STUDIES OF COUNTERCURRENT
 GAS-LIQUID FLOW IN PACKED BEDS

by

Tsuyoshi FUKUTAKE

A thesis presented for the degree of Master of Philosophy in the University of London

September 1977 John Percy Research Group, Department of Metallurgy and Materials Science, Imperial College of Science and Technology, London SW7

ABSTRACT
 Studies of Countercurrent Gas-Liquid Flow in Packed Beds
 by
 Tsuyoshi FUKUTAKE

The total hold-up, liquid distribution, gas pressure drop and flooding velocities were measured at low superficial velocities of liquid for various degrees of wetting between liquids and packings. The packed beds consisted of spheres and coke particles. The ranges of experimental variables, chosen to cover the prevailing flow conditions in iron blast furnaces, were: particle size ($8 \sim 13 \mathrm{~mm}$) ; contact angle ($0 \sim 114^{\circ}$); liquid density ($807 \sim 1920 \mathrm{~kg} / \mathrm{m}^{3}$), viscosity ($0.0009 \sim 0.064 \mathrm{Ns} / \mathrm{m}^{2}$) and velocity ($0.02 \sim 1.0 \mathrm{~mm} / \mathrm{s}$).

The total hold-up was significantly lower with non-wetting flows than with wetting flows. Correlations for both static and dynamic hold-up were obtained and shown as mathematical formulae which are in dimensionless form and are valid for non-wetting as well as wetting flows.

Mersmann's flooding diagram, which correlated the measured data better than Sherwood diagram, was modified to incorporate the effect of the degree of wetting on the flooding velocities.

The gas flow influenced the liquid distribution in the column. The changes in the liquid distribution with gas flow for non-wetting flows were signficantly larger than for the wetting flows.

Instability of the bed, in which a transition from a stable to a fluidized bed occurred, was observed before the onset of flooding in some of the experiments in which a heavy liquid ($\rho_{\ell}=1920 \mathrm{~kg} / \mathrm{n}^{3}$) was used. . A diagram was developed to identify the operating state of the bed in relation to the flow conditions. This diagran indicated that in blast furnaces the fluidization of the coke bed is likely to start before the onset of flooding by the slag.

CONTENTS

page
TITLE PAGE 1
ABSTRACT 2
CONTENTS 3
LIST OF FIGURES 7
LIST OF PLATES 9
LIST OF TABLES 10
CHAPTER 1 INTRODUCTION 11
CHAPTER 2 LITERATURE SURVEY 14
2.1 Formation of the Melting zone 14 and Flow Conditions below it
2.2 Previous Work on Irrigated 18 Packed Columns
2.2.1 Hold-up 18
2.2.1.1 Experimental data on hold-up 19
2.2.1.2 Generalized correlation for 21 operational hold-up in the absence of gas flow
2.2.1.3 Static hold-up 24
2.2.2 Influence of gas flow on hold-up 27 and gas pressure drop
2.2.2.1 Hold-up correlation 27
2.2.2.2 Pressure drop of gas in dry 29 column
2.2.2.3 Pressure drop of gas in 30 irrigated column
2.2.2.4 Influence of gas flow on 31 liquid flow distribution
2.2.3 Flooding 31
2.3 Application to the Blast 35 Furnace Process
2.4 Summary 36
page
CHAPTER 3 DESIGN OF EXPERIMENTAL SYSTEM 38
CHAPTER 4 EXPERIMENTAL WORK 46
4.1 Apparatus 46
4.1.1 Column 51
4.1.2 Control and measurement of liquid 51 flow rate
4.1.3 Gas flow control 57
4.1.4 Recording of the data 64
4.2 Liguids and Packings 64
4.3 Experimental procedures 70
4.3.1 Experimental procedure for 70 first series of experiments
4.3.2 Experimental procedure for 71 experiments with gas flow (second series)
4.4 Data Processing 72
4.4.1 Calibration curves 72
4.4.2 Correction for the influence of 73 gas pressure on column weight
4.4.3 Calculation of liquid flow 73
CHAPTER 5 EXPERIMENTAL RESULTS 75
5.1 Experimental Data 75
5.2 Experiments in the Absence of Gas 78 Flow
5.3 Experiments with Gas Flow 82
5.3.1 Change of the flow pattern of 82 the liquid with gas velocity
5.3.2 Reproducbility of the measurements 87
CHAPTER 6 DISCUSSION 89
6.1 Hold-up in the Absence of Gas Flow 89
6.1.1. Calculation of dynamic and static 89 hold-uppage
CHAPTER 6 DISCUSSION (continued)
6.1.2 Correlation for static hold-up 93
6.1.3 Correlation for dynamic hold-up 101
6.1.4 Correlation for the total hold-up 104
6.1.5 Comparison of estimated hold-up 105 with published experimental data
6.2 Gas Pressure Drop 109
6.2.1 Gas pressure drop through dry column 109
6.2.2 Pressure drop through irrigated 111 column
6.3 Flooding 119
6.4 Instability of the Bed 125
6.5 Liquid Distribution 129
6.6 Possibility of the Occurrence of 132the Flooding in the Blast Furnace
CHAPTER 7 CONCLUSIONS 135
APPENDIX I METHOD FOR COMPUTING LIQUID FLOW RATES
I. 1 Introduction 138138
I. 2 Principle of the method 138
I.3 Program and Calculated Results 139
APPENDIX II GENERALIZED CURVE-FITTING 143
II. 1 Introduction 143
II. 2 Parametric Interpolation 143
II. 3 Conditional Least-Square Method 144
II. 4 Mathematical Formulation 145
II. 5 Computer Program 147
APPENDIX III ITERATIVE METHOD FOR LEAST SQUARES 153
III. 1 Introduction 153
III. 2 Mathematical Formulation 153
APPENDIX III (continued)
III. 3 Computer Program 155
APPENDIX IV EXPERIMENTAL DATA 157
ACKNOWLEDGEMENTS 187
LIST OF SYMBOLS 188
REFERENCES 192

LIST OF FIGURES

Fig. ${ }^{\text {No. }}$.	Page
2.1	State of burden in a blast furnace 15
2.2	Operational ranges of superficial velocities of slag and metal in commercial blast furnaces
2.3	```Relationship between residual saturation, Sr, and capillary number, Ncap, after Dombrowski and Browneli(49).```
2.4	```Typical examples of the changes in 28 total hold-up and pressure drop with gas velocity at a constant liquid velocity```
2.5	Flooding diagrams showing the limiting condition for flooding
4.1	Schematic drawing of experimental apparatus in the main section
4.2	Design of the liquid distributor 53
4.3	Four arrangements of supply points of distributor used in experiments
4.4	Liquid collector/gas distributor and position of the column
4.5	Liquid flow meter 59
4.6	Schematic drawing of gas flow 61 control section
4.7	Dew point meter 63
4.8	Calibration curve for micromanometer 65
4.9	Calibration curve for the effect of the gas pressure on the column weight for Run 340.
5.1	Graphical representation of experimental 79 results for Run 17
5.2	Influence of the distributor arrangement 80 on liquid flow distribution and total hold-up.

Fig.		Page
5.3	Relationship between total hold-up and liquid velocity for different columns of PL13/WATR system.	81
5.4	Variation of total hold-up, pressure drop and relative liquid flux to outer annulus with gas velocity, Run 13183 (AL13/WATR)	83
5.5	Variation of total hold-up, pressure drop and relative liquid flux to outer annulus with gas velocity, Run 19171 (PL13/WATR)	84
5.6	Variation of total hold-up pressure drop and relative liquid flux to outer annulus with gas velocity, Run 30361 (W13/GLY)	85
5.7	Examples of variation of total hold-up with gas velocity for PL13/WATR and W13/WATR systems	88
6.1	Examples of variation of total hold-up with liquid velocity	94
6.2	Plot of experimental data for wetting flows on ." Dombrowski's diagram	95
6.3	Relationship between static hold-up h_{S}^{*}, and modified capillary number, $C_{p m}$	100
6.4	Comparison between measured and estimated dynamic hold-up	102
6.5	Comparison between measured and estimated total hold-up	103
6.6	Relationship between the static hold-up, h and the modified capillary number for published data	107
6.7	Schematic drawing of three different ways in which liquid is held by a tube	108
6.8	Relationship between friction factor, f_{k}, and Reynolds number, Reg, for dry columns	112
6.9	Relationship between the total hold-up and the ratio of the pressure drop through irrigated column to that through dry column	113
6.10	Relationship between the total hold-up and the ratio of the pressure drop through irrigated column to that through dry column	114
6.11	Variation of friction factor, f_{k}, with gas Reynold's number $R e g$ for dry and irrigated columns.	116

Fig. No.		Page
6.12	Variation of friction factor f_{k} with gas Reynolds number $R e_{g}$ for $d r y$ and irrigated columns.	117
6.13	Schematic drawing of the variation of f_{k} with $R e_{g}$.	118
6.14	Plots of flooding data on Sherwood diagram	121
6.15	Plots of flooding data on Mersmann's diagram	122
6.16	Flooding diagram based on modified dimensionless irrigation density	124
6.17	Variations of total hold-up and gas pressure with gas velocity for Run 430 (PL9/ZNCL)	126
6.18	Diagram showing the regions of bed instability	128
6.19	Variation of relative liquid flux to outer annulus with dimensionless gas pressure drop, $\Delta \mathrm{P}_{\mathrm{w}}^{*}$.	131
A1-1	Variation of the weight of the container with time in two typical cases	142
A2-1	Physical model of generalized curve fitting.	149
	LIST OF PLATES	
Plate 1	General view of the apparatus	48
Plate 2	Detailed view of some parts of the apparatus (a) Column (b) Liquid collector and flow meter (c) Gas humidification column	52
Plate 3	Appearance of particles in dry and wet states	66

LIST OF TABLES

		Page
Table 2.1	Typical conditions of liquid flow in blast furnaces	17
Table 2.2	Experimental conditions of hold-up measurements by previous authors	20
Table 2.3	Published correlations for operational hold-up	22
Table 2.4	Comparison between observed and calculated hold-up	23
Table 3.1	Data on packings used in experiments	42
Table 3.2	Physical properties of liquids used in experiments	43
Table 3.3	Comparison of the values of dimensionless numbers for the blast furnace with those of experiments for different liquids	44
Table 5.1	Summary of experimental runs	76
Table 6.1	Static part of the hold-up, $h_{s}{ }^{*}$, obtained by least-squares fit	91
Table 6.2	Results of the least-squares fit by Equation (6.1)	92
Table 6.3	Comparison of various correlations for static hold-up	98
Table 6.4	Published data on static hold-up	106
Table 6.5	Comparison of measured dynamic and operational hold-ups, \%, with values estimated using various correlations	110
Table 6.6	Flooding velocities and dimensionless parameters for the flooding diagrams	120
Table A1-1	Listing of computer program for the calculation of liquid flow rate	140
Table A2-1	Calling form of subroutine SMR	148
Table A2-2	Calling form of subroutine YQ	149
Table A2-3	Listing of computer program for generalized curve fitting	150
Table A3-1	Listing of computer program for iterative method of least squares	156

CHAPTER I

INTRODUCTION

The blast furnace is basically a counter-current packed bed reactor. The hot air, blown into the furnace through tuyères, forms a raceway in which the coke burns to produce a highly reducing gas. The gas then flows upwards through beds of coke and ore. The consumption of coke by combustion or chemical reaction and of ore by melting cause the bed of coke and ore to descend.

The ascending stream of hot gas supplies almost all the energy that is needed to produce pig iron from the ore. The productivitiy of the blast furnace, therefore, depends primarily on the amount of the gas it can take and on the efficiency of energy utilization which in turn is influenced by the radial distribution of the gas and burden and the rate of energy transfer.

It is clear that investigations on the flows of gas, solid and liquid are of basic importance in understanding the prevailing mechanisms of heat, mass and momentum transfer in blast furnaces and this has led to an upsurge of interest in this field in recent years ${ }^{(1)}$.

The furnace can be divided into two parts:
the upper part where only solid phase exists other than gas and the lower part where liquid metal and slag flow counter-current to the rising gas stream through a bed of coke.

In the upper part, the gas flows through beds of ore and coke stacked layer by layer. Since the burden descends by its own weight and the excess pressure drop of the gas disturbs its smooth descent, much of the earlier work was concerned with the application of existing correlations from the chemical engineering literature to estimate the
influence of various factors on the pressure drop of the gas in the furnace ${ }^{(2,3)}$.

The lower part of the furnace is apparently similar to a packed absorption tower commonly used by chemical engineers though, in the latter, the bed is usually stationary. Elliottet al. ${ }^{(4)}$ were the first workers who suggested that flooding could be one of the factors which limit the amount of gas that the furnace can take. Although, as we will see later, the coke-slag and coke-metal systems in the furnace differ in several aspects from those commonly used in chemical engineering, the phenomenon of flooding, particularly of the slag, has been considered by many authors as one of the factors which limit the furnace produc tivity $(5,6,7,8$

In recent years, helped by the rapid development in computer technology, mathematical simulation models of the blast furnace have been developed $(9,10,11)$. The earlier one-dimensional models led to predictions of the profiles of variables such as temperatures and chemical compositions of both solid and gas along the furnace axis as well as the effect of operational variables on coke rate. However, when a model attempts to cover the transport phenomena between liquid and solid, it needs at least the data on liquid holdup and effective interfacial area between solid and liquid. Because of the lack of reliable data, authors of mathematical models for this region of the furnace have often resorted to semi-empirical analyses which rely on comparison between observed furnace performance and predictions from their models. For example, Fliérman (12) derived a model in which he had to assume arbitrarily that the ratio of the velocities of the liquid and coke is equal to unity until the ore melts after which it increases linearly with temperature.

In view of the importance of the radial distribution of burden and gas, two dimensional models for the region between the top of the furnace and the melting zone have been proposed It is clear, however, that one needs more detailed information
on the nature of the liquid and gas flows to extend the model to cover the entire furnace and to incorporate liquid flow re-distribution under the influence of the gas flow.

The present work is intended to give an insight into the nature of flow of slag and metal over the bed of coke counter-current to the rising gas stream. In view of the difficulties in carrying out meaningful high temperature experiments, this investigation deals with a roomtemperature model of the system. The experimental conditions for the present studies were chosen to establish liquid flow patterns as close to those in the blast furnace as possible; dimensionless numbers characterizing these flow systems were used as criteria for modelling. Special attention was paid to obtain high contact angles since non-wetting. flow characterizes the blast furnace system together with low superficial liquid velocity.

Flooding velocities, liquid hold-up, gas pressure drop and liquid flow distribution at the bottom of the column were measured. The influences of the velocities of liquid and gas; of density, viscosity, and surface tension of liquid; of the degree of wetting between solid and liquid (contact angle); and of size and shape of the packings were investigated.

LITERATURE SURVEY

The formation of a melting zone and the conditions of flow of molten slag and metal below the melting zone in the blast furnace will be discussed first in Section 2.1. Previous work on hold-up, gas pressure drop and flooding in irrigated packed columns will be discussed in Section 2.2 and the application of the results of these studies to the blast furnace process will be discussed briefly in Section 2.3.

2.1 Formation of the Melting Zone and Flow Conditions below it

Recent investigations on blown-out blast furnaces $(14,15,16)$ have provided valuable information on the melting process in the fünace. Fig. 2.1 shows that the layered structure of ore and coke persists down to the level where melting begins. Although the position of the melting zone as well as its shape differed from one furnace to another depending on the operating conditions, the existence of the melting zone was clearly observed in all these furnaces.

Below the melting zone, there is a bed of coke through which molten slag and metal flow downward. Recent observations with a probe introduced into the high temperature region of an experimental furnace ${ }^{(19,20)}$ have confirmed that the molten slag and metal flow as slugs over coke particles. This is because, on the one hand, the surface tension and contact angle of slag and metal on coke are high and on the other, the velocities of slag and metal averaged over the hearth area is very low. Fig. 2.2 shows histograms of the velocities of slag and of metal (mm/s) derived from operational data for 34 blast furnaces $(21,22)$. The scatter in the histogram

Fig. 2.1 State of burden in a blast furnace(14)

Fig 2.2 Operational ranges of superficial velocities of slag and metal in commercial blast furnaces
based on slag velocity is greater than that based on metal because of the wider range of slag volumes encountered.

The gas velocity calculated over the hearth area at NTP is within a range of $0.65-1.0 \mathrm{~m} / \mathrm{s}$ which is narrower than the range of metal and slag velocities. It must be noted that, because the hot air is blown horizontally into the furnace, the velocity and direction of gas flow change greatly in the vicinity of the raceway. In the case of an isothermal, uniform column without irrigation, uniform vertical flow of the gas is achieved at a height approximately equal to the radius of the column from the horizontal gas inlet ${ }^{(17,18)}$.

Table 2.1.shows the mean physical properties of liquid slag and pig iron. In view of the considerable scatter in the reported results, the range of variation for each property is also shown in the Table. The values are based on the chemical composition of tapped slag and pig iron. It should be noted that the slag and iron flowing through the bed of coke in the lower part of the blast furnace may be different in both composition and temperature. For example, Elliott et al ${ }^{(4)}$ noted that small changes in temperature and composition could change the viscosity of slags from 0.2 to $7.8 \mathrm{Ns} / \mathrm{m}^{2}$.

Data on the contact angle between graphite or coke and slag or pig iron are scarce. Humenik et al ${ }^{(23)}$ have reported 128° as the contact angle of iron containing 5% carbon on graphite at just above the melting temperature. The contact angle decreased with the decrease in carbon content and they reported a value of 60° when no carbon was present in the iron.

Keverian and Taylor ${ }^{(24)}$ measured the surface tension and contact angle on graphite carbon of carbon saturated iron at $1200^{\circ} \mathrm{C}$. They reported a contact angle of 121° for carbon-saturated iron. With the addition of sulphur, the surface tension decreased while the contact angle increased

	$\begin{array}{r} \text { Density } \\ \left(\mathrm{Kg} / \mathrm{m}^{3}\right) \end{array}$	$\begin{gathered} \text { Viscosity } \\ \left(\mathrm{Ns} / \mathrm{m}^{2}\right) \end{gathered}$	```Surface tension (N/m.)```	Contact angle with carbon (Degree)	$\begin{aligned} & \text { Superficial } \\ & \text { velocity } \\ & \left(10^{-3} \mathrm{~m} / \mathrm{s}\right) \end{aligned}$	$\begin{aligned} & \text { Coke Size } \\ & (\mathrm{m}) \end{aligned}$
Pig iron	6600	0.005	1.1	125*	0.08	
(range)	(6300-6900)	(0.004-0.006)	(0.9-1.3)		(0.04-0.11)	0.024
Slag	2600	0.3	0.47	105-160*	0.08	
(range)	(2500-2700)	(0.25-0.6)	(0.45-0.5)		(0.03-0.16)	
* See tex	or explanati	on	\dagger (26			

Table 2.1 Typical conditions of liquid flow in blast furnaces
to $129,132,155^{\circ}$ for $0.01,0.019,0.07$, \%S respectively. The addition of 1% silicon did not change the surface tension or contact angle significantly.

Towers ${ }^{(25)}$ has reported that the angle between graphite and a synthetic blast-furnace slag was a function of the time of contact and decreased from 160° at the start to 105° after one hour and to 30° after five hours. The author suggested that this decrease was caused by a reaction between SiO_{2} in the slag and carbon yielding SiC or SiO. In the blast furnace, the time of contact of the coke with slag depends on the residence time of the coke below the melting zone and the effective contact area between the coke and slag. The average residence time of ore and coke in modern blast furnaces is about eight hours. The volume of the coke bed between the melting zone and tuyére level can be estimated from the reported profile of the melting zone. Among four furnaces reported $(14,16)$, the maximum volume is about two ninths of the effective inner volume of the furnace. All the surface of the coke is not always in contact with the slag and a contact area of 50% would be too high an estimate. Therefore, it is unlikely that the coke is in contact with the slag for more than an hour and the contact angle between slag and coke in the furnace is likely to be more than 105°.

2.2 Previous Work on Irrigated Packed Columns

2.2.1 Hold-up

Shulman et al ${ }^{(27)}$ defined three different types of liquid hold-up:
(1) the total hold-up, h_{t}, which is the total iiquid in the packing under operating conditions,
(2) The static hold-up, h_{s}, which is the amount of liquid that does not drain from a column when the liquid supply to the column is discontinued.
(3) the operating hold-up, h_{o}, which is the difference betweem the total and static hold-ups.

The hold-up is usually expressed as the volume of liquid per unit volume of the packed bed and is dimensionless. The relation between the three hold-ups is given by:

$$
\begin{equation*}
h_{t}=h_{s}+h_{o} \tag{2.1}
\end{equation*}
$$

Shulman et al.measured h_{t} and h_{s} from which h_{o} was calculated.
Gardner ${ }^{(28)}$ has suggested that the total hold-up consists of another component, h_{f}, caused by a superimposed slow liquid flow which persists after stopping the liquid supply. In this case

$$
\begin{equation*}
h_{t}=h_{s}+h_{f}+h_{d} \tag{2.2}
\end{equation*}
$$

where h_{d} is the dynamic part of the hold-up which is zero at zero liquid flow rate. The operational hold-up, h_{o}, also referred to by some authors as dynamic hold-up, is assumed to be zero at zero liquid flow rate. This assumption contradicts Gardner's analysis, though, at high liquid flow rates the operational hold-up makes such a large contribution to the total hold-up that the difference between h_{o} and h_{d} is negligible.

2.2.1.1 Experimental data on hold-up

Table 2.2 summarises the experimental conditions of liquid hold up measurement by various investigators. It will be noted that these studies cover a wide range of liquid viscosity ($0.00059-0.185 \mathrm{Ns} / \mathrm{m}^{2}$) but the density of liquid is changed only within the narrow range of 800$1320 \mathrm{Kg} / \mathrm{m}^{3}$. Excepting the data of Gardner, the liquid velocities are higher than those existing in blast furnaces (Fig. 2.2). The majority of investigators have used rings

[^0]Table 2.2 Experimental conditions of hold-up measurements by various authors
and berl saddles as packing materials. These materials are common in the field of chemical engineering. However, only a few studies have been reported with spheres and granular solids which are more relevant to the blast furnace process.

Measurements under thenon-wetting condition are scarce. Warner ${ }^{(40)}$ and Standish $(41,42)$ studied non-wetting systems with raschig rings or berl saddles as the packing and, moreover, their range of liquid velocities is outside of that of blast furnaces. The only experiments which are particularly relevant are those of Gardner ${ }^{(28)}$.

Of those who studied non-wetting systems, Standish compared operational (41) and static hold-up ${ }^{(42)}$ between wetting and non-wetting systems. He concluded that there was no significant difference in operational hold-up between wetting and non-wetting systems. For static hold-up, his measured results showed values which were much smaller for non-wetting system compared with those for wetting systems. Andrieu ${ }^{(43)}$ showed that the static hold-up was 2.3% with silicone-coated raschig rings and 5.4% with uncoated ones. The dynamic hold-up with the coated packing was about 10% smaller than with the uncoated one.

2.2.1.2 Generalized correlation for operational hold-up in the absence of gas flow

Table 2.3 shows generalized correlations for operational hold-up given by various authors. Although these correlations are in the dimensionless form, those of Buchanan ${ }^{(46)}$ and of Gelbe ${ }^{(47)}$ are applicable only to ring packings. Davidson ${ }^{(44)}$ combined a theoretical analysis with results from liquid flow experiments on a string of spheres ${ }^{(48)}$ to develop a correlation which is claimed to be valid for low liquid flow rates where the liquid flows as a laminar film over the surface of the packing. Under these conditions, the operational hold-up was proportional to the one-third power of

No.	Author	Correlation Ref
1	Otake and Okada	$h_{0}=1.295\left(\frac{d_{p} \rho_{\ell}}{\mu_{\ell}}\right)^{0.676}\left(\frac{g_{p} d^{3} \rho_{\ell}{ }^{2}}{\mu_{\ell}{ }^{2}}\right)^{-0.44}\left(a_{t} d_{p}\right)$
2	Davidson	$h_{o}=1.217\left(\frac{2 \pi \rho_{\ell}}{a_{t} \mu_{\ell}}\right)^{1 / 3}\left(\frac{g d_{p}{ }^{3} \rho_{\ell}{ }^{2}}{\mu_{\ell}{ }^{2}}\right)^{-1 / 3}\left(a_{t} d_{p}\right)$
3	Mohunta and Laddah	$\mathrm{h}_{0}=16.13\left(\frac{\mu_{\ell} \mathrm{u}^{3} \mathrm{~N}}{\mathrm{~g}^{2} \rho_{\ell}}\right)^{1 / 4}\left(\mathrm{~N} \mathrm{~d}_{\mathrm{pe}}{ }^{3}\right)^{-\frac{1}{2}}$
4	Buchanan ${ }^{\dagger}$	$\mathrm{h}_{0}=8.1\left(\frac{\mu_{\ell} \mathrm{u}}{\rho_{\ell} \mathrm{g} \mathrm{~d}_{p}^{2}}\right)^{1 / 3}+1.8\left(\frac{\mathrm{u}^{2}}{\mathrm{~g} \mathrm{~d}_{\mathrm{p}}}\right)^{\frac{1}{2}}$
5	Gelbe ${ }^{\dagger}$	$\begin{aligned} & h_{o}^{*}=1.59\left(\frac{d_{i}}{d_{p}}\right)^{-5 / 9}\left(\frac{\rho_{\ell} g}{\sigma} d_{h}{ }^{2}\right)^{-1 / 7}\left(\frac{g d_{h} \rho_{\ell}^{2}}{\mu_{\ell}^{2} a_{t}^{2}}\right)^{-0.3}\left(\frac{u \rho_{\ell}}{a_{t} \mu_{\ell}}\right)^{n} 47 \\ & n=1 / 3 \text { for } \rho_{\ell} u / a_{t} \mu_{\ell}<1 ; n=5 / 11 \text { for } \rho_{\ell} u / a_{t} \mu_{\ell} \geq 1 \end{aligned}$

+ Valid only for raschig ring packings

Table 2.3 Published correlations for operational hold-up

Worker System	Warner ${ }^{(40)}$ Mercury-steel raschig ring	Gardner ${ }^{(28)}$ Water-coke coated with silicone fluid				Blast furnace Metal Slag	
d_{p} (m)	0.00635	0.0155		0.0			024
$\mathrm{a}_{\mathrm{t}}(1 / \mathrm{m})$	635.8	349.8		244			9.2
$\mathrm{N}\left(1 / \mathrm{m}^{3}\right)$	3108000	276000		965			300
$\mathrm{d}_{\mathrm{pe}}{ }^{(m)}$	0.00727	0.0155		0.0			. 024
ε (-)	0.72	0.456		0.4			45
$\rho_{1}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	13600					6600	2600
$\mu_{1}\left(\mathrm{Ns} / \mathrm{m}^{2}\right)$	0.00155					0.005	0.3
u (m/s)	0.005710 .00141	0.000067	0.00101	0.000068	0.00068	0.00008	0.00008
Measured h_{o}	0.0740 .023	0.0080	0.0263	0.0050	0.0127	--	--
data h_{s}	0.1360 .119		213	0.0		--	--
Calculated 2	0.06850 .043	0.0205	0.0505	0.0161	0.0348	0.0154	0.0824
$\mathrm{h}_{0} \quad 1$	$0.0597 \quad 0.0232$	0.0033	0.0208	0.0026	0.0125	0.0028	0.0077
by Cor.* 3	0.07550 .0265	0.0027	0.0203	0.00206	0.0116	0.0022	0.0076

* Table 2.3

Table 2.4 Comparison between observed and calculated operational hold-up
the liquid flow rate. At higher flow rates, the exponent was larger because of the onset of turbulence. The variation in the exponent of the superficial velocity from $1 / 3$ at low flow rate to greater than $1 / 3$ at high flow rate is also reflected in the correlations of Buchanan and of Gelbe in which the exponent changes with liquid flow rate.

Apart from the use of different symbols and correction factors for the shape of packings, the first three correlations use basically the same dimensionless numbers, i.e. Reynolds number $\operatorname{Re}\left(=\rho_{\ell} u\right.$ iv $/ \mu_{2}$) and Galileo number $\mathrm{Ga}\left(\mathrm{Re}^{2} / \mathrm{Fr}\right.$, where Fr is Froude number; $=\mathrm{u}^{2} / \mathrm{gD}$.). The fifth correlation uses an additional dimensionless number We/Fr, where We is Weber number given by

$$
\text { We }=\rho_{\ell} u^{2} D / \sigma
$$

The first three correlations are tested against the measured data of Warner ${ }^{(40)}$ and of Gardner ${ }^{(28)}$, which are for non-wetting conditions , in Table 2.4. Calculated results for assumed blast furnace conditions are also shown in the Table. Davidson's correlation predicts very high operational hold-up at low flow rates, although the agreement is reasonable at high flow rates. The other two correlations predict better values, however even in these cases, the calculated values for Gardner's data at low flow rates are less than half of the measured values.

Although Gardner ${ }^{(28)}$ and Standish ${ }^{(41)}$ showed the correlations for operational hold-up for the non-wetting systems, none of them are in generalized form applicable to the blast furnace process.

2.2.1.3 Static hold-up

The measured static hold-up is also shown in Table 2.4. It will be noted that the static hold-up is significantly larger than the operational hold-up at low flow rates.

Since the residence time of the liquid is related to the total hold-up, it is important to estimate the static hold-up as well as operational hold-up.

Dombrowski and Brownell ${ }^{(49)}$ have shown a diagram which relates the residual saturation to the capillary number (Fig. 2.3). Turner and Hewitt ${ }^{(50)}$ defined the capillary number in the absence of external forces other than gravity as follows:

$$
\begin{equation*}
N_{c a p}=\frac{\varepsilon^{3}}{5 a_{t}^{2}} \frac{g \rho_{\ell}}{\sigma \cos \theta} \tag{2.3}
\end{equation*}
$$

or for the sphere packing

$$
\begin{equation*}
N_{\text {cap }}=\frac{\varepsilon^{3}}{180(1-\varepsilon)^{2}} \frac{d_{p}^{2} g \rho_{\ell}}{\sigma \cos \theta} \tag{2.4}
\end{equation*}
$$

The static hold-up, h_{s}, is related to the residual saturation S_{r} as follows:

$$
\begin{equation*}
h_{S}=S_{r} \cdot \varepsilon \tag{2.5}
\end{equation*}
$$

From Eq. (2.3) it is clear that the capillary number tends to infinity as θ approaches 90°. This would imply that the residual saturation becomes zero since the residual saturation decreases as the capillary number increases. However, a finite static hold-up was observed by Gardner (Table 2.4) when the contact angle, θ, was about 90°. Therefore, Eq. (2.3) or (2.4) cannot be applied under non-wetting conditions where the liquid seems to be held on the surface of packings as shown by Turner and Hewitt ${ }^{(50)}$ (See also Plate 3 in Sec. 4.2).

Fig. 2.3 Relationship between residual saturation, S_{r}, and capillary number, $N_{\text {cap }}$, after Dombrowski and

2.2.2 Influence of gas flow on hold-up and gas pressure drop

In Fig. 2.4 typical example of the variations in gas pressure drop and total hold-up with gas velocity are shown for a constant liquid velocity: At low gas velocity, the hold-up increases, if at all, very slowly and approximately linearly with gas velocity. Above a certain gas velocity the hold-up increases sharply at an increasing rate until the hold-up curve becomes almost vertical.

As shown in the upper half of Fig. 2.4, the region in which hold-up begins to increase significantly corresponds closely to that in which the slope of the pressure drop line on a plot of log (pressure drop) vs. log (gas velocity) increases. This region, or more specifically this point is called the loading point and above this point the column is said to be loaded ${ }^{(46)}$.

At the point where the hold-up curve becomes almost vertical, the pressure drop curve also becomes almost vertical. Under these çonditions the liquid cannot flow through the column at the rate it is supplied at the top of the column and rapid accumulation of liquid destroys the normal operation of the column. This point is called flooding point and the column is said to be flooded.

2.2.2.1 Hold-up correlation

Below the loading point, the hold-up is regarded the same as that without gas flow since the change of hold-up with gas velocity is very small ${ }^{(46)}$.

Only a few authors have tried to correlate the hold-up above the loading point to flow conditions. Uchida and Fujita ${ }^{(30,31,51)}$ and Mersmann ${ }^{(52)}$ gave the correlation in the form of a diagram. Neither of these diagrams covers the low liquid velocity region which is important to the blast furnace system. The correlation given by Gardner (28) covers the desired low liquid velocity region, though,

Fig. 2.4 Typical example of the changes in total hold-up and pressure drop with gas velocity at a constant liquid velocity
its applicability to systems other than his own (silicone coated coke/water/air) has not been tested.

2.2.2.2 Pressure drop of gas in dry column

Ergun (53), using pressure drop data in columns of granular materials, correlated the friction factor f_{k} with gas Reynolds number Re_{g} where

$$
\begin{equation*}
f_{k}=\frac{\Delta P \cdot d_{p} \cdot \phi}{L \cdot \rho_{g} \cdot V^{2}} \cdot \frac{\varepsilon^{3}}{1-\varepsilon} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}_{g}=\rho \cdot \mathrm{V} \cdot \mathrm{~d}_{\mathrm{p}} \cdot \phi / \mu_{\underline{q}} \tag{2.7}
\end{equation*}
$$

He gave the following formula to relate f_{k} with Re_{g} :

$$
\begin{equation*}
f_{k}=1.75+150 \cdot(1-\varepsilon) / \operatorname{Re}_{g} \tag{2.8}
\end{equation*}
$$

In an earlier study Carman (54), using a similar plot, arrived at the following expression:

$$
\begin{equation*}
f_{k}=2.87\left(\frac{1-\varepsilon}{R e_{g}}\right)^{0.1}+180 \cdot(1-\varepsilon) / R e_{g} \tag{2,9}
\end{equation*}
$$

It is worth noting that the specific surface area of the packing, a_{t}, is given by

$$
\begin{equation*}
a_{t}=\frac{6}{d_{p}} \phi \tag{2.10}
\end{equation*}
$$

Comparing Eqs. (2.6), (2.7), and (2.10) one can see that the effect of packing on the pressure drop can be represented physically by a_{t} and ε.

2.2.2.3 Pressure drop of gas in irrigated column

Correlations for gas pressure drop in irrigated packed column fall largely into two categories:
those shown in forms of diagrams and those expressed as mathematical formulae.

Leva ${ }^{(55)}$ incorporated pressure drop data in the flooding diagram which he obtained after a small modification of the Sherwood diagram ${ }^{(60)}$ while Mersmann ${ }^{(52)}$ used his own flooding diagram for the pressure drop correlation (see section 2.2.3 for flooding diagram). Neither of these diagrams shows the pressure drop in the low liquid velocity region.

The various mathematical formulae for the pressure drop require the knowledge of total hold-up. To be consistent with the pressure drop in the dry column, these formulae take the form:

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{w}}=\Delta \mathrm{P}_{\mathrm{d}} \quad \mathrm{~F} \tag{2.11}
\end{equation*}
$$

where the function $F=1$ when total hold-up, h_{f}, equals to zero. Different authors have proposed different forms for the function F as shown below:
Uchida and Fujita ${ }^{(51)}$

$$
\begin{equation*}
F=e^{k h_{t}} \tag{2.12}
\end{equation*}
$$

$k=15$ for raschig ring and $k=20$ for crushed lime
Brauer ${ }^{(56)}$:

$$
\begin{equation*}
F=\left[1+h_{\mathrm{t}^{\prime}} /(1-\varepsilon)\right] /\left(1-\mathrm{h}_{\mathrm{t}} / \varepsilon\right)^{3} \tag{2.13}
\end{equation*}
$$

Morton ${ }^{(57)}$:

$$
\begin{equation*}
F=1 /\left(1-h_{t} / \varepsilon\right)^{3} \tag{2.14}
\end{equation*}
$$

Buchanan ${ }^{(58)}$:

$$
\begin{equation*}
F=\left[1-2.0\left(h_{t}-0.01\right)\right]^{-5} \tag{2.15}
\end{equation*}
$$

Warner ${ }^{(40)}$:

$$
\begin{equation*}
F=1+23.9 \mathrm{~h}_{\mathrm{t}}^{2} \tag{2.16}
\end{equation*}
$$

Jeschar et al ${ }^{(8)}$:

$$
\begin{equation*}
F=\left[\frac{1+h_{t} /(1-\varepsilon)}{1-h_{t} / \varepsilon}\right]^{1.2}\left[1.5 \frac{u \varepsilon}{v h_{t}}+\frac{\varepsilon}{\varepsilon-h_{t}}\right]^{1.8} \tag{2.17}
\end{equation*}
$$

It is clear from the above expressions that there is no general agreement on how the function should be expressed.

2.2.2.4 Influence of gas flow on liquid flow distribution

Dutkai and Ruchenstein ${ }^{(59)}$ measured the liquid distribution for a wetting system (rings and saddles/water/air) and reported that the liquid distribution did not change until the gas velocity reached 70% of that at flooding. Above that velocity they observed a decrease in the flow rate in the region near the column wall, though the overall liquid distribution did not change very much.

It would appear that no systematic studies on the influence of gas flow on liquid distribution have been reported for non-wetting systems.

2.2.3 Flooding

Since flooding limits the maximum allowable liquid and gas flow rates in packed columns, many investigators have studied this phenomenon. Sherwood et al (60) have correlated the flooding velocities by the two parameters:

Flooding factor

$$
\begin{align*}
& \frac{\mathrm{V}^{2} \mathrm{a}_{\mathrm{t}} \rho_{\mathrm{g}}}{\mathrm{~g} \varepsilon^{3} \rho_{\ell}}{ }^{n 0.2} \tag{2.18}\\
& \frac{\mathrm{u}}{\mathrm{~V}} \sqrt{\frac{\rho_{\ell}}{\rho_{\mathrm{g}}}} \tag{2.19}
\end{align*}
$$

Later, Lobo et al ${ }^{(61)}$ measured the value, a_{t} / ε^{3}, for different packing materials and correlated the reported experimental data on flooding. Fig. 2.5a shows the correlation of flooding velocities as a relationship between Flooding factor and Fluid ratio. This type of diagram is often referred to as the Sherwood diagram. The solid line in the diagram is after Lobo et all (61) and the source of the plots in the diagram will be mentioned later.

Mersmann ${ }^{(52)}$, criticising that the Flooding factor is not dimensionless, proposed a different flooding diagram (Fig. 2.5b) in which he showed the flooding velocities as the relationship between the following two dimensionless numbers:

$$
\begin{align*}
\text { Dimensionless pressure drop } & =\frac{\Delta \mathrm{P}_{\mathrm{d}} / L}{\mathrm{~g} \rho_{\ell}} \tag{2.20}\\
& =f_{k} \frac{1-\varepsilon}{\varepsilon^{3}} \frac{V^{2} \rho_{g}}{d_{p} g \rho_{\ell}} \tag{2.21}
\end{align*}
$$

Dimensionless irrigation density

$$
\begin{equation*}
=\left(\frac{\mu_{\ell}}{\rho_{\ell g^{2}}}\right)^{1 / 3} \frac{u(1-\varepsilon)}{d_{p}} \tag{2.22}
\end{equation*}
$$

Although neither Sherwood nor Mersmann considered the effects of the surface tension of the liquid, Newton ${ }^{(62)}$ showed that the effect of surface tension can be accounted for by multiplying the Fluid ratio (Eq. 2.19) on the abscissa of the Sherwood diagram, by the term $\left(\sigma_{w} / \sigma\right)^{3}$. Standish and Drinkwater ${ }^{(63)}$ found the exponent of $\left(\sigma_{w} / \sigma\right)$ to be 2.5 . Since in these two investigations a surface active agent was used to change the surface tension of the liquid, the validity of their correlations for other liquids is not clear.

Leva ${ }^{(55)}$ proposed that the Flooding factor (Eq. 2.17) on the ordinate of the Sherwood diagram should be multiplied

Fig. 2.5 Flooding diagrams showing the limiting condition for flooding. The bottom left region corresponds to non-flooding operation.
A: after Sherwood ${ }^{(60)}$, B: after Mersmann
by the term $\left(\rho_{w} / \rho_{\ell}\right)^{2}$ where ρ_{w} is density of water. Later, Szekely and Mendrykowski ${ }^{(64)}{ }^{w}$ found that their data on flooding of mercury in columns packed with spherical particles were in better agreement with the original Sherwood correlation rather than with that proposed by Leva.

Experimental work on flooding which is particularly related to the blast furnace system has not been done extensively.

Elliottet al. ${ }^{(4)}$ have extended the range of the Sherwood diagram to the lower values of the Fluid ratio by adding their experimental results on 5 mm glass bead/wax/heated air system in a 5 cm glass column. Their range of Fluid ratio is from 0.0007 to 0.002 ; the range in the blast furnace shown by the same authors is from 0.001 to 0.003 whereas the range of the diagram given by Lobo et al. (61) is from 0.01 to 10 .

