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Abstract  

Finite Larmor radiu (FLR) effects, in Hall terms and the 

collisionless stress tensor, are thought to constitute an 

important stabilising agent in confined kilovolt plasmas. 

This thesis considers a cylindrical confined plasma subject 

to a sheared equilibrium magnetic field and investigates the 

associated macroscopic instabilities. 

Collisionless instabilities are described by a general 

second order differential eigenvalue equation. Mode localisation 

near a resonant surface, where the pitches of a helical mode 

and the magnetic field match, is employed in a semi-analytic 

solution that yields a generalised sufficient stability criterion 

including the effects of pressure gradient, rotation sheared 

axial velocity and heat flow. Numerical solution reveals 

the destabilising influence of any resonant surface present, 

considers FLR stabilisation of interchange (Suydam) modes and 

shows that its effect on rotational instabilities leads to 

the optimum rotation being non-zero. Displacement of the 

eigenfunction from the resonant surface by axial heat flow is 

also demonstrated. 

A low-beta, resistive system yields a fourth order 

differential set of eigenvalue•equations; to these, the 

application of the developed numerical method reveals that 

the plasma radius beyond which the standard treatment of 

resistive instabilities is valid increases as resistivity 

rises. FLR produces growth rate reduction, but no cut-off, 

and generates rapid spatial oscillations that caused the 

computations to fail. A new spatially oscillatory, resistive 

FLR dependent mode is discussed. 

A resistive system with finite-beta and FLR is analysed_ 

• 
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using traditional localisation assumptions and reduced to a form 

suited to numerical analysis. With FLR in excess of a critical 

value, there exists a cut-off value of the matching parameter 

independent of the pressure gradient sign and of the azimuthal 

magnetic field. The approach to FLR-free results is considered 

and additional, more 'questionable modes are discussed. 
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Chapter I.  

Background and Introduction.  

1) The System Studied.  

Attempts at confining high temperature plasmas in the 

hunt for methods of achieving controlled thermonuclear 

fusion have been.consistently frustrated by the multitude 

of instabilities inherent in hot inhomogeneous discharges. 

The joint effects of reduced collision frequency and increased 

ion Larmor radius, as ion temperature rises with improved 

technology, make the finite Larmor radius (FLR) corrections 

to the magnetohydrodynamic (MHD) fluid equations of increasing 

significance. 

Whilst the majority of existing and proposed containment 

devices are toroidal in form, the effects of the complex 

physics associated with FLR may be adequately assessed 

using a cylindrical model, thus avoiding the geometrical 

complications of the torus. The system studied is thus 

an infinite, cylindrical, Z=1. plasma column bounded by a 

rigid conducting wall. Conventional cylindrical coordinates 

(r19,z) may thus be employed relating to the radial, azimuthal 

and axial directions respectively. Linear stability of the 

plasma column is studied on the assumption that initial 

equilibrium states exist depending only on the radial coordinate. 

Permeating the plasma, the equilibrium magnetic field has 

both axial and azimuthal components (B=(0,B0(r),Bz(r))) 

so that effects of magnetic curvature, shear and torsion 

are included in the model. 

As the equilibria considered are independent of 9 and z, 

the perturbations are Fourier analysed in these coordinates 

so that separate modes vary as exp(i(m9i-kz)). The initial 
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effect of toroidicity is to produce periodicity in z, thus 

quantising k. Growth rate spectra, ir(k), plotted in subsequent 

chapters must therefore be viewed with the knowledge that, 

in a practical system, such a plot is restricted to a series 

of discrete points, whose separation in k varies inversely 

with the periodic 'length' of the apparatus. 

In the absence of FLR effects, the stability of models 

of the type considered has been extensively investigated in 

the literature. Two distinct types of macroscopic (fluid- 

like) instabilities have been found. Using collisionless 

models with the plasma surrounded by a vacuum region, kink 

modes arise (1) when a resonant surface (k+mB =0=(k.B)) 
rBz 

occurs in the vacuum. These involve delocalised perturbation 

of the plasma column. A resistive plasma model allows such 

modes to occur with a resonant surface within the plasma 

(6),(7) as experimentally observed. Typically, such resistive 

resonant surface effects may be expected to arise in the 

cooler, outer regions of the plasma column. Further discussion 

of 'these appears in chapters IV and V.. 

Localised interchange modes may occur (1) at resonant 

surfaces lying within the plasma. Such modes are known (8) 

to be subject to stabilisation by FLR effects and are 

considered in depth in this context in chapters II and III. 

Their MHD stability has been carefully analysed in the 

literature. Using the energy principle of Bernstein et al.(5), 

Suydam (2) heuristically produced a necessary stability 

criterion for these modes defining the magnitude of adverse 

(inward) pressure gradient that can be stabilised against 

interchange phenomena by a given magnetic shear -- — 	
e 

k dr re., 
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The basis of this criterion has been made more rigorous by 

Newcomb (9) in a careful, detailed analysis of the problem 

that also yields necessary and sufficient stability conditions. 

The importance of resonant surface effects in the stability 

analysis is plainly evident from the above work. Indeed, 

the incorporation of such phenomena gives rise to the differences 

between the work described in chapter III and that of Bowers 

(10) who considered straight field equilibria (B= (010,Bz)). 

As may be seen from calculations below, the relevance of 

such regions arises since the perturbation causes no local 

distortion of the magnetic field in the collisionless limit. 

Shear stabilisation is,thus effective by reducing the width 

of the layer for which the field perturbation is small. 

Resistivity allows (E.B)1/0 in such a region So that 

magnetic field perturbation need not imply large plasma 

perturbation; the perturbed plasma diffuses across the 

lines of force. In the resid‘ive limit, therefore, shear 

stabilisation is ineffective and indeed has an adverse effect(7). 

Shafranov(1) discussed the reliability of the cylindrical 

model in its application to the macroscopic (fluid-like) 

instabilities of confined plasmas. He concludes that 

whereas toroidal curvature has a small effect on delocalised 

kink-modes, the effect is larger on the more localised 

interchange modes, and produces increased stability as the 

aspect ratio, of the torus concerned, rises. This effect 

has been analysed in detail by Mercier (3,4), in the collision-

less limit from the energy principle; stabilisation arises 

from the favourable influence of the toroidal magnetic 

• field being curved towards the plasma on the inside of the 

torus. Thus, larger pressure gradient (averaged around the 



17 

poloidal plane) may be stabilised by a given magnetic shear 

(in the collisionless limit). The stability criteria presented 

in chapter II may, therefore, be relaxed slightly if applied 

to toroidal systems. 

2) Finite Ion Larmor Radius Effects.  

In order to grasp the importance of these phenomena in 

containment experiments, compare.the thermal Larmor radius 

,a, and the ion-ion collisional mean free path,/k1, to typical 

apparatus dimensions,a, of the order of 1 metre. For a 

plasma with kilovolt ions in a IT magnetic field with number 

density 1019m-3  we find: 

ai : L
JL . 
• Al = 5x10-3 : 1 : 1500. 

• 

Thus, in directions normal to the magnetic field, particle 

localisation arises as a result of the gyro orbits rather 

than from any collisional process. Such localisation is 

relevant since it occurs on a scale small, but not insignificant 

, compared to the apparatus dimensions. 

The first indication that FLR effects might have a sta-

bilising influence on confined plasma was given by Rosenbluth, 

Krall and Rbstoker (13) in an investigation of their influence 

on the electrostatic flute instability in weakly unstable 

plasmas. They employed a technique of direct solution of 

the Vlasov equation by integration along particle orbits 

and found that the MHD dispersion relation, of the form: 

2 	 2, 
42 t --C 	was replaced by 6j( LA.) 	0-0()::-..Cwhere 

Cretis the ion drift velocity. 	Such a replacement is common 

in all subsequent work and is responsible for the stabilising 

effects associated with the ion diamagnetic drift. As shown 

. by Schmidt '(15) , the effect is the result of inhomogeneities 

in the fields.  present. These cause the influences of the field 
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quantities averaged around the gyro orbits to differ 

significantly from those evaluated at the guiding centres. 

Since this effect is neglegible on the minute electron gyrations 

, it causes the electron and ion motions to be relatively 

phase shifted. As shown by Hoh(16) and Bowers (10), the 

phase shift results in currents and charge distributions 

that partially cancel those driving any instability present. 

A procedure for obtaining fluid equations capable of 

representing these effects was discussed by Chew, Goldberger 

and Low(11) and developed by subsequent authors. Roberts 

and Taylor (14) first showed that the results of (13) could 

be obtained from fluid equations using the stress tensor 

given by Thompson (12) derived from expansion of the Vlasov 

equation. Further use of such a stress tensor was made 

by Kulsrud (23) in a discussion of FLR stabilisation of the 

interchange instability in the Stellerator; his mathematical 

technique was applied by Stringer (24) to a similar situation 

with an analysis based on the FLR modified guiding centre 

approach discussed in Schmidt (15). Kuisrud's technique yields 
•• 

an. FLR modified Suydam criterion and is again used in 

chapter II in a more general situation. 

A consistent ordering scheme for the development of FLR 

fluid equations was outlined by Rosenbluth and Simon (17) in 

a discussion of the flute instability in the presence of 

an equilibrium inhomogeneous radial electric field. This 

implies, in general, an initial rotating plasma subject to 

perturbation. These authors found, for their straight magnetic 

field, zero beta, situation an optimumum plasma rotation for 

stability with the centre of mass rotation equal to half the 

ion diamagnetic rotation. Pearlstein and Krall (18) developed 
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this method including finite-beta effects and Kennel and Greene 

(19) performed a•general expansion using localised rather 

than global coordinates. 

The stress tensors derived by the above techniques have 

been shown by Ware (20) to contain contributions from the 

heat flux of perpendicular (gyration) energy. He showed 

that the stress tensor could be obtained from the collisional 

expansion of Herdan and Liley (21) if terms in the collision 

frequency were neglected and heat flux terms were retained 

in the derivation. As terms in 1/y are present in (21), 

the neglect of these, as),-i>0 , appeared to be a dubious 

step at the time, but has since been justified by Hosking(25) 

on consideration of further work by-Liley(22). The latter 

derives the stress tensor by expansion of moment equations 

rather than of the Boltzmann equation itself. A collisionless 

derivation of this sort has been carried out by Macmahon(26). 

Bowers (10,27,28) developed the approach of reference(17) 

and produced equations including finite-beta and axial 

wavelength terms. The latter removes the purely electrostatic 

nature of the perturbations, so that distortion of the magnetic 

field lines results. In reference (28), a detailed account 

of instabilities in a rotating theta pinch is presented. This 

work is extended to systems containing equilibrium 136  in chapter 

III and hence considers the complications of superimposed 

resonant surface effects. Using a coordinate system defined 

by the equilibrium magnetic field (rather than by the total 

field), Bowers (29) developed a stability analysis including 

the effects of magnetic field curvature and torsion. 

3) FLR Ordering.  

As this thesis makes considerable use of the collisionless 
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FLR stress tensor in the cylindrical coordinate system, it 

is pertinent to outline the ordering restrictions inherent 

in its derivation from the Vlasov equation.. These are discussed 

in detail by Bowers (10) and by Kennel and Greene(19). 

Define an FLR ordering parameter,e: 

11.  

	

f 2 -LI 	r c( Ion Larmor radius  
 

.IL LS 	L1. 	
Plasma Scale Length normal to B. 

where(/' is the ion thermal velocity and ..A1 is the ion 

gyro frequency. 

Bowers (10) used 

(AL ' 
(Al 

	

I (1.1 	 f3 f Cr 
where(41is the hydromagnetic velocity normal to B, 	and 4/ 

suffices refer to vector components relating to directions 

perpendicular and parallel to B and4) is the frequency of 

the instabilities. 

The ordering of 00 is such that currents produced by 

finite gyro radius phenomena are of sufficient magnitude-to 

influence the perturbation of the lowest order hydromagnetic 

velocities. E is ordered so that it produces variations on 

time scales no shorter than 1/6). 

There remains the ordering of E8,13 .and Bg/Bz. Recall 

from Bowers (28) that the'motion of particles and perturbations 

along B is described by a time-scale: 

1 	 CA. 
T 
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where.CA  is the Alfven speed and CA  ,v(. /73. Thus: 

2. 1 	C A 	V. i A. A., A /y, 	- lir 
L.,/ 	Ln  ri--37 

hence: 1 ...16,ifire using the definition of IF . 	12 
Le L .L. 

Therefore, in the cylindrical system considered in this work: 

1 A, k-f-mBg 	Erie 
L 	 r, rBz 
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Since mi.". 1 if 	 /v 
-Lperturbations r  

hence, we choose: 

k evirri3 ; L_ _ p  erturbation-1/ 1'.L equilibriumLl  

and: 	
B Zvi'"11 B 

This ordering of Bg  ensures that, in theigA-.1 limit, the 

timescale associated with the crIBI and curvature drifts of 

particles does not dominate that of the FLR effects that are 

the subject of interest. In chapters II,III and V a pvi"°  

ordering is employed in order to include the maximum number 

of physical quantities; chapter IV usesr-t-f" , following 

Coppi (31), in order to simplify the resistive equations 

2 studied.pvl implies jzBg.vi jgBz  so that, in lowest order, 

the divergence of the magnetic stress tensor reduces to the 

gradient, of a scalar magnetic pressure: 

d (B2  e.g.: jez  = — 
dr (E 

YAO 
The allowable magnitude of Eh, may be determined from the 

induction equation. Magnetic field perturbations produced 

by variations inN.(  must be at most of comparable magnitude 

to those arising from E.L. Hence: 

LL  L11  

444El 	15 
B 	B 

Expansion of the Vlasov equation using this ordering of 

quantities produces a fluid-like description of the effects 

of FLR. The study of modes with scale lengths comparable to 

the Larmor radius (32,33) is not susceptible to a fluid-like 

analysis and requires complex kinetic calculations. 

13 

ILE 

so that: 
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4) The Dispersion Equation of the System in the Collisionless  

Limit.  

Pott(30) expanded the Vlasov equation in the manner of 

Bowers (10,27) and considered perturbations of the drift 

kinetic equation produced, Fourier analysed in 9,z and time. 

Retaining equilibrium Bo, Pott(30) found that, in the limit 

of the ordering used, two types of solution were possible. 

The first describes localised microinstabilities of the type 

considered by Bowers (10,28) and the second, fluid-like 

macroinstabilities. These are characterised by purely convective 

perturbations of density, pressure (p & p!), axial velocity, 

axial heat flux and the fourth moment of the distribution 

function. Thus they are incompressible and adiabatic. 

i.e.(v. 	.0. fr. (ce- -1-e(1)) /. 	 16 

Pott's expansion and derivation appears in appendix A in order 

to show how the expressions for the various perturbed 

quantities are related to the Lagrangian displacement 

defined as : 

= C.01 
	• 17 

where 117 is the Doppler shifted frequency: 

r 
cie M (Az 	 18 

and thus depends on the equilibrium velocity u = (0,ug,uz). 

In the manner of Bowers (10,28), Pott(30) expanded in E 

the centre of mass momentum equation: 

)(` 
To first and second orders, pressure balance resulted: 

(41-  

Q 	4- 	= 0 	Il0 
2v140 

In third order, after linearising and perturbing, high order 

pressure contributions were eliminated by taking the z 

component of the curl of 19 expressed to this order. 
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Eventually, after substituting in the expressions for the 

perturbed quantities that appear in appendix A, he produced 

the differential dispersion equation for the system considered: 

-cl 	F 	-"=. 0 	111 
1r 

„ 
3  cot` 	F2 	

z 
 

-wr  r 

	

2-6( (Plc) piJr74I Luz 	c(-1-2`) cit _05 --0-" 	'111' 

4- 	4-6—z h 	41 cf Li  
*Ai 12  dr 	1-2 	Ar 

r 

izzir- LA 	P4-0 — L3-;) 

	

CL 5recieg 	 ja 
where: 
	

Yll (9 
r62  

(Note that- the second term in G corrects an algebraic error 

in the work of Bowers (10,28) ). 

Equation I'll forms the basis of the study of the 

collisionless instability of the system considered. Its 

solution will be expounded in detail in chapters II and III 

of this work and appears in less depth in reference (30). 

The inclusion of the complete FLR stress tensor in 

the momentum equation has thus added a variety of physical 

phenomena to the dispersion equation in addition to the 

familiar diamagnetic contribution that constitutes the 

third term of F. These additional effects appear in the 

sfeci-es 	 .14  ° 



fourth and fifth terms. 

The fourth term of F, linear in k, will be subsequently 

shown to have a destabilising influence. In particular, the 

adverse effects of sheared axial velocity become more important 

when ion temperature rises. Melchoir and Popovich(34) found 

that,although FLR tended to stabilise Kelvin-Helmholtz 

instability in many cases, situations existed for which the 

plasma was unstable only when FLR terms were included; these 

authors employed a simple Cartesian model. The equation 

shows that a radial gradient of ce has a similar effect. 

The fifth term of F arises only in high beta situations, 

whererpi effect's are significant; it includes the influence 

_Li of the collisionless heat flux, qg  another consequence of 

FLR. 

An MHD treatment of the problem yields the first two 

terms of F apart from the temperature anisotropy corrections 

in the second that give rise to firehose instability(35). 

G manife'sts the effects of the cylindrical geometry. 

The form of the first term gives rise to the well-known 

differences in character of the m=1 mode since studies in the 

MHD limit (1) have revealed that it exerts a stabilising 

influence when m > 1. The second term of G introduces 

rotational destabilisation since this is the only term in 

which the frequency, 47 , is not Doppler shifted by the. 

rotation. (Note thatIJI- 10= CAPtkaz ). The final term 

in G incorporates the effects of total pressure gradient 

( 
dr  11--(pJ.  +pA(  )on using equation I10) and is responsible 

for driving Suydam instabilities and the dangerous m=1 

kink mode of the diffuse pinch (36). 

The solution of equation I'll and the investigation of the 
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consequences of the various physical effects thereby described 

forms the content of chapters II and III. It is found that 

the less familiar effects, arising from the gyro-viscous 

stress tensor used, are, in some cases, at least as important 

in the stability considerations of a hot cylindrically 

confined plasma as the more widely discussed diamagnetic 

contributions. 

An investigation of resistive effects in the FLR limit 

begins in chapter IV. A discussion of the literature relevant 

to resistive instabilities is postponed until the beginning 

of chapter V, however, as that chapter employs techniques 

more commonly used in this context. 
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Chapter II.  

Solution of the Collisionless Eigenvalue Equation Using an  

Analytic Approach.  

1) Introduction.  

In the limit 110,-+. 0, uv,o, 	ce1› 0, Pott's 
collisionless eigenvalue equation (eq. 211 and ref.30) 

consists of terms of a similar nature to those of the equation 

solved by Stringer (24). and Kulsrud (23). The differences 

that arise are due to the more rigorous inclusion of cylindrical 

geometry and agree with the results of other authors (17,28). 

As the analytic approach employed in references (24) and (23) 

was so successful in simpler physical situations, this chapter 

attempts to follow an analogous course of investigation with 

the more complete Pott equation. 

The method requires that the instability be localised 

in the neighbourhood of a resonant surface defined by: 

r=r 
	. 1.ci-mB 	=0 
• rB r=r 

• In.the MHD limit, the radial thickness of a perturbation of 

given m abaut the resonant surface is determined by two 

competing influences. The interchange instability arises 

at the resonant surface where its helical pitch matches 

that of the magnetic field. On either side of the surface, 

the amount of energy required for perturbation is determined 

by the mismatchin the two helices. Hence, steep shear- 

dr rez) ( confines the mode to a very thin layer. 

The magnitude of the perturbation is restricted by the kinetic 

energy involved in a growing mode. Thus, singularity , and 

hence infinitely narrow perturbation, occurs only at zero 

growth rate.' Finite Larmor radius effects introduce oscillation 
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into the growing modes and thus significantly increase the 

kinetic energy of perturbations near the resonant surface 

when the growth rate is small. Thus, with these effects 

included, cut-off is possible with a finite eigenfunction; 

the theory developed below thus essentially applies close 

to marginal. stability. 

m-1 Since, close to the origin, eigenfunctions vary as r, 

mode localisation increases dramatically as m rises. This 

will be seen in computed eigenfunctions in chapter III 

(figure 1116). Thus, the technique and results of this 

chapter are most applicable for mi.:P. 1 and totally inapplicable 

to m=1. 

2) Method.  

The method begins by Taylor expanding in the region of the 

resonant surface: 

k Ve. 0( X 	where a = 
r CLTI  (2 1  d r=f; r 	r---/-  s 

x 
All other equilibrium quantities are taken as constant in this 

region, it being assumed that they vary only on a length scale 

large compared to that of the radially localised instability. 

Pott's equation now takes the form: 

E0kg +g'e 11-C ) d T11.[E(AX2-+ X)i'dfr-t)  112 X 	 Tx 
where A to E are constants, in this approximation, depending 

only on equilibrium quantities at the resonant surface. In 

order to remove terms linear in x, a linear transformation 

of, independent variable from x to w is required. Since w=0 

implies xLO, the perturbation calculated is not centred about 

the origin of x. Unless this shift is small, the localisation 

approximation II1 will be invalid; this, therefore, places a 

further constraint upon the regime of validity of the theory. 
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pta rs2 	cluz 4- -62 	( 

The transformation required may be summarised al follows: 

‘1. ri3  

The qA terms in Pott's equation have been substituted 

) 113 

	

S re( 	 .11 0 

(1-1-ez'  1,7L  otlz 

	

(kr 	az  dr 	114 

• r43  coll'-gme01 112.0111-)* tt1:2r cli3z(1 	—Pilit 15 
° 	 cIrt it) ,P- Oz dr 	Fp) 
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using: 

so that k 	141  To 	becomes: 	ta.  del.  Jai. 

	

'LB J2.1 	 Oz 
nz 116 

	

2 	r-J2* C-Crk 	pfi. 

ag 	 age crt 

Here R is the fourth moment of the zero order distribution 

f
function f0  •. 	

D"  
7721 	uicieo 	ci:z),C) (Au). 062  II? 

Specification of f0  or its moments ( 
	

J.  ao,  P!/o' qzo ,  
determinQfthe equilibrium under study. 

With)/  1, lr 2and W.  3  defined above, the required 
transformation is: 

( /3 71/ — 1)-2'  ) 

It is convenient to define also: 

Y ...„. 	1 s ,7-0 NA  i 	r 

From eq.II8 we clearly require that..0 be very much less 

,3. d 6 ( CO .' i41-2 61-t k r, 1(1.,Q_<(!7-ift.)- —,,, 0  ) II lo 
X .:: ( 1-4=.1  ) ( 71-311  - r,.971/11  

r.3 a2  ( 	(')-13610) 

r 2- , 	 119 
1 1 , 	tg." 

steetzs,r  

than the scale size of x (or w). Expressions 113 and 114 

% ci   show that this indicates thatAU 	and% 0 are , e 
dr dr 	dr 

responsible for the.radial displacement of the perturbation 

that limits the applicability of the theory. The eigenfunction 

displacement will be considered more thoroughly in chapter III 
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by numerical means. 

The quantity Y (eq.II10) contains the instability driving 

forces from the function G of the eigenvalue equation. 

Omitting the first term in the numerator and pressure anisotropy 

, the Suydam criterion (2) may be expressed as Y1C 2  for 

stability. Thus, the rotational effects of the first term 

are seen to decrease stability. ' 

Using the quantities w,X and Y, Pott's equation becomes: 

( % xi  1) 	 45 tE—:(w'#'ci-y]f =.0 ,twz 	ctw 
1211 

This equation appears to be precisely of the form of 
2 

that solved by Stringer (24), with X and Y replacing 	 pc 
1.-N/2 and, i ) of that work respectively. However, the rotational 

contribution to Y involves the frequency of the perturbation 

and is, in general, complex. Thus, in the present calculation, 

Y is complex whereas 	in Stringer's work is real. As 

Stringer's final result is not an analytic function because 

it involves the arguments ,  of complex numbers1  generalisation 

of the manipulation is required. 

FolloWing Stringer (24), the technique of solution 

proceeds by considering only the case 	for which the 

driving forces are sufficiently strong to induce instability. 

fil 
Two overlapping ranges of w are taken: (i) w4t Y , (ii) w>>1. 

Assume that walls and axis are distant from the resonant surface 

and take homogeneous boundary conditions at large w: 

..4> 0 	as 	ivi/1 	op 

Since equation II11 is symmetric about w=0 and the boundary 

conditions are homogeneous, group theory indicates that g is 
either symmetric or anti-symmetric about w=0. Hence either 

=0 orq =0 at w=0. 

The solution in -region (ii) is the same for modes of 



either symmetry. In this limit equation II11 reduces to a 

spherical Bessel's equation of imaginary argument. 	The 

solution convergent at large w is 

(wri<-1 7w 1112 

NYZ • where 11 a _4— (14N-1 ) 
A 	 • 

Note that: 1/2. w ATe 	• 	 x+i2.1 
1,72 The displacement constraint on c- can now be more precisely 
01 

)1 	1 written as: 	12' 2 	4: 1 	1113 

Since X vanishes for m=1, the outer decaying solution cannot 

be found for this case and the method of solution is clearly 

invalid. (The solution in region (i) decays only as w--11 

insufficiently rapidly for localised theory to apply). 

In region (i), II11 reduces to Legendre's equation so 

that the general solution is: 

A P5., ( 
where )5(ii..y...1)112. 

2, 
as in Stringer. 

[Q;, (i)w)] 
for VI/ C) 

Note that the PP correction to the second solution, moves the 

branch cut from the standard position joining w=ti via w=0 

to that joining these points through infinity. The coefficients 

A and B for the cases of a) even-symmetry and b) odd-symmetry 

may be found from expressions for Y!(0), 
Q1P(

, P1(0), 

taken from reference (37). 

For even-symmetry (as given by Stringer) we find: 

( 	c4-t ir—.5") 	w) 4 6755C; iv) 	1114 

and for odd-symmetry: 

I Tr 	.6,,„ TO) PT, (i 	+- 	(i 1.0) 1115 c`s 	‘.• 	2, 
Expressions 1114 and 1115 must match 1112 in the overlapping 

( 0 < t41 ,F.1-7-P) 
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region of validity: 14w<l'el377c . The condition for this 

matching determine the eigenfrequencyCi) . Below, we 
_ 	- 

concentrate on the calculation for the odd-symmetry case 

as this was not considered at all by the previous authors 

(23,24). Even symmetry modes areJeca with in an entirely 
analogous manner. 

Write 4 
11/2. 0.4.y.-1, .0 that 

• 

At large w, reference 37 yields the asymptotic form of 1115 

in terms of gamma functions. Using the properties of gamma 

functions (37), this solution may be expressed as: 

♦ "-COS ( 14. A.0 ( 	) 1116 
WV2  51A4Ai 0114 /01 	% 

where  

tt4 	N") 	.1.44[p (11 '01* it4  [P(14-ia) 
-rr ti A re-agiA)- 

4-  
Note that, since Y is complex, u will in general be complex 

also so that the gamma functions in lir cannot be further 

simplified. 

Using reference (37), the small argument' expansion of 

1112 yields: 

i )14  argi) HIVAI ( 
	 I117 

144 f (}.q/ (V))  

11(Iti 11/2- ) 
In the matching region, therefore, the two solutions 

are rapidly oscillating functions. Matching is thus achieved 

by equating the amplitude and phase of the spatial oscillations. 

The latter is arbitrary to any multiple of fl ; different 
phase matchings produce eigenfunctions with different numbers 

of nodes. Phase matching gives: 

Ec' 	(ify) eaefrs 
1118 

c 24 
vat,.  
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where: 

H,, 
o 

tty) =IC 	 seat ( 17?4  )  )1/1 dd 

t Ira A 

ro#N)(54.444("))1+1 24:, 	7.i Ti] 
7774 

	7.1--tot 

with 	(4Y-1 )th 
The even mode result, derived analogously, has been incorporated 

and differs only by the sign choice shown. 

In the zero FLR limit, we require , following Kulsrud(23), 

that X+0 as u-1>0 (Suydam marginal stability). Taking this 

limit, 1119 indicates that ARA, It 4x17(-.311 Clearly,n 

must be positive fore any physical solution. Thus, n may take 

values 1,2, 	 00  . Since larger X implies greater• 

growth rate, the most unstable mode will be that which maximises 

H. Evidently, n must equal 1 when Re(u)),0 to maximise 

growth rate. The latter assumption concerning u is based 

upon the theory being a perturbation of that of Stringer (24) 

for which u was real and positive. Similarly, since 

t:;1(: 42:r1q2.]_ IT <!(' for 	0<i4 4: 00 

even-symmetry modes are the most unstable (taking the - 

sign in 1119). Henceforth, we shall be concerned purely 

with the most unstable. Suydam mode of the system for which 

the dispersion relation has been shown to be: 

fro 	city) 
The primary localisation constraint on the theory, 

IYMIXImay be re-written in terms of Y alone: 

IYl >> HI 	( Y) 1 2  
for the mode considered. 

1120 

1121 

The dispe-rsion equation 1120 may be expanded in terms of 

convenient parameters: 

— Ate 	 z( P x[Az 

1119 
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H(z) will henceforth denote 

H1even(z). The parameters of 

equation 1121 are defined as follows: 

with 
• . 

Lti , J. 4 I p_Li 1 _  
e dr k 1) 	

. a 36,  
.11 	I - rig= 

ftc ... Loi rs 	, f 
) L 41 i  =.044a 0 It  k ctz) 

i 0.1 i  
1123 

u 1511F' Ate 
ar/ ott- 

1124 
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r k 	LdPks `4 " 	dciott  
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As H(z) is real when z is real (see Stringer (24) ), 

the Schwartz reflection principle (38) requires that 

H(z*)=(H(z))* ; hence, the sign choice in 1122 merely 

produces either real modes or complex conjugate values of !p. 

This is in accord with the properties of the original differ-

ential equation. When evaluatingc , therefore, it is 

sufficient to consider only one 'of the two possible solutions 

to the dispersion equation, 1122 in order to extract the 

growth rate of any instability. 

The quantity U1  describes the degree of FLR introduced 

into the problem. For clarity, it is best to consider 

equilibria not involving significant axial velocity, U. 

Al then describes the net plasma rotation velocity at the 

singular surface, 	
1. o1 P — Er Lit a9 z 	1129 

normalised to the FLR effect, Ul. 

A2 is a 'Suydam parameter', as the condition A241 is 

merely a reiteration of the Suydam stability Criterion, 

modified for the effect of pressure anisotropy. (See ref.(30)) 

Thus (A2-1)' is a measure of the degree by which the equilibrium 

is MHD unstable due to the effects of adverse pressure 

gradients. 

In order to ascribe a physical context to the quantity 

R in A4, estimate the zero order distribution function f0, 0' 

as a two temperature Maxwellian distribution. This yields 

2 
R
t
=2Pj./e , which gives: 	I 

	

dei 	pi(c/ ( 	) 2 fiL tC 447:11130 

2- Jr 	T.-  Tr 	Xr 	fit 1. 	oTi-.;  
Thus, the first term of A4 describes the collisionless BxV 

(Righi-Leduc) heat flux. This term is likely to be negative 

(taking dTLi/dr< 0). In the absence of strong fire-hose 
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destabilisation, the second term of A4 is positiVe; this term 

arises, however, from the quantity ''2 
 .(eq.II4). The constraint 

1113, that arose from the invalidating influence of these 

terms of moving the perturbation from the resonant surface, 

limits the magnitude of this positive contribution to A4 that 

can be considered within this localised calculation. 

A5, the final parameter, incorporates the influence of 

density gradient. The inclusion of this term introduces 

the rotational destabilisation caused by the cylindrical 

geometry that is a feature of this work. 

3) Results I - Deductions from the Dispersion Equation. 

Two results are immediately apparent upon inspection of 

the dispersion relation, equation 1122. 

i) Since the argument of the square root contains.-A4, 

we expect A4>0 (due to the dominance of its second term) 

to destabilise and A4(0 (due to a Righi-Leduc contribution) 

to have a stabilising influence. 

ii) The case A5=0 yields marginal stability with g =1 as 
found by Stringer (24).( Note that, in the present case, ris 

Doppler shifted by the rotation present). For A5/0, this 

situation is repeated when A1=1 as the rotational contribution 

to the argument' of H at marginal stability vanishes in this 

case as well. In the absence of u
z
, A1=1 implies: 

1 i u 

or, using 1129 

	

J. ( 1 4f 	2  ci 	) 1131 
gz 	e %A' et,- 	2_ e 	Xr 

At low beta, the special case of rotation described by 

Rosenbluth and Simon (17) is immediately evident. The case 

A1=1 is clearly a finite-beta generalisation of this special 

case. 
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We now investigate the dispersion relation 1122 in the 

neighbourhood of marginal stability. Consider first a set 

of parameters (Alto A5) giving real .5 (stable case) and 

investigate 6 as a function of 	(say) A2. Since, by 

hypothesis, 6 is real, the square root of 1122 is real and 

henc.e all derivatives of 6.  with respect to A2 are real. 

Thus, Taylor expansion is possible to calculate a real value 

of ;. at A2+ '(A2). This expansion will only fail when 

1g /) (A2)1 --->00 . Hence, at marginal stability, the 

derivative of ; with respect to any of the 5 parameters 

diverges. In the case of Stringer (A5=0) this divergence 

occurred when the argument:  of the square root vanished; 

this pertains for the case A5/01 A1=1 discussed above. 

Otherwise, differentiation of 1122 with respect to A2 yields 

at marginal stability: 

1— rj =X1;—AI)A3A5U(A)H&(A) .1132 

where Q, 	AZ( 14 A5 (;-A1)2') 
and the prime denotes differentiation with respect toa 

The marginal stability value of, for example, A2, the 

Suydam parameter, can, in principle, be obtained by simultaneous 

solution of 1122 and 1132 for 5 and A2cr.. . Although this, it. . 

by definition, provides a necessary and sufficient criterion 

for stability against the interchange modes considered, the 

solution of these equations is neither obvious nor trivial. 

A useful sufficient condition can be obtained by calculating 

the. value of the required parameter for a given real value 

f 	. Since, in the cases A5=0 and Al=1, 6.  =1 at marginal 

stability, this is a suitable selection at which to evaluate 

the sufficient stability condition. The only requirement of 
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the calculation is the iteration of the parameter under study 

to reduce the argument" of the square root in 1122 to zero  

when =1 has been substituted. This may be carried out 

readily without the aid of a computer and requires merely 

a graph of H(z) along the real z axis of the type given in 

Stringer (24) and ffulsrud(23). The sufficient criterion for 

A2 is thus: 

	

(P12-6) 	Al 	
1133 

where 
	14-AS (1-A1)2.  

The additional four parameters Al A3, A4, A5 have thus 

been reduced to two by the consideration of the sufficient 

stability criterion rather than of the more precise marginal 

stability conditions. 

