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ABSTRACT  

The densities of states of disordered materials are calculated 

by the use of the continued fraction method. Transition metal alloys 

are the main topic of discussion, but the continued fraction method 

is applied to ether systems also to show its efficiency and simplicity, 

Chapter 1 presents the assumptions and the concepts employed in this 

thest6 and gives arguments for the use of the continued fraction 

method. Chapter 2 gives tho modification of the density of states 

expression due to LLoyd(1967). It has wide applications in many fields 

but for the present it is used to discuss only the density of states 

of transition metals and their alloys. Chapter 3 presents the calculation 

of the density of states for the face—centred cubic transition metal 

alloys in a single site approximation. Chapter 4 gives the cluster 

theory for:the alloys with a d band only. These calculations do not 

make use of chapter 2, but are prerequisite for chapter 5 and are 

interesting in themselves. In chapter 5 the formulation of chapter2, 

the cluster theory for the tight binding d bands of chapter 4 together 

with the sp band and its hybridization effects with the d 'bands are 

used to calculate the density of states of real transition metal alloys. 

In chapter 6 two applications of this theory are given. One is to 

experiment in calculating the low temperature specific heat coefficient 

of Ni—Pt alloys; and the other is to disordered Heisenberg ferromagnet 

to show the power and versiility of the present method. Finally at the 

end of the thesis a published work dealing with the application of the 

continued fraction method to one—dimensional binary alloy is attached. 
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CHAPTER 1",_ 

INTRODUCTION, 

In this thesis we shall discuss a wide range of problems 

concerning disordered materials. The disorder considered will be lattice 

disorder only. Such disorder is exhibited by substitutional binary alloys, 

in which the different constituent atoms occupy the same lattice 

position. The general requirement for the formation of an alloy of 

this type is that the radii of the constituent atoms should be 

nearly equal. 

There has been considerable interest over the last years in the 

electronic properties of substitutional disordered alloys and in the 

development of theorltical techniques for their description. One 

method for finding the densities of states of simple materials is 

the continued fraction method of Haydock(1972). This method which 

depends oh developing the Green function as an infinite continued 

fraction does not depend on the use of the Bloch theorem or the band 

structure E(k) in any way. Instead the electronic structure at one 

atomic site is related to the local environment 'of near neighbouring 

atoms. This method has been succesfully applied to deal with disorder 

in simple systems (such as simple cubic materials) by Cubiotti et al 

(1975, Jacobs 1974). In this thesis we will try to apply it to more 

complicated systems such as transition metals. alloys. It() kethod 

gives a Green function which is an:analytic function(in the complex 

variable sense) of the complex energy E and thus avoids many of the 
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difficulties which have plagued previous theories (Nickel et al 1973), 

The main aim of this chapter is to present the concepts, techniques 

and assumptions used in this thesis. In section 1.2 we will give a 

description of Haydocks technique. Its mathematical basis is the same 

as that of the Lanczos alogrithm, which is now a standard method of 

numerical analysis for tridicigonalizing any matrix (Householder 1964). 

Haydock et al (1972) have applied this technique to a calculation of the 

diagonal elements of the inverse of a tight binding matrix, which they 

then used to calculate the density of states for ordered crystals. In 

section 1.3 we will give a review of the extension of this technique 

to calculating the diagonal elements of the inverse of a tight binding 

matrix for a disordered crystali. In this section only the density of 

states of simple models such as the simple cubic s band will be discussed. 

In section 1.4 we will briefly describe the principles of the Korringa, 

Kohn and Rostoker method(KKR), which is sufficiently powerful to deal 

with the electronic structure of a transition metal, and we will show 

how the secular equation of the KKR theory can be used to deride a model 

Hamiltonian secular equation such as that of Mueller (1967). In section 

1.5 we will give the principles of the derivation of Lloyds formula 

(1967) for the density of states in site representation, because 

this is the formula which we will use to calculate the dos of tran-

sition metal alloys. In the last section of this chapter we will 

give a plan of the rest of the thesis. 

1.2 CONTINUED FRACTION METHOD. 

If we are given the Hamiltonian of a system of electrons, 

the specification of the Green function, Gm(E—H) , or particular 



matrix elements(e.g 40 ‘Alo> ), is a major step in solving for the 

details of the electronic structure. In the tight binding model, the 

Hamiltonian is given as a matrix, whose elements are the self—energies 

and near neighbour hopping integrals. Haydock's method sets up a 

new basis in which the Hamiltonian has a tridiagonal representation, 

from which the diagonal matrix elements of the Green function are 

very simply derived. A tridiagonal matrix is one whose non—zero 

elements appear only on the main diagonal and the two adjacent 

diagonals., 

Here we will discuss the simple cases only, where there is only one 

orbital per atomic site, but it can be extended to deal with cases 	1 

where there are many orbitals per atomic site(tight binding d bands). 

First we will show how we can set up a new basis set which will give' 

us a tridiagonal representation for a tight binding Hamiltonian for 

kohl 
ordered crystals. Then we will show we can express the diagonal element A 

of the inverse matrix as a continued fraction. 

The tight binding Hamiltonian for ordered crystals is given by 

N- 	t rL- c • 

where CI: is the creation operator for electrons on site it  and the 

summation is confined to nearest neighbour pairs. The new basis set 

is defined as follows: 

to) = to> 
to 	16) - 10)0 05] 

a) 14,114 	- 	k - to) (o 

• V. • •• (1.2) 

   



In this set of basis functions each ket is orthoAlized to the previous 

ket(in the ordinary Schmidt fashion) and each ket is nermalized by the 

factor Ni to unity. This basis set though not complete is sufficient 

for our purposes, because expandi4 the 0-0 diagonal eletent of the 

Green function in the form 

ca 
we see that we needAttesekets which are generated by the, operationof 

various powers of H on 10> . 

The secular equation in this basis set can be easily seen to be 

tridiagonal. That is we have a secular equation of the form 

<0  I-% t6)-E- 	Cot kl) 
	

0 	0 	0 

C.% H 	Ct 	(1 IH 12 
(21 lik I) 	C2.1%-4) -a 	(2 k14 	C) 

C) 

t lo) 	401 t 	4 11 	IA 	..... 	to')4e 	e..3 	e4 

with 	114 tS .0 	unless 	1 i 

We can understand equation (1.4a) by examining one matrix element such 

as (1114‘0) . From equation (1.2) we have 



(N- (561c) 

.. 1  

IA 10) = NA l) 	10)(0 k 14 10) 

011410) = Na y  (2-0 + C2 k 0) CO t k 	0 

because the basis set is orthonormal. 

The density of states of any ebectron system is defined as 

rtco 	co 	 1 1  _a  tOil (1.5) 

which suggests that we must find the diagonal element of the inverse of the 

matrix given by equation (1.4). Using the Theorem which says that inverse 

of any matrix can be wtitten as 

0)- CA 
1 
 (6)  1  

■•• 

we can write the inverse of the matrix of equation (1.4). If we denote 

the diagonal elements of the matrix in equation (1.4) by ai  (i =0,1,...n) 

and the off—diagonal elements by bi(i =0,11....n) then the 0-0 diagonal 

element of the inverse of matrix given by equation (1.4) is 

<0 ict  to) = I (1.7) 
E - bo la ' 6.. a 	_ 

where 

(1.8) 
..■ 

—E— ID- el 1,- )4,, =Al t4.1 

A 

C. 

1 -I _I 
—(D—C.A 6) sh 
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Thus <so V.110) is given by a continued fraction expansion from the 

repeated application of equation (1.8).( ai,bi) are called Haydock's 

coefficient in the rest of the thesis, here i refers to the level 

of the continued fraction. The termination of the continued fraction 

is the next problem. There are many kinds of terminations discussed 

by Haydock et al (1975,)-,but the one we use in the thesis is the 

square root termination. The form and properties of which are discussed 

in the next section. 

1.3 ALLOY THEORY 

740W 
The continued fraction of Haydock et al (1972) has been 

extended and adapted by Cubiotti et al (1973, 1975) and Jacobs(1973,1974) 

to study the disordered materials. A review of the alloy theory 

for simple systems is given here. 

The disordered tight binding Hamiltonian used in these papers is 

I"( =Cq7 	21 	e. 	(1,0 
 ‘i 

where i and j are site indices, ci  is an annihilation operator for 

electrons, 4LL =:tiS (the sign depending on whether the site is occupied 

by an A type or a B type atom),the second summation is taken over the 

nearest neighbouv only and tij  is the hopping matrix between the sites 

i and j . The disorder in ez, is called the diagonal disorder and 

the disorder in 1.3 off—diagonal disorder. 

The continued fraction method enables us to write the diagonal 

elements of the unaveraged Green function(for a particular configuration 
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in the alloy) in the form 

1/(40--E— 60 C 	a- 6, /C042,--- E - - - - ))) 

The averaged Green function is then obtained by multiplying the Green 

function for a given configuration by the probability of occurrence of 

that configuration and summing the result over all configurations. 

The new basis set (as required by the Haydock 1 method) for the 

above Hamiltonian is set up as follows: 

We first split the Hamiltonian into two parts 

H = IA, ‘42. 

where 
	 (1.1o) 

and 
t4 	 . - L 	vv.. 

- 	. 

The new set of basis function is then chosen to be 

to)  

I cD Niotyti to) - 10) (9 I I4,10)1  

	

(o, 1) 7 Not [1642.% 	t 400)(0 (14),,I 	.• t tjOX‘,0) t4 k (6)1 

1420.t.41 k110) - 01 

111) = N„ L142.‘ 1.0) - 0-11 

1300) = N IN% t 20D) crij 

t 1,1 ) =!y,t-t 2,0) 

. . . 

. 	. 	. 
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where OT represents the orthogonalizing terms which serves to 

orthogonalize each ket to all previous kets. The notation 1c4) 

for the elements of the basis set (1.11) serves to indicate that 

the element (i4) is constructed from the ket 10) 	by i 

operations of 14t  and j  of a2 	. (This notation is ambiguous 

beyond a certain level). Our new basis is larger than that of Haydock 

et al (discussed in the previous section) and is thus sufficient 

for the problem. It is, however more convenient because the matrix 

elements of H in the new basis set show a strong tendency to depend 

on the parameters referring to a single shell only. 

The proper termination of the continued fraction is very important 

(Haydock et al 1975), because if the fraction is merely cut short 

then the density of states is the sum of a collection of 6 functions. 

One why of avoiding this undesirable result is to continue the fraction 

with an average of the continuations appropriate to the two pure 

components. This continuation ensures that the Lifshitz condition 

is satisfied(i.e the density of states is non—zero over the whole 

of 
range in which eitherAthe two pure components has a nOn—zero 

density of states). 

An alternative approadh to the alloy problem is offered by the 

coherent potential approximation(CPA)(Velicky et al 1968). A form-

ulation of this method appropriate to a tree or a Bethe lattice 

which starts from the continued fraction method is given by Jacobs(1973I. 

The principle of CPA is that the central atom is treated exactly but 
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the environment is treated in the average and is chosen self-consistently, 

The average Green function for the substitutional binary alloy AB 

with a fraction c of atoms of type A and (1-c) of type B(c and (1-c) 

are also the probabilities of occurrence of the configurations with an 

A atom or a B atom on the central site in CPA respectively) is given 

by 

40 Icito) - 

 

%--c 
(1.12) S-E_ Zeg 

where Z is the co
* 
 rdination number of the tree lattice and F 	is 

the termination to the continued fraction and is given by 

(1.13) F 	c 	Lk-c) Fia 

where 

_is _E. - (A-0 ty  p 

I 

E- (z-1) 

(1.14) 

(1.15) 

After substituting equations(1.14) and (1.15) into equation (1.13) and 

letting Z --tp°0  and t-* tail-  a cubic is obtained which is the 

same as the cubic of Velicky et al (1968). 

A more literal application of the continued fraction method 

is made by Jacobs(1974) and Cubiotti et a1(1975). They used the 
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the continued fraction method with a non-selfconsistent termination 

to calculate the density of states of a single s hand tight binding 

Hamiltonian in a cluster approximation. At the level of approximation 

to which they proceeded the average Green function depends on the 

number of atoms of each type on the central site and in the first 

three nearest neighbour shells. The diagonal matrix element': of the 

Green function is expressed as a continued fraction in the following 

way: • 

<0  l4 1 0) Lex- 2-  

ez -s-41,-4:11  

Ct 	c6-2 z E 4. 3-z 
2- 	 3 

—t 

S.  = 9t2 
r 

w e_ c3 - G,31 

(54-W) w 	 _w 
Ga - 

- (64)2- 	 s si 

9 

ice) = cPCis-c.) 4.&c.) 

N 
P Cs ) r E 	— 	)  

2be 	 (1.16) 

where 

r. 
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Elk=  - 	Ca-  x) 2. 	 2 

- Z 	+ (6- Z) -IS 

4 

Pv,1 	1:54- ) yg 
6.4 

W 1; CAA' 64 	 (1.17) 

and X and Z are the numbers of atoms of type B on the central site 

(X=0 or 1) and in the nearest neighbour shell respectively(i.e Z 

ranges from Oto 6), and If and N are the numbers of atoms of type B 

in the 2nd 	and 3rd nearest neighbour shells„_c is the concentration 

of atoms of type A, “g) is the termination of the continued fraction 

(and this is the type of termination which is used throughout this thesis), 

:Lbt gives the bandwidth of the material. If Mn  is the probability 

of occuence of a particular configuration n in the nearest neighbour 

shells, then the average Green function is given by 

	

<o ‘410> ---- 	Mn  <0 ev.tirt  k 4* 
	

(1.10 

The result obtained for a pure simple cubic materi.al are close 

to the exact result. For an alloy, the minority band shows a central 

peak, with humped shoulders on either side(bonding and antibomding 

effect). This result is very similar to Alben et al (1975). The 

position and height of the central peak is approximately maintained 

throughout the concentration range. 

Another application of the continued fraction technique to 
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calculating the density of states of binary alloys is given by 

Zaman and Jacobs(1975, bound with the thesis at the end). This 

calculation is for one dimensional linear chain of atoms. 

The great advantage of the continued fraction method is that 

it takes very little computer time as compared to other methods 

(Alben et al 1975). 

1.4 	KKR TIIEORY 

In this section we will give a brief account of the KKR 

theory and ita use to derive the model Hamiltonian in mixed tight 

l4nding—nearly plane wave basis functions. 

The lattice potential Wr.) is taken to be of the muffin—tin 

form,that is spherically symmetrical.withtn a sphere of radius 

centred on each lattice site, and zero elsewhere. The wave function 

with6 each sphere is expanded in spherical harmemics: i.e for brevity 

C*10) (1.19) 

  

where LTA.1..)...1 and A and 0 are polar angles of the vector r . Then 

within a sphere, provided that gt(..r) is the radial function satisfying 

the Schrodinger equation there in. The coefficient 411.  are determined:  

for each value of the Bloch wave vector 1‹. 	by the set of homogeneous 
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linear equations 

L A 	-:-.0 (1.21) 

derived from a variational form of Schrodinger equation for the system. 

The matrix f■I.J2 has components which depends, in a complicated wsy 

on the crystal structure and on the radial wave functions that appear 

in equation (1.20). The components are not, for example, the same for 

different values of the quantum number m, so that the sum over L in 

./ 
(1.21) implies a double summation over 1- and h4., ; if we go as far as 

A waves the matrix AV! is 90. These components are all functions 

of the energy, and the condition that a non—vanishing set of coefficients 

C. can be found is that the determinant of this matrix be zero.This 

implies that the energy eigenvalues are solutions of the equation 

cla I AL 1=0 

The practical utility of the scheme for detprmining the eigenvalues, 

then depends on the form of the equation. Following Kohn and Rostoker 

(1954), but using real spherical harmonics as suggested by Ram and 

Segall(1961), we can express the determinantal condition as follows: 

aet 	Pit 	(..7it (1.22) 

where 

E 

and 
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ALL1  — 	it.0111).c 1 Cti lid)'11_0`="/)it'Ci=.-2)  
k k. -1;7_ E 

rxt.ot-0  
Li‘g) 

(1.23) 

where N 	is the volume of unit cell. 

The main disadvantage in the use of KKR equations in practical 

calculations is that the eigenvalues take a long time to calculate 

because the matrix elements are energy dependent. The interpolation 

scheme of Hodges et al (1966) and Mueller(1967) were motivated 

primarily by a desire to remove the energy dependence from the off—

diagonal matrix elements and this was achieved by writting the secular 

equation for the eigenvalue E as follows: 

clef 1-kr, — 	= 0 (1.24) 

where I is the unit matrix and lA" is an energy—independent model Hamil-

tonian of the hybrid nearly—free—electron—tightbinding 

form; that is 

(1;25) 

where Clrepresents the conduction block, R represents the resonance block 
It 	 Le 

written in the tight binding form between the localized resonant states 
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(i.e d states for the transition metals) and H represents the hybridization 

of the localized states wth the plane waves. H is the hermitiolin 
fL 

conjugate of H.The sucess of this interpolation scheme led Heine 

(1967), Hubbard(1967), Jacobs(1968) and Pettifor(1969) to derive 

the model Hamiltonian from first principles.A brief account of the 

algebra of this derivation is given below. 

Equation (1.23) can be written as follows: 

(1.26) 

where 

T1 _ 	(i-tQv'S-1 IR) ̀10_01-- -2  - 

The term' ic.C.24-111.  of equation (1.22) for the transition metals 

can be written in the resonance form (Heine 1967) 

k. cat Ile  t. 	- E 	4or 	(1.27) 

For 1=0,1 and 1) 2, the phaseshift qt is small. The secular 

equation(1.22) can now be written as 

det 1 t  IL 11-01z 1) 1rd C"--'11 	gu! Il =0 	
(1.28) 

where 
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Ede - Ed 
	1t k 	 jes 
	

(1.29) 

Following Hubbard(1967) the above equation can be written as(a similar 

proceedure. has been presented by Jacobs 1968) 

cler II -I. 'LAY"-  1) 52-011) e) 	01:-2)  
, 	g 

vst_0 .-2)11- s2-u&et,6)311 0A--1)  fi  4 (1."" 
+ 	

k tf-- 	E 	 (1.30) 

where 

The secular equation (1.30) $1; rewritten as follows with its second. 

term in direct lattice space(taking its Fourier transform, Slater 

and Koster 1954) 

0!.-Y; es) aa- il _ z. IrLs.t.- -2 ) s.1-0,-,a, ore 0:  ) r L 	- * 	e. 	1-u.' (is) 
1 	iis.V.- E 	 s*0 

4 (,ej-E) C LA! 1‘,0  (1.31) 

Unfolding this we get 

E) gi ; 	,rfts@c-,B,G)11_0s- --3) 

;Jul's co  
/ 7 	-e) sir°€.  

=0 

(1.32) 
Set.,8,e)V,Pt-_---2.) 
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The hybridization submatrix is made energy independent by putting 

E=E
d 

This is accurate in the low energy region. We have thus arrived 

at model Hamiltonian (1.25) with its block matrices 

E3gat t  

_ 4-11 soc,81 	Isl( t- --61) 

ik'IS 	Cs) 	r 

(1.33) 

(1 and 1 are both equal to 2) 

1.3 	LlOYD's FORMULA 

Here we will give abrie4 derivation of Lloyd's formula(1967) 

for the density of states of a muffin—tin Hamiltonian. 

