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Abstract
Finite Larmor radius (FLR) effects, in Hall terms and the
collisionless stress tensor, are thought to constitute an

important stabilising agent in confined kilovolt plasmas.

- This thesis considers a cylindrical confined plasma subject

to a sheared equilibrium magnetic field and investigates the

associated macroscopic instabilities. | |
Collisionlessfinstabilities are described by a‘general

second ordgr differential eigénvalue equation. Mode localisation

near a resonant‘surface, where the pitches of a helical mode

an@ the magnetic field match; is employed in a semi-analytic

solutioﬁ fhat yields a generalised sﬁfficient stability criterion

including the effects of pressure gradient, rotation, sheared

.axial velocity and heat flow. Numerical solution reveals

the destabilising influence of any resonant surface present,

‘considers FLR stabilisation of interchange‘(Suydam) modes and

shows that its effect on rotational instabilities leads to
the obtimum rotation being non-zero. Displacemént‘of the
eigenfunction from the resoﬁant‘surface by axial heat flow is.
also demonstrated.

A low-beta, resistive system yields a fourth order

‘differential set of eigenvalue-equations; to these, the

application of the déveloped-nﬁmerical method reveals that
the plasma radius beyond thch the standard treatment of
resistive instabilities is valid increases as resistivity
riSes. FLR produces grbwth rate reduction, but no cut-off,
and generates rapid spatial oscillations that caused the
computation; to fail. A new spatially osciliatory, resistive

FLR dependént mode is discussed.

_ A resistive system with finite-beta and FLR is analysed.
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>usihg traditional localisation assumptions and reduced to a form

suited to npmerical analyéis. With FLR in excess of a.critical
value, there exists a cut-off value'of the matching parameter
independent of the pressure gradient sign and of the azimuthal
magnetic field. The approach to FLR-free results is considered

and additional, more 'gquestionable modes are discussed.
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Chapter T.

'vBackgroﬁnd and Introduction.

1) The System Studied.

Attempts at confining high temperéture plasmés in the

hunt for methods of achieving controlled thérmonuclean

fusion have been.consistently frustrated by the multitude

of instabilities inherent in hot inhomogéneous discharges.

The joint'effects of reduced collision fregquency and innreased'
ion Larnor radius, as ion temperature riées wifh improved
technology; make the finite Larmor radius (FLR) corrections

tn the magnetohydrodynamic (MHD) fluid equations of increasing

significance.

Whilst the majority of existing and proposed containment

devices are toroidal in form, the effects of the complex

physics associated with FLR may be adequately assessed

using a cylindrical model, thus avoiding the geometrical
complications of the torus. Thevé&stem studied is thus

an infinite, cylindrical, Z=1. plasma column bounded by a

rigid conducting wall. Cnnventional cylindrical coordinates
(r,6,2z) may thus be employed relating to the radial, azimuthal
and axial directions respectively.A Linear stability of the
plasma cnlumn is studied on the assumption that initial

equilibrium states exist depending only on the radial coordinate.

‘Permeating the plasma, the equilibriumvmagnetic field has

poth axial and azimuthal components (g;(O,Bg(r),Bz(r)))
so that effects .of magneti; éurvature, shear and torsion
are included in the model.
As the eduiiibria considened are independent of © and z,
the perturbations are fourier analysed in these coordinates

so that sepérate modes vary as exp(i(m@+kz)). The initial
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effect of toroidicity'is éo produce periodicity in z, thus
quantising»k; Growth.rate spectra, ?{(k);'plotted in subéequent
chapters must therefore be #iewed with the knowleﬁge that,
in a practical system, such a plot is restricted to a series
of discrete points, whose‘sepération in k varies iniersely B
with the periodic 'lengtﬁ' of the apparatus.

.'In the absence of FLR effects, the'stability of models

of the type considered has been extensively investigated in

the literature. Two distinct types of macroscopic (fluid=

like) instabilities have been found. Using collisionless
models with the plasma surrounded by a vacuum region, kink

"% =0=(k.B))

rB
Z

modes arise (1) when a resonant surface (k+

occurs in the vacuﬁm. These involvé delocaliséd perturbatién
of the plasma column. A resisfive plasma model allows such
modes to occur with a resonant surface within the plasma
(6),(7) as experimentally observed. Typically, such resistive
resonant surface effects may be expected to a?ise in the
cooler, oﬁter regions of the plasma column. Further discussion
of these appears in chapters iV and V., |

Localised interchaﬁge modes may occur (1) at resonant
éurfaces lying within the glasma. Such modes are known (8)
to be subject to stabilisation by FLR effects and are
considered in depth in this context in chapters I and III.
Their MHD stability has been carefully analysed iﬁ the
literature. Using the energy principle of Bernstein et al.t5),
Suydam (2) heuristically produced a necessary stability
criterion for these modes defining the magnitude of adverse
(inward) pressure gradient that can be stabilised against

Bo

interchange phenomena by a given magnetic shéar (Jé-(au——|)) ¢

ar ;~gz
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The basis of this criterion has been made more rigofpus by
Newcomb (9) in a careful, detailed analysis of the problenm
thét also yields necessary and sufficienf stability conditions.
TheAiﬁportance of resonant sﬁrface effects in the.stability
analysis is plainly evident.f¥bm the above work. ‘Indeed,
the incofporation of such phenomenaAgives fise to the differences
between the.work described in chapter III and that of Bowers
(10) wh§ consideredvstraight field equilibria (B= (O{O,BZ)).
As may be seen from calculations below, the réle?ance of
such regions arises Since'thevpefturbatioﬁ caﬁses no local
distortion Qf tHe'magnetic fiéld in the collisionless limit.
#ﬂéar stabilisation is.thus effective by reducing the width
of the layér_for which the field perturbation is small.
Resistivity allows (E.B)'#0 in such a région $o that
magnetic field perturbation need not imply lafge plasma
perturbation; the perturbed plasma diffuses across the
.lines of force. 1In the resiséive limit, therefore, shear
stabilisation is ineffeqtive.and indeed has aﬁ adverse effect(7).
Shgfranov(1) discussed the reliability of the cylindrical
model in.ifs application to the macroscopic (fluid-like)
 instabilities of confined plasmas. He concludes that |,
whereas toroidal curvature has a small effect on delocalised
kink-modes, the effect is larger on the more localised
interchange modes, and produces increased stability as thé‘
aspect ratio, of the torus concerned, rises. This effect
has ﬁeen analysed in detazl by Mercier (3,4), in the collision-
lless limit from the energy principle; stabilisation arises
from the favqurable influence of the toroidal ﬁagnetic
field beiﬁg curved.towards the plasma on the inside of the

torus. Thus, larger pressure gradient (averaged around the
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p0101dal plane) may be stab111 sed by a glven magnetlc shear

(in the collisionless limit). The stability criteria presented
in chapter II may,Atherefore, be relaxed slighily if applied
_to tor01dal systems. |

2) Flnlte Ion Larmor Radius Effects.

In order to grasp the importance of these phenomena in
contalnment experlments, compare- the thermal Larmor radius
,a , and the ion-ion collisional mean free path,;\ s to typical
apparatus dimensions,QL, of the order of 1 ﬁétre.. For a |
Aplasma with kilovolt ions in a 1T magnetigvfield_with number

den51ty 10 9 =3 we f1nd~
i i

a* 1 L, ,1 5x103.1 1500.

" Thus, in directions normal to the magnetlc field, partlcle
localisation arises as a result of the gyro orbits rather

than from any collisional process. Such localisation is
relevant since it occurs on a scale small, but not insignificant
y compared to the apparatus dimensions.

The first indication that FLR éffects might have a sta-
bilising.influence on confined plasma was given by Rosenbluth,
Krall and Rostoker (13) in an iﬁvestigation of their influence
on the electrostatic flute instability in weakly unstable
plasmas. Thgy employed a technique of direct solution of
the Vlasov equation by integration along particle orbits
and found that the MHD dispersion relation, of the form-.

wiz ~C was replaced by w( w- R(J‘o()~\there
LQ‘is-the ion drift velocf%y. Such a replacement is common
in all subsequent work and is responsible for the stabilising
effects associated‘yith the ion diamagnetic drift. As shown.
by'Schmidt'(15) s the effect is the result of inhomogéneities

in the fields'pfesent. These cause -the influences of the field
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quantities averaged around the gyro orbits to differ
significantly from those evaluated at the guiding.cgntres;
Since this effect is neglegible on the minute electron gyrations
, it éauses the electron and ion motions to be :elatively
phase shifted. As shown by Hoh(16) and Bowers (10), the
phase shift results in currents and charge distributions
;that partiailyicéncel those driving ény instability preéent.