Sharvin et al. ${ }^{(65)}$ made experiments with a carbon/slag $\left(32 \% \mathrm{CaO}, 46.9 \% \mathrm{SiO}_{2}, 5.7 \% \mathrm{MgO}, 15.4 \% \mathrm{Al03}\right) / \mathrm{N}_{2}$ system and their data are in good agreement with the results of Elliott et al. as shown in Fig. 2.5. However, the reliability of data on the coke-slag system is questionable since their column diameter, 3 cm , is very small compared with packing diameter of 1.1 . cm.

Szekely and Mendrykowski ${ }^{\text {(64) }}$ measured flooding velocities using mercury as the liquid. Glass beads of 3.175 and $6.35 \mathrm{~mm}, 6.35 \mathrm{~mm}$ ceramic cylinders and "interlock" saddles were used as packings. Standish and Drinkwater ${ }^{(63)}$ showed the effect of non-wetting conditions on the flooding velocities using waxed particles. The magnitudes of the fluid ratio for both experiments are considerably higher than that for the blast furnace. Both results, shown in Fig. 2.5 show that the Flooding factor is about twice as much as that predicted by Lobo's correlation. It is
interesting to note that Standish and Drinkwater used water as an irrigating liquid while szekely and Mendrykowski used mercury; the physical properties of these two liquids differ significantly.

Rikhter and Potevnya (66), using alcohol-castor oil solution of $z^{1} \mathrm{nc}$: chloride, glycerol at $60^{\circ} \mathrm{C}$ and aqueous solution of sugar, managed to change the surface tension of the liquid ($0.029,0.050,0.0845 \mathrm{~N} / \mathrm{m}$ respectively) while maintaining the density ($1210 \mathrm{Kg} / \mathrm{m}^{3}$) and viscosity ($0.0124 \mathrm{Ns} / \mathrm{m}^{2}$) constant. Using $25-50 \mathrm{~mm}$ sized coke coated by an organic siliconelacquer, on which the above liquids showed contact angles of 15,60 , and 100° respectively they measured flooding velocities. From the plot of their results on Mersmann's diagram, they found that the flooding limit increased with the contact angle. To correct the effect of contact angle, they multiplied the dimensionless irrigation density (Eq. 2.22) by the factor of $\cos ^{6}\left(\frac{\theta}{2}\right)$ where θ. is the contact angle.

2.3 Application to the Blast Furnace Process

The flooding phenomenon has been one of the major subjects for those who investigate the factors which limit the blast furnace production rate ${ }^{(5,6,7,8)}$. This is understandable when one recognises ${ }^{(4)}$ the remarkable agreement between the factors affecting flooding and the factors commonly suppo ${ }_{\text {s }}$ ed to influence the tendency for hanging in the furnace. In spite of this agreement, opinions differ as to whether or not flooding actually takes place in the furnace. As shown in Fig. 2.5 plots of blast furnace data mostly fall just below the flooding line indicating that the conditions in the blast furnace are between the loading and flooding points. Attempts to initiate flooding in an experimental furnace were made by Nakane et al ${ }^{(67)}$. Granulated blast furnace slag and pig iron were added to the charged material to get a liquid flow rate as high as $0.4 \mathrm{Kg} / \mathrm{m}^{2} \mathrm{~s}$. They, nonetheless, failed to obtain a clear occurence of flooding. Instead, they observed channelling
in the stack followed by fluidization.

In a recent study Standish and Colquhoun ${ }^{(68)}$ observed the effect on the flooding limit of the direction of the inlet gas flow at the bottom of a column in which water was flowed through packings of 6 mm glass spheres and rings and $8 \sim 16 \mathrm{~mm}$ coke particles. They found the flooding factor for horizontal gas entry was approximately four times as large as that for vertical gas entry.

Warner ${ }^{(69)}$, noting a larger non-uniformity of gas flow across the furnace at the level near the raceway, proposed a hypothetical model in which the slag is held locally above the raceway.

The above three papers $(67,68,69)$ indicate clearly the limitations of the one-dimensional flow model and the need for further investigation on the flows of liquid and gas in this region.

2.4 Summary

The flow system in the lower part of the blast furnace where molten slag and metal flow counter-current to rising gas stream through a bed of coke is apparently similar to that in packed absorption columns commonly used in the chemical engineering field. However, there are substantial differences between these two systems in that:
(a) the slag and metal do not wet the coke while wetting flow is common in the latter,
(b) the liquid velocities in the former are substantially lower than that in the latter,
(c) crushed coke particles form the packing in the former while hollow packings such as rings, saddles etc. are more common in the latter.

The available information on the hold-up and flooding at low liquid velocities or for non-wetting flows is very limited. No generalized correlations have been proposed for operational and static hold-ups for non-wetting flow.

Although several papers on flooding are available in either low liquid velocity or non-wetting flow, more data seems to be needed to assess the influence of degree of wetting.

As shown in the preceding Chapter, non-wetting flow and low superficial velocity of liquid distinguish the slag/metal/coke system in the blast furnace from those common in chemical engineering field. No systematic studies have been published on the influence of the degree of wetting between the packing and liquid on hold-up and flooding at low liquid velocities.

It is appreciated that in operating furnaces the gas flow, introduced horizontally through the tuyères, changes direction as it ascends through the bed of coke. Consequently, the flow pattern in the lower region of the furnace will be quite complex. However, a complete understanding of the flow process in this region cannot be attempted before adequate theoretical and experimental information on the simpler, "one-dimensional" model in which the gas flow is introduced vertically at the bottom of a column is available. Therefore, it was decided that the present study would deal with the "one-dimensional" flow situation.

Since it would be extremely difficult to carry out accurate experiments on the high temperature slag/coke/ metal system, it was decided to use a room temperature model. The idea of using a $\mathrm{SnCl}_{2}-\mathrm{KCl}$ slag/carbon system at about $200^{\circ} \mathrm{C}$ was also abandoned because the measured values of the contact angle between the slag and carbon were too low (less than 90°).

For the systems of the same geometry, dynamic similarity between the flows in the room temperature model and in the high temperature system can be checked by comparing the ranges of dimensionless numbers for both systems. These
numbers are derived from the combinations of forces which influence the flow.

The gas flows through two packed beds will be similar if the Reynolds numbers for the gas flow, Reg (Eq. 2.7), are the same.

The forces which would affect the liquid flow are:

1) gravitational force

$$
\begin{equation*}
\mathrm{f}_{\mathrm{g}}=\rho \mathrm{g} \mathrm{D}^{3} \tag{3.1}
\end{equation*}
$$

2) inertial force,

$$
\begin{equation*}
f_{i}=\rho u^{2} D^{2} \tag{3.2}
\end{equation*}
$$

3) viscous force,

$$
\begin{equation*}
f_{v}=\mu u D \tag{3.3}
\end{equation*}
$$

4) surface force,

$$
\begin{equation*}
f_{S}=\sigma D \tag{3.4}
\end{equation*}
$$

5) solid-1iquid interfacial force,

$$
\begin{equation*}
\mathrm{f}_{\mathrm{si}}=\sigma \mathrm{D}(1+\cos \theta) \tag{3.5}
\end{equation*}
$$

6) the force exerted by the gas flowing through the bed

$$
\begin{equation*}
f_{p}=\left(\frac{\Delta P}{L}\right) \quad D^{3} \tag{3.6}
\end{equation*}
$$

where D is the characteristic length of the system.

It would be necessary to add a proportionality constant to the right hand side of each of the above equations if the absolute values of the forces were required. In the present case, however, each proportionality constant is the same for assumed geometrically similar systems and since we are only interested in the relative magnituds of the forces, the constants do not appear in the above equations.

Eq. (3.5) and (3.6) require some explanation. Eq. (3.5) is based on equilibrium conditions in which the reversible work per unit area, Wa, of adhesion of the liquid to the solid when coated with an adsorbed film of the saturated vapour is given by ${ }^{(70)}$

$$
\begin{equation*}
W a=\sigma(1+\cos \theta) \tag{3.7}
\end{equation*}
$$

Noting that the energy E is related to the force f by $E=f D$ and since in this case $E \not W^{2} D^{2}$, one can obtain Eq. (3.5) from Eq. (3.7). The force acting on the liquid is assumed to be proportional to the gas pressure drop. The proportionality constant can be assumed to be the same for similar flow systems and hence it does not appear in Eq. (3.6).

For the characteristic length D, the packing diameter ${ }^{d} p$ is commonly used for packed columns. Although the combination of the forces to yield various dimensionless numbers is arbitrary, the following numbers, are chosen in order to maintain consistency with those used by previous authors:

$$
\begin{array}{ll}
\text { Reynolds number } & R e=f_{i} / f_{v}=\rho_{\ell} u d_{p} / \mu_{\ell} \\
\text { Galileo number } & G a=f_{i} f_{g} / f_{v}{ }^{2}=d_{p}{ }^{3} \rho_{\ell}{ }^{2} g / \mu_{\ell} \tag{3.9}
\end{array}
$$

Capillary number $\quad C_{p}=f_{g} / f_{S}=\rho_{\ell} g d_{p}{ }^{2} / \sigma$

Dimensionless interfacial force

$$
\begin{equation*}
N_{c}=f_{s i} / f_{s}=1+\cos \theta \tag{3.11}
\end{equation*}
$$

Dimensionless pressure drop

$$
\begin{equation*}
\Delta \mathrm{P} * *=\mathrm{f}_{\mathrm{p}} / \mathrm{f}_{\mathrm{g}}=\Delta \mathrm{P} / \mathrm{L} \rho \mathrm{~g} \tag{3.12}
\end{equation*}
$$

It will be noted that $R e, G a, C_{p}$ are used in Table 2.3 in the correlations for operational hold-up. Furthermore one can see that C_{p} is essentially the same as the capillary number $\mathrm{N}_{\text {cap }}\left(\mathrm{Eq} .2 .4\right.$) defined by Turner and Hewitt ${ }^{(50)}$.

Tables 3.1 and 3.2 show the physical properties of the packing materials and of the liquids respectively. Table 3.3 shows a comparison of the values of the dimensionless numbers for the blast furnace with those obtained in the present work. The dimensionless pressure drop is not given in the Table since its value for the blast furnace is not available. It will be noted that except for the Galileo number of the metal, and the dimensionless interfacial force, N_{c}, the values for the blast furnace are well within the range of the experiments. The relatively small size of the packing used in the experiments is the main reason for the difference of the values of the Galileo number.

Three different materials were used for the same size packing (W13, PL13, AL13) to obtain different contact angles. Paraffin wax was chosen as one of the materials as it probably gives the largest contact angle among the commonly available materials. $(70,71) \quad$ The choice of CaCl_{2} solution made it possible to increase the contact angle further, though, it still fell slightly short of those estimated for the blast furnace conditions.

Table 3.1 Data on packings used in experiments

Packing \begin{tabular}{lll}
Diameter

mean (mm)

\quad

Standard

deviation

(mm)

\quad

Apparent

density

$(\mathrm{kg} / \mathrm{m} 3)$
\end{tabular}\quad Symbol


```
* size range (openings of sieves)
```

** $50-50 \%$ mixture of PL13 and PL9

Liquid	$\begin{gathered} \text { Concentration } \\ (w t . \%) \end{gathered}$	$\begin{aligned} & \text { Density } \\ & \left(\mathrm{Kg} / \mathrm{m}^{3}\right) \end{aligned}$	Viscosity* ($\mathrm{Ns} / \mathrm{m}^{2}$)	Surface tension (N / m)	Conta polyt	$\begin{aligned} & \text { angle on } \\ & \text { a wax } \\ & \text { gree) } \end{aligned}$	Symbol
Water	--	1000	0.0010	0.0732	92.6	105.6	WATR
Aq. sol. of ethanol	96**	807	0.0016	0.0240	0	--	ETOH
Aq. sol. of glycerol	80	1210	0.064	0.0652	88.1	96.6	GLY
Aq. sol. of CaCl_{2}	35	1350	0.0059	0.0888	108.9	114.1	CACL
$\begin{aligned} & \mathrm{Aq} \text {. sol. of } \\ & \mathrm{ZnCl}_{2} \end{aligned}$	75	1920	0.034	0.0809	84.5	97.9	ZNCL

* Nominal value,
** Azeotrope

Table 3.2 Physical properties of liquids used in experiments

System	Liquid	Re	$\underset{\left(\times 10^{4}\right)}{\mathrm{Ga}}$	C_{p}	N_{C}
Blast furnace	Metal slag	$\begin{aligned} & 2.5 \\ & 0.017 \end{aligned}$	$\begin{gathered} 23600 \\ 1.0 \end{gathered}$	$\begin{aligned} & 34 \\ & 31 \end{aligned}$	$\begin{gathered} 0.43 \\ 0.06 \sim 0.74 \end{gathered}$
Experiment	WATR	$0.07 \sim 22$	$610 \sim 2600$	$8.6 \sim 23$	$0.73 \sim 2.0$
	ETOH	$0.05 \sim 7$	83 - 3500	$25-63$	2.0
	GLY	$0.005 \sim 0.11$	$0.18 \sim 0.74$	$12 \sim 30$	$0.88 \sim 2.0$
	CACL	$0.02 \sim 4.5$	$26 \sim 110$	$9.5 \sim 25$	0.59~0.68
	ZNCL	$0.01 \sim 0.6$	$1.6 \sim 6.9$	$15 \sim 40$	$0.86 \sim 1.1$

Table 3.3 Comparison of the values of dimensionless numbers for the blast furnace with those for experiments with different liquids.

The use of high-density liquid, ZnCl_{2} solution, is primarily intended to test the effect of the ratio of liquid to solid densities on the stability of the bed. This factor has not been studied previously although it is easy to imagine that fluidisation of the column would start before the column floods if one uses a heavy liquid with a light packing. With a density ratio of about 2.5 estimated for the slag/coke system the instability of the bed is possible at or near flooding. It must be noted that the apparent absence of flooding in the experimental blast furnace ${ }^{(67)}$ mentioned earlier could be explained by the instability of the bed.

CHAPTER 4

EXPERIMENTAL WORK

4.1 Apparatus

Plate 1 shows general arrangement of the apparatus which consists of two parts: the main section in the centre and the gas flow control section on the left of the plate.

Fig. 4.1 shows a schematic diagram of the apparatus in the main section. The column, 12, was suspended from one end of a steel beam, 2 , with a T-shaped cross-section. The weight of the dry column was balanced by adjusting the counter balancing weight, 4 . The weight change of the column was measured and transformed into an electronic signal by a load cell, the actuator of which rested on a small steel ball partially embedded in the beam, 2. The zero point of the load ${ }_{\Lambda}$ was shifted electrically to read zero when the load was 100 g . This ensured that the actuator of the load cell and the steel ball were in good contact. The range of output of the load cell could be varied by appropriate changes in the balancing weight, 3. The weight change of the column due to the pressure loss of the gas flowing through the column was compensated by introducing the pressure at the gas inlet to a chamber with a thin film diaphragm, 5 , on which the counter weight - , 4 , rested.

The sensitivity of the balance was better than 0.2 g . A continuous recording of the weight of the dry bed for more than 200 hours showed that the zero drift of the balance was less than $\pm 0.5 \mathrm{~g}$. The balance was calibrated before each experiment and together with the zero drift mentioned above, the accuracy of the balance was within $\pm 0.5 \%$ of reading $\pm 0.5 \mathrm{~g}$.

Plate 1 General view of the apparatus

KEY TO FIG. 4.1

1 Load cell (900 g full load)
2 Beam of the balance (T-shaped)
3 Balancing weight
4 Counter balancing weight
5 Diaphram (to compensate the effect of gas pressure on the balance)

6 Constant head tank
7 Three-way cock
8 Reservoir for distributor
9 Capillaries
10 Silicone rubber tubing
11 Distributor head
12 Glass column ($95 \mathrm{~mm} \times 650 \mathrm{~mm}$)
13 Pressure transducer
14 Sintered glass filter
15 Liquid collector/gas distributor, details in Fig. 4.4

16 Gas supply main
17 Vessel to remove pulsation in the liquid flow
18 Thermometer
19 Liquid flow meter, details in Fig, 4.5
20 Electric motor with speed control
21 Peristaltic pump
22 Liquid reservoir tank
23 Dew point monitor, details in Fig. 4.7b.

Fig. 4.1 $\begin{aligned} & \text { Schematic drawing of experimental } \\ & \text { apparatus in the main section }\end{aligned}$

4.1.1 Column

Two different columns of the same size, 95 mm id., 650 mm length, were used. Both were made of glass tubing; one was coated with PTFE-spray for experiments in the non-wetting conditions while the other was used for experiments in the wetting conditions.

The grid for the non-wetting column was made of 13 mm polythene balls which were fused to one another at the points of contact. The grid for the wetting column was made of 13 mm alumina balls stuck with silicone rubber at the points of contact. These grids, being almost the same structure as the beds above them, gave as little influence as possible to the results of experiments, especially in the liquid distribuion measurement. The depth of the grid was about 35 mm in both columns.

Plate 2a shows the wetting column being used for 8 mm glass ball packing.

4.1.2 Control and measurement of liquid flow rate

The liquid was stored in a reserve tank, 22. A peristaltic pump, 21 , driven by an electric motor with speed control, 20 , was used to circulate the liquid. The liquid flow rate was adjusted by either changing the height of the constant head tank, 6, or by changing the size of capillaries, 9. The liquid supply to the column, 12 , was controlled by stop cock, 7. The distributor head, 11, had 19 supply points according to the arrangement shown in Fig. 4.2 through which the liquid flowed as droplets. The distribution of the liquid flow at the top of the column was changed by stopping the liquid supply to some of the 19 supply points. Four different arrangements of the supply points, shown in Fig. 4.3 were used in the experiments. The arrangement "19" gave the evenest while "71" gave the most centralized liquid flow distribuiton at the top of the column.

Fig. 4.2 Design of the liquid distributor (Scale 1:1)

Fig. 4.3
Arrangement of supply points of distributor used in experiments (enclosing circle shows the cross section of the column).

KEY TO FIG 4.4

1 Glass column
2 Grid: made of 13 mm plastic balls for experiments on non-wetting flows
made of 13 mm alumina balls for experiments on wetting flows

3 Diaphragm, made of thin plastic sheet
4 Gas pressure tap
5 Gas nozzle (5 in total)
6 Gas distributing port
7 Outer liquid collector (3 in total)
8 Middle liquid collector (2 in total)
9 Inner liquid collector
10 Outlets of liquid

Cross-section of the liquid collector

Fig. 4.4 Liquid collector/gas distributor and position of the column (Scale 1:2)

The liquid flowed out of the column into the collector 15, which had six separate compartments (Fig. 4.4). Each compartment collected the liquid from almost the same cross-sectional area of the column. The liquid flow rate to each compartment was measured by specially designed liquid flow meters. As shown in Fig. 4.5 the measuring mechanism consisted of a container, 6, with siphon, 7, for self-draining of the liquid and a spring beam, 4 , on which a pair of strain gauges was fixed. An increase in the weight of the container, 6, increased the bending of the beam which led to an increase in the output of the strain gauges. When the liquid level rose to the top of the siphon, 7 , it started to drain automatically. Special attention was paid to the design and construction of the siphon to make the draining process reliable. The measuring containers were kept inside a gas-tight vessel, 8 , so that the liquid flow rate could be measured continuously even in the presence of gas flow. Plate 2 b shows the arrangement of liquid collector and liquid flow meters.

The zero drift of the liquid flow meter was as high as $\pm 5 \%$ over a period of 24 hours mainly due to temperature changes. Since the data used for the flow rate calculation were always for a period of four to eight minutes, the accuracy of the calculated flow rate was not affected by the zero drift and depended mainly on the accuracy of the calibration and was better than 1% of the reading.

4.1.3 Gas flow control

Fig. 4.6 shows a schematic diagram of the gas flow control section and Plate 2c shows the arrangements of the gas humidification column. Compressed air (7 atm) from the supply line was first passed through a filter, 1, (MARTONAIR, type S/F164) which removed traces of oil as well as dirt. The flow rate of the cleaned air was adjusted to the desired value by the valve 3 . The pressure regulator, 2 , minimized fluctuations in the gas flow rate due to any changes in the pressure of the air supply.

KEY TO FIG. 4.5

1. Liquid inlet

2 Lid of gas-tight vessel
3 Strain gauges
4 Beam spring
5 Thin-wall rubber tubing
6 Liquid measuring container
7 Siphon
8 Wall of gas-tight hexagonal vessel

Arrangement of the six containers in the gas-tight vessel (Scale 1:5)
(Scale 1:2)
Fig. 4.5 Liquid flow meter

KEY TO FIG. 4.6

1 Filter
2 Pressure regulator
3 Flow control valve
4 Gas inlet to humidifier
5 Liquid distributors (6 points)
6 Packed column of 9 mm glass raschig rings, column id: 90 mm , height: 370 mm

7 Liquid reservoir
8 Chromel-alumel thermocouple
9 Heater for liquid
10 Heating element
11 Liquid circulating pump (peristaltic)
12 Temperature controller
13 Three-way cock
14 Tank for distilled water
15 Rotameters for gas flow measurement
16 Hg manometer

Fig. 4.6 Schematic drawing of gas flow control seciton

The air was then passed through a humidifier column 6 , co-current with the liquid which was circulated by the pump,11. The humidity of the air was controlled by adjusting the power input to the heating element, 10 , in such a way that the gas temperature measured by the thermocouple, 8 , was constant. The control temperature was set relative to room temperature,i.e., an increase in room temperature caused an increase in the gas temperature. This method of control proved satisfactory though the response was somewhat slow. By careful setting of the control temperature, it was possible to control the dew point of the gas at the outlet of the humidifier column within $\pm 0.2{ }^{\circ} \mathrm{C}$ of the room temperature.

In preliminary tests it was observed that the dew point at the inlet of the gas supply main (16, Fig. 4.1) measured with a dewpoint meter (Fig. 4.7), decreased with the increase in the pressure drop of the gas between the humidifier column and the inlet of the gas supply main. This decrease in the dew point with the increase in gas flow was compensated for either by increasing the control temperature (when water was the irrigating liquid) or by diluting the circulating liquid with water (when glycerol - or CaCl_{2} solution was the irrigating liquid). This humidifier and its control were proved successful except for a few runs with water as an irrigating liquid at the lowest flow rates. The humidifier was not used when the ZnCl_{2} solution was the irrigating liquid. The air was found humid enough to dilute the solution whose density decreased from 1940 to $1910\left(\mathrm{Kg} / \mathrm{m}^{3}\right)$ during the whole series of experiments.

After the humidifcation, the gas flow rate was measured by two rotameters, 15 , corrected for the pressure measured by the mercury manometer, 16 . No correction was made for the temperature or for the humidity of the gas. The accuracy of the rotameter is better than $\pm 3 \%$ of the measured flow rates.

(a) For use in open atmosphere

(b) On-line monitor

Fig. 4.7 Dew point meter
(1) Copper block (8 x $8 \times 60 \mathrm{~mm}$) (4) Glass window
(2) Silicone grease
(5) Copper plate
(3) Thermometer
(6) Thermocouple

The copper block (1) or plate (5) is cooled down to the temperature where dew just starts to form on the polished surface of the copper block or plate and the temperature (dew point) is measured by the thermometer (3) or by a thermocouple (6).

Gas distributor

The gas was fed into the column through the gas supply main (16, in Fig. 4.1) , via. five gas nozzles (5, Fig. 4.4) to the gas distributing port (6, in Fig. 4.4). The maximum velocity of the gas leaving the port was $2.5 \mathrm{~m} / \mathrm{s}$. At this velocity, the dynamic pressure of the gas, $4 \mathrm{~N} / \mathrm{m}^{2}$ was approximately equivalent to the pressure drop through 1 mm thickness of the bed of 13 mm spheres. Therefore it is unlikely that maldistribution of the gas was caused by this arrangement.

Measurement of gas pressure drop

The static pressure was measured at the gas pressure tap, 4, in Fig. 4.4, with a pressure transducer (micromanometer, manufactured by Furnace Control Limited). The micromanometer was calibrated using a simple water manometer. The calibration curve is given in Fig. 4.8.

4.1.4 Recording of the data

The outputs of the load cell and the micromanometer were recorded on paper tape by a data logger together with the output of strain gauges for each container of the liquid flow meter. A set of 15 to 20 data were measured at either 15 or 30 seconds interval. The outputs of the load cell and the micromanometer were also recorded continuously on a twopen chart recorder.

4.2 Liquids and Packings

The physical properties of the liquids and packings used in the experiments are given in Tables 3.1 and 3.2 . Plate 3 shows the appearance of the particles of the packings in both dry and wet states.

Fig. 4.8 Calibration curve for micromanometer

Plate 3 Appearance of particles in dry and wet states. (Scale 1:1)

G8

C11

Paraffin wax coating

Coke particles and polythene spheres (PL13) were coated by paraffin wax according to the following procedure: Paraffin wax, coagulation point of which is specified as $62^{\circ} \mathrm{C}$, was melted in a beaker heated in a boiling water bath. Particles were put into the beaker. Polythene spheres were allowed to warm up only for a few minutes in the beaker because dissolution of the surface of the spheres occurred after prolonged heating in molten wax. Coke particles, on the other hand, were kept in the molten wax for more than ten minutes for better coverage of the open pores by wax. The particles were then picked up one by one with a pair of tweezers specially made for this purpose, cleared of excess wax and cooled in an alcohol water mixture.

It will be seen from Table 3.1 and Plate 3 that the coated film on polythene spheres is thin and uniform. The surface of coated coke, as shown in Plate 3, preserves the roughness of the original coke particles. Therefore, it can be assumed with confidence that the coated particles are identical with their orignal except for the contact angle of liquid on the surface.

Measurements of physical properties
The densitiy, viscosity, and surface tension were measured for the liquids other than water.

The viscosity was measured by a standard U-tube viscometer ${ }^{(72)}$ at room temperature. Measurements were carried out frequently during experiments as the viscosity changed significantly with the room temperature. The averaged viscosity for each run was used in the analyses of the results.

The surface tension was measured by a capillary rise method. Two different sizes of capillaries were used and the difference of the heights of memisci was read to within 0.01 mm by a cathetometer. The calibration was made with water.

The density of packing was measured by a replacement method. A 500 ml volumetric flask was used. Distilled and de-gassed water was used as a replacing liquid. The flask was kept in a water bath at $20.0 \pm 0.2^{\circ} \mathrm{C}$. for more than 12 hours before measurements. The somewhat high density of coated coke (Table 3.1) is considered to be due to the penetration of the paraffin wax into the pores of the coke.

The fractional voidage of the column was calculated from the measured column height using the data on apparent density and the weight of the packing.

Measurement of contact angle

The contact angle was measured with a projection microscope. A small prism was used to obtain a horizontal image of a drop for viewing in the vertical optical system of the microscope. The slide glass was coated by the wax in the same way as for the particles. A flat surface of polythene was obtained by pressing polythene spheres against a heated sli $\overleftarrow{d e}$ glass. The contact angles were measured on these surfaces; ten drops were measured on both edges. The measured contact angle of water (92.6° on polythene, 105.6° on wax) agreed reasonably well with published data (94° and 108° respectively).

4.3 Experimental Procedures

4.3.1 Experimental procedure for first series of experiments

Preliminary experiments were conducted in the absence of gas flow; water was used as an irrigating liquid. The particles for the packing were weighed and dumped into the column through a funnel which reduced the severity of the impact of the balls on the grid and column wall. The balance was adjusted to zero with the dry bed and calibrated. For experiments in the non-wetting condition, the liquid flow was then started. For experiments in the wetting condition, the packing was taken out of the column, wetted throughly, and dumped into the column again after which the column was suspended from the balance and the liquid flow was started. The column was usually irrigated for about 12 hours before the actual hold-up measurements were started according to the following procedure.

The height of the constant head tank was adjusted to set the liquid flow to the required value. Since the weight of the column became steady within 5 minutes, the liquid was flowed for 10 minutes and then stopped. The average weight of the column during the last 5 minutes of liquid flow was determined and recorded as the total hold-up. The column was then allowed to drain for 5 minutes after which its weight was read and recorded as the static hold-up.

The measurements were made for seven to eight different liquid flow rates. The flow rate was changed in a random order and two to three independent measurements on the same flow rates were made. It was necessary to use two sets of capillary tubes of different size to cover the liquid flow range of 0.2 to $10 \mathrm{ml} / \mathrm{sec}$.

In some experiments, the column was allowed to drain for more than 12 hours to measure the static hold-up according to the definition of previous authors.

4.3.2 Experimental procedure for experiments with gas flow (second series)

The column was filled with packing and hung on the balance in the same way as for preliminary experiments. After calibration of the balance, gas was passed through the column. The flow rate of the gas was kept constant for 20 to 30 minutes for the balance to acquire a steady state because a small drift in the load cell output was observed while the diaphrán (3, Fig. 4.4) settled to its equilibrium state. The data on the gas flow rate, the gas pressure and the weight of the column were then taken. This procedure was repeated and the data were taken for six to eight different gas flow rates.

The liquid flow was started at the highest flow rate, then the gas flow was introduced. The gas flow rate was increased gradually up to the point of flooding and then kept at just below that for a few minutes. The column was flooded several times in this way. In the case of wetting flows all the packing surface visible through the column wall was wetted by this method. Then, the gas flow was stopped and the column was kept irrigated at a medium liquid flow rate for about 12 hours.

Liquid drops resting on the inner wall of the column above the packing were wiped before each run started. The amount of drops which had accumulated under flooding or near flooding conditions was about 10 g for most of the experiments. Each series of experiments was started in the absence of gas flow. The liquid flow rate was kept constant for more than 30 minutes to ensure the steady state. At least one measurement was taken before the introduction of gas. Unlike the preliminary experiments, the column was kept irrigated and no static hold-up was measured. Experiments with gas flow were conducted in such a way that the liquid flow rate was kept constant and the gas flow rate was changed. Normally the gas flow rate was increased in steps. up to flooding point.

The gas flow rates were kept constant for at least 30 minutes before measurements were taken. In the experiments at low liquid flow rates it was necessary to keep constant flow rates for more than 60 minutes before the steady state was reached as confirmed by the continuous recording of the outputs of the micromanometer and the load cell.

Experiments were repeated several times on the same column for different conditions such as different distributor arrangements or liquid flow rates. Overnight the column was either kept irrigated without gas flow or allowed to drain. In the latter case, a lid was put on the column to prevent vaporisation of the liquid.

4.4 Data Processing

The data for an experiment consisted of a set of data logger ouptuts in paper tape and manually recorded data. The former included 15 to 20 consecutive measurements from the load cell, the micromanometer and the six strain gauges in the lqiuid flow meter, while the latter comprised the readings from the rotameter and Hg -manometer. The data were processed using a CDC 6400 computer.

4.4.1 Calibration curves

The calibration curves for the rotameters and the micromanometer were not linear. Therefore, a generalized curve-fitting method (Appendix II) was applied to generate the calibration curve. In the computer, this curve is represented by a set of parameters and calibration can be carried out simply by a call to a subprogram ("YQ"in Appendix II). The calibration curve for the micromanometer thus obtained is shown in Fig. 4.8.

The calibration curve of the load cell was linear and was obtained by a linear regression between the weight placed on the column and the voltage output of the load cell.

Both the pressure and the weight were calculated on the basis of the averaged values from 15 to 20 measurements.

4.4.2 Correction for the influence of gas pressure on column weight

Due to the imbalance between the diaphragms at the bottom of the column (3, in Fig. 4.4) and underneath the counter-balancing weight (5, in Fig. 4.1), a small change in the load cell output was observed when the gas pressure changed. This chance was corrected for in the following way: the column weight was correlated with the gas pressure measured for the dry column using the generalized curve-fitting program (Appendix II). The resulting parameters of the fitted curve were used later to estimate the necessary amount of correction on the column weight for the measured pressure. An example of this correction curve is given in Fig. 4.9.

4.4.3 Calculation of liquid flow rate

Because the draining of the liquid from the container took place at random and the weight of the container decreased suddenly during the draining, a special computer program was developed to calculate the liquid flow rate from the recorded data. The details of the program are shown in Appendix I.

Fig. 4.9 Calibration curve for the effect of the gas pressure

CHAPTER 5

EXPERIMENTAL RESULTS

In the first series of experiments, the effects of liquid velocity and distributor arrangements on the total hold-up were investigated using 16 different columns in the absence of gas flow while 29 different columns were used for the second series of experiments with gas flow. The total hold-up, the liquid distribution and the gas pressure loss were measured for various velocities of liquid and gas with different distributor arrangements. Table 5.1 shows the summary of the experimental Run numbers classified on the basis of packing and liquid. Each Run number in the Table represents a different column except for Runs 22 to 26 in which the same column was used. It will be seen from the Table that not all the combinations of the five liquids and seven packings were studied but a relatively large number of experiments were repeated for certain combinations.

In this chapter, typical examples of the results are shown with the description of the flow patterns observed during the experiments.

5.1 Experimental D.ata

The total hold-up, liquid velocity, gas velocity, pressure drop and liquid flow distribution, calculated directly from the measured data, are tabulated in Appendix IV for all the experiments. In these Tables, each set of data is identified by a 6-digit (for the first series of experiments) or a 7-digit (for the second series of experiments) Run number. The full explanation of the make-up of a Run number is given in Appendix IV. In the following,abridged Run numbers are used to refer to a set of experimental data. Two digit numbers represent the first series of experiments while three or more digits are used for the second series.

Liquid	Packing									
		PL13		AL13	W13	PL9	. G8	PLM	C11	
WATR	13*	22*	120	$\begin{aligned} & 14 * 130 \\ & 16 * \end{aligned}$	150	$\begin{aligned} & 18 * 140 \\ & 19 * \end{aligned}$	$\begin{array}{r} 12 * \\ 20 * \\ 27 * \\ 110 \end{array}$	170	---	
		23*	190		160					
		$24 *$	220		180					
		26*			210					
					230					
ETOH	$\begin{aligned} & 240 * \\ & 260 * \end{aligned}$		$\begin{aligned} & 250 * \\ & 270 * \end{aligned}$		---	280*	290*	---	---	
GLY	$\begin{aligned} & 330 \\ & 340 \end{aligned}$			310	300	360	---	---	$\begin{aligned} & 350 \\ & 370 \end{aligned}$	
					320					
					380					
CACL		400		-	390	-	-	---	410	
ZNCL		--		---	420	430	---	---	440	

* Without gas flow

Table 5.1 Summary of experimental Runs

Réference to a specific system will be made by using symbols for packing and liquid shown in Tables 3.1 and 3.2 , e.g. PL13/WATR.

Correction of the influence of the grid
The total hold-up and the gas pressure drop were calculated based on an effective column height H_{b} :

$$
\begin{equation*}
H_{b}=H_{b t}-\left(1-d_{p} / d_{g}\right) H_{g} \tag{5.1}
\end{equation*}
$$

where $H_{b t}$ is total column height including the grid and d_{g} and H_{g} are diameter of spheres and thickness of the grid respectively.

Liquid flow distribution
The liquid flow distribution is shown in terms of the relative flux to three concentric annuli: inner, middle, outer. The relative liquid flux to i'th annulus Fl_{i} is calculated by:

$$
\begin{equation*}
F 1_{i}=\frac{Q_{i} / S_{i}}{Q / S} \tag{5.2}
\end{equation*}
$$

where Q is the total flow rate, S is the cross-sectional area of the entire column and Q_{i} and S_{i} are the flow rate and cross-sectional area of the $i^{\prime} t h$ annulus. It will be noted from Fig. 4.4 that the cross-sectional area of the middle annulus is twice as much as, that of outer annulus is three times as much as that of inner annulus.

5.2 Experiments in the absence of gas flow

Fig. 5.1 shows the experimental results for Run 17. It can be seen from the Figure that the measured total hold-up for the Run is reproducible to within $\pm 0.05 \%$. The liquid distribution does not change significantly with the flow rate.

In the wetting systems, the measured distributions varied from one bed to another. No systematic influence of the distributor arrangement and of the liquid flow rate on the liquid distribution were observed. The measured hold-up did not change significantly with the change in the distributor arrangement.

In the non-wetting systems, the variation of the liquid distributions among different beds was less than that in the wetting system. No systematic influence of liquid flow rate on the distribution was observed but the distributor arrangement influences the performance of the column. Fig. 5.2 shows the effect of the distributor arrangement on total hold-up and liquid distribution. The trend of the variation of the liquid distribution is consistent with the distributor arrangement in that the distributor, '19' gave the most even distribution and '7I' gave the most centralised distribution. The distributor arrangement influenced the static part of the total holdup but not the dynamic part. The effect of the distributor arrangement can be represented by the number of distribution points rather than its influence on liquid flow distribution; the total hold-up increases with the number of the distriion points.

In Fig. 5.3, plots of the total hold-up against liquid velocity in the absence of gas flow are shown for different columns for the PLI3/WATR system. Although the overall scatter is relatively large, approximately 0.7%, the scatter around the fitted curves is as small as 0.2%. This indicates

LIOUID FLOW DISTRIBUTION

Fig. 5.1 Graphical representation of experimental results for Run 17

LIOUID FLOW DISTRIBUTION

Fig. 5.2 Influence of the distributor arrangement on liquid flow distribution and total hold-up

Fig. 5.3 Relationship between total hold-up and liquid velocity for different columns of PL13/WATR system. The same distributor arrangement, '19', was used.
that most of the scatter is due to that in the static hold-up. The overall scatter for the other systems are 1.0% for W13/WATR, 0.8% for W13/GLY, 0.5% for W13/CACL, 0.6% for $\mathrm{G} 8 / W A T R$ and less than 0.4% for the rest. It will be noted from Fig. 5.3 that no effect of column height, in the range $0.2^{\sim} 0.6 \mathrm{~m}$, on the hold-up could be detected within the scatter of the data.

It will be clear from Figs. 5.2 and 5.3 that the change in total hold-up with the change in distributor arrangement is negligibly small compared with the variation of total hold-up among the various columns.

5.3 Experiments with Gas Flow

Figs. 5.4, 5.5 and 5.6 show typical examples of the variation of the total hold-up, gas pressure drop and liquid flux to the outer annulus with gas velocity. Fluctuations of the column weight and the gas pressure recorded on the strip chart are also shown in the Figures. Clear differences can be seen between non-wetting and wetting systems in that: the region of the loading, i.e. between start of loading and flooding, is much wider in the former than in the latter; that the effect of gas flow on liquid distribution is larger in the former than in the latter. It will be also seen that the changes in liquid distribution take place before any significant increase is observed in the total hold-up.

5.3.1 Change of the flow pattern of the liquid with gas velocity

The observed changes in the flow pattern with gas velocity are described below with reference to the typical results shown in Figs. 5.4, 5.5 and 5.6.

The flow pattern did not change at first (A) until the gas velocity reached the point B. In the vicinity of the point B, in the case of non-wetting systems, liquid slugs, whose size was comparable with that of the pores

Fig. 5.4 Variation of total hold-up, pressure drop and relative liquid flux to outer annulus with gas velocity, Run 13183 (AL13/WATR). Examples of recorded strip chart show the fluctuations in pressure (P) and column weight (W).

Fig. 5.5 Variation of total hold-up, pressure drop and relative liquid flux to outer annulus with gas velocity, Run 19171 (PL13/WATR). Examples of recorded strip chart show the fluctuations in pressure (P) and column weight (W).

Fig. 5.6 Variation of total hold-up, pressure drop and relative liquid flux to outer annulus with gas velocity, Run 30361 (Wi3/GLY). Examples of recorded strip chart show the fluctuations in pressure (P) and column weight (W).
of the bed and significantly larger than those observed in the column in the absence of the gas flow, started to appear on the wall of the column occasionally. In the case of wetting systems, the flow pattern did not change significantly.

With a further increase of the gas velocity to near the point C, the slugs became larger and appeared more frequently on the wall. The slugs, in the non-wetting system stayed for a while and then slowly moved away. In the wetting system also the slugs appeared on the wall, however, they remained at the same places where they originated. The slugs appeared at a relatively small number of locations which did not change with the liquid velocity or the liquid distributor arrangement but changed from one bed to another. This appearance of the slugs on the column wall marked the onset of loading.

With a further increase in the gas velocity, the size of the slugs increased and the area in contact with the wall increased until they covered almost the entire column wall (Point D). At the point D, splashes of the liquid could be seen on the top of the column. In the case of non-wetting systems, a displacement of one or two balls on the top surface could be observed occasionally because the packings were lighter than the liquids.

A further small increase in the gas velocity induced the column to flood (E). In case of wetting systems, the liquid accumulated on the top of the column to form a pool. Once the pool had formed, it was necessary to decrease the gas velocity to a value $5 \mathbf{- 1 0 \%}$ lower than necessary to flood for the pool to disappear. In case of non-wetting systems instead of forming a pool of liquid, the particles at the top of the column started to move in a manner similar to that of a fluidized bed; the depth of the layer of particles in motion increased with the gas velocity.

