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2. 
ABSTRACT 

Digital processing of two-dimensional signals is becoming 

increasingly important, and is finding applications covering various 

scientific disciplines. 

Of the number of structures of two-dimensional digital 

filters possible, the recursive (IIR) is probably the mose efficient. 

The design of this kind of structure is, however, made complicated by 

stability considerations. This thesis will thus review past work on 

the stability problem and present some new methods for stabilising 

unstable filters. 

Existing spatial and frequency domain design techniques for 

two-dimensional filters are briefly outlined, and a number of new 

methods suggested. In the frequency domain, a novel design technique 

for two-dimensional recursive (IIR) filters is described, along with 

another technique applicable to the more general N-dimensional case. 

One further frequency domain design technique suitable for N-dimensional 

non-recursive (FIR) filters is also given. While, for the spatial 

design techniques, a number of these are generalised and extended to 

the N-dimensional case. 
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CHAPTER 1 	 10. 

INTRODUCTION  

The last decade has witnessed some tremendous advances in 

the technology of digital systems, with a dramatic drop in the cost 

of basic hardware elements used in implementing such systems. As a 

result, many applications of digital signal processing have become 

feasible, and this in turn has stimulated the development of further 

theory. The trend, however, has been generally confined to one-

dimensional (1-D) systems, and parallel development of two-dimensional 

(2-D) and the more general N-dimensional systems is yet to be seen. 

Two-dimensional data, in the form of numbers regularly or 

irregularly spaced in a plane, are commonly encountered in a variety 

of engineering disciplines. In some cases, (1.- D) signal processing 

techniques can be adapted to deal with such (2-D) data, but there are 

situations where such adaptations can prove to be inadequate. The 

need therefore arises for the full development of a general theory 

for (2-D) and (N-D) gystems on the lines of the well-developed (1-D) 

systems theory. 

The manipulation of (2-D) data is commonly referred to as 

image processing. This is because such data are usually displayed as 

spatial images for human evaluation or appreciation even though the 

two dimensions may not necessarily both be spatial. In signal 

processing a dimension can mean any physical domain in which a signal 

is defined. Time, space and frequency are examples of such domains, 

and any combination of these is allowed as a co-ordinate system. 

This provides some insight into how (N-D) signals can exist in spite 

of the human mindls inability to comprehend anything that is beyond 

3-dimensional. 
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There are three general branches of image processing. The 

most important of these, digital filtering, is the main theme of this 

thesis. The remaining two aspects, image encoding and machine pattern 

recognition, will not be discussed in length. Analogies of the (2-D) 

theory in the more general (N-D) case will be given whenever possible. 

(2-D) digital filters are computational algorithms that 

transform (2=-D) input sequences of numbers into (2-0 output sequences 

according to pre-specified rules, hence yielding some desired 

modifications to the characteristics of the input sequences. The 

(N-D) filters can be similarly considered to be performing manipulation 

on (N-D) sequences of numbers. 

Applications of (2-D) digital filters cover a wide spectrum, 

the object being usually either enhancement of an image to make it 

more acceptable to the human eye, or removal of the effects of some 

degradation mechanisms, or separation of features for easier 

identification and measurement by human or machine. 

Many important applications of (2-D) digital filters have 

been in the field of space technology. Here digitally processed 

satellite images are used in monitoring environmental effects, earth 

resources and urban land use EM]. In such applications, (2-D) 

digital filters enhance or reduce boundaries, remove low-frequency 

shading effects, reduce noise and correct for distortions inherent to 

the imaging systems employed [M]. 

There are also applications in medicine and biology. (2-D) 

X-ray films are digitally processed to reduce the low spatial 

frequencies' contents, and by doing so fracture lines and other 
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features with large high frequency components become easier to detect. 

This procedure is sometimes followed or preceded by contrast enhance-

ment and noise reduction. Additional bio-medical uses include removal 

of scan lines in radio-isotope scanning, low frequency background noise 

reduction in photo-micrographs, and digital processing of acoustical 

holograms, the latter rapidly establishing themselves as replacements 

for X-rays [5,6]. 

Seismic prospecting is one area in which data is acquired as 

(2-D) sequences that are not images in the conventional sense. Seismic 

detectors are placed at intervals both along and across an area, and 

the digitized outputs of the detectors after an explosion form a (2-D) 

data array. This array is then processed to minimize the effects of 

multiple reflections and wind-induced noise, and information about the 

subsurface structure of the locality is then readily obtained from the 

output of the filtering operation [9,103. 

Geophysics is yet another science where (2-D) digital signal 

processing is extensively employed. Atmospheric temperature and 

pressure data are digitally smoothed before plotting on weather maps 

Ell]. Similarly, magnetic and gravity measurements are digitally 
processed to reduce the effects of surface anomalies, thus facilitating 

the identification of large subsurface features. 

The above is only a brief review of some of the many possible 

applications of (2-D) filters. Such a discussion invariably leaves out 

a number of other applications, and does not attempt to speculate on 

the possible future additions to the list. However, it is evident from 

the above that any area in which (2-D) data is encountered is also a 

possible field of application of (2-D) digital filters. 
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1.1 	THE Z-TRANSFORM OF (2-D) AND (N-D) SIGNALS  

It is assumed that the reader is familiar with the (1-D) 

z-transform and its use as a convenient means of carrying out certain 

operations involving (1-D) digital signals. On the same lines, the 

z-transform of a regularly sampled (2-D) function 

h = ih 
ml' 

is given by 

ml m2 
H(Z1, 2) = hmm

2 
zl z2 

m1=-c° 	2 m =- co 

where z and z are complex variables, and h 	is understood to be 
1 - 2 	 9 ml m2 

zero for subscript pairs (m1,m2) that do not belong to the definition 

set of h. When h is defined for non-negative subscripts only, it is 

1h = flh 
ml'm2 	m2;?.. ° 

Similarly, second, third and fourth quadrant functions can be defined: 

mi. < 0 
!liml,m2 m2 

3h - t3h h 	ml 
° 

M2 < 0 

h = 	 1 	0 

ml 'm2 5 m
2 
<0 

As would be expected, the above definitions with some simple 

extensions apply to the (N-D) case. Thus, for a regularly sampled 

(N-D) signal 

known as a first quadrant function and is then denoted by: 

m1 --> 0 

h 



a 
Jl'j2 ml-jel'm2-j2+1  

j1=1  j2=1  
N'1  +1 N2+1 

  

0(Mi ,M2) = 

 

  

the z-transform is defined as: 

    

m
1 hm 	z, 	z n (1.2) 

1,...,mn  
H(z 1,...,zn) 

  

• 0 • 

 

- ml= CO  

where z ,z ,..,z are again complex variables, and h 	is zero 
' n 	 m/,...,mn  

for values of (mi,....,mn) that are outside the definition set of h. 

When h is defined for non-negative subscripts only, it is called a 

first-quadrant function and is denoted by a left superscript 1: 

1h = 1h 
m 	m n 

nm.> 0 i=1 

This is also the definition of a causal function, and therefore none 

of the other possible quadrant functions (for which any or some of 

the subscripts m 'mn 
are negative) can be causal. 

1.2 	CHARACTERIZATION OF (2-D) AND (N-D) DIGITAL FILTERS 

Digital filters are in general either linear or non-linear. 

For example, contrast enhancement, as carried out by (2-D) digital 

filters, is a non-linear operation, whereas, on the other hand, 

spatial frequency filtering and numerous other operations are linear. 

This thesis will be mainly concerned with linear filtering, and in 

particular with that which is shift invariant where the input and 

output satisfy a (2-D) linear constant coefficients difference equation 

of the form [19,20 

111:4-1 M2+1 -" 	2 

1, 2 
k .om

1 
 -k1  +1'm -k2 

 +1 ' 2  (1.3) 
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where M1,  M2' N1 and N2 are arbitrary numbers defining the order of 

the filter and k10 k2  1 simultaneously. This can be generalised 

for the (C-D) recursive filter: 

M1+1 M n+1 

f • 4. • g ) = a, 	„ 
	 J'.""n ml-J1+' 
jril  

mh-jn+1 

N1+1 Nn+1 

j1=1  Jn=  

b. 	. .o 
J1"—"n ml-J14-1" .,m1-jn+1 

(1.4) 

where, in both (1.3) and (1.4) above, fil and (ol are the input and 

output sequences respectively. 

Furthermore, linear digital filters can be classified either 

as those with infinite impulse response (UR), which are usually 

recursive, or as those with finite impulse response (FIR), usually 

non-recursive. The transfer functions for these two types of (2-D) 

and (N-D) digital filters are given below. 

1.2.1 	The Recursive Filter 

Firstly, for the recursive (IIR) filter, as from (1.3) 

M1 	+1 M2+1 

	 J1,j2  
j1-1 

z2
2-1 

1  
a. z, 

A(z1,z2) 	j1=1 j2=1 
(2-D): 11(z1,z2) ETTl'72 7 N1+1 N2+1 

j1-1  j2-1  b. • z 	z 
	 J1"2 1 	z2 
2=1 

 

(1.5) 

and: 



(N-D): H(z1, zn) = 	 N1+1 Nn+1_ 

j1-1 	jn-1 
z 	...z a

ily...7in  1  
A(z1".'zn) 	j1=1 jn=1 

M1+1 n4-1 

j1-1  jn-1  b. 31,...,jn z1 	n 

And secondly, for the non-recursive (FIR) digital filter: 

M +1 M+1 1 	2 

(2-D): 	H(zi,z2) = a. 	zj171 2- 1  zj 

31'j2 	2  
(1.7) 

M1+1 M n  +1 1  j1-1 	j -1  
a. 	. z ...z 
J1''''Jn n  

jn=1  

(1.8) (N-D): 

16. 

1.6) 

1.2.2 	THE CONVOLUTIONAL FILTER 

For a convolutional filter f the relation between the input 

sequence i and the output sequence o is: 

      

(2-D): 
P1'1312 = 

(N-D): 
pl,"7 

ml'm2
.f 13

1-m1'1'2-m2 m2=-co  
(1.9) 

 

     

      

m 
.f m 1" n 131-m1"."Pn-mn 

(1.10) 

       

ml=-w  

and in terms of the z-transforms this is: 

(2-D): 

(N-D): 

°( z1,z2)  = i(zl'z2).F(zl'z2)  

0(z ...,z ) = T(z 	)F(z n . 	z n  (1.12) 

1.2.5 	Z.KRO PHASE FILTER 

A zero phase filter is defined as a filter whose amplitude 
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spectrum has the following property: 

-ju_ -ju 
111(ejul,eju2)1 = IH(e-jui/ejuN = 111(e 	1,e 	2) 

( j
ul -ju2N = H‘e 	,e 	) 

jun  
"(e

jul 	
) 

(2-D): 

(N-D): 
-jul 

=IH(e 

= 	= 	= 
• 

-jui 
,e 

 -ju2 	
Jun)  

=IH(e 	 (1.14) 

n.) = 

= 

jul H (e 

jui  
H(e 

-ju2 ,e 

iu2  
,e 

(1.13) 

-jun  
) 

The above equations clearly illustrate that the (N-D) case is simply an 

extension of the (2-D) case. 

1.3 	SURVEY OF PREVIOUS WORK 

The theory of (2-D) digital filters stems from classical 

network synthesis and (1-D) digital filter theory. Both of these are 

very well-developed, while, by comparison, (2-D) digital filter theory 

itself remains in its infancy. 

The introduction of the Fast Fourier Transform (FFT) algorithm 

in 1965 was a turning point in the short history of (2-D) digital 

filters! design and realisation :12]. Up to that time, most implement-

ations made use of direct convolution, which is the basic form of 

digital filtering realisation. However, this suffered from poor 

computational efficiency and difficult design procedures, and the 

Fourier Transformation realisation made possible through the FFT was 

thus universally adopted in preference, since it offered better 

computational efficiency and reduced the frequency domain design 

problem to the simple task of specifying an array of frequency-

weighting coefficients. 
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Alas, the Fourier Transformation realisation was limited to 

applications that did not involve abnormally large arrays of data, as 

the question of computer storage capacity then came into play. Also, 

processing on small machines and in real-time became the order of the 

day, and interest began to be shown in the third basic realisation 

philosophy, that of recursion, since this was the obvious answer to 

both real-time and small machine processing. Recursion filters are 

nowadays initially specified by either the frequency characteristics 

or the impulse response, and the design problem that remains, in the 

frequency domain or the space domain respectively, is to determine the 

filter coefficients, that would correspond to the given specification. 

Darby and Davies E131 in 1968 published one of the first 

papers dealing with possible realisations for these filters specified 

by frequency characteristics. They proposed the use of the inverse 

(2-D) discrete Fourier transform for obtaining the impulse response 

coefficients used later in a convolution realisation; they also 

explored the desirability of choosing an appropriate window function 

for possible reduction of the Gibbs phenomenon resulting from using a 

truncated description of the filter frequency characteristics. 

Huang El4J contributed to this by further showing that (2-D) 

window functions can be obtained from (1-D) window functions. 

In 1972, McClellan :15,16)  introduced a frequency domain 

method which transforms a (1-D) FIR filter into a (2-D) FIR filter by 

a change of variables. The method is very simple and useful but is 

limited to the class of filters whose frequency response is constant 

over large areas of the (2-D) frequency plane. 
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Also in 1972 Hu and RabinerE17,18] extended the (1-D) 

frequency sampling technique 012]. This reduced the design of a 

(2-D) FIR filter to a linear programming problem, thus offering 

flexibility and the possibility of optimal solutions. But the method 

was expensive in terms of the computation required, and designs 

published using this approach were limited to the eighth degree in z1 

and z
2 
for optimal designs and the twenty-fourth degree for sub-

optimal designs. 

Mersereau and Dudgeon [0] introduced a method in 1974 for 

representing (2-D) sequences as (1-D) sequences. This resulted in an 

FIR design method whereby the (2-D) design problem is recast as a (1-D) 

design problem with multiple stop and pass regions. This approach 

offers promise for efficient (2-D) FIR filter design since it allows 

the application of highly efficient (1-D) design algorithms. 

Additional work is necessary, however, because the technique does not 

produce good designs. 

Recursive (IIR) (2-D) digital filters were not seriously 

investigated until in 1972 the stability condition of such filters was 

first derived. In that year, Shanks et al. Ex] and independently 
Huang [21J published equivalent conditions and tests for stability of a 
(2-D) recursive digital filter. Anderson and Jury E.22,23] and also 

Maria and Fahmy E-24:1 simplified these results in 1973 by putting the 

stability tests in terms of the root locations or positivity of a set 

of polynomials in one variable. While this represented a considerable 

simplification, the procedure is still computationally difficult except 

for low-order cases D3,25]. 

An alternative test for stability was investigated by 
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Pistor [263 and EkstrOmE25,27] in 1974. The approach is to establish 

the stability criteria in terms of a transformation of the complex 

frequency response. The method still has unanswered questions 

concerning the approximations which must be made for a practical 

algorithm; however, it appears to provide not only a test for 

stability but a decomposition of an unstable filter into stable 

filters recursing in different directions. 

E.L. Hall introduced the separable product technique :28,293 

which enables the design of any two-dimensional rectangular cut-off 

boundary type filter by the use of two one-dimensional recursive 

filters in cascade. This was the first design method for (2-D) 

recursive digital filters. 

The first transformation technique for (2-D) recursive 

digital filters was due to Shanks et al., in 1972 [20]. This 

technique takes a stable (1-D) continuous filter and uses a trans-

formation to rotate the amplitude response in (2-D). A bi-linear 

transformation is then used on each variable to produce a (2-D) 

digital transfer function. Unfortunately there is no guarantee of 

stability and the approach suffers from warping effects of the bi-linear 

transformation on the frequency response. Costa and Venetsanopoulos 

[3o devised a method of using this approach to produce circularly 

symmetric filters while guaranteeing stability. Their technique 

produces filters of high order, however. 

A design method used by Bernabo et al. E31] makes use of 

the transformation technique of McClellan :15] to a (1-D) zero phase 

recursive digital filter followed by a decomposition technique of 

Pistor [26] in order to obtain four one-quadrant recursive digital 
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filters each reuursing in a different direction. The obtained filter 

is of zero phase. 

Shanks et al. DU] also extended a (1-D) time domain approx-

imation technique to (2-D). A (2-D) recursive digital filter is 

obtained which approximates a desired (2-D) impulse response at a 

finite number of points. This has the advantage of not involving 

transcendental functions in the computation since the frequency domain 

is not used. 

However, stability of the result cannot be guaranteed. An 

alternative spatial design technique for (2-D) recursive digital filters 

has been proposedbyBordnerD23 whereby a given discrete, finite-time, 

impulse response is approximated by the response of a recursive filter. 

The approximation is derived on the basis of the minimum squared error 

between the desired impulse response and the impulse response of the 

recursive filter model; however, the model response is constrained to 

be square summable over CO, va thus guaranteeing the stability of the 

resulting filter. 

