

function. Consider the Bernoulli case, where 

U = log C 	 (15 ) 

(The results are interesting and easy to manipulate.) 

It canbe shown that the general recursive relation in this 

case is 

 
13.   I (W) = Max C. 	

-1 log C + E (1 + p ) 	(W - C) 

{ (1 - v(l+r) +w z} 

CO 

= Max W 	log ( (2 - w) (1 -F .X') + w..Z) dP (Z) 	( 16) 

0 

(We restrict Z here to the positive real line since we are using a 

logarithmic function.) 

Differentiating (16 ) w.r.t C and W, we get 

 
0 = 1/C - (1 + P) 

-1  (W - C) -1  

or 	C(t) = {(1 p)/(2 	P)} W(t) 	 ( 17) 
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(Z - 1 - r) ((1 -14 (1 +r ) +w!Z)
-1 

 dP(Z) 

= w* independent of W(t) and t and C(t) 	(18 ) 

The above results are interesting. 

(a) (17) shows that with the logarithmic utility function, the 

consumption/savings propensity depends only on the time-preference 

discount factor p and is thus presumably a constant in time, (and 

average propensity = marginal propensity). 

(b) (16) shows that the optimal portfolio decision is independent 

of time or wealth level or the consumption/savings decision and 

is a constant w* (given the distribution P(Z) and the rate of 

interest r). 

9. Price Trajectory  

Armed with the above, we can now go back to the dynamic equation 

( 10) which says 

dP/dt = A ( 	(Wt Ct) 	S Ct.,/ 9 
	

( 19) 

	

Mw* (1 - R) %VP 	(, .)} 	( 20 ) 

where R stands for the average (and marginal) propensity to consume. 

(R = (1 	p) / ( 2 + p.) 

10. Extensions  

It is a simple matter to extend the investor dynamics to market 

dynamics and say that R is the market propensity to consume and w'* is 

the market optimal portfolio decision and W and S are market wealth and 

and 
co 

So 
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supply respectively. (This, indeed, we could have done earlier). 

11. Extraneous Influences. 

.Let us look at the consumption function ( 17) in which con-

sumption is a constant fraction of W(t). Let us forget that it was 

derived n  the basis of a logarithmic utility for with independent 

returns on the risky security. Let us take the constancy of propen-

sity to consume as an independent hypothesis (it rings - falsely.- a 

Keynesian note). Again, let us take the constancy of the split of 

every investment £1 into a risky and safe asset, i.e., the constancy 

of w*, as an independent hypothesis. Let us consider the dynamic 

equation (19) then, as our hypothesis where (A* (1 - R)) can be taken 

as a constant m.7.0. This enables us to consider extraneous - or, at 

any rate, - system-independent influences on W and S; or consider them 

as functions of our own choice to be tested by the price-trajectory 

they produce. For example: 

(1) W can be considered a minimum function of t and S of P. 

(2) W can be considered as make up of linear and cyclical functions in 

t and S a linear one in P and a cyclical one in t. 

(3) W can be a product fn of P. and t (price level relates to wealth). 

(4) W and P can be random functions in 't. 

In all the above cases, the price-trajectory P(t) is solvable 

with an initial condition. (In case ( 4), we can work out the mean 

and variance). With the solution P(t), we have a means of testing 

each of the above hypotheses. Thus the control system approach has 

led us some way towards making our hypothesis operational. (also 55) 

12. Multimarket Situations  

In the multimarket case with many risky securities, we still 
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have our two control variables (consumption decision and the risky/ 

safe portfolio decision). In addition, we have a third control 

vector ( xl...xn) representing the fraction of each £1 invested in 

risky assets that goes to buy each risky security. We now will 

have one more part to our objective function, which should now 

include a minimum variance criterion to minimise portfolio risk. 

13. Conclusions.  

We have taken most of our arguments from Samuelson's analysis 

on lifetime portfolio selection. The main difference is that we 

employ the language of control theory - namely in viewing the 

market as a control system. In the control system - which contains 

a decision-making unit which decides the consumption, investment 

package baed on utility preferences of - in our case - a 

representative investor, a law of price change (The Walranian), a 

supply functional and a price setting mechanism. All units thus 

rest on sound economic theory. 

We use the Merton-Samuelson approach to the investment decision. 

They provide facility for any utility function to be employed but 

develop a simple - linear log utility function to the fullest extent. 

We have done the same here. For mathematical convenience they and we too, 

employ continuous time analysis. 

All utility analysis is based on individual, rational investors 

to whom we give dummy motivational properties - as utility preference 

schemes. This is both for mathematical simplicity and also to save 

the bother of aggregation of multiple, heterogeneous opinions and 

data testing. 

The simple expectational utility scheme employed here leads 

to a decision independent of the level of wealth but to a consumption 

function which resembles a Keynesian function. With a quadratic 
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utility function, as in the case of Sharpe's approach to the position. 

Selection problem, the decision will depend on the level of wealth - a 

function of time. We have dealt with this approach in Chapter 5. 
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Appendix to Chapter 7  

A Sequential Approach for Multimarket Situations  

That the split between safe and risky assets is a constant 

fraction of every investment E is true only of logarithmic utility 

fn. But Tobin (68 ) has used the constant split as an axiom in. his 

separation theorem. There are those who disagree with it (48 ) and 

say that with a quadratic utility fn, one will only set a fraction 

dependent on the level of wealth. But proceeding from his axiom, 

Tobin uses a quadratic utility fn to determine the composition of a 

multi-asset model. 

Let us proceed, however, along this path of sequential decision 

in spite of the disagreements and assume that a constant fraction m 

of investment wealth W is at any time invested in risky securities. 

Let W
R = mW. Our problem now is to decide how much of this W

R 
goes 

into each of n risky securities. 

Let P be the vector of the prices of risky assets; D the vector 

of the quantity demanded; and X the yea-tor 

demand. 

The following relations are apparent: 

of monetary 

PnDn 

1. (Diag. 	173)'15 	= ( 1 	) 

where diag. P is the matrix 
1 	
0 	0 	0 

0 	P
2 	
0 

[P 

0 	0 	0 	Pn 

'R ( 2 	) 
2, i'R 

where i' is the row vector 	. . 	. 	. 	1) of n elements. 
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Let us now posit that the investor uses a quadratic utility 

fn of wealth, i.e., 

__R 
U(W

R
) = W

R 
- b(W ) 2  ( 3 ) 

The investor sees wealth invested in risky securities as a random 

variable and his expected utility is thus 

e(U(WR)) = e(WR) - be(WR)2 	( 4 ) 

where c is the expectation operator, if 

E = c (W
R
) and S

2 
= e (WR  - E) 

2 

c(U(WR)) = E - (E2  + S2) 	( 5 ) 

E:- 

Let us assume a particular distribution for WR  that will not 

lead to negative wealth values; viewing, as White does, the expected 

wealth as X times the return on a unit vector of holdings, let us 

assume that the safe (yield) part of the outurn as the vector r. As 

for capital gains, let us tie this up with the nonnegative criterion 

and assume for the unit price, the random representation, 

dln P = a dt + 13dz 	 ( 6 ) 

where P exhibits (or is expected to do so) a log-normal distn. with 

a 	mean log P (instantaneous) 

a
2 	

variance-covariance matrix 

dz : Gauss-Wiener variable 
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Thus E 	= 

where i 

(i 

= 

r + a 

1  
1 

[1 

1 

); 

with n entries. 