As shown in Figs. 5.4, 5.5 and 5.6, two types of fluctuations were noted in the recorded traces of the column weight and gas pressure: a fluctuation with a relatively high frequency whose magnitude could be seen on the chart as the width of the recorded trace and a semi-periodical fluctuation with a period of a few minutes. Both fluctuations increased with the gas velocity. The change in the magnitude of the high-frequency fluctuation seemed to correspond to the increase in the size of the slugs with the gas velocity.

5.3.2 Reproducibility of the measurements

The reproducibility of the total hold-up measurements with gas flow was reasonably good for measurements on the same bed. No significant effect was found of the distributor arrangement. The direction of the change in gas velocity, increasing or decreasing, during the experiments did not affect the measured total hold-up except in the region very close to flooding (at a gas velocity within about 10% of that at flooding). The reproducibility of the value of the gas velocity at flooding was better than 10% except for PL13/WATR and W13/WATR systems in which cases the maximum differences in gas velocity at flooding were about 30% (Fig. 5.7) Possible causes, such as gas leak, influence of bed height and influence of distributor arrangement were checked and none of them could satisfactory account for the observed differences.

Fig. 5.7 Examples of variation of total hold-up with gas velocity for PL13/WATR and W13/WATR systems. These two systems showed the poorest reproducibility in measurements with gas flow.

CHAPTER 6

DISCUSSION

The total hold-up in the absence of gas flow was divided into the static- and dynamic parts. In Sec. 6.1 the two types of hold-up are correlated with the appropriate dimensionless parameters and mathematical formulae for the correlations are given. The correlations are compared with the experimental data and correlations proposed by previous authors. The pressure drop of the gas is discussed in Sec. 6.2. Due to the complexity of the problem, only the effect of total hold-up on the gas pressure drop is dealt with; no attempt is made to correlate the pressure drop with the hold-up. In Sec. 6.3, the flooding velocities are discussed on the basis of the existing flooding diagrams. The instability of the bed near the point of flooding is discussed in Sec. 6.4 and the effect of the gas flow on the distribution of liquid in Sec. 6.5. Finally, in Sec. 6.6, the blast furnace process is described in the light of the results of this study.

6.1 Hold-up in the Absence of Gas Fiow

6.1.1 Calculation of dynamic and static hold-up

It is convenient to discuss the static hold-up and the dynamic hold-up individually since the former is influenced only by static forces while the dynamic forces must also be considered in the latter. The total hold-up, h_{t}, is divided into the static and dynamic parts by assuming the relationship:

$$
\begin{equation*}
h_{t}=h_{s}^{*}+, b u^{c} \tag{6.1}
\end{equation*}
$$

where h_{s}^{*} is the static part and the term, $b u^{c}$, represents the dynamic part.

As already mentioned in Chapter 5, the scatter in the total hold-up among several series of measurements for the same system was mainly due to the difference in the static hold-up. Therefore the measured total holdup, h_{t}, is correlated with liquid velocity, u, according to Eq. (6.1) such that b and c are constant for the same combination of packing and liquid while h_{s}^{*} was allowed to vary between each series of measured data. Because of the non-linear nature of Eq: (6.1) , an iterative method of least squares was applied in which b, c and h_{s}^{*} 's were determined to minimize the sum of the squares of the differences between the measured value of h_{t} and those estimated by Eq. (6.1). The principle of the iterative method is given in Appendix III.

Table 6.1 shows the calculated h_{s}^{*} for each experiment from a series of measurements. The measured residual hold-up, h_{s}, after twelve hours' draining is also shown in the Table. It must be noted that. because of the assumed dependency of the total hold-up on liquid velocity, u, in the form of Eq. (6.1) , one can not assume without experimental proof that the static part of the hold-up, h_{s}^{*}, is the same as the static hold-up, h_{s}, which is usually defined as the hold-up after the column is allowed to drain for a long time. The difference between h_{s}^{*} and h_{s} in the present study was 0.265%, on an average, which is in reasonable agreement with the data of Gardner ${ }^{(28)}$ who first mentioned this difference and reported values between 0.03 and 0.27%. The difference is not very large when compared with the magnitude or the scatter in the static part of the hold-up, h_{s}^{*}. However, the difference is too large to be neglected when one compares it with the magnitude of the dynamic hold-up which ranged between 0.02% and 2% in the present experiments.

SYSTEM	RUN	h^{*}	h_{5}	RUN	h_{s}^{*}	$\mathrm{h}_{5} \quad \therefore$	RUN	$\mathrm{h}_{\text {S }}$	$\mathrm{h}_{\text {s }}$	RUN	h^{*}	h_{s}
PLI3/WATR	13	2.20	--	15	2.22	--	17	2.42	1.83	22	2.62	--
	23	2.59	--	24	2.55	--	26	2.54	2.31	121	2.71	--
	122	2.63	--	123	2.62	--	124	2.71	2.42	191	2.78	--
	192	2.76	2.51	221	2.57	--	222	2.78	2.52	223	2.78	--
	224	2.84										
ALI3/WATR	14	4.33	3.74	16	4.34	3.89	131	4.23	4.05	132	4.25	--
	133	4.36	3.82									
W13/WATR	151	1.69	--	152	1.67	--	153	1.70	1.65	161	1.55	--
	162	1.59	--	163	1.54	1.48	181	1.40	--	182	1.51	--
	183	1.53	1.37	211	1.74	--	212	1.90	1.71	213	1.91	--
	231	1.69	1.71	232	1.86	--						
PL9/WATR	18	3.33	--	19	3.32	2.77	141	3.27	2.69	142	3.24	--
	143	3.26	--									
G8/WATR	12.	4.55	--	20	4.44	3.85	27	4.44	--	111	4.03	--
	112	. 4.28	--	113	4.28	3.96	114	4.26	--			
PLM/WATR	171	2.95	2.41	172	2.89	--	173	2.91	--	174	2.94	--
PL13/ETOH	241	2.32	--	242	2.23	--	261	2.26	--	262	2.29	--
AL13/ETOH	251	2.49	--	252	2.41	1.93	271	2.54	--	272	2.54	--
PL9/ET0H	281	3.00	--	282	3.26	--						
G8/ETOH	291	4.10	--	292	4.00	--						
AL13/GLY	311	3.14	--	312	3.13	--	313	3.06	--	314	3.14	
	315	3.07	--	316	3.18	2.97						
PL13/GLY	332	2.21	--	333	2.25	2.12	342	2.20	--	343	2.18	1.96
W13/GLY	301	1.97	--	302	2.33	2.30	303	2.25	--	304	258	--
	305	. 2.42	--	306	2.34	--	324	2.68	--	325	2.77	2.67
	382	2.13	2.03									
PL9/GLY	362	2.08	2.12									
Cl1/GLY	353.	3.42	3.25	372	3.67	--						
PL13/CACL	402	2.64	--	403	2.60	2.49						
W1 3/CACL	392	1.48	--	393	1.53	--	394	1.81	1.53	395	1.93	--
Cll/CACL	412	3.86	--	413	3.90	--	414	3.89	3.90			
W13/ZNCL	423	2.40	2.07									
PL9/ZNCL	432	2.85	--									
C11/ZNCL	441	3.19	2.95									

average of the difference $h_{s}^{*}-h_{s}: 0.265 \%$

Table 6.1 Static part of the hold-up, h^{*}, obtained by leastsquares fitting of the data to Eq. (6.1) and measured static hold-up, h_{s} after 12 -hour draining, $\%$.

SYSTEM	Number of data	Least-squares fit by Eq. (6.1) Coefficient Power b Correlation			Static pa Average	t of hold Number of runs	up, h_{s}^{*}, Standard deviation
PL13/WATR	170	0.934	0.775	0.9965	2.49	17	0.207
AL13/WATR	74	1.256	0.737	0.9908	4.10	5	0.045
W13/WATR	65	0.636	0.898	0.9875	1.64	14	0.138
PL9/WATR	61	1.449	0.692	0.9960	3.31	5	0.024
G8/WATR	117	1.914	0.810	0.9947	4.37	7	0.166
PLM/WATR	20	1.430	0.608	0.9973	2.92	4	0.021
PL13/ETOH	25	1.655	0.580	0.9965	2.29	4	0.031
AL13/ETOH	19	1.811	0.547	0.9993	2.29	4	0.052
PL9/ETOH	9	1.892	0.610	0.9991	3.15	2	0.133
G8/ETOH	8	1.862	0.765	0.9924	4.06	2	0.046
PL13/GLY	26	2.480	0.493	0.9944	2.21	4	0.027
AL13/GLY	34	5.589	0.613	0.9961	2.91	6	0.042
W13/GLY	51	2.323	0.567	0.9866	2.39	9	0.241
PL9/GLY	6	5.196	0.499	0.9996	2.08	1	---
Cl1/GLY	13	3.324	0.478	0.9943	3.55	2	0.125
PL13/CACL	11	1.293	0.575	0.9983	2.62	2	0.021
W13/CACL	22	1.083	0.663	0.9989	1.70	4	0.191
C11/CACL	17	1.274	0.644	0.9986	3.88	3	0.015
W13/ZNCL	6	1.899	0.640	0.9990	2.40	1	---
PL9/ZNCL	6	2.560	0.717	0.9992	2.85	1	---
C11/ZNCL	7	1.845	0.836	0.9963	3.19	1	--
OVER ALL	763	---	---	0.9990	---	-	---

Table 6.2 shows the results of the least-squares fit by $\mathrm{Eq}_{-}(6.1)$. for all experiments*. It will be noted that the data fit the equation very well, though the scatter in the static part of the hold-up is relatively large. Fig. 6.1 shows typical examples of the plot of the total hold-up vs. liquid velocity.

The dynamic hold-up, h_{d}, was calculated by subtracting h_{s}^{*}, which is given in Table 6.1, from the measured total hold-up, h_{t} :

$$
\begin{equation*}
\mathrm{h}_{\mathrm{d}}=\mathrm{h}_{\mathrm{t}}-{\stackrel{h^{*}}{\mathrm{~s}}}^{*} \tag{6.2}
\end{equation*}
$$

In the following, h_{s}^{*} is referred to as the static hold-up since the difference between h_{s}^{*} and h_{s} is not significant when considering the static hold-up.

6.1.2 Correlation for static hold-up, h_{S}^{*}

In Fig. 6.2 the data for wetting flows are plotted on the diagram proposed by Dombrowski and Brownell (49). The residual saturation, S_{r}^{*}, was calculated as h_{S}^{*} / ε. It can be seen from the Figure that the present experimental data show higher residual saturation then would be expected from the Dombrowski's curve, however, the variation of the residual saturation with the capillary number is almost parallel to the curve. The difference between the estimated and experimental residual saturations is almost equivalent to 1.2% in static hold-up which is significantly larger than experimental error.

[^1]

Fig. 6.1 Examples of variation of total hold-up with liquid velocity. The curves are obtained by least-squares fit according to Equation (6.1).

Fig. 6.2 Plot of experimental data for wetting flows on Dombrowski's diagram

Among the forces shown in Chapter 3 , three forces, the gravitational force, f_{g}, the gas-liquid interfacial force, f_{s}, and the liquid-solid interfacial force, $f_{s i}$, are independent of liquid velocity. Since h_{s}^{*} is assumed to be independent of liquid flow rate, it can be correlated with these three forces from which two independent dimensionless numbers can be derived as shown in Chapter 3, i。e.

$$
\begin{align*}
& C_{p}=f_{g} / f_{s} \tag{3.10}\\
& N_{c}=f_{s i} / f_{s} \tag{3.11}
\end{align*}
$$

It was pointed out that the capillary number $N_{c a p}$ is essentially the same as C_{p}. For geometrically similar systems, the static hold-up can be assumed the same if both C_{p} and N_{c} are the same. However, it is necessary to take the effect of geometry into account if one compares static hold-up among systems of different geometries.

It is difficult to derive a precise correction factor since only two different geometries, i.e. spheres and coke particles, were used in the experiments. Therefore, the correction for the difference in geometry was simply made by choosing an appropriate expression for the characteristic length. Two characteristic lengths given by Eqंs. (6.3) and (6.4) are generally used to represent the diameter of packing:

$$
\begin{align*}
& d_{S}=\frac{\phi d_{p}}{(1-\varepsilon)} \tag{6.3}\\
& d_{h}^{\prime}=\frac{\phi d_{p} \cdot \varepsilon}{(1-\varepsilon)} \tag{6.4}
\end{align*}
$$

d_{s} is related to the specific surface area of the bed while d_{h}^{\prime} is related to the mean hydraulic radius. In order to find a suitable dimensionless parameter, the static part of the hold-up, h_{s}^{*}, is correlated with dimensionless parameters by the equation:

$$
\begin{equation*}
h_{s}^{*}=a \quad C_{p}^{b} \quad N_{c}^{c} \tag{6.5}
\end{equation*}
$$

The following three variations of C_{p} were tested:

$$
\begin{align*}
& C_{p s}=\frac{\rho_{\ell} g d_{p}^{2} \phi^{2}}{\sigma(1-\varepsilon)^{2}} \tag{6.6}\\
& C_{p h}=\frac{\rho_{\ell} g d_{p}{ }^{2} \phi^{2} \varepsilon^{2}}{\sigma}(1-\varepsilon)^{2} \tag{6.7}\\
& N_{\text {cap }}^{\prime}=\frac{\rho_{\ell} g d_{p}^{2} \phi^{2} \varepsilon^{3}}{180(1-\varepsilon)^{2} \sigma} \tag{6,8}
\end{align*}
$$

$C_{p s}$ and $C_{p h}$ use d_{s} and d_{h}^{\prime} respectively while $N_{c a p}^{\prime}$ is obtained from $N_{\text {cap }}$ after appropriate modification. The shape factor, ϕ, of the coke is assumed to be 0.5 based on gas pressure loss measurements (Sec. 6.2). The iterative method of least squares (Appendix III) was applied to obtain a, b and c. The calculated results for the static hold-up and the residual saturation, S_{r}^{*}, are given in Table 6.3.

It will be noted from the Table that the correlation coefficient for the equation No. 1 is the best among the correlations for h_{s}^{*} and is approximately the same as those for the correlations for S_{r}^{*}. The absolute values of b and c are almost the same in the first three equations while

Equation Number	Equation	Correlation Coefficient	P Power	
1	$\mathrm{h}_{\mathrm{S}}^{*}=\mathrm{a} \cdot \mathrm{C}_{\mathrm{p}}^{\mathrm{b}} \cdot \mathrm{N}_{\mathrm{c}}^{\mathrm{c}}$	0.841	-0.341	0.364
2	$h_{S}^{*}=a \cdot C_{p h}^{b} \cdot N_{c}^{c}$	0.758	-0.309	0.291
3	$h_{s}^{*}=a \cdot N_{c a p}^{\text {b }} \cdot N_{c}^{c}$	0.699	-0.272	0.269
4	$S_{r}^{*}=a \cdot N_{c a p}^{\text {b }} \cdot N_{c}^{c}$	0.849	-0.296	0.394
5	$S_{r}^{*}:=a \cdot C_{p s}^{b} \cdot N_{c}^{c}$	0.855	-0.297	0.487
	$S_{r}^{*}=h_{s}^{*} / \varepsilon$			

Table 6.3 Comparison of various correlations for static hold-up
the absolute value of c is considerably larger than that of b in the last two equations. If one assumed the same magnitude but different signs for b and c, one will have a new dimensionless parameter as follows:

$$
\left(f_{g} / f_{S}\right)^{m} \cdot\left(f_{s i} / f_{S}\right)^{-m}=\left(f_{g} / f_{s i}\right)^{m}
$$

The new dimensionless parameter, $f_{g} / f_{s i}$, can be interpreted as the ratio of the gravitational force to the liquid-solid interfacial force and the parameter is identical to $C_{p} / 2$ when the contact angle, θ, is 0 .

Because of its physical significance and simplicity, the new parameter, the modified capillary number, $C_{p m}=f_{g} / f_{s i}$ was preferred to the other possible dimensionless parameters in the correlation for the static hold-up.

It will be clear from Fig. 6.2 that the relationship between $\log \left(S_{r}\right)$ and $\log \left(N_{c a p}\right)$ is no longer linear in the range of the experimental data. Since the static hold-up decreases asymptotically to zero when the capillary number increases to infinity and it approaches a constant value when the capillary number decreases to zero, the following relationship (Equation 6.9) is assumed between $\mathrm{h}_{\mathrm{S}}^{*}$ and C_{pm}.

$$
\begin{equation*}
h_{s}^{*}=1 /\left(a+b C_{p m}\right) \tag{6.9}
\end{equation*}
$$

where $C_{p m}$ is expressed in terms of d_{S} as follows:

$$
\begin{equation*}
C_{p m}=\frac{\rho_{\ell} g \phi^{2} d_{p}^{2}}{(1+\cos \theta) \sigma(1-\varepsilon)^{2}} \tag{6.10}
\end{equation*}
$$

Fig. 6.3 Relationship between static hold-up, $h_{s} *$ and modified capillary number, C_{pm}

The constants a and b in Eq. (6.9) are calculated by using the iterative method of least squares. The values obtained for a and b are 0.205 and 0.00263 respectively. and the correlation coefficient is 0.832 . Therefore Eq. (6.9) can be rewritten as

$$
\begin{equation*}
{\underset{\mathrm{h}}{ }}_{*}=1 /\left(0.205+0.00263 \quad \mathrm{c}_{\mathrm{pm}}\right) \tag{6.11}
\end{equation*}
$$

The relationship between $\mathrm{h}_{\mathrm{s}}^{*}$ and C_{pm} is shown in Fig. 6.3.

6.1.3 Correlation for the dynamic hold-up

The following relationship is assumed between the dynamic hold-up, h_{d}, and the dimensionless parameters introduced in Chapter 3.

$$
\begin{equation*}
h_{d}=a \quad R_{e}^{b} \quad G_{a}^{c} \quad C_{p}^{d} \quad N_{c}^{e} \tag{6.12}
\end{equation*}
$$

where a, b, c, d, and e are constants. These constants were determined by using the iterative method of least squares which is explained in Appendix III.

The constants in Eq. (6.12) were calculated for two cases: d_{s} was used in the first as the characteristic length while d_{h}^{\prime} was used in the second. The correlation coefficient in the first case was 0.952 and 0.922 in the second. With the large number of data ($=765$) the difference between these two coefficients is statistically significant (more than 99.9% confidence). Therefore, the first case has been chosen. The resulting correlation is shown by Eq. (6.13):

$$
\begin{align*}
& {\left[\frac{\rho_{\ell} \quad \mathrm{g} \mathrm{~d}_{\mathrm{p}}{ }^{2} \cdot \phi^{2}}{\sigma(1-\varepsilon)^{2}}\right]^{0.097} \cdot(1+\cos \theta)^{0.648}} \tag{6.13}
\end{align*}
$$

Fig. 6.4 Comparison between measured and estimated dynamic hold-up

Fig. 6.5 Comparison between measured and estimated total hold-up

The estimated values of the dynamic hold-up by Eq. (6.13) are compared with the measured values in Fig. 6.4. Most of the measured values are within $\pm 0.3 \%$ from the estimated values. Eq. (6.13) is valid within the following ranges of the values for dimensionless numbers covered by the experiments:

$$
\begin{align*}
& \mathrm{Re}_{\mathrm{m}}=\frac{\rho_{\ell} \mu \mathrm{d}_{\mathrm{p}} \phi}{(1-\varepsilon) \mu_{\ell}}: 0.002 \sim 35 \tag{6.14}\\
& \mathrm{Ga}_{\mathrm{m}}=\frac{\rho_{\ell}{ }^{2} \mathrm{~g} \mathrm{~d}_{\mathrm{p}}{ }^{3} \phi^{3}}{\mu_{\ell}{ }^{2}(1-\varepsilon)^{3}}: 4 \times 10^{3} \sim 10 \times 10^{8} \tag{6.15}\\
& \mathrm{C}_{\mathrm{ps}}=\frac{\rho_{\ell} \mathrm{g} \mathrm{~d}_{\mathrm{p}}{ }^{2} \phi^{2}}{\sigma(1-\varepsilon)^{2}}: 20 \sim 165 \tag{6.16}\\
& \mathrm{~N}_{\mathrm{c}}=1+\cos \theta \quad: 0.59 \sim 2.0 \tag{6.17}
\end{align*}
$$

6.1.4 Correlation for the total hold-up

The total hold-up can be estimated simply by adding the estimated static and dynamic hold-ups. Fig. 6.5 shows the comparison between estimated and measured values of total hold-up. The correlation coefficient is 0.999 . Most of the measured values are within $\pm 0.6 \%$ from estimated values.

6.1.5 Comparison of estimated hold-up with published experimental data

Table 6.4 shows published data on static hold-up. It will be noted that most of the data are measured on ring packings. The relationship between the static hold-up and

Table 6. 4 Published data on static hold-up

Fig. 6. 6 Relationship between the static hold-up, h_{s}, and the modified capillary number for published s data. (R.R.: raschig rings, B.S.: berl saddles)
the modified capillary number, $C_{p m}$, is given in Fig. 6.6. Al though the agreement of the data with the proposed correlation, Eq. (6.11), is rather poor, a few comments can be made. The majority of the data on raschig rings would fit the proposed correlation, if the modified capillary number were increased three fold. This indicates that the proposed method of correcting the influence of the geometry of packings is not adequate for the ring packings. However, the correction of the effect of the degree of wetting seems to be satisfactory since non-wetting data show no significant differences from wetting data.

The static hold-up for the 6.35 mm steel raschig rings/ mercury system measured by Warner ${ }^{(40)}$ are the largest of all the measurements shown in Table 6.4. The larger difference in static hold-up between his system and present systems can be explained in terms of the different mechanisms of hold-up as follows.

In Fig. 6.7 three different ways in which liquid is held by a tube are shown schematically. The first and the second correspond to wetting and non-wetting systems used in the present study. The third indicates the way

(1)

(2)

(3)

Fig. 6.7 Schematic drawing of three different ways in which liquid is held by a tube.
in which mercury is held in the ring packings. The difference between the second and the third is that the static hold-up decreases with the increase in contact angle, θ, in the second, while in the third it increases with contact angle.

Values of the dynamic hold-up estimated by Eq. (6.13) are compared with the published data on non-wetting systems in Table 6.5. It can be seen from the Table that Eq. (6.13) gives reasonable predictions for the silicone-coated coke/ water system measured by Gardner ${ }^{(28)}$. Comparison with the data on wetting systems measured by Jesser and Elgin ${ }^{(33)}$ shows that Eq. (6.13) predicts $25 \sim 30 \%$ higher values for sphere packings. However, the agreement is poor for Warner's ${ }^{(40)}$ measurements. The significantly low values are predicted by Eq. (6.13) while the relatively good predictions (b and c) are made by the correlations which are based on wetting systems. In Eq. (6.13), the power on $N_{c}(=1+\cos \theta)$ is 0.648 , which means that the dynamic hold-up in the wetting system is approximately 50% higher than the non-wetting system in which the contact angle is assumed to be 90°. This difference is significantly higher than those given by previous authors; Andrieu ${ }^{(43)}$ reported that the operating hold-up is 10% higher in wetting flow than in non-wetting flow while Standish ${ }^{(41)}$ reported no significant difference between the two systems. In both these studies, ring packings were used. It is difficult to explain precisely the reason for the disagreement between the present study in which spherical packings have been used and the previous studies. It is likely that the effect of the degree of wetting on dynamic hold-up is dependent on the flow condition and the size and shape of the packing.

6.2 Gas Pressure Drop

6.2.1 Gas pressure drop through dry column

The data are plottedin Fig. 6.8 as a relationship

Worker:		Warner ${ }^{(40)}$		Gardner ${ }^{(28)}$				Blast Metal	$\begin{aligned} & \text { furnace } \\ & \text { Slag } \end{aligned}$
Measured	h_{0}	7.4	2.3	0.8	2.63	0.50	1.27	--	--
	h_{d}	--	--	0.53	2.36	0.32	1.09	--	--
Estimated	a	6.85	4.3	2.05	5.05	1.61	3.48	1.54	8.24
	b	5.97	2.32	0.33	2.08	0.26	1.25	0.28	0.77
	c.	7.55	2.65	0.27	2.03	0.206	1.16	0.22	0.76
	d	2.41	0.97	0.27	1.55	0.25	1.10	0.13	0.62

* $\mathrm{a}, \mathrm{b}, \mathrm{c}: \mathrm{h}_{\mathrm{o}}$ estimated by correlations 2,1 and 3 in Table 2.3 respectively. $\mathrm{d}: \mathrm{h}_{\mathrm{d}}$ estimated by Eq. (6.13)
\dagger Detailed data are shown in Table 2.4. Contact angle, θ, are assumed to be 140°, $90^{\circ}, 125^{\circ}$ for Warner's, Gardner's and Blast furnace systems respectively.

Table 6.5 Comparison of measured dynamic and operational hold-ups, $\%$, with values estimated using various correlations.
between the friction factor $f_{k}(E q .2 .6)$ and gas Reynolds number Re_{g} (Eq. 2.7): In Fig. 6.8a both parameters are calculated on the assumption that ϕ is unity for all the packings.

It will be noted from Fig. 6.8a that the data for spherical packings agree well with the correlation proposed by Carman while coke packings follow the trend of Ergun's correlation. The difference between these two correlations seems to be related to the roughness of the surface of the packings; a similar difference is known to exist in the pressure drop correlation between the flows through smoothwalled pipes and rough-walled pipes. It is clear from Fig. 6.8a that the data for the non-spherical coke packings lie above those for spherical packings. Fig. 6.8b shows that a value of the shape factor, ϕ, equal to 0.5 brings the data for coke packings in agreement with the correlation. This value of the shape factor was used in the calculations which follow.

6.2.2 Pressure drop through irrigatedcolumn

It has been mentioned in Sec. 2.2.2 that the published correlations for the pressure drop through irrigated columns are summarised in the form of various expressions for the ratio, F, of the pressure drop through the irrigated column to that through the dry column. In all cases cited except one, F is expressed as a function of total hold-up h_{t}. An additional modification for the fractional voidage, ε, of the dry column has been incorporated in some cases. This indicates that F would be a function solely of h_{t} for a particular column.

In Figs. 6.9 and 6.10 typical examples of the relationship between the ratio, F, and the total hold-up, h_{t}, are shown. In the calculation of F, the pressure drop, $\Delta \mathrm{P}_{\mathrm{d}}$, through the dry column was estimated for the given gas

Fig. 6.8 Relationship between friction factor, f_{k}, and Reynolds number, Re_{g}, for dry columns.
A: ϕ is assumed to be 1.0 for all packings
B: ϕ for coke is assumed to be 0.5
\amalg

Fig. 6.9 Relationship between the total hold-up and the ratio of the pressure drop trhough irrigated column to that through dry column.
L.

Fig. 6.10
Relationship between the total hold-up and the ratio of the pressure drop through irrigated column to that through dry column.
velocity V using Eq. (6.19).

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{d}}=\mathrm{a} \quad \mathrm{~V}+\mathrm{b} \mathrm{~V}^{2} \tag{6.19}
\end{equation*}
$$

where the constants a and b were determined by the method of least squares based on measured pressure drop through the dry column.

A similar variation in the ratio, F, with the total hold-up, h_{t}, for the various systems can be observed in these figures. In the region below the loading point, F increases with the gas velocity, although the total holdup remains virtually constant. Above the loding point F increases with h_{t}. The rate of increase in F with h_{t} depends on not only the liquid velocity but also the irrigating liquid; the rate increases with the liquid velocity and is higher with the glycerol solution than with water. Therefore, it is clear that the ratio F is not a unique function of the total hold-up but is influenced also by velocities and physical properties of gas and liquid. The expression for F based on the pressure drop correlation proposed by Jeschar et al(8) includes the velocity of liquid, u, and of gas, v, according to the equation:
$F=\left[\frac{1+h_{t} /(1-\varepsilon)}{1-h_{t} / \varepsilon}\right]^{1.2}$

$$
\begin{equation*}
\left(1.5 \frac{\mathrm{u}}{\mathrm{~V}} \frac{\varepsilon}{\mathrm{~h}_{\mathrm{t}}}+\frac{\varepsilon}{\varepsilon-\mathrm{h}_{\mathrm{t}}}\right)^{1.8} \tag{2.17}
\end{equation*}
$$

From this equation it can be seen that F increases with u and decreases with V. Therefore, it does not explain the increase in F with gas velocity below the loading point.

In order to study the gas flow through the irrigated column in more detail, the same data shown in Figs. 6.9 and 6.10 are plotted as the relationship between the friction factor, f_{k}, and the gas Reynolds number, Re ${ }_{g}$, in Figs. 6. 11

Fig. 6.11 Variation of friction factor f_{k} with gas Reynolds number Re_{g} for dry and irrigated
columns.

REYNOLDS NUMBER Re_{g}

Fig. 6.12 Variation of friction factor f_{k} with gas Reynolds number Re_{g} for dry and irrigated columns
and Fig. 6.12. In the calculation of f_{k} and Re ${ }_{g}$, the fractional voidage, ε_{w} of the irrigated bed was used instead of ε in Eqs. (2. 6) and (2. 7) where

$$
\begin{equation*}
\varepsilon_{W}=\varepsilon-h_{t} \tag{6.20}
\end{equation*}
$$

The effect of the packing on the gas pressure drop can be expressed in terms of specific surface area and the fractional voidage. Since the effect of the liquid on the fractional voidage was taken into account in the calcualtion of f_{k} and $R e_{g}$, the displacement of the plots for the irrigated column from those for dry column is caused by the change in the specific surface area of the irrigated packing. The increase in f_{k} for the same value of Re_{g} corresponds to the increase in the specific surface area.

The types of variation of f_{k} with $R e_{g}$ which were obtained with irrigated columns are shown schematically in F ig. 6.13. At low gas velocities, i.e. at low Re,

Fig. 6.13 Schematic drawing of the variation of f_{k} with Re_{g}
plots for the irrigated column followed the same path as for the dry bed. With the increase in the gas velocity, they levelled off gradually at first and then at an increasing rate. The departure from the curve for the dry column occured well below the loading point and the displacement from the curve for the dry column reached a maximum approximately when loading started. The departure from the dry bed curve decreased with the further increase in gas velocity with non-wetting flows while this decrease was not very notic eable with wetting flows.

Since the magnitude of the displacement from the dry bed curve, which corresponds to the amount of correction for the change in specific surface, depends on many parameters, e.g. velocities and physical properties of liquid and gas, and since the effects are not linear, further analyses to establish the gas pressure drop correlation for irrigated bed were not attempted.

6.3 Flooding

The flooding velocities were determined from the observation of fluctuations of the column weight, the degree of coverage of the column wall by the liquid slugs and the appearance of the top of the column as described in Sec. 5.3. The flooding velocities determined in this manner were also checked from the curves relating the total hold-up to gas velocity which showed a steep rise near the flooding point. The results of the measurements on flooding velocities are tabulated in Table 6.5 together with the calculated parameters for the flooding diagrams. The data are plotted on the flooding diagrams proposed by Sherwood et al. ${ }^{(60)}$ and by Mersmann ${ }^{(52)}$ in Figs. 6.14 and 6.15 respectively.

Fig. 6.14 shows that the data from the present work agree reasonably well with those of Elliottet al(4) and

RuN	SYSTEM	Flooolng velocities		$\begin{aligned} & \text { LIouio } \\ & \text { viscositir } \end{aligned}$	y01D FRACTION	lated paramete				
				AFTER S		\％000	RFTER	RSMAMN		
				FLOCOHNG		FLUID	DIMENS	omless		
		Lloulo	CAS			FACIOR	zatio	pressure	irrigation	
		（ M11／S）	（M／S）		（NS／H2）	（－）	（－1	$1-$	Loss	DENSIIY
11191	CB／WATR	． 51471	． 630		． 00115	． 3784	． 42604	． 02354	． 11635.	． 0002387
11174	GB／HATR	． 17950	． 782	．00115	． 3781	． 65642	． 00661	． 16699	． 0000832	
11271	G日／HATR	． 56704	． 604	． 00115	． 3784	． 39160	． 02705	． 10857	． 0002630	
11253	G日／HATR	． 17530	． 759	． 00115	． 3784	． 61838	． 00665	． 15876	． 0000813	
11351	c8／WATR	． 17949	． 762	． 00115	． 3784	．62328	． 00679	． 15992	． 0000832	
11392	c日／HATR	1.30064	． 487	． 00115	． 3784	． 25458	． 07695	． 07672	． 0006032	
11372	G8／WATR	． 49515	． 635	． 00115	． 3784	．43283	． 02247	． 11788	． 0002296	
11422	GB／HATR	． 03011	． 870	．00115	． 3784	． 81247	． 00100	．20031	． 0000140	
11443	G日／hATR	． 11269	． 797	． 00115	． 3784	．68185	． 00407	． 17246	． 0000523	
11531	G日／LATR	． 03283	． 910	．001！5	． 3784	． 08090	． 00104	． 21643	． 0000152	
12141	PLI3／WATR	－99050	． 906	． 00113	． 4054	． 41911	． 03150	． 08901	． 0002502	
12152	PLIj／hatr	．07532	1.131	． 00113	． 4054	．65313	． 00192	． 13189	． 0000190	
12291	PLI3／KATR	．99492	． 894	．00113	． 1054	． 40808	． 03205	． 08696	． 0002513	
12272	PLI3／WATR	． 18619	1.071	．00113	． 4054	．58567	． 00501	． 11955	． 0000470	
12391	PLI3／WATR	． 06156	1.132	． 00113	． 4054	．65420	． 00157	． 13210	． 0000155	
12472	PLI3／KATR	． 30716	1．044	． 00113	． 4054	．55651	． 00848	． 11433	． 0000776	
19171	PLI3／WATR	． 16678	1.277	． 00102	． 4054	－B157S	． 00376	． 15116	． 0000407	
19292	PLI3／HATR	． 92871	．971	． 00102	． 4054	． 17165	． 02756	． 09402	．0002267	
19381	PLIJ／hata	． 03367	1.405	． 00102	． 4054	． 98748	． 00069	． 17897	． 0000082	
22171	PLI3／HATR	． 18525	1.288	． 00108	． 4029	． 85873	． 00414	．16118	． 0000466	
22291	PLI3／WRTR	． 05886	1.387	． 00108	． 4029	．99581	． 00122	． 18466	． 000014 B	
22391	PLI3／WRTR	1.01047	1.002	．DO108	． 4029	． 51971	． 02906	． 10225	． 0002541	
22471	PLI3／HATR	． 01767	1.414	．00108	． 4029	1.03406	． 00036	． 19134	． 0000044	
13183	ALI3／HATR	．3138日	． 977	． 00108	． 4039	． 49335	． 00926	． 10820	． $0000 / 92$	
13164	ALI3／WATR	． 09510	1.143	． 00108	． 4039	． 67525	． 00240	． 14376	． 0000240	
13291		． 99605	． 705	． 00108	． 4039	． 25609	． 04071	． 06072	． 0002513	
13392	ALI3／WATR	． 06406	1.206	． 00108	． 4039	． 75173	． 00153	． 15857	． 0000152	
15171	W13／HATR	． 17889	1.263	． 00109	． 4106	． 76569	． 00408	． 14917	． 0000434	
15291	H13／HATR	1.01734	1.103	． 00109	.4106	． 58398	． 02657	．11712	． 0002467	
15392	HI3／HATR	． 05434	1.365	． 00109	． 4106	． 89436	． 00136	．17159	． 0000156	
16171	H13／HATR	． 18022	1.220	． 00105	．4106	． 70912	． 00426	.14180	． 0000432	
16271	H13／HATR	． 01863	1.342	． 00105	． 4106	． 85803	． 00040	－16901	． 0000045	
18361	H13／HRTR	． 31233	1.428	． 00101	． 4253	． 84583	．00630	． 15966	． 0000695	
21171	WI3／HATR	． 18429	1.502	． 00105	． 4106	1.07432	． 00354	． 19408	． 0000441	
21291	H！3／HATR	1.00726	1.163	． 00105	． 4106	． 64440	． 02495	． 12115	． 0002412	
23171	H13／HATR	． 17431	1.440	． 00113	． 4106	1.00254	． 00349	． 19034	． 0000428	
23291	H13／WA TR	． 05842	1.613	． 00113	． 4106	1.25789	． 00104	． 23506	． 0000143	
14171	PL9／HATR	．18189	． 832	．00109	． 3843	．6256！	． 00630	． 14255	． 0000727	
14291	PL9／WATR	． 93701	． 686	． 00109	． 3843	． 42531	． 03935	． 10307	． 0003747	
14391	PL9／HRTR	． 06349	． 853	． 00109	． 3843	． 65759	． 00214	.14874	． 0000254	
17272	PLM／HATR	．18167	． 915	． 00115	－ 3897	－61729	． 00572	． 14007	． 0000614	
33191	PLI3／GLY	． 44349	． 855	． 06360	． 4106	． 65899	． 01644	．06391	． 0003943	
33272	PLI3／GLY	．11433	1.140	． 06360	． 4106	1.17153	． 00318	． 10536	． 0001017	
34171	PLI3／GLY	． 90440	1.177	． 05750	.4106	1.22388	． 00281	． 11426	． 0000893	
34351	PLI3／GLY	． 01660	1.484	． 05750	． 4106	1.94560	． 00035	． 17488	． 0000143	
34451	PLI3／GLY	－01986	1.525	．05750	． 4106	2.05459	． 00041	． 16394	． 0000171	
31362	ALI3／GLY	． 02012	1.184	． 06290	． 4047	1．34020	． 00054	．12192	． 0000184	
31472	ALI3／GLY	． 10097	． 942	． 06290	． 1047	． 84834	． 00340	． 08024	． 0000924	
31591	ALI3／Gly	．43352	． 622	． 06290	． 4047	． 36937	． 02209	． 03835	． 0003965	
31641	ALI3／Gl	． 09948	． 933	． 06290	． 4047	－63221	． 0033 B	． 07886	． 0000910	
30172	H13／GLY	． 06569	1.410	． 06570	． 4180	1.87558	． 00148	．14439	． 0000568	
30291	H13／GLY	． 37728	1.006	． 06570	．4180	． 85295	．01189	． 07776	． 0003265	
30361	HI3／GLY	．0226！	1.515	． 06570	． 4180	1.93443	． 00047	． 16503	． 0000196	
32171	W13／GLY	． 05762	1.322	． 06780	． 4106	1.58374	． 00138	． 13551	． 0000519	
32291	H13／GLY	． 41060	． 937	． 06780	.4106	． 79561	． 01389	． 07258	． 0003701	
32251	H13／GLY	． 02084	1.476	．0678D	． 4106	1.97421	． 00045	－ 16608	． 0000188	
32371	H13／GLY	． 08989	1.259	． 06780	． 4106	1．43699	． 00226	． 12390	． 0000910	
38151	H13／GLY	． 01792	1.527	． 06870	． 4180	1.98283	． 00037	． 17193	． 0000157	
38291	W13／GLY	． 48465	． 987	． 06870	．4180	． 82840	． 01556	．07713	． 0004256	
38381	H13／GLY	． 14563	1.333	． 06870	． 4180	1．5110！	． 00346	． 13359	． 0001279	
38351	H13／GLY	． 01834	1.695	． 06870	． 4180	2．44313	． 00034	． 20901	．0000：61	
36161	PL9／GLY	． 06540	． 849	． 05430	． 3950	1．06456	． 00244	． 11829	． 0000853	
36291	PL9／GLY	． 48887	． 549	． 05430	． 3950	． 44514	． 02822	． 05593	． 0006453	
35171	c11／GLY	． 11247	1.060	． 05440	． 5242	． 91406	． 00336	． 11402	． 000144 ！	
35251	c11／Gly	． 03021	1.185	． 05440	． 5242	1.14235	． 00081	． 14016	． 0000387	
35991	c11／GLY	． 45018	． 889	． 05440	． 5242	． 64293	． 01605	． 00261	． 0005766	
3717！	CII／GLY	． 09760	1.159	． 07050	． 5242	1． 15093	． 00267	． 12896	． 0001363	
37351	C11／GLY	． 01166	1.353	． 07050	． 5242	1．56847	． 00027	． 17218	． 0000163	
37491	ciligly	． 28377	． 932	． 07050	． 5242	． 74424	． 00365	． 08827	． 0003963	
40171	PLI 3／CACL	．145D1	1.449	． 00614	． 4076	1.09203	． 00335	． 14554	． 0000577	
40391	PLI3／CACL	1.14395	1.063	． 00614	． 4076	．58771	． 09603	． 08276	． 0004555	
39171	H13／CACL	． 15571	1.800	． 00466	． 4060	1．26831	． 00326	． 16225	． 0000565	
39391	W13／CACL	1.19524	1.157	． 00466	． 4060	． 66348	．03458	． 08933	． 0004337	
39451	H13／CACL	． 14933	1.6 D 3	． 00466	． 406 D	1.27358	． 00312	． 16283	． 0000512	
39551	HI3／CACL	． 13404	1.777	． 00466	． 4060	1.56507	． 00064	． 19740	． 0000124	
41171	CII／CACL	． 14386	1.482	． 00634	． 5179	1.09465	． 00325	－ 18036	． 0000890	
41391	CIJ／CACL	1.21833	1．111	． 00634	． 5179	． 61519	． 03671	． 10594	． 00007537	
4317！	PL．9／2NCL	． 24791	1．180	． 02860	． 3998	． 94785	． 00900	． 10355	． 0002221	
43291	PL8／2NCL	1.06375	.750	． 02960	． 3998	． 44063	．D5662	． 05299	． 0009530	
44171	C．11／2NCL	． 28432	1.373	． 02790	． 5316	． 79821	． 00027	． 10942	． 0002425	
44251	C $11 / 2 \mathrm{NCL}$	． 06354	1.557	． 02790	． 5316	1.02549	．00163	． 13836	． 0000542	
42171	HI3／2NCL	． 18577	1.860	． 03820	． 4180	．1．31319	． 00447	． 11135	． 0001150	
42391	W13／2NCL	． 87551	1.150	． D 3820	－4180	．63024	．03039	． 05663	． 0005421	

Table 6．6 Flooding velocities and dimensionless parameters for the flooding diagrams．

Fig. 6.14 Plots of flooding data on Sherwood diagram

Fig. 6.15 Plots of flooding data on Mersmann's diagram

Shavrin et al ${ }^{(65)}$. However, their flooding factors for the same fluid ratio are approximately twice as high as those estimated by the correlation given by Lobo et al ${ }^{\text {(61) }}$.

