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ABSTRACT

The densities of étates of disordered materials are calculated
by the use of the continued fraction method. Transition metal alloys |
are the main topic of discussion, but the continued fraction method
is epplied to ather systems also to show its efficiency and simplicity,
Chapter 1 presents the assumptions and the concepts employed in this
thes¢s and gives argumént; for the use of the continued fraction .
method, Chapter 2 gives thg modification of the density of staﬂes
expression due to LLoyd(1967). It has wide applications in many fields
but for the pfesent it is used to discuss only the density of states
of transition metals and their alloys. Chapter 3 presents the calculation
of the density of states for the face-centred cubic transition metal
alloys in a ;ingle site approximation. Chapter 4 gives the cluster
theory for. the alloys with a d band only. These calculations do not
make use of " chapter 2, but are prerequisite for chapter 5 and are
interesting in themselves. In chapter 5 the fogmulation of chapter2,
the cluster theory for the tight binding d bands of chapter 4 together
with the sp band and its hybridization effects with the d bands are
used to calculate the density of states of real trensition metal alloys.
In chapter 6 two applications of this theory are given..One is to - . .
experiment in calculating the low temperature specific heat coefficient
of Ni-Pt alloys; and the other is to disordered Heisenberg ferromagunet
to show the power and ve;gility of the present method. Finally at the
end of the thesis a published work dealing with the application of the

continued fraction method to one-dimensional bimary alloy is atteched.
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CIAPTER 1

INTRODUCTION

In this thesis we shall discuss a'wide range of problems
concerning disordered materials. The disorder considered will be lattice
disorder only. Such disorder'is exhibited by substitutional binary alloys,
in which the different constituent atoms occupy the same lattice
position. The general requifement for the formation of an al;oy of
this type is that the radii of the constituent atoms should be

nearly equal.

There has been considerable interest over the last yeers in the
electronic properties of substitutional disordered alloys and in the
development of theorftical techuigques for their description. One
method for finding the densities pf states of simple materials is
the continued fraction method of Haydock(1972). Téis method which
depends oh develbping the Green function as an infinite continued
fraction does not depend on the use of the Bloch theorem or the band
structure E(k) in any way. Instead the electronic structure at on;
atomic site is related to the local environment of near neighbouring
atoms. This method has been succesfully applied ta deal with disorder
in simple systems (such as simple cubic materials) by Cubiotti et al
(1975, Jacobs 1974). In this thesis we will try to apply it to more
complicated systems such as transition metals.alloys. Tge hethod
gives a Green functiqp which is an: analytic function(in the complex

variable sense) of the complex energg E and thus avoids many of the
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difficulties which have plagued previous theories (Nickel et al 1973),
The main aim of this chapter is to preéent the concepts, techniques
and assumptions used in this thesis, In se;tion l.2 we will give a -
description of Haydocks technique. Its mathematical besis is the same
as that‘of the Lanczos alogrithm, which is now a standard method of
numerical analysis for tridiggonalizing any matrix (Householder 1964),
Haydock et al (1972) heve applied this technique to a calculation of the
diagonal elements of the invérse of a tight binding matrix, which they
then used to calculate the density of states for ordered crystals. In . .
section 1.3 we will give a review of the extension of this technique
to calculating the diagonal elements of the inverse of a tight binding

matrix for a disordered crystals. In this section only the density of

states of simple models such as the simple .cubic 8 band will be discussed.

In section 1,4 we will briefly describe the principles of the EKorringa,
Kohn and Rostoker method(EKKR), which is sufficiently powerful to deal
with the electronic structure of a transition metal, and we will show
how the secular equation of the KKR theory can be used to‘deriVe a model
Hamiltonien secular equation such as that of Mueller (1967). In section
1.5 we will give the principles of the derivation of Lloyds formula
(1967) for the density of states in site representation, because -

this is the formula which we will use to calculate the dos of tran-
sition metal alloya; In the last section of this chapter we will

give a plan of the rest of the thesis.

1.2 _CONTINUED FRACTION METHOD

If we are given the Hamiltonian of a system of electrons,

o |
the specificagion of the Green function, G=(E-H) , or particular
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matrix elements(e.g 40 \G‘é7 ), is a mé.jor step in solving for the
details of the electronic structuee. In the tigﬁt binding model,'the
Hamiltonian is given as a matrix, whose e;ements are the self-energies
and near neighbour hopping integrals. Haydock's method sets up a

new basis in which the Hemiltonian has a tridiagonal representation,
from which the diagonal matrix elements of the Green function are
very simply derived. A tridiagonal matrix is ome whose non-zero
elements appear'only on the main diagonal and the two adjacent

diagonals. .

Here we will discuss the simple cases only, where there is only one
orbital per atomic site, but it can be extended to deal with cases
where there are many orbitals per atomic site(tight binding d bands).
First we will show how we can set up a new basis set which will give '
us a tridiagonal representation for a tight binding Hamiltonian for
ordered crystals. Then we will showt?% can express the diagonal element

of the inverse matrix as a continued fraction.

The tight binding Hamiltonian for ordered crystals is given by

’ g
R=7Z tcg (1.1)
itd

+ _
where Ci is the creation operator for electrons on site i, and the

summation is confined to nearest neighbour pairs. The new basis set
is defined as follows: |

[o) = lo» |

1) = N[ Hio)- 1o)otrio)]

12) = THI) -1eIRED - OICITAD)

(1.2)
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In this set of basis functions each ket is orthog‘?s.lized to the previous
ket(in the ordinary Schmidt fashion) and each ket is nérmalized by the
factor N; to unity. This basis set though not complete is sufficient
fcijr our purposes, because expanding the 0-6 diagonal elegent of the

Green function in the form

' 2 )
<o\l __ )= <o ‘_‘_*L:\_ 2 B!
Exit \ € E" <+ -—-—es g -—E-—q-  ceen, —l \O) L‘_%)

[+,

we see that we need'\tqwsake_ts vhich are generated by the operation of

various powers of H on \o) . .

The secular equation in this basis set cen be easily seen to be

tridiagonal. That is we have a secular equation of the form

r(o\\—\\o)-e_ (c\n ) o | - O o . .‘j
(VWD G ivin-e | (in\2)
© (211 1) iW2)-e  (2\4\3) o
O L) '
o o
(1.4)
with (*|{H\§)=0 unless | i-é | <\ (1.4a)

We can underst@nd equation (1.4a) by exa;mining one matrix element such

as (2{H10) . From equation (1.2) we have
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Rlo)

NS« 1o) (o \H1o)

o @) = N (2D 4 (219) (olH10) =0

\

because the basis set is orthonormal.

The density of states of any ebectron system is defined as

-y _ 4 Tm - Im (ot ! 1.5)
NE) = +Im ca\c—.\o>-‘-’?{c\H_E\¢)] (1.5)

which suggests that we must find the diagonal element of the inverse of the

. 3
matrix given by equation (1.4), Using the Theorem which says that inverse *

of any matrix can be wtitten as
™ - r -l 1 \ -F
-1 1=V )
A B Aa- u5¢) -(D-cA8) aA
2 | (1.8)
- -V o . - -} .
¢ D -Dc(p-89 ¢y (®-cA's)

we can write the inverse of the matrix of equation (1.4). If we denote
the diagonal elements of “he matrix in equation (1.4) by.ai (i =0,1,...n)
~and the off-diagonal elements by bi(i =0,1,¢...n) then the 0=0 diagonal

element of the inverse of matrix given by equation (1.4) is

<olaloy = 2 (1.7)
o-€-b d b,

where

J_i R | (1.8)

QT &b d‘;‘“ Piu




16

Thus ¢o\&\©) is given by a continued fraction expansion from the
repeated application of equation (1.8).( ai,bi) are called Haydock's
coefficient in the rest of the thesis, hefe i refers to the level

of the continued fraction. The termination of the continued fraction
is the nest problem. There are many kinds of terminations discussed

by Haydock et al (1975.),but the one we vse in the thesis is the -
square root termination. The form and properties of which are discussed

in the next section.

1.3 ALLOY THEORY

: . methal
The continued fraction of Illaydock et al (1972) has been
extended and adapted by Cubiotti et al (1973, 1975) and Jacobs(1973,1974)
to study the disordered materials. A review of the alloy theory

for simple systems is given here.

The disordered tight binding Namiltonian used in these papers is

MeZTg Ge a2 b Cep - (1,9)
i 144

where i and j are site indices, s is an annihilation operator for

electrons, G-‘._'-‘I‘;_S (the sign depeanding on whether the site is occupied

by an A type or a B type atom),the second summation is taken over the

nearest neighbour only and ti j is the hopping matrix between the sites

i and j . The disorder in €. is called the diagoﬁal disorder and

the disorder in ti,j off-diagonal disorder.

The continued fraction method enables us to write the diagonal

elements of the unaveraged Green function(for a particular configuration
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in the alloy) in the form

Fz 1/(45E-b,[CarE-b [CayE - ...)))

The averaged Green function is then obtained by multiplying the Green
function for a given configuration by the probability of occnﬂ%nce of
that\configuration and summing the result over all configurations.

The new basis set (as‘required by the Haydock 1 method) for the
~above Hamiltonian is set up as follows:

We first split the Hamiltonian into two parts

H - \‘\.\- Hl
where , (1.10)
*
H;%t%q%
and

< ' -
H:Li:éi'h"" . -

The new set of basis function is then chosen to be

0) = 1oy ,
Loy = N,‘,"\-\.lo)-’ 10)Co |1 lOﬂ
lo1) = N, [H10) - 10311, 10) - 1,oX10) ¥, \ )]
\20)= N, DLH‘ \Lo) - o‘t]
W) = N, [ Haaved - o7}
1359) = Ny ™ |20) - o]
(1) = N,_“_Hzp_)o)-o‘r]

(1.11)
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whkere OT represents the orthogonalizing terms which serves to
orthogonalize each ket to all previous kets. The notation \C)J: >.

for the elements of the basis set (1.11) serves to indicate that

the element {(ULJ) is constructed from the ket o) byi
operations of A, and § of Hi « (This notation is ambiguous
beyond a certain level). Our new basis is larger than that of Haydock
et al (discussed in the previous section) and is thus sufficient

for the problem. It is, however more convenient becausg the matrix

elements of H in the new basis set show a strong tendency to depend

on the parameters referring to a single shell only.

The propér termination .of the continued fraction is very important
(Haydock et al 1975), because if the fraction is merely cut short
then the density of states is the sum of a collection of & functions.
One wgy of avoiding this undesirable result is to continue the fraction
with an average of the cdntinuations appropriate to the two pure
components, This continuation ensures that the Lifshitz condition
is satisfied(i.e the density of states is non-zero over the whole
range in which eithe;fthe two pure components has a nOn-zero

density of states).

An alternative appro#dh to the alloy problem is offered by the
coherent potential approximation(CPA)(Velicky et al 1968). A form-
ulation of this method appropriate to a tree or a Bethe lattice
vhich starts from the continued fraction method is given by Jacobs(1973)-

The principle of CPA is that the central atom is treated exactly but

R
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the environment is treated in the average and ‘is chosen self-consistently,

The average Green function for the substitutional binary alloy AB
with a fraction ¢ of atoms of type A and (1-c) of type B(c and (l-c)
are also the probabilities of occurtnce of the configurations with an

A atom or a B atom on the central site in CPA respectiwely) is given

by

\—-C
-+ : (1.12)

(0\&[0) = < e -
Ls-g_zEF Ls-e-z€E .

where 7 is the cé%dination number of the tree lattiée and F is

the termination to the continued fraction and is given by

F e CBnn -)Fa (1.13)

where

c - \ (1.14)
1s-€-(z-)YF

i
Li5-e- (FDEE

T
o
W

(1.15)

After substituting equetions(1.14) and (1.15) into equation (1.13) and
letting 2 — 2 andt— t/[Z a cubic is obtained which is the

same as the cubic of Velicky et al (1968).

A more literal application of the continued fraction method

is made by Jacobs(1974) and Cubiotti et al(1975). They used the

R Ry ST AT o Ve e Sordeas ¢ Sea o =
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the continued fraction method with a non-selfconsistent termination
to calculate the density of states of a single s hand tight binding
Hamiltonian in a cluster approximation. At the level of approximation
to which they proceeded the average Green function depends on the -
number of atoms of each type on the central site and in the first
three neareat neighbour shells. The diagonal matrix element ® of the
Green function is expressed as a continued fraction in the following

vays: L .
... '
<olalod = | Ex-€-&)

2 7 =~}
G = EILE.-E-G.-6.])

G:. = Lé;z)z. S’—‘_—E * 3.'_2_'91-.

o |
q)_ = qtz- K_EW‘E- q;—GJ&]
-
p 2
G, . (54w g oea W g
2 (su)” L Su ]
G, = 8 ¢ Fe)
q

F(E) = cF(58-8) »Gc) F(38-€)

> aab
F(e) . E* (E- 48¢) |
2 bt> (1.18)

where

B 8 L g A TR LS T
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Ex: - R-\iS + U-X)l?-_S'

E, = 238 *GCG'Z) s

-Wig (_sa—w))a._g
54

Ew-.

W = N+ (1.17)
and X and Z are the nuﬁbers 6f atoms of type B on the central site
(x=0 o:vl) and in the nearest neighbour shell respectively(i.e Z
ranges from Oto 6), and i and N are the numbers of atoms of type B
in the 2nd and 3rd nearest neighbour shells, ¢ is the concentration
of atoms of type A, ;CE) is the termination of the continued fraction
(and this is the type of termination which is used throughout this thesis),
2bt gives the bandwidth of the material. If Mn is the probability
of occuﬁ%nce of a particular configuration n in the nearest neighbour

shells, then the average Green function is given by
<o\Gloy = Z 2 M, <o\ 0y (1.18)
n

The result obtained for a pure simple cubic material are close
to the exact result. For an alloy, the minoxty band shows a central
peak, with humped shoulders on either side(bonding and antibaomding
effect). This result is very similar to Alben et al (1'975). The
position and height of the central peak is approximately maintained

throughout the concentration range.

Another application of the continued fraction technique to

e e et 0 £ A ot BT
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calculating the density of states of binary alloys is given by
Zaman and Jacobs(1975, bound with the thesis at the end). This
calculation is for one dimensional linear chain of atoms.

The great advantage of the contimlued fraction method is that
it takes very little computer time as compared to other methods

(Alben et al 1973).

1.4  KKR _THEORY .
In this ‘'section we will give a brief account of the KKR
theory and it®s use to derive the model Hamiltonian in mixed tight

hinding-nearly plane wave basis functions.

The lattice potential V(x) is taken to be of the muffin-tin
form,that is spherically symmetrical. within a sphere of radins W’
centred on each lattice site, and zero elsewhere. The wave function

withtn each sphere is expanded in spherical harmemics: i.e for brevity
Yo = Yo (058) - (1a9)
where L:{LM} s and © and <f are polér angles of the vector I* + Then
L.
wie) - 21 & R UNY LY) (1.20)
[

within a sphere, provided that R{U‘) is the radial function satisfying
the Schrodinger equation there in. The coefficient C-,_ are determined)

for each value of the Bloch wave vector & , by the set of homogeneous

2 A AT TS T e
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linear equations
'%: Ny Co=o | (1.21)

derived from a variational form of Schrodinger equation for the system.

The matrix f\u: has components which depends, in a complicated way.

on the crystal structure and §n the radial wave functions that appear

in equation (1.20). The components ere not, for example, the same for
different values of the quanfum number m, so that the sum over Lf in
(1.21) implies a double summation over L and m ; if we go as far as
d waves the matrix Ay’ is 9x9. These components are all functions

of the energy, aund the condition that a non-vanishing set of coefficients
C:L can be found is that the determinant of this matrix be zero.This

implies that the energy eigenvalues are solutions of the equation
det [Ad =0

The practical utility of the scheme for determining the eigenvalues,
then depends on the form of the equation. Following Kohn and Rostoker
(1954), but using real spherical harmcnics as suggested by Ham and

Segall(1961), we can express the determinantal condition as follows:
det || Ay +wetn Siullzo (1.22)
where

and
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Al = - erdn T &R L 0-31R) ¥, 0e3) Y, (-9
Jeler) Je(er’)  \kgq\-€

- K Si;! n‘jjtﬂ)
L UeR)
‘ (1.23)

<}
where N is the volume of unit cell.

The main disadwantage in the usevof KER equations in practical
calculations is that the eigenvalues take a long time to calculate
because the matrix elements are energy dependent. The interpolation
scheme of Hodges et al (1966) and Mueller(1967) were motivated
primarily by a desire to remove the energy dependence from the off-
diagonal matrix elements and this was achieved by writting the secular

equation for the eigenvalue E as follows:

det | H, -ET|=0 i (1.24)

vhere 1 is the unit matrix and W, is an energy-independent model Hamil-
tonian of the hybrid nearly—£ree—electron-tightbinding

form: that is

Lo, '
Hm: T?-:? _\_;3:‘— ) (1;25)
L. .,l:

where C'!represents the conduction block, %drepresents the resonance block

writtem in the tight biunding form between the localized resonant states

- et v s e wn {
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(i.e d states for the transition metals) and %Lyepresents the hybridization
of the localized states wth the plane waves, %z is the hermitidn
conjugate of H.The sué%ss of this interpolation scheme led Heine
(1967), Hubbard(1967), Jacobs(1968) and Pettifor(1969) to derive

the model Hamiltonian from first principles.A brief account of the

algebra of this derivation is given below.

Equation (1.23) can be written as follows:

A= T ROHWGe-3) o nyeR) 5./ (1.26)
- % g = Joler)
-3\ =-E ai
where

¥, = 47N s 0—21RY v, (te-9)
AT

The term: W My of equation (1.22) far the transition metals

can be written in the resonance form (Heine 1967)

K Cat(\'l— - EA‘E ‘.Sor L‘:’ (1027)
l'l

~ For 1=0,1 and 1) 2, the phaseshift Y|, is small. The secular

equation(1.22) can new be written as

det || T MDD | gie gy |0 (1.28)
% ieqre =

where
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EA( - Ed - ‘( K N (Ka) . (1.29)
&,U‘L&)

Following Hubbard(1967) the above equation can be written as{a similar

proceedure. has been presented by Jacobs 1968)

det || - 2 vl - })S@cfb €) e
. le-gv-E

A o D) e T L o DI N A |

4 le-g\= € (1.30)

where
504.,3.&-:) = Exp‘_(e— Ug——g)"')[ot]
The secular equation (1.30) :3 rewritten as follows with its second
term in direct lattice space(taking its Fourier transform, Slater
. and Koster 1954)
;."--3 ¢s)

dol'“_ s 'n(‘i—'ﬁ)g"-@-.a.eyﬂ_&“;-f}) r, 2 e T T U
e -g\- E S30 ,

+ (84-8) &u’ \\s0 (1.31)

Unfolding this we get

(k- V- €)%y £6504,9,8) N (e-3)
WYs ,g) p =0
ir S(,k-‘a,E)KI_UL_—ﬂ.) E—we, I 'i-(Ed _E) 8u_l
(1.32)
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The hybridization submatrix is made energy independent by putting

E=E, . This is accurate in the low emergy region. %We have thus arrived

d

at model lamiltonian (1.25) with its block matrices

c%,:[ hegi- € J&5q ¢

My ir S(k.g,€) N _(«-3)

ke cs? :
R = & e T AEa-€)8
s

(1.33)
J
(1 and 1 are both equal to 2)

1.5 L10YD's FORMULA

Here we will give abvief derivation of Lloyd's formula(1967)

for the density of states of a muffin-tin Hamiltonian,

In quantum mechanics it is genmerally true that if an eigen
value problem is such that its eigenvalues are the solutions of an

equation of the form ) v

det | A®) \=o | (1.34)

-

then the density of eigen states may be written as

- ' : .
)= - T 1Ue. AExig | Atexiel] | (1.35)
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Now we know that the enmergy eigen values are the solutions of the

KXR secular equation (1.31) vhich is of g similar form to equation(1.34)
But the KKR secular equation (1.31) is in k representation, which

is suitable for ordered materials when the Bloch theorem holds.

