STUDIES OF COUNTERCURRENT GAS-LIQUID FLOW IN PACKED BEDS

by

Tsuyoshi FUKUTAKE

A thesis presented for the degree of Master of Philosophy in the University of London

September 1977

John Percy Research Group, Department of Metallurgy and Materials Science, Imperial College of Science and Technology, London SW7

ABSTRACT

by

Tsuyoshi FUKUTAKE

The total hold-up, liquid distribution, gas pressure drop and flooding velocities were measured at low superficial velocities of liquid for various degrees of wetting between liquids and packings. The packed beds consisted of spheres and coke particles. The ranges of experimental variables, chosen to cover the prevailing flow conditions in iron blast furnaces,were: particle size (8~13mm); contact angle $(0~114^{\circ})$; liquid density $(807~1920 \text{ kg/m}^3)$, viscosity $(0.0009~0.064 \text{ Ns/m}^2)$ and velocity (0.02~1.0 mm/s).

The total hold-up was significantly lower with non-wetting flows than with wetting flows. Correlations for both static and dynamic hold-up were obtained and shown as mathematical formulae which are in dimensionless form and are valid for non-wetting as well as wetting flows.

Mersmann's flooding diagram, which correlated the measured data better than Sherwood diagram, was modified to incorporate the effect of the degree of wetting on the flooding velocities.

The gas flow influenced the liquid distribution in the column. The changes in the liquid distribution with gas flow for non-wetting flows were significantly larger than for the wetting flows.

Instability of the bed, in which a transition from a stable to a fluidized bed occurred, was observed before the onset of flooding in some of the experiments in which a heavy liquid (ρ_{ℓ} =1920 kg/m³) was used. A diagram was developed to identify the operating state of the bed in relation to the flow conditions. This diagram indicated that in blast furnaces the fluidization of the coke bed is likely to start before the onset of flooding by the slag.

CONTENTS

			page
TITLE PA	AGE		1
ABSTRACT	Γ΄,		2
CONTENTS	5		3
LIST OF	FIGURES		7
LIST OF	PLATES		9
LIST OF	TABLES		10
CHAPTER	1	INTRODUCTION	11
CHAPTER	2	LITERATURE SURVEY	14
	2.1	Formation of the Melting zone and Flow Conditions below it	14
	2.2	Previous Work on Irrigated Packed Columns	18
	2.2.1	Hold-up	18
	2.2.1.1	Experimental data on hold-up	19
. .	2.2.1.2	Generalized correlation for operational hold-up in the absence of gas flow	21
	2.2.1.3	Static hold-up	24
	2.2.2	Influence of gas flow on hold-up and gas pressure drop	27
	2.2.2.1	Hold-up correlation	27
	2.2.2.2	Pressure drop of gas in dry column	29
	2.2.2.3	Pressure drop of gas in irrigated column	30
	2.2.2.4	Influence of gas flow on liquid flow distribution	31
	2.2.3	Flooding	31
	2.3	Application to the Blast Furnace Process	35
	2.4	Summary	36

				•
				nage
	CHAPTER	3	DESIGN OF EXPERIMENTAL SYSTEM	<u>9460</u> 38
	CHAPTER	4	EXPERIMENTAL WORK	46
		4.1	Apparatus	46
		4.1.1	Column	51
	·	4.1.2	Control and measurement of liquid flow rate	51
•		4.1.3	Gas flow control	57
		4.1.4 4.2 4.3	Recording of the data Liquids and Packings Experimental procedures	64 64 70
		4.3.1	Experimental procedure for first series of experiments	70
		4.3.2	Experimental procedure for experiments with gas flow (second series)	71
	. •	4.4	Data Processing	72
		4.4.1	Calibration curves	72
		4.4.2	Correction for the influence of gas pressure on column weight	73
		4.4.3	Calculation of liquid flow	73
	CHAPTER	5	EXPERIMENTAL RESULTS	75
		5.1	Experimental Data	75
		5.2	Experiments in the Absence of Gas Flow	78
		5.3	Experiments with Gas Flow	82
		5.3.1	Change of the flow pattern of the liquid with gas velocity	82
		5.3.2	Reproducbility of the measurements	87
	CHAPTER	6	DISCUSSION	89
		6.1	Hold-up in the Absence of Gas Flow	89
	:	6.1.1.	Calculation of dynamic and static hold-up	89
		·		

	CHAPTER	6	DISCUSSION (continued)	
		6.1.2	Correlation for static hold-up	93
		6.1.3	Correlation for dynamic hold-up	101
		6.1.4	Correlation for the total hold-up	104
		6.1.5	Comparison of estimated hold-up with published experimental data	105
	•	6.2	Gas Pressure Drop	109
		6.2.1	Gas pressure drop through dry column	109
		6.2.2	Pressure drop through irrigated column	111
		6.3	Flooding	119
	•	6.4	Instability of the Bed	125
	· 1	6.5	Liquid Distribution	129
		6.6	Possibility of the Occurrence of the Flooding in the Blast Furnace	132
	CHAPTER	7	CONCLUSIONS	135
	APPENDIX	I	METHOD FOR COMPUTING LIQUID FLOW RAT	ES
		I.1	Introduction	$138 \\ 138$
		1.2	Principle of the method	138
		I.3	Program and Calculated Results	139
÷	APPENDIX	II	GENERALIZED CURVE-FITTING	143
		II.1	Introduction	143
		II.2	Parametric Interpolation	143
		II.3	Conditional Least-Square Method	144
		II.4	Mathematical Formulation	145
		II.5	Computer Program	147
	APPENDIX	III	LIERATIVE METHOD FOR LEAST SQUARES	153
		111.1	Introduction	153

		page		
APPENDIX III	(continued)			
III	.3 Computer Program	155		
APPENDIX IV	EXPERIMENTAL DATA	157		
ACKNOWLEDGEMENTS				
LIST OF SYMBOLS				
REFERENCES		192		

LIST OF FIGURES

<u>Fig. No</u> .		<u>Page</u>
2.1	State of burden in a blast furnace	15
2.2	Operational ranges of superficial velocities of slag and metal in commercial blast furnaces	15
2.3	Relationship between residual saturation, S _r , and capillary number, N _{Cap} , after Dombrowski and Brownell(49).	26
2.4	Typical examples of the changes in total hold-up and pressure drop with gas velocity at a constant liquid velocity	28
2.5	Flooding diagrams showing the limiting condition for flooding	33
4.1	Schematic drawing of experimental apparatus in the main section	50
4.2	Design of the liquid distributor	53
4.3	Four arrangements of supply points of distributor used in experiments	54
4.4	Liquid collector/gas distributor and position of the column	56
4.5	Liquid flow meter	59
4.6	Schematic drawing of gas flow control section	61
4.7	Dew point meter	63
4.8	Calibration curve for micromanometer	65
4.9	Calibration curve for the effect of the gas pressure on the column weight for Run 340.	74
5.1	Graphical representation of experimen- results for Run 17	tal 79
5.2	Influence of the distributor arrangeme on liquid flow distribution and total	ent80

Fig. No

Fig. No	2	<u>Page</u>
5.3	Relationship between total hold-up and liquid velocity for different columns of PL13/WATR system.	81
5.4	Variation of total hold-up, pressure drop and relative liquid flux to outer annulus with gas velocity, Run 13183 (AL13/WATR)	83
5.5	Variation of total hold-up, pressure drop and relative liquid flux to outer annulus with gas velocity, Run 19171 (PL13/WATR)	84
5.6	Variation of total hold-up pressure drop and relative liquid flux to outer annulus with gas velocity, Run 30361 (W13/GLY)	85
5.7	Examples of variation of total hold-up with gas velocity for PL13/WATR and W13/WATR systems	88
6.1	Examples of variation of total hold-up with liquid velocity	94
6.2	Plot of experimental data for wetting flows on Dombrowski's diagram	95
6.3	Relationship between static hold-up h_s^* , and modified capillary number, C_{pm}	100
6.4	Comparison between measured and estimated dynamic hold-up	102
6.5	Comparison between measured and estimated total hold-up	103
6.6	Relationship between the static hold-up, h and the modified capillary number for published data	107
6.7	Schematic drawing of three different ways in which liquid is held by a tube	108
6.8	Relationship between friction factor, f_k , and Reynolds number, Re_g , for dry columns	112
6.9	Relationship between the total hold-up and the ratio of the pressure drop through irri- gated column to that through dry column	113
6.10	Relationship between the total hold-up and the ratio of the pressure drop through irrigated column to that through dry column	114
6.11	Variation of friction factor, f_k , with gas Reynold's number Re for dry and irrigated columns.	116

· .			
	<u>Fig. No.</u>		Page
	6.12	Variation of friction factor f_k with gas Reynolds number Re for dry and irrigated columns.	117
	6.13	Schematic drawing of the variation of f_k with Re_g .	118
	6.14	Plots of flooding data on Sherwood diagram	121
	6.15	Plots of flooding data on Mersmann's diagram	122
· ,	6.16	Flooding diagram based on modified dimensionless irrigation density	124
•	6.17	Variations of total hold-up and gas pressure with gas velocity for Run 430 (PL9/ZNCL)	126
	6.18	Diagram showing the regions of bed instability	128
	6.19	Variation of relative liquid flux to outer annulus with dimensionless gas pressure drop, ΔP_w^* .	131
	A1-1	Variation of the weight of the con- tainer with time in two typical cases	142
	A2-1	Physical model of generalized curve fitting.	149
•		LIST OF PLATES	
	Plate 1	General view of the apparatus	48
· .	Plate 2	Detailed view of some parts of the apparatus (a) Column (b) Liquid collector and flow meter (c) Gas humidification column	52
	Plate 3	Appearance of particles in dry and wet states	66

LIST OF TABLES

]	Page
Table	2.1	Typical conditions of liquid flow in blast furnaces	17
Table	2.2	Experimental conditions of hold-up measurements by previous authors	20
Table	2.3	Published correlations for opera- tional hold-up	22
Table	2.4	Comparison between observed and calculated hold-up	23
Table	3.1	Data on packings used in experiments	42
Table	3.2	Physical properties of liquids used in experiments	43
Table	3.3	Comparison of the values of dimension- less numbers for the blast furnace with those of experiments for different liquids	44
Table	5.1	Summary of experimental runs	76
Table	6.1	Static part of the hold-up, hs*, obtained by least-squares fit	91
Table	6.2	Results of the least-squares fit by Equation (6.1)	92
Table	6.3	Comparison of various correlations for static hold-up	98
Table	6.4	Published data on static hold-up	106
Table	6.5	Comparison of measured dynamic and operational hold-ups, %, with values estimated using various correlations	110
Table	6.6	Flooding velocities and dimensionless parameters for the flooding diagrams	120
Table	A1-1	Listing of computer program for the calculation of liquid flow rate	140
Table	A2-1	Calling form of subroutine SMR	148
Table	A2-2	Calling form of subroutine YQ	149
Table	A2-3	Listing of computer program for generalized curve fitting	150
Table	A3-1	Listing of computer program for	156

CHAPTER I

INTRODUCTION

The blast furnace is basically a counter-current packed bed reactor. The hot air, blown into the furnace through tuyères, forms a raceway in which the coke burns to produce a highly reducing gas. The gas then flows upwards through beds of coke and ore. The consumption of coke by combustion or chemical reaction and of ore by melting cause the bed of coke and ore to descend.

The ascending stream of hot gas supplies almost all the energy that is needed to produce pig iron from the ore. The productivitiy of the blast furnace, therefore, depends primarily on the amount of the gas it can take and on the efficiency of energy utilization which in turn is influenced by the radial distribution of the gas and burden and the rate of energy transfer.

It is clear that investigations on the flows of gas, solid and liquid are of basic importance in understanding the prevailing mechanisms of heat, mass and momentum transfer in blast furnaces and this has led to an upsurge of interest in this field in recent years⁽¹⁾.

The furnace can be divided into two parts: the upper part where only solid phase exists other than gas and the lower part where liquid metal and slag flow counter-current to the rising gas stream through a bed of coke.

In the upper part, the gas flows through beds of ore and coke stacked layer by layer. Since the burden descends by its own weight and the excess pressure drop of the gas disturbs its smooth descent, much of the earlier work was concerned with the application of existing correlations from the chemical engineering literature to estimate the influence of various factors on the pressure drop of the gas in the furnace (2,3).

The lower part of the furnace is apparently similar to a packed absorption tower commonly used by chemical engineers though, in the latter, the bed is usually stationary. Elliottet al.⁽⁴⁾ were the first workers who suggested that flooding could be one of the factors which limit the amount of gas that the furnace can take. Although, as we will see later, the coke-slag and coke-metal systems in the furnace differ in several aspects from those commonly used in chemical engineering, the phenomenon of flooding, particularly of the slag, has been considered by many authors as one of the factors which limit the furnace productivity^(5,6,7,8)

In recent years, helped by the rapid development in computer technology, mathematical simulation models of the blast furnace have been developed (9,10,11) The earlier one-dimensional models led to predictions of the profiles of variables such as temperatures and chemical compositions of both solid and gas along the furnace axis as well as the effect of operational variables on coke rate. However, when a model attempts to cover the transport phenomena between liquid and solid, it needs at least the data on liquid holdup and effective interfacial area between solid and liquid. Because of the lack of reliable data, authors of mathematical models for this region of the furnace have often resorted to semi-empirical analyses which rely on comparison between observed furnace performance and predictions from their models. For example, Flieman derived a model in which he had to assume arbitrarily that the ratio of the velocities of the liquid and coke is equal to unity until the ore melts after which it increases linearly with temperature.

In view of the importance of the radial distribution of burden and gas, two dimensional models for the region between the top of the furnace and the melting zone have been proposed⁽¹³⁾ It is clear, however, that one needs more detailed information on the nature of the liquid and gas flows to extend the model to cover the entire furnace and to incorporate liquid flow re-distribution under the influence of the gas flow.

The present work is intended to give an insight into the nature of flow of slag and metal over the bed of coke counter-current to the rising gas stream. In view of the difficulties in carrying out meaningful high temperature experiments, this investigation deals with a roomtemperature model of the system. The experimental conditions for the present studies were chosen to establish liquid flow patterns as close to those in the blast furnace as possible; dimensionless numbers characterizing these flow systems were used as criteria for modelling. Special attention was paid to obtain high contact angles since non-wetting flow characterizes the blast furnace system together with low superficial liquid velocity.

Flooding velocities, liquid hold-up, gas pressure drop and liquid flow distribution at the bottom of the column were measured. The influences of the velocities of liquid and gas; of density, viscosity, and surface tension of liquid; of the degree of wetting between solid and liquid (contact angle); and of size and shape of the packings were investigated.

CHAPTER 2.

LITERATURE SURVEY

The formation of a melting zone and the conditions of flow of molten slag and metal below the melting zone in the blast furnace will be discussed first in Section 2.1. Previous work on hold-up, gas pressure drop and flooding in irrigated packed columns will be discussed in Section 2.2 and the application of the results of these studies to the blast furnace process will be discussed briefly in Section 2.3.

2.1 Formation of the Melting Zone and Flow Conditions below it

Recent investigations on blown-out blast furnaces^(14,15,16) have provided valuable information on the melting process in the furnace. Fig. 2.1 shows that the layered structure of ore and coke persists down to the level where melting begins. Although the position of the melting zone as well as its shape differed from one furnace to another depending on the operating conditions, the existence of the melting zone was clearly observed in all these furnaces.

Below the melting zone, there is a bed of coke through which molten slag and metal flow downward. Recent observations with a probe introduced into the high temperature region of an experimental furnace (19,20) have confirmed that the molten slag and metal flow as slugs over coke particles. This is because, on the one hand, the surface tension and contact angle of slag and metal on coke are high and on the other, the velocities of slag and metal averaged over the hearth area is very low. Fig. 2.2 shows histograms of the velocities of slag and of metal (mm/s) derived from operational data for 34 blast furnaces (21,22). The scatter in the histogram

 $\frac{\text{Fig. 2.1}}{\text{blast furnace}}$

Fig 2.2 Operational ranges of superficial velocities of slag and metal in commercial blast furnaces

based on slag velocity is greater than that based on metal because of the wider range of slag volumes encountered.

The gas velocity calculated over the hearth area at NTP is within a range of 0.65 - 1.0 m/s which is narrower than the range of metal and slag velocities. It must be noted that, because the hot air is blown horizontally into the furnace, the velocity and direction of gas flow change greatly in the vicinity of the raceway. In the case of an isothermal, uniform column without irrigation, uniform vertical flow of the gas is achieved at a height approximately equal to the radius of the column from the horizontal gas inlet^(17,18)

Table 2.1.shows the mean physical properties of liquid slag and pig iron. In view of the considerable scatter in the reported results, the range of variation for each property is also shown in the Table. The values are based on the chemical composition of tapped slag and pig iron. It should be noted that the slag and iron flowing through the bed of coke in the lower part of the blast furnace may be different in both composition and temperature. For example, Elliott et al (4) noted that small changes in temperature and composition could change the viscosity of slags from 0.2 to 7.8 Ns/m².

Data on the contact angle between graphite or coke and slag or pig iron are scarce. Humenik et al⁽²³⁾ have reported 128° as the contact angle of iron containing 5% carbon on graphite at just above the melting temperature. The contact angle decreased with the decrease in carbon content and they reported a value of 60° when no carbon was present in the iron.

Keverian and Taylor⁽²⁴⁾ measured the surface tension and contact angle on graphite carbon of carbon saturated iron at 1200° C. They reported a contact angle of 121° for carbon-saturated iron. With the addition of sulphur, the surface tension decreased while the contact angle increased

	Density [†] (Kg/m ³)	Viscosity [†] (Ns/m ²)	Surface [†] tension (N/m.)	Contact angle with carbon (Degree)	Superficial velocity (10 ⁻³ m/s)	Coke Size (m)
Pig iron	6600	0.005	1,1	125*	0.08	· .
(range)	(6300-6900)	(0.004-0.006)	(0,9-1.3)		(0.04-0.11)	0.024 (0.02-0.03
Slag	2600	0.3	0.47	105-160*	0.08	
(range)	(2500-2700)	(0.25-0.6)	(0.45-0.5)		(0.03-0.16)	
	·····		· · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

Table 2.1 Typical conditions of liquid flow in blast furnaces

to 129, 132, 155⁰ for 0.01, 0.019, 0.07, %S respectively. The addition of 1% silicon did not change the surface tension or contact angle significantly.

Towers has reported that the angle between graphite and a synthetic blast-furnace slag was a function of the time of contact and decreased from 160° at the start to 105° after one hour and to 30° after five hours. The author suggested that this decrease was caused by a reaction between SiO_2 in the slag and carbon yielding SiC In the blast furnace, the time of contact of the or SiO. coke with slag depends on the residence time of the coke below the melting zone and the effective contact area between the coke and slag. The average residence time of ore and coke in modern blast furnaces is about eight hours. The volume of the coke bed between the melting zone and tuyére level can be estimated from the reported profile of the melting zone. Among four furnaces reported^(14,16). the maximum volume is about two ninths of the effective inner volume of the furnace. All the surface of the coke is not always in contact with the slag and a contact area of 50% would be too high an estimate. Therefore, it is unlikely that the coke is in contact with the slag for more than an hour and the contact angle between slag and coke in the furnace is likely to be more than 105° .

2.2 Previous Work on Irrigated Packed Columns

2.2.1 Hold-up

Shulman et al⁽²⁷⁾ defined three different types of liquid hold-up:

- the total hold-up, h_t, which is the total liquid in the packing under operating conditions,
- (2) The static hold-up, h, which is the amount of liquid that does not drain from a column when the liquid supply to the column is discontinued.

(3) the operating hold-up, h_o, which is the difference betweem the total and static hold-ups.

The hold-up is usually expressed as the volume of liquid per unit volume of the packed bed and is dimensionless. The relation between the three hold-ups is given by:

$$h_{t} = h_{s} + h_{0} \tag{2.1}$$

Shulman et al. measured ht and h from which h was calculated.

Gardner⁽²⁸⁾ has suggested that the total hold-up consists of another component, h_f , caused by a superimposed slow liquid flow which persists after stopping the liquid supply. In this case

$$h_{t} = h_{s} + h_{f} + h_{d}$$
 (2.2)

where h_d is the dynamic part of the hold-up which is zero at zero liquid flow rate. The operational hold-up, h_o , also referred to by some authors as dynamic hold-up, is assumed to be zero at zero liquid flow rate. This assumption contradicts Gardner's analysis, though, at high liquid flow rates the operational hold-up makes such a large contribution to the total hold-up that the difference between h_o and h_d is negligible.

2.2.1.1 Experimental data on hold-up

Table 2.2 summarises the experimental conditions of liquid hold up measurement by various investigators. It will be noted that these studies cover a wide range of liquid viscosity $(0.00059 - 0.185 \text{ Ns/m}^2)$ but the density of liquid is changed only within the narrow range of 800-1320 Kg/m³. Excepting the data of Gardner, the liquid velocities are higher than those existing in blast furnaces (Fig. 2.2). The majority of investigators have used rings

•			· · · ·								
Ref.	Author .	Column dxh (m)	Packing Material	l size (nm)		u (mm/s)	Liqui p (kg/m³)	d μ (Ns/m²)	σ (N/m)	Measure method	ment remarks
29)	Elgin & Neiss	0.073 x 1.5	CL+BS POR-BS CL-RR CL-SP	13 6.3 16 13	Water	1.01- 56.8	1000	0.001	0.072	DR	G,FL
30) 31)	Uchida å Fujlta	0.36 x 1.5 0.26 x 1.5,3.3	POR-RR Crushed Lime	15,26,35 16,25,35	Water	0.55- 55.5	1000	0.001	0.072	DR	G,FL
32)	Piret et al	0.762 x 1.83	Gravel	42.7	Water	0.065- 3.05	1000	0.001	0.072	DR	
33)	Jesser & Elgin	0.152 x 1.28	GL-SP BS C-RR	13,19,25 6.3,13,25 13	Nater Water, aq.sol.of NaCl, SA, Sugar	0.72- 48.5	1000- 1206	0.001- 0.01	0.029- 0.081	DR	•
27)	Shulman et el	0.254 x 0.91	POR-RR POR-BS C+RR	13,25,38 13,25 25	Nater	0.69- 13.9	1000	0.001	0.072	WEI	G,HS
34)	Shulman et al	0.254 x 0.91	POR-RR POR-BS C-RR	25 25 25	Aq.sol.of sorbitol. CaCl2, SA Methanol Benzene	1.39- 13.9	800- 1320	0.00059- 0.185	0.0226- 0.08	5 NEI	нs
3,51	Larkins et al	0.05 x 0.1 x	RR SP CYL	9.5 3,9.5 3	Aq.sol. å Org.sol.	0:14- 265	800- 1200	0.00033- 0.041		DR	Co-curt. gas flow
36)	Ross .	0.05 x 0.01 1.9	Catalys cylinde	t 4.8x4.8 r	Water	0.68- 16:9	1000	0.001	0.072	DR TR	
37)	Hohunta Laddha	0.076 x 0.6	RR LR SP	6.3,9.13 6.3,9 13	Water Aq.sol.of C.M.C.	0.60- 32	800- 1320	0.0006- 0.162	0.226- 0.086	DR	
58)	Broz & Kolar	0.19 x 1.0	GL-SP	10.2	Water Aq.sol.of glycerol, methanol	0.22- 19.9	843- 1212	0.0089- 0.057	0.028- 0.073	WEI	G,HS
39)	Tichy	- x 1.0	GL-SP	10,15,20	Water Aq.sol.of glycerol, butanol, K ₂ CO ₁	0.765- 5.23	993- 1430	0.001- 0.02	0.0405- 0.073		G
	Non-wetti	.ng experi	ments					- 			
28)	Gardner	rectang. .19x.22 x .61	Coke coated with silicon	6.3-13 13-19 19-25 c	Water	0.068- 1.013	1000	0.001	0.072	h;TR h;DR h:WET	C,HS
40)	Warner	0.047 x 0.53	ST-RR	6.3	Mercury	7.35	13600	0.0015	0.47	h;DR	
41) 42)	Standish	0.44 x -	ST-RR POR-RR C-RR POR-BS	6.3	Mercury Cerro- bend water	1.07- 10.7	1000- 13600	0.001- 0.0023	0.072- 0.47	WEI	нs
44)	Andriew	0.15 x	POR-RR silicon coated	10 e	Nater '	3.15- 6.30	1000	0.001	0,072	•	G,FL,HS

Abbreviations CL = clay, POR = porcelain, GL = glass, C = carbon, ST = steel, BS = berl saddles, RR = raschig rings, SP = spheres, LS = lessig rings SA = surface active agent, C.N.C. = carboxy-methyl-cellulose DR = draining, WEI weighing, TR = tracer method G = with gas flow, FL = flooding velocities measurement also, HS = static hold-up measurement also.

Table 2.2 Experimental conditions of hold-up measurements by various authors

and berl saddles as packing materials. These materials are common in the field of chemical engineering. However, only a few studies have been reported with spheres and granular solids which are more relevant to the blast furnace process.

Measurements under the non-wetting condition are scarce. $(^{40})$ and Standish $(^{41,42})$ studied non-wetting systems with raschig rings or berl saddles as the packing and, moreover, their range of liquid velocities is outside of that of blast furnaces. The only experiments which are particularly relevant are those of Gardner $(^{28})$.

Of those who studied non-wetting systems, Standish compared operational⁽⁴¹⁾ and static hold-up⁽⁴²⁾ between wetting and non-wetting systems. He concluded that there was no significant difference in operational hold-up between wetting and non-wetting systems. For static hold-up, his measured results showed values which were much smaller for non-wetting system compared with those for wetting systems. Andrieu⁽⁴³⁾ showed that the static hold-up was 2.3% with silicone-coated raschig rings and 5.4% with uncoated ones. The dynamic hold-up with the coated packing was about 10% smaller than with the uncoated one.

2.2.1.2 <u>Generalized correlation for operational hold-up</u> in the absence of gas flow

Table 2.3 shows generalized correlations for operational hold-up given by various authors. Although these correlations are in the dimensionless form, those of Buchanan⁽⁴⁶⁾ and of Gelbe⁽⁴⁷⁾ are applicable only to ring packings. Davidson⁽⁴⁴⁾ combined a theoretical analysis with results from liquid flow experiments on a string of spheres⁽⁴⁸⁾ to develop a correlation which is claimed to be valid for low liquid flow rates where the liquid flows as a laminar film over the surface of the packing. Under these conditions, the operational hold-up was proportional to the one-third power of

No.
 Author
 Correlation
 Ref

 1
 Otake and Okada

$$h_o = 1.295(\frac{d_p u \rho_{\ell}}{\mu_{\ell}})^{0.676}(\frac{g d_p ^3 \rho_{\ell}^2}{\mu_{\ell}^2})^{-0.44}(a_t d_p)$$
 45

 2
 Davidson
 $h_o = 1.217(\frac{2\pi u \rho_{\ell}}{a_t \mu_{\ell}})^{1/3}(\frac{g d_p ^3 \rho_{\ell}^2}{\mu_{\ell}^2})^{-1/3}(a_t d_p)$
 44

 3
 Mohunta and Laddah
 $h_o = 16.13(\frac{\mu_{\ell} u^3 N}{g^2 \rho_{\ell}})^{1/3} + 1.8(\frac{u^2}{g d_p})^{\frac{1}{2}}$
 37

 4
 Buchanan⁺
 $h_o = 8.1(\frac{\mu_{\ell} u}{\rho_{\ell} g d_p^2})^{1/3} + 1.8(\frac{u^2}{g d_p})^{\frac{1}{2}}$
 46

 5
 Gelbe⁺
 $h_o^* = 1.59(\frac{d_1}{d_p})^{-5/9}(\frac{\rho_{\ell} g}{\sigma} d_h^2)^{-1/7}(\frac{g d_h \rho_{\ell}^2}{\mu_{\ell}^2 a_t^2})^{-0.3}(\frac{u \rho_{\ell}}{a_t \mu_{\ell}})^n 47$
 $n = 1/3$ for $\rho_{\ell} u/a_t \mu_{\ell} < 1$;
 $n = 5/11$ for $\rho_{\ell} u/a_t \mu_{\ell} \ge 1$
 t
 Valid only for raschig ring packings

Table 2.3 Published correlations for operational hold-up

Worker System	Warner ⁽⁴⁰⁾ Mercury-steel raschig ring		Garc Wate with	lner ⁽²⁸⁾ er-coke coat i silicone fi	ed luid	Blas Metal	t furnace Slag
d _p (m)	0.00635	0.0155		0.02	2		0.024
a_t^p (1/m)	635.8	349.8		244.	5		229.2
$N (1/m^3)$	3108000	276000		96500	0		87300
d _{pe} (m)	0.00727	0.0155		0.02	2		0.024
ε (-)	0.72	0.456		0,46	2		0.45
$\rho_1 ~(kg/m^3)$	13600		100	00		6600	2600
μ_{1}^{2} (Ns/m ²)	0.00155		0.0	009		0.005	0.3
u (m/s)	0.00571 0.00141	0.000067	0.00101	0.000068	0.00068	0.00008	0.00008
Measured h	0.074 0.023	0.0080	0.0263	0.0050	0.0127	—	
data h _s	0.136 0.119	.0.0)213	0.01	68		:
Calculated 2	0.0685 0.043	0.0205	0.0505	0.0161	0.0348	0.0154	0.0824
h _o 1	0.0597 0.0232	0.0033	0.0208	0.0026	0.0125	0.0028	0.0077
by Cor.* 3	0.0755 0.0265	0.0027	0.0203	0.00206	0.0116	0,0022	0.0076

* Table 2.3

Table 2.4 Comparison between observed and calculated operational hold-up

the liquid flow rate. At higher flow rates, the exponent was larger because of the onset of turbulence. The variation in the exponent of the superficial velocity from 1/3 at low flow rate to greater than 1/3 at high flow rate is also reflected in the correlations of Buchanan and of Gelbe in which the exponent changes with liquid flow rate.

Apart from the use of different symbols and correction factors for the shape of packings, the first three correlations use basically the same dimensionless numbers, i.e. Reynolds number $\operatorname{Re}(=\rho_{\ell} uD/\mu_{\ell})$ and Galileo number $\operatorname{Ga}(\operatorname{Re}^2/\operatorname{Fr},$ where Fr is Froude number; = u^2/gD). The fifth correlation uses an additional dimensionless number We/Fr, where We is Weber number given by

$$We = \rho_{l} u^{2} D / \sigma$$

The first three correlations are tested against the measured data of Warner⁽⁴⁰⁾ and of Gardner⁽²⁸⁾, which are for non-wetting conditions, in Table 2.4. Calculated results for assumed blast furnace conditions are also shown in the Table. Davidson's correlation predicts very high operational hold-up at low flow rates, although the agreement is reasonable at high flow rates. The other two correlations predict better values, however even in these cases, the calculated values for Gardner's data at low flow rates are less than half of the measured values.

Although Gardner⁽²⁸⁾ and Standish⁽⁴¹⁾ showed the correlations for operational hold-up for the non-wetting systems, none of them are in generalized form applicable to the blast furnace process.

2.2.1.3 Static hold-up

The measured static hold-up is also shown in Table 2.4. It will be noted that the static hold-up is significantly larger than the operational hold-up at low flow rates. $\mathbf{24}$

Since the residence time of the liquid is related to the total hold-up, it is important to estimate the static hold-up as well as operational hold-up.

Dombrowski and Brownell⁽⁴⁹⁾ have shown a diagram which relates the residual saturation to the capillary number (Fig. 2.3). Turner and $\text{Hewitt}^{(50)}$ defined the capillary number in the absence of external forces other than gravity as follows:

$$N_{\rm cap} = \frac{\varepsilon^3}{5 a_{\rm t}^2} \frac{g\rho_{\ell}}{\sigma \cos\theta}$$
(2.3)

or for the sphere packing

$$N_{cap} = \frac{\varepsilon^{3}}{180 (1-\varepsilon)^{2}} \frac{d^{2}_{p}g \rho_{\ell}}{\sigma \cos \theta}$$
(2.4)

The static hold-up, h_s , is related to the residual saturation S_r as follows:

$$h_s = S_r \cdot \varepsilon \tag{2.5}$$

From Eq. (2.3) it is clear that the capillary number tends to infinity as θ approaches 90° . This would imply that the residual saturation becomes zero since the residual saturation decreases as the capillary number increases. However, a finite static hold-up was observed by Gardner (Table 2.4) when the contact angle, θ , was about 90° . Therefore, Eq. (2.3) or (2.4) cannot be applied under non-wetting conditions where the liquid seems to be held on the surface of packings as shown by Turner and Hewitt⁽⁵⁰⁾ (See also Plate 3 in Sec. 4.2).

2.2.2 Influence of gas flow on hold-up and gas pressure drop

In Fig. 2.4 typical example of the variations in gas pressure drop and total hold-up with gas velocity are shown for a constant liquid velocity. At low gas velocity, the hold-up increases, if at all, very slowly and approximately linearly with gas velocity. Above a certain gas velocity the hold-up increases sharply at an increasing rate until the hold-up curve becomes almost vertical.

As shown in the upper half of Fig. 2.4, the region in which hold-up begins to increase significantly corresponds closely to that in which the slope of the pressure drop line on a plot of log (pressure drop) vs. log (gas velocity) increases. This region, or more specifically this point is called the loading point and above this point the column is said to be loaded $\binom{46}{3}$.

At the point where the hold-up curve becomes almost vertical, the pressure drop curve also becomes almost vertical. Under these conditions the liquid cannot flow through the column at the rate it is supplied at the top of the column and rapid accumulation of liquid destroys the normal operation of the column. This point is called flooding point and the column is said to be flooded.

2.2.2.1 Hold-up correlation

Below the loading point, the hold-up is regarded the same as that without gas flow since the change of hold-up with gas velocity is very small⁽⁴⁶⁾.

Only a few authors have tried to correlate the hold-up above the loading point to flow conditions. Uchida and Fujita(30,31,51) and Mersmann(52) gave the correlation in the form of a diagram. Neither of these diagrams covers the low liquid velocity region which is important to the blast furnace system. The correlation given by Gardner(28) covers the desired low liquid velocity region, though,

its applicability to systems other than his own (silicone coated coke/water/air) has not been tested.

2.2.2.2 Pressure drop of gas in dry column

Ergun⁽⁵³⁾, using pressure drop data in columns of granular materials, correlated the friction factor f_k with gas Reynolds number Re_g where

$$f_{k} = \frac{\Delta P \cdot dp \cdot \phi}{L \cdot \rho_{g} \cdot V^{2}} \cdot \frac{\varepsilon^{3}}{1 - \varepsilon} , \qquad (2.6)$$

and

$$\operatorname{Re}_{g} = \rho \cdot V \cdot d_{p} \cdot \phi / \mu_{g} \qquad (2.7)$$

He gave the following formula to relate f_k with Re_g :

$$f_k = 1.75 + 150 \cdot (1 - \epsilon)/Re_g$$
 (2.8)

In an earlier study $Carman^{(54)}$, using a similar plot, arrived at the following expression:

$$f_{k} = 2.87 \left(\frac{1-\epsilon}{Re_{g}}\right)^{0.1} + 180 \cdot (1-\epsilon)/Re_{g}$$
 (2.9)

It is worth noting that the specific surface area of the packing, a_t , is given by

$$a_{t} = \frac{6 \quad (1-\varepsilon)}{d_{p} \quad \phi} \tag{2.10}$$

Comparing Eqs. (2.6), (2.7), and (2.10) one can see that the effect of packing on the pressure drop can be represented physically by a_t and ε .

2.2.2.3 Pressure drop of gas in irrigated column

Correlations for gas pressure drop in irrigated packed column fall largely into two categories:

those shown in forms of diagrams and those expressed as mathematical formulae.

Leva⁽⁵⁵⁾ incorporated pressure drop data in the flooding diagram which he obtained after a small modification of the Sherwood diagram⁽⁶⁰⁾ while Mersmann⁽⁵²⁾ used his own flooding diagram for the pressure drop correlation (see section 2.2.3 for flooding diagram). Neither of these diagrams shows the pressure drop in the low liquid velocity region.

The various mathematical formulae for the pressure drop require the knowledge of total hold-up. To be consistent with the pressure drop in the dry column, these formulae take the form:

$$\Delta P_{w} = \Delta P_{d} \quad F \tag{2.11}$$

where the function F = 1 when total hold-up, h_f , equals to zero. Different authors have proposed different forms for the function F as shown below: Uchida and Fujita⁽⁵¹⁾

$$\mathbf{F} = \mathbf{e}^{\mathbf{k} \mathbf{h}} \mathbf{t} \tag{2.12}$$

k = 15 for raschig ring and k = 20 for crushed lime

Brauer⁽⁵⁶⁾

$$F = [1 + h_{t}/(1-\epsilon)]/(1-h_{t}/\epsilon)^{3}$$
 (2.13)

Morton⁽⁵⁷⁾ :

$$F = 1/(1 - h_{+}/\epsilon)^{3}$$
 (2.14)

Buchanan⁽⁵⁸⁾.

$$F = [1-2.0(h_t - 0.01)]^{-5}$$
 (2.15)

 $Warner^{(40)}$:

$$F = 1 + 23.9 h_{t}^{2}$$
 (2.16)

Jeschar et al⁽⁸⁾:

$$\mathbf{F} = \left[\frac{1+\mathbf{h}t/(1-\varepsilon)}{1-\mathbf{h}_t/\varepsilon}\right]^{1.2} \left[1.5 \frac{\mathbf{u}\varepsilon}{\mathbf{V}\mathbf{h}_t} + \frac{\varepsilon}{\varepsilon-\mathbf{h}_t}\right]^{1.8}$$
(2.17)

It is clear from the above expressions that there is no general agreement on how the function should be expressed.

2.2.2.4 Influence of gas flow on liquid flow distribution

Dutkai and Ruchenstein⁽⁵⁹⁾ measured the liquid distribution for a wetting system (rings and saddles/water/air) and reported that the liquid distribution did not change until the gas velocity reached 70% of that at flooding. Above that velocity they observed a decrease in the flow rate in the region near the column wall, though the overall liquid distribution did not change very much.

It would appear that no systematic studies on the influence of gas flow on liquid distribution have been reported for non-wetting systems.

2.2.3 Flooding

Since flooding limits the maximum allowable liquid and gas flow rates in packed columns, many investigators have studied this phenomenon. Sherwood et $al_{\cdot}^{(60)}$ have correlated the flooding velocities by the two parameters:

Flooding factor	$\frac{V^2 a_t \rho_g}{g \epsilon^3 \rho_g} \eta 0.2$	(2.18)
Fluid ratio	$\frac{u}{v} \sqrt{\frac{\rho_{\ell}}{\rho_{g}}}$	(2.19)

Later, Lobo et al.⁽⁶¹⁾ measured the value, a_t/ϵ^3 , for different packing materials and correlated the reported experimental data on flooding. Fig. 2.5a shows the correlation of flooding velocities as a relationship between Flooding factor and Fluid ratio. This type of diagram is often referred to as the Sherwood diagram. The solid line in the diagram is after Lobo et al.⁽⁶¹⁾ and the source of the plots in the diagram will be mentioned later.

Mersmann (52), criticising that the Flooding factor is not dimensionless, proposed a different flooding diagram (Fig. 2.5b) in which he showed the flooding velocities as the relationship between the following two dimensionless numbers:

Dimensionless pressure drop $= \frac{\Delta P_{d}/L}{g \rho_{l}}$ $= f_{k} \frac{1-\varepsilon}{\varepsilon^{3}} \frac{V^{2} f_{g}}{d_{p} g \rho_{l}}$ (2.20)
(2.21)

Dimensionless irrigation density

$$= \left(\frac{\mu_{\ell}}{\rho_{\ell} g^2}\right)^{1/3} \frac{u(1-\varepsilon)}{d_{p} \varepsilon} \quad (2.22)$$

Although neither Sherwood nor Mersmann considered the effects of the surface tension of the liquid, Newton⁽⁶²⁾ showed that the effect of surface tension can be accounted for by multiplying the Fluid ratio (Eq. 2.19) on the abscissa of the Sherwood diagram, by the term $(\sigma_w/\sigma)^3$. Standish and Drinkwater⁽⁶³⁾ found the exponent of (σ_w/σ) to be 2.5. Since in these two investigations a surface active agent was used to change the surface tension of the liquid, the validity of their correlations for other liquids is not clear.

Leva⁽⁵⁵⁾ proposed that the Flooding factor (Eq. 2.17) on the ordinate of the Sherwood diagram should be multiplied

Fig. 2.5 Flooding diagrams showing the limiting condition for flooding. The bottom left region corresponds to non-flooding operation.

A: after Sherwood⁽⁶⁰⁾,

B: after Mersmann⁽⁵²⁾

by the term $(\rho_w/\rho_l)^2$ where ρ_w is density of water. Later, Szekely and Mendrykowski⁽⁶⁴⁾ found that their data on flooding of mercury in columns packed with spherical particles were in better agreement with the original Sherwood correlation rather than with that proposed by Leva.

Experimental work on flooding which is particularly related to the blast furnace system has not been done extensively.

Elliottet al.⁽⁴⁾ have extended the range of the Sherwood diagram to the lower values of the Fluid ratio by adding their experimental results on 5mm glass bead/wax/heated air system in a 5cm glass column. Their range of Fluid ratio is from 0.0007 to 0.002; the range in the blast furnace shown by the same authors is from 0.001 to 0.003 whereas the range of the diagram given by Lobo et al.⁽⁶¹⁾ is from 0.01 to 10.

Sharvin et al.⁽⁶⁵⁾ made experiments with a carbon/slag (32% CaO, 46.9% SiO₂, 5.7% MgO, 15.4% AlO3)/N₂ system and their data are in good agreement with the results of Elliott et al. as shown in Fig. 2.5. However, the reliability of data on the coke-slag system is questionable since their column diameter, 3 cm, is very small compared with packing diameter of 1.1 cm.

Szekely and Mendrykowski⁽⁶⁴⁾ measured flooding velocities using mercury as the liquid. Glass beads of 3.175 and 6.35mm, 6.35mm ceramic cylinders and "interlock" saddles were used as packings. Standish and Drinkwater⁽⁶³⁾ showed the effect of non-wetting conditions on the flooding velocities using waxed particles. The magnitudes of the fluid ratio for both experiments are considerably higher than that for the blast furnace. Both results, shown in Fig. 2.5 show that the Flooding factor is about twice as much as that predicted by Lobo's correlation. It is interesting to note that Standish and Drinkwater used water as an irrigating liquid while szekely and Mendrykowski used mercury; the physical properties of these two liquids differ significantly.

Rikhter and Potevnya⁽⁶⁶⁾, using alcohol-castor oil solution of zinc chloride, glycerol at 60° C and aqueous solution of sugar, managed to change the surface tension of the liquid (0.029, 0.050, 0.0845 N/m respectively) while maintaining the density (1210 Kg/m³) and viscosity (0.0124 Ns/m²) constant. Using 25-50mm sized coke coated by an organic silicone lacquer, on which the above liquids showed contact angles of 15, 60, and 100[°] respectively they measured flooding velocities. From the plot of their results on Mersmann's diagram, they found that the flooding limit increased with the contact angle. To correct the effect of contact angle, they multiplied the dimensionless irrigation density (Eq. 2.22) by the factor of $\cos^{6}(\frac{\theta}{2})$ where θ is the contact angle.

2.3 Application to the Blast Furnace Process

The flooding phenomenon has been one of the major subjects for those who investigate the factors which limit the blast furnace production rate (5, 6, 7, 8). This is understandable when one recognises⁽⁴⁾ the remarkable agreement between the factors affecting flooding and the factors commonly suppoed to influence the tendency for hanging in the furnace. In spite of this agreement, opinions differ as to whether or not flooding actually takes place in the furnace. As shown in Fig. 2.5 plots of blast furnace data mostly fall just below the flooding line indicating that the conditions in the blast furnace are between the loading and flooding points. Attempts to initiate flooding in an experimental furnace were made by Nakane et al⁽⁶⁷⁾. Granulated blast furnace slag and pig iron were added to the charged material to get a liquid flow rate as high as 0.4 Kg/m²s. They, nonetheless, failed to obtain a clear occurence of flooding. Instead, they observed channelling

in the stack followed by fluidization.

In a recent study Standish and Colquhoun⁽⁶⁸⁾ observed the effect on the flooding limit of the direction of the inlet gas flow at the bottom of a column in which water was flowed through packings of 6mm glass spheres and rings and $8 \sim 16$ mm coke particles. They found the flooding factor for horizontal gas entry was approximately four times as large as that for vertical gas entry.

Warner⁽⁶⁹⁾, noting a larger non-uniformity of gas flow across the furnace at the level near the raceway, proposed a hypothetical model in which the slag is held locally above the raceway.

The above three papers (67, 68, 69) indicate clearly the limitations of the one-dimensional flow model and the need for further investigation on the flows of liquid and gas in this region.

2.4 Summary

The flow system in the lower part of the blast furnace where molten slag and metal flow counter-current to rising gas stream through a bed of coke is apparently similar to that in packed absorption columns commonly used in the chemical engineering field. However, there are substantial differences between these two systems in that:

- (a) the slag and metal do not wet the coke while wetting flow is common in the latter,
- (b) the liquid velocities in the former are substantially lower than that in the latter,
- (c) crushed coke particles form the packing in the former while hollow packings such as rings, saddles etc. are more common in the latter.
The available information on the hold-up and flooding at low liquid velocities or for non-wetting flows is very limited. No generalized correlations have been proposed for operational and static hold-ups for non-wetting flow.

Although several papers on flooding are available in either low liquid velocity or non-wetting flow, more data seems to be needed to assess the influence of degree of wetting.

CHAPTER 3

DESIGN OF EXPERIMENTAL SYSTEM

As shown in the preceding Chapter, non-wetting flow and low superficial velocity of liquid distinguish the slag/metal/coke system in the blast furnace from those common in chemical engineering field. No systematic studies have been published on the influence of the degree of wetting between the packing and liquid on hold-up and flooding at low liquid velocities.

It is appreciated that in operating furnaces the gas flow, introduced horizontally through the tuyères, changes direction as it ascends through the bed of coke. Consequently, the flow pattern in the lower region of the furnace will be quite complex. However, a complete understanding of the flow process in this region cannot be attempted before adequate theoretical and experimental information on the simpler, "one-dimensional" model in which the gas flow is introduced vertically at the bottom of a column is available. Therefore, it was decided that the present study would deal with the "one-dimensional" flow situation.

Since it would be extremely difficult to carry out accurate experiments on the high temperature slag/coke/metal system, it was decided to use a room temperature model. The idea of using a $SnCl_2$ -KCl slag/carbon system at about $200^{\circ}C$ was also abandoned because the measured values of the contact angle between the slag and carbon were too low (less than 90°).

For the systems of the same geometry, dynamic similarity between the flows in the room temperature model and in the high temperature system can be checked by comparing the ranges of dimensionless numbers for both systems. These numbers are derived from the combinations of forces which influence the flow.

The gas flows through two packed beds will be similar if the Reynolds numbers for the gas flow, Re_g (Eq. 2.7), are the same.

The forces which would affect the liquid flow are:

1) gravitational force

$$f_{g} = \rho g D^{3} \qquad (3.1)$$

2) inertial force,

$$f_{i} = \rho u^2 D^2$$
 (3.2)

3) viscous force,

$$f_v = \mu u D \qquad (3.3)$$

4) surface force,

$$f_{s} = \sigma D \qquad (3.4)$$

5) solid-liquid interfacial force,

$$f_{si} = \sigma D(1 + \cos \theta)$$
 (3.5)

6) the force exerted by the gas flowing through the bed

$$f_{p} = \left(\frac{\Delta P}{L}\right) \qquad D^{3} \qquad (3.6)$$

where D is the characteristic length of the system.

It would be necessary to add a proportionality constant to the right hand side of each of the above equations if the absolute values of the forces were required. In the present case, however, each proportionality constant is the same for assumed geometrically similar systems and since we are only interested in the relative magnituds of the forces, the constants do not appear in the above equations.

Eq. (3.5) and (3.6) require some explanation. Eq. (3.5) is based on equilibrium conditions in which the reversible work per unit area, Wa, of adhesion of the liquid to the solid when coated with an adsorbed film of the saturated vapour is given by⁽⁷⁰⁾

$$Wa = \sigma(1 + \cos\theta) \tag{3.7}$$

Noting that the energy E is related to the force f by E = f D and since in this case $E \propto WaD^2$, one can obtain Eq. (3.5) from Eq. (3.7). The force acting on the liquid is assumed to be proportional to the gas pressure drop. The proportionality constant can be assumed to be the same for similar flow systems and hence it does not appear in Eq. (3.6).

For the characteristic length D, the packing diameter ^dp is commonly used for packed columns. Although the combination of the forces to yield various dimensionless numbers is arbitrary, the following numbers, are chosen in order to maintain consistency with those used by previous authors:

Reynolds number Re =
$$f_i/f_v = \rho_l u d_p/\mu_l$$
 (3.8)
Galileo number Ga = $f_i f_g/f_v^2 = d_p^3 \rho_l^2 g/\mu_l^2$ (3.9)

Capillary number

$$C_{p} = f_{g}/f_{s} = \rho_{l}gd_{p}^{2}/\sigma \qquad (3.10)$$

Dimensionless interfacial force

$$N_{c} = f_{si}/f_{s} = 1 + \cos\theta \qquad (3.11)$$

Dimensionless pressure drop

$$\Delta P^* = f_p / f_g = \Delta P / L \rho g \qquad (3.12)$$

It will be noted that Re, Ga, C_p are used in Table 2.3 in the correlations for operational hold-up. Furthermore one can see that C_p is essentially the same as the capillary number N_{cap} (Eq. 2.4) defined by Turner and Hewitt⁽⁵⁰⁾.

Tables 3.1 and 3.2 show the physical properties of the packing materials and of the liquids respectively. Table 3.3 shows a comparison of the values of the dimensionless numbers for the blast furnace with those obtained in the present work. The dimensionless pressure drop is not given in the Table since its value for the blast furnace is not available. It will be noted that except for the Galileo number of the metal, and the dimensionless interfacial force, N_c , the values for the blast furnace are well within the range of the experiments. The relatively small size of the packing used in the experiments is the main reason for the difference of the values of the Galileo number.

Three different materials were used for the same size packing (W13, PL13, AL13) to obtain different contact angles. Paraffin wax was chosen as one of the materials as it probably gives the largest contact angle among the commonly available materials. (70,71) The choice of CaCl₂ solution made it possible to increase the contact angle further, though, it still fell slightly short of those estimated for the blast furnace conditions.

Table 3.1 Data on packings used in experiments

Packing	Diameter mean (mm)	Standard deviation (mm)	Apparent density (kg/m ³)	Symbol
	· · ·		· · · · · · · · · · · · · · · · · · ·	
Polythene				
spheres	13.2	0.10	921	PL13
	9.0	0.08		PL9
	10.6			PLM**
<u></u>		· · · · · · · · · · · · · · · · · · ·		
Alumina spheres	13.1	0.34	3465	AL13
Wax-coated polythene spheres	13.3	0.10	921	W13
Glass spheres	8.1	0.15	2500	G8
Wax-coated coke	11.0	9.5~12.7*	1210	C11

* size range (openings of sieves)
** 50-50% mixture of PL13 and PL9

Liquid	Concentration (wt. %)	Density (Kg/m ³)	Viscosity* (Ns/m ²)	Surface tension (N/m)	Contact an polythene (Degr	ngle on wax ee)	Symbol
Water		1000	0.0010	0.0732	92.6 1	.05.6	WATR
Aq. sol. of ethanol	96**	807	0.0016	0.0240	0		ETOH
Aq. sol. of glycerol	80	1210	0.064	0.0652	88.1	96.6	GLY
Aq. sol. of CaCl ₂	35	1350	0.0059	0.0888	108,9 1	14.1	CACL
Aq. sol. of ZnCl ₂	75	1920	0.034	00809	84.5	97.9	ZNCL

* Nominal value,

** Azeotrope

Table 3.2 Physical properties of liquids used in experiments

System	Liquid	Re	Ga (x10 ⁴)	С _р	N _C
Blast furnace	Metal . slag	2.5 0.017	23600 1.0	34 31	0.43 0.06 ~ 0.74
· · · · ·	WATR	0.07 ~ 22	610 ~ 2600	8.6 ~ 23	0.73 ~ 2.0
	ETOH	0.05 ~ 7	83 ~ 3500	25 ∽ 63	2.0
Experiment	GLY	0.005 ~ 0.11	0.18~ 0.74	12 ~ 30	0.88 ~ 2.0
	CACL	0.02 ~ 4.5	26 ~ 110	9.5 ~ 25	0.59 ~ 0.68
	ZNCL	0.01 ~ 0.6	1.6 ~ 6.9	15 ~ 40	0.86 ~ 1.1
.	· · · · · · ·	,	nen en	• • • • • • • • • •	4 - ¹

Table 3.3

Comparison of the values of dimensionless numbers for the blast furnace with those for experiments with different liquids.

The use of high-density liquid, $2nCl_2$ solution, is primarily intended to test the effect of the ratio of liquid to solid densities on the stability of the bed. This factor has not been studied previously although it is easy to imagine that fluidisation of the column would start before the column floods if one uses a heavy liquid with a light packing. With a density ratio of about 2.5 estimated for the slag/coke system the instability of the bed is possible at or near flooding. It must be noted that the apparent absence of flooding in the experimental blast furnace ⁽⁶⁷⁾ mentioned earlier could be explained by the instability of the bed.

CHAPTER 4

EXPERIMENTAL WORK

4.1 Apparatus

Plate 1 shows general arrangement of the apparatus which consists of two parts: the main section in the centre and the gas flow control section on the left of the plate.

Fig. 4.1 shows a schematic diagram of the apparatus in the main section. The column, 12, was suspended from one end of a steel beam, 2, with a T-shaped cross-section. The weight of the dry column was balanced by adjusting the counter balancing weight, 4. The weight change of the column was measured and transformed into an electronic signal by a load cell, the actuator of which rested on a small steel ball partially embedded in the beam, 2. The zero point of the load, was shifted electrically to read zero when the load was 100g. This ensured that the actuator of the load cell and the steel ball were in good contact. The range of output of the load cell could be varied by appropriate changes in the balancing weight, 3. The weight change of the column due to the pressure loss of the gas flowing through the column was compensated by introducing the pressure at the gas inlet to a chamber with a thin film diaphragm, 5, on which the counter weight -, 4, rested.

The sensitivity of the balance was better than 0.2 g. A continuous recording of the weight of the dry bed for more than 200 hours showed that the zero drift of the balance was less than \pm 0.5 g. The balance was calibrated before each experiment and together with the zero drift mentioned above, the accuracy of the balance was within \pm 0.5% of reading \pm 0.5 g.

General view of the apparatus

KEY TO FIG. 4.1

- 1 Load cell (900g full load)
- 2 Beam of the balance (T-shaped)
- 3 Balancing weight
- 4 Counter balancing weight
- 5 Diaphram (to compensate the effect of gas pressure on the balance)
- 6 Constant head tank
- 7 Three-way cock
- 8 Reservoir for distributor
- 9 Capillaries
- 10 Silicone rubber tubing
- 11 Distributor head
- 12 Glass column (95mm x 650mm)
- 13 Pressure transducer
- 14 Sintered glass filter
- 15 Liquid collector/gas distributor, details in Fig. 4.4
- 16 Gas supply main
- 17 Vessel to remove pulsation in the liquid flow
- 18 Thermometer
- 19 Liquid flow meter, details in Fig. 4.5
- 20 Electric motor with speed control
- 21 Peristaltic pump
- 22 Liquid reservoir tank
- 23 Dew point monitor, details in Fig. 4.7b.

Fig. 4.1

Schematic drawing of experimental apparatus' in the main section

4.1.1 Column

Two different columns of the same size, 95mm id., 650mm length, were used. Both were made of glass tubing; one was coated with PTFE-spray for experiments in the non-wetting conditions while the other was used for experiments in the wetting conditions.

