on smuldandous approximation problens in
 NORAED SPACES WITH APPLICATION TO
 differential equations

Thesis submitted by

JEFFREY HOMARD FREILICH
for the degree of Ph D

TMPERIAL COLLEGE OF SCIENCE \& TECENOIOGX

July 1977

ACKIO:LLEDGBMEITS

I wish to express my sincere Eratitude to iny supervisor Dr. D. Lo Ortiz for making this thesis possible and for his continual suidence and enccuragement. I also express my appreciation to Prof. Hedo MoLaughlin for enobling me to make a beneficial study visit to RPI.

ABSTRACT

There are two classical problems which fall into the category of Simultaneous Approximation and which are the subject of this thesis. The first is the problem of determining the best approximation to a set of functions belonging to a normed linear space,from a linear subspace or a nonlinear subset, subject to a measure of 'distance' - the norm.

In the Introductory Chapter, we show the progression of a. fundamentel characterising property in Approximation Theory known as the Kolmogoroff criterion from the uniform nown to its generalistion by the Hahn- Banach theoren to an arbitrary norm.

In Chapter Tro, ve obtain a unifying theory for the simultaneous approximation problcm by a nonlinear subset in an arbitrary norm. The approach is based on a. Lemma in [25] developed by Blatt in [6] for the case of the uniform norm. We also consider the characterisation property of an element of V which is only locally a best approximation illustrated by the family of generalised retionals.

The second problem is that of obtaining a polynomial (or rationel) expression in x to approximate a function while at the same time, the derivative of the polynomial approximates the derivative of the function. In the situation that our function is the solution of a linear second order differential equation, we consider instead, determining a pair of polynomials which satisfy exactly a perturbed system. This technique is known as the Lanczos fau Hethod. An error analysis is given for a variety of problems treated in the three Parts of Chapter Three.

GONTENTS
page no. CHAPTER ONE INITODUCTION AND REVIBH

1. THE APPROXIMATION OF A SINGLE FUNCTION 5.
1.1 Definition of the Problem 5.
I. 2 . a Linear Subspace .. 6.
2. $3 V$ a Non-linear Subset 10.
3. SIMULTANEOUS APPROXIMATION OF A SET OF FUNCTIONS. 16.
2.1. F a Set of Real-valued Functions 16.
2.2 F a Set of Complex-valued Functions 2.2.
2.3 Continuation of this Section to Chaptex Two 25.
2.4 Existence of the s.b.a. in an N.L.S. 26.
4. SIMULTANEOUS APPROXTHATION OF A FUNCTION AVD ITS
DERIVATIVE IN THE UNIFORM YORM
3.1 The Approximation Theory Approach . 31.
3.2 The Tau Hethod Solution of First
Order Differential Equations
3.3 Continuation of this Section to Chapter Three. 37.

CHAPTER TWO
SIIULTANEOUS APPROXIIAATION OF A SET OF BOUNUED COMPLEX-VALUED FUNCTIONS

1. Introduction of Froblem with Basic Definitions \& Results 38.
2. Conversion of Problem to Approximation of h^{*} 43.
3. Characterisation of the Best Approximation to $h^{*} 48$.
4. Approximating Functions with a Fréchet Derivative . 52.
5. Approximation of Real-valued Functions by Generalised Rationals in Interpolating Subspaces of L_{1}

APPENDIX I : Heasure Theory and $I_{p}\left(S, S_{o}, \mu\right)$
APPENDIX II : Lemma

SIMULTANEOUS APPROXIMATION OF A FUNCUION AND ITS DERIVATIVE WITH THE TAU M畀THOD

PART I
1.1 Introduction 71.

1. 2 The Dual Problem and the Chebyshev Perturbation 73.
1.3 Construction of the Tau Solution 76.
1.4 The Tau Solution 79.
2. 5 Error Bounds for the Tau Solution 83.
PART II
2.1 The General Second Order Linear Differential. Equation with Constant Coefficients 91.
2.2 The Euler Equation 100.
3. 3 The Airy Equation 106.
PART III
3.1 Introduction : Legendre Perturbations and Rational Approximations 112.
3.2 The Problem and its Solution using the Green's Function 114.
3.3 A Closed Form for the Error Terms 116.
3.4 Error Bounds in the Range $0<r \leqslant 1$ 118.
3.5 . Error Bounds at the Ind Point of the Interval $[0,1]$ 120.
3.6 Horked Example 121.
3.7 Concluding Remarks 122.
REFERENCES 124.

INTRODUCTJON AND REVIEW

1. TLE APPROXIMATION OF A SINGLE FLNLTION
1.1. Definition of the Problem

Given a normed linear space (N.L.S.) X (see below), V a subset of X with $f \in X$ but $£ \notin V^{\circ}$, the closure of V.

If there exists a $v_{o} \in V$ such that

$$
\left|\left|f-v_{0}\right|\right| \leq||f-v|| \text { for all } v \in V
$$

then v_{o} is said to be a best approximation (b.a.) to from v. It is called a local best approximation if it is a best approzimation to f in some norm neighbourhood of v_{0}
The aspects that concern us in this thesis are the existence, characterisation and uniqueness of v_{0}.

We shall $\operatorname{set} \rho_{V}(f):=\inf _{v \in V} \quad \| f-V| |$
We define the metric projection associated with f to be

$$
P_{V}(f):=\left\{v \in V:||f-v||=\rho_{V}(f)\right\}
$$

If $I_{V}(f) \neq \dot{\psi}$ we shall say V is proximinal.
If $P_{V}(f)$ contains exactly one element for eacin $f \in X$ we shall say V is Chebyshev.

The following normed linear spaces are of interest to us:
(i) $C(B, H)$ The space of continuous functions mapping B, a compact Hausciorff space, into an inner product space k over the real or complex numbers. The inner product induces a norm on $\mathrm{K} \in \mathrm{H}$ which we write

$$
\|h\|_{H}:=\sqrt{\langle h, h\rangle}
$$

We now define the norm of $f \in C(B, H)$ by

$$
\|f\|:=\sup _{x \in B}\|\tilde{F}(x)\|_{H} .
$$

(ii) $C(B)$ This is the space $C(B, H)$ witn H either the reals R or the complex nuabers \mathbb{C}.
(iii) $C_{o}(B)$ The space of real valued continuous functions on B, B a locally compact Hausdorff space, that vanish at infinity. Thus $f \in C_{o}(B)$ if and only if f is continuous and for eacin $\varepsilon>0$,

$$
\{x \in B:|f(x)| \geqslant E\} \quad \text { is compact. }
$$

The spaces in (ii) and (iii) are assumed endowed with the supremum (or Chebyshev) norm

$$
\|f\|:=\sup _{x \in B}|f(x)|
$$

(iv) $L_{p}(S, \Sigma, \mu), p \geqslant 1$ (see Appendix I)

We note that an atom is a set A.E , with $0<\mu(A)<\infty$
such that $A^{\prime} \in \Sigma, \Lambda^{\prime} \subset A$ implies that either $\mu\left(A^{\prime}\right)=0$ or $\mu\left(A^{\prime}\right)=\mu(A) . \quad(S, \Sigma, \mu)$ is called purely atomic if S is the union of atoms.
2.2. V a Linear Subspace
'lhe Classical Existence and Uniqueness Theoren
If V is finite dimensional then V is proximinal.
If, furthermore, X is strictly convex, i.e. $||f||=\|\varepsilon\|=I$ and $f \frac{f}{f} g$ imply $\left|\left|\frac{1}{2}(f+g)\right|\right|<1$, then V will be Chebyshev.
The normed linear spaces $l p$ and $\operatorname{lp}[a, b], 1<p<\infty$, are strictly convex but not $C(i)$ nor $L_{1}[a, b]$.
All these results are proven in the Introduction of [63].
1.2.1. Linear Uniform Approximation on $C(B)$

The Kolmogoroff ($k-$) criterion I, formulated in 1948 , is the fundamental characterisation of the best approximation, (see [48] Theorem 18) namely v_{o} is a best approxination to f if and only if
$\min _{x \in M} \operatorname{Re}\left\{\operatorname{sen} \overline{\left(f(x)-v_{o}(x)\right)} v(x)\right\} \leqslant 0$ for all $v \in V$
$x \in M_{f-v_{0}}$
where $M_{E-v_{0}}:=\left\{x \in B: f(x)-v_{0}(x)= \pm\left\|f-v_{0}\right\|_{\infty}\right\}$
and $\operatorname{sgn}(z)=\left\{\begin{array}{cl}\frac{z}{|z|} & \text { when } z \neq 0 \\ 0 & \text { when } z=0\end{array}\right.$

Now suppose V is $n(f i n i t e)$-dimeasional and satisfies the Haar condition, namely every function in V can have at most $n-1$ zeros or vanishes identically. Equivalently, for every set of n distinct points $x_{1}, \ldots, x_{n} \in i$

$$
\operatorname{det}\left\{\phi_{i}\left(x_{j}\right)\right\} \neq 0 \text { where } v=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{n}\right\}
$$

Then anons the properties enjoyed by the best approximation are the following:
(P 1) The best approximation is unique;
(P2) The best approximation possesses strong unicity in the sense of Newnan and Shapiro [53] , i.e. for each $f \in X$ there exists a number - $\gamma=\gamma(\pm)$ with $0<\gamma \leqslant 1$ such that $\|f-v\| \geqslant\left\|i-P_{V}(f)\right\|+\gamma\left\|P_{V}(f)-v\right\|$ for every $v \in V ;$
(H 3) P_{V} is pointwise Lipsciaitz continuous, i.e. for each $f \in X$, there exists a number $\lambda(\mathrm{E})>0$ such that
$\left\|p_{V}(f)-P_{V}(g)\right\| \leqslant \lambda \| f-g!\mid$ for every $E \in X ;$
(P4) 'ine best approximation possesses an alternant (or extremal signature) of lengtn $n+1$ (the classical equioscillation theorem);
(P5) De la Vallee Poussin's theorem provides a lower bound for $\rho_{y}(f)$.
1.2.2. Linear Approximation on $L_{l}(S, \Sigma, \mu)$

When S is the interval $[0,1]$ and μ is the Lebesguc measure, the characterisation of the best approximation has been obtained by the analytic study of the
 The haar condition on V is sufticient to guarantee miqueness when f is continuous and $V \subset C(B)$. This was first found by Jackson [77]for the real case. The approach that interests us here vas mainly aeveloped by singer [68] as a unifying theory for all normied spaces. (Other contributions are in [61] and [23] .) It is based on the Hahn-Banacin theory that to any element g of an N.L.S. X chere exists a complex-valued linear functional L in the dual space X^{*} with

$$
\operatorname{Re} L(\varepsilon)=\|\varepsilon\| \text { and }\|L\|=1 .
$$

We denote by B^{*} the set of $\left\{L \in X^{*}:\|L\|=1\right\}$.
Whe generalisation of the k-criterion I is the following version II: v_{o} is a best approximation to f if and only if
min \quad ReL $v \leqslant 0$ for all $v \in V$
$L \in \Sigma_{f-v_{0}}$
where $\Sigma_{f-v_{0}}:=\left\{L \in D^{*}: L\left(f-v_{0}\right)=\left\|f-v_{0}\right\|\right\}$
We remark that $\Sigma_{f-v_{o}}$ can be replaced by the extreme points (ext) of that set, denoted by $\mathrm{E}_{\mathrm{f}-\mathrm{v}_{\mathrm{O}}}$ (see $[15]$, Lemna 2) and by $[14]$, p. 30 ,

$$
\dot{E}_{f-v_{0}}=\left\{L \in \operatorname{ext}\left(d^{*}\right): L\left(f-v_{0}\right)=\left\|f-v_{0}\right\|\right\}
$$

We can re-express K -criterion II for an N.L.S. for winich $\mathrm{L} \in$ ext (is*) has an explicit representation, as follows. Assume $f, g, h \in X$.
(i) $C(B)$ and $C_{0}(B)$
$L_{g}=\varepsilon(x) L_{x} g$ where $L_{x} g=g(x)$ is the point evaluation functional
at $x \in B$ and $\varepsilon(x)= \pm 1$. In fact $\varepsilon(x)=\operatorname{sgn}\left(\overline{f(x)-v_{0}(x)}\right)$ in oxder that $\mathrm{L}\left(\mathrm{f}-\mathrm{v}_{\mathrm{o}}\right)=\left\|\hat{\mathrm{i}}-\mathrm{v}_{\mathrm{o}}\right\|_{\infty}$. Hence we can rederive K -criterion I .
(ii) $L_{1}(S, \Sigma, \mu)$
(a) If S is the interval $[0,1]$ and μ is the Lebesgue measure, then $L g=\int_{0}^{1} \operatorname{sgn}\left[f(x)-v_{0}(x)\right] g(x) d x+\int_{Z\left(f-v_{0}\right)}^{\sigma}(x)_{g}(x) d x$ where $Z(h)=.\{x \in[0,1]: h(x)=0\}$ and $|\sigma(x)|=1$ on $Z\left(f-v_{0}\right)$
(b) If $S=\underset{i \in I}{U} A_{i}, A_{i}$ an atom, I countable, then $L g=\sum_{i \in I} \operatorname{sgn}\left[f\left(A_{i}\right)-v_{0}\left(A_{i}\right)\right] g\left(A_{i}\right) \mu\left(A_{i}\right)+\sum_{i \in Z\left(\dot{f}-v_{0}\right)} \sigma\left(A_{i}\right) g\left(A_{i}\right)$ where $Z(h)=\left\{i \in I, n\left(d_{i}\right)=0\right\},\left|\sigma\left(A_{i}\right)\right|=1$ and $g\left(A_{i}\right)$ denotes the constant value which g has a.e. on A_{i}.

1
Now suppose V is n-dimensional and is an interpolating subspace, that is for every set of n linearly independent functionals,
L_{1}, \ldots, L_{n} in $\operatorname{ext}\left(B^{*}\right)$
$\operatorname{det}\left[\mathrm{L}_{\mathrm{i}}\left(\phi_{j}\right)\right] \neq 0$ where $\mathrm{V}=\operatorname{span}\left[\phi_{1}, \ldots, \phi_{\mathrm{n}}\right]$
For $X=C(B)$ or $C_{0}(B)$ this is equivalent to V satisfying the hat condition (see [3], Theorem 3.2.)

For $X=L_{1}(S, \Sigma, \mu)$ we have the result tnat it contains on interpolating subspace of dimension $n>1$, if and only if, S is the union of at least n atoins (see [3], Theorem 3.3, [59],Section 2).

Now the important consequence is that the best approximation fron an interpolating subspace enjoys properties (P1) - (43) and generalisations of (P4) and (P5). (See [3]).

In Chapter II section 5, we will find it advantaceous to restrict the interpolating condition $\operatorname{det}\left[\mathrm{L}_{\mathrm{i}}\left(\phi_{\mathrm{j}}\right)\right] \neq 0$ to a subset of $\operatorname{ext}\left(B^{*}\right)$ of finite cardinality, say $m>n$. We shall then say V is an interpolating subspace on $\left\{L_{i}\right\}_{i=1}^{m}$ We may then assert that $\inf \left|\operatorname{det}\left[L_{i}\left(\phi_{j}\right)\right]\right|>0$ where the inf is taken over selections of n linearly independent functionols.

1.3. V a Non-linear Subset

The existence of a best approximation cannot in general be guaranteed and so we assume $P_{V}(f) \neq 0$.

We now state some useful examples of non-linear subsets which depend on a finite-dimensional parameter set \mathbb{V}, i.e. $V \equiv\{v(a): a \in D\}$.
(i) The gencralised rationals

Let $\left\{g_{1}, \ldots, g_{n}\right\}$ and $\left\{h_{1}, \ldots, h_{m}\right\}$ be fixed sets of linearly independent real-valued continuous functions on B.

Let $P=\operatorname{span}\left\{g_{1}, \ldots, g_{n}\right\}$
$Q=\operatorname{span}\left\{h_{1}, \ldots, i_{m}\right\}$
and $\mathrm{Q}^{+}=\{\mathrm{q} \in \mathrm{Q}, \mathrm{q}(\mathrm{x})>0$ on B$\}$.
Then we have the following rational families:-
$R_{n, m}:=\{p / q: p \in P, q \in Q \quad q \neq 0\}$
$\hat{R}_{n, m}:=\{p / q: p \in E, q \in Q \quad q \geqslant 0\}$, assumed non-empty
$R_{n, n_{2}}^{+}=\left\{p / q: p \in P, q \in Q^{+}\right\}$, assuned non*empty.
(ii) The γ-polynomials (see [62] Chapter 8)

Let $\gamma(t, x)$ be a real valued function on $T x[0,1]$ where T is a subset of $(-\infty, \infty)$. For a fixed positive integer N

$$
V=\left\{\sum_{j=1}^{i N} a_{j} \gamma\left(t_{j}, x\right): a_{j} \in R ; t_{j} \in T ; j=1, \ldots, N\right\}
$$

Illustrations of γ-polynomials
(a) The sums of exponentials

Take $\gamma(t, x)=e^{t x}$ with $2=R$
(b) The sums of elementary rational functions Take $\gamma(t, x)=\frac{1}{t+x}$ with $T=(0, \infty)$.
1.3.1. Non-Iinear Uniform Approximation on $C(B)$

A sufficient condition for $v(a)$ to be a best approximation to f is that it satisfies the k-criterion III

$$
\begin{aligned}
& \min \operatorname{Re}_{x \in M_{f-v(a)}} \operatorname{sgn}[\overline{f(x)-v(b, x)}][v(b, x)-v(a, x)] \leqslant 0 \\
& \text { for all } v(a) \in V
\end{aligned}
$$

(see [48] Theorem 86)
It was found by Meinardus and Schwedt [49] tnat if V is asymptotic convex then K-criterion III is also necessary for a best approximation.

Definition: V is asymptotic convex if for each pair (a, b) of elements in D and each real $t, 0 \leq t \leq 1$, there exists a paraneter $a(t) \in D$ and a continuous real-valued function $g(x, t)$ on $B x[0,1]$ with $g(x, 0)>0$ on B, such that

$$
\|(1-t g(x, t))(v(a, x))+t g(x, t) v(b, x)-v(a(t), x)\|=O(t)
$$

as $t \rightarrow 0$.
A certain differentiability property equivalent to asymptotic convexity is shown in [39]. The following are asymptotic convex
i) convex sets
ii) $K_{n, m}^{+}$
iii) Tine sums of exponentials.

1.3.2. Suns and Regularity

Suns were introauced by Efimov and Steckin in [30] to assist in characterising Chebyshev sets by gemetrical properties. For example, in a finite dimensional normed linear space, every Gnebyshev set is a sun. Moreover, using the concept of suns, Brosowski was able to characterise the subsets of $\mathrm{C}(\mathrm{B})$ for which the K-criterion III is necessarily satisfied by a best approximation. Definition. A proximinal subset V of a normed Iinear space X is a sun (α-sonne in $[15]$ and strict sun in [9]) if for any $f \in X$ and for all $v_{0} \in P_{V}(f)$, we have $v_{0} \in P_{V}\left(v_{0}+\lambda\left(f-v_{0}\right)\right), \lambda \geqslant 1$, that is, all elements of the form $E_{\lambda}:=v_{0}+\lambda\left(f-v_{0}\right)$, with $\lambda \geqslant 1$, have, likewise, v_{0} as their best approximation from V. A comprehensive account of properties of suns is in [69].

We observe that this concept is valid in arbitrary normed spaces.

It is possible to characterise suns by properties not referring to 'best approximation' by using the concept of regularity, first introduced for the space $C(B, H)$, (see $[11],[13]$ and $[15]$).

Definition. A subset V of $C(B, H)$ is regular I
if (i) for each pair of elements $v, v_{o} \in V$ and
(ii)•for eacn closed subset $A \subset B$ and
(iii) for each $f \in C(B, H)$ with
(R*). $\quad \operatorname{Re}\left\langle f(x), v(x)-v_{0}(x)\right\rangle>0$ for $x \in A$,
and (iv) for each real number $\lambda>0$, we have that
there exists an element $v_{\lambda} \in V$ satisfying the following properties :
(R1) $2 \operatorname{Re}\left\langle f(x), v_{\lambda}(x)-v_{0}(x)\right\rangle>\left|\left|v_{\lambda}(x)-v_{0}(x)\right|\right|_{H}^{2}$ for $x \in A$
(k2) $\left\|v_{\lambda}-v_{o}\right\|<\lambda$
In $[12]$, (ii) is dropped and $A=-\left\{x \in B:\|f(x)\|_{H}=\|f\|\right\}$.
We reter to this definition of regularity as version II.
If $H=K$, then version I can be simplified. $\left(R^{*}\right)$ recuces to $\left|v(x)-v_{0}(x)\right|>0$ for $x \in A$
while (RI) becomes

$$
\left(f(x)-v_{0}(x)\right)!\left(v_{\lambda}(x)-v_{0}(x)\right)>0 \quad \text { for } x \in A .
$$

We call this regularity version III.
If we let $K\left(v_{0}, f\right)$ denote the cone

$$
\left\{v \in V: \inf _{L \in E_{f-v_{0}}} \operatorname{Re} L\left(y-v_{o}\right)>0\right\}
$$

then version II becomes, for $H=R$, the followins version $I V$, (sce [16]):
$K\left(f, v_{0}\right) \cap V \frac{1}{f} 0$ implies that v_{0} is in the closure of the set $\left\{v \in V:\left(f(x)-v_{0}(x)\right) \cdot\left(v(x)-v_{0}(x)\right)>0\right.$ for all $\left.x \in M_{f-v_{0}}\right\}$.

We can now state that for $K=C(B, H) \quad(C(B, R))$ and V a proximinal subset of X, the following are equivalent $([8]$, Theorem 4.1.) :
(A) $v_{0} \in V$ is a best approximation to $E \in X$ implies that v_{0} satisfies K-criterion III.
(B) V is a sun.
(C) V is regular I or II (III or IV).
(D) Every local best approximation in V is a global best approximation. A comprehensive survey is in $[8]$ with a section on characterising Chebyshev sets.

1.3.3. Local Linearisation in Uniform Approximation

If D is taken to be an open subset of E^{n} and V has a Frechet derivative at each $a \in D \quad$ (see Cinapter II, Section 4), further results can be obtained by considering the linear tangent space $\mathcal{L}[v(a)]$, with dimension $d(a)$, at the best approximation $v(a)$.

Non-linear Uniqueness Theorem ([48] , Theorem 90)
The best appoximation, $v(a)$ is unique if all the following are satisficd:
(UI) V has a Fréciret derivative at eacin $a \in D$, (U2) $\mathcal{L}[v(a)]$ satisfies the Haar condition,
(U3) V has property Z of degree $d(a) a t a, i . e$. for all $b \in D$, $v(a,)-.v(b,$.$) possesses at most d(a)-I$ zeros on b or vanishes identically
(U4) V is asymptotic convex.
Tangential characteristics are further discussed in [71]. We note that the K-criterion I is not necessarily satisfied by a local best approximation (see [14], p.27). However, the K-criterion I is necessarily satisfied on $\mathcal{L}[v(a)]$ by a (local) best approximation even though it is not in general sufficient (see [17], p.374).

Rational approximation by real-valued ordinary polynomials was first consiciered by Chebyshev and De la Vallée Poussin who obtained existence, uniqueness and (44), (45) type results (see [48], iheorem 98). Further investigations were carried out by Cheney and Loeb [19] . In [18] , chapter 5, properties (P1) - (P5) are derived.
1.3.4. Characterisation of a (local) best approximation in an N.L.S. brosowski in [10] and [14] extended K-criterion II and found that a sufficient condition for $v_{0} \in V$ to be a best approximation to f is that it satisfies the global K-criterion IVa

$$
\min _{L \in E_{f-v_{O}}} \operatorname{ReL}\left(v-v_{o}\right) \leq 0 \text { for all } v \in V .
$$

To obtain the most general necessary condition satisified by a locai best approximation, Brosowski, in [15], developed the following concept. Let $K\left[v_{0}, v\right]$ be tine non-empty cone with apex O consisting of the set of elements $g \in X$ such that for each neighbournood U of g and for all $\varepsilon>0$, there exists a real number $n, 0<n<\varepsilon$ and an element $g^{\prime} \in U$ with $v_{0}+n b^{\prime} \in V$.

Now if $v_{0} \in V$ is a (local) b.a. to f, then it sacisfies the foliowing local K-criterion IVb

$$
\min _{L \in \mathbb{E}_{f-v_{o}}} \operatorname{ReL}(h) \leqslant 0 \text { for all } h \in K\left[v_{O}, v\right]
$$

A full review of these k-criteria and how various Fréchet and Gaceaux tangent spaces are included in $K\left[v_{0}, v\right]$ is in [26].

Brosowski, in [15], showed that the K-criterion IVa will be satisfied by the best approximation if V is a sun. He also generalised the definition of regularity I and III to the following version \mathbb{I} adopted in Chapter II (with the suffix \bar{Y} ommitted) and showed that if V is regular \mathbb{I} than it is a sun.

Definition $V \in X$ is regular \mathbb{Z} at a point $v_{0} \in V$ if for each $V \in V$ and for each closed subset A of B^{*} with $\operatorname{Re} L\left(v-v_{0}\right)>0$ for $2.11 L \in A$, and for each real number $\lambda>0$, there exists a $v_{\lambda} \in V$ with
(RI) $\operatorname{ReL}\left(v_{\lambda}-v_{0}\right)>0$ for all $L \in A$
(R2) $\quad\left\|v_{\lambda}-v_{o}\right\|$
The subset V of X is regular \mathbb{Z} if it is regular \mathbb{Z} at every point of ∇.

Lenina

If V is star-shaped with respect to $v_{o} \in V$, then V is regular II at v_{o} This result is given by brosowski [15]p. 155.
proof
Let $v \in V$ and $v \neq v_{0}$.
furthermore, let A be a ω^{*} closed subset of B^{*} with $\operatorname{Re} L\left(v-v_{o}\right)>0$ for all $L \in A$

For $\lambda>0$ set $v_{\lambda}=\left(1-\frac{\mu}{\|^{v-v_{0} \|}}\right) v_{0}+\frac{\mu}{\|^{v-v_{0} \|}} v$
with $0<\mu<\min \left(\left\|v-v_{o}\right\|, \lambda\right)$.
Then $v_{\lambda} \in V$ and (R1) and (R2) are satisfied.

It follows that we have the important cases of linear spaces and convex sets for the approximating family included in the category of regular \bar{Y} subsets of X.

A variation is to generalise version IV to the following version
VI based on $E_{f-v_{0}}$:
A subset V of X is regular $V I$ (or 2 'moon' in [2]) if
(M) $K\left(V_{0}, f\right) \cap V \neq \phi \Rightarrow v_{0} \in\left(K\left(v_{0}, f\right) \cap V\right)^{\circ}$

A sun in any normed linear space satisfies condition (M). Those spaces X for whico the condition (M) on V implies that V is a sun are called MS spaces. Examples of MS spaces, siven in [2], are (a) $C(B, R)$, (b) $C_{o}(L)$, (c) $L_{1}(S, \Sigma, \mu)$ where (S, Σ, μ) is a σ-finite measure space wnich is purely atonic.
kelated results are in [16].
The conditions of regularity $\overline{\underline{V}}$ can be further modified (see [17]) so that V is a $\operatorname{sun} \Leftrightarrow V$ is'regular'.

A recent survey on nonlinear approximation in an N.L.S. is.in [9].

For $V=\dot{R}_{\mathrm{m}, \mathrm{n}}^{+}$, I have derived, in [32], generalisations of (P1), (P2), (P4), (P5), for a local best approximation from an interpolating subspace.

2. Simultaneous approximation of a set f of functions

2.1. F a Set of Real-valued Functions

2.1.1. $\quad V$ a Linear Subspace of $C(B, R)$

For f, a real-valued bounded function defined on the closed interval I, and $V=\pi_{n}$, tine polynomials of degree less than or equal to n, liemes showed in 1934, that the determination of $q \in \pi_{n}$ such that

$$
\|f-q\|_{\infty}=\rho_{\pi_{n}}(f)
$$

was equivalent to tie simultaneous and one-sidadapproximation of two bounded functions $f_{1}(x)$ and $f_{2}(x)$, on I, where

$$
f_{1}(x):=1 \lim \sup _{y-x} f(y) \text { or } \inf _{\delta>0} \sup _{0 \leqslant|x-y|<\delta} f(y)
$$

is the upper envelope of f and is upper semi-continuous (u.s. ...);

$$
f_{2}(x):=\lim \inf _{y \rightarrow \Sigma} f(y) \quad \text { or } \sup _{\delta>0} \inf _{0 \leqslant|x-y|<\delta} f(y)
$$

is the lower envelope of f and is lower semi-continuous (l.s.c.). We recall that $f: I \rightarrow R$ is upper (lower) semi-continuous if for each $x \in I$ and each real number c with $c>f(x)(c<f(x))$ there exists an open neighbournood $U(x):=(y:|y-x|<\delta)$ with $c>f(y)(c<f(y))$ for all $y \in U(x)$.
The above approximation is simultaneous and one-sided in the sense that

$$
\left.\rho_{\pi_{n}}(f)=\inf _{p \in \pi_{n}} \max \max _{x \in I}\left(f_{1}(x)-p(x)\right), \max _{x \in I}\left(p(x)-f_{2}(x)\right)\right\}
$$

Dunhan [28] extended the scope of this problem to approxinating a family f of a finite number of continuous real-valued functions by P_{r}, an n-dimensional taar subspace of $\mathcal{C}(B, R)$, i.e. determining

$$
\rho_{Y_{n}}(Y)=\inf _{p \in \mathcal{P}_{n}} \sup _{\dot{I} \in \tilde{F}}| | f-p \|_{\infty}
$$

by reducing it to the simultaneous approxination of the two continuous functions $\max _{f \in F} f(x)$ and $\min _{f \in F} f(x)$.

Finally, Diaz and McLaughlin showed in [24] that the simultaneous approximation of a non-empty family F of real-valued beuncied functions from P, a linear subspace of $C(B, R)$, can be reduced to approximatiné

$$
\begin{aligned}
& \mathrm{F}^{+}:=1 \mathrm{im} \sup _{\mathrm{y} \rightarrow \mathrm{X}} \sup _{\mathrm{f} \in \mathrm{~F}} \mathrm{~F}(\mathrm{y}) \\
& \text { and } \quad F^{-}:=1 \operatorname{in} \inf _{y \rightarrow X} \inf _{f \in F} f(y) \\
& \text { with } \rho_{P}(F)=\inf _{\mathrm{p} \in \mathrm{P}} \max \left\{\left\|\mathrm{~F}^{+}-\mathrm{p}\right\|_{\infty},\left\|\mathrm{F}^{-}-\mathrm{p}\right\|_{\infty}\right\}
\end{aligned}
$$

However, tnis result can be nisleading, since a more careful analysis of [24] reveals that, in fact, the approximation is one-sided and
(ENi.) $\left.\quad \rho_{P}(F)=\inf _{p \in P} \max \sup _{x \in I}\left(F^{+}(x)-p(x)\right): \sup _{x \in I}\left(p(x)-F^{-}(x)\right)\right\}$

Hefinition: $v_{0} \in V$ is a simultancous best approxination (s.b.a.) to F if

$$
\sup _{f \in F}\left\|f-v_{0}\right\|=\rho_{v}\left(F^{\prime}\right) .
$$

A practical motivation for deternining the s.b.a. to a set of functions arises when we try to approxinate a single function that depends on a finite set of parameters; for exampie $x \rightarrow f\left(\lambda_{1}, \ldots, \lambda_{\mathrm{m}} ; x\right) x \in \mathcal{E}$. It may be that $\lambda_{1}, \ldots, \lambda_{\mathrm{m}}$ are not known exactly, for instance jif they are obtained from experimental data or from computational programs based on interval aritmetic. However, suppose that upper and lower bounds are available, i.e. $\lambda_{i} \in\left[\alpha_{i}, \beta_{i}\right]$ and that the corresponaing set of functions F is bounded uniformly on B. It would be reasonable that we should want to obtain one s.b.a. to the whole family F defined oy this spread, from the approximating family V.
We shall $\operatorname{set} \Delta(v):=\sup _{f \in F}\|f-v\|$ and denote by V^{\perp} the set. $\left\{L \in X^{*}: L v=0\right.$ for all $\left.v \in V\right\}$.
2.1.2. V a Inear subspace of an N.L.S.

The simultaneous approximation of a compact set F by a closed convex subset G of an arbitrary NoL.S., X, was first treated by Laurent and Tuan in [46]. They basea their characterisation of the s.b.a. on an expression for the sub-differential of a convex functional, a technique developed by Laurent in [45].
They took K, a symmetric weak* compact and norm-bounded subset of X^{*} and derinea a continuous semi-norm p, on λ, by

$$
p(x)=\max _{k \in K} k(x), x \in X
$$

They introduced tine convex, 1.s.c. function d, on X, given by

$$
d(g)=\max _{f \in F} p(g-f), g \in X
$$

and sousht the 'solution' $g^{*} \in G$ such that

$$
d\left(g^{*}\right)<d(g) \text { for all } g \in G .
$$

They took H, a weak* compact and nommounded subset of X^{*} and a weakly continuous funcrional ω on H, and defined a convex subset C by

$$
C:=\{x \in X: \text { for all } h \in H, h(x) \leqslant \omega(h)\}
$$

For $G=C \cap V_{n}$ where V_{n} is an n-aimensional subspace of X and under the assumption that there exists a go $\in V_{n}$ such that

$$
h\left(s_{0}\right) \leq w(h) \text { for all } h \in H
$$

they obtained
(LT) (Theorem 2.1) $g^{*} \in C \cap V_{n}$ is a solution if and only if there exist
(i) r functionals $k_{1}, \ldots, k_{r} \in K \quad(x \geqslant 1)$,
(ii) r elements $f_{1}, \ldots, f_{Y} \in F$ (not necessarily distinct), satisfying

$$
k_{i}\left(\xi^{*}-f_{i}\right)=p\left(g^{*}-f_{i}\right)=\max _{f \in F} p\left(g^{*}-f_{i}\right), i=1, \ldots, x
$$

(iii) s functionals $h_{1}, \ldots, h_{s} \in H \quad(s>0)$, satisfying

$$
h_{j}\left(g^{*}\right)=w\left(h_{j}\right), i=1, \ldots, s, \text { with } r+s \leqslant n+1
$$

(iv) $r+s$ positive scalars $\lambda_{1}, \ldots, \lambda_{r}, \mu_{1}, \ldots, H_{S}$, such that

$$
\sum_{i=1}^{r} \lambda_{i} k_{i}+\sum_{i=1}^{s} \mu_{i} h_{i} \in V^{\perp}
$$

Under the further assumption that K and H are convex and the functional ω concave, the K and K in (LT) can be replaced by their extreme points. In the applications, knowledge of expressions for the extreme points plays an important role.
In particular, when $K=E^{*}$ then $p(x)=\|x\|$, and for $G=V_{n}$ they obtained

Corollary, $g^{*} \in V_{n}$ is a s.b.a. to $F i f$ and only if there exist
(i) r functionals $k_{1}, \ldots, k_{r} \in \operatorname{ext}\left(i^{*}\right)$
(ii) r elements $f_{1}, \ldots, f_{r} \in F$ (not necessarily distinct)
(iii) r positive scalars $\lambda_{1}, \ldots, \lambda_{r}$ with $1 \leq r \leq n+1$ such that
(1) $k_{i}\left(g^{*}-f_{i}\right)=\left\|\mid G_{i}^{*}-f_{i}\right\|=\Delta\left(\sigma_{6}^{*}\right), i=1, \ldots, r$.
(2) $\sum_{i=1}^{r} \lambda_{i} k_{i} \in V^{\perp}$.