M. LalE333 has proposed another spatial design technique, 

where a given (2-D) impulse response over a specified sector is 

divided into N convenient groups and each group of samples is approx-

imated by a second order (2-D) recursive filter in the least square 

sense with stability constraint on the coefficients of the second 

order filter in order to obtain stable filter. 

In 1974, Maria and FahmyD4,35.3 extended an iterative (1-D) 

IIR design technique due to DeczkyD6]. They proposed an algorithm 

to obtain an approximation to a (2-D) frequency domain specification 
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while giving some assurance that a stable filter would result E373. 

This was achieved by checking stability at every iteration and reducing 

the step size if necessary to prevent crossing the stability boundary. 

Because of the difficulty in checking stability, the type of filter 

that can be designed is limited to a cascade of low order sections. 

In addition, the computation required at each iteration is large, so 

that the total order of a design is limited. The largest filter design 

published using this method was of second degree in each variable. 

The interest shown in recent years in the stability of 

multivariable functions has not been paralleled by a similar interest 

in the design of such functions. However, these functions are finding 

increasing applications in the analysis and synthesis problems of 

various systems, and the time for some contributions in understanding 

and solving the design problems of such (N—D) functions has come. 

Justice and Shanks [383 have studied the stability of (N—D) 

digital filters. Stability tests for such filters were advanced by 

Anderson and Jury E393 Bose and Jury E403 and Bose and Kamat 

1.4 	OUTLINE OF THESIS 

In Chapter 2, the concept of stability is defined for (2—D) 

recursive digital filters. Stability conditions for these filters 

are discussed and methods for determining stability are reviewed. 

The above discussion is then extended to stability conditions and 

tests for (N—D) recursive digital filters. 

Several stabilisation procedures for unstable recursive 

digital filters are examined in Chapter 3 and one of these procedures 
is extended to (N—D}.  
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In Chapter 4, frequency domain design techniques for (2-D) 

and (N-D) recursive filters are considered. A new (2-D) design 

technique for recursive filters is presented and two new design 

techniques for (N-D) filters are also proposed. The first of them is 

applicable to non-recursive, zero phase filters and the second to the 

recursive case. 

Chapter 5 is concerned with spatial design techniques for 

(2-D) recursive digital filters, These are discussed in detail and 

some of the existing methods for (2-D) are extended to (N-D). 

The final chapter summarizes the work of the thesis and a 

number of avenues are suggested in which further research may be 

conducted. 



24. 
CHAPTER WO 

STABILITY  

2.1 	INTRODUCTION  

The term stability is generally used to indicate that 

convolving a filter with some bounded input sequences always yields a 

bounded output. As can be seen from equations (1.3) and (1.4), where 

past output values in recursive filters are used by the recursion 

algorithm in calculating the present one, such value can become 

arbitrarily large independent of the size of the input values. 

Recursive filters can therefore be unstable. 

To understand the various known conditions and tests for 

stability of the (2-D) recursive filters, some definitions relating 

to signal-representing sequences must first be defined. 

A function i(mm
2
) in two variables m_ m

2 
 is absolutely 

bounded when: 

li(m1,m2 )IC14.< co 	
(2.1) 

and is absolutely summable when: 

li(mi ,m2 )1 <rI < co 	 (2.2) 
ml 	m

2 

for all integer pairs (m1,m2), where M and N are positive real 

numbers. 

One kind of stability to consider is bounded input bounded 

output stability. With the input array i(m1,m2) absolutely bounded, 
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the question of what restrictions are to be placed on the filter's 

impulse response f(ml,m2) to ensure that the output o(m1,m2) is also 

absolutely bounded, arises. Remembering that the output of a system 

o(m1,m2) may be expressed as the convolution of the input i(m1,m2) and 

the impulse response of the network function: 

o(m1,m2) => 

 

f(P1'132) i(m1-1314-1' m2-1)24-1) 
	(2.3) 

  

131 p2 

and applying Schwarz's inequality, gives: 

10(.1,.2 )1‹ If (P14)2)1 k(m1-P1+1' m2P2+1)1 	(2.4) 

P1 2 

but since liNZ14 for all integer values of its arguments, the inequality 

reduces to: 

1 0 (mi  ,m2)1‹ m If(Pl,p2)1 (2.5) 
P1 2 

which restricts the impulse response to an absolutely summable 

function. This has been shown to be a necessary and sufficient 

condition for stability [493 So that, if the impulse response 

f(pl,p2) is absolutely summable, and the input array i(m1,m2) is 

absolutely bounded, then the output o(m1,m2) is also absolutely 

bounded. 

Another kind of stability is summable input, summable 

output stability. Here again the restrictions on the filter's 

impulse response f(m1,m2), that ensure the summability of the 

output o(m1,m2) with summable input i(ml,m2) are derived through 

applying Schwarz's inequality to the convolutional sum of 

equation (2.3): 



o(m1,m f(p1,p )i(m -1)1 	' M -P +1) 
2 	1 -1 	2 -2 
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>  I> 	f( P1'v9)i(mi-P1+1°1 2-132+1)1 

 

10(Mi lM2) 

 

  

mi m2 p1 

   

	\f(P,P2) 	 il2-p24-1)1 

ml m2 P1 P2 
	• 

( 1-p1+1' m2-p2
+1)1 

N If(P1,p2 )1 (2.6) 

and therefore a sufficient condition for the filter to be considered 

stable is for its impulse response to be absolutely summable. 

Generally, the stability of a (2-D) recursive digital filter is 

determined by the coefficient of the denominator B(z,,z2) of the 

z-transfer function of the filter when such filter is expressed in the 

form of equation (1.5). However, testing the stability then is difficult 

because the fundamental theorem of algebra is not applicable to two-

variable functions: namely, denominator factorisation is not always 

possible. Testing the stability by finding the poles of the z-transf er 

function, as in the (1-D) case, is hence not possible, nor is filter 

stabilisation by the replacement of the poles in the instability 

region by poles in conjugate reciprocal positions with respect to 

the unit circle. A direct extension of the condition for stability 

in the (1-D) case to the (2-0 case was proposed by Shanks E20J. It 

can be stated as follows: 



27. 
2.2 	SHANKS THEOREM  E20] 

Theorem 2.1: 	Given that B(z1,z2) is a polynomial in (z1,z2), a 

necessary and sufficient condition for the coefficients of the 

expansion of F(z1,z2
) = 1/B(z1,z2) in positive powers of zz2 

converge absolutely, and hence for f(m1,m2) to be absolutely 

summable, is: 

B(z1,z2) 	0 	for 	IzIl< in iz21<1. 

The above condition suggests a test procedure for checking the 

stability of the filter by finding the continuum of (z1,z2) values for 

which B(z1,z2) = 0. This is done by assigning values to the variable 

z, and finding the roots of B(z1,z2) = 0 as a function of z2. For 

stability, it follows from theorem (2.1) that all roots of z2  must be 

greater than one in magnitude when lzil is less than one. 

2.3 	HUANG STABILITY TEST  [21] 

Shanks/ condition for stability as stated above is very 

tedious to apply, since it requires the mapping of an infinite number 

of points from the zl-plane into the z2-plane. However, a considerably 

simplified version has been arrived at by Huang: 

Theorem 2.2 OTaang): A causal recursive filter with a z-transfer 

function: 

A(zl,z2) 
H(zi,z2) 	B(z,,z2) 

is stable if and only if (iff): 

(1) 	the map of H1 = (z1, 1z11 = 1) in the z2-plane according 
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to B(zz2
) = 0 lies outside 

d2 E (z2;1z21<l); and 

(2) 	no point in dl = (z1, Izli< 1) maps into the point z2  = 0 by 

the relation B(zz2) = O. 

To check the stability using theorem (2.2), RI  is mapped into 

the z
2
-plane according to B(z1,z2

) = 0 and the resulting image tested 

to determine whether it lies outside d2. Also, B(z1,0) = 0 must be 

solved to find whether there are any roots with magnitude less than 1. 

2.4 	ANSELL STABILITY THEOREM [4] 

Theorem (2.2) can be reduced to a stability test involving 

only a finite nuMber of steps. However, as will be shown, this can 

still be very tedious. 

Using the change of variables: 

1-zi  
s 	

14-zi 
(2.7) 

and: 

1-z2 
s - 2 	1-1-z2 

(2.8).  

and letting: 

A( sifs2) 
H(z1,z2) = B(s1,s2) 

where A and B are polynomials in s1 and s2, theorem (2.2) can be 

restated as follows: 

(2.9) 

Theorem 2.31(Ansell)D3j: the causal recursive filter 11(zz
2) is 
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stable if and only if: 

(1) In all real finite l' 
the complex polynomial in s2' 

13(jul, 	has has no zeros in Re s2> 0, and 

(2) The real polynomial in si, B(si, 1), has no zeros in 

Re s1 _%-?-0. 

Moreover, 

Theorem 2.4 (Ansell): 	Condition (1) of theorem (2.3) can be derived 

in another form. Let B(ju ju2) be expressed, for real u1 
and u2, as: 

B(jni, ju2) = Po(u1)u2 + P1(110111'21 -1  + 	+ On(ni) 

+ jECto(nOur21  + a1(ul)n2-1 + 	+CtilealX3 (2.10) 

-where 04(n1) and Pi(u1) are real polynomials in ul  and where neither 

0r'41)(n1) nor 3(u1) 
is identically zero. Also, define

Yk,12,(u1) as: 

'Yk,2 = CC1PP. 	(12,13k 
	 (2.11) 

for 0 -‹ Q,,k< n, setting Ws and R's not present in B(jui,iu2) equal 

to zero. Then, with D(u1) denoting the n x n symmetrical polynomial 

matrix whose typical element Dii(ni) (1 (Zi, j<n) is the sum of 

all thoseY.k,2,(111) (0 ‹ka., C  n) for which both 

k 	= i+j- 1 

and 

	

	 (2.12) 

e -k > ii-j 

are satisfied, the n successive principal minors of D(u1) must be 

positive for all real u1. 
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In the above, Sturm's [i/k] method can be used to test whether 
each minor of D(u1) is positive for all real ul. 

It can thus be seen that while Ansell's test requires only a 

finite number of mappings, the mathematics involved are still tedious. 

2.5 	THE ANDERSON AND JURY STABILITY TEST [22] 

Huang's simplification of the stability test rests on the 

fact that the denominator of the z—transfer function B(zz2) 0 

for Iz1K1(11z21<1 iff the following two conditions hold: 

B(z1,0) 	0 
	

1 
	

(2.13) 

B(z1,z2) 	0 	= 1r), 1z2NZ1 	(2.14) 

Anderson and Jury's stability test is divided into two parts: first, 

checking condition (2.13) for the values of B with zI restricted, 

and, second, checking condition (2.14) for the values of B with both 

z1 and z2 
restricted: 

2.5.1 	Denominator Examination with zI limited  

Two methods for checking condition (2.13) have been proposed 

by Anderson and Jury [22]. The first of these is based on the use of 

the Schur—Cohn matrix 0153. This matrix is square, Hermitian, of size 

equal to the degree of B(z1,0), and with elements which are simple 

functions of the coefficients of B(z1'
0). The matrix is negative 

definite if and only if B(z1,0) has all its zeros in Izil >1. The 

negative definiteness can be established by examining the sign of the 

leading principal minors of the matrix. 
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The Schur-Cohn criterion for checking condition (2.13) 

will now be discussed in detail. 

Suppose that: 

n 

f(z) = a. z 
1 

(an  o) 	 (2.15) 

i=0 

where the associated n x n Hermitian matrix C = 	is defined by: 

'yij = a 	
- a 	a. )9, 	i 	j 	(2.16) 

n-i+p n-j+p 	1-P J-P 

then: 

(i) and for 

which z.
-1 
 is not also a zero is the number of positive eigen values 

of C; 

(ii) the number of zeros zi 
for which I

zr..> 1 and for which z
i
1 , 

is not also a zero is the number of negative eigen values of C, and; 

(iii 	
-1

) 	is 

also a zero (or both) is the nullity of C. 

For condition (2.13) to hold, with B(z1'0) a real polynomial 

and C a real matrix, all eigen values of C must be negative definite. 

This is so if and only if odd-order leading principal minors are 

negative and even-order leading principal minors are positive. 

An alternative procedure for checking condition (2.13) 

can be derived from the theorem of Jury [47], which is based on 

forming a sequence of polynomials. 
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Theorem (2.5): 

Suppose that 

n 

f(z) 
	>--- ai zi 	 (2.15) 

i=0 

then, a-sequence of polynomials can be defined as follows: 

n-I 

	

1=0 	i=1 

n-2  

F2(z) = > a. z 
(2) i 
1 

1=0 

ro(z) = f(z) = 

 

ac 1 z , F1(z) = 

F.(z) = (2.17) 
i=0 

byFj+1 	o (z) = a*(j)F,-;j
(z) - a(j).F(z) 

where 

F`3(z) = n*(j)zn-i 	z *0) n-j-1 	a* n-j 

(2.18) 

  

a(j)z n-j-i  1 (2.]9) 

 

1=0 

  

(ThusYtWisobtained ) by coefficients reversal and 

conjugation.) 

 

Setting bj  = F.(o) and Pi  = 15112 	then: 

(i) all zeros of f(z) lie inside 1ZI<Z1 iff P.< 0 for all j; 

(ii) all zeros of f(z) lie outside IZK1 iff P. >0 for all j, 

or equivalently, bj  >0 for all j; and 
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(iii) if all P. are non -zero,.the number of negative P. is the 

number of zeros of f(z) inside 1Z1 -...c1 and the number of positive P. 

is the number of zeros outside 1Z1<1. 

It should be noted that (ii) above covers the requirement 

for condition (2.13). 

2.5.2 	Denominator Examination with both z1 and z2   limited 

Broadly, checking the above condition falls into two 

distinct steps. First, a Schur-Cohn test will be applied. Second, 

the positiveness of a number of polynomials on Izil = 1 will be 

checked. 

Step 1: Applying the Schur-Cohn test: 

To check condition (2.14), f(z) in (2.15) is replaced by 

B(z,,z2) written as a polynomial in z
2
: 

B(z1,z2) = (2.20) 

The coefficient a is thereforebij  .z1 
 and the matrix C is q x q, 

with entries which from (2.16) ar
i=
e
0  seen to be polynomials in z1  and 

z*1  with real coefficient (matrix C is Hermitian). 

The condition B(zilz2) 5.4 0 for lzll = 1, 1z21-5Z1 holds if 

and only if for all 1z11 = 1, C is negative definite, i.e. if and 

only if the leading principal minors C have appropriate signs. 

These principal minors being linear combinations of products of the 

'N/
(ij 

are themselves polynomial in z
1 and z*1 

 with real coefficients; 

they are also real, since C is Hermitian. By setting z = z
-1, on 
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= 1, the polynomials will have the form >.(zj  z ). 

j=0 

Such polynomials are termed self-inverse, i.e. if z1  = zla  

-1 
is a zero so is zi  = zloc. 

Step 2: 

Step 2 involves checking the positiveness of a self inverse 

polynomial on IZ11 = 1. Considering the self-inverse polynomial, 

N 

	 , f(z ) = 	c.(zi 	zi) 
j=0 

(2.21) 

where the C are real constants, some immediate necessary conditions 

are obtained by putting z1  = 1, -1: 

N- 

1:13 	
>7(-1) jC > 0 

j=0 	j=0 

(2.22) 

There are two techniques for checking sign definiteness of 

a self inverse polynomial. 

The first approach makes use of using zi  = exp(iO) in 

(2.21) which results in: 

f(cos0) = 2 C.cosj0 (2.23) 

 

j=0 

  

Positiveness is to be checked for 0=',-; 0 <21-Ijor 	0 <IC). But 

since cosj0 = cos(-j0), it would be sufficient to examine the 0- TC 

range. The following change of variable will be made: 

X = cos° 
	

Tk(X) = cosk0 	 (2.24) 
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where Tk(x) is the k
th Chebyshev polynomial of the first kind defined 

recursively by 

T 	= 2xTk(x) - Tk-1(x), 
	T1(x) = x 

To(x) = 1 	(2.25) 

Then the requirement will be: 

g(x) 	.T .(x) > 0 
J J 

J=0  

(2.26) 

for -1 <-7,-xTj(x) is a polynomial in x of degree j; therefore 

g(x) has the form: 

g(x) = (2.27) 

forsomereald..PositiVeness can be checked - by-  forMing a Sturm 

chain. An - example of this can be found in 014]. 

An alternative approach for checking positiveness is based 

on the determination of the zero distribution of f(z1 
 ) in eqUation 

(2.21). Because f(z1 
 ) is self-inverse, there are as many zeros of 

4f(z1) inside k1l<:1 as outside. Therefore, f(zi) is positive on 

lzll = 1 if and only if f(1) >0 (or f(z1) is positive at any one point 

of I zll = 1) and 4f(z1) has N zeros inside fzil<1 (for then 4f(z1) 

has N zeros outside, and thus no zeros on 	= 1). 