Fig. 6.15 shows that the results of this study agree reasonably well with the correlation given by Mersmann (52) although the present data indicates somewhat higher dimensionless pressure drops then predicted by this correlation.

It can be seen from Figs. 6.14 and 6.15 that the scatter of the plots in the former is approximately 100% which is twice as much as that in the latter. On this basis, the Mersmann's diagram will be used in further discussions.

It will be seen from Fig. 6.15 that the data points for the non-wetting flow systems are above those for alumina sphere packings (AL13WATR,AL13/GLY). Due to the scatter in the experimental data, it is difficult to deduce a suitable correction term to account for the degree of wetting from the flooding diagram itself. It will be noted, however, from the correlation for dynamic hold-up shown in Eq. (6.13) that the effect of the degree of wetting on the dynamic hold-up can be accounted for in terms of $(1+\cos \theta)$ and that the powers on u and $(1+\cos \theta)$ are the same. Therefore, it is reasonable to multiply the dimensionless irrigation density in the abscissa by the factor, $(1+\cos \theta)$, to incorporate theinfluence of the degree of wetting on flooding velocities. To maintain consistency with the original dimensionless irrigation density, the correction factor, $(1+\cos \theta)$, is divided by two to yield $\left(\cos \frac{\theta}{2}\right)^{2}$. The modified dimensionless irrigation density then, can be written as follows: Modified dimensionless irrigation density

$$
\begin{equation*}
=\left(\frac{\mu_{\ell}}{\rho_{\ell} g^{2}}\right)^{1 / 3} \frac{u \quad \cos ^{2}(\theta / 2)(1-\varepsilon)}{d_{p}} \tag{6.21}
\end{equation*}
$$

Fig. 6.16 Flooding diagram based on modified dimensionless irrigation density.

The measured flooding data are plotted in Fig. 6.16 as a relationship between the dimensionless pressure drop and the modified dimensionless irrigation density. It can be seen from this Figure that the data for the system G8/WATR have the highest and the data for the system AL13/GLY have the lowest ordinates; both are wetting systems. A comparison between Figs. 6.15 and 6.16 shows that the use of modified irrigation density decreases the scatter of the plotted data. An even further improvement will result if the data on the G8/WATR system which, are acluded. despite numerous data points are taken on a single column, \wedge The solid line shown in the Figure is drawn by the generalized curve fitting program shown in Appendix II. It is clear that the solid line represents the data better than the dotted line which is the original Mersmann correlation. These two curves differ mainly in their slopes,i.e., the Mersmann correlation indicates that the dimensionless pressure does not change in the region where the dimensionless irrigation density is less than 3×10^{-5} while the proposed correlation indicates that the dimensionless pressure increases with the decrease in the modified dimensionless irrigation density. Since Mersmann's correlation is based on a small number of experimental data at low irrigation densities, the present correlation will be more reliable. The scatter of the data about the proposed correlation is approximately $\pm 30 \%$ in the ordinate which corresponds to $\pm 15 \%$ in the estimated flooding velocity of the gas.

6.4 Instability of the Bed

Fig. 6.17 shows variations of the total hold-up and pressure drop with gas velocity for the PL9/ZNCL system. It should be noted that zinc chloride solution ($\rho_{\ell}=1920 \mathrm{~kg} / \mathrm{m}^{3}$) was the heaviest liquid used in this work. In Runs 431 and 433 the column behaved differently from that described

Fig. 6.17 Variations of total hold-up and gas pressure with gas velocity for Run 430 (PL9/ZNCL)
generally in Sec. 5.3. In Run 431 the column behaved the same as described in $\left\{\begin{array}{l}\text { ec. } 5.3 \text { until the gas velocity }\end{array}\right.$ reached that at flooding. However, when the column started to flood, it expanded slightly (5-10mm); this instantly stopped the flooding. A further increase in gas velocity caused a further expansion of the column and thus complete flooding was not observed. In Run 433 (lowest liquid velocity), the expansion of the column started before flooding occured; complete flooding was not observed in this experiment also. It must be noted that this expansion of the column was different from the movement of the particles on top of the column described in Sec. 5.3; in the latter the movement was confined to the top part of the column while in the former the small shift of the packing extended throughout the column. With reference to the instability of the bed, the experiments are classified into three categories: those in which flooding occurred; those in which fluidization occurred before flooding; and those in which flooding and fluidization occurred together.

The condition for fluidization to take place at the point of flooding can be described by considering the balance between the forces as follows:

$$
\begin{equation*}
\mathrm{g}\left\{\rho_{s}(1-\varepsilon)+\rho_{\ell} h_{t}\right\}=\Delta \mathrm{P} / \mathrm{L} \tag{6.22}
\end{equation*}
$$

By dividing both sides by $\rho_{\ell} g$; Eq. (6.22) can be made dimensionless:

$$
\begin{equation*}
\frac{\rho_{s}}{\rho_{\ell}}(1-\varepsilon)=\frac{\Delta \mathrm{P}}{g L \rho_{\ell}}-\mathrm{h}_{\mathrm{t}} \tag{6.23}
\end{equation*}
$$

Because h_{t} and ΔP are the values at flooding and hence are difficult to estimate, it is difficult to discuss the problem exactly. However, the modified dimensionless irrigation density determines the flooding velocity of the gas (Fig. 6.16), so that it may be assumed as a first

Fig. 6.18 Diagram showing the regions of bed instability. Experimental points:
Normal flooding, O; Fluidization together with flooding, © Fluidization before onset of flooding
approximation that both h_{t} and $\Delta \mathrm{P} / \mathrm{gL} \rho_{\ell}$ at flooding are functions only of the modified dimensionless irrigation density. Under this assumption, Eq. (6.23) becomes

$$
\begin{equation*}
\frac{\rho_{S}}{\rho_{\ell}}(1-\varepsilon)=\frac{\Delta P}{g L \rho_{\ell}}-h_{t}=f\binom{\text { modified dimensionless }}{\text { irrigation density }} \tag{6.24}
\end{equation*}
$$

The left hand side of equation (6.24) may be termed the dimensionless density of the bed.

Fig. 6.18 shows the data plotted in terms of the two dimensionless parameters in Eq. (6.24). It can be seen from the Figure that the data show a consistent trend. Under the conditions corresponding to the bottom left region in the Figure, fluidization will occur before the onset of flooding. The estimated region for the slag flow in blast furnaces is also shown. Although more data will be needed to establish the precise boundaries of these regions, this figure indicates that the coke bed will start to fluidize before it is flooded by slag under the average flow conditions in the furnaces.

6.5 Liquid Distribution

Porter et al. ${ }^{73)}$, in their experimental work on the spreading of liuqid in an irrigated column, have shown that the agreement between theory and experiment depends on the sampling area; better agreement was obtained with larger sampling area . From their results on 13 mm raschig ring packings, they suggested that a sampling area of at least $0.04 \mathrm{~m}^{2}$ is necessary to obtain reasonably reproducible results. The cross-sectional area of the present column is $0.007 \mathrm{~m}^{2}$ which is, according to the above results, not large enough for detailed analyses on liquid distribution. Th poor reproducibility of the liquid distributions for the wetting columns could be ascribed to
this small cross-sectional area. Therefore, no attempt was made to analyse the liquid distribution in relation to the distributor arrangement or size and height of the packing. It is possible, however, to discuss the distribution of liquid in the column under various flow conditions. A large number of experiments has reduced the uncertainty in the individual experiments and some interesting results have been obtained.

As mentioned in Sec. 5.3, a large influence of gas flow on the liquid distribution was found in the non-wetting systems. Fig. 6.19 shows the variation of the relative liquid flux to the outer annulus in relation to the dimensionless gas pressure drop of the irrigated bed, $\Delta \mathrm{P}_{\mathrm{w}}^{*}$ defined by Eq.(6.25).

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{w}}^{*}=\Delta \mathrm{P}_{\mathrm{w}} / \mathrm{L} \quad \mathrm{~g} \quad \rho_{\ell} \tag{6.25}
\end{equation*}
$$

This parameter was preferred to the actual gas velocity because the former represents the effect of gas on liquid flow better than the latter. It is worth noting that the maximum possible value of the liquid flux to the outer annulus is 2.0 since the outer annulus occupies half of the total cross-sectional area of the column. It is clear from Fig. 6.19 that the liquid flux to the outer annulus increased with $\Delta \mathrm{P}_{\mathrm{w}}^{*}$ at first. In the region where $\Delta \mathrm{P}_{\mathrm{w}}^{*}$ is greater than 0.3 the scatter in the liquid flux is too large to indicate any simple relationship with $\Delta \mathrm{P}_{\mathrm{w}}^{*}$. The difference between wetting and non-wetting systems is remarkable. In non-wetting systems, the influence of gas flow was so strong that in most cases more than 80% of the liquid flowed to the outer half annulus when $\Delta \mathrm{P}_{\mathrm{w}}^{*}$ is 0.2 ; in the wetting system the change was significantly smaller.

It was mentioned in Chapter 5 that the influence of the liquid distribution on the measured hold-up and pressure drop was, if at all, very small compared with the experimental

Fig. 6.19 Variation of relative liquid flux to outer annulus with dimensionless gas pressure drop $\Delta \mathrm{P}_{\mathrm{w}}$ *. The curves show approximately upper and lower limit of.all the measured data.
error. However, this does not necessarily mean that larger changes in liquid distribution do not influence the performance of the columns. It is possible that the remarkably similar change in the flow distribution with gas velocity affected the performance of the column so similarly that no significant differences were detected in the measured data. Further investigations would be required to assess the influence of the liquid distribution on the performance of the columns.

6.6 Possibility of the occurrence of the F looding in the B Iast Furnace

Since the proposed flooding diagram, based on the present experimental data, does not differ greatly from the correlation given by Mersmann (52) no significant change is anticipated in the discussions on the possibility of the occurrence of flooding, if the discussions are based on the data averaged over the cross-sectional area of the furnace.

The present study, however, leads to a picture different from that described by Elliottet al. (4) when the flow conditions reach close to or exceed the flooding limit. They suggested that, in case this happened in the furnace locally, either or both metal and slag might be carried upwards by the gas and due to the lower temperature there the liquid would solidify in the voids of coke bed. This would reduce the permeability locally and the diverted gas stream, which would normally flow through that area, would force another region of the furnace to flood with further disruption of gas flow. The whole process would be unstable and, once started, would tend to build up.

From the results of present investigation the possible phenomena can be described differently as follows. From Fig. 6.18 it can be seen that the coke bed tends to fluidize before flooding would occur. The coke bed moves downwards
continuously, albeit slowly during the normal operation of the furnace. When the flow approaches : the flooding conditions the coke-bed tends to be held and since the bed below it is moving downwards the void fraction of the bed would increase. The bed in such a case would be highly unstable and a small change in the balancing forces could cause the collapse of the loosely supported bed. The collapse, if large enough, could be detected as a slip and would be followed by a temporary channelling. of the bed. The process is not necessarily 'unstable' according to Elliott's definition of the word since the loosening of the bed would counteract the tendency for flooding. It will be noted that this description of the process coincides well with the observations from the experimental blast furance when attempts were made to initiate flooding(67) Evidently, the limiting conditions of the flow to prevent the occurrence of this phenomena are different from those for flooding and further studies are needed to quantify the conditions.

Since the coke bed cannot move upwards without pushing the whole stack upwards, the loosening of the bed would take time to develop. If the change in the flow conditions is rapid enough , flooding would occur as described by Elliott et al ${ }^{(4)}$. Since the furnace is operated under constant conditions, this rapid change is unlikely to occur in normal operations, however, the slip and channelling mentioned above could cause changes in flow conditions which would be rapid enough to start and propagate the flooding as described by Elliottet al.

The drastic change of the liquid flow distributions in non-wetting systems with the gas velocity suggests that the radial distribution of the liquids in the blast furance can change significantly as they descend through the coke bed in the presence of the ascending gas stream. The change in the liquid distribution would be more complicated in the
region near the raceway since the gas flow there is not parallel to the liquid flow. Further studies of the liquid distribution under such circumstances are necessary to understand fully the real situation in the blast furnace since the occurrence of slip and channelling depends on the local conditions of flows of the liquid and gas.

CHAPTER 7

CONCLUSIONS

Irrigated packed columns were studied, with and without a counter-current flow of gas, at low liquid superficial velocities ($0.02-1.0 \mathrm{~mm} / \mathrm{s}$) for different degrees of wetting between the liquids and packings. Seven packing materials and five liquids were used in the experiments to obtain a range of particle sizes ($8-13 \mathrm{~mm}$), contact angles ($0-114^{\circ}$), liquid densities ($807-1920 \mathrm{~kg} / \mathrm{m}^{3}$) and viscosities ($0.0009-0.064 \mathrm{Ns} / \mathrm{m}^{2}$). The total hold-up, liquid distribution, gas pressure drop and flooding velocities were measured for various liquid and gas velocities.
(1) The measured total hold-up was related to the liquid velocity by the equation

$$
\mathrm{h}_{\mathrm{t}}=\mathrm{h}_{\mathrm{s}}^{*}+\mathrm{b} \mathrm{u}^{\mathrm{c}}
$$

where b and c are constants. The values of the constants and the static hold-up, h_{s}^{*}, were determined by a leastsquare technique.
(2) The static hold-up for both non-wetting and wetting flows was correlated with the modified capillary number, $C_{p m}\left(=\rho_{\ell} g_{p}{ }^{2} \phi^{2} /(1-\delta)^{2} \sigma(1+\cos \theta)\right)$ by the equation

$$
h_{s}^{*}=1 /\left(0.205+0.00263 \mathrm{C}_{\mathrm{pm}}\right)
$$

Published measurements of the static hold-up for raschig ring packings confirm the validity of the correction term for the degree of wetting but a further correction for the shape factor would be necessary to obtain accurate predictions for ring packings using this equation.
(3) The measured dynamic hold-up, determined as the difference between h_{t} and h_{s}^{*}, were correlated by the equation

$$
\mathrm{h}_{\mathrm{d}}=605 \quad \operatorname{Re}_{\mathrm{m}}^{0.648} \mathrm{Ga}_{\mathrm{m}}^{-0.485} \mathrm{C}_{\mathrm{ps}} 0.097_{\mathrm{N}} 0.648
$$

The value of the dynamic hold-up estimated from this equation compared reasonably well with those measured by Gardner ${ }^{(28)}$.
(4) The effect of the total hold-up on the ratio of the gas pressure drop through the irrigated bed to that through the dry bed at the same gas velocity depended on both the liquid and gas flow conditions and could not be predicted satisfactorily using existing correlations.
(5) The measured flooding velocities were correlated better by Mersmann's flooding diagram rather than the Sherwood diagram.
(6) The dimensionless irrigation density on the abscissa of Mersmann's diagram was multiplied by the factor, $\left(\cos \frac{\theta}{2}\right)^{2}$, to take into account the degree of wetting and a modified correlation curve was proposed.
(7) A systematic effect of the gas flow on liquid flow distribution was observed; the relative liquid flux to the peripheral region of the bed increased with gas velocity until it reached a maximum after which the distribution became almost random. The changes in the liquid distribution with gas flow for non-wetting flows were remarkably larger than for the wetting flows.
(8) With reference to the instability of the bed the experiments are classified into three categories: those in which flooding occurred; those in which fluidization occurred; and those in which flooding and fluidization occurred together. The results were correlated in terms of the
dimensionless density of the bed and the modified dimensionless irrigation density and the boundaries of three regions were identified in the diagram. The diagram indicated that in blast furnaces the fluidization of the coke bed is likely to start before the onset of flooding by the slag.
(9) A new explanation for the malfunctioning of blast furnaces in relation to the instability of the bed was given. Disturbances in the smooth descent of the coke bed followed by the slip and temporary channelling would be more likely to occur than flooding.

APPENDIX I

METHOD FOR COMPUTING LIQUID FLOW RATES

I. 1 Introduction

As shown in Fig.4.5, the weight change of each of six containers, 6, was measured by a pair of strain gauges ,3, fixed on the cantilever , 4, . The electrical signals from the strain gauges were measured and recorded by a data logger.

Fig. A1-1 shows typical examples of the change of the weight signal with time. Data A show a steady increase of weight with time whereas in Data B a rapid decrease of weight in the middle disrupts the overall tendency of increase. The disruption is caused by the draining of liquid from the container.

A computer program was written to process the data which include those obtained during the draining. The principle of the liquid flow computation is given in the following, together with a list of the program.

I. 2 Principle of the Method

The weight signal increases linearly with time (except during the draining) and the rate of increase is proportional to the liquid flow rate. If the data during the draining are excluded, the relationship between the weight signal x and time t can be shown as:

$$
\begin{equation*}
x+\hat{x}=a+b t \tag{A1-1}
\end{equation*}
$$

where $a, b=$ constants

$$
\hat{8}=0 \text { before draining }
$$

$$
\hat{x}=x_{0} \text { after draining }
$$

The parameters a, b and x_{o} can be determined by the method of least squares as follows. For a given set of data (x_{i}, t_{i})

$$
\begin{array}{ll}
i=1 \text { to } n, & \text { before draining } \\
i=n+1 \text { to } m, & \text { after draining }
\end{array}
$$

the sum E of the squared error is

$$
\begin{equation*}
E=\sum_{i=1}^{n}\left(a+b t_{i}-x_{i}\right)^{2}+\sum_{i=n+1}^{m}\left(a+b t_{i}-x_{i}-x_{o}\right)^{2} \tag{A1-2}
\end{equation*}
$$

By equating the partial differentials of E with respect to a, b and x_{o} to zero and after rearrangement one can show that

$$
\begin{align*}
& a \cdot m+b \cdot \sum_{i=1}^{m} t_{i}-(m-n) x_{o}=\sum_{i=1}^{m} x_{i} \\
& a \cdot \sum_{i=1}^{m} t_{i}+b \cdot \sum_{i=1}^{m} t_{i}^{2}-x_{o} \sum_{i=n+1}^{m} t_{i}=\sum_{i=1}^{m} t_{i} x_{i}, \\
& a \cdot(m-n)+b \cdot \sum_{i=n+1}^{m} t_{i}-(m-n) x_{o}=\sum_{i=n+1}^{m} x_{i} \tag{A1-3}
\end{align*}
$$

Equations (A1-3) are solved for a, b and x_{o} and the liquid flow rate can be calculated from the value of b.

1.3 Program and Calculated Results

A listing of the program, in the form of a subroutine is given in Table A1-1. It consists of two parts; in the first, the data are screened to identify the occurence of draining and to eliminate those during the draining; in the second, the linear regression calculation is carried

00100 SUBROUTINE OFLOHIOATA.TIME.ND.TINT.SENS.D.IER.M.N.BI
00110C DRTA: WEIGMT SIGNAL. ND: NUMEER OF DATR. TINT: TIME INTERVAL (1/S) OOI20C SENS: SIGNAL SENSITIVITY (G/HEIGHT SIGNALI. Q: LIOUIO FLON RATE (G/S) 00130ctam content cf data may be destroved
ODI40 DIMENSION DRTAIII.A(9).BIBI.NORORIBI.TIMEII)
$00150 \mathrm{M}=0$
$00160 \mathrm{~N}=0$
00170 IER $=0$
00130 IGO $=1$
001 OCC OATA SCREENIN
00230 OO $100 \quad I=2$. ND
co210 GO IOI 10.20.30.40i.1GO
DO220 10 IFIDATACII-DATATI-1).LT.-SO.IGO TO 11
$00230 \mathrm{M}=\mathrm{M}+1$
00240 OATA(M)=OATR(1-1)
00250 TIME(M)=FLOATII-1)
0260 GO TO 100 IF 11 IF.GE.3IGO TO 1
$00230 \mathrm{M}=0$
$00230 \quad 100=4$
C0300 GD 10100
0031012 IGO
00320 N=M
00330 G0 10100
0034020 [FSDATAIII-DATAII-I].LT.-ID.IGO TO 100 00350 IG0 3
$00360 \quad 60 \quad 10 \quad 100$
0037030 IFIDATAIII-DATAII-1).LT.-50.1G0 TO 200 $00380 \mathrm{M}=\mathrm{M}+1$
00390 DATA $(M)=$ DRTA $1-11$
00400 T1ME(M1=FLOATIT-1)
00410 GO TO 100
0042040 IFIORTA: (I-DATAII-1).LT.-50. 190 TO 100 00430 100 $=1$
00450200 IFIM-N 0 E 3ICO IO 300
$00460 \quad 4=2$
$00460 \quad 4=?$
00470
00480300 IFIM.LT. 4160 10 990
00490C calculation df coefficients
$0050000310 \quad 1=1.3$
00510 8 $1: 1=0$
00520 C0 $310 \mathrm{~J}=1.3$
$00530 \mathrm{~K}=1+3=(\mathrm{J}-1)$
00540 Riki=0.
00550 3:O CONTINUE
00570 1FIN.NE. 0150 TO 320

cosen in =
deser $4=4$
ecer 60
cos:3 320 4i=
0220 :12-5
$050032000340 \quad 1=1.4$

00660 B(1)-8(1)+DATA 1$)$

$00670 \mathrm{34O} \mathrm{Bl}(2)=\mathrm{Bl}$
$00680 \mathrm{AlNl} \mid=\mathrm{Al}(2)$
00690 IFIN.EO.OIGO TO 400
00700 DO $350 \quad I=N+1 \cdot M$
00710 A(6) $=\mathrm{A}(6)+$ T $1 \mathrm{ME}(1)$
00720350 B(3) $\mathrm{B}(3)+$ DATA(1)
00730 A($31=$ FLOAT $(M-N)$
$00740 \mathrm{~A}(7)=-\mathrm{A}(3)$
00750 A($81=-\mathrm{A}(6)$
00760 R(G) $=$ F 1
00770 ND=3
00780 CO TO 500
00790 400 NO=2
OOBOOC $50 L V E$ SIMULTANEOUS EOURTION
OOB10 SOC CRLL ESIMQIA.B.NO.IER.NORDR:
00820 IFIIER.NE.OJGO TO S90
00830 Q=E(2)mSENS/TINT
00840 RETURN
00850 990 IER=1
00860 C UNABLE TO CALCULATE 0
00870 RETUR
00880 END
out according to Equation (A1-3).
It is clear from Fig. A1-1 that calculated regression lines are very satisfactory even when there is an intervening period of drainage of the liquid.

Fig. A1-1 Variation of the weight of the container with time in two typical cases.

APPENDIX II

GENERALIZED CURVE-FITTING

II.1. Introduction

A generalized curve-fitting method was applied to obtain the various calibration curves for processing the data. The principle of the method and the computer program will be described.

II 2. Parametric Interpolation ${ }^{(74)}$
The whole curve is divided into segments and each segment is expressed mathematically by a third order polynominal. The four parameters that are needed to determine the third order polynomial are the values of y and $y^{\prime}(=d y / d x)$ at both ends of the segment.

For the i.'th segment, which represents the part of the curve between $x=x_{i}$ and $x=x_{i}+1$, the curve is given by the equation:

$$
\begin{align*}
y_{i, i+1}(t)= & y_{i} p_{o}(t)+y_{i+1} q_{o}(t)+y_{i}^{\prime} d_{i} p_{i}(t) \\
& +y_{i+1}^{\prime} d_{i} \quad q_{i}(t) \tag{A2-1}
\end{align*}
$$

where subscripts i and $i+1$ show the positions corresponding to x_{i} and $\mathrm{x}_{\mathrm{i}+1}$ and

$$
\begin{align*}
& d_{i}=x_{i+1}-x_{i} \quad p_{0}(t)=1-q_{0}(t) \\
& t=\left(x-x_{i}\right) / d_{i} \quad q_{1}(t)=t^{2}(t-1) \\
& q_{0}(t)=t^{2}(3-2 t) \quad p_{1}(t)=t(t-1)^{2} \tag{A2-2}
\end{align*}
$$

II.3. Conditional Least-Square Method

Fig. A2-1 shows the physical model of the method proposed by Hosaka ${ }^{(74)}$. The curve is represented by an elastic string, ℓ, to which is connected from each data point a spring whose length is assumed to be zero under no load. The whole system is in equilibrium when the sum, U of the elastic strain energies of both the string and springs, given by Equation (A2-3) has a minimum value.

$$
\begin{equation*}
U=\frac{k}{2}\left\{\sum_{j}\left(y_{j}-\bar{y}_{j}\right)^{2}+\lambda \int y^{\prime \prime 2} d x\right\} \tag{A2-3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{y}_{j} \text { is the ordinate of a data point } \\
& y_{j} \text { is the ordinate of the corresponding } \\
& \text { point on the string, }
\end{aligned}
$$

k is the spring constant and
$\lambda \quad$ is the strength of the string relative to that of spring

If one divides the whole curve into n segments, this curve is determined by $(n+1)$ sets of $\left(y_{i}, y_{i}^{\prime}\right)$ at the intersections and at both ends of the curve. The elastic strain energy, U, will be minimum when

$$
\begin{align*}
& \partial \mathrm{U} / \partial \mathrm{y}_{\mathrm{i}}=0, \tag{A2-4}\\
& \partial \mathrm{U} / \partial \mathrm{y}_{\mathrm{i}}^{\prime}=0 . \tag{A2-5}
\end{align*}
$$

Although it is possible to determine $y_{i} s$ and $y_{i}^{\prime} s$ froms .. Eqs. (A2-4) and (A2-5), the latter is substituted by Equation (A2-6) which stipulates that the curve be continuous up to the second order differential:

$$
\begin{equation*}
y_{i-1, i}^{\prime \prime}(1)=y_{i, i+1}^{\prime \prime}(0) \tag{A2-6}
\end{equation*}
$$

This condition makes the interpolated curve smoother.

From the above discussion it will be clear that this method of curve fitting is essentially a leastsquare method with the condition that the curve be expressed by connected segments of a third-order polynominal which are continuous up to the second-order differential at the points of connection and with the constraint that the curve is bent according to the value of the parameter λ.

II.4. Mathematical Formulation

$$
\begin{aligned}
& \text { Equation (A2-3) is rewritten as } \\
& U=\frac{k}{2}\left\{\sum_{i} \sum_{j}\left(y_{i}^{j}\right)^{2}+\lambda \sum_{i}^{x_{i}} \int_{x_{i}}+1\left(y_{i, i+1}^{\prime \prime}\right)^{2} d x\right\} \quad(A 2-7)
\end{aligned}
$$

where y_{i}^{j} is the value of y on the i^{\prime} th segment of the curve corresponding to the data point ($\overline{\mathrm{x}}_{\mathrm{i}}^{\mathrm{j}}, \overline{\mathrm{y}}_{\mathrm{i}}^{j}$) and expressed as:

$$
\begin{array}{r}
y_{i}^{j}=y_{i} p_{o}\left(t_{i}^{j}\right)+y_{i+1} q_{o}\left(t_{i}^{j}\right)+y_{i}^{\prime} d_{i} p_{i}\left(t_{i}^{j}\right)+y_{i+1}^{\prime} d_{i} q_{i}\left(t_{i}^{j}\right) \\
\ldots(A 2-8)
\end{array}
$$

By differentiating Equation (A2-1) with respect to x, one can get

$$
\begin{equation*}
y_{i, i+1}^{\prime \prime}=A_{i} t+B_{i} \tag{A2-10}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{i}=6\left(y_{i}^{\prime}+y_{i+1}^{\prime}\right) / d_{i}-12\left(y_{i+1}-y_{i}\right) / d_{i}^{2} \tag{A2-11}\\
& B_{i}=6\left(y_{i+1}-y_{i}\right) / d_{i}^{2}-4 y_{i}^{\prime} / d_{i}-2 y_{i+1}^{\prime} / d_{i} \tag{A2-12}
\end{align*}
$$

Then,

$$
\begin{align*}
\int_{x_{i}}^{x_{i}+1}\left(y_{i, i+1}^{\prime \prime}\right)^{2} d x & =d_{i} \int_{0}^{1}\left(y_{i, i+1}\right)^{2} d t \tag{A2-13}\\
& =d_{i}\left(A_{i}^{2 / 3}+A_{i} B_{i}+B_{i}^{2}\right)
\end{align*}
$$

It can be shown that in Equations (A2-7) and (A2-8), y_{i} and y_{i}^{\prime} will appear only when i in the summation \sum_{i} equals either i-1 or i. Therefore, one can write, at the minimum value of U

$$
\begin{aligned}
\frac{\partial U}{\partial y_{i}} & =\frac{k}{2} \frac{\partial}{\partial y_{i}}\left\{\sum_{j}\left(y_{i+1}^{j}-\bar{y}_{i+1}^{j}\right)^{2}+\sum_{j}\left(y_{i}^{j}-\bar{y}_{i}^{j}\right)^{2}\right. \\
& \left.+\lambda \int_{x_{i-1}}^{x_{i}}\left(y_{i-1, i}^{\prime \prime}\right)^{2} d x+\lambda \int_{x_{i}}^{x_{i+1}}\left(y_{i, i+1}^{\prime \prime}\right)^{2} d x\right\}=0
\end{aligned}
$$

Substitution for A_{i} and B_{i} from Equations (A2-11) and (A2-12) in Equation (A2-13) and using the resulting expression and Equation (A2-8) one can rewrite Equation (A2-13) as

$$
\begin{align*}
& \left\{\sum_{j} p_{o}\left(t_{i-1}^{j}\right) q_{o}\left(t_{i-1}^{j}\right)-12 \lambda / d_{i-1}^{3}\right\} y_{i-1} \\
& +\left\{\sum_{j} q_{o}\left(t_{i-1}^{j}\right)^{2}+\sum_{j} p_{o}\left(t_{i-1}^{j}\right)^{2}+12 \lambda\left(1 / d_{i-1}^{3}+1 / d_{i}^{3}\right)\right\} y_{i} \\
& +\left\{\sum_{j} p_{o}\left(t_{i}^{j}\right) q_{o}\left(t_{i}^{j}\right)-12 \lambda / d_{i}^{3}\right\} y_{i+1} \\
& \left.+\underset{j}{\left\{d_{i-1}\right.} P_{o}\left(t_{i-1}^{j}\right) q_{o}\left(t_{i-1}^{j}\right)-6 \lambda / d_{i-1}^{2}\right\} y_{i-1}^{\prime} \\
& +\left\{\sum_{j} d_{i-1} q_{1}\left(t_{i-1}^{j}\right) q_{o}\left(t_{i-1}^{j}\right)+\sum_{j} d_{i} p_{i}\left(t_{i}^{j}\right) p_{o}\left(t_{i}^{j}\right)-6 \lambda\left(1 / d_{i-1}^{2}-1 / d_{i}^{2}\right)\right\} y_{i}^{n} \\
& +\left\{\sum_{j} d_{i} P_{o}\left(t_{i}^{j}\right) q_{o}\left(t_{i}^{j}\right)+6 \lambda / d_{i}^{2}\right\} y_{i+1}^{\prime} \\
& =\sum_{j}^{\sum} \bar{y}_{i-1}^{j} q_{o}\left(t_{i-1}^{j}\right)+\sum_{j} \bar{y}_{i}^{j} p_{o}\left(t_{i}^{j}\right) \tag{A2-15}
\end{align*}
$$

It is clear from Equation (A2-10) that Equation (A2-6) is satisfied when

$$
\begin{equation*}
A_{i-1}=B_{i} \tag{A2-16}
\end{equation*}
$$

which, using Equations (A2-11) and (A2-12), can be written as

$$
\begin{aligned}
& 6 \frac{y_{i-1}}{d_{i-1}^{2}}-6\left(\frac{1}{d_{i-1}^{2}}-\frac{1}{d_{i}^{2}}\right) y_{i}-6 \frac{y_{i+1}}{d_{i}^{2}} \\
& +2 \frac{y_{i-1}}{d_{i-1}}+4\left(\frac{1}{d_{i-1}}+\frac{1}{d_{i}}\right) y_{i}^{\prime}+2 \frac{y_{i+1}}{d_{i}}=0 \quad(A 2-17)
\end{aligned}
$$

Equations (A2-15) and (A2-17) provide $2(\mathrm{n}+1$) linear equation in $y_{i} s$ and $y_{i}^{\prime s}$ and can be solved simultaneously for $y_{i} s$ and $\dot{y}_{i}^{\prime s}$.
II.5. Computer Program

Two subprograms were written:
"SMR" to obtain parameters, y_{i}, y_{i}^{\prime} and
"YQ" to obtain y and y ' from the fitted curve for a
given x value.
Tables A2-1 and A2-2 show the form of calling "SMR" and "YQ" respectively. Table A2-3 shows listings of the programs "SMR" and "YQ" as well as associated ones used in either program.

TABLE A2-1. - Calling form of subroutine SMR

CALL $\operatorname{SMR}(X D, A D, X, N D, N X, R A M D A, I Z, A, B, D L, K, K K, I F, N F, X F, I E R, N O R D R)$

$\underline{\text { Variable }}$	Size	Input/ Output	Explanation
XD	ND	I	Data for x_{j} (independent)
AD	ND	I	Data for y_{j} (dependent).
X	NX	*I/O	x at the boundary of segments
ND	--	I	Number of data points
NX	--	I	Number of segments + 1
RAMDA	--	I	$\begin{aligned} & \text { Smoothing factor }(\lambda) \\ & \geq 0.0 \end{aligned}$
IZ	--	**	(see the footnote)
NF	--	I	Number of fixed points
IF	(+)	I	Position of fixed points
XF	(+)	I	Data of fixed points
A	($2 *$ NX)	0	y and y^{\prime} values
B	($(2 * N \mathrm{NX}) * * 2)$	7	
DL	(NX)		
K	(NX)	\}	Working vectors
KK	(NX)		
NORDR	($2 * N \mathrm{~N}$)	J	
IER	--	0	ERROR indicator

```
+ : as many as necessary
* : when IZ = 2, X must be given, otherwise it will be determined by the programme
** : parameter IZ determines the method of choosing \(X\).
\(I Z=1\) : every data point is taken as \(X\), thus \(N X=N D\).
\(I Z=2: X\) is assumed to have been given outside the programme
\(I Z=3: X\) is determined by data points, evenly spaced
```

TABLE A2-2 - Calling form of subroutine YQ

CALL $Y Q(X, A, N X, X D, Y D, Y D D, I E R)$

Variable	Size	Input/output	Explanation
X	NX	17	
A	$2 *$ NX	I	as for SMR
NX	--	I J	
XD	--	I	value of x where y is needed
YD	--	0	value of y at given x
YDD	--	0	value of $d y / d x$ at given x
IER	--	0	```ERROR indicator, = 0 when normal; = 9 when XD is outside the range of X.```

Fig. A2-1 Physical model of generalized curve fitting; hypothetical springs are connected from data points (O) to the elastic string 1

Table A2－3 Listings of computer programs for generalized curve fitting

OOIOO SUBRDUTINESMRIXD．AD．X．ND：NX．ROO．IZ．A．B．OL．K．KK．IF．NF．XF．IER 00110＊NOROR）
0115 C GENERALIZEO CURVE－FITTING PROGRAM
00120 OIMENS！ON XO\｛11．RD（1）．XIG）．A（1）．B（1）．OLI1）．K（1）．KK（1）．IF（1）
$00130+$ ．xF 11 ．NCKDR：1）
$00140 \mathrm{NXX}=\mathrm{NK} \geq 2$

00160 CO $11 \quad 1=1 . i x \times$
00180 on 10 I＝2．NO
00190 yobix＝xal 11
00200 Y0日i $9=$ RO（1）
00210 ［1：1－1
00220 00 $20 \quad 11=1.11$
00230 111＝11－1
00240 ［2＝1－11
00250 If（X0112）－r0aix 30.30 .20
0026030 ［FI1］－1110．10．40
00270 20 CONT
0029040 DO SO J＝1．11
$00300 \mathrm{~J}=[-\mathrm{j}+\mathrm{J}$
$00310 \mathrm{~J} 2=\mathrm{J} 1-1$
$00320 \times 0(\mathrm{~J} 1)=\times 01 \mathrm{~J} 21$
00330 RO：J1I＝ROIJ2」
00340 5D CONTIN
00350 J1＝」1－1
00360 xDIJ1 $=$ YOEI x
0038010 CONTINUE
00390 NX1 $=N \times-1$
$00400[12=11 \times \cdot 5=\times 0 \cdot 51 .=21 \times$＇S RRE GIVENI．＝3IEQURL INCREMENTI
00410 1FIIZ゙－2160．90．70
DD420 60 COX＝TXD（NO）－X0：11）／10000
00430 INX＝1
$00440 \times 111=x 0111$
$0045000 \quad 100 \quad 1=2 . N 0$
00460 ［Fi（xOI］）－XIINXII．LT．00XIGO TO 101
00470 in $x=1 N x+1$
00480 XITNXI＝xDI
COSOO 101 IFII．NE．NDIGO TO 100
$00510 \times(\operatorname{Nx})=x D(1)$
cosed 100 Centinu
$00530 \mathrm{NX}=1 \mathrm{NX}$
00540 NX1＝1NX－1
00550 NXX＝NX2 2
00560 4xxz $=\mathrm{Hx} \times \mathrm{x}=\mathrm{N}$
00570 G0 io 90
$0055070 \quad 0 x=1 \times 0$

$00600 \times 1 \mathrm{Nx}=\times 0 \mathrm{CNO}$
00610 00 $801=2 . \mathrm{NXI}$

0063080 CONTINUE
$0064090 \mathrm{k}(1)=0$
$00550 \mathrm{Kk}(1)=1$

$0058000110!=2 \cdot \mathrm{NXI}$
$00690 \mathrm{KIJ}=0$
$0070 \mathrm{KkIJ}=0$
00710 DL（1）$=\times(1+1)-\times(1)$
00720110 CONTINUE
00730 IS $=1$
00740 00 $120 \quad 1!=!\cdot N \times 1$
00760 IFixall）．GT．XIII＋1）IGO TO 140
$00770 \mathrm{~K}(\mathrm{~J})=\mathrm{K}(11)+1$
00780 130 $1 E=1$
$00790140 \mathrm{KKIII}+11=K K I I J 1+K I I I$
$00800 \quad 120 \quad 15=1 E+1$
00010 DO 180 IR＝1．NX
.190 .200
$\times 1=0$ ．
$008405 \times 2=0$.
$008505 \times 3=0$ ．
$008605 \times 4=0$.
$00870 \quad$ IM $=1 R-1$
$008 \mathrm{OD} \mathrm{JE}=\mathrm{K}(1 \mathrm{M})$
00890 IF：JE．LT． 1 JGO TO 211
$0090000210 \mathrm{~J}=1 . \mathrm{JE}$
00910 SXI＝SXI＋POII．IM．J．XD．X．OL．KK）．WPOI2．1M．J．XO．X．OL．KKI

－12 RAMOQ（1DLIM）＝
0940 SX2 $=5 \times 2-6$ ．RRAMOR／IDL（IM）＝R2）
$009505 \times 3=6 . /(0 L!(M)=2)$
00970 CALL MCOLH（N1．N2．N3．N4．IR．IM．NX）
$00980 \mathrm{BiH11}=\mathrm{SX} 1$
00990 －B1N21＝5x2
01000 日（N3）$=5 \times 3$
$01010 \mathrm{~B}\left(\mathrm{~N}_{4}\right)=5 \times 4$
$010201905 \times 1=0$
$010305 \times 2=0$ ．
01050 5x4＝0．
$01050 \mathrm{jM}=1 \mathrm{R}$
$01070 \mathrm{JE}=\mathrm{K}(\mathrm{JMI}$
$010001 F(N X-1 R 1240.240 .220$
01090220 IFIJE．LT． 1 IJGO TO 221
$01100.00230 \mathrm{~J}=1 . \mathrm{JE}$
01110 SX1＝5×1＋PQ（1． 1 M．J．XO．X．OL．KK）＝2