They gave applications with numerical illustrations employing Remes' algorithn proviced $K=B^{*}$ and $V=\pi_{n}$, for the cases when X was
(i) $C(B, R)$ with tine added constraint $H=$ (positive point evaluation functionals on a compact subset: u of iff.
(ii) $C_{i}[a, b]$ the space of real differentiable functions on $[a, b]$ with the norm

$$
\|E\|^{\prime}=\max _{t \in[a, b]}|E(t)|+v \max _{t \in[a, b]}\left|I^{\prime}(t)\right| ; v>0
$$

(iii) $L_{1}(S, \Sigma, \mu)$ with $S=[0,1]$ and μ, tine Lebesgue measure.

Freilich and ychaughlin [33] subsest a direct approach for the problem of simultaneous approximation in an N.L.S. by P, a linear subspace, encompassing the special cases of F beina compact and F being only norm bounded.

We take K, a subset of B^{*}, such that (1) K is weak* compact and (2) for every $f \in F$ and $p \in$? there exists an $L \in K$ with $L(E-p)=||f-p||$. We define $U_{F}(L):=\sup _{f \in \mathrm{~F}} L f$ for $L \in K$ and $P(L):=$ Lp.

We find

$$
\begin{equation*}
\Delta(p)=\sup _{L \in K}\left[\dot{H}_{F}(L)-p(L)\right] \tag{EM2}
\end{equation*}
$$

We now obtain the upper enveloye of $U_{F}(L)$ by taking the collection $\eta(L)$, of all ω^{*} open neignbourinoods in K of L and setting

$$
U_{F}^{+}(L):=\inf _{W \in n(L)} \sup _{\ell \in F} U_{F}(\ell) .
$$

We obtain the following results:
(Fki3) $U_{F}{ }^{+}(L)$ is u.s.c. in the wre topology on k and

$$
\Delta(p)=\sup _{L \in K}\left[u_{k}^{+}(L)-p(L)\right]
$$

(IM4) $\quad p_{o} \in P$ is a s.b.a. to r if and only if for each $p \in P$ there exists an $L \in K$ such that $(1) U_{F}^{+}(L)-p_{o}(L)=\Delta\left(p_{0}\right)$ and
(2) $\mathrm{p}(\mathrm{L}) \leqslant 0$.
(ri5) If F is a compact subset of X tnen
(i) $U_{W^{\prime}}(L)$ is w^{*} continuous on E^{*} ana $\mathrm{U}_{\mathrm{F}}(\mathrm{I}) \equiv \mathrm{U}_{\mathrm{F}}{ }^{+}(\mathrm{L})$,
(ii) for every $L \in B^{*}$, tnere exists an $\bar{I} \in F$ such that $U_{F}(L)=L f$, (iii) $\mathrm{U}_{\mathrm{F}}(\mathrm{L})$ is a convex function on B^{*}.
(H16) $p_{0} \in \mathcal{P}$ is a s.b.a. to F, a compact subset of X, if and only if for each $p \in P$, there exists an $L \in \operatorname{ext}(B *)$ and an $f \in F$ such that
(1) $L\left(f-p_{0}\right)=\Delta\left(p_{0}\right)$
(2) Lp $\quad \mathrm{L} \quad 0$.

When $P=V_{n}$ we obtain an equivalent result to the corollary of Laurent and Tuan.
(K if) If F is a bounded subset of $C(B, K)$ and $K=\operatorname{ext}(B *)$ then

$$
\begin{array}{ll}
U_{F}^{+}\left(L_{x}\right)=F^{+}(x) & x \in B \\
U_{F}^{+}\left(-L_{x}\right)=-F^{-}(x) & x \in B
\end{array}
$$

where L_{X} is the point evaluation functional at $x \in B$.
Hence from (d M4), we obtain the following characterisation of (Fill).
 for each $p \in P$, there exists an $x \in B$ such that
either $\mathrm{F}^{+}(\mathrm{x})-{p_{o}}(\mathrm{x})=\Delta\left(p_{o}\right)$
and $\quad \mu(x) \leqslant 0$
or $\quad P_{0}(x)-F^{-}(x)=\Delta\left(F_{0}\right)$
and $p(x) \geqslant 0$.

This is a reduced version of Theorem 3.1. in [25].
2.2 F a set of Complex-Valued Functions

2.2.1. V a linear Subspace of $C(B)$

When the functions in F are complex-valued and bounded on B, winich is now a compact metric space containing at least n points, and $V=P_{n}$, an n-aimensional hat subspace of $C(D), ~ ن i a z ~ a n d ~ h c l a u_{b} h 1 i n$, in $[25]$, transformed the problem into the 'approximation' of a set-valued function h*。 They defined $h(x):=\{z \in \mathbb{E} \mid f(x)=z, f \in F\} \quad x \in B$ and $\quad h^{*}:(x):=n_{\varepsilon>0}(\underset{|x-y|<\varepsilon}{u} n(y))^{o} \quad x \in B$ h^{*} is u.s.c. on B and $h^{*}: B \rightarrow K(\mathbb{C})$, the non-empty compact suibets of C. We recall that for topological spaces X and Y, a set-valued function $f: X \rightarrow A(Y)$, the non-empty subsets of Y, is u.s.c. on B if for cach $x \in P$ and tor every open set $G \subset Y$, with $f(x) \subset G$, therc exists an open neighbourhood $U(x)$ with $f(U(x)) \subset G$.

The following lemma played a fundamental role
(Lhil) (Lemma 1.1.) Let $x \in B$. Then $z \in h_{1} *(x)$ if and only if there exists a sequence of ordered pairs $\left\{\left(x_{n}, z_{n}\right)\right\}$ sucn that

$$
\begin{aligned}
& \text { (1) } x_{n} \in \dot{b}, \quad(2) x_{n}+x \text { as } n \rightarrow \infty,(3) z_{n} \in n\left(x_{n}\right),(4) z_{n} \rightarrow z \text { as } n \rightarrow \infty . \\
& \text { Setting } \Delta(p):=\sup _{r \in Y^{\prime}}| | E-p \| \\
& \text { and } D\left[n^{*}, p\right]:=\left\{(x, z) \in \bar{B} \times \in\left|z \in n^{*}(x)\right| \mu(x)-z \mid=\Delta(p)\right\}
\end{aligned}
$$

they showed
(LiL2) (Lemma 1.3) $\Delta(p)=\sup _{x \in B} \sup _{z \in h^{*}(x)}|p(x)-z|$
(DN3) (Yheorems 2.1, 2.3) $q \in P_{n}$ is a s, b, a. to F if and only if for each $p \in F_{n}$ there exists an $(x, z) \in D\left[h^{*}, q\right]$ satisfying

$$
\operatorname{Re}\{(q(x)-z) \bar{p}(x)\} \geqslant 0
$$

(DN14) (Theorem 2.2) If $q \in P_{n}$ is a s.b.a. to F and if
(LN*) Lor every two points $(x, z)\left(x, z^{\prime}\right)$ in $D\left[h^{*}, q\right]$ one has

$$
\operatorname{Re}\left\{(q(x)-z)\left(\overline{(x)-z^{T}}\right)\right\} \geqslant 0 ;
$$

then q is unique.
2.2.2. V a Nen-Linear Subset of C (B)

Blatt in [6] extended the approach of [25] to nonlinear subsets.
Letting $\bar{\alpha}(A, b):=\sup _{a \in \mathbb{A}}|a-b|$
he set $\quad g_{v}(x):=\bar{d}\left(h^{*}(x), v(x)\right)$
and $\quad M(v):=\left\{x \in B: g_{v}(x)=\Delta(v)\right\}$.
He obtained the following results
(b1) (Lemma 2.3.) g_{v} is u.s.c. on B.
(b2) (Lenmas $2.4,2.5$) $\mathrm{Mi}(\mathrm{v})$ and $D[\mathrm{~h} \hbar, \mathrm{v}]$ are non-empty and compact.
(i33) (Theorem 3.2) A sufficient condition for $v_{o} \in V$ to be a s.b.a. to F or equivalently a b.a. to an u.s.c. $h *: B \rightarrow K(Q)$ is the following K-criterion $\widehat{Y} a$ on $\mathrm{D}\left[\mathrm{h}^{*}, \mathrm{v}_{\mathrm{o}}\right]$. $\min _{(\mathrm{x}, \mathrm{z}) \in \mathrm{D}\left\lceil\mathrm{h}^{*}, \mathrm{v}_{\mathrm{o}}\right\rceil} \operatorname{Ke}\left\{\left(\overline{\mathrm{z}-\mathrm{v}_{\mathrm{o}}(\mathrm{x})}\right)\left(\mathrm{v}(\mathrm{x})-\mathrm{v}_{\mathrm{o}}(\mathrm{x})\right)\right\} \leqslant 0$ for all $\mathrm{v} \in \mathrm{V}$

Blatt now cefined V to be stronbly regular when
(i) for each pair of elements $v, v_{o} \in V$ and
(ii) for each compact subset $\tilde{B} \subset B \times \mathbb{C}$ with
($\mathrm{R} *) \operatorname{Re}\left[\left(\overline{\left(z-v_{0}(x)\right.}\right)\left(v(x)-v_{0}(x)\right)\right]>0$ for $(x, z) \in \tilde{B}$, and
(iii) for eacn real number $\lambda>0$; there exists a $v_{\lambda} \in V$ satisfying
(RI) $2 \operatorname{Re}\left\{\left(\overline{z-v_{0}(x)}\right)\left(v_{\lambda}(x)-v_{0}(x)\right)\right\}>\left|v_{\lambda}(x)-v_{0}(x)\right|^{2}$ for $(x, z) \in \tilde{B}$
(R2) $\left\|v_{\lambda}-v_{o}\right\|<\lambda$.
(B4) (Theorems 3.5, 3.6) The following are equivalent
(E) $v_{o} \in V$ is a b.a. to an u.s.c. $h^{*}: B+K(\mathbb{C})$ implies that v_{o} satisries k-criterion $\underline{V} a$ on $D\left[h^{*}, v_{o}\right]$
(F) V is strongly regular.

Lefinition. A compact suoset Σ of $B x \mathbb{C}$ is an extremal set for v_{0} if K-criterion $\bar{V} a$ is satisfied on Σ.
(B5) (Theorem 3.13) If V is stronly resular and $v_{o} \in V$ is ab.a. to an u.s.c. $h^{*}: B \rightarrow K(C)$, then v_{0} is unique if $v(x)=v_{0}(x)$ on Σ, an extremal set for v_{0} with $\Sigma \subset D\left[n *, v_{0}\right]$ implies that $v(x) \equiv v_{0}(x)$ on B.
blatt proceeded to consider frechet differentiable V.
(B6) (Theorem 3.9) If $v(a) \in V$ is a b.a. to an u.s.c, $h^{*}: B+K(\mathbb{Q})$ then $v(a)$ satisfies the following K-criterion $\overline{\mathrm{V}}$
$\left.(x, z) \in \min _{\left[h^{*}, v(a)\right]} \operatorname{Re}\{\overline{(z-v(a, x)}) v^{\bullet}[b, a](x)\right\} \leq 0$ for all $b \in L$
where $v^{\prime}[$., a] is the Fréchet derivative of $v(a)$ at a. (see Chapter II, Section 4.)

Under Eurther conditions on V, ine found K-criterion $\bar{V} D$ to be sufficient for $v(a) \in V$ to be a b.a. to $h *$.
(b7) (Theorem 3.15) Lxtension of the Nonlinear Lniqueness Theorem. If $v(a) \in V$ is $a b, a$, to an u.s.c. $h *: B \rightarrow N(\mathbb{C})$ then $v(a)$ is unique if
(i) (UL) and (U2) nola
(ii) (以i*) noios with \& replaced by $v(a)$
(iii) V has property z of décree $d[a]+1$ at a,
(iv) V is strongly regular.
blatt gave a furtier characterisation and illustrations of strong regularity.

In particular the asymptotic convex sets are strongly regular (Example 3.2). Furthermore, in $C(B)$, if V is strongly regular then it is regular I, while in $C(B, R)$, if V is regular III then it is strongly regular (Theorems 3.3, 3.4).
2.3 Continuation of this Section to Chapter Two

In chapter II, we produce a unifying characterisation theory for the non-linear simultancous approximation problem in an arbitrary N.L.S., X. The main aim is to extend the K -criterion IV to cnaracterise the s.b.a. when F is a bounded subset, of X. We achieve this aim by first modifying the definition of h^{*} for the envelope of F so that it is u.s.c. on the dual space. We proceed to obtain (almost) equivalent results to (BI) - (36) with an appropriate concept of regulaxity (Definition 1.7).

Furthermore, in Section 2, Lemua 2.7, we relate the two definitions for the envelopes of F when X is a real valued in. L.S. We can thereby derive the characterisation result (FM4) as a suicase of this unifying theory. This resolves the question inherent in [25] section 3, case 3 .

Finally we develop the characterisation of a local. s.b.a. or, equivalently, a local best approximation to h^{*}. This has application for the case $V=R_{m, n}^{*}$ which we treat in Section 5.

Generalisations of (P1), (P2) and (P4) for a local.s.b.a. from an interpolating subspace are again readily obtained.

We remark that the characterisation theorems of Chapter II are valid for functions defined in more than one variable (see [62], Chapter 12). It is envisaged that the results of Chapter II would be instrumental in the development of Remes type algorithms for determining an s.b.a. The theory could also be developed on similar lines in the case when we require our seb.a. to satisfy constraints.
2.4. Existence of the s.b.a. in an N.L.S.

We now give a brief review on this important aspect. We shall assume throughout that $\rho_{V}(F)<\infty$, otinerwise any $v \in V$ is a s.b.a.
2.4.1 Some Classical Existence Results

The first existence result for the simultaneous approximation problem was obtained by Diaz and Mclaughlin in [25] Theorem 1.1. Thus:

Theorem 2.1. For $X=C(B), V=P$, a finite-dimensional subspace of X, and F, a uniformly bounded subset of X we have that $\rho_{P}(F) \neq \$$. The proof, in outline, is as follows: .
(i) We can take a sequence $\left\{p_{n}\right\} \subset P$ such that

$$
\lim _{n \rightarrow \infty} \Delta\left(p_{n}\right)=\rho_{P}(F)
$$

(ii) $\left\{p_{n}\right\}$ is uniformly bounded and hence contains a convergent subsequence with limit $q \in P$
(iii) $\Delta(q)=\rho_{p}(F)$
and therefore q is a s.b.a.
We note that the proof is still valid for X, an arbitrary N.L.S.
Furthermore, we can extend the scope of Theorem 2.1. to the following. Let us say V is simultaneous approximatively compact (s.a.c.) in an iv.L.S. if to every sequence $\left\{v_{j}\right\}$ in V with

$$
\lim _{j \rightarrow \infty} \Delta\left(v_{j}\right)=\rho_{v}(F)
$$

there exists a subsequence converging in norm to some elenent of V. We can now assert

Theorem 2.2. If F is a norm-bounded subset of X, an N.L.S., and V is s.a.c., then $\rho_{V}(\mathrm{~F}) \neq \Phi$.
Illustration. Take $X=L_{p}[0,1] 1<p<\infty$ and $V=\hat{R}_{m, n}$. Then V is s.a.c. see [7].

The following two theorems were obtained in $[34]$ for $F=\left\{f_{1}, E_{2}\right\}$ and are stated in $[36]$ for F, a compact subset of X.

Lheorem 2.3. If V is a finite dimensional subspace of X then $\rho_{V}(F) \neq \phi$ and if X is strictly convex the s.b.a. is unique.
lheorem 2.4. If V is a closed convex subset of a uniformly convex banacin space X, tiren $\rho_{V}(F)$ is a sinbleton.

We can extend the existence proofs devised for F , a singleton, for the following non-1inear approximating families on $L_{p}(S, \Sigma, \mu), 1 \leqslant p<\infty$ when $S=[0,1]$ and μ is the Lebesgue measure.
2.4.2. The Existence of the s.b.a. from the Rationals

Here we can adapt the technique developed by Dunham in [29]. He framed the existence problem in the more general setting of a generalised integral norm which includes all L_{p} norms $0<p<\infty$. Let τ be a non-negative continuous function such that $\tau(t) \rightarrow \infty$ as $t \rightarrow \infty$. Let \int denote the Lebesgue integral on $[0,1]$ and aefine ${ }^{\prime}\|g\|^{\prime}=\int \tau(g)$ when g is measurable on $[0,1]$.

In particular, $\tau(t)=|t|^{p}, 0<p<\infty$, relates to L_{p} norms. We introauce the following parametrisation for $n_{n, m}$.

Let $A:=\left\{\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{n}\right\} \in E^{n+m}$
and

$$
R(A, x):=\frac{\sum_{i=1}^{n} \alpha_{i} g_{i}(x)}{\sum_{i=1}^{n} \beta_{i} \dot{n}_{i}(x)} \in R_{n, m}
$$

Without loss of generality we can introduce the following norwalisation for $K(A, x)$

$$
\sum_{i=1}^{\mathrm{m}}\left|B_{i}\right|=1
$$

Lowever, by $||A||$ we understand $\max \left\{\left|a_{i}\right|: 1 \leqslant i \leqslant n\right\}$.

We further make the assumption that

$$
\mathrm{Q}:=\operatorname{span}\left\{\mathrm{h}_{1}, \ldots, h_{\mathrm{m}}\right\}
$$

has the zero-measure property, namely

$$
\text { meas }[Z(q)]=0 \text { for all } q \in Q, q \neq 0
$$

Theorem 2.5. If F is a set of bounded measurable functions, then under the above assumptions, tiere exists a s.b.a. to F from $R_{n, m}$.

We shall require the following Lemma proven in [29].
Lemma 2.1. If $\left\{\left|\mid A^{k} \|\right\} \rightarrow \infty\right.$, then there exists a non degenerate closed interval I such that

```
M= inf {|f(x)-R(A
```

Yroof of Theorem 2.5.
Let $R\left(A^{k},.\right)$ be a sequence in $R_{n, m}$ with

$$
\lim _{k \rightarrow \infty} \sup _{f \in F}\left\|f-R\left(A^{k}, .\right)\right\|=\rho_{R_{n, m}}(F)
$$

If $\left\{\left\|A^{k}\right\|_{\infty}\right\}$ is unbouncea, we have for each $f \in F$

$$
\int \tau\left(E-R\left(A^{k}, .\right)\right)>\int_{J} \tau\left(f-R\left(A^{k}, .\right)\right)>\int_{I} \min \left[\tau\left(f(x)-R\left(A^{k}, x\right)\right]\right.
$$

where I is as in the Lemma.
The extreme right side tends to infinity as $\mathrm{k} \rightarrow \infty$.
It follows that $\sup \left\|f-R\left(A^{k},.\right)\right\|+\infty$, giving a contradiction. $\mathrm{f} \in \mathrm{F}$
Hence $\left\{\left.\left|A^{k}\right|\right|_{\infty}\right\}$ is bounded and $\left\{A^{k}\right\}$ has a limit point A.
Then $\left\{R\left(A^{k},.\right)\right\}$ converies to $R(A,.) \in R_{n, m}$ except on $Z(Q(A,)$.$) .$
Hence for each $f \in F, T\left(f-R\left(A^{k},.\right)\right)$ converges pointwise to $T(f-R(A,)$. except on $Z(Q(A,)$.$) winch has zero measure.$

Applying Fatou's theorem ($[60], p .28$) we have for each $f \in F$

$$
\begin{aligned}
\int \tau(f-R(A, .) & \leq \lim _{k \rightarrow \infty} \int \tau\left(f-R\left(A^{k}, \cdot\right)\right) \\
& =\lim _{k \rightarrow \infty}\left\|f-R\left(A^{k}, \cdot\right)\right\| \\
& \leq \lim _{k \rightarrow \infty} \sup _{i \in F}\left\|E-R\left(A^{k}, .\right)\right\|
\end{aligned}
$$

Therefore $\sup _{f \in \mathrm{~F}}\|f-R(A,).\| \leq \rho_{R_{n, m}}(F)$

The proof is valid for $\dot{\hat{R}}_{\mathrm{n}, \mathrm{m}}$.
Furthermore it can be shown, as in $[29] \mathrm{section} 4$, that there exists a s.b.a. from $R_{n, m}^{+}$in the $L_{\dot{p}}$ norms $1 \leqslant p<\infty$ when P and Q are the ordinary polynomials.
2.4.3. The existence of the s.b.a. from the rpolynomials

Here we can adapt the technique developed by Barrar and Loeb in [4]. $Y(t, x)$ must satisfy certain assumptions (BL) stated in [4], which for the examples (a) and (b) of section 1.3 (ii) is the case. We must also allow the best approximation to be in the closure of the approximating family. Theorem 2.6. Under the assumptions (BL), each set $F \subset L_{p}[0,1]$ has a s.b.a. We shall require the following Lemma proven in $[4]$. Lemma 2.2. Let $\left\{v_{k}\right\} \subset v$ be bounded in the $L p$ norm.
Then under the assumptions (BL) there exists $a v \in V^{\circ}$ and a sequence of. closed sets $\left\{U_{j}\right\}$ so that
(a) $U_{j} \subset U_{j+1} \subset[0,1]$ and $U_{j} U_{j}$ differs from $[0,1]$ on a set of measure zero.
(b) For each U_{j}, some subsequence of $\left\{v_{k}\right\}$ converges to v in the L_{p} norm restricted to U_{j} i.e. $\left\|\mathrm{v}_{\mathrm{k}_{\mathrm{i}}}-\mathrm{v}\right\|_{j} \rightarrow 0$.
Proof of Theorem 2.6.
We can choose a sequence $\left\{v_{k}\right\} \subset V$ with

$$
\lim _{k \rightarrow \infty} \sup _{f \in F}| | f-v_{k}| |=\rho_{V^{o}}(F)
$$

By the Lemma part (b), for each j

$$
\begin{aligned}
& \sup _{f \in F}| | f-v\left\|_{j}=\lim _{i \rightarrow \infty} \sup _{f \in F}| | f-v_{k_{i}}\right\|_{j} \\
& \leqslant \lim _{i \rightarrow \infty} \sup _{f \in F}| | f-v_{k_{i}}| | \\
& =\rho_{\mathrm{VO}^{\circ}}(\bar{F})
\end{aligned}
$$

and so y is a s.b,a, to F.

SUIMARY
There are still cases of nonlinear approximations in an N.L.S, where no proof has been provided to guarantee the existence of a best approximation for a single function.
In particular for $L_{p}(S, \Sigma, \mu)$, where S is the union of the atoms and μ is the counting measure. *
hovever it would appear from the above Theorems that where there is such a proof, one can generally formulate an existence proof for the corresponding simultaneous problem.

It can still occur that an s.b.a, happens to exist for a particular set F and approximating family V without a priori guarantee and a characterisation of the s.b,a, as derived in Chapter II, will still be valid.

* Wolfe in [70] treats the existence problem of the best approximation to $f \in S(B)$, the linear space of real-valued functions defined on the finite set $B, B:=\left\{x_{1}, \ldots, x_{N}\right\} \in[a, b]$ and endowed with an ℓ_{p} norm, $1 \leqslant p<\infty$, frow the approximating family \mathbb{R}_{12}, m and its pointwise closure in S (i) . denoted $\left[\mathrm{R}_{11, m}(\mathrm{~b})\right]^{\circ}$.
by makinc the additional requirement that P and Q are iaar subspaces of $c[a, b]$ of dimension n and m respectively with $N \geqslant n+n+1$, he obtains an explicit representation of $\left[\mathrm{R}_{\mathrm{n}, \mathrm{m}}(\mathrm{b})\right]^{\circ}$.

3. SIVULTANEOUS APYROXIMATION OF A FUNCTIOIN AND I'S DERIVATIVE IN THE UNTFOKY BOKI.
3.1. The Approximation Theory Approach

Let $C^{1}[I]$ be the space of continuous real-valued differentiable functions on tine closea interval I and $V=V_{n}$. The norm of an element $i \in C^{1}[I]$ is defined to be the double sup norm -

$$
\|f\|:=\max \left[\max _{x \in I}|f(x)|, \max _{x \in I}\left|f^{\prime}(x)\right|\right]
$$

The element $v_{0} \in V$ wich is a best approxination to f enjoys the additional property that its derivative is approximating the derivative of f. In order to develop a Kolmogoroff characterisation into practical application, we need to know the extremal functionals of the unit ball of clin]. These have been found by P. J. Laurent in $[44]$ to be of the form

$$
\varepsilon E\left(x_{1}\right) \text { or } \varepsilon^{\prime} f\left(x_{2}\right) \text { where } x_{1}, x_{2} \in I \text { and } \varepsilon, \varepsilon^{\prime} \text { are } \pm 1
$$

In [44], interest centres on tine norm

$$
\left|\left|f \|^{\prime}:=\max _{x \in I}\right| f(x)\right|+\max _{x \in I}\left|f^{\prime}(x)\right|
$$

and an extension of Remes' al oritim for determining the $\mathrm{d} . \mathrm{a}$. with this norm is üven tnere, wnile in [46], it is appliea to the simultaneous approximation proolem.

Aspects of unicity for this type of b.a. with the ciouble sup nomi are consiuered in [52].
Tneoretical considerations in L_{p} norns $p>1$ are in $[51]$, where constraints are adided.
3.2. Tau Method Solution of First Order Differential Equations
3.2.1. Introauction

Consider the first order differential equation

$$
D y=0 \text { where } D y:=\frac{d y}{d x}-y
$$

subject to the single initial value conaition, $y(0)=1$. The solution is of course $y(x)=\exp (x)$.

In the Tau method, we obtain tine exact polynomial solution y_{n} of

$$
D y_{n}=T^{(n)} H_{n}
$$

where h_{n} is a pre-determined polynomial of degree n the simplest case being x^{n}.

We usually want to finc a good approximation to y over an interval J. In [41], Lanczos suggested to use for h_{n} the Ciebyshev polynomials of the first kind shifted to J, as these sive the best polynomial approximations to zero. If $y_{n}{ }^{*}$ satisfies $D y_{n}{ }^{*}=\tau^{(n)}{ }_{-T_{n}}{ }^{*}$, then $D\left(y_{n}{ }^{*}-y\right)$ has the equi-osciliation property and the error in the inase of D is more evenly distributed on J. This is not to say that yn^{*} is then a best uniform aproxination to y from π_{n}. however, it can be snown that $y_{n}{ }^{*}$ is asymptotically of the same order of approximation as the best. The tecnnique, devised by Meinardus and Strauer cf. [50], is basically to invert the operator D usind the Green's function. This was further refined in [66] by periorming an intesration by parts.
3.2.2. Valication of the use of Chebyshev Polynomials

To justify the use of Cheoyshev perturbations, Kiviin and weiss in [66] argued as follows. Suppose we seek a polynomial approxitation $y_{n}{ }^{*} \in \pi_{n}$ to $\exp (x)$ on $J \equiv[-1,1]$ sucin that $y_{n}^{*}(0)=1$
and $\left\|\nu y_{n} *\right\|_{\infty} \leqslant\left\|\nu_{y_{n}}\right\|_{\infty}$
for all $y_{n} \in \pi_{n}$ with $y_{n}(0)=1$.

Let $v_{n}(x)=b_{0}+b_{1} x+\ldots+b_{n} x^{n}$
and $y_{n}(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$
witn $y_{n}(0)=1$ and $D y_{n}=v_{n}$.

Comparing coefficients in the difierential equation, we obtain

$$
a_{j}=\frac{1}{j!} \sum_{i=j}^{n} i!b_{i}
$$

In particuiar, since $a_{0}=1$ we have

$$
L_{1} v_{n}:=\sum_{i=0}^{n} i!b_{i}=1
$$

We have reduced our problen to findin $\overline{\mathrm{v}}_{\mathrm{n}}$ such that $\left\|\bar{v}_{\mathrm{n}}\right\|_{\infty} \leqslant\left\|\mathrm{v}_{\mathrm{n}}\right\|_{\infty}$ among all "admissable" \dot{v}_{n} satisfying tne constraint $L_{1} v_{n}=1$. We sketch one approach adopted in [66] for waich the following two Lemas were required.

Lenma 3.1. Suppose the roots, x_{1}, \ldots, x_{n} of $v_{n}, n \geqslant 1$ are all real and satisfy $x_{j} \leqslant 1 ; j=1, \ldots, n$ with strict inequality holding for at least one j. If $b_{n}=I$ then $l_{1} v_{\mathrm{n}}>0$.

Leman 3.2. Let L be any linear functional on V, a k-aimensional subspace of $C(I)$. Linen there exist points $x_{1}, \ldots, x_{r} \in I, r \leqslant i r$ and non-zero constants $\alpha_{1}, \ldots, \alpha_{r}$ sucn that for any $v \in V$

$$
L v=\sum_{j=1}^{r} \alpha_{j} v\left(x_{j}\right)
$$

and $||i||=\sum_{j=1}^{r}\left|a_{j}\right|$.
If we take $V=\pi_{n}$ then $k=n+1$ in Leama 3.2.
Lemma 3.2 appears in [65] Corollary 3 and in [64] Theorem 2.13.

We can apply Lemma 3.2 to our functional L_{f}. For $v=\left(x-x_{1}\right) \ldots\left(x-x_{r}\right)$ we have by Lenma 3.1, that r camot be less then n, so $r=n+1$. But this implies there exists a $v_{n}{ }^{*} \in \pi_{n}$ with $\left\|v_{n} *\right\|_{\infty}=1, \quad\left|L_{1} v_{n}{ }^{*}\right|=||L||$ and $\left|v_{n}^{*}\left(x_{j}\right)\right|=1$, for $j=1, \ldots, n+1$; see [65] Remark 2, p. 676. This can only be if $\mathrm{v}_{\mathrm{n}}{ }^{*}= \pm \mathrm{T}_{\mathrm{n}}$. (see [6.5] Lemina 2). Thus

$$
\left\|L_{1}\right\|=\left|L_{1} T_{n}\right| \geqslant\left|L_{1} v_{n}\right| \text { for all } v_{n} \in \pi_{n} \text { with }\left\|v_{n}\right\|_{\infty}=1 \text {, and hence }
$$ $\left\|\tau^{(n)} \Psi_{n}\right\|_{\infty} \leqslant\left\|v_{n}\right\|_{\infty}$ for all v_{n} satisfying $L_{1} V_{n}=1$, when $\tau^{(n)}=\frac{1}{L_{1} T_{n}}$. In [67] Kivlin extended this reasoning to the differential operator

$$
U y:=(A+B x) y^{\prime}+C y=0
$$

with the boundary condition $y(0)=k$ and showed that for a large' class of intervals and values for K,

$$
\begin{aligned}
& \min _{y_{n} \in \pi n}\left\|u y_{n}\right\|_{\infty}=\left\|u y_{n}^{*}\right\| \|_{\infty} \\
& y_{n}(0)=k
\end{aligned}
$$

where $y_{n}{ }^{*}$ is the solution of $U y_{n} *=\tau^{(n)} T_{n}$.
The case of D being the second order differential operator

$$
D_{y}=y^{\prime \prime}+c^{2} y
$$

with the single initial condition given eitner by $y(0)=1$ or $y^{\prime}(0)=1$, was also consiciexed in 666$]$. The use of Chebyshev perturbations was justified and error bounas were found that were again asyuptotically best possible.
3.2.3. The Canonical Rolynomials and the Tau Solution For an efficient way of aetermining $y_{n}{ }^{*}$, there is the method of canonical polynomials introduced by Lanczos, see [42], and developed by Ortiz, see [56].

Let D be any linear differential operator with polynomial coefficients. Then $D: \pi_{n} \rightarrow \pi_{m}$ where $m \geqslant n$. The canonical polynomials $\left\{Q_{n}(x)\right\}$ for D can be derined by
$D Q_{n}(x)=x^{n}$ for all $n \in N$, the non-negative integers.
If we use the Chebysinev perturdation and set

$$
T_{n}^{*}(x)=\sum_{k=0}^{n} c_{k}^{(n)} x^{k}
$$

thein $\quad y_{n}^{\prime *}(x)=\tau^{(n)} \sum_{k=0}^{n} c_{k}^{(n)} Q_{k}(x)$.
We determine $\tau^{(n)}$ from the initial condition $y(0)=\sigma$.
Thus

$$
\tau^{(n)}=\sigma / \sum_{k=0}^{n} c_{k}^{(n)} Q_{k}(0)
$$

$\left\{Q_{n}(x)\right\}$ can fenerally be found by a recursive techmique, when D is a linear operator, as follows. Suppose we know $Q_{r}(x)$ for $r<m$, and that $D x^{n}=\sum_{r=0}^{m} a_{r}^{(n)} x^{r}$.

Then

$$
D\left[\frac{1}{a_{n n}(n)}\left(x^{n}-\sum_{r=0}^{n=1} a_{r}^{(n)} Q_{r}(x)\right)\right]=x^{m}
$$

yielding an expression for $Q_{n 1}(x)$.
Special attention has to be paid to situations where n is greater than n and where $a_{m}^{(n)}$ is zero for some values of n. In both these cases there will be, in general, gaps in the sequence $\left\{Q_{n 1}\right\}$, i.e. there will be an index set S of undefined canonical polynomials sucn that no Q_{v} is known to generate x^{v}, $\nu \in S$, in the expansion of $T_{n} \times(x)$. We remark that S has finite cardinality, see $[54]$. We set

$$
R_{S}=\operatorname{span}\left\{x^{v}: v \in S\right\}
$$

and redefine $\left\{Q_{n}(x)\right\}$ by

$$
D Q_{n}=x^{n}+R_{n}(x) \text { where } R_{n} \in K_{S}
$$

We now have the following diagrammatic representation of the application of D to the canonical polynomials

A further point is that for some n, there may be several $Q_{n_{i}}$ for winch $\int Q_{n_{i}}=x^{n}+R_{n_{i}}$. However it is readily shown that in such cases

$$
Q_{n_{i}}-Q_{n_{j}} \in U_{D} \text {, the kernel of the operator } 1 \text {. }
$$

Hence we are lead to define classes oi equivalence

$$
\left\{\mathscr{L}_{n}\right\} \quad n \in N-S, \text { modular } U_{D}
$$

If we let t denote this equivalence relationship then we have a quotient set

$$
\left\{\mathcal{L}_{n}\right\}=\left\{Q_{n_{i}}\right\} / E \quad n \in N-S
$$

There is now a bijection between

$$
L \equiv \quad\left\{\mathcal{L}_{\mathrm{n}}\right\} \text { with } \mathrm{n} \in \mathrm{~N}-\mathrm{S} \text { and } \mathrm{P}-\mathrm{R}_{\mathrm{S}},
$$

as well as a unique correspondence between L and D , see $[54]$. In the numerical computation of $\mathrm{y}_{\mathrm{n}}{ }^{*}$ it will be necessary to eliminate any contribution from K_{S}. ' 'lis is achieved in practice by having one free parameter for each $v \in S$ to match the coefficient of the weighted sum of residuals, with the coefficient of x in H_{n}. This eliminates the component of ψ_{v}. For example, if $\operatorname{card}(S)=1$, we could let $I_{n}=\tau_{0}^{(n)} I_{n}^{*}+\tau_{1}^{(n)} T_{n-1}^{*}$. The same device is employed if there is an extra constraint to be satisfied. In either case, the equi-oscillation property and the argument of 3.2.2. is lost, although good results are nevertheless obtainable.