Unfortunately, the Schor-Cohn matrix for a self-inverse 

polynomial is zero, and the other procedure as mentioned before based 

on setting up a sequence of polynomials leads to a zero polynomial at 

the first recursion. Hence neither procedure, as it stands, is of 
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help. However, the following result is of assistance: 

Theorem 2.6: 015,47D Let f(z1) be as in equation (2.21). The 

number of zeros of g(z1) = z1f(z1) in Izi <1 is the same as the 

/ 
number of zeros of z1

2N-1 g/ (l/z1) in Izil<1, where g/(1/z1) is 

obtained by differentiating g(zi) with respect to z1  and substituting 

z for z 11 
	

1' 

2g-I 
Assuming that z1 

gi(1/z
1
) has neither zeros reciprocal 

with respect to Iz1I=  1, nor zeros on Izil = 1, the Schur-Cohn 

criterion will yield the number of zeros inside Iz1l<1; so may 

the procedure based on generating a recursive set of polynomials. 

2N-1 f 
If, on the other hand' z1 gl(l/z1

) does have reciprocal zeros or 

zeros on the unit circle, the situation must be analysed further. 

In view of the easily established relation 

z1gl(z1) + zi
p-1  gl(1/z1) = f(z1) 
	(2.28) 

it follows that such zeros of z
N-1

gt(1/z1
) are also zeros of f(z1). 

/ / 
Accordingly the highest common factor of 

z12N-1  g/(l/z1
) and 

f(z1
) can be found, and then its zero properties can in turn be 

studied, it too being self-inverse. Proceeding in this way will 

2g-1 
result in determining the number of zeros of z1  gl(1/zl

) and 

therefore of zf(z1  ) inside lz1
I <1, to conclude whether or not 

1  

f(z1) is positive. 

The Anderson and Jury method for testing the stability 

can be summarised as follows: 
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1) 
	

For checking condition (2.13): 

(i) Use the bilinear transformation of B(z0) = 0 and 

apply the Hurwitz method to the transformed polynomial. 

(ii) An alternative test involves forming the Schur-Cohn 

matrix from B(z1'
0) = 0 and testing this for positiveness. 

2) 	For checking condition (2.14) two successive tests as 

follows are needed: 

(i) Apply a Schur-Cohn test to B(z,,z2) = 0 to get the 

self-inverse polynomials and check the positiveness of these 

polynomials. 

(ii) Second, the positiveness of a number of polynomials of 

B(zz2) = 0 on 
IZ1I = 1 should be checked. 

2.6 	MARIA AN1) FAHMY METHOD FOR TESTING STABILITY E24.3 

A method has been introduced by Maria and Fahury- E243 for 

checking condition (2.13) of Huang's criterion. This method, based 

on modification of Jury's table [463, is as stated below: 

Theorem 2.7: Let f(z) be the n
th 

degree polynomial given by: 

   

f(z) = ao + alz + a2z
2 + 	+ an

zn 
	

(2.29) 

wherethecoeffiCientsa.,i = 0,1,...,n are complex numbers. The 

roots of f(z) are outside the unit circle if and only if: 

bo< 0, co >0, do 
> 	go> 	to > 0 (2.30) 
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where b o  , co 	
to 

are obtained from the modified Jury table 

• . . 

formed as follows: 

zo z1 z2 

ao 	a1 	
a
2 

a* 	a* 	a* 
n 	n-1 	n-2 

b1 	b1 	
b2 

b* 	b* 	b* 
n-1 	n-2 	n-3 

co 	c1 	
c2 

c* 	c* 
n-2 	n-3  

z 	z n -0  z  

a 	a 	a 
n-2 	a 	an n-1  

a*2 	
a*1 	a0 

bn-2 	bn-1 

b* 	b* 1 

en-2 

c* 
0 

	

ro 	1 

	

r* 	r* 

	

1 	o 

to (2.31) 

where: 

     

      

 

bk = 
a a o an-h 

a* n arc 
k 

bo 	bn-1 -k 

b* 	b* n-1 

(2.32) 

    

    

    

and a* is the complex conjugate of ak. 

To check the first condition of Huang's Theorem (2.13) 

using the above results, it should be noted that tbat'condition is 

satisfied if and only if the roots of z2  in B(zi,z2)1 iz 1=1  = 0 are 

outside the unit circle 1z21 = 1. To test this equivalent condition, 

B(zz2) should be written in the form of 

- 	 m B(zi,z2) = [ai(z1)]z2 m2  + Eaj_1(z1)]z2rir + 
	+ Eao(zi)] 

(2.33) 
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where: 

a j(z ) 	
bzi 

1 	ij 1 
(2.34) 

 

i=0 

  

In such a form B(zz2
) is viewed as a polynomial in the 

single variable z2  with the coefficients being functions in zl. The 

above table should be constructed for this B(zz2) = 0. 

The computation of the entries of the modified Jury table is 

considerably simplified because: 

(i) all bij 
 ts are real, and thus at(z1) = a 	

1  
z*)
' 
 and 

(ii) zi  is restricted to the boundary lz I = 1, and thus 

(z1 1  z9P-  = 1 for all G.. 

All the entries of the table will be functions of z1 
with 

b 
o 
 , co, 	to 

taking the form 

2\ 
u = g 	g (z* 	z1) 	g 	* 	z1) 'o goo  ol 	G2(1 

(2.35) 

Putting z1  = X jY and noting that Izil = 1, the 

coefficients bo, co, ..., go, 	to 
can be expressed as functions 

of the real variable X by using the following substitutions for 

	

, 	lc\ 
k = 1, 2, 	: k - + z /, 

	

z k i 	1 

(z*1  z1) = 2X 

(zI2 	= 4X2  - 2 

(z*3  z3) = 8X3  - 6x 

(z 4  
zo  

(2.36) 

= 16X4  - 16x2  

Thus the test for condition (2.13) may be represented as a modified 
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Jury's criterion which takes the following form: 

	

For 	X <4-1, 

bo(X) < 0 

co(X)> o, 410(x) >1), 	to(X) 2> 0 

This criterion can be further simplified as: 

(i) bo(0) <0, co(0)-> 0, ..., to(0) >0, and 

(ii) the polynomials bo(X), co(X), 	to(X) have no real roots 

in the interval IXI<Z1. 

Sturm's test can be used to check condition (ii) abOve. 

	

2.7 	STABILITY OF (N-D) DIGITAL FILTERS 

Stability of (N-D) filters has been studied by Justice and 

Shanks [38], Anderson and Jury [39], Bose and Jury [40] and Bose and 

Kamat 

Here the concept of the stability of (N-D) digital filters 

is defined and the conditions for stability of these systems are 

discussed. 

First, though, some definitions and preliminary theorems 

that will be of later use are outlined. 

A-function i(m1, 	m ) of n variables (m1, 	mn) is 

called absolutely bounded when: 

•••9 md< r1< co  for all (mi, i = 1, n) 	(2.37) 
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and absolutely summable when: 

mn)k N<00  for all (mi, i = 1, n) (2.38) 

where M and N are positive real numbers. 

If the input i(m1, 	mn) is an absolutely bounded (N:-.:D) 

function: 

i mn)I<M<00  for all (m., 	= 1, n) 
	

(2.39) 

where M is a positive real number, then to find the restriction to be 

placed on the filter impulse response f(m1, 	mn) to ensure that 

the output 0(m1, 	mn) is also absolutely bounded, the convolutional 

SUM: 

0(m1  , APO., f(p1, 	pn)i(mi-pel,..., 

mn-pn+1) 
	

(2.40) 

is considered. Applying Schwarz's inequality to this gives: 

• • 	If (pi 	, pil)1 	, • • . 	) I 

Pn 	 (2.41) 

but since lirt for all integer values of its arguments, it can be 

written as: 

lo(m 	m 1" n 

lo(m 	mn) i,.", 

  

[I( ,...,pn)1 (2.42) 

      

P1 
Thus, if the filter impulse response f(m1n) is 
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absolutely summable and the input array i(m...,mn) is absolutely 

bounded, then the output o(m1,. 	mn) is also absolutely bounded. 

It has been proven [38] that this is a necessary and sufficient 

condition for stability. Further, it has been shown that when the 

input i(m...,mn
) is absolutely summable, the output is also 

absolutely summable, only if the filter impulse response is summable. 

Theorem 2.8: 

A convolutional filter f as defined by equation (1.10) is 

stable iff: 

(2.43) 

The above means that the z -transform of f is absolutely convergent for 

all (z., i = 1, 2, ..., n) e Rn  where 

= f(z., i = 1,2,...2n): 	i 1 17,i  I = 11 	(2.44) 

The proof of this can be found in [38] and [48]. 

2.7.1 	Stability Constraints on (N-D) recursive filters  

After discussing the concept of stability for (N-D) filters 

and deriving the constraints on such filters' impulse responses, the 

stability of (N-D) recursive filters is now briefly reviewed: 

Theorem 2.9: [38] 

A causal recursive filter F(z1,...,zn) = 1/B1(z/,...1zn) is 

stable if and only if there exists a stable filter 
1f such that 

lf  * lb  = 5. 
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 >

cc 	m1  
f 	...,m  zi  . .zn n 

F(z1,...,zn
) = 1/8(zi,...,zn

) = 

m1=0 	m =0 

M1  

E • • • 
m1=0 	mn=0 

bm1,...,mn  
(2.46) 

N  

43. 

The above theorem can be re-stated as: 

Theorem 2.1008,463 

The causal recursive filter 

where: 

  

M1 	Mn  

 

= )1( 

   

••• 

 

1 
bmm z  1 ...z n / 

nl (2 .45) 
i,..., n  

      

 

m1=0 mn=0 

is stable iff: 

= 1,2,..., ) C Di 	(2.47) 

where: 

D 	, (z. 	i = 1,2,...,n): 1 	1 	 i 
(2. 48 ) 

It has also been proved :39: that the above condition is 

equivalent to the conditions: 

c i-i 
,...,zi) 0 tn1  iz ,= 

forj=1,2,...,nvherelyzi,...,z.)is obtained by setting 

= zi+2  = 	= zn  = 0 in B(zi,...,zn). 

The test procedure is carried out by the repeated applic-

ations of the extended Jury's theorem [22] to (N-D) D93 to determine 
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the content of a system of polynomial inequalities in a single 

variable. Details of this are omitted here for brevity, and are well—

documented elsewhere E39,40,41:1 



CHAPTER THREE 
	 45. 

STABILISATION METHODS 

Having discussed, in the last chapter, several methods for 

testing the stability of (2-D) and (N-D) recursive digital filters, a 

number of techniques for stabilising unstable (2-D) recursive digital 

filters are now reviewed. One of these is then generalised to the 

(N-D) case by a somewhat thorough mathematical treatment. 

3.1 	SHANKS STABILISATION METHOD [20] 

This method is based on a conjecture that, too, is due to 

Shanks. It is a direct extension of a well-established (1-D) method 

C51:I based on some properties of the planar least square inverse of 
a matrix. Before reviewing the method in detail, some useful 

definitions and preliminary theorems relevant to its understanding 

are given. 

Definition 3.1 

A minimum-phase (1-D) discrete sequence is one with a 

z-transform having no zeros inside the.z-plane unit circle. 

A minimum-phase array a(m
1 
 0e
2
) is defined as one that 

would satisfy both of the following two conditions: 

(i) When the spectrum A(ul,u2), of the (2-D) array 

a(mm2)' is evaluated at any real frequency l' the resulting 

(1-D) function in frequency u2  is minimum-phase. 

(ii) 	The same spectrum A(uu
2
) when evaluated at any real 

A 
frequency u2  forms a (1-D) minimum-phase function in u 1' 
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The spectrum A(u1
,u
2
) is the (2-D) Fourier transform of 

the array a(m1,m2). It can also be thought of as the z-transform 

A(z1,z2) of a(m1,m2) evaluated in 1z11 = lnz21 = 1. Therefore, 

conditions (i) and (ii) may be re-stated as follows: 

Theorem 3.1  [20] 

A two-dimensional array a(mm2
) with z-transform of 

A(zz2
) is minimum-phase iff: 

A(zi,z2) 0 for iziK, iz C1 

From theorems 2.1 and 3.1 it can be concluded that the 

filter F(zl' 2
) = 1/13(zz2) is stable if B(zz2) is minimum-phase. 

In (1-D) filter theory it is known that the planar least-squares 

inverse of a filter is minimum-phase [51]. The object here is to 

find how to make use of this property for stabilising an unstable 

(2-D) recursive digital filter without changing its amplitude spectrum. 

Given an array C, an array P can be found such that the 

convolution of C and P is approximately equal to the unit impulse 

array b. That is: 

C * P 
	

(3.1) 

where the symbol * denotes (2-D) convolution. In general, it is not 

possible to make C*P exactly equal to b. Let C*P = G; if P is now 

chosen such that the sum of the squares of the elements of 5-G is 

minimized, then,P is called a planar least square inverse (PLSI) of C. 

The size of the array P is arbitrary. However, b and G must 

have the same size, which depends on the size of the arrays C and P. 
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If C is an array of dimension (m1
,m2) and P of (kk2

)
' 
then G and 5 

must be (m1
+k
1-1) by (m2+k2-1). Since the size of P is arbitrary, 

there are many (PLSI) of the array C, one for each possible set of 

dimensions of P. However, once the dimensions k1 
and k

2 
of the 

matrix P are fixed, there is one and only one array P that 

minimises the mean square difference between G and 6. This array P 

is determined from the matrices 5 and C by the (2-D) Wiener 

technique [52J. 

As a group, PLSI's have some interesting properties. One 

particular such property, which has not been proved yet, is 

described by the following conjecture E203. 

Conjecture 3.1  

Given an arbitrary real finite array C, any planar least-

squares inverse of C is minimum-phase. This is an important 

conjecture because it implies that the filter F(zi,z2) = 1/B(z,,z2) 

is stable when B is a PLSI. 

When a (2-D) recursive digital filter F(z,,z2) = 1/B(z,,z2) 

is found to he unstable after completing the design, the question 

arises as to whether the coefficients of the filter's denominator 

B(zz2
) could be altered in order to produce a final stable 

filter. The denominator array of the unstable filter is denoted 

by B. Bti a planar least-squares inverse of B, can be formed. 

Further, a planar least-squares inverse of B' can also be formed 

A 

and called B. Now, B is the inverse of the inverse, or the "double-

inverse" of B. Intuitively, B and B will have some characteristics 

A 

in common. Moreover, B is itself a PLSI. Hence it is minimum-phase, 
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,A, 
which B is not. Therefore, the filter F(z1,  z2  ) 	1/B(zz 

stable. 

The validity of assuming some degree of similarity 

between B and B is, of course, questionable. It has been so far 

taken for granted that B, being the double-PLSI of B, is an 

approximate minimum-phase version of the latter. Thus the amplitude 

spectra of B and B would be expected to be roughly equal. 

One of the factors governing the quality of the approxim-

ation is the size of the intermediate array B'. The larger the 

size of B/, the better is the resemblance of B to the minimum-phase 

version array B. Several examples, where the stabilised filters so 

obtained were a good approximation to the original unstable ones, 

can be found elsewhere [20,57]. They covered a number of cases 

involving filters of differing classes and degrees. However, only 

recently, Kamp [53] gave a counter-example that invalidated the 

method for certain cases. 

3.2 	READ AND TREITEL STABILISATION TECHNIQUE E54j 

For a minimum-phase sequence, a(k), the phase, 0(du), and 

the log. of the amplitude spectrum, 	, are related by the 

Hilbert transform E55,56.]: 

0(eju) = yti 	loglA(eqlcot 1.1:22dc? 
0 

where the above equation results from a(k) (k = 0,1,...,M-1) being 

minimum-phase, and therefore causal, if and only if the inverse 

z-transform of lod:k(z)..] is causal. Since the Hilbert transform 

is 

(3.2) 
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relates the real and imaginary parts of a minimum-phase function, 

its application to loglgeill in equation (3.2) gives the imaginary 

part of logID(za, which is the phase of A(z). To implement the 

above integral on a digital computer the trapezoidal integration 

rule C58:1 has been employed to approximate the integral of 

equation (3.2) by the summation: 

N-1 

Pi(i) = yproo (1-k) 	(3.3) 

k=0 

wherePr(i)andP.(k) are respectively the real and imaginary part of 

the Fourier transform of P(i). 

This can be further simplified to: 

N-1 

Pi(i) = P
r(k)coa(i-k), i even 

k=1,3,5,.. 

N-1 

Pi(i) - N > 	P
r
(k)cot5(i-k), i odd 

k=0,2,4,.. 

The above relations suggest a method for minimising the phase of a 

mixed or maximum-phase sequence. Firstly, the sequence is made 

causal and then,a new phase for the z-transform of the sequence is 

calculated using equation (3.2) to make it minimum-phase. This is 

the basis of the Read and Treitel stabilisation technique for (2-D) 

recursive filters. It is a direct extension of the (1-D) case 

already treated by the same authors. Further treatment of the 

technique necessitates the reader to be familiar with some alternative 

definitions of a few already defined functions, as given below. 