( i  ) 

S
2 

= c (W - E) 2 

,(X' {(i  4. a  +r  ) 	
dt 
dz 	- X, 	+ a + r) )2  

2 S 

ir; 2 	
( 8 ) 

Thus the vector form in which the investor maximises (0) 

is now clear. From ( 7) and ( 8 ) 

	

e(WR) . = 	+ F + a) - b(10 (i 	+ 

2 
(i + r + a)FC + ' a 	if-) 

s.t. 	(2) i.e., i'X = WRY 

Or, combining, max. the Langrangian 

	

L = X' (i + ti„+ 	- b(X.  (i,+ r + a)'(i + r + a) X 	Xii; 2  X) 

+ A(V5i - WR  ) 	 (9  ) 

Diff. w.r.t. X and , we get 

	

(i + F + 	- 2b((i + r + a)'(i + r + 5) + Ci2) X 

Max 

+ Ai' = 0 

and 	i'X - WR  = 0 

( 10 ) 
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Let 	C = (i + r + a)I (i + r + a) 

and 	V = a2  + ci, where I = identity matrix 
	

(12) 

Then the solution to (10) and (11) is 

-1 -1 1 	-1 V - 
i-1 

_ - 
2b (V (V 	) (i + r + a) 

Vi 

-1  
+ (V 	

. 
) W

R 

i'V 1.  
(13 ) 

But since (Diag. is)1 
	

= 

(Diag. 13)-1  X 	(14 ) 

with X given by ( 13). 

(14) constitutes the demand for portfolio in terms of wealth, 

price and estimatable parameters. While White proceeds to use 

a similar result to (13 ), for determining market equilibra, we shall 

use ( 14) to analyse price dynamics. 

Let 
d1b
7=  (Diag. T)(5 - §) 
	

(15 ) 

where 5■ is a set of Walrasian coefficients. 

(15) represents the expected trajectory for price and the yield 

curve can be derived from it given WR  and S and knowing market prices. 

With a given supply function (in terms of ip) and with a given initial 

wealth Wo, (15 ) is analytically solvable. 
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'CHAPTER 8 

Conclusions and Suggestions  

1. Summary of Work Done:- 

The doctoral work centres on three major topics. They are: 

(a) 	Some approaches to the theory of spot price behavior in com- 

modity markets: These stem from the consideration of the effect 

of noise-symbolising numerour unspecified economic variables - 

on stable relationships between supply and demand; from the 

application of the dynamic theory of interacting populations 

to the economic system and generally from the applications of 

the theory of stochastic processes. 

(b) 	The applications of the theory of the term structure of interest 

rates to the term structure of commodity prices. These include 

1. the continuous-time stochastic formulation of some leading 

term structure theories - the expectation model, risk-premium 

theory and the error learning model. 

2. consideration of the term-structure market as a stochastic 

control system and deriving the capital asset pricing model as 

an optimal solution to the control system 

(c) 	Derivation of an analytical relationship between the spot price, 

forward price and maturity in terms of fixed parameters - using 

the Black-Scholes-Merton formulation (via stochastic calculus) 

of the capital asset pricing model. 

Testing of some of the above models using metal prices, whose 

results are appended. 



70 

2. Suggestions for extensions  

1. Developing a continuous time and/or a multiperiod capital asset 

pricing model. The model would be in a dynamic programming 

format in the multiperiod case; it would be in the differential 

equation format of Black-Scholes-Merton in the continuous time 

case - but with several (not just one as in their models) 

boundary points in time. This would be the first step towards 

developing a sound theory of viewing the financial markets as 

a dynamic control system. (19) 

2. Application of the capital asset pricing theory to the deter-

mination of the risk structure of the assets and liabilities of 

a company and the development of a capital budgeting theory 

leading to a healthy matching of risk, return and time between 

assets and liabilities. (69,70) 

3. Some applications of stochastic biological models to the analysis 

of the total economic system. The forces of supply and demand 

that determine the quantity of goods bought/sold could be likened 

to the forces of birth and death in an ecological system and 

the interactions between various goods - one of them being money 

to the interactions between population. This could be the basis 

for developing a dynamic equilibrium model of the total economic 

system. 

4. Developing a time-series version of the mean-variance portfolio 

selection model. 
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APPENDIX I 

Mathematical Content of biological population models  

One approach to biological modelling is to treat time as a 

continuous variable and assume that the system can be described by 

a set of random variables which change either discretely or cont-

inuously in their state space. In the continuous case, which is 

what we employ, the system is characterised by a probablility den-

sity function that satisfies a second order partial differential 

equation, the so-called Fokker-Planck or diffusion equation. This 

equation can be converted into an equation that is very similar to 

the SchrOdinger equation of quantun mechanics. A second approach 

begins with one or more important elements of a system whose time-

path is describable deterministically. One superimposes noise to 

describe the effect of other variables and converts the deterministic 

dynamic variables into random variables whose probability density 

functions satisfy the Fokker-Planck equation. 	(1) 

The diffusion equations are more'amenable to analytical analysis 

than the differential-difference equations, which specify the evol-

ution of the random processes discrete in state space. Therefore, by 

approximating the differential-difference equation by a partial dif-

ferential equation in the form. of a diffusion equation, a detailed, 

though approxiamte, knowledge of the behavior of a process with discrete 

state space can be obtained. The approximation improves as the ratio 

of distance between the allowed states and the value of the random 

variable describing the process decreases. 
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By using a similar limiting procedure on the backward master equation 

we get another partial differential equation, the so-called back-

ward Kolmogorov diffusion equation, 

+ Ilb(Y)21:(x1237't) 
3 

(xIY,t) 	a(y)  DP(xly,t) 
ay. 

ay 
( 2 ) 

Equations ( 1 ) and ( 2 ) are to be solved with the initial 

condition 

limP(xly,t) = (3(x -y) 	 ( 3 ) 
t+0 

which states that initially the random variable had the value y. We 

note that if, instead of the random variable initially having a 

definite value y, its initial state is specified by a probability 

r‘  
2 density p(y) [With P  (y)dy = 1, where denotes the state space], 0 

then the solution of the diffusion equations is 

P(x1t) = 1 P(xly,t) (y)dy 	( 4 ) 

The function a(x) in Eqs. ( 1 ) and ('2 ) is the rate of growth of 

the mean when the process is at x,i.e. 

a(x) = lim 1 — 	(z - x)P(z x,T)dz 
T40 T 

f 

2 (5.1) 

This can be seen by rewriting the right-hand side of this equation 

as 

3P(zix,0)  dz  
at 

using the differential equation ( 2 ) and the intitial condition ( 3  ), 

and carrying out the integration by parts. Similarly, b(x) in Eqs. 
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' ( 2) is the rate of growth of the variance when the process 

is at x, i.e. 

b(x) = lim 1 — .(z - x)2P(z1x,T)dz 	(5.2) 
t40 T 

By similar arguments all the growth rates of.the higher moments of 

the change in the state of the random variable vanish, i.e. 

lim 1 — (z - x)nP(z1x,T)dz = 0, 
t-ND T 52 

n 	3 	(5.3) 

We now derive the partial differential equations satisfied 

by P(x y,t) for a Markovian process for which the state space is 

continuous, and derive the conditions under which these differential 

equations become diffusion equations' Eqs. (1,) and ( 2) . Our 

starting. equation is the so-called Chapman-Kolmogorov equation: 

P(xly,ti  + t2) = S P(zly,t1)P(xlz,t2)dz 	( 6 ) 