In [55], Ortiz treats the evaluation of the coefficients of the expansion of $y_{n}{ }^{*}$ in an arbitrary system of polynomials which span π_{n}. In [56], he discusses the direct generation of the canonical polynomials for a Chebyshev perturbation.

In chapter III, we suppose the function y. we wish to approximate satisfies a linear second order differential equation with variable rational coefficients and is subject to two initial conditions $y(0)=\sigma$, $y^{\prime}(0)=\rho$. We treat this subject in three parts. In Parts I and II, we shall be interested in determining two polynomials $\left(y_{n}, z_{n}\right) \in \pi_{n} X_{n}$ with y_{n} approximating y and $-z_{n}$ approximating y^{\prime} on $J=[0,1]$. $\left(y_{n}, z_{n}\right)$ is a feasible solution if $y_{n}(0)=\sigma, z_{n}(0)=-\rho$.

We note that this method requires that we store coefficients of two polynomials, but that there is little disadvantage from tinis. According to 3.1 , we ougint to be minimising max $\left[\left|\left|y-y_{n}\right|\left\|_{\infty},\left|\left|y^{\prime}+z_{n}\right| \|_{m}\right]\right.\right.\right.$ over all feasible solutions. However, since y and y^{\prime} are known only impicitly through

$$
v\binom{y}{y^{\prime}}=\binom{0}{0}
$$

where D is now a pair of first order linear differential equations, we search for a feasible solution $\left(y_{n} *, z_{n}{ }^{*}\right)$ satisfying

$$
D\binom{y_{n}^{*}}{z_{n}^{*}}=\binom{\tau_{1}^{(n)} T_{n}^{*}}{\tau_{2}(n) r_{n}^{*}}
$$

with the object of minimising tne error in tne inage of D. In Part I, We extend 3.2.2. to valiaate the use of shifted Chebyshev perturbations for the simple case $y^{\prime \prime}+y=0$ subject to $y(0)=1$ and $y^{\prime}(0)=0$. We also introduce the vectorial form of canonical polynomials to aid the construction of the solution $\left(y_{n}^{*}, z_{n}^{*}\right)$, and then perform an error analysis. In Part II, we cosider applications of some of these ideas to a variety of linear second order differential equations.

In Part III, we consider the use of Jegendre perturbations for the case of $y^{\prime \prime}+y=0$ with the modification that we produce a pair of rational forms as our approximation. The error analysis demonstrates an improvement in accuracy for $n \geqslant 4$, though at extra oxponse.

SIMULIANEOUS APPROXIMATION OF A SET OF BOUNDED COMPLEX-VALUED FUNCTIONS

1. INTRODUCTION OF PROBLEM WITH BASIC DEFINITIUNS AND RESULIS

Let B be a compact space and $S(B)$ be the linear space of complex-valued functions endowed with a norm ||.||.

For α, a positive real number, denote by $F(=F(\alpha))$ a nonompty class of complex-valued functions defined on B such that if $f \in F$ then $||f|| \leqslant \alpha$. Let $C(B)$ be the set of complex-valued continuous functions defined on B and $V(B)$ be a non-linear subset of $C(B)$.

We wish to characterise the best approximation v_{o} from V to F , if exists,

Given by $\sup _{\mathrm{f} \in \mathrm{F}}| | \mathrm{f}-\mathrm{v}_{\mathrm{o}} \|=\inf _{\operatorname{veV}} \sup _{\mathrm{f} \mathrm{G} \mathrm{F}}| | \mathrm{f}-\mathrm{v}| |$
The case of the uniform norm has been treated in [6].
In section 2, we show that this problem is equivalent to finding the best one-sided approximation from V to a ω^{*} upper semi-continuous function h^{*} (Definition 1.4) winere h^{*} and V are defined now to be on a ω^{*} compact subset of the dual space and h^{*} is set-valued.

In section 3 , we obtain a sufficient condition that v_{o} satisfies by generalising the Kolmogoroff criterion. Furthermore, by imposing on V that it is regular (Definition 1.7), the Kolmogoroff criterion is found to be a necessary condition for a global best approximation and we can further deduce a uniqueness result.

In section 4, we develop the characterisation of a local best approximation for approximating families which depend on a parameter, with respect to which they have a Fréchet derivative.

This includes the case when V is a set of generalized rational polynomials. For this example, we develop our results further in section 5, to show that, under appropriate conditions, a local best approximation is (i) locally unique (ii) locally strongly unique and (iii)cheracterised by a generalised "alternation" theorem.

Notation

Let R, C be the fields of real, complex numbers respectively endoved with the usual metric topologies given by $d(x, y)=|x-y|$.

Let X and Y be topological spaces, X^{*} the dual of X, i.e. the set of complex-valued bounded linear functionals $\mathrm{X} \rightarrow \mathrm{C}$

Let $\quad A(Y):=[E \subset Y \mid E \neq \dot{\varphi}]$
and $f(Y):=[E \subset Y \mid E$ compact in the topology on Y and $E \neq \phi]$.
E^{0} denotes the closure of $E, G(E)$ the complement of E and $c o(E)$ the convex hull or cover of E. $W(L, \theta, \varepsilon)$ is a $w^{\text {h }}$ open neighbourhood (nìhd) of L
i.e. $W(L, \theta, \varepsilon):=\left\{\ell \in X^{*}:|(\ell-L) x|<\varepsilon\right.$ for all $x \in \theta$;
where θ is some finite subset of X and $\varepsilon>0$ \}
Where there is no loss of clarity we abbreviate $W(L, Q, \varepsilon)$ by $N(L)$ or H. Definition 1.1.
$\mathrm{f}: \mathrm{X}^{*} \rightarrow \mathrm{~A}(\mathrm{Y})$ is ω^{*} upper semi-continuous (u.s.c.) at $\mathrm{L} \in \mathrm{X}^{*}$ if to every open set G with $f(L)<G$ there exists a w^{*} open nbhd $W(L)$ such that $\mathrm{f}(\mathrm{l}(\mathrm{L})) \subset \mathrm{G}$.

Definition 1.2 .
$\mathrm{f}: \mathrm{X}^{*} \rightarrow \mathrm{R}$ is w^{*} u.s.c. at $\mathrm{L} \in \mathrm{X}^{*}$ if to every real number $c>f(\mathrm{~L})$ there exists a ω^{*} open nbhd $W(L)$ with $f(\ell)<c$ for all $\& \in W(L)$.

The following Theorems can be obtained by generalisations of standard topological argunents [35] :

Theorem 1.l. If $E \subset X^{*}$ is ω^{*} compact and $f: E \rightarrow \mathcal{K}(Y)$ is $\omega^{*} u . s . c$. on E then $f(E)$ is compact in Y.

Theorem 1.2. If $E \subset X^{*}$ is w^{*} compact and $f: E \rightarrow R$ is $w^{*} u . s . c$ on E then Elece exists an $L_{0} \in E$ such that

$$
f\left(L_{0}\right) \neq \sup _{L \in E} f(L) .
$$

We recall that to each $x \in X$ we can associate the evaluation $\hat{x}: X * \rightarrow R$ iven by $\hat{\mathbf{x}}(\mathrm{L}) \equiv \mathrm{Lx}$. We remark that $\hat{\mathrm{x}}$ is continuous. We shall omit the cap in the sequel when portrayine x as a function on a subset of $x *$.

Definition 1.3.

Let K be a subset of B^{*}, the unit ball in X^{*}, satisfying
(i) K is ω^{*} closed
(ii) For every $f \in F$ and $v \in V$, there exists an $L \in K$ with $\operatorname{ReL}(f-v)=\|f-v\|$

Kemark: The existence of L in B^{*} is guaranteed by the Hahn Banaci Theorem. We shall henceforth take all neighbourioods of L to be in K.
We understand by $\ell_{n} \underset{\theta}{\Psi} L$ that for tiis tand any $\varepsilon>0$, there exists an $n_{\theta^{-}} \equiv n_{0}(\theta, \varepsilon)$ such that $\ell_{n} \in W(L, \theta, \varepsilon)$ for all $n \geqslant n_{0}$.

The following definitions are generalisations of corresponding ones in [25].
Definition 1.4
Let $h(L):=\{z \in \mathbb{C} \mid$ there exists an $f \in F$ with $f(L) \equiv L f=z\}$ for $L \in K$ Define $h^{*}(L):=\prod_{\theta, \varepsilon>0}\left[\bigcup_{\ell \in W(L, \theta, \varepsilon)} h(\ell)\right]^{0}$ for $L \in K$ $h^{*}(L)$ is a set-yalued mapping from K into $A(E)$.

Theorem 1.3.

$$
\begin{aligned}
& h^{*}(L)=\left\{z \in C \mid \text { for any } \theta \text { there exists a sequence }\left\{\left(\ell_{n}, z_{n}\right)\right\}\right. \\
& \text { such that (1) } \ell_{n} \in K, \\
& \text { (3) } \ell_{n} \underset{0}{\omega} L
\end{aligned}
$$

YROOF
By definition, $z \in h^{*}(L)$ implies $z \in(\underset{\ell \in \mathbb{N}(L, \theta, \varepsilon)}{\bigcup} h(\ell))^{0}$ for all $\varepsilon>0$, and all θ. For each θ then, we have $z \in\left(l \in W\left(L, \theta, \frac{1}{n}\right) . h(\ell)\right)^{\circ}$ and so there exists a sequence $\left\{\left(\ell_{n}, z_{n}\right)\right\}$ depending possibly on θ, with $\left|z-z_{n}\right|<\frac{1}{n}$ and $z_{n} \in h\left(\ell_{n}\right)$ where $\ell_{n} \in K$ and $\ell_{n} \in V\left(L, \theta, \frac{1}{n}\right)$. Conversely, if for each θ and $\varepsilon>0$; there exists a sequence $\left\{\left(\ell_{n}, z_{n}\right)\right\}$ satisfying the four conditions, then there exists an n_{0} such that for $n \geqslant n_{0}, l_{n} \in W(L, 0, \varepsilon)$ and by (3) $z_{n} \in h\left(l_{n}\right)<\bigcup_{l \in W(L, \theta, \varepsilon)} h(\ell)$.

Now $z=\lim z_{n}$, therefore $z \in\left(\bigcup_{\ell \in \mathbb{V}(L, \theta, \varepsilon)} h(\ell)\right)^{\circ}$.
Since the arbitrary intersection of closed sets is ąain closed, $z \in \bigcap_{\varepsilon>0}\left(\bigcup_{l \in U(L, \theta, \varepsilon)}^{U} h(\ell)\right)^{0}$ and finally, since this is true for each finite θ, the intersection may be taken over all such θ.

Corollary. If $L=\lambda L_{1}+(1-\lambda) L_{2}$ where $L, L_{1}, L_{2} \in K$ and $0<\lambda<1$

$$
\text { tuen } h^{*}(L) \subseteq \lambda h *\left(L_{1}\right)+(1-\lambda) h *\left(L_{2}\right)
$$

PROOF
For any θ and $\varepsilon>0$, let $\mathbb{N}^{(i)}\left(L_{i}, \epsilon, \varepsilon\right)$ be a ω^{*} open nbhd of $L_{i}, i=1,2$. Then $\lambda W^{(1)}+(1-\lambda) W^{(2)}$ is a $w^{\%}$ open nbhd of $\lambda L_{1}+(1-\lambda) L_{2}$

$$
\text { setting } \bar{h}(L):=\bigcap_{\theta, \varepsilon>0}\left(\Omega \in \lambda W^{(1)} \cup_{+(1-\lambda) W^{(2)}} h(l)\right)^{\circ}
$$

it is obvious that $h^{*}(L) \subset \bar{h}(L)$.
Now $\bar{h}(L)=\left\{z \in \mathbb{C} \mid\right.$ for any θ, there exists a sequence $\left\{\left(\ell_{n}, z_{n}\right)\right\}$
satisfying (1) - (4) where $\left.\ell_{n}=\lambda_{P_{n}}+(1-\lambda) q_{n}, P_{n} \in W^{(1)}, q_{n} \in W^{(2)}\right\}$
 $\ell_{n} f=z_{n}$, we have $v_{n} \in h\left(p_{n}\right)$ duc $v_{n} \in h\left(q_{n}\right)$
and $z_{n}=\lambda v_{n}+(1-\lambda) w_{n}$ with $\lim z_{n}=z$.
Extracting a subsequence if necessary, we are assured the existence of $v \in h^{*}\left(L_{1}\right)$ and $w \in h^{*}\left(L_{2}\right)$ sucin chat

$$
z=\lambda v+(1-\lambda) w
$$

and $\quad \bar{h}(L) \subset \lambda h^{*}\left(L_{1}\right)+(1-\lambda) h^{*}\left(L_{2}\right)$

Definition 1.5

A non-void subset of $Y \subset X$ is an extremal subset of X if a proper
convex combination $\lambda x_{1}+(1-\lambda) x_{2}, 0<\lambda<1$, of two points $x_{1}, x_{2} \in X$, is in Y only if both x_{1} and x_{2} are in Y.

An extremal subset of X consisting of just one point is called an extremal point of X .
The collection of extremal points of X is denoted by ext (X).

Lenma 1.1.
If C is a convex and compact subset in R^{n} then $C=\operatorname{co}($ ext (C). (See e.g. [60] p. 232).

Lenma 1.2

Let ϕ be a continuous linear mapping of E_{1} into E_{2} (two Hausciorff locally convex topological spaces) and M be a compact subset of E_{1}. Then for every extremal point e_{2} of $\phi(\mathbb{i})$ there exists at least one extremal point e_{1} of M such that $q\left(e_{1}\right)=e_{2}$. (See [30, p.333)

Vefinition 1.6.

```
A nom-empty subset }\Sigma\mathrm{ of B: is sign-extremal for volev c X
if min L\in\Sigma
Lemma 1.3.
```

If Σ is a ω^{*} closed subset of B^{*} then Σ is sign-extremal for $v_{o} \in V$ if and only if $\operatorname{ext}(\Sigma)$ is sign-extremal for v_{o}.
The proof is given in [15] Lemma 2.

We define regular subsets of X in the sense of Brosowski. Lefinition 1.7
$V \subset X$ is regular at a point $v_{0} \in V$ if for each $V \in V$ and each real number $\lambda>0$ and for each w^{*} closed subget A of B^{*} satisfying $R e L\left(v-v_{o}\right)>0$ for all $L \in A$, there exists a $v_{\lambda} \in V$ with
(k1) $\quad \operatorname{keL}\left(v_{\lambda}-v_{o}\right)>0$ for all $L \in A$
(R2) $\quad\left\|\mathrm{v}_{\lambda}-\mathrm{v}_{\mathrm{o}}\right\|<\lambda$
The subset V of X is regular if it is regular at every point of V.
2. CONVERSION UF PROBLEM TO APPRUXIMATIUN OE h^{*}

We first deduce a basic properity of h^{*}.
Lemma 2.1.

$$
h^{*}(L) \text { is } w^{*} u, s, c \text {, on } K \text { and } h^{*}: K \rightarrow \mathbb{K}(\mathbb{N}) \text {. }
$$

PROOF
Suppose at $L_{o} \in K$ it is not ω^{*} u.s.c.
'Then there exists an open neighbournood G of $h *\left(L_{0}\right)$ such that for every ω^{*} open neighbourhood $U\left(L_{o}\right)$ there exists at least one $\& \in U\left(L_{0}\right)$ with $h^{*}(\ell) \notin G$.
For any θ, let $\left\{U_{n}\right\}$ be a neighbourhood basis for L_{o}
i.e. $U_{1} \supset U_{2} \supset \ldots \supset U_{n} \supset \ldots$
with $\ell_{n} \in U_{n}$ but $h^{*}\left(\ell_{n}\right) \notin G$
i.e. thexe exists a $z_{n} \in h^{*}\left(l_{n}\right)$ but $z_{n} \notin G$.

For $n \rightarrow \infty, \ell_{n} \underset{\theta}{\underset{\theta}{\omega}} L_{0}$ and z_{n} has a cluster point z_{o} since it is a bounded sequence.
Now $z_{n} \in h^{*}\left(\ell_{n}\right)$ implies that there exists a sequence $\left\{\left(q_{k}^{(n)}, \eta_{k}^{(n)}\right)\right\}$ with
(1) $g_{k}^{(n)} \in K$,
(2) $\quad \underset{k}{(n)} \underset{\rightarrow}{\underset{\sim}{w}} \ell_{n}$,
(3) ${ }_{n_{k}^{(n)}}^{(n)} h_{\left(q_{k}^{(n)}\right)}^{(}$
(4) $\eta_{k}^{(n)} \rightarrow z_{n}$.
$\operatorname{For}\left(z_{n}, \ell_{n}\right)$ choose k_{n} such that (i) $q_{k_{n}}^{(i)} \in U_{n}$ and (ii) $\ln _{k_{n}}^{(n)}-z_{n} \left\lvert\,<\frac{1}{n}\right.$.
Hence for $\left\{\left(c_{k_{n}}^{(n)}, \eta_{k_{n}}^{(n)}\right)\right\}$ we have
(1) $q_{k}^{(n)} \in K$
(2') $\stackrel{(n)}{y_{k}} \underset{\mathrm{n}}{\stackrel{\omega}{\theta}} \mathrm{L}_{0}$
(3) ${\underset{n}{n}}_{(n)}^{n_{n}} \in h\left(q_{k_{n}}^{(n)}\right)$
(4) ${\underset{k}{n}}_{(n)}^{\eta_{k}} \rightarrow 2_{0}$
(1) - (4) imply $z_{0} \in h^{\star t}\left(L_{0}\right) \subset G$.

Lut $z_{n} \in \mathbb{C}(G)$ implies that $z_{0} \in \mathbb{C}(G)$, hence a contradiction.
The proof that $h *\left(L_{0}\right)$ is a closed set is similar and is omitted. Furthermore, $h^{*}\left(L_{0}\right)$ is bounded since $||E|| \leqslant \alpha$ for all $f \in F$ and the neighbourhoods of L_{o} are subsets of K.

It follows that $h *\left(L_{0}\right)$ is compact.

The following "distance" function is most suitable for our problem. Detinition 2.1.

$$
\hat{d}(A, b)=\sup _{a \in A} \operatorname{Re}(a-b)
$$

We are now able to take the first step towards an equivalent formulation of our original problem.

Lennia 2.2.

$$
\sup _{f \in F}| | f-v| |=\sup _{L \in K} \hat{d}(h *(L), v(L)) .
$$

PROOF

but there exists an $L \in K$ such that $\operatorname{ReL}(f-v)=\|f-v\|$
Therefore $\|f-v\| \leqslant \hat{d}\left(h^{*}(L), v(L)\right) \leqslant \sup _{L \in K} \hat{d}\left(h^{*}(L), v(L)\right)$
The right hand bound is independent of f.
Therefore $\sup _{f \in F}\|f-v\| \leqslant \sup _{L \in K} \hat{d}(h *(L), v(L))$.
On the other hand, consider the sequence $\left\{L_{n}, z_{n}\right\}$ with $L_{n} \in K$ and $z_{n} \in h \%\left(L_{n}\right)$ and

$$
\lim _{n \rightarrow \infty} \operatorname{Re}\left(z_{n}-L_{n} v\right)=\sup _{\operatorname{L\in K}} \sup _{z \in h^{*}(L)} \operatorname{Re}(z-L v)
$$

By Theorem 1.3. for $G=v$, there exists a sequence $\left\{\begin{array}{c}(n) \\ q_{k}\end{array}, \frac{(n)}{n_{k}}\right\}$ with
(1) ${\underset{q}{(n)}}_{(n)} \in K$,
(2) $\stackrel{(n)}{q_{k}} \stackrel{\omega}{\underset{v}{\rightarrow}} L_{n}$,
(3) $\eta_{\eta_{k}}^{(n)} \in h\left(q_{k}^{(n)}\right)$,
(4) $\stackrel{(n)}{\eta_{k}} \rightarrow z_{n}$.

Choose k_{n} so that (i) $\left|\begin{array}{l}(n) \\ \eta_{k_{n}}\end{array}-z_{n}\right|<\frac{1}{n}$ and (ii) $\left|\rho_{k_{n}}^{(n)} v-L_{n} v\right|<\frac{1}{n}$ Then $\left\|f_{k_{n}}-v\right\| \geqslant \operatorname{Re} q_{k_{n}}^{(n)}\left(f_{k_{n}}-v\right)=\operatorname{Re}\left(\eta_{k_{n}}^{(n)}-{ }_{q_{k}}^{(n)} v\right)$

$$
\begin{aligned}
& \geqslant \operatorname{Re}\left(-L_{n} v+z_{n}+L_{n} v-q_{k}^{(n)} v+\eta_{k_{n}}^{(n)}-z_{n}\right) \\
& \geqslant \operatorname{Re}\left(z_{n}-L_{n} v\right)-\left|\operatorname{Re}\left(L_{n}-q_{k_{n}}^{(n)}\right) v\right|-\left|\operatorname{Re}\left(\eta_{n}^{(n)} k_{n}-z_{n}\right)\right| \\
& \geqslant \operatorname{Re}\left(z_{n}-L_{n} v\right)-\frac{2}{n}
\end{aligned}
$$

Therefore $\sup _{f \in F}| | f-v| | \geqslant \lim _{n \rightarrow \infty}| | E_{k_{n}}-v| | \geqslant \lim _{n \rightarrow \infty} \operatorname{Re}\left(z_{n}-L_{n} v\right)=\sup _{L \in K} \hat{d}(h *(L), v(L))$

A consequence of Lema 2.2. is that we can reformulate our problem as that of finding the best approximation from V to h^{*} on K using the distance function \hat{d} on \mathbb{C} for approximating a set valued function.
It is desirable to investigate further the function on the right hand side of Lemma 2.2.

Lemma 2.3
Set $\dot{g}_{v}(L):=\hat{d}\left(h^{*}(L), v(L)\right)$ for $L \in K$
Ihen g_{v} is a mapping of K into R and $g_{V}(L)$ is w^{i} u.s.c. on K for each v.

PROOF
Let $L_{0} \in K$ and $B>g_{v}\left(L_{o}\right)$ with $\varepsilon \equiv \frac{\beta-g_{v}\left(L_{o}\right)}{.2}$ and
$0 \equiv \operatorname{U}_{z \in h^{*}\left(L_{0}\right)} O_{\varepsilon}(z)$ where $O_{\varepsilon}(z) \equiv\{w:|w-z|<\varepsilon\}^{-}$
O is w^{*} open and $h^{*}\left(L_{0}\right) \subset O$.
By Lemina 2.1, h^{*} is ω^{*} U.s.c. at L_{o}. Hence there exists a w^{*} open nbid $W_{1}\left(L_{0}\right)$ such that for all $\ell \in W_{1}\left(L_{0}\right)$, $h^{*}(\ell) \subset O$. But for each $\eta \in h^{*}(\ell)$ where $\ell \in W_{1}\left(L_{0}\right)$, there exists a $z_{\eta} \in h^{*}\left(L_{0}\right)$ such that $\left|\eta-z_{n}\right|<\varepsilon$ by definition of O.

Therefore for $\ell \in W_{1}\left(L_{o}\right), \hat{d}\left(h^{*}(\ell), v\left(L_{0}\right)\right)=\sup _{\eta \in h^{*}(\ell)} \operatorname{Re}\left(\eta-v\left(L_{o}\right)\right)$

$$
\begin{aligned}
& \leqslant \sup _{\eta \in h^{*}(\ell)} \operatorname{Re}\left\{\left(z_{\eta}-v\left(L_{0}\right)-\left(z_{\eta}-\eta\right)\right\}\right. \\
& \leqslant \sup _{z \in h^{*}\left(L_{0}\right)} \operatorname{Re}\left(z-v\left(L_{0}\right)\right)+\varepsilon \\
& =g_{v}\left(L_{0}\right)+\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
\text { Now } g_{v}(\ell)=\sup _{z \in h^{*}(\ell)} \operatorname{Re}(z-v(\ell)) & \leqslant \sup _{z \in h^{*}(\ell)} \operatorname{Re}\left(z-v\left(L_{0}\right)\right)+\left|v(\ell)-v\left(L_{0}\right)\right| \\
& =\left|v(\ell)-v\left(L_{0}\right)\right|+\hat{d}\left(h^{*}(\ell), v\left(L_{0}\right)\right)
\end{aligned}
$$

'lake a ω^{*} open nbhd $\mathbb{N}_{1}\left(L_{0}\right)$ such that $\left|\ell v-L_{0} v\right|<\varepsilon$ for all $\& \in V_{2}\left(L_{o}\right)$ Then for all $\ell \in W_{1}\left(L_{0}\right) \cap W_{2}\left(L_{0}\right)$

$$
g_{v}(\ell)<\varepsilon_{v}\left(L_{0}\right)+2 \varepsilon=\beta
$$

which completes the proof.
we remark that by Theorem $1.2, \mathrm{~g}_{\mathrm{v}}$ attains its supremum on K :

Lemma 2.4
$g_{v}(L)$ is a convex functional on K in the following sense. Suppose $L=\lambda L_{1}+(1-\lambda) L_{2}$ where $L, \dot{L}_{1}, L_{2} \in K$ and $0 \leqslant \lambda \leqslant 1$, Then

$$
g_{v}(L) \leqslant \lambda g_{v}\left(L_{1}\right)+(I-\lambda) g_{v}\left(L_{2}\right)
$$

The proof follows from considering sup Re z and applying the corollary to Theorem 1.3. We now restate our proolem as that of finding inf sup $\mathcal{E}_{\mathrm{v}}(\mathrm{L})$ vEV LEK
and for convenience introduce the following notations:

$$
\Delta(v) \equiv \sup _{L \in K} g_{v}(L), \rho_{v}\left(h^{*}\right)=\inf _{v \in V} \Delta(v)
$$

Furthermore, we set $M(v) \equiv\left[L \in K \mid G_{V}(L)=\Delta(v)\right]$

$$
\begin{aligned}
& \mathrm{D}\left[h^{*}, v\right] \equiv\left[(L, z) \in K \times C \mid z \in h^{*}(L), \quad \operatorname{Re}(z-L v) \equiv \Delta(v)\right] \\
& n\left[h^{*}, v, L\right] \equiv\left[z \in h^{*}(L) \mid \operatorname{Re}(z-L v)=g_{v}(L)\right]
\end{aligned}
$$

Since K and $h^{*}(L)$ are compact, $M(v), D\left[h^{*}, v\right]$ and $n\left[h^{*}, v, L\right]$ are non-empty. We observe

$$
\left\{(L, z) \mid L \in M(v), z \in \eta\left[h^{*}, v, L\right]\right\}=D\left[h^{*}, v\right]
$$

Lenma 2.5
$M(v)$ is ω^{*} compact in k.
YKOUF
If $L \in G M(v)$ then $g_{v}(L)<\Delta(v)$.
Since, however, g_{v} is w^{*} u.s.c. on K, there exists a w^{*} open nbind $U(L)$ such that

$$
g_{v}(\ell)<\Delta(v) \text { for all } \ell \in U(L)
$$

nence $\operatorname{CM}(v)$ is ω^{*} open and therefore $M(v)$ is w^{*} closca and the result follows.

Lemma 2.6

$\operatorname{ext}(M(v)) \quad c \operatorname{ext}(K)$
PROOF
Suppose to the contrary, there cxists an $L \in \operatorname{ext}(M(v))$ and $L \notin \operatorname{ext} K$.
Then there exists $L_{1}, L_{2} \in K$ and $\lambda, 0<\lambda<1$ with $L=\lambda L_{i}+(1-\lambda) L_{2}$.
Hence $g_{v}(L)=\Delta(v) \leqslant \lambda g_{v}\left(L_{1}\right)+(1-\lambda) g_{v}\left(L_{2}\right)$ by Leman 2.4.
But $g_{V}(L) \leqslant \Delta(v)$ for all $L \in K$
Therefore $g_{v}\left(L_{1}\right)=g_{v}\left(L_{2}\right)=\Delta(v)$, i.e. $L_{1}, L_{2} \in M(v)$, which contradicts $L E \operatorname{ext}(M(v))$.

We now consider relating two separate approaches to describing the envelope of F .
First we define $F^{+}(L):=\sup _{z \in h^{*}(L)}$ Re z.
Since $g_{v}(L)=F^{+}(L)-\operatorname{Re} v(L)$ we have that $F^{+}(L)$ is ω^{*} u.s.c. on K.
Now define $U_{F}(L)=\sup _{f \in F} \operatorname{ReLf}$,
Let $n(L)$ denote the collection of all ω^{*} open nbhds in K of L
Let $\quad U_{F}{ }^{+}(L):=\inf _{W \in \cap(L)} \sup _{\ell \in W} U_{F}(\ell)$.
The characterisation of the s.b.a. from a linear subspace has been obtained in [33] in terms of $\mathrm{U}_{\mathrm{F}}{ }^{+}(\mathrm{L})$. It is now obtainable from the results in section 3 by employing the following Lema.

Lemma 2.7. $\mathrm{U}_{\mathrm{F}}{ }^{+}(\mathrm{L})$ is identical to $\mathrm{F}^{+}(\mathrm{L})$ on K.
Proof
Suppose to the contrary there exists an $L \in K$ with $F^{+}(L)=a$ and $a>U_{F}{ }^{+}(L)$. Then there exists $a: W \in n(L)$ with $a>\sup _{l \in W} \sup _{f \in \mathbb{F}} R e \ell f$
$=\sup _{l \in W} \sup _{z \in h(l)} \operatorname{Re} z$
$=\sup \left\{\operatorname{Re} z: z \in\left[\underset{\ell \in W}{u_{1}} h(\ell)\right]^{\circ}\right\}$
on the other hand

$$
\begin{aligned}
& a \leqslant \sup \left\{\operatorname{Re} z: z \in{\left.\underset{N \in \eta(L)}{n}\left[\bigcup_{l \in N}^{u} h(l)\right]^{0}\right\}}\right. \\
& \leqslant \sup \left\{\operatorname{Re} z: z \in\left[\bigcup_{l \in N}^{u} h(l)\right]^{0}\right\}
\end{aligned}
$$

leading to a contradiction.
Now suppose there exists an $L \in K$ with $F^{+}(L)=r$ and $r<U_{F}{ }^{+}(L)$. Since F^{+}is ω^{*} u.s.c. on K, there exists a $W \in \eta(L)$ such that

$$
F^{+}(\ell)<r \text { for all } \ell \in U
$$

but $h(l) \subset h^{*}(l)$ for all $\ell \in W$.
Therefore $\sup _{z \in h(\ell)} \operatorname{Re} z \leqslant \sup _{z \in h^{*}(\ell)} \operatorname{Re} z=F^{+}(\ell)$ for all $\ell \in H$
and $\sup \left\{\operatorname{Re} z: z \in\left[\ell{\underset{W}{W}}^{u}(L) h(\ell)\right]^{0} \leqslant x\right\}$.
however, $\sup _{\ell \in \mathrm{W}} \sup _{\mathrm{f} \in \mathrm{F}} \operatorname{Re} \ell \mathrm{f}>\mathrm{r}$, leading to a contradiction.

3. Characterisation of the best approxliation to in*

We first finc circumstances uncer which $\rho_{v}\left(h^{*}\right)$ is bounded between two real numbers.

Theorem 3.1.
Suppose $v_{o} \in V$ and Ω a subset of K have the following properties:
(i) $\operatorname{Re}\left(z-L v_{0}\right) \neq 0$ for all $L \in \Omega$ and $z \in \eta\left[h^{*}, v_{0}, L.\right]$
(ii) For no v in V do we have the inequality $\operatorname{Re} L\left(v-v_{o}\right)>0$ satisfied for all $L \in \Omega$.

Then $\inf _{L \in \Omega}^{a}\left(n^{*}(L), v_{o}(L)\right) \leqslant \rho_{v}\left(n^{*}\right)<\Delta\left(v_{o}\right)$.

PROOF
Suppose $\rho_{v}\left(h^{*}\right)<\inf _{L \in \Omega} \hat{a}\left(h^{*}(L), v_{o}(L)\right)$.
Then there exists a $v \in V$ with $\rho_{v}(h *) \leqslant \Delta(v)<\inf _{L \in \Omega} a\left(h *(L), v_{o}(L)\right)$.
hence for every $L \in \Omega, \hat{d}\left(h^{*}(L), v(L)\right)<\hat{d}\left(h^{*} *(L), v_{0}(L)\right)$.
Therefore for all $L \in \Omega$ and $z \in n\left[\mathrm{H}^{*}, \mathrm{v}_{0}, \mathrm{~L}\right]$

$$
\operatorname{Re}(z-v(L)) \leqslant \sup _{z \in h^{*}(L)} \operatorname{Re}(z-v(L))<\operatorname{Re}\left(z-v_{0}(L)\right) .
$$

Hence $\quad 0<\operatorname{ke}\left[\mathrm{y}(\mathrm{L})-\mathrm{v}_{\mathrm{o}}(\mathrm{L})\right]$ contradicting (ii).

We are now in a position to generalise tae global Kolmogoroff criterion for a sufficient condition for the best approximation from V.