A finite discrete impulse response P(m1
,m
2
) is causal if: 
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11( m1'm2 )  = for 
ml  M1/2 

142/2  
(3.5) 

where m1  varies over the discrete set [0,1,...,M1-1 and m2  over the 

set 10,1,...,M2-1}. The even and odd parts of such a sequence are 

defined as: 

Pe(ml'm2)  = 2EP(ml'm2) P(Ml-ml, M2-m2)..] 
	

(3.6) 

and 

Po(ml,m2) = 1EP(ml ,m2)  P(Ml-ml, 142-m2): 
	

(3.7) 

respectively, and are related (as in the general case of a (2-D) 

minimum-phase sequence) by: 

Po(mi ,m2)  = Dpi(m m2) bdy(mi,m2):1P (m1,m2) 
	

(3.8) 

where the sgn function is a finite (2-D) version of the (1-D) signum 

function. It is given by: 

	

ir1 

	0 <ml  < N1/2 and 0 <m2< M2/2 

sgn(m1,m2) = _i 	M1/2 <loal  <M, and M2/2 <m2  <M2  (3.9) 

	

0 	elsewhere 

The bdy function makes boundary adjustments and is defined by: 

	

1 	m
2=0 and 0 <m1 <ZM1/2 

	

-1 	m2=0 and M /2 <le < 1■1 
1 	1 	1 

	

bdy(mi,m2) = 1 	m1=0 and 0 <m2  M2/2 

M2/2 <m2 <1%12 -1 m1=0 and 

	

0 	elsewhere 

The sequence P(mm2) is the sum of its even and odd parts: 

(3.10) 

P(ml'm2)  = Pe(ml'm2) Po(m1,m2) 
	

(3.11) 
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Taking the Fourier transform of both sides yields: 

DFT[P(mi m2)] 	Flae(1111 '1112): DFT[Po (ml 'm2)] 

	
(3.12) 

and, as is well-known, the DJJ of a real and even function is real and 

even, and that of a real and odd function is odd and imaginary. Thus: 

Pr(m1,m2) = DFIDe(mi,m2)] 
	

(3.13) 

Pi(mi ,m2) 	-PF00(mi'm2)] 
	

(3.14 ) 

Taking the inverse discrete Fourier transform (IDFT) of both sides of 

(3.13) and substituting into (3.8) and using equation (3.14) will 

result in: 

Pi(mi,m2) = -jDFT(fsgn(mi,m2) bdy(mi,m2)1 JDFlar(mi,m2):1) 

(3.15) 

This relation defines the (2-D) discrete Hilbert transform. (It 

clearly corresponds to the continuous transform given in equation 

(3.2).) 

It will now be shown how to use the discrete Hilbert 

transform procedure (3.15) to obtain a minimum-phase version of a 

(2-D) array. The z-transform of such an array could be the 

denominator polynomial in the equation F(zi,z2) = A(z,,z2)/B(zi,z2). 

Applying the scheme leads to a rational filter F(z1,z2) with very 

nearly the same amplitude spectrum as the original unstable filter 

F(z,,z2). To arrive at a stable result, the phase of the (2-D) 

polynomial B(z,,z2) should be minimized. The (2-D) discrete Hilbert 

transform can be applied in the same way as in (1-D) case [5'J  to 

obtain the minimum-phase version of a given array. Thus, given a 

(2-0 amplitude spectrum B(mi,m2) of a causal sequence, the 
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minimum-phase spectrum 0(m1,m. ) is calculated from the equation: 

8(m1,m2) = -ilIFT(fsgn(ml,m2) bdy(m1,m2).1.IDFTElogB(m1,m,a 

(3.16) 

The derivation of the above expression can be found in D411 Forming 

a minimum-phase version of an array by using equation (3.16) can be 

summarised by the few steps below. 

Step (1):  Given a finite discrete (2-D) array, the coefficient array 

should be augmented with zeros to satisfy the condition for causality, 

equation (3.6). The added zeros increase the size of the array, so 

that it becomes amenable to Fast Fourier transform analysis. 

Step (2):  The natural length of the amplitude spectrum of the 

augmented (2-D) array should be calculated. 

Step (3):  The (2-D) discrete Hilbert transform must be applied to 

this (2-D) array. Thus the log. of the magnitude is treated as the 

real part and the discrete Hilbert transform then yields the 

imaginary part. 

Step (21):  The imaginary part is used as the phase spectrum 

corresponding to the given amplitude spectrum. These two spectral 

characteristics completely describe the transform.of the minimum-

phase array. 

Step (5):  After conversion from amplitude and phase to real and 

imaginary parts, the inverse transform is determined and truncated 

to obtain the same dimensions as the original array. This yields 

the minimum-phase version of the original array. 
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Although the Hilbert transform procedure works for most 

examples, it has been shown in D7:1 that there exist some cases where 

it proves to be of no value. One explanation of this may be that, if 

the discrete Hilbert transform stabilisation procedure was to yield 

the precise minimum—phase array, then all the elements in the inverse 

transform of the augmented array would be zero beyond the dimensions 

of the original array. In practice, though, it has been found that 

the element magnitudes of the augmented array beyond the boundaries 

defined by the original array are small compared to elements magnit-

udes within these boundaries, but are not zero. These elements are 

non—zero because the discrete Hilbert transform method of equation 

(3.3), implemented using the discrete Fourier transform, is an 

approximation to the original transform as given in equation (3.2). 

Therefore, it can be concluded that the approximation of 

the integral associated with the truncation of the array has caused 

the failure of the Hilbert transform stabilisation procedure for 

certain arrays. 

3.3 	PISTOR STABILIZATION METHOD [266 

The Pistor method provides a procedure for decomposing an 

unstable (2—D) recursive filter having a non—zero, non—imaginary 

frequency response into four stable recursive filters, each of which 

recurses in a different direction. 

For a real—valued discrete function c with a limited number 

of sample points, in which: 

c = fern ,m 	m
l

l 	21s,  = al  
1 2 	 (3.17) 

1m21 	042  =a, 
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the z-transform of which is of zero-phase and non-negative for all 

(zi,z2) C 112  

R2  = [(z1,z2) 	'zit =1 nlz21 = 
	

(3.18) 

satisfies 

Imrp(u1,u2)] F._ 0 	 (3.19) 

Re[Cqui,u21]:›0 	 (3.20) 

where 

0 	a2  
-j2i1U2m2  

Cqui,u2) = 	c
mm 

 e 

m1=-421(1 m2=  -u-9 V 2 

= C(z1,z2) for (z1,z2) C R2  

Equations (3.19) and (3.21) imply central symmetry of c: 

• c 
ml m

2 = c  _ 
ml'_ m2 
	 (3.22) 

(3.21) 

Because of this symmetry, c is not a one-quadrant function [26]. 

However, because c has a limited number of sample points, it can be 

transformed by translation to any single quadrant function. Thus, 

the term 1/C(zVz2) could be associated with four different 

recursive filters. None, however, would be stable. Proof of the 

above statement will be given in the generalized form for the 

N-dimensional case in the next section. 

In the one-dimensional case, unstable recursive filters,  

1/B(z1)' 
with no poles on the unit circle, can be decomposed into two 

stable filters that recurse in opposite directions. In the (2-D) case 

it is analogously shown that, the unstable 1/C(zVz2) can be 



-211j(ulmi+ u2m21 
e (3125) 

2M1 	2M2 

8t(uu2) = ln[ 	 c ml'm2 -2M1  m2_ 2M2  =.-om 
2 
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decomposed into four stable filters that recurse in four different 

directions: 

4 

vc(„.2) 	i/Kpz z2) 
k=1 

(3.23) 

This is done by transforming equation (3.23) into the 

cepstrum domain :26:: 

4 - 

c = 
	 (3.24) 

A 
where c is the cepstrum of c, defined as a function whose 

A 
z-transform C(z1,z2) is derived by the log. of the z-transform of c, 

C(zi,z2). 

A 
The cepstrum c is readily obtained by evaluating the 

z-transform of c on R
2 

as given by equation (3.18) 

Since CI is real and positive as in equations (3.19) and (3.20), the 

logarithm in equation (3.25) presents no problem. It is easily 

verified that all partial derivatives of tt(uu2) are continuous. 

Thus, for all u1 and u2' CI(uu2) is given by the Fourier series 

expansion [59) 

Nuv.2) oo  e-27gu1meu2m2) 

	

A 	 A 

	

The coefficients c 	that make up the cepstrum c are 
ml m2 

obtained from: 

1 1 
^ 

= 	ACI(uu2 
cml'm2 	0 0 

2TCj (u1m1+u2m2) 
du du

2 	(3.27) 

(3,26) 
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From the properties of Ct(u1
,u
2
) and from equation (3.27) it follows 

that: 

A 
c 	F c _ 
ml m2 	ml,_ m2 

(3.28) 

The procedure can be implemented by determining c, from 

equations (3.21), (3.25) and (3.27). 

This can be done by using the Fast Fourier Transform 

(FFT) [60] as indicated in Figure (3.1). The functions lc 
ml'm2 

and {cm 	I are IDFT of sampled version of Cl(u1"u2)  and Ct(u1,u2).. 
l'm2 

y(ml,m2) is defined as an aliased version of the desired result c. 

The degree of aliasing can be controlled by the rate at which 

C/(uu2) is sampled. 

The function(Mmi,m2), truncated at the Nyquist 

subscripts 
Inily 

and ImNy, is decomposed according to: 

^ 	9A 	tiA 
= I 	-10 4. kt + (19 tr 

(3.29) 

A 
where the 10 are approximations of operator k in equation (3.24). 

A more general treatment of the above technique is given 

by Ekstrom and Woods E.27:1, where they have generalized the concept 

of spectral factorisation .to (2-D); also, a family of canonical 

factorisations which are obtainable through the homomorphic transform 

[61] are found. In particular, the two, four and eight factor 

decomposition and their numerical implementation are treated in 

detail. 
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ml m2 Direct 
FFT 

Ln. 

60-11,u2 

4)ini'm2 Inverse 
1.L IT 

Fig. (3.1): 
	Block diagram of determination of the approximate 

cepstrum transform for evaluation of equations 
(3.21), (3.25) and (3.27). 
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3.4 	STABILISING ,(N-D) ZERO-PHASE REC[TRS:ET DIGITAL FILTERS  DO ,63] 

This section presents an extension to (N-D) of the work of 

Pistor [26] The stability of an (N-D) recursive digital filter is 

shown to be related to the properties of its cepstrum. A procedure 

is also given for the decomposition of unstable recursive digital 

filters having non-zero, non-imaginary frequency response into a 

set of stable single quadrant recursive filters. Some useful 

functions and generalised version of already stated theorem which 

will be used in developing the method will be given first. 

Theorem (2.10), which is applicable to causal system, can 

be applied to non-causal filters by transformation from qth quadrant 

to 1
st 

quadrant. 

Corollary (3.1)  

Let the qth quadrant function qf (q = 2,3,...,2n) be a 

stable convolutional filter. Then the non-causal recursive filter 

1/131(z1,...,zn) is stable if and only if B2(zi,l/z2,...,zn), 

133(z1, z2' 	' 
1/z3,...,zn),... B n (z1"." lizn),..., are non-zero for all 

(z., i=1,n) g Dl. The functions that meet the conditions of theorem 

(2.10) and corollary (3.1) are characterized by definition (3.2). 

Definition (3.2)  

A one-quadrant function qf is called recursively stable 

if and only if qf is a stable convolutional filter, i.e. 

1/Bq(z1n) is a stable recursive filter, either causal or 

non-causal. 
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3.4.1 	N-Dimensional Cepstrum 

Consider a function b and its z-transform: 

[b 	B(z 1,...,zn m 	m n 

By taking the logarithm of B we obtain: 

(3.30) 

zn) = In B(z 1 91saogzn) 
	(3.31) 

A 

The cepstrum of b, denoted by b, is a function whose z -transform is 

given by 11(z1,.."zn). Equations (3.30), (3.31) and (1.12) lead to 

the following input relation for a convolutional filter: 

, 	, 
zn) = Itz 	zn) 	F(z 	zn) 	(3.32) ,•.•, 	l'oss, 8(z

1
9.e., 

 

3.4.2 	Decomposition of unstable, recursive, zero-phase  
filters into stable recursive filters  

Consider a real-valued discrete function 'c with a limited 

number of sample points: 

c= fc 	-71 / () im.l<2M -a.• 1,—„„m d i=i 	• -  (3.33) 

Its Fourier transform is zero-phase and non-negative for all 

(z., i = 1,n) G Rn, i.e. 

	

TnEct(ui ,...,un)]7_ o 	 (3.34) 

	

,un)] > 0 	 (3.35) 

-where: 	al 	n 

n) = m. "mn
.exp(-2 	vim) ' 

i=1 

= C(z 'zn) (z1, i = 1,n) G R 	(3.36) 
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Equations (3.34) and (3.36) imply central symmetry of c: 

C 	= c 
mi 	n 	1" n 

(3.37) 

Equation (3.37) shows that c is not a one-quadrant function. However, 

since c has a limited number of sample points, it can be transformed, 

by translation, to any single quadrant function. Thus the term 

1/C(z 'zn) could be associated with 2
N  different recursive 

filters. However, none of these would be stable, as will now be 

proved. Consider a set of numbers: 

= 	Ej 
Each quadrant function is obtained by assigning the values +1 or -1 

to all the various elements of the subscript set fq. 

The following z-transforms can be obtained from c by 

translation: 

2" 2 2 	 2.n C(z1n) 	= z 	.Z
1 	2 	• • .zn 	

, v(Z1  • • 7 zn) 

(2 19 2-21 • • • 1 12 n) 

(3.38) 

According to theorem (2.10) and corollary (3.1), the 

recursive filters associated with these z-transforms are unstable if 

= l,n4 G D1 exists such that: 

2
n 

C2. 0  ( 1n
n) = 0 	(3.39) 

n 
By choosing azi=1 the existence of such a set is proved, 

if a zi  = w1, lw11 Z 1 can be found, which solves simultaneously the 

equations (3.40) and (3.41): 

OCn  
+m 

z 	C(z 	1 	1) 	 z,1 
+m1 

1, ,..., 	•• 	c
m 1,...,mn  

= 	mn= -an 

z1  G(zi) = 0 	(3.4o) 



c( i z 	C(l/z 1 	1) = z 	G(1iz
1
) = 0 1, 	, 	

z1 (3.41) 

61. 

Since it can be concluded from the central symmetry of c 

that: 

 

M
1 

ooa 	
m 	

Zi  = G(liz
1
) 	(3.42) 

I"m    ml= mn=-an  

 

G(zi) = 

  

equations (3.40) and (3.41) are identical and will be satisfied 

either by z1  = 0 or by a root of G(zi) = G(1/z1). Since if Z1  = 

is a root so is z1 = 1/w-1' it is always possible to choose iz 1 

Thus a set fz., i=1,n} C Dl can always be found, such that 

equation (3.39) is satisfied, and therefore no recursively stable 

operator can be obtained from C  by translation. As is shown earlier 

in the one- (and two-) dimensional case, unstable recursive filters 

can always be decomposed into two (and four) stable recursive filters 

which recurse in two (and four) different directions D2,26:1 

Therefore the question arises whether an unstable (N-D) 

filter 1/C(zi,....,zn) can be decomposed into 2
n 

stable filters that 

recurse in 2n  different directions. More precisely, we ask for 
on 

recursively stable one-quadrant functions 1k, 	,...,`k such that: 

1/,(z1,...,zn ) = 	 (3.43) 

We find a solution to this problem by transforming equation (3.43) 

to the cepstrum domain: 

2R 

00 	 (3.44) 

q=1 



i
f m 	m 1los., 

ml""'mn 

B1(z...,zn) 	
0, (zi, i=1,n) 8 Di  

I lb ••• 

m =0 
n 

1" m  ni < 
cc 

m  
1111=0 

< oo 
m =0 M

1
= 

* 1 f  = b 

(3.45) 

(3.45a) 

(3.46) 

(3.47) 
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3.4.3 	Stabilit Criterion for. Recursive Filters based  
on 	Cepstra 

Let us assume that if is f s a first quadrant function that 

is recursively stable. This assumption implies from theorem (2.8), 

(2.9), (2.10) and definition (3.2) that: 

We now wish to deduce that B1( 1 	n) = In Bi(zi,...,zn) can be 

uniquely expanded into a power series 

1^ 	ml n  bz ...z  m ...,m 
= 	In =0 ; 	1, 	n 

n 

(3.40 

 

for allz.1, i=1,n) C D1. First we consider the case (z 	i=1 n) G D2 

where 

1:1  D2  = t(zi, i=1,n) : 11111zil<1 (3.49) 

On this set B1(z'zn)  is regular, due to equation (3.45), 

and consequently B1(z1,...,zn) is regular too, because B1  (z,,...,zn) 

is non-zero. Thus a unique expansion (3.48) of 11
1 exists in D1. The 

coefficient b 	A  is determined by evaluating 
v,...,v 

B (z 	z ) = In B (z 1 1""' n 	1 1""' (3.50) 



z
Pn 
n p1, ...,pn  

lb 

1 	1f bn n  
11

r. 	
-m n 	n n 
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p
1
=1 p

2
=1P
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i
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For ( I) z = 0) i=l•i 

1 
n  = lnbn  ,u,•.• ;0 (3.51) 

To find the other coefficients we differentiate equation (3.50) with 

respect to each (z., i=1,n) and replace 1/B (z 	) by 
1 	F1(z1"°"zn):  

z. (a/az 	(z 1 	i 1 19  = F (z 	)z.(D/Dz.) 	(z 1 1 	n 1 	1 •B  1 1"."zn)' 

(3.52) 

The above relation corresponds to: 

fm
1  
. t 	

f
l 	1 

l'• 	

11.  lb  
m 	m 	m 	i m1 	, i = lln 

n 

(3.53) 

or explicitly written: 

lA 
b 
p1,..., Pn  

P
n 	 m. 
(,71  )1b m 	.f 
	 pi 	l' • ° 'mn Pl-ml ' • ° '1111-mn 111 =0 n 

i = 1,n, pi 	0 	(3.54) 

We prove now that the power series (3.48) with coefficients defined 

by equations (3.51) and (3.53) is absolutely convergent and equal to 

for all (zi, i = 1,n) G D1-D2. 