The grid for the non-wetting column was made of 13mm polythene balls which were fused to one another at the points of contact. The grid for the wetting column was made of 13mm alumina balls stuck with silicone rubber at the points of contact. These grids, being almost the same structure as the beds above them, gave as little influence as possible to the results of experiments, especially in the liquid distribuion measurement. The depth of the grid was about 35mm in both columns.

Plate 2a shows the wetting column being used for 8mm glass ball packing.

4.1.2 Control and measurement of liquid flow rate

The liquid was stored in a reserve tank, 22. A peristaltic pump, 21, driven by an electric motor with speed control, 20, was used to circulate the liquid. The liquid flow rate was adjusted by either changing the height of the constant head tank, 6, or by changing the size of capillaries, The liquid supply to the column, 12, was controlled by 9. stop cock, 7. The distributor head, 11, had 19 supply points according to the arrangement shown in Fig. 4.2 through which the liquid flowed as droplets. The distribution of the liquid flow at the top of the column was changed by stopping the liquid supply to some of the 19 supply points. Four different arrangements of the supply points, shown in Fig. 4.3 were used in the experiments. The arrangement "19" gave the evenest while "71" gave the most centralized liquid flow distribuiton at the top of the column.

(a) column

(b) liquid collector and flow meter

- (c) Gas humidification column
- Plate 2 Detailed view of some parts of the apparatus

Fig. 4.3 Arrangement of supply points of distributor used in experiments (enclosing circle shows the cross section of the column).

KEY TO FIG 4.4

- 1 Glass column
- 2 Grid: made of 13mm plastic balls for experiments on non-wetting flows

made of 13mm alumina balls for experiments on wetting flows $% \left(\frac{1}{2} \right) = 0$

- 3 Diaphragm, made of thin plastic sheet
- 4 Gas pressure tap
- 5 Gas nozzle (5 in total)
- 6 Gas distributing port
- 7 Outer liquid collector (3 in total)
- 8 Middle liquid collector (2 in total)
- 9 Inner liquid collector

10 Outlets of liquid

Cross-section of the liquid collector

.1)

The liquid flowed out of the column into the collector 15, which had six separate compartments (Fig. 4.4). Each compartment collected the liquid from almost the same cross-sectional area of the column. The liquid flow rate to each compartment was measured by specially designed liquid flow meters. As shown in Fig. 4.5 the measuring mechanism consisted of a container, 6, with siphon, 7, for self-draining of the liquid and a spring beam, 4, on which a pair of strain gauges was fixed. An increase in the weight of the container, 6, increased the bending of the beam which led to an increase in the output of the strain gauges. When the liquid level rose to the top of the siphon, 7, it started to drain automatically. Special attention was paid to the design and construction of the siphon to make the The measuring containers were draining process reliable. kept inside a gas-tight vessel, 8, so that the liquid flow rate could be measured continuously even in the presence of Plate 2b shows the arrangement of liquid collector gas flow. and liquid flow meters.

The zero drift of the liquid flow meter was as high as \pm 5% over a period of 24 hours mainly due to temperature changes. Since the data used for the flow rate calculation were always for a period of four to eight minutes, the accuracy of the calculated flow rate was not affected by the zero drift and depended mainly on the accuracy of the calibration and was better than 1% of the reading.

4.1.3 Gas flow control

Fig. 4.6 shows a schematic diagram of the gas flow control section and Plate 2c shows the arrangements of the gas humidification column. Compressed air (7 atm) from the supply line was first passed through a filter, 1, (MARTONAIR, type S/F164) which removed traces of oil as well as dirt. The flow rate of the cleaned air was adjusted to the desired value by the valve 3. The pressure regulator, 2, minimized fluctuations in the gas flow rate due to any changes in the pressure of the air supply.

KEY TO FIG. 4.5

- 1 Liquid inlet
- 2 Lid of gas-tight vessel
- 3 Strain gauges
- 4 Beam spring
- 5 Thin-wall rubber tubing
- 6 Liquid measuring container
- 7 Siphon
- 8 Wall of gas-tight hexagonal vessel

Arrangement of the six containers in the gas-tight vessel (Scale 1:5)

Fig. 4.5 Liquid flow meter

KEY TO FIG. 4.6

- 1 Filter
- 2 Pressure regulator
- 3 Flow control valve
- 4 Gas inlet to humidifier
- 5 Liquid distributors (6 points)
- 6 Packed column of 9mm glass raschig rings, column id: 90mm, height: 370mm
- 7 Liquid reservoir
- 8 Chromel-alumel thermocouple
- 9 Heater for liquid
- 10 Heating element
- 11 Liquid circulating pump (peristaltic)
- 12 Temperature controller
- 13 Three-way cock
- 14 Tank for distilled water
- 15 Rotameters for gas flow measurement
- 16 Hg manometer

Fig. 4.6 Schematic drawing of gas flow control seciton

The air was then passed through a humidifier column 6, co-current with the liquid which was circulated by the pump, 11. The humidity of the air was controlled by adjusting the power input to the heating element, 10, in such a way that the gas temperature measured by the thermo-couple, 8, was constant. The control temperature was set relative to room temperature, i.e., an increase in room temperature caused an increase in the gas temperature. This method of control proved satisfactory though the response was somewhat slow. By careful setting of the control temperature, it was possible to control the dew point of the gas at the outlet of the humidifier column within $+ 0.2^{\circ}$ C of the room temperature.

In preliminary tests it was observed that the dew point at the inlet of the gas supply main (16, Fig. 4.1) measured with a dewpoint meter (Fig. 4.7), decreased with the increase in the pressure drop of the gas between the humidifier column and the inlet of the gas supply main. This decrease in the dew point with the increase in gas flow was compensated for either by increasing the control temperature (when water was the irrigating liquid) or by diluting the circulating liquid with water (when glycerol - or CaCl₂ solution was the irrigating liquid). This humidifier and its control were proved successful except for a few runs with water as an irrigating liquid at the lowest flow rates. The humidifier was not used when the ZnCl₂ solution was the irrigating liquid. The air was found humid enough to dilute the solution whose density decreased from 1940 to 1910 (Kg/m^3) during the whole series of experiments.

After the humidifcation, the gas flow rate was measured by two rotameters, 15, corrected for the pressure measured by the mercury manometer, 16. No correction was made for the temperature or for the humidity of the gas. The accuracy of the rotameter is better than \pm 3% of the measured flow rates.

(a) For use in open atmosphere

(b) On-line monitor

Fig. 4.7 Dew point meter

(1)	Copper block (8 x 8 x 60mm)	(4)	Glass window
(2)	Silicone grease	(5)	Copper plate
(3)	Thermometer	(6)	Thermocouple

The copper block (1) or plate (5) is cooled down to the temperature where dew just starts to form on the polished surface of the copper block or plate and the temperature (dew point) is measured by the thermometer (3) or by a thermocouple (6).

Gas distributor

The gas was fed into the column through the gas supply main (16, in Fig. 4.1), via. five gas nozzles (5, Fig. 4.4) to the gas distributing port (6, in Fig. 4.4). The maximum velocity of the gas leaving the port was 2.5 m/s. At this velocity, the dynamic pressure of the gas, 4 N/m^2 was approximately equivalent to the pressure drop through 1mm thickness of the bed of 13mm spheres. Therefore it is unlikely that maldistribution of the gas was caused by this arrangement.

Measurement of gas pressure drop

The static pressure was measured at the gas pressure tap, 4, in Fig. 4.4, with a pressure transducer (micromanometer, manufactured by Furnace Control Limited). The micromanometer was calibrated using a simple water manometer. The calibration curve is given in Fig. 4.8.

4.1.4 Recording of the data

The outputs of the load cell and the micromanometer were recorded on paper tape by a data logger together with the output of strain gauges for each container of the liquid flow meter. A set of 15 to 20 data were measured at either 15 or 30 seconds interval. The outputs of the load cell and the micromanometer were also recorded continuously on a twopen chart recorder.

4.2 Liquids and Packings

The physical properties of the liquids and packings used in the experiments are given in Tables 3.1 and 3.2. Plate 3 shows the appearance of the particles of the packings in both dry and wet states.

Fig. 4.8 Calibration curve for micromanometer

PL13

AL13

Dry

PL9

Wet

Paraffin wax coating

Coke particles and polythene spheres (PL13) were coated by paraffin wax according to the following procedure: Paraffin wax, coagulation point of which is specified as 62°C, was melted in a beaker heated in a boiling water bath. Particles were put into the beaker. Polythene spheres were allowed to warm up only for a few minutes in the beaker because dissolution of the surface of the spheres occurred after prolonged heating in molten Coke particles, on the other hand, were kept in the wax. molten wax for more than ten minutes for better coverage The particles were then picked of the open pores by wax. up one by one with a pair of tweezers specially made for this purpose, cleared of excess wax and cooled in an alcohol water mixture.

It will be seen from Table 3.1 and Plate 3 that the coated film on polythene spheres is thin and uniform. The surface of coated coke, as shown in Plate 3, preserves the roughness of the original coke particles. Therefore, it can be assumed with confidence that the coated particles are identical with their orignal except for the contact angle of liquid on the surface.

Measurements of physical properties

The densitiy, viscosity, and surface tension were measured for the liquids other than water.

The viscosity was measured by a standard U-tube viscometer (72) at room temperature. Measurements were carried out frequently during experiments as the viscosity changed significantly with the room temperature. The averaged viscosity for each run was used in the analyses of the results.

The surface tension was measured by a capillary rise method. Two different sizes of capillaries were used and the difference of the heights of memisci was read to within 0.01mm by a cathetometer. The calibration was made with water.

The density of packing was measured by a replacement method. A 500 ml volumetric flask was used. Distilled and de-gassed water was used as a replacing liquid. The flask was kept in a water bath at $20.0 \pm 0.2^{\circ}$ C. for more than 12 hours before measurements. The somewhat high density of coated coke (Table 3.1) is considered to be due to the penetration of the paraffin wax into the pores of the coke.

The fractional voidage of the column was calculated from the measured column height using the data on apparent density and the weight of the packing.

Measurement of contact angle

The contact angle was measured with a projection microscope. A small prism was used to obtain a horizontal image of a drop for viewing in the vertical optical system of the microscope. The slide glass was coated by the wax in the same way as for the particles. A flat surface of polythene was obtained by pressing polythene spheres against a heated slide glass. The contact angles were measured on these surfaces; ten drops were measured on both edges. The measured contact angle of water (92.6° on polythene, 105.6° on wax) agreed reasonably well with published data⁽⁷¹⁾ (94° and 108° respectively).

4.3 Experimental Procedures

4.3.1 Experimental procedure for first series of experiments

Preliminary experiments were conducted in the absence of gas flow; water was used as an irrigating liquid. The particles for the packing were weighed and dumped into the column through a funnel which reduced the severity of the impact of the balls on the grid and column wall. The balance was adjusted to zero with the dry bed and calibrated. For experiments in the non-wetting condition, the liquid flow was then started. For experiments in the wetting condition, the packing was taken out of the column, wetted throughly, and dumped into the column again after which the column was suspended from the balance and the liquid flow was started. The column was usually irrigated for about 12 hours before the actual hold-up measurements were started according to the following procedure.

The height of the constant head tank was adjusted to set the liquid flow to the required value. Since the weight of the column became steady within 5 minutes, the liquid was flowed for 10 minutes and then stopped. The average weight of the column during the last 5 minutes of liquid flow was determined and recorded as the total hold-up. The column was then allowed to drain for 5 minutes after which its weight was read and recorded as the static hold-up.

The measurements were made for seven to eight different liquid flow rates. The flow rate was changed in a random order and two to three independent measurements on the same flow rates were made. It was necessary to use two sets of capillary tubes of different size to cover the liquid flow range of 0.2 to 10 ml/sec.

In some experiments, the column was allowed to drain for more than 12 hours to measure the static hold-up according to the definition of previous authors.

4.3.2 Experimental procedure for experiments with gas flow (second series)

The column was filled with packing and hung on the balance in the same way as for preliminary experiments. After calibration of the balance, gas was passed through the column. The flow rate of the gas was kept constant for 20 to 30 minutes for the balance to acquire a steady state because a small drift in the load cell output was observed while the diaphram (3, Fig. 4.4) settled to its equilibrium state. The data on the gas flow rate, the gas pressure and the weight of the column were then taken. This procedure was repeated and the data were taken for six to eight different gas flow rates.

The liquid flow was started at the highest flow rate, then the gas flow was introduced. The gas flow rate was increased gradually up to the point of flooding and then kept at just below that for a few minutes. The column was flooded several times in this way. In the case of wetting flows all the packing surface visible through the column wall was wetted by this method. Then, the gas flow was stopped and the column was kept irrigated at a medium liquid flow rate for about 12 hours.

Liquid drops resting on the inner wall of the column above the packing were wiped before each run started. The amount of drops which had accumulated under flooding or near flooding conditions was about 10g for most of the experiments. Each series of experiments was started in the absence of gas flow. The liquid flow rate was kept constant for more than 30 minutes to ensure the steady At least one measurement was taken before the state. introduction of gas. Unlike the preliminary experiments, the column was kept irrigated and no static hold-up was Experiments with gas flow were conducted in such measured. a way that the liquid flow rate was kept constant and the gas flow rate was changed. Normally the gas flow rate was increased in steps up to flooding point.

The gas flow rates were kept constant for at least 30 minutes before measurements were taken. In the experiments at low liquid flow rates it was necessary to keep constant flow rates for more than 60 minutes before the steady state was reached as confirmed by the continuous recording of the outputs of the micromanometer and the load cell.

Experiments were repeated several times on the same column for different conditions such as different distributor arrangements or liquid flow rates. Overnight the column was either kept irrigated without gas flow or allowed to drain. In the latter case, a lid was put on the column to prevent vaporisation of the liquid.

4.4 Data Processing

The data for an experiment consisted of a set of data logger ouptuts in paper tape and manually recorded data. The former included 15 to 20 consecutive measurements from the load cell, the micromanometer and the six strain gauges in the lqiuid flow meter, while the latter comprised the readings from the rotameter and Hg-manometer. The data were processed using a CDC 6400 computer.

4.4.1 Calibration curves

The calibration curves for the rotameters and the micromanometer were not linear. Therefore, a generalized curve-fitting method (Appendix II) was applied to generate the calibration curve. In the computer, this curve is represented by a set of parameters and calibration can be carried out simply by a call to a subprogram ("YQ" in Appendix II). The calibration curve for the micromanometer thus obtained is shown in Fig. 4.8.

The calibration curve of the load cell was linear and was obtained by a linear regression between the weight placed on the column and the voltage output of the load cell.
Both the pressure and the weight were calculated on the basis of the averaged values from 15 to 20 measurements.

4.4.2 <u>Correction for the influence of gas pressure on</u> column weight

Due to the imbalance between the diaphragms at the bottom of the column (3, in Fig. 4.4) and underneath the counter-balancing weight (5, in Fig. 4.1), a small change in the load cell output was observed when the gas pressure changed. This change was corrected for in the following way: the column weight was correlated with the gas pressure measured for the dry column using the generalized curve-fitting program (Appendix II). The resulting parameters of the fitted curve were used later to estimate the necessary amount of correction on the column weight for the measured pressure. An example of this correction curve is given in Fig. 4.9.

4.4.3 Calculation of liquid flow rate

Because the draining of the liquid from the container took place at random and the weight of the container decreased suddenly during the draining, a special computer program was developed to calculate the liquid flow rate from the recorded data. The details of the program are shown in Appendix I.

Fig. 4.9 Calibration curve for the effect of the gas pressure on the column weight for Run 340

CHAPTER 5

EXPERIMENTAL RESULTS

In the first series of experiments, the effects of liquid velocity and distributor arrangements on the total hold-up were investigated using 16 different columns in the absence of gas flow while 29 different columns were used for the second series of experiments with gas The total hold-up, the liquid distribution and the flow. gas pressure loss were measured for various velocities of liquid and gas with different distributor arrangements. Table 5.1 shows the summary of the experimental Run numbers classified on the basis of packing and liquid. Each Run number in the Table represents a different column except for Runs 22 to 26 in which the same column was used. It will be seen from the Table that not all the combinations of the five liquids and seven packings were studied but a relatively large number of experiments were repeated for certain combinations.

In this chapter, typical examples of the results are shown with the description of the flow patterns observed during the experiments.

5.1 Experimental Data

The total hold-up, liquid velocity, gas velocity, pressure drop and liquid flow distribution, calculated directly from the measured data, are tabulated in Appendix IV for all the experiments. In these Tables, each set of data is identified by a 6-digit (for the first series of experiments) or a 7-digit (for the second series of experiments) Run number. The full explanation of the make-up of a Run number is given in Appendix IV. In the following, abridged Run numbers are used to refer to a set of experimental data. Two digit numbers represent the first series of experiments while three or more digits are used for the second series.

				••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
Liquid			Раск	acking						
	PL13	AL13	W13	PL9		PLM	C11			
WATR	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14* 130 16*	150 160 180 210	18* 140 19*	12* 20* 27* 110	170	- <u>,</u>			
. .	. .	· · · · · · · · · · · · · · ·	230		• • • • • • • • • • • • • • • • • • • •		•			
ЕТОН	240* 260*	250* 270*	· · · · · · · · · · · ·	280*	290*					
GLY	330 340	310	300 320 380	360	••••••••••••••••••••••••••••••••••••••	· · · · · · · · ·	350 370			
CACL	400		390	·			410			
ZNCL			420	430		. — — —	440			
· · · · · · · · · · · · · · · · · · ·	· · · · ·			<u></u>			· · · · · · · · · · · · · · · · · · ·			

* Without gas flow

Table 5.1 Summary of experimental Runs

Reference to the system

Reference to a specific system will be made by using symbols for packing and liquid shown in Tables 3.1 and 3.2, e.g. PL13/WATR.

Correction of the influence of the grid

The total hold-up and the gas pressure drop were calculated based on an effective column height $H_{\rm h}$:

$$H_{b} = H_{bt} - (1 - d_{p}/d_{g})H_{g}$$
 (5.1)

where H_{bt} is total column height including the grid and d_g and H_g are diameter of spheres and thickness of the grid respectively.

Liquid flow distribution

The liquid flow distribution is shown in terms of the relative flux to three concentric annuli: inner, middle, outer. The relative liquid flux to i'th annulus Fl; is calculated by:

$$Fl_{i} = \frac{Q_{i}/S_{i}}{Q/S}$$
(5.2)

where Q is the total flow rate, S is the cross-sectional area of the entire column and Q_i and S_i are the flow rate and cross-sectional area of the i'th annulus. It will be noted from Fig. 4.4 that the cross-sectional area of the middle annulus is twice as much as, that of outer annulus is three times as much as that of inner annulus.

5.2 Experiments in the absence of gas flow

Fig. 5.1 shows the experimental results for Run 17. It can be seen from the Figure that the measured total hold-up for the Run is reproducible to within \pm 0.05%. The liquid distribution does not change significantly with the flow rate.

In the wetting systems, the measured distributions varied from one bed to another. No systematic influence of the distributor arrangement and of the liquid flow rate on the liquid distribution were observed. The measured hold-up did not change significantly with the change in the distributor arrangement.

In the non-wetting systems, the variation of the liquid distributions among different beds was less than that in the wetting system. No systematic influence of liquid flow rate on the distribution was observed but the distributor arrangement influences the performance of the column. Fig. 5.2 shows the effect of the distributor arrangement on total hold-up and liquid distribution. The trend of the variation of the liquid distribution is consistent with the distributor arrangement in that the distributor, '19' gave the most even distribution and '7I' gave the most centralised distribution. The distributor arrangement influenced the static part of the total holdup but not the dynamic part. The effect of the distributor arrangement can be represented by the number of distribution points rather than its influence on liquid flow distribution; the total hold-up increases with the number of the distriion points.

In Fig. 5.3, plots of the total hold-up against liquid velocity in the absence of gas flow are shown for different columns for the PL13/WATR system. Although the overall scatter is relatively large, approximately 0.7%, the scatter around the fitted curves is as small as 0.2%. This indicates

LIQUID FLOW DISTRIBUTION

LIQUID FLOW DISTRIBUTION

Fig. 5.3 Relationship between total hold-up and liquid velocity for different columns of PL13/WATR system. The same distributor arrangement, '19', was used.

that most of the scatter is due to that in the static hold-up. The overall scatter for the other systems are 1.0% for W13/WATR, 0.8% for W13/GLY, 0.5% for W13/CACL, 0.6% for G8/WATR and less than 0.4% for the rest. It will be noted from Fig. 5.3 that no effect of column height, in the range 0.2~0.6m, on the hold-up could be detected within the scatter of the data.

It will be clear from Figs. 5.2 and 5.3 that the change in total hold-up with the change in distributor arrangement is negligibly small compared with the variation of total hold-up among the various columns.

5.3 Experiments with Gas Flow

Figs. 5.4, 5.5 and 5.6 show typical examples of the variation of the total hold-up, gas pressure drop and liquid flux to the outer annulus with gas velocity. Fluctuations of the column weight and the gas pressure recorded on the strip chart are also shown in the Figures. Clear differences can be seen between non-wetting and wetting systems in that: the region of the loading, i.e. between start of loading and flooding, is much wider in the former than in the latter; that the effect of gas flow on liquid distribution is larger in the former than in the latter. It will be also seen that the changes in liquid distribution take place before any significant increase is observed in the total hold-up.

5.3.1 Change of the flow pattern of the liquid with gas velocity

The observed changes in the flow pattern with gas velocity are described below with reference to the typical results shown in Figs. 5.4, 5.5 and 5.6.

The flow pattern did not change at first (A) until the gas velocity reached the point B. In the vicinity of the point B, in the case of non-wetting systems, liquid slugs, whose size was comparable with that of the pores

Fig. 5.4 Variation of total hold-up, pressure drop and relative liquid flux to outer annulus with gas velocity, Run 13183 (AL13/WATR). Examples of recorded strip chart show the fluctuations in pressure (P) and column weight (W).

of the bed and significantly larger than those observed in the column in the absence of the gas flow, started to appear on the wall of the column occasionally. In the case of wetting systems, the flow pattern did not change significantly.

With a further increase of the gas velocity to near the point C, the slugs became larger and appeared more frequently on the wall. The slugs, in the non-wetting system stayed for a while and then slowly moved away. In the wetting system also the slugs appeared on the wall, however, they remained at the same places where they originated. The slugs appeared at a relatively small number of locations which did not change with the liquid velocity or the liquid distributor arrangement but changed from one bed to another . This appearance of the slugs on the column wall marked the onset of loading.

With a further increase in the gas velocity, the size of the slugs increased and the area in contact with the wall increased until they covered almost the entire column wall (Point D). At the point D, splashes of the liquid could be seen on the top of the column. In the case of non-wetting systems, a displacement of one or two balls on the top surface could be observed occasionally because the packings were lighter than the liquids.

A further small increase in the gas velocity induced the column to flood (E). In case of wetting systems, the liquid accumulated on the top of the column to form a pool. Once the pool had formed, it was necessary to decrease the gas velocity to a value 5 -10% lower than necessary to flood for the pool to disappear. In case of non-wetting systems instead of forming a pool of liquid, the particles at the top of the column started to move in a manner similar to that of a fluidized bed; the depth of the layer of particles in motion increased with the gas velocity. As shown in Figs. 5.4, 5.5 and 5.6, two types of fluctuations were noted in the recorded traces of the column weight and gas pressure: a fluctuation with a relatively high frequency whose magnitude could be seen on the chart as the width of the recorded trace and a semi-periodical fluctuation with a period of a few minutes. Both fluctuations increased with the gas velocity. The change in the magnitude of the high-frequency fluctuation seemed to correspond to the increase in the size of the slugs with the gas velocity.

5.3.2 Reproducibility of the measurements

The reproducibility of the total hold-up measurements with gas flow was reasonably good for measurements on the No significant effect was found of the distributor same bed. arrangement. The direction of the change in gas velocity, increasing or decreasing, during the experiments did not affect the measured total hold-up except in the region very close to flooding (at a gas velocity within about 10% of that at flooding). The reproducibility of the value of the gas velocity at flooding was better than 10% except for PL13/WATR and W13/WATR systems in which cases the maximum differences in gas velocity at flooding were about 30% (Fig. 5.7) Possible causes, such as gas leak, influence of bed height and influence of distributor arrangement were checked and none of them could satisfactory account for the observed differences.

CHAPTER 6

DISCUSSION

The total hold-up in the absence of gas flow was divided into the static- and dynamic parts. In Sec. 6.1 the two types of hold-up are correlated with the appropriate dimensionless parameters and mathematical formulae for the correlations are given. The correlations are compared with the experimental data and correlations proposed by previous authors. The pressure drop of the gas is discussed in Sec. 6.2. Due to the complexity of the problem, only the effect of total hold-up on the gas pressure drop is dealt with; no attempt is made to correlate the pressure drop with the hold-up. In Sec. 6.3. the flooding velocities are discussed on the basis of the existing flooding diagrams. The instability of the bed near the point of flooding is discussed in Sec. 6.4 and the effect of the gas flow on the distribution of liquid in Sec. 6.5. Finally, in Sec. 6.6, the blast furnace process is described in the light of the results of this study.

6.1 Hold-up in the Absence of Gas Flow

6.1.1 Calculation of dynamic and static hold-up

It is convenient to discuss the static hold-up and the dynamic hold-up individually since the former is influenced only by static forces while the dynamic forces must also be considered in the latter. The total hold-up, h_t , is divided into the static and dynamic parts by assuming the relationship:

$$h_t = h_s^* + b u^c$$

(6.1)

where h_s^* is the static part and the term, b u^c , represents the dynamic part.

As already mentioned in Chapter 5, the scatter in the total hold-up among several series of measurements for the same system was mainly due to the difference in the static hold-up. Therefore the measured total holdup, h_t, is correlated with liquid velocity, u, according to Eq. (6.1) such that b and c are constant for the same combination of packing and liquid while h_{s}^{*} was allowed to vary between each series of measured data. Because of the non-linear nature of Eq. (6.1), an iterative method of least squares was applied in which b, c and h_{s} 's were determined to minimize the sum of the squares of the differences between the measured value of h_+ and those estimated by Eq. (6.1). The principle of the iterative method is given in Appendix III.

Table 6.1 shows the calculated h_s^* for each experiment from a series of measurements. The measured residual hold-up, h_s, after twelve hours' draining is also shown in the Table. It must be noted that because of the assumed dependency of the total hold-up on liquid velocity, u, in the form of Eq. (6.1) , one can not assume without experimental proof that the static part of the hold-up, $\dot{h_s}$, is the same as the static hold-up, h_s , which is usually defined as the hold-up after the column is allowed to drain for a long time. The difference between h_{s}^{*} and h_{s} in the present study was 0.265%, on an average, which is in reasonable agreement with the data of Gardner⁽²⁸⁾ who first mentioned this difference and reported values between 0.03 and 0.27%. The difference is not very large when compared with the magnitude or the scatter in the static part of the hold-up, h. . However, the difference is too large to be neglected when one compares it with the magnitude of the dynamic hold-up which ranged between 0.02% and 2% in the present experiments.

SYSTEM	RUN	h [*] s	h _s	RUN	h [*] s	h _s .	RUN	h [*] s	hs	RUN	h [*] s	h _s
PL13/WATR	13 23 122 192 224	2.20 2.59 2.63 2.76 2.84	 2.51	15 24 123 221	2.22 2.55 2.62 2.57		17 26 124 222	2.42 2.54 2.71 2.78	1.83 2.31 2.42 2.52	22 121 191 223	2.62 2.71 2.78 2.78	
AL13/WATR	14 133	4.33 4.36	3.74 3.82	16	4.34	3.89	131	4.23	4.05	132	4.25	
W13/WATR	151 162 183 231	1.69 1.59 1.53 1.69	 1.37 1.71	152 163 211 232	1.67 1.54 1.74 1.86	1.48 	153 181 212	1.70 1.40 1.90	1.65 1.71	161 182 213	1.55 1.51 1.91	
PL9/WATR	18 143	3.33 3.26		19	3.32	2.77	141	3.27	2.69	142	3.24	
G8/WATR	12 112	4.55		20 113	4.44 4.28	3.85 3.96	27 114	4.44 4.26	 	111	4.03	
PLM/WATR	171	2.95	2.41	172	2.89		173	2.91		174	2.94	
PL13/ETOH	241	2.32	 , ,	242	2.23		261	2.26		262	2.29	
AL13/ETOH	251	2.49		252	2.41	1.93	271	2.54		272	2.54	
PL9/ETOH	281	3.00		282	3.26						,	
G8/ETOH	291	4.10		292	4.00							
AL13/GLY	311 315	3.14 3.07		312 316	3.13 3.18	2.97	313	3.06		314	3.14	
PL13/GLY	332	2.21		333	2.25	2.12	342	2.20		343	2.18	1.96
W13/GLY	301 305 382	1.97 2.42 2.13	 2.03	302 306	2.33 2.34	2.30	303 324	2.25 2.68		304 325	258 2.77	2.67
PL9/GLY	362	2.08	2.12									
C11/GLY	353	3.42	3.25	372	3.67							
PL13/CACL	402	2.64		403	2.60	2.49						
W13/CACL C11/CACL	392 412	1.48 3.86		393 413	1.53 3.90	'	394 414	1.81 3.89	1.53 3.90	395	1.93	
W13/ZNCL	423	2.40	2.07					•	• •			
PL9/ZNCL	432	.2.85										
C11/ZNCL	441	3.19	2.95									

average of the difference $h_s^*-h_s^*$: 0.265%

<u>Table 6.1</u> Static part of the hold-up, h_s^* , obtained by least-squares fitting of the data to Eq. (6.1) and measured static hold-up, h_s after 12-hour draining, %.

SYSTEM		Number	Least-squar	es fit l	oy Eq. (6.1)	Static part of hold-up, h [*] _s , %				
	·	or data	Coefficient b	Power	Correlation Coefficient	Average	Number of runs	Standard deviation		
	PL13/WATR	170	0.934	0.775	0.9965	2.49	17	0.207		
	AL13/WATR	74	1.256	0.737	0.9908	4.10	5	0.045		
	W13/WATR	65	0.636	0.898	0.9875	1.64	14	0.138		
	PL9/WATR	61	1.449	0.692	0.9960	3.31	5	0.024		
	G8/WATR	117	1.914	0.810	0.9947	4.37	7	0.166		
	PLM/WATR	20	1.430	0.608	0.9973	2.92	4	0.021		
	PL13/ETOH	25	1.655	0.580	0.9965	2.29	4	0.031		
	AL13/ETOH	19	1.811	0.547	0.9993	2.29	4	0.052		
	PL9/ETOH	9	1.892	0.610	0.9991	3.15	2	0.133		
	G8/ETOH	8	1.862	0.765	0.9924	4.06	2	0.046		
	PL13/GLY	26	2.480	0.493	0.9944	2.21	4	0.027		
	AL13/GLY	34	5.589	0.613	0.9961	2.91	6	0.042		
	W13/GLY	51	2.323	0.567	0.9866	2.39	9	0.241		
	PL9/GLY	6	5.196	0.499	0.9996	2.08	1			
	C11/GLY	13	3.324	0.478	0.9943	3.55	2	0.125		
	PL13/CACL	11	1.293	0.575	0.9983	2.62	2	0.021		
	W13/CACL	22	1.083	0.663	0.9989	1.70	4	0.191		
	C11/CACL	17	1.274	0.644	0.9986	3.88	3	0.015		
	W13/ZNCL PL9/ZNCL C11/ZNCL OVER ALL	6 6 7 763	1.899 2.560 1.845	0.640 0.717 0.836	0.9990 0.9992 0.9963 0.9990	2.40 2.85 3.19	1 1 1			

Table 6.2

Results of the least squares fit by Eq. (6.1)

Table 6.2 shows the results of the least-squares fit by Eq. (6.1) for all experiments*. It will be noted that the data fit the equation very well, though the scatter in the static part of the hold-up is relatively large. Fig. 6.1 shows typical examples of the plot of the total hold-up vs. liquid velocity.

The dynamic hold-up, h_d , was calculated by subtracting h_s^* , which is given in Table 6.1, from the measured total hold-up, h_+ :

$$h_{d} = h_{t} - h_{s}^{*}$$
 (6.2)

In the following, h_s^* is referred to as the static hold-up since the difference between h_s^* and h_s is not significant when considering the static hold-up.

6.1.2 Correlation for static hold-up, h*

In Fig. 6.2 the data for wetting flows are plotted on the diagram proposed by Dombrowski and Brownell⁽⁴⁹⁾. The residual saturation, S_r^* , was calculated as h_s^* / ϵ . It can be seen from the Figure that the present experimental data show higher residual saturation then would be expected from the Dombrowski's curve, however, the variation of the residual saturation with the capillary number is almost parallel to the curve. The difference between the estimated and experimental residual saturations is almost equivalent to 1.2% in static hold-up which is significantly larger than experimental error.

* Due to the pores open to the surface, the alumina spheres (AL13) absorbed a small amount of liquid which was estimated to be 0.21% on the basis of a comparison of $h_{\rm S}^*$ between PL13/ETOH and AL13/ETOH systems. Table 6.2 shows the values after this correction was applied.

Fig. 6.1 Examples of variation of total hold-up with liquid velocity. The curves are obtained by least-squares fit according to Equation (6.1).

Dombrowski's diagram

Among the forces shown in Chapter 3 , three forces, the gravitational force, f_g , the gas-liquid interfacial force, f_s , and the liquid-solid interfacial force, f_{si} , are independent of liquid velocity. Since h_s^* is assumed to be independent of liquid flow rate, it can be correlated with these three forces from which two independent dimensionless numbers can be derived as shown in Chapter 3, i.e.

$$C_{p} = f_{g}/f_{s}$$
(3.10)

$$N_{c} = f_{si}/f_{s}$$
(3.11)

It was pointed out that the capillary number N_{cap} is essentially the same as C_p . For geometrically similar systems, the static hold-up can be assumed the same if both C_p and N_c are the same. However, it is necessary to take the effect of geometry into account if one compares static hold-up among systems of different geometries.

It is difficult to derive a precise correction factor since only two different geometries, i.e. spheres and coke particles, were used in the experiments. Therefore, the correction for the difference in geometry was simply made by choosing an appropriate expression for the characteristic length. Two characteristic lengths given by Eqs. (6.3) and (6.4) are generally used to represent the diameter of packing:

$$d_{s} = \frac{\phi \quad d_{p}}{(1 - \varepsilon)} \tag{6.3}$$

$$d'_{h} = \frac{\phi \quad d_{p} \quad \varepsilon}{(1 - \varepsilon)} \tag{6.4}$$

 d_s is related to the specific surface area of the bed while d'_h is related to the mean hydraulic radius. In order to find a suitable dimensionless parameter, the static part of the hold-up, h'_s , is correlated with dimensionless parameters by the equation:

$$h_{s}^{*} = a \quad C_{p}^{b} \quad N_{c}^{c}$$
 (6.5)

The following three variations of C_p were tested:

$$C_{pS} = \frac{\rho_{\ell}g d_{p}^{2} \phi^{2}}{\sigma (1 - \epsilon)^{2}}$$
(6.6)

$$C_{ph} = \frac{\rho_{\ell}g \quad d_{p}^{2} \quad \phi^{2} \quad \varepsilon^{2}}{\sigma \quad (1 - \varepsilon)^{2}}$$
(6.7)

$$N_{cap}' = \frac{\rho_{\ell}g \quad d_{p}^{2} \quad \phi^{2} \quad \varepsilon^{3}}{180(1 - \varepsilon)^{2} \sigma}$$
(6.8)

 C_{ps} and C_{ph} use d_s and d' respectively while N' is obtained from N_{cap} after appropriate modification. The shape factor, ϕ , of the coke is assumed to be 0.5 based on gas pressure loss measurements (Sec. 6.2). The iterative method of least squares (Appendix III) was applied to obtain a, b and c. The calculated results for the static hold-up and the residual saturation, S^{*}_r, are given in Table 6.3.

It will be noted from the Table that the correlation coefficient for the equation No. 1 is the best among the correlations for h_s^* and is approximately the same as those for the correlations for S_r^* . The absolute values of b and c are almost the same in the first three equations while

Equation Number	Equation	Correlation Coefficient	Por b	Power c		
1	$h_s^* = a \cdot C_p^b \cdot N_c^c$	0.841	-0.341	0.364		
2	$h_s^* = a \cdot C_{ph}^b \cdot N_c^c$	0.758	-0.309	0.291		
3	$h_s^* = a \cdot N_{cap} \cdot N_c^c$	0.699	-0.272	0.269		
4	$S_r^* = a \cdot N_{cap} \cdot N_c^c$	0.849	-0.296	0.394		
5	$S_r^* = a \cdot C_{ps}^b \cdot N_c^c$	0.855	-0.297	0.487		

 $s_r^* = h_s^* / \epsilon$

Table 6.3 Comparison of various correlations for static hold-up

the absolute value of c is considerably larger than that of b in the last two equations. If one assumed the same magnitude but different signs for b and c, one will have a new dimensionless parameter as follows:

$$(f_g/f_s)^m \cdot (f_{si}/f_s)^{-m} = (f_g/f_{si})^m$$

The new dimensionless parameter, f_g/f_{si} , can be interpreted as the ratio of the gravitational force to the liquid-solid interfacial force and the parameter is identical to $C_p/2$ when the contact angle, θ , is 0.

Because of its physical significance and simplicity, the new parameter, the modified capillary number, $C_{pm} = f_g/f_{si}$ was preferred to the other possible dimensionless parameters in the correlation for the static hold-up.

It will be clear from Fig. 6.2 that the relationship between log (S_r) and log (N_{cap}) is no longer linear in the range of the experimental data. Since the static hold-up decreases asymptotically to zero when the capillary number increases to infinity and it approaches a constant value when the capillary number decreases to zero, the following relationship (Equation 6.9) is assumed between h_s^* and C_{pm} .

$$h_{s}^{*} = 1/(a + b C_{pm})$$
 (6.9)

where C_{pm} is expressed in terms of d_s as follows:

$$C_{\rm pm} = \frac{\rho_{\ell}g \phi^2 d_p^2}{(1+\cos\theta)\sigma (1-\varepsilon)^2}$$
(6.10)

Fig. 6.3 Relationship between static hold-up, h_s * and modified capillary number, C_{pm}

The constants a and b in Eq. (6.9) are calculated by using the iterative method of least squares. The values obtained for a and b are 0.205 and 0.00263 respectively. and the correlation coefficient is 0.832. Therefore Eq. (6.9) can be rewritten as

$$\dot{h}_{s} = 1/(0.205 + 0.00263 C_{pm})$$
 (6.11)

The relationship between h_s^{T} and C_{pm} is shown in Fig. 6.3.

6.1.3 Correlation for the dynamic hold-up

The following relationship is assumed between the dynamic hold-up, h_d , and the dimensionless parameters introduced in Chapter 3.

$$h_{d} = a \quad R_{e}^{b} \quad G_{a}^{c} \quad C_{p}^{d} \quad N_{c}^{e}$$
(6.12)

where a, b, c, d, and e are constants. These constants were determined by using the iterative method of least squares which is explained in Appendix III.

The constants in Eq. (6.12) were calculated for two cases: d_s was used in the first as the characteristic length while d'_h was used in the second. The correlation coefficient in the first case was 0.952 and 0.922 in the second. With the large number of data (=765) the difference between these two coefficients is statistically significant (more than 99.9% confidence). Therefore, the first case has been chosen. The resulting correlation is shown by Eq. (6.13):

$$h_{d}(\%) = 605 \qquad \left[\frac{\rho_{\ell} - u - d_{p}}{(1 - \epsilon) - \mu_{\ell}}\right]^{0.648} \left[\frac{\rho_{\ell}^{2} - g - d_{p}^{3} - \phi^{3}}{\mu_{\ell}^{2} - (1 - \epsilon)^{3}}\right]^{-0.485} \\ \left[\frac{\rho_{\ell} - g - d_{p}^{2} - \phi^{2}}{\sigma - (1 - \epsilon)^{2}}\right]^{0.097} \qquad (1 + \cos \theta)^{0.648} \\ \dots (6.13)$$

Fig. 6.4 Comparison between measured and estimated dynamic hold-up

Fig. 6.5 Comparison between measured and estimated total hold-up

The estimated values of the dynamic hold-up by Eq. (6.13) are compared with the measured values in Fig. 6.4. Most of the measured values are within $\pm 0.3\%$ from the estimated values. Eq. (6.13) is valid within the following ranges of the values for dimensionless numbers covered by the experiments:

$$Re_{m} = \frac{\rho_{\ell} - \mu - d_{p} - \phi}{(1 - \epsilon) - \mu_{\ell}} : 0.002 \sim 35 \quad (6.14)$$

$$Ga_{m} = \frac{\rho_{\ell}^{2} g d_{p}^{3} \phi^{3}}{\mu_{\ell}^{2} (1-\epsilon)^{3}} : 4x10^{3} \sim 10x10^{8} (6.15)$$

$$C_{ps} = \frac{\rho_{\ell}}{\sigma} \frac{g d_{p}^{2} \phi^{2}}{(1-\epsilon)^{2}} : 20 \sim 165 \quad (6.16)$$

$$N_{c} = 1 + \cos \theta \qquad : 0.59 \sim 2.0 \quad (6.17)$$

6.1.4 Correlation for the total hold-up

The total hold-up can be estimated simply by adding the estimated static and dynamic hold-ups. Fig. 6.5 shows the comparison between estimated and measured values of total hold-up. The correlation coefficient is 0.999. Most of the measured values are within \pm 0.6% from estimated values.

6.1.5 <u>Comparison of estimated hold-up with published</u> experimental data

Table 6.4 shows published data on static hold-up. It will be noted that most of the data are measured on ring packings. The relationship between the static hold-up and

									ī		·1
Worker		Packin	g	a				Liquid			
	Material	d	e	a	•		ρ.	σ	Ð	h_	c .
	1	p (mm)	(-)	(1/m) (-)		(kg/m³)	(N/m)	(deg)	5	pma
Schulman	Porcelain	12.7	0.605	381	0,490	Water	1000	0.073	0	3,25	16.7
et al (27, 34)	R.R.	25.4	0.726	192	0.337	Water	1000	0.073	0	1.50	65.7
[Water-	1170	0.0774	o	1.41	72.5
	:					CaCl 2	1225	0.0803	0	1.42	73.2
							1320	0.0863	.0	1.35	73.4
					· · .	Water-	1000	0.038	0	0.79	126.3
						S.A.	1000	0.043	0	0.83	111.6
							1000	0.0575	o	1.17	83.5
		38.1	0.715	134	0.334	Water	1000	0.073	0	0.89	134.5
	Porcelain	12.7	0,66	436	0.368	Water	1000	0.073	o	3.17	12.7
	B.S.	25.4	0.695	205	0.350	Water	1000	0.073	0	1.10	57.4
						Water-	1160	0.0774	0	1.11	62.7
						CaCI 2	1300	0.0803	0	1.17	67.7
			-			Water-	1000	0.043	0	0.94	97.2
						S.A.	1000	0.060	o	1.08	69.7
Broz and	Spheres	10	0.392		1.0	Water	1000	0.0732	0	3.96	18.1
Kolar(38)	-p					Water-	1115	0.0502	0	2.14	29.4
· · · ·						glycerol	1186	0.0503	0	2.41	31.3
						.	1213	0.0495	0	2.40	32.5
				•		Water- methanol	853.2	0.0231	0	2.77	40.2
Gardner ⁽²⁸⁾	Coke	8.98	0.417		0.6	Water	1000	0.073	90*	3.23	11.5
	-	15.55	0.456		0.6					2.40	39.5
		19.05	0.462		0.6					1.81	60.6
Warner ⁽⁴⁰⁾	Steel	6.35	0.72		(0.335)	Mercury	13600	0.496	140**	12.70	66.3
	R.R.			•			1 36 0 0	0.470	140**	11.80	62,8
Standish ⁽⁴²⁾	Steel R.R.	6.35	0.71		(0.335)	Water	1000	0.073	0 90*	4.03 3.41	3.61 7.22
	Porcelain R.R.	6.35	0.624		(0.49)	Water	1000	0.073	0 90*	6.65 2.93	4.60 9.19
	Porcelain B.S.	6.35	0.60		(0.335)	Water	1000	0.073	0 90•	8.03 3.41	2.31 4.63
Andrieu ⁽⁴³⁾	Pyrex R.R.	10.0	0.69 0.68		(0.335)	Water	1000	0.073	0 90*	5.40 2.30	7.84 16.6
	Silvered Pyrex R.R.	10.0	0.69		(0.335)	Water	1000	0.073	0	3.50	7.84
	······					And the second design of the s				i	

R.R.: Raschig rings, B.S.: Berl saddles

Silicone coated,

** Approximite estimation

Table 6.4 Published data on static hold-up

the modified capillary number, C_{pm} , is given in Fig. 6.6. Although the agreement of the data with the proposed correlation, Eq. (6.11), is rather poor, a few comments can be made. The majority of the data on raschig rings would fit the proposed correlation, if the modified capillary number were increased three fold. This indicates that the proposed method of correcting the influence of the geometry of packings is not adequate for the ring packings. However, the correction of the effect of the degree of wetting seems to be satisfactory since non-wetting data show no significant differences from wetting data.

The static hold-up for the 6.35mm steel raschig rings/ mercury system measured by Warner⁽⁴⁰⁾ are the largest of all the measurements shown in Table 6.4. The larger difference in static hold-up between his system and present systems can be explained in terms of the different mechanisms of hold-up as follows.

In Fig. 6.7 three different ways in which liquid is held by a tube are shown schematically. The first and the second correspond to wetting and non-wetting systems used in the present study. The third indicates the way

(2)

(1)

(3)

Fig. 6.7

Schematic drawing of three different ways in which liquid is held by a tube.

in which mercury is held in the ring packings. The difference between the second and the third is that the static hold-up decreases with the increase in contact angle, θ , in the second, while in the third it increases with contact angle.

Values of the dynamic hold-up estimated by Eq. (6.13) are compared with the published data on non-wetting systems in Table 6.5. It can be seen from the Table that Eq.(6.13) gives reasonable predictions for the silicone-coated coke/ water system measured by Gardner⁽²⁸⁾. Comparison with the data on wetting systems measured by Jesser and Elgin⁽³³⁾shows that Eq. (6.13) predicts $25 \sim 30\%$ higher values for sphere packings. However, the agreement is poor for Warner's (40) measurements. The significantly low values are predicted by Eq. (6.13) while the relatively good predictions (b and c) are made by the correlations which are based on wetting systems. In Eq. (6.13), the power on $N_{c}(=1 + \cos \theta)$ is 0.648, which means that the dynamic hold-up in the wetting system is approximately 50% higher than the non-wetting system in which the contact angle is assumed to be 90°. This difference is significantly higher than those given by previous authors; Andrieu(43) reported that the operating hold-up is 10% higher in wetting flow than in non-wetting flow while Standish⁽⁴¹⁾ reported no significant difference between the two systems. In both these studies, ring packings were used. It is difficult to explain precisely the reason for the disagreement between the present study in which spherical packings have been used and the previous studies. It is likely that the effect of the degree of wetting on dynamic hold-up is dependent on the flow condition and the size and shape of the packing.

6.2 Gas Pressure Drop

6.2.1 Gas pressure drop through dry column

The data are plotted in Fig. 6.8 as a relationship
Worker:		Warner ⁽⁴⁰⁾		Gardner ⁽²⁸⁾				Blast Metal	furnace Slag
Measured	h _o	7.4	2.3	0.8	2.63	0.50	1.27		
	^h d			0.53	2,36	0.32	1.09		
Estimated	a	6.85	4,3	2.05	5.05	1.61	3.48	1.54	8.24
varues	b	5.97	2.32	0.33	2,08	0.26	1.25	0.28	0.77
	С.	7.55	2.65	0.27	2.03	0.206	1.16	0.22	0.76
	d	2.41	0.97	0.27	1.55	0.25	1.10	0.13	0.62

* a, b, c: h_0 estimated by correlations 2, 1 and 3 in Table 2.3 respectively.

 $d: h_d$ estimated by Eq. (6.13)

+ Detailed data are shown in Table 2.4. Contact angle, θ , are assumed to be 140^o, 90^o, 125^o for Warner's, Gardner's and Blast furnace systems respectively.

Table 6.5 Comparison of measured dynamic and operational hold-ups, %, with values estimated using various correlations.

between the friction factor f_k (Eq. 2.6) and gas Reynolds number $\operatorname{Re}_g(\operatorname{Eq.} 2.7)$. In Fig. 6.8a both parameters are calculated on the assumption that ϕ is unity for all the packings.

It will be noted from Fig. 6.8a that the data for spherical packings agree well with the correlation proposed by Carman while coke packings follow the trend of Ergun's correlation. The difference between these two correlations seems to be related to the roughness of the surface of the packings; a similar difference is known to exist in the pressure drop correlation between the flows through smoothwalled pipes and rough-walled pipes. It is clear from Fig. 6.8a that the data for the non-spherical coke packings lie above those for spherical packings. Fig. 6.8b shows that a value of the shape factor, ϕ , equal to 0.5 brings the data for coke packings in agreement with the correlation. This value of the shape factor was used in the calculations which follow.

6.2.2 Pressure drop through irrigated column

It has been mentioned in Sec. 2.2.2 that the published correlations for the pressure drop through irrigated columns are summarised in the form of various expressions for the ratio, F, of the pressure drop through the irrigated column to that through the dry column. In all cases cited except one, F is expressed as a function of total hold-up h_t . An additional modification for the fractional voidage, ε , of the dry column has been incorporated in some cases. This indicates that F would be a function solely of h_t for a particular column.

In Figs. 6.9 and 6.10 typical examples of the relationship between the ratio, F, and the total hold-up, h_t , are shown. In the calculation of F, the pressure drop, ΔP_d , through the dry column was estimated for the given gas

B: ϕ for coke is assumed to be 0.5

column to that through dry column.

velocity V using Eq. (6.19).

$$MP_{d} = a V + b V^{2}$$
 (6.19)

where the constants a and b were determined by the method of least squares based on measured pressure drop through the dry column.

A similar variation in the ratio, F, with the total hold-up, h_+ , for the various systems can be observed in these figures. In the region below the loading point,F increases with the gas velocity, although the total holdup remains virtually constant. Above the loding point F increases with h_+ . The rate of increase in F with h_+ depends on not only the liquid velocity but also the irrigating liquid; the rate increases with the liquid velocity and is higher with the glycerol solution than Therefore, it is clear that the ratio F is with water. not a unique function of the total hold-up but is influenced also by velocities and physical properties of gas and The expression for F based on the pressure drop liquid. correlation proposed by Jeschar et al $\binom{(8)}{\cdot}$ includes the velocity of liquid, u, and of gas, V, according to the equation:

$$\mathbf{F} = \begin{bmatrix} \frac{1 + \mathbf{h}_t / (1 - \varepsilon)}{1 - \mathbf{h}_t / \varepsilon} \end{bmatrix}^{1.2} \qquad (1.5 \frac{\mathbf{u}}{\mathbf{V}} - \frac{\varepsilon}{\mathbf{h}_t} + \frac{\varepsilon}{\varepsilon - \mathbf{h}_t})^{1.8} \quad (2.17)$$

From this equation it can be seen that F increases with u and decreases with V. Therefore, it does not explain the increase in F with gas velocity below the loading point.

In order to study the gas flow through the irrigated column in more detail, the same data shown in Figs. 6.9 and 6.10 are plotted as the relationship between the friction factor, f_k , and the gas Reynolds number, Re_g , in Figs. 6.11

and Fig. 6.12. In the calculation of f_k and Re_g , the fractional voidage, $\boldsymbol{\epsilon}_{w}$ of the irrigated bed was used instead of ε in Eqs. (2, 6) and (2, 7) where

$$\varepsilon_{\rm w} = \varepsilon - h_{\rm t} \qquad (6.20)$$

The effect of the packing on the gas pressure drop can be expressed in terms of specific surface area and the fractional voidage. Since the effect of the liquid on the fractional voidage was taken into account in the calcualtion of f_k and Re_{σ} , the displacement of the plots for the irrigated column from those for dry column is caused by the change in the specific surface area of the irrigated packing. The increase in f_k for the same value of Re_{g} corresponds to the increase in the specific surface area.

The types of variation of f_k with Re_g which were obtained with irrigated columns are shown schematically in Fig. 6.13. At low gas velocities, i.e. at low Re_{p} ,

 $\log (Re_a)$

Schematic drawing of the variation of Fig. 6.13 fk with Reg

plots for the irrigated column followed the same path as for the dry bed. With the increase in the gas velocity, they levelled off gradually at first and then at an increasing rate. The departure from the curve for the dry column occured well below the loading point and the displacement from the curve for the dry column reached a maximum approximately when loading started. The departure from the dry bed curve decreased with the further increase in gas velocity with non-wetting flows while this decrease was not very notic eable with wetting flows.

Since the magnitude of the displacement from the dry bed curve, which corresponds to the amount of correction for the change in specific surface, depends on many parameters, e.g. velocities and physical properties of liquid and gas, and since the effects are not linear, further analyses to establish the gas pressure drop correlation for irrigated bed were not attempted.

6.3 Flooding

The flooding velocities were determined from the observation of fluctuations of the column weight, the degree of coverage of the column wall by the liquid slugs and the appearance of the top of the column as described in Sec. 5.3. The flooding velocities determined in this manner were also checked from the curves relating the total hold-up to gas velocity which showed a steep rise near the flooding point. The results of the measurements on flooding velocities are tabulated in Table 6.5 together with the calculated parameters for the flooding diagrams. The data are plotted on the flooding diagrams proposed by Sherwood et al.⁽⁶⁰⁾ and by Mersmann⁽⁵²⁾ in Figs. 6.14 and 6.15 respectively.