Theorem 3.2

$$
\begin{aligned}
& v_{o} \in V \text { is a best approximation to } h^{*} \text { if for all } v \in V \\
& \min _{\operatorname{L\in M}\left(v_{o}\right)} \operatorname{Re} L\left(v-v_{o}\right) \leqslant 0 .
\end{aligned}
$$

YKOOF
Take $\boldsymbol{H}=\mathrm{M}\left(\mathrm{v}_{\mathrm{o}}\right)$ in Theorem 3.1.
If there exists a $(L, z) \in D\left[h^{*}, v_{0}^{j}\right]$, such that $z-L v_{0}=0$, then obviously v_{o} is a best approximation.
If for all $(L, z) \in D\left[h^{*}, v_{0}\right], \operatorname{ke}\left(z-L v_{0}\right) \neq 0$,
then by Theorem 3.1.

$$
\Delta\left(v_{0}\right)=\inf _{L \in M\left(v_{0}\right)} \hat{d}\left(h^{*}\left(i_{1}\right), v_{0}(L)\right) \leqslant \rho_{v}\left(h^{*}\right) \leqslant \Delta\left(v_{0}\right)
$$

and hence v_{o} is a best approximation.

The conaition of Ineorem 3.2. is not always necessarily satisfied by a best. approximation from V.
However, if V is resular, we can prove the following.

Theorem 3.3

If $V \subset X$ is regular at v_{0} then v_{0} is a best approximation to $h *$ if and only if for all $v \in V \min _{\operatorname{LeM}\left(v_{0}\right)} \operatorname{Re} \operatorname{L}\left(v-v_{0}\right) \leqslant 0$

PROOF

The sufficiency of the condition follows from theorem 3.2. It remains to show the necessity.
Suppose there exists a $v \in V$ witin $\min _{\operatorname{L\in M}\left(v_{0}\right)} \operatorname{Re} L\left(v-v_{0}\right)=a>0$.
Set $U:=\left\{L \in K \left\lvert\, \operatorname{Re} L\left(v-v_{0}\right)>\frac{a}{2}\right.\right\}$
U is ω^{*} open in K and contains $M\left(v_{0}\right)$. For all $L \in U, \operatorname{Re} L\left(v-v_{0}\right) \geqslant \frac{a}{2}$
by the regularity of V at v_{0}, for all real $\lambda>0$, there exists $a v_{\lambda} \in V$ with $\operatorname{keL}\left(v_{\lambda}-v_{0}\right) \geqslant 0$ for all $L \in U^{0}$
and $\cdot\left\|v_{\lambda}-v_{0}\right\|<\lambda$.
For $L \in U$ and $z \in h^{*}(L), \operatorname{Re}\left(z-L v_{\lambda}\right)=\operatorname{Re}\left(z-L v_{0}\right)+\operatorname{Re}\left(L_{0}-L_{0} v_{\lambda}\right)$
$<\operatorname{Re}\left(z-L v_{0}\right)$
Since $h *(L)$ is compact for each $L \in U, \hat{d}\left(h^{*}(L), L v_{\lambda}\right)<\hat{d}\left(h^{*}(L), L v_{0}\right)$. On the other hand, $K \backslash l i$ is weak* compact and is disjoint from $M\left(v_{0}\right)$. Therefore $\sup _{L \in K \backslash u} \hat{d}\left(h^{*}(L), v_{0}(L)\right)=E^{*}<\Delta\left(v_{0}\right)$

If we set. $\lambda:=\Delta\left(v_{0}\right)-E *$ then for $z \in h^{*}(L)$ we have $\operatorname{Re}\left(z-L v_{\lambda}\right)=\operatorname{Re}\left(z-L v_{0}\right)+\operatorname{Re}\left(L v_{0}-L v_{\lambda}\right)<\Delta\left(v_{0}\right)$

Hence $\hat{d}\left(h^{*}(L), v_{\lambda}(L)\right)<\Delta\left(v_{o}\right)$
and $\Delta\left(v_{\lambda}\right)=\sup _{L \in K} \hat{d}\left(h^{*}(L), v_{\lambda}(L)\right)<\Delta\left(v_{o}\right)$

We now formulate a uniqueness result for the best approximation, analogous to Theorem 3.13 in [6].

Theorem 3.4

If $V \subset X$ is regular and v_{0} is a best approximation to $h *$ from V, then the best approximation is unique, in the case that $\operatorname{Re} L\left(v-v_{0}\right)=0$ on a subset of $M\left(v_{o}\right)$ which is sign-extremal for v_{o} implies $v=v_{o}$ on K. yROOF
Suppose v_{1} is another best approximation to h^{*}.
For any $(\dot{L}, z) \in L\left[h^{*}, v_{o}\right]$
$\operatorname{Re}\left(z-L v_{1}\right)=\operatorname{Re}\left(z-L v_{0}\right)+\operatorname{ReL}\left(v_{0}-v_{1}\right)$

$$
\begin{aligned}
& \leqslant d\left(h^{*}(L), v_{1}(L)\right) \\
& \leqslant d\left(h^{*}(L), v_{0}(L)\right) \\
& =\operatorname{Re}\left(z-L v_{0}\right) .
\end{aligned}
$$

Therefore $\operatorname{Re} L\left(v_{1}-v_{0}\right) \geqslant 0$ for all $L \in M\left(v_{0}\right)$
but by Theorem 3.3. $\min _{\operatorname{LeM}\left(v_{0}\right)} \operatorname{Re} L\left(v_{1}-v_{0}\right) \leqslant 0$
Hence $\Sigma^{\prime}:=\left\{L \in \mathbb{H}\left(v_{o}\right) \mid \operatorname{ReL}\left(v_{1}-v_{o}\right)=0\right\} \frac{1}{f} \emptyset$
Assume $\Sigma^{i} \neq M\left(v_{0}\right)$, otherwise the result follows trivially.
If follows by Lemnas 8 and 9 in [15] that Σ^{\prime} is sign-extremal and by the conaition of our theorem $v_{1}=v_{o}$ on K.
4. appruximating functions with a fréchet derivative

Let D be an open subset of a Banach space E with norm $\|\cdot\| \|_{E}$.
Let V be the set of elements $v(a) \in X$ which depend on the parameter $a \in D$.
i.e. $V: D \rightarrow X$ and $V=\{v(a) \in X, a \in D\}$.

We shall henceforth assume that $v(a)$ has a Fréchet derivative with respect to a for each a $\in D$.
i.e. for any $b \in E$ there exists a linear bounded mapping $v_{a}^{\prime}: E+X$ which we denote by $v^{\prime}[b, a]$ with

$$
\left\|v(a+b)-v(a)-v^{\prime}[b, a]\right\|=o\left(\|b\|_{E}\right) \text { as }\|b\|_{E} \rightarrow 0
$$

Let $\mathcal{L}[a]$ denote the linear subspace of X consisting of all elements $v^{\prime}[b, a] b \in E$.

Let N be the dimension of $\mathcal{L}[a]$ and $\Phi_{1}, \ldots \Phi_{N}$ be a basis for, $\mathcal{E}[a]$.

We observe that if $v(a)$ has a Fréchet derivative at a, then

$$
\|v(a+t b)-v(a)\|=O(t) \text { for any } b \in E \text {. }
$$

We can therefore say that for $0<t \leqslant t_{0}, v(a+t b)$ lies in the ε-locality of $v(a)$ deifined by the norm spinere $S(v(a), \varepsilon)$ for sone $\varepsilon>0$.
$v(a)$, then, is a local best approximation to $i 2 *$ when $\Delta(v(a)) \leqslant \Delta(v(c))$, for all $\mathrm{V}(\mathrm{c}) \in \mathrm{V}$ and in an ε-locality of $\mathrm{v}(\mathrm{a})$ for sone $\varepsilon>0$.

Theorem 4.1.
$v(a)$ is $a(l o c a l)$ best approximation to h^{*} implies that for all $b \in E$

$$
\min _{L \in N(v(a))} \operatorname{Re} L v^{\prime}[b, a] \leqslant 0
$$

PROOF
 We show there exists a better approximation to h^{*} than $v(a)$.
Let U be the set of $L \in K$ for winch

$$
\operatorname{Re} L v^{\prime}[b, a] \geqslant 2 \sigma>0
$$

Since D is an open set in E, there exists a $t_{o}>0$ for all t in $0<t<t_{o}$ $a+t b \in D \quad(v(a+t D)$ lies in an ε-locality of $v(a))$.

For $L \in U$

$$
\begin{aligned}
\operatorname{Re} L[v(a+t i)-v(a)] & =\operatorname{ReL}\left[v^{\prime}[t b, a]\right]+\operatorname{Re} L\left[v(a+t b)-v(a)-v^{\prime}[t b, a]\right] \\
& \geqslant 2 \sigma t-0(t) .
\end{aligned}
$$

Hence there exists a t_{1} with $0<t_{1} \leqslant t_{0}$ such that for all $t, 0 \leqslant t \leqslant t_{l}$ and $\downarrow \in U$

$$
\operatorname{Re} L[v(a+t b)-v(a)] \geqslant \sigma t>0
$$

and therefore

$$
\begin{aligned}
\operatorname{Re}[z-\operatorname{Lv}(a+t b)] & =\operatorname{Re}[z-\operatorname{Lv}(a)]+\operatorname{Re}[\operatorname{Lv}(v(a)-v(a+t b))] \\
& <\operatorname{Re}[z-\operatorname{Lv}(a)]
\end{aligned}
$$

Therefore $\hat{d}(h *(L), v(a+t i)(L))<\Delta(v(a))$ for all LEU. We observe here that

$$
\begin{aligned}
||v(a+t b)-v(a)|| & \leqslant\left|v^{\prime}[t b, a]\right|\left|+\left|v(a+t b)-v(a)-v^{\prime}[t b, a]\right|\right| \\
& =t\left|v^{\prime}[b, a]\right| \mid+O(t) \ldots
\end{aligned}
$$

Hence there exists a $t_{2}, 0<t_{2} \leqslant t_{1}$ such that for all t in $0 \leqslant t \leqslant t_{2}$

$$
||v(a+t b)-v(a)|| \leqslant 2 t\left\|v^{\prime}[b, a]\right\|
$$

We now consider the set $W=K \backslash U$.
This is weak* compact and does not contain any member of $\mathrm{M}(\mathrm{v}(\mathrm{a}))$.
Therefore $\sup _{L \in N} \hat{d}\left(h^{*}(L), v(a)(L)\right)=E^{*}<\dot{\varphi}(v(a))$
Let τ be such that $0<\tau<\min \left(\dot{t}_{2}, \frac{\Delta(v(a))-E^{*}}{2\left\|v^{\prime}[b, a]\right\|}\right.$

For $L \in W, z \in h *(L)$

$$
\begin{aligned}
\cdot \operatorname{Re}[z-\operatorname{Lv}(a+\pi b)] & \leqslant \operatorname{Re}[z-\operatorname{Lv}(a)]+\operatorname{Re}[\operatorname{L}(v(a)-v(a+\tau b))] \\
& \leq \sup _{z \in h^{*}(L)} \operatorname{Re}[z-\operatorname{Lv}(a)]+\|v(a)-v(a+\tau b)\| \\
& <E *+2 \tau\left\|v^{\prime}[b, a]\right\|
\end{aligned}
$$

Therefore $\hat{d}\left(h^{*}(L), v(a+\tau b)(L)\right)<\Delta(v(a))$ for ail $L \in W$
Hence $\quad \Delta(v(a+\pi b))<\Delta(v(a))$.

We remark that in tinis theoren, we can replace $M(v(a))$ by its extremel points, denoted by $\mathrm{E}_{\mathrm{o}}(\mathrm{n})$, by applying Lemma 1.3. Likewise, we have the following equivalence of two convex hulls, relating to the sequel.
, Let $[H, \Phi]$ denote $\left[\left(L \Phi_{1}, \ldots, L \Phi_{N}\right)^{T}\right.$ over all $\left.L \in \mathbb{H}(v(a))\right]$. This is a compact set in Euclidean N-space as is its convex hull [18] p.18. Now ext $[c o[\mathrm{n}, \Phi]] \subset \operatorname{ext}[\mathrm{H}, \Phi] \subset\left[\mathrm{E}_{0}(\mathrm{li}), \Phi\right]$ by Lemma 1.2 . Applying Lemma, 1.1, $c \rho[H, \Phi]=\operatorname{co}[\operatorname{ext}(\cos [H, \Phi])] \subset \operatorname{co}\left[E_{0}(M), \Phi\right]$. Obviously, $c o\left[\mathbb{E}_{0}(M), \Phi\right] \subset c o[H, \Phi]$ and hence the two are identical.

Corollary 4.1.
If $v(a)$ is a (local) best approxination to h^{*} fron V, then

$$
\underline{0} \in \operatorname{co}\left[\left(L \Phi_{1}, \ldots, L \phi_{N}\right)^{T} \text { over all } L \in \mathbb{M}(v(a))\right]
$$

PROOF
Suppose to the contrary that \underline{O} does not belong to the convex hull. Since $\left[\left(L \Phi_{1}, \ldots, L \Phi_{i j}\right)^{T}\right.$ over all $\left.L \in M(y(a))\right]$ is a compact set in Euclidean N-space, there exists an \mathbb{V}-dimensional vector $\subseteq \in E$ so that N
$\operatorname{Re}\left(\sum_{i=1} c_{i} L_{i}\right)>0$ for all $L \in \operatorname{M(v(a))}$

But

$$
\sum_{i=1}^{N} \quad c_{i} \Phi_{i} \in \mathcal{L}[a]
$$

and $\operatorname{ReL}\left(\sum_{i=1}^{N} c_{i} \phi_{i}\right)>0$ for all $L \in M(v(a))$
would imply that $\mathrm{v}(\mathrm{a})$ could not have been a (local) best approximation by the previous theorem.

For any $b \in E$, let $a+t b$ be represented by $a(t)$ with $a(0)=a$. Suppose $v(a(t))$ satisfies now a further condition (T) namely that $\frac{v(a(t))-v(a)}{t}$ is in the linear spart of $\left\{\phi_{i}(a(t))\right\}_{i=1}^{N}$ where $\left\|\Phi_{1}(a(t))-\Phi_{i}(a)\right\|=0(1)$ as $t \rightarrow 0$ for $i=1, \ldots, N$.

Theorem 4.2

If $v(a(t))$ satisfies (T), then a sufficient condition for $v(a)$ to be a local best approximation to h^{*} from V is tiat

$$
\underline{\mathrm{O}} \in \text { interior co }\left[\left(\mathrm{L} \Phi_{1}(\mathrm{a}), \ldots, \mathrm{L} \phi_{\mathrm{N}}(\mathrm{a})\right)^{\mathrm{T}} \text { over all } \mathrm{L} \in \mathrm{E}_{\mathrm{o}}(\mathrm{M})\right]
$$

proor
By the assumed. condition and the Appendix II
for any $b \in E$, there exists an $\varepsilon_{0}>0$ with $\underline{O}_{\in} \in \operatorname{co}\left[\left(L_{1}(a(t)), \ldots, L \phi_{N}(a(t))\right)^{T}\right.$
over all $\left.L \in E_{o}(N)\right]$
for $0 \leqslant t \leqslant \varepsilon_{0}$.
Suppose to the contrary $v(a)$ is not a local best approximation to h^{*}. Then for all $\varepsilon>0$, there exists $a t, 0<t \leqslant \varepsilon$ and $b \in E$ such that $a(t) \in D$ and $\rho_{v}\left(h^{*}\right) \leqslant \Delta(v(a(t)))<\Delta(v(a))$
i.e. for all $L \in K$

$$
\hat{d}\left(h^{*}(L), v(a(t))(L)\right)<\sup _{L \in K} \hat{d}\left(h^{*}(L), v(a)(L)\right)
$$

hence for all $L \in E_{0}(M)$ and $z \in h^{*}(L)$

$$
\operatorname{Re}(z-v(a(t))(L))<\operatorname{ke}(z-v(a)(L))
$$

i.e. $\operatorname{ke}[L(v(a(t))-v(a))]<0$ for all $L \in E_{0}(M)$
vividing through by t, we find

$$
\underline{0} \notin \operatorname{co}\left[\left(L_{1} \phi_{2}(a(t)), \ldots, L \Phi_{N}(a(t))\right)^{T} \text { over all } L \in E_{0}(M)\right]
$$

Hence a contradiction follows by taking $\varepsilon=\varepsilon_{0}$
5. APPROXIMATION OF REAL-VALUED FUNCTIONS BY GENERALISED RATIONALS IN INTERPOLATING SUBSPACES OF L_{1}

We may relate the results of section 4 to the following setting. Suppose we are working in the space $L_{1}(B, \Sigma, \mu)$. abbreviated $L_{1}(\mu)$, where B, with an appropriate topology is a compact Hausdorff space, and μ is a σ-finite measure (see Appendix I) . If we further assume that B is the union of at most countably many atoms, say $B=\underset{i \in I}{U} A_{i}$ then it can be shown that $\operatorname{ext}\left(B^{*}\right)$ is weak * closed and that each $L \in \operatorname{ext}\left(B^{*}\right)$ has the representation

$$
L(f)=\sum_{i \in I} f\left(A_{i}\right) \sigma\left(A_{i}\right) \mu\left(A_{i}\right) \quad f \varepsilon L_{1}(\mu)
$$

where $\left|\sigma\left(A_{i}\right)\right|=1$ and $f\left(A_{i}\right)$ denotes the constant value of f a.e. on A_{i}.

The relevance of these points is immediate if we take K in section 4 , to be B^{*} or $\operatorname{ext}\left(B^{*}\right)$ and recall Lemma, 2.6 that $E_{0}(H) \subset \operatorname{ext}(K)$ i.e. the above representation is valid for $E_{0}(N)$. Furthermore, the presence of atoms enables us to use the concept of interpolating subspaces (see p.9). We remark that in computational work with the L_{1} norm, we are obliged to discretise and hence our setting is a practical one. Suppose we are given a set of real-valued functions $F \subset L_{1}(\mu)$ and we wish to characterise local best approximations from $V=R_{n, m}^{+}$ (see p. 10). To recall, let $g_{1}, \ldots, g_{n} ; h_{1}, \ldots, h_{m}$ belong to the subspace of $L_{1}(\mu)$ consisting of real-valued continuous functions.

Let $D:=\left\{\left(\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{m}\right) \in E^{n+m}, \sum_{i=1}^{m} \beta_{i} h_{j}(\Sigma)>0\right.$ on $\left.B\right\}$

Fox $\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{m}\right) \in D$

$$
\left(c_{1}, \ldots, c_{n} ; d_{1}, \ldots ., d_{m}\right) \in E^{n+m} \text { and real } \lambda
$$

Let $\quad r_{\lambda}(x):=\frac{\sum_{i=1}^{n}\left(a_{i}+\lambda c_{i}\right) g_{i}(x)}{\sum_{i=1}^{m}\left(b_{i}-\lambda d_{i}\right) h_{i}(x)}$.

Then

$$
r_{0}(x):=\frac{\sum_{i=1}^{n} a_{i} g_{i}(x)}{\sum_{i=1}^{m} b_{i} h_{i}(x)} \in R_{n, m}^{+}
$$

For any $\underline{d}=\left(d_{1}, \ldots, d_{m}\right)$ we can always find a $\hat{\lambda}=\hat{\lambda}(\underline{\alpha})>0 \quad$ and $a \lambda^{*}=\lambda^{*}(\underline{c}, \underline{d}) ; 0<\lambda^{*} \leq \hat{\lambda}$ such that

$$
\left|\hat{\lambda} \sum_{i=1}^{m} d_{i} h_{i}(x)\right|<\sum_{i=1}^{m} b_{i} h_{i}(x) \text { on } B
$$

and r_{λ} belongs to an $\varepsilon-$ locality of r_{0} for $|\lambda| \leq \lambda^{\dot{x}}$
We shall use the following abbreviations.
$q_{m}(\lambda, \underline{d}, x):=\sum_{i=1}^{m}\left(b_{i}-\lambda d_{i}\right) h_{i}(x)$ and $q_{m}(x):=\sum_{i=1}^{m} b_{i} h_{i}(x)$.
We can present a simplification of our problem to that of approximating a single valued w^{*} u.s.c. function F^{+} $E^{+}: K \rightarrow R \quad$ defined by $F^{+}(L)=\max _{z \in h^{*}(L)}^{z}$ (L) \quad (see $p .47$ top) For now we have.

$$
\Delta\left(r_{0}\right)=\sup _{L \in K} g_{r_{0}}(L)=\sup _{L \in K}\left[F^{+}(L)-r_{0}(L)\right]
$$

THEOREM 5.1

Let $p_{n} \in P \equiv \operatorname{span}\left[g_{1}, \ldots, g_{n}\right]$
and $\quad q_{m} \quad E Q \equiv \operatorname{span}\left[h_{1}, \ldots, h_{m}\right]$
and suppose $r_{0}:=\frac{P_{n}}{q_{m}} \varepsilon R_{n, m}^{+}$

If (a) r_{0} is a locally best L_{1} approximation

- to F^{+}
and (b)
$\mathcal{L}\left[r_{0}\right]=\frac{p}{q_{m}}+r_{0} \frac{Q}{q_{m}}$ is an N-dimensional interpolating subspace of $L_{1}(\mu)$, with basis $\phi_{1}, \ldots, \phi_{\mathbb{E}}$.

Then
(i) There exist $N+1$ independent functionals L_{1}, \ldots, I_{N+1} in ext $\left(M\left(r_{0}\right)\right.$), abbreviated $E_{0}\left(\begin{array}{l}\text { i })\end{array}\right.$, such that
$\underline{0} \in$ interior co $\left[\left(L_{i} \phi_{1}, \ldots, L_{i} \phi_{N}\right)^{T} \quad i=1, \ldots, N+1\right]$.
(ii) 0 is the only element ϕ of $\frac{P}{q_{m}}+r_{0} \frac{Q}{q_{m}}$
having the property $L_{i} \phi \geqslant 0$ for $i=1, \ldots, N+1, L_{i}$ as in (i). (iii) $\exists \sigma \quad 0<\sigma \leqslant \lambda^{*}$ such that $\forall \lambda,|\lambda| \leq \sigma$
$\frac{P}{q_{m}(\lambda, \underline{\alpha})}+r_{0} \frac{Q}{q_{m}(\lambda, \underline{d})}$ is an interpolating subspace on $\left\{L_{i}\right\}_{i=1}^{N+1}$
(iv) r_{0} is a unique locally best approximation in the ε - locality of r_{o} restricted to $|\lambda| \leq \sigma$ and denoted by $U\left(r_{0}, \sigma\right)$

PROOF. (i)

By Corollary 4.1, the origin of N space lies in the convex hull of the set
$\left[\left(L_{i} \phi_{1}, \ldots, L_{i} \phi_{N}\right)^{T}\right.$ for $\left.i=1, \ldots, k\right]$.

By Caratheodory's Theorem, (cf. [64] p.58) ksN+1. Now for each $j, 0=\sum_{i=1}^{k} \theta_{i} L_{i} \phi_{j}$ with $\theta_{i} \geqslant 0$. Hence, by the interpolating condition, $k \geqslant N+1$ and so $k=N+1$.

Furthermore, the origin cannot lie on the boundary, for then k would be equal to N.

Hence the origin of N space lies in the interior of the convex hull of the set
$\left[\begin{array}{llll}\left(L_{i}\right. & \phi_{1} & \ldots & L_{i}\end{array} \phi_{N}\right)^{T}$ for $\left.i=1, \ldots, N+1\right]$. Finolly we romark that it also follows that this convex hull does not lie in a plane, and hence is a body in Euclidean N space.
(ii) Suppose ϕ is a non-zero element of $\frac{P}{q_{m}}+r_{0} \frac{Q}{q_{m}}$

$$
\begin{gathered}
\phi=\sum_{j=1}^{N} a_{j} \phi_{j} \\
L_{i} \phi=\sum_{j=1}^{N} a_{j} L_{i}\left(\phi_{j}\right) \\
\text { Now } 0=\sum_{i=1}^{N+1} \theta_{i} L_{i}\left(\phi_{j}\right)
\end{gathered}
$$

and multiplying this equation by a_{j} and summing over j

$$
\begin{aligned}
& 0=\sum_{i=1}^{N+1} \theta_{i} \sum_{j=1}^{N} a_{j}\left[L_{i}\left(\phi_{j}\right)\right] \\
& 0=\sum_{i=1}^{N+1} \theta_{i} L_{i} \phi .
\end{aligned}
$$

By the interpolating condition at most N - 1 of the numbers $L_{i} \phi$ can vanish. Hence at least one of the $L_{i} \phi$ is positive and at least one is negative.

Hence ϕ is zero.
(iii) Let λ. be sufficiently small

Then $\quad \tilde{\phi}_{i}(\lambda, \underline{d}) \equiv \frac{q_{m}}{q_{m}(\lambda, \underline{d})} \phi_{i} \quad i=1, \ldots, N$
is a basis for $\frac{P}{q_{m}(\lambda, \underline{d})}+r_{0} \frac{Q}{q_{m}(\lambda, \underline{d})}$.
By continuity of determinants, we have
$\frac{P}{q_{m}(\lambda, \underline{d})}+r_{0} \frac{Q}{q_{m}(\lambda, \underline{d})}$ is an interpolating subspace on $\left\{L_{i}\right\}_{i=1}^{N+1}$ since $\inf \left|\operatorname{det}\left[L_{i} \tilde{\phi}_{j}(\lambda, \underline{d})\right]\right|>0$ We note that the argument in (ii) is valid for this subspace also, since \underline{O} belongs to the perturbed convex hull, by (i) and APPEIDIX II.
(iv) Let $r_{\lambda}(x) \varepsilon U\left(r_{0}, \sigma\right)$ be another locally best L_{1} approximation to F^{+}in the vicinity of r_{0}.

Take $\phi:=r_{0}-r_{\lambda} \varepsilon \frac{P}{q_{m}(\lambda, \underline{d})}+r_{0} \frac{Q}{q_{m}(\lambda, \underline{d})}$
and $L_{i}\left(r_{0}-r_{\lambda}\right)=\left(F^{+}\left(L_{i}\right)-r_{\lambda}\left(L_{i}\right)\right)-\left(r^{+}\left(I_{i}\right)-r_{0}\left(L_{i}\right)\right)$

$$
\leqslant 0 \quad i=1, \ldots, N+1, \quad L_{i} \text { as in (i). }
$$

But from (i) and the Appendix II

$$
\begin{gathered}
\underline{0} \varepsilon \text { convex hull }\left[\left(L_{i} \tilde{\phi}_{1}(\lambda, \underline{d}), \ldots, L_{i} \tilde{\phi}_{N}(\lambda, \underline{d})\right)^{T}\right. \\
i=1, \ldots, N+1] .
\end{gathered}
$$

Hence by the note to (iii),

$$
r_{0} \equiv r_{\lambda}
$$

We now strengthen (iv) of Theorem 5.1. and show that under suitable conditions there is local strong unicity in the sense of Newman and Shapiro.

We will need the following 1 emma adapted from [18] p. 162 .

Lemma 5.1.

If $\quad r_{0}:=\frac{p_{n}}{q_{m}} \in R_{n, m}^{+}$such that
(c) ${ }^{-} \operatorname{dim}\left(\frac{P}{q_{m}}+r_{O} \frac{Q}{q_{m}}\right)=\operatorname{dim}\left(\frac{P}{q_{m}}\right)+\operatorname{dim}\left(\frac{Q}{q_{m}}\right)-1$
and if $p \in P, q \in Q$ satisfy
(i) $\quad\|q\|=\| \|_{\mathrm{q}} \|$
(ii). $p=r_{0} q$
(iii) $\quad \mathrm{q}(\mathrm{x}) \geqslant 0$ on B .

Then $\mathrm{p}=\mathrm{p}_{\mathrm{n}}, \mathrm{q}=\mathrm{q}_{\mathrm{m}}$.
THEOREM 5.2.
Under conditions (a) and (b) of Theorem 5.1 and (c) of Lemma 5.1. there exists a constant $\gamma>0$ such that

$$
\begin{aligned}
\text { for all } & r_{\lambda}(x)
\end{aligned} \quad \in U\left(r_{0}, \sigma\right), ~ \Delta\left(\dot{r}_{\lambda}\right) \geqslant \Delta\left(r_{0}\right)+\gamma\left\|r_{\lambda}-r_{0}\right\| l l
$$

PROOF
For $0<|\lambda| \leqslant \sigma$, define for the set $U\left(r_{0}, \sigma\right)$

$$
\gamma\left(r_{\lambda}\right)=\frac{\Delta\left(r_{\lambda}\right)-\Delta\left(r_{0}\right)}{\left\|r_{\lambda}-r_{0}\right\|}
$$

and suppose to the contrary, there exists a sequence $\left\{r_{\lambda_{k}}\right\} \in U\left(r_{0}, \sigma\right)$ $r_{\lambda_{k}} \neq r_{o}$ and $\gamma\left(r_{\lambda_{k}}\right) \rightarrow 0$.

We may suppose $\gamma\left(r_{\lambda_{k}}\right)<\frac{1}{2}$ for $k \geqslant n_{0}$.
Then we can show $0<\left\|r_{\lambda_{k}}-r_{0}\right\|<\infty, k \geqslant n_{0}$.
For take any $f \in F$

$$
\begin{aligned}
\left\|r_{\lambda_{k}}-r_{0}\right\| & \leqslant\left\|r_{\lambda_{k}}-f| |+\right\| r_{o}-f| | \\
& \leqslant \sup _{f \in F}\left\|r_{\lambda_{k}}-f| |+\sup _{f \in F}\right\| r_{o}-f| | \\
& \leqslant \Delta\left(r_{\lambda_{k}}\right)+\Delta\left(r_{0}\right) \\
& \leqslant 2 \Delta\left(r_{0}\right)+\frac{1}{2}| | r_{\lambda_{k}}-r_{o} \| \text { for } k \geqslant n_{o} \text { by our supposition. }
\end{aligned}
$$

therefore $\left|\mid r_{\lambda_{k}}-r_{0} \| \leqslant 4 \Delta\left(r_{0}\right) \leqslant 4 \alpha \quad k \geqslant n_{0}\right.$.
liext we show there exists a sequence of $r_{\lambda_{k}}$ relabclled the same, such that

$$
\lim _{k \rightarrow \infty} r_{\lambda_{k}}=r_{0}
$$

Since $0<\left|\lambda_{k}\right| \leqslant \sigma$, either $\lim _{k \rightarrow \infty} \lambda_{k}=0$ for cvery subsequence in whicin
case $\lim _{k \rightarrow \infty} r_{\lambda_{k}}=r_{o}$, or there exists a subsequence relabelled the same with
$\lim _{\mathrm{k} \rightarrow \infty} \lambda_{\mathrm{k}}=\lambda_{\mathrm{o}}$ where $0 \leqslant \lambda_{\mathrm{o}} \leqslant \sigma$,
Assume the latter to be the case.
Now $q_{m}\left(\lambda_{k}, d_{k}\right)=\sum_{i=1}^{m} \beta_{i}^{(k)} h_{i}(x)$ where $\sum_{i=1}^{m}\left|\beta_{i}^{(k)}\right|=1$ by our normalisation convention of chapter 1 , section 2.4.2.

Hence for each $i, 1 \leqslant i \leqslant m$, and for all k we have $\left|\beta_{i}^{(k)}\right|<1$ and therefore $b_{i}-1 \leqslant \lambda_{k} d_{i}^{(k)} \leqslant b_{i}+1$.
It follows that for each $i,\left\{d_{i}^{(k)}\right\}$ is a bounded sequence and we can extract a convergent subsequence such that $\lim _{k \rightarrow \infty} d_{i}^{(k)}=d_{i}^{(0)}$ and hence
$\lim _{k \rightarrow \infty} q_{m}\left(\lambda_{k}, d_{k}\right)=q_{m}\left(\lambda_{0}, \underline{d}_{0}\right)$

By definition

$$
\begin{aligned}
r\left(r_{\lambda_{k}}\right)\left\|r_{\lambda_{k}}-r_{o}\right\| & =\Delta\left(r_{\lambda_{k}}\right)-\Delta\left(r_{o}\right) \\
& \geqslant \max _{j=1, \ldots, N+1} L_{j}\left(r_{o}-r_{\lambda_{k}}\right)
\end{aligned}
$$

With $k \rightarrow \infty$ and our knowledge concerning the left hand side we apply the note to (iii) of Theorem 5.1, to obtain

$$
\lim r_{\lambda_{k}}=r_{0} .
$$

Now by Lemma 5.1,

$$
q_{m}\left(\lambda_{0}, d_{0}\right)=q_{m}
$$

Consequently as $k+\infty$,

$$
\frac{F}{q_{m}\left(\lambda_{k}, d_{k}\right)}+r_{o} \frac{Q}{q_{m}\left(\lambda_{k}, d_{k}\right)} \rightarrow \frac{p}{q_{m}}+r_{o} \frac{Q}{q_{m}}
$$

Finally we reason as follows.
For $L_{j} \in E_{0}(M)$ and $\phi \in \frac{P}{q_{m}\left(\lambda_{k}, d_{k}\right)}+r_{0} \frac{Q}{q_{m}\left(\lambda_{k},-\frac{d}{k}\right)}$
$w \in$ have by virtue of results (iii) and (ii) of Theorem 5.1 that for all k, including the limiting case,
$c_{k}=| | \phi \|_{1}^{\min }=1 \underset{j=1, \ldots, N+1}{\max } L_{j} \phi>0$.
But, $\quad \gamma\left(r_{\lambda_{k}}\right)\left\|r_{\lambda_{k}}-r_{0}\right\|_{1} \geqslant \underset{j=1, \ldots, N+1}{ } L_{j}\left(r_{0}-r_{\lambda_{k}}\right)$
and
one.

$$
\frac{r_{o}-r_{\lambda_{k}}}{\left\|r_{o}-r_{\lambda_{k}}\right\|_{1}} \in \frac{p}{q_{m}\left(\lambda_{k}, \dot{d}_{k}\right)}+r_{o} \frac{Q}{q_{m}\left(\lambda_{k}, \dot{d}_{k}\right)} \text {. and is of norm }
$$

Therefore

$$
\gamma\left(r_{\lambda_{k}}\right) \geqslant c_{k}>0
$$

Furthermore, if we let $c_{0}=\min _{\|\phi\|=1}^{\max } \operatorname{L}_{\mathrm{j}=1, \ldots, \mathrm{~N}+1} \phi . \quad \phi \in \mathcal{L}\left[\mathrm{r}_{\mathrm{o}}\right]$ isth $c_{0}>0$ as already deduced, we can show that for all ε, $0<\varepsilon<c_{0}$, we have that $c_{k}>c_{0}-\varepsilon$ for k sufficiently large.