In quantum mechanics it is generally true that if an eigen 

value problem is such that its eigenvalues are the solutions of an 

equation of the form 

eta-  t A (F) =0 
	 (1.34) 

• 

then the density of eigen states may be written as 

stE) 	 w„-cr, 	•A(5-k-i..0-1tACE-h,c6)-11  (1.35) 
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Now we know that the energy eigen values are the solutions of the 

KKR secular equation (1.31) which is of (I similar form to equation(1.34) 

But the KKR secular equation (1.31) is in k representation, which 

is suitable for ordered materials when the Bloch theorem holds. 

For the disordered materials it is better to use site representation 

(where no use of Bloch theorem is made). In this representation 

the KKR secular equation can be written as (Lloyd 1967) 

Cie 	 (Ili— vs ) 
Ud 	 Ls LA" 

(1.36) 

where 

tLS — — 	rt is  — L k. 

and 

k's 1.  
C u! Crs—N1),_ — 4.-KK 	iv, tvi,— 	m —Y; C̀ L

ii 
i- 

1 

=4) 	 45 

Using the general principle quoted above the formula for the density of 

states for the secular equation (1.36) is 

gtE) 	r,:vvi 	t a 	- ) 4. 4,5 	1 
, -1  Sys 
	 4-1 

(1.37) 

This formula will be the basis of the alloy theory developed later for 

transition metals and their alloys. 
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1.6 PLAN OF THE REST OF THE THESIS  

We conclude this chapter by giving the plan of the rest 

of the thesis. In chapter 2 we modify Lloyd's expression for the density 

of states of a muffin—tin Hamiltonian(1967) to a form more suitable 

for numerical calculations. In chapter.3 this modified formula is used 

to calculate the density of states of transition metal alloys in a single 

site approximation.In chapter 4, the density of states of a tight 

binding d band alloys are calculated in cluster theory by the use 

of continued fraction technique. Chapter 5 calculates the electronic 

spectrum of the real transition metal alloys in the cluster approximation4 

In chapter 6 we apply the methods of chapter 3 and chapter 4 to 

evaluate the low temperature specific heat coefficient for Ni—Pt alloys, 

and we compare the results with the experiment. Also in chapter 6 

we apply the continued fraction method to the disordered Heisenberg 

ferromagnet. 
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CHAPTER, 2 t
t 

ti 

 

THEORY FOR THE DENSITY OF STATES  

2.1 INTRODUCTION  

In this chapter we will develop a theory for the density 

of states for the transition metals- andtransition metal alloys. The 

development of theory means the manipulation of the expression for 

the density of states of a muffin—tin Hamiltonian presented by Lloyd 

(1967, Lloyd and Smith 1971). The main aim of the manipulation is 

to transform the Lloyds expression int4dform more transparent physically 

and more suitable for numerical calculations. 

The solution of the Schrodinger equation 

( 2-  —V4. VC's) 	■fity) =0 (2.1) 

means finding the energy eigenvalues. These energy eigenvalues are 

related to the density of states. One of the central problems in the 

band theory of solida is to find the propagating solutions of the above 

Schrodinger equation, in which the potential leas the periodicity of 

the lattice under consideration. Exact solutions of this problem are 

in general not possible, so a number of approximate methods are 

applied. The best and the most commonly used one is that which 

approximates the effective potentialWr) by a muffin—tin 



potential. The muffin-tin potential is a potential which is 

symmetrical inside a there constructed within an atomic polyhedra 

and is constant outside. Lloyd (1967) used this muffin-tin potential 

in his Hamiltonian 

I-1 2. 
V(.1°) (2.2) 

where V(r)is the sum of spherically symmetric contributions from 

sitesirs1 at which atoms of various types are situated i.e 

litc)Lr 	 (11:-,to) s 
i r- rs  I 1.5.  IT 	(2.3) 

-=. 0 t r- 171 7 v7: 

where r:  is the radius of the inscribed sphere. Usin3the Hamiltonian 

given by equation(2.2) in Schrodinger equation (2.1) Lloyd obtained 

an expression for the integrated density of states 

	

N(e) No  CE) klwiTr 1" 1 yi 	e (s-  s) 	(2.4) 

	

L s 	- 

where PlAis the integrated density of states for the empty lattice 

or the free electrons. The t-matrix is given in terms of the phaze 

shifts YIL.s. 

tLr = ortiLrs - 0-5) 
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and 

N 	$ 

1+14 
S`) LI X K 	C 

 t.
y (A- 'es) 1.14  (t< (rs - 

4  

rs— Ysi O 	(2.0) 

Y` s 

where 

r* C uz et -= j t. 	k)  74.,  ) rhY (-0') (2.7) 

and he is the spherical Hankel function defined by Messiah(1984; 

it should be noted here that our 114,=--i';t of Messiahs).; and 

A(_e4 40) is a spherical harmonic. 

It follows immediately from equation (2.4) that ordinary 

density of states is given ( in symbolic notation) by 

 
Y1 	

1 
(e) no(E) - klwCre 	 1/ Cf.+ 44) (2.8) 

where %(.E) is the density of states of the free electrons. 

The matrix (714.44.  ) in the denominator of equation (2.4 is the 

Korringa-Kohn-Rostoker matrix( Kohn and Rostoker 1954) in site 

representation. 

The density of states equations( 2.4 and 2.8) have been 

little used for actual calculations. The reason for this is that there 

are 
	

three main difficulties in tie use of expression (2.8). 
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The first is that for an infinite material the (t.+44) is infinite 

and this feature of equation (2.8) must be treated properly to 

avoid obtaining a density of states which iS just a collection of 

S functions. In many other cases the matrix is very large and is 

also very difficult to handle. The second difficulty is that where

♦ as in equatioft (2.8) 
DE  
.5e- 	is diagonal in site indeci 	4g is not ZE 

and therefore, unless we think of some other solution, we will 

have to perform the difficult and tedious task of calculating ell 
_I * 1 

the elements of the inverse matrix (t-i4 ). The final difficulty 

is that matrix
+ 
Le(nVdoes not drop off rapidly as (Ys-,' 1 increases 

if the energy is positive (the situation of greatest intrest). 

The first difficulty which is equivalent to inverting an 

in—finite matrix has been fully discussed by Haydock 0 al 

(1972) for ordered crystals. In' Haydockis paper the Lanczos alogrithm 

(Householder 1964) is applied to the calculation of the diagonal 

elements of the inverse of a tight—binding matrix. The same method has 

been adapted to the calculations of the diagonal elements of the 

inverse of a tight—binding matrix for the disordered crystals 

(alloys) by Jacobs (1973,1974, Cubiotti et al 1975). The second 

difficulty of calculating .  the off—diagonal elements of the inverse 

matrix can be overcome by manipulating equation (2.8) so that 

only diagonal elements of the inverse matrix appear. 

The final difficulty can be handled in certain cases 

such as those of transition metals where the long range behaviour 
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-̂k* 
of (.1 can be attributed to the plane waves hybridizing with the d 

bands (Jacobs 1968, Hubbard 1969). In this case the plane-wave-

contributions can be unfolded from the matrix leaving a tight- 

"1" 
binding d matrix with short range remnants replacing (4I . Thus a 

partial solution to this difficulty is available. This will then 

offer us a new technique for practical calculations of the density 

of states of a muffin-tin Hamiltonian for an infinite crystal in 

a situation where the long range behaviour of the matrix elements 

GL`  (!3-S') 	can be handled. 

Hence in order to make use of equation (2.8) we must 

find a solution to the second problem. In this chapter we will 

present a solution to this difficulty and this will be done in 

two stages. The first discussed in section 2.2 is to show that 

the derivative 20_0 can be written as a quadratic function of 
E 

the matrix a4 
. The second stage, discussed in section 2.3, is 

to use the expression for the derivative DE--4  in equation (2.8) 

and make the simplification to arrive at an expression for the 

density of states where the inverse (t44'
4.  
) is multiplied by 

diagonal matrices only. 

This then provides a technique which depends on calculating 
1 

only the diagonal elements of ( C.1.4 ,. 1 
 

The results of this chapter will be used to calculate 

the density of states of the trition metals and transition metal 

alloys,in chapter 3 in a single site approximation and in chapter 

5 in a cluster approximation. 
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2.2 DERIVATIVE OF G{  WITH RESPECT TO ENERGY 

t 
The terms 

1. (YS-v;)occur,ing in the Lloydl formula 
LU  

(equation(2.8)) and defined explicitly by equation (2.6) are 

coefficients in the expansion of the Green function 

,40 
("-',r e) 	g,xp oKtv- 

4x r- r 
(2.9) 

in terms of spherical harmonics 4nd spherical Bessel functions.. 

0 	
4 

e f 	(2.10) J (.101X(Y) 4: CS -1"31  ( 4  Y.) Ye 	) LL Le 	 ue 

provided 

lq#. 193i 
	

and 	I r- Y < 

and if r — r -s 

)11L )Y(1-1))/  C" ) G(r-N)r-ss)= ck(" 	 L (4.11) 

• 
for Y<I" ) and a expression with r and r interchanged when r<V 

to 
Now we wanti,find an expression for the derivative with respect 

to energy of e thus defined by equation (2.10). The procedure for 

e.A. 
finding the formula for Tie,' is split into following three parts. 

0 
(i) FINDING TWO DIFFERENT EQUATIONS FOR IL- kn 

'be 

Differentiating equation (2.10) with respect to energy 

E we get 
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Cr-Ys V.—YS) 
=  rs rs ceg 

3 a 0. a 	/ 
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CC(1:—rs 	 [ ticY)1_1_ (At) a
4 

(rs-n)c)licrik(e) 
7-K 	 -1‘ 

-I- a (lc YL.(r) 	LL
,(-11) 0") y Cr)-  
 L 

i 
•
L 	 I  S (C Y.) 	y (r. ) 4. UCY)/(r) 	Y: ) Li  

(2.12) 

This expression contains a 	therefore in oyder to get a 
DE 

o . 
formula for this we need an alternative expression for aa (4-(1"--G 
To get this alternative expression we note that the Green function 

defined by equation (2.9) satisfy the following equation 

2 
(V+ E) 	 S(r-Y.) (2.13) 

From thin it follows 

0 	0 u. 	3 " 
CCe-n )-t-IPs) = -S 	Ts - )111 ) G(:r  

ctiL spxce 
Or 

(2.14) 

r-Ys Y;) - 	C00-  ) r: - _ 	_ - .0 E 
0 I, h. 	 3  

C 02- NI t-Ts d r 

4 E , vs-.1s 

3 

	

I, I 	) a 

	

(r- r, 0- - Vs 	YS 	3 	2.  Y  (2.15) 

i Eat 

+ L 	Cc(r.- r_'rs) CZYalys, 	ci
s 
r" 

1-sall?5  1 ceit 
Substitute equations (2.10) or (2.11) as appropriate{ equation 

(2.10) is valid for cl-111:andlr=r101amd (2.11) is valid for 

ry =1-; } into the right hand side of equation (2.15). It is also 
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convenient to make the 	approximation of replacing the integral 

over unit cells in the lattice by integrals over spheresof the 

same volume centred at the same site. This approximation, while 

not necessary, enables us to; write down simple explicit expressions, 

it does no violence to the seitcture of the result and can be expected A 

to give reasonable numerical answers. The result of this procedure 

gives the following equation 

+ 	 54.  _ I E.  , 4„cicr)\/ tr) 	(1-5 	oe 	cs-N; )( (Asp/ I- 	Le' 	44 Le L' Vt,Ys,Y3  4r- 

KSLOcr) 	) s z(rs 	11" )S 1 1 	(1") St(e311) Ohl 0  

rA -r 
4 Sit(k41)5 Yiljv

4 
 , 04Y ) (kr

is 
 a r j Ye  C.?) 

1" 

4 K yi.(t)till#Qtr) S SetKe.)StC1/4.111.) 

h * 
e(kr) 	(kr"  ) ();j1  (Icru.) 	iC - c 	(KV) 

L
(Y. ) 

	

u 	(2.16) 

where 

a 	
(4) €„1k.lr ) 	ckyo) Y11 2. 

 alY 
	(2.17) 

O 

and 11 is the radius of a spare of the same volume as the unit 

cell. ( It should be noted that the above approximation is not 
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valid for all r and V' 	We can consider, for example, terms in 

0, 
the sum over Y's where in-rs I is equal to the nearest neighbour 

distance c1,14 	It is then easy to chooSe r and Y both within 

, 
a unit cell such that It-el >°111-Y's

4 
 1 which invalidates the 

use '.of equation (2.10). Similar arguments apply to terms in this 

sum where IS -.!1( is equal to the neares* neighbour distance and 

to the remaining two terms in the curly bracket whenin-rsil is 

equal to the nearest neighbour distance. The above equation is 

however certainly true for)" and Vl 

condition t `^-Yri <chin and It-1; I e!.(44  

small enough since then the 

r# • 
fordorith4n a unit cell is , 

satisfied. Subject to this restriction on the magnitudes of $^ 

and 01  the result is always true. This weak result is sufficient 

for our purposes since we are interested only in obtaining an 

expression for the coefficient ) To proceed further we 
1)  

must simplify the expression in the square brackets in equation 

(2.16). This is done in the second part of this section. 

(ii) SIMPLIFICATION 

Let 

" 42 U 
StkIr 41+0(05Ylil( tr  )r  dr 	Otr)j-h+ik-Y)cc 6c))) 211  r" t 

4, 	L If 41 is 

f V-kr).c SLOCr) r 	— 

0 

r 
AtClcr)S--11+Qc.Y:'10

.Y9r"LSr"i  
L 	#1.  

4 	11 cic to 	. if 
(20- 	Ck.r ) 	r yr. dr 

R(.k,r) .+T(k)r) 
	

(2.18) 
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where 

k(19-} Icko S (k- 11)1'1 2-ot 	 Citr)c4 	V "2 	1 
4 	Y. 	r  ThZ)-12. 	4  (.1419  .)(1pc.r)1.  a y 

J . 
(2.19) 

'1A 
1-(k'r)=  St(-k'r) 	-1114 (kJ SjiCkvik) r Id 1 "̂  (2.20) 

Using equation (B1) from appendix B and xI.K111.4  , omitting the 

limits for the present r(k)r) can be written as: 

	

S

eer) 	(.,(0)se (") x" 2' x" 

	

31 tOcr) K 	x 	cip
4. 
(x") it  (so) 

(VC"k 3 	IIC 
h S 
rcl (kr

4 
 ) 

+ 	) 
L 

141 	0 A+ 4 	 4 	h. 
ee (KY J- 	()Cr 3 4. Ckr ) 	04-1.  r" 4- 	4-4 	 A 

- 	ckr") ,,113 (k.r")] _ 
ic.r" 

Now putting in the limits 

3 
T(k,r) (St(kr)14:  at( 

t()trA) 	.v4,4)—!_r jil(,11c,r6) .1 41(.1c.(4 _IIZ3  1 	(2.21) 
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The same treatment is applied to RCkA using equations(B1), 

(B2) and 
	x/c 

RC.icr) 
	[1:((.1-)S ;410(") xul  ax." 

0 
r 

0:110(.3„) kre 	I?) x11 2. ctx,) 
• 

=occ) )(1131s1-0,2) 

I 
, 	1 

3 3.14 
c)1CX 	01/4 ) 1 - 4m 

tieckr) 1_1. 31.titt9e) .c..1  0e) 	(,e) 	c 
," at 	1/— ti 

0 

k 3r (kr) kV r i:"  00!) 	(kr") (1: (k-V‘")11. 
e 	L 4  

(kkk r) 

4 (cecia,) Jii2  (kr/3 - ify.741_Cikr) Jit-F  (y.r")] 	_ 
0 

7"" r5i Ct̀ ri irj):0410 - ifi_ycx) iht  00)1 

ccilCics.) it.9<f) 	CILY)-jk.*: alio") _41 Gcr) 

ill'*-L611411::fiLkg.r)  (2.22) 

This can be further simplified by the use of some standard results 
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for spherical Bessel functions set out in appendix B. 

RCIci) 	 (k.f) 4:Lkr) 4(kr) 111.(itc.r) Si2.0 itr) 

- (kr) iiSkr) 111(cv) 4I1 	' 41.(kr  

A 	4  

- &..(") jk-  CI") L Cicr.)1 	) 	-3 
xx 	_t Cc(  kt(ILY)1 	(ic.r) 

2- Vi 

-110cr) t ttr) — 	SiCk 	4 icQ k3Spcv) 

NA3  f—VC149 st_,040 afocieiPr)-ts..,0(9 
2 

_3 
 	+ 2.  e. 	) 

2.4 t 	 Tx 
from (B3) 

1r re-ti) ii+c" 	) 	j14'(sc.r)ci (y.r).i.d.' (kr) .1...9+ (_krj 2 	2 .1+ I 	 .1-1 

k-344  k Y.) 

I k72*1-• 	/)14.+(ik-r)  - 	tOcr) 	est  („) 
24+1 

from (B4) 

= 4 - k: 4;04-r  ) 
2. (2.23) 

The results of equations (2.21)and (2.23) can now be used to 

write SCk )r) as a linear combination of a. (") and tatOcal viz. 
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_2. I 	 2 
socr):: 	k_rstoco 	6.(.1%)(it SKr) (2.24) 

where 

Pit  licsrA) 3: A 
3 

- k.r 	 ocr. )  - vki 	 " 

- 	S.4  (..t rift) 4-I Oc-rA\ "4" (1,:t 1.kroti) A+4  kr/0 JL 
weft - 

... st(cret) Ckix)] 
( 2 . 25 ) 

(iii) A NEW FORMULA FOR 

In this part we use the results of equation (2.24) to 

simplify equation(2.16) of part (i). The right hand side of simplified 

equation (2.16) is then equated to the right hand side of equation 

(2.12); we note that the terms involving derivatives of ¢e') cancel 

leaving us with a result depending on terms quadratic in 	only 

viz. 

tr. 4(1(X) 	41-Le  Crs-16 cce  Cleo") ye (Y: ) 

/ 	„ , * —L IL 	uor) YIP= ) 	03-176 c!/ 4e2•Lf C)-ii-rs")aociMe 0'1) )seff.:Sp's 

+St(iCr) VII C,rL (3—rs) t I (rcA)1! 

\kt\--)  hotivA) 	(V-S 	) 6-11 Ck-6 (2.26) 

Equation (2.26), as we stated- in part (i) is only valid for 

sufficiently small r and Vs' 	but the formula we get fora 4 
a E 
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1( 
after equating the coefficients of il-14-r)V.Y.) and cie(kY9y...(r..) 
on both sides of the above equation

)
is true for all values of the 

parameters. 

e (r 
b e. 	if) 

" 

I  
- ) 

ors-v; 5 	(2.27) eLe C.s.--1:si)VicrA)-11,etiA)  

This shows 

is closely 

defined by 

Zft 
t 	i that 	is a quadratic function of G+  . This result 

related to the classical result for the Greens function 

-_ -_ (,e-H) ViZ 

(2.28) 

The difference is due to the fact that G itself, is not a Greens 
is 

function but is, instead, a coeffient in the expansion of a Green's 

function in an energy dependent basis. We should emphasise here 

again that the derivative of esatisfy an approximate equation 

(2.27) only, because we have used the sphere approximation for 

the unit cell in deriving it. The exact result will differ from 

this in that of and Ry will be non-diagonal matrices with two 

angular momentum indices. They will not however depend on site 

indices or be matrices between site indices., 

_2.3 	A NEW FORMA, FOR THE DENSITY OF STATES. 

