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2. 

ABSTRACT' 

There are two classical problems which fall into the 

category of Simultaneous Approximation and which are the subject 

of this thesis. The first is the problem of determining the 

best approximation to a set of functions belonging to a 

normed linear spacelfrom a linear subspace or a nonlinear subset, 

subject to a measure of 'distance' — the norm. 

In the Introductory Chapter, we show the progression of 

a fundamental. characterising property in Approximation Theory 

known as the Kolmogoroff criterion from the uniform norm to 

its generalistion by the Hahn— Banach theorem to an arbitrary 

norm. 

In Chapter Two, we obtain a unifying theory for the 

simultaneous approximation problem by a nonlinear subset in 

an arbitrary norm. The approach is based on a Lemma in [251 

developed by Blatt in [6] for the case of the uniform norm. 

We also consider the characterisation property of an element 

of V which is only locally a best t,,pproximation r illustrated 

by the family of generalised rationals. 

The second problem is that of obtaining a polynomial 

(or rational) expression in x to approximate a function while 

at the same time, the derivative of the polynomial approximates 

the derivative of the function. In the situation that our function 

is the solution of a linear second order differential equation, 

we consider instead, determining a pair of polynomials which 

satisfy exactly a perturbed system. This technique is known.as 

the Lanczos Tau Method. An error analysis is given for a variety 

of problems treated in the three Parts of Chapter Three. 
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CHAPTER ONE 
	 5. 

INTRODUCTION AND REVIEW  

1. ThE APPROXIMATION OF A SINGLE FUNCTION 

1.1. 	Definition of the Problem 

Given a normed linear space (N.L.S.) X (see below), V a subset of X with 

f E X but f V V°, the closure of V. 

If there exists a vo E V such that 

Iif - voll s lif - vil for all v E V 

then vo is said to be a best approximation (b.a.) to f from V. 

It is called a local best approximation if it is a best approximation to f 

in some norm neighbourhood of vo. 

The aspects that concern us in this thesis are the existence, characterisation 

ana uniqueness of v
o. 

We shall set ov(1) : = 	inf 	Ilf 	vII 
v e V 

We define the metric projection associated with f to be 

PV(f) 	= {v e V : Ilf - vIl = pv(f)) 

If P
V 
 (f) 	W we shall say V is proximinal. 

If PV 
 (f) contains exactly one element for each f E X we shall say V is 

Chebyshev. 

The following normed linear spaces are of interest to us: 

Xi) C(B,H) The space of continuous functions mapping B, a compact 

Hausdorff space, into an inner product space h over the 

real or complex numbers. 

The inner product indu.ces a norm on H e H which we write 

= '717:177  

We now define the norm of f e C(B,H) by 

lIfIl : = sup 	Ilf(x)II . 
x E B 

(ii) C(B) 	This is the space C(B,H) with H either the reals R or the 

complex numbers C. 
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(iii) C
o
(B) The space of real valued continuous functions on B, B a locally 

compact hausdorff space, that vanish at infinity. Thus f e Co(B) 

if and only if f is continuous and for each c > 0, 

{x e B : If(x)1 	c } 	is compact. 

The spaces in (ii) and (iii) are assumed endowed with the supremum (or 

Chebyshev) norm 

11f11 
	

= sup If(x)I 
X E B 

(iv) LP. (S, E, p), p 	1 (see Appendix I) 

We note that an atom is a set A_e E with 0 < p(A) < 

such that A' e E, A l  a A implies that either p(A') = 0 or 

p(A') = p(A). (S, E, p) is called purely atomic if S is the 

union of atoms. 

1.2. 	V a Linear Subspace 

The Classical Existence and Uniqueness Theorem 

If V is finite dimensional then V is proximinal. 

If, furthermore, X is strictly convex, i.e. IlfII = Mil = 1 and f # g 

imply 	g)II < 1, then V will be Chebyshev. 

The named linear spaCes Zp and Lp [a,b], 1 < p < c°, are strictly convex 

but not G(B) nor Li[a,b]. 

All these results are proven in the Introduction of [01. 

1.2.1. Linear Uniform Approximation on C(B) 

The Kolmogoroff (1.—) criterion I, formulated in 1948, is the fundamental 

characterisation of the best approximation, (see [48] Theorem 18) namely 

vo is a best approximation to f if and only if 

min 	Re {sgn (f (x) — vo(x)) v(x)} $ 0 for all v E V 
X E M

f—vo 

where 14- 	: = {x e B : f(x) — vo(x) = I I If — vo 11 co} t—vo  
z 

and sgn(z) = 171 t 0 	when z # 0 

when z = 0 
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Now suppose V is n(finite)-dimensional and satisfies the Haar condition, 

namely every function in V can have at most n-1 zeros or vanishes identically. 

Equivalently, for every set of n distinct points xi, 	xn  E B 

det {y5.(x.)} 0 0 where V = span {Ol, 	qn} 

Then among the properties enjoyed by the best approximation are the following: 

(P1) The best approximation is unique; 

(P2) The best approximation possesses strong unicity in the sense of 

Newman and Shapiro 531 , i.e. for each f E X there exists a number 

y = y(i) with 0 < y 6 1 such that 

lif 	vII % Ilf 	PV(f)II 	YllPv(f) 	vII for every v e V; 

(P3) ev.is  pointwise Lipschitz continuous, i.e. for each f e X, 

there exists a number X(f) > 0 such that 

IlPv(f) 	PV 	Xlif 	gli  for every g E X; 

(P4) The best approximation possesses an alternant (or extremal 

signature) of length n 	1 (the classical equioscillation theorem); 

(P5) De la Valleeeoussin's Theorem provides a lower bound for P,(f). 

1.2.2. 	Linear Approximation on L (S 1p) 

'When S is the interval fp,1] and P is the Lebesgue measure, the characterisation 

of the best approximation has been obtained by the analytic study of the 

Lebesgue integral (see E0j, chapter 4). For a comprehensive paper see [401 • 

The hear condition on V.is sufficient to guarantee uniqueness when f is 
r - 

continuous and V c C(B). This was first found by Jackson I Zfor the real case. 

The approach that interests us here 	was 	mainly • 

developed by Singer [68] as a unifying theory for all normed spaces. (Other 

contributions are in 	[0] and [231 ,) It is based on the Uahn-Banach 

theory that to any element g of an N.L.S. X there exists a complex-valued linear 

functional L in the dual space X* with 

Re L(g) = 	IISII and 	1101 = 1. 
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We denote by B* the set of {L E X* : 111,11 = 1}. 

The generalisation of the k-criterion I is the followinb version II: 

v
o 

is a best approximation to f if and only if 

min 	Re L v $ 0 for all v 6 V 
L f-vo 

where E
f-vo 
	= {L e B* : L(f - vo) = 11f - v011} 

We remark that Z
f-v 

can be replaced by the extreme points (ext) of that 
o 

 

set, denoted by Ef_vo  (see [15] , Lemma 2) and by [14], p.30, 

f-v 
0 

= {L E ext (is* : L(f - vo) = Ilf - v0 11} 

We can re-express K-criterion II for an N.L.S. for which L E ext(i5) has an 

explicit representation, as follows. Assume f,g,h e X. 

(i) C(B) and Co(B) 

Lg = e(x) Lxg where Lxg = g(x) is the point evaluation functional 

at x E b and e(x) = ± 1. In fact e(x) = sgn (f(x) 	v
o
(x)) in order that 

L(f - vo) = 11f 	voll .. hence we can rederive K-criterion I. 

(ii) LI (S, E, p) 

(a) If 8 is the interval [0,1] and p is the Lebesgue measure, 

then 	
f Lg = 	sgn Lf(x) - vo(x)] g(x) dx + fo(x)g(x)dx 

o Z(f-v0) 

where Z(h) =. {x e rp,1] 	h(x) = 0} and 10(x)I = 1 on Z(f - vo) 

(b) If S = 	U 	Ai , Ai  an atom, I countable, then 

i e I 

Lg = 	sgn [f(Ai) - vo(Ai)ig(Ai)p(Ai) + 	o(Ai) g(Ai) 
i E I 	 ieZ(f-vo) 

where Z(h) = {i E I,h(Ai) = 0} , 10(Ai)1 = 1 

and g(Ay) denotes the constant value which g has a.e. on Ai. 



Now suppose V is n-dimensional and is an interpolating subspace, 

that is for every set of n linearly independent functionals, 

L1, 	Ln  in ext(B*) 

det 3. 	- (p.)] 0 0 where V = span 	g 

For X = C(B) or Co(B) this is equivalent to V satisfying the Haar condition 

(see [3] , Theorem 3.2.) 

For X = L1(S, E, p) we have the result tnat it contains on interpolating 

subspace of dimension n > 1, if and only if, S is the union of at least 

n atoms (see [31 , 'theorem 3.3, (59] ,Section 2). 

Now the important consequence is that the best approximation from an 

interpolating subspace enjoys properties (el) - (e3) and genera]isations 

of (P4) and (P5). (See [3] ). 

In Chapter II section 5 , we will find it advanta&eous 
to restrict the interpolating condition det [ L.(V) 1 / 0 j 
to a subset of ext(Bk) of finite cardinality, say in y n. 
We shall then say V is an interpolating subspace on [L.1.

m 
1=1 

We may then assert that 	inf I det [Li(0j)] I > 0 where the inf 

is taken over selections of n linearly independent functionals. 

9. 
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1.3. 	V a Non-linear Subset 

The existence of a best approximation cannot in general be guaranteed and 

	

so we assume PV  (f) 	O. 

We now state some useful examples of non-linear subsets which depend on a 

finite-dimensional parameter set D, i.e. V a {v(a) : a e D}. 

(i) The generalised rationals 

Let {g 
1  , 
	gn} and {h1  , 

	h ) be fixed sets of linearly 

independent real-valued continuous functions on B. 

Let P = span {g , 	gn} 1 
Q = span { 11 , ..., hm} 

and e = {q E Q, q(x) > 0 on 13}. 

Then we have the following rational families:-  

Rnm:= {p/q :peP,qecl 00} 

: = {p/q : p 	P, q E Q 	q 	0 }, assumed non-empty n,m 

R
n,m

: = {p/q : p E P, q G 	}, assumed non-empty. 

(ii) The i-polynomials (see [621 Chapter 8 ) 

Let y(t,x) he a real valued function on Tx[0,1] where T is a subset 

of (-00,0). For a fixed positive integer N 

	

V = { 	a. y(t.,x) : aj  e R; tj e T; j = 1, 	N } 
j=1 J J 

Illustrations of y-polynomials 

(a) The sums of exponentials 

Take y(t,x) = etx  with T = R 

(b) The sums of elementary rational functions 

Take Y(t,x) = 	with T = (0,c4). 
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1.3.1. Non-linear Uniform Approximation on C(B) 

A sufficient condition for v(a) to be a best approximation to f is that 

it satisfies the K-criterion III 

min 	Re 	sgn [f(x) - v(b,x)] [v(b,x) -.1.7(a,x)] 	0 
xeMf-v(a) 

for all v(a) E V 

(see DA Theorem 86) 

It was found by Meinardus and Schwedt lb] tnat if V is asymptotic convex 

then K-criterion III is also necessary for a best approximation. 

Definition: V is asymptotic convex if for each pair (a,b) of elements in 

D and each real t, 0 < t 	1, there exists a parameter a(t) e D and a 

continuous real-valued function g(x,t) on B x[0,11 with g(x,0) > 0 on B, 

such that II(1-t g(x,t))(v(a,x)) + t g(x,t)v(b,x) 	v(a(t),x)II= 0(t) 

as t -4- 0. 

A certain differentiability property equivalent to asymptotic convexity 

is shown in EA. The following are asymptotic convex 

i) convex sets 

ii) n,m 

iii) The sums of exponentials. 

1.3.2. Suns and Regularity 

Suns were introauced by Efimov 	and Steckin in Dc] to assist in characterising 

Chehysnev sets by geometrical properties. For example, in a finite dimensional 

normed linear space, every Cnebyshev set is a sun. Moreover, using the concept 

of suns, Brosowski was able to characterise the subsets of C(B) for which the 

K-criterion III is necessarily satisfied by a best approximation. 

Definition. A proximinal subset V of a normed linear space X is a sun (a-sonne 
r 

in Md and strict sun in [91) if for any f e X and for all vo  e Pv(f), we have 

vo e Pv(vo 
 + A(f-v0)),.A1, that is, all elements of the form fA: = vo+A(f-v0), 

with A,1, have, likewise, vo  as their best approximation from V. 

A comprehensive account of properties of suns is in [0] • 
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We observe that this concept is valid in arbitrary normed spaces. 

It is possible to characterise suns by properties not referring to 'best 

approximation' by using the concept of regularity, first introduced for the 

space C(B,H), (see [11], [13] and [15] ). 

Definition. A subset V of C(B,H) is regular I 

if (i) for each pair of elements v, vo  e V and 

(ii).for each closed subset A 	B. and 

(iii) for each f e C(B,H) 	with 

(R*). 	Re <f(x), v(x) - vo  (x), > 0 for x E A, 

and (iv) for each real number A > 0 i 	we have that 

there exists an' element vx  E V satisfying the following properties : 

(R1) 2 Re.< f(x), vx(x) - vo(x)> > Ilvx(x) - vo(x)11 12i  for x e A 

(R2) Ilvx 	voll < A 

In DA, (ii) is dropped and A =- {x e B : lif(x)Ila 	IlfII}. 

We refer to this definition of regularity as version II. 

If H = R, then version I can be simplified.(R*) reduces to Iv(x)-vo(x)1 > 0 

for x e A 

while (R1) becomes 

(f(x) - vo(x))6(vx(x) - vo  (x))> 0 for x E A. 

We call this regularity version III. 

If we let K(v
o
,f) denote the cone 

{v e V : 	inf Re L(v - v
o
) > 0} 

LeE
f-vo 

then version II becomes, for H = R, the following version IV,(see [16j): 

K(f, v
o
) n V 	0 implies that vo 

is in the closure of the set 

{v e V : (f(x) 	vo(x)).(v(x) - vo(x)) > 0 for all x e L 	
I. 

vo 
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We can now state that for X = C(B,H) (C(B,R)) and V a proximinal subset 

of X, the following are equivalent ([811 , Theorem 4.1.): 

(A) vo E V is a best approximation to f E X implies that vo 

satisfies K-criterion III. 

(b) V is a sun. 

(C) V is regular I or II (III or IV). 

(D) Every local best approximation in V is a global best approximation. 

A comprehensive survey is in [8] with a section on characterising Chebyshev 

sets. 

1.3.3. 	Local Linearisation in Uniform Approximation 

If D is taken to be an open subset of En  and V has a Fr6chet derivative 

at each a E D 	(see Chapter II, Section 4), further results can be 

obtained by considering the linear tangent space 	[v(a)I, with dimension 

d(a), at the best approximation v(a). 

Won-linear Uniqueness Theorem ([4 , Theorem 90) 

The best approximation, v(a) is unique if all the following are satisfied: 

(U1) V has a Fr4chet derivative at each a G D, 

(U2) df [v(a)] satisfies the fiaar condition, 

(U3) V has property Z of degree d(a) at a, i.e. for all b E D, 

v(a,.) - v(b,.) possesses at most d(a) 	1 zeros on B or 

vanishes identically 

(U4) V is asymptotic convex. 

Tangential characteristics are further discussed in h.] . 

We note that the K-criterion I is not necessarily satisfied by a local 

best approximation (see [14], p.27). However, the K-criterion I is 

necessarily satisfied ono [V(a)] by a (local) best approximation even 

though it is not in general sufficient (see [11], p.374). 

Rational approximation by real-valued ordinary polynomials was first 

considered by Chebyshev and De la Vall4e Poussin who obtained existence, 

uniqueness and (e4),(P5) type results (see [48], Theorem 98). 

Further investigations were carried out by 'Cheney and Loeb 

[19] 	. In [181 , chapter 5, properties (P1) - (P5) are derived. 
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1.3.4. Characterisation of a'(lecal) best approximation in an N.L.S. 

Iirosowski in C10] and [14] extended K-criterion II and found that a 

sufficient condition for vo  E V to be a best approximation to f is that 

it satisfies the global K-criterion IVa 

min 	Re L(v - vo) 5 0 for all v E V. 
L E Lf-vo 

To obtain the most general necessary condition satisfied by a local best 

approximation, Brosowski, in [15]  , developed the following concept . 

Let K[vo, V1 be the non-empty cone with apex 0 consisting of the set of 

elements g E X such that for each neighbourhood U of g and for all c > 0, 

there exists a real number n, 0 < n < E and an element g' E U with 

vo 	E V. 

Now if vo  E V is a (local) b.a. to f, then it satisfies the follow'Lhg local 

K-criterion IVb 

min 	Re L(h) < 0 for all h E X[vo,V]. 
LEE 

A full review of these ic.-criteria and how various Freshet and Gateaux tangent 

spaces are included in I; [v0, V] is in [26]. 

Brosowski, in E7.5i t shewed that the K-criterion IVa will be satisfied 

by the best approximation if V is a sun. He also generalised the 

definition of regularity I and III to the following version 

adopted in Chapter II ( with the suffix 3T_ omitted) and showed that 

if V is regular 3L than it is a sun. 

Definition V 	is regular 'Eat a point vo  E. V if for each v e V 

and for each closed subset A of Btwith Re L(v - v)70 for all Le.A., 

	

and for each real number X> 0, there exists a 	cV with 

(R1) Re L (vx  vo) > 0 for all L e A 

(R2) 11 vx 	v 11 

The subset V of X is regular 	if it is regular Y at every point of V. 
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Lemma 

If V is star-shaped with respect to vo  e V, then V is regular 3E at vo 

This result is given by Brosowski [11p.155. 

PROOF 

Let v E V and v 0 v
o: 

kurthermore, let A be a w* closed subset of B* with Re L(v - v0) > 0 

for all L E A 

Ior A > 0 set vA = (1 	 ) v liv - voll 	0 	IIV 	vo ll 

with 0 < p <min (11v 	voll,A). 

Then v
A 
 e V and (R1) and (R2) are satisfied. 

It follows that we have the important cases of linear spaces and convex 

sets for the approximating family included in the category of regularM 

subsets of X. 

A variation is to generalise version IV to the following. version 

VI based on E
f-vo 

A subset V of X is regular VI (or a tmoont in [2] ) if 

(M) 	K(vo, f) A V A 0v0 ( K(v0, 	(1 V )(3  

A sun in any normed linear space satisfies condition (M). Those spaces X for 

which the condition (M) on V implies that V is a sun are called MS spaces. 

Examples of MS spaces, given in [2], are (a) C(B,R), (b) Co(B), 

(c) Li(S, E, p) wnere (S, E, p) is a cr-finite measure space wnich is purely 

atomic. 

Relateu results are in []51. 

The conditions of regularity V can be further modified (see [17]) so that 

V is a sun-.) V is'regular'. 

A recent survey on nonlinear approximation in an N.L.S. is.in [9.1. 

For V =, I have derived, in [32 3, generalisations of (P1), (P2), 
m,n 

(P4), (25), for a local best approximation from an interpolating subspace. 
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2. SIMULTANEOUS APPROXIMATION OF A SET F OF FUNCTIONS 

2.1. F a Set of Real-valued Functions 

2.1.1. 	V a Linear Subspace of C(B,R) 

For f, a real-valued bounded function defined on the closed interval I, 

and V = Trn
, the polynomials of degree less than or equal to n, Remes 

showed in 1934, that the determination of q e Trn  such that 

if - 	= piTn(f) 

was equivalent to the simultaneous and one-sidelapproximation of two 

bounded.f unctions fl(x) and f2(x), on I, where 

f (x): = lim sup f(y) or inf 	sup 	f(y) 
1 	

Y'x 	6>0 Oflx-yl<6 

is the upper envelope of f and is upper semi-continuous (u.s.c.); 

f
2 
 (x): = lim inf f(y) or sup 	inf 	f(y) 

r*N 	6>0 Oflx-yl<6 

is the lower envelope of f and is lower semi-continuous (l.s.c.), 

We recall that fa R is upper (lower) semi-continuous if for each x e 

and each real number c with c > f(x) (c < f(x)) there exists an open 

neighbourhood U(x): = (y:ly-xl < 6) with c > f(y) (c < f(y)) for all 

y e U(x). 

The above approximation is simultaneous and one-sided in the sense that 

p7 (f) = 	
inf 	max {max (f (x)-p(x)), max (p(x) - f (x))} 

npeun 	
xeI 	1 	xeI 	2 

Dunham [281 extended the scope of this problem to approximating a family F 
of a finite number of continuous real-valued functions by Pn, an 

n-dimensional hear subspace of C(B,R), i.e. determining 

p1, (F) = inf 	sup Ili - 
pePn ief 

by reducing it to the simultaneous approximation of the two continuous 

functions max f(x) and min t(x). 
fEF 	fEF 
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Finally, Diaz and McLaughlin showed in 1-24] that the simultaneous 
approximation of a non-empty family F of real-valued bounded functions 

from P, a linear subspace of C(d,R), can be reducea to approximating 

F
+ 

= lim sup sup f(y) 
y-,x feF 

ana 	= lim inf inf f(y) 
y+x feF 

with 	pp(F) = inf max {III+  - p I I , IIF - pH) 
peP 	

eo 

however, tnis result can be misleauing, since a more careful analysis of 

[24] reveals that, in fact, the approximation is one-sided and 

(tri].) 	pp  (F) = inf max {sup (F+(x) - p(x)), sup (p (x) - F(x))} 
peP 	xeI 	xeI 

Definition: vo 	V is a simultaneous best approximation (s.b.a.) to F if 

  

sup IIs  - voll = pv(F). 
feF 

A practical motivation for cietermining the s.b.a. to a set of functions 

arises when we try to approximate a single function that depends on a 

finite set of parameters; for example x 	f(X1,...,xm; x) x e B. 