This equation is a mathematical manifestation of the Markovian, 

according to which the behavior of the process in the time interval 

(tt
1 
+ t

2) depends on its state at time t1, and not on its behavior 

in the previous time interval (0,t1). Therefore,'if the process is 

in state y at time t = 0, the probability that it will be in state x 

at a later time t
1 
+ t2, must be equal to the probability that it will 

be in some state z at time t1  + t2, summed over all the intermediate 

states z. In Eq. (6), we set t1  = t,t2  = T(T40), z = x - p 

to get 

P(xly,t + T) = $Vx - 111Y/t)P(xlx -p,T)dp 	( 7 ) 

1 
where (-0 ) is the state space translated by -x. 
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We limit the discussion to cases in which the probability 

distribution P(xly,t) does not change significantly in the short 

time T. Therefore P(xly,t + T) will not differ much from P(xly,t), 

and we can expand it in a Taylor's series: 

DP 
P(xly,t + T) = P(xly,t) + P--  (xly,t) + 3-t ( 8 ) 

Since from the initial condition, (3), P(xly,0) = d(x - y), for 

small T P(XIX - p,T) is sharply peaked around p = 0, and the integral 

	

in Eq. (7) need be integrated only in the neighborhood of 	= 0. 

We can therefore expand the integrand of Eq. (7), regarded as a func-

tion of x, in a Taylor's series around the point x + p to get 

P(x - ply,t)P(xlx - 11,Tr = P(xly,t)P(x + pfx,T) 

a 
— 	

, 	
+ p X,Ti] 

@X 

2 3
2 

, + 

	

	
M ax 
----P(xly,t)P(x + 	- 2 

( 9 ) 

Substituting this expansion into Eq. (7), carrying out the integ-

ration near p = 0, replacing the left-hand side of (7) by the 

expansion in ( 8), and noting that the integral over P(x +plx,T) 

equals 1, we obtain 

3P(xly,t)  
0(T) 	= - 	--a  [P(X117,t)1113(X 	pix,T)] dp 

at 
Q* 3X 

• Q*9x 

+1/2 	a
2 

p(xly,t)11
2
P(x + p 	dp- 

( 10 ) 

where Q* is the neighborhood of p = 0 in which P(xlx - p,T) is 
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concentrated. Interchanging the order of integration (with respect 

to p) with differentiation (with respect to x), dividing by T, and 

taking the limit 1.40, we finally arrive at 

3P(xiy,t)  
at 

a 
m (x)p(xly,t) 

axn n 

where 

M (x) = lim 
1
— 	pnP x + 14x, T) dp 	= 	.1'1-, I 	, tz-x) etzlx,T)az 

( 12 ) 

Equation (11) is the required partial differential equation 

describing probabilistically the evolution of the process. It reduces 

to the forward diffusion equation (1) if Mn(x) = 0 for all n > 2, 

and these are the required conditions (in addition to the Markovian 

nature of the process) under which the forward diffusion equation 

describes- the evolution of the process. By a similar procedure 

[which involves the expansion of P(xlzf t2) in Eq. (6) regarded as 

a function of z in Taylor's series around,the point y] one-can show 

that under the above-stated conditions P(x(y,t) also satisfies the 

backward diffusion equation (2). 

We now introduce a wide class of processes for which Mn(x) = 0 

for all n > 2 and relate the dynamical stochastic equation, obeyed 

by the processes, with the forward diffusion equation satisfied by 

the corresponding probability density P(xly,t). 

Consider a process characterized by the stochastic dynamical 

equation satisfied by the process variable x, 

dx/dt = h(x) 4 e(x)i(t) 	 ( 13 ) 

n 	T40 T40 fs2 
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where i(t) is a stochastic memoryless input to_the process, e(x) 

describes the rate of this input and h(x) is the function describing 

the rate of change of the variable x in the absence of input. Both 

e(x) and h(x) are assumed to be differentiable functions; i(t) is 

characterized by two parameters m and a 2  defined by 

< i(t)> = m 	 (14.1) 

<Ei(t)ml[ i(t + 	m] > 	= a26
: 
(t
1
) 	

(14.2) 

with all the correlations of order greater than 3 of i(t) assumed to 

be zero. The averages are taken over a suitable ensemble, e.g., a 

number of repetitive observations on the system. Such an i(t) is 

said to be generated by a Gaussian random process, and°.2 is known 

as an incremental variance or intensity of the input. We define a new 

quantity F(t) by.  

F(t) - i(t) - m  
a ( 15 ) 

< F(t)> = 0 	 ( 16 ) 

< F(t)F(t + t1)> = 6(ti) 
	 (16.2) 

with vanishing correlations-of order 3 andmore of F(t): F(t) so 

defined is called a white noise. Substituting Eq. (15) into Eq. (14) 

we get 

dx/dt = cc(x) + 0(x)F(t) 

where 

cc(x) = h(x) + me(x) 
	

(18.1) 

8(x) = 00 (x) 	 (18.2) 

We now show that for the process described by the stochastic 



dynamical equation (SDE) (13) or equivalently by SDE (17) , 

Mn  (x)= 0 for all n> 3, 

1D M
1 
 (x) = cc(x) + -- Dx--{a(x)}

2 
E a(x) 4 

M2(x) = {a(x)}
2 E b(x) 
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(19.1) 

(19.2) 

and the probability density P(xly,t) satisfies the forward diffusion 

equation ( 1). 

Dividing Eq. (17) by a(x), we obtain 

dz/dt = a(z) + F(t) 	 ( 20 ) 

where 
dz = dx/a(x) 	 (21.1) 

a(z) = cc(x(z))/a(x(z)) 	 (21.2) 

To find M1(z), we integrate Eq. (20) over the short interval 

(t,t + T) to get 

.AZ(t) E z(t + T) - z(t) = a(z)T +dV() + 0(T) 

t 	( 22 ) 

Therefore, M1(z), the growth rate of the mean value when the process 

is at z, is 

A 

M1(z) = lim <Az> 	= a(z) + limd<F(0> = a(z) 
T40 T 	T40 

• ( 23 ) 

where the last step follows from Eq. (16). Further, from Eq. (22) 

't+T ft+T 
<(dz)2> = 	dEdri< F(OF(r) 	+ 0(T) 
L. 

t t 
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and by Eq. (16.2), the double integral in this equation is T, so 

that 

<(Az) 2> 

	

M (z) = lim 	T 	
= 1 

2 	T41)  ( 24) 

- Since all correlations of F(t) higher than second order 

vanish, following the same arguement, we obtain 

Mn(z) = 	 n > 3 
	

( 25 

From Eqs. (23) - (Z5), g(z z,t), the probability density that the 

transformed variable defined by Eqs. (ft) has the value z at time t 

when zo 
is its value at t = 0 (i.e., when x = y), satisfies 

the forward diffusion equation 

",2 
= - 3  (a(z)g) + 	° g  at 	az 	2 	2 

az (26) 

Since by the transformation (21.1) 

z2 
Prob [xi 	x 	x2I = 	P (xIY,t) dx = 	P (x (z) I Yr t) (x(z))dz xl 	

z1 

z
2 

= proqz
1 
 4.5 z < z2 ' ] = 	q(zlz ,t)dz 

2
1  

(27.1) 

	

with z.
1 	1 

- 

z(x.) r 	

• 

1, 2, g(z1zo,t) by the relation 

g(zizo,t) = P(x(z)ly,t)(3(x(Z)) 	(27.2) 

Differentiating both sides with respect to z, and using Eqs. (21), 

we obtain 

	

az 
	a(RP) 	0a(RP)  az 	a 	ax 	2 ax 

a(R
2
P) P aR

2 

a
2
g6 a 
= ax z  

(27.3) 
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so that Eq. (26), after the substitutions of Eqs.( 27.?1 (27.31, 

and (2L , becomes 

at - 
_ 	9 	

2 
1 a

2 

at - 	(a(x) P)  + 	(b (x) P) 
ax  x 

( 2 8 ) 

where a(x) and b(x) are given by Eqs. 0.12) and (194 respectively. 