Figure II1 plots.this sufficient criterion on A2, the 

modified Suydam parameter, against the two parameters S 
and V. The criterion thus states that points lying below 

the curves correspond to stable plasma equilibria. As 5 

increases, the destabilising effects of the centrifugal 

forces are clearly apparent as the curves become compressed 

to smaller values of A2
5 =1. 

The effect of varying A4 may 

also be seen on this diagram as it is a linear function of)i. 

It appears that the effect of A4 will be greatest at small 

&values when rotational driVing forces are least. Note that, 

according to this sufficient criterion, S  =1, which corresponds 

to the Al=1 case discussed above, is the most stable case of 

rotation. Recall that, in this case, marginal stability 

corresponds to the sufficient criterion. At other values 

of 6, the degree by which the sufficient condition is too 

severe may be seen by comparing figures II1 and II10 and 

will be discussed later. 
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0.02 	0.04.  
v —A4)/A3--> 

Figure III - The sufficient stability criterion A2srA2 
S=1  

for various 6 = 1+A5(1-A1)2. The dashed line 
indicates marginal stability for A1=-2,A4=0 
A5=0.005 from figure II10. 

4) Results II - Computations.  

In order to study the behavior of;ras a function of the 

parameters of the problem, numerical solution of the dispersion 

relation, equation 1122, was required. As this is an analytic 

differentiable function, Newton-Raphson iteration was employed. 

Routines to evaluate complex gamma and digamma functions(p sr= 
were obtained from the Cern library, available on the computer 

used. In order to initiate the iteration procedure, the 
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explicit case A5=0 was used as a first approximation. 

Subsequently,3,was followed as the parameter of interest was _ - 

varied throughout the desired range of values. As marginal 

stability conditions were approached, the violent behavior 

of 3 in the region of the cut-off inevitably caused the method 

to fail. Since a) the derivatives ofrare known to tend to 

infinity at marginal stability and b) curves of both Re(3) 

and Im(3) were available above cut-off, the critical region 

was completed by simultaneous extrapolation of the two curves 

towards a common parameter value. Whilst the extrapolation 

cannot describe 3.  accurately owing to its sensitive parameter 

dependence in this region, the cut-off value of the parameter 

against which3iwas plotted (usually A2) could be determined 

with reasonable precision. 

The sequence of diagrams 112 to 115 illustrates the'  

dependence of on the Suydam parameter,A2,for different degrees 

of plasma rotation, measured by:Al. Variation of A3 is 

implicit in the variation of m; A3 was taken to be 

1600/(m2-1) upon consideration of Stringer's (24) data for 

HfTX. The figures take A4=0, A5=0.05. 

The effect of rotation upon the frequency of oscillation 

of unstable modes is the.most immediately striking feature 

of figures 112 to 115. Only.  when Al=1, does Re(') take a 

constant value when In4)/0. In this case the.square root 

in equation 1122 has its argument-' real and negative when 

r is complex. The combination A1=1, Re(;)=1, on consideration 
of the definitions 1123, 1124 (with uz=0), implies Re(10)=0. 

Thus, in this case, the instability is absolute, with the 

equilibrium plasma rotating through the growing stationary 
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Figure 112  - Real and imaginary parts of the normalised 
complex frequency mrplotted against the 
Suydam paramete, A2, for A5=0.05,A1=-2, 
A4=0,A3=1600/(m -1). Note that the 
second stable solution has been omitted 
below marginal stability. 
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A2 

Figure 113 - m3 versus A2 with A1=0 and other parameters 
as in figure 112. 

perturbations. For other rotations, including'the case of 

stationary equilibrium, Re(w) is non-zero. However, as 

'increasingly more unstable plasmas are considered, so Re(5) 

approaches Al more closely and hence 1Re (W)lbecomes smaller. 

Three features are apparent in the growth rates in figures 

112 to 115 : i) For a given m number, cut-off occurs at smaller 

2 

0 

m 
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Figure 114 - m?,rversus A2 with A1=1 and other parameters as 
in figure 112. 

2  A2 	3 

Figure 115 - m'versus A2 with A1=2 and other parameters as 
in figure 112. 

values of A2 as IA1-11 increases. This is the destabilising 

rotational effect discussed above. ii) Modes become unstable 
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Figure 116 - m1 versus A2 with A1=-2, A4=-1, A5=0.05, 

A3=1600/(m2-1). 
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in order of increasing m as A2 rises. This occurs since 

the effect of FLR depends upon the azimuthal spatial derivative 

of the perturbation and hence increases with m. iii) As A2 

rises beyond the critical value, so modes with greater m 

become the most unstable. The dominant instability thus 

increases in m as plasmas with more adverse pressure gradient 

are considered. 

Comparison of figure 116 with 112 reveals the effects 

of including a negative contribution to A4 from Righi-Leduc 

heat flux. The effect on the oscillation frequency is most 

marked below marginal stability. As is evident from the 

dispersion equation, for the stable branch indicated, Re(!V) 

is reduced so that the relative rotation of plasma and 

perturbation is increased. Elsewhere, a lesser reduction in 

Re(W) is apparent. The stabilising effect of negative A4 

on the growth rate operates both by delaying cut-off until 

larger A2 (pressure gradient) is present and by reducing the 
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Figure 117 - 11S versus A4 with A1=0,1 and 2, A2=3, 

A3=1600/(m2-1),m=3, A5=0.05. 

growth rate of unstable modes. As the magnitude of these 

influences rises with increasing m number, the dominant m 

for a given unstable A2 tends to be reduced. 

The effect of increased -A4 for various rotations appears 

in figure 117. Observe that the growth rate reduction is 

greatest for the weakest rotation (smallest 1A1-11 ) and 

that, for A1/1, the effect on the oscillation frequency is 

to marginally reduce Re(W) and hence the rotation of the 

perturbation. (Recall Re(C)=A1 implies Req4)=0 ) 

The potential of Righi-Leduc heat flow as a stabilising 

agency must, however, be viewed with caution. The leading 

term of A4, in expression 1127, may be written: 

4- C Tit) (649z) 
 oix  Lsit 	10.Z 
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As, in practice, beta is limited to values considerably less 

than one, large negative values of A4 are never likely to 

occur. Destabilisation by positive A4 due to the second 

term of 1127 has not been considered here due to the 

limitations in the theory discussed above. 

A systematic examination of the effects of varying 

rotation (Al) appears in figures 118 and 119. In figure 

118, rotational destabilisation is apparent; the effects of 

adverse pressure gradient dominate in figure 119 so that 

flatter growth rate plots occur. The violent dependence 

of5 on Al close to marginal stability is clearly apparent 

in figure 118. Again, the effects of rotational destabilisa-

tion increase as m rises so that, as. found by Bowers (10) for 

simpler configurations, although modes become unstable in the 

4 Al 
Figure 118 - me versus Al (rotation). A2=1.6, A3=1600/(m2-l), 

A5=0.051  A4=0. 
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lure 119  - rAIT versus Al (rotation), A2=3, A5=1600/(m2-1), 
A5=0.05, A4=0. 

order of their m numbers, higher m numbers become dominant 

as rotation increases. Figure 119 clearly demonstrates Al=1 

(rather than A1=0) to be the most stable rotation possible. 

The region 0,<Al<r1 demonstrates stabilisation as rotation 

increases. These curves clearly reflect the (K-A1)2 term 

in the dispersion law by their quasi-symmetry about Al=1. 

Similarly, the pseudo-anti-symmetry of the corresponding 

oscillation frequencies about Al=1 (at which Rev)=0 ) is 

evident. 

Figure II10 summarises' the marginal stability conditions 

on A2 for various rotations. To the accuracy of the 

computations, the Al=2 and A1=0 curves are coincident. 

The utility of the sufficient stability criterion discussed 

earlier may be seen by comparing the Al=-2 curve of figure 

II10 with thee =1.45 curve of figure II1. Theyiof course, 

agree as 1/A370 (27400) and the former 	exceeds the latter 

by only 5% at 1/A3=0.03. 

Comparison of figures II11 and II10 shows the increased 
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3 
A 2,e  

0 1 /A3---> 0.02 
Figure II10 - Values of the 
Suydam parameter, A2, at 
marginal stability (A2 it) 
versus the principle FLA' 
effect, 1/A3,for different 
values of Al (rotation). 
A4=0, A5=0.05. 

stabilisation (larger A2ci4t) 

1  0 1/A3--) 0.02 
Figure II11 - Values of 
A2 . versus 1/A3 with 
cr A5=u.i  65 and A4=-1 (Righi-

Leduc). The broken line 
displays the sufficient 
condition of figure II1 
for Al=-2, A4=-1, A5=0.05. 

due to the inclusion of a 

strong Righi-Leduc contribution to A4. Note that this 

increase is still less than one half of the stabilisation by 

1/A3, the dominant FLR term. Closer examination of figure 

II11 reveals that, even with the large -A4 included, the 
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sufficient criterion of fugure III is only 7% too severe on 

A2crit. with A1=-2 and 1/A3=0.03. 

5) Conclusion.  

The method of Kulsrud (23) and Stringer (24) can be 

applied to the equation derived by Pott (30) in order to 

investigate the effect of fukther physical phenomena upon 

plasma stability to interchange 	modes. 	Rotation is 

the principle effect included and is found to interact with 

FLR phenomena in a manner such that the plasma is most stable 

when it possesses finite rotation given by equation 1131. 

Although an explicit marginal stability criterion could 

not be derived, analogous to that of Suydam (2), a sufficient 

criterion was produced that can be made to-yield useful 

results without the need to program an electronic computer. 

An accurate plot of the function Hieven(z) (eq. 1119) along 

the appropriate part of the real z axis is all that is required. 

The results of this sufficient criterion are only 5 to 10% 

stricter on the pressure gradient than precise marginal 

stability requirements in the regime studied wherein 

rotational destabilisation competes with rather than totally 

dominates the pressure gradient. 

Righi-Leduc terms, a secondary effect of FLR are shown 

to have a stabilising effect, small compared to the more 

familiar terms, unless the collisionless heat flux is given 

an artificially large value. 
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Chapter III.  

Numerical Solution of the Collisionless Eigenvalue Equation.  

1) Introduction.  

Whilst the semi-analytic solution of Pott's (30) 

eigenvalue equation in the previous chapter provided a 

general understanding of the effects of the many terms 

present, the constraints of the approach do not allow 

thorough investigation of the complete range of equilibria 

encompassed by the model. In particular, three situations 

require further study. 1) As will be seen in section 3, 

modes with small m numbers are poorly described by the analytic 

approach and, especially when close to marginal stability, 

give rise to the fastest growing instabilities present. 

2) When rotational effects dominate the pressure gradient 

driving forces, the radial.localisation approximations of 

chapter II tend to break down. In this limit, the effects of 

the inclusion of equilibrium Be, and hence, magnetic field 

curvature may be investigated by comparing the results with 

those of Bowers (10) who considered the straight field limit. 

3) It was noted in chapter II that the phenomena comprising 

the second term in the parameter A4 (equation 1127) tended to 

displace the dominant part of the perturbation away from the 

resonant surface (defined by: r 	=ki-mB/rsBz r=r 0 ). r=rs 	s 
Large displacements of this type violate the most basic 

assumptions of the analysis of chapter II and must therefore 

be investigated by alternative means. 

2) Numerical Method.  

The eigenvalue equation (eq. 111 & ref. 30 ) takes the 

same form as that solved by Bowers (10) : 

(F 	t 4 = 0 1i- 	/ 
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However, in the present case, the main perturbations of 

interest are associated with F becoming  small at some 

radius within the plasma. No resonant surface phenomena 

were possible in the straight magnetic field case of Bowers(10). 

The mode localisation effects that were so essential to the 

development of the analytic theory of chapter II are the main 

source of difficulty in a numerical solution;  any discrete 

mesh must have sufficient resolution to describe the 

eigenfunction in the vacinity of a resonant surface. Thus, 

although the underlying  ideas in the numerical method- are the 

same as those employed by Mc Namara (43) in the program used 

by Bowers (10), considerable effort in developing  a new, 

reasonably reliable code was required in order that meaningful 

results could be produced. 

The functions F and G (eq. 111 ) contain the multitude 

of physical quantities defining  the equilibrium of the plasma. 

In order that these might be compared and assigned numerical 

values for the purposes of computation, a series of scale 

frequencies was defined, each member characterising  a 

particular physical effect:.  

Alfv(n frequency: 

Electric rotation 

frequency: 

Ion drift frequency: 

Axial velocity 

frequency: 

Axial heat flux 

frequency:  
w 	clz yh 
QZ 	3 _ae  rx 

co  

1112 

1115 

1116 
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Temperature anisotropy 	
1/ 

WIC 
	Fr W//  --1-1.)0  )12 

III7 

N Vim.  
frequency: 

Here, subscript°  refers to a value on axis and subscript x  

refers to a value at the wall. In addition, the following 

were also required to define the problem: 

Azimuthal mode number: 

Pitch of mode: 	krx/m 

P O. Normalised plasma 
= 

A 0 k  

pressure: 	 132z, / zj4 0 

Normalised radial r a = 
coordinate: 	rx  

Equilibrium profiles of the following quantities were also 

required: 

n (number density) , E r
13"  T, 	-71 	(7;-1:4),  

a 6 Er. 	-- spec." Vertes- 
Z ( 

z  
eit Ox 	vz 

With the exception of./A, these were all normalised to 

unity on axis. For convenience and for clarity of the 

magnitude of destabilising effects, most profiles were taken 

to be constant. The exceptions were number density, which 

was usually Gaussian, L( which was usually Lorentzian to 

approximate the pitch from a central current channel 

and ion temperature which was usually constant, but given 

a steep profile in the investigation of the Righi-Leduc 

effect. As in chapter II, qg
i 

was evaluated by estimating 

the fourth moment, R , using a double-Maxwellian 

velocity distribution in lowest order. 	The radial 

dependence of B was derived from the equilibrium 



pressure balance requirements (eq. 110):.  r.?; 
=constant 

so that: 	132 	( I 	p I — 1.7% 	flz0 	 spert.s 
where n an41- define the respective normalised profiles. 

Weft es 

The boundary condition appropriate to the problem is 

that -g vanish at the rigid, conducting wall where a=1. At 

the axis, a=0, symmetry requirements demand that: 

	

g = 0 	for m / 1 or 

	

=0 	for m = 1 
cid 

Numerical solution of equation III1 subject to these 

boundary conditions must seek an estimate of the most unstable 

value of W( i.e. that with the largest negative imaginary 

part) by approximating the eigenfunction at a set of discrete 

points. To this end, the plasma radius, 0$ra.1.1 was divided 

into a number, N, of equal steps. Empirically, it was found 

that as few as fifteen could be employed to obtain a rough 

estimate of the frequency required when localisation was 

poor, but, typically N=20 was used for a first approximation. 

Thus, differencing III1 yields: 

F4 F 	i‘ 

	

rtfi 	-278 	`•4 	( 	-$1)*  I— 1 (Y1-1 _ 

	
1119 

where the vector components n,Fn,F;,Gn  denote the respective 

functions evaluated at a =n/N and the mesh step,S , equals 1/N. 

Since both F and its first derivative F' are separately 

required in 1119, equilibrium quantities were, in fact, 

evaluated E;/100 on either side of each mesh point so that, 

for example: 

Itl 

Fill:: 50Ni F (13-7-1)-- F(htr-1),1 

 O 
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In this way, both Fn  and Fn were obtained with only two 

evaluations of F(a), thus minimising the computational 

effort involved. This technique also ensured that high 

order derivatives of the equilibrium profiles were not 

explicitly required by the calculation. As these could 

have been reasonably supplied only by coding them explicitly 

as separate subprograms, this feature added to the ease with 

which different profiles could be inserted into the computations. 

The implementation of the axial boundary condition on 

the m=1 mode remains the only problem. For this mode, both 

F and G have an a3  dependence near the axis. Thus, 

differentiating equation III1 three times at a=0 yields: 

cial 4.  s" 	t 	0 F  
Symmetry demands thatr=fJ , so that differencing at a=0 

gives: 	8.20 (I —To) f  4. 

F"(0 FIO 

9.61(g) 
and similarly 
	7o 

the boundary condition may be written: 

fro Since F lq) —F"(4))2 	27T 

Thus, since the derivatives of the equilibrium functions 

F and G were readily obtainable from the coding required for 

the difference equation 1119, the boundary condition III10 

is in a form readily suited to the numerical scheme. 

The difference equations 1119, together with the boundary 

conditions thus define a homogeneous matrix equation forlin: 

Aij 	0 
	

J 	
A, 
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The matrix A is evidently tri-diagonal. Fora solution to 

III11 to exist, the determinant of A must vanish. Thus, the 

frequency of the perturbations was estimated by iterating, 

in the manner discussed below, until det(A) was reduced to.  

zero. Since many such iterations were often required, 

it was essential to compute det(A(!') ) as fast as possible. 

The elements of A depend linearly on. F and G which are = 

each quadratic in the frequencyCd.. Thus, before iteration 

began, the three quadratic coefficients of each element of 

A were calculated from the equilibrium data specified and 

stored. The computation involved in the evaluation of the 

determinant was thus reduced to the evaluation of a quadratic 

for each element of A, followed by the determinant calculation 
OM/ 

from the recursion formula: (see Fox & Mayer (39)) 

D 	A - n+1-  2,n+1Dn - A1,n+1A3,nDn-1 

Here Al 	A 	A 	denote the three elements of the nth ,n' 2,n' 3,n1  

row of A and the D
n denote the intermediate determinants in 

the sequence. Thus:. 

D0= A110 , 	1 , det(A) = DN 	. 

In order to determine the roots of the determinant, 

an iteration algorithm was required. Muller's method of 

quadratic interpolation (4o) was found to be adequate. This 

method approximates the function concerned by a quadratic 

in the region of three guesses at a root; an improved 

approximation is then obtained by taking the root of the 

quadratic closest to the supplied guesses. The procedure 

was initiated by selecting three points randomly around a 

single initial guess. In order to produce an algorithm 

capable of finding roots whose moduli might vary by several 

orders of magnitude, the modulus of the difference of each 
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point from the, initial guess was scaled by a small fraction 

of the modulus of the supplied estimate of the root. Of the 

four points selected in this way (one supplied and three 

generated) , the one that produced the determinant of largest 

magnitude was discarded in the manner of Martin (41). Once 

the procedure had been initiated in this way, the three 

guesses were in turn sequentially replaced by the results 

of the application of the iteration algorithm. 

In order to gain an estimate of the eigenfrequency of 

the most unstable mode of a given parameter set, all the 

roots of the determinant associated with a mesh of as few 

points as possible were obtained. This was achieved by 

iterating, starting from a random point in the complex plane. 

As each root,G,
I
, was determined to the accuracy required 

( three significant figures in each of its real and imaginary 

parts with "zero' defined as being less than 10-4) it was 

stored and deflated from every subsequent determinant 

evaluation by explicitly dividing bYlr(40-(09. Since all of 

2 
the coefficients of t° and w in F and G of the eigenvalue 

equation are real, the roots determined are either real or 

in complex conjugate pairs. Thus, whenever a complex root 

was determined, its complex conjugate was also added to the 

list of known values to be deflated from subsequent calculations. 

Having selected the most unstable eigenfrequency from 

the large number computed using the small mesh, its accuracy 

was improved by attempting to follow its behavior as the 

number of mesh points was gradually increased. For weakly 

unstable cases, where localisation was greatest, fifty or 

even one hundred mesh steps were required before acceptable 

convergence of this procedure was obtained. 
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Since a large number of the modes found in the initial 

small mesh computations consist of unphysical numerical 

oscillations, the technique employed does not, in itself, 

guarantee that the most unstable mode of the initial numerical 

problem corresponds to that of the continuous differential 

problem; there remains the possibility that the actual fastest 

growing mode consists of short wavelength oscillations not 

resolvable on a coarse mesh. The main defence against this 

possibility lies within the results of analytic theory. In 

the pure MHD limit it is known that the growth rate of the 

instabilities decreases monotonically as the number of nodes 

in the eigenfunction increases. (see Goedbloed et al. (42) ). 

Thus, we expect the most unstable mode to have a relatively 

smooth eigenfunction and hence be resolvable on a relatively 

coarse mesh of the type used in the initial procedure. The 

analytic results of Kulsrud (23), that were further developed 

in chapter II, indicate that this property is maintained 

when the ion-drift FLR terms are included. Applying the 

numerical technique to equilibria incorporating the theor-

etically less common effects in the eigenvalue equation 

investigated is,thus seen to involve the intuitively justifiable 

assumption that the instability studied is, in fact, the 

most unstable. Further justification of this assumption 

appears in chapter IV (figure IV17 ) when the method, on 

application to a more complicated system of resistive 

equations, detected a mode with an oscillatory eigenfuntion 

as the most unstable. 

Two checks were employed to reveal any numerically 

inaccurate, deceptive results. Firstly, the ability of a 

coarse mesh calculation to iterate complex roots in conjugate 
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pairs was ascertained, before this result was employed to 

shorten the calculation. This verified that the numbers 

printed out were, in fact, roots of the determinant 

investigated. Secondly, the eigenfunctions themselves were 

regularly plotted to ensure that they satisfied the boundary 

conditions imposed. Whilst accurate modes could often be 

plotted only with an eigenfrequency iterated to seven 

significant figures or more, owing to the numerically 

unstable procedure of inverting the difference equations 

, 1119, it was found that additional iterations of the root-

solving algorithm required for this did not alter the frequency 

to its initial three figure accuracy. 

One final technique deserves mention. Computing a 

large number of zeros of a determinant is obviously a 

very uneconomical way of obtaining a starting value from which 

to seek an accurate result. The growth rate of an instability 

is clearly a continuous function of the parameters defining 

the equilibrium. Thus, perturbation methods were sometimes 

employed to determine the dependence of the complex frequency 

of .a particular mode on a parameter of the system. This 

suffers the disadvantage that it will not reveal ranges of 

the parameter in question for which a different mode is dominant. 

As the functions employed had large numbers of roots, small 

parameter perturbations had to be used in order to ensure 

that the correct mode was found at each step. For this, 

collisionless, problem the effort in covering a range of 

parameter space by perturbation methods was Comparable to 

that of distinct calculation at a pre-determined set of points; 

the advantages of each method could be exploited where required. 

In chapter IV, economic computing will be seen to be feasible 
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only by the adoption of perturbation methods. 

3) Suydam Modes.  

The primary reason for the introduction of magnetic 

field shear into a confined plasma is to restrict the growth 

of the electrostatic flute modes that appear in the straight 

' field limit. (See Rosenbluth and Simon (17) ). When 

equilibrium Be  is introduced into the theta-pinch, the flute 

modes become electromagnetic interchange instabilities that 

tend to be localised in the region of the resonant surface 

(11-Ekrx/m =0 ) as discussed in chapter II. As will be seen 

in figure 1116 the localisation of the modes tends to be 

poorest at low m numbers so that the previous analytic theory 

cannot be expected to amply. In this limit, the numerical 

treatment of these modes, presented below, is required to 

complement and compare with the results of chapter II; the 

m=1 mode can be studied only by numerical means, 

Firstly, in order to provide a basis for comparison, 

consider the behavior of the interchange modes in the absence 

0I 

0 

003-
0 0 6. 

0 	 
-002 

krs  /m 

Figure III1 - The variation of the growth rate of Suydam 
modes with normalised axial wavenumber for 
different azimuthal waveRumbers withp=0.5, 
W =10, n=exp(-0.2(a/0.3) ), 

= 0.01/(0.25+a ). WF=0 on solid lines, 
W=0.0035 on broken lines. 
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of finite Larmor radius effects. (WF=O). Figure III1 

(solid lines) demOnstrates the dependence of the growth rate 

of Suydam modes upon axial wave-number in this limit. Since, 

as marginal stability is approached in this MHD limit, the 

kinetic energy of the perturbation tends to zero, the modes 

become too localised to be resolved on a discrete mesh; the 

curves are therefore extrapolated below/ t,  0.02. ( Note 

that, throughout this chapter, all frequencies are expressed 

in arbitrary units defined by WA=10 ). As the Suydam criterion 

(2) (A21;1 in the notation of chapter II ) is violated, for 

the profiles used, when krx/m=-0.021  figure III1 indicates 

that the cut-offs of the m=2 and m=3 modes shown are in 

reasonable agreement with this result. At large k, these 

modes cut-off just beyond krx/m = -0.04 at which value the 

resonant surface collapses into the origin. 

The m=1 mode is clearly an exception. Physically, the 

m=1 mode differs in that it is the only type of instability 

for which symmetry constraints allow the centre of mass of 

the cross-section of the plasma to move. Thus, the low (kJ 

cut-off occurs only when the resonant surface approaches the 

rigid containing wall. 

This sharp cut-off of the m=1 instability is clearly 

illustrated in figure 1112. When cut-off occurs, the steep 

gradient in the kink-like m=1 perturbation arises close to 

the wall. Since the plasma pressure is minute in this 

region, the interaction is electromagnetic. Ampere's law 

indicates that the surface currents induced in the perfectly 

conducting walls are:, 
1® 1•56  °c% 132 wcdt cc  Cwatt := o  
, 1 1 &$ 	lz az dil 
"Elz l'ito $41(lit = 	-,To Wi- 4.141t 

11112 

Before the resonant surface reaches the wall,d5 
wall is 
1 
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0 
•c 

0 

0.1 

-0.02 
krx/rn 

Figure 1112 - The variation of the growth rate of Suydam 
modes with normalised axial wavenumber for 
different m numbers with =0.5, WA= 10, 

n=exp(-0.5(a/0.3)2), WF=0,)A=0.04/(14-a2). 

small so that interaction is minimised. =0 when the z 
resonant surface occurs at the wall since, by definition, 

17Wall=0 in that case. When the surface has passed through the 
J5*-  

wall, however' Wall is finite and 1- lwall 
 is very large 

411-  

so that I,  becomes significant and generates the mode cut-off. 

The manner of this interaction explains the abrupt nature of 

the m=1 cut-off illustrated in figure 1112. A further 

example appears in figure 1118. 

The centre of the krx/m spectrum shown in figure III1 

is dominated by the higher m modes; observe,however, that, 

as the resonant surface moves into regions of more adverse 

pressure gradient, the modes become unstable in order of 

their m numbers. Largest growth rates are seen to occur 

when the resonant surface lies in the region of greatest 

pressure gradient. 

The effect of magnetic field shear on the instabilities 

may be seen by comparing figures 1112 and 1111 (solid lines). 

In the former case a considerably less steep profile of magnetic 

-0.03 	 -0.04 
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Figure 1113 - Eigenfunctions in the 
absence of FLR: WF=0, WA=10, p =0.5, 
n=exp(-.5(a/0.3)2), krx/m=-0.0351  m=3  

1))A =0.01/(0.25+a2) 

2),(x.0.04/(1+a2) 
The broken lines indicate the 
resonant surfaces. 

pitch was employed. Note that, although the two sets of 

curves have the same general shape, growth rates are much 

greater in figure 1112. Comparison of the eigenfunctions of 

the two examples for m=3 at krx/m =-0.035 in figure 1113 

indicates that weaker shear produces considerably broader 

eigenfunctions. This is intuitively expected since the 

region on either side of the resonant surface, for which the 

mismatch- between perturbation and magnetic field helices is 

sufficiently small for interchange effects to be energetically 

favoured is considerably broader in the weak shear case. 

The result of increasing  the effect of FLR (WF) for a 

fixed axial wavenumber is portrayed in figure 1114. Note 

that, in this case, the electric field (WE) was zero so that 

the plasma had a net equilibrium rotation given by the ion 

drift arising  from the Hall terms of Ohm's law (eq. A7). The 

m=1 mode in this diagram is seen to be affected only weakly 

by FLR in comparison with the higher m instabilities;  W ' WF 

increases in effectiveness as m rises, however. This may be 

understood as the effect arises in the stress tensor,T. 
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Figure 1114 - The stabilisation 
of Suydam modes by FLR effects, 
with WA

=10, p =0.5, 
krx/m = -0.03, 

n=exp(-0.5(a/0.3)2)', 

it=0.01/(0.25+a2). 

0 
	

0005 
	

0 01 	0 015 

WF 

1 
Larger m implies larger-F. e  and hence thatlirel'will exert a 

greater influence upon the perturbations. The phase-shifted 

ion currents that cause FLR stabilisation thus increase in 

magnitude as m rises. 

'Figure 1115 indicates that, as WF  rises, the frequency 

of oscillation of the perturbations (Re(W) ) rises in proportion 

to mW
F
. Since Re(W) is positive for the examples shown in 

this figure, this agrees with the result of chapter II that, 

when Al :?1, then Re(') 	1 at marginal stability. (A1=1.77 

at the resonant surface for the curves of figure III5). 

Figure 1115 -
Frequency of oscilla-
tion of the 
instabilities of 
figure III4. 
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At this point, some idea of the temperatures involved in 

these stabilisation effects is pertinent. Using the expressions 

1112 and 1114 , we deduce that, with B
z
=1T, n= 10

19
m
-3, 

rx=0.3 m, T
i =500 eV and W

A
=10,then W

F
=0.003. Thus, in 

figure 1114, the m=2 mode cuts off at an ion temperature of 

about 1 keV for the parameters quoted. 

The effect of FLR on the axial wavenumber (k) spectrum 

is indicated by the broken lines of figure III1. Note that 

the region of sharply varying modes, close to the NHD cut-off, 

that could not be previously resolved is completely stabilised. 

As the stabilising efficiency of FLR increases with m, the 

peaks of the separate spectra now occur in reverse order of 

m number. 

Increased ion temperature causes the eigenfunction to 

become complex, a small imaginary part being generated as 

W
F rises. This signifies the superposition of a small 

amplitude radial travelling wave upon the main, growing, 

standing wave component. Figure 1116 illustrates this effect 

at a given value of WF  for various m numbers. Note the 

expanded scale on the imaginary parts in this diagram. 

Imposed normalisation ensures that V is real on the first 

mesh point near the axis at which it is non-zero. As m 

increases at constant W
F' 

so the corresponding growth rate 

falls until, when le =0, I ( ) vanishes. (All coefficients in 

the eigenvalue equation are then pure real). Since, in the 

special Rosenbluth and Siion (17) case of rotation (A1=1 in 

chapter II) the eigenvalue equation may be transformed to 

be purely dependent upon LO which is then real in all cases, 

the eigenfunction, 	is then also real. Thus, the phase- 

shifted component of the perturbation is a result of the 
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Figure 1116 - Radial dependence of the complex eigenfunctions 
of figure 1114 with WF  = 0.002. 

destabilising influence of non-optimal (Al / 1) rotation 

in the equilibrium. 

Figure 1116 also indicates the increased degree of mode 

lodalisation at larger m numbers. At ma5 they appear 

symmetric about the resonant surface and show little of the 

distortion associated with proximity to the axis. As FLR 

rises from zero, in the manner of figure 1114, the mode 

structure varies little apart from the introduction of the 

imaginary, phase-shifted, part at small WF  and the subsequent 

contraction of the latter as cut-off is approached. In 

particular, finite gyro-radius phenomena make no significant 

alterations to the scale length of the perturbation as WF  

increases from zero to the magnitude required to quench the 

instability. Recall, however, that very narrow MHD modes are 

. stabilised by very little FLR. This can largely be explained 

by observing from figures 1114 and 1115 that the reduction in 

0 

C 

O 
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Iwl is a small fraction of the growth rate in the MHD limit. 

Thus, the kinetic energy associated with the perturbation and 

hence the width of the resonant region, varies little 
11011  

(fractional change in kinetic energy DC 7;4/ ) as ion 

temperature is raised. FLR thus converts the kinetic 

energy of the MHD absolute instabilities into that of 

rapid, but stable, oscillations at large WF. 

Before proceeding with further results, a more quantitative 

comparison of the numerical output of this chapter with the 

theory of the last is in order. Precise agreement cannot be 

expected owing to the contrasting approximations, and hence 

regimes of validity, associated with the two calculations; 

localisation effects require that chapter II be valid for 

large m and this chapter for small m . Table III1 compares 

the value of the Suydam parameter, A2 (eq. 1125) calculated 

for figure 1114 with values estimated from figure II10 using 

the cut-off W
F's from figure 1114 to evaluate A1, A3 and A5 

(eqs. 1124, 1126, 1128 ) at the resonant surface. 

Table III1  

No. of 
mesh 
points 

N 

m WF cut-off 
Al .A2 

1 
A3 A4 A5 A2crit. 

from 
fig.II10 

100 2 0.0072 1.77 3.92 0.031 0 D.038 3.810.1 

100 3 0.004 1.77 3.92 0.026 0 D.012 3.710.05 

100 4 0.003 1.77 3.92 0.027 0 D.007 3.75±0.05 

100 5 0.0025 1.77 3.92 0.03 0 ).005 3.9t0.05 
0 

In this case the modes have large growth rates in the 

MHD spectrum of figure III1 and correspondingly broad, well 

resolved eigenfunctions. The correspondence of the actual 
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Suydam parameter with the cut-off value predicted from 

figure II10 is seen to be remarkably good. The predicted 

value is, in all cases, slightly too small and thus too 

pessimistic of the requirements for stability. 

When the growth rate is smaller in the MHD limit so 

that the eigenfunction is correspondingly thinner and less 

well resolved, less precise agreement between the two 

results is found as shown in table 1112 with krx/m=-6.025 

using the parameters of figure III1. 

Table 1112.  

N m W
F Al A2 1 A4 A5 A2crit. cut-off A3 from 

fig.II10 

50 2 0.0051 1.84 2.01 0.011 -0 D.024 2.91'0.05 

100 3 0.0021 1.84 2.01 0.005 0 3.004 2.5-0.03 

Table'III3 displays the comparison for the cut-offs of 

figure III1 (broken lines). 

Table 1113.  

N m krx/m 
at 
-cut-off 

Al A2 1 
A3 

A AS A2crit. 
from 
fig.II10 

30 

100 

2 

' 	3 

-0.0245 
• 

-0.028 

1.85 

1.8 

1.88 

2.99 

0.005 

0.016 

0 

0 

D.011 

D.01 

2.45 

3.2 

Agreement appears better for the•larger m number in both 

tables 1112 and 1113 as the differing numbers of mesh points 

cannot account for the discrepancies involved. Thus, in 

these cases, the increasing mode localisation that arises as 

m becomes larger appears to reduce the disagreement between 

the numerical and theoretical results. Note that, in the 

last two tables presented, the theory of chapter II over 
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estimated the size of A2 that could be stabilised by the FLR 

effects present so that the effects of delocalisation at low 

m appear unfavourable to stability. 