.p 'nn  n  



T• • • 
n=0 m1

=0 =0 n 

co 	co 
lA 

N 

pn=0 
m / • • •9m 1 	n 
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P1=0  p2=0 

‹Z \/ 

m1=0 	m =0 

and thus 

m 	m 1" n 

1119.../Pn  

1 	zn  I zPll 	Pn 

P1-.n1,."Pn-mn 

p1
=0=0 Pn  

a) 

	 • • •  
mi=0 .> 

=0 

     

  

1f 

  

1b m 	m 1" n 
,.,./ pn  P1 

cc 

   

   

(pi, i = 1,n) 	0, (zi, i = 1,n) G D1 	(3.55) 

In equation (3.55) we have used the stability of 
1f and 1b, 

equations (3.45) and (3.47). 

With the intermediate notation 

     

m1 
m 

z ...z  ml,..,,mn  

 

E(Z1900 ,,,Zyd = 

  

• 0 • 

 

(3.56) 

 

m =0 m1= 

 

it remains to be proved that 

E( z 1,... ,zn ) = Bl( zi,.,.,zn ) 

for all (zi, i = 1,n) G D1-D2. Because E(z1,..,,zn) and Bl(zi,...,zn) 

are given by power series that are absolutely convergent for all 

= 1,n) G D1, it follows that 

-2
117 	

-211ju1 
Lim 1(e 11

ul
, z2'...'zn)-B1(g1e n)  

S1---)a 
= 0 (3.57) 
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and 
-2Trju1 	-27jul  

Lim D(e 	'''''zn). - E(C1e 	,..e,Zn):1 = 0 --)1 1 --  

for any fixed (ul' z2'.''' zn) with 

(3.58) 

(u1,z2,.4.,z ) G f(ul,zi, i=2,n) : 0 C u. 	_ n 1 	1  

From (3.57) we conclude that: 

-j2T1U1 	-211jul  
Lim Ep z 	z ) - B (C e 2""' n 	1 '1 	'z2'•''zn)]"-- 0  -41 1(e 
	'  

(3.59) 

for any (111,zi, i=2,n) G Q. When (3.59) is subtracted from (3.58) 

A 
B1(zzn) = E(z1,...,zn) (3.6o) 

n 
G (z 	i=1,n):Iz11..1 () I)  1z l<=.1 i=2 i 

Repeating. the Argument for zi  = exp(-211.ju1) and 

z2  = 52exp(-21M2) or in general for zn  = Snexp(-27jun) where ul,...,un  

are any fixed values, we finally find: 

A , 

B1(z...,zn) = E(z1,...,zn), (zi, i=1,n) G D1 (3.61) 

Thus the convolutional stability of lb is a necessary condition for 1f 

to be recursively stable. We prove now that this condition is also 

sufficient. 

again we first consider the set D2. On D2  k(zi,...,zn) 

is regular because of (3.55), and since B1(z1,...,zn) = ex01(z1,...1zn).] 

it is also regular; the identities 

, a  	 , a % A , 
Z 	 Z ) = B (z 	z )z 	(z 	z ) i azi 1 1" n 	1 	n i az 1 1"." n 

i = 1,n 	(3.62) 
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relate the absolutely convergent power series. These identities 

yield relations similar to equation (3.54): 

P -1- 

 

P. 
 

1^ 	.113 
pl-M19.4.11)n -M  n 

(3.63) 

i= 1/11 a111111  1 

For ( RP.) = 0 we find from equation (3.51) 
1=1 

lA 1 	= exp( b0,...,0) 

with 
1b defined by equations (3.63) and (3.64). We have 

(3.64) 

B 	11 
1(z l'—'zn)  = exp( 1(z 1"'"zn)) 

00 
E••• 

 

m1 	in 
1b 	z, ...zn

n  
mi,...,mn  

(3.65) 

 

  

m1=0 	mn=0  

 

identically for all (z., i=1,n) C D2. We prove now that (3.65) is also 

validforall(z.,i=1,n) C D1. To do this it is sufficient to find a 

power series that is equal to B ( 1,...,zn) and absolutely convergent 

for all (zi, i=1,n) G Dl. 

Since B1(z1n)  is given as a power series, that is,-

by assumption, absolutely convergent for all (zi, i=1,n) G D1, 
and 

the expansion of exp(x) is absolutely convergent for all lxl<09, the 

expansion 

1 
pi,...,An  

M,1=0 m.=  1 

 

• • • 

    

ex13 (z 	z
n 

= 
1,..., 

 

Bi(zi,...,zn): E  

   

(3.66) 
in  

m1 mn  
bml,..,,mn  1 	n z ...z ••• 



(0) a 	= 
mi  

(3.70) 
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is also absolutely convergent for all (z., i=1,n) G D1. Thus 

equation (3.66) can be regarded as 

expEO1(z1
,..,,zn):- 

co 

m1=0  

••111 

m1 	mn 
z a

ml 	mn 1 

(3.67) 

where 

a 
1,...,m 

am 1,..0,mn 
(3.68) 

.Z=0 

(2) 

m
1 n 

a0--) = ml ,...,mn    pl,...,pn m1-131"."111h-pn 
P1 =0 n=0  

1,2,,. 	(3.69) 

Therefore the expansion (3.65) is valid and absolutely convergent for 

all (z., i=1,n) G Dl. It is evident from the definition that 

B(z1,...,zn) is non-zero on D
1 	

Theorem 3.2 summarizes the previous 

results. 

Theorem 3.2 

The sequence 

b
m1,-..; 	

(m., i = 1,n) 	0 

is recursively stable iff there exists a power series 

GD 	GD 

> 

 900 lb 	
: 	i li  1  0 n  

M 

1 /...9M 	1 	.., 

z  n 
m1=0 n=0 	

n 

that is absolutely convergent and equal to In B(z ,...,zn) for all 

(z., i=1,n) C Dl. 

(3.71) 
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Theorem 3.2 remains applicable to non-causal recursive 

operators 
q
b, q = 2,3,...,2n, if , f they are transformed to a first 

quadrant function. This leads to the following corollary: 

Corollary 3.2  

The qth quadrant function qb, in which q = 2,...,2n is 

recursively stable iff: 

2
n 

In qBD  
q=2 1, 	67 

El 	In) z z1 
	n 

for each q is equal to a power series of the form (3.71), that is 

absolutelyconvergentforall(z.,i=1,n) G D. From theorem 3.2 

and corollary 3.2 it is evident that the decomposition problem in 

the previous section can be solved if the cepstrum c of c can be 

decomposed (see equation (3.44)) into one-quadrant functions %k., 

in which q = 1,...,2
n. These are stable convolutional filters. In 

the next section it is proved that the decomposition is possible in 

view of the properties of c. 

3.4.4 	Solution of the Decomposition Problem 

Now we will prove the existence of a set of solutions. 

The cepstrum c is obtained by evaluating the z-transform of c on R. 

We first have: 

2M1  

(u1, 	,u
n
) = In 1: 	••0 m•• m 1" n 

ml- --2M 	 -2Mn  

n 

exp(-2ffj 	u.m.) -1 
	

(3.72) 
-J 

i.1 
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Since 1  is real and positive (equations (3.34) and (3.35)), the 

logarithm in equation (3.72) presents no problem. It is easily 

verified that all partial derivatives of 8qu1,...,un) are 

A 
continuous. Thus, for all (u., i = 1,n), C(ul'."'  u n) is given 

by the Fourier series expansion: 

co 

Nu n) 1,.••, u 	= 	 exp(-2 .1-Ej uimi) mi,•••,mn 
i=1  (3.73) 

=-00 =m co- 

A 
The coefficients c 	that make up this cepstrum c are ml, 

obtained from 

f oT( u 	u ). 
199 n ml'''''mn 0  

exp(21tj 	u.mi)du1  ,...,dun 
	(3.74) 

i=1 

From the properties of Ci(u1". 
 .' un 

 ) and from equation 

(3.74) it follows that: 

A 
c 	= c 
m m 

n 	-m1,...,-mn 
	 (3.75) 

Repeated integration by parts will lead to the inequalities: 

0,0,...,0 
 

n 	 n ' n I 	a/mI21 	
m 	0 

IC1'0'"01 	C(  /m2 	m1 
1 7- 
I 0 
	

(3.78) 
• 
• n 

 
lem 	

m I 	0(/ i=1  (mi) 
1"'" 

	TT 	2 	
(5.79) 

Thus any decomposition: 

(3.76 ) 

(3.77) 
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9n 

A 	>C  = 
	

(3.80) 

q=1 

of c into one-quadrant functions yields functions qk that meet the 

condition of Theorem 3.2 or Corollary 3.2. Consequently each of 

these decompositions corresponds to a set lqk: q = 1,...,21 of 

recursively stable functions. 

3.4.5 	Problem of an Optimal Solution 

Ideallly we wish to find a decomposition of c into functions 

a -k with a minimum number of non-zero sample values such that equation 

(3.43) holds exactly, or at least to a close approximation. 

Unfortunately such a decomposition cannot be achieved, but an 

approximation to this may be possible by truncation of qk into 

\ finite length functions (q = 1,...,2n); since c is centrally 

symmetric and also symmetric with respect to the axis mi  (i = 1,...,n). 

In general the decomposition of c may result in operators 

qk having an infinite number of sample points. If these operators 

are to be implemented numerically, some truncation of the operators 

becomes mandatory. This truncation means not only that the 

decomposition of equation (3.43) becomes an approximate one, but 

also that the recursive stability of the operator qk may be 

affected. It is shown in (2-D) case [26,27] that the larger the 

size of the approximated array the more likely it is to be stable. 

Ekstrom et al. [27] has introduced the weighting sequences to smooth 

the truncated factors and remove the possible poles from the unstable 

domain in (2-0 case; this technique can also be used for (N-D) case. 

We can introduce the generalized version of the weighting sequences 
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which Ekstrom used as follows: 

, 	ml I 	Im21 	I mn1 	? 1) W(mi,...,mn) = maxt(1 - 	- 7/ )...(1 	-171.--), Of 
1 	2 

2) = exp 
	

3.'m.' 	= 1,2,..,,n);=0 

i=1 

and it is anticipated that these sequences may result, in a 

stabilising effect on the truncated recursive quadrant filters. 



72. 
CHAPTER FOUR 

IRAUENCY DOMAIN DESIGN TECHNIQUES 

INTRODUCTION 

The problem of designing filters in the frequency domain 

is that of specifying the coefficients of the filter's frequency 

response as in equations (1.5) and (1.6), such that some aspects of 

this response -would approximate some desired characteristics. 	The 

"approximating" design is determined by using any of a few well-

known optimisation approaches, e.g. minimum-mean-square or 

minimax error. 

This chapter reviews several frequency domain design 

techniques for (2-D) recursive digital filters, and proposes a new 

such technique. In addition, a novel design technique for (N-D) 

zero-phase recursive digital filters is introduced. Through the 

derivation of this evolves yet one more design technique, this time 

for the general (N-D) non-recursive digital filter case. 

The earliest work in (2-D) filter design was carried out by 

Hall £28,29. 

4.1 	SEPARABLE PRODUCT TECHNIQUE  [28,29 

E.L. Hall in 1970 published the first paper dealing with 

the design of stable (2-D) recursive digital filters. The proposed 

technique enables the design of any (2-D) rectangular cut-off 

boundary type filter by the use of two (l-D) recursive digital 

filters in cascade. This technique involves only the well-established 

principles of (1-D) filter design, hence stability is simply ensured. 
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4.2 	SHANKS DESIGN TECIMIQUE  Doj 

The design technique proposed by Shanks consists of mapping 

(1-D) into (2-D) filters with arbitrary directivity in a (2-D) 

frequency response plane. These filters are called rotated filters 

because they are obtained by rotating (1-D) filters. 

Suppose a (1-D) continuous filter whose impulse response 

is real, is given in its factored form: 

m 

H
1
(s) = H0  [Fr ( s-qi)/ Tin  (s-pi )] 	 (4.1) 

1.1 	1=1 

where H0  is a scalar gain constant. The zero locations qi  and the 

pole locations pi  may be complex, in which case their conjugates are 

also present in the corresponding product. The cut-off angular 

frequency for this filter is assumed to be unity. 

The filter given in equation (4.1) can also be viewed as a 

(2-D) filter that varies in one-dimension only and could be written 

as follows: 

H2(sl's2)  = 	(s2)  = Ho [ I I (s2-qi)/  I I (s2Pi)] 	(4'2)  
1=1 	1=1 

Rotating clockwise the (si,s2) axis through an angle Pby 

means of the transformation 

s
1 
	sicosp + sI

2
sin0 	 (4.3a) 

	

= -sIsin0 + s2cosP 	 (4.3b) 

will result in a filter whose frequency response is rotated by an 

angle -i3 with respect to the frequency response of (4.2): 



H(zz2
) = A 

1=i  ull-"21z1-"12z2+  '-'22z1z2 

M TT  aleanzl+al2z2+a22z1z2  
(4.6) 
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I sVosp - sisinP) - qi  
i=1  

H (st si) = T 
2 l' 2 

psi
2
cos3 - 

1=1 

(4.4) 

H2l (st'2 
st) describes a continuous (2-D) filter in the new co-ordinate 

system of si and q. The corresponding digital version of the above 

filter is obtained through the application of the (2-D) bilinear 

z-transform defined by the following two equations: 

2 1-z1 
sl = 

1-z2 
2 = F 1+z2 

(4.5a) 

(4.5b) 

In the above,it is assumed that the sample interval T is the 

same in both directions. Substituting equation (4.5) into (4.4) will 

result in: 

where: 

A = H (10n-m  0 2 ' 

M = max(m,n) 

all = cosp 	sin3. qi 

a21 = cosP + si -1Tq. 

a12 - -cosp - sinp 	(1. 

a22 = -cos P + sini3 	. 

all = a21 = a12 = a22 = 1,  

for1Ci Cm  
(4.7) 

for in <i <M 

bi11 cos p - sin 3- 12Tpi  
for 1 ‹i Cn 

b21 = cosP + sin 3 ffp. 
1 
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b
12 

= -cos3 - sin3 	
for 1 <i  <n 

b
22 

= -cos3 	sin3 -4Tp. 

bi  = bi 	11 	bi 	1 11 	21 = 312 - 22 - - for n <i CM 

Unfortunately this technique as it stands does not guarantee the 

stability of the designed filter and the approach suffers from 

warping effects of the bilinear transformation on the frequency 

response. A modification to this technique has been introduced by 

Costa and Venetsanopoulos. 

4.3 	COSTA AND VENETSANOPOULOS DESIGN TECHNIQUE [30J 

In this paper it is shown that the rotated filters can be 

used in designing circularly symmetric (2-D) recursive filters. A 

number of rotated filters whose angles of rotation are uniformly 

distributed over 180°  results in a filter having a magnitude response 

which approximates a circularly symmetric cut-off boundary by a 

polygon. This polygon has an even number of sides because each 

rotated filter contributes two sides of the polygon. 

It has been proved that stability of the designed filter 

is ensured if the following two conditions hold: 

(I) 
	

270° C C 360°, where R  is the angle of rotation, and 

.(ii) 	Ci  <0 for i = 1,2,...,M, where Ci  = Re DT/2)pi.] and 

represents the location of a pole. 

This has been derived through the knowledge of the stability 

constraints on the coefficients of the denominator B(z1,z2) of a 

second order (2-D) recursive digital filter :21J of the form of 

equation (4.6). 



76. 

4.4 	BERNABO DESIGN TECHNIQUE [31] 

The Bernabo technique is based on the use of the transform-

ation methods of McClellan E15,69 followed by the decomposition 

method of Pistor [26] in order to obtain four stable single quadrant 

filters which recurse in different directions which will now be 

discussed in detail. 

