IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY

(University of London)

Department of Management Science

ASPECTS OF LINEAR PROGRAMMING AND ACCOUNTING IN A MANUFACTURING COMPANY

by

AMIR EILON

A thesis presented for the degree of Doctor of Philosophy in the University of London, and the Diploma of the Imperial College of Science and Technology

.

CONTENTS

		Page
Abstract		vi
Acknowledge	ement	vii
	INTRODUCTION	1
	•	
Chapter 1	MATHEMATICAL PROGRAMMING & SHORT-TERM	3
	CORPORATE PLANNING	
1.1	Introduction	3
1.2	The Company	3
1.3	Modelling Approaches	7
1.4	Corporate Models	15
1.5	The Imperial College Model	19
1.6	Model Formulation	23
1.7	Further Sophistication	40
1.8	Assumptions of LP in Planning	43
1.9	Conclusions	48
	·	
Chapter 2	LONG TERM CORPORATE PLANNING	49
2.1	Introduction	49
2.2	Widespread Investment Appraisal Techniques	49
2.3	Capital Expenditure Formulation	64
2.4	Conclusions	70
Chapter 3	THE ACCOUNTING FUNCTION	72
3.1	Introduction	72
3.2	The Development of Accounting Principles	72
3.3	Valuation of Assets	84

3.4 Examples of Problem Balance Sheet Entries 97

	3.5	LP in Accounting	103
	3.6	Conclusions	111
Chapt	er 4	ALTERNATE SOLUTIONS	113
	4.1	Introduction	113
	4.2	Geometry of Feasibility	113
	4.3	Geometry of Optimality	115
	4.4	Alternate Solution to the Primal Programme	119
	4.5	Conclusions	121
Chapt	er 5	DEGENERATE SOLUTIONS	123
	5.1	Introduction	123
	5.2	Description and Definition	123
	5.3	Classical Tests for Optimality	135
	5.4	Mathematical Description of the Behaviour of Dege	nerate LPs 142
	5.5	Conclusions	155
Chapt	er 6	INTERPRETATION OF LP SOLUTIONS	157
	6.1	Introduction	¹ 157
	6.2	Alternate Solutions	157
	6.3	Degenerate Solutions	163
	6 . 4	Conclusions	171

-

Chapter 7 CONCLUSION

•

•

REFERENCES

•

178

173

Page

CONTENTS

.

APPENDIX	A	THE SHORT-TERM CORPORATE MODEL	195
-	A.1	The System in Use	195
	A.2	Definitions of Model Data and Variables	200
	A.3	The Model Equations	206
APPENDIX	В	THE LONG-TERM MODEL	258
	B.1	Definitions of Model Data and Variables	258
	B.2	The Model Equations	259
	B.3	The Model in Use	264
APPENDIX	С	MATHEMATICAL FOUNDATIONS	266
	C.1	Definitions	266
	C.2	Basic Results	269
APPENDIX	D	EXAMPLES OF RESULTS	275
	D.1	Introduction	275
	D.2	Dual Space Generation	276
	D.3	Multiple Balance Sheets	287
APPENDIX	E	PREVIOUS PUBLICATIONS	289
	E.1	"VALUATION OF RESOURCES" (51A)	289
	E.2	"NOTE ON 'MANY-SIDED SHADOW PRICES' "	308

Page

.

(51)

INDEX OF FIGURES AND TABLES.

.

		Page
Figure 1.1	The Manufacturing Process	20
Figure 1.2	Corporate Financial Flows	21
Figure 1.3	Piece-Wise Linearization of the Demand Curve	42
Figure 1.4	Dangers of Linear Approximations	45
Figure 1.5	Dangers of Linear Optimization	46
Figure 2.1	Isoquant Analysis	54
Table 3.1	Opening Balance Sheet	105
Table 3.2	Transactions	105
Figure 3.1	Spread Sheet Flows	106
Figure 3.2	Bottleneck Transference	110
Figure 4.1	Boundedness of the Primal Region in Direction	
	of Optimization	116
Figure 4.2	Example of Alternate Solutions	120
Figure 5.1	Charnes' Perturbation	127
Figure 5.2	Piece-Wise Linear Function of $Z^*(b_i)$	130
Table 5.1	The Marginal Values of the Alternate Bases	132
Figure 5.3	Strum's Example	132
Figure 5.4	Geometry of Optimality	133
Figure 5.5	Non-Simple Degeneracy	144
Figure 5.6	Optimal Degenerate Tableau	149

Figure A.1	The LP Model in Use	198
Figure E(.1).1	The LP Model	304
Figure E(.1).2	Example of a Degenerate Vertex	304
Figure E(.1).3	Different Balance Sheets for the Same Period	305
Figure E(.1).4	Different Profit Profiles	306
Figure E(.1).5	Different Asset Value Profiles	307
Table $E(.2).1$	The Marginal Values of Alternate Optimal	
	Bases	309
Figure E(.2).1	Geometry of the Problem	310

,

-

,

.

,

ERRATA

р	vii	\mathbf{par}	1	1	5	read	"criticism"	for	"critism"
р	2	par	2	1	7	read	"deterministic"	for	"determins
р	1-7	par	3.1	1	3	read	"•"	for	н , п
р	1-9	\mathbf{par}	2	1	14	read	"variables"	for	"variable
р	1-12	par	2	1	2	read	n÷n	for	n"n
р	1-13	\mathbf{par}	3	1	9	read	"EILON S"	for	"EILONS"
p	1-15	\mathbf{par}	1	1	1	read	"against"	for	"agains"
р	1-15	par	1	1	8	read	"academic resource"	for	"academic"
р	1-18	par	4	1	4	read	"taking"	for	"that the
р	1-18	\mathbf{par}	5	1	3	read	"restricted"	for	"retained
р	1-22	par	6	1	5	read	"pursue"	for	"persue"
p	1-23	\mathbf{par}	4	1	3	read	"that"	for	"at"
р	1-28	par	3	1	4	omit	11_11 11		
р	1-35	\mathbf{par}	2	1	2	read	"heginning"	for	"begining
р	1-42	Figu	re 1	• 3	3	read	"Q_ <q<q_"< td=""><td>for</td><td>"Q1>Q<q2"< td=""></q2"<></td></q<q_"<>	for	"Q1>Q <q2"< td=""></q2"<>
р	1-47	par	1	1	4	read	"over -"	for	"over "
р	2-57	par	2	1	13	read	"installation"	for	"instalati
р	2-61	par	2	1	2	read	"<1"	for	" 1"
p	2-61	\mathbf{par}	2	1	3	read	"(ኢ)"	for	"()"
р	3-72	par	1	1	5	omit	11_11		
р	3-73	par	5	1	1	omit	n_n		
р	3-74	\mathbf{par}	2	1	8	read	"detecting"	for	"defecting
р	3-75	par	6	1	1	read	"Conservatism"	for	"Coservati
р	3-75	par	7	1	6	omit	11_11		
р	3-81	par	2	1	1	read	"led"	for	"let"
р	3-84	\mathbf{par}	2			read	"Conservatism",	for	"Conservat
р	3-84	par	3	1	1	read	"principal"	for	"principle
р	3-86	\mathbf{par}	2	1	2	read	"objectively"	for	"objectivi
р	3-88	par	1	1	5	read	"to be"	for	"to "
р	3-105	\mathbf{par}	1	1	2	read	"account"	for	"amount"
р	3-105	par	1	L	3	read	"matrix"	for	"matric"
р	3-105	par	3	1	1	read	"(88)"	for	"(82)"
p	3-107	par	3	1	6	read	"optimal"	for	"optional'

	CI I CI Sm.
or	"determinstic"
or	""
or	"variable"
or	n ⁻ n
or	"EILONS"
or	"agains"
or	"academic"
Dr	"that the"
or	"retained"
or	"persue"
or	"at"
or	"begining"
or or	"begining" "Q ₁ >Q <q<sub>2"</q<sub>
or or	"begining" "Q ₁ >Q <q<sub>2" "over"</q<sub>
or or or	"begining" "Q ₁ >Q <q<sub>2" "over" "instalation"</q<sub>
or or or or	"begining" "Q ₁ >Q <q<sub>2" "over" "instalation" "1"</q<sub>
or or or or	"begining" "Q ₁ >Q <q<sub>2" "over " "instalation" " 1" "()"</q<sub>
or or or or	"begining" "Q ₁ >Q <q<sub>2" "over " "instalation" " 1" "()"</q<sub>
or or or or	"begining" "Q ₁ >Q <q<sub>2" "over " "instalation" " 1" "()"</q<sub>
or or or or	"begining" "Q ₁ >Q <q<sub>2" "over " "instalation" " 1" "()" "defecting"</q<sub>

or	"let"
or	"Conservation"
or	"principle"
or	"objectivity"
or	"to "
or	"amount"
or	"matric"
or	"(82)"
or	"optional"

p 4-113	par 4	14	read	"> O"	for	
p 4-119	par 6	12	read	"contained"	for	lleenteinwäll
p 4-121	par 4	16	read	Rg H	101 fam	"concarnyq"
	Post -	- 0	. cuu	[°] j	101	j.
p 5-127	par 2	13	read	"in e"	for	"in e"
p 5-132	Figure	5.3	swap	"A" for "O"		
p 5-133	par 2	14	read	"(1&3)"	for	"(&3)"
p 5-137	par 3	12	read	"LP's which do not"	for	"LP's"
р 5-147	par 5	15	read	"interpreted"	for	"interpreated"
p 5-148	par 1	11	read	"perturbation"	for	"pertubation"
p 5-150	par 1	17	read	"- <u>W A</u> """	for	"-W A "
p 5-151	par 2	11	read	"non-degenerate)"	for	"non-degenerate "
p 5-152	par 6	11	read	"hyperplane s"	for	"hyperplanes"
p 5-155	par 4	12	read	"perturbation"	for	"perterbation"
p 6–158	par 2		read	"Interpretation"	for	"Interpreation"
p 6-159	par 1	17	read	"optimizing"	for	"optimixing"
р 6-161	Equation	n 6.3	read	" <u>b</u> , - <u>a x</u> > λ"	for	"b, – a ≯ λ‼
				a a .		
p 6-161	Equation	n 6.4	read	$"\underline{\mathbf{c}} \underline{\mathbf{x}} = \mathbf{f}(\mathbf{z})"$	for	$\mathbf{\underline{x}} = \mathbf{z}$
p 6-162	par 1	12	read	"Model"	for	"Mode"
p 6-169	par 3	11	read	"company's"	for	"companies"
p 6-171	par 3	12	read	"secondary"	for	"sejondary"
p 6-171	par 4	12	read	"chosen"	for	"close"
p 6-172	par 2	17	read	"an"	for	"a"
p 7-173	par 2	13	read	"preparation"	for	"preperation"
p 7-174	par 2	14	read	"component"	for	"comparent"
p A-199	par 2	12	read	"was"	for	"were"
p A-205		15	read	"Debtors"	for	"Debitors"
p A-210	par iii	11	read	"revenue"	for	"reserves"
p B-262	par 2	1 15	read	"acquisition"	for	"asquisition"
p C-269	pa r 4	11	read	"an €"	for	"an e"
p C-269	par 5	11	read	"€ neighbourhood"	for	"e neighbourhood"
p D-288	par 2	15	read	"taking"	for	"making"

.

ABSTRACT

This thesis is concerned with the development of tools to aid the management of a general manufacturing company to both plan their activities in the short and medium term, and to evaluate their proposals in terms of balance sheet projections. vi

The modelling technique used is linear programming and the two models concentrate on the physical activities of production planning (i.e. work-centre and labour force scheduling), purchasing, and cashflow planning in the short term, extended to include capital expenditure under capital rationing in the medium term.

It has been proposed that the dual linear programme may be used for valuation purposes and that such a procedure may overcome some of the problems experienced by currently accepted accountancy procedures.

This thesis investigates the conditions that give rise to (the often experienced) alternate and/or degenerate solutions to corporate models formulated above.

These particular linear programming solutions require a revision to our previous understanding and use of the dual. In particular, the existance of an alternate dual space at degenerate primal solutions presents a considerable obstacle to the proposal to use the dual linear programme for valuation purposes.

ACKNOWLEDGEMENTS

My sincerest thanks are due to my supervisors Mr. Gerry Salkin and Dr. Richard Flavell for their guidance, advice and longstanding forbearance during the course of this study. I also wish to thank the Head of Department, Prof. Samuel Eilon, for his constructive critism.

I am indebted to Hymac Ltd. for the original sponsorship of this project and to Esso Petroleum Ltd. who have helped in the latter stages to produce this thesis.

And last, but in no sense least, I record my lasting debt to my principal sponsor - Louise - without whose untiring vigilance over my flagging efforts this thesis would never have seen light of day. ERRATA

ERRATA

.

p vii par 1 1 5 read "criticism" p 2 par' 2 12 read "deterministic" for p 1--7 par 3.113 read 11,11 for "," p 1-9 par 2 1 14 read "variables" for ":" 11.11 p 1-12 par 2 12 read for p 1-13 par 3 19 read "EILON S" for p 1-15 par 1 11 "against" read for p 1-15 par 1 18 "academic resource" read for p 1-18 par 4 14 read "taking" for p 1-18 par 5 13 "restricted" read for p 1-22 par 6 "pursue" 15 read for p 1-23 "that" par 4 13 read for p 1-28 par 3 14 omit 11-11 p 1-35 par 2 12 read "beginning" for p 1-42 "Q1<Q<Q2" Figure 1.3 read for p 1-47 "over -" par 1 14 read for p 2-57 par 2 "installation" 1 1) read for р 2-61 par 2 12 read n≰1a for p 2-61 "(λ)" par 2 13 read for µ 3-72 15 omit 11...11 par 1 11_0 p 3-73 par 5 11 omit p 3-74 par 2 18 read "detecting" p 3-75 par 6 1 1 read "Conservatism" for 11_11 p 3-75 omit par 7 16 р 3-81 par 2 11 read "led" for p 3-84 par 2 "Conservatism". read for р 3-84 par 3 "principal" 11 read for p 3-86 par 2 12 "objectively" read for р 3-88 15 read "to be" for par 1 p 3-105 par 1 12 read "account" for p 3-105 "matrix" par 1 13 read for p 3-105 par 3 1 1 read n (88)n "(82)" for p 3-107 par 3 16 read "optimal" for "optional"

.

for "critism" "determinstic" "variable" "EILONS" "agains" "academic" "that the" "retained" "persue" "at" "begining" "Q_3Q<Q_" "over " "instalation" **u** 10 "()" for "defecting" "Coservatism" "let" "Conservation" "principle" "objectivity" "io " "amount" "matric"

р 4-113	par 4	14	read	"> 0"	for	" 0"
p 4-119	par 6	12	read	"contained"	for	"containvd"
p 4-121	par 4	16	read	"α_" j	for	"a"
p 5-127	par 2	13	read	"in e"	for	"in e"
p 5-132	Figure 5	•3	Б wар	"A" for "O"		
p 5-133	par 2	14	read	"(1&3)"	for	"(&3)"
p 5-137	par 3	12	read	"LP's which do not"	for	"Lpis"
р 5-147	par 5	15	read	"interpreted"	for	"interpreated"
p 5-148	par 1	11	read	"perturbation"	for	"pertubation"
p 5-150	par 1	17	read	"-W A ⁻¹ "	for	WA P
p 5-151	par 2	11	read	"non-degenerate)"	for	"non-degenerate "
p 5-152	par 6	11	read	"hyperplane s"	for	"hyperplanes"
p 5-155	par 4	12	read	"perturbation"	for	"perterbation"
p 6-158	par 2		read	"Interpretation"	for	"Interpreation"
р 6-159	par 1	17	read	"optimizing"	for	"optimixing"
р 6-161	Equation	6.3	read	$\frac{\mathbf{n}\mathbf{b}}{ \mathbf{a} ^{1}} = \frac{\mathbf{a}}{ \mathbf{a} } \times \lambda^{\mathbf{n}}$	for	$\frac{h}{2} - \alpha > \lambda^{n}$
p 6-161	Equation	64	Food		£	
p 6-162	nor 1	1 2	reau	$\frac{1}{2} \frac{\mathbf{x}}{\mathbf{x}} = 1 (\mathbf{z})^{n}$	101	$\frac{\mathbf{C} \mathbf{X}}{\mathbf{W} \mathbf{A} \mathbf{A} \mathbf{B}} = \mathbf{Z} \mathbf{W}$
n 6-169	par 3	1 1	read	licomponit all	101	"noug"
p 6-171	par j	1 2	road	ll socondarull	101	"companies"
p 6-171	par 4	12	read	lichoson	for	"sejondary"
p - 6 - 172	par 2	17	read	lanll	for	nerose.
n 7-173	par 2	* / 1 3	road	Rurenarat ionil	for	llemoneration
p 7-174	par 2	14	read	"component"	for	Reemusrout
n A-199	par 2	12	read	lwagi	for	Buoroll
p A-205	put L	15	rond	"Dobtors"	for	UDol. i to pull
p A-210	par iii	1 1	read	l'rovonuell	for	"Deni tors"
p B-262	par 2	1 15	road	Pagnicition	for	HanninitianH
n C-269	par 4	1 1	read	llon all	for	dagaisteion"
n C-269	par 5	1 1	rood	" noighbourbood"	for	"at 6" No voidbhaumht-3"
n D=288	101 2 J	. 5	road	ltakingl	for	"e nergnoournoou" Imelsia all
P 2-200	par a l		reau		TOL	

.

ABBREVIATIONS AND NOTATION.

x	vector x
x _j	the j'th element of vector x
S	either the set or matrix S (differentiation is clear from the text
ø	zero where confusion may occur (otherwise 0)
st	such that
Σ i	sums over i
≥,≮	greater than or equal to, less than or equal to

.

Common notation has been used throughout this report. The following are the most important examples:

<u>A</u>	the matrix of technological coefficients (dimension $m \ge n$)
<u>b</u>	the right hand side vector (dimension m)
<u>c</u>	the objective function vector (dimension n)
B	the square basic matrix
π	the vector of dual variables (dimension m)
<u>x</u> .	the vector of primal variables (dimension n)
*	superscipt denoting the optimal value
α,β,λ	scalar multipliers

References are denoted as follows:

- 9 - 99 -	page 99 of the thesis that forms part of Chapter 9
- X - 999 -	page 999 of the thesis that forms part of Appendix X
(999)	reference 999
Figure 9.99	Figure 99 from Chapter 9
Table 9.99	Table 99 from Chapter 9
Equation 9.99	Equation 99 from Chater 9
Chapter 9.99.i	Subsection i of Section 99 of Chapter 9
Jrn.	journal

viii

INTRODUCTION

The need for planning a company's affairs is now well accepted. We proceed from that basis to propose a particular model that may help management govern a company's activities in the short and medium term and then investigate a method for evaluating the company's performance.

The first part of the thesis is concerned with the development of a Linear Programming (LP) model of a company's activities. In Chapter 1 we confine these activities to the short-term management decisions of production, sales and short-term financing. In Chapter 2 we propose a formulation of longer-term decisions involving capital expenditures, changing the product mix and changing the amount of value added during production, under conditions of capital rationing that overcome problems experienced by previous capital budgeting formulations.

The second part of the thesis is concerned with the valuation process. In reporting to the parties interested in the company's affairs (shareholders, employees, creditors, bankers, government, etc.) the company presents a balance sheet drawn up to give a picture of the company at its year end. In Chapter 3 we inspect the currently accepted accounting procedures and point to a number of problem areas. It has been suggested that the dual LP from a corporate LP model of the type described earlier may provide a means to apply an opportunity valuation to the company's resources in the context of their use in achieving the company's goals.

- 1 -

However, this proposal is itself not problem free and we investigate the meaning of the dual LP under two commonly experienced conditions; namely that the optimal solutions are Primal Alternate and/or Primal Degenerate. In Chapter 4 we discuss the geometry that gives rise to alternate solutions. In Chapter 5 we show that the Kuhn-Tucker Necessary Conditions for optimality need not apply to degenerate solutions. Furthermore, the generally accepted two-sided nature of the dual variable at the degenerate solution is shown to be a gross simplification of the behaviour of the dual LP: we shall show the existence of an alternate dual space at the primal degenerate optimum and the collapse of this space, under simple degeneracy, to the two-sided dual variable under sensitivity analysis.

In Chapter 6 we discuss the implication of these results to the proposal to use the dual LP for valuation. We suggest the introduction of a "Holding Value" to highlight the company's over-availability of some resources (corresponding to the slack of certain constraints). Making the problem totally degenerate appears attractive in that it allows the LP to allocate the objective function value over all the resources (and represents the ideal determinstic economic system). However, the existence of the alternate dual space allows the user to construct an infinity of different balance sheets that <u>all</u> purport to portray the <u>same</u> physical solution. The resulting loss of information leads us to question the use of the dual LP (even for non-degenerate problems) for valuation.

CHAPTER 1

MATHEMATICAL PROGRAMMING & SHORT-TERM CORPORATE PLANNING

1. Introduction

This thesis takes as read the justification of the need for systematic planning (see (4), (47)); the discussion will concentrate on the use and respective merits of various analytical techniques in helping to construct short-term corporate plan (or budgets).

Planning may be identified with many different aspects of the company's activities: it can concern itself with the solution of particular problems, such as the raising of finance (3); the selection of product mix (90); the scheduling problem (52), and many others. Or it may concern itself with establishing the global corporate strategy (see (96), (101)).

This thesis is concerned with the latter aspect of corporate planning, and in this chapter a global corporate model is developed and tested for the particular company described below.

2, The Company

The test company being modelled, is a wholly owned subsidiary of a small conglomorate holding company. It is a mediumengineering company making earth-moving equipment of two distinct types: a 360-degree tracked excavator (termed a HYMAC, since that company is the market leader for this product in the U.K.) manufactured at Rhymney and a 180-degree wheeled excavator loader (termed a JCB) manufactured at Great Yeldham. The company also markets (and manufactures some) spare-parts for its primary products, and in the course of business it also undertakes some part-exchange of customers' old machines which are then resold on the second-hand market.

2.1 Product Range

By inspection of the value and volume of units of separately identifiable products seven different HYMAC and six different JCB models were identified. These 13 models accounted for the major proportion of all sales. (Products excluded consisted of one HYMAC model of which only one or two were sold annually, and some wheeled-shovels which could be similarly ignored). The market for these products was split into two sectors, namely "HOME" and "EXPORT". Further subdivision of these markets could not be identified by specific marketing factors. However, sales of JCB's in Germany required different production specifications, , so three extra 'special' JCB models were included in the product range. These were sold in the specific market sector "GERMANY' only.

Consideration of spare-parts proved to be a more difficult problem: each finished product is made up of some thousands of component items and it would be impractical to try to treat each one individually. Attempts to combine a number of parts to form a pseudo-unit spare-part proved impossible; nor was there any information to relate the sales of spare-parts with the population of machines already sold. Explicit treatment of this facet of the company's activities had therefore to be shelved. Since the number of products -16- is small, no grouping of products was required and this greatly eased the data collection exercise.

2.2 Manufacturing Facilities

The manufacturing process at both factories is similar: raw materials are processed in the machine and fabrication shops, then assembled with other bought-in components, and finally painted and tested prior to despatch. This is shown schematically in Fig. 1.1 At Great Yeldham the progress of work is more along the line-system than at Rhymney, where scheduling is more batch oriented, but the difference was not so marked that separate treatment was required. At both factories the manning of work-centres can be done by more than one labour group.

The differentiation between labour groups was initially ignored but on subsequent discussions with the management it was felt that distinction between skilled, semiskilled and unskilled labour would better represent their operations.

When required production exceeds capacity, there exists some facility to subcontract at both locations. At the time of writing, there is no interchange of work between the two factories, but this need not always be the case. The difficult task of making an explicit statement of the company's objectives is exacerbated by the fact that the objectives appear differently to the different people in the hierarchy of the company, Discussion with the managing director revealed that he was under pressure from a variety of sources that tried to pull him in a number of different directions: due to the previous disasterous record of the company (requiring them to be bailed out by the parent) he was concerned to report good results. However he was aware that an attractive long term strategy might be to sacrifice present results and aim for a high turnover in order that in later years he might capitalise on the sale of spares to a high 'captive' market. But he was also aware of the fierce competitive nature of the business and forecast that a number of companies might be forced to the wall in the forthcoming recession and was also considering the possibility of growth by acquisition.

Above all, the company is conscious of being a subsidiary: every year it has to present to the parent company a proposed budget plan for the coming year. Since its actual performance will be judged against its proposals, is is important that, while the budget must appear attractive in order that the company receive any finance it requires from the parent in the coming year, the budget be feasible. Shortfalls are regarded disfavourably, even if the actual performance is a 'good' one!

- 1 - 6 -

It is for this reason that we searched for a process to model the company encompassing as many of its activities as possible, and model them in sufficient detail to help management in their budget preparation. 1 - 7 -

3, Modelling Approaches

From the wide variety of modelling techniques our objective was to chose the technique that

- (i) allowed us to model the company in the detail required;
- (ii) allowed explicit recognition of the stochastic nature of real life, or allowed easy sensitivity testing;
- (iii) allowed us to test a number of alternative strategies quickly (in order that management could then impose on the model, and test the effect of, a variety of assumptions about the future);
- (iv) allowed us to present the results of the model in recognisable managerial accounting format.

3.1 Simulation

GERSHEFSKI has found (67) that the major proportion of corporate model builders use simulation, as opposed to mathematical programming techniques, BATT & GRINYER tentatively conclude from their survey (9) that the majority of such models are top-down, deterministic simulation finance models (in effect input-output models) and this has since been substantiated by other surveys (74). The reasons for this is that such corporate models are cheap and fast to develop (giving a quick return on the effort invested), easy to understand (an important criterion for acceptance by management) and flexible. Inclusion of statistical relationships is hampered by the lack of data, but when that can be encorporated (e.g. Chapter 4 of (55)) simulation proves to be the only method to tackle the problem of risk evaluation in large systems.

The disadvantage of simulation is that it merely evaluates a particular solution (in light of a number of uncertain variables), and that the evaluation is done according to given precepts. The technique cannot search for a solution that may result in best attainment of the goal(s) of the company. Nor can the technique itself suggest a manner for evaluating the particular solution selected.

3.2 Stochastic Programming

This technique aims to incorporate recognition of random events into the analytical solution of model.

Despite the difficulty in doing so, numerous (small) models have been developed dealing with a variety of problems (see Chapter 4 (131)).

BEALE ((13) and (14)) has noted that the technique places an enormous burden on the management for more data: for example in production planning the assumptions have to be clearly stated about the variation in demand for each product, and the correlations in demand between the different products. This factor alone would present an insuperable obstacle to widespread use of this technique for corporate planning, were it even possible to solve the large, detailed model envisaged above.

3.3 Linear Programming

Linear Programming (LP) is a technique that can handle very large models (of the order of several thousand constraints and hundreds of thousands of variables) with ease and speed. Furthermore it is a procedure that searches among all the points that comprise the feasible set (defined by the constraints) for the 'best' solution to the stated goals of the enterprise. The well developed computer based LPs also allow the user to test, with ease, points close to the chosen solution to gauge the sensitivity of that solution. In standard form the model can be expressed as

$$\begin{array}{c} \text{Max} & \underline{c} & \underline{x} \\ \text{s.t} & \underline{A} & \underline{x} < \underline{b} \\ & \underline{x} & > \underline{\emptyset} \end{array} \tag{1.1}$$

where \underline{x} is the set of variable (activities); $\underline{c} \underline{x}$ is the objective function and $\underline{A} \underline{x} \boldsymbol{<} \underline{b}$ define the structural constraints on the model.

There are two further attributes of this technique. The first is the well known economic interpretation of the dual LP which attributes an opportunity valuation on

- 1 - 9 -

* This arises from the relationship $\frac{\partial z}{\partial b} = \pi$: marginal changes in the availability of a resource are valued by the effect such changes have on the overall achievement of the goal z. This in turn results in variables having an associated "reduced cost" ($= \underline{\pi} \cdot \underline{A}^T - \underline{c}$). The reduced cost derived from the optimal solution can be considered as an opportunity cost in accounting terminology: the cost associated with basic variables is zero, whereas the cost associated with non-basic variables (which are not active - i.e are set to zero) is negative. If some non-basic variables are introduced to the solution (to satisfy some other objective than that expressed in the objective function) the achievement of the stated goal will be reduced in accordance with the associated reduced/opportunity cost. the assets that comprise the enterprise when these assets are encorporated as constraints on the model.

The second is the manner in which the simple formulation can be extended to broaden the scope for application of this modelling technique. These are described in the following subsections.

The problems associated with the technique are dealt with in Section 8.

3.3.1 Linear Fractional Programming

Many companies use financial ratios as expressions of goals or for purposes of control. GOLD has shown (69) how the commonly used ratio of 'profit to total investment' can be broken down into a series of simple ratios such as 'profit to output', 'output to capacity', etc. These simple ratios, made up of variables that relate to the activities under the direct control of a manager, can then be used to set targets, compatible with the overall objective, for the various echelons within the company.

The modelling of ratios used for target-setting can be transferred to a standard LP.

Targets, such as $\frac{\mathbf{x}_{\mathbf{p}}}{\mathbf{q}} \ge \mathbf{t}$, can be included in the model as

$$x_{p} - tx \ge 0; \quad x_{p}, \quad x_{q} \ge 0 \quad (1.2)$$

The treatment of ratios used as objectives is more complex: CHARNES AND COOPER (39) transfer such a model -

to the standard form -

Max
$$\sum_{j} \sum_{j} \sum_{j}^{+\alpha t} + \alpha t$$

s.t. $\sum_{ij} \sum_{j}^{+\alpha t} \sum_{j}^{-\alpha t} \sum_{j}^{+\alpha t} = 0$ (1.4)
 $\sum_{j} d_{j} t x_{j} + t \beta = 1$
 $t, x_{j} \ge 0$

Thus by suitable modification the standard LP model formulation (Equation 1.1) can be extended to deal with linear ratios in addition to linear constraints.

3.3.2 Goal Programming

Goal programming, a term first coined by CHARNES & COOPER (41), is a technique that allows the mathematical programme to more closely approximate managerial behaviour in real life.

Goal (or target) setting is widely used as a means of motivating and controlling management (see (80)). The task that confronts the enterprise is then to achieve a plan that meets (or comes as close as possible to) that goal:

Min
$$U + 0$$

s.t. $\underline{A} \times \underline{x} < \underline{b}$ (1.5)
 $\underline{G} \times + U = 0 \ge \underline{g}$
 $\times , U, 0 \ge \cancel{0}$

where U is the extent by which the goal $\underline{G} \times underachieves$ the target \underline{g} ; 0 the extent by which it is overachieved (termed "underage" and "overage").

IJIRI (88) points to the considerable psychological difference between these variances in target achievement.

"For managers, there is a qualitive difference between profit and loss, although arithmetically the two are on the same continuous scale. For them the difference between \$1000 profit and \$1000 loss seems to be greater than the difference between \$10000 profit and \$8000 profit or the difference between \$10000 loss and \$8000 loss".

To account for this the model requires that the underage and overage are weighted differently. These weights would need to be non-linear if the model is to take account of the further difference in appreciation of achieving 1, 100, or 1000 over (or under) target.

It has long been recognised that companies pursue a number of goals simultaneously (see (22)), and that these may even be conflicting. Optimizing methods described above, epitomized by LP, consider only one objective and this is a serious limitation on the applicability of such techniques. In attempts to overcome this obtacle modellers resort to

i. Optimizing in tandem. The goals are ranked in order and the programme is then optimized with

respect to the first, then the second, etc. It is an extremely lax model that has sufficient degrees of freedom to cater for more than a very small number of goals in this fashion.

1 - 13 -

- ii. Trade-offs of one goal vis-a-vis another. In this way a single objective function is built up of the weighted sums of all the others. This suffers from all the drawbacks of utility functions and presents severe problems for practical applications.
- iii. Converting goals to constraints by setting targets. The goal programming formulation appears to be ideally suited since it can cater for any number of goals. It would appear that a definition of terms is required: MAO states (114) that one should be clear about the distinction between "goals which refer to management desire - and constraints which refer to environmental conditions under which management makes its decisions" EILONS. disagrees (54) - "Essentially all constraints are goals since they express desirable (or undesirable) modes of operation" KENDALL agrees (95) and has formulated the LP in terms of 'Hard' and 'Soft' constraints to represent 'Musts' and 'Wants' constraint/goals.

where M_{k}^{\dagger} , M_{k}^{-} are the weights representing the difference between overage and underage; D_{k1} is the weight representing the desirability of attaining goal k in preference to goal 1 (i.e. an ordering of goals). The objective function is beginning to collect-some of the unfavourable attributes associated with utility functions and trade-offs. Furthermore, the validity of the assumption of additivity becomes questionable can one add the (weighted) deviation from one goal to that from another? The remarks made by EILON S. highlight this problem and he goes on to advocate the approach of satisficing - any feasible solution satisfying the 'do' and 'don't' requirements is acceptable. (If there is no feasible solution then that itself is information useful for management to set them thinking about their conflicting goals!).

The problems of setting the target (or norm), of dealing with the inevitable internal pressures to achieve always a better performance than previously (ultimately coming up agains the ceiling of the 'optimal' solution) remain. But the attractiveness of the technique has led it to be used widely: starting with breakeven analysis (42) it has encompassed merger modelling (93), production planning (71), and in many areas involving nonfinancial attributes - e.g. medicare, government, and academic planning (104).

Clearly a modelling technique that allows complex fractional, multi-goal models to be solved with ease goes a long way to meet our objectives and this forms the basis of our selection of this technique.

3.4 Integer Programming

In reality, a number of the variables in any corporate model, require to be integral (e.g. number of products made or sold, investment projects, etc.). Many computer based mathematical programming systems can now cater for large mixed-integer problems (see Chapter 2, (63)), but the solution process still remains cumbersome and lengthy (see Appendix in (147)). Furthermore, the economic interpretation of the dual programme is lost.

4. Corporate Models

Before developing our own model we inspected a number of models described in the literature.

4.1 The KROUSE Model

The global corporate model, developed by KROUSE (101), centres on a "multi-attribute criterion function to measure financial performance, and state-transition equations to impose a variety of behavioural, technical and accounting-identity relationships which set out the firms financial process from one period to the next".

Let the state of the system be defined by a N-vector $\underline{X}(t)$. The state variables X(t), defining the company's profile at a moment in time t, are attributes such as profitability, liquidity, capital structure, etc.

Let $\underline{d}(t)$ be the M-vector of decision variables open to management control, e.g. increase long-term debt pay out dividend, etc. Let $\underline{u}(t)$ be some disturbance vector to reflect uncertainty. Then the model formulation is:-

Optimize E(G) The expected value of some multi-objective performance index

s.t.

X (t+1) = f(X (t), d(t), $\underline{u}(t)$, t) the financial process $\underline{X}(0) = x^{0}$ initial state $\underline{h}(\underline{X}(t), \underline{d}(t)) > 0$ policy/institutional constraints.

(1.7)

The above model is not constrained to be linear, nor deterministic, and KROUSE claims to have established procedures for solving such general models in his thesis.

We have rejected this model as being too abstruse. The decision variables described above are too far removed from the activities over which the management can excercise direct control (eg. a production plan, stock levels, levels of drawdown of finance facilities etc). The behavioural and regulatory constraints suggested (e.g. the share price and stock market valuations, etc) are too ill defined to be expressed explicitly. Furthermore, while the quadratic objective function propounded by KROUSE may have certain appealing attributes for the management scientist - it can encompass diminishing marginal returns and trade-offs between objectives-it was felt that the resulting complexity would further deter management of the company from accepting the model.

4.2 The LAHIRI Model

LAHIRI developed (103) a basic linear production-planning model for a manufacturing company. The large number of products - 80 - made by the company were collected into a smaller number of product groups, and these were processed through their production facilities. The company aimed to maximize the contribution from production, subject to capacity and demand constraints,

- 1 - 17 -

This approach appears to be amenable to the application we described above (Section 3) and this model will be compared with our own model formulation described below.

4.3 The BP Model

BP have developed (17.) a mixed linear-integer model of their refining and marketing operations. The model incorporates

i)	a description of currently available resources
ii)	estimates of demand and price for each product
iii)	estimates of marginal costs
iv)	capacity required by existing processes
v)	future investment possibilities.

The model determines the optimal production and marketing plans together with the required investment profile for the entire planning period that will maximise the present value of the net after-tax cashflow (that the account of debt and equity servicing),

We adopt a similar direct approach in modeling the company's activities. The model described below is retained to short-term planning (assuming a given capacity availability) and we extend this to the mediumterm in the following Chapter. A point of divergence between the models lies in the definition of the goals pursued by the Company.

5. The Imperial College Model

The corporate model that we have developed (first formulated by KORUBLUTH (98) and since augmented ((70) and (24)) is based on a similar approach to LAHIRI'S.

The model is a multi-period, deterministic, linear model of the <u>activities</u> of the company. These activities centre on the production required to meet some sales demand, and the financial implication of any selected plan. Since the function of this model is to aid budget preparation and control, time periods of one month have been chosen. This is long enough to render unnecessary the need for attention to the finer details and problems of dayto-day scheduling, and yet is short enough to give a detailed plan of the coming year's activity.

The physical activities are shown in Fig. 1.1: raw materials flow through a series of identified work-centres, which are manned by some labour group, end up as finished goods, and are then despatched to the customer,

The financial activities, shown in Fig, 1.2, are modelled in accordance with the marginal costing concept. Financial flows are distinguished between five types:

a. Fixed ("Overhead") costs required to keep the facilities open for business. This includes rent, rates, possibly electricity (though this could be included in type b), and normal time wages if the company does not act on a hire-fire basis. While in the final analysis no cost

.

- 1 - 20

L

÷

- 1 - 21

can be considered to be irrevocable, in defining a cost to be 'fixed' the assumption is made that the business intends to operate.

- b. Operating Costs. These are costs incurred which depend on the volume of production, but which cannot be allocated to the individual finished product - e.g. overtime payments, subcontracting costs, maintenance, etc.
- c. Marginal or unit costs. This is made up of material costs, warranty, etc. - all costs that can be identified with each unit of production.
- d. Revenues from the sales of finished goods.
- e. External financing arrangements. In this test case the company has only one source of external finance (namely its parent) and this can be considered as a (bank) loan facility.

Having defined these costs, one is left with the problem of extracting this marginal costing data from the information available to the firm, usually in standard cost form. This is not an insignificant problem, but it is not one that I wish to persue here (see RAINE (126) for a full treatment of associated problems and solutions).

All of these financial activities are considered explicitly in the model since the timing of these flows influence the optimal plan, (i.e. a plan made when only some of these flows had been considered, as in the LAHIRI model).

In this way the financial aspects of the company are directly linked to the physical activities undertaken by the company: physical events that the management controls.

6. Model Formulation

The following sections give a detailed explanation of the structure of the model and the modifications required to ensure that it can be implemented. Details concerning the problems of implementation are to be found in Appendix A.1, and a summary of the equations, together with definitions of the variables used and data required by the model, are given in Appendix A.2 and A.3.

6.1 The Production Function

(i) Workcentre Capacity Restrictions

Production required by any plan must comply with capacity restrictions. For each factory a number of distinct work-centres was identified and the time required by a unit of product on that work-centre was established.

This time was established from standard times in hours (used in calculating the standard costs). While it is true at marginal utilisation may result in different times, it was felt that using such 'average' times was reasonable for short medium term planning purposes. At the time of formulation there was no interchange of production between the similar work-centres at both factories and so they are considered separately: welding at Rhymney and Great Yeldham comprise two work-centres -JCB model production will make use of the latter, while HYMACs will only be produced at the former.

The model will compare the requirement for a particular work-centre against its capacity and ensure that only feasible plans are allowed. This simple statement must be qualified by the following points:

Firstly it was deemed desirable to split the HYMAC products into three constituents sections - Crawler, Platform and Front-end. This was done in an attempt to be able to cater for the number of different options available with each product (e.g, a wide-tracked Crawler with a long-armed Front-end)

Secondly it is necessary to establish the length of the production cycle for each product and then to establish the requirement by each product for each work-centre in each period of its production cycle. Then the total work-centre requirement in any period is calculated from the production planned to be completed in that period multiplied by the requirement for that work-centre in the last period of the production cycle, added to the product of the production planned to be completed in the next period and the requirement in the last but one period of the production cycle etc.
(1.8)

Thirdly, normal work-centre capacity is calculated by multiplying the number of hours in the normal shift time and the number of units that comprise the work-centres. The number of units need not be integral - if there are three good lathes and one poor one, which is seldom used because of breakdown problems, then this latter machine may be included by considering it as a fraction of one of the good machines. The resultant work-centre capacity is finally down-graded to take account of activities that lie outside the scope of the model: emergency breakdown and maintanance; manufacture of spares and of the exceptional product not included within the product range.

The equation then reads:

Requirement for work-centre M in period I must not exceed the normal-time capacity of that work-centre in that period plus any overtime worked plus any subcontracting done.

(ii) Labour Force Allocation.

In order that work-centres be available for production they must be manned. The number of men of any labour-type (i.e. skilled, semi-skilled, or unskilled) required to man each work-centre was found and was found to be independent of the product being worked at the time. It was established that some work-centres could only be manned by a particular labour group, whereas other work-centres could be manned by more than one type. In these circumstances a direct allocation of men to work-centres is required. The equation reads:

> Total in-house production (i.e. total work-centre requirement less any work subcontracted out) on work-centre M in period I must be allocated amongst the labour groups capable of doing the work. (1.9)

6.2 Physical Constraints

(i) <u>Production</u>

Production is also limited by the availability of jigs required to load the job onto the work-centres, (The problem concerned with production cycles that are greater than one period are dealt with in Section 8.3). This may be considered to be a 'soft' constraint since the limit could be increased fairly easily (by the acquisition or manufacture of extra jigs). However, this does not detract from the validity of constraint being imposed in the model - if this constraint were to limit the achievement of the objectives severely then this ought to be reflected in the dual LP. The equation reads:

> Limit production (of division J) of product K in (1.10) period I by some upper bound.

Having allocated the in-house labour requirement amongst the labour groups, the model further requires that the Labour Force Allocation does not exceed available capacity. Observation has shown that the company is not a 'hire-fire' type and is thereby committed to a given labour force (which may be augmented in a regular fashion in periods of heavy demand). Overtime variables are explicitly included in both this equation and the Work-Centre Capacity equation to ensure that when either the labour force requirement or the work-centre requirement reach their respective upper bounds then both machines and men switch to working overtime. The equation reads:

> Requirement for labour group L in period I must be less than or equal to the work scheduled to be done in overtime plus that scheduled to be done in normal shift time.

(iii) Labour Overtime Capacity

Clearly the labour force will not accept too great an over-time burden. Thus the equation reads:

> Limit the total overtime load on labour- (1.12) group L in period I by some upper bound.

(1.11)

If some minimum overtime scheduling has been promised to the labour force then this requirement can be included as a lower bound.

(iv) Market Constraints

The model tries to construct a plan to meet some demand condition. This is a forecast made by the company of their expectation of their share of the market for the goods they produce. To give the model some freedom these conditions are expressed as upper bounds on the sales variables. (The possibility of dealing with situations where the elasticity of demand differs from one, is discussed in Section 7.4).

The possibility exists that the model will yield a solution that declares a particular product to be undesirable in terms of the stated objectives. In other - words the model suggests that no volume of that product be made nor sold. If this is unacceptable for any reason (for example the company may desire representation in all sectors of some market) then the Market Constraints can be augmented by some lower bound condition to ensure such representation as is deemed necessary. The equation reads:

> Limit sales of product K in market O in period I by some upper (and possibly lower) bound.

(1.13)

Storage of raw materials and finished goods requires space and the available space is limited. If these different items are kept in different storage modes, then a number of different storage areas can be considered separately. A problem might also exist with work-in-progress as it moves through the production process (especially at Rhymney which is batch oriented). No such problem was found to exist: work-in-progress can be stored anywhere on site (even gangways if necessary); finished goods are stored outside as are most raw materials. However, a general company model would include the equation.

> Storage space required in period I must be less than or equal to storage space available.

6.3 Financial Flows

(i) Cash Position

The model considers that all cash transactions resulting from the physical activities pass through some central cashbook. The cash transactions are of two types:

 a. Those that relate directly to activities within the scope of the model e.g. purchase of raw materials resulting in some outflow of money;
a bank loan resulting in some inflow etc. - 1 - 19 -

(1.14)

b. Those that relate to activities outside the scope and direct control of the model. These extra-model cashflows comprise all overhead payments (including normal payment of the labour force), net income from sales of spares, trade-ins, etc.

Both the quantity and timing of these flows are important facets of the plan. For this reason timelags obtained before paying creditors and time-lags to debtors have to be established to the nearest integral number of periods. The equation reads:

> Cash at the close of period I equals cash position at opening of period I plus inflows resulting from sales made in previous periods and loans negotiated, less outflows resulting from loans repayed; overtime payment for work done in that period; subcontracting costs, purchases and bank charges incurred in previous periods and net out-flows from extra-model activities.

(ii) Creditors Account

Because of credit facilities that the company has been able to establish, it will owe money for activities previously under-taken but not yet paid for. The credit account is reflected by the equation: (1.15)

Credit at close of period I equals purchases of raw materials made but not yet paid for, plus subcontracted work carried out but not (1.16) yet paid for, plus interest charges outstanding, plus any extra-model credit.

(iii) Debtors Account

Similar credit facilities are allowed to the company's clients, and so the debt position is modelled by: Debt at the close of period I equals (1.17) revenue due, but not yet received, from sales made in prior periods plus any extra-model debt.

6.4 Inter-period Continuity Equations

These equations are included to ensure internal consistency of the multi-time period model.

(i) <u>Cash Continuity</u>.

The cash position at the close of one period equals the cash position at the opening of the next. There is no need to explicitly model this equation since suitable substition in the Cash Position Equation above (1.15) will result in the elimination of the variable "cash at opening of period I". - 1 - 31 -

(ii) Finished Goods Stock.

There is a physical requirement that product be in stock in order that it can be sold. In other words, the number of items in stock must never be negative. A further assumption is made that a unit of product completed in any period is eligible for sale in the same period. This is expressed as:-

> Stock of product K at the close of any period equals the stock at close of previous period plus newly completed production less sales made in the period.

(iii) Raw Materials Stock

A similar 'restriction' applies to the stocks of raw materials:

Stock level of raw material R at the close of any period equals the stock level at (1.19) close of the previous period plus any new purchases less any amount used in production during the period.

6,5 Objective Functions

Three different objective functions were proposed and tested:

(1.18)

(i) Profit Earnings.

The concept of profit is one that will evoke considerable discussion in Chapter 3, but since this short-term model assumes a constancy (or some known expansion) of the physical resources endowed to the firm, the amount of cash, or cash equivalent, accumulated during the planning horizon can be attributed as profits earned as a result of the planning decisions accepted at the begining of the year. Thus:

> Maximise cash plus debtors less creditors (1.20) positions at the close of the planning period.

(ii) Turnover

Maximise total sales revenue accrued during (1.21) the planning period.

(iii) Sales Penetration

This objective function was proposed with the view of increasing market share in order to market spares in the future:

> Maximise the total number of units of primary (1.22) product sold during the planning period.

The equations of the model just described above relate to a general period within the planning horizon. However, periods at the beginning and the end of the model will have to bear some extra conditions in order that they be a more realistic representation of the activities of the company.

6.5.1 Starting Conditions

In order that the planning process be an on-going system the first (few) periods of the model must reflect conditions as they exist at that time. Certain decisions taken in periods prior to the commencement of the modelled period will control the levels of a number of the variables of the model:

a. Production variables. If the production cycle is greater than one period then work started in previous periods already determines the level of finished product output in the first (few) periods of the model. For example, if the production cycle is 2 periods, then the amount of finished product that can be completed in the first period of the planning horizon will depend <u>entirely</u> on how many units were started in the previous period. Even if the production cycle is only one period long, a lower bound on production is determined by the amount of work in progress at the beginning of the planning horizon.

- b. Stock levels. The number of items in stock at the begining of the planning period of both finished goods and raw materials is fixed by previous actions.
- c. Purchases. The model takes no account of the lag encountered between ordering and receipt of raw materials - a lapse of time that may in fact be quite substantial. Therefore purchases may well be fixed for a number of periods into the planning horizon.
- d. Financial position. The opening debt, credit and cash positions will be fixed as will the extra-model financial flows.

In practice these starting conditions are quite easy to establish.

6.5.2 <u>End Conditions</u>

If the model were left to run in the state described above, the solution would suggest that the company run itself down at the end of the horizon. In other words the stock levels would be reduced to zero and

-

no new production would be undertaken. This problem, relevant to all multi-time period models, is clearly critical.

GRINOLD (72) and HOPKINS (84) (among others) have tried to circumvent this problem by formulating an infinite horizon model. As a prototype GRINOLD uses

$$\max \begin{array}{c} \begin{array}{c} & & \\ \sum \\ t = 0 \end{array} & & \\ t = 0 \end{array} \begin{array}{c} & & \\ t \\ s.t. \end{array} \begin{array}{c} & & \\ A_t X_t \end{array} < \begin{array}{c} & b_t \end{array} + \begin{array}{c} & \\ s = 0 \end{array} \begin{array}{c} & & \\ K_t \\ \end{array} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & X_t \end{array} > 0 \end{array} \begin{array}{c} (1.23) \end{array}$$

where $K_{ts} \times s$ represents some inter-temporal relationship. The dual programme is

Min
$$\underset{t=0}{\overset{\Sigma}{\underset{t=0}{\overset{\pi}{_{t}}}}} \pi_{t}^{b}t$$
 (1.24)
s.t. $\underset{\pi_{t}A_{t}}{\overset{\sigma}{_{t}}} a_{t} + \underset{s=t+1}{\overset{\Sigma}{\underset{s=t+1}{\overset{\pi}{_{s}}}}} t$
 $\pi_{t} \ge 0$ ¥t

He shows that the dual solution only has meaning when $\sum_{s=t+1}^{\infty} \pi K$ converges - a rather arbitrary restriction on the problem!

HOPKINS attempts to solve the problem of equipment replacement with an infinite horizon approach. His procedure for solution is as follows: having formulated the infinite horizon model, truncate at some finite horizon date T. This requires some statement about the terminal wealth to be included in the objective function which is done according to a specific formula. Then the solution to the finite problem can (under certain sufficient conditions) be used as a solution to the infinite problem. In the model he describes, it becomes clear that GRINOLD's convergence requirement becomes translated as the need for expansion of capacity.

It seems unlikely that our corporate model will satisfy the condition of convergence of the intertemporal relationships. Instead we have tried to overcome the horizon problem by demanding that certain end conditions be met:

 a. Stock levels. A minimum level can be imposed on the final stocks of finished goods and raw materials. - 1 - 37 -

b. Production. If the production cycle is longer than one period, then in order that there be continuity, the model is forced to start production within the planning horizon so that the flow of finished goods may continue in post-horizon periods. This is ensured by either of two approaches:-

> One is to make some forecast of the production required to be completed in the first (few) posthorizon periods and then reduce the capacity of the production facilities in the last (few) periods of the model by the amount required to have work started on that production.

This would mean that post-horizon production requirements are met in the normal shift time. But owing to the possibility of allocating different labour groups to man the machines it is not possible to reduce the normal-time labour capacity by the required amount. The simple solution to this dilemma is to introduce a dummy product that will only be produced in the last (few) periods of the model, and that will require the use of production facilities to the extent that is determined by the post-horizon production forecasts. In this way the work is allocated among the work-centres and labour groups in the same manner as all other work. The second approach is to make use of unequal timeperiods. This was first suggested by ORGLER (124) in a model formulated to aid cash management decisions. The planning period of his model spanned a year but required day-by-day decisions.

Since the model would be too big to handle on that basis, he suggested that the length of the period should increase as the horizon is approached.

This method could be adopted with our model: periods close to the horizon would be longer than those at the start, with the length of the last period being at least as great as the longest production cycle of the products produced. In this way continuity of post-horizon production is ensured since production can then be completed within a single period.

Clearly these end conditions that are imposed on the model are quite arbitrary in nature and will interface to some degree with the planning freedom of the model. The extent to which the plan proposed by the model differs from the 'optimal' plan due to the imposition cannot be determined and a great deal more theoretical work needs to be done in this area. The manner in which this problem has been met in three-fold: Firstly extend the planning horizon and hope that the deviations will iron themselves out by the time they work back from the extended horizon to the desired planning period.

Secondly alter the end conditions and use only those plans that can handle the widest variety of situations, i.e. stable solutions are sought.

Thirdly use the plan for the first few periods only. The model has been designed for budget preparation and control and it is envisaged that it will be rolled forward and rerun every period.

A report on the results of using this model in the test-case company is included in Appendix A.

7. Further Sophistication

Section 5 above reflects the current status of the model. The activities of the firm that have been modelled are quite general in character and the model can form the basis of a general manufacturing company model. Topics that have not been expanded, owing to the particular nature of the company use as the case-study, are the following.

7.1 Managerial Constraints

As the case-study company is left very free to make its own decisions, this area has not been developed to the extent

that it might. Other companies may be required to report on a number of different criteria and may therefore wish to include certain minimum achievement levels of these key factors. They might include a minimum debt to credit ratio, a minimum turnover level, some maximum interest payment, etc. Other managerial constraints may reflect a desire for a smooth production plan, a growing profit profile, etc. These requirements self-imposed by the management, are quite easy to establish in practice and to include in the model.

7.2 External Financing

As the company is a wholly owned subsidiary, it has only one source of money. This has been modelled as "Bank Loans". The general company will have a number of sources of raising money (and a number of alternatives of investing any excess cash) and these can be incorporated without too much difficulty (see Chapter 4 (142)), Assessment and payment of taxes (and dividend payment) can also the included,

7.3 Inflation

Prices have been assumed to be constant over the planning horizon but these can be factored by some inflation rate if desired. The rate (either the Retail Price Index or a more specialised sector price index) may be constant, or may itself change over the planning horizon. The prices of one's own products may or may not be allowed to rise depending on Price Commision controls.

7.4 Sales

The model acts on a given, fixed demand and price vector. However, <u>if</u> the demand curve can be ascertained this can be included in the model by piece-wise linearization. The demand curve is approximated to the step-wise function shown in Fig. 1.3. The product is then subdivided into a number of pseudo-products, each having a production and materials requirement identical to the original product.

Each pseudo-product will be priced in accordance with the demand curve shown, and their sales will be similarly restricted to the levels. Then provided the demand curve is downward sloping, the hill climbing search process of the simplex algorithm (used for solving the LP) will ensure that the higher priced pseudo-products are sold first.

8. Assumptions of LP in Planning

Three major assumptions have been made in the formulation of our corporate model and these must be borne in mind when interpreting the results of the model.

8.1 Determinism

The model makes no attempt to deal with the stochastic nature of real life: unique values (for sales forecasts, productions times, etc.) are used in place of samples from some probability distribution. It is maintained that post-optimal sensitivity analysis will test stability of the solution to variations in certain elements of the data. However, this is, in general, limited (e.g. (16), (98)) to parametric programming on the right hand side (RHS) vector <u>b</u> of the matrix (corresponding in the main to data on capacities).

Due to the very nature of the model being multi-time period, variations in other data will typically change a number of elements of the <u>A</u> matrix simultaneously. This makes sensitivity analysis much more complex: FLAVELL shows (62) how the effect of change in any underlying datum on the objective function realization can be measured. It has been shown that at any basic feasible solution

 $\frac{dZ}{d\alpha} = \frac{dc}{d\alpha} \cdot \frac{x}{\alpha} - \frac{\pi}{d\alpha} \cdot \frac{dA}{d\alpha} \cdot \frac{x}{\alpha} + \frac{\pi}{d\alpha} \cdot \frac{db}{d\alpha}$ (1.25)

where $Z = \underline{c.x}$ subject to $\underline{A} \times \underline{s} \underline{b}$, $x \ge 0$ with corresponding duals π . α is any parameter.

If α is chosen to be the datum then if $\frac{dZ}{d\alpha} = 0$

small changes in α will not effect the solution. (Similarly, if α is known deterministically then sensitivity analysis is not required). But if α is uncertain (with a standard deviation σ_{α} about a mean value that has been used to calculate the relevant coefficients in A) then

 $\begin{vmatrix} \frac{dZ}{d\alpha} \end{vmatrix} \stackrel{\sigma}{\alpha}$ is a measure of the importance of the datum, and allows datum to be ranked so that management can know on which particular index to focus their attention.

8.2 Linearity

The error produced by linearizing a non-linear environment need not provide a solution better than a randomly selected initial point. This is hardly a surprising result but serves to focus attention on the critical problem of linear approximations. First the case when approximations are made with too little evidence. Fig. 1.4 shows a common example:

· · · ·

experience offers data about two locations only. If the true demand curve were A then the linear approximation may be acceptable, but if it were B then serious errors would be introduced into the model.

Secondly, BAUMOL & BUSHNELL (10) show (see Fig. 1.5) the result of imposing a linear model on a non-linear programme.

The iso-profit curves rise to a peak at M. A profit maximising linear programme would select point C. Yet any point inside the iso-profit curve 2 would yield a better solution!

- 1 - 46 -

Much of the structure of the corporate model described in Section 5 is based on input-output relations (which are linear). The number of 'potential' nonlinearities which are constrained into a linear form is small:

- (i) Batch production and setup times. This cannot be modelled explicitly without recourse to integer or separable programming. Instead, assumptions about average batch sizes have been made and the setup times, divided amongst the batch, have been included in the work-centre requirement for each product. This approximation is not thought to present too severe a distortion in this company.
- (ii) Indivisibility. Linear programmes assume that the problem is continuous over all its variables. Yet in practice the number of items sold or produced must be integral and interpretation of fractional solutions is difficult.