For the disordered materials it is better to use site representation'
(where no use of Bloch theorem is made). In this representation

the KKR secular equation can be written as (Lloyd 1967)

det la (Vs-'\'.s) .y 9:5" \;4 | - (1.38)
where
¥ |
Lo = Reotf g -t
and

) lt
C* ) (%-Y2 )__47;&(2 J‘l "'l‘.’s"‘_gfn\/l.‘.'()}-é)c’g_t."

IY}’I;IT¥CZ

. ‘ .
=0 } {!‘5 "Vs \:D

Using the general principle quoted above the formula for the density of

states for the secular equation (1.38) is

Ey=-11T \,,.[ {& :L"s-‘fs)A,t S_g }{t’:,_g_%"/)*t 8 } ]
x
(1.37)

This formula will be the basis of the alloy theory developed later for

transition metals and their alloyse.

AN SN L

s e e e



23

1.6 _PLAN OF THE REST OF THE THESIS

Ve conclude this chapter by'giving the plan of the rest.
of the thesis. In chapter 2 we modify Lloyd's expression for the density
of states of a mﬁffin—tin Hamiltonian(lQGf) to a form more suitable
for numerical caiculations. In chapter.3 this modified formula is used
vto calculate the density of states of transition metal alloys in a single
site approximation.In chapter 4; the density of states of a tight
binding d band alloys are calculated in cluster theory by the use
of continued fraction technique. Chapter 5 calculates the electronie
spectrum of the real transition metal alloys in the cluster approximations
In chapter 6 we apply the methods of chapter 3 apd chapter 4 to
evaluate the low temperature specific heat coefficient for Ni~Pt alloys,
and we compare the results with the experiment. Also in chapter 6
we apply the continued fraction method to the disordered Heisenberg

ferromagnet.
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CHAPTER 2

THEORY FOR THE DENSITY OF STATES

2,1 INTRODUCTION

In this chapter we will develop a theory for the density
of states for the transition metals- and transition metal alloys. The
development of theory.means the manipulation of the expression for
the density of states of a muffin-tin Hamiltonian presented by Lloyd
(1967, Lloyd and Smith 1971)., The main aim of the manipulation is
to transform the Lloyds expression intb??orm.more transparent physically

and more suitable for numerical celculations.

The solution of the Schrodinger equation

(-VV-E)pi™ =0 ()

means finding the energy eigenvalues. These energy ;igenvalues are
related to the density of states. One of the central problems in the
b&nd theory of solida is to find the propagating solutions of the above
Schrodinger equation, in which the potential has the periodicity of

the lattice under consideration. Exact solutions of this problem are

in general not poésible, 80 a number of approximate methods are
applied. The best and the most commonly used one is that which

approximates the effective potentialV(¢) by a muffin-tin

LA S e et g
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potential., The muffin-tin potential is a potential which is -

P .
symmetrical inside a shere constructed within an atomic polyhedra

and is constant outside. Lloyd (1967) used this muffin-tin potential

in his Hamiltonian
H= =v4% V(r) (2.2)

where V(,Y:) is the sum of sphericall$ symmetric contributions from

sites{!‘s} at which atoms of various types are situated i.e

v A ]
Vie) = Z Y (10-51) -5BIS% | (2.3)

= 0 -6y

where ¥ is the radius of the inscribed sphere. Usingthe Hamiltoniaw
given by equation(2.2) in Schrodinger equation (2.1) Lloyd obtained

an expression for the integrated density of states

N(EY = NCE) - LT Tr n { £ Sery ém (x- c’)} (2.4)

LG W

where N,(E)is the integrated density of states for the empty lattice
or the free electrens. The t-matrix is given in terms of the phsse

shifts YILY;,
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and
]
+ ] t*l’-l + ]
£ )
G (56 zamw L C oV (8 b, els-wl)
%% $0 ¢ (2.6)
/
) Y3~V =0 |

where

Coopr = j’yf (0.6) Y, (0:4)Yu0b) da’ (2.7)

Ly :
and h&" is the sphericel Hankel function defined by Messiah(1964;
+ 4
it sheuld be noted here that our h _=~h_ of nessig.h‘s).; and

'YLLe, @) is e spherical harmonic.

It follows immediately from equatioan (2.4) that ordinary

density of states is given { in symbélic notation) by

NEY= N (E) - %Im Te {(_ %—E’E‘*—%Eq*) @:“i\‘ Gf)-‘} (2.8)

where Y\,CE) is the demsity of states of the free electrons.

-1 :
The matrix (t A ) in the denominator of equation (2.8); is the
Korringa~Kohn-Rostoker matrix( Kohn and Rostoker 1954) in site

representation,

The density of states equations( 2.4 and 2.8) have been

little used for actual calculations. The reason for this is that theré

are  three main difficulties in tbe use of expression (2.8).

P S




a7

- %
The first is that for an infinite material the (£t +&) is infinite
and this feature of equation (2.8) must be treated properly to .

avoid obtaining a density of states which i$ just a collection of

$ functions. In many other cases the ma£rix is very large and is
also very difficult to handle. The second difficulty is that where

as in equation (2.8) %E{'-i is diagonal in site indeci,%ec+ is not
and therefore, unless we think of some other solutibn, we will

have to perform the difficult and tedious task of calculating all
the elements of the inverse matrix (t--.i»G* f: The final difficulty

is that matrix C,‘::([;A-Q’) does not drop off rapidly as |%-%’! increases

if the energy is positive (the situation of greatest intrest).

The first difficulty which is equivalent to inverting an
in-finite matrix has been fully discussed by Haydock ¢t al
(1972) for ordered crystals. In~ Haydock% paper the Lanczos alégrithm
(Householder 1964) is applied to the calculation of the diagonal
elements of the inverse‘of a tight-binding matrix. The same method has
been:Aa&apted to ; the calculations of the diagonal elements of the
inverse of 8 tight-binding matrix for the disordered crystals
(alloys) by Jacobs (1973,1974, Cubiotti et al 1975). The second
difficulty of calculating - the off-diagonal elements of the inverse
matrix can be overcome by manipulating equation (2.8) so that

only diagonal elements of the inverse matrix appear.

The final difficulty can be handled in certain cases

such as those of transition metals where the long range behaviour

RN
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of Cﬁ. can be attributed to the plene waves hybridizing with the d
bands (Jacobs 1968, Hubbard 1969). In this cese the plane-wave.
contributions can be unfolded from the matrix leaving a tight-—
binding d matrix with short range remnants replacing Cfr + Thus a
partial solution to this difficulty is aveilable., This will then
offer us a new technique for practical calculations of the demsity
of states of a muffin-tin Hamiltonian for an infinite crystal inm

& situation where the long range behaviour of the matfii elements

. ,
G (%-%’)  can be handled.

Hence in order to make use of equation (2.8) we must
find a solution to the second problem., In this chapter we will
present a solution to this difficulty and this will be done in
two stages. The first discussed in section 2.2 is to show that
the derivative %EG+ can be written as a quadratic function of
the matrix Gﬁ' o The second stage, discussed in section 2.3, is
to use the expression for the derivative %%G+ in eguation (2.8)
and make the simplification to arrive at an expression for the

i -1
density of states where the inverse (t+G') is mmltiplied by

diagonal matrices only,

This then provides a technique which depends on calculating

- =}
only the diagonal elements of ( & ;-G*').

The results of this chapter will be used to calculate
the density of states of the tré\fition metels and transition metal
alloys.in chapter 3 in a single site approximation and in chapter

5 in a cluster approximation.

e gt e TR e 05
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2.2 DERIVATIVE OF G' WITH RESPECT TO ENERGY

The ternms G: u (vs-%) occux*;ing in the Lloyd‘é formula
(equation(2.8)) and defined explicitly by equation (2.6) are

coefficients in the expansion of the Green function

G(!’)r’) = -1 exp L"tK\r- t")
4X

(2.9)

ie- ¢y

in terms of spherical harmonics gnd spherical Bessel functions..

i.er

° ‘. Z . + . p +

G(x-%,0-x) =L $NVLYY G (=8) dém)):! (x’y . (2.10)
provided

? 4 l
Clem,rhn)= kI n) ngLerd Y ()Y, () (2.11)

’ d ’
“for YLY , and a expression with v and I' interchanged when rY

Now we want, find an expression for the derivative with respect

+
to energy of & thus defined by equation (2.10). The procedure for

<
finding the formula for %EG is split into following three parts.

Q
(i) FINDING TWO DIFFERENT EQUATIONS FOR :’%'EG
Differentiating equation (2.10) with respect to enmergy

. E we get
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') + ] = Fi * v
yrew)z DL RN LY G, (), e Y ()

] + FEES / * ’
* BB, e

L Py
w JUerIYLr) 6, (5-8) § 0 (<O E Ve ()

+
This expression contains %QEG s therefore in ovder to get a

Q ’
formula for this we need an alternative expression for Faé G (-6,7-5)

To get this alternative expression we note that the Green functionm

defined by equation (2.9) satisfy the following equation

(V+ E)G (-,- = 8$(r-x') (2.13)

From this it follows

c , ., , 3
2 GC"* L S Ger-n " Gl xixy dx” (2.14)
ol space

or

74 ”

| 3
0 (] /
2G(rn,r¥)=-L Sc(»;__,&, ) Clelods o ydr
E ﬁf _ |

3 14
jCC"-% Y\-Ys)C(T_Yg r-‘%)db

nb%

3
42 C(r. 'r.Ys)G(y v riv) dx - (2.15)

v
”\cdl

S C("‘ Y r.vs)(}(v Ys, v-vs)dr}

\-s-*s

)

Substitute equations (2.10) or (2.11) as appropriate{ eque.t.ion £

(2.10) g8 valid for £ 3% and{r-r'|<I%-%land (2.11) is valid for

vs =Y, ) into the right hand side of equation (2.15). It is also

T
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convenient to make the approximation of replacing the integral
over unit cells in the lattice by integrals over spheresof the -

same volume centred at the same site, This approximation, while

not necessary, enables us to write down simple explicit expressions,

it does no violence to the sgﬁcture of the result and can be expected

to give reasonable numerical answers. The result of this procedure

gives the following equation

C -n
?E ¢
. : ¥ ¥ + w7 no™®
- {L" r"*Y; 1‘5& (KY)\/“LX) GLL"('\} %) 0(2" GL_"L’ C_fs -5 )éLll‘kr)\/d (Z')
+ Ka (kr)YL(y)q A5-% [-h (er )5 (m )o\ (ier) dr*
. * LY I " I A,
4 M,(kr“)i ! }bocv ) bet (kr")d¥ ] Y Y

4+ K X(r)[A:Lkv)Sv”’;g[m”)&(kr”) ay"

e ) fiy " " A h 8 y-Y’ \(KY’)Y*(YS'}' .
+ U‘ S*‘ )v CRICS *‘JLé,s é)é, 28 (2.186)
vhere

Ya |
% 5 3y (K7D Gqu Ger?) ¥ Ay (2.17)

and ¥4 is the radius of a sé?re of the sgme volume as the unit

cell, ( It should be noted that the above approximation is not
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valid for all r’and Y’. Ve can consider, for example, terms in
the sum over Ygl vhere’l!%‘)gvl is equal to the neerest neighbour
distance d,, . It is then easy to choose Y and " both within

'a unit cell such that |r-**) > (%-%"| which invalidates the

use ‘of equation (2,10), Similar arguments apply to terms in this
sum where i:,;"— .!.'s,l is equal to the neares% neighbour distance and

to the remaining two terms in the curly bracket when 1%s- %' is
equal to the nearest neighbour distance. The above equation is
however certainly true fﬁr Y and vf sméll enough sin;e then the -
condition lf-!hl<AMuand|!;I?|<dn‘ foq::ithin a unit cell is i
satisfied, Subject to this restriction on the magnitudes of’vV

and v the result is always true. This weak result is sufficient

for our purposes since we are interested omly in obtaining an

expression for the coefficient %%Ecuf )~ To proceed further we

must simplify the expression in the square brackets in equation

(2.16). This is done in the second part of this section.

(ii) SIMPLIFICATION
Let

d *A' " ¥
Se.r)= hlw)jo&{tuw R’ er) [ ey ety ¥ e
¥ 2 (T Y ST . r - ” l;i H
—_{ h:gm)& J LY dv - }e(g.r) 5 J‘z(‘“' ) hfy.y e Qr }
v o
YA
' + TR Nz, n
4 IAQLMS ‘Az (v )&chr Yr “dr

= RGr) 4T (k) (2.18)
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where

RQker) = hzocv)g L Y @cr)gh @) e ad (219)

. YA , "
TCer) o &(hv)f by Ger™y ) ﬂ(_kv'l) ¥ dr (2.20)

»
Using equation (Bl) from sppendix B and X=KkY s omitting the

limits for the present T(kw) can be written as:
Toen = fylen | 5 )4 o) X d
- jyer) ¥ { LENIENCD
- %a;’cxd NG +5;cx~)_§ L) S, w)] -11
= &(m)[?’ Iy ksrl,s[( a}_,“"h) K Cler”)
- or') 4 ey 8 (57 Jﬁw‘)
““ &_‘ri") At (k.v”)] 1}

-Nov putting in the limits
Tr) = §,(er) U’S[( i Uon) b k) - 2Ly ey RiGeny)
) -31 {1 A dl-l A 2 A :‘:Aal A ) A

1 ) 1 -3 : '
A O A N R L ST
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The same treatment is applied to ‘tho*) using equations(Bl),

I

(B2) and X'z ky
* kS
RUoe) = K [J‘:('U)S &L(x") < ax"
o
| y + ! ne 1/}
~ e { B 0 §,60 4" |
o - 041)
_éloor) {\3:3‘_6 ') J\ (r") J.+l }(x )J‘ (_x")
S IG -  p Re) - & H
= l(s[J,: (kr){;lksr [‘}Q ) _0\ LKY)} (e v )]}
h ) I + "
- 3,0 {.}_121'" Ta G’y B Gy - b Jer)ad ey
+ A i
+ 6 (er) J1 (kr') _ & " Cler') (_w“)] - %}]
e+ Y- i
-] &.9””‘;0‘"‘% 506 }{Q«)'

& h(yx) _,&Q(_v.v) & (er) W On*‘]} Lie kd (139 (2.22)

This can be further simplified by the use of some standard results

L aa et S N PR PR KT -
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for spherical Bessel functions set out in appendix B.
Rk.¥)= -‘5_- r& { )\I () J:‘LKVJ - }{ (wr) a:l_(;b:r) J'Qﬂ(\:\”)
-&l[kr) &y (k\") J«I(_k_r) &+ 3 AL(kr) A U‘-")
) 1) a L ¢ ek e faal o
- ( ) Q(k")—\— = ch_.(k"‘ g (er h(‘“ }«\—5_. ko'\z(ld')
3 +*, N ) " .
=Ly { - "0‘-2 (ier) ¢ l}‘c")[ d.l-n(K ) - %' C}'L(Kr)]

K\“

-&(ﬁw) Jg_l (_kr)[ocmmw) Ll OU‘)]} -Q < b 0ev)

v

3T 4 o Len)dy, Uer) 2 §o (k)
R e Tt

(er) ‘u*‘)di |U" r)
2R+

3
} + 5{1 le. fo0er)
‘ from (B3)
SEQu) g0 - a-(.KY) [ N (}u-)a (kr) "'d (kv) 4 U"’}J

- uoo)ll uu-) Lo

~

28+

) )
+ik &t‘-“")

.y m[w‘)h““" Y U"’] -lk (kr)
24+ ‘}i
from (B4)

3_11:;‘{ (m)] + 4 3:0_(.&") | (2.23)

The results of equations (2.21)and (2.23) can now be used to

y
write AX,r) a5 o linear combination of &l("") a.nd&'é)“’) viz,.

St e e s 2+ r———— s T et
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SCer) = -4 v &‘{'(_m) +£’&u<,m;,_ r) (2.24)
where
P = Lo [ dp o) 4 ()
. + C +
RO R M CEARFACANENY
<L Ceny B (x | .
o c}i( YA) Lk C ‘7«)1

(2.25)

(1ii) A NEW FORMULA FOR s’&éG*

In this part we use the results of equation (2.24) to
simplify equation(2.18) of part (i). The right hand side of simplified
equation (2.16) is then equated to the right hand side of equation
(2.1é); we note that thg.tems involving derivatives of Jé‘“')ca.ncel
leaving us with a result depending on terms quadratic in JLU"') only

viz.

Y AR ! *x ’
g:, dy ") \;"_(‘L’)?;‘l‘3 GIL, (2-%) g (er) Vo (Y)
’ + " + " %
: ‘E-.’ {"’ 2;;;_»,’,75 de (er) Yul2) G'-c' (3-%) .os;" GL."b..' L‘;:_. - Zs’) &‘ g?“’)\/ﬁ (!.")
\ v Cf '/ *
+(}Q(\cr) V()& , (s-x) gy (v )z Cx')

. L
+ Y e By L) G (s-8") WG S (2.26)

Equation (2.26), es we stated.in part (i) is only valid for =

sufficiently small v and \" s but the formula we get for 8 4*
°oE

e o - v 2 g gt o e
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. ‘ <
after equating the coefficients of JS‘"”')\/,_(!) and &L/(k")\/‘_/ (x)

on bhoth sides of the abové equation, ,is true for all values of the

)
' parameters,
> G080l 6 (pn) &, §uy (wx)
—.— é = - =~ it 2 =S
3E Llf u)':,#Ys,Ys u .S o

- C':.u (- Is')fi: (eva) - B, liea) (;L, (5-%)  (2.27)

-

+
This shows that %@G is a quadratic function of Gt . This result

is closely related to the classical result for the Green‘s function

defined by

A= (e-n) vz

%% -9%

The difference is due to the fact that G', itself, is not a Greens

(2.28)

function but is, instead, a coef:{:.’gent‘-' in the expansion of a Greens
function in an energy dependent basis. We should emphasise here
again that the derivative of G+aatisfy an approximeate eqﬁation
(2.27) only, because we have used the sphere approximation for

the unit cell in deriving it. The exact result will differ from
this in that « and P will be non-diagonal matrices with two
angular momentum indices. They will vot however depend on site

indices or be matrices between site indices.,.