It may be that Al,...,Am  are not known exactly, for instance if they are 

obtained from experimental data or from computational programs based on 

interval arithmetic. however, suppose that upper ana lower bounds are 

available, i.e. X. G [a., 	and that the corresponaing set of functionsi] 

F is bounded uniformly on B. It woulu be reasonable that we should want to 

obtain one s.b.a. to the whole family F defined by this spread, from the 

approximating family V. 

he shall set A(v): = sup Ilf 	vII 	and denote by V1  the set ' 
feF 

{L e X* Lv = 0 for all v e 
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2.1.2. V a linear subspace of an N.L.S. 

The simultaneous approximation of a compact set F by a closed convex 

subset G of an arbitrary N.L.S., X, was first treated by Laurent and Tuan 

in R6]. They based their characterisation of the s.b.a. on an expression 

for the sub-differential of a convex functional, a technique developed by 

Laurent in [451. 

They took K, a symmetric weak* compact and norm-bounded subset of X* and 

definea a continuous semi-norm p, on X, by 

p(x) = max k(x), x e X 
keK 

They introduced the convex, l.s.c. function d, on X, given by 

d(g) = max p(g - f), g e X 
feF 

and sought the 'solution' g* e G succi that 

d(8*) < d(g) for all g E G. 

They took H, a weak* compact and norm-bounded subset of X* and a weakly 

continuous functional w on H, and defined a convex subset C by 

	

C: = 	E X: for all h e H, h(x) < w(h)} 

For C = C A Vn  where Vn  is an n-dimensional subspace of X and under the 

assumption that there exists a go  e V11  such that 

h(go) < w(h) for all h e h 

they obtained 

(LT) (Theorem 2.1) g* e C fl lin  is a solution if and only if there exist 

(i) r functionals kl, ..., kr  E K 	(r 	1), 

(ii) r elements f1' 	fr  e F (not necessarily distinct), satisfying 

ki(g* - fi) = p(g* 	fi) = max p(g* - fi), i = 1,...,r. 
feF 

(iii) s functionals hl, 	hs  e H 	(s > 0), satisfying 

hi(g*) = w(hi), i = 1,...,s, with r + s < n + 1. 

(iv) r + s positive scalars Al, ..., Ar, p1,...., Us, such that 

/A.k. + 	X P.h. e V. 
iga 	1 	i=1 1  1 
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Under the further assumption that K and H are convex and the functional 

wconcave, the K and H in (LT) can be replaced by their extreme points. 

In the applications, knowledge of expressions for the extreme points plays 

an important role. 

In particular, when K = L* then p(x) = Ilx II,  and for G = Vn  they 

obtained 

	

Corollary. 	g* E Vn  is a s.b.a. to F if and only if there exist 

(i) r functionals k
1 	

kr 
eext(B*) 

(ii) r elements fl , 	f
r 

e F (not necessarily distinct) 

(iii) r positive scalars AI , 	Ar  with 1 5 r < n+ 1 such that 

(1) ki(g* - fi) = 116*  - fill 	= 	i = 1, 	r. 

(2) Ak. e 
i=1 1  

They gave applications with numerical illustrations employing Remes' algorithm 

provided K = B* and V = nn, for the cases when X was 

(i) C(b,R) with the added constraint H = (positive point evaluation 

functionals on a compact 

subset U of L. 

	

r 	 _ 
(ii) Ci La,b] the space of real differentiable functions on la,b1 with 

the norm 

	

= max 	If(t)I + v max 	13:1(01 ; v > 0 

	

tE 	to [a , b.] 

(iii) L1  (S E p) with S " 	= 10 	and P, the Lebesgue measure. 

Freilich and McLaughlin [33] su--boest a direct approach for the problem of 

simultaneous approximation in an N.L.S. by P, a linear subspace encompassing 

the special cases of F being compact and F being only norm bounded. 
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We take K, a subset of B*, such that (1) K is weak* compact and 

(2) for every f e F and p e 7 . there exists an L E K with L(f - p)=.  I I f-pI I • 

We define UF
(L): = sup Lf for L e K and P(L): = LR. 

fEF 

We find 

(FM2) A(p) = sup [Ur  (L)- p(L)1. 
LEK 

We now obtain the upper envelope of UF(L) by taking the collection n(L), of 

all w* open neignbouriioods in K of L and setting 

U+(L): = inf 	sup UF
O). 

lien(L) 	ReW 

We obtain the following results: 

(FM3) OF 
(L) is U.S.C. in the w* topology on Y. and 

A(p) = 	sup CUFF  (L) - p(L)j 
LEK 

(FM4) p
o 
E P is a s.b.a. to E if and only if for each p E P there exists 

an L e K such that (1) U 
F
(L) - po

(L) = A(po) and 

(2) p(L) 0. 

(EN5) 	If F is a compact subset of X then 

(i) UF
(L) is w* continuous on B* ana 	(L) = UF

+ 

(ii) for every L e B*, there exists an f E F such that UF(L) = Lf, 

(iii) UF
(L) is a convex function on B*. 

(1416) 	po 	
P is a s.b.a. to F, a compact subset of X, if and only if for 

each p e P, there exists an L e ext(B*) and an f E F such that 

(1) L(f - pc) = 4(po) 

(2) Lp 	0. 

When P = Vn 
we obtain an equivalent result to the corollary of Laurent and 

Tuan. 
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(ili7) If F is a bounded subset of C(b,R) and K = ext(B*) then 

U
F
+
(Lx) = F

+
(x) 	x E B 

U1,+(—Lx) = —F(x) 	x e B 

where Lx is the point evaluation functional at x e B. 

ftence from (1M4), we obtain the followin6 cnaracterisation of (FM.). 

(1148) po  E r is a s.b.a. 	to F, a.boundea subset of C(B,R) 	it and only if 

for each p e  P, there exists an x E B such that 

either 	F
+
(x) — p0(x) 	= 	A(po) 

and p(x) < 0 

or po  (x) - F (x) = A(p0) 

and p(x) 0. 

This is a reduced version of Theorem 3.1. in [25]. 
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2.2 	F a set of Complex-Valued Functions 

2.2.1. V a linear Subspace of C(B) 

_ When the functions in F are complex-valued and 'bounced on B, which is 

now a compact metric space containing at least n points, and V = Pn, an 

n-cimensional Haar subspace of C(b), Diaz and McLaughlin, in [251, 

transformed the problem into the 'approximation' of a set-valued function 

h*. 

They defined h(x) 	={zeUlf(x) = z,feF} 	x e B 

and 
	

h*(x) : = 	11 	u 	h(y) )° 
	

X E B 
c > 0 	ix-y1<e 

h* is u.s.c. on B and h* : B 	K(0), the non-empty compact subsets of C. 

We recall that for topological spaces X and Y, a set-valued function 

f : X A(Y), the non-empty subsets of Y, is u.s.c. on B if for each x E 

and for every open set G Y, with f(x) 	G, there exists an open neighbour- 

hood U(x) with f(U(x)) 	G. 

The following lemma played a fundamental role 

(DIA) (Lenana 1.1.) Let x e B. Then z E h*(x) if anu only if there exists 

a sequence of ordered pairs {(Xn,zn)} such that 

(1) x 11 e B, 	(2) xn 	x as n 	= , (3) zn  e h(xn), (4) zn 	z as n 	=. 

Setting 	i(p) : 	sup 	Ilf - Fll 
LEE 

and 	D[h*,p] : 	= {(x,z)e -BxClzen*(x) Ip(x) - zl = A(p)} 

they showed 

(Dh2)(Lemma 1.3) A(p) = sup 	sup 	Ip(x) - zl 
xeb zeh*(x) 

(DM3)(Theorems 2.1, 2.3) q E Pn  is a s.b.a. to F if and only if for each 

p e En  there exists an (x,z) E D[h*,qj satisfying 

Re {(q(x) - z) -1)-(x)} 	0. 
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(DM4) (Theorem 2.2) If q E Fn  is a s.b.a. to F and if 

kLM*) ior every two points (x,z) (x,z') in Dth*,91 one has 

Re {(q(x) - z) (q(x) - zr)} >, 0; 

then q is unique. 

2.2.2. V a Nen-Linear Subset of C(B) 

Blatt in [61 extended the approach of 1_25i to nonlinear subsets. 

Letting d(A,b) : = sup la - bl 
aGA 

he set 	gv(x) 	= d(h*(x), v(x)) 

and 	M(v) : = {x E B 	gv(x) =. A(v)}. 

He obtained the following results 

(hi) (Lemma 2.3.) gv  is u.s.c. on B. 

(b2) (Lemmas 2.4, 2.5) M(v) and D[h*,v] are non-empty and compact. 

(B3) (Theorem 3.2) A sufficient condition for vo  e V to be a s.b.a. to F 

or equivalently a b.a. to an u.s.c. h*:B 	K(0) is the following 

K-criterion Tria on D[h*,vol. 

(x,z)eqh*,voi 
min_ 	Re ((z - vo(x))(v(x) - vo(x))} .5. 0 for all v e V 

Blatt now defined V to be strongly regular when 

(i) for each pair of elements v, vo  e V and 

(ii) for each compact subsetEcBxCwith 

(R*) Re [(z - vo(x))(v(x) 	vo(x)).1 > 0 for (x,z) G 
	and 

(iii) for each real number A > 0;there exists a v
A 
c V satisfying 

(R1) 2 ke {(z - vo(x))(vx(x) 	vo(x))) > Ivx(x) - vo(x)I2  for (x,z) e i3 

(R2) lIvA 	voli < A  6 
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(B4) (Theorems 3.5, 3.6) The following are equivalent 

(E) vo e V is a b.a. to an u.s.c. h* : B 	K(C) implies that vo 

satisfies K-criterion Va on D[h*,vo] 

(F) V is strongly regular. 

Definition. A compact subset E of Bxe is an extremal set for vo  if 

K-criterion Va is satisfied on E . 

(B5) (Theorem 3.13) If V is stronly regular and vo e V is a b.a. to an 

u.s.c. h* : B 	K(C), teen vo  is unique if v(x) = vo(x) on E, an 

extremal set for vo  with E a 40,voj implies that v(x) 	vo(x) on B. 

Blatt proceeded to consider Er6chet differentiable V. 

(156) (Theorem 3.9) If v(a) E V is a b.a. to an u.s.c. h* 	B 	t“C) 

then v(a) satisfies the following K-criterion Vb 

min 	Re {(z - v(a,x)X'[b,a1 (x)1 5 0 for all b E 
(x,z)eD[h*,v(a)j 

where v'[.,a] is the Frechet derivative of v(a) at a. (see Chapter II, 

Section 4.) 

Under further conditions on V, he found K-criterion Vo to be sufficient for 

v(a) E V to be a b.a. to h*. 

(D7) (Theorem 3.15) Extension of the Nonlinear Uniqueness Theorem. 

If v(a) E V is a b.a. to an u.s.c. h* 	K(C) then v(a) is unique if 

(i) (U1) and (U2) uold 

(ii) (DN*) volas with q replaced by v(a) 

(iii) V has property Z of degree d[a] 	1 at a, 

(iv) V is strongly regular. 

Blatt save a further characterisation and illustrations of strong regularity. 
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In particular the asymptotic convex sets are strongly regular (Example 3.2). 

Furthermore, in C(B), if V is strongly regular then it is regular I, while 

in C(B,R), if V is regular III then it is strongly regular (Theorems 3.3, 3.4). 

2.3 	Continuation of this Section to Chapter Two  

In chapter II, we produce a.unifying characterisation theory for the non-linear 

simultaneous approximation problem in an arbitrary N.L.S., X. The main aim is 

to extend the K-criterion IV to characterise the s.b.a. when F is a bounded 

subset.of X. We achieve this aim by first modifying the definition of h* for 

the envelope of F so that it is u.s.c. on the dual space. 

We proceed to obtain (almost) equiValent results to (Il1) - (li6) with an 

appropriate concept of regularity (Definition 1.7). 

Furthermore, in Section 2, Lemma 2.7, we relate the two definitions for the 

envelopes of F when X is a real valued N.L.S. 	We can thereby derive the 

characterisation result (FM4) as a subcase of this unifying theory. This 

resolves the question inherent in [:2]section 3, case 3. 

Finally we develop the characterisation of a local s.b.a. or, equivalently, 

a local best approximation to h*. This has application for the case V 	R m,n 

which we treat in Section 5. 

Generalisations of (1/1), (F2). and 	(P4) for a local. s.b.a. from an interpolating 

subspace are again readily obtained. 

We remark that the characterisation theorems of Chapter II are valid 

for _ functions defined in more than one variable (see [621 1 Chapter 12). 

It is envisaged that the results of Chapter II would be instrumental 
in the development of Remes type algorithms for determining an s.b.a. 

The theory could also be developed on similar lines in the case when 

we require our seb.a. to satisfy constraints. 
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2,4• 	Existence of the s.b.a. in an N.L.S. 

We now give a brief review on this important aspect. 

We shall assume throughout that pv(F) < = , otherwise any v e V is a 

s.b.a. 

2.4.1 	Some Classical Existence Results 

The first existence result for the simultaneous approximation problem was 

obtained by Diaz and McLaughlin in [25] Theorem 1.1. Thus: 

Theorem 2.1. 	For X = C(B), V = P, a finite-dimensional subspace of X, 

and F, a uniformly bounded subset of X we have that pp(F) 0 4. 
The proof, in outline, is as follows: . 

(i) 	We can take a sequence {pn} c P such that 

lim A(pn) = Pp(F) 
n4= 

(ii) {pn} is uniformly bounded and hence contains a convergent 

subsequence.with limit q E P 

(iii) A(q) = Pp  (F) 

and therefore q is a s.b.a. 

We note tnat the proof is still valid for X, an arbitrary N.L.S. 

Furthermore, we can extend the scope of Theorem 2.1. to the following. 

Let us say V is simultaneous approximatively compact (s.a.c.) in an N.L.S. 

if to every sequence {v } in V with 

lim Li(v ) = pV  (F) 

there exists a subsequence converging in norm to some element of V. We 

can now assert 

Theorem 2.2. 	If F is a norm-bounded subset of X, an N.L.S., and V is s.a.c., 

then p
v
(F) 0 4 . 

Illustration. Take X = L [0,11 1 < p < 	and V = Rm n. Then V is s.a.e. p 

see [71 

-fop 
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1 

are stated in [36] for F, a compact subset of X. 

Theorem 2.3. 	If V is a finite dimensional subspace of X then Pv(F) 	¢ • 

ana if X is strictly convex the s.b.a. is unique. 

Theorem 2.4. 	If V is a closed convex subset of a uniformly convex 

banach space X, then pv(F) is a singleton. 

' We can 'extend the existence proofs devised for F, a singleton, for the 

following non-linear approximating families on L (S,E,p), 1 	p < = 

when S = ro 2 1] and p is the Lebesgue measure. 

2.4.2. 	The Existence of the s.b.a. from the Rationals 

Here we can adapt the technique developed by Dunham in [291. 

he framed the existence problem in the more general setting 

of a generalised integral norm which includes all L norms 0 < p < co. 

Let T be a non-negative continuous function such that T(t) 	co as t 

Let f denote the Lebesgue integral on L0,1' and uefine illgIll 
	

fT(g) when 

g is measurable on E),1]. 

In particular, r(t) = 'LIP, 0 < p < co, relates to L norms. 

We introauce the following parametrisation for 

Let A: = fa 	. 	a • S 	Sin} E En-hu 1"" n' 1' 

and 	
y a.g.(x) 

R(A, x): = i 1 	
E R1  

i=1 

= 

y 0.h.(x) 1 

Without loss of generality we can introduce.the following normalisation for ' 

R(A,x) 

i 1 
I.1 	= 1. 

= 1  

however, by IlAll we understand 	maxilail: 1 < i < nl. 

The following two theorems were obtained in D41 for F = if 1, f2} and 
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We further make the assumption that 

Q: = span {hl, 	hm} 

has the zero-measure property , namely 

measCZ(q)J= 0 for all q e Q, q t 0. 

Theorem 2.5. 	If F is a 'set of bounded measurable functions, then under 
the above assumptions, there exists a s.b.a. to F from Rn m.  

We shall require the following Lemma proven in [29]. 

Lemma 2.1. If {IIA kill -+ 0. , then there exists a non degenerate closed 

interval I such that 

ki • = inf {If(x) - R(Ak, x)I: x e I) 	as k 	0. 

Proof of Theorem 2.5. 

Let R(Ak,.) be a sequence in Rn  m with 

lim sup Ilf - R(Ak,.)I1 = pRn,m
(F) 

117+00 feF 

Ii {11AkIl } is unbounded, we have for each f e F 

fT(f - R(Ak, .)) > fT(f - R(Ak, .)) > fminFT(f(x) - R(Ak, x)] 

*Where I is as in the Lemma. 

The extreme right side tends to infinity as k =. 

It follows that sup Ilf 	R(Ak, .)II 	=, giving a contradiction. 
f EF 

hence fIlAkII J.  is bounded and {kk} has a limit point A. 
Then {R(Ak, .)} converges to R(A,.) e Rn,m  except on z(q(A,.)). 

hence for each f e F, T(f 	R(Ak, .)) converges pointwise to T(f - R(A,.)) 

except on Z(Q(A,.)) which has zero measure. 

Applying Fatou's Theorem (roj, p.28) we have for each f e F 

fT(f 	R(A, .) < lim fT(f 	R(Ak, .)) 
Jecoco 

= lim IIf 	R(Ak, .)I1 

lim sup Ilf - R(Ak, .)II 
k+m Lei? 

Therefore sup III - R(A, .)I1 5 pR 	(F) 
feF 	n,m 
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The proof is valid for R . 
n m 

Furthermore it can be shown, as in 291 section 4, that there exists a 

s.b.a. from R+ 
n,m in the L. norms 1 	p < o when P and Q are the ordinary 

P- 
polynomials. 

2.4.3. The existence of the s.b,a, from the y-polynomials 

here we can adapt the technique developed by Barrar and Loeb in [4 J. 
y(t,x) must satisfy certain assumptions (BL) stated in [4], which for the 
examples (a) and (b) of section 1.3(ii) is the case. We must also allow the 

best approximation to be in the closure of the approximating family. 

Theorem 2.6. Under the assumptions (BL), each set F c L ,),11 has a s.b.a. 

in V°. 

F  We shall require the following Lemma proven in L4 j • 

Lema 2.2. Let {vk} c V be bounded in the Lp norm. 

Then under the assumptions (BL) there exists a v e V°  and a sequence of 

closedsets{U.}so that 

(a) U. cUj4.1  c [0,1] and U U. differs from 	on a set of measure zero. 
. 

(b) For each 1J., some subsequence of {vk} converges to v in the L norm 

restricted to U. i.e. Ilvki 	vIlj -* 0. 

Proof of Theorem 2.6. 

We can choose a sequence {vk} c V with 

lim sup Ilf vkll = po(F) 

By the Lemma part (b), for each j 

sup 	Ilf - vIlj  = lim sup 	lif - vkilli  
feF 	i÷00 .feF 

"In sup I vklII  
i-t° feF 

= Pvo(F) 

Therefore sup l!f  - VII 	; pyo  (F) 
feF 

 

and so v is a s.b,a. to F. 
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S1 HNARX 

There are still cases of nonlinear approximations in an N.L.S. where no 

proof has been provided to guarantee the existence of a best approximation 

for a single function. 

In particular for L (S,E,p), where S is the union of the atoms and 1.1 is the 

counting measure. * 

however it would appear from the above Theorems that where there is such a 

proof, one can generally formulate an existence proof for the corresponding 

simultaneous problem. 

It can still occur that an s.b.a, happens to exist for a particular set F 

and approximating family V without a priori guarantee and a characterisation 

of the s.b,a, as derived in Chapter II, will still be valid. 

* Wolfe in [70] treats the existence problem of the best approximation to 

f G S(B), the linear space of real-valued functions defined on the finite 

set B, B: = {x1, 	xm) 	[a,1)] and endowed with an ip  norm, 1 < p < co, 

from the approximating family RI 	and its pointwise closure in S(1), 

denoted I.Rnm(b)]°  

by making the additional requirement that P and Q are iiaar subspaces of 

C[a,b] of dimension n and m respectively with N 	n + m + 1, lie obtains 

an explicit representation of [Rn,m(b)]°. 
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3. 	SIMULTANEOUS APPROXIMATION OF A FUNCTION AND ITS DERIVATIVE IN THE 
UNIFORM NORM. 

3.1. 	The Approximation Theory Approach 

Let CI[I] be the space of continuous real—valued differentiable functions 

on the closea interval I-and V = V. The norm of an element f G OM is 

defined to be the double sup norm — 

	

Ilfil 	= max [max If(x)I , max Ift(x)11 

xeI 	xeI 

The element vo E V which is a best approximation to f enjoys the additional 

property that its derivative is approximating the aerivative of f. 

In order to develop a Kolmogoroff characterisation into practical application, 

we need to know the extremal functionals of the unit ball of clu]. These 

have been found by P. J. Laurent in [44]  to be of the form 

Ef(xl) or c'f(x2) where xl , x2  E I and e, c' are ± 1. 

In [44], interest centres on the norm 

	

I If 
	

max If(x)1 + max Ify(x)1 
xEI 	xEI 

and an extension of Reifies' 	orithm for determining tne b.a. with this 
- 	. 

norm is 6iven tnere, while in - 	is appliea to the simultaneous 

approximation problem. 

Aspects of unicity for this type of b.a. with the double sup norm are 

consiuered in [5]. 

Theoretical considerations in Lp norms p > 1 are in F511, where constraints 

are added. 
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3.2. 	Tau Method Solution of First Order Differential Equations 

3.2.1. 	Introduction 

Consider the first order differential equation 

Dy = 0 where Dy ; 	
dx 	Y  

subject to the single initial value condition, y(o) = 1. The solution 

is of course y(x) = exp(x). 

In the Tau method, we obtain the exact polynomial solution yn  of 

Dy 	= 1:(11)  lin 

where hn is a pre-determined polynomial of degree n the simplest case being 

n x . 

%e usually want to find a good approximation to y over an interval J.In [49 

Lanczos suggested to use for hn  the Chebyshev polynomials of the first kind 

shitted to J, as these give the best polynomial approximations to zero. 