The passage of time over the planning horizon is assumed to progress in jumps from one period to the next. All the events within a period are considered to occur the split second before the period is over there is no flow of time. In reality, however, production is a continuous processs with new products being started, completed and sold throughout the period.

This incorrect modelling of real life behaviour may result in the number of any product being completed in any period being wrong since the model can only recognise production being started at the beginning of any period. This in turn results in the Work Centre and Labour Force Requirements (Equations 1.8 and 1.9) and the Stock Equations (1.18 and 1.19) being incorrect.

Using a very long time period would reduce the error since the number of products actually in process of manufacture at the close of any period would be small compared to the number of units completed. However, long periods result in a loss of detail (that might hide, for example, a peak in stockholding which would exceed the available storage capacity).

Using a very short time period would also eliminate this problem since the start of production may be accurately pinpointed. But this too has its problems: a short time period involves modelling the day-by-day variabilities (and necessary contingency actions) of the production process. Some compromise must be reached!

8,4 Constant Returns to Scale

The construction of the Objective Function (OF) implies that the problem is concerned with optimizing a function of constant returns to scale. In our particular model this causes no problems since the formulation requires the optimizing of a (number of) variables. Where non-constant returns to scale may apply (e.g. the demand curve), the formulation can be adjusted to include such factors see Section 7.4 above.

9, <u>Conclusions</u>

Our objective in this chapter was to search for an appropriate formulation of a corporate model that would aid management in their task of budget preparation and control. Such a model has been constructed and despite the presence of some non-linearities, we have opted to use Linear Programming as the model solution technique. This choice is based on the ease with which large models can be solved and the sensititity of the solution tested to a variety of assumptions about the future, and the derivation (from the dual LP) of a means to value the inputs to the model.

CHAPTER 2

LONG-TERM CORPORATE PLANNING

1. Introduction

Long-term planning has been researched by both qualitative and quantitative approaches. The former concentrates on the system of planning (92) the methodology (5) and control (53) aspects of the task of deciding where one wants to go and how, in general, to go about it. It encompasses analysis of business goals, of strategic business policy and of liaison and communication within the organisation.

The latter approach, with few exceptions (e.g. (128)), has concentrated on the tactical decision concerning acceptance or rejection of individual long-term ventures, and it is with this area that this chapter is concerned.

We first inspect investment appraisal methods that are widely used, but that are found deficient in practice. The corporate model described in the previous chapter is then extended to encompass long-term decision-making in the framework of the manufacturing company as a going concern. The detailed equations are contained in Appendix B.

2. Widespread Investment Appraisal Techniques

2.1 Payback

The payback period is the number of time periods that

elapse from the initiation of the project till the capital outlay in recouped. Used as a selection procedure it recommends acceptance of projects in order of increasing payback. As a means of evaluating long term investments it has been widely condemmed by academic writers since

- it only considers flows of funds for a portion of the life of the project
- it takes no explicit account of the time-value of money
- it takes no account of the relative sizes of the projects.

Despite this, payback is widely used and WEINGARTNER (146), in an attempt to assess the reasons for this, makes the following points:

It is important to note the difference between using a single figure of merit as the <u>sole</u> basis on which the decision is made and using it as a means of communication within the organization. In addition it is important to differentiate between use of a merit figure as the criterion for choice and its use as a constraint (in conjunction with others) on the selection of projects.

- ii. LEVY proved (107) that, in the (artificial) case of an infinite project with regular return, the payback period is the reciprocal of the internal rate of return. Thus for long-lived projects having regular income, minimising the payback is approximately equivalent to maximising the internal rate of return. The increasing importance of capital tax-allowances which distort the cash flows in the first (few) periods, has resulted in fewer projects approximating to the infinite, regular project.
- iii. Acceptance of projects with short paybacks is a manifestation of the company's desire to maintain liquidity. In minimising his 'lost opportunity risk' the investor attempts to return to his original situation as quickly as possible in order to be in a position to accept other attractive investment possibilities that may arise. This approach, however, takes no account of the (hopefully improved) change in company's circumstances resulting from previous investments.
- iv. Payback seems to be used widely as a break-even concept: it identifies that point of indifference beyond which the management expect an accounting profit to be generated. The qualification of 'accounting profit' is used advisedly since break-even analysis implies an (arbitrary)

- 2 - 52 -

allocation of overhead costs and managerial effort over some portion of the life of the project. However, it must be noted that for projects of a given net present value the shorter the payback period of the selected project, the sooner will profitability be known (enabling the manager to receive the reward of his wise decision!).

v. Payback is a relatively stable measure under random variations of the cashflows. It is arguable whether this represents an advantage stable measurements, while reassuring, are useless if they are insensitive to changes in the events they attempt to illuminate.

It is clear that payback can yield useful information to management, but when used as a criterion for project selection it represents a simplistic analysis of longterm investments and must remain in the class of ruleof-thumb techniques.

2.2 Discounted Cash Flow (DCF)

In an attempt to take account of the time-value of money arising over the entire lifetime of the project, two measures have been proposed:

- 2 - 53 -

Net Present Value (NPV)

$$NPV = \sum_{t=1}^{T} \frac{c_t}{(1+r)}t$$
 (2.1)

Internal Rate of Return (IRR)

$$\sum_{t=1}^{T} \frac{c_t}{(1+R)^t} = 0$$
 (2.2)

where c_t is the net flow of money in period t; T is the lifetime of the project; r is the discount (interest) rate (kept constant for simplicity), and R is the internal rate of return.

Proponents of the DCF approach argue that the firm should act to maximise its NPV in order to best represent the interest of its shareholders. HIRSHLEIFER, in his classical paper (83) on the theory of optimal investment decisions, emphasises Fisher's conclusion that no search for "a rule or formula which would indicate optimal investment decisions independently of consumption decisions" can succeed. Investment takes place <u>only</u> because one is able to consume more (than one could if no investment occurred) at a later date.

HIRSHLEIFER's approach was to use isoquant analysis:

Fig 2.1 shows 'typical' indifference curves of consumption over two periods. Transference of consumption from one period to the next is at a rate of interest r, and the point of tangency is the optimal pattern of consumption and investment. The analysis is extended for market imperfections of different borrowing and lending rates and HIRSHLEIFER concludes that maximising NPV is correct for <u>independent</u> projects.

FIGURE 2.1 ISOQUANT ANALYSIS

With this crucial qualification HIRSHLEIFER excludes the most important category of investment opportunities from his analysis. Furthermore, he gives no hint as to the manner in which the isoquants can be established, and he makes no distinction between the company/entrepreneur and its shareholders - due to market imperfections these people will be treated differently (i.e. different interest rates will apply) resulting in a multiplicity of solutions.

Realisation that market imperfections play a substantial role in investment decision making has led to a great deal of discussion ((58), (30)) about the validity of the concept of the 'cost of capital', and methods of calculating the discount rate.

This in turn led to emphasis being focused on the IRR it is calculated independently of any 'cost of capital' and is easily understood by management as the 'return' that the project will yield. However the IRR suffers from a number inconsistencies:

i. Calculation of the IRR assumes that excess funds can be re-invested for the life of the project at an interest rate exactly equal to the IRR rate. This is extremely unlikely to occur in practice. * In two classic papers (119A and 119B) MONTALBANO, ROBICHEK and TEICHROW attempted to answer the problems posed by multiple roots by proposing that such projects were "mixed" projects - projects that were alternately pure financing projects (i.e sources of finance for the company) and pure investment projects (i.e sources of return for the company). They advocated that cash inflows should be treated differently from cash outflows.

Had these arguements been put forward to improve the methodology of calculating NPV's I would wholeheartedly concur but I can see little merit in trying to explain away multiple roots which arise directly from the algebra of Equation 2.2. ii. Solution of the IRR equation yields T (the number of time periods that make up the project horizon) different values for R (see equation 2.2). Ignoring imaginary solutions one is left with as many real solutions as there are changes in sign in the net-cash flow vector, and the analyst is left in a quandary about which rate to accept, and about the meaning of the other rates.

In a strong attack on the widespread use of DCF techniques ADELSON (1) emphasises the (often ignored) assumptions that must be shown to hold before DCF techniques can be used.

These are:-

- i. <u>that the cashflows can be forecast over the life</u> <u>of the project with certainty</u>. Very little work has been done (see Chapter 1.3.2 and Chapter 8, (114)) dealing with situations where this assumption is recognised not to hold true - thus excluding from analysis the vast majority of all 'real' investment decision-making.
- ii. <u>that a perfect capital market exists</u>. The DCF requirement that a firm acts to maximise its NPV on behalf of its shareholders (who for the purpose of arguement arrange their own financing) should result in a certain uniform

Price-Earnings ratio applying to all companies. That this is not so is manifestly obvious. Capital markets are imperfect: they differentiate between lender and borrower and according to the 'quality' of the market entrant; rationing exists; and they take account of the time span and riskiness of the ventures presented.

iii. that the projects are strictly independent. In his paper ADELSON shows how a project reacting with itself, interferes with the DCF calculation. The problem concerns the acquisition of extra capacity to cater for a steadily increasing demand. The 'optimal' size of capacity increases selected will depend on whether each purchase is considered individually or whether the increase is considered to be made of a number of equally sized blocks over time. FLAVELL has shown (61) that the total present value of all the installations will never equal the present value of a single instalation except for a single installation of infinite size! In general projects will interact to an even greater extent.

. .

A further problem encountered when using DCF methods is that the technique takes no account of liquidity requirements. Consider the selection to be made between two projects which are independent, where there is a perfect capital market and where the cashflows are known with certainty. Investment A would yield a steady income over its life, whereas investment B yields no income till the end of its life when it recoups its return in a large lump sum. Even were investment B to come ahead on a DCF basis, many investors would prefer A to B because of liquidity pressures.

2.3 Capital Budgeting

Analytical methods to cater for cases that are known to violate the necessary assumptions for DCF analysis have centred on dealing with the problem of the market imperfection of limited capital resources. The problem was first posed by LORIE & SAVAGE (109): select project j in period t while ensuring that the total expenditures c_{tj} do not exceed the budget C_t for each period t.

In the single period - t=1 - (and ignoring problems of indivisibility) their solution was to rank projects in decreasing order of $\frac{y_j}{c_{1j}}$, where y_j is the Net Present c_{1j} Value of project j, and to accept K project in that order till the budget is exhausted.

$$\sum_{j=1}^{K} c_{1j} = C_{1}$$
 (2.3)

At the marginal project K they propose a value λ such that

$$y_{\rm K} - \lambda_1 c_{1\rm K} = 0$$
 (2.4)

and that

So

$$y_j = \lambda_{1c_{1K}} \ge 0 \quad \forall \text{ accepted projects}$$

< 0 $\forall \text{ rejected projects}$

- 2 - 58 -

This procedure is not so simple in the multi-time period case (see example on p59 (100)) and LORIE & SAVAGE have to resort to a process of trial and error to find values λ_1 , $\lambda_2 \dots \lambda_T$ to establish the cut off project (as 2.4 above)

The inadequacy of this selection process provided the impetus for the decisive work in this area by WEINGARTNER (144). He formulated the capital budgeting problem as a linear programme:

where a_{jt} is the net income from project j in period t; J is the total number of projects under consideration; r is the discount rate; T is the horizon; and x, is the fraction of project j undertaken. This is limited to be less than one to prevent the programme selecting only the most favourable project and investing in it till the capital is exhausted.

This formulation, taking an overview of the problem, overcomes the deficiencies of LORIE & SAVAGE's procedure but highlights a number of other problems discussed below:
i. Indivisibilities.

In the strictly linear formulation, the budget will be used to its full extent, resulting in proposals that may include factional projects. (The number of such fractional projects is bounded by the number of constraints in the model). WEINGARTNER examines this in two ways. First he suggests a relaxation on the rigidity of the expenditure constraint. Then "it is possible to regard fractional acceptance as a signal for expansion of the ceiling by an amount sufficient to permit acceptance of the marginal project in toto, or to reject it, leaving some funds unemployed". Secondly he suggests that fractional projects are less disconcerting that it may appear at first glance - "in the case of two basically different bridge designs, for example, the solution may appear to call for, say, two-thirds of a steel bridge and one-third of a wooden one. While construction of such an object is a patent absurdity, this outcome may be interpreted in a way that provides still further information on a possible 'optimal' bridge which may be better than either the steel or wooden one..." Such rationalisations are clearly unsatisfactory, and, as we have seen in Chapter 1.34, the procedure calls for integer programming to cater for the problem of indivisibility.

The discount rate. Consider the dual of the ii.

linear programme (2.6):

 $\begin{array}{ccccccc}
 T & J \\
 Min & \Sigma & \pi_{c} C & + \Sigma & \alpha \\
 t=1 & t & j=1 \\
 \end{array} j$ s.t $\Sigma \pi e_{t=1}^{T} t = 1 \frac{T}{t+r} t$ (2.7)¥.

 α_{j} arises from the limitation on project acceptance (x, 1) and it can be shown to relate to the cutoff factor () in LORIE & SAVAGE's selecting procedure. π_{t} is used to 'evaluate' the t'th budgetary constraint - it is the marginal (or opportunity) value of capital in that period. This poses the question of what value to use as the discount rate?

ELTON argues (57) that the budgetary constraint is externally imposed on the company and (following HIRSHLEIFER's isoquant analysis) proceeds to relate the discount rate to the shareholders' indifference curves. BAUMOL & QUANDT (11) take precisely the opposite view: they argue that capital rationing is internally determined and that the discount rate ought to be the true marginal opportunity rate (π_t) which can only be determined after the programme has been run. To overcome this they propose the following model.

Max
$$\sum_{t=1}^{T} U_{t}W_{t}$$

s.t $W_{t} - \sum_{j=1}^{J} a_{jt}x_{j} \leq C_{t}$
¥t
(2.8)

where W_t is the withdrawal for owners' consumption (c.f. dividends) and U_t is the marginal utility of consumption in period t. How these utilities are to be established is not explained. Nor, as WEINGARTNER (143) points out, does it cater for different share-holders, nor how they can be expected to determine their utilities for consumption prior to the withdrawal possibilities being known.

CARLETON suggests (29) that distinctions be drawn between the investor's requirements, the requirements of the firms as a going concern, and the characteristics of the specific set of projects being evaluated. Care must be taken to ensure that the capital investment decision fits in with some larger corporate objective (e.g. maximising the present value of ordinary shares). In this event, capital budgets more closely resemble an administrative device (as suggested by WEINGARTNER) and MYERS demonstrates (122) the close connection

- 2 - 63 -

between the 'utilities of consumption' and the cost of capital. This resolves the dispute between BAUMOL & QUANDT's and WEINGARTNER's models, but is no help in determining the discount rate that will be consistent with the ensuing marginal value for capital.

LUSZTG & SCHWAB propose (110) the use of sentivity analysis to overcome the problem; first (intuitively) select a value for the discount rate; then solve the programme and inspect the rate of return of the most attractive proposal foregone. Using this as a new discount rate recalculate the present values of all the projects (i.e. re-establish the objective function at this new rate) and check to see if the previous proposal is now violated. If it is not, then the solution is the optimal one; if the previous solution does not hold, then start the procedure again. AMEY & WHITMORE point out (3) that despite the arbitrary starting point, a consistent price will be attained, but that it is not unique! Other information is required resolution of the problem concerning the owners' collective time preferences - before a unique economic discount price can be established.

Despite these problems WEINGARTNER's model provides the basis for all work concerning capital budgeting. The model has been considerably sophisticated ((144) and (19)) to include tax and dividend payments and sources

- 2 - 64 -

for extra investments and loans. It also provides the means for dealing with some degree of interdependence between projects. In particular, the model can be augmented to include

mutually exclusive projects

and contingent projects

$$\sum_{j=1}^{N} x_{j} < 1$$

$$\sum_{j=1}^{n} (2.9)$$

$$x_{f} < x_{g}$$

.

Capital Expenditure Formulation

3.

While the previous analysis may be relevant for particular companies (e.g. investment or holding companies; conglomerates, and giant industrial companies) it is, in our view, quite unsuited for the analysis required by an average manufacturing company (such as our case-study company). The long-term proposals that such companies consider are the possibility of increasing production capacity, the possibility of some vertical integration (i.e. manufacturing some of the components presently being bought-in), and the possibility of expanding their product range. Such companies are far more concerned with the manner in which these projects will integrate with their day-to-day operations, and as such with the detailed physical returns of expenditure (e.g. the acquisition of a new lathe for the machine shop; an extension of the storage facility; etc). It is impossible to draw boundaries such that the monetary returns for such projects may be identified.

3.1 Capacity Expansion

Previous work in this area (notably by MANNE (113))inspects

the problem of additional capacity size-increments to cater for (linearly or exponentially) increasing demand for that capacity. 'Capacity' is left loosely defined e.g. pipeline capacity for oil shipments, telephone line capacity or chemical plant capacity. To the average manufacturing company this concept would be too abstruse: the management are concerned about increasing the number of lathes, drills, etc. and they wish to know in what numbers and when these ought to be purchased in order to achieve an increase in the production capabilities of the plant to cater for the expected increase in sales. We have formulated this problem as an extension of the company model described in the previous chapter.

- 2 - 65 -

i. <u>The Production Function</u>

If A_{mt} is the technological matrix concerned with the production of the product vector <u>x</u> on work-centre type m in period t, then the Work-Centre Constraint restricting that the work done be less than the available capacity C_{mt} (cf. Equation 1.10) is

$$A_{mt} \times C_{mt} \quad \forall m, \forall t$$
 (2.10)

Now allow for an increase in the available capacity by an amount I_{mt} . The new equation is

$$A_{mt} - I_{mt} < C_{mt} \forall m, \forall t \qquad (2.11)$$

Note that while the equation is designed to allow for an increase in capacity, it will also cater for a decrease, and that a similar expression can be constructed for the Labour Force Capacity Constraint to model the hiring (or firing) of new staff.

ii. The Projects.

The increase in capacity occurs as a result of the company having undertaken a project in any previous time period. The resulting addition of capacity may depend on the lapse of time between the initiation of the project and the period t under consideration. This allows the model to take account of the ordering period, learning curves, or projects with limited lifetimes. Let P_j^{α} be project j initiated in period α , and let Y_{jm}^{β} be the increase in capacity type m resulting from project j being undertaken β periods prior to the current period. Then the increase in capacity m in the current period is

$$I_{mt} = \sum_{j=1}^{J} \sum_{\alpha=1}^{t} P_{jm}^{\alpha} \cdot Y_{jm}^{t-\alpha} \qquad \forall m,t \qquad (2.12)$$

In general there is no need to limit acceptance of any project by any amount (unlike WEINGARTNER's model). However, in practice, it is unlikely that management would wish to undertake more than a certain number of new ventures simultaneously (for administrative reasons). It is clear that the variables representing the projects need to be integral, and that the model can incorporate project dependence expressed in Equations 2.9.

iii. Financial Implications.

The cost of a project may also be dependent on the time lapse between initiation of the project and the current period. This will cover leasing arrangements as well as credit lags. If c_j^{β} is the outlay required to service project j undertaken β periods prior to the current period then

$$COST_{t} = \sum_{j=1}^{J} \sum_{\alpha=1}^{t} p_{j}^{\alpha} \cdot c_{j}^{t-\alpha} \quad \forall t \quad (2.13)$$

This outflow of money will be included in the Cash Position Equation. Note that sources of cash to fund (capital) expenditure are already included in that equation, that these sources may be bounded by such external Budgetary constraints that exist, and that internal restrictions on the amount spent on capital in any period can be easily included.

This formulation allows the company to evaluate their investment proposals with available information (project costs and physical returns) and ensures that expansion (or contraction) is triggered to respond to sales demand.

3.2 Vertical Integration

Whether the company ought to manufacture some of the components it presently purchases is a very complex question. Furthermore, it must be recognized that, the decision to undertake such a venture may be irrevocable the supplier may not accept intermittent ordering.

i. <u>Manufacture</u>

Consider the particular bought-in component explicitly as a raw material type. Now introduce to the product range a dummy product (having its own raw material and production requirement) that has no sales outlets. Instead, this item is included in the Raw Material Stock Equation as another source for this component: Let S_t be the stock level of this component at the close of period t; let U_t be the useage and R_t be the purchase of the component in the period; and let Pr_t be the amount of the dummy product completed during the period. Then the revised Stock Equation can be written

 $S_{t} = S_{t-1} - U_{t} + R_{t} + Pr_{t} \quad \forall t$ (2.14)

ii. Irrevocability

Once the project is undertaken the sole source for this component will be in-house manufacture. (If this is not so then this equation can be ignored). This is modelled by the introduction of a dummy relationship. If P^{α} represents this project undertaken in period , then

$$R_{t} + M.\Sigma P^{\alpha} < O \qquad \forall t$$

$$\alpha = 1$$

$$M >> O$$

$$(2.15)$$

The decision to extend the in-house manufactured content of the company's products is now taken 'simultaneously' yet 'independently' of capacity considerations, since that is now considered elsewhere in the model.

3.3 Product Range Expansion

Extension of the product range is done by simply including the new proposals in the product vector. With bounds limiting the sales to expectations of the market, the model will include these new products in the final plan only if they make suitable contribution to the achievement of the objectives. If it envisaged that sales of the new products will correlate (either help or hinder) with sales of other products, this too can be included in the model. Let S_j be the sales of product j, bounded by B_j , and let F_{jk} be the cross-correlation of demand for products j and k. Then

$$S_{i} + F_{ik} S_{k} < B_{i}$$
(2.16)

The equation can be extended to take account of lags between the sales of a product and its effect being felt by another.

4. Conclusions

Manufacturing companies considering investment are concerned with how such projects will fit in with their current operations. They may not be able to identify the monetary returns of individual projects explicity, thereby nullifying traditional appraisal techniques, even were we happy that the assumptions underlying these techniques were met otherwise.

For these reasons we have extended the corporate model to cover a longer planning horizon and to include investment proposals, whose returns are expressed in <u>physical</u> terms. In this way long-term investments are considered as <u>part of the on-going</u> <u>system</u>, and are accepted only if this helps the company achieve its stated global objective. This also enables investment appraisal in the context of goals other than maximising NPV

- 2 - 70 -

of the company for its shareholders. A detailed formulation of the model and our experience in its use is contained in Appendix B.

۰.

....

••••••

• • • • • • • • •

CHAPTER 3

THE ACCOUNTING FUNCTION

1, Introduction

The purpose of the accounting function has become ill defined and there has been little, if any, development in the accounting report to take account of the different needs of the various users. It is widely accepted (119) that users of accounts are interested-in, amongst other matters, the changes in the value of the company's net assets and of its profits and it is on this 'basis' that present-day reports are drawn up. This begs the question - what does 'value' and 'profit' mean? Do universal definitions for these concepts exist?

In this chapter, we begin with a brief history of the development of the accounting function. This will lead to a statement of the principles of presently accepted accounting practice and we shall highlight some major problem areas which arise. This in turn will require that we address ourselves to the question posed above. The chapter will conclude with a discussion of the role that LP may play in accounting.

2. The Development of Accounting Principles

2.1 History

The earliest recorded objectives of the accounting function (dating back to the era of the Babylonian Empire) were to present the owner with a record of the extent of his belongings, in the form of lists of objects. With the advent of trade and business the accounting system developed to enable the owner to keep track of the flow of his belongings. (A detailed description of the history of accounting development may be found in (23) and (27).

The concept of control arose with the appointment by the owner of a steward to take care of the owner's business affairs. In the need for an independent check of the steward's actions the control process reflects a basic trait of human nature. As companies grew in size three processes took place:

• • •

i) The double-entry-book-keeping system was invented. It is widely accepted that the double-entry system forms the foundation of modern accounting and that its absence would have severely hindered the growth of business activities. It is as well to bear in mind that the device merely ensures control over the accounting process itself.

> (EDWARDS (page 38, (2)) points out that doubleentry book-keeping "can never add anything to the original data, though it may well present data in such a way that information becomes available which would not otherwise be disclosed".)

ii) Ownership in the business entity was diluted-among many shareholders resulting in a weakening of control by the owners over the managers. Fear of divulging information to competitors; belief in caveat emptor with respect to shareholders; the heritage of entrepreneurial attitudes and the disavowal of the rights of the public to knowledge about the company's affairs all these led to management refusing to publish (accurate) information about their performance in managing the company (see (81)).

iii) With the associated increase in the complexity of the organisation arose the problem of control by the steward of the activities entrusted to his care. The response to this has been the use of formal budgeting procedures: control is exercised by comparing the predictions with the accounts of actual performance "with the object of defecting to what extent errors have been made, controlling the work of different members of the organisation and providing material for further forecasts about the future" (49).

Pressures from creditors, from the public, and from government (in the form of legal requirements of disclosure) led to an awareness of the professional responsibilities of accounting and resulted in the following concepts, now accepted as fundamental principles of the accounting process (85):

2.2 The Accounting Precepts

 Boundaries are drawn in order to define the business entity on which the accounting-function focuses, 2. The entity is considered as a going concern.

- A single (monetary) unit of measurement is applied,
- 4. Consistency requires that "generally accepted accounting principles be applied on a basis consistent with that of the previous year".
 - 5. Realisation under historical cost accounting this results in the changing value of an asset being recognised only in the period when revenues from the sale of the asset are deemed to be earned.
 - Objectivity requires that accounting entries be subject to verification.
 - 7. Conservatism requires that measurement be undertaken anticipating losses but not predicting gains.

2.3 Critiques and Comments

One might expect that accountants, guided by the principles outlined above, could report on the economic activities of the company to the satisfaction of all concerned parties. Such is not the case. Some of the problems experienced by users of accounting reports stem-from the specific way in which accounts report on the 'value' of the assets of the company - we shall deal with these in more detail in Section 3. Other problems derive from dissatisfaction with the precepts themselves;

1. The Business Entity

The business entity postulate states that a distinction can be drawn between the business and the owner. This is in contrast to a possible view of the corporation as an association of owner shareholders, a social institution, or merely a prescribed set of legal relations (see (133)). The accounting function concentrates on relations of the business with its environment (including the owners amongst other factors). This does not provide sufficient guidance to establish on what basis the accounts should be drawn up: that is left to the discretion of the directors and auditors.

2. <u>The Going Concern</u>

When considering a company it is usual to view it as a going concern rather than as a seriously embarrassed or insolvent enterprise (86). Despite this, the procedure of valuing the assets of the company at their realisable market value has become an accreditted method among the 'generally accepted accounting procedures' (to the delight of the company's creditors, one of whose major concerns is the realisable asset cover of their exposure).

. - `

- 3 - 76 -

It has been advanced that in order that diverse objects (and events) may be classified, some common attribute must be perceived to pertain to them all.

CHAMBERS states (34) that in a 'monetary economy' buyers, holders and sellers of non-monetary assets are concerned with the <u>number</u> of monetary units given or received in exchange for the asset. "The monetary scale is simply a scale of numerosity of monetary units".

For the concept to operate satisfactorily the units of measurement must be stable. TIERNEY identified (137) two factors that may affect this requirement. The first is that in an environment of a stable monetary unit, prices for individual items will still change in response to supply and demand conditions.

The second factor is that in an environment where the 'value' of the monetary unit is itself time dependent, measurement using an 'uncorrected' unit will distort the situation that it aims to portray.

The question of corrected units of measurement was brought up by the Accounting Standards Steering Committee in May 1974 when they attempted to provide the means for accounts to deal with inflationary conditions. Their suggestion (in essence that the units be 'updated' by the Retail Price Index) were wholeheartedly rejected by the Sandilands Committee (129): leaving aside the objection that the RPI is not a good measure of the change in company's (or their shareholders) purchasing power, it is extremely doubtful whether a single index can be used to reflect the changes effected over the spectrum of activities undertaken by a company.

However, the basic premise that man utilises a single dimension for the basis of comparison is itself questionable - six apples are more than five but are they better?. Nor is a single unit of measurement required by the philosophy of double-entry book-keeping; IJIRI proves this as follows (page 83 (88)):

let A be an asset account, with a 'value' \underline{Y}_A let E be an equity account of amount \underline{Y}_E then

 $\sum_{A} \frac{\underline{Y}_{A}}{\underline{Y}_{A}} = \sum_{E} \frac{\underline{Y}_{E}}{\underline{Y}_{E}}$

since asset or equity partition is simply a <u>different</u> way of apportioning the same total value of assets. Let a transaction (i.e. an action causing change) to an account be designated by $\frac{Y}{A}$ or $\frac{Y}{E}$ ($\frac{Y}{A}$ or $\frac{Y}{E}$)

for the amount by which the account is

increased (decreased).

Then

$$\sum_{A} \left(\underline{Y}_{\underline{A}}^{+} - \underline{Y}_{\underline{A}}^{-} \right) = \sum_{E} \left(\underline{Y}_{\underline{E}}^{+} - \underline{Y}_{\underline{E}}^{-} \right)$$
(3.2)

or after rearranging

 $\sum_{A} \frac{Y_{+}}{E} + \sum_{E} \frac{Y_{-}}{E} = \sum_{A} \frac{Y_{-}}{E} + \sum_{E} \frac{Y_{+}}{E}$ (3.3)

resulting in the double-entry addage that every transaction is a two-fold aspect i.e. debit and credit flows result from each transaction.

It is clear that the vectors \underline{Y}_A and \underline{Y}_E are not constrained to be uni-dimensioned in equation (3.1).

4. <u>Consistency</u>

Clearly, bad procedures applied consistently would have no inherent quality worthy of upholding. Nevertheless, it is also clearly undesirable to keep changing the basis on which the evaluation is undertaken since this robs the resulting figures of much of their significance. (An example is cited of a major U.S. steel company who changed the basis on which depreciation was calculated, with the resulting lowering of reported profit against a background of general business bouyancy, enabling the company to press for higher prices. Yet later in the decade a further change was made to the assessment of depreciation, and the resulting increased reported profits, enabled the company to stave off a take-over bid. But the overriding result was that no understanding could be derived about the performance of the company!)

5. Realization and Matching

Problems of matching are tied up with the periodicity in accounting reports. This becomes a considerable problem in industries with very long production cycles (such as ship building and contracting) but is less of a problem with manufacturing companies since the component of costs paid in one period but carried over to the next (in the form of w.i.p. or stock is small). The concept of realisation proves to be a problem for investment companies since the 'value' of the investment is only recorded when that investment is realised (135).

In a period of rapid inflation in value of long term assets (e.g. property) the under-valuation of these assets in the accounts leads to companies being vulnerable to asset stripping take-over ventures.

This problem has led to a fundamental re-examination by the Sandilands Committee (129) of the question "what is business income", and how it should be measured - should it include holding gains, or should the principle of realization be upheld? We return to deal with this question more fully in Section 3.2.

7. Objectivity

The concept of objectivity has let to confusion and controversy in the literature. The component of independence (expressed by BIRD (23)) is clear: no reliance may be placed on reports prepared by auditors where colusion with one of the interested parties is suspected. This established the ethical responsibilities of accountants, but in no way indicates how the process of measurement might proceed.

VATTER argues (141) that in preparing accounts one should only recognise those figures that are amenable to verification - he views objectivity as being intrinsically linked with the principle of realisation. This view is of no help, as ARNETT (7) points out, since accountants will accept a wide range of evidence as being objective. While the amount of cash in the bank is easily verifiable, depreciation charges and cost allocations are subjective factors that cannot be treated as 'arms length' transactions without seriously damaging the view of the entity as a going concern (e.g. by including depreciation only when the asset is retired from service).

· 3 - 81 -

Furthermore, insistence on linking objectivity to realization would damage the postulate of matching expense to revenues:- views must be taken about the future in allowing for deferred taxation, depreciation and allowances for bad debts. (Acceptance of the accrual approach recognises that some subjective allocation of costs or revenues may be appropriate under some circumstances.) ARNET concludes that the ultimate test for the acceptance (or rejection) of data is whether it helps to reflect the entity events - it is better to be approximately right than precisely wrong.

This brings us to the crux of the question: CARSBERG, HOPE & SCAPNES point out (32) that accounting reports are intended to satisfy some useful purpose and the efficacy of reports can <u>only</u> be judged when their purpose is clearly understood. They suggest that accounting reports attempt to satisfy the following objectives:

- (a) provide information to assist shareholders decisions whether to sell, buy or hold shares in the company;
- (b) provide information to shareholders about the (legal) use of their funds;

- (c) provide information to creditors to decide
 on future credit allowances;
- (d) provide information to employees about future relationships with the company;
- (e) provide information to managers to aid management;
- (f) provide information to society to check whether activities are consistent with national objectives;
- (g) provide information to government for the levy
 of taxation;
- (h) provide information to financial institutionsfor negotiated financial assistance;

CHAMBERS, postulates (p384 (35)) that since the number of individual actors within the system, enumerated above, have different wants (which themselves change over time) and since the information processor must proceed without full knowledge of these, he does best to process the information neutrally. What does neutrality mean? If it means accounting recognition of economic data only when arms length (verifiable) transactions occur (i.e. realization), then the conclusion does not help the information processor in those areas where strict neutrality leads to clearly unsatisfactory results (as indicated above). Nor is the conclusion derived from the full set of precepts: better results might be obtained with more study about the needs of the classes of users listed above - a study that might indicate that each objective requires, ideally, different accounting procedures for its satisfaction (32)!

8. Conservation

The adage 'anticipate no gain but provide for all possible losses,...if in doubt write it off' conflicts with the principles expressed above (specifically those of realisation and objectivity) to an extent that the theoretical objections are clear.

3, Valuation of Assets

The principle concern of all parties concerned with a company (i.e. workers, managers, shareholders, creditors, debtors, etc.) is the general welfare of the company and the expectation that payments (in the form of monies, goods or services) due will be met,

Since the qualitative nature of the criterion 'stability' and 'welfare' defies quantitative measurement, the accounting function has concentrated on the measurement of income (from which the parties' stake in the business can be serviced).

- 3 - 84 -

The transference of Hicks' classical definition of income - that an individual's income may be defined by the maximum amount that he can consume during a week and still expect to be as well off at the end of the week as he was the beginning - to the corporate environment remains the subject of fierce debate amongst economists (Chapter 5 (82)). Measurement of corporate income is attempted by two distinct approaches:

(i) Profit and Loss Accounting

An attempt is made to match revenue in any stated period with the costs of achieving that revenue. 'Profit' pertaining to the period is defined as the difference between revenues and costs. This process is fraught with the problems of identifying the relevant costs (discussed above in Section 2.2.5), and one is left with the problem of deciding what proportion of the profit should be properly allocated to capital maintenance in order that the company be 'as well off at the end of the period as it was at the beginning'.

(ii) Balance Sheet Accounting

In a dynamic environment, where companies may take advantage of changes in the environment and chose to replenish their asset base by technically more advanced plant or by the acquisition of assets that will work in a new area, profit in any period may be defined as the change in net assets that takes place during that period. 3 - 86 -

This procedure concurs with EDEY's conclusion (50) that no unique or objectivity determined 'true' figure of profit exists, and that profit must emerge from the valuation process rather than contribute to it. (Henceforth, any reference to profit will imply this process of measurement).

3.2 Proposals for Asset Valuation

This brings us to the crux of the problem - namely the process whereby assets may be valued. This is an area rife with proposals and counter proposals where supporters vehemently defend their respective positions. These concepts may be summarized (8) as follows:

1. HISTORIC COST

The most widely used basis for constructing accounts is to record the cost of the asset at the time of purchase and to write down that value over some pre-specified life.

2. ADJUSTED HISTORIC VALUE

To account for general inflation, monetary units are factored to take account of the age of the assets to which they are linked.

. **REALISABLE VALUE**

It has been widely suggested that the value of an asset can be established by referring to the market place to find the price at which exchange will be effected. However, this value, when it can be ascertained, can only be used as a guide: the purchaser of an asset clearly values the item at more than-the price agreed since he would otherwise not involve himself in the exchange, Similarly, the seller must value the item at less than the price agreed. Due to the principle of conservatism market price is often used adjunct to historic cost (e.g. in stock valuation) when market valuation would be less than the depreciated historic value.

4. REPLACEMENT COST

This would value the assets at the current (often (depreciated) purchase price) i.e. the basis for valuation is the cost of replacing the asset with an identical replica in the event that the asset is lost to the business.

5. ECONOMIC VALUE

This is defined as the present value of all associated future cash flows. We find this measure particularly unsatisfactory since:

(a) the discount factor remains undefined
 (despite continuing ingenius attempts
 e.g. (28));

- 3 - 87 -

3.

(b) forecasts of future cash flows cannot be objectively determined (this factor alone should, but often does not, prevent widespread application of this approach). In particular it is not clear whether the cash flows are to ascertained with the view that the asset will continue to be used in its existing or its alternative use;

(c) it may be very difficult - if not impossible to allocate cash flows to individual assets (as discussed above in Chapter 2).

The Sandilands Committee, before putting forward their own recommendations, searched to define which basis for valuation is most appropriate for inclusion in balance sheets. From the weight of evidence presented to them, they concluded that the process of valuation should be undertaken from the view of "value to the business as a going concern". From the choice of different methods (summarized above) they decided on three principle contenders: net realizable value (NRV); present (economic) value (PV), and replacement cost (RC). The respective valuations may be ranked in six ways:

1. NRV ≯ PV > RC 2. NRV ≯ RC ≯ PV PV ≯ 3. RC ≥NRV 4. PV ≯ NRV ≯ RC 5. RC ≶ PV ≥NRV б. RC ≥ NRV [>] PV

In cases 1-4, where either the net realisable value or the present value (or both) are more than the replacement cost, the value of the asset to the business can be recorded as the replacement cost since this is the amount that would be required to replace the asset in order to reap the benefit of either the realisable or present value. Only in cases 5 and 6 will it not be worth replacing the asset, since no benefit to the company will ensue. The Committee took the (intuitive) view that these cases are relatively unlikely to occur in practice and therefore opted for the replacement cost method of valuation. (In theory the value of any asset to the optimally efficient company as a going concern should be limited by the purchase price of the asset at the lower end and by the realizable value at the higher end, since if either limit is violated the asset should not be a member of the set of assets that comprise the company,)

The Committee proceeded to outline detailed proposals for revision to the currently accepted accounting procedures starting from the premise that holding gains be seperated from operating gains. The important features of the Sandilands Committee recommendations are:

 That land and buildings be valued regularly on an "existing use" basis.

- 3 - 89 -

- ii) That for other fixed assets, the Government Statistical Service should publish a series of capital goods price indices to provide a standard reference for estimating replacement costs of such assets. Directors may include their own valuations in balance sheets if they deem it desirable, but must show (in a note) how such valuation differs from the standard reference,
- iii) That no change is immediately required to the existing bases used to value stock (since FIFO, used in the majority of cases, is a reasonable approximation to current value).
 - iv) That stock , when consumed, be valued at "value to the business" for inclusion in the Profit and Loss account.
 - v) That depreciation be provided on all assets except land. The level of depreciation should be calculated on the basis of the value of the asset to the business at the end of the period - the purpose is to charge the Profit and Loss account with the value of the assets consumed during the year, and not to finance replacement of assets. However, for comparative purposes, the historical cost figures for depreciation should be included as a note to the accounts.

Dissatisfaction with the accounting process of valuation has been brought to a head by the realization that valuation procedures based on historical cost are totally unsatisfactory in inflationary conditions. Such few defenders of historical cost that now remain argue that historical valuation is objective and should be retained since alternative procedures rely on subjective valuation. Further arguement is propounded (e.g. (116)) on the basis that it is incorrect to say that accounts prepared on historical cost basis are of no use since they are widely used by all (ignoring the fact that while no alternative exists one must make do with what is available). The widespread acceptance of the Sandilands Committee recommendations will ensure that this problem will be overcome to some extent.

However, other problems still exist:

1. <u>Multiplicity of reports</u>

This, problem, highlighted in the main by SPACEK (132), concerns the large variety of accounts that may be drawn up, all of which claim to represent with a 'true and fair view' of the same set of transactions. Practitioners who rely on the fact that in preparing these accounts they do not break the 'accepted' principles outlined above, and that their own brand of calculation is explained in (cursory) footnotes attached are shirking their auditing responsibility. His clear message is that a more unified approach be sought.

2. Additivity

CHAMBERS points (34) to the assumption of additivity and questions whether measures made under different conditions (or according to different procedures) can, in fact, be added. How can one add "the amount of cash held by a company today to the amount of cash paid 20 years ago for a piece of freehold land which the company still holds"? How different is the notion of adding values calculated according to one procedure for one item (e.g. fixed assets by historical, or even replacement cost) and values for another item calculated according to different principles (e.g. debtors by book value less some provision)?

3. <u>Standard Costing</u>

The long run objective of business survival can be translated to the requirement that the company must ensure that costs are met. Absorption costing is the generally accepted manner of accounting for manufacturing costs, and specifically for fixed overhead costs (25). The widespread acceptance of standard costing has been

- 3 - 92 -

helped by the advent of budgetary control systems. The calculation and the application of standards, corrected by variances, (discussed in Chapter 15, (2)), is a long and complex operation. The commitment involved on the part of the company makes it tempting to overlook some of the disadvantages and inherent assumptions:

- i) The level of standard set has an effect on the motivation of workers affected by that standard.
- ii) Despite the oft stated principle that underage cannot necessarily be viewed as 'gain' (and overage as 'loss') to the system, this is very often the way in 'which managers are judged,
- iiii) No level of intricacy of calculation will negate the fact that allocation of overheads is arbitary in situations where more than one product is produced from common manufacturing facilities. This has been the subject of much research (see Chapter 6 (2) for a review) with results ranging from simple formulas to suggested LP models (94). We show in Chapter 6 that even such sophistication is to no avail.

(iv) Standard costs are calculated on an assumption of a particular level of throughput and resource utilisation. Once calculated the costs are often used out of context in situations where the utilisation and throughput bear no resemblance to the base used.

The case for marginal costing to replace standard costing is now being put forcibly forward (87) with the argument that cost control is best effected if identified with the responsible manager allocating arbitrary cost will side-track management into arguing amongst themselves how those allocations may be done 'fairly'. Clearly a separate exercise of control needs to be carried out on those costs central to the organisation (such as payments of rates or central management emoluments) and management needs to ensure that prices will be sufficient to cover these additional 'fixed' costs over the period.

Advocates of standard costing argue that the full unit cost needs to be known when determining the unit price to be charged: this is countered by the fact that in many industries the price is determined by considerations external to the firm.

Furthermore, since overhead allocations is subject to a variety of 'acceptable' methods, the price would become a function of the methods, and not of cost. It is further argued by standard costing

proponents that it is correct to include overhead recovery in stock valuation. This is a moot point in terms of philosophy - advocates of marginal costing argue (page 15 (87)) that fixed costs may be identified with a period in time and should not, therefore, be carried forward as part of the cost of an asset into subsequent periods unless the unit of asset is very large (such as exists in the ship building and contracting industries). It is also moot whether inclusion of overhead recovery in stock valuation is an efficient system: BULL (page 160 (25)) illustrates this with an example of a company operating over three years with no changes in price, sales volume, marginal or overhead costs. The only change was in volume of production. Standard costing resulted in fluctuating income whereas under marginal costing the income is steady.

4. Modular Valuation

· • •

A further implication of the standard costing approach is that accounts approach the task of valuation from a modular standpoint. In other words, having found the value of a unit of asset (stock for example), the value of ownership of that asset is calculated by multiplying the value of each unit by the number of units present. Unless the 'value' of each unit <u>truly</u> represents the average value, such a procedure is patently

3 - 95 -
wrong since it does not reflect the decreasing utility for more of a particular class of item.

This attitude is extended to viewing each class of asset individually, whereas in fact assets need to be brought together to be of use to a company. Plant and machinery are to no avail if there is no factory to house them, and likewise, an empty factory is of limited value to a manufacturing company.

5, Valuation of a Subset of Assets

The accounting process concentrates on those components of the business that are measurable. This ignores vital resources - for example the human asset,

Failure to measure and report on the value of the human resource may lead to decisions being made that may appear beneficial, but that would lead to an unintended depletion of human resources (by way of reduced motivation, higher turnover, etc.) (64).

It may be argued that since the company does not own the individual it cannot lay claim to ownership of the human asset. This is denied by LEV & SCHWARTZ (106) who counter the argument by stating that ownership of the individual is immaterial with respect to the labour force as a whole. The problem of how to attribute a value to the human resource has been the subject of much research (reported by GILES AND ROBINSON (68)) and it is clear that much work in this field remains to be done.

6. Multiple Goals

While there is currently widespread acceptance that a company does not pursue a single goal (and that different companies may pursue different set of possibly conflicting goals) this realisation has not permeated through to the accounting function. BEDFORD & DOPUCH argue (15) that the accounting profession must consider means of broadening its scope to report on the effectiveness with which non-income-oriented goals are attained and ^ that the area to start with is that of the measurement of the nature and extent of benefits that would accrue to the participants where alternative, additional, goals are adopted.

4. Examples of Problem Balance Sheet Entries

Before proceeding to discuss a technique that aims to deal with some of the problems listed above, we shall consider the particular problems concerning the valuation of inventory, depreciation and goodwill.

4.1 Inventory Valuation

This single item has given rise to much, contradictory, literature, with advocates ranging-from those who insist that the LIFO view represents the only realistic approach to the problem (117); those who argue against (120); as well as others who press for a variety of other methods - FIFO or standard (historical) costs (see (105)) replacement at market prices (21) or a multiple combination of these (eg (73), (121)). The practitioner is left with such a bewildering array of tools at his disposal, but with little direction about their use resulting in the ability to value inventory by whichever method is convenient - UNDERWOOD has calculated (137)that over 108 methods are accepted by the Institute of Chartered Accountants.

The overriding emphasis of establishing some idea of the cost of inventory appears to be ignoring the very essence for the presence of stock. Inventory is held in order to cater for the possibility of a variety of outcomes in the future:-

(a) inventory holdings smooth out the random variations in demand;

. .. .

(b) inventory acts as a substitute for production capacity when demand temporarily outstrips that capacity.

- 3 - 98 -

Both of these functions demand that the valuation for inventories be measured by looking forward to the use that such stocks will be put to - a utility that has little, if any, connection with the historical means of producing and holding the inventories.

4.2 Depreciation

Practitioners may approach the problem of calculating depreciation by adopting a variety of rule of thumb measures - straight line; fixed proportion; rule of years etc - on the value of the relevant asset (which may itself be measured according to cost; replacement; economic; opportunity; market prices, etc.) This seeming complexity obscures the fact that the single figure in the accounts serves three distinct functions:

- (a) The entry in the profit and loss account represents a "fair" cost to the process of manufacture of goods using the asset. (To some extent this cost will be borne whether or not the assets are used.)
- (b) It is a means to accumulate funds necessary to repurchase a replacement at such time as that is required (thereby preventing any temptation to distribute such income as dividend).
- (c) It is used in the balance sheet to give a net measure of value of the asset. WRIGHT maintains (148) that to find value one needs, perforce, to reject all accounting conventions since they

merely attempt to <u>allocate</u> cost over the life of the asset rather than value its services. He argues for particular valuation based on a minimum cost or loss suffered by the owner of the asset by its absence. There are problems connected with this approach. We show later, in Section 5.2.ii that such a cost allocation procedure results in an overvaluation of the enterprise. A further point to note is that the value placed on the asset by sequencial losses of the asset to the business will depend on the order in which the assets are lost!

From that it becomes clear that the figure need not be the same for each purpose.

- (a) It can be argued that the cost of the "physical" depreciation of the asset is linked with the historical cost of acquisition. This still leaves the accountant the task of allocating such cost over the life of the asset - an allocation that will be inherently arbitrary in nature.
- (b) The provision of a replacement fund requires to be linked with the costs of replacing the asset. This is extremely difficult to define in view of the changes in price levels and in the technology of production.

(c) We have argued above that value will depend on the utilisation of the asset and is divorced from concepts of costs.

4.3 Goodwill

The concept of goodwill, and the role that that entry plays in the balance sheet, is still the subject of a great deal of discussion. The concept was initially conceived to take account of the good relations a proprietor of a business established with his customers - a relationship that could be expected to endure (to some degree) even after the departure of this entrepreneur. It was at this juncture - the sale of a share of the business - that the valuation of goodwill arose. To this day, a point on which accountants agree is that purchased-goodwill represents the excess of the purchase price paid over the fair value of the net assets when the business is acquired. (Care must be taken in the reading of accounts since the amounts shown for acquired goodwill may sometimes be more as a result of bookkeeping or consolidation techniques than of supportable concepts".)

The existence of goodwill is now recognized to exist at all times and not merely at those moments in time when sale is considered. SPICER & PEGLER consider (132) goodwill to be "that element arising from the reputation connectionor other advantages possessed by a business which enables it to earn profits greater than the return normally to be expected on the capital invested in the tangible assets employed in the business". GYNTHER agrees (75) - "goodwill exists because assets are present, even though they are not listed with the tangible assets. For example, 'special skill and knowledge', 'high managerial ability' ... are assets in this category".

There remains the difficult problem of finding a method of valuing such goodwill - a procedure that will require neither the subjective valuation by the management of their own skill and performance, nor the speculation of a price that will be set by a mythical purchaser of the business. A method often quoted expresses goodwill in terms of excess or super profits. But GYNTHER makes it clear that this will not do:-"goodwill is not 'the discounted value of the estimated excess earning power - the amount of the net income anticipated in excess of income sufficient to clothe the tangible resources involved with a normal rate of return'. This is not what goodwill is. This is merely a rationalization of the method commonly used to calculate the value of Goodwill".

Research undertaken by the American accounting profession, into the nature of goodwill, and the manner in which it ought to be treated in the accounts (a matter that appears to take up an inordinate amount of accountants' attention (e.g. (56)) to the detriment of an understanding of other aspects of goodwill), concluded by characterising goodwill - as distinguished from other elements of value in the business - as follows: i. The value of goodwill has no reliable or predictable relationship to costs which may have been incurred in its creation.

ii. Individual intangible factors which may contribute to goodwill cannot be valued. This results from the inability of such factors to exist apart from the business as a whole.

iii. Goodwill attaches only to a business as a whole. It forms an inseperable part of the business and cannot be realised seperately.

iv. The value of goodwill may, and does, fluctuate suddenly and widely because of the innumerable factors which influence that value.

5. LP IN ACCOUNTING

LP has been applied to the analysis of numerous accounting and financial problems. The applicability of the technique rests on its ability to overcome the disadvantages of other valuation processes (discussed in section 3.3) in the following ways:

i) LP takes an overview of the company and enables a valuation of <u>all</u> the component assets in their existing usage. This overcomes the problems of additivity of valuations made under different procedures, and the problems arising from valuing the assets individually and attempting to arrive at a value of the whole by merely summing the value of the parts.

- ii) LP models, utilising a marginal costing approach, obviate the need for arbitrary allocations of overhead or fixed costs.
- iii) LP models can take some account of such assets as the labour force by the inclusion of equations modelling the scarcity of such resources.
- iv) LP models can take account of multiple goals.

When LP is applied to the process of valuation two distinct approaches have been adopted.

5.1 Spread Sheet Planning

This approach, initiated by CHARNES, COOPER & IJIRI (42) and developed and extended by the latter author (88), is founded on the double-entry book-keeping system. The mathematical basis for double-entry system, generated from equation (3.1), i.e. $\sum_{A} Y_{A} = \sum_{E} Y_{E}$ arises from the fundamental observation that the equation is time independent. Changes that do occur over a time period to the asset accounts are balanced by counterchanges to the equity accounts.

Let the accounts be numbered sequentially (1, 2,n, n+1, ... n+m) starting with the asset accounts and followed by the equity accounts. Let w_{ij} represent a transaction debiting account i and crediting account j. Then

$$\begin{array}{cccc} n+m & & & = & n+m \\ \Sigma & w & & = & \Sigma & w \\ i=1 & ij & & j=1 & ij \end{array}$$
mirrors equation 3.2

Since a large number of transactions may involve any single account the net flow for any amount may be found by establishing an incidence matric T: a matrix having only two non-0 entries in each column:-

for the kth element of \underline{w}_{ij} (w_{ij}) the kth column of T has an entry 1 in row i and -1 in row j; 0 elsewhere

Now $\underline{T} \underline{w} = \underline{d}$ the net flow for any account (3.5)

It is simpler to visualise the process of transactions in terms of a network with accounts represented by nodes and transactions by arcs.

IJIRI gives the following example (page 91 (82)) as an aid to understanding.

Let the opening balance of the accounts be as shown below in Table 3.1, and the transactions undertaken in the period shown in Table 3.2

ACCOUNT <u>Y</u> A		<u>Y</u> e	
1. CASH	30	4. EQUITY	50
2. FINISHED GOODS	10		
	50		50

TABLE 3.1 OPENING BALANCE STEET

Purchase of Materials in Cash	5
Consumption of Materials	9
Fixed Operating Expenses	2.5
Cost of (Cash) Sales	5
Profit on Sales of Finished Goods	3

TABLE 3.2 TRANSACTIONS

Then
$$\underline{\mathbf{w}} = \begin{bmatrix} \mathbf{w}_{31} \\ \mathbf{w}_{23} \\ \mathbf{w}_{41} \\ \mathbf{w}_{12} \\ \mathbf{w}_{14} \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 2.5 \\ 3 \\ 3 \end{bmatrix}$$

And
$$\underline{\mathbf{T}} = \begin{bmatrix} -1 & 0 & -1 & 1 & 1 \\ 0 & 1 & 0 & -1 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & -1 \end{bmatrix}$$

$$\underline{\mathbf{T}} \underline{\mathbf{w}} = \begin{bmatrix} -1.5 \\ -1 \\ 3 \\ -.5 \end{bmatrix}$$

which can be shown as Fig. 3.1

Spread sheet models allow the analyst to investigate the effects on the balance sheet of pursuing different, or multiple goals. Furthermore, the skeleton model of the company in terms of its balance sheet components and the accounting flows between them can be further extended to take in multi-time period horizons and other managerial, technological and environmental constraints (89). The apparent versatility and wide ranging scope for the technique and the straightforward manner in which results are presented are its major advantage.

A fundamental criticism of the spread sheet approach is that it provides no new information, neither to management nor to the analyst. Balance sheet entries may be linked (through any particular view-point) to the results of a model of physical activities of the company at a report writer stage: GAMBLING very neatly demonstrates this (66) by taking the same example used by CHARNES, COOPER & IJIRI to exemplify their spread sheet approach, and solves it with a direct LP model of the physical activities and constraints.

Furthermore, claims for the use of the dual interpretation of the model are suspect: in the spread-sheet model many of the accounting flows are linked to the physical flows of goods or materials by some (arbitrary) standard costing system. However, some of the dual variables extracted from the optional solution of the model will also, 'price' the flow of goods and materials. If the dual 'prices' and 'standard costs' are different we are presented with a problem comparable with that of pricing the value of money under capital rationing (see Chapter 2.2.3.ii).

3 - 108 -

5.2 Valuation by the Dual LP

The interpretation of the dual variables of an LP as an opportunity evaluator is well established (developed by DANTZIG (46) from the concept of the dual as a pricing mechanism for inputs). The basis for this interpretation lies in the Strong Duality Theorem.

 $\underline{c} \underline{x}^* = \underline{\pi}^* \underline{b} = Z^*$

(The mathematical foundation for this interpretation is to be found in Chapter 5.2.2.)

This combines the aspect of marginality with average value: each unit of resource input is valued by the amount that the optimal value attributed to the company as a whole would change by the addition (or decrease) of a single unit of that resource, (see HADLEY, page 484,(78)). This marginal valuation is attributed to the entire availability of the asset. The value is thereby determined at the margin of a known and given availability, and in a given combination, of other assets. A necessary result from this is to value at zero resources which have slack (space capacity) since any <u>marginal</u> increase or decrease in availability will <u>not</u> effect the solution.

- 3 - 109 -

The general use of this interpretation is to inspect the solution to a (maximising) LP and argue for the increase in availability of resources with high positive duals - with a decrease in requirement for activities with negative duals. (e.g. (48)).

WRIGHT argues (147) that the dual LP is a viable system for imputing values to assets, the sum of which comprises the business as a "going concern". As we have seen previously (Section 4.2.c). he argues that valuation should be on an opportunity value basis but discards the approach of 'discounting the future stream of income', because of the difficulty of allocating income to a part of a large and complex man-machine organisation.

The straightforward acceptance of the dual variable as the opportunity evaluator for the inputs to the company (or as the allocation of the value of the enterprise as a whole over the constraining inputs) is not problem free:

(i) Limited range of validity

BERNHARD, (20) in commenting on SAMUEL's proposal (128A) to bill departments (on the basis of opportunity costs) for deviation in profit achievement due to their variance in planned performance, points to the problems of changes in basis. The example used is shown in figure 3.2.

The model is defined by 3 constraints, constraint BB being redundant. Interpreting the solution of the dual programme would lead to efforts being made to improve the performance of constraint AA. If this were successful and resulted in the constraint being AA' Samuels would value the improvement of performance by the entire change multiplied by \P_A (the old dual value). However, we can see from Figure 3.2 that AA' is now redundant and some of the apparent improvement is to waste since overall performance is now constrained by BB.

(ii) <u>Degeneracy</u>

STRUM notes (135) that in degenerate solutions the duals are asymmetric and must be interpreted according to whether the change in asset availability is an increase or decrease.

- 3 - 111 -

It has been argued that valuation of inputs may be accomplished by denying the organisation each asset in turn and equating the value of that asset with the change in attainment of the goal(s).

i.e. Value of asset $z = z^{*} - \hat{z}$ Where \hat{z} is the optimal solution of the programme missing resource i.

It can be shown (91) that such an attempt results in the sum of the values of the inputs greatly exceeding the value of the company as a whole. CARSBERG demonstrates this phenomenon (31) by the use of a simple example and concludes that the cause is due to jointness in the production process. The particular example he uses is degenerate - "unfortunately this problem with dual prices may occur frequently in practice since comprehensive formulations of a firm's operations will often be degenerate".