2.3 A NEW FORMULA FOR THE DENSITY OF STATES.

The formula for,bEGLLz(’f.s ¥)thus derived in section 2.2
and given precisely by equation (2.27) can now be useé in expression

(2.8) to deduce a new formula for the density of states:
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N®)= ne) - LT (4t )€ha?) ] ahalEver)”

- CpERet S paleiat)'] (2.29)

-}
In each of the last three terms of this we add and subtract €
from one factor of G+. Using the properties of the trace and -

At =i
cancelling (¥ +&" ) ' where possible we get

M) neE)- LT.T[C4E) (Eha L Gl
A Gut@hey! spaapt’wiaty'] .0
Repeating the same manipuletion once more we have
N(E) = N (&) - 7é_]:mTw [(%.Et';) (t‘L G*f._ &ra
4t - tat NGy 2p
xapt .'(f:"" G4>“J - (2.31)

We can drop the term Gi;( because it has a zero trace. It can

be easily checked that the imaginary part of the trace of ~ %?-
is equal to 2n, (E). The term -;z.ImTv&lt-S =7-5_-T'C§‘“); 15 nearly equal
to the density of states of free electrons, n(£)in this sphere
approximation and is exactly noo‘:’) if we do not make this
approximation. The»fina.i expression for the density of states

is therefore
| — IVEL N | -1 J -4 "'
nE)s - L I Tr [C%lrg*’f ot vopt, ] [tm ]
(2-32)
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This shows that for a muffin-tin Hamiltonisn n (€)
depends on the diagonal ﬁatrix elements between site indices of
-1 -l Y T S ) ~
tLe inverse, (t+C:+ ) only. (The numerator (di_t ‘b :xt .\_&Pt ! )
) E

is diagonal between site indices).

We must note that for transition metals the trace is over
1=0, 1=1 and 1=2 angular momenta only for 1 > 2 the imaginary
part of the trace of the above expression is very smgll so that
it can be ignored. fbr 1=0 and 1=l it can be proved ( proof given

in appendix A) that

\ _\ ] o 1 + ~1
- = - .
L Tn T [(4 € - Earter2pte JUEA LY |- e
and we will be left with the following expression with the trace

over the 1=2 angular momentum only

2.mZis

' -}
I B B P e |
(&)= nfe) - L LmTr [g_e 6-t ot +2pt, ] 4G .| (2.83)

This is the expression which will be used in numerical calculations

in the following chapters. , -
In the next se@tion we shall examine equation(2,32) in detail.

2.4 DISCUSSION

We shall now examine equaetion (2.32) in three different

! -\
cases, In the first case we shall use a form. for t which is
appropriate to a nearly free electron metal; in the second case a

form appropriate to & metal with d-band lying entirely below the

[ U




40

conduction band and the muffin-tin zero (an example of such a metal
is Zn); and in the third case we shall use a form appropriate to
an ordinary transition or noble metal such as Ni or Cu with the

d-band crossing and hybridizing the conducton band,

(i) For a nearly-free-electron like metal (Na, K etc.) the pseudo-
potential is weak and weakly energy-dependent which implies that

-t
to is large and weakly energy-dependent where

(2.34)

t; = K.CotVlL

With the above statements we shall see that the first - % . _

" term in the trate of equation (2.32) will give a small contribution

to the density of states. Because the first term then becomes

T[4 e'etey]

s Tled b - d e ]

—© ’Oec,auce, t —»o

and the last term gives

I [2pt e ket ]
TR[ 2p+6t)"]
T Te[26-2p6% ]

4

The trace of 2[564{: is z_ero‘an'ci—"';ihe imaginary part of the trace
of the term 2p is - 2N(E) ,

The second term reduces to -= N{E)by the following argument
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T [ € at' (€Y 6Ty N\
= IMT\'Y_t"o{ - t"‘q C:t + - ..]

= Ty [UZ:- ) ot - Oﬂ.cu*---]
= - N CE)

e vet result to the density of states to lowest order is

nO(E) s the density of states for free electrons. There are
thtee points tovnotice in this elementry calculation. The first
is that equation (2.32) gives the correct result very easidy. -
The second is that it is the first term outside the trace and the last and
the second termswithen the trace of the equation (2.32) which
make up the important nearly-free-—electron term., The third is that
in the trace it is necessary to sum .over all low angular momentum
even when a restricted Korringa~Kohn-Rostoker matrix (Kohn end
Rostoker 1954) including only a few angular momeonts is sufficiént '
to give the correct energy bands. This last point is important
in trensition metals wuere a secular equation involvipg an 1=2
KKR matrix gives a reasonable approximation to the eneig} bands.
The suppresed 1=0 and 1l=1 parts of the matrix nevertheless give

the major nearly-free-electron terms in equstion {2.32).

(ii) We now examine metals like Zn, where there is a d-band lying
below the conduction band and the muffin-tin zero. At energies
in the region of the d-band the 1=2 element of the inverse te-matrix

is given by

f;': (Ba-E)/T-¢k (2.35)

e e —— A B = S 488 D e < et
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where Ej is negative, I is nearly constant and K g real,.

: -1
All other matrix elements of ¢ are large and weakly energy .

+ ’
dependent. At these energies Gw(‘fs'}?») is given by;
v : ' .
+ P . L4t A ,
GLL (B-wn) cbxrk % 1 C(.t:L” VL‘,(Y}-IS) ‘A’eu (.“:[!5"} ')
vhere 'L , ;
+ . A k(M s-w) )
P CTIR ) =N GO i & s real
(Y=Y lpon K“.KS"?S‘) .

3+ [
which shows that ('lw (» '“}) is Hermitian and drops off repidly

as (Y- rs,) increases and the denominator in the trace of eguatien

(2.32) takes on the form of d-d tight~binding block in site representation,

The zero of the denominator lie in a region whose width is of

the order of [’ centred about the real enmergy Edl-; -,

It is clear from this that the term t% which is due to 7!
hybridization of the d-band with the free electron bands at higher‘
energies gives rise to a net downward shift of the d band. The
first term in the numerator of equation (2.32) gives risé' to a
consiant which when multiplied by the inverse tight binding matrix
gives the d band density @f states completely. The remaining terms
are quadratic or linear in E-.EA' s and thﬁs vanish in the centre
of the d band; they give rise to small hybridization corrections.
The free-electron bands occur at much higher e-ﬁergies and . the
major contributions to the density of states comes as before from

the first term and 1=0 and l=1 parts of the second term in the trace.

(iii) Pinally we examine the case of the transition metals (Cu,
Ni, ....etc) where the d bands cross the conduction band. The inverse

t-matrix is given by equation(2.35) Ed is now positive, consequently

ot SO S AT TR
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at d band energies E is positive and LK s imaginary and the &
hybridization due to this term in the denominator of equation (2.32)
no longer gives rige ta a uniform downward shift of the d band.
Instead it gives an additional broadening to the d band consistent
with the idea that part of the d band is hybridized downwavds and
part upwards. The imaginary part —f%s(ikd in the first term of
the numerator when multiplied by the real part of (ffL¥G# fd
nevertheless produces a net downward shift of the d b?nd since it
conteins a factor (Eii-e ) which changes sign at the centre of the
d band. We may interpret this shift as d;e to the fact that there

are always more conduction bands above the d bands than below. The

remeining terms in the numerator disappear either quadratically or

linearly in the d band region and consequently give at the most small -

hybridization or broadening,.

e Tl VI
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CHAPTER '3

SINGLE SITE THECRY FOR TRANSITION METAL ALLOYS

. 3al INTRODUCTION

In this chapter we will present s continued fraction
method for calculating the electronic spectrum of the tr@?ition
metel alloys. This method has been used in the multiple site
theory for a single s band Hamiltonian (Jacobs 1974, Cubiotti
et al 1975). It is much harder to do the multiple site theory
for a degenerate d band trensition metal Hamiltonian (see next
chapter). Therefore in this chapter we will restrict ourselves
to a single theory. In a single site epproximation, the central
stom is treated exactly and electron hops from the centrsal
atom to the average environment. There are two kinds of single
site theories commonly used, the coherent potentirl approximation
(Cra) and the average t-matrix approximation (ATA); we shell
hovever use o single site theory which is different from these
and nevertheless,in common with the CPA, preserves the loweﬁt

six moments of the density of states correctly.

We begin in section 3.2 by investigating the accuracy
of our single site theory for a tight binding 8 band Hemiltonian,

In§'3.3 we will apply this single site theory for calculating
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.the electronic spectrum of the transition metal alloys. In the
above calculations we use a model in which the 1=2 component of
the binary alloy in the pure~materiai limits have identical shepes,
the only difference being the absolute position of the bands

in energy. In section 3.4 we discuss the numericel results aund '

conclude,

, 32 ACCURACY OF SINGLE~SITE THEORY

In this section we calculate the density of states
for a single tight bindiong s bend by the:continued fraction method
in our single site approximation. The results obteined are compered
with the density of states curves calculeted in the coherent potential
approxxmatlon and in the mueltiple site theory (Cublottl et al,
1975). We will also calculate numerlcally and avalytically the
.moments of the s band density of states in our approximation
and compare them with the exact results and show that we have

the seme eccuracy as those obtained in CPA by Velicky et al (1968).

In a very simplified single site approximation for an
AB alloy, the average Green/ function (for a semi-~elliptical band

of bandwidth 4 units) can be written as (equation(l.i2) of chapter I)

Er= —S5—rnu « :LL;%z?E ' (3.1)
t_&*—"" .

ﬂ,
’l

i
]
]

where ¢ is the concentration of atoms of type A
E, =} s Byt .8 | (8.2)

§is the bandwidth or separation hetween the atomic levels.



and

F =cF, + (l-c)FB: | (8.2}
where F, and F, are given by the equations

: . (B-E) X )(E -£)2 =4

~N - )

Fio (Eg~E) +. J(EB: “E)” - o (3.5)
B~ )

e

I

Therefore we now know the average Green function defined by
. equation (3.1). Hence we can calculate the average density

of states by the formula
n(E) = 1_ In <G> (38.6)
= :

In figure (3.1) and (3.1b) we compare the numerical resulis
of our single site theory and that of the coherent potential
approximation for a semi-elliptical tight binding s band. Figuvrc
(3.1) is for c=.4 and figure (3.1b)is for ¢=.2. In both the figur.c
the dotted line curve represents the CPA and the full line curve
our singlp site theory. The CPA curves are flat and broad, and
 their width and height decrease: with the decrease in concentration.
But the single éite curves are narrow and peaked at the centre.

Thé height at the centre of the band is maintéined with the decresase

in ¢omcentration,

Now we will do the calculations for a simple cubic material

géing our single site theory in order to compare the results with



the multiple site theory for simple cubic (Cubiotti et al 1974).

The everage Green function for e simple cubic (with zix

nearest neighbours) in our single site approximation is

<Gy = £ o U= (3.7)

where E,, E; , F and ¢ are the same es defined before, but now

A
..l ,
B = [q/ceA—E - %5 F‘D(EA-E-')] (3.8)
and
. .

Fo = [9/Ce,-E - e FO(E,- e)) ] (3.0}
where . ' (3.10)

FO(e)- E=x JBZ36

{8

The sign in the last equation is selected so as to have correct

anelytic behaviour for FD(E).

Figure (8.1c) and figure (3.1d) compare the results for
a aimpie-cubic 8 band in our single site theory aund the multiple
site theory. The full line curves are for single site theory and
the dotted line ones for multiple site theory. The similerity of

the curves obtained from our single site theory and from the cluster
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ﬁheory (Cubiotti et al 1975; 25 sites) demonstrate the likely
convergence of our method. The CPA does not seem to be close io i

" likely converged result of our method.

- Now we will examine, mathematically and numericelly, the
moments of the density of states function obtained in the single
site theory for a semi-~elliptical band. Mathematically the moments
of the density of states are defined as the coefficients of the
terms in the expansion of the average Green function in powers

of energy i.e

)
2.7
6y = 2. Mo (2.2
P.o EP~\-\
To get these coefficients we proceed as follows:
Expanding equation (3.4) in powers of energy in the
linit E —»c0 and keeping the first four terms only we have
2 3 .28
NI S R TU et S
= Te T e el
Similarly expanding equation (3.5) we get
. _
2 ;
R . 75 L s/g +3%, (3.13)
6= "¢ e= £3 g

Substituting equations (3.I]) and (3.12) into equation (3.3) we

have

e,
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3 .

Using this expression of F in equation(3.1) we get

2 2
Gy = -1 4 Q2% Faya ) 02008 51%)
g E3 =Y

4 2 2, '
SR IR 1-2¢) 8
- [Te*s*( L <]

'é"s (3.15)
5 s
+.éz.[0—2¢)§1+ (1-2¢) = S+$C\-2¢;)g]
.
vhich gives
My =
R=- (-20)8
M= §; ‘+l
TN ESTELS 4 ) e

oF
1"

4 - 2 2 g
(%+ 84 (1-2c) 84 2)

- -3 ‘
_[(l-zc):éi_y (lvlc.)% 8 + (g-za)ﬁ‘%]
32

i
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Comparing these moments with those given in equetion (3.30)
of Velicky et al (1968), we see that they are the same as the

exact results end those of the CPA.

Numericelly as a check on the arithgmatic we calculated

the density of states moments. by the defination

Po= Sch: e’ n(e) | (3.17)

where the numerical value of n(E) is the,same as given by equation
(3.6). We find vthat these computed results for r&,(given in Table
3.1) agree very well with those evaluated from the ﬁathematical
formu}a of equation (3.16). This proves thaé’our single site theory
is of comparable accuracy to CPA as far as the moments of the

-d%hity of states are concerned.
Having thuscestablished the accuracy of the single site
theory for a simple Hamiltonian, we will epply it to the complicated

transition metal Hamiltonian in the next section.

3.3 TRANSITION METAL ALLOY

(i) Plan of calculations
The density of states function for transition metals
is characterised by a narrow and high d electron density of states
superimposed on a broad low sp density »f states. Three ingredients
are use& to calculate density of states of transition metel alloy.
These are:

(2) The density of states of the two pure components.

(b) The modification of Lloyds formula discussed in chapter 2,

. . . .o . N -
- . . - L. L
4 e g s La . . . - 3

P
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\s:;hich gives us the de-nsity of states of e transition metel in Yeynmes
of the diagonal elements of an inverse matrix.

(c) The single site theory of section 3.2, which enables us to
calculate the diagonql elements of the inverse metrix in an allcy

approxi mation.

The first ingredient is discussed in detail in section 3,23,

while the details of the second and third ingredients are diccussed

below,
We restate the Lloyd% modified formula here asg
N S S e | .
nee)= Y\c(\:)-ﬁ--lﬂ‘('r-.[D[t:L “"G'LL’] } (3.18)
13
vhere

NoCE) = ;i_[o/ok+ 3o k] (a.4%)
>t _;l - { -1
D=t ot - 2, t, _3_&_{:2‘ | (8. )
3r 2 N h :
R R FNCORN O I I CRY
‘ 3 . ‘ -~
P = 1% k[ AQ-C"(K) nevi(,xt,\ - %Tl A:Qou;) ne_g'xk) [
e n) - L J cn ol (o

— 'LKO{_Q | J
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-1 .
1, =k C&tr‘\z —L
Y
=t, -tk
— 3.23
K = N . ? (v )
tan le - WCE) /( Ed-E)
‘J o\
In these equations GEI: is the coefficient in an expansion

of the free electron Green function, which is discussed later; X is

the radius of the sphere.of the same volume as the unit cell; Ed is

the position of the d resonance; Ji,wd n, are the spherical Bessel
function and Neuman function respec-tively; V\Lis the phase shift

for the d electron orbitels, i.,e 1=2, | The phase shift can be accurately
represented over the entire width of the d band if the energy _
dependende of W(E) is approximated in the following form (Pettifor)
1909)

W(e)

1é

2z a2 '
?:35.-' KJ"L (e )/Kd (;,('Ktﬁ '5-6) (?'24)

Ky = ﬁd (3; 25)

where A’ is the radius of the inscribed sphere; W is the width

of the d resonance at EEd and is fully discussed by Hubbard (1969).

To formulete the single site theory we consider o random
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éubstitutional alloy AB. The fractional concentration of ihe two
constituents are ¢ and (l-c) respectively, and their distribution
throughout the lattice is assumed to be raendom. For this alloy the
density of states equation {3.6) in a singie site approximation

discussed in section 3.2 can be written as:

-1
-l -
f\LE) f\CE)-*'Ihm‘nrﬁ;CSD ‘:t ) /'*F;ma*.]
By + - -
+ (0-¢) -De[t,_ + @'m%, 4 F,zmzm/] } (3.26)
where
A - Ay A 4 A o -
Daz Gt c2pd _'éiaei
B B By 8~ (3.27)
Dg = J"’z"(a_g - 208, - ZR—:{:"

F is the termination to the continued fraction in a single site

approximation i.e

= £ (3.28)
2m A, T 2m2 ¢ * C ) 2"‘2“ ’ :
e .
where E N aud l: .a.re the terminators to the continued fraction
mim!

correspopding to pure A and pure B materials respectively, thesé

are evaluatéd in the next sub-~section.

3.3(ii) Band sthcture
We know that the shape of the d band electronic :.

gpectrum of all the transition metuls is the same, therefore we
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will celculate the density of states for an arbitrery transition

metal and moke it to behave as the density of states for A and B
meterials by shifting the centre; of the d band to E’g and Eg
respectively. The density of states of eg and tzg symmetry, denoted
by Lo end §, respectively in the d band region of a transition
metal is calculated using the Model Hamiltonian (Jacobs 1968) derived

from the KKR method. The explicit expression used in the calculation

is:
N
D (E CT ) 'T (&) eS = T gvien) fif(t-g*tgq (3:29)
e Ve \2.—\':
where

Lleiisn) = A, INUSINTN)! Nos*e ) £ (grial) (3-20)
~SL(K): 1 When % L 2s
2CT6(51-X)  when heoasd K5
' (8;31)
=C | W’i‘\QV‘L %\76’\

bn is the reciprocal lattice vector and only the following four values

are used
- 2K
ko ~ T Lo"od O)

K - 2_’_7.‘-_ (—‘).{)“ )

i K ]
(3.32)
K

L= '2{ Lo)z,o)

'K%:%(\,l,i)
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where a is.the lattice constant, RH and AH'are constantg.The

integeration in the k space is done in the kﬁ?of the Brillouin
‘ “

zone. N is the number of points at which the integration is

done. The three components of the k vector kx, gy and kz satisfy

the following condition:

2  (3.33)

The values of the parameters, the spherical hermonics and
the tight binding gésp, Slater and Koster (1954) matrix elements used
in ‘this part of the computer programme are given in Table 3.2.
Dﬁé %urns out to be a diagonal meatrix with three components equal

and the other two equal to each other, The e, aend t, components of

2g

the density of states can now be calculated by itaking the imeginary

part of the trace over the corresponding egqual diagonal matrix clements,
A A 6 6

These are then made té6 behave as f, ,f, and %, f¢ components of the

density of states of the A and B materials by sh{fting-their centres

to Eﬁ snd Eg respectively.