In order to investigate the effects of the Righi-Leduc 

terms that appeared in the first term of ALE in chapter II, 

an ion temperature profile with a steep gradient in the 

neighbourhood of the resonant surface was employed. As 

this had the dual effect of altering TL  , and hence the 

effect of the familiar diamagnetic terms, as well as 

introducing a q contribution, computations were performed 

both with and without the heat flux terms included. The 

results are shown in figure III?. Clearly, in spite of the 

very steep temperature profile employed, the Righi-Leduc 

terms have only a minor stabilising influence on the instab-

ilities. This can be understood in the context of the theory 

of chapter II since, for the parameters and profiles employed 

in figure III7, the value of the quantity A4 (equation 1127) 

-is found to be only -0.13. Thus, whilst larger values of this 

quantity can be expected to produce a greater stabilising 

Figure 1117 - FLR stabilisation of 
Suydam modes illustrating the 
effect of the Righi-Leduc heat 
flow. 
W=10,P =0.5, krx/m=-0.05, 

Lt =0.01/(0.25+a2) , 

.n=exp(-0.5(a/0.5)2), 

Tiacexp(-50a). 



67 

influence, they can only arise in exceedingly unlikely 

r physical situations. q-9
i  entered the problem as a physically 

conceptually difficult cross-effect in the stress tensor 

whereby the distortion of the distribution function 

constituting heat flow contributed to the equation of motion 

of the plasma. Its effect in realisable configurations may 

thus intuitively be expected to be of smaller magnitude than 

formally considered in the expansion of the Vlasov equation 

that lead to the eigenvalue equation considered. 

So far, the calculations have, been confined to phenomena 

associated with a single resonant surface within the plasma. 

Current distributions confined to surface layers tend to 

arise in pinch-like devices and give rise to profiles of/A that 

are peaked off axis. Modes posessing two resonant surfaces, 

one on each side of the peak oft,[, are then possible. Such 

a situation is modelled in figure 1118. Clearly, no resonant 

surfaces exist when -krx/m exceeds the peak value of,p ,but 

as the former is reduced below the peak, two surfaces appear 

in the plasma. Further reduction of the mode pitch causes 

the innermost surface to contract into the axis so that 

when -krjm< 	only the outermost resonant surface axis 

remains. At very small mode pitch this expands through the 

bounding wall. 

The MHD (solid) curves of figure 1118 are readily 

explained in terms of the behavior of the resonant surfaces. 

Maximum growth rates occur where the two resonant surfaces 

coalesce, dJI/da = 0 and A2 diverges. In this region, growth 

rates exceed those of the single resonant surface case 

(figure III1) by almost a factor of two, indicating the de-

stabilising influence of the'extra surface. Increase of 
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F— I Resonant surface —4"-2 Rosanant surfaces— -k-No resonant 
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Figure 1118 - The variation of the growth rate of Suydam 
modes with normalised axial wavenumber with: 

f =0.5, WA=10, n=exp(-0.5(a/0.3)2), 

JI=0.003(1/(0.08+(a-0.4)2) + 1/(0.08+(a+0.4)2) ) 

WF=0 on solid lines, WF
=0.005 on broken lines. 

-krx/m beyond this value removes the resonant surfaces from 

the plasma so that, for m >1 at least, shaiT cut-offs occur. 

The low 10 cut-off of the m >1 modes occurs as the inner 

resonant surface contracts into the axis. Although the outer 

surface remains, it is stable to Suydam instability (A2=0.15 

<K1 ) since the plasma density, and hence pressure,is small 

at the radius concerned. The m=1 mode is plainly insensitive 

to the Suydam criterion. At large 114 a gentle cut-off is 

present after the resonant surfaces vanish, but at small (kJ 

m•I 

Figure 1119 - Radial dependence 
of the complex eigenfunctions 
of figure 1118 with W

F=0' krx/m=-0.035. 
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the truncation of the curve indicated arises as the outer 

resonant surface passes through the wall. 

The eigenfunctions associated with two resonant surface 

phenomena are of inherent interest. Figure II19displays 

these for the case krx/m = -0.035 for which figure 1118 shows 

that both resonant surfaces play an important role. All 

three modes in figure 1119 display prominent features associated 

with each resonant surface. dr/dr is greatest, in all cases, 

at the outermost surface where the plasma density and hence 

inertia is less. The m=3 mode, in particular, appears to 

indicate that the relative ease of perturbation at the two 

resonant surfaces allows large displacement of the volume of 

plasma in the intervening region. Figure III10 portrays the 

m=1 mode as the axial wavenumber is varied through the spectrum 

of figure 1118. Note that a prominent feature exists at the 

outer resonant surface throughout. As this passes through 

the wall, the large perturbation gradient involved generates 

the perturbed wall currents causing cut-off as described 

Figure III10 - Eigenfunctions of 
the m=1 mode of figure 1118. 
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previously. At larger fkl , the mode concentrates around 

the radius at which/A is maximum. Close to their low Iklcut-

off, explained above, myl modes were found to show only a 

very small feature at the outer resonant surface compared to 

a large, highly localised perturbation near the axis. 

The broken curves of figure 1118 indicate the effect of 

FLR on the perturbations. Note that, as the ion temperature 

profile is constant and the density profile Gaussian, the FLR 

terms of the eigenvalue equation vary only slightly, due to 

finite
) 
 effects, between wall and axis. Thus, increased WF  

succeeds in stabilising the low Ikl end of the m=1 mode where 

dE/dr is largest. In a physical situation, reduced ion 

temperature near the wall would reduce this effect. The 

higher m modes are influenced more strongly by FLR. As in the 

single surface case, the greatest influence arises near the 

low Id cut—off where the most localised perturbations occur 

that are the most difficult to resolve on the discrete mesh 

of the numerical scheme. 

4) Rotational Effects.  

Instabilities associated with a rotating cylindrical 

plasma were studied extensively by Bowers (10,27,28) in the 

absence of B in the stationary state. The work of this section 

pursues these effects into situations with B present. 

Just as the pressure gradient term in G of the 

eigenvalue equation (111) drove the Suydam modes, so the 

" 
term containing-- e(L0,--0:Lto) produces rotational 

dr 1 r 

effects. Since 6.)1  contains the Doppler shift, mu,/r, this 

term is independent of u9; it does, however, comprise the 

only term in win the equation not involving the combination 
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u)i-muG  /r and, as shown in chapter II thus gives rotation its 

destabilising influence. _ 	-  

When the pressure gradient effects responsible for the 

Suydam modes are small compared to the rotational term 

and axial velocities negligible, the axial wavenumber, k, 

and the azimuthal magnetic field BA are only important in the 

This is the component of the 

wavenumber in the direction of the magnetic field, (k.B)/B. 

Thus, phenomena pertaining to k=0 in Bowers (10,28) work 

occur at (k.B)=0 in the present case. An example of this 

may be seen in figure III11 for which Bo/(rBz) was taken 

to be 0.05, independent of radius. The slight deviations 

from symmetry of the diagram about krx/m =-0.05 arise from 

the residual influence of the pressure gradient as a large 

axial beta was employed. Whilst figure III11 differs little 

from the results of Bowers apart from the shift in wave-

number, the m=1 mode deserves further comment. The diagram 

plots the behavior of the most unstable mode for each m. The 

discontinuities that appear in the frequency (Re(w) ) of the 

m=1 mode clearly indicate.that different modes dominate in 

different parts of the spectrum. It was found that the 

dominant mode in the centre of the spectrum, characterised by 

the largest frequency of oscillation, possessed a radial node 

whereas the outer wings of the diagram are produced by the 

more familiar 'kink'-type seen previously in the WE=0 limit 

(e.g. figure 1116). The former type of m=1 mode will hence-

forth be described as the 'wobbling' mode. 

The dominance of the wobbling mode at k=0,.B0=0 was 

ascribed by reference (28) to result from the requirement 

that the centre of mass of the plasma should not move so 

combination k-t-mB ArB
z) 
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m=3 
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0 

ONO 

2 

m=2 
m=1 

—0.05 kr  —0.1 
x/m—> 

Fimure III11 - Growth rate,(5 and frequency WO versus 
normalised axial rvenumber for WA=1044=0.05, 
n=exp(-0.5(a/0.5) ), 	=°.5,WE=1, WF=0.01.• 

that the kink mode could not arise. This requirement may be 

violated for k=0 when either B8/0 or the plasma extends to 

the wall. In the former case, equation 11112 indicates that 

an electromagnetic wall reaction can occur and-in the latter, 

finite plasma pressure at the rigid wall causes a-net force 

on the plasma column. The effect of increasing  the latter 

may be seen in figure 11112 where the width of the density 

distribution is varied. At sufficiently large wall pressure, 

the growth rate of the kink mode can be made to exceed that 

of the wobbling  mode. The form of the eigenvalue equation 
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Figure 11112 - The dependence of the growth rate (U) and 
frequency (we) of the two m=1 modes at k=0 
upon the width of the density profile,47 . 2  

WA=10, WF=0, WE=1, n=exp(-0.5(a/4r ) )• 

solved indicates that, at low beta, properties associated 

with k=0 when B =0 are associated with 17=k+mBggraz)=0 in 

the case of figure II111. In this case, however, since k(0 

when 17.--.0 there is no implicit constraint on motion of the 

centre of mass of the plasma cross section. The reason for 

the weakness of the m=1 kink mode when 17..0 everywhere and 

the plasma is cold- and tenuous near the wall lies in the 

characteristic of the perturbation in this limit of leaving 

the direction of the magnetic field unaltered. This feature 

causes neighbouring plasma cross sections not to interact with 

one another so that, again, the centre of mass of each must 

remain fixed and the kink mode is subdued. 

Resonant surface effects must again be considered when 

)0(042B8/(rBz ) is a function of radius. A range of values 

of k now exists for which 7=0 at some radius within the 

plasma. As the rotational effects considered are, however, 

considerably stronger than the effects of pressure gradient, 

localisation is poor so that the constraints of chapter II 

are readily violated. 
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-0.02 	-0.04 
kr/m 

Figure 11113 - The variation of growth rate (71) and frequency 
wa) of rotationally dominated modes with 
normalised axial wavenumber with:j =0.5 

WE=1, WF=0,/ti =0.01/(0.254-a
2
), 

n=exp(-0.5(a/0.3)2). 

aY.The m=1 'wobbling' mode. 
b) The m=1 'kink' mode. 

Figure 11113 employs the Lorentzian profile ofilused 

in section 3 for the study of Suydam modes. (0.00891<0.04). 

Clearly, whilst the unstable range of krx/m is_determined 

largely by the existence of a resonant surface, this range 

extends beyond that of )a in both limits for all the m numbers 

shown. Clearly, these excursions from resonant k values are 

less than those of figure III11 displaying the stabilising 

influence of magnetic shear in demanding energy to bend the 

field lines. 

The most unstable mode pitch (k x/m) occurs with a 

resonant surface much closer to the wall than in figure III1. 
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Figure 11114 - Eigenfunctions for the m=1 modes of figure 
11113. 
a)'wobbling'mode with kr /m=-0.02. 
b)1Kink.  mode vith kr,./mr250.055. 
Broken lines denote the resonant surfaces. 

As the centrifugal force at a particular radius depends on 

r for a given rotation frequency, ug/r, this tendency for 

the most unstable pitch to decrease is qualitatively explained. 

Thus, as rotation succeeds pressure gradient as the dominant 

driving force for instabilities, so the most unstable 

resonant surface occurs at larger radius. 

The m=1 mode merits further discussion. Figure 11113 

shows that, whilst the wobbling mode dominates the kink 

mode near the most unstable k number, the difference in . 

growth rate is slight. The two types of eigenfunction con-

cerned are portrayed in figure 11114 and clearly display none 

of the localisation to the resonant surface seen in figure 

1116. At k=0, the kink-type mode dominates, indicating the 

influence of plasma-wall interaction. Equation 11112 shows 

that, in this limit, the wall current is proportional to Be. 

The manner in which the growth rate increases as the magnitude 

of, is reduced is displayed in figure 11115. From this, we 

conclude that, for this example, the wall interaction 

allowing the kink-type mode derives nrinciply from the broad 

equilibrium plasma density distribution employed.(see fig.III12) 
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Figure 11115 - The dependence of growth rate,', and frequency, 
Wit , on the magnitude of B0  for the k=0, m=1, 
kink-type mode. 
WF=0, WE=1, W4=10, f3 =0, n=exp(-0.5(a/0.3)2), 

p=0((0.01/(0.25+a2) ). 

Figure 11116 employs narrower density and pitch profiles. 

Althoughywall  is less than that for figure 11113, the 

greater centralisation of the plasma mass has produced the 

most unstable resonant surface much closer to the axis. In 

addition, the m=1, k=0 instability has a considerably 

reduced growth rate due to the smaller plasma-wall interaction. 

Comparison of figures 11116 and 11117 reveals the 

distinctly curious effect of including FLR (WF). Whereas, 

near the large Iki cut-offs of the m >1 spectra, gyro-viscous 

stabilisation is plainly evident, in the vicinity of the 

spectral peak of m=2, larger growth rate has arisen. This 

phenomenon will be discussed later. The contribution of beta 

may be seen by zomparing figures 11117 and 11118. Larger Bz  

and hence increased gyro-frequency caused by finite beta 

reduces the destabilising influence that the FLR appears to 

have generated in figure 11118. 

The two m=1 modes behave differently under the influences 

of and WF  so that the window of dominance of the wobbling 

mode varies considerably as a result. Finite beta is seen 

to encourage the kink-type mode whereas the wobbling mode, 

that possesses the more complicated eigenfunction containing 
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-0'02 kr -0.04 
x/Tn 

Figure 11116 - Axial wavenumber dependence of the growth rate 
of rotational modes. W

E ' =1 WA 	' 
=10 f =0.5, 

n=exp(-0.5(a/0.14)),)U =0.004/(0.1+a'). 
a and b denote dominance of wobbling and 
kink-type m=1 modes respectively in the 
regions indicated. 

-0.02 	-0.04 k rx/m 
Figure 11117 - Growth rate spectrum with FLR included 

(WF=0.04) and other parameters as in fig. 11116. 
The window of dominance of the m=1 wobbling 
mode is indicated. 

-0.02 krx/m  -0.04 

.Figure 11118 - Growth rate spectrum with 13=0 and other 
parameters as in figure 11117. The window of 
dominance of the m=1 wobbling mode is indicated. 
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the larger derivatives, is readily.stabilised by increased WF. 

Temperature increases thus cause the wobbling mode to be less 

important than the kink. Additional computations have 

revealed that reduction im electric rotation (WE) leads to 

kink mode dominance so that, as WE  falls to zero, the spectrum 

of figure III1 finally results. 

An explanation for the peculiar effect of FLR on the 

rotational modes may be gained from figure 11119. As WF  

rises, the Hall term in equation 1129 gives an increasing 

contribution to the net plasma rotation. When WE> 0, this 

contribution augments the ExB rotation and vice-versa. 

Thus, with WE=0.5, the increased rotation due to the initial 

rise in WF causes destabilisation. Further increase causes 

gyro-viscous stabilisation to dominate so that cut-off results. 

Rapid stabilisation when WE=-0.5 is explicable since rotation 

decreases and gyro-viscosity increases as WF  rises. The m=1 

mode in the diagram is of the kink type. As the effect of 

0.4 

02 
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1' 
02 

  

0.1 02 WF 

0.3 	0 0.04 
WF  

Figure 11119 - FLR stabilisation of rotational instability 
. 	=0:5, W

A=10, krim=-0.028,"=0.01/(0.25+a ), 

n=exp(-0.5(a/0.5) ). a) WE=0.5, b) WE=-0.5. 
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gyro-viscosity is greater in the eigenvalue equation, Ill for 

larger dg/dr, the peak growth rate for the wobbling mode 

occurs at smaller W
F 

than for the much smoother kink mode. 

Nearer marginal stability, the destabilising effect of any 

rotation present is, by definition, small so that the peak 

growth rate occurs at a smaller WF 
as, for example, the large 

lk)cut-off of figure 11116 is approached. Thus, the effect 

• of FLR in figure 11117 of stabilising at large /kJ , but 

increasing growth rate at smaller Iki is readily explained. 

The very mild influence of FLR on the m=1 kink mode, 

discussed above, is emphasised by figure 11119. Figure 11120 

employs a profile of ion temperature with a steep gradient in 

the region of the resonant surface. Whilst this has only 

minor significance for the m)1 instabilities, the dependence 

of the m=1 mode growth rate on WF  is considerably altered. 

Even for the very large ion temperatures (WF) considered, 

no cut-off is apparent. Observe that no peaking phenomenon 

occurs at small W . This suggests that the roles of rotation 

04.  
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Figure 11120 - The effect of an ion temperature profile on 
figure 11119. 

T.16ocexp(-50a
4), W =0.5. 
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and gyro-viscosity have been reversed at small WF  and that the 

two effects tend to cancel at high ion temperatures. Such an 

extreme sensitivity to profile indicates the caution required 

when attempting to apply numerical results of this type in a 

qualitative way to any real plasma. 

As the rotation included is such a strong destabilising 

influence, the temperatures concerned are very large. In 

order to gain some estimate, consider B = 1T, n = 10
19m-3, 

rx 
= 0.3m as for figure 1114. This indicates that the m=2 

mode is stabilised at Tiiv1OkeV. As modern devices operate 

at considerably lower temperatures, the influence of a large 

ExB rotation of positive sign might easily become more 

dangerous as the ion temperature is raised. 

Finally, in this section, we consider the effect of 

varying the electric rotation, WE. WE
=0 corresponds to 

the Suydam limit discussed extensively in section 3. As 

mentioned above, reduction in WE  causes the kink-type m=1 

mode to dominate the wobbling mode. Figure 11121 portrays 

the dependence of growth rate on WE 
when FLR is included. 

WE 
Figure 11121 - The dependence of growth rate upon ExB rotation 

. 	when FLR is included. WA=10,P =0.5,WF=0.01, 

krx/m=-0.03, n=exg-0.5(a/0.14)2), 

= 0.01/(0.25+a2). 
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In its absence, of course, such a diagram would be symmetric 

about W
E=O. Inclusion of FLR makes the plot appear symmetric 

about WE=-0.2. At this point, equation 1124 yields A1=1.04 

which agrees with the A1=1 prediction of chapter II within 

the limits of the numerical error of the computation. The 

diagram emphasises the relative insensitivity of the m=1 

mode to rotational destabilisation compared with m :Y1 modes. 

5) Heat Flux Modes.  

As heat fluxes entered the problem via peculiar cross-

effects in the stress tensor rather than via an energy 

equation, their influence cannot be readily understood.. 

Previously, in section 3, the effects of the Righi-Leduc 

flux were considered; here we consider the role of axial heat 

flow, ei. Recall that this involves only the flux of gyration 

(perpendicular) energy. 

The study of the effects of q
z allows investigation of 

the second term of A4 in equation 1127. This could not be 

adequately described by the localised theory of chapter II 

as its magnitude was severely limited by the constraints of 

that theory. The main features of the results discussed 

below also apply to the effects of dezi/dr and to a large 

extent to those of du
z/dr as well; these are the other 

contributions to the relevant term of A4. 

Figure 11122 displays the effect of the parameter W
QZ 

on the growth rate for both directions of axial heat flow. 

At large W
qz'  the main effect of this parameter is to allow 

the function F of the eigenvalue equaticin (I11) to vanish 

within the plasma even when the growth rate is non zero. 

Thus, including the terms of immediate interest, F=0 implies: 
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—WQZ (cll.< 0) 	 WQZ cL >0) 

Figure 11122 - The dependence of growth rate upon the axial 
flux of the ion energy associated with thermal 
velocity perpendicular to the magnetic field. 
The right hand half concerns le in the

i 
 positive 

z direction and the left hand Ralf, c -  
oppositely directed. Solid lines relRte. to 
W =0 (no FLR), broken lines have WF=0.03. 
FF=0.5, WA=10, kym=-0.03, 

n=exp(-0.5(a/0.3) ),ia =0.01/(0.25+a2) . 
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where q4 i  has been substituted from equation 116 and the 

Righi-Leduc contribution omitted. Since the appropriate choice 

of k will make the right hand side of equation 11113 negative 

for any non-zero q
z , this implies that unstable heat flux 

modes of this type always exist if all k values are allowed. 

Since equation 11113 applies at every point within the plasma, 

it describes a continuum of instabilities, the most unstable 

mode of which is plotted in the large q
z parts of figure 11122. 

Caution must be exercised at this point, however, since the 

vanishing of F within the plasma causes a singularity in the 

eigenfunction at that point. Since the ordering approximations 

on the scale length of the perturbation break down in such a 

situation, the physical reality of the singular modes at 
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large qZ1  is questionable. 

The importance of investigating the form taken by the 

eigenfunctions is emphasised by a situation of this sort 

wherein the growth rates are independent of changes in mesh 

size, but the modes appear unphysical. Such modes will be 

further discussed in section 7. 

The effects of finite W
F' 
 as indicated by the broken 

lines of figure 11122, are largely accounted for by the 

presence of the diamagnetic term in equation 11113. The 

apparent peculiarity of the m=1 mode in this case arises 

from a change in dominant mode with Wgzar-2.5; this was 

indicated by a frequency change in the results calculated. 

At smaller W
QZ 

the growth rate' curves displayed merge 

into those of the Suydam modes discussed in section 3 . 
Recall from chapter II that the heat flux contribution to A4 

was shown to move the mode localisation away from the 

Figure 11123 - Eigenfunctions for 
the m=2 mode of figure 11122 with 
qz ,CO, WF=0. 
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resonant surface. This effect may be observed in the computed 

eigenfunctions when the Suydam modes are perturbed by small 

amounts of axial heat flux. Figure 11123 demonstrates this 

for the m=2 mode of. figure 11122 with clizi.e 0. As the mode is 

displaced by the increased heat flux, so the sharp gradient 

present becomes steeper until a singularity develops. The 

position of the singularity is given by that of the minimum 

of the (negative) right hand side of equation 11113. This 

clearly indicates that, at this stage, the stress tensor 

contribution of q
z completely dominates the more familiar 

interchange driving force. 

It must be stressed that 	was included in the 

description of the equilibrium without reference to any 

possible mechanism by which it might be produced. Whilst 

this is formally consistent with the derivation of the 

eigenvalue equation, it probably implies a velocity 

distribution function of a type unlikely to occur in practice. 

Thus, the extreme conditions that produce the singular 

instabilities probably correspond to unphysical situations 

and the useful results of this section are largely the 

demonstration of the manner in which Suydam modes are 

perturbed by small amounts of gti. 
6) Pressure Anisotropy. 

Two effects occur as the temperature anisotropy 

parameter, Wm, is increased from zero. At small values, 

the main effect is to increase the magnitude of the 

interchange mode driving force which is proportional to 

j
A (p.,_+k)) The effect upon the growth rate is thus, r  I seett.es 

at small W a general magnification by-l- i 3 	(.411/1/011-)  
m, 	(c1P-L/ctr ) 

evaluated at the resonant surface as seen in figure 11124. 
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0-5 

15 VAi  
Figure 11124 - Dependence of growth ratel lf, upon temperature 

anisotropy, Wm. WA=10, krx/m=-0.031 =0.5, 
n=exp(-0.5(a/0.3)2),./U =0.01/(0.25+a ). 
W
F
=0 on solid lines

, 
W
F
=0.02 on broken lines. 

As the growth rate rises, with increasing Wm, so the width of 

the perturbation about the resonant surface rises due to the 

increased kinetic energy involved. This is displayed in 

figure 11125. Clearly, the destabilisation mechanism displayed 

in figure 11124 is the addition of extra parallel energy to 

the plasma that may be released into the magnetic field 

distortion when the interchange mechanism operates. 

Figure 11125 - Eigenfunctions 
for the W =0 curves of figure 
11124; aA1,1=0, b) Wm=15, 

c) WM=50. 
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Figure 11126 - Growth rate,/r, of the dominant mode versus 
normalised axial wavenumber: We10, Wm=15, 
=0.5, WE=0, n=exp(-0.5(a/0.3) ) 

ig =0.01/(0.25+a2). WF=0 on solid lines, 

WF=0.02 on broken lines. 

At larger values of WM, the effective Alfven speed, Ceff., ..., 2 
PZ - -1- ( P. -- 	( P,,-  Pi  ) ) given by: 	Leff - 

k ji 0 	
speaes 

becomes imaginary so that the growth rates increase due to 

this additional effect. This is the fire-hose instability (35) 

driving mechanism. Note, from the function F of equation I'll 

( 	
aft Se Tr z 

that the terms responsible vary as kf R; ,..2,fr . Thus, 
the axial wavenumber spectrum of figure 11126 displays, at the 

extremes of k where (k+mBA/(rBz
) ) is large within the plasma, 

a significant contribution from the fire-hose instability. 

Observe that, because of the pi.esence of this mode, associated 

with large (k.B) rather than with the presence of a resonant 

surface, no cut-off wavenumber is present for the set of 

parameters used. 

At the low 	end of the spectrum of figure 11126, the 

fire-hose instabilities present result as ( k+mBg/(rBz) ) 2 

becomes large due to the non-cancellation of the BA  contribution. 

As the Suydam term in G of the eigenvalue equation I'll is 

proportional to k2, it makes only a small contribution in this 



• 87 

limit. Thus, as in the case of heat flux modes, the growth 

rate is given by an F=0 dispersion law: 

w,-
W, 	(iz * 4: )2  Cctfr 

cl• 	‘12-  
and is accompanied by singular instabilities of non-physical 

appearance, localised near the origin where the maximum 

growth rate is produced. Clearly, such eigenfunctions 

indicate failure of the analysis in this limit. The fire- 

hose 
	. 

hose instability that dominates the spectrum when K --- ( t 04 GP 
r67 

becomes large at large (-krx/m) ( to the right of figure 

11126 ) differs in this respect. In this case, the Suydam 

term in G makes a significant contribution and the resulting 

instabilities are spread out over the entire plasma radius. 

The inclusion of FLR is indicated by the broken curves 

of figure 11126. Clearly it has little effect on strongly 

unstable firehose modes, but produces considerable growth 

rate reduction of the m71 modes in the interchange-like 

part of the spectrum. The m=1 (kink-type) mode again shows 

very slight succeptibility to FLR effects. 

(Note that figure 11126 differs from figure 17 of reference 

(30). This arises from a program error in the temperature 

anisotropy term of F discovered subsequent to publication). 

7) Some Comments on Singular, F=0, Instabilities.  

In sections 5) and 6) of this chapter, large axial heat 

flow and large temperature anisotropy respectively were shown 

to produce continua of singular modes characterised by F of 

the eigenvalue equation, Ill, vanishing within the plasma. The 

instabilities calculated in these cases corresponded to the 

most unstable. part of the continua and hence related to F 

vanishing as the one particular point within the plasma that 

produced the largest growth rate. Normal mode analysis 
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provides a poor description of the perturbations in situations 

of this sort; in reality, the displacement has a growth rate 
 

varying with radius. Thus, as the instability develops, the 

mode becomes increasingly more localised about the most 

unstable region. As the growth rate is a smooth function 

of radius, the perturbations cannot be expected to reach the 

singular stage, indicated by the normal mode analysis, before 

non-linear limitations become significant. Thus, the unphysical 

nature of the normal modes does not necessarily constitute 

grounds for dismissing the possibility of such instabilities. 

8) Conclusion.  

This chapter has attempted to indicate the effect of 

the plethora of physical parameters, associated with the 

collisionless eigenvalue equation,I11, upon the growth rate 

of instability. The manner in which Suydam modes, highly 

localised near the resonant surface blend into the delocalised 

instabilities associated with other physical influences has 

been discussed in all cases. In particular, the effect of 

axial heat flux in moving the dominant region of the modes, 

eventually producing unphysically singular perturbations has 

been illustrated. This demonstrates the effects of the 

second term of A4 (equation 1127) of chapter II that violated 

the approximations of that theory. 

Of primary significance is the manner in which rotational 

influences interact with interchange modes. The m=1 mode 

is shown to be dominated by its interchange-like (wobbling)• 

second harmonic in certain situations, but its more familiar, 

kink-type first harmonic tends to be the'most important when 

'rotational destabilisation is small. Minimum growth rate is 

found to result for the Roserbluth and Simon(17) special case 
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of rotation, generalised for finite beta effects, for which 

the centre of mass rotation equals half the diamagnetic 
- 	- 

rotation. 

When strong destabilising forces are present, large amounts 

of FLR and hence unreasonably high ion temperatures are 

required to producd significant stabilisation. Thus, we 

conclude that, in general, the finite ion Larmor radius effect 

is only of importance in those equilibria which are very 

close to marginal stability. 



Chapter IV.  

A Numerical Approach to Resistive Instabilities.  

1) Introduction.  

The computational investigation of the solution of Pott's 

collisionless equation, Ill, employed a technique in which the 

eigenfunction was calculated over the whole width of the 

plasma. Once a numerically defined function has been determined 

whose roots can be iterated, the investigation of the dependence 

of the growth rate of an instability upon the parameters of 

the system may be relatively easily performed. 

The most flexible numerical technique employed in linear 

instability theory is clearly that of linearising the 

equations, applying fourier analysis upon the ignorable spatial 

coordinates (A and z in cylindrical, radially dependent . 

equilibria) and investigating the long-time evolution of a 

random perturbation. This has been successfully employed by 

many authors to very detailed models. (Sykes and Wesson (44), 

Killeen (43), Furzer et al.(46) ). The disadvantage of such 

a method is that lengthy computations must be performed for 

each of a series of parameter values, whereas, in the root-

solving scheme, parameter perturbation methods may be used, 

once the growth rate has.been found for one case. By this 

means, when the' method succeeds, the growth rate curve may 

be plotted at small parameter intervals with minimal 

computational effort. 

The collisionless Pott (30) equation is, however, only 

second order and is therefore, numerically a comparatively 

simple case to consider. Increasing the order of the system 

of- perturbation equations, or the number of dimensions upon 



• 

91 

which the equilibrium depends, rapidly increases the size of 

. the determinants to be numerically iterated and hence reduces 

the feasibility of obtaining roots with reasonable computational 

economy. For these reasons, the direct numerical approach was 

only applied to low beta plasma when finite resistivity was 

included. As will be seen below, this produces a fourth order 

set of eigenvalue equations; the sixth order set produced 

when finite beta effects are included is investigated'in 

chapter V using deeper analytical investigation. 

Solving the eigenvalue equations across the full width 

of the plasma allows an investigation into the limits of 

validity of previous analytic theory (discussed at the 

beginning of chapter V ) and indeed, complements these 

results in many ways. Computations of this sort have been 

performed by Wesson (60) for resistive instabilities using a 

sheet pinch model. Wesson's results tend to those of (7) in 

the low resistivity limit where the latter work is most 

accurate. Whilst Wesson's (60) tearing mode eigenfunctions 

have similar characteristics to those displayed in this 

chapter, the present work includes the complications of 

cylindrical geometry which will be seen to be of importance 

in considering the region of breakdown of the analytic (7) 

results. In addition, FLR effects will, of course,be 

considered. 

The work of Furth et al. (47) was not applicable to the 

resistive m=1 mode due to the separate solution of the 

region around the resonant surface ('inner' region near k.B=0) 

and the remainder of the plasma. As inertial terms are 

present everywhere, in the present Work, such solutions are 

possible. 
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The general problem of resistive instabilities has been 

considered by many authors. These, e.g.(47), solve separately 

for the resistive boUndary layer about the resonant surface 

(inner region) and the surrounding hydromagnetic region. rs eg 1 rt f 
Matching is achieved by requiring the identity of11: ---1 s 

, 

 

Lv 	ii 
(calculated from the outer region) with. 	

g 'p LA's  
13/ el% X 	00  

(from the.linnerl region) where x = r - rs  and LR  is the 

resistive scale width of the layer. The computations of 

Furth et al.(47) concentrate upon calculating A from the 

'outer' hydromagnetic region, whereas much of the work of 

other authors evolves around the evaluation of 4.!in  the 'inner' 

region. (Coppi, Greene & Johnson (6) ). A detailed consideration 

of this work is deferred until the beginning of chapter V 

which contains further calculation upon these lines. 

2) The System of Equations.  

As discussed above, the system was reduced to a simultaneous 

pair of second order differential equations by restricting 

consideration to low beta plasma so that the effects of 

compressibility could be neglected. (This will be checked 

below). 

Thus, we use: 

Ohm's Law: 

E i-uA6 —v re) I" 
Incompressibility; 

Conservation of Mass. 

- 0 
Pt . Pressure Equation. 

D
o 	where heat fluxes have been 	IV4 

E' 

U 	
IV2 

where pf. 	
a 

t Ct.%  • 	1V3 

neglected. 
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Momentum Equation.  

D  r 	-Le 	A6 
DE' 	 _ 

where it is the gyro-viscous stress tensor. 

IV, 

Resistivity Variation.  

De 1v6 

Maxwell's Equations:  

v-6 --7.0 	 IV7 

)1°I VA1 
	

IV8 

VAE r ?-13  

In addition, we employ pe  = pi  = p/2. 
t. 
	 IV9 

We again consider the equilibrium to be that of a 

cylindrical plasma bounded by rigid, conducting walls. Steady 

state plasma diffusion arising from the inclusion of 

resistive effects is neglected. This omission is justified 

since the instabilities expected have growth rates dependent 

upon fractional powers of resistivity whereas the diffusion 

velocity of the 'steady state/ varies in proportion toll. 

This point is discussed more fully in chapter V and is 

confirmed by the growth rates computed. 

Using the finite,  Larmor radius parameter,f,we define 

an ordering scheme identical to that used 'by Coppi (31) and 

consistent with that outlined in chapter I, section 3. 

P El 
• 4. 2 

8 	 Fe 	g r  E 	• 	'm.m. 	 I  E.., 
6z 	62 	(32  

tii  d'l, i ir..r 	1 	Ltz  ..1.- f 	1.7-it  

1  
E- 	 il 0 L.L. 

The last ordering appears to contradict the preceeding 

paragraph. However, the effect of the resistivity depends 

• 
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on the scale length of the perturbation which is, in practice, 

shorter than that of the equilibrium. Thus, this last 

ordering arises as a consequence of taking: 

L1.perturbation equilibrium    

for convenience purposes. So long as the Larmor radius 

remains much smaller than the perturbation scale length, 

the theory is still valid. For the tearing mode, Coppi (6) 

has shown that this applies for large FLR effects, the latter 

causing an increase in the width of the perturbation about 

the resonant surface. This point is, again, of deeper 

significance in chapter V where it is fully discussed. 

The validity of the incompressible approximation,IV2, 

may now be investigated. 

• The axial component of IV5 yields to lowest order: 

Vi.az  4/ 	X— fl/q 2  . toL„ e 	glAt 
U2 N E int 

IV1 yields to lowest order the purely collisionless result: 

therefore: 

to 	 aec  ur  — 
vier ae 

tte 	Er 4_ _L  
at 

IV10 

IV11 

1. ( .i..  040) _. -6.1.1 __ 1 ( ?11  2 illac-2 (1) v.tt = ,. 	r-134  k s)r 	i-e ] 	ei32 rt )6 druo 	r 1)13 't  4 
so that: 

I 	gz 	I ( II) Ili —Pi 	ill d.( .: - 	.... , ..... 	1-132 ii- 	tv-62 Yr k  Pli )64 	Ft re k PL i ) 172- 
... 
Since, from IV4(p.t. 1.1.2) 	is constant, both in equilibrium 

I 	2)10 	g' 	jot 
and perturbation, to lowest order, -- ,‘, /3 	so that ig2  :-... 0 

62 	p 	at 
to lowest order. Hence, on consideration of IV3 and IV4, 

V.a vanishes to lowest order inE sconsistent with equation 

IV2. 