Fig. 6.14 shows that the data from the present work agree reasonably well with those of Elliottet $al_{\cdot}^{(4)}$ and

						05755 64	CALCULATED	PARAMETER	RS
		FLOODING VE	INCITIES	LIDHID	V010	FLOGDING	ELNID	RETER D	TERSTHAN
RUN	SYSTEM	LIQUID	GAS	VISCOSITY	FRACTION	FACTOR	RATID	PRESSURE	IRRIGATION
		(MH/S)	(M/S)	(NS/M2)	(-)	(-)	(-)	LOSS	DENSITY
11191	GR/WRTR	.51471	.630	.00115	.3784	42604	02354	11635	.0002387
11174	G8/HATR	.17950	.782	.00115	.3784	.65642	00661	16699	.0000832
11271	G8/WATR	-56704	-604	.00115	.3784	.39160	.02705	.10857	.0002630
11253	C8/WATR	.17530	•759	.00115	• 3784	·61838	.00665	.15876	·0000813
11351		17949	•762	.00115	-3784	-62328	.00679	•15992	+0000832
11372	C8/WATR	49515	.635	.00115	.3784	.43283	.02247	.11788	.0003032
11422	C8/WATR	.03011	-870	.00115	.3784	-81247	.00100	.20031	.0000140
11443	G8/WATR	.11269	.797	+D0115	.3784	.68185	-00407	.17246	.0000523
11531	C8/WATR	03283	-910	.00115	.3784	.08890	-00104	-21643	-0000152
12141	PLISTWHIK	.99050	1,131	-00113	4054	.65919	.00192	106901	.0002502
12291	PLI3/WATR	.99492	-894	.00113	.4054	.40808	.03206	08696	0002513
12272	PLI3/WATR	.18619	1.071	·0D113	.4054	.58567	.00501	.11955	D00047D
12391	PL13/WATR	.06156	1.132	00113	.4054	-65428	.00157	.13210	.0000156
12472	PLIJ/WHIR PLIJ/UDTP	+30/15	1.044	00113	4054	55551	.00848	11433	+0000776
19292	PL13/WATR	.92871	.971	.00102	4054	.47165	.02756	-09402	.0002267
19381	PL13/WATR	.03367	1.405	.00102	4054	-98748	.00069	.17897	.0000082
22171	PL13/WATR	.18525	1.288	.00108	.4029	.85873	-00414	·16118	.0000466
22291	PLI3/WATR	-05886	1.387	-00108	• 4D29	.99581	-00122	-18466	0000148
22331	PLISTARIA	.01767	1.414	.00108	.4029	1.03496	.00036	.10223	.0002341
13183	AL13/WATR	31388	.977	.00108	.4039	.49335	.00926	10820	.0000/92
13164	AL13/HATR	.09510	1.143	•00108	4039	.67525	-00240	.14376	+0000240
13291	AL13/WATR	.99605	.705	.00108	.4039	-25689	-04071	.06072	.0002513
13392	HL13/MHIK H13/HATR	•U64U6 .17889	1.263	-00108	-4039	-76569	.00153 ·	-1505/	-0000152
15291	WI3/WATR	1.01734	1.103	.00109	.4106	-58398	+02657	.11712	·0D02467
15392	W13/WATR	.06434	1.365	.00109	.4106	.89436	.00136	.17159	.0000156
16171	W13/WATR	.18022	1.220	.00105	-4106	70912	.00426	-14180	+0000432
16271	HIJ/HHIR	.01003	1.342	.00105	.4105	-858U3 84583	.00040	+16901	.0000045
21171	HI3/HATR	.18429	1.502	.00105	.4106	1.07482	.00354	.19408	.0000441
21291	W13/WATR	1.00726	1.163	.00105	-4106	.64440	.02495	.12115	.0002412
23171	HI3/WATR	.17431	1.440	.00113	-4106	I-00254	.00349	.19034	.0000428
23291	PIG/UGTR	+05842	1.613	.00113	.4106	1.25789	+00104	-23508	.0000143
14291	PL9/WATR	.93701	+686	.00109	.3843	.42531	.03935	.10307	.0003747
14391	PL9/HATR	.06349	.853	.00109	.3843	.65759	.00214	.14874	0000254
17272	PLM/HATR	.18167	.915	.00115	.3897	-61729	.00572	.14007	.0000614
33191	PL13/ULT	.44 349	+855	.06360	•4106 •4106	+65699	-01644	+06391	+0003943
34171	PL13/GLY	-10440	1 177	.05750	.4106	1.22386	.00281	.11426	10000893
34351	PL13/GLY	.01660	1.484	.05750	.4106	1.94560	.00035	.17488	.0000143
34451	PLI3/GLY	.01986	1.525	.05750	• 4106	2-05459	.00041	+18394	.0000171
31362		.02012	1.184	.06290	-4047	1.34020	.00054	·12192	+0000184
31591	AL 13/GLY	.43352	.622	.06290	.4047	.36937	.02209	.03835	.0003965
31641	AL13/GLY	.09946	.933	.06290	.4047	.83221	.0033B	.07686	-0000910
30172	HI3/GLY	.06569	1.410	.06570	-4180	1.67558	-00148	.14439	-0000568
30291	W13/GLT W19/GLY	.02261	1.515	.06570	-4180	485295	-01189	16503	+0003265
32171	W13/GLY	.05762	1.322	.06780	-4106	1.58374	.00138	.13551	.0000519
32291	H13/GLY	.41060	.937	.06780	.4106	.79561	-01389	.07258	+0003701
32251	WI3/GLY	-02084	1.476	.0678D	4106	1.97421	-00045	·1660B	+00001BB
32371	M13/GLT	.01792	1.527	.06870	4180	1.98283	-00226	.17193	10000157
38291	W13/GLY	.48465	.987	.06870	.4180	-82840	.01556	.07713	.0004256
38381	W13/GLY	.14563	1.333	+06870	.4180	1.51101	.00346	.13359	.0001279
38351	H13/GLY	.01834	1.695	.06870	-4180	2.44313	.00034	.20901	.0000161
36161	PL9/GLT PL9/CLY	.05540	-849	-05430	.3950	1.00456	-00244	11829	.0000863
35171	C11/GLY	.11247	1.060	.05440	.5242	-91406	.00336	.11402	.0001441
35251	CI1/GLY	.03021	1.185	.05440	.5242	1.14235	.00081	14016	0000387
35391	C11/GLY	.45018	.889	.05440	.5242	•64293	-01605	.00261	.0005766
37171		09760	1.159	+07050	-5242	1.15093	.00267	.12896	.0001363
37491		.28377	.932	.07050	.5242	.74424	.00365	-17210	.0000163
40171	PLI3/CACL	.145DI	1.449	00614	4076	1.09203	.00335	.14554	.0000577
40391	PLI3/CACL	1.14395	1.063	.00614	.4076	-58771	•03603	.08276	.0004555
39171	WI3/CACL	.15571	1.600	+00466	.4060	1-26881	00326	.16226	D000565
30121	HI3/CHUL HI3/COCI	11033	1.603	+UU468 -00488	.408D	•00340 1.27358	.U3458 .NN912	.16293	0004337
39551	WI3/CACL	.03404	1.777	.00466	.4060	1.56507	.00064	.19740	.0000124
41171	CII/CACL	.14386	1.482	.00634	.5179	1.09465	.00325	18036	.0000890
41391	CI1/CACL	1.21833	1.111	.00634	.5179	.61519	03671	.10594	.0007537
43171	PL9/ZNCL	.24791	1.100	·02860	+3998	•94785	.00900	.10355	.0002221
43291 44171	C11/7NCL	,28432	1,373	+02060	.5316	.44003 .79821	.00827	10942	.0009530
44251	C11/ZNCL	.06354	1.557	.02790	.5316	1.02649	.00163	13836	.0000542
42171	W13/ZNCL	.18577	1.660	D3020	.4180	1.31319	-00447	.11135	.0001150
42201	LI13/7NCI	97551	1 150	.03820	. 418/1	63024	03030	05663	0005401

Table 6.6

Flooding velocities and dimensionless parameters for the flooding diagrams.

Fig. 6.14 Plots of flooding data on Sherwood diagram

Fig. 6.15 Plots of flooding data on Mersmann's diagram

Shavrin et al⁽⁶⁵⁾. However, their flooding factors for the same fluid ratio are approximately twice as high as those estimated by the correlation given by Lobo et al⁽⁶¹⁾.

Fig. 6.15 shows that the results of this study agree reasonably well with the correlation given by Mersmann⁽⁵²⁾ although the present data indicates somewhat higher dimensionless pressure drops then predicted by this correlation.

It can be seen from Figs. 6.14 and 6.15 that the scatter of the plots in the former is approximately 100% which is twice as much as that in the latter. On this basis, the Mersmann's diagram will be used in further discussions.

It will be seen from Fig. 6.15 that the data points for the non-wetting flow systems are above those for alumina sphere packings (AL13WATR, AL13/GLY). Due to the scatter in the experimental data, it is difficult to deduce a suitable correction term to account for the degree of wetting from the flooding diagram itself. It will be noted, however, from the correlation for dynamic hold-up shown in Eq. (6.13) that the effect of the degree of wetting on the dynamic hold-up can be accounted for in terms of $(1+\cos\theta)$ and that the powers on u and $(1+\cos\theta)$ Therefore, it is reasonable to multiply are the same. the dimensionless irrigation density in the abscissa by the factor, $(1+\cos\theta)$, to incorporate the influence of the degree of wetting on flooding velocities. To maintain consistency with the original dimensionless irrigation density, the correction factor, $(1+\cos\theta)$, is divided by two to yield $(\cos\frac{\theta}{2})^2$. The modified dimensionless irrigation density then, can be written as follows: Modified dimensionless irrigation density

$$= \left(\frac{\mu_{\ell}}{\rho_{\ell}g^{2}}\right)^{1/3} \frac{u \cos^{2}(\theta/2) (1-\varepsilon)}{d_{p} \varepsilon}$$
(6.21)

Fig. 6.16 Flooding diagram based on modified dimensionless irrigation density.

The measured flooding data are plotted in Fig. 6.16 as a relationship between the dimensionless pressure drop and the modified dimensionless irrigation density. It can be seen from this Figure that the data for the system G8/WATR have the highest and the data for the system AL13/GLY have the lowest ordinates; both are wetting systems. A comparison between Figs. 6.15 and 6.16 shows that the use of modified irrigation density decreases the scatter of the plotted data. An even further improvement will result if the data on the G8/WATR system which, despite numerous data points are taken on a single column, N The solid line shown in the Figure is drawn by the generalized curve fitting program shown in Appendix II. It is clear that the solid line represents the data better than the dotted line which is the original Mersmann correlation. These two curves differ mainly in their slopes, i.e., the Mersmann correlation indicates that the dimensionless pressure does not change in the region where the dimensionless irrigation density is less than 3×10^{-5} while the proposed correlation indicates that the dimensionless pressure increases with the decrease in the modified dimensionless irrigation density. Since Mersmann's correlation is based on a small number of experimental data at low irrigation densities, the present correlation will be more reliable. The scatter of the data about the proposed correlation is approximately + 30% in the ordinate which corresponds to +15% in the estimated flooding velocity of the gas.

6.4 Instability of the Bed

Fig. 6.17 shows variations of the total hold-up and pressure drop with gas velocity for the PL9/ZNCL system. It should be noted that zinc chloride solution (ρ_{l} =1920 kg/m³) was the heaviest liquid used in this work. In Runs 431 and 433 the column behaved differently from that described

Fig. 6.17 Variations of total hold-up and gas pressure with gas velocity for Run 430 (PL9/ZNCL)

generally in Sec. 5.3. In Run 431 the column behaved the same as described in Sec. 5.3 until the gas velocity reached that at flooding. However, when the column started to flood, it expanded slightly (5-10mm); this instantly stopped the flooding. A further increase in gas velocity caused a further expansion of the column and thus complete flooding was not observed. In Run 433 (lowest liquid velocity), the expansion of the column started before flooding occured; complete flooding was not observed in this experiment also. It must be noted that this expansion of the column was different from the movement of the particles on top of the column described in Sec. 5.3; in the latter the movement was confined to the top part of the column while in the former the small shift of the packing extended throughout the column. With reference to the instability of the bed, the experiments are classified into three categories: those in which flooding occurred; those in which fluidization occurred before flooding; and those in which flooding and fluidization occurred together.

The condition for fluidization to take place at the point of flooding can be described by considering the balance between the forces as follows:

$$g\{\rho_{s}(1-\varepsilon) + \rho_{l} h_{t}\} = \Delta P/L \qquad (6.22)$$

By dividing both sides by $\rho_{l}g$, Eq.(6.22) can be made dimensionless:

$$\frac{\rho_{\rm s}}{\rho_{\rm l}} (1-\varepsilon) = \frac{\Delta P}{gL\rho_{\rm l}} - h_{\rm t} \qquad (6.23)$$

Because h_t and ΔP are the values at flooding and hence are difficult to estimate, it is difficult to discuss the problem exactly. However, the modified dimensionless irrigation density determines the flooding velocity of the gas (Fig. 6.16), so that it may be assumed as a first

Fig. 6.18

Diagram showing the regions of bed instability. Experimental points:

Normal flooding, \bigcirc ; Fluidization together with flooding, \bigcirc ; Fluidization before onset of flooding \bigcirc .

approximation that both h_t and $\Delta P/gL\rho_l$ at flooding are functions only of the modified dimensionless irrigation density. Under this assumption, Eq. (6.23) becomes

$$\frac{\rho_{\rm s}}{\rho_{\rm l}} (1-\epsilon) = \frac{\Delta P}{gL\rho_{\rm l}} - h_{\rm t} = f \left(\substack{\text{modified dimensionless} \\ \text{irrigation density}} \right)$$
(6.24)

The left hand side of equation (6.24) may be termed the dimensionless density of the bed.

Fig. 6.18 shows the data plotted in terms of the two dimensionless parameters in Eq. (6.24). It can be seen from the Figure that the data show a consistent trend. Under the conditions corresponding to the bottom left region in the Figure, fluidization will occur before the onset of flooding. The estimated region for the slag flow in blast furnaces is also shown. Although more data will be needed to establish the precise boundaries of these regions, this figure indicates that the coke bed will start to fluidize before it is flooded by slag under the average flow conditions in the furnaces.

6.5 Liquid Distribution

Porter et al.⁽⁷³⁾, in their experimental work on the spreading of liuqid in an irrigated column, have shown that the agreement between theory and experiment depends on the sampling area; better agreement was obtained with larger sampling area. From their results on 13mm - raschig ring packings, they suggested that a sampling area of at least 0.04 m^2 is necessary to obtain reasonably reproducible results. The cross-sectional area of the present column is 0.007 m^2 which is, according to the above results, not large enough for detailed analyses on liquid distribution. Th poor reproducibility of the liquid distributions for the wetting columns could be ascribed to

this small cross-sectional area. Therefore, no attempt was made to analyse the liquid distribution in relation to the distributor arrangement or size and height of the packing. It is possible, however, to discuss the distribution of liquid in the column under various flow conditions. A large number of experiments has reduced the uncertainty in the individual experiments and some interesting results have been obtained.

As mentioned in Sec. 5.3, a large influence of gas flow on the liquid distribution was found in the non-wetting systems. Fig. 6.19 shows the variation of the relative liquid flux to the outer annulus in relation to the dimensionless gas pressure drop of the irrigated bed, ΔP_w^* defined by Eq.(6.25).

$$\Delta P_{w} = \Delta P_{w} / L g \rho_{\ell}$$
 (6.25)

This parameter was preferred to the actual gas velocity because the former represents the effect of gas on liquid flow better than the latter. It is worth noting that the maximum possible value of the liquid flux to the outer annulus is 2.0 since the outer annulus occupies half of the total cross-sectional area of the column. It is clear from Fig. 6.19 that the liquid flux to the outer annulus increased with ΔP_w at first. In the region where ΔP_w is greater than 0.3 the scatter in the liquid flux is too large to indicate any simple relationship with ΔP_{u} . The difference between wetting and non-wetting systems is remarkable. In non-wetting systems, the influence of gas flow was so strong that in most cases more than 80% of the liquid flowed to the outer half annulus when ΔP_w is 0.2; in the wetting system the change was significantly smaller.

It was mentioned in Chapter 5 that the influence of the liquid distribution on the measured hold-up and pressure drop was, i^f at all, very small compared with the experimental

 $\begin{array}{c} \underline{\text{Fig. 6.19}} \\ \hline \text{Variation of relative liquid flux to outer annulus with} \\ \hline \text{dimensionless gas pressure drop $$^{\Delta P_W}$*. The curves show} \\ \hline \text{approximately upper and lower limit of all the measured data.} \end{array}$

error. However, this does not necessarily mean that larger changes in liquid distribution do not influence the performance of the columns. It is possible that the remarkably similar change in the flow distribution with gas velocity affected the performance of the column so similarly that no significant differences were detected in the measured data. Further investigations would be required to assess the influence of the liquid distribution on the performance of the columns.

6.6 Possibility of the occurrence of the Flooding in the

Blast Furnace

Since the proposed flooding diagram, based on the present experimental data, does not differ greatly from the correlation given by $Mersmann^{(52)}$ no significant change is anticipated in the discussions on the possibility of the occurrence of flooding, if the discussions are based on the data averaged over the cross-sectional area of the furnace.

The present study, however, leads to a picture different from that described by Elliottet al.⁽⁴⁾ when the flow conditions reach close to or exceed the flooding limit. They suggested that, in case this happened in the furnace locally, either or both metal and slag might be carried upwards by the gas and due to the lower temperature there the liquid would solidify in the voids of coke bed. This would reduce the permeability locally and the diverted gas stream, which would normally flow through that area, would force another region of the furnace to flood with further disruption of gas flow. The whole process would be unstable and, once started, would tend to build up.

From the results of present investigation the possible phenomena can be described differently as follows. From Fig. 6.18 it can be seen that the coke bed tends to fluidize before flooding would occur. The coke bed moves downwards

continuously, albeit slowly during the normal operation When the flow approaches the flooding of the furnace. conditions the coke-bed tends to be held and since the bed below it is moving downwards the void fraction of the bed would increase. The bed in such a case would be highly unstable and a small change in the balancing forces could cause the collapse of the loosely supported bed. The collapse, if large enough, could be detected as a slip and would be followed by a temporary channelling, of the The process is not necessarily 'unstable' according bed. to Elliott's definition of the word since the loosening of the bed would counteract the tendency for flooding. Ιt will be noted that this description of the process coincides well with the observations from the experimental blast furance when attempts were made to initiate flooding $\binom{67}{.}$ Evidently, the limiting conditions of the flow to prevent the occurrence of this phenomena are different from those for flooding and further studies are needed to quantify the conditions.

Since the coke bed cannot move upwards without pushing the whole stack upwards, the loosening of the bed would take time to develop. If the change in the flow conditions is rapid enough , flooding would occur as described by Elliott et al⁽⁴⁾. Since the furnace is operated under constant conditions, this rapid change is unlikely to occur in normal operations, however, the slip and channelling mentioned above could cause changes in flow conditions which would be rapid enough to start and propagate the flooding as described by Elliott et al.

The drastic change of the liquid flow distributions in non-wetting systems with the gas velocity suggests that the radial distribution of the liquids in the blast furance can change significantly as they descend through the coke bed in the presence of the ascending gas stream. The change in the liquid distribution would be more complicated in the region near the raceway since the gas flow there is not parallel to the liquid flow. Further studies of the liquid distribution under such circumstances are necessary to understand fully the real situation in the blast furnace since the occurrence of slip and channelling depends on the local conditions of flows of the liquid and gas.

CHAPTER 7

CONCLUSIONS

Irrigated packed columns were studied, with and without a counter-current flow of gas, at low liquid superficial velocities (0.02 - 1.0 mm/s) for different degrees of wetting between the liquids and packings. Seven packing materials and five liquids were used in the experiments to obtain a range of particle sizes (8-13mm), contact angles $(0-114^{\circ})$, liquid densities $(807-1920 \text{ kg/m}^3)$ and viscosities $(0.0009-0.064 \text{ Ns/m}^2)$. The total hold-up, liquid distribution, gas pressure drop and flooding velocities were measured for various liquid and gas velocities.

(1) The measured total hold-up was related to the liquid velocity by the equation

$$h_t = h_s^* + b u^c$$

where b and c are constants. The values of the constants and the static hold-up, h_s^* , were determined by a least-square technique.

(2) The static hold-up for both non-wetting and wetting flows was correlated with the modified capillary number, $C_{pm}(=\rho gd_p^2\phi^2/(1-\xi)^2\sigma(1+\cos\theta))$ by the equation

 $h_{s}^{*} = 1/(0.205 + 0.00263 C_{pm})$

Published measurements of the static hold-up for raschig ring packings confirm the validity of the correction term for the degree of wetting but a further correction for the shape factor would be necessary to obtain accurate predictions for ring packings using this equation. (3) The measured dynamic hold-up, determined as the difference between h_{t} and h_{s}^{\ast} , were correlated by the equation

 $h_{d} = 605$ $Re_{m}^{0.648} Ga_{m}^{-0.485} C_{ps}^{0.097} N_{c}^{0.648}$

The value of the dynamic hold-up estimated from this equation compared reasonably well with those measured by Gardner⁽²⁸⁾.

(4) The effect of the total hold-up on the ratio of the gas pressure drop through the irrigated bed to that through the dry bed at the same gas velocity depended on both the liquid and gas flow conditions and could not be predicted satisfactorily using existing correlations.

(5) The measured flooding velocities were correlated better by Mersmann's flooding diagram rather than the Sherwood diagram.

(6) The dimensionless irrigation density on the abscissa of Mersmann's diagram was multiplied by the factor, $(\cos \frac{\theta}{2})^2$, to take into account the degree of wetting and a modified correlation curve was proposed.

(7) A systematic effect of the gas flow on liquid flow distribution was observed; the relative liquid flux to the peripheral region of the bed increased with gas velocity until it reached a maximum after which the distribution became almost random. The changes in the liquid distribution with gas flow for non-wetting flows were remarkably larger than for the wetting flows.

(8) With reference to the instability of the bed the experiments are classified into three categories: those in which flooding occurred; those in which fluidization occurred; and those in which flooding and fluidization occurred together. The results were correlated in terms of the dimensionless density of the bed and the modified dimensionless irrigation density and the boundaries of three regions were identified in the diagram. The diagram indicated that in blast furnaces the fluidization of the coke bed is likely to start before the onset of flooding by the slag.

(9) A new explanation for the malfunctioning of blast furnaces in relation to the instability of the bed was given. Disturbances in the smooth descent of the coke bed followed by the slip and temporary channelling would be more likely to occur than flooding.

APPENDIX I

METHOD FOR COMPUTING LIQUID FLOW RATES

I.1 Introduction

As shown in Fig.4.5, the weight change of each of six containers ,6, was measured by a pair of strain gauges ,3, fixed on the cantilever ,4,. The electrical signals from the strain gauges were measured and recorded by a data logger.

Fig. A1-1 shows typical examples of the change of the weight signal with time. Data A show a steady increase of weight with time whereas in Data B a rapid decrease of weight in the middle disrupts the overall tendency of increase. The disruption is caused by the draining of liquid from the container.

A computer program was written to process the data which include those obtained during the draining. The principle of the liquid flow computation is given in the following, together with a list of the program.

I.2 Principle of the Method

Ŷ

The weight signal increases linearly with time (except during the draining) and the rate of increase is proportional to the liquid flow rate. If the data during the draining are excluded, the relationship between the weight signal x and time t can be shown as:

$$x + \hat{x} = a + bt \tag{A1-1}$$

where

a, b = constants

 $\hat{\mathbf{x}}$ = 0 before draining

= x_0 after draining

i = 1 to n, before draining i = n+1 to m, after draining

the sum E of the squared error is

$$E = \sum_{i=1}^{n} (a + bt_{i} - x_{i})^{2} + \sum_{i=n+1}^{m} (a + bt_{i} - x_{i} - x_{0})^{2} \quad (A1-2)$$

By equating the partial differentials of E with respect to a, b and x_0 to zero and after rearrangement one can show that

$$a \cdot m + b \cdot \sum_{i=1}^{m} t_i - (m - n) x_0 = \sum_{i=1}^{m} x_i$$
,

$$a \cdot \sum_{i=1}^{m} t_{i} + b \cdot \sum_{i=1}^{m} t_{i}^{2} - x_{o} \sum_{i=n+1}^{m} t_{i} = \sum_{i=1}^{m} t_{i}x_{i},$$

$$a \cdot (m - n) + b \cdot \sum_{i=n+1}^{m} t_i - (m - n) x_0 = \sum_{i=n+1}^{m} x_i$$
 (A1-3)

Equations (A1-3) are solved for a, b and x_0 and the liquid flow rate can be calculated from the value of b.

I.3 Program and Calculated Results

A listing of the program , in the form of a subroutine is given in Table A1-1. It consists of two parts; in the first, the data are screened to identify the occurence of draining and to eliminate those during the draining; in the second, the linear regression calculation is carried

Table A1-1 Listing of computer program for the calculation of liquid flow rate

DOIDD SUBROUTINE OFLOW(DATA.TIME.ND.TINT.SENS.D.IER.M.N.B) DOILOC DATA: WEIGHT SIGNAL, ND: NUMBER OF DATA, TINT: TIME INTERVAL (1/S) DO120C SENS: SIGNAL SENSITIVITY (GAMEIGHT SIGNAL). 0: LIQUID FLOW RATE (GAS) ODIBOCTHE CONTENT OF DATA MAY BE DESTROYED OD140 DIMENSION DATA(I).A(9).B(3).NORDR(3).TIME(1) 00150 M=C 00160 N=0 00170 IER=0 00190 IG0=1 00190C DATA SCREENING 00200 00 100 I=2.ND 00210 G0 T0(10.20.30.40).IG0 00220 10 IF(DATA(I)-DATA(I-1).LT.-50.)CO TO 11 00230 M=M+1 00240 DATA(H)=0ATA(1-1) 00250 TIME(M)=FLOAT(I-1) 00260 GO TO 100 00270 11 IF(M.GE.31G0 TO 12 00280 M=0 00290 IG0=4 CO3CO GD TO 100 00310 12 IG0=2 00320 N=M 00330 GO TO 100 00340 20 IF(DATA(1)-DATA(1-1).LT.-ID.)G0 TO 100 00350 IG0=3 00360 GO TO 100 00370 30 IFIDATA(1)-DATA(1-1).LT.-50.)G0 TO 200 00380 M=M+1 00390 DATA(N)=0ATA(I-1) 00400 TIME(M)=FLOAT(1-1) 00410 GO TO 100 00420 40 IF(0ATA(()-DATA(I-1).LT.-50.100 T0 100 00430 IG0=1 00440 100 CONTINUE 00450 200 IF(M-N.GE.3)G0 T0 300 00460 MaN 00470 N±0 00480 300 IF(M.LT.4100 TO 990 00490C CALCULATION OF COEFFICIENTS 00500 00 310 1=1.3 00510 8(1)=0. 00520 D0 310 J=1.3 00530 K=I+3×(J-)) 00540 A(K)=D. 00550 BIO CONTINUE 00560 A(1)=FLOAT(M) 00570 IF(N.NE.0100 TO 320 00560 NI=3 00530 N2=4 00600 00 10 330 00610 320 N1=4 00520 NZ=5 CUR30 330 DO 340 I=1.M

3

00640 A(2):A(2)+TIME([) 00650 A(N2):A(N2)+TIME([)##2

00660 B(1)=B(1)+DATA(1) 00670 340 B(2)=B(2)+DATA(I)=TIME(I) 00680 A(N1)=A(2) 00690 IF(N.EQ.0)G0 TO 400 00700 D0 350 I=N+1.H 00710 A(6)=A(6)+TIME(1) 00720 350 B(3)=B(3)+DATA(1) 00730 A(3)=FLOAT(M-N) 00740 A(7)=-A(3) 00750 A(8)=-A(6) 00760 A(9)=A(7) 00770 ND=3 00780 GO TO 500 00790 400 NO=2 00800C SOLVE SIMULTANEOUS EDUATION 00810 500 CALL ESIMQ(A,8.ND.IER.NORDR) 00820 IF(IER.NE.0)00 TO 990 00830 Q=8(2)#SENS/TINT 00840 RETURN 00850 990 IER=1 00860C UNABLE TO CALCULATE Q 00870 RETURN 00880 END

 \bigcirc

out according to Equation (A1-3).

It is clear from Fig. A1-1 that calculated regression lines are very satisfactory even when there is an intervening period of drainage of the liquid.

Fig. A1-1

Variation of the weight of the container with time in two typical cases.

APPENDIX II

GENERALIZED CURVE-FITTING

II. Introduction

A generalized curve-fitting method was applied to obtain the various calibration curves for processing the data. The principle of the method and the computer program will be described.

II 2. Parametric Interpolation⁽⁷⁴⁾

The whole curve is divided into segments and each segment is expressed mathematically by a third order polynominal. The four parameters that are needed to determine the third order polynomial are the values of y and y' (= dy/dx) at both ends of the segment.

For the i'th segment, which represents the part of the curve between $x = x_i$ and $x = x_i + 1$, the curve is given by the equation:

$$y_{i,i+1}(t) = y_{i} p_{0}(t) + y_{i+1}q_{0}(t) + y_{i}d_{i} p_{i}(t) + y_{i+1}d_{i} q_{i}(t)$$

$$+ y_{i+1}d_{i} q_{i}(t)$$
(A2-1)

where subscripts i and i+1 show the positions corresponding to x_i and x_{i+1} and

d _i	`= .	$x_{i+1} - x_i$	p _o (t)	***	$1 - q_{0}(t)$	· .
t		$(x - x_i)/d_i$	q ₁ (t)	=	$t^{2}(t - 1)$	
q _o (t)	=	t ² (3 - 2t)	$p_1(t)$	=	$t(t - 1)^2$	(A2-2)

II 3. Conditional Least-Square Method

Fig. A2-1 shows the physical model of the method proposed by Hosaka $\binom{74}{}$. The curve is represented by an elastic string, l, to which is connected from each data point a spring whose length is assumed to be zero under no load. The whole system is in equilibrium when the sum, U of the elastic strain energies of both the string and springs, given by Equation (A2-3) has a minimum value.

$$U = \frac{k}{2} \left\{ \sum_{j} (y_{j} - \overline{y}_{j})^{2} + \lambda \right\}$$

where

y_i is the ordinate of a data point

- y j is the ordinate of the corresponding point on the string,
- k is the spring constant and
- λ is the strength of the string relative to that of spring

If one divides the whole curve into n segments, this curve is determined by (n + 1) sets of (y_i, y'_i) at the intersections and at both ends of the curve. The elastic strain energy, U, will be minimum when

$$\partial U/\partial y_{z} = 0$$
, (A2-4)

 $\partial U / \partial y'_{i} = 0$. (A2-5)

Although it is possible to determine y_i s and y'_i s froms . Eqs.(A2-4) and (A2-5), the latter is substituted by Equation (A2-6) which stipulates that the curve be continuous up to the second order differential:

$$y''_{i-1,i}(1) = y''_{i,i+1}(0)$$
 (A2-6)

This condition makes the interpolated curve smoother.

(A2-3)

From the above discussion it will be clear that this method of curve fitting is essentially a leastsquare method with the condition that the curve be expressed by connected segments of a third-order polynominal which are continuous up to the second-order differential at the points of connection and with the constraint that the curve is bent according to the value of the parameter λ .

II.4. Mathematical Formulation

Equation (A2-3) is rewritten as

 $U = \frac{k}{2} \{ \sum_{i j} (y_{i}^{j})^{2} + \lambda \sum_{i j} \int_{x_{i}}^{x_{i}} (y_{i,i+1}^{''})^{2} dx \} (A2-7)$

where y_i^j is the value of y on the i'th segment of the curve corresponding to the data point $(\overline{x}_i^j, \overline{y}_i^j)$ and expressed as:

$$y_{i}^{j} = y_{i}p_{o}(t_{i}^{j}) + y_{i+1} q_{o}(t_{i}^{j}) + y_{i}^{\prime}d_{i}p_{i}(t_{i}^{j}) + y_{i+1}^{\prime}d_{i}q_{i}(t_{i}^{j})$$
...(A2-8)

$$t_{i}^{J} = (\bar{x}_{i}^{j} - x_{i})/d_{i}$$
 (A2-9)

By differentiating Equation (A2-1) with respect to x, one can get

$$y''_{i,i+1} = A_i t + B_i$$
 (A2-10)

where

$$A_{i} = 6(y'_{i} + y'_{i+1})/d_{i} - 12(y_{i+1} - y_{i})/d_{i}^{2}$$
 (A2-11)

$$B_{i} = 6(y_{i+1} - y_{i})/d_{i}^{2} - 4y_{i}'/d_{i} - 2y_{i+1}'/d_{i}$$
 (A2-12)
Then,

$$x_{i}^{x_{i}+1} (y_{i,i+1}^{"})^{2} dx = d_{i} \int_{0}^{1} (y_{i,i+1})^{2} dt$$

$$x_{i} = d_{i} (A_{i}^{2}/3 + A_{i}B_{i} + B_{i}^{2}) (A2-13)$$

It can be shown that in Equations (A2-7) and (A2-8), y_i and y' will appear only when i in the summation Σ equals either i-1 or i. Therefore , one can write, i the minimum value of U

$$\frac{\partial U}{\partial y_{i}} = \frac{k}{2} \frac{\partial}{\partial y_{i}} \left\{ \sum_{j} (y_{i+1}^{j} - \overline{y}_{i+1}^{j})^{2} + \sum_{j} (y_{i}^{j} - \overline{y}_{i}^{j})^{2} \right\}$$
$$+ \lambda \int_{x_{i-1}}^{x_{i}} (y_{i-1,i}^{y})^{2} dx + \lambda \int_{x_{i}}^{x_{i+1}} (y_{i,i+1}^{y})^{2} dx = 0$$
$$x_{i} \dots (A2-14)$$

Substitution for A_i and B_i from Equations (A2-11) and (A2-12) in Equation (A2-13) and using the resulting expression and Equation (A2-8) one can rewrite Equation (A2-13) as

$$\begin{cases} \sum_{j} P_{o}(t_{i-1}^{j}) q_{o}(t_{i-1}^{j}) - 12\lambda/d_{i-1}^{3} y_{i-1} \\ + \sum_{j} q_{o}(t_{i-1}^{j})^{2} + \sum_{j} P_{o}(t_{i-1}^{j})^{2} + 12\lambda(1/d_{i-1}^{3} + 1/d_{i}^{3}) y_{i} \\ + \sum_{j} p_{o}(t_{i}^{j}) q_{o}(t_{i}^{j}) - 12\lambda/d_{i}^{3} y_{i+1} \\ + \sum_{j} d_{i-1} P_{o}(t_{i-1}^{j}) q_{o}(t_{i-1}^{j}) - 6\lambda/d_{i-1}^{2} y_{i-1} \\ + \sum_{j} d_{i-1} q_{1}(t_{i-1}^{j})q_{o}(t_{i-1}^{j}) + \sum_{j} d_{i}P_{i}(t_{i}^{j})P_{o}(t_{i}^{j}) - 6\lambda(1/d_{i-1}^{2} - 1/d_{i}^{2}) y_{i} \\ + \sum_{j} d_{i}P_{o}(t_{i}^{j}) q_{o}(t_{i}^{j}) + 6\lambda/d_{i}^{2} y_{i+1} \\ = \sum_{j} \overline{y}_{i-1}^{j} q_{o}(t_{i-1}^{j}) + \sum_{j} \overline{y}_{j}^{j} P_{o}(t_{i}^{j}) (A2-15) \end{cases}$$

It is clear from Equation (A2-10) that Equation (A2-6) is satisfied when

$$A_{i-1} = B_i,$$
 (A2-16)

which, using Equations (A2-11) and (A2-12), can be written as

$$6 \frac{y_{i-1}}{d_{i-1}^2} - 6(\frac{1}{d_{i-1}^2} - \frac{1}{d_{i}^2}) y_i - 6 \frac{y_{i+1}}{d_{i}^2}$$
$$+ 2 \frac{y_{i-1}}{d_{i-1}} + 4(\frac{1}{d_{i-1}} + \frac{1}{d_{i}}) y_i' + 2 \frac{y_{i+1}}{d_{i}} = 0 \quad (A2-17)$$

Equations (A2-15) and (A2-17) provide 2(n+1) linear equation in $y_i s$ and $y'_i s$ and can be solved simultaneously for $y_i s$ and $y'_i s$

IL5. Computer Program

Two subprograms were written:

"SMR" to obtain parameters, y_i , y'_i and "YQ" to obtain y and y' from the fitted curve for a given x value.

Tables A2-1 and A2-2 show the form of calling "SMR" and "YQ" respectively. Table A2-3 shows listings of the programs "SMR" and "YQ" as well as associated ones used in either program.

TABLE A2-1 - Calling form of subroutine SMR

CALL SMR(XD, AD, X, ND, NX, RAMDA, IZ, A, B, DL, K, KK, IF, NF, XF, IER, NORDR)

<u>Variable</u>	Size	Input/ Output	Explanation
XD	ND	I	Data for x _i (independent)
AD	ND	I	Data for y _i (dependent)
Х	NX	*I/O	x at the boundary of segments
ND	-	I	Number of data points
NX		I	Number of segments + 1
RAMDA	· · · ·	I	Smoothing factor (λ) ≥ 0.0
IZ		**	(see the footnote)
NF		I	Number of fixed points
IF	(+)	I	Position of fixed points
XF	(+)	I	Data of fixed points
А	(2*NX)	0	y and y' values
В	((2*NX)**2)]	
DL	(NX)		
K	(NX)	}	Working vectors
KK	(NX)		
NORDR	(2*NX)	J	
IER		0	ERROR indicator

- + : as many as necessary
- * : when IZ = 2, X must be given, otherwise it will be determined by the programme

** : parameter IZ determines the method of choosing X. IZ = 1 : every data point is taken as X, thus NX=ND. IZ = 2 : X is assumed to have been given outside the programme IZ = 3 : X is determined by data points, evenly spaced

Variable	Size	Input/output	Explanation
X	NX	I]	
A	2*NX	I	as for SMR
NX		I J.	
XD	 ·	I	value of x where y is needed
YD		Ο	value of y at given x
YDD		Ο	value of dy/dx at given x
IER		0	ERROR indicator, = 0 when normal; = 9 when
			AD IS OUISIDE LHE

range of X.

Fig. A2-1

Physical model of generalized curve fitting; hypothetical springs are connected from data points (O) to the elastic string l

Table A2-3 Listings of computer programs for generalized curve fitting

00100 SUBROUTINESHRIXD.AD.X.ND.NX.ROO.IZ.A.B.DL.K.KK.IF.NF.XF.IER. 00110+NOROR) 0115C GENERALIZED CURVE-FITTING PROGRAM 00120 DIMENSION X0(1).AD(1).X(9).A(1).B(1).DL(1).K(1).K(1).IF(1) 00130+.XF(1).NCKDR(1) 00140 NXX=NX=2 00150 NXX2=NXX#NXX 00160 C0 11 1=1 NXX2 00170 11 B(I)=0. 00180 00 10 I=2.NO 00190 YOB1X=X0(1) 00200 Y0811=A0(1) . D0210 [1=1-1 00220 00 20 11=1-11 00230 [[]=[]-1 00240 [2=[-]] 00250 IF(X0(12)-Y08[X130.30.20 00260 30 IF(11-1)10.10.40 00270 20 CONTINUE 00280 [[1=1-1 00290 40 00 S0 J=1.III 00300 J1=I-J+) 1-1L=2L 01600 00320 XD(J1)=X01J21 12L JOA 06 01 06 000 00340 SD CONTINUE 00350 J1=J1-1 00360 XD(J1)=Y081X 00370 AB(J1)=YOBIY 00380 10 CONTINUE 00390 NX1=NX-1 00400E 1Z=1(X'S=X0'S).=2(X'S ARE GIVEN).=3(EQUAL INCREMENT) 00410 1F(12-2160.90.70 DD420 60 DOX=(XD(NO)-XO(1))/10000. 00430 INX=1 00440 X[1]=X0[1] 00450 00 100 1=2.NO 00460 [F((X0(])-X([NX)).LT.00X)G0 T0 101 00470 INX=INX+1 00480 X(INX)=XD(I) 00490 GO TO 100 00500 101 1F(1.NE.ND)G0 TO 100 00510 X([NX)=XD([] 0052D 100 CONTINUE 00530 NX=1NX 00540 NX1=1NX-1 00550 NXX=NX=2 00560 NXX2=NXX=NXX 00570 00 10 90 -00580 70 DX=(X0(N0)-X0(1))/FLOAT(NX1) D0590 X(1)=X9(1) 00600 XINX1=XD(N0) 00610 00 80 1=2.NX1 00620 X(1)=XD(1)+FLOAT(1-1)=DX 00630 80 CONTINUE 00640 90 K(1)=0

00650 KK(1)=1 00660 DL(1)=X(2)-X(1) 00670 RAHOA=ROO=(X(NX)-X(1))=3 00680 D0 110 1=2.NX1 00690 K(I)=0 00700 KK(I)=0 00710 DL(I)=X(I+I)-X(I) 00720 110 CONTINUE 00730 IS=1 00740 D0 120 II=I.NX1 u0750 00 130 1=15.ND 00760 IF: X0(1).GT.X(11+1))G0 T0 140 00770 K(11)=K(11)+1 00780 130 18=1 00790 140 KK(II+11=KK(II)+K(II) 00800 120 15=1E+1 00810 DO 180 IR=1.NX 00820 IF(IR-1)190.190.200 00830 200 SX1=0. 00840 SX2=0. 00850 SX3=0. 00860 SX4=0. 00870 IM=IR-1 00880 JE=K(IM) 00890 IF(JE+LT+1)00 TO 211. 00900 D0 210 J=1.JE 00910 SX1=SX1+P0(1.1M.J.XD.X.OL.KK)#P0(2.1M.J.X0.X.OL.KK) 0092D 210 SX2=SX2+P0(2.1M.J.X0.X.OL.KK)=P0(3.IM.J.XD.X.OL.KK)=D((IM) 00930 211 SX1=5X1-12.#RAMOA/(DL(IM)==3) 00940 SX2=SX2-6.#RAMOA/(DL(IM)##2) 00950 5X3=6./(0L([M]==2) 00950 5X4=2./(0L(IM)) 00970 CALL NCOLH(N1.N2.N3.N4.IR.IM.NX) 00980 B(N1)=SX1 00990 B(N21=5X2 01000 8(N31=SX3 01010 B(N4)=SX4 01020 190 5X1=0. 01030 5x2=0. D1D40 SX3=0. 01050 SX4=0. 01050 IM=IR 01070 JE=K(1M) 01080 1F(NX-1R)240.240.220 01090 220 JF(JE.LT.1)G0 T0 221 01100-D0 230 J=1.JE 01110 SX1=SX1+PQ(1.IM.J.X0.X.OL.KK)##2 01120 230 SX2=SX2+P0(1.1M.J.X0.X.OL.KK)=P0(3.IM.J.X0.X.OL.KK)=D1(1M) 01130 221 SX1=SX1+12.=RAMDA/DL(1M)==3 01140 SX2=SX2+6.#RAMOA/DL[1M]##2 01150 SX3=6./DL(1M)==2 D116D SX4=4./OL(IM) 01170 240 IF(IR-1)260.260.250 01180 250 IM=IR-1 01190 JE=K(IM) 01200 IF[JE.LT.1100 TO 27]

Table A2-3 (continued)

```
01210 D0 270 J=1.JE
01220 SX1=SX1+PQ(2.1M.J.XD.X.DL.KK1==2
01230 270 SX2=5X2+PQ(2.1M.J.XD.X.OL.KK)=PQ(4.1M.J.XD.X.OL.KK)=DL(1M)
01240 271 5X1=5X1+12.=RAMOA/OL(1M)==3
                                           01250 SX2=5X2-6.=RAM0A/OL(1M)=2
01260 SX3=SX3-6./0L(1H)==2
01270 SX4=5X4+4./0L(IM)
01280 250 CALL NCOLH(NI.N2.N3.N4.IR.IR.NX)
01290 8(N1)=SXI
01300 9(N2)=SX2
01310 B(N3)=5X3
01320 BIN41=5X4
01330 IF(NX-LE-IR)G0 T0 290
01340 SX1=0.
01350 SX2=0.
01360 SX3=0.
01370 5X4=0.
01380 IM=IR
01390 JE=K(IM)
01400 1F(JE-LT-I)CO TO 301
01410 00 300 J=1.JE
01420 SX1=SX1+P0(1.IM.J.XD.X.OL.KK)=P0(2.IM.J.XD.X.OL.KK)
01430 300 SX2=SX2+PO(I.IM.J.X0.X.DL.KK)=PO(4.IM.J.X0.X.OL.KK)=OL(IM)
01440 301 SX1=SX1-12.=RAMOA/OL(1M)==3
01450 SX2=SX2+6.=RAMDA/OL(IM)==2
01460 SX3=-6./DL(IM)==2
01470 SX4=2./DL(IM)
01480 CALL NCOLH(N1.N2-N3.N4.IR.IR+1.NX)
01490 8(N11=SX1
01500 8(N21=SX2
01510 8(N3)=SX3
01520 8(N4)=SX4
01530 290 SX1=0.
01540 SX2=0.
01550 IF(1R-1)330.330.310
01560 310 IM=IR-1
01570 JE=K(IM)
01580 IF(JE.LT.1)00 TO 330
01590 D0 320 J=1.JE
01600 IN=KK(IM)+J-1
01610 320 SX1=SX1+AD(IN)=PO(2.1M.J.XD.X.DL.KK)
01620 330 [FINX-1R1340.340.350
01630 350 IM=IR
01640 JE=K(IM)
01650'IF(JE.LT.1)CO TO 340
01660 00 360 J=1.JE
01670 IN=KK(IM)+J-1
01680 360 SX1=SX1+A0(IN)=P0(1.IM.J.X0.X.DL.KK)
01690 340 A(IR)=SX1
01700 IR1=IR+NX
01710 ACIRL1=5X2
01720 180 CONTINUE
01730 1F(NF.LE.0)00 TO 370
01740 00 400 J=1.NXX
01750 00 400 1=1.NF
01760 1FS=[F(1)
```

01770 NB=J+NXX=(1FS-1) 01780 400 A(J)=A(J)~XF(])=B(NB) 01790 NXXX=NXX=NXX 01800 JX=0 01810 D0 410 J=1.NXXX 01820 IC=(J-1]/NXX+) 01830 IR=J-(IC-1)=NXX 01840 D0 420 I=1.NF 01850 1F(1C.EQ.1F(1))CD TO 410 01860 420 IF(IR.EQ.IF(I))GD TO 410 01870 JX=JX+1 01880 B(JX)=8(J) 01890 410 CONTINUE 01900 JX=0 01910 D0 470 J=1.NXX 01920 D0 480 I=1.NF 01930 480 IF(J.EQ.IF(1))GO TO 470 01940 JX=JX+1 01950 A(JX1=A(J) 01960 470 CONTINUE DI970 NXX=NXX-NF 01980 370 CALL ESIMO(B.A.NXX, IER, NORDR) 01990 IF(NF.LE.0)00 TO 550 02000 NX2=2#NX 02010 JX=NXX 02020 00 510 I=I.NX2 02030 J=NX2-1+1 02040 00 540 1JJ=1.NF 02050 [J=[JJ 02060 540 [F(J.EQ.]F([J))G0 T0 530 02070 A(J)=A(JX) 02080 JX=JX-1 02090 GO TO 510 02100 530 A(J)=XF(IJ) 02110 510 CONTINUE 02120 550 RETURN 02130 ENO

프꽃북

02140 FUNCTION PO(K.I.J.X0.X.OL.KK) 02150 DIMENSION X0(1).X(1).OL(1).KK(1) 02160 ND=KK(1)+J-1 C2170 T=(X01ND)-X(1))/DL(1) 02180 C0 TO (1.2.3.4).K 02190 I PO=1.-T#T#(3.-2.#T) 02200 C0 TO 10 02210 2 PO=T#T#(3.-2.#T) 02220 C0 TO 10 02230 3 PO=T#IT(3.-2.#T) 02240 C0 TO 10 02230 3 PO=T#IT(-1.)##2 02240 C0 TO 10 02250 4 PO=T#T#(T-1.1) 02260 10 RETURN 02270 END

2 月 日

Table A2-3 (continued)

02280 SUBROUTINE NCOLH(N1.N2.N3.N4.I.J.N1 02290 N1=2#(J-1)#N+I 02300 N2=2#(N+J-1)#N+I 02310 N3=2#(J-1)#N+I+N 02320 N4=2#(N+J-1)#N+I+N 02320 RETURN 02340 END

....

00100 SUBROUTINE ESIMO(A.B.N.K5.NOROR) 0105C TO SOLVE LINEAR SIMULTANEOUS EQUATIONS 0106C BY ELIMINATION METHOD ODI10 DIMENSION A(1).B(1).NORDR(1) 00120 00 10 J=1.N OC130 10 NORDRIJI=J 00140 TOL=0. 0D150 KS=0 155 IF(N.E0.1)G0 TO 200 00160 JJ=-N 00170 00 65 J=1.N 1+L=YL 08100 00190 JJ=JJ+N+1 00200 81GA=0. 00210 IT=JJ-J 00220 00 30 1COL=J.N 00230 DD 3D IROW=J.N 00240 ICR=ICOL+N=(IROH-)] OD250 IF(ABS(BIGA).GE.ABS(A(ICR))) GO TO 30 00260 BIGA=A(ICR) 00270 IMAX=ICOL DO280 MAXIR=IRCH 00290 3D CONTINUE 00300 IF(A8S(8IGA).GT.TOL)G0 TO 40 00310 KS=1 00320 RETURN 00330 40 1R1=N#(J-1) 00340 IR2=N=(MAXIR-1) 00350 00 130 KR=1.N 00360 1RI=1+IR1 00370 IR2=1+IR2 00380 SAVE=A(1R)) 00390 A(IR1)=A(IR2) 00400 130 A(IR2)=SAVE 00410 ISAVE=NORCR(J) 00420 NORORIJI=NORORIMAXIRI 00430 NORDRIMAXIRI=ISAVE 00440 I1=J+N=(J-2) 00450 IT=IMAX-J 00460 D0 50 K=J.N 00470 11=11+N 00480 12=11+11 00490 SAVE=A(11) 00500 A([1)=A([2) 00510 A([2)=SAVE

00520 50 A(11)=A(11)/BIGA 00530 SAVE=B(IMAX) 00540 8(IMAX)=8(J) 00550 8(J)=5AVE/BIGA 00560 IF(J.EQ.N)GO TO 70 00570 IQS=N#(J-I) 00580 D0 65 1X=JY.N 00590 IXJ=10S+1X 00600 IT=J-IX. 00610 D0 60 JX=JY.N 00620 IXJX=N#(JX-1)+IX 00630 JJX=IXJX+IT 00640 6D R(IXJX)=R(IXJX)-R(IXJ)=R(JJX) 00650 65 B(IX)=B(IX)-B(J)=A(IXJ) 00660 70 NY=N-1 00670 IT=N=N 00580 00 80 J=I.NY 00690 IA=IT-J 00700 IB=N-J 00710 IC=N 00720 00 80 K=1.J 0073D 8(18)=8(181-A(IA)=8(1C) 00740 IA=IA-N 00750 80 IC=IC-1 00760 D0 10D J=1.N 00770 D0 110 KK=J.N 00780 K=KK 00790 IFINDRDR(K)-E0-J100 T0 120 00800 110 CONTINUE 00810 K=K+1 00820 120 SAVE=8(J) 00830 B(J)=B(K) 00840 B(K)=\$AVE DD850 100 NORDRIK1=NORDR(J) 00860 RETURN 864 200 B(1)=B(1)/A(1) 866 RETURN 00870 ENO

APPENDIX III

ITERATIVE METHOD FOR LEAST SQUARES

III.1 Introduction

In the course of the analysis of the experimental data, a least square method was applied to fit a nonlinear relation among the experimental data and calculated parameters. Because of the nonlinear nature of the equation to be fitted, an iterative method was applied instead of an ordinary linear regression method.

The principle of the iterative method (75) is explained below together with a computer program for the case in which a correlation between dynamic hold-up and dimensionless parameters was obtained.

III.2 Mathematical Formulation

The assumed relation between dynamic hold-up h_d , and dimensionless parameters Re, Ga, C_D , N_c was

$$h_d = a \cdot Re^b \cdot Ga^c \cdot C_p^d \cdot N_c^e$$
 (6.12)

For the sake of convenience, Equation (6.12) is rewritten as

$$y = a \cdot k^{b} \cdot \ell^{c} \cdot m^{d} \cdot n^{e}$$
 (A3-2)

The problem is to obtain the values of the constant, a, and powers, b, c, d, e for a given set of data $(\bar{y}_i, k_i, l_i, m_i, n_i)$ such that the sum, E, of the squares of the errors

$$E = \sum_{i} (\overline{y}_{i} - y_{i})^{2}$$
 (A3-3)

will be minimum, where

$$y_{i} = a \cdot k_{i}^{b} \cdot \ell_{i}^{c} \cdot m_{i}^{d} \cdot n_{i}^{e}$$
 (A3-4)

If reasonable approximate values can be assigned to a, b, c, d and e, then Equation (A3-2) can be expanded

In the form of Taylor series. Neglecting the terms of the second and higher order, one can write

$$y_{i} = y_{i}|_{0} + (a-a_{0})\frac{\partial y_{i}}{\partial a}|_{0} + (b-b_{0})\frac{\partial y_{i}}{\partial b}|_{0}$$
$$+ (c-c_{0})\frac{\partial y_{i}}{\partial c}|_{0} + (d-d_{0})\frac{\partial y_{i}}{\partial d}|_{0} + (e-e_{0})\frac{\partial y_{i}}{\partial e}|_{0}$$
$$\dots \dots (A3-5)$$

where $|_{o}$ shows that the values are based on the estimates a_{o} , b_{o} , c_{o} , d_{o} , and e_{o} .

After substituting for y_i from Equation (A3-5) into Equation (A3-3) one can see that the minimum value of E can be obtained by choosing the differences, $(a-a_0)$, $(b-b_0)$, $(c-c_0)$, $(d-d_0)$ and $(e-e_0)$ such that

$$\frac{\partial E}{\partial (a-a_{O})} = \frac{\partial E}{\partial (b-b_{O})} = \frac{\partial E}{\partial (c-c_{O})} = \frac{\partial E}{\partial (d-d_{O})} = \frac{\partial E}{\partial (e-e_{O})} = 0$$
(A3-6)

From Equations (A3-4), (A3-5), (A3-6) a linear simultaneous equation of the form

$$\begin{pmatrix} a_{11} & a_{15} \\ a_{21} & & \\ & a_{1j} & \\ & a_{51} & a_{55} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ & \\ & x_5 \end{pmatrix} = \begin{pmatrix} b_1 \\ \\ & \\ & \\ & b_5 \end{pmatrix}$$
(A3-7)

can be derived where,

$$a_{ij} = \sum_{k} \frac{\partial y_{i}}{\partial x_{i}} |_{o} \cdot \frac{\partial y_{i}}{\partial x_{j}} |_{o}$$
$$b_{ij} = \sum_{k} (\overline{y}_{i} - y_{i} |_{o}) \cdot \frac{y_{i}}{x_{i}} |_{o}$$

$$x_1 = a - a_0, x_2 = b - b_0, x_3 = c - c_0, x_4 = d - d_0, x_5 = e - e_0.$$

After solving Equation (A3-7) one can make a correction for a_0 , b_0 , c_0 , d_0 , e_0 , and repeat the procedure until the ratios of the variance of the errors of estimate to that of original data for subsequent iterations differ less than the prescribed value (=10⁻¹⁵ in the present work).

III.3 Computer program

A listing of the computer program is given in Table A3-1. The main program which handles the input data and lists the results is excluded.

Note that in the program, h_d is represented by YD; Re, Ga, C_p , N_c by XD; and a to e by AO.