6. Conclusions

One of the principal concerns of accounts is the ability to report to the participants on the value of business, and from this valuation to derive the profit earned by the business during the accounting period. We have shown that despite the development of guiding principles and postulates to accounting procedures over a long period of time, the reporter of the company's affairs is left with a bewildering array of tools at his disposal, with little guidance concerning their appropriate use. Acceptance of the Sandilands Committee report goes a long way to providing a unifying approach to the task of drawing up balance sheets, but a number of problems remain. These centre on the modular approach to valuation, the lack of recognition of the different goals pursued by the company and the valuation of only some of the assets that comprise the business.

We have seen that LP models offer the possibility of allocating the overall value of the business as a whole (in terms of the stated objectives of the company) over the constituent assets. An average value for the unit of asset can be determined at the margin of a given availability of that asset, and in a given combination with other assets. However, such a system is not devoid of problems (namely those arising from degeneracy and from the limit of validity of the dual to the optimal basic solution). We shall return to deal with these problems in greater depth in Chapter 6.

CHAPTER 4

ALTERNATE SOLUTIONS

1. Introduction

The solutions to multi-period LP planning models (of the type formulated in Chapters 1 and 2) have two prevailing characteristics:

- (i) the solutions are often primal-alternate (i.e. there exist alternate primal solutions).
- (ii) the solutions are often primal-degenerate.

We shall discuss the derivation and definitions of primal-degenerate solutions in the following chapter. The implication of interpretation of the dual LP's will be dealt with in Chapter 6.

In discussing the conditions pertaining to primal-alternate solutions we first deal with the geometry of primal-feasible solutions and then with primal-optimal solutions. This results in an explanation of how alternate solutions arise. (The basic mathematical foundation for the analysis is to be found in Appendix C).

2. Geometry of Feasibility

Consider the LP.

$$\max z = \sum_{j j j} c_{j} x_{j}$$

- (i) s.t. $\sum_{j=1}^{\infty} a_{j} x_{j} + S_{j} = b_{j}$ i = 1,...,m (4.1)
- (ii) $S_{i}, x_{j} = 0$ j=1,...,n

M=m+n

- 4 - 114 -

The set of equations (i) are termed "structural" equations, equations (ii) are the "non-negativity" constraints on the variables; x, are the "structural" variables and S, the "slack" variables.

In matrix form this is summarized as

$$Max z = \underline{c} \underline{x}$$
s.t. $\underline{A} \underline{x} + \underline{I} \underline{S} = b$

$$\underbrace{x, \underline{S}} \ge 0$$
(4.2)

where \underline{A} is the matrix of structural equations and I is the mxm unit matrix

or

.. .

Max
$$z = \underline{c} \underline{X}$$

s.t. $\underline{A} \underline{X} \stackrel{\leq}{\underline{b}}$ (4.3)
 $\underline{X} \stackrel{>}{} 0$
where $\underline{A} = (\underline{A}, \underline{I}); \underline{X} = \underline{x}$

These equations define a feasible convex region F in E^{M}

i.e. F = [X / AX = b; X > 0]

Let S be the set of extreme points of F. Then F, if bounded, is the convex hull of S (see Appendix C.1.8).

The question of feasibility is concerned with whether F is empty or not. This can be determined geometrically by considering the column vectors of <u>A</u> (let these be $\frac{\alpha}{j}$). A solution to Equation 4.3 exists if the vector <u>b</u> can be expressed as a convex combination of these column vectors (thereby taking account of the non-negativity requirements).

$$\frac{\lambda}{j} \in F \quad \text{if} \quad \sum_{j} \lambda_{j} \underline{\alpha}_{j} = \underline{b}; \quad \lambda_{j} \geq 0$$

This condition defines an interior ray to a convex cone formed by the vectors $\frac{\alpha}{-j}$ (Theorem C.5) and leads us to state the following Theorem on feasibility.

- THEOREM 4.1: The problem is feasible if the vector <u>b</u> is contained by the m dimensional cone formed by the column vectors of the matrix of equations.
- **<u>Proof:</u>** <u>b</u> is m dimensional and there exist in the set of column vectors $(\frac{\alpha}{j})$ m unit vectors spanning E^m (from the slack variable). <u>b</u> is therefore dependent on this set and we have shown above that if this dependency is convex then <u>b</u> lies interior to the cone formed by the column vectors.

Since <u>b</u> is m dimensional only m vectors will, in general, be required to describe it. All the other multipliers (λ_j) will be zero. This represents a basis, and HADLEY proves (78) that each basic feasible solution corresponds to an element of S.

3. Geometry of Optimality

LEMMA 1: If the feasible region is not empty, and is closed

in the direction of optimization, then the programme will yield a finite optimal solution.

In the simple example shown in Fig. 4.1, maximising the objective function entails moving that line as far away as possible from the origin; minimising requires that the objective function be brought as close to the origin as possible. Clearly the latter problem does yield an optimal solution for the example shown, whereas the problem is unbounded for the maximising case.

LEMMA 2: The optimal solution exists at the extreme point where the objective function forms a supporting hyperplane to the feasible region.

This follows directly from the definition of a supporting hyperplane (Theorem C.2.)

Consider the feasible region F defined in Eⁿ (eliminating the slack variables and converting the structural equations to inequalities) by the intersection of M feasible half-spaces.

- LEMMA 3: An extreme point to the feasible region F in Eⁿ is defined by the intersection of n linearly independent hyperplanes from the M hyperplanes defining the region.
- <u>Proof:</u> This follows from the requirement that the rank of a matrix must be equal to the dimension of the vector <u>x</u> for a single solution to exist for the equations $\underline{A} = \underline{b}$.
- <u>COROLLARY:</u> More than n hyperplanes passing through the same point will be linearly dependent.

Since we have shown that the optimal objective function hyperplane forms a supporting hyperplane then it follows that the objective function is linearly dependent on the hyperplanes intersecting to form the optimal vertex. i.e.

$$\underline{c} = \sum_{i=1}^{R} \pi_{i} \underline{a}_{i} \qquad R \ge n \qquad (4.3)$$

THEOREM 4.2: Optimality exists when the inward normal to the objective function is contained by the cone formed by the inward normals of the intersecting hyperplanes at a point. <u>Proof:</u> Consider the objective function hyperplane at the optimal point \underline{x}^* $\underline{c} \ \underline{x} = \underline{z}^*$ we have shown that the objective function forms supporting hyperplane at the optimal vertex

i.e. there exists no point y such that

$$\underline{c} \underline{y} = \Xi^*$$

$$a_i y < b_i \quad \forall_i$$

$$(4.4)$$

(i.e. no point on the objective function hyperplane is an interior point of the Primal feasible space F.) Note that we can restrict the inequalities in Equation 4.4 to those satisfied at equaltiy at the optimum $(\underline{a_i} \ \underline{x}^* = b_i)$ since for any \underline{y} in the neighbourhood of \underline{x}^* the other constraints will still be satisfied.

Assuming, on the contrary, that some <u>y</u> exists satisfying Equation 4.4, and substituting for $\underline{c} = \sum_{i=1}^{\infty} \frac{a_{i}}{1 - i}$ and for $\underline{z}^{\star} = \underline{\pi} \underline{b}$ (from the Strong Duality Theorem) $\sum_{i=1}^{\infty} \frac{a_{i}}{1 - i} \underline{y} = \sum_{i=1}^{\infty} \frac{a_{i}}{1 - i}$ (4.5)

 $\frac{a_{i}y}{i} < b_{i} \quad \forall_{i}$ Now substitute for $b_{i} = a_{i}y + \lambda_{i}$; $\lambda_{i} > 0 \quad \forall_{i}$ $\sum_{i} \pi_{i} a_{i}y_{i} = \sum_{i} \pi_{i} \cdot (a_{i}y + \lambda_{i})$ (4.6)
Simplifying yields $\sum_{i} \pi_{i} \cdot \lambda_{i} = 0$ (4.7)
Since $\lambda_{i} > 0$ a solution to Equation 4.7 may exist if some $\pi_{i}^{*} < 0$.

>

We have shown above that no solution to Equation 4.4 may exist. Therefore we conclude that

- 4 - 119 -

$$\pi_i^* > 0 \quad \forall_i$$

and so the vector \underline{c} is contained by the convex cone of vectors \underline{a}_i .

A further discussion on the conditions of optimality is to be found in Chapter 5.

4. Alternate Solution to the Primal Programme

Let a supporting hyperplane that touches the feasibile region in more than one point be termed an "extremal supporting hyperplane".

LEMMA 4: Alternate solutions occur when the optimal objective function forms an extremal supporting hyperplane to the feasible region.

In other words alternate solutions occur when more than one point on the optimal objective function hyperplane is a member of F.

THEOREM 4.3: Alternate solutions occur when the inward normal to the objective function is containyd by some sub-cone of the inward normals of the intersecting hyperplanes.

Let there be R hyperplanes intersecting at the optimal vertex, then

- 4 - 120 -

$$\underline{c} = \sum_{i=1}^{r} \pi_{\underline{a}} ; \pi_{\underline{i}} > 0 \quad \underline{i=1,\ldots,r}$$

$$\pi_{\underline{i}} = 0 \quad \underline{i=r+1,\ldots,R}$$
(4.8)

<u>Proof:</u> Since the objective function is an extremal supporting hyperplane it must be coincident with a face of a feasible region. All faces are formed by the intersection of r (< n) supporting hyperplanes.</p>

A simple example is shown in Figure 4.2.

In this two dimensional problem the objective function is parallel to constraint 2. Therefore the objective function is described as a convex combination of this line alone. Basic solutions to the problem exist at vertices A and B, but the other lines (constraints) intersecting at these points play no part in determining the optimality of the vertex. LEMMA 5: If \underline{x}_i (\forall i \in I) is an optimal vertex, then any point contained by the convex hull of the points of the set I is also optimal.

Proof: Let
$$\underline{X} = \sum_{i \in I} \lambda_{\underline{X}}$$
; $\lambda_i > 0$; $\sum_{i \in I} \lambda_i = 1$
Since $\underline{Ax}_i = \underline{b}$ then so does $\underline{AX} = \underline{b}$ i.e. \underline{X} is a feasible point. And since $\underline{cx}_i = \underline{z}^*$ then so does \underline{cX} yield the optimal value z^* .

In terms of the Fig 4.2. any point between A and B is also optimal.

5. <u>Conclusions</u>

The geometry of the primal LP solutions reveals that each basis represents an extremal point of the feasible region. Expressed in the geometry of cones, the requisite that the solution be feasible may be expressed by the statement that the r.h.s. vector <u>b</u> must be internal to the cone formed by the column vectors \underline{a}_j of the matrix of equations in Equation 4.1 Since <u>b</u> is m-dimensional, different m-cones containing <u>b</u> will represent different feasible (basic) solutions.

From the dual LP we determine that an optimal solution exists where the vector <u>c</u> is contained by the cone formed by the internal normal <u>a</u> to the hyperplanes forming the particular (feasible) vertex. (With the problem expressed in E^n , at least n hyperplanes (of the M that define the problem) will intersect to form the vertex; i.e. the cone formed is an n-cone). An alternate primal solution exists where the objective function is itself an extremal supporting hyperplane to the feasible region. In that event, the vector \underline{c} may be expressed by a sub-cone of the n-cone defining the 'optimal' basic vertex.

Other cones may be formed with the same subcone representing other feasible vertices) resulting in alternate optimal solutions.

From HADLEY'S definition (78) of a degenerate solution: "A basic solution to $\underline{A} \times = \underline{b}$ is degenerate if one or more of the basic variables vanish" we may infer the analogy that

A Primal Alternate Solution is Dual-Degenerate.

We shall investigate this more closely in the following Chapter.

DEGENERATE SOLUTIONS

1. Introduction

In this chapter we start by deriving a simple definition of degeneracy in terms of the geometry of the primal solution. Recognition of the existance of degeneracy has in the past been mainly focused on theoretical problems that may arise in the procedural search for the optimum. We show that optimal degenerate solutions result in non-unique dual optimal solutions^{*}. The results require that we inspect the behaviour of the dual LP around the optimum with care and we show how the non-unique duals conform to the well known "two-sided dual variable". The economic interpretation of these results is left to Chapter 6.

2. DESCRIPTION AND DEFINITION

We have already shown (by Theorem 4.1) that primal feasibility requires that the resource vector \underline{b} be contained by the m-dimensional cone formed by the column vectors of the matrix of equations. CHARNES & COOPER state (page 415 (38)) that

"Degeneracy is present whenever, at some stage of a simplex iteration, the right-hand-side vector can be expressed as a (positive) linear combination involving fewer than the m matrix column vectors which are needed for a basis spanning the dual space."

* Some of the results presented in this chapter have been published (51)

$$E = \sum_{i=1}^{R} \lambda_i \underline{a}_i; \quad \lambda_i \ge 0; \quad 0 \le R \le m \quad (5.1)$$

- 5 - 124 -

In this Chapter we shall be using the formulation of the LP defined by Equation 4.1 with the added conditions that the equations i = 1,...m refer only to the equations that are tight (i.e. the slack $S_i = 0$) at the optimum \underline{x}^* . This is not a restrictive condition since our investigations of the behaviour of the problem will be confined to points in the neighbourhood of the optimum.

The solution is defined by m (tight) equations and n non-negativity constraints. The number of the non-negativity conditions satisfied as equalities is n-R (corresponding to that number of structural variables being zero - there being no positive slack variables!). Therefore the total number of tight constraints is

m + (n-R)

In terms of the geometry of the primal space defined in E^n , the vertex that is described by the basic solution reached at this stage of the simplex iterations has m+n-R hyperplanes satisfied at equality - i.e. the vertex occurs at the point of intersection of these m+n-R hyperplanes. Since m-R > 0 we derive the following simple definition of a degenerate vertex:

DEFINITION: A vertex in Eⁿ is degenerate when it is formed by the intersection of more than n hyperplanes.

2.1 DEGENERACY DURING THE SEARCH FOR OPTIMALITY

DANTZIG (46) became aware of degeneracy, when in terms of his

simplex algorithm, the search procedure is presented with a choice of pivot elements. This results in a halt to the progressive change in the value of the objective function, and in such circumstances a particular basis may be repeated. This raises the spectre of an infinite cycle preventing the algorithm from completing the search for optimality.

HOFFMAN created such an example (of 3 equations and 11 variables) where resolving the ambiguity of choice by selection of the first potential pivot element results in cycling. BEALE constructed a second example (believed to be the simplest possible with only 3 equations and 7 variables) where the same phenomenon can be observed. Yet despite the "common experience, based on the solution of thousands of practical linear programming problems by the simplex method, that nearly every problem at some stage is degenerate" DANTZIG observed no examples of cycling other than the two specially constructed examples.

However, for the sake of mathematical completeness, two methods were developed, independantly, to resolve the degeneracy problem.

i. DANTZIG, ORDEN & WOLFE'S Lexicographic Rule (p183(78))

A vector \underline{x} is lexicographically positive if its first non-zero component is positive. To resolve degeneracy the procedure constructs a generalized L.P. as follows:

The variables x, are replaced by a m+1 component row vector \underline{X} , having x, as the first component.

The resource vector \underline{b} is replaced by a m-by-(m+1) matrix \underline{P} where

 $\underline{P} = (\underline{b}, \underline{I}_{m})$

<u>I</u> is the m-dimensional unit matrix, and <u>P</u> is lexico-positive. The set of constraints <u>A</u> <u>x</u> = <u>b</u> becomes <u>A</u> <u>X</u> = <u>P</u>.

The objective funtion value is replaced by the (m+1) vector

$$\underline{z} = \sum_{j=1}^{n} c_j \underline{X}_j$$

The generalized LP problem is now defined as: Find a set of lexicographically non-negative variables \underline{X}_{j} which maximise the objective vector \underline{z} in a lexicographic sense (i.e. $\underline{z}^{*}-\underline{z}$ is lexico-positive for all other feasible solutions) and satisfy the constraints $\underline{A} \ \underline{X}=\underline{P}$.

It can be shown that the selection of the pivot element is unique in the lexicographic sense, and that degeneracy never arises, thus allowing the generalized simplex algorithm to reach an optimal solution in a finite number of steps.

ii. Charnes' Perturbation Method. (37)

Figure 5.1 shows a 3-dimensional example of the geometry of equation 5.1.

In this example the vector <u>b</u> is expressed as a positive linear combination of <u>a</u> and <u>a</u> alone. The perturbation method shifts the vector <u>b</u> as shown by creating

$$\underline{b}(\epsilon) = \underline{b} + \Sigma \epsilon \underline{j}_{\underline{a}j}$$

j=1

Care is taken to ensure that this perturbed vector remains enclosed by the cone of column vectors. CHARNES then shows that the polynomial in e requires that $\underline{b}(\epsilon)$ be expressed by a positive linear combination of a full set of basic vectors, and that the perturbed problem is never degenerate.

2.2 DEGENERACY AT THE OPTIMUM

With the resolution of primal degeneracy in the mathematical sense, the behaviour of LPs that are degenerate at the

optimal solution has received little attention. This is a reflection of the fact that degeneracy is considered as an obstacle in the path of solution, and has resulted in important properties of degenerate optima being overlooked.

i. The Primal Solution

In one of the few papers concerned with this topic, GAL & HABR (65) attempt to differentiate between programmes that are degenerate (i.e. have zero basic variables) in slack or structural variables. However, the very nature of degeneracy results in the existance of a number of bases. Each basis can be formed from the previous basis by the interchange of a zero basic variable by <u>any</u> non-basic variable leaving the numerical values to <u>all</u> the variables unchanged. This renders the distinction proposed above void. Problems may be distinguished as follows:

Class 1 - Those with no structural variables at zero level Class 2 - Those with some zero value structural variables.

(In GAL & HABR'S terms Class 1 problems conform to their catagory of degeneracy of slack variables; while Class 2 problems comprise of both their catagories).

This differentiation of problems will be of only minor use in understanding the phenomena of degeneracy.

- 5 - 129 -

Problems that fall into the catagory of Class 1 are optimal at some interior point of the positive orthant and sensitivity analysis can be applied to all the constaints active at the optimum. Class 2 type problems are optimal at some boundary point of the positive orthant, thereby limiting sensitivity analysis to some subset of the active equations. In the mathematical formulation there is no difference between structural constraints and the non-negativity conditions, but since the latter have been introduced to represent the behaviour of the variables in the real world this condition must be recognised by any post-optimal sensitivity analysis that is undertaken.

ii. The Dual Solution

The most interesting aspects of degenerate primal LPs comes to light by inspecting the associated dual programme. Our interest in the dual programme stems from the proposal to value the inputs to the company by their respective dual variable (see Chapter 3.5.2). Now consider the sensitivity of the solution value to changes in the availability of a particular resource - i.e. consider the effect on the objective function value when a particular constraint is shifted. CHARNES & COOPER prove (39) that for the programme

$$z^* = (Max \ z = \underline{cx})$$
s.t $\underline{A} \ \underline{x} < \underline{b}$ (5.2)
$$\underline{x} > 0$$

 z^* (b) is a convex function of b; is (finitely) piecewise linear in b, and that the partial derivatives (where they exist) are equal to the dual variables. This result is shown in Figure 5.2 (the points of discontinuity representing changes in the basis).

An increase in the availability of a resource results in an increase of the objective function value but at a progressively diminishing rate till no further increase in value can be obtained. This occurs when the amount of resource is increased (i.e. the hyperplane is moved in the direction of the outward normal) to the extent that the constraint is no longer binding!

- 5 - 131 -

Let the actual availability of resource i in the programme be at \overline{b}_i . The value of the objective function (from Fig 5.2) is \overline{z}^* and the sensitivity of that value to incrementa changes in the level of b_i is π_j . This leads to the well known interpretation of the dual variable as the marginal evaluator of this resource at this level.

However, with availability of the resource at the level b_i the programme is degenerate and the sensitivity of the objective function value is direction dependent.

$$\frac{\partial \mathbf{z}^{*}}{\partial \mathbf{b}_{i}} \begin{vmatrix} \mathbf{z} &= \pi_{k} \\ \mathbf{b}_{i}^{+} &= \mathbf{k} \\ \vdots & \vdots \\ \frac{\partial \mathbf{z}^{*}}{\partial \mathbf{b}_{i}} \begin{vmatrix} \mathbf{b}_{-} &= \pi_{j} \\ \mathbf{b}_{-}^{-} &= \mathbf{j} \end{vmatrix}$$
(5.3)

This two-sided nature of the marginal evaluator was brought to the attention of accountants by STRUM (135) who stressed the difference between the "gain in having one more unit of resource" as opposed to the "loss in having one less unit".

EILON A. & FLAVELL have shown ((51)-see Appendix E.2) that this statement is a gross simplification of the true behaviour of the dual linear programme when the problem is primal degenerate. Using the same example as STRUM (shown in Figure 5.3) they pointed to the existance of a third, hitherto unconsidered, basis (shown in Table 5.1).
- 5 - 132 -

Basia Marginal value	(x, y, s_1) $(0, c_1 - \frac{1}{2}c_{21} - 2c_1 + \frac{3}{2}c_2)$	(x, y, s_2) $(\frac{2}{5}c_1 - \frac{1}{5}c_2, 0, -\frac{1}{5}c_1 + \frac{3}{5}c_2)$	(x_{1}, y_{2}, s_{3}) $(\frac{4}{9}c_{1} - \frac{1}{3}c_{2}, -\frac{1}{9}c_{1} + \frac{1}{3}c_{2}, 0)$
Marginal value $(c_3=2, c_3=3)$	$(0, \frac{1}{2}, \frac{1}{2})$	$(\frac{1}{5}, 0, \frac{7}{5})$	$(-\frac{1}{9},\frac{7}{9},0)$
Limitation	$\frac{1}{2} < \frac{c_1}{c_2} < \frac{3}{4}$	$\frac{1}{2} \leq \frac{c_1}{c_1} \leq 3$	$\frac{3}{4} \leq \frac{c_1}{c_2} \leq 3$

Table 5.1 The marginal values of the alternate optimal bases

Each basis represents particular set of independant hyperplanes that form the vertex by their intersection. In the example in E² shown in Figure 5.3, the number of ways of selecting two independent lines from the set of three that passthrough the optimal vertex A is three. Each basis results in a new set of dual values giving rise to the non-symetric nature of the dual values that does not, however, conform to the generally accepted non-negativity requirement on the dual variables. Negative dual valuescan arise in an optimal solution in the following manner: consider the cone C formed by the inward normals of the hyperplanes (lines in Fig 5.3) that form the optimal vertex (A) . Since the vertex is the optimal point of the problem, the inward normal to the objective function is included by the cone C (by Theorem 4.2). This is shown in Figure 5.4.

A <u>basic</u> solution corresponds to the description of the vertex by a <u>n-ray subcone</u> from C. In this example (from Figure 5.4) the subcones formed by rays (1&2), (&3), and (2&3) correspond to the three bases given in Table 5.1. The first two subcones (corresponding to the bases produced by STRUM) themselves contain the inward normal to the objective function.

$$\underline{c} = \pi_{1} \underline{a}_{1} + \pi_{2} \underline{a}_{2} ; \pi_{3}^{=0}$$

$$\underline{c} = \pi_{1}^{*} \underline{a}_{1} + \pi_{3}^{*} \underline{a}_{3} ; \pi_{2}^{*=0}$$
(5.4)

Equations 5.4 result in <u>different</u> sets of <u>non-negative</u> dual values.

The third subcone does not itself contain the objective function vector \underline{c} (although it adequately represents the vertex A) and the relationship

$$\underline{c} = \hat{\pi}_{2} \underline{a}_{2} + \hat{\pi}_{3} \underline{a}_{3}; \hat{\pi}_{1} = 0 \quad (5.5)$$
results in a new set of dual values that are
not non-negative.

This startling result requires a revision of previous classical tests for optimality.

3. CLASSICAL TESTS FOR OPTIMALITY

3.1 The Simplex Algorithm

Acting on the programme (Equation 5.2) the simplex algorithm tests for the need for further iterations by checking the revised objective function for the existance of negative components. HADLEY (78) gives the following definition for the completion of the simplex search:

> "Given a basic feasible solution $\underline{x}_B = B^{-1}\underline{b}$ with $z_o = \underline{c}_B \underline{x}_B$ to the linear programming problem $A\underline{x} = \underline{b}, \underline{x} > 0$, max $\underline{z}=\underline{c}\underline{x}$ such that $z_j - c_j > 0$ for every column \underline{a}_j in A. Then z_o is the maximum value of z subject to the constraints, and the basic feasible solution is an optimal basic feasible solution".

Clearly this statement holds true but results in all final optimal bases being those that correspond to subcones that themselves contain the objective function normal, and neglects the other optimal bases. It follows that, this condition may require a number of iterations to be undertaken that do not move the final location of the primal solution - the algorithm continues its search merely because it cannot recognise that the optimum has been reached.

3.2 <u>'Classical' Derivation of Necessary & Sufficient Conditions</u> for Optimal L.PS

CURRY & TAHA (44) transformed the standard LP (Equation 5.2) by expressing the (non-negative) variables as perfect squares, and applying the Jacobian method to the resulting non-linear programme. Their analysis led to the construction of the following conditions.

- 5 - 135 -

"The necessary condition shows that a candidate for the optimal solution is a <u>basic</u> feasible solution. The sufficiency condition on the other hand, stipulates that for every nonbasic variable x_j the optimality indicator (c_j-z_j) must be non-positive (non-negative) in order for a maximization (minimization) linear programme to be optimal".

Clearly these results do not conform to our findings above. RAIKE & TAYLOR point out (127) that optimal solutions need not be basic solutions (in the case of alternate optima) and that degenerate problems result in the disappearance of the Jacobian matrix, thereby taking our problem outside the scope of CARRY & TAHA's assumptions.

(In a rejoinder (45) CURRY & TAHA state that the aim of their paper was to show that 'classical' optimization techniques may be used when investigating the behaviour of LPs - their aim was not to develop rigorous optimality conditions since that would "only be a repetition of results well known in the literature").

3.3 The KUHN-TUCKER Conditions

KUHN & TUCKER, in their classical paper (102), generalise the optimality conditions from the LP to conditions for local optimality for mathematical programmes that are differentiable continuous, and that satisfy a Constraint Qualification by adapting classical calculus methods that are normally applied to constrained equations. The (linear) problem

Max
$$g(x) = c_{j}x_{j}$$

s.t. $f_{i}(x) = b_{i} - a_{ij}x_{j} \ge 0$ $i=1,...,m$ (5.6)
 $x_{i} \ge 0$ $j=1,...,n$

is transformed into an equivalent saddle value (minimax) problem by constructing the Lagrangian function

"a particular vector x° maximises g(x) subject to the m+n constraints if, and onlyif, there is some vector u° with nonnegative components such that

Clearly the necessary condition has been shown not to hold for degenerate LP's fall outside the constraint qualification:

- THEOREM 5.1 All linear programmes (including degenerate systems) comply with the KUHN-TUCKER Constraint Qualification.
- <u>Proof</u>: The KUHN-TUCKER constraint qualification has been defined as follows (79):

For each line originating at the optimum \underline{x}^* and lying in the convex set (the feasible region) there is an ϵ -neighbourhood of \underline{x}^* a continuous differentiable curve also in the convex set and tangent to the line of \underline{x}^* . For the general system min $f(\underline{x})$ st $\underline{g}(\underline{x}) \ge 0$

then at the optimal solution \underline{x}^* to the system define the following sets.

> <u>I</u> = (active equations at \underline{x}^*) <u>J</u> = (zero variables of \underline{x}^*)

The Constraint Qualification may be translated to mathematical requirements as follows:

(i) There must be more than one feasible solution;

(ii) The neighbourhood surrounding \underline{x}^* will satisfy the constraints imposed by the inactive equations, and the non-negativity requirements of the non-zero variables at \underline{x}^* ;

(iii) Consider any feasible point
$$\underline{y} (\neq \underline{x})$$

then $g_{\underline{i}}(\underline{y}) \ge 0 \quad \forall \ \underline{i} \in \underline{I}$
Now define ho = $\underline{y} - \underline{x}^*$
and h = $\lambda \cdot \underline{ho}$; $\lambda \ge 0$
where $\lambda = 0$ represents $\underline{h} = \underline{x}^*$
(5.8)

÷

Now the Constraint Qualification can be written as

$$\nabla f(\underline{x}^*) \cdot \underline{h}^{\geq 0} \quad \forall \underline{h} \quad \text{s.t} \quad g_{\underline{i}}(\underline{x}^*) \cdot \underline{h}^{\geq 0} \quad \forall \ \underline{i} \in \underline{I}$$
 (5.9)
$$h_{\underline{j}}^{\geq 0} \quad \forall \ \underline{j} \in J$$

Our system is a degenerate linear programme. Substituting for

$$f(\underline{x}) = \sum_{\substack{j=1 \\ j=1}}^{\infty} c_j x_j$$
$$g_i(\underline{x}) = a_i(\underline{x}) - b_i \ge 0 \quad \forall i (=1, \dots, m) \in I$$

Equation 5.9 becomes:

c h ≥0
$$\forall$$
h s.t. a,h ≥0 \forall i \in I (5.10)
h_i ≥0 \forall j \in J

For
$$h_j = 0$$
 $\underline{h} = \underline{x}^*$
and $\underline{a}_i \underline{h} = 0$
 $\underline{c} \underline{h} = 0$

For $h_j \ge 0$ $a_h \ge 0$ since h is feasible (from 5.8) and $c h \ge 0$ since $c x^* = 0$ is the minimum value!

There is no restriction on the number of elements in I.

Therefore all LPs satisfy the Constraint Qualification.

MANGASARIAN makes the point (112) that the multipliers are nonnegative due to the problem (5.6) being expressed in terms of inequalities. Problems with equality constraints impose no restriction on the sign of their respective Lagrangian multipliers. (This follows from the treatment of equality constraints as two opposite inequalities.) We have shown that the non-negativity condition can be excluded for inequality problems that are degenerate.

3.4 Theorems of Alternatives

Farkas' Theorem states that for any fixed mxn matrix A and some fixed vector \underline{c} in R^n then either

• • • • • • • • • • • •

I or II

$$\underline{A \times }^{< 0} \qquad \underline{A' y = c} \qquad (5.11)$$

$$\underline{c \times }^{> 0} \qquad \underline{y }^{> 0}$$

has solution \underline{x} in \mathbb{R}^n has solution \underline{y} in \mathbb{R}^m but never both.

MANGASARIAN uses this theorem (112) to derive the necessary optimality conditions for the LP

$$\underline{c} \underline{x}^* = Max \underline{c} \underline{x}$$
$$x \in X$$
$$X = (x/x \in \mathbb{R}^n ; \underline{A} \underline{x} \leq b)$$

These are:

iv.	$\underline{c} \underline{x^*} = \underline{b} \underline{u^*}$	(strong duality)	
iii.	<u>u</u> *≫0)		(5.12)
ii.	<u>A'u*=c</u>)	(dual feasibility)	
i.	$\underline{A} \underline{x^*} \leq \underline{b}$	(primal feasibility)	

Derivation:

Define the index sets I, J, and M as $\underline{I} \cup \underline{J} = \underline{M} = (1, \dots, \underline{m})$ $\underline{I} = (i/\underline{a}, \underline{x}^* = b_i)$ $\underline{J} = (j/\underline{a}, \underline{x}^* < b_j)$

- 5 - 141 -

so that
$$\underline{A_{I}x}^{*} = \underline{b}_{I}$$
 the active eqns. (5.13)
 $\underline{A_{J}x}^{*} < \underline{b}_{j}$ the inactive eqns. (5.14)
If I is empty analysis shows that $\underline{c} = 0$
If I $\neq \phi$ then analysis asserts that

$$A_{\underline{I}} \stackrel{\times}{=} {}^{\leq} 0$$
; $\underline{cx} > 0$ has no solution $x \in \mathbb{R}^n$ (5.15)

If there were a solution, say \hat{x} , then $\lambda \hat{x}$; $\lambda > 0$ would also be a `solution. In that case the point $\underline{x}^{*+\lambda} \hat{x}$ would yield

$$\underline{c(x^{*+\lambda x})} \geq \underline{cx^{*}} \qquad \text{from 5.15} \qquad (5.16)$$

$$A_{I}(\underline{x^{*+}} \lambda \underline{x}) - \underline{b}_{I} < 0 \qquad \text{from 5.15 & 5.13} (5.17)$$

$$A_{J}(\underline{x^{*+}} \lambda \underline{x}) - \underline{b}_{J} < -\alpha \underline{e} + \lambda A_{J} \underline{x} < 0$$
 (5.18)

from 5.15 & 5.14.

where \underline{e} is the unit vector and α is defined as

$$-\alpha = Max (a_j x^* - b_j) < 0; \alpha > 0$$
 (5.19)
jeJ

Equations 5.17 and 5.18 imply that $\underline{x}^* + \lambda \underline{\hat{x}} \in X$ but Equations 5.16 denies that \underline{x}^* is the optimal solution in X. Hence the system 5.15 has no solution.

By Farkas' Theorem the systems

$$A_{I}'\underline{y} = \underline{c} ; \quad y \ge 0$$
 (5.20)

must have a solution $\underline{y}^* \in \mathbb{R}^{I}$. If $\underline{\emptyset} \in \mathbb{R}^{J}$ then

$$\underline{\mathbf{b}}_{\underline{\mathbf{y}}} \mathbf{x}^{*} + \underline{\mathbf{b}}_{\underline{\mathbf{y}}} \mathbf{y}^{*} = \underline{\mathbf{y}}^{*} \mathbf{A}_{\underline{\mathbf{y}}} \mathbf{x}^{*} = \underline{\mathbf{cx}}^{*}$$
(5.21)

from 5.20 & 5.13

becomes condition 5.12-iv, and

$$A_{T}^{\dagger}\underline{y}^{*} + A_{T}^{\dagger}\underline{\emptyset} = \underline{c} ; \underline{y}^{*} > 0$$
 (5.22)

yields conditions 5.12-ii and 5.9-iii.

This last statement takes Farkas' Theorem too far. While it is true that some $\underline{y}^* \ge 0$ does satisfy Equation 5.22 there is no exclusion of some $\underline{y}^* < 0$ also satisfying the equation.

A more careful interpretation of Farkas' Theorem leads VAJDA (110) to state the following Necessity Theorem for the existance of a LP solution:

"If x_0 minimizes c'x subject to b-Ax<0, then there exists a vector $y \ge 0$ such that c-A'y_0=0 and (b-Ax_0)'y_0=0".

As we have seen above (page 134) this statement is correct as far as it goes, but does not bring to light the existence of other solutions where the dual multiplier need not be constrained to be non-negative.

4. MATHEMATICAL DESCRIPTION OF THE BEHAVIOUR OF DEGENERATE LPs

It is clear that the characteristics of degenerate - primal solutions do not confirm to previously accepted precepts. In this section we investigate the behaviour of such optimal solutions, by inspecting the structure of the solution at points close to the optimal vertex.

For problems of the type:

Find <u>x</u>*, if it exists, s.t $\theta(\underline{x}^*) = Min \ \theta(\underline{x})$; $X = (\underline{x}/g(\underline{x}) < 0)$ $x \in X$

where $\theta(x)$ and g(x) are differentiable continuous functions, the Kuhn-Tucker conditions for optimality can be expressed as follows (p94,(112)):

- 5 - 143 -

For the Linear Programme the functions $\theta(\underline{x}) = -\underline{c} \cdot \underline{x}$ $g(\underline{x}) = \underline{A} \cdot \underline{x} - \underline{b}$

are clearly differentiable. Substitution yields the following conditions:

$-c_{j} + \sum_{i} \pi_{a,i}^{*} = 0$	j=1,,n)	
$(\underline{a.x^*} - \underline{b.}) < 0$	i=1,,M)	(5.27)
$\pi_{1}^{*}(\underline{a,x^{*}} - b_{1}) = 0$) i=1,,M)	
π* ≥ 0 i) i=1,,M)	

For degenerate problems (dropping the non-negativity condition and) considering only the m (m>n) active equations, the system

$$\underline{\mathbf{c}} = \underline{\pi} \underline{\mathbf{A}}$$

$$0 = \underline{\pi} (\underline{\mathbf{A}} \underline{\mathbf{x}}^{*} - \underline{\mathbf{b}})$$

$$(5.28)$$

$$\underline{\mathbf{c}} \underline{\mathbf{x}}^{*} = \underline{\pi} \underline{\mathbf{b}}$$

has no unique solution π^* . Equations 5.28 define the alternate dual space overwhich the dual variables π are free-ranging.

The discussion of the economic implications of the existence of this dual space is left till the next chapter. To understand more about the behaviour of the dual variables we shall demonstrate the behaviour of degenerate problems under small perturbations of the resource vector. It will be helpful to make the following distinction between 'simple' and 'non-simple' degeneracy:

DEFINITION: Simple degeneracy occurs when all sets of n hyperplanes of those that intersect at the degenerate vertex in Eⁿ are linearly independent.

This can be expressed in the form of two assertions.

ASSERTION 1. Any set of n hyperplanes of the active equations is linearly independent.

This ensures that the vertex may be defined uniquely by any sufficient set of hyperplanesand precludes the type of problem shown in Fig. 5.5, where the three planesin E^3 are dependent and do not define a unique point.

ASSERTION 2. Any set of n-1 hyperplanes of the active equations and the objective function hyperplane is linearly independent.

This precludes the existance of alternate primal solutions (for the sake of simplicity).

Unless otherwise stated all further analysis will assume that these assertions hold.

It is convenient to restate at this point terminology that will be used in the following analysis.

 $\frac{J}{I}$ is the index set of inactive eqns. $\frac{a_{j}x^{*} < b_{j}}{I}$ $\frac{I}{I}$ is the index set of active eqns $\frac{a_{i}x^{*}=b_{i}}{I}$ P is the set of extremal supporting hyperplanes Q is the set of nonextremal supporting hyperplanes Let $\frac{a_{p}}{I} \in P$, $\frac{a_{q}}{I} \in Q$; then I = U (p,q.)

 R_{K} is an index set such that the n-ray cone formed by the inward normals of the indexed (active) hyperplanes contains the objective function normal: $\Sigma = \pi_{ik} = c$; $\pi_{ik} > 0$ R is the family of such sets. $R = U_{k}(R_{k})$ T is the set of indices common throughout R T = $\bigcap_{k} R_{k}$

4.1 BEHAVIOUR OF THE PRIMAL PROBLEM UNDER SMALL PERTURBATION OF b.

THEOREM 5.2 Perturbation of the r.h.s. vector <u>b</u> at a degenerate optimum will resolve the degeneracy, under 'simple' degeneracy.

i. Change in the Availability of Resource s in the Direction of the Inward Normal.

now

now
$$\underline{a_s x^*} = b_s > \hat{b}_s$$

so $\underline{x^*}$ is now infeasible. Therefore remove from consideration
all non-extremal hyperplanes (other than s iff $\underline{a_s} \in \mathbb{Q}$) since they
intersect the feasible region at $\underline{x^*}$ only.

 $\hat{b}_{s} = b_{s} - \partial_{s}$

Degeneracy is resolved by such perturbation since either: $\underline{a}_{s} \in P$ and /P/=n. i.e. there are only n hyperplanes now active. a. This condition follows from the definition of degeneracy. or

b. The system
$$\underline{a}_{i} \underline{x} = b_{i}$$
 $\forall \underline{a}_{i} \in P$; $i \neq s$ (5.30)
 $\underline{a}_{s} \underline{x} = \hat{b}_{s}$

where /P/> n or $\underline{a}_{s} \in Q$, has no feasible solution.

This can be shown to hold by application of Farkas' Theorem. There will be no solution to the set of Equations 5.30 if there exists a non-zero solution to the system

$$\underline{a_{i}}^{\Sigma} \underbrace{P}_{i} \underbrace{P}_{i} \underbrace{a_{i}}_{i} + \underbrace{y_{s}}_{s} \underbrace{a_{s}}_{s} = 0 \qquad) \qquad (5.31)$$

$$\underline{a_{i}}^{\Sigma} \underbrace{P}_{i} \underbrace{y_{i}}_{i} \underbrace{b_{i}}_{s} + \underbrace{y_{s}}_{s} \underbrace{b_{s}}_{s} = \alpha \quad ; \alpha \neq 0 \qquad)$$

now

$$\underline{\underline{a}}_{s} = \sum_{\substack{a_{i} \in P \\ a_{i} \in P}} \lambda_{si} \underline{\underline{a}}_{i}^{i} \underline{b}_{s} = \sum_{\substack{a_{i} \in P \\ a_{i} \in P}} \lambda_{si} \underline{b}_{i}^{i} \cdot \underline{\lambda}_{s} \neq 0$$
(5.32)
$$\underline{\underline{a}}_{i} \underline{\underline{c}}_{P} (\underline{y}_{i} + \underline{y}_{s} \underline{s}_{i}) \underline{\underline{a}}_{i}^{i} = 0$$
(5.33)

Hence

$$\underbrace{a_i \in P}_{i} (y_i + y_s \lambda_{si}) b_i - \partial_s y_s = \alpha$$

A possible solution to Equations 5.33 is

$$y_{s} = -\frac{\alpha}{\partial_{s}} \neq 0 ;$$

$$y_{i} + y_{s} \lambda_{si} = 0 \qquad \forall \underline{a}_{i} \in P$$

Since a solution $\underline{y} \neq 0$ exists for the system 5.31 there can be no solution to Equations 5.30.

Solutions do exist for sets of equations comprising of equation s and any n-1 equations from the set P. By definition, these solutions are non-degenerate.

ii. <u>Change in Availability of Resource s in the Direction of</u> <u>the Outward Normal</u>.

$$b^{A} = b + \partial$$
$$s + \delta s + s$$

Now

While \underline{x}^* remains feasible under such perturbation it need not remain optimal.

 $\underline{a}_{s} \underline{x}^{*} = b_{s} \overset{\land}{b}_{s} - i.e. \underline{x}^{*}$ remains feasible.

Iff s ϵ T then x* will not remain optimum.

The objective function normal is contained by subcones indexed by the sets R_k . Furthermore T is contained byall these sets, so the exclusion from the vertex <u>x</u>* of a hyperplane in T results in no cone containing <u>c</u>. The resulting dual infeasibility is interpreted as primal non-optimality. For pertubation of any $s \in T$ it remains for us to show that new nondegenerate vertices are formed, enabling a new optimum to be established. Consider the set Ξ formed by the n vectors

The intersection of the hyperplanes of this set will yield a feasible point if that point is contained in the feasible half-space of all the other hyperplanes. Furthermore, this point will be non-degenerate if it is contained by the open half-space of the other hyperplanes.

Let
$$\underline{z}$$
 be defined by $\underline{a}, \underline{z} = b_s + \delta_s$ one $s \in T$)

$$\begin{array}{c} \underline{a}, \underline{z} = b_i \\ \underline{a}, \underline{c} Q \end{array}$$
the set \underline{z} (5.34)

For \underline{z} to be non degenerate we need to show that such \underline{z} results in $\underline{a_k z} < b_k \quad \forall \quad \underline{a_k} \notin \underline{z}$:

Let equations 5.34 be summarised as $\underline{B} \not\equiv \begin{bmatrix} \underline{b} & + \partial \\ \underline{b} & \underline{b} \\ \underline{b} & \underline{b} \end{bmatrix}$ Now $\underline{z} = B \begin{bmatrix} b & + \partial \\ \underline{b} & + \partial \\ \underline{b} & \underline{b} \end{bmatrix} \text{ and } \underline{x}^* = B \begin{bmatrix} -1 & b \\ \underline{b} & \underline{b} \\ \underline{b} & \underline{b} \end{bmatrix}$ (5.35)

From
$$\underline{a_k x^*} = b_k$$
 substitution yields $b_k = \underline{a_k B^{-1}} \begin{bmatrix} b_1 \\ b_1 \\ b_2 \end{bmatrix}$ (5.36)
Thus $\underline{a_k z} < b_k$ reduces to $\underline{a_k B^{-1}} \begin{bmatrix} b_1 \\ b_1 \\ b_2 \end{bmatrix} < \underline{a_k B^{-1}} \begin{bmatrix} b_1 \\ b_2 \\ b_1 \\ b_2 \end{bmatrix}$

Since
$$\frac{a}{-k} = \frac{\lambda}{k}B$$
; $\frac{\lambda}{-k} \neq 0$ equation 5.36 reduces to

(5.37)

$$\underline{\lambda}_{K} \mathbf{I} \begin{bmatrix} \mathbf{b}_{s} + \mathbf{\partial}_{s} \\ \underline{\mathbf{b}}_{s} \\ \underline{\mathbf{b}}_{j} \\ \underline{\mathbf{b}}_{j} \end{bmatrix} < -\underline{\lambda}_{K} \mathbf{I} \begin{bmatrix} \mathbf{b}_{s} \\ \underline{\mathbf{b}}_{s} \\ \underline{\mathbf{b}}_{j} \\ \underline{$$

This results hold only if $\lambda < 0$.

Thus the set of hyperplanes Ξ will form a feasible non-degenerate vertex if and only if $\lambda_{ks}^{<} < 0$ for all $\underline{a}_{k} \notin \Xi$.

iii. Summary

The previous analysis, using the geometry of the cones formed by the inward normals of the hyperplanes (intersecting to form the degenerate vertex) can be summarised by the matrix algebra of the LP.

Consider the simplex tableau (shown in Fig. 5.6) describing the optimum \underline{x}^* .

The basis B is constructed of all the structural variables and m-n of the slack variables: in effect the vertex is described by the first n hyperplanes. (This basis is of quite general construction since all the non-negativity constraints are included explicitly).

 $\underline{\mathbf{x}^{*}} = \underline{\mathbf{B}} \quad \underline{\mathbf{b}}$ Where the inverse of the basis takes the form $\begin{bmatrix} \underline{\mathbf{A}}^{-1} & \underline{\phi} \\ -\underline{\mathbf{W}} & \underline{\mathbf{A}} & \underline{\mathbf{I}} \end{bmatrix}$ Under Assertion 1 $W = \lambda A; \lambda \neq 0$

so that
$$\underline{\mathbf{x}}^* = (\mathbf{A}^{-1}\underline{\mathbf{b}}_{\mathbf{A}}, -\mathbf{W}\mathbf{A}^{-1}\underline{\mathbf{b}}_{\mathbf{A}} + \underline{\mathbf{b}}_{\mathbf{W}})$$
 (5.38)

becomes

becomes
$$\underline{x}^* = (A^{-1}\underline{b}_A, \underline{b}_W - \underline{\lambda} \cdot \underline{b}_A)$$

and since the slack variables are zero (- all the equations

are active)

$$-\lambda \mathbf{b}_{A} + \mathbf{b}_{U} = 0 \tag{5.39}$$

a. Perturbation of $b_s \in \frac{b_w}{W}$

$$\underline{\hat{b}}_{W} = \underline{b}_{W} + \underline{\partial}_{\cdot} \text{ where } \partial_{i} = 0 \forall i \neq s$$

$$(2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)$$

Clearly from 5.40 if $\partial_s > 0$ then the slack of hyperplane s becomes positive while all the others remain unchanged (i.e. the basis B is still feasible but degenerate). If $\partial < 0$ then the slack of hyperplane s is negative and the basis can no longer remain feasible.

b. Perturbation of $b_s \in \frac{b_A}{A}$

$$\overset{\Lambda}{\underline{b}}_{A} = \underline{b}_{A} + \frac{\partial}{-} ; \quad \overset{\partial}{i} = 0 \forall i \neq s \qquad (5.41)$$

Such perturbation will not affect the feasibility conditions of the structural variables: from Equation 5.38 $A^{-1}\underline{b}_{A}^{>0}$. Segmenting the matrix A so that all the non-negativity constraints come together:

$$A = \begin{bmatrix} A & A \\ \phi^{a} & -I^{w} \end{bmatrix}; \quad A^{-1} = \begin{bmatrix} A^{-1} & A^{-1} \\ a & w^{a} \\ \phi & -I \end{bmatrix}; \quad \underline{b}_{A} = \begin{bmatrix} \underline{b}_{a} \\ \phi \end{bmatrix}$$
(5.42)

If $b_s \in \underline{b}_a$ then $\underline{x} = A_a^{-1}\underline{b}_a$ remains strictly positive for small ∂_s while all the zero variables remain unaltered. If $b_s = 0$ then only that variable constrained by that equation is altered by such perturbation. (In the mathematical sense the perturbation may be in either direction; physical interpretation of perturbation in the direction of the outward normal for the non-negativity constrainst may be difficult!)

The basis B remains feasible (and becomes non-degenerate if $-\lambda\partial > 0$ (from 5.39) (5.43)

4.2 BEHAVIOUR OF THE DUAL PROGRAMME UNDER SMALL PERTURBATION OF b.

Similar analysis applied to the feasibility of the dual programme leads to the following theorem:

THEOREM 5.3. Under simple degeneracy perturbation of a hyperplane in the direction of the inward normal results in the associated dual variable taking its maximal value defined by the alternate dual space; perturbation in the opposite direction results in the dual variable taking its minimum, non-negative value.

Proof: The values of the dual variables may be extracted from the simplex tableau shown in Figure 5.6

$$\frac{\pi}{B} = \underline{c}_B \underline{B}^{-1} \tag{5.44}$$

Previous theory relating to the simplex algorithm has proved that the dual variables associated with equations having their slack variables in the basis take a zero value. Therefore $\underline{\pi}_{B} = (\underline{\pi}, \emptyset)$; $\underline{\pi} = \underline{c} \underline{A}^{-1}$ Now select the set of n hyperplanes \overline{A} (represented by the matrix A) such that $\overline{A} \in \mathbb{R}$, whence $\pi > 0$.

i. Let $s \in \overline{A}$ and $-\lambda_s \cdot \pi_s > 0$

Now perturbation of hyperplanes will result in the selected basis remaining optimal and becoming non-degenerate. Furthermore the vector π remains unchanged, and now becomes the unique set of feasible dual variables.

Instead perturb hyperplane \underline{r} .

a. $r \in \overline{A}$ and $-\frac{\lambda}{-r} \frac{\pi}{r} > 0$. In this event the selected basis still remains optimal, leaving π_s unchanged.

b. $r \notin \overline{A}$ or $-\lambda \pi r^{<0}$. Now one (or more) hyperplane(s) from the set \overline{A} must be replaced in order that the condition for primal feasibility be attained - i.e. pivoting must occur.

If in the course of pivoting hyperplanes is removed from the set \overline{A} its dual variable will take a value of zero (since the slack variable will enter the basis). In that event it is clear that the Theorem holds.

In the general case consider the change (pivot) of hyperplane t for hyperplane 1 with hyperplane s remaining in the basis. (This will be extended to the case when more than one row change is required in A.)

Now
$$A = (A + E)$$
 where $e_{ij} = 0 \forall i \neq 1$) ϵE
 $e_{ij} = a_{tj} - a_{1j}$) ϵE
 $a_{ij} \epsilon A \forall i < n$
 $a_{ij} \epsilon W \forall i > n$

$$\hat{A}^{-1} = (I + EA^{-1}) A^{-1} = A^{-1} (I + EA^{-1})^{-1}$$
 (5.46)

Letting
$$\alpha_{ij} \in A^{-1}$$
, and $F = EA^{-1}$

$$f_{ij} = 0 \forall i \neq 1)) (5.47)$$

$$f_{1j} = \sum_{k=1}^{n} (a_{tk} - a_{1k}) \alpha_{kj}) \in F)$$

$$= \sum_{k=1}^{n} a_{tk} \alpha_{kj} - \beta_{ij} \text{ where } \beta_{ij} = 0 \forall i \neq j)$$

$$\beta_{ii} = 1)$$

Under Assertion 1 $a_{t1} = \sum_{i \in \overline{A}}^{\Sigma_{\lambda}} ti^{a}i1; \quad \lambda_{ti} \neq 0$ Substituting into 5.47

$$f_{ij} = \sum_{i \ ti} \lambda_{ti} \sum_{k} a_{1k} \alpha_{kj} - \beta_{ij}$$
(5.48)
$$= \lambda_{ti} - \beta_{ij}$$

Letting G = (I+EA⁻¹)
$$g_{ij} = \beta_{ij} \forall i \neq 1$$
)
$$g_{ij} = \lambda_{tj}$$
) $\in G$ (5.49)

In general Equation 5.49 can be extended to include more than one (say q) change(s). G can then be partitioned

$$G = \begin{bmatrix} \frac{\lambda}{1} \end{bmatrix}$$
 where I is the n-q unit matrix

To ease invertion of G further partion the matrix λ_{\perp} into a qxq matrix $\lambda_{\perp Q}$ and a qx(n-q) matrix λ_{R} . Then

Returning to Equation 5.43 perturbation will result in the dual variables taking new values:

$$\frac{\dot{\pi}}{\underline{\pi}} = \underline{c}A^{-1} = \underline{c}A^{-1}G^{-1} = \underline{\pi}G^{-1}$$

$$\frac{\dot{\pi}}{\underline{\pi}}_{Q} = \underline{\pi}_{Q}\underline{\lambda}_{Q}^{-1}$$
are the 'values' of the newly introduced hyperplanes. (5.50)

($\underline{\pi}_Q$ refer to the old, now removed, variables). Note that $\begin{array}{c} \frac{\lambda}{\pi}_Q > 0 \text{ ensures dual feasibility.}\\ \frac{\lambda}{\pi}_R = -\pi \lambda \lambda \lambda^{-1} + \pi R\\ -R = -\pi Q - R - Q + -R \end{array}$

$$\hat{\pi} = - \pi \lambda + \pi$$

$$-R - Q - R + -R$$
(5.51)

are the values of the dual variables of the hyperplanes, remaining in the basis. Since hyperplane s remains in the basis

$$\hat{\pi}_{s} = \pi_{s} - \sum_{i \in Q} \pi_{Qi} \lambda_{is}$$

The assumption made at the beginning of this section (4.2.i) of the proof (on page) needs amplification: a. Hyperplane s is perturbed in the direction of the inward

normal i.e. $\frac{\partial}{s} < 0$ requiring $\frac{\lambda}{-s} > 0$.

In that event $\hat{\pi} < \pi$ when any other resource r is perturbed. -s -s b. Hyperplane s is perturbed in the direction of the outward normal i.e. $\frac{\partial}{s} > 0$ requiring $\frac{\lambda}{-s} < 0$.

In that event $\frac{\Lambda}{\pi} > \pi$ when any other resource is perturbed.

<u>ii. s ∉ A</u>.

This can only apply for $s \notin T$ (since $\overline{A} \in R$) and is deemed to apply for all such hyperplanes. Furthermore such a basis can only remain feasible under perturbation in the direction of the outward normal (see Section 4.1.iii.a on page). In that event resource s becomes non-binding with the result that the associated dual remains at zero.

5. CONCLUSION

We have shown that degeneracy can be defined by over definition of the primal vertex. This results in the dual programme having alternate solutions (while maintaining the strong duality condition) that are not confined by non-negativity constraints.

Under conditions pertaining to 'simple' degeneracy small perterbation of any of the defining hyperplanes in the direction of the inward normal will always resolve the degeneracy by defining a new optimal vertex. Perturbation in the opposite direction leaves the originally optimal vertex feasible and, unless the hyperplane moved belongs to a special identifiable set, optimal. Perturbation of hyperplanes that are members of this special set results in a new, non-degenerate optimum. The dual 'space' (over which the dual vector is free ranging) collapses to a single point when degeneracy is resolved. For perturbation of hyperplane s in the direction of its inward normal the dual solution point-vector is characterised by the s'th dual variable having its maximum value (over the 'space'); for perturbation in the direction of the outward normal the s'th variable takes its minimal, non-zero, value.

- 5 - 156 -

CHAPTER 6

INTERPRETATION OF LP SOLUTIONS

1. Introduction

Having shown the underlying geometry of alternative and degenerate solutions, and their behaviour under small pertubations, we now discuss the economic interpretation that can be read into such solutions.*

Dealing first with alternate solutions we show how these may be resolved, and how such resolution can introduce new and important measurement to the valuation process.

Degenerate solutions are shown to be economically desirable, and would appear to have an attraction for valuation procedures. However the existence of the alternate dual space causes insurmountable problems by denying the valuation process the ability to divulge information to the user of the accounts.

2. Alternate Solutions

We have shown in Chapter 4 that alternate solutions arise when the objective function can be expressed by a positive linear combination of less than n intersecting hyperplanes that form 'the' optimal vertex in Eⁿ. In fact, any point on the face of the primal polytope formed by these intersecting hyperplanes will be optimal and these hyperplanes represent the sole constraints that restrict the programme.

* Some of the material in this chapter was first presented to the Operations Research Society Annual Conference in October 1974. (See Appendix E.1).

The simplex search procedure always moves from vertex to vertex of the primal feasible space in search of the optimum. The only way to determine whether the optimal solution is a member of the set of alternate solutions is by inspection of the dual. If the optimal vertex is non-degenerate then those tight constraints that do not in actual fact restrict the solution will have duals of zero (since marginal alteration in the availability of that resource will not affect the objective function achievement). In this manner a number of basic dual variables are zero resulting in alternate primal problems . being dual degenerate (118). (If the optimal solution selected by the simplex algorithm is primal-alternate-degenerate, then simple inspection of the dual programme may not identify the alternate-hyperplanes because the dual solution is itself alternate - we describe a procedure for overcoming such problems in Appendix D.2).

2.1 Physical Interpretaion of the Primal-Alternate Solution

The existence of alternate optima presents the decision maker with an infinity of possible optimal solutions. Given this choice, at which point should he choose to operate? No definative answer can be given to this question, but in general it is clear that some other guidelines must be used to assist the decision.