The stress tensor t is taken to consist of 
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merely the gyro-viscous terms. Although the parallel viscous 

terms are of a lower order in collision frequpcy than the 

FLR terms, the former make contributions/1# —
B  to the equations 
z 

(due to transforming the tensor from magnetic field to 

cylindrical coordinates) and are hence neglected in this 

work. Further discussion of this appears in chapter V. 

In order to manipulate the equations into a suitable form, 

defin4 = 	and seek perturbations of the form 
I/4 

exp(i(&ot+moi-kz)). 	WI  is defined as Iv' = 1.1.1 	1,49  

IV9 and the A component of IV1 yield respectively: 

	

1 	. 	^ I 

E7 r• lir  ge — or  8,- 	
; co - 4,11,  , / ..., r  

pt 	04 	a. 	z..feer 
Convective perturbations for density, pressure and 

IV12 

resistivity are found from IV3, IV4 and IV6 respectively, 

using which, the z-component of IV1 yields: 

LtAr 	13)1-  4-  cy (km —Br') 	j ; fjz 	o ri 	,ftie r 	 z 	dr 
Using IV8 and IV7, we substitute for 4 to obtain: 

k err 
d 1-3c( gri) 	Or' 	- 	IL 4121i) .1  (1,60) Iv-I 3 

sh Jr err 
;Le.t3  (Off 	fl32  )(wi 	 d P) 

nig& 11/ 	 dr 

rig2 
The momentum equation, IV5 is developed in a manner 

entirely analogous to the collisionless problem, but is here 

not complicated by heat fluxes, finite beta effects 

et cetera , in the 	stress 	tensor. We take the 

z-component of the curl of IV5. Only B
r 

cannot be eliminated 

in terms of 	. The ensuing algebra finally yields: 

:CP{ I 	I  
S 7,_[_..(64.,1-1)(r.1 J •-tovl co,r olf(  21 , 

..1-41 	dr 1 oir 

_I 	

ivi4 z 
dr r 

3  cigt!) 	6; 	wi 62 e! of  ( rldF 
dr 	 cif dr 

where 
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Substitution from IV13 yields: 
ct 	 --at( vz: 
da ' Ja 	it (7, 	ivi5 

6 1  r where  -62  ,a=— r , rx = wall radius. 

= 17%' 016,4s. 	a2-  1 	(tom rr-  )) tivR 	IV16 

3t 	 2 
..(11r.x  tile) Si (W —9.1A+IA/F A avil) 	wok 

'1 I 7.  Tfr4  et az I 	;7 	ota 	 IV1? 

,,[42.(A? GIF .fr(tEs (is )144a(-1-4-a-) (4-1362 )]Vd 42. 	„la 	$41 462. 	1 act 	of3-z 	g  

0116J ( krx clw -ai714/: ;017(,,(R7) wA 
rti 	fs 

g44  114  LC di 	:'t--tr9sz))blig 

iv 18 

where 	, .are profiles of number density, resistivity 

and temperature normalised to unity at a=0 •so that e  t 

l :Ji ll, and Tr i" 
ea 	Alfven frequency. 

WP 7-  KT° 1 ek rxi) 	Ion drift frequency V19 

//to / (A o 	diffusion frequency. 

Equilibrium resistive 

Equation IV13 may be cast into similar form: 

4 (r4'111) ÷62.41-1" titt 	(AA 

with 

43 I/ I 
wR 

	

,6412,0p2 	a 3(t,ji  -)0.41,44 (ti )) 
42- 	71 \ 	Rd Set 

	

N 	ca-1-(axNz) 

IV20 

IV21 

IV22 

IV23 

vtALst3( irx 4, 	(L.„ ... 2 1,4144 	(en ) 
46%ll I  FT Q. Giet 

Equation IV11 gives: 	tie 	— Er 	(41F 	) 
02  

• Equations.  IV15 and IV20 form the basis ofrtchledc:mputational 
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study of this chapter. 

An important property__.  of these equations is now apparent. 

Consider the set of parameters (WA, WF, WR, krx/m, Bg/(aBz) ) 

which produces the results (;,tir,bo). On multiplying 

equations IV15 and IV20 throughout by an arbitrary factor f3  

we see that the parameters (WA, fWF, fWR, fkrx/m, 1/30/(aBz) ) 

produce the results (r, fir,f(1)). As the low resistivity 

limit (low 41R)is of interest in comparison with analytic 

theories, this property is of great utility in ensuring 

that the resulting difference equations (see below) are 

well-conditioned for numerical solution. 

As no artificial gravity to drive an interchange mode 

has been included in the derivation of IV15 and IV20, the 

only instabilities possible are the rippling mode arising 

from convection of resistivity and the tearing mode resulting 

in topology change of the magnetic field. The former will be 

eliminated in the bulk of the investigation by choosing 

constant profiles of T1  andi ; the latter mode will be the 

prime subject of investigation. 

3) Numerical Procedure.  

The numerical problem consists of differencing equations 

IV 15 and IV20 on a discr'ete mesh and constructing a determinant 

from the resulting algebraic equations the zeros of which 

approximate the complex eigenfrequencies,4). This is 

entirely analogous to the investigation of the collisionless 

equation, but is complicated by the fact that the perturbation 

equations constitute a fourth order differential set as opposed 

to the second order one previously considered. 

• 

	

	 At the rigid conducting wall (a=1)1; =I}' =0. Thus, on 

dividing the interval 04 a <1 into N discrete segments and 
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(Wm 
defining the vectors ;t  Cli.t4) and irvt 2.141)11e can setr

N= N=0. 

As in the collisionless case, symmetry considerations 

determine the boundary conditions at the origin: 
ct5 = 	- 1- I 	for m = 1 

CV= p Au 4= p 

5 	1-T 	
for m / 1 

% 	49  
The space step may be defined asS =1/N so that 

differencing IV15 yields: 

FII4 	 r 

	

) sifif 	":41A 
4_,F1  ( 

)00 	.1) 1".• 611/1411  avttrii o iv24 

and IV20 gives: 

6-11(til 	f ir —2.tvt) t 

	

Kt, 	14.4 	 144.1--triA-4) 1-  61,4  tr,, were the vectors F
1n' G 	F2n' G2n,PC n' l'n  denote the 

continuous functions evaluated at the nth. mesh point. In 

fact, in order to minimise computation; these functions were 

evaluated 0.01g on either side of each mesh point, as in the 

collisionless case, so that, for example: 

Ft  pt  31( F; ( '11224) 1- ( K-°*°1 ) 

5
0 N (F1 t 144 0.01 ) 	 —o.oi 

 p4 	 Pi 
analogous with the procedure adopted in chapter III. 

The boundary condition of m=1 at a=0 remains the only 

problem. For this case, differentiate IV15 and IV20 three 

times at a=0 to obtain (analogous to the collisionless case): 

11-F1" lc
III 

t 	— 1" 
t' O 

 1V26 
k 

ltr r2  111 
cr; -  443 	 fir 	= p. 

at a=0 

IV27 

Here we have used the symmetry requirements that each of 

G, F , 0C and),together with their first and second 

derivatives vanish at a=0 when m=1. 

The symmetry of the mode requires that EA 	so 

that differencing at n=0 yields: 

and 



	

FF (; --1; V 51  4" 	— 	= 0 o 	to 	o 4) 
99 

IV28 

e 	612:;_to --4,";"„ IV29 
JJ 

Now F ffila) 	F if( it) — pi/ 	))-. 	), a Fi(g) 
s a. 

and similarly for the other functions, so that IV28 and IV29 

become: 
1±_51, (r 	+. j. 	_ 2.04 
gif -71 	61 	 IV30 

1  16  F2-1  ( —WO 	2.411  tr° -- I V: ;et, •r- 0 	

IV31 

S Lt. 

Equations IV30 and IV31 contain only functions that are 

readily available from the coding required for all points of 

the mesh. 

In order to describe the solution of the difference 

equations define the vector Wn: 

W2nn ; W2n-1 n 

so that equations IV24 and IV25 may be written: 

lt4-1w  ,t giq
43 

 -I
w  ZIA 11-1   +RAcK -w 2"I IV32 

+Rr 	1v33 w 	W +-R  ts/ Apt  21("2 	Xv1 211..4 Ali 2K 	 24t-ta 

where 

R 	=-- - 
F
±s 	R

3 	
6 2toCi 	62' 	2.6 	2 It -1 	114 

12S 	_ Its 	10. 
2h-1 - 	) 	 ►" -1  - S 	576 

F2.64 F1  opt  

Fl 
R 

 3 
2,4 	62t4 	 6 .4 	2:1i 

The coefficients Ri are, in general, quadratic in the 
j 

unknown frequency,(), and complex. For speed of iteration 

it is convenient to calculate and store the three quadratic 

coefficientsforeachRI:.This is the largest storage 
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requirement of the problem, needing 60N words of core. 

The difference equations IV32 and IV33, repeated for all 

n, clearly constitute a quin-diagonal homogeneous matrix 

equation. Hence, the calculation of the eigenfrequencies,60, 

requires the evaluation of the quin-diagonal determinant 

so that its zeros may be found by iteration. The Muller's 

algorithm, coded for the collisionless equation, was used 

for this latter purpose; the evaluation of the determinant 

requires further comment. 

A method of evaluating a quin-diagonal determinant 

for root-solving purposes must be as rapid as possible, since 

many iterations may be required, use as little working storage 

as possible, since large numbers of. mesh points are desirable, 

and yet remain free from gross numerical errors. In order to 

maintain speed, the quin-diagonal structure of the determinant 

must be employed to greatest effect. Consider the determinant: 

a,31  

a2 a2 a2 a2 

 .a1 a1 

2  a3 	5  

1 2 3 4 5 a3  a3  a3  a3  a3  

	

1 2 3 	5 8.4  a4  a4  a4  a4  

NN.N N 
s„ 	s, 
N \ \ 

N■ 1\ 	3 .. k5 

1 2 3 4 5 an_
4
aN4aN_4aN_4aN..4  

1 2 3 4 aN..3aN..3aN_3aN..3  

1 2 3 aN..2aN..2aN..2  

Three methods of evaluation are apparent ( 39, 48, 49): 

a) Diagonals 1 and 2 may be eliminated from row n by 

subtracting multiples of preceeding rows. Thus, row 1 may 
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1 	2 	1 be used to eliminate a2 and a
3' 

row 2 to remove a
3 
and a4 etc. 2 

This leaves an upper triangular matrix whose determinant is 

the product of the diagonal elements. 

b) The matrix may be reduced to (upper) Hessenberg form 

by eliminating diagonal 1. Then we may set WN..2  =1 and 

calculate W
N-5 

to W
1 
in turn by scanning up the rows of the 

3u  
matrix. The determinant is then given by al;v ii-al

4 
 W2+al

5  
W3. 

(see reference 39 page 105). 

c) The elimination of diagonals 1 and 5 reduces the matrix 

to tri-diagonal form. This is the form that resulted in the 

collisionless case and the determinant may be evaluated using 

the same recursion formula (see reference 7 ).  

Since the determinant calculated must approach zero as 

the iteration scheme fort',  converges, one of the diagonal 

elements of the final matrix produced by method a) must tend 

to zero. This clearly means that, close to convergence, the 

quin-diagonal matrix is ill-conditioned for the eliminations 

required in method a). Whilst this could be overcome by 

pivoting (swapping rows) to ensure that the final diagonal 

element tended to zero after elimination, this incurs time-

consuming complexity. 

Method c) is by far the simplest to program and hence the 

most attractive to use. However, if, for some set of paramet-

ers, the matrix were ill-conditioned to the eliminations 

required, pivoting to correct for this would not be possible 

as it would destroy the final tri-diagonal form. 

The second method (b), although more complicated than (c) 

and hence marginally slower, has two advantages. Firstly, 

pivoting may be incorporated if found necessary to improve the 

conditioning towards elimination and secondly, the final 
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recursion involved yields the eigenvector without further 

computation. 

In practice, method c) was used for the bulk of the 

computations as this was found sufficiently accurate when 

scaling (see section 2) of the parameters of the problem 

was employed to produce numerical stability in the determinant 

evaluation. When eigenfunctions were required, method b) was 

employed. The agreement of values of 0 iterated by these 

two methods separately provided a good defence against 

spurious results generated by numerical instability. 

For a given set of parameters, using a mesh of N steps, 

all of the roots of the quin-diagonal matrix were calculated 

by repeated iteration, dividing out known roots from the 

calculated determinant at each evaluation. Since equation 

IV15 is quadratic into and equation IV20 linear, 3(N-1) such 

roots were found for m/1 and 3N 
	

for m=1.(allowing for 

boundary conditions). 

Two possible sources of numerical error exist: 1) Errors 

in the evaluation of the roots of the discrete (differenced) 

problem. 2) Deviation of these roots from those of the 

continuous (differential) problem. The first was checked 

in two ways. Demanding that the iteration scheme calculate 

more roots than were analytically known to exist for the 

discrete problem and observing that the scheme always diverged 

after calculating the correct number, asserted that all roots 

had been effectively divided out. In the limit WF=0 with 

resistivity profiled so that cr A ci sf Ae) =0 in the steady state, 
Furth et al.(7) showed that Re(iW) is only positive when 

Im(iW)=0. Otherwise, complex values of 1W occur in complex 

conjugate pairs. Three types of roots were found to the 
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discrete problem when WF=0=d7/da. These corresponded to the 

two mentioned above plus a selection that were zero to the 

accuracy of the calculations; these became finite when either 

of WI, or di/da was made non-zero. 

As there always exist eigenfunctions describing the 

oscillation of the discretised mesh, there are always roots 

of the determinant that bear no relation to those of the 

differential problem. Eigenfunctions with few nodes, -a 

property that characterises the most unstable, may be 

represented, if only approximately, with a mesh of only 

20 points. It was found that the most unstable eigenfunction, 

that of primary interest, was usually of this type and the 

corresponding root for i0 could be improved by using the 

value calculated from a 20 point mesh as an initial guess 

for a search on one of finer spacing. Typically, meshes 

of 50 or 100 points were finally employed, the roots being 

sought by gradual increases in the number of mesh points. 

The magnitude of the final discrepancy could be estimated only 

by varying  mesh size. k variation 	10% when the mesh 

size was doilbled was considered to constitute a reasonable 

approximation. 

The technique of selecting the one required root from the 

selection of 54 calculated is clearly extremely uneconomical 

with computer time. However, once found, the dependence of 

a root upon the various parameters of the problem could be 

investigated by parameter perturbation methods as discussed 

in section 1. This only broke down when the parameter change 

required to avoid skipping  to an incorrect root became 

unreasonably small; such behavior was characterised by the 

mesh becoming  too coarse to resolve the eigenfunction as the 



parameter concerned was varied. 

4) Comparison of Results with Previous Theory.  

As the numerical approach adopted calculates the eigen-

function across the whole plasma, a comparison of the results 

obtained with those of conventional theory in the absence of 

FLR is required in order to distinguish the influence of the 

latter from effects merely due to the breakdown of the 

approximations of the analytic theory. Explicit growth rates 

could be extracted from published theory by substituting 

values of the logarithmic derivative discontinuity of BI„ 

(000 taken from reference (47) into the expression for the 

growth rate in terms of this quantity found in reference (7). 

The former reference calculates for three separate profiles 

(peaked, rounded and flattened) as a function of the position 

0-003 
- k 54./m 

Figure IV1 - Growth rate scaled by OIR)3/5  versus axial wave- 
number for W

R 
 = 1)-3.2x10-6 	2) 10-51  

3) 3.1x10
_ 
-'
c 
 , 4) 10 . T was calculated from the 

results of Furth et al. (4). m=2, k! =100, 

W=exp(-0.5(a/0.3)2, Bg/(aBz)=5.45x10-3/(11-4a2) 
(peaked profile) 
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of the resonant surface. 

Figure IV1 illustrates the resistive dependence of the 

growth rate for the peaked profile of Furth et al:(47). (Note 

that, in this chapter, the frequency scale is defined by 

W
A=100 units.) The 'theoretical' curve, T, was calculated 

from the expression derived in reference (7): 

If T 	04 	--- °-/CL d (tie ).1 xicpc )tristvilic t,,R15.  o leic 
&fa coz  

a "7' 	66? where r is defined as , 	(....., 	, the scale 
P 	. 	 a a *z. 

length of the magnetic pitch profile. WR  was taken as 

appropriate to curve 1. The computed curves on this diagram 

are scaled by (WR)345  as appropriate to tearing instabilities. 

Hence, according to the analysis, they should all correspond 

to the single 'theoretical' curve. Evidently, as the 

resistivity increases; so the errors in the analysis become 

more severe. Varying krx/m moves the position of the resonant 

surface in the plasma. As the magnitude of this parameter 

increases, so the resonant surface moves in towards the origin. 

In'this region, the analyses break doWn for two reasons. 

Firstly because they neglect curvature in comparison with the 

thickness of the resistive region and secondly since the 

pitch profile peaks at a=c); due to symmetry considerations, 

causing the resistive scale length to diverge. The 

computations indicate that the radius to which these 

discrepancies are important decreases as resistivity falls. 

In figure IV2 we see the behavior of the growth rate of 

the more unstable rounded and flattened profiles of reference 

(47). With the resonant surface distant from the axis 

kr 
(low 1--X1) the computations for the rounded and flattened 

profiles approach more closely the results of analysis. In 

particular, the computations agree well with the cut-off 
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Figure IV2 - Growth rate versus axial wavenumber. 

F: flattened profile, Bto/(aBz) =0.005945/(1+(2a)8)-1  

R: rounded profile, 130/(aBz) =0.0053/(14-(2a)4)1  
P: peaked profile, B/(aB

z) =0.00545/(1+4a2) 
m=2, WR= 10-4, WA= 100, FT, RT. and PT  are the 

corresponding curves calculated from Furth et al.(4) 

1kr 1 taken from reference (47). (Cp, CR, CF  for the peaked, 
`I 
rounded and flattened profiles respectively). From figure IV1, 

we observe that this cut-off does not depend strongly on the 

kr resistivity. Close to the axis (large 
I 
 --x ), the modes are m 

cut off as the resonant surface approaches a=0. The appropriate 

kr values of - Tx are indicated by Ap, AR, AF  respectively. The 

peakes of the curves in figure IV2 occur with resonant surfaces 

( 
near the regions of maximum pitch gradient 	4 	' Act ( h.  ctI3)) 
(indicated by PP' PR' PF) indicating the importance of the 

current profile in driving tearing modes. 

Figure IV3 shows the resistive dependence of the instab-

ilities discussed above. The --x values employed are close 

to those giving the-maximum growth rates in figure IV2. Two 

features are apparent. 1) At small resistivity the curves 

approach the W
R
3/5 law indicated by the broken lines, but 

deviate at larger resistivity; the growth rates pass through 
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0.06 

0.04 

0.02 
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Figure 1V3 - Growth rate versus resistivity for the three 
profiles compared to prediction from Furth et 
al.(4). krx/m values are chosen to approximate 
those at the peaks of the curves in figure 1V2. 

m=2, WA=100, ii=exg-0.5(a/0.3)2). 

maxima and fall as W
R rises further. The analytical formulae 

clearly over-estimate the'growth rate except at very small 

resistivity, .The line "br=100WR  passes cloSe to the peaks; 

recall that the growth rate,lr, must greatly exceed the 

resistive diffusion of the steady state for the theory to 

be valid. To the right of the peaks, therefore, the basis 

of the initial assumptions begins to become suspect. 

2) At WR= 10-4, the value used on figure 1V2, the growth 

rate of the peaked profile mode is close to the maximum of 

its plot, whereas those of the other two profiles lie to the 

left of the peaks. This explains the poorer agreement with 

• the theoretical curves found in figure 1V2 for the peaked 
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profile. 

On passing from flattened to rounded to peaked profile, 

the radial displacement (3) became increasingly localised in 

the region of the resonant surface and hence more difficult 

to compute. This localisation might be explained by the 

decreasing scale length of the profiles at small radius having 

a greater restriction on the magnitude of the perturbation in 

this region so that the resistively generated displacement 

becomes isolated about the resonant surface. 

The behavior of the growth rate peak at various positions 

of the resonant surface is illustrated for the peaked profile 

in figure 11/4. Curve 1 has the resonant surface furthest 

from the axis and hence the peak in Ir(w ) occurs at the 

0.006 

0.003 

4 

Figure 1V4 - Growth rate versus resistivity for the peaked 
profile: 1) krx/m =-0.00289, 2) krx/m=-0.0038 
3) krx/m=-0.0045 . m=2, WA=100, 

n=exp(-0.5(a/0.3)
2
) 
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largest WR. As the surface approaches r=0, so the peak occurs 

at smaller resistivity confirming that deviation from the 

analytic behavior is connected with the singularities 

associated with the axis. 

Figures IV5 and IV6 demonstrate the dependence of the 

instabilities upon azimuthal mode number for the flattened 

01 

0.05- 

0.003 -kr ArL 	0.005 

Figure IV5 - Growth rate versus axial wave number with various 
m numbers for the flattened profile. 
W denotes (B0/(aBz) )wall' 

A denotes (B/(aBz) )axis' 
W
R
=10 

 , A 
4 W =100

'  T=exp(-0.5(a/0.3)2). 

0 

Figure 11/6 - Growth rate versus 
resistivity with various m 
numbers for the flattened 
profile. krx/m=-0.005

'  WA 
 =100, 

n=exp(-0.5(a/0.3)2). 
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profile. The m=1 mode is particularly noteworthy as the theory 

of Furth et al, (2+7)_is-inapplicable -to this case. The resistive 

dependence of this mode confirms that the instability found 

does not exist in the collisionless limit. From the dependence 

of its growth rate upon 
kr  --x , we see that this mode does not 

cut off like the higher m number instabilities until the 

resonant surface comes within the influence of the conducting 

wall. (at kr /m =-0.0015). This behavior was characteristic 

of the m=1 mode in the collisionless limit. Since, in the 

manner of collisionless modes, the instabilities become 

more localised about the resonant surface as the m number 

increases, the m=3 instability became too fine to resolve 

on a 100 point mesh when the resonant surface became 

detached from the effects of the axis. Nevertheless, a 

decrease in growth rate with increasing mode number is 

clearly displayed. 

The eigenfunctions themselves indicate the reason for the 

ultimate failure of the analytic theory. These are portrayed 

in fugures IV7 a,b and c for m=1, 2 and 3 modes respectively. 

On the m=2 and 3 diagrams the region within which large 

deviation occurs from the collisionless relationship 

Br = TgB
z 
is indicated.' As resistivity is reduced, the 

region is seen to become narrower. Inspection shows that, 

. for all resistivity, the 'scale length of the displacement, 

g,is very much less than that of the magnetic field 

perturbation near the resonant surface; this is the basis of 

the 'constant Nr approximation used in the relevant analytic 

theories (see reference ( 7) ). However, at resistivities 

comparable to that causing the maximum growth rate, this 

'inner' region around the resonant surface occupies a 
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0.005 

20 
ct 

10 

+ 	- 

i 

0.5 a-+ 1 

1 1 

j 

7 
t 

I , 

+ 

+ + 

Figure 1V7 - Eigenfunctions with the 

flattened profile, krx/m = -0.005, 

WA '7-- 100, n = exp(-0.5(a/0.5)
2). 

denotes largest resistivity, 

- denotes smallest resistivity. 

0 
c) 
WR=8.2x10

-4 & 4.5x10-5. 
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• significant fraction of the total plasma radius so that neither 

the 'constantte' nor the localisation assumptions of the 

analytic theory may be considered valid. Breakdown of the 

analytic results thus arises from the violation of the 'constant 

Nri and localisation approximations. This leads to the 

incorporation within the resistive layer of regions of 

6 0  
significantly lower magnetic shear — (-- 	than present da 46z  
precisely at the resonant surface so that, on average, a 

smaller driving force is exerted. 

Since reduction of resistivity in the regime far to the 

left of the peak of the 1r(14,) diagram, results in gradients 

of f on an incredibly fine scale as shown in figure IV?, 

the computational method failed as attempts at further 

resistivity reduction-were made. Nevertheless, computation 

using a 100 point mesh managed to reach 1/200 of the peak 

resistivity in one particular case' attempted, for which a 

growth rate dependence of (W
R
)0.22was attained before 

computations ceased. Thus, computation and analysis cannot 

readily be made to describe the same situation, but are 

complementary in their applicability. 

• Figure IV8 shows the behavior of m=2 eigenfunctions as 

the resonant surface moves through the plasma. The negative 

dip inlibeyond the resonant surface clearly increases in size 

as the surface approaches- the wall. Increased localisation 

of the displacement arises due to detachment from the effects 

of the axis and the reduction in inertial effects in the plasma 

of lower density nearer the wall. The magnetic field 

perturbation clearly attains its maximum value when the 

resonant surface is near the position that gives the maximum 

growth rate. 
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Figure IV8 Eigenfunctions with 
the flattened profile. m=2, 

WR=6x10 , weloo, 
T.  = exp(-0.5(a/0.3)2). 

1) krx/m = -0.005 

2) krx/m = -0.00425 

3) krx/m = -0.00311 
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Introducing a temperature profile, with resistivity 

varying as T-3/2 has two main effects. Firstly, the 

resistivity at the resonant surface depends upon its position 

within the plasma and secondly, rippling modes driven by 

resistivity convection at the resonant surface appear. The 

former phenomenon is manifest by an enhancement of the 

 
growth rate at lower kr--x where the resonant *surface occurs m 

in the cooler outer regions of the plasma. Rippling modes 

appear when- the frill set of roots for a small mesh is 

computed in the first stages of the calculations. The 

cluster of roots around the origin, found previouslyl is 

replaced by a collection of further modes; those having 

Re(0/0 occur in pairs with complex conjugate values of 1W as 

required by the form of the equations. 

An interesting example of a case with a flat temperature 

profile cutting off steeply at a certain radius is shown in 

figure IV9. The rapid rise in resistivity at this particular 

radius is intended to model the interface between a confined 

hot plasma column, perhaps defined by limiters, and surrounding 
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0 002 	0.004 0.006 -kr/m 

Figure IV9 - Growth rate versus axial wave-number for the 
flattened profile. m=2, W =100, - 	 A 6 WR=2x10 , n =exp(-0.5(a/0.3)

2  ), 

T,  =0.01+0.495(tanh(10(a+0.5))-tanh(10(a-0.5))), 
-3/2 =a) 	. The broken line arises from the 

tearing mode formula of Furth et al.(7), not 

including di/dr effects. 

cooler regions of low density. The rippling driving force 

enhances the growth rate above that *predicted by the pure 

kr tearing mode formula when, at lowI --x ,the resonant surface lies m  

in the highly resistive region of the plasma. This is perhaps 

a better model of a confined plasma than the flat resistivity 

profiles considered before since less emphasis is 'placed on 

the regions around r=0 where the analysis is inapplicable 

and the resistivity of an experimental plasma is too small 

for resistive modes to exist. Consideration of this last 

example therefore indicates a less pessimistic view of the 

merits of the analytical approach. 

5) The Effect of FLR Terms.  

As discussed in the collisionless lEmit, care must be 

taken, when considering FLR phenomena, to define the steady 

state rotation. In what follows, the steady state electric.  

field (Er) is taken as zero, so that the rotation is given 

by the ion pressure-gradient (see equation IV11 ). Coppi(31) 

showed that, in cartesian geometry, steady state velocity 

merely caused a Doppler shift of the perturbations. In the 
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present, cylindrical, case this is not precisely true due 

to centrifugal effects present in the dri/da term of Gi  
2 	1 

(eq. 1V17) which depends on to rather thanGei . As this does 

not depend on any derivative of lg, which becomes large close 

to the resonant surface, the destabilising effects of rotation 

are of minor importance. 

The first effects of including terms in WF are the changes 

induced into the frequency spectrum of the roots of the 

coarse mesh determinant. Complex conjugate pairs of iti) no 

longer appear and the cluster of modes located around the 

origin take finite frequencies. As will be seen later, 

additional unstable modes arise. Although the removal of the 
■•■ 

0.02 	0.05 
F 

Figure IV10 - Growth rate 1' and frequencybig versusFLR effect. 

WR=2.5x10-3, we loo, krx/m=-0.002, 
E.exp(-0.5(a/0.5)2), 

.E19/(aBz)=0.002(tanh(10(a+0.5))-tanh(10(a-0.5))) 
('tanh' profile of Bn/(aB ). 

The broken curve showOrfor m=2 wheR an electron 
pressure term is omitted. 

0.16 

0.08 

0 
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origin cluster speeds the computationally'lengthy iteration 

for all the roots of the coarse mesh, the proliferation that 

clutters the complex plane complicates the study of the 

parametric dependence of any mode of interest. 

Figure IV10 shows the effect of increasing the FLR 

factor, WF. As will be seen below, the initial rise in 

growth rate is only present when WR  exceeds the value giving 

maximum growth rate. At large WF, no cut-off is produced 

as for collisionless (Suydam ) modes, but a continual growth 

rate reduction arises as FLR effects increase. Such behavior 

was described by Coppi (31). The frequency of oscillation 

contrasts the results of Coppi(31) in this larger resistivity 

regime. Although it peaks after its initial rise and gets 

smaller at larger WF, Coppi's results indicate that it should 

be negative, tending to the diamagnetic rotation frequency as 

F becomes large. From the diagram, FLR stabilisation, as 

might be expected, is more effective on m=2 than on m=1 modes. 

The broken curve of figure IV10 displays the results that 

arise if the electron pressure contribution to the Hall terms 

of equation IV13 is omitted. This omission reproduces the.  

FLR induced cut-off effect that is familiar from collisionless 

results. 

The resistive dependence of the growth rate for various 

values of W
F appears in figure IV11a. Figure IV1lb shows the 

corresponding frequencies of oscillation. Note that computations 

ceased as the latter approached or passed through zero; this 

will be discussed below. 

As FLR increases, figure IV11a indicates a less violent 

dependence of growth rate upon resistivity and a tendency for 

the peak growth rate to occur at larger WR. The former behavior 
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Figure IV11 - The resistive dependence of a) growth rate 
and b) frequency of oscillation using: 
'tanh' profile of B0/(aBz), m=2 krx/m=-0.002, 

WA=100, n=exp(-0.5(a/0.3)2). 

1) WF=0, 2) Wr5.01x10-3  , 3) WF=10-2  , 
4) WF=1.5x10-  , 5) WF=3x10-2. The dashed curve 

of a) shows 'the growth rate of an additional 

mode with WF= 1.5x10
-2. 

is in qualitative accord with Coppi (31) who showed that, in 

the limit of large WF, growth rate varied linearly with 

resistivity. Owing to the behavior of steady state resistive 

diffusion and the very small growth rate when FLR effects 

are large, the validity of the perturbation theory in this 

limit is suspect; neglect of steady state diffusion was based 

upon assuming a growth rate with a fractional power law 

dependence upon resistivity. 

When WR is less than the value producing maximum growth 

rate at WF=0' figure 'Vila indicates that the peaking observed 

on figure IV10 might not appear. This is confirmed by 
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Figure IV12 - Growth ratell and frequencylui.versus the FLR 
effect. WA  = 100, krx/m = -0.002, m = 2 

n=exp(-0.5(a/0.3)2), itanhe profile of Bg/(aBz). 

figure IV12. Note that, in this case, the oscillatory 

frequency peaks at a considerably smaller value than in the 

previous, higher resistivity, case indicating that the 

behavior of the low resistivity limit investigated by Coppi(31) 

is being approached. 

In order to investigate the reason for the failure of 

the computations at resistivities greater than in the WF=O 

situation consider the behavior of the eigenfunctions given 

in figure IV13 relevant to the computations of figure IV12. 

Whilst the effect on B' is slight, minor phase-shifted 

perturbations appearing in the region of the resonant surface, 

has developed considerable modifications. Wave like 

features have appeared in both its real and imaginary 

parts on either side of the resonant surface indicating the 

formation of waves travelling away from the strongly perturbed 

resonant region. Since the amplitude of these waves increases 

as the ion diamagnetic drift, frequency, WF, rises we may infer 
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Figure IV13 - Perturbations a) B' and b) S as a function of 
normalised radius." 1) WF  =0.005, 2) WF 

=0.012. 
 Parameters and profiles of figure IV12. 

that they arise from the ions being phase-delayed by finite 

Larmor radius phenomena with respect to electromagnetic 

effects portrayed by B. An extreme example of this, even 

if in a less valid regime of the theory, is shown in figure 

IV14; this is the form ofY at the termination of computation 

of curve 5 of figure IV11a. 

The dependence.of FLR stabilisation upon the position 

of the resonant surface is shown in figure IV15 which employs 

the flattened profile of Furth et al. (47) discussed in the 
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Figure IV14 - Eigenfunctions for the case: 'tanh' profile of 
. - 2 Bg/(aB ), n=exp(-0.5(a/O.3) ), krxfm =-0.002, . 
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Figure IV15 - Growth rate ,0' , and oscillation frequency,WIl ' 

versus axial wavenumber. m=2, n=exp(-O.5(a/O.3)2), 

WR~1.2X10-4, flattened profile of Bg/{aBz). 

1) \.] F =0, 2 ) ~l F = 1 • 2x 10 - 3 • 
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previous section. Evidently, the stabilisation is greater with 

the resonant surface farther from the axis (smalli lax ) where 

the conventional driving force for the instability is 

weakest. Note that, in this region, where the analytical 

limit is most closely approached, the oscillation frequency 

is negative as predicted by Coppi(31). 

A feature of FLR mentioned above and indicated by the 

broken line on figure IV11a is additional modes introduced. 

The curve on figure IV1la indicates that, under certain 

conditions of 	the extra mode indicated is more unstable 

than the more conventional tearing instability and has a 

growth rate strongly dependent upon resistivity. Numerical 

investigation has revealed that thiS mode depends for its 

existance on the electron pressure contribution to the 

radial induction equation (substituted from Ohm's law) IV13. 

Figure IV16 shows the FLR dependence of the growth rate of 

this mode. The initial rise might be explained by the effects 

0-04- 	 - 0.08 

0.02- 
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o.cii 	WF 

 

  

0.02 
Figure IV16 - Growth rate and oscillation frequency of 

'additional' modes found. 'Flattened' profile of 

Tog/(aBz), m=2, WA=100, W01 	4.2x10 	krx/m=-0.005, 

n=exp(-0.5(a/0.3)2). 
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Figure IV17 - Eigenfunctions of the 'additional' mode from 

figure IV16. 1) W
F
= 2.8x10-3 , 2) W

F
= 10-2 • 

of the induction equation.. terms mentioned above, whilst the 
.. , 

. large \'/
F 

decay no doubt arises from the stabilising influence 

of the ion gyro-viscous ~.tress tensor. The oscillation 

frequency takes the sign ~f the ion diamagnetic rotation 

but is several times larger in magnitude, being of the order 

of the growth rate; the mode.is strongly overstable. 