4.4.1 	Ilcae11922Desip112-112.2 -1fornfj,111-tua [15,69: 

The McClellan transformation is a transformation of a 

(1-D) zero-phase FIR filter into a (2-D) zero-phase FIR filter by 

a substitution of variables. It can be applied to (1-D) filters 

of odd length and in one special case also to filters of even 

length. The latter will not be considered in this thesis. 

For a (1-D) filter of length 2N+1 to be zero-phase its 

impulse response h(n) must have Hermitian symmetric coefficients. 

Thus if h(n) is real it must also be even. Denoting the frequency 
• / 	i response by H(e ), it can thus be written: 

N -jun jun 
= h(0) + 	•+ e 	- 

n=1 

= h(0) + 	2h(n)cosun 

n=1 

(4.8) 

(2-D) digital filters which have frequency responses of the form: 

H(e
u 
 ;e

ju2 
 ) = M

1  M
2 

a(mm2)cosm1
u
1  cosm2u2 
	(4.9) 

m1=0 m2=0 

are examples of (2-D) zero-phase filters. However, equation (4.9) 

does not represent the most general class of such filters, but many 



jul ju2. H(e 	,e 	) = 	b(n) [ 

n=0 

1 
t(p p2)co s pp, cos p2u2

] n 

P2=0 
	

(4.12) 
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useful filters are in this class and it is the only class which 

will be considered here. The impulse response of such a system 

h(mm2
) is a real sequence which is an even function of its 

arguments. 

The McClellan transformation converts (1-D) filters of 

the form (4.8) into (2-D) filters of the form (4.9) by means of 

the substitution: 

1  

cosu = 	t(pl,p2)cosplui  cos p2u2  

1)1=0  1)2=0  

The relation between h(n) and h(m1,m2) can be seen by rewriting 

equation (4.8) in the form: 

(4.10) 

  

b(n) [cos-u1 

 

H(eju) = 

 

(4.11) 

 

n=0 

 

Performing the substitution indicated in equation (4.10) 

gives: 

By exploiting the recurrence formula for Chebyshev polynomials, this 

can be written in the form of equation (4.9). The (2-D) filter which 

results is of size (2N+1)x(2N1-1). 

It follows implicitly from equation (4.10) that points in 

the frequency response of the (1-D) filter are mapped to contours 

in the (u1
,u
2
) plane. Furthermore, the shape of these contours is 

determined only by the parameters t. The variation of the frequency 
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response from contour to contour, on the other hand, is controlled 

by the impulse response of the (1-D) filter h(n). 

The problem of designing filters using this technique thus 

splits into two parts: 

the design of the contour parameters t such that the 

contours (u = constant) produced by the transformation of 
• 

equation (3.10) in the (uu
2
) plane have some desired shape, 

and 

(ii) 	the design of the (1-D) prototype filter h(n). 

Due to the existence of several well-known effiCient algorithms for 

designing (1-D) FIR filter (see, for example, Rabiner and Gold E70] ), 

we shall only be concerned here with the first of these problems. 

4.4.2 	The Contour Approximation Problem 

The transformation parameters t(pl,p2) need to be chosen 

so that the contours (u = constant) produced by the transformation: 

cosu = F(uu
2
) 

P2  

> t(pi,p2)cospiu1  cos p2112  

10 
r2
.0 

 

(4.13) 

in the (uu2) plane have some desired shape. As a working example, 

the design of a (2-D) low-pass filter whose passband is in the shape 

of a circle is considered. The contour in the frequency plane to 

which the passband edge of the (1-D) prototype should map is then 

described by the relation: 
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2  
u1 u2

2  
 = R

2 (4.14) 

For simplicity the transformation considered here is first order 

of the form: 

cos u = qui,u2) = t(0,0) 	t(1,0)cosui  t(0,1)cosu2  

t(1,1)cosui  cosu2 	(4.15) 

If the prototype is low pass and the (2-D) filter is to be 

low-pass, the (1-D) origin will usually map to the (2-D) origin. 

This gives the constraint equation: 

t(o,o) + t(1,o) + t(o,1) + t(1,1) = 1 	(4.15) 

One variable, say t(1,1), is thus constrained to be a function of the 

other three, while those three are still unconstrained. To find 

values for these free variables equation (4.16) should be solved for 

in terms of u, ul  and the free mapping parameters: 

co s u = F( 	) ul,u2  

This yields the equation: 

u2  = G(u,uvt(0,0), t(1,0), t(0,1)) 

cosu-t(00)-t(1,0)cos\u
1 

= cos t(0,1) t(1,1)cosul  

(4.16) 

(4.17) 

  

An error function at the cut-off frequency can be defined as: 

E1(u1) = G(u0'u 	
4 0 

-u1 

	
(4.18) 

where u0  is the cut-off frequency of the prototype. The parameters 

t can then be chosen to minimize some function of E1(u1), such as 

its integral square value. (L2 
approximation) or maximum 

absolute value )0 or Chebyshev approximation). There 



80. 

are two difficulties with this formulation. First, the error 

function is not a linear function of known parameters; thus non-

linear optimization routines must be used for the minimization. 

Second, for transformations other than those of first order, an 

explicit relation for G cannot be found. 

A suboptimum approach reformulates the problem as a 

linear approximation problem. If the mapping were exact then as 

the circular contour was traversed, the value of F(uu2
) would be 

constant. This would result in: 

cosuo  = t(o,o) 	t(i,o)cosui  t(o,i)cos IR2  -1,13.2  

t(1,1)cosn cos 2-u21 
1 	1 (4.19) 

where u0  is the passband cut-off of the prototype. If the mapping is 

not exact, however, the equality in equation (4.19) will only be 

approximate and an error function can be defined as: 

E2(u1) = cosu0  - t(0,0) - t(1,0)cosui  - t(0,1)co412-41 - 

(1 - t(0,0) - t(0,1) t(1,0))cosuicos 
	

(4.20) 

This error is now a linear function of t(0,0), t(0,1) and t(1,0), 

and thus linear optimization routines can be used to minimize the 

integral squared error or. the maximum absolute error. The former 

problem can be solved trivially using a classical least squares 

formulation, and the parameters for minimizing the maximum absolute 

error can be found by linear programming. 

The above transformation has been used by Bernabo et al. 

EX] in designing (2-D) zero-phase recursive digital filters. 



N1  M2 

> 
p(m

1
,m
2
)cosm1

u1 
cosm2u2 

=0 111 =0 
/ jul jut % ,e 	) 

)cos 1u1 cos.11 2 2 
=0 R2=0 
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The transfer function of a (2-1) zero-phase filter can be • 

written as: 

(4.21) 

The procedure to be described here is based on transforming 

the squared magnitude frequency response of a (1-D) recursive digital 

filter 

Ta(n)cosnu 

H(eju 	11=0 	 / - m 

Tb(m)cos.mu 

m=0 

which can be written as 

 

(4.22) 

 

N 

    

  

a' (n) rcosui 

  

t ill\ )
n=0 
M 

   

(4.23) 

   

 

m 
1:0(m) [costll 

m=0 

  

into a (2-D) function by the change of variable of the form 

 

1 
t(pi  9p2)COS pill, cos p2u9 	 (4.24) 

P2=0 

It can be easily seen by substituting equation (4.24) into equation (4.23) 

that a (2-D) zero-phase filter of the form of equation (4.21) will 

result. 

Since the designed filter has zero-phase property, implying 



a1.8i+a2s2 f(s1,s2) - 1 bs1s2 (4.25) 
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instability [26] , the decomposition technique of Pistor E.26:1 should 

be applied to the obtained filter coefficients array p and q to find 

the coefficients of the single quadrant filters. 

4.5 	THE NEW DESIGN THCIMIQUE FOR 9-D RECURSIVE FILTERS [643 

The proposed design technique now to be described is based 

on the use of a second order two-variable reactance function as a 

transformation applied to a one-dimensional low-pass filter. 

Before describing the method in detail some useful 

definitions relevant to its understanding are given. 

Definition 1 [66] : A function f(sl,s2) is said to be ?analytic? 

at a point (s10,s20) if f has a total differential at that point. 

Definition 2 : A function f(ss
2) is said to be a positive 

function if in the domain Re s
1>0 and Re  s2  >0 f is analytic. 

Definition 3 : A positive function f(si,s2) is said to be a two-

variable positive real function, or to be positive real, if the 

positive function f is real for sl  and s2  real. 

Definition 4 : A function f(ss
2) is said to be a two-variable 

reactance function [0] if f is positive real and if f+f=0. (The 

lower asterisk denotes the substitution of -s
1 and -s2 for s1 and s2 

respectively.) 

A second order, two-variable reactance function can be 

written as: 
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Definition 5 : 	The z-transform of a (2-D) zero-phase filter (1.13) 

-which has symmetry with respect to both the ul  and u2  axis, may be 

obtained by cascading four one-quadrant recursive filters which 

recurse in different directions: 

\ 	\ 	 N H(z1,z2) = F(Z1,72)FkZi 
-1 

 ,Z2)F
/
Z1 ,z2  )1kZI •-.1) 

The proposed method makes use of the second order two-

variable reactance function, equation (4.25) as a transformation 

applied to a one-dimensional low-pass filter of the form: 

11(s) 

i=1  

(4 . 26) 

(4.27) 

to realize a first-quadrant, two-dimensional recursive filter. 

Second, third, and fourth quadrant filters are obtained by the same,  

transformation but replacing sl  by -s, for second, sl  by -si  and s2  

by -s2  for the third, and s2  by -s2  for the fourth quadrant filter. 

These four one-quadrant sections are cascaded and the bilinear 

transformation is used in order to obtain the digital version of the 

filter. 

The cut-off boundary of the filter depends on the choice 

of the cut-off frequency of the one-dimensional filter, equation 

(4.27), and the coefficients of the two-variable reactance function 

equation (4.25). The resulting filter is a zero-phase recursive 

filter having symmetry with respect to the ul  and u2  axis. Since 

the z-transform of the filter has already been decomposed into four 

one-quadrant filters, the decomposition technique of Pistor E-26ais 

avoided. All that remains is to prove that the resulting filter is 

stable. 
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The initial low-pass function equation (4.27) is positive 

real and so is the reactance function equation (4.25). It will now 

be proved that the use of a positive real function as a transform-

ation applied to another positive real function leads to a positive 

real function. We will show that the two necessary and sufficient 

conditions that a positive real function must satisfy are preserved 

under this transformation. 

(i)  Positiveness 

  

If F(ss2
) is positive real, that is Re F(s1's2

):> 0 for 

Re s1
70 and Re s

2
2> 0, and also H(s) is positive real, namely 

Re H(s) >0 for Re s >0, it follows that Re HEF(si,s2):1>0 for 

Re S1 >0 and Re s2
>0. 

(ii) Realness 

If F(s1,s2) is real for s1  and s2 real and H(s) is real 

for s real, it follows that H(F(s1,s2)) is real for s1  and s2  real. 

Also if F(ss2) is analytic in Re s1 
 0 and Re s

2 
-> 0 and H(s) is 

analytic in Re s 7,--)0, then HEF(sl,s2)..] is also analytic in Re s1;? 0 

and Re s2;.? 0[66] . Hence, the stability of the filter obtained by 

the new design technique is guaranteed. 

Another way of justifying the use of the two-variable 

reactance function is that a digital filter with z-transform 

H(z1,z2
) obtained by performing a bilinear transformation on a network 

function H(ss2) of a two-variable passive network is at worst 

marginally stable:6n. A two-variable reactance function has been 

shown [65,68] to be realizable asthe imittance of a finite passive 
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network. Since the function obtained by using a two-variable 

reactance function, as a frequency transformation applied to another 

positive real function is also a positive real function as has been 

proved above, it will also be realizable with passive elements. 

Therefore filters with a transfer function derived in this way will 

be stable. 

To illustrate the proposed design technique several low-

pass (2-D) recursive digital filters will be designed using third 

order Butterworth, Chebyshev and elliptic filters as low-pass 

prototypes. Figs. (4.1)-(4.6) are amplitude spectrum and contour 

plot of (2-D) recursive digital filters obtained from a third order 

Butterworth low-pass prototype with al  and a2  coefficients of the 

numerator of the two-variable reactance function set to unity and 

with different values for the denominatorls coefficient, b. 

Fig. (4.7) is the amplitude spectrum of a (2-D) recursive digital 

filter obtained from a third order Chebyshev filter with al  and a2  

set to unity and b = 0.1. Fig. (4.8) is the amplitude spectrum of 

a (2-D) recursive digital filter resulting from a third order 

elliptic low-pass prototype with al  and a2  set to unity and b = 0.2. 

4.6 	TRANSFORMATION TECHNIQUE FOR (N-D) FIR FILTERS E71..] 

This is a generalisation of McClellan Transformation [15,69] 

to (N-D). Considering a (1-D) FIR filter of odd length with zero-

phase property as expressed in equation (4.8): 

-jun ju 
= h(0) + 	h(n) Le 	+ e 

n=0 

N 

= h(0) + 

 

2h(n)eosun 	(4.28) 

   

N 

n=1 



- - ,,----- ,,,,......,-,.. . .>,-,,,,, ><<,'"-- - - ::.*- ■ 
'''' ><,,<'-="e - - - 	-1.--  :>` 	-"e--• *-- 

, <> '''<'''e<""r•C'e..e)K- >S.4 ..,,,%<><re-A  

>, - 	" ' 	
>4.--re" `1.< 	-:*.r,>,  -- -"N.,: ‘.. • ..‹...„ -,c,.,...  

., 	. 

.,<„,„.. 	 ›-- •>,,,,-- 

11 

Fig. (4.1): Amplitude spectrum of a (2-D) recursive digital filter obtained from a third order 
,Butterworth (1-D) filter with numerator coefficients of reactance transformation 
function a1

=a
2
=1 and denominator coefficient b = 0.1. 
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Fig. 4.2 Contour plot of the amplitude spectrum of a (2-D) 
recursive filter obtained from a third order • 
Butterworth (1-D) filter with al  = a2  = 1 and 
b = 0.1. 
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uI 

Fig. (4.4): Contour plot of a (2-D) recursive digital filter 
obtained from a third order Butterworth (1-D) 
filter with a

1  = a2  - 1 and b = 0.2. - 



9 0 • F-■ 
•
 

• 0
 

$-4 

E 

-P
 

O
. 

 
$-1 

chi 

R:1 
CU 

-P 
o▪ •
 

• 
■C> 

t•-i 	
• 

(I) 0
 

-P
 

r1
 

r0
 

CI) .71 
C

 

U
) 

•H
 

r1
 

C.) 	
i 

C.) 
F-1 	

0.1 

• 
C-3 

-P
 

C
H

 
0

 

F-1 
C
i
 

Fa -P
 

-P 
U

 • r-I 
C13 CH

 

-P
 

• 
;-4 

▪ 
0

 
V)  
-1-4 0 
r-I 
P-4 -P 



91. 

u1 

Fig. (4.6): Contour plot of the amplitude spectrum of a (2—D 
recursive filter obtained from a third order 
Butterworth (1—D) filter with a

1 
= a

2 = 1 and 
b = 0.6. 



Fig: 	.7 : Amplitude spectrum of a (2-0 recursive filter obtained from a (1-D) third 
order Chebyshev filter with al 

and a
2 
coefficients of the numerator of the 

2-variable reactance functionset tounity and b = 0.1. 



Pig. (4.8): Amplitude spectrum of a (2-D) recursive filter obtained from a (l-D) third 
order elliptic filter with al  and a2  coefficients of the numerator of the 
two-variable reactance function set tounity, and b = 0.2. 
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Now, some (N-D) zero-phase FIR filters have a frequency 

response of the form: 

	

M
1 	

Mn 
dun 

	

) = > 	m 	m ' n cosm1 	g• u1 	
COSM

n
un  • 

ml  =0 mn=0 (4.29) 

where equation (4.29) is not the most general class of such filters, 

but does cover many useful ones, and will be the only class to be 

considered here. The impulse response of such a system h(m...,mn) 

is a real sequence which is an even function of each of its arguments. 

The proposed transformation employs the substitution: 

P
1  

  

   

COSU • • • t(pi,...,pn)cosplul, ..,cospnun (4.5o) 

p1=0 Pn=° 

Hence, the relation between h(n) and h(m...,m) can be seen by 

rewriting equation (4.28) as: 

N 

= >_b(n) [cosi]] n 
	

(4.31) 

n=0 

and performing the substitution indicated by equation (4.30) results 

in: 

H 
ju 1 

n 
cosplui  ,..,cos

pnu 
	

(4.32) 

Furthermore, by exploiting the recurrence formula for Chebyshev 

polynomials, this can be rewritten in the form of equation (4029). The 

(N-D) filter resulting from the transformation is of size 



COS 11 = 

pn=0 

= P(111,...,un) 
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(2NP.1
+1) x (2NP2+1) x 	x (2NP

n
+1), but only the case when 

n  

.111P
=  

. = 1 is to be considered here. 1 . 1 

As seen in equation (4.30), points on the frequency response 

of the (1-D) filter are mapped into contours in the (u
1,...,un

) plane. 