A+ 
The formula for .9-(4 /0"..)thus derived in section 2.2 

and given precisely by equation (2.27) can now be use& in expression 

(2.8) to deduce a new formula for the density of states: 
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kft(E)::  %CO - r 	Reh. )( CI+ 4*-i-I Qte(atct4- Gtf I  

_ 	C-€714- 	CAf `4- 4+11.1 (2.29) 

, I 
In each of the last three terms of this we add and subtract T. 

from one factor of G+. Using the properties of the trace and 

cancelling ( t:74.4+  ) where possible we get 

n LE )r--  rloCe) 7i- La-- [C 	 eck 

ea t. 1(.41+-4t7 I Y:1  2F-0-pt AL-411A 	(2.30) 

Repeating the same manipulation once more we have 

n (E) n.ce) - 	{Cc-A-e±:' 	GIS _ a 

_I _ I  _1 
ott t ot t 	+4 ) - is 

1Ct+ -1
4 

 4 1
t
] 

(2.31) 

 

We can drop the term LI ut because it has a zero trace. It can 

be easily checked that the imaginary part of the trace of - 

is equal to 2n0  (E). The term - 71t-iwil-y(fit) =ire C 6.09 	'Nearly equat 

to the density of states of free electrons, ,n0(5) in this sphere 

approximation and is exactly 	n0CE) if we do not make this 

approximation. The final expression for the density of states 

is therefore 

n (e) 	ImTr x 	C4E-I taitL_ -v akeiti LE-4 44.1 
(-2- 32 
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This shows that for a muffin—tin Hamiltonian 	ex CO 

depends on the diagonal matrix elements between site indices of 

t 
tLe inverse, (t-t- 4 ) only. (The numerator ( 

dE 
t 	ot 

_ 
4- IS

- I
) 

is diagonal between site indices). 

We must note that for transition metals the trace is over 

1=0, 1=1 and 1=2 angular momenta only for 1 > 2 the imaginary 

part of the trace of the above expression is very small so that 

it can be ignored. For 1=0 and 1=1 it can be proved ( proof given 

in appendix P) that 

— t — 	
t _ 

Tv. [(el t uz ) at 	t 	G 4 	4. 

and we will be left with the following expression with the trace 

over the 1=2 angular momentum only 

I - I 	_ 11r. 
Pt Cs) rve) 	[(-1 6 	-L. 4- 46 	t.s4; 	(2.33) 7C 	ai 	a. 2 2. 	" 2444s 

This is the expression which will be used in numerical calculations 

in the following chapters. 

In the next sedtion we shall examine equation(2.32) in detail. 

2.4 DISCUSSION 

We shall now examine equation (2.32) in three different 

cases. In the first case we shall use a form- for t which is 

appropriate to a nearly free electron metal; in the second case a 

form appropriate to a metal with d—band lying entirely below the 
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conduction band and the muffin-tin zero (an example of such a metal 

is Zn); and in the third case we shall use a form appropriate to 

an ordinary transition or noble metal such as Ni or Cu with the 

d-band crossing and hybridizing the conducton band. 

(i) For a nearly-free-electron like metal (Na, K etc.) the pseudo-

potential is weak and weakly energy-dependent which implies that 

- 1 
is large and weakly energy-dependent Where 

I 
t =to  t. k 

(2.34) 

C.otvit.  

; 
With the above statements we shall see that the first 

' term in the trace of equation (2.32) will give a small contribution 

to the density of states. Because the first term then becomes  

1,rr 	t*-1(t.-144ysi 
dE 

_1 
iY `ti Et, -- airECik)/ ICI--  41.-Cri] 

...40  0 ir) ez,a. uC e, t, -40  

and the last term gives 

1,70t-Er [2pC10.1-4-eY I  

[ 	4. 4-01 

z 	[2  0 2Pcs+t 

The trace of 204.4  -t is zero and--the imaginary part of the trace 

of the term 515  is - 2rtc,CE) 

The second term reduces to - %(E) by the following argument 
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4t) '\  

tek t- c( c14  t 4 - 

.7_ I Tr CU.:,'- i-%< - 

- noce) 

Tlv. vet result to the density of states to lowest order is 

no CE.) , the density of states for free electrons. There are 

thtee points to notice in this elementry calculation. The first 

is that equation (2.32) gives the correct result very essay. 

The second is that it is the first term outside the trace and the last and 

the second termswithcn the trace of the equation (2.32) which 

make up the important nearly-free-electron term. The third is that 

in the trace it is necessary to sum .over all low angular momentum 

even when a restricted Korringa-Kohn-Rostoker matrix (Kohn and 

Rostoker 1954) including only a few angular momenta is sufficient 

to give the correct energy bands. This last point is important 

in transition metals where a secular equation involviijg an 1=2 

KKR matrix gives a reasonable approximation to the energy bands. 

The suppresed 1=0 and 1=1 parts of the matrix nevertheless give 

the major nearly-free-electron terms in equation t2.32). 

(ii) We now examine metals like Zn, where there is a d-band lying 

below the conduction band and the muffin-tin zero. At energies 

in the region of the d-band the 1-2 element of the inverse t-matrix 

is given by 

(Ed-EVr-Zic (2.35) 
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where Ej is negative, r is nearly constant and tic is real. 

All other matrix elements of t 	are large and weakly energy 

dependent. At these energies La 	-) Letrsn is given by; 

♦ is 
(.191— ,rs) = 14 	C- 	c 	V c  y - 	 Life/ 	)--s 

where 
+ 	 1+1 -i(s ts-rsii) 

■rs  —rs'i LA 	(-t) 	e  ti 	_ 
(Yr 	 YS- b'() 

lc is real 

which shows that 4Lif 	) is Hermitian and drops off rapidly 

as (16- rsf) 	increases and the denominator in the trace of equation 

(2.32) takes on the form of d-d tight-binding block in site representation, 

The zero of the denominator lie in a region whose width is of 

1the order of 	centred about the real energy Ed Ed- P 
It is clear from this that the term t%  which is due to 

hybridization of the d-band with the free electron bands at higher 

energies gives rise to a net downward shift of the d band. The 

first term in the numerator of equation (2.32) gives rise to a 

constant which when multiplied by the inverse tight binding matrix 

gives the d band density df states completely. The remaining terms 

are quadratic or linear in E-Ej , and thus vanish in the centre 

of the d band; they give rise to small hybridization corrections. 

The free-electron bands occur at much higher.  energies and the 

major contributions to the density of states comes as before from 

the first term and 1=0 and 1=1 parts of the second term in the trace. 

(iii) Finally we examine the case of the transition metals (Cu, 

Ni, ....etc) where the d bands cross the conduction band. The inverse 

t-matrix is given by equation(2.35) Ea is now positive, consequently 
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at d band energies E is positive and vi< is imaginary and the 

hybridization due to this term in the denominator of equation (2.32) 

no longer gives rise to a uniform downward shift of the d band. 

Instead it gives an additional broadening to the d band consistent 

with the idea that part of the d band is hybridized downwards and 

part upwards. The imaginary part 	(00 in the first term of 

the numerator when multiplied by the real part of (T.. ..1.4
i 
 ) 1  

nevertheless produces a net downward shift of the d band since it 

contains a factor (Ect-E ) which changes sign at the centre of the 

d band. We may interpret this shift as due to the fact that there 

are always more conduction bands above the d bands than below. The 

remaining terms in the numerator disappear either quadratically or 

linearly in the d band region and consequently give at the most small 

hybridization or broadening« 
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CHAPTER '3  

SINGLE SITE THEORY FOR TRANSITION METAL ALLOYS 

3.1 INTRODUCTION  

In this chapter we will present a continued fraction 

method for calculating the electronic spectrum of the tr4ition 

metal alloys. This method has been used in the multiple site 

theory for a single s band Hamiltonian (Jacobs 1974, Cubiotti 

et al 1975). It is much harder to do the multiple site theory 

for a degenerate d band transition metal Hamiltonian (see next 

chapter). Therefore in this chapter we will restrict ourselves 

to a single theory. In a single site approximation, the central 

atom is treated exactly and electron hops from the central 

atom to the average environment. There are two kinds of single 

site theories commonly used, the coherent potential approximation 

(CPA) and the average t—matrix approximation (ATA); we shall 

however use a single site theory which is different from these 

and nevertheless,0 common with the CPA, preserves the lowest 

six moments of the density of states correctly. 

We begin in section 3.2 by investigating the accuracy 

of our single site theory for a tight binding s band Hamiltonian. 

In§ 3.3 we will apply this single site theory for calculating 
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the electronic spectrum of the transition metal alloys. In the 

above calculations we use a model in which the 1=2 component of 

the binary alloy in the pure—material limits have identical she-peso  

the only difference being the absolute position of the bands 

in energy. In section 3.4 we discuss the numerical results and 

conclude. 

,3.2 	ACCURACY OF SINGLE—SITE THEORY 

In this section we calculate the density of states 

for a single tight binding s band by the continued fraction method 

in our single site approximation. The results obtained are compared 

with the density of states curves calculated in the coherent potential 

approximation and in the multiple site theory (Cubiotti et al, 

1975). We will also calculate numerically and analytically the 

moments of the s band density of states in our approximation 

and compare them with the exact results and show that we have 

the same accuracy as those obtained in CPA by Velicky et al (1968). 

In a very simplified single site approximation for an 

AB alloy, the average Greene function (for a semi—elliptical band 

of bandwidth 4 units) can be written as (equatiou(1.12) of chapter I) 

C 

 

(17 C)  (3.1) 

  

where c is the concentration of atoms of type A 

E 	s ; 
	

EB124 6 
	 (3.2) 

Fis the bandwidth or separation between the atomic levels. 
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F = cFA  + (1—c)F B; 

where F
A and F are given by the equations 

E) 2 j(EA-E)2  —4 
(3.,2) 

 

 

(Eti—E) + j(EB,—E)2 
	

(3.5) 
2 

Therefore we now know the average Green function defined by 

. equation (3.1). Hence we can calculate the average density 

of states by the formula 

n(E) as 1 Im <,G,> 	 (3.0) 

In figure (3.1) and (3.1b) we compare the numerical resin':  

of our single site theory and that of the coherent potential 

approximation for a semi—elliptical tight binding s band. Figurc. 

(3.1) is for c...4 and figure (3.1b)is for c=.2. In both the 

the dotted line curve represents the CPA and the full line curve 

our single site theory. The CPA curves are flat and broad, and 

their width and height decrease. with the decrease in concentration. 

But the single site curves are narrow and peaked at the centre. 

The height at the centre of the band is maint4ined with the decrease 

in ocmeentration. 

Now we will do the calculations for a simple cubic material 

using our single site theory in order to compare the results with 
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the multiple site theory for simple cubic (Cubiotti et al 1970). 

The average Green function for a simple cubic (with 213-.. 

nearest neighbours) in our single site approximation is 

<c,. 
	 0- 0  

where EA
R to 
 P and c are the same as defined before, but now 

FA - [9/cc-A- 	b 	- 
	- 	

(3.8) 

CAnci 

 

FIB  -x [9 (c.E
6 	

P CI C215 - e))] 
 ci 

where 

     

 

D( 	-__ 	a :L-  fr-•3 b 
(8 

    

     

The sign in the last equation is selected so as to have correct 

analytic behaviour for FD(E). 

Figure (3.1c) and figure (3.1d) compare the results for 

a simple cubic s band in our single site theory and the multiple 

site theory. The full line curves are for single site theory and 

the dotted line ones for multiple site theory. The similarity of 

the curves obtained from our single site theory and from the cluster 
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theory (Cubiotti et al 1975; 25 sites) demonstrate the likely 

convergence of our method. The CPA does not seem to be close to 4:zr 

likely converged result of our method. 

Now we will examines  mathematically and numerically, the 

moments of the density of states function obtained in the single 

site theory for a semi-elliptical band. Mathematically the moments 

of the density of states are defined as the coefficients of the 

terms in the expansion of the Jamerage Green function in powers 

of energy i.e 

PP 
 Pty E 

(347 

To get these coefficients we proceed as follows: 

Expanding equation (3.4) in powers of energy in the 

limit E -->00 and keeping the first four terms only we have 

8z 	 s ,Sy2  
cVg- -T- 

PA 	itt 	* 
E. 	E2' 	E3 	E 4t 

Similarly expanding equation (3.5) we get 

. s/e 4  a  F`  
E 	E2- 	E 	 E..  

Substituting. equations (3.11) and (3.12) into equation (3.3) we 

have 
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(i-2 )̀%. 	81' 1 	Ci- 2c-)03/s-.1- %Eh.) - 	 4+  
'P (3.14, 

Using this expression of P in equation(3.1) we get 

3 

<4> = 	4 0 -2C) jrE2. (i-locsfis-i- 	) 
E s2  tf 

g 4. g 4. 0-20 2' 
ib 3.15) 

which gives 

ft, — CI-2c) _sz  

N2.= 
82 
4 1-- 

Pa= 
(3.16) 

2.  
C 	

2. 
= L TG  S 4 0-.2C) 4  2 

T 

	

. 	(i -- 2-C) 	S.+ (1-2,c)s-S1 

	

32 	4 
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Comparing these moments with those given in equation (3.30) 

of Velicky et al  (1968), we see that they are the same as the 

exact results and those of the CPA. 

Numerically as a check on the arithtmatic we calculated 

the density of states moments. by the definition 

PP=  ScIE  GP rI(E) 
	

(3.17) 

where the numerical value of n(E) is the:same as given by equation 

(3.6). We findAhat these computed results for t- (given in Table 

3.1) agree very well with those evaluated from the mathematical 

formula of equation (3.16). This proves that our single site theory 

is of comparable accuracy to CPA as far as the moments of the 

ahity of states are concerned. 

Having thus established the accuracy of the single site 

theory for a simple Hamiltonian, we will apply it to the complicated 

transition metal Hamiltonian in the next section. 

3.3 TRANSITION METAL ALLOY.  

(i) Plan of calculations 

The density of states function for transition metals 

is characterised by a narrow and high d electron density of states 

superimposed on a broad low sp density of states. Three ingredients 

are used, to calculate density of states of transition metal alloy. 

These are: 

(a) The density of states of the two pure components. 

(b) The modification of Lloyds+ formula discussed in chapter 2, 

• 



51 

which gives us the density of states of a transition metal 

of the diagonal elements of an inverse matrix. 

(c) The single site theory of section 3.2f  which enables us to 

calculate the diagonal elements of the inverse matrix in an alio:, 

approxi mation. 

The first ingredient is discussed in detail in section 3.44 

while the details of the second and third ingredients are discussed 

below. 

We restate the Lloyds modified formula here as; 

nCE) n0(€) + 	Lc. 
	

(3018) 

where 

	

noc) 	J_ [ce 	30et  le] ° 
t 	 c 

t 

	

3 	. 2, 

	

cX - 	(x,<.) 	ok) „, oil() 

	

c- 	 4-1 	+1  

Pi 

(3.21) 

X 

	

3k. r Ckic.) 	boc.) it! 	()Lk) ock) L  vi 	 h  t-1 

	

-k-SeCx_k) net.x0 	)1.(74  ifi _(i)04) °col 	(3.20 
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2 

K 	4-6 

tart 11 = Vi Ca) Ea--E) 

(3.2$) 

In these equations Gmlis the coefficient in an expansion 

of the free electron Green function, which is discussed later; X is 

the radius of the sphere.of the same volume as the unit cell; Ed  is 

the position of the d resonance; jt  and 	aree the spherical Bessel 

function and Neuman function respectively; nLis the phase shift 

for the d electron orbitals, i.e 1=2. The phase shift can be accurately 

represented over the entire width of the d band if the energy 

dependence of W(E) is approximated in the following form (Pettiforl, 

1989) 

2 • 	1- 	 04-% 
(3.24) 

(3;25) 

where its. is the radius of the inscribed sphere; ID is the width 

of the d resonance at E=E
d and is fully discussed by Hubbard (1969). 

To foronlote the single site theory we consider a random 
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substitutional alloy AB. The fractional concentration of the two 

constituents are c and (1-c) respectiv.ely and their distribution 

throughout the lattice is assumed to be random. For this alloy the 

density of states equation (3.6) in a single site approximation 

discussed in section 3.2 can be written as: 

noce)-k- 	Tr C D,„ 	

• 

C

▪ 

120, arni 	am-4,4] 

(.t -C) be, t.tz 	2,J2fli 	 (3.26) 

where 

	

A _i  A - 	A 	A 
E2 ei(e 	11/4 

4- 8... 	 — . 6   I 	6 
cse  .D6 	2. 	4.a.„ 41... 	d E. — 

(3.27) 

P is the termination to the continued fraction in a single site 

approximation i.e 

F 	- C P 	4 CI-c-) P2,„,2in 2etar,,i • 
(3.28) 

6 
where I- and P" tare the terminators to the continued fraction 

2m14.4  	24% 

corresponding to pure A and pure B materials respectively, these 

are evaluated in the next sub-section. 

3.3(ii) Band sicicture 

We know that the shape of the d band electronic 

spectrum of all the transition metals is the same, therefore we 
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will calculate the density of states for an arbitrary transition 

metal and make it to behave as the density of states for A and B 

materials by shifting the centre, of the d band to EA  and EP 

respectively. The density of states of eg  and t2g 
symmetry, denoted 

by ye. 	and A respectively in the d band region of a transition 
metal is calculated using the Model Hamiltonian (Jacobs 1968) derived 

from the KEIR method.. The explicit expression used in the calculation 

is: 

. 
CE 	(.7■\ 2 r—r , 	 — 

— ••ctil 	K LL 	 tunf 
\I,C 4c t,f,h12--rz  

h.]  (3.29) 

where 

r(ki K 
- 

A 	e 	0, 4  le_ 	•c
C  04 0Z-n.1) 402 -‘ 	" 	 - 

0.30 

w 	X. < A-1.2 S' 

(3;31) 

K is the reciprocal lattice vector and only the following four values 

are used 

ko 	z.ir (O, 0, 0) 

k 	Zn.-( , 	i ) 
" 

Co, 2- 0 
4. 
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where a is the lattice constant, Rh  and AH  are constantS.The 

integeration in the k space is done in the Qof the Drillouin 

a 
zone. N is the number of points at which the integration is 

done. The three components of the k vector k$, 
k 

I k and k
z satisfy 

the following conditioll: 

k < k 	k z 	
(3.33) 

The values of the parameters, the spherical harmonics and 

the tight binding T(k), Slater and Koster (1954) matrix elements used 

in this part of the computer programme are given in Table 3.2. 

D 	urns out to be a diagonal matrix with three components equal mm 

and the other two equal to each other. The eg  and t2g components of 
the density of states can now be calculated by taking the imaginary 

part of the trace over the corresponding equal diagonal matrix elements. 
A A 	6 a 

These are then made to behave ast 1ft  andy v it components of the 

density of states of the A and B materials by shifting their centres 

to EA  and EB  respectively. 