LA\
. . . . Fong 7
It is necessary in order to write down expression for I,

and Fiié of equation(8.28) to define intermediate quantities for
pure materials K% ,.K; and Kf ’ Kg vwhich have their imaginary

parts given by the equations:

A (2.34)

A
- K

-

e are grateful to Prof Csllaway for providing us with ihe weighiin:; ;agISWs

at corners and edges of the Brillcuiu zone.



Tk, = X_ ff o (3.35)

The real parts of Ki ’ Kg and K? s Kg are the Hilbert trensforms of

the above quantities. These quantities are roughly analogous to the

quantities in the denominator of equation (3.1) for the single site

theory .

As KlA end Kg N Kf and Kg are the two separate groups of

the elements of the diagonal matrices, therefore the matricea?g\§nd

M
EiiJ of equation (3.28) which are defined in terms of these quantities

also fall into two groups Fﬁ ’ Fg‘, FiB and FEB. The precise equations
" are:
A=t A -
Q.MZ,“’ + ‘: N = K.
(3.36)
A -1 A
[_tl * zmzm + ‘; ! Ka
Bt ot g7 8 |
[t2+G2M2m,“\'F|J = K‘
6., _t e 8 (8.37)
[ s BT - '
Therefore
A .
[(.k .) q;,mz / ] By

- [CKA) - Q,_mg_m/ At;']
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R- [(KF)"'_ N J"E,'_]

3 -l -1 8 : ,
k= [(Kle.) - CItMQm"‘Btz] (8.29)

A A B &
( As K‘ ’ K2 s K, and K;; are just numbers, there is no=difficulty

in taking their inverse).

After substituting the value of F into the equation
(3.26) we see that G:ﬁ,:cancels, therefore in this single site
et
celculationas we nee(i,.cbother about the value of G;%:. The trace

in equation (3.26) is now over twoe terms omly.

To do the numerical .ca.lcula.tions for the densiyy
of states we must clearly define the quantities occux}/ing in
equation(3.27). %, and ﬁ& are the same as defined by equations
- (8.22) and (3.23), and the other quantities are defined by the

following set of equations:

A -t A -
tﬁ- = KCetnz*tK

(3.40)
"L ketn® —ik
fonn® o i B\ fr
nYLL: A Ka_z (ki )/(Ed_'e) (8.41)

| tanvﬁ = Cp ic(;\;‘oc ’u)/( Eﬁ ~E) | (3.42)
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./ A2 A 3
=2V wa j, (Ra¥) (8.22)
Kz 8
Cf’:w_? | 8 &1(_ wd ’Lt) (3043
A -
ky = JES
. , (8.45)
L] :',-J E%F
A L) ’ . 1.) . -
EL '% = - - 1019 4, h;CotYlA
a2y g " S o
de c"Az(-UL‘) Faerl) K.. z b (3.40)
3 keetn™_ 2
T T | .
d8ct &.O’J”b) ’U e catn®
dg * T %N(K'\«‘_) & UC’V») | (3.4%)

%3 kW i .
*E VL,_ 2

|}

vherewkandwe are the resonance widths for the d bands of A end I

type materials respectively. EA and Eg are the centres of the

d
two d bands, A is the radius of the Wigner 8ietz sphere. The
values of the parameters used in the calculations are given in

Table 3.3.

8.3(iii) Conclusion
Our strategy has been to use the density of states

of the pure materials( obtained by a different method) to calculate



A .
‘end F, ‘for the pure materials. Thus avoiding

the terminators P
mm

A
the direct calculations of E“w(and gfcby the continued fraction
m

method, a much more difficult proceedure.

The numericel results are presented and discussed in

the next section.

3.4 DISCUSSION AND CONCLUSION

Figure (3.2) gives ' $o ond fi 5 the ®y and t2g
components of the density of states of an arbitrary trensition
metal calculated from the interpolation scheme of the Model
Homiltonian. The total density of states is then obtained by adding
to the s density of states an apéropriately weightdcombination of
the two components gg‘and gt . These components of the density of

states of the transition metal are used as data in all subsiquent

calculationS.

Figure (3.3) gives the density of states of the two
components of the alloy in the pure limit. The d component having
the same shape but different band centres. The area under the curve
for E less than .8 is.roughly equal to the number of d elecﬁrons

and the s electrons.

In figure (3.4) the electronic spectrum for two symmetricel
concentrations ¢=.2 and ¢=.8 is presented. ... e see 7that an:

addition of a small amount of impurity results in the appearance
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of & high density.of states around its d band centre. at the cxpuuue
of the density of states at the upper edge of the d band of {he
host metal., The total area upto E=.8 for the curves of each

concentration remains the same as before.

Figure (3.5) gives the results for c=.4 and c=.8, and wa
see that with the increase of the concentrabion the minority band

grows at the expense of the majority band.

Figure (3.6) is the picture of a 50-50 alloy. There are
two smooth roughly symmetrical peaks around the centres of the

two bands with area under the curve renaining the same.

From the various figures it is clear that the effect
of alloying is that the height of the hands remain almost uunchanged
and the half width is multiplied by a factor ¢y but the centre of
gravity of the bands roughly maintain their position. These erc
the spécial features of this type of approximation as compered
to CPA, in which the width of the band , however defimed and ..
height of each sub-band go as JE;and the centre of gravity is

shifted by amount proportional to (1-c).

The calculations in this single site theory ta¥Ke very
little computer time, because there are no self-~consistent equations

to be solved.
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TABLE 3.1

: n-2
THE MOMENTS M, X\O FOR FULL LINE CURVES IN FIGURES 3.1 AND 3.1%

AND THOSE CALCULATED FROM EQUATUION(3.16)

c= .4ﬁ
n M lO“-

NUMERICAL ANALYTIC
0 99.8986 10.0000
1 ~09,7512 ~100.0000
2 2498,4631 2501.0000
3 ~2496.7733 -2503.0000
4 62538.1249 62601,0200
5 62593, 2612 ~62750.1000
e=_o2
n W o :f"'7~..-ff,f.ipnx o 2,

NUMERICAL - ANALYTIC

0 99.8125 10.0000
1 -299,1139 —396.0000
2 2496.3129 ° 2501,0000
3 ~7486.7841 ~7509.0000
4 62500,1002 62609.0200
5 -187689.7650 ~188230.3000
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TABLE 3.2

| REAL SPI%ERICAL HARMONICS

V{ =J1_5_/Z; xy/ r2

Ya ” J157ax yz/c”

l\/?: = 4W‘I‘k zx/r2

Ny = T5/ar (x7=y") for®

N = \T5/ar (32°—r®) f2r®
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TABLE 3.2 CONTINUED
THE TIGHT BINDING MATRIX ELEMEKTS

T = E .+ 3ddscosx cosy + 2ddA(cosx+ cosy)cosz+ dd§(cosx cosy +
xyyxy d

2cosx €osz + 2c08y cosz)

T = 2(~ddR + dd§)sinz sinx
XYs¥Y2 ( R )

T = 2(~ddx +dd§)siny sinz :
XyyZX

T = 0

2 2
XysX =Yy

Txy,3z2—r2 = 43(ddo ~dd§)sinx siny -

Tyz,yz“ E, + 3ddgcosy cosz + 2ddK(cosy + cosz)cosx

+ ddg(cosy cosz + 2¢osx cosy + 2c0Sz COSX)

— 2(-ddX + dds)sivx siny
?

3 .
T 2 2 =me (ddc ~ddS8)siny sinz
vz, x2-y2 = 5 )siny

Tyz 3222 = "'-g- (-ddo +ddS)siny sinz
, 32"~

T = E, + 3ddccosz cosx + 2ddX(cosz+ cosx)cosy
ZX,2X d

+ dd§(cosz cosx + 2cosy cosz + 2coex cosy)
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TABLE 3.2 CONTINUED

2 - 8 (dar - dag)sinx sinz
ZXyX =Y 2

3

zx,3z2-r2 = '3 (-dd 5+ ddS)sinx sinz

T2 2 2 2 e« E, + 4ddkcesx cosy
X ~Y 34X =Yy d

+ (2dde + ddx+ -gddg)(cosx COBZ -+ COSy COSZ)

T 2 ¥F (ddo - 4ddx + 3dds) (cosx cosz—cosy cosz)

X ~=y2, 322—r2

il

(93 2 = '3 R
Tazé—r, 3z 2p® Eg + tddo(4cosx cosy + cosx c‘osz + cosy cosz)

+ 3ddx(cosx cosz + cosy cosz)

+ 3dd§{4cosx cosy + cosx cOSzZ + COSYy cosz)

-
i
213

W

<<
no
>
W
N
]

A= .8826 Ryd

Rg= 3.592 ay
ddo= -0.0296 Ryd
ddx= 0.0147 Ryd

dd§= -0.,0024 Ryd

o = 608088 a»B
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TABLE 33
A
B
a = (3.8088
= .8 2
ri «020 X .629 & a.B

&
n

#0338 vyl

0402 r4cd

T
S



FIGURE 3.1
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The density of states for semi-elliptical band alloy. The full line curve
is for single site theory and the dotted line for CPA.
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The density of states for c=.4, The dotted line curve is for multiple site
and the full line curve is for single site theory.

- FIGURE 3.1d
. Ib —
C= 2
A
kw po—
K.
v)
4
o co% .
P .
t e
2
w
A -
|
u e { 3

SY 56

7’
The dgnsity of states for alloy for c=.2. The dotted line curve is for
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FIGURE 3.4
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The densities of syates of transition metal alloys in single site theory.
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curve is 5.68.



FIGURE 3.5

o
"

B

a0~

'
)
!
]
'
'
f
]
I

\S |-

-
PO il Rk ates

o] o

Enceay (Ryo)

Plot of the densities of states of transition metal alloys. The area
under the dotted line curve is 5.76 and that under the full line

curve is 5.72.



Dedaixy OF Svates

FIGURE 3.6

e.=0'%

i 1 N ] }

e i i

o e A1

Plot

site

3 7] L |

'3 X
EnErey (Ryp) o

of the density of states of 50-50 transition metal alloy in single

theory. The area under the curve is 5.74.



73

CIIAPTER 4

CLUSTER THREORY FOR d-BAND ALLOYS

4.1  INTRODUCTION

In this chapter we will apply the continued fraction
method to calculating the density of states of transition metal
alloys in a multiple site theory. As a simplification in the
calculation we will deal with the d electrons only in this‘chapter.
The sp electrons and their hybridizing effect with the d electrons
is dealt with in the next éhapter. The trensition metals we decal
with here and in the next chapter hévé face~centred cubic structur??
buf this method can in priﬁciple be applied to the body-centred

cubic and hexagonal materials also.

There are many advantages of the continued fraction
techniqne but three of them are clear, The first is that it ig
not ﬁecessany to solve repeatedly sets of transcendental equations
where as it is necessery in self-consistent theories. Therefore
we need less computer time. The second.is that there are no . . -
difficulties in conection with the analyticity of the density of
states as shown by Nickel and Butler (1973). The final advantage

i3 that the Liftshitz_condition‘(Lifshitz 1964) cn the density
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of states (thet the density of s’ates is non-zero at any energy
at which the pure componentsin the alloy has a non-zero density

of states) can be satisfied.

The cluster theory method calculates the demsity of states
for all possible configurations of a central cluster of atoms (the
atoms outside the cluster are treated in an average approximation)
and then an everage density of states is calculated by adding -
together the density of states for each configuration multiplied
by the muitiplicity of the configuration (which is calculated

using symmetry arguments) and a suitable probabilijy weighting.

In the next section we discuss the formulation of the ¢
density of states equation for the d electronms of the transition
metal alloys. In section 4.3 we present the pumerical results and

conclude this chapter.

4.2 THE 4 FELECTRON DENSITY OF STATES.

The disordered Hamiltoniaen which we are using is given

by
H-= H\‘\' H'Z. . . (4.1)
where .
W LAY de
\ L*‘A ‘mom
Mm‘ A
8 :
W= L ody €.Cop (4.2)
m . .

-\- .
vhere (., and C{w\are respectively creation and annihalition operators
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AR
for the electrons on site i with angulaer-momentum m . Ao is equal

to EA or EB dopending on whether the central site iq occupied by

.an A type or-a B type atom in the particular configuretion being
cohsidered, ﬂii, are the elements of the hopping matrices for the‘
“electrons with angular momentum m and m’ between the sites i and j.
These are infact the Slater and Koster (1954) two centre energy
integrals and are given in terms of direction cosines in Table 4.l¢
The central atom and its twelve nearest neighbours in a face~centred
cubic structure are pictorially represented by figure 4.1. The

values of the direction cosines for the twelve sites as labelled

in figure 4.1 are given in Table 4.2.

The problem we are dealing with here is considerabiy more
diffigult than the problem of singlé band cluster theory. Cgﬁequently
in order to get tractable result it is necessary té make severer
Qpproximations. Nevertheless our result is the first cluster -.:
calculation on degenerate d band alloys to prove feasible. The
guiding principles in making these approximations are:

(i) That our results should reduce for the pure materials to
those of Haydock et al (1975) i

(ii) Phat  the diagonal matrix elements on the central atom and
its twelve nearest neighbours should be treated as nearly exactly
as'possible.

(iii) That the Lifshitz condition should be satisfied.

The first steps in deriving the result are closely analogous
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to those used in Jacobs (1974, Cubiotti et al 1975) for o single
bend cluster theory. However it is necessary almost immediately

to meke an additional epproximation due to the degeneracy of the

d band. We begin by writing down our basis fuuctions. There are five
'Wannier functions of different angular momentum on each atom.
Consequently the initial basis function 107 on the central aton

in the single band theory is replaced by.five basis functions \07%
in the d band theory distinguished by different values of the index
m. The same is truevfor all additional basis functions generated
from the set {‘°>g} by repeated operation of the terms W, and HZ

of the Hamiltonian. The basis set we use is then as follows:

B

\07, | mz1,2,3,4,5

| i T
Loy, = N, [_H‘l°>n( O‘-l |

™ OL', . (4'3)
N, £ Anqulcjil | ?

lznn

8

l4
lQ,o)m = () [\-\‘\507”\.— ot
- o By
= N?-D 4‘:5:?&'\'\ P:ﬂm'm'ufiar7’"’l
m'm” o
W% = 87| R, hoy, —OF 3 ]

{ A1l further kets are treated in a crude approximation analogous
to that applied to the higher kets !>°” and 12.1) in Jacobs (1974),

Cubiotti et al (1975) }.

In this set of basis functions each ket is orthogonalised
to the previous kets and each ket is normalized by the factor N

to unity., The notation \C,}7 for the elements of the basis set (4.3)
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serves to indicate that the element ‘(J) is constucted from the
ket |0> by i pperations of 4, and j of H, . ( This notation
is ambiguous beyond a certain level. The ambiguity of notation will
not affect us here , becsuse we make our approximations before that

- level).

In basis set (4.3) the normalizing factors are calculated

as follows:

o¢ Lo
| = <& 0 \l o) (Nm) LJ i Am,LAmlm (4-4)
"
m\~2 - ¢ o |
o( (N‘05 - L Ao ‘A i . (4'5)
\'.:’ru;\ mm M '
m .
5j o' kO
= Caol20y - OB R AI,\AA,..
LRz (2 Tn Mmoo My 2™
"*‘1'"“ "y
P . e T een
wmA-2 - < ol g gk ko
- A LAY A& A 4.6
o LN"O) B é.-&:hné_::h}nq mm' MM M, MM ( )
m'm, m,
/
m G n (4'7)
Nzo = NWLNw)

The kets \o>m, \Loy,, and\i,D?mare easy to handle. The ket \In)m)
however is difficult to handle because it depends on all configurations
of A and B atoms on the twelve sites of the nearest meighbour shell.

We include the efféctg of this ket by»reasoning by anealogy with
the single band theory of Jacobs (1974) and Cubiotti et al (1975).
In this theory the part of the continued fraction which depends
on the ket\L\? s ignoring the broadening terms, may be written as

follovws:
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i = 6
: 2
1o |noy - - Aol ulnyl 3_:; §-€ - (6-2)28 /5

miulny-g -(;.-ZJS - E

= ¢ (3-2) $p~ €
CE+e)(L+e)

6-Z Z

“+

s_¢g -5_.¢ (4.8)
F 2 '

(3]

{where equation (4.8) follows from equations (7), (8) and (15) of
Jacobs (1974), Z is the number of atoms of type B in the nearest |
neighbour shell (i.e 2 ranges from 0 to 6 ) }.