Equation (28) is the same forward diffusion equation as (1 ). 

For such an equation, we have already shown earlier in this section 

tht M
1 
 (x) = a(x), M2  (x) = b(x), and V(x) = 04 n > 3, whidh 

completes the proof of the assertions made above. 

To summarize, we have shown that for a process described by 

the SDE (13 ) 

	

dx(dt = h(x) + e(x)i(t) 	- 	(29A) 

with i(t) a white noise with nonzero mean m and intensity a
2
, the 

forward diffusion equation or Fokker-Planck (FP) equation is 

ap 
 2 
_ a 	• a 	3 

= 	(x) + me (x) + 	e
2 
 (x) } P4 	ax 

	

2 	2 
.&2

(x)P] 

	

+ a
2 	

a
2  

ax 

Similarly, the corresponding backward equation is 

ap h(y) + me(y) + a2 	3 2 	aP 	a
2 

2 	32P at 	 4 -5-57 e (y) . T37  + 	e (y). 	2  
3y 

(29 2) 

(29.1) 

The results above are very useful in making primitive statistical 

models'of complex biological systems. The deterministic behavior 

of one(or more) of the components of the complex system can be rep-

resented by the dynamical equation dxidt = h(x), and the remaining 

unknown fluctuating behavior, due to the presence of other components, 

can he approximated by e(x)i(t) where i(t) is a white noise. This 
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white noise approximation is a reasonable approximation if the 

fluctuations occur extremely rapidly on the time scale defining 

the changes in x. This procedure converts the deterministic dyn-

amical equation into a stochastic dynamical equation and the 

probabilistic analysis of the process can be carried out by 

analyzing the diffusion equations (29.1) and ( 29.2). 

It may be noted that although the FP equation for a given 

SDE is unique, the reverse is not true. In other words, the 

problem of finding an SDE for a random process satisfying a given 

FP equation does not have a unique solution. However, the solution 

will be unique if we restrict ourselves to equations of the type 

(17) containing a Gaussian delta-correlated random process F(t) 

with zero mean and unit intensity. With this restriction, the SDE 

for the FP equation ( 28) is Eq. (17), or by a simple redefinition, 

the SDE for the FP equation 

L DP — 5 
a 	 , 	2 

Dt 	'7 (a(x)p) 4. .- 2 2 (b(x)P) 
ax 

is 1 ab (x) a(x) 	+ {b(x)}
1/2

F(t) dt 	4 ax 

(3Q 1) 

(30. 2) 

The formalism presented here for the derivation of an FP 

equation from a given SDE, follows the Stratonovich rules (65). 

There is a controversy'in this derivation when the coeffic-

ient of the white noise in the SDE [e(x) in Eq. ( 13)3 depends on 

the process variable x. This controversy arises from the pathalogical 

nature of the white noise (similar to the pathological nature of the 

ó function), which is well defined only in terms of its intergral 

SIT

o F(T)dT. We followed the Stratonovich approach since its rules 

are the same as ordinary calculus, and transformation of variables 
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as the one carried out in Eqs. (21), is valid. The other approach, 

taken by Doob (18) , and Ito (. 34) , uses the Ito calculus, where 

differentiation and integration rules differ from the ordinary ones. 

A discussion of this controversy from the point of view of modeling 

reality is given by Mortensen ( 47 ). He concludes that, since a 

white noise is only an approximation to the stochastic behavior in 

nature, the stochastic process, derived by using any of the two 

approaches, should be checked against reality, and its capability 

to predict results which are an acceptable approximation to the 

actual behavior is the only criterion to be considered. 

We now discuss the solution of the diffusion equations. Since 

P(xly,t) describes the evolution of the process completely, we need 

solve the forward diffusion equation - the FP equation. From the 

discussion given above, the FP equation of the type ( 28) can be 

transformed into an FP equation of the type (26 ) with the substit-

utions 

dz = [b (x)] -112dx1 1 -l/2 
dg z(x) = Elp()i 	(g (31.1) 

• 

A 
a(z) 	[a(x) - r— 	-1/2  

g(zizot) 	[b(x)-.1 1/21)(xly,t)11x=x(z) 

and the intial condition 

g(zfz
o,0) = S(z - zo), zo 

= z (y) 	(31.4) 

In Eq. (31.2)the right-hand side is to be expressed in terms of z 

given by (31.1). Therefore, it is sufficient for us to describe the 

method for solving Eq. (26) with the boundary conditions which 

depend on the allowed range of the variable z. 
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As in the case of discrete processes, the random processes 

may be basically of two types, one in which there are no forced 

restrictions on the allowed range of the random variable (we shall 

call such processes unrestricted), and the other type in which 

boundary conditions are imposed at one or two points or the state 

space (such processes will be called restricted). The appropriate 

boundary conditions imposed on the latter type of processes are 

given in . (27) 	and the behavior of unrestricted processes 

near their "built-in" boundaries (finite or infinite) is discussed 

in (27) 	. In the remaining part of this section we formally 

indicate a method for solving the FP equation, and in the next two 

sections, we indicate how to apply this method for various processes. 

. To solve Eq. (26), we use the standard method of separation 

of variables. 

Taking 

g(zlz
o,t) = Oz)e

-Et/2 	
(32 ) 

as the trial solution, Eq. (26 ) becomes 

d2Q 

dz2 
^ 

d7 (a(z)Q) + EQ = 0 	 ( 33 ) 

This equation is to be solved subject to the boundary conditions 

on Q implied by the boundary conditions on g through Eq. (32 0 

i.e., it is an eigenvalue problem. Depending on the form of the 

function .a(z) and the boundary conditions, there will be a discrete 

and/or continuous set of E, with a corresponding set of Q. For a 

discrete set CEn,Qn  }, the solution is 

g(zlzt) = 	Ecc 
n  Qn 

 exp( - Ent/2) n 
(34. l) 

and for a continuous set 	
g(zIzo,t) 	cc(E)Q(E)e-Et/2dE 	(34.2) 
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where cc
n or m(E) is to be evaluated by using the initial condition.  

(31.4). 

An equivalent and useful form of Eq. (33) is obtained by 

making a transformation which converts it into a differential equation 

free of a first-order partial derivative in z. Such a transforbation 

is 

Q 	
1/2 = Ip(z) [7(4 

where 
z. 

Tr (z) = exp -2 	am dq 

On carrying out this transformation, Eq. (33) becomes 

2h 2 d 	z + LE - U(z)3 (z) = 

where 

U(z) = dajdz + a 

(35.2) 

( 36 ) 

( 37 ) 

The boundary conditions are also transformed into the boundary 

conditions on IP. Equation ( 36) and these boundary conditions once 

again constitute an eivenvalue problem. 