A 
It is necessary in order to write down expression for r kro tiot 

and F8 npv  /of equation(3.28) to define intermediate quantities for  

pure materials KPI" 	K2 and KZ , K2 which have their imaginary 

parts given by the equations: 

A 	A 
I k' soA  -e 

 

A 	A te, SDI  

(3.34) 

  

	..11111.••■•.111•111■1011.111111.110..  	 11■11101•11•11■••••....101■■• 

  

    

4t. 
We are grateful to Prof Callaway for provide us with t7le 

at corners and edges of the Brillouiu zone. 
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k!1  = A- s-Dis  

6 17,„11.1  
.67% 

(3.35) 

The real parts of h' 2 
	1 

KA and KB ' KB  are the Hilbert transforms of 

the above quantities. These quantities are roughly analogous to the 

quantities in the denominator of equation (3.1) for the single site 

theory. 

As K
1
A 
 and KA  KB and 0 are the two separate groups of 

	

2 	1 	2 

the elements of the diagonal matrices, therefore the matrices,- 
_A 
 and 
mm/ 

revrA sof equation (3.28) which are defined in terms of these quantities 

also fall into two groups FIA.  Ft FIB  and F2B. The precise equations 

are: 

	

[A -, 	1-  

	

z 	2.,„241,/ -.4- 1 P t 	C 	A-1._ teA 
,, 

	

A _i 	 (3.36) 
+ 	A Ti 	A 

	

{ 2_ k Sm2,11 	P 	Kz  2. 	— 

	

r  ike.— 1 	,,+  
c- e. 1-1  L ‘'.2 + 1-4 21.12,,,,ti 4 '1 j = k  I 

	

6 ...I 	f 	 6 

J1 	

(3.37) 

i t, --k.  q2.7,2„,/ 4  r2.61 _ K2 

Therefore 

A Ay' di- 	AC 
-12hani - 2  

 

(3.38) 

  

g2-rri 
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,8. 	 6 L-1 
g 	-42wan. `- 2 

2 hi, 2 v- 	'2. 
e, 	' 

hi  
(3.39) 

A A 8 
( As Ki , K2 Ki and K are just numbersp  there is nordifficulty 

in taking their inverse). 

After substituting the value of P into the equation 

(3.26) we see that GI4,4cancels, therefote in this single site 
net 

calculationsweneod.bother about the value of G+ 1. The trace 
201244 

in equation (3.26) is now over two terms only. 

To do the numerical calculations for the density 

of states we must clearly define the quantities occuring in 

equation(3.27). pet  andkare the same as defined by equations 

(3.22) and (3.23), and the other quantities are defined by the 

following set of equations: 

A -I  
ts. 	cdC 	t 

2. 

(3.40) 
cut 1192.  .... z I< 

-LA" rL 	Ck: V( —E) 
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CA= 11.4) A 	Y 	c1.4 4-z.) 

g 
Ka 2. 

 

(3.45) 

 

  

I 	6J-

• 1

"0 It Cat 1:2.4
)  

CA  j%2'2o( 	) 	6:1  Ci<1.14. 	

W. 

(3.40) 

Ka It  ril‘z.  

2Jc. 

clE.
—   

	

b 1 	
1 	— al

• 

0(.1'0 	11; kt. e e,t rt.62_  - 

	

a P 2' 	ce4,2.20( 4-Z.) 	a,2CiCevi, 
. 

-*Y16  2_  .... 2.-. 
E 	 2.0.e. 

whereUkand%,,,B  are the resonance widths for the d bands of A an6 f... 

type materials respectively. Ed  and Ed are the centres of the 
d 

two d bands. t is the radius of the Wigner Sietz sphere. The 

values of the parameters used in the calculations are given in 

Table 3.3. 

3.3(iii) Conclusion 

Our strategy has been to use the density of states 

of the pure materials( obtained by a different method) to calculate 

(3.4) 
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8 
the terminators F 'and F 'for the pure materials. Thus alte::;i4ids 

.tiro. 	mew 
A 

the direct calculations of F 'and F; by the continued fraction 

	

hi 	Min 

method, a much more difficult proceedure. 

The numerical results are presented and discussed in 

the next section. 

3.4 DISCUSSION AND CONCLUSION 

Figure (3.2) gives 	geand A., the e and t
2g 

components of the density of states of an arbitrary transition 

metal calculated from the interpolation scheme of the Model 

Hamiltonian. The total density of states is then obtained by adding 

to the s density of states an appropriately weightdcombination of 

the two components ge_  and gt  . These components of the density of 

states of the transition metal are used as data in all subsiquent 

calculationS. 

Figure (3.3) gives the density of states of the two 

components of the alloy in the pure limit. The d component having 

the same shape but different band centres. The area under the curve 

for E less than .8 is,roughly equal to the number of d electrons 

and the s electrons. 

In figure (3.4) the electronic spectrum for two symmetrical 

concentrations c=.2 and c.8 is presented. ... 	We see .that an: 

addition of a small amount of impurity results in the appearance 
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of a high density,lof states around its d band centre at the e.<110u5c,  

of the density of states at the upper edge of the d band of the 

host metal. The total area upto E..8 for the curves of each 

concentration remains the same as before. 

Figure (3.5) gives the results for c=.4 and c=.6, and 111,  

see that with the increase of the concentration the minority band 

grows at the expense of the majority band. 

Figure (3.6) is the picture or a 50-50 alloy. There are 

two smooth roughly symmetrical peaks around the centres of the 

two bands with area under the curve renaining the same. 

From the various figures it is clear that the effect 

of alloying is that the height of the bands remain almost unchanfzed 

and the half width is multiplied by a factor c, but the centre of 

gravity of the bands roughly maintain their position. These are 

the special features of this type of approximation as compared 

to CPA, in which the width of the band 9  however defined and 

height of ouch sub—band go as 4C;and the centre of gravity is 

shifted by amount proportional to (1—c). 

The calculations in this single site theory taXe very 

little computer time, because there are no self—consistent equations 

to be solved. 
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TABLE 3.1 

n-2 
THE MOMENTS pri:KtIO 	FOR FULL LINE CURVES IN FIGURES 3.1 AND 3.1b 

AND THOSE CALCULATED FROM EQUATUION(3.16) 

c= .4 

n n 
M ix% tO -2  

NUMERICAL ANALYTIC 

0 99.8986 16.0990 

1 -99.7512 -100.0000 

2 2498.4631 2501.0000 

3 -2496.7733 -2503.0000 

4 62538.1249 62601.0200 

5 -62593.2612  - 	-62750.1000 

c= .2 

n 	 .iurtx tov1-2-. 

NUMERICAL 

99.8125 

-299.1139 

2496.3129 

-7486.7841 

62500.1002 

-187689.7650 

ANALYTIC 

10.0000 

-300.0000 

2501.0000 

-7509.0000 

62609.0200 

-188230.3000 

0 

1 

2 

3 

4 

5 
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TABLE 	3.24_ 

REAL SPHERICAL HARMONICS 

= J15/4x xy/r2  

2̀.  = N15 4/C yz/r2 

/Y3 = 4 15 4 x zx/r2  

A-A4  = 415/4r (x2- y2)/2r2  

4177)  4-e•(3z2-r2)/2r2 
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TABLE 3.2, CONTINUED 

THE TIGHT BINDING MATRIX ELEMENTS 

T 	= E + 3ddScosx cosy + 2ddlc(cosx+ cosy)cosz+ ddg(cosx cosy + • xylxy d 

2cosx cosz + 2cosy cosz) 

T 	2'(—ddx + ddS)sinz sinx 
xY/Yz 

TRy9z  = 2(—dd7c +ddOsiny sinz 

T 	2 2 = 0 
xYpx —Y 

Tx37.93z2—r2 = 43(dder —ddg)sinx siny 

yzaz= Ed + Odd:nosy cosz + 2ddK(cosy +. cosz)cosx 

+ dd6(cosy cosz  + 2cosx cosy + 2cosz cosx) 

Tyztzx 2(—ddlc + ddg)siux .siny. 

Tyzyx y 2 2 =I 2 (ddcr—dAsiny sinz —  

Tyzt 3z2—r2 '41 2  (—dda"+da)siny sinz 

Tzxyzx= Ed + 3ddc-cosz cosx + 2dd"Alcosz+ cosx)cosy 

+ ddG(cosz cosx + 2cosy cosz + 2cosx cosy) 



64 

TABLE 3.Z CONTINUED 

3 
T zx,x 2-y 2 = 	-2- (ddc ddg)sinx sinz 

T
zx, 3z

2-r2 = 2 (-dder+ dd')sinx sinz 

T 2 2 2 2 c Ed + 4da'cosx cosy x -y ,x -y 

+ adder + ddX+Iddg) (cosx cosz + cosy cosz) 

Tx2- 2 3z 2-r 	T (ddor- 4ddx + 3ddS) (cosx cosz-cosy cosz) y,  

T 2 2 2 2 = Ed  + iddu(4cosx cosy + cosx cosz + cosy cosz ) 3z -r,3z -r 

+ 3ddX(cosx cosz + cosy cosz) 

+ idd6(4cosx cosy +. cosx cosz + cosy cosz) 

x-= k 
N x 

y= 7,1 k y 
z= X k 

N z 

Ed= .5 Ryd 

AH= .8826 Ryd 

RH= 3.592 ati  

ddd= -0.0296 Ryd 

ddx= 0.0147 Ryd 

dd6= -0.0024 Ryd 

a = 6.8088 a 



65 

TABLE 3:3 

Ed = .4 Ryd 

Ed = .6 Ryd 

a = 3.8088 

ri  = .620 x.629 a aB 

1J A  = .0338 .f et 

1A) = .0402 rsaB 
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The density of states for semi—elliptical band alloy. The full line curve 
is for single site theory and the dotted line for CPA. 

FIGURE 3.1b 
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The density of states for semi—elliptical band alloy. The full line curve 

is for single site theory and the dotted line for CPA. 
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FIGURE 3.2 

Plot of E and T component of the d band density of states of transition 

Metal. 
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FIGURE 3.3  

The densities of states of transition metals with Ed
=.4 and .6. Tge P-rea 

under the dotted line curve is 5.85 and that under the full line curve is 

5.66. 
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FIGURE 3.4 

The densities of states of transition metal alloys in single site theory. 

The area under the dotted line curve is 5.8o and that uuder the full line 

curve is 5.68. 
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FIGURE 3.5  
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Plot of the densities of states of transition metal alloys. The area 

under the dotted line curve is 5.76 and that under the full line 

curve is 5.72. 
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FIGURE 3.6  

Plot of the density of states of 50-50 transition metal alloy in single 

site theory. The area under the curve is 5.74. 
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CHAPTER 4  

CLUSTER TIlkORY FOR d—BAND ALLOYS 

4.1 INTRODUCTION  

In this chapter we will apply the continued fraction 

method to calculating the density of states of transition metal 

alloys in a multiple site theory. As a simplification in the 

calculation we will deal with the d electrons only in this chapter. 

The sr electrons and their hybridizing effect with the d electrons 

is dealt with in the next chapter. The transition metals we deal 

with here and in the next chapter have face—centred cubic structure, 

but this method can in principle be applied to the body—centred 

cubic and hexagonal materials also. 

There are many advantages of the continued fraction 

technique but three of them are clear, The first is that it is 

not necessary to solve repeatedly sets of transcendental equations 

where as it is necessary in self—consistent theories. Therefore 

we need less computer time. The second is that there are no 

difficulties in conection with the analyticity of the density of 

states as shown by Nickel and Butler (1973). The final advantage 

iS that the Liftshitz condition (Lifshitz 1964) on the density 
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of states (that_the density of states is non—zero at any energy 

at which the pure componentsin the alloy has a non—zero density 

of states) can be satisfied. 

The cluster theory method calculates the density of states 

for all possible configurations of a central cluster of atoms (the 

atoms outside the cluster are treated in an average approximation) 

and then an average density of states is calculated by adding 

together the density of states for each configuration multiplied 

by the multiplicity of the configuration (which is calculated. 

using symmetry arguments) and a suitable probabili*y weighting. 

In the next section we discuss the formulation of the f 

density of states equation for the d electrons of the transition 

metal alloys. In section 4.3 we present the numerical results and 

conclude this chapter. 

4.2 THE d ELECTRON DENSITY OF STATES.  

The disordered Hamiltonian which we are using is given 

by 

 

(4.1) 

(4.2) 

where 

14 - - 	to 	c . -.A. et 

hnni 
A i & 

Pr% 

where 	and C. are respectively creation and annihalition operators K 
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for the electrons on site i with angular momentum m . do 	is equal 

to E
A 
or Eli  depending on whether the central site is occupied by 

an A type or-a B type atom in the particular configuration being 
t . 

considered. 1", are the elements of the hopping matrices for the 

electrons with angular momentum m and mi  between the sites i and j. 

These are intact the Slater and Koster (1954) two centre energy 

integrals and are given in terms of direction cosines in Table 4.14: 

The central atom and its twelve nearest neighbours in a face—centred 

cubic structure are pictorially represented by figure 4.1. The 

values of the direction cosines for the twelve sites as labelled 

in figure 4.L are given in Table 4.2. 

The problem we are dealing with here is considerably more 

difficult than the problem of single band cluster theory. aiaequently 

in order to get tractable result it is necessary ti make severer 

approximations. Nevertheless our result is the first cluster 

calculation on degenerate d band alloys to prove feasible. The 

guiding principles in making these approximations are: 

(i) That our results should reduce for the pure materials to 

those of Haydock et al (1975) .11 

(ii) that the diagonal matrix elements on the central atom and 

its twelve nearest neighbours should be treated as nearly exactly 

as possible. 

(iii) That the Lifshitz condition should be satisfied. 

The first steps in deriving the result are closely analogouA 
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to those used in Jacobs (1974, Cubiotti et al 1975) for a single 

band cluster theory. However it is necessary almost immediately 

to make an additional approximation due to the degeneracy of the 

d band. We begin by writing down our basis functions. There are fi'vc  

Wannier functions of different angular momentum on each atom. 

Consequently the initial basis function 10> on the central atom 

in the single band theory is replaced by five basis functions Ic>i,  

in the d band theory distinguished by different values of the index 

m. The same is true for all additional basis functions generated 

from the set 1.10),4 by repeated operation of the terms Hi  and Hi  

of the Hamiltonian. The basis set we use is then as follows: 

rrt: 132,3,4)3-  

rn 
i1,0>n, -_- No  LH% 	011 

(4.3) MA 	0 I- 
A - 

N 	
I:" 	0114 

(%0) = 	k 

21- 	k A--> , 	, wha 
n6.0 

LI-110,0%i  - 01.1 
{All further kets are treated in a crude approximation analogous 

to that applied to the higher kets 	and and 1 2,1> in Jacobs (1974), 

Cubiotti et al (1975) ). 

In this set of basis functions each ket is orthogonalised 

to the previous kets and each ket is normalized by the factor N 

to unity. The notation kz4) for the elements of the basis set (4.3) 
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serves to indicate that the element ii:4) is constUcted from the 

ket 107  by i pperations of t4 and j of 141  . ( This notation 

is ambiguous beyond a certain level. The ambiguity of notation will 

not affect us here because we make our approximations before that 

level). 

In basis set (4.3) the normalizing factors are calculated 

as follows: 
2- 
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The kets % p tijo% and 12,d? are easy to handle. The ket tIA0  

however is difficult to handle because it depends on all configurations 

of A and B atoms on the twelve sites of the nearest neighbour shell. 

We include the effects of this ket by reasoning by analogy with 

the single band theory of Jacobs (1974) and Cubiotti et al (1975). 

In this theory the,part of the continued, fraction which depends 

on the ketILI>, ignoring the broadening terms, may be written as 

follows: 
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t< tol  

e.it I vtlik?-e 

3- z E E (6-2 )zS2/56  
6 

6 
C-1:* 0:4  

(4.8) 

{where equation (4.8) follows from equations (7), (8) and (15) of 

Jacobs (1974), Z is the number of atoms_of type B in the nearest 

neighbour shell (i.e Z ranges from 0 to 6 ) ).  

In this expression we see that the ket li,C› has a vital role in 

ensuring that the band structure has no singularities in the region 

between the bands centred at — 2 and S 	which would otherwise "T. 
be implied by the denominator of 

  

(4.9) 
4101i-4'o> --E 

 

In\our degenerate d band case E
A 
takes the place of + S 

7E 

and EB  that of — S4", and the numerators and denominators are 
. 

2_ 
respectively adjusted by terms. proportional to 2.4) and Lo (where 

14 is half the bandwidth) so that the result is as good as possible 

in the limits Z=0 Or 6. The proceedure is carried out in more detail 

below: 
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The secular equation for basis set (4.3) is given by: 

<0114 10> , r.1 
40 i4 I to> 0 0 

(tot tAkto-7- ES, / 
Kt' 

4.%% 	kto`? 

{D (1411i) / 

ct‘ivAitt) -Eg 
rhria 

vvx 

0 

<ttiHt 	/ 
vba 

<9-01v\ t 11) h,„' (.aef rev) 

(4.10) 

Now folding all the matrix elements of the matrix(4.10) into the 

first and using the above reasoning by analogy with the s band .1.4 

multiple site theory we get 

r a 4lionhvir.kcio  —E)E 	—L 	A 
L 	 rvI 	L.= nAA P"ha  

where 

do 	AEA 	Cl-X) ass  (4.12) 

where X is the number of atoms of type A on the central site (x t-,0 

or 1 ). EA  and EBare the centres of the bands for A and B type 

materials respectively. The summation L. rhi A  means sum over the nearest 

neighbour sites which are occupied by atoms of type A only, similarly 

Cul nit3 

atoms. 

means sum over the nearest neighbour sites occupied by B 

and ti m are defined by the following equations: tvi 
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-1 

	

CA 	• [A3„ 	 JI F 

	

r4 	 04 	1-■ 	 rrk 	 evti 	nit 	 Ali  
(4.13) 

. c A, e - 	A4 L 1 mig 	6 	Wts  Mat”, 	• 	 11% 011 
(4.14) 

where . 	• 
c 

3 - 	
vi L 40 	V. 

Z 	A„.A: 4A  Avv /....  Aryl\  
)•1.11N1 	 Li n74 hi 	1'1271 	

Wk3M„ fll 	 1 

(4.15) 

 

• .. 	, 

7.; L A il  Au 	,„ A 	E A „ 	01, 
Vronfl A=241 	I% *1 'I % 1-  4 111 rit 	tirnA h'616 5 t " rei 	mit 	 rn.6- 

f-  LE) c FD sp,_E) 0-0 Fb 0.1 E6- M 

-1  
Da, E): (L)  ) a- b (.LA FDCB,Z)-1 

(4.16) 

• • 

(4.17) 

(4.18) 

where c is the concentration of the A atoms and 4,C1-,$) and 6(y) are 

the Haydock's coefficients L refering to the symmetry of the d 

bands ; L equal to 1 means that the coefficients are for degenerate 

set py,yz 2x3 and L equal to 2 means the coefficients are for 

t 

r 2 2. 

xi  Y) 

) a _ 

 J orbitals. M,e) is defined iteratively in terms 

of Haydockl coefficients CLUntl) and b(bli) ( given in Table 4.3) in 

the following way: 

We are grateful to Roger Haydock for sending us the numerical values 

of the coefficients used in his continued fraction technique. 
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Pete) 	CLA4 	E - 	 01* I E.).1 (4.19) 

	

F (6-)e) (+4.0)  rez- 4  boa 
	

(4.20) 

boo 

where F(.1̀5;Ois the termination to the continued fraction at the , 

fifteenth level. b., is related to half 	bandwidth of the d bands)  

aim  and 644  are given in Table 4.3. The sign in equation (4.20) 

is selected so as to have the correct analytic behaviour. Because 

of the 3—fold and 2—fold degeneracy of the Haydock's coefficients, 

the elements of the diagonal matrix f'eNwt, also show the same behaviour. 