Table A3-1 Listing of computer programs for iterative method of least squares

00100 SUBROUTINE FFIT(XD.YD.ND.AD.N.DFITN.AIJ.A.B.NORDR.SNAME.NITR) COLLOC LEAST SQUARE FIT BY ITERATIVE METHOD • • DOI20C XD.YD : INPUT DATA 00130C NO : NUMBER OF DATA OD140C AQ : COEFFICIENTS TO BE DETERMINED 00150C N : NUMBER OF AOS 00160C DEITN : DEGREE OF EITNESS (=1.-STANDARD ERROR OF ESTIMATE / 00170C STANDARD. DEVIATION OF YD) * . . . DD180C AIJ : PARTIAL DEFFERENTIALS 0019DC A.B.NORDR : WORKING VECTOR OF MINIMUM SIZE OF (N=N).(N).(N) DD200C NITER : MAXIMUM NUMBER OF ITERATION / RETURN WITH ACTUAL DD210C NUMBER OF ITERATION 00220 EXTERNAL SNAME 00230 UIMENSION X0(4.80D).YD(11.AD(1).AIJ(11.A(1).B(1).NORDR(1).KID(1).IJK(3) 00240 MAXITR=NITR 00250 CERROR=1.0E-15 00260 SY=0. 00270 D0 10 1=1.ND 00280 10 SY=SY+Y0(1) 00290 AY=5Y/FLOAT(ND) 00300 SY=0. 00310 D0 20 I=I.ND 00320 20 SY=SY+(YD(1)-AY)==2 00330 00 100 I=1.MAXITR 00340 SB=0. 00350 00 30 J=1.N 00360 D0 40 K=1.N 00370 [J=J+(K-1)=N 0D380 40 A(IJ)=0. 00390 30 B(J)=0. 00400 D0 110 J=1.ND 0041D CALL SNAME(X0(1.J).YO(J).A0.AIJ.BIJ.N) 00420 CALL ARRANGE(N.AIJ.BIJ.A.B) 00430 110 S9=S8+8IJ##2 00440 CALL ESTHOLA.B.N.IER.NORDR) 00450 00 120 J=1.N 00460 120 A0(J)=8(J)+A0(J) 00470 58R=58/5Y 00480 IF(1.E0.1160 TO 130 00490 NITR=1 G0500 [FLABS(SBR0-SBR).LE.CERRORIGO TO 200 00510 130 SBR0=SBR 00520 100 CONTINUE. 20530 200 OFITN=1.-SORT(SBR) 00540 RETURN 00550 END

DD560 FUNCTION OFUN5(XD.AD.N) OD570C TO CALCULATE FITTED VALUE FOR A GIVEN XD D0580 DIHENSION A0(1).XD(1) Q0590 QFUN=AD(1) OD600 D0 10 I=1.N-1 OD610 10 QFUN=QFUN=XD(1)==AD(1+I) DD620 QFUN5=QFUN UD630 RETURN DD640 END O065D SUBRQUTINE FFUN5(XD.YD.A0.AIJ.BIJ.N)

DD66DC TO CALCULATE PARTIAL DIFFERENTIALS (AOS) D0677 DIMENSION XD(1).AO(1).AIJ(1) 00680 BIJ=YD-QFUNS(XD.AO.N) 00690 C=1. 00700 0C 10 I=1.N-1 D0710 10 C=C=XD(1)=#AD(I+1) 00720 AIJ(1)=C 00730 C=C=AO(I) 0D740 D0 2D I=1.N-1 D0750 2D AIJ(I+))=C=ALDG(XD(I)) 00750 RETURN D0770 END

D0780 SUBROUTINE ARRANGE(N.AIJ.BIJ.A.B) D0790C TO CONSTRUCT MATRIX A AND VECTOR B FOP D0800C SIMULTANEDUS EQUATION A * X = B D0810 DIMENSION AIJ(1).B(1).A(N.N) D0820 D0 10 I=1.N D0830 B(I)=B(I)+AIJ(I)*BIJ D0840 DD 2D J=I.N C0850 2D A(I.J)=A(I.J)+AIJ(I)*AIJ(J) D096D 10 CONTINUE C0870 RETURN C0880 END

REFERENCE EXAMPLE OF CALL TO FFIT IN MAIN PROGRAMME AND

D0420 D0 25D I=1.5 D0430 NITR=5 0D440 CALL FFIT(XD.YD.NDA.AD.5.DFITS.AIJ.A.B.NORDR.FFUN5.NITR) 00450 IITR=I 00460 IF(NITR.LT.5)CD TO 260 D0470 PRINT IOD3.I.OFITN.AD(NNR+1) 00480 ID03 FORMAT(IX.'ITERATION IN PROGRESS. 1 ='.12.'DFITN = '. 00490+F8.3,' .PDHER = '.F8.3) 00500 25D CCNTINUE 00510 260 PRINT #.'END ITERATION'

APPENDIX IV

EXPERIMENTAL DATA

In this Appendix, a complete tabulation of the experimental data is given. The data for the experiments are complied according to the combination of packing and liquid. Since the distributor arrangement (DIST), the effective bed height (HB), fractional voidage (EPS) and viscosity of liquid (VIS) varied for a given combination of packing and liquid, they are given at the beginning of each set of data. Each measurement, idetnified by a Run number, consists of the total hold-up, the superficial velocities of liquid and gas, the pressure drop of the gas and the liquid distribution in terms of the relative liquid fluxes (defined by Eq. (5.2)) to three concentric annuli in the column cross-section.

Six-digit Run numbers are used for the first series of experiments and seven-digit Run numbers are used for the second series of experiments. The make-up of the Run numbers is described below.

First series of experiments: 6 digit numbers (e.g. 134311)

The	first two digits (13)	:	number indicating a particular column (except Runs 20 ~ 26 in which the same column was used).
The	third digit (4)	:	Liquid flow range
The	fourth digit (3)	:	Repeat measurement over the same liquid flow range.
The	last two digits (11)	:	Number showing the chrono- logical order of the measure

ments.

Second series of experiment	7 digit number (e.g.	1219101)
The first two digits (12)	Number indicating a column.	particular
The third digit (1)	Particular series of ments on the same co	f measure- olumn.
The fourth digit (9)	Liquid flow range	
The fifth digit (1)	Repeat measurements same liquid flow ran	over the nge.
The last two digits (01)	Number showing the s of measurements on liquid flow rate with different gas veloc: 01 indicates measure without gas flow	sequence the same th ities. ements
	without gas flow.	

A particular series of measurements is referred to by its abridged Run number. Two digit Run numbers which correspond to the first two digits of the full Run number are used to refer to the first series of experiments. Three or more digit Run numbers, e.g. 110, 111 or 11172, are used for the second series of experiments. In this case Run 110 is used to identify the particular column while Run 111 and Run 11172 are used to identify the specific sets of data.

EXPERIMENTAL RESULTS FOR ** PLI3/WATR ** SYSTEM

EXPERIMENTAL RESULTS FOR == PLI3/WATR == SYSTEM

NO. 2 '

		•														
PA	CKING : PLAS	STIC SPHER	ES							TOTAL	LIQUID	GAS	PRESSURE	RELATI	VE LIQUIC) FLUX
	AVERAGE SIZ	ZE = 1	3.2 (MM)	. APPARENT	DENSITY	= 921.	EKG/M31		RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER	MIDDLE	OUTER
1.1	cuth : wate	R			02.001.11					(PCT)	I MM/C1	(M/S)	(N/M3)	(_)	1-1	1 - 1
	DENCITY	- 10	00 440 (43)	NONTHON	UTCC00179	0010	(1)0 (100)			110141	0.000	11/31	14/131	1 000	700	1 0 0 0
	CUDENCE TEN	- 10		· NUNINHL	12602111	= .0010	1857821		157220	3-032	.0503		U	1.209	.760	1.0000
	SURFHLE IEP	12109 = 1	0/32 10/01	• CUNTHUT	HNGLE	= 92.6	(DEG.)		158321	3.395	1.3018	. 0	U	1.275	- /58	1-603
•				•					155322	2.547	.2587	0	0	1.311	-817	.015
	TOTAL	LIQUID	GAS	PRESSURE	RELA	TIVE LIG	UID FLUX		154123	2.395	.1003	0	0	1.382	577	1.073
RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER	MIODLE	OUTER		155324	2.763	.4974	Ó	U	1.268	.712	1.095
	(PC -)	(MM/S)	(M/S)	(NZH3)	1 - 1	(-)	(-)		157325	9.019	8378	ñ	n	1.265	. 209	1.098
	# RUN 13 ##	. 0151	- IQ . HR	230	EPS - 41	ne vie	- 00095		101020	PUN 17		~ 10 10	- 675	EPS - /156	115 -	00035
134311	2 400	1960		~ .2.1.1 .	053	00 . 113	000003		170101			- 19 - 10	023 .			1 150
104011	2.450	-1300	U	, U	•952	.323	1.040		1/8101	3-508	1-3331	. 0	ຸ ບ	1.254	•525	1.150
13/312	3.122	.0000	U	U	1.122	•ant	1-026		174102	2.642	.1520	U	Ų	1.276	- 528	1.020
198319	3.459	1.4069	D	0	1.114	-820	1.079		177103	3.238	.8055	0	0	1.246	.710	1.103
135314	2.608	3212	0	0	1.007	•959	1.029		175104	2.782	.2783	0	0	1.251	.742	1.082
196915	2.755	.5526	0	0	1.045	.934	1.032		176105	2.945	.4879	0	0.	1.083	.776	1.117
134416	2.432	.1833	0	0	•997	-949	1.039		178206	3.577	1.3674	n	0	1.103	.650	1.188
135417	2.549	.3234	. በ	ñ	1.010	.958	1.029		176207	2 967	5071	ñ	'n	979	. 291	1,120
136418	2.755	.5578	ñ	ň	1.095	1.904	1 034		174209	2,507	1502	č	, i	. 575	321	1 120
197410	3 004	GDAA	ŏ	ő	1.030		1.001		174200	2.000	1302	0	0		.321	1.133
139429	1.004	1 4051	U O	0	1.030	.907	1.051		177269	3.238	.8429	U	0	1.103	. / /2	1.033
136420	3.371	1.4051		U	1.119	•913	1.020		175210	2.771	-2766	U	U	1.158	.535	
138521	3.302	1.3776	U	0	1.030	-897	1.060		175311	2.766	-2670	0	0	-856	.935	1.054
137522	2.960	.8740	0	. 0	1.024	.878	1.074		178312	3.559	1.3183	0	. 0	1.182	.709	I-125
135523	2.558	.3342	0	0	1.007	.893	1.070		174313	2,635	.1453	. 0	0	1 - 109	.376	1.046
136524	2.711	.5645	0	0	.971	.884	1.038		177314	3.216	.8582	0	0	S15	.738	1.165
134525	2.403	.1812	D	ก	1.011	.952	1-032	+	176315	2.972	.5109	n	n	1.124	.514	1.080
130126	2.241	.0156	ō	ñ	1.057	753	1.134		170116	2 169	0256		0	016	· 0.25	1 0 7
122127	2 417	1175	ő	ŏ	1 021	671	1 202		170110	2.400	.0230	U O		1 594	21020	
136127	2.417	1173	0	Ű	. 1.021	1101	1.203		172116	2.597	.1009	U .	. U	1.084	.5/5	
101120	2.329	•0029	U O	u o	-945	./0/	1.120		171118	2.541	.0508	U	9	1.213	-909	1.053
130558	2.299	-0309	U	U	./13	-998	1.172		1/1219	2.507	+0502	· U	0	1.138	-806	1.073
132230	2.445	-1159	0	. Q	•94D	.787	1.158		170220	2.444	.0254	0	0	.974	-690	1.089
131231	2.358	.0604	D	0	1,038	.789	1.124		172221	2.575	.0980	0	0	1.028	-312 -	1.051
131332	2.382	.0602	. 0	0	.959	.841	1.118		172322	2.590	-0996	· D	. 0	.094	-336	1.048
132333	2.417	-1173	0	0	1.079	.754	1.132		170323	2,439	.0207	Ð	0	1.010	. 692	1,069
130334	2.314	.0312	0	0	.845	•8S8	1.145		171324	2.495	.0500	ñ	9	1.103	. 928	1.045
	# RUN 15 ##		- 19 . HR	425	FPS41	217 . 30				RUN 22 #*	= 01ST	- 10 49	- 125	EPS - 4011	918 -	00106
152101	- 101 10	0051	- 13 - 15		1 506	914	000011		224102	1 030	1500	- 13 - 110		1 604		00100
132101	2.342	.0331	ů,	U O	1.000	.014	. 321		224102	2.030	1309		0	1.034		.979
121105	2.293	-0453	i) A	U	1.203.	./55	-948		223103	2.756	.0740	IJ	. 0		- 7-34	1.071
150103	2+201	.0205	u	U	1.207	-201	-971		225104	2.955	.2663	a	α	1.351	- 586	1 - 1 4 5
153104	2.453	.1799	D	0	1.441	.861	-945		227105	3.434	.7937	σ	0	1.524	.556	1.072
180205	2.204	.0209	0	0	1.580.	-628	1.042		Z28106	3.743	1.2588	0	0	1.588	.481	1.130
152206	2.341	.0937	. 0	0	. 1.409	.668	1.075		223207	2.707	.0741	0	0	1.325	.305	1.018
153207	2.429	,1807	0	0	1.380	.852	.970		225208	2,946	.2682	n	0	1.533	.684	1.029
151208	2.269	.0458	n	· n	1.522	.735	. 904		227200	3 427	8179	ň	ň	1 305	530	1 164
151200	2 300	0510	0	õ	1 402	1.017	361		225210	3 1 3 9	1751	ő	ů	1.409	.050 .00	1.1.4
101000		10010	ő	0	1 602	1.01/	-001		223210		- 4 / 31	0	U	1.493	- 5 5 5	1.114
153310	2.437	-1821	U	U	1.602	•000	+907		224211	2.849	- 1444	U	1	: 808	-610	.977
152311	2,365	-0345	U	U	1.575	/50	• 833		228212	3.723	1.2583	. 0	. 0	I.441	.4]9	1.218
150312	2.220	.0192	. 0	0	1,652	.745	-942		2273:3	3.394	.8186	· 0	0	1.584	.502	1 - 1 1 8
157113	3.043	.7327	0.	0	1.287	724	1.091		Z23314	2.733	-0730	. 0	۵	1.465	.685	1.045
156114	2.771	.4521	0	C	1.247	-738	1.095		225315	2.929	.2727	0	۵	1.323	551	1.114
158115	3.427	1.3493	ō	0	1.345	.747	1.047		225316	3.138	.4842	0	n	1.531	.502	1.137
155116	0 571	2502	- -	ñ	2.369	.895	1.071		228317	3 730	1 2983	· ñ	0	1 / 17	3.1.1	1 207
132110	2	2002	5	0	1 207	709	1 1071		220311	2 9 9 9	1.2.3.3	0	0	1.442	504	1.202
13321/	. 2.571		0	0	1-27/	.,00	1.03/		229310	2+0+3				1+011.	.394	• 990
128218	3.451	1-3945	Ŭ		1-2/1	- / 90	1-041			RUN 23 #	. DISI	= 13 • HB	= .425 .	EFS = -4105	- V15 =	100109
156219	2.755	.2013	<u> </u>	0	1.263	• /15	1-096		238101	3.451	.9097	0	_ 0	2.352	.586	-803
			-								· ·					

EXPERIMENTAL RESULTS FOR ## PL13/WATR ## SYSTEM

OUTER

1 - 1

.918

1.035

1.205

1.563

1-833

1.461

1.368

1.500

1.292 .00105

.695

.829

•695

.758

.895

1.111

1.744 1.748

1.540 1.561

.708

.737

.705

.78**2**

.7;5

.949

1.283

1.681

1.520

1.521

1.512 1.555

.00103 941

.735

.752

-935

-327

1.052

1.539

1.492

1.331

1.588

.00113

•95B

1.075

.976 1.038

.876

1.083

1.071

RELATIVE LIQUID FLUX

	TOTAL	LIQUIO	GAS	PRESSURE	RELATI	VE LIQUID	FLUX			TOTAL	t IQUIO	GAS	PRESSURE	REL	ATIVE LIQU	1
RUN NO.	HOLD-UP	VELOCITY	VELOCITY	OROP	INNER	M100F	OUTER	f	NN NN.	HOLD-UP	VELOCITY	VELOCITY	OROP ·	INNER	MIDDLE	
	(PCT.)	(MM/5)	14/51	INZM31	[-]	(-)	()	•		(PCT)	IMM/C1	(M/S)	1 11 / 11 2 1	1 - 1	(-)	
237102	3 179	5970		11171137	1 000	710	(-)			0 000	(nn/3)	11/31	1111131	(-)	1 242	
236102	3.170	.3073	0	U	1.800	./10	•913		215201	2.837	.1457		U	-810	1.242	
230103	2.922	.2708	U	U	1.861	•657	• 330		1215202	2.895	.1241	•457	379.5	.911	1.004	
234104	2.723	.0934	0	0	1.659	•768	.929		1215203	2.837	.0752	•673	845.1	.926	.718	
235105	2.803	.1871	0	Ð	1.665	.755	.935		215204	2.899	.0692	.799	1302.8	- 338	.462	
238206	3.484	-9185	0	0	1.868	506	1,021		215205	3.268	.0745	.923	1859.3	.159	.124	
235207	2,986	.3265	ñ	ñ	1 972	660	924		215206	1 087	0717	003	2412 6	712	419	
235268	2 993	1910	õ	0	2 1 20	.000	- 329		213200	4.007	-0717	.333	2412.0			
- 222200	2.000	-1010	U .	U	2.129	./30	•130		215207	5.3/5	0634	1-048	3077.5	. 124	.203	
237209	3.218	.5797	U	U	2.355	-573	-816		215208	6.373	.0714	1.091	3602.2	•319	• 4 1 2	
234210	2.737	-0820	0	0	2.126	.807	.748		1215209	8.767	.0531.	1.131	4413.8	.841	.631	
	-RuN 24 ≢⊨	 DIST 	= 71 . HB	= .425 .	EPS = .4106	• V15 =	.00103		第 第 第	RUN 122 ###	DIST	= 71 . HB	= .615 .	EPS = .4	1054 . VIS	<u>-</u>
245101	2.737	.1081	0	D	1,999	.787	1803		226101	2.917	2305	n	· · n	1.E52	1.151	
248102	3,122	.5269	n	n	3.036		668		227101	3 105	3031	ñ	0	1 617	052	
247103	2 049	3160	ñ.	0	2 202	624	5000		1227101	2 045	.5351	0	0	2 070		
245104	2,347	1011	0	U	2.703	+024	.065		228101	3.245	-0209	U	U	2.078	• = 1.2	
246104	2.003	+1911	. U	. U	2-811	·660	+510		229101	3.601	1.0158	Ŭ	U	1 825	.954	
246205	2,810	-2046	0	0	2.703	.566	-704		229102	3.748	.9907	.459	428.9	1.554	.878	
248206	3.035	.5077	0	0	3.027	.569	.593		229103	3.762	.9855	.597	784.5	1.319	-558	
247207	2.922	3223	Ο.	0	2.404	,762	.682		229104	3,867	-9975	.737	1396.9	.190	.246	
245208	2,707	.1052	n	- D	2.297	-648	. 789		220105	4 188	9948	708	17/1 3	336	161	
2.0200	211N 76 ww	- חוכד	- 74 40	- 435	CDC - 410C	VIC	00100		223103	F 270	.3340	•750	1141.0	.550	-131	
000101	NUN 20 -		- 70 • 10	~ .423 .	Erg = 14100	• • • • • • =	100100		229100	5.//2	-9922	+002	2001-0	-210	-242	
258101	3-103	.5018	U	. U	1-665	-231	1.036	i	229107	7.821	1.0089	•894	3351.8	.741	-2-3	
255102	2.786	.1937	0	D	1.857	.957	.745	1	229201	3.197	.5193	0	0	1.811	1.642	
267103	2.933	.3258	0	0	1.749	.861	-841	1	228201	E10.E	.3176	D	0	1.591	1.114	
265104	2.593	-1163	. D	. 0	1,961	.945	.718		226201	2.786	.1002	D	n	1.591	1,166	
267205	2,952	.3241	ń	ñ	1.857	.880	793		227201	2.895	1884	ñ	ň	1.358	1,170	
265205	2.713	1080	n	0	2 160	830	722		227201	2 010	1007	457	270 6	5.555	1 1 9 4	
203203	2.715	. 1000	Ű	U O	2.100	+030	. 722		22/202	2+312	.1007	.457	2/9+2	1.001	1+154	
265207	2.796	1930	U	U	2.010	546	•/63	1	227203	2.905	1923	-622 -	704.8	1.506	.981	
269208	3.088	-5282	Û	0	2.154	.760	-768	1	227204	3.068	.1893	-793	1285.2	-673	.722	
	RUN120 ###							· 1	227205	3.578	.1936	-922	1919.9	.394	.237	
	GAS PRESSU	RE DROP TH	HROUGH ORY	8ED ##	HB = .615 .	EPS = +	4054	1	227206	4.842	.1841	-986	2696.4	-534	.260	
1200002	0	0	.515	315.7	0	0	0		227207	6.013	.1771	1.015	3214.7	603	. 383	
1200003	ñ		.737	612.3	, n	ñ	ñ		227209	7 201	1852	1 052	3800 5	501	405	
1200004	ñ	ñ	084	1020 5	õ	ñ			227200	0 160	1002	1 07	4203.3		314	
1200004	0	0		1020+5	0	0	U.		227209	0.402	10/0	1	4203.3	520	.314	
1200005	<u> </u>	u	1.279	1620+1	U	U	-1		¥ 2 A	RUN 123 ###	0121	= /1 • HB ·	= .615 .	EPS = .4	054 7.5	2
:203006	Ο.	0	1.516	2470.0	0	. 0	. О.]	237101	2.642	.0150	0	. 0	1.593	.741	
	-RUN 121 ##0	. 01ST	= 19 . HB :	= .615 .	EPS = .4054	. VIS =	·00102	1	238101	2.676	.0346	0	Û	1.859	.892	
1219101	3.920	1.3396	0	0	1.086	.785	1.160	1	239101	2.747	0614	D	0	1.828	.943	
1218101	3.573	.8038	n	0	1.021	.823	1.108	. 1	239102	2.749	.0603	.457	352.4	1.030	1.015	
1212101	9,273	4800	n	n n	1,186	.989	.051	,	230102	2 745	2130	.623	661 8	1 814	652	
1217101	3.045	2040	0	ő	. 1 . 222				239103	2.740	0010	.025	1100 0	1.014		
1215101	3.045	.2049	U	U	1.022	1.224	.300	1	239104	2.749	-0618	.793	1109.8	•603	-817	
1215101	2.975	.1197	U	U	1.125	1:361	• • 740]	239105	2.986	.0514	-921	1723.7	.333	.405	
1214101	3.677	1.0017	0	0	1 160	-792	1.03!	1	239106	5.306	.0604	1.048	3072.8	-511	.436	
1214102	3.745	.9770	.430	389.1	1.224	-819	1.043	1	239107	6,649	.0608	1.118	3804.7	.576	.558	
1214103	3 780	.9805	568	720.8	252	.455	1 427	-	239108	7 620	0646	1,132	4160 3	125	371	
1014100	1 007	0710	1000	1467 0	108	140	1 902	•	200100	PUN 104	. 0101	. 12		EDC - 4	054 916	_
1214104	4.007	.9,10	• / 3 /	1407.0	.150	•145	1.302			RUN 124 HAR		= 15 - 10	= +012 +	EF3 = +4	054 . 115 :	Ξ
1214105	4.544	1.0185	.795	1883-2	288	+172	1.758	1	249101	3.615	-9489	U	Û	1.162	• 9 9 0	
1214106	5.541	1.0292	.853	2532+2	-465	•233	1.550	1	249201	3.576	-9200	0	. 0	.843	.975	
:214107	6.743	.9658	.906	3331.1	.750	.259	1.549	I	248201	3.303	-S193	. 0	D	.873	1.118	
1213201	3.885	1.2885	C	0	1.057	.771	1-129	1	245201	2.802	.0874	0	n	1,123	.884	
17:8201	3.527	8006	- 0	ñ	1.055	.948	1.082	-	246201	2,926	.1387	ñ	ň	1.559	908	
1217201	3 169	1941	ň	0 0	1.010	945	1 097		2/7201	2 027	2174	5 n		1 307		
1217201	3+100	++341	0	· U	1.010	• • • • •		·]	247201	3.00/	+31/4	45.0		1.307	- /10	
1216201	3.002	.2910	Ŭ	U	•999	1.11/	• 3 / 1	1	247202	3.133	5145	- 459	383-1	1+302	./31	

EXPERIMENTAL RESULTS FOR ## PL13/WATR ## SYSTEM

EXPERIMENTAL RESULTS FOR ## PLI3/WATR ## SYSTEM

	TOTAL	LIQUÍD	GAS	PRESSURE	RELAT	LVE LIQU	ID FLUX			TOTAL	LIQUIQ	GAS	PRESSURE	RELA	five liqui	O FLUX
RUN ND.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER	MIDDLE	OUTER		RUN NO.	HOLD-UP	VELDCITY	VELOCITY	DRDP	INNER	MIDDLE	OUTER
	(PCT-)	(MM/S)	(M/S)	(N/M3)	(-)	(-)	[-]			(PCT.)	(MM/S)	(M/S)	[N/M3]	. [-]	[-]	(-)
1247203	3.199	.2669	.618	744.7	1.743	.807	.877		1938101	2.848	.0354	0	. 0	1.973	1.018	665
1247204	3.206	.3204	.624	743.1	1.209	.822	1.047		1937101	2.784	.0183	0	0	1.355	1.096	-819
1247205	3,227	.3270	.738	1130.6	.816	.525	1.362		1938102	2,965	0359	.464	350.8	1.892	1 019	.700
1247206	3.514	.3266	.858	1734.9	.291	.267	1.698		1938103	2.869	.0360	.656	666.5	1.380	1.068	.836
1247207	4.312	.3177	.917	2221.3	.555	-199	1.652		1938104	2.876	.0347	.865	1135.3	.898	1.110	-972
1247209	5 861	3059	984	3048-8	201	252	1 569		1038105	3.319	0322	1.071	1908.7	.005	.960	1.363
1247200	6 961	3128	1 018	3581.4	591	305	1 573		1038106	1 152	0367	1.213	2737 0	.074	.999	1.316
1247203	8 443	2723	1 044	4145 0	907	366	1.375		1038107	5 053	0307	1 336	3627 7	321	-925	1280
1247210	0 + + 4 5 PUNU 00	•2723	1-044	4143.5	.007	.230	1.470		1330107	0.303	10210	1.405	1059 2	- 324	7/3	1.309
	COS PRESSI	RE DROP TH	ROUCH DRY	RED ww	HR - 620	EPC -	4106		1930108	DIN220 ##*	.0207	1.403	4030+2	• 5 5 6	- 7 - 5	1+203
1900001	000 110000	NC DAGI //	457	242.0	10 - 020	- LIJ - N	.+100 n			Gas PRESSI		RUNCH ORY	8F0	H8	EPS =	.4106
1900001	0	ň	.618	A14 A	n .	ñ	ບ ກ		2200001	0/10 1 112000	n 10.2 Dicor	-464	244.6	0	· 2./ 2 - 0	0
1900003	n 0	ñ	844	721 9	0 0	0	ň		2200002	0	ő	634	433.8	้ำ	ñ	ň
1900004	ů n	0	1 107	1164 2	0	ŏ	П		2200002	0	ő	- 856	754 5	ม ก	ň	ñ
1900004	0	U O	1 440	1949 0	0	0	U O		2200003	0		1 154	1285.3	ĩ	0	0
1900003	U	0	1.440	2650 0	0	0			2200004			1.154	1203-3	n	о С	0
1900008	BUN 101		71 40	2360.0	. U		00104		2200005	0	U O	1.400	1977-3	U O	. 0	0
1010101	- AUM 131 == cocc	E + U13+	= /1 + ΠΟ	= .020,	CFO = +4100	2 - VID -	2 -00104		2200008			- 77 - 49	. 2030-2	- EDC	16 VIE -	
1919101	3.333	- 3101	U O	0	2.104	•/10			2010101	KUN 221 #	()) · UISI	= /1 + 10	= .420 .	CF3 = -411	10 • VIO =	-00108
1919101	3.030	1050	Ű	U	2.100	1013	. /21		2219101	5.052	-4/38	U	0	2.135	.001	- 614
1917101	3.028	-1820	U	U	2.244	-907	.647		2218101	2,906	13122	U	U	2.152	1.004	-014
1410101	2.8/5	.0936	U	0	1.552	1 - 227	+682		2215101	2.573	.1004	U	. 0	2.004	1.23/	-522
191/102	3.112	-1790	.452	335.9	1.1//	1.190	829		2217101	2.816	.1859	U	U	1.891	1.190	-590
1917103	3.085	.1800	.452	335.3	-925	1-109	+965		2217102	2.992	-1927	.457	-360.0	2.022	1.150	-571
1917104	3-101	.1709	.629	645.3	1-439	1.045	.832		2217103	3.059	.1843	.656	740.7	1.297	1.273	-737
1917105	3.210	.1745	.805	1097.7	.577	-946	1.182		2217104	3.245	-1856	.964	1412.2	•45 B	.309	1.516
1917105	3-510	.1639	1.001	1822.1	.116	-657	1.515		2217105	3.640	.1767	1.005	1979.8	140	.116	1.842
1917107	5.204	.1586	1.126	2771.2	.215	.702	1.455		2217106	4.357	.1863	1.119	2697.4	.016	.047	1.926
1917108	5.960	.1658	1.185	3199.B	.188	.757	1.429	•	2217107	5.280	-1821	1.252	3493.5	-001	.364	1.921
1917109	7.203	1684	1.257	3842.0	-222	.958	1.294		221710B	10.106	.1723	1.327	4935.7	.017	-059	1.91B
1917110	8.186	.1390	1.277	4110.9	.085	.814	1.428		2217109	6.828	.2020	1.288	4278-0	.3:5	.045	1.927
***	RUN 192 ##	 . 01ST 	= 71 . HB	= .615 .	EPS = .4054	. VIS :	00102			RUN 222 **	. 015T	= 71 . HB	= .420 .	EPS = -402	29 . VIS =	.00110
1927101	3.284	.3997	0	0	1.946	.839	.789		2228101	2.867	.0339	. 0	n	1.917	1.190	.583
1926101	3,121	-2219	0	0	2.097	.842	.736		2227101	2.816	.0168	, a	ñ	. 587	1,283	.636
1925101	2.967	.1273	ń	n	2.550	.807	-607		2229101	2.880	.0546	-	n		1.285	-601
1974101	2,855	.0510	ū	ñ	2.092	1.149	.550		2229102	2.981	.0548	.452	359.6		1.248	.691
1928101	3.397	6764	ñ	0	2.088	.849	.734		2229103	2.994	-0592	636	712 2	1.238	1.164	574
1323101	3 757	1 0071	ñ	Ő	1.138	995	.963		2220103	3 130	05/0	873	1433 6	1 : 41	600	1 205
1929107	3 842	1 0498	456	405.0	1 362	920	905		2220105	2 7 4 4	0553	1 1 1 9	2569 4	1 1 1 1 1	149	1 863
1020102		1.0450	502	750 6	532	912	1 270		2223103	1 093	.0333	1 226	2000,4	.013	147	1.003
1929103	3.079	-3437	• 322	/60.0	1 550	.012	1.273		2223100	4.003	-0001	1.320	3306.3	015	.702	1.471
1927201	3,103	. 0.70	U	0	1+330	-007			2229107	0.900	+0545	1.307	4371.0	.019	•220	1.015
1329201	3.233	1,0172			.300	+521 -	1 • 1 3 1		2229109	8.049	-0512	1.419	4829-5	U	-202	1.83/
1929202	3-723	1.0034	.454	370-3	1-167	-939	-968			RUN ZZE ##	*#·• D15+	= /1 • 88	= .420 .	EPS = -402	19 • V15 =	-00106
1329203	3.732	-3190	-629	725.5	.481	- 520	1-4//		2238101	3.488	-5505	0	0	1.921	.861	-817
:929204	3.759	-8610	-629	741+5	• 553	.777	1-290		2237101	3.250	• 3996	0	0	2.503		-644
1929205	3-883	.3002	-804	1326 - 7	-211	.307	1.700	·	2236101	3.072	-2298	0	· 0	2.502	.960	-527
1929205	4.657	.8573	•918	1977-3	.068	•31B	1.741		2239101	3.670	1.0097	0	. 0	2.251	-793	.715
1929207	5.75!	.6528	-580	2475.4	-023	.311	1.760		2239102	4.006	1.0380	.457	406.3	2.857	-898	.446
1929208	6.029	1.0546	.971	2519-4	.072	.300	1.751		2239103	4.140	1.0007	.630	852.2	.756	.883	1.160
: 92 92 0 9	5.513	1.0024	1.038	3144-5	.085	.434	1.653		2239104	4.278	.9855	.803	1482.7	- 433	.351	1.598
	RUN 193 ##	. D15T	= 71 . HB	= .615 .	EPS = .4054	• VIS :	.00102		2239105	6,056	1.0085	.950	2748.2	.071	.217	1.803
1339101	2,880	.0655		0	2,300	-983	.582		2239106	7.393	1.0254	1.002	3467.4	.02B	239	1.804
	2.207		-	-												

EXPERIMENTAL RESULTS FOR ## PL13/WATR ## SYSTEM

1539202 1539203

	TOTAL	LIQUIO	GAS	PRESSURE	RELATI	VE LIQUIO	FLUX
RUN NO.	HOLO-UP	VELOCITY	VELOCITY	DROP	INNER	MIDDLE	OUTER
	(PCT.)	(MM/S)	[M/S]	(N/M31	[-]	1-) -	[-]
2239107	10.730	1.0047	1.043	4646.5	-286	.476	1.570
	RUN 224 ##	🔹 , DIST	= 71 . HB	= .420 ·	EPS = .4029	. VIS =	.00109
22491D1	2.967	.0628	0	0	2.085	. 927	.688
2248101	2.900	.0335	0	0	2.008	1.036	.645
2247101	2.860	.0178	0	0	2.121	.950	.660
2247:02	2.927	.0178	.466	354.9	2.070	.935	-699
2247103	2.893	.0169	.625	637.4	2.256	1.082	.541
2247104	3,035	.0176	.869	1307.6	.463	1.137	1.098
2247105	4.194	.0183	1.153	2811.3	0	1.028	1.338
2247106	4.436	.0169	1.373	3714.9	0	.219	1.911
2247107	7.407	.0183	1.412	4896.3	.040	.894	1.393
2249102	7.854	.0545	1.370	4887.0	-008	.317	1.764
***	RUN 225 ##	• • 015T	= 19 . HB	= .420 .	EPS = .4029	. VIS =	00108
2259101	. 3.179	.1728	0	D	2.067	.774	.788
2259102	3.310	.1742	-458	361.9	2.106	.762	.783
2259103	3.330	.1730	.641	723.8	1.816	.710	.913
2259104	3.512	-1732	.871	1466.3	.568	•513	1.452
2239105	4.295	.1677	1.077	2535.7	-016	.202	1.830
2059106	5.189	.1726	1.215	3497.7	.008	-293	1.776

EXPERI	MENTAL RESUL	TS FOR **	W13/WATR	== SYSTE	м	NO. 1
PACI	KING : WAX-C AVERAGE SIZE IID : WATER	OATED SPH = 13	ERES 3 (MM)	APPARENT	DENSITY =	921- (KG/M3)
[DENSITY SURFACE TENS	= 100 10N = .0	0.(KG/M3) 732 (N/M)	 NOMINAL CONTACT 	VISCOSITY = ANGLE =	.0010 (NS/M2) 105.6 (DEG.,
UN NO.	TOTAL HOLO-UP (PCT.)	LIQUIQ VELOCITY (MM/S)	GAS VELOCITY (M/S)	PRESSURE DRDP (N/M3)	RELATI INNER (-)	VELIQUID FLUX MIDDLE OUTER (-) (-)
\$11 500001 500002 500003 500004 500005	GAS PRESSUR GAS PRESSUR 0 0 0 0 D D	E DROP TH 0 0 0 0 0 0	ROUGH ORY -580 -891 1.236 1.533 1.825	8ED ## 368.S 789.3 1418.8 2078.4 2858.2	H8 = .620 . 0 0 0 0 0	EPS = .4105 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
SI 91 01 SI 91 02 SI 91 03 SI 71 02 SI 91 04 SI 71 05 SI 71 05 SI 71 07 SI 71 08 SI 72 01 S1 82 01 S1 92 01	RUN 151 *** 1.956 1.955 1.785 1.691 2.015 2.042 2.031 2.131 2.226 2.099 2.957 4.890 6.604 6.591 1.889 1.974 1.823 2.119	. 015T .5025 .3083 .1824 .0987 .988 .013 .3219 .3219 .3219 .325 .1794 .760 .1769 .1766 .1771 .1849 .3160 .0991 .5170	= 71 • HB 0 0 0 464 459 464 464 - 459 - 464 - 623 - 791 - 978 1 • 113 (• 208 1 • 208 1 • 208 - 3 - 3 - 4 0 - 3 - 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= .620 . 0 0 316.3 322.7 329.0 577.3 972.0 1728.8 2756.9 3680.7 3935.3 0 0 0 0	EPS = .4106 .633 .574 .630 1541 .494 .422 .416 .543 .475 .475 .284 .336 .545 .525 .704	. VI3 = .00110 .948 1.162 .991 i.121 .865 1.214 .846 1.221 .634 1.402 .641 1.401 .834 1.305 .785 I.252 .513 1.493 .394 1.622 .270 1.776 .523 1.625 .418 1.632 .505 1.640 .834 1.235 .914 1.178 .879 1.208
S29101 526101 526101 526102 529102 529103 529104 529105 529105 529107 539101 538101 539101 539201 539201 539202 539203	RUN 152 *** 2.302 2.094 1.949 1.621 2.051 2.625 2.709 2.709 2.709 2.709 2.709 2.709 2.709 2.709 2.709 2.709 2.709 2.728 4.034 5.448 5.55 RUN 153 *** 1.728 1.728 1.729 1.726 1.757 1.899 1.969	015T .3389 .6299 .3881 .7302 .2312 .9948 .9932 .3884 .9780 I.0508 I.0988 .015T .0514 .0335 .0171 .0625 .0638 .0624	= 71 - HB 0 0 - 459 - 462 - 624 - 793 - 986 1 - 049 1 - 103 - 71 - HB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= .620 . 0 0 317.9 344.8 639.0 1059.2 2170.1 2785.4 3427.6 = .620 . 0 0 0 310.0 590.0	EPS4106 .955 .733 .543 .517 .429 .593 .473 .178 .016 .517 .021 EPS = .4105 .570 .552 .619 .631 .340 .307	. VIS = .00103 .753 1.204 .884 1.152 .873 1.205 .879 1.210 .675 1.399 .725 1.312 .537 1.470 .289 1.721 .264 1.792 .227 1.314 .255 1.594 .VIS = .00109 .800 1.275 .915 1.207 .746 1.298 .828 1.239 .575 1.452 .500 1.547

NO. 1

RUN NO. 1539204 1539205 1539206 1539207 1539208	TOTAL HOLO-UP (PCT.) 1.987 2.281 4.840 6.079 6.651 BUN160	LIQUIO VELOCITY (MM/S) -0631 -0631 -0631 -0724 -0635	GAS VELOCJTY (M/S) .802 .986 1.205 1.292 1.365	PRESSURE OROP (N/H3) 960.1 1572.2 3095.4 3777.2 4180.5	RELATIVE LIQUID FLUX INNER MIDDLE DUTER (-) (-) (-) .234 .298 1.697 .023 .244 1.801 .078 .307 1.745 .104 .639 1.532 .270 .642 J.476
	GAS PRESSU	RE DROP TH	ROUGH DRY	850	HB - 620 EPS - 4105
1600001	0	n n	.452	240.4	
1600002	ō	õ	623	414.4	
1600003	0	. 0	-791	634 3	õ õ õ
1600004	D	۵	1.053	1074.0	0 0 0
1600005	0	0	1.330	1635.5	0 0 0
1600005	0	0	1.720	2625.7	0 0 0
1619101	1 892	• • UIS1 :	= /1 • 8	= .620.	EPS = .4106, $V1S = .00108$
1618101	1.723	.2954	· 0	. 0	
1617101	1.653	.1897	ň	n n	-958 876 1.006
1615101	1.575	.1018	õ	õ	.899 .965 1.050
1616102	1.769	-0991	.459	303.7	.764 .890 1.155
1617102	1-814	.1843	.457	305.3	.731 .869 1.178
1518102	1.899	.3146	- 457	311.6	.839 .746 1.217
1619102	2.056	.5159	.457	317.9	.901 .675 1.241
1517103	1.903	1821	-625	564.7	-587 -783 1-245
1617104	2.033	1703	1 001	950 6	.769 .717 1.252
1617105	5.083	.1774	1.183	2980.0	
1617107	6.433	.1778	1.298	3736.0	274 748 1405
1618103	6.056	.3273	1.220	3468.7	182 .447 1.623
1618201	1.803	.3138	0	. D	.843 .826 1.167
1617201	1.715	.1791	0	0	.887 .881 I.117
1617301	1.682	.1529	0	0	.925 .901 1.092
1619301	1.944	•4987	0	0	1.041 .911 1.048
1010201	1.703 RUN 167 HW	-2392 - DIGT -	- 71 U	- 520	-99U -862 1.095
1629101	1.619	0638		= ,02U ,	$273 = .4105 \cdot 915 = .00107$
1628101	1.623	.0340	, u	0 N	-835 1.138 070
1627101	1.616	.0151	Ö	ŭ	·723 1.006 1.090
1627102	1.801	.0171	.457	308.4	.792 .806 1.202
1627103	1.842	-D163	.624	559.9	.769 .770 1.224
1527104	1.935	.0171	876	1165.7	.164 .537 1.581
:527:05	2.818	.0171	1.112	2105.3	.039 .228 1.808
1627106	5.354	.0154	1.339	3598.4	.016 .398 1.705
1222107	5-555	•U258	1.444	1900.0	U .007 1.968
1020102	5.234	•U633	1.233	3380.1	.036 .505 1.634
1252103	0-303 RHN 163 ===	-0032	1.+34/ - 19 . HR	- :620	EPS - 4105 VIS - 00105
1639201	2.323	1,2916	. <u>1</u> 3 г.15 П	- •020 •	.489 .502 1.306
1639201	2.005	.8034	õ	- D	485 502 1.487
:537201	1.862	.4652	Ō	õ	.467 .535 1.473
1636201	1.723	.2582	0	Ō	.479 .644 1.402
	RUNIBD ===				

N0. 2

EXPERIMENTAL RESULTS FOR ## WI3/WATR ## SYSTEM

EXPERIMENTAL	RESULTS	FOR ##	W13/WATR	## SYSTEM
--------------	---------	--------	----------	------------------

NO. 3

•							
RUN NO.	TOTAL L	.10010 ELOCITY	GAS VELOCITY	PRESSURE	RELATI	VE LIQUI: MINDUE	D FLUX Duter
	(PCT.) (MM/SI	(M/S)	(N/M3)	(-)	(-)	(-)
***	GAS PRESSURE	DROP THE	ROUGH DRY	BED ##	HB = .640 .	EPS =	.4301
1800001	. 0	۵	.469	214.5	0	0	0
1800002	0	0	.676	413.7	0	σ	, D.
1800003	0	0	924	732.4	0	٥	0
1800004	D	0	1.269	1281.0	D	C	٥
1800005	0	0	1.562	1834.2	0	٥	C
1800006	. 0	0	1.787	2312.2	0	0	0
1010101	RUN IBI ###	• DIST =	: 19 • HB	= .540.	EPS = -4301	• VIS =	-00107
1818101	1.888	- 7651	0	0	.554	.580	1.379
1019101	2.137	1.2382	U	U	-590	-543	1.393
1916101	1.700	-4342	U	. U	•081	.571	1-3/8
1010101	1-300 RIIN 197 www	·2135	. 71 UP	U	-597 	-014	1.581
1828101	1 700	3215	: /1 • no	033 .	EF3 = .4233	• ¥13 =	-00100
1829101	1.807	-5241	0	0	1 450	+ 30 3	.037
1828102	1.845	3296	.452	274.9	1,223	1.132	.849
1828103	1.96D	.3275	.691	611.6	.547	.886	1,229
1828104	2.089	.3256	.922	1147.5	109	.427	1.650
1828105	3.010	.3249	1.111	1901.1	-005	187	1.843
1828106	3.903	.3243	1.181	2333.5	.004	-119	1.886
1827201	1.658	.1441	0	0	1.528	1.074	.783
1829201	1.903	-4965	. 0	0	1.331	-963	.918
1826201	1-569	.0429	۵	۵	1.708	1.073	-724
	RUN 163 ###	. DIST =	19 · H8	= .635 .	EPS = .4253	• VIS =	.00101
1834101	1.594	-0040	D	0	.397	.690	1.393
1835101	1.620	-0892	C	0	.620	.821	1.246
1837101	1.825	4375	D	· 0 .	.747	.707	1.273
1838101	2.049	+8169	0	0	.547	.654	1.339
1039101	2.314	1.2850	U	0	.584	.636	1.340
1936102	1.059	+3303	167		./0/	.,01	1.232
1836102	2 083	- 32 43	• 457	270-3	.092	+/10	1.274
1836104	2 296	3181	921	1100 7	.440	-037	1.405
1835105	3,334	-9149	1,125	2027 7	+007	124	1.098
1835106	3.916	.3149	1.200	2285.7	.007	104	1+034
1836107	5.461	.3181	1.338	3830.0	· a	0	0
1835108	6.479	.2511	1.428	3681.8	-577	.565	1.417
1835109	6-513	.3232	1.426	3704.9	.578	.567	1.415
	RUN210 ===						
XXX	GAS PRESSURE	DROP THR	OUCH DRY	8EC == '	HB = .425 .	EPS = .	4106
2100001	0	0	.457	216.9	0	0	0
2100002	α	G	•623	380.7	0	0	D
2100003	0	0	-819	634.6	0	e	٥
2100004	D	0	1.057	1015.3	0	D	0
2100005	. 0.	0	1.340	1543.7	0	0	C
5100006	0	0	1.725	2455.1	0	0	٥
2110101	KUN 211 ###	, UIST =	71 HB	= ·425_·	EPS = .4105	• VIS =	.00105
2110101	2.005	• 348]	Ű	0-	1.071	.915	1.033
2116101	2-115	10203	U	0	1.334	-856	.983
2117101	1.797	-1030	U	0 C	1.046	.964	1.013
211/101	1.000	•1914	U	0	1.031	1.018	•986

EXPERIMENTAL RESULTS FOR ## HI3/HATR ## SYSTEM

NO. 4

EXPERIMENTAL RESULTS FOR ## WI3/WATR ## SYSTEM

NO. 5

	TOTAL	LIQUIO	GAS	PRESSURE	RELATI	VE LIQUID FLUX
RUN NO.	HOLO-UP	VELOCITY	VELOCITY	DROP	INNER	MIDDLE OUTER
	(PCT.)	(MM/S)	(11/5)	(N/M3)	(-)	1-1 [-]
2117102	2.075	-1914	-461	304.5	1.074	-933 1.024
2117103	2.120	-1911	.629	549-2	1.020	.763 1.147
2117104	2.253	.1850	.875	1673.0	-694	.332 1.523
2117105	3-128	-1814	1.131	2030.6	-020	·237 1.808
2117106	4.131	.1835	1.263	2725-1	•007	.304 1.770
2117107	4-172	-1822	1.399	3098-9	-014	.007 1.953
2117108	5.134	.1791	1.502	3712-7	0	.007 1.960
2117109	5.377	-1855	1.615	4137.3	0	-DBS 1-942
2117110	9.262	-1794	1.707	5281-8	.012	· 0 88 1·912
***	RUN 212 ##1	■ • DIST	= 71 • 48	- 425 -	EPS = -4106	• VIS = • 00105
2127101	2.169	.3888	0	0	1.523	.744 .989
2126101	2.035	•2253	a	0	1.357	-809 1.005
2128101	2-351	+6359	U	ų	1-485	.655 1.057
2129101	2.580	1.0121	0	0	1-443	.691 1.049
2129102	2.800	1:0123	.464	325.4	1.153	- /25 .1 - 122
5153103	2.962	1.0045	-031	244.4	1.160	-734 1-117
2129104	3.039	-9989	.792	964-5	.884	-485 I-364
2129105	3.490	1.0018	.973	1569-1	.382	.272 1.664
2129105	5.775	1.0032	1.096	2817.4	-759	-480 1-409
2129107	7+250	1.0151	1.103	3355.8	• 36 3	.530 1.511
2129100	0.210	1.0217	1.205	4151-1	-240	.432 1.513
2129109		1.0201	1.332	4049.0	.131	-45/ 1-534
2129110	211.000 211.0000	- 0151	1.303	2333.2	•141	•435 1•651
2120101		• • UI3I	= /1 • 80	= .425 .	LLD = 4100	• VIS = •00105
2139101	1.016	0332	U n	u O	1 634	-214 -024
2137101	1 026	0183	0	0	1.334	-055 -054
2137102	2.052	10101	462	311 5	1 270	·/99 ·902
2137102	2.142	0178	630	556 1	1 202	+103 1+000
2137104	2 102	0123	872	1043 0	549	395 1.500
2137105	2.677	.0162	1 135	1887.5	.179	330 1.300
2137106	2.218	.0157	1.419	2519.7	.026	1010 1046
N##	RUN230 ###		1	201317	1020	1.340
	GAS PRESSUR	RE OROP TH	ROUGH ORY	8E0 ==	H8 = .425 .	EPS = .4165
2300001	0	0	.463	237.7	0	0 0
2300002	0	ŋ	-528	417.7	0	
2300003	- D	0	.855	726.8	0	0 0
2300004	0	0	1.110	1163.0	0	0 0
2300005	0	0	1.375	1714.4	0	0 0
2300006	0	0	1.590	2245.2	0	. 0 . 0
2300007	0	0	1.828	2909.7	0	0 0
F 2 3	RUN 231 ###	. DIST	= 71 . HB	= .425 .	EPS = .4106	• VIS = .00111
2319101	2.089	.5039	0	. 0	1.693	.576 1.036
2318101	1.910	.3043	٥	· 0	1.622	.640 1.021
2316101	1:730	.0974	0	0	1.464	.681 1.048
23171	1.800	.1584	. 0	0	1.522	-664 1.005
2317:02	2.125	.1805	.459	309.2	1.408	.614 1.109
2317103	2.252	-1784	.524	563.0	1.185	.582 1.141
2317104	2.504	.1756	.844	1063.7	.300	733 1.406
2317105	3.769	.1781	1.121	2212.9	•024	.212 1.822
2317100	4.566	-1914	1.288	2898.2	-004	.317 1.763

	TOTAL	LIQUID	GRS	PRESSURE	RELAT	VÉ LIQUID	FLUX
RUN NO.	HOLD-UP	VELDCITY	VELOCITY	DROP	INNER	MIDDLE	DUTER-
	(PCT1)	(MH/SI	(M/S1	LN/H31	{-)	[-]	1 - 1
2317107	5.148	.1769	1.440	3440.4	0	.473	1.659
2317108	5.882	.1749	1.621	4111.9	.002	.480	1.663
2317109	11.255	.1684	1.668	5549.4	.050	.758	1.458
2317110	7.446	.1675	1.617	4931.0	.166	.689	1.479
2317111	6.406	.1705	1.539	4451.1	.079	1.004	1.312
2317112	5.632	.1643	1.445	3899.6	0	.815	1.455
	RUN 232 ##	 01ST 	= 71 . H8	= .425 .	EPS = .4106	. VIS =	.00113
2329101	1.896	- OS84	0	. 0	1.504	.512	1.139
2328101	1.880	.0282	Ö	0	1.526	.513	1.131
2327101	1.883	-0129	0	0	1,375	.\$36	1.170
2329102	2.159	.0506	.457	336.9	1.469	.558	1-123
2329103	2.252	.0579	·663	683.0	1.225	.475	1.255
2329104	2.527	·0579	.905	1356.8	-294	.231	1.719
2329105	3.673	.0590	1.153	2450.5	0	.175	1.855
2329106	3.613	.0574	1.392	3140.5	0	.128	1.880
2329107	4.623	.0625	1.613	3938.8	.018	.158	1.858
2329108	5.649	·DS62	1.694	4355.5	0	-435	1.691
2329109	6.503	.0559	1.803	4792.5	.007	.028	1.945
2329110	4.749	.OS84	1.596	3888.1	.008	.274	1.789

PAC	KING : PLAS	TIC SPHER	ES							TOTAL	LIQUID	GAS	PRESSURE	E RELA	TIVE LIQUI	D FLUX
	AVERAGE SIZ	(E = 9	9.0 (MM) .	APPARENT	DENSITY =	921.	(KG/M3)		RUN NO.	HOLD-UP	VELOCITY	VELUCITY	URUP	INNER	UTDDFC	00165
LIG	DUID : HATE	R								(PC).)	(1175)	10/51	1 1 7 1 3 1	202	291	1 555
	DENSITY	= 104	00.[KG/M3]	NDMINAL	VISCOSITY =	: 10010	(NS7M2)		192122	3.582	-0923	U	U	-333	-201	1.593
	SURFACE TEN	ISION = -1	0732 (N/M)	 CONTRCT 	ANGLE :=	92.6	(DEG.)		191123	3.480	-0491		U	.515	-210	1 609
									192224	3-598	•0926	0		+401	- 303	1 649
	TOTAL	FIGNIO	GHS	PRESSURE	RELHI	IVE LIG	UID FLUX		190225	3.353	+0246	. U	U		.320	1.643
RUN NO.	HULU-UP	VELOCITY	VELOCITY	URUP	INNER	HIUULE			191225	3-452	-04/6	· 0·	0	• 3 3 3 3	305	1 693
		100/51	(7/5)	1 1 7 7 3 1	1-1	1-1	[-]		190327	3.410	.0210	· U		-223	277	1.031
***	ERUN 18 MM	· · · · · · · · · · · · · · · · · · ·	= 12 • HR	= .294 .	EP5 = .404	U . VIS	= .00093		192320	3.502	-0942	0	0	-410	250	1.631
186117	4.234	.5230	· U	U	- 330	-640	1.230		191358	3.437	+0402	· U	U	.320	.333	1.001
18/118	4.550	.0544	U	U O	078	- 660	1.252		***	COS DDECEL	י ומב המהף זו		850	NO - 504	EPC -	3912
188119	5.098	1-39/9	u	u O	1.032	.701	1.101		1400001	GHJ FRESSU			246 0			.0015
184120	3-706	+1605	Ŭ	U n	•/91	.612	1.310		1400001	U	0	• 512	240.0	0	0	
185121	3-927	- 50 55	U 0	Ű	•/03	.071	1.209		1400002	U	0	500	43047	.0	0	c r
104222	3.700	-1003	U	0	-001	.0/3	1.234		1400000	0	0 ·		1028 5	ň	ň	
199224	5.079	1 3005	U	0	1.269	200.	1.272		1400004	0	0	-914	1613 0	บ ภ	n n	
100224	3.113	1.3333	0	0	1,203	.050	1 223		1400005	0	0	1 124	2316 3	n o	ň	
18/223	4.500	-0013	0	0	· 374 802	-003	1 223		1400003	0	0	1.212	2004 7	. 0	· n	
100220	4 • 1 9 1	.3332	0	0	-002		1.201		1400007	0	ő	1 546	4018 4	Ő	0	
10/32/	4.001	- 2020			120	-045	1 2/3		1400005	0	0	1 1 3 2	2206 5	. U	0	c r
100020	2.313	1 2221	0	0	·520 782	-001	1.243		1400009	0	0	251	173 4	0	. 0	r c
188329	0.122	1 • 2 2 3 4	0	0	• / 02	-0/1	1.203		1400010	U	. 0	-231	1/3.4	0	0	
100330	4+292	-0301	0	0	.002	-040	1.200		1400011		. 0	-349	1175 5	0	. 0	
184331	3.750	-1001	0	0	-000	-503	1.290		1400012	. 0	. 0	150	1000 5	0	0	
103032	3-012	+1032	ů,	U	-034	- 004	1.304		1400013		U .	• 904	1003.3	0	0	
182533	3.034	.0352	0	0	-575	+020	1 230		1400014	0	Ů	1 . 140	2404+/	0	0.	L .
101034	3.343	.0499	Ů	0	.313	-910	1 203	•	1400015				3354+/		10 110	00100
180535	3.442	+0240	Ű	0	-004	- /30	1 - 203		1410101		1004	= /1 • 10	= .394 .	· CP3 = -39	12 • 115 =	00100
102033	2.000	-1003	0	0	.740	-745	1 1 47		1410101	2,330	•1004	U 0	0	1.304	-04/	1 - 1 2 4
100007	3.475	1990	0	ň	.510	763	1 169		1417101	2 025	3170	. U	. 0	1.321	- 307	1 1 2 2
191620	3.000	-1003	0	ň	717	757	1 254		1410101	4 212	5103	0	0	1 202	007	1 1 1 0 4
101039	J-337 273	-00000	0	0	812	100	1 100		1410102	4.213	• J 10 J	270	200 2	1.000	-034	1.104
102740	2.075	0550	0	ő	731		1 261		1419102	3 017	3010	.270	300.2	1.000	•/;0	1 . 1
190742	3 412	0.012	. n	ň	688	629	1.341		1417102	3,347	1955	-277	355 0	1 004	•778 .	1.130
100742	3 831	1974	0	0	926	716	1 240		1416102	3,700	-1035	201	200 0	1.004	-020	1 1 2 4 1
105/45	- 2000 - 10 - 10 - 10 - 10 - 10 - 10 - 1	- DIST	_ 10 HB	- 500	EPS ~ 400	17 VIS	- 00009		1417102	3 636	1019	.207	305.0	1 + 1 4 2	+70	1.100
195206	9 875	2748	- 13 - 13	055 . n	601 E	.271	1 591		1417103	3 545	1704	537	1162 0		103	1 7 4 4
198207	5 139	1 3373	ů n	ñ	629	.951	1.532		1417105	3 571	1790	.557	1940 9	•291	•195	1.744
195209	1 2 1	1.1070	ň	0	585	.371	1 5 3 5		1417106	7 064	1015	-070 BO1	3040.0	1004	-114	1-005
100200	4 642	8294	n	ñ	521	330	1 582		1417107	0 051	1651	932	5202.2	120	• 3 3 4	1.030
19/203	3 698	.1398	0	ň	519	320	1 588		1417107	2+301 RUN 142 mm	1210 -	- 7! 19	- 584	- JOJ - FDC - JO	+0/4 40 VIC -	1.402
105211	3 0 7 3	2800	. U	ñ	536	364	1 555		1/20101	A 702	0101	- 11 - 110		1 140	45 • 413 =	• • • • • • •
10511	5 197	1 3720	ů n	0	501	. 332	1 597		1429101	4 . 7 3 5	+3040	0		1.140	•/40	1 • 1 1 3
1302		1.3723	0	0	636	205	1 564		1420101	4.059	2001	. 0	U	1.043	• / 5 2	1 • 12 •
190513	··	1122	. 0	ů	-030	12,30	1,504		1427101	4-030	- 3001	204	200 0	1.254	•/36	1.046
194514	0+720 X 65.5	•1403 9495	0	0	505	-207	1 577		1427102	4 - 1 3 3	+1300	•204	306.2	• 91 /	•631	1.225
131312	4.0°°'	1,171	. U	0		- +297	1 600		1420102	4.304	-0330	•202	. 307.9	-032	-686	1.303
194415	5	- 1 4 7 4	U	Ű.		- 322	1.052		1429102	4.817	1.0148	•281	419.8	<1.008	-670.	1 - 203
196417	1	• 5114	- U	Ŭ	.000	+352	1.345		1429100	4.6/9	•976U	-414	8/5.5	-430	•516	435
198418	1	1.3341	U	ŭ	.020	1013	1.335		1429104	4.619	1 0202	.517	1345.7	- 358	•230	1.698
195419		•2007 0160	U a	U	·3/3	+307	1.346		1429105	4.029	1.0282	•032	19/3-1	.133	-419	1.659
197420		-045U	U	U C	./33	.348	1.492		1429105	5.545	.9245	.06/	2617.9	.073	-283	1.75
180151	5.5.5	-0151	U	Ų	.010	•232	1.010		1429107	9.4/4		•686	3858 9	.129	.262	1.74

ND. 1

EXPERIMENTAL RESULTS FOR ## PL9/WATR ## SYSTEM

EXPERIMENTAL RESULTS FOR == PL9/WATR == SYSTEM

NO. 2

EXPERIN	IENTAL RESI	ULTS FOR ==	PL9/WATR	== SYSTER	1	NO	. 3
	TOTAL	LIQUIO.	GAS	PRESSURE	RELAT	IVE LIQUID	FLUX
RUN NO.	HCLD-UP	VELOCITY	VELOCITY	DROP	INNER	MIDDLE	OUTER
	(PCT.)	[MM/S]	(M/S)	{N/M31	[-]	[-1	·[-)
1427103	6.144	.3723	.749	3138.5	-096	.325	1.728
	RUN 143 #	⊨≓ . DIST	= 71 . HB	= .584 .	EPS = .384	3 . VIS =	.00109
1439101	3.555	-0613	0	0	1.297	.797	1.033
1438101	3.463	.0320	ία.	0	1 319	.727	1.072
1437101	3.386	.0161	0	0	1 282	.639	1.130
1437102	3.408	·D137	-284	344.2	-964	-588	1.271
1438102	3.427	.0315	•286	349.3	.645	.815	1.245
1439102	3.5!4	-0632	-284	357.7	.817	.698	1.253
1439103	3.451	.0629	-413	720.4	1.497	.571	1.106
1439104	3.321	.0635	-571	1316.5	.182	.155	1.805
1439105	3.763	-0627	.753	2369.4	-116	.225	1.781
1439106	6.289	.0690	.828	3719.5	.405	299	1.642
1439107	8.785	.0596	.853	4416.4	.032	.221	1.815
1437103	7.910	.0116	.929	4886.6	.043	.440	1.669

Por	KINC - PLOCT		CINTYI				
T ML	AVERAGE SIZE	IL SPHEKE = 10	-6 (MM)	. APPARENT	DENSITY =	921.	(KG/h3)
L10	UID : WATER						
	DENSITY	= 100	0-(KC/H3)	NOMINAL	VISCOSITY =	.0010	(NS/M2)
	SURFACE TENS	10N = .0	732 LN/M1	 CONTACT 	ANGLE =	92.6	(DEG.)
	· · ·						
	TOTAL I	10010	GAS	PRESSURE	RELAT]	VE LIQU	JID FLUX
RUN NO.	HOLD-UP	ELOCITY	VELOCITY	DROP	INNER	MIDDLE	OUTER
	LPCT-1	(MM/S)	111/51	[N/H3]	[-]	1 - 1	· [-]
***	RUN170 ###						
	GAS PRESSURE	E DROP TH	ROUGH DRY	8ED ==	HÐ = .594 .	EPS =	.3897
1700001	0	0	-326	224.5	O	0	0
1700002	. 0	0	-541	574.5	0	0	0
1700003	C	D	.767	1012.0	0	0	0
1700004	0	. 0	1.044	1750.0	0	0	0
1700005	. 0	0	1.255	2380.7	0	0	0
1700006	0	C	1.466	3122 · D	. 0	0	0
1700007	0	0	1.706	4066.3	0	0	0
	RUN 171 ###	, DIST	= 19 • HB	= .594 .	EPS = .3897	. VIS	= .00108
1718101	4.268	.7877	٥	0	1.035	.729	1.152
1719101	4 586	1.2772	0	-0	•606	-561	1.410
1717101	3.885	-4871	· O	0 -	.760	-865	1.170
1714101	3.189	.0758	۵	0	-823	1.121	.992
1716101	3.576	.2730	. 0	0	.756	-941	1.125
1715101	3.372	.1444	0	۵	.724	1.009	1.094
	RUN 172 ###	. 0151	= 71 • HB	= .594 .	EPS = .3897	. VIS	= .DOI(4
1725101	3.179	-0611	0	C	1.114	1.212	-837
1727101	3.455	-1921	. 0	0	1.242	1.104	-861
1729101	3.852	.5119	0	D	1.273	.775	1.054
1729201	3.757	-5019	0	0	1.315	•609	.1.142
1727201	3.419	.1862	0	C	•755	1.030	1.070
1727202	3.495	-1887	- 32 9	364.9	-739	.880	1.169
172/203	3.450	.1846	•464	698.4	•953	.755	1.175
1727204	3.386	.1838	.626	1271.2	-300	•607	1.484
1727205	4.310	.1716	-806	2423.6	.249	.506	1.564
1727206	5.494	.1863	-863	3027.9	.412	.541	1.488
1727207	7.433	.1750	.915	3924.3	.775	•843	1.179
1729202	7.409	.5160	.823	3554.5	-150	-473	1.617
	RUN 173 ###	. 01ST	= 7] . HB	= .594 .	EP5 = .3897	. VIS	= .00115
1737101	3,678	.3424	0	0	-863	.902	1.112
1736101	3.372	.1524	0	0	•853	.986	1.065
1735101	3.137	-0428	0	. 0	•577	1.182	1.036
1738101	3.930	.5987	0	0	1.000	.737	1.159
1739101	4.313	.9733	D	0	1.163	.749	1.107
RRF	RUN 174 ###	. DIST	= 71 • HB	= .594 .	EPS = .3897	. 115	= .00115
1749101	3.(98	.0621	0	0	-852	1.075	1.0)0
1748101	3-113	.0316	. 0	0	1.603	•933	.847
1747101	3.075	.0158	. 0	. 0	1.185	1.318	746
1746101	3.003	.0079	. 0	0	.532	1.210	1.033

EXPERIMENTAL RESULTS FOR == PLM/WATR == SYSTEM

NO. I

EXPERIMENTAL RESULTS FOR ## ALI3/WATR ## SYSTEM

LIQUID GAS

(MM/S)

.5413

.1581

-3072

HOLD-UP VELOCITY VELOCITY DROP

(MZS)

AVERAGE SIZE = 13.1 (MM) . APPARENT DENSITY = 3465. (KG/H3)

SURFACE TENSION = .0732 (N/M) . CONTACT ANGLE = 0 (DEG.)