The parameters t(pl,...,pn) determine the shape of these contours, 

while the impulse response h(n) of the (1-D) filter controls the 

variation of the frequency response from one contour to another. 

The problem of designing filters by this transformation 

thus divides into two parts: the determination of the contour 

parameters ft(p1,...,pn)1, and the design of the (1-D) prototype 

filter h(n). The former will be dealt with next. 

4.6.1 	The Contour Approximation Problem 

The parameters [t(p ...,p
n  must be chosen such that 

the transformation 

n)cospu1, nu 

(4.33) 

produces contours (constant u) having some desired shape in the 

(u 	un) plane. As an example, consider the design of an (N-D) 

low-pass filter with an (N-D) spherical cut-off boundary. The 

contour in the frequency plane to which the pass-band edge of the (1-D) 

prototype should be mapped is then described by: 

N 
2 	9 

Ttu. = (4.34) 

i=1 
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and a possible first-order transformation is of the form 

1 
COS U = t(p

1n
)cosplui  ,,,cogpnun  (4.35) 

Pl= 	Pn=i1  

If both the prototype and (N-D) filters are low-pass, then, 

depending on the shape of the cut-off boundary, it may be necessary 

to map the (1-D) origin into the (N-D) origin. In the case being 

considered, that of a filter with spherical boundary, this origin 

mapping is mandatory. Thus, the constraint equation: 

(131/.-.913n) = 1 	 (4.36) 

P1=fl Pn=41 

results. This means that one variable, say t(1,1,...,1), is 

constrained to be a function of the rest, with the remainder of 

the variables unconstrained. To find values for these free 

variables, equation (4..33) can be solved for un in terms of 

11' 111' and the free mapping parameter. This yields: —'un-1  

un = G(u, u 	u 	t) ' 	n-1' 

where t is the free variable parameter set, or: 

A 

a/
P(u1,.."uh-l't) 

u
n 

= cos 
kG( 	u I" n-1' ' 

(4  • 37 ) 

(4.38) 

An error function can be defined as: 

N-1 

E1(u1 n- 	G(u
0'u un-1't)  -\/-ft 	u. 2 

1=1 
(4.39) 

where u
0 
 is the cut-off frequency of the prototype. t can then be 
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chosen to minimise some function of E1 such as its integral square 

value (L2 
approximation) or its maximum absolute value (L60  or. 

Chebychev approximation). However, this may prove to be difficult 

to carry out since the error function is not a linear function of 

the unknown parameters, and therefore non-linear optimization 

routines must be used for the minimization. Also, there can be no 

explicit expression for G in transformations other than first-order 

ones, i.e. other than those for which (pi; i=1,n);?- 1. 

An alternative is a suboptimum approach that would 

reformulate the problem as that of a linear approximation. If the 

mapping were exact, then the value of F(u1,...lun) would be constant 

as the spherical contour is traversed. This can be expressed as: 

cosu
o 
= F1(u ...,un-1  ,t) 

= t(09...70) 	t(1,...,0)cosu + 	+ 

Ji 

N-1  I 
t(0,•••,1)cos R2) u2. + t(1,1,•••,0)cosu

1 	2 cosu- +•0 

N=1 

+ t(1 1,...,1)cosu1 cosu .. cos 	u.
2   (4.40) 

1=1 

where uo is the pass-band cut-off of the prototype. On the other 

hand, the equality in equation (4.40) would be only approximate if 

the mapping were not exact. The error function could then be 

defined as: 

i=1 
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A 

E (u 	u ) = cosuo -F (u 2 1"." n-1 	1 	-u n-1' ) 

= cos- uo 	 - t(1,0,...,0)cosu1 

00 	t(0,0,...,1 )c 

N-1 

u.
2  - t(1,1,...,0)cosul  cosu2  

1=1 

- (1-t(o,o,...,o) - 	 - 

„2  ) Li,2-N-1 u  
.cosui  cos u2.. cos 1 

1=1 
(4.41) 

The error has thus been made into a linear function of t enabling 

linear optimization routines to be used to minimize the integral 

square or the maximum absolute error. In the event of choosing the 

integral square minimization, a classical least squares formulation 

can be used. While for minimizing the maximum absolute error, the 

parameters can be determined through linear programming. 

Intuitively, a transformation is only useful if the coeff- 

icients t(p 	p n) of the mapping were to satisfy the relation: 

1 

. ..> t (pi  , ... ,pu) co s.piur. .cos pn-unl ‹.. 1 

pl= Pn=0 	0 C u. C  n 	i = 1,2,...,n 	(4.42) 

Therefore, a linear scaling of the design parameters must be applied 

so that equation (4.42) above holds. Using scaling factors defined 

by: 

Fl(n 2"—,un) = C 	
u  

1F(u l' 2"'"un)  - C2 
(4.45) 

for a non-zero C1 and any C2, the shape of the contours F(u 
	. u ) 1".  ' n 

= constant will remain unchanged. Hence, if F max 
 denotes the maximum 
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value of F(u n
) and Fmin 

denotes its minimum value, then by 

choosing: 

and 
C1 

= 2/(Fmax -F . ) min 

C2 = C1Fmax
-1 

(4.44) 

the condition 

=0 p =0 

tt(pi,..„,pn)cosplui..cospnuli<1 

(4.45) 
1
Ft(u1, n)  

is always satisfied. The shape of the contours remains unchanged, 

as desired, and all that changes is the (1-D) frequency that is 

associated with each contour. In particular, if F(ul,...,un) were 

originally associated with the value n, then Ft(u1,...,nn
) defined 

by equation (4.42) will be associated with the value ut where: 

, 
ut 	cos-1  kC1cosn 

- C2 ) 

This implies that, in most cases, the (1-D) prototype must be 

designed after the transformation has been found. 

(4.45) 

• 7  DESIGN TECHNIQUES FOR (N-D) ZERO-PHASE RECURSIVE FILTERS  

The proposed design technique which will now be described 

is an extension to the work of Bernabo et al. Dio . It is based 

on the transformation of the magnitude square of the frequency 

response of a (1-D) digital filter by using an extension of 

McClellants transformation to (N-D) described above, followed by 

decomposition technique of Ahmadi and King [50,63] to obtain 21\1.  

single quadrant filters. 



by its z-transfer 1-Unction: 

m1 mn 
m )z ...z n 1 	n 

H(zi ,...,zn) 
=0 mn=0 

M n M 
mn 

b(m , 	m )z ...z..z 1 "'" n 1 • 	n  • 0 • 

jut  jun  ml= 
H(e 	) 

p(m1n)coanu1..cosm:u n n 
m
n
=0 

(4.47) 

q( 	, n)cos 1111.. • cos nun 
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4.7.1 	Transformation of (1-D) Filter to (N-D)  

An N-dimensional first quadrant recursive filter is defined 

m1-0 3n :=0 1 

A zero-phase filter can be -written DOD 

(4.46) 

L=0 th=0 

The transformation to be described here is based on transforming the 

squared magnitude frequency response of a (1-D) recursive digital 

filter 

N -  

). a(n)cos.nu 

H(eJ11  ) 	n=0 

     

(4.48) 

     

 

b(m)cos mu 

m=0 

 

which can alternatively be written as: 

  

  

at(n) [cosu n  

 

H(ein)  = n=0  M • 

  

(4.49) 

  

   

13? (M) CCO SID 111  

 

        

m=0 



,at (n) [ 

p11= 1 n=0 n=0 
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into a (N-D) function by the change of variable of the form: 

P 

     

cosu = 

  

(p1n
)cosp

1
u..cosp u 

• n n 
(4.50) 

 

P 

  

Substituting equation (4.50) into equation (4.49) will result in: 

P
n 

Jul 	ju2 
H(e 	)• - 

t(pi, ... spn)cospini  .. cos pnu 1n  

P1  Pn  

b (m) 	> 	t (p , 	,pn) co s piur  „cos pn
uj m 

m=0 	pl=0 pn=0 	 (4.51) 

Furthermore, by exploiting the recurrence formula for Chebyshev poly-

nomials, this can be written in the form of equation (4.47). The 

(N.-D) filter resulting from the transformation is of size (2NP1+1) x 

	

(2NP
2+1) x 	

x (2NP114-1) in the numerator and (2MP1+1) x (202+1) x 

	

x (2MP n 	 i= 4.1) in the denominator, but only the case when PIP. = 1 is  

to be considered here. 

The. design procedure is divided into three parts. First, 

design of the (1-D) filter prototype; second, calculating the 

parameter t such that the contour u = constant is an approximation 

to the desired cut-off boundary in a least square sense. Finally, 

because the zero-phase property of the design filter implies 

instability [50,65] , a decomposition technique should be applied to 

the obtained filter coefficients array p and q to find the quadrants 

filter coefficients a and b, equation (1.6). 

The decomposition technique of Ahmadi and King E50,65] can 

be used to decompose the obtained unstable filter into 21'1  stable-single 
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quadrant filters which each recurse in a different direction. This 

can be done by evaluating the cepstrum of the filter array and by 

dividing it into the sum of 2g  arrays. 
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CMPTER, FIVE 

SPATIAL DESIGN TECHNIQUES 

In this chapter, several spatial design techniques for (2-D) 

recursive digital filters are reviewed, and their extensions to the 

(N-D) case are derived wherever possible. 

5.1 	THE SHANKS? METHOD 

This is an extension of the time domain design technique 

in one dimension E62,723 . A filter is designed by this technique 

so as to give an impulse response that approximates some given 

desired response. 

5.1.1 	The (2-D) Case [20] 

Given the desired impulse response d 	if a (2-D) 
l' 9  

recursive filter for PI  = 1,2,...,L1  and L2  = 1,2,...,L2, its 

z-transform is then: 

D(zi ,z2) 1-1 t2-1 a
kV 

z1 z2 
(5.1) 

while the approximating (2-D) recursive filter will always be of the 

form of equation (1.5): 

M1+1 M2+1 
j1-1  j2-1  a. z 	z , 
I 31'j2 	2 

 

 

A(
21'

z
2 	j

1
.1 j

2.1 F( 	= zi'22) 	B(zi,z2) - N1+1 N2+1 

 

(5.2) 

 

b. z j1-1  j2-1  . j1,32  1 	z2 
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Where M1,  M2' N1  and N2 are arbitrary (but fixed) parameters. 

Equation (5.2) above can be re-written as: 

F(zi,z2)B(zi,z2) = A(zi,z2) 
	

(5.3) 

and since multiplication of the z-polynomials is equivalent to 

convolution of the arrays in the space domain, it follows that: 

N1+1 N2  +1 

. 
ml'm2 f J1-m1+1' 

-m2+1 (5.4) 

The coefficients a. . are defined by equation (5.4) over the 
J1"2 

integers j1  = 	j2  = 1,2,...,M2. For all other values of 

ji  and j2, the a. . are zero. Therefore, if set of integer pairs 
J1'32 

Sa is defined as 

sa  = {01,j2) : 1 ‹j15- ml, 1 -<:j2 --<- -m2 } 	(5.5) 

and another set g
a defined as the set of all other values of (jj2) 

greater than zero: 

ga  = f(ji,j2) 	0, i2> 0, (ii,j2) 	Sal 	(5.6) 

then equation (5.4) can be re-written as: 

b
m1,m2 

f.
1-m1+1'i2m2+1 

(5.7) 

m
1.rn2 	0 
	

for (j,,j2) C ga  

and when the b 	are judiciously chosen in equation (5.7) above, 
ml'm2 

the f. 4  approximates the desired impulse response d p., 2  . Thus: 
JI."2 	 1' 2 

N1+1 N2+1 

d. 	. 	d. 
J1°2   ml'm2 31-m1+1°2-m21-1  m1=1 9'=1 

mrm2 1 for (il'i2) 6  Ya(-- Sal 

(5.8) 
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where Sd 
is the set of integer pairs over which the desired filter 

is defined: 

Sd  = f(21,e2) : 1 < 11< L1, I.< /2‹ L2  

An error e.. can be added to the right-hand side of 
31'J2 

equation (5.8) to produce the equality: 

N1+1 N2+1 

d• 	. = e. 	. - 	.d. 
J1"2 	J1"2 	, ml'm2 Jl-mel'j2-m2+1  

m2=1. 

S {Sa n sdl 
which, with d. . moved to the summation, can be written as: 

J1"2 
N1+1 N2+1 

(5.9) 

(5.10) 

e 
 J

. = 
1"2 

. 
m],m2 

d 
 J-mel'j2-m2+1 

for (j1'j2) e  Pa()  sA 

(5.11) 

The obvious choice of the b 	is that based on the minimisation of 
ml ,m2 

the mean-square-error: 

e2  = ZED—>—.bm. 
 

l'm2 
d 
 31-m1+1'4-mA 

2 
(5.12) 

jl j2 ml m2 

(i1,j2) C Pa n SdRs and 

(m1,m2) C Sb  

so that by differentiating equation (5.12) with respect to the b 
ml,m2 

and setting the resultant equations equal to zero, the b 	that 
M17M2 

minimise e
2 
above can be found. This involves solving (N1.N2-1) 

equations of the type: 

mi,m 	
=

klk2 2m1m2 
for lc, = 

k2  = 

but k1.k2 5Z 1 
(5.13) 
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where: 

 

'.2m1m2 

 

Tdjl j 	
(5.1) 

l-me, 2-m2+1 dj k +1 j 	l 	
4 

i- 1 , 2-he 

j2 

and 

 

jl j2 	 (5.15) 

With the denominator B(zz2
) of the equation (5.2) computed, the 

numerator A(zz2
) must next be determined. 

One way of doing this is to compute those coefficients of 

A(zz2
) that minimise the mean square difference between the 

lqz1,z2) 
coefficients of F(z1'z2) = B(zl'z2) 

and the coefficients of the 

desired response D(zi,z2). This is a Wiener filtering problem in 

two dimensions. It consists of finding the optimum filter A(zi,z2), 

given an input 	 and a desired output D(zi,z2). 
bqz1,z2) 

In a simpler but less accurate method the array B can be 
ACzvzo) 

convolved with D giving the A array. Since 	 - D(zz2) the B(z,,z2Y 

coefficients a„ are computed from A(zz2) = B(zl' z2  ).D(zl'  z2 
 ) 

J1"2 
for (ji,j2) C Sa. This is easy to apply but has the disadvantage 

that the stability of the resulting filter cannot be guaranteed. 

5.1.2 	Extension to the (N-D) Case C73] 

This is when the impulse response of an (N-D) filter 

for 21 = 1,2,...,L1, 2.
2  = 1,2,...,L '4...2 and I

n 
= 1,2,...,Ln 

n 
is given. That is: 

1'k 
	\22ji,j2  di_-h1+1,d2-m2+1 (j1'j2) 6  'Pan Sdl 



b. 
J1'""in 

j1=1  jn=1  

and since multiplication of the z-polynomial is equivalent to 

convolution of the arrays in the space domain: 

Nn+1 

a. 	. = 	f. 
j -m +1 (5.19) J1'''''Jn   ml""'mn jl-m11-1'” n n m1=1 m =1 

for (j1,j2,-../in) S SM  
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D(z 1,...,zn  (5.16) 

The approximating (N-D) recursive filter can then be assumed 

to be of the form (equation (1.6)): 

M1 	+1 Mn+1 

J1'""Jn j1-1  
. a. 	. z

i 
 ...z 

A(z 	z ) n 	j1=1  Jn=1  

j171 	in-1  z 	...z 

	

1 	n 

n-1 (5./7) 

	

z
1 	

...z 
-  J,,...,in 	n 

where M M2''.  Mn' N ...,Nn are arbitrary (but fixed) parameters. 

The numerator and denominator coefficients a and b should be calc- 

ulated such that the f.. approximate the desired filter?s 
J19..,,J11  

impulse response 	, in a least-square sense. 