(i) Secondary Objectives

The manager might be in a position to define a secondary objective that he would wish to pursue, given

that he achieved a maximal performance of his primary objective. While it is theoretically possible that this second optimization procedure would also result in alternate solutions, allowing the pursuit of tertiary objectives (and more), it is unlikely that a large number of objectives can be dealt with in practice in this manner. The procedure of ranking objectives and optimixing the programme with respect to each in turn is termed Optimization in Tandem (see Chapter 1.3.3.2.i.).

(ii) Utility Functions

The manager may chose to impose some utility function of his own. These, in general, will attempt to reflect 'qualitative' aspects relating to the variables under his control For example, he may prefer a solution with a smooth cashflow profile; with a growing profit profile; with even shop-loading; etc.

(iii) Stability

A possible requirement may be that the desired solution be stable. In other words, the search is for a solution that can allow for some (maximal) degree of alteration in the availability of the resources without the necessity of changing one's operating plan, thereby avoiding the commotion invariably linked with such a change. Refering back to Fig 4.3 we see that change in availability of resource 1 will necessitate a change in the operating plan from A to A', and that the new

- 6 - 159 -

plan still yields the same objective function value. No account is taken of the disruption caused by the move from A to A'. Only changes in availability of resource 2 will actually affect the attainment of the objective.

One can extend the desire for stability to include the restrictive resource too if the manager can stipulate some percentage of attainment that he would be prepared to sacrifice to this end - i.e. revert from an optimiser to a satisficer.

The stability requirement is encompassed into the programme as follows. Consider the normalised hyperplane

$$\frac{a}{|a|} \frac{x}{|a|} = \frac{b}{|a|}$$
(6.1)

 $\frac{b}{a}$ is the distance of the hyperplane from the origin, and a is the unit normal to the hyperplane. The distance of any point <u>y</u> to this hyperplane is found by substituting the point into the normalised equation:

distance
$$\lambda = \begin{vmatrix} \underline{b} & -\underline{a} & \underline{y} \\ |\underline{a}| & |\underline{a}| \end{vmatrix}$$
 (6.2)

In a linear programme each constraint divides the linear space into a feasible closed half-space and an infeasible half-space. With the inward normal pointing into the feasible half-space, and if λ is constrained to be positive then Equation 6.2 can be written omitting the modulus sign. This enablesus to write the problem of maximising stability as a new linear programme.

- 6 - 161 -

To maximise stability, while maintaining optimal objective function attainment, maximise the minimum distance from all non-vital constraints of the original programme.

max
$$\lambda$$

s.t. $\frac{b}{a^{i}} - \frac{a}{a} \ge \lambda \quad \forall i \text{ "non-vital"}$ (6.3)
i.e. $\pi_{i}^{*} = 0$
 $\lambda \ge 0$
c $\underline{x} = z^{*}$

A more general formulation would extend the desire of stability to all constraints, while ensuring that some given proportion of the optimal objective function value is achieved. Furthermore, stability should be measured in terms of some percentage of the resource availability allowing all constraints to be treated in a comparable manner. This is done by weighting the distance by the amount of resource $\frac{b}{a}$. The resulting programme is:

> Max λ s.t. $b_i - \underline{a.x} \ge \lambda b_i \quad \forall i$ (6.4) $\underline{x}, \lambda \ge 0$ $c x = z^*$

Equation 6.4 places equal weight on the stability on each constraint. It may be possible for the various parties concerned with the company's affairs to negotiate an uneven weighting that would place a greater requirement for a stable solution on the availability of some resources (e.g. availability of capital) then others (e.g. availability of man-power). The examples (based on a simplified version of the Corporate Mode described in Chapter 1) used hereafter will have selected amongst the alternate solutions in order to ensure a maximally stable solution.

2.2 Implications of a Selected Solution on the Valuation of the Assets

Clearly, whichever solution is finally accepted to be implemented, certain resources will not be used to their full capacity. In effect the company is overstocked with certain resources, and this it is prepared to accept in order to be able to operate the chosen plan - a hedge against uncertainty.

Whether this is an explicit acceptance or not - even when the situation is unavoidable (due to the necessity of purchasing assets in block amounts) - is irrelevant. The fact remains that the company has an overabundance of assets paid for but not being used.

We propose that this situation ought to be reflected in the accounts by reference to the difference between the value (to the company pursuing its chosen plan) of that <u>portion</u> of the assets that <u>are</u> fully utilised, and some external reference value of the stock of assets available to the company.

It would appear reasonable to use Realisable Value (since the excess resource availability could always be sold!) as a measure of valuation that can be ascertained by reference to the environment in which the company operates. Reference to such an external, objective basis for valuation would surely find

*The introduction of such economic inefficiencies has a price and we propose a method to value this 'overcapacity'. - 6 - 162 -

favour with the accountants! To find the value of the assets in the context in which they will be used, our proposal is that the programme be rerun with just the required availability of assets present, and the value of the selected plan attributed via the dual LP. The programme so constructed is totally degenerate, and the interpretaion of such a programme is discussed in the following section.

The difference between the value of the assets in use, and the assets as stock could be reflected as "Holding Value" of the assets, and form the type of entry as Goodwill in the Balance Sheet. This value clearlycannot constitute a part of the Goodwill of the business since that is attributable to the company as a whole (see Chapter 3.4.3) whereas the Holding Value is identifiable with each asset. We feel that this information will be useful to readers of the accounts.

3. Degenerate Solutions

We have mentioned previously that the solutions to Corporate LP models (as described in Chapter 1 and 2) are almost invariably degenerate. In Chapter 5 we have shown that degenerate primal solutions result in alternate dual solutions. This would appear to add to the problems of using the dual LP as a means to value the assets of the company that were discussed in Chapter 3.5.2. Before proceeding with a discussion of the economic interpretation of the optimal alternate dual solution, we shall inspect the desirability of degenerate primal solutions.

- 6 - 163

In two papers (65) and (76) GAL & HABR brought the desirable attributes of degenerate solutions to the attentions of LP modellers who were accustomed to viewing degeneracy disfavourably. The desirable attribute of a system that results in degenerate

solutions is that it represents a more perfect economic system. in that there is less wastage than would be encountered in a non-degenerate system.

The production process is built up by the joint acquisition of resources of different types, each of which plays a vital role: vital in the sense that the absence of any particular resource would bring a halt to the process of production. In general, however, acquisition is achieved by purchasing the resources in different block sizes with the result that capacity is not equal throughout the production process. Rather, particular 'bottlenecks' can be identified. Furthermore, the easing of that bottleneck by the acquisition of more of the offending asset results in the bottleneck moving to some different function (and in general, only some portion of the newly acquired asset is used - the remaining capacity is unutilised owing to the existance of this new bottleneck).

Degenerate solutions are tight in more constraints than are required by the geometry of the problem. The resulting system is at capacity equilibrium in more than the 'normal' number of resources with the corollary that there is less slack capacity being under-utilised. The perfect economic system is the wholly degenerate system where assets are present just to the extent that is required - a system with no waste!

It must be accepted that the price paid for such perfection

is that the system is more vulnerable to changes in availability of resource. With over-availability (i.e. the presence of more resource capacity than originally conceived) the solution will remain acceptable (with the possibility that a better goal attainment might be available if a change in solution were undertaken). On the other hand, under-availability of <u>any</u> resource (rather than the fewer tight constraints found in non-degenerate solutions) render the solution infeasible and require a change in the planned activity. This 'perfect' solution is totally inflexible: it applies to a single product mix and a given set of costs and prices.

3.2 Desirability of Degeneracy for Valuation Using the Dual.

The application of the information that can be derived from the dual LP for the purposes of valuation has been described in Chapter 3.5.2. A major obstacle to the widespread application of this method of valuation arises from the inherent foundation of marginal costing on which LP is based.

A marginal evaluation scheme views the contribution that resources advance to the attainment of any stated goal (or goals) for the enterprise as whole. This contribution is valued at the margin - ie. the valuation is based on the amount by which the last (or next) unit of resource has increased the achievement of that goal. As a result resources with spare capacity have a marginal value of zero.

The problem of convincing management (and accountants) that the ownership of fully paid up assets (even though they may not be fully utilised!) have a zero value is extremely difficult! Indeed there is a paradox contained by this view (first propounded

- 6 - 106 -

by WRIGHT (149): consider a particular asset - say stock - which is available in greater quantity than required. Accordingly its value is zero. But if the excess amount alone were to be lost then the remaining quantity (of stock) would have a value since the programme is now restricted by this condition!

Since a primal-degenerate solution is tighter in more than the 'normally required' number of constraints, the value of the company's goal attainment can be spread over a larger set of the the company's constituent resources.

3.3 Proposed Valuation Procedure

Our intention was to provide a facilityfor allocating the value of the firm over all the constituent resources by means of the dual LP.

Such a procedure would be to solve the corporate model (described in Chapters 1 and 2); to include any other subjective criteria to resolve the alternate solutions (we have used the desire for maximum stability); to restate the problem with resources allocated such that the solution would be attained without slacks, and to re-solve the resulting totally degenerate problem. In this way, the value of the firm can be allocated over all the constituent inputs (with the Holding Value ascribed to the difference between this value and some measure of value made with reference to the external environment, such as the Realisable Value if that is applicable.).

Such a valuation process would overcome many of the problems associated with other techniques (discussed in Chapter 3.3.3):

- Consistent valuation is achieved over all the modelled resources (e.g. including labour) thereby resolving the problems of additivity.
- Rather than build up the value of the company as a whole by the sum of values of the individual resources, this procedure allocates the value of the firm over the constituent resources. The value so attributed is the average value for the given amount of resource available in the programme and calculated in a given combination with the other resources. This is particularly relevant for such resources as stock.
- By choosing an interior point of the alternate dual space non-zero value may be attributed to all the resources.
- Valuation of assets in the context of their use to the company obviates the need for depreciation for any purpose other than as a 'charge' to profit made in order to build up a fund with which to replace assets worked out in service.
- The valuation is undertaken recognising the particular goals pursued by the company.

However the existence of the alternate dual-space results in two problems that must be resolved before the proposed procedure can be considered viable:

(i) Dual Variables Exist as a Vector

We have shown that the alternate dual space collapses to

- 6 - 167
a point on the resolution of primal-degeneracy. We have linked the previouslynoted two-sided nature of the dual variable to changes in availability of that particular resource. However, the analysis makes no statement about the behaviour of other dual variables under such perturbation. Clearly, reduction in availability in resource s (resulting in π_s taking its maximum value) need not require that π_r (for any resource r) be at any particular value.

This results in the requirement that the dual variables always be treated as a cohesive set. It is wrong to use a value of π_s relating to the last unit of resource s availability, together with a similar value for π_r if both these values do not appear together as elements in a dual vector!

(ii) Explanation of the Difference between Alternate Dual Vectors

An interpretation of the difference between alternate dual vector remains an unsolved problem. We do not understand the basis for the difference between dual vectors, nor the meaning of negative variables.

It may be thought that resolution of the choice of a dual vector may be effected in a similar manner to the resolution of the alternate primal solutions. In other words, select a dual vector that

allocates positive values to all the resources
 (if possible)

- 6 - 168 -

- 6 - 169 -

- results in the balance sheet showing a steadily increasing profit
- debt/equity ratios shown in the accounts remain with certain bounds etc.

It has proved possible to draw up a large number of balance sheets by selecting different dual vectors, and this is shown in Appendix D. Thisresults in the possibility that the company can construct different balance sheets for presentation to different interested parties. In constructing a balance sheet for presentation to shareholders the directors may feel that they would like to show large investment in resources, and steadily increasing profits with no running down of the assets. For presentation to the labour force, management may wish to show a declining profit with an increasing committment to the labour resource. Government may be shown a steadily increasing working capital requirement with increasing depreciation against a background of declining profits.

All of these different presentations of the companies affairs may be drawn by appropriate selection of dual vectors from the alternate space. Yet <u>all</u> the different representations are derived from the <u>same</u> underlying physical solution.

It may at first appear that the different balance sheets take account of and reflect the different views adopted by the interested parties in the company's affairs. This is not so. Each valuation is made on the basis of value to the company (as a going concern): management now has the opportunity to present its affairs to outsiders in numerous different ways.

This brings up a basic question: does the use of the dual vector to 'price' the inputs actually impute value to the assets under conditions of degeneracy? Our previous understanding of the dual was that it represents the marginal value to the programme as a whole, of the last (or next) unit of the associated resource. Given a linear system , we can attribute this value to the entire availability of the resource, although we know that the range over which the dual is valid is more limited.

However, the dual in a degenerate problem occurs at a point of discontinuity. In effect $\frac{\partial z}{\partial b_i}^*$ does not exist. What we have is an average value that may not be linked in any way to the effect on the programme of change in availability of the resource in question. The dual vector represents an allocation of value of the whole over the constituent inputs. But it is not unique. By analogy given a value V to be allocated over inputs a and b then

$$V = V_a + V_b \tag{6.5}$$

does not define unique values to V or V .

Selection of dual vectors from the alternate dual space implies a particular allocation of the objective function

- 6 - 170 -

- 6 - 171 -

value over the resources. Different vectors result in different allocations, each of which is consistent. However, attempting to derive information from such an allocation is futile. In our example (Equation 6.5) there would be no basis for any interpretation of what to do about resource a were a particular allocation to give a high value V.

This result, deriving from the fundemental existence of jointness, should also make us look more closely at our interpretation of the dual for non-degenerate problems. The allocation of value by the dual has been shown to have drawbacks since the value is valid over a limited range and it invariably allocates zero value to resources with slack. The fact that this allocation is based on a valid marginal valuation approach should not prevent realisation that other allocations of value may be as valid, and that allocation by the dual LP may not be useful for application to balance sheet construction.

4. Conclusion

We have shown that alternate-primal solutions may be resolved by imposing other goals on the problem. These may be sejondary objectives; subjective selection based on 'quality' factors (such as even work-loading; smooth buildup of certain financial measures, etc) or on a desire for a solution that will remain feasible under variation in availability of the resources.

Realisation that the company holds an overabundance of assets in order that it may operate at its close solution has led us to suggest that the difference between some value ascribed by reference to the external environment, such as Realisable Value, and the value to the company of that amount of asset in actual use, should be included in the balance sheet as a Holding Value.

We have suggested that in order to find the value to the company of assets in use in the business, the problem be restated as a totally degenerate problem and that the dual LP be used to give an allocation of value of the overall objective function attainment to the constituent inputs. A totally degenerate system has the attractive attribute that firstly it represents a economically desirable system since there are no slacks (no wastage), that secondly by appropriate selection of a dual vector from the alternate dual space, non-zero value may be attributed to all the inputs.

However, we have found that the different valuations resulting from selection of different dual vectors, while being equally valid, are arbitrary allocations and do not allow the user the ability to put an interpretation on the results and thereby gain an understanding of the underlying factors affecting the results. The different valuations that may be constructed <u>all</u> represent the <u>same physical solution</u>. This result has led us to question the validity of using the dual LP (for both degenerate and non-degenerate problems) for the valuation process.

CHAPTER 7

CONCLUSIONS

Our objectives in this thesis were two-fold. First we set out to test a model formulation representing a company's short-term activities. Our intention was then to extend this formulation to the medium-term to encompass the capital investment under capital rationing problem. Our second objective was to investigate the application of the dual LP for valuation in constructing balance sheets for the company.

In Chapters 1 and 2 we have put forward a LP formulation that models the company's affairs in sufficient detail to be of use to management in budget preperation and planning. We have maintained this approach (of directly modelling the flows of cash and physical goods) in extending the model to the medium term. Encorporating capital expenditure in terms of projects that result in changes to the physical structure of the company overcomes two problems: the problem of linking financial returns to the project and the problem of relating the discount rate to the opportunity value of money (given by the dual LP) encountered by classical capital budgeting formulations.

We managed to test the short-term model in a 'field' application to a certain degree but data collection difficulties resulted in the final test on the entire company, having to be cancelled. There was no opportunity to test the medium term model, nor to consider the effect on the model of different objective functions. Use of the dual LP for valuation has been proposed as a means of overcoming some of the problems recognised to pertain to currently accepted accounting conventions. The attributes of the LP approach are that

- it overcomes the problem of modular valuation. Since
 the LP takes an overview of the company as a whole, the
 value of the company is not built up as the sum of
 values attributed to the comparent units in isolation;
 rather the value to each unit arises from the contribution
 that the resources plays in attaining the value of the
 whole company.
- units of resource are valued as part of a company as a going concern. This is a view recognised by accountants being the ideal but which has proved immensely difficult to compute.

However, use of the dual LP has been limited since the dual 'evaluator' is recognised to hold only over the range of the associated basis. While this in no way detracts from the information about the marginal value of increasing (or decreasing) the availability of a particular resource, it has proved to severely limit the application of the dual for valuation purposes.

It has been argued that since the system is linear, (resulting in marginal values being equal to average values) one could use the dual variable as an average evaluator - the value of resource i being $\pi_i^* b_i$. Unfortunately, a marginal valuation process results in resources not being used to their full availability being valued at zero and this has been a difficult concept to include in balance sheet preparation:

To take account of the limited range of validity of the dual variable, and to overcome the problem of zero valuation for some resources it has been suggested that the resource availability be segmented, and each portion be valued at its corresponding marginal value. It has been shown that such a process is unsatisfactory since it results in the sum of such values being much greater that the value of the company as a whole (except for a company that has only one resource). We have shown, further, that such a procedure is likely to be incorrect.

In investigating the possible application of the dual LP for valuation purposes we have noted that corporate models (of the type formulated earlier) often yield alternate and/or degenerate solutions. We have shown in Chapters 4 and 5 how these solutions arise in terms of the geometry of the problem. This has led us to conclude that the KUHN-TUCKER necessary condition for optimality - that the dual variables be non-negative - does not apply to degenerate solutions. Furthermore we have shown that primal degenerate colutions are dual alternate (and vice versa).

Our proposed valuation procedure was to run the corporate model, to resolve the existance of alternate solutions (if they arise) by resorting to some secondary objective and to rerun the model with revised resource availability so that the new "optimal" solution can be attained but without any slack. The revised, totallydegenerate, problem appears to have a number of advantages:

- 7 - 175 -

- (i) it allows the slack of the original ('real') problem to be valued, and this value - termed Holding Value - to be included in the balance sheet. This will show the extent to which the company is prepared to overstock itself with certain assets in order that it can operate at its chosen solution.
- (ii) the totally degenerate system is the ideal deterministic economic system since there are no unused resources. (The price paid is that it is an inflexible system!)
- (iii) since there are no slacks, the dual LP can attribute an average value to all the resources.

However the implications of the alternate dual space that exists at primal degenerate solutions are:

- 1. The dual variable must be considered as an element of a set of values. It is <u>incorrect</u> to pick a dual variable to value a certain resource (say π_i) with another dual variable for a different resource (π_i) unless they are both elements of the same set ($\pi_i, \pi_i \in \underline{\pi}$).
- 2. The infinity of different sets of dual variables enables us to construct different balance sheets that <u>all</u> purport to reflect the <u>same</u> physical solution. The resulting loss of information to the user of the accounts renders our proposed valuation process invalid.

Our conclusion is that the dual LP cannot provide a tool to break down the problem of valuing joint components - any consistent allocation of values is valid, but arbitrary.

REFERENCES

- ADELSON R.M. 1970. "Discounted Cash Flow Can We Discount it?" Jrn. of Business Finance. Vol 2 No. 2 p50.
- 2. AMEY L.R. & 1973. "Management Accounting: a conceptual EGGINTON D.A. approach" Longman Group Ltd.
- 3. AMEY L.R. & 1973. "Capital Budgeting under Rationing: WHITMORE G.A. Comments of the LUSZTIG and SCHWAB Procedure" Jrn. of Financial & Quantitative Analysis. Jan. p127.
- 4. ANSOFF H.I. 1967. "A Quasi-analytic Method for Long-Range Planning" Organizational Decision Making (eds. ALEXIS M & WILSON C) Prentice-Hall. p427.
- 5. " 1968. "Corporate Strategy" Penquin Books.
- 6. ARGENTI J. 1974. "Systematic Corporate Planning" Nelson.
- 7. ARNETT H.E. 1961. "What Does 'Objectivity' Mean to Accountants" Jrn. of Accountancy. May p63 (Reprinted p178 (18)).
- 8. BARRETT M.E. 1973. "Proposed Bases for Asset Valuation" Financial Executive. Jan p12.
- 9. BATT C.D. & 1974. "Some Tentative Findings on Corporate Financial GRINYER P.H. Simulation Models" O.R.Q. Vol 25 No. 1 p149.
- 10. BAUMOL W.J. & 1967. "Error Produced by Linearization in Mathematical BUSHNELL R.C. Programming" Econometrica. Vol 35 No. 3-4 p447.

- 11. BAUMOL W.J. & 1965. "Investment and Discount Rates under QUANDT R.E. Capital Rationing - A Programming Approach" The Economic Jrn. June p317.
- 12. BAXTER W.T. & 1962. "Studies in Accounting Theory" Sweet and DAVIDSON S. (Eds) Maxwell Ltd.
- 13 BEALE E.M.L. 1968. "Mathematical Programming in Practice" Topics in Operations Research. Pitman & Son
- 14 " 1974. "Some Uses of Mathematical Programming Systems to Solve Problems that are Not Linear" read to the Operations Research Society Conference.
- 15. BEDFORD N.M. & 1961. "The Emerging Theoretical Structure of DOPUCH N. Accounting" Business Topics. Michigan State Univ. (Reprinted p64 (18)).
- 16. BEER K. 1972. "An Investigation into Aspects of Manpower Planning Using a Corporate Planning Model" MSc thesis. Dept. Management Science, Imperial College.
- 17. BENNETT J.W., "Firm: A Computer Model for Financial Planning" (CARSBERG B.) DEAN R.J., & Report for Research Committee of the Institute of LEATHER J. Chartered Accountants.
- 18. BERG K.B. & 1966. "Readings in Accounting Theory" Houghton GARNER P. (Eds) Mifflin Co.

- 19. BERNARD R.H. 1969. "Mathematical Programming Models For Capital Budgeting - A Survey, Generalization, and Critique" Jrn. of Finance and Quantitative Analysis, plll.
- 20. " 1968. "Some Problems in Applying Mathematical Programming to Opportunity Costing" Jrn. of Accounting Research. Spring, p143.
- 21. BIERMAN H. 1967. "Inventory Valuation: The Use of Market Prices" The Accounting Review. Oct p731.
- 22. BILKEY W.J. 1973. "Empirical Evidence Regarding Business Goals" Multiple Criteria Decision Making. Univ. of South Carolina Press.
- 23. BIRD P. 1973. "Accountability: Standards in Financial Reporting" Accountancy Age Books. Haymarket Publishing Ltd.
- 24. BOWKER P.D. 1972. "Development of a Model for Corporate Planning using Linear Programming" MSc thesis. Dept. Management Science, Imperial College
- 25. BULL R.J. 1972. "Accounting in Business" Butterworths.
- 26. BURTON J.C. 1968. "Corporate Financial Reporting: Conflicts and Challenges: A Symposium" American Institute of Certified Public Accountants Inc.
- 27. " 1971. "Corporate Financial Reporting: Ethical and Other Problems: A Symposium" A.I.C.P.A.

- 181 -

28. BURTON R.M. & 1974. "On the Existence of a Coat of Capital DAMON W.W. Under Pure Capital Rationing" Jrn. of Finance. Vol 24 No. 4 pl165.

- 29. CARLETON W.T. 1969. "Linear Programming and Capital Budgeting Models: A New Interpretation" Jrn. of Finance. Vol 24 No. 5 p825.
- 30. CARLETON W.T. & 1966. "A Theory of Financial Analysis" LERNER E.H. Harcourt, Brace & World Inc.
- 31. CARSBERG B. 1969. "On the L.P. Approach to Asset Valuation" Jrn. of Accounting Research. Autumn, p165.
- 32. " -, 1974. "The Objectives of Published Accounting HOPE A. & SCAPENS R.W. Reports" Accounting and Business Review. Vol 5 No. 15 pl62.
- 33. CATLETT G.R. & 1968. 'Accounting for Goodwill" American Institute OLSON N.O. of Certified Public Accountants.
- 34. CHAMBERS R.J. 1966. "Accounting, Evaluation and Economic Behaviour" Prentice-Hall Inc.
- 35. " 1969. "Accounting, Finance and Management" Butterworths.
- 36. CHAMBERS D. 1967. "Programming the Allocation of Funds Subject to Restrictions on Reported Results" O.R.Q. Vol 18 No. 4 p407.

- 38. " & 1961. "Management Models and Industrial COOPER W.W. Applications of Linear Programming" Vol 1 & 2 Wiley & Sons.
- 39. " & " 1962. "System Evaluation & Repricing Theorem" Management Science. Vol 9 p33.
- 40. " & " 1962. "Programming with Linear Fractional Functionals" Naval Research Logistics Quarterly. Vol 19 No. 3-4 p181.
- 41. " & " 1975. "Goal Programming and Constrained Regression -A Comment "OMEGA. Vol 3 No. 4 p403.
- 42. " , " & 1963. "Breakdown Budgeting and Programming to IJIRI Y.
 Goals" Jrn. of Accounting Research. Vol 1 No. 1.
- 43. CHATFIELD M. (Ed) 1968. "Contemporary Studies in the Evolution of Accounting Thought" Dickenson Publishing Company, Inc.
- 44. G.L. CURRY & 1971. "Classical Derivation of the Necessary TAHA H.A.
 Sufficient Conditions for Optimal Linear Programmes." JORSA. Vol 19 No. 4 July-August p1045.

45. - " - & - " - 1973. " Rejoinder" JORSA. Vol 21 No. 5 p372.

46. DANTZIG G.B. 1963. "LP & Extensions" Princeton Univ. Press.

- 182 -

- 47. DENNING B.W. (Ed) 1971. "Corporate Planning Selected Concepts" McGraw Hill.
- 48. DORFEMAN R, 1958. "LP and Economic Analysis" McGraw Hill. SAMUELSON P.A. & SOLOW R.M.
- 49. EDEY H.C.
 49. EDEY H.C.
 49. EDEY H.C.
 49. Business Budgets and Accounts" Hutchinson
 & Co. (Publishers) Ltd.
- 50. " 1970-71. "The Nature of Profit" Accounting and Business Review. p50.
- 51. EILON A. & 1974. "Note on 'Many-Sided Shadow Prices'" OMEGA FLAVELL R.B. Vol 2 No. 6 p821.
- 51.A " , " & 1974. "Valuation of Resources" Read to the Operations SALKIN G.R. Research Society Anual Conference.
- 52. EILON S. 1969. "Multi-product Scheduling in a Chemical Plant" Management Science. Vol 15 No. 6 pB-267.
- 53. " 1971. "Management Control" Macmillan.
- 54. " 1972. "Goals and Constraints in Decision-Making" O.R.Q. Vol 23 No. 1 p3.
- 55. " & 1972. "Applications of Management Science FOWKES T.R. (Eds) in Banking and Finance" Gower Press.
- 56. EITEMAN D.S. 1971. "Critical Problems in Accounting for Goodwill" Jrn. of Accountancy. March p46.

- 183 -

- 57. ELTON E.J. 1970. "Capital Rationing and Discount Rates" Jrn. of Finance. Vol 25 p573.
- 58. FAMA E.F. "Efficient Capital Markets: A Review of Theory and Empirical Work" Jrn. of Finance. p383.
- 59. FAIRHURST J.H. 1972. "A Case Study on the Measurement of Rate of Return on Investment in Join Products: The Problem of M Products Made out of N Components on F Facilities" O.R.Q. Vol 23 No. 4 p459.
- 60. FENCHEL W. 1953. "Convex Cones, Sets, and Functions" Notes by BLACKETT D.W. from lectures given in 1951.
- 61. FLAVELL R.B. 1972. "Mathematical Programming and the Robustness of Solutions to Sequential Investment Problems" PhD thesis. Dept. Management Science, Imperial College.
- 62. " 1975. "Information Ranking in Linear Programmes" OMEGA. Vol 3 No. 3 p355.
- 63. FORREST J.J.H, 1974. "Practical Solution of Large Mixed Integer HIRST J.P.H. & TOMLIN J.A. Programming Problems with Umpire" Management Science. Vol 20 No. 5p 736.
- 64. FLAMHOLTZ E. 1972. "Towards a Theory of Human Resource in Formal Organisations" The Accounting Review. Vol XLVII, No. 4 (Oct) p666.

~

- 184 -

- 65. GAL T. & HABR J. 1968. "A Contribution to the Linear System Programming Economics Mathematical View on the Problems of Degeneracy" Economiko - matematicky Obzor. Vol 4 No. 3 p320.
- 66. GAMBLING T.E. 1965. "Some Observations on Breakeven Budgeting and Programming to Goals" Accounting Research. Vol 3 No. 1 p159.
- 67. GERSHIEFSKI G.W. 1970. "Corporate Models the State of the Art" Management Science. Vol 16 No. 6.
- 68. GILES W.J. & 1972. "Human Asset Accounting" Institute of Personnel ROBINSON D.F. Management and Institute of Cost & Management Accountants.
- 69. GOLD B. 1971. "Explorations in Managerial Economics" Studies in Management. Macmillan.
- 70 GOLDSBY D.J. 1971. "Installation of a Financial Corporate Planning Model Using Linear Programming" MSc thesis. Dept. Management Science, Imperial College.
- 71. GOODMAN D.A. 1974. "A Goal Programming Approach to Aggregate Planning of Production and Work Force" Management Science. Vol 20 No. 12 p1569.
- 72. GRINOLD R.C. 1971. "Infinite Horizon Programs" Management Science. Vol 18 No. 3 p157.

- 185 -

- 73. GRINYER J.R. & 1972. "Valuation and Meaningful Accounts" Accounting LEWIS R.W. and Business Research. Vol 18 p275.
- 74. GRINYER P. & 1975. "Corporate Models Today: A New Tool for WOOLER J. Financial Management" Institute of Chartered Accountants
- 75. GYNTHER R.S. 1969. "Some 'Conceptualizing' on Goodwill" The Accounting Review. Vol XLIV No. 2 p247.
- 76. HABR J.
 1966. "A Contribution to Systems Analysis"
 Czechoslovak Economic Papers Statistika a Demogratic
 Vol 5 pl45.

77. HADLEY G. 1961. "Linear Algebra" Addison - Wesley Pub. Co.

- 78. " 1962. "Linear Programming" Addison Wesley Pub. Co.
- 79. " 1964. "Non Linear Programming" Addison Wesley Pub. Co.
- 80 HAMPTON D.R. 1973. "The Planning Motivation Dilemma" Business Horizons. Vol 16 June p79.
- 81. HAWKINS D.F. 1963. "The Development of Modern Financial Reporting Practices Among American Manufacturing Corporations" The Business History Review. Vol 37 (Autumn) p135 (Reprinted p247 (43)).

82. HENDRIKSEN E.S. 1965. "Accounting Theory" Richard D. Irwin Inc.

- 186 -

- 83. HIRSHLEIFER J. 1958. "On the Theory of Optimal Investment Decision" Jrn. of Political Economy. Vol 64 p329.
- 84. HOPKINS D.S.P. 1971. "Infinite-Horizon Optimality in an Equipment Replacement and Capacity Expansion Model" Management Science. Vol 18 No. 3 p145.
- 85. HORNGREEN C.T. 1965. "Accounting For Management Control: An Introduction" Prentice-Hall.
- 86. HUSBAND G.R. 1954. "The Entity Concept in Accounting" The Accounting Review. Oct p552 (Reprinted pllo (18)).
- 87. I.C.M.A. 1961. "A Report on Marginal Costing" The Institute of Cost and Management Accountants.
- 88. IJIRI Y. 1965. "Management Goals and Accounting for Control" North-Holland Publishing Co.
- 89. LEVY F.K. & 1963. "A Linear Programming Model for Budgeting LYON R.C.
 & Financial Planning" Jrn. of Accounting Research.
 Vol 1 No. 1 p198.
- 90. JAMBHEKAR R.E. & 1968. "Optimal Product-Mix: A Case Study" SAHU K.C. Opsearch. Vol 5 No. 1 p27.
- 91. JEYNES J.P. 1973. "The Use of Linear Programming in Stock Valuation" MSc thesis. Dept. Management Science, Imperial College.

- 187 -

- 92. JOHNSON R.A., 1964. "Systems Theory and Management" Management Science. KAST F.E. & ROSENZWEIG J.E. Vol 10 p367.
- 93. JONES R. & 1972. "A Goal Programming Formulation for SALKIN G.R. Merger Strategy" Chapter 15 (55).
- 94. KAPLAN R.S. & 1970. "Overhead Allocation via Mathematical THOMPSON G.L. Programming Models" Carnegie-Mellon University Management Sciences Research Report No. 213.
- 95. KENDALL J.W. 1975. "Hard and Soft Constraints in Linear Programming" OMEGA. Vol 3 No 6 p709.
- 96. KISLEV Y. & 1958. "A Programming Model for Optimal PLESSNER Y. Patterns of Investment, Production and Consumption Over Time" Israel Jrn. of Technology. Vol 6 No. 5 p333.
- 97. KOHLER E.L. 1963. "Why Not Retain Historical Cost?" The Jrn. of Accountacy. Oct p35 (Reprinted p147 (18)).
- 98. KORNBLUTH J.S.H. 1970. "Aspects of Mathematical Programming in Financial Corporate Planning" Ph.D thesis.

Dept. Management Science, Imperial College.

99. - " - & "The Decomposition of Linear Fractional SALKIN G.R. Programmes" Internal Report. Dept. Management Science, Imperial College.

- 100. KORNBLUTH J.S.H. & 1973. "Linear Programming in Financial Planning" SALKIN G.R. Accountancy Age Books. Haymarket Pub. Ltd.
- 101 KROUSE C.G. 1972. "A Model for Aggregate Financial Planning" Management Science Vol 18 No. 10 p B-555.
- 102. KUHN H.W. & 1951. "Non Linear Programming" 2nd Berkeley TUCKER A.W. . Symposium on Match. Statistics & Productivity. Univ. of California Press p481.
- 103. LAHIRI S.B. 1970. "An Economic Model for a Tin-box Manufacturing Company - A Case Study in LP" Opsearch. Vol 7 No. 4 p269.
- 104. LEE S.M. 1972. "Goal Programming for Decision Analysis" Auerbach.
- 105. LEE G.A. 1973. "Modern Financial Accounting" Thomas Nelson and Sons Ltd.
- 106. LEV B. & 1971. "On the Use of the Economic Concept of SCHWARTZ A. Human Capital in Financial Statements" Accounting Review. Vol 46 p103.

107. LEVY H. 1968. "A Note on the Payback Method" Jrn. of Financial & Quantitative Analysis. Dec p433.

108. LIPSCHUTZ S. 1968. "Theory and Problems of Linear Algebra" McGraw-Hill. - 189 -

- 109. LORIE J.H. & 1955. "Three Problems in Rationing Capital" SAVAGE L.J. Jrn. of Business. Vol 28 No. 4 p229
- 110. LUSZTIG P & 1968. "A Note on the Application of Linear SCHWAB B. Programming to Capital Budgeting" Jrn. of Financial & Quantitative Analysis. Dec p427.
- 111. MACDONALD G. 1974. "Profit Measurement: Alternatives to Historical Cost" Haymarket Publishing Ltd.
- 112. MANGASARIN O.L. 1969. "Non Linear Programming" McGraw-Hill Co.
- 113. MANNE A.S. 1961. "Capacity Expansion and Probalistic Growth" Econometrica. Vol 29 No. 4 p632.
- 114. MAO J.C.T. 1969. "Quantitative Analysis of Financial Decisions" Macmillan.
- 115. MCMULLEN P & 1971. "Convex Polytopes and the Upper Bound SHEPHARD G.C. Conjecture" Cambridge University Press.
- 116. MAUTZ R.K. 1973. "A Few Words for Historical Cost" Financial Executive. Jan p23.
- 117. MCANLY H.T. 1953. "The Case for Lifo: It Realistically States Income and is Applicable to Any Industry" The Jrn. of Accountancy. June p691 (Reprinted p312 (18)).

- 119A. MONTALBANO M., ROBICHEK A.A.& TEICHROW D.
 1964. "Mathematical Analysis of Rates of Return under Certainty" Management Science. Vol 11 No. 3 p395.
- 119B. " -, " -& - " -. 1965. "An Analysis of Criteria for Investment and Financing Decisions under Certainty" Management Science. Vol 12 No. 3 p151.

- 118. McKENZIE P.B. 1975. "Multiple Optima and Sensitivity Analysis in the Product Mix Problem" Accounting and Business Research. No. 19 Summer p213.
- 119. MILES C. 1975. "Income Measurement: the Sandilands Committee's Proposals" Paper read to the Royal Economic Society.
- 120. MOONTIZ N. 1953. "The Case Against Lifo As an Inventory-Pricing Formula" The Jrn. of Accountacy. June p682. (Reprinted p299 (18)).
- 121. MOST K.S. 1967. "The Value of Inventories" Jrn. of Accounting Research. Spring p39.
- 122. MYERS S.C. 1972. "A Note on Linear Programming and Capital Budgeting" Jrn. of Finance Vol 27 No. 1 p89.
- 123. NEF W. 1967. "Linear Algebra" translated by AULT J.C. McGraw-Hill.
- 124. ORGLER Y.E. 1969. "An Unequal-Period Model for Cash Management Decisions" Management Science. Vol 16 No. 2 pB-77.
- 125. PARKER R.H. & 1969. "Reading in the Concept and HARCOURT G.C. (Eds) Measurement of Income" Cambridge University Press.
- 126. RAINE P. 1976. Forthcoming M Phil thesis. Dept. Management Science, Imperial College.
 127. RAINE W.M. & 1973. "Comments on the 'Classical' I973. Derivation by Taha & Curry of Optimality Conditions in Linear Programming." JORSA Vol 21

No. 15 p3.

- 191 -

- 128. REUFLI T.W. 1971. "A Generalised Goal Decompotition Model" Management Science Vol 17 No. 8 pB-505.
- 128A.SAMUELS J.M. 1965. "Opportunity Costing: An Application of Mathematical Programming Jrn. of Accounting Research Autumn.
- 129. SANDILANDS F.E.P. 1975. "Inflation Accounting: Dept of the Inflation Accounting Committee" H.M.S.O.
- 130. SEABOURNE R.E. 1973. "Principles of Accounting" 10th edition Cassell & Collier MacMillan.
- 131. SENGUPTA J.K. 1972. "Stochastic Programming: Methods and Applications" North-Holland, Amsterdam.
- 132. SPACEK L. 1958. "Can We Define Generally Accepted Accounting Principles?" Jrn. of Accounting Dec p40 (Reprinted p82 (18)).
- 133. SPICER E.E. & 1934. "Book-keeping and Accounts" 9th Edition PEGLER E.C. BIGG W.W. & WILSON H.A.R.J. H.F.L. Publishing.
- 134. SPROUSE E.T. 1957. "The Significance of the Concept of the Corporation in Accounting Analyses" The Accounting Review. July p369 (Reprinted p125 (18)).
- 135. STAMP E. & 1970. "Accounting Principles and the City MARLEY C. Codes. The Case for Reform" Butterworths.
- 136. STRUM J.E. 1969. "Note on 'Two-sided Shadow Prices'" Jrn. of Accounting Research. Vol 7 p160.

- 137. TIERNY C. 1963 'Price-Level Adjustments Problem in Perspective" Jrn. of Accounting. Nov. p56. (reprinted p138 (18)).
- 138. UNDERDOWN B. 1971. "Logical Principles Needed for Stock Evaluation" Management Accounting, July p210.
- 139. VAJDA S.1973. "Planning by Mathematics" Topics inOperations Research. Pitman.
- 140. VAJDA S. 1974. "Test of Optimality in Constrained Optimization" Jrn. Maths Applics. Vol 3 p 157.
- 141. VATTER W.J. 1963. "Postulates and Principles" Jrn. of Accounting Research. Vol 1. No. 2. Autumn p179 (Reprinted p18 (18)).
- 142. VICKERS D. 1968. "The Theory of the Firm: Production, Capital and Finance" McGraw-Hill.
- 143. WEINGARTNER H.M. 1963. "The Excess Present Value Index A Theoretic Basis and Critique" Jrn. of Accounting Research. Vol 1 No. 2 p213.
- 144. " 1966. "Criteria for Programming Investment Project Selection" Jrn. of Industrial Economics. Nov. p65.
- 145. " 1967. "Mathematical Programming and the Analysis of Capital Budgeting Problems" New Edition 1974 Kershaw Publishing Co.

- 146. WEINGARTNER H.M. 1969. "Some New Views on the Payback Period and Capital Budgeting Decisions" Management Science. Vol 15 No. 12 pB-594.
- 147. WILSON A.A. 1974. "The Extension of a Model for Corporate Planning" MSc thesis. Department of Management Science, Imperial College.
- 148. WRIGHT F.K. 1968. "Measuring Asset Services: A LP Approach" Jrn. of Accounting Research. Vol 6 No. 2.
- 149. " 1969. "Towards a General Theory of Depreciation" Chapter 19 (35).
- 150. " 1970. "Dual Variables in Inventory Measurement" The Accounting Review.

APPENDIX A

THE SHORT-TERM CORPORATE MODEL

This appendix discusses the use of the general manufacturing company planning model described in Chapter 1. The discussion is divided into five parts:

i. Use of the planning model.

ii. Definition of the variables and data used in the model formulation.iii. A detailed construction of the equations forming the model.

- iv. A listing of the Matrix Generator Program (with examples of the data requried).
- v. A listing of the Report Writer Program (with examples of output).

1. The System in Use.

The planning model described in Chapter 1 (and detailed below) portrays a typical manufacturing company: the flow of raw materials through the manufacturing process is activated in order to satiate (as far as is possible) the expected demand for the finished goods produced, while taking account of a number of environmental, financial and managerial constraints.

In order to aid the corporate budget preparation exercise the model has been designed to reflect these activities in some detail. In the text case company we are modelling a firm over 16 periods, making 16 products, each sold in two outlets, on some 30 work-centres (with half of these having some sub-contracting facility) with 6 different labour groups from some 20 raw materials. This would result in a model of some 2500 rows by 8000 variables. In order to handle a LP model of this size, we used the MPSX system on an IBM 360/70.

However it is clearly unrealistic to expect management to have the detailed and technical knowledge required to manipulate the matrix of equations. It is envisaged that this job will be undertaken by a suite of computer programmes to the extent that requests made by the user will be translated into answers presented in intelligible user-oriented reports. In this way information requested by the factory manager will be reported back in terms of shop-loading; the finance director would receive cash-flow or projected profit/loss reports, etc. Examples of the type of reports envisaged are included in Section 5 of this Appendix.

The <u>fundemental</u> component of such a system is the data base and the adage "Garbage in ... Garbage out" must be borne in mind. The model requires (as will be shown in Sections 2 and 4) a substantial amount of detailed information: some say a requirement that places an intollerable burden on management. This is a weak critisism - the information, although voluminous, is the same as that used for decision making in the various departments of the company (accounts, sales, production, etc.) This model merely requires that this information be brought together and maintained,* while noting that any data that is suspected by the local users remains marked as suspect. In this

* It must be reported that this requirement proved too onerous a task . for the test-case company.

- A - 196 -

respect the importance of ranking the data sensitivities described in Chapter 1 becomes clear: local data problems may be shown to be globally unimportant (and vice versa).

It follows that the data bank maintenance systems will be company-dependant and will be structured round the company's other control systems.

Modification to the data bank by the user will be either permanent (due to updated knowledge) or temporary 'what-if' information (i.e. the user wants to run the planning model on the basis of some speculative data). The data-bank/user interface will be able to differentiate between these distinct operations and will then generate a complete re-run of the model, or merely a revision of the existing model, depending on the extent of the new information. The new (or revised) matrix is fed to the MPSX Linear Programming Package to be solved and the solution is interpretted for the user by a Report Writer. It is anticipated that the planning model will be run as shown in Figure A.1.

The state of application at the moment is limited to a Matrix Generator Program (MGP) (reading data in arbitrarily chosen format from card) which generates the entire matrix for the LP Package, and a Report Writer (RP) which generates sets of specialist reports. The programs are listed in Sections 4 and 5. For reasons of confidentiality the examples of data input and of output reports attached are from a specially constructed (simple) test problem.

- A - 197 ·

- A - 198

L

The model was tested by collecting real data from the test-case company for the year just ended, and comparing the actual results with the results of the model in a number of dimensions.

The test was protracted owing to difficulties in convincing the management that the required data were available (e.g. the length of the production cycle, the usage of raw materials through that period, etc), and other internal political activities that diverted management attention. Tests were conducted in each factory location individually and the resulting raw material usage; stock levels; subcontracting and overtime schedules were shown to compare with the actual results. Financial indicators such as profit and cashflow, could only be judged to be correct since the company had combined the accounting function for both locations and could not break the consolidated accounts down. No test of the entire company was undertaken before the project terminated.

A - 199 ·

alpha

alphlg No. of periods lag obtained before payment of interest charge required.

Percentage interest charge (per period). Normal-time capacity (in hours) of labour caplf(I,L) type L in period I. This is calculated from the number of men in group L and the number of hours available for work in normal shift time in the period, and should take account of reductions to capacity due to holidays, absenteeism, etc. caplo(I,L) Overtime capacity (in hours) of labour type L in period I.

Storage capacity available in period I. capst(I) The defined "unit of storage" (e.g. sq feet) is also used in vol(R) and space (K,J,I). We have assumed that only one distinct type of storage facility exists.

Normal-time capacity (in hours) of workcentre capwc(I,M) M in period I. This is calculated from the number of machines in group M and the number of hours available in normal shift working time (factored by expected holidays, shutdowns, etc). The number of machines in the group need not be integral: machines known to be used in emergency only can be included as fractions of a whole machine. Workcentres such as PAINT need careful examination to ensure inclusion of preparatory work being done outside the paint booths. ASSEMBLY and WELD are also very difficult to ascertain correctly: the equivalent "number of machines in the

group" has been defined to be the number of products on which work can in general be carried out simultaneously.

Finally, capacity is factored by an amount to take account of any extra-model production activities (- in the case of the test-case company to take account of the production of spares and of products being phased out by the company with expected actual production of only one or two units).

Value of the bank balance at the beginning of the modelling period.

Value of the creditors account at the beginning of the model.

Value of the debtors account at the beginning of the model.

Extra-model cash flow in period I. This total can be broken down into any number of items that are normally detailed in the accounts e.g. wages; management levies; tax bills; receipts from sales of spares, etc. excrt(I) Extra-model credit in period I.

Extra-model debt in period I. exdbt(I)

This takes a value of 1 if the model is allowed ifb1 to accept overdraft facilities.

kdiv(K,1)No. · of sections which make up product K. (Section 1 refers to the complete product.) Two letter name identification for section J of kdiv(K,J,1)product K.

crti

cashi

dbti

excash(I)

knout(K)

lagexcrt

lagexbdt

No. of sales outlets for product K. Each outlet is identified as an area in which either the product specification or the net price differs from elsewhere. No. of periods lag before extra-model credit is paid. No. of periods lag before extra-model debt is received.

- 202 -

list(K,J) Gross price for product K in sales outlet J.
market (I,K,J) Market forecasts for sales of product K in
outlet J in period I. These act as upper bounds
on demand. Lower bounds can also be included
in the model to cater for a management constraint
of representation in certain (if not all) sectors
of the market.

mcreq(I,K,J,M) Machine time required on workcentre M by section J of product K in period I of the production cycle. This time (in hours) is derived from the standard times, available from the production control department, to which is added a component representing the set-up times (making some assumptions about batch sizes). In practice, work is done at a faster rate. The required factor by which the 'standard' time is multiplied is found from the wages department.

Name of period I.

nlf

nm

No. of labour force types considered by the model. No. of periods in the planning horizon. Total number of sales outlets encompassed by the model.

nprod No. of products in range.

No. of different raw materials.

month(I)

nout

nrm
No. of workcentres that can be subcontracted. No. of distinct workcentres.

owage(L) Overtime rate for labour type L.
prod(K,J) Limit on production of section J of product
K in any period. This limit is the smallest
bottleneck created by the scarcity of jigs
required by certain jobs in the production
process.

nsub

nwc

prodi(I,K,J) Amount of production of section J of product K completed in period I. This data is determined by the work in progress underway at the beginning of the planning horizon. If no limit exists the entry is infinity.

rmb(R) Net price per unit of raw material R.
rmlag(R) No. of periods lag obtained before payment
for supply of raw material R is required.
rmp(I,R) Fixed amount of raw material R due for delivery
in period I. This is determined by existing activities
at the beginning of the planning horizon. If no
limit exists the entry is infinity.
rmreq(I,K,J,R) Units of raw material R required for the

rmreq(I,K,J,R) Units of raw material R required for the production of section J of product K in period I of the production cycle.

sblag(M) No. of periods credit obtained before payment required on work subcontracted to subcontractor M.

slag(K,J) No. of periods credit given on the sale of product K in outlet J before payment collected. space(K,J,I) Storage space required by section J of product K in period I of its production cycle.

Length of production cycle of section J of spred(K,J) product K.

Desired minimum stock levels at horizon of stockcf(K) finished goods product K.

Desired minimum stock levels at horizon of stockcr(R) raw material type R.

No. of units of finished goods product K in stockif(K) stock at the beginning of the planning horizon. No. of units of raw material R in stock at stockir(R) beginning of model horizon.

Two letter name identification of sales outlet subcd(K,J)J for product K.

subp(M) Net price (per hour) charged by subcontractor M. List of workcentres whose capacity may be subwc(M) enhanced by subcontracting.

No. of men of type L required to man workcentre wclf(L,M)M. A value of infinity indicates that labour of this category cannot man a particular workcentre. wcload(M) Scheduling efficiency in loading workcentre This is calculated as the ratio of busy time М. (i.e. total less idle time) to the total time available, and is used to factor the times given in mcreq(I,K,J,M) to obtain a realistic production time. Two letter name identification of workcentre M. wcnm(M) Storage space required by a unit of raw material R. vo1(R)

2.2 Definition of Variables

	•
BANKL(I)	Bank loan taken in period I.
BANKR(I)	Bank repayment made in period I.
CASH(I)	Cash position at the close of period I.
CRT (1)	Creditors position at the close of period I.
DBT(1)	Debitors position at the close of period I.
LABOT(I,L,M)	Overtime scheduled in period I for labour
	type L manning workcentre M.
LABREQ(I,L,M)	Total required labour time for labour type
	L manning workcentre M in period I.
PROD(I,J,K)	No. of units of section J of product K
	completed in period I.
RMB(I,R)	Units of raw material R purchased in period I.
. .	(Assume no lag between purchase and delivery.)
SALES(I,K,J)	No. of units of product K sold (and delivered)
	in market J in period I.
STOCK(I,K)	No. of completed units of product K in stock
	at the close of period I.
STOCKR(I,R)	No. of units of raw material R in stock at
	the close of period I.
SUB(I,M)	Amount of work subcontracted out for workcentre M
٩	in period I.

3. The Model Equations

A. Production Function

i. Workcentre Capacity (cf. Eqn.1.10)

Requirement for workcentre M in period I must be less than or equal to the normal time capacity of that workcentre in that period plus any overtime worked plus any subcontracting done.

nprod kdiv(K,1) spred(K,J)-1

$$\Sigma$$
 Σ Σ PROD(I- \hat{I} ,J,K).mcreq(\hat{I} +1,K,J,M)
K=1 J=1 \hat{I} =0 (A.1)

- SUB(I,M) -
$$\sum_{\Sigma}^{\text{HII}} \frac{\text{LABOT } (I,L,M)}{\text{wclf}(L,M)}$$
.
L=1

Initial condition:

PROD $(I,J,K) = \text{prodi}(I,K,J) \notin \text{prodi}(I,K,J) \neq \infty$

ii. Labour Force Allocation (cf. Eqn. 1.11)

Total in-house production (i.e. total workcentre requirement less any work subcontracted out) on workcentre M in period I must be allocated amongst the labour groups capable of doing the work.
$$= \frac{\sum \frac{LABREQ(I,L,M)}{wclf(L,M)}}{L=1} \quad \forall I,M$$

B. Physical Constraints.

i. Production (cf. Eqn. 1.12)

Limit production (of division J) of product K in period I by some upper bound.

PROD(I.J.K)	prod(K,J)	¥ I,K,(J)	(A.3)
-------------	-----------	-----------	-------

ii. Labour Force Capacity (cf. Eqn. 1.13)

Requirement for labour group L in period I must be less than or equal to the work scheduled to be done in overtime plus that scheduled to be done in normal shift time.

nwc Σ LABREQ(I,L,M) - LABOT(I,L,M) \leq caplf(I,L) (A.4) M=1 \forall I,L iii. Labour Overtime Capacity (cf. Eqn. 1.14)

Limit the total overtime load on labour group L in period I by some upper bound.

iv. Market Constraints (cf. Eqn. 1.15)

Limit sales of product K in market J in period I by some upper (and/or lower) bound.

SALES(I,K,J) < market (I,K,J) ♥ I,K,J (A.6)

v. Storage Capacity (cf. Eqn. 1.16)

Storage space required in period I must be less than or equal to the storage space available.

nprod kdiv(K,1) spred(K,J)-1 Σ Σ Σ PROD(I-I,J,K).space(K,J,I) K=1 J=1 I=0 (A.7)

> nrm Σ STOCKR(I,R).vol(R) < capst(I) R=1

> > ₩1

C. Financial Flows

i. Cash Position (cf. Eqn. 1.17)

Cash at the close of period I equals cash position

at the opening of period I plus inflows resulting from sales made in previous periods and loans negotiated, less outflows resulting from loans repayed; payment for overtime worked in that period; subcontracting costs; purchases, and bank charges incurred in previous periods and net outflows from extra-model activities.

CASH(I) =

+

CASH(I-1) + BANKL(I) + exdbt (I-lagexdbt)

- nprod knout (K) Σ Σ SALES (I-slag(K,J),K,J).list(K,J).discp(K,J) K=1 J=1
- BANKR(I) $\sum_{I=0}^{alphlg=1}$ BANKL(I-I)-BANKR(I-I).alpha
 - excash(I) excrt(I-lagexcrt) (A.8)
 - nlf nwc Σ Σ LABOT(I,L,M).owage(L) L=1 M=1
 - nrm Σ RMB (I-rmlag(R),(R).rmb(R) R=1
- nwc Σ SUB(I-sblag(M),(M).subp(M) M=1 ♥I

Initial Condition:

CASH(0) = cashi

- A - 209 -

¥Ι

ii.

Creditors Position (cf. Eqn. 1.18)

Credit at close of period I equals purchases of raw materials made by not yet paid for, plus subcontracted work carried out but not yet paid for plus interest charges outstanding plus any extra-model credit.

$$lagexcrt-1$$

CRT(I) = Σ excrt (I-I)

I=0

$$nrm rmlag (R)-1$$
+ Σ Σ RMB (I-I,R).rmb(R) (A.9)
R=1 I=0

alpha

$$\sum_{i=0}^{n} (BANKL(I-I) - (BANKR(I-I)).alpha$$

Note - the credit account does not include the outstanding overdraft.

Initial Condition:

excrt (0) = crti.

iii. Debtors Position (cf. Eqn. 1.19)

Debt at the close of period I equals reserves due, but not yet received, from sales made in prior periods plus any extra model debt.

$$DBT (I) = \sum_{i=0}^{lagerdbt-1} (A.10)$$

npod	knout(K)	slag(K,J)-1	
+Σ K=1	Σ J=1	Σ SAL	S (I-Î,K,J).list(K,J).discp(K,J)
			¥T

Initial Condition:

$$exdbt(0) = dbti$$

· · ·

·

. .

.

.

· .

. . .

•

.

.

.

· ·

D. Inter-Period Continuity

(i) Finished Goods Stock (cf. Eqn. 1.20)

Stocks of product K at the close of any period equals the stock at the close of the previous period plus newly completely production less sales made in the period.

STOCKF(I,K) = STOCK F(I-1,K) + PROD (K,1,I)

Initial Condition:

STOCKF(0,K) = Stockif(K)

Closing Condition:

STOCKF(nm,K) > Stockcf(K)

(ii) Raw Material Stock (cf. Eqn. 1.21)

Stock level of raw material R at the close of any period equals the stock level at the close of the previous period plus any new purchases less the amount used in production during the period.

$$STOCKR(I,R) = STOCKR(I-1,R) + RMB(I,R)$$
(A.12)

nprod kdis(K,) spred (K,J)-1 - Σ Σ Σ Σ PROD(I-Î,J,K).rmreq(I+1,K,J,R) K=1 J=1 Î=0 ₩I,R

Opening Conditions:

STOCKR(0,R) = Stockir(R)

 $RMB(I,R) = rmp(I,R) \quad \forall \ rmp(I,R) \neq 00$

Closing Condition:

STOCKR(nm,R) > Stockfr(R)

E. Alternative Objective Functions

(i) Profit Earning (cf. Eqn. 1.22)

Max cash plus debtors less creditors positions of the close of the planning period. We have used this objective function in all the examples that follow.

(ii) <u>Turnover</u> (cf. Eqn. 1.23)

Maximise total sales revenue acquired during the planning period.

Max	nprod Σ V-1	knout(K) Σ I-1	nm .Σ τ-1	SALES(I,K,J).list(K,J).discp(K,J)
	N-1	3-1	T-1	(A.14)

(iii) Sales Penetration (cf. Eqn. 1.24)

Maximise the total number of primary products sold during the planing horizon.