In case z is confined between two finite boundaries and U(z) 

is finite within these boundaries, the,set of eigenvalues and 

eigenfunctions {E (z)} for this eigenvalue problem is discrete, 
n n 

and the set of functions {1Pn(z)} is orthonormal (see, e.g. (67)) 

in
(z) 	

m
(z)dz = a

mn 
	( 38) 

In view of the transformation (35 ) the set of functions Qn (z)} 

is an orthonormal set with respect to the weight functionir(z), 
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i.e. 
Q
n
(z)Q 

m
(z)11-42)dz 7 (S

mn 
	( 39) 

g 

Using relation (3 9) and the initial condition (31.4') the co-

efficients fccnlin Eq. (34.1)can be evaluated by putting t = 0 

in this equation, multiplying both sides by ff(z)Qn(z) and integ-

rating over Q. The resulting form of cc
n 
is 

j 

an = 	Tr(z)Qn(z)6(z - zo)dz 

Q 

= Q
n
(z
o
)n(z

o
) 

Substituting cc
n into Eq. (34.1), we get the simple expression 

q(zizo,t) 

Relation.  (40  ) is valid also in case of an infinite state space, 

if U(z) tends to infinity at the infinite boundaries. Otherwise, 

the set of eigenvalues {En} is not discrete anymore, and there is 

a continuous interval of eigenvalues. 

There is an advantage in using the form (36) instead of (33) 

.since this form is very similar to the time-dependent SchrOdinger 

equation of quantum physics 

d
2ip 2m p 

dz
2 + 	LE  - U(z)] )(z) 
 fi 

0 

which describes the motion, in one dimension, of a particle of 

mass m moving in a field with potential U(z). E is the energy of 

the particle, h = 2ffh is Planck's constant, and T(z,t) = ip(z) 

exp( -.iEt111) is the wave function of the particle and has the 

physical significance that IT(z,t)12dz is the probability of 

00 

w(zo) E Qn(z)Qn(zo)exp(-Ent/2) ( 40) 
n=0 



85 

finding the particle at a point between z and.z + dz at time t. 

Because SchrOdinger's equation has been studied quite extensively 

in mathematical physics, together with many approximation methods 

for solving it, an extensive literature becomes immediately avail-

able for the solution FP equations. 

We now make an important observation by writing a(z) in 

the form 

• 
a(z) 	= 	(1) 1 (z)/(1)(z) 

	
( 41) 

Substituting Eq. 41) into (37 ) we get 

"(z) - U(z) 	(z) = 0 	( 42) 

Comparing Eq. ( 36) with this equation, we note that (1)(z) is a 

solution of ( 36) when E is taken to be equal to zero. Thus by 

choosing U(z) such that ( 36) is analytically solvable for U(z) 

A 
and U(z) + constant, one can generate a set of a(z) [with b(z) = 

for which the diffusion equation ( 26) can be analytically solved. 

A For these a(z) and b(z) = 1, one can calculate a(x) for a given 

b(x) by using Eqs. ( 31) or calculate a(x) and b(x) from a given 

8.(x) from Eqs. (19 ) and (21 ). 

On the basis of the literature on SchrOdinger's equation on 

electrostatics and other areas of mathematical physics, we have 

compliled a liSt of a(z) for which one of the two second-order 

differential equations (33 ) and (36 ) has been solved. We give 

o's a(z) and the solutions in Table 	1 . In Table 2 we summarize 

a list of a(x) and b(x) for which the eigenfunctions of the FP 

equation ( 1 ) are known. 



U(x) 

0 

a2  

a2  

1 
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s to the eigenvalue equation  b'+ (E— U) 	0, derived from an FP equation with b(x) = 

(x) = h (x) (x) 

h (x) 	 15(x) 	 References' 

1 	 cos El/ 2x, sin E 1 / 2x 

rtzait az > E  exp[(a2 — E) 12  x], exp[— (a2 —E  
cos(E—a2)''2x, sin(E—a2)112x, a2  < E 

cos(E+a2)1J2x, sin (E+ a2)'12x 

—a2  + a(1— 
cos2 x 

—a2  — a(I —a) 
sin2 x 

(cos x)' 

(sin x)' 

Hypergeometric functions 
F(— v, v+ 2a; a-i--3; sin2  (n/4— x/2)) 
v(v +2a) = E 
v = integer — Gegenbauer polynomials TP')(sinx) 
Hypergeometric functions 
F(—v, v+ 2a; a+ 3; sin2.42) 
v(v+2a) = E 
v = integer — T,°)(cosx) 

(1) 

(1) 

a + (ax+13)2 	 exp[—(ax+fl)2 /2a] 	 Hermite functions with argument (ax+/3)/at /2  

4. 243 a(a— 1) 	 exp[—(1--/1-2E)/2/1,4 	Confluent hypergeometric 'functions 	 (1) 
F(1—a+a(1+13-2E)-112; 2-2a; (1 —fl-2E)1 /2  2flx) /32 	+ 

 x2  

	

1 — (2/3— 1)2 	e+ '12  eXP( —  I al x2/2) 	 Confluent hypergeometric functions 	 (1) 
5/x 	a2x2  + ix(1 + 2/3) 	 

4x2 	ti ---' -±09—}) E a 
F(-1; p+ 1; la! x2), 41 =-- —(1 -I-2/3) — 2p — 2 

al ial 
.1 = n, an integer — Laguerre polynomials Lf,"'(Ial x2) 

.E .2 

axe 

	 a 
ons to the cigcnvalue equation ----2- [b(x) Q (x)] — 2Tx  [a (x) Q (x)] + EQ (x) = 0 B 

Hypergeometric functions F(a, b; 2(1 --/3); x) 
ab = 2a + 2 — E, a + b = 2a + 3 

( 	1-1 Hypergeometric functions F — 1,2a+ A+ 3; a +fii- 2; — 
2 

1(1+2a+3) = E— 2(a+ I) 
a = —1; /3 = 0 Legendre functior.s P A(X), Q A(x) 
A = n, an integer, Jacobi polynomials P 	* "+ "(x) 

I) = 0, Gegenbauer polynomials T,.'1-312 '(x) 
a = —, Chebycheff polynomials of first kind 7; (x) 
a = —3, Chebycheff polynomials of second kind U„(x) 
a = I, Legendre polynomials P,,(x) 

x 	 Confluent hypergeometric functions (Kumer's functions) 
F(1 —E/2a; 2(1-4); 2ax) 
E/2a = n, an integer, Laguerre polynomials LV_-1 2° )(2ax) 

(1 — x2 ) 	 1 — x2 	 c"S(x): S(x) oblate spheroidal functions 
(1 —x 2 )S"(x)— 4xS'(x) + (E— 2— a2  a2x2}S(x) = 0 

x(1— x) 	x(1-x) 	 e.R(1 -2x): R(x) oblate spheroidal functions 
f,c 2 	1,0 

4 
(1— X2) /2" (x) — 4x 12"(x) + {E — 2 — 

4 
— + — xi ) R(x) 0 

a(x) 

+ fi 

x /I 

Eigenfunctions Q(x) References' 

(42) 

(42) 
(42) 
(42) 
(42)- • 
(42) 
(42) 

(64) 

(64) 
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When an analytical calculation of P(xly,t) is somewhat 

difficult, and if one is interested only in the first few moments 

of x, one has only to solve a set of differential equations which 

may be considerably simpler. The moments of x, if they are finite, 

satisfy ordinary differential equations, which can be derived from 

the forward diffusion equation (1 ) by multiplying it by xn  and 

then integrating over x from A to B, where the allowed range of the 

variable is A < x < B. The resulting equation is 

B 

dt 	 x xnP(xly,t)dx = 	- 	x ax 
n 3  (x) P (xi y,t 	dx -  

A 	 A 

2 , B n d 	r 

	