A procedure for obtaining fluid equations capablé of
représenting these effects was discussed by Chew, Goldberger
and Low(11).§nd developed.by subsequent authors. Rbberts
and Taylor (14)'fifst shoﬁed that the results of (13) could
" be obtained from fluid equations using the stress tensor
given by Tﬂompson (12) derived from expansion of the Vlasov
_equation. Further use of such a stress tensor was madé
by Kulsrud (23) in a discussion of FLRrstabilisation of the
‘.interchange instability in the Stellerator; his mathematical
.technique was applied by Stringer (24) to a similar situation
with an analysis based on the FLR modified guiding centre
approach discussed in Schmidt (15). Kulsrud'é technique yields
an . FLR moéified Suydam criterion and is again used in
chapter II in a more general sitgation.

A consistent orderingischeme for the development of FLR
fluid equafions was outlined by Rosenbluth and Simon (17) in
a discussion &f the flute instabilify in therpresence of
an equilibrium inhomogeneous radial electric field. This
implies, in general, an i;itial rotating plasma subject to
pérturbation.- These éuthors found, for their straight magnetic
field, zero beta,.situation én optimumum plasma rotation for

stability with the centre of mass rotation equal to half the

ion diamagnetic rotation. Pearlstein and Krall (18) developed
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,tﬁis methoa including finite-beta effects and Kennel and Greene
(19) performed a'generalbexpanéion using localised rather
thén global coordinates.

The stress tensors derived by the above techniques have

" been shown by Ware (20) to contain contributions from the

heat flux of perpeﬁdicular (gyration) energy. He showed

thag the stress tensor could be obtained from the collisional

expansi&n of Herdan and Liley (21) if terms in the collision

frequency were neglected and heat flux terms were retained

in the derivation. As terms in 1/p are present in (21),(

the negléct éfvthese, asP >0 , appeared to be a dubious

s;éﬁ at the time, but has since been justified by Hosking(25)

on consideration &f furtﬁer work by-Liley(22). . The latter

derives the stress tensor by expansion of moment equations

rather than of the Boltzﬁann equation itself. . A collisionless

derivation of this éort has been carried out by Macmahon(26).
Bowers (10,27,28) developed the approach of reference(17)

and froduced‘éduations'including finite~beta and axial

Qavelength terms. The latter rémoves the purely electrostaticﬁ

nature of the perturbations, so that distortion of the magnetic

field lines results. In reference (28), a detailed account

of instabilities in a rotating theta pinch is presented. This

work is extended to systems containing equilibrium Bé in chapter

III and hence considers the complications of superimposed

‘resonant surface effects. Using a coordinate system defined

by the equilibrium magnetic field (rather than by the total
field), Bowers (29) developed a stability analyéis including
the effects of magnetic field curvature and torsion.

3) FLR Or&ering.

As this thesis makes considerable use of the collisionless
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FLR stress tensor in the cylindrical coordinate system, it
is pertinent to outline_ the ordering restrictions inherent

in its derivationffrom the Vlasov equation.\‘These are discussed

in detail by Bowers (10) and by Kennel and Greené(19).

Define an FLR ordering parameter, £

* ) .
' - (
- Yt = & = Jon Larmor radius
' cal th 1 to B.
_JQllg, Ly Plasma Scale %eng norma oB

A . : {
where(ﬂéis the ion thermal velocity and J1 is the ion
gyro frequéncy.

Bowers (10) useds: .
Ue - £;L L w ~ [

gtﬁif R f(ﬂt 1.12 .
wherel{Lls the hydromagnetlc veloc1ty normal to B, .{ and e

I1

-suffices refer to vector components relating to dlrecthns

perpendicular and paraliel to B and& is the frequency of
the instabilities. | ' |

The ordefing.of &) is such that .currents produced'by
finite gyro radius phenomena are of sufficient magnitude-té
inflgence the perturbation of tﬁe léwest order hydromagnetic
veiocities. EJ_is ordered so that it produces variations on
time scales no shorter than /6 -

There remains the ordern,n,,;3 of E, F .and BQ/B « Recall

from Bowers (28) that the motlon of particles and perturbations

along B is described by a tlme-scale.

1 C
A

- A/ _A

T ' L//

. ' (
where.CA is the Alfven speed and CA NU',? /"3 « Thus:

X 6 , Cc LP,( .7 o
£€ R ~ 355 A~ ir__fk ~
/4 Y, Jfgl
hence: 1 ,\,iJ P using the definition of £ . I2
: L L ' )
Therefore, in the cylindrical system considered in this work:

Ar kimBy £J’&
i rB I,

Z

A
T
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Since m21, 1 | m 1 [,
s (/vr), = m_)

%ﬂperturbations %J.equilibridg\ r
-hence, we choose:
kv I-.P ! LJ_ perturbation LJ.. equilibrium 13
and: ‘ o J;_1 . ,

By ~E F B, | Ih
This ordering of By ensures that, in thef34’1 limit, the
timescale associated with the V I8l and curvature drifts of
particles does not dominate that of the FLR effects that are-
the subject of interest. 1In chapters II,IIT and V a F'V{ °
ordering is employed in order to include the maximum number

' ' 2.
of physical quantities; chapter IV usesF%»{ y following
.Coppi (31), in order to simplify the resistive equations

. . . . 2. ' . '
studled.F'V' implies JZBQAIE JOBZ so that, in lowest order,
the divergence of the magnetic stress tensor reduces to the

gradient of a scalar magnetic pressure:
2
. __4a (B>
,Jegz =qr (2)
The allowable magnitude of Ekymay be determined from the

e.get

induction equation. ~Magnetic field perturbations produced
by variations in EkaHSt be at most of comparable magnitude

to those arising from ELL « Hence:

E E
Epa B
L, " Ly

so that: . %’/MJP% - I5.
Expansion of the Vlasov equation using this ordering of

‘quantities produces a fluid-like description of the effects

. of FLR. Thé sfudy of modes with scale lengths comparable to

- the iarmor radius (32,33) iz not susceptible to a fluid-like

analysis and requires complex kinetic calculations.
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L) The Dispersion Equation of the System in the Collisionless
‘Limit. | | |

Poﬁt(BO) expanded the Vlasov equation in tue manner of
Bowers'(10;27) ahd considered perturbafions.of fhe drift
kinetic equation produced, Fourier analysed in 8,z and time.
Retaining equilibrium Bg, Pott(BO) found that, in the limit
of the ordering used, two types‘of solution were possible.
‘The first describes localised microinstabilities of the type
‘considered by Bowers (10,28) and the second, fluid-like
macroinstahilities. These are characterised by purely convective
?erturbatlons of density, pressure (QL% p/), axial veloc1ty,
axial heat flux and the fourth moment of the distribution
function. Thus they are incompressible and adiabatic.

‘i.e.(V' 9‘&)' =0= (V (c[" + ’)) . 16

Pott's expansion and derlvatlon appears in appendix A in order
.to show how the expressions for the various perturbed
quantities are related‘to the Lagrangian displacement ‘g

defined as :

’ /
‘ @
E == 17
C‘%
where Q% is the Doppler shifted frequency:
- U
W, = Wt mrefhuz 18

and thus depends on the equilibrium Velo%ity u = (O,ug,u ).
In the manner of Bowers (10,28), Pott(BO) expanded 1n‘£

the centre of mass momentum equation:

t’%%*-(’(u V)“~JA’3+‘?F+7 ¥ 20 o

To first and second orders, pressure balance resulted:
Bz :
Y ( P, + =0 I10
Mo
In third order, after linearising and perturbing, high order
pressure contributions were eliminated by taking the 2z

component of the curl of I9 expressed to this order.
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Eventually, after substitﬁting in the expfessions for the
perturbed quantities that“appear in appendig A, he produced

the‘differential dispersion equation for the system considéred:

where:

JL
f>r""w,2 + 13 EL(-S (F// F_L) "-—'

Sfe¢l¢$

—mw,l’li(} (_’il_ P, Cl“z +0( CL

_n_‘ ( dr

G)? =(w*-1) F. il dr[ (‘" mf‘?)
K [ s (p,-p)=E:
+ . r. (é (r F i )

cr Sfecuzg
—
where: k: k +V_V_|_B__s
rG,
" (Note that- the second term in G corrects an algebraic error
in the work of Bowers (10,28) ).

Equation I11 forms the basis of the study of the
collisionless instability of the system considered. Its
solution will be expounded in detail in chapters II and III
of this work and appears in less depth in reference (30).

'The inclusion of the complete FLR stress tensor in
the momentum.equation has thus added é'variety of physical
phenomena to the'd;spersidn equation in addition to the
familiar diaﬁagnetic contribution that constitutes the

third term of F. These additional effects appear in the
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fauifﬁ'aﬁd fifth terms.

The fourth term of F, lineér in'E: will be subsequently
shown to have a destabilising influence. 1In pafticular, the
adverse effects of sheared axial veloéit# become more important.»
when ion temperature rises. Melchoir and'PopoQich(34) found
thét,although FLR tended to stabilise Kelvin-Helmholtz
instability in many cases, situations existed fo? which the
plasma was unstable only when FLR terms were included; these
authprs'emp;oyed a simple Cartesian model. The equation
shows that a radial gradient of q;i has a similar effect.