RUN 14 ### . DIST = 19 . HB = .245 . EPS = .4189 . VIS =

٥

٥

0

PRESSURE

[N/M3]

0

٥

0

= 1000.(KG/M3) . NOMINAL VISCOSITY = .0010 (NS/M2)

PACKING : ALUMINA SPHERES

LIQUID : WATER

TOTAL

(PC1.)

5.102

4.630

4.831

RUN NO.

146416

144417

145419

DENSITY

RELATIVE LIQUID FLUX

[-]

1.024

1.134

1.111

OUTER

.00086

1.196

1.123

1.123

[-]

INNER MIDDLE

(-)

.389

.404

.448

EXPERI	MENTAL RESUL	IS FOR ##	HLI3/WHIF	(## SYSIE	n		NU - 2
	TOTAL I		GAS	PRESSURE	RELAT	IVE LIQU	ID FLUX
RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER	MIDOLE	OUTE
	(PCT.)	(MM/S)	(M/S)	(N/M3)	(- 1	[-]	(-
162141	4.619	.0992	. 0	0	.416	1.792	.71
162242	4 616	.0980	0	0	.337	1.798	.73
161243	4-529	.0510	· 0	0	.604	1.870	-60
160244	4.442	-0252	· 0	0	.436	1.914	-62
163245	4.731	-1898	0	0	.185	1.972	.67
161346	4.498	-0510	· · · O	0	.518	2.150	.45
163347	4.721	.1920	0	0	.269	1.840	.73
162348	4.600	-1007	0	0	.328	1.758	.76
160349	4.417	.0251	0	0	-263	2.099	.57
16 36 10	RUN130 ###						
	GAS PRESSUR	E OROP TH	ROUGH DRY	8E0 ==	HB = .445	• EPS =	.4039
1300002	0	· 0	•463	279.9	0	0	
1300003	0	0	.623	473 B	0	0	
1300004	0	0	•802	753.7	0	0	
1300005	0	0	1.057	1242.9	0	0	
1300006	n	0	365.1	1857 8	0	0	

1 40 - 10		- 3072	Ģ	. U	• • • •		1 + 1 2 5						-		
147419	5.757	-8841	0	· 0	.373	1.058	1.181		GAS PRESSURE	OROP	THROUGH DRY	8E0 ==	HB = .445	• EPS =	•
48420	5.908	1.4086	0	0	.287	1.166	1.142	1300002	0 .	0	.463	279.9	0	0	
148521	5.928	1-3409	0	0	.354	1.288	1-044	1300003	0	0	.623	473.B	0	0	
146522	5.15D	.5431	٥	0	.334	1.007	1-225	1300004	0	0	.802	753.7	· 0	0	
147523	5.464	.8632	0	0	.413	1.060	1-166	1300005	0	0	1.057	1242.9	0	0	
145524	4.825	.2973	0	0	.370	1.228	1.076	1300006	0	0	1.336	1857.8	0	0	
144525	4.655	.1517	0	0	.377	1.206	1.087	1300007	0	0	1.61D	2657.7	0	0	
146626	5-142	.5409	0	C	.339	1.655	.822		RUN 131 ===	. DIS	T = 71 , HB	= .445 .	EPS = .403	19 VI5 -	=
144527	4.559	-1430	0	0	.491	I.411	•922	1319101	4.859	.4950	. 0	0	.918	1.363	
148528	5.887	1.2596	D	0	.296	1.461	.957	1316101	4.694	.3083	. O	D	1-015	1.069	
147629	5.483	9299	0	0	.238	1.734	.907	1317101	4.561	.1771	· 0	0	.981	1.217	
:45630	4.858	-2987	D	0	.409	1.407	-952	1316101	4.428	.0971	0	0	.647	I.253	
141131	4.427	.0576	0	0	.898	.714	1.217	1318201	4.675	.3018	0	0	•92 2	1.052	
142132	4.530	.1085	0	· 0	1.043	.671	1.195	1319301	4.951	.5125	0	0	1.004	1.065	
140133	4.352	•D290	0	0	1.253	1.069	.878	1316301	4.463	.1026	0	0	.908	1.501	
140234	4.352	.0280	0	0	1.138	1.084	.908	1317301	4.577	.1860	0	0	1.116	1.322	
142235	4.533	.1055	0	0	1.252	.773	1.062	1318301	4.726	•3181	0	0	-939	1.199	
141235	4.436	.0553	0	0	1.114	.754	1.120	1313302	4.735	.3195	-456	427.5	1.332	1.251	
142337	4.552	-1087	· 0	0	.881	.757	1.197	1318303	4.678	.3170	-622	80D-O	.679	1.514	
140338	4.408	-0271	0	0.	1.299	.528	1.198	1313304	4.767	.3126	.796	1485.3	1.025	-996	
141339	4.450	.0547	0	· 0	1.396	.756	1.025	1318305	4-872	.3116	-853	1904-0	-638	1.009	
	RUN 16.##	 DIST 	= 19 • H3 =	.455 .	EP5 = •4	189 . VIS =	.00095	1313306	5.233	.3164	-921	2441.8	1.158	.859	
165422	4.827	.2912	0	0	-324	1.917	.665	1318307 -	5.877	.3170	-948	3016.9	I.356	1.004	
164523	4.641	.1571	. 0	0	.154	2.030	-615	1318308	7.206	.3119	-969	3901.5	1.434	.963	
168524	5.891	1-3818	0	۵	.717	1.611	.723	1318303	9.017	.3049	.977	4317.2	1.234	1.038	
1,65525	:.936	.2939	0	0	.400	2.026	.572	1318401	4.926	.3035	D	0	-867	-200	
166526	5+084	-5466	D	0	.479	1.922	610	1316401	4.517	.1005	a	0	.766	1.385	
168527	S-891	1.3903	· 0	0	.608	1.643	.739	1317401	4.637	•1896	· 0	0	-880	1.259	
164628	4-635	-1603	٥	0	-206	1.896	.718	1318401	4-834	.3108	0	. 0	.395	1.055	
167629	5.425	.8682	0	0	.733	1.514	.779	1319401	5.027	.5160	0	0	-605	1.095	
196730	5.090	·2200	0	0	-571	1.685	.726	1313402	5.100	.5348	.457	478.2	.676	1.557	
107731	5.410	6918	0	0	.674	1.618	.733	1318402	4.853	.3131	-457	458.4	1.051	1.055	
166832	5.094	-5238	0	Û	.603	1.736	. 684	1317402	4.631	.1833	.457	440.8	1.010	1.261	
14733	4.541	.1434	· 0	0	.242	1-933	.745	1316402	4 - 466	.1005	-459	429.7	.947	1.457	
168734	5.922	1.3444	0	· 0	.562	1.601	.781	1315403	4.437	.0970	.618	777.9	1,126	1-291	
194995	4.650	.1376	0	0	•255 [.]	1.859	.724	1316404	4-377	.0981	-792	1337.7	1-413	1.120	
157936	5.472	.8694	0	0	.750	1.583	.729	1316405	4-564	.0965	-980	2336.0	1-902	1.212	
165837	4-645	-2860	0	0	. 352	1.919	.654	1316406	5.519	.0953	1-114	3724.3	1.597	.806	
161138	4.495	.0534	0	0	.556	1.706	.718	1316407	6.797	.0837	1-143	4537-5	. 1.085	-906	
;50139	4.430	-0256	0	0	.344	2.049	.577		RUN 132 ≝≡≢	015	r = 71 • MB	= .445 .	EP5 = .403	19 • VIS :	ĩ
153140	4.752	.1867	0	0	.387	1.940	.630	1320101	5.509 - 1	.0251	0	0.	.777	1.185	

NO - 2

DUTER

(-)

.712

.734

-600

.629

.578

.456

.732

.762

.573

D

Ο

0

0

0

٥

.00109

.509

.059

.879

.969 1.200

.365

.728

.759

.304

.739 .796

:.001

1.122

.041 .985

.384

-904

.847

.886

1.175

:.080

.764

.950 .342

.742 .783

.795

.573

.925

.966

1.039

.00105

1.112

0 ~1

EXPERIN	IENTAL RESI	JLTS FOR ≢≡	AL13/WATR	ER SYSTEM	1 .	NO	. 3
	TOTAL	LIQUID	GAS	PRESSURE	RELAT	IVE LIQUID	FLUX
RUN NO.	HOLD-UP	VELOCITY	VELOCITY	OROP	INNER	MIDDLE	OUTER
	(PCT.)	(MM/5)	(M/S)	[N/M3]	(-)	[-]	(-)
1328101	5.126	-6438	0	0	1.153	1.318	.758
1327101	4.872	.3897	0	0	1.157	1.029	.936
1326101	4.723	.2105	0	0	.815	1.186	.954
1326102	4.621	2253	.459	443.0	1.098	1.213	.842
1327102	4.834	•3956	.457	462.8	1-118	1.365	.740
1328102	5.154	.6196	.457	495.8	1.096	1.469	.684
1329102	S.608	.9315	-459	SS5.3	1.255	1-117	-849
1329103	5.801	1.0229	.624	1273.8	.372	1.230	1.074
1329104	6.106	1.0315	.676	1725.5	.379	.772	1.356
1329105	8.814	.9807	.701	3360.7	•588	.726	1.314
1329106	9.728	1.0137	.705	3775.0	.526	.707	1.346
1327103	8.535	.3673	.911	4281.9	.841	.999	1.060
	RUN 133 🗉	■■ • 015T	= 7 1 . HB	= .445 .	EPS = .403	9 115 =	.00108
1339101	4.583	.0632	. 0	0	185	1.395	1.039
1338101	4.529	.0336	0	0	-211	1.171	1.166
1337101	4.469	.0169	0	0	.239	1.372	1.039
1337102	4.468	-0174	.454	423.1	.428	1.025	1.185
1338102	4.383	.0236	.457	412.1	.844	1.589	-696
1339102	4 - 383	-0604	.457	418.7	•989	1.288	.830
1339201	4.342	.0635	0	0	.531	1.386	.924
1339202	4-450	0635	.452	416.5	1.208	990	-941
1339203	4.374	.0673	.623	786.7	.944	1.235	.880
1339204	4.260	.0625	.792	1364 - 1	1.590	•580	1.070
1339205	4.247	.0642	.979	2241.2	1.680	-814	-894
:339206	4-669	.0632	1.114	3219.7	.368	.930	1.262
1339207	S.728	.0635	1.205	4526.5	-125	-360	1.699
1337202	4.919	.0152	1.359	4859.3	.038 -	.032	1.937

EXPERIMENTAL RESULTS FOR ## G8/WATR ## SYSTEM

PACKING : GLASS 5P	PHERES				· · · · · · · · · · · · · · · · · · ·
AVERAGE SIZE	= 8.1 (MM)	. APPARENT	DENSITY	= 2500.	(KG/M3)
LIQUID : WATER					
DENSITY	= 1000.(KG/M3)	NDM1NAL	VISCOSITY	= .0010	(NSZM2)
SURFACE TENSION	= .0732 [N/M]	. CONTACT	ANGLE	= 0	(DEG.)

	TOTAL	LIQUID	GAS.	PRESSURE	RELA	TIVE LIQUID	FLUX
RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER	MIDBLE	OUTER
	(PCT.)	[[[]]/\$]	(M/S)	(N/M3)	(-)	(-)	(-)
	RUN 12 =	🗯 🖬 01ST	= 19 , HB	= .210 .	EPS = -40	00 . VIS =	.00085
126311	5.714	5684	0	. 0	.745	•3	1.582
124312	5.061	.1989	0	. 0	- 1.015	.360	1.397
125313	5.297	.3195	Ō	0	.784	.607	1.322
128314	6.935	1.3343	0	0	1.301	•669	1.211
127215	6.347	-9124	0	0	1.041	.364	1.386
127416	6.386	.8757	0	0	1.008	-248	1.469
124417	4.948	-1543	0	0	.884	.422	1-403
128418	6.854	1.2458	0	.0	.850	-928	1.101
125419	S.400	.3140	. 0	0	-593	.385	1-523
127520	6.321	-9102	. 0	0	-515	.543	1.288
126421	5.778	.5567	0	0	1.029	-459	1.331
125522	5.351	.3083	0	0	-311	.254	1.551
126523	5.496	.5352	0	0	1.127	-429	1.317
128524	7.032	1 3725	. 0	0	565	849	1.245
124525	4.997	.1557	0	0	-670	- 384	1.498
120334	4.654	.0306	0		-910	.559	1.303
121335	4.793	.0617	U	. 0	- 798	.517	1.5/3
122335	4.867	-1173	0		.633	•463	1.402
123337	5.045	2129	. 0	. U	. /54	.484	1+408
123438	5.061	2318	0	0	1.209	. 395	1.310
121439	4.705	. 0621	U	U	1,001	.472	1.332
122440	4.884	+1185	U	0		-605	1.007
120441	4.699	+0315	. U	U	1.224	.534	1 242
123542	5-116	-2179	U	U	1.046	-435	1.342
-121543	4.738	-0502	U	· U	.995	.565	1.275
122544	4.923	-1185	U	U	1.137	.395	1.334
120545	4-55/	.U289	10 10	202	1009	•040 F7	1.207
	RUN 20 #	EMM - U121	= 13 • 110	30/ -	2 3 2 - 40	5/ • 15 =	-00099
204206	4.864	.1553	0	U	2.371	.430	1 100
205207	5.163	+ 2687	U D	U	1 200	379	1 102
205208	6-924	1.3499	. U	U	1.200	•/32	1.002
208309	. 0.032	1.3000	U	· U	1.230	.730	1.003
200210	5.505	5025	. U	Ű	1+109	•22D	1 066
207211	6.100	+8433	· U	U	1.128	•02.3	1.000
205312	5.549	.4991	· U	0	1.027	-200	1.200
202313	5-131	.2882	. U	U	1.215	+000	1-123
204314	4-915	-1549	. 0	U	1.823	.699	
208415	5.740	1.2731	U	U	1.198	-671	1 - 1 4 3
207315	6-101	•8322	, U	U	1-277	•003 500	1.004
205417	5-112	-2001	Ű	0	1.209	.000	1.103
205418	5-563	-4982	0	0	1+230	1.015	- 318
207419	6-138	.8356	U	0	1.243	./08	1.035
204422	4 - 786	-1380	U	U	1.550	•9*5	•822
201121	4.579	.0518	0	. D	2.587	•921	+523

EXPERI	MENTAL RESU	LTS FOR ==	G8/WHTR	## SYSTEM	1	۲.	10.2		EXPERI	MENTAL RESU	LTS FOR 🚥	G8/WATR	## SYSTE	M	N	:0.3
RUN ND.	TOTAL HOLD-ÚP LPCT-1	LIQUID VELOCITY (MM/S)	GAS VELDCITY	PRESSURE DROP	RELATIN INNER N		D FLUX		RUN NO.	TOTAL HOLD-UP	LIQUID VELOCITY	GAS VELOCITY	PRESSURE DROP	RELATI INNER	VE LIQUI MIDDLE	D FLUX DUTER
202122	4.740	- 1000	0	n (11)	2 11 2 13	766	ens		1110106	5 077	5195	629	2522 0	312	.783	1.371
200123	4.487	-0132	. ŭ	n	2.506	543	-000		1119103	5 955	-5155	622	2634.1	.037	.900	1.991
202224	4.657	.1001	ů Ú	0	2 099	013	873		1119109	7 438	5108	630	3583.7	013	.914	1.391
201225	4.547	10474	õ	ň	2.652	327	9075	· •	1110201	5 222	5175		100011	• • • • •	.592	1.493
200226	4,495	-0266	n	n n	2.392	. 432	. 901		1119201	5 043	5136	. 0	0 N	1.367	1.131	.802
202327	4.680	.0979	0	n n	1 743	627	-031		1118201	1 710	3220	0	o O	996	1.303	.823
200328	4.473	.0120	0 N	n	2.640	195	766		10201	4.436	1907	0	ວ ຄ	.265	1.275	1.082
201329	4.570	.0502	n	'n	2.365	.724	.720		1116201	4.224	.0939	· · 0	0	.856	- <u>6</u> 90	1.067
	RUN 27 ##	 DIST 	= 19 . H8	= .587 [°] .	FPS = .4004	. V15	.06100		1117202	4.528	. 1835	. 331	605.4	.120	1.187	1.185
277101	5.958	.8315	10 10	n 1001	.142	.703	1.478		1117203	4.536	1033	.408/	904.6	.001	.770	1.484
276102	5.468	.4876	n'	ň	.205	.741	1.432		1117204	4.605	.1814	.487	1285.1	.092	.859	1.398
274103	4.908	.1464	ũ	n	.189	.714	1.455		1117205	4.592	1793	-567	1736.5	. 4 3 4	1.324	. 195
275104	5.088	.2579	ō	ň	109	695	1.493		1117205	4.847	1794	.623	2179.3	n	.971	1.761
278105	6.694	1.3109	ñ	Ď	.183	.690	1.472		1117207	4,901	.1815	-651	2390.3	.001	994	1.345
277206	5,999	.8247	n	ō	.231	.811	1.381		1117208	4.944	1900	.681	2629.0	1001	1.002	1.341
278207	6.730	1.2924	ō	õ	.212	599	1.519		1117209	5.046	.:611	.709	2966.2	.002	1.051	1.304
276208	5.449	-4799	O	ō	.354	.893	1.289		1117210	5.083	1271	.729	3144.4	.008	1.205	1.711
275209	5.093	.2748	' D	Ō	-249	879	- 1.333		1117211	5.230	7	.743	3412.5	.011	1.025	1.324
274210	4.893	.1489	0	0	.218	.840	1.367		1117712	6.773	16.39	.692	3594.1	- , ,	.101	337
275311	5.088	-2862	O	à	.109	.666	1.511		1117301	4.395	.1733	3	0	ñ	.547	15622
277312	5.939	.3085	Q	D	.156	.778	1.425		1117401	\$.513	.1650	õ	ň	.001	.747	: 499
274313	4.871	.1485	0	0	.124	.810	1.417		1117402	4.941	555	.677	2693.0	.457	.429	1.542
278314	6.705	1.3425	Ō	0	.316	1.036	1.213		1117403	5.016	:842	706	2985.2	.745	.416	1.453
276315	5.504	.4608	Ō	Ō	.559	.710	1.334		1117404	5.098	1848	.731	3249.9	.003	.351	1.737
270116	4.614	.0273	0	0	-148	-647	1.510		1117405	5.218	.1829	742	3533.5	.001	.380	1.725
272117	4.770	.0992	Ō	Ó	.176	.606	1.527		1117405	5.397	1626	.761	3858.7	.005	.491	1.655
271118	4.681	.0523	0	Ĵ	-483	.654	1,398		1117407	5.534	.:955	.775	4158.3	.004	.425	1.497
271219	4.705	.0528	Ō	Ū	.335	.826	1.337		1117408	5.639	.1547	.78.	5967.0	.005	.387	1.19
270220	4.639	.0277	0	a	.256	.609	1.498		1117409	9.051	.1749	.752	5794.1	.028	.547	1.019
272221	4.785	.0995	Ö	ĉ	.288	-805	1-365		1118302	8.518	3075	.577	5828.7	.133	.792	1.163
270322	4.605	.0261	0	0	.193	.700	1.452		:11830!	4.867	.3162		0	.442	.056	1
272323	4.828	.0997	۵	0	.221	.754	1.413		1116501	4.279	.0971	ġ	ŏ	653	319	1.544
271324	4.745	.0463	ŋ	ð	.171	.897	1.354		1117501	4.555	1476		· ñ		.350	1.416
	RUNIIC ***								:118501	4.899	. 3. 16	2	. n	.743	. 123	1.117
	GAS PRESSU	RE DROP TH	ROUGH DRY	8ED ×*	MB = .567 .	EP5'=	-3784		1119501	5.320	1:25	. 3	0	.618	. 3 3 4	1.547
1100001	0	· 0	.335	384.0	0	0	0		***	RUN 112 ##	■ . D1ST	= 13 . 43	= .567.	EPS = .3784		. nania
1100002	0	0	-516	806.0	0	D	ā		1125101	4.543	1020		0	.711	.429	: 459
1100003	0	C	681	1292.0	0	0	0		1126101	5.0381	. 3 7 4	ſ	- <u>n</u>	468	.562	455
1100004	С	0	.836	1965.5	0	0 .	ģ		1127101	5.485	.5232	ó	õ	.548	.574	1.421
1100005	0	0	1.115	3073.5	. 0	9	G		1128101	6.109	2289	ā	ñ	.506	.759	1.32:
1100005	0	0	1.738	4189.0	ن	. 0	0 -		1127102	5.626	5740	.335	762.7	.475	.578	1.444
1100007	α.	ŋ	1.499	5114.4	g	i ĉ	ē		:127:33	5.705	5705	.408	1164.0	. 375	.547	197
	RUN 111 ##	 . 0157 	· 71 · HB	: .557 .	FP3 = .3784	, V13 =	-C01C3		1127194	5.778	.5713	.485	1522.3	.348	5.25	1 5 0
1119101	5.195	-5253	- G	3	1-084	1.086	.924		1127105	5.004	.5594	.565	2226.0	. 117	.483	1.548
1118101	4.760	-3125	ð	õ	1.063	-851	1.077		1127106	6.440	.5753	.580	2668.7	.596	.802	1.064
1117101	4.498	1952	i i i i i i i i i i i i i i i i i i i	ō	.139	1:082	. 44		1127:07	5.604	.5633	.596	2990.1	.635	.739	1,200
1116101	4.294	0954	.;	0	.465	.964	:.255		1127108	5.546	15535	000.	3014.7	.540	.704	1,744
1113102	5	.5174	1.15	584.6	.393	1.012	1.002		1127103	9.013	.5627	.604	1969.0	.374	994	1.5.51
1119109	5.414	5128	.414	1032.6	.821	876	1.37		12727	5.503	- 5495	. 00-т п	0	116	.692	1 133
1113104	5.511	.5205		1459.9	.411	.317	0.55		128901	-5-044	.5837	n n	. n	.355	.647	1 230
1119105	5.70)	5708	5.54	2025.3	.77	1.204	.957		1127301	5.491	.5771	n	0	.307	.886	1 9/0
•••••	- • • <i>/</i>		• •••		- •		- 20 -		*******	001		0	u	• 50 7	1000	1.000

EXPER	IMENTAL RESU	JLTS FOR ##	G8/WATR	** SYSTEM		N	0.4	EXPERI	IMENTAL RESU	LTS FOR **	G8/WATR	** SYSTEM	ł	110). 5
RUN NO.	TOTAL HOLD-UP	LIQUID VELOCITY	GAS Velocity	PRESSURE	RELA Inner	TIVE LIQUI MIDDLE	D FLUX DUTER	RUN NO.	TOTAL HOLD-UP	LIQUIO VELOCITY	GAS Velocity	PRESSURE	RELA1 INNER	TVE LIGUID MIDDLE) FLUX OUTER
	IPLI.I	[MM/5]	(M/S)	(N/M3)	(-)	(-)	(-)		(PCT.)	(MM/S)	(M/S)	[N/M3]	[-]	(-)	[-]
1126301	4,991	.3458	. 0	0	.126	.811	1.416	1144101	4.590	.1222	· 0	۵	.740	1.101	1.165
1125301	4.590	.1800	0	0 '	-263	.657	1.466	. 1143101	4.446	.0624	0	0	329	1.005	. 1-229
1125302	4.665	1750	.331	559.0	-191	.622	1.511	1142101	4.356	.0305	0	0	.566	1.217	1.021
1125303	4-533	•1766	.408	970-3	.050	.893	1.391	1141101	4.331	•0159	0	0	.285	1+038	1.185
1125304	4.582	-1776	-486	1364.6	. 0	-624	1.576	1142201	4.456	-0311	D	0	.882	-858	1-135
1120300	4.759	•1770	.564	1857.6	0	-959	1.367	1142202	4.438	.0306	.331	601.9	-162	1.039	1.262
1123308	4.079	-1766	.019	2286.5	0	-814	1.457	1142203	4.324	.0312	.459	1091-0	-138	1,109	1.232
1120007	5.025	-1/01	-0//	2/6/.3	.027	•630	1,561	1142204	4 423	-0302	•622	1997.7	•016	.521	1.53/
1125305	3.223	1705	./35	3479.9	.045	.650	1 545	1142205	4.458	.0285	.678	2407.6	. 0	1.017	1.343
1123309	6 694	-1700	- /32	455272	-130	- 780	1-434	1142206	4-608	-0303	.737	2962.8	-024	1.3/1	1.10,3
1125310	6 572	-1720	./39	4002-0	-127	•885	1.370	1142207	4 625	-0301	- 768	3258.5	.027	2.001	- /12
1120302	8 222	5653	- 610	1342.2	170	- /68	1.478	1142208	4 - 7 40	-9312	-829	3848.3	.058	3.079	-035
1128302	7.361	.8714	513	4J23-9 2843 A	•170	./12	1-465	1142209	5.547	+0411	•870	3338.1	-211	2.937	.075
1120302	(RUN 113 **	. 0151	- 19 . HB	- 567 5	PS - 37	- 21 V K9	1+147	1142210	5,345	-0299	•007	4720 7	•157	2.808	
1139101	6.746	1.3159	- 13 1 10	00/ L	.344	1 262	1 064	1142211	4 705	-01/9	.090	5230-2	.184	2.942	2070
1138101	5,934	.7973	ň	0	108	1.202	1.165	1144301	4.700	.1125	221	617 E	- 3 3 0	1.405	+ 301
1137101	5.419	.5194	n n	n	.117	1.490	1.103	1144302	4.043	1009	-221	1126 2	.323	1 2 2 2 2	1.002
1136101	4,956	2859	ň	ŏ	-168	1.397	1.039	1144304	4.045	1100	-4JU 671	2122 2	-005	2 159	1.100
1135101	4.690	1849	õ	ñ	.492	1.258	1.033	1144304	4.740	-1109	678	2122.2	1037	2.130	-012
1135102	4.782	.1829	. 330	. PF 8	.511	1.539	.837	1144305	4.757	1130	- 0739	2000.0	013	2.040	-033
1135103	4.705	.1831	.408	947.8	.127	1.099	1.238	1144300	5 053	1119	.130	3763 6	-027	1 943	34
1135104	4.750	.1874	.483	1316.2	.121	.713	1.479	1144308	5.785	1204	768	3964 2	044	1.867	701
1135105	4.819	.1791	.554	1809.1	.525	1.225	1.027	1144401	4.406	1:36	1700 n	0.004.2 n	452	1 126	1 111
1135105	4.869	.1794	.621	2181.0	.518	1.014	1.159		RIN 115 ==		- 71 . 88	567	FP5378	1.120 A. V15 -	20115
1135107	5.081	.1780	.677	2755.2	.014	1.298	1.153	1154101	4.456	.0608	_ ,, , , , , , , , , , , , , , , , , ,		_46T	1.362	222
1135108	5.220	.1791	.707	3054.8	•040	1.162	1.227	1153101	4.396	.0336	0	ň	.755	1.084	1.031
1135109	5.345	.1769	.736	3395.2	.026	1.192	1.215	1153102	4.369	.0329	. 391	612.3	.344	1.362	1.003
1135110	5.691	-1761	.762	3952.1	.041	1.327	1.126	1153103	4.314	.0327	459	1091.4	.771	1.182	. 172
1135111	6.211	.1729	.737	4076.6	-030	1.405	1.080	1153104	4.346	.0335	.621	. 987.3	.324	.759	1,382
1138102	6.721	.7753	.512	2352.2	-054	-986	1.332	1153105	4.623	.0323	.735	2342.0	0	.825	1 453
1135201	4.593	.1729	. O	0	.433	1.111	1.127	1153106	4.784	.0357	.795	9388.9	203	1.404	1.048
1136201	4.899	•2773	. 0	. 0	.172	.633	1.511	1153107	5.505	.0326	.863	5369.2	D	1.075	1.300
1137201	5.374	.4994	D	0	.058	.758	1.472	1153108	8.362	.0340	.898	7056.7	.204	1.079	1.227
1138201	5.880	.7527	0	, O	.395	-624	1.442	1153109	8.484	.0288	·930 .	7312.7	252	1.104	1.196
1139201	5.761	1,3006	0	0	.273	-711	1.429								
1139202	6.968	1.3119	.304	752.4	.212	.773	1-411								•
1199203	7.052	1.3002	.359	1058.5	.195	-803	1.398								
1139204	7.216	1.3070	.410	1437.3	-131	.576	1-560								
1139205,	7.533	1.3042	.459	1921-6	-139	.734	1.459		•				•		
113920P	1.876	1+2889	.484	2353 4	1080	•896	1.379								
1139207	8.832	1.3002	.475	2990.4	.185	1 126	1.201								
1139208	10.522	1-2970	.487	4133.7	.159	1.062	1-250								
1133209	16-155	1.2957	483	3881-2	-207	1.084	1.220						•		
1137202	5.815	- 5035	- 332	508-2	+003	1.154	1-245								
113/203	2,937	.4344	.459	1524.1	1012	1.001	1.33/								
1137204	0.308	+49.11	. 505	2488.9	·UZZ	1.1/6	1.225								
1137205	0.207	+4321	.594	2522.1	-025	1-220	1.197								
1137205	5-/04	-498U . 1997	-510	514/.0	-021	1-128	1-248								
113/20/	- PIN 114	-+02/ 	כיני. בע מי	312310	+013 PE - 379	010-L	1-527					·.			
		- • 0131	- 13 + 63	- +00r + E		/= + #10 C	+00111								

EXPERIMENTAL RESULTS FOR ## PLI3/ETOH ## SYSTEM

PACKING : PLASTIC SPHERES			
AVERAGE SIZE = 13.2 (MM) . APPARENT DENSITY	=	921. (KG/M3)	
LIQUID : ETHANOL - WATER			
DENSITY = 807.(KG/M3)NOMINAL VISCOSII	ίĭ =	.0016 (NS/M2)	
SURFACE TENSION = .0240 (N/M) . CONTACT ANGLE	z	0 (OEG.)	

						A	
	TOTAL	LIQUID	GA5	PRESSURE	RELATIV	E LIQUID	FLUX
RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER 1	1100LE	DUTER
	EPCT-1 .	1 MM/51	1 M/S1	(N/H3)	[-]	(-)	[-]
* 3 2	RUN 241 ##	 DIST 	= 19 · HB	= .425 .	EPS = .4106	• VIS =	.00161
2418101	3.477	.5672	0	0	1 151	.825	1.064
2417101	3.132	-3040	0	0	1.537	.894	.893
2419101	3.988	.9913.	0	0	.772	.759	1.232
2416101	2.872	1389	0	. D	1.422	.868	.946
2415101	2.601	.0502	0	0	1.363	•863 [`]	.968
2415201	2.840	.0980	0	0	2.231	1.085	-S41
2413101	2.979	2008	0	0	1.452	.629	1.084
2414201	2.613	.0558	. 0	0	1.381	1 182	.764
2418201	3.403	.4483	0	0	1,111	1.356	.742
2417201	3.058	3148	0	0	.808	1.111	1.002
2419201	3.938	.9789	0	. 0	.659	.994	1.124
	RUN 242 ##	DIST	= 19 . HB	= .425 .	EPS = .4106	• VIS =	00161
2429101	2.667	.0960	0	0 -	1.190	.681	1.142
2426101	2.329	0115	0	. 0	.806	1.401	.817
2428101	2.527	.0481	0	0	.829	1.052	1.029
2427101	2.407	.0199	0	0	1.021	•989	1.009
***	RUN 261 ##	 DIST 	= 19 . HB	= .425 .	EP5 = .4106	. VIS =	.00156
2619101	2.712	.0951	. 0	0	.733	1.367	.870
2617101	2.449	.0210	0	0	.877	1.391	-817
2418101	2.551	.0448	Ð.	C	.731	1.523	.775
2616101	2.284	.0042	٥	0	.853	1.016	1.037
***	RUN 262 ##	OIST	= 19 . 48	= .425 .	EPS = .4106	• V1S =	.00155
2529101	3.922	.9289	0	0	1.149	.432	1.307
2524101	2.535	· .0381	0	С	.931	1-162	925
2527101	3.070	.3054	. 0	0	1.308	1-001	.903
2626101	2.835	.1478	0	0	.822	1.111	.397
2628101	3.457	.5768	Э 1	a	1.300	.712	1.084
2525101	2.697	.0761	0	0	.798	1.173	. 959

EXPERIMENTAL RESULTS FOR ## AL13/ETOH ## SYSTEM

NO. 1

PACKING : ALUMINA SPHERES AVERAGE SIZE = 13.1 (MM) . APPARENT DENSITY = 3465. (KG/M3) LIQUIO : ETHANOL - WATER

DENSITY = 807.(KG/M3) . NOMINAL VISCOSITY = .0016 (NS/M2) SURFACE TENSION = .0240 (N/M) . CONTACT ANGLE = 0 (DEG.)

	TOTAL	LIQUID	GAS		PI	RESSURE	RELATIV	/E.LIQUID	FLUX
RUN NO.	HOLD-UP	VELOCITY	VELO	TIC	Di	ROP	INNER 1	1100LE	OUTER
	(PCT.)	(MM/S)	(MZ)	51		(N/M3)	[-]	(-) -	(-)
***	RUN 251 ***	. DIST	= -19	•HB	з	.430 .	EPS = .4130	. VIS =	.00151
2518101	4.039	.7166		0		C	1.370	.877	.958
2519101	4.303	1.0027		0		0	1.257	.626	1.152
2517101	3.384	.2735		0		C	1.105	1.079	•922
2515101	2.847	.0495		0		0	1.099	.755	1-124
2518201	3.762	.5571		0		0	1.480	.892	.912
2516101	3.059	.1251		0		0	1.325	.879	.972
	RUN 252. ###	· DIST	= 19	. н8	z	.430 .	EP3 = .4130	. VIS =	.00151
2529101	2.912	.1055		0		0	.683	.755	1.253
2526101	2.546	.0114		0		0	1.448	.528	1.080
2528101	2.762	-0453		0		0	1.075	.769	1.126
2527101	2.644	.0203		0		0	1.356	.349	1.298
	RUN 271 ###	, OIST	= 19	. нв	=	.430 .	EPS = -4130	. VIS =	.00157
2718101	3.852	.5614		0		С	.599	.333	1.515
2715101	2.953	.0615		0		. 0	1.093	-686	1.168
2717101	3.478	.3085		0		0	.493	.716	1.352
2719101	4.368	1.0104		0		D	.937	.288	1.468
2716101	3.197	.1511		0		C	.770	662	1.292
***	RUN 272 ###	. DIST	= 19	. нв	=	.430 .	EPS = .4130	. VIS ≓	.00157
2729101	3.059	.0967		Q		0	1.072	.620	1.219
2725101	2.615	0058		0		0	.904	1.584	1.022
2728101	2.889	-0460		0		0	1.103	.755	1.128
2727101	2.758	.0194		0		2	.816	.993	1.076

ΕX	PERI	MENTAL RESUL	TS FOR 💵	G8/ETOH	## SYSTER	1	NO. I	
	PAC	KING : GLASS	SPHERES	· · · · · ·				
	L10	AVERAGE SIZE UID : ETHAM	: = 84 401 - WATER	. [(MM) . ?	APPARENT	DENSITY = 2	2500. (KG/M3)	
		DENSITY	= 801	. (KG/M3) .	NOMINAL	VISCOSITY =	-0016 (NS/M2)	
		SURFACE TENS	5ION = .02	240 (N/M) .	CONTRET	ANGLE =	0 (DEG.1	
		TOTAL	LIQUID	GAS	PRESSURE	RELATIV	E LIQUIO FLUX	
UN.	N0.	HOLO-UP	VELOCITY	VELOCITY	OROP	INNER H	IODLE DUTER	
		(PCT.)	1 MM / S I	[M/5]	[N/M3]	L – 1	(-) (-)	
		RUN 291 ##1	∎ , DIST :	: 19 . HB :	: .391 ,	EPS = .3890	• VIS = •00158	
2915	101	4.291	.0945	- 0	0	.829	.802 1.187	
2919	101	5.851	.9476	0	0	1.031	.632 1.223	· ·
2916	101	4.445	.1233	0	. 0	.257	.475 1.580	
2918	8101	5.278	.5140	n	0	-522	.295 1.603	
2917	7101	4.613	.2386	0	0	.812	•234 I•357	
		RUN 292 ##	■ . D1S7 ·	: 19 . HB :	= .391 .	EPS = .3890	• VIS = →00158	
2929	101	4.370	.1641	Û	0	1.082	.467 1.309	
2926	6101	4.105	.01.33	0	0	1.746	.825 .867	
2927	1101	4.241	.D458	0	0	1.230	.850 1.021	

EXPERIMENTAL RESULTS FOR ## PL9/ETOH ## SYSTEM

N0. I

TOTAL	LIQUID	GAS	PRESSURE	RELATI	VE LIQUID	FLUX
DENSITY SURFACE	TENSION =	307.(KG/M3) .0240 (N/M)	• NOMINAL • CONTACT	VISCOSITY = ANGLE =	-0016 (NS 0 (DE	7M2) G.1
PACKING : P AVERAGE	PLASTIC SPHER	RES 9.0 (MM) .	APPARENT	DENSITY =	921. (KG	/M3)

RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER	MIDOLE	OUTER
	(PCT.)	(HM/5)	(H/S)	(N/M3)	(-1	£ -)	1 (= 1
	RUN 281 ===	. DIST	= 19 . HB	= .414 .	EPS = .3951	. VIS =	.00161
2819101	3.388	.0909	0	0	.974	.744	1-174
2816101	3.063	-0049	0	0	1.169	.860	1.057
2818101	3.295	0422	0	0	1.689	-531	1.064
2817101	3.190	.0170	0	0	1.242	.849	1-023
	RUN 282 ###	. 0151	= 19 . HB	= .414 .	EPS = .3951	. vis =	.10161
2829101	5-146	.9945	0	0	· <i>6</i> 89	.349	1.410
2825101	3.506	.044]	0	0	.970	-84C	1.239
2828101	4.571	.5371	0	0	.800	-451	1.413
2827101	4.077	.2473	۵	0	1.022	-508	:.304
2826101	3.806	.1167	0	0	1-105	-906	1.030

EXPERI	MENTAL RESL	LTS FOR .	PL13/GLY	## SYSTE	М		NO. 1	EXPERI	MENTAL RESUL	TS FOR #	# PLI3/GLY	×⊭ SrSTE	M	N0	• 2
PAC	KING : PLAS	STIC SPHERE	s			· · ·			TOTAL	LIQUID	GAS	PRESSURE	RELAT	IVE LIQUID	FLUX
-	AVERAGE SIZ	E = 13	.2 (MM)	. APPARENT	DENSITY =	921	(KG/M3)	RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DRDP	INNER	MIDDLE	DUTER
LIQ	UID : GLYC	EROL - WAT	ER						(PCT.)	(MM/S)	(M/S)	EN/M31	(- J	(-)	i
	DENSITY	= 121	D.(KG/M3)	. NOMINAL	VISCOSITY =	.0640	(NS/M2)	3400004	0	ם	1.082	1174.5	0	0	0
	SURFACE TEN	ASION = .0	652 (N/M)	 CONTACT 	ANGLE :	1.88	(DEG.)	3400005	0	- 0	1.328	1689.1	ວຸ	0	0
								3400006	۵	D	1.569	2293.6	0	0	0
	TOTAL	LIQUID	GAS	PRESSURE	RELAT	IVE LIQU	ID FLUX	34000D7	0	0	1.819	3032.D	D	0	0
RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER	MIDDLE	DUTER		RUN 341 ##0	n 🕻 Dist	= 19 + H8	= ·425 ·	EPS = .4100	3 . VIS =	.06870
	(PCT.)	(MM/S)	(M/S)	(N/M3)	[-]	(-)	(-)	3417101	2.907	.1074	0	0	1.048	1.850	.458
F # #	RUN330 ###	•			· · ·		_	3417102	3.058	.1060	.456	334.5	1.422	1-397	.620
	GAS PRESSU	JRE DROP TH	ROUGH DRY	BED ##	HB = -425	• EPS =	.4106	3417103	3.154	.1028	-625	532.2	2.649	.909	• 472
3300001	U O	0	-453	253.8	U	0	. 0	3417104	4.046	1028	•805	1/30.6	. 784	-909 -909	1 690
3300002	U	U	•646	459.2	Ű	U	U	3417105	4.444	-1-05	.920	2339.0	104 -		1.555
3300003	U	. U	.855	/55.8	U	U	u	3417106	5.387	.1075	1.120	3344.3	.133	1 215	1.176
3300004	U	. U	1.079	1149-1	U	J	U	3417107	8.393	.1070	1 1 7 7	4040.U 5070 E	-097	1.213	1.310
23000005	0	0	1.295	13/0.3	U	· U	. U	3417108	- IU-900	-U945 - DIST	- 10 H9	. 125	- EPS	- 21V -	06280
3300000	U	0	1.000	2025 0	0	0	· U	2427101	2 008	1117	- 13 - 10		1 527	1 526	.442
3300007	0 - RUN 331 ==		- 10 HR	- 125	FPS - ALC	ע ווב עוב	- 06370	3420101	3.014	2076	0	0	1 451	1.709	- 416
3310101	3 011	3813	- 13 - 113		1.765	1.252		3429101	3,153	2405	0 D	ŏ	1.454	1.782	.370
3319102	4 057	1005	378	249 2	1.724	1 251	5034 608	3424101	2 418	0147	0	П	1.536	1.505	.517
3319102	4.254	4119	189	433.8	1 528	1.004	- B27-	3426101	2 775	.0533	0	. U	1.901	1.121	531
3319104	4 556	.4318	.628	761.5	1.230	1.486	.628	3425101	2.574	n272	D D	ň	1.292	1.345	.699
3319105	5,349	.4748	.758	1756.0	.699	.499	1.417	3425102	2.654	.0245	. 451	316.1	2.575	1.322	.279
3319105	7.509	.4924	.840	3073.5	.418	.371	1.591	3425103	2.668	.0239	.677	731.5	1.877	1.438	.439
3319107	12.477	.4601	.855	4524.9	.696	.759	1.258	3425104	2.986	.0177	.920	1677.5	.352	.665	1.433
	RUN 332 **	. OIST	= 19 . H8	= .425 .	EPS = .410	16 . VIS	= .07180	3425105	4,334	.0128	1.199	3212.0	.074	.406	1.691
3328101	3.343	.2233	0	0	1.474	1.142	.759		RUN 343 ***	. DIST	= 19 • HB	= .425 .	EPS = .4108	J. VIS =	.06380
33291D1	3.741	.4020	0	. 0	1 689	.977	.790	3436101	2.898	-0731	G	0	2.14S	1.093	.564
3327101	2.983	.1113	. 0	0	1.598	1.385	.\$68	3435101	2.690	.0352	0	0	2.280	1.187	.460
3324101	2.456	.0104	D	0	1.590	.971	.833	3434101	2.385	.0073	0	· 0	.780	2.488	.158
3325101	2.657	.0234	0	0	1.789	.959	.771	3438101	3.115	.1548	ر '	0	2.225	1.464	.309
3326101	2.860	.0505	0	0	2.043	.725	.827	3439101	3.491	.2802	ŋ	0	1.946	1.648	-289
3327201	3.069	.1088	0 د	0	1.793	.874	-819	3435101	2.547	-0187	0	O,	.990	2.147	•305
3327202	3.137	.1106	.452	316.1	1.634	•915	.849	3435102	2.618	.0185	.459	327.7	1.578	1.677	-3961
3327203	3.222	.1138	.534	632.2	2.260	.945	.617	3435103	2.654	.0178	.577	747.6	2.289	1.114	.506
3327204	3.906	.112B	.805	1479.1	1.391	.251	1.339	3435104	3.003	-0168	-031	1767.5	.467	.620	i.420
3327205	4.806	.116S	-951	2505.9	.238	.235	1.736	3435105	4.850	.0173	1.214	3574.3	0	.295	1.780
3327205	5.241	.1177	1.081	3576.6	.057	.714	1-499	3435106	7.430	-0153	1.484	5327.9	-179	.945	1.323
3327207	8.036	.1135	1.125	4358.0	-941	-898	1.090	3435107	8.272	.0139	1.615	5849.4	2.005	- 907	./35
3327209	10-210	.1154	1.140	4984.9	1.018	• • • • • • • •	1.187		RUN 344 **	• DIST	= 19 · HB	= .425 .	EP3 = 4108	, ViS =	.05/50
***	RUN 333 ##	• • • • • • • •	= 18 • HR	± .425 .	EPS = -410	10 . VIS	05360	3445101	2.500	.0182	0	.0	1-473	1.453	.564
3337101	3.118	-1143	U	U	1.835	.934	./6/	. 3445102	2.551	.0191	.559	662.2	1./15	1.647	• 369
3334101	. 2.528	-0140	U	U	1.6/1	1.001	•/4/	3445103	3.005	-01/1	1251	1533-7	• 358	-293	1.666
3338101	5.395	.2397	U	. U.	2.490	1 021	-623	3445105	5.863	-0195	1.411	4469.5	-554	1.233	1-009
3335101	2.907	,usa/	U	U O	2.110	1.021	-018	3445105	/.50/	-0233	1.525	5477.9	2.114	./52	./03
1016666	3.895	.4395	U	u c	2.00/	1.412	-212	· · · · · · · · · · · · · · · · · · ·							
3333201	2+211	-4.350	U O	. U	1.400	1 1 1 7	•001								
3333101	2 • 728	-U209	U	U	1.104	1 • 1 1 /	+0/1			•					
### 	- RU(¥340 ### - 030 ppsccu	196 none tu	PAUGH PRY	850 * *	HR425	FPS -	4106								
340001	n - chei n	חו זעאט באו ה	.246	227			••100 •								
3400001	n U	0	-655	475.3	õ	· ñ	0								
3400003	n.	n	1856	770.7	ŏ	Ď	n u								
				÷ · ·		_	0								

.