The eigenfunctions of these instabili.ties are characterised 

by short wavelength oscillations; these are, of course, many 

~imes longer than the mesh siz~.and independent of doubling 

. the number of mesh points used in the 'numerical scheme. 

Their dependence on FLR is sho\,Tn in figure IV17. Note the 
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Figure IV18 - Eigenfunctions of the 'additional' mode using 
-2 vl

F
=10 , the flattened profile, m=2, WA=100, 

-4 - .. 2 
HR=1.2x10 ,n=exp(-0.5(a/0.3)). 

1) krxlm = -0.005, .. 

2) krxlm = --0.0039. 

increase in B' as W
F 

rises and the phase difference between 
r . 

B' and ~. The connection of the modes with the resonant 
r 

surface is apparent in figure IV18 which shows their behavior 

as the axial \'ravenumber is varied.· Closer investigation of 

th~ eigenfunctions reveals that, near the wall, the 

collisionless relationshi~ B' =kSB ,is satisfied. r z \1i thin 

the radius of the resonant surface, however, Br and E are 
r 

mutually phase shifted indicating that resistivity is active 

in this region. The effect of the small resistivity present 

is enhanced by the scale lengths of the perturbation being so 

short compared to those of equilibrium quantities. 

Modes of this sort display the need for computations of 
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the type performed seeking solutions for the eigenfunctions 

across the entire plasma without confining the effects of 

resistivity and FLR to the narrow resonant region. 

6) The Effect of Two Resonant Surfaces. 

Two resonant surfaces may be present within a confined 

plasma when skin-current phenomena occur. This effect was 

modelled by selecting a Gaussian profile of Bg/(aBz), peaked 

off axis. At W
F=0 the instabilities encountered were, as 

expected, far more unstable than in any of the single surface 

calculations previously performed. Figure 1V19 illustrates 

the resistivity dependence of the growth.rates for different 

m numbers. Observe that, for this more unstable profile, 

the curves peak at considerably larger resistivity than 

Figure 1V19 - Growth rate versus resistivity with two resonant 
surfaces present. 
krx/m = -0.0025, WA=100, n=exp(-0.5(a/0.5)2), 

B /(aB z)=0 004(exp(-25(a+0.5)
2)+exp(-25(a-0.5)2) ). 
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Figure IV20 - Eigenfunctions of the m=1 mode from figure IV19 

1) WR= 7x10-5, 2) WR= 2.5x103, 3) WR= 1.25x10-2. 

previously found. The ratio of peak growth rate to WR  at the 

maximum remains approximately constant, however, taking a 

value of the order of 0.01 for all of the cases studied so 

far. 

Figure IV20 shows the behavior of the m=1 eigenfunctions 

as resistivity is varied. Note the manner in which large 

perturbations arise between the two resonant surfaces and 

the way in which these penetrate into the outer regions as 

resistivity rises. In particular, observe that the instability 

loses a node as W
R passes through- its most unstable value. 

Such behavior merely further illustrates the increasing 

inaccuracy of any localisation assumption as resistivity rises. 

The axial wavelength dependence of the m=2 instabilities, 

shown in figure IV21 is explicable in terms of the pitch 

profile used. This has a maximum of 0.004 so.that the curve 

of figure IV21 cuts off before this value. The peak of the 

• 	 diagram occurs with the resonant surfaces close to the radii 



	

0.001 	0.002 
-krx/m  

Figure IV21 - The dependence of growth rate upon axial 
wavenumber when two resonant surfaces are present. 

m=2, WA=100, WR=0.025, 37=exp(-0.5(a/0.5)2), 

BggaBz) = 0.004(exp(-25(a+0.5)2)+exp(-25(a-0.5)2)). 

( 
ci 	g 

of maximum shear jfa a z 	. 

FLR stabilisation of the two resonant surface case occurs 

in a manner exactly analogous to that discussed for the single 

surface situation. 

7) Conclusion. 

The numerical approach to the study of resistive 

instabilities in a low beta cylindrical plasma has revealed 

important results complementing and extending the published 

analytical approach. The effect of the breakdown of the 

localisation and Iconstantyl approximations have been 

illustrated and additional instabilities, generated by FLR 

effects and not detectable by a localised approach have been 

discovered. In the low resistivity limit of this work, the 

localised analytic approach appears accurate to the degree 

0.2 

0.1 

0 0.003 
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required of such a theory. 

As a numerical technique, the iteration of the quin-

diagonal determinant required an order of magnitude more 

computer time than the tri-diagonal one required for the 

computationally simpler collisionless case. This vast increase 

in effort may be ascribed to: 1) the excess diagonals in the 

determinant that required time-consuming elimination, 2) the 

larger dimensions of the determinant arising from the need 

to solve two equations simultaneously, 3) the larger number of 

roots present for a mesh of a given number of points. The 

last point has a two-fold effect. Firstly, more time is 

required as more roots must be found in the initial 

procedure and secondly, the function solved (effectively but not 

explicitly a polynomial) has a complexity in proportion to 

the number of its zeros; each root therefore requires more 

iterations in order for it to be determined to a given 

accuracy. In conclusion, therefore, the numerical method is 

not suitable for extension to higher order systems of 

equations associated with, for example, the inclusion of 

finite beta effects in the calculations. 
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Chapter V.  

Finite Larmor Radius Effects and the Resistive Tearing Mode  

at Non-Zero Beta.  

1) Resistivity and Plasma Instability.  

For many years the model of a confined plasma as a column 

of infinitely conducting fluid surrounded by a (perfectly 

insulating) vacuum region has been known to provide inadequate 

stability criteria. The region between the hot plasma core 

and the cooler outer environment is better modelled using 

a profile of resistivity. Kink-like, non-localised, modes 

are then possible when the resonant surface lies within the 

plasma; the perturbation remains finite at the resonant surface 

owing to the enhanced perturbed resistive diffusion in this 

neighbourhood de-coupling plasma and magnetic field. Such 

instabilities have been called 'tearing modes' by Furth, 

Killeen and Rosenbluth (7). 

Within the region of denser plasma, Furth et al. (7) 

showed that Suydam modes driven by adverse magnetic field 

curvature and localised about the resonant surface extended 

beyond MHD stability limits when finite resistivity effects 

were included. This is because enhanced field diffusion near 

the resonant surface reduces the stabilising influence of the 

magnetic shear. They modelled these instabilities at zero 

beta in rectangular geometry with incompressible plasma using 

a fictitious gravity to represent the destabilising influences 

of field curvature. This procedure has been shown to be valid 

only when the field curvature, and hence the driving force 

for instability, is extremely weak. (Hosking and Marinoff (551. 

• Both interchange and rippling modes, caused by convective 

resistivity perturbation, were shown to have faster growth 
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rates than tearing modes in the low resistivity limit. When 

modelling toroidal devices,_ however, the favourable curvature 

of the toroidal field towards the inside of the torus tends 

to create stability towards interchange effects. Thus, in 

these circumstances it is more relevant to consider the non-

localised resistive-kink (or tearing) instabilities which are 

believed to be less affected by toroidal influences (See 

Shafranov (1), Glasser, Greene and Johnson (50) ). 

When finite beta effects are included in cylindrical 

geometry, thus superceeding the fictitious gravity as the 

interchange driving force, (Coppi, Greene and Johnson (6) ) 

the manner in which the various modes merge into one another 

becomes clear. As a Suydam parameter, D, is increased 

towards its hydromagnetic marginal stability value, the 

growth rate of the resistive interchange mode becomes large 

thus demonstrating that it is a continuation of the infinite 

conductivity interchange. As the tearing mode driving force, 

a , is reduced, at small D, the. growth rate of the instability 

no longer tends to zero with 11 , but becomes asymptotic to the 

A =0 axis. The growth rate changes from the 13/5 behavior, 
characteristic of tearing modes to the 13  behavior that 

characterises interchange modes. In this regime, the instability 

growth rate becomes dependent upon 	compressibility; this 

must be included in the Calculation for consistency with the 

finite-beta, finite-resistivity combination. Wheni1(0, thus 

providing no tearing mode driving force, this finite-beta 

region occurs only when the equilibrium pressure gradient 

is directed into the plasma cylinder. Otherwise, branch- 

point behavior is exhibited, two unstable modes being present 

above a cut-off value ofil. Between cut-off and branch-point, 
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these two modes are overstable, have equal growth rate, but 

oscillation frequencies opposite in sign. (Glasser et al.(50) ). 

Thus, the tearing mode merges with the resistive interchange 

mode when the respective driving forces of each are sufficiently 

small. . 

Coppi (31) modified the cartesian, incompressible, low- 

beta, low-shear .model of Furth et al. (7) to include the 

effects of finite ion Larmor radius (FLR) phenomena using 

equal electron and ion temperatures. He showed that the Hall 

term in Ohm's law and the gyro-viscous contribution to the 

stress tensor are of equal importance in his model. In the 

absence of finite-beta destabilising effects, Coppi found 

that the tearing mode is present for and greater than zero 

just as in the absence of the FLR terms. However, atii?0, the 

growth rate of the modes is reduced by the FLR terms. At 

largeil, FLR becomes insignificant. The mode is overstable 

for all 	, with an oscillation frequency tending to twice the 

ion diamagnetic drift frequency as FLR become6 large. 

The yalidity of Coppi's calculation depends upon the 

ion Larmor "radius being small compared to the scale length of 

the perturbation in the region of the resonant surface. For 

the tearing mode, this is a valid approximation since Coppi 

showed that the width of this region becomes determined by 

FLR as its effect increases. When considering the resistive 

gravitational (modelled interchange) mode, however, Frieman 

et al. (52) showed that,unlike the tearing mode, this develops 

severe spatial oscillations near to the resonant surface, as 

collisional viscosity is reduced, so that the latter 

becomes important before the resistive layer is of the order 

of an ion Larmor radius wide. Thus,- tearing modes inay be 



• 131 

studied freely without the complications of collisional 

viscosity, whereas caution must be exercised when considering 

gravitational or interchange phenomena. 

The form of the traceless stress tensor to be used in a 

fluid-like analysis of collisional plasma phenomena has 

been widely debated. Collisionless expansions of the Vlasov 

equation have shown (eg. Bowers and Haines (28) ) that gyro-

viscous representation of finite ion ',armor radius drift 

phenomena is only valid when the magnetic field curvature is 

small. Liley(9) has shown that an expansion of moment equations 

in 1/( Collision time x ion gyro frequency) = 1/(TA) 

produces parallel viscosity, proportional to 	in lowest 

order, with gyro-viscosity and collisional perpendicular 

viscosity arising in subsequent orders. This result isl of 

courses  only valid so long as the collisional mean free path 

is considerably less than the scale lengths describing the 

plasma equilibrium. Parallel viscous effects, however, depend 

upon the square of the magnetic field curvature ( (B,./B )2 
z 

in cylindrical geometry) and are thus considerably reduced 

in importance in situations where the gyro7viscous model of 

FLR effects may be used. The relevance of parallel viscosity 

to tearing modes has been discussed by Narinoff (52). 

The influence of toroidal curvature upon tearing modes 

has been investigated by Glasser et al. (50) working in non-

orthogonal Hamada coordinates and taking appropriate averages 

around flux surfaces. Such a model is far too complicated to 

envisage the incorporation of FLR phenomena. 

2) Resistive Instability at Finite Beta Including FLR.  

' So far, all of the analysis of resistive instabilities 

involving FLR has been carried out at zero beta, using the 
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gravitational approximation for interchange modes. (Frieman 

et al. (52), Coppi(31) ). A treatment of the problem in the 

manner of Coppi et al. (6), but now including FLR phenomena 

follows. These effects were omitted by reference (6) for 

convenience. 

We shall consider instability of a cylindrical 

plasma, initially in a cylindrically symmetric state. The 

model under consideration is described by the following 

system of equations: 

Momentum Equation 

ag e  (u.v)q T j 	-V. Tir 	 V1 

Ohm's Law  

f A 	= 1 	4' 	( Af3 	vre) 
	

V2 

Energy Equation  

	

e?"(-k (ct 'NA (pet) - (7-0101 	V3 

Conservation of Mass  

v.(cci) 0 

Electro-magnetic Equations  

VAE 	aa 
at 

OM. 

Zig 7 )10d 

where standard notation has been used,r denoting the traceless 

part of the stress tensor ( ref.(30) and eqns. Al2 to A16). 

For simplicity, consider' isotropic resistivity and equal 

electron and ion temperatures so that: 

Pe = Pi = 13/2 
	

v8 

* 	The Ohmic heating term has been included in V3, but plays no 

vk 

V5 

V7 
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role in the final calculation owing to the ordering of plasma 

pressure that will be made later. In order that the stress 

tensor in V1 may be.validly taken to be the collisionless 

FLR viscosity (see Bowers and Haines (28) ), the appropriate 

ordering of the equilibrium quantities in the ion Larmor 

radius must be observed. (28) : 

Define E - 	Ion Larmor radius  
Scale length normal to B 	- 

whereviis the ion thermal velocity and 	is the ion gyro 

frequency. 

Then we require, as described in chapter I, 

(Ai 

T31_1, 	cpE/ 	z 	1 -IL 
2. 

Ordering inf we takeili"e" so that we retain the maximum 

number of physical phenomena in the equations. 

This ordering of equilibrium quantities is primarily to 

ensure that the gyro-viscous stress tensor is an adequate 

representation of the ion drift phenomena that are to be 

considered. In addition, it produces considerable simplifi-

cation in the subsequent calculation. 

The displacement current is omitted from equation V7 

since the instabilities to be studied occur on very slow 

time scales. Ohm's law, equation V2, contains the Hall 

terms which are of the same order as gyro-viscous effects. 

Terms in the heat flux, a , and its divergence are omitted 
• 

throughout, in both the energy equation, V3, and in the stress 

tensorjr. Thermal conductivity will not be considered in this 

work. Such effects transport energy from compressed regions 

and might thus be modelled by reducing the effective specific 

heat ratio0r. 

Heat fluxes in the stress tensor are, in the collisionless 

V9 
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case, (see reference (30) ) finite beta effects and thus will 

be small for tearing modes; such collisionless heat fluxes 

were shown to have only a very small effect on instabilities. 

It will be noted that the incompressible approximation 

has not been made. Incompressibility is only consistent at 

zero beta (Coppi (31)) when resistivity is included and its 

inclusion is a further consequence of considering finite 

plasma pressure effects. Recall, however that in the 

collisionless case (30), perturbations were found to be 

incompressible at high-beta due to the rigid coupling of 

plasma and magnetic field. 

3) The Unperturbed State. 

We consider the problem of a diffuse plasma cylinder 

subjected to a magnetic field (0,130,Bz). All quantities depend 

only on radius,r. In order to demonstrate the reduction to 

the collisionless case (30), equilibrium velocities (0,u9,uz) 

will be included in the first part of the calculation and 

subsequently dropped when specialisation to the tearing mode 

is made. 

When considering resistive instabilities, the unperturbed 

state is not strictly an equilibrium. This may be seen as 

follows: 

The G component of V2 yields: Eg-urBz= ljg  in the 

unperturbed state. Thus, initially, Eg  or ur  must strictly 

be non-zero since jg  is finite in order to provide the 

pressure balance: jgBz=dp/dr from equation V1. Alpo, V5 and 

V2 (omitting Hall terms ) give: Vx(1 - uxB)= - 

'Hence (without equilibrium velocity) : 

are 	721, 
• • • 	 /to 	— 

(neglecting resistivity 

gradients) 
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This describes diffusion on a time scale given by 
LI f
.  

For any perturbation analysis based on this initial state to 

be valid, therefore, much faster timescales must be involved. 

Since the growth rates of resistive instabilities depend 

upon fractional powers of 1 , this condition is satisfied 

for.sufficiently small resistivity and the motion of the 

initial state may be safely neglected. The physical reason 

for this is that the scale lengths of the perturbation, short 

compared to those of equilibrium quantities in the region of 

the resonant surface, cause the perturbed diffusion driving 

the modes to dominate. 

4) Perturbation Analysis I - FLR Expansion. 

Following Coppi (31) and Frieman et al. (52), the 

perturbation expansion proceeds in two stages. The first, 

Larmor radius, expansion occurs as a consequence of the 

ordering necessary for the use of the gyro-viscous stress 

tensor (see section 2). Secondly, the resistive expansion 

arises when specialising to the particular instability 

under study. This procedure is strictly valid so long as the 
•• 

first expansion parameter is very much smaller than the 

second as has been discussed in section 1. 

Since the initial state chosen depends on radius only 

and it changes neglegibly on the timescale of the instabilities 

involved, perturbations proportional to exp(i(tatfmg+kz) ) 

are sought. Perturbed quantities are denoted by primes. 

The Induction Equation. 

Substituting V2 into V5 and using V7 yields: 

	

z, rmiticiA,6 1 	-1 ( 	1- gi. 6 
cr c- 	.... ... 	h  

114.0 - 	A e 	
Pc' 	)41 el 

To second order in g , the z component yields: 

))} 
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t wi g 	 te, (i_ 	\ 
0) ar 	%St-PA an 

(11 
irs.Cyot A(' 	 , 	vio 

	

4423 	152.  r 
(Ignore at present the numbers above each term). 

where: 

co( 	W VI a° .1- (gaz 	= I? imee 
V11 

r13.z 
To third order ini, the radial component yields: 

i°1(a, —67g Go 	 (;r8; tid de.) 

172 deg) 40. 2; 6 /Oil 2 31'  
1 Pc dar,),61174/31? 

„Po r 
The Continuity Equation. 

Equation V4 yields: 

esz if Jrc t 	(Q-u) r 	 V13 
AP 

The Energy Equation. 

Using V13, equation ly yields: 

	

CE- = wl 	 132 	) 
t  it° 	eir 

tb--1)(  I 12-2_90 
dr 

Takingtict T-3/2, we can write the resistivity perturbation: 
4  

I ( 	Li ce C7.4') 	V15 z 

	

 A °  r 
	C I 

The Momentum Equation. 

i) First Order in  

To this order, V1 shows that the r and A components of 

the momentum equation yield: 
a  

-?•• ( 1=7  to 	 and #)-- ( /12  fp) 0 	respectively 
at 2)1.0 	 a® 10 
The first of these expresses the equilibrium pressure balance 

of the plasma. In perturbation, the maintenance of this 

condition eliminates the rapid magnetosonic waves from the 

calculation. 

V12 

V14 
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Thus, for the perturbation: 
17 I  

p f
' 	

0, 
 Po 

vi6 

ii) Second Order in  

To second order, the first order condition is duplicated 

since FLR expansions are essentially in e . However, to 

second order, the FLR stress tensor enters the z component of 

V1. This may be written: 
(7.7-elz  g Jaz 	31, (39 - Jo. 

now C V-17) = 	',tic)  1-  1.±,1"Yrez 

which, upon substituting forXt. andYLvzyields: 

	

C qi 1)2  :; 	E— 4 	t 	611-4r] 

where pi=p/2 has been used and-A. is the ion gyro frequency. 
0 

z  01  p From V7 	• I 	1 
)4 r  

therefore: 	01 (4  Z 	V 412 	gri 61F 
ito 	At- 

(I) trjoitil ;U. 
Hence: 

p4 
•	 

i)detti  iliT*;—i  fir!  It-e–L-1 1 X" fp  

e(Ji r Ir(afsi) 
V17 

• 

Note that in the collisionless limit (30), when the 

pressure perturbation is purely convective, this reduces to 

U I  - I 	dittz  2 ` 

a marked feature of this analysis and plays an important role 

in many of the results obtained. Note that the last pair of 

terms in the numerator arise purely as a finite beta effect. 

Only these remain when equilibrium velocities are neglected 

later in the analysis. 

iii) Third Order in E  . 

To this order, the- off-diagonal components of the stress 

as required. The denominator in V17 is 
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tensor contribute to the r and G components of V1. The 

higher order scalar pressure terms in these components may 

be eliminated between the two equations by taking the z 

component of the curl of equation V1 expressed to third order 

in if . This procedure is lengthy and will be carried out 

separately for the distinct sets of terms involved. 

a) Gyro-Viscous Terms. 

We need to calculate the quantity[liACY•40  

IVA.(7-4 	(1% (7.7.01)0 — 	( iTadr r. r 	_ _ 	r. 

where. 

(17-r )pr  = 

(Y:11):9 z 

d- "M r  T (r 	t.)  f-i-ts/ TT ro  +- 
oar 

7Tric -i- 
jr 

where the result nir  t..7/49.8 has been used. 

Thus: 
tr-rr iff,, 3 el .1.6( 2 	If! ure 	dr. A Cc"1)12.."{7 	61-r2- 

	

itz 6,r 	fat., -r r 
Substitution of the expressions for the components of IT 

from equations Al2 to A16, eliminating 114 using the relation: 

CL 	d (,..„ ) 	kr  I, ' 

eventually yields: 

E v (v-tolz r. 
(r(7-43‘) —Cctu)10((eP )? _ 64Z-0 	(19.Q1  

r2 Girt (4..ft Gir 	— . 	4A 	ri 
1.1. 	 s 	)011 	(ezzL-0  co I y 	) 
r Jr 	a l 	t 2.-IL dr 	r2 	dr 2./2. 

	

friohJi{gcA 	# 1 ( )111 
2- r 	jr 2-71-

) 	
2 11 

• it? d  fr 3ral d  ( P 	 ala ]? 3 	ar 	a-P. dr 

—ir 

• 

vi8 

(continued) 
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14:X fir I 	GGIr 	0Lr(7r)1 i,s. 
duz (1, d ( r  dill—  Lax--J (3,.` 

11-42dr k r3  
grj 	°It: laz )  

of iTz 	( y 	13; r 
1-2. 	( 	at 	-Z-12- 

b) Magnetic Terms. 

We need to evaluate 
	

CFA( 4)1  
V7 gives: 

[. v  A C; d4072 f--67̀1  0 	( § ANAt  az 

JAO [YA (11013L 

	

2;o1Wcrt°'80) 	5'154 

i BIEF liL  -1.-24e44  
V6 gives: 

e  = 4 1! (r(/.) 

Hence, upon substitution and re-arrangement, 

Ct. (JAL =-itto 	 et' ) 
4' !tie 	r3  c7t

1 
 (-E13)  

41v1( r fir  )( Oti  GIP 	62 (g 211z2  6, (3 

) Inertial Terms. 

The remaining terms are: 

C 	( 
A little manupulation involving substituting for 1“ from V18 

yields: 	, 

EvA(e 
e A (roil -{-erwi I01691 

	

Ara 	04 ar 	ar 	r 
(continued) 

V19 
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+c 	fi st 
-st  erw, 4 (nod] -2f14,° 4 (I-4 _I cl 

	

‘Ar 	(.2 Ar 	r cort 	61-jr- ("e?).}  
ePtiad via de  

r-.3-  Tr 
k- [ j'r  t CFI WI) 1- (1(114,111- 2.i i____, (_1 (40] 0-4.) 

4- 	( orc.") ecji 	 frti)i d i-- 2.126 --poi Uji 	(viol
L 1^4  ar 	' 	7,74 	r   
Collecting terms and using V17 to substitute selectively for 

q yields the reduced momentum equation: 

01 r 	cp , 	21Diel 	\ 
0tri CV% cJi — imr wi -ot-r.  (L) j _IT 7._ G.,2_1)-g ( r taiz_1,...i 01  d L )) 

orrLt-A" 

	

, 	,, 	
Okr J 
jo  

- 2i k (4'1(4 M-in4--7°  )4- -g r'''-:-1 (G) --tivicto y- 

	

r 	JP I  7: 	
V20 

_ a 04 (7-2  Pj cv,01 .14_ al 01-3(SP,14, Pr ,vvvir.2-d (1' ))1 

	

Yr( ItJ2. ar — 	 it ,n. 	Ir Ita 

	

0 1 	 1 
.f. (t4,1 1) t441 C V. . Lk) f. ..ef l  ( GJ I  lititi eio 14 k. u) 

	

lea 	t.ds 	" - ---' 	i r 0 

-vAtiriir-1()it(D 4--q-LY.1 -  tni-cur' 
_ i1,7.4 si (lin farzo.(14L-  (i )s- Y2' -if Jr lea 	dr 	2-n- 	13 2  2.n. 

-49 
f (P441--1) 14 kt“4 P 	+  Ai' WI? Azt3  

(t 

	

4--11 	• 	i t I °  
vt-grt  Liz ii rliL)(1,.. 01 1 r3 dji ) —' (1442-1 )  6,..' ) 

	

J9-13 dr 	7,--tc, / 10 art 	dr 	rz 

4.  gi! (I 2.1  0-32, Ili g 2) ) — “1-1'2141,(41. Er C;(11:2  crj1.132  1  ) ) #0 di- 	air 

z 0 
In order to verify V20, we may check the collisionless 

limit in which perturbations are purely convective (28) and 

incompressible. 
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Substitution of these into V20 followed by considerable 

algebraic manipulation yields the result: 

dc.  F ci + 	0 V21 

with: 

c kif r3  W.%2 	(P )4:k Air'? du. 
0 	 dr ia 	dr 

Z 
e(&) --124pq 641Z-0P-1.r-1A e(4.7, 	/ 	Je- Xr-L 

which is the collisionless equation expected upon consideration 

of equation I'll. 

Equations V10, V12, V14, V15, V17 and V20 are thus a 

complete set of equations for the perturbed quantities c , 

(V.01 , Blo plt, BZ and g . Since V14, V15 and V17 are 
explicit expressions, this is a set of three simultaneous 

second order differential equations in the variables 1310  

andY. A sixth order set of equations of this sort cannot 

reasonably be solved numerically across the whole plasma by 

the technique employed on,the second order collisionless 

equation in chapter III since the matrices produced would be 

at least heptadiagonal and hence determinant calculation too 

slow for reasonable speed of iteration. Further analysis 

must therefore be employed using the properties of resistive 

instabilities to reduce the problem to a numerically manageable 

form. 

5) 'Outer' Region Solution. 

The first simplification of the problem to be made is to 

consider initial states in which the plasma velocity is 

neglegible; ie. no greater than the resistive diffusion. (see 

section 3). From equation V2 we observe that this implies the 

ie. 
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existence of a radial equilibrium electric field when the Hall 

term is included. Once_this is realised, u
0 = 0 and uz = 0 may 

be substituted into the perturbation equations. 

For resistivity to produce instability in the plasma, a 

region of large perturbation gradient must occur within the 

plasma to enhance the resistive diffusion above equilibrium 

rates. Outside this region, perturbation gradients are too 

small for resistivity to contribute (see Coppi et al. (6) ).  

From the infinite conductivity equation V21 we see that such 

regions occur when F becomes small. Hence we must order both 

frequencyp,and the FLR term to be small compared to their 

values in collisionless instabilities so that 	is 

sufficiently large near the resonant surface for enhanced 

resistive diffusion of the perturbations to occur. The 

accuracy of this ordering must be estimated from the results 

finally obtained. If this ordering is made, then to lowest 

order in the resistivity we obtain at a point within the plasma 

away from a resonant surface: 

) (-(1,z-r) erq 2 k 27.02.413) v22  
dr 

When discussing the tearing mode, weObserve from Coppi 

et al. (6) that the pressUre gradient term responsible for 

interchange modes must also be a very small quantity. Hence, 

except near T. = 0 (r = r ) the effects of resistivity and 

FLR are neglegible and the perturbation is described by: 

ite  
;17r 

Near k = 0, the full set of perturbation equations must be solved 

and the solutions matched to those of V23. This is the 

standard procedure for all resistive instabilities. 

For the purposes of the tearing mode, it is more convenient 

2. 
V23 
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to work in terms of B' than y in the outer region. 
r. 

Transformation of V23 yields: 

(,,3 V IS= del!  — r 3  el" of ( E. 00)— (1442--4)F 	6,, =0 
;Cr 

The form of the solution to be matched near the singularity 

at It-  = 0 can be found by expanding about r = rs
. Following 

Coppi et al. (6) this takes the form: 

Ort 	Ci  + C2 ( 	bsiki))( X 4 
)1( 

V24 

where c 	4 	
66 Ar r,ri 	r= is 

/AAA,' 

	

c( 	
K 

and c1 and c2  are the arbitrary constants. 

Thus, the solution of the eigenvalue problem is reduced 

to two parts. Firstly, using profiles of the plasma current 

and of the magnetic field, V23 must.be integrated (probably 

numerically) to obtain the ratio c1/c
2 

on either side of r = rs. 

Such computations have been carried out by Rutherford et al.(12). 

.Secondly, the full set of perturbation equations must be solved 

to find the change in c1/c2  as a function of the instability 

growth rate. By observing that: 

r " 	e1,41 rs+  
j (•••-,0 	I 	(---,0 L 6/ dr J rs—e 

this matching may more conveniently be expressed as a matching 

of A , where 	is defined as: f 
cigrif: L. Br' eAr 

the discontinuity in the logarithmic derivative of 	across 
r. 

the resistive or 'inner' region. Only this second task involves 

the physics associated with FLR and resistivity and will be 

subject of the work that follows. 

6) The 'Inner' Region Solution - Discussion. 

The 'inner' region is that region around the resonant 

surface for which tEl = lk+mBg/(rBz
)1 <fik1 . As we assume 

it to be a narrow region compared to equilibrium scale lengths 
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in the plasma, it is consistent to treat equilibrium quantities 

as constants throughout and expand 7 = grsx where x andgare 

defined in section 5. Furth et al. (7) and Coppi et al.(6) 

identify different modes characterised by different orderings 

of the equilibrium parameters. This work will concentrate 

on the tearing ordering which permits analysis to proceed 

sufficiently, when FLR is included, for a tractable numerical 

problem to be defined. The slow interchange ordering wherein 

the mode is driven by pressure gradients within the resistive 

region will be considered briefly in appendix B, but the 

equations that result are less numerically tractable than those 

of Coppi et al. (6), without FLR corrections, for which severe 

numerical problems were encountered on only a simplified 

version. Additional complications arise due to spatial 

oscillation caused by the FLR terms. This effect is discussed 

by Frieman et al. (52) and mentioned in section 1. 

7) Perturbation Analysis II - Tearing Mode Ordering and Expansion. 

Coppi, Greene and Johnson (6) argue that when the growth 

rate of resistive instability is sufficiently small due to 

small resistive layer pressure gradients, the resistive 

thickness becomes less than the resistive skin depth for the 

frequencies concerned and the perturbations become driven by 

influences external to the resistive region. This is the 

'tearing mode' limit first considered by Furth3  Killeen and 

Rosenbluth. (7). These modes are characterised by large 

perturbations in the 'outer' region which undergo rapid 

variations in the resistive layer. Physically,this may be 

pictured as the pinching or filamentation of a current layer 

(eg. Jukes (57) ) and is known to lead to !magnetic islands' 

in the non-linear limit which are thought to be possibly 
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involved in the disruptive instability in toroidal devices. 

( See (59) ). In order to adopt the ordering scheme given in 

Coppi et al. (6) describing these modes, we define the 

following quantities: 

Wit 	j a; 

_L 
E:A)to 

pcige 
_ 

Jr- 	(7(  

rs /Ajto 

Complex frequency of 

the mode. 

Equilibrium resistive 

diffusion frequency. 

Hydromagnetic frequency 

Plasma beta. 

Suydam parameter, 

U‘—.4 violates the 

Suydam criterion. 

( U = — D in the notation of reference (6) ).  

To describe PLR, define 	
rr 1.11 

F 	2rs ..xe otr 
For this to be significant, we clearly need WA,QF. 

The tearing mode ordering from 

?IS 

r
rr 

rs op t 

where 0  is merely an indicator 

reference (6) is thus: 

ti 61 r 
lot/ H 

u ti 
of the relative magnitudes of 

the various terms and might formally be defined by any of the 

above expressions. 

Hence the combined ordering of the various quantities 

in E and 0 is 

i°f52t  

106z 



QR  ^ ( 44; (4 

6 7- La If; - and the dimensionless quantity, 

of tearing modes: 

L R rs 	rc 
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1 ,e  2 
14/  

2
I .1. 	G F - - / - 

2 
r 	n•-• 	ers rs 	r —rs 

	

1453 
	kr- A-for  

r--rs  

Now define the scale length and frequency characteristic 

We shall also need: 

Lp  z 	dplotr) 

L e z e /Clear') 

CL. 	TIP —1 
e 

SAI  0 otj= r  -a icz  Tr 

Scale length of plasma 

pressure. 

Scale length of plasma 

density. 

d (1% 3  of 	gz)) 
r2-(32  oTr 

Thus, in the manner of Coppi et al. (6) we may define 

0 

	

	
normalised or 'stretched'. variables in the 'inner' region: 

Frequencies: 

4 

etc  7: OF log 
Length variable: 

Mode. 

PLR. 

cr_rs) 	rs  

a 

Perturbations: 

; R0 
rs  

are 	 Grit  
; R, 	•■•••■ 

82, a r6  LR 	 62 Ce  (continued) 
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Z 	oz 2 040 4-132) 

Lies I, ■ 
( B

z0  
1  =B'

1 
 =B'

0 =Br1
'  =0 on expansion of the perturbation equations 

 

in 0 to lowest orders). 

The lowest significant order in 0 of the various terms 

in equations V10, V12.and V20 is indicated by the juxtaposed 

numbers. Observe that equation V15 is redundant since it 

occurs in V14, V10 and V12 only to a high order. This 

effects the previously mentioned elimination of the. Ohmic 

heating terms arising principly from the low ordering of 

beta. The relative size. of the perturbed variables to 

lowest significant orders is thus seen to be: 

Br 2N 	B1 N 0 B 
2

1  r2 	r4 	r2 

at 	mt. Drx  ev 	13-1 
Bz 

	

	 I3z  

2. 017, t4 	tAir 	q5.  ue  
rs 	 r —rs  

Selecting the lowest order term from V20 yields: 

AL et' =7.3. 

This the 'constant (4,  (ie.B°)' approximation of Furth et 

al. (7) produced by the formalism of Coppi et al. (6). 

Henceforth, we shall take B1r2  to be a constant in the inner 

region and later show that it is entirely consistent to 

neglect dBL/dr. 

To next significant order, V20 yields: 

$41 	5.1 (v. co' 

4. ILL  P ( rd ) 	liLrx 	f32 gt 

	

/ 	
V25 

4- Lir a d.r. 	
po 	

7° TX 

F4-2. 	
1 3 d( 3z) 

)1t)  " 



II 
Rt 	ko 

t-T F (c-  1/24)) P"--  itte 46  7 "-fi 2-- X 4 

Ct—ttp) 	
u 	ut 	/ — 

d t_ti  7-1-11 	(t 

(ct _ 2,te) 	xct 	2_)c Er ( 6  
cc 

Ralf  V28 

V30 

V29 
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To lowest significant order, V10 yields: 

O; 'IR az ti-z '''' 62 (V't4) 1( 1 -- ---- 	CY 

I. ' 1̂ 6:1.  ( 1 ij 	Cl 4 -  L.61\ +1 twcril
2  
r I  

2“-.4.01, I ? jr A gi: 	7 ) 	a  57.  t 
V12 produces: 

	S'l 
iW(arix---E62)--t 

--..-1149 1-2 ( i'k 	÷ Gr: di/2) 

-)Lf  e il ° I 	Wz Jr 
- ÷ A J 213(4. 