In this expression we see that the ket ]l,\) has a vital role in
ensuring that tl;e band structure has no singularities in the region
between the bands centred at - Sz._ and ?;_ s which would otherwise

be implied by the denominator of

i - [ | (4.9)
- 32 o _
Lol H\1o0y -E e S-€

{
Inl\ou.r degenerate d band case EA takes t:he place of + % |
and EB that of -~ 82: *, and the numerators and denominators are
respectively adjusted by terms :proportional to POL andwo (where
W is half the bandwidth) so that the result is as good as possible

in the limits Z=0 Or 6. The proceedure is cerried out in more detaii

below:
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The secular equation for basis set (4.3) is given by:

-
'Son-\ |0>MI-ESM, (’S\lHl (02." | ¢ | ©
Z\olHiey , Lol Wioy - Egm’ (w(nlln) / O
m m " m’ m m
> LuwlH oy, (uln[\\) -8 slcuihi20y
' W m w m; mrn ™ ]
/o) ' O (9.0\\-\\\\) v ,(appmx)
m m’ mm

(4.10)

Now folding all the matrix elements of the matrix(4.10) into the
first and using the above reasoning by analopgy with the s band =«

“multiple site theory we get

%J& )8 '_Z' md’éi! mm

'M"'I = i= MA ™
. M. ﬂ‘ ‘
(¢ Y -
~2 A* G, A°, (4.11)
mmt ol mm?
z-nn .
wm' m,
wvhere
A,& - . .

vhere X is the number of etoms of type A on the central site (X=O
or 1 ). E, and Ejore the centres of the bands for A and B type

materials respectively. The summation gi means sum over the nearest

=nal
neighbour sites which are occupied by atoms of iype A only, similarly

Z.. means sum over the nearest neighbour sites occupied by B

tznnd

- A 6] '
atoms. G #» and (:_ w oare defined by the following equations:
mm m'm,
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. _ | . -y
G .m._' [_{ A3M"M.+ E:A- E- AL‘m"m Fm‘m‘ AL‘M‘m” %{'m} (4.13)

& ~ - |
Gm"m,: [{ A"?“o:”:\' Eb* E- /'\’-"muml FM.W\' AL‘M,&”}‘ Sm,,m‘] (4.14)

where
. o -1
w15 T AAE A pa | (2.15)
mi, Lo gion ™™ Pl e "‘”‘a P
=3
- . TS oC o
H = N Al A& A A
AL*M’rn‘-l;:hn% 2*311. "‘l"}_ MM %p}* ”}‘m‘ %ﬁ'nn h:'hg msm‘ (4.16)

-1 :

Fo(Led={a(L,3)~e-b(,2) e0(3,8) | (4.18)
where ¢ is the concentration of the A atoms and &(b3)and b(L,3) are
the Haydock’s coefficients*, L refering to the symmetry of the d
bands § L equa.i to 1 means that the coefficients are for degeneraté
set {xy,\/z,Zx} | and L equal to 2 means the coefficients are for
{)&\{f 'bzzvrz} orbitals.Fa,E) is defined iteratively in terms
of Haydockd coefficients A(LN) and b(LN) ( given in Table 4.3) in

the following way:

We are grateful to Roger Haydock for sending us the nﬁmerica,l values

of the coefficients used in his continued fraction technique.
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. | -
F(Ne) '3[0\/ (L431) - E-o(L,h+) Pem,e)'] (4.19)
FUSE) = (E+awd £ [E% 4 bu  (4.20)
2 beo ' '

where F(#5€)is the termination to the continued fraction at the = -
2

fifteenth level. bm is related to half - haundwidth of the d bands,

@, and b, are given in Table 4.3. The sign in equation (4.20)
is selected so a8 to have the correct anslytic behaviour. Because

of the 3-fold ahd 2-fold degeneracy of the Haydock's coefficients,

o—

the elements of the diagonal matrix Fm...\. also show the same behaviour.

.After computing A'b"um‘ and A‘*m”m‘wesee that these are also
diagonal matrices with three fold end two fold degenerate elements
_ A
on each mein diagonal., This meeans that G)-...“m and G i gzven

by equations (4.13) and (4.14) are diagonal matrices with the sane
property. Wie can use these facts to simplify the last two terms

' 1A 18
in equation (4.11). If & and § are elements from the triply

. 2.A 28
degenerate set and & and & - are the elements from the doubly

& G
degenerate set of mum and e ‘respectively then

'
; 0L

ol 0
GMI::.[(C( -—E)g :-—{ Z A, u,+G Z MIIAM“M’

thal ™M ™ {=naA

M“ ”‘“
85 AL CPE A ‘}.4' }] (4.21)
CznaBMm M i=nn0 i’
mM mll

The only di.fficult task in the ebove equa.tion is to evaluate the

sunmations Z A A '’ and Z A A" . The first sum can

:anl i’
-nnA m.

be very ea.zuly calculated on the computer for different
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configurations of A atoms on the nearest neighbour sites, then the

second sum can be evaluated from the relation

Z ~z mm y,:ln\‘ “ .L‘“naAmm" Am”m-/ (4'22)

L ﬂ'\ L: nn ,
m” m!

as we have already calculated the sum on the right hand side

{equations (4.15) and (4.16) Q}.

Thus if n is the number of configurations of the A atoms
in the neﬁrset neighbour shell, Mn is the multiplicitiy of the _
particular configuration n (both of which are estimated by symmetry
arguments), and y is the number of A atoms in the nearest neighbour

shell then the average Green functionvis given by

B3 X-Y
GC\GIoY Z Z M, ¢6-0 (4.23)
™ .

K20 n:=\

Hence the d dand density of states for transition metal alloys is

given by
ney = Im T <o\Gloy, v (4.24)
A ™

4.3 DISCUSSION OF NUMERICAL RESULTS AND CONCLUSION;
The calculations in section 4.2 are done for arbitrary

transition metal alloys with EAz 2 ryd and E_= .5 ryd. The band

B
width for both‘A and B materials i8 .2 rydbergs. In figure 4.2
we give the results for the d band density of states of pure A

type transition metal around EAn «2 ryd} An exactly similar curve
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is obtained for the B type material around EB= «& ryd, which we

shall not present here. We see that our method has reproduced the
Haydock curve (1975), which contains much structuree. This_is because
of the use of the Haydocks coefficient (private conmiunication )
.in»the termination of our continued fr@ction. This curve has a

close comparision with the result of the histogram method of Pettifor
(1972) and the results of the interpolation method of Gilat and
Raubenheimer (1966). In figure 4.3 we give tﬂe results for c= .8 o
and c¢= .6 and in figure 4.4 for c= .4 and c= .2 for a band around

E,= .2 ryd. The curve for c=.8 shoes that with the addition of &
small amoun$ of impurity, the structure at the edges of the band

has disappeared, whiie the peaks towards the centre of the band

have crudely speaking retained their positions and their heights.

As the value of ¢ is decreased further, we see that the peak at the
centre of the band remaines, with humped shoulders “(having a small
amount of structure in them) on either side. The band has narrowed
also. This narrowing of band goes es J1; at its edges. In the curve
for ¢c= .2 we see that there is a pair consisting of a sharp peak

and a small peak & littlz.shifted from the centre of the band, =
surrounded by symmétrical peirs of broad peaks. The pair of peaks..

in the centre can be understood as arising from isolated A atoms,

the splitting of the peal being due to thebpiitting of d‘E’and‘T)
electrons in the cubic enviré@ent. The broader peaks around this
central‘pair are due to an A atom in the centre with one, two, three
or more‘AAatoms in the nearest neighbour shell. An A atom with a single
nearest neighbour ofAtype A, for example, will give a typicsal bonding~
antibonding density of states i.e. peaks at or near'EA~t and EA+£

(t being the hopping integral). The central peskssre shifted from
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EA due to second order perturbation theory repulsion by the bands

near Ep. The shift is roughly proportional to (l—c)t/(EB-EA).

In figure 4.5 and figure 4.6 we give the results for a d-electron
. density of states for a complementary band around EB= 5 for various
concentretions. The results are approximately a mirror reflection

of the results of figures (4.3) and (4.4) if we neglect the effects

of the assymmetry of the band stwucture of the pure materials.

For the sake of comparision in ficure 4.7 we give the d band
density of states for c= .2 wheh we use a broad square root termination
instead of Haydocks spiky termination. It closely resembles the
curve for ¢=.2 in figure 4.3 with the structure smoothed. This shows
that the density of states for the minorty band obtained by the

above method is relatively independent of the termination we use.
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TABLE 4.1

ELEMENTS  OF THE HOPPING MATRIX

2 2 .22

A = 312m2(dda)+(12+m -412m2) (ddx)+(n“+1°n") (dds)

XY Xy

Ay gz 3120 (ddo)+1n () ~4n°) (ddx)+1no(n>=1) (dds)

A o™ 31'?'mn(ddv)+mn(l -41%) (dax) +mn(12—. 1) (ddg)

2 2 2 .2 2 @
A o2 2 -2 4n(1%0%) (442) +21n (n“-1%) (ad7) + 11n(1%a°) (ads) |

.2 4,2 2 2 P 2
Ay 322 =/31n{n"~2(1%n")] (dd0)-2/31un" (ddx) +3 B1n (1 +n") (das)

A, 2 2 Zun(1%-0%) (:ddu’)-mn&+2(12—ﬁ2)](ddﬁ)+mn[| ++(1%2a%) (ads)

Azx’xg_ysz = .?2>. n1(12-m2 3(dd§)+n1[l -2(12—m2)] (ddR)-nl[l -11:(12-1:12) (ddg)

Ax2_y2’x2_y2n=&(12-m2)2(dda)+[_12+?2—(12m2 2](dd7x’)+[n2-|-‘}(12-m2)2 (ads)

A2 2 o2 oo #:3(1%-0”)[0%-2(1%0°) (da0)+{30® (@"-1%) (aar)

+ 3301 0%) (120®) (aasg)

Ag,2 2 o2 2 “[n%-2(1%0°)]®(ado) +80° (12m®) (adx) +2(12m®) B (aas)
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TABLE 4,2

DIRECTIOR COSINES

1 m n
i 1/J2 0 1/d2
2 -1/]2 0 1/2
3 -1/72 0 -1/v2
; 1/V2 0 -1/J2
5 -1/J2 -1 VAE 0
6 1/i2 -1/43 0
v 1/J2 1/42 0
8 -1/i2 1/42 0
9 0 1/42 1/42
10 0 -1/42 1/42
11 0 ~1/42 -1/42
12 0 1/72 -1/42



Haydocks coeffients for 3-fold aund 2~fold degenerate

TABLE 4.3

d orbitals
L=1 [xy,yz,zi}

N 4(L,X) b (1,N)

3 ~0.2684425E~01 0.277508E~02
4 -0,226108E-01 0.223218E~02
5 -0,233802E~01 0.248629E~02
6 -0.233476E~01 0.268609E~02
7 ~0.199578E~01 0.202226E~02
8" -0,183525E~01 0. 282562E-02
9 -0.208408E~01 0.210848E--02
10 ~0.233035E~01 0.218709E-02
11 -0.215445E-01 0.220476E-02
12 © ~0,186115E=01 0.191775E~02
13 -0.179980E~01 0.188479E~02
14 ~0,113130E~01 0.232730E-02
15 -0.191887E-01

0.181939E~02
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TABLE 4.3 CONTINUED

L=2

2 2 .2 2}
{x -~y 43% -r

N a(L,N) b(L,N)

3 ~-0,129238E~01 0.198260E~02
4 ~0.134164E-01 0.188169E-02
5 ~0,155777TE-01 0.200111E-02
6 ~0,188541E~01 0.221760E~02
7 ~0,200979E~01 0.2099872E~02
8 -0.196472E~01 0.172915E-02
9. -0,111317E~01 0.215488E~02
10 ~0.184626E~01 0.170182E~02
11 ~0,101740E~01 0.188401E~02
12 -0.111907E-61 0.166363E~-02
13 -0.160846E~01 0.179735E-02
14 -0,108216E~01 0.186812E-02
15 -0,177737E=01

g,= ~0.0183 ;

o

=0.,00245

0.173759E~02
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CHAPTER &

CLUSTER _THEORY OF TRANSITION METAL ALLOYS

5.1 INTRODUCTION

In chapter 3 we applied the continued fraction method
to realistic transition metal alloys in a very simple approximatiou,
in ~chapter 4 we went a step further and carried out the calculation
in cluster theory, but neglected the hybridizing effects. In this
chapter we will do the hardest and the final model ca&ulations of
the transition metal alloys. Here we consider a more realistic -
model of transition metals, where the d baﬁds cross and hybridize
with the s band; that is to say we tﬁke into account the sp density
of states and the hybridizing effects. In the calculations of this
chapter we will use the discussion of chapter 1 (about the.KKR m.¢rixh7
the results of chapter 2(modification of Lloyds expression) and

chapter 4 (calculations of d electron demsity of states).

In the next section we will show how the KKR secular
equation for transition metals can be writien when we abandon
the Bloch4representation and\how we cen split the result into
a tight binding part in site representation hybridizing with an
infinite plane wave matrix., The tight binding part will turn out to

be the same s celculated in ch&pter 4, The hybridization part



97

is calculated in section 5.3. In section 5.4 we will do the finul
calculation for the density 8f states of the realistic transition
metal alloys. In the last section of this chapter we will presexnt

the numerical results.

- 5.2 _KER MATRIX

" The secular equation for transition metals in Bloch

representation is given by (Hubbard 1967, Jacobs 1968)

N
g Y (k+g) [T, (%+

rersr Baneen |

. | L g™ € |
where‘]:&$) is the 5x5 tight binding Slater and Koster (1954)

A

matrix in Bloch representation and is given by Table 3.%. ﬂ;(}&*;})
and Eg@ﬁ@are the hybridization matrices. 8 1is a reciprocal
lattice vector, ( )X is an argument of the matrix elements here
and not a metrix index).

According to Heine (1967) the above equation can be -

unfolded aﬁd rewritten as follows:

: : +*
Toey- €S, MESY Y
=0 (5.2)
e 4 3) (g (- &) gy

This is‘a nine by nine motrix..

Transforming equation (5.2) into the site representation

we have



98

¥y ‘
LAV T MED
=0 (5.3}
* 3
i) () S
where ‘!:‘_E"';‘r
a0y = L1 (erd)e ‘ (5.4)
IN

This is an: infinite matrix, because we have abandoned the Blocih
theorem the wave vector K can have any value, and is & matrix
index. :

. ‘-.
In equation (5.3) 'T';ci is the tight binding d matrix betweer
m .
* .
the sites i ahd j. Q'&K) and I;UL) are the hybridization matrices
w
between the tight binding d wave functions and the free electron

wave functions. (Kz-—E. )S.,_k_' is the free electron matrix. N

is the number of lattice sites.

The matrix given by equation (5.3) can be symbolically - .

represented as

Iy 8 F (5.5)
«
i \::.e F ¢

vhere D is the disgonal d electron 5x5 matrix at the central site,

A is the 5x5(N-1) hopping matrix betweem the central site and the
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oiher sites, B is the matrix for the d electrons on the other &itﬁn}
E is the hybridization matfix between the d elecirons on the

central site and plane wave, F is the hybridization matrix bétweom
the d electrons on the other sites and the plane wave and C.is

the plane mave matrix. A*, E*, and F* are the coﬁplex congugates

of A, E and F respectively.

In matrix (5.4), folding the sub-matrix B into the sub-

matrix
D E !
% (5.6)
E c -
ve get
- ¥ ’ -1 ]
D-AB A E-AB F
(5.7)
% % * -1
E-FBA C-F B F_

There are two reasons for folding B first rather than C, The fir:t
is we can separabe out the tight binding part from the hybridimatiun
part. The second reason is we cen express the tight binding peri

in a form in which it has already been evaluated in chapter 4.

Finally folding everything into the first element of the
matrix we get

[ (2-a8'2") = {(z-5"'F) (c-F"B'F) (£"-F'B'D N (s.8)

where the first term is the tight binding d electron term, while

the second term gives the hybridization correctioh.

The reciprocal of expression (5.8) is one diazonal element

S s
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of the inverse matrix (i.e one diagonal element of the Green

function), hence we can use it to calculate the density of states.

5.3 HYBRIDIZATION CORRECTION

The last term of equation (5.8) in curly brackets
Zives the hybridization correction to the tight binding matrix.
To calculate this we will first evaluate the inverse matrix .

*.
(c-r B'F), where C is the plane wave matrix given by

C = (K-€)Skw’ ¢ (5.9)

F is the hybridization matrix given by

-

kel
F= 7 s J‘?}’ A i LRIV S (A e (5.10)
1K 40 :
= [, () e | | (5.11)

where A, and R ere luellers (1967) hybridization coefficients
and §.(%)is the Mueller's cut-off factor.j, is the spbrical Bessel
function and )/(K) is the Bé@rical Harmonics. B is the matrix
which correspond to sites other than the central, InJcéfulating
th#hybridization we make aun approximation for B, which corresponds
to teking average medium outside the centr@l gite with a fraétion

¢ of atoms of type A and o frection (l-c) of type B. This =
approximation can be justified by the reasoning that d electrons
on the central atom hybridize with the freely moving sp electfon§;
which in turn hybridize with d electrons on sites anyvhere else

in the lattice. Because there are infinite number of sites

aveilable for this second hybridization, the average ﬁpproximation
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-1
is likely to be reasonably accurate. B is approximated by

&' ¢ + < | (5.12)

EE-4 B, E- A

wvhere 4 is & small broadeniﬁg'lntroduced to make the result analytical

and is discussed later,

. x =t -
Now the inverse matrix (C-F B F) can be evaluated as

follows:

Epg-E-B

*
(- Fa'F) = (K=E)S,. - ZC;O N C—“\LA — \-c Fw (5:13)

-(k'E)g z’ umv [ < = =

4
Ea-e-4 EB“E";}?S‘) (5.14)

t-C ’
+ + r
Z om " L EA E-0 Eg-E-A ] OMC’-)

Approximating the sum over the site index i by ean integral in

the above eqnation we have
1 (- l‘-)ru

C-Fg'r (& E)S {Z_So‘n o ]FO’-)FU!)X

[ e t~¢ 7 p Gl ¢ \-c 7 p
ey Eg-€-A | * Z‘ ) LEAE-:' Es-C-A) Om

(5.15)

where JL is the volume of the unit cell. Now if N is the number

of unit cells then

3 o (k-¥)ers |
S dr;: o TENE Nov S, (5.16)

Hence we can write equetion (5.15) as

s i T g

T

YT TS
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(“!
o
il

Qo

[@q ;;)-ZJ" \"uarf‘ Uc){ + 1-c "ﬂg

EA-E"A EQ‘E &]

. (5.17)
+ 2 Doy < * P G
m Ea-Ee v ea E..A Om =
Let , )
/- M .
.00 = R L) (5.18)
M Y |
™ YEa-c-4 CGg-E-0
§,,06)= T 0 4 < (5.19)
EA'E'-Q EB" E-N ) _J ’ . ’
Dle) < ke T 17 e -
& lom ) tc){ e éG_C‘E“A} (5.20)
ACYRIE Y
AT
-S-m(}{)'- = MCK-’) ‘ ‘ (5.213
Then equation (5.17) gives
o - !
[c— Fo F] | ;[uﬁ(}c) S’m, 4%{%(&) £ )] (5.22)
By Taylors expansion .
[(.-4-‘6 F] @ws - é3u=)7-§ %) £.64380)
| -t £\ o iyl +§t" (<) 5_3‘ )
‘ +@0‘)§-gh0‘>31 5:”9‘)@(,‘4)2’{“ )‘fm/ ¢
n e | | (5-23)
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- - ) « o =t -~ |
= DS, /- aa@o}% £0<) [g; » *é §.04) Dy § )] X
~ B (5.24)
| Fu 0H & )
- <! * : -i -1
=Dy ~DEL LN, +ha Sdsu”g GIL 03 f,@c")] X
:’ m (2’?) ~n m

3 P ) (5.25)
where
2 — fNa _Sd%<
" L?.x)s .
The standard result used in equation (5.23) and (5.24) 18
given in appendix B.If we denote the in%egral occuf&ng in equation

(5.25) by g""(r{this integral -will be evaluated later in section

5.3(i)}then we can rewrite equation (5.25) as
-\
0 ~¢ ". ;" S‘ ; . 7 <l 4
[e-FEFTs Burs, - Bl LS, 6 SN (.20
m

Returning to the hybridization correction term of
equation (5.8), we see that it can be broken up into four terms «

In the following pages we will cakulate each of them separately.