The fifth term of F arises only in high beta situations,
wﬁ;rethl effects are signifi#ant; it includes the influeﬁce
of the collisionless heat flux, qéi, another consequence of
FLR. | |

An MHD treatment of the probiem yields the first two

terms of F apart from the temperature anisotropy corrections

" in the second that give rise to firehose instability(35).

G manifests the effects of the cylindrical géomet;y.
The form of the first term‘gives rise to the well-known
differencgs in cﬁaraéterlof the m=1 mode since studies in the
MHD limit (1) have revealed that it exerts a stabilising
influence when m )-1.A The second term of G introduces
rofational destabilisation since this is the only term in
which the frequency, & , is not Doppler shifted by the.
rotation. . (Note thatt- "‘.f_‘.‘9= wtRUy ). The final term
in G incorporates éhe eff;;ts of total pressure gradient
( %;(QL +pﬁ,)on using §quation I10) and is responsible
for driving Suydam instabilities and the dangerous m=1
kink‘mode of the diffuse pinch (36). l

The solution of equation I11 and the investigation of the
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coﬁsequences.of the various physiéal effects thereby described

forms the content.of phapters.II and III; It is foupd that
.»the less familiar effects, arising from the gyro-viscous
streés tensor used, are, in some cases, at least as important
in tﬁe stability consideratiéns of a hot cylindrically
confined plasma as the more widely disqussed diamagnetic.
icoﬂﬁribufions.

| : Aﬁ investigation of resistive effects in the FLR limit
begins in chapter IV. A discﬁésion of the literature relevant
to resistivevinstabiliﬁies is postponed until the beginning
of chapter V, however, as that chapter employs techniques

more commonly used in this context.
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Chapter II.

Solution of the Collisionless Eigenvalue Equation Using an

Analytic Approach.

1) Introduction.

" In the linit ug=> 0, ui-;;o, >0, q-él.e. 0, Pott's
'collisionless eigenvalue‘equation (eg. I11 and ref.30)
con51sts of terms of a similar nature to those of the equation
solved by Strlnger (24). and Kulsrud (23). The differences
'that arise are due to the more rlgorous inclusion of c¢ylindrical
: geometry and agree with the results of other authors. (17,28).
“As the analytle‘approach employed in references (24) and (23)
Qgé so successful in simpler physical situations, this chapter
attemﬁts to follow an analogous course of inveetigation with
the more complete Pott equation.

The method requlres that the instability be localised
in the nelghbourhood of a resonant surface defined by:
~¥=r = ’k+mBg - =0

S N —— re
. rB |r=r .
A s

In the MHD limit, the radial thickness of a 5erturbation of
given m about the resonant surface is detefmined by two
. competing influences. ' The interchange instability arises
at the resonant eurface'where its helicalepitch matches e
that of the magnetic field. On either side of the surgace,
the amount of energy required for perturbatibn is determinedii
by the mismatch in the two helices. Hence, steep shear:
[ =2 )] conflnes the mode to a very thin layer.

dr\ B2
The magnitude of the perturbation is restricted by the kinetic
energy involved in a growing mode. Thus, eingularity , and
hence infinifely nerrow perturbation,'occurs only at zero

‘growth rate.’ Finite Larmor radius effects introduce oscillation
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into the growing.mddes and thus significantly increase the
"kinetic energy of perturbations nearithé resonantlsurface
when the‘growth rété is small. Thﬁs, with these effects
incluaea,icut-off is possible with'a finite eigenfunction;
"the theory developed below thus essentiaily»applies close
tt marginal. stability. '

_ Since, tlose to the origin, eigenfunctions vary as r,_1
'modeklocalisatidn increases'dramétically‘as m rises.. This
will be seen in computed eigenfunctions in chapter III

~ (figure III6). Thus, the technique and results of this
‘ cﬁgpter are most applicable for m>> 1 énd totally inapplicéble
to m=1. | |

2) Method.

The method begins by Taylor expanding in the region of the

:W\()(( .
e rl‘
Xz F—1g

All other equilibrium quantities are taken as constant in this

resonant surface:

o—

h - & X .where “'-‘-a;-

region, it being assumed that they vary only on a length scalé
lérge compared to that of the radially localised iﬁstability.
Pott's equation now takes the form:

L [(Ax*+Bx +€) 457 s[E(AZ+BI+§=0 1z,
where A to E are constants, in this approximation, depending
only on equilibrium quantities at the resonant surface. 1In
order~to remove térms iinear in x, a linear transformation

of independent variable fr;m x to w is required. Since w=0
implies x#0, the perturbation calculated is not centred abbut
thezorigin of x. Unless this shift is small, the localisation

approximation II1 will be invalid; this, therefore, places a

further constraint upon the fégime'of validity of the theory.
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The transformatlon requlred may be summarlsed as follovss

'péj: o V "rs (f (P//”P.L) ﬁ ) 113

. ' sfcc;cg

-W‘“r's a(uz + & C{,'L A8
Tas 2.9 ‘(J' ar I%’zr_éj Arz)‘

2 ik [ B+ v dBz(( R _p .
RS (n;w, g L)+ 7B, alr(l ar eLj ”

The q; terms in Pott's equation have been substituted

114

using:
-1 cllq '2.F1. JPL 286
1o S I e dr i Bz CLZ e
so thatl 4 M ‘Le becomes: R _ m b o“?!..,.th
| Zr  ZrR & padr 2

Here R is the fourth moment of the zero order distribution

R = T’.Mf j ]e( ‘."ZJ,C)O(CJ:LAU:-‘- IIr)

Specification of f

function'foz

£L
o or its moments f ELO’ g?o’ 0° uZO,R

determlnefthe equilibrium under study.
Withx 1 s 7 2a.nd .b/ 3 defined above, the required

transformation is:

x¥; + Va
(73 7, sﬁa. )‘/:L

It is convenient to aefine also:

X = (W%)(Wﬁ' L AE

Y = I a}(‘. - vt 6)2)T klr:o(l’(r (f;q(of:// ‘L) Aa) II';O
3 ot ( =(e,- PO~B2 /40) |

Sfecees
From eq.II8 we clearly require thaifvi be very much less

!
than the scale size of x (or w). Expressions II3 and II&

118

’ o
. 4
show that this indicates thatd—--(-!-‘z ,ol,g:.z andqf Omz are
' ' : ar ' dr Z dr

responsible for the .radial displacement of the perturbation
© that limits the applicability of the theory. The eigenfunction

‘displacement will be considered more thoroughly in chapter III
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by numerical means. _

The quantity Y (eq.II10) contains the instability driving
forces ffom the function G of the eigenvalue equafion.
Omitting the first term iﬁ the.numerator and éressﬁre anisotropy
, the Suydam criterion (2) may be expressed as Y< # for
sﬁability. Thus, the rotational effects of the first term
are seen to decrease-stability. ) a

Using the quantities w,X and Y, Pofﬁ's equation becomes:
(w?t1) ‘}'_l_f +2uw 4§ 1-[-—;(;4)’41))( *Y]f ~0 I

dw? dw

This equation appears to be precisely of the form of -
that solved by Stringer (24), with X and Y rep_'l.acing- k:x

4andi-‘:; -Xz of that work respectively.. However, the roﬁationgl
contribution to Y involves the frequency of thé perturbation
and is, in general, complex. Thus, in the present calculatioh,
'Y is complex whereas Xz in Stringer's work is real. As
Stringer's final result is not an analytic function ﬁecause
it involves the arguments - of complex numbers, generalisation

" of the manipulation is required.

Folloﬁ?ng Stringér (24), the technique of solution
broceeds bj considering only tﬁe case |Y125bd for which the
driving forces are sufficientlyvstrong to induce instability.
Two overlapping ranges of w are taken: (i) w<i[§? , (1i) wd»1.
Assume that walls and axis are distant from thexresonant surface
and take homogeneous boundary conditions at large w:

{20 = |w->®
Since equation II11 is symmetric about w=0 and the boundary
conditions are homogeneous, group theory indicates thatg is
either symmetric or.anti—symmetric about w=0. Hence either
g =0 or‘ig =0 at w=0.
dw .

The solution in region (ii) is the same for modes of
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either symmetry. In this limit equation II11 reduces to a
spherical Bessel's equation of imaginary argument.. The

‘solution oonvergent at large w is:

"-‘wherel"t:: " ([‘_\/ ,)/7' _ | .
N?te that: WR - -I.( 1_4) /2_[)( .‘.Y&]

l
The displacement constralnt on--'-2 can now be more precisely

' o
written as: ( m*-t) fa :{1 <<’ | _ 1113
T 7

Since X vanishes for m=1, the outer decaying solution cannot
be found for this case and the method of solutiqh is clearly’

as W-%

invalid. (The solution in region (i) decays only s
insufficiently rapidly for localised theory to apply).