.Ao dr 
(V.u)' and utz  may be substituted into V25 to V27 from 

V14 and V17 respectively. Transformation to the stretched 

variables defined above then yields: 

V26 

V27 

2 

•■• ..••• 

Where superscript prime denotes differentiation with 

respect to X. 

The quantity CI,  is proportional to d(pe )/dr and must 

therefore vanish in a,plasma produced by adiabatic compression 

from an initial homogeneous state; it represents the 

contribution of the specific' entropy profile. Note that, 

apart from the contribution arising via 	CL  prefixes the 

FLR parameter, qp, in V29. The factor of 2 in V30 multiplying 

q
F may be found to arise due to a term involving total pressure 

in the initial equations (rather than just ion pressure) and 

hence this term would be electron-dominated in situations 

where Te 	Ti, not considered here. 

In order to consider matching conditions with the outer 
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0 

al. (6) we take the large X limit of the solution of V28 to 

V30. Equations V28 and V29 are inhomogeneous in D and Z since 

R0 	 2 is independent of X. (R" in V28 may be eliminated from V30). 

Their general solution consists of (see below) a pair of 

exponentially growing modes in space, a pair of decaying modes 

plus a particular integral. The first must be eliminated as 

one pair of boundary conditions, the second can play no 

part in the large X solution and the particular integral 

matches with the outer region. Thus, for matching purposes, 

it suffices to find the latter. 

At large X, derivatives of D and Z will be small in X in 

the particular integral since it neither exponentially grows 

nor decays. 

Taking terms to highest order in X, V29 gives: 

RU — 	(1.--/,F)CV Co..) et. 	 V31 
4 6X 

. V28 maybe written: 

C) X#R211  viio +iz 	 vfx;r4x r-aux—Y-1)  v32  
Substituting for R7  and iZ from V30 and V31 respectively 

yields to highest order in X: 

0 	T eo 	xi° f-RD r  ROu 
4 6 

Hence, at large X: 

n we ey 
X 	I Ci 	i t  6q,  24C 	

) et. 	AP ( 1  °-. if  .— 
	 z  .- .- .- - 

I- X  I.- 

I Z ti Re (Ac  - - - 
. 	 . 

Thus, from V30, substituting for Z and D and integrating yields: 

R1 	X 1-  cLajocl 	 j-f + (Lc( (x1,44 lx1 —x 
a. 6  R:u 

region and to justify the omission of IR''  following Coppi et 

V31 gives: 

where R0 	0 = R* + C
RX has been used and K1 is an arbitrary constant. 
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t-70 

from 'outer' 
solution. 
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Using 16X = x,we find: 

ki,c I  CR 	R: 3? 	) (2-C4  fik  IX/ -A.14.t —13 j• 
te 	•Itil 	 ,C6  

The total R (normalised 131„) is thus: 

go 4 R2  = a I 	070C t CR2E.  XL 

216 

+(tVorjrf(0)(ICIA4(X1—)k) R 

Due to the ordering  of QF, this is the same result as found 

in reference (6) so that, as in that case, we choose 

CR 0  
=R*(1 

p1
6ln(16) so that we find: 

Ro  + 16R2  = R6 + K1x + Wpxlnixl + 	 

Comparison of this with the outer region expansion V24 shows 

that K1 	0 = R*c1  /c2  on matching  the leading  terms. Since the 

particular integral is unique and the large X expansion is 

independent of direction, only the value of K1  differs at the 

opposite boundary. Hence the 'inner' and 'outer' solutions 

match in their respective asymptotic limits if the change in 

K1 across the inner region matches the change in c1/c2 across 

the singularity in the outer region solution. As previously 

stated, this implies that: 

I ote2.1 
0 0( 	x.z>  -c0 

from 'inner' 
solution. 

These results are independent of the inclusion of FLR and 

appear identically in reference (6). 

Note that the value of I?'
0  that had to be chosen for the 

matching  is of the order of 	
. 

16R*0  Hence, from the definition 

of 16  : 

RI A/ 2
R* 0 	0 

and may thus be omitted from the equations consistently. 

Henceforth, therefore, the asterisk will be dropped. 
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Substitution of V29 and V30 into V28 yields: 

I (ft Tr(i k/2-1/) 
Du 
 V 33 

3 
go r— 	x( ("1.-21.F) 	l̀c 	.13  617  

(evetd 10  1.1.F1  

	

il,F((1. 46.TF) 	; core  (ti CLcil 

	

2-7 (t-et,r ) 	15 • 
izi 	c_c_i$,Letr) ) 

t  VLF 	1_7( 2.i ai,t6i.F( f  CLet,F  

1E0 	. 	k 	a 	it-z' (ct-ir) 
TIF I"-   (co  cL eLF) t ef rev 	) 
•f3u 	 LOU (ct -tFr 

8) The Calculation of L - The Mathematical Manipulation. 

In order to calculated as a function of q, equations 

V29 and V33 must be solved simultaneously to determine D and Z 

as functions of the constant,R0. /1 is then determined by 

integrating V30 as: 00 	 6 ga 1 )(-'e°  , A 	i(n 2 )--4X-2 -.1aLIC  Flick V34 
R o a xj 	 Ro  ctRo 

As in Coppi et al. (6) observe that contributions to 

11 are made only by the parts of D and Z anti-symmetric in 

X. Since the coefficients of D and Z in the homogeneous 

parts of equations V29 and V33 are all symmetric in X, the 

required parts of D and Z may be found by taking only the 

anti-symmetric inhomogeneous terms in these equations. Thus 

the J term in V33 may be omitted without effect on the 

value of 11 . 

Equations V29 and V33 take the form: 

Off = ( -rig 	x 3  )R0  -t-(TDDD  

TPI  DZ 	 TPZ "27  D4Z X  TiDtz ) 2  

V35 
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At large X, seek asymptotic forms for D and Z of the type 

exp(-pX
2
/2) from the homogeneous parts of equations V35 and 

V36. Thus to highest order in X, the value of p is found 

152 

v36 

from:  — 2 	-rpo
X

2.  
I X2  -r 

Po 
X I6  Da 

Upon substituting the appropriate values for the 

coefficients, a quadratic equation for p2 results which has 

the following solution: 

— i(t_et ( t -et p I- 'tar) ) 

if Spar 	f i+ 
LIT -- IF (I-Yxr))L 	(1 	1,(q„--ctf( t-6.7)) 

V37 

In the special case, CL=0, wherein the specific entropy 

is constant in space, d(pe/dr = 0, then p2 simplifies to: 

i 	•   Q F 12. 2r 	VA] 	V38 
Ct-tdL 	t- (t-i6r) 

The inclusion of FLR thus splits the four asymptotic 

forms into two distinct pairs. Both in the incompressible 

FLR case of Coppi(31) and the zero FLR, compressible case of 

Coppi, Greene and Johnson(6) only one value for p2 was found. 

This property permitted both of the previous works to achieve 

analytic results by these methods. In the present case, 

expansion will be carried out numerically using either one 

of the two values of p2 available. 
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Physically, of course, i/51 defines a scale length of 

the problem. From the results of Coppi (31) we see that in 

the low beta limit the scale length of the tearing mode becomes 

large and hence the effective p becomes small. As no such 

behavior is exhibited by the p values calculated above, but 

the resulting theory is shown below to agree excellently with 

that of Coppi (31) in the appropriate limit, we conclude 

that the subsequent terms of the series approximations to the 

perturbations may make an exponential contribution so that 

VI? is not necessarily a good measure of the width of the 

'inner'. region. The thickness of this region compared to 

the ion Larrnor radius (ie. the size ofE in the FLR expansion) 

is the most severe restriction of this theory. 

At this point we change independent variable from X to 

G = X171  . Either of the two square roots may be taken in 

V37, but since the solution cannot increase exponentially 

. with X, we take the square root of p2  with positive real 

part. We are free to choose the square root of p having 

positive real part. Thus, from this point onwards, two 

solutions are produced from the two values of p2. The degree 

of agreement between the two.values of 1i calculated from 

these provides a good check on the accuracy of the calculation. 

For convenience, define: 

vi; 	(ct-tk(1- 1/2.7r)) 	 V39 

I 1 t-21,F) 1- j_tit
`y  

1 iv  
 

1,F  
tt- .C 6  (t--etr f p31's 

t/(1112 vL.o 

vio 
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41,tf16 (7,tcLIF 
No/ 113 

te -4 1.  ( —;(1, 	14 ‘f,F.  Ctft- ci,F)  on  

v42 V:r)  

v43 

 

V44 

v45 

 

v46 

• v47 

v48 

ki --a±i  tl (1" (LF)  2 	
)73  r 

v49 

v ;9 z 

V22 

V50 

V51 

Seek solutions for D and Z of the form: 

D = K (G) exp(-G2/2) 

Z = K(G) exp(-G2/2) 

and put R*= Ro exp(G2/2) 

With these subst.itutions, V33 gives: 

vie 	lc() 1- C ki; —26K/0  ) 	 V52 

= (1/Pig 6 I.  VItz 63 ) Rit  ( V tjp (71 	Vh) 	V 10 (7 2  fcz  

(,) t/  pi  102 Etaf 	1/0132  Is̀  (?Z  vtz 	44  totz  1 1r2 



—V I  fli lf (i+V417)  ).1 002 o7 	 
C 	1/22..2) 
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and V29 yields: 

6Z-1) (C2  Oc2" 	(c4 (Z'' 4 1411  f k 7 . Vf0  
-1.(112 -1-<72  Vz2,)kz 

V53 

Here, of course, the superscript primesindicate differentiation 

with respect to G. 

From V53: 

( 4.6 	K.:~2-6(4)-1-1(1,1/210 1-01-42) fez) 
 v54 421:"Z 

(Ir4 .z)  

V37 implies: 
12d ViOn —010)  

V55 1-14,L  
Upon substituting V54 into V52, the left hand side of 

V55 arises by design as the coefficient of G2KD. Hence, this 

process produces the equation: 

	

—von  ( {bbl  —2(7 4 ) 	 v56 

ico[vio vs, 1- AL" (1/2  —V I  1- 	( f-V° )).1 vz _VI 
t."1/10 

f R'63[14,,, + 'A ) 
C ) v6z7  Kz[ Vo: (I-4 )k 2  

,6 (ch  v; voe,  	 j7 ( 1,4z) L 
62-  Oh 	( Icz" —a tc.1 
(1—v,23.2) 

+ 4 v 62 1(2' 

4- V4vioe 	-- V I 	Volt.  
(l-V;%z) °z °"1-(1-14'2 11-42))..1 

Now expand K
D and K in series of Hermite polynomials. 
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Only odd polynomials are required since only the anti-symmetric 

parts of D and Z are being calculated. 

ie. put 	K = 	c H 	(G) D 	m=0 m 2m+1 

K = gg d H 	(G) Z 	m=0 m 2m+1 

The following properties of Hermite polynomials are 

required (16) : 
00 

	

foo  HwiCz) 	(z) e di = 2 11,E 	s "0  

1-1,4 	= IA. 	(z) t Kt+, C=.) 

	

2 	 a 2.  
( etf,,,(z)) 	Q k,, C=.) 

oiz 

H, (z)2 ,114„ C=) 
at= 

From these, in the manner of Johnson et al. (51) we derive: 

,{2.1  e -viz 	Ham, (Z)  
• 

01  it fr4Ar(,„,,) 
42-°/1-2 
	

HA•441-1 	) 

6441- 1) 

5. ;t4-21  Z3 2 	 it sA-1+3) 14  	(2) 

"%PI  64.1+ 

111,1(z ) = K64-01164 	6143/2) 14gi (z)+1  14 (2) 
Ili 2 

0'i, y 
Using these, take 	 (7 of equations 

—co 
V53 and V56 to obtain difference equations for the dm  and cm. 

(ie. equate coefficients of Hm) 

V53 yields: 

	

vzlz ) 	641 1 3) (8411-1) v58 

V°  ‘) 
--J ( V 	 04- L.44/- 3) 

1416  I  go 

Apt.% 	 R 0 (fil 	pr.  

	

1.4 V fto 	vz, li."1  P6444.1) 
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The result of this operation upon V36 is lengthy and will 

not be quoted. However, substitution of V58 into this 

followed by the change of variable: 

Poi 	-k1410L Pc.,+ 	V59 

(which ensures that gamma functions occur only in ratios and 

do not lead to subsequent numerical overflow) yields, after 

substitution from V39 to V51, the following three term 

-Gm oh) 0.4%-i It 1.1 t61.6,--td  
17 	111--tdi1/4 

fittA41-)1"P'ti(tle(P6-)-9 
1 (ti-ci_t r ) 

.14 ci  

	

IYet-tF) 	 (vet. t F ) 
4- att4i1-3710iff 	■(2.-irCt-V2-0)-1-C-(14 

ei (t-td 
(-tf ); (tfci-tF) 

(4.4...tf3) 	i (t -td ( 1+ ict 	pt 	) 5 	 )1 
P 	itt-t F ) 

.Pot.÷t ClAtfOr(px _L 	1 Liv12112:10_ 
Cr 	i (et-td k 

qt. tF  

ift.vo)  

	

at-td( 	(ci.  fetid 	 / j 
r( f36.) 	241 t  _103(4-mii-3)  

(IAA I-1) 	7- 	t-F 
	z  b t 	 i(v-Cotp ) 

recursion formula: 

V60 

O 0 
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Using the expressions in V57 for D and Z, the integrals 

in V34 fort may be evaluated using the properties of Hermite 

polynomials.. This yields: 

A T. 	) 	ri C 	ric "4,1/2)  ,,151. v61 
"i Ito L 	c,i) 

	

,(
14: 	 ecAtAl r'o 	 (01. 

cm may be eliminated from this using V58. Finally, 

after employing the transformation of variable V59, an 

	

expression for 	terms of the D results: 

II 	INA  P CP-1+W)  (in  i 6( 
o .46 	 ) 

	

2.1 pot 0.14), 	a j 2:rj3 (ttvvet3)  .1_ 
iC 	k r VI,F) 	p 
The recursion formula V60, with the boundary conditions 

D-1=0 and D--,0 as m--) 00, plus expression V62 for 44 define 

the numerical problem to be solved below. 

From V37 w 	
__L__ 

e see that r vanishes as q-->0. 

Thus, if we set qF=0 in V60, the coefficients of Dmil  and 

Dm-1 vanish, leaving an explicit expression for Dm. This is, 

as required, identical to.the result obtained by Coppi, Greene 
. • • 

a 	 and Johnson (6) (equation 150 in that work). In this limit 

.._ 	 ..L.  (-16A4114.) 	1 we see that the terms of. the summation are"' -----. 	."1/ 
$.41  1/64-14-/) 	

31 ' N4 2. 
Hence, the partial summation up to finite m, which is all that 

can be computed numerically, converges as 1/m4. This property 

is of importance in what follows. 

9) The Numerical Problem. 

The numerical solution of V60 requires that the sequence, 

Dm be truncated at some large value of m (=M) by setting DM+1
=0; 

the resulting tri-diagonal matrix is then inverted. This 

V62 

approximates the large m boundary requirement of the convergence 
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of D
m
; the degree of error depends on the magnitude of D

M1 

in a hypothetical exact solution to the recursion formula. 

The effect of this error may be seen by considering the 

general solution to the problem: 

Dm = 1S(m) + a2B(m) + P 

whereS(m) and B(m) are complementary functions and P the 

particular integral. Typically, one of the former (say S) will 

converge for large m and the other diverge. Thus, the large 

m boundary condition is, accurately, a2=0. The effect of the 

truncation is thus to make a
2 small, but finite, so that the 

last few Dm calculated will be in serious error due to the 

contribution from B. The precise number of such terms is 

determined by the magnitude of a2  and hence the severity of 

the truncation error. In evaluating 45 from V62, therefore, 

the series was summed until, for some m=M4' M the contributions 

began to diverge. (The equality applies for qF=0). 

Figure V1 shows the variation of the series for /a for a 

particular set of parameters as larger numbers of terms were 

included. Note that even with FLR terms included, the series 

varies linearly with Vm2  for sufficiently large m. A better 

approximation for 11 can be produced by extrapolating a graph 

of this sort to the 1/m-2.40 limit. Numerically, this was 

effected by regressing the last ten partial sums found against-

1/m1  and extrapolating this best fit to 1/M7=0; From figure 

V1 it may be seen that this extrapolation involves only a 3% 

change in the value ofil calculated and is hence of the order 

of the errors involved in the computation; its importance is 

that it removes systematic error enabling the value of M used 

to be altered, whilst varying a parameter, without a 

discontinuity appearing in the calculated value of21 as a 
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0 
1/4,1F—n 

Figure V1 - Asymptotic behavior of the series expansion for LI ; 
m is the number of terms included in the sum. 

function of the parameter changed. Further justification for 

this procedure was found when d was calculated taking the 

other sign in equation V37. As a function of 1/1J, the two 

approximations were found to converge towards one another in 

the 1/m-2- 0 limit as is to be expected from the nature of the 

analysis. 

The success of the computations clearly depends upon the 

convergence of the series for 	. In situations when p is 

very large, the scale length involved in the Hermite expansion 

becomes very short and hence large numbers of terms are 

required. From V37, we see that this is likely to occur 

when q->qF  or qq.1,(1-1/(2V) ). In regimes such as this, 

considerable computational difficulty was experienced and,11 

as large as 1000 was frequently used. Situations more typical 

of the tearing mode, however, were accurately soluble using 

typically 250 terms; excellent agreement to less than 1% was 

found between computations using the two different values of 

P
2
. 

The only remaining constraint on 1 to be satisfied is that 

it should be real. This can be achieved via iteration by 
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varying the real part of the normalised frequency,q, until 

the imaginary part of LI , calculated by the above procedure, 
is reduced to zero. Clearly, this is a problem of root-solving 

a real function (the imaginary part of Q)and was carried out 

using a linear interpolation algorithm, a standard method for 

this purpuse. 

The iteration above serves to compute the function ii(g) 
where g is'the normalised growth rate (-Im(q) ). Computation 

of g(P) at fixed/1=4o, where P is an arbitrary parameter of 

the problem, involves root-solving the complex function&TY150. 

This involves considerably more computational effort than the 

calculation ofil(g), but was attempted, when required, using 

the Muller's algorithm coded for the work of chapter III. 

10) Checks on the Calculation. 

There are two limits in which these calculations can be 

checked with previously published work: 

a) In section 8, it was observed that setting qF=0 

reduced V60 to the results of Coppi et al.(6). The coding 

of the equations was checked by taking this limit and comparing 

the results with those obtained from the explicit formula for 

)1 given in reference (6). Excellent agreement was found, 

but, since this is the limit in which the two values of p2 

coincide, this cannot be used as an indication of the accuracy 

of the finite qF  calculations. 

b) At non-zero FLR, Coppi's calculations (31) apply to 

the 13 	(and hence U=0) limit. Computations were performed 

for a suitable set of parameters taking thep =0 limit; the 

results of this are. shown 'in figure V2. Note the accurate 

agreement between the curves constructed from the present 

calculation and the points derived from Coppi's work.(31). 
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Figure V2 - Comparison of the calculation in the p=0 limit 
with the results of Coppi(6). The circled points 
were calculated from Coppi's work; the bold lines 
arise from the present theory. 

The minute deviations that appear can largely be explained by 

the errors involved in extracting data from the tin. square 

graph in Coppi's (31) figure 3. 

11) Nyquist Techniques - General Comments. 

Glasser, Greene and Johnson (50) investigated their 

dispersion relation, 21(q)=6, using Nyquist plots. This 

involves searching for ranges of unstable values of A by 

mapping the lower half of the complex q plane onto the complex 

Ai plane. Any part of the realia axis enclosed within the 

mapped region will exhibit instability. Numerically, this 

may be attempted by plotting A on the complex plane as q is 

varied along that part of the real axis.in which significant 

effects are likely to occur and outside of which simpler theory 

(eg. (6) ) provides an adequate description. In the case of 

FLR phenomena, we clearly wish to investigate the regime 

x: 
clAtc1F.  

Owing to the existance of singularities in V37 on the 
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real q axis, numerical methods are incapable of producing a 

complete Nyquist plot of the type indicated above. A little 

more information can be numerically extracted from the dispersion 

law by considering only instabilities with a growth rate larger 

than a specified value. This may be accomplished by computing 

the contour below, rather than along, the real q axis. As 

will be seen later, this approach yields diagrams which contain 

various loops in the regime Re(q)4eqp. The diagrams are still 

incomplete, however. The study of the behavior of such loops 

is a useful key to understanding the behavior of the dispersion 

law. Since they expand and contract rapidly as a function of 

the growth rate employed in the plot, maximum and minimum 

growth rates of modes at particular values ofiq can be 

estimated from the potential ability of the loops to intersect 

the rea141 axis. In particular, the existance of a mode at 

a noighbouring parameter value is often indicated by the 

presence of such a loop not intersecting the real a axis. 

If such intersection occurs, either the enclosed or the 

excluded part of the realtiaxis may have the larger growth 

rate. Features of this type are no doubt due to poles in the 

numerically defined dispersion law. 

12) Results of the Computations. 

In order firstly to ensure that the results blend 

continuously into those of (6) in the limit a .' q and 

secondly to gain an overall view of the regime in which FLR 

effects are important, consider the results presented in 

figure Via for a set of parameters giving qF=-10.1. The curve 

indicating the qF=0.situation was derived from equations 

151 and 152 of reference (6) omitting the S parameter of that 

work since it does not arise in the present calculation owing 
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QR= 494s-1  • ( LB= (BQ/(rBz))/d(Bg/(rBz2/dr) 

a) The dependence of A on the normalised growth 

rate,g. FLR is most effective with gi/q14. At 

large g the two curves approach one another as 

required. 

b) The frequency of oscillation corresponding to a). 

to the ordering ofBg/Bz  inf 	Note that, at large q, the 

two curves approach one another. The major effect of the FLR 

terms is observed below qA.,2qF. 

Figure V3b indicates the behavior of the oscillation 

frequency for the same set of parameters. When car  is unimportant, 

at large growth rate,g, the frequency tends to a roughly con-

stant value, small compared to the growth rate. The most 

marked feature is the rapid rise of the frequency towards 2qF  

as g tends to zero. This is the value predicted by Coppi(31) 
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Figure V4 - (g) for B 	
n=10-21m-3, 

s=6T, B0=0.002Bz, 	rs=0.1m. 

a) Lp= 0.1m =LB  ; Le=0.17m. (CL=0) 

b) Lp= -.0.1M =LB  •;. Le=-.0.17M. (CL=O) 

in the limit wherein FLR effects dominate. 

In figure V4, we see the situation, Bz=6T' B=0.002Bz 

n= 1021m-3, m=2, ILpl =0.1m,= ILBI 1 !Let  =0.17m where LB  is 

defined as: 

1 /C1C 	I 
rez 	at the resonant surface. 

For these conditions we find the following parameters: 

Table Vl. 

Temperature in eV QR  in s-1 

100 1533 2.2 

500 360 46.3 

700 266 87.7 

Note the large variation in the scale frequency, Q
R
, due to 

the T-3/2 dependence of the resistivity. The larger variation 

ofIqFlis due to the increase in Larmor radius, as temperature 

rises, superimposed on the resistive decrease in the normalising 
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frequency, QR. When considering FLR effects on resistive modes, 

therefore, we are concerned with a strongly temperature depend-

ent phenomenon (q
F
ocT1.9). In the absence of FLR, q varies 

little with temperature and hence, for clarity, the positions 

of the curves have merely been indicated. 

Comparison of V4a and V4b, with 171) positive and negative 

respectively, reveals very close similarity in this qF  

dominant regime. Both sets of curves cut off at similar 

sets of values of /A instead of exhibiting any of the pressure 

dependent characteristics that appear in the absence of FLR. 

In particular, Coppi et al. (6) found that, at qF=0, therrp<0 

case showed no cut-off LI , whereas the Vr p;>0 case exhibited 

a minimum in 4 (q) below which Glasser et al.(50) later 

showed that an overstable branch cut off at positive . In 

the light of collisionless theory (30), FLR induced cut off 

can be interpreted as 	stabilisation of the pressure 

driven interchange phenomena present when the tearing mode 

driving force,L, is small. Hence, it is analogous to the 

FLR stabilisation of Suydam modes. 

At larger /1 we observe from figure V4 that the reduction 

in the normalised growth rate, g, increases for any given Ad as 

temperature rises. This is due to increased Q
F  • resistivity ' 

variations are accounted for in the frequency normalisation. 

Reduction oft, however, reduces the degree of stabilisation. 

In figure V5 the beta dependence of the cut-offilis 

exhibited. Note that this tends to zero as beta falls to 

zero (the limit of Coppi (31) ). The cut-off of the tearing 

mode by FLR is thus identified as a finite beta effect not 

predicted by earlier theories. In toroidal devices, 

reference (50) indicates that, in the a =0 case, the mode must 
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Figure V5 - Varying the mag-
nitude of the finite beta 
terms included in order to 
study the cut-off . 

Bz
=6T,B=O.002Bz' 

r s  =Lp  =LB  =0.1m1Le=0.17m, 
T =1keV. 

be stabilised by creating sufficient favourable average 

magnetic field curvature to overcome adverse pressure gradient. 

Clearly such constraints may be relaxed if FLR aids the stabil-

isation. Devices with less favourable curvature may be 

considered. 

Increased FLR stabilisation at higher temperatures occurs 

due to increased ion Larmor radius and reduced resistive 

scale length. Breakdown of the theory readily occurs if 

extremely high temperatures are considered since I (the FLR 

expansion parameter) then approaches unity. The difficulties 

associated with identifying the scale length in this calcul-

ation were discussed in section 8. For safety, the 

temperature is kept sufficiently low in this work so that 

the ion Larmor radius is less than the scale length calculated 

• from 1/47. If the FLR ordering fails, then the fluid model 

used provides an inadequate description of the situation so that 
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Figure V6 - L1(g) with 

larger Bo. 

Bz=6T, B= 0.02Bz, n= 1021m-3, 

LB= Lp= -0.1m, L= -0.17m, 

rs= 0.1m. 

particle drift and resonant effects play an important role. 

Figure V6 illustrates the case: Bz= 6T, Bg= 0.02Bz, 

n= 1021m-5 m=2, L =-0.1m =LB, e=-0.17m, rs
=0.1m. These 

conditions yield the parameters: 

Table V2.  

Temperature in eV. QR in s-1. 
q
F
. 

100 3850 -0.86 

500 905 :-.18 

700 661 -35 

The larger Be  has increased the scale frequency, QR, of 

the problem and thus reduced qF. The latter is, however, 

still sufficiently great to.  exceed the growth rate at which 

pressure driven effects occur in the absence of FLR. The 

diagram (V6) shows that, owing to reduced qF  (ie. more 

dominant hydromagnetic effects) the stabilisation at large 

A is considerably reduced, even when the change in scale 

frequencies is taken into account. However the value of the 

cut-offil has been neglegibly changed for an order of 

magnitude alteration in BA. The case ofttp)0 is entirely 

analogous. 

The above computations leave two basic questions 
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unanswered. 1) has.the introduction of finite gyro radius 

effects at finite beta introduced any additional instabilities? 

2) As systems of smaller and smaller' (IF  are considered, how do 

the instabilities found merge into those present in the .q.1„-=0 

limit? The latter is particularly relevant to L <0 situations 

wherein the inclusion of qp  has apparently created a stable 

range of 45 values where none was present in its absence. (see(6)) 

In order to study these questions, the Nyquist technique 

, used by Glasser et.al. (50) and discussed previously, was 

implemented. Figure V7 shows the diagram obtained by 

computing Q  along the real q axis for the parameters of. 

figure Vka (500eV). The numerical method became inaccurate, 

as determined by the disagreement of the Q values determined 

from the different choices of p2, between the two free ends 

of the curve on the diagram, although, in this region, the 

recursion formula was not truncated until the 1001st term. 

The region of breakdown began as q approached q
F, when p

2  began 

to diverge, and ended with q(qF(1-1/(220 ). The diagram for 

the 500eV curve of figure V4b was similar to figure V7 inverted 

about the realil axis. The work of Glasser et al.(50) indicates 

that A and B are joined by a loop to the right at infinity. 

00 
In the absence of FLR these authors showed that the path ATB6 

was followed by curves of this sort; they pass very close to 

the origin on the scales of figure V7. The L <0 case took 

the path Ai4. 

Let us consider the behavior of arg(0) in the region of 

the singularity at q=qF. Denoting 7=q-qF, V60 indicates 

that Dur1,2. V62 then indicates thatamil, henceacCp. 

Thus, if: 	
q-q.F > 0 	area) =-MV8 

cl-c1F  < 0 	arg(1) = 778 
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Figure V7 - Nyquist plot appropriate to : g=0, Bz=6T, Bg=0.002Bz, 

n= 1021m-3, T= 500eV, LB= rs= Lp= 0.1m, Le=0.17m, 

NR= 360.1 s-1) 

independent of the sign of the pressure gradient. Thus, in 

figure V7, the curve becoming asymptotic to OD as q->qy  must 

return from infinity along CO. Since this must eventually join 
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the free end in the lower right hand quadrant, the missing 

segment of the curve must intersect the real axis. This 

indicates the existance of at least one further instability 

for some range of values of LI 

In figure V8, additional modes are sought by moving 

the contour slightly downwards in the complex q plane thus 

mapping out the region in the complex Q  plane having growth 

rate greater than the specified value. The loops in figures 

V8a and V8b enclosing segments -of the real /I axis clearly 

indicate the presence of additional modes. Arrows on 

these plots indicate the direction of motion of the curves as 

the growth rate rises. Note that, although extra instabilities 

have been discovered, the numerical method was still unable 

to close the diagrams. This was achieved in figure V8c 

with a growth rate of g=10 (g=-Im(q) ) indicating that, however 

many instabilities may exist in addition to the main tearing 

mode, all have a normalised growth rate less than 10 for the 

set of parameters used. 

Figure V9 shows the dependence of a on the growth rate 
of the two modes found. It appears that both modes are 

present for all 	In both. the large positive and large 

negative aa limits, the growth rate of each of these new 

modes appears to tend asymptotically to one particular value. 

This behavior portrays an insensitivity of the- growth rate 

to Q , indicating that another driving force prodUces the 

instability. Mathematically, a pole in the function .(q) is 

indicated by each such mode. Since behavior of this sort 

is not indicated by the results of references (6) or (31), the 

possibility of these weakly growing instabilities is associated 

equally with finite beta and with finite ion Larmor radius 
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Figure V8  - Nyquist plots with increased g, demonstrating 

further instabilities. Bz= 6T, BA
= 0.002Bz, 

n = 1021m-3, T = 500eV, L = rs p = L = 0.1m, 

It= 0.17m, (QR= 360.1 s
-1B  
). 

effects. 

The relation between the new modes and figure V4a is 

indicated by figure V10. This diagram concerns the region 

close to the origin in V4a. The 500eV and 700eV tearing mode 

curves lie far above the top of this plot. Broken lines 
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Figure V9 - Q(g) for the 
instabilities found in 
figure v8. 

600 

T= 500eV 
400- 	 46.3 

A 

200- 

0 

200- 

-400- 

-600 

indicate evaluation of the qp=0 formula of reference (6) together 

with a calculation of the branch below the minimum by iteration 

of the same formula, thereby ,varying Re(q) .to .reduce Im(L) to 

zero. Clearly, both in position and in separation, the two 

modes found.; are associated with the minimum in the qe---0 curves. 

Since this is found over such a wide temperature range, a 

connection with the associated physics is strongly implied. 

As the mimima are produced by the interchange mechanism 

beginning to dominate that of the tearing mode, pressure 

gradient effects must be important in driving the new 

instabilities. From Coppi et al.(6) we see that the transition 

region is characterised by: , 
it CA 

on comparison of the relevant terms in the series expansion 

fore in reference (6). Thus, the growth rate of this region 
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is roughly given by: 	1/3 

The range of qF  studied in the above examples satisfies 

cIFI 	• crit so that the former completely dominates . 

pressure-driven effects. If we define 	=0 crit. 0 we 

see that W 
crit.ArT4  (tocrit. IP whilst QNZT. Hence 

the qF  dominant regime will always be a characteristic of 

higher temperatures. 

In order to study the regime of lower qF  and the change-

over to FLR-free characteristics, we now consider systems of 

2 

/ LtiP 
t'l 
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larger Be. This has the effect of increasing QR, the scale 

frequency of the problem due to a larger hydromagnetic 

contribution, whilst leaving beta unaltered. 

Figure V11 describes the Bo= 0.1Bz  situation at 100eV with 

n =10
21

, Lp=LB=Lc0.1m B
z= 6T. For these parameters 

iciF1(cicrit. 	0.91. Figure Vila shows the main tearing mode = 

branch tending to the overstable qF=0 branch at small growth 

rate. The other zero Larmor radius mode to the left of the 

branch point has its counterpart in the instability indicated 

which extends beyond the range of 41 of the qF  =0 result. Thus, 

for certain ranges ofA , this mode is destabilised by the 

introduction of PLR. Consideration of figure V11b, the 

Nyquist plot at g= 0.0135, shows the latter mode as a loop 

expanded around the zero-FLR curve. 

Figure V12a shows the more interesting case of negative 

pressure gradient. In the limit taken, the main mode of this 

diagram has the limiting characteristics of the qF=0 theory, 

namely that it does not cut off at any 40 . The sharp change 

of slope near g = 0.9 is of importance in interpreting the 

transition behavior. A Nyquist plot at g = 0.0135 is shown 

in figure V12b. The loop of the qF=0 theory has again been 

expanded; the main tearing mode of V12a is indicated at the 

intersection ,A, of the curve with the real axis. Since 

the smaller, complete, loop expands rapidly as g is reduced, 

as indicated by the g=0 curve, the behavior of the secondary 

mode at.positive Ais qualitatively that indicated by the 

chain line in -figure V12a although this could not be computed 

exactly. 

The transition from the subdominant to the dominant 

qF  regime may be investigated by studying the behavior of the 
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crossing points, A, B and C ( on figure V12b) as a function 

of Be  and of growth rate, g. Clearly, in the present example, 

as g increases, the loop BC shrinks below the real axis, 

thus producing the maximum in g(d) for the secondary mode, 

hence leaving A to continue as the main mode. 