•	prod	knout(K)	nm		
Max	Σ	Σ	Σ	SALES(I,K,J)	(A.15.)
	K=1	J=1	I=1		

4.1 <u>The Matrix Generator Programme.</u>

<pre>GC GC GC GC GC GC GC GC GC GC GC GC GC G</pre>		
G iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Ċ	THE FARGANCE IN THE MAINIX GREEKATOR
<pre>With Wit</pre>	Ğ	
<pre>C</pre>	្តែ ភ្នំ។ ភ្នំ។ ភ្នំ	REAL AND AND FILMAN AND AND AND AND AND AND AND AND AND A
<pre></pre>	C C	• THE LUPUI JALA IS READ ON 2
<pre>C UDBYCK RUITALIS, SALUER, S, AL, KLE, S, AL, KLE, S, SJ, SPSTFILS, 221 KEAL SALUES (HIELS) KEAL SALUES (HIELS) LINE CONTROL SALUES (LINE SALUES) AND LOSS (HIELS) LINE CONTROL SALUES (LINE SALUES) LINE CONTROL SALUES) LINE CONTROL SALUES (LINE SALUES) LINE CONTROL SALUES) LINE CONTROL SALUES (LINE SALUES) LINE CONTROL SALUES) KEAL MCP (E. 201 - 13 (LINE SALUES) C INTERNAL SALUES C INTERNAL SALUES</pre>	ů · C	THE GRAPHS ARE FLITTED ON EINEPRINTER 5
<pre>http://www.comment.commen</pre>	C	LOMMCK, HOUIT (13), SPALU(20,4), H1, K, KUIV(20,5), CPSIV(15,20)
<pre>Milete: AL/Lational [20]: 1/2 [1/1] [20]: 1/2 [1/1] [20]: 1/2 [20]: 1/2 [20]: 2/2</pre>		REAL SALLSU(2)(2)(10) INTEGEN IGRAM(10)2) Integen Integen (10)2)
<pre>1SUL:(1/);SUECO121;CF(2);SUECO12(2);UECO12(2);FF(2);UECO12(2); rEAL CALL (5);AAAAC(2);GF(2);GF(2);UECO12(2);FG(2);AUH(Y(2)); rEAL (CALL(5);AAAC(2);GF(2));UECO12(2);FG(2);AUH(Y(2)); REAL (CALL(5);A);FG(2);UECO12(2);UECO12(2); REAL (CALL(5);A);FG(2);UECO12(2)</pre>		101606.00160.00170.00120.000110.0000000000000000000
<pre>r_AL K2159; 0; (3), 20; (3), 20; (20, 4), S03L(20), FGP(20), 00dRY(22) kcAL KCRL(4;9), 30; (3), 20; (20, 4), 50; (20, 4), 50; (20, 5), 00dRY(22) kcAL KCRL(4;9), 30; (3), 20; (3), 20; (3), 20; (2); (2); (2); (2); (2</pre>		1500.00 (177), 50000 (20,27, K400 (20), 5000) (00,4%, 14PE1,00072 (15) REAL CRADE (5), XIIANE (2), CAPNO (10,17), 400000 (20)
<pre>C</pre>		<pre>REAL RMD(9), CD_(3), SUJP(17), JPAUC(20,4), SUJL(20), FGP(20), DUMMY(23) REAL MGLF(6, 20), LIST(20,2), CLSCP(20,2)</pre>
<pre>C DATA CLOUT PB:::Sti::Sti::AD::KA::CH::AD:::AD:::Sti::DE::,</pre>	ç	NEAL NORE((4)991)2033ANC20(4)931313
<pre>1 *Lo', 'Lo', '.a', '.a', '.a'', '.a''', '.a'', '.a'', '.a''', '.a'', '.a'', '.a'</pre>	č	DATA COUDE/ P31, 301, 301, 1001, 101, 101, 101, 101,
<pre>bill M Mile (12) 0 10 (10) (10) 0 0 (10) 0 0 (10) 0 0 (10) 0 0 (10) 0 0 (10) 0 0 (10) 0 0 (10) 0 0 (10) 0 0 (10) 0 0 (10) 0 0 0 (10) 0 0 0 0 0 0 (10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>		1 1L51,1L01,1.27,13577 UAIA SUCUUT 17
<pre>Lile T=1.3 Lile Jike Division LATA NUMBAY J1: 102: 102: 102: 102: 102: 102: 102: 10</pre>		041A HULE/120+0.07.FGAS1/80+07 041A RHREV/300+0.07.HURE(/720+0.07 041A RD - 6/27.60.000 52
<pre>1</pre>		₩2LEF1=0.0 ₩2LEF1=0.0 ₩ATA NUM9R/*J1*,*U2*,*U3*,*U4*,*U5*,*U6*,*J7*,*J8*,*U9*,*19*,
ALPHAGE A_PHA/2000 C C C C C C C C C C C C C		1 * 11*5*12*5*13*5*14*5*15*5*16*5*17*5*18*5*19*5*20*7 150ALE=100
C C C C C C C C C C C C C C	ç	AL PHAC = AL PHA/1200.0
<pre>WillE13,5001): ACSU, KUUT, KKS, KEF, KSUK, MEH, MEH KLAY 22, 40201 (KLb(J), 2.4LAG(J), VOL(J), J=1, NRM) WRITE (3,5021) WRITE (3,5020) (NULF), ALAG(J), VOL(J), J=1, NRM) MRITE (3,5020) (NULF), NE1, NHO) REAU(2,4030) (NULF), NE1, NHO) NETT((3,5030) WOLF (NLF+1,N), N=1,NHUF) REAU(2,4030) (NULF), LIT, NHO) NETT((3,5030) WOLF (NLF+1,N), N=1,NHUF) REAU(2,4030) (NULF), LIT, NHO) NETT((3,5030) WOLF (NLF+1,N), N=1,NHUF) REAU(2,4030) (NULF), LIT, NHO) NETT((3,5030) WOLF (NLF+1,N), N=1,NHUF) REAU(2,4030) (NHOE (NLF+1,N), N=1,NHUF) REAU(2,4030) (NHOE (NLF), LIT, NHO) NETT((3,5030) (NLF), LIT, NHF) NETT((3,5070) (SUGMC(KA), SUGP (KA), SULAS (KA), KA=1, NSU3) SU21 SUG11 NHOE C C C C C C C C C C C C C</pre>	č	er Au (2.4u) 11 FALL ADUT, AND FLASH AND FLASH AND FLASH
<pre>MAIL(3,5020) MAIL(3,5020)(Hut(J),ALAG(J),VOt(J),J=1,NAM) htAu(2,4030)(Hut(H,N),A=1,HHC) MAIL(3,5040) Ub 5010 H=1,NHC MAIL(3,5050)MUt(HLF+1,N),H=1,HHC) ACAU(2,4030)(Vot(DAOU),J=1,NHC) ACAU(2,4030)(SUC(A),J),L=1,HLF) MAIL(3,502)(SAAAC(L),L=1,HLF) MAIL(3,502)(SUC(A),SUC(A),SULAS(KA),KA=1,NSU3) MAIL(3,500) MAIL(3,5073)(SUC(A),SUC(A),SULAS(KA),KA=1,NSU3) CONTACT C</pre>		NALTE (3,5001) (2-800, 600) (180) (180) (180, 820, 80) READ(2,4020) (RAD(J), 20LAG(J), VOL(J), J=1, 628)
<pre>% A D C 2, 40 3 D 1 (1 A D E 1 (1, M P, 1 - 1, 4 D P) (1 - 1, 4 D P) % A D C 2, 40 3 D (1 - 1, N H C) % A D C 2, 40 3 D (1 - 1, N H C) % A D C 2, 40 3 D (1 - 1, N H C) % A D C 2, 40 3 D (1 - 1, N H C) % A D C 2, 40 3 D (1 - 1, N H C) % A D C 2, 40 3 D (1 - 1, N H C) % A D C 2, 40 3 D (1 - 1, N H C) % A D C 2, 40 3 D (1 - 1, N H C) % A D C 2, 40 4 D (1 - 1, N H C) % A D C 2, 40 4 D (1 - 1, N H C) % A D C 2, 40 4 D (1 - 1, N H C) % A D C 2, 40 4 D (1 - 1, N H C) % A D C 2, 40 4 D (1 - 1, N H C) % A D C 2, 40 4 D (1 - 1, N H C) % A D C 2, 40 4 D (1 - 1, N H C) % A D C 2, 40 4 D (1 - 1, N H C) % A D C 2, 40 4 D (1 - 1, N H C) % A D C 2, 40 5 D 1 5 A , KO I V (K, 1) , K H U U T (K) % A D C 2, 40 5 D 1 5 A , KO I V (K, 1) , K H U U T (K) % A D C 2, 40 5 D 1 5 A , KO I V (K, 1) , K H U U T (K) % A D C 2, 40 5 D 1 5 A , KO I V (K, 1) , K H U U T (K) % A D C 2, 40 5 D 1 5 A , KO I V (K, 1) , K H U U T (K) % A D C 2, 40 5 D 1 5 A , KO I V (K, 1) , K H U U T (K) % A D C 2, 40 5 D 1 5 A , KO I V (K, 1) , L S T (K, J) , D 1 S C P (K, J) , S L A G (K, J) % D 0 8 3 5 D J = 1, K M U % A D C 2, 40 5 D 1 5 A , S U P C D (K, J) , L I S T (K, J) , D 1 S C P (K, J) , S L A G (K, J) % D D 2 A D 1 - 1, A U Y % A L T (2 , 5 D 4 D 1 5 A , S U H C D (K, A U I A C K E A U I A C</pre>	•	WRITE (3,5020) WRITE (3,5030) (200(3),RNLAG(J),VGL(J),J=1,NKM)
<pre>00 k110 k=1,NHC Weitic(2,4030) (weic(alf+1,n), (weif(n,N),M=1,NLF) Weitic(2,4030) (weic(alf+1,n)), (weif(n,N),M=1,NLF) weitic(2,4030) (weic(alf+1,NLF)) weitic(2,4030) (weic(alf,SubP(KA),S3LA5(KA),KA=1,NSU3) Weitic(3,5000) weitic(3,5000) (subweic(Alf,SubP(KA),S3LA5(KA),KA=1,NSU3)) 00 match continue conti</pre>		READ(2,4035) (AULF(ALF+1,N),1=1,200) WRITE(3,5040]
<pre>READ(2,4190) (DKLOG(L), J=1, NLF) READ(2,4030) (DKLOG(L), L=1, NLF) HKITC(3,5052) (DKLOG(L), L=1, NLF) READ(2,4030) (D(L) (A), SUEP(A), SUEAC(KA), KA=1, NSUB) KAITC(3,5070) (DUEAC(KA), SUEP(A), SUEAC(KA), KA=1, NSUB) 8021 DUHINOF C</pre>	8010	00 6010 6=1,NWC WgLT2(0,5050)Wolf(6LF+1,0) ,(WCLF(6,0),M=1,0LF)
<pre>http://www.sec.upus.sec.</pre>		READ(2,4190) (WCEDAO(J),J=1,NRC) READ(2,4030) (DRAGE(L),L=1,REF)
<pre>KAITC(3,500) MALL(3,507) (SUDWC(KA),SUDP(KA),SD_AU(AA),KA=1,NSU3) SUDMINUE C C C C C C C C C C C C C C C C C C C</pre>		μετετογραφέρη του κατετρημέτη κέτη μετετογραφία του του 3μ21 Κελμ(2,4μμμ) (SUBAL(KA), 566P(KA), 53EAG(KA),KA=1,NSUB)
8021 Confine C C C O 2020 K=1,NFKOU KEAD(2,4550)ISK,KDIV(K,1),KNUUT(K) KNUEKNUUL(K) KNUEKNUUL(K) KNUEKNUUL(K) KNUEKNUUL(K) NALESINFJEMATION C C C C C C C C C C C C C		KAIF:(3,5000) MAIF:(3,5070) (SUUMC(KA),SUUP(KA),SULAG(AA),KA=1,NSU3)
C U0 R320 K=1,NFROU READ(2,4.5.1)SR, KOIV(K,1),KAUUT(K) FRAIL(3,500) R,KUIV(K,1),KAUUT(K) KAU(2,4.5.1)SR,KUIV(K,1),KAUUT(K) KAU(2,4.5.1) C C C C C C C C C C C C C	8021 C	CONTINUE
<pre>kEAD(2,455)(5,7,01V(K,1),KNOUT(K)) %k(112(3,500)(K,KOUT(K))) %k(112(3,500)(K)) %k(112(3,5150)) C C C C C C C C C C C C C C C C C C</pre>	č	UO 8920 K=1.NFR00
<pre>KNUEKNUUT(K) mhile(3,0130) C U0 8050J=1,KNU nEAU(2,4080)15K,SUBC0(K,U),LIST(K,J),DISCF(N,J),SLAG(K,J) NEV=KUIV(K,J)SUCO(K,J),LIST(N,J),DISCF(N,J),SLAG(K,J) NEV=KUIV(K,J) J0 8050 HAITC(J,5140)SUCO(K,J),LIST(N,J),DISCP(N,J),SLAG(K,J) NEV=KUIV(K,J) J0 8050 HAITC(J,5140)SUCO(K,J),LIST(N,J),DISCP(N,J),SLAG(K,J) NEV=KUIV(K,J) J0 8050 HAITC(J,5140)SUCO(K,J),LIST(N,J),DISCP(N,J),SLAG(K,J) NEV=KUIV(K,J) J0 8050 HAITC(J,J),LIST(N,J),LIST(K,J),SLAG(K,J) NEV=KUIV(K,J) HAITC(J,5160) DU 600J J=1,HHO</pre>		кЕАО(2,4650) ISK , KOIV(K,1),КЧООТ(K) ЖКЛТЕСа,5СОЙ КукоТV(К,1),КЧООТ(К)
C - SALES INFJEMATION U0 8050J=1,KNU NEAU(2,4580)ISK,SUBCO(K,J),LIST(K,J),DISCE(K,J),SLAG(K,J) NEV=KUV(K,1) J0 8020 KUVI=1,KUV HAITE(J,5140)SUCO(K,J),LIST(K,J),DISCE(K,J),SLAG(K,J) NEV=KUV(K,1) J0 8020 KUVI=1,KUV HAITE(J,5140)SUCO(K,J),LIST(K,J),DISCE(K,J),SLAG(K,J) NEV=KUV(K,1) J0 8020 KUVI=1,KUV HAITE(J,5140) KUVI HAITE(J,5140) ISK,NJIV(A,KUVI+1),N1,SPALE(K,KUV1),SPALE(K,KDV1) HSCHSELSED(Z,4071) (I,J,RUKEQ(I,K,KUVI,J),IJK=1,KT) HAITE(J,516) DU 6JJJ J=1,YHJ	r	KRU=KRUCI(K) RKIIL(3,9130)
UO 8050J=1,KNU REAU(2,4080)J5X,SUPCD(K,J),LIST(K,J),DISCP(K,J),SLAG(K,J) 8050 HALTE(J,5140)SUCCD(K,J),LIST(K,J),DISCP(K,J),SLAG(K,J) KUV=KUIV(K,1) JD 8020 KUVI=1,KUV HALTE(J,5090) KOVI HALTE(J,5090) KOVI C C REAU(2,407C) ISK,KJI(K,KUVI),KI,SPACE(K,KDV1) HSCH=SPD=D(K,KDV1) HSCH=SPD=SPD=SPD=SPD=SPD=SPD=SPD=SPD=SPD=SPD	S C	- SALES INFUFMATION
8050 #KIT2(0,5140)SUCO(K,J);LIBT(K,J),DISCP(K,J),SLAG(K,J) KLV=KUIV(K,I) JO 8020 KOVI=1,KUV WKIT2(3,5690) KOVI; C C KEAU(2,MJ7C) ISK;KJIV(K,KUVI;),KI;STKED(K,KCVI),SPAGE(K,KDVI) MSPK=SPPED(K,KDVI) MSPK=SPPED(K,KDVI) MSPK=KSFK=1 PEAD(2,MJ7C) (I,J,RUKEQ(I,K,KJVI,J),IJK=1,KT) MKIT2(3,516)) DU 603J J=1,700	•	UO 8050J=1,KNU NEAU(2,4080)15K,SURCD(K,J),L1ST(K,J),D1SCP(N,J),SLAG(K,J)
UKITE(3,5690) K071,K UKITE(3,5690) K071,K C KEAD(2,4370) ISK,KJIV(K,KGV1F1),K1,S7KE0(K,KCV1),SPAGE(K,KDV1) HSPHESPED(K,KDV1) MSPHENSPEL PEAD(2,4071)(I,J,HGHEQ(1,K,KJV1,J),IJK=1,KT) MKITE(3,510) DU 603J J=1,4WG	8050	₩KITE(0,5140)SUE0D(K,J);EIST(N,0);DISCP(K,J);SLAG(K,J) NUV=KUIV(K,I) NOV=SUEVENTE / U
C C KEAU(2, 4370) ISK, KJI4(K, KUVIFI), KI, SPKEU(K, KUVI), SPACE(K, KDVI) HSPK=SPPLD(K, KDVI) NSPK=NSPK-1 PEAD(2, 4071)(I, J, HCKEQ(I, K, KJVI, J), IJK=1, KT) WKII_(3, 510) DC 6030 J=1, HHC	L	UK172(3,5090) K0/1,K
КЕАЦ(2,437С) ISK,КЈІЧ(К,КСУІ+1),КІ,SPКЕС(К,КСУІ),SPAGE(К,КОУІ) ИЗСК=SPPEO(К,КОУІ) NSPK=NSPK=I PEAG(2,4071)(I,J,RUKEЦ(I,K,КЈУЕ,J),IJK=1,КТ) NKIT_(3,51С)) Du 603J J=1,ЧНЭ	čċ	- HYG REWUIRENT
мымк=NSFK=1 РЕАЛ(2,4071)(I,J,RUKEY(I,K,KUVL,J),IJK=1,KT) ЖКIТ_(3,510)) ДС бозд J=1,ЧНС		REAU(2,4370) ISK,KJ14(K,KUV1+1),K1,S7KEŮ(K,KUV1),ŠPAJĚ(Ř,ŘŮV1) NSER=SPP=D(K,KUV1)
DU 6330 J=1, 1H0		NSPR=NSP(+1 PEAD(2,4071)(I,J,HUREQ(1,K,KUVL,J),IJK=1,KT) NFT (X,4071))

	•		
Ø	يا ب يا لا	$inkule(o_{9}5U5C)inuf(invF1_{9}o)j(IUHEu(i_{9}NsKoV1_{9}J)jI=1_{9}IoFV)$	154 184 NUD 14E
¥5	č	аналаніских лазоний на стала н	For 115
	C	жЕАВ (2,497.) - 10К.КР.КТ	152 137 162 138
£		IF (K1.56.0) OU TO 8670 	MSP 189
		News (2, 512) Nelle (3, 512)	GP 191
e,	8040	90 8040 J=1, NKA hz II-(0,9000) J,(KAKE((1,K,KJV1,J),I=1,XSPR)	HUP 192
v	0070 0070	L GUT I NUË C DET TENE	10P 194
~	Ç		132 136
	C	PUSI HORIZO I FORGASI	162 193
		UO 8100 A=1, H'RUD NP=K J WALT	HGP 199
C			HGP 201
		11=SPR20(K,17-1 17(K).12:11 50 TO 3080	MGP 202 MGP 203
•	•	00 8090 KP1=2,KP THIIIT.SHYEIIX.KEINKE TO 2000	HGP 204
C.		111=JFKEU(A,KP1)	MGP 206
	0090.		MGP 208
8	3636	iF(1E0.0) 60 TO 8105 WRITE(3	нср 279 Нор 210
		KEA0(2,4090) (FLAS)(1,K),1=1,II)	16° 211
Ð		60 TO 3130	MGP 213
•	8105 8100	FEAU(2,4100) SKPS	86P 214 HGP 215
A	Č.		NGP 216
e)	č	• 521 UP INC KUKS	219
		REAU (2,4110) (AONTH (I),1=1,NH) REAU (2,4110) (AONTH (I),1=1,NH)	MGP 219 HGP 220
Ø.		UNITE (0,51/0) XHAME	HGP 221
		UU 8111 1=1, KROW	MGP 223
6	С	κΕΑΟ(2,4120)16Ουέ,κοούΕ(N),NJIM,IFLAG	MGP 224
U	Ū	, IFLAS = 0 - GENERAL = 1 = 1×10^{-10} For all	MGP 226
-	č	= 2 - 1251 PERIOD ONLY	NGP 228
0	C	• = 3 - FUN THE PRODUCT JIVISIONS • = XOY- ALLOCATION OF TYPE Y TO TYPE X	MGP 230
,	C		MGP 231
6	8120	IF (NUIM.EQ. 0) GU TO 8111	HGP 233
		00 8110 I=1, N;	MGP 235
Ø		51 YP2=50 300 NP 1=3	MGP 236 VGP 237
C)	- 1 - 0	G2 10 (3146, 3160, 8170, 3175, 8177), IFLAG	HGP 238
	8176	1F(1-Ka)0110,0140,0110 1F(1-1) - 0110,0140,0110	MGP 240
8	8175	κΡ=Κυιν(J,1) 1Ε(Kr.+0.1) Gü το 8115	MGP 241
		DU 8112 KP1=2,KP	1'GP 243
6	8140	$11 (J - 10) \circ 130_{1} \circ 190_{1} \circ 190_{1}$	169 245
•	6136	INRITE(3,5190)ICOCE,MJATH(1),RCODE(N),J,STYPE IF(Nr1.FJ.0) Gu Tu 8110	MGP 245
•	a1 0	60 TJ 5112 2017 (4.520) (CD)F.DOSTH(1), 2000F(2), 1.51V2F	MGP 248
	0190	IF (Kr1. E4.0) GO IO 8110	MGP 250
	8112 8116	LUNITADE	16P 252
•	8115	NONI NUE	MGF 253
	8177	RN=R010/100	16P 255
6		NJIN-NJIN-IJU+AN JO 8200 J=1,301X	MGP 256
		00 8200 x=1; at 00 8200 12=1, at	HGP 258 MGP 250
~			16P 250
0		17(J3+61+1993) 60 (U 8219 MGITE(8,5203)10032,0001H(I),G0082(N),J3,SIYPE	MGP 261 MGP 262
	8210	00 IJ 3200 WATE (8.9204) TOODE, 600 TH(T) -8000-100 -13, STYPE	NGP 263 NGP 264
0	8200		46P 255
	9111	WP116(9,5210)	NUP 257
6		60 10 10J	"GF 258
16.J			

•

•

•	H.4 (D)		4.2 24
Ģ	160 160		HGF 2
\$	С С	. SET OF THE VA-14BLES	162 2 N62 2
÷	с С		"GF 2 "GP 2
C	Ç	***** PROJUCTION VARIABLES *******	152 21 162 21
		NAME=00012(1) SIYPE=SUBND D0 141 K=1.NPm00	160 20
C		λτ=ΛύΙν(λ,1) D0 101 κρι=1,κρ	YGP 21
• •	⊥ 02	NK=100 + KF1 50 101 I=1,40 	167 21 167 21
6	C C	. Work GENIKE GAPAGETY	"67 28 "67 28
٢	C	KOWNM=KCO9L(1)	MGP 2:
	C C	CALL PATCOLNA, RUWAN, 1, NHO, ALCOVERT	26P 29
8	č	IF(KF1.Eu.1) G0 TU 103	116P 29 MGP 21
æ		UJEFF=SPAUE(K,KPI) KUMUN=RCOUE(J) TVDF=1	HGP 29 HGP 29 HGP 29
U		LTINE=1 CALL P2(COLNN,RUWNN,LTINE,NM,TYPE,COEFF)	468 30
Ø	10 s C	CUNTINUE	MGP 31 MGP 31
	ب ن	FOWNMERCOUF (4)	MGP 31
6	۵	CALL PS(COUNH, POWNH, I, NRH, RHREG, KP1)	460 31 460 31
•	2	FINISHEJ GUOUS STJEKS	NGP 31 MGP 31 NGP 31
8	105	1F(I,GI,N) GU TO 106 LT(N2=I	M6P 3
0		COEFF =- 1 NOM(NT = x CODE (5)	MGP 31 MGP 31
	106	CONTINUE	MGP 31 MGP 31
0	č	NUNSER OF PARIS PER FIGUOU	116P 3
•		IF(KP.€0.1) 50 10 140 KUMNI= (COCE(15) KUMPITIAN KAT	168 32 NGP 32
Ð		1 F (K F 1, GT ε 1) GO TO 135 F (K F 1, GT ε 1) GO TO 135 F ((T + 2PKE)(K, 1) + 1) (LE ε 0) GO TO 140	HGF 32
0		II=I COSEFF=1	116P 32 NGP 32
_	135	GU 19 139 CUEFF=-1 J=:+SPFFD(K,1)-1	MGP 32
¢	139	ÎF(Î).GT. MA) ĜO ÎO 140 GALL_PI(CCLNG, RUNGH, II, TYFE, GOEFF)	NGP 3
•	140 C		768 33 MGD 3 MGD 3
5	č		MGP 3
Ø	<u> </u>	RUMN1=RUUDE(17) UALL PS(COLNM,ROWNM,I,NTYPE,ACKEQ,KP1)	HCP 31 HCP 31 NCP 31
	6 101	CUNTINUE	HGP 31
0	č	SALCS VAKIAULES	462 30
~	C .	NAME=6.045(2)	167 30 167 30
6		ио из каторинов Каотклонт (к) Об 211 J=1, К.Ю	167 30
0		ŠTYPE=SŪRŪO(K,)) QU 201_I=1,Ng	267 30 H62 31
•	ç	CHEL UCLUN (UCLINI, I, NAME, K, SIYFE)	NGP 39
٨	L	LINIQUED OPAGA SINCK .	00 ° 1

.

.

.

U	κυμημεκζούς (5) Ττρεεκ Colff = 1.0
Ċ	LIINC =I GALL F1 (GOLMM, KOWAM, LTIME, TYPE, COEFF)
C C	. D201 rodna=rColE(o)
	LIINL=I II=1+S_AG(K, J) H_M==1-1
205 205	17 (SLAG(A,J))235,208,205 17 (H)162-NM)207,207,206 17 (H)162-NM)207,207,206
207 208 L	CALL P2 (COLNM, ROWNH, LTIME, HTINE, TYPE, VALUE) CUNTINUE
CC	. CASH CUNTINUITY NOWNMERCOUE (8) In-last Aller 1)
	11-1+36(K,J) 1YPE=1 VALU==(LISI(K,J)*(10J-0ISCP(K,J))/100 IF(J-=NH)/4/3,ZJ3,204
203 204 C	CALL PI (COLNA, KUARM, 11, TYPE, VALUE) CONTINUE
Ū C	IUTAL SALES VALUE DEJECTIVE Romna=Rcode(13)
C.	TYPE=1 LALL P1 (COLNH, KONNM, WH, TYPE, /ALUE)
č	TYPE=2 - OWNME-2CODE (13)
С	COEFF =1 CALL P1(COLN:1,ROWNH,NM,TYPE,COEFF)
201 C C	CONTINUE SUBJONTRACTING ACTIVITIES
C C	IF (NSUB.EQ.9) 60 TO 399
	NAME=0000000 SIYPE=SUEDD 00 301 I=1,NM
c	TYPE=JUBAC(M) GALL COLUM(CCLNM, 1, NAME, TYPE, STYPE)
Č C	- HORK CENTRE CAPACITY - ROWNMERCODE (1)
ç	COEFF =-1. CALL P1 (COLim, Runim, I,)YFE, COEFF)
č	PUNNM=RCOLE(7)
	COEFF = SUGF(4) II=S3LAG(4) + I H) (4: = II-1
305 306	1F(HTINE-1)508,305,305 1F(HTINE-NM)507,307,306 nTIME=NM
3 ŭ 7 3 0 8	LÍIMÉ=Í Call P2(Colnm,Romnh,LTIME,HTIME,TYPE,COEFF) Comilnul
666	CASH CUNTINUITY
	RUMAATERCUUE (5) IYPL=1 II=1+SULAG(1)
	TEXITENNI) (O.C. 233, 236

.

•

.

		•	
		· · · · · · · · · · · · · · · · · · ·	
	С		10+ 439
P	ι L	TUTAL LAUGUR (14-ALEOGATION	467 446 260 441
		RGWN::=RCCDE(17) +YPE=SU3::C(M)	NSP 442 NGP 443
Ê.		LGEFF=-1. LALL P1(COLNA;RUMNA);TYPE;CJEFF;	116P 444 116P 445
_	ს ა01	CONTANUE	MGP 445
Ð	ა99 ყ		MGP 445
	C C	ALLUGAIED LASUUR	MGP 451
Ð		NAME=CCODE(12) BUISUI I=1.00	MGP 453
· .		D01301 L=1,RLF D01301 K=1,RHO	46P 455
5		$ \begin{array}{c} \text{STYPL} = \{(1,1),(1,1$	MGP 457
_	ç	UALL GULUM (GULNA) I) NA MEYEN SI TELI	MGP 459
Ð	C	. LANGUR GAPAGIII	MGP 461
•			462 463 1162 464
Ð	c	GALL F1(GULMA, RUNNM, I, TYPE, CJEFF)	MGP 465 MGP 465
a	č	. TUTAL LABUUR TIME-ALLUCATION	MGP 467 PGP 468
.	C	ROHNI:=KGOUE(17) Coffe=-1/K() f(1-K)	MGP 469 MGP 473
6		TYPE=K CALL PI (CGLNM-ROAMA-T-TYPE-COLFF)	MGP 471 MGP 472
U	C 1350	CONTINUE	MGF 473 NGP 474
8	1301 C	LENTINUE	469 475 269 476
	Č	***** RAN MATERIALS PUPCHASED ******	16P 477
53		STYPE=SUULD NAME=LCOJE(5)	NGP 479 NGP 480
6		DO 501 L=1,NRH DO 501 1=1,NN	MGP 482
6	Ç	CALL GCLUM(CGLUM, I, NANE, L, SITPE)	MGP 484
•	Č	- KAW MAILKINES SIUGNS	MGP 485 -
8	202	RONNA=FCDD2(4) TYPE=L	MGP 483
	507	CALL P1(CULRM, ROWNM, 1, TYPE, COEFF)	NGP 493 NGP 491
Ð	С С		MGP 492 NGP 493
	č	ΣΕ (. Δ) Δ.6(. Δ) 5.63.507	262 494 262 495
Ð	507	KOWICKERCODE (7)	NGP 496 Mgp 497
		CUEFF=KMJ(L) II=I+m(LAG(L)-1	MGP 498 NGP 499
Ð		IF(II.LE.NA) GO TO 509 II=NA	HGP 500 HGP 501
	509 508	GALL P2 (CCLNH, ROWNH, I, II, TYPE, COEFF) CONTINUE	MGP 502 MGP 503
e	Ċ	CASH CONTINUITY	MGP 504 HGP 505
	C	11=1+xHLAG(L)	HGP 506
e.	504	IF (11-NM) 504,504,505 Rown M=R0056(8)	KGP 500
		T τΡέ=1 COEFr =- κ.16 (L)	MGP 511
Ð	505	CALL P1 (JULINI);CONNI,11,TYP2,COLFF7 CONTINUE	MGP 513
-	C 501	CONTINJE	VG2 515
Ð	C		MGP 517
_	C		V(2 519
•		зттре=SU-00 D0 1201 L=1, мкт	MGP 521
_		UU 1201 L=1,NN CAEL CULURTUCLNM,1,NAHE,L,STYPE)	MGP -523
Ø			

•

	100	RAN MATERIALS SEJEKS
		номкм=ксоов(+) Түрб=с ОССГF=1 САСС F1 (Colam, Ponkh,I,TYFE,COEFF)
		IF (1. E.C. NY) 66 TO 1262 II=I+1 COLFF=-1 CALL FI (20) U.4. 2000 J. I. IYEE 200 FED
	1202 5	CUNTINUE STORAJE GAPAUITY
(C	RUHN 4=RCODE(3) 1YPE=1 10.5=5-400 (.)
C	1201	GALL F1(GGLNH, ROWHM, I, TYPE, GJEFF) CONTINUE
		+++++ FINISHED GOODS STOCKS +++++++
·		NARL=UCODE(15) STYPE=JU3UG UC 1401 K=1,NPκOG UC 1401 I=1,44
(FINISHED GOUDS STOCKS
		RUWNM= CODE(5) $TYP_{L}=K$ COCFF=1 (ALL F1(COLN
		Ir(1,E1,NA) GO TO 1432 II=1+1 GOZFF=-1 GALL P1(COLN., COMMONTI, TYPE, COFFF)
	402	CUNTINUE STORAGE CAPACITY
ų		KOWNN=RCODE(3) TYPE=1 COEFF=SPACE(K,1) CALL = #1 (CLL MAARGANM, L. TYPE, COEFF)
) t	2 401	CONTINUE
C C		001701 1=1,14 001701 1=1,14 001701 L=1,14LF
		001701 K=1,400 1F (MCLF (L,K).L(.0.0) 60 T01759 NAME=CCO1E(13) STYFE=NUMER(K)
		CALL COLUM(COLNM,1,NAME,1,STYPE) . WORK CENTRE GAPAGITY
		KONNM=KCODE(1) UOLFF=-17WCLF(L,K) TYPE=K GALL P1(COLNM, TOWRY, I, TYPE, CUEFF)
		. LABOUR CAPACITY
ſ		TYPE=L COEFF=-1 CALL F1(CUL 4.1,ROHNM,1,TYPE,COEFF)
Č		KOMNM=rCOJL (8)
C	;	UCER UNADE LE/ TYPE=1 UALL #1 (CULIET, 20mil, I, TYPE, UUERF)
ī	2	 LABJUL JVERTILE CAPABITY

•

•

		UQEFF=1 TYPE=L LALK E1 (Constants FORMARIS TYPE=CAFFF)	168 663 M68 610 M58 610
æ	C 1753		MOP 612 MOP 613 MOP 613
÷	C C	CONTINUE 	462 619 462 616
¢	L	1 YPC=1 Stypc=S0300	162 613 162 613
© .	0	HAME=CLOBE(67) BU DDI I=I,HA GALL COLUN(UCENH,I,NAME,TYPE,STYPE)	MGP 621
· .	с С	CASI CJHIINUIIY	MGP 623 MGP 624
€£		ССЕГГ =-1 - КОЙИР=КОООЕ (6) - 9ALL P1(СОЕИЛ,КОЙИМ,1,ТҮРЕ,СОЕГГ)	16P 626 MGP 627 MGP 628
¢.	602	if (I−NC)662,003,603 ii==i+1 COEFF=1	MGP 629 MGP 530 MGP 631
8	60 j C	CALL F1(COLNH, ROWNH, II, TYPE, GOEFF) CONTINUE	HGP 633 MGP 633 MGP 634
•	CC	EARNINGS DBJECTIVE	MGP 635 MGP 636 MGP 637
€		COEFFEL KUWAVEKGODE(12) CALL P1(COLMA-20WWA-1-TYPE-COEFF)	MUP 638 MOP 629 MOP 629
6	001 6		MGP 641 MGP 642 MGP 643
A	CCC		MGP 644
Ø.	č	NAME=CCOUE (7)	HGP 647
Ø		TYPE-1 DU 701 [=1,Nt]	MGP 650
0	C C	GREDIT	16P 652 26P 653 86P 654
	υ _.	ΤΥΡΕ=1 ΔΟμΝΩ=δούε(7)	MGP 655 MGP 656 MGP 657
Ð	_	LTIME=I LALL P2 (COLNM, XOWNH, LTIME, NM, TYPE, CDEFF)	MGP 550 MGP 659 MGP 560
Ø	с с с	CASH CUNTINUITY	MGP 662 MGP 663 MGP 663
ß		ТҮРЕ=1 Royak=rcgde (8) Coeff=1	MGP 564 MGP 565 MGP 665
Ÿ	C	CALL P1(CGLNK,ROWHN,I,TYPE,COEFF)	HGP 667 HGP 668 KGP 669
ø	C	χυμαμ=χζύυε(9) Τγρε=1	NGP 670 NGP 671 NGP 672
•		ĠĠĔĔŗ≅-AĻPHAG .Līihe=1 Gall P2(Ggln4.⊾oynmIINF.nm.type.Goēēē)	MGP 673 MGP 674 MGP 675
æ	C 701	CONTINUE	MGP 676 MGP 677 MGP 678
9	C C	• • • • • • • • • • • • • • • • • • •	NCP 679 HCP 689
٩		STYPE=50300 TYPE=1 () 8 1 1-1 8 M	HGP 682 HSP 653
0	ç	CALL COLUMNER, I, HAME, (YPE, STYPE)	MGP 685
_	C C	• UNE DI I	MGP 648
0		2006.M=2000E(7) CGEFF==1 LTINL=1	MGP 690 MGP 692
Ø		LALL PE (UOLHII): Onichig LTIME, NM, TYPE, GOEFF)	MGP 693

.

.

L C	. LASH LONIINULIY .
ن ا	TYPE=1 Ku F==-1
	$\frac{1}{K} \sum_{i=1}^{K} CODE(0)$ $CALL = F1 (COLd (1), CONT, 1) TYPE (COEFF)$
ç	LUAN CHARGES
ι.	TYPE=1
	UCEFF=ALPHAG LTINC=I
C	UALL F2 (GULNH) RUNNH, LTIME, NH, TYPE, GOEFF)
C C	CONTINUE ***** EANÁ CHARGES
Č	HAUF=CCODF(3)
	1122=1 S[¥]r=SUBDD F0_91_1=1.14
G	GALL GOLUN (GOLUN, I, NAME, TYPE, STYPE)
Č L	· CRÉDIT ·
90 Z	1F (9,FL6)995,935,902 hTIM2=1+ALFL6-1 SF (6: 205-00)900, 200,903
905 904	HIIKE=NM ROWHM=KGODE(7)
	TYPE=1 COLFF=1 LTLF=T
905	LITE = 1 LALL F2(COLNN,ROWNM,LTIME,HITME,TYPE,COEFF) Culting
Ć Ç	CASH CONTINUITY
C	II=1+A: Fu6 Th (1-1+N) 205, 016, 007
90 ó	ΤΟΥΤ-3033900,907 ΡΟΧΗΗ=RCODE(8) ΤΥΡΕ=1
	COEFF=-1 CALL_P1(COLNH,RUHHH,II,IYFE,GOEFF)
507 G	CONTINUE
č	TYPE=1
·	COEFF=1 Kubane-Rudde(9) Kubane-Rudde(9)
C 901	CALL PIROLNA, KUWNA, I, ITFE, GJEFFJ
9999	CONTINUE
5	
č	TYPE=1
	S1YPE=SU3DD NAML=CCODE(10)
c	DO 1001 1=1,10 GALL COLUM (COLRA, I, NAME, TYPE, STYPE)
Č.	. CREDIT .
	$\begin{array}{l} RChNM=RCODE(7) \\ COEFf=-1 $
С С	EARNINGS CHUCKING
č	IF(I.LT. 410) GG TO 1031
~	RONIM=RJCDE(12) CALL · P1 (CULMM, RONNM, L, TYPE, CUEFF)
0 1001 C	CONTINUE
ŭ	• • • • • • • • • • • • • • • • • • •
-	

.

.

,

æ		1/22=1 STYPE=SU360	NGP 740
VE2		1 ANE = GRUPE (11) Rec 1 and 1 = 1 and	- MGP 751 - MGP 732
_		CALL GULUX (GULAN, 1) NAME, IYPE, SIYPE)	16-733
£	ິ ເ	• • • • • • • • • • • • • • • • • • •	10 7 35
	G	альная собласти собла Поминие собласти собл	167 795
e		CuErF = -1	160 763 160 783
	С	UALE FIGUENNIS (UNINISIS (IFL) GUEFFS	46P 790
~	č	· LANNINGS OBJECTIVE ·	HGF 792
	Ŭ	1F(I.LT.wh) 50 10 1191	- MGP 733 - MGP 794
_			MGP 795
¢.	C	GALE F1 (COENNy (UNICTOLY TYPE) COEFF)	16P 797
	1101	CUNTINUE	- 46P 798 - 859 793
6	č	***** THE RNS VECTOR	VGP 900 460 801
•	C	ж.т. (d, 5240)	10F 802
•	ç	NORA CENTRE CAPACITIES	MGP 803
÷.	ă		462 835 HSP 835
	3011	κΞμ ⁰ (2,4130) (CPCTY(I,L), I=1,14)	H.P 607
Ø		KAITE (3,5255) ISCALE N::11E (3,5250)	MGP 809
		hAITE(3,5257) HOLEFT	NGP 810 NGF 811
ß		WRITE(3,5270)MONTH	MGP 812
-		WRITE(3,5280)	262 814
Ð	C ·	FARTOR FOR FALLA-IOUEL PRODUCTION AND BREAKDOWN	"GP 815
0	č		MGP 817
-			MGP 819
Ø	3006	CPGTY(I)_)=((1)0.0-WCLEFT)+CPGTY(I)/(100.+1564CE) D0 3001 L=1,%40	MGP 821
	3001	WRITE(S,5290)WCLF(NLF+1,L), (CPCTY(I,L),x=1,NM)"	MGP 872
Ø	r	WRITE (3,5300)	MGP 824
•	č	- AUJUST FOR POST HORIZON PRODUCTION REQUIRFNENTS .	HGF 825
A	C	DO 3J02 J=1.NWC	1'GF 828
U	3065		MGP 829 MGP 830
-	5005	00 3004 K=1, NPROD	HGP 831
Ð		KP=K51V(A,1) DG 3604 KP1=1,KP	MGP 033
		1I=SPACC(A,KP1)−1 IF(IIIECAC) 30 TO 3004	PGP 835
Ø		DO 3008 I=1, II HTNE=SE/F0(A, XH1) = I	NGP 836 MGP 837
			HCP 838
2		LINE=N.(+1+LL-SPRLD(K,KPI) DUR <u>NY</u> (TIRE)=DURNY (TIRE)+FCAST (I,K)*HOREL(LL,J,K,KP1)	MG 9 E41
	3003 3004	LONTINUE Continué	NGP 842
•	3007	00 5009 1=1,64 	- 168 843 NGP 844
Ð	SO 05	U = U = U = U = U = U = U = U = U = U =	MLP 845
		WKI (E (3)52907HULF (NEF+1)07) (00MMT (17)1=1)NM7 00-5009-1=1,NM	MGP 847
0		11=N++1-1 TE(DeCTY(TT, 0), G= 0.0) GU TO 3009	768 845 868 849
			MGP 850
Ð		IF (II, UF OF OF OF CONTONE CO	MUP 852
-10	3084	JPGTY(II+1,J)=0.0 _Cni:NUE	MGP 854
•	20.0	$\frac{10}{20} \frac{3}{10} \frac{1}{10} \frac{1}{100} \frac{1}{1$	MGP 855 MGP 255
6	3010 3010		462 857
		NR上12(3)2310) 上11日2=1	1150 859
Ð		ROMNIERCODE(1) The LEFE (CONTRACTEDE SUPERVICE OF OT Y)	- Mar 850 Mar 851
	ć	- United - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- 262 852 - 262 852
Ð	C		01 213
U			

			- A	- 224	-
		· · · · · · · · ·			
	-				
ں ع	u 3025	00 3020 L=1, HLF REAU(4,41302 (JPCTY(1,L), L=1, MM)	NGP 146.2	265	
((FAUTUR FOR EXIGATIONEL PROCECTION AND BREAKULMA	10P	ar - c - 9	
L		υύ 3026 1=1,64 μο 3026 μ=1.0μf	HGP	871 872	
	3020	したは、1(1)2)を((1)3、0~2012年1)7(2)017(1)2)710日。 その時のほかいの年にいります?) したし、売先(1)2)	116P	875 875	
. 3	3027	DJ 3227 L=1,40 90 327 L=1,4LF CPCTY(1,L)=CPCTY(1,L)/ISCALE	26P	875 877 879	
. 3	3621	90 3921 L=1, NEF REIT2 (3, 5201)L, (CPLIY(I,L), I=1, NM) WRITL (3, 5200)	16P	073 859 881	
		LADUUN GREATHL GAPALITIES	- 02 - 162 - 162 - 162	106 393 394 394	
3	3035	UU 3039 N=1,NCF KEAP(2,4130) (UPUTY(1,1),1≠1,NM) NNITZ(3,5343)	KGP MGP MGP	386 887 388	
		CALL P4(CONTALTINE,NM,NLF,GPCTY) Du 3532 I=1,1M	MCP	389 896 896	
3	3032	$\begin{array}{c} U \\ U $	PCP MCP	892 893	
s Q	Č 2021	$\pi \kappa 112 (3,5250)$ $\pi (10^{-011} (1,77) (1-1,60)$ $\pi \kappa 172 (3,5250)$	100 100 100 100 100 100	895 896	
C		<pre>kep(2,413c) (LPGTY(1,1),1=1,NM) </pre>	HGP MGP MGP	898 899 900	
-	71.1.1	CONTRACTORS (JULIAN, LIINE, CPCIY) 	46F	901	
	-	WKITC(3, 5350) (CPCTY(I, 1), 1=1, NN) WKITC(3, 5310)	404 204	954	
		INITIAL RAH MATERIALS STOCKS	40P 40P	907 908	
•	•	NETIC (3,5370) NKITC (3,5370)	HGP HGP MGP	910 911 · 912	
ు	\$052	HATIL (3, 5340) N, CPCFY (1, M) MRITL (3, 5400) ARTIL (3, 5400)	HGP HGP NGP	913 914 915	
		HRÌTE (3,5253) ISCALE HRÌTE (3,5263) He Te (3,5263)		916 917 913	
C		RITE(3,9200)	16 P 46 P	919 920 921	
ŭ	<u>,</u>	00 3056 J=1,NEA 004Ma (1)=0.0	2002 2012 2012	922 923 924	
7	3053	NU 3053 1=2,4M UPCIY(1,J)=0.0 DUMAY(1)=0.3		925 926 927	
~		LO 3059 K=1, 4P200 AP=KJIV(K,1) BO 3054 API=1,KP	467 462 862	928 929 930	
		11=SFRED(K, K⊇1)-1 1F(11.E0.u) 60 TO 3054 00 3155 1=1.1I	MGF NGP NGF	931 932 933	
		H11H1=SFRED(K,KP1)+1 D0 3053 LL=1,H11HE T1H5=NH+1+LL-SPRED(K,KP1)	MGP VGP NGP	935 935 936	
) 3	2055 2054	JURNY(TIME)=JURNY(TIŘE)+FCAST(I,K)+PMREQ(LL,K,KP1,J) LONIINUE CONTINUE	116P 116P 110F	937 939 939	
د د	3029 3027	GUNTINUE UC 3152 1=1,NM UC 3(5/1 11=1,NM	~6F -6F ×C=	940 941 942	
د . 3	30971 3095	$C^{D}(1) (11, 0) = 0 f (11, 0) - 0 U (1) (1)$ $C(AE_1(1, 0, 1, 1) = D(AE_1(1))$ $D(AE_1(1, 0, 1, 1) = D(AE_1(1))$ $D(AE_1(1) = 0 U (1) / 1 = 0 U (1) / $	nge Nge Hup	943 944 945	
3	30.55	NKITE (J, 5293) J, (Juhry (I), I=1, NM) Contrave Roam =Root (4)	н(р ч(р ч(р х(р	946 947 948	
		· · ·		-	

•

		UNEL PA (ROMORSELIESIONS OR 1570317)	40,00	949
Ø	~	NRTT2 (3, 3314)	96P	950
-	č.	Skiel all FlauxF	·	352
	č		100	\$93
Ð	c	REAL(2,4108) ASKP	1 br	354
	č	INTIAL FINISHED 900DS STOCKS	49.4	455
-	õ		164	27
B		代わる(2+413) (C-C) Y (1+K) + K= 1+いがK(C)	NG 7	919
	30 51	STOCKT(x) = GPOT((1, K))	45.4	960
-		h(11;(3,242))	ι i Γ	961
B		HNLTE(3)5339)	26P	963
	30 n Z	DC 3902K-1; (KCCCTY(1,K)	4 Å M	964
_		KNITE (3,5400)	TOP	955
3			105	967
	C		6 J.	968
-	<u>Č</u>	EXTRA-300LL JEET ACCUUII	NOP	959
87	Ç	- ADJUST GASHFLOW FOR INITIAL DEST POSITION	16P	970
	6	<pre>head(2,4130) BUMAY(3),DUMMY(+)</pre>	"GP	972
-		ĮĮĮĮC(\$,5530), UŲANY(\$), DŲMNY(4)	MGH	973
9		NEAU(2,4130)(CFGIY(1,1),1=1,1m)	202	975
		NAIIE (3, 5255) ISCALE	чёр	976
-		kxIIE (2) > 4701	MGP	977
8		NRIE(3,5460) NUNIH de (1, (3,5470)	160	379
		UO 3112 1=1,NM	HÖP	٩٩Ő
•	3112	CFGIY(1,1)=GPGIY(I,1)/1SCALE	MGP	2.1
83		NRII((3,5490)(CPCIY(1,1),1=1,NM)	36P M(.P	953
	3111	\overrightarrow{CF} \overrightarrow{C}	162	9×4
•		NUMMI=	HGP.	985
S		URLE PA(KOMAN,LIIME,MA,LIIME,GPUIT)	166P	337
	C		"G D	938
•	ğ	 EATRA-MUDEL CREDIT ACCOUNT EATRA-MUDEL CREDIT ACCOUNT ACCOUNTACOUNT ACCOUNT ACCOUNT	MGD	7.04
Ð	č	- AUJOSI GASTELON FOR INITIAL DEDITIESTION	465	9 91
	•	REAG(2,413C) UJMAY(5),000MAY(3)	"GP	192
_		KSTIF (3) 2220 (30410) (5) 100 MAY (6)	- 6P	333
9		ΤΕΑΟ(2)4130/(OFCIT(1)1)1-1)40/ ΜεΙΤΕ(3,5550)	ЧСР	495
•		WRITE (3, 5255) IJCALE	NGP	235
<i>a</i>		nR11E (3,5470)	262	397
9		WRITE (3,) 4 CO 100 M A	MGP	<u> </u>
		DQ 3122 1=1, NH	REEL	1000
-	3122	GECTY(I,1)=GECTY(I,1)/ISCALE	MGP1	
8		wR11E(3,5560)	NĞPI	603
		D0 3121 1=1, NM	HGP1	
a l	3121	L-ClY(1,1)=C-ClY(1,1)*(-ISCALE)	VGP	005
Ð		CALL P4 (KUNRY, LTINE, NM, LTIME, CPCTY)	HGFI	007
	ç		MGF1	1996
0	č	- INITIAL LASH HOLDING	HGP	1010
	č		1671	611
			11621	1012
8	C		พรักไ	1014
6	č	- GIFFERENTIATE BETAEEN INFLOWS AND OUTFLOWS .	1.6.61	015
	C		116 - 1	
A			·iĞPj	019
♥.		DO 3432 J=4, KEXC	- 46P	1013
	7842	(C+C(Y(1,J), I=1, NM))	1691	1020
Ð	JUCE	λέχθ=χέχθ=σ	អត្តទាំ	iğ 22
W		rR+1_ (3, 2464)	"GP1	623
		NA112(3)2255)ISCALE	- 115 (* 1 - MC P 1	10.24
A		NCT1 (3,543) NUNTH	-655	1026
e		NRITE (3,5473)	4301	027
		10 3080 1=1,NM	"51") •6.01	1925 1925
6 5			NoF 1	1330
0	3285	LF0] (1,1)=CFUT(1,1)+(CFUTY(0,3)*CPCTY(1,0+3))	450	031
	ວ ປົວ 4		1.571	1632
_		0801111111-08011111-00053111	.01	1133

- A - 226 -

		1120120121121121	11522 (24
Ð	ა 907	00 3007 0=1,00 UF 01 Y (0,1)=020 (Y (0,1) =0096Y (0)/00	4GP1035
	•	Ju=EJXM((6) DC JuJ3 J=1,JJ	46P1037 1591038
Ø.	3009	CFUI:(J,1)=C7C[Y(J,1)+DURNY(5)/JJ 	1021039 1021040 4021040
a		CALL P4 (AUNIXP,LTIME, MI,LTIME, CPCTY)	NG-1041 MG-1042 MCP1043
19		NENG-NENGYA 20. JURA 1741, YM JEATY (J. 1)=0001Y (J. 1)/1SCALE	+071045 MG=1045
Æ		DU 3531 J=4, NEXC LFGTY(1,J)=CFGTY(1,J)/ISCALE	1051046 1651047
•	3081	LUNTINUÉ NEXU=KEXC-3	NGF1948 MGP1049
C		UO SESS U=1, KEXC Ir (Cruit (U, J) - 5[- 0.0) GO TO SAB6 IR (Cruit (U, J) - 5[- 0.0] GO TO SAB6	8621850 5021051
-	20.45	ARTIE (3,54 95) CPUTT (3,2), (GPUTT (1,3+3), 1=1, NT) L=0 COLT	16P1052 16P1053
Ð	3030	IF(J.E0.KEXC) L=KLXC+1	YGP1055 YGP1056
		LU SU33 1=1,4M LPCTY (T.L+3)=0.0	MGP1057 MGP1058
3	3088	IF (I.LE.JJ) GPCTY (I,L+3)=DUMAY(3)/(JJ+1SCALE) CONTINUE	MGP1059 MGP1050
•		NRITE(3,5495) (GPGTY(I)_+3),I=1,NM) NRITE(3,5498)	MGP1061 MGP1062 HCD1062
\$		UQ 3033 JE1,NEX3 IF(Cr31Y(J,3),LT+0,0) 60 TO 3085 Matte(J,50,65) 29, (Y(J,2), (CPCTY(J,3+3), (=1,00))	PSP1003 PSP1004 MGP1065
ß	3085	L=J LONITNUE	PGP1065 MSP1067
		JJ=DJ/MAY(6) JO 3J JÚ 1=1, NH	₩\$₽1058 MGP1069
9		C⊭CTY(I,_+3)=0.0 IF(I,LE,JJ) CPCTY(I,L+3)=DUMMY(5)/(JJ*⊥SCALE)	PG21070 K6P1071
-	30 30	CCNTINDE MRITE(3,5497) (CPGTY(I,L+3),I=1,NM)	HGP1073
0		hRITE(3,5493) hRITE(3,5493) (CPCTY(I,1),I=1,NN) kb.ITE(3,5503)	NGP1075
	C	LF (IF Stational) GO TO 3099	NGF1977 HGP1073
\$	С С	L DAN CHARGES	HGF1079 NGP1093
•	C	REAUT2, 4130) CPUTY (1,1)	MGP1031 MGP1082
9.		$W_{A}(1) = (3, 55, 0) (2) (1, 1)$ $W_{A}(1) = (3, 55, 20) = A_{A}(2) (3, 1)$ TE(0) = 1 (1) (3, 0) (0) (0) (3, 0) (2)	MGP1085 MGP1084 MGP1085
6		$UO_{3}UO_{1} = 2.0M$ $UO_{1} = 2.0M$	NGP1986 HGP1087
9	0071	LT LT E = 1	HGP1088 MGP1759
£	30 92	CALL PA (KONNM9LTIME, NM -)LTIME,CPCTY) CONTIN UL	HCP1030 P6P1091
Ť	20 48 C	CONTINUE	NGP1092
8	ů G	+**** THE RANGES SECTION ++*****	MGP1095 MGP1095
	c c	HKITE(8,5720)	FGF1097 HGP1098
	ŭ	WORK CENTRE LOWER BOUNDS	PG21099 "SP1100
_		NUNNJERCODE(1) DU 3901 L=1 ,NVC	MGP1101 MGP1102
0		DO 3901 1=1,HM 1F(L.GE.10) GO TO 3992 1F(L.GE.10) GO TO 3992	"6P1103 "6P1104 H6P1405
~	36.2	мать (ээргээ) аристаттуудоййнусу балмыстуси бо ТЭ ээрт жать (ж.5764) нимтн (г), ж. Мам.н. ССРИС (Т.:)	HGP1106 HGP1107
W	3901 C		46F111A PGP1109
8	Ũ G	- THERE ARE 3 TALA TYPES	46P1110 MGP1111
	C C	- 1 SALES BOUNDS - - 2 DATA FOR ALL NA PERIODS -	"671112 "671113
9	ι G		86P1119 86P1115 86P1115
	C	идиструории 	*GP1117 FGP1113
9	U	• 34663 0000000 •	,
	•	· ·	
•			