In region (i), II11 éeduces to Legendre's equation so
that the general solution is: ‘

§= AP5in) rBlas(u) t Py (iw)]

where ) = .-._L .,. (uy_n‘/:k . for w Z 0
as in Strlnger. . '
the that theVPB correction to the second solution moves the
branch cut f;om the standard ﬁosition joining w=:i via w=0
" to that joining these ﬁoin£5‘through infinity. The coefficients
A and B for the cases of a) even-symmetry and b) odd-symmetry.
may be foun§ from exfressions for P§(O)’ Qi;O), %;(O), Qb(O)
taken from reference (37). '

"For even-symmetry (as given by Stringer) we find:

f o< -;-:T( waV)P),(lW)-FQ (iw) Ik
(o< W<J‘//x‘)
and for odd-symmetry:

_24‘ oo 2:( ¢ -ﬁf&u?) Pi';(l'w) +—Q;’;(a‘y}) 1115

Expressions II14 and II15 must match II12 in the overlapping



.. 31
region of validity: 145w<?’lY/X . The condition for this

matchlng determins the elgenfrequencyCO . Below, we

concentrate on the calculatlon for the odd—uymmetry case
as this was not con51dered at all by the previous authors
(23,24). Even symmetry modes aredadf with in an entirely

analogous manner.

Write ¢ = (te«‘/-' ) So that = ;_""( VT ~3"..*:;f

At large w, reference 37 yields the asymptotic form of II15
in terms of gamma functions. Using the properties of gamma

functions (37), this solution may be expressed as:

- TU/l2 A\ Va U | )
{= A8 (0 )7 (L Aa(guwdet ) s

W= -ih(%cl_)_)-—h M[P(H'—;—_‘}# ‘.L“[P(Hiu)]
pr _
. + 5 (eJm/z)- 7_1__7‘:

Note that, since X is complex, u will in general be complex
also SO'that‘the gamma functions in Y cannot be further
simplified.

Using reference (37), the small argument ' expansion of

II12 yields: .
2C 'ﬁ'“(& QM Uu (M(WF _ II17 '

uw\/‘z M (ﬂ'ulﬂ-) 1 . ‘/2‘
_ il [ (T feu(T9) ™
M(1eia)

In the matching reglon, therefore, the two solutions

are rapidly oscillating fﬁnctions. fatching is thus achieved
by equating the amplitude and phase of the spatiai oscillations,
The latter is ‘arbit,rary to any multiple of I ; different

phase matchings produce eigenfunctions with differenf numbers

of nodes. Phase matching'gives:

M: H,g:i‘ (‘l-\/) _ | 1



where.

n (u\/) =16 a.xf’[li—'hb.«[f'(lf'q)( Smuf%‘() )‘h] I119

TU /2
A [ Plisin) (.‘_‘%‘:uﬁﬂi‘.’ )"‘]t [ G §™a T_E]~MT|’}]

‘with ws (Ly-1 )2

The even mode result, derived analogously, has been incorporated

lend differs only by the sign choice.shown.

In»tﬁe zero FLR limit, we require';;foilowing Kulsrud(23),
that X0 as u»0 (Suydam marginal stability). Taking this
limit, II19 indicates that JXla. [§ axp ["%}"j} Clearly,n
must be positive fon any physical solution. Thus, n may take
values 1,2,.....;. 0° . Since larger X implies gfeater'
érowth rate, the most unstable mode will be that which maximises
He Evidently, n must equal 1 when Re(u) > 0 to maximise
growth rate. The latter assumption concernlng u is based
upon the theory being a perturbation of that of Stringer (24)
for which d was real and positive. Similariy, since

63 [ :"“"‘] T g0 tr o<u< 00
even-symmetry modes are the most unstable (taking the -
sign in II19). Henceforth, we shall be concerned purely
with the most unstable Suydam mode of the system for which
the dispersion relation has been shown to be:

,fi" = 'euen (YY) 1120

The primary localisation constraint on the theory,
lYl»[XI may be re-written in terms of Y alone:

Iyl | Hy, () [ 1121
for the mode considered.

The dispersion equation II20 may be expanded in terms of

convenlent parameters:

!+[l__ {Ah— A3 H (,ql[l-;-A;();-.An"]g 1122
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| ' | 3 ~Bz
A3d-= *‘brsﬂ"[arr f(”””) o) do/dr

33

H(z) will-hen’cei‘or’ch denote H (z). The parameters of

Teven

equatlon II21 are defined as i‘ollows

- with ., _L . 36 |
o _ u‘ : € Air( ) ) /u- r,Bz
_ | ’g - Cdl" : (U, - w+m(19*hqz)
" Lyn(1‘ |

Al- = [ - £fs o o‘“-«-—/

,{u Ug
B- ¢Ju (dy
g(ﬂ, 1) f‘” Ap/otr ]

- (

82 _ £(p-R)
v}lo‘ specees

(plazlor)? ]
gpeces

(d-~1) ¢ u*

st [u awz(.a.om &A&)

ch*u‘ g, Ar\rdr o edr)
+ ( ‘f (A"‘=+‘Zz UL% |

Ar [@= ar

g (P-0)
}lp Specees :

(u‘.)zo((/dr

2 2 .‘i P~ 3 (p_clazfd,-)z-
l”s/u[d fn{es Ch )Aq [t ]

1123

112k
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As H(z) is real when z is real ksee Stringer (24) ),

the Schwartz reflection principle (38) requires that

H(z*)=(H(z))* ; hence, the sign choice in II22 merely

produces either real modes or complex conjugate values ofgz
This is in accord with the properties of the original differ-
ential equation. When evaluatingg therefore, it is

sufflclent to con51der only one of the two possible solutions

to the dlsper510n equatlon, II22 in order to extract the

growth rate of any 1nstab111ty.
The quantity U' describes the degree of FLR introduced

into the problem. For clarity, it . is best to consider

‘equilibria not involving significant axial velocity, u .

A1 then deécribes the net plasma rotation velocity at the

singular surface, : , .
_l__ olPL‘ -— El‘ "’ + 69 Uz \ : iI2 :
Ueo = V 7 z_ 2

e dr 8. ¢ B,

normalised to the FLR effect, ut.

‘\Q

A2 is a 'Suydam parameter!, as the condition A2£f1 is
merely a reiteration of the Suydam stability criterion,

modified for the effect of pressure anisotropy. (See ref.(30))

- Thus (A2-1)" is a measure of the degree by which the equilibrium

is MHD unstable due to the effects of adverse pressure
gradients.
In order to ascribe a physical context to the gquantity

]
R in AL, estimate the zero order distribution function,-fo,

as a two temperature Maxwellian distribution. This yields

.. 2
=2P, /f , which glves.
28 L dRe _ Flf‘ﬂ"-& (&) ELKATJIIBO
% dr T dr T dr
Thus, the flrst term of Al describes the colllslonless Bx?ﬁL

(nghl-Leduc) heat flux. This term is likely to be negative

(taking dqt/dr<fn. In the absence.of strong fire-hose
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V‘destabilisation, the second term of Al ié posifife;'this term
;arises, however,.from the quantity?ré .(eq.II4). The constraint
1113, fhatlafoééwffgﬁ gﬁé"i;validating influence of these
terms of moving the perturbation from the resonant surface,
limits the magnitude of this positive contribution to Au'that
can be considered within this locaiised célculation.

Aﬁ; the final rarameter, incorporates the influence of
density'gradien£; The iﬁclusion of this term introduces
the rotational destabilisatién caused by the cylindrical

geometry that is a feature of this work.

3) Results I - Deductions from the Dispersion Equation.

Two results are immediately apparent upon inspection of
the dispersiqﬁ relatioq, equation IIZ22.
i) Since the argument of the square root c0ntains.—A4,
we expect‘Al+>0 (due to the dominance of its second term)
to déstabilise and A4< 0 (due to a Righi-Leduc contribution)
to have a sfabilising influence.

ii) The case A5=0 yields marginal stability with.y =1 as
found. by Stringer (24) .( Note tl}at, in the present case, Z.is
Doppler shifted by the rotation present). For AS#0, this
sitqation iS"fepeated wheﬁ‘A1=1 as the rotéfional contribution
to the argument ' of H atf@argindl stability #anishes in this
case as well. In the absence of u, A1=1 implies:

QQ=%Ui

or, using IIZ29

Er _ AP F’ )
B. ((’J‘ ar 1-2_;:7.8 Jr(az )'Imv

At low beta, the special case of rotation described by
Rosenbluth and Simonl(1?) is immediately evident. The case
A1=1 is clearly a finite-beta generalisation of this special

case.
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We now investigate the dispersion relatiénAII22 in the
neighbourhooa.of marginai stability. Consider first a set
of parameteré (A1to AS) giving realfg.(stable case) and
inveétigate ;'-as a funqﬁion of i(say) A2. Since, by
hypothesis, gbis real, the square foot of II22 is real and
hence all derivatives ofig'wifh respect to A2 are real.
Thus, Taylor ekpansion'is possibie to calculate a real value
of & at A2+§ (A2). This expansion will only fail wheﬁ
l;; /3(A2)l->00 . Hence, at marginal stability, ‘the

derivative of ;‘ with respect to any of the 5 parameters

diverges. In the case of Stringer (A5=0) this divergence

occurred when the argument: of the square root vanished;
this pertains for the case AS%O,A1=i diécussed above.
Otherwvise, differentiation of II22 with respecf to A2 yiélds
at marginal stability:

- 5 =2(5-ANAZASHIANI(A) 115
were A = A2(14A5(F-AND")
and the prime denotes differentiatioﬁ with respect toA,

The marginal stability value of, f6r example, A2, the

Suydam parameter, can, in principle, be obtained by simultaneous

solution of II22 and II32 for § and A2, Although this,

rit.” .
by definition, provides a necessary and sufficient criterion
for stability against'the iﬁterchange modes considered, the
solution of these equations is neither obvious nor triyiél.
A useful sufficient condition can be obtained by caiculating

the value of the required parameter for a given real value

of ; « Since, in the cases A5=0 and A1=1, g =1 at marginal

. stability,  this is 4 suitabie selection at which to evaluate

the sufficient stability condition. The only requirement of
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the éalculation is the iteration of the pérameter under study
to reduce the grgﬁment;;pffhe square rootAiﬂ IT22 to zero
‘when §;=1 has been substituted. This may.ﬁe carfied out
readily without the aid of a computer and reéuires merely
a gfaph of H(z) along the real z axis of the type given in
Stringer (24) and Kulsrud(23). The sufficient cfiferionrfor
A2 is thus:, ) ' 2
~H (A25) =V AL 135
where S: l-}-AS(l—.A')z» 3 V:(l"Alf)/Ag
The additional four parameters A1,‘A3, A, A5 have thus
been rédhced to two by the consideration of the sufficient
stébility criterion rather than of the more precise marginal
stability conditionse.

Figure II1 piots.this sufficieﬁt criterion on A2, the
modified Suydam parameter, against the two parameters S
and Y . The criférion thus states that points lying below
the curves correspond to stable;plasma equilibria. As-s
inéreases, the destabilising effects of the centrifugal
forces are clearly apparent as the curves become compressed

to smaller values of A2 The effect of varying AL may

g =1°
also be seen on this diagrém as it is a linear function of V.
It appears that the effect of AL will be greatest at small

8 values vhen rotational'driving forces are least. Note that,
according to this sufficient criterion, S'=1, vhich corresponds
to the A1=1 case discussed above, is the most stable case of
rotation.- Recall that, in this case, marginal s£ability
corresponds to the sufficient criterion. At other vélues’

of §, the degree by which the sufficient cendition is too

' severe may be seen by comparing figures II1 and II10 and

w1ll bé discussed later.
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Figure II1 - The sufficient stabilityvcriterion A2<1A%§=1

for various § = 1+A5(1-A1)2- The dashed line
indicates marginal stability for A1=-2,Al=0
A5=0.005 from figure II10.

4) Results II - Computations.

In order to study the behavior of ;as a function of the
pafameters of the problem, numerical solution of the dispersion
relation, equation 1122, was required. As this is an analytic
differentiable function, Newton-Raphson iteration was employed.
Routines to evaluate complex gamma and digamma functions(?é J£:)
were obtained from the Cern library, available on the computer

used. In order to initiate the iteration proccedure, the
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explicit case AS5=0 was uéed as a first approximation.
Subvsequently,»;_wa}s” ffl];??'eé_,?s the parameter of,‘intérest was
variéd throughﬁut the desired range of values. As mﬁrginal
stability conditions were approached, the violent behavior
-of,g in,the region of the cut-off inevitably caused the method
to fail. Since'a) the derivativeé ofg’are known to tend to
infinity at marginal stability and b) curves of both Re(zs
and Im(;)‘were avéilable above cut-off,'the critical region
was completed by simultaneous extrapolation of.the ﬁwo curves
towards a common pafameter value. Whilst the extrapolation
cannof describe§ accurately owing to its sensitive parameter
_ depehdence in this region, the cut-off value of the ﬁarameter
against which; was plotted (usually A2) could be detérmined
with reasonable precisiome.

The sequence of diagrams IIZ2 to IIS illustréteé the-
dependence of3'oﬁ.the Suydam parameter, A2, for different degrees
of plasma rotation, measured by -A1. Variation of A3 is.
implicit in the variation of m; A3 was taken to be
1600/(m2-1) upon consideration of Stringer's (24) data for
HPTX. The figures take Ak=0, A5=0.05.

The effect of rotation upon the frequency of oscillation
of unstable modes is the-most immediately striking feature
of figures II2 to IIS. Only'when A1=1, does Re(!).take a
constant value when Im(3)#0. In this case the;square root
in eqﬁationlllzé has its argument - real and negative when
¥ is complex. The combination A1=1, Re(3)=1, on consideration
of the definitions II23, II24 (with uz=o), implies Re(w)=0.
Thus, in this case, the instability is absolute, with the

equilibrium plasma rotating through the growing stationary
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Flgure IIZ - Real and imaginary pqrts of the normallsed
complex frequency:nf;ﬂotted against the
Suydam parametex, A2, for A5=0.05,A1=-2,
AL=0,A3=1600/(m“-1). Note that the
second stable solution has been omitted
below marginal stability.

3t /Im(m“s)
m? Rehrmj

2.

1_

0] 15

Figure fIB - mY versus A2'with A1$O aﬁd other parameté}s
as in figure IIZ2.

perturbations. For other rotations, including 'the case of
stationary equilibrium, Re(®) is non-zero. However, as
" increasingly more unstable plasmas are considered, so Re(¥)

approaches A1 more closely and hence lReav)'becomes smallere.

Three features are apparent in the growth rates in figures

II2 to II5 : i) For a given m number, cut-off occurs at smaller
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Figure IT4 ~« m% versus A2 with A1=1 and other parameters as
. ' in figure IIZ2.

m=2
2t
]/
4%
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1

Figure TI5 - inzversus A2 with A1=2 and other parameters as
in figure IIZ2.

* values of A2 as IA1-1I increases. This is fhé destabilising

rotational effect discussed above. 1i) Modes become unstable
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" in order of increasing m as A2 rises. This occurs since
the effect of FLR depénds»upoh the azimuthal spatial derivative
of the perﬁurﬁation and hencé iﬁéfeases with»m. iii) As A2
risesAbe&ond the critical value,‘so modes with gréater m
becomevthe most unstablee. -The dominant insfability thus
';ncreases in m as plasmas with more adverserpressure'gradient
afe considered. . |

Coﬁparison of figure Ii6 with II2 reveals the effects
of including a negative contribution to Ak from Righi-Leduc
“heat flux. The effect on the oscillation frequency is most
marked below marginal stability. As.is evident from the
éiépersion equation, for the stable branch indicated, Ré«u)
is reduced so that the relative rotation of plasma and
perturbation is increased. Elsewhere, é lesser reduction in
Re(w) is apparent. The stabilising effect of negative Al
on the growth rate operates both by delaying cut-off until.

larger A2 (pressure gradient) is present and by reducing the

6
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4l o7 Relms)

m? |

2..
m
A

op—H4

. m: _’/

::.:: Sy~
| R 5=

________ b——

b= o s s s

Figure II6 - m§ versus A2 with A1=-2, Ak=-1, A5=0.05,
A3=1600/(m-1) . |
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Figure I17 = mzbversus Al with A1=0,1 and 2, A2=3,
A3=1600/(m°=1) ,n=3, A5=0.05.

growﬁh rate of unstable modes. As the magnitude of these

influences rises with increasing m number, the dominant m

~for a given unstable A2 tends to be reduced.

The effect of increased -A4 for various rotationé appears
in figure II7. 'Observe that the growth rate reduction is
greatest for, the weakest rotation (smallest [A1-1l ) and
that, for A1#1, the effect.on the oscillation frequency is
to_marginally reduce Re&&j and hence the rotation of the
perturbation. (Recall Re(§)=A1 implies Re(®@)=0 )

The potential of Rigﬁi-Leduc heat flow as a stabilising
agency must, however, be viewed with caution. The leading
term of Al, in expression II27, may.be written:

e d (T 4 (mB)
dr - r
L

(5 e )

ﬁlF'
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As, in practice, beta is limited‘to values considerably less
than one, large negative vaiues of Al are never likely to
occur. . Destabilisation by positive Al due to the second
term of II27 has not been considered here due to the
'limitafions in the theory discussed above.

A systematic examination of the effects of varying
rotation (A1) appears in figures II8 and II9. In figure
I18, rotational destabilisation is apparent; the effects of
adverse pressure gradient dominate in figure II9 so that
flatter growth rate plots occur. The violent depepdénce
ofEtxlAﬁ close to marginal stability is ciearly apparent
in figure II8. Again, the effects of rotational destabilisé-
tion increaée as m rises so that, as’ found pj Bowers (10) for

simpler configurations, although modes become unstable in the

12y -Im(mT) //"

0 a8

Figure II18 - m® versus A1 (rotation). A2=1.6, A3=1600/(m2-1),
© A5=0.05, A4=0. '
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Flgure II9 - m% versus A1 (rotation), A2= 3, A3= 1600/(m -1),
A5=0.05, Alk=0.