$011405 \times 2=5 \times 2+6 .=R$ RMOR／DLIIMIm＝2
1160 5x4－6．
01170240 IFIIR－11260．260．250
01180240 IFIIR－11260．260．2S0
01190 JE＝K（19）
01200 IFIJE．LT． 1160 TO 271

Table A2－3（continued）

$121000270 \mathrm{~J}=1 . \mathrm{JE}$
 $012402715 \times 1=5 \times 1+12$ ．RRAMOA／OL（IM）＝3
$01250 \mathrm{~S} \times 2=5 \times 2-6$. RRAMOR／OLI IMI＝2 2
01260 5×3＝5×3－6．／OL（1M）m＝
01270 SX4： $5 \times 4+4.10 L(14)$
01280 260 CALL NCOLH（NI．NZ．N3．NA．IR．IR．NXI
$12908(N 1)=5 \times 1$
1300 9（N2）$=5 \times 2$
01320 B（N4）$=5 \times 4$
01330 IFINX．LE．IRIGO TO 290
01340 5x1＝0．
$01350 \mathrm{~S} \times 2=0$
$13605 \times 3=0$ ．
013
$013705 \times 4=0$
$01380 \quad 1 M=I R$
$01390 \mathrm{JE}=\mathrm{K}(\mathrm{IM})$
01400 1FiJe－Lt．iligo ta gol
0141000300 1－1．JE

01440301 SXI＝SX1－12．mRAHOA／OLIIMI＝ 3
$014505 \times 2=5 \times 2+6$. RRAMDA／OLIIMIm ${ }^{2}$

01470 SX4 $=2.10 L 11 M 1$
01480 CALL NCOLHINI．NZ．N3．N4．IR．IR＋1．NXI
01490 BIN11＝5x1

$015208\left(\mathrm{~N}_{4}\right)=5 \times 4$
01530290 5 $\times 1=0$
$01540 \quad 5 \times 2=0$ ．
01550 IF（1R－1） 330.330 .310
01550 310 IM＝IR－1
01570 JE＝R（14）
01580 IFIJE．LT．1）GO TO 330
01590 D0 $320 \mathrm{~J}=1 . \mathrm{JE}$

01520330 ［FINX－1R1340．340．350
$01530350 \quad \mathrm{IM}=1 \mathrm{R}$
01540 JE＝KIIM）
OI650 1FIJE．LT．1IGO TO 340
$0156000360 \mathrm{~J}=1 . \mathrm{JE}$
01570 IN＝KK（IM）＋j－1

1690340 A（IR）＝SX1
01700 1RI＝IR＋NX
01710 AIIRII＝5X2
0120180 CDRTINUE
1730 IFINF．LE．DIGO TO 370
$0174000400 \quad j=1 . N X X$
01750 1FS＝IF（1）

01770 NB＝J＋NXX＝（1FS－1）
$01780400 \mathrm{~A}(J)=\mathrm{Al} \mathrm{J})-X F(1)=B(N B)$
01790 nXXX＝NXXMNX
$01800 \mathrm{Jx}=0$
01810 do $410 \mathrm{~J}=1 \cdot \mathrm{NXXX}$
01820 ［ $C=1 J-11 / N X X+1$
01230 i $R=J-1 / C-1$ I $=N X X$
01840 DO 420 I＝1．NF
1850 1FT
（FO．IFILIIGD TO 410
$01870 \mathrm{JX}=\mathrm{JX}+1$
01830 BiJx $=81 \mathrm{~J}$
01890 dio CONTINU
$01900 \mathrm{Jx=0}$
01910 DO $470 \mathrm{~J}=1 . \mathrm{NXX}$
01920 DO 480 $\quad 1=1$ ．NF
01930 480 IFIJ．EQ．IFIIIIGO TO 470
$01940 \quad-x=J x+1$
01950 AlJXI＝AIJ
01960470 CONTINUE
01980370 CALL ESIMOIB，A，NXX，IER，NORDRI
01990 IFINF．LEE．OIGO 10 SSO
02000 NX2＝2nNX
$02010 \mathrm{Jx}=\mathrm{NXX}$
$0202000510 \quad 1=1$ ，NX2
$02030 \mathrm{~J}=\mathrm{N} \times 2-1+1$
02040 OD 540 lJJ＝1．NF
02050 【Jこ！」 J
02060 540［FIJ．Ea．IFI（J）ICO 10530
02070 म（J）＝A（JX）
$02080 \quad J X=J X-1$
02100530 ค1JI＝xF（lJ）
02110510 CONTINUE
02120 S50 RETURN
02130 ENO

－

02140 FUNCTION POIK．1．J．XO．X．OL．KKI
02150 DIMENSION XO（1）．X（1）．DL（1）．KKI1）
02160 ND＝KK1 1 $1+J-1$

02180 CO TO $11.2 .3 .41 . \mathrm{K}$
02190 1 PQ＝1．－TmTul3．－2．eT
02200 CO TO 10
$022102 \mathrm{PQ} 2 \mathrm{~T} T \mathrm{~T} 13 .-2 . \mathrm{mI}$
02220 GO TO 10
02230 3 PQ＝Tm！T－1．1ma2
02240 CO 1010
02250 POETMTM（Tー）．
02260 IO RETURA

Table A2－3（continued）
2220 SUBRDUTINE NCOLHINI．N2．NJ．NA．I．J．N）
$02290 \mathrm{~N} 1=2=1 \mathrm{~J}-1) \mathrm{m} N+1$
$02300 \mathrm{~N} 2=2=(\mathrm{N}+\mathrm{J}-1) \mathrm{m}+\mathrm{I}$

02330 RETURN
02340 END
＝＂$=$
00100 SUEROUTIME ESIMOIA．B．N．KS．NORORI
10SC TO SOLVE LINEAR SIMULTANEOUS EQUATIONS
O105C TO GOLVE LINEAR SIMUL
0106 C BY ELIMINATION METHOD
$0106 C$ BY ELIMINATION ME THOD
00110 CIMENSION A（1）．BIIJ．NORDRI 11
$001200010 \quad \mathrm{~J}=1 . \mathrm{N}$
OC130 10 NORERIJJ＝
00140 TOL $=0$ ．
$0150 \mathrm{kS}=0$
55 IFIN．EQ．IIGO TO 200
0160 JJ＝－N
$01700065 \mathrm{j}=1 . \mathrm{N}$
$0180 J Y=J+1$
$00180 J Y=J+1$
$00190 J J=J J+N+1$
00200 B1GA＝0．
0210 IT＝JJーJ
002200030 1COL＝J．N
0230 DD 3D IROW＝J． H
0240 ICR $=$ ICaL + Nm（IROH－1）
00250 IFIRBS（BIGR）．GE．ABSIAIICRIII GO TO 30
0260 BIGG＝AlICR
0270 ［MAX＝ICOL
020030 C0ytu
00300 IF（FASigIGA）．GT．TOLJGO TO 40
033：0 KS＝1
GJ3z0 RETURN
$0033040 \quad$ 1R1＝N： $1 \mathrm{~J}-1)$
$00 \geqslant 45$ IR2 $=$ N＝（MAXIR－1
Jj50 00 130 KR＝1．N
00360 1R1＝1＋1R1
00370 IR2 $=1+$ IR2
00390 A1 IR11＝A1IR2
00390 A（IR1）＝AllR2］
00410 ［SAYE＝NORCRIJI
00420 NORCRIJI NOROR（MAXIR
00430 NORDR：MAXIRI＝［SAVE
00440 11＝J－N（J） $\mathrm{J}-2$
00450 IT＝IMAX－J
00460 CO $50 \mathrm{~K}=\mathrm{J}, \mathrm{N}$
$0047011=11 * N$
$00490 \quad 12=11+15$
0490 SAVE＝A1111
00510 ar $121=59 \mathrm{~V}$

0052050 A（11）＝A1111／BIGA
00530 SAVE＝BIIMAX
00540 BIIMRXI＝日し」1
00560 IFlJ．EQ．NIGO TO 70
00570 10S＝Nm（J－1）
005000065 IX＝JY．N
00590 IXJ＝10s 1
$006001 \mathrm{~T}=\mathrm{J}-\mathrm{IX}$
$006100060 \quad j x=J Y$ in
00620 I $x j x=N m(j x-1)+1 x$
0630 J $J X=I X J X+1 T$

$0066070 \mathrm{NY}=\mathrm{N}-1$
00670 I $T=N=N$
$006800080 j=1 \cdot \mathrm{NY}$
00690 IA $=1 \mathrm{~T}-\mathrm{J}$
00700 IB $=N-$
00710 IC $=\mathrm{N}$
$007200080 \mathrm{~K}=1 . \mathrm{J}$

00740 IA $=1 \mathrm{~A}-\mathrm{N}$
00760 DO 100 J＝1．N
$0077000110 \mathrm{kK}=\mathrm{J} . \mathrm{N}$
00780 K＝KK
00790 IFINDRDRIK）．EQ．JIGO TO 120
00800110 CONTINUE
$00 \mathrm{e} 10 \quad k=k+1$
00820120 SAVE＝Bi」
0830 B（J）＝8イK
ODOSO 100 NORDRIKI＝NORDRI
00 OGO RETURN
$964200 \mathrm{BIII}=8 \mathrm{H} 1 /$／AII
866 RETURN
0070 ENO

APPENDIX III

ITERATIVE METHOD FOR LEAST SQUARES

III. 1 Introduction

In the course of the analysis of the experimental data, a least square method was applied to fit a nonlinear relation among the experimental data and calculated parameters. Because of the nonlinear nature of the equation to be fitted, an iterative method was applied instead of an ordinary linear regression method.

The principle of the iterative method (75) is explained below together with a computer program for the case in which a correlation between dynamic hold-up and dimensionless parameters was obtained.

III. 2 Mathematical Formulation

The assumed relation between dynamic hold-up h_{d}, and dimensionless parameters $\mathrm{Re}, \mathrm{Ga}, \mathrm{C}_{\mathrm{p}}^{-}, \mathrm{N}_{\mathrm{c}}$ was

$$
\mathrm{h}_{\mathrm{d}}=\mathrm{a} \cdot \mathrm{Re}^{\mathrm{b}} \cdot \mathrm{Ga}^{\mathrm{c}} \cdot \mathrm{C}_{\mathrm{p}}^{\mathrm{d}} \cdot \mathrm{~N}_{\mathrm{c}}^{\mathrm{e}} \quad \text { (6.12) }
$$

For the sake of convenience, Equation (6.12) is rewritten as

$$
\begin{equation*}
\mathrm{y}=\mathrm{a} \cdot \mathrm{k}^{\mathrm{b}} \cdot \ell^{\mathrm{c}} \cdot \mathrm{~m}^{\mathrm{d}} \cdot \mathrm{n}^{\mathrm{e}} \tag{A3-2}
\end{equation*}
$$

The problem is to obtain the values of the constant, a, and powers, b, c, d, e for a given set of data (\bar{y}_{i}, k_{i}, ℓ_{i}, m_{i}, n_{i}) such that the sum, E, of the squares of the errors

$$
\begin{equation*}
E=\sum_{i}\left(\bar{y}_{i}-y_{i}\right)^{2} \tag{A3-3}
\end{equation*}
$$

will be minimum, where

$$
\begin{equation*}
y_{i}=a \cdot k_{i}^{b} \cdot \ell_{i}^{c} \cdot m_{i}^{d} \cdot n_{i}^{e} \tag{AB-4}
\end{equation*}
$$

If reasonable approximate values can be assigned to a, b, c, d and e, then Equation (A3-2) can be expanded

In the form of Taylor series. Neglecting the terms of the second and higher order, one can write

$$
\begin{gathered}
y_{i}=\left.y_{i}\right|_{o}+\left.\left(a-a_{o}\right) \frac{\partial y_{i}}{\partial a}\right|_{0}+\left.\left(b-b_{o}\right) \frac{\partial y_{i}}{\partial b}\right|_{0} \\
+\left.\left(c-c_{0}\right) \frac{\partial y_{i}}{\partial c}\right|_{0}+\left.\left(d-d_{0}\right) \frac{\partial y_{i}}{\partial d}\right|_{0}+\left.\left(e-e_{o}\right) \frac{\partial y_{i}}{\partial e}\right|_{o} \\
\ldots \ldots(A 3-5)
\end{gathered}
$$

where $\left.\right|_{0}$ shows that the values are based on the estimates $a_{o}, b_{o}, c_{o}, d_{o}$, and e_{o}.

After substituting for y_{i} from Equation (A3-5) into Equation ($\mathrm{A} 3-3$) one can see that the minimum value of E can be obtained by choosing the differences, ($a-a_{o}$), ($b-b_{o}$), $\left(c-c_{o}\right),\left(d-d_{o}\right)$ and $\left(e-e_{o}\right)$ such that

$$
\frac{\partial E}{\partial\left(a-a_{o}\right)}=\frac{\partial E}{\partial\left(b-b_{o}\right)}=\frac{\partial E}{\partial\left(c-c_{o}\right)}=\frac{\partial E}{\partial\left(d-d_{O}\right)}=\frac{\partial E}{\partial\left(e-e_{o}\right)}=0
$$

(A3-6)

From Equations (A3-4), (A3-5), (A3-6) a linear simultaneous equation of the form

$$
\left(\begin{array}{ccc}
a_{11} & & a_{15} \tag{A3-7}\\
a_{21} & & \\
& a_{i j} & \\
a_{51} & & a_{55}
\end{array}\right)\left(\begin{array}{r}
x_{1} \\
x_{2} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
\\
b_{5}
\end{array}\right)
$$

can be derived where,

$$
\begin{aligned}
& a_{i j}=\left.\left.\sum_{k} \frac{\partial y_{i}}{\partial x_{i}}\right|_{o} \cdot \frac{\partial y_{i}}{\partial x_{j}}\right|_{o} \\
& b_{i j}=\left.\sum_{k}\left(\bar{y}_{i}-\left.y_{i}\right|_{o}\right) \cdot \frac{y_{i}}{x_{i}}\right|_{o}
\end{aligned}
$$

$$
x_{1}=a-a_{0}, \quad x_{2}=b-b_{0}, x_{3}=c-c c_{0}, \quad x_{4}=d-d_{0}, x_{5}=e-e_{0}
$$

After solving Equation (A3-7) one can make a correction for $a_{o}, b_{0}, c_{0}, d_{o}, e_{o}$, and repeat the procedure until the ratios of the variance of the errors of estimate to that of original data for subsequent iterations differ less than the prescribed value $\left(=10^{-15}\right.$ in the present work).
III. 3 Computer program

A listing of the computer program is given in Table A3-1. The main program which handles the input data and lists the results is excluded.

Note that in the program, h_{d} is represented by $Y D$; Re, $\mathrm{Ga}, \mathrm{C}_{\mathrm{p}}, \mathrm{N}_{\mathrm{c}}$ by XD ; and a to e by AO .

ODIOO SUBROUTINE FFITIXD．YD．ND．AD．N．DF［IN．RIJ．A．B．NOROR．SNAME．NITRI
LE：IOC LEAST SQUARE FIT BY ITERATIVE METHOD
OOI2OC XO．YD ：INPUT DATA
00130C NO ：NUMBER OF DATA
OD140C AQ：COEFFICIENTS TO BE DETERMINED
OOISOC N ：NUMBER OF ROS
OOIGOC OFITN ：EEGREE OF FITNESS $1=1$ ．－STANDARD ERROR OF ESTIMATE／
DOIB0C AIJ：PARTIAL DEFFERENTIALS
OOIGOC A．B．NORDR ：HCRKING VECTOR OF MINIMUM SIZE OF（N』N）．（N）．（N） OOZOOC NITER ：MAXIMUM NUMBER OF ITERATICN／RETURN HITH ACTUAL
00210 C NUMBER DF ITERATION

C0220 EXTERNAL SNAME
00230 UIMENSION XOC 4．8001．YOIII．ADIII．AIJIII．RII）．B（1）．NORDRII）．KID（1）．IJK（3） 00240 MAXITR＝NITR
OD250 CERRCR＝1．OE－15
$00250 \mathrm{SY}=0$ ．
00270 00 10 1＝1．ND
00290 AY $=5 \mathrm{Y} / \mathrm{FLOAT}(\mathrm{ND}$ ）
$00300 \mathrm{Sy}=\mathrm{C}$ ．
00310 DO $20 \mathrm{~J}=\mathrm{I} . \mathrm{ND}$
$0032020 \quad 5 Y=S Y+1 Y 0(11-A Y)={ }^{2}$
00330 पी $100 \quad \mathrm{I}=1 . \mathrm{MAX}!\mathrm{TR}$
$00340 \mathrm{SB}=0$ ．
$003500030 \mathrm{~J}=1 . \mathrm{N}$
00360 00 $40 K=1 . N$
0038040 A（ $1 \mathrm{Jl}=0$ ．
00390 30 аノ Jノ＝0．
$0040000110 \mathrm{~J}=\mathrm{I}$ ．NO
C041D CALL SNGMEIXOII．JI．YOIJI．RO．RIJ．BIJ．N
CO420 CALL GRRRNGEIN．RIJ．BIJ．R．BI

COS4O CALL ESIMOIA．B．N．IER．NORDR
00450 00 $120 \mathrm{~J}=1 \mathrm{~N}$
00460120 FOI J $=B 1 J 1+F O L J$
00470 53R＝5B／SY
00490 NITR＝1． 160 TO 130
C500 IF（ARS（SBRO－SBR）．LE．CERRORIGO TO． 200
05520 100 CORT＝SBR
30530200 OFITN＝1．－SORTISER
00540 RETURN
00550 END

DOS50 FUNCTION OFUN5IXD．AD．N
ODS70C TG CALCULATE FITTED VALUE FQR A GIVEN XD
DO580 DIMENSION ROI $11 . \times 0111$
00590 QFUN＝AD（！）
00600 DO $10 \mathrm{I}=1 . \mathrm{N}-1$
0061010 OFUN＝OFUN＝XD（1）＝WRDII +1$)$
00520 OFUN5＝OFUN
-00540 END
D0650 SURROUTINE FFUN5IXC．YD．RO．AIJ．BIJ．MI
DOG60C TO CALCULATE PARTIAL DIFFERENTIALS（AQS）
CO675 DIMENSICN XDIII．ROIII．AIJIII
00680 BIJ＝YD－QFUNS XD．RO．N）
00690 C 21.
00700 00 $101=1 . \mathrm{N}-1$
$0071010 \quad \mathrm{C}=\mathrm{C} \times \mathrm{XD}(1) \mathrm{He} \mathrm{AD}(\mathrm{I}+1)$
00720 AIJI $1=\mathrm{C}$
00740 00 $20 \quad 1=1, \mathrm{~N}-$

0076 C RETURN
00770 END
00780 SUBRDUTINE RRRANGEIN．AIJ．BIJ．A．BI
OOTBOC TO CONSTRUCT MATRIX A AND VECTOR A FOR
OOSDOC SIMULTANEDUS EQUATION
00810 Dimension a
00820 00 $10 \quad I=1 . N$
00830 B $1=8(1)+2$

0085020 R 1 1，JI $=\mathrm{A}$
00350 10 CONTINUE
C0870 RETURN
00330 END

0042000250 l＝1．5
00420 OO 250
00430 NITR＝5
00440 CALL FFITIXD．YD．NDA．RD．S．DFITS．AIJ．A．B．NORDR．FFUNS．NITRI
00440 CALL FF
D0460 IFINITR．LT．SIGD TO 260
D047D PRINT IOD3．I．DFITN．AOINNR＋1）
Q0480 1003 FORMATIX．＇ITERATION IN PROGRES5． $1=\cdot .12 \cdot \cdot$ QFITN $=\cdot$ ．
00490＋F8．3．＇． POHER $=$＇．F8．31
OOSCD 250 CONIINUE
DOSIO 260 PRINT M．END ITERATION

APPENDIX IV

EXPERIMENTAL DATA

In this Appendix, a complete tabulation of the experimental data is given. The data for the experiments are complied according to the combination of packing and liquid. Since the distributor arrangement (DIST), the effective bed height (HB), fractional voidage (EPS) and viscosity of liquid (VIS) varied for a given combination of packing and liquid, they are given at the beginning of each set of data. Each measurement, idetnified by a Run number, consists of the total hold-up, the superficial velocities of liquid and gas, the pressure drop of the gas and the liquid distribution in terms of the relative liquid fluxes (defined by Eq. (5.2)) to three concentric annuli in the column cross-section.

Six-digit Run numbers are used for the first series of experiments and seven-digit Run numbers are used for the second series of experiments. The make-up of the Run numbers is described below.

First series of experiments: 6 digit numbers (e.g. 134311)

The first two digits (13) : number indicating a particular column (except Runs 20~ 26 in which the same column was used).

The third digit (4) : Liquid flow range
The fourth digit (3) : Repeat measurement over the same liquid flow range.

The last two digits (11) : Number showing the chronological order of the measurements.

Second series of experiments: 7 digit number (e.g. 1219101)

The first two digits (12) : Number indicating a particular column.

The third digit (1) : Particular series of measurements on the same column.

The fourth digit (9) : Liquid flow range

The fifth digit (1) : Repeat measurements over the same liquid flow range.

The last two digits (01) : Number showing the sequence of measurements on the same liquid flow rate with different gas velocities. 01 indicates measurements without gas flow.

A particular series of measurements is referred to by its abridged Run number. Two digit Run numbers which correspond to the first two digits of the full Run number are used to refer to the first series of experiments. Three or more digit Run numbers, e.g. 110, 111 or 11172, are used for the second series of experiments. In this case Run 110 is used to identify the particular column while Run 111 and Run 11172 are used to identify the specific sets of data.

PACKING ：PLASTIC SPMERES
AVERAGE SIZE
$=13.2(\mathrm{MM})$
GENSITY＝1000．（KG／M3）．NOMINAL VISCOS1TY $=.0010$（NS／M2） SURFACE TENSIDN＝ $.0732(N / M)$. CONTACT ANGLE $=92.6$（DEG．）

Run no．	total	liauio	GAS	PRESSURE	RELAT1	ve lidoulo	Flux
	HOLD－UP	velacitr	vELOCITY	DROP	INNER	MIOBLE	CUTER
	IPCT．${ }^{\text {d }}$	（Mm／S	（M／S）	（N／M3）	（－1	－－	$1-$
157220	3.035	． 8683	0	0	1.209	． 768	1.092
158321	3.395	1.3019	0	0	1.275	． 758	1.003
155322	2.547	． 2587	0	0	1.311	． 817	． 015
154123	2.395	． 1003	0	0	1.382	． 577	1.073
156324	2.763	． 4974	0	0	1.268	． 712	1.095
157325	3.019	． 8978	0	0	1.265	． 709	1.093
＊ㅍ	RUN 17 mm	．DI5T	$=19 . \mathrm{HB}$	． 625	EPS $=.4156$	． 115	．00035
178101	3.588	1.3997	0	C	1.254	． 525	1.150
174102	2.642	． 1520	0	0	1.226	． 328	1.020
177103	3．238	． 9056	0	0	1.246	． 710	1.103
175104	2.782	． 2783	0	0	1.251	． 742	1.082
176105	2.945	． 4879	0	0	1.293	． 776	1.117
178206	3.577	1.3674	0	0	1.103	．650	1.189
176207	2.967	． 5071	0	0	． 973	－\％31	1.120
174209	2.665	． 1502	－	0	． 777	． 32	1.139
177209	3.238	． 8429	0	0	1．153	． 772	i． 053
175210	2.771	． 2766	0	0	：． 159	335	；．052
175311	2.766	． 2670	0	0	． 856	． 935	：． 054
178312	3．559	1．3183	0	0	1．182	． 709	：．125
174313	2.635	． 1463	0	0	i．：cs	三75	：．045
177314	3.216	． 8582	0	0	． 515	． 739	！．105
176315	2.972	． 5109	0	0	1．：24	． 514	1.083
170116	2.458	． 0256	0	0	． 9.6	：． 225	1．0n
172116	2.597	． 1009	0	0	1．884	－ 35	！．i：
171118	2.541	．050日	0	0	1.213	． 239	1.053
171219	2.507	． 0502	0	0	：． i 39	． 0.05	！．075
170220	2.444	． 0254	0	0	． 374	． 90	－．0きэ
172221	2.575	．0980	0	0	i． 28	． 312	1.051
172322	2.590	． 0996	0	0	． 34	． 3.36	1．0．0
170323	2.439	． 0207	0	0	1．6：0	－92	1.609
171324	2.495	． 050	0	0	！． 193	92a	1．0．45
＝a＝	RUN 22 －m＝	． 015 T	$=19 . \mathrm{MB}$	． 425	EPS $=.4011$	－：15	．00105
224102	2.836	． 1509	0	－	1.694	． 559	． 973
223103	2.756	． 0740	0	0	：． 353	． 74	i． 071
225104	2.956	． 2663	0	0	i． 351	586	1.145
227105	3.434	． 7537	0	0	1．524	556	1.072
228106	3.743	1.2588	0	0	！．588	． 48.	1.130
223207	2.707	． 0741	0	0	i． 325	． 305	1.018
225208	2.946	． 2582	0	0	！．533	． 634	1.023
227209	3.427	．8179	0	0	1.395	． 530	1.154
225210	3.138	． 4751	0	0	1.493	． 553	1.114
22：211	2.849	．1444	0	？	1． 808	． 510	． 377
2こ3212	9．723	1.2593	0	0	1．441	． 419	1.218
2273：3	3.394	． 8186	－ 0	0	1.594	． 502	1.118
223314	2.733	． 0730	0	0	1.455	． 535	1.045
225315	2.929	． 2727	0	0	1.323	． 651	1.114
225316	3.138	．2842	0	0	1．531	． 502	1.137
228317	3．730	1.2933	0	0	1.442	． 444	1.202
2243：8	2.849	． 1444	0	0	1．6！1	． 594.	． 990
\＃\＃	F（\％ 23 \＃\＃	．DIST	$=13 . \mathrm{HB}$	． 425	EPS $=.4100$	． v ！ $5=$	． 00100
23810！	3.451	． 9097	0	0	2.352	． 586	． 809

EXPERIMENTAL RESULTS FOR＝＝PLI3／WATR＝＝SYSTEM
NO．

RUN NO．	total	LIOUIO	gas	PRESSURE	relati	ve Liguio	D FLUX
	MOLD－UP	velocity	velocity	OROP	INNER	MIDOLE	Outer
	1PCT．）	（ mH ／S）	（H／S）	（N／M3）	（－）	（－）	1－1
237102	3.178	． 5879	0	0	1.800	． 716	． 913
235103	2.922	． 2708	0	0	1.861	． 657	． 930
234104	2.723	． 0934	0	0	1.659	． 768	． 329
235105	2.803	． 1871	0	，	1.665	． 755	． 935
2382006	3.484	． 9185	0	0	1.868	． 506	1.021
236207	2.986	． 3265	0	0	1.872	． 660	． 924
235208	2.833	． 1815	0	0	2.129	． 738	． 790
237209	3.219	． 5797	0	0	2.355	． 573	． 816
234210	2.737	． 0320	0	0	2.126	． 807	． 748
－${ }^{\text {® }}$	Ruti $24=0 \mathrm{~m}$	－DIST	$=71 . \mathrm{HB}$	$=.425$.	$E P S=.4106$	．V15	． 00109
245101	2.737	． 1081	0	0	1.999	． 787	． 803
248102	3．122	． 5259	0	0	3.036	． 444	． 668
247103	2.949	． 3160	0	0	2.703	． 624	． 569
245104	2.803	． 1911	0	0	$2.81)$	． 660	． 510
246205	2.910	． 2045	0	0	2.703	． 566	． 704
248206	3.035	． 5077	0	0	3.027	． 559	． 593
247207	2.922	． 3223	0	0	2.404	． 762	． 682
245208	2.707	． 1052	0	0	2.297	． 648	． 789
＊＊＊	RUN 26 mmm	－DIST	$=7 M . H R$	． 425.	$E P S=.4105$	VIS	． 00108
258101	3.109	． 5018	0	0	1.665	． 591	1.036
255102	2.786	． 1937	0	0	1.857	． 957	． 745
267103	2.933	． 3258	0	0	1.749	． 861	． 341
255104	2.593	． 1153	0	0	1.961	． 945	． 718
267205	2.952	． 3241	0	0	1.857	． 880	．793
265205	2.713	． 1080	0	0	2.160	． 830	． 722
256207	2.796	． 1936	0	0	2.010	． 346	． 763
259203	3．08a	． 5282	0	0	2.154	． 760	． 768
－n＝Rusila＝n							
＂\＃	Gas Pressure	E UROP it	ROUGH ORY	BED $=$ \＃	$H B=.615$	EPS	． 4054
1200002	？	0	． 515	315.7	0	0	O
1200003	0	0	． 737	612.3	0	0	3
1200004	0	0	． 984	1020.5	0	0	\bigcirc
：200005	0	0	1.279	1620.1	0	0	？
：200005	0	0	1.516	2470.0	0	0	1）
－${ }^{\text {－}}$	Run $121=0$	－ 015 T	$=19.49$	． 615 ．	$E P S=.4054$	VIS	． 30102
1219101	3.920	1.3335	0	0	1.085	.705	1.100
i213101	3.573	． 8038			1.021	． 823	1.109
：2770：	3.273	． 4800	0	0	1.186	． 938	． 251
12：510！	3.045	． 2649	0	0	1.322	1.224	． 350
：215101	2.975	． 1197	0	0	1.125	1．361	． 740
：21401	3.677	1.0017	0	0	1.160	． 792	1．03！
：214102	3.74 .5	． 9770	． 430	389.1	1.224	． 819	1.043
12：4103	3.769	． 9805	． 558	720.8	． 752	． 455	1.427
：21：104	4.007	． 9718	． 737	1467.0	． 198	． 149	1.302
12： 2105	4．5：4	1.0185	． 795	1883.2	． 288	． 172	1.759
12：4．05	5．ミ．！	1.0292	． 853	2532.2	． 466	． 233	1.550
：214107	5.743	．9853	． 905	3331.1	． 750	． 259	1．549
12！320！	3.885	1．2935	0	0	1.057	． 771	1．129
！ 3 ：8201	3.527	．8c06	0	0	1.055	． 348	1.082
：2：7201	3．189	． 4941	0	0	1.010	． 945	1.037
121620：	3.032	． 2810	0	0	．889	1.117	－971

EXPERIMENTAL RESULTS FOR＊＊PLI3／WATR＊＊SYSTEM
NO．

RUN NO．	tatal	Liouio	CAS	pressure	relat	Ive Liouid	flux
	hold－up	velocitr	velocity	OROP	INNER	M100LE	OUIEP
	（PCT．）	（MM／S）	（M／S）	（N／M3）	（－）	1－1	1－1
1215201	2.837	． 1457	a	0	． 816	1.242	． 918
1215202	2.896	． 1241	． 457	379.5	． 911	1.004	1．135
1215203	2.837	． 0752	． 673	845.1	． 926	． 718	1.205
1215204	2.899	． 0692	． 799	1302.8	． 338	． 462	1.583
1215205	3.268	． 0745	． 923	1859.3	． 159	．124	1.833
1215206	4.087	． 0717	． 993	2412.6	． 712	．419	：．．E］
1215207	5.375	． 0634	1.048	3077.5	． 724	． 569	1．363
1215208	6.373	．0714	1.091	3602.2	． 319	． 412	1.500
1215209	8.767	． 0531	1．191	4413.8	． 941	． 631	1.292
＊＊＊	RUN 122 ＂＊＊	． 015 st	$=71 . H 8=$	$=.615$	EPS $=.4054$	． 715	00105
1226101	2.917	． 2305	0	． 0		1.151	． 695
1227101	3.105	． 3931	0	0	1.617	． 952	． 929
1228101	3.245	． 6209	0	0	2.078	． 919	． 695
1229101	3.601	1.0158	0	0	1.825	．954	． 753
1229102	3.748	． 9907	． 459	428.9	1.554	． 878	． 895
1229103	3.762	． 9855	． 597	784.5	1.319	． 558	1．111
1229104	3.867	． 9975	． 737	1396.9	． 190	． 245	1.744
1229105	4.188	． 9948	． 798	1741．3	． 336	．151	1.748
1229106	5.772	． 9922	． 862	255：3	． 510	． 242	1.540
1229107	7.821	1.0089	． 394	3351.8	． 741	． $2: 3$	1．751
1229201	3.197	． 5193	0	0	1．811	1．C42	－7：3
1228201	3.013	． 3176	0	0	1．531	i． 114	．7シ？
1226201	2.786	． 1002	0	0	1.591	1．：Eら	． 703
1227201	2.885	． 1884	0	0	1．358	1.173	．782
1227202	2.915	． 1867	． 457	379.5	： 53.1	1.184	．7：5
1227203	2.905	． 1859	．622．	704.8	1.506	． 931	． 7.8
1227204	3.068	． 1893	． 793	1285.2	．673	． 722	1．283
1227205	3.578	． 1936	－ 922	1919.9	． 394	． 237	！－ 6 ！
1227206	4.842	．184！	． 996	2596.4	－534	． 260	－－ 320
1227207	6.013	． 1771	1.015	3214.7	．603	． 389	1．521
1227209	7.291	． 1852	1.652	$38 \mathrm{C9} .5$	． 591	． 405	1.512
1227209	8.462	． 1876	1.071	4203.3	520	． 314	－ロミこ
\＃\＃\＃	RUN 123 －${ }^{\text {an }}$	．01ST	$=71.188$	． 615	EPS＝．4054	． y ：3．$=$	． 20103
1237101	2.642	． 0150	0		1.593	． 34	－ 3 ，
1238101	2.575	． 0346	0	3	1.859	． 292	．735
1239101	2.747	．0614	0	0	1.828	． 943	． 7.32
1233102	2.749	． 0603	． 457	352.4	1.030	1．0：5	． 335
1239103	2.745	． 0615	． 623	651.8	1.814	． 553	． 327
1239104	2.749	． 0618	． 793	1168.8	． 609	． 817	1.252
1239105	2．986	． 0514	． 92 ！	1723.7	． 333	． 405	1．539
1239106	5.306	． 0604	1.048	3072.8	． 511	． 436	1.492
1233107	6.649.	． 0608	1.118	3804.7	． 576	： 559	！． 391
1239108	7.623	． 0645	1.132	4160.3	． 425	． 371	1.588
＊＊	RUN 124 max	－ Cl ST	$=13 . \mathrm{HB}=$	．615	EPS $=.4054$	．VIS	． 00113
1249101	3.615	． 9489	0	0	1．152	． 990	． 955
1249201	3.576	． 9200	0	0	． 343	． 975	1.075
124820！	3.303	． 5193		0	． 873	1.118	． 975
1245201	2.802	． 0874	0	D	1.123	． 884	1.038
1246201	2.926	． 1387	0	0	1.559	． 908	． 876
1247201	3.087	． 3174	0	0	1.307	． 710	1.083
1247202	3.133	． 3143	． 459	389.1	1.302	． 731	1.071

EXPERImental result forme pli3/watr ma system
ND. 5

RUN ND.	total	Lioulo	GAS	PRESSURE
	HOLD-UP	velocity	velocity	DROP
	(PCT.)	(MM/S)	(M/S)	(N/M3)
1247203	9.199	. 2659	. 618	744.7
1247204	3.206	. 3204	. 624	743.1
1247205	3.227	- 3270	. 738	1130.6
1247206	3.514	. 3265	. 858	1734.9
1247207	4.312	. 3177	. 917	2221.3
1247209	S.a51	. 3059	. 984	3048.8
1247209	6.961	. 3128	1.018	3581.4
1247210	8.443	. 2723	1.044	4145.9

- $=$	Gñs Pressure	QROP it	hrojugh dry	BED :	HB $=.620$	EPS	. 4105
1900001	0	0	. 457	242.0	0	0	0
1900002	0	0	.618	414.4	0	0	0
1900003	0	0	. 844	721.3	0	0	0
1900004	0	0	1.107	1164.2	0	0	D
1900005	0	0	1.440	1849.0	0	0	0
1900006	0	0	1.752	2560.8	0	0	0
"	RJJ 191 Em	- DIST	$=7 \mathrm{I} \cdot \mathrm{HB}$. 620	EPS $=.4106$	VIS	. 00104
1919101	3.353	.518:	0	0	2.184	. 716	. 785
1918101	3.098	.3181	0	0	2.186	. 819	. 721
1917101	$3.0<8$. 1850	0	0	2.244	. 907	. 647
1916101	2.875	. 0936	0	0	1.552	1.227	. 682
1917102	3.112	. 1790	. 452	335.9	1.177	1.190	. 829
1917103	3.085	. 1900	. 4.52	335.3	. 925	1.109	. 965
1917104	3.101	. 1709	. 629	645.3	1.439	1.045	. 832
1917105	3.210	.1745	. 805	1097.7	. 577	. 946	1.182
1917105	3.510	. 1639	1.001	1822.1	. 116	. 657	1.515
:917107	5.204	. 1586	1.126	2771.2	. 215	. 702	1.455
1917108	5.960	. 1658	1.185	3199.8	. 188	. 757	1.429
1917109	7.203	. 1684	1.257	3842.0	. 222	. 958	1.294
1917110	8.186	. 1390	1.277	4110.9	. 085	. 814	1.428
- ${ }^{1}$	RUN ! 92 - $=$. 0151	71. HB	. 615	EPS $=.4054$	vis	. 00102
1927101	3.264	. 3997	0	0	1.946	. 839	. 789
1926101	3.121	. 2219	0	0	2.097	. 842	. 736
1925101	2.967	. 1273	0	0	2.550	. 807	-607
:924101	2.355	. 6510	0	0	2.092	1.149	. 550
1928101	3.397	. 5764	0	0	2.088	. 849	. 734
[929101	3.757	1.0071	0	0	1.139	.995	. 963
1929102	3.8.2	1.0498	. 456	405.0	1.362	. 968	. 905
1929103	3.879	. 9457	. 522	760.6	. 532	. 812	1.279
1927201	3.155	. 3896		0	1.550	. 867	-904
1:29201	3.599	1.0172	0	0	. 350	. 821	1.131
: 329202	3.723	1.0034	. 454	375.3	1.167	. 939	.988
1329203	3.732	. 9180	. 529	725.5	.481	. 520	1.477
:929204	3.759	. 3510	. 629	741.5	- 553	. 777	1.290
1929205	3.883	. 3002	. 804	1325.7	. 211	. 307	1.700
:929こ05	4.557	. 9573	.918	1977.3	. 068	.318	1.741
1929207	5.75!	. 6528	. 380	2475.4	. 023	. 311	1.760
:929208	5.023	1.0746	. 971	2519.4	. 072	. 300	!.751
: 929209	6.513	1.0424	1.038	3144.5	. 085	. 434	1.653
":	RUN 193 \#\#	. 015 T	$=71 .{ }^{+1}$	$=.615$.	EPS $=.4054$. VIS	. 00102
13910!	2.930	. 0655	0	0	2.300	. 983	. 582

EXPERIMENTAL RESULTS FDR me PLIJ/WATR me SYSIEM
NE. 6

RUN NO.	tatal	LJQuia	gas	PRESSURE	RELAti	LIau	10
	holdeup	veldcity	velocity	DROP	INNE?	MJODLE	OUTER
	(PCT.)	(MM/S)	(M/S)	(N/M3)	1-1	1-1	1-1
1938:01	2.848	. 0354	0	0	1.973	1.013	. 665
1937101	2.784	. 0183	0	0	$1.3 ミ 5$	1.095	. 819
1938102	2.965	. 0359	. 464	350.8	1.832	1019	.100
1938103	2.869	. 0360	. 656	666.5	1.339	1.008	. 836
1938104	2.876	. 0347	. 865	1135.3	. 393	1.110	. 972
1938105	3.319	. 0322	1.071	1908.7	. 025	. 960	1.353
1938106	4.452	. 0367	1.213	2737.9	. 274	. 959	1.316
1938107	5.953	. 0316	1.336	3627.7	. 321	. 925	1.280
1938108	6.768	. 0287	1.405	4058.2	. 553	. 743	1.309
-\#\# RUN220 min							
"m	Gas Pressure	E DROP TH	RROUCH ORY	8E0 "	H8 $=.425$	EPS	. 4106
2200001	0	0	- 464	244.6	- ${ }^{2}$	0	0
2200002	0	0	. 634	433.8	3	\square	0
2200003	0	0	. 856	754.5	0	0	0
2200004	0	0	1.154	1285.3	0	0	0
2200005	0	0	1.460	1977.5	0	0	0
2200005	RUN 221 =0*	0	1.782	2838.2	0.	0	. 00108
\#**		- 015 T	$=71$, H8	. 425	$E P S=.4106$. V15	
2219101	3.052	.4738	0	0	2.193	. 885	-579
2218101	2.506	. 3155	0	0	2.152	1.004	. 614
2215101	2.573	. 1004	0	0	2.204	1.237	. 522
2217101	2.816	. 1859	0	0	1.391	1.190	. 590
2217102	2.992	. 1927	. 457	360.0	2.022	1.150	. 571
2217103	3.059	. 1843	. 656	740.7	1.297	1.273	. 737
2217104	3.245	-:856	. 364	1412.2	. 458	. 509	1.516
2217105	3.640	. 1767	1.005	1979.8	$\therefore: 10$. 116	1.842
2217106	4.357	.1863	1.119	2597.4	. 2.6	. 047	1.926
2217107	5.280	-1821	1.252	3493.5	.901	. 364	1.921
2217:08	10.106	. 1723	1.327	4935.7	.017	. 059	: 918
2217109	6.828	. 2020	1.288	4278.0	. $3: 5$. 045	1.927
=\#\#	RUN 222 = $=$	- 0.51	$71 . \mathrm{HB}$. 420	EDS $=.4029$	- VIS	. 09110
2228101	2.857	. 0339	0	0	1.37	1.190	. 583
2227101	2.816	. 0168	0	0	:. 597	1.283	. 536
2229101	2.880	.0546	D	0	- ¢33	1.285	. 601
2229102	2.981	. 0548	. 452	359.6	i.934	1.248	. 691
2229103	2.994	. 0532	. 636	712.2	1.338	1.164	. 574
2229104	3.139	.0549	. 873	1433.6	1.141	. 600	1.205
2229105	3.744	. 0553	1.119	2568.4	.013	. 149	1.863
2223106	4.083	. 0881	1.326	3306.3	0	. 762	1.491
2229107	5.985	. 0545	1.387	4371.0	. 015	. 22 a	1.815
2229108	8.049	. 0512	1.419	4829.5	0	. 202	1.837
=*	RUN 223 =\%	. 0155	$=71 . \mathrm{HB}$. 420	EPS $=.4029$	- v:s	.00106
223810!	3.488	-5505	0	0	1.921	. 961	. 817
2237101	3.250	. 3996	0	0	2.503	. 771	-644
2236101	3.072	. 22958	0	0	2.502	. 960	. 527
2239101	3.670	1.0097	0	0	2.251	. 793	. 715
2239102	4.006	1.0380	. 457	406.3	2.857	. 898	. 446
2239103	4.140	1.0007	. 630	852.2	. 756	. 883	1.160
2239104	4.278	. 9855	. 803	1482.7	. 433	. 351	1.598
2239105.	6.056	1.0085	. 950	2748.2	.071	. 217	1.803
2233100	7.393	1.0254	1.002	3467.4	. 028	. 239	1.804

EXPERIMENTAL RESULTS FOR ** PLI3/WATR me SYSTEM						NO. 7	
RUN NO.	total	LIQuja	GAS	Pressure	RELATj	ve liguio	flux
	HOLO-UP	velacity	velocity	DROP	INNER M	H100LE	OUTER
	(PCT.)	(MM/S)	[M/51	($\mathrm{N} / \mathrm{M3}$:	1-1	1-1	1-1
2239107	10.730	1.0047	1.043	4646.5	. 286	. 476	1.570
	Run 224	01St	$=71 . \mathrm{H8}$. 420	EPS $=.4029$	vis	.00109
2249101	2.967	. 0628	0	0	2.085	. 927	. 688
2248101	2.900	. 0335	0	0	2.008	1.036	. 645
2247101	2.860	. 0178	0	0	2.121	. 950	. 660
2247:02	2.927	. 0178	. 468	354.9	2.070	. 935	. 699
2247103	2.893	. 0169	. 825	637.4	2.256	1.082	. 541
2247104	3.035	. 0176	. 869	1307.6	. 463	1.137	1.098
2247105	4.194	. 0183	1.153	2811.3	0	1.028	1.338
2247106	4.436	. 0169	1.373	3714.9	0	. 219	1.911
22471072249102	7.407	. 0183	1.412	4896.3	. 040	. 894	1.393
	7.854	. 0545	1.370	4887.0	. 008	. 317	1.764
*\#\#	RUN 225	- 015 T	$=19 \cdot \mathrm{MB}$. 420	EPS $=.4029$	- VIS	. 00108
2259101	3.179	. 1728	0	0	2.067	. 774	. 788
2259102	3.310	. 1742	. 458	361.9	2.106	. 762	. 783
2259103	3.330	. 1730	. 641	723.8	1.816	. 710	. 913
2259104	3.512	.1732	. 871	1465.3	. 568	. 513	1.452
2229105	4.295	.1677	1.077	2535.7	. 016	. 202	1.830
-9106	5.189	. 1726	1.215	3497.7	. 008	. 293	1.776

40.