To prove this last conjecture, assume k to be large enough that $q_{m}\left(\lambda_{k}, \hat{\alpha}_{k}\right) \bumpeq q_{m}$ and hence $\widetilde{\phi}_{i}\left(\lambda_{k}, \mathcal{A}_{k}\right) \bumpeq \phi_{i}$

Suppose now to the contrary there exists a convergent sequence(in ν) $\phi_{\nu}^{(k)} \in \frac{P}{q_{m}\left(\lambda_{k}, d_{k}\right)}+r_{0} \frac{Q}{q_{m}\left(\lambda_{k}, g_{k}\right)} \quad$ with $\left\|\phi_{\nu}^{(k)}\right\|=1$
and $\lim _{\nu \rightarrow \infty} \max _{j=1, \ldots, \mathbb{N}+1} L_{j} \phi_{\nu}^{(k)}=c_{k} \leqslant c_{0}-\varepsilon$
that is there exists an $\widetilde{\mathbb{N}}(k)$ such that for $\nu \geqslant \widetilde{\mathbb{N}}(k)$

$$
\max _{j=1, \ldots, N+1} L_{j} \phi_{\nu}^{(k)} \leqslant c_{o}-\frac{3}{4} \varepsilon
$$

Assume $\nu \geqslant \widetilde{N}(k)$. If we represent $\phi_{\nu}^{(k)}$ as $\sum_{i=1}^{11} a_{i}(\nu) \widetilde{\phi}_{i}\left(\lambda_{1 k}, \alpha_{k}\right)$ then $\left[a_{i}^{(\nu)}\right]_{i=1}^{\mathbb{N}}$ are bounded by our assumption on $\phi_{\nu}^{(k)}$ and $\hat{\psi}_{\nu}:=\sum_{i=1}^{N} a_{1}(\nu) \phi_{i}$ satisfies $\left\|\hat{\psi}_{\nu}-\phi_{\nu}^{(k)}\right\|<\frac{\varepsilon}{4}$ by our assumption on k . Hence $1-\frac{\varepsilon}{4}<\left\|\hat{\mu}_{\nu}\right\|<1+\frac{\varepsilon}{4}$ Now $\psi_{\nu}:=\frac{\hat{\psi}_{\nu}}{\left|\hat{\hat{\gamma}_{\nu}}\right|}$ is of norm one, belongs to $\mathscr{L}\left[r_{0}\right]$ and $\left\|\psi_{\nu}-\phi_{\nu}^{(\mathrm{k})}\right\| \leqslant\left\|\psi_{\nu}-\hat{\psi}_{\nu}\right\|+\left\|\hat{\psi}_{\nu}-\phi_{\nu}^{(\mathrm{k})}\right\|$ $<\left(1-\left\|\hat{\psi}_{\nu}\right\|\right)+\frac{\varepsilon}{4}$ $<\varepsilon / 2$

Consequently $-\frac{\varepsilon}{2}<\max L_{j} \psi_{\nu}-\max L_{j} \oint_{\nu}^{(k)}<\frac{\varepsilon}{2} \quad j=1, \ldots, N+1$ and $\max _{j=1, \ldots, N+1} L_{j} \psi_{\nu}<c_{0}-\frac{\varepsilon}{4} \quad$ which is clearly impossible
Thus we have shown that for k sufficiently large, $\gamma\left(r_{\lambda_{k}}\right)$ is bounded away from zero and we have been lad to a contradiction.

We now re-formulate Theorems 5.1 and 4.2
in terms of the more familiar "alternation" theorem.

THEOREM 5.3
Suppose $\frac{P}{q_{m}}+r_{0} \frac{Q}{q_{m}}$ is an N-dimensional interpolating subspace of $L_{1}(\mu)$ with basis $\phi_{1}, \ldots, \Phi_{N}$. Let

$$
\mathrm{L}_{1}, \ldots, \mathrm{~L}_{\mathrm{N}+1}
$$

$\varepsilon L_{1}^{*}(\mu)$.

Define Δ_{i} by

Then r_{0} is a locally best L_{1} approximation to F^{+}if and only if
(a) there exist $N+1$ linearly independent functionals $L_{1}, \ldots, \quad L_{N+1}$ in $E_{0}(M)$.
(b) $\Delta_{i} \Delta_{i+1}<0$ for $i=1, \ldots, N$.

Note that by the interpolating condition $\Delta_{i} \neq 0, i=1, \ldots, N+1$. PROOF. Fox necessity it remains to prove (b). Since by the Characterization Theorem 5.1
$\underline{0} \varepsilon$ interior convex hull $\left[\left(\mathrm{I}_{\mathrm{i}} \phi_{1}, \ldots, \mathrm{I}_{\mathrm{i}} \phi_{\mathrm{N}}\right)^{\mathrm{T}} \mid \mathrm{L}_{\mathrm{i}} \varepsilon \mathrm{E}_{0}(M) \mathrm{i}=1, \ldots, N+1\right]$, there exist positive scalars $\theta_{i}, i=1, \ldots, N+1$ and
$\sum_{i=1}^{N} \theta_{i} L_{i} \phi_{k}=-\theta_{N+1} L_{N+1} \phi_{k}$ for $\quad k=1, \ldots, N$.
Solving for θ_{i} by Cramer's rule

$$
\theta_{i}=(-1)^{N-i+1} \frac{\Delta_{i}}{\Delta_{N+1}} \theta_{N+1}
$$

from which the result follows.
Conversely, the system of equations

$$
\sum_{i=1}^{N} x_{i} L_{i} \phi_{k}=-L_{N+1} \phi_{k} \quad k=1, \ldots, N
$$

has a unique solution given by

$$
x_{i}=(-1)^{N-i+1} \frac{\Delta_{i}}{\Delta_{N+1}}
$$

and $\left\{x_{i}\right\}$ are positive $i=1, \ldots, N$. Hence $\underline{0} \varepsilon$ interior convex hull $\left[\left(L_{i} \phi_{1}, \ldots, L_{i} \phi_{N}\right)^{T} \mid L_{i} \varepsilon E_{0}(M), \quad i=1, \ldots, N+1\right]$.

```
APPENDIX I :: Measure Theory and }\mp@subsup{L}{p}{}(S,S, 的, 
```

A $\underline{\sigma}$-algobra over a set S is a family S_{0} of subsets of S such that
(i) $\phi, S \in \mathrm{~S}_{0}$
(ii) If $A \in S_{o}$ then $A^{C} \in S_{o}$
(iii) If $\left\{A_{n}\right\}$ is a sequence of sets in S_{o} then $\bigcup_{1}^{\infty} A_{n} \in S_{o}$

The sets in S_{O} are called measurable sets

An extended-real-valued function f on S is called $\left(\mathrm{S}_{-}\right)$measurable if for each real α, the set $\{s \in S: f(s)>\alpha\}$ is measurable.

A measure on ($\mathrm{S}, \mathrm{S}_{\mathrm{o}}$) is a function μ assigning to each $\mathrm{A} \in \mathrm{S}_{\mathrm{o}}$ an extended real number $\mu(\mathrm{A})$ such that
(i) $\mu(\phi)=0$
(ii) $\mu(A) \geqslant 0$ for all A
(iii) μ is countably additive on disjoint sets.
μ is called $\underline{\sigma \text {-finite }}$ if there is a sequence of sets $\left\{A_{n}\right\}$ such that $\mu\left(A_{n}\right)<\infty$ for all n and $\cup A_{n}=S$.

Example. Let $\mathrm{S}_{\mathrm{O}} \equiv \Sigma_{0}$, the class of all subsets of a set S and define $\mu(\mathrm{A})$ to be the number of points in A if this is finite and $+\infty$ otherwise. This μ is referred to as the counting measure. It is σ-finite if and only if S is countable.

The Characteristic Function of a set $E, \Psi_{E}=\left\{\begin{array}{l}1 \text { for } x \in E \\ 0 \text { for } x \in E\end{array}\right.$, is a measurable function $\Longleftrightarrow E$ is a measurable set.

A simple function (sf) is a real valued function on $\left(\mathrm{S}, \mathrm{S}_{0}\right)$ with the canonical representation sf $=\sum_{i=1}^{n} c_{i} \Psi^{\prime} E_{i}$ where $E_{i}=\left\{x:\right.$ sf $\left.(x)=c_{i}\right\} \quad$ and $c_{i} \in R$
sf is a measurable function $\Longleftrightarrow E_{i}$ is measurable for all i.

The class N_{0} is defined to be the ($\sigma-$ algebra of) subsets $N \in S$ such that $\mu(N)=0$. Its members are called μ-null sets.

If the set of points in S, for which a property P does not hold true, belongs to N_{o} we say P holds μ-almost everywhere ($\mu-$ a.e.)

For a simple measurable function (s.m.f.) $\phi \geqslant 0$, the integral of © w.r.t. μ is $\int \Phi \mathrm{d} \mu=$ $\sum_{1}^{n} c_{i}^{\prime} \mu\left(E_{i}\right)$ which is also positive but may be infinite.
[This integral has LINEARITY PROPERTIES]

For a real-valued function $\mathrm{f} \geqslant 0$ and measurable on S the integral of f w.r.t. μ is
$\int \mathrm{fd} \mu=\sup \left[\int \Phi \mathrm{d} \mu: \Phi\right.$ s.m.f., $\mathrm{O} \leqslant \varnothing \leqslant \mathrm{f}$ on S$]$ and if this is finite, f is said to be integrable.

An arbitrary real-valued measurable function f is called integrable if its positive and negative parts have finite integrals.
$\mathcal{L}_{\mathrm{p}}\left(\mathrm{S}, \mathrm{S}_{\mathrm{o}}, \mu\right)$ is the set of all everywhere-finite measurable functions on S such that $|\mathrm{f}|^{\mathrm{P}}$ is integrable, where p is real and $\geqslant 1$. It is a linear space. If we set the norm of $f \in \mathcal{L}{ }_{p}$ to be $\|f\|_{p}=\left(\int|f| p_{d \mu}^{1 / p}\right.$ and count the functions which are equal μ-a.e. as one equivalence class, we obtain the Lebesgue Space $\operatorname{Lp}\left(S, S_{0}, \mu\right)$ which is a complete normed space.

SPECIAL CASES OF Lp

(i) $L_{p}[0,1]$ is the case when μ is Lebesgue measure on the interval $[0,1]$ and S_{o} are the Lebesgue measurable subsets of $[0,1]$.
(ii) ℓ_{p}^{n} is the space $R^{n}\left(C^{n}\right)$ with $\|x\|_{p}=\left\{\left|x_{1}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right\rangle^{1 / p} \quad 1 \leq p<\infty$

Take S to be the set $(1, \ldots, n)$ and μ to be counting measure. Identify functions f on S with n-tuples ($\mathrm{f}_{\mathrm{i}}, \ldots, \mathrm{f}_{\mathrm{n}}$).
The integral of g on S, g real-valued and positive is just $\sum_{i=1}^{n} g_{i}$
Hence $\|f\|_{p}=\left(\Sigma\left|f_{i}\right|^{p}\right)^{1 / p}$
(iii) ℓp is the sequence space $x=\left(x_{1}, x_{2}, \ldots.\right)$ with $\sum^{\infty}\left|x_{i}\right|^{p}$ converging together with the norm $\|x\|_{p .} . \quad \quad \sum_{i=1}$

Take $S=N$ (the set of natural numbers) and μ the counting measure and employ the (canonical) identification of the previous example.

Given $\phi_{1}, \ldots, \phi_{\mathrm{N}}$ elements of X , an NoLoS. , and M a ω^{*} closed subset of B^{*} the unit ball of the dual space.
Let Φ denote $\left(\phi_{1}, \ldots, \phi_{N}\right)^{T}$ and \underline{Q} the origin of N-space.
Set co $[\mathrm{M}, \Phi]:=$ convex hull $\left[\left(L \phi_{1}, \ldots, L \phi_{N}\right)^{T} \quad: L \in N\right]$ and suppose this is a body in Euclidean N-space. $\left\|\frac{1}{1}\right\|$ denotes max $\left[\left\|\phi_{i}\right\|\right]_{i=1}^{11}$

LEMMA; If O is an interior point of $c o[H, \$]$ then there exists an $\varepsilon>0$ such that for $2 l l \Phi$ satisfying $\|\Phi-\Phi\|<\varepsilon, \quad O \in \operatorname{co}[H, \Phi]$ PROOF \therefore
Suppose to the contrary that for every $\varepsilon>0$, there exists a $\bar{\phi}(\varepsilon)$ with $\| \Phi-\Phi \varepsilon) \|<\varepsilon$ and $\underline{0} \notin \operatorname{co}[H, \Phi(\varepsilon)]$.
Then since $c o[h, \Phi(\varepsilon)]$ is compact there exists a separating hyperplane. That is there exists constants $c_{1}(\varepsilon), \ldots ., c_{N}(\varepsilon)$ not all zero, and a real number $\gamma(\varepsilon)$ such that $\operatorname{Re} \sum_{i=1}^{\mathbb{N}} c_{i}(\varepsilon) L \phi_{i}(\varepsilon) \geqslant \gamma(\varepsilon)>0$ for all $L \in M$. Without loss of generality, we can normalise $c_{i}(\varepsilon)$ so that $\left|c_{i}(\varepsilon)\right| \leqslant 1$ for ali i
Let $\varepsilon \rightarrow 0$. Then $L \phi_{i}(\varepsilon) \rightarrow L \phi_{i}$ for each i, and we can also extract a.
subsequence from $c_{i}(\varepsilon)$ such that $\lim _{\varepsilon \rightarrow 0} c_{i}(\varepsilon)=c_{i}$ for each i. Hence we can deduce $\inf _{L \in M}$ Re $\sum_{i=1} c_{i} L \phi_{i} \geqslant 0$
It follows that $c o[M, \Phi]$ lies to one side of this hyperplane. Furthermore, \underline{O} belongs either outside co[if, Φ] or on a hyperplane supporting co $[\mathrm{M}, \Phi]$ at $\underline{0}$.
It could not however be in the interior of the convex hull for then there would be points of the convex hull to either side of this hyperplane.
Hence we have been led to a, contradiction,

SIMULTANEOUS APPROXIMATION OF A FUNCTION AND ITS DERIVATIVE

WITH THE TAU WETHOD, PNRT I

FOREHORD: In this part we discuss the extension of the recursive form of the Tau method (cf. Ortiz 54]) to a simple case of a system of two Iinear differential equations with constant coefficients, perturbed by a linear combination of Chebyshev polynomials. The problem is closely related to that of finding simultaneous approximations of a function and its derivative.

We use duality arguments, introduced into this type of problem by T.J. Rivlin [64 p.98], to show that the Chebyshev polynomials are the only extremals for the functionals associated with our particular perturbation problem. We discuss the effective construction of the approximate solution of the system with the Tau method and find upper and lower bounds for the error. We also show that the best and the Tau approximations are, in the case considered, asymptotically comparable.

1. 1. - INTRODUCTION

We consider the second order differential equation

$$
Y^{\prime \prime}(x)+y(x)=0
$$

with the initial conditions

$$
y(0)=1 ; Y^{\prime}(0)=0
$$

which defines the solution $y(x)=\cos x$.
If we let $z \equiv-\frac{d y}{d x}$, the $2 n d$ order differential equation may be reposed as two simultaneous lst order equations

$$
\begin{aligned}
& y-\frac{d z}{d x}=0 \\
& \frac{d y}{d x}+z=0
\end{aligned}
$$

For conciseness let $\mathcal{X} \equiv[y, z]^{T}$ and D represent the 2 -dimensional operator $\left(\begin{array}{cc}1 & -\frac{d}{d x} \\ \frac{d}{d x} & 1\end{array}\right)$.

We are now looking for the solution X^{*}, on some compact interval J, to the system

$$
\begin{equation*}
{ }^{D} \underset{\sim}{2}=\underset{\sim}{0}, \underset{\sim}{y}(0)=[1,0]^{T} \tag{1}
\end{equation*}
$$

We a.ssume an approximate solution to (I) is sought on J. In the method described here we obtain separate polynomial approximations of degree n to y and its derivative by computing the exact solution $\left[y_{n}^{*}, z_{n}^{*}\right]^{T}$ or y_{n}^{*} of the perturbed system

$$
\begin{equation*}
D \mathbb{Z}=\left({ }_{\left.\tau_{2}(n) T_{n}^{(n)} T_{n}^{*}\right)}^{T_{n}^{*}} \quad \text { where } T_{n}^{*}(x) \equiv \cos 2 n \text { arc } \cos x^{\frac{3}{2}}\right. \tag{2}
\end{equation*}
$$

when $J \equiv[0,1]$.
The choice of the shifted Chebyshev polynomial on the right hand side of (2) signifies that the exror vector $e_{n}^{*} \equiv y_{n}^{*}-y^{*}$ satisfies the equioscillation property on $[0,1]$ in each component, in the image space of the operator D.

The error vector may be measured by any l_{p} sum of the individual l_{p} norms of its components, for $I \leq p \leq \infty$.

However, our interest lies in the double or vectorial uniform norm $\left\|D{\underset{-}{e}}_{-}^{*}\right\|_{\infty}=\max \left\{| | \tau_{1}^{(n)} T_{n}^{*}\left|\left\|_{\infty},\right\| \tau_{2}^{(n)} T_{n}^{*}\right| \|_{\infty}\right\}=2^{1-2 n} \max \left\{\left|\tau_{1}^{(n)}\right|,\left|\tau_{2}^{(n)}\right|\right\}$

In section we show that, with the Chebyshev perturbation, the system (2) satisfies.

$$
\left\|D_{-n}^{*}\right\|_{\infty} \leq\|D{\underset{\sim}{n}}\|_{\infty} \text { for all } y_{n}^{T} \varepsilon \pi_{n} \times \pi_{n}
$$

where π_{n} is the space of polynomials of degree less than or equal to n.

1. 2. THE DUAL PROBLEM AND THE CHEBYSHEV PERMURBATION.

PROBTEM A. Our problem is to find $\left[y_{n}^{*}, z_{n}^{*}\right] \quad \pi_{n} \times r_{n}$ such that $\min _{\left[y_{n}, z_{n}\right]} D\binom{y_{n}}{z_{n}}\left\|_{\infty}=\right\| D\binom{y_{n}^{*}}{z_{n}^{*}} \|_{\infty}$.
over all $\left[y_{n}, z_{n}\right]$ satisfying $y_{n}(0)=\sigma ; z_{n}(0)=\rho \quad \ldots(a)$

PROBLEM B. If we write

$$
D\binom{y_{n}}{z_{n}}=\binom{v_{n}}{w_{n}}, \quad\left[v_{n}, \quad w_{n}\right] \varepsilon \pi_{n} \times \pi_{n}
$$

then the supplementary conditions (a) become

$$
\begin{align*}
& F_{1}\left(v_{n}\right)=\alpha\left(w_{n}\right) \equiv \alpha \\
& F_{2}\left(w_{n}\right)=\beta\left(v_{n}\right) \equiv \beta \tag{b}
\end{align*}
$$

where $\mathrm{F}_{1}, \mathrm{~F}_{2}$ are linear functional. We will call Problem B that of finding a vector $\left[\bar{v}_{n}, \bar{w}_{n}\right]$ such that for any "admissable " ordered pair $\left[v_{n}, w_{n}\right]$ satisfying (b), we have $\quad\left\|\bar{v}_{n}\right\| \leq\left\|v_{n}\right\| ; \quad\left\|\bar{w}_{n}\right\| \leq\left\|w_{n}\right\|$
A solution of (B)
leads to
a solution of
(A) •

For our example, suppose we write

$$
\begin{array}{ll}
y_{n}=\sum^{n} a_{j} x^{j} & z_{n}=\sum^{n} c_{j} x^{j} \\
v_{n}=\sum^{n} b_{j} x^{j} & w_{n}=\sum d_{j} x^{j}
\end{array}
$$

then

$$
\begin{array}{rlrl}
\text { then } y_{n}+y_{n}^{\prime \prime} & =v_{n}+w_{n}^{\prime} . & \text { and } z_{n}+z_{n}^{\prime \prime} & =w_{n}-v_{v}^{\prime} \\
a_{n} & =b_{n} \\
a_{n-1}-n c_{n} & =b_{n-1} & =d_{n} \\
a_{j}+(j+2)(j+1) a_{j+2} & =b_{j}+(j+1) d_{j+1} \\
c_{j}+(j+2)(j+1) c_{j+2} & =d_{j}-(j+1) b_{j+1} \\
\text { for } j & =n-2, \ldots \quad \ldots, 0 .
\end{array}
$$

Let us restrict ourselves to the case of n even, for simplicity. Then we find for ${ }_{i=j}=0,1, \ldots \ldots n / 2$, setting $b_{n+1}=d_{n+1}=0$

$$
\begin{aligned}
(n-2 j)!a_{n-2 j}= & \sum_{i=0}^{i=j}(-1)^{i+j}(n-2 i)!b_{n-2 i} \\
& -\sum_{i=0}^{i=j}(-1)^{i+j}(n-2 i+1)!d_{n-2 i+l}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
(n-2 j)!c_{n-2 j}= & \sum_{i=0}^{i=j}(-1)^{i+j}(n-2 i)!d_{n-2 i} \\
& +\sum_{i=0}^{i=j}(-1)^{i+j}(n-2 i+1)!b_{n-2 i+1}
\end{aligned}
$$

Since $a_{0}=\sigma$ and $c_{0}=\rho$ we can write for $j=n / 2$

$$
\begin{aligned}
F_{I}\left(v_{n}\right) & \equiv \sum_{i=0}^{i=j}(-1)^{i+j}(n-2 i)!b_{n-2 i} \\
& =0+\sum_{i=0}(-1)^{i+j}(n-2 i+1)!d_{n-2 i+l} \equiv \propto \\
F_{2}\left(w_{n}\right) & \equiv \sum_{i=0}^{i=j}(-1)^{i+j}(n-2 i)!d_{n-2 i} \\
& =\rho-\sum_{i=0}(-1)^{i+j}(n-2 i+1)!b_{n-2 i+l} \equiv \beta
\end{aligned}
$$

We observe that for our example $F_{1}=F_{2} \equiv F$

Let $S_{n} \subset \pi_{n}$ be such that

$$
s_{n}=\left\{v_{n} \in \pi_{n}:\left\|v_{n}\right\|=1\right\}
$$

Definition $\quad v_{n} * \in S_{n}$ is an extremal element of F_{1} if

$$
\left|F_{1}\left(v_{n}^{*}\right)\right|=\left\|F_{1}\right\| \quad \text { Suppose } \operatorname{sign}\left(F_{1}\left(v_{n}^{*}\right)\right)=\varepsilon
$$

Lemma 1 For all $v_{n} \in \pi_{n}, F_{1}: F_{1}\left(v_{n}\right)=\alpha, \bar{v}_{n}=\varepsilon \alpha v_{n}{ }^{*} /\left\|F_{2}\right\|$ we have

$$
v_{n}^{*} \text { extremal for } F_{1} \Rightarrow\left\|v_{n}\right\| \geq\left\|\bar{v}_{n}\right\|
$$

Proof: Assume that v_{n} * is an extremal for F_{1}. If $\alpha=0$ the result is trivial. If $\alpha \neq 0$

$$
|\alpha|=\left|F_{1}\left(v_{n}\right)\right| \leq\left\|F_{1}\right\|\left\|v_{n}\right\|
$$

and $\left\|v_{n}\right\| \geqslant|\alpha|\left\|\left.\right|_{1}\right\|$, from which the result follows.

Conversely, since bounded linear functionals have extremals,it is readily found that if $\left\|\bar{v}_{n}\right\| \leqslant\left\|v_{n}\right\|$ for all v_{n} satisfying $F_{1}\left(v_{n}\right)=\alpha$ then $\bar{v}_{n}\left\|\bar{v}_{n}\right\|$ is an extremal element of F_{1}; provided $\alpha \neq 0$. Remark: In this argument w_{n} is arbitrary but fixed and \bar{v}_{n} is irrespectively a multiple of $\mathrm{v}_{\mathrm{n}}{ }^{*}$, an extremal element.
A similar result follows for F_{2} and the w_{n} : we set $\bar{w}_{n}=\beta w_{n} * /\left\|F_{2}\right\|$.

Furthermore, it follows by consistency considerations that α and β are non zero for $\sigma=1$ and $\rho=0$.

Since wo require $\overline{\mathrm{v}}_{\mathrm{n}}$, $\overline{\mathrm{v}}_{\mathrm{n}}$ to be minimal together, both mast ve non-eore multiples respectively of $\mathrm{v}_{\mathrm{n}}^{*}, w_{\mathrm{n}}^{*}$.

We require the following iemma for our example.
Lemma 2. If $v_{n}(x)=\sum_{j=0}^{n} b_{j} x^{j}$, with $b_{n}=1$,
where all the roots x_{i} are real, contained in $0 \leqslant x \leqslant 1$ and not all equal to zero, then $F\left(v_{n}\right) \neq 0$.

Proof. Obviously

$$
\prod_{i=1}^{k+2} x_{i} \leq \prod_{i=1}^{k} x_{i}
$$

and by considering the relationship between the roots of v_{n} and its coefificients we have

$$
\begin{aligned}
& (-1)^{k}(n-k)!b_{n-k}>(-1)^{k}(n-k-2)!b_{n-k-2}, \text { for } k \supseteq 2, \\
& \sum_{i=0}^{s}(-1)^{i}(n-2 i)!b_{n-2 i}>0 \text {, for } s \text { odd, }
\end{aligned}
$$

and certainly for s even.
With this Lemma we can derive, as in [64], Theorem 2.20 and usinc the canonical representation of F, that the only extremals of F are $\pm T_{n}^{*}$.
1.3. CONSTRUCTION OF THE TAU SOLUTTON

Following Ortiz [54], we introduce for the matrix operator 1 , a sequence of canonical polynomials $Q=Q_{n}(x)$ where each element is a vector $\quad Q_{n}(x)=\left(Q_{n}^{[1]}(x), Q_{n}^{[2]}(x)\right)^{T}$ such that

$$
D\left[Q_{n}^{[1]}(x)\right]=\binom{x^{n}}{0} \quad \text { and } \quad D\left[Q_{n}^{[2]}(x)\right]=\left(x^{n}\right)
$$

In fact simple recurrence relationships exist for these polynomials.
consider $\left(\begin{array}{cc}1 & -\frac{d}{d x} \\ \frac{d}{d x} & 1\end{array}\right)\binom{x^{n+1}}{-(n+1) x^{n}}=\binom{x^{n+1}+n(n+1) x^{n-1}}{0}$

$$
\begin{aligned}
& =D\left[Q_{n+1}^{[1]}\right]+n(n+1) \quad D\left[Q_{n-1}^{[1]}\right] \\
\therefore Q_{n+1}^{[1]} & =\binom{x^{n+1}}{-(n+1) x^{n}}-n(n+1) Q_{n-1}^{[1]}
\end{aligned}
$$

since $Q_{0}^{[1]}=\left({ }_{0}^{1}\right)$ and $e_{1}^{[1]}=\left({ }_{-1}^{x}\right)$
we have $2_{2}^{[1]}=\binom{x^{2}-2}{-2 x}$ and $2_{3}^{[1]}=\binom{x^{3}-6 x}{-3 x^{2}+6}$

$$
Q_{4}^{[1]}=\binom{x^{4}-12 x^{2}+24}{-4 x^{3}+24 x} Q_{5}^{[1]}=\binom{x^{5}-20 x^{3}+120 x}{-5 x^{4}+60 x^{2}-120} \quad \text { etc }
$$

|Likewise we obtain for the second series
$\left(\begin{array}{cc}1 & -\frac{d}{d x} \\ \frac{d}{d x} & 1\end{array}\right)\binom{(n+1) x^{n}}{x^{n+1}}=\binom{0}{n(n+1) x^{n-1}+x^{n+1}}$

$$
\begin{aligned}
& =n(n+1) D\left[Q_{n-1}^{[2]}\right]+D\left[Q_{n+1}^{[2]}\right] \\
\therefore \quad Q_{n+1}^{[2]} & =\binom{(n+1) x^{n}}{x^{n+1}}-n(n+1) Q_{n-1}^{[2]}
\end{aligned}
$$

Since $\quad Q_{0}^{[2]}=\binom{0}{1}$ and $Q_{1}^{[2]}=\binom{1}{x}$
we have $2_{2}^{[2]}=\binom{2 x}{x^{2}-2}, 2_{3}^{[2]}=\binom{3 x^{2}-6}{x^{3}-6 x}$

$$
Q_{4}^{[2]}=\binom{4 x^{3}-24 x}{x^{4}-12 x^{2}+24}, \quad 9_{5}^{[2]}=\binom{5 x^{4}-60 x^{2}+120}{x^{5}-20 x^{3}+120 x} \quad \text { etc. }
$$

Now $T_{n}^{*}(x)=\sum_{k=0}^{n} C_{k}^{(n)} x^{k}$ where the coefficients C_{k} are available to us and hence $\binom{Y_{n}^{*}}{z_{n}^{*}}=\tau_{1}^{(n)} \sum_{k=0}^{n} c_{k}^{(n)} Q_{k}^{[J]}+\tau_{2}^{(n)} \sum_{k=0}^{n} c_{k}^{(n)} Q_{k}^{[2]}$
where $\tau_{l}^{(n)}, \tau_{2}^{(n)}$ are determined by the initial conditions.
If we set $\tau^{(n)}=\left(\begin{array}{l}(n) \\ 1\end{array}, \frac{(n)}{2}\right)$ we can present the solution in vector notation $\quad y_{n}^{2}=\tau^{(n)} \sum_{k=0}^{n} C_{k}^{(n)} Q_{k}(x)$

The form of the solution when there ore gaps in the sequence Q (i.e. the case of undefined canonical polynomials) follows trivially from the algebraic theory developed by Ortiz in [54]

Example: Let us take $n=4$, then

$$
T_{4}(x)=128 x^{4}-256 x^{3}+160 x^{2}-32 x+1
$$

The initial coditions of the problem provide us with a system of linear algebraic: equations

$$
\binom{1}{0}=\tau_{1}^{(4)}\binom{128 \times 24-160 \times 2+1}{-6 \times 256+32}+\tau_{2}^{(4)}\binom{6 \times 256-32}{128 \times 24-2 \times 160+1}
$$

giving us $\tau_{1}^{(4)}=\frac{2753}{D_{4}}$ and $\tau_{2}^{(4)}=\frac{1504}{D_{4}}$ where $D_{4}=(2753)^{2}+(1504)^{2}$ $=9841025$

We find $y_{4}^{*}=\frac{I}{D_{4}} \cdot\left(352384 x^{4}+65280 x^{3}-4943200 x^{2}+1504 x+D_{4}\right)$
and $z_{4}^{*}=\frac{\mathrm{l}}{\mathrm{D}_{4}}\left(192512 \mathrm{x}^{4}-1794560 \mathrm{x}^{3}+44800 \mathrm{x}^{2}+9838272 \mathrm{x}\right)$

We can as well generate the approximate solution directly in terme of Chebyshev polynomialis, or in any other complete system \mathbb{R}, by means of a technique described by ortiz[55] which essentially consists of using canonical polynomiels represented in the basis \mathbb{R} which are mapped by D into the gencrators of the same basis. In our case, we can introduce

$$
q_{n}(x)=\left(q_{n}^{[1]}(x), q_{n}^{[2]}(x)\right)^{T}
$$

such that

$$
D{\underset{\sim}{n}}(x)=\binom{T_{n}^{F f}(x)}{T_{n}^{F f}(x)}
$$

The approximate solution has then a simple expression

$$
{\underset{\sim}{y}}_{n}^{*}(x)=\tau_{\sim}^{(n)} \cdot{\underset{\sim}{n}}_{n}^{(x)} .
$$

We henceforth ommit the superscript* on $y_{n}^{*}(x)$ whehout loss of clarity.