_After computing 1C3 
isMI 	n and A4h owt wesee that these are also rh  

diagonal matrices with three fold and two fold degenerate elements 

A A 
ni 
S  

on each main diagonal. This means that (a i , 
i 
 and CPI 	given 

ha Ifn
hni t  

by equations (4.13) and (4.14) are diagonal matrices with the she 

property. We can use these facts to simplify the last two terms 

	

„IA 	nie, 
in equation (4.11). If Gi and (I 	are elements from the triply 

2.A 	,2-6 
degenerate set and ( 	and Gi 	are the elements from the doubly 

„ 
degenerate set of yr  1/ and GPI

11. 
 B respectively then ns rel 	 eli hi 1 

Au g  	 pc 	:0 	2A t., 	Ot: 	io 
4:1,1  = Po  — E)S' , — t4,'AL A .Ah, 4. 4' _ A a A , 

Pv1111 	 e =MA A "I t"  ' 	i, =PA A tv" "A Kt  
NI / 	 kl,w11 

A 4.  4 E A „ „ te 	
A 	4 , 

	

OE t0 	 16 	0 	g 0 11 
(4. 21 ) 

▪ nne. "ni 	1111 	 it- ha> rviht  
ro  as 	 )114 

The only difficult task in the above equation is to evaluate the 
oe Aio 

summations I A Nfrk 	and ?;ansrlmh41-,14 The first sum can 
cznnA mr" 	r1.1  

dso 

be very easily calculated on the computer for different 
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configurations of A atoms on the nearest neighbour sites, then the 

second sum can be evaluated from the relation 

 21 „ ;7. A u 
 

m 	irrinfc 	 nne3
%
PlAI 

 

ro 

(4.22) 

as we have already calculated the sum on the right hand side 

{equations (4.15) and (4.18) t..). 

Thus if n is the number of configurations of the A atoms 

in the nearset neighbour shell, Mn  is the multiplicity of the 

particular configuration n (both of which are estimated by symmetry 

arguments), and y is the number of A atoms in the nearest neighbour 

shell then the average Green function is given by 

	

64 	/..,n 	YAY 	3- y 
kGio 	 c 0_0 

YVA 	n 
MN 	I' 0 r■ 

(4.23) 

Hence the d dand density of states for transition metal alloys is 

given by 

fICE) "z: 	Te 	kGtv`?1,4 / 
rn 

(4.24) 

4.3 DISCUSSION OF NUMERICAL RESULTS AND CONCLUSION. 

The calculations in section 4.2 are done for arbitrary 

transition metal alloys with EA= .2 ryd and EB= .5 ryd. The band 

width for bothA. and B materials is .2 rydbergs. In figure 4.2 

we give the results for the d band density of states of pure A 

type transition metal around EA= .2 ryd. An exactly'similar curve 
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is obtained for the B type material around EB= .5 ryd, which we 

shall not present here. We see that our method has reproduced the 

Haydock curve (1975), which contains much structure. This is because 

of the use of the Haydocl2s coefficient (private commiunication ) 

in the termination of our continued fraction. This curve has a 

close comparision with the result of the histogram method of Pettifor 

(1972,) and the results of the interpolation method of Gnat and 

Raubenheimer (1966). In figure 4.3 we give the results for c= .8 

and c= .6 and in figure 4.4 for c= .4 and c= .2 for a band around 

E
A
= .2 ryd. The curve for c=.8 shows that with the addition of a 

small amount of impurity, the structure at the edges of the band 

has disappeared, while the peaks towards the centre of the band 

have crudely speaking retained their positions and their heights. 

As the value of c is decreased further, we see that the peak at the 

centre of the band remaines, with humped shoulders (having a small 

amount of structure in them) on either side. The band has narrowed 

also. This narrowing of band goes as J-4T at its edges. In the curve 

for c= .2 we see that there is a pair consisting of a sharp peak 

and a small peak a little shifted from the centre of the band, 

surrounded by symmetrical pairs of broad peaks. The pair of peaks 

in the centre can be understood as arising from isolated A atoms, 

the splitting of the peak being due to thelsplitting of d
( 
 E and T 

electrons in the cubic enviroment. The broader peaks around this 

central pair are due to an A atom in the centre with one, two, three 

or more A atoms in the nearest neighbour shell. An A atom with a single 

nearest neighbour of type A, for example will give a typical bonding-

antibonding density of states i.e. peaks at or near Eft and EA+t 

4beingthehoppingintegrall.Thecentralpeaks'are shifted from 
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E
A 
due to second order perturbation theory repulsion by the bands 

near EB. The shift is roughly proportional to (1—c)t/(EB—EA). 

In figure 4.5 and figure 4.6 we give the results for a d--electron 

density of states for a complementary band around EB= .5 for various 

concentrations. The results are approximately a mirror reflection 

of the results of figures (4.3) and (4.4) if we neglect the effects 

of the assymmetry of the band structure of the pure materials. 

For the sake of comparision in figure 4.7 we give the d band 

density of states for c= .2 wheh we use a broad square root termination 

instead of llaydocim spiky termination. It closely resembles the 

curve for c=.2 in figure 4.3 with the structure smoothed. This shows 

that the density of states for the minorty band obtained by the 

above method is relatively independent of the termination we use. 
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TABLE 4..1  

ELEMENTS OF THE HOPPING MATRIX 

. A 
x7

= 312m2(dd +(12+m2-412m2) (ddA)+(n2+12m2) (ddT) 

A 	= 31m2n(ddn•)+ln(I.4m2) (ddX)+1n(m2  -I) (ddb) 
xYtYz 

Axy, zx .= 312mn (ddri)+mn (1 -412) (ddic) +mn (1 - ) (ddG)  , 

1E1(12_1:12) (tido 	 2 A 	2 2= 	 +21m (m2-12) (ddx)+ 11m (12-m ) ((MS) x 	2. 

I , 	 , Av, 3z2-r2 =4 aimL n2
2

2  +m2  (dc100 -21mn2  (ddx) +2 	( I +n ) kddS) 

Ayz, x y 	
3 2 2 = -mn (12  -m2 (c1(10-mn +2(12  -m2  )i(ddR)+mn{1 +3-(12-m2 ) (MO - 	2 

) A 	2 2 = 3  n1(12-m2  (ddri)+nlp -2(122  (dd-n1.1.1 -1-(12-122) (dctS) zx„ x -y 

) ((ids) 2 2 2 	r 2 2 2 2 21 	{n24(12..122. 2 A 2 2 2 2 -, 4-(1 -m ) (ddo) + +m -(1 -12 ) Od7:-) x y• ,x y 

Ax2-y2,3z2-r 2- = IT3 (122  ) n2  4(122  ) 	+fan 2(312_ 
12) 

 (ddx) 

+ ila(1 +n2) (12_012) (ddo  

A3z 2-r 2,3z 2-r2. D24.(12.nn2)12( do_)+3n2(12.4n2) (ddx) +4(1241li 2)  2 (dds) 
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TABLE 4.2 

nn 	DIRECTION COSIKES 
1 

1 1112 0 1/41 

2 -1/f2 0 1/(2 

3 -1/12 0 -1/A 

4 1/A 0 -1/A 

5 -1/J -1/.11 0 

6 1/41 -02 0 

7 1/A 1/A 0 

8 -1/M 1/A 0 

9 0 1/f 1/42 

10 0 -1/1-2 1/J 

11 0 -1/12 -1/A 

12 0 1/12 -1/a 
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• 

TABLE 4.3 

Haydocs coeffients for 3—fold and 2—fold degenerate 

d orbitals 

L=1 

t/4(.1„N) b (L9 N) 

3 —0.268442E-01 0.277308E-02 

4 —0.226108E-01 0.223218E-02 

5 —0.233802E-01 0.248629E-02 

6 —0.233476E-01 0.268609E-02 

7 —0.199578D-01 0.202226E-02 

—0.183525E-01 0.282562E-02 

9 —0.208408E-01 0.210848E-02 

10 —0.233035E-01 0.218709E02 

11 —0.215445E-01 0.220476E-02 

12 —0.186115E-01 0.191775E-02 

13 —0.179980E-01 0.188479E-02 

14 —0.113130E-01 0.232730E-02 

15 —0.191887E-01 0.181939E-02 
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TABLE 4.3 CONTINUED 

(x2-72 13i2..r2j 

N 	 a  ILLATI___ 1_21.12.01________ 

3 —0.129238E-01 0,198260E-02 

4 —0,134164E-01. 0.188169E-02 

5 —0,155777E-01 0.200111E-02 

6 —0.188541E-01 0.221760E-02 

7 —0.200979E-01 0.209972E-02 

8 —0.196472E-01 0.172915E-02 

9 .  —0.111317E-01 0.215488E-02 

10 —0.184626E-01 0.170182E-02 

11 —0.101740E-01 0.188401E-02 

12 —0,111907E-01 0.166363E-02 

13 —0.160846E-01 0,179735E-02 

14 —0.108216E-01 0.186812E-02 

15 —0,177737E-01 0.173759E-02 

eilo= —0.0183 ; 1103=0;00245 
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Plot of the d band density of states of transition metal alloy 

in cluster theory. The origin of curves for different concentration 

is shifted upwards. 
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Plot of the d band density of states for c= .6 and c= .8. 

The origin of the curves is shifted upwards for different 
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FIGURE 4.7 

Plot of the d band density of states of minority band, 

when a smooth square root termination to the continued 

fraction is used. 
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CHAPTElt 5 , 

CLUSTER THEORY OF TRANSITION METAL ALLOYS 

5.1 INTRODUCTION 

In chapter 3 we applied the continued fraction method 

to realistic transition metal alloys in a very simple approximatiolif  

in 4chapter 4 we went a step further and carried out the calculatior 

in cluster theory, but neglected the hybridizing effects. In this 

chapter we will do the hardest and the final model cAulations of 

the transition metal alloys.. Here we consider a more realistic 

model of transition metals, where the d bands cross and hybridize 

with the s band; that is to say we take into account the sp density 

of states and the hybridizing effects. In the calculations of this 

chapter we will use the discussion of chapter 1 (about the KKR m. ;r14 

the results of chapter 2(modification of Lloyds expression) an:: 

chapter 4 (calculations of d electron density of states). 

In the next section we will show how the KKR secular 

equation for transition metals can be written when we abandon 

the Bloch representation and how we can split the result into 

a tight binding part in site representation hybridizing with an 

infinite plane wave matrix. The tight binding part will turn out to 

be the same as calculated in chapter 4. The hybridization part 
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ki#2 	S-4  

• rti,,(A 
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is calculated in section 5.3. In section 5.4 we will do the finf.1 

calculation for the density df states of the realistic transition 

metal alloys. In the last section of this chapter we will present 

the numerical results. 

5.2 KKR MATRIX 

The secular equation for transition metals in Bloch 

representation is given by (Hubbard 1967, Jacobs 1968) 

where 1-0,0 is the 5x5 tight binding Slater and Koster (1954) 

matrix in Bloch representation and is given by Table 3.1. 1-11:0 4q) 

and rne2)are the hybridization matrices. 1 is a reciprocal 

lattice vector. ( k  is an argument of the matrix elements here 

and not a matrix index). 

• 
According to Heine (1967) the above equation can be 

unfolded and rewritten as follows: 

I

sm  • L 17:0;:v 4) 17,, (..t.i Am 
— 	

m(D 	(5.1) 

This is a nine by nine matrix« 

Transforming equation (5.2) into the site representation 

we have 
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ES 	 P611 ) - ' 
(5.3) 

„t- 
cie) erm 

where 
k.11 

fix) 	t 	e_ (5.4) 

This is an infinite matrix, because we have abandoned the Bloch 

theorem the wave vector 1.5. can have any value, and is a matrix 

index. 

	

In equation (5.3) 	, is the tight binding d matrix between 
the sites i and j. p(k) and Ii (k) are the hybridization matrices 

	

L, 	
h, 

between the tight binding d wave functions and the free electron 

wave functions. (1‹.--E )g,e_tai 

is the number of lattice sites. 

is the free electron matrix. P4  

The matrix given by equation (5..3) can be symbolically 

represented as 

ti 

  

A 

6 	r 

F C 

(5 . 5 ) 

  

  

where D is the diagonal d electron 5x5 matrix at the central site, 

A is the 5A5(N-1) hopping matrix between the central site and the 
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other sites, 13 is the matrix for the d electrons on the other sii7/  

E is the hybridization matrix between the d electrons on the 

central site and plane wave, F is the hybridization matrix betreef 

the d electrons on the other sites and the plane wave and .C-is 

* 
. the plane wave matrix. A , E , and F are the complex congugat 

of A, E and F respectively. 

In matrix (5.4), folding the sub—matrix B into the sub- 

matrix 

we get .  

D 

E 	.BC] 
(5.6) 

D-AB 
4
A* 	E—AB F 

(5.7) 
*-t 

E —F B A 
* -1 

C—F B F 

There are two reasons for folding B first rather than C. The firt, 

is we can separate out the tight binding part from the hybridizA 

part. The second reason is we can express the tight binding pEr. 

in a form in which it has already been evaluated in chapter 4. 

Finally folding everything into the first element of the 

matrix we get 

L(D—Alii A*)--.—{(E—DIVF)(C—FVF) (E*—F*ff'D*)l] 	(5.8) 

where the first term is the tight binding d electron term, while 

the second term gives the hybridization correction. 

The reciprocal of expression (5.43) is one diagonal element 
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of the inverse matrix (i.e one diagonal element of the Green 

function), hence we can use it to calculate the density of states. 

5.3 HYBIUDIZATION CORRECTION  

The last term of equation (5.8) in curly brackets 

gives the hybridization correction to the tight binding matrix. 

To calculate this we %fill first evaluate the inverse matrix 

*-I 
(C—F B F), where C is the plane wave matrix given by 

C = 0.-e) 	 (5.9) 

F is the hybridization matrix given by 

F= (K) L AoS, (xR14)yL(bs) &cut) e 
r4 	.471  

iS t; 

(Znick )  

where Am  and RN are Mueller)s (1967) hybridization coefficients 

and Scpc)is the Muelles cut—off factor. a.  is the s4rical Bessel 

function and 	is is the sperical Harmonics. B is the matrix 

which correspond to sites other than the central. In rcaculating 

thOybridization we make an approximation for B, which corresponds 

to taking average medium outside the central site with a fraction 

c of atoms of type A and a fraction (1—c) of type B. This 

approximation can be justified by the reasoning that d electrons 

on the central atom hybridize with the freely moving sp electrons, 

which in turn hybridize with d electrons on sites anywhere else 

in the lattice. Because there are infinite number of sites 

available for this second hybridization,the average approximation 
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t 
is likely to be reasonably accurate. B is approximated by 

 

  

(5.12) 

  

Ea- 

  

where A is a small broadening Introduced to make the result analytical 

and is discussed later. 

*-1 

	

Now the inverse matrix (C-F B F) 	can be evaluated as 

follows: 

(d- etc' F) (k2.-E)gtic, - 	rilt cis) r c- 	%-e irto ,c 5,13)i!o I- EA.- E.-a se,- s-aj 

	

ecot.. 	 - 	 r  ic 	 oi) fc 	EA-E- A E °I. 	 irE-6 C.,„ 	(5.14) 

*oc.)[ 	
L'I !) m cm " Eck- e-e. 	ee-e-A- 	m(jc 

Approximating the sum over the site index i by an integral in 

the above equation we have 

	

3 	ilk- Iff.)'1": 	44- t 	r y- e 	I ro.0 c4) x c PniC`F =C-te-E)414.1-J„,7:34-‘ 	 Oft Om 

I 	 %-c 	rico 

E4--4 Gire-4 	"%-n% LEKe-6 Vs-e-164 c2v4 
(5.15) 

where ‘SL is the volume of the unit cell. Nov if N is the number 

of unit cells then 

S 2,Ck-tc.).rt: 
ar. e. 	= 1152. gbo: 

Hence we can write equation (5.15) as 

(5.16) 
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afr — 	 t.. 
C- B F rIKIE)_/,11-4 LO5) -fa I " OS A - 	I-c- 	 g On. Eg 	kCA 

(5.17) 

Z- P 001 c 	 P (.4/) a es- 6-4 0 tin  

Let 

0 m
CK)z.-VF 	 oe.) . 

s,,cx - r LK) I 	1- c 
"" Oft 	ry 

w A — e- 

hi  (e')= r e- 	
=%- 

h. zs- 
/4-  

MOO ktE P (x) 	c  
Eg1/4—e-4 F6_ e_A} 

ink .L) 	 -S,,,clo 

(5.18) 

(5.20) 

(5.21) 

Then equation (5.17) gives 

(5.22) 

By Taylors expansion 

1:c-  

-I 4 	* 	-t 

1.  4  04.) 	0(-) 1; S4e) ti)  04-)E-512` )41 )  

( 5. 23) 
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air 	 -jit 	— 1 

= CO tiC)Sig. 	(130C4i fAtc-IC) [Fun‘i 	L (41.1) 41:$64-11) Shf Cie)] )C 

ess 

.f„r ir_if! ) d'oak3 	
(5.24) 

-1 i 	 ...r 	* 	 s, 	-; ,- 4 
= CD 0 ()Li .. 4 601.S 0,)[.8' , +Oa ,Sat!s cicf)cDell)s Aciix ,„, 	0.,,,, 	. 	im 	K 

witil 	(.1X ) 

(5.25) 

where 
r 

C h< 
s --,, 'La-  

0403  

The standard result used in equation (5.23) and (5.24) iS 

given in appendix B.If we denote the integral occurring in equation 

(5.25) by 	{this integral will be evaluated later in section 

5.3(i)Ithen we can rewrite equation (5.25) as 

-A 	 '  
F*6-F] vock)b cocoLcle_)ts 

m N 	mot(  U 

hi 
„lf,040 03 (5.26) 

Returning to the hybridization correction term of 

equation (5.8), we see that it can be broken up into four terms. 

In the following pages we will clulate each of them separately. 

5.3(i) FIRST CORRECTION TERM 

The first correction term in equation (5.8) is in 

proper notation given by 

ow. 