Figure V13a shows the case with Be= 0.075Bz  for which 

VIFI/qcrit. = 1.1.. Note that this reduction in Be  has passed 

through the transition region (the transition is at Be/Bz  =0.094 

and could not be accurately computed). Observe that the peak 

of the secondary mode occurs at a larger growth rate than in ,  

figure V12a. The corresponding Nyquist plot of figure V13b 

appears similar in form to figure V12b, but, considering V13a, 

we conclude that, as g rises, the loop AC, rather than BC, rises 

above the real L. axis. Since the transition itself must be 

the limit of the behavior both from above and below, we deduce 

that this corresponds to the coincidence of A, B and C at the 

peak of g(ok). From figure V14a (Be= 0.016Bz, 	=3.1qcrit.)  
we observe that the peak of the secondary mode has moved to 

lower g and higher A so that we may diagrammatically envisage 

the transition on the il(g) plot as in figure V15: 
1) 	• 	2) 	3) 

Figure V15 - Sketch showing the transition to large qF  
behavior as qF  increases. 
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Note that the coincidence of A, B and C implies that 

Re(q) for the two modes is also identical at transition. The 

method of calculation fails to resolve the secondary mode for 
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ciFt* crit. I 	
and hence this was not seen in figure V4b. 

that regime, however, its growth rate is very small. 

For 1,?. 0, no such transition phenomenon occurs, since 

the tearing mode cuts off at qF  =0. The secondary mode of 

figure Vila, however, becomes the counterpart of that dis-

cussed fcr L4C 0 as" qF 
rises and, correspondingly, its 

maximum growth rate falls. 

An interesting feature of figure V14 is the mode occurring 

over a small range oft, . (approximately 0.44C(1<1.1). On 

figure V14b this is seen to arise as a loop in the Nyquist 

plot which lies on the real a axis. As q
F 

is increased, this 

loop arises from the kink marked D in figure V12b; this 

feature deforms and passes upwards through the axis. At large 

qF, this produces the.closed loop corresponding to its 

positive L counterpart shown in the lower right-hand quadrant 

of figure V7.. The manner in which a loop of the kind in 

figure V7 is present as the remnant of an instability occurring 

at a different set of parameter values is an important and 

useful feature in the numerical study of Nyquist plots of this 

kind; it is the investigation of the behavior of these as 
.•• 

parameters were varied that led to the discovery of many of 

the additional FLR modes.in this work. Good examples appear 

in the g = 0.02 curve of figure V14b. Tracing this curve 

from the lower left-hand quadrant, evidence of all the modes 

on figure Vika may be found although the curve crosses the 

real& axis only three times. The first crossing is the 

main tearing mode (2 on V14a) and the second and third 

correspond to the mode discussed above. (mode 3).. After the 

cusp-like feature, the dip produces mode 1 at lower g and 

the subsequent loop yields mode 4. 
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Figura V16 - A collection of 
'type 41  instabilities. 

Bz  = 6T, Be= 0.005%, rs= 0.1m, 

Lp= IT= LB= -0.1m, n = 10
21m 3, 

T = 100eV. (QR  = 2211 s-1) 

A 

Mode 4 is readily identified as being of the type seen 

in figure V9; it occurs with IRe(q)I just less than 1q1,1 and 

was previously associated with a pole in A(q). A series of 

computations has revealed the behavior of this mode as a 

function of Be.t.low B as exemplified by the B =0.005B . 	el  

case shown in figure V16, a series of three such modes is found; 

the number increases as Be  is reduced. Comparison of figure 

V16 with figure V9 ( for whose parameters a similar diagram 

results for the negative L case) indicates that the collection 

of modes spreads out in g as Be  is reduced still farther. The 

variation of the scale frequency with Be  must always be 

considered, however. In figures V17 a and b we see the large 

141 asymptotic g and the corresponding unnormalised growth 
rate (in s-1  ) respectively as functions of Be. We see that, 

• . for sufficiently large Be, the growth rate, although rising 
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is calculable at low B0. 
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rapidly, does not exceed the rise of QR  and hence that of the 

main tearing mode. 

Note that, at.small B9
, more than one mode is calculable. 

On the Nyquist diagram, this.is manifested by one or more 

loops following that found at large Bg  before the calculation 

finally fails. The curves drawn indicate the behavior of the 

mode that persists at large Bg. This mode was clearly 

identified by the position of its associated loop on the 

Nyquist plot. 

The Bdependence of the other modes shown in figure V14a 

will now be briefly considered. Mode 1 was considered in the 

discussion of the transition phenomenon where it was shown 

that g decreased as B9 
 was reduced. The main tearing mode 

is designated mode 2. With B below the transitional value, 

the cut-off of this mode rises to that shown in figures V7 and 

V16 as B is reduced. Mode 3 is present as an instability 

for only a short range of Bg values for which its loop on the 

Nyquist diagram (see figure V14b) rises through the real 

axis. The behavior of this loop indicates an interaction 

with the cut-off of the main tearing mode. This may be 

qualitatively understood in terms of figure V18: 

Nyquist Plot,. 	Dispersion Diagram. 

 

g=0 

gives: 

  

     

ReGI 
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Dispersion Diagram. 

Re(1) 

3) 

1m (A) 

g=0 
gives: 

 

 

 

   

5) 
g=0 

gives: 

   

Re(4) 

Figure v18  - Sketch showing the interaction of a 'type 3' mode 
with the main tearing mode. B 

G
falls progressively 

on passing from 1) to 5). 

Stage3)' is analogous to the transition effect discussed 

earlier. In.this case, the definition of main and additional 
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modes below the maximum of the former becomes indistinct. 

The case of positive pressure gradient has less complications 

than.those discussed above for L< 0; this might be expected 

upon inspection of figure Vila in which the approach to the 

qF=0 limit appears self-evident. Modes analogous to types 

1,2 and 4 were found upon performing systematic series of 

computations of the type discussed for the negative pressure 

gradient case. 

Type 1, which was important in the transitional phenomenon, . 

appears to tend to the pressure driven branch of the qF=0 limit: 

g 	 g 
Figure V19 - Sketch illustrating the low qF  limit 

of 'type 1' modes when 17 p >0. 

As Be  was reduced, so that qF 	' 
rose the peak g of this mode 
•  

fellasfartheL.00case. This may be seen in figure V20 

as far as numerical accuracy allows. 

The main tearing mode branch (type 2) moved its cut-off 

value ofilonly very slightly for a factor of ten reduction in 

B . 

Type three modes did.not occur as the requisite loop in 

the Nyquist plot did not have to cross the. reala axis to 

attain its position in figure V7. . 

Nodes of type 4 were evident throughout the B9  variation, 

but with growth rates generally less than before. The variation 

of the largelM asymptotic growth rate of these is indicated 

in figure V21; figure V21b takes into account the BA  dependence 
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Figure V20 - Supplementary, q driven, instabilities with 
positive pressure gradient. Bz= 6T, T = 100eV, 

n = 1021m-31rs  = Lp  = LB= Le= 0.1m. 

of QR. Since the growth rates are lower, computational diffi-

culties are more apparent. These modes appear to approach the 

same low B limit as those in the adverse pressure gradient 

case, but move to smaller growth rates at larger Be. As in 

the previous case, more than one such mode arises when B is 

small. 

The nature and physical origin of the type 4 modes appears 

mysterious. They are characterised by their asymptotic 

approach to a particular growth rate as 	Thus, except 

for a region near/I=0, their growth rate is virtually independent 

of LI . These modes occur with an oscillation frequency just 
less in magnitude than the ion drift frequency (ie. he(qillopl). 
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0.02 
	

0.04 
a) Be  /13z  

b) 0 	0.02 
Be/Bz  

'Figure V21  - The variation of a) normalised and b) un- 
•normalised growth rate with B for some 'type 4,  

.n = 1021m-3. More than one mode is calculable at 

instabilities. Bz=6T, T= 100eV, Lp
=LB=Le=rs=0.1m, 

low Be. 
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From the results given ahove, they have larger growth rate with 

negative pressure gradient, but this is very much less ,than 

than of the main tearing mode except at small positive or at 

negative 

In order to gain some insight into the cause of type 4 

modes, the dependence of their large hal asymptotic growth 
rate upon the three important quantities, resistivity (A1) ' 

FLR (q1)and plasma pressure 	was was investigated. 

Figure V22a portrays the resistive dependence of the 

asymptotic growth rate with Bg= 0.005Bz  and negative pressure 

gradient. At low Be, three modes were calculable, a fourth 

Figure V22 - The result of altering the effect of resistivity 
on a 'type 41 mode. q .1  Spitzerx1FAC Bz=6T, 
Bg= 0.005Bz, n = 10

21
m
-3
, rs= 0.1m, Lp=LB=Le= -0.1m. 

a) The effect on the unnormalised growth rate. 

b) The effect on the oscillation frequency.( Note 
that changes in frequency are a small fraction of 
q
F 

and hence subject to numerical error.) 

being just detectable when the resistivity was reduced by a 

factor of 20. Note that, as resistivity is reduced, there is 
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first a peak and then a sharp drop in growth rate. The latter 

indicates that the mode does not exist in the collisionless 

limit (1 =0) and has an 1A  (04;0C-4;1) dependence at small 

resistivity. The small I ends of the curves shown have O( 
in the range 0.050‘.<0.4 . As OC varies amongst the various 

examples calculated, no precise value can be ascribed to the 

1-1)0 limit. 

The shape of theti(g) curves also varies systematically 

as the resistivity is reduced. This may be seen from the 

followingtableformodeswith- Bo_ 0.005B Z, n = 1021m-3, 

T = 100eV Bz=6T, Lp=LB=Le= -0.1m, rs=0.1m, 

Table V3.  

9 FAG QR s-1 g(g) QRS(g) s
.., 

S(A) 

1 0.01 33.5 2.2 
2 3352 

2 0.018 60.3 2.6 

1 0.013 28.7 4 

1 2 2211 0.02 44.2 4.5 	• 

3 0.015 33.1  5 

1 0.014 20.4 6 

0.5 2 1459 0.024 35 6 

3 • 0.02 29 7 

1 0.028 15.6 18 

2 0.028 15.6 18 
0.1 556 

3 0.027 15.0 23 

4 0.025 13.9 22 

(g) andg(t0 refer to the separation of the two stationary 

points in g(la) that characterise type 4 modes. Thus, as 

1:=11Spitzerx  FAG' 
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resistivity is reduced, the. (g) curve for each mode becomes 

thinner ( Q
R
$(g).becomes smaller ) in s-1  and taller (6(111) 

becomes larger). Hence, in the ri =0 limit, it may reasonably 

be assumed that curves of Q versus gQR  (ie. un-normalised 

growth rate) vanish by collapsing into the 11 axis. 

Figure V22b shows the deviation of the real part of the 

frequency from QF  as a function of/ FAC' 
 The sharp reduction 

of this quantity astr0 indicates that in this limit, q 

approaches qF. Thus, this implies that the type 4 modes 

result from a collisionless oscillation destabilised by 

resistivity. 

In figure V23 the calculable dependence of the growth 

rate a-41=1 upon FLR is shown for a particular type 4 mode. 

For this purpose, qF,•calculated from the parameters stated, 

was multiplied by an arbitrary factor qF 	. Clearly, as 
FAC 

F 	
is reduced, the growth rate of the mode becomes smaller. 

FAC 
Reasonable extrapolation implies that the growth rate tends 

to zero as qF 	tends to zero. 
FAC 

The beta dependence of another such mode appears in 

figure V24. For this purpose, beta was reduced by the factor 

PFAC. Evidently, the existance of type 4 instabilities 

depends on the inclusion of finite beta effects in the 

calculation. 

Figure V23 - The result of 
reducing the effect of FLR 
on a 'type 41 mode. 

q(used) = qF(calculated)xq
FFAC 

for the parameters of figure 
V22. 
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f Alt 

Figure V24 - The result of reducing the effect of beta on a 
'type 41 mode. t (used) = p(calculated)xpFAC 
for the parameters of figure V22. 

13) Discussion and Conclusions. 

The numerical analysis has revealed two regimes of the 

parameter q : a N> a 	and q c= q 	where: -crit. 	F 	crit. 

(Lit- 
r  loar ) 

Removing normalisation, this yields corresponding conditions 

on QF  with respect to -crit. where:  

CP;t • 	(1.cf-a- Qg 	(2. 41(13 (41/1 (4111  ) 

Observe that 
Qcrit. has the ail dependence of the resistive 

interchange mode. The two regimes can thils be physically 

identified. In the first(QA(Icrit.)' the resistive interchange 

contribution to the small limit of the tearing mode is totally 

dominated by the effects of FLR, just as, in the collisionless.  

limit, Suydam modes are stabilised by this effect. Hence, 

since the interchange driving force derives from adverse 

pressure gradient, in this limit of large QF, the computed 

results are independent of U and hence of the sign ofirp. 

The second regime (Q14. 
Qcrit.)  is characterised by the FLR -  

being inadequate to dominate interchange driving forces. Thus, 

pressure gradient effects are important and the results appear 

to merge with published findings (references (50) & (6) ) in 

the qF=0 limit. The existence of the main tearing mode cut-off 

associated with the first regime (0 3,', 0 	) is thus seen --F-' -crit. 

to be independent of beta. Since the pressure gradient effects 
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are unimportant, the cut-off at6 =0 found at 13  =0 by Coppi (31) 

merely rises to larger /A , as seen in figure V5, as beta increases. 

The study of the transition phenomenon that occurs with 

negative pressuregradient at small qF  revealed the existance 

of another mode (type 1) with growth rates that became too 

small to be detected as qF  became larger. This is the analogue 

of the resistive interchange branch, is driven principc6by 

pressure gradient effects and was found to exist for larger 

ranges ofilwhen FLR effects were included. 

Type 4 instabilities, characterised by an asymptotic 

growth rate at large Lol , were found to pervade both regimes 

of q1,. They were shown to depend on the simultaneous inclusion 

of FLR, finite beta and resistivity in the theory. As they 

occur with .q 	qF, they may be viewed as arising from the 

involvement of significant axial velocity perturbation within 

the theory (see equation V17) since, mathematically, they 

154 
arising in equations 

4T-7/0  
undoubtedly arise from terms in 

• 

V60 and V62. From equation V37 we see that, with q 	FI P 

becOmes large and hence the scale length involved in the 

expansion becomes small. Although a larger number of terms 

were required to describe these modes, compared to the main 

tearing modes, this indicates the existance of considerable 

spatial oscillation about the resonant surface. Such a 

behavior, analogous to that of the resistive-g mode (52), might 

render important the effects of collisional viscosity due to 

the possibly severe perturbation derivatives involved; an 

investigation of this is beyond the scope of the present work 

as it requires a complete reformulation of the equations. 

The occurrence of the denominator in q-qF  in equation V37 

implies that the type 4 modes might possibly be described 
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as a form of resistive ion drift instability; the same 

denominator also suggests, however, that a treatment of the 

problem from the basis of kinetic equations might produce 

Landau-type damping of these modes. 

The results presented, pertaining to the stabilisation 

of the main tearing mode, appear encouraging with respect to 

the relaxation of the constraints on favourable average 

curvature required in toroidal devices (cf. (50) ) . On 

the comparatively long time scales required for containment, 

however, the additional modes found on including FLR effects 

could easily prove dangerous. Although these are reduced 

in growth rate by choosing favourable pressure gradient, the 

effect is not so marked as that on the main tearing mode in 

the absence of FLR. The type 4 modes, in particular, have 

greater growth rate than the normal resistive interchange 

branches at small positive or at negative d and, if they 

are not completely stabilised by the possible effects 

mentioned, could become a source of anxiety in future 

containment projects. 
•• 
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Chapter VI.  

Conclusion.  

The collisionless analysis in the first part of this 

thesis served two purposes. Firstly, the well-known stabilising 

nature of the diamagnetic FLR terms was illustrated and, in 

addition, the associated complex eigenfunctions were presented. 

The detailed manner in which the stabilising gyro-viscous 

influence interacted with destabilising Hall rotation 

introduced the possibility of curious effects in the stability 

of confined plasmas as ion temperature rises with improved 

technology. 	Secondly, the influence of the subsidiary FLR 

terms in the stress tensor, namely sheared axial velocity, 

Righi-Leduc heat flow and axial heat flux were included in 

the solutions of the eigenvalue equation presented. The 

sufficient stability criterion of figure II1 provides a 

concise display of the manner in which these additional 

features perturb the stability of localised interchange 

instabilities. Computational solutions in chapter III 

displayed the manner in which the dominance of Suydam modes 

is superceeded by effects due to the additional terms when 

these are present to sufficiently large magnitude. In 

particular, 'singular,  modes of dubious but arguable character 

can be produced by large temperature anisotropy, axial heat 

flux (sheared or unsheared) and sheared axial velocity. 

In chapter IV, the numerical study of a low beta resistive 

system displayed in detail the manner in which the conventional 

analysis of resistive instabilities breaks down when resistivity 

becomes too large. The linear growth rate of the tearing mode 

may not be as large as suspected, on the basis of published 

analysis, for many confinement systems. Inclusion of FLR is 
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seen to ripple the eigenfunctions in an alarming way, requiring 

care to be taken in ensuring that the analysis is consistent 

when these terms are considered. A peciliar new type of 

resistive instability, dependent upon FLR for its existance, 

was also found during these calculations. 

The chief result of the arduous analysis of chapter V was 

that, when the FLR parameter exceeds a critical value, the 

growth rate of the main tearing mode falls to zero at a 

finite value of the matching parameter involved in that 

calculation. This cut-off is insensitive to the local 

magnetic field pitch (Bg/(rBz))and also to the sign of the 

pressure gradient. Configurations, previously thought unstable 

to the resistive interchange, with small growth rate, may be 

stabilised by this effect. However, the complexity of the 

study of FLR phenomena in this limit was illustrated by a 

collection of additional modes of low growth rate but of 

dubious reality owing to their questionably short radial 

scale length. 

In general, therefore, the diamagnetic FLR effects tend 

to have an important stabilising influence on weakly unstable 

configurations. Care must.be taken, however, when relying 

upon this characteristic-, in the consideration of hot plasma 

stability, to ensure that the less familiar, destabilising 

aspects of FLR phenomena.are not dominant. 
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Appendix A.  

Pott's Derivation of the Collisionless Eiienvalue Equation.  

The derivation begins with the Vlasov equation for a 

species of particles of charge q and mass 11 : 

0-.v 4 cif (E+rA6)• 	f 
Fel 

= 0 	Al 

This is expressed in cylindrical coordinates in both 

configuration and velocity space, using: 

trr 	V.I. C4, 1 	tr e = Il 97/.4 61( 	trZ 
is thus the gyrophase angle to the order of the calculations. 

(see equation 14). 

The result is expanded in using the ordering assumptions 

Il to 15 of chapter I. 

To zero order: 

A2 

This indicates symmetry in velocity space about the magnetic 

field direction in lowest order. 

1st order: 
Ror 

flo 	-41-11 	
n 

co% 	— 	f c4.4.1 0C 	A3 

ESP Lo + Y-r1( ?IP  ^(J1 4-0  
Ig7 0 )tr-t- 	(34 — air., 	kr-z.) 

fit- go 	601  (11.2 x0 	.143 )7 

Z 0 a 17:L 	13-  2 ok 	 bPZ 
wherea(the gyrofrequency)= 

P1 
2nd order: 
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.or iff {N2,  -±)fEs, -I) +op (tr.d -utz (? 
a-r r az , otri 	p 	aaz 	Nr.j_ 

--- 1. 
p_L-11 +101(3 
..szr 36,  6;0ilyi 	az 0  132  

a t _0\1 P 
k5-04  (ry) ti(  

Taking the appropriate moments of f21, f21, f22 2 v. " f22  yields 

expressions for ur, ug.(ie. perpendicular components of Ohm's 

law), the relevant components of the stress tensor and for the 

flux of the energy of gyration, qr, qg  : 

	

'DA° EL9, 	giLL2C-4  0 

eostr ae 	6.. 	(32D 
aP +. eta liz„ 
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D24.0  
- Jiar 

I bgILD 
.n.f as  

where 14  Tr 	_P — 	T dip Iu2 2. 
_co 

A reasonable estimate of R may be obtained (see ref.(10)) 

by taking f0  to be double Maxwellian. 

This gives: 
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Denoting the traceless stress tensor by 1F, 

irrrx  
r act 

)00 
ar r ) 

-.. 	(97  -el 	1- 1°  2 bzo  

Alt 

._ )1k0 gre 	 A15 I 
_ar)o 

P.L.0 )0•20 (32,  ( Pito- P10) 
Jt r 	 y- 	1320  

Next take perturbations of the lowest order distribution 
ppI da  1 , 
To 	To l .r) va., 	'24 

Equation A5 mays  then be rearranged to yield: 

fat  
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where: 
	Psi eco., 	 C 	14,14 

r620 	 r-  az° 
TO lowest order 	= 0 =0'6 . Thus, taking the 

appropriate moments of Al? and summing over species yields: 
n  

crol  = 0 	13111 	gzt, 1/.52 )1.1 	E6,11  + 	320'.'20  I A18 
d‘,/dr.  

(6r  ff t K 	p15.2.1  0  )r31- Ed/  t  L43 r3ze` (32  
I t.n  n 

AL, air 	 ldl 
Here, I1, 12  and 1

3 are integrals involving Atheil nant 

denominator present in the last part of equation A17. These 

correspond to those of Bowers (10,20) with 17 replacing k in 

that work. 

The vanishing of the determinant of equations A18 and 

A19 yields the localised dispersion law for microscopic 

modes discussed by Bowers (10,28): 

2 

	

123 	 A20 

Macroscopic modes, considered in this work, are produced by 

the solution: 

Al9 

B 	82  „ „ 
alBzoidi 

so that: 

gri 	Fe,  

0 	at3 1/4 ezio  
.••••■•••■•• 

gzo (dr 

13zI  I dp„ 
-0(7- 

A21 

A22 

,A23 

A24 

Expanding A22 and using the induction equation , 
, — co I =r   E2El 

I 	--.2. 	&I 
yields: 

(E.B)1 =0 

a familiar result of collisionless theory. 

Substituting A21 into Al? yields: 

Hence: 
I 

!Sr, I  p' 	*R I  J 
A25 

I 	; !S p 	 ,-, ; Po r- 	okr) 10 	-R (Tr 	° 	ou- 

., 	.p ho 0 - — 
J a r 



ot 	r> 	
: 	

i Cr'  g • !Az° 	- 0 • ) 	0 4: 	
... 

otr 	 L Jr 
The density perturbation implies: 

Cv.te) = 0 
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A25 
(contd.) 

A26 

Substitution of these perturbed quantities into A6 yields: 

Ur 	vr 

oil 
Ft  where 	W1  -.:- LA) f 144  UP Katz  

r 
A26 yields: 

, 
a ( 1,4) -, 	 14.  2. 

w'+ 
	

01 	otr 

Manipulation of equations A8 and A9 using the expression for 

ib' yields: 	I.  
dl 

= 
( Tire f -i- 2  k ct2t, ) 

ler 	r 

q; 01. 	(tv,v 	A30 
pvi 1/ 2. 0 Ar 

In addition,V.8=0yields: 

al 	2 	(R.  A2 	.1 	di3 20 
rti 

Substitution of A22 to A31 into the r and A components of the 

perturbed Momentum equation followed by elimination of the 

high order pressure terms, corresponding to equation I10, 

between the two resulting relationships eventually leads to 

the collisionless eigenvalue equation, Ill, in the text of 

chapter I. 

A27 

A28 

A29 

A31 
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Appendix B.  

The Resistive Interchange Ordering.  

The FLR expansion produced equations V10, V12, V14, V17 

and V20. Coppi, Greene and 'Johnson (6) outline the ordering 

scheme appropriate to the resistive interchange mode which, 

together with (.04-.1.. 4J may be applied to the above 

mentioned equations. 

The ordering may be summarised as: 

L44 	toi, 	104 
	 B1 

with the frequencies as defined previously. 

Define in addition: 

LIR  rs  128 "3 
t AIN 

Redefine: 

01 	(Lilo  1,,/g) 1̀3  

ar/i4 

= C r —re) /LIR  
(  144 60  r 62 ) 2  

r" 13z k 
gri 

  

gz  LIR  a rs  

 

Application of the above ordering scheme (B1) to the requisite 

equations, followed by substitution of uZ and (V.u) ,  
•••• 

and 

transformation to variables D, Z, R and X yields three 

simultaneous linear second order differential equations for 

D, Z and R: 

Ril2  iR 	zIF)  '311 — 2.--zrAx  F 	B2 



Z [ xu 
iLertFote&)).. 

I 2 	 tie, tX; 

fi( 	TF(If Pi/ 

ter— t p( OA)) 	11- 	 12.) 
e x 	cr.F  

s-x(-1';(3/1-1)-12- i-74(3tys—fr)) .] 
r 	, 

D i c t   et'  fe/,_)) T"" 	tat" 	1)) 

	

(11. c̀  1.F) ) 	( cLIF F 	PIO) 
X 	2. fizi 	—xttu 	 i2+ 3,e ,cL) kiu(t 1,r (Ii(5121).2- 	( cr,t s( 1 itPix)) 2P I 2 IT 

—ti,F(z+t)) -t-- 1.11P — R.F 	( tc  )) ÷ 1 

	

k 2 	713 cl/ 	‘1-F  

  

(R' _ 3 x 	o u 

  

These equations thus define the 'inner' region solution. 

As they are a sixth order set, their asymptotic (large X) 

solutions are found to consist of.a pair of solutions that 

match the 'outer' region, a pair of exponentially decaying 

solutions and a pair exponentially increasing. Numerical 

solution of B2 to B4 must, therefore, by iteration, choose 

initial conditions at X=0 such that the two exponentially 

rising solutions play no part. As matching conditions at 

large X are required, this is a formidable task. The paper 
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of Coppi et al.(6) only succeeded in computing a fourth order 

set of equations (with one exponentially rising solution) in 

the qF=0 limit. Including FLR introduces severe spatial 

oscillations to the solution and hence increases computational 

difficulty. I do not therefore consider that the numerical 

determination of matching conditions from B2 to B4 is a 

feasible proposition. 
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Abstract—An expansion of the Vlasov equation in the finite Larmor radius limit at high /1 leads to a 
differential dispersion equation which involves the less familiar physics associated with anisotropic 
pressure, rotation, sheared flow and heat fluxes. The stability is studied analytically and com-
putationally; in particular the modification of Suydam modes by finite ion Larmor radius and the 
above effects is pursued. 

1. INTRODUCTION 

THE GENERAL assertion of the stabilising nature of ion gyro radius effects (FLR) 
upon weakly unstable fluid-like perturbations in collisionless plasmas has long been.  
upheld (LEHNERT, 1967). Copious literature upon this subject is available (RosEN-
mum and SrrroN, 1965), (KENNEL and GREENE, 1966), (BowERs, 1971). Detailed 
study of the dependence of the modes upon the many types of equilibria embraced 
by such theory has, however, rarely been performed. In particular there is a need to 
carefully distinguish the effects of FLR, diamagnetism, and rotation on stability. 
Considering an equilibrium with a straight magnetic field, BowERs and HAINES 
(1971) developed the FLR theory of the high-beta theta-pinch and investigated 
computationally the effect of plasma rotation upon growth rate in a number of cases 
using the differential dispersion relation produced by their analysis. STRINGER (1975), 
using an approach based upon guiding-centre equations, investigated the effect of 
FLR upon interchange (Suydam) modes associated with the singularities in MHD 
equations at (k . B) = 0 (resonant or singular surface). Such theory can be improved 
by beginning on the firmer basis of a strict ordering procedure applied ab initio to all 
variables so that its validity and limitations are made apparent. The purpose of this 
work is to develop on the lines of BOWERS and HAINES (1971), i.e. from the Vlasov 
equation, a differential dispersion equation based upon the cylindrical equilibrium 
of a system with a curved magnetic field. The differential quadratic eigenvalue 
problem is then solved by two separate methods to illustrate the connection with 
STRINGER'S (1975) localized mode theory and with the computational results of 
Bowers. In this manner, the less familiar physics associated with temperature aniso-
tropy, heat fluxes, sheared flow and rotation may be investigated and their influence 
on .plasma stability in general and interchange modes in particular be illustrated. 

The relevance of the ion gyroradius a' to controlled thermonuclear fusion research 
is twofold. Firstly most configurations under consideration are close to the margin 
of stability causing a sensitivity to weak phenomena. Secondly, as one reaches fusion 
conditions, if the containment time T is approximately cr.132I,121AnK(To + Ti ) with 
A 1 then 4L12  is of the order of crMi/Ae2nr which for D—T conditions gives 

1/17;1. Neoclassical thermal conduction and diffusion could make a1/L1  N 
10-2  to 10-1. 
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In Section 2 we discuss the details of the ordering procedure used so that those 
classes of equilibria included within the theory may be defined. Section 3 is concerned 
with the production of the differential eigenvalue equation itself using the collisionless 
Vlasov equation as a basis together with the assumptions of Section 2. The connection 
with the work of Stringer on interchange modes appears in Section 4, the influence 
of rotation (and to a lesser extent heat flux) upon the theory being made apparent 
at this stage. Results arising from the numerical solution of the equations appear in 
Section 5. 

2. ORDERING PROCEDURE 
We consider the problem of the stability of a z =1 cylindrical plasma column 

surrounded by a perfectly conducting wall. The plasma is taken to be so hot (--ReV) 
that it may be considered collisionless with the ion gyroradius finite although small 
in comparison with the radial scale lengths of plasma quantities. All equilibrium 
variables depend on the radius alone. 

We define e = vri/LILT = &ILI.  as the expansion parameter where yr' is the ion 
thermal velocity, LI  a plasma scale length [e.g. (1 jp)(dpfdr)] and SY the ion gyro 
frequency. We consider standard FLR ordering assumptions as outlined by BOWERS 
(1971): 

E ll 	 co 
IV 

evri  eE1  e.132v,! E2fli  
where v1  is the hydromagnetic velocity normal to B. _L and II suffices refer to per-
pendicular and parallel to B and co is the frequency of the instabilities. There remains 
the ordering of /3 and of Bo/Bz. 

Recall from BOWERS (1971) that the motion of particles and perturbations along 
B is described by a time scale: 

1 CA 
T L11  

where CA is the Alfven speed and CA e■-' vr itq. Thus 

2L-Ii CA vri  

	

8 	r., 

L 11 	L 11 \17-3  

therefore 1/L N eV PILL  using the definition of E. 
In cylindrical coordinates we apply symmetry considerations and Fourier analyse 

so that: 
8 18 im — ik; — 

	

az 	r ao 	r 
Thus 

1k MB 0 N e\ITI 

L11 	rBz 	L1  
The cylindrical geometry determines that 

1 	1  
LI perturbations 	LI equilibrium 
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hence we must choose 

e,s/T6' k r•••1  - ; 	L1 perturbations rsj  LI equilibrium
1.  

Bo  < 	Bz  
For IS ,--, 1, this restriction is identical to that of BOWERS (1971) who argues that 
B0' must be of this order so that effects due to curvature drift do not dominate those 
due to FLR which are the subject of interest. The above ordering of Be  illustrates 
the incorporations of significant FLR effects at zero beta (Rosanmum and SIMON, 
1965), i.e. by employing a straight magnetic field. A 9 N E2  ordering scheme employed 
by COPPI (1964) is consistent with the above arguments. In what follows we take 
# N 1 in order to include the maximum number of physical phenomena. Hence 

62joBi  pertains in this case. 
The scaling of quantities in e in this work employs a scheme wherein corresponding 

quantities of equilibrium and perturbation are ordered with the same power of E. 
Schemes of this type, as will be seen below, produce a fluid-like description of the 
effects of FLR. In regions of, for example, larger Bo , the incorporation of modes of 
radial scale-length much less than the plasma scale length may include the effects 
of finite gyration radius, but as may be seen elsewhere, such effects are not susceptible 
to a fluid-like analysis of the type presented below (see e.g. CONNOR and HASTIE 
(1975)). 

3. THE DIFFERENTIAL DISPERSION EQUATION 
Appendix A sketches the derivation of the FLR stress tensor by expansion of the 

Vlasov equation. Familiar expressions for velocities ur  and uo  result by taking appro-
priate moments of the distribution function f which is not necessarily Maxwellian 
in lowest order. Expressions for collisionless heat fluxes result by taking different 
moments of the same expression for the expanded distribution function. 

Appendix B indicates the calculation of the linearized perturbation of the lowest 
order distribution function in the form fo'(r)exp [i(cot mO kz)] together with 
the relationships for fluid-type modes. (Primed quantities denote perturbations. 
Subscripts refer to ordering in s.) 

j
, , iB„' f0 B f 

 = iBris B20 

k ar 	zo 	k ar 
CoB,.; = kE0 ,' 	(1) 

where 

co  mE„ 	= k mBo 
rBzo 	 rBzo  

obtained by requiring lowest order charge and axial current neutrality. 
Taking the appropriate moments of fo, we obtain expressions for 

Pilo% .7201' 

,. du z0 zn s• 	 d pio 	B„ pito  ' , 	 d 
uzo = 

iB 	
; PIO = 	 = 	; k dr 	 k dr 	 k dr 

(2) 

;o f, Pi.Of  

dq„0-1-  
k dr 
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Substitution of these into A6 and A9 yields expressions for u,.11, uo: , gol f, 
which on substitution into Al2 to A16 yield expressions for the components of the 
perturbed stress tensor in terms of Bri" 

In particular we find 

u B; 
co 	k 

where 

COl  = w + muo kuzo  
r 

col  may be interpreted as a Doppler shifted frequency. From icolfo uri(aidar) = 0 
we see that fo satisfies (DI DO(fo  fo) = 0 where DIDt denotes the convective 
derivative. The perturbation e is thus a Lagrangian displacement of the plasma with 
the centre of mass velocity. The momentum equation: 

au p 
at 
— p(u .V)u — GE — j 3 + Vp+V.T=0 	 (3) 

is an exact moment of the Vlasov equation. To zeroth order in s we obtain pressure 
balance. 

V . (1) + 	=o 

The first order equation is similar since the FLR expansion is essentially in s2. 
After linearizing  and perturbing  the third order part of (3) we take the z com-

ponent of its curl thus eliminating  contributions from higher order pressure terms. 
The result is an equation involving  perturbed quantities all of which have been cal-
culated in terms of e. Following  an episode of voluminous algebra during  which 
expressions for the perturbations are substituted and the result simplified, a differential 
dispersion equation is produced of the form: 

dr dr 	
= 0 	 (4) 

where 

F— Pr3w12  + r3  + r n  RBI ( 	(Pp — P — ) 
z  species 	 Po 

7n130\ 1 p  du z  _noir2 d p2) ± 

	

dr(re 	 Bz  dr dr 

mr2 B, (, - q 	, i) — — ic z   
SYBz  dr 	2r q0- 

	

(m2 
 
r2 
	„ d [ p col 	Mito 2 d G 	F 	— 	— ) ] k2- 	2, 

	

r2 	dr 	 r2 , 
BpecieB, 
	 Bz2) 
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Note that q=-L i  and golf  are fluxes of the energy associated with the perpendicular 
ion thermal velocity. 