1.4. THE TAU SOLUTION

1.4.1 CHEBYSHEV EXPANSIONS OR THE TAU SOLUTION

$$
\text { If we rewrite (2) as } \begin{aligned}
y_{n}-z_{n}^{\prime} & =\tau_{1}^{(n)} T_{n}^{*} \\
y_{n}^{\prime}+z_{n} & =\tau_{2}^{(n)} T_{n}^{*}
\end{aligned}
$$

we obtain by differentiating the second equation and adding

$$
\begin{equation*}
y_{n}+y_{n}^{\prime \prime}=\tau_{1}^{(n)} T_{n}^{*}+\tau_{2}^{(n)} T_{n}^{*}{ }_{n} \tag{3}
\end{equation*}
$$

Repeated differentiation of this equation and alternate subtraction leads us to the following expansion of $y_{n}(x)$ where we have set $n^{\prime}=2\left[\frac{n}{2}\right]$

$$
\begin{align*}
y_{n}(x) & =T_{L}^{(n)}\left[T_{n}^{*}(x)-T_{n}^{*} \prime(x)+\ldots \ldots+(-1)^{\left[\frac{n}{2}\right]} T_{n}^{*\left(n^{\prime}\right)}(x)\right] \\
& +T_{2}^{(n)}\left[T_{n}^{*}{ }^{\prime}(x)-T_{n}^{*} n^{\prime}(x)+\ldots \ldots+(-1)^{\left[\frac{n}{2}\right]} T_{n}^{*\left(n^{\prime}+1\right)}(x)\right] \tag{4}
\end{align*}
$$

The initial condition $y_{n}(0)=1$ gives then

$$
\begin{equation*}
1=\tau_{1}^{(n)} \sum_{r=0}^{\frac{n}{2}}(-1)^{r_{T}}{ }_{n}^{*(2 r)}(0)+\tau_{2}^{(n)} \sum_{r=0}^{\left[\frac{n}{2}\right]} \sum_{n}(-1)^{r_{T}}{ }_{n}^{*}(2 r+1)(0) \tag{5}
\end{equation*}
$$

On the other hand, differentiating the first equation of (2) and subtracting it from the second, we obtain

$$
\begin{equation*}
z_{n}+z_{n}^{\prime \prime}=\tau_{2}^{(n)} T_{n}^{*}-\tau_{1}^{(n)} T_{n}^{*} \tag{6}
\end{equation*}
$$

Applying the same process to this equation leads us to

$$
\begin{align*}
z_{n}(x)= & \tau_{2}^{(n)}\left[T_{n}^{*}(x)-T_{n}^{*}(x)+\ldots \ldots+(-1)^{\left[\frac{n}{2}\right]_{*}} T_{n}^{\left(n^{\prime}\right)}(x)\right] \\
& -\tau_{1}^{(n)}\left[T_{n}^{*}(x)-T_{n}^{* \prime \prime}(x)+\ldots \ldots+(-1)^{\left[\frac{n}{2}\right]} T_{n}^{*\left(n^{\prime}+1\right)}(x)\right] \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
0=\tau_{2}^{(n)} \sum_{r=0}^{\frac{n}{2}}(-1)^{r_{T}}{ }_{n}^{*(2 r)}(0)-\tau_{1}^{(n)} \sum_{r=0}^{\left[\frac{n}{2}\right]}(-1)^{r_{T_{n}}} *(2 r+1)(0) \tag{8}
\end{equation*}
$$

We shall use the following expression for $\mathrm{T}_{\mathrm{n}}^{*}$ (ce.[31 sect. 3.7)
$T_{n}^{* *}(x)=\frac{1}{2}\left[2^{2 n_{x} n}+\sum_{j=1}^{n-1} \cdot(-1)^{j}\left(_{j}^{2 n-j-1}\right) \frac{2 n}{2 n-2 j} 2^{2 n-2 j_{x} n-j}+2(-1)^{n}\right]$
Hence $T_{n}^{*(n)}(0)=2^{2 n-1} n!; T_{n}^{*(n-1)}(0)=2^{2 n-1} n!\left(-\frac{1}{2}\right)$ while
for $2 \leq k \leq n$

$$
\begin{align*}
& T_{n}^{*(n-k)}(0)=2^{2 n-1} n!\left[\frac{(-1)^{k} 2^{-2 k} 2 n(2 n-k-1) \ldots(2 n-2 k+1)}{k!n(n-1)}\right] \\
& =2^{2 n-1} n:\left[\frac{(-1)^{k_{2}-k}\left(n-\frac{(k+1)}{2}\right)}{\ldots!\left(n-\frac{(2 k-1)}{2}\right)}\right] \\
& =2^{2 n-1} n!\left[\frac{(-1)^{k} 2^{-k}}{k!}\left(1-\frac{(k-1)}{2(n-1)}\right)\left(1-\frac{(k-2)}{2(n-2)}\right) \ldots\left(1-\frac{1}{2} \frac{1}{(n-1+1.1)}\right)\right] \tag{ㅅㅇ}
\end{align*}
$$

He observe that we may readily derive the initial conditions for y_{n}^{\prime} and z_{n}^{\prime}. If we differentiate (4) we obtain

$$
Y_{n}^{\prime}(0)=\tau_{1}(n) \sum_{x=0}^{\left[\frac{n}{2}\right]}(-1)^{r} T_{n}^{*(2 x+1)}(0)+\tau_{2}^{(n)} \sum_{x=1}^{\left[\frac{n}{2}\right]}(-1)^{r+l_{T}}{ }_{n}^{*(2 r)}(0)
$$

and applying (8) we find

$$
Y_{n}^{\prime}(0)=\tau_{2}^{(n)} T_{n}^{*}(0)
$$

Similarly differentiating (7) and applying (5) we find

$$
z_{n}^{\prime}(0)=1-\tau_{1}^{(n)} T_{n}^{*}(0)
$$

1. 4.2. SOLUTION OF (2) BY GREEN'S FUNCTION

The general solution of (3) is
$Y_{n}(x)=c_{1} \sin x+c_{2} \cos x+\int_{0}^{x}\left[\tau_{1}^{(n)} T_{n}^{*}(t)+\tau_{2}^{(n)} \frac{d}{d t} T_{n}^{*}(t)\right] \sin (x-t) d t$
which, on a single integration by parts, becomes
$y_{n}(x)=\left(c_{1}-\tau_{2}^{(n)}\right) \sin x+c_{2} \cos x+\int_{0}^{x} \tau_{1}^{(n)} T_{n}^{*}(t) \sin (x-t) d t+\int_{0}^{x} \tau_{2}^{(n)} T_{n}^{*}(t) \cos (x-t) d$

Applying the Leibnitz formula for differentiating integrals

$$
\begin{aligned}
Y_{n}^{\prime}(x)= & \left(c_{1}-\tau_{2}^{(n)} T_{n}^{*}(0)\right) \cos x-c_{2} \sin x+\tau_{1}^{(n)} \int_{0}^{x} T_{n}^{*}(t) \cos (x-t) d t \\
& -\tau_{2}^{(n)} \int_{0}^{x} T_{n}^{*}(t) \sin (x-t) d t+\tau_{2}^{(n)} \cos (0) T_{n}^{*}(x)
\end{aligned}
$$

But for the initial conditions $y_{n}(0)=1, y_{n}^{\prime}(0)=\tau_{2}^{(n)} T_{n}^{*}(0)$ to be satisfied, we must have $c_{2}=1, c_{1}=\tau_{2}^{(n)} T_{n}^{*}(0)$
$\therefore y_{n}(x)-\cos (x)=\int_{0}^{x}\left[\tau_{1}^{(n)} \sin (x-t)+\tau_{2}^{(n)} \cos (x-t)\right] T_{n}^{*}(t) d t$

The general solution of (6) is
$z_{n}(x)=\left(c_{1}+\tau_{1}^{(n)}\right) \sin x+c_{2} \cos x+\int_{0}^{x}\left[\tau_{2}^{(n)} \sin (x-t)-\tau_{1}^{(n)} \cos (x-t)\right] T_{n}^{*}(t) d t$

Hence
$z_{n}^{\prime}(x)=\left(c_{1}+\tau_{1}^{(n)} T_{n}^{*}(0)\right) \cos x-c_{2} \sin x+\int_{0}^{x}\left[\tau 2_{2}^{(n)} \sin (x-t)+\tau_{1}^{(n)} \cos (x-t)\right] T_{n}^{*}(t) d t$

$$
-\tau_{1}^{(n)} \cos (0) T_{n}^{*}(x)
$$

and with the initial conditions $z_{n}(0)=0, z_{n}^{\prime}(0)=1-\tau_{1}^{(n)} T_{n}^{*}(0)$ we have $c_{2}=0, c_{1}+\tau_{1}^{(n)} T_{n}^{*}(0)=1$

$$
\begin{equation*}
\therefore z_{n}(x)-\sin (x)=\int_{0}^{x}\left[\tau_{2}^{(n)} \sin (x-t)-\tau_{1}^{(n)} \cos (x-t)\right] T_{n}^{*}(t) d t \tag{12}
\end{equation*}
$$

1.5. ERROR BOUNDS FOR THE TRU SOLUTION
1.5 .1 BOUNDS FOR $\tau_{1}^{(n)}, \tau_{2}^{(n)}$

$$
\begin{aligned}
& \text { If we set } S_{E}^{(n)}=\sum_{r=0}^{\left[\frac{n}{2}\right]}(-1)^{r_{r}} T_{n}^{*(2 r)}(0) \\
& \text { and } S_{0}^{(n)}=\sum_{r=0}^{\left[\frac{n}{2}\right]}(-1)^{r} T_{n}^{*(2 r+1)}(0)
\end{aligned}
$$

then, dropping the super-script, we can solve (5) and (8) for $\tau_{1}(n), \tau_{2}^{(n)}$

$$
\begin{aligned}
& \tau_{1}^{(n)}=\frac{S_{E}}{S_{E}^{2}+S_{O}^{2}} \\
& \tau_{2}^{(n)}=\frac{S_{O}}{S_{E}^{2}+S_{O}^{2}}
\end{aligned}
$$

We can now apply (10) to deduce that for n even

$$
\begin{gathered}
1-\sum_{r=0}^{\infty} \frac{\left(\frac{3}{2}\right)^{4 r+2}}{(4 r+2)!}+\frac{\left(\frac{1_{2}}{4}\right)^{4}}{4!}\left\{\left(1-\frac{1}{2} \frac{3}{(n-1)}\right)\left(1-\frac{1}{(n-2)}\right)\left(1-\frac{1}{n-3}\right)\right\} \\
<\quad<\quad(-1)^{\left[\frac{n}{2}\right]_{E}} \\
2^{2 n-1} n!
\end{gathered} \sum_{r=0}^{\infty} \frac{\left(\xi_{2}\right)^{4 r}}{(4 r)!}-\frac{\left(\xi_{2}\right)^{2}}{2!}\left(1-\frac{1}{2(n-1)}\right) .
$$

and
$\frac{1}{2}-\sum_{r=1}^{\infty} \frac{\left(\frac{1}{2}\right)^{4 r-1}}{(4 r-1)!}<\frac{(-1)^{\left[\frac{n}{2}\right]} S_{0}}{2^{2 n-1} n!}<\sum_{r=0}^{\infty} \frac{\left(\frac{1}{2}\right)^{4 r+1}}{(4 r+1)!}-\frac{-\left(\frac{1}{2}\right)^{3}}{3!}\left[\left(1-\frac{2}{2(n-1)}\right)\left(1-\frac{1}{2(n-2)}\right)\right]$

If we take $n \geq 4$ and make use of expansions for $\sin (x), \sinh (x) ; \cos (x)$, $\cosh (x)$ we obtain

$$
\begin{aligned}
& 1-\left[\frac{\cosh \left(\frac{1}{2}\right)-\cos \left(\frac{1}{2}\right)}{2}\right]+\frac{\left(\frac{1}{2}\right)^{7}}{4!}<\frac{\left.(-1)^{\left[\frac{n}{2}\right.}\right]_{\mathrm{S}}}{2^{2 n-1} n!}<\frac{\cosh \left(\frac{1}{2}\right)+\cos \left(\frac{1}{2}\right)}{2}-\frac{\left(3_{2}\right)^{2}}{2!} \frac{5}{6} \\
& \frac{1}{2}-\left[\frac{\sinh \left(\frac{1}{2}\right)-\sin \left(\frac{1}{2}\right)}{2}\right]<\frac{(-1)^{\left[\frac{n}{2}\right] S_{0}}}{2^{2 n-1} n!}<\frac{\sinh \left(\frac{1}{2}\right)+\sin \left(\frac{1}{2}\right)}{2}-\frac{\left(\frac{1}{2}\right)^{4}}{3!} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& .875304<\frac{(-1)^{\left[\frac{n}{2}\right]}}{2^{2 n-1} n!}<.898438 \\
& .479165<\frac{(-1)^{\left[\frac{n}{2}\right]}}{2^{2 n-1} \mathrm{n}!}<.492448 \\
& 1.0497=(.898438)^{2}+(.492448)^{2}>\frac{S_{E}^{2}+S_{O}^{2}}{\left[2^{2 n-1} n!\right]^{2}}>(.875304)^{2}+(.479165)^{2}=.995755 \\
& {\left[2^{2 n-1} n!\right]^{-1}(.83386)<\left|\tau 1_{1}^{(n)}\right| \quad\left[2^{2 n-1} n!\right]^{-1}(.902267)} \\
& {\left[2^{2 n-1} n!\right]^{-1}(.45648)<\left|\tau_{2}^{(n)}\right|<\quad\left[2^{2 n-1} n!\right]^{-1}(.49455)} \\
& \text { and } \frac{\tau_{1}{ }^{(n)}}{\tau_{2}{ }^{(n)}}<\frac{.898438}{.479165}=1.875001
\end{aligned}
$$

I. 5.2 INTEGRALS OF Chebyshev polynomials.

We shall require the following result, concerning the integral of a Chebyshev polynomial between two consecutive roots, which is easy to derive.

Lemma 3. Let the roots of $T_{n}{ }^{*}(x)$ be $x_{n-k} k=1, \ldots, n$
where $x_{n-k}=\cos ^{2} \frac{\left(n-k+\frac{1}{2}\right) \pi}{2 n}$
and $x_{n} \equiv 0<x_{n-1}<\cdots \cdots<x_{0}<1 \equiv x_{-1}$.

Then $I_{j} \equiv \int_{x_{j}}^{x_{j-1}} T_{n}^{*}(t) d t$

$$
=(-1)^{j_{\phi}(n)} \sin \frac{j \pi}{n} \quad \text { for } j=1, \ldots, n-1
$$

$$
\begin{aligned}
& \text { where } \phi(n)=\frac{n}{n^{2}-1} \cos \frac{\pi}{2 n} \rightarrow \frac{1}{n}\left[1+0\left(\frac{1}{n^{2}}\right)\right] \\
& \text { and } I_{j}=\frac{(-1)^{j}}{2\left(n^{2}-1\right)}\left[n \sin \frac{\pi}{2 n}-1\right] \text { for } j=0 \text { or } n
\end{aligned}
$$

We shall now restrict ourselves to the case of n being even as the treatment for n odd is similar.

Theorem 1. Let us set $\varepsilon_{i}^{*}(x)=y_{n}(x)-\cos x \quad$ in (11) 1 then $\frac{.08519 \frac{\phi^{*}(n)}{2^{2 n} n!}<\left\|\varepsilon_{1}(x)\right\|<\frac{1.5022\left(1+0\left(\frac{1}{n}\right)\right)}{2^{2 n} n!(n-1)}, ~(x)}{2^{2 n}}$

Where $\phi^{*}(n)=\phi(n)\left(1+o\left(\frac{1}{n}\right)\right)$

Proof :

To find an upper bound for $\left\|\varepsilon_{1}(x)\right\|$ we can proceed as follows Put $I(x)=\int_{0}^{x} T_{n}^{*}(t) d t=\frac{1}{4}\left[\frac{T_{n+1}^{*}(x)}{n+1}-\frac{T_{n-1}^{*}(x)}{n-1}\right]$

$$
+\frac{1}{2\left(n^{2}-1\right)} \cos (n+1) \pi
$$

Then $|I(x)| \leq \frac{1}{2(n-1)}$. Furthermore, integrating by parts in (II)

$$
\begin{aligned}
\varepsilon_{1}(x) & =\frac{\tau_{2}}{4}\left[\frac{T_{n+1}^{*}(x)}{n+1}-\frac{T_{n-1}^{*}(x)}{n-1}\right]-\frac{(-1)^{n}}{2\left(n^{2}-1\right)}\left(\tau_{1} \sin x+\tau_{2} \cos x\right) \\
& +\int_{0}^{x} I(t)\left(-\tau_{1} \cos (x-t)+\tau_{2} \sin (x-t)\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \\
&\left|\varepsilon_{1}(x)\right| \leq \frac{\tau_{2} n}{2\left(n^{2}-1\right)}+\frac{\tau_{1} \sin x+\tau_{2} \cos (x)}{2\left(n^{2}-1\right)}+\frac{\tau_{2}(1-\cos x)+\tau_{1} \sin x}{2(n-1)} \\
&=\frac{\left.\tau_{1}(n+2) \sin x+\tau_{2}[(2 n+1)-n \cos x)\right]}{2\left(n^{2}-1\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\varepsilon_{1}(x)\right\| & \left.\leq\left\langle\tau_{2}\right|(2-\cos (1))+\left|\tau_{1}\right| \sin (1)\right)\left[\frac{1}{2(n-1)}+O\left(\frac{1}{n^{2}}\right)\right] \\
& \leq \left\lvert\, \tau_{2}[1.4597+1.87501 \times .84147]\left[\frac{1}{2(n-1)}+O\left(\frac{1}{n^{2}}\right)\right]\right. \\
& \leq \frac{1.5022\left(1+O\left(\frac{1}{n}\right)\right)}{2^{2 n} n!(n-1)}
\end{aligned}
$$

po find a lower bound for $\left\|\varepsilon_{1}(x)\right\|$
consider $\varepsilon_{1}\left(x_{\frac{3 n}{4}}\right)$ where $x_{\frac{3 n}{4}}=\frac{1}{2}\left[1+\cos \left(\frac{3 \pi}{4}+\frac{\pi}{2 n}\right)\right] \rightarrow \frac{1}{2}\left[1-\frac{1}{\sqrt{2}}\right]$
(If n is not divisible by 4 , take $x\left[\frac{3 n}{4}\right]+1$)

$$
\begin{aligned}
& x_{3 n}^{4} \\
& \int_{0}^{\frac{3 n}{4}} \cos \left(x_{\frac{3 n}{4}}-t\right) T_{n}^{*}(t) d t>\cos x_{\frac{3 n}{4}} I_{n}+\cos \left(x_{\frac{3 n}{4}}-x_{n-2}\right)\left[I_{n-2}-\left|I_{n-1}\right|\right]+ \\
& +\ldots \ldots+\cos \left(x_{\frac{3 n}{4}}-x_{\frac{3 n}{4}-1}\right)\left[I_{\frac{3 n}{4}+1}-\left|J_{\frac{3 n}{4}+2}\right|\right] \\
& >\cos x_{\frac{3 n}{4}}\left[I_{n}+\phi(n) \sum_{k=1}^{\frac{n}{4}-1} \cdot(-1)^{k} \sin \frac{k \pi}{n}\right] \\
& =\cos x_{\frac{3 n}{4}}\left[I_{n}+2 \sin \frac{\pi}{2 n} \phi(n) \sum_{k=1}^{\frac{n}{8}-1} \cos \left(2 k-\frac{1}{2}\right) \frac{\pi}{n}\right] \\
& \cdots \frac{n}{8}-1 \\
& >\cos \frac{x_{\frac{3 n}{4}} \cdot 2 \sin \frac{\pi}{2 n} \phi(n) \sum_{k=1} \cos 2 k \frac{\pi}{n}, ~(1)}{} \\
& \text { But } \sum_{k=1}^{\frac{n}{8}-1} \cos 2 \frac{k \pi}{n}=\operatorname{Re} \frac{\left.\left[e^{\frac{2 i \pi}{n}}-e^{\frac{i \pi}{4}}\right)\left(1-e^{-\frac{2 i \pi}{n}}\right)\right]}{2\left(1-\cos \frac{2 \pi}{n}\right)} \\
& =\operatorname{Re} \frac{e^{\frac{2 j \pi}{n}}-1+e^{i\left(\frac{\pi}{4}-2 \frac{\pi}{n}\right)}-e^{\frac{i \pi}{4}}}{2\left(1-\cos \frac{2 \pi}{n}\right)} \\
& =\frac{\cos \frac{2 \pi}{n}-1}{2\left(1-\cos \frac{2 \pi}{n}\right)}+\frac{2 \sin \left(\frac{\pi}{4}-\frac{\pi}{n}\right) \sin \frac{\pi}{n}}{2.2 \sin \frac{\pi}{n} \sin \frac{\pi}{n}} \\
& \rightarrow \frac{n}{2 \pi \sqrt{2}}+O(1)
\end{aligned}
$$

For n large $\int_{0}^{\frac{x_{n n}}{4}} \cos \left(x_{\frac{3 n}{4}}-t\right) T_{n}^{*}(t) d t>\frac{\cos \left(\frac{2-\sqrt{2}}{4}\right) \phi^{*}(n)}{2 \sqrt{2}}$

$$
\begin{aligned}
& \int_{0}^{\frac{3 n}{4}} \sin \left(x_{3 n}^{4}-t\right) T_{n}^{*}(t) d t>\left[\sin \left(x_{\frac{3 n}{4}}-x_{n-1}\right) I_{n-1}+\sin \left(x_{\frac{3 n}{4}}-x_{n-3}\right) I_{n-2}\right] \\
& +\ldots \ldots+\left[\sin \left(x_{3 n}^{4}-x_{n-3}\right) I_{\frac{3 n}{4}+2}+0 .\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { But } \sin \left(x_{\frac{3 n}{4}}-x_{n-3}\right)>\sin \left(x_{\frac{3 n}{4}}-x_{n-1}\right)-\left(x_{n-3}-x_{n-1}\right) \cos \left(x_{\frac{3 n}{4}}-x_{n-3}\right) \\
& I_{n-1}+I_{n-2}>0 ; x_{n-3}-x_{n-1}<\sin \frac{\pi}{n} ; \cos \left(x_{\frac{3 n}{4}}-x_{n-3}\right)<1 \\
& \therefore \int_{0}^{\frac{x_{3 n}}{4}} \sin \left(x_{3 n}^{4}-t\right) T_{n}^{*}(t) d t>-\sin \frac{\pi}{n} \phi(n)\left[\sin \frac{2 \pi}{n}+\sin \frac{4 \pi}{n}+\sin \left(\frac{n}{2}-2\right) \frac{\pi}{n}\right] \\
& \sum_{k=1}^{\frac{n}{8}-1} \sin \frac{2 k \pi}{n}=\operatorname{Imag} \frac{\left(e^{\frac{i 2 \pi}{n}}-e^{\frac{i \pi}{4}}\right)\left(1-e^{-\frac{2 i \pi}{n}}\right)}{2\left(1-\cos \frac{2 \pi}{n}\right)} \\
& =\frac{\sin \frac{2 \pi}{n}+\sin \left(\frac{\pi}{4}-\frac{2 \pi}{n}\right)-\sin \frac{\pi}{4}}{2.2 \sin ^{2} \frac{\pi}{n}} \\
& =\frac{\cos \frac{\pi}{n}-\cos \left(\frac{\pi}{4}-\frac{\pi}{n}\right)}{2 \sin \frac{\pi}{n}}+\frac{1-\frac{1}{\sqrt{2}}}{\frac{2 \pi}{n}} \\
& \therefore \int_{0}^{x^{\frac{3 n}{4}}} \sin \left(x_{\frac{3 n}{4}}-t\right) T_{n}^{*}(t) d t>-\phi^{*}(n) \frac{\sqrt{2}-1}{2 \sqrt{2}}
\end{aligned}
$$

$\therefore(-1)^{\left[\frac{n}{2}\right]} \varepsilon_{1}\left(x_{\frac{3 n}{4}}\right)>\frac{\phi^{*}(n)}{2 \sqrt{2}}\left[K_{2}\left|\cos \left(\frac{2-\sqrt{2}}{4}\right)-\left|\tau_{1}\right|(\sqrt{2}-1)\right]\right.$

$$
>\frac{\phi^{*}(\mathrm{n})\left|\tau_{2}\right|}{2 \sqrt{2}}[\cos (.1465)-1.87501(.414)]
$$

$$
\left\|\varepsilon_{-1}(x)\right\|>\frac{\dot{\Phi}^{*}(n) .45648(.21303)}{2^{2 n-1} n!2.2828}
$$

Theorem 2 Let us set $\varepsilon_{2}(x)=z_{n}^{*}(x)-\sin x$ in (12) Then $.49468 \cdot \frac{\phi^{*}(n)}{2^{2 n} n!}<\left\|\varepsilon_{2}(x)\right\|<1.76971 \frac{\left(1+0\left(\frac{1}{n}\right)\right)}{2^{2 n_{n}!(n-1)}}$
proof: An upper bound for $\left\|\underline{E}_{2}(x)\right\|$ is obtained as before.

$$
\begin{aligned}
& \varepsilon_{2}(x)=\frac{-\tau_{1}}{4}\left[\frac{T_{n+1}^{*}(x)}{n+1}-\frac{T_{n-1}^{*}(x)}{n-1}\right]+\frac{(-1)^{n}}{2\left(n^{2}-1\right)}\left[\tau_{1} \cos x-\tau_{2} \sin x\right] \\
& +\int_{0}^{x} I(t)\left[\tau_{2} \cos (x-t)-\tau_{1} \sin (x-t)\right] d t \\
& \left|\varepsilon_{2}(x)\right| \leq \frac{\left|\tau_{]}\right|[(2 n+1)-n \cos x]+\mid \tau_{2}[[(n+2) \sin x]}{2\left(n^{2}-1\right)} \\
& \left\|\varepsilon_{2}(x)\right\| \leq\left[\left|\tau_{1}\right|(2-\cos (1))+\left.\right|_{\tau_{2}} \mid \sin (1)\right]\left[\frac{1}{2(n-1)}+O\left(\frac{1}{n^{2}}\right)\right] \\
& \leq \frac{\left.1.76971\left(1+o \frac{1}{n}\right)\right)}{2^{2 n} n!(n-1)}
\end{aligned}
$$

To find a lower bound for $\left\|\varepsilon_{2}(x)\right\|$
consider $\varepsilon_{2}\left(x_{\frac{n}{2}}\right)$ where $x_{\frac{n}{2}} \rightarrow \frac{1}{2}$

$$
\begin{aligned}
\text { This time } \int_{0}^{x_{n}} \frac{\ln }{2} \cos (x-t) T_{n}^{*}(t) d t & >\cos \left(x_{\frac{n}{2}}\right) 2 \sin \frac{\pi}{2 n} \phi(n)\left(\frac{n}{2}+0(1)\right) \\
& +\frac{1}{2} \cos \left(\frac{1}{2}\right) \phi^{*}(n)
\end{aligned}
$$

$$
\text { and } \begin{gathered}
\int_{0}^{\frac{n}{2}} \sin (x-t) T_{n}^{*}(t) d t<\sin \left(x_{\frac{n}{2}}^{2}\right) 2 \sin \frac{\pi}{2 n} \phi(n)\left(\frac{n_{1}}{2}+O(1)\right) \\
\\
\rightarrow \frac{1}{2} \sin \left(\frac{1}{2}\right) \nsubseteq \neq(n)
\end{gathered}
$$

$$
(-1)^{\left[\frac{n}{2}\right]} \varepsilon_{2}\left(x_{\frac{n}{2}}\right)<\frac{\Phi^{*}(n)}{2}\left[\left|\tau_{2}\right| \sin \left(\frac{1}{2}\right)-\left|\tau_{1}\right| \cos \left(\frac{1}{2}\right)\right]
$$

$$
<\frac{{ }^{*}(n)}{2^{2 n}} \frac{[.49455 \times .479426-.83385 \times .877582]}{n!}
$$

$$
\therefore\left|\mid \varepsilon_{2}(x) \|>\frac{\phi^{*}(n) \cdot 49468}{2^{2 n} n!}\right.
$$

Remark

$$
\text { Since } \frac{1}{n-1} \sim \phi^{*}(n) \sim \frac{1}{n+1}\left[1+o\left(\frac{1}{n}\right)\right]
$$

we see from Theorems 1 and 2 that

$$
\left\|\Theta_{n}^{*}\right\|_{\infty}=\frac{K}{2^{2 n}(n+1)!}\left[1+o\left(\frac{1}{n}\right)\right]
$$

where $.49468<K<1.76971$ for n even.
This is comparable to the results of Meinardus in [48]p. 80 for the minimal deviation on $[0,1]$ except that then $K=1$.

SIMULTANEOUS APPROXIMATION OF A FUNCITON AND ITS DERTVATIVE
 WITH THE TAU METHOD, PART II

FORENORD: In this part we generalize the Tau method technique developed in Part I for the numerical solution of systems of two first order linear differential equations, to the cases of: (a) the general second order differential equation with constant coefficients, (b) the Euler equation and (c) The Airy equation. In this last example we deal with the case of undefined canonical polynomials.

In each case we give error bounds in the uniform norm for the function and derivative.

Although we have modelled our arguments on systems of order two, the same method could be extended to systems of higher order with corresponding approximations to higher derivatives.
2.1.

The General Second Order Linear Differential Equation

with Constant Coefficients

In this part we continue the analysis of the numerical solution of systems of linear differential equations with the Tau method, initiated in Part I.

We begin our discussion with the general second order linear differential equation with constant coefficients

$$
\begin{equation*}
y^{\prime \prime}(x)+a_{1} y^{\prime}(x)+a_{0} y(x)=0 \tag{1}
\end{equation*}
$$

subject to the supplementary conditions $y(0)=\alpha, y^{\prime}(0)=\beta$.
As a system of first order linear differential equations, the

$$
\left(\begin{array}{cccc}
a_{0} & -\frac{d}{d x} & & -a_{1} \\
\frac{d}{d x} & & 1 &
\end{array}\right) \quad\binom{y}{z}=\binom{0}{0}
$$

For the perturbed system, we compute the exact solution $\left[y_{n}, z_{n}\right]^{T}$ of

$$
\begin{gather*}
a_{0} y_{n}=z_{n}^{\prime}-a_{1} z_{n}=\tau_{1}^{(n)} T_{n}^{*} \tag{2}\\
y_{n}^{\prime}+z=\tau_{2}^{(n)} T_{n}^{*}
\end{gather*}
$$

with the derived initial conditions

$$
\begin{aligned}
& y_{n}(0)=\alpha, \quad \tau_{n}(0)=-\beta \\
& y_{n}^{\prime}(0)=\tau_{2}^{(n)} T_{n}^{*}(0)+\beta \\
& z_{n}^{\prime}(0)=-\tau_{1}^{(n)} T_{n}^{*}(0)+a_{0} \alpha+a_{1} \beta
\end{aligned}
$$

2.1.1 DETERMINATION OF THE TAU

We proceed as in 4.1 of Part I. Combining (2) we obtain

$$
\begin{equation*}
y_{n}^{\prime \prime}+a_{1} y_{n}^{\prime}+a_{0} y_{n}=\tau_{1}^{(n)} T_{n}+\tau_{2}^{(n)}\left[a_{1} T_{n}^{*}+T_{n}^{*}\right] \tag{3}
\end{equation*}
$$

By repeated differentiation and back substitution, we find assuming $\alpha=1$, $\beta=0$ and $n=4$

$$
\begin{aligned}
a_{0}^{3} a_{1} & =\tau_{1}^{(4)}\left[a_{0}^{2} a_{1} T_{4}^{*}(0)-a_{0}^{2} T_{4}^{* i}(0)+a_{0} T_{4}^{* i} i^{i}(0)-a_{1} T_{4}{ }^{i v}(0)\right] \\
& +\tau_{2}^{(4)}\left[a_{0}{ }^{3} T_{4}^{*}(0)-a_{0}{ }^{2} T_{4}^{* i i^{*}}(0)+a_{0} a_{1} T_{4}^{* i i i_{1}}(0)+\left(a_{0}-a_{1}{ }^{2}\right) T_{4}^{* i v}(0)\right]
\end{aligned}
$$

Likewise we obtain from

$$
\begin{align*}
& z_{n}^{i j}+a_{1} z_{n}^{i}+a_{0} z_{n}=\tau_{2}^{(n)} a_{0} T_{n}^{*}-\tau_{1}^{(n)} T_{n}^{*} \tag{4}\\
& \left(a_{0}{ }^{2} a_{1}{ }^{2}-a_{0}{ }^{3}\right)=\tau_{1}^{(4)}\left[\left(a_{0} a_{1}^{2}-a_{0}^{2}\right) T_{4}^{*}(0)-a_{0} a_{1} T_{4}{ }^{x^{i}}(0)+a_{0} T_{4}^{* i}(0)=T_{4}^{*}(0)\right] \\
& +\tau_{2}^{(4)}\left[a_{0}^{2} a_{1} T_{4}^{*}(0)-a_{0}^{2} T_{4}^{* i}(0)+a_{0} T_{4}^{* i i i}(0)-a_{1} T_{4}{ }^{* v}(0)\right]
\end{align*}
$$

We solve these two equations for τ_{1} and τ_{2}, and in table $I_{\text {, }}$ we illustrate the result for particular values of a_{0}, a_{1}.

TABLE I. Evaluation of Tau for certain values of a_{0}, a_{1} when $n=4$

Ex	a_{0}	a_{1}		${ }^{\tau_{1}}$	τ_{2}
1	-1	1		-7.7667×10^{-4}	4.3971×10^{-4}
2	-1	-1	\cdots	\cdots	-3.8373×10^{-3}

For a general prescription for $\tau_{1}^{(n)}, \tau_{2}^{(n)}$ we take the r-th derivative of equation (3), $r=0,1, \ldots, n$ and multiply thxough by $\left(\frac{1}{\lambda_{i}}\right)^{r+1} \quad i=1,2$ where λ_{1}, λ_{2} are the roots of the characteristic equation.

With each system $i=1,2$, we add all the equations together, making use of the fact that

$$
\left(\frac{1}{\lambda_{i}}\right)^{r+1}\left[1+a_{1}\left(\frac{1}{\lambda_{i}}\right)+a_{0}\left(\frac{1}{\lambda_{i}}\right)^{2}\right]=0
$$

to reduce the system.
Subtracting one system from the other and setting

$$
\begin{aligned}
& S_{0}=\sum_{r=0}^{n}\left[\left(\frac{1}{\lambda_{1}}\right)^{r+1}-\left(\frac{1}{\lambda_{2}}\right)^{r+1}\right] T_{n}^{(r)}(0) \\
& S_{E}=\sum_{r=1}^{n}\left[\left(\frac{1}{\lambda_{1}}\right)^{r}-\left(\frac{1}{\lambda_{2}}\right)^{r}\right]_{n}^{(r)}(0)
\end{aligned}
$$

we find that

$$
\left(\lambda_{2}-\lambda_{1}\right) y_{n}(0)=\tau_{1}^{(n)} S_{0}+\tau_{2}^{(n)}\left[a_{1} s_{o}+s_{E}\right]
$$

Similarly from (4)

$$
\left(\lambda_{2}-\lambda_{1}\right) z_{n}(0)=\tau_{2}^{(n)} a_{0} S_{0}-\tau_{1}^{(n)} S_{E}
$$

When $\alpha=1, \beta=0$ we have that

$$
\tau_{1}^{(n)}=\frac{a_{0} S_{O}}{\left(S_{E}^{2}+a_{1} S_{E} S_{O}+a_{0} S_{0}^{2}\right)\left(\lambda_{2}-\lambda_{1}\right)}
$$

$$
\tau_{2}^{(n)}=\frac{S_{E}}{\left(S_{E}^{2}+a_{1} S_{E} S_{0}+a_{0} S_{0}^{2}\right)\left(\lambda_{2}-\lambda_{1}\right)}
$$

If

$$
\infty>\quad \lim \inf _{r>0}\left|\frac{\left[\left(\frac{1}{\lambda_{1}}\right)^{r+1}-\left(\frac{1}{\lambda_{2}}\right)^{r+1}\right]}{\left[\left(\frac{1}{\lambda_{1}}\right)^{r}-\left(\frac{1}{\lambda_{2}}\right)^{r}\right]}\right|>1
$$

we may deduce the asymptotic results

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\tau_{1}^{(n)}\right|=\frac{1+o\left(\frac{1}{n}\right)}{\left|\lambda_{1}-\lambda_{2}\right|\left|\left(\frac{1}{\lambda_{1}}\right)^{n+1}-\left(\frac{1}{\lambda_{2}}\right)^{n+1}\right| T_{n}^{*(n)}(0)} \\
& \lim _{n \rightarrow \infty}\left|\tau_{2}^{(n)}\right|=\frac{\left|\left(\frac{1}{\lambda_{1}}\right)^{n}-\left(\frac{1}{\lambda_{2}}\right)^{n}\right|\left(1+O\left(\frac{1}{n}\right)\right)}{\left|\lambda_{1} \lambda_{2}\right|\left|\left(\frac{1}{\lambda_{1}}\right)^{n+1}-\left(\frac{1}{\lambda_{2}}\right)^{n+1}\right|^{2_{n}}{ }^{*(n)}(0)}
\end{aligned}
$$

2.1.2. ANALYTIC SOLUTIONS OF THE HOMOGENEOUS EQUATIONS

Both the function Y and its derivative $-z$ satisfy
$u^{\prime \prime}(x)+a_{1} u(x)+a_{o} u(x)=0$.
The basis for the solution space of this equation, $\phi_{1}(x), \phi_{2}(x)$, depends on the nature of the roots, λ_{1}, λ_{2}, of the characteristic equation. We have

$$
\begin{aligned}
& y(x)=c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x) \\
& z(x)=d_{1} \phi_{1}(x)+d_{2} \phi_{2}(x)
\end{aligned}
$$

where. $c_{i}, d_{i}, i=1,2$; are determined by the initial conditions. We shall assume the roots are real and distinct. Then

$$
\phi_{1}(x)=e^{\lambda_{1} x}, \phi_{2}(x)=e^{\lambda_{2} x}
$$

Furthermore, if we set $k(x, t)=\phi_{2}(x) \phi_{1}(t)-\phi_{1}(x) \phi_{2}(t)$, then

$$
\kappa(x, t)=e^{\lambda_{2} x+\lambda_{1} t}-e^{\lambda_{1} x+\lambda_{2} t}
$$

$\begin{aligned} \text { Now } w(t) & =\left(\lambda_{2}-\lambda_{1}\right) e^{\left(\lambda_{1}+\lambda_{2}\right) t} \text { is the Wronskian of } \phi_{1} \text { and } \phi_{2} \\ \frac{k(x, t)}{w(t)} & =\frac{e^{2(x-t)}-e^{\lambda_{1}(x-t)}}{\lambda_{2}-\lambda_{1}}\end{aligned}$
and $\frac{d}{d t} \frac{K(x, t)}{w(t)}=\frac{\lambda_{1} e^{\lambda_{1}(x-t)}-\lambda_{2} e^{\lambda_{2}(x-t)}}{\lambda_{2}-\lambda_{1}}$
2. 1.3 The tau solution by the green's function The solution of (3) is

$$
\begin{aligned}
y_{n}(x) & =\hat{c}_{1} \phi_{1}(x)+\hat{c}_{2} \phi_{2}(x) \\
& -\tau_{2}^{(n)} T_{n}(0) \frac{k(x, 0)}{w(0)}+\int_{0}^{x} G_{1}(x, t) d t
\end{aligned}
$$

where $G_{1}(x, t)=\left[\left(\tau_{1}^{(n)}+a_{1} \tau_{2}^{(n)}\right) T_{n}(t) k(x, t)-\tau_{2}^{(n)} w(t) T_{n}(t) \frac{d}{d t} \frac{k(x, t)}{w(t)}\right] / w(t)$
Hence we have $y_{n}(0)=\hat{\varepsilon}_{1} \phi_{1}(0)+\hat{c}_{2} \phi_{2}(0)$.
Moreover from

$$
\begin{gathered}
y_{n}^{\prime}(x)=\hat{A}_{1} \phi_{1}^{\prime}(x)+\hat{E}_{2} \phi_{2}^{\prime}(x)-\tau_{2}^{(n)} \frac{T_{n}(0)}{w(0)}\left[\phi_{2}^{\prime}(x) \phi_{1}(0)-\phi_{1}^{\prime}(x) \phi_{2}(0)\right] \\
+G_{1}(x, x)+\int_{0}^{x} \frac{\partial}{\partial x} G_{1}(x, t) d t
\end{gathered}
$$

we find $Y_{n}{ }^{\prime}(0)=\hat{c}_{1} \phi_{1}{ }^{\prime}(0)+\hat{c}_{2} \phi_{2}(0)$
since $\left.\quad \frac{d}{d t} \frac{k(x, t)}{w(t)}\right|_{t=x}=-1$.