Equation (5.17).can be re-written as: 

	

F(z1„..,zn).B(z1n) = A(z1n) 
	

(5.18) 

F(z , 
"*" z n ) N1  +1 Nn+1 •  

1=1 jn=1 

= 0 	for (j,,j,,...,jn) C gm  

where SM 
and gM are the sets of integers defined by: 

f(ji, i=1,n) : 0 -‹..ji --<-141, 0 < 	Mri(5.20) 



f. 
J1'''''in 

m =1 n 

Tr m. 1 i=1 

• • 0 f. 
,...)mn  ji-m1+1,...,jn-mn+1 (5.22) 

for (4, i=1,n) 6 gm  

1=1 mn=1  

171 mi 	1 	for (j., i=l,n)  61.gmn SL 

b 	.d . 
	 ml"*"mn J1 -m1+1'—'in -mn+1 (5.23) 
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and: 

SCI  = f(4, i=1,n) : j1  >0, j2> 0,...,jn:> 0, (ji, i=1,n) 	Sml 

(5.21) 

Therefore, assuming that b(1,...,1) = 1 and using equation (5.19) 

gives: 

N1+1 Nn+1 

and when the b 	are judiciously chosen, the f. 	, will ...9m ml' 	n 	 J1'..""n 
closely approximate the desired impulse response dt 	. Thus: 

l'''''9-n 
Ni+1 Nn+1 

d. 4,...,jn  

where SL is the set of integers defined as 

SL  = /(ii, i=1,n) : 0 ‹.; 	C  Li, 0 ‹.._P_2<L2,...,0-<,. n 
C LnA 

(5.24) 

An error function e.. is defined as that which can be 
31"*.°11 

added to the right-hand-side of equation (5.23) yielding the equality: 

N1+1 Nn+1 

= e 	. —> • • •ib 
J1'''''Jn 	ii,...9 3n 	mi,...,mn.d 	j -m +1 

m1=1 mn=1 	
n n 

n 

i=1  mi 	1 for (ji, i=1,n) C -[gm n SLi 

(5.25) 

and therefore by moving the d. 	to the summation: 



for (k- i=1,11) 	(N1, i=1,n) 

(5.29) but i A  1 k. 1 = 

109,- 

N +1 
n. 

  

04 	. = 	bm n 
dj-m4-1,-,j-mn71-1. 

m1=1 mn=1 

for (ji, i=1,n) 	Kr) Ss 	(5.26) 

The b 	are chosen such that the mean-square-error m .60 M 1 	n 

-  • • •>m1, 
• .•> b 	,mn 

d j1-mi+ 1 , 	jn-mn+11 [  

in ml_1 mn=1 

2 

(j1, i=1,n) C 	r) s 
L
I 
	

(5.27) 

is minimised. This is so when the partial derivatives with respect 

_ to each b(mi,...,mn) are equal to zero. Differentiating e with 

respect to b(k ....k n). where ki = 1,2,...,N1, k2  = 1,2,...,N2,..., 
• m 

kn= 1,2,., Nn and 1-1- k. 	1, and setting each partial derivative 
i=1 

to zero, gives: 

ae2 	2 [ 	.d. ab(k1n 	 mi,...,m 	j -m +1 	-m +1 1 	'i 	) n n j2  m1  = m =l 

.(41. 
31-k1+1'""jn-kn I 

= 0 

for (ji, i=1,n) C Egm  ys 	(5.28) 

which can be written as 

N n 

= 
'" • „, 
	

-1' • • • 'kn' 1111' • • ' 	l' • • 'kn m1=1 m =1 

e2 

N1+ Nn 

where: 

   

    

k 	k m • • • n' 	• " 

 

••• 

 

dj1-In1+1'...,jn-mn+1 dj1-k1+1,...,jn-kn+1 

   

(5.30) 
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and: 

1D k 	kn 
 = 1// 

 

• • • 

 

d. 
j1- c̀1+1' • 'jn-kn+1  

   

	

(ji, 	C [Sm n S13 	(5.31) 

Thus, equation (5.29) describes a set of ((Ne1)(N01-1)...(Nn4.1)-1) 

simultaneous linear equations with the same number of unknowns. The 

solution gives the b(m 	) coefficients that minimise the 

mean-square-error e2. 

After computing B(z,,z2,...,zn) coefficients of the 

denominator in equation (5.23), the numerator coefficients A(z,,z2,..,,zn) 

Should be calculated. In a similar way to the (2-D) case, the mean 
A(z 	z ) 1/ 	/ n  

square difference between the coefficients of F(zi,...,zn) B(z1,...,zn) 

and the coefficients of the desired response D(zi,...,zn) should 

be minimised. This is a Wiener filtering problem in N-dimensions. 

It consists of finding the optimum filter A(zi,.”,,zn) given an 

input ,(  zi, 	
1  and a desired output D(zl,...,zn}. 1

..,zn) 

A(zi,...7zn) can be calculated less accurately by 

convolving the array D with the array B, since 

A(z 1,...,zn) 
D(z1".zn) 	B( zi,...,zn) 

directly yields the coefficients of the array A. 

5.2 	THE BORDNEIL TECINIQUE  E32] 

This is a modified form of the Shanks' Method E20] . 
Stability of the designed filter is now guaranteed by means of 

augmenting the desired impulse response with an infinite sequence. 



5.2.1 	The (2-D) Case  

The finite (2-D) sequence of equation (5.1) representing 

the desired impulse response can be augmented with an infinite 

sequence. It is intuitively apparent that the best such sequence 

is that which would represent the most natural extension of the 

original impulse response sequence d(4,1, P-2) for P, = 1,2,...,L1  and 

e
2 
= 1
'2'

...,L2
, and which is square summable over the region (0, co).  

In other words, given the impulse response of the filter d(t1,22), a 

square summable tail g 	should be added to it, yielding a new 

A 
(2-D) sequence d(k1,92), where: 

	

d(9.l'a2
) 	for 	1 <1.-1: 1 

	L1 	.1‹ 2.2 	L2 

= 
	

(5.32) 

	

(2-1'22) 	for L1+1 ‹, --<-_°9  and L2+1 =:-.; a9 

The square summability constraint on the augmented sequence implies 

stability since: 

 

( 
) 2 < 00  (5.33) 

    

a1 2 
The transfer function of the filter is restricted to the bilinear 

(2-D) form: 

A. 
H(zz2) = A + 

  

(5.34) 1 +B. z1 	i + Cz2  + Di
z1
z
2 

i=1 

The parameter set (A., B., C., D.) must be calculated so as 

to minimise the error function e in a least square sense: 

all "stable" 	-A 
ge  9 

Min 

1 2 2 

	all .11.1,C.,D. 	e= 

 L1 	
L2 

(gt1 ,112—htl , 2) ;!] 
N2N 

00  
2 

(g kl'E2
-h

l'a
2) - 

=0 2=0 Q2=0 1 - 2 

2 
(d 	h 

l'22 x 
) + 

=0 
L2 

(5.35) 



	

h 
	)

2 

Q 

	

l'''''in 	
.
V.-9-n  

(g 	
- h 	

N2 

	

1"."9-11 	
n

n 
 

- 
gD 	

h 	
\2 

"1_ 	11 ' n
) 
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The only restriction in this method is that the infinite array g
21,E2 

must be square summable. This forces the inner minimisation, denoted 

by braces f 1 in equation (5.35) above, to give a square summable 

result, hence ensuring the stability of the impulse response. 

5.2.2 	Extension to the (N-D) Case  E73] 

Given a finite-length impulse response dt 	Which is 

1"."2-n. 

definedfor(2_
1
,I=1,n) C

L' 
an augmenting (N-D) sequence g r, 

 
A 

can be added to it to form a new (C-D) sequence dfl 	where: 
...,/

n 

d n _ , 	for 	i=1,n) C S 
7 • • • 7 9 

;...,2,11  for L1+1<2.1 m , L2-1-1(ZJL2-< co ,...,Ln+1 

(5.36) 

In the above, g2, 	is chosen as the most natural extension of 

1"—"n 

the original impulse response sequence d 	such that the new 

n 
completed sequence is square-summable over the region S co  which is 

defined as follows: 

= f(Zi, i=1,n) : 0 	Li< °D , 0 	(L2<co 	0 	Pia ■C 

(5.37) 

The mean-square error is then defined as: 

A ... n 19 	9 
1 

(5.38) 



2k 2k 
2 

1  =1 +1  
=lc.  

2 - 2
+1  

'L2 

• • 

1=L1-lc1+1 

t2=L2-k2+1 
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and the coefficients of the (N-D) recursive digital filter are 

determined by minimising the error function of equation (5.38) above. 

5.3 	THE LAL SPATIAL DESIGN TECHNIQUE [33] 

This is again a modified version of the Shanks' Method 

for designing (2-D) recursive digital filters in the space domain. 

The resulting filter is always stable. 

The technique is based on sectioning the desired (2-D) 

impulse response of equation (5.1) into N groups as follows: 

k_„,k 

P. V_ 

f 2 
d 

l'9_2=1 
 Q1, 2=1  

(5.39) 

Each group can be approximated with a second order (2-D) 

recursive z-transfer function of the form: 

all  + a12 
 z, + a21z2 a22z1z2 

H(z1,z2) 
bll b12z1 b21z2 b22z1z2 

(5.40 

An optimisation procedure is employed to calculate the 

coefficients of the above filter transfer function with some 

constraints on the coefficients of the denominator as stated in 

[21] . The filter realisation is that of the form shown in Fig. (5.1). 
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Input 
H(zi''2)  

-k1 -k2 
zl 	z2 

-k1 -k2 z1 
z2 

-k1 -k2 
zi  z2  

11(zl'z2)  

H(z1,z2) 

H(z1,z2) 

Fig. (5.1): Realisation structure of a digital filter designed 
by Lal's Method. 
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CHAPTER SIX 

CONCLUSIONS AND SUGGESTIONS 
FOR FUTURE WORK 

This chapter consists of a summary of the contributions of 

this thesis and suggestions for further research. 

In Chapter Two the concept of stability for (2-D) and (N-D) 

recursive digital filters is defined and conditions for stability of 

such filters are discussed. Several stability tests are reviewed. 

The stability test of Shanks [203 for (2-D) case requires 

the construction of a theoretically infinite number of mappings; 

this is not practical, especially for filters of higher orders. 

The procedure of Huang [21] , although requiring a finite 

number of mappings, incorporates the mandatory application of two 

bilinear transformations in order to enable the use of the method 

of Ansell[k3] . Basically, Ansellts contribution is to couple the 

use of a Hermite test to check stability, with a series of Sturm 

tests to check positiveness which is still tedious to apply. The 

procedure of Anderson and Jury £223 is also finite and does not 

require bilinear transformation; the Hermite test of Huang [21] is 

replaced by a Schur-Cohn matrix test D15,46] followed by a series 

of Sturm tests, or, equivalently, by a series of tests for 

establishing the root distribution of a polynomial. Finally the 

last algorithm for checking the stability of (2-D) recursive 

filters is given by Maria and Fahmytn] ; it provides a method for 

checking the condition (2.13) of Huang's method [213 by means of a 

modified Jury's table. For (N-D) case the stability is checked by 
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means of the repeated applications of the extended Jury's theorem [22] 

to (N-D) [39] 

All the techniques mentioned above suffer from the high 

cost in terms of computing and complexity in terms of handling and 

so we need a design technique which does not involve stability 

checks. 

Chapter Three is concerned with the techniques for 

stabilising an unstable (2-D) recursive digital filter and the 

presentation of a new stabilisation method for (N-D) zero-phase 

recursive digital filters. The stabilisation method of Shanks [H] 

is based on the property of a planar least square inverse of a 

matrix. This method has been successful for many examples given by 

the same author, although a counter-example by [53] has placed a 

question mark on the validity of the procedure. The stabilisation 

technique of Read and Treitel [54]has the same kind of problems as 

Shanks/. Failure of the technique for some examples is due to the 

approximation made to an integral by a finite summation associated 

with the truncation of the array. 

Pistor E..26.] introduced the stability criteria in terms of 

a transformation of the complex frequency response. It provides not 

only a test for stability but also a method of decomposition of an 

unstable filter into stable filters recursing in different directions; 

this technique is applicable to zero-phase filters. The method 

still has unanswered questions concerning the approximation due to 

transformation which must be made for a practical algorithm. A 

general treatment of Pistor►s technique is presented by Ekstrom and 
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Woods [27] . In their method the application of two Window sequences 

is recommended for removal into the stable domain of the possible 

poles in unstable domain caused by the approximation and truncation 

used in Pistor/s method. 

The new decomposition technique presented in Chapter Four 

for (N-D) zero-phase recursive filters is an extension to (N-D) of 

the work of Pistor. This method also makes use of the two (N-D) 

weighting sequences to overcome the possible instability caused by 

the truncation and approximation used in this technique. These 

sequences are extensions to (N-D) of the ones proposed by Ekstrom 

and Wood E..27] . 

In Chapter Four, different frequency domain design 

techniques are studied. 'A new (2-D) design technique for (2-D) 

filters is presented. A new design technique for (N-D) FIR filters 

is also proposed and followed by another design technique for (N-D) 

zero-phase recursive digital filters. The separable product 

technique of Hall [28.293 gives a simple way of designing (2-D) 

recursive filters using the well-established (1-D) technique. 

Therefore these filters have no stability problem, while the choice 

of the cut-off boundary for these filters is restricted to the 

rectangular type. This is the only technique for designing linear 

phase filters. The rotated filters of Shanks Do] share the 
simplicity of the design technique of Hall, while the stability of 

the designed filter cannot be guaranteed. The design technique as 

it stands cannot design a filter with specified cut-off boundary or 

phase, which is a disadvantage of this technique. This method has 
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been improved by Costa et al. [30] . The new procedure no longer 

suffers from the stability problem and design of circularly 

symmetric filters which are of zero-phase with circular cut-off 

boundary is possible. Bernabo DI] proposed a method for designing 

(2-D) zero-phase recursive filters with circular cut-off boundary. 

It is based on the McClellan transformation [m] applied to a 

squared magnitude of a (1-D) filter followed by the decomposition 

technique of Pistor [26]. The technique gives the filter designer 

control over the desired shape of the cut-off boundary while in 

return it suffers from complexity and high cost of the computation. 

The technique also relies on the decomposition technique of Pistor 

which makes the stability of the designed filter to be in doubt. 

The new design technique for (2-D) zero-phase filters 

presented in this thesis is based on the use of a 2-variable 

reactance function as a transformation applied to a (1-D) recursive 

filter. The technique is simple to use and the stability of the 

designed filter is guaranteed, while the shape of the cut-off 

boundary is restricted. 

A new design technique for (N-D) FIR filter is also 

presented. This is based on the extension to (N-D) of McClellan's 

method [15] . The chapter ends with a new design technique 

presented for the (N-D) zero-phase recursive digital filters. The 

technique makes use of the extension to the (N-D) of McClellan's 

transformation E71J to a magnitude square function of a (1-D) filter 

followed by a decomposition technique [..50,63] . This technique is 

also an extension to (N-D) of Bernabo's D1] which has the same 

property as Bernabo's method. 
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In Chapter Five, spatial domain design techniques are 

considered. 

The first (2-D) spatial domain design technique is due to 

Shanks [20] . The technique consists of solving a system of linear 

equations with the same number of unknowns. The solution to this 

can easily be obtained by using the well-known Gauss elimination 

technique. The computational labour involved is rather simple and 

a guaranteed solution is also provided. This has been extended to 

(N-D) [73.3 . In spite of the simplicity of this method for both 

(2-D) and (N-D) case, it has the disadVantage-of not using the 

minimisation routine over the true mean square error and the stability 

of the designed filter cannot be guaranteed. A modified version of 

the above method has been derived by Bordner E32] for (2-D) case 

and also an extension of this is presented for (N-D) case [73] . 

In this method the finite impulse response sequence is 

extended by a square summable infinite tail and an approximation 

method is used to minimise the mean square error function. A 

guaranteed solution is provided and the designed filter is stable 

for both (2-D) and (N-D) case; nevertheless the solution does not 

necessarily converge to a global minimum. Furthermore, the problem 

of selecting an (\i-D) square summable sequence which is the most 

natural extension of the desired impulse response is rather difficult. 

The technique also suffers from the high computation cost involved. 

The method introduced by Lad Em] , which is also derived from Shanks' 

method, guarantees the stability of the designed filter by using a 

constraint optimisation routine to approximate the filter's impulse 

response with a group of second order (2-D) filters. This method 

lacks the controllability of the sharpness of the transition region. 
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6.1 	SUGGESTIONS FOR FUTURE WORK 

As with the development of any new technique, more questions 

are developed than are answered. The various possibilities which 

come to mind and deserve consideration are as follows: 

(1) The high computational cost and labour involved in 

checking the stability of 	(2-D) and (N-D) recursive digital 

filters with the existing methods makes these methods 

uneconomical to use for filters of higher orders. The_time 

has therefore come for the development of an efficient algorithm 

for checking the stability of high order multi-dimensional 

filters. 

(2) Most of the existing stabilisation algorithms lack the 

reliability needed for ensuring the stability of the designed 

filter. This is due to the approximation and truncation needed 

for practical implementation of each technique. Ekstrom [27] 

in his method suggests the use of a weighting sequence to 

improve the reliability of the algorithm. The question may 

arise as to whether a similar procedure can be used in the 

stabilisation technique of Read and Treitel 	. 

(3) The stabilisation techniques mentioned in Chapter 

Three have the disadvantage of distorting the impulse response 

of the filter The question may again arise as to whether one 

can develop an algorithm which stabilises an unstable filter 

without distorting the impulse response. 

In the frequency domain an algorithm is desired 

which enables us to design a stable filter which has a linear 
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phase characteristic and arbitrary shape cut-off boundary. 

Unfortunately none of the present design techniques can offer 

all these requirements at the same time. Therefore another 

possible field of work is the development of a technique which 

offers these properties for the designed filters. 
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