C— F. B.. 
Kit, 

E 
OK L.. 	I"' 	el` kie EKo 

(5.27) 

sk. 
1%
11,..eghlx] 

-1 
L cio- 	(Ey;i' Pikz ] rt:..04f) 
vocs 

= IZ 	{boos —1 iSloe3s I s_cso 

4,„cid!) CIJ (.1z)i- & 	)! 
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- I 
yvt, 

/ 
its 

-1 	t k  
-t-ahtint„EnNtn, 	 (5.28) 

-1 
co 3 	rog Li\n” 4  In 1, 1K1-"J 	 m!,  q 	 (5.29) ',Ara 	°I' (1,-,  ohm' ow,  mmio 	Ynnti 

(we co"- drop. 	the summation overm, a.ndi 4, because all the 

matrices are diagonal). Thus 

= 	'a CO  
molf  (  

Now we evaluate the integral'   Cs) given by 
tvoti  

5,n(F)....„ 	 ctk 4„so Doc)-f,„(k) 
Qx703  
SLf 	r:),,c(t) ecy.) 	k 

J 

(5.30) 

[using equations (5.18) and (5.19)) 
rif„ 

Substituting the values of 16114) and 4'300 from equations 

(5.11)and (5.20) respectively we have 

3 	•2. 

c (m/ - ) 	PcE)SaK a7_0(kti)Scue)YLL4Ye_ c4)  ha  (5.33) 

Pcz) Scc 	,c ,Cycs,)- coc)  

of  
(5.34) 

where 
-I 2- 

P CE 	a 6 At li 	 (5.35) 
(2.70-5  
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n_ as  /4 	( a is a lattice constant) 

and 

4 Ef= E. /- *to P 	c- 
e Ut) t% 	

%-c- 	c 
rn  EA-e- EG-e-11 veoc 

(5.36) 

The broadening 4 in J3(k)'(occuring in E ) will)hencefor0 

be ignored. The teason is P1 )occurs only in integrals, and the 

effects of this broadening are significant only in the neighbourhood 

of the singularities of the integrand.-These effects are nearly 

symmetrically disposed around the singularities and consequently 

give only a small effect on the integral. With this approximation 
/16 	m 	1 

and the subsitution of values of q m,(X) and 101 ./ we can rewrite 

equation (5.36) as 

E'_ 	.4. N., 4)..),  cao + t- c 
_ 	 re_ts (5.37) 

E can be made independent of X by fixing the value of 4CK) 

and apt eh) at 'a certain point k. k0  ink-space; and it can 

be shown that it does not make difference to the shift of the 

energy bands f Therefore 

2. I - C_ = E 4 A" S. Oci f ii )Sc.(k-a)1..c    h 	(5.38) 
EA-e-A E$-P-11:1 LL 

Returning to equatio4 (5.34) we will now discuss the Mueller' 

cut-off factor) 	It should be selected such that only the 

lowest one or two plane waves hybridize with the d bands and 

thus ensure that the d bands given by the interpolation scheme 
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preserves the correct symmetry based degeneracies. Let 

2_ 

(K-tc..) 

(5.39) 
This will be equal to one at 

Ivo&o and will be virtually 

zero after a certain value 

of k. Having thus defined all 

the qualities occuAng in 

equation (5.34) we can now proceed 

with the calculation of 'C.E)  For this lie will introduce a small 

broadening 1-e 	in the denominator of equation (5.34) to make 

the function analytic. 

Substituting the value of 5(0.) in equation (5.34) we 

have 

co 	
.2- 	-2xCie.-iceo2 

9 A rwCg)  ---- P(E) S iczait  A -1,0(  (Q e 	g Li_/ 

. - 2- 	...20((IF-tc,)2.  00 

= PCE) S'  clK 5 A2(-Cif  RI-t) .2,  So! 
.) 	Ir-zz. e,  _ 4:6 

04 	 2_ 	 2.. 
2- • ice  ‘ su 04.-11‘) / 1-  __ 	-2ct (4-710 

(5.41) 

-0)(Elak. k.  b(  "ie 	— E A-s.C4E/e0 e 	g ■ 
o 	. k 2:- el- e 	

Li 

It should be noted that the sum over k extends from °too() 

because by alloying we have destroyed the translational symmetry 

of the lattice, so now there are no boundary conditions on k . 

(5.40) 

The first integral Frn.,,  of 'aivtrxi is solved analytically 

by the use of complex analysis as follows: 



.4.5C11‹ 4 1 UCKI-0-e-241t-IC))Eti23,1-C-GIA-3/4)-p2sx(4-6
)
1-Q 	(5.43) 

1-  
I• Kt-E--4 

a. 00 
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00 / 

/ P(G )1,stk E. I ( §-it2) I 

co 
Pc_E) e_ —C-FE'R,A)S 8k 	 / o LL  '2- _00 

-2a( 'K 
12 	

,4 

LL PCs) e 	 C4i7 R°)  
(5.42) 

The last equation is obtained by Principals Parts integration., 

the real part of „: being zero. This proves that the first 

integral of $)liCf)  has only the imaginary part. 

The second integral of 9CE) can be calcdlated numerically. This u Mae 
is real , its imaginary part is zero. Hence the final expression 

fore 	is 

 1.  PCt)[1:r  e°4(  4e-tc°) :2 3,  (,AW' RA) 

bym. Thus the first correctinnAgiven by equation (5.30) is now clearly 

known and it turns out to be diagonal 1  with all elements equal. 

5.3(ii) SECOND CORRECTION TERM 

The second correction term from equation (5.8) is 
A -0. 

KW: ZiTy 

_ I  

4C F e.. 
KA, 44 we,  

_t 4 
Ci k`) gd J I\.101 w0 

ti -f. 
„L. ynt 

L e 
• 

6
c
6
i 
 6  v

t
, )   

(k. 	r 	, 	
e As  

 
0  

( _x-) 
(13- 1.41-4) 
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The last expression is obtained by using equations (5.1q) and 

(5.25) and the fact that the matrix EC1  is a diagonal matrix 

between the site indices. 

Carrying out the simplifications of the second correction term 

we have equation (5.44) equal to 

• -t 
r r 
e- 	 )43(-0 	C-k-1)  e- 	Eloc.  11‘, „/_ -SO4) POO 

t 	 _1. is • r,i 

V cic!) oci-)-
PP  ,(-•cf) 	

15% rn„,4 

(7,4 	nm2.6 
	

-1 I 	-  
 ()-) _ 	

5
Stco Dck.) 	e 	

" 
ta-

6
SavS (x.At,)sm  

1„ 1  SK ,  t" 	
i  

t s 	, 	it 	
- 	1\k' ---s :\ Kn.  S AK. ,,(t.) Do.!)..c , or!..)e. 

bF) 	3 %,.,0, •t_ 

r 3 / -I t* 	r..; 
YI K Ski') DCI4  '(bc)e- 	Ajt  caSY4?) 	x 

C243  mim uax) 

dtp 
j 	1 .5 

J1 /-* 
&tut') jpot.) fi iCkl) e -J1 A:i0 

_a 
Z. I aLe  (2,1:0 

	a Ce)g 	+a. S,1 	T tea 	A. 

CE, "1",i)/( i+ 	14- 

where, 

	

s 	_1 a, ,ce, 	tta_ s 	s,,,oc.")D 04.1) 	QC!' ) 
rh 	(27)3 

(5.46) 

(5.47) 

5.48) 

(5.49) 

This factor is the same as occuAng in the first correction term 

and has already been evaluated there equation (5.43)J;_: rand 



C. 
E 

(5.53) 

2. 	3  

P()=-"- 0-2.e Ali  Ran)  

E.' e.+ 
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f 	 ic-.• Yj 

—LL/, (g) ) 	• S OkK Ci‘) &: CO 	(c e. 
(2x) 

(5.50) 

Using equations (5.19), (5.20) and (5.10) we have 

2....ws •f• 

Ti l ite vy) - 6/6 A t-i cric  jlf..ka„)ys.1-)\te(0 --0.s.ri-zac‘‹-it.)  
--..... ) .' 	••• -- 	 ..e.... 	c 	 (5.51) 

• 3 	' 2 	
• 

	

C K.F) a K  ile•y( t`  etA)YL S.)  Yt!. U17 )  `e•• 	& 	 (5•52) 

:K.2  I= 
 

. 
'2. 
-.- I= 

% 
where as before ignoring the broadening LS4 in D04-) we define 

Using the following expansion for the exponential in equation 

(5.52) (Messiah 1964) 

OD 2° 	d . 

L 	act (Y-V1L2 
tto  tle 

(5.54) 

where le (10 etc. are the real _spherical harmonics. These are 

derived from the complex spherical harmonics 
.1 

'td
1 L. by the relation: 

Ye = "1- 111P 4' IT  k- 

\i 	T11 
^I J. 

(8.55) 

The real spherical harmonics used in these calculations, are given 

in Table 5.1. 

Therefore • 
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00 	. e 
11 . 	P(G) 

10  ne.,.. 	.‘S 2,_ 	e.4 

2. 
2/4 Ck71(0) 

rt (1- 1.O4) y L Cei)i (K:6) C 

where 

C f - 	
CtS)  •
•f

l< 

 04) 

LL  

are the Clebsch- Gordon coefficients for the real spherical 

harmonics and are given in Table 5.2. 

The integral `.(equation (5.56)Jas it stands looks rather 

formidable and non-analytic but by rewritting it into two parts 

and adding a small broadening t 	in the denominator we will 

see that one of it can be done analytically and other on the 

computer very easily. 

on  cot 	t" 
	 ac 	2. / • 	•-• 	 / • 

11,2 CE,V),...14x P()L 	ye(YS) C_Ist.tkc, 	g 	 
a 

asCKCA),e- 	 (1E1  j*.  
C1LYiL E./ 6;1(0'6'0  

- 
51) 

111 	If z 

111 
 

•1 	-2.41C.-/C0)4 

salt  

drt 

( 

K 

: 

d,.(4e../e,.,) 

2 	L' 

3) 

o 	

14 e. 
-244-Et 

, 

Because of the property of the Clebsch Gordon coefficients)  

canAlave even values only, therefore the first term in the 

above equation is imaginary and can be evaluated for a fixed Z' 

the integral part of it is purely real and is computed numerically, 

13n4 
is the nearest neikhbour vector for a face centred cubic there 

are twelve nearest neighbours with I ri 	, where 'a' is a 
41 

lattice constant. 
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After substituting the values ofVOCI) in equation (5.48) 

and summing over all i we see that the second correction term 

turns out to be diagonal also, with three elements equal and 

other two equal to each other. 

5.3(iii) THIRD CORRECTION TERM 

The third hybridization correction term from 

equation (5.8) is 

-e 	
A 

. 	Ptd, 	ate.:0 0 , 	-4 Jow. 

which is clearly the transpose of the second correction term. 

5.3 (iv) FOURTH CORRECTION TERM 

The last hybridization correction term from 

equation (5.8) is 

LA 	-1  r 	— -1E 

	

 
F 	

/ 
At 	 c.K. t. Pc! 544 1%:°   (-0 s  

- I 

	

. S) 	{-,bot)g 	D CIO G. 
Kw! 	 ch- 	 ht, hi" 

CK 
rn" 

C 	pie  

t-ghre +P.MCPI:11A 4)1 &) DCI4101 S / CO e ie. Ad m 	 d 0 

- i 	r 	3 	/ 	-1 	ii5A.1:1:- yz,.) 
8 ik,i, Ls( 	Sa k f k) cock) Came ;), 	il   

_I 	/,‹. 	ik.1,... 	_1 
Z Sc1.1 .1:9,-) ((k-) cm„ C.) e 	1.g.h /m•ii1C )gtnill x  

V.2.10 ha 
h., 

F 
	 1 -It 

(27  

	

A
. 1(  / 	,r2si 	 111(5.),Acq,),0,4%  - I  

= 	 LL 
121-t 

(5..!i;7 ) 

(5.60 

• 

(5.6,1) 
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ta u 	Ite.  )4 	60 = B A.:  [K. Lif CE) Y:silei) - LI. 	% " (-P1 I (g )...\P'■ • 
(5.6?) 

"T Coq 
where -LAJL! 	is the 

is given by equation 

same as given by equation (5.58) and 

(5.43),(for transition metals only 1:=2 

component of the angular momentum contributes); and 

3 1 	
,-% 	I* 	2 k..(r4; -,:f.i ) 

K (e) vi:,fa.)-.. -2L-  Sa4svcie.) pcu)S , CK)  e- 
x 	 ox)s 

-k 	- 1  .1.Ce_K44\-■1 04..\\te  104-) --4' 	 i ie. (Y  '^VS ) 
 

ti.VIP )3 
in v-  S 	

k: E 
 
 - : ‘ 

It should' be noted that the broadening A is ignored in poc.) 

for the same reason as before. Using the following expansion 

	

e.
=4i Z. I (i)  , Licts: 	

5.64) 

42 11.0 

we can write the above equation as 

ya Q" 	t1  

(E;10,: b y..; y= 1f e(V)/ do ha 	L 

2- 
4y1 Oct t.l. Ty),  - i) 

Cul 0 clic  tc...2;t11-?:.c.: g) 	! ,,  - . • 

(5.60 

Doing the same procedure with this integral as we have done with 

the previous integrals we get 

	

00e 	40 	 2 

i(e) yc,ri),_4PCE)LI (0411°40/1  f 
0  wtiLeo 	L 	

-.U0C4t) 

	

2 	2- 	8-ta  
2.- 

1., % 1- 	-26((C--4CS: 	, * 7'-. 	\ -2%(4-&-Q 
te_  k 6.1,ck-gii)e 	„„c4tY;, --Isi I) _ E-  (Y)_(.-qiet-oe. 	 sal, c 4-st ■ ye-A:s ( ) 

tc'--f-i.‘ 

(5.616) 
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n: and v‘c are the vectors to the nearest neighbour sites, Caz 

are the Clebsch Gordon coefficients. 

After substituting this into equation (5.6R), we noticed 

tkat IYC-!S it en where n has five values; and if we evaluate the 

sum over the site indices i and j (i and j both go from lto 12) 

corresponding to the different values of n first and then the 

N A  

SUM (Merl ni` and vt , the computer time is reduced tremendously. 

The complete calculation shows that the fourth correction term 

is also diagonal, with diagonal elements falling into two groups. 

Before ending this section we will discuss the broadening 

-1 
A introduced in B occuAng in the function ()(C.) of integrals 

o ((E) 	and kur 	The function of this is to keep 

B-I  analytical i.e it does not below up at E=EA  or E=EB. B i  is 

given by equation 

r3o 	C  

EA— E—  6 	Z6-  e- a 

where 

4(E) = c 	Ct-c) 	e) 	 (5.60 

	

Re) Celt A EILi ze-  )/az-e- 	
(5  4) 

The sign of the last equation is chosen to get the correct high 

energy limit of FEE) i.e 

P($)—) 	 as 	P. 	-** 01/4, 	 (5.70) 

-11  in equation (5.70) gives the band width of the density of 

states of the metal. 
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Thus we have calculated the hybridization correction completely 

and it turns out to be a diagonal matrix. We will use these results 

in the next section to calculate the density of states of transition 

metal alloys. 

5.4 DENSITY OF STATES TRANSITION METAL ALLOYS 

We now know equation (5.8) completely because the 

- * 
tight binding part (i.e D-AB

1 
 A ) has already been calculated 

in chapter 4 and is explicitly given by 44,,,„; of equation (4.2A ); 

the four contributions to the hybridization have been numerically 

evaluated in section 5.3. It has been shown by a number of authors 

(Heine 1967, Hubbard 1967, Jacobs 1968 and Pettifor 1969) as 

discussed in chapter 1 that the inverse of the secular equation 

for transition metals (given by equation (5.1) or (5.8) ) is 

the same as the inverse matrix in Lloyds expression of chapter 2. 

Precisely 

• 
1_±.-L̀ 44+ 3 	 0.,cii-+1) ri cll.- 431 (5.70 

—t * 
=[(,0-W6 A )— ce D ‘P.  ) .....Fv; 6 )(e -P (3' 45 . 72 ) 

Therefore we can use the modified Lloyds expression for 

	

the density of states given by equation (2. 	) of chapter 2 to 

calculate the density of states of transition metal alloys. The 

explicit equations we use are given by 

t -1  
) ..1_37,0'y ...;;L(45_ 	Q 	C4 00`7 

(6.73) 



I Gt. 
<0iGto) 2. 	<p V1"4  k.40 M ei(" 	-■3-"  Mn 	-c-.) wt. 	he 	x:0 yvt, I Inc M. 

$otA* h lo> - 
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where 

(5.74) 

(5.75) 

-t 
ot In these equations, (3 and 

.
are the same quantities as defined 

in chapter 3 and the values of the parameters used in their 

calculations are given in Table 3.3. X is the number of A atoms 
on the central site. n is the number of configurations of atoms 

on the twelve nearest neighbouring sites. Mn  is the multiplicity 

of configuration n.1 is the number of A atoms in the nearest 

neighbour shell. The numberl depends on n.c is the concentration 

of A atoms 	 is the tight binding matrix calculated in s, 

chapter 4 and 	I is the hybridization correction calculated in 
h% 

section 5.3. 

5.5 DISCUSSION 

In this section we will discuss the numerical results 

obtained for the real transition metal alloy AB with Eit= .2ryd and 

Et= .5 ryd. 

In figure 5.1 we give the results for the density of states for B 

type material. A similar result is obtained for A type transition 

metal which is not presented here. We notice two effects on the d 

band density of states(figure 4.2) by taking into account its 

hybridization with the free electron band. The first is that the 

F. 
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d band as a whole has become wider, the second is that some of the 

states have been taken from the top of the band and pushed towards 

the bottom. This curve is similar to those obtained before by inter-

polation or histogram methods ( Gilat and Raubenheimer 1966) 

.though the density of states above the top of the d band seems 

rather low. 

In figure 5.2 we present the results for an alloy with a small 

concentration of 	A atoms in a B matrix. In a stretched out energr - 

scale we see for the minority band a two peak structure in the middle 

with humped shoulders on either sides. The shoulder towards the top 

of the band, which corresponds to antibonding state of the electrons 

lying near the boundary of the Brillioun zone, is compressed downwards. 

This is due to the fact that the hybridization effects are strong 

near the edges of the zone. The pair of peaks near EA=.2 is due 

to states on isolated A atoms , and these are split because of the 

cubic environment of isolated A atoms. The peaks are shifted relative 

to those for unhybridized d bands because of hybridization effects. 

In figure 5.3 we present the results for c=.3, and we see that 

the A band has grown at the expense of B band. This A band is slightly 

shifted from the centre of the d band for pure A material due to 

band repulsion effects. Figure 5.4 gives the result for 50% alloy. 

In figure 5.5 we present the results for the density of states 

when c=.7. The A band has now a great deal of structure in its  while 
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B band is comparatively smooth and shows the beginning of the three 

peak structure. The band repulsion effects in the B band are more 

visible now than when c was smaller. 

In figure 5.6 we give the results for c=.9 with an expanded 

scale for the minority band. We again see a two peak structure and 

asymmetrical pair of humped shoulders. The reason for asymmetry 

and the splitting of the central peak being the as for c=0.1. 

Thus we have been able to present a cluster theory for transition 

metal alloys, which is tractable and numerically feasible. The structure 

that appears in the density of states for the minority band can for 
A 

the most part explained in terms of simple and easily understood 

physical ideas. The effects of hybridization however are not yet 

completely understood. 

The computer time taken to calculate one point on the graph for 

pure material is about 3 seconds and for an alloy about 5 seconds on 

CDC 7814. 
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C. 

TABLE 5.1,  

The real spherical harmonics 

Nto 	4174K 

Y27 = 45/16 it (3COS2e -1) 
„ 
72. 	re- 415/4k sin El costs sin 9S 

y 	 4 15 4 rc sin cos0- cos 

= 	sin2l9- cost e6 

Y. 	= 415/16X- sin29- sing 

Y4,° = 19/256 z (35cos4& -30cos26 +3) 

74 	=- 445/32 F (7cos2& -3) sin& cos& sinkr 

=- 45/32R- (7cos29 -3) sin & cos& cost 

74 	= .145/64rt- (7cos20- -1) sin2G cos2q5 
-2- 

Y4  = 445 64i (7cos2& -1) sin2A sin295 

315/321 sin3 0- cos 0. sin345 
w-3 
T4 =- 315/32A7 sin3  6 cos& cos3' 

= 1315/256x- sin40 cosilck 
---. 