The first two terms of F may be produced from M.H.D. treatment of the problem, 
with the addition of the effects of temperature anisotropy associated with firehose 
instabilities. The third term gives rise to the principal stabilizing effects of FLR and 
is to be found in all previous FLR analyses (e.g. BOWERS and HAINES, 1971). The 
following term, linear in k . B, describes a secondary influence of finite gyro-radius 
contrasting in effect with the more familiar term. Destabilization due to shear in 
the axial flow appears increasingly important as ion temperature rises and BOWERS 
and HAINES (1971) showed that, in the case of a straight equilibrium magnetic field, 
this could overcome the conventional stabilizing effects of increased FLR in certain 
cases. We note that a radial gradient of qzli  has a similar effect, and so we might re-
gard the previous term not as a source of a Kelvin–Helmholtz instability but part of a 
sheared energy flux which can produce its own instability. 

The final contributions to F arise purely in high-t3 situations, where VB effects 
are significant and include the influence of the collisionless heat flux q01i, another 
consequence of FLR. 

G manifests the effects of the cylindrical geometry. The form of the first term 
gives rise to the well-known differences in character of the m = 1 mode. The second 
term introduces rotational destabilization to the theory and replaces the fictitious 
gravity terms of plane geometry. Pressure gradient appears in the final term of G and 
is purely a finite 16 effect. This term is responsible for Suydam instabilities and the 
dangerous m = 1 kink mode of the diffuse pinch. 

The eigenvalue equation developed thus encompasses not only the familiar simple 
MHD equilibria, but includes some of the more subtle effects associated with those 
plasmas that lie within the precisely defined limits of an FLR expansion scheme. 

4. ANALYTIC APPROACH 
We observe that in the limit no  0, uz ---)- 0, q01‘ 0 qz1‘ 0 the eigenvalue 

equation produced bears similarities to that solved by STRINGER (1975). The dif-
ferences that appear are due to the more rigorous inclusion of cylindrical geometry 
and are in accord with results of other authors (ROSENBLU'TH and SIMON, 1965), 
(BowERs and HAINES, 1971). In recognition of the similarities to Stringer's equation, 
we apply the same technique of solution [originated by KULSRUD (1963)] in order to 
investigate the effects of the differences and of the additions to the physical content. 

The technique involves assuming that the mode is localized in the region ke.„. 	0 
(the validity of this assumption may be estimated from the numerical results in Fig. 9 
and is clearly not upheld for m = 1). k is thus approximated by: 

(r — r„) —dk 
dr ,_„ 

and all other equilibrium quantities are approximated by their value at r = r,. 
The inclusion in the equation of the dpldr term in G introduces the effects of rotation 
to the problem and requires a slight generalization of the mathematics involved. 
The method is developed in Appendix C. 

There results the dispersion relation of the most unstable interchange mode of the 
system: 1/7 = H(4 Y) (with H, X, Y defined in Appendix C) which may be expanded 
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into the form: 

where, using 

A3 1/2  
= 1 ±D. - { A4 

A2 
 1/2(A2[1 AA5(2— A1)2 ]))] 

1 d u  — , = 
p dr ni 	r,B, 

(5) 

coir, (col  = co ± —mu°  ± ku, 
l 	

) 
mui  2 	 r, 

Al  uo 	_ pkr, duz  /12 

2 	 MU° dr / drJ 

4 	[(1- 	oln Pi)  Bz 21 (p duddr)21 

A2 — 
r, dpfdr dr species 	 dpldr j 

B 2  
—164, ( (PH P1) — 	

C*1,144411 
ow species 	fro 	 r  1St 	I A3 = 

(m2  — 1)p(ui)2  
dq 	i  du, q dB r z 	.1)1 	 Z 	 Z 

A4 — 	1 	4 dBz  (1 dle 	dioi ) 	dr 	dr 	B, dr  
pfl'2(ui)2  B, dr k2 dr 	p dr 	Bzz 

 species 

(02 d p 
dr 

432,1( (p 	 (eA1U2-4111°-) 
r species 

B 2  

Tr7e4r  The remainder of this section considers: duzjdr = 0. 
The constraint lyl > 1H(4y)12  may be written 

1,42(1 A5(C — A1)2)1 1H(A2(1 A5(C — A1)2))12  

Since, by the Schwartz reflection principle 1-1(z*) (H(** the two square roots 
in (5) produce either pairs of real modes or complex conjugate pairs of values of C. 
Thus when calculating t, it is sufficient to consider only one of the square roots in 
the dispersion relation in order to extract the growth rates of the modes. This has 
been observed in Figs. 2 and 3 

The magnitude of ui describes the degree of FLR introduced into the problem. 
We observe that Al describes the net plasma rotation velocity at the singular surface. 
The condition A2 < 1 is merely a statement of the Suydam criterion including the 
effect of anisotropic pressure and hence the possibility of a fire-hose instability. 

B,2 	, 
— 	Pi) 

Po species 

A5 — 
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This can be written as 

	

2 	11  ( I (PII PD) (d,u/dr\ ± 4 dr species 
> o 

r Biz E (p11  — p.1.) 
PO species 

Where the equilibrium pressure balance relation 

	

1 	E 	= 0  dr 2p0  species 

has been used. 

Hence the magnitude of (A2 — 1) describes the degree by which the system is 
MHD unstable due to adverse pressure gradient. A3 is the only parameter in which 
m explicitly occurs and corresponds to the quantity used by STRINGER (1975) to 
describe FLR. The first term in A4, using a Maxwellian distribution to estimate R, 
describes the collisionless B x VT2 heat flux and hence is likely to be negative 
[(dTii/dr) < 0]. In the absence of a fire-hose effect the second term is positive and 
destabilizing, but must be restricted in magnitude to remain within the limits of this 
local expansion (using CS). Parameter A5 describes the effect of density gradient at 
the resonant surface and from the dispersion relation we see that its magnitude 
describes the influence that rotation may potentially have. 

Inspection of the dispersion relation (5) yields two immediate results. 
(i) We may expect A4 > 0 (due to the dominance of its second term) to desta-

bilize and A4 < 0 (due to the B x VT2 heat flux of the first term) to have a 
stabilizing influence. 

(ii) The case AS = 0 yields marginal stability when C = 1 as solved by STRINGER 
(1975). For A5 00, Al =1 this situation remains. Al = 1 implies 

	

E f.
= 

 1( 	
+ 

1 dp2 	 d 	) 
 Bz  2 pfl dr 	2pS/iBz2  dr (B. ) 

i.e. the centre of mass rotation equals half the diamagnetic rotation. Note 
that C = 1 at marginal stability (/m(w) = 0) in the case Al = 1 corresponds 
to Re(w) = 0. This special case of rotation has been discussed by ROSEN-
BLUTH and SIMON (1965). 

By differentiating (5) with respect to A2 (the Suydam parameter) we see that real 
C implies real aC/a(A2). Thus for a range of values of A2 to exist for which C is 
complex, 8v8(A2), co at marginal stability. Thus for Al 0 1, AS > 0 the value 
of A2 for which C = 1 is less than A2orit (the value of A2 at marginal stability). 
Hence a sufficient criterion for stability to localized modes is that A2 < A2c=1. 
Values of A2c,,,1 calculated by hand iteration using a plot of H on the real axis, are 
plotted against 1/A3 in Fig. 1 for various values of S =1 + A5 (1 — A1)2. (5 =1 
corresponds to STRINGER (1975) and is seen to be the most stable case. (Note that 
when 8 = 1, A2crit = 

Using a Newton–Raphson iteration, the behaviour of C as a function of the five 
parameters has been determined using the explicit case A5 =0 to initiate the procedure. 
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0 	0.02 	004 

I /A3 

FIG. 1.—The sufficient condition for the stability of Suydam modes for four values 
of S= 1 + A5(1 — 41)2  with A4 = 0 and 45 0.05. 

Figures 2 and 3 plot the complex frequency as a function of A2 for rotations 
Al = —2 and +2 respectively. Observe that although modes become unstable in 
order of increasing rn, modes of higher m number dominate where the Suydam param-
eter substantially exceeds marginal stability. Such behaviour is a characteristic of 
finite density gradient (A5 > 0) and is evident in the most stable case of rotation 
(Al = 1) which has the same marginal stability characteristics as A5 = 0. Note 
that the real parts of the Doppler shifted frequency are no longer constant (as in 
AS = 0 and Al = 1) at finite growth rate, but increase for Al > 1 and decrease for 
Al < 1 as a function of increasing A2. 

The dependence of growth rate upon rotation (Al) is illustrated in Fig. 4. Observe 
that Al = 1 is the most stable rotation possible. For comparison with Fig. 1, Fig. 5 
plots marginal stability (A2„,it) against 1/A3 for various rotations. The special case 
Al = 1 corresponds, on these diagrams, to A5 = 0 and is the most stable. Collision-
less heat flux is considered in Fig. 6 by computing with A4 = —1. Observe that the 
larger values of A2orit  imply stabilization by this phenomenon. However the increase 
in (A20,1t  — 1) due to this effect is small compared to that due to 1 1 A3 , the dominant 
FLR term. 
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no. 2.—Real and imaginary parts of the normalized complex frequency mC plotted 
against the Suydam parameter A2 for 45 = 0.05, Al = —2, A4 = 0, A3 = 1600/ 
(m2  — 1). Note that the second stable solution has been omitted below marginal 

stability. 

5. NUMERICAL SOLUTION 
For the purposes of numerical solution of (4) (on a CDC 6400) we identify a set 

of scale frequencies: 

WF — WE — Er, . 	KTioi  
rxBzo  ' 	eBzorz2  

Z =  

It , U 0 ; 
	

2 	K z0  
W 	 W • ( Q Z) — 

I', 	 Sio  ir2p0  

K  E  (T11 — T.00 cm, = species 	. 
Mir x2  

Three further parameters are required 

in— azimuthal mode number 
kr — pitch of mode m 

noK 1 T1  
13 — 

 
species  

Bzo2/24u0  
Subscript 0  refers to a value on axis. 
Subscript „ refers to a value at the wall. 

plasma beta 

4 

LA  2 
E 

0 

wA2 ,_  B02   ; 
Pollorz2  



-ImCro0 
— Re (mg) 

4- 

2 

I1/ 
I / / 
/i 

// 

/// 
2 	 

m.3 
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A2 
FIG. 3.—Real and imaginary parts of the normalized complex frequency mC plotted 
against the Suydam parameter A2 for AS = 0.05, Al = 2, A4 = 0, A3 = 1600/ 
(m2  — 1). Note that the second stable solution has been omitted below marginal 

stability. 

—a 

-4 	-2 	O 
	4 	6 

AI 
FIG. 4.—The variation of the normalized growth rate with rotation parameter Al for 

A4 = 0, A2 = 3, A5 = 0.05, A3 = 1600/(m2  — 1). 
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0 	 002 	0 04 
I /A3 

FIG. 5.—Marginal stability values of the Suydam parameter A2 vs. dominant FLR 
term (1/A3) for different values of rotation (Al) with A4 = 0, A5 = 0.05. 

The equilibrium is described by normalized profiles of number density n, 

	

T 	Ti, 	(fli rB,' 	species 	species 

= rye 
rBz  

is  
VZ , 	UZ.  

Unless otherwise stated, temperature profiles were taken as constant following 
BOWERS and HAINES (1971), number density Gaussian and magnetic field pitch 
Lorentzian. The latter was chosen to approximate the pitch produced by current 
concentrated in a central channel. 

By approximating the differential dispersion equation to a set of difference equa-
tions on a discrete mesh, the eigenvalue problem was reduced to finding the roots of a 
function expressed as a tri-diagonal determinant each element of which is quadratic 
in w. After computing all such roots on a mesh of about 20 points, the accuracy of 
the most unstable root was asserted by searching for it on as large a mesh as required. 
Muller's method of quadratic interpolation (see e.g. TRAUB (1964)) was used to 
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0 
	 002 

t/A3 
FIG. 6.—Marginal stability values of the Suydam parameter A2 vs. the dominant FLR 

term (1/A3) for different values of rotation (Al) with A5 = 0.05, A4 = —1. 

-002 	 -003 	 -0.04 
kr, rn 

FIG. 7.—The variation of the growth rate of Suydam modes with normalized axial 
wavenumber for different azimuthal wavenumbers with )6' = 0.5, WA = 10, 
n = exp (-0.5010.3r02), ,u = 0.01/(0.25 + (r1r02). WF= 0 on solid lines, WF=  

0.0035 on broken lines. 
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determine the required roots. Parameter perturbation was sometimes used to follow a 
mode as a function of the variables used. 

(i) Suydam modes 
Figure 7 (solid lines) illustrate the variation of growth rate of Suydam modes with 

axial wavenumber in the absence of FLR. The waves are extrapolated below 
0.02 since, as MHD marginal stability is approached, the modes become too 

singular to be resolved on a discrete mesh. It may be established, however, that cut-
off of m = 2 and in = 3 modes occurs approximately where the Suydam stability 
cirterion is violated but the m = 1 mode is unstable far beyond this limit and requires 
a wall for stabilization. Since increasing Ikro,fml moves the singular surface towards 
the origin, cut-off at larger Ikr.fml occurs soon after r,((k .B)r = 0) passes through.r8
zero. In the centre of the krzlin spectrum, higher m number modes dominate, whereas, 
as in Section 4, modes become unstable in order of increasing 111 as more unstable k 
values are considered. The peaks of the curves shown occur when rs  lies in the region 
of greatest pressure gradient. 

Figure 8 illustrates the effect of increasing FLR(WF) for a fixed k. Observe the 
marked lack of influence of gyro radius effects upon M = 1 modes in comparison 
with higher m instabilities, FLR increasing in effectiveness as m number increases. 
The broken lines of Fig. 7 indicate the k spectrum of the instabilities when FLR is 
included. Note that the region of sharply varying modes that could not be previously 
resolved is completely stabilized and that the peaks of the separate spectra now occur 
in reverse order of m number. Since FLR produces diamagnetic rotation of the plasma 

0.0E1 

004 

0 005 	 0.01 
	 0015 

WF 

FIG. 8. The stabilization of Suydam modes by FLR effectstith WA = 10, i9 = 0.5, 
krjm = —0.03, n = exp (-0.5010.3r02) p = 0.0 -25 + WO). 
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FIG. 9.—Radial dependence of the complex eigenfunctions of Fig. 8 with WF = 0.002. 

(in the absence of electric field), the real part of the frequency increases from zero as 
WF rises. The eigenfunction itself becomes complex, an imaginary part being 
generated with increased ion temperature. This signifies the superposition of a small 
amplitude radial travelling wave component upon the MHD radially standing wave. 
Figure 9 illustrates the radial plasma perturbations of several modes when FLR is 
included (Note the expanded scale on the imaginary parts). Mode localization 
increases markedly as in number increases, such that at m > 5, they appear symmetric 
about the singular surface and show little of the curvature produced distortion of the 
lower m modes. The mode structure varies little as FLR increases to sufficient 
magnitude to quench the instability (except for the introduction of the imaginary 
part). Recall, however, that very narrow MHD modes are stabilized by very little 
FLR. As may be expected, the introduction of a steeper profile of produces 
narrower modes and reduced growth rates. It is clear that the analytical expansion of 
Section 4 is most appropriate for the high m number modes where the numerical 
approach is limited by the resolution of the finite mesh. To this extent, the two 
approaches are comp ii 	and 30 % agreement is the position of the cut-off is 
found for in = 2. 

In Fig. 10 we investigate the influence of the q0 -1-‘ term in the equation. For this 
purpose, the fourth moment, R, is estimated from a double Maxwellian distribution 
so that qo -L‘ is reduced to the B x VT2 heat flux (Righi—Leduc effect). A profile of 

0 

0 

0 
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WF 

Fm. 10.—FLR stabilization of Suydam modes illustrating the effect of the Righi—Leduc 
heat flow. 

WA = 10, 09 	krjm = —0.03, p = 0.01/(0.25 + (r1r.)2), 
n = exp (-0.5(r/0.3r,32), Ti cc exp (-50(tir„)4 ). 

with a steep gradient was employed (exp (-50(r1rx)4 )), but in spite of this, the 
stabilizing effect, indicated by the difference of the two sets of curves of Fig. 10, is 
small. 

The choice of a profile of it having a maximum at r 0 enabled the study of 
modes associated with two resonant surfaces (see NEWCOMB, 1960) within the plasma. 
The growth rate spectrum in this WF = 0 case is portrayed in Fig. 11 (solid lines) and 
some of the characteristic modes in Fig. 12. With krjni ti — 0.035, all modes show 
structure associated with each singular surface. dVdr is greater at the outermost 
one since the plasma density is less in this region. Since the two singular surfaces 
coalesce at —krx/m = 0.04, all mode spectra show a peak at this wavenumber fol-
lowed by an abrupt cut-off at larger values of —k as resonant surfaces are eliminated 
from the plasma. At small k number, m > 1 modes become localized near the origin 
and cut off as —kr,,Im falls below the value of itt at r = 0 (0.025). These modes show 
very small amplitude features at the outer resonant surface. The m = 1 mode 
persists to smaller k, cutting off abruptly as this outer surface passes through the 
wall. This eigenfunction approximates a step function more closely as the outer 
surface occurs in regions of lower and lower plasma density. Effects due to the outer 
resonant surface are shear stabilized for m > 1 modes. 

Figure 11 (broken lines) illustrates that the introduction of FLR has a relatively 
small effect on the m = 1 mode, but decreases the growth rates of m > 1 modes, 
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kr,/m 

FIG. 11.—The variation of the growth rate of Suydam modes with normalized axial 
wavenumber with = 0.5, WA = 10, n = exp (-0.5(r/0.3r,)2 ), 

tc = 0.003{1/10.08 	— 0.4)21 	 (dr.+ 0'4)9) 
WF = 0 on solid lines, WF = 0.005 on broken lines. 

Radius 
FIG. 12.—Radial dependence of the complex eigenfunctions of Fig. 11 with WF = 0, 

kr„Im = —0.035. 

higher m number modes being most affected. The most noticeable effect is the stabili-
zation of the low k end of the spectrum (where the modes without FLR approach 
singular behaviour). 

The introduction of radial electric field (WE 0 0) into the equilibrium is illus-
trated in Fig. 13 for ErlrBz  independent of r. These diagrams may be explained by 
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FIG. 13.—FLR stabilization when slight E X B rotation is included with fl = 0.5, 
WA = 10, g = 0-01/(025 + r,)E), krdm = —0.028, n = exp (-0.5(r/0.3r„)2). 

considering the effect of diamagnetic rotation, introduced as WF increases, on the 
net plasma rotation (equation A-7). Positive ET  causes an E/B drift that is augmented 
by diamagnetism and vice-versa. Thus, the peak that occurs with Er  > 0 may be 
explained by the introduction of finite ion temperature initially destabilizing by in-
creasing rotation and finally reducing the growth rate as gyro-viscous effects dominate. 
The converse initial effect is illustrated by negative Er. 

(ii) Rotationally driven modes 
The pressure gradient effects of the first term of G in (4) produce Suydam modes, 

whereas the preceding term induces rotationally driven modes. These were the 
subject of study by BOWERS and HAINES (1971) in the case Bo  = 0. The present 
work allows the introduction of Bo  into the theory and a more complete discussion of 
the eigenfunctions. (Note the difference in normalizing radius between BowERs 
and HAINES and this work.) 

BOWERS and HAINES (1971) found that the growth rates of the rotational modes 
as a function of axial wavenumber k showed a peak at k = 0. The introduction of 
constant u merely shifts this peak to finite krx/tn and occurs at the resonant wave-
number given by kr,c fm ,u = 0. When ,u is prescribed as a Lorentzian function, 
again all modes show maximum growth rate at similar values of —krxlm. This 
value is smaller than for the peak of the Suydam spectrum indicating that the most 
dangerous resonant surfaces occur in less dense plasma than in the pressure-gradient 
driven case, due, no doubt, to the radial dependence of centrifugal destabilizing forces. 
Thus as rotation is increased from zero, the most unstable axial wavenumber moves 
to progressively smaller values of —krdm, the corresponding resonant surface moving 
out towards the wall. Since stability is enhanced by the absence of singular surfaces 
in the plasma, cut-off of the instabilities occurs at —krxlm values just below that at the 
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kr,, /m 

14.—The variation of the growth rate of rotationally dominated modes with 
normalized axial wavenumber with if? = 0.5, WE =1, WF = 0, ,u = 0.01/(0.25 + 

(tir02),n = exp (-0.5(r/0.3r„)2). 

cylinder wall. Thus, in many cases, growth rate is a very rapidly increasing function 
of —krjrn for values of this parameter in the neighbourhood of ,u,„11. A typical case 
is portrayed in Fig. 14. The sharpness of the low k cut-off is increased still further as 
WE is reduced. 

The 171 = 1 mode merits further discussion. Referring to Fig. 14 we find that the 
dominant mode within the central region indicated has a radial node [see insert (a)], 
whereas elsewhere a node-free mode [see insert (b)] predominates. Completely 
different oscillating parts of the frequency are associated with each type of mode. 
This effect is present in BOWERS and HAINES (1971) where the region is centred on 
k = O. Generalization of the theory has thus indicated that the type (a) mode is a 
feature of the peak region of the spectrum rather than specifically of k = 0. 

When a radial node is present there is clearly no need for a change in position 
of the centre of mass for k = 0, m = 1 and indeed a net electromagnetic force can 
only cause such an interaction with the conducting wall if an equilibrium Bo  is present. 
Thus type (b) mode structure which necessarily involves an acceleration of the centre 
of mass cannot occur in a theta pinch unless the plasma pressure is non-zero at the 
wall. By varying /3 we find that the stabilizing effect of finite plasma pressure on 

> 1 rotational modes is greater towards the cut-off of the growth rate spectra. 
The in = 1 type (b) mode (without a radial node) is found conversely to be de-
stabilized by increased /3 thus constricting the region of dominance of type (a). The 
influence of FLR upon strongly rotationally unstable modes is slight and its effect 
may be viewed as in the context of Suydam modes. Its chief effect is to stabilize 
the in = 1 type (a) mode possessing a radial node in preference to the more common 
variety type (b), thus narrowing the window of dominance of the former. 

As the electric field is reduced, so the rotational modes change continuously into 
the Suydam spectrum. In this limit the dominant in = 1 mode is type (b) i.e. without 
a radial node so that, as WE becomes smaller, the range of krxlm values for which the 
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-05 	 05 

WE 

FIG. 15.—The dependence of growth rate upon E x B rotation when FLR is included. 
WA = 10, = 0.5, WF = 0.01, kr.lm= —0.03, n = exp(-0.5(0.14rO2), au = 0.011 

(0.25 + (111-02). 

type (a) mode dominates becomes smaller. Figure 15 illustrates the variation of 
growth rate with electric field when FLR is included. Note the symmetry of the plot 
about WE = —0.2. We calculate that this value of WE corresponds to a total 
rotation frequency of +0.21 when diamagnetic effects are included in agreement with 
the results of Section 4 that Al = 1 produces a minimum growth rate. 

(iii) Heat flux modes 
In order to investigate the influence of the second term of A4 in Section 4 that 

could not be adequately described by the localized theory, we considered the effect 
of varying the parameter WQZ for both positive and negative directions of qz1̀ . 
The main effect of this is to allow F of equation (4) to vanish for complex co (negative 
cot in the WF = 0 limit). Thus a continuum of unstable modes (with finite growth 
rate) defined by F(r) = 0 at 0 < r < 7.y is introduced into the eigenvalue equation. 
Since F = 0 defines a singular point of the equation at which the ordering approxi-
mations on the scale length of the perturbation break down, the physical reality of 
such solutions is doubtful. The importance of calculating the eigenfunctions them-
selves is emphasized by a situation of this sort wherein the growth rates are indepen-
dent of changes in mesh size, but the modes appear unphysical. 

As WQZ is raised from zero, the first effect is a perturbation on the Suydam 
modes which shifts the peak of the eigenfunction in the direction indicated by relation 
Cl and increases the growth rate as would be expected from the previous localized 
mode theory. Larger heat fluxes, however, produce the singular modes mentioned 
above and the growth rates of these dominate the system as seen in Fig. 16. Since the 
Gaussian density profiles and Lorentzian p profiles produce the largest growth rate 
of the continuum with the singularity near the origin, computations were performed 
using a density profile much flatter near r = 0. In this case the eigenfunctions moved 
and became progressively steeper as the heat flux was increased until they became 
discontinuous modes of the continuum. Figure 16 illustrates that, beyond stabilizing 
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-2 	 -1 	 0 	 2 

—WOZ (gL < 0) 	 WQZ cif,,>0) 

FIG. 16.—The dependence of growth rate upon the axial flux of the ion energy associated 
with thermal velocity perpendicular to the magnetic field. The right hand half con-
cerns q.-Li  parallel to B. and the left half q..1.‘ anti-parallel to B. Solid lines concern 
WF = 0 (no FLR), broken lines have WF 0-03. [II = 0.5, WA = 10, kr,jm = —0.03, 

n = exp (-0.5(r10.3r.)2, = 0.01/(0.25 + (dr,r )2).] 

the Suydam modes of the system, the effect of increasing FLR may be entirely 
accounted for by the F = 0 dispersion relation when the ion temperature term is 
included in F. 

(iv) Temperature anisotropy (Firehose) instability 
As the temperature anisotropy parameter WM is increased from zero, the effec-

tive Alfven speed 

r z2ilto — 	— 1112  

falls to zero and then becomes imaginary so that growth rates increase. The modes 
spread out over the entire plasma radius, but remain peaked near the resonant surface. 
Figure 17 shows growth rate of these instabilities as a function of axial wavenumber. 
Not hat the curve of the same gen I shape as that or Suydam mo s (Fig. 7), 
but the rowth rates e greater throu out, being inc sing functions f WM. 
Superpose on Fig. 17 w. see the stabilizi effect of FLR. This increases 	idly 
with m num r, but only s significant e t on modes wi small growth rate 
(<0.02 WA) where the temper 

6. SUMMARY 

Using a standard FLR expansion of the collisonless Vlasov equation, we have 
produced an eigenvalue equation describing an equilibrium containing Bo  <Bz  
and many other physical quantities. First, following STRINGER (1975) and secondly 
by direct computation, we have analysed the equation for the effect of the plethora 
of physical parameters upon the growth rates of firstly the localized Suydam modes 
and secondly delocalized modes generated by heat flux and anisotropic temperature. 

re anisotropy I not dominant. 
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FIG. 17.—Growth rate vs. normalized axial wavenumber with dominant temperature 
anisotropy. Solid lines have WF = 0, (no FLR), broken lines have WF — 0.01„ 
[9 = 0.5, WM = 15, WA = 10, n = exp (-0.5(0.3r02), lC = 0.0k0 

(r/ra)2)•] 

The manner in which the localized modes blend into the delocalized variety as various 
driving forces increase has been described in all cases. In particular, the effect of 
axial heat flux in moving the dominant region of the modes, eventually producing 
unphysically singular perturbations has been illustrated. Large anisotropic tempera-
ture destabilizes and reduces localization. Of primary interest is the interaction 
of rotational influences with interchange modes. The in = r mode is shown to be 
dominated by its second radial harmonic under certain rotational circumstances, 
rotation being, due to centrifugal effects, a destabilizing influence in most (but not 
all) circumstances. The special rotational case of ROSENBLUTH and SIMON (1965) 
has been extended into the realm of localized modes and the interesting result that, 
when FLR is included, the plasma is most stable with a specific non-zero rotation, 
has been firmly established. In particular, for maximum stability, the centre of mass 
rotation should equal half the diamagnetic rotation. Even within the constraints of 
the assumed ordering scheme it is found that the finite ion Larmor radius effect is 
only of importance in those equilibria which are very close to marginal stability in 
all cases. 

REFERENCES 
BOWERS E. C. (1971) J. Plasma Phys. 6, 80. 
BOWERS E. C. (1969) Ph.D Thesis, University of London. 
BOWERS E. C. and HAINES M. G. (1971) Physics Fluids 14, 165. 
CONNOR J. W. and HASTIE R. J. (1975) Plasma Phys. 17, 97. 
Corm B. (1964) Physics Fluids 1, 1501. 
KENNEL C. F. and GREENE J. M. (1966) Ann. Phys. 38, 63. 
KULSRUD R. M. (1963) Physics Fluids 6, 904. 
LEFINERT B. (1967) Plasma Phys. 9, 301. 
NEWCOMB W. A. (1960) Ann. Phys. 10, 232. 
ROSENBLUTH M. and SIMON A. (1965) Physics Fluids 8, 1300. 
STRINGER T. E. (1975) Nucl. Fusion 15, 125. 
TRAUB (1964) Iterative Methods for the Solution of Equations, Prentice Hall. 



Stability considerations of a hot cylindrical pinch 	 21 

4- 
0 

-C 

0 

03 

02 

0 

-001 	-002 	-003 	-004 
k r„/m 

FIG. 17.—Growth rate vs. normalized axial wavenumber with dominant temperature 
anisotropy. Solid lines have WF = 0, (no FLR), broken lines have WF — 044. 
[I3 = 0.5, WM = 15, WA = 10, n = exp (-0.5(r/0.3r.)2), iz = 0425 + 

(r1r02).] 

The manner in which the localized modes blend into the delocalized variety as various 
driving forces increase has been described in all cases. In particular, the effect of 
axial heat flux in moving the dominant region of the modes, eventually producing 
unphysically singular perturbations has been illustrated. Large anisotropic tempera-
ture destabilizes and reduces localization. Of primary interest is the interaction 
of rotational influences with interchange modes. The in = 1 mode is shown to be 
dominated by its second radial harmonic under certain rotational circumstances, 
rotation being, due to centrifugal effects, a destabilizing influence in most (but not 
all) circumstances. The special rotational case of ROSENBLUTH and SIMON (1965) 
has been extended into the realm of localized modes and the interesting result that, 
when FLR is included, the plasma is most stable with a specific non-zero rotation, 
has been firmly established. In particular, for maximum stability, the centre of mass 
rotation should equal half the diamagnetic rotation. Even within the constraints of 
the assumed ordering scheme it is found that the finite ion Larmor radius effect is 
only of importance in those equilibria which are very close to marginal stability in 
all cases. 
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APPENDIX A 
The distribution function is expanded in e and evaluated order by order by a standard method 

(Bowmu, 1969). Zero order: 
af, 

	

— = 0 where, in phase space v, = v j_ cos ce, 	vo = v I sin ce as 
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By taking appropriate moments of f212 ,  fs11, f22B, f221   we obtain expressions for 14, uo  (i.e. .1_ com-
ponents of Ohm's law), the relevant components of the ion stress tensor and for the flux energy of 
gyration grip go-L. 
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To obtain a reasonable estimate of RI„ write f°  as a double Maxwellian distribution 
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APPENDIX B 
Consider perturbations of the lowest order part of the distribution function of form 

f0' =f0'(r)exp [i(wt mO kz)]. 

Substitute Bl, Al and A2 into A3 and obtain after rearrangement: 
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In lowest order we now apply the charge neutrality condition. Furthermore since as in Bowen 
and HAINES (1971) the lowest order non zero axial current is of the order of e'llev4V)5 we take 

(B3) 
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j„/ = 0 by taking appropriate moments offo. Charge 
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where 11 , 12 , 13  are integrals involving the resonant denominator of the above expression for fo,, 
together with suitable summing over particle species. 

Resonant microscopic modes are described by the dispersion relation 
Il z = 1213  

whereas the macroscopic modes considered in this work are produced by the solution: 
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expanding B6 using B3 and the induction equation: 
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a familiar result of collisionless theory. 1" 
Substituting B4 and B5 into B2 yields 

f  

j° 	k ar 

APPENDIX C 
Consider an interchange mode localized near kr — ,..= 0 and expand k = ax where x = r — r„ 

I, =-- Ti 1-r, 

Write 

.121) 
species 

mar 2 du, + 	 d:\ 
Y2  = 2128 PI —dr -r —dr -1  7§,, —dr,  

= prs3c012 	d 	mgr dB. (1dR _ P1dp 
dr k / SIT. dr \ 2 dr 	 p dr 

dk 
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where all equilibrium quantities are evaluated at r = r,. Transform from x to w: 

x111 ± Y2  w — 	 (C1) 
— 7291/2  

put 

y,a 

	

r 	r to, — tr.,zo\21 + or.  _d 	 B,2 I 
dr 01  1 	r 1 J 	dr Y— 	 !to  

	

(VPII 	— 132) • 

Equation (4) then becomes 

(w2  + 1) —2 
	dw 
+ 2w — + E—(w2  + 1)X + 	= 0. 

dw  
Observe that C4 is symmetric about w = 0 and hence we may expect the mode to be localized at 
this point. Since, originally, localization about x = 0 was assumed, we must apply the constraint: 

111/2 
k r2 Yl 

in order that k = ax is still valid. 

Consider the case I Y1 . 
tr
4
> 

IX! required for localization and expand in two regions: 

(i) w <A/ YIX inner region Legendre's equation. 
(ii) w 	1 outer region •-*Bessel's equation. 
Apply boundary conditions 

--4- 0 as lwl--1.• oo 

The symmet of the equ ons and homogeneity of the boundary conditions imply that at f 
w -- 0, either 	6 = 0 or 	cl/dw -- 0. 

In region ii) the solution is 

a cc K,1(w 	fW 	 (C6) 

where n = 7ii(4 Y — 1)1/2  which decays exponentially to zero as iv co. 
Note that since X = 0 for In = 1 this solution does not exist in this case and localization by the 

Legendre functions alone which spatially decay as w-112  is insufficient for the theory to apply. 
In region (i) the two cases are: 

(a) ct (i — cot 2) Pv(iw) Qv(iw) w > 0 

(C7) 

(b) 4 cc ir  + tan 151 Pv(iw) Qv(iw) 	w > 0 

where v = 	y 1)1/2 

Matching the expansion of C6 about w = 0 with the asymptotic expansion of C7 about w -3- co 
in the region 

1 < w < X 

yields a phase matching condition (STRINGER, 1975), KuLsatm (1963) 

H„(4 Y) = 

(1221.--i ) 	— 1122 ) r,3  X — (C2)  

(C3)  

(C4)  

(C5)  
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where 

[2 	 iu) (sinh C2-1))1/2) Ht,:: (4 Y) = 16 exp - (-311n 	+ 7 	2  
vu/2 

. i in {IV + 	(sinh Tru)1/2)± (tan-1  [exp (— l'22)] — 	— null  41 1111 

where n is an integer and u ---- (4Y — 1)1/1  
(u is complex here) 

The upper sign is for case (b) (odd symmetry modes) 
The lower sign is for case (a) (even symmetry modes) 
The value of n is chosen such that H 0 as 4Y-* 1 in order that the Suydam criterion results in 

this limit. 
Thus n = 1, 2  3 	co.  
Maximizing H maximizes the growth rate and thus n = 1 produces the most unstable modes. 
Since 

77 -1 tan-1  [exp (— —
2 — < 0 for 0 < u < co 

the choice of even symmetry modes maximizes the value of H1(4 Y) and it is thus these modes that 
will be discussed as the most unstable. 

The constraint I YI IX! of this localized theory may be written in terms of Y alone as 

	

I YI 	IH„(4 Y)I1. 
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