From the initial conditions for y and y_{n} we obtain
$\hat{c}_{1}-c_{1}=-\frac{\tau_{2}^{(n)} T_{n}(0) \phi_{2}(0)}{w(0)}, \quad \hat{c}_{2}-c_{2}=\frac{\tau_{2}^{(n)} T_{n}(0) \phi_{1}(0)}{w(0)}$

We set $k_{1}(x)=\int_{0}^{x} \frac{k(x, t)}{w(t)} T_{n}(t) d t$ and $k_{2}(x)=\int_{0}^{x} T_{n}(t) \frac{d}{d t} \frac{k(x, t)}{w(t)} d t$

Then
$\varepsilon_{1}(x) \equiv y_{n}(x)-y(x)=\left(\tau_{1}^{(n)}+a_{1} \tau_{2}^{(n)}\right) k_{1}(x)-\tau_{2}^{(n)} k_{2}(x)$
similarly.
$\varepsilon_{2}(x) \equiv z_{n}(x)-z(x)=a_{0} \tau_{2}^{(n)} k_{1}(x)+\tau_{1}^{(n)} k_{2}(x)$

2.1.4 UPPER BOUNDS FOR THE ERROR FUNCTIONS

These follow from (5) and (6) by finding bounds on $k_{1}(x), k_{2}(x)$. Performing an integration by parts and using the bounds for $I(x)$, determined in 5.3 of Part I, we obtain

$$
\begin{gathered}
\left|k_{1}(x)\right| \leq \frac{1}{2(n-1)}\left\{\frac{1}{n+1}\left|\frac{\kappa(x, 1)}{w(1)}\right|+\int_{0}^{x}\left|\frac{d}{d t} \frac{k(x, t)}{w(t)}\right| d t\right\} \\
\left|k_{2}(x)\right| \leq \frac{1}{2(n-1)}\left\{\left|\frac{d}{d t} \frac{k(x, t)}{w(t)} t=x\right|+\frac{1}{n+1}\left|\frac{d}{d t} \frac{\kappa(x, t)}{w(t)} \quad t=0\right|+\int_{0}^{x}\left|\frac{d^{2}}{d t^{2}} \frac{\kappa(x, t)}{w(t)}\right| d t\right)
\end{gathered}
$$

Now using the positivity of $e^{\lambda t}, \lambda^{2} e^{\lambda t}$ and convexity of $\lambda e^{\lambda x}, \lambda>0$, we find
$\max _{0 \leq x \leq 1}\left|k_{1}(x)\right| \leq \frac{1}{2(n-1)}\left|\frac{e^{\lambda_{1}}-e^{\lambda_{2}}}{\lambda_{1}-\lambda_{2}}\right|\left(1+\frac{1}{n+1}\right)$
$\max _{0 \leq x \leq 1}\left|k_{2}(x)\right| \leq \frac{1}{2(n-1)}\left\{\left(1+\frac{1}{n+1}\right) \max \left(1,\left|\frac{\lambda_{2} e^{\lambda_{2}}-\lambda_{1} e^{\lambda_{1}}}{\lambda_{2}-\lambda_{1}}\right|\right)+2\right\}$

We illustrate with the same examples as in 21.1.with $n=4$.

TABLE II. UPPER BOUNDS FOR ERROR TERMS

Ex	\cdots	$\left\\|k_{1}\right\\|$	$\left\\|k_{2}\right\\|$	$\cdots \varepsilon_{1}\| \|$	$\left\\|\varepsilon_{2}\right\\|$
1	.14821	.46459	2.5423×10^{-4}	4.2601×10^{-4}	
2	.40286	1.09298	$.3 .1677 \times 10^{-3}$	5.1408×10^{-3}	

2.2. THE EULER EQUATION

Suppose $\quad x^{2} y^{\prime \prime}(x)+a_{1} x y^{\prime}(x)+a_{0} y(x)=0$
subject to $\mathrm{y}(1)=\alpha, y^{\prime}(1)=\beta$
The operator D is now

$$
\left(\begin{array}{ccc}
a_{0} & -x^{2} \frac{d}{d x} & -a_{1} x \\
\frac{d}{d x} & & \\
i &
\end{array}\right)
$$

For the perturbed system we compute the exact solution $\left[y_{n+1}, z_{n}\right]^{T}$ of

$$
D \underline{\underline{Y}}=\left(\begin{array}{cc}
\tau_{1}^{(n)} & \tilde{T}_{n+1} \tag{7}\\
\tau_{2}^{(n)} & \tilde{T}_{n}
\end{array}\right)
$$

where \tilde{T}_{n} is the Chebyshev polynomial of degree n shifted to the interval J.

2.2.1 THE CANONICAL POLYMOMIALS

$$
\left(\begin{array}{cc}
a_{0} & -x^{2} \frac{d}{d x}-a_{1} x \\
\frac{d}{d x} & 1
\end{array}\right)\binom{x^{k}}{-k x^{k-1}}=\left[a_{0}+k(k-1)+k a_{1}\right]\binom{x^{k}}{0}
$$

\therefore for $k \geq 1 \quad Q_{k}^{[1]}(x)=\frac{1}{a_{0}+k(k-1)+k a_{1}}\binom{x^{k}}{-k x^{k-1}}, Q_{0}^{[1]}=\frac{1}{a_{0}}\binom{1}{0}$
while $\quad Q_{k}^{[2]}(x)=\frac{1}{a_{0}+(k+1)\left(k+a_{1}\right)}\binom{\left(a_{1}+k\right) x^{k+1}}{a_{0} x^{k}}$
2.2.2 The tau SOLUTION

$$
\text { Setting } \tilde{T}_{n}(x)=\cdot \sum_{k=0}^{n} \tilde{c}_{k}^{(n)} x^{k} \text { and inverting the operator } D \text {, as in }
$$ section of Part I, we have

$\binom{Y_{n+1}(x)}{z_{n}(x)}=\tau_{1}^{(n)} \sum_{k=0}^{n+1} \tilde{c}_{k}^{(n+1)} Q_{k}^{[1]}(x)+\tau_{2}^{(n)} \sum_{k=0}^{n} \tilde{c}_{k}^{(n)} Q_{k}^{[2]}(x)$
$\tau_{1}^{(n)}$ and $\tau_{2}^{(n)}$ can be found by solving this system at $x=1$.
We shall assume $\alpha=1, \beta=0, J=[1,2]$

$$
\begin{aligned}
& \tilde{T}_{3}(x)=32 x^{3}-144 x^{2}+210 x-99 \\
& \tilde{T}_{4}(x)=128 x^{4}-768 x^{3}+1696 x^{2}-1632 x+577
\end{aligned}
$$

Hence, if

$$
\begin{gathered}
a_{1}=1, a_{0}=-a<0 \\
1=\tau_{1}^{(3)}\left[\frac{577}{-a}-\frac{1632}{1-a}+\frac{1696}{4-a}-\frac{768}{9-a}+\frac{128}{16-a}\right]+\tau_{2}^{(3)}\left[\frac{-99}{1-a}+\frac{420}{4-a}-\frac{432}{9-a}+\frac{1.28}{16-a}\right] \\
0=\tau_{1}^{(3)}\left[\frac{1632}{1-a}-\frac{3392}{4-a}+\frac{2304}{9-a}-\frac{512}{16-a}\right]+\frac{\tau_{2}^{(3)}}{a}\left[\frac{99}{1-a}-\frac{210}{4-a}+\frac{144}{9-a}-\frac{32}{16-a}\right]
\end{gathered}
$$

EXAMPLE $a=.25$:

$$
\tau_{1}{ }^{(3)}=-0.25910^{-3} ; \quad \tau_{2}^{(3)}=1.0810^{-3}
$$

It is clear that for values of 'a'close to $r^{2}, r=0,1,2,3$; the dominating terms in the system are the r-th ones and the tau-s will be found to be small < 10^{-3}

The same is true for 'a'close to zero on the negative side, i.e. $-\frac{1}{10} \leq a<0$, in which case the indicial equation has complex conjugate roots, but not in general, for'a' negative.

2.2.3 ANALYTIC SOLUTIONS OF THE EULER HOMOGENEOUS EOUATION

$$
x^{2} y^{\prime \prime}+a_{1} x y^{\prime}+a_{0} y=0 \quad y(1)=\alpha r y^{\prime}(1)=\beta
$$

We are looking for two linearly independent solutions $\phi_{1}(x), \phi_{2}(x)$ such that $y=c_{1} \phi_{1}+c_{2} \phi_{2}$ where the constants c_{1}, c_{2} are uniquely determined by the initial conditions.

Suppose $\phi(x)=x^{m}$ is a solution. Then m must satisfy the indicial equation $m(m-1)+a_{1} m+a_{0}=0$.

The following exhaust all the possibilities:
(i) The indicial equation has 2 distinct real roots m_{1}, m_{2};
(ii) m is a repeated root

Then $\phi_{1}(x)=x^{m}$ and $\phi_{2}(x)=x^{m} \log x$
(iii) There are 2 complex conjugate roots $m_{1}=c+i d, m_{2}=c-i d$

Then $\phi_{1}(x)=x^{c} \cos d \log x$ and $\phi_{2}(x)=x^{c} \sin d \log x$
We set $K_{1}(x, t)=\phi_{2}(x) \phi_{1}(t)-\phi_{1}(x) \phi_{2}(t)$
where $k_{1}(x, x)=0$ and $w_{1}(t)$ is the wronskian of ϕ_{1} and ϕ_{2}.

We note that

$$
w_{1}(1)=\left\{\begin{array}{cl}
m_{2}-m_{1} & \text { in (i) } \\
1 & \text { in (ii) } \\
a & \text { in (iii) }
\end{array}\right.
$$

For all r,

$$
\begin{equation*}
\frac{d}{d t} t^{r} \frac{k_{1}(x, t)}{w_{1}(t)}=\frac{-\left(r+1-m_{1}\right) x^{m_{1}} t^{r-m_{1}}+\left(r+1-m_{2}\right) x^{m_{2}} t^{r-m_{2}}}{m_{2}-m_{1}} \tag{8}
\end{equation*}
$$

2. 2.4 the tau solution by the green's function

First, we stipulate that

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{n}+1}(1)=\alpha, z_{\mathrm{n}}(1)=-\beta \text { and hence for consistency with (7) } \\
& \mathrm{y}_{\mathrm{n}+1}^{\prime}(1)=\beta+\tau_{2}^{(n)} \tilde{T}_{n}(1) . \\
& z_{n}^{\prime}(1)=-\tau_{1}^{(n)} \tilde{T}_{n+1}(1)+a_{0} \alpha+a_{1} \beta
\end{aligned}
$$

From (7) we also find that y_{n+1} satisfies the equation
$x^{2} y_{n+1}^{\prime \prime}(x)+a_{1} x y_{n+1}^{\prime}(x)+a_{0} y_{n+1}(x)=\tau_{1}^{(n)} \tilde{T}_{n+1}(x)+\tau_{2}^{(n)}\left[a_{1} x \tilde{T}_{n}(x)+x_{n}^{2 \tilde{T}_{n}^{\prime}}(x)\right]$

The general solution of this, is

$$
\begin{aligned}
Y_{n+1}(x) & =e_{1} \phi_{1}(x)+e_{2} \phi_{2}(x)-\tau_{2}^{(n)} \tilde{T}_{n}(1) \frac{k_{1}(x, 1)}{w_{1}(1)} \\
& +\int_{1}^{x} G_{1}(x, t) d t
\end{aligned}
$$

where $G_{1}(x, t)=\frac{\tau_{1}^{(n)} \tilde{r}_{n+1}(t) k_{1}(x, t)+\tau_{2}^{(n)} \tilde{T}_{n}(t)\left[a_{1} t \kappa_{1}(x, t)-w_{1}(t) \frac{d}{d t} \frac{t^{2} \kappa_{1}(x, t)}{w_{1}(t)}\right]}{w_{1}(t)}$
is obtained after performing an integration by parts on

$$
\int_{1}^{x} \frac{k_{1}(x, t) t^{2}}{w_{1}(t)} \frac{\tilde{T_{n}}}{d t} d t .
$$

Now $G_{1}(x, x)=\left.\frac{d}{d t} \frac{t^{2} \kappa_{1}(x, t)}{w(t)}\right|_{t=x}=-x^{2}$ for all cases (i), (ii) and (iii).

Hence we have $y_{n+1}(1)=e_{1} \phi_{1}(1)+e_{2} \phi_{2}(1)$
and $y_{n+1}^{\prime}(x)=\hat{c}_{1} \phi_{1}^{\prime}(x)+\hat{\varepsilon}_{2} \phi_{2}^{\prime}(x)-\tau_{2}^{(n)} \frac{\tilde{T}_{n}(1)}{w_{1}(1)}\left[-\phi_{1}^{\prime}(x)+\phi_{2}^{\prime}(x)\right]$

$$
+G_{1}(x, x)+\int_{1}^{x} \frac{\partial}{\partial x} G_{1}(x, t) d t
$$

and

$$
y_{n+1}^{\prime}(1)=\hat{c}_{1} \phi_{1}^{\prime}(1)+\hat{c}_{2} \phi_{2}^{\prime}(1) \quad \text { for all cases (i), (ii) and (iii). }
$$

It follows, as in 2.1.3, that

$$
\begin{equation*}
y_{n}(x)-y(x)=\int_{1}^{x} G_{1}(x, t) d t \tag{9}
\end{equation*}
$$

2.2.5 UPPER BOUNDS FOR THE ERROR FUNCTIONS IN TERMS OF THE TAU

We restrict ourselves to case (i) and to improve the bounds, assume $a_{1}<2 ; m_{1}, m_{2}<1$.
From (9) we have

$$
\begin{aligned}
& \left|y_{n+1}(x)-y(x)\right| \leq \frac{\left|\tau_{1}^{(n)}\right|}{2 n}\left\{\frac{1}{n+2}\left|\frac{k_{1}(x, 1)}{w_{1}(1)}\right|+\int_{1}^{x}\left|\frac{d}{d t} \frac{k_{1}(x, t)}{w_{1}(t)}\right| d t\right\} \\
& +\frac{\left|\tau_{2}^{(n)}\right|}{2(n-1)}\left[\left|\frac{-a}{n+1} \frac{k_{1}(x, 1)}{w_{1}(1)}+\frac{1}{(n+1)}\left[\frac{d}{d t} \frac{t^{2}{k_{1}}_{1}(x, t)}{w_{1}(t)}\right]_{t=1}\right|+x^{2}\right. \\
& \left.+\int_{1}^{x}\left|\frac{d}{d t}\left[a_{1} t \frac{k_{1}(x, t)}{w_{1}(t)}-\frac{d}{d t} t^{2} \frac{k_{1}(x, t)}{w_{1}(t)}\right]\right| d t\right\}
\end{aligned}
$$

Applying (8)

$$
\begin{aligned}
\left\|y_{n+1}-y\right\| & \leq\left.\frac{\left|\tau_{1}^{(n)}\right|}{2 n}\right|_{2_{1}-2^{m} 2 \mid} ^{\mid m_{1}-m_{2}}\left(1+\frac{1}{n+2}\right) \\
& +\frac{\left|\tau_{2}^{(n)}\right|}{2(n-1)}\left\{\max \left(1, \left\lvert\, \frac{\left(3-a_{1}-m_{1}\right) 2^{m_{1}}-\left(3-a_{1}-m_{2}\right) 2^{m_{2}}}{m_{1}-m_{2}}\right.\right)\left(1+\frac{1}{n+1}\right)+8\right\}
\end{aligned}
$$

2.2.6 THE ERROR FUNCTION FOR THE DERIVATIVE AND ITS BOUND

1

$$
z_{n}(x) \text { satisfies the equation }
$$

$x^{2} z_{n}^{\prime \prime}(x)+\left(Q+a_{1}\right) x z_{n}^{\prime}(x)+\left(a_{0}+a_{1}\right) z_{n}=-\tau_{1}^{(n)} \tilde{T}_{n+1}^{\prime}(x)+a_{0} \tau_{2}^{(n)} \tilde{T}_{n}(x)$

Suppose $\psi_{1}(x), \psi_{2}(x)$ are a basis for the solution of the homogeneous equation with corresponding $\kappa_{2}(x, t)$ and $w_{2}(t)$.
If $\psi(x)=x^{v}$ is a solution then v must satisfy $v(v-1)+\left(2+a_{1}\right) v+\left(a_{0}+a_{1}\right)=0$.

We again restrict ourselves to case (i) and assume $v_{1}, v_{2}<0$. Then
$z_{n}(x)-z(x)=\int_{1}^{x}\left[a_{0} \tau_{2}^{(n)} \frac{\tilde{T}_{n}(t) k_{2}(x, t)}{w_{2}(t)}+\tau_{1}^{(n)} \tilde{T}_{n+1}(t) \frac{\cdots}{d t} \frac{\ddot{k}_{2}(x, t)}{w_{2}(t)}\right] d t$
and

$$
\begin{aligned}
\left|\left|z_{n}-z\right|\right| & \leq \frac{\left|a_{0}^{\tau} 2_{2}^{(n)}\right|}{2(n-1)} \left\lvert\, \frac{2_{1}-2_{2}^{v_{2}} \mid}{\left|v_{1}-v_{2}\right|}\left(1+\frac{1}{n+1}\right)\right. \\
& +\frac{\left.\right|^{\tau}(n)}{2 n}\left\{\left(1+\frac{1}{n+2}\right) \max \left(1,\left|\frac{\left(1-v_{1}\right) 2^{v_{1}}-\left(1-v_{2}\right) 2^{v_{2}}}{v_{1}-v_{2}}\right|\right)+2\right\}
\end{aligned}
$$

2.2.7 EXAMPIE

Referring to our example of section $2.2,2$, we find

$$
m_{1}=\frac{1}{2}, m_{2}=-\frac{1}{2}, v_{1}=-\frac{3}{2}, v_{2}=-\frac{1}{2}
$$

and $\quad\left\|y_{4}-y\right\| \leq 2.5342 \times 10^{-3}$

$$
\left\|z_{3}-z\right\| \leq 1.6797 \times 10^{-4}
$$

2.3. THE AIRY EQUATION

We consider the form of Airy equation

$$
y^{\prime \prime}(x)+x y=1
$$

subject to $y(0)=\alpha, \quad y^{\prime}(0)=\beta$

A numerical solution for $y(x)$ with the Tau method can be found in [58]

We compute the exact solution $\left[y_{n}, z_{n}\right]^{T}$ of the perturbed system $D\binom{y_{n}}{z_{n}} \equiv\left(\begin{array}{cc}x & -\frac{d}{d x} \\ \frac{d}{d x} & 1\end{array}\right)\binom{y_{n}}{z_{n}}=\binom{1}{0}+\tau_{1}^{(n)}\binom{T_{n+1}^{*}}{0}+\left(\begin{array}{c}\tau_{2}^{(n)} \\ 0 \\ 0 \\ \tau_{3}^{(n)}\end{array}\right)\binom{T_{n}^{*}}{T_{n}^{*}}$
where J is $[0,1]$.
2.3.1 THE CANONICAL POLYNOMIALS

$$
Q_{k+2}^{[1]}(x)=\binom{x^{k+1}}{-(k+1) x^{k}}-k(k+1) Q_{k-1}^{[1]}(x)
$$

$Q_{0}^{[1]}$ undefined, $Q_{1}^{[1]}=\left(\begin{array}{l}1 \\ 0\end{array}, \quad Q_{2}^{[1]}(x)=\binom{X}{-1}\right.$
We note that $Q_{3}^{[1]}(0)=-2 Q_{0}^{[1]}$

$$
Q_{4}^{[1]}(0)=-6\left(\frac{1}{0}\right)
$$

$Q_{k+1}^{[2]}=\binom{(k+1) x^{k-1}}{x^{k+1}}-(k-1)(k+1) 2_{k-2}^{[2]}$
$Q_{O}^{[2]}=\left(\begin{array}{l}0 \\ 1\end{array}, Q_{1}^{[2]}=\left({ }_{x}^{0}\right)+O_{0}^{[1]}, Q_{2}^{[2]}=\binom{2}{x^{2}}\right.$
Again, we note that

$$
Q_{3}^{[2]}(0)=-3\binom{0}{1}
$$

$$
Q_{4}^{[2]}(0)=-8 Q_{0}^{[1]}
$$

2.3.2 THE TAU SOLUTION

Inverting the operator D of (10), we have
$\binom{Y_{n}}{z_{n}}=Q_{0}^{[1]}+\tau_{1}^{(n)} \sum_{j=0}^{n+1} c_{j}^{(n+1)} Q_{j}^{[1]}+\tau_{2}^{(n)} \sum_{j=0}^{n} c_{j}^{(n)} Q_{j}^{[1]}+\tau_{3}^{(n)} \sum_{j=0}^{n} c_{j}^{(n)} Q_{j}^{[2]}$
where $c_{j}^{(n)}$ are the coefficients of $T_{n}{ }^{*}$.
We take $n=3, \dot{\alpha}=3^{-2 / 3} \Gamma(1 / 3), \quad \dot{\beta}=-3^{-1 / 3} \Gamma(2 / 3)$

In order for the contribution of the undefined canonical polynomial $Q_{0}^{[1]}$ to vanish, we have the constraint
$Q_{0}^{[1]}\left\{1+\tau_{1}^{(3)}\left[c_{0}^{(4)}-2 c_{3}^{(4)}\right]+\tau_{2}^{(3)}\left[c_{0}^{(3)}-2 c_{3}^{(3)}\right]+\tau_{3}^{(3)} c_{1}^{(3)}\right\}=0$

From the initial conditions, we have

$$
\begin{aligned}
\binom{1.287899}{-.938893} & =\tau_{1}^{(3)}\left[-32\left(\left(_{0}^{1}\right)+160\binom{0}{0}+128\binom{-6}{0}\right]\right. \\
& +\tau_{2}^{(3)}\left[18\binom{1}{0}-48\binom{0}{0}\right]+\tau_{3}^{(3)}\left[-1\binom{0}{1}-48\binom{2}{0}+32\binom{0}{0}\right]
\end{aligned}
$$

Hence we find

$$
\tau_{3}^{(3)}=.011766 \tau_{2}^{(3)}=-.006330 \tau_{1}^{(3)}=-.003164
$$

2. 3.3 ANALYTIC SOLUTION OF THE ATRY EQUATION

$$
y^{\prime \prime}+x y=1
$$

Two linearly independent solutions of the homogeneous equation are given by $\phi_{1}(x)=\sqrt{x} J_{1 / 3}\left(\frac{2}{3} x^{3 / 2}\right), \phi_{2}(x)=\sqrt{x} J_{-1 / 3}\left(\frac{2}{3} x^{3 / 2}\right)$

We set $k(x, t)=\phi_{2}(x) \phi_{1}(t)-\phi_{1}(x) \phi_{2}(t)$
and $w(t)$ is the Wronskian of ϕ_{1} and ϕ_{2}
From the relationships

$$
\begin{aligned}
& \frac{d}{d \xi} J_{p}(\xi)=J_{p-1}(\xi)-\frac{p}{\xi} J_{p}(\xi) \\
& \frac{d}{d \xi} J_{p}(\xi)=\frac{p}{\xi} J_{p}(\xi)-J_{p+1}(\xi)
\end{aligned}
$$

we obtain respectively

$$
\begin{aligned}
& \frac{d}{d x} \phi_{1}(x)=x J_{-2 / 3}\left(\frac{2}{3} x^{3 / 2}\right), \frac{d}{d x} \phi_{2}(x)=-x J_{2 / 3}\left(\frac{2}{3} x^{3 / 2}\right) \\
& \frac{d^{2}}{d x^{2}} \phi_{1}(x)=-x^{3 / 2} J_{1 / 3}\left(\frac{2}{3} x^{3 / 2}\right), \frac{d^{2}}{d x^{2}} \phi_{2}(x)=-3 / \sum_{1 / 3}\left(\frac{2}{3} x^{3 / 2}\right)
\end{aligned}
$$

From the series expansion of the Bessel functions we have

$$
\begin{aligned}
& \phi_{1}(0)=0, \quad \phi_{2}(0)=3^{1 / 3} / \Gamma\left(\frac{2}{3}\right) \\
& \phi_{1}{ }^{\prime}(0)=3^{2 / 3 / \Gamma\left(\frac{1}{3}\right)} \quad \phi_{2}^{\prime}(0)=0 \\
& w(0)=-3 /\left[\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right)\right]
\end{aligned}
$$

However $w(t)=w(0)$ for all t, cf [5] p. 29.

2.3.4 THE TAU SOLUTION BY THE GREENS FUNCTION

The derived initial conditions for the perturbed system (9) are
$y_{n}(0)=\alpha, \quad z_{n}(0)=-\beta$
and for consistency

$$
\begin{aligned}
& y_{n}^{\prime}(0)=\beta+\tau_{3}^{(n)} T_{n}^{*}(0) \\
& z_{n}^{\prime}(0)=-1-\tau_{1}^{(n)} T_{n+1}^{*}(0)-\tau_{2}^{(n)} T_{n}^{*}(0)
\end{aligned}
$$

y_{n}, z_{n} are the solutions respectively of

$$
\begin{align*}
& y_{n}^{\prime \prime}+x y_{n}=1+\tau_{1}^{(n)} T_{n+1}^{*}(x)+\tau_{2}^{(n)} T_{n}^{*}(x)+\tau_{3}^{(n)}{T_{n}^{s, ~}}^{\prime}(x) \tag{11}\\
& z_{n}^{\prime}=x y_{n}-1-\tau_{1}^{(n)} T_{n+1}^{*}(x)-\tau_{2}^{(n)} T_{n}^{*}(x) \tag{12}
\end{align*}
$$

The solution of (11) is
$y_{n}(x)=\hat{C}_{1} \phi_{1}(x)+\hat{C}_{2} \phi_{2}(x)-\tau_{3}^{(n)} T_{n} *(0) \frac{k(x, 0)}{w(0)}+\int_{0}^{x} \frac{G(x, t)}{w(0)} d t$
where $G(x, t)=\left[1+\tau_{1}^{(n)} T_{n+1}^{*}(t)+\tau_{2}^{(n)} T_{n}^{*}(t)\right] \kappa(x, t)-\tau_{3}^{(n)} T_{n}^{*}(t) \frac{d}{d t} k(x, t)$

We deduce, as in 2.1.3 that

$$
y_{n}(x)-y(x)=\int_{0}^{x} \frac{[G(x, t)-k(x, t)]}{w(0)} d t
$$

On the other hand, one readily obtains from (12)

$$
z_{n}(x)-z(x)=\int_{0}^{x} t\left[y_{n}(t)-y(t)\right] d t-\int_{0}^{x}\left[\tau_{1}^{(n)} T_{n+1}^{*}(t)+\tau_{2}^{(n)} T_{n}^{*}(t)\right] d t
$$

2.3.5 UPPER BOUNDS FOR THE ERROR FUNCTIONS IN TERMS OF THE TAU

From the expansion

$$
J_{v}(z)=\frac{\left(\frac{z}{2}\right)^{v}}{\Gamma(v+1)} \quad o_{1}\left(v+1 ;-z^{2} / 4\right)
$$

we obtain for ξ real $\nu>-1$

$$
\left|J_{v}(\xi)\right| \leq \frac{\left|\frac{\xi}{2}\right|^{v}}{\Gamma(v+1)}
$$

Hence for $0 \leq x \leq 1$

$$
\begin{aligned}
& \left|\phi_{1}(x)\right| \leq \frac{\left(\frac{1}{3}\right)^{1 / 3}}{\Gamma\left(\frac{4}{3}\right)}, \quad\left|\phi_{2}(x)\right| \leq \frac{\left(\frac{1}{3}\right)^{-1 / 3}}{\Gamma\left(\frac{2}{3}\right)} \\
& \left|\phi_{1}^{\prime}(x)\right| \leq \frac{\left(\frac{1}{3}\right)^{-2 / 3}}{\Gamma\left(\frac{1}{3}\right)},\left|\phi_{2}^{\prime}(x)\right| \leq \frac{\left(\frac{1}{3}\right)^{2 / 3}}{\Gamma\left(\frac{5}{3}\right)} \\
& |k(x, t)| \leq \frac{2}{\Gamma\left(\frac{2}{3}\right) \Gamma\left(\frac{4}{3}\right)}=2|w(0)| \\
& \left|\frac{d}{d t} k(x, t)\right| \leq \frac{9}{2 \Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right)}=\frac{3}{2}|w(0)| \\
& \left|\frac{d^{2}}{d t^{2}} \kappa(x, t)\right| \leq 2|w(0)| \\
& \left\|y_{n}-y\right\| \leq \sum_{i=1}^{3} m_{i}^{(1)}\left|\tau_{i}^{(n)}\right| \quad \text { where } m_{1}^{(1)}=\frac{1}{2 n}\left[1.5+\frac{1}{n+2}\right] \text {, } \\
& m_{2}^{(1)}=\frac{1}{2(n-1)}\left[\frac{1}{n+1}+1.5\right], \quad m_{3}^{(1)}=\frac{1}{2(n-1)}\left[3+\frac{1}{n+1}\right] \\
& \left\|z_{n}-z\right\| . \leq \sum_{i=1}^{3} m_{i}^{(2)}\left|\tau_{i}\right| \text { where } m_{l}^{(2)}=m_{1}^{(1)}+\frac{1}{2 n} \text {, } \\
& m_{2}^{(2)}=m_{2}^{(1)}+\frac{1}{2(n-1)} ; \quad m_{3}^{(2)}=m_{3}^{(1)} .
\end{aligned}
$$

Hence we find, for $n=3$, the following uppor bounds for the error functions:

$$
\left\|y_{3}-y\right\|<.01323 ;\left\|z_{3}-z\right\|<.01415
$$

For this value of n, these bounds compare favourably with the standard Tau method solution to this problem adopted in [58].
3.1. INTRUDUCTIUN : LEGENDRE PERTURBATIONS AND RATIONAL APPROXIMATIOIVS It has been found in practice, see [21] and [57], that the Tau approximations generated with a Legendre perturbation P_{n}, have the advantage that they provide more accurate cnd-point estimations than those generated with a Chebyshev perturbation T_{n}. This feature is of consequence in designing a suitable step-by-step Tau solution of a problem over a segmented range, see [57] for a detailed.description,

A heuristic proof to justify the use of Legendre perturbations was first given by Lanczos in 1962 and is to be found in [43].

It was based on the approximation by the Tau method of the Green's function $G(x, t)$ associated with the differential operator at $x=1$.

We further support this view in the sequel by arguing on the following 1 ines. Suppose we write $y-y_{n}=\varepsilon_{n}=\tau^{(n)} \int_{0}^{X} Y_{n}(t) G(x, t)$ dt.
Now by Rodrigues' definition of the Legendre volynomial shifted to $[0,1]$

$$
P_{n}(t)=\frac{(-1)^{n}}{n!} w^{(n)}(t) \quad \text { where } w=t^{n}(1-t)^{n}
$$

the superscript (n) denotes the n-th derivative and $\omega^{(i)}(0)=\omega^{(i)}(1)=0$ for $i=0,1, \ldots, n-1$.

Hence by performing repeated integration by parts, we can reduce the integral, in the expression for $E_{n}(1)$, to the integral of a smooth function $\frac{d^{n}}{d t^{n}} G(x, t)$ against $\omega(t)$ which behaves increasingly like a delta function as n increases. Consequently the error function diminishes rapidly with n and precise bounds can be found depending on $\frac{d^{n}}{d t^{n}} G(x, t)$.