(n) 	. satisfies Dyn*  = r 	-T A then D( 	has the equi-oscillation If yn* 	 P 	sYn* 	y) 

property ana the error in the image of U is more evenly distributed on J. 

This is not to say that yn* is then a best uniform approximation to y from 

nn, however, it can be shown that yn*  is asymptotically of the same order 

of approximation as the best. The technique, devised by Meinardus and Strauer 

cl.[50Vs basically to invert the operator D using the Green's function. 

This was further refined in E56] by performing an integration by parts. 

	

3.2.2. 	Validation of the use of Chebyshev Polynomials 

To justify the use of Chebyshev perturbations,Rivlin ana Weiss in [661 

argued as follows. Suppose we seek a polynomial approximation yn* E 7n  to 

exp(x) on .5 E [-1,1] such that yn*(0) = 1 

and 11 iryn*110, 	I1bYn11. 

for all yn  E all  with yn(0) = 1. 
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Let vn(x) = bo 
+ b x + 	+ bnx

n 
1 

+ anxn  ana y
n
(x) = a

o 
+ a x + 

1 

with yn(0) = 1 and Dyn  = vn. 

Comparing coefficients in the differential equation, we obtain 

	

a. = 	1
X is b. 

J• 

In particular, since ao  = 1 we have 

LI n 	= 	X is 'b. = 1. 
i=0 

W e nave reduced our problem to finding v 	such that IIN
n
II '5. IIv 11' n 

among all "admissable" Vn satisfying tne constraint L1 n  
v = 1. 

Iva sketch one approach adoptea in [661 for which the following two Lemmas 
were requirea. 

Lemma 3.1. Suppose the roots, x1 , 	xn  of vn, n 	1 are all real and 

satisfy xj 	1; j = 	n with strict inequality holding for 

at least one j. If b 	= 1 then L1 ii 	0. 

Lemma 3.2. Let L be any linear functional on V, a k-aimensional subspace 

of C(I). Then there exist points x1, 	x
r 	

I, r * 1: and 

non-zero constants al, ..., ar  such that for any v 6  V 

Lv = 	! 
j 

 a v(x..) 

J=1    

and 111-11= 	L lajl . 
=1 

If we take V = n then k = n+1 in 
	

Lemma 3.2. 

Lemma 3.2 appears in [653 Corollary 3 and in E643 Theorem 2.13 . 



34. 

We can apply Lemma 3.2 to our functional LI. For 	v = (x-x1)...(x-xr) 

we have by Lemma 3.1. that r cannot be less then n, so r = n + 1. But this 

implies there exists a vn*e rn  with Ilvn*Ilw = 1, I Livnic I = !ILI! 

'and Iv*
n 
 (x- )I.= 1, for j = 	n+1; see [65] Remark 2, p.676. 

This can only be if vn*  = 	Tn. (see [6.5] Lemma 2). Thus 

111=IL1
T
n
I ?- IL1 

n  v I for all v
n
e r

n with Ilvn c°  II = land hence 

n   	co    for   all   v
n satisfying   L1n =   1,   when   T" 

(11)I II 7   	II  	<   livII 	 1. 
• 

L
1
T
n 

In [619 Rivlin extended this reasoning to the differential operator 

Uy ;= (A + bx) y' + - Cy = 0 

with the boundary condition y(0) = K and showed that for a large'class of 

intervals and values for K, 

min 	II UYn II = II n*II 
YneiTn 

yn(0)=K 

.where y* is the solution of byn* = T
(n)  1n.  

The case of D being the second order differential operator 

Dy = y" + c2y 

with the single initial condition given eitaer by y(0) = 1 or y'(0) = 1, was 

also considered in IG6J. The use of Chebyshev perturbations was justified and 

error bounds were found that were again asymptotically best possible. 

3.2.3. 	The Canonical Polynomials and the Tau Solution 

For an efficient way of determining yn*, there is the method of canonical 

polynomials introduced by Lanczos, see [0], and developed by Ortiz, see [56]. 
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Let D be any linear differential operator with polynomial coefficients. 

Then D n
+

m where m n. The canonical polynomials {Qn(x)} for D 

can be defined by 

n(x) = x
n 
for all n c  N, the non-negative integers. 

If we use the Chebyshev perturbation and set 

T
n*(x) = / c(n)  xk  k=0 k 

then 
nc  

y *(x) = T(n)L c(n)  Q (x). 
k=0 k 

We determine T(n) from the initial condition y(0) = u. 

Thus 

k=0 k 

{Qn(x)) can generally be found by a recursive technique, when D is a linear 

operator, as follows. Suppose we know Qr(x) for r < m, 

and that D xn  = X a(n)  xr  
r=0 r 

m=1 
Then (n) D [ (01)  ( xn 	t  a 	Q(x) 	= xm  am 	

r=0 r  

yielding an expression for 0111(x). 

Special attention has to be paid to situations where m is greater than n 

and where a
(n) is zero for some values of n. In both these cases there will 

be, in general, gaps in the sequence {Qn}, i.e. there will be an index set S 

of undefined canonical polynomials such that no Qv  is known to generate XY , 

v e S, in the expansion of T n
*(x). We remark that S has finite cardinality, 

see 154j. We set 
v 

Rs 
= span {x :v e S } 

and redefine {Qn(x)}by 

D Qn 
= x

n 	Rn(x) where Rn 
6  RS. 
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We now have the following diagrammatic representation of the application 

of D to tne canonical polynomials 

n 

—22r 	 span xn 
ne NJ 

A further point is that for some n, there may be several Q. for which 

D Qhli  = x
n 

Rni however it is readily shown that in such cases 

Q. 	Qn 	DD' the kernel of the operator D. ' 

hence we are lead to define classes of equivalence 

fdlnl 	n e N-S, modular Up. 

If we let L denote this equivalence relationship then we have a quotient set 

{0C n} = { Qni} / E 
	

n e -S. 

There is now a bijection between 

L 	n} with n e N-S and P- RS, 

as well as a unique correspondence between L and D, see [54]. 

In the numerical computation of yn* it will be necessary to eliminate any 

contribution from kS. This is achieved in practice by having one free para-

meter for each v e S to match the coefficient of the weighted sum of residuals, 

with the coefficient of x
v 

in Hn. This eliminates the component of qv. For 

example, if card(S) = 1, we could let H 	
= T(n) I* 	T(n) 1*n-1. The same 

 

device is employed if there is an extra constraint to be satisfied. In either 

case, tne equi-oscillation property and the argument of 3.2.2. is lost, 

although good results are nevertheless obtainable. 

In [5], Urtiz treats the evaluation of the coefficients of the expansion of 

yn* 
 in an arbitrary system of polynomials which span n n 

In [56.1, he discusses the direct generation of the canonical polynomials for 
a Chebyshev perturbation. 
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3.3. Continuation of this Section to Chapter •Three 

In chapter III, we suppose the function y. we wish to approximate 

satisfies a linear second order differential equation with variable 

rational coefficients and is subject to two initial conditions y(0) = 

y'(0) = p.We treat this subject in three parts. In Parts I and IIA  

we shall be interested in determining two polynomials (y , z ) E 7 X17 
n 	n n 

approximating y and -zn approximating y' on j = 	(y z ) with Yn 	 n' n 

is a feasible solution if yn(0) = o, zn(0) = P. 

We note that this method requires that we store coefficients of two 

polynomials, but that there is little disadvantage from this. 

According to 3.1, we ought to be minimising max[ I}' 	Y11110,111Y T 	zn  I M A j 

over all feasible solutions. However, since y and y' are known only 

implicitly through 

D  Y = ) ytj 	0 

where D is now a pair of first order linear differential equations, we 

sevrch for a feasible solution (yn*, zn*) satisfying 

D 	n= 
	

Tl 
 (n) Tn") 

zn* 	T
2
(11) T 

faith the object of minimising the error in tue image of D. In Part 

We extend 3.2.2. to validate the use of shifted Chebystlev perturbations for 

the simile case y" + y = 0 subject to y(0) = 1 and yl(0) = 0. 

We also introduce 	the vectorial form of canonical polynomials to 

aid the construction of the solution (y:11 	, and then perform 

an error analysis. In Part II, we cosider applications of some of 

these ideas to a variety of linear second order differential equations. 

In Part III, we consider the use of Legendre perturbations for the 

case of y" y = 0 with the modification that we produce a pair of 

rational forms as our approximation .The error analysis demonstrates 

an improvement in accuracy for n?_ 4, though at extra expense. 
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SIMULTANEOUS APPROXIMATION OF A SET OF BOUNDED COMPLEX-VALUED FUNCTIONS 

1. INTRODUCTION OF PROBLEM WITH BASIC DEFINITIONS AND RESULTS 

Let B be a compact space and SO) be the linear space of complex-valued 

functions endowed with a norm 11.11. 

For a, a positive real number, denote by F( = F(a)) a nonempty class of 

complex-valued functions defined on B such that if f C F then 

Let C(B) be the set of complex-valued continuous functions defined on B 

and V(B) be a non-linear subset of C(B). 

We wish to characterise the best approximation vo  from V to F, if it 

exists, 

given by 	sup 11f-volt = inf sup Ilf-v11 
vcV fcF 

The case of the uniform norm has been treated in [ 6]. 

In 	section 2, we show that this problem is equivalent to finding 

the best one-sided approximation from V to a w* upper semi-continuous 

function h* (Definition 1.4) where h* and V are defined now to be on a 

co* compact subset of the dual space and h* is set-valued. 

In 	section 3, we obtain a sufficient condition that vo  satisfies by 

generalising the Kolmogoroff criterion. Furthermore, by imposing on V 

that it is regular (Definition 1.7), the Kolmogoroff criterion is found 

to be a necessary condition for a global best approximation and we can 

further deduce a uniqueness result. 

In 	section 4, we develop the characterisation of a local 

best approximation for approximating families which depend on a parameter, 

with respect to which they have a Frechet derivative. 

This includes the case when V is a set of generalized rational polynomials. 

For this examplei we develop our results further in 	section 5, to 

show that,under appropriate conditions, a local best approximation is 

(i) locally unique (ii) locally strongly unique and (iii)characterised 

by a generalised "alternation" theorem . 
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Notation  

Let R,C be the fields of real, complex numbers respectively endowed with 

the usual metric topologies given by d(x,y) = Ix - yl. 

Let X and Y be topological spaces, X* the dual of X, i.e. the set of 

complex-valued bounded linear functionals X C 

Let 	MY): = [ E 	Yl  E # 4,1 

and 
	

SC(Y): = [ E Y l E compact in the topology on Y and E 	401 

E
o 

denotes the clost„re of E, C(E) the complement of E and co(E) the 

convex hull or cover of E. W(L,O,c) is a w* open neighbourhood (nbhd) of 

L 

i.e. 	W(L,6,c): = R‹ X* 	1(2. - L)x 1.(c for all x e 6; 

where 6 is some finite subset of X and c > 

Where there is no loss of clarity we abbreviate W(L, 6,c) by N (L) or W. 

Definition 1.1- 

f:X* -0- A(Y) is w* upper semi-continuous (u.s.c.) at L c X* if to every 

open set G with f(L) c G there exists a w* open•nbhd W(L) such that 

f (11 (L)) C G. 

Definition 1.2. 

f:X* 	R is w u.s.c. at L a X* if to every real number c > f(L) there 

exists a w* open nbhdll(L) with f(i) < e for all k c W(L). 

The following Theorems can be obtained by generalisations of standard 

topological arguments [351 : 

Theorem 1.1. If E c X* is to* compact and f:E -0-,X(I) is w* u.s.c. on E 

then f(E) is compact in Y. 

Theorem 1.2. If E c X* is w* compact and f:E 	R is e* u.s.c. on E 

then there exists an Lo  e E such that 

f(1,0) 	sup f(L). 
LEE 

We recall that to each x e X ‘JC can associate the evaluation CQX* -*R given 

by kW E Lx. W'e remark that n is continuous. We shall omit the cap in the 

sequel when portraying; x as a function on a subset of X. 
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Definition 1.3. 

Let K be a subset of B*, the unit ball in X*, satisfying 

(i) K is w* closed 

(ii) For every f e F and v e V, there exists an L E K 

with ReL(f 	v) = Ilf - vII 

Remark: The existence of L in B* is guaranteed by the Hahn Banach Theorem. 

We shall henceforth take all neighbourhoods of L to be in K. 

We understand by k 	L that for this €and any 	>0, there exists an 
n 0 

no.E no(pIE) such that 116 W(L,O, 0 for all n 	no. 

The following definitions are generalisations of corresponding ones in 125J. 

Definition 1.4  

Let h(L): = {z e C (there exists an f e F with f(L) = Lf = z} for L e K 

Define h*(L): = 	fl 	( 	h(0) ° 	for L e K 
0,c>0 	tell(L,O,c) 

h*(L) is a set-valued mapping from K into A(C). 

Theorem 1.3. 

h*(L) ={zeCifor any 0 there exists a sequence {(tn,zn)} 

such that (1) to  E K, 	(2) 2,n  + L 

	

(3) zn  e h(tri) 
	

(4) zn 
+ z. } 

PROOF 

By definition,z E h*(L) implies z E 	U h(2.)1° for all e> 0, 
[ iGN(L,O,c) 

and all 6. For each 6 then, we have z e
( 

kello,,o, 11  h(Z) ° and so there 

n)  

exists 	a sequence {(2.n,zn
)} depending possibly on 0, with lz 	znI <— 1 

n 

and zn e h(tn
) where to  E K and to 

EII(L,0,-1  ). Conversely, if for each 0 and 

e >0-,-there exists a sequence {(R, ,z n)} satisfying the four conditions, n  
then there exists an no  such that forn?,no

,tn  em,e,e) and by (3) 

zn E h(t ) 	
U 	h(9). 
tr(L, 0, s) 



Now z = lim z
n
, therefore z 6 	l) 	

0 

ZEW(L,e,C) 

Since the arbitrary intersection of closed sets is again closed, 

z e ( 	h(k)l°  and finally, since this is true for each 
e>0 SteU(L,6,t) 

finite 0, the intersection may be taken over all such 8. 

Corollary. If L = AL1  + (1 - A)L2. where L, L1, L2 E K and 0 < A < 1 

	

tnen h*(L) 	Ah*(L1) 	(1 - A)h*(L2) 

PROOF 
(i) 

For any 8 and e > 0, let W (Li, 8,e) be a w* open nbhd of Li, i=1, 2. 

Then ?J1(1) + (1 - A) W 
(2) 

 is a w* open nbhd of AL1 + (1 - A) L2  

setting 'E 	=  
6,e>0 	L 	

L.) 
AVM + (1- X)W(2) 

MO) 0 

it is obvious that h*(L) c h(L). 

Now h(L) = {z E C !for any 0, there exists a sequence 1(211  ,z n)) 

satisfying (1) - (4) where
n 

= Ap
n 

+ (1-X)q
n
,p
n
GU

(I)
,q
n 

W
(2)

) 

Furthermore pn e L1 	
qn 6 L2 	

and since tnere exists an f e F with 

2.1.1f = z
n1

we have 
	e. h(p

n
) anu wIl  e h(cin) 

and z
n 
= Av + (1-A)w

n 
with lim z

n 
= z. 

Extracting a subsequence if necessary, we are assured the existence of 

v e h*(L I) and w e h*(L2) such that 

z 	Ay + (1-A)w 

and 	h(L) 	Xh*(141) + (1 - A)h*(L2) 

41, 
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Definition 1.5 

A non-void subset of Y c X is an extremal subset of X if a proper 

convex combination xxi  + (1 - X)x2  , 0 < , < 1,of two points xl, x2  e X, 

is in Y only if both xl  and x2  are in Y. 

An extremal subset of X consisting of just one point is called an 

extremal point of X. 

The collection of extremal points of X is denotea by ext (X). 

Lemma 1.1. 

If C is a convet and compact subset in Rn  then C = co(ext (C:). 

(See e.g. D503 P.232  ). 
Lemma 1.2 

Let cp be a continuous linear mapping of E1  into E2 (two hausdorff locally 

convex topological spaces) and M be a compact subset of El. Then for 

every extremal point .e.2 of O(M) there exists at least one extremal point 

el of M such that 'q(el) = e2. (See [36, p.333) 

Definition 1.6. 

A non-empty 	subset E of B* is sign-extremal for vo 	V C. X 

if min Re L(v - v
o
) 	0 for all v e V. 

LEE 

Lemma 1.3. 

If E  is a Oa*  closed subset of B* then E is sign-extremal for v0  E. V 

if and only if ext(E) is sign-extremal for vo. 

The proof is given in 115] Lemma 2. 

We define regular subsets of X in the sense of Brosowski. 

Definition 1.7  

V c X is regular at a point vo  E V if for each v e V and each real number 

A > 0 and for each i closed subset A of B* satisfying Re L(v vo) > 0 fo.r 

all L E A, there exists a v
A e V with 

(R1) Re L (vx  vo) > 0 for all L E A 

(R2) 11 v
A 	

v
o 
 II < 

The subset V of X is regular if it is regular at every point of V. 



4 

Z. CONVERSION OF PROBLEM TO APPROXIMATION OF h* 

We first deduce a basic property of h*. 

Lemma 2.1. 

h*(L) is w*  u,s.c. on K and h*:K 400. 

PROOF 

Suppose at Lo  e K it is not w*  u.s.c. 

Then there exists an open neighbourhood C of h*(1,0) such that for every 

w* open neighbourhood U(L0) there exists at least one .2, e U(L0) with 

hic(Z) 4 G. 
For any e, let {Un} be a neighbourhood basis for Lo  

i.e. Ul U2 	Un  

with zn  G Un  but h*(kn) 4 G 

"thereexis"azn ell*(td butz-5"  

For n 	z 	L0  and zn has a cluster point zo since it is a bounded n o   
sequence. 

r/(n)  (nli 
Now z

n 
e h*(9., 

11
) implies that there exists a sequence 

tkqk' 
n
k
P with 

W 	
(2) 	(I-0  w 	, 	0 	, / (ri). 	,., (n) 

(1) q
k 
e K, 	(2) 	q 4...Ln  , (3) 	nk  e ukcik), 	(4) nk --).. zn. 

k e 
n) 

For(znn) choose k
n 
such that (i) q

k 
E n 
	

I 
ana (ii) ,11(

k n 
- z

n
I < 1 
- 
11 

(rA 

n 	n 	 n 
Hence for {(1111 qk 	)1 we have 	(1) q

k 
e K 

(n) 5 c( 	S)  
k
n 

t-  
0 	

L o 
	

rc-k (2 	 z
o  

	

(3) 
nk
n 
 e h(qk

n 
) 	(4) 	

n 

(2) - (4) imply zo  e h(Lo) c  G. 

but z
n 
 E  C(G) implies that zo 

 E C(G), hence a contradiction. 

The proof that h*(L0) is a closed set is similar and is omitted. 

Furthermore, h*(L
o
) is bounded since 11f11 	a for all f E F and the 

neighbourhoods of Lo  are subsets of K. 

It follows that h*(L
o
) is compact. 
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The following "distance" function is most suitable for our problem. 

Definition 2.1.  

d(A,b) = sup Re (a 	b) 
a EA 

We are now able to take the first step towards an equivalent formulation 

of our original problem. 

Lemma 2.2. 

sup Ilf 	vii = sup d(h*(L), v(L)).  
fEF 	LEK 

PROOF 

For any f e F and L e K, ReL(f v) $ sup 	Re(z - Lv) 	sup 	Re(z - Lv) 
zeh(L) 	zeh*(L) 

but there exists an L e K such that ReL(f - v) = (If - vIl 

Therefore Ilf - vII 	d(h*(L), v(L)) 	sup d(h*(L),v(L)) 

LEK 

The right hand bound is independent of f. 

Therefore sup Ilf 	vii 	sup d(11*(L), v(L)). 

feF 	LEK 

On the other hand, consider the sequence fLn, zn) with Ln  e K and 

zn  e hvg(Ln) and 

lim Re(zn 
- Lny) = sup 	sup 	Re(z Lv) 

LEK zeh*(L) 

(111 	41 
By Theorem 1.3. for 6 = v, there exists a sequence { qk  , rr} with 

(n) 	(n) (4) 	en) 	VI) 	(M 
(1) qk  e K, 	(2) ql. .+ L_, 	(3) 	rhe  e h(qk  ), 	(4) 

nn) 
 -0- Z. 

" v " 

411 
Choose kn  so that a) Ink 	

n 
<— 

1 and (ii) lq
(
k
n) 	- v Lnvl 	n
n  . 	n 

(n) 	(11) (n) 
Then Ilfk  - v II 2 Re qk  (fk  - v) = Re(nk 	qk  v) 

n 	 n n 

Re(-Lnv + zn + L
nv - qk  v + qk 	zn) 

	

n 	n 

6.0 Re (zn - Lnv) - IRe(Ln  - qk  )v i - IRe(lk (II)  - zn)I 
n 	n 

Re (zn L
n
v) - li 

Therefore sup Ilf - 	lim 'If
k 

	vii 	lim Re(z
n 
- L

n
v) = sup d(h*(L),v(L)) 

feF 	 n 	 LEK 
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A consequence of Lemma 2.2. is that we can reformulate our problem as 

that of finding the best approximation from V to h* on K using the 

distance function d on G for approximating a set valued function. 

It is desirable to investigate further the function on the right hand 

side of Lemma 2.2. 

Lemma 2.3  

Set gv(L): = 	d(h*(L), v(L)) for L E K 

Then gv  is a mapping of K into R and gv(L) is dc u.s.c. on K for each v. 

PROOF 

gv(Lo)  
Let L

o 
E K and S > gv(Lo) with e = 

 .2 
and 

E 	U 	0
c
(z) where () (Z) E {14: Iw —  ZI < c 

zeh* (L
o
) 

is oP open and h* (Lo) 

By Lemma 2.1, h* is w* u.s.c. at Lo
. hence there exists a w* open nbhd 

w1(L0) such that for all R. eldi(L0), h*(9.) c(). 

But for each n e hof (R,) where- k e w i(L0), there exists a zn  e h* (Lo) 

such that In - zril< c by definition of 0. 