NG. 2

-

PAC	KING - HAYLOO	aten sev	FRES				
T HC	AVERAGE SIZE	= 13	.3 (MM) .	APPARENT	DENSITY =	921.	(KG/M3)
LIQ	UIO : GLYCER	OL - WAT	ER		5510111	32.	
	DENSITY	= 121	D-(KG/M3)	. NDMINAL	VISCOSITY =	.0640	(NS/M2)
	SURFACE TENSI	ON =0	652 (N/M)	. CONTACT	ANGLE =	96.6	(OEG.)
	TOTAL L	10010	GAS	PRESSURE	RELATI	VE LIQU	1D FLUX
RUN ND.	HCLD-UP V	ELOCITY	VELOCITY	OROP	INNER	MIDOLE	OUTER
	(PCT+) (MM/S)	[M/S]	(N/MB)	[-]	()	· [-]
	RUN300 ===						
	GAS PRESSURE		ROUGH ORY I	BED WW	HB = .430.	EPS =	.4180
3000001	U	. 0	-462	225.8	0	· 0	0
3000002	U ·	U	.650	417.4	- U.	U	. 0
3000003	.u	0	.901	/02.4	U C	0	. 0
3000004	0	0	1 207	1117.0	U O	U 0	. 0
30000006	U n	0	1 6 2 1	2225 0	0	0	
30000007	0 ·	0	1 930	2784 6	0	0	. U
	RUN 301 MMM	. 0151	- 71 . 88	430 .	FPS4180	. vts	05430
3018101	2.794	1794		n	2.297	1.283	.396
3019101	3.345	.3768	õ	õ	1.919	1.372	468
3017101	2.496	•0833	0	. 0	2.170	1.752	.149
3016101	2.374	-0334	0	0	.697	1.979	504
3017201	2.482	-0721	0	0	1.419	1.689	.438
3017202	2.528	.0721	.457	305.6	1.228	1.443	.657
3017203	2.539	.0729	.624	561.0	.392	2.099	-529
3017204	2.686	·0699	-865	1154.0	.112	.773	1.444
3017205	4.169	.0670	1.117	2700.3	.0S1	-055	1.913
3017206	4.905	.0656	1.238	3425.5	-011	•018	1.945
3017207	6.028	.0514	1.366	4285.3	.492	.505	1-483
301/208 .	9.440	•U511	1.410	3350.2	1.025	.//1	1.140
3022101	2 7 E E	10131	= /1 , no :	430 .	2 420	1 027	= +0/200
3026101	2.549	-1074	0	U O	1 570	1.620	130
3025101	2.797	.0383	ñ	0	2.326	1.311	.372
3027101	2.839	.0777	n n	ñ	2.449	1.237	.373
3028201	3,125	.1785	ñ	Ő	1.957	1.655	.280
3029101	3.554	.3726	õ	õ	2.362	1.474	.255
3029102	3.573	.38SZ	.452	314.7	2.549	1.359	.254
3029103	3-657	.3830	.620	595.2	3.302	.890	-303
3029104	4.614	.3863	.821	1594.2	.583	.375	1.532
3029105	5.187	.3753	.920	2159.8	.328	.546	1.512
3029106	9.071	.3567	1.006	3920.4	.504	-583	1.431
	RUN 303 ###	. DIST	= 71 • HB :	= .430 ·	EPS = -4180	. VIS	06290
3039101	2,997	.1441	0	Q	4.190	.670	• <u>I</u> 42
3035101	2.490	.0105	0	· 0	3.378	764	- 362
3038101	2.757	.0834	0	0	3.104	1.373	.070
3037101	2.634	.0442	U	. 0	3./63	.890	+149
3035101	2.553	.0215		0 106	2.307	1.3/3	118
3035102	2-391	+UZZU	• 400	501.0 Egg e	2.000	1 260	- 313 192
2020103	2.04/	-0231	100	0000.00	2.233	1-320	1 360
2036106	2.640 2.6/6	0212	-007	1133+3	1001	.100	1.879
2030105	3+049 - 8 891	0258	1.336	3763.0	.177	.132	1.833
2020100			4 + 3 2 3	0.00-0	- • · ·		

EXPERIMENTAL RESULTS FOR ## WI3/GLY ## SYSTEM

EXPERI	MENTAL RESULTS	S'FOR ≭≭ W13/GL	Y NE SYSTEM		NO. 2
RUN NÖ.	TOTAL LI Hold-up Ve	IQUIO GAS Elocity veloci	PRESSURE TY DROP	RELATIV Inner M	VE LIQUID FLUX 11DOLE DUTER
	(PCT.) ()	1M/S) (M/S)	(N/M3)	(-)	[-] [-] con : 017
3035107	5.859	-0235 1-42	4 4547.5 5 5414.5	1+002	•007 •972 500 1.134
3036100	0.220 RUN 304 www	•0105 1•51	5 5414-2 HR430 . F	PS4180	. VIS = .06570
3047101	3.149	.0635		1.007	1.483 .707
3045101	2.764	.0149	0 0	.982	1.338 .804
3048101	3.383	1322	0 0	1.293	1.303 .721
3046101	2.932	.0349	0 0	1.023	1.421 .738
3049101	3.746	.2538	0 0	.319	1.513 .917
3046201	3.136	•0709	0 0	. / /5	1.411 .826
3044101	2.707	-0085	0. 0	,000	1 /10 565
3049201	3.117	1439	0 0 0 0	1.340	1.318 .696
101010401	8UN 305 ###	. DIST = 13 .	HR = .430 . E	PS = 4180	. VIS = .06570
3057101	2,965	.0640	0 0	.905	1.734 .585
3059101	3.364	.2278	o o'	1.545	1.792 .333
3058101	3.133	.1388	ο ο	-414	2.041 .558
3055101	2.669	.0166	0 0	2.001	1.363 .453
3056101	2.775	.0297	0 0	2.291	1.354 .359
3059101	7 0/11	• UIOL = /I •		2 061	1.054 .317
3067101	2.781	.0514	0 0 0 0	3.149	1.262 .123
3066101	3.106	.1662	õ õ	3.161	1.359 .059
3069101	2,661	.0188	0 0	2,869	.983 .392
	RUN320 ###				
*** ***	RUN320 ### GAS PRESSURE	DROP THROUGH 0	∼ . RY BEO ## H	:B = .425 .	EPS = .4106
### ### 3200001	RUN320 ### GAS PRESSURE 0	DROP THROUGH 0	RY BEO ## H 9 246-9	+8 = •425 • 0	EPS = .4106
3200001 3200002 3200002	RUN320 FFF GAS PRESSURE 0 0	DROP THROUGH 0 0 46 0 62 0 82	RY BED ## H 9 246-9 4 417-7 6 687.6	48 = .425 . 0 0	EPS = .4106 0 0 0 0
3200001 3200002 3200003 3200004	RUN320 PEF GAS PRESSURE 0 0 0	DROP THROUGH 0 0 46 0 62 0 82 0 1.05	RY BEO ## H 9 246-9 4 417-7 6 687-6 3 1068-4	48 = .425 . 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0
3200001 3200002 3200003 3200004 3200005	RUN320 ### GAS PRESSURE 0 0 0 0 0	DROP THROUGH 0 0 -46 0 -62 0 -82 0 I 05 0 I -30	RY BEO ## F 9 246-9 4 417.7 6 687.6 3 1068.4 6 1578.3	48 = .425 . 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200002 3200003 3200004 3200005 3200005	RUN320 AFF GAS PRESSURE 0 0 0 0 0 0 0 0 0	DROP THROUGH 0 0 46 0 62 0 82 0 1.05 0 1.30 0 1.30 0 1.52	RY 8E0 ## P 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5	48 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200003 3200004 3200005 3200006 3200007	RUN320 FFF GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0	DROP THROUGH 0 0 - 46 0 - 62 0 - 82 0 I - 05 0 I - 30 0 I - 52 0 I - 91 0 I - 52	RY 8E0 ## P 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2886.6	48 = .425 . 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200002 3200003 3200004 3200005 3200006 3200007	RUN320 *** GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DROP THROUGH 0 0 .46 0 .62 0 .82 0 I.05 0 I.30 0 I.52 0 I.51 0 I.51 .DIST = 19 .	RY 8E0 ## P 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2086.6 M8 = .425 E	48 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200002 3200003 3200004 3200005 3200005 3200005 3200007	RUN320 *** GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DROP THROUGH 0 0 -46 0 -62 0 -82 0 I.05 0 I.30 0 I.30 0 I.52 0 I.61 . DIST = 19 . .IS71	RY 8E0 ## P 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2086.6 M8 = -425 E 0 0	40 = .425 . 0 0 0 0 0 0 0 0 0 0 0 1.146 1.146	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200002 3200003 3200004 3200005 3200005 3200006 3200007 3218101 3217101 3217101	RUN320 *** GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DROP THROUGH 0 0 -46 0 -62 0 -82 0 1.05 0 1.30 0 1.52 0 1.61 . DIST = 19 . .1571 .0612 0 539 45	RY 8E0 ★★ F 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2886.6 H8 = .425 E 0 0 0 0	48 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200002 3200003 3200004 3200005 3200006 3200007 3218101 3217101 3217101 3217102	RUN320 *** GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DROP THROUGH 0 0 -46 0 -62 0 -82 0 1.05 0 1.30 0 1.52 0 1.61 .015T = 19 . .1571 .0612 .0639 .45 0607 .63	RY 8E0 ** F 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2886.6 H8 = .425 E 0 0 0 0 3 346.1 5 692.2	48 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200003 3200003 3200004 3200005 3200006 3200006 3200007 *** 3218101 3217101 3217102 3217103 3217104	RUN320 ### GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DROP THROUGH 0 0 46 0 62 0 82 0 1.05 0 1.30 0 1.52 0 1.81 .DIST = 19 . .IS71 .0612 .0639 .45 .0607 .63 .0618 .80	RY BEO ## P 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2886.6 HB = .425 E 0 0 0 0 3 346.1 5 692.2 6 1227.6	48 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200003 3200003 3200005 3200006 3200006 3200007 *** 3218101 3217101 3217102 3217103 3217104 3217105	RUN320 ### GAS PRESSURE 0 0 0 0 0 RUN 321 ### 3.165 2.819 2.920 3.063 3.354 4.669	DROP THROUGH 0 0 .46 0 .62 0 .82 0 1.05 0 1.50 0 1.52 0 1.51 .015T = 19 . .1571 .0612 .0639 .45 .0607 .63 .0618 .80 .0591 .99	RY BEO ≠ F 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2835.6 H8 = .425 E 0 0 0 3 346.1 5 692.2 6 1227.6 9 2515.1	48 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200004 3200003 3200004 3200005 3200006 3200006 3200007 *** 3218101 3217101 3217102 3217103 3217105 3217105	RUN320 ### GAS PRESSURE 0 0 0 0 0 RUN 321 ### 3.165 2.819 2.920 3.063 3.354 4.669 5.972	DROP THROUGH 0 0 .46 0 .62 0 .82 0 I.05 0 I.30 0 I.52 0 I.57 1.51 .0612 .0639 .45 .0607 .63 .0618 .80 .0591 .99 .0594 I.18	RY 8E0 ≠ P 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2836.6 H8 = .425 E 0 0 0 3 346.1 5 692.2 6 1227.6 9 2515.1 6 3655.0	40 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200004 3200002 3200004 3200005 3200006 3200007 *** 3218101 3217101 3217102 3217103 3217104 3217105 3217106 3217106	RUN320 *** GAS PRESSURE 0 0 0 0 0 RUN 321 *** 3.165 2.819 2.920 3.063 3.354 4.669 5.972 8.201	DROP THROUGH 0 0 .46 0 .62 0 .82 0 1.05 0 1.30 0 1.52 0 1.91 .0571 = 19 . .1571 .0612 .0639 .45 .0607 .63 .0610 .99 .0591 .99 .0594 1.10 .0505 1.29	RY 8E0 ## P 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2836.6 M8 = .425 E 0 0 0 0 3 346.1 5 692.2 6 1227.6 9 2515.1 6 3655.0 6 4790.3	40 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22000031 3200004 3200005 3200004 3200005 3200006 3200007 2218101 3217101 3217102 3217102 3217104 3217106 3217108 3217108 3217108	RUN320 *** GAS PRESSURE 0 0 0 0 0 RUN 321 *** 3.165 2.819 2.920 3.063 3.354 4.669 5.972 8.201 11.412	DROP THROUGH 0 0 .46 0 .62 0 .82 0 1.05 0 1.30 0 1.52 0 1.81 .DIST = 19 . .IS71 .0612 .0639 .45 .0607 .63 .0618 .80 .0591 .99 .0595 1.29 .0479 1.32	RY 8E0 ** P 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2886.6 H8 = .425 E 0 0 0 0 3 346.1 5 692.2 6 1227.6 9 2515.1 6 3655.0 6 4790.3 2 5997.1	48 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22000031 3200004 3200005 3200004 3200005 3200006 3200007 3218101 3217101 3217102 3217103 3217104 3217105 3217106 3217108 3217109	RUN320 ### GAS PRESSURE 0 0 0 0 0 RUN 321 ### 3.165 2.819 2.920 3.063 3.354 4.669 5.972 8.201 11.412 RUN 322 ###	DROP THROUGH 0 0 .46 0 .62 0 .82 0 I.05 0 I.30 0 I.52 0 I.61 .DIST = 19 . .0639 .45 .0607 .63 .0618 .80 .0591 .99 .0595 I.29 .0479 I.32 .015T = 19 .	RY 8E0 ** P 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2086.6 M8 = .425 E 0 0 0 0 3 346.1 5 692.2 6 1227.6 9 2515.1 6 3655.0 6 4790.3 2 5997.1 H9 = .425 E	HB = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200003 3200003 3200005 3200006 3200005 3200006 3200007 3217101 3217101 3217102 3217102 3217104 3217104 3217105 3217108 3217108 3217108 3217109	RUN320 ### GAS PRESSURE 0 0 0 0 0 0 0 RUN 321 ### 3.165 2.819 2.920 3.063 3.354 4.669 5.972 0.201 11.412 RUN 322 ### 4.144 4.144	DROP THROUGH 0 0 .46 0 .62 0 .82 0 1.05 0 1.30 0 1.52 0 1.81 .DIST = 19 . .IS71 .0612 .0639 .45 .0607 .63 .0610 .00 .0591 .99 .0594 I.10 .0505 I.29 .0479 I.32 .01ST = 19 . .3804 .3904	RY BEO ## P 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2886.6 H8 = .425 E 0 0 0 3 346.1 5 692.2 6 1227.6 9 2515.1 6 3655.0 6 4790.3 2 5997.1 H9 = .425 E 0 0 263	48 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200003 3200003 3200005 3200006 3200007 200007 217101 3217101 3217102 3217103 3217104 3217106 3217108 3217108 3217109 2229101 3229101	RUN320 *** GAS PRESSURE 0 0 0 0 0 0 RUN 321 *** 3.165 2.819 2.920 3.063 3.354 4.669 5.972 8.201 11.412 RUN 322 *** 4.144 4.229 4.334	DROP THROUGH 0 0 .46 0 .62 0 .82 0 1.05 0 1.50 0 1.52 0 1.51 .015T = 19 . .1571 .0612 .0639 .45 .0607 .63 .0618 .60 .0591 .99 .0594 1.18 .0505 1.29 .0479 1.32 .015T = 19 . .3804 .3967 .38 .4182 .45	RY BEO ★★ P 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2886.6 H8 = .425 E 0 0 3 346.1 5 692.2 6 1227.6 9 2515.1 6 3655.0 6 4790.3 2 5997.1 H9 = .425 E 0 0 0 263.1 4 394.6 1	48 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200002 3200003 3200005 3200006 3200007 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	RUN320 ### GAS PRESSURE 0 0 0 0 0 RUN 321 ### 3.165 2.819 2.920 3.063 3.354 4.669 5.972 8.201 11.412 RUN 322 ### 4.144 4.229 4.334 4.573	DROP THROUGH 0 0 -46 0 -62 0 -82 0 1.05 0 1.55 0 1.30 0 1.52 0 1.51 .0512 -19 .0512 -0639 -45 .0607 -63 .0618 -80 .0591 -99 .0594 1.18 .0505 1.29 .0479 1.32 .0479 1.3479 1.347 .0479 1.3479 1.3479 1.3479 1.3479 1.3479 1.3479 1.34	RY 8E0 F P 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2835.6 H8 = .425 E 0 0 3 346.1 5 692.2 6 1227.6 6 3655.0 6 4790.3 2 5997.1 6 3655.1 6 3655.2 6 4790.3 2 5997.1 6 3655.5 6 4790.3 2 597.5 6 3655.5 6 4790.3 2 597.5 6 4790.3 2 597.5 6 4790.3 2 597.5 6 597.5 6 4790.3 2 597.5 6 597.5 6 673.8	40 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200004 3200005 3200005 3200005 3200006 3200007 3218101 3217102 3217102 3217103 3217105 3217106 3217108 3217108 3217108 3217109 3217109 3217109 3217109 3217109 3217109 3217109 3217109 3217109 3217109 3217109 3217109 3217109	RUN320 *** GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	DROP THROUGH 0 0 .46 0 .62 0 .82 0 I.05 0 I.30 0 I.52 0 I.57 .0512 .0612 .0639 .45 .0607 .63 .0618 .80 .0591 .99 .0594 I.18 .0505 I.29 .0479 I.32 .015T = 19 . .3804 .3967 .38 .4182 .46 .4175 .67	RY $BE0$ ## P 9 246.9 4 4 17.7 6 687.6 3 1068.4 6 1578.3 6 1578.3 2097.5 4 2097.5 2086.6 M8 = .425 E 0 0 0 3 346.1 5 692.2 6 1227.6 6 1227.6 9 2515.1 6 3655.0 6 4790.3 2 5997.1 H9 = .425 E 0 0 0 263.1 4 394.6 6 6 673.8 6 673.8 6 955.3 3	40 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2200003 3200004 3200004 3200005 3200006 3200007 2217101 3217101 3217102 3217103 3217105 3217106 3217108 3217108 3217108 3217108 3217109 3229101 3229105 3229105	RUN320 *** GAS PRESSURE 0 0 0 0 0 0 0 RUN 321 *** 3.165 2.819 2.920 3.063 3.354 4.669 5.972 8.201 I1.412 RUN 322 *** 4.144 4.229 4.334 4.573 4.825 5.703	DROP THROUGH 0 0 .46 0 .62 0 .82 0 1.05 0 1.30 0 1.52 0 1.91 .0571 = 19 . .1571 .0612 .0607 .63 .0618 .80 .0594 1.16 .0505 1.29 .0479 1.32 .015T = 19 . .3804 .3967 .38 .4182 .46 .4196 .58 .4196 .57	RY ΘEO = = + 9 246.9 4 417.7 6 687.6 3 1068.4 6 1578.3 6 2097.5 4 2086.6 H8 = -425 E 0 0 0 3 346.1 5 692.2 6 1227.6 9 2515.1 6 3655.0 6 4790.3 2 5997.1 H9 = -425 E 0 0 0 263.1 4 394.6 6 673.8 9 955.3 6 1746.7	48 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0
2200003 3200004 3200005 3200005 3200006 3200007 2217101 3217101 3217102 3217104 3217105 3217106 3217108 3217108 3217108 3217108 3217109 3229104 3229104 3229105 3229105	RUN320 *** GAS PRESSURE 0 0 0 0 0 0 0 RUN 321 *** 3.165 2.819 2.920 3.063 3.354 4.669 5.972 8.201 I1.412 RUN 322 *** 4.144 4.229 4.334 4.573 4.825 5.703 6.818	DROP THROUGH 0 0 .46 0 .62 0 .82 0 .82 0 1.05 0 1.30 0 1.52 0 1.31 .DIST = 19 . .IS71 .0612 .0639 .45 .0607 .63 .0618 .80 .0591 .99 .0594 .118 .0505 I.29 .0479 1.32 .0IST = 19 . .3804 .3967 .38 .4182 .46 .4196 .58 .4175 .67 .4214 .86	RY $BE0$ ## P 9 246.9 417.7 6 $B7.6$ 31068.4 6 1578.3 62097.5 4 2097.5 42097.5 4 2097.5 42086.6 M8 = 425 E 0 0 0 3 346.1 5692.2 6 1227.6 9 9 2515.1 6 15 692.2 6 9 2515.1 6 9 2515.1 6 16 4790.3 2 2 5997.1 H $H3$ -425 E 0 0 0 0 263.1 4 4 394.6 6 6 673.8 6 6 7746.7 32679.0	HB = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 1.223 .718 1.926 1.936 0.351 1.745 1.745 .342 1.850 .349 0.187 .901 1.134 .959 1.025 .953 .982 1.205 .551 1.244 .346 1.686 .407 .1553

NO. 1

EXPER1	MENTAL RESULT	S FOR HR	WI3/GLY	SYSTE	М.,.	N0. 3'	
	TOTAL L	10010	GAS	PRESSURE	RELATIV		
RUN NO.	HOLD-UP V	ELOCITY	VELOCITY	DROP	INNER N	1IDOLE OUTER	
	IPCT.) (MM/S1	(M/S)	(N/M3)	(-)	(-) (-)	
3229109	13.339	.3743	.937	5254.1	-508	1.243 1.021	
3225102	4 - 158	0218	.940	1968.3	0	.523 1.642	
1225103	5.658	-0244	1.339	4111.9	-906	I.395 .790	
5225104	2+545 2+545		1-4/5	5826.3	2.502	.758 .629	
2237121	3 198	- LISI -	/1 . /15	z .425 .	2 067	· V15 = ·U582U	
3237102	.3.241	.1025	-458	327.7	2.937	1.200 .103	
3237103	3.357	.0950	,525	623.0	1.759	1.715 .313	
3237104	3.884	.0892	.852	1416.8	.738	1.042 1.069	
- 3237105	5.325	.0901	1.071	2773.6	.079	.763 1.462	
3237106	6.411	.097!	1.158	3578.9	.680	1.293 .932	
3237107	7.858	.0880	I.192	4259.6	1.574	1.364 .590	
3237108	12.041	.0773	1.259	5957.9	1.509	1.317 .640	
	RUN 324 ###	. 0IST =	71 . HB	= .425 .	EPS = .4105	•.VIS = •07730	
3247101	3.214	.0734	0	0	2.500	1.193 .383	
3249131	3.815	-2597	U	0	2.050	1.307 .465	
2245101	3-010	-1535	U Q	U	2.238	1.201 .467	
3246101	2 997	0194	U	0	2.211	1.035 .580	
	RUM 325	0151 -	10 18	- 425	EPS - 4106	.040 .403 VIS - 06790	
3759101	4.159	.3596	13 1 13	- ·	1.425		
3258101	3.744	.2242	ñ	n	605	1 /01 835	
3257101	3.453	.1103	ő	ů Ú	.718	1.551 .753	
3255101	3.211	.0532	· õ	. 0	1.625	1,297 .613	
3255101	3.011	.0252	0	0	1.980	1.132 .594	
	RUN360 ===						
	GAS PRESSURE	OROP THR	CUCH DRY	8ED **	HB = .430 .	EP5 = .4180	
3800001	0	0	.456	225.8	. 0	0 0	
3500002		U	· 6 / 9	465.2	U	0 0	
33200003	0	0	1 2 4 3	1208 0	. u	U .U	
3300004		0	1.243	1070 6	0	0 0	
- 49000000	0	0	1.798	2764.1	0 0		
	RUN 381	. aist =	19 . 48	= .430	EPS = .4180	. VI5 = .07330	
4815101	2,250	.0142	0		,537	1,513 .848	
3915102	2,337	.0153	.453	291.9	.598	1.489 .844	
3815133	2 417	-0164	.682	661.4	1.086	1.202 .856	
5815104	2.606	0164	.515	1353.8	-850	.728 1.229	
3910145	4.375	.0194	1.197	2987.6	.028	.494 1.645	
3815105	5.976	.0182	1.347	4036.7	-877	.629 1.276	
3515107	7 17	10198	1.421	4647.9	.750	.784 1.222	
-715105	7.538	•0202	1-463	4793.9	595	873 1-220	
5511-1-195-1	8.295	-0176	1.527	52/7.4	.829	1+218 -927	
484 1510-00	·영문 (영문 비분류) 	+ 0121 =	Та • ня	= .430 .	LL22	· VIS = -05460	
-5527101 1995351	と・521 つ とつい	•0333	U C	U	1.127	1.215 -018	
2527251	2.47.70	•0300 • 2000	u n	U 0	1.023	1 422	
						1 4 4 4 4 4 1 2 3	
		0.31	0	ň	736	1.408 830	
4 - 7 - 3	2 - 20 2 - 100 2 - 144	-0131	0	0	.736	1-408 -540	
a=1610)] 4-1610)]	2 • 723 7 • 199 - 199 - 199	.0131 .0509 .2252	0 0	0 0	.736 .953 1.190	1.408 .840 1.423 .762 1.079 .894	

	TOTAL	LIGUIO	GAS	PRESSURE	RELAT	TIVE LIQUID	FLUX
RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER	MIDOLE	OUTER
	(PCT.)	[MM/5]	(M/S)	(N/M3)	(-)	{ - }	[-]
3829102	3.933	.5009	.367	228.1	.909	1.618	.654
3829103	3.988	-5002	-513	456.1	1.454	1.132	.772
3829104	4.490	. 4874	.675	1040.0	.777	.775	1.220
3829105	4.552	-4828	.763	1434.S	-420	.619	1.437
3829106	5.347	.4632	-886	2253.3	.197	-868	1.357
3829107	7.631	.4738	.965	3329.7	.376	1.169	1.111
3829108	12.826	-4843	-987	5277.4	.377	.974	1.231
***	RUN 383 ¥	∎≢ . DIST	= 19 • HB	430 .	EPS:= .418	30 . V1S ≍	-06870
3838101	3.025.	.1345	. 0	0	1-229	1.289	.750
3838102	3.171	.1380	.448	314.7	-929	1.282	.855
3838103	3.244	.1423	-671	736.6	- 908	.965	1.003
3838104	3.866	.1472	.924	1799.4	.195	.269	1.729
3838105	6.578	-1532	1.127	3587-4	.378	- 691	1.407
3838106	8.797	-1504	1.256	4734.6	.668	-492	1.432
3838107	10-517	-1428	1.333	5252.3	-340	.442	1.573
3835102	7.734	.0171	1.533	5129+1	.477	1.553	.938
3835103	9.568	.0220	1.695	\$993.5	1.157	1.272	.752
3835104	8.537	•0176	1.632	5758.6	I.073	1.552	+653
3835105	6.066	.0166	1.305	3975.1	-836	.778	1.208

EXPERIMENTAL RESULTS FOR ## WI3/GLY ## SYSTEM

EXPERIMENTAL RESULTS FOR ## AL13/GLY ## SYSTEM NO

NO. 2

AVERAGE SIZE	= 13.1 (MM) .	APPARENT DENS	51TY = 3465.	(KG/M3)
LIQUID : GLYCEROL	- WATER			
DENSITY	= 1210.(KG/M3)	. NOMINAL VISU	COSITY = .0640	[NS/M2]
SURFACE TENSION	= .0652 (N/M)	. CONTACT ANG	.E = 0	(DEG.)

TOTAL LIQUID GAS PRESSURE RELATIVE LIQUID FLUX RUN NO. HOLD-UP VELOCITY VELOCITY DROP INNER MIDDLE OUTER (PCT.) (MM/S) . (M/S) [N/M3] [-] [-] [-] HEE RUN310 HEE *** GAS PRESSURE DROP THROUGH DRY BED ** HB = .425 , EPS = .4047 0 .463 263.1 0 D n 3100001 D .628 0 п Π 3100002 0 0 452.3 0 .837 763.8 0 П 0 3100003 0 0 1.058 1186.D 0 0 0 3100004 п D ٥ п Ω. 1.327 1806.7 0 3100005 0 0 0 Ω 1.587 2487.4 3100005 а Ð 3172.8 0 0 3100007 0 1.803 п ### RUN 311 ### . DIST = 19 . HB = .425 . EPS = .4047 . VIS = .06240 +598 3118101 4.935 .1385 0 D 1.266 1.516 3.549 .0169 0 D 3.285 .721 .419 3115101 1.528 .638 3119101 5.610 ·2805· 0 D 1.123 0 1.180 1.508 .633 3117:01 4.260 +0769 D 1.395 .746 .0379 ٠Ĵ 1.052 3116101 3.870 n -820 3.450 .0070 0 1.978 . 786 3114101 D .425 . EPS = .4047 . VIS = ### RUN 312 ### .06220 . DIST = 13 . HB -.399 312810I 4.754 .1301 0 0 1.288 1.826 0 1.344 .424 3127101 4.254 .0637 n 2.099 .527 3129101 5.399 .2291 n 0 1.673 1.410 3.793 .0405 0 0 1.589 .911 .865 3126101 3125101 3.568 .0155 D 0 2.471 .802 .644 ### RUN 313 ### . DIST 71. НВ = .425 . EPS = .4047 . VIS = .05920 3138101 4.339 .0999 0 0 1.695 1.420 .514 3139101 4.674 .1711 п D 1.601 1.293 .623 0 1.059 1.268 .823 3137101 3.941 .0488 0 D 1.203 1.353 .724 3136101 3.581 .0222 0 С 1.303 1.854 .376 .0926 Ð 3138201 4.358 .473 .0212 0 0 1.831 1.413 3136201 3.653 369.2 1.121 1.092 .910 .0211 .459 3135202 3.815 1.091 .929 .0204 +653 745.3 1.066 3135203 3.848 .365 1289.9 .752 .724 1.265 3136204 3.892 .0204 1.051 2858.9 2.213 .298 1.030 .0201 3136205 4.564 1.157 4135.0 1.725 • 383 1.151 .019D 3136206 5.613 1.270 8.297 .0197 1+184 5574.8 .242 1.389 3136207 = 7! . HB .425 . EPS = .4047 . VIS = .06890 ... RUN 314 ## . DIST -5.198 .1793 0 С 2,057 1,036 .630 3148101 .3813 0 0 2,302 .982 +581 3149101 6.296 п 0 1.078 1,600 .510 3147101 4.552 -1002 Ω .904 .834 1.140 3.572 .0254 0 3145101 0 •382 1.168 1.109 .0495 0 3146101 3.906 .0397 n 0 1.625 1.328 :593 4.492 3147201 422.3 1.025 1-791 .509 .0975 .458 3147202 4.566 .645 +1023 844.5 1.267 1.619 .534 4.685 3147203 .847 2385.9 .797 .715 1.250 .1026 3:47204 5.550

		TOTAL	LIQUID	CAS	PRESSURE	RELA	TIVE LIQUID	FLUX
	RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DRCP	INNER	MICOLE	OUTER
		(PCT.)	(MM/S)	(M/S)	[N/M3]	(-)	1 - 1	1 - 1
	3147205	7.183	.1000	.929	3721.9	1.207	.703	1.121
	3147206	10.070	.1024	.942	4977.2	1.481	1.101	.783
	***	RUN 315 ##	* . DIST	= 71 , HB	= .425 ·	EPS = .40	47 . 118 =	.06560
	3157101	4.433	.0988	0	0	1.117	1-343	.755
	3156101	4.015	•0490	0	0	.716	1.942	-519
	3155101	3.656	.0236	0	0	.524	1.124	1.033
	3158101	5.116	.2048	D	0 ·	.735	1.434	.775
	3159101	6.307	.4178	0	С	1.630	1.:08	+691
	3159102	6.713	.4237	.462	623.0	1.651	.822	.338
•	3159103	8.034	.4375	-539	1357.5	1.227	.870	1.011
	3159104	7.611	.4249	.490	1423.7	.677	1.216	.981
	3159105	8.593	.4287	.565	2270.5	1.141	.620	1.070
	3159106	9.225	.4415	.593	2692-8	.75I	.843	1.187
	3159107	12.082	.4448	.622	4024.2	1.205	.615	1.175
	***	RUN 316 **	■ . DIST	= 19 . HB	= .425 .	EP5 = .40	47 . VI5 =	.06290
	3168101	4.905	.1554	. 0	σ	•617	1.492	.829
	3167101	4.326	.0762	· 0	0	1.058	1.817	.787
	3165101	3.672	.0203	0	0	1.889	1.409	. 4 4 4
	3166101	3.859	. 0393	0	0	.593	-639	1.244
	3169101	5.745	.2738	. 0	0	2.105	.927	.58!
	3164101	4.603	.0915	0	0	1.427	1.398	-618
	3164102	4.715	.1005	.456	422.3	1.055	1.243	.838
	3164103	4.776	-1029	.657	934-5	799	1.314 -	.880
	3164104	5.594	.1016	.814	2238.2	1.290	.502	1.218
	3164105	6.642	.0983	.878	3239 .7	.928	548	:.309
	3164106	8.535	-0954	.917	4340.3	1.115	.570	:.:73
	3164107	10.01D	.0990	.933	4935.7	.881	.7,69	1.150
			-					

EXPERIMENTAL RESULTS FOR ## ALI3/GLY ## SYSTEM

EXPERI	MENTAL RESU	LTS FOR #	∎ PL9/GLY	SYSTE	M		NO. 1		EXPERI	IMENTAL RE	SULTS FOR	## PL97ZNCL	## SYSTE	ÉM		NO- 1
PAC	KING : PLAS	TIC SPHERE	S						Par		OSTIC SPH	RES				
	AVERAGE SIZ	E = 9	9.0 (MM)	APPARENT	DENSITY :	= 921.	(KG/M3)			AVERAGE 5	17F =	9.0 (MM)	. APPARENI	T DENSITY :	921.	(KG/M3)
. L10	UIO : GLYC:	EROL - WAT	TER		· ·				LIC	UID : ZN		R				
	DENSITY	= 121	l0.(KG/H3)	 NOMINAL 	VISCOSITY :	0640	[NS/M2]			DENSITY	=	920.(KG/M3)	. NOMINAL	VISCOSITY :	.0340	(NS/M2)
	SURFACE TEN	SION = .(0652 (N/M)	. CONTACT	ANGLE :	= 88.1	(OEG.)			SURFACE T	ENSION =	-0809 (N/M)	. CONTACT	T ANGLE :	84.5	(DEG.)
	1010		000													
PUN NO			GHS	PRESSURE	RELA	TIVE LIQU	ID FLUX			TOTAL	LIQUID	GAS	PRESSURE	E RELAT	IVE FION	JID FLUX
NON NO.	(PCT)	VELUCIII (MM/C)	VELUCIII	URUP	INNER	MIODLE	OUTER		RUN NO.	HOLD-UP	VELOCI.	Y VELOCITY	DROP	INNER	MIODLE	OUTER
	RUNSED FFF	(10/3)	10/51	11/131	(-) _.	(-)	[-]			(PCT.)	(MM/S)	(M/S)	(N/M3)	((-)	(-)
	GAS PRESSU			860	HO 400	500	2020		***	# RUN430 #1						
. 3600001	0110 1 AC000.		363	313 8	HB = +400	• EPS =	-38/0			GHS PRES	SURE DROP	THROUGH DRY	BED ==	HB = 411	. EPS =	.4060
3600002	ñ	0	.461	175 6	0	0	U Q		4300001	0	(-359	272.0	. 0	0	C
3600003	ñ	ő	627	976 2		0	U		4 300002	U	l	1575	613.2	U		. 0
3600004	ň	0	797	1265 1	U D	U O			4300003	. U		-757	1018-8	· 0	U	0
3600005	n	ñ	1.003	1920 5		0	U O		4300004	U U	l	-990	1622.5	U	U	U
3600006	õ	ñ.	1.207	2696.8	0		U		4300005	U	l	1.235	2398.0	U	U	U O
3600007	ñ	0	1.382	3429.9	0	· D	U .		4300006	U	l	1 1-453	3194-9	U	u	U
3500008	ŏ	đ	1.577	4344.4	n n	0			4300007	u n	l		4027.7	. J	U	U
3600009	0	Ō	1.703	5018.6	ñ	0	· n.		4200008	(PUN 431 .		1.023 T - 10 HP	4020.0	- EBC	. U	- 03390
	RUN 361 ##	. DIST	= 19 . HB	= 400	EP5 = .383	70 . VIŠ	05270		1010154	5 217	0251	n = 19 + 10 n	= +411 +	· EF3 = .400	1 213	- +05200
3613101	3.543	.0614	0	0	1.44B	1.276			4317101	3 676	- 32.31		0	1.000	1.213	+070
3616102	3.590	.0644	.253	257.4	2.41D	.977	.549		4317102	3,788	2350	1 383	130 0	1.572	1 467	.497
3616103	3.619	.0577	.362	502.6	1.34B	1.373	.660		4317103	3.978	200	.580	1040 8	1.455	1.050	
3616104	3.724	.0701	.525	1045.9	.645	.987	1,132		4317104	4.328	23/0	.783	2236.7	1 190	572	1 211
3616105	4.622	.0715	.681	2385.5	- 403	.529	1.501		4317105	5,069	.2532	7 00	3576 7	- 294	369	1.634
3616106	6.086	.0672	.806	4008-5	.089	.049	1.902		4317106	5.589	.2466	.971	404 7	256	435	1 605
3515107	7.643	.0579	.849	4959.7	1.161	271	1.406		4317107	5.475	.2490	1.072	5604.9		. 159	1 694
3615108	8.171	.0582	-961	5687.9	.103	.179	1.B17		4317108	5.529	.2441	1.174	5977.1	.208	.279	1.718
3616109	8.034	.0661	1.083	5915.9	.305	.174	1.749		4317109	5,432	272	1.255	5938.9	, 273	.282	1.695
	RUN 362 ##	∎ , DIST	= 19 . HB	= .405 .	EPS = .395	0 . VIS	= ·D5430			RUN 432		T = 19 . HB	= .411 .	EPS406	n . VIS	n3000
3626101	3.376	.0584	0	0	1.126	1.232	•821		4327101	3.695	- 2277	0	0	1.528	1.079	.780
3628101	4.709	-2552	0	C	.790	I.690	.649		4324101	2.987	.0236	0	0	1.532	1.611	.114
3627101	3.975	-1312	đ	0	-478	i.562	.834		4325101	3.232	.0557	. 0	0	.934	1.794	-538
3524101	2.745	.0149	σ	Ð	.443	1 - 1 1 1	1.135		4325101	3.423	.1195	0	0	:.095	1.305	.788
3625101	2.987	.0342	0	· 0	·S17	-964	1.190		4328101	4.434	.5053	0	0	1.510	1.005	.932
3629101	5,873	-5316	0	0	1.338	1.212	.761		4329101	5.445	1.0190	0	0	1.18	1.121	
3629102	5 887	.5445	-115	72.6	1.352	1.372	-658		4329102	5.656	1.0403	. 353	419.9	1.116	.969	.936
3629103	6.025	-5110	.194	186.4	1.289	1.368	.691	1	4329103	5.879	1.0610	.548	1004.5	-992	.772	1.153
3529104	5.118	4601	-310	428.5	1.278	1.371	.683		4329104	5.604	1 0775	-677	2407.5	.236	.469	1.584
3629105	5.296	.4484	-455	978.2	.871	.846	1-144		4329105	7.070	1.0799	.713	3035.1		.277	1.741
3629106	8-548	-4500	.482	2721.7	.166	.252	1.749		4329105	9.342	1.0601	.750	5013.1	-193	.360	1.673
3629107	15-085	-5192	-549	4552.2	.110	-315	1.728		~ ~ ~ ~	RUN 433 🛛		Т = 19 . НВ	= .407 .	EPS = -399	8 . VIS	= .02860
									4335102	3.538	.0567	.752	1698.7	- 391	•952	1.239
				•					4335103	3.780	.0548	-951	2925.1	.399	.247	1.674
									4335104	4.158	.0631	1.121	4141.9	.354	.094	1.784
									4335105	4-180	.0659	1.121	4182.9	- 04	-108	1.859
									4335105	4.545	.0642	1.331	5515-4	.005	.227	1.819
									4335107	4.655	.0660	1.439	5929.0	0	.178	1.851

EXPERI	MENTAL RESULT	S FOR ##	C11/GLY	¥≢ SYSTE	M i i		ND. 1	
PAC	KING : WAX-CO	ATED COK	F					
	AVERAGE SIZE	= 11	- - D (MM.)	APPARENT	DENSITY -	1210.	(KG/M3)	
L10	UIO : GLYCER	OL - WAT	ER		52110111 -	12101	(10/113)	
	DENSITY	= 121	0.(KG/M3)	 NDM1NAL 	VISCOSITY =	.0640	(NS/M2)	
	SURFACE TENSI	ON = .01	652 (N/M)	 CONTACT 	ANGLE =	96.6	(DEG.)	
		10112	0.00					
RUN NO	ער מורח וויי		UHS	PRESSURE	RELATI	VE LIQU	JID FLUX	
NUM NO.		ELULIII MM/SI	VELUCIII	UKUP	INNER	MIDDLE	OUTER	
	RUN350 ###	1117.51	11731	(147/15)	1-1	(-)	1-1	
***	GAS PRESSURF	DROP TH	алисн пру	850	HR410	FPS -	5212	
3500001	. 0	0	.464	299.0		LI J _	•JZ+Z	
3500002	0	0	.671	581.2	0	õ	õ	
3500003	0	. 0	.900	1002.2	0	Ō	Ō	
3500004	0	0	1.156	1595.4	0.	0	0	
3500005	0	D	1.347	2109.6	0	0	0	
3500006	0	0	1.557	2788.9	D	0	0	
3500007	. PUN 251	U 	1.914	3690.7	0	. 0	. 0	
3517101	4.501	1116	= 1a • up	= 410	EPS = .5242	• VI5	= .05550	
3517102	4.728	.1095	.455	485.6	.392	-000	1-409	
3517103	4.871	.1172	.523	911 3	268	+044 636	1.411	
3517104	5.323	-1127	.803	1667.1	.293	.578	1.505	
3517105	6.535	.1022	.979	2851.1	-028	.122	1.875	
3517106	7.642	.1159	1.029	3485.0	349	.227	1.704	
3517107	10.097	.1172	1.060	4508.7	.065	•16B	1.834	
	RUN 352 ###	. DIST :	= 19 • HB	= .410 .	E°S = .5242	. VIS	= .05390	
3525101	3.918	.0307	0	0	.500	.271	1.628	
3525102	4.057	-0311	- 460	461.6	.366	.619	1.455	
3525103	4.145	-0334	.787	1009.4	.346	.177	1.736	
3525104	4.039	-0342	.932	2202.9	. /14	-275	1.554	
3525106	11.261	-0233	1 205	5187 0	145	100	1.908	
	RUN 353 ###	. 0151 :	: 19 . HR	= .410 .	FPS5242	+120 . V15	- 0540	
3539101	5.195	2385	0	0	.545	.386	1.539	
3536101	4.302	.0576	D	D	.477	.601	1,429	
3594101	3.838	.0112	0	· 0	-110	.383	1.685	
3535101	3.997	.0287	Û	0	.252	.548	1.537	
3537101	4.556	.1327	D	0	.698	.600	1.355	
3539101	5.747	.4834	0	0	.879	.514	1.34B	
3539102	5.965	-5032	.353	325.3	.587	•548	1.425	
3539103	5 • 1 1 /	. 4745	.457	569.3	-501	•508	1.478	
3539104	3.202	+4040	1024	1119.4	-312	428	1.591	
3539105	8 222	-4470 	./30	19/0.9	. 090	+542	1.433	
3539102	19.241	. 3981	1001	1502 · 2	-005	109	1.832	
	RUN370 ===		.003	4002.4		+303	1.072	
	GAS PRESSURE	DROP THR	OUGH DRY	8E0 ##	HB = .410 .	EP5 =	.5242	
3700001	0	0	.385	208.1	D	0	0	
3700002	0.	0	.572	413.8	ò	Ď	Ď	
3700003	С	0	.799	767.8	D	0	, D	
3700004	0	0	1.056	1291-6	0	۵	. 0	
3700005	0	D	1.346	2037-9	0	D	.0	
3700006	0	0	1 550	2667 4	0	n	0	

EXPERIMENTAL RESULTS FOR ## C11/GLY ## SYSTEM

ND. 2

RUN NO.	TOTAL HOLD-UP	LIQUID VELOCITY	GAS VELOCITY	PRESSURE	RELATI	VE LIQUID MIDDLE	FLUX
	(PCT.)	(MM/S)	(M/S)	(N/M3)	(-)	[-]	(-)
3700007	0 .	0	1.744	3276.9	0	C	C
	RUN 371 ##	N DIST	= 19 . HB	= .410 .	EPS = .5242	• V15 =	.06090
3717101	4.453	.1000	٥	0	1.093	.248	1.440
3717102	4 637	.1017	.403	361.2	1.001	-234	1.490
3717103	4-B31	.1024	.613	841.9	1.279	.254	1.374
3717104	5.519	1105	.853	1923.1	.064	.112	.1.870
3717105	7.531	.1074	1.036	3360.6	.379	.177	1.724
3717106	10.279	.0981	1.140	4625.9	0	-224	1.821
3717107	15.153	.0642	1.159	5989.3	.346	.185	1.732
3717108	9.007	.0989	1.039	3965.7	.303	298	1 675
	RUN 372 ==:	• • DIST	= 19 , HB	= .410 .	EPS = .5242	• VIS = .	.07460
3727101	4.726	.0764	0	0	.973	.306	1.444
3724101	3.994	.0071	0	a	.652	.005	1.758
3725101	4.086	.0162	0	0	.740	•185	1.608
3726101	4.282	.0324	0	0	.528	-149	1.692
3728101	4-915	-1462	0	0	1.441	.287	1.300
3729101	5.3/4	.2444	. 0	0	1.293	-592	1.160
3727201	4.626	.0660	0	0	.852	.167	1.572
3727202	5.403	.0666	•B34	1889-6	.135	.120	1.842
3727103	/ - 465	-0728	1.035	3477.8	.192	-231	1.752
2705101	KUN 3/3 ##		= 19 • HB	= .410 .	EPS = .5242	• VIS =	-07830
3735101	4.185	·UI45	0	. U	1.085	-423	1.341
3733102	4.350	-0108	-455	480.8	•648	.592	1.372
3735103	4.424	.0075	.6/5	1040.5	.228	-485	1.605
3735104	5.044	.0149	1910	2114.4	.005	-101	1.911
3735103	0.005 7.CAR	-0142	1-134	3422-8	.010	.052	1.931
3735105	7.040	.0121	1.237	4439.3	U	•003	1.9/9
3735108	11 083		1.250	5000.0	0.05	-057	1.925
3133100	RUN 374 ===	- 0110 1 015T	- 10 48	- 410	- UUD - COAD	-007	1.977
3749101	5.600	2254	- 19 • (10	- ++10	1 760	• VID =	.07030
3749102	5 761	2234	275	360 3	1.702	•233	1.200
3749102	5 093	2515	- 575	300.3	.941	.3/3	1.289
3749104	6.140	-2653	-400	004+0 958 7	1+020	420	1+445
3749105	6.521	2818	-363	1325 1	.307	-420	1.370
3749105	7.409	3111	+073 806	1020-1	1 221	• / 0 0	1.400
3749107	R.458	3225	.003	2240.0	1-231	+205	1.944
3749108	11,212	. 3187	.972	2913-3	320	+133	1 563
							1.003

		•					
PAC	(ING : WAX-CO	OATED SPH	ERES				
	AVERAGE SIZE	- 19	.3 (MM) .	APPASENT	DENSITY =	921. (KG/M3	1
r toi	110 • 09012	- WATER			-	521. (110)	•
	TENSITY	- 135	0.1667831	NONTNO	VISCOSITY -	0059 INS/M2	1
	0195000 TENE	101 - 0		CONTACT			•
	SURFALE FENS	1040	200 (3/11)	- CONTACT	HNULE =	114-1 (020-)	
	1010	10410	0.00	DOCCÓUDO	05.011		
	IUTHL		685	PRESSURE	RELHII	VE LIQUIU FLU	*
RON NO.	HOLD-UP	VELOCITY	VELUCITY.	URUP	INNER	MIDDLE 00	IER
	(PCT.)	LMMZSI	(M/S)	[N/M3]	[-].	(-)	(-)
***	RUN390 ###					1. A.	
***	GAS PRESSUR	E DROP TH	ROUGH ORY I	8EO ##	MB = -430.	EPS = -41BC	l .
3900001	0	D	.466	225.8	0	0 .	0
3900002	0	0	.675	440.2	. 0	0	Đ :
3,900003	0	0 -	.916	768.6	0	0	0
3900004	0	0	1.231	1306.8	0	0	0 .
1980005	<u>n</u> .	G	1,565	2020.6	0 '	0	0
9900006	ñ	ñ	1.782	2577.1	Ô.	Ő	ō.
5565656		ntst	- 10	- 430	EPS4180	. VIS00	636
1017101	1 595	1624		- 	750	464 1	422
2017102	1 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	1618	448	276 0	561	356	559
3317102	1.707	•1010	.440	270.0	.301		555
3917103	1.805	-1634	+676	600.0	421	+203	044
3917104	2.030	-1524	.928	1147.2	.455	-1/2 1-	,09
3917105	2.662	-1598	1.223	2235.0	019	.058 1.	918
3317105	3.975	.1451	1.475	3466.6	.011	.148 1.	865
3917107	5.714	.1484	1.584	4604.6	.723	1.297 .	915
3917108	5.718	.1491	1.715	5405.1	.390	1.221 1.	074
	RUN 392 ###	. DIST	= 19 . HB	= .430 .	EPS = .4180	. VIS = .00	156 8
3927101	1.768	.1470	0	0	.647	.528 1.	417
3929101	2.222	.5685	0	0	.444	.569 1.	:+59
3328101	1.960	.2957	0	0	.623	.523 1.	42B
3926101	1.669	.0736	Ó	0	+632	.605 !.	376
3925101	1.600	.0331	Ō	0	.596	.541 1.	:29
3924101	1.537	.0137	ñ	ā	.540	.575 1.	429
- 3.224101 - 4401	- RUN 303 -	DIST	- 19 . 48	430.	EPS = .4180	. VI5 = .00	558
2726101	1 227	1702	- 15 - 15		570	510	445
2920101	1.001	-1732	. 0	ő		644	202
1937101	2.002	.3303	U	0	.410	- CDO 1	* 2 4
1918101	2 - 153	• 5754	U	U 2	.470	•020	
3949171	2 • 7 2 4	1.2243	0		.400	+000 ; •	- 12.4
3933115	2 - 36 -	1-2533	.350	207-5	- 568		
3339143	3-038	1.2214	.562	494.9	.462	.546	457
30301:	3.053	1.1938	.782	1001.2	.447	-583 1-	450
£933105	3.776	1.1543	1.042	2020.6	.1.4.3	.432	545
3939105	5.546	1.1996	1.130	3181.5	•523	.333 1.	57.9
4141107	9.626	1.1731	1.157	5526.0	-635	.418 :.	488
	891 394 ###	. DIST	- 71 , 46	s .422 .	EPS = .4060	• V15 = •00	565
9348101	7,733	8068	ໍ່ດ້	0	.977	.986 1.	.322
3343101	3 164	1.1251	ň	· ñ	.649	.629 1.	353
243101	2 4 4 3	1697	- -	n	.914	1.103	411
- 147101	2+400	• • 0 • •			745	1 0 28 1	279
1945191	24253	-2439		. 0	./33	1 600 1.	
3344191	1 - 387	- (Cu SI)	. U	0	-260	1.303	024 215
-347-101	2+126	1504			-781	1.250	7.5
-945105	2.425	-1512	-451	304 4	.454	1+175 1+	
1945103	7.415	.1515	.674	673.9	-34Z	1.145 1.	137
4045104	17 J.7 A	1524	.914	1034.0	.583	.518 1.	412

EXPERIMENTAL RESULTS FOR ## WI3/CACL ## SYSTEM

NO: 1

CALEAT	inclutine RESO	L13 101					
	TOTAL	LIQUID	GAS	PRESSURE	RELATI	VE LIQUIC	FLUX
RUN NO.	HDLD-UP	VELOCITY	VELOCITY	DRDP	INNER I	1100LE	OUTER
	(PCT.)	(MM/S)	(M/S)	[N/M3]	[-]	[-]	[-]
3945105	3.573	.1475	1.176	2556.2	.101	.348	1.711
3945106	5.173	.1483	1.477	4424-6	.012	-842	1.435
3945107	7.001	.1451	1.603	5581.9	.519	•617	1.404
***	RUN 395 ##	. OIST	= 19 . HB	: .422 .	EPS = .4060	. VIS =	.00465
3956101	2.076	.0798	· · 0	0	.588	.788	1.276
3959101	2.696	.5653	. 0	Û	-695	.694	1.258
9958101	2.413	.2926	. · · O	. O	.540	.748	1.283
3957101	2.245	-1466	· 0	0	-646	.720	1-298
3954101	2.007	.0157	0	0	.748	.764	1.239
3955101	2.039	.0335	0	0	.524	.744	1.324
3955102	2.222	.0348	.451	313.7	-706	.794	1-298
3955103	2.304	.0388	.683	694.8	.416	. 822	1.312
3955104	2.485	.0340	-919	1331.6	.277	.255	1.711
395510S	3.404	-0324	1.209	2663.1	.006	-347	1-749
3955106	3.793	-0340	1.49D	3922.7	.072	.399	1.894
3955107	4.601	.0321	1.714	5105.5	.110	.858	1.391
3955108	6,050	-0322	1.777	5798.0	-118	-961	1.589

EXPERIMENTAL RESULTS FOR ## WI3/CACL ## SYSTEM

			÷.			• •
THERIMENTHE RESULTS FOR ## C11/CACL ## SYSTEM NO. 1	EXPE	RIMENTAL RESULTS FOR	■# C11/CACL =# SYSTEM	1	NO. 2	
FACKING : WAX-COATED COKE AVERAGE SIZE = 11.0 (MM) - APPARENT DENSITY = 1210, (KG/M3 LIQUID : CACL2 - WATER DENSITY = 1350.(KG/M3), NOMINAL VISCOSITY = .0059 (NS/M2 SURFACE TENSION = .0800 (N/M), CONTACT ANGLE = 114.1 (DEG.)	RUN NO 414620 414620	TOTAL LIQUIO HOLO-UP VELOCIT (PCT.) (MM/S) 6 6-549 -1464 5 8-728 -1415	GRS PRESSURE Y VELDCITY DROP (M/S) (N/M3) 1.153 3656.3 1.271 5140.6	RELATIVE LIC INNER MIDDLE (-1) (-1) .092 .168 .003 .347	UID FLUX QUTER 1-1 1.825 1.745	
TOTAL LIQUID GAS PRESSURE RELATIVE LIDUID FLU FUNNON HOLD-UP VELOCITY VELOCITY DROP INNER MIDDLE OU (PCT-) (MM/S) (M/S) (N/MB) (-) (-)	414520 414620) ER = -) 415510	10.076 .1495 3 10.698 .1428 ** RUN 415 *** .015 4.280 .0302	1.559 6109.2 1.535 6813.8 T = 19 , HB = .405 , 0 0	.154 .401 .359 .623 EPS = .5179 . VIS 1.008 .489	1.325 1.325 1.325 1.325	
■■■ RUN410 ### ■■■ GAS PRESSURE DROP THROUGH DRY BED ## HB = .420 . EPS = .5364	415520 415520:	4.329 .0313 2 4.497 .0312	0 0 • 460 472 • 2	1.015 .517	1.303	
4100001 0 .451 280.2 0 0 4100002 0 0 .694 579.1 0 0 4100003 0 0 .938 994.7 0 0 410004 0 0 1.194 1548.1 0 0 410005 0 0 1.491 2332.6 0 0	0 415520 0 415420 0 415520 0 415520 0 415520 0 415520 0 415520	3 4.623 .0316 4.998 .0313 5 6.048 .0302 5 7.143 .0296 7 8.749 .0257	.688 1031.5 .931 1968.6 1.213 3629.7 1.495 5397.3 1.705 6893.7	.703 .431 .190 .099 .368 .004 .256 .010 1.091 .385	2458 2640 2636 2673 2656	
*** RUN 411 *** . 0IST = 19 . HB = .420 . EPS = .5364 . VIS = .00	21	· · · ·			•	
4117102 3.998 .1371 .455 427.3 .647 .623 1.	158					
4:17103 4:207 1395 687 894.3 696 673 1. 4:17104 4:575 1457 920 1667.1 2.260 .247 1.	21	· · · ·				•
4::7105 5.710 .1485 1.198 3247.9 .201 .012 1.	86					•
4:17107 S.733 .1447 1.435 5540.8 .002 .172 1.	354	•				
- 4117106 - 11.162 - 1430 - 1.482 - 5259.9 - 003 - 396 - 1. - **** RU% 412 *** - DIST = 19 - H8 = -420 - EP5 = -5364 - VI5 = -00	/14 /56					
4177101 4.180 .1339 0 0 .498 .520 1. 4176101 4.401 .2692 0 0 .537 .472 1.	72 (89		•			
4129101 4.742 .52B1 0 0 .574 .374 1.	36					
4126101 4.102 .0670 0 0 .615 .465 1. 4124101 3.918 .0142 0 0 .490 .533 1.	63					
4125101 4.013 0312 0 0 .449 .558 1.	£5 ·		· · · · · · · · · · · · · · · · · · ·			
4:37:01 4.538 .3441 0 0 .497 .413 1.	38					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	833 66					
4138101 4-842 -6629 0 0 -651 -274 1- 4139101 5-342 1-2150 0 0 -681 -241 1-	272 183	н. Т				
4139102 5.489 1.2105 .353 315.2 .555 .247 1.	21	•				
4:33104 6:373 1:2477 .896 2141.1 .598 .121 1.	85			2		
4199105 8.523 1.2193 1.063 3789.6 .227 .095 1. 4139106 13.380 1.1813 1.111 6409.4 .422 .657 1.	12					
PWW RUN 414 PWW DIST = 7I HB = 405 EPS = 5179 VIS = 00 4147101 4.235 .1439 0 0 1.933 .913 . 4147101 4.235 .1439 0 0 1.933 .913 . 4149101 4.438 .2805 0 0 1.410 .978 .	40 47 82			· · ·		
4149101 4.747 .5340 0 D 1.285 846 1. 4146101 4.136 .0755 D 0 2.343 .926 .	06		· .			
414101 3.994 0167 0 0 2.660 590 ·	00 .		1. S.			
4146000 4.456 .1565 .454 472.2 1.915 .962 .	24					
4:45503 4.600 .1510 .575 1038.8 1.089 .759 1. 4:45204 5.197 .1507 .929 2121.2 .130 .138 1.	32		•		•	
						· . ·
						ц
						08
						ŧ

EXPERI	MENTAL RESULT	TS FOR ≠≠	W13/ZNCL	¥≢ S¥STE	1 : .	N). 1	
PAC	KING : WAX-CO	DATED SPHE	RES					
	AVERAGE SIZE	. = 13	Э (ММ) .	APPARENT	DENSITY =	921. (1	(G/M3)	
LIC	UID : ZNCL2	- WATER						
	GENSITY .	.= 1950	1.(KG/M3)	• NOMINAL	VISCOSITY =	.0340 []	NSZMZI	
	SURFALE LENS.	104 = -08	309 IN/H1	UNIALI	HNULE =	av.a u	150-1	
	TOTAL	Taulo	GAS	PRESSURE	RELATI	VE LIQUI	3 FLUX	
RUN NO.	HOLD-UP	VELDCITY	VELOCITY	DROP	INNER	MIDDLE	OUTER	
	(PCT.)	(MM/S)	(MZS)	(N/M3)	j { − }	(-)	(- 1	
231	RUN420 ###	-	1. S.			_		
	QAS PRESSURI	E DROP_TH	ROUGH CRY	BED ##	HB = .437.	EPS =	.4282	
4200001	0	Q.	.477	217.7	C	0	· 0	
4200002	ບ 0	U D	•574 030	408 ;	U	U O	U	
4200003	U O	0	1 100	1153 5	· U	. U	. U	
4200004	ก	0 n	1.511	1728.0	n i	0	0	
4200005	ก	n	1.801	2428.1	õ	- ň	õ	
1200320	. RUN 421 ***	. DIST	= 19 . 83	= .430 .	EPS = .4282	. VIS =	.04340	
4218101	2.691	.3228	Q	0	I.763	.830	.B56	
4217101	2.441	.1632	O	O	1.553	.909	·936	,
4217102	2.489	.1669	•472	298.8	I.478	.700	1.031	
4217103	2.517	.1698	-707	645.4	1.439	.744	1-002	
4217104	2.850	-1703	1.002	1388.9	1-279	.359	1.303	
4217105	3.818	.1773	1.252	2994-5	-290	1 1 1	1.795	
4217105	· 5·204	-2013	1.455	4691+3	.003	1040	1.935	
4217107	5.351	-1925	1.000	2/19+0	-019	-063	1 + 914	
4217105	0-471 6 334	-2031	1.828	5985.6	.330	1.102	1-167	
4217103	. RUN 422	. 0151	= 19 . 89	= .435 .	FPS = -4180	. VIS =	.04610	
4225102	2.548	0321	922	1224-1	.361	.849	1.315	
4225103	3.172	.0315	1-262	2694.D	.500	.159	1.698	
4225104	4.051	.0348	1.557	4513.3	-014	-049	1-929	
4225105	4.323	.0326	1.732	5345.2	D	.042	I.934	
	• RUN 423 *##	. Dist	= 19 • HB	= .435 .	EPS = 418D	. VIS =	03820	
4235101	2.660	.0364	0	. 0	1.225	.494	1-246	
4234101	Z.488	-0143	0	. 0	1.169	.595	1.204	
4235101	2.849	-10	U 2	U	-687	1.006	1.108	
4237101	3+130 3 +433	•2230 •265	n in	. 0	1 - 754	-74U 565	-914 I 105	
4235191	2 4 7 2	-4405	0	. 0	1.300	.568	1.109	
4239101	4.100	.9637	.384	236.7	1.190	.695	1.131	
4239103	4.259	.8680	.587	728.2	1.282	.571	1.177	
4233101	4.777	.8927	-954	2035.7	.589	.D85	1.7.0	
4239105	5.031	.8569	1.082	3600.3	.168	.180	1.793	
4230108	6.134	.5712	1.684	3794-2	.159	.246	1.755	
4233107	7.5:3	.8724	1.146	4546.3	.299	.348	1.645	
4239108	9.380	•855E	1.105	5451.2	.387	.487	1.529	
4239100	5.235	.9893	1.237	6001.2	-140	.651	1.511	
4239110	1 9.1 15	.eas/	1.353	6544-6	.427	.747	1.355	

÷.,

EXPERI	MENTAL RESULT	S FOR ## 0	11/ZNCL	** SYSTE	1.	. 1	1 .01
PACI	KING : HAX-CO AVERAGE SIZE	ATED COKE		APPARENT	DENSITY =	1210.	(KG/M3)
. [DID : ZNELZ DENSITY SURFACE TENSI	= MHIER = 1920 DN = +980	(KGZM3) 9°(NZM)	 NOMINAL CONTACT 	VISCOSITY = ANGLE =	.034D 97.9	(NS7M2) (DEG-1
UN NO.	TOTAL L HOLO-UP V (PCT-) (IQUID C ELOCITY N MM/SI	AS /ELOCITY (M/S)	PRESSURE DROP (N/M3)	RELAT Inner (-)	IVE LIQU MIDDLE (-)	TD-FLUX OUTER (-)
*** ***	RUN440 ### GAS PRESSURE	OROP THRO	UGH DRY	BED ##	HB = 415	. EPS =	-5316
400001	D	D	-384	202.7	0	C	a
400002	D.	0	.662	546.9	0	D	. 0
400003	D	C	-933	1018.4	O	. D	0
400004	D	. D	1.244	1725.6	D	0	۵
400005	0	· 0	1.558	2612.0	0	0	0
400006	0	D	1.822	3493.6	0	0 -	0
	RUN 441 ###	. DIST =	19 . H8	= .416 ,	EPS = .531	6 , VIS :	02830
417101	3.679	.2616	·D	0	1.359	.524	1.181
		00.40	100		1 740	5 70	1 001

RUN NO.