5.3(i) FIRST CORRECTION TERM
The first correction term in equation (5.8) is in

proper notation given by

3 g e € |
g.‘( EOK[C- F&:' ‘:d. J’V:] KK‘ wo
| o (5.27)
Poofe- P 6n FoT Fad) |
= ‘E' o”ek)[c-'" E: ﬁ J»\Cf] O =

~
N ~ "
=1 {Z, [a&“‘){‘D'MSM"E,,,,,*Dw%n'fr%‘(_%,,?‘éwgm ;
-t ! -
&

$, 40 B} 5 6]}

o s o g e
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{g (0 D S S -2 2 § O £5.09 x

m

[SM w? ’\'3“ 1, ™, 1112_& n(.\l.-) (DLK-)‘S ‘(e )} (5.28)

£)§ Z eS8 [5\’“" 2 . ,,]" g
= ‘»%YE " ? o™ 3"1"{ . 8»\('»&‘ w'm/ (5.29) -
(we can: drop. . the summation overm andm’ because all the

matrices are diagomal). Thus

L‘a (e /t+ g.€ (€) | Cim (5.30)

Now we evaluate the integral 3'&%} given by

o A
M,(..E)‘ a)3 Sfm £,.069 D(k){mloc) (5.31)
=L © SO\K f’ 0‘3 &0‘3 P WG (5.32)
(2x)®

E.uung equntions (5.18) and (5 19)]
Substxtutxng the values of “) and cD(.k) from eguations

(5.11)and (5.20) respectively we have

a mS P(E)de _é;L(JKRH)Ig‘,(A%\/LUL\\/L Q‘) (5.383)
W=
2 = S 2_0‘) ,
= PCE) Sdm AP NGRS Su’ (5.34)
W-g’
where
. | 2
PeY= L8 Ay _ ‘ (5.35)

(2x)®
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JL= l4 ( & is a lattice constant)
and
" {
f * C \-C /
cEal Tl o S 5.36)
E E m cCm Cwm EA_E__ A + EQ"E-A AL - ( #

The broa&ening A in 630;) ‘(occuring in E ) will)henceforih

be ignored. The reason is @t&)occurs only in integrals, and the
effects of this broadening are significant only in the neighbourhood
of the singularities of the integrand. These effects are nearly
symmetrically disposed around the singulo.rities end consequently
give only a small effect on the integral. With this approximation

4 84 /
and the subsitution of values of l;,w(lc) and FOMQ‘) we can rewrite

equation (5.36) as

E- E-\-A & CKRH)&C(.O\.EAE A Eg-E- ]9 (5.37)

’ .
E can be made independent of W by fixing the value of J.0<)
and 6‘204 Ry) atsa certain point K=X, ink -space; and it can
be shown that it does not make difference to the shift of the

energy bands , Therefore

(5.38)

E'=E4 B, [ 008)5 & M-

* d‘ C R")SC' > CrE-0 c&-c:_.
Returning to equatioy (5.34) we will now discuss the Hueller"
cut-off factor U<} . It should be selected such that only the
lowest one or two plane waves hybridize with the d bands and

thus ensure that the d bands given by the interpolation scheme
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preserves the correct symmetry based degenéracies. Let

“()‘"ko) ,
$o 0 = (5.39)
This will be equal to one at
ke=lc d will b irtuall
, oud wil e virtual y \:ﬁn)

. < d2C 2

zero after a certain value ) - S
2, 1 \‘
\ <
of k. Having thus defined all -~ | 7/ | .
L/ ! \\

the qua,?,ities occurring in K, ‘K"'/ K

equation (5.34) we can now proceed
with the calculation of %E‘S) o For this we will introduce a small
broadening *€  in the denominator of equation (5.34) to make

the function analytic.

Substituting the value of J (%) in equation (5.34) we

have
-2 (fe- ko)
I 7= PCE)S e &;&Z‘ai EW o)
,ZqQ"’ \(o) 4
= P(®) dK E a:_LE,K";) SLL/
E-t
v <
¥ o) o 2@ (5.41)
+P(e)jodh k éz@‘g“:’; - LCE ‘1 ERW @ 0

It should be noted that the sum over K extends fromotoo® ,
because by alloying we have destroyed the translational symmetry

of the lattice, 8o now there are no boundary conditions on K

The first integral K/ of Fmm’ 18 solved onalytically

mm

by the use of complex analysis as follows:



107

T Y
&7 L x-E’ ~{E’ L
—Zu(iglkoﬁl
- ?CE) e 2 \‘—'/K S g’ /
24’ ‘} (E7Rw) k-{E.i€E =
. ~2x({EL K;\
~tR PE) e & (_-JE Re) gLL
2 ¥ | (5.42)

TF;‘e last equation is obtained by Principals Parts integra.tion; ,
the real part of l-:mm’ being zero. This profes that the first
integral of 3MS‘;E) has only the imaginary part.

The secoz’zd integreal ofa,ﬁs’) can be calculated numericelly. This

is real , its imaginary part is zero. Hence the final expression

i -
for 3mm is

(€~ ko)
o D = PCE’[” o a (B Rw)
> -29(()1 \<o) V 2 ~2(§EL pco)
S de €3O | e ER) g, (5:43)
kel le
&&'fm.

Thus the first correction \given by equo.tlon (5.30) is now clearly

known and bt turns out to be diagonal , with all elements equal.

5.3(ii) SECOND CORRECTION TERM

The second correction term from equation (5.8) is

< * eV TE G oY
Lol b 1810 By W) L 8 R 40}

zz,z_{gmm\c-\:; 6 Rl L5 Gkl

S\'SMUQ \_DQ‘QS - QL‘QZ ’gmsw [_S t' '
KK LJ

(¥ “"ér-d-| al
.« Na gugm&@q% )]S Do e 8 Aol
( 2x) ,
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The last expression is obteined by using equations (5.1Q) and
(5.25) and the fect that the matrix &  is a diagonal matrix
" between the site indices.

Carrying out the simplifications of the second correction term

we have equation (5.44) equal to

- RS e -\
515 §,00800 £, &7 65T LA x
& w M

_LK '('

\8 *8'" ,,Smyl Z {VU«)@Q;)S e }

- e
= Z{@.L).Sdig @PWS, e 23 \LM Smcg (50 & 6
8. ul‘_i m v

2r)?

Y
-3 Sed)

5 "".’? 3¢ &
\.8"‘.*""*%*1?"%"?“”.\ t5&5”) S‘\“fﬂ(‘)@(‘ﬂf we “ Ajo (5.25
2 e Uy T (et G §id
-.)}{%53 Sc\&S h@m@g&me _‘;Mb\% . SM%‘* e §,09
teope %
[3'"-“‘"*3%”9""' oy SA"S )5 e J} Ao (5.46)

= 2 {J;_L (E¥iy~2. 3“(,_,5“)8%‘_8 i %m v m,,:{ ~,,(G"‘ \} (5.:47)

. o -+
&Z { IL{" LE’I‘”/( ‘+8V&%?' gmm")} AJO (5.48)
vhere
N cf “ (kﬁ) - h~g*.047 5. 49
8"\m’('E> = (2x)® S = gm D) 5. ) (OY-‘* )

This factor is the same as occuring in the first correction term

and has already been evaluated there {equation (5.‘4—3)};-: and
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LYy

. . 7 A "X
L ' X (5450
TEy)= 2 SO\K (YN CE T (5.50)

Using equations (5.19), (5.20) and (5.10) we have

Uy 2 (kY
LS n>~arsf*«« sz SaleRal LT JU 0 2L (5.51)
Sk e/ '
Ly’ 26 (e~ g, \
P(s:)jd& RV YN & ™ ) (s.52)
.,Kz_cl » )

vhere as before ignoring the broadening A in N ) ye define

.-

. o, 5
PCE)-; U?_B AH /(ZR)

= E«+ AH dz LKOPH)@C_

foey < DT

Using the following expension for the expomential in equation

(5.52) (Messiah 1964)

i i

¢ R K
) équ QUG')YL:_: ey 3\/‘9 (%) (5.54)

*Lk YJ (=]
e Tz 4r L

u W oV
mz-—
i mi-g

-

©

where Y €4) ete, are the real ~ sphericel harmonics. These are

derived from the complex spherical harmonics %jd' by the relation:

f§‘3j3‘+ ?3153
A

The real spherical harmonics used in these calculations are given

(5.55)

in Table 5.1.

Therefore

i e e et v e T T L YA ey . e e et g e by S L STy ikt AR Lk # L p e s e e r 1 e T x ey e
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iu

——

IL,_U: V= qu(c;ZZm S A & ey (5 05> € ey
whelle

(5.5¢6)

where )
<
o= SAJL\{ k)\/L(, \{Ll_f (%)
are the Clebsch- Gordon coefficients for the real sphericel . .-

harmonics and are given in Table 5.2.

The integralc_‘:u! {equation (5.56)}&8 it stands looks rother
formidable and non-analytic but by rewritting it into two parts
and uddi:ng a small broadening (& in thie denominator we will
see that one of it can be done analytically and 6ther on the =

computer very easily.
Q” l" 211(;45 Ko) —

(JE/Ry) Ue Y
lu.(E Yy)=ux P(E)Z L LU YL"(YJ) CLLL"\.SAK E& . K; E‘? 3 b )

SAK &4, Gel '2“‘“"*‘",;1» (%) ¢/ §SER) '”“*E'“’& (B, ]

> Keglode
r ¢5-51)
2L -y
. -‘mPCE)%‘ Z U.) \{u,(\,) C [z_ﬁ-("’é ERW)e g ((€15)
2.2 -zu(k-zoj‘. , WA EL K.,) =
K 4, (kR VLICAY: R, (B

2 L3
kglile

Because of the property of the Clebsch Gordon coefficients)
] '

L

canihave even values only, therefore the fii'st term in the
above equotion is imaginary and can be evaluated for a fixed Y,
fhe integral part of it is purely real and is computed numerically.

,\Yj’ is ﬁhe nearest neilkhbour vectoa:::&‘or 8 faceacentréd cubic there
are tvelve nearest neighybours with | Xy \:_‘3,.; s where fa! is a

. 2
lattice constant.
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After substituting the values of_i'_ég)‘:i) in equation (5.48)
and summing over all é. we see that the second correction term
~turns out to be diagonal also, with three elements equal and

other two equal to each other,

5.3(iii) THIRD CORRECTION TERM
The third hybridization correction term from

equation (5.8) is
_ . . -,
s . . C. =
"_Ao y By C;':K ow \AC-- FKL (6'{’:" \ .LKI] Seo
' :
which is clearly the transpose of the second correction ternm.
5.3 (iv) FOURTH CORRECTION TERM

The last hybridization correction term from

equation (5.8) is
-t _
[_Ao{, Ax Fm] [C F ai Eu]Ku'[F;:';' BJ; A:o]kfo

=1 i‘?!" N | . -
- KZKZL.‘} = Ao;B {i.\r-) e {‘DLK)S..«.&"E“,,QLK)S,&F) <

WA 4Ky <) A s
[gw,, +3»{{m,gn"m] in‘ﬁt’) ﬁtd)}jm,@ e ‘e A (5.5%)
‘lk (- \)') :

'“Z 4 A" (zx) S"A« flo Sl giere”

- 2 5& zj(‘(v.) <D0c)§ ,,Q’—) e [gu \—%@)g"—l

L2R)3 """

) cév;ql +* (5.60)
d 0«.')630«)§ e
L:Zx:) SK:?

-

'
u = v
—Z G)A \;‘/ LE,{“ ) z'lLL(EY)‘L”f%:I;‘LM]-I{KE‘\J_)JA(SU (5.&{)
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_ . . ) :
B A K ®s)- LT, ol gu) Lo @9 Ajo

(5.62)

€% |
where I\El‘_' L) is the same as given by equation (5.58) and %M (.E)

is given by equation (5.43),(for trensition metals only 1=2 -

component of the angular momentum contributes); and

2% V-
K(Enw) Jv_ Sclngt)ﬂ) ptk)g (e’ =)

Ly
2

Q“(K’kd>tk (ve-vy)

SA xS

-,53—_.
Q"\ ' K el L&
(5.63)

_ -
~.It should be noted that the broadening A is ignored in N)

for the same reason as before. Using the following expansion

(- ) e g | ~
e ~lmZZ u)} (el % D Yule-ry) Yes)  (5.64)

we can write the above equation as

. .

o, i s

K Ev,v)= QKP(E)Z Z“ \‘U\]I (re-y) C ,:Xd,c ka-;(,*\k‘-\)(’, &gq&(\_g-ﬁ. 3
\C- -€

(5.6%)

s

Doing the same procedure with this integral as we have done with

the previous ihtegrals we get

2
* Y h-v "% .
K&' (g, v,y ).z QKPLQ)Z“_ Z (L)\{ (¥ ) C Lurr } HER,) Q/ e J.z‘(;;gf(vg—g'n)

g o -2 -
+‘9K K’..a:a,c—‘ceﬂse— GL%?}Q"(K(VJ'A U t &L(.E'FH) M(T‘E, ko}é u(*rE/‘V(,*V\ ()

Kiglie

(@]

- (5.66)
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vy and vy t;.re the vectors to the nearest néighbour sites, Cu.'_l_"
are the Clebsch Gordon coefficients,

After substituting this into equation (5.52), we noticed
tget {vw-Yjl=Rn where n has five values; and if we evaluate the
sum over the site indices i and j (i and j both go  from lto 12)
corresponding to the different values of n first end then the
sum over'o-",w{'and n , the computer time is reduced tremendously.
The complete calculeation shows that the fourth correctiom term
ié also’diagonal, with diagonalvelements falling into th groups.

Before ending this section we will discﬁss the broadening
A  introduced in ﬁd occuring in the function C(E) of integrals

%M'SQ) ’Iu.f - and K, . The function of this is to kt?ep
B™! analytical i.e it does not below up ot E=E, or E=Ej. B is

given by equation:

(5.67)
Ea-€-4  €g-E-A
where
AlE)= € F(Ex &)+ (1-0) F(E¢ &) (5.68)
F(E) = (_E"j le2azt” )/ azt™ (5,@)

The sign of the last equa.tibn is chosen to get the correct high

" energy linli‘t")‘j': F(E) i.e

_ K :
E(E)— = as E—o Yoo . (5.70)

P
47b  in equation (5.70) gives the band width of the density of

states of the metal.
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Thus we have calculated the hybridization correction completely
and it turns out to he a diagonal matrix. We will use these results
in the next sectioﬁ to celculate the density of states of transition

metel alloys.

.54  DENSITY OF STATES TRANSITION METAL ALLOYS

We now know equation (5.8) completely, because the
tight binding part (i.e D—Aﬁ'A*) has alre#&y been calculated
in éhapter 4 and is explicitly given by G,/ of equation (4.21 );
the four contributions to the hybridization have been numerically
evaluated in sect&on.s.s. It has been shbwn by & number of authors
(Heine 1967, Hubbard 1967, Jacobs 1968 and Pettifor 1969) es
discussed in chapter 1 thet the inverse of the secular equation
for transition metals (given by equation (5.1) or (5.8) ) is
"the same as the inverse matrix in Lloyds expression of chapier 2.

Precisely

SIS ("* Kt ' =l
Ehd T2 -es, -2 o) F:zcs—f:al
[ L - 3 Y_ I 3 lb‘(_-kﬁ\a‘_g _ (5.7‘)

~\ o ~1 * - A *-)
3[(_.{)—!\(5 A)-(e-08 F)(C_FRE)E-F D‘;i(ls.'zz)

Therefore we can use the modified Lloyds expression for
the density of states given by equation (2. 2% ) of chapter 2 to
calculete the density of states of transition metal elloys. The -

explicit equations we use are given by

o ey [GRE a4 £ 6Ty,
n(e) :.V\OLE)—»%—Tm Vi > de m " (5.713)
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where .
1 66 . 13-x~Y :
—— N k*j )
Ty 2,2, <o\, M, £ -
Xn '
éo \G \O>h~’: G - AMM/ (5.75)

-\
In these equations®;, B end T, are the same quantities as defined

in chapter 3 and the values of the parameters used in their
calculations are given in Table 33. X is the number ;f A atoms
on the central site. ' is the number of configurations of atoms
on the twelve pearest neighbouring sites.hdn is the multiplicity
of configuration n.‘& is the pnumber of A atoms in the nearest
neighbour shell, The numberﬁ} depends on n.c is the concentration
of A atoms .(;miis the tight binding matrix calculated in »
chapter 4 and Lknh( is the hybridization correction calculated in

section 5.3.

5.5 DISCUSSION
In this section we will discuss the numerical results

obtained for the real transition metal alloy AB with EA= «2ryd and

EB= oD l'ydo

In figure 5.1 we give the results for the density of states for B
type material, A similar result is obtained for A type transition .
nefal which is not presented here. We notice two effects on the.d
band density of states(figure 4.2) by taking into account its

hybridization with the free electron band. The first is that the

e

NN

L ic ol e vy oo tds
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d band as & whole has become wider, the second is that some of the
atafes have been taken from the top of the band and pushed towards
the bottem. This curve is similar to those obtained before by inter-
polation or histogrém methods ( Gilat and Raubenheimer 1966),
. .though the density of states above the top of the d band seems

rather low.

In figure 5.2 we present the results for an alloy with a small
concentration of . A atoms in a B matrix. In a stretched out energy -
scale we see for the minority band a two peak structure in the middle

with humped shoulders on either sides., The shoulder towards the top

of the band, which corresponds to antibonding state of the electrons

lying near the boundary of the Brillioun zone, is compressed downwardss

This is due to the fact that the hybridization effects are strong
near the edges of the zone. The pair of peaks near EA='2 is due
to states on isolated A atoms , and these are split because of the

cubic environment of isolated A atoms. The peaks are shifted relative

to those for unhybridized d bands because of hybridization effects.

In figure 5.3 we present the results for c¢=.3, and we see that
the A band has grown at the expense of B band. This A band is slightly
shifted from the centre of the d band for pure A material due to

band repulsion effects. Figure 5.4 gives the résult for 50;@ alloy.

In figure 5.5 we present the results for the density of states

when ¢=.7. The A band has now a great deal of structure in it, vhile

MR T AT

B AR 2
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B band is comparatively smooth and shows the heginning of the three
peak structure, The band repulsion effects in the B band are more

visible now then when c was smaller.

In figure 5.6 we give the reéults for ¢=,9 with an expanded
scale for the minority band. We again see a two peale structure and
asymmetrical pair of humped shoulders. The reason for asymmetry

and the splitting of the central peak being the as for c¢=0,l.