Therefore for R. E 14 1(L0), a(h*(2,), v(L0)) = sup 	Re(n  - v(L0)) 

neh*(Z) 

.< sup 	Re {(zip  - v(L0) 	(zn  -n) I 
neh*(i) 

• .5 sup 	Re (z - v(L0)) 
z..eh*(L0) 

= gv(L0)  

how gv(2,) = sup 	Re(z - v(0) < sup 	Re(z 	v(L0)) 	Iv(Q) - v(L )I 

zEh*(9.) 	zeh*(.2) 

= 	Iv(2,) - v(L0)I 	d(h*(2.), v(L0)). 

Take a w* open nbhd 141 (L0) such that Itv 	Loy' < e for all 2, e `i2
(Lo) 

Then. for all 2. e W1  (L0) n 142(L0) 

	

gv(x) < gv(1,0) 	2c = 

which completes the proof. 

Le remark that by Theorem 1.2, gv  attains its supremum on Y. 
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Lemma 2.4  

g
v
(L) is a convex functional on K in the following sense. Suppose 

L = AL1 + (1 - X) L2  where L, Li, L2  e K and 0 6 A 6 1, Then 

	

gv(L) 	X gv(LI) + (1 - 	gv(L2). 

The proof follows from considering sup Re z and applying the corollary 
• zeh*(L) 

to Theorem 1.3. We now restate our problem as that of finding inf sup gv(L) 

veV LeK 

and for convenience introduce the following notations; 

A(v) E sup gv(L), pv(h*) = inf A(v) 

	

LEK 	veV 

Furthermore, we set M(v) E CL e K I gv(L) = p(v)1 

D[h*,vJ E [(L,z)eK x Clzeh*(L), Re(z-Lv) 	A(v)] 

n[h*,v,L]E [z e h*(L)I Re(z - Lv) 	= gv(L)] 

Since K and h*(L) are compact, M(v), D[h*,v] and n[h*,v,LI are non-empty. 

We observe 

{(1„z) I L e M(v), z e n[h*,v,L]} = D[h*, vi 

Lemma 2.5 

M(v) is t compact in K. 

PROOF 

If L E al(v) then gv(L) < A(v). 

Since, however, gv  is w* u.s.c. on K, there exists a w* open nbhd U(L) such 

that 
gv(k) < A(v) for all R. E U(L) 

hence CM(v) is w* open and therefore M(v) is w* closed and the result follows. 

Lemma 2.6  

ext(M(v)) c ext(K) 

PROOF 

Suppose to the contrary, there exists an L E ext(M(v)) and L 	ext K. 

Then there exists L1, LIE K and A , 0 < A < 1 with L = ALI  + (1-x)L2. 

Hence gv(L) = A(v) 	Xgv(Li) + (1 - X)gv(L2) by Lemma 2.4. 

But gv(L) < A(v) for all L E K 

Therefore gv(LI) = gv(L2) = A(v), i.e. L1, L2 E M(v), which contradicts 

L ext(M(v)). 
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We now consider relating two separate approaches to describing the envelope 

of F. 

First we define F1-(L): = sup 	Re z. 
zeh* (L) 

Since gv(L) = F(L) — Re v(L) we have that F(L) is w* u.s.c. on K. 

Now define OF  (L)= sup Re Lf, 
fEF 

Let n(L) denote the collection of all w* open nbhds in K of L 

Let 	U
F

4-(L): = inf 	sup U
F
(k). 

WEn(L) Le'J 

The characterisation of the s.b.a. from a linear subspace has been obtained 

in [33] in terms of U
F
+(L). It is now obtainable from the results in 

section 3 by employing the following Lemma. 

Lemma 2 7 U +(L) is identical to F (L) on K. 

Proof 

Suppose to the contrary there exists an L e K with F+(L) = a and a > Uy1-(L). 

Then there exists a W E n(L) with a > sup sup Re kf 
keW fEF 

= sup sup Re z 
keIT zeh(k) 

= sup {Re z:z E [ U h(01°} 
LEW 1  

On the other hand 

	

a $ sup (Rez:ze 	n 	[vh(Or} 
wen(L) 

$ sup {Rd z: ze[o h(k)]°1 

keN 
leading to a contradiction. 

how suppose there exists an L e K with 1,4.(L) = r and r < Ur  (L). 
. 

Since F
+ 
 is w* u.s.c. on K, there exists a W e n(L) such that 

F±(k) < r for all t e Til 

but h(t) c  h*(t)for all k e W. 

Therefore 	sup 	Re z 45 sup 	Re z = F+(k) for all k E N 

zeh(k) 	zeh*(L) 

and 	sup (Re z:z e [2414)  h(Z)1°  $ r 1. 

however, sup sup Re kf > r, leading to a contradiction. 

keW fEF 
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3. 	CHARACTERISATION OF THE BEST APPROXIMATION TO hk 

We first find circumstances under which pv(h*) is bounded between two 

real numbers. 

- Theorem 3.1. 

Suppose vo  e V and SI a subset of K have the following properties: 

(i) 	Re(t - Lvo) 0 0 for all L e Q and z e 11[11*,vo,L.] 

(ii) For no v in V do we have the inequality Re L(v-v
o) > 0 

satisfied for all L e 

Then inf d(n*(L), vo(L)) 	pv(h*) < A(v0). 
LEO 

PROOF 

Suppose pv(h*) < inf 	a(h*(L), vo(L)). 
LE 

Then there exists a v e V with p
v(h*) 	A(v) < inf d(h*(L),v

o(L)). LEO 

hence for every L E Q, a(h*(L), v(L)) < d(h*(L), vo(L)). 

Therefore for all L E 0 ana Z E 	v, 

Re(z - v(L)) s< sup 	Re(z - v(L)) < Re(z - vo(L)). 
zeh*(L) 

Hence 0 < Re kW - vo(L)j contradicting (ii). 

We are now in a position to generalise the global Rolmogoroff criterion 

for a sufficient condition for the best approximation from V. 



LEM(vo) 

and hence vo is a best approximation. 

p(vo) = 	inf 	d(h*(,), v (L)) ; p
v
(h*) < A(vo) 

Theorem 3.2 

v
o 

e V is a best approximation to Ii* if for all v e V 

min 	Re L(v — vo) .; O. 
Leki(vo) 

PROOF 

Take ii= M(vo) in Theorem 3.1. 

If there exists a (L,z) E Drh*, v 	, such that z 	Lvo = 0, then obviously 

v
o is a best approximation. 

If for all (L, z) e D[h*, vo] , Re(z — Lvo) 	0, 

then by Theorem 3.1. 

49, 

Tine conuition of Tneorem 3.2. is not always necessarily satisfied by a best 

approximation from V. 

However, if V is re6ular, we can prove the followinL. 
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Theorem 3.3  

If V c X is regular at v
o 

then v
o 

is a best approximation to h* if and 

only if for all v e V min 	Re .L(v - vo) 	0 
LeM(vo) 

PROOF 

The sufficiency of the condition follows from Theorem 3.2. It remains to 

show the necessity. 

Suppose there existsaveliwith min 	Re L(v - v
o
) = a > O. 

LeM(v
o
) 

Set U: = {L e K I Re L(v - v
o
) > 	I L 

U is w* open in K and contains M(vo) .For all L e U c,)  Re L(v - vo) 	
a 

by the regularity of V at v, for all real A > 0, there exists a v, E V 
A • 

with 	Re L(vA  - vo) > 0 for all L E  U°  

and 	Ilvx  - vo ll < A. 

For L e  U and z E h*(L), Re(z 	LvA) = Re(z - Lvo) + Re(Lvo 	Lv)) 

Re(z - Lvo) 

Since h* (L) is compact for each L e U, a(h*(L), Lv) < d(h*(L), Lv
o
). 

On the other hand, K \ U is weak* compact and is disjoint from M(v0). 

Therefore 	sup 	d(h*(L), vo  (L))= E* < A(vo) 
LEK\U 

If we set A: = A(v
o
) - E* then for z e h*(L) we have 

Re (z-LvA) = Re(z.- Lvo) + Re (Lvo 	Lvx) < A(vo) 

hence 	achA(L), vx(w) < A(,0) 

and A(vA) = sup d(h*(L), vA(L)) < A(vo) 
LEK 
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We now formulate a uniqueness result for the best approximation, 

analogous to Theorem 3.13 in[6]• 

Theorem 3.4  

If V c X is regular and v
o is a best approximation to h* from V, 

then the best approximation is unique,in the case that Re L(v vo) = 0 

on a subset of M(vo) which is sign-extremal for vo implies v = v on K. 

PROOF 

Suppose vl  is another best approximation to h*. 

lor any (L,z) e qh*, vo3 

Re (z-Lvi) = Re(z 	Lvo) 	Re L(vo  - v1) 

.$ a ch*(L), 

• d (h*(L), vo(L)) 

= Re(z Lvo) 

Therefore Re L(vi  - vo) ?. 0 for all L e M(vo) 

But by Theorem 3.3. 	min 	Re L(v - vo) 	0 
LeM(vo) 	1 

Hence E l: = {L e 11(vo) I Re L(vi  - vo) = 0) 4 0 

Assume E r  r .t  M(vo), otherwise the result follows trivially. 

It follows by Lemmas 8 and 9 in £151  that E' is sign-extremal and by the 

conaition of our theorem vi  = vo  on K. 



52. 

4. APPROXIMATING FUNCTIONS WITh A FRECHET DERIVATIVE 

Let D be an open subset of a Banach space E with norm 11.IIE  . 

Let V be the set of elements v(a) e X which depend on the parameter a E D. 

i.e. V; D+ and V= {v(a) e X, a e D). 

be shall henceforth assume that v(a) has a Frechet derivative with 

respect to a for each a e D. 

i.e. for any b E E there exists a linear bounded mapping via  :E.-t-X 

which we denote by vqb,a1 with 

IIv(a 	b) - v(a) - vqb,a]Il 	= o(IlblIE) as IlblIE  -4- O. 

Let 2:-[4] denote the linear subspace of X consisting of all elements 

v' [b,aJ b E E. 

Let N be the dimension oftla] and 4,1 „.. cDN  be a basis for4La]. 

We observe that if v(a) has a Frechet derivative at a, then 

IIv(a 	tb) - v(a)II 	= OW for any b e E. 

We can therefore say that for 0 < t << to, v(a 	tb) lies in the c-locality 

of v(a) defined by the norm sphere S(v(a),c) for some c > O. 

v(a),then,is a local best approximation to h> when A(v(a)) 	A(v(c)), for 

all v(c) E V and in an c-locality of v(a) for some E > 0. 
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Theorem 4.1. 

v(a) is a (local) best approximation to h* implies that for all b e E 

min 	Re L v' [b ,a] .* 0 
LG/I(v(a)) 

PROOF • 

Suppose to the contrary, there exists - a be E with min 	Re Lv 	, 	> 0. 
LEM(v(a)) 

We show there exists a better approximation to h* than v(a). 

Let U be the set of L e K for which 

Re Lv t  [b,aJ 	20 > 0. 

Since D is an open set in E, there exists a to  > 0 for all t in 0 < t < to 

a + tb E  D (v(a + tb) lies in an c-locality of v(a)). 

For L 

Re L[v(a + tb) - v(a)] = Re L[v' Etb,an + Re Lrv(a + tb) 	v(a)-vitb,ifil 

3 2a t - 0(t). 

hence there exists a ti witn 0 < tI 5 to  such that for all t, 0 < t < tl  and 

L E U 
Re LI v(a + tb) - v(a)J ?. a t > 0 

ana therefore 
Re jz - Lv(a + tb)] = Re Lz - Lv(a)} + Re LL(v(a) - v(a + tb))] 

< Re [z - Lv(a)] 

Therefore d(h*(L),v(a+tb)(L)) < A (v(a)) for all L E U. 

We observe here that 
I I v(a + tb) - v(a)I I 	114 tb,a1 I I + Iv(a + tb) - v(a) - v t[tb,a] I I 

t I Iv l ib , a111 	0(t).. 
Hence there exists a L2, 0 < t 2 < t 1 such that for all t in 0 	t 	t 2  

I Iv(a + tb) - v(a) 115 2t I Iv' [b,a1 I I 
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We now consider the set W = K \ U. 
This is weak* compact and does not contain any member of 11(v(a)). 

Therefore 	sup ci(h*(L), v(a)(L)) = E* < Li(v(a)) 
LEW 

Let T be such that 0 < T < min (t2 A(v(a)) 	E*  
 21 Iv' [h,a) I I 

For L e W, z E h* (1.) 

-Re 	Lv(a + ,Tb)1 < Re [z - Lv(a)] + Re [L(v(a) - v(a + Tb))] 

< sup 	Re [z 	Lv(a)] + Iv(a) 	v(a + tb) I I 
zeh*(L) 

< E.* 	+ 2T III"' [b,a] I I 

Therefore au,*(1...), v(a + Tb)(L)) < A(v(a)) for all L E W 

Hence 	 A (v(a 	•txb)) 	< Li(v(a)). 

We remark that in this theorem, we can replace M(v(a)) by its extremal 

points, denoted by E0 (M), by applying Lemma 1.3. Likewise, we have 
the following equivalence of two convex hulls t relating to the sequel. 

Let [Iill] denote r(141, T over all L c II(v(a)) 3 . 
This is a compact set :in Euclidean N-space as is its convex hull [18] 
P.18. Now ext[co [M IC 	ext[M I ] c [ E0 (11),C by Lemma 1.2 . 
Applying Lemma 1.1, ce[I.1,1] = 	 )] c co[ E0,0.1)1U • 
Obviously, co[ E0.0•11M ] 	coDd In and hence the two are identical. 

Corollary 4.1. 

If v(a) is a (local) best approximation to h* from V, then 

	

E CO 170.a 4)1, ... 	 N)1  over all L E 11(v(a))1 

PROOF 

Suppose to the contrary that 0 does not belong to the convex hull. 
Since L(L(Pi, 	L 4).)I  over all L E M(kr(a))1 is a compact set in Euclidean 
N-space, there exists an N-dimensional vector c E E so that 

Re ( 	c. L. ) > 0 for all L E M(v(a)) 
= 1 
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N 

But C. . 4. e P [aj  I. 
i=1 

and Re L ( 	ci  41)> 0 for all L e  M(v(a)) 
i=1 

would imply that v(a) could not have been a pea]) best approximation by the 

previous theorem. 

Yor any b E E, let a + tb be represented by a(t) with a(0) = a. 

Suppose v(a(t)) satisfiei now a further condition (T) namely that 

v(a(t)) 

t 
 - v(a) 

isinthelimaaraparlol- W1(a(t))I N 	where 
i=1 

Wi(a(t)) 	(1)1(a)11 = 0(1) as t 	0 for i = 1,..., N. 

Theorem  4.2  

If v(a(t)) satisfies ('f), then a sufficient condition for v(a) to be a local 

best approximation to h* from V is that 

0 e interior co [(L41(a),..., L(1)N(a)) I  over all L E E0(11)] 

PROOF 

by the assumed.condition and the Appendix II 

for any b e E, there exists an co > 0 with 0 G co [(L41(a(t)),.. .,141,1(a(t))) 

over all L E E 0,01 o 	• 
for 0 < t < co. 

Suppose to the contrary v(a) is not a local best approximation to h*. 

Then for all e >0, there exists a t, 0 < t * c and b E E such that a(t) e D 

and pv(h*) 	A(v(a(t).))< A(v(a)) 

i.e. for all L E K 

ach*(L), v(a(0)(1)) < sup a (OM, v(a)(L)) 
LeK 

hence for all L e Eo(M) and z e h*(L) 

	

Re(z - v(a(t)) (L)) < ke (z 	v(a)(L)) 

i.e. Re [L(v(a(t)) 	v(a))I < 0for all L e E0(M) 

Dividing through by t, we find 

0 4 co [(Lcia(t)),..., 1,4)0(a(t)))T over all L e E04 
hence a contradiction follows by taking c = co 
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5. 	APPROXIMATION' OF HEAL—VALUED FUNCTIONS BY GENERALISED 

RATIONALS ET INTERPOLATING SUBSPACES OF Ll  

We may relate the results of section 4 to the following 

setting. Suppose we are working in the space L1  (- B/Z 'IL) 

abbreviated L1(II) 	where B, with an appropriate topology 

is a compact Hausdorff space, and 1.1. is a a—finite measure 

( see Appendix I ) . If we further assume that B is the 

union of at most countably many atoms, say B = U Ai  
ieI 

then it can be shown that ext(B*) is weak * closed and that 

each Le ext(B*) has the representation 

L(f) = 	f (Ai) (Ai ) p (Ai ) 
icI 

feL IC10 

where 	I a (Ai) I = 1 and f (Ai) denotes the constant 

value of f a.e. on A. . 

The relevance of these points is immediate if we take K in 

section 4,to be B* or ext(By) and recall Lemma 2.6. that 

Eo(M) c ext( K ) i.e. the above representation is valid for Eo( ti 

Furthermore, the presence of atoms enables us to use the 

concept of interpolating subspaces ( see p.9 ). 
We remark that in computational work with the L1  norm, we are 

obliged to discretise and hence our setting is a practical one. 

Suppose we are given a set of real—valued functions Pc:1,1
(FL) 

and we wish to characterise local best approximations from V = R n u • 

(see p. 10 ). To recall, let gi,...Ign;h1,...,hm  belong to the 

subspace of 1,1(11.) consisting of real—valued continuous functions. 
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yn 

Let D: = 	( 	;(;1,... 	)6. 
En +111 1(x) > 0 on B 3 

For-  (al,....,an;bi1....l bm ) e D 

o 	• d 	d ) E.  EEnt1"c n' 11 	m. 	and real A. 

n 
(a.+Ac.)g.3.  (x) 

= eet 	r(x) : = 1 m
1 

 
(b.-Xd.1)h.1  (x) 1  1=1 

• 

Then ro (x): 

n 
y aigi (x) 

1=1 
n )111 

 

bihi (x) 
i=1 

For any d. = (dl , ....,dm ) we can always find a 

> o 	and a 	),*( c d 	0 < such that 

111 
A Ta  

1 X 	dihi (x)1 < 	bihi (x) on B 
1=1 

and r-x  belongs to an - locality of 1.0  for IRI <) 

We shall use the following abbreviations. ' 
m 	 In 

qm(X,d,x): = I.(bi-Xdi )hi (x) and qm(x): = 	bihi (x). 
i=1 	 i=1 

present a simplification of our-  problem to that 

of approximating a single valued w* u. s. c. function 1' 
F+: K r R defined by tf(L) = max z 	( see p.47 top ) 

Z 6 Ifx (L) 
For now we have 

A(ro ) 	Sup gr  (L) 	sup-  F+(L) - 
LeK o 	LeK 0( L) 3 

lie can 
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THEOREM 501 

Let pn  EP E span (g i ,...,gn ) 

and qm  eQ = span (111 ,...,hm] 

• + and suppose ro : = PnERn m m 

If (a) ro  is a locally best L1  approximation 

- to F ÷  

as ()) 

trol 	crm ro 4) is an N-dimensional inter- 
qm 

polating subspace of L i  (p) ,with basis(Pit •c. CP Ty • 

Then 

(i) There exist 	N + 1 independent functionals 

N+1 in ext ( LI( ro ) ), abbreviated E0  (11) such that 

0 E interior co [(L1  . 	1 	1 ,...,L. (I)N )T i =1,...,N+11 

(ii) 0 is the only element 4) of + r  gm o qm 
having the property L1  > 0 for i=1,...,N+1 ' 

(iii) 3o 	0 <cr.A. 	such thate 	XI ; a 

. as in 

P  	+ r 	 is an interpolating subspace on [1,114+1  qm(X,d) 	0 qm(X,d) 	 i=1 

(iv) ro is a uniqup locally best approximation in the 

€-- locality of rip  restricted to IXI <a and denoted 

by U ( rolce) 
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PROOF. 	(i) 

By Corollary 4.I,the origin of N space lies 

in the convex hull of the set 

((Li  4)1  ,...,Li  4)1i  1 	for i=1,...,k] . 

By Caratheodory's Theorem, (cf. [640 p.58) k < N + 1. 
.k 

Now for each j, 0 =0.L. 4). 	with of  ?. 0 . 
i=1 

Hence, by the interpolating condition, 

k . T+1 andsok=N+.1. 

Furthermore, the origin cannot lie on the 

boundary:  for then k would be equal to N . 

Hence the origin of N space lies in the in-

terior of the convex hull of the set 

[(Li  (P I  ,...,Li  41i )
T 	for i=1,...,N+1] . 

Finally we remark that it also follows that this convex hull 

does not lie in a plane, and hence is a body 

in Euclidean N space. 
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L (ii) Suppose (I) is a non-zero element of 

P 
 -i r() Q 

	

gm 	Ciril 

N 
4) = 1 	.(1). 

j=1a3 J 

N 
L.4) = 1 a.L((pi) 1 	j=1 	i 

N+1 
Now 0 = 1 O1.L1

.(4 ) 
3 i=1 

and multiplying this equation by aj  and summing 

over j 

N+1 	N 
0 = 1 O. 	X a.[Li(4))] 

i=1 1  j=1 3  

N+1 
0 = ) 	0.L.4) . 

1 1 i=1 

By the interpolating condition at most N - 1 of the 

numbers L.4) can vanish. Hence at least one of the 

L.4) 1 

	

	is positive and at least one is negative. 

Hence 4  is zero. 



(iii) Let A be sufficiently small 
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"  Then cPi(Xid)- = qm(AIn  ,d) T  cb i=1,... ,N 

 

is a basis for 	 + r 
q m (A i d) - 0 c -77-1) m  

By continuity of determinants, we have 

qm(P,-d) 	
r0  q + r 	(

Q
A,d) is an interpolating 

A 	m - 	 . 

N+1 subspace. on tLil i.i  since inf I det[Licb§Al c1)] I > 0 

We note that the argument in (ii) is valid 

for this subspace also, since 0 belongs 

to the perturbed convex hull, by (i) and APPENDIX II. 