4400001

4400001	5	U U		20217	0	•	
4400002	D.	· 0	.662	546.9	D	D	. 0
4400003	D	0	-933	1018.4	0	D	0
4400004	D	. D	1.244	1725.6	D	0	۵
4400005	0	0	1.558	2612.0	0	0	0
4400006	0	0	1.822	3493.6	0	0 -	0
N # #	RUN 441 ###	. DIST	= 19 . H8 =	: .416 ,	EPS = .5316	, VIS =	.02830
4417101	3.679	.2616	· D	٥	1.359	.524	1.181
4417102	3.757	.2649	.462	440.8	1.748	.570	1.021
4417103	3,941	.2713	.692	943.0	.140	1.262	1.133
4417104	4.209	-2745	.902	1704.4	1.209	.528	1.228
4417105	5.171	-2808	1.104	3088.2	1.037	.347	1.398
4417106	6.132	.2882	1.228	4163.1	1.190	.521	1-239
4417107	7.212	.3012	1.313	5077.8	.347	.484	1-544
4417108	8.470	.3D94	1.373	5990.1	.229	.408	1.631
4417201	3.919	.3060	0	٥	-885	.696	1.233
4414201	3.278	.0335	0	۵	.242	1.121	1.184
4415201	3.400	.0694	0	0	• I 4 I	.979	1.368
441620I	3.612	.1409	D	0	-435	.616	1.433
4418201	4.352	.5637	0	D	.832	.530	1.353
4419201	5.185	1.0997	0	0	1-105	.679	1.170
***	RUN 442 ***	. OIST	= 19 , HB =	416 .	EP5 = -5316	• VIS =	.02790
4425101	3.442	.0541	C	۵	-671	.970	1.136
4425102	3.487	.0606	.472	445.5	.462	-903	1.243
4425103	3.460	.0434	.708	968.9	-059	1.047	1.294
4425104	3.593	.0657	-699	973.6	.073	.845	1.413
4425105	3.974	.0685	I.029	2114.6	.231	.508	1.568
4425106	4-402	.0588	1.224	3253.2	.546	.584	1.384
4425107	5.671	·0687	1.422	4851 5	1 497	.379	1.225
4425108	7.475	.0690	I.557	6459-2	-126	-155	1.823

1
EXPERIMENTAL RESULTS FOR ## PLI3/CACL ## SYSTEM

PACKING : PLASTIC SPHERES

	AVERAGE SIZE	= 13.	2 (MM)	. APPARENT	DENSITY =	921.	(KG/M3)
÷ £10	DUID : CACL2	- WATER				4	
	DENSITY	= 1350	.(KG/M3)	. NOMINAL	VISCOSITY =	.0059	(NS/M2)
	SURFACE TENS	10N = .08	88 (N/M)	CONTACT	ANGLE =	108.9	(DEG.)
							· · ·
	TOTAL L	L10U10	GAS	PRESSURE	RELATI	VE LIQU	JID FLUX
RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER	MIDDLE	OUTER
	(PCT.) 1	(MM/S)	(MZS)	(NZM3)	(-)	(-)	1-1
	RUN400 ###						4
	GAS PRESSURE	E OROP THR	OUCH DRY	8ED ==	H9 = .423	EPS =	4076
4000001	0	0	+465	248.1	0	0	. 0
4000002	ñ	n n	.684	496.1	ñ	Ū.	õ
4000003	ñ	ñ	.982	955.2	. n	, ų	ñ
4000003	n n	ñ	1.254	1523.2	ñ	ň	ñ
4000004	n	ñ	1 555	2176.9	· ñ	ñ	, ŭ
40000005	n n	D D	1,000	2040 0	. 0		0
4000000	RUN 401 FEE	- 12th	19 HR	- 423	EPS - 4076		- 00592
4017101	2 645	1442	13 . 110		1 047		1 108
4017101	2 7 9 8	1/68	460	380 C	921	.005	1 150
4017102	2 + 700 -	1400		303-3	1 1 5 1	•043	1+135
4017103	2.302	1463	-003	1757 7	1.131	1021	303
4017104	3.210	-1469	.937	1/3/+3	.392	• 254	1.000
4017105	4.150	•1477	1.210	3326.9	.005	-5/9	1.600
4017105	5.504	-1445	1.307	43/9.4	.023	•646	1.553
4017107	6.142	.1405	1.3/4	4914-9	.056	846	1-419
4017108	5.987	-1423	1.449	5647.5	•256	.631	1.484
***	FRUN 402 ###	• DIST =	19 • HB	= .423 .	EPS = .4076	S. VIS	= .00609
4028101	3.221	.2712	0	0	1.089	.772	I.118
4029101	3.579	-5337	0	D	-841	.744	1.218
4027101	3.062	-1411	Q	0	1.028	.714	1.174
4026101	2.931	.0682	0	0	1.364	.590	1.133
4024101	2.763	-0148	0	0	1.178	.633	1.169
4025101	2,790	.0341	0	0	.873	•564	1.316
	F RUN 403 ₩₩₩	. DIST =	19 . HB	= .423 .	EPS = .4076	5 . VIS	= .00602
4035101	2.917	-0775	0	· Q	1.210	-597	1-185
4036101	3.055	.1640	0	0	1.076	.556	1.257
4037101	3.280	.3292	0	0	.839	.966	1.081
4038101	3.574	.5440	۵	0	1.054	•975	1.003
4039101	4-021	1.1800	0	0	1.067	1.130	.903
4039102	4.132	1-1434	.373	252.7	1.191	1.146	-852
4039103	4.209	1.1677	.624	730.3	1.046	.573	1.255
4039104	4.637	1.1551	.864	1766.6	115	.440	1.649
4039105	5.225	1.1353	-981	2689.3	.152	.514	1.591
4039106-	8.211	1.1172	1.063	4801.3	.489	+683	1.375
**1	- RUN 404 ###	• DIST =	19 · HB	= .423 .	EPS = .4076	. v15	= .00614
4045101	2.855	,0323	C	C	.833	.542	1.347
4045102	2,973	0330	.460	350.1	.500	698	1,365
4045103	2,981	,0335	.693	746.5	.528	.789	1 202
4045104	3.052	.0326	.921	1381.7	.500	.733	1.317
4045105	3.411	.0329	1.205	2751.9	.218	101	1 - 25 7
4045106	3 298	0321	1.190	4513 0	.210	101	1 • / 91
3045105	A 502	03521	1 637	401048	-010	•104	1.041
1016100	4+032	0304	1 202	5000.3 E627 0	.001	.052	1 • / 5 /
4043105	3.403	+UJU4	1-193	320/-8	.237	- 7 6 -	

EVADAL	MENTOL DECH	• • • • •						
EXFERI	NENTHE RESUL	.15 FUK ##	WI3/GLY	SYSTE	M		NO. I	 EXPERI
PAC	KING : WAX-C	OATED SPH	ERES					
	AVERAGE SIZE	= 13	.3 (MM) .	APPARENT	DENSITY	= 921.	(KG/H3)	RUN NO.
c tu	DID : GETCE	.KUL - MAI					·	
	SURFACE TENS	121 = 121 100 = 0	0 - (NG/ 13) 652 - (N/M)	- NUMINHL	VISCOSITY	= .0640	INS/M21	3036107
	Som nee tens	1011 - 10	052 11/11	• CUNTHEI	HNGLE	= 90.0	LUEG.I	3036108
	TOTAL	LIGUIO	GAS .	PRESSURE	REL	ATIVE LID	UID FLUX	3047101
RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER	HIDDLE	OUTER	3045101
	(PCT_)	(MM/S)	[H/S]	(N/M3)	(-)	{ -]	í – 1	3048101
	RUN300 ###	-						3046101
	GHS PRESSUR	E URUP TH	ROUGH DRY	BEC ##	HB = .43	0 . EPS =	.4180	3049101
30000001	U		+462	225.8	0	0	0	3046201
3000002	U D	U C	+050	417.4		0	0	3044101
3000000	0	U n	- 601	702.4	U	U	. U	3049201
3000005	n n	ň	1 307	1693 1	0	U	u o	3046301
3000006	Ő	ň	1.521	2225 0	U D	0	U O	3053101
3000007	0	õ	1.830	2784.6	0	0	u n	303/101
	RUN 301 ###	DIST	= 71 . HB	= .430 .	FPS = .4	180. 115	06430	3039101
3018101	2.794	.1794	0	D	2,297	1.283	.396	3055101
3013101	3.345	.3768	0	0	1.919	1.372	.468	3056101
3017101	2.495	.0833	0	0	2.170	1.752	.149	1010000
3016101	2.374	·D334	D	0	.697	1.979	•S04	3068101
3017201	2.482	-0721	0	0	1-419	1.689	.439	3057101
3017202	2.528	.0721	.457	305.6	1.228	1.443	.657	3066101
3017203	2.539	.0729	.524	561.0	.392	2.099	-529	3069101
3017204	2.686	.0699	.865	1154.0	.112	.773	1.444	
3017205	4,159	.0670	1.117	2700.3	.DSI	055	1.913	
3017206	4 905	-0656	1+238	3425.5	.011	+018	1.945	3200001
3017207	0.020	-0614	1.355	4285.3	.492	.505	1.483	3200002
3017208	9-440 RUN 302	+USII	- 71 HP	5560.2	1.025	.771	1.140	3200003
3028101	3 255	1674	= /1 + 110	= .430 .	2 420	100 1073	= .07280	3200004
3025101	2 648	10/4	U O	U 0	2.429	1.027	-510	3200005
3026101	2.797	.0103	0	Ű	2 326	1.029	-430	3200006
3027101	2.848	-0777	Ğ	ŭ	2.320	1.311	. 372	3200007
3028201	3.125	.1785	n	ŭ	1 957	1.237	- 173	101010
3029101	3.554	.3726	ñ	ů	2,362	. 1.474	120	3210101
3029102	3,573	.3852	.452	314.7	2.549	1.359	264	3217102
3029103	3.657	.3830	.620	595.2	3,302	.890	. 103	3217102
3029104	4.614	.3863	.821	1594-2	.583	.375	1.532	3217104
3029105	5.187	.3753	.920	2159.8	.328	-546	1.512	3217105
3029105	9-071	.3557	1.006	3920.4	.504	583	1.431	3217106
	RUN 303 ###	. DIST	= 71 , HB	= .430 .	EP5 = .4	180 . VIS	= .06290	3217108
3039101	2.387	-1441	0	C	4.190	.670	-142	3217109
3035101	2.490	.0105	0	0	3.378	-764	.362	
30381D)	2.767	·0834	C	0	3.104	1.373	.070	3229101
3037101	2.534	.0442	0	. 0	3.763	-890	-149	3229102
5736101	2.553	.0215	C	0	2-587	1.575	.119	3229103
3036102	2.591	.0220	.458	301-0	2.605	1.250	.315	3229104
3035103	2.547	-0231	•55I	599.8	2.235	1.350	.381	3229105
2036104	2.649	.0212	-867	1133.5	-6DI	-649	1.360	3229106
:036105	3.546	.0240	1-131	2469.9	-060	.100	1.879	3229107
3-136106	4.891	.0258	1-336	3763.0	.177	-132	1.833	3229108

EXPERIMENTAL RESULTS FOR ## W13/GLY ## SYSTEM

	TOTAL		GAS	PRESSURE	RELATI	VE LIQUID FLUX	
Non No.	(PCT)	(NH/S)	(M/S)		LINNER (-)		
3036107	5 850	0236	1 424	1517 6	1 682	697 077	
3036108	8 225	0185	1 515	5414 2	1.002	500 1134	
5030100	RUN 304 ###		- 10 HB	- 430	EPS - AIBO	VIS - 06570	
3047101	3 1/0	0635	- 13 - 113		1 007	1 493	
3045101	2 764	10000	. u	0	1.007	1 2 3 8 9 1 4 1 5 1 6 1	
3048101	2 3 3 9 3	1922		и С	1 203	1 903 721	
3046101	2 932	1322	0	u 0	1 023	1 421 732	
3049101	3.746	2539	0	0	318	1.421 .750	
3046201	3 136	0709	õ	· 0	- 310	1 411 976	
3044101	2,707	1086	ň	. n	•773 853	1.411 .020	
3049201	3.681	2594	0	0	1 5 4 0	1 410 565	
3045201	3 1 1 7	1430	. 0	0	1 341	1.415 - 505	
1010000	RUN 305	1455	- 13 - 18	- 430	1-J41 FPS - A180	VIS - 06520	
3057101	2.965	.0640	- 13 - 10		005	1 794 595	
3059101	3.364	-2278	0 n	0	- 545	1.702 333	
3658101	3,133	.1388		c c		2.041 .558	
3055101	2.569	.0166	ň	ň	2 001	1 363 453	
3056101	2.775	.0297	. 0	ŭ	2 201	1 354 . 359	
	RUN 306 ###		- 13 . HR	430	FP54180	VIS05570	
3068101	2.941	.0941	- 13 7 115		2 961		
3067101	2.791	0514	ñ	ň	3 140	1 252 123	
3066101	3.106	1662	ñ	. ŭ	3,161	1.359 .059	
3069101	2.661	.0188	, O	õ	2 650	083 302	
	RUN320 ###	-0100		Ģ	20005		
	GAS PRESSUR	E DROP TH	ROUGH ORY	8ED ==	H8425 .	EPS = -4106	
3200001	GAS PRESSUR	E DROP TH O	ROUCH ORY .469	BED ≥= 246.9	H8 = .425 . 0	EPS = -4106 0 0	
3200001 3200002	GAS PRESSUR	E DROP TH O D	ROUCH CRY .469 .624	BED == 246.9 417.7	H8 = .425 . 0 0	EPS = -4106 0 0 0 0	
3200001 3200002 3200003	GAS PRESSURI D 0 0	E DROP TH O D O	ROUCH ORY .469 .624 .826	BED == 246.9 417.7 587.6	H8 = .425 . 0 0	EPS = .4106 0 0 0 0 0 0	
3200001 3200002 3200003 3200004	GAS PRESSUR D O O O O	E DROP TH O D O O O	ROUGH GRY .469 .624 .826 1.053	BED == 246.9 417.7 687.6 1058.4	H8 = .425 . 0 0 0 0	EPS = 4106 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200003 3200004 3200005	GAS PRESSUR D 0 0 0 0 0 0 0 0	E DROP TH O D O O D D	1ROUCH CRY .469 .624 .826 1.053 I.306	BED == 246.9 417.7 687.6 1058.4 1578.3	H8 = .425 . 0 0 0 0 0 0 0 0 0 0	EPS = 4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200003 3200004 3200005 3200005	GAS PRESSUR D 0 0 0 0 0 0 0	E DROP TH O D O O D D D D	IROUGH CRY .469 .624 .826 1.053 I.306 1.525	BED == 246.9 417.7 687.6 1058.4 1578.3 2097.5	H8 = .425 . 0 0 0 0 0 0 0 0 0 0	EPS = -4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200003 3200004 3200005 3200005 3200005 3200005	GAS PRESSUR D O O D D O D O S	E DROP TH O D O O D D O O O	ROUCH GRY .469 .624 .826 1.053 1.306 1.525 1.814	BED 11 246.9 417.7 687.6 1058.4 1578.3 2097.5 2886.6	H8 = .425 . 0 0 0 0 0 0 0 0 0 0 0	EPS = -4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200003 3200004 3200005 3200005 3200005	GAS PRESSUR D 0 0 0 0 0 0 0 3 RUN 321 ###	E DROP TH O D O O O O O O O O O TIST	4ROUCH CRY .469 .624 .826 1.053 1.306 1.525 1.814 = 19.48	BED 246.9 417.7 687.6 1058.4 1578.3 2097.5 2886.6 = .425	H8 = .425 . 0 0 0 0 0 7 0 0 EPS = .4105	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200003 3200004 3200005 3200005 3200005 3200007 3218101	GAS PRESSUR D 0 0 0 0 0 0 0 0 8 8 8 165	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 I.306 I.525 1.814 = 19 . H8 0	BED 246.9 417.7 687.6 1068.4 1578.3 2097.5 2886.6 = .425.	H8 = .425 . 0 0 0 0 0 7 0 0 EPS = .4105 1.146	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200003 3200004 3200005 3200005 3200005 3200007 3218101 3217101	GAS PRESSUR D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 I.306 I.525 I.814 = 19 . H8 0 0	8ED 11 246.9 417.7 687.6 1058.4 1578.3 2097.5 2886.6 = .425 0	H8 = .425 . 0 0 0 0 0 7 0 0 EPS = .4105 1.146 1.277	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200003 3200004 3200005 3200005 3200005 3200007 3218101 3217101	GAS PRESSUR D 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH ORY .469 .624 .826 1.053 1.306 1.526 1.814 = 19 . H8 0 .453	8ED == 246.9 417.7 687.6 1058.4 1578.3 2097.5 2886.6 = .425 0 346.1	H8 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200003 3200004 3200005 3200005 3200005 3200007 3218101 3217101 3217102 3217102	GAS PRESSUR D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 1.306 1.525 1.814 = 19 . H8 0 .453 .535	BED # 246.9 417.7 587.6 1059.4 1578.3 2097.5 2086.5 425.0 0 0 346.1 692.2	H8 = .425 . 0 0 0 0 0 0 EPS = .4105 1.146 1.277 1.451 1.415	EPS = .4105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200003 3200004 3200005 3200005 3200007 3218101 3217101 3217102 3217103 3217104	GAS PRESSUR D D O D D C D C D C D C D C D C D C C D C C D C	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 1.306 1.525 1.814 = 19 . H8 0 0 .453 .835 .806	BED # 246.9 417.7 687.6 1058.4 1578.3 2097.5 2886.6 - - 0 0346.1 692.2 1227.6 -	H8 = .425 . 0 0 0 0 EPS = .4105 1.146 1.277 1.451 1.415 .859	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200003 3200004 3200005 3200005 3200005 3200007 3218101 3217101 3217102 3217103 3217104 3217105	GAS PRESSUR D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 1.306 1.526 1.814 = 19 . H8 0 0 .453 .635 .806 .999	BED 1 246.9 417.7 687.6 1058.4 1058.4 1578.3 2097.5 2886.6 2084.6 0 346.1 692.2 1227.6 2515.1	H8 = .425 . 0 0 0 0 EPS = .4105 1.146 1.277 1.451 1.415 .859 .098	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200003 3200005 3200005 3200005 3200005 3200007 3218101 3217101 3217102 3217102 3217104 3217105 3217106	GAS PRESSUR D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 I.306 I.526 1.814 = 19 . H8 0 0 .453 .535 .906 .999 I.186	BED == 246.9 417.7 687.6 1058.4 1578.3 2097.5 2886.5 = .425 0 346.1 692.2 1227.6 2515.1 3655.0	H8 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200003 3200004 3200005 3200005 3200005 3200007 3218101 3217101 3217102 3217103 3217103 3217106 3217106	GAS PRESSUR D D O O D S RUN 321 *** 3.165 2.819 2.920 3.053 3.354 4.659 5.972 8.201	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 1.306 1.525 1.814 = 19 . H8 0 0 .453 .535 .909 1.186 1.296	BED == 246.9 417.7 687.6 1058.4 1578.3 2097.5 2086.5 = .425. 0 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3	H8 = .425 . 0 0 0 0 0 0 EPS = .4105 1.146 1.277 1.451 1.415 .859 .098 .006 .069	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
3200001 3200002 3200003 3200005 3200005 3200005 3200007 3218101 3217101 3217101 3217102 3217103 3217104 3217106 3217108 3217108	GAS PRESSUR D D O D C D S RUN 321 *** 3.165 2.819 2.920 3.063 3.354 4.669 5.972 8.201 1I.412	E DROP TH O D O O D D D O O O O O O O O O O O O	HROUCH CRY .469 .624 .826 1.053 1.306 1.525 1.814 = 19 . H8 0 0 .453 .535 .906 .999 1.186 1.296 1.296 1.322	BED >>>>>>>>>>>>>>>>>>>>>>>>>>>>	H8 = .425 . 0 0 0 0 EPS = .4105 1.146 1.277 1.451 1.415 .859 .098 .006 .059 1.386	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
3200001 3200002 3200003 3200004 3200005 3200005 3200007 3218101 3217101 3217102 3217103 3217104 3217105 3217106 3217108 3217108	GAS PRESSUR D D O O D S RUN 321 *** 3.165 2.819 2.920 3.053 3.354 4.659 5.972 8.201 11.412 RUN 322 ***	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 1.306 1.525 1.814 = 19 . H8 0 0 .453 .635 .906 .999 1.186 1.296 1.322 = 19 . H8	BED 1 246.9 417.7 687.6 1058.4 1058.4 1578.3 2097.5 2886.6 = .425 0 0 346.1 1227.6 1227.6 2515.1 3655.0 .425 3997.1 .425	H8 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	EPS = .4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200003 3200005 3200005 3200005 3200005 3217101 3217101 3217102 3217102 3217103 3217104 3217106 3217106 3217109 3229101	GAS PRESSUR D D O O C C C C C C C C C C C C C C C C	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 1.306 1.526 1.814 = 19 . H8 0 0 .453 .635 .806 .999 1.186 1.296 1.322 = I9 . H9 0	BED 1 246.9 417.7 687.6 1058.4 1058.4 1578.3 2097.5 2886.6 = .425 0 346.1 692.2 1227.6 1227.6 2515.1 3655.0 4790.3 5997.1 - - .425 0 0	H8 = .425. 0 0 0 0 0 EPS = .4105 1.146 1.277 1.451 1.415 .859 .098 .006 .059 1.386 EPS = .4105 .970	$\begin{array}{c} {\sf EPS} = & -4106 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\$	
3200001 3200003 3200004 3200005 3200005 3200005 3200007 3218101 3217101 3217102 3217103 3217103 3217105 3217106 3217108 3217109 3229101 3229102	GAS PRESSUR D 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 1.306 1.525 1.814 = 19 . H8 0 .453 .535 .906 .999 1.186 1.226 1.322 = 19 . H8 0 .380	BED # 246.9 417.7 687.6 1058.4 1058.4 1578.3 2086.5 2886.5 = .425 0 346.1 692.2 1227.6 1255.0 4790.3 5997.1 263.1	H8 = .425 . 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
3200001 3200002 3200003 3200005 3200005 3200005 3200007 3218101 3217101 3217102 3217103 3217104 3217106 3217106 3217108 3217109 3229101 3229101	GAS PRESSUR D 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 1.306 1.525 1.814 = 19 . H8 0 .453 .535 .906 .999 1.186 1.296 1.322 = I9 . H9 0 .380 .464	BED # 246.9 417.7 687.6 1058.4 1058.4 1578.3 2097.5 286.6 = .425 0 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3 5997.1 - - .425 0 263.1 394.6	H8 = .425 . 0 0 0 0 0 EPS = .4105 1.146 1.277 1.451 1.415 .859 .098 .006 .059 1.386 EP5 = .4105 .970 .980	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
3200001 3200002 3200003 3200005 3200005 3200005 3200007 3218101 3217101 3217102 3217103 3217104 3217105 3217106 3217106 3217108 3217109 3229101 3229101 3229104	GAS PRESSUR D D O O D S RUN 321 *** 3.165 2.819 2.920 3.063 3.354 4.669 5.972 8.201 1I.412 RUN 322 *** 4.144 4.229 4.334 4.573	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 1.306 1.525 1.814 = 19 . H8 0 0 .453 .635 .806 .999 1.186 1.296 1.322 = 19 . H9 0 .380 .464 .595	BED # 246.9 417.7 687.6 1058.4 1058.4 1578.3 2097.5 2886.6 = .425 0 0 346.1 692.2 1227.6 2515.1 3597.1 425 0 263.1 394.6 673.8	H8 = .425 . 0 0 0 0 EPS = .4105 1.146 1.277 1.451 1.415 .859 .098 .006 .069 1.386 EPS = .4105 .970 .865 .980 .438	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
3200001 3200003 3200004 3200005 3200005 3200007 3218101 3217101 3217102 3217103 3217105 3217106 3217106 3217108 3217109 3229101 3229101 3229102 3229104 3229105	GAS PRESSUR D 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 1.306 1.526 1.814 = 19 . H8 0 .453 .635 .806 .999 1.186 1.296 1.322 = I9 . H9 0 .380 .464 .595 .676	BED 1 246.9 417.7 687.6 1058.4 1578.3 2097.5 2886.6 -425 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3 5977.1 -425 0 263.1 394.6 597.1 -70.3 251.5.1 3655.0 1394.6 673.8 955.3	H8 = .425 . 0 0 0 0 0 EPS = .4105 1.146 1.277 1.451 1.415 .859 .098 .006 .069 1.386 EPS = .4105 .970 .865 .980 .438 .934	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
3200001 3200003 3200005 3200005 3200005 3200005 3200007 3218101 3217101 3217102 3217103 3217104 3217105 3217106 3217108 3217109 3229101 3229101 3229104 3229104 3229105 3229105	GAS PRESSUR D 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 1.306 1.526 1.814 = 19 . H8 0 .453 .535 .906 .999 1.186 1.226 1.322 = 19 . H8 0 .380 .464 .595 .676 .766	BED # 246.9 417.7 687.6 1058.4 1058.4 1578.3 2086.5 2086.5 = .425. 0 0 346.1 692.2 1227.6 2515.1 2597.1 . 263.1 394.6 394.6	H8 = .425 . 0 0 0 0 0 EPS = .4105 1.446 1.277 1.451 1.415 .859 .098 .006 .069 1.386 EPS = .4105 .970 .865 .980 .438 .934 .180	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
3200001 3200003 3200004 3200005 3200005 3200007 3218101 3217101 3217102 3217103 3217104 3217106 3217108 3217108 3217108 3217109 3229104 3229101 3229102 3229104 3229105 3229105	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUCH CRY .469 .624 .826 1.053 1.306 1.525 1.814 = 19 . H8 0 .453 .535 .906 .999 1.186 1.226 1.322 = I9 . H8 0 .380 .464 .595 .676 .766 .863	BED # 246.9 417.7 687.6 1058.4 1058.4 1578.3 2097.5 286.6 = .425 0 0 346.1 692.2 1227.6 2515.1 263.0 3997.1 = .425 0 263.1 394.6 673.8 955.3 1746.7 2679.0	H8 = .425 . 0 0 0 0 EPS = .4105 1.146 1.277 1.451 1.415 .859 .098 .006 .059 1.386 EPS = .4105 .970 .665 .980 .438 .934 .100 .165	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

	TOTAL L	01001	GAS	PRESSURE	RELATIVE LIQUID FLUX
RUN NO.	HOLD-UP VE	ELOCITY	VELOCITY	DROP	INNER MIDDLE DUTER
	(PCT.) (1	111/51	(8/5)	(N/M3)	
	13 330	3743	027	5754 1	Eng 1.2/2 1.021
	11-113 -		1307	1000 0	.500 1.245 1.021
25102	4.150	.0210	.940	1969-3	U .523 I.642
225103	5.868	.0244	1.339	4111.9	•906 1•395 •790
3225104	9.845	.0163	1.476	5826.3	2.602 .758 .629
	RUN 323 ### -	. DIST	= 71 . HB	= .425 .	EPS = .4106 . V1S = .06820
3237101	3.134	.0990	0	0	2.957 1.268 .185
3237102	3.241	.1025	.458	327.7	.994 1.991 .394
3237102		0050	.400	622.0	1 752 1 716 212
5237105	3.337	•0330	.020	023.0	1.755 1.715515
3237104	1 3.034	•0592	- 862	1410.0	./38 1.042 1.069
3237105	5-325	•0301	1.071	27/3.5	.079 .763 1.462
.3237106	6.411	.0871	1.158	3578.9	.680 1.293 .932
3237107	7.858	.0880	1.192	4259.6	1.574 1.364 .590
3237108	12.041	.0773	1.259	5957.9	1.509 1.317 .640
	RUN 324 ###	. 0151	= 71 . HB	= .425 .	EPS = .4106 . VIS = .07730
3247101	3.214	.0734			2.500 1.193 383
3210101	3 815	2607	0	u. 0	2 050 1 307 465
3243101	3.013	1636	U O	U	2.000 1.001 .400
3240101	3.510	1230	Ŭ	U Q	2.235 1.201 .467
3246101	3.036	.0384	U	0	2.211 1.038 .580
3245101	2.887	.0184	. 0	0	2.912 .840 .455
	RUN 325 ===	. DIST	= 19 . HS	= .425 .	EP5 = .4106 . VI5 = .06780
3259101	4.153	.3596	0	. 0	1.425 1.301 .677
3258101	3.744	.2242	n	n	.605 1.491 .835
3257101	3 453	1103	0	ň	718 1 561 753
7271101	3		0	5	
2266101	3 211	0532	2	0	1 6 2 6 1 2 2 7 6 1 3
3256101	3.211	0532	0	. 0	1.625 1.297 .613
3256101 3255101	3.211 3.011	.0532 .0262	0 0	0 0	1.625 1.297 .613 1.980 1.132 .594
3256101 3255101	3.211 3.011 RUN380 ===	.0532 .0262	0 0	0	1.625 1.297 .613 1.980 1.132 .594
3256101 3255101	3.211 3.011 RUN380 === GAS PRE55URE	0532 0262	0 0 IRDUGH DRY	0 0 8E0 ##	1.625 1.297 .613 1.980 1.132 .594 H8 = .430 . EP5 = .4180
3256101 3255101 *** 3500001	3.211 3.011 RUN380 === GAS PRESSURE 0	0532 0262 DROP TH	0 0 1RDUGH DRY -455	0 0 8E0 ## 225-8	1.625 1.297 .613 1.980 1.132 .594 H8 = .430 . EP5 = .4180 0 0 0 0
3256101 3255101 888 3600001 3800002	3.211 3.011 RUN380 === GAS PRESSURE 0 0	0532 0262 DROP TH 0	0 0 1rdugh dry .455 .679	0 0 8E0 ## 225-8 465-2	1.625 1.297 .613 1.980 1.132 .594 H8 = .430 . EP5 = .4180 0 0 0 0 0 0
3256101 3255101 888 3600001 3800002 3800002	3.211 3.011 RUN380 GAS PRE55URE 0 0	0532 0262 DROP TH 0 0	0 0 1RDUGH DRY .455 .679 .957	0 0 8E0 ## 225-8 465-2 887-2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 8800001 3800002 3800003	3.211 3.011 RUN380 === GAS PRESSURE 0 0 0	0532 0262 DROP TH 0 0	0 0 1RDUGH DRY .455 .679 .957 1 213	0 0 8E0 ## 225-8 465-2 887-2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3800001 3800002 3800003 3800004	3.211 3.011 RUN380 ==== GAS PRESSURE 0 0 0 0 0	0532 0262 DROP TH 0 0 0	0 0 HRDUGH DRY .455 .679 .957 1.243 1.243	0 0 8E0 ## 225.8 465.2 987.2 1399.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3800001 3800002 3800003 3800004 3800005	3.211 3.011 RUN380 === GRS PRESSURE 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 0	0 0 455 .455 .679 .957 1.243 1.501	0 0 8E0 ** 225-8 465-2 987-2 1399-0 1979-6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3800001 3800002 3800002 3800003 3800004 3900005 3800005	3.211 3.011 RUN380 === GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 0 0	0 0 455 .679 .957 1.243 1.501 1.798	0 0 8E0 ** 225-8 465-2 987-2 1399-0 1979-6 2764-1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3800001 3800002 3800003 3800004 3800005 3800005	3.211 3.011 RUN380 ==== GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 HRDUGH DRY .455 .679 .957 1.243 1.501 1.798 = 19 . H8	0 0 8E0 ** 225.8 465.2 987.2 1399.0 1979.6 2764.1 2.430 .	$1.625 1.297 .613 \\ 1.980 1.132 .594 \\ H6 = .430 .EP5 = .4180 \\ 0 0 0 0 \\ 0 0 0 0 \\ 0 0 $
3256101 3255101 3400001 3400002 3600003 3800004 3800005 3800005 3815101	3.211 3.011 RUN380 === GRS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUGH DRY .455 .679 .957 1.243 1.501 1.798 = 19 . H8	0 0 8E0 ** 225.6 465.2 987.2 1399.0 1979.6 2764.1 = .430. 0	1.625 1.297 .613 .594 $H8 = .430 .EP5 = .4180 0 0 0 0 0 0 0 0 0$
3256101 3255101 3600001 3600002 3600002 3600004 3500005 3600005 3600005 3615101 3615102	3.211 3.011 RUN380 === GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUGH DRY .455 .679 .957 1.243 1.501 1.798 = 19 . H8 0 .453	0 8E0 465.2 1399.0 1979.6 2764.1 = .430. 0 291.9	1.625 1.297 .613 .980 1.132 .594 .4180 0 0 0 0 0 0 0 0 0
3256101 3255101 3800001 3800002 3800003 3800005 3800005 3800005 3815101 3815101 3815103	3.211 3.011 RUN380 === GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUGH DRY .455 .679 .957 1.243 1.501 1.798 = 19. H8 .0 .453 .582	0 8E0 ** 225-8 465-2 937-2 1399-0 1979-6 2764-1 = .430 .0 291-9 561:4	1.625 1.297 .613 1.980 1.132 .594 H8 = .430 . EP5 = .4180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EP5 = .4180 .715 = .07330 .537 1.513 .844 .598 1.433 .844 1.095 1.202 .955
3256101 3255101 3255101 3600001 3600002 3800003 3800005 3800005 3800005 3815101 3815102 3815104	3.211 3.011 RUN380 === GRS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1RDUCH DRY .455 .679 .957 1.243 1.501 1.798 1.798 1.798 1.798 .682 .682 .915	0 8E0 ** 225.8 465.2 987.2 1399.0 1979.6 2764.1 2.430 0 291.9 651.4 1363.8	1.625 1.297 .613 1.980 1.132 .594 H8 = .430 . EP5 = .4180 0 0 0 0 0 0 0 EP5 = .4180 .715 = .07330 .537 1.513 .848 .598 1.493 .844 1.096 1.222 .856 .850 .726 1.229
3256101 3255101 3255101 3900001 3900002 3800004 3500005 3800005 3800005 3815101 3815102 3815102 3815103 3815104	3.211 3.011 RUN380 === GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUGH DRY .455 .679 .957 1.243 1.501 1.798 = 19 . H8 0 .453 .582 .915 .197	0 8E0 ** 225.8 465.2 1399.0 1979.6 2764.1 = .430 0 291.9 561.4 1353.8 2927.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3400001 3400002 3600003 3600003 3600005 3600005 3615101 3615102 3615103 3615104 3615105	3.211 3.011 RUN380 ==== GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 .0151 .0153 .0154 .0154 .0154 .0154	0 0 1RDUGH DRY .455 .679 .957 1.243 1.501 1.798 = 19 . H8 .00 .453 .582 .915 1.197	0 0 8E0 ** 225.8 465.2 987.2 1399.0 1973.6 2764.1 = .430 0 291.9 561.4 1363.8 2987.6 2987.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3255101 3600001 3600002 38000003 38000005 38000005 38000005 3800005 3815101 3815102 3815102 3815104 3815104	3.211 3.011 RUN380 === GRS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUCH DRY .455 .679 .957 1.243 1.501 1.798 19.48 .602 .453 .682 .915 1.197 1.347 1.347	0 8E0 ** 225.8 465.2 987.2 1399.0 1979.6 2764.1 = .430 .0 291.9 661.4 1363.8 2987.6 4036.7 4036.7	1.625 1.297 .613 .980 1.132 .594 .980 1.132 .594 .613 .980 .00 .
3256101 3255101 3255101 3900001 3900002 3800003 3800005 3800005 3800005 3815101 3815102 3815102 3815103 3815105 3915105 3915105	3.211 3.011 RUN380 === GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUGH DRY .455 .679 .957 1.243 1.501 1.798 = 19 . H8 0 .453 .582 .915 1.197 1.347 1.421	0 0 8E0 ** 225.8 465.2 1399.0 1979.6 2764.1 = .430. 0 291.9 561.4 1363.8 2987.6 4036.7 4647.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3300001 3800002 3800002 3800003 3800005 3800005 3800005 3815101 3815102 3815102 3815103 3915104 3815105 3815105 3815107 3915108	3.211 3.011 RUN380 ==== GAS PRESSURE 0 0 0 0 0 RUN 381 === 2.250 2.387 2.417 2.696 4.376 5.976 7.170 7.539	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUGH DRY .455 .679 .957 1.243 1.501 1.798 = 19 . H8 .00 .453 .682 .915 1.197 1.347 1.347 1.421 1.453	0 8E0 225.8 465.2 987.2 1399.0 1973.6 2764.1 = .430 0 291.9 661:4 1363.8 2987.6 405.7 4647.9 4793.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3255101 3600002 3600003 3600003 3600005 3600005 3800005 3815101 3815102 3815103 3915104 3915105 3815105 3815105 3815105 3815105	3.211 3.011 RUN380 === GRS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUCH DRY .455 .679 .957 1.243 1.501 1.798 .19. H8 .0 .453 .582 .915 1.197 1.347 1.421 1.463 1.527	0 8E0 ■■ 225.8 465.2 987.2 1399.0 1979.6 2764.1 = .430 .0 291.9 661.4 1363.8 2987.6 4036.7 4647.3 4733.9 5277.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3900001 3900002 3900002 3900004 3900005 3900005 3900005 3915101 3915102 3915103 3915105 3915105 3915105 3915107 3915108 3915108	3.211 3.011 RUN380 === GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUGH DRY .455 .679 .957 1.243 1.501 1.798 = 19 . H8 0 .453 .582 .915 1.197 1.347 1.421 1.453 1.527 = 19 . H9	0 0 8E0 ** 225.8 465.2 937.2 1399.0 1979.6 2764.1 = .430 0 291.9 661.4 1363.8 2987.6 4036.7 4647.9 4793.9 277.4 = .430.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3400001 3600002 3600002 3600003 3600005 3600005 3615102 3815102 3815103 3815104 3815105 3815105 3815106 5915107 3915108 3815109	3.211 3.011 RUN380 ==== GAS PRESSURE 0 0 0 0 RUN 381 === 2.250 2.387 2.417 2.696 .4.376 5.976 7.170 7.539 8.296 RUN 382 === 2.821	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUGH DRY .455 .679 .957 1.243 1.501 1.798 = 19 . H8 .453 .682 .915 1.347 1.347 1.347 1.421 1.463 1.527 = 19 . H8	0 8E0 ** 225.8 465.2 937.2 1399.0 1973.6 2764.1 = .430 9 551.4 1363.8 2987.6 4036.7 4647.3 4793.9 5277.4 = .430	1.625 1.297 .613 1.980 1.132 .594 H8 = .430 . EP5 = .4180 0 0 0 0 0 0 0 0 EP5 = .4180 .718 = .07330 .537 1.513 .848 .598 1.433 .844 1.095 1.222 .856 .850 .726 1.229 .028 .434 1.645 .877 .529 1.276 .855 .875 1.220 .829 1.218 .927 EP5 = .4180 .718 = .05460
3256101 3255101 3200001 3600002 3600003 3600005 3600005 3800005 3815101 3815102 3815105 3815105 3815105 3815105 7815105 7815105 7815105 3815105 3815105 3815105 3815105 3815105	3.211 3.011 RUN380 === GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 0R0P TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUCH DRY .455 .679 .957 1.243 1.501 1.798 .1.243 1.501 .453 .582 .915 1.197 1.347 1.347 1.421 1.463 1.527 = 19 . H8 0 6	0 8E0 ■■ 225.8 465.2 987.2 1399.0 1979.6 2764.1 = .430 0 291.9 661.4 1363.8 2987.6 4036.7 4647.3 9 5277.4 = .430 0 0 291.9 527.2 1393.0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.625 1.297 .613 1.980 1.132 .594 H8 = .430 . EP5 = .4180 0 0 0 0 0 0 0 EP5 = .4180 .715 = .07330 .537 1.513 .849 .598 1.493 .844 1.086 1.262 .956 .850 .725 1.229 .028 .494 1.645 .877 .529 1.276 .750 .794 1.229 .028 .494 1.645 .877 .529 1.276 .750 .794 1.220 .829 1.218 .927 EP5 = .4180 .715 = .05460 1.127 1.237 .618
3256101 3255101 3255101 3800001 3800002 3800003 3800005 3800005 3800005 3815101 3815102 3815103 3815103 3815105 3815105 3815105 3815105 3815105 3815105 3815105 3815105	3.211 3.011 RUN380 === GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 0R0P TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUGH DRY .455 .679 .957 1.243 1.501 1.798 = 19 . H8 0 .453 .682 .915 1.197 1.347 1.421 1.463 1.527 = 19 . H8 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3255101 3300001 3300002 3300004 3300005 3800005 3800005 3815101 3815102 3815102 3815103 3815104 3815105 3815105 3815105 3815105 3815105 3815105 3815105 3815105 3815105	3.211 3.011 RUN380 ==== GAS PRESSURE 0 0 0 RUN 381 === 2.250 2.387 2.417 2.696 4.375 5.976 7.170 7.539 8.296 RUN 382 === 2.821 2.839 2.425 .437 .439 .437 .437 .437 .437 .439 .437 .4	.0532 .0262 DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUCH DRY .455 .679 .967 1.243 1.501 1.798 = 19 . H8 0 .453 .582 .915 1.197 1.347 1.463 1.527 = 19 . H8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 8E0 ■ ■ 225.8 465.2 937.2 1399.0 1973.6 2764.1 = .430. 0 291.9 0 291.9 0 291.9 0 291.4 1363.8 2987.6 4036.7 4036.7 4793.9 5277.4 = .430. 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3200001 3600002 3600003 3600005 3800005 3800005 3815101 3815102 3815105 3815005 381500	3.211 3.011 RUN380 === GRS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 0R0P TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUCH DRY .455 .679 .957 1.243 1.501 1.798 .19. H8 0 .453 .582 .915 1.197 1.347 1.421 1.463 1.527 = 19. H8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 8ED ■■ 225.8 465.2 987.2 1399.0 1979.6 2764.1 = .430 0 291.9 661.4 1363.8 2987.6 4036.7 4647.3 4733.9 5277.4 = .430 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3255101 3800001 3800002 3800003 3800005 3800005 3800005 3815101 3815102 3815103 3815105	3.211 3.011 RUN380 === GAS PRESSURE 0 0 0 0 0 0 0 0 0 0 0 0 0	.0532 .0262 0R0P TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1RDUGH DRY .455 .679 .957 1.243 1.501 1.798 = 19 . H8 0 .453 .682 .915 1.197 1.347 1.421 1.463 1.527 = 19 . H8 0 C 0 0 0 0	0 0 8E0 ★★ 225.8 465.2 937.2 1399.0 1979.6 2764.1 = .430 291.9 561.4 1363.8 2987.6 4036.7 4647.3 4793.9 5277.4 = .430 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3256101 3255101 3500001 3500002 3800003 3800003 3800005 3800005 3815101 3815102 3815102 3815102 3815103 3815105 3815105 3815105 3815105 3815107 3815108 3815109	3.211 3.011 RUN380 ==== GAS PRESSURE 0 0 0 RUN 381 === 2.250 2.387 2.417 2.696 4.376 5.976 7.170 7.539 8.296 RUN 382 === 2.821 2.839 2.325 2.199 2.493 3.268	.0532 .0262 0R0P TH 0 0 0 0 .0151 .0142 .0153 .0164 .0194 .0194 .0194 .0194 .0198 .0202 .0176 .0157 .0905 .0220 .0131 .0502 .0252	0 0 1RDUCH DRY .455 .679 .967 1.243 1.501 1.798 = 19 . H8 0 .453 .582 .915 1.197 1.347 1.421 1.463 1.527 = 19 . H8 0 C 0 0 0 0	0 8E0 ★★ 225.8 465.2 937.2 1399.0 1979.6 2764.1 = .430. 0 291.9 651:4 1363.8 2987.6 4036.7 4036.7 4793.9 5277.4 = .430. 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ND 3

EXPERIMENTAL RESULTS FOR == WI3/GLY == SYSTEM

EXPERI	DENTHL RESUL	13 FUR ##	W13/6C1		•		
	TOTAL	10010	GAS	PRESSURE	RELA	TIVE LIGUID	FLUX
RUN ND.	HOLD-UP	VELOCITY	VELOCITY	DRDP	INNER	MIDDLE	OUTER
	(PCT.)	(MM/S)	(1/5)	(N/M3)	(-)	; - i	i -)
3829102	3.933	- 5009	.367	228.1	.909	1.618	.654
3829103	3.988	.5002	·S13	456.1	1.454	1.132	.772
3829104	4.490	.4874	.675	1040.0	.777	.775	1.220
3829105	4.552	.4828	.763	1434.5	.420	.519	1.437
3829106	5.347	-4632	.886	2253.3	- : 97	.868	1,357
3829107	7.631	.4738	-965	3329.7	.376	1.169	1.111
3829108	12.826	.4843	.987	5277.4	.377	.974	231
***	RUN 393	. DIST	- 19 . HB	430 .	EPS = .11	HO . VIS =	.00870
	10. 202	- • 015.	- 15 1 113				
3838101	3.025	-1345	0	0	1.229	1.280	.750
3838101 38381D2	3.025 3.171	-1345	0 448	314.7	1.229	1.289	.750 .855
3838101 3838102 3838103	3.025 3.171 3.244	-1345 -1380 -1423	0 448 671	314.7 736.6	1.229 .929 .908	1.28° 1.282 .965	.750 .855 1.093
3838101 3838102 3838103 3838103 3838104	3.025 3.171 3.244 3.866	-1345 -1380 -1423 -1472	0 448 671 24	314.7 736.6 1799.4	1.229 .929 .908 .195	1.28° 1.282 .965 .269	.750 .855 1.093 1.729
3838101 3838102 3838103 3838104 3838105	3.025 3.171 3.244 3.866 6.578	- 1345 -1380 -1423 -1472 -1532	- 13 1 118 - 448 - 671 - 924 1 - 127	314.7 736.6 1799.4 3587.4	1.229 929 .908 .195 .378	1.28° 1.282 .965 .269 .591	.750 .855 1.093 1.729 1.407
3838101 3838102 3839103 3838104 3838105 3836106	3.025 3.171 3.244 3.866 6.578 8.797	- 1345 -1380 -1423 -1472 -1532 -1504	448 -671 -924 1-127 I-266	314.7 736.6 1799.4 3587.4 4734.6	1.229 .929 .908 .195 .373 .568	1.289 1.282 .965 .269 .591 .492	.750 .855 1.093 1.729 1.407 1.432
3838101 3838102 3838103 3838103 3838104 3838105 3836106 3938107	3.025 3.171 3.244 3.866 6.578 8.797 10.517	- 1345 -1380 -1423 -1472 -1532 -1504 -1428	448 -671 -924 1-127 1-266 1-333	0 314.7 736.6 1799.4 3587.4 4734.6 5252.3	1.229 .929 .908 .195 .373 .568 .340	1.289 1.282 .965 .269 .591 .492 .442	.750 .855 1.093 1.729 1.407 1.432 1.573
3838101 3838102 3839103 3838104 3838105 3838105 3838106 3938107 3835102	3.025 3.171 3.244 3.866 6.578 8.797 10.517 7.734	- 1345 -1380 -1423 -1472 -1532 -1504 -1428 -0171	.448 .671 .924 1.127 1.266 1.333 1.533	0 314.7 736.6 1799.4 3587.4 4734.6 5252.3 5129.1	1.229 .929 .908 .195 .373 .568 .340 .477	1.289 1.282 .965 .269 .591 .492 .442 1.553	.750 .855 1.093 1.729 1.407 1.432 1.573 .838
3838101 3838102 3839103 3838104 3838105 3838105 3838106 3939107 3835102 3835103	3.025 3.171 3.244 3.866 6.578 8.797 10.517 7.734 9.568	- 1345 -1360 -1423 -1472 -1532 -1504 -1428 -0171 -0220	.448 .671 .924 1.127 I.266 J.333 1.533 I.595	0 314.7 736.6 1799.4 3587.4 4734.6 5252.3 5123.1 5993.5	1.229 .929 .908 .193 .378 .368 .340 .477 1.157	1.28° 1.282 .965 .269 .591 .492 .442 1.553 1.272	.750 .855 1.093 1.729 1.407 1.432 1.573 .838 .792
3838101 3838102 3838103 3838104 3838105 3838105 3838105 3938107 3835102 3835103 3835104	3.025 3.171 3.244 3.866 6.578 8.797 10.517 7.734 9.568 8.537	- 1345 -1360 -1423 -1472 -1532 -1504 -1428 -0171 -0220 -0176	.448 .671 .924 1.127 I.266 J.333 I.533 I.595 I.632	314.7 736.6 1799.4 3587.4 4734.6 5252.3 5123.1 5993.5 5758.6	1.229 .929 .908 .193 .568 .340 .477 1.157 1.073	1.28° 1.28° 2.269 .591 .492 .442 1.553 1.272 1.552	.750 .855 1.093 1.729 1.407 1.432 1.573 .838 .792 .003