•

			- A - 22
	•		
يا		• • • • • • • • • • • • • • • • • • • •	1671119 M671123
ט ט ט		THIS FLOT ING ACULEN. THIS FLOTS IND GRAPHS FER FAGE OF LINED DZP	"5F1121 16P1122
ĩ.		TYFE1=0	/ GP1123 166 1124
ა	o . 1	UEUTANUE Cuitanue Numerication - Computer utype	* 6F 1125 * 6F 1125
3	6:ս	TERTINE INTEL SUITE	-GF1128 LUP1129
C		16 (17P2-EQ.0) GO TO 3303	"6#1130 "6#1131
С С		. UUTPUI INE GUUNDS	16P1132 H6P1133 H6P1134
		NI=KNUUT(II*2) U=U+1 U0 3.002 K=1.KT	PGP1135 MGP1136
•		READ(2,415C) (JALESO(J,K,I),I=1,NH) STYPE=SUCCU(TYPE,K)	4GP1137 HGP1138
		DO 3602 IF1, NO CALL COLUMICOUND, I, CLNM, TYPE, SIYPE)	MEP1139 MEP1140
3	802	CONTINUE GO TO SAUL	46P1142 46F1143
ç		JETEFMERE THE SCALE	PGP1144 PGP1145
С 3(850	1r (TYPE1.LQ.0) 60 10 3310	16P1146 16P1147 16P1148
		DO 3851 A=1,KI DO 3051 J1=1,J	MGP1149 MGP1150
		00 3651 1=1,ΝΜ 1+(SALESJ(J11Κ,L),LE1SCALE) GU TO 3851	MGP1151 MGP1152
Ĵ.	551	ISOALE=SALESD(J1,K,I) CUNTIRUE 	NGP1153 NGP1154 NGP1155
		$\frac{1}{1} \left(\frac{1}{150} \text{ ALE} \cdot \frac{25}{150} + \frac{35}{100} + \frac{25}{150} $	HGP1156 HGP1157
		UQ 3352 IC=IU0,10000,100 If(ISCALE.UT.IU) GO TO 3852 '	MGP1158 MGP1159
	069	ISCALE=IC GU TO 3860 CC 11 3860	PGP1169 PGP1161 HGP1162
30	d b Q	CONTINUE	MGP1153 MGP1164
č		PLOT THE GRAPHS LINE BY LINE .	MGP1165 MGP1166
		1KT=(KT+1)/2 *Z=KT-2*(K1/2) *E(x) + 7-2	NGP1157 NCP1169 NGP1169
•		DO 3570 1KT1=1,1KT IS1=(2*1Y1)-1	NGP1170 NGP1171
		İFIN = (2+1KT1) −2+1Z HKLIL (5,5/10) TYPL1	HGF1172 MGP1173
		10 3351 10=1,25 15HAX=(27-10) #ISCALC/25 15MK=(26-10) #ISCALC/25	HGP1175 PGP1176
		DU 3562 I=1, NM DO 3662 K=IST,IFI'I	MGP1177 MGP1178
		IGREn(1,K+1-151)=SU200 00 3362 J1=1,J 14 J1 J2 J1 J2 J1 J2 J1 J2 J1 J2 J1 J2	H6P1179 H6P1180 H6P1181
	1 1052	ir ((SALESD(JI)K)I)+LI+IS/AK/+AND+(SALESD(JI)K)I/+BE+ISMIA// L ISAPH(I)K+1+ISI)=SUJJD(TYPE1)K) C.941JUF	MGP1182 MGP1183
5	502	Ĭř((((ĬČ-1)))-5.0*((1C-1)/5)).EU.0.0) GO TO 3863 W.Cl((5.5700) (SUSDU,(IGRPH(1,K),I=1,K4),K=1,IZ)	NGP1184 NGP1185
3	8 0 3	60 TO 3801 1504=(1504=E*(26-I0))/25	MGP1155 MGP1137
3	101	NKIIE(5,5765) (SUSUD),ISGE, (IGKMU(I,K),I=1,KM),K=1,IZ) UU/VINUE WEITE(5,5707) (SUSUD,K=1,77)	HGP1189 HGP1190
3	376	$\begin{array}{l} k(\mathbf{i}) \in \mathcal{J}(\mathbf{i}) \\ k(\mathbf{i}) \\ k(\mathbf{i}) \in \mathcal{J}(\mathbf{i}) \\ k(\mathbf{i}) \\ k(\mathbf{i}) \in \mathcal{J}(\mathbf{i}) \\ k(\mathbf{i}) \in \mathcal{J}(\mathbf{i}) \\ k(\mathbf{i}) $	MG21191 MG21192
_		J≈9 GJ TO 3810	2621133 4621134
C C C		. 300433 FOR NA PERIODS .	MGP1195 MGP1195 MGP1197
ن نړنې د د	8 u 3 3 ü 4	S[/9d=50500 * TAD(2,416() GENJ,JTYPE, TYPE, STYPE, (EUJMY(1), I=1, NM)	rgp1194 1571199
-		$\frac{1}{2} \left(\frac{1}{2} + 1$	46P1200 46F1201
		6466 60690 (60699, 1, 6693, 1, 725, 51725) HZITE (3, 59481 - 3 (YZE, 60690, JU MY (I)	NG 1293

A	うひしつ	
٣	С. С.	- Shinh J J J
æ	й. Хял.,	•
ίΩ,		REPORTED DERIVITED DETENDED DE
•	C IF	TE COCTES POLITIEN GORDS HUST HADED FOR DEVESTORS AS MELL AS THE
Ð		NFENDIA (IART)]] NETYPE
		00 3009 KF1=1,KP TYPE=100+NF1
Ð	30.14	UALE COLUM (COLUM, 1, CL MM, TYPE, STYPE)
	2201	
Ð	2000	UALL UGEON (COL 44, 1, OLNH, 1) PE, SIYPE)
		WALIE (3,5040) SITPE, COLIN, VALUE
6	C C	. JLUSE THE JUIPUT FILE .
49 7	Č 3807	wé.ITi (d.5050)
A		haite (3,5660)
6		NEWIND 8
-	2	510P HKLIE (3,5670)
Ð	С	LO 1U 1
	C C	 THE FORMAL SECTION NUMBERS 4XXX REFER TO READ STATEMENTS
Ð	Č	- WHILERS SXXX REFER TO WRITE STATEAENTS
	4001	FORMAT(22(1X, I2))
Q	4011 40-0	FURNAI(2412) FURNAI(2(FC.3)I4)F8.3))
-	4030 4035	F URMAT (15A4)
5	40.57	FURNAl(10F6.4) FORMAT(13.F8.3.15)
لخذا	4050	r OKMAT (J12)
~	4070	FURMA1 (12,A2,212,F8.3)
5	4071 4000	Fur, MAT (212) F3. 3, 1X)) FORMAT (12) A2, 27 8. 3, 14)
•	4090 4136	FURHAT(1216) FURMAT(2042)
9	4110	FÚČMAT(IŠ,ŽA+) FURNAT(A2.1X.A2.I5.13)
	4130	
8	4150	FURNAT (AC)12 (AC)28447 FURNAT (10F0.0)
	4160 4170	FURPATIZAZ, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
6	41 ou 41 yu	FORMAT(12,20(A4,F2.0)) FORMAT(10F0.3)
9	C 50.1	FOWRATELINE, DE PRODUCTS 1.12.10X.100. OF 0.11 FTS 1.12//
•	<i>,</i> , , , , , , , , , , , , , , , , , ,	1' NO. OF WURN CENTRES 1,12, 5X, DU. OF TYPES OF LABOUR 1,12//
6		4 NU. OF FURUNANDIED 112, DASTHUS OF RAW MATERIALS 1227
_	5020	-FORMATCZZY DATA ON MAN NATERIALS',///2%, * PRICEZUNIT - LAG ON PA 17MENT - VOLZUNIT',//)
S	50 JU 50 Ju	FURHAT(4X,FB.S,GX,16,GX,F8.3) FORMAT(7/7/7* HUPK CENTRE LABOUR FORCE REDUIREMENTS HRS/HR*/7/)
	5050	FURNAF(2X, A+, 10(4X, F3, 3))
ତ	5054	FORMAL (1HU, ' WORK GENTRE LONDING EFFICIENCY*/1X,28(*-*))
	5000	FUNMAT(110)23(44)28))
ຄ	5060	-MORGAT(///// SUBCONTRACTING.ARRANGENENTS"//* - WORK CENTRE 11CE/HR LAG ON PAYNENT - **)
	507u 5030	FURMAT(/5X,16,3%,F0.5,3%,16) FURMAT(101.) FRODUCT OFTATES!//! PRODUCT'.T4.4 IS MADE OFT.
m.	2000	114, SECTIONS /// THE NUMBER OF OUTLETS FUR THIS PRODUCT IS',
0	50 90	FURPAT(////////////////////////////////////
_	5129 5129	rocharterent Taonice Fine Courtedonis (1970-11-1) rocharterent Aan Mateniae Rocharterents (1970-11-1)
5	51 50	-FORMATI/////* GALEG DATA OY HARKET OUTLET*//5X,*CODE*,8X,*LIST PRI TGE - GIGGUBT - LAG ON PAYAEHT*/
	514J 5150	FURNAT(//X, AZ, UX, F12, 3, 7X, F1.3, 8X, T5) FORMAT(///// FORFUAST FUR PUST HORIZON PROPERTION!///// PPODUCT!.
Ð		

- A - 229 -

~	51	1* A'GUNT4//)	4612
Ð	5170	FURNATUY,10,121107 FURNATU(10,512,100,204)	MGP12
	5100	- F G M A T - (『マレオン『) - * G P 8 A 3 1 (*5F12*
Ð	5200	r GRMAT (42,24,242,12,42)	19212
	5203	FURNALL AZyZAZYZAZYZAZY	HGP123
6	5210	FURNAT(*66_UMAS*) FURNAT(* REPORTED TOR TOR REP)	.466129
<i>w</i>	2230	FURNATI ' THERE IS AN INCUTATIONLITY LETHERN THE TURNREUND	16212
_	224u		+ (+ 17
Ð	5250	- FUNMAT(1H1,//,20X,*GAPACITY_)F_PRODULTION_FAULUITES*//19X,35(***) 1//)	168 130 168 130
	5255	FURNAT(1m , 10X, 32(***)/11X,** THE UNITS ARE IN*, I9 ,* S **/,	PGP13
Ð	5257	FURMAN () E ,E6.1, PENCENT OF CAPACITY IS LEFT OUT OF	"6-13
_	5250	1 ROLL FOR EXTRA RODEL AUTIVITES") FormAT(1x,11)("-")/1X,"I",7X,17("1",EX))	P6P13
6	5270	FORMAT(* 14,7A,*14,10(2A,42,2X,*17)) FORMAT(* 14,7A,*14,10(2A,42,2X,*17))	10113
C)	5200	116 (6X, 11))	16P131
	5290 5291	- + U.("A) (1X, '1', 2X, A4, 1X, '1', 10 (F 6.1, '1')) + U.RMAT(1X, 'I', 3X, I2, 2X, '1', 16 (F 6.1, 'I'))	*6F131
Ø	5300	FORMALL' REDUCTION IN RORR GENTRE CAPACITY FOR POST HORIZON PRODUCTION IN	1:6P131
	2310	r OANAI (1X,119(*-*))	MGr 131
8	2320	$-10(0X_{1}^{-1})$	+GF131
-	5330	FORMAT(* REDUCTION IN LABOUR FURCE CAPACITY FOR POST HORIZON PPODU (GILON*)	MGP132
•	5346	FOPMAT(1x, 11, 1x, LAJOUG', 11, 16(6X, 1)/1X, 'I', 1X, 'FORCE', 1X, 'I',	HGF133
C	5350	FORMAI(1X, 11, S) URAGE, 11, 16(6X, 1)/1X, 1, CAPAUTY, 1',	MOPIS
	5360	116(Fo.1,',')) FORHAT(1HG///1X.120('**')////)	MGP132 MGP132
©	2370 5380	FORMAI (20X, 1, 100 JT OF LAW FATTKIALS'/19X, 24(1*1)//)	MGP13
	5000	1 INPUIT 24, I /21X, 20(1-1)	YGPIS
Ø	5396 54 u Ü	FORMAT(21X, 20("-"))	PGF132
· ·	5410	FORMAT(' PEDUCIION IN RAW MATERIAL CAFACITY FOR POST HORIZON PPODU 16110N////)	MGF13
•	5420 6630	FORMAT(1H1,20X, 'INPUT OF FINISHED PRODUCT'/19X,27('*')//)	HG213
0	54.50	$U_{3} (1 + 1)$	167133
	5440	FORMAT(//* EXTRA W.I.P. FOR POST HORIZON PROBUCTION*;/1X,4J(***) 1//;1X,10F8.1)	26F133
Ð	5450 5400	FORMAT(///,' INITIAL INPUT OF CASH',F10.1,/,1X,22('*')) FORMAT(1H0///20X.'OUTELOWS OF CASH'/19X.18('*')//)	MGP13: HGP133
	2470	FOKMAT(8x,111(*-*)/dx,*I*,0x,10(*I*,6X))	MGP1 34
Ô	5496	FURMAT(I)10(Eu, 1, I))	NGP134
Ŧ	54 32	FONMAI(' I',A+,' i',10(Fo.1,'I')) FURMAI(' IIN-DuII',10(Fo.1,'I'))	MGP134 MGP134
0	5497 5698	$FO(MAI(- 1) h \cdot CAT 1 + 10 (Fo \cdot 1 + 1 + 1))$	HGP134
0	5435	FURMAT(' 1 TOTALI', 10 (F6.1, '1'))	PGP136
	2510	FORMAT(///20%, 11/15/EST ON INITIAL BANK LOAN= E', F8.1/19%, 30(***))	16P130
9	5520 5530	FORMAT(///,20%,*PATE OF INTEREST',F10,3,/,19%,16(***)) FORMAT(//* FUNTIAE OF INTEREST',F10,3,/,19%,16(***))	HGP139 MGE139
-	55	1F3.0, PEFILO3'//)	MGF 1 3
3	5550	EUKHAI (//' INITIAL CREDIT UNED BY COMPANY ', FID.1,' PAYED OVER',	1162135
-	55 0 0	163.0,* PERIOUS'//) FORMAT(140//2000,* EXTRA NUDEL ORECIT */190.23(***)//)	H6P139
6	5510	FORMAT (//20%, 'GROWTH IN STUCK OF FINISHED PRODUCTS '/19Y,40('*')/)	*GP139
U	5575	rOKMAIlZux, 'The GROWIH IS', F8.1, ' PERCENT', 20('-'), 'HHIGH IMPLI	N62135
	55 80	TES -*//) FORMAT(21x,20(*-*)/L1x,*1*,8x,*1*,1x,*STOCK*,3X,*I*/21x,*I*,	"GP136
Ð	5 5 4.1	1' TYPE',2X,'I',1X,'GPUNTH',2X,'I'/21X,20('-')) FORMAT(4X,'MGC',7X,242,11,5X,F12,4)	MGP136 NGP136
	25 11	FORMAL(4X, 14001, 7X, 242, 12, 4X, F12, 4)	PGP136
9	5010	FURNAI (44, 1 - LFC - 1/2, 2, 2, 2, 2, 1, 1, 5, 2, 7, 2, 4) FURNAI (44, 1 - TRL - 2, 7, 2, 2, 2, 2, 1, 1, 5, 2, F12, 4)	NuF136
.	5 a 3 J 56 4 J	FURMAT ('JUDHUS') FURMAT(1x, 42, 1x, 'FOLICY', 4x, 2A2, 2I1, A2, 2x, F12, 4)	46F139 MSF139
•	56.50	$\frac{1}{1} \frac{1}{1} \frac{1}$	NGFIT
Ð	2000	PORMAT (' THERE AS THE NEW POST HORIZON FCAST')	16-137
	5700 5705	HO-MA((14 ,C(A2,6%,'I*,10(A2,1%), d%)) FORMAT(14 ,2(A2,15,1%,'I*,16(A2,1%), d%))	16F137
Ð	- , . , . ,		

			- A - 2
Ð	9707 5708 5710	FUNDAT(IN ;2(A2,7A,40('-'),1)A); FORMAT(IN ;2(10X;10(A2;1A);6K)) FUNDAT(IN ;2(10X;10(A2;1A);6K)) FUNDAT(IN1,77777,25X; ' UPPER AND LOWER SALES BOUNDS FOR FROMUNT ('+10,777777777)	1011374 FEF1375 19091375
¢	9720 5730 5740 55100	FULTAIL +LAIGFS*) FULTAIL(4X,*LAIGES*)4X,242,I1,5X,F12.4) FULTAIL(4X,*LAIGES*)4X,EAZ,I2,47,F12.4) FULTAIL(14.10A2)	4581373 4681379 4681746 4681381
Ð	L L		4621332
Đ		ALL VARIANLE NAMES APE MALE L- AS FOLLOWS - 'PERIOD, GENERIC NAME, TYPE, (LXT-A)IDENTIFIER'	15P1385 15P1385 16P1387 16P1387
Ð	· C C	SUBROUTINE COLUTION I, NAME, 1978, STYFE) THIS ROUTINE CONSTRUCTS THE COLUMN VARIABLE NAME	7521309 2621300 2621391
Ð	U	COMMUN MONTH(101, SPALD(20,4), RM, N, RUIV(20,5), CPCTY(15,20) INTEGER COLUM(5), IYPE, SIYPE, SPRED UDLAG(1)=MONIH(1) (0) NG (1=MONIH(1)	MGP1395 MGP1394 MGP1395 MGP1395
6		1 (TYPE-LT.100) GO TO 10 1 YPE=TYPL-100 3 TYPL=KDIV(K,TYPE+1) 1 YPF=K	NGP1337 NGP1398 NGP1399 NGP1400
ø	10 1	17(17PE-10)1,2,2 COLN:(4)=TYPE COLN:(4)=0 COLN:(3)=0	YGP1401 YGP1402 YGP1402 YGP1403 MGP1403
ß	2 3	СЙLNA (3) = TYPE/10 ColNa (4) = TiPE-10*ColNM(3) CulNa (5) = STYPE F TUVN	MGP 1404 MGP 1405 MGP 1406 MGP 1407 MGP 1407
. 6	C	ENU SUBFOUTINE P1(CULNM,FOWNW,FINE,TYPE,COEFF)	HGP1409 HGP1410 HGP1411
0	č	CUEMON MUNTH (16), SPRED(26,4), NM, $(, ROJV(20,5), C^{o}CTY(16,20))$ INTEGER TYPE, TUPE, CUENM(5), S ^o RED, ROWNM IF (IFE, GF. 1907) NU TO 5	NGP1413 NGP1414 NGP1414 NGP1415 NGP1415
B	1	1+ (TYPE.G1.10)) GO TO 10 1+ (TYPE-10)1,2,2 πς1τε(3,100) COLNM, πΟΝΙπ(TIME), COWNN, TYPE, COEFF	46P1417 46P1413 46P1413 46P1419 86P1420
	° 2	NEITE(0,200) COUNM,NONTH(TIME),KOWNM,TYPE,COEFF NEIUEN TYPE: TYPE: A DATA	NGP1421 ·
¢P	2	IFC-JIFC/10TA IF()YFE.GT.1000) GU TO 6 MRII2(0,310)GUENM,MONTH(TIME),ROWNM,TYPE,COEFF FEIURN	HGP1425 HGP1425 HGP1425 HGP1425
٢	6 G	WRITE(3,400)COLNM,MONTH(TIME),ROWNM,TYPE,COEFF Return	MGP1427 MGP1428 MGP1429
٩	й С 10	- THIS SECTION FOR THE PROJECT DIVISIONS IYPE=IYPE-160 IF(iyFE.GL0 IO 20	MGP1430 PGP1431 MGP1432 MGP1432 MGP1433
Ø	3B	λΡΞΚΟΊΥ(Κ,1) UU 30 KFIΞ2, KP ασΙΤσ(αμαθυβού Nulminu(T) NE) -ΚΟΝΝΜ.Κ.ΚΟΤΥ/Κ.ΚΡ1 (+1)-COFFF	4621434 2621435 2621435
æ	20	RETURN MRITE(0,300) COLWN, MONTH(TIME), ROWNM, K, NDIV(K, TYPE+1), COEFF	HGP1437 NGP1438
6	Ĺ Ĺ	. Inc. Furthal Section	NGP1439 NGP1440 NGP1441
0	し よけけ 264	FUKMAT (44, 2A2, 211, A2, 2X, 2A2, ± 1 , 5X, F12.4) FOAMAT (4X, 2A2, 211, A2, 2X, 2A2, ± 1 , 5X, F12.4)	HGP1442 MGP1443 MGP1444
Ð	300 0 40 400	FURNAT(4X,2A2,2TT,A2,2X,2A2,1T,A2,4X,F12.4) EMPLESS THAN 10 PROLUCTS ONLY CAN 3E MAGE OF SECTIONS FORMAT(4X,2A2,211,A2,2X,2A2,13,3X,F12.4) FCR:MAT(4X,2A2,211,A2,2X,2A2,14,2X,F12.4)	9671445 8671446 8671447 8671447 8671448
Ø	C C	END SUBREUTINE P2(COLMM, REMAINE, TYPE, COEFF) THIS REUTING IS USED FOR TRIAMOULAR MATRIX ENTRIES	NGP1449 NGP1451 NGP1451 NGP1452
Ð	0. 0. 0.	- ACLTES IN UTE COLUMN THE SAME ENTRY BETWEEN Thu Rum IDE (TIPLERS	4621453 4621454 4621455
~		UUMHUN NONIA (15), JPRED (20,4), NN, K, KDEV (20,5), GPOTY (15,20) INTLOEP COLUMICS), IYPE, HIINE, JPRED, RUWNM IF (TYPE-10) 1, 2, 2	4681456 4681457 4681458

·

D	1 5	LO 3 1=1110,HT1 12 NGLTE (8,100) COLVY,MONTH(1),GONNA,TYPE,COFFF ALIVAN	H621439 M521450 M521451
_	2	ώθι Α΄ Ι=ΕΤΙΝΕ, ΗΤΙΡΕ ΝΑμίς (8,205) Ευειλό, ΠΟΝΤΗ (1), «ΟΝΙΧ, ΤΥΡΕ, ΟυμΓή	40+14-2 1971-03
ß	С С	KETURN	
P	C 103 205	FORMAT(4x, 22, 211, 22, 22, 24, 24, 11, 5%, F12, 4) tugla I(4x, 242, 211, 22, 22, 24, 24, 24, 24, 24, 24, 24, 24	4521457 1651459 19511469
•	~	END JUJKUUTINE P3 (JDLAN, CORAN, TLAE, NTYPE, AMAY, KP1)	MGP1470 MGP1471 MGP1472
Ð	ບ ບ	. THIS ROUTINE PRITLS NATHIN ELEMENIS FOOT AN ARRAY	1681473
٢	-	LORMON MUNIH(15), SPREU(20,7), M, K, K(1V(20,5), GFCTY(16,20) Dirensium Akray(4,9,1,20) REAL Durity(16)	HGP1475 HGF1475 HGP1477
•		INTEGER UCLN 1(5), TIME, SPRED, RUWNA N=0 E A D1 (T 1205) CO TO 12	1611478 1611479 1601479
U)			MGP1431 MGP1432
ß	12	N=KP1/1600 NP1=NP1-1000+N	MGP1483 MGP1484*
	Ŷ	ND1M= SP.(E0(K,KP1) 20 201 L=1,NIYPE	PGP1435 PGP1485
Ð		UU 1 JJ=1,8018 +KK=1.14 F(1,4,2)	MEE1437 MEE1438
	4	IF(INK.GI.) GO TO 201 IF(N.GI.) GU TO 6	MGP1490 MGP1491
8	52	IF (L-19)2, 3, 3 NKIYE (3, 200) OOL NM, MUN (M (1KK) , ROMNM, L, AFKAY (JJ,K, KP1,L)	46P1492 46P1493
•	Ş	GG TO 1 WEATL (3,300)COLNN,HONTH (IKA), KOWNM,L,ARRAY (JJ,K,KF1,L)	MGF1494 DGF1495
Ш.	201	CUNITNUE CLNITNUE	4621497 4621497
Ø	ó	LL=L+N*100 IF(LL.GT.1090) GO TO 7	15P1499 A5P1200
Ŭ	_	WRIFE (8,400) CULNES, NONTH (IKK), ROWNMILL, AREAY (JJ, K, KP1, L) GU TO 1	"CP1531 "GP1502
Ø	r r	GO TU 1	NGP1504 NCP1505
•	č	- FOR RAW MATERIALS SUMS OVER THE PRUDUCTION CYCLE.	16P1506 16P1507
Ø	10	KP1=KP1-100 NUIK=SFKED(K,KP1)	GF1503 HGP1509
~	• •	UO 20 E=1,NTYPE UO 11 I=1,HM D1445 TT=2	PGP1510 PGP1511 PGP1512
0	11 .	$\begin{array}{c} U & U \\ U & 2I \\ U & JJ = 1 \\ W \\ U & U	MGP1513 NGP1514
6	22	IF (188) 21,21,22 IF (188,61.88) 30 TO 21	46P1515 16P1516
•	23	60 23 1KK1=1KK, NH 60MMY (1KK1)=60MHY (1KK1)+ARRAY (JJ,K,KP1,L)	NGF 1517 MGP 1518
Q	21	U0 25 1=1,104 15 0	NGP1520
		$IF(L,G_2,1G) = G = COL_1(1,1)(1,1)(1) + COA(0,1,1,1)(1)(1)$	MGP1522 MGP1523
Ø	26	-00 TC 25 mr1[E(8,300) COL:(M,(J)(TH(1),ROWNY,L)DUM(Y(I)	"GP1524 "GP1525
•	25	CONTINUE CONTINUE	P6P1525 P6P1527 P6P1528
e	zu C	KETUKN	1529 XGP1530
ഒ	Č	. THE FURMAT SECTION	NGP1531 "GP1532
-	200 200	FORMAT(4X,2A2,2I1,A2,2X,2A2,11,5X,F12.4) HUMMAT(4X,2H2,2L1,A2,2X,2A2,I2,4X,F12.4)	4671533 1671534 9091534
٢	400 500	r UKHAI (4x,2A2,211,A2,2X,2A2,13,3X,F12,4) FORHAI (4x,2A2,211,A2,2X,2A2,14,2X,F12,4)	4621535 4621535
	с	SUBROUTINE P4(.ORN., LTIME, KTIME, KTYPL, ARPAY)	- 391578 1621539
Ø	ŭ G	THIS ROUTINE WPITLS THE RHS VECTOR ELEMENTS FROM ARRAY.	1681540 1681541
•		CCAPUN AUNTA(16), UPre9(20,47, MA,K,KUIV(23,5),CPCTY(16,20) UTAFNALUN ARCAY(16,20)	"5P1542 36P1543
©)			

INIECCA ADERIA, SERVED UU 3 L=1; NIEL UU 3 L=1;

4.2 Input Data.

Ð

Ð

 i. Base data - line MGP 140
 C NO. OF PROPUETS 2 NO. OF OUTLETS 1 NO. OF WORK CENTRES 3 NC. OF TYPES OF LABOUR 2
 C NO. OF SUBCONTRACTED 0 NC. OF RAW MATERIALS 2

C NC. CF PERIODS 6

ii. Raw

Raw material data - line MGP 142

C	CATA ON RAW MATERIALS						
0	PR ICE/UNIT	LAG ON PAYMENT	VCL/UNIT				
0	1.000 3.000	1.	0.0 [.] 0.t				

iii. Labour force data - line MGP 145

• .

•

• WORK CENTRE LABOUR FORCE REQUIPEMENTS HRS/HR

_			•
Ð	M/C1	1.000	0.0
	M/C2	1.000	2.000
•	M/C3	1.000	1.500
ຍ	OVERTIME	RATES	
		3.000	1.000

iv. product data - line MGP 161

.

THE NUMBER	OF OUTLETS FOR TH	IS PROCUCT IS	1	
			•	
SALES DATA BY	MARKET OUTLET			
COOE	LIST PRICE	CISCOUNT	LAG ON PAYMENT	
. нк	50.000	0.C	2	
		•		
01VI 510N		2		
		-		
NACHINE TIME	PENITRENTS MIN			
M/C1 6	.000	/r wit £ 1		
M/C3 0	•0	•		

- A - 234 -

Production capacity data - line MGP 802

\$#\$\$\$******************************** * THE UNITS ARE IN 100 S * ******

CAPAGITY OF PRODUCTION FACILITIES

.

NO TE	0.0	PERCENT	OF CAP	ACITY	S LEFT	CUT OF	MODEL	FOR	EXTRA MODEL	4C T I V
	P1 I	P2 I	I P3 I	I P4 I	I P5 I	F5 I				
I I	 I	 I		I	L,	I	•			
I WORK I	. Į	I	I	I	I	I			•	
I M/CI I	0.81	0.81	0.81	0.71	0.71	0.71			•	
1 4/02 1	0.81	0.81	0.71	0.71	0.71	0.61				
I M/C3 I	0.41	0.4I	0.4I	0.31	0.31	0 . 3I				
1 1	 t	 1		 7	 T					
REDUCTION	IN WORK	CENTRE	CAPACI	TY FOR	POST LO	R IZON	PRODUCTION	1		,
I M/C1 I	0.01	0.01	0.0I	0.01	0.01	0.01			•	
I M/C2 I	0.01	0.01	0.01	10.01	C. 0I	C. 0I				
1 8763 1	0.01		0.01	0.01	0.01	10.01				
I LABOURI	I	I	I	1	- I	I				
I FORCE I	1	I	I	1	· 1	• I			-	
	1.51	1.51	1.51	1.51	· 1.51	1.51	•			
	14J1 	1,J1 		1:21	1071	1+ 21				
I I	I	I	I	I	I	1				
I LABOURI	1	I	I	I	1	I				
	L L	1	1	1	1	I I				
I A I	0.11	0.11	0.11	D.11	0.11	0.11				
I BI	0.11	0.11	0.11	0.11	0.11	0.11				
1 I		 T		 1	 I	1				
ISTORAGEI	i i	i	i	i	i	i				
ICAPACTYI	0.51	0.51	0.51	0.51	0.51	0.5I				

vi.

v.

С

£

Raw material stock data - line MGP 909

I I I I I I TYPE I INPUT I I I I 200.0I I 2 I 30.CI REDUCTION IN RAW MATERIAL CAPACITY FCF FCST HOFIZON PROCUC *************************			•		11 ***	PUT ***:	0F	RA# ***	MA1 ***	FER 1	4LS	×			
I TYPE I INPUT I I I I I 200.0I I 2 I 30.CI REDUCTION IN RAW MATERIAL CAPACITY FOR FOST HOFIZON PROCUC ***********************************					1										
I I I 200.0I I 2 I 30.CI REDUCTION IN RAW MATERIAL CAPACITY FCR FCST HORIZON PROCUC ***********************************						T Y F	'Е 		1 NF	TUY					
REDUCTION IN RAW MATERIAL CAPACITY FOR FOST HORIZON PROCUC ***********************************					I I	1	2	I. I	2	200 30	0 I C I				
******************************* * THE UNITS ARE IN 10C S * *******************************	REDUC	TION	IN RA	N N	A TE	RIA	. c.	PAC	I TY	FCF	FCS	5T 1	10613	20N	PROCUC
**************************************															•
			***** * TH *****	*** E U	**** JNIT: ****	**** S AF ** **	**** E [****	: *** N (***	****	100	**** S *	1 1 1			
	I T	I	P 1	I	P 2	I	۶a	I	P 4	I	D¢	1	56	I	
								·							
I I I I I I I I I I I P1 I P2 I P3 I P4 I P5 I F6 I	I I	I A I	0.0	I I	0.	01	٥.	I CI	c.	1 01	c.	I CI	٥.	1 01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I	B I	0.0	I	0.0	10	0.	01	0.	01	٥.	01	٥.	10	

C

0

0

C

۱.

vii. Finished goods stock data - line MGP 958

INPUT OF FINISHED PROCUCT I I TYPE I INPUT I I 1 1 2 5.01 5.C1 I

viii. Debt data - line MGP 972 Ð INITIAL DEBT CHED TO COMPANY SCC.O PAYED OVER 1. PERICOS C С EXTRA MODEL DEBT ****** O THE UNITS ARE IN 100 S * Θ O I I I I[,] I I I I P1 I P2 I P3 I P4 I P5 I P6 I C I I I I I I 0.01 0.01 0.01 0.01 0.01 1 1 С

ix. Credit data - line MGP 992

| C INITIAL CREDIT OWED BY COMPANY 400.0 PAYED OVER 1. PER IODS [|] c С EXTRA MODEL CREDIT ******** C C * THE UNITS AFE IN 100 S * Ċ I I I I I I I I I P1 I P2 I P3 1 P4 I P5 1 P6 I G I I I I I I 0.01 0.01 0.01 0.01 10.0 1 1 C ¢

Cashflow data - line MGP 1012

xi. Sales data - line MGP 1118

5.

The Report Writer Programme with Sample Outputs.

000		- Int sirosi - Lebiurt of	GENERALDE JUNVERIS THE LE SOLUTION INTO ECLALIST REPORTS AND USES THE SAME DATA	КР 21 21
ט ש	COMMON	+ EASE THAT ALPHA, ALFLU, UN	IS FROGESSED BY THE MATRIX GERERATCR MRL(10).BANKU(10), MMKR(16),	τ.Ρ. - Γ - Γ
	1 2 2	Car(16), C.(1(1) 01SCP(11), 2), CC), USH1, UF11, ()) JS(UK2(10), ()) HY (15, 21), JHC (15, 16), JEF (10, 3), JCASH (16), () HS (11, 10, 10, 10, 10, 10, 10, 10, 10, 10,	
	4 5	υοτ (10,17) •Ελ Ε-ΑςΙ (1,10),0	July 1 (10) 1 (11) 1 (1	т.Р К. ^р
•	7 5	LIST 110,21,LFT LFRC2(10,3/,LF KU(10,13/,HCR	13, 23, 14, 14, 33, 53, 50, 56, 56, 53, 153, 56, 76, 76, 76, 76, 76, 76, 76, 76, 76, 7	сғ сғ п.Р
•	9 CumPDie 1	C(110),UNACE(MARILIO,5),CL SCM(10,5),UFO(3),93(10,10) (6),93(24)(5),873(5), 16,13),573(2(15),50,9(15),58246(10),502(16),	КР 5 р 5 р
	2 3	SLAG(10,2),SLUE SUGUU(10,2),SA MGET (2,100,8),SA	Ru(15),S00T(5),SPACu(20,4),u000k(16,15), ωξ(20,10,2),u702(1(10), v0L(3), ΔΕ(20,10,2),u702(1(10), v0L(3), ΔΕ(20,10),u101(10),u200(10),u101(10),u100(10),u	ŘΡ ΚΡ ΡΞ
	5 INTEGER	NCLUAD(13) AUTIV, LLIN, UL	In,BUAL, VNAME	ξP F P
	NEAL DUURLE	PRECISION NAME	IT, LFCAP, LOCAP, CSHFL(16), SUBP , RHB , KO , Cu, Una (30), VALUES (7), ENDSEC	г.Р Г.Р
	INTEGER	- SKIP,UVI - SUUI, - SUSS,GKOSS,JAA	BALIS, 13), SOUES(15), SOLAG, SEAS, KMLAG JUMAY, NO, SUDWG, SPRED, JES, DEANK, SJEDJ, SEOUT, KK, DANKG, FXP, MIP, FG	PF RP RP
	INTEGER INTEGER INTEGER	<pre>L FILE,INDIC,I Z L SOWS(2],2,</pre>	YPE (30) NOE (20)	кР FP FP
	JALA EN	USEL/ LENUSEDE OUL/ NC , LF ,	\$1, 5, 5, 5, 5, 1, 0, 1, 1, 0, 1, 0, 0, 1,	RP RP
	ACTIV=1 LLIM=3	- US- 9 - EA- 9	- 31- ; - ((3- ; - FF - ; - GK - ; - 1L - /	55 84 75
	DUAL=5 VNAME=8			RP RP RF
υ C C		THE LP SUL	JTICH IS STORED ON FILL	сb сb
C	F1LE=9 REWIND	9		FF RP
ů		. INITIALISE		ΞP KP
	00 1 J= CUMMY(J D0 1 i=	1,20 }=0 1,16		κη ΚΡ΄
	GROSS(1 GROSS(2 GROSS(2	,1)=0 ,1)=0 ,1=0	· ·	RP PP
1		=1,18		κP1
ż	00 2 12 MCREw(1 D0 3 K=	;=1,10 ;11;12}=0.0 1,10		PF RP PP
3	00 s I≕ 00 s J≕ SA∈ē(K•	1,16 1,2 1,3)=0.0		6,21 8,21 8,21
-	00 4 1= 00 4 J=	1,16 1,3		PF FF
4	LA34L(1 LA34L(1	, J, K) = U. O , J, K) = 0. 0		RP1 RP1
	100041=0 N0071=0 ALFLG=2	U		кг 1 ҚР1 Р(Р1
C	ALPhA=3	•5	SECTION	661 891 891
Č 59	00 FORMAT	(1h1,///////////////////////////////////	//////,15x, PRINTOUT OF THE FILED ",ASJ	
59 59	20 FURIAT(141, KUNS DONT 141, A12, HAS	TALLY1,30(1.1),A5) NGW ƏZEH (CEAD1)	221 221 221
40 40 40	00 - FORMATI 10 - Formati 20 - FOrmati	2913) 2(F8.3,14,70.3 5F8.3)))	म्बन २०१ २२१
40	SU FURIATI	15A4) 15F5.4)		F 9 1
4 G	FORMAT C	215) 19429-24121		KP1 KP1

•	40 tu 40 tu	r (R(n] (12) Az) 27 g. () 14)
-	4000 4001	FUKMAT(A2)
-	4050 4041	FURMAI(UF1J.0) FURMAI(UF1J.0)
	4052 4695	r (c.hA) (c. 10) ForMAI (12, 16 (4, , 12))
	4130	FORMAI (5(212, F3, 5) X)) FURCAT(3x, A2, 5)
	9501 9595	FURMAT(19,10F17.2) FORMAT(* VAL *,6F15.4)
•	C	. RÉAJ IN CHOL UATA
	C	KEAU(2.4600) NMRDU, NOUF, NKU, HEF, NSUB, HRA, NM, INT
•		NEAU (2,4018) - ((()) NMLAU (U) JUCL (U) JUCT (NM) READ(2,4020) ((HULE(),30) JUCT (JUCE) HET,NHU)
		жено(2,4032) (ХСсЕ(N_E+1,N),X=1,YWU) Мсдо(2,4033) (NGCQAu(с),с=1,YNC)
		5εΑυ(2,402)) (0κΑΘΕ(L);L=1,κLF) ΙΓ(κδυακεβ.0) δυ ΤΟ 1001
	1001	GEAD(2,4040) (SUEWC(J),SUBP(J),SBLAG(J),J=1,NSUB) CONTINUE
	Č	- THE DATA FOR EACH PRODUCT
	L	DU 1040 K=1, NH 200
	~	$\frac{1}{1} \frac{1}{1} \frac{1}$
	č	- FRUJUCT SALES DATA FOR EACH OUTLET
	L	NNO=KNOUT (K)
		READ(2:4060)15K,SLOUT , LIST(K,J),JISC ² (K,J),SLAG(K,J)
		17 (NUU)1.20.3) 63 10 1014 00 1012 JJ=1.NJUT1 15 (2010) 2011 (11) 60 TO 1017
	1012	
	1614	Sout (notif) = SLOUT
	1013	20000 (K,J) = JJ
		CONTINUE
	č.	- M/G REQUIRE TENTS (**REVERSED TO MGP)
	0	UO 1900 ΛΡΙ=1,ΚΡ ΥΓΛΟ(2.6076) 154,ΙSK9.ΚΤ.SV2+D/Κ.ΚΡΙΝ
		1F(K1+E0+0) GU TU 1020
		REAU(2,4166) (1X,1Y,00HY (1X,1Y),KT1=1,KF)
		IX=NSFX+1-IXX DU 1025 IY=1.DMC
	1025	$\frac{hCKEQ(IX, iY, K) = hCREQ(IX, IY, K) + DUMY(IXX, IY)}{UUMY(IXX, IY)}$
	1020 C	CONTINUE
	C C	- SKIP MALERIALS REQUIREMENTS
		REAU(2,4070) ISK,ISKF,KT 1F(NI-E0.0) 00 TO 1030
		KT= (KT+1)/5+1 1F(K1.22.0) G0 TO 1030
	1630	KEAU(2,400L) (SKIP,J=1,KT) . GJHTIHUE
	1000 C	CUNTINJE
	C	- PUST-HUKIZON FURECASIS
	-	UD 1040 K=1,4P200 KP=NGIV(K)
		11=0 11=SHRED(X,1)-1
		1F(Kr.LL.1) 60 TO 1050 00 1000 BP1=2.5P
		IF (11GT.SPRED(K,Kr1))60 TO 1060
	1000	
	1850	IF (II.20.0) GO 10 1070 NEAU(2.4091) (FLASI(I.K).I=1.TI)
		······································
¢	107u	60 10 10+6 READ(2,4030) SKIP
----------	----------------	---
Ð	C C	- GENERIC FERICO AND ROW NAMES
U.	U	REAU(2,4,81) (AUATA(1),1=1,K4) REAU(2,4,5]) w(JA
¢	C L	NEAD(2,411) ((RCKS(J,JJ),JJ=1,2),J=1,NKOK) - LARAGITI, INIIIAL AND EX-40USE CONMITIONS
6	C .	READ(2,4090) ((h)CAP(I), j = 1, Nn), j = 1, NnC) m = 40(12, 4090) ((h)CAP(I), j = 1, 200), j = 1, 200 F)
Ţ		κεΑύ (2,4050) ((LOGAF (1,1),1=1,Ν/) (L=1,ΝLF) χεμμ(2,4090) (ΔΤΟΞε (1),1=1,Ν)
C		ΜΕΑΒΙΖ, 4093/ (ΑΠΥΙΟ), 3=1, ΝΚΠ ΝΕΑΒΙΖ, 4092/ ΜΙΡ ΠΕΑΒΙΖ, 4093/ (STOCKI (K), K=1, ΝΡΑΟΘ)
6		NLAJ(2,4J9C) UJTI READ(2,4J9C) (=XGJT(I),I=1,N4) READ(2,4J9C) (KTI
-		READ(2,409) (Ελύπτ(1),1=1,Ν4) READ(2,409) (GH1 Εελύ(2,409) (GH2
0		LAUSH (1,1)=KEXG NJ=Ni+1
0	1090	00 1)90 IK=1,K2XG READ(2,4096) (EXCSH(IK+1,I),I=2,NH) NM=h(1+1
_	C C	READ(2,4680) SKIP - PREPARE ID READ FROM THE ADDS SECTION -
8	č	KEAD(FILE) NAME
9	10	READIFIED NAME IF(NAME,NE,ENDSEC) GO TO 16 READ(FILE) NAME,NUGE
_	c	READ(FILL) (JOLUMN(N),N=1,NOCL) FLAD(FILE)
0	Č	- MORKČENIKE JCHEDULE
0		16 (RUDE([[]UUK]).NE.RUNG([[]UUK],1)) 60 TO 5600 1F (RUDE([[]UUK]).NE.RUNG([[]UUK],1)) 60 TO 5600 1F (RUNE([]UUK],2).EU.0) 60 TO 5010
	•	DO 2010 J=1,0HC DO 2010 1=1,0M KEAU(FILE) (VALUES(N),0=1.00CL)
0	2846	HČRED(Ī,J)=VĀLUES(ULA) DHG(I,J)=-VALUES(ULAL) E(II,J)=-VALUES(ULAL)
0	5010 5	Cuntinue
	C C	- LABOUN FORCE SCHEDULE
0		IF(RCGGE(IGGGAT).NECGMS(ICCONT.1)) GO TO 5000 IF(RCMS(ICCOUN.2).CQ.0) GO TO 5020 Du 220.1 = NME
Ð		Οῦ Ἐνῶῦ Ἐ=1, μΝ ΚΕΑΡΥΓΓΙΕΣ (ΥΑΕΡΞΣ (Ν), Ν=1, ΝJCL)
~	2020	LF (I) L = - 4 (UCS (UCL) LF (EU (I) L) = 4 (UCS (ULL) LF (I) L) = 4 (UCS (ULL)
5	5020 L C	CONTINUE - SIOPAGE
0	ā	IGOUNT=1000N1+1
æ.		1 (ROAS (1000) 7,2) .E. J) 60 TO 5030 D0 2439 1=1,44
Ų	∠្រៀវប	READ(FIL) (JALUES(N),RE1,NOCL) US(GRE(I)=VALUES(DJAL) CONTINUE
6	ร์ดีวีอี เ	CONTINUE
A	č	IÇON()=100/)(+1
G		LF (.cub2(120)/k1).kE.CONS(ICOUNT.1)) 50 TU 5000 IF (.cub3(1200/kT,2).Eu.J) 60 TO 5040 30 2040 J=1.kl
8		00 2040 I=1,NN

÷

.

à	2648 ឯមិភ្មា	тени(Fill) (VALUES());H=1,NJCL) GNJ(1,J)=-VALUES(JUAL) (GNJ(2))=-VALUES(JUAL)	~ ' r.P
		- FIN.SHLU GUJUG STOCKS	》 此
	L	100001=100001+1 IF (KCCCC(1000001+.KE.KUNS(10000T,1)) GU TO 5000 IF (FUND(1000001,2).CC.U) CU TO 5050 0.2552 (1000001,2).CC.U) CU TO 5050	54 - 46 154 - 66 154 - 154
	2050	UU 2030 K-1;IFKUJ UU 2030 I=1;HH KEAU(FILE) (VAEUES(A);H=1;NJCL) USF(I;A)=-VAEU2S(UUAL)	55 55 55 55 55 55 55 55 55 55 55 55 55
	50 50 50 50 50 50	- SKIP DEUT AND CREDIT EUGATIONS	KF FF DP
		Συσύλτειζουλίξι 16(κυσμε(1600κ)).πε.ξυμω(ICOUNI,1)) 30 το 5060 ου 25φο μει,μμ κεμψ(File) - (Values(N),μει,μοCL)	24245
	2060 C C C	CONTINUE - CASH CONTINUITY	RP RP RP
	20.75	ICOUNT=ICOUNT+1 IF(~~Ode(ICOUNT).NE.~~O~S(ICOUNT,1)) GO TO 5000 DU 2076 I=1,Nt. REAU(File), (VALJES(N),N=1,NUCL)	29 89 89 89
	2070 C C C	- LUAN CHARGES	27 K
		1600NT=1600HI+1 IF (RCube(1600H)+HE-ROHS(1609NT,1)) 66 TO 5000 IF (RUBS(1600H),2)+EQ+0) 60 TO 5060 06 2060 J=1,80 KEAU(ETLE) (VALUES(1)+N=1.80(C))	2222
	20 60 50 60 C	CUNTINUE - LABGUR OVERIIME	RFF RF RF
	C	100001=160011+1 17(20020100001).NC.4085(1000017,1)) 50 TO 5000 17(2005(1600017,2).20.0) 60 TO 5070	54 84 94 94 94
	2090	UUAT(I)=0. UU 21JJ %=1,ALF UU 21JJ %=1,ALF UU 21J0 1=1,AM KEAU(FILL) (VALUES(A),A=1,AJC_)	
	21 J U	DUARY(I) = 6Unniy(I) + (VALUES(ACTIV)*0nAGE(H)) DE0(I,n) = -VALUES(GUAL) EU(I,N) = VALUES(ACTIV) GATINGE	КР К1 К1
	2116 5075	DU 2:10 I=1;NK OVT(I)=0UNY(I) DUNY(I)=0. CONILNUE	80 80 F
	ů C	PREPARE TO XLAU FROM THE DOLULINS SECTION	71 77 81
	2190	REAUTFILEJ (VALUES(NJ,R=1,NUJL) IF(VALUES(1),ALSEADSEU) OU TO 2190 REAUTFILEJ NAME,AUGL REAUTFILEJ (GOLUMA(N),M=1,NUJL) REAUTFILEJ	Ker KRo
	C C C	- requirien profile	1017
		CO CO CO K-1, HCKOO AP=Koiv(K) BU 3J0C KP1=1,KP BU 3u0J ==1, KM FraC(Fito) (VALUES(D) H=1-NGC())	2 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	3000 C	1F(KP1.61.1) 60 TO 3J00 FD(K,1)=VALUES(ACTIV) GUNTINUE	1277 K K
	с С	- SALLS PROFILE DO 3030 $R=1$, APROU Khu = KhuJT(K)	54.40
		UU 3J3J J=1,KNJ	Ē₽

.

.

. .

ko sa ko sa ka kiko kiko kikika ni u ko sa ku ka anga kikanga ni titititititititititititi	444444444445010785555555555555555555555555555555555
RET RET RET RET	451 452 463 464 455

•		
Ø		00 5053 1=1,900 KtAli(riic) (VALUES(0),0=1,80CL)
	3830	SALF(K,1,1)=VALU_3(AUTIV) URUS3(U,1)=6xU3(U,1)+VALUF3(ACTIV)*LISI(K,U) URUS3(U,1)=6xU3(U,1)+VALUF3(ACTIV)*LISI(K,U)
Ø	C C	
Ð	ų	1+ (Nuusieu, 8) 60 70 3062 DD subi u=1
•	23.	UUNA: (J)=0.0 Ly Syot a=1, NSU3
€)	3460	SCON(J,N)= (). DL JJJJ (A=1,NSUS RLAD(FILZ) (VALUES(N),N=1,NJCL)
E 1	3070	SUDW(U, KA) = VALUES(AUTIV) UUAMT(U) = SUMMY(U) + (VALUES(AUTIV)*SUEP(KA))
×.	3050 3062	
0	000	- ALLOCATED LABOUR ACTIVITIES
•	U	09 3190 1=1, XN DG 3190 L=1, NLF
S		UO 3190 M=1,NWJ IF(WJLF(JF)+E1.0.0) GU TO 3191
£:	5191	CANAL(I, L) (VALUES(AUTIV) LANAL(I, L) (VALUES(AUTIV)
-	31.93 C	CONTINUE
6	č	UD 3600 J=1.NKM
A		DU 313J 1=1,NA KEAD(FILA) (VALUES(N),H=1,NU3L)
	3080 C	GUNTINUE
8	C C	- RAN NATERIAL STUCK LEVELS
_		UO 3200 3-1,NN UO 3200 1=1,NN READ(FILZ) (*ALÚES(N),N=1,NOGL)
0	3200 6	SRR(1,J)=VALUES(AUTIV)
•	č	00 3210 A=1, NPROJ
	(214	DO 3210 L=1,NH REAU(FILE) (VALUES(N),N=1,NUCL)
0	Č Č	- ALLUGAILD LADUK OVERTIME
ß	С	D0 3095 I=1, NM
٠		10 3295 1.=1, NHC 16 5295 1.=1, NHC 16 50 10 3096
6	ծնար	read(rile) (VALUES(N),N=1,NUCL) LACOI(i,e,H)=VALUES(AUTIV) CUNT(Hume
~	3095 C	CONTINUE
6 9	C	- GASH BALANGE
Ø		READ (FILE) (VALUES (N), N=1, NDCL) DSH(J)=VALUES(AUTIV)
	51 UU C	LE (THILF
()	C L	- JANN LCARS
8	لا	DO 311J J=1, NM REAU (rILC) (VA_UES (N), R=1, NJGL)
-	2116	HARKE(J) = VALUES(AUTIV) CONTINUE
Ø	L C C	- DAIN KEPAYDENIS
\$	-	DU 312J J=1,NN KEAU(FILL) (VALUES(N),N=1,NJCL)

2 КР F Р è たわちちち 2429994 TTT ۳ RP FF RP Ŧ 50 20 20 kľ kř REPERTITE AND REPERTIES

:

.

•

	·				
C) 31	20 CUNTINU	Y = vALULS(AUTIV)			-21 -22
Ŭ		- BARK CHARGES			221 521 221 521
Ð	UC SISÊ Reaŭ(ri	$ \begin{array}{c} J=1, M \\ L \\ L \\ \end{array} $			KFT 529
د م	SU CONTINU	E VÁLUES (AUTIV)			KPT 531 HPT 532
E C 31	45 CONTINU	E			PPT 533 KPT 534
e Si C					FFT 533
	80 314.		•••••••		• * *** 237 ••• *** 539 ••• 539
€.	KEAL(FI)	LC) (VALUES(N),N=1,NUCL) VALLES(AUTIV)			APT 540 EPT 541
31 C	40 CUNTINU	L •••••••••••••••	•••••		PFT 542 ••• RPT 543
8 C	0 7150	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •		- 221 544 221 549
		LE) (VALUES(N),N=1,NOCL) Values(A),TIV			KPI 547 SET 547
🚭 31	50 CUNTINU				RPT 549
		PAINT THE REPORTS			RFT 551
ei	UALL REI Gall Rei	FRTA Prito			RPT 554
8	CALL REI CALL REI	P.N.F.C P.N.T.G N. T.G	-		CET 555 RP1 555
¥¥ 10.	KEWIND	9			RPT 558
C ⁵⁰	00 WALTE (5 68 10 1	5933) ROODE (ICOUNT)			KPT 550 RPT 561
•	ĔĸĐ			4	4PT 562

.

.

.

		· · ·	
			<u>.</u>
6	000	SUGRUUTINE REPRIA . IHIS REPORT JETAILS THE PLANNED PRODUCT-MIX . PER PERIOD . PER	563 594 565 596
8	č	COMMON ALPHA, ALFLG, JANKL (16), SANKC(16), JANKK(16), 1 CSh(16), CKT(16), CSH1, GKTI, DSTORE(16), KFT 2 DISCP(10, 2), DUMN(16, 20), 9WC(16, 18), JLF(16, 3), DSASH(16), RFT 3 ULC(16, 3), JSR(16, 10), JUMNY (20), JJTI, DST(16), JRM(16, 9), RFT	567 508 559 570 571
8		4 $\cup_{3}F(16,10),E_{3}UUT(16),E_{3}CKT(16),E_{3}CCSn(11,17),$ RPT 5 FCAST(1,10),G_{3}CSCS(5,13),INT,KUTV(10),KNUUT(16), PPT 6 LISI(10,2),LF(16,3),LJ(16,3),LOCAP(16,3),LFCAP(16,3), PPT 7 Lr_{EU}(16,3),LAUAL(15,3,18), LAUOT(16,3,13),MONTH(16), RPT 8 MO(16,18),LAUAL(15,110),WPCOD,MOUI,NNC,NLF,LSUE,NKM,NM, PPT 8 MO(16,18),LOCE(1,13,10),WPCOD,MOUI,NNC,NLF,LSUE,NKM,NM, PPT	572 573 575 575
6		9 077(16),00062(3),00(10,16) 000000 RAWA(16,5),8A10(5),RNLAS(5),RND(5), 1 SRA(10,5),SF5(16,10),ST0R2(16),SUJP(15),SBLAG(15),SU3(16), RPT 2 SLAG(10,2),SUJAC(15),S007(5),SPR20(10,4),SU0A(16,15), FPT 3 SUBCO(11,2),SAL2(10,15,2),ST3CNT(10), VOL(9), RFT 4 SUBCO(11,2),SAL2(10,15,2),ST3CNT(10), VOL(9), PT 4 SUBCO(11,2),SAL2(10,15,2),ST3CNT(10), VOL(9), PT 4 SUBCO(11,2),SAL2(10,15,2),ST3CNT(10), VOL(9), PT 4 SUBCO(11,2),SAL2(10,16,10), VOL(9), PT 4 SUBCO(11,10), VOL(9), PT	578 579 581 582
0		 NULCAJ(13) REAL LABAL,LAJOT,LEKEU REAL LIST,HOREU, 11 T, EFCAP,LOCAP,CSHFL(16),SU3P RH3,HO RFT NILGER SKIP,OVT NEGES (15),SU0ES(15),SU0ES,R4,SU0CD,SLOUT, SPT NTEGER NULMAY,WC,SUGKC,SPREU,JES,BLANK,SU0CD,SLOUT, SPT 	583 584 585 585 585
0	10 6 6	1 SCSS, GROSS, BANK (, BANKG, FXP, W13, FG DU 16 K=1, RPK00 PFT DU4A1 (R) = STUCK1 (K) FPT . HEAUINGS RT	588 589 591 592 592
6		DC 50 J=1,NM 1SP=0 00 11 K=1,NP=00 NU=NJIV(K) 00 11 ND=1.KD PFT PFT	595 595 596 597 598
Ø	11	IF(ISP:GE.SPREJ(K,K01)) GO TO 11 PPT ISP=SPREJ(K,K01) GO TO 11 RPT GONTINUE RPT RPT IF(ISP:EQ:1) WRITE(J, 1969) MONTH(J) RPT IF(ISP:EQ:1) WRITE(J, 1969) MONTH(J) RPT IF(ISP:EQ:1) GO TO 12 RPT	599 601 602 603
ଷ	C-CC	ISP=ISP+1 WRITE(3,1660) NONTH(J),(ISP1,ISP1=1,ISP) PEANNED PRODUCTION (+ STHIK) LEVELS PVR PRODUCT FPT PFT PEANNED PRODUCT FPT PFT	605 605 607 603
C	12	UU 20 K=1,4PK00 15P=3 KPT KU=K01/(K) (FT UU 9 KC1=1,KD	519 511 512
0	9	IF(ISP.62.59260(K,K01)) 60 T0 3 421 ISP=59260(K,K01) Ret Ret UNTINUE RPT RPT ISP=157-1 RPT RPT IF(US23-1) OPEH=STUCKI(K) RPT	614 614 615 617 617
0		1 1 1 1 1 1 <th>619 621 622 6223</th>	619 621 622 6223
¢		IF(ISF.cC.U.G.G.TO_17 PFT UC_1S_ISF2=1,ISP PFT ISF1=LE+1SF2+1 PFT UC4Y(ISF1,K)=PU(K,J+ISP2) PFT IF((J+ISF2).GT.GG) UC4Y(ISP1,K)=0.0	4567 BC
ଶ	17 C	CONTINUE K.LTE (J,1010) K,OPEN,PG(K,J),HOKK1,CLOSE,(BUKY(ISP1,K),ISP1=1,ISP) SO TU 20 KRITE(3,1010) K,OPEN,PG(K,J),HORK1,CLUSE 20 CUNTINUE 21 CUNTINUE	0531 6331 6333 6334
Ð	С С 1 а	50 CONTINUE THE FUSHAT SECTION AFT Sol Fushat (1H1.////.1X, PFT	5666666 566666 566666 5666
Ð	10	1'REPURTA PRODUCTION SCHEDULE FOR PEPIOD ',42,///,1X, RFT 2'PRUDUCT UPENING PRUDUCTION SALES CLOSING AFT 3,10X,4(11,'AONTH ALP',5X)/,1X, 510CK' FFT 5,/)	141234 66443 6644
٢	101	0 [FORMAT(/,I8,4(5X,F9.2),10X,4(F10.2,57)) RETURN FND RPT	645 646 647

•

6

.

.