	

(iv) Let r1  (x)c (r0 	be another locally 

best L 1 	
77T+ 

i approximation to 	n the vicinity 

of r 
0 

Take (1): = r - r E 	P 	+ r 
o A q 

m  (A,d) 	-0 qm  (X,d) 

and L. (ro  -r, ) = ( P1-(Li) 	rx(Li) ) - ( F(1,i) - ro  (Li) ) 

0 	i=1,... ,N+1 	Li  as in  

But from (i) and the Appendix II 

0 c convex hull [ (LOI  (A,d) ,...,Lic)1,1(X,d))T  

,N+1] . 

Hence by the note to (iii) 

r = r o A 



We now strengthen (iv) of Theorem 5.1. and show that under suitable 

conditions there is local strong unicity in the sense of Newman and 

Shapiro. 

-We will need the following lemma adapted from D.81 p.162. 

Lemma 5.1. 

Ifr = Pn E ,+ such that 
o 	gm 	n,m 

(c)-  dim 
P 

	

 + 	) = dim F-) + dim (9--) - 1 
qm oy
mm M 

and if p e P, q e Q satisfy 

(i) 11(111 	= 	11c611 

(ii) p = r
o
q 

(iii) q(x) >, 0 on B. 

Then p = pn, q = qm. 

THEOREM5.2. 

Under conditions (a) and (b) of Theorem 5.1 and (c) of Lemma 5.1. 

there exists a constant Y > 0 such that 

for all r (x) e U( r ,u) 

A( t
)) 	6(  ro) 	Y11 	- ro ll 

PROOF 

For 0 < IAI .5 o , define for the set U(ro,a) 

A(rA) - 6(ro) 

rol I 
and suppose to the contrary, there exists a sequence fr

Xk 
E U(ro ,a) 

62, 

y(rx) = 

r 	0 r
° 
 and y(r

Ak

) 	O. 
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1 
We may suppose y(ri k 

	2 
) < — for k n

o. -  

Then we can show 0 < Ilr
Ak 	

roll < 	k 	n
o
. 

For take any f E F 

Ilrxk  - roll 	II rx k 	fll 	Ilro 	fll 

sup Ilrx  - 	sup llro 	fll 
feF 	k 	fEF 

A(r1  ) +. Afro) 
k 

1 
2A(r

o
) + —1 

2.
Ir - roll for k 	n

o 
by our supposition. 

k 

Therefore Ilrx  - roll 5 4A(ro) 5 4a 	k > n
o
, 

k 

Next we show there exists a sequence of r
A 

relabelled the same, such that 
k 

 

lim r = r 

Since 0 < IA 1 < a 	either lim A
k 

= 0  for every subsequence in which 
' 

k.+0. 

case lim r = r
o
, or there exists a subsequence relabelled the same with 

k-  Xk 

1imak  = A
o 

where 0 < A
o 

Assume the latter to be the case. 

m 
Now qm(A, dk) = 	f39c)h.(x) where 1 113ril = 1 	by our normalisation 

i=1 	i=1 

convention of chapter 1, section 2.4.2. 

hence for each i, 1 < i m, and for all k we have 

0°1<lamithereforeb--1 .< K 
 dP° 	

1 
< b. 	1. 

 

{did̀ )} 	a bounded sequence and we can extract 

a convergent subsequence such that lim d
(k)  = d.

(0) 
 and hence 

1  

lim  qm(Ak' 	= qm(Xo' do) 

k÷co 
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By definition 

y(rx  ) llrx  - roll = A(rx  ) - A(ro) 
k 	k 

max 	L.(r - r, ) 
j=1,..,N+1 	Ak 

With k .4-00 and our knowledge concerning the left hand side we apply the 

note to 	Theorem 5.1, to obtain 

lim r = 
Ak ro' 

Now by Lemma 5.1, 

qm (A0 =d ) = qm. 

Consequently as k-*=,  , 

F 	
+ r 	3 — + r 

qm(A10.(1k) 	° qm(AMLik) 	qm 	
o q 

Finally we reason as follows. 

For L. e E (I1) and (I) G  	r 
0 	qm(Ak'dk) 	gm(Ak'-.4k)  

we have by virtue of results (iii) and (ii) of Theorem 5.1 that for all k, 

including the limiting case, 

	

min 	max.  L.(  $, > 0. 
ck  = 	

0111 =1 j=1,..,N+1 

But, 	Y(rx ) 	Ilr 	
j 

r II 	1.. max 	.(r - r, ) 
Ak ° 1 	=1,..,N+1 	° Ak 

r ro 	x  
r 

q m(X d ) • 
and is of norm 

q (X d 
m k'-k 

Ilro 	rA II 
• k  

and 

one. 

Therefore 	Y (rx  ) 	c
k 	0 



A 
and y, 1= 1: a 

i=1 

(v)  Oi  satisfies IK v  - 	
4 1 

65 

Furthermore, if we let c = min 	max L OD 	0 a trol 
° 11011=1 j=1,.. or-lad 

wi-Lh c
o 
7 0 as already deduced, we can show that for all S., 

0 4  E
o 
 , we have that ck) 

 co 
-E. for k sufficiently large. 

To prove this last conjecture, assume k to be large enough that 

qmp.leik) 4: qm  and hence 7i(Xk,dk) = 0i 

Suppose now to the contrary there exists a convergent sequence(in V) 

0(k) 	p 

	

with 	I I 0(ilac)1 I = 1 P v 	. 	ro 
cinAkilic) 	cirnle—c74)  

and 	lim 	max 	L 0(k)  
ck 

CO 

	

j=1,.. 	j  9  

that is there exists an N(k) such that for V 3 N(k) 

max 	Li  0(k) 4-  
0 4 

j=1, Ina 	V  

	

N 	(v1 „ 
Assume V 5(k) . If we represent 0(k)  as 	a.' 	0 (Xd ) 

k9 -k 
i=1 1  

c (1)) N 
then tai 1i=1  are bounded by our assumption on ON 

A 
by our assumption on k. Hence 1 - 	I Niv  I 4 1 + 

Now : 	n3::n  is of norm one, belongs to otEroi 

k 	
A 	A 

and I i v  - 0
(

v

) 
 II 	I Icy - Y,  II v 	0(k)II  

( 	- I 	1 I ) 	4 

< y2 

 (k) Emax . "141Consequently- 2 
	 J V 	

j v 	j=q   

and max 	L .y,  4c — — which is clearly impossible 
 

j=1, 7N+1 	
o 4 

 

Thus we have shown that for k sufficiently large, Y (rx  ) is 

k 
bounded away from zero and we have been led to a contradiction. 
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We now re-formulate Theorems 5.1 and 4.0. 

in terms of the more familiar "alternation" theorem. 

THEOREM 5.3 

Suppose — P - + r — is an N-dimensional inter-qm o Q i 
 qm 

polating subspace of L1(p) with basis 4 ,... 6 1 	'' 	.  

A. 
1 

DefineA. 	by 
1 

	

Let 	LN+1 E L
*
GI) 	. 

	

1 	1 

L1(I,1)... 

L1(4)N).., 

	

Then 	ro 	is a locally best 	L1 	approximation to 	14-if 

...L.1-11 
(4) 	)L.+1 (4) 	)... 	...LN+1(4) 

...L. 	
(4)N1 

)L.+1 (4)N )... 	...LN+1(4) 	) 
1-1  

• 
• 

 

a nd only if 

(a) there exist N +1 linearly independent functionals 

LN+1 in Eo (M) . 

(b) A.A. 	< 0 for i=1,...,N . 1 1+1 

Noe that by the interpolating condition Ai  # 0, i=l,...,N+L 

PROOF. ror necessity it remains to prove (b). 

Since by the Characterization Theorem 5.1 

0 E interior convex hull [(L.4) ,...,L4N)
TIL.1EE (M) i=1,...,11+1], 1 1 	1 	0 

there exist positive scalars Oi  , 	i=1,...,N+l and 
... 
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N 

i  a 0.L.(1) = - oN+1 LN+3!k for 	k=1,...,N . k 

Solving for Oi  by Cramer's rule 

A. 
O. = (-1)N-i+1 

A  1 0 
1 	AN+1 N+1 

from which the result follows. 

Conversely, the system of equations 

N 
x.L. () = - LN+1()k 1 1 k i=1 

k=1,...,N 

has a unique solution given by - 

A. 
xi = (-1)N-i+1 1 	A

A1 

N+1 

and{x.1}are positive i=1,...,N . 

Hence 0 c interior convex hull 

[(L4IN  )
TIL.cE0  (M), i=1,...,N+1] 
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APPENDIX. I :: 
	

Measure Theory and Lp  (5 S 

A a —algebra  over a set S is a family So  of subsets of S such that 

(i) 0, S 	c S 

(ii) If A c So then Ac  e So  
00 

(iii) If An} is a sequence of sets in So then U A
n 
 c So 1  

The sets in So are called measurable sets 

An extended-real-valued function f on S is called (So) measurable  if for each real a, the set 

se S : f(s) > a } is measurable. 

A measure on (S,50) is a functionµ assigning to each A c So  an extended real number p (A) such that 

(i) µ (0) = 0 

(ii) µ (A) 	0 for all A 

(iii) µ is countably additive on disjoint sets. 

p is called a—finite  if there is a sequence of sets {An } such that p (An) < 00 for all n and U A
n 

 = S. 
n  

Example. 	Let So 	ZO)the class of all subsets of a set S and define p (A) to be the number of 

points in A if this is finite and +00 otherwise. This p is referred to as the counting measure.  

It is a—finite if and only if S is countable. 

{1 for x c E 
= The Characteristic Function of a set E,TE 	0 for x c E is a measurable function(--b E is a 

measurable set. 

A  simple function (sf) is a real valued function on (5, So) with the canonical representation 

sf = E c. TE•  where E• = 3 x : sf (x) = c. 	and ci  c R 

i = 1 
sf is a measurable function 	 E. is measurable for all i. 

The class No  is defined to be the (a— algebra of) subsets N e S such that p (N) = 0. Its members 

are called p—null  sets. 

If the set of points in S, for which a property P does not hold true, belongs to No  we say P holds 

—almost everywhere (p—a.e.) 
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For a simple measurable function (s.m.f.) (131 ->-- 0, the integral of b w.r.t. g is f (1)dµ = 
n 	I 

E ci  p (Ei) which is also positive but may be infinite. 

1 
[This integral has LINEARITY PROPERTIES] 

For a real-valued function f 	0 and measurable on S the  integral of f 	is 

f fdp = sup [f dp: (1) s.m.f., 0 < (1:1 < f on S] and if this is finite, f is said to he integrable. 

An arbitrary real-valued measurable function f is called integrable if its positive and negative parts have 

finite integrals. 

p (S,S p) is the set of all 'everywhere—finite measurable functions on S such that IflP is 

integrable, where p is real and 	1. 	It is a linear space. If we set the norm of f e ,C p  to be 

II I Il p = (f If I PC1141/P  and count the functions which are equal p —a.e. as one equivalence 

class, we obtain the Lebesgue Space Lp (S,S ,p)which is a complete normed space. 

SPECIAL CASES OF Lp 

(i) Lp  [0,1] is the case whenµ is Lebesgue measure on the interval [0,1] and So  are the Lebesgue 

measurable subsets of [0,1]. 

(ii) kno  is the space Rn(Cn) with II x p  = (1 X1 IP + . . . 	I xn  P)1  /P 1 < p < Do 

Take S to be the set ( 1, 	n) and p to be counting measure. Identify functions f on S with 

n-tuples (fi, ...,fn). 
n 

The integral of g on S, g real-valued and positive is just 

Hence Il f 	p 	 fj I  P  )1/P  

00 

(iii) Q p is the sequence space x = (x1 , x2, ....) with E ix; 	P  
norm l l x II p.• 	 i =  1 

converging together with the 

Take S = N (the set of natural numbers) and p the counting measure and employ the (canonical) 

identification of the previous example. 
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APPENDIX II 

Given 01,,...91611.. elements of X, an N.L.S. 	and M a tor* closed 

subset of BX the unit ball of the dual space. 

Let 	denote (0
1'

,T  
	 pN)  and 0 the origin of Id—space. 

- Set co .[M, 	:= convex hull[ 	T : LeMi 

and suppose this is a body in Euclidean N—space. 	denotes max[110.113 .0  
L 1.1 

LEMMA;  If 0 is an interior point of coEMIE then there exists an 

'E. > 0 such that for all 	satisfying  II I —I' I l <  E 	0 E_. COP, 
9 

PROOF 

Suppose to the contrary that for everyt>01  there exists a i(a) 

with IR —(yol < E. and 0 :co[M,E0.1.. 

Then since co[F,I(e.)1 is compact there exists a separating  hyperplane. 

That is there exists constants c1(S)'
cN
(E) not all zero, 

N' 
and a real number y(E) such that Re iZici(E)Ldi(E)%; y(a) 7 0 

for all L e M. Without loss of generality, we can normalise ci(E) 

so that Ic.(2.)1 4: 1 for all i 

Lete.-+0.1111enik(s)--->46.for each i, and we can also extract a 

subsequenceframc.(s)suchthatlim for each i , 

Hence we can deduce 	inf 	Re 	2: C. 	0 

	

L C Iii 	i=1 
• 

It follows that co[Mtfl lies to one side of this hyperplane. 

Furthermore, 0 belongs either outside co[MI C or on a hyperplane 

supporting  coplfl at O. 

It could not however be in the interior of the convex hull for then 

there would be points of the convex hull to either side of this 

hyperplane. 

Hence we have been led to as contradiction , 
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SIMULTANEOUS APPROXIMATION OF A FUNCTION AND ITS DERIVATIVE 

WITH  TTHE TAU METHOD, PART I 

FOREWORD: In this part we discuss the extension of the recursive form 

of the Tau method (cf. Ortiz 54]) to a simple case of a system of two 

linear differential equations with constant coefficients, perturbed 

by a linear combination of Chebyshev polynomials. The problem is 

closely related to that of finding simultaneous approximations of a 

function and its derivative. 

We use duality arguments, introduced into this type of problem 

by T.J. Rivlin [64 p.98], to show that the Chebyshev polynomials are 

the only extremals for the functionals associated with our particular 

perturbation problem. We discuss the effective construction of the 

approximate solution of the system with the Tau method and find upper 

and lower bounds for the error. We also show that the best and the 

Tau approximations are, in the case considered, asymptotically comparable. 

1.1. - INTRODUCTION 

We consider the second order differential equation , 

y" (x) 	y(x) = 0 

with the initial conditions 

y(0) = 1; y'(0) = 0 . 

which defines the solution y(x) = cos x. 

dv 
If we let z E - 	, the 2nd order differential equation may be reposed dx 

as two simultaneous 1st order equations 

dz 
Y TST,c  0 

= 0 
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i For conciseness let 	T LE [y,zj and D represent the 2-dimensional operator 

( 1 
dx 

dx 
	1 

We are now looking for the solution v
* 

on some compact interval J, 

to the system 

D ,, = o, z(0) = [1,0]T 
	

(1) 

We assume an approximate solution to (1) is sought on J. In the method des_ 

cribed here we obtain separate polynomial approximations of degree n to 

and its derivative by computing the exact solution [y*, z* ]T or 4  of the n n  

perturbed system 

1:),L = ( 
T
( 
1 
n)T* 

n
) where T*(x) E cos 2n arc cos x 

T
(n)

T
*  

2 	n 
	 (2) 

when J E [0,1]. 

The choice of the shifted Chebyshev polynomial on the right hand 

side of (2) signifies that the error vector e* 	- 
	
satisfies the 

equioscillation property on [0,1] in each component, in the image space 

of the operator D. 

The error vector may be measured 	by any 1 sum 

of the individual 1 norms of its components, for 1 c n 	oo. 

However, our interest lies in the double or vectorial uniform norm 

II D ell 03 = max{1141)T:11,,,,IITT:11) = 
21-2n majc{ I TIn)1 ,1 T n)11  

In section 	we show that, with the Chebyshev perturbation, 

the system (2) satisfies ' 

IIDe*I I m  < IID e II 	for allyl1  s irnx710. ,71   

where 7r n is the space of polynomials of degree less than or 

equal to n. 
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I. 2.. THE DUAL PROBLEM AND THE CHEBYSHEV PERTURBATION. 

* 	* 
PROBLEM A. Our problem is to find. [yn  , zn] 	Trn xr i  

such that 	min 	D zrI)11. 	1Dr,11  ) 

	

Ey, zni 	n "co 1 	 n  

over all [ yn  , zn] satisfying 

PROBLEM B. If we write 	D 

yn(0) 	= cr 	; zn(0) = ..(a) 

Y 
z-
n 	

= (wn  ). [ vn  wn]E1Tnx 

then the supplementary conditions (a) 	become 

Fi(vn) = of (Vn ) 	°C 

F2N = P (vn)  = P 
(b) 

where F1 	F2 are linear functionals. We will call Problem B 

that of finding a vector 	, n-1 such that for any 

admissable " ordered pair 	Evn  , wn] satisfying (b), we 

have 
	

Frnil •S Pill I 	; 

A solution of (B) 
	

leads to 	a solution of (A) . 

For our example, suppose we write 

	

iyn = Ea.x3 	zn = E c .x 

n 	 n 

	

17-11 = E b .xj 	14/1 = E d .x j   

then 	Yn  + Yll  = V n 	n n + Wn 	and z + z = w -v n v 

an = bn 	 cn = do 
an-1 - ncn = bn-1 	 nap + cn-1 do-1 
(a. + j+2)(j+1) 	= b. + (j+l) d. a j+2 	 3+1 

c. i- 	ej+2 (j+2)(j+1) 	= d
j  - (j+1) 

3 	b. t1 
for j= n-2,.. 	..,0 . 
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Let us restrict ourselves to the case of n even, for simplicity. 

Then we find for j . 0, 1,.. .. n/2 , 	setting b 	. d 	= 0 

	

i=j 	 n+1 -- n+1 
(n-2j)!an_2  = E (-1)1+j(n-2i)! bn-2i i 

- i=0 
i=j 

	

- 	)1+j(n-2i+1)! dn-214.1 
and similarly 

i=j 
(n-2j)!cn_2i 	13 = 	(-1)i+j(n-2i)! do-2i 

=0 
i=j 

+ T. (-1)i+j(n-21-1-1)! bn-2iil 

Since as  = er and co  = y we can write for j=n/2 
i=j 

F (v ) = Z (-1)i+J(n-2i)I b 1 n 	n-2i 

	

i=0 	. = 3 
. 

I 
= 	F 	(-1)i+j(n-2i4-1)! dn-2i+1 i=0 

i=j 
F2 (11 n - 

) 	(-1)i+j(n-2i)! do-2i 

	

= 
 i=0 	. i=j 
= y - g(-1)i+j(n-2i+1)! 

i=0 

We observe that for our example F1  =' F2  = F 

Let Sn Trn be such that 

sn  = ivn E Trn  : 1 1vn1 1 = 

Definition 	v
n
* E sn is 

an extremal element of F1 
if 

1F1(vn*)1 = 11F111 	• 	Suppose sign(1-111(v:) ) = 

Lemma 	1  For all vn E Trn, F1 : F1 (vn) = a, vn. eavn*/1 IF11 1 we have 

v
n
* extremal for F1 -% livn il 	IF;n II 

Proof: 	Assume that v * is an extremal for F1
. If a = 0 the result 

n 

is trivial. If a 0 

P1 = I Fi (vii)1 f I IF11111vri l 

and 11vn
11;;(ai/11F 11, from which the result follows. 

= 

P 
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Conversely, since bounded.linear.functionals_have extremals,it is 

readily found that if IIV1111 $. 	for all vn  satisfyingPi(I)= a 
then R;

3. II is an extremal element of Ply provided a / 0 
Remark: In this argument w

n 
 is arbitrary but fixed and 77.  is irrespectively 
 

a multiple of vn*, an extremal element. 

A similar result follows for F2 and the wn: we set wn = (314  'VHF n 	2 

Furthermore, it follows by consistency considerations that c4 and fl 

are non zero for G". 1 and f = O. 

Since we require vn , wn to be minimal together, both must he non-2.,,,ro 

multiples respectively of vn
*   , w 

We require the following lemma for our example. 

Lemma 2. 	If vn(x) = 	b4  xj  , with b
n'= 1 , 

j=0 

where all the roots x. are real, contained in 0 	x 	1 and not all 

equal to zero, then F(vn) 	O. 

Proof. Obviously 
k+2 

. IT xi  
i=1 

k 
4 Tr x. 

1=1 1 

and by considering the relationship between the roots of v and 

its coefficients we have 

(-1)k(n-k)! bn_k  > (-1)
k 
(n-k-2)! b

n-k-2 , 
for k 	2 1 

7.  (-1)1  (n-2i)! bn-2i  > 0 , for s odd, 
1=0 

and certainly for s even. 

With this Lemma we can derive, as in 1,64] , Theorem 2.20 and using; the 

canonical representation of F, that the only extrernals of F are 	T 



d 	xn+1 x   

Consider d  
dx 	

1 	k.  -(n+1)xn 

( xn+1+n(n+1)xn-1 	• 

0 
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1. 3. 	CONSTRUCTION OF THE 	TAU SOLUTION 

Following Ortiz [54j , we introduce for the matrix operator D, a 

sequence of canonical polynomials Q =AlL(x) where each element 

is a vector 	 = ( Q[11-.1] (x) 	e(x))T  such, that 

D [ 1](X)] = e: 0Q 	) 	and 	D [QE,12] (x)] = (011) 

In fact simple recurrence relationships exist for these polynomials. 

• 

r [1]-1 = DigniaJ + n(n+l) D r [111  

n-1-1 
0[1] .fx 	n  ) - n(n+1)42[1]  k 	 n-1 -(n-1-1)x 

since Q 	= (
1
) and Q[l] = (x  

O 
[1] 	

o 1 	-1 

x2-2 
[ 	 [ we have Q2
1] 	

-2x = ( 	) and Q31]  - 
x3-6x 1 
-3x2+6 

 

Q
[1] 	( x4-12x2+24 	DJ 	(x5-20x3+120x 
4 -4x3+24x ) Q5 -5x4+60x2-120 

etc 
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!Likewise we obtain for the second series 

1 -
dx ) (

:(n:::xn) 	0 

dx 1 x n(n+1)xn-1+xn+1 ---  

r [11 	2] 
= n(n+1) D LQn91  .1 : 	D [Qn

[
+11  

(n+1)xn  

. . 	Q[2] 
n+1 . 	xn+1 ) - n(n+1)Q

[2] 
n-1 

0 
Since 	Q[2] 	( ) and Q[2] . (

t_  
0 	1 1 

we have [2] 	
2x A [2] (3x2-6  

Q 	Q32 	 ir 

x2-2 	x3-6x ! 