74 	4315/25GX sin`
A  
C9- sin45 

-,n 
Yt 	(Tc ,) 

where I is the complex spherical harmonic. 
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TABLE 5.2  

THE NON-;iZERO CLEBSCH GORDON COEFFICIENTS CLee USED IN OUR 

CALCULATIONS. 

2 / -2 2 .41 5/392K 

1 2 0 2 1 I 5/196N 

2 1 2 0 4 1 415/98X 

2-1 	2-1 	0 0 x 41/4 tc 

2-1 2-1 2 0 15/196x 

2-1 	2-1 	2 2 115/196X-- 

2-2 -2-2 0-0 41/41 

2-2 2-2 2 0 -j5/491c 

2-2 	2-2 	4 0 	41/1.913 

2-2 2-2 4 4 -45/28 

2-2 2 1 	2-1 ,151961` 

2-2 2 1 	4-1 -45/39210' 

2-2 2 1 4-3 -F573x 2-1 2-1 4 0 -44/49 

2-2 2-1 	2 1 .415/196K 2-1 	2-1 4 2 45/49 T.- 

2-2 2-1 4 3 45/56 
	2-1 2 2 2-1 415/196 

2-2 2-1 4 1 -.157391v 2-1 2 2 4-1 —45/392 F 

2-2 2 2 4-4 1-572737t 2-1 	2 2 .4-3 ,45/561--,-. 

2-2 2 0 2-2 -45/4910 2-1 	2 G • 2-1 5/196 

2-2 2 0 4-2 415/196A 2-1 	2 0 4-1 415/9-8 7c. 

2 1 2 1 0 0 41/4n 22 22 00 41/4n 

2 1 	2 1 	2 0 	5/1961 2 2 	2'.2 . 2 0 -45/49R- 

2 1 2 1 2 2 -AO/196r 2 2 22 40 11/196K- 

2 1 2 1 4 0 • -44/40X 2 2 2 2 4 4 45/28 r. 

2 1 	2 1 	4 2 -45/49K 2 2 	2 0. 2 2 —,15/49 -N- 

2 1 	2-1 	2-2' 415/196K 2.2 2 0 4 2 415/10G*M- 

2 1 2-1 4-2 A5/49 1 2 0 2 0 0 0 . 41/4r 

2 1 	2 2 	2 1 --115/19.6ft ,. 2 0 	20 	20 457491k—  • 

21 22 43 45/56*x 	0 	2 0 4 0 49/491c 

This Table is symmetric between L and L 
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Plot of the density of states of pure real transition metal. 
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Plot of the density of states of transition metal alloy. the energy scale detveert 

.1 and .3 ryd is extended to see the details of the structure in the minority 

band. 
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CHAPTER 8 

APPLICATIONS 

6 	INTRODUCTION 

The purpose of this chapter is two fold. The first is to 

apply the model calculations of the previous chapters to more realistic 

alloys and the second is to demonstrate the flexibility of the 

continued fraction technique by dealing with a very disordered 

material viz. dilute disordered Heisenberg ferromagnet. The density 

of states of metals and their alloys can be used to explain many of 

their physical properties. The electionic specific heat coefficient 

at low temperature is one of them and is related to density of states at 

Fermi—energy. The calculations of the density of states for transition 

metal alloys in a single site approximation(chapter 3) and in a cluster 

theory(chapter 4) are used to calculate the low temperature specific 

heat coefficienti-  for Ni—Pt alloys as a fundtion of concentration of 

nickel. The results obtained in a single site approximation after taking 

into account the phonon enhancement factor are in close agreement with 

the experimental results until the critical concentration. Experimentally 

at the critical concentration real Ni becomes ferromagnetic and the electr-

onic specific heat coefficient for the ferromagnetic alloys decreases 

rapidly(Beille et al 1974). We have, however carried out the calculations 

for the model paramagnetic alloys in this concentration regime and lr 

is found in these calculations to be approximately constant. The result 

obtained for" in cluster theory, when we do not take into account the 
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hybridization of the d bands with the s band,are not in such good 

agreement with the experiment. This is due to two reasons as explained 

later in the chapter. 

In the second half of this chapter we will discuss the usefulness 

of the continued fraction technique and its merits in simplifying 

complicated problems. As an illustration to the above points we will 

apply the continued fractionSnethod to a completely disordered Heisenberg 

ferromagnet. The result we get for the density of states are compared 

with those obtained by Harris et al(1974) and Tahir Kheli(1972,1975). 

We shall now outline the remainder of this chapter. In the next section 

we will give a brief review of the experimental results and theorgtical 

calculations of the low temperature specific heat coefficient 1r+ for 

Ni—Pt alloys. In section 6.3 we will present our calculations of T 

for Ni—Pt alloys in a single site theory and in section 6.4 we will 

discuss the results obtained by the above method. In section 6.5 we will 

use the cluster theory to calculate .7% and will discuss the results 

obtained. In section 6.6 we shall briefly outline, the.. theory of Heisenberg 

ferromagnet. Section 6.7 will be devoted to setting up the Model Hamilto-

nian for the disordered dilute Heisenberg ferromagnet and finding an 

expression for the debsity of states which can be easily used for the 

numerical calculations. In the last section of this chapter we will 

discuss the results of 6.7. 

6.2 EXPERIMENTAL RESULTS AND REVIEW OF THE THEORY FOR ELECTRONIC 

SPECIFIC NEAT COEFFICIENT FOR Ni—Pt ALLOYS. 

There have been many studies, both experimental and theorttilcal 



128 

of the disordered Ni—Pt alloys. These alloys display a, high value of 

specific heat at certain critical concentration. The low temperature 

specific heat is given by the following equation 

5 T is-T 4, 

where' :T is the absolute temperature and T and Fs are the low temperature 

specific heat coefficients(terms involving higher powers of T are 

neglected because they are small). BeillE et al (1974) experimently 

measured the low temperature specific heat coefficient T. of Ni —Pt 

alloys as a function of Ni concentration. Their results are presented 

by solid circles on figures 6.2 and 6.3. The fall in D when C 7'4z 

is due to ferromagnetic splitting between the up and down spin bandS. 

Infact pure Ni is a strong ferromagnetic and has a very small up 

spin density of states V1 and the electronic specific heat coefficient 

. 
of value 1.tr,C31".01-eit- is mainly associated with the down spin density 

of states nAILEF) • 

Both nickel and platinum have a face—centred cubic structure 

and this face—centred cubic structure is retained in their alloys. 

This property of these alloys make the theoretical study of them much 

easier. Alben and Wohlfarth (1974) have calculated the low temperature 

specific heat coefficient for a ferromagnetic Ni—Pt alloy using the 

coherent potential approximation. They found that even after taking 

into account the phonon enhancement factor(Andersen 1970), the gradient 

of their curve was much smaller than that of the experimental curve 

(BeiliB et al 1974). Alben et al ascribed this discrepancy to two 

causes. The first is that the density of states they used for pure Pt 

is only roughly derived from the density of states of Ni(which is in 

(6.1) 
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itself approximate, Hasegawa 1972). The second is that the lattice 

constant and hence the hopping matrix elements between Ni and Pt 

sites in an alloy are assumed independent of concentration, while 

according to Heine(1967), the hopping matrix elements should depend 

on the lattice constant, which is of course not constant. In the 

next three sections the density of states of Ni—Pt alloy is calculated 

using a more appropriate density of states for pure Pt and making all 

the parameters concentration dependent. The low temperature specific 

heat coefficient 11  is obtained from the density of states by the 

relation(one electron theory): 

x 
T 	LEE) (6.2) 

. where kel  is Boltzmans constant ( 2 3 -x kg 	.35(w. X) W. Z  ) and 

HCg9) is the density of states at the Fermi energy. The results so 

obtained are then compared with the experimental results and those of 

the CPA (Alben and Wolfarth 1974). 

6.3 THE SINGLE SITE THEORY 

The method used in this section is the same as that in chapter 

3, but with the following difference. The calculations in chapter 3 are 

only model calculations so most of the parameters are concentration 

independent, but here we are doing more realistic calculations so we 

must take account of the proper concentration dependence of the 

various parameters. 

We have from equation (3.26) 
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Ce- ) = noce)7C- 
	

CD,/ 	 Dp  4  (t-t) -1 
L 	 ig.P2 „ pi° 

I I " 
0- C.) E..2. fd CI - C.) DP[O-c-)DP  4 C-1)11 	C t 	( 6 . 3) P 	 e 	2. ft 

where the suffix N stands for Ni and P for Pt, c is the concentration 

of Ni atoms, %Ca) is the free electron density of states, t2 ,4 and 

p depend on the phase shifts on Ni and Pt sites respectively, 

Dm  and Dp 	depend on t2A and L22, and the equations defining 

these quantities precisely will be given later in this section. 

14 
The imaginary parts of 1‘,,t1n,'  and I<1.0120,/ are related to the 

density of states of pure Ni and pure Pt respectively(as explained 

and shown in section 3.3(ii)). The densities of states of pure Ni 

and Pt are calculated as follows. 

The model Hamiltonian(Rubbard 1967, Heine 1967, Jacobs 196§, 

Pettifor 1969) derived :prom Korringa(1947) Kohn and Rostoker(1954) 

method is used to calculate the E and t components of the density of 

states of a transition metal (as already described in section 3.3(ii)) 

Assuming that the basic structure of the density of states for all 

transitiot metals is the same, we have adjusted the above density of 

states so that it gives a pure Ni bandwidth of 0.3 rydbergs and a. pure 

Pt bandwidth of 0.6 rydbergs. The Fermi level, is selected Iso that there art. 

• 6 ci.holes in the Ni band and .3 ct holes in the Pt band(Alben et al 1974) 

and the band structures are shifted so that the Fermi levels coincide. 

Figure 6.1 shows the densities of states of Ni and Pt calculated by this 

method. 
,,ti 	 I" To calculate the real parts of IN 	 and IC ' we takd the xin 3 1,i 	a. n. Zho 
4' Hilbert transform of the imaginary parts of K 	• 	and ite 	, 
'). 00. m 	 2.141A., 



We COAL CC)) 

5-  

131 

In the same way as given in chapter 3. 

If aN  and ap  are the lattice constants of Ni and Pt, then the 

lattice constant for the alloy is given by 

6, cc-) = c 	4 0-c-) a p  (6.4) 

If wN 
and w are the half bandwidths of pure Ni and Pt, then the half 

bandwidths of Ni and Pt in the alloy are given by the following 

formulae(Heine 1967) 

- 
ti Cc)  -= N C /4. CO) 

(6.5) 

The centres of Ni and Pt d bands also vary with the concentration to 

keep the number of d holes constant. If Ep  is the Fermi energy then 

the varition of the centres of Ni and Pt d bands in an alloy are 

given by the'following equations 

W
N Cc) C - PA) (6.6) 

p 
Esr  - v4 I!, CO (1 - p ) 	(6.7) 

where !a  and F are facl,ors selected so as to give the correct number 

of d holes in Ni and Pt bands. 

We now return to the quantities which depend on the phase shifts 

and we shall see that these are also concentration dependent. 



Ca — n - y WNi kd, 1 t-b"ki. 
(6.10) 
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I 

zet = K. Gert Y12.14  

p 	Gs.t. rt 	-Z. k. 

where (Pettifor 19691 

	

Cot I z  7. (P_:1 	Cr(  CK '61.) 

2- 
c-cc‘b.p = Cea-syK cp Ocrc- 

and 

(6.8) 

(6.9) 

CP = WPt i 141 z. Cic-dYC.) 

(6.11) 

rc. 	a 1-r4 	Ci 	rp 

rt,4 .= ant / 2- 41. 

r = apl2.Ji 

(6.12) 

Y'ari = 3c1CIN  
(6.13) 

rap -.-.. • 341 Otp 

(rN  and PP  are the radii of inscribed sheres of Wigner Seitz cell 

and raN  and rap  are the radii of the spheres having the same volume 

as the unit cell) 
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is the spherical Bessel function. Wiend `y arethe nickel and 

platinum d resonance band widths(Hubbard 1969). 

The function i),4  

DK 

P 

and 	which occur in equation(6.3) are given by 

d 	

t—i 

2.4 — 2-13 t'a-t4 	2.14 

(6.14) _1 	 1 	 1 

— 	
2,(atip 	„ 21, 	2-r 

where the 
	01 and VS are defined in equations (3.21)and (3.22), 

we redefine them here for this particular case as: 

a 
C YCLcz (.‘C'Th.C.) 	C‘<re‘c• aT3 Ck  

2. 	S 

	

k  cr%) 	Kr4o11,otrot. b - il) 

• 
4 Y1  @teat-) ec-rc0 	ot-Yelel otra-c)/g-‘tatj—  t kac 

z. 

  

t-o-iLepe‘e,  

1-0,c c ras 	C-c.) rap (6.16) 

The derivative of t matrix with respect to E are given by the equations 

, _I 	 _ clt Ck-rc.) 	re_ 

;4 i2.( krc) 	ix0c-rc) K 

4t)..4 /1.-.: 	— i. il-k 

1 

2.14 

(6.17) 

d 
ae 
	 _ cf, Cx-re ) 
C d2  (Kra ) 	(f 3.0e rc,) 

'ft 

-4 3e-2_1 9 /p• — 	
(6.18) 
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Ile now know all the quantities occutring in equation (6,3) and their 

dependence on concentration. Therefore.we can use equation(6.3) for 

numerical computation of the density of states and hence the low 

temperature specific heat coefficient (equation(6.2)) as a function of - 

nickel concentration c. The values of the parameters used in the 

dalculation are given in Table 6.1. The whole proceedure of cal-

culating r over the entire concentration range tank less than 

16 seconds of computer time on CDC 7314. 

6.4 	DISCUSSION OF RESULTS FOR 1~  

The computed values of Tin the single site theory are 

given in figure 6.2. For pure Pt we find that the value of r is 

about 4.6mJ/degree2mole, while experimental value is 7.3mJ/degree
2
mole 

(Beille et al 1974). This is reasonable in view of the estimate of 

1.6 for the phonon enhancement factor computed by Andersen(1970). 

If we multiply the computed values of? by 1.6 for all concentrations 

we see that the theorttical curve coincides with the experimental 

curve very well upto the critical concentration(which is 42 atomic2;of Ni) 

i.e the concentration after which Ni becomes ferromagnetic. Experimentally 

after this concentration the value of ''sharply decreases because 

the material becomes ferromagnetic and the +- spin and the 4' spin 

bands split leaving a lower density of states at the Fermi—level. 

In the calculations we have assumed that Ni remains paramagnetic 

throughout the range of the concentration. Therefore we obtain a 

continuous increase of electronic specific heat coefficient from the value 

for non—magnetic Pt to the value for paramagnetic Ni. 

• 

The origin of our computed values of can be understood as follows: 
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The lattice constant of pure Pt is large and consequently when Ni 

is added the Ni—Ni hopping integrals are much smaller than they would 

be in pure Ni. That is when a small amount of Ni is added to a Pt 

matrix the Ni contribution to the density of states is much larger 

than it would be if the Ni—Ni hopping integrals had retained the 

value they have in pure Ni. This explains partly the fact that our 

single site curve has a larger initial slope than the curve obtained 

by Alben and Wohlfarth(1974) in CPA, where no such effects were 

considered. Finally near the pure Ni edge the curve for V vs c 

is rather flat. This is due to the_fact that the peak near the Fermi— 

level in pure Ni maintains its height in the alloys with low concentration 

of Pt. A possible explanation for this is that there are two competing 

effects. The first is due to the fact that the Pt—Pt hopping integral 

is large (Wp  p"  0.9ryd) in nearly pure Ni. Thus one effect of 

adding Pt to Ni is dilution and in the fashion of CPA this leads 

to a dependence of density of states on concentration proportional 

to J (1—c) (c being the concentration of Pt). The second effect 

is due to the change in the Ni—Ni hopping integrals and the concent- 

ration dependence of this is given by Heine's R-5  law i.e 

Cc) = Wi_N (9) L14/211 Nate) 
 

 L t t - 1 C.- 1  

The magnitude of the density of states scales as the inverse of the 

bandwidth and therefore in the alloy has an additional factor (1+0.1c)5 

The product of this factor and the dilution factor is to first order 

in c, unity. This gives a density of states and hence 'r which is 

flat in the Ni rich region. This provides a crude explanation of 

the flat and steep regions of the calculated curve. 

Any residual difference between our results and those of CPA must be 

due to differences in the alloy theory used. In particular they can be 
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attributed to the fact that our single site theory gives a density of 

states with more structure and higher peaks than the CPA. 

3.5 	CLUSTER THEORY  

In this section we calculate the specific heat coefficient 

for Ni—Pt alloys following the method of chapter 4. In chapter 4 we 

considered the alloying behaviour of the tight binding d band. densities 

of states of transition metals in cluster approximation. The cluster 

theory which we are considering here treats a cluster consisting 

of the central atom and the nearest neighbours exactly and the 

surrounding medium in an average approximatio#. 

The method of this chapter differs slightly from that of 

chapter 4. As we are now doing more realistic calculations we redefine 

some of the quantities to take account of the hopping integrals 

which depend on the atoms at each end of the hop ( or different 

bandwidths of the components or off—diagonal disorder). 

We startwith equation(4.24) i.e 

vice) = I -rr 1. co la tosLf rk 

where the average Green function is given by 

1 66 ,3.-x-y s-hy 	gin 
<0 tato) 	c 	<<-c) 	Mn 

X= 0 n= I 	
vvt, 

(6.19) 

(6.20) 

The quantitiis occurring in this equation are the same as defined 

in chapter 4 with Ni atoms taking the place of A atoms and Pt atoms 

1h 
that of B atoms, except LI / which is now defined by 

imuft 
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where 

- 
WI MI  [ ER 	Slim(  ■• 	 ;-1 

wc.k) 	with 

= XEt 	x 

(6.21) 

(6.22) 

wx 	Wow * 	x) 4p  C.<-) 

Co 
wri(c) 	A

pe 
„ 	

4 
A 

wco 	ti=rtn ti 	"'"It 	iv%  
htii 0%,   

0cP 	;0 
wpcc) 	

rhm 
, 	I A 

-11 A P  Wco  
VK 

(6.23) 

(6.24) 

4 
The parameters Ed and gr are the centres of the Ni and Pt sub-bands 

in an alloy(given by equatioss(6.6) and (6.7)), My's.) and WpC0 are 

half bandwidths of Ni and Pt in an alloy(defined by equation(6.5)),and 

(41  gtm  [{ Ws CO A3,1 	 wtics-) A4 T 44 	g 
, 	C. U 	

/ .,L, 	int  N4 )91"/ 	(6.2V.) 

_ 
..-:[twe A5 , 	et, E- ‘LveC -) A4 	F AL1 1,1.g 

hn ivt 	
W CU 	°lit". 	 114.v 	n"" "V*4 1 PIA 	"ta 	(6.26) 

i
. 

The hopping integrals A 	(depending on ddr, ddrcand ddS) are taken ro.t 

from a calculation for copper (Jacobs 1968 ). To normalize these 

quantities to the correct hopping integrals for the Ni-Pt alloys it is 

necessary to divide them by the copper half bandwidth v./co , and 

multiply them by We-) ,1(.s-) or Vitx 	as appropriate. 
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The quantities 1105mi,. tt. 	tvirgand A411,...  , are the same as those given in 

equations (4.15)and (4.16), but Ti is now defined as: 
n1,0,1  

c. Fo(L1zt4 ) -4 (k-c) F06-1-4) 
	

(6.27) 

where 

4,4 = CEd - e) was. /woo.) 
	