. order of their m numbers, higher m numbers become dominant

as rotation'increases. ‘FPigure II9 clearly demonstrates A1=1

(rather than A1=0) to be the most stable rotation possible.

The region O<'A1<f1 demonstrates stabilisation as rotation
incfeases. These curves clearly refleét the (§;A1)2 term
in the dispersion law by their quasi-symmetry about A1=1.
Similarly, the pseudo—anti-symmetry of the corresponding

oscillation frequencies about A1=1 (at which Re@)=0 ) is

evident.

. Figure II10 summarises the marginal stability conditions
on A2 for various rotations. To the accuracy of the
computaﬁions, the A1=2 and Ai:O curves are coincident.

The utility of the suffipient stability criterion discussed
earlier may be seen by domgaring the A1=-2 curve of figure
II10 with the § =1.45 curve of figure II1. They;of course,

agree as 1/A3>0 @?0) and the former exceeds the latter

by only 5% at 1/A3=0.03.

- Comparison of figures II11 and II10 shows the increased
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Figure II10 - Values of the
Suydam parameter, A2, at
marginal stability (A2

-y
versus the principle Fﬁﬁlt

effect, 1/A3,for different
values of A1 (rotation).
AL=0, A5=0.05.

0 1/Am3— 002

Figure II11 - Values of
AZC jpversus 1/A3 with
A5=5.85 and Al=-1 (Righi-
Leduc). The broken line
displays the sufficient
condition of figure II
for A1=-2, Al=-1, A5=0.05.

stabilisation (larger Achik) due to the inclusion of a

strong Righi-Leduc contribution to Ak. Note that this

increase is still less than one half of the stabilisation by

1/A3, the dominant FLR term.

Closer examination of figure

. II11 reveals that, even with the large ~Al included, the
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sufficient criterion of fugure II1 is only 7% too severe on

A2

2 it w;th A1=—%Nand 1/43:0.03.

5) Conclusione.

The method of Kulsrud (23) and Stringer (24) can be
abplied to the equatidn derived by Pott (30) in order to
investigate the effect of further physical phenomena upon
plasma stability t§ interchange modese. Rotation is‘
the priﬁciple effect included and is found to interact with

FLR phenomena in a manner such that the plasma is most stable

Awheﬁ itvpossesses finite rotation given by equation II31.

Although an explicit marginal stability criterion could

not be derived, analogous to that of Suydam (2), a sufficient

. criterion was produced that can be made to-yield useful

results withoﬁt'the need to program an electronic computer.
An accurate plot of the function Hﬂeven(Z) (egq. II19) along
the appropriate part of the real z“axis is all that is required.
The results of.this sufficient criterion are only 5 to 10%
stricter on'the pressure gradient than precise marginal
stability requirements in £he regime studiéd_wheréin
;otational destabilisation competes with‘rather than totally
dominates the pressure gradient.

Righi—Leduc terms; a secondary effect of FLR are shown
to hgve a stabilising efféct, small compared to the mbre
familiar terms, unless the collisionless heat flux is given

an artificially large value.
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.Chapter III.

Numerical Solution of the Collisionless Eigenvalue Equation.

1) Introduction.

Whilst the semi-analyticvsolution of Pott's (30)
eigenvalug equation in the previous.chapter provided a
géngral understanding of the effects of the many terms
present, the constraints of the apprdach do not allow .
- thorough investiéation of the complete range of.equilibria

encompassed by the model. In particular, three situations
require further study. V1)'As will be seen in section 3,
modes with small m numbers are poorly described by the analyti§
approach and, especially when clbse to marginai stability,
give rise‘fo the fastest growing instabiliﬁies-preseﬁt.

2) Vhen rotational effects dominate the pressure gradient
driving forces, the radial localisation appfoximations of
chapter II tend to break down. In this 1imit, the effects of
the inclusion of equilibrium Bg, and hence, magnetic field
curvature may be investigated by comparing the results with
those of Bowers (10) who considered the straight field limit.
3) It was noted in chapter II that the‘phenomena comfrisiﬁg
the second term in the parameter Al (equation II27) tended to
displace the dominant part of the éerturbation away from the

resonant surface (defined by: k r =k+mBg/r B =0 )

= 5 2 Tr=
r 5 rS

Large displacements of this type violate the mqét basic -
assumptions of the analysis of chapter II and must therefore .

be investigated by alternative means.

2) Numerical Method.

The eigenvalue eguation (eq. I11 & ref. 30 ) takes the

same form as that solved by Bowers (10) :

%(F ‘%:)1—67{‘. = O.'. 1111
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However, in.the present case, the main perturbations.of |
interest are éssociated with F becoming small at some
radius within the plasma. No resonant surface phenoména
wvere possible in the straight magnetic field cése of Bowers(10).
The mode localisation effects that were éo essential to the
- development of the analytic theory of chapter II are the main
1E.source of difficulty in a numerical solutionj any discrete
jmesh must have sufficient resolution to describe the
eigenfunction in the vacinity of a resonant surface. Thus,
although the underlying ideas in thé numerical method are the
sgme as those employed by Mc.Naméra (43) in the program'used
by-Bowers (10), considerable effort in develdping a new,
reasonably reliable code was required in order thét meaningful .
results could be produced. |
The functions F and G (eq. I11 ) contain the multitude .
of physical gquantities defining the equiiibrium of the plasma.
In order that these might be compéred and assigned numerical
values for the purposes of computation, a Series of scale
fréquencies was defined, eaﬁh member characterising a

particular physical effect:

Alfvén frequency: W, = o III2
. M 4 of{"
Electric rotation | E
| W, = Fx 1113
B
~ frequency: K T 320
Ton drift frequency: Vg = K .l‘ IIT4
: - —
2
eix Bz,
Axial velocity : -
W, = 22 | III5
frequency: _ I '
. X

. ‘ . ° °
Axial heat flux . _ L Vo,
: "’Q'Z_= ——3 _ ITI6
frequency: A,n 0 ‘
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Temperature anisotropy - : (7},-]1)0 2
- Wy = k S : 1117
frequency: € 2

, | M¢ N

Here, subscripto refers to a value on axis and subscript %
refers to a value at the wall. In addition, the following

were also required to define the problem:

Azimuthal mode number: m
Pitch of modé: er/m -
Normalised plasma F No K é (TL)O

- 2
pressure: . , ) Bzo /l}lo
Normalised radial -

coordinate: . X

Equilibrium profiles of the following quantities were also

n (number density) , .ELEZ_O . Tt ’éTL .2(7;/—7_‘,),
4

required: :

aBz En, $pecces  SPecies
-‘-‘
M= Be , T, " Uy -

CiBé '

With the exception of};, these were all normalised to
unity on axis. For cpnveﬁience and for clarity‘;f the
magnitude of destabilising effects, most profiles were taken
to be constant. The exceptiqns were number density, which
was usually Gaussian,)u which was usually Lorentz;an to
approximate the pitch from a central current channel
and ion temperature which was usually constantz but given
a steep profile in the investigation of the Righi-Leduc
effecte As in chapfer 1I, qgi was evaigated'by estimating
the fourth moment, R , using é double-Maxwellian
velocity distribution in lowest order. The radial

dependence of B was derived from the equilibrium
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pressure balance requirementez(eq.‘l10);'
+ -—g
27”0 '

so that: B, Bzoll +}3("‘

) fc fcc 13

=constant

FL
) Ya _
I118
where E'and2?7‘define the respective normalised profiles.
fPeres
The boundary condition approprlate to the problem is

that.g vanish at the rlgld conductlng wall where a=1. At

the axis, a=0, symmetry requirements demand that:

g =0 form #£ 1 or
' E&ji =0 form= 1
da

Numerical solution of equation III1 subject to these
boundary conditions must seek an estimate of the most unsfable
value of w( i.e. that ﬁith the largest negative imaginary
part) by approximating the eigenfunction at a set of discrete
poinﬁs. To this end, the plasma radius, 0§ aX< 1 was divided
~into a number, N, of equal steps. Empirjcally, it wae found
that as few as fifteen could be employed to obtain a rough
estimate of the frequency required when locallsatlon vas
poor, but, typically N=20 was used for a flrst approx1matlon..

Thus, differencing III1 yields:
|

g (FL‘ F,,) g ((7 iFH)+7§ En_F 1119
At

& 2% ES 5" 2§

where the vector components%fn,Fn,Fﬂ,Gn denote the respective

functione evaluated at a =n/N and the mesh step,s . equeis 1/N.
Since both F and its first derivative F'! are separately
required in III9, equlllbrlum quantities were, in fact,
evaluated 8‘/100 on either side of each mesh point so that,

for example:

‘. [ (ﬂ_)%F(hN.cl) F 5o F(“”‘ ol) F(h_;l_-_qtuv

p
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In this way, both Fn and Fé were obtained with only two
evaluations of F(a), thus minimising the computational

effort involved. This tecﬁnique also ensured that high

‘order derivatives of the equilibrium profiles were not

" explicitly required by the calculation. As these could

have been reasonably supplied only by coding them explicitly

as separaté subpfograms, this feature‘added to the ease with

which different profiles could be inserted into the computations.
The implementation of the axial boundary condition on

the m=i mode remains the only problem. TFor this mode, both

3

F and G have an a” dependence near the axis. Thus,

differentiating equation IiI1 three times at a=0 yields:

‘I-Flll(%i +6’”{=O

Symmetry demands thatz—= f- so that differencing at a=0

gives: ”,(g' ~% ) -+ 6'" =0
/ 7} 17(6 .1(§)
Since o S(Fl( F(-S)) le

44 oy Q.GI(S)

and similarly <70 ~ Sl

the boundary condition may be written:

2 d ' 1
( 6’ "‘—é—F')-i- 16 FE =0 III10
Aéu- 6‘# / [

for m=1.
Thus, since the derivatives of the equilibrium functions
F and G were readily obtainable from the coding required for

-

the difference equation III9, the boundary condition III10

'is in a form readily suited to the numerical scheme.