[2]  . 	[2] = ( 4x3-24x 	) 	xii-60x2+120 

Q4 - 5 x4-12x2+24 	x5-20x3+120x I 

Now Tn(x) = E C(n) xk where the coefficients Ck are available to us 
k=0 

and hence 	yn = T 
(n) E c(n)Q[1] T(n) 	(n) [2] () 
1 k=0 k k 	2 k=0 

E Ck 
(n)Q[2] 

( where Tin)  , T2n)  are determined by the initial conditions. 

If we set T (n) =On) 	(n) ) ) 1 	t
rc
2 	we can present the solution in 

T  
n  vector notation 	4

I1 	
(n) 	(n) E Ch 

 
(n) Q

4C 
 (x) Z =   

The form of the solution when there are gaps in the sequence Q 

(i.e. the case of undefined canonical polynomials ) follows trivially 

from the algebraic theory developed by Ortiz in [5'J 

Example : Let us take n=4 , then 

T4(x) = 128 x- 256 x3 	160 xl  - 32 x 4. 1 

etc. 

zn 

k=0 
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The initial coditions of the problem provide us with a system 

of linear algebraic.. equations 

	

( 128 x24 - 160x2 + 1 ) 	6x256 --32 
(4) 	 (4) 

= T 	 ) 	
T2 1 

1.0 	—6x256 	32 	k 128x24 - 2x160 + 1 

giving us 
_(4) 	2753 , (4) 	1504  

= 	and T
2 	

= 	 where D4 = (2753)
2 + (1504)2 

D4 	D4 

= 9841025 

1 We find y4  = 13  -- •(352384x4 + 65280x3 - 4943200x' + 1504 x + D4) 4   

and z
* = 	(192512x4 - 1794560x3 + 44800x2 + 9838272x) 4 	D4 

We can as well generate the.approximate solution directly in terms 

of Chebyshev polynomials)or in any other complete system IR .,by 

means of a technique described by Ortiznwhich essentially con-

sists of using canonical polynomials represented in the basis Ji 

which are mapped by D into the generators of the same basis. in our 

case, we can introduce 

q (x) = ( q
[1](

x) , q(2]  (x) ) 

such that 
(T:(x) 

D q (x) 	= 

T( x) 

The approximate solution has then a simple expression 

(x) =
..c(n) 
• 

q (x). 
n 

We henceforth ommit the superscript- on y:(x) wt(hout loss of 

clarity. 
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1.4. THE TAU SOLUTION 

1.4.1 CHEBYSHEV EXPANSIONS OF THE TAU SOLUTION 

If we rewrite (2) as 
(n) * 

Yn zn = T1 Tn 

+ zn = 	(n)  * y r, T n 

we obtain by differentiating the second equation and adding 

(n) * 	(n) T* 
Y

, 
y" = T

1 
T
n 

T T 2 .n 

Repeated differentiation of this equation and alternate subtraction leads 

us to the following expansion of yn(x) where we have set 	2C21 

(r * +(-1)1 T*(n!).(x)] y
n
(x) = T

1
n)  LT

n 
(x)-T*"(x)+ 	 

rn1 
* (n) 	* T

2 	
(x)-T*"' (x)+ 	+ (-1)T -1  T

n
0-41) 
 (x)] 

The initial condition yn(0) = 1 gives then 

2 

	

T(
1
n) E (_1)rT(2r)(0) 	

2 
T(n) 	E  (_1)rT*(2r+l )(o)  

r=0 	r=0 

• 
On the other hand, differentiating the first equation of (2) and 

subtracting it from the second, we obtain 

(n) * 	(n) T*, zn + z " = T 
n2 

T - T 
n 1 

T
n 

Applying the same process to this equation leads us to 

(n) * 	[210 z
n
(x) = T2 	N'Irl(x)-T*"(x)+ 	+(-1) Tn 	(x) ] 

- T(n)  [1.r*
n

1 (x) - T 	' x)+ 	 
1 

*(ri+1) +( -1) 	T
n 	(x) 	(7) 

and 
n 	PI 2 	2 

(n) 	(n) 
0 = T2 	E (-1)rT n 	1 

*(2r)(0) - I 	Z (-1)
rT * (2r+1) (0) 	(8) 

r=0 	r=0 	
n 

 

(3) 

(4)  

(5)  

(6)  
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We shall use the following expression for Tn (cf.(.31 	sect. 3.7 ) 

n1 
lr 2n n 	.__.j(2n-j-1)  2n 	22n-2jxn-j + 2(-1)n] T*(x) = 'D.2 x + Z . ( 1) 	 (9) 

n 	 j 	2n-2j 
j=1  

*(n) 
Hence Tn 	

(0) = 2
2n-1

n: ; Tn 	= 2
2n-1

n'(-  2) 	while ' 

for 2 < k < n 

T*(n-k)(0) 
	22n-ln!  [(-1)k2

-2k2n(2n-k-1) 	(2n-2k+1)] 

n(n-1)   (n-k+1) 

22n-1n
(-1)k2-k(n (k+1)) 	 (n 

(2k-1)
) 

2 	2 	] 
! [ 

	

k! (n-1)   (n-(k-1)) 

22n-1n: r(-1)
k
2
-k 

(1 
(k-1)

)(1 	
1 

. 	
(k-2)

) 	 
k! 	

2(n-1) 	2(n-2) 

(10) 

We observe that we may readily derive the initial conditions for yx; 

and zt. If we differentiate (4) we obtain 

y'(0) = 
] 

(n) ri] (n) 
[i 	

-1 r *(2r+1) 	+ T2 	r+1 *(2r) 
Ti 	

E  ( ) Tn 	(0)  
E (-1) T

n 	
(0) 

r=0 	 r=1 

and applying (8) we find 

( y'(0) = T2n)  T11:1(0) 

Similarly differentiating (7) and applying (5) we find 

z'(0) = 1 - ( 

1
n)
Tn
*(0) 
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1. 4.2. SOLUTION OF (2) BY GREEN'S FUNCTION 

The general solution of (3) is 

x 
yn(x) = cl  sin x + c2  cos x + f[T:n'T 	2 	-'=1- n 	d (t) + T(n)  --t  Tn 

 (t) ]sin (x-t)dt 
0 

which, on a single integration by parts, becomes 

x x 
( 	

( 	* 
yn(x) = (c1-T2

n) 
 ) sin x + c2 cos x + f T1 

Tn
(t)sin(x-t)dt + f T2n'T

n  
*(t)cos(x-Od 

	

. 0 	0 

Applying the Leibnitz formula for differentiating integrals 

x 
( 	* ,,,N

i  y' (x) = (c12
n)  Tn  wlcos x - c2 	1 

sin x + Tin)  f T*(t)cos(x-t)dt 
O n  

(n)  
x 
 (n) 	, 

- T
2 	f T* (t) sin(x-t)dt + T

2 	
coskO)T*(x) 

.0 

But for the initial conditions yn(0) = 1, y'(0)- = T(2
n)T*n(0) to be satisfied, 

we must have c2 = 1, c1 = T
(
2
n)Tf

n
(0) 

xr 	(n) 	(n) 	* . . yn(x) - cos (x ) = f [T in) 	s in (x-t) + T2  cos (x-t)] Tn  (t)dt 
0 

The general solution of (6) is 

( 	r 
zn (x) = (c1 + T1

n)  ) sinx + c2 cos x + j [T 
n) 
 sin (x-t) - (n) cos (x-t)] T

n 
(t)dt 

1 
0 

Hence 
x 
f 	( 	( z' (x) 	(e

1 
+ T(

1
n)T

n(0))cosx-c2sin x + j [1- 2
)  sin(x-t)+T

1
n) 
 cos(x-t)]Tn(t)dt 

0 

(n) 
-T
1 

cos(0)Tn(x) 
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(n) * 
and with the initial conditions zn (0) = 0, z' (0) = 1 - T1 Tn (0) n 

we have c2 
= 0, c1 	n 

-I- T (n)T* (0) = 1 
1  

X 
r ( 	( 	* 

. . zn 
(x) - sin (x) = f LT2

)  sin (x-t) - T
1
)  COS (x-t) ]Tn (t)dt 

0 
(12) 
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1. 5. 	ERROR BOUNIS FOR THE TAU SOLUTION 

( 	( 1,5.1 BOUNDS FOR T
1
n) 

 , T-2n)  

Q.3 
If we set S

(n) 
= E (-1)rT (2r)(0) 

r=0 

and S0
(n) 

= 	E 	(-1)
r T*(2r+1) 

(0) 
r=0 

then, dropping the super-script, we can solve (5) and (8) for T(1
n), T(n) 

T(n) _ 
	SE  
12 

SE
2 
+ S 0 

(n) 	
So 

T2 
S
E
2 + SO2  

1 - 

and 

We 

00 
E 

r=0 

can now apply (10) 

(IA4r+2 ( 1/2)4 
(1 

1 
2 

co 
< E 
r=0 

to deduce 

3 

that 

(1 

for n even 

1 	1 

	

+ 	{ 
(4r+2): 	4: 

[1.1] 

	

(-1) 	SE 

) (n-1) 

(1/2)4r 

(n-2 ) ) (1 

(1/2)
2 1 

 

)1 n-3 

2
2n-1

n: (4r): 
(1 

2: 2(n-1) 

fill 
LD 

	

co 	co 
1 	(I) 4r-1  (-1) S

0 	(II) 4r+1 - (21)1 [ (i. 	2 	1 

	

- E 	< 	< F. 	 ) (1 	) 
2 	 2 (n-2) r=1 (4r-1): 	22n-1n! 	r=0 (4r+1)! 	3! 	2(n-1) 
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If we take n > 4 and make use of expansions for sin(x), sinh(x); cos(x), 

cosh(x) we obtain 

7 	S 1  _ { cosh (1/2)-cos (1/2) 	(12) 	(-1) 	E<  cosh e-,-) +cos 01) 	(2)
2 

+ 	 5 

	

2 	 4: 
2
2n-1

n: 	2 	2: 6 

rsinh(1/2)-sin(1/2)] 80 
2 	L 	 < 	{ L. 	< sinh(-",) +  sin( 1-)  

2 	
(;)

4 

22n-1 2 n. 	 3! • 

Hence 

• 7.S
E .875304< 	 < .898438 

2
2n-1

n: 

ral 
(-1j-2  sp 

.479165< 	 
2
21171

n: 
< .492448 

2 	2 S 	+ So .i 

2 
1.0497 = (.898438)2+(.492448)2> 	E  

2n-1 >(.875304)2+(.479165)2 = .995756 
r 	1  
L2 	ni. 

[22n-1 -1 n!] . (. 83386) <IT(11)1< 	[22n-1 11!1-1 j 	(.902267) 1 

(13) 

2n-1 -1 [2 	11:] . (. 45648) <IT(11)1< [22n-1 
n:j  

,-1 
(.49455) 2 

(n) 

and 1 	< .898438 
(n) 	.479165 1.875001 

T 2 

For n odd, 	and T (n) 	have to be interchanged in (13) 2 
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1.5.2 INTEGRALS OF CHEBYSHEV POLYNOMIALS.  

We shall require the following result, concerning the integral of 

a Chebyshev polynomial between two consecutive roots, which is easy to 

derive. 

Lemma 3. Let the roots of
n (x) be xn-k k = 1,...,n 

2 in-k+1/2)71 
where xn-k 

= cos 
2n 

and xn 
E 0 < x 

n-1  
<x0 

 <1Ex. 
-1 

Then I. 	T
n
(t)dt 

x. 

	

= (-1) 	-1  (n) sin -T-T 	for j = 1,...., n-1 

71 	1  
where cp (n) = — cos — 	-- El +0(1---2) ]n 

n2 	
in 

-1 	n 
 

and 	(01 	Tr En sin -- 1 ] for j = 0 or n 
3 	2(n2-1) 	

2n 

W shall now restrict ourselves to the case of n being even 

as the treatment for n odd is similar. 

Theorem 1. Let us set 

-9251.---1(aL then • 	2 	< 
22n 

E l(x) = Yn(x) 

11 :1(x)11 

- cos  x in (11)1  

1.5022 (ItOLTILI 

2
2n 

nt.(n-1) 

where 0 *( 	= (I) (n) ( 1 + 	) 
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Proof : 

To find an upper bound for Ils1(x)II we can proceed as follows 

x 	
1 * 

j 	
T
n+1

(x) T
n-1

(x)  
Put I(x) = 	T

n
(t)dt = 	r 

4 L  n+1 	n-1 0 

1  cos (n+1) 
2(n2-1) 

1  Then II(x)I
2(n-1) 

. Furthermore, integrating by parts in (11) 

* 	*  
T
2 [ 

 n+1 	n-1 

T
n+1(x) 	Tn-1(x)  

1 	

2(n2

(_1)n 
c
1 
 (x) - 	

4 	J   (T1  sin x + T2 cos x) 
-1) 

+ f I(t)(-Ti  cos (x-t) + T2  sin (x-t))dt 
0 

T2n 	T
1 
 SinX+T2COS(X) 2(1-cosx)+T1sinx 

le l 
(x) I 	

2 (n2-1) 	2 (n2-1) 	2 (n-1) 

T1  (n+2) sinx + T2[ (2n-+-1) - n cosx)] 

2 (n2-1) 

and 

Ilci(x)11 < dr21(2-cos(1)) +IT11 sin(1)) [2(r1-1) 	0(--1) ] 
n  

< 	IT
21
[1.4597 

1.5022 	(1 

+ 1.87501x 

+ 	0(-ic.)) 

.84147] + 0(1 	)1  
n 
2 	J 

[2 
2(In--1) 

— 	22nn:(n-1) 
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fro find a lower bound forE1  (x) I I 

consider el (x3n
) where x3n  =2[1 + cos (4 	2n 	2 — + 	-9- 1[1 

4 	 4 
(If n is not divisible by 4, take x 

chi 
L4 

	 + cos (x3n  - x3n 	
3 

)[I3n 4.1-  II 	I ]  
4 	4 	4 	4n +2  

n71  -1 
> cos x3n [ In 	cb ( n) E 	. (-1)k  sin 	] 

4 	 k=1 

t3- 
= cos x ' [ I + 2 sin 2-- (n) E 	cos (2k--1-) 

3n n 	2n 	 2 n 
k=1 

4 

Ti 
> cos x3n . 2 sin —2n 	

—7r (n) 	E 	cos 2k 
 k=1 

4 

-1 T3 E 

	cos 	

2iir 

But 2 —kir  =' Re [e n  - e4  ) (1 - e n  )  

k=1 	 2 ir 2 (1 - cos — ) 

2 iir i (-7r - r ) 

= Re e 	- 1 + e 	- e4 4 

IT 	Tr —n 	
Tr —n 2 sin (-4  - ) sin  

+ 

	

2r 	 Tr —n 	
Tr —n 2 (1-cos —) 	2.2 sin sin n 

n 	0(1) 
27r 

2 (1 - cos —21T ) 

27T cos— - 1 n  

x3n 
4 

f cos(x3n- t)Tn (t)dt > cos x3n In + cos(x3n- xn-2 )  [In-2 - IIn-1I] + 

4 	 4 	 4 
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x3n 	 2 cos (2-/i• ----)6(n) 
For n large f4  cos(x3 -t)T*(t)dt > 	4  

0 	4
n 	 211 

x3n 
f 4  sin(x3n - t)T

*(t)dt > Isin(x3n-xn-1) In-1+ sin(x3n-xn-3 )In-2 ]  n 
.0 	4 	 4 	 4 

▪ +[sin(x3n-x11-3  )I 3n  + 0.] 
4 	4 

But sin(x3n- xn-3 ) > sin(x3n- xn-1) - (xn-3-xn-1)cos(x3n-xn-3) 
4 	 4 

In-1 	In-2 > 0; xn-3 - xn-1 < sin 7 — ; cos (x3n<  1 n 
4 

3n 

	

47 	n 
. 

• 	

f4 sin (x3n 

	

-t)T 	 7 	27 (t)dt > - sin — (n) [sin — + sin — + sin (-2  -2 7) — 
4 

n -1 
E 	sin 

21ur 

k=1 
= Imag 

(e 
i27 	i7 	2i7 
n - e4 )(1 - e 

 

2(1 - cos 22) 

27 	7 27 	sin 4 sin—n + sin (-- - 	- sin -4.- 4 n 
2.2 sing I n 

1 
7 	 ,11. 	TT 

n
) , 	1 - --- 

14  cos 
n 
— - COS k

4  — - cos (---
) _ 	 4- 27 2 sin — 	— n n 

3n x-- 4 
▪ sin(x3n - t)T

* (t)dt > - 4n) 12- - 1  
0 	4 	 2 trf 

x  

0 
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(n) 	. 	
4 

2-/f  
c‘, (-1)2 e l (x3n ) > 	Err 2  loos( 	) 	IT1 	- 1) 

IT 4 	2  

4E(11)11' I 2  r 
LCOS(.1465) 	1.87501(.414)] 

II 	(x)It 	
(nn) .45648 C21303 )  E  

Theorem 2 	Let us set S 2(x) = z*(x) - sin x in (12) 
 1 ( 1 + 0(71) ) 

.49468 	< 
2n 	2 	2n 

Then 	I I 	(x) II < 1.76971 

2I 

- 1 	22n-1n! 2.2828 

1 2 n . 	2 n . (n-1) 

Proof: An upper bound for I 162 (x) I I is obtained as before. 

T* (x) 	Tn-1 (x) (x)  . 	1 [  n+1  
2 4 n+1 n-1 [T cos X - T2 sin X] 

2 (n2-1) 

( _ i)n 

+ f 1 (t) [1.2  cos (x-t) - Ti  sin (x-t) ] dt 
0 

VC.A (2n+1) - n cos x] +1T21[ (n+2) sin x] 
162(x)I < 

2 (n2-1) 

11 6 2 (x ) II < I t i  (2 - cos (1) ) +1T 21 sin (1) ]   + 	(1 ) 
2 (n-1) n2 

1 
1. 76971 (1 + 0 (IT) )  

22nra (n-1) 



90. 

To find a lower bound for 1 1E2 (x)  1 1 

consider c2 (xn) where xn 2 
2 	2 

xn 
* 	 7T 	 n 

This time .1-2- cos (x-t) Tn (t)dt > cos (xn) 2 sin n cl!) (n) ( 2 — +0 (1) ) . 0 	 -2- 

I 	1 .T cos (-2-) 	(n) 

xn 
T 	* 	Tr 	n 

	

and f 	sin (x-t)Tn (t)dt < sin (xn) 2 sin —2n 	2 4) (n) ( -- + 0 (1) ) 

	

0 	 -2- 

+ I sin (2---) cIf(n) 2 	2 

( (n) 	1 	 1 
) 62 (xn ) < 2 	L n IT 21 sin (-f) - I 	cos (-f) 

-2-  

r(n) 	[.49455x.479426 - .83386x.877582]  

2
2n n 

.. 	Ile 2 (x) 11 	(1)(n).49468  
•  

2
2n 

n! 

Remark Since  (n) 	70.— L1 	0(-111  )] n-1 

 

we see from Theorems 1 and 2 that 

11 e*  ilw  = 	K 	C 1 	0(12 ) 3 
22n(n4.1)1  

where 	.49468 < K < 1.76971 	for n even 

This is comparable to the results of Meinardus in D1.8jp.80 

for the minimal deviation on [0,1] except that then K = I . 



91. 

SIMULTANEOUS APPROXIMATION OF A FUNCTION AND ITS DERIVATIVE 

WITH THE TAU METHOD, PART II 

FOREWORD: In this part we generalize the Tau method technique developed 

in Part I for the numerical solution of systems of two first order linear 

differential equations, to the cases ofi (a) the general second order 

differential equation with constant coefficients, (b) the Euler equation 

and (c) The Airy equation. In this last example we deal with the case 

of undefined canonical polynomials. 

In each case we give error bounds in the uniform norm for the 

function and derivative. 

Although we have modelled our arguments on systems of order two, 

the same method could be extended to systems of higher order with corres-

ponding approximations to higher derivatives. 

2. 1. 	 The General Second Order Linear Differential Equation 

with Constant Coefficients  

In this part we continue the analysis of the numerical solution of 

systems of linear differential equations with the Tau method, initiated 

in Part I. 

We begin our discussion with the general second order linear differential 

equation with constant coefficients 

y"(x) + a y'(x) 	a
o
y(x) = O 	 (1) 

subject to the supplementary conditions y(0) = a► y'(0) = S. 

As a system of first order linear differential equations, the 

—Operator form of (1) is 



d 
dx 

1 

\ 
■ 

z 
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For the perturbed system, we compute the exact solution [yn
,z
n
]T of 

a
0
yn 

= z'n 
a
l
z
n 

= T (n) 
Tn 

 

(2) 

yin+ Z = T 2 
(n)

T* 

with the derived initial conditions 

y
n 
(0) = a, 	T 

n 
(0) = -f3 

y'
n
(0) = T 

2
(n)T*(0) + 

( 	, 
z
n 
(0) 	

1n) n 
= -T 	T* tO) + a

0 
 a + a1 

 13 



Ex 	a0 	
a
1 	

T 	T2  

1 -1 1 -7.7667 x 10
4 4.3971 x 10

4 

2 -1 -1 -3.8373 x 10
3 -2.3499 x 10

-3 

93. 