•

C	REPORTA	. PR	OCUC T ION SCHEDUL	21		
e	PRODUCT	OPENING	PRCDUCTION	SALES	CLOSING	
~	1	5.00	20.56	20.00	5.56	
	2	5.00	3.89	0.0	£ . ٤۶	
0				-		
0	REPORTA	PR	ODUCTION SCHEDU	E FCR PERIOD F	22	
C	PRODUCT	OPENING	PRODUCT ION	SALES	CLOSING	
<u>^</u>	1	5.56	19.67	0.31	24.92	
¢,	2	8.89	3.67	2.52	10.03	
0				·		

٠

· · ·

~

1

		AND AN THE REPORT
-	C	SUBRUUTINE REPRID
9	ç	• THIS REPORT DETAILS THE PLANNED PRODUCT-MIX •
	č	
		GOMMON ALPHA,ALFLG,GAAKL(12),GANKG(15),GANKK(15), KPT 653
-		2 ulsopi(14,2),Duni(16,2),Ode(10,14),OLF(16,3),DCASH(16), Pf1 65
		3 0.0(15,3),03,(15,10),00000 (15,10),0000 (1
6		FUAST (1, 10), UTOSS (5, 13), INT, X01 V(10), AUUT(10), ISST (1, 10), ST (1
		0 E15((10,2))C((10,3))C((10,3))C(00)((15,3))C(50)(15,3)) FF(55) 7 EF(50)(15,3)(10,2)(15,3,13)(15,3,13)(15)(15)(15)(15)(15)(15)(15)(15)(15)(15
•		A MU [10] 10, 30, 30, 20, 10, 10, 30, 30, 30, 30, 30, 30, 30, 30, 30, 3
S		
		$= \frac{1}{2} = \frac{1}{2} $
6	•	$z = \frac{1}{3}$ SURC(10,2), SURC(12,130)(12,13), SURC(10,14,13), SURC(10,12), SURC(12,13), SURC(12,13), SURC(10,13), SURC(1
		4 NCLE(2,13),NUCAP(10,13),NU(10,16),NORED(16,18),NIP , CET 667
•		REAL LAUAL, LAUAL, LAUAL, LAUAL, PPT 669
B		REAL LISTNOREL, INTT, FCAP, LOGAP, CSHFL(16), SUDP, RMB, MO PPT 670
		INTEGER SOUT, 20481, 42, 50, 56, 56, 55, 81 ANK, SUBCD, SLOUT, KPI 672
6	C	1 SUSU, GROSS, GANKR, SANKC, FXP, WIP, FG RPI 673
-	Č	· HEAULNGS · PPI 675
•	L.	write (3,1000) RPT 677
Ð		Nie Hall EPI 678
	C	
6	C	• PLANNED PRODUCTION (+STOCK) LEVELS PER PRODUCT • RET 681
-	•	Ου 5J K=1,6/400 ŘΡΙ 683
		1 = 1 + 1 PPT 635 KAOEXINII(K) PPT 635
•		ר בי כ טי 1, אאן RPT 686
		DUAT (J, 1/ = U APT 637
Ð		5 DUAY(J,1)=LOAY(J,1) → SALE(K,J,L) FET 683
		WALLE (3,1020) (DONTA(J),J=1,NN) PFT 631
		WRIJE(5,1656) STOCKI(K),(SFC(1,K),I=1,NN) WRIJE(5,1656) STOCKI(K),(SFC(1,K),I=1,NN) WRIZE(5,1656) STOCKI(K
0		
		$h_{\rm K}[T_{\rm C}(3)] = 0 $ ($J_{\rm M}[J_{\rm M}] = 1, M J$) $h_{\rm K}[J_{\rm C}(3)] = 0 $ ($J_{\rm M}[J_{\rm M}] = 1, M J$) $h_{\rm K}[J_{\rm C}(3)] = 0 $ ($J_{\rm M}[J_{\rm M}] = 1, M J$)
-	С	••••••••••••••••••••••••••••••••••••••
-	ս ն	SKIP TU NEW PAGE FOR EVENT FLVE PRODUCTS
Ð	-	(1F_(1-2) 50,20,20 PF 700
		n (11) (3,10,0) (21) (21)
*		
•	Ç	
_	C C	. THE FURNAL SCUTTUR
Æ,	្មីរូវ	ELECTRAT (1H1//) REPORT OF 24X, 4PRODUCTION SCHEDULE FOR PROJUCT 4. SPT 708
	1.	110/)
<u>e</u>	1.2	0 FORLAT (1X, 1 PEPICO (16(5X, A2)) RPI (10 RPI (1X, 1 PEPICO (16(5X, A2)) RPI (17)
N .	1 J 1 J	J FULKAL (1X) PRODUCTION ,16F7.2
	د 1	J FUNMAL (1X) SALES (10F7.2) (FF 712)
C	10	rinu RFT 715

C PRODUCTION SCHEDULE FOR PRODUCT REPORT B P5 Ρ6 Ρ3 Ρ4 P1 P 2 C) P ER ICD 5.56 24.92 40.89 22.44 11.33 5.00 OPENING STOCK 17.56 14.89 15.67 - () 20.56 19.67 18.44 PPODUCTION 2.47 36.00 28.00 27.00 SALES 20.00 0.31 5.56 24.92 40.89 22.44 11.33 0.0 CLUSING STOCK

•

iii. Report C & D

															•				
-	C	SUEKUUI	INE REP	51C									•••				• • •		195
Q	C C	0.00000	. [n]	S REP:	DRT D	ETA11 ••••	_> T	'HE 	SAC!	ES P	LAN 1377		• • •	•••			• • •	•••	RPT
		1 2	Con(10)	ر د ۲۵ م. ۱۲ بیت و	5498C 15) j C	(10) SHI,	, 1346 213 I I 13 I I	ant	LC / J. 10.		λα(1) Ξ(16	, o, ,	31.	ne.	42A	(16)		•	RPT
)		3		3),25,	(16)	10,2	1044	IY (2	10,, U),, U),,	LC V	, _]] , _]]		, , i	ЬŤ	(16	, 9),	,		PPT
		5	FUASIC	10, je j 10, je j 21, je	025	(5,1) 3) • L(5); i	.нт • 31	KJI LO.),K. 16.3	່ນບໍ່ ວ່າ ເ	(11 .FC/), P()	16.3	3).			RPT
		Ž	IFREDI Notio,1	51,110		(15,	;,18 18),	1) ; 	ίΑΞ. ΟÙ,	01 (1 1001	ō,š, ,NHC	13) J	, HO F, I	SUT SU	н (1) В, М	5); 2,4, M	м,		RET
		GONHUN.	ÚVI(10) Rawal16	, Un AG , 51, Ki	É(3), MIN(5	₽D(1),⊰u	1,10 A.10) 5),	२५८। २५८।	(5),	:		i						RPT
;		1 2	Sr. 4116) Sr. 40 (10	51,551 Sel 55	(16) 10 m C (10), 15),	2104		6), , 5 P	SUSP	(15) 10,4	11	SUAC		5),i	5034 5) ,	16)	,	RPT PPT
		ວ 4 =	SUBLD() NCLF(2)	: و (ے و نا. 1 نا و (ن 1 ا	CJAPI	16,1	d) , h	10(1	5,1 5,1	8),W	SKED	111	,14	, , ,	41P	,			KP1 KPT
		NEAL LA	HOLDAD CAL	UT,LF:	ED Luit.	LECA		IC AP	-051	HF. (16).	SUF	łP		5 6.5	. MC	1		PPT
		INTEGEN	SKIP,C	ivi ວປປີ	,791 1.JUM	16,1		SSDE JUWC	SCI:	5),S (E0,	ŪĒĀG JĒs	, Šl	AG	, 2 4 J	LAG	, S L C	, ты	,	RET
	С	1	Sussie	053,8	Ali Kr. ,	BANK	Č,FX	(Р,Я	İr ,1	- G • • • •					• • •		•••		PPT F.PT
	С С		• ‹ <eł< td=""><td>0KIJ -</td><td>SHONS</td><td>Тнс. ++++</td><td>SAL ••••</td><td>.E.S.</td><td>FIG:</td><td>JRES</td><td>959 ••••</td><td></td><td>) T L E</td><td></td><td>(IN •••</td><td>1110 • • • •</td><td>15)</td><td>•••</td><td>RET</td></eł<>	0KIJ -	SHONS	Тнс. ++++	SAL ••••	.E.S.	FIG:	JRES	959 ••••) T L E		(IN •••	1110 • • • •	15)	•••	RET
		UO 150 UO 124	JH=1,NC K=1,NP	00															RFT
•	140	UU 140 UUmY(Í,	1=19000 K)=0																KPT
			J=1,KNC		0.0	TO 1	31												PPT
i	130	00 150 LUMY(1.	I=1+NA	(K.1.)	 	.0 1													PPT SPT
	131 124	CONTINU	JE JE																RPT
	C.	WELTE (S																	HET HET
		NRITE(3	5,400) 3 3,1020}	CHUNT	4) 11(J);	J=1,	(MP												EPT
			K=1,NPH	OJ C. C.R.	47 () .	23.0	-1.1	awa a											EFT FFT
	110	CUNTINU	15 10 50 1 15 15	.,		~,,,	- 19 1												RPT RPT
	C C			URTD	 SH0m.s	THE	541	έS	FIG	UNCS	•••• PEr	(*) i	hit	::	i Bir	VAL			RPT
l	С	UQ 50 .	IA=1, IU	л		• • • •			•••	• • • •	• • • •		• • •	•••	• • •	• • • •	•••	•••	- PET - KHT
		- 00 24 K - 00 40 1	(=1,1)+<(.=1,1)+	0															RPT
)	- 40		UT (K)																KPT
		1F(SJ)	U(K,J).	ME.JA) GU	TO 3	1												- 261 1951
•	30		KJ = SALE	16,1	,J)*L	1511	(۱, ۲) * (1	0 u - i	0120	Р(Χ,	331	/13	0					EPT LPT
	31 2+	LONTING																	RPT RPT
)	C	5. n T . <i>1</i> .																	
		nr.115 (2 nr.115 (2	,1010) 1021)	3007(36) 4 (1) -	=1.	3243												LPT LPT
,		ARTE (S	,1050) =1.80%).).		J-1,													
	19	NAITE (3 CUNTINU	11132) 12	K,(CU	1) Y	K),I	= 1 , †	14)											
	50	CONTINU	,1840) JE	(GROS	SIJA,	ل, (ر	=1,	vH)											PPT
	Ĺ	REIURN	•••••	•••••	••••		• • • •		•••			•••			• • •				FFT SPT
	ີບ ບຸ່ມກາ	2 No MAR	• • • • • • • • • • • • • • • •	. r 0	ні зс •••••	61IO.	.¥ • •,• •	• • • •	• • •		••••				• • •			•	PET PET
	403	FURPAT		-021 I	20	X, •	54_E	ES P	~0 Ga	CA NP	ΈFC	אנ	υυτι	<u>E</u> T	۰,	A2,			KHI
	1010	FURMAT	(1X, K		, 25,		șt s	BALE	SF	રહર	41.HE	F	R	ារ	ET	۰,2	2,		- 25 T
	1620 1020	FURMATI	(1X,	Pc VC	(133) 067-0	, [;] , i	5(3)	(,AZ))										E F T
	1443	FORMAT ((1),///	2 2 KUUU	jss s	ÀLES	• , 42	(, 1ó	17)										F P T
	C	t NO	-		•														KTT FCT

- A - 246 -

-

.*

0	REPORT C			SALES PROGRAMME FOR CUTLET MK IN-UNITS							
C	PERIOD PRODUCT	P1	P 2	P 3	P4	P5	P6				
C	. 1	20.	0.	2.	36.	28.	27.				
C	2	0.	3.	10.	C.	3.	10.				

.

:

C	REPORTO			NET S. **	∆LES PP(******)GR	FCR CUTLET MK IN FCUNDS
C	P ER IOD	P1	P2	P 3	P4	P5	P6
Ç	PRODUCT						
c	1	400.	6.	49.	720.	560.	540.
λ.	`2	0.	126.	500.	C.	171.	500.
а. • С							
	GROSS SALES	399	132	548	719	730	1038

•

C	C	SUBROUTINE REPRTS	304 805
e.	C C	CUMMUN ALFHA,ALFLG,BANAL(16),PANKU(16),FANKR(16), CUMMUN ALFHA,ALFLG,BANAL(16),PANKU(16),FANKR(15), COMMUN ALFHA,ALFLG,BANAL(16),FANKR(1	805 807 898
S		 DISCP(10,2), JUNY(16,20), DNC(16,10), JLF(10,3), JCASH(16), RPT (810 811 812
¢		b LISI(10,2), LF(10,3), LJ(16,3), LJ(CAP(16,3), LFCAP(16,3), RPT (10,3), LFCAP(10,3), LFCAP(10,	814 815 815
8		9 077(16),0462(3),40(10,16) соммон камм(16,5),киз(3),кмз(5), 1 SAM(16,5),SFG(16,15),STORE(16),SU0(15),SPLAG(15),SUR(16), RPT 8 2 SLAG(10,2),SGG(15),SOJT(5),SPRE0(10,4),SU0+(15,15), RPT 8 2 SLAG(10,2),SU0-KG(15),SOJT(5),SPRE0(10,4),SU0+(15,15), RPT 8	318 319 320
ือ		S SUBCD(10,2),SALL(10,15,2),SIDCK1(10), VOL(5), RPT 8 4 HULF(2,10),WCCAP(16,13),WU(16,18),WCRED(16,18),WIP, PPT 8 5 WCCAD(18) RPT 8 5 FALL(ADD(18) RPT 8 5 FALL(ADD(18) RPT 8	821 822 823
		REAL LIST, MOREU, INIT, LEGAP, LOUAF, CSHFL(16), SUPP, RMB, HO RPT (INTEGER KIP, OVT, HR(16, 14), SBUES(15), SBLAG, SLAG, RHLAG RPT (INTEGER SUPPORT SUPPORTS SUPPO	825 826 827
Ŷ	C C	UATA LINE //, JLANK/ // KPT & KP	829 830 831
e	6 390 400 465	FORMAT(1H ,* 1 FACTORY1*,20(A2,4X,*1*)) RPT & FORMAT(1* 1 CAPGTY I*,20(F5.0,*1*)) FFT & FORMAT(1H ,* 1 H LOADI*,20(F6.3,*I*)) FFT &	532 533 834 835
\$	410 430 449	FORMAT(* IAVA1L6L1,20(F6.0,11)) FPT FORMAT(* IREGYRD 1,20(F6.0,11)) FPT FORMAT(* ISUGONT 1,20(F6.0,11)) FPT FORMAT(* ISUGONT 1,20(F6.0,11)) FPT	836 837 838 838
6	460	FORMAI(+ 10/1 CP 1+,20(F6.0,+1+)) FORMAI(//// E.PURTH',7X, 'LABUUR FURCE',13,' IN-HOUSE MANNING SCH PPT (1500LE'//)	840 841 842
C	50U 501 502	- FORMAI(1H1,1X,* REFORTO*, 7X,*NORK GENTRE SUPEDULE FUR FERIOD *, RFT - 1 A2,7/16X,555(**)//) FORMAI(**,26(A2,**)) FFT FORMAI(* I NORK 1*,23(A4,2X,*1*)) KPT - FURMAI(1H * I NORK 1*,23(A4,2X,*1*)) KPT -	845 845
Ð	50 s 51 + 52 0 52 6	FÚRMAI(IH ; I GENTREI ; 2J(A2, +X; II)) FORMAI(I IPROUGCII; 2C(A2, 4X; II)) FORMAI(I IPROUGCII; 2C(A2, 4X; II)) FORMAI(IH ; I) JUDA, II; 20(F6.1; II))	847 848 849 850
8	525	FURMAT(1H , 1 1 1, 20(A4,2X, 1)) FURMAT(1 SHULL',Fo.D, 1, 20(F6.1, 1)) FURMAT(D/TWL',Fo.U, 1, 20(F6.1, 1)) FORMAT(C.C.T.T.FO.U, 1) FORMAT(C.C.T.T.T.FO.U, 1) FORMAT(C.C.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T	851 852 853
6		FURNAT(' I',7x,'I',20(A2,4X,'I'))	855
ଷ	Li li	UO 10 1=1,NM RPT : UO 620 J=1,NWG RPT 0 DUMBY(J)=0 PPT 0	359 860
•	628	DUMY(1, J) = 0.0 FPT / DumY(2, J) = 0.0 RPT / N1 = (No 1(1)	852 853 90 +
V	5000	EAT RATIONE JURK-JENTKE SJHEDULE FAT RAT	465 3657 363
£	ι C	- HEADLARS	389 370 8/1
£		white(0,001) (11,11,11,11,11,11,11,11,11,11,11,11,11,	0123 873 874 375
C		NRITE(0,001) (LINE, 0=1,01) RPT (NRITE(3,014) (DEAMK, J=1,000) RPT (875 877

.

.

.

.

.

	- W/C AllyCation
_	UU 510 K=1,NPKJJ UU 6.2 J=1,NHC
2	しつがす(1,50 = 0・3 iv5+R=0 gイニッジエマ(次)
11	DU GUI KPI=1,KP If(GFKEDIK,KF1).GT.NSPK) NSPK=SPRED(K,KP1) Curtinue
	C0 669 J=1,NKC JU 540 N=1,N5PR IF(I+N3FrK-WN) 285,5890
5 55u ü	0047(1,0)=0047(1,0)+80(K,I+45PR-A)*46RE4(NSPR+1-N,J,K) 0047LN0E 0047(2,0)=0047(2,0)+80447(1,0)
61)	.nR11E(3,520) K,(DUMY(1,J),J=1,NWC) CUNTINUE
	- AVAILAGLE GAPAGITY PRITE(3.501) (LINE.J=1.KT)
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	$\frac{1}{1} \frac{1}{1} \frac{1}$
	$\begin{array}{c} n (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$
	HIGTE (3,430) (JUAY (2,J), J=1, NHC) HIGTE (3,700) (JUAY (2,J), J=1, NHC)
4	$\begin{array}{c} 1 & (1 + 1) \\ 1 & (1 + $
3	UUUUY(4,2)=SUUW(1,NSUB1)
2+	$m_{LT} = (3, 440) (JOHT(4, L), L=1, MG)$ $m_{LT} = (3, 703) (JLANK, NT1=1, KT)$ $OHTINUE$
,	- OVERTIME
	u0 615 J=1,:HNC DurY(5,J)=u,0 U0 616 L=1,NLF
. 0	IF(WÜLF(にょう)・ビリ・じ・ひ) らい TG ちたち つっれて (ちょう) =こつれて (ちょう) +に Abdl (エッヒョリ)/WGLF(ヒョリ) このNTRUE
.5	ČČATINÚE RRITE(3,450) (DUNY(5,J),J=1,ANC) ARRIE(3,450) (LINE,KI)=1,KI)
	THE LAGUR FORLE SCHEDULE
	- HEAJINGS
	00 612 L=1,HLF HKIIL(3,499) L HKIIL(3,499) L
	<pre>N(L12 (3,525) (AGLF(NLF+1,J),J=1,NWC) NGIIE (3,525) (AGLF(NLF+1,J),J=1,NWC) NGIIE (3,525) (3+ANK,J=1,NbC)</pre>
	- Caraury
	WRIIE (5,530) LFR2011, LJ, (214 X, K11=1, KT)
	- ALGCATION
	UL 1 (1, 2) = 3.0 UL 1 (1, 2) = 3.0 UL 0 50 J=1, NHC
u	9001 (191)=0011 (191) + 4004 (1919) 0001 (192)=0011 (192)+6000 (1919) 0011 (192)=0011 (192)+6000 (1919)
	nkiic(3,700) - (3cAkk,K41=1,K7) WRITE(3,920) BUKY(1,2),(CA307(I,L,J),J=1,N%C) RkT[c(3,901)(LT%c,J=1,K7)
2 10	CONTINUE CONINJE Rutuki

€

€

€

C

C

Ø

0

Ø

8

Ð

C

C

Ð

C

Ð

٢

Ð

6

C

C

C

€

	· .
C	REFORTG WORK CENTRE SCHEDULE FCR PERIOD P4
C	******
C	I WORK IM/C1 IM/C2 IM/C3 I I CENTREI I I I
C	
C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Q	I I I I I IFACTORYI I I I ICAPCTYI 73.I 69.I 34.I
C.	I I I I I IWC LCADI 1.000I 1.000I INC LCADI 1.000I 1.000I
Ċ	IA VAILBLI 73.I 65.I 34.I
	I I I I I IREQYRD I 73.I 65.I 35.I I I I I I IO/TIME I 0.0I 0.0I 1.1I
C	REPORTH LABOUR FORCE 1 IN-HOUSE MANNING SCHEDULE
0	I IM/C1 IM/C2 I ¹¹ /C3 I
C	
0	SHDLI 110. I 77.0I 0.0I 33.3I I I I I I I 0/TMI 0. I 0.0I 0.CI 0.0I
Ċ	
Ð	REPORTH LABOUR FORCE 2 IN-HOUSE MANNING SCHEDULE
C	I IM/C1 IM/C2 IM/C3 I I TOTAL I I I I
O	CPCTI 150. I I I I SHDLI 151. I 0.0I 146.CI 5.3I
C .	I I I I I O/TMI 1. I 0.0I 0.0I 1.3I

•

. _

		SUBROUTINE REPRTI	PT 968
æ	ç	KLPURT I BETALLS THE FLOW OF FUNDS	PI 959 PI 970
	č		PT 971 PT 972
•		1 C3H(16), CH (16), C3H1, CK I, US) JE (16),	PT 973
0		$\frac{2}{3} = \frac{1}{2} $	21 975
		4 USF(15,10), 2X3CI(16), 2X3CI(16), 2XCS4(11,17), R) 5 ECLAI(1,10), 6, 085(5,16), 001, 8, 19(16), 8000T(10), R)	PT 976
2		6 LIST(10,2), LF(10,3), LU(16,3), LOCAF(16,3), LFCAP(16,3),	PT 978
		6 MO(16,10), MCRED(1,18,10), NEROUDIOUT, NHC, MLF, NSUB, NEH, IM,	ET 980
6		9 0v1(15),0v402(3),PD(13,15) (0 COMMON RANG(16,5),NTIN(5),RMLAG(5),RDJ(5),	PT 982
v		1 SRN(16,5), SFG(16,10), STURE(16), SURP(15), SBLAG(15), SUR(16), PI	PT 983 FT 984
•		$\frac{1}{3} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	FT 985
5		- 4 ΜΟΕΡ(2,18),ΜΟΟΑΡ(16,13),ΜΟ(16,10),ΜΟΤΕΡ(16,15),ΜΑΡ , Ν - 5 ΑΟΕῦΑΡ(18)	61 937
		REAL LAURLILABOTILFRED WEAL ITST. DIRECTULTILECAR, GUARLISHER (16) SUBR . RMB . MG RU	PT 998 PT 989
0		INTEGER SKIP, OVI , MR(16,13), SJUES(15), SJLAG, SLAG, RALAG R	PT 990
		1 SCSS, GROSS, JANKK, DARKC, FXP, MIP, FG	PT 392
8	С С	· INITIALISE	PT 394
	č		PT 995
•		00 - 9 = 1,20	PT 997
3	9	しいがY(L・)=0.0 ペ	PI 199
	Č		PT1000 PT1001
8	č		PT1002
	99 100	FORMATCINI, S4X, FLOW OF FUNDS STATENENT FOR THE MONTH ' R	PIIOJA
ß		- J, AZ; / 34X; 42(141) - 1 // 97X; 4THIN PERIOD1.22X; 441, 10X; 4YEAR TO DATE1/5X; 80(1-1); 441, - K	FT1006
		2(5)(4-4))	PT1007 PT1008
•	101	FORMAT(1H ,15%, OFENING DEBT, 30%, 11, F11-2, 11%, 11*)	PT1009
6	100	FURNAY (111 - 13X) * UPENING UASH * 30X - 1 * 3 + 11 + 2 + 11 × 2 + 1 × 7 * 1 * 7 * 7	PT1011
	10+	FURNAT(14, 16X, "OPENAMG CRED.T", 30X, 1, 11X, F13, 2, 1**)	PT1012 FT1013
£€	167	FURMAI (1H , 21X, SHAK _ UAN , 20X, 110, 24X, ***, 120)	-T1014
	189	$r_{\rm UKMAI}(1H_{\rm J})$ $r_{\rm MA}$ $r_{\rm MAI}$ $r_{\rm MAI}$ $r_{\rm MAI}(1H_{\rm J})$	911015
•	115	FORMATCHE (15), UVENTHE PAID FUR (21X, F10, 2, 24X, **, 120) P FORMATCHE (X, SAUCHARANIAN) PATD FUR (21X, 110, 24X, **, 120) R	FT1013
•	113	r OkilaT (1H , 19X, EXTRA NUGEL GASHFLOW', 54X, **)	FT1019
•	119		PT1021
	11b 117	FORMAR(11H ;) (); '14'; '0X; '''') Formar(1) :15, '24NN GEPAYDENT', 130, 24%, '*', 120)	PT1022
	110	FORMAN (11, , 4, , 5A, K CHARGES PALS FOR , 150, 24X, ** , 120)	FT1024
۲	121	EURMAI (1H , 25X, 10 AL', 150, 24X, 11 , 120)	PTIOZÓ
	122	FURRAT(1H) 14X;*EXTRA RUUEL DEDIT*;F30+2;24X;***) // // // // // // // // // // // // //	PT1028
6	127	EQUEATION , 17%, TSACE RECEIPTS , 54X, ***)	PT1029
¥	131	FUNHAI(1H ,10X, CLOSING DEGT, SOX, TI, F11.2, 11X, TI)	11031
-	132	- FURMAFLIN (10X) "ULUSING UASH"(3UX)"1"(FII+2)IIX)"1""(7) N 101X)*1*(22X)*I**)	PTIN33
5			

٠

.

•

•

•

6	100 105 100	FU AAI(IN ,16X, ULUSING D-CUIT, SJA, 1, 1, 11X, F13.2, 1 I**) FU MAI(IT ,002,24(*-1), ***; ZX, 22(*-1)) FU MAI(IT ,002,11,24(*-1), 22, 12**, ZX, 11*,202,*11)	RP KF
e	137 200 265	- FCGUAT(1H j14X;*UED1+CASH-CREDIT*;30X;*1*,115;6X;*1**;2X;*1*;114; 1CX;*1*) - FORUAT(1H1;*REPURTU*;40X;*CASHFEON SURMAR**/////) FCMMAT(1H ;5X:121(*-*)/6X:*1*:45X:*27*E5X:*1*/	11.11.11
C'	210 220	10X, 1, 15X, REJEIP 3, 25X, 11, 25X, PAYNEATST, 32X, 11) + 0KMAT(in ,, 12(**), 99(), 12(**)) + 0RMAT(in , 1MATH, 12(**), 99(), 12(**))	1000
	30 کے	IJUEL I BUK KEPY I DNK CAKE I DYTIME I SJECONT I RAN HAT * GL. 204Sh **) - FORMAT(1m, *** * 142,* ***********************************	
	231 C	10('1', ', ', ', ', ', ', ', ', ', ', ', ', '	000
l	CCC	UU 10 I=1,NA MEAJING	K0 220
\$	Ç	MRIIE(3,100) MUNIH(1) DUNNY(2)=0 MRITE(3,101)	000
;	С С С	. UPEAING FOSITION IF(I.G).1) UU TO 11 -	RP PF RF
2	C C	- FOR THE FIRST PERIOD HRLTE(3,102) D311 D314 (1,1)=CSHI	50 50 50 50 50 50 50 50 50 50 50 50 50 5
2		ТТГГ(3,193) СЗНІ Жалтс(3,194) САТІ Малтс(3,194) САТІ Малтс(3,194) — САТІ Малтс(3,194)	13, 1, 12, 12, 14 14, 10, 14 14, 10, 14
3	C C C	GU TO 13 - FOR A NORMAL PERIUD	2017 2017 2017 2017
2	11 C	CUNTINUE UPENING DEST WRITE(S,102) DBT(I-1)	RP PF
ت ک		WKITC(3,103) C3H(I-1) WKITC(3,104) CKI(I-1) WKITC(3,104) CKI(I-1) WKITC(3,101)	
۲ ۲	ມ 13 ປູ	CUNTINUE Hrite(3,106)	
U U	5	• DANK LOANS Dumy([],2)=0.0 1F(ln1.cl.u) GJ TO 49	RFI RFI RPI
0		BUMMY(1)=BAHKL(1) DUMY(1,2)=UAMKL(1) BUMMY(3)=UUMMY(3)+BUMMY(1) WATTE(3,107) BUMMY(1),BUMMY(3)	RP1 RP1 RP1 RP1
3	0 0 4 9	SALES REVENUE	EFT EFT FFT
Ð		NATTE(3,127) Dunnr(4)=0 DU 40 K=1,NCUT Alleby(1)=0	RF1 FP1
0		UU 41 J=1,NFKOU KNU=KNUUI (J) DC 42 KNOI=1,KNU TE(SUUMU(L) EL () CO TO N3	R P P
	42 43	IN 19080019, NOINELLAN 60 10 43 COMTINUE IJNEL-SLAS(J,KR01) IFTIJK.LE.01 60 10 44	
•	++4 41	UUNKTIJ=SALE(J,IJK,KHUI)*LIST(J,KNUI)*(10L=01SCP(J,KNO1))/100 1 +UUNHT(1) CUNTINUE CUNTINUE	RP1 EP1 PP1 KF1
ò	4 Û	504%;[4]=50%;Y(4]+50;4Y(1) 209%;[1]+K201)= 504%Y(13+K201)+304MY[1] 2KTF[5]52;53-500T[K];004%Y(13+K401) 20%Y(1;5)=304MY(4)	RPT RPT RPT
3		JUMAY (13) = JUMAY (13) + JUMAY (4)	RPI

.

	WATE (3,125)
ŭ	raise Casherour Casherour
Č	Walte (3,113) Kerj=Erics (1,1)
	HR.TE(0,116) UU 45 IR=1,KEXG IF(EXU3H(IR+1),GT.0.0) 60 T0 46
	DUMAY (1)=-EXUS-(1X+1,1+1) DUMAY (2)=BUMAY (2)+DUMAY (1) DUMAY (1,4)=BUMAY (1,4)-DUMAY (1)
46	nriti(),11+) 2xCSn(1,1x+1),3UMMY(1) CUNTINUE WRITF(3,115)
	00 40 1K=1,KEXC 1F(1xL3H(1x+1,1).L1.0) GO TO 45 DuAm(1(1)=1x03m(1x+1,1+1)
	DUMMY(2)=DUMmY(2)+DUMYY(1) DUMY(1,5)=DUMY(1,5)+DUMMY(1) MNITE(3,114) EXUSM(1,IX+1),DUMMY(1)
45	GUNTIAUE HRITE (3,120) BUANT (10) ZUUNKY (10) ZUUNKY (2)
ç	WRITE(3,121) DUMMY(2),DUMMY(10) WRITE(3,99)
C C	. BANK REPATHENIS
	DUMY(1,7)=0.0 IF(INT.Eu.U) GO TO 29 UJMAY(1)=BANAN(I) UMAY(1.6)=54MKA(1)
Ç.	KNITE (3,117) DUMAY(1) WRITE (3,39)
C C	. BANK GHARGES DU⊐MY(1)=0
	II=ALFLG IF(II=LE.0) GO TO 30 DURIY(1)=BANKC(II) DURIY(1)=BANKC(II)
30	CLNINUE HRITE(3,118) DUMMY(1)
с С	• OVERTIME WAGES
29	WRIT2(3,49) DUMY(1,6)=DUMI(1) DUMY(1,6)=DUMIY(3)+OVI(1) MRIT2(3,99)
ç	WRITE(3,99) - SULCOUTEACTORG PAYMENTS
Ċ	
	10 33 Novol=1, NoJJ 1JN=1-SCLAG(NSU31) 1F(IJK-GL-J) GO TO 34
34	UUIMY(1)≠0 66 TU 35 CUNTINUL
ა5 აპ	00417 (1) = 5042 (10K, NSUBI) * 5087 (45031) 6047 MUE 00417 (4) = 0.0 (MY (4) + 0064Y (1)
19	БОММҮ (Э)=БОЛМҮ (Э)+БОММҮ (4) МКТТЕ (З,111) - БОЛМҮ (4), ВОММҮ (Э) БОЛҮ (д, Э)=БОЙМҮ (4)
C L L	PAYMENT FOR RAN MATERIAL FURGHASES
	ARLTE(3,103) 40 21 ARG1=1,NCM 247=0.0
	10K=1-KHLAG((AF (1)) IF(10K,GT.0) D(Y=(AAM(10K,ALA))#RMB(ARM1) 00(Y(1,JJ=00AY(1,10) + DAY
21 C	55767 (54621)=35677 (546231)+ 547 96212 (57169) - 8661,587 (546241)
ū	· EXTRA-NUBEL CREDIT

/

.

							, ,
							· .
e ^c	WRITE (3, 39)				• • • • • • • • •	RF11204 RF1205	:
C C C C	EXTRA-MODEL	i di	, 		•••••	RPT1207 RPT1203 RPT1203	l
	WRITE(3,99) MRITE(3,122) (AD3T(I)		•••••	••••		RFT1210 RFT1211 RFT1212	
8 C	ΝαιΤς (3,106) - ΝαϊΤς (3,101)		. 			KFT1213 RFT1214 FPT1215	
6 C C	- GLUSING POSIS HRLIE (3,131) USI(1) HSTTL (3,132) CONTI] 1 63			• • • • • • • • • •	RP11210 RP11217 RP11218 PP11219	l
C C	HAILE (3,132) (31(1) HAILE (3,131)					RF11221 RF11221 RP11222	
10 G C	CUNTINUE Pepurt J'givi	ES A SUMMAR	Y JF THE GAS	SHFLOWS	• • • • • • • • •	RPT1223 RPT1224 RPT1225	
G.	WKIIE(3,200) WRITE(3,205)		· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	• • • • • • • • •	RP11226 PF11227 RP11228	
6	NRITE(3,210) NRITE(3,220) NRITE(3,210) NRITE(3,210)	• *	-			KPT1230 KPT1231 KPT1232	
8	ARITE(3,231) DUAY(1,11)=BUAY(1,1)+DU 1-668Y(1,5)-608Y(1,6)-609	4¥(I,2)+DU; MY(L,7)-DU;		(I,4) (I,9)-JJNY(I,	10)	KPT1233 RPT1234 RPT1235	
ទ ភ្លូ០០	ARITE(3,230) MURTH(1),(MRITE(3,210) CONTINUE	Ουμλίς (Υάρη), Ορωλογία	/=1,11)			PPT1236 KPT1237 KPT1238	
C C C	REPORT L'IS C	CALLES TO C	SIVE A FICTUR	KIAL SUMMARY	••••••	RP11233 FFT1240 RPT1241	
	KETUKN FUN					PPT1243	
REPORTI		FLOW CF #4****	FUNDS STA ********	FEMENT FCR	THE MON1 ****	"H P6 ≭#≍###	
				THIS PEPID	D		
	OPENING DEBT OPENING CASH			I	927	7.56	
	OPENING CREDIT			I I			(
	· *** ******	****	******	* * * * * * *	*****	***	* * *
	SALE RECEIPTS		539				
	TOT AL		*~~~~	539			
I	EXTRA MODEL CASHFLOW			•			
00	T E XPN		100				
	TOT AL			100			
	OVEDTIME DATD FOD	•		0.00			
	RAW MATERIALS PAID FOR		-	0+00			
	1 2			0.0 0.0			
	EXTRA MODEL CREDIT			0.0			
	EXTRA MODEL DEET			C. C			
	*** ******	*****	* * * * *	***** -	******	+** 	
	CLOS ING DE FT			I	67	1.1	
	CLOSING CASH			1	136	5.56	

•

														-							
•	I I		RECEI	PT	s			11 11					PAYMENT	S	·				1	1	
IMNTH	H OPN.CA	SH	* BNK LOAN	1	SALES	I	EX.MODEL	11	EX. MCDEL	I	ENK REPY	I	BNK CFRG	1	O/TIME	1	SUBCONT	1	RAN MAT	CL.	CA 5H +
I I Pl	* 10	0.	• 0•	I	399.	I I	C.	11 11	100.	I I	0.	I I	0.	I I	1.	I I	0.	I I	-3.	• • • • • • • • • • • • • • • •	4CI. 1
I I P2	* 49	8.	* 0.	I I	6.	1 1	0.	11 11	100.	I I	0.	I I	0.	I I	1.	I I	0.	I I	C.		403.
I I P3	* 40	2.	* 0.	I I	· 49.	1 1	<u>0</u> .	1 I 1 I	10C.	I I	· 0.	I I	0.	1 1	1.	1 1		I I	351.		-0.
I I P4-	* *	0.	* 0.	I I	845.	I 1	0.	II II	100.	I I	0.	1 1	¢.	I I	1.	I I	0.	I I	119.		625.
I I PS	* 62	5.	* * 0.	I I	1058.	I I	. 0.	II II	100.	I I	0.	I I	C.	I I	2.	I I	· .	1 1	655.	• • • • • • • • • •	926
I I Pé	* 92	8.	* * 0.	I	539.	I I	0.	II II	100.	I I	0.	I I	C.	I I	1.	I I	с.	I I	0.	•	.366.

REPORTJ

CA SHELCW SUMMARY

255 -

vi.	Report L
	SUBROUTINE REPRIL
SC C	THIS REPORT PRINTS OUT THE CASH PROFIE
0	COMMON ALPHA,ALFLG,BANKL(16),CANKC(16),CANKR(16), CSH(16),CKT(16),CSH1,CKTI, DSTORE(16),
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	6 LISI(10,2),LF(16,3),LO(16,3),LOCAP(16,3),LFCAP(16,3), 7 LFXED(15,3),LABAL(16,3,16),LABUT(15,3,18),MONFH(16), 8 MO(16,18),MUREQ(1,19,10),NPROJ,NOUT,NHC,MLF,NSUB,NRH,NH,
	9 0,7((16),0WAGE(3),FD(10,16) COMMON RAHN((16,5),RMIN(5),RM_AG(3),RMG(5), 1 SRN(16,5),GFG(10,10),SIOR2(10),GCUP(15),SBLAG(15),SUB(16), 2 SCAG(10,2),SUGHC(15),GCUT(5),SFREU(10,4),SUGN(16,15),
	3 SUBCD(10,2),SALE(10,15,2),STOCKI(10), VOL(9), 4 HCLF(2,13),HCCAP(16,13),HC(16,16),HCRED(16,18),WIP , 5 HCLCAD(18) FEAL (4H4),1451,5HEP
	REAL LIST, NOREL, INIT, LECAP, LOCAP, CSHEL (16), SU3P, RMB, MO INTEGER SKIP, UVT, AR(16,13), SBDES(15), SBLAG, SLAG, KHLAG INTEGER, SOUT, JUMMY, HJ, SUBMC, SPRED, JES, BLANK, SUBCD, SLOUT,
•	KEAL ISHAX,IJHAN INTEGER DERKI,JLARA,HID(20),JHAMSE(20) DATA HOIIO/'JASH'/,JLNK4/' '/,UPN/'UP'/,BLNK1/' '/,IYE/'I'/
CCC	INITIALISE II=N::+1
	λΜΑΧ=0.0 DO 5 I=1,11 CHANSE(1)=0 OUSEY(1)=51NK4
500	MIČ(I)=OLNKI . CASHFLON
L 10	DUMY(1,1)=CSH1/1000 UO 10 1=1,NN DUMY(1,1+1)=CSH(1)/1000
C Ç	AKITE(3,99) . DETERMINE INF SCALE
С	00 20 1=1,11 ΤΓ(JUMT(1,1).LAMAX) GU TO 20 ΑΜΑλ=JUMT(1,1)
20	LUNIINUE MAX=XMAX+0.5 1504LE=1 UFLISION - GREENAXI GO TO SI
32	0 32 ISALE=5,130,2 IF(ISCALE=6E-MAX) 60 TO 31 UNTINGE
ა0 ა1	00 30 130462729072000,250 17 (1304220620M4X) 60 10 31 Cuntinuz Continuz
ن ن	PLOT THE GRAPH LINE BY LINE
	ISHAA=(52-)()*ISUALE/50 ISHIH=(51-])*ISCALE/50 U0 51 1=1,1 ISHANA (F. SHANA (F. JOHNAKA (F. ISHANA) (F. T.)
	U = M(1) = M(1) = 0 U = M(1) = M(1) = 0 IF(.(1) = (1) = E(.1) = 0 M(1) = 142 M(1) = 14
51	Ir(i.e) GU 10 51 IF(M10(i-1).eu.IYE) GHANGE(I-1)=1 M10(i-1)=iYE OlaT.NJE
	IF (((((-1)-5.*((((-1)/5)).€().0.0) GO TU 35
60 60	1301-(1304(1)150),(00/MAY(1),MID(1),1=1,11) Ου 61 (4-1,1) Γ(CHANGE(1),NI-1) GO TO 61
61 50	1.10(1) + 5LNK1 CEANUE (1) = 0 CONTINUE
C C C C	WARK THE TIME SCALE
C L	. THE FORMAL SECTION
Ç	
C C 4091 99 160	FG.MAT(1H , 6715.3) FURMAT(1H1, *K=90K1 L*,39X,*CAS4 PROFILE*/39X,12(*-*)////) F0RMAT(1H1, *K=90K1 L*,39X,*CAS4 PROFILE*/39X,12(*-*)////)
C 4091 100 100 4091	FG.MAT(1H , 6f15.3) FURMAT(1H1; KZOURI L*,30X,*CASH PROFILE*/39X,12(*-*)///) FORMAT(1H ,20X,*1*,20(A4,A1)) FURMAT(1H ,115; 1*,20(A4,A1)) FURMAT(1H ,115; 1*,20(A4,A1)) FURMAT(1H ,10X,35(*-*)/22X,20(1X,A2,* ;*)) FURMAT(1A 2)

٠

٠

-

REFORTL

·...

i

3

CASH PROFILE

APPENDIX B

THE LONG-TERM CORPORATE MODEL

The model described in Appendix A assumes that the company will continue to operate within the framework laid down by capacity constraints, product mix, and current purchasing patterns. In the longer term all these factors may themselves be changed by management. In this Appendix we introduce modifications to the previous model to incorporate these activities.

1.1 Data Definition

- budget(I) Limitation on amount of capital expenditure in period I.
- cost (K,I) The capital outlay required to service project K in period I after initiation of the project.
- excapm(K,I,M) The amount of additional capacity of work centre M
 that results from project K, I periods after project
 initiation. This allows a finite lifespan to be
 accomodated. Positive entries refer to additions
 in capacity; negative entries for reductions in
 capacity.
- excapf(K,I,L) Additional capacity for labour group L resulting
 from project K, I periods after project initiation.
 nproj No. of different projects considered

1.2 Variable Definition

- COST(I) The capital spent on all projects in period I of the planning period.
- EXCAPM(I,M) The total addition to normal-time capacity of workcentre M in period I of the planning period.
- EXCAPF(I,L) The total addition to normal time capacity of labour group L in period I.
- PROJ(K,I) Project K initiated in period I of the planning period. The life span of the project is defined from the point of initiation in order to take account of possible ordering and planning delays before the first physical or financial activity is effected. This variable is integral.

2. The Model Equations

Three different additions to the basic corporate model may be adopted to model extension of the product range; extension of existing facilities and an extension of 'vertical integration' (namely in-house manufacture of some raw materials currently bought-in). Each of these facets may be considered in isolation - encorporation in the model may allow the relevant decisions to be made in the framework of all the other activities that are simultaneously selected.

2.1 Extension of the Product Range

This is done simply by extending nprod and the SALES (I,K,J) vector to take account of the potential new products that may be manufactured by the company. (This will have to be accompanied by the appropriate 'mcreq' and 'rmreq' data).

Let the left hand side of Eqn. A.1 (the production requirement to be worked in normal time) be represented by MCAP(I,M). Then Equation A.1. would read

MCAP(I,M) < capwc(I,M)

The revised equation is

$$MCAP(I,M) - EXCAPM(I,M) < capwc(I,M)$$
(B.1)

(ii) Labour Force Allocation

It is conceivable that management may wish to increase (or decrease) the labour force. This decrease shall be taken in recognition of the fact that the current labour force availability (caplf(I,L)) is not constant - due to retirements and staff turnover - and against a requirement for manpower to accomplish a production programme in order to satisfy the sales demand.

Let the left-hand side of Equation A.4 (the labour force capacity constraint) be LCAP(I,L). The equation reads

The revised equation is

$$LCAP(I,L) - EXCAPF(I,L) < capf(I,L)$$
 (B.2)

Note that the overtime capacity may be linked to the normal time labour capacity. If the overtime is some fraction of such normal time capacity (i.e. is linked to the number of men working) then the Labour Overtime Capacity equation (A.5) would also require reformulation.

(iii) Capacity Expansion (cf. Eqn. 2.12)

An increase to capacity of (for example) work-centre M in period I can come about through the possible adoption of a number of projects in previous periods. This equation sums the cumulative effect of undertaking these projects.

EXCAPM (I,M) =
$$\sum_{K=1}^{n \text{ proj } I-1} \sum_{K=1}^{I-1} PROJ(K,I).excapm(K,I,M)$$
 (B.3.) (B.3.)

To take account of the increase in labour capacity substitute EXCAPL(I,L) and excapf(K,I,L) appropriately in the above equation.

(iv) <u>Cost</u> (cf. Eqn. 2.13)

Projects undertaken in any period may require financial servicing in suceeding periods

$$COST(I) = \begin{array}{c} n proj & I-1 \\ \Sigma & \Sigma \\ K=1 & \hat{I}=0 \end{array} PROJ(K, I-\hat{I}).cost(K, \hat{I})$$
(B.4)

COST(I) is now included as an outflow of cash in the Cash Position Equation (Eqn. 1.17, A.8) (v) Budget Constraint

Many companies operate in an environment of capital budgeting. This may be a total constraint on spending in any period.

or it may be a constraint imposed by the company on spending on new projects

2.3 Vertical Integration

(i) Substitute Production (cf. Eqn. 2.14)

In order to consider the possibility of making in-house components presently bought-in, these components must be considered as separate, identifiable, raw materials. Extend the vector of products to include 'pseudo' products corresponding to these raw materials. The only difference between these 'psuedo' products and the others is that no sales outlets will exist for them: in all other respects similar data definition (e.g. <u>mcreq</u> and <u>rmreq</u>) will be required. There is no need to restrict the work-centre requirement to those work-centres available: if the manufacture of a certain 'pseudo' product requires work done on a work-centre not currently owned, then the programme will have to consider, simultaneously, the asquisition of such work-centre capacity!) The new in-house production is now considered as an extra source of the particular raw material. Let Equation A.12 be expressed as

STOCKR(I,R) = STOCKR(I-1,R) +RMB(I,R) - RUSE (I,R) where RUSE (I,R) is the amount of raw material R used in production in period I.

The revised quotation is

STOCKR(I,R) = STOCKR(I-1,R) + RMB(I,R) + PROD(R,I) - RUSE(I,R)(B.7)

where PROD(R,I) is the amount production of 'pseudo' product corresponding to material R completed in peirod I.

(ii) <u>Cost</u>

Clearly the cost (Eqn. B.4) and budgeting (Eqn.B.5 or B.6) constraints still apply.

(iii) Irrevocability (cf. Eqn. 2.15)

In the event that a supplier will not accept intermittent ordering or management impose the constraint that the decision to extend the amount of in-house production be made once and for all (to take account of the once off (labour) cost of getting such a project under way) the irrevocability constraint may be modelled as follows:

- B - 263 -

$$\begin{array}{c} -B - 264 \\ \text{RMB}(I,R) + M \Sigma \Sigma PROJ(K_{R}, I) \leq M \forall R \\ \text{K=1 I=1} \end{array}$$
(B.8)

Where M is a large multiplier, and PROJ (K_R, I) is a project to produce raw material R in-house undertaken in period I.

3. The Model in Use

This model formulation has been transferred to a computer model by WILSON (147) who experienced a number of difficulties in getting the model to run. One of the problems he encountered was simply that large mixed integer programmes (the number of projects is clearly an integral variable!) are difficult to solve.

Clearly more work needs to be done on the model formulation to resolve a number of remaining problems. These centre on firstly how to deal with projects that extend beyond the planning horizon - will the introduction of unequal time periods be sufficient to cater for the problem or will some post horizon terminal value ascribed to each project have to be included in the objective function - and secondly on the definition of a long term profit maximisation objective function. The definition of profit in the short term model was the difference in the sum of cash plus debtors less creditors positions at the horizon from the position at the beginning of the planning period. This will not do for the long term case since the physical environment is not held constant! Following our definition of profit in Chapter 3.1.ii we will define a profit maximisation objective as the change in the value of the "Shareholders Account" over the planning period. But this in turn requires that we ascribe prices to the assets and liabilities in the balance sheets, which

to be consistent with the methodology, should be linked to the dual variables associated with the respective constraints. However, in Chapter 6.3.3.ii, we show that the dual variables themselves form an arbitrary pricing mechanism. This dilema will require resolution before the model can become a useful tool for long-term strategic planning.

4

. •

APPENDIX C

MATHEMATICAL FOUNDATIONS

This Appendix may be split into 2 sections. The first is concerned with definitions of terms and the second with establishing some basic theorems in Linear Algebra and the geometry of cones.

1. Definitions

1.1 Vector Space. (108)

Let K be some given field of scalars, and V be a non-empty set such that for any $\underline{u}, \underline{v}$ elements of V the sum $\underline{u} + \underline{v}$ is also an element of V, and for any $\underline{u} \in V$, $\lambda \in K$ the product $\lambda \underline{u} \in V$. V is termed the vector space over K. The following axioms hold:

- i. $\underline{u} + \underline{v} = \underline{v} + \underline{u}$
- ii. $(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$
- iii. $\underline{u} + 0 = \underline{u}$
- iv. $\alpha(\underline{u} + \underline{v}) = \alpha \underline{u} + \alpha \underline{v}$
- v. $(\alpha\beta)\underline{u} = \alpha(\beta\underline{u})$
- vi. $(\alpha + \beta)\underline{u} = \alpha \underline{u} + \beta \underline{u}$
- vii. $1 \cdot \underline{u} = \underline{u}$
- 1.2 Subspace of a Vector Space. (123)

A subset W of a vector space V is a subspace of V if W is itself a vector space with the binary operations defined in V. i.e.

if
$$\underline{x}, \underline{y} \in W$$
 then $\underline{x} + \underline{y} \in W$
 $\underline{x} \in W$ then $\alpha \underline{x} \in W$, and $\underline{\emptyset} \in W$

If W is a subspace of V and \underline{X} is a vector in V then the sum $W + [\underline{x}]$ is termed a coset of W.

•

A coset is not a subspace of V unless \underline{x} is an element of W.

1.4 Dependancy (115)

The vector <u>y</u> is <u>linearly</u> dependant on a subset X of V if there are points $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_r$ of X and (real) scalars $\lambda_1, \dots, \lambda_r$ such that

 $\underline{y} = \lambda_1 \underline{x}_1 + \cdots + \lambda_r \underline{x}_r$

y is affinely dependant on X if in addition

$$\lambda_1 + \dots + \lambda_r = 1$$

y is convexly dependant if

$$\lambda_i > 0 \quad \forall i \text{ also holds.}$$

1.5 <u>Convex Sets.</u> (60)

A set M is termed convex if M contains every segment joining a pair of points from M.

if x, y e M then $\lambda x + (1 - \lambda)y$; $0 \le \lambda \le 1 \le M$

1.6 Cone (60)

A set C is termed a cone if $\underline{\emptyset}$ is in C and for all $\underline{x} \in C$ $\underline{x} \in C$ for all non-negative scalars .

1.7 <u>Convex Cone</u> (115)

A subset of V, closed under the operations of taking non-negative linear combinations is called a convex cone.

> For $\underline{x}_1, \dots, \underline{x}_r \in C$ $\underline{x} = \lambda_1 \underline{x}_1 + \dots + \lambda_r \underline{x}_r$; $\lambda_i \ge 0 \quad \forall i$ If $\underline{x} \in C$ then C is a convex cone.

1.8 Convex Hull. (77)

The 'smallest' convex set which contains A is called the convex hull of A.

A more precise definition in (115) is that the convex hull of a set A is the set of all convex combinations of (finite) subsets of A.

1.9 Convex Polytope (115)

The convex hull of a finite set of points is termed a convex polytope.

1.10 Basis (123)

A basis B of a vector space V is a linearly spanning set for V.

$$\underbrace{ \begin{array}{c} \underbrace{ \mathbf{x} \text{ in } \mathbf{V} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} } \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{e}_{i} \end{array} }_{\substack{ \mathbf{e}_{i} \\ \mathbf{e}_{i} \end{array} }} \underbrace{ \begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{array} }_{\substack{ \mathbf{x} \\ \mathbf{x} \end{array} }$$

1.11 Dimension (123)

A vector space is said to be 'finite-dimensional' if it has a finite spanning set.

2. Basic Results

2.1 Convex Sets.

THEOREM C.1. If L is a family of convex sets in a real vector space E^n then the intersection of the sets is also convex.

<u>Proof</u>: Suppose $x_1, x_2 \in \cap(L)$ so that $x_1, x_2 \in C$ for all $C \in L$. Since C is a convex set $\lambda x_1 + (1-\lambda)x_2 \in C$ (for $0^{<\lambda<1}$) for all C in L. Therefore $\lambda x_1 + (1-\lambda)x_2 \in \cap(L)$.

Interior and Boundary Points. (77)

An <u>e neighbourhood</u> about a point <u>a</u> is defined as the set of points inside a hypersphere with centre at <u>a</u> and radius $\epsilon > 0$.

 $N = (\underline{x} / |\underline{x} - \underline{a}| < \epsilon; \epsilon > 0)$

A point <u>a</u> is an <u>interior point</u> of a set A if there exists an e neighbourhood about the point which contains only points of the set A.

A point <u>a</u> is a boundary points of a set A if every e neighbourhood about that point (regardless of how small $\epsilon > 0$ maybe) contains points which are in the set <u>and</u> points which are not in the set.

A set is closed if it contains all its boundary points; open if it contains only interior points.

Support Properties. (115)

A hyperplane divides a real vector space E^n into two half-spaces: Let the hyperplane be $H = (\underline{x} \in E^n / \underline{a} \cdot \underline{x} = \alpha)$ $(\underline{a} \neq 0)$ The set of points lying on, or to one side of, the hyperplane is called a closed half-space.

$$H' = (\underline{x} \in E^n / \underline{a} \cdot \underline{x} \stackrel{\leq}{>} \alpha)$$

If the inequalities are replaced by strict inequalities, (i.e. removing the boundary points from the set), the set is termed an open half-space.

The vectors <u>a</u> and <u>-a</u> are the normals to the hyperplane, pointing in either direction. Conventionally, with α positive and the half-space defined as

<u> $a.x > \alpha$ </u> the <u>a</u> is the <u>inward normal</u> i.e. it points into the defined half-space.

Consider a closed, bounded convex set K in E^n . A hyperplane H is said to <u>support</u> K if $H \cap K \neq \emptyset$ and K is contained in one of the closed half-spaces defined by H. H is termed a <u>supporting</u> <u>hyperplane</u> of K.

> THEOREM C.2. Given any closed convex set K, a point \underline{y} either belongs to the set or there exists a hyperplane H which contains \underline{y} such that all of K is contained in one open half-space formed by H.

<u>Proof</u>: (77) Assuming that <u>y</u> is not a member of K find the point <u>w</u> in K that is closest to <u>y</u> i.e. $|\underline{w}-\underline{y}| = \min]\underline{u}-\underline{y}[$ $\forall \underline{u} \in K$ (note that only one such point exists, since the line joining two points is included in K, and by the triangle inequality the midpoint would be closer to \underline{y} than either of the two.) Constructing a hyperplane passing through \underline{y} with the vector joining \underline{w} to \underline{y} as the normal, it can be shown that the entire set K lies in one open halfspace.

THEOREM C.3. (115) Every closed bounded convex set K in Eⁿ is the intersection of all its supporting half-space.

THEOREM C.4. (115) Through every point \underline{x} on the boundary of a closed convex set K passes a supporting hyperplane H.

2.2 Convex Cones. (60)

The dimension of a convex cone is defined as follows:

The smallest subspace S(C) of the vector space E^n which contains the cone C (i.e. the intersection of all subspaces containing C) has dimension d(C). This is termed the <u>linear dimension</u> of the cone C.

A ray (or vector) \underline{x} of a convex cone C is an <u>extreme ray</u> of C if \underline{x} is <u>not</u> a positive linear combination of any two linearly independent rays of C.

Clearly any ray which is the only ray in the intersection of a supporting hyperplane and a convex closed cone is necessarily an extreme ray. THEOREM C.5. If <u>x</u> is an interior ray of a convex cone C and <u>y</u> is a boundary of interior ray of C then every ray ($\alpha \underline{x} + \beta \underline{y}$) with α, β positive scalars, is an interior ray of the cone.

A cone is termed polyhedral if it is the convex hull of a finite number of rays. The polar of a polyhedral cone is the intersection of a finite number of half-spaces.

2.3 Convex Polytopes. (115)

If H is a supporting hyperplane of a closed bounded (n dimenstional) convex set K then $H \cap K$ is called a <u>face</u> of K.

Every face F of K is convex and $0 \leq \dim F \leq n-1$. The O-faces of K are called vertices, the 1-faces are edges, and the n-1 faces are termed facets.

THEOREM C.6. A polytope has only a finite number of distinct faces, and each face is a convex polytope.

THEOREM C.7. A convex polytope is the convex hull of its set of vertices.

It follows that the vertex vector of a convex polytope P is a vector of P which is not a convex combination of the other vectors in P. (123)

THEOREM C.8. If a n-polytope in E^n has d facets, then it can be written as the intersection of d closed half-spaces.