The difference equations III9, together with the bbundary

conditions thus define a homogeneous matrix equation forg

AnJEJ =0 , J:O,N - IIINM
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The matrix A is evidently triQdiagonal. Fdr‘a solution to

' III11 to exist, the determinant of A must vanish. Thus, the

frequency >of‘the perturbations vas estimated by .iterating,
in the manner discussed below, until det(é) was reducéd to.
zero. Since many such iteratipns were often required,
it'wasveséential to compute detté&v) ) as fast as possible.

The elements of é depend linearly on F and G which are
each quadratic in the frequency @ . Thus; before itération
begah, the‘tﬁree‘quadratic coefficients of each element of
é were calculated from the equilibrium data specified and
gtored. The computation involved in the evaluation of the
determinant was thué reduced to_fhe efaluation of a quadratic
.fof.éach element qf A, followed by the determinant calculation
from the recursion formula: (see Fox & Mayer (39))

| D =~ A

Dn+1= A2,n+1 n 1,n+1A3,nDn—1

s A , denote the three elements of the nth

1,n' "2,n? A3,n
row of é and the.Dn denote the iﬁtermediate determinaﬁts in
the sequence. Thus:
Do'= 2,0 D_1=-1 » det(a) = Dy .

In ordef to determine the roots of the determinant,
an iteration algorithm was required. Muller's method of
quadratic interpolation (40) was fbund to be adequate. This
method approximates the function concerned by a quadratic
in the region of three guesses at a root; an imﬁfoved
approximation is then obtained by taking the root of the
quadrétié closest to the supplied guesses. Thé procedure
vas iniﬁiated by selecting three points.randomly around a
single ;nitial guess. In order to produce an algorithm

capable of finding roots whose moduli might vary by several

orders of magnitude, the modulus of the difference of each
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point from the initial guess was scaled by a small fraction

of the modulus of the supplied estimate of the root. Of the -

1fdur Points selected in this way (oné supplied and three

'generated) , the one that prbduced the determinant of largest

magnitude was discarded in the manner of.Martin (41). Once
the'proceduré had been initiated in this way, the three
guésséé were in turn sequentially replaced by the results
of the applicationiof the iteration algorithm.

In order to gain an estimate of the eigenfrequency of

the most unstable mode of a given parameter set, all the

roots of the determinant associated with a mesh of as few
points as possible were obtained. This was achieved by

iterating, starting from a random point in the complex plane.

As each root,&7‘, was determined to the accuracy required

( three significant figures‘in each of its real and imaginary
parts with Zerd defined. as being less than 10-4) it was

stored and deflated from every subsequent determinant

“evaluation by explicitly. dividing bf?t(@h*do- since all of

the coefficients of W and w in F and G of the eigenvalue

~equation are real, the roots determined are either real or

in complex conjugate pairs.b'Thus, whenever a comjlex root

Qas determined, its complex conjugate was also added to th;

list of known values:to be deflated from subsequent calculations.
Havihg selected the most unsfable eigenfrequency from

the large number computed using the small mesh, its accuracy

was improved by attempting to follow its behavior as the

number of mesh points was gradually increased. For weakly

‘unstable cases, where localisation was greatest, fifty or

even one hundred mesh steps were required before acceptable

convergence of this procedure was obtained.

g -
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isinée a large number of the modes found in the initiél
small mesh cémputations consist of unphysical numerical
vosciilations, the technique eﬁployed does nof,‘in itself,
guarantee that the most unstable mode of the initial numerical
problem corresponds to that of the continuous differential
problem; there remains the possibiiity that the actual fastest
groving mode consists of short wavelength oscillations not
" resolvable on a co@rse mesh. The maiﬁ defence again;t this
possibiiity lies within the results of analytic theory; In
the pure MHD limit it is known that the growth rate‘of the
instabilities decreases monotonically as the humber of nodes
’iﬁ\the eigenfunétion increases. (see Goedbloed et al. (42) Y.
Thus, ﬁevexpectvthe most unstable mode to have a relatively
smooth eigenfunction and hence be resolvable on a relatively
coarse mesh of the type-used in the initial procedure. The
, analytic results of Kﬁlsrud (23), that were further defeloped
in chapter II, indicate that this property is maintained
when the ion-drift FLR terms are included. Applying the
nﬁmerical technique to equilibria incorporating the theof—
etiéally less common effects in the eigenvalue equation
investigated is thus seen to'involve the in£uitively justifiable
assumption that the inétébility studied is, in fact, the
most unstable. Further justification of this assumption
appéars in chapter IV (figure IV17 ) when the @ethod, on
application to a more complicaﬁed system of resistive
equafions, detected a mode with an oscillatory eigenfuntion
as the most unstable.

Two checks were employed to reveal any numerically
inaccurate,'deceptivé results. Firstly, the abiiity of a

* coarse mesh calculation to iterate complex roots in conjugate
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pairs was ascertained, before this result was eﬁployed tb
shorten the calculation. This verified that the numbers
printed out were; in fact, roots of the determinant
investigated. Secondly,nthe eigenfunctions theméelves were
regularly plotted to ensure that they satisfied thg béundary'
conditions imposed. Whilst accuratélmodes could 6ften be
piotted only with an eigenffequeﬁcy iterated to seven
significant figures or more, owing.to the nﬁmericallj
unstable procedure of iﬁverting the_difference equa#iohs
y IIT9, it was found that additional iterations of the root-
solving algorithm réquired for this did not altef the frequency
to its initial three figure accuracy.

One final technique deserves méntion.- COmﬁuting a
large number of zeros of a determinant is obviously a
.very uneconomical way of obtaining a starting value from which
to seek an-accurate result.- The growth rate of an.instability
"is clearly a continuous function of the parameters defining
the equilibrium. Thus, perturbation methods were sometimes
employed to determine the dependence of the complex frequency
of a particélar mode on a parameter of the system. This

suffers the disadvantage that it will not reveal ranges of

the parameter in question for which a differéent mode is dominant.

As the functions employed had large numbers of-roots, small
parameter perturbations had to be used in order to ensuré

that the correct que was found'at‘each step. vFor this,
collisionless,.problem the effort ip covering a range of

- parameter space by perturbafion methods was éomparable to

that of di;tinct calculation at a pre-determined set of points;
the advantages of each method could be exploited where required.

In chapter IV, economic computing will be seen to be feasible
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. only by the adoption of perturbation methods.

3) Suydam Modes.

. The primary reason for the ihfroducfion of magnetic
field $hear into a confined plasma is to restrict £he growth
of fhe electroétatic flute modes ﬁhat appear'in the straight
field limit. (See Rosenbluth and Simon (17) ). When
équilibriﬁm Bg-is introduced into the theta-pinch, the flute
modes become eiectromagneticiinterchange instabilities that
ltend to be localised in the region of the resonant surface
()U:+er/m =0 ) as discussed in chapter II. A4s will be éeen
in figure III6 the localisation of the modes tends to be
poorest at low m numbers so that the previous analytic theory
cannot be expected to apply. In this limit, the numerical
lﬁreatment of these modes, presented below, is required to
complement and compare with the fesults of chaﬁter II; the
m=1 mode can be studied‘only by ﬁumerical meanse |

Firstly, in order to‘provide a basis for comparison,

consider the behavior of the interchange modes in the absence

0l

003,

Growth rote

=002 - ' -003 -0-04
kr,/m

Figure III1 - The variation of the growth rate of Suydam
modes with normalised axial wavenumber for
different azimuthal wavegumbers withP =0.5,
¥, =10, n=exp(-0.z(a/0.3) ), o
= 0.01/(0.25+a2%). W.=0 on solid lines,
=0.0035 on broken lines.

WF

baens ™
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of_finite Larmor radius effects. (WF=0); Figuré III1 |
(s0lid lines) demonstrates the dependence of the growth rate
of Suydam modes upon axial wave-number in this limit. Since,
as marginal stability is approached in this MHD iimit,ﬂthe
" kinetic energy of the perturbétion tends to zero, the modes
become too iécalised to be resolved on a discrete'mesh; the
curves are therefore extrapolated below?réb 0.02. ( Note
that, throughout this chapter, all frequencies are expressed
in arbitrary units defined by wA=1o ). As the Suydam criterion
(2) (A2<1 in the notation of chapter II ) is violated, for
the profiles used, when er/m=-0.02, figure IiI1 indicates
that the cut-offs of the m=2 and m=3 modes shown are. in
reasonable agreement with this.resuit. At large(k; these
modes cut-off just beyond er/m = -0.04 at which value the
resonant surface collapses into the origin.