(608) 

Zp = CES-E) wcv  l %%spa) 	 (6.29) 

and c is the concentration of Ni atoms. The factor L and the functions 

FD(L,ZN) and FD(L,Z2) are explicitly defined in chapter 4, and they 

are used here without any modification. Equation (6.24) is simplified 

and evaluated in the same way as discussed in chapter 4. Thus we can 
of 

calculate the density of states Ni—Pt alloys and hence lr in this 
A 

tight binding cluster theory. The results of the above calculations 

are given in figure 6.3. 

The dotted line curve is the experimental (BeillE L974). The full line 

curve is the plot of IN as a function of nickel concentration when we 

consider only the d band density of states for pure Ni and Pt i.e we 

exclude the ep band and its hybridizing effects on the d bands. We 

have assumed here also that Ni remains paramagnetic throughout the 

concentration range. This curve is steeper than the experimental curve. 

The value of 1r sharply rises from 7.3mJ/K
2
—mole at c=0 to 22ma/K

2
—mole 

at c=0.6 and then it comes down slightly to 21mJ/K
2
—mole at c=1. 

The difference between the single site and cluster theory behaviour 

of IN is due to two reasons. The first is that we have used very 
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sharply peaked densities of states for pure Ni and pure Pt( that are 

given by Haydock method ,1975). The second is that we have neglected 

the conduction band and its hybridization effects on the d bands. The 

first reason is probably the more important because states at_the top of the 

band are less hybridized. 

Thus we have been able to demonstrate the practical utility of 

our theories by applying it to a discussion of )^ for Ni—Pt alloys. 

6.6 	REVIEW OF THE THEORY FOR THE DISORDERED HEISENBERG FERROMAGNET; 

Tahir Kheli(1972) was the first to devote attention to 

the calculation of the magnon spectrum of a randomly diluted 

Heisenberg ferromagnet. This system is described by a Hamiltonian given 

by: 

J4 = _ 23 	pc  tkrs ST—Sri 
	

(6.30) 

where % is a random variable assuming the values 1 or 0 depending 

whether the site at r is or is not occupied by a magnetic ion. The sum 

over r and V- is taken only over nearest neighbours on a simple cubic 

lattice.Tahir Khelils approach was an effective medium approach. He 

applied the truncated Kohn—neighbourhood (where the dynamics of a 

sufficiently random many body systems may be approximated by that 

of a typical small neighbourhood consisting of, say, only two sites). 

His results show a density of states which peaks towards the lower 

energies. The height of the peak and its shift towards the lower 

energy increases with the decrease of the concentration of the nagnetic 
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ions. He was able to get three frequency moments exactly. 

Harris et al (1974) used the coherent potential approximation (CPA) . 

in several different forms to treat this problem. Their results for 

the line shapes or the spectral weight functions are in good agreement 

with the 'exact' results(Harris 1974 Nickel 1974). The density of 

states curve is, however, rather smooth and has none of the structure 

that we would expect. (There must bel for example,' S' functions in 

the spectrum of finite weight arising from the free rotation of magnetic 

moments on 'isolated' magnetic ions). 

Nickel(1974)has done the exact' calculations in an eight atom 

cluster theory. He used the moment expansion method. His results 

consist of curves for the line shapes for various concentrations 

of the magnetic ions. He obtained the "dangling bond effect in the 

line shape response. He also predicted, on general physical grounds, 

a multispiked structure in the density of states, that appears to 

be characteristic of all strongly disordered binary systems(Dean 1960, 

Cubiotti et al 1975). Theumansand Tahir Kheli (1975) have presented 

another treatment of the problem. Their result shows some improvements 

on the results of Harris et al (1974). It gives a density of states 

which is non—zero only at positive frequency and is more peaked at 

lower frequencies. All the above calculations were done for simple 

cubic materials. 

In this chapter we have adapted the cluster theory for the 

disordered alloys(Jacobs 1974, Cubiotti et al 1975) as developed 

from the continued fraction method (Haydock et al 1972) to treat the 

dilute Heisenberg ferromagnet. We treat the central atom and the six 
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atoms in the nearest neighbour shell exactly; the atoms in the second 

and the third neighbour shells are treated less exactly and beyond 

that we make an average approximation. The result show much structure 

in the density of states and this structure increases as the concentration 

of magnetic ions decreases. The structure contains broadened delta 

functions at energies slightly shifted from integral values. There are 

also unbroadened delta functions at integral values of the energy. 

The broadened delta functions are due to partially isolated magnetic 

atom clusters and the unbroadened delta functions are due to completely 

isolated magnetic atoms. In general the results display many aspects 

of the dilute Heisenberg ferromagnet that cannot be adequately 

treated in an effective medium theory. 

6.7 THE GREEN FUNCTION  

Harris et al (1974) have shown that the Hamiltonian 

given by eqmation (6.30) may be written in terms of boson variables 

(equation 2.4 of their paper ) in the form 

k 1412z5 	qr1  )(gr-ari 

91 CctY A  rtS ) 10 	cke4.0 
(x.31) 

where S denotes the nearest neighbour distance and 

ly=  I—  Pr 	 (6.32) 

In this form the Hamiltonian implies that a localized excitation can 

only hop between nearest neighbour sites which are both occupied 

by magnetic ions or both are occupied by non—magnetic ions, but it 

cannot hop if one of them is occupied by a magnetic and other by a 
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non-magnetic ion. Hopping between two non-magnetic sites results 

in spurious excitations and these must be sub-tracted to get the true 

magnetic response. 

We shall apply the continued fraction method developed by 

Jacobs(1974) to the Hamiltonian given by equation(6.30). This method 

expresses the diagonal matrix element of the Green function for a 

given configuration of magnetic ions in a continued fraction 

approximation. The average density of states is then obtained by 

multiplying the average Green function for a given configuration 

by the probability of occurrence of that configuration and summing 

the result over all configurations. 

Assuming that the central site is occupied by a magnetic ion, 

the diagonal element of the Green function <01410 	(where ir> is 

the Wannier function for site r, r=0 referring to central site) for a 

particular configuration is given by 

<olGto_ [E-Z.- E. 	
I 	

(6.33) 

where Z is the number of magnetic ions in the nearest neighbour 

shell (for a simple cubic-  6;>, Z7 0 ), i refers to the number of 

magnetic sites in the nearest neighbour shell and 

= L2-  Le- 'cc 	cAL: -1 ) P(E)] 
-( 	

(6.34) 

where t is the hopping matrix between the neighbouring sites; t is 

equal to one when the two nearest neighbouring sites are occupied 
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by magnetic atoms and is zero when either of the two or both of them 

are vacancies i.e tAA=1  and t
AV 

= tVV=1") where A refers to a magnetic 

site and V to a vacancy(non—magnetic site). In this way we are able 

to project out the spurious vacancy—vacancy interactions, XL' is the 

number of magnetic atoms in the nearest neighbour shell of the ith 

'lite; and 07(51) gives the termination of the continued fraction .-

appropriate to the pure magnetic component i.e 

g(c--e4) 	 (6.35) 

where 

Fj(e) 	LE- §s‘ Fce).1 
	

(6.36) 

(e) 	t 4 E2--zGel- 
tee- 

(6.37) 

-A 
	 (6.38) 

(NI 

F=C6) 	ensures that we get the correct density of states for the ordered 

material(Jacobs 1974). The sign in equation(6.37) is chosen to give 

the correct high energy limit to FtE)i.e 

F(s) 	 AS E. 	 (6.39) 

Equation (6.34) involves the approximation of hopping from the nearest 
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Wo  = c [14 0-c) 
	

(6.44) 

a number which increases with the increase in the value of c. 

The density of states of the magnetic ions is then given by 

S„, CE) = 	Tht  <01q lob 
	 (6.45) 

The result so obtained are plotted in figures 6.4 and 6.5. 

Our technique is a real space technique and is not well adapted to 

the calculation of-self energies and line shapes. 

6.8 	NUMERICAL RESULTS AND DISCUSSION 

Figure 6.4 gives the density of states for a pure simple 

cubic material with E
A=6. This result is very close to the exact result 

and is the same as that given by figure 2 of Jacobs(1974). 

Figure 6.5 gives the magnetic density of states at different 

concentrations of non—magnetic ions. It is clear from this figure that 

there is much structure in the density of states and this structure 

increases with the decrease in the concentration of magnetic atoms. 

This structure is mainly due to nearly isolated clusters which give 

slightly broadened delta functions in the spectrum. These should occurs  

according to equations (6.33)and (6.34) near integral values of energies 

from 0 to 6 except 1. We do indeed see these broadened out delta 

functions slightly shifted from integral values of E. Unbroadened 

delta functions occur at integral values of E and are due to completely 

isolated clusters. The peak at very low energy is the low energy 

resonance peak. This is called the 'dangling bond' effect(i.e a 
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small isolated cluster of magnetic atoms is conected to an infinite 

magnetic material by a single hopping integral). This peak shifts 

towards still lower energies and becomes more and more sharp with 

the decrease in the concentration of the magnetic atoms. The centre 

of gravity of the density of states and the cut off energy (after 

which the density of states is effectively zero) also shifts towards lower 

energy with the increase in c. It is also seen that at higher values 

of c the weight under the curve decreases. This lost weight has gone 

into the delta functions due to isolated magnetic atoms and is given 

by equation(6.44).The lowest five moments of the density of states 

are correct and it is reasonable to assume that many more are well 

approximated in this technique. 

Thus we conclude that the cluster theory developed from the 

continued fraction technique can be reasonably applied to the _- 

calculation of the density of states of any kind of binary system, 

though it cannot easily be applied to some other aspects of such 

systems, such as the self energies or line shapes. 
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TABLE 6.1  

PARAMETERS USED IN THE CALCULATION OF "a^ 

dd of = -0.0296 ryd 

dd JC = 0.0147 ryd 

dd 8 = -0.0024 ryd 

RH = 3.592 aB  

III = .8826 ryd 

Ed 	.5 ryd 

a 	= 6.8088 aB  

aN 

• 

6.632 aB  

aP 	7.338 aB  

wN 

• 

.15 ryd 

P 

▪ 

.3 ryd 

wCU = .15 ryd 

E
F 

= .65 ryd 

FN 	.46 

FP 	.39 

WNi = 0.0465 ryd 

WPt 

▪ 

.08 ryd 
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FIGURE 6.2 
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Specific heat coefficient /3-  for Ni —Pt alloys. Solid circles are the 

experimental points. Rill line curves are of single site theory(dim one 

is without phonon enhancement factor and dark one is with phonon 

enhancement factor). Dashed line curve is curve b of Alben et al(1974). 
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Specificheat coefficient for Ni—Pt alloys in cluster theory. 
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APPENDIX A 

In this appendix we will prove that the expression 

I 	_1 	-  
)1 Tv [V 	Oee  te  + ft.e te [ 4  " J 

of chapter 2 is equal to the free electron density of states h0(E' 

when 1=0 and 1=1. 

For 130 and 1=11  the pseudopotential is weak and weakly energy 

dependent which means that to  is small and weakly energy dependent, 

where tie  is given by 

te' = to  —Z k 
L -1  u. 

then 

"LK-1794st I 	I t  /by 5t (1 4 et+te  
L dE  

4 +L  I 	-1 
Tr. 	 -11,ft Tr 	 t,t 1p 4 ct Et )  )-ER,Qtc-zt,R4-QFte+--  

The first and fourth terms terms are eiqtA to zero, partly because 

e* 
0  —,c) and partly due to the weak energy dependence of -te  .THe last 
two terms are 4aso equal to zero because g 4 has zero trace. Thus we 

are left with following two terms 

1 
[— 4-e  oct .4. aft 

lc 

Loto  it,Ar  30(1 1C-1 	IND 	) 

L 
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APPENDIX B  

• 
This appendix lists several standard results which are used in this 

• 
thes*S/They are given without proof. Definitions of the functions used 

are given by Messiah (1961); but it should be noted that we have used 

opposite sign convention for spherical Neumann function /1e-) and spherical 

Hankel function 110) which is defined by Messiah. 

114,(%) 1  (X) XI  of 

f 	) zt Lx) tit Lx) 	_ 6() - 	c =":- )` Ure-' 	et 

S2 bk) >cc1X,_ -2-f.  X3 	-LS-x)dt.4.1()01 	(B2)* 

(B3) + 
ch4

• i

(-)0 (( ,2 _, C.x) 	Oc) 

h(_X ) ne_iCx) 	rt.e0) 

--(141) cc24101)::-La -ki) c_21_,S.ecy)  

L.8,41.Cy.) 

+ See Messiah (1901) vol. 1 p 490 

* See Morse and FesSbach (1953) part fl  p 1573-74 
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Appendix B continued. 

el 
Consider in general (A B), where A is a diagonal matrix and 

B is a non—diagonal matrix then it should satisfy the following 

relation: 

_1 
(A B)(A —B) =I 	 (1) 

where I is a unitary matrix. 
—1 

If we write (A—B) in the form 

(A-43) = A +A BA + A
A 
 BAS  BA + 	(2) 

then we see that reflation (1) is satisfied, this means that expansion 

(2) of (A—B) is correct. This is a geometric series and its sum is 

given by 

	

- 	-  

	

(A — B) 
1 	t 

= A + A B(1+A B + A BA 	A t  (3) 

This is the expansion we use in chapter 5 with 

A = DC.14) &lc' 

B= Z 	scie) 
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Abstract. The density of states of a one-dimensional disordered alloy is calculated by 
a continued fraction technique and the results are found to agree well with those of 
the selfconsistent theory of Butler and with the exact density of states obtained from 
the Schmidt integral equation technique. 

The continued fraction method due to Haydock et al (1972) which has previously 
been successfully applied by Jacobs (1974) to a three-dimensional disordered alloy 
is now applied to a one-dimensional system. In our method a central cluster of seven 
atoms is treated exactly, a further pair of atoms is treated approximately and all other 
atoms more approximately still. 

The model Hamiltonian for a disordered alloy is 

where 
	H = H 1  + H2 	 (1) 

H1  = E ti;  ci+ C i 	H2 = ECini 	 (2) 

and where ci  and ni  are creation and number operators for electrons on site i and 
tip  is the hopping integral between the sites i and j which is taken to be equal 
to a constant, t, for nearest neighbours and zero otherwise. The disorder is confined 
to the second term H2  in the Hamiltonian where Ei  can take the values + 46 depend-
ing on whether site i is assigned the value A or B in the particular configuration 
considered. 

The orthonormalized basis set is generated by the method of Haydock et al (1972) 
as modified by Jacobs (1974) and is given by 

10) = 10> 
11, 0) = (1/\/'2)(I[> + II>) 	10, 1) = 0 
12, 0) = (1A/2)(12> + 12>) 	10, 2) = 0 

1), = 0 	 11, 1)2 = (1A/2) (11 > — I1>) 
11, 1)3 = (1/\/2)(11> — I1>) 	11,1)4 = 0 
13, 0) = (1/\/2) (13> + 13>) 	14, 0) = (1/\/2) (14> + 14>) 

12, 1)14 = 0 	 12, 1)23  = (1/\/2) (12> — 12>) 

13, 1)14 = 0 	 13, 1)23 = (1/N/2) (13> — 13  >). (3) 
M.P. 5/9-A 
	 1677 
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The notation Ii, j) for the elements of the basis set serves to indicate that the 
element Ii, j) is constructed from the ket (0) by i operations of H 1  and j of H2. 
The suffixes on some of these kets indicate that they depend on the arrangement 
of atoms. For example the ket 11, 1> vanishes if the arrangement of atoms on the 
nearest neighbour shell is symmetrical, ie of type 1 ACA or type 4 BCB, where 
C denotes the central atom. If the arrangement is of type 2 ACB or type 3 --ra BCA 
then the ket 11, 1> does not vanish. The ket 12,1> however will vanish only if the 
arrangement of atoms on the second nearest neighbour shell is of type 1 or 4 and 
the arrangement on the nearest neighbour shell is also of type 1 or 4. Similarly 
the ket 13, 1> will vanish only if the arrangements of atoms on the first, second 
and third nearest neighbour shells are all of type 1 or 4. The notation In> or Irt> 
refers to a Wannier function centred about an atom n units to the right or left of 
the central atom. 

The secular equation with this basis set is given by the matrix shown in table 1, 
where a 1 x 1 matrix in the first position on the main diagonal is linked by 
1 x 1 matrices to a 1 x 1 matrix in the second position which in turn is linked 
by 1 x 2 and 2 x 1 matrices to a 2 x 2 matrix on the main diagonal. After this 
the pattern repeats itself. All other elements are zero. Here 

E, = + (1 — v)IS 

E„, = + (2 — w)1-6]/2 Ex  = [—x+6 + (2 — x)16]/2 (4) 
Ey  = [ + (2 — y)-115]/2 Ez  = [—z-115 + (2 — z)46]/2 

where v is the number of atoms of type B on central site, ie v = 0 or 1; w, x, 
y and z are the number of atoms of type B on first, second, third and fourth sites 
respectively and they all can take on the values 0, 1 or 2. 

It should be noted that some off-diagonal matrix elements depend on the relative 
arrangement of A and B atoms on symmetrical sites about the central atom. This 
is manifested for example in the sign of the fourth element of the second row, which 
is negative if the configuration in the nearest neighbour shell is of type 2 and positive 
if the configuration is of type 3. If the configuration is of type 1 or 4 the sign 
is irrelevant because the element goes to zero on account of the factor [w(2 — w)]. 

The continued fraction is correct up to the fourth nearest neighbour shell but 
is continued further with an average of the continuation appropriate to the two 
pure components, 

F(E) = cF(E — 16) + (1 — c) F(E + 16) 	 (5) 
with 

F(x) = [x ± (x2  — 4t2) ]/2t2. 
The sign is chosen so that F(x)—* 1/x as x—. + x.  

The density of states is given by 

P(E) = —(1/n) Im <01 G 10>. 

The diagonal element of the Green function is obtained by folding the matrix 
elements referring to a given shell of neighbours into those referring to the adjacent 
nearer shell and by ending at the central atom. The bar indicates averaging over 
all possible configurations. This is done by finding the diagonal element of the Green 
function for a particular configuration and then multiplying by. the probability of 
occurrence of the configuration and summing the result over all configurations. 

(6)  

(7)  



Table 1. The matrix used to derive the continued fraction. Beyond the eight level the matrix is treated approximately. 
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2 

E 
Figure 1. The density of states for alloy with c = 0.5, S = 16 and t = 1. The peaks are 
very sharp and their heights are not accurately presented. The exact heights could be 
found by going to a finer mesh in energy scale. 

Discussion of results 

In figure 1 we compare our density of states (broken line) with the exact results 
(histogram) obtained by Butler (1973) using the method of Schmidt (1957). 

It is seen that our result is very close to the exact density of states and shows 
the predicted sharp structure of Economou and Papatriantafillou (1972). 

This verifies the convergence and accuracy of the method of Jacobs (1974) in 
the one case where it may be tested easily. This one-dimensional situation also poses 
the most severe test to any theory (a two- or three-dimensional situation is treated 
more accurately by a 'mean-field' method such as the CPA) and it can be seen that 
the present method meets the challenge and provides an excellent density of states 
curve. Our nine-site theory is comparable to or of greater accuracy than Butler's 
seven-site theory. 
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