+ 12 	x --7 Lb(x)P(xly,t)] dx 
A ax 

Integrating by parts we get 

d B 
dt n, 

	= n 	xn-1  a(x)P(xIY.t)dx  + 
 n(n 

2 
 - 1) 	

x
n-2b

(x)P(x )y,t)dx • 
A 

	

	 A 

n 
- I 	x 

a (x) P - 	(x)P] , + 1/2nxn-lb (x) P3 B  

	

A 	( 43 ) 

If the term in square brackets vanishes at x = A and B, ( 43) 

reduces to 

d n 	n-1 	n(n-1)  n-2 
dt 

<x> = n<x 	
2 

a(x)> + 	<xb(x)> ( 44) 

Equation ( 44) has then to be solved subject to the initial con-

ditions 

<x n> (t = 0) = 
	 (45 ) 

For a(x) and b(x) polynomials in x, Eq. (44 ) is a set of coupled 

linear ordinary differential equations in <xn>, n ; 1. When the 
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polynomial a(x) is of degree at the most 1, and the polynomial 

b(x) is of a degree at most 2, the nth equation in the set (44) 

involves moments up to order n, and hence the equations can be 

solved successively. For example, if 

a(x) = ao + al
x
' b(x) = bo 

+ blx + b2 x
2 
	

(46 ) 

Eq. (.44) for n = 1 and 2, becomes 

d(x)/dt = <.a.(x)> = ao  + a1c(x) 	( 47) 

d(x2)/dt = 2(xa (x)> + (b (x)› = bo  + (b1  + 2a0) (x> 

+ (2a1  + b2) 
	(48 ) 

Equation ( 47) is linear in (x and can be easily integrated to 

give a 	a 
o 
— exp(a

1
t) - -a 

1 	
a
1 (49) 

This solution, when substituted in Eq. (48), gives a linear 

, equation in \x2  >which can be easily integrated. 

When either a(x) is a polynomial of degree greater that 1 

or b(x) is of degree greater than 2, the coupled system of 

equations (44) can only be solved approximatelyt by using one 

of the methods presented in ( 32 ) 	in connection with birth 

and death processes. 

In additon to moments of x, there are some other quantities 

which provide insight into the evolution of the process, and for 

t The solution of Eq. (44) for n = 1 is independent of b(x) as 

long as a(x) is at most linear, and <x> is given by Eq. (49 ) even 

when b(x) is of degree greater than 2. 
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which an analytical expression can be derived. These quantities 

are the continuous analogs of the quantities defined in (27). 

Here we list these quantities together with some general results 

which are independent of the type of process. 

(a) The steady-state probability density P(x/y, co), which 

describes the process when it is in some dynamical equilibrium. 

Such a dynamic equilibrium is reached since a(x) and b(x) do not 

depend on time. 

To calculate P(xly,°3 ) , we set 3P/3t = 0 in Eq. ( 2 ) 

to get 

J(x(Y, co) = constant = J ( oo ) 
	

(50) 

where 

J(xly,t) = a(x)P(xiy,t) 

(51 ) 

Since in terms of this function J, the FP equation (52) is 

ap/at wax = 0 	 (52) 

J can be interpreted as the probability current, and Eq. (52) 

as the equation of conservation of probability. The general 

solution of Eq. ( 51) for t =, co is obtained by writing 

P(xl y, co) = v(x) /b (x) 	 ( 53 ) 

so that Eq. (51) becomes 

dv 
dx 

2a(x)-  -2J( co) 
b(x)v  

This is a linear equation in v, which admits the solution 

a(E)  
v(x)= -2J( 0o)exp 	

b(E) 	
dx'A- C exp 2 

x 
)' 2'2=21-d 	( 54) 
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where C is an arbitrary constant of integratign. Substituting 

this expression for v(x) into Eq. ( 53) we get the expression 

for P(xly, co) in terms of two constants J( op) and C. The constant 

C is determined by a normalization condition and J( co) depends on 

the nature of the process. In this appendix, we limit the discus-

sion to processes in which there is no flow of probability into 

the state space from the outside. Therefore, at the boundaries, 

J(xly,t) 	0. In case J(xly,t) vanishes at both boundaries for all 

t > 0, J(00) = 0 by Eq. (51), and the steady-state probability 

density of the form 

P(xly, cc) - b(x) exp 2 [a(E)/b(E)j d 	( 55:1) 

where C is determined by the condition 

P(xly, cc)dx = 1 	( 55:2) 

In case there is a positive flow of probability out from the state 

space, at least at one of the boundaries, as t --)-.0a.11 probability 

is bound to be outside the state space, and the steady-state dens-

ity is the trivial solution of Eq. (50), i.e. 

P(xly, co) 	= 0 	 ( 55:3) 

(b) The probability R(z y) that the random variable ever 

takes the value z. 

(c) The "first passage time" T(zly), the time for the 

process to take the value z for the first time, its probability 

density function F(zly,t), and its arbitrary (ith) moment Mi( ly,t), 

i 	1. 

F(zly,t) is related to P(xly,t) through the relation 



P(x)y,t) = 	F(zly,t - T)P(xlz,T)dT , 
trt 

0 

Y 
	Z E X 
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( 56 ) 
or 	x 6 z 	y 

This reflects the fact that the random variable can take the value 

x at time t when initially it has the value y, only if it takes an 

intermediate value z at some time t - T, in the time interval (0,t), 

and then in the remaining time T its value changes from z to x. 

An equivalent and simpler form of Eq. ( 56) is obtained by taking 

the Laplace transform of Eq. ( 56). Using the theorem on the 

Laplace transform of a convolution integral, we get 

f(zly,$) = p(x(y,$)lp(xlz,$) 	( 57) 

where f(zly,$) and p(xky,$) are the Laplace transforms of F(zly,t) 

and P(xly,t), respectively. 

In the derivations of F(zly,t) and the moments of T(zty,t) 

the differential equation satisfied by F(zly,t) is the starting 

point, and we will now show that this equation is the backward 

diffusion equation. Inserting Eq. (56) into the backward diffusion 

equation ( 2 ) we get 

-F(ziy,O)P(xly,t) 	
ay = 	t 	a(y) —a 	

1/210(y) ---] - 	"T--  - o 	3 2 1,  
c 

	a  

F(zly,t - T)P(xlz,T)dT  

Since this equation is valid for all t and since, by definition, 

F(zly,0) = 0 for.y = z, F(zly,t) has to satisfy the backward 

equation 

• 

aF(zly,t)- a(y) 
	1/21D(y) 
(
3
ziy,t) 	82F(ziy,t) 
17 	

3 y2 a t  (58) 
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The intial condition follows from the intial condition ( 3  ) on 

P(xly,t) and from the observation that in Eq. ( 56), x = y only 

if x = y = z. Therefore 

F(zly,O) = 6(z - y) 	( 59) 

One of the two boundary conditions to be imposed on F(ziy,t) follows 

directly from Eq. ( 56), i.e., 

F(z(z,t) = p (t) 	 ( 60) 

while the second condition depends on the nature of the proCess. 

(d) The probability R( zly,w) that the random variable takes 

the value z before taking the value w. 

(0 	The time T(zly,w) for the random variable to take 

the value z fore the first time before it takes the value w, its 

probability density function F(zly,w), and its arbitrary (ith) 

momemt. 14.(zIY,w), 	1 • 
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Appendix 2. 

The Solution of a 2nd order parabolic p.d.f. 