Thus we have been able to present a cluster theory for tranéition

metal alioys, which is tractable and numerically feasible. The structure

‘ ?
that appears in the density of states for the minority bend canAfor
the most part explained in terms of simple and easily understood
physical ideas. The effects of hybridization however are not yet .

completely understood.

The computer time taken to calculate one point ca the graph for
pure material is about 3 seconds and for an alloy about 5 seconds on

CDC 7814.

¢t S 5 4 A T e+ PP, g5 gt e
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TABLE 5.1

The real spherical harmonics

o

' "\/o =" 1/4K

<
Y. = [5/16F (3cos’® -1)

1
Y?- = |15/4KX sin© cos® sing

-~ ;
Y, =—Ad15/4r 5in®cos8 cos

V2 =(15/16% sin°® cos2 &

l'-l
\.© = J15/16% sin®6 sin2g -

2

o
S +43)

Yo = |9/256% (35c05e ~30cos
l it ——

Yy - =Ja5/32% (7c0329 -3) sin& cos© sing
- — '

Yu =- | 45/32% (7c0529 -3) 8in & ¢cos® cosy

2 e

Yo = la5/64 ~ (7cong -1) sinZ© cos2gf
-2 '

Y4 = [85/64r (1cos®O -1) sin”0 sin2g

a .

Yo = |815/32% sin® © cos ©. sin3®
-3 — e

Ve = | 315/32K sin® & cos® cos3P

yl,:' = |315/256 % sin6 cosad

4

Yals [315/256K sin®o sindg

\/?_-‘- /2 61+Y7)

Yi= - /% (4347

vhere ¥ is the complex spherical harmonic.
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TABLE 5.2

THE NON-=ZERO CLEBSCH GORDON COEFFICIENTS C . USED IN OUR

CALCULATIORS.

»

/7
) AN 14 Civy» L - L L

This Table is

symmetric

CoilL”
— R—
-2 -2-2 070 [fi/4K 21 22 41 [5/392K
2-2  2-2 20 -f5/40x [°1 20 21 [5/196K
————— : e cem————
2-2 2-2 40 Ji/igex |E1 20 41 Jis/esrx
8-2 2-2 44 _j5/28x |71 21 00 iJ1/ax
2-2 21 21 }15/196,; 2-1 2-1 20 \|5/196K
—_— R
-2 21 4-1 -]5/392K 2=1 2-1 22 ,(15/196}1‘
2-2 21 4-3 -fs/sex |71 21 40 -f4/40R
2-2 2-1 21 Jis/1%6x(*! 21 42 j5/49%
2-2 221 4 3 45'/56,\. 2~ 22 2-1 |15/196K
2-2 2-1 41 -fs/30ex[>"1 22 41 <{5/302K
2-2 22 4-4 [s/esx |1 22 .43 J5/56%
~._____./‘
22 20 2-2 _f5/a0x 21 20 2-1 [5/196~
2-2 20 4-2 [i/1eox|>t 20 41 Ji5/98R
21 21 oo Ji/ar [?2 22 00 j/4x
21 21 =20 Js5/106x |22 22 20 ~f5/aor
21 21 224{5/{&}'»22 22 40 {1/196K |
21 21 40 -|a/sox 22 22 44 J5/28K
21 21 42 -f5/aox 22 20 22-[5/50r
21 o1 22 [Is/isex|2® 20 42 JI5/106r
21 22 21-Q5/196K 20 20 20 .{5’/4_9‘# _
21 22 43 [5/se= 120 207 40 Jo/aop

.between I and L,
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CIHAPTER 6

APPLICATIONS

6,1  INTRODUCTION

The purpose of this chapter is two fold., The first is to
apply the model calculations of the prévious chapters to more realistic
alloys and the second is to demonstrate the flexibility of the
continued fraction technique by dealing with a very disordered
..material viz; dilute disordered Heisenberg ferromagnet. The density
of states of metals and their alloys can be used to explain many of
their physical properties. The electronic specific heat coefficient
at low temperature is one of them and is related to density of states at
Fermi-energy. The calculations of the density &f states for transition
metal alloys in a single site approximation(chapter 3) and in a cluster
theory(chapter 4) are used to calculate the low temperature specific
heat coefficient ¥ for Ni-Pt alloys as a fundtion of concentration of
nickel. The results obtained in a single site approximation after taking
into account the phonon enhancement factor are in close agreement with
the'experimental results until the critical concentration. Experimentally
at the critical concentration real Ni becomes ferromagnetic and the electr- =
onic specific heat coefficient for the ferromagmetic alloys decreases
rapidly(Beille et al 1974). ¥e have, however, carried out the calculations
for the model paramagnetic alloys in this concentration regime and ¥
is found in these calculations to be approximately constant. The result

obtained for ¥ in cluster theory, when we do not take into account the
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hybridization of the d bands with the s band,are not in such good .
agreement with the experiment. This is due to two reasons as explained

later in the chaptere.

In the second half of this chapter we will discuss the usefulness
of the continued fraction technique and its merits in simplifying
complicated problems. As an illustration to the above points we will
apply the continued fraqtionhethod to a completely disordered Heisenberg
ferromagnet. The result we get for the density of states are compared
vith those obtained by Harris et al(1974) and Tahir Kheli(1972,1975).

Ve shall now outline the remainder of this chapter. In the next section
~ we will give a brief review of the experimental results and theoretical
calculations of the low temperature specific heat coefficient » for
Ni-Pt alloys., In section 6.3 we will present our calculations of "

for Ni-Pt alloys in a single site theory and in section 6.4 we will

discuss the results obtained by the above method. In section 6.5 we will
use the cluster theory to calculate % and will discuss the results
obtained. In section 6.6 we shall briefly outline the.theory of Heisenberg
ferromegnet. Section 6.7 will be devoted to setting up the Model Homilto-
nian for the disordered dilute Heisenberg ferromagnet and finding an
expression for the dehsity of states which can be easily used for the’
numerical calculatioms. In the last section of this chapter we will

discuss the results of 6.7,

6.2 _EXPERIMENTAL RESULTS AND REVIEW OF TIIE THEORY FOR ELECTRONId

SPECIFIC IIEAT COEFFICIENT FOR Ni-Pt ALLOYS,

There have been many studies, both experimental and theorgtycal
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of the disordered Ni-Pt alloys. These alloys display & high value of
specific heat at certain critical concehtfa&ion. The low temperature

specific heat is given by the following equation

3
C=7T7 13 . ..
T RT (6.1)

vhere' T is the absolute temperature and ¥ and P are the lov temperature
specific heat coefficients(terms involving higher powers of T are

neglected because they are small)., BeillR et al (1974) experimently
measured the low temper&ture specific heat coefficient T of Ni-Pt

Alloys as a function of Ni concentration. Their results are presented

by . solid circles. ov figures 6.2 and 6.3. The fall in ¥ when cy 4L

is due to ferromagnetic splitting between the up and down spin bandS§.

Infact pure Ni is a strong ferromagnetic and has a very small up

spin density of states ?%ﬂ%ﬁand the electronic specific heat coefficient

of value 14!ﬂ3/m005h?i8 mainly essociated with the down spin density

of states n (Egf) .

Both nickel and platinum hﬁve & face~centred cubic structure
and this face-centred cubic strﬁctnre is retained in their alloys.
This property of these alloys make the theorgtical study of them much
essier, Alben and Wohlfarth (1974) have calculated the low temperature
specific heat coefficient for a ferromagnetic Ni-Pt alloy using the
coherent potential approximation. They found that even after teking
into account the phonon enhancement faétor(Andersen 1970), the gradient
of their curve was much smaller than that of the experimental curve
(Beill€ et al 1974). Alben et al ascribed this discrepency to two
cauées. The first is that the density of states they used for pure Pt

is only roughly derived from the density of states of Ni(which is in

Mt e e - FR—

e g TV
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itself approximate, Hesegaws 1972). The second is that the lattice

constant and hence the hOpping matrix elements between Ni and Pt

sites in an alloy are assumed independent of concentration, vhile

according to Heine(1967), the hopping matrix elements should depend

on the lattice c¢onstant, which is of course not constant. In the -
next three sections the density of states of Ni-Pt alloy is calculated

using a more eppropriate density of states for pure Pt and making all

the parameters concentration dependent. The low temperature specific

heat coefficient P is.obtained from the density of states by the

relation(one electron theory):

2 2
T2 L7 ke NIEF) (6.2)

2 b A L2
where Y@ is Boltzmans constant ( 5% kg .= .35 7T) k ) and , ‘
N(Ec) is the density of states at the Fermi energy. The results so
obtained are then compared with the experimental results and those of

the CPA (Alben and Wolfarth 1974). , ;

6.3 THE SINGLE SITE THEORY

The method used in this section is the same as that in chapter
3y, but with the following difference. The calculations in chapier 3 are
only model calculations so most of the parameters are concentration
independent, but here we are doing more realisti¢ calculations so we
must take account of the proper concentration dependence of the

various parameters,

We have from equation (3.26)
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neEed)= nc(_E) -I_h_o_\ Ty {C D;( [CD“N (__)& <4 (“(-) t;.‘\l
x :.n'-\-n Kg..‘j.m

- ("'-'-)‘t:p]’-: (-9 DP[U'C:DP + "f‘ Cf- et ] }(6 3)

kz“l“l b‘imlh

where the suffix N stands for Ni and P for Pt, ¢ is the concentration
-

of Ni atoms, Ny (E) is the free electron density of states, tznl and

-1
{:29 depend on the pha.se shifts on Ni and Pt sites respectively,

Dy and D‘) depend on f;‘.* and E;_P’a.nd the equations defining
these quantities precisely will be given later in this section.
N e
The imagimary parts of K,_,,‘,,," and < ./ are related to the
density of sta.tes. of pure Ni and pure Pt respectively(as explained
and shown in section 3.3(ii)). The densities of states of pure Ni
and Pt are calculated as follows.

The model Hamiltonian(Hubbard 1867, Heine 1967, Jacobs 1068, .
Pettifor 1969) derived {rom Korringa(1947) Kohn and Rostoker(1954)
method is used to celculate the E and T components of the density of
states of a transition metal (as already described in section 3.3(ii))
Assuming that the basic structure of the density of atates for all

transition: metals is the same, we have adjusted the above density of

states so that it gives a pure Ni bandwidth of 0.3 rydbergs and a pure

Pt bandwidth of 0.6 rydbergs. The Fermi level is selected so that thereave

+6 d holes in the Ni band and -3 d holes in the Pt bamd(Alben et al 1974)

and the band structures are shifted so that the Fermi levels coincide.

Figure 6.1 shows the densities of states of Ni and Pt calculated by this

methOdo,
To calculate the real parts of / and KP ‘ we takd the
2m2m 2 2hy
Hilbert transform of the imaginary parts of Kﬂ , and KF %

ML 2 M b

e s o e e E ot e
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in the same way as given in chapter 3.

1f &y and a, are the lattice constents of Ni and Pt, then the

lattice constant for the alloy is given hy

o) = ey + (-CHa, (6.4)

'

It L and v, are the half bandwidths of pure Ni and Pt, then the half

bandwidths of Ni and Pt in the alloy are given by the following ~

formulae (Heine 1967)

59
Wyt =y, (an/ace)

> 6.5
wp €C) = vp (2F/a(0) (8.5)

The centres of Ni and Pt d bands alsc vary with the concentration to
keep the number of d holes constant, If EF is the Fermi energy then
the varition of the centres of Ni and Pt d bands in an alloy are

given by the following equations

N

Eg = E_ - WyCo) (1= Fy) (6.6)
P : '

Ed - EF - WP(_C) C\— PP) (6.7)

where Fh end EP ere faclors selected so as to give the correct number

of d holes in Ni and Pt bands.

We now return to the quantities which depend on the phese shifts

and we shall see that these are also concentraotion dependent.
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tzﬂ = KC&tVlz“- iK

t:.P' K A N,p —ck

where (Pettifor 19697)
N > |
aﬁqzﬂg(ay£b&£“&ﬁkqg

o .
CkNsp = (.EA‘E)/K Cp ¢, (&)

ad

and

Y ‘). L
v = % W [ <a &, L re)

-~

-

Y'OP= +39 QP j

(6.8)

(6.9)

(6.10)

(8.11)

(6.19)

(6.13)

(rN and pp are the radii of inscribed sheres of Wigner Seitz cell

and rag and ra, are the radii of the spheres,having the same volume

as the unit cell)
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), is the spherical Bessel function. Wy ond ¥, ere the nickel and

platinum d resonance bahd widths(Hubbard 1969).

The function Dy end t§, which occur in equation(6.3) are given by

- -1 -t M
Dy = %sz’-" _apt - B ab

' ' : : \ (6.14)
Dp = ?Té tzr -2{51‘3_‘,'- h2.,;"(‘{"?.("

where the & and P are defined in equations (3.21)and (3.22),

we redefine them here for this particular case as:

1

Ltva,y | §, ey -d ere )i, (eray]

-
W
-

Ly [ £, CkvaIn0era -3, Gy y nfeva Jfracl, (6115)

a0, (0 ), (e ) -2, UeYR) m, (eray) e |- e

L Bve o

ra, = cYa * G-c) ¥Ya, § B (6.16)

The derivative of t matrix with respect to E are given by the equations

-1 ' .
d t:m-; -} - i) v ’c-‘
de " J:(“":.) Falere) ® 2
X )
N st,_,‘/E -1 (6.17)
d - = WA, .
< €.p = - di (k%) ": b,

Cody () 4, 0er

-+3t::_P/E -~ i/z.k.' (6.18)
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Ve now know all the quantities occuming in eguation (8,3) and their
dependence oﬁ concentration. Therefore we can use equation(6.3) for
numerical computation of the density of states and hence the low
t;mperature specific heet coefficient (equ;tion(6.2)) as a function of
nickel concentration ¢. The values of the parameters used in the |
dalculation are given in Table 6.1. The whole proceedure of cal-
culating 7 over the entire concentration range teok less than

16 seconds of computer time on CDC 7314,

6.4 DISCUSSION OF RESULTS FOR

The computed vaiues of ¥ in the single site theory are
given io figure 6.2. For pure Pt we find that the value of T is
about 4.6mJ/degree2mole,'while experimental value is 7.3mJ/degree2mole
(Beille et al 1974). This is reasonable in view of the estimate of
1.6 for the phonon enhancement factor computed by Andersen(1970).
If we multiply the compuﬁed values of ®# by 1.6 for all concentrations
we see that the theordtical curve coincides with the experimental
curve very well upto the critical concentration(which is 42 atomiczgof Ni)
i.e the concentration after which Ni becomes ferromagnetic. Experimentally
after this concentration the value of 7 sharply decreases because
the material becomes ferromagneﬁic and the 4 spin and the ¢ spin
bands split leaving a lower density of statés at the Fermi-level,
In the calculations we have assumed that Ni remains paramagnetic
throughout the range of the concentration. Therefore we obtain a
continuous increase of electronic specific heat coefficient from the valng
for uwon-magnetic Pt to the value for paremagnetic Ni,

The origin of our coﬁputed values of ¥ can be understood as follows: -

e
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The lattice constant of purejft is large and consequently when Ni
is added the Ni-Ni hopping integréis are much smaller thaﬁ they ﬁould
be in pure Ni. That is when a sﬁall amount of Ni is added to a Pt
matrix the Ni contribution to the density of states is much larger
than it would be if the Ni-Ni hopping integrals had retained the
valne'they have in pure Ni. This explains partly the fact that our
single site curve has a larger initial slope than the curve obtained
by Alben and ¥ohlfarth(1974) in CPA, where no such effects were .
considered. Finally near ihe pure Ni edgé the curve for ¥ vs ¢
is rather flat. This is due to the _fact that the peak near the.Fermi-_
level in pure Ni meintains its height in the alloys with low concentration
of Pt. A poséible explanation for this is th&t there are two competing
effects. The firast is due to the fact that the Pt~Pt hopping integral
is large (wP “ O.Qr&d) in nearly pure Ni. Thus one effect of
adding Pt to Ni is dilution and in the fashion of CPA this leads
to a dependence of density‘of states on concentration proportional
to ITT:E) (c being the concentration of Pt). The second effect |
is due to the change in the Ni-Ni hopping integrals and the concent—
ration dependence of this is given by Heine's H.-'5 law i.e

5 s
Wy (&) = iy (o) LQN/QP-S = MN-N(‘O)\\,%-\C]

The magnitude of the density of states scales as the inverse of the
bandwidth and therefore in the alloy has an additional factor (l+0.1c)?
The product of this. factor and the dilution factor is, to first order
in ¢, unity. This gives a density of states and hence T which is

'flat in the Ni rich region. This provides a crude expianatidn 6f.
the flat and steep regions of the calculated curve.

Any residual difference between our results and those of CPA must be

due to differences in the alloy theory used. In particular they can be
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attributed to the fact that our single site theory gives a density of

states with more structure and higher peaks than the CPA.

Ge5 CLUSTER THECRY

In this section we calculate the specific heat coefficiént
for Ni-Pt alloys following the method of chapter 4. In chapter 4 we
considgred the alloying behaviour of the tight binding d band. densities
of states of transition metels in cluster approximation. The cluster
theory which we are éonsidering here treats a cluster consis@ing
of the central atom and the nearest neighbours exactly and the .

surrounding medium in an average approximatiorn.

The method of this chapter differs slightly from that of
chapter 4. A8 we are now doing more realistic calculations we redefine
some of the quantities to take account of the hopping integrals
which depend on the atoms ot each end of the hop ( or different

béﬁdwidths of the components or off-disgonal disorder).