2.1.1 DETERMINATION OF THE TAU 

We proceed as in 4.1 of Part I. Combining (2) we obtain 

y " +a1yn' +a0yn = T(n)
1

T
n 
 + (n)  T2  [a

1  T n 
* 
 + T:'] 

By repeated differentiation and back substitution, we find assuming a = 1, 

0 = 0 and n = 4 

( a0
3
a1 = T

1
4)  [a

0
2 
 a1T4*(0) - a0

2T4*(0) + a0  T*4 
 (0) - a1T4'17(0)] 

(4) 	2 *•• 	i 
+ T 

2 
[a0 

3 
 T4*(0) - a0 T411(0) + a0a1T4*ii  (0) + (a0 - a1

2)T4
*iv

(0)] 

Likewise we obtain from 

( z + a1  zn  + a0zn 	2 = T 
(n)a0  T n* - T1

n)  Tn* (4) 

iv 
(a
0
2a
1
2 - a0

3
) = T

(4)[(a
0
a
1
2 
- a0

2)T4*(0) - a0a1
T4*(0) + a0T4*ii(0) = T4* (0)] 1 

(4) 	2 	2 	• 	ii 	iv 
T
2 

[a0 a1T4*(0) - a0 T4*1(0) + a0
T4 - (0)- a1T4* (0)] 

We solve these two equations for Ti  and T2, and in table I, we illustrate 

the result for particular values of a0, al. 

TABLE I. 	Evaluation of Tau for certain values of a0, a1 
when n = 4 

(3) 
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n) 	( For a general prescription for Ti  , T2
) 
 we take the r-th derivative of 

1 r+1 equation (3), r = 0,1,...,n and multiply through by (---) 	i = 1,2 Xi 
where X1, 1

2  are the roots of the characteristic equation. 

With each system i = 1,2, we add all the equations together, making 

use of the fact that 

1 r+1 	1 	1 2 [1 + a1 A  (---) + a0 
X. 
 ] = 0 Xi 	i   • 

to reduce the system. 

Subtracting one system from the other and setting 

1 r+1 1 r+1 (r) S = E 	- 	]T
n 

(0) 
r=0 • Al 	A2 

SE 1 r 1 r 	
(0) ] Tn  E [ 	- (—) r1 Ai 	X2 

we find that 

( 
(X2 - X1)yn(0) 	T (1n) S

0 	T
2
n)  [a1  S0  + S E 

Similarly from (4) 

(X2 - X1) zn (0) = T2 
(n) 

a0  S0  - T (1
n) S 

E 

When a = 1, 	= 0 we have that 

(n) 	a 0S 0  
T1 	- , 

(S  
E2 

+ a1SESO + e0S02 )(X2 - X1) 

n 



(1)  n (1)  n ( 1 + 0 ) ) 
i  X 2 X  

1 n+1 1 n+1 
1 X1X21  (-x--) 	(x ) 

1 	2 

lim 
	

IT r1) 1 
n4co 

2T * (n) (0) n  

95. 

(n) 	 S
E  

T
2 (SE

2 1-a1SES0 + a0S0
2

) (A2  -• 1) •  

If 

co > lim inf 
r>0 

1 ) 	- r+1 	1 (7 
1 	2 

r+1 

> 1 1 	r 	1 	r H T ) 	- (7-) 
1 	• 	2 

we may deduce the asymptotic results 

lim IT (
1
n) I 

n4c° 

 

  

1 n+1 1 n+1 1 X1 - X21 (X ) 	(7) 
1 	2 Tn

* (n) (0) 
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2.1.2. 	ANALYTIC SOLUTIONS OF THE HOMOGENEOUS EQUATIONS 

Both the function y and its derivative -z satisfy 

u" (x) 	aly(x) + aou(x) = 0. 

The basis for the solution space of this equation, 01(x), 02(x), depends 

on the nature of the roots, Xi, A2, of the characteristic equation. 

We have 

Y(x)  = c1(1)1(x) c24)2(x)  

z(x) = di01(x) + d202  (x) 

where•3.3.  c., d., i = 1,2; are determined by the initial conditions. 

We shall assume the roots are real and distinct. Then 

Al 	
2 

x 	x x 
1 
(x) = e 	(x) = e

2 
 

Furthermore, if we set K(x,t) = 02(x)01(t) - 01(x)02(t), then 

A
2
xi-A

1
t 	A

1
x+X

2
t 

K(x,t) = e 	- e 

Now w(t) = (X2 - X1)e
(X
1+X2)t is the Wronskian of 01  and 02. 

A
2(x-t) 	X

1(x-t) K(x,t) 	-e  
w(t) 	k

2 
 A
1 

1 X 

	

(x-t) 	
2 (x-t) 

and d K(x,t) _ 	1e 
	- X2

e  

dt w(t) 	A
2 
- A

1 



97. 

2. 1.3 THE TAU SOLUTION BY THE GREEN'S FUNCTION 

The solution of (3) is 

Yn(x) = c14 1(x)c242  (x) 

(n) 	K(x,0) 	x  T
2 

T
n
(0) 	+ f G

1(x,t) dt w(0) 	
0 

( 	( where G1 	1 (x,t) = I(T
() 

+ a1T2
n) 

 )Tn(t)K(x,t) - T2
n) 
 w(t)Tn(t)

d K(x,t)
]Mt) 

dt w 

Hence we have yn(0) = 8iq51(0) + e24,2(0) • 

Moreover from 

T (0) 
( 	n 

yn'(x) = 8
141.1.(x) 	e2cti 2t (x) - T2

n) 
 w(0)  [ 21 (x)(P1(0) - 1'(x)4,2(0) 

+ G1(X/ x) + f ax  G1  (x,t)dt 
0 

we find yn'(0) = Ciy(0) + C24)21 (0) 

since 
d K(x,t)  
dt w(t) 	t=x 

-1 . 

From the initial conditions for y and yn  we obtain 

T
(n)

T (0)) (0) T 
(n) 
2 

T
n(0) 1(0) 2 n 2  

- 81 - 
C1 	w(0) 	

e2 	C2 	w(0) 

X 	, 

We set k1(x) = 
r  KkX  

T (t)dt and k (x) 	
T (t)  d K(x' 

 t)  dt 
0 

w(t) n 	2 	
0 n 
	dt w(t) 
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Then 

el  (x)E Yn(x) - y(x) = (Ti
n)  + a12 T(n))k1  (x) - T(2n)

k2  (x) 
	

(5) 

similarly.  

e2(x) E z
n(x) - z(x) = a02  

T(n)k1 	1 (x) + Tin) k
2(x) 
	

(6) 

1.1.4 UPPER BOUNDS FOR THE ERROR FUNCTIONS 

These follow from (5) and (6) by finding bounds on ki(x), k2(x). 

Performing an integration by parts and using the bounds for I(x), determined 

in 5.3 of Part I, we obtain 

  

x 
+ 1 

0 

 

lk (x)I < 	1 	{ 1  
1 	— 2(n-1) n+1 

K(x,1)  
w(1) 

d Ic(x,t)  dt} 
dt w(t) 

   

1fl d 
lk2(x)1 1 2(n-1) 	dt 

K(x,t) 
t=x 

1 d 
dt 

K (X, t) 
t=0 

x 
+ f 
0 

d 

I

2  K(x,t) 
dt) 

w(t) n+1 w(t) 
1 
dt2  w(t)  

Now using the positivity of eAt, A2eAt and convexity of XeXx A > 0, we 

find 

 

Al 	
A
2 I 
 

e 	- e 	1 
X1 - A2 	

(1 + TIT-2) 
1  

max lk (x)I < 1 	— 2(n-1) 0<x<1 

A2 A
l 

1 	1 	A2e  - Ale   

0m<x< 	

1 
ax 
1 
 lk2  (x)I 	2(n-1) 

< 	[ (1 + 
n+1

)max(1, 	
A2 - 1 	

) + 2 
— 

 

We illustrate with the same examples as in2.1.1.with n = 4. 
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TABLE II. UPPER BOUNDS FOR ERROR TERMS 

Ex 
	

11 	 II E1  II 	 11E2 11 

1 .14021 .46459 2.5423 x 10
-4 

2 .40286 1.09298 3.1677 x 10
3 

- A 
4.2601 x 10 - 

5.1408 x 10
-3 



2.2. THE EULER EQUATION 

Suppose 	x2y"(x) + a1 
x y'(x) 	aoy(x) = 0 

subject to y(1) = ar  y1 (1) = 0 

The operator D is now 

2 d ( a
0 	-x  dx 	

aix 

For the perturbed system we compute the exact solution [y
n+1

,z
n
]T of 

100. 

dx 

D y = 
Tn+1 

Tn 

(7) 

where T
n is the Chebyshev polynomial of degree n shifted to the interval J. 

2.2.1 THE CANONICAL POLYNOMIALS 

a  

2 d 
(ixk  

( 	

x 	- alx 0 	- dx 

1 	-kx
k-1  

dx 

   

   

= [a0 + k(k-1) + ka ] 1 

  

 

\ 0 / 

( xk 

Q[1]  = 1 	) ( 

	

. for k 	(x) 	
1  

Qk 

	

a
0 

+ k(k-1) + ka1 	-ky
k-1 	0 a  

	

1 	
r 	

0 

k+1 

while 	

) 
(al+k) x  [2] 	, 	1  

	

Q 	(x) a0 + (k+1)(k+a ) 
1 	a

0
x 
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2..2.2 THE TAU SOLUTION 

,. (n) Setting Tn
(x) = .E c xk  and inverting the operator D, as in 

k=0 
section 	of Part I, we have 

n+1 	n :

:

4(
:

)

x)
) = T(n) 	E a(n+1)(1[1]( 1 4. T(n) 	E  -(n)(1 123( 1  

( 1 
k=0 k 	nc 'x' ' 2 	ck 'k sx' 

k=0 

(n) 	(n) 
Tin)  and T2 can be found by solving this system at x = 1. 

We shall assume a = 1, 6 = 0, J = [1,2] 

T3(x) = 32x
3 - 144x2 + 210x - 99 

T4(x) = 128x4 	768x3  + 1696x2  - 1632 x +577 

Hence, if 

al = 1, a0  = -a < 0 

(3) 577 	1632 	1696 	768 	128 , 	(3) -99 	420 	432 + 128 
1 	T 	L 	 + 	

+ T2 	[1-a 
+ 

1 	-a 	1-a 

• 

4-a 	9-a 	16-a 	2 	1-a 	4-a 9-a-  16-a 

T(3) 

0 = T L 	 3 
+ (3)r1632 	3392 	2304 	512 	2 	[99 	210 

▪ 

144 	32 
1 1-a 	4-a 

▪ 

9-a 	16-a 
 
a 1-a 4-a 9-a 16-a 

EXAMPLE a = .25 : 

1 
(3) = -0.259 10

-3 
; 	T

2
(3) = 1.08 10

3 
. 

It is clear that for values.of f a'close to r2, r = 0, 1,2,3; the 

dominating terms in the system are the r-th ones and the tau-s will be 

found to be small < 10-3 

The same is true for talclose to zero on the negative side, i.e. 

1 - —  10 < a < 0, in which case the indicial equation has complex conjugate — 

roots, but not in general, fora' negative. 

1 

n 
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2.2.3 ANALYTIC SOLUTIONS OF THE EULER HOMOGENEOUS EQUATION 

x2y" + al  x y' + a0y = 0 	Y (1) = a. 17' (1) = 

We are looking for two linearly independent solutions h(x), (2(x) such 

that y = c14)1 + c242 
where the constants c

1, c2 are uniquely determined 

by the initial conditions. 

Suppose (1)(x) = xm  is a solution. 

Then m must satisfy the indicial equation m(m-1) + a
1m + a0 

 = O. 

The following exhaust all the possibilities: 

(i) The indicial equation has 2 distinct real roots ml, m2:  

(ii) m is a repeated root 

Then $1(x) = xm  and 42(x) = xm  log x 

(iii) There are 2 complex conjugate roots ml  = c + id, m2  = c - id 

Then 41(x) = x
c cos d log x and 42(x) = x

c sin d log x 

We set K1 (X, t) = 	4)2 (x)4)1 (t) - 1 
(x)4)

2 
(t) 

where K1(x,x) = 0 and w
1(t) is the wronskian of 4,1 

and cb..). 

We note that 

m2 - ml 	in (i) 

w
1 
 (1) = 	1 	in (ii) 

d 	in (iii) 

For all r, 

dt t 	wi(t) 

	
mi 	i  r-m 	m2 

r-  m2 	

(8) d 	
K
1
(x,t) 	-(r+l-m

1
)x 't 	+ (r+l-m2)x t 

m2 ml 
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2.2.4 THE TAU SOLUTION BY THE GREEN'S FUNCTION 

First, we stipulate that 

y
n+1

(1) = 	'.(1)  = -a 	and hence for consistency with (7) 

Y 	(1) = S + T2 
(n) 

 T (1) n+1 	n 

(- 
zn'(1) = -T1

n) 
Tn+1(1)  + ao

a + a a 

From (7) we also find that yn+1 
satisfies the equation 

Ti (-  
x2
yn+1
" • (x) + a1 	n x  y'

+1 
 (x) + a0yn+1(x) = 1 

n)- 
 n+1 (x) + T2

n)  [al 
x 	(x) + x2  T ' (x) 

The general solution of this, is 

K1  (x,1) 
yn+1(x) = 614)1

(x) + 024)2(x) 	
T (n) 	
2n(1) 	 w1(1) 

+ f G1(x,t) dt 
1 

(n) 
t
2
K1 

 (X, 0 

where G1 	1 (x t) = T(n) Tn+1(t
)K1(x'

t)+T2 Tn(t) I a1tic1(x't) - w1(t)dt 	w1 (t) 

w (t) 

is obtained after performing an integration by parts on 

x K
1 
 't) t2 	dTil  

 
w (t) 	dt 

dt. 
1 

t2K 	t) 
d 

 
1  

Now G1(x ,x) = 	= -x
2 

dt 	w(t) 	
for all cases (i), (ii) and (iii). 

t=x 

Hence we have yn+1(1) = elyi) 	t2$2(1) 



T (n)  I 
1 	f  1 
2n n+2 

d1(Xt).  

dt w
1
(t) 1 5'11-1-1(x) 	Y(x) dt). 
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T (1) 
and y' 	(x) = 	ci5i(x) I. 8 	(x) - T lni 	n  

n+1 	1 1 	2 
(P
2 	2 w

1
(1) [ ¢i (x) 	Yx" 

a + G1 	ax (x,x) + f 	G1  (x,t) dt 
1 

and 

Yn+1 (1) = 81  ' 1 (1) + c2¢2 (1) 
	

for all cases (i), (ii) and (iii). 

It follows, as in 2.1.3 	that 

y
n
(x) - y(x) = f G1(xt)dt 

1 
	 (9) 

2.2.5 UPPER BOUNDS FOR THE ERROR FUNCTIONS IN TERMS OF THE TAU 

We restrict ourselves to case (i) and to improve the bounds, assume 

al < 2; ml, m2 < 1. 

From (9) we have 

( r (n)  I 	-a 	K (x,1) 2  { 1 1 	+1  [d 
t2K

1(x,t) + x2 2(n-1) 	n+1 	w
1(1) (n+1) dt w1(t) 	

1t=1 
• 

K (x,t) 
4:  	d 	,2 

K
1
(x,t) 

dt tar' w
1
(t) 	dt 	w1(t) ) 	dt)  

Applying (8) 

IT(n)I I 2m1  - 2m21 
IIYn+1 	Yll 	12n 	

1m1 - m2 	
(1 + n+2 

n+2 ) 

m 
I
2 

T(n)1 	1 (3-a
1 
 -m
1 
 )2 	- (3-a1-m2)2 

2 
I   

2(n-1) {max(1/1 m1  - m2  

 

) (1 +n+1 1 + 8) 
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7-.2.6 THE ERROR FUNCTION FOR THE DERIVATIVE AND ITS BOUND 

zn(x) satisfies the equation 

x2z (x) + (2+a
1
) x z

n
'(x) + (a + a

1 n 
)z = -T (n) TI  (X) 	a

0
T
2 

(n) T
n(x) n 0 	1 n+1 

Suppose 41(x), 1P2(x) are a basis for the solution of the homogeneous 

equation with corresponding K2(x,t) and w2(t). 

If 11,(x) = xV  is a solution then v must satisfy v(v-1) + (2+a1)v + (a0+a1) = 0. 

We again restrict ourselves to case (i) -and assume v
1
, v

2 
< O. Then 

x 	 xit) 	
.• • 

d K
2
( x,t) 

zn(x) - z(x) = 
	ra 0.c  (h)  n 	2 	(n)-  

1 	2 	w2(t) 	
+

1 
T
n+1

(t) 
dt w2(t) ) 

and 

kcAn)112vi -:.  %)21  

1Izn 	z11 — 	
1 

	I   2(n-1) 	- v21 	(1 + 
n+1  )  

(1-v )2
vi 
 - 	(1-v2) 1 

v2 

) + 2) 
vl 	v2 

(n) 
171 n 

I 

	1 {(1 + 
n+2

)max(1, 
2 

7-.2.7 EXAMPLE 

Referring to our example of section 2.2,17we find 

1 	1 	3 	1 m1 = 2,m2 = 2 ' vl = 	' v2 = - 7 

and 
	

11Y4 - Y11 < 2.5342 x 10 3  

11z3 - zI1 < 1.6797 x 10 4  
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2.3. THE AIRY EQUATION 

We consider the form of Airy equation 

y"(x) + xy = 1 

_ subject to y(0) = a, 	171 (0) =. 

A numerical solution for y(x) with the Tau method can be found in [5S] 

We compute the exact solution [y n  ,z n]
T of the perturbed system 

(n) (TI* 1) (T2 	0 ) ( Tn* (yn ). 1„  x 	- arc) ( yn )= (1  14.  
(n) D

O j 
+ T

1 	 (n) 
dx z

n 	1 	zn 	0 	0 T3  / Tn 

(10) 
where J is [0,1]. 

2.3.1 THE CANONICAL POLYNOMIALS 

( xk+1 [1] Qk+2(x) = 	k 	- k(k+1) Q[1k- 
] 
1(x) -(k+1)x  

[1] [1] 	1 Qo  undefined, Q1 	= (0) , Q31] ,
x1 	(x ) 

1 

[ 	[ We note that 	Q3
1]  (0) = -2Qo

1] 
 

Q3
1] 	1 (0) = -6(0) 

[2]  ((k+1)x
k-1
) [2] 

QM-1 k+1 	- (k-1) (k+1) Qk-2 x 
 

Q0 
[2] 

= () 	Q 	= ( 	
[1] 	[2] 

' 	1 	x) + 0 -0 	Q -2 	

= [2] 	0 	( 2 

Again, we note that [2] 0 Q3  (0) = -3(1) 

[2] [1] 
Q4 (0)  = -8Q0 
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2.3.2 THE TAU SOLUTION 

Inverting the operator D of (10), we have 

( 

Yn 	[1] 	(n) n+1  (n+1) Ill 	(n) n 	(n) Ill 	(n) n 	(n) [2] E c. 	Q. 	+ T, 	E c. Q. 	+ T3 	E c. Q. 

	

zn 
= Qo + T1 j=0 	. 	

4  j=0 3 	3 	j=0 

(n) where c. 	are the coefficients of Tn*. 

We take n = 3, a = 3
-2/3r(1/3), S = -3 1/3

r(2/3) 

In order for the contribution of the undefined canonical polynomial Q[1] 0 

to vanish, we have the constraint 

(.1[1]{ 1 	T 	(c (3) 	(4) 	2 - 	(4) 	(3) 	(3) 
Q 1 	0 	-C 

	] 
3 	4-  T2 Ic 	- 2c(3)] 	c(3) 	0 

0 	3 	3 1 J  

From the initial conditions, we have 

(1.287899
)=  T(3) r- 32(1) -1- 160( 

o
) + 128(

-6 
  

-.938893 	1 	0 	-1 	o  

	

1 	(3) 	0 	2 	0 
+ T2 (3) [18(

o
) - 48 ( 

-1
0
)] + T3 [ -1(1) - 48(0

) + 32(-3
)]. 

Hence we find 

T(3)  _ .011766 	T(3) _ -.006330 T(3) _ 	-.003164 
3 - 	2 - 	1 - 

2.3,3 ANALYTIC SOLUTION OF THE AIRY EQUATION 

y" + xy = 1 

Two linearly independent solutions of the homogeneous equation are given by 

Yx)  = 

	

 1/3 3 x3/2) 	. do 2(x) = 	J_1/3 
3/2) 

-1/3 1'3 
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We set K(x,t) = 4)2(x)S1(t) 	4)1(x)11)2(t) 

and w(t) is the Wronskian of (;o1  and $2  

From the relationships 

aT

• 

Jp( ) = 	- 12- J (0 
P 

d 	j

• 	

p (E)  = 	 . j
P 
 (c) — Jp+i (E) 

we obtain respectively 

23/2d .../x3/2)  
d  . Tc

• 

- 4) 1  (x) = x J 	x 	) , 	1b2(x) _ 
	

xj  2/3(3 -2/3 3 

d2 	3/2 	2 3/2 d2 	2 3/2 

dx
2 4)1 (x)  = 	3  1/ 	x 	" 

dx2 
(P2 (x) 	1/3 (3 	) 

From the series expansion of the Bessel functions we have 

(°) = 0, 	4'2 (c)) = 31/3/ r(?s) 

1 
(Plt (0)  = 32/3/r (-5) 	$2' (°) = 

w (0) =-3./[ r (4) r 

However w(t) = w(0) for all t, cf [5 3 p. 29. 
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2,3.-1. THE TAU SOLUTION BY THE GREENS FUNCTION 

The derived initial conditions for the perturbed system (9) are 

yn(0) = a, 	z
n
(0) = -a 

and for consistency 

Yn"°)  = 	T3n)Tn*(°)  

." z ( (0) = -1 - T(n)T
* 

(0) - T2 
(n) T

n*(0) n 1 n+1 

yn, zn are the solutions respectively of 

( 	( 	, yn" + xyn = 1
( 
1
n)T*

n+1 	 n (x) + T2
n)  Tn- 

(x) + T
3
n) 
 T" (x) 

( 	( 	, z
n 	

= xyn - 1 - T1
n)  T- (x) - T2

)  Tn-kxj n+1 

The solution of (11) is 

Yn(x) = yl  (x) + 824)2(x) - T (n)T *(0) Ic(x,0) + 	G(x,t)  dt 
3 	n 	w (0) 	0 w(0) 

( 	 (  
where G(x,t) = [1 + 1n) T* 	+ T(n)T*(t)]K(x,t) - T3

n) 
 T
n  
*(t) 

dt 
K(X,t) 

n+1 	2 n  

	

We deduce, as in 2.1.3 	that 

	

= f 	[G(x,t) - K(x,t)]  
Yn(x) - y(x)  

	

0 	w(0) 	
dt 

On the other hand, one readily obtains from (12) 

	

5 
	( 	( 

zn(x) - z(x) = f try (t) - y(t)]dt - j IT,
n)  T;1,4.1(t) + T2n)  T/1,1(t)]dt 

	

0 n 	0 

(12) 
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2. 3.5 	UPPER BOUNDS FOR THE ERROR FUNCTIONS IN TERMS OF THE TAU 

From the expansion 

-z ( 2 ) 

	

J (z) - 	 F (v4.1-
' 
 -z

2
/4) v r (v+1) 	o 1 

 

we obtain for C real v > -1 

I

2  I
V  

I av () I 5- r (v+1) 

Hence for 0 < x < 1 

	

(1)1/3 	 1. -1/3 

14)  (x)1 < 	
5) 

(I) 2 (x) 	< ( 3 ) 
2 1 	r  (1) 	 r (3) 

1 -2/3 	(1)2/3 

14).()I < 
(5)  

—< 	5 1 	r  (25-) 	 r (-3 ) 

Itc(x,t)I < 	2  2  4 	= 2114(0)1 
r (-5-) r (-5-) 

i ic(x,t)1 < 	
9 	3 

- 	1 w (0 )1 cdt 	 1 2 2r (-3 )r (3) 

I d2  
ic(x,t) 

dt 
 

 

< 21w(0)1 

 

3 1) 	n) 	 1 
IlYn  - Y11 < E mi ITi I 	where mil)  = 	 [1." 