The solution of a partial differential equation of the form 

aF/at = kx
2
a
2
F/ax

2 
+ ax 3F/ax + b(x,t) 

0 < x < co 

whose solutions we were concerned with in particular situations in the 

above pages, could be handled in the following manner. 

1. 	First, consider transforming the functional variable x to a 

variable y whose range covers the entirely entire real time. , 

This is done through the transform 

y = lnx 

With this 

aF/ax = DF/3y . dy/dx:  

= 
1 aF/ay 

a
2
F/Dx

2 
= ax 

— aF/ax 3x x 
( 1 — 3F/ay) 

-1 
DF/ay 2 

1 1 dr.   
' 	ay dx 

. aFiay  
tr.  

2 3 Fl3y 2  3F/3y) 
x 
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The p.d.f . reduces now to 

3F/at = 	3 F/Dy
2 

+ 2F/3y (a - k) 

+ b'(y,t) 	_m < y < 

where b'(y,t) is a transformed function. 

2.. 	Let us now consider if it is possible to have a solution 

of F as a product of two separate functions 

Y(y) and T(t) 

If this were the case, 

F = Y (y) T (t) 

3F/8t = Y(y)T1(t) 

DF/Dy = T(t)Y'(y) 

D2F/3 y
2 

= T(t)Y"(y) 

The p.d.f. would result as 

Y (y) T' (t) = 	kT ( t) Y" (y) 

+ (a - k)T(t)Y' (y) 

+ b' (y,t) . 

Boundary Condition  

If the boundary condition for F is prescribed at t = 0 as 

a function f(x), then the boundary condition for the above differential 

equation too is readily available. In the cases we were concerned with 

this had the effect, due to separabiLitiy,of saying, 
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i(y) = ell  for F (x,t = 0) 	x 

Then the above reduces to (by dividing throughout by Y(y)T(t), and 

since 

Y (Y) = Y (y) = Y" (y) = eY  ) 

T' 	(t) 
 - a + b'(y,t)  

T(t) 	eY  . T(t) 

which is readily solvable over a range of t, say, from 0 to T. 

This is the method that was employed throughout. (63) . 



96. 

REFERENCES 

1. ABRAMOWITZ, M. and STEGUN, I.A. (eds.) 1964, 'Handbook of 

Mathematical Functions', Nat. Bureau of Standards, Washington.  D.C. 

2. ALEXANDER, S.S. 1961, 'Price Movements in Speculative Markets: 

Trends or Random Walks', Industrial Management Review, (Ind. 

Magmt.Rev.) Vol. 2, pp. 7-26 

3. ALEXANDER, S.S. 1964,. 	Rep. in 'The Random Charactor of Stock 

Market Prices', Ed. P.H. Cootner, (Cambridge, Mass. M.I.T. Press) 

4. ALLEN, R.G.D. 1957, 'Mathematical Economics', MacMillans, London 

5. ARROW, K.J. 1965, 'Aspects of Risk Bearing', YrjO JahnsOn 

S'6.atio, Helsinki, Finland 

6. ARZAC, E.R. 1974, 'Utility Analysis of Chance',Constrained 

Portfolio Selection, Journal of Fin and Quant Anal (JFQA), 

Vol. 9, Dec., pp 993-1008 

7. ASTRUM, K. 	1970, 'Introduction to Stochastic Control theory', 

Acad. Press, N.9 

8. BACHELIER, L. 1964, 'Theory of Speculation', Rep. in Cootner,P.H. 

(op.cti.) 

9. BARTLETT, Mrs. 1966, 'An Introduction to Stochastic Processes' 

Camt. Univ. Press., Cambridge 

10. BAUMOL, W.J., MALKIEL, B.G. and QUANT, R.G. 1966, 'The Valuation 

of Convertible Securities', Quant Journal of Econ. (QJE) Feb., 

pp 48-59 

11. BELLMAN, R. 1957, 'Dynamic Programming' Princeton University 

Press, Princeton, N.J. 

12. BIERMAN, n., 1973, 'The Cost of Warrants', J.F.Q.A., Vol. 8, 

Gimme pp. 499-504 



97. 

13. BLACK, F. 1976, 'The Pricing of Commodity Contracts', Journal 

of Financial Economics, pp 167-79 

14. BLACK, F. and SCHULES, M. 1972, 'THe Valuation of Optim Contracts 

as a Test of Market Efficiency', Journal of Finance, (J.ofFin.) 

May, 

15. BLACK, F. and SCULES, M. 1975, 'The Pricing of Options and 

Corporate Liabilities', Journal of Political Economy, (JPE), 

May-June 

16. COX, D.R. and MILLER, H.D. 1965, 'The Theory of Stochastic 

Processes, Wiley, N.Y. 

17. CULBERTSON, J.M. 1957, 'The Term Structure of Interest Rates', 

QJE, LXXJ, Nov. pp. 499-502 

18. DOOB, J.L. 1953, 'Stochastic Processes', Wiley, N.Y. 

19. ELTON, E.J. arsrPIGRUBER, M.J. 1974, 'On the Optimality of some 

multiperiod Portfolio selection criteria', Journal of Business, 

(JB), Vol. 47, No. 2, April, pp. 231-243 

20. FAMA, E.F. 1970, 'Efficient Capital Markets: A review of theory 

and empirical work', Journal of Finance, Vol. 25, No. 2, May 

21. FAMA, E.F. and BLUME, M.E. 1961, ''Filter rules and stock market 

trading', Journal of Business, Vol. 39, Suppl. pp. 226-241 

22. FAMA, E.F. and LAFFER, A.B. 1971, 'Information and Capital 

Markets', Journal of Business, Vol. 44, pp 289-298 

23. FISHER, I. 1966, 'Appreciation and Interest', Put.Am.Econ.Ass., 

pp,23-29, 91-92 

24, 	FRISCH, R. 1935-36, 'On the notion of Equilibrium and Dis- 

equilibrium', Review of Economic Studies, (RES), Vol. 3, 

pp. 100-106 

25. 	FOX, K.A. 1958, 'Econometric Analysis and Public Policy', 

Iowa State University Press, Ames 



98. 

26. GOEL, N.S., MAITRA, S.0 and MONTRULL, E:N. 1971, 'On the 

Volterra and other nonlinear models of interacting populations', 

Academic Press, N.Y. 

27. GOEL, N.S. and RICHTER-DYN, N. 1974, 'Stochastic Models in 

Biology', Academic Press, N.Y. 

28. GRANGER, C.W.J. and LABYS, W.C. 1970 , 'Speculation, Hedging 

and Commodity Price Forecasts', Heath Lexington Books, 

Lexington, Mass. 

29. GRANT, J.A.G. 1964, 'Meiselman on the Term Structure of Interest 

Rates: a British Test', Economica, Feb., pp. 36-38 

30. HIERONYMUS, T.A. 1965, 'Forecasting Soyabean and Soyabean 

product prices', Guide to Commodity price forecasting, ed. Jilen,H. 

(N.Y. Comn. Res. Bur.) p. 166 

31. HOUCK, J.P. 1964, 'A Statistical model of the demand for Soyabeans', 

J. Of Farn Econ., Vol. 46, pp. 366-374 

32. HOUTHAKKER, 1961, 'Systematic and Random Elements in Short term 

price movements', Am.Econ. Rev., Vol. 51 

330 	INTRILIGATOR, M.D. 1971, 'Mathematical Optimisation. and Economic 

Theory', Prentice-Hall, Englewood Cliffs, N.J. 