PACKING : WAX-COATED SPHERE
AVERAGE SIZE $=13.3$ (MM) . APPARENT DENSITY $=921 .(\mathrm{KG} / \mathrm{M} 3)$ AVERAGE SIZE

SPHERE
$\underset{\text { DENSITY }}{\text { LIER }}=$ i000.(KG/M3). NOMINAL VISCOSITY $=.0010(N S / M 2)$ SURFGCE TENSION = .O732 (N/M) . CONTACT ANGLE = 105.6 ideg.,
 (PCT.) (MM/S) (M/S)
*MK RUNISO mFm

***	gas pressure	OROP T	through ory	8ED **	H3	. 620	EPS =		$4: 05$
1500001	0	0	. 580	368.5		0	0		
1500002	0	0	. 891	789.3		0	0		
1500003	0	0	1.236	1418.8		0]		
1500004	D	0	1.533	2078.4		0	j		
1500005	0	0	1.825	2858.2		-	0		
"m\%	RUN 151.m*	- OIST	= $71 \cdot \mathrm{HB}$. 620	EPS	. 4106	113	$=$.001:0
1519101	1.956	. 5025	0	0		. 6.33	- 948		1.15
1518101	1.955	. 3083	0	0		. 674	.991		: . 121
1517101	1.785	. 1824	0	0		. 630	.855		!.214
1516101	1.691	. 0987	0	0		. 54.1	. 846		1.221
1515102	2.015	.988	. 454	316.3		-634	. 634		1. -02
1516103	2.042	-013	. 459	316.3		. 422	.641		1.421
1517102	2.031	. .828	. 464	322.7		. 416	. 834		1.305
1518102	2.131	. 3219	. 464	329.0		. 34	. 725		1.2S2
1517103	2.225	. 2935	. 623	577.3		. 475	. 513		1.493
1517104	2.099	. 1794	. 791	972.9		. 34	. 394		1.622
1517105	2.957	. 7760	. 978	172a.8		. 54	. 270		1.776
1517106	4.890	. 1769	1.113	2756.9		. 335	.523		1.6.5
1517107	6.604	.1786	1.208	3680.		$\therefore 29$.4:9		: 0 O2
1517108	5.991	- 771	1.203	3935.3		- 55	. 505		1.5:0
. 517201	1.839	-1849	i]]		- \%5	.834		!.235
1518201	1.974	. 180	J	0		. 545	. 314		: 1.18
1516201	1.823	. 0991	11	0		. 325	. 873		: . 203
1519201	2.119	. 5170	0	0		. 704	. 925		. 152
"\#	RUN 152 "\#\#	. 015 T	= $71 \cdot \mathrm{HB}$. 620	EPS	- . 4106	vis	$=$. 10.15
1529101	2.302	. 3389	0	0		. 755	. 753		1.204
1528101	2.094	.8299	0	0		. 753	. 894		1.152
1527101	1.949	. 3881	0	0		.943	. 973		1.205
1526101	1.821	. 302	0	0		. 517	. 878		1.210
1526102	2.051	. 3312	. 459	317.9		. $2 \cdot 9$. 675		1.339
1529102	2.625	. 9948	. 462	344.8		. 593	. 725		1.312
1529103	2.709	.9932	. 624	639.0		. 473	. 537		1.470
1529104	2.798	.9834	. 793	1059.2		. 178	. 289		1.721
1529105	4.034	. 9780	. 986	2170.1		. 0.6	. 264		1.792
1529106	5.448	1.0508	1.049	2785.4		. $0: 7$. 227		1.814
1529107	6.955	1.0988	1.103	3427.6		. 22 :	. 255		1.59:
\#*	RUN 153 =m	. 0.59	T = $71 . \mathrm{HE}$	$=.620$	EPS	. 4105	- VIS	$=$. 00109
1539101	1.728	. 0614	0	0		. 570	. 800		1.275
1538101	1.739	. 0335	0	0		. 552	. 915		1.207
1537101	1.726	. 0171	0	0		.619	. 745		1.299
1539201	1.757	. 0625	0	0		. 631	. 828		1.239
1539202	1.899	. 0638	. 459	310.0		.34:	. 575		1.452
1539203	1.969	. 0624	. 634	590.0		.3.:'	. 500		1.547

EXPERIMENTAL RESULTS FOR = WI3/WATR E" SYSTEM

EXPERIMENTAL RESULTS FOR ** WI3/WATR ** SYSTEM
NO. 3

RUN NO.	TOTAL L	LIDUIO	GAS	PRESSURE	Relative liouid[NNER Midole			
	HOLD-UP V	velocity	Y VELOCITY	DROP				outer
	(PCT.)	(MM/S I	(M/S)	($\mathrm{N} / \mathrm{m} 3$)		1-1	(-)	(-)
\#\#\#	gas pressure	E DROP T	Through dry	BED EF	HB	$=.640$	EPS	. 4301
1800001	0	0	. 469	214.5		0	0	0
1800002	0	0	. 676	413.7		0	0	\square
1800003	0	0	. 924	732.4		0	0	0
1800004	0	0	1.269	1281.0		D	0	0
1800005	0	0	1.562	1834.2		0	,	0
1800006	0	0	1.787	2312.2		0	0	0
*\#:		- Dist	T $=19 . \mathrm{HB}$. 640	EPS	$s=.4301$	vis	. 00107
1818101	1.888	. 7551	0	D		. 564	. 580	1.379
1819101	2.137	1.2382	0	0		. 590	. 543	1.393
1817101	1.700	. 4342	0	0		. 58 i	. 571	1. 378
1816101	1.565	. 2133	-	0		. 597	.614	1.981
"\#\#	RUN 182 mw	. DIST	T $=71 \cdot \mathrm{HB}$.\%33	EPS	$\mathrm{S}=.4253$	- vis	. 00.100
1828101	1-700	. 3215	0	0		I. 503	. 369	. 957
1829101	1.807	. 5241	5	0		1.450	. 894	. 921
1828102	1.845	. 3296	. 462	274.9		1.223	1.132	. 849
1828103	1.960	. 3275	. 691	611.6		. 547	. 886	1.229
1928104	2.089	. 3256	. 922	1147.5		. 109	. 427	1. 650
1828105	3.010	. 3249	1.111	1901.1		-005	.187	1.843
1828106	3.903	. 3243	1.181	2333.5		. 004	. 119	1.896
1827201	1.658	. 1441	0	0		1.538	1.074	. 783
1829201	1.903	. 4355	0	0		1.331	. 963	. 918
1826201	1.569	. 0429	0	0		1.708	1.073	. 724
"m"	RUN 183 max	. DISt	T $=19 . \mathrm{Ms}$. 635	EPS	$=.4253$. VIS	. 00101
1834101	1.594	. 0040	D	0		. 337	. 690	1.393
1835101	1.620	. 0892	0	0		. 520	. 821	1.246
1837101	1.825	. 4375	D	0		. 747	. 707	1.273
1838101	2.049	. 8169	0	[. 547	. 654	1.339
1839101	2.314	1.2850	0	0		. 524	- Eg	1.340
1835101	1.745	. 3303	0	0		. 767	. 76	1.232
1836102	1.963	. 3245	. 457	270.3		. 692	. 735	:. 274
1836103	2.083	. 3238	. 573	591.5		. 440	. 657	1.405
1636104	2.296	. 3181	.921	1190.7		.ca7	. 37	1.598
1835105	3.334	. 5149	1.125	2027.7		.c.7	. 24	1.934
1835106	3.916	. 3149	1.200	2285.7		0		0
1836107	5.461	. 3181	1.338	3830.0		0	0	0
1835108	6.479	. 2511	1. 428	3681.8		. 577	. 565	1.417
1835109	-5.53	. 3232	1.4 .26	3704.9		. 578	. 567	1.416
-n\# RUN210 -rim								
m"	GAS PRESSURE	OROP TM	HROUGH DRY	8EO .a	$\mathrm{HB}=$	$=.425$.	EPS $=$. 4106
2100001	0	0	. 457	216.9		0	-	0
2100002	0	${ }_{\square}$. 623	390.7		0	0	0
2100003	0	0	. 819	534.6			0	0
2100004	0	0	1.057	1015.3		0	0	
2100005	0	0	1.340	1543.7		0	0	0
2100006	0	0	1.725	2455.1		0	0	0
-"	RUN 211 =\%	- DIST	$=71 \cdot H B=$	$=.425$	EPS	$=.4105$. vis	. 00105
2118101	2.006	. 3481	0	0		1.071	. 915	1.035
2119101	2.115	. 5203	-	0		1.334	. 856	. 983
2116101	1.797	. 1030	0	0		1.048	. 964	1.013
2117101	1.880	. 1914	0	0		1.031	1.018	. 986

EXPERIMENTAL RESULTS FOR $=$ H13/hATR EF SYSTEH

RUN NO.	total	Lioulo	GAS	pressure	retative liouio		flux OUTER
	HDLS-LP	velocity	velocity	DRDP	INNER	midile	
	IPCT.:	(mm/S)	(10/5)	(n/m3)	1-1	1-1	1-1
2117102	2.075	. 1914	. 461	304.5	1.074	. 933	1.024
2117103	2.129	-1911	. 629	549.2	1.020	. 763	1.147
2117104	2.263	. 1850	. 875	1073.0	. 694	. 332	1.523
2117:05	$3 \cdot 125$.1814	1.131	2030.6	. 020	. 237	1.808
2117106	4.13:	. 1335	1.253	2725.1	. 007	. 304	1.770
2117107	4.17:	. 1822	1.399	3098.9	. 014	. 007	1.953
2117108	5.13:	.173!	1.502	3712.7	0	. 007	1.960
2117103	5.37	. 1855	1.515	4137.3	0	. 035	1.942
2117110	9.262	. 1794	1.707	5281.8	. 012	. 088	1.912
***	RUH 212 " $=$	- 0.15 t	$71 . \mathrm{H8}$. 425	EPS $=.4106$. VIS	. 00105
2127101	2.163	. 2988	0	0	1.523	. 744	. 989
212610:	2.035	. 2253	0	0	1.357	. 809	1.005
2128101	2.351	. 6.559	0	0	1.485	. 655	1.057
2129101	2.580	1.0121	0	0	1.443	. 691	1.049
2129102	2.800	1.0159	. 464	325.4	1.153	. 725	1.122
2129109	2.962	1.0045	.631	599.9	1.160	. 734	1.117
2129104	9.039	. 9989	. 792	964.5	. 884	. 485	1.364
2129105	3.490	1.0018	. 973	1569.1	. 382	. 272	1.664
2129105	5.775	1.0095	1.096	2817.4	. 759	480	1.409
2129107	7.250	1.0131	1.163	3555.8	. 363	. 530	1.51.
2129108	8.213	1.0217	1.253	4151.1	. 240	. 432	1.619
2129109	8.75 j	1.0351	1.332	4549.5	. 131	. 457	1.634
2129110	11.853	. 9609	1.365	5399.5	. 121	. 435	1.651
nx:	RUN 213 \#\#	- 0.51	$=7!\cdot \mathrm{HB}$	$=.425$	EPS $=.4106$	- vis	. 00.05
2139101	1.959	.0532	0	0	1.615	. 914	. 854
2138101	1.945	. 0349	0	0	1.534	. 899	. 894
2137101	1.925	.0183	0	0	1.705	. 799	. 902
2137102	2.052	-01E4	. 462	311.5	1.270	. 783	1.050
2137103	2.142	.0175	. 630	556.1	1.202	. 418	1.308
2137104	2.192	-0183	. 872	1043.0	. 548	. 385	1.508
2137105	2.577	.0162	1.135	1897.5	. 178	. 339	1.700
2197106	2.248	. 0157	i.4.9	2519.7	. 026	. 009	1.946

\#\#\# GAS PRESSURE RROP iHROUEH ORY QEO

	grs pressupe	QROP i	HROUCH ORY	8E0	H8 $=.425$	EPS	. 4155
$2350 \mathrm{co:}$,	0	. 463	237.7	0	0	
2300002	0	0	. 523	417.7	0	0	
2300003	0	0	. 855	726.8	0	0	
2300004	0	0	1.110	1163.0	0	0	
2390005	0	0	1.375	1714.4	0	0	
2300006	0	0	i. 590	2245.2	0	0	
2300007	0	0	!.828	2909.7	0	0	0
m"	20: 231 =**	D15t	$=7!$. HB	. 425	EPS $=.4106$	- vis	.00111
231910!	2.089	. 5093	0	0	1.693	. 576	1.036
2319.?	1.910	. 3043	0	0	1.622	. 640	1.021
23!6:	1:730	.0974	0	0	1.464	.681	1.048
23171	:.800	.1684	0	0	1.522	. 664	1.005
2317:\%	2.:25	. 1805	. 459	309.2	1.403	. 614	1.109
23:7:0\%	2.252	. 1784	. 524	563.0	1.185	. 582	1.141
2317104	2.504	.1756	. 964	1053.7	. 300	. 733	1.406
23:70\%	3.759	.178!	1.121	2212.9	. 024	. 212	1.822
23: $3: \%$	4.555	. 1914	1.758	2898.2	. 004	. 317	1.763

EXPERIMENTAL RESULTS FOR ."WI3/WATR EN SYSTEM
NO. 5

EXPERIMENTAL RESULTS FOR E= PLG/hatr =e SYSTEM No. 3							
RUN NO.	TOTAL	110410	GAS	Pressure	relative liguio		flux
	HCLD-UP	VELOCITY	VELOCITY	OROP	inNER	MIDDE	OUTER
	(PCT.)	(MM/S 1	(M/S)	(N/M3)	1-1	1 1-1	(-)
1427103	6.144	. 3723	. 749	3138.5	. 096	. 325	1.728
**	RUN 143	- 015	$=71 \cdot \mathrm{HB}$. 584	EPS	. 3843 . ViS	. 00109
1439101	3.555	. 0613	0	0	1.297	- 797	1.033
1438101	3.463	. 0320	0	0	1.319	- 727	1.072
1437101	3.386	. 0161	0	0	1.282	. 639	1.130
1437102	3.403	. 0137	. 284	344.2	. 964	. 588	1.271
1438102	3.427	. D 315	. 286	349.3	. 645	. 815	1.245
1439102	3.5! 4	. 0632	. 284	357.7	. 817	7 .698	1.253
1439103	3.451	. 0629	. 413	720.4	1.497	7.571	1.106
1439104	9. 321	. 0635	. 571	1316.5	. 182	. 155	1.805
1439105	3.753	. 0627	. 753	2369.4	. 116	- 225	1.781
1439105	6.289	. 0690	. 828	3719.5	. 405	. . 299	1.642
1439107	8.785	. 0596	. 853	4416.4	. 032	. 221	1.815
1437103	7.910	. 0116	. 929	4886.6	. 043	- 440	1.669

EXPERIMENTAL RESULTS FOR me PLM/hATR =n SYSTEM
NO. I
PACKING : PLASTIC SPhERESIMIX
AVERAGE SIIE $=10.6(M M)$. APPARENT DENSITY $=921 .(K G /$ M3)
LIOUID : HATER
DENSITY $=1000(K G / M 3) \cdot$ NOMINAL VISCOS
SURFACE TENSION $=.0732(N / M I)$ CONTACT ANGLE
$=1000 \cdot(\mathrm{KG} / \mathrm{M} 3) \cdot$ NOMINAL VISCOSITY $=.0010$ (NS/M2

RUN so.	TOTAL L	LI0u10	GRS	PRESSURE	RELATj	110010	0 flux
	MOLD-UP V	velocity	Y velocity	DROP	INNER	midale	OUTER
	(PCT.1	(mms)	[1/S ${ }^{\text {] }}$	($\mathrm{N} / \mathrm{H} 3$)	1-1	1-1	1-1
***	RUN170 mex						
- ${ }^{-1}$	GAS PRESSURE	E OROP TH	through dry	BED - ${ }^{\text {e }}$	HS $=.59 .4$	EPS	. 3897
1700001	0	0	. 326	224.5	0	0	0
1700002	0	0	. 541	574.5	0	0	0
1700003	0	0	. 767	1012.0	0	0	0
1700004	0	0	1.044	1750.0	0	0	0
1700005	0	0	1.255	2380.7	0	0	0
1700006	0	0	1.466	3122.0	0	0	0
1700007	0	0	1.706	4066.3	0	0	0
- $=$ \#	RUN 171 mex	- Dist	$\mathrm{T}=19 \cdot \mathrm{MB}$. 594	EPS $=.3897$	- VIS	. 00108
1718101	4.268	. 7877	0	0	1.035	. 729	1.152
1719101	4.586	1.2772	0	0	. 606	. 561	1.410
1717101	3.885	. 4871	0	0	.760	. 865	1.170
1714101	3.189	.0758	0	0	. 823	1.121	. 992
1716101	3.576	. 2730	0	0	. 756	. 941	1.125
1715101	3.372	. 1444	0	0	. 724	1.009	1.094
"\#\#	Run 172 =\%	. 01st	T $=71 \cdot \mathrm{HB}$. 594	EPS $=.3897$. VIS	.00114
1725101	3.179	. 0611	0	0	1.114	1.212	. 837
1727101	3.455	. 1921	0	0	1.242	1.104	.861
1729101	3.852	. 5119	0	0	1.273	. 775	1.054
1729201	3.757	. 5019	0	0	1.315	. 609	1.142
1727201	3.419	. 1862	0		. 755	1.030	1.070
1727202	3.495	. 1887	.329	364.9	. 739	. 880	1.159
1727203	9.450	. 1846	. 464	698.4	. 953	. 755	1.175
1727204	3.386	. 1838	. 626	1271.2	. 300	. 607	1.484
1727205	4.310	. 1716	. 806	2423.6	. 249	. 506	1.564
1727206	5.494	. 1863	. 853	3027.9	. 412	. 541	1.489
1727207	7.433	. 1750	.915	$3924 . \ni$. 775	. 843	1.179
1729202	7.409	. 5150	. 823	3554.5	. 150	.473	1.617
****	RUN 173 max	OIST	「 $=71$. H	. 594	EPS $=.3897$	- V15	. 00115
1737101	3.678	. 3424	0	-	. 863	. 902	1.112
1736101	9. 372	. 1524	0	0	. 853	. 986	1.065
1735101	3.137	. 0428	0		. 577	1.182	1.035
1738101	3.930	.. 5987	0	0	1.000	. 737	1.159
1739101	4.313	. 9733	0	-	1.163	. 749	1.107
***	RUN 174 \#\#\#	DIST	= $71 . \mathrm{HB}$. 594	EPS $=.3897$, 215	. 00115
1749101	3.198	. 0621	0	0	. 852	1.075	1.010
1748101	3.113	. 0316	0	0	1.603	. 933	. 847
1747101	3.075	. 0158	a	0	1.185	1.318	. 746
1746101	3.003	. 0079	0	0	. 532	1.210	1.033

Experi	-E:HTAL RESUL	TS FOR .	alis/hatr	= SYSTEM	No. !						EXPERIMENTAL RESULTS FOR ** ALI3/hatr me System							NO. 2		
PACr	KIng : Alumi	Na SPhere										total		10 I 0	GAS	PRESSURE		RELATI	ve liaulo	0 flux outer
	average size	= 13	.1 1441	APPARENT	OENS	SITY	$=$	3465.	(KG	/M31	Run no.	HOLD-up		ELDCITY	y velocity	drop		INNER	midole	outer
LIO	JID: HATER											(PCT.)		MM/S I	(M/S)	($\mathrm{N} / \mathrm{M3}$)		1-1	(-)	- -
	OEv5ITY	$=100$	O.(kG/m3)	- NOMINAL	vi5c	cosit	TY $=$. 00101		/M21	162141	4.619		. 0992	0	0		. 416	1.792	. 712
	gurface tens	IION $=.0$	732 (N/M)	contact	ANCL		$=$	01		C. 1	162242	4.616		. 0980	0	0		. 337	1.798	. 734
											161243	4.529		. 0510	0	0		. 604	1.870	. 600
	total	LIOUID	gas	Pressure			ELAtIV	ve liduid	10	flux	160244	4.442		. 0252	0	0		. 436	1.914	. 629
\% 40	HCLD-LP	velocity	velacity	DROP		LHNER		MIDDLE		OUTER	163245	4.731		. 1898	0	0		. 185	1.972	. 573
	IPCT. ${ }^{\text {a }}$	(MM/S:	(M/S)	($\mathrm{N} / \mathrm{M} 3$)		(-)		[-1		1-1	161346	4.498		. 0510	0	0		. 518	2.150	. 456
**	R1i\% 14 =	. oist	$=19 . \mathrm{HB}$. 245	EPS	.	.4189	. vis $=$	$=$. 00086	163347	4.721		. 1920	0	0		. 269	1.840	. 732
145416	5.102	. 5413	0	0		. 389		1.024		1.196	162348	4.600		. 1007	0	0		. 328	1.758	.762
148417	4.630	. 1581	0	0		. 404		1.134		1.123	160349	4.417		. 0251	0	0		. 263	2.099	. 573
1854.5	4.831	. 3072	0	0		. 44 日		1.111		1.123	**	Runizo								
:474:9	5.757	. 8841	0	0		. 373		1.058		1.181	-\#	GA5 Press	URE	OROP TH	Thraugh ory	BEO .a	н日	. 445	EPS $=$.	. 4039
: 88420	5.908	1.4086	0	0		. 287		1.166		1.142	1300002	0		0	. 463	279.9		0	0]
: 45521	5.928	1.3409	0	0		. 354		1.238		1.044	1300003	0		0	. 623	473.8		0	0	0
: 46522	5-:50	. 5431	0	0		. 334		1.007		1.225	1300004	0		0	. 802	753.7		0	0	0
:47523	5.464	. 8632	0	0		. 413		1.060		1.166	1300005	0		0	1.057	1242.9		0	0	0
: 5552	4.825	. 2973	0	0		. 370		1.228		1.076	1300006	0		0	1.336	1857.8		0	0	0
:44525	4.653	. 1517	0	0		. 377		1.206		1.087	1300007	0		0	1.610	2557.7		0	0	0
:46525	5.142	. 5409	0	0		. 339		1.655		. 822	- F $^{\text {I }}$	RUN 131		. DIST	= 71 . HB	. 445 .	EPS	$=.4039$	- VI5	.00109
:25527	4.659	. 1430	0	0		. 491		1.411		. 922	1319101	4.859		. 4950	0	0		. 918	1.363	. 509
1:8528	5.837	1.2596	0	0		. 296		$1.461^{\text { }}$. 957	131610i	4.694		. 3083	0	D		1.015	1.069	. 159
:47E29	5.433	. 9299	0	0		. 238		1.734		. 907	1317101	4.561		. 1771	0	0		.981	1.217	. 979
:45530	4.358	2987	0	0		. 409		1.407		. 952	1315101	4.428		. 0971	0	0		. 647	[. 253	-989
:41131	4.427	. 0576	0	0		. 898		. 714		1.217	1318201	4.675		. 3018	0	0		. 922	1.052	. 200
:42132	4.530	. 1085	0	0		1.043		. 871		1.195	1319301	4.951		. 5125	0	0		1.004	1.065	355
: 9015	4.352	. 0290	0	0		1.253		1.069		. 878	:315301	4.463		. 1026	0	0		. 903	1.501	. 28
:40234	4.352	. 0280	0	0		1.138		1.084		. 908	1317301	4.577		. 1860	0	0		1.115	1.322	. 759
: $42 ? 35$	4.533	. 1055	0	0		1.252		. 773		1.062	1318301	4.726		.3181	0	0		. 939	I. i 99	. 304
:41235	4.436	. 0553	0	0		1.114		. 754		I. 120	1313302	4.735		. 3195	. 456	427.5		1. 332	1.251	. 739
142337	4.552	. 1087	0	0		.881		. 757		1.197	1318303	4.678		. 3170	. 622	800.0		. 579	1.514	. 795
:40339	4.408	. 0271	0	0		1.299		. 528		1.198	1313304	4.767		. 3126	. 796	1485.3		1.025	. 996	. 031
:11339	4.450	. 0547	0	,		1.396		. 756		1.025	1313305	4.872		. 3116	. 853	1904.0		. 638	1.009	. 122
- =	RU: 16 =\#	. . oist	$=19.43$. 855	EP5	$=$.	. 4189	. v1s =	$=$. 00095	!3:3306	5.233		. 3154	. 921	2441.8		1.158	. 859	. 041
: 55422	4.827	. 2912	0	0		. 324		1.917		. 665	:319307	5.877		. 3170	. 948	3016.9		1. 356	1.004	. 985
:525:3	: 541	. 1571	0	0		. 154		2.630		-615	:31a32	7.206		. 3119	. 969	3901.5		1.434	. 953	. 384
:53,2:	3.891	1.5818	0	0		. 717		1.611		. 723	1313303	9.017		. 3049	. 977	4317.2		1.234	1.053	. 334
: 25.525	:. 936	. 2939	0	-		. 400		2.026		. 572	1313401	4.926		. 3035	D	0		. 857	.900	: .112
155525	$\because .284$. 5466	0	0		. 479		1:922		. 510	131501	4.517		. 1005	0	0		. 766	1.386	. 347
: 23527	5.891	1.3903	0	0		. 608		1.643		. 739	1317401	4.637		. 1896	0	0		. 880	1.259	. 886
-9438	4.635	. 1603	\square	0		. 206		1.896		.718	13184191	4.834		. 3108	0	0		. 395	1.055	1.175
: 27629	5.425	. 8682	0	0		. 733		1.514		. 779	1319401	5.027		. 5150	0	0		. 605	1.095	: . 080
-5730	5.050	. 5200	0	0		. 571		1.685		. 725	1313402	5.100		. 5348	. 457	478.2		. 676	1.557	. 754
-5731	5.410	. 89.19	0	0		. 674		1.618		. 733	1318402	4.853		. 3131	. 457	458.4		1.051	1.055	. 950
-56832	ร.c9s	.5?38	0	0		. 603		1.736		. 684	1317402	4.531		. 1833	. 457	440.8		1.010	1.261	. 342
:-9723	- 5 ¢ 4	. 1434	0	0		. 242		1.933		. 745	136:02	4.466		. 1005	. 459	429.7		. 947	1.457	. 742
:5973	5.322	1.3444	0	0		. 562		1.601		. 781.	1315403	4.437		. 0970	. 618	777.9		1.125	1.231	. 783
: 5 ¢30\%	-.550	. 1376	0	0		. 255		1.859		. 724	1310404	4.377		. 0981	. 792	1337.7		1.413	1.120	. 795
157836	5.472	. 2594	0	0		. 750		1.583		. 729	1315:35	4.554		. 6965	-980	2336.0		1.902	1.212	. 573
¢5037	4.645	. 2850	0	0		. 352		1.919		. 654	13:6405	5.519		. 0953	1.114	3724.3		1.537	. 806	. 925
-r: 33	4.495	. 0.534	0	0		. 555		1.706		. 718	:316407	5.737		. 0837	1.143	4537.5		1.085	. 906	1.039
:59139	4.430	. 0256	0	0		. 344		2.049		. 577	- $=$	RUN 132	-	. 015 T	= 71 M MB	$=.445$.		$=.4039$	- VIS $=$. 00105
- -3.40	-. 752	. 1857	0	0		. 387		1.940		. 630	1327101	5.509		1.0251	0	0		.777	1.185	. 966

EXPERIMENTAL RESULTS FDR＝＝G8／Whtr				＝STSTEM ND． 2				EXPERIMENTAL RESULTS FDR＝Gg／WATR				＊＊STSTEM		：No． 3	
	total	LICuID	gas	Pressure	Relati	ive lidouid	－flux		total	LIOUID	GAS	pressure		tive ligulo	flux
RUN NQ．	HOLD－ip	velocitr	velocity	DROP	inner	middle	DUTER	run no．	HOLD－UP	velocity	velocity	DROP	INMER	MiODE	Duter
	IPCT． 1	（Mm／S）	（M／5）．	（N／M3）	1－1	（－）	1－1		1 PCT． 1	（MM／S）	（17／5）	（ $\mathrm{N} / \mathrm{m} 3$ ）	1－1	－－	！－
202122	4.74 D	－-000	0	0	2.028	． 765	．806	1119106	5.977	． 5195	． 629	2522.0	． 312	． 78 ？	1．37：
200123	4.487	． 0132	0	0	2.506	． 543	． 784	1119107	5.955	． 5011	． 622	2634.1	． 037	．903	：．33：
202224.	4.657	． 1001	0	0	2.099	． 619	． 873	1119100	7.438	． 5108	． 630	3583.7	．033	． 914	i．39：
20：225	4.547	－0474	0	0	2.552	． 327	． 902	1119201	5.223	． 5142	0	0	－- ：	．59？	1.493
200226	4.496	． 0266	0	0	2.392	． 432	． 891	1119301	5.043	． 5136	0	0	1.367	1．151	． 802
202327	4.680	． 0379	0	0	1.743	． 627	． 988	1118201	4.710	． 3229	0	0	． 996	1.353	． 220
200323	4.473	． 0120	0	D	2.549	． 495	． 766	1117201	4.435	－1807	0	0	． 265	1.275	－．c82
201329	4.570	． 0502	0	0	2.365	． 724	． 720	1116201	4.224	． 0939	0	0	． 856	－580	1.957
－＝${ }^{\text {\％}}$	RUN 27 m＂	－Dist	$=19$. н8＝	$=.587$ ．	EPS $=.4004$	4． $\mathrm{V} 15=$	． 09100	1117202	4.528	． 1835	． 331	605.4	． 120	1.187	1．135
277101	5.958	． 8315	0	0	$\cdot .142$	． 703	1.478	1117203	4.536	． 1777	． 408	904.5	． 001	． 770	1.434
276102	5.468	． 4876	0	0	． 205	：741	1.432	1117204	4.605	．1814	． 487	1285.1	.092	． 855	1． 398
274103	4.908	． 1464	0	0	． 189	． 714	1.455	1117205	4.592	． 793	． 567	1736.5	． 434	1．-24	． 395
275104	5.039	． 2579	0	0	． 109	． 695	1.493	1117205	$4.84{ }^{\text {2 }}$	． 1794	． 623	2179．3	0	． 371	1． 261
278105	5.694	1.3109	D	0	．183	． 690	1.472	1117207	4.901	． 1815	． 651	2390.3	． 001	．994	1.345
277206	5.999	． 8247	0	0	． 231	． 811	1.381	1117208	4.944	． 1909	．681	2629.9	0	1.002	1．2：1
278207	6.730	1.2924	0	0	． 212	． 599	1.519	11：7209	5.346	．$¢ 11$	． 709	2966.2	． 002	1．05：	1． 204
276208	5.449	． 4799	0	0	． 354	． 893	1.289	1117210	5.083	． 771	． 729	3144．4	． 008	： 2.205	1．7：
275209	5.033	． 2748	0	0	． 249	． 879	1.333	1117211	5.230	$\therefore 77$	． 743	3412.5	．0：1	1．025	1． 324
274210	4.893	.1489	0	0	． 218	． 840	1.357	11！7212	6.773.	． $16: 9$	． 692	3594.1	0	． 10 ：	－．337
275311	5.088	． 2862	0	0	． 109	． 666	1.511	1117301	4.395	－173	－	0	0	． 547	1．E？2
277312	5.939	． 9085	0	0	． 156	． 778	1.425	1117401	4.513	－i ¢ 50	0	0	． 001	． 747	－． 439
274313	4.871	． 1485	0	0	． 124	． 810	1.417	11：7402	4.941	． 2 ¢ 5	． 677	2693.0	． 457	． 29	1.542
278314	6.705	1.3425	0	0	． 315	1.036	1.213	11：7403	5.016	． $\mathrm{y}_{4} 2$	． 706	2985.2	． 745	． 416	1．453
276315	5.504	． 4508	0	0	． 559	． 710	1.334.	1117404	5.098	．18：3	．73：	3249.9	． 003	． 351	1．737
2701.6	4.614	． 0273	0	0	． 148	－647．	1.510	1117405	5.218	． 4.429	－7：2	3533.5	． 601	． 390	1.725
272117	4.779	． 0992	0	0	． 176	． 606	－ 5.527	1：17406	5.397	． 2926	． 76 ！	3858.7	． 025	． 491	1．：55
271118	4.681	． 0523	0	3	． 483	． 554	1．399	1117407	5.534	． 2955	． 775	4158.3.	． 004	． 425	1．837
271215	4.706	． 0529	0	0	． 335	． 325	1.337	：$: 17408$	5.639	． 647	． 78.	5967.0	． 005	． 387	1． 1 ？
270220	4.633	． 2277	0	0	． 256	． 609	－． 493	：$: 17409$	$3.05:$	．17：3	． 752	5794.1	． 028	． 547	1． $1=$
272221	4.795	． 6395	0	c	． 283	－805	1．305	：：：a 3 2	8．5：8	． 3075	． 5%	5828.7	． 133	．？ 2	：．． 63
270322	4.505	． 0251	0	0	． 193	． 700	1.452	：11830！	4.657	． 3102	\％	0	． 442	． 35	1．23
272323	4.828	． 0397	0	0	． 221	． 754	1．4：3	1：15501	4.279	．$: 17$	；	0	． 653	．9：9	1．544
27132：	4.745	． 3453	\square	0	． 171	． 837	1.354	11：750！	4.555	$\therefore \therefore 6$	\because	0	． 977	． 350	1．4．0
＊F＊	214110 ${ }^{\text {an }}$							：18501	$4 \cdot 59$	－$: 6$		3	． 743	． 3 3	：． 312
＂\＃	jus Presjupe	E こpo it	4Fgou car E	EED＝	$43=.567$	EPS＝	． 3784	！：＝5s：	5． 520	．$\because 25$	－	0	． 618	． 324	－\because
110000：	0	0	． 335	354.0	0	0	0	＊＊＊	Rov 1：2	－！5T	$13 \cdot 43$	． 557	$s=.3$	94． 4 ：	．0．10
1： 00002	0	0	－ 315	8 E 5.0	0	－	2	：$: 25$ ： 0 ：	4．543	－：20	？	0	．7：1	． 29	－． 56
：100203	0	0	． 631	1292.0	0	a	0	： 25 ic ！	5.532	．$=24$	）	0	． 268	． 25^{2}	－．65
1100004	0	0	． 5 5	1985.5	0	0	2	： 27.01	5.435	． 232	1	0	． 548	． 574	－．42
1100005	0	0	： 11.15	3073.5	0	9	c	：28101	6.107		0	0	． 505	． 753	1．33：
1：00005	0	0	1． $2=8$	4189.0	5	0	0	： 27 27：02	5.526	． 5740	． 335	762.7	． 475	． 578	1．4．4
1109007	0	i	1．43	$51: 4.4$	\square	$=$	0	：：27：23	5.705	．$\% 705$	． 409	1164．0	． 375	． 547	－．497
＂．＂	F10． $11!$＂＊＊	－ 253	7． $0 \cdot 3$＝	$=.557$.	F03．$=.3784$	4 193	． 20103	：：27：03	5.778	． 513	． 885	1522.3	． 349	． 525	1．5：3
113：30	5．：195	． 3253	a	\checkmark	－． 234	1.085	． 324	1：27：05	6.004	． 5594	． 565	2226.0	． 337	.483	1.548
：1：8！01	4.760	． 3125	\bigcirc	\bigcirc	－． 653	－ 55 ：	1.577	112：05	6.440	． 5753	． 580	2558.7	． 535	． 802	1．2－4
：117：01		．$: 752$	－	\bigcirc	． 139	1．082	： 244	： 2 マ7：27	5.604	． 5633	． 390	2390．：	． 635	． 739	1.290
1：16101	4.854	． 0354	\because	0	．	． 884	：． 255	：127：23	E．646	． 5595	． 600	3014.7	． 540	． 704	1．34：
11：3102	5．${ }^{\text {a }}$	－ C i $\%$	． 05	55．	\bigcirc	1．0：2	－． 202	：127： 20	9.013	． 5527	． 604	4353.3	． 374	－ 394	－．${ }^{\text {1 }}$
1：1910．	－．514	－5：28	－ 51	1032．6	． 2 ！	－8 5	！$: ~=7$	－：2720：	5.603	． 5495	0	0	． 116	． 692	1．473
：1：3：04	5．51：	． 5205	－$\times 7$	1：59．9	－ 41	－317	－ 255	：12ミ301	5.044	． 2337	0	0	． 355	． 597	1．230
：119193	$5.7 \times$	． 5803	－6x	20：5．3	．77：	1.225	． 357	1：2730：	5.491	． 5771	0	0	． 307	． 885	1.303