1=1 

( 	1  	 (1) 	1 	1 
m2

1) 	 + 1.5 ], m3 	 [3 + --- 2 (n-1) 	n+1 	 2(n-1) 	n+1 

3 
Iiz

n 
- zli 	< E 111

2) 
IT.I 	where 	

(2) 	(1) 	1 
m
1 

= 	— , 
ml 	2n 

1=1 

(2) (1) • 1  
m2 = m2 + 2 (n-1) 

(2) - (1) m3  - m3  . 

n+2 



Hence we find, for n=3 	the following upper bounds for the 

error functions: 

Yll 
	< .01323 
	

Hz3 — Zil 	< .01415 

For this value of nt  these bounds compare favourably with the 

standard Tau method solution to this problem adopted in [561. 
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SIMULTANEOUS APPROXIMATION OF A FUNCTION AND ITS DERIVATIVE 

WITH THE TAU METHOD, PART III 

3.1. INTR0DhcTIoN 	LEGENDRE PERTURBATIONS AND RATIONAL APPROXIMATIONS 

It has been found in practice, see [211 and [57], that the Tau approximations 

generated with a Legendre perturbation Pn, have the advantage that they 

provide more accurate end-point estimations than those generated with a 

Chebyshev perturbation Tn  . This feature is of consequence in designing a 

suitable step-by-step Tau solution of.a problem over a segmented range, see 

b/] for a detailed.description. 

A heuristic proof to justify the use of Legendre perturbations was first given 

by Lanczos in 1962 and is to be found in [43]• 

It was based on the approximation by the Tau method of the Green's function 

G(x,t) associated with the differential operator at x = 1. 

We further support this view in the sequel by arguing on the following lines. 

x  Suppose we write y - yn  = en = 1.(n)  fl? (t) G(x,t) o 

Now by Rodrigues' definition of the Legendre Polynomial shifted to [0,1] 

(-1)n  (n) n, 	n P (t) = 	
n. w 
	(t) where w = t kl 	t)  

the superscript (n) denotes the n-th derivative and w(i)  (0) = w(i)(1) = 0 

for i= 0, 1, ..., n-1. 

hence by performing repeated integration by parts, we can reduce the integrals  

dn in the expression for E
n.(1), to the integral of a smooth function — G(x,t) dtn 

against w(t) which behaves increasingly like a delta function as n increases. 

Consequently the error function diminishes rapidly with n and precise bounds 
.n 

can be found depending on 	G(x,t). 
dtn 
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Luke (see [41 Chapter X and also [q]) extended the error analysis of 

the Tau solution of the simple differential equation 

y - y = 0 with y(0) = 1 

to the solution of 

• (n) 	(a,13) (Y) 
n 	Yn 	T 	(i)  

on [0,Y]with yn(0) = 1, 

(ccOgi) (t) is a shifted Jacobi polynomial on [0,1] which has the hyper-

geometric form 

- n, n + 	, 
2 
F
1 
( 	t) where A = a + a 	1 

+ 

(—I. 	 I) 	• 
We note that (pn 	(t) = 	

_1\n T 
nk  
*ft\ 

while (p
(0,0) 

(t) n  = (-1)n  Pn  

For a given value of y, the solution of (1) is a polynomial of degree n in 

x/y. When the initial conditions are accounted for, the solution yn  takes the 

form of a rational function. If x is now set equal to Y, then yn  can be 

expressed as the quotient of two polynomials of degree n in x (see [43] p. 195). 

by this means a rational approximation for exp(x) was obtained with little more 

effort than before and yet with considerably improved accuracy. 

In the foregoing we extend these ideas to a particular simple second-order 

linear differential equation to obtain approximations to both the function and its 

derivative and which basically are the quotient of two polynomials of degree n 

in x2, 

(1) 
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3.2. THE PROBLEM AND ITS SOLUTION USING THE GREENS FUNCTION 

Let us consider the second order differential equation 

y"(x) + y(x) = 0, 	X E E0,11 

with the initial conditions y(0) = 1, y l (0) = 0 which' we write as the system 

1 

d 
dx 

-d 
dx 

 

0 

 0 

(2)  

 

1 

 

      

with the conditions y(0) = 1, z(0) = O. 

We now look for an approximate solution of the system (2) in the interval 

120,Y], Y 	1, by means of the Tau method. We shall use as a perturbation term 

for yn  and zn, the Legendre polynomials Pn(x/Y) defined in the interval 

D1,Y]. Thus Lyn, znj is the exact solution of 

(n'i)  Pn(x/Y) T
O  

T (n'Y)  Pfl(x/Y) 

The error functions for y and z are defined respectively as 

en(x,y) = yn(x,y) - y(x,y) 

6 (x,y) = z
n
(x,y) - z(x,y) 

From (2) and (3) 

d2 	 (n,Y) 
dx2 en(x,Y) + n(x,Y) = T

o 	Pn(x/Y) + T 1"Y) dx P n
(x/Y) 	(4-a) 

d2 6 (x,y) 	6n(x,Y) - 
(.1x2  

(n,Y) d 	(n,Y) 
Tql 	Pn(x/Y) T1 Pn(x/Y)  

(4-b) 

1 

d 

dx 

-d 
dx 

1 

 

z
n 

yn 

  

    

(3)  



x 

I (x-t)r-1 Pn(t) dt P
n•r 

 (x) 
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The solution of (4-a) in terms of its Green's function 

c
n
(x,y) 	= 	T

(n,y) f 
sin(x-u) Pn(u/Y) du + T

(n
'
y) 

I 
0 1 	0  

x/y 
r 	, 	, 	(. = 	y j 	[ro

(nY) 
 sinkx-yt) + T

nY) 
 coskx-yt)] 

0 

Similarly, 

x/y 	• 
, 6

n
(x,Y) 	= 	y 	[-T

o 	cos(x-Yt) + T(nY) sinkx-ltd.  

Pn(t)  dt 
 

is 

COS(X-ll) 	P 	(u/Y) 
dx 

 ,
t) 	dt 

P 	dt 

du 

(5-a) 

(5 -b) 

Following Luke (Vol. 1, p. 281), the repeated integrals of Pn(t) are 

denoted by 

With I? 	E P . It follows that 
n,o 

P
n r 

(0) = P
n,

.
r 
(1) = 0 for r = 1 (1) n . 

(
nt

)n  Furthermore, using Rodrigues' formula, 	Pnln(t) 	tn (1 - t)n  . 1 

Repeated integration by parts of (5-a) yields 

r-1 
(n Y) 	k7r 

En(x,Y) = 	
yk+14T(n,Y) 	

2 
lar 

	

sin - 	 cosT1 Pnk (X/ Y) 
1.<=0 	

, 

	

_ [T(n,Y) 	 ku 	Tin,  Y)  
2 

sin (x + 	) 	
'1 	

cos (x + 	11'n, k+1(0)3 • 2   

/Y- 
yr+1 

x 
 f 1 T(n,Y) 	(x 	n 

2  
it 

- It) 	
T(n,y) 	rzr 	II 

o 1 	
cos (x +

2 
-Yt) P

n,r
(t)dt. 

o - 

If y is identified with the current point x E [0,1] and r =n , we have that 

• 
n+1 f1 (n,x) 	(n,x) 	1111-  

sin I-15- + x(1-t) + T 	cos —2- + x(1-t) } P
n,n

(t) dt s
n
(X,X) = 	T 	

2 	1 

1 
We set 	,A 	(x) = 	1 sin [V.+ x(1-t) 3 tn(1-t)n  dt 

1 	 1 
= sin@+ x)f cos(xt)tn(1-t)ndt - cos(a+x)ifsin(xt)tn(14ridt. 
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3.3 A CLOSED FORM rOR THE ERROR TERMS 

Since 
r ix/2 

fleixt 
t
n

(1-t)
ndt = 

Yrre 	/ 
	(ix) 

 
n+2  2 o 	 (ix)114.1-  

where 

I
v 

(ix) 	= i-v 	(-x) = (-1)v  Jv(x), 
	. (6) 

we have 

A
a,n 

(x) = V n! fsin(a+x) 
eix/2 

I 	(
i
-:
r
-) 

	

n+ 	2 2  	
e-ix/2 I 1  n+2  2  

-ix 
1   

(-ix) 114-  

	

f 	 -ix/2 + 	cos(a+x) Foix/2 ,n+2 2  I 

	

e 	 1.--  

	

n+2 	2 1 }
- (ix) n42 n+' (-ix) 

	

ix 	i(a+7-) 	-ix - 
= 	n! 	

e 	• 2 I 
n+2  2 . 	2 In4. (-7) _ 

n+,1  
(-ix) 

Applying (6) 

iAn! [  (-1)n  e-i(a+ J 
1  2 (- 

Lc) - ei(a+ 
A
a,n

(x)  

	

xn+i 	i 	 n+ 2 	 n+2\21 

I 

sin (a 	
X 	

(--
X 
). 

xn+ 	
2 	n+2 2 

Finally, 	 -  
(_1)n /r-1-1-c  j 	T (n,x)sini  (1174.x) 	T  (n,x) 

n(x, x) 	 n+- 2 	0 2 	
COS I (n7+x) (7-a)  

Similarly, 
(n,x)sin  (1174.x) - T  (n,x) 

cos i (ny+x) 

n (x,x) = (-1)n 	J n+i 2 	 c 1 

 

(7-b)  

 



r 
Pn(x/Y) 

dx-  - 

 

„-r. 	
r 

y 

dt
r
d 

P
n
(t) 
 x=0 

   

we obtain 

1 = T(n,Y) 	y-2r p(20(0) 	T(n,Y) 
1 

r=0 	 r=0 

0 	 0 
0 - 

_ 	0[0) 	(_or 1-2r p(20
/  

,0\  _ T (n,Y) 
T1 	r=0 	n 	o 	r=0 
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llepeated differentiation of (4-a) and alternate subtraction leads to 

yfl(c) = 	pn(x/y) — pn"(x/y) + 	+ (-1)0  pi(12e ) (x/y)] 

(n Y) 
[
pill

(x/Y) - Pn (x/Y) + . 
In 	0 (20+1) + T '. 	 (X/1)] 	(8) " + (-1) rn 

where 0 = En/21. A similar expression is found for z
n
(x). 

If we now impose on yn(x), zn(x) the conditions of (2) remembering that 

t=0, 

(_1)r y-(2r+1) 2r+1)(0) 
 

(9) 

(_,)r 1-(2r+1) p(2r+1)(0).  

We remark that the series expansion of Pn(t) in [0,1], 

P 	
(n)2 (t_on-k 

t
k
, 

n(t)  = k=0  

is the Bernstein polynomial of order k of a function f which takes the values 

f
k 

= 	(n) (-1)
n-k 

for k = 0(1)n. 

Thus, 

Pn(t)  = 1(10 (nk) 
Alfo tk 

F 

with P17(0) = (-1)n  and 

d
r 
P 

dtr n(t)  

  

t=0 
r! (n) 	f

o r 

  

  

= (-1)
n+r 

 r! 	 )(
r
) 	

(-1)
n+r 

 (n+r)! 	
(10) 

j J 
j=0 	

r! 	(n-r)! 



Furthermore, if we set 

S 	(n,Y) 	= 	y -28 	(-1) 0  L 
v 

E 	E. 	 (-1)r y2r P(20-2r) (0)
E 	r=0 

0 	- 	
s(n,Y) 	. 	y-(20+1) 	(..1)0 	

8 	
(...o r 12r 428-2r+1) 

 0 r=0 

the solution of (9) can be expressed in terms of S
E, S0  as 

T (n,Y) 	SE 	(n,Y) 
P  

(0) 

1 	. 

that range. 
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(11)  

(12)  

(13)  o 
S
E 
 +S 2 
	SE2+ S

0
2 

We shall see, in (16-c) below, that S:+ 502 	0 	for 	0 

Consequently, 	'c (n17) 	't (47)  are both well defined in 

3.4 Error Bounds in the Range 0 < y 1 

Taking into account (10) we obtain for (11) 

n/2 
(-1)r 
	! y2r 

E  n/2 -n (-1) r2(n-r)1  S = (-1) I 

r=0 (n-2r): (2r): 

Thus2 	 2 

	

Y 	y4 	(-1)
n/2 

 n.
1 n 	

S 
Y 	

E  < 	
28 

3Y 	Y 

	

- 8 	1680 < 	(2n): 	
1 7- 

384 

From(12), 	(_on/2 1-  n-1 n/2 x (-1)r+1 (2n - 2r + 1): Y2r 

0 

	

r=1 	(n - 2r + 1):(2r - 1): 

and n/2 	-11 
Y
3 

(-1) 	2n: 	Y3 
- S < Y 
24 	(2n): 	0 	- 42 

For the range 0 < y 	1, (14) - (15) give us the following bounds for 

SE and So rounded to 6D: 

(14)  

(15)  
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(-1)
n/2 

n' Yn  

	

.875395 < 	(2n):
.  s 	

< 1.000000 	(16-a) 

(-1) 	
) 

n/2 
n:  Y

n 

	

.000000 	
(2n 	

S
o 

< 0.488095 	(16-b) 
: 

and 

	

0.766667 	< [2 
(2n):  
12(1-T (S

E  2
+S
0  2
) < 1.238237 
	

(16-c) 

We can now reconsider (7-a) and (7-b). 

Since 
n/2 (n,Y) 	(_i)n/2 . 

(-1) 	T
o 	

< 	ax 
5(n,Y) 

 
E 

we derive, on applying (16-a) - (16-c), the following bounds on the interval 

0 < x 	1: 

0 < (-1)
n/2 

y 

(
n
2n

nT
) 	

o 
(n,Y) sin — 

2 
x 

T 	+ T(n'
y) cos 2E 	< 1.1842 

2 

x 
-1.142080 < (-1)

n/2 (2n): 
	

(n,Y) 
sin 	- T

o

(n,Y) 	
2 

cos — 	< -0.315340. 
T n. ' 	1 	2  

Furthermore, since 

x 
J i (-

2
)v.rr 

n+2  n. 	2,1 
(2n-1-1) 	1-1 	u kx- Ji n+ 2 X  I  

we obtain for n even, n 3 4 and 0< x 1 

(2n+1): (2n):  
0 	2 	c

n
(x,x) < 1.1842 x

2n+1 
[1 + 0(x2)] 

-1.1421 x2"1  [1 + 0(x2) 	< (2n+1): (2n)'. 611(x,x) < -0.31534 0.31534 x2"1[1+0(x2)] 

(n:)2 



)n/2 jro(DAT 1111,1)[Sin(i) 
From (7-b): 611(1,1) 7 (-1 TO 

cos(1)1 
T(n,l) 
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r 3.5 	EnOR BOUNDS AT THE END POIrJT OF TUE INTERVAL L0,1 I 

We now come back to consider the problem of the error at the matching 

points 	of our segmented 

tase n = 4 for our upper 

0.875595 

	

0.479166 	. < 

and 

0.996266 

hence 

0.462295 

and 

1.793902 

Fro:11(7-a) 	: 	E 	
(14., 	. 
n. 	/ 

Tau approximation. 

bound, we derive 

(-1)
n/2 

n! 

For 

from 

(n 	1) 
.  S 	' 

S
(n
'
1)  

0 

+ 	
in  

 [S‘ 

T  (n,l) 
1 

0 

I= 1 and taking the 

(14) 	and 	(15) 

0.893452 

0.488095 

12 	
1.036492  

0.489924 

1.864598 

(n,l) 

(2n)! 

(-1)n/2 ni (
2n)! 

n! 	.• 2 
SNI1' 

(2n)! [] (rE 

(-1.) 	' 
n/2 

(20! 
n! 

T
(n,l) 
o 

(n,l) 
T 1 

(_1\n/2 j 	(, \,G T fn, 
■ 1 	n+1 	2/ 	

1) 
+ 	(Z) (n,l) 	

sin(i) 	cos 

which yields, on applying the above bounds, 

(1 	
2 

 
16x11

) 0.80329 	< 
(211+1):(2n)!(1,1) 

(11!)2 	
n 

 

0.86791 

from which we find 

-0.56679 
(2n+1):(2n)! 2  

8_(1,1) 	< 	-0.50615 (1 - 
16x11) 01: 	-" 
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3.6 WORKED EXAMPLE 

We consider first the end point estimation for the case when the interval 

- 	n of approximation is 10,--I. We make use of the tabulated values of 
! 

n 
in(x) = v— Jn+

1 (x) to be found in ( 11 and replace OiR n+2 2 t(---) by 
2x 	 L  

x j n 2 
(---) in (7-a) and (7-b). hence for n even, 

c 	 = 	(-1)1)/2 2r- j (-1r) [T(ri' Tr/8) 	• 	w 	(11' 71/8)T  - n 	' 8 	8 n 16' o 	sin 376- + T 	cosCOS 1-6 

n/2 Tr - /_11"■ F T(n,n/8) cos 	+ T(111"18)  sin  16 
(5( 	) = (-1) 	Jnk16)  r 0 	16 n 8 	8  

We employ the half angle formula 

sin /TT cos () 	.1950903200 
cos ) 16 

2 	- 	1  .9307852807 

n 16was determined by a finite difference interpolation formula based on 

the points xr  = 0, .1, .2, .3, .4. 

(n, n/8) 	(n01/8) 
To 	) Tl 	were determined directly from equation (13). 

7 The results are compared with the nodal 	g error at 	
for the function and its 

derivative in the standard two T-term Legendre perturbation obtained in [57] 

and designated ers,  disi  respectively 

n To 1 n 
en es ds  

n 
T 

2 

4 

-1.252 	E-5 -2.491 	E-3 2.5631394E-3 4.918E-5 -1.187E-4 9.463E-4 -1.753E-4 

1.384546E-5 2.754034E-6 1.56997 	E-6 3.33E-12 -8.04E-12 2.719E-9 5.321E-10 
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To evaluate, for example, y2  and z2, we proceed as follows. 

Prom P2(t) = 6t2  - 6t + 1 we derive 

,(2,Y) 	12 oli 	= , - 	; 
Y ')

,(2,1) - 6 
0 

hence from (8) and (13) we obtain, after scaling 

y (x2, x2) -  
144 - 60x2  + x4 

2 	144 	12x2  + x4 

z2(x2, x2) 	x (144 - 12x2) 

144 + 12x2  + x4 

3.7. 	'CONCLUDING REMARKS 

For higher values of n, one need not determine explicitly the rational 

( expressions for yn and zn. It is more economical to use the terms SE
n,x)  and 

0
(n,x) as follows. 

From our knowledge of Legendre polynomials on [-1, lj in particular, 

Pn(-x) = (-1)n  Pn(x) 	and 

P 1(x) = (2n - 1) P
n-1

(x) 	(2n - 5) P
n-3  (x) +..., n = 1,2,... 

we obtain P(k)  (-1) 	= 	(-1)
n-k  P (k)

U 	(1) 	k 	0 

hence using the same symbol for the Legendre polynomial shifted to [0,11 

(k) 
Pn (0) = (-1)n-k  P(k)(1) 	k 	0 

Thus recalling (11) and (12) 

r=0 

6 
(..1)r x-2r p(201) 	(_i)  „n ,(n,x) 

n (1) ` 
	 and 

0 
x-(2r+1)/),(12r+1)(1) 	(_1)u-1 s(n,x) 

0 
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Inserting these expressions into (8) and employing (13) 

y 

 n 
(x2 

' 
x2) 	= 	(..1)n 

[4n,x)] 
2 - 

Eso(u, x)] 2 } 

[-S 112x)12  + [-S n'x)1 2. 
L 	I 

and similarly 

z  (x2, x2) (-1)n  2 S n'x)  s(npx) 

 

 

rsE(n,x)] 2+  Lso(n,n2  

We can make the following observations. 

SE and S0 
 require together 0(n) multiplications for their evaluation at 

U = x2. hence this is the order of multiplications to evaluate both y' and 

zn 
at U = x2  as opposed to the direct method requiring 0(3n). 

We further observe that our solution satisfies yil2  + zn2  = 1, 

The same technique, used along the lines of PartIlcan be extended to more 

general cases, to provide easily computed approximations for both the function 

and its derivative, with appropriate error bounds. 
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