34. ITO. 1968, 'Stochastic Calculus', Academic Press, N.Y. 

35. KERNER, E.H. 1957, 'A statistical Mechanics of interacting 

biological species', Bull. of Math. Biophysics, Vol. 19, pp 121-96 

36. KUSHNER, H. 1967, Stochastic Stability and COntrol, Acad. Press. 

n.Y. 

37. KUSHNER, J. 1970, Introduction to Stochastic Control, Holt, 

Rinehart and Winston, N.Y. 

38. LA VIOLETTE, P.A. 1974, 'The Predator Prey Relationships and 

their appearance is stock market trend fluctuations', General 

systems, Vol X.I.X. 



99. 

39. LARSON, A.B. 1960, 'Measurement of random processes in future 

prices', Food. Res. Inot, Studies, Vol I, pp. 313-324, 

(Rep. in Cootner, P.H., op.cit) 

40. LOTKA, A.J. 131, 'Elements of Mathematical Biology', WIlliams 

and Wilkins, Baltimore, Md. 

41. LUTZ, F.A. 1940, 'The Strucure of Interia Rates', (LJE), pp 36-63 

42. MAGNUS, N., OBERHETTINGER, F. and SONI, R.P. 1966, 'Formulas 

and Theorems for the special functions of Mathematical Physics', 

Storinger Verlal, N.Y. 

43. MARKOWITZ, A. 1959, Portfolio Selection, Jonah WIlar, N.Y. 

44. MEISELMAN, D. 1962, 'The Term Structure of Interest Rates', 

Prentice-Hall, n.J. 

45. MERTON, R.C. 1973, kA rational Theory of Optim Pricing', Beel, J. 

of Econ. and Mgment Sci. Spring 1973 

46. MERTON, R.D. 1974, 'On the Pricing of Corporate Debt:the Risk 

Structure of Interest Rates', J. of Finance, May 

47. MORTENSEN, R.E. 1969, 'Mathematical problems of modelling 

stochastic nonlinear dynamic systems', J. Stat. Phys. Vol.2, 

p. 271 

48. MOSSIN, J. 1973, TTheory of Pinancial Markets', Prentice-Hall, N.J. 

• 49. 	NELSON, C.R. 1972, 'Testing a M6del of the term-structure 

of interest rates in an error-learning framework', J.P.E., Vol. 80, 

pp. 1.259 - 1270 

SO. 	SARGENT, T.J. 1968, 'Interest Rates in the Nineteen Fifties', 

Review of Economics and Statistics, May, pp 164-172 

51. SAMUELSON, P.A. 1948, 'Foundations of Economic Analysis', 

Harvard Univ. Press 

52. SAMUELSON, P.A. 1965, 'Proof that properly anticipated prices 

fluctuate randomly', ind. Mgmt Review, Spring 



100. 

53. 	SAMUELSON, P.A. 1965, 'Rational Theory of Warrant Pricing', 

(with an appendix: a free boundary problem for the heat equation 

arising from a problem of mathematical economics, by H.P. MCKEAN) 

Ind. Mgmt. Rev. Spring 

54. 	SAMUELSON, P.A. 1969, 'Lifetime portfolio selection by Dynamic 

Programming', Rev. Econ. Stat., Aug. 

55. 	SAMUELSON, P.A. and MERTON, R.C. 1969, 'A complete model of 

warrant pricing that maximises utility', Ind. Mgmt. Rev. Winter 

56, 	SAMUELSON, P.A. 1971, 'Stochastic speculative price', Proc. 

Nat. Acad, Sci., Feb. 

57. SAMUELSON, P.A. 1971, 'Generalised Predator-prey oscillation 

in Economic and Ecological Equilibria', Nat. Acad. Sci., May, 

pp. 980-983 

58. SAMUELSON, P.A. 1972, 'A Universal Cycle 2' REp. in Collected 

Papers, Vol. 3, Ed. R.C. Merton 

56. 	SCHOLES, M. 1972, 'The Market for Securities versus Price 

pressure and the effects of information of share prices', 

J. of Bus., April, pp. 179-211 

60. SCHMIDT, S. 1965, 'A test of serial independence of price changes 

in soyabean futures', Ford. Rec. Inst. Studies, Vol.5., p. 127 

61. SHEPHERD, G. 1963, 'Agricultural Price Analysis', Iowa State 

Univ. Press, Iowa. 

62. SHISKO, IRWIN 1965, 'Forecasting sugar prices', Rep. Guide to 

Comm. Price Forecasting, ed. H. Jiler, (op.cit) 

63, 	STEPHENSON, G. 1970, 'An introduction to partial differencial 

equations', Long•pians  

64. STRATTON, J.A. et. al., 1956, 'Sperridal Wave Funcitons', Tech. 

Press. MIT, Cambridge, Mss. 

65. STRATTONOVICH, 1963, R. Topics. in the theory of Random noise, 

Gordon and Breach, N.Y. 



101. 

66. TESLER, L.G. 1967, 'A critique of some recent empirical 

research on the explanation of the term structure of interest 

rates, J.P.E., Aug. (suppl.) 

67. TITMARSH, E.C. 1962, Eigenfuction expansion associated with 

second order differential equations, Oxford Univ. Press, 

London 

680 	TOBIN,J. 1957-;58, 'Liquidity preference as behavior towards 

risk', R.E.S. pp. 65-86 

69,. 	TREYNOR, J.L., BLACK, F. 1973, 'How to use security analysis 

to improve portfolio seleftion', J. of BUs, Vol..46,.pp.-66-86 

70. TSIANG, S.C. 1973, 'Risk, return and portfolio analysis', J.P.E., 

Vol. 81, June, pp. 748-755 

71. VAN HORNE, J. 1965, 'The expectations hypothesis, the yield 

:curve and monetary policy', Q.J.E., pp. 666-668 

72. VOLTERRA, V. 1931,. 'Lecons sure la theorie mathematique de 

la lutte pour la vie', Guthrie-Villiers, Paris 

73. WEYMOUR, F.H. 1968, 'The dynamics of the cocoa market', MIT 

press, Cambridge, Mass. 

74. WHITE, W.R. 1971, 'The term structure of interest rates - a 

cross-section test of a mean variance model', An internal 

research report. Bank of England, Economics Section 

75. WITHERELL, W.H. 1967, 'Dynamics of the international wool 

market', Econ. Res. Prog., Memo., no. 92, Princeton Univ. Press., 

Sept. 

76, 	WILLEMS, J.L. 1970 'Stability theory of Dynamic Systems', Nelson, 

London 

77. 	WOOD, J.P. '1963i 'Expectations, errors and the term structure 

of interests', JPE, April 



102. 

78. WORKING, H. 1934 'A random Difference series for use in analysis 

of time series', J. of Am. Stat, Assn, Vol. 29, pp. 11-24. 

79. WORKING, H. 1956, 'New ideas and methods for price research', 

J. of Fam. Econ., Vol. 38, Dec. pp. 1433. 

80. YOUNG. E.C. 1972. An Introduction to partial differential 

equations. Allyn & Bacon, Boston, Mass. 

81. MALKIEL B.G. and Quandt R.E. 1965. Efficiency of the stock market, 

Fordham Press. N.Y. N.Y. 

82. MERTON, R.C. 1973. A Temporal Capital Asset Pricing Model. 

Econometrica. 

83.. 	MERTON, R.C. 1969. Lifetime position selection under uncertainty. 

Review of Economics and Statistics. 

84. 	SZEBO, G.P. and SHALL, K. 1972. Mathematical Methods in investment 

finance. North-Holland, N.Y. 