We startwith equation{4.24) i.e

V\.LE) = Tm Ty _‘_'E. SolGlO?u; | ) (6'19)

where the average Green function is given by

166 3-x-y  xay X
olaloy =2 L ¢ (- M G v (6.20)
™ Y X220 pz\ v

The quantiti#s occur:ring in this equation are the same as defjned
in chepter 4 with Ni atoms taking the place of A atoms and Pt atoms

W
that of B atoms, except G'“ ¢+ which is now defined by
~

e re e+ 8 e
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L4 . |

CTrEeNS oW ( (6.21)
™Mnm [_( A E§ mu’ W::: G mml]
where
N e '
EK = X Ed + C\‘ X) Ed (6.22)
Wx = AWNCY + ('\-X)WPCC-) (6.23)
' 0L y 1o
G‘mn’ = WN(,C) Z A, Gh A /
Wey t=pall ™ e
M om,
© T A G A (6.24)
w [} / ' .
* e T ot o B |

The parameters E4 and Edp are the centresof the Ni and Pt sub-baxnds
in an alloy(given by equations(6.6) and (6.7)), Wy(s) and WPG—) are

half bandwidths of Ni and Pt in an alloy(defined by equation(6.5)),and

G “ [{chﬁ-’ A3 —E— Wa(s) Al F AL gl
we o * % WCU MM w\‘”‘n m, Vu ’ (6.2{)

w = fwel a3, _E- W Cc) a., Al
' [{ AM‘H.+E“ v F " m.i’}g":"ﬂ.] (6.26)

Wcu

‘Q

L
The hopping integrals A:M' (depending on ddr, dd xand dd§) are taken

from a calculation for copper (Jacobs 1968 ). To normalize these
quantities to the correct hopping integrals for the Ni-Pt alloys it is
necessary to divide them by the copper half bandwidth W, , and’

multiply them by Wy®) ,Vi,(ﬁ) or Wy as appropriate,
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The quantities A?’m"nm and Alvh.‘.h" are the same as those given . in

equations (4.15)and (4.16), but ﬁi*\is now defined as:
L}

F - ¢ éo(_,,,zﬁ ~ (- Fo(LZ) (6.27)

where
Zn = LE; - 8) Weu /Q,,cc) (6328)
Ze = cel-e) Wey [Weco | (6.29)

and‘c is the concentration of Ni atoms. The factor L and the functions
FD(L,ZN) and FD(L,ZP) are explicitly defined in chapter 4, and they
are used here without any modification. Equation (6.24) is simplified
and evaluated in the same way as discussed in chapter 4. Thus we can
calculaete the density of statesi%i—?t alloys and hence ¥ in this
tight binding cluster theory. The results of the above calculations

are given in figure 6.3. v T

The dotted line curve is the experimental (Beill® 1974). The full line
curve is the plot of ™ as a function of nickel cohcentration when we
consider only the d band density of states for pure Ni and Pt i.e we
exclude the sp band and its hybridizing effects on the d bands. We
have assumed here also that Ni remains paremapgnetic throughout the

concentration range. This curve is steeper than the experimental curve.

The value of ™ sharply rises from 7.3mJ/K2-mole at ¢=0 to 22mJ/K2-mole

at ¢=0.6 and then it comes down slightly to 21mJ/K2-mole at c=1.

The difference between the single site and cluster theory behaviour

of W is due to two reasons., The first is that we have used very
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sharply peaked densities of states for pure Ni and pure Pt{ that are

given by Haydock method ,1975). The second is that we have neglected

the conduction band and its hybridization effects on the d bands. The

first reason is probably the more importagtibecaﬁse states at the top of the

band sre less hybridized.

Thus we have been able to demonstrate the practical utility of

our theories by applying it to a discussion of ¥ for Ni-Pt alloys.

6.6 REVIEW OF THE THEORY FOR THE DISORDERED HEISENBERG FERROMAGNET

Tehir Kheli(1972) was the first to devote attention to
the calculation of the magnon spectrum of a randomly diluted
Heisenberg ferromagnet. This system is described by a Hamiltonian given

by:
‘H =T 2J\§~f Pr P! §"§"I (6.30)

where Py is a random variable assuming the values 1 or 0 depending
whether the site at ™ is or is not occupied by a magnetic ion. The sum
over ¥ and M! is taken only over nearest neighbours on a simple cubic
lattice.Tahir Kheli's approach was an effective medium approach. He
applied the truncated Kohn-neighbourhood (where the dynamics of a
sufficiently random many body systems may be approximated by that

of a typical small neighbourhood consisting of, say,'only two sites).
His results show a density of states which peaks towards the lower
energies. The height of the peak and its shift towards the lower

energy increases with the decrease of the concentration of the magnetic
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ions, He was able to get three frequency moments exactly.

Herris et al (1974) used the coherent potential approximation (CPA) .
in several different forms to treat this ﬁroblem. Thekr results for
@he line shapes or the spectral weight functions are in good agreement
with the 'exact' results(Harris 1974 , Nickel 1974). The density of -
states cu}ve is, however, rather smooth and has none of the structure
that we would expect. (There must be,for example,’ '§ funetions in
the specbrum of finiﬁe weight arising from the free rotation of magnetic

moments on ‘isolated' magnetic ions).

Nicke1(1974)has done the 'exact' calculations in an eight atom
cluster theory. He used the moment expansion method. His results
consist of curves for the line shapes for various concentrations
of the magnetic ions. ile obtained the "dangling bond effect in the
line shape response, He also predicted, on gemeral physical grounds,

a multispiked structure in the density of states, ‘hat appears to

be characteristic of all strongly disordered binary systems(Dean 1960,
Cubiotti et al 1975). Theumanmand Tahir Kheli (1975) have presented
another treatment of the problem. Their result shows some improvements
on the results of Harris et al (1974). It gives a density of states
which is non-zero only at positiwe frequency and is more peaked at -
lower frequencies. All the sbove calculations were done for simple

cubic materials.

In this chapter we have adapted the cluster theory for the - _.
disordered alloys(Jacobs 1974, Cubiotti et al 1975) as developed

from the continued fraction méthod (Haydock et al 1972) to treat the

dilute Heisenberg ferromagnet. We treat the central atom and the six
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atoms in the nearest neighbour shell exactly; the atoms in the second
and the third neighbour shells are treated less exactly and beyond

that we make an average approximation. The result show much structure
in the density of States and this structure increases as the concentration
of magnetic ions decreases., The structure contains broadened delta
functions at energies slightly shifted from integral velues. There are
also unbroadened delta functions at integral values of the enmergy.

The broadened delta functions are due to partially isolated magnetiec
atom clusters end the unbroadened delta functions are due to conpletely
isolated magnetic atoms., In general the results display many aspects

of the dilute Heisenherg ferromagnet that cannot be adequately

treated in an effective medium theory.

6.7 _THE GREEN FUNCTION

Horris et al (1974) have shown that the Hamiltonian
given by equation (6.30) may be written in terms of boson variables f

(equation 2.4 of their paper ) in the form

h= H/zSS = %/ (Q;‘-— Q! )(qr'ar‘) -

| . |
gs Yv (2 - s J(Qe=-Gyy) (8.31) 'f

vhere $§ denotes the nearest neighbour distance and
= - ' N : : g
Yy Pr (6.32) !
In this form the Hamiltonian implies that a localized excitation can
only hop between nearest neighbour sites which are both occupied
by magnetic ions or both are occupied by non-magnetic ions, but it

cannot hop if one of them is occupied by a magnetic and other by a
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non-magnetic ion, Hoppinz between two non-magnetic sites results
in’ spurious excitations and these must be subatracted to get the true

magnetic response.

We shall apply the continued fraction method developed by

Jacobs(1974) to the Hemiltonian given by equation(5.30). This method -

expresses the diagonal matrix element of the Green function for a
given configuration of magnetic ions in a continued fraction -
approximation. The avérnge density of states is then obtained by
multiplying the average Green function for a given configuration
by the probability of occurrence of that configuration and summiqg

the result over all configurations,

Assuming that the central site is occupied by & magunetic ion,
the diagonal element of the Green function <OlG10) (where Iry is
the Wannier function for site r, r=0 referring to central site) for a

particular configuration is given by

z _ "
<o\G[o>=[E-z_- z (;'_-] (6.33)
t=l
where 7 is the number of magnetic ions in the nearest neighbour

shell (for a simple cubic: 6 2272 0 ), i refers to the number of

magnetic sites in the nearest neighbour shell and N

. _ ot
Ge = € [_E- xg ~ O -1) Fe)) - (6.34)

where t is the hopping matrix between the neighbouring sites: t is .

equal to one when the two nearest neighbouring sites are occupied

e T R
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by magnetic atoms and is zero when either of the two or both of ‘them
are vacancies i.e tAA=1 and tAvn tw=0, wherg A refers to a magnetic
site and V to a vacancy(non-magnetic site). In this way we are able
to project out the spurious vacancy-vacancy interactions, X' is the
number of magnetic atoms in the nearest neighbour shell of the ith

dite; and F(e) gives the termination of the continued fraction -

appropriate to the pure magnetic component i.e

Fle) = F(e-g,) (6.35)
where
. -

Fee) = sle- 38 Fee)] (6.36)

q
F(EY= B {0t (6.37)

18-
B = 6. h « | (6.38)

FCE) ensures that we get the correct density of states for the ordered
material(Jacobs 1974). The sign in equation(6.37) is chosen to give

the correct high energy limit to E(€)i.e

F(.E) —_ —é_ as E o o (3.39)

Equation (6.34) involves the approximation of hopping from the nearest
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6 6
Wo= ¢ [H- Q-¢) c:'] } (6.44)

a number which increases with the increase in the value of c.

The density of states of the magnetic ions is then given by

$m(&) = L Tn <LolGlo) (6.45)

The result so obtained are plotted in figures 6.4 and 6.5.
Our technique is a real Space technique'and is not well adapted to

the calculation of-self energies and line shapes,

6.8 NUMERICAL RESULTS AND DISCUSSION

Figure 6.4 gives the density of states for a pure simple
cubic material with EA=6' This result is very close to the exact result

and is the same as that given by figure 2 of Jacobs(1974).

Figure 6.5 gives the magnetic density of states at different
concentrations of non-maegnetic ions. It is clear from this figure that
there is much structure in the density of staies and this structure
increases with the decrease in the concentration of magnetic atoms.
This structure is mainly due to nearly isolated clusters which give
slightly bfo;dened delta functions in the spectrum. These shoula occury
according to equations (6.33)and (6.34) near integral values of energies
from 0 to 6 except 1., We do indeed see these broadened out delta
functions slightly shifted from integral velues of E. Unbroadened
delta functions océnr at integral values of E and are due to completely
isolated clusters. The peak at very low emergy is the low energy

resonance peak. This is called the 'dangling bond! effect(i.e a

.




147

small isolated cluster of magnetic etomns is conected to an infinite
magnetic material by & single hoﬁping integral). This peak shift#
towards still lower energies and becomes more and more sharp with
tﬁé decrease in the concentration of the ﬁagnetic atoms. The centre
of gravity of the density of states and the cut off emergy (after
which the demsity of states is effectively zero) also shifts towards lower
energy with the increase in c¢. It is also seen that at higher values
of ¢ the weight under the curve decreases, This lost weight has gone
into the delta functions due to isolated magnetic atoms and is given
by equation(6.44).The lowest five moments of the density of states
are correct and it is reasonable to assume that meny more are well

approximated in this technique.

Thus we conclude that the cluster theory developed from the
continued fraction technique can be reasonably‘applied to the ..
calculation of the densiﬁy of states of any kind of binary system',
though it canunot easily be applied to some other aspects of such

systems, such as the self energies or line shapes.
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TABLE 6.1

PARAMETERS USED IK THE CALCULATION OF ¥

ddo
dd X
dd s

RO

E

=
=%

SR A

=

-0.0296 ryd

0.0147 ryd

-0.0024 ryd

 3.592 oy
= .8826 ryd

= D ryd

7.338 ap

«3 I'Yd

.15 ryd

«85 ryd
= 046

e 039

0.0465 ryd
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APPENDIX A

In this appendix we will prove that the expression

-t -l U T ‘( + <1
T [d 6 ey b v 2pte (6 +6]

-

L
K

of chapter 2 is equal to the free electron density of states h(€E

when 1=0 and 1=1.

For 1=0 and 1=1, the pseudopotential is weak and weakly energy
dependent which means that £° is small and weakly energy dependent.,

where &g is given by

-1 -1

‘('..é - to-ik
]
to - Kquf

then

-4 'IMTF[(_ ’ce_t %, c.\‘apébc)b (H&f-e)]

- !Ith[ﬁ h)ﬁe_.—t uz.t.ﬂpl'__(d b ){-_tqt..uq QF{ E-»-.-]

The first and fourth terms terms are ejusl to zero, partly because

> 4
ta ~o and partly due to the weak energy dependence of ‘te .THe last

two terms are slso equal to zero because C§+ has zero trace. Thus we

are left with following two terms
)
S
—%‘—Ihﬂ« [ e &g 4 ‘QF‘L-},
- _LT.V,LWUC]
A

- Ji[uok_a\- So(,*c] - NolE)
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APPENDIX B
This appendix lists several standard results which are used in this
thes;& They are given without proof. Definitions of the functions used
are given by Messiah (1961); but it should be noted that we have used
opposite sign convention for spherical Neumann function néi“) end spherical

Hankel function hiu) which is defined by Messiah,

Sk:(x)&'l () K d X

=Lx U_QL*)A (x)~ fﬂh‘(x) (x)

+(}‘ch)}\2@) = TROR) m] 4 (p1)
B2)”

jéibt)x,cl)b Lx L} (x)- c}z )a_u' ] (2)
RORYSIOEE TN (33)*
{}QU‘)ne- ‘(x)—(;g_l(y) neU) =x* (g4)”
L, o0 -@n) JQ“(};):;LQ@H) 4 o0 . ()"

(B6)

h:u)_ = N - 00

+ See Messiah (1961) vol. 1 p 490

* See Morse end FosRbach (1953) part 11 p 1573-74
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Appendix B continued.

A
Consider in general (A-B) , where A ia a diagonal matrix and
B is a non-diagonal matrix then it should satisfy the following

relation:

(A-B )"i (A-B) =I

(1)

where I is a unitery matrix.

e
If we write (A-B) in the form

-l -t -t " -\ -l -t
(A-B) = A +A BA + A BA BA teoeeccee’ (2)

then we see that re¥ation (1) is satisfied, this means that expansion
-1
(2) of (A-B) is correct., This is a geometric series and its sum is

given by

1

(A=B) =L +ABA+S'B + £ BL Beveses) & (3)

This is the expansion we use in chapter 5 with

A= d)dd)SLl'

B 580 5.0)
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continued fractions
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Abstract. The density of states of a one-dimensional disordered alloy is calculated by
a continued fraction technique and the results are found to agree well with those of
the selfconsistent theory of Butler and with the exact density of states obtained from
the Schmidt integral equation technique.

The continued fraction method due to Haydock et al (1972) which has previously
been successfully applied by Jacobs (1974) to a three-dimensional disordered alloy
is now applied to a one-dimensional system. In our method a central cluster of seven
atoms is treated exactly, a further pair of atoms is treated approximately and all other
atoms more approximately still.

The model Hamiltonian for a disordered alloy is

H=H, + H, (1)
where
H1 = Z tijci+ Cj H2 = Zeini (2)
oy 7

and where ¢; and n; are creation and number operators for electrons on site i and
t;; is the hopping integral between the sites i and j which is taken to be equal
to a constant, z, for nearest neighbours and zero otherwise. The disorder is confined
to the second term H, in the Hamiltonian where ¢, can take the values + 16 depend-
ing on whether site i is assigned the value A or B in the particular configuration
considered.

The orthonormalized basis set is generated by the method of Haydock et al (1972)
as modified by Jacobs (1974) and is given by

10) = 10>
11,00 = (1A/2)(IT> + |1)) 0,1)=0

12,0) = (13/2) (2> + 12)) 0,2) =0

I1,1), =0 1, 1), = (I/2)(T> — 1))

1,15 = (1/4/D(T> — 1)) 1,1, =0

13,0) = (14/2) (3> + 3)) 14,0) = (1A/2) (3> + 14))

2,1)1a =0 2,15 = (14/2)(2> = 12))

13, 1)1 =0 13,1)25 = A/ (B> = 13)). ()

WP 5/9—a 1677
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The notation [i,j) for the elements of the basis set serves to indicate that the
element |i,j) is constructed from the ket |0) by i operations of H, and j of H,.
The suffixes on some of these kets indicate that they depend on the arrangement
of atoms. For example the ket [1, 1} vanishes if the arrangement of atoms on the
nearest neighbour shell is symmetrical, ie of type 1 = ACA or type 4 = BCB, where
C denotes the central atom. If the arrangement is of type 2 = ACB or type 3 = BCA
then the ket |1,1) does not vanish. The ket [2, 1) however will vanish only if the
arrangement of atoms on the second nearest neighbour shell is of type 1 or 4 and
the arrangement on the nearest neighbour shell is also of type 1 or 4. Similarly
the ket |3, 1> will vanish only if the arrangements of atoms on the first, second
and third nearest neighbour shells are all of type 1 or 4. The notation |n> or |n)
refers to a Wannier function centred about an atom n units to the right or left of
the central atom.

The secular equation with this basis set is given by the matrix shown in table 1,
where a 1 x 1 matrix in the first posifion on the main diagonal is linked by
1 x 1 matrices to a 1 x 1 matrix in the second position which in turn is linked
by 1 x 2 and 2 x 1 matrices to a 2 x 2 matrix on the main diagonal. After this
the pattern repeats itself. All other elements are zero. Here

E,= —v36 + (1 — v)jd
E,=[—wid + 2 —wi6]2  E.=[-x3+Q@—x3512 @
E,=[—y30 + (2 — y}d]/2 E,=[-z30 + (2 — 2)30]/2

where v is the number of atoms of type B on central site, ie v=0 or 1; w, x,
y and z are the number of atoms of type B on first, second, third and fourth sites
respectively and they all can take on the values 0, 1 or 2,

It should be noted that some off-diagonal matrix elements depend on the relative
arrangement of A and B atoms on symmetrical sites about the central atom. This
is manifested for example in the sign of the fourth element of the second row, which
is negative if the configuration in the nearest neighbour shell is of type 2 and positive
if the configuration is of type 3. If the configuration is of type 1 or 4 the sign
is irrelevant because the element goes to zero on account of the factor [w(2 — w)]%.

The continued fraction is correct up to the fourth nearest neighbour shell but
is continued further with an average of the continuation appropriate to the two
pure components,

F(E) = cF(E — 15) + (I — ¢) F(E + 15) )

with
F(x) = [x + (x* — 42)¥]/21%. (6)
The sign is chosen so that F(x)— 1/x as x— + 0,
The density of states is given by

p(E) = —(1/r) In S0 GO, | )

The diagonal element of the Green function is obtained by folding the matrix
elements referring to a given shell of neighbours into those referring to the adjacent
nearer shell and by ending at the central atom. The bar indicates averaging over
all possible configurations. This is done by finding the diagonal element of the Green
function for a particular configuration and then multiplying by. the probability of
occurrence of the configuration and summing the result over all configurations.



Table 1. The matrix used to derive the continued fraction. Beyond the eight level the matrix is treated approximately.
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Figure 1. The density of states for alloy with ¢ = 05, § = 16 and ¢ = 1. The pecaks are
very sharp and their heights are not accurately presented. The exact heights could be
found by going to a finer mesh in energy scale.

Discussion of results

In figure 1 we compare our density of states (broken line) with the exact results
(histogram) obtained by Butler (1973) using the method of Schmidt (1957).

It is seen that our result is very close to the exact density of states and shows
the predicted sharp structure of Economou and Papatriantafillou (1972).

This verifies the convergence and accuracy of the method of Jacobs (1974) in
the one case where it may be tested easily. This one-dimensional situation also poses
the most severe test to any theory (a two- or three-dimensional situation is treated
more accurately by a ‘mean-field’ method such as the cpa) and it can be seen that
the present method meets the challenge and provides an excellent density of states
curve. Our nine-site theory is comparable to or of greater accuracy than Butler’s
seven-site theory.
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