EXPERIMENTAL RESULTS FOR ** PLIB/ETOH \#n SYSTEM						NO. 1		
PACKING : PLASTIC SPhERES								
	average Si	$E=13$	3.2 (MM)	apprrent	DENSITY	921.		/M31
LIOU!D: Ethanol - WAter								
	QEv51ir	$=80$	07. (kG/m3)	- nominal	v1scosity $=$. 0036		/M21
	StRF=CE TE	Sion = .020	0240 (N/M)	- contact	fngle	0		G. 1
	total	LI03i3	605	Pressure	RELAT	E LIOU	U10	Flux
Pus no.	hotelup	velocity	velocity	ORDP	INNER	midole		duter
	1P¢T.1	1:9\%/51	(M/S)	($\mathrm{i} / \mathrm{M} 3$)	1-1	(-)		1-1
	2.j4 24	2159	$=19.48$. 425	EPS $=.4106$	vis	$=$.00151
24810:	3.477	. 5672	0	-	1.151	. 825		1.064
24:7101	3.132	. 3040	0	0	1.537	. 894		. 893
241910 :	ミ. 2 E3	. 9913	0	0	. 772	. 759		1.232
24010:	2.8%	. 1399	0	0	1.422	. 858		. 946
241510!	2.601	. 0502	0	0	1.363	. 863		. 966
4.520:	2.840	.0980	0	0	2.231	1.085		. 541
2:3:301	2.979	. 2008	0	0	1.452	. 629		1.084
2:420:	2.5:3	. 0559	0	0	1.381	1.192		. 764
251823:	3.403	. 4483	0	0	1,111	1.356		. 742
こ.17231	3.053	. 3143	0	0	. 808	1.111		1.002
21:920:	3.938	. 9789	0	0	. 659	. 994		1.124
F\%	RUS 242	. IIST	$=19.43$. 425	EPS $=.4106$	- vis	$=$. 00151
2:0910:	2.857	. 0960	0	0	1.190	. 681		1. 142
2425101	2.329	. 0115	0	0	. 806	1.401		. 317
242810:	2.527	.0481	0	0	. 829	1.052		1.029
24.3701	2.407	. 0199	0	0	1.021	. 989		1.009
	Pun 251.	- cist	$=19.48$. 425.	E'P5 $=.4106$. VIS		. 00156
$25: 9101$	2.712	. 0951	0	0	. 733	1.367		. 870
2517:01	2.640	. 0210	0	0	. 877	1.391		. 817
2-1810:	2.551	. 0448	0	0	. 731	1.523		. 775
25!610:	2.234	. 01042	0	0	. 853	1.016		1.837
	सi¢ 262	. OIST	$=: 9.43$	$=.425$.	EPS $=.4106$. vis	$=$. 00155
2529121	3.922	. 9289	0	0	1.149	. 432		1.307
2524:31	2.595	. 0381	0	c	. 931	1-162		. 925
2527:0!	3.570	. 3054	0	0	1.308	1.001		. 903
25.5.0:	2.635	. 1478	0	0	. 822	1.111		. 397
250010!	9.:5)	. 5759	3	0	1.300	. 712		1.234
2525:01	2.54	. 0761	0	0	. 798	1.173		. 359

PACKING: RLUMINA SPHERES (MM) . RPPRRENT DENSITY $=3455$. 1 KG/M31 AVERAGE SIZE $=13.1$
OENSITY $=807.1$ KG/M3), NOMINAL VISCOSITY $=.0016$ (NS/MZ1 SURFACE TENSION $=.0240(N / M)$. CONTACT ANGLE

RUN NO.	total	Lioulo	GAS	PRESSURE	RELAII	ve liguid	
	HOLO-UP	velocity	VELDCITY	crop	1NNER	M100:E	CUTER
	IPCT.	(MM/S)	(M/S)	(N/M3)	1-1	1-1	1-!
m픛	RUN 251 m**	. 0151	$=19.48$	$=.430$	$E P S=.4130$	- VIS	. 00151
2518101	4.039	. 7166	0	0	1.370	. 877	. 953
2519101	4.303	1.0027	0	0	1.257	. 626	1.152
2517101	3.384	. 2735	0	0	1.105	1.079	. 922
2515101	2.847	. 0495	0	0	1.399	. 755	1.124
251820!	3.762	. 5571	0	\bigcirc	1.480	. 892	. 912
2516101	3.059	. 1251	0	0	1.325	. 873	. 972
- =	RUN 252.x\#\#	- D!St	$=19 \cdot \mathrm{H8}$. 430	EPS $=.4130$	v:s	.00:5:
2529101	2.912	. 055	0	0	. 683	. 755	1.253
2526101	2.546	. 0114	0	0	1.448	. 525	1.630
2528101.	2.762	. 0453	0	0	1.075	.7E9	1.125
2527101	2.644	. 0203	[3	1.356	. 349	1.293
- ${ }^{-1}$	RUN 271 =**	015T	$=19 . \mathrm{HB}$. 430.	EPS $=.4130$	- V15	. 00157
2718101	3.852	. 5614	0	J	. 599	. 393	1.515
2715101	2.953	. 0615	0	\bigcirc	1.093	.695	1.168
2717101	3.478	. 3085	0	0	. 493	. 716	1.352
2719101	4.368	1.0104	0	0	. 937	. 288	1.468
2716101	3.197	. 1511	0	0	. 770	. 6 ¢2	1.292
\#\#*	RUN 272 man	- DIST	$=19 \cdot \mathrm{MB}$	$=.430$	EPS $=.4133$	\%15	. 00157
2729101	3.059	. 0967	0	0	1.072	. 320	1.219
2725101	2.615	. 0058	0	0	. 904	1. 2.85	1.022
2728101	2.883	. 0460		7	1.103	. 756	1.128
2727101	2.758	. 0194	0	\bigcirc	.8:6	-99	:.87E

EXPERIMENTAL RESULTS FOR "* Gb/ETOH				** SYSTEM			NO. 1	
PaCKING : GLASS SPhEres								
LIOUID : ETHATS - WATER								
	oensliy	$=80$	77.(KG/M3)	- nominal	viscosity $=$. 0016		/M21
	SURFGLE TENS	510n = . 02	1240 (N/M)	- contact	ancle	0		
	total	Ligulo	gas	pressure	RELATI	ve liou		flux
Run No.	MOLJ-up	velocity	velocity	OROP	INNER	miode		cuter
	(PCT.)	1mm/S 1	(M/S)	(N/M3)	1-1	(-)		1-1
	RUN 291	, 01si	$=19 . \mathrm{HB}$	$=.391$	EPS $=.3890$	vis		. 00158
2915101	4.291	. 0345	0	0	. 829	. 802		1.187
2919101	5.851	. 9475	0	0	1.031	. 632		1.223
2916101	4.4 .45	. 1233	0	0	. 257	. 475		1.580
2918101	5.278	. 5140	0	0	. 522	. 295		1.503
2917101	4.613	. 2396	0	0	. 812	. 534		1.357
***	run 292	. $015{ }^{\circ}$	$=19.183$	$=.391$	EPS $=.3890$	- vis	$=$. 00158
2929101	4.370	. 1641	0	0	1.082	. 467		1. 309
2925101	4.105	. 01.33	0	0	1.746	. 825		. 867
2527:41	4.241	.0458	0	0	1.230	. 850		1.021

EXPERIMENTAL RESULTS FOR m PLG/ETOH i= SYSTEM
No. 1
PACKING : PLASTIC SPHERES IMMI RPPRRENT DENSITY = 92: (RG/M3

RUN NO.	total	LIOU:0	GAS	Pressure	relative lidu:d		Flux
	hold-up	velacity	velocity	DREP	I HNE P	Midele	OUTER
	(PCT.)	(194/5)	(1m/S)	(N/M3)	(-1	1-1	1.
	RUN 291	. 015 St	$=19 . \mathrm{HB}$. 414	EPS $=.3951$	v15	. 00161
2919101	9.398	. 0909	0	0	. 974	. 724	1.174
2916101	3.063	. 0049	0	0	1.169	. 860	1.057
2818101	3.295	. 0422	0	0	1.589	. 531	$\therefore .064$
2817101	3.190	. 0170	0	0	1.242	. 849	. 0223
-x"	RUN 292.	0151	= is . Ha	. 414	EPS $=.3951$	- vis	$\therefore 0161$
2829101	5.146	. 9945	0	0	. 996	. 349	:.410
2825101	3.506	. 0441	0	0	-970	-	-. 239
2828101	4.571	.5371	0	0	. 800	- 451	1.413
2827101	4.077	. 2473	0	0	1.022	.508	. 304
2826101	3.806	. 1167	0	0	1.105	-905	1.030

PaCKING : PIASTIC SPHERES
AVERAGE SIZE $=13.2(\mathrm{MM})$. APPARENT DENSIIY $=921 .(\mathrm{KG} / \mathrm{M3})$
LIOUID : GLYCEROL = WATER
IENSITY $\operatorname{SURFACE~TENSION~}=1210.1$ KG/M31, NOMINAL VISCDSITY $=.0640(N S / M 2)$ RUN NO.

$$
\begin{array}{lllllll}
\text { TOTAL LIOUID } & \text { GAS } & \text { PRESSURE } & \text { RELATIVE LIQUID FLUX } \\
\text { MOLD-UP } & \text { VELOCITY } & \text { VELOCITY } & \text { DROP } & \text { INNER } & \text { MIODLE } & \text { DUTER } \\
\text { (PCT. } & \text { (MMSS) } & (M / S) & \text { IN/M3) } & 1-1 & 1-1 & 1-1
\end{array}
$$

: RUN330 =

	GA5 Pressure	DROP	thrdugh ory	8ED	HB $=.425$	EPS	. 4106
3300001	0	0	. 463	253.8	0	口	
3300002	0	0	. 646	459.2	0	0	
3300003	0	0	. 855	756.8	0	0	
3300004	0	0	1.079	1149.1	0	0	
3300005	0	0	1.295	1578.3	0	0	
. 3300006	0	0	1.565	2215.2	0	0	
3300007	0	0	1.832	2925.9	0	0	
*"	RUM 331	0151	T $=19$. HB	. 425	EPS $=.4106$	VIS	. 06370
3319101	3.911	. 3813	0	0	1.765	1.2S2	. 594
3319102	4.057	. 3901	. 378	249.2	1.724	1.251	.508
3319103	4.254	. 4119	489	433.8	1.528	1.004	. 827
3319104	4.556	. 4318	.628	761.5	1.230	1.486	. 628
33:9105	5.349	.4748	. 758	1756.0	. 699	. 499	1.417
3319106	7.509	. 4924	. 840	3073.5	. 418	. 371	1.591
3319107	12.477	. 4601	. 855	<524.9	. 696	. 759	1.258
- ${ }^{\prime}$	RUN 332 *m	. OIST	T = 19. HB	. 425	EPS $=.4105$. VIS	. 07180
3328101	3.343	. 2233	0	0	1.474	1.142	. 759
3329101	3.741	. 4020	0	0	1.689	. 977	. 790
3327101	2.983	. 1113	0	0	1.598	1.385	. 568
3324101	2.456	. 0104	D	0	1.590	. 971	. 833
3325101	2.657	. 0234	0	0	1.789	. 959	. 771
3326101	2.860	. 0505	0	0	2.043	. 725	. 827
3327201	3.069	. 1088	- 0	0	1.793	. 874	. 819
3327202	3.137	. 1106	. 452	316.1	1.634	-912	. 849
3327203	3.222	. 11138	. 534	632.2	2.260	. 945	. 617
3327204	3.936	.1128	. 805	1:79.1	1.391	. 251	1.339
3327205	4.806	.1.65	. 95.	2505.9	. 238	. 235	1.735
3327205	5.241	.1177	1.051	\$575.6	. 057	. 714	1.499
3327207	8.036	.1135	1.125	4358.0	.94]	. 898	1.090
3327208	:0.2:0	. 1154	1.140	-084.9	1.019	. 699	1.187
\#"	Ru: 333 "m	. DIST	I $=19 \cdot \mathrm{H3}$	- 25	EPS $=.4106$	- VIS	. 06360
333701	3.118	. 1143	0	0	1.835	. 934	. 767
3334101	. 2.523	. 0140	0	0	1.671	1.061	. 747
3338101	3.395	. 2397	0	0.	2.495	. 809	. 623
3335101	2.907	. 0587	0	0	2.118	1.021	. 618
3339101	3.895	. 4395		0	2.607	1.412	. 212
3339201	3.9:1	. 4380	0	0	1.406	1.435	. 601
3335101	2.728	. 0293	0	0	1.184	1.117	. 871

EXPERIMENTAL RESULTS FOR m*PLI3/GLY w" SISTEM
:3.

RUN NO.	total	LIQulo	GPS	PRESSURE	RELfitiv	ve Lloulo	flux
	HOLD-UF	velocity	velocity	DRDP	SMER	M100LE	OUSR
	(PCT.)	(MM/S)	(M/S)	($1 / \mathrm{M} 3$)	:-1	1-1	
3400004	0	0	1.082	1174.5	0	0	0
3400005	0	0	1.328	1689.1	3	0	
3400006	0	D	1.569	2293.6	0	0	
3400007	0	0	1.819	3032 -	-	0	- 0
- ${ }^{1}$	RUN 341 m"m	DIST	$=19 \cdot \mathrm{H8}$. 425	EPS = .4:06	VIS	.06870
3417101	2.907	. 1074	0	- 0	1.048	1.850	. 58
3417102	3.058	. 1060	. 456	3ミ4.S	1.1.22	1. 397	. 620
34:7103	3.154	. 1028	. 625	632.2	2.645	. 969	. 472
3417104	4.046	. 1028	. 805	1730.6	. 784	. 909	:. 135
34.7105	4.444	. 1.05	. 320	2339.8	. 152	. 353	1.53 B
34.7106	6.387	. 1075	1.064	3544.3	. 335	. $¢ 38$	1.553
3417107	8.393	. 1070	1.138	4548.0	. 397	1.215	1.176
3417108	10.965	. 0943	1.177	5279.5	. 195	1.000	1. 310
mn	RUN 342 mm*	0:St	$=19.48$. 425	EPS $=.4106^{\circ}$. VIS	. 06280
3427101	3.008	.1117	0	0	1.527	1.526	. 442
3429101	3.514	. 4076	0	-	1.451	1.709	. 416
3428101	3.453	. 2405	D	0	1.454	1.782	. 370
3424101	2.418	.0147	0	[1.536	1.505	. 517
3426101	2.775	. 0533	0	0	1.901	1.121	. 531
3425101	2.574	. 0272	D	0	1. 292	1.345	. 699
3425102	2.654	. 0245	. 451	316.1	2.575	1. 322	. 279
3425103	2.668	. 0239	. 677	731.5	1.877	1. 4.48	. 439
3425104	2.986	. 0177	. 320	1677.5	. 352	. 665	1.433
3425105	4.334	. 0128	1.199	3212.0	. 074	. 406	1.691
\#\#:	Ruy 343 ***	. DIST	$=13.18 \mathrm{~B}$	$\cdot .425$	EPS = .4106	. VIS	. 6 E380
3436101	2.898	. 0731	0	0	2.145	1.093	. 564
3435101	2.690	. 0352	0	-	2.280	1.187	. 460
3434101	2.385	. 0073	0	0	. 780	2.488	. 158
3438101	3.115	.1543	,	0	2.225	1.464	. 309
3439101	3.491	. 2802]	0	1.945	1.648	. 289
3435101	2.547	. 0187	0	\square	. 990	2.147	. 305
3435102	2.513	. 0185	. 459	327.7	1.578	!. 677	. 396
3435103	2.654	. 2178	. 577	747.6	2.2ล9	1.114	-506
343S104	3.003	. 0168	. 331	1767.5	.467	. 620	i.420
3435105	4.850	. 0173	1.2:4	3574.3	0	. 295	1.780
3435106	7.430	. 0153	1.494	5327.9	. 179	. 945	1.323
3435107	8.272	. 0139	1.615	5849.4	2.005	. 907	. 735
"®-	RUN 344 ***	D15t	$=13 . \mu 8$	$=.425$	EFS = .4105	vis	. 05750
3445101	2.500	.0:82	0	0	1.473	1.453	. 554
3445102	2.551	. 0191	. 559	562.2	1.715	1.647	. 369
3445103	3.005	. 0171	37	1533.7	. 358	. 293	. 666
3445105	5.963	. 0198	1.411	4469.5	. 554	1.233	1.003
3445105	7.507	.11233	1.525	5477.9	2.114	. 755	. 783

EXPERIMENTAL RESULTS FOR =W WI3/GLY =: SYSTEM
No.

PRCKING : hax-COATED SPMERES
AVERAGE SIZE $=13.3$ (MM) \cdot APPARENT OENSITY $=921$ (KG/M3) DENSITY
SURFACE $=12!0.1$ KG/M3). NDMINAL VISCOSITY $=.0640(N S / M 2$ (ENSION $=.0652(N / M)$. CONTACT ANGLE

RUN ND.	total l	LIOUID	GRS	Pressure	RELATIV	ve liouid	
	HCLD-UP V	VELOCITY	velocity	OROP	INNER	midole	OUTER
	(PCT.) 1	(MM/S)	(M/S)	(!1/M3)	(-)	(-)	1-1
-** RUN300 m=*							
-=:	gas pressure	E DROP TH	ROUGH ORY	BED \quad *	H8 $=.430$	EPS $=$.	. 4180
3000001	0	0	. 462	225.8	-	0	0
3000002	0	0	. 650	417.4	- 0.	0	0
3000003	0	0	.851	702.4	D	0	0
3060004	0	,	1.115	1117.5		0	0
3000005	0	0	1.397	1683.1	0	0	0
3000006	0	0	1.621	2225.9	0	0	0
3000007	0	0	1.830	2784.6	0	0	-
*"\#	RUN 301 m=	0151	$=71.48$. 430	EPS $=.4180$	- v1s	. 06430
3018101	2.794	. 1794	0	0	2.297	1.283	. 356
3019101	3.345	. 3768	0	0	1.919	1.372	. 468
3017101	2.496	. 0833		0	2.170	1.752	. 149
3016101	2.374	. 0334	0	0	. 657	1.979	. 504
3017201	2.482	. 0721	0	0	1.419	1.689	. 438
3017202	2.528	. 0721	. 457	305.6	1.228	1.443	. 657
30:7203	2.539	. 0729	. 624	\$61.0	. 392	2.099	. 529
3017204	2.536	. 0699	. 865	1154.0	-112	. 773	1.444
3017205	4.169	. 0670	1.117	2700.3	. CS 1	. 055	1.913
3017206	4.905	. 0656	1.238	3425.5	. 011	. 018	1.945
3017207	6.028	. 0614	1.366	4285.3	. 492	. 505	1.483
3017208	9.440	.051:	1.410	5550.2	1.025	. 771	1.140
- =	RUN 302 - $=$ =	. 015 T	$=71 . \mathrm{H8}$. 430	EPS $=.4190$. VIS	. 07280
3028101	3.255	. 1674	0	0	2.425	1.027	. 510
3025!01	2.648	. 0163	0	0	1.570	1.629	. 430
302610:	2.737	. 0383	0	0	2.326	1.311	. 372
3027101	2.838	. 0777	0	0	2.449	1.237	. 373
3028201	3.125	. 1785	0	0	1.957	1.655	. 280
3029101	3.554	. 3725	0	0	2. 362	1.474	. 255
3029102	3.573	. 3 S2	. 452	314.7	2.549	1.359	. 254
3029103	3.557	. 3930	. 620	595.2	3. 302	. 890	. 303
3029104	4.614	- 3863	-821	1594.2	.685	- 375	1.532
3029105	5.187	. 3753	. 920	2159.8	. 328	. 545	1.512
3023106	9.071	. 3567	1.006	3920.4	. 504	. 583	1.431
\#\#	RUN 303 "**	- dist	$=71$. H8	. 430	EPS $=.4180$	vis	. 25230
3039101	2.937	. 1441	0	0	4.150	. 670	. 142
3035101	2.450	. 0105	0	0	3.378	. 764	. 362
3033101	2.757	. 0334	0	0	3.104	1.373	. 070
3037101	2.534	. 0442	0	0	3.763	. 890	. 149
3035101	2.553	. 0215	0	0	2.587	1.575	-118
3:35102	2.591	.0220	. 458	301.0	2.605	1.250	- 315
3036109	2.547	. 0231	. 53 !	599.8	2.235	1.350	. 391
3036104	2.648	.0212	. 857	1133.5	.601	. 649	1.360
3036105	3.645	- 20	1.:31	2469.9	. 060	. 100	1.879
3036106	4.831	.0258	1.335	3763.0	.177	-132	1.833

EXPERIMENTAL RESULTS FOR \#: W13/GLY

RUN NO.	total	LIauio	GAS	pressure	Relati	ve liould	D FLUX
	HOLD-UP	vELOCITY	velocity	DROP	INNER	midole	Outer
	IPCT.)	(MM/S)	(M/S)	(N / MO)	- - 1	1-1	1-1
3036107	5.859	. 0236	1.424	4547.6	1.682	. 687	972
3036108	8.225	. 0185	1.515	S414.2	1.556	. 500	1-134
\#\#\%	RUN 304	- D1st	$=19 . \mathrm{HB}$. 430	EP5 = .4180	. VIS	. 08570
3047101	3.149	. 0635	0	0	1.007	1.483	. 707
3045101	2.764	. 0149	0	0	. 382	1.338	. 804
3048101	3.383	. 1322	0	0	1.293	1.303	. 721
3046101	2.932	. 0349	0	0	1.023	1.42i	. 738
3049101	3.746	. 2538	0	0	. 19	1.513	-917
30.6201	3.136	. 0709	0	0	. 775	1.41!	- 226
3044101	2.707	. 0086	0	0	. 853	1.297	. 577
3049201	3.681	. 2594	0	0	1.340	1.419	-565
3046301	3.117	. 1439	0	0	i. 341	1.318	. 696
"	RUN 3DS mm*	D15T	$=13 \cdot \mathrm{H3}$. 430	EPS $=.4180$, VIS	. 06570
3057:01	2.965	. 0640	0	0	. 905	1.734	. 585
3059101	3.364	. 2278	0	0	1.545	1.732	. 333
3058101	3.133	. 1388	0	0	. 114	2.041	. 5.98
3055101	2.659	. 0166	0	0	2.00 i	1.363	. 553
3056101	2.775	. 0297	0	0	2.291	1.354	. 359
"\%	RUN 306	OIST	$=71 . \mathrm{Hg}$. 430	EPE = . 4180	. VIS	. 06570
3068101	2.941	. 0941	0	0	2.961	1.054	. 317
3067101	2.781	. 0514	0	0	3.149	1. 262	. 123
3066101	3.106	. 1662	0		3.161	1.359	. 159
3069101	2.661	. 0183	0	0	2.865	. 983	. 392
mar Runzza men							
"\#"	gas pressure	E dROP ih	ROUGH ORY	EED \#*	$H B=.425$	EPS	. 9106
3200001	0	0	. 469	246.9	0	0	0
3200002	0	0	. 624	417.7	0	0	0
3200003	0	0	. 825	687.6	0	0	0
3200004	0	0	1.053	1068.4	0	0	0
3200005	0	0	1.306	1578.3	0	0	-
3200006	0		1.525	2097.5	0	0	\bigcirc
3200007	0	0	1.914	2886.6	0	0	0
- $=$	RUN 321 $=$ =.	DIST	$=19.48$. 425	EPS $=.4106$	- VIS	. 66.770
32.8101	3.165	.1571	0	0	1.146	1.294	. 775
3217101	2.8.9	. 0612	0	0	1. 277	1.020	- 300
3217102	2.920	. 0639	. 453	346.1	1.451	1.223	. 713
3217103	3.053	. 0607	. 535	692.2	1.415	1.027	. 553
3217104	3.354	. 0618	. 805	1227.6	. 359	. 642	1.277
3217105	4.659	.0591	. 999	2515.1	. 393	. 146	1.836
3217106	5.972	. 0594	1.186	3655.0	. 005	. 351	1.745
3217108	8.201	. 0505	1.296	4790.3	. 0 ¢9	1.773	. 842
3217109	11.412	. 0479	1.322	5997.1	1.386	1.850	. 349
\#**	RUM 322 mm	OIST	$=19.48$. 425	EPS $=.4106$	V15	.06310
3229101	4.144	. 3804	0	0	. 570	1.187	. 901
3229102	4.229	. 3967	+380	263.1	. 355	1.134	.959
3229103	4.334	. 4182	. 454	394.6	. 980	1.095	.953
3229104	4.573	. 4196	. 586	673.8	. 438	. 982	1.205
3229105	4.825	.4175	. 575	955.3	. 334	. 651	1.244
3229105	5.703	.4114	. 766	1746.7	. 180	. 346	1.685
3229107	6.818	. 4214	. 863	2679.0	. 165	. 407	1.653
3229108	9.392	. 4256	. 923	3895.0	. 447	1.218	1.057

EXPERIMENTAL RESULTS FOR m ALIB/GLY * $=$ SYSTEM
NO. 1
PACKING : ALUMINA SPHERES
RVERRGE SIZE $=13.1$ (MMI . APPARENT DENSITY $=3465$. (KG/M3) ROUID : GLYCEROL - WATER
$\begin{aligned} &=1210.1 \mathrm{KG} / \mathrm{M} 3) \\ & \text { SURFACE TENSION }=.0652(\mathrm{~N} / \mathrm{M}) \text {. COMINAL VISCOSITY }\end{aligned}=.0640(\mathrm{NS} / \mathrm{Mz} 2)$

$$
\begin{array}{cllll}
& \text { TOTRL } & \text { LIDUID } & \text { GRS } & \text { PRESSURE } \\
\text { RUN wo. } & \text { HDLO-UP } & \text { VELDCITY } & \text { VELOCITY } & \text { ORDP } \\
\text { (PCT.) } & \text { (MM/S) } & \text { (M/SI } & \text { (N/M3) }
\end{array}
$$

-: Rua310 $=\boldsymbol{n}$

- $\square_{\text {F }}$	gas fressure	OROP	THRDUGH DRY	BED	$H B=.425$	EPS	. 4047
3100001	0	0	. 463	263.1	-	D	0
3100002	0	0	. 628	452.3	0	0	0
3100003	0	0	. 837	753.8	0	0	0
3100004	0	0	1.058	$1186 . \mathrm{D}$	0	0	0
3100005	0	0	1.327	1806.7	0	0	0
3100005	J	0	1.587	2487.4	0	0	0
3100007	0	0	1.803	3172.8	0	0	0
\#\#:	RUN 311 =\%	- 0.5 S	T = 19. HE	. 425	EPS $=.4047$	VIS	. 06240
3118101	4.935	. 1385	0	0	1.266	1.516	. 598
3115101	3.549	. 0163	0	0	3.285	. 721	. 419
3119101	5.610	. 2805.	. 0	D	1.123	1.52 B	. 638
3117:01	4.260	. 0769	D	0	1.180	1.508	. 633
3116101	3.870	. 0379	D	3	1.052	1.395	. 746
3114101	3.450	. 0070	-	0	1.978	. 786	. 820
"	RUN 312 $=$ =	- Dist	T $=13 \cdot \mathrm{HB}$. 425.	EPS $=.4047$. Vis	. 06220
3128101	4.754	. 1301	0	0	1.288	1.826	. 399
3127101	4.254	.0637	0	0	2.099	1.344	. 424
3129101	5.399	. 2291	0	0	1.673	1.410	. 527
3126101	3.793	. 0405	0	0	1.589	. 911	. 865
3125101	3.568	. 0155	D	0	2.471	. 802	. 644
=\%	RUN 313 =\%	- 0151	T $=71 . \mathrm{H} 3$. 425	$E P S=.4047$	- V15	.05920
3138101	4.339	. 0398	0	0	1.695	1.420	. 514
3139101	4.574	.171!	0	0	1.601	1.293	. 623
3137101	3.941	. 0488	0	0	1.059	1.268	. 823
$3!36101$	3.531	. 0222	0	0	1.203	1.353	. 724
3138201	4.358	. 0826	0	0	1.303	1.854	. 376
3125201	3.653	. 0212	?	0	1.831	1.413	. 473
3135802	3.815	.0211	. 459	359.2	1.121	1.092	. 910
3135203.	3.348	.0204	. 53	745.3	1.066	1.091	. 323
3136204	3.932	. 0204	. 365	1289.3	. 752	. 724.	1.265
3136205	4.554	. 0201	1. 251	2858.9	2.213	. 298	1.030
3136205	5.513	.0:90	1.157	4135.0	1.725	. 383	1.151
3136207	3.397	. 0197	: $: 24$	5574.8	1.270	.242	1.393
\#-	R心 314 "\#	- 0 Ist	$i=7!\cdot 43$. 425	EPS $=.4047$	- VIS	. 06890
314810:	5.198	-1793	0	0	2.057	1.036	. 630
3189101	5.296	-38!3	0	0	2.302	. 982	. 581
3147:01	4.552	- 102	0	0	1.078	1.600	. $5: 0$
3145101	3.572	. 0354	3	0	-904	. 834	1.140
314610:	3.305	. 0.495	0	0	. 382	1.168	!.109
3147201	4.4:?	. 0347	9	0	1.625	1.323	. 593
3147202	4.505	. 5785	. 58	422.3	1.025	1.791	. 509
3147203	4.555	. 1023	. 545	844.5	1.267	1.619	. 534

EXPERIMENTAL RESULTS FOR ** ALIG/GLY \#\# SYSTEM
N0. 2

Run no.	total	LIOU:D	GAS	pressure	RELATI	ve : icuid	
	HOLD-up	velocity	velecitr	DRCP	Iniver	1100	Cuter
	(PCT.)	(Mm/S)	(M/S)	(1/1/M3)	1-1	$1-$	1-1
3!47205	.7.183	. 1000	. 929	3721.9	1.207	. 703	1.121
3147206	10.070	. 1024	. 942	4977.2	1.481	i.: ${ }^{\text {a }}$. 783
	RUN 315 mm	- OIST	$=71$. HB	. 425	EPS $=.4047$	15	. 065 ES
3157101	4.433	. 0988	0	0	1.117	- 5.38	. 755
31.55101	4.015	. 0490	0	0	. 716	- 5.94 ?	.5:9
3155101	3.656	. 0236	0	0	. 524	-:24	- 33
3158101	5.116	. 2048	0	0	. 735	:.434	. 175
3159101	6.307	. 4178	0	0	1.630	1.:53	- 31
3159102	6.713	. 4237	. 452	523.0	1.651	- az	. 398
3159103	8.034	. 4375	. 539	1357.5	1.227	. 870	. 011
3159104	7.611	. 4249	. 490	1423.7	. 677	1.215	. 981
3159105	8.593	. 4287	. 565	2270.5	1.141	. 823	1.070
3159106	9.225	. 4415	. 593	2¢92.8	. 751	. 843	1.187
3159107	12.082	. 4448	. 622	4024.2	1.205	. 615	1.176
***	RUA 316 =**	. OIST	$=19 . \mathrm{HB}$. 425	$E P 5=.4047$	$1: 5$. 05290
3168101	4.905	. 1554	0	©	. 517	- 4.42	- 823
3167101	4.326	. 0762	0	0	1.058	1.8:7	.787
3165:01	3.672	. 6203	0	0	1.989	1.45	. 444
3166101	3.859	. 0393	0	0	. 593	¢ 89	1.244
3169101	5.745	. 2738	0	0	2.105	$\bigcirc 7$	-58!
3164101	4.603	. 0915	0	0	1.427	1. 598	-6!
3164102	4.715	. 1005	. 456	422.3	1.055	:.2:3	. 838
3154103	4.776	. 1029	. 657	リ34-5	. 799	1.314	. 830
3164104	5.594	. 1016	. 814	2238.2	: . 290	. 502	. 213
3164105	6.642	. 0983	. 878	3233.7	. 923	-5:3	. 309
3164106	8.536	. 0954	.917	4340.3	1.1.5	. 570	:73
3164107	10.010	. 0990	. 933	4935.7	-881	. 869	.

EXPERIMENTAL RESULTS FOR＝WI3／ENCL＝$=$ SYSTEM
no．
packing ：wax－coated spheres
AVERAGE SIZE $=13.3($ MM $)$ ．APPFRENT OENSITY $=92!$（KG／M3） LOUID ：ZNCL2－WATER
QENSITY SURFACE TENSION $=1920 .(K G / M 3)$ ，NOMLNAL VISCOSITY $=0.0340(N S / H 2)$

RUN NO．	roral	LIOUID	G95	Pressure	REL	ve Lioul	LUX
	HDLD－Lip	veldcity	velocity	DROP	INNER	midele	OUTER
	（PCT．）	（Mm／S）	1M／S：	（ $\mathrm{N} / \mathrm{M} 3$ ）	1－1	（－）	－

\＃\＃\＃RUN420 Ant

＝＝	S3	drop	H Der	$3 \times$	43	$=$	．4282
420000：	0	0	． 477	217.7	0	0	0
4200002	0	0	． 574	409．：	0	－	0
4200003	0	0	． 939	738.3	0	0	0
4200004	0	0	1．193	1153.5	0	0	0
4200005	0	0	1．53．	1723.0	0	0	0
4200005	0	0	1.801	2428．1	0	0	9
＂\＃		． 0157	$=19.13$	． 430	EPS $=.4282$	vis	． 04340
4218101	2.691	． 3223	0	0	1.753	． 830	． 856
4217101	2.441	． 1632		0	1.553	． 208	． 930
4217102	2.489	． 1659	$4 i ?$	298.8	1.478	． 700	1.031
4217103	2.517	． 1698	． 707	645.4	1.439	． 744	1.002
4217104	2.850	． 1703	1.002	1388.9	1.279	． 359	1.309
4217105	3.818	． 1773	！．252	2994.5	． 290	． 111	1.795
42：7105	5.204	． 2013	1.435	4691.3	． 003	． 040	1.935
4217107	5.361	． 1952	1.655	5719.8	． 019	． 065	1.914
4217：09	5.471	． 2031	1.720	6052.8	． 292	． 746	1.401
4217109	6.344	． 2022	1.828	5985.6	． 330	1.102	1.167
＂${ }^{\text {\％}}$	RUN ： 22 ＊＊＊	－DIST	$=19 \cdot 43$	． 435	EPS $=.4180$	．V15	． 04610
4225102	2．548	．0321	．922	1224.1	． 361	． 849	1.315
4225103	3.172	．03：5	1．252	2694．D	． 500	－ 159	1．698
4225104	4.651	．0328	！．557	4513.3	．0：4	． 049	1.929
4225：05	4.323	．0326	：． 732	5345.2	－	． 042	1.934
＝＝＊		－د：St	$13 . \mathrm{HE}$	． 435	EPS $=.418 \mathrm{D}$	．VIS	． 03820
－4235101	2．5E．	． 0364	0	－ 0	1.225	． 494	1.246
4234：01	2.859	．0143	2	0	1.159	． 595	1.204
4235：0！	2．3：	． 10	0	0	． 687	1.006	1.108
4237：91	3．： 0	．22］9	$?$	0	1.754	． 740	． 914
423310	2．4\％	． 4605	$1]$	0	1．506	． 565	1.100
4233101	4．153	－941	0	0	1.490	． 568	1.109
4239：02	4.93	． 8537	． 8.4	235.7	1.190	． 595	1.131
4239103	4.253	． 3683	－®き	728.2	1.282	． 571	1.177
4237：0：	4.777	． 9327	．954	2035.7	． 589	． 085	1.700
$4239!5$	5．23！	．856：3	1．03？	3500.3	． 168	． 180	1.793
423うire	$\therefore . \mathrm{Ca}$	．5712	！．0e4	3794.2	． 159	． 245	1.755
はこうこ：07	7．3：	．8722	1．1．5	4546.3	． 293	． 348	1.645
423502	9.909	－${ }^{\text {a }} 5$	1.155	5451．2	． 387	． 487	1.529
629：0	¢ \％\％	． 993	－ 2.237	6001.2	． 140	．65！	1.511
くご！	：C．．：\％	． 35 \％	1．3ミ3	6544.5	． 427	． 747	1.355

EXPERIMENTAL RESULTS FOR＊：CII／ZNCL an SYSTEM
NO． 1
packing ：hax－coated cone
RVERGGE SIZE＝ 11.0 （MM），APPARENT DENSITY $=1210 .(\mathrm{KG} / \mathrm{M3}$ LIOUID ：ZNCL2－WATER NOMINAL VISCDSITY $=0340$（NS／M2 SURFACE TENSIDN $=.0809(N / M) \cdot$ CCNTACT FNGL
$=97.9$（DEG．1

	total	L10u10	GRS	PRESSURE	relative ligulo flux				
Run no．	HOLC－UP	velocitr	velocity	DROP	INNER	M100LE			
	IPCT．	（MM／S）	19／5：	（N／M3）	1－1	（－）			

$$
\begin{aligned}
& \text { \#\# RUN44O m\#\# } \\
& \text { \#\# GAS PRESSURE DROP THROUGH ORY } 3 E O \text { \#\# } H B=.415 . \text { EPS }=.5316
\end{aligned}
$$

4400001	0	0	． 384	202.7	0	0	0
4400002	0	0	． 652	546.9	O	0	0
4400003	－	0	． 933	1018.4	0	0	0
4400004	0	0	1.244	1725.6	－	0	
4400005	0	0	1.558	2612.0	0	0	0
4400006	0	0	1.822	3493.6	0	0	0
\％＝	RUN 441	015t	$=19.48$	$=.416$	EFS $=.5315$	vis	． 02830
441710：	3.679	． 2616	0	0	1． 359	． 524	1．18！
4417102	3.757	． 2649	． 462	440.8	1.748	． 570	1.021
4417103	3.941	．2713	． 692	943.0	． 140	1.262	1.133
4417104	4.209	． 2745	． 902	1704.4	1.209	． 528	1.228
4417105	5.171	． 2803	1.104	3088.2	1.037	． 347	1.398
4417106	6.132	． 2882	1.229	4163.1	1.190	． 521	1.239
4417107	7.212	． 3012	1.313	5077.8	． 347	． 484	1.544
4417108	8.470	． 3094	1.373	5990.1	． 229	． 408	1.631
4417201	3.919	． 3060	0	0	． 885	． 696	1.233
4414201	3.278	． 0335	0	0	． 242	1．121	1.184
4415201	3.400	． 0694	0	0	．14］	． 979	1.309
4416201	3.612	． 1409	0	0	． 435	． 616	1.433
4418201	4.352	． 5637	0	0	． 832	． 530	1.353
4419201	5.185	1.0997	0	0	1.105	． 679	1.170
－${ }_{\text {F }}$	RUN 442 ＊${ }^{\text {FF }}$	．OIST	$=19.48$	$=.416$.	$E P 5=.5316$	VIS	． 02790
4425101	3.442	． 0641	0	0	．671	． 970	1.135
4425102	3.487	． 0606	． 472	445.5	． 462	． 903	1．243
4425103	3.460	． 0434	． 709	968.9	． 059	1.047	1.294
4425104	3.593	． 0657	． 699	973.6	． 173	． 845	1.413
4428.105	3.974	． 0685	1.029	2114.6	． 231	． 5 D8	1.558
4425106	4.402	． 0588	1.224	3253.2	． 546	． 584	1.384
4425107	5.671	． 0687	1．422	4851.5	1.497	． 379	1.225
4425108	7.475	0690	1．557	6459.2	26	55	．823

PACKING : PLASTIC SPhERES
AVERAGE SIZE $=13.2$ (MM) . APPARENT DENSITY $=921 .($ KG/M3) LIOUID : CACL2 - HATER

DENSITY $=1350.1 \mathrm{KG} / \mathrm{M} 31$, NOMINFL V1SCOSITY $=$. OOS (NS/M2 SURFACE TENSION = $0.0888(N / M):$ CCNIACT GNGLE

RUN ND.	tatal L	Liduid	gas	Pressume	RELATIV	VE LICuID	
	hold-up	Elocity	y velocity	OROP	NNER	midole	
	(PCT.)	(mM/S)	(M/S)	(11/43)	1-1	1-1	1
\#\# RJN400 ***	RUN400 ***						
xn:	gas pressure	E OROP TH	throsoh ory	3E0	H9 = . 423	EPS	. 4076
400000!	0	0	. 465	248.!	0	0	0
4000002	0	0	. 684	496.1	0	0	-
4000003	0	0	. 982	955.2	0	0	0
4000004	0	0	1.254	1523.2	0	0	0
4000005	0	0	1.555	2176.9	0	0	0
4000005	0	0	:. 922	2949.0	0	[0
**	Run 401	- Olst	I = : 3 . HB	. 423	EPS $=.4076$	Vis	. 00592
4017101	2.645	. 1442	0	-	1.047	. 809	1.108
4017102	2.788	. 1468	. 459	389.5	. 821	. 849	1.159
4017103	2.902	. 1463	. 685	820.7	1.151	. 981	. 963
4017104	3.216	. 1469	. 937	1757.3	. 395	. 254	1.656
4017105	4.160	. 1477	1.210	3326.9	. 005	. 579	1.500
4017105	5.504	. 1445	:. 307	4379.4	. 023	. 646	1.553
4017107	6.142	. 1405	1.374	4914.9	. 056	. 846	1.419
4017108	5.987	. 1423	1.449	5647.5	. 256	.631	1.484
**	RUN 402 \#\#	D151	T = 19. HB	. 423	EPS $=.4076$	vis	. 00609
4029 i01	3.221	. 2712	0	0	1.089	. 772	1.118
4029101	3.579	. 5337	0	D	. 841	. 744	1.218
4027101	3.062	-1411	0	0	1.028	. 714	1.174
4025101	2.931	.0682		0	1.364	. 590	1.133
4024101	2.763	. 0148	0	0	1.178	. 633	1.169
4025101	2.790	. 0341	0	0	. 873	. 564	1.316
***	Run 403 ***	DIST	T = 19. H3	. 423	EPS $=.4076$	- VIS	. 00502
403510:	2.917	. 0775	0	0	1.210	. 597	1.185
403510:	3.855	. 1540	-	0	1.076	. 556	1.257
403710:	3.285	. 3292	0	0	. 839	. SE6	1.081
4038101	3.574	. 5440	0	0	1.054	. 975	1.003
4033101	$4.82!$	1.1800			1.067	1.130	. 903
4039102	4.132	1.1434	. 373	252.7	1.191	1.146	. 852
4039103	4.207	1.1677	. 624	730.3	1.046	. 573	1.255
4039104	4.537	1.1551	. 854	1766.6	. 115	. 440	1.643
403910S	5.225	1.1353	.981	2689.3	. 152	. 514	1.591
4039106.	3.211	1.1172	1.063	4801.3	. 489	. 689	1.375
***	枵过 404 \#\#	. D [5T	$\boldsymbol{T}=19.43$	$=.423$	EPS $=.4076$	v:s	. 00514
4045101	2.855	. 0323	0	0	. 833	. 542	1.347
4045102	2.973	. 0330	. 460	350.1	. 500	. 698	1. 365
4045:03	2.981	. 0335	. 593	746.5	. 528	. 789	1.29;
4045104	3.052	. 0326	.921	1391.7	. 500	. 770	1.317
4045105	3.411	. 0323	: 205	2751.9	. 218	. 151	1.79:
4045105	4.299	. 2321	-. 4 ¢9	4513.9	. 010	. 182	!.en
4.145107	4.592	. 0352	1.532	5086.5	. 581	. 052	1.78:
40.5109	5.465	. 0304	1.793	5867.8	. 257	. 874	. .2.