Luke (see [47] Chapter $\overline{\underline{X}}$ and also [21]) extended the error analysis of the Tau solution of the simple differential equation

$$
y^{\prime}-y=0 \text { with } y(0)=1
$$

to the solution of

$$
\begin{equation*}
y_{n}^{\prime}-y_{n}=\tau^{(n)} \phi_{n}(\alpha, \beta)\left(\frac{x}{\gamma}\right) \tag{1}
\end{equation*}
$$

on $[0, \gamma]$ with $y_{n}(0)=1$.
$\phi_{n}{ }^{(\alpha, \beta)}(t)$ is a shifted Jacobi polynomial on $[0,1]$ which has the hypergeometric form

$$
{ }_{2} \mathrm{~F}_{1}\left(\left.\begin{array}{c}
-n, n+\lambda \\
\beta+1
\end{array} \right\rvert\, t\right) \text { where } \lambda=\alpha+\beta+1
$$

We note that $\phi_{n}^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(t)=(-1)^{n} X_{n}^{*}(t)$
while

$$
\phi_{\mathrm{n}}{ }^{(0,0)}(\mathrm{t}) \quad=(-1)^{\mathrm{n}} \mathrm{P}_{\mathrm{n}}(\mathrm{t}) .
$$

For a given value of γ, the solution of (1) is a polynomial of degree n in x / γ. When the initial conditions are accounted for, the solution y_{n} takes the form of a rational function. If x is now set equal to γ, then y_{n} can be expressed as the quotient of two polynomials of degree n in x (see [43] p. 195). by this means a rational approximation for $\exp (x)$ was obtained with little more effort than before and yet with considerably improved accuracy,

In the foregoing we extend these ideas to a particular simple second-order linear differential equation to obtain approximations to both the function and its deriyative and which basically are the quotient of two polynomials of degree n in x^{2}.
3.2. The Problem and its solution using the green's fuiction

Let us consider the second order differential equation

$$
y^{\prime \prime}(x)+y(x)=0, \quad x \in[0,1]
$$

with the initial conditions $y(0)=1, y^{\prime}(0)=0$ which we write as the system

$$
\left(\begin{array}{cc}
1 & \frac{-d}{d x} \tag{2}\\
\frac{d}{d x} & 1
\end{array}\right)\binom{y}{z}=\binom{0}{0}
$$

with the conditions $y(0)=1, z(0)=0$.
We now look for an approximate solution of the syster (2) in the interval $[0, \gamma], \gamma \leqslant 1$, by means of the Tau method. We shall use as a perturbation term for y_{n} and z_{n}, the Legendre polynomials $P_{n}(x / Y)$ defined in the interval $[0, \gamma]$. Thus $\left[y_{n}, z_{n}\right]^{T}$ is the exact solution of

$$
\left(\begin{array}{cc}
1 & \frac{-d}{d x} \tag{3}\\
\frac{d}{d x} & 1
\end{array}\right)\binom{y_{n}}{z_{n}}=\left(\begin{array}{ll}
\tau_{0}^{(n, \gamma)} & p_{n}(x / \gamma) \\
\tau_{1}^{(n, \gamma)} & p_{n}(x / \gamma)
\end{array}\right)
$$

The error functions for y and z are defined respectively as

$$
\begin{aligned}
& \varepsilon_{n}(x, \gamma)=y_{n}(x, \gamma)-y(x, \gamma) \\
& \delta_{n}(x, \gamma)=z_{n}(x, \gamma)-z(x, \gamma)
\end{aligned}
$$

From (2) and (3)

$$
\begin{align*}
& \frac{d^{2}}{d x^{2}} \varepsilon_{n}(x, \gamma)+\varepsilon_{n}(x, \gamma)=\tau_{0}^{(n, \gamma)} p_{n}(x / \gamma)+\tau_{1}(n, \gamma) \frac{d}{d x} P_{n}(x / \gamma) \tag{4-a}\\
& \frac{d^{2}}{d x^{2}} \delta_{n}(x, \gamma)+\delta_{n}(x, \gamma)=-\tau_{0}^{(n, \gamma)} \frac{d}{d x} p_{n}(x / \gamma)+\tau_{1}(n, \gamma) P_{n}(x / \gamma) \tag{4-b}
\end{align*}
$$

The solution of (4-a) in terms of its Green's function is $\varepsilon_{n}(x, \gamma)=\tau_{0}^{(n, \gamma)} \int_{0}^{x} \sin (x-u) p_{n}(u / \gamma) d u+\tau_{1}^{(n, \gamma)} \int_{0}^{x} \cos (x-u) \frac{d}{d x} P_{n}(u / \gamma) d u$

$$
\begin{equation*}
=\gamma \int_{0}^{x / \gamma}\left[\tau_{0}^{(n, \gamma)} \sin (x-\gamma t)+\tau_{1}^{(n, \gamma)} \cos (x-\gamma t)\right] P_{n}(t) d t \tag{5-a}
\end{equation*}
$$

Similarly,
$\delta_{n}(x, \gamma)=\gamma \int_{0}^{x / \gamma}\left[-\tau_{0}^{(n, \gamma)} \cos (x-\gamma t)+\tau_{1}^{(n, \gamma)} \sin (x-\gamma t)\right] p_{n}(t) d t$

Following Luke (Vo1. 1, p. 281), the repeated integrals of $P_{n}(t)$ are denoted by

$$
P_{n ; r}(x)=\frac{1}{(r-1)!} \int_{0}^{x}(x-t)^{r-1} P_{n}(t) d t
$$

with $\mathrm{P}_{\mathrm{n}, 0} \equiv \mathrm{P}_{\mathrm{n}}$. It follows that

$$
p_{n ; r}(0)=P_{n, r}(1)=0 \quad \text { for } r=1 \text { (I) } n
$$

Furthermore, using Rodri\&ues' formula, $\quad P_{n, n}(t)={\frac{(-1)^{n}}{n!}}^{n} t^{n}(1-t)^{n}$. Repeated integration by parts of (5-a) yields

$$
\begin{aligned}
\varepsilon_{n}(x, \gamma)= & \sum_{k=0}^{\sum_{\gamma}^{-1} \gamma^{k+1}\left\{\tau_{0}^{(n, \gamma)} \sin \frac{k \pi}{2}+\tau_{1}^{(n, \gamma)} \cos \frac{k \pi}{2}\right] P_{n, k}(x / \gamma)} \\
& \left.-\left[\tau_{0}^{(n, \gamma)} \sin \left(x+\frac{k \pi}{2}\right)+\tau_{1}^{(n, \gamma)} \cos \left(x+\frac{k \pi}{2}\right)\right] Y_{n, k+1}(0)\right\} \\
& +\gamma^{r+1} \int_{0}^{x / \gamma}\left[\tau_{0}^{(n, \gamma)} \sin \left(x+\frac{r \pi}{2}-\gamma t\right)+\tau_{1}^{(n, \gamma)} \cos \left(x+\frac{r \pi}{2}-\gamma(t)\right] P_{n, r}(t) d t .\right.
\end{aligned}
$$

If γ is identified with the current point $x \in[0,1]$ and $r=n$, we have that $\varepsilon_{n}(x, x)=x^{n+1} \int_{0}^{1}\left\{\tau_{0}^{(n, x)} \sin \left[\frac{n \pi}{2}+x(1-t)\right]+\tau_{1}^{(n, x)} \cos \left[\frac{n \pi}{2}+x(1-t)\right]\right\} P_{n, n}(t) d t$ We set $A_{\alpha, n}(x) \equiv \int_{0}^{I} \sin [\alpha+x(1-t)] t^{n}(1-t)^{n} d t$

$$
=\sin (\alpha+x) \int_{0}^{1} \cos (\pi t) t^{n}(1-t)^{n} d t-\cos (\alpha+x) \int_{0}^{1} \sin (x t) t^{n}(1-t)^{n} d t .
$$

3.3 A CLOSED FORA FOR THE ERROR TERMS

Since

$$
\int_{0}^{1} e^{i x t} t^{n}(1-t)^{n} d t=\frac{\sqrt{\pi} e^{i x / 2} n!}{(i x)^{n+\frac{1}{2}}} I_{n+\frac{1}{2}}\left(\frac{i x}{2}\right)
$$

where

$$
\begin{equation*}
I_{v}(i x)=i^{-v} J_{v}(-x)=(-1)^{v} J_{v}(x), \tag{6}
\end{equation*}
$$

we have

$$
\begin{aligned}
& A_{\alpha, n}(x)=\sqrt{\pi} n!\left\{\sin (\alpha+x)\left[e^{i x / 2} \frac{I_{n+\frac{1}{2}}\left(\frac{i x}{2}\right)}{(i x)^{n+\frac{1}{2}}}+\frac{e^{-i x / 2} I_{n+\frac{1}{2}}\left(\frac{-i x}{2}\right)}{(-i x)^{n+\frac{1}{2}}}\right]\right. \\
& \left.+i \cos (\alpha+x)\left[e^{i x / 2} \frac{I_{n+\frac{1}{2}}\left(\frac{i x}{2}\right)}{(i x)^{n+\frac{1}{2}}}-e^{-i x / 2} \frac{I_{n+\frac{1}{2}}\left(\frac{-i x}{2}\right)}{(-i x)^{n+1}}\right]\right\} \\
& =\sqrt{\pi} n!i\left[\frac{e^{-i\left(\alpha+\frac{x}{2}\right)} I_{n+\frac{1}{2}}\left(\frac{i x}{2}\right)}{(i x)^{n+\frac{1}{2}}}-\frac{e^{i\left(\alpha+\frac{x}{2}\right)} I_{n+\frac{1}{2}}\left(-\frac{-i x}{2}\right)}{(-i x)^{n+\frac{1}{2}}}\right]
\end{aligned}
$$

Applying (6)

$$
\begin{aligned}
\Lambda_{\alpha, n}(x) & =\frac{i \sqrt{\pi n}!}{x^{n+\frac{1}{2}}}\left[\frac{(-1)^{n}}{i} e^{-i\left(\alpha+\frac{x}{2}\right)} J_{n+\frac{1}{2}}\left(-\frac{x}{2}\right)-e^{i\left(\alpha+\frac{x}{2}\right)} J_{n+\frac{1}{2}}\left(\frac{x}{2}\right)\right] \\
& =\frac{\sqrt{\pi n}!}{x^{n+\frac{i}{2}}} \sin \left(\alpha+\frac{x}{2}\right) \quad J_{n+\frac{1}{2}}\left(\frac{x}{2}\right) .
\end{aligned}
$$

Fina11y,
$\varepsilon_{n}(x, x)=(-1)^{n} \sqrt{\pi x} J_{n+\frac{1}{2}}\left(\frac{x}{2}\right)\left[\tau_{0}^{(n, x)} \sin \frac{1}{2}(n \pi+x)+\tau_{1}^{(n, x)} \cos \frac{1}{2}(n \pi+x)\right]$

Similarly,
$\delta_{n}(x, x)=(-1)^{n} \sqrt{\pi x} J_{n+\frac{j}{2}}\left(\frac{x}{2}\right)\left[\tau_{1}^{(n, x)} \sin \frac{1}{2}(n \pi+x)-\tau_{0}^{(n, x)} \cos \frac{1}{2}(n \pi+x)\right]$
liopeated differentiation of (4-a) and alternate subtraction leads to

$$
\begin{align*}
y_{n}(x) & =\tau_{0}^{(n, \gamma)}\left[p_{n}(x / \gamma)-p_{n}^{\prime \prime}(x / \gamma)+\ldots+(-1)^{\theta}{ }_{p}{ }_{n}^{(2 \theta)}(x / \gamma)\right] \\
& +\tau_{1}^{(n, \gamma)}\left[p_{n}^{\prime}(x / \gamma)-p_{n}^{\prime \prime \prime}(x / \gamma)+\ldots+(-1)^{0} p_{n}^{(2 \theta+1)}(x / \gamma)\right] \tag{8}
\end{align*}
$$

where $\theta=[n / 2]$. A similar expression is found for $z_{n}(x)$.
If we now impose on $y_{n}(x), z_{\mathfrak{n}}(x)$ the conditions of (2) remembering that

$$
\left.\frac{d^{r}}{d x^{r}} P_{n}(x / Y)\right|_{x=0}=\left.\gamma^{-r} \frac{d^{r}}{d t^{r}} P_{n}(t)\right|_{t=0,}
$$

we obtain
$1=\tau_{0}^{(n, \gamma)} \sum_{r=0}^{\theta}(-1)^{r} \gamma^{-2 r} P_{n}^{(2 r)}(0)+\tau_{1}^{(n, \gamma)} \sum_{r=0}^{\theta}(-1)^{r} \gamma^{-(2 r+1)} p_{n}^{(2 r+1)}(0)$
$0=\tau_{1}^{(n, \gamma)} \sum_{r=0}^{\theta}(-1)^{r} \gamma^{-2 r} p_{n}^{(2 r)}(0)-\tau_{0}^{(n, \gamma)} \sum_{r=0}^{\theta}(-1)^{r} \gamma^{-(2 r+1)} p_{n}^{(2 r+1)}(0)$.

We remark that the series expansion of $\mathrm{P}_{\mathrm{n}}(\mathrm{t})$ in $[0,1]$,

$$
P_{n}(t)=\sum_{k=0}^{n}\left(\left(_{k}^{n}\right)^{2}(t-1)^{n-k} t^{k},\right.
$$

is the bernstein polynomial of order k of a function f which takes the values

$$
f_{k}=\binom{n}{k}(-1)^{n-k} \quad \text { for } k=0(1) n .
$$

Thus,

$$
P_{n}(t)=\sum_{k=0}^{n}\binom{n}{k} \Delta k_{f_{0}} t^{k}
$$

with $P_{n}(0)=(-1)^{n}$ and

$$
\begin{align*}
\left.\frac{d^{r}}{d t^{r}} p_{n}(t)\right|_{t=0} & =r!\binom{n}{r} \Delta^{r} f_{0} \\
& =(-1)^{n+r} r!\sum_{j=0}^{r}\binom{n}{j}\binom{r}{j}=\frac{(-1)^{n+r}}{r!} \frac{(n+r)!}{(n-r)!} \tag{10}
\end{align*}
$$

Furthermore, if we set

$$
\begin{align*}
& S_{E} \equiv S_{E}^{(n, \gamma)}=\gamma^{-2 \theta}(-1)^{\theta} \sum_{r=0}^{\theta}(-1)^{r} \gamma^{2 r} P_{n}^{(2 \theta-2 r)}(0) \tag{11}\\
& S_{0} \equiv S_{0}^{(n, \gamma)}=\gamma^{-(2 \theta+1)}(-1)^{\theta} \sum_{r=0}^{\theta}(-1)^{r} \gamma^{2 r} P_{n}^{(2 \theta-2 r+1)}(0) \tag{12}
\end{align*}
$$

the solution of (9) can be expressed in terms of S_{E}, S_{0} as

$$
\begin{equation*}
\tau_{0}^{(n, \gamma)}=\frac{S_{E}}{S_{E}^{2}+S_{0}^{2}}, \tau_{1}^{(n, \gamma)}=\frac{S_{0}}{S_{E}^{2+} S_{0}^{2}} \tag{13}
\end{equation*}
$$

We shall see, in (16-c) below, that $\mathrm{S}_{\mathrm{H}}{ }^{2}+\mathrm{S}_{0}{ }^{2} \neq 0$ for $0<\gamma \leqslant 1$.
Consequently, $\tau \int_{0}^{(n, \gamma)}, \tau \underset{1}{(n, \gamma)}$ are both vell definca in that range.
3.4 Error Bounds in the Range $0<\gamma \leqslant 1$

Taking into account (10) we obtain for (11)

$$
S_{E}=(-1)^{n / 2} \gamma^{-n} \sum_{r=0}^{n / 2} \frac{(-1)^{r}[2(n-r)]: \gamma^{2 r}}{(n-2 r)!(2 r)!}
$$

$$
\begin{equation*}
1-\frac{\gamma^{2}}{8}+\frac{\gamma^{4}}{1680}<\frac{(-1)^{n / 2} n!\gamma^{n}}{(2 n)!} S_{E}<1-\frac{3 \gamma^{2}}{28}+\frac{\gamma^{4}}{384} \tag{14}
\end{equation*}
$$

$\operatorname{From}(12) \quad S_{0}=(-1)^{n / 2} \gamma^{-n-1} \sum_{r=1}^{n / 2} \frac{(-1)^{r+1}(2 n-2 r+1)!\gamma^{2 r}}{(n-2 r+1)!(2 r-1)!}$
and

$$
\begin{equation*}
\gamma-\frac{\gamma^{3}}{24}<\frac{(-1)^{n / 2} 2 n!\gamma^{n}}{(2 n)!} s_{0}<\gamma-\frac{\gamma^{3}}{42} \tag{15}
\end{equation*}
$$

lor the range $0<\gamma \leqslant 1$, (14) - (15) give us the following bounds for S_{E} and S_{0} rounded to 6D:

$$
\begin{align*}
& .875595<\frac{(-1)^{n / 2} n!\gamma^{n}}{(2 n)!} S_{E}<1.000000 \tag{16-a}\\
& .000000<\frac{(-1)^{n / 2} n!\gamma^{n}}{(2 n)!} S_{0}<0.488095 \tag{16-b}
\end{align*}
$$

and

$$
0.766667<\left[\frac{\mathrm{n}!\gamma^{\mathrm{n}}}{(2 \mathrm{n})!}\right]^{2}\left(\mathrm{~S}_{\mathrm{E}}{ }^{2}+\mathrm{S}_{0}{ }^{2}\right)<1.238237
$$

We cān now reconsider (7-a) and (7-b).
Since

$$
(-1)^{n / 2} \tau_{0}^{(n, \gamma)}<\max _{0<\gamma \leqslant 1} \frac{(-1)^{n / 2}}{S_{E}^{(n, \gamma)}}
$$

we derive, on applying ($16-\mathrm{a}$) - ($16-\mathrm{c}$), the following bounds on the interval $0<x \leqslant 1$:

$$
\begin{gathered}
0<(-1)^{n / 2} \frac{(2 n)!}{\gamma^{n} n!}\left[\tau_{0}^{(n, \gamma)} \sin \frac{x}{2}+\tau_{1}^{(n, \gamma)} \cos \frac{x}{2}\right]<1.1842 \\
-1.142080<(-1)^{n / 2} \frac{(2 n)!}{\gamma^{n} n!}\left[\tau_{1}^{(n, \gamma)} \sin \frac{x}{2}-\tau_{0}^{(n, \gamma)} \cos \frac{x}{2}\right]<-0.315340 .
\end{gathered}
$$

Furthermore, since

$$
\frac{J_{n+\frac{1}{2}}\left(\frac{x}{2}\right) / \pi}{x^{n+\frac{1}{2}}}<\frac{n!}{(2 n+1)!}\left[1+0\left(x^{2}\right)\right]
$$

we obtain for n even, $n \geqslant 4$ and $0<x \leqslant 1$

$$
\begin{aligned}
& 0<\frac{(2 n+1)!(2 n)!}{(n!)^{2}} \varepsilon_{n}(x, x)<1.1842 x^{2 n+1}\left[1+0\left(x^{2}\right)\right] \\
& -1.1421 x^{2 n+1}\left[1+0\left(x^{2}\right)\right]<\frac{(2 n+1)!(2 n)!}{(n!)^{2}} \delta_{n}(x, x)<-0.31534 x^{2 n+1}\left[1+0\left(x^{2}\right)\right]
\end{aligned}
$$

3.5 Error bolnds at the end polnt of the interval $[0,1]$

We now come back to consider the problen of the error at the matching points of our segmented Tau approximation. For $\gamma=1$ and taking the case $n=4$ for our upper bound, we derive fron (14) and (15)

$$
\begin{aligned}
& 0.875595<\frac{(-1)^{n / 2} n!}{(2 n)!} S_{E}^{(n, 1)}<0.893452 \\
& 0.479166<\frac{(-1)^{n / 2} n!}{(2 n)!} S_{0}^{(n, 1)}<0.483095
\end{aligned}
$$

and

$$
0.996266<\left[\frac{n!}{(2 n)!}\right]^{2}\left(\left[S_{E}^{(n, 1)}\right]^{2}+\left[S_{0}^{(n, 1)}\right]^{2}\right)<1.036492
$$

hence

$$
0.462295<\frac{(-1)^{n / 2}(2 n)!}{n!}{ }_{\tau}^{(n, 1)}<0.489924
$$

and

$$
1.793902
$$

$<$

$$
\frac{\tau_{0}^{(n, 1)}}{\tau_{1}^{(n, 1)}}
$$

$<\quad 1.864598$
From $(7-a): \varepsilon_{n}(1,1)=(-1)^{n / 2} J_{n+\frac{1}{2}}^{\left(\frac{1}{2}\right)} \sqrt{\pi} \tau_{1}^{(n, 1)}\left[\begin{array}{l}\tau_{0}^{(n, 1)} \\ \tau_{1}^{(n, 1)} \\ \sin \left(\frac{1}{2}\right)+\cos \left(\frac{1}{2}\right)\end{array}\right]$
which yielas, on applying the above bounds,
$\left(1-\frac{2}{16 \times 11}\right) 0.80329<\frac{(2 n+1)!(2 n)!}{(n!)^{2}} \varepsilon_{n}(1,1)<0.86791$
From $(7-b): \quad \delta_{n}(1,1)=(-1)^{n / 2} J_{n+\frac{1}{2}}^{\left(\frac{1}{2}\right)} \gamma_{\pi} \tau_{1}^{(n, 1)}\left[\sin \left(\frac{1}{2}\right)-\frac{\tau_{0}^{(n, 1)}}{\tau_{1}^{(n, 1)}} \cos \left(\frac{1}{2}\right)\right]$
from which we find

$$
-0.56679<\frac{(2 n+1)!(2 n)!}{(n!)^{2}} \delta_{n}(1,1)<-0.50615\left(1-\frac{2}{16 \times 11}\right)
$$

3.6 HORKED EXAMPLE

We consider first the end point estination for the case when the interval of approximation is $\left[0, \frac{\pi}{8}\right]$. We make use of the tabulated values of
$j_{n}(x)=\sqrt{\frac{\pi}{2 x}} J_{n+\frac{1}{2}}(x)$ to be found in [I] and replace $\sqrt{\pi x} J_{n+\frac{1}{2}}\left(\frac{x}{2}\right)$ by
$x j_{n}\left(\frac{x}{2}\right)$ in (7-a) and (7-b). Hence for n even,
$\varepsilon_{n}\left(\frac{\pi}{8}, \frac{\pi}{8}\right)=(-1)^{n / 2} \frac{\pi}{8} j_{n}\left(\frac{\pi}{16}\right)\left[\begin{array}{c}\left.\tau_{0}^{(n,}, \pi / 8\right) \\ 0\end{array} \sin \frac{\pi}{16}+\tau_{1}^{(n, \pi / 8)} \cos \frac{\pi}{16}\right]$
$\delta_{n}\left(\frac{\pi}{8}, \frac{\pi}{8}\right)=(-1)^{n / 2} \frac{\pi}{8} j_{n}\left(\frac{\pi}{16}\right)\left[\tau_{0}^{(n, \pi / 6)} \cos \frac{\pi}{16}+\tau_{1}^{(n, \pi / 8)} \sin \frac{\pi}{16}\right]$

We employ the half angle formula

$$
\left.\begin{array}{l}
\sin \\
\cos
\end{array}\right\}\left(\frac{\pi}{16}\right)=\sqrt{\frac{1 \mp \cos \left(\frac{\pi}{8}\right)}{2}}=\left\{\begin{array}{r}
.1950903200 \\
.9307852807
\end{array}\right.
$$

$\mathrm{j}_{\mathrm{n}}\left(\frac{\pi}{16}\right)$ was deternined by a inite difference interpolation formuja based on the points $x_{r}=0, .1, .2, .3, .4$.
$\tau_{0}^{(n, \pi / 8)}, \tau_{1}^{(n, \pi / 8)}$ were determined directiy from equation (13).
The results are compared with the nodal error at $\frac{\pi}{8}$ for the function and its derivative in the standard two r-term Legendre perturbation obtained in [57] and designated $\varepsilon_{\mathrm{n}}^{\mathbf{s}} \delta_{\mathrm{n}}^{\mathbf{s}}$ respectiveiy

To evaluate, for example, y_{2} and z_{2}, we proceed as follows.
From $\mathrm{P}_{2}(\mathrm{t})=6 \mathrm{t}^{2}-6 \mathrm{t}+1$ we derive

$$
s_{E}^{(2, \gamma)}=1-\frac{12}{\gamma^{2}} ; S_{0}^{(2, \gamma)}=-\frac{6}{\gamma} .
$$

Hence from (8) and (13) we obtain, after scaling

$$
\begin{aligned}
& y_{2}\left(x^{2}, x^{2}\right)=\frac{144-60 x^{2}+x^{4}}{144+12 x^{2}+x^{4}} \\
& z_{2}\left(x^{2}, x^{2}\right)=\frac{x\left(144-12 x^{2}\right)}{144+12 x^{2}+x^{4}}
\end{aligned}
$$

3.7.
 concluding remarks

For higher values of n, one need not determine explicitly the rational expressions for y_{n} and z_{n}. It is more economical to use the terms $S_{E}^{(n, x)}$ and $S_{0}^{(n, x)}$ as follows.

From our knowledge of Legendre polynomials on $[-1,1]$ in particular,

$$
\begin{aligned}
& P_{n}(-x)=(-1)^{n} P_{n}(x) \text { and } \\
& P_{n}(x)=(2 n-1) P_{n-1}(x)+(2 n-5) P_{n-3}(x)+\ldots, n=1,2, \ldots
\end{aligned}
$$

we obtain $P_{n}^{(k)}(-1) \quad=(-1)^{n-k} Y_{n}^{(k)} \quad$ (1) $k \geqslant 0$
Hence using the same symbol for the Legendre polynomial shifted to $[0,1]$

$$
P_{n}^{(k)}(0)=(-1)^{n-k} P_{n}^{(k)}(1) \quad k \geqslant 0
$$

Thus recalling (11) and (12)

$$
\begin{aligned}
& \sum_{r=0}^{\theta}(-1)^{r} x^{-2 r} P_{n}^{(2 r)}(1)=(-1)^{n} S_{E}^{(n, x)} \text { and } \\
& \sum_{r=0}^{\theta}(-1)^{r} x^{-(2 r+1)_{P}(2 r+1)}(1)=(-1)^{n-1} S_{0}^{(n, x)}
\end{aligned}
$$

Inserting tinese expressions into (8) and employing (13)

$$
y_{n}\left(x^{2}, x^{2}\right)=(-1)^{n} \frac{\left\{\left[S_{E}^{(n, x)}\right]^{2}-\left[S_{0}^{(n, x)}\right]^{2}\right\}}{\left[S_{E}^{(n, x)}\right]^{2}+\left[S_{0}^{(n, x)}\right]^{2}}
$$

and similarly

$$
z_{n}\left(x^{2}, x^{2}\right)=\frac{(-1)^{n} 2 S_{E}^{(n, x)} S_{0}^{(n, x)}}{\left[S_{E}^{(n, x)}\right]^{2}+\left[S_{0}^{(n, x)}\right]^{2}}
$$

We can make the following observations. S_{E} and S_{O} require together $O(n)$ multiplications for their evaluation at $U=x^{2}$. hence this is the order of multiplications to evaluate both y_{n} and z_{n} at $U=x^{2}$ as opposed to the direct method requiring $O(3 n)$.

We further observe that our solution satisfies $y_{n}^{2}+z_{n}^{2}=1$.
The same technique, used along the lines of Partilan be extenced to more general cases, to provide casily computed approximations for both the function and its cierivative, with appropriate error bounds.
5.
M. Abramowitz and I. A. Stegun, Handbook of Ma.thematical Functions, Dover Publications, New York, 1965.

- D. Amir and F. Deutsch, Suns, Hoons, and Quasi-Polyhedra, J. Approximation Theory 6 (1972),176-201.
D. A. Ault, F. R. Deutsch, P. D. Morris and J. E. Olson, Interpolating Subspaces in Approximation Theory, J. Approximation Theory 3 (1970), 164-182.
R.B. Berrar and H. L. Loeb, Nonlinear Lp Approximation, J. of Math. Analysis and Applic., 40 (3972), 427-435.

1 (1968), 85-93.
D. Braess, Geometrical Characterization for Nonlinear Uniform Approximation, J. Approximation Theory, 11 (1974), 260-274.
D. Braess, Nonlinear Approximation, Approxination Theory II G.G. Lorentz,C.K. Chui and L.L. Schumaker, editors, Academic Press, New York , 1976, 49-78.
10. B. Brosowski, Reguldre Funktionensysteme in $L_{p}[a, b]$ Seminaire d'Analyse Numerique, Grenoble,1967.
11.
17. B. Brosowski und R. Wegmarm, Charakterisierung Bester Approximationen ill liormierten Vektorrummen,
J. Approximation Theory 3 (1970), 369-397. E. W. Cheney, Introduction to Approximation Theory: McGraw Hill, New York, 1966.
18.
19.
20.
21.
22.
23.
24.
25.
26. J. Approximation Theory 2 (1969), 419-432
C. Dierieck Characterization for Best Nonlinear Approximations: A Geometrical Interpretation, J. Approximation Theory 14 (1975), 163-187.
27. N. Dunford and J. T. Schwartz, Linear Operators I , Interscience, New York 1958.
28.
29. C. B. Dunham, Existence of Best Mean Rational Approximations,
31. L. Fox and I. B. Parker, Chebyshev Polynomials in Nunerical Analysis, Oxford University Press, London;1968 •

32 J. H. Freilich: Generalized Rational Approximation in
C. B. Dunham, Simultaneous Chebyshev Approximation of Functions on an Interval, Proc. Amer. Nath. Soc. 18 (1967), 472-477. J. Approximation Theory: 4(1971),269-273.
N. V. Efimov and S. B. Stechkin, Approximative Compactness and Chebyshev Sets, Soviet Math. Dokl. 2(1961),1226-1228.

Interpolating Subspaces of $L_{p}(\mu)$,
J. Approximation Theory 9 (1973), 380-394.
33. J. H. Freilich and H. H. Mclaughlin, Approximation of Iounded Sets,Ms., submit. at Conf. on Approx. Theory, Texas,1976.
D. S. Goel, A. S. B. Holland, C. Nasim and B. N. Sahney, On Best Simultaneous Approximation in Normed Linear Spaces, Canad. Math. Bull. 17 (1974), 523-527.
H. Hahn , Reelle Funktionen, Chelsea, New York, 1948 .
A. S. B. Holland, B. N.Sahney and J. Tzimbalario

On Best Simultaneous Approximation,
J. Approximation Theory 17 (1976),187-188.
D. Jackson, Note on a Class of Polynomials of Approximation, Trans. Amer. Math. Soc. 22 (1921), 320-326.
38. G. K8the, Topological Vector Spaces I, (Transl.), Bd. 159, Springer-Verlag, Berlin, 1969 .
37. W. Krabs, Über Differenzierbare Asymptotisch Konvexe Funktionenfamilien bei der Wicht-linearen Gleichmessigen Approximation, Arch. Rational Mech. Anal. 27 (1967), 275-288.
40. B. R. Kripke and T. J. Rivlin, Approximation in the Metric of $\mathrm{L}^{1}(\mathrm{X}, \mu)$, Trans. Amer. Hath. Soc. 119 (1965), 101-122.
41. C. Lanczos, Trigonometric Interpolation of Empirical and Analytical Functions, J. Math. Phys. 17(1933),123-199.
42. C. Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffe, New Jersey, 1956 .
43. G. Lanczos, Legendre versus Chebyshev Polynomials, Topics in Numerical Analysis ,J. J. H. Miller, editor, Academic Press, 191-201, 1973 .
P. J. Laurent, Approximation et Optimisation, Hermann, Paris 1972 .
P. J. Laurent and Pham-Dinh-Iuan, Global Approximation of
a Compact Set by Elements of a Convex Set in a Normed Space, Numer. Math 15 (1970), 137-150.
47. Y. L. Luke, The Special Functions and their Approximations Vols I and II, Academic Press, London and New York, 1969.
48. G. Meinardus, Approximation of Functions : Theory and Numerical Hethods, Springer-Verlag; Berlin, 1967 •
49.
50. G. Meinardus u. H. D. Strauer, Über Tschebyscheffsche Approximationen der Lösungen Linearer Differential- und Integralgleichungen, Arch. Rat. Mech. Anal. 14 (1963),184-195.
51. A. Meir and A. Sharma, Simultaneous Approximation or a Function and its Derivatives, SIAM J_{i} Numer. Anal. 3 (1966), 553-563.
52. D. G. Hoursund, Chebyshev Approximations of a Function and its Derivatives, Maths. of Computation, 18 (1964), 382-389.
53. D. J. Newman and H. S. Shapiro, Some Theorems on Chebyshev. Approximation, Duke Math. J. 30 (1963): 673-681.
54. E. Le Ortiz, The Tau Method, SIAN J. Numer, Anal. $6(1969), 480-492$.
55.
56. E. L. Ortiz, Canonical Polynomials in the Lanczos Tau liethod,
57. E. L. Ortiz, Step by Step Tau Method Part I: Piecewise
58. E. L. Ortiz, On the Evaluation of Some Functions arising in
G. Heinardus und D. Schwedt, Nicht-linearen Approximationen, Arch. Rational hech. Anal. 17 (1964), 297-326.
E. L. Ortiz, Λ Recursive Method for the Approxinate Expansion of Functions in a Series of Polynomials, Comp. Phys. Comm. 4(1972) 151-156. Studies in Numerical Analysis, B. K. P. Scaife, editor Academic Press, New York, 73-93, 1974. Polynomial Approximations, Comp. \& Haths. with Applications, 1 (1975) 381-392. the Theory of Thin Elastic Toroidal Shells,

Notas Nat. , $V, 2,69-75,1968$.
59. R.R. Phelps, Uniqueness of Hahn-Banach Extensions and Unique Best Approximations, Trans. Amer. hath. Soc.95(1960), 235-255.
60. J.D. Pryce, Basic Meyhods of Linear Functional Anolysis, Hutchinson Oniversity Library, London, 1973.
61.
62.
63.
64.
65.
66.
T. J. Rivlin, The Chebyshev Polynomials, Wiley-Interscience, Nev York, 1974:
T. J. Rivlin, An Introduction to the Approximation of Functions, Blaisdell, Haltham, Mass., 1969.
V. Ptak, On Approximation of Continuous Functions in the Metric ${\underset{a}{b}}_{\sqrt[b]{b}}(\mathrm{x}(\mathrm{t}) \mid$ at Czechoslovak Math. J.8(83)1958; 267-273. J. Rice, Approximation of Functions, Vols I and II, Addison-Wesley, 1969 .
T. J. Rivlin and H. S. Shapira, A Unified Approach to Certain Problems of Approximation and linimisation, J. Soc. Indust. Appl. Math. , 9 (1961), 670.
T. J. Rivlin and B. Weiss, Lanczos' τ-hethod and Folynomial Approximation in the Plane, J. Math. Anal. Appl.,22(1968), 402-17.
67.

T: J. Rivlin, Polynomial Approximation and the τ-Nethod, The Computer Journal, 11 (1968), 337-338.
68.
69.
I. Singer, Best Approximation in Normed Linear Spaces, Transl., Springer-Verlag, Berlin, 1970.
L. P. Vlasov, Approximative Properties of Sets in Normed Linear Spaces,(Transl.) Russian Math. Surveys 28,6, 1-66.
70. J. M. Wolfe, Discrete Rational L_{p} Approximation, Maths, of Computation, 29 (1975), 540-548.
71. D.E. Wulbert, Honlinear Approximation with Tangential Characterization, Amer. J. Kath.,93(1971), 718-730) .