W13/GLY ## SYSTEM

NO - 4

EXPERIMENTAL RESULTS FOR ## HI3/GLY ## SYSTEM

	τοτοι ι	10010	685	PRESSURE	RELATIN		FUIX
RUN NO.	H010-11P V	VELOCITY	VELOCITY	DROP			DUTER
	(PCI.) ((MMZS)	(11/5)	(N/M3)	(-)	(-) .	(-)
3229109	13.339	.3743	.937	5254-1	.508	1.243	1.021
3225102	4.158	.0218	.940	1968.3	0000	.523	1.642
3225103	5,858	.0244	1.339	4111.9	.906	1.395	.790
3225104	9.845	.0163	1.476	5826.3	2.602	.758	.629
	RUN 323 ###	. 0151	= 71 . HB	= .425 .	EPS = .4106	. v15 =	.06820
3237101	3.134	.0990	0	0	2,957	1.268	.185
3237102	3.241	.1025	.458	327.7	.994	1.991	.394
3237103	3.357	.0950	.626	623.0	1.753	1.715	.313
3237104	3.884	·D892	.852	1416.8	.738	1.042	1.069
3237105	5.325	.0901	1.071	2773.6	.079	.763	1.462
3237106	6.411	0871	1.158	3578.9	.680	1.293	.932
3237107	7.858	0880	1.192	4259.6	1.574	1.364	.590
3237108	12.041	.0773	1.259	5957.9	1.509	1.317	.640
	RUN 324 ###	. DIST	= 71 . HB	= .425 .	FPS = -4106	• VIS =	.07730
3247101	3.214	.0734	0	0	2.500	1.193	-383
3249101	3.815	.2697	0	0	2.050	1.307	.465
3248101	3.510	.1536	Ō	0	2.238	1.201	.457
3246101	3.036	.0384	Ō	D	2.211	1.038	.580
3245101	2.887	.0184	0	0	2.912	.840	.465
	RUN 325 ===	. DIST	= 19 . H8	= .425 .	EPS = .4106	. VI5 =	.06780
3259101	4.153	.3596	0	0	1.425	1.301	.677
3258101	3.744	.2242	0	0	.605	1.491	.835
3257101	3.453	-1103	0	. 0	.718	1.561	.753
3052101	2 211	0522	0	n	1 625	1 207	613
3799101	3.211	+0332			1.023	1.231	•013
3255101	3.011	.0352	Ő	, o	1.980	1.132	.594
3255101	3.011 RUN380 ###	.0262	Ö	ŭ	1.980	1.132	\$94
3255101 3255101	3.011 RUN380 === GAS PRESSURI	.0332 .0262 E OROP T	HROUGH ORY	0 8ED ==	HB = .430 .	1.132 EPS = .4	-594 180
3255101 3255101 ### 3800001	3.011 RUN380 === GAS PRESSUR(0	.0332 .0262 E OROP T	HRDUGH ORY 456	0 6ED == 225.8	HB = .430 .	1.132 EPS = .4	-594 -594
3255101 3255101 ### 38000001. 3600002	3.011 RUN380 === GAS PRESSUR(0 0	.0332 .0262 E OROP T 0 0	HRDUGH ORY .456 .679	0 8ED ** 225.8 465.2	HB = .430 . 0	1.132 EPS = .4 0	-515 -594 1180 0
3255101 3255101 3800001 3600002 3800003	3.011 RUN380 ### GAS PRESSUR(0 0	.0332 .0262 E OROP T O O O O	HRDUGH ORY .456 .679 .957	0 8ED ** 225.8 465.2 887.2	HB = .430 . 0 0	1.132 EPS = .4 0 0	•515 •594 •180 0 0
3255101 3255101 3800001 3600002 3800003 3800004	3.011 RUN380 === GAS PRESSUR 0 0 0	0262 0262 E OROP T 0 0 0 0	HROUGH ORY 456 679 957 1.243	6ED ** 225.8 465.2 887.2 1398.0	HB = .430 . 0 0 0	I.I.32 EPS = .4 0 0 0	•515 •594 •180 0 0 0
3255101 3255101 38000001 3600002 3800003 3800004 3800005	3-211 3-011 RUN380 === GAS PRESSURF 0 0 0 0 0	0262 0262 E OROP T 0 0 0 0 0 0	HRDUGH ORY .456 .679 .967 1.243 1.501	6ED ** 225.8 465.2 887.2 1398.0 1979.6	H8 = .430 . 0 0 0 0 0	1.132 EPS = .4 0 0 0 0	-594 -594 0 0 0 0
3255101 3255101 38000001 3600002 3800003 3800004 3800005 3800006	3.011 RUN380 === GAS PRESSUR 0 0 0 0 0 0 0 0	•0262 •0262 E OROP T' 0 0 0 0 0	HRDUGH ORY .456 .679 .967 1.243 1.501 1.798	6ED 225.8 465.2 887.2 1398.0 1979.6 2764.1	H8 = .430 . 0 0 0 0 0 0 0	1.132 EPS = .4 0 0 0 0 0 0	- 594 - 594 0 0 0 0 0 0 0
3255101 3255101 3800001 3600002 3800003 3800004 3800005 3800005	3.011 RUN380 GAS PRESSUR(0 0 0 0 0 0 0 0 0 0 RUN 381	.0332 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0	HRDUGH ORY .456 .679 .967 1.243 1.501 1.501 1.798 = J9 . H8	6ED 225.8 465.2 887.2 1398.0 1979.6 2764.1 = .430.	1.925 I.980 HB = .430 . 0 0 0 0 EPS = .4180	I · I 32 EPS = .4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.594 .180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3255101 3255101 3600001 3600002 3800003 3800005 3800005 3800006	3.011 RUN380 *** GAS PRESSURI 0 0 0 0 RUN 381 *** 2.260	.0352 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HRDUGH ORY .456 .679 .967 1.243 1.501 1.796 = J9 . H8 0	6ED == 225.8 465.2 887.2 1398.0 1979.6 2764.1 = .430.	$H3 = .430 . 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	I.I32 EPS = 4 0 0 0 0 0 0 .VIS = 1.5[3	.594 .594 0 0 0 0 .07330 .648
3255101 3255101 3800001 3600002 3800003 3800004 3800005 3800005 3800005 3800005 3800005	3.011 RUN380 *** GAS PRESSURI 0 0 0 0 RUN 381 *** 2.260 2.387	.0332 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HRDUGH ORY .456 .679 .957 1.243 I.501 1.798 = J9 . H8 0 .453	6ED ** 225.8 465.2 887.2 1398.0 1979.6 2764.1 = .430. 0 291.9	I.980 HB = .430 . 0 0 0 EPS = .4180 .537 .598	I.I.32 EPS = .4 0 0 0 0 VIS = 1.5I3 1.489	
3255101 3255101 3800001 3600002 3800003 3800004 3800005 3800006 3815101 3815102 3815103	3.011 RUN380 *** GAS PRESSURI 0 0 0 0 RUN 381 *** 2.260 2.337 2.417	.0352 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HRDUGH ORY 456 679 967 1.243 1.501 1.798 = 19 . H8 0 453 .692	6ED •• 225.8 465.2 887.2 1399.0 1979.6 2764.1 = .430. 0 0 291.9 661.4	$H8 = .430 . 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	I - I 32 EPS = .4 0 0 0 . VIS = 1.513 1.489 1.202	
3255101 3255101 3600002 3600002 3800004 3800004 3800005 3800006 3815101 3815102 3815103 3815104	3.011 RUN380 GAS PRESSUR(0 0 0 RUN 381 2.260 2.387 2.417 2.696	.0332 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUGH ORY .456 .679 .967 1.243 1.501 1.796 =)9 . H8 0 .453 .692 .915	6ED •• 225.8 465.2 887.2 1393.0 1979.6 2764.1 • .430 . 0 291.9 661.4 1363.8	HB = .430 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I.I.32 EPS = .4 0 0 0 0 . VIS = 1.5I3 1.489 1.202 .729	.594 .594 .180 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
3255101 3255101 3800001 3600002 3800004 3800004 3800006 3815101 3815102 3815102 3815104 3815104 3815105	3.011 RUN380 *** GAS PRESSURI 0 0 0 RUN 381 *** 2.260 2.337 2.417 2.696 4.375	.0352 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HRDUGH ORY .456 .679 .967 1.243 1.501 1.796 = J9 . H8 .453 .692 .915 1.197	6ED == 225.8 465.2 887.2 1398.0 1979.6 2764.1 = .430. 291.9 291.9 291.9 661.4 1363.8 2987.6	H8 = .430 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I.I.32 EPS = .4 0 0 0 0 . VIS = 1.5I3 1.489 1.202 .729 .494	.594 .594 0 0 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
3255101 3255101 3800001 3600002 3800004 3800004 3800005 3800006 3815101 3815102 3815102 3815103 3815105 3815105	3.011 RUN380 *** GAS PRESSUR 0 0 0 RUN 381 *** 2.260 2.387 2.417 2.696 4.376 5.976	.0352 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HRDUGH ORY .456 .679 .967 1.243 1.501 1.798 = J9 . H8 0 .453 .692 .915 1.197 1.347	6ED ** 225.8 465.2 887.2 1398.0 1979.6 2764.1 = .430. 0 291.9 661.4 1363.8 2987.6 4036.7	I.980 HB = .430 . 0 0 0 EPS = .4180 .537 .598 I.086 .650 .028 .877	I.I.32 EPS = .4 0 0 0 0 VIS = 1.513 1.489 1.202 .729 .494 .629	.594 .594 .594 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
3255101 3600001 3600002 3800003 3800004 3800005 3800005 3815101 3815102 3815103 3815104 3815106 3815105	3.011 RUN380 GAS PRESSUR 0 0 0 RUN 381 2.260 2.387 2.417 2.696 4.375 5.976 7.170	.0332 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HRDUGH ORY .456 .679 .967 1.243 1.501 1.796 = 19 . H8 0 .453 .692 .915 1.197 1.347 1.421	6ED ■■ 225.8 455.2 887.2 1399.0 2764.1 = .430. 0 291.9 661.4 1363.8 2987.6 4036.7 4647.9	HB = .430 . 0 0 0 0 0 0 0 0 0 0 0 0 0	I.I.32 EPS = .4 0 0 0 .VIS = 1.513 1.489 1.202 .729 .494 .629 .784	.594 .594 0 0 0 0 .07330 .848 .944 .856 1.229 1.545 1.276 1.222
3255101 3255101 3600001 3600002 3600002 3600004 3600005 3600006 3615101 3615102 3615103 3615104 3615105 3615107 3615107 3615109	3.011 RUN380 GAS PRESSUR 0 0 0 RUN 381 2.260 2.387 2.417 2.696 4.375 5.976 7.170 7.539	.0352 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUGH ORY 456 679 967 1.243 1.501 1.796 =)9 . H8 0 453 .692 .915 1.197 1.347 1.421 1.423	6ED •• 225.8 465.2 887.2 1398.0 1979.6 2764.1 = .430. 0 291.9 661.4 1363.8 2987.6 4056.7 4647.9 4793.9	HB = .430 . 0 0 0 0 0 0 0 0 0 0 0 0 0	I.I.32 EPS = .4 0 0 0 0 0 0 0 0 0 0 0 0 0	.594 .594 .594 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
3255101 3255101 3800001 3600002 3800004 3800006 3815101 3815102 3815102 3815103 3815104 3815105 3815105 3815105 3815107 3815109	3.011 RUN380 *** GAS PRESSUR 0 0 0 0 RUN 381 *** 2.260 2.387 2.417 2.696 4.376 5.976 7.170 7.539 8.295	.0332 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HRDUGH ORY 456 679 967 1.243 1.501 1.796 =)9 . H8 0 .453 .692 .915 1.197 1.347 1.463 1.527	6ED == 225.8 455.2 887.2 1398.0 1979.6 2754.1 = .430. 291.9 291.9 291.9 291.9 291.9 291.9 295.6 4036.7 4036.7 4793.9 5277.4	I.980 HB = .430 . 0 0 0 0 0 0 0 0 0 0 0 0 0	I.I32 EPS = .4 0 0 0 0 0 0 0 0 0 0 0 0 0	.594 .594 .594 .594 .594 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
3255101 3255101 3800001 3600002 3800004 3800004 3800005 3800005 3815101 3815102 3815102 3815105 3815105 3815105 3815105 3815109 3815109	3.011 RUN380 *** GAS PRESSURI 0 0 0 RUN 381 *** 2.260 2.387 2.417 2.696 4.375 5.976 7.170 7.539 8.295 RUN 382 ***	.0332 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HRDUGH ORY .456 .679 .967 1.243 1.501 1.796 = J9 . H8 0 .453 .692 .915 1.197 1.347 1.421 I.463 1.527 = I9 .,H8	6ED == 225.8 465.2 887.2 1398.0 1979.6 2764.1 = .430. 0 291.9 661.4 1363.8 2987.6 4036.7 4647.9 4793.9 5277.4 = .430.	I.980 HB = .430 . 0 0 0 0 0 0 0 0 0 0 0 0 0	I.I.32 EPS = .4 0 0 0 0 0 0 0 0 0 0 0 0 0	.594 .594 .594 .594 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
3255101 3600001 3600002 3800003 3800004 3800005 3800005 3815101 3815102 3815103 3815104 3815104 3815105 3815105 3815107 3815109 3815109 3827101	3.011 RUN380 GAS PRESSUR 0 0 0 RUN 381 2.260 2.387 2.417 2.696 4.375 5.976 7.170 7.539 8.295 RUN 382 2.821	.0332 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HRDUGH ORY 456 679 967 1.243 1.501 1.796 = 19 . H8 0 453 .692 .915 1.197 1.347 1.347 1.421 1.463 1.527 = 19 . H8 0	6ED •• 225.8 465.2 887.2 1399.0 2764.1 = .430 . 0 291.9 661.4 1363.8 2987.6 4036.7 4647.9 4793.9 5277.4 = .430 . 0	HB = .430 . 0 0 0 0 0 0 0 0 0 0 0 0 0	I.132 EPS = .4 0 0 0 .VIS = 1.513 1.489 1.202 .729 .494 .629 .784 .873 1.218 .VIS = 1.237	.594 .594 .594 .594 .594 .0 .0 .0 .0 .0 .848 .944 .856 1.229 1.526 1.226 1.222 1.220 .927 .06460 .818
3255101 3255101 3600001 3600002 3600002 3600004 3600005 3600006 3815101 3815102 3815104 3815105 3815107 3815107 3815109 3815109 3827201	3.011 RUN380 GAS PRESSUR(0 0 0 RUN 381 2.260 2.387 2.417 2.696 4.376 5.976 7.170 7.539 4.295 RUN 382 2.821 2.838	.0332 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUGH ORY .456 .679 .967 1.243 1.501 1.796 = 19 . H8 0 .453 .692 .915 1.197 1.347 1.421 1.463 1.527 = 19 . ,H8 0 0	6ED •• 22558 455.2 887.2 1393.0 1979.6 2764.1 = .430. 0 291.9 661.4 1363.8 2987.6 4036.7 4647.9 4793.9 5277.4 = .430. 0 0	H8 = .430 . 0 0 0 0 0 0 0 0 0 0 0 0 0	I . I 32 I . I 32 EPS = .4 0 0 0 VIS = 1.513 1.489 1.202 .729 .494 .629 .784 .873 1.218 .218 .VIS = 1.237 1.237	.594 .594 .594 .594 .594 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
3255101 3255101 3800001 3600002 3800004 3800004 3800006 3815101 3815102 3815103 3815103 3815105 3815105 3815105 3815109 3815109 3815109 3827101 3827101	3.011 RUN380 *** GAS PRESSUR 0 0 0 0 RUN 381 *** 2.260 2.387 2.417 2.696 4.375 5.976 7.170 7.539 8.295 RUN 382 *** 2.821 2.838 2.325	.0332 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUGH ORY 456 679 967 1.243 1.501 1.796 = 19 . H8 0 453 .692 .915 1.197 1.347 1.421 1.463 1.527 = 19 . H8 0 0 0	6ED == 225.8 465.2 887.2 1393.0 1979.6 2754.1 = .430. 0 291.9 661.4 1363.8 2987.6 4036.7 4647.9 4793.9 5277.4 = .430. 0 0	I.023 I.980 HB = .430 . 0 0 0 0 0 0 0 0 0 0 0 0 0	I.I.32 I.I.32 EPS = .4 0 0 0 0 0 0 0 0 0 0 0 0 0	.594 .594 0 0 0 0 .07330 .648 .944 .856 1.229 1.645 1.222 1.220 .927 .06460 .818 .847 .753
3255101 3255101 3800001 3600002 3800004 3800004 3800006 3815101 3815102 3815102 3815104 3815105 3815105 3815106 3815109 3815101 38271000000000000000000000000000000000000	3.011 RUN380 *** GAS PRESSUR 0 0 0 RUN 381 *** 2.260 2.387 2.417 2.696 4.376 5.976 7.170 7.539 8.295 RUN 382 *** 2.821 2.838 2.825 2.189	.0332 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HRDUGH ORY .456 .679 .967 1.243 1.501 1.796 = J9 . H8 .692 .915 1.197 1.347 1.421 1.463 1.527 = I9 . H8 0 0 0 0	6ED == 225.8 465.2 887.2 1398.0 1979.6 2764.1 = .430. 291.9 291.9 661.4 1363.8 2987.6 4036.7 4647.9 5277.4 = .430. 0 0 0 0 0	I.023 I.980 HB = .430 . 0 0 0 0 0 0 0 0 0 0 0 0 0	I.I.32 I.I.32 EPS = .4 0 0 0 0 0 0 0 0 0 0 0 0 0	.594 .594 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3255101 3255101 3600001 3600002 3800003 3800004 3800005 3815101 3815102 3815103 3815104 3815104 3815105 3815107 3815109 3815109 3815109 3815109 3815109 3815109 3827101 3827201 3827201 3827201 3827101 3827201 3827101 3827201 3827101 3827201 3827101	3.011 RUN380 GAS PRESSUR 0 0 0 RUN 381 2.260 2.387 2.417 2.696 4.375 5.976 7.170 7.539 8.295 RUN 382 2.838 2.325 2.189 2.493	.0332 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HRDUGH ORY .456 .679 .967 1.243 1.501 1.796 = 19 . H8 0 .453 .692 .915 1.197 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 0 0 0 0 0 0	6ED 225.8 455.2 887.2 1399.0 2764.1 = .430 . 0 291.9 661.4 1363.8 2967.6 4036.7 4647.9 4793.9 5277.4 = .430 . 0 0 0 0 0 0 0 0	HB = .430 . 0 0 0 0 0 0 0 0 0 0 0 0 0	I.132 I.132 EPS = .4 0 0 0 VIS = 1.513 1.489 1.202 .729 .494 .629 .784 .873 1.218 .VIS = 1.237 1.246 1.423 1.408 1.423	.594 .594 .594 .594 .00 .00 .00 .07330 .648 .944 .856 1.229 1.645 1.226 1.220 .927 .06460 .818 .847 .753 .840 .818 .847 .753 .840
3255101 3255101 3600002 3600002 3600002 3600004 3600005 3600006 3815101 3815102 3815103 3815104 3815105 3815107 3825101 38251000000000000000000000000000000000000	3.011 RUN380 GAS PRESSUR(0 0 0 RUN 381 2.260 2.387 2.417 2.696 4.376 5.976 7.170 7.539 4.295 RUN 382 2.821 2.838 2.325 2.189 2.493 3.285	.0332 .0262 E OROP T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HROUGH ORY .456 .679 .967 1.243 1.501 1.796 = 19 . H8 0 .453 .692 .915 1.197 1.347 1.421 1.463 1.527 = 19 . ,H8 0 0 0 0 0	6ED •• 225.8 455.2 887.2 1393.0 1979.6 2764.1 = .430 . 0 291.9 661.4 1363.8 2987.6 4036.7 4647.9 4793.9 5277.4 430 . 0 0 0 0 0 0 0 0 0 0 0	I.023 I.980 HB = .430 . 0 0 0 0 0 0 0 0 0 0 0 0 0	I - 132 I - 132 EPS = .4 0 0 0 0 0 0 0 0 0 0 0 0 0	.594 .594 0 0 0 0 .07330 .848 .944 .856 1.229 1.645 1.226 1.222 1.220 .927 .0646 1.222 1.220 .927 .0546 1.225 1.275 1.275 .818 .847 .753 .848 .847 .753 .849 .849 .762 .894

	τοτει	110010	GAS	PRESSURE	RELAT	IAE FIONIO	FLUX
RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER	NIGOLE	OUTER
non no	(PCT.)	(MM/S)	(M/S)	(N/M3)	1 - 1	[-]	[-]
3829102	3.933	.5009	.367	228.1	.909	1.618	-654
3829103	3,988	.5002	.513	456.1	1.454	1.132	.772
3829104	4.490	.4874	.675	1040-0	.777	.775	1.220
3829105	4.552	.4828	.763	1434.5	.420	.619	1.437
3829106	5.347	4632	.886	2253.3	.197	.858	1.357
3829107	7.631	.4738	.965	3329.7	.376	1.169	1-111
3829108	12.826	.4843	.987	5277.4	.377	.974	1.231
	RUN 383 #	DIST	= 19 • H8	= .430 .	EPS = .418	30 . ∵15 =	.06870
3838101	3.025	.1345	0	. 0	:.229	1.289	.750
3838102	3. 71	.1380	.448	314.7	.929	1 282	.856
3838103	3.244	.1423	.671	736.6	.908	.965	1-093
3838104	3-866	.1472	.924	1799.4	.:95	269	1.729
3838105	6.578	.1532	1.127	3587.4	.378	.691	1.407
3838106	8.797	1504	1.266	4734-6	.658	.492	1.432
3838107	10.517	.1428	1.333	5252.3	.340	. 442	1.573
3835102	7.734	.0171	1.533	5129.1	.477	1.4553	-838
3835103	9.568	-0220	1.695	5993.5	1.157	1.272	.792
3835104	8.537	.0176	1.632	5758.6	1.073	1.552	.653
3835105	6.066	-0166	1.305	3975.1	-836	.778	1.208

EXPER!	MENTAL RESUL	TS FOR ##	W13/GLY	SYSTE	4	· ·	NQ. 1	EXPERI
PAC	KING : WAX-C	OATED SPH	ERES			•		
	AVERAGE SIZE	= 13	.3 (MM) .	APPARENT	DENSITY =	921	(KG/M3)	RUN NO.
	OID : GLICE DENSITY	= 121	CR (KG/M3)	. NOMINAL	VISCOSITY -	.0640	(NS/M2)	3036107
	SURFACE TENS	10N = .0	652 (N/M)	. CONTACT	ANGLE =	96.6	(DEG.)	3036108
								жжж
	TOTAL	LICUID	GAS	PRESSURE	RELAT	IVE LIQU	JIO FLUX .	3047101
RAN NOT	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER	MIDDLE	OUTER	3045101
	(PCT-1	(MM/S)	(M/S)	(Ņ/M3)	(-)	[-]	(- 1	3048101
* # #	- KUNJUU ### - 200 0052500	C 0000 TU		000		CO.C	4100	3046101
2000001	UHD FRESDUR		462	225 8	no = -430	• EPS =	+4180	3049101
3000000	0	n n	.650	417.4	n	0 0	- J	3044101
3000003	· ñ	ů.	.861	702.4	ñ	ñ	ñ	 3049201
3000004	Ō	Ō	1.115	1117.S	0	Ō	. 0	3046301
3000005	0	0	1.397	1683.1	0	. D	0	
3000005	0	0	1.521	2225.9	0	0	. 0	3057101
3000007	0	0	1.830	2784.6	D	0	0	3059101
N N N	RUN 301 ###	. DIST	= 71 • HB	= .430	EPS = .418	0 . VIS	= .06430	3058101
3018101	2.794	.1794	U	U	2.297	1.283	-356	3055101
3013101	3.345	-3/08	U	U -	1.919	1.372	-468	3020101
3017101	2.490	.0334	- D	U 0	2.170	1.970	-143	3068101
2010201	2.482	.0721	0	0 N	1.419	1.689	.438	3067101
3017202	2,528	.0721	.457	305.6	1.228	1.443	.657	3066101
3017203	2.539	0729	.624	561.0	.392	2.099	.529	3069101
3017204	2.686	.0699	.865	1154.0	.112	.773	1.444	
3017205	4.169	.0670	1.117	2700.3	.051	.055	1.913	
3017206	4.905	.0656	1.238	3425.5	.011	018	1.945	3200001
3017207	5.028	.0614	1.356	4285.3	.492	.505	1.483	3200002
3017208	9.440	.0511	1.410	5560.2	1.025	//1	1,140	3200003
2000101	- KUN 3UZ = F	. 9151	= /1 • /18	= •430 •	2 420	1 027	= +07250	3200004
3026101	3+200 2 639	-1074	0	0	1.570	1.629	- 210	3200005
3025101	2.048	.0383	0 0	0.	2,326	1.311	.372	3200007
-227101	2.838	.0777	n	· õ	2.449	1,237	.373	200000, ###
3028201	3,125	.1785	ŏ	0	1.957	1.655	.280	3218101
2029101	3.554	.3726	0	0	2.362	1.474	.255	3217101
1023102	3.573	.3852	.452	314.7	2.549	1.359	-254	3217102
+929103	3.657	.3830	.520	595.2	3.302	.890	•30 3	3217103
3029104	4,614	-3863	.821	1594.2	-583	- 375	1.532	3217104
933810e	1.187	.3753	.920	2159.8	-328	.546	1.512	3217105
3050106	9.071	.3557	1.005	3920.4	•5U4	.583	1,431	3217105
	- HUN -93 ###	. 8151	= /1 - HS	= .430 .	EFS = -418	0 • VIS 670	= .06290	3217108
5735101	2 + 307	+1441	0	0	3 378	.764		5211103
2012101	2,430	.0103	n	· n	3,104	1.373	.070	3229101
4 19010 L	2.634	.0442	. n	0	3.763	.890	.149	 3229102
+248101	2.553	.0.15	ŏ	õ	2.587	1.575	.118	3229103
3035102	↑.591	.02 20	. 458	301.0	2.605	1.250	-315	3229104
5036103	2.547	-0231	.551	599.8	2.235	1.350	.391	3229105
336104	2.548	.0212	.867	1133.5	501	649	1.36D	3229106
1036105	3.545	.0240	1.131	2469.9	.060	.100	1.879	3229107
47481 N		.0258	1.336	3759.0	.177	.132	1.833	3229108

EXPERIMENTAL RESULTS FOR ## WI3/GLY ... ## SYSTEM

1.5

NO 2

	TOTAL	LIQUID	GAS	PRESSURE	RELATIVE L	IQUID FLUX
RUN NO.	HOLD-UP	VELOCITY	VELOCITY	DROP	INNER MIDD	ILE OUTER
	(PCT.)	(MM/S)	(M/S)	(N/M3)	[-] [-) (-)
3036107	5.859	.0236	1.424	4547-6	1.682 6	87 -972
3036108	8.225	-0185	1.515	5414-2	1.555 .5	
2010101	RUN 304 ###		= 19 • HB	= .430 .	1 007 1 4	13 = 105370
3047101	3-149	-0635	U	u n	082 1.3	38 .804
3043101	2.704	1322		0	1.293 1.3	03 .721
3046101	2.932	.0349	ñ	ñ	1.023 1.4	21 .738
3049101	3.746	.2538	n n	ñ	.318 1.5	13
3046201	3.136	.0709	õ	õ	.775 1.4	11 .926
304410I	2.707	-0086	0 -	0	.853 1.2	97 .877
3049201	3.681	.2594	0`	. O	I.54D 1.4	19 -565
3046301	3.117	.1439	0	D	1.341 1.3	118 .596
	RUN 305 ***	· DIST	= 19 • HB	= .430 .	EPS = .4180 . V	15 = -26570
3057101	2.965	.0640	D	0	-905 1-7	34 585
3059101	3.364	.2278	0	0	1.545 1.7	92 .333
3058101	. 3.133	.1388	· U	0	-414 2-0	141 - 365 143 - 459
3022101	2.669	•0100	U.	U	2.001 1.3	54 350
2020101	2+775 RUN 306 ===	10297	- 10 HR	430	EPS4180 . V	1505570
3068101	2_941	.0941	- 13 - 10	- ·•JU ·	2.961 1.0	54 .317
3067101	2.781	.0514	3	õ	3.149 1.2	62 123
3066101	3.106	.1662	Ć,	D	3.161 1.3	59 .059
3069101	2.661	.0188	0	· O	2.859 .9	83 .392
W X K	RUN320 ###					
H H H	GAS PRESSUR	E OROP TH	ROUGH DRY	8ED = = =	HB = .425 . EPS	= .4106
### 3200001	GAS PRESSUR 0	E OROP TH	ROUGH DRY 469	8ED == 246-9	HB = .425 . EPS D	= .4106 0 0
3200001 3200002	GAS PRESSUR D D	E OROP TH O O	ROUGH DRY -469 -624	BED == 246.9 417.7	HB = .425 . EPS D 0	
3200001 3200002 3200003	GAS PRESSUR D D D	E OROP TH O O O	ROUGH DRY -469 -624 -826	BED == 246.9 417.7 687.6	HB = .425 . EPS D 0 0	4106 0 0 0 0 0 0
3200001 3200002 3200003 3200004	GAS PRESSUR D D O D D	E OROP TH 0 0 0 0 0 0	1ROUGH DRY - 469 - 624 - 826 1 - 053	BED == 246.9 417.7 687.6 1068.4	H8 = .425 . EPS D 0 0 0 0	4105 0 0 0 0 0 0 0 0 0 0
3200001 3200002 3200003 3200004 3200005	GAS PRESSUR D D D D D D D D D D D	E OROP TH 0 0 0 0 0 0 0	ROUGH DRY -469 -624 -826 1-053 1-306 1-306	BED == 246.9 417.7 687.6 1069.4 1578.3 2007.5	HB = .425 . EPS D 0 0 0 0 0	= -4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200002 3200003 3200004 3200005 3200005 3200005	GAS PRESSUR D D D D D D D D D D	E OROP TH 0 0 0 0 0 0 0 0 0	ROUCH DRY -469 -624 -826 1-053 1-306 1-526 1-814	BED == 246.9 417.7 687.6 1068.4 1578.3 2097.5 2886.6	HB = .425 . EPS D 0 0 0 0 0 0 0 0 0	4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200002 3200003 3200004 3200005 3200006 3200007	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUCH DRY -469 -624 -826 1.053 1.306 1.526 1.814 - 19.48	BED ** 246-9 417.7 687.6 1068.4 1578.3 2097.5 2896.6 5 425	HB = .425 . EPS D 0 0 0 0 0 5PS = .4105 . V	
3200001 3200002 3200003 3200004 3200005 3200005 3200005 3200007	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1571	ROUCH DRY .469 .624 .826 1.053 1.306 1.526 1.814 = 19 . HB	BED ** 246.9 417.7 687.6 1068.4 1578.3 2097.5 2896.6 = .425.	HB = .425 . EPS 0 0 0 0 0 0 0 0 0 0 0 0 0	
320000I 3200002 3200003 3200004 3200005 3200006 3200005 3200007 *** 3218101 3217101	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUCH DRY .469 .624 .826 1.053 1.306 1.526 1.814 = 19 . HB 2 0	8ED == 246-9 417.7 687.6 1068.4 1578.3 2097.5 2896.6 = .425 0 0	HB = .425 . EPS D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200003 3200004 3200005 3200005 3200005 3200007 x== 3213101 3217101 3217101	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E DROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUCH DRY -469 -624 -826 1-053 1-306 1-526 1-814 = 19 - HB - -453	BED == 246.9 417.7 687.6 1068.4 1578.3 2097.5 2596.6 = .425 0 346.1	HB = .425 . EPS D 0 0 0 0 EPS = .4106 . V 1.146 1.2 1.277 1.0 1.451 1.2	4106 0 0 0 0 0 0 15 = .05070 94 .775 20 .900 23 .718
3200001 3200003 3200004 3200005 3200006 3200007 3218101 3217101 3217102 3217102	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY -469 -624 -826 1.053 1.306 1.526 1.814 = 19 . HB - 2 0 .453 -635	8ED == 246.9 417.7 687.6 1069.4 1578.3 2097.5 2896.6 = .425 0 0 346.1 692.2	HB = .425 . EPS D 0 0 0 EPS = .4105 . Y 1.146 1.2 1.277 I.0 1.451 1.2 I.415 I.0	4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 = .05070 94 .776 20 .900 23 .716 27 .853
3200001 3200003 3200004 3200005 3200005 3200005 3200007 3218101 3217101 3217102 3217103 3217103	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY .469 .624 .626 1.053 1.306 1.526 1.814 = 19 . HB .0 .453 .635 .906	8ED ** 246.9 417.7 687.6 1069.4 1578.3 2097.5 2896.6 * .425 0 0 346.1 692.2 1227.6	HB = .425 . EPS D 0 0 0 0 0 0 0 0 0 0 0 0 0	4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 3200002 3200003 3200004 3200005 3200005 3200007 3215101 3217101 3217101 3217102 3217103 3217104 3217105	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY -469 -624 -826 1.053 1.306 1.526 1.814 = 19 . HB - 0 -453 -635 -906 -999	8ED ** 246.9 417.7 687.6 1068.4 1578.3 2097.5 2896.6 * .425 0 0 346.1 692.2 1227.6 2515.1	HB = .425 . EPS 0 0 0 0 0 0 0 0 0 0 0 0 0	4106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3200001 320002 320004 3200004 3200005 3200006 3200007 *** 3219101 3217102 3217102 3217103 3217105 3217105	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY .469 .624 .826 1.053 1.306 1.526 1.814 = 19 . HB 2 0 .453 .635 .906 .999 1.186	BED == 246.9 417.7 687.6 1068.4 1578.3 2097.5 2896.6 = .425 0 0 346.1 692.2 1227.6 2515.1 3655.0	HB = .425 . EPS 0 0 0 0 EPS = .4106 . V 1.146 1.22 1.277 I.0 1.451 I.2 1.451 I.2 1.451 I.2 1.455 .00 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 3200002 3200004 3200004 3200006 3200007 3218101 3217101 3217101 3217102 3217103 3217105 3217106 3217106	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY -469 .624 .826 1.053 1.306 1.526 1.526 1.814 = 19 . HB -35 .635 .906 .599 1.186 1.236	8ED == 246.9 417.7 687.6 1069.4 1578.3 2097.5 2886.6 = .425 0 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3	HB = .425 . EPS D 0 0 0 EPS = .4106 . V 1.146 1.2 1.277 1.0 1.451 1.2 1.451 1.2 1.415 1.0 .659 .6 .098 .1 .006 .3 .069 1.7	
3200001 3200003 3200004 3200005 3200005 3200005 3200007 3218101 3217101 3217102 3217102 3217104 3217105 3217106 3217108 3217109	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY -469 .624 .826 1.053 1.306 1.526 1.814 = 19.48 .00 .453 .635 .906 .599 1.186 1.322	8ED == 246.9 417.7 687.6 1069.4 1578.3 2097.5 2986.6 = .425 0 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3 5997.1	HB = .425 . EPS D 0 0 0 0 EPS = .4106 . Y 1.146 1.2 1.277 1.0 1.451 1.2 1.415 1.0 .659 .6 .098 .1 .005 .3 .069 1.7 1.366 1.6	
3200001 3200003 3200004 3200005 3200006 3200007 3218101 3217101 3217102 3217102 3217103 3217105 3217106 3217108 3217109	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY -469 .624 .826 1.053 1.306 1.526 1.526 1.814 = 19 . HB 2 0 .453 .635 .906 .999 1.866 1.226 1.322 = 19 . HB	8ED == 246.9 417.7 687.6 1069.4 1578.3 2097.5 2896.6 = .425 0 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3 5997.1 = .425	HB = .425 . EPS 0 0 0 0 0 EPS = .4105 . V 1.146 1.2 1.277 1.0 1.451 1.2 1.415 1.0 .859 .6 .093 .1 .005 .3 .059 1.7 1.366 1.8 EPS = .4105 .V	
3200001 3200003 3200004 3200005 3200005 3200005 3200007 3218101 3217101 3217102 3217103 3217104 3217105 3217105 3217108 3217109 3229101	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY .469 .624 .625 1.053 1.306 1.526 1.814 = 19 . H8 .453 .635 .906 .999 1.186 1.236 1.322 = 19 . H8 0 0 0 0 0 0 0 0 0 0 0 0 0	BED *** 246.9 417.7 687.6 1069.4 1578.3 2097.5 2896.6 * .425. 0 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3 5997.1 * .425. 0 263 1	HB = .425 . EPS 0 0 0 0 0 0 0 0 0 0 0 0 0	
3200001 320002 3200004 3200005 3200005 3200007 3219101 3217102 3217102 3217103 3217103 3217105 3217106 3217106 3217106 3217109 3217109	GRS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY .469 .624 .826 1.053 1.306 1.526 1.814 = 19 . HB .453 .635 .906 .999 1.186 1.236 1.322 = 19 . HB 0 .380	BED == 246.9 417.7 687.6 1068.4 1578.3 2097.5 2896.6 = .425. 0 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3 5997.1 = .425. 0 263.1 344.6	HB = .425 . EPS 0 0 0 0 0 EPS = .4105 . V 1.146 1.2 1.277 I.0 1.451 I.2 1.415 I.0 .659 .6 .098 .1 .006 .3 .069 I.7 I.366 I.6 EPS = .4106 . V .970 I.1 .865 I.1	
3200001 3200002 3200004 3200004 3200005 3200006 3200007 3218101 3217101 3217102 3217102 3217103 3217105 3217105 3217106 3217108 3217109 3217109 3217109 3217109 3229101 3229101 3229103 3229104	GRS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY -469 .624 .826 1.053 1.526 1.526 1.814 = 19 . HB 0 .453 .635 .906 1.226 1.322 2.19 . HB 0 .380 0 .464 .586	BED == 246.9 417.7 687.6 1068.4 1578.3 2986.6 = .425 0 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3 5997.1 = .425 0 263.1 344.5 673.8	HB = .425 . EPS D 0 0 0 0 EPS = .4106 . V 1.146 1.2 1.277 1.0 1.451 1.2 1.451 1.2 1.455 1.0 .659 .6 .098 .1 .006 .3 .069 1.7 1.366 1.4 EPS = .4106 . V .970 1.1 .855 1.1 .980 1.0 .438 .9	
3200001 3200003 3200004 3200005 3200006 3200006 3200007 3218101 3217101 3217102 3217102 3217105 3217105 3217108 3217108 3217109 3217109 3229104 3229101 3229102 3229104	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY -469 .624 .826 1.053 1.306 1.526 1.814 = 19 . HB 0 .453 .635 .906 1.325 .909 1.186 1.236 1.322 = 19 . HB 0 .464 .586 .675	BED == 246.9 417.7 687.6 1069.4 1578.3 2097.5 2396.6 = .425 0 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3 5937.1 = .425 0 263.1 394.6 673.6 955.3	HB = .425 . EPS D 0 0 0 0 EPS = .4106 . V 1.146 1.2 1.277 1.0 1.451 1.2 1.451 1.2 1.451 1.2 1.455 1.0 .659 .6 .098 .1 .006 .3 .069 1.7 1.366 1.6 EPS = .4106 .V .970 1.1 .865 1.1 .980 1.0 .438 .9 .934 .6	
3200001 3200003 3200004 3200005 3200006 3200006 3200007 3218101 3217101 3217102 3217102 3217104 3217105 3217106 3217108 3217109 3217109 3217109 3217109 3219101 3229101 3229104 3229105 3229106	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY -469 .624 .826 1.053 1.306 1.526 1.814 = 19 . HB 2 0 .453 .635 .906 .599 1.186 1.322 = 19 . HB 0.380 .464 .586 .676 .756	8ED == 246.9 417.7 687.6 1069.4 1578.3 2097.5 2856.6 = .425 0 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3 5997.1 = .425 0 263.1 394.6 673.8 955.3 1746.7	HB = .425 . EPS D 0 0 0 0 EPS = .4105 . V 1.146 1.2 1.277 1.0 1.451 1.2 1.415 1.0 .659 .6 .098 .1 .005 .3 .069 1.7 1.366 1.6 EPS = .4106 . V .970 1.1 .865 1.1 .980 1.0 .438 .9 .934 .6 .160 .3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3200001 3200003 3200004 3200005 3200006 3200006 3200007 3218101 3217101 3217102 3217103 3217104 3217105 3217106 3217108 3217108 3217109 3229101 3229101 3229102 3229104 3229106 3229107	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY -469 .624 .826 1.053 1.306 1.526 1.526 1.526 1.526 1.526 1.526 1.526 1.526 1.526 1.526 1.526 1.635 .906 .999 1.186 1.322 = 19 . HB 0.380 .464 .586 .675 .766 .863	BED == 246.9 417.7 687.6 1069.4 1578.3 2996.6 = .425 .2896.6 = .425 0 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3 5997.1 = .425 .0 263.1 394.6 673.8 955.3 1746.7 2679.0	HB = .425 . EPS 0 0 0 0 0 EPS = .4106 . V 1.146 1.2 1.277 1.0 1.451 1.2 1.415 1.0 .859 .6 .098 .1 .006 .3 .059 1.7 1.366 1.6 EPS = .4106 . V .970 1.1 .855 1.1 .980 1.0 .438 .9 .934 .6 .160 .3 .165 .4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3200001 3200003 3200004 3200005 3200006 3200007 3218101 3217101 3217102 3217103 3217104 3217105 3217106 3217106 3217108 3217109 3229101 3229101 3229102 3229103 3229104 3229105 3229107 3229107	GAS PRESSUR 0 0 0 0 0 0 0 0 0 0 0 0 0	E OROP TH 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGH DRY -469 .624 .826 1.053 1.306 1.526 1.814 = 19 . HB 0 1.453 .635 .906 .999 1.186 1.322 = 19 . HB 0 .464 .586 .675 .766 .863 .923	BED == 246.9 417.7 687.6 1069.4 1578.3 2097.5 2896.6 = .425 0 0 346.1 692.2 1227.6 2515.1 3655.0 4790.3 5997.1 = .425 0 263.1 394.6 673.8 955.3 1746.7 2679.0 3895.0	HB = .425 . EPS D 0 0 0 0 EPS = .4105 . V 1.146 1.2 1.277 I.0 1.451 1.2 I.415 1.0 .859 .6 .098 .1 .006 .3 .069 I.7 I.386 I.8 EPS = .4106 . V .970 I.1 .865 I.1 .960 I.0 .438 .9 .934 .6 .160 .3 .165 .4 .447 I.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ACKNOWLEDGEMENTS

The author wishes to express his most sincere gratitude and appreciation to Dr. V. Rajakumar for his supervision, encouragement and generous support during the course of this work.

Thanks are due to all the members of the John Percy Research Group for their help on many occasions and in particular, to Mr. A.L. Neve for his advice on technical matters. Mrs. G. Hopkins is also thanked for her excellent typing of the thesis.

Grateful acknowledgement is due to the Kawasaki Steel Corporation for their financial support during the course of this work.

Finally, the author wishes to express his sincere gratitude to Professor F.D. Richardson for his generous encouragement during the course of the work.

LIST OF SYMBOLS

Symbol	Explanation	<u>Units</u> *
Roman		
a,b,c,d,e	constants used in Equations (6.1), (6.5), (6.9), (6.12)	
a _t	total surface area of particles per unit volume of bed	(m²/m³)
C _p	capillary number defined by Equation (3.10)	(-)
C_{ph} , C_{ps}	capillary number defined by Equations (6.7) and (6.6)	(-)
C pm	modified capillary number defined by Equation (6.10)	(-)
D	characteristic length of the system	(m)
dg	diameter of spheres in the grid	(m)
\mathtt{d}_{h}	hydraulic diameter of packing $(=4\epsilon/a_t)$	(m)
d _h '	characteristic length of packing based on hydraulic diameter (Equation 6.4).	(m)
di	hydraulic diameter of the smallest inner area of a ring	(m)
d _p	nominal diameter of packing	(m)
d _{pe}	diameter of a sphere having the same volume as a piece of packing	(m) [.]
d _S	characteristic length of packing based on specific surface area Equation (6.3)	(m)
F	ratio of pressure drop of gas through an irrigated bed to that through dry bed at the same gas velocity	(-)
Fli	relative liquid flux to i-th annulus	(-)

Symbol	Explanation	<u>Units</u> *
Fr	Froude number $(=u^2/gD)$	(-)
f	force	(N)
fg	gravitational force, Equation (3.1)	(N)
fi	inertial force, Equation (3.2)	(N)
f _k	friction factor, Equation (2.6)	(-)
fp	the force exerted on liquid by the gas flowing through the bed, Equation (3.6)	(N)
fs	surface force, Equation (3.4)	(N)
f _{si}	interfacial force, Equation (3.5)	(N)
f _v	viscous force, Equation (3.3)	(N)
Ga	Galileo number, Equation (3.9)	(-)
Ga _m	modified Galileo number, Equation (6.15)	(-)
g	gravitational accerelation	(m/s^2)
Н _b	effective column height	(m)
H _{bt}	total column height	(m)
Hg	height of the grid	(m)
h _d	dynamic hold-up	(-)
^h f	contribution to hold-up by slow liquid flow	(-)
ho	operational hold-up	(-)
ho*	operational hold-up defined by Gelbe (47)	(-)
h _s	static hold-up	(-)
h _s *	static part of the hold-up (Equation 6.1)	(-)
h _t	total hold-up	()
k ʻ	constant in Equation (2.12)	(-)

<u>Symbol</u>	Explanation	<u>Units</u> *
L	length of bed for which pressure drop ΔP is measured	(m)
Ν	number of particles per unit volume of bed	(1/m ³)
N _c	dimensionless interfacial force Equation (3.11)	(-)
Ncap	capillary number defined by Equation (2.3) or (2.4)	(-)
N'cap	capillary number defined by Equation (6.8)	(-)
n	constant in formula 5 in Table 2.3	(-)
ΔP	gas pressure drop	(N/m^2)
∆ ₽ *	dimensionless pressure drop, Equation (3.12)	(-)
ΔP _d	gas pressure drop through a dry column	(N/m ²)
$\Delta \mathbf{P}_{\mathbf{w}}$	gas pressure drop through an irrigated column	(N/m²)
$\Delta \mathbf{P}^*_{\mathbf{W}}$	dimensionless pressure drop through an irrigated column Equation (6.25)	(-)
Q	liquid flow rate through a column	(ml/s)
Q _i	liquid flow rate through the i-th annulus	(ml/s)
Re	Reynolds number, Equation (3.8)	(-)
Reg	Reynolds number for gas flow, Equation (2.7)	(-)
Rem	modified Reynolds number, Equation (6.14)	(-)
S	cross-sectional area of the column	(m²)
s _i	cross-sectional area of the i-th annulus	(m ²)
s _r	residual saturation, Equation (2.5)	(-)
S [*] r	residual saturation based on h [*] s	(-)

Symbol	Explanation	<u>Units</u> *
u	superficial velocity of liquid based on empty column	(m/s)
V	superficial velocity of gas based on empty column	(m/s) [·]
Wa	reversible energy of adhesion of liquid to solid	(J/m^{2})
We	Weber number $(=\rho_{l}u^{2}D/\sigma)$	(-)
Greek		
ε	fractional voidage of packing	(-)
ε _w	fractional voidage of irrigated bed	(-)
η	viscosity of liquid in centipoise	(cP)
θ	contact angle of liquid on solid	(-)

ф

μ

ρ

 $\rho_{\rm W}$

σ

σw

Subscript

% for liquid
g for gas

viscosity

density of water

surface tension of liquid

surface tension of water

shape factor of packing

density

* Those which are indicated by (-) show that the variables are dimensionless

 (Ns/m^2)

 (kg/m^3)

 (kg/m^3)

(N/m)

(N/m)

(-)

REFERENCES

1)	Blast Furnace Aerodynamics Symposium, Wollongong, Australia, 1975.
2)	Ergun, S., Ind. Eng. Chem., 1953, <u>45</u> , 477.
3)	Philbrook, N.O., J. Metals, 1954, <u>6</u> , 1396.
4)	Elliott, J.F., Buchanan, R.A., Wagstaff, J.B., J. Metals, 1952, <u>4</u> , 709
5)	Beer, H., Heynert, G., Stahl u. Eisen, 1964, <u>84</u> , 1353.
6)	Segawa, K., Ishikawa, H., Trans. I.S.I. Japan, 1968, <u>8</u> , 172
7)	Bates, M.P., J.I.S.I., 1973, <u>211</u> , 677.
8)	Jeschar, R., Pötke, W., Peterson, V., Polthier, K., "Blast Furnace Aerodynamics", ed. Standish, N., 1975, Australian Inst. Min. Met.
9)	Koup, V., Tien, R.H., Olsson, R.G., Perzak, T.F., "Process Simulation and Control in Iron and Steelmaking", Metallurgical Soc. Conferences, Vol <u>32</u> , AIME, 1964, 125.
10)	Muchi, I., Trans. ISI Japan, 1967, <u>7</u> , 223.
11)	Yagi, J., Muchi, I., ibid, 1970, <u>10</u> , 392.
12)	Flierman, G.A., Oderkirk, H., "Mathematical Models in Iron- and Steel-making", 1975, The Metals Soc., London.
13)	Kuwabara, M., Muchi, I., "Blast Furnace Aerodynamics", 1975, Australian Inst. Mining. Met., 61.
14)	Kodama, K., Hagiwara, T., Shigemi, A., Kondo, S., Kanayama, Y., Wakabayashi, K., Hiramoto, N., Tetsu-to-Hagané, 1976, <u>62</u> , 535.
15)	Sasaki, M., Ono, K., Suzuki, A., Okuno, Y., Yoshizawa, K., Nakamura, T., ibid, 559.
16)	Sasaki, K., Hatano, M., Watanabe, M., Shimoda, T., Yokotani, K., Ito, T., Yokoi, T., ibid, 580.
17)	Radestock, J., "Theoretische Untersuchung der Stationären inkompressibleu und kompressiblen Strömung in ruhenden, geschichten, und isotropen Schüttungen, Dr. Diss. Tech. Univ. Clausthal, West Germany, 1969.
18)	Radestock, J., Jeschar, J., Stahl u. Eisen, 1970, <u>90</u> , 1249.
19)	Tate, M., Suzuki, K., Ree, H., Kuwano, Y., Chang, T., Go, H., Matsuzaki, M., Nakamura, S., Tetsu-to-Hagané, 1976, <u>62</u> , 535

- 20) Tate, M., Kuwano, Y., Suzuki, K., Chang, T., Go, H., Matsuzaki, M., Tetsu-to-Hagané, 1976, <u>62</u>, 495
- 21) Beer, H., Heynert, G., Stahl u. Eisen, 1964, 84, 1353.
- 22) Zimmermann, K-A., Heynert, G., Peters, K.H., ibid, 1974, <u>94</u> 1283.
- 23) Humenik, M., Hall, D.W., Van Alsten, R.L., Metal Progress, 1962, 81.
- 24) Keverian, J., Taylor, H.F., Trans. Amr. Foundrymen's Soc., 1957, <u>65</u>, 212.
- 25) Towers, H., Trans. Brit. Ceram. Soc., 1954, 53, 180
- 26) Turkdogran, E.T., "Physical Chemistry of Oxygen Steelmaking. Thermochemistry and Thermodynamics" Monograph series on BOF, Steelmaking vol II, Theory and Fundamentals, U.S. Steel.
- 27) Shulman, H.L., Ullrich, C.F., Walls, N., AIChE J., 1955, <u>1</u>, 247.
- 28) Gardner, G.C., Chem. Eng. Sci., 1956, 5, 101.
- 29) Elgin, J.C., Weiss, F.B., Ind. Eng. Chem. 1931, 31, 435.
- 30) Uchida, S., Fujita, S., Kogyo-Kagaku-Zassi, J. Soc. Chem. Ind. Japan, 1936, <u>39</u>, 876.
- 31) Uchida, S., Fujita, S., ibid, 1937, 40, 538.
- 32) Piret, E.L., Mann, C.A., Wall, T., Jr., Ind. Eng. Chem., 1940, <u>32</u>, 861.
- 33) Jesser, B.W., Elgin, J.C., Trans. Amr. Inst. Chem. Engr., 1943, <u>39</u>, 277.
- 34) Shulman, H.L., Ullrich, C.F., Wells, N., Proulr, A.Z., AIChE J., 1955, <u>1</u>, 259.
- 35) Larkins, R.P., White, R.R., Jeffrey, DW., AICHE J., 1961, 7, 231
- 36) Ross, L.D., Chem. Eng. Progr., 1965, 61, 77.
- 37) Mohunta, I.M., Laddha, G.S., Chem. Eng. Sci., 1965, <u>20</u>, 1069.
- 38) Brož, Z., Kolař, V., Coll. Czech. Chem. Comm., 1968, <u>33</u>, 2722.
- 39) Tichy, J., Chem. Eng. Sci., 1973, 28, 655.
- 40) Warner, N.A., Chem. Eng. Sci., 1959, 11, 149.
- 41) Standish, N. Chem. Eng. Sci., 1968, 23, 51.

42)	Standish, N., Chem. Eng. Sci., 1968, <u>23</u> , 945.
43)	Andrieu, J., Chem. Eng. Sci., 1975, <u>30</u> , 217.
44)	Davidson, J.F., Trans. Instn. Chem. Engrs., 1959, <u>37</u> , 131
45)	Otake, T., Okada, K., Soc. Chem. Eng. Japan, 1953, <u>17</u> , 176.
46)	Buchanan, J.E., I and EC Fundamentals, 1967, <u>6</u> , 400
47)	Gelbe, J., Chem. Eng. Sci., 1968, <u>23</u> , 1401
48)	Davidson, J.F., Cullen, E.J., Hanson, D., Roberts, D., Trans. Instn. Chem. Engrs. 1959, <u>37</u> , 122.
49)	Dombrowski, H.S., Brownell, L.E., I and EC, 1954, <u>46</u> , 1207
50)	Turner, G.A., Hewitt, G.F., Trans. Instn. Chem. Engrs., 1959, <u>37</u> , 329.
51)	Uchida, S., Fujita, S., Kogyo-Kagaku-Zassi (J. Soc. Chem. Ind. Japan), 1938, <u>41</u> , 563.
52)	Mersmann, A., Chemie Ing. Techn., 1965, <u>37</u> , 218
53)	Ergun, S., Chem. Eng. Progress, 1952, <u>48</u> , 89
54)	Carman, P.C., Trans. Instn. Chem. Engrs., 1937, <u>15</u> , 150
55)	Leva, M., Chem. Engng. Prog. Symp. Ser., 1958, <u>10</u> , 51
56)	Brawer , H., Chem. Ing. Techn., 1960, <u>32</u> , 585.
57)	Morton, F., King, P.J., Atkinson, B., Trans Instn. Chem. Engrs, 1964
58)	Buchanan, J.E., I and EC Fundamentals, 1969, $\underline{8}$, 502.
59)	Dutkai, E., and Ruchenstein, E., Chem. Eng. Sci., 1970, 25,.483.
60)	Sherwood, T.K., Shipley, G.H., Holloway, F.A.L., Ind. Eng. Chem., 1938, <u>30</u> , 765.
61)	Lobo, W.E., Friend, L., Hashmall, F., Zenz, F., Trans. Amer. Inst. Chem. Enger., 1945, <u>41</u> , 693.
62)	Newton, W.M., Mason, J.W., Metcalfe, T.B., Summers, C.O., Petroleum Refiner, 1952, <u>31</u> , No. 10, 141.
63)	Standish, N., Drinkwater, J.B., J. Metals, 1972, 24, 43.
64)	Szekely, J., Mendrykowski, J., Chem. Eng. Sci., 1972, <u>27</u> , 959.
65)	Shavrin, S.V., Zakharov, I.M., Ipatov, B.V., Izv., V.U.Z., Chern. Metall., 1962, No.9, 54.

- 66) Rikhter, R.G., Potevnya, Yu. M., Izv, V.U.Z., Chern. Met., 1974, No. 4, 37.
- 67) Nakane, C., Kuwano, Y., Suzuki, K., Otani, K., Honda, K., Chan. T.S., Matsuzaki, M., Kim,C.W., Tate, M., Trans. ISI Japan, 1973, 13, 247.
- 68) Standish, N., Colquhoun, L., "Blast Furnace Aerodynamics" 1975, Austrialian Inst. Min. Met., 20.
- 69) Warner, R.E., ibid, 23
- 70) Zisman, W.A., "Contact Angle, Wettability, Adhesion", Advances in Chemistry Series <u>43</u>, Am. Chem. Soc., 1964, 1.
- 71) Fox, H.W., Zisman, W.A., J. Colloid Sci., 1952, 7, 428.
- 72) Inst. of Petroleum, "IP Standards for Petroleum and Its Products", 19th ed., 1960, 637.
- 73) Porter, K.E., Trans. Instn. Chem. Engrs., 1968, 6, T74.
- 74) Hosaka, M., "Jyoho-syori" (Data Processing), 1969, <u>10</u> 121.
- 75) Wylie, C.R., "Advanced Engineering Mathematics", 3rd ed. 1966, McGraw-Hill Inc., New York, p 126-141.