EXPERI	ENTAL RES	TS FOR mer	WI3/GLY	** Srsie			10. I	EXPERI	mentil result	TS. FOR = $=$	- W13/GL r	* SYSTEM			NO. 2
	king : hax average s:	$\begin{gathered} \text { COATED SPH } \\ E=13 \end{gathered}$	$\begin{aligned} & \text { ERES } \\ & 3.3(M M) \end{aligned}$	hPPARENT	DENSITY	921. InG	KG/M3)	RUN NO.	rotal HOLD-UP	$\begin{aligned} & \text { LIQUID } \\ & \text { VELOCITY } \end{aligned}$	GHS VELOCITY	pRESSURE	$\begin{gathered} \text { RELATI } \\ \text { MNFR } \end{gathered}$	ve llou MIODLE	10 FLUX OUTER
	Uld : Gly	Eral - hat					(1)	RUN NO.	(PCT.)	(HM/S)	(M/S)	(N/M3)	luner	M.	OUTER $1-1$
	DENSITY	$=121$	0.1KG/m31	. nominal	viscosity $=$. 0640 1N	NS/M2)	. 3036107	5.859	. 0236	1.424	4547.6	1.682	. 687	. 972
	Surface te	SION = .O	652 IN/M1	- contact	fngle	96.6 10	DEG, 1	3036108	8.225	. 0185	1.515	54.4 .2	1.556	. 500	1.134
								=\%	RUN 304 min	. DIST	$=19$. HB	. 430	EPS $=.4180$. v1s	. 05570
	total	LIquia	GAS	PRESSURE	RELATI	Ive LICuId	- FLux	3047101	3.149	. 0635	0	0	1.007	1.483	. 707
RUN NO.	MOLD-UP	velocitr	velocity	DROP	INNER	midole	OUter	3045101	2.764	. 0149	-	0	. 982	1.338	.904
	(PCT.1	IMy/S!	(m/S)	(N/M3)	!-1	1-1	(-1)	3048101	3.383	. 1.322	0	a	1.293	1.303	. 721
	RUN3CO $=$ -							3046101	2.932	. 0349	0	0	1.023	1.421	. 738
	GAS PRESS	RE DRCP TH	ROUGH DRY	BEO	$H E=.430$	EPS	. 4180	3049101	3.746	. 2538	0	0	. 318	1.513	. 917
3000001	0	0	. 462	225.8	0	0	0	3046201	3.135	. 0709	0	0	. 775	1.411	. 826
3000002	0	0	. 650	417.4	0	0	0	3044101	2.707	. 0086	0	0	. 853	1.297	. 877
3000003 3000004	0	0	. 861	702.4	0	0	0	3049201	3.681	. 2594	0	0	1.540	1.419	. 565
3000004	0	0	1.115	1117.5	0	0	0	3046301	3.117	. 1439	0	0	1.341°	I. 918	. 595
3000005	0	0	1.397	1683.1	0	0	0	\#n:	RUN 305 man	. DISt	$=13 . \mathrm{HB}$	$=.430$	EPS = .4180	. VIS	. 06570
3000006	0	0	:.621	2225.9	0	0	0	3057101	2.965	.0640	0	0	. 905	1.734	. 585
3000007	0	0	1.830	2784.6	0	0	0	3059101	3.354	. 2279	0	0	. 545	1.792	. 333
3018101	RUN 301 .	- DIST	$=71$. H3	. 430	EPS $=.4180$. vis =	. 06430	3658101	3.133	. 1388	D	0	. 414	2.041	. 553
3013101 3019101	2.794	. 1794	0	D	2.297	[.283	. 396	3055101	2.669	.0166	0	[2.001	1.363	. 453
3013101 3017101	3.345	. 3758	0	0	1.919	1.372	. 468	3056101	2.775	. 0297	0	0	2.291	1.354	. 359
3017101 3016101	2.495	. 0833	0	0	2.170	1.752	. 149	- $=$	RUN 306 me=	- D15T	$=13$. HB	.430	EPS $=.4180$. VIS	. 06570
3016101	2.374	. 0334	0	0	. 697	1.979	. S04	3068101	2.941	.0941	0	0	2.961	1.054	. 317
3017201	2.492	. 0721	0	0	1.419	1.689	. 439	3057101	2.781	.0514	0	0	3.149	1.252	.123
3017202	2.523	. 0721	. 457	305.6	1.228	1.443	. 657	3066101	3.106	. 1652	0	0	3.161	I. 359	. 059
3017203	2.539	. 0729	. 524	561.0	. 392	2.099	. 529	3069101	2.661	. 0188	0	0	2.869	. 983	. 392
3017204	2.596	. 0699	. 865	1154.0	- 112	. 773	1.444	*m	RUN320 ${ }^{\text {-1, }}$						
3017205	4.159	. 0670	1.117	2700.3	. DSI	. 055	1.913	=-1	gas pressure	E drop tmp	rough ery	BED =	H8 = . 225	EPS =	.4106
3017206	4.905	. 0656	1.238	3425.5	. 011	. 018	1.945	3200001	D	0	. 469	246.9	- 0_{0}	-	0
3017207	5.028	. 0614	1.356	4285.3	. 492	. 505	1.483	3200002	0		. 624	417.7	0	0	0
3017208	3.441	. 0511	1.410	5560.2	1.025	. 771	1.140	3200003	0	0	. 826	687.6		0	0
- ${ }^{-1}$	RUN 302.	- DIST	$=7 \mathrm{I} \cdot \mathrm{HB}$. 430	EPS $=.4180$. VIS	. 07280	3200004	0	0	1.053	1059.4	0	0	0
3028101	3.255	. 1674	0	0	2.429	1.027	. 510	3200005	-	D	1.306	1578.3	3	5	0
3025101	2.648	. 0163	D	0	1.570	1.629	. 430	3200005	0	0	1.525	2097.5	0	2	0
3025101	2.737	. 0383	0	0	2.326	1.311	. 372	3200007	3	0	1.814	2886.5	0	1	0
3027101	2.438	. 0777	0	0	2.449	1.237	. 373	- $=$	RUN 321 -m	- dist	$=19.48=$	$=.425$.	EPS $=.1105$. $!$! 5	. 05070
3028201	3.125	. 1785	0	0	1.957	1.655	. 230	3218101	3.165	. 1571	0	-	1.146	1.254	. 775
3025101	3.554	. 3726	0	-	2.362	1.474	. 255	3217101	2.819	-6S12	0	0	1.277	1. 2.20	.900
3029102	3.573	- 3852	. 452	314.7	2.549	1.359	. 20.4	3217102	2.929	.c539	. 453	346.1	1.451	1.223	. 718
3029103	3.657	. 3830	. 620	595.2	3.302	. 890	. 303	3217103	3.053	. C 507	. 535	692.2	1.415	i. 027	. 853
3029104	4.614	. 3863	. 821	1594.2	. 583	- 375	1.632	3217104	3.354	. 618	. 906	1227.6	. 859	. 6.42	1.277
3029105	5.187	. 3753	. 920	2159.8	. 328	. 546	1.512	3217105	4.659	.c591	. 999	2515.1	. 098	. 46	1.236
3029105	9.071	. 3557	1.006	3920.4	. 504	. 583	1.431	3217106	5.972	. 0594	1.186	3655.0	. 006	. 55	1.745
"\#"	Ruv 203	- DIST	$=71 . \mathrm{HB}$.430	EP5 $=.4180$	- VIS	. 65230	3217108	8.201	.0505	1.296	4790.3	. 963	1.773	. 942
3039101	2.957	. 1441	0	0	4.190	. 670	. 142	3217189	11.412	. 6479	1.322	5997.1	1. 386	:. 850	. 349
3035101	2.490	. 10105	0	0	3.379	. 764	. 362	- =	RUN 322 =a=	- 2 !st =	= $19 . \mathrm{HE}=$	$=.425$	EP5 = 4106	. vis $=$	$=.06310$
303910:	2.767	. 0834	0	0	3.104	1.373	. 070	3229101	4.144	. 3804	0	0	. 970	1.187	. 301
53310!	2.534	. 0442	0	0	3.763	.890	. 149	3229102	4.229	. 3967	. 380	263.1	. 865	1.134	. 969
, 736101	2.553	. 0215	0	0	2.587	1.575	. 119	3229103	4.334	. 4192	. 264	394.6	. 980	1.095	. 953
3035102	2.591	. 0220	. 458	301.0	2.605	1.250	. 315	3229104	4.573	. 4196	. 595	673.8	. 438	. 982	1.205
3095103	2.547	. 0231	. 551	599.8	2.235	1.350	. 381.	3229105	4.825	. 4175	. 676	955.3	. 934	. 551	1.244
2036104	2.549	. 0212	. 867	1133.5	. 601	. 549	1.360	3229:06	5.703	-4114	. 766	1746.7	. 180	. 346	1.686
$\because 36105$	3.546	. 0240	1.131	2469.9	. 860	. 100	1.379	3229107	E.318	- 1214	. 863	2679.0	. 165	. 407	1.653
2. 36105	4.931	. 0258	1. 335	3763.0	.177	. 132	1.833	3229108	9.332	4256	. 923	3895.0	. 447	. 218	1.057

EXPER：MEHTAL RESULTS FOR EP WI3／GLY EE SYSTEM NO． 3							
	total	Liguid	GR5	Pressure	RELATI	ve liauid	I flux
run na．	MOLD－ip	velocity	veldeity	DROP	INNER	midole	outer
	（PCT．）	（MM／5）	（17／5）	（N／M3）	1－1	1－1	1
29109	13．399	． 3743	． 937	5254.1	． 508	1.243	1.021
25！02	4.158	．0218	． 940	1968.3	0	． 523	1.642
$\bigcirc 325103$	5.868	．0244	1.339	4111.9	． 906	1.395	． 790
3225104	9.845	． 0163	1.476	5826.3	2.602	． 758	． 629
＊＊＊	RuN 323	． 115 T	$=7 \mathrm{I} \cdot \mathrm{HB}$	． 425	EPS $=.4106$	．VIS	． 06820
3237101	3.134	． 0990	0	0	2.957	1．268	． 185
	3.241	． 1025	． 458	327.7	． 994	1.991	． 394
$\begin{aligned} & 9237102 \\ & 3237103 \end{aligned}$	3.357	． 0950	． 626	623.0	1.753	1.715	． 313
	3.354	．0992	． 862	1416．8	． 738	1.042	1.069
$\begin{aligned} & 3237104 \\ & 3237105 \end{aligned}$	5.325	． 0901	1.071	2773.5	． 079	． 763	1.462
	6.411	． 0871	1．158	3578.9	． 680	1.293	． 932
$\begin{aligned} & 3237106 \\ & 3237107 \end{aligned}$	7.858	． 0880	1.192	4259.6	1.574	1.364	． 590
3237：03	12.041	． 0773	1.259	5957.9	1.509	1.317	． 640
	Run 324	－Dist	$=71$ ． HE	． 425	EPS $=.4106$	．VIS	． 07730
$3247101{ }^{\mathrm{max}}$	3.214	． 0734	0	\square	2.500	1.193	． 383
	3.815	． 269 ？	0	0	2.050	1.307	． 465
$\begin{aligned} & 3249101 \\ & 3248101 \end{aligned}$	3.510	． 1536	－	0	2.238	1.201	． 467
$\begin{aligned} & 324610! \\ & 3245101 \end{aligned}$	3.036	． 0384	0	0	2.211	1.038	． 580
	2.887	． 0184	0	0	2.912	． 840	． 455
	Run 325.	． 0151	$=19 . \mathrm{HS}$	． 425.	EP5＝．4106	－V15	． 06780
325910．	4.153	－ 3596	0	0	1.425	1．3n1	．677
	3.744	． 2242	0	0	． 605	1.491	． 935
$\begin{aligned} & 3258101 \\ & 3257101 \end{aligned}$	3.453	． 1103	0	0	． 718	1.561	． 753
$\begin{aligned} & 3256101 \\ & 3255101 \end{aligned}$	3.211	． 0532	0	0	1.625	1.297	． 613
	3.011	． 0262	0	0	1.980	1.132	． 594
＊＊＊	RUN380						
＝an	GAS PRE55	RE OROP th	RDJUG DRY	EEO ：$=$	H8 $=.430$	EP5	4180
3800001	－	\square	． 455	225.8	0	0	0
3200002	0	0	． 679	465.2	0	0	0
3800003	0	D	． 957	897.2	0	9	D
3800004	0	0	1.243	1399.0	0	0	0
3800005	D	0	1.501	1979.5	C	0	0
3800005	0	0	1.798	2764.1	0	0	0
	RUN 381	OIST	$=19.48$	． 430	EPS＝．4180	－ 1 ¢	． 07330
$\begin{aligned} & 3315101 \\ & 3015102 \end{aligned}$	2.250	． 0142	0	0	． 537	1．5：3	． 348
	2.337	． 0153	． 453	251.9	． 598	1．433	．844
3815103	2.417	． 0154	． 582	561.4	1.085	－ 0 ？	．856
3915104	2.696	． 0154	－ 715	1353.8	． 850	． 25	1.229
3915：05	4.375	．0194	1．197	2987.5	． 029	－ 314	1.645
3815105	5.376	． 0182	1.347	4036.7	． 877	－5？	1.275
－9！5107	7.170	．0178	： 4.421	4647.3	．750	－ 9 ：	1.222
20：5：08	7.63	． 0202	1.453	4793.9	． 595	．073	1.220
3815109	8.296	．0176	1.527	5277.4	． 823	：．？！	． 927
	9！4 382	0：5T	$=19.19$.430	EFS $=.4180$	－v：S	． 05450
3927101	2.821	． 6933	0	3	1.127	－， 27	－8．8
¥き27201	$\bigcirc .839$	． 6905	c	0	1.025	：．2： 5	． $8: 7$
232510：	$2.3 \% 5$	． 0220	0	0	－393	1．422	． 753
ミã4： 0	$2 \cdot 193$	－131		0	． 336	－¢ ¢ \％	． 940
302510	$\therefore .493$	． 3509	0	0	． 953	：．：こ3	．75：
592510	き．ことタ	．2こ62		0	1.190	： Sc^{-9}	－394
	2．833	．477：	c	0	． 547	1．fCs	． 225

	total	LIQulo	GA5	pressure	Relati	ve L．cille	fidx
Run no．	HOLD－UP	velditity	VELOCIT	QRDP	INNER	Midnie	OUTER
	（PCT． 1	（MM／S）	（M／5）	（ $\mathrm{N} / \mathrm{H} 3$ ）	1－1	－	－${ }^{\text {－}}$
3829102	3.933	． 5009	． 367	228.1	． 909	1.618	． 554
3829103	3.988	． 5002	． 513	456.1	：．454	1.132	772
3829104	4.490	． 4874	． 675	1040.0	． 777	775	： 222
3829105	4.552	． 4028	． 763	1434.5	． 420	． 519	1.437
3829106	5.347	． 4632	． 886	2253.3	－： 97	． 868	1．357
3829107	7.531	． 4738	． 965	3329.7	－375	1．159	！．1！
3829108	12.826	． 4843	．987	5277.4	． 377	． 974	． 231
\＃\＃\＃	RUN 383	－DIST	$=19$ ．нa	． 430	EPS＝．：550	vis	． 05670
3838101	3.025	． 1345		0	1.229	1.28°	． 750
3838102	3.171	． 1380	． 448	314.7	． 923	－ 282	． 855
3838103	3.244	． 1423	． 671	736.6	． 908	． 965	1.093
3833104	3.966	． 1472	． 924	1799.4	－195	． 269	！． 729
3938105	6.578	． 1532	1.127	3587.4	．973	． 591	1.407
3835106	8.797	－1504	1.266	4734.6	． 558	． 92	1.432
3933107	10.517	． 1428	1.333	5252.3	－340	． 422	1.573
3835102	7.734	． 0171	1.533	5123.1 ．	． 477	：． 553	．93e
3835103	9.568	． 0220	1．595	5993.5	1．：57	1.272	．792
3835104	8.537	． 0176	1.632	5758.6	1.073	1．55？	Cこき
3835105	¢．056	． 0166	1.305	3975.1	． 835	． 778	＜

EXPERIMENTAL RESULTS FOR $=$ HIB/GLY

* S SYSter	4 NO. 3		
pressure	RELAT!	ve liguld	flux
DROP	INNER	midile	OUTER
($\mathrm{N} / \mathrm{M} 3$)	1-1	1-1	(-1)
5254.1	. 508	1.243	1.021
1968.3	0	. 523	1.642
4111.9	. 906	1.395	. 790
5826.3	2.602	. 758	. 629
. 425.	EPS $=.4106$, V15	. 06820
0	2.957	1.268	. 185
327.7	. 994	1.99]	. 394
623.0	1.753	1.715	. 313
1416.8	. 738	1.042	1.069
2773.6	. 079	. 763	1.462
3578.9	.680	1.293	. 932
4259.6	1.574	1.364	. 590
5957.9	1.509	1.317	. 640
. 425 .	EPS $=.4106$. yis =	. 07730
0	2.500	1.193	-383
0	2.050	1.307	. 465
0	2.238	1.201	. 467
D	2.211	1.038	. 580
0	2.912	. 840	. 465
. 425.	EPS $=.4106$, VI5 =	. 05780
0	1.425	1.301	. 677
0	. 605	1.491	. 835
0	. 718	1.561	. 753
0	1.625	1.297	. 613
0	1.980	1.132	. 594

	total	LIauid	GAS	Pres
RUN No.	HOLD-up	VELOCIIY	velocity	DROP
	IPCT.)	(MH/S)	(17/5)	($\mathrm{N} /$
3229109	13.339	. 3743	. 937	525
3225102	4.158	. 0218	. 940	196
3225103	5.858	. 0244	1.339	411
3225104	9.845	. 0163	1.475	582
**	RUN 323	01ST	71. H9	$=.4$
3237101	3.134	. 0990	0	
3237102	3.241	. 1025	. 459	32
3237103	3.357	. 0950	. 626	62
3237104	3.884	. 0892	. 862	141
3237:05	5.325	. 0901	1.071	277
3237106	6.411	.0871	1.158	357
3237107	7.858	. 0880	1.192	425
3237108	12.041	. 0773	1.259	59
*-	RUN 324	DISI	$=71$. HB	$=$
32:7101	3.214	. 0734	0	
$32: 9101$	3.815	. 2697	0	
32:8:01	3.510	. 1535		
32:5101	3.0 .36	. 0384	0	
3245101	2.987	. 0184	0	
- =	RUN 325	- D15T	$=19 . \mathrm{H8}$	$=.4$
325910]	4.153	. 3596	O	
3258101	3.744	. 2242	0	
3257101	3.453	. 1103	0	
3255101	3.211	. 0532		
3255101	3.011	. 0262	0	

**" GAS PRESSURE OROP THROUGH ORY GED

**	gas pressure	OROP	through ory	6ED -	HB $=$	$=.430$	EPS	.4180
3800001	0	0	. 456	225.8		0	0	0
3600002	0	0	. 679	465.2		0	0	0
э800003	0	0	. 957	887.2		0	0	
3800004	0	0	1.243	1398.0		0	0	
3800005	0	0	1.501	1979.5		0	0	O
3800006	0	0	1.798	2754.]		0	0	0
= ${ }^{\prime \prime}$	Run 381	- aISI	$=19 \cdot \mathrm{HB}$. 430	E.PS	. 4180	. VIS	. 07330
381510!	2.260	. 0142	0	0		. 537	1.513	. 848
38:5:02	2.337	. 0153.	. 453	291.3		. 598	1.489	. 944
$39: 5103$	2.417	. 0164	. 692	651.4		1.086	1.202	-856
3815104	2.596	. 0164	. 915	1353.3		. 650	. 729	1.229
38:5105	4.376	. 0154	1.197	2987.6		. 028	. 494	1.545
3815105	5.976	.0182	1.347	4036.7		. 877	. 629	1.276
3815107	7.170	. 0159	1.421	4647.9		.750	. 784	1.222
38:5109	7.539	. 0202	1.463	4793.9		. 595	. 873	1.220
3815109	8.235	. 0176	1.527	5277.4		. 829	1.218	. 927
" ${ }^{\text {F }}$	Run 382 = $=$. 0:ST	$=19$, 48	. 430	EP5	. 4180	VIS	. 06460
3627101	2.821	. 0933	0	0		1.127	1.237	- 818
3827201	2.839	. 0905	0	-		1.025	1.246	. 847
3825101	2.325	. 0220	0	0		. 993	1.422	. 753
3924101	2.189	. 0131	0	0		. 735	1.408	-840
3926!01	2.493	. 0509	0	0		. 353	1.423	. 762
3日2910:	3.289	. 2262	0	-		1.190	1.079	. 894
382910:	3.639	. 4771	0	0		. 647	1.606	. 625

EXPERIMENTAL RESULTS FOR =W HJG/GLY EE SYSTEM
NO. 4

RUN NO.	total	LIOUID	GAS	Pressure	RELATIVE LIOUID FLux		
	MOLD-UP	velocity	VELOCITY	DROP	ininer	mjote	OUTER
	(PCT.)	(Mm/S)	(H/S)	(N/M3)	1-1	1-1	1-1
3829102	3.933	. 5009	. 357	228.1	$\bigcirc 09$	1.618	654
3829103	3.988	. 5002	. 513	456.1	1.454	1.132	772
3829104	4.490	. 4874	. 675	1040.0	. 777	. 775	1.220
3829105	4.552	.4828	. 763	1434.5	. 420	. 619	1.437
3829106	5.347	. 4632	. 886	2253.3	. 197	. 858	1.357
3829107	7.631	. 4738	. 965	3329.7	. 376	1.169	1.111
3829108	12.826	. 4843	. 98.7	5277.4	. 377	. 974	1.23]
- =	RUN 383 .	- DIST	$=19.48$. 430	EP5 = .4180	15	. 06870
3838101	3.025	.1345	0	0	: 2229	1.289	. 750
3838102	3. 271	. 1380	. 448	314.7	. 929	1.282	. 856
3838103	3.244	. 1423	. 671	736.6	. 208	. 965	1.093
3838104	3.865	. 1472	. 924	1799.4	. 95	. 269	1. 729
3838105	6.578	. 1532	1.127	3587.4	- 378	. 691	1.407
3838106	8.797	. 1504	1.266	4734.6	. 558	- 492	1.432
3838107	10.517	. 1428	1.333	5252.3	. 340	. 442	1.573
3835102	7.734	. 0171	1.533	5129.1	. 477	1.553	838
3835103	9.568	. 0220	1.695	5993.5	1.:57	1.272	. 792
3835104	8.537	. 0176	1.632	5758.6	1.073	1.552	. 653
3835105	6.066	. 0165	1.305	3975.1	. 836	. 778	1.208

ACKNOWLEDGEMENTS

The author wishes to express his most sincere gratitude and appreciation to Dr. V. Rajakumar for his supervision, encouragement and generous support during the course of this work.

Thanks are due to all the members of the John Percy Research Group for their help on many occasions and in particular, to Mr. A.L. Neve for his advice on technical matters. Mrs. G. Hopkins is also thanked for her excellent typing of the thesis.

Grateful acknowledgement is due to the Kawasaki Steel Corporation for their financial support during the course of this work.

Finally, the author wishes to express his sincere gratitude to Professor F.D. Richardson for his generous encouragement during the course of the work.

LIST OF SYMBOLS

Symbol	Explanation	Units ${ }^{*}$
Roman		
a,b, c, d, e	constants used in Equations (6.1), (6.5), (6.9), (6.12)	
a_{t}	total surface area of particles per unit volume of bed	$\left(\mathrm{m}^{2} / \mathrm{m}^{3}\right)$
C_{p}	capillary number defined by Equation (3.10)	(-)
$\mathrm{C}_{\mathrm{ph}}, \mathrm{C}_{\mathrm{ps}}$	capillary number defined by Equations (6.7) and (6.6)	(-)
C_{pm}	modified capillary number defined by Equation (6.10)	(-)
D	characteristic length of the system	(m)
d_{g}	diameter of spheres in the grid	(m)
d_{h}	hydraulic diameter of packing ($=4 \varepsilon / \mathrm{a}_{\mathrm{t}}$)	(m)
$\mathrm{d}_{\mathrm{h}}{ }^{\prime}$	characteristic length of packing based on hydraulic diameter (Equation 6.4).	(m)
d_{i}	hydraulic diameter of the smallest inner area of a ring	(m)
d_{p}	nominal diameter of packing	(m)
d_{pe}	diameter of a sphere having the same volume as a piece of packing	(m)
d_{S}	characteristic length of packing based on specific surface area Equation (6.3)	(m)
F	ratio of pressure drop of gas through an irrigated bed to that through dry bed at the same gas velocity	(-)
Fl_{i}	relative liquid flux to i-th annulus	(-)

Symbol	Explanation	Units*
Fr	Froude number ($=u^{2} / \mathrm{gD}$)	(-)
f	force	(N)
${ }^{f} \mathrm{~g}$	gravitational force, Equation (3.1)	(N)
f_{i}	inertial force, Equation (3.2)	(N)
f_{k}	friction factor, Equation (2.6)	(-)
f_{p}	the force exerted on liquid by the gas flowing through the bed, Equation (3.6)	(N)
f_{s}	surface force, Equation (3.4)	(N)
$\mathrm{f}_{\text {si }}$	interfacial force, Equation (3.5)	(N)
f_{v}	viscous force, Equation (3.3)	(N)
Ga	Galileo number, Equation (3.9)	(-)
Ga_{m}	modified Galileo number, Equation (6.15)	(-)
g	gravitational accerelation	(m/s ${ }^{2}$)
H_{b}	effective column height	(m)
H_{bt}	total column height	(m)
$\mathrm{H}_{\mathbf{g}}$	height of the grid	(m)
h_{d}	dynamic hold-up	(-)
h_{f}	contribution to hold-up by slow liquid flow	(-)
h_{0}	operational hold-up	(-)
h_{o} *	operational hold-up defined by Gelbe	(-)
h_{s}	static hold-up	$(-)$
h_{s} *	static part of the hold-up (Equation 6.1)	(-)
h_{t}	total hold-up	(-)
k.	constant in Equation (2.12)	(-)

Symbol	Explanation	Units*
L	length of bed for which pressure drop $\Delta \mathrm{P}$ is measured	(m)
N	number of particles per unit volume of bed	($1 / \mathrm{m}^{3}$)
N_{c}	dimensionless interfacial force Equation (3.11)	(-)
$\mathrm{N}_{\text {cap }}$	capillary number defined by Equation (2.3) or (2.4)	(-)
$\mathrm{N}^{\prime} \mathrm{cap}$	capillary number defined by Equation (6.8)	(-)
n	constant in formula 5 in Table 2.3	(-)
$\Delta \mathrm{P}$	gas pressure drop	($\mathrm{N} / \mathrm{m}^{2}$)
$\Delta \mathrm{P} *$	dimensionless pressure drop, Equation (3.12)	(-)
$\Delta \mathrm{P}_{\mathrm{d}}$	gas pressure drop through a dry column	($\mathrm{N} / \mathrm{m}^{2}$)
ΔP_{W}	gas pressure drop through an irrigated column	($\mathrm{N} / \mathrm{m}^{2}$)
$\Delta \mathrm{P}_{\mathrm{w}}^{*}$	dimensionless pressure drop through an irrigated column Equation (6.25)	(-)
Q	liquid flow rate through a column	(ml / s)
Q_{i}	liquid flow rate through the i-th annulus	(ml / s)
Re	Reynolds number, Equation (3.8)	(-)
Re_{g}	Reynolds number for gas flow, Equation (2.7)	(-)
$R e_{m}$	modified Reynolds number, Equation (6.14)	(-)
S	cross-sectional area of the column	$\left(m^{2}\right)$
S_{i}	cross-sectional area of the i-th annulus	(m^{2})
S_{r}	$\begin{aligned} & \text { residual saturation, } \\ & \text { Equation }(2.5) \end{aligned}$	(-)
S_{r}^{*}	residual saturation based on h_{s}^{*}	(-)

Symbol	Explanation	Units ${ }^{*}$
u	superficial velocity of liquid based on empty column	(m/s)
V	superficial velocity of gas based on empty column	(m/s)
Wa	reversible energy of adhesion of liquid to solid	($\mathrm{J} / \mathrm{m}^{2}$)
We	Weber number ($\left.=\rho_{\ell} u^{2} \mathrm{D} / \sigma\right)$	(-)

Greek

ε	fractional voidage of packing	$(-)$
ε_{w}	fractional voidage of irrigated bed	$(-)$
η	viscosity of liquid in centipoise (cP)	
θ	contact angle of liquid on solid	$(-)$
μ	viscosity	$\left(\mathrm{Ns} / \mathrm{m}^{2}\right)$
ρ	density	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
ρ_{w}	density of water	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
σ	surface tension of liquid	$(\mathrm{N} / \mathrm{m})$
σ_{w}	surface tension of water	$(\mathrm{N} / \mathrm{m})$
ϕ	shape factor of packing	$(-)$.

Subscript

ℓ	for liquid
g	for gas

* Those which are indicated by (-) show that the variables are dimensionless

REFERENCES

1）The Australian Institute of Mining and Metallurgy， Blast Furnace Aerodynamics Symposium，Wollongong， Australia，1975．

2）Ergun，S．，Ind．Eng．Chem．，1953，45， 477.
3）Philbrook，N．O．，J．Metals，1954，6， 1396.
4）Elliott，J．F．，Buchanan，R．A．，Wagstaff，J．B．，J．Metals， 1952，4， 709

5）Beer，Ho，Heynert，Go，Stahl u。Eisen，1964，84，1353．
6）Segawa，K．，Ishikawa，H．，Trans．I．S．I．Japan， 1968，8， 172

7）Bates，M．P．，J．I．S．I．，1973，211， 677.
8）Jeschar，R。，Pठtke，W．，Peterson，V．，Polthier，K．， ＂Blast Furnace Aerodynamics＂，ed．Standish，No，1975， Australian Inst．Min。 Met．

9）Koup，V．，Tien，R．H．，Olsson，R．G．，Perzak，T．F．， ＂Process Simulation and Control in Iron and Steelmaking＂， Metallurgical Soc．Conferences，Vol 32，AIME，1964， 125.

10）Muchi，I．，Trans．ISI Japan，1967，$\underline{7}, 223$.
11）Yagi，Jo，Muchi，I。，ibid，1970，10， 392.
12）Flierman，G．A．，Oderkirk，H．，＂Mathematical Models in Iron－and Steel－making＂，1975，The Metals Soc．，London．

13）Kuwabara，M．，Muchi，I．，＂Blast Furnace Aerodynamics＂， 1975，Australian Inst．Mining．Met．， 61.

14）Kodama，K．，Hagiwara，T．，Shigemi，A．，Kondo，S．， Kanayama，Y．，Wakabayashi，K．，Hiramoto，N．， Tetsu－to－Hagané，1976，62， 535.

15）Sasaki，M．，Ono，K．，Suzuki，A．，Okuno，Y．，Yoshizawa，K．， Nakamura，T．，ibid， 559.

16）Sasaki，K．，Hatano，M．，Watanabe，M．，Shimoda，T．， Yokotani，K．，Ito，T．，Yokoi，T．，ibid， 580.

17）Radestock，J．，＂Theoretische Untersuchung der Stationáren inkompressibleu und kompressiblen Strdmung in ruhenden，geschichten，und isotropen Schuttungen， Dr．Diss．Tech．Univ．Clausthal，West Germany， 1969.

18）Radestock，J．，Jeschar，J．，Stahl u．Eisen，1970，90， 1249.
19）Tate，M．，Suzuki，K．，Ree，H．，Kuwano，Y．，Chang，T．， ${ }_{19}{ }^{\text {Go }}{ }^{\text {Ho }}{ }^{2}$ Matsuzaki，Mo，Nakamura，S_{0} ，Tetsu－to－Hagané， 1976，62， 535

20）Tate，M．，Kuwano，Y．，Suzuki，K．，Chang，T．，Go，H．， Matsuzaki，M．，Tetsu－to－Hagané，1976，62， 495

21）Beer，Ho，Heynert，Go，Stahl u。Eisen，1964，84，1353。
22）Zimmermann，K－A．，Heynert，G．，Peters，K．H．，ibid，1974， 94 1283.

23）Humenik，M．，Hall，D．W．，Van Alsten，R．L．，Metal Progress， 1962， 81.

24）Keverian，J．，Taylor，H．F。，Trans．Amr。Foundrymen＇s Soc．， 1957，65，212．

25）Towers，H．，Trans．Brit．Ceram．Soc．，1954，53， 180
26）Turkdogran，E．T．，＂Physical Chemistry of Oxygen Steelmaking． Thermochemistry and Thermodynamics＇Monograph series on BOF， Steelmaking vol II，Theory and Fundamentals，U．S．Steel．

27）Shulman，HoL。，Ullrich，CoF。，Walls，N．，AIChE Jo，1955， 1， 247 。

28）Gardner，G．C．，Chem．Eng．Sci．，1956，5， 101.
29）Elgin，J．C．，Weiss，F．B．，Ind．Eng．Chem．1931，31， 435.
30）Uchida，S．，Fujita，S．，Kogyo－Kagaku－Zassi，J．Soc．Chem． Ind．Japan，1936，39，876．

31）Uchida，So，Fujita，So，ibid，1937，40， 538.
32）Piret，E．L．，Mann，C．A．，Wall，T．，Jr．，Ind．Eng．Chem．， 1940，32， 861.

33）Jesser，B．W．，Elgin，J．C．，Trans．Amr．Inst．Chem．Engr．， 1943 ，39， 277.

34）Shulman，H．L．，Ullrich，C．F．＇Wells，N．，Proulr，A．Z．， AIChE J．，1955，1， 259.

35）Larkins，R．P．，White，R．R．，Jeffrey，DW．，AIChE J．，1961， 7， 231

36）Ross，L．D．，Chem．Eng．Progr．，1965，61， 77.
37）Mohunta，I．M．，Laddha，G．S．，Chem．Eng．Sci．，1965，20， 1069.
38）Brǒ̌，Z。，Kolăř，V。，Coll。Czech。Chem．Comm．，1968，33， 2722.
39）Tichy，J．，Chem．Eng．Sci．，1973，28， 655.
40）Warner，N．A．，Chem．Eng．Sci．，1959，11， 149.
41）Standish，N．Chem．Eng．Sci．，1968，23， 51.
42) Standish, N., Chem. Eng. Sci., 1968, 23, 945.
43) Andrieu, J., Chem. Eng. Sci。, 1975, 30, 217.
44) Davidson, J.F., Trans. Instn. Chem. Engrs., 1959, 37, 131
45) Otake, T., Okada, K., Soc. Chem. Eng. Japan, 1953, 17, 176.
46) Buchanan, J.E., I and EC Fundamentals, 1967, 6, 400
47) Gelbe, J., Chem. Eng. Sci., 1968, 23, 1401
48) Davidson, J. F., Cullen, E.J., Hanson, D., Roberts, D., Trans. Instn. Chem. Engrs. 1959, 37, 122.
49) Dombrowski, H.S., Brownell, L.E., I and EC, 1954, 46, 1207
50) Turner, G.A., Hewitt, G.F., Trans. Instn. Chem. Engrs., 1959, 37, 329.
51) Uchida, So, Fujita, S., Kogyo-Kagaku-Zassi (J. Soc. Chem. Ind. Japan), 1938, 41, 563.
52) Mersmann, A., Chemie Ing. Techn., 1965, 37, 218
53) Ergun, S., Chem. Eng. Progress, 1952, 48, 89
54) Carman, P.C., Trans. Instn. Chem. Engrs., 1937, 15, 150
55) Leva, Mo, Chem. Engng. Prog。Symp. Ser., 1958, 10, 51
56) Brawer , H., Chem. Ing. Techn., 1960, 32, 585.
57) Morton, F., King., P.J., Atkins.on,B., Trans Instn. Chem. Engrs, 1964
58) Buchanan, J.E., I and EC Fundamentals, 1969, 8, 502. 42.35.
59) Dutkai, E., and Ruchenstein, E., Chem. Eng. Sci., 1970, 25, . 483 .
60) Sherwood, T.K., Shipley, G.H., Holloway, F.A.L., Ind. Eng. Chem., 1938, 30, 765.
61) Lobo, W.E., Friend, L., Hashmall, F., Zenz, F., Trans. Amer. Inst. Chem. Enger., 1945, 41, 693.
62) Newton, W.M., Mason, J.W., Metcalfe, T.B., Summers, C.O., Petroleum Refiner, 1952, 31, No. 10, 141.
63) Standish, N., Drinkwater, J.B., J. Metalis, 1972, 24, 43.
64) Szekely, J., Mendrykowski, J., Chem. Eng. Sci., 1972, 27, 959.
65) Shavrin, S.V., Zakharov, I.M., Ipatov, B.V., Izv., V.U.Z., Chern. Metall., 1962, No.9, 54.
66) Rikhter, R.G., Potevnya, Yu. M., Izv, V.U.Z., Chern. Met., 1974, No. 4, 37.
67) Nakane, C., Kuwano, Y., Suzuki, K., Otani, K., Honda, K., Chan. T.S., Matsuzaki, M., Kim,C.W., Tate, M., Trans. ISI Japan, 1973, 13, 247.
68) Standish, N., Colquhoun, L., "Blast Furnace Aerodynamics" 1975, Austrialian Inst. Min. Met., 20.
69) Warner, R.E., ibid, 23
70) Zisman, W.A., "Contact Angle, Wettability, Adhesion", Advances in Chemistry Series 43, Am. Chem. Soc., 1964, 1.
71) Fox, H.W., Zisman, W.A., J. Colloid Sci., 1952, 7, 428.
72) Inst. of Petroleum, "IP Standards for Petroleum and Its Products'", 19th ed., 1960, 637。
73) Porter, K.E., Trans. Instn. Chem. Engrs., 1968, 6, T 74.
74) Hosaka, M., "Jyoho-syori" (Data Processing), 1969, 10 121.
75) Wylie, C.R., "Advanced Engineering Mathematics", 3rd ed. 1966, McGraw-Hill Inc., New York, p 126-141.

[^0]: $C L=c l a y, \quad P O R=$ porcelain, $C L=$ glass, $C=c a r b o n, S T=s t c e l, B S=$ berl saddles
 RR maschig rings, $S P=$ spheres, $L S=$ lessig rings
 SA $=$ surface acive agent, C.M.C. = carboxy-methyl-cellulose
 $D R=$ draining, WEI weighing, $T R=$ tacer method
 G - With gas flow, FL $=$ flooding velocities measurement also, HS = static hold-up measurement also.

[^1]: * Due to the pores open to the surface, the alumina spheres (AL13) absorbed a small amount of liquid which was estimated to be 0.21% on the basis of a comparison of h_{S}^{*} between PL13/E TOH and AL13/ETOH systems. Table 6.2 shows the values after this correction was applied.