This follows from the fact that a convex polytope is a bounded polyhedral set.

THEOREM C.9. Let F_1 be a face of a polytope P and F_2 be a face of the polytope F_1 . Then F_2 is a face of P.

THEOREM C.10. Let F_1, F_2, \ldots, F_r be a family of faces of a closed bounded convex set K. Then $\stackrel{r}{\circ} F_i$ is also i=1ⁱ a face of K. (For this purpose the null set is considered a face, but is clearly of little interest.)

Special Polytopes:

Simplicies. If V is any set of n+1 affinely independent points in E^n , then $S^n = \operatorname{conv} V$ is called an n-simplex.

THEOREM C.11. Every k-face (0 $\leq_k \leq_{n-1}$) of a n-simplex Sⁿ is a k-simplex, and every k+1 vertices of Sⁿ are the vertices of a k-face of Sⁿ.

Pyramids. A n-pyramid P is the convex hull of a (n-1)polytope Q (termed the basis of P) and a point <u>x</u> which is not a member of the affine hull of Q. (<u>x</u> is termed the apex of P)

2.4 Basis (77)

THEOREM C.12. The unit (\underline{e}) vectors form a basis for \underline{e}^n .

<u>Proof</u>: The set of unit vectors is linearly independant since

$$\lambda_1 \stackrel{e}{=} 1 + \dots + \lambda_n \stackrel{e}{=} (\lambda_1, \dots, \lambda_n) = \emptyset$$

implies that $\lambda_1 = 0, \dots, \lambda_n = 0$. Any vector <u>x</u> can be written in terms of the unit vectors as

$$\underline{\mathbf{x}} = \mathbf{x}_{1\underline{e}_{1}} + \mathbf{x}_{2\underline{e}_{1}} + \mathbf{x}_{2\underline{e}_{2}} + \cdots \mathbf{x}_{\underline{n}\underline{e}_{n}}$$

with the scalars x_{i} equal to the components of \underline{x} in each dimension. Hence the set of unit vectors form a basis.

THEOREM C.13. The representation of any vector in terms of a set of basic vectors is unique.

Proof: Assume the contrary. Then

 $\underline{\mathbf{x}} = \begin{array}{c} \lambda_{\underline{\mathbf{a}}} \\ 1 \end{array} + \begin{array}{c} \cdots \\ n \end{array} + \begin{array}{c} \lambda_{\underline{\mathbf{a}}} \\ n \end{array}$

and $\underline{x} = \pi_1 \underline{a}_1 + \dots + \pi_n \underline{a}_n$

Then $(\lambda_1 - \pi_1)\underline{a}_1 + \dots + (\lambda_n - \pi_n)\underline{a}_n = \emptyset$ Since the basic vectors are independent $(\lambda_1 - \pi_1)$ must be zero for all i.

THEOREM C.14. Any two bases for E^n have the same number of basic vectors.

It follows that a basis has precisely n members (from Theorem C.12), and that any set of n linearly independant vectors from E^n will form a basis. Furthermore, any n+1 or more vectors are linearly dependant.
APPENDIX D

EXAMPLES OF RESULTS

1. Introduction

In this Appendix we present some results from test runs of the corporate model formulated in Chapter 1. To preserve the anonimity of the test-case company the results shown here arise from a constructed example where a mythical company sells two products through a single marketing outlet. The production process coverts two raw materials through three work-centres, that have no sub-contracting facilities, manned by two different labour groups. The company has no facility to borrow or to lend funds, and the planning horizon, over which the model is run, is six periods.

Section 2 of this Appendix details the procedures and programmes used to construct the alternate dual space from the optimal solution of the model. In Section 3 we discuss the attempts made to resolve this space.

.

•

2. Generation of the Alternate Dual Space.

•

.

0001		CONCRAME DUDIN	
0001	*	FRUGRAMA OUT	
0003	7	. THIS PREGRAMME CONVERTS THE LE MOREL INTO A	• •
0004	*	TOTALLY DEGLINERATE SYSTEM	
0005	4.		
0006		INITIALZ	
0100	#		
0101	×	. FUN THE MATRIX GENERATOR	•
0102	*		••
0163		FREECCRE	
0104		MGP	
0105	*		••
0106	X	 CENVERT THE DATA AND RUN THE LP 	•
0107	+		••
0108		FOVE (XDATA, PHDEX/IPL 1)	
0105		FCVE(XPBNAME,*EXMPL*)	
0110		CCNVERT(+FILE+,+FT08FC01+)	
0111		SETUP('MAX','RANGES','RANGES','ECUNDS','POLICY','SCALE')	
0112		MOVE(X08J, P6LA1)	
0113		MOVE(XRIIS, *RHS *)	
0114		CRASH	
0115		FRIMAL	
0116	*		• •
0117	x,<	• STOPE ALL THE INFORMATION	•
0118	*		••
0119		SAVE('NAME', 'ORIGIN')	
6120		PCDEUT ('PLNCH','FILT','FTC/FAC1','CNE','NLLIST','FCT')	
0121			X
0121			х
0121	-	CSECTION ; 1/2/3/40/50/50/70/70/9	
0122	+	4 * * * * * * * * * * * * * * * * * * *	• •
0123	*	• THE SOLUTION IS LINULT IL DE PRIMEL FLIEWAPE, DECEMBRATE	•
0124	*	 DEGENERATIES THE ALTEDNATE HYDREELAND BY ETYTAC 	•
0125	- *	 FIRST - IDENTIFY INT ALTERNAL DIFFERENCE ST FIATON THE STITION, THEN POTAG TO POTAG ANY 	•
0120		• The Societies, then the te revenues	•
0128		FREFCURE	••
6126		ALT	
0130		NOVE (XDATA, "OHYES")	
0131		*CVE(X08J.+JECTIVE+)	
0132		MCVE(X6HS+18H5+)	
0133		NEVE(XOUDNAME, 'EXMPL')	
0134		NOVE (XPBNAME, 'EXMPL2')	
0135		REVISE('FILE','FT11+CC1')	
C136		SETUP('MAX+, RANGES', 'RANGES', 'PCUNES', 'PCUTCY', 'SCALF')	
0137		FE STC3F	
0138		PRINAL	
0139		SCLUTION("FIL2","FTOSF001",	۲
0139		*RSECTIUN",*1/2/5/40/50/00/70/20",	Х
0139		'CSECTION', '1/2/3/40/50/60/70/60')	
C14C	¢.		3 0
U141	÷	 THE ALTERNATE HYPERPLANE HAS NON-ZERT EVALS 	•
0142	4	 SCOONS - CHORSE THE CONTER POINT TO MAXIMUSE THE 	3
-			

0144	×		• •
0145		FREEDURE	
0146	•		
0147		MUVE (XHALA, YUUNIKEALY) Move (XHALA, YUUNIKEALY)	
0148		MOVE (XULDNAME, * EXAMPL*)	
0145		ACVELXPHRAME, EXAMPL2 J	
0150		MCAE (X083', 7EC 1AE.)	
0151		MLVE(XKHS, PFS)	
0152			
0153		SETUPI MAX, TRANGES, TRANGES, TELUNUS, TPLLILT, SLALET	
0154		RES(DRE(*NAME*, *CRIGIN*)	
C155		FRIMAL	
0156		SOLUTION (FILL , FILSFORT,	×.
0156		*RSECTION*,*1/2/3/40/50/60/70/80*,	X
0156		CSECTION + + 1/2/3/40/50/60/70/80*1	
0157	÷ .		• •
0158	41	THIRD - IMPOSE THIS SCLUTION ON THE OFIGINAL POPEL	•
0159	*		• •
0160		FREECORE	
0161		FIXIT	
0162		MOVE(XOHJ,*EARNINGS*)	
0163		MCVE(XOATA, "NOW DEGEN")	
6164		PCVE(XRHS, TRHST)	
0165		MCVE(XOLONAME, *EXMPL2*)	
0166		MCVE(XPBNAME, EXMPL3)	
0167		REVISE(*FILE*,*FT11FCC1*)	
0168		SETUP('NAX+,'RANGES','RANGES','ECUNES','POUICY','SCALC')	
0169		PESTORE('NAME','ORIGIN')	
0170		PRIMAL	
0171		SAVE('NAME','FIRST')	
0172		SELUTION('FILE','FTCSF001',	X
0172		<pre>!RSECTION!,!1/2/3/40/50/60/70/80!;</pre>	X
0172		+CSECTIUN+++1/2/3/40/50/60/70/80+}	
0173	*		• •
0174	¥	 FOURTH - MAKE THE SYSTEM TOTALLY DECENSENTE BY 	•
0175	*	CELLAPSING THE MODEL IN THIS NEW SELLTION	٠
0176	*		• •
0177		FREECORE	
0178		CEGENTOT	
U17 9		NCVE(XOBJ, *P6EA1*)	
C18C		NEVE (XDATA, IN JNEEGENI)	
0181		YOVE(XEHS+TRHST)	
0182		MEVE(XOLONANE, "EXMPL")	
0183		NEVE(XPBNAME, EXMFL3)	
0184		REVISE("FILF", "FTIIFCC1")	
0185		SFTLF(!MAX+,!RANGES!,!FANCES!,!ECUIFS!,!PCLICY!,!SCALE!)	
0126		RESTORE(+NAME+, /CRIGIN+)	
0187		PF 1NAL	
0168		SELUTION('FILE','FTIGEO01')	
0189		SCELTION	
0190		SALUTION('FILL','FTG9F001',	X
0190		<pre>!RSECTION!,!1/2/3/4E/SD/6C/7E/8E!;</pre>	x
0190		+CSECTH(N+++1/2/3/40/50/70/90+)	
0151		FICTURE	

•

•

•

0152 0153 0154	× × *	 TC AID SELECTION IN THE ALTERNATE CLAL SPACE CONSTRUCT THE GLAL PROBLEM EXPLICITLY 	• • • • • • • •
0195	*		
0196		FREECORE	
0157		TRANS	
0158		NEVE (XDATA, * NEW MATRX *)	
0199	•	FOVE (XPBNAME, 'EXMPL4')	
0200		CCNVERT(*FILE*, *FT08FG01*)	
0201		NCVE (XRHS. 'NENRHS')	
0202		SETUP('MAX' + 'BOUNDS' + 'FOLICY' +' SCALE')	
0203		ACVE (XDATA, * PROFIT *)	
C2G4		MCVE(XUBJ, 'NGOALS')	
0205		MCVE (XP BNAME, 'EXMPL4')	
0266		MCVE(XDLCNAME, 'EXMPL4')	
0207		REVISE	
0208		SETUP('MAX', 'BOUNDS', 'POLICY', 'SCALE')	
0205		FICTURE	
0210		NGVE(XDATA, "REDLCE")	•
0211		NCVE(XPBNAME, EXMPL4")	
0212		MCVE(XOLDNAME, 'EXMPL4')	
0213		FEVISE	
0214		SETUP('MIN','BCUNDS','PCLICY','SCALE')	
0215		MOVE(XDATA, INEWERBI)	
0216		NEVE (XPBNAME, "EXMPL4")	
0217		NEVE(XALDNAME, 'EXMPL4')	
0216		MOVE(XOBJ, UNDER)	
0215		REVISE	
0220		SETUP('MIN','BOUNDS','FCL1CY','SC4LE')	
0221		<pre>FICTURE('RLIMIT','NEWCBJ',' ')</pre>	
0222		FRINAL	
0223		SOLUTION	
0224		EXIT	
0225		FEND	

.

.

.

.

ALT - see line 129.

```
//UMTS118H JOB %0120,PMT5,0.59.19CC,: EILON-COURIEP:

// EXEC FORTHOD,PARM.C':BCD,NOSOURCE:,PARM.L':LIST,XREF:

//C.SYSIN 00 *

C. ALT IDENTIFIES THE ACTES

C. ...
                                         ALT IDENTIFIES THE ALTERNATE HYPERPLANE
- FIX THE OLG SOLUTION, THEN TRY TO MOVE AWAY
              - FIX THE OLD SOLUTION, THEN TRY TO MOVE AWAY

INTEGER FILE1, FILE2, ROWS(200,4)

REAL+$ COLNN($), YALUES($).ENDSEC, NAME, COLUM, COLUMN, RHS

REAL+$ OBJ, XYAL

INTEGER FILE

NTEGER FILE

DATA OBJ//PEEA1 '/

DATA ENDSEC/'FENDSEC$'/, COLUMN/' '/

OHE=1.0

XYAL=9999.999

UL=100000.0

LL=-L00000.0

ACTIV=1

LLIM=3

ULIM=4

DVALE5

YNAME=8
 00000
                                         THE SOLUTION IS STORED ON FILE2
The new revise file is written on list
                                          FILE2=9
LIST=11
 000
                                   PRÉPARE THE FILES
               REWIND LIST
               REWIND FILE2
REA0(FILE2) HANE
REA0(FILE2) HANE
IF(NAME.NE.ENDSEC) GG TO 10
REA0(FILE2) HANE, NOCOL
READ(FILE2) (COLNN(IN),IN=1,NOCOL)
READ(FILE2)
 10
 000
                                   . NEW DEJECTIVE FUNCTION WILL NAXIMISE LANDA
                                                                                . . . . . . . . . . . . . . . . . . .
               WRITE(LIŠŤ,2005)
URITE(LIŠŤ,205)
WRITE(LIŠŤ,205)
ORITE(LIŠŤ,2105) OHE
 0
0
0
5 0
                                   . AGÓ SLÁCK/SÚRPLÚS VÁRIABLE LÁNDA TO ÉACH CÓNSTRÁINT
                \begin{array}{l} {\sf READ}(FTLE2) & (VALUES(IN), IN=1, NOCOL) \\ {\sf IF}(VALUES(I), EQ.ENDSEC) GO TO 100 \\ {\sf IF}(VALUES(LLIM), EO, VALUES(ULIM))GO TO 50 \\ {\sf IF}(VALUES(LLIM), LT, LL), AND (VALUES(ULIM), GT, UL)) & GO TO 60 \\ {\sf IF}(VALUES(LLIM), LT, UL), AND (VALUES(ULIM), GT, UL)) & GO TO 60 \\ {\sf IF}(VALUES(LLIM), GT, LL), AND (VALUES(ULIM), GT, UL)) & \\ {\sf VFITE}(LIST, 215) & VALUES(VNAME), MINUS \\ {\sf GO} TO 50 \\ \end{array} 
               VRITE(LIST)213) VALUES
GO TO SO
TE(VALUES(VHANE) HE OBJ) GO TO SO
GVALEVALUES(ACTIV)
GO TO SO
             1
 60
 0000
                                         ENSURE THAT PROGRAMME YIELDS THE SAME VALUE FOR THE .
OLD OBJECTIVE FUNCTION
               CONTINUE
NFITE:LIST,220 > 05J.XVAL
NFITE:LIST,290 >
ENG FILE LIST
REWING FILE
STOP
 100
                                          THE FORMAT SECTION
 ί
ς
200
                FORMATC' AFTER'/' H JECTIVE ')
FORMATC'COLUMNS'/' AFTER'/4X./LANDA JECTIVE ',F14.4)
FORMATC4X./LANDA ',2X,A8,F14.4)
FORMATC'RNS'/' MODIFY'/4X./PHS ',2X,A8,F14.4)
FORMATC'ENDATA')
END
  205
210
215
220
290
 END

/*

//*

//t.sysin co *

Entpy Main

Name Alt
                                                             IS STORED ON AREA UNTMILSA ON DISC 40002
                                   ALT
```

i.

VUNTSILSO_JOB_X0120, RMT9,0 30,9CL,: EILON-COURIER: //C.SYSIN 00 * //C.SYSIN

.

.

	REWIND FILEI
c	READ(FILE1,200) INAME READ(FILE1,200) INAME
000	I CENTIFY THE ROUS WITH NON-ZERO DUALS - These are the Alternate Hyperplanes
50	FEAD(FILÉ2) (VÁLÚÉS(IN),IN=1,NÓCÓL) IF(VÁLÚES(1).EQ.ENDSEC) GO TO 100
	I=I+1 READ(FILE1,210) ROWS(I,1),ROWS(I,2),ROWS(I,3) ROWS(I,4)=0
	IF(RÚWS(Í,1).EQ.GT) ROWS(I,4.)=-1 IF(ROWS(I,1).EQ.LT) ROWS(I,4)= 1
	IF(VALUES(DUAL).EV.0.03 GU 10 50 ROWS(I,4) =0 IF(ROWS(I,1).EV.E) GO TO 50
	IF(POWS(I,1).EQ.N) GO TO 50 J=J+1 PEVPOW(J.3)=0
	ŘEVŘOV(J,I)=ŘOUS(I,2) REVROV(J,2)=ROUS(I,3)
100	GO TO SO CONTINUE
	LIMR=I LIMREY=J READ(FIIF1.200) INAME
ç	READ THE MATRIX COEFFS, SQUARE, AND STORE
630	READ(FILE1,230) BLAHK,COL,ROWI,ROW2,VALUE IF(BLK.NE.BLANK)_GO_TO 650
•	IF(XCOL.EQ.COL) GO TO 600 XCOL=COL J1=1
600	D0 610 J=L,LIMR IF(R0W1 NE R0WS(J,2)) G0 T0 610 IF(R0W1 E D R0WS(J,2)) G0 T0 610
$\frac{610}{620}$	CONTINUE J1=J+1
С	GO TO 630
0 0 650	CONTINUE
400	I=0 READ(FILE1,230) BLANK, RHS, ROV1, ROV2, VALUE
	IF(6LaHK, NE, BLK) CO TO 500 IF(6LaHK, NE, BLK) CO TO 500
410	IF(ROW1.NE.ROWS(I,2)) GO TO 420 IF(ROW2.NE.POWS(I,3)) GO TO 420 COEFC(I.2)=VALUE
420	60 16 400 D0 430 I=1,LIMR IF 0044 91 - 000000 000 00 00 00 000
430	IF(ROW2.EQ.ROUS(I,3)) GO TÚ 410 CONTINUE
500 C	VEITE(3,310) Continue
Č C	
_	URITE(LIST,275) IF(LIST,275) IF(LIMPEV.EQ.0) CO TO 520
C C C	. KEEP THE ALTERNATE HYPERPLANES TIGHT
520	URITE(LIŠŤ,280) (ŘÉVŘOÚ(K,1),ŘÉVPÓÚ(K,2),Ř=1,LINŘÉV) Continue Urite(List 2003)
	₩RITE(LIST/290) WRITE(LIST/293) OHE
ц	

PEHUNTILE23

REWIND FILES

.

- D - 281 -

.

.

WRITE(LIST,260) ONE D0 510 I=1,LIMR XYALU =C0EFF(I,2)*R0WS(I,4)*(SQRT(C0EFF(I,1))) C0EFF(I,2)=XYALU IF(C0EFF(I,2).EQ.0.0) G0 TO 510 WRITE(LIST,250) R0WS(I,2),R0WS(I,3),XYALU WRITE(FILE3,251) R0WS(I,2),R0WS(I,3),XYALU C0NTINUE WRITE(LIST,305) UL D0 530 K=1,LIMREY IF(REVROW(K,3).GT.0) G0 TO 540 C0NTINUE WRITE(LIST,295) END FILE LIST REWIND LIST REWIND FILE2 STOP 510 530 590 C C C C 5 40 IF THE ORIGINAL EQUATION IS RANGED AND NOW REQUIRED To be tight, the ranges entry needs hodification WRITE(LIST,310) WRITE(LIST,315) UL DO 550 KK=K,LIMREY IF(REVROW(KK,3).GT.0) WRITE(LIST,320) REVROW(KK,1),REVROW(KK,2), ZERO 1 CONTINUE Go to 590 550 THE FORMAT SECTION FORMAT(A4) FORMAT(A2,2X,2A4) FORMAT(A2,2X,2A4) FORMAT(A4,A3,2X,2A4,2X,F12.3) FORMAT(A4,A3,2X,2A4,2X,F12.4) FORMAT(4X,'LANDA ',2X,2A4,2X,F12.8) FORMAT(2A4,F12.8) FORMAT(4X,'LANDA ',2X,'JECTIVE ',F14.3) FORMAT('HODIFY') FORMAT('HODIFY') FORMAT('HODIFY') FORMAT('E P6EAI') FORMAT('E P6EAI') FORMAT('E P6EAI') FORMAT('AFTER'/ LOUMMY '/'H JECTIVE') FORMAT('CUUMHS''A2X,'DUMMY ',F14.3) FORMAT('LANDATA') FORMAT('LANDATA') FORMAT('LANDATA') FORMAT('LANDATA') FORMAT('LANDATA') FORMAT('LANDATA') FORMAT('LANDATA') FORMAT('LANDATA') FORMAT('RANGES ',2X,'DUMMY ',F14.3) FORMAT('RANGES ',2X,'DUMMY ',F14.3) FORMAT('X,'PANGES ',2X,'DUMMY ',F14.3) FORMAT('X,'PANGES ',2X,'2A4,F14.2) END 00000140056840350150 . THE FORMAT SECTION . END /* //* //* //L.SYSIN DD * ENTRY MAIN NAME CENTALTH CENTALTH IS STORED ON AREA UNTHINGR ON DISC 40002

. NAZIMISE INE ULSTANJE (PRONT OF NORHALISED RHS) FROM . All the other hyperplanes

C C C

iii. FIXIT - see line 161.

.

```
//UMTS1180 JOB %0120,RMT5,0.30,9CC,: EILON-COURIER:

// EXEC FORTHOD,PARM.CI:BCG.NOSOURCE:,PARM.LI:LIST,XREF;

//C.SYSIN DD +

C. FIXIT READS THE SOLUTION OF THE PREVIOUS

C. FIXES THE VARIABLE BOUNDS AT THEIR ACTIV
                                                FIXIT READS THE SOLUTION OF THE PREVIOUS RUN AND
FIXES THE VARIABLE BOUNDS AT THEIR ACTIVITY LEVELS
               FIXES THE VARIABLE BOUNDS AT THEIR ACTIVITY LEVELS

INTEGER FILE2, FILE3

REAL VL,L,MINUS

REAL VL,L,MINUS

REAL VL,L,MINUS

VALUES(S),ENDSEC, NAME.COLUM.COLUNN,RHS,DUMMY

INTEGER DUAL,VLIM.LIM.SLACK.ACTIV.VNAME

DATA DUMMY//DUMMY//

DATA ENDSEC/'SENDSEC$'/

UL=100000.0

LL=-100000.0

LL=-100000.0

LL=-100000.0

LL=-100000.0

LL=-100000.0

LL=-100000.0

NCTIV=1

SLACK=2

LLIM=3

VNAME=8
0000
                                                THE SOLUTION IS STORED ON FILE2
The new revise file is written on list
                                                                                        LIST =11
FILE2=9
                                                PREPARE THE FILES
000
                 RENIND LIST
                REWIND FILE2
READ(FILE2) HAME
READ(FILE2) HAME
IF(HAME.NE.ENDSEC) GO TO 10
READ(FILE2) NAME,NOCOL
READ(FILE2) (COLNM(IN),IN=1,HOCOL)
READ(FILE2) HAME
IF(HAME.NE.ENDSEC) GO TO 11
PEAD(FILE2) HAME,NOCOL
READ(FILE2) (COLNM(IN),IH=1,HOCOL)
READ(FILE2)
10
11
000
                                                WRITE REVISE HEADINGS AND KNOUN CHANGES
                WRITE(LIST,200)
WRITE(LIST,205)
WRITE(LIST,205)
WRITE(LIST,210)
WRITE(LIST,210)
WRITE(LIST,215)
WRITE(LIST,220)
                                                                                                                                  C
C
C
50
                FIA THE VARIABLES

PEAD(FILE2) (VALUES(IN), IN=1, NOCOL)

IF(VALUES(1), EQ EN(SEC) GO TO 100

IF(VALUES(VHANE), EO DUMMY) GO TO 100

WRITE(LIST, 230) VALUES(VNANE), VALUES(ACTIV)

GO TO 50

WRITE(LIST, 290)

END FILE LIST

REWIND FILE2

STOP
                                     FIX THE VARIABLES
1.00
0
000
200
200
200
210
210
215
                                              FÓRHÁT SECTIÓN
                  FORMAT('ĤÀMÉ',10%,'NOVDEGEN''
FORMAT, POUS'', FEIFTF'', FGEAL')
FORMAT, POUS'', HEAKNINGS')
FORMAT('COLUMNS'/' DELETE'/' DUMNY'/'
FORMAT(' NODIFY'/
                                                                                                                                                   -----
                                                                                                              DUMNY'/'
                                                                                                                                                 LANDA')
                                                                    ŗ,
                                                                      // F6CH01
// P6CR01
/ P6DE01
H0D1FY/)
//A8/F14.7)
                                                                                                              EARHINGS
EARNINGS
EARNINGS
               しいい
                                                                                                                                                 1.0'/
-1.0'/
1.0')
                  FORMATC'BOUNDS'/'
FORMATC' FX FOLICY
FORMATC'ENDATA')
 220
250
290
END
2/*
2/*
2/L.SYSIN DD *
ENTRY MAIN
NAME FIRIT
                                       FIXIT
                                                                       IS STORED ON AREA UNTRIISM ON DISC 40002
```


 2/UMTS118P
 JOB %0120, RMT5,0
 30,9CL;
 ELLON-COURTER:

 2/2
 EXEC FORTMOD, FARM.C1:6CC, NOSOURCE:
 PARM.L1:LIST, XREF:

 2/2
 C
 DEGENTOT MAKES THE SYSTEM TOTALLY GEGENE

 C
 DEGENTOT MAKES THE SYSTEM TOTALLY GEGENE

 C
 REDUCING THE RHS VALUE TO THE ACTIVITY L

 C
 REDUCING THE RHS VALUE TO THE ACTIVITY L

 GEGENTOT MAKES THE SYSTEM TOTALLY GEGENERATE Reducing the RHS value to the activity level ΒÝ REDUCING THE RHS VALUE TO THE ACTIVITY LEVEL INTEGER FILE2,FILE3 REAL UL,LL,HINUS REAL VE,LL,HINUS REAL+8 COLHM(S),VALUES(S),ENDSEC, NAME,COLUM,COLUMN,RHS,DUMMY INTEGER DUAL,ULIM,LLIM,SLACK,ACTIV,VNAME DATA ENDSEC/'&ENDSEC\$'/ UL=100000.0 LL=-100000.0 LL=-100000.0 LL=-100000.0 LL=-100000.0 VHAME=0 VNAME=9 00000 THE SOLUTION IS STORED ON FILE2 The Neu revise file is written on list LIST =11 FILE2=9 PREPARE THE FILES 000 REMIND LİST REWIND FILE2 READ(FILE2) NAME READ(FILE2) NAME IF(NAME.NE.ENDSEC) GO TO 10 READ(FILE2) NAME,NOCOL READ(FILE2) (COLMM(IN),IN=1,NOCOL) READ(FILE2) 10 NRITE(LIST,200) 0 0 0 5 9 I IF A CONSTRAINT HAS NON-ZERO SLACK PEVISE THE RHS PEAD(FILE2) (VALUES(IN)) IN=1, NOCOL) IF(VALUES(I) EQ ENDSEC) GO TO 100 IF(VALUES(I) EQ ENDSEC) GO TO 100 IF(VALUES(LIM) LT.LL), ANG.(VALUES(ULIM), GT.UL)) GO TO 50 IF(VALUES(SLACK), EO.O O) GO TO 50 VRITE(LIST, 200) VALUES(VAAME), VALUES(ACTIV) GO TO 50 UPITE(LIST, 200) END FILE LIST FEMIND LIST STOP 190 C C 200 210 290 300 310 · · · · · · · · · · · ········ THÉ FOFMAT SECTION FORMAT('MANE',10%,'NOWDEGEN'/'RHS'/' MODIFY') FORMAT(4%,'RHS ',2%,AS,F14 7) FORMAT('EMOATA') FORMAT('HAME',10%,'HOWDEGEN'/'POWS'/' MODIFY') FORMAT(' E ',AS) FUR ··· ···· 22. DECENTOT IS STURED ON AREA UNTMITCH ON DISC 40002

22* 22L.Sysin DD * Entry Main "Name Decentot

 //UMTS118N JOB 20120, RMT5,0.30,9CL,: EILON-COURLER:

 // ENEC FORTMOD, PARM.C!:BCD, NOSOURCE:, PARM.L!:LIST, XREF:

 //C.SYSIN DD *

 C
 TRANS CONSTRUCTS THE DUAL PROGRAMME

 C
 TRANSPOSE THE MATRIX COEFFICIENTS

 C
 FREE THE DUAL VARIABLES,

 C
 - TRANSPOSE THE MATRIX COEFFICIENTS

 C
 - TRANSPOSE THE MATRIX COEFFICIENTS

 C
 - TRANSPOSE THE MATRIX COEFFICIENTS

 C
 - CONSTRUCT THE NEW RHS AND OBJECT

 C
 - CONSTRUCT THE NEW RHS AND OBJECT

 C
 - CONSTRUCT THE NEW RHS AND OBJECT

 TRANS CONSTRUCTS THE DUAL PROGRAMME - TRANSPOSE THE MATRIX COEFFICIENTS, - FREE THE DUAL VARIABLES, - CONSTRUCT THE NEW RHS AND OBJECTIVE FUNCTION - CONSTRUCT THE NEW RHS AND OBJECTIVE FUNCTION REAL*8 NAME, ENDSEC, COLMM(8), VALUES(8), XCOL, OBJ, OLDJ INTEGER FILEI, FILE2, NEW, ACTIV, VNAME, ULIM, LLIM REAL LL, UL, MINUS DATA XCOL/XXXXXXX/, RHS/'RHS '/, COLUM/'COLU'/ DATA ENDSEC/'TENDSEC*'/, BLAMK/' ACTIV=I ULIM=4 LLIM=3 VNAME=8 UL=10000 0 LL=-10000.0 OHE=1.0 MINUS=-1. 000000 THÉ COÉFFICIENTS ARE STORED ON FILEI The solution is stored on file2 The transfosed matrix coeffs are written on file new FILE1=7 FILE2=9 NEW=8 000 PREPARE THE FILES REWIND HEN RENIND FILE1 Read(file1.999) XNAME IF(XNAME NE COLUM' GO TO 10 10 REVIND FILE2 READ(FILE2) HAME READ(FILE2) HAME IF(NAME.HE.ENDSEC) GO TO 15 READ(FILE2) HAME.NOCL READ(FILE2) (COLNH(N),H=1,NOCL) READ(FILE2) 15 000 I NAME THE NEW ROWS TO CORRESPOND TO THE OLD COLUMNS NAME THE NEW ROWS TO CORRESPOND T WRITE(NEW, 1000) FEAD(FILE1,999) XNAME,NAME IF(XNAME E0,RHS) 60 TO 100 IF(NAME E0,RHS) 60 TO 20 WPITE(NEW, 1010) NAME XCOL=NAME GO TO 20 WRITE(NEW, 1020) REAC(FILE2) (VALUES(N),N=1,NOCL) IF(VALUES(1),E0,EROSEC) GO TO 200 TE(VALUES(1),E0,EROSEC) GO TO 200 TE(VALUES(1),E0,EROSEC) GO TO 200 2.0 $100 \\ 110$ MPITE THE NEW DEJECTIVE FUNCTION L C C

. . . .

.

IF((VALUES(ULIM),GT.UL).AND.(VALUES(LLIM).LT.LL)) GO TO 110 IF(VALUES(ULIM).LT UL) WRITE(NEW,1040) VALUES(VNAME),VALUES(ULIM) IF(VALUES(ULIM).GT.UL) WRITE(NEW,1040) VALUES(VNAME),VALUES(LLIM) TRANSPOSE THE MATRIX ELEMENTS 000 REWIND FILEI REAC(FILE1,999) XNAME IF(XNAME.NE.COLUM) GO TO 120 READ(FILEI,999) XNAME, XCOL, HAME, VALU IF(XNAME NE.CANK) GO TO 110 IF(XNAME NE.ELANK) GO TO 110 IF(NAME NE.VALUES(VNAME)) GO TO 130 WRITE(NEW,1030) HAME, XCOL, VALU GO TO 130 CONTINUE 120 130 200 C C C ENTER THE ORIGINAL BOUNDS EQUATIONS READ(FILE2) NAME, NOCL READ(FILE2) (COLNM(M), H=1, NOCL) PEAD(FILE2) (VALUES(N), H=1, NOCL) READ(FILE2) (VALUES(N), H=1, NOCL) IF(VALUES(1), EQ.ENDSEC) GO TO 300 I=0 IF(VALUES(ACTIV), EQ.VALUES(ULIM)) I=ULIM IF(VALUES(ACTIV), EQ.VALUES(ULIM)) I=LLIM IF(VALUES(ACTIV), EQ.VALUES(ULIM)) I=LLIM IF(I, EQ.C) GO TO 210 IF(I, EQ.LIM) WRITE(NEW, 1050) VALUES(VNAME), VALUES(VNAME), HIMUS IF(I, EQ.ULIM) WRITE(NEW, 1050) VALUES(VNAME), VALUES(VNAME), ONE WRITE(HEW, 1060) VALUES(VNAME), VALUES(VNAME), ONE WRITE(HEW, 1060) VALUES(VNAME), VALUES(ACTIV) GO TO 210 ENTER THE ORIGINAL BOUNDS EQUATIONS 210 000 CONSTRUCT THE NEW RHS UNSIRUCT THE NEW RHS WRITE(NEW, 1070) WRITE(NEW, 1075) OLDJ WPITE(3,1070) REWIND FILE1 REAC(FILE1,999) XNAME IF(XNAME.NE.COLUM) GO TO 310 REAC(FILE1,999) XNAME,XCOL,NAME,VALU IF(XNAME.NE.BLANK) GO TO 400 IF(NAME.EQ.OBJ) WRITE(NEW,1090) XCOL,VALU GO TO 320 300 310 320 C C C 400 ALLOW THE DUAL VARIABLES TO BE UNRESTRICTED (I E 4 NRITE(NEW, 1090) REWIND FILE2 READ(FILE2) NAME IF(HAME.NE.ENDSEC) GO TO 415 READ(FILE2) NAME, NOCL READ(FILE2) NAME, NOCL READ(FILE2) (COLNM(N), N=1, NOCL) READ(FILE2) (COLNM(N), N=1, NOCL) IF(VALUES(1).E0.ENDSEC) GO TO 430 IF((VALUES(1).E0.ENDSEC) GO TO 430 IF((VALUES(1).E0.ENDSEC) GO TO 430 IF(VALUES(1).E0.ENDSEC) GO TO 430 READ(FILE2) NAME, NOCL READ(FILE2) NAME, NOCL READ(FILE2) NAME, NOCL READ(FILE2) NAME, NOCL READ(FILE2) NAME, NOCL READ(FILE2) NAME, NOCL READ(FILE2) NAME, NOCL READ(FILE2) (COLNM(N), N=1, NOCL) READ(FILE2) (VALUES(N), N=1, NOCL) IF(VALUES(1).E0 ENDSEC) GO TO 450 IF(VALUES(CTIV).E0 VALUES(ULIM)) WRITE(NEW, IIIG) VALUES, VN IF(VALUES(ACTIV).E0 VALUES(LIM)) WRITE(NEW, IIIG) VALUES, VN GO TO 440 WRITE(NEW, 1200) STOF ALLOW THE GUAL VARIABLES TO BE UNRESTRICTED (I E +OR-). 415 420 430 440 WRITE(NEW, 1110) VALUES(VNAME) NRITE(NEN, 1110) VALUES(VNAME) 450 C C 9999 1000 1020 1020 1030 1040 1050 THÉ FOPNAT SECTION FORMAT(A4, A6, 2%, A8, F14, 5) FORMAT('MAME', 10%, 'NEWMATRX'/'ROWS') FORMAT('MAME', 10%, 'NEWMATRX'/'ROWS') FORMAT('F', A8) FORMAT('F', A8, 1%, A8, F14, 5) FORMAT('P', A8, 1%, A8, F14, 5) FORMAT('', A8, 2%, A8, F14, 5) FORMAT(', ', A8, ' FORMAT('RHS') FORMAT(' HEWRHS FORMAT(' HEWRHS FORMAT('SOUNDS') FORMAT('FR POLICY FORMAT('FR POLICY FORMAT('ENDATA') END 1060 1070 1075 1080 1090 1100 1100 1200 NENOBJ ', F14.5) NEWOBJ ',F14.5) ',48,F14.5) P',AS) ',AS) /+ //* //* TRAHS IS STORED ON AREA UNTMIDET ON DISC 40002 ZVL SYSIN DD * ENJRY MAIN NAME TRANS

3. Multiple Balance Sheets

As discussed in Chapter 6.3.3.ii, arbitrary selection of dual variable vectors from the alternate dual space allow us to construct different balance sheets from the same optimal period solution. These results have been published and are included in Appendix E.1: Figure E(.1).3 shows three different balance sheets constructed for the same period, and Figures E(.1).4 and 5 show different profiles over the planning horizon for Profit and Asset Value. It has been this multiplicity of results attempting to portray the <u>same</u> 'physical' solution that has led us to draw our conclusions in Chapter 7.

We attempted to impose secondary conditions on the alternate dual space in order to resolve the alternate dual solutions to select particular dual vectors that would reflect certain desirable attributes. For example, we imposed a variety and combination of conditions that

-	the shareholder account (in the balance sheet) grow
	by at least same specified amount;
-	the value of stocks be positive;
-	the acid test yield a value greater than one;
-	the fixed asset valuation be non-negative;
-	the return on assets yield at least some specified
	level;
	etc

We found that the dual space generated was unbounded. The imposition of a variety of the conditions mentioned above resulted in the solution to the 'revised' dual programme switching unstability from an infeasible to an unbounded solution. Furthermore selection of computer solutions (making an unbounded solution) often resulted in many assets taking a zero value, thereby negating one of the prime objectives of this work.

To overcome this problem, one would have to resort to goal programming. By including a number of secondary conditions (that would otherwise result in infeasibility) one can aim to select a point that satisfies these conditions "as closely as possible".

A formulation that may overcome the zero value attributed to assets is shown below:

Min Ξ s.t. $\underline{A} \times \underline{\times} \underline{\times} \underline{b}$ $\underline{Y} = \underline{f} \times \underline{x}$ $g_{j}\underline{Y} + u_{j} \ge G_{j}$ $u_{j} - \underline{z} \le 0$ $Y_{j} \gg \underline{z}$

where Y is same variable (e.g. profit, stock valuation) linked to the physical variables of the model (\underline{X}) by same function f_j , to which same special performance G_j is sought, and where some under achievement (u_j) of the goal is permissible.

– D – 288 –

However, selection of a particular dual vector, resulting in a particular balance sheet will not give a third party reader of the accounts any particular 'true' view of underlying physical activities of the firm.

APPENDIX E.1

VALUATION OF RESOURCES

A. EILON, R. FLAVELL, & G.R. SALKIN

Paper read to Operations Research Society Annual Conference October 1974 Paper submitted for publication to O.R.Q.

ABSTRACT

This paper presents an overview of results of research into problems of financial reporting faced by an average manufacturing company. The paper demonstrates how Linear Programming can be used to overcome some of the shortcomings encountered by standard accounting procedures. However, the widespread occurrence of degenerate solutions to such LP corporate models requires a fundamental revision to our interpretation of the economic meaning of the dual variables: a revision that may be extended to the dual of non-degenerate optimal solutions.

1. INTRODUCTION

The purposes of this paper is to present an overview of some results of research that has been undertaken in the area of financial reporting in a typical manufacturing company.

Some problems of present-day accounting procedures are demonstrated first. It is then shown how Linear Programming (LP) can be used to overcome some of these shortcomings, drawing to the attention of the reader the problems of interpreting degenerate solutions. The problems of interpretation will be demonstrated with the aid of a simple model of a manufacturing company.

It is currently accepted that using different, but equally acceptable, accounting assumptions very different balance sheets can be produced from the same basic economic data. This has been clearly established in the current debate over inflation and how it should be recognised. A number of the assumptions and problems associated with producing accounts are enumerated in Section 2 below.

2. ACCOUNTING PROBLEMS

The currently accepted accounting procedures can be shown to possess a number of shortcomings, viz

(a) The allocation of revenues or, more usually, overheads amongst joint production facilities is arbitrary. Yet the procedures play a central role in standard accounting methods.

- (b) Generally accepted accounting procedures normally approach the task of valuation in a modular fashion - each class of asset is valued individually. The value of the entire enterprise is then assumed to be the sum of the values of the component parts. Yet in actual fact, the usefulness of any particular asset is often affected by the holding of others.
- (c) There is continuing disagreement about which of the plethora of techniques for valuing stock - LIFO, FIFO, and inflation accounting techniques - is the most appropriate, or presents the 'truest' picture. Yet all of these methods are based on the central concept of historical or replacement cost: a concept at variance with the purpose of stockholding. Companies generally hold stock because of their expectation of demand and variation of demand in the <u>future</u> - demands that they may not be able to meet with their present or expected manufacturing capacity. This idea, that 'future usage is the relevance of stock' is totally divorced from that of cost.
- (d) Depreciation hides two very different functions when presented as a single figure in the balance sheet: firstly it represents the means for retention of profits to be used for the replacement of the assets worn out in service, and secondly it gives a value to the remaining assets.
 (Depreciation serves a further function where it is used in the Profit and Loss accounts as a charge against the revenue produced by the assets). In practice depreciation

is calculated according to some arbitrary function related to cost. But valuation ought to reflect the usefulness of the assets to the business as an on-going concern. Once again, such a valuation would be totally divorced from cost.

- (e) Traditional balance sheets do not value all the assets that comprise the company - for example labour (an essential input to the company's activities) does not appear on the balance sheet. Furthermore it is not yet widely accepted that the labour force may have a value over and above its wage bill.
- (f) In traditional accounting practice the process of valuation is undertaken without reference to the objectives of the organisation. Two similar businesses pursuing different goals would yield similar valuations - a result that is unsatisfactory.

We have searched for an alternative valuation technique in an attempt to overcome these shortcomings.

3. LP MODELLING

In this section we have assumed that the activities of a firm may be accurately represented by a linear deterministic model, so that LP may be used as the model solving technique. (This assumption is primarily for discussion purposes, the conclusions are equally valid for any mathematical programming model.)

. .

– E – 293 –

The advantages are:

(a)

LP is an optimizing technique producing a solution that maximises an objective, or satisfies a set of goals, pursued by the company. If the objective function represents profit over the time period being considered then, through the dual LP, it is possible to allocate such profit to the various inputs used to generate the profit. These allocations can be considered to be valuations of the inputs relative to the objective of the company <u>and</u> to the interactions in their use. From such valuations balance sheets can be constructed with the profit attributed to each period being the difference in the Shareholders' Account between any two consecutive periods.

- (b) Financial flows are modelled adopting the marginal costing approach, thereby obviating the need for an allocation of joint costs and revenues. It has also been argued
 (4) that the dual LP gives a 'realistic' allocation of overheads if that be required (e.g. for pricing purposes).
- (c) Despite the assumption of a linear system the average value chosen (the dual variable) for valuation purposes does reflect the phenomenon of decreasing utility in that the value is calculated at the margin of a fixed and known combination of the entire set of assets and this marginal value has been shown to decrease with increasing availability of resource (1).

(d) LP takes an overview of the company as a whole, thereby allowing valuation of component inputs to be made in accordance with the contribution they make in reaching the stated objectives of the company. In this manner valuation is related to the opportunity value and not to the concept of historical cost!

(e) The model can recognise the role played by inputs not normally acknowledged by generally accepted accounting procedures (e.g. the labour force) by the inclusion of extra constraints portraying the scarcity of such resources.

With these principals in mind we have modelled a manufacturing company as shown in Fig. 1. This is a multi-time period model which concentrates on the physical flows (from purchases through to sales). Financial flows are linked through the marginal costing approach so that overheads (including rent, rates, wages etc.) are paid centrally, and only direct costs (such as purchases and overtime payments) and revenues from sales are directly linked to the finally selected plan. A more detailed description of the model is to be found in the Appendix.

4. DEGENERACY

The optimal solution of practical models of this type are almost invariably degenerate, and this renders the normally accepted economic interpretation invalid. Degeneracy occurs when the solution vertex is overspecified e.g. vertex A in Fig. 2. This could occur, for example, when a product is being manufactured on two machines, one of which is being used to capacity and thereby limiting production, and when the storage capacity is simultaneously being fully utilised: thus the factor that is uniquely limiting the plan cannot be identified.

Degeneracy, although often regarded an an undesirable feature of LP, has a number of desirable attributes. Consider the optimal solution of the LP model. In general there will be a certain number of resources being used to full capacity, with others being under-utilised. The dual LP will only attribute . value to those resources without slack: in other words any resource not being used to full capacity is valued at zero. This is consistent with the marginal costing concept, but is obviously unacceptable when trying to construct a balance sheet: no management will accept that some of its resources are totally valueless. Indeed, if the slack of a particular resource were to be removed, then the resource would be used to its full capacity, and should therefore have a non-zero value. By eliminating all the slacks the problem is made totally degenerate, thus providing the opportunity to value all the resources. Furthermore, the totally degenerate system represents the ideally desirable (deterministic) economic system (3), since there are no wasted inputs!

Now let us turn to the problem of interpreting the dual programme. We know that some of the dual variables are asymmetric at a degenerate point (1) but deeper investigation shows that the problem is more complex (2). In fact, it may be shown that, if the primal optimal solution is degenerate, there exists an infinite number of sets of dual variables that satisfy the Strong Duality Theorem (that the optimal value of the dual programme equals the optimal value of the primal). These sets form a closed polytope which may extend beyond the positive orthant.

The implications of this are:

 We can only consider the dual variables as elements of sets. It is incorrect to use one dual from one set and another dual from a different set since this would lead to non-comparable valuation.

(In non-degenerate solutions the set of duals in unique so that this condition is met.)

2. Using different sets of duals to construct balance sheets (as suggested in Section 3 (a) above) will result in different valuations of the same physical (primal) solution: Fig. 3 shows three different balance sheets constructed to portray events in the same period; Figs 4 and 5 show how different profiles of profit and asset value emerge over the time horizon. Taking advantage of this, different balance sheets can be drawn up that will show the company

in entirely different lights.

The different combinations (all of which are equally acceptable) of values of inputs appear to rule out any unique or meaningful balance sheet for a company. If, however, the idea of a unique balance sheet at one moment in time is rejected in favour of the view that there are many participants in the subjective interpretation of the economic effects e.g. creditors, bankers, workers shareholders as well as management, then it may be possible to impose constraints on the space of dual variables. Further constraints may also be desired, for example the very practical ones of ensuring that the valuation given to real resources are never negative. These constraints will reduce the dual space, but the multiplicity of choice within the resultant subset may still be too large for the selection of a valuation vector which may be used to construct a presently acceptable balance sheet. Furthermore, a third party could retrieve information from a balance sheet constructed in this manner only if he knew the subjective basis on which it is based.

The attempt to allocate a given (and known) value of the enterprise as a whole over its component, joint facilities is inevitably arbitrary (whether the model solution is degenerate or not!). The view that valuable economic information can be gained by inspecting such an allocation of value is clearly in need of revision.

5. CONCLUSIONS

The shortcomings of standard accounting procedures, when applied to valuation, have been discussed; particularly in light of their cost and modular foundation.

We have shown how a linear deterministic model of the manufacturing company can illuminate some of these problems.

It has been argued that a totally degenerate system is (ideally) economically desirable, and enables us to value all the resources. However, we have shown that at degenerate solutions the duals are not unique; that they need not all be non-negative (even at the optimum); that they must be considered in terms of coherent sets and not as individual elements. These sets result in different allocations of the value of the company over its component assets, and all such allocations are equally valid.

Allocations may be selected so that the resulting balance sheets will satisfy the various interest parties' anticipated requirements.

This leads us to question the economic significance of the dual LP since any allocation of value over joint inputs is necessarily arbitrary, as in reality it must always be.

- E - 299 -

References

1.	Charnes, A. and Cooper W.W.	(1962) "Systems Evaluation and Theorems". <u>Management Science</u> Vol. 9 No. 1 pp. 33-49.
2.	Eilon, A. and Flavell, R.B.	(1974) "A Note on the Many-Sided Shadow Price". <u>Omega</u> Vol. 2 No. 6
3.	Gal, T. and Habr, J.	(1968) "Linear System Programming 4. Economic-Mathematical Aspects of Degoneracy". <u>Ekonomicko-</u> <u>Matematicky Obzor Vol. 4 No. 3</u> pp. 320-336.
4.	Kaplan R.S. and Thompson G.L.	(1970) "Overhead Allocation via Mathematical Programming Models."

.

Mathematical Programming Models." Management Sciences Research Report. No: 213. Graduate School of Industrial Administration, Carnegie-Mellon U., Pittsburg, Pensylavania 15213, U.S.A.

APPENDIX

The structure of the multi-time period corporate model is based on the following relationships:

1. The Production Function

(i) Production Capacity

The requirement for each work-centre in each period must not exceed the normal-time capacity of that work centre in that period, plus any overtime worked plus any subcontracting done (if applicable).

(ii)

Labour Force Allocation

Total in-house production (i.e. total work-centre requirement less any work sub-contracted out) for each work-centre for each period must be allocated amongst the labour groups capable of doing the work.

2. Physical Constraints

(i) Production Limitations

Limit the production of each product in each period by some upper bound (e.g. availability of jigs).

(ii) Labour Force Capacity

The requirement for each labour group in each period must

not exceed the work scheduled to be done in overtime plus that scheduled to be done in normal shift time.

(iii) Labour Overtime Capacity

Limit the total overtime load on each labour group in each period by some upper bound.

(iv) Ma

Market Constraints

Limit the sales of each product in each market outlet in each period by some upper (and lower) bound.

(v) Storage Capacity

Storage space required in each period must not exceed the space available.

3. Financial Flows

(i) Cash Position

The cash balance at the close of each period must equal the balance at the opening of the period plus inflows resulting from sales made in previous periods and loans taken up, less outflows resulting from loans repaid; overtime payment for work done in that period; sub-contracting costs, purchases and bank charges incurred in previous periods and net outflows resulting from extra model activities. (This latter factor includes payment of overheads, and net flows from sections of the company not modelled e.g. sale of goods taken in part exchange etc.).

(ii) Creditors Account

Credit at the close of each period must equal purchases of raw materials made plus sub-contracting work carried out but not yet paid for, plus interest charges outstanding.

(iii)

Debtors Account

Debt at the close of each period must equal revenues due (from sales made in previous periods) but not yet received.

4. Inter-Period Continuity Equations

(i) Cash Continuity

Cash balance at close of each period must equal the balance at the opening of the next period.

(ii) Finished Good Stocks

The stock of each product of the close of any period must equal the stock at the close of the previous period plus newly completed production less sales made in the period.

(iii) Raw Material Stock

The stock for each type of raw material at the close of each period must equal the stock at the close of the previous period plus any new purchases less the amount used in production during the period.

5. Objective Functions

A number of objective functions have been used e.g.

(i) 'Profit' earnings

Max cash plus debt less credit positions at the close of the flowing period.

(ii) Turnover

Max Turnover.

(iii) Penetration

Max number of units of product sold.

This simple structure can be considerably extended to include inflation, investment of cash surplus, dividend payment, investments in production facilities, as well as taking account of any managerial constraint, such as ensuring that certain financial ratios are adhered to.

FIGURE 1 THE LP MODEL

X₂

FIGURE 2 EXAMPLE OF A DEGENERATE VERTEX

FIGURE 3

DIFFERENT BALANCE SHEETS FOR THE SAME PERIOD

FIGURE 4 DIFFERENT PROFIL PROFILES

FIGURE 5 DIFFERENT ASSET VALUE PROFILES

OMEGA, The Int. Jl of Mgmt Sci., Vol. 2, No. 6, 1974

Note on "Many-sided Shadow Prices"

A EILON, R FLAVELL

Imperial College, London

(Received May 1974; in revised form June 1974)

It has been previously shown, with the aid of a simple example, that linear programmes may have two different non-negative marginal values at the optimum if the solution is degenerate. It is demonstrated in this note that other marginal values exist which may take negative values.

STRUM [1], in his paper entitled 'Note on two-sided shadow prices', brings to the attention of linear programming (LP) users, and particularly accountants, the fact that, at the optimum, a resource may have two marginal values. These may be shown to relate to the change on the objective function (OF) due 'to increasing a resource by one unit' and also 'to decreasing the resource by one unit'. If the optimal vertex is degenerate, then these changes are asymmetric; if it is non-degenerate, the changes are of course symmetrical.

This view is however an oversimplification of the problems that a degenerate LP can cause. As a vehicle for our discussion, let us consider Strum's example; namely

Maximise P =	2x + 3y			
5.t.	3x + y	≤	48	(1)
	3x + 4y	≼	120	(2)
	x + 2y	≼	56	(3)
	х, у	≥	0	

Basic optimal solutions to this problem yield P = 88 with x = 8, y = 24 (point 0 in Fig. 1) and with the three constraints all being exactly satisfied; hence the problem is degenerate at this point. The alternate optimal bases are (x, y, s_1) , (x, y, s_2) and (x, y, s_3) where s_1 , s_2 and s_3 are the slack variables in the three constraints respectively. The question is: what are the marginal values of these three bases?

Let us consider this question indirectly by examining the more general problem of maximising $P = c_1x + c_2y$, subject to the same set of constraints and subject also to the proviso that c_1 , $c_2 > 0$. At the optimal vertex, we may construct Table 1. The limitation row is calculated from the usual condition that, at the optimum, all the marginal values should be non-negative.

H

Eilon, Flavell-Note on "Many-sided Shadow Prices"

Basis Marginal value	(x, y, s_1) $(0, c_1 - \frac{1}{2}c_2, -2c_1 + \frac{3}{2}c_2)$	(x, y, s_2) $(\frac{2}{5}c_1 - \frac{1}{3}c_2, 0, -\frac{1}{5}c_1 + \frac{3}{5}c_2)$	(x, y, s_1) $(\frac{4}{9}c_1 - \frac{1}{3}c_2 - \frac{1}{9}c_1 + \frac{1}{3}c_2 = 0$
Marginal value (c ₁ =2, c ₂ =3)	$(0, \frac{1}{2}, \frac{1}{2})$	$(\frac{1}{5}, 0, \frac{7}{5})$	$(-\frac{1}{9},\frac{7}{9},0)$
Limitation	$\frac{1}{2} < \frac{c_1}{c_4} < \frac{3}{4}$	$\frac{1}{2} \leq \frac{c_1}{c_2} \leq 3$	$\frac{3}{4} \leq \frac{c_1}{c_2} \leq 3$

0

TABLE 1. THE MARGINAL VALUES OF THE ALTERNATE OPTIMAL BASES

The first two sets of marginal values in Table 1 are those obtained by Strum; the last is the set generated by the third, hitherto unconsidered, basis. This last set contains a negative marginal value, and yet it is derived from a feasible basis describing the optimal vertex. The result would appear to be a direct violation of the Necessity Theorem for defining an optimal point in a LP; for example, Vajda [2] proves the following theorem, 'If x_0 minimise c'x subject to $Ax \ge b$, then there exist a vector $y_o \ge 0$ such that $c = A'y_o$ and $(b - Ax_o)'y_o = 0'$. Clearly, in a degenerate LP where there exists more than one x_0 (i.e. alternate bases), it is not necessary for $y_0 \ge 0$ for all the alternate x_0 . Briefly the condition for an optimal vertex is that the inward normal to the OF is internal to the cone of inward normals to the planes defining the vertex. If the vertex is degenerate, then there exist a number of combinations of planes that define the vertex, and it cannot be guaranteed that each cone generated by a combination will contain the normal to the OF; as demonstrated in the above example. Work on this problem, and on similar problems arising from degeneracy in LP's, is continuing and will form part of a forthcoming PhD thesis by one of the authors.

Our concern at this point is the interpretation of the three marginal sets. and in particular the final set. Strum is correct in his interpretation of the marginal values he derives; they do reflect the resultant change in the OF were an individual resource increased or decreased by a small amount. They may however be interpreted somewhat differently by regarding each set as representing the marginal values that would result were that constraint (whose slack is in the particular basis), completely omitted from the problem. As an example, consider the third constraint (3). Strum pointed out that this constraint has two non-zero marginal values associated with it. This implies that the optimal vertex always lies on this constraint, for any small perturbation. Hence it follows that the omission of this constraint entirely would result in a different optimal vertex. This is of course precisely what the negative marginal value reflects; omission of the third constraint implies that s_1 should enter the basis and a higher optimal value of 90 (at x = o, y = 30) will result (i.e. the optimum will move from 0 to A in Fig. 1) Omission of either of the other two constraints still results in nonnegative marginal values and hence the optimal vertex will remain stationary.

822

Omega, Vol. 2, No. 6

FIG. 1. Geometry of the problem.

If the value of c_1 is increased to 3, the optimal vertex remains the same but the set of marginal values relating to the first basis now contains a negative value and the other sets contain only non-negative values. This result is of course expected from the limitations calculated earlier and demonstrates one method of determining all the feasible bases that describe the optimal vertex through the use of the Simplex algorithm.

This note highlights some of the problems that arise in degenerate LP's. Firstly, there exists a number of alternate bases that define the optimal vertex. Secondly, each basis has a different set of marginal variables associated with it and these may not be all non-negative. Hence, at any degenerate vertex, it is possible for any one marginal variable to take a number of different values. Consequently, the use of a LP to value resources at the margin is not as straightforward as Strum indicated because the shadow prices (marginal variables) are many sided.

REFERENCES

1. STRUM JE (1969) Note on "Two-sided shadow prices". J. Acc. Res. 7, 160-162.

2. VAIDA S (1974) Tests of optimality in constrained optimisation. J. Inst. Maths. Applics. 13, 187-200.