The m=1 mode is clearly an exception. Physically, the
m=1 mode differs in that it is tﬂe only type of instability
for which symmetry_constraints allow the centre of mass of
the cross-section of the piasma to move. Thus, the low |kl
cut-off occurs only when the resonant surface approaches the
rigid containing wall.

This sharp cut-off of the-m=1 instability is clearly
illustrated in figuré ITI2. When cut-off occurs, the steep
gradient in the kink-like m=1 perturbation arises close.ﬁo
the wall. Since the plasma pressure is minute in this
region, the interaction is electrommgnetic. Amﬁ%re's law
indicates that the surface currents induced in the.perfectly‘

conducting walls are:,

IGOC BzWai( "waau' v
1! ]1!- Bl = fggz dg 1II12

‘Before the resonant surface reaches the wallq dg‘wall is
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np'2~ . , m=3
2 m=2 .
L X
o
O
01t
0

2002 003 004

_ k&/m

Figure III2 - The variation of the growth rate of Suydam
modes with normalised axial wavenumber for
different m numbers withF =0.5, W,= 10,

4vn=exp(—0.5(a/0.3)2), szo,}l=O.O4/(1+a2).

small so that interaction is minimised. I;'=O when the
resonant surface occurs at the wall since, by definition,
k =0 in that case. When the surface has passed through the

wall ] ‘ls
wall, however, kwall is finite and Z}

wall is very large
so that I; becomes significant and generates the mode cut-off.
The manner of this interaction explains the abrupt nature of
the m=1 cut-off illustrated in figure IIIZ2. A further
example appears in figure IIIS8. .

The centre of the er/m spectrum shown in figure III1 ™
is dominated by the higher m modes; observe,however, that,

as the resonant surface moves into regions of more adverse

pressure gradient, the modes become_unstéble in order of

their m numbers. ILargest growth rates are seen to occur

when the resonant surface lies in the region of greatest

~
L

pressure gradient.
The effect of magnetic field shear on the instabilities
may be seen by comparing figures III2 and IITI1 (solid lines).

In the former case a considerably less steep profile of magnetic
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‘ ‘ 'Flgure III3 ~ Bigenfunctions in the

| absence of rLR. w p=0y W,=10, p =0.5,
gt | - 7 m=exp(-.5(a/0.3) ), er/m—-O -035, m=3
o - . ) M=0.01/(0. 25+a ).
|

!

I

|

2)p =0. ol/(1+a%) .
The broken lines indicate the
I resonant surfaces.

—O

Radius —>

pitch was employed. Note that, although the two sets of

curves have the same general shape, growth rates are much
greater in figure‘IIIa.' Comparison of the eigenfuncétions of
the two examples for m=3 at er/m =-O;035 in figure III3
indicates that weaker shear produces considerably broader
eigenfunctions. This is intuitively expected since the

region on either side of the resonant surface, for which the
miémétch* betweeﬁperturbaﬁion and magnetic field helices is
suffiéienf}y sﬁall for interchange effects to be energetically
favoured is gonsiderably‘ﬁroader in the weak shear case.

The result of increasing the effect of FLR (W) for a
fixed axial wavenumber ié‘portrayed in figure IIT4. Note
that, in this case, the electric field (W) was zero so that
the plasma had a net equiiibrium rotation givén by the ion
drift arising from the Hall terms of Ohm's law (eq. A7). The

m=1 mode in this diagram is seen to be affected only weakly

~ by FLR in comparison with the higher m instabilities; W

increases in effectiveness as m rises, howvever. This may be

understood as the effect arises in the stress tensorfr}
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Figure III4 - The stabilisation
. of Suydam modes by FLR effects,
with ¥, =10, B -o0.5, -
er/m = =-0.03, '
2
n=exp(-0.5(a/Q.3) Y,

M =0.01/(0.25+2°) .

Growth rote

W

e et
i d

‘Larger m implies larger and hence thatz'lf will exert a

, Fae
'greatef influence upon‘fhe perturbations. The phase-shifted
ion currents that cause FLR stabilisation thus increase in
magnitude as m rises.
‘ Figure IIIS indicates that, as wF riseé, the frequency’
of oscillation of the perturbations (Relw) ) rises in préporfion
to mwF. Sinée Re(w) is positive‘for the examples shownAin
this figure, this agrees with the result of chapter II that,
when A13>1, then Re(;) > 1 -at marginal stability. (A1=1.77

at the resonant surface for the curves of figure IIIS).

Figure IIIS -

s Frequency of oscilla-
0-04 tion of the
O instabilities of
tor=Re) m=] | figure IIIk4.

001 0'b15
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At this point, some idea of the temperatures involved in

- these stabilisation effects is pertinent. Using the_éxpressions

k]

III2 and IIT4 , we deduce that, with B_=1T, n= 10"n3,

r =0.3 m, T =500 eV avd W,=10,then W =0.003. Thus, in

F
figure ITII4, the m=2 mode.cuté off at an ion temperature of
about 1 keV for the pdrameters.quofed.

The effect of FLR on the axiél wavenumber (k) spectrum
is.indiéated by the broken lines of figu;e III1. Note that
the region of sharply farying modes, close to the MHD cut-off,
that could not be previously resolved is completely stabilised.

As the stabilising efficiency of FLR increases with m, the

peaks of the separate spectra now occur in reverse order of

* m number.

" Increased ion temperatﬁre causes the.eigenfunction to
become complex?_a small imaginary paft being generaéed as
WF rises. This signifies the superposition of a small
amplitude radial travelling wave upon the main, growing,
standing wvave component. Figure III6 illustrates this efféct
at a given value of Wy

expanded scale on the imaginary parts in this diagram.

for various m numbers. Note the

Imposed normalisation ensures that‘g is real oﬁ the first
mesh point near the axis at which it is non-zero. As m
increases at constant WF; so the corresponding growth rateA
falls until, when Y =0, Ig(g) vénishes. (All»cbefficieéts in
the eigenvalue equation are then pure real). Since, in the
special Rpsenbluth and Simon (17) casé of rotation (A1=1in

chapter II) the eigenvalue equation may be transformed to

2
be purely dependent upon @ which is then real in all cases,

‘the eigenfunction,g, is then also real. Thus, the phase-

shifted component of the perturbation is a result of the
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Figure III6 - Radial dependence of the complex eigenfunctions

of figure III4 with WF = 0.002.

destabilising influence of non-optimal (A1 £ 1) rotation

in the equilibrium.
| Figure III6‘also indicates the increased degree of mode
localisation at larger m numbefé. At m25 they appear
symmetric about_the resonant surface and show little of the
distortiﬁn associated with proximity to the axis. As FLR
rises from zero, in the’ménner of figure TII4, the mode
structure varies little ééart from the introduction of the
imaginary, phase-shifteé; part at small W

F

contraction of the latter as cut-off is approached. 1In

and the subsequent

particular, finite gyro-radius phenomena make no significant
alterafions to the scale length of the perturbation as WF
increases from zero to the magnitude required to quench the

instability. Recall, however, that very narrow MHD modes are

stabilised by very little FLR. This can largely be explained

by observing from figures III4 and III5 that the reduction in
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lla)lis a small fraction of the growth rate in the MHD limit.
Thus, the kinetic eﬁergy associated wifh the perturbation and
hence the w1dth of the resonant region, varies little
(fractional change in kinetic energy oK
'temperature is raised. FLR thus converts the kinetic
_energy of the MHD absolute instabilities into that pf
fapid, but stable,;oséillatiOns at lafge:WF.
Before proceeding Qith furthg; results, a more quantitative
comparison ‘of the numerical.oﬁtpuf of this chapter with the
theory of the last is in order. Precise agreement cannot be
expected owing to the contrasting approximations, and hence
regimes of validity, associated with the two calculations;
16calisation.effects require that chapter II be valid for
large m and this chapter for small m . Table III1 compares
the value of the Suydam parameter, A2 (eq. II25) calaulated
7 for flgure III4 with values estimated from figure II1O using

the cut-off Wp's from figure IIIL to evaluate 41, A3 and AS

(eqs. II24, II26, II28 ) at the resonant surface.

Table III1

No. of a Aacrit
mesh m W A1l A2 ] A3 Al . A5 :
points Fcut-off : f;om

N | _ B | fig«IIi0
100 2 0.0072 1.7713.92 0.031 0 p.038 3.8%0.1
100 3 0.004 177392 0.026 { 0 p.012 3.7i0.05
100 4 0.003 177 1392 0.027 | 0 pP.00O7 3.75%0.05
100 5 0.0025 177 ]3.92 0.03 0 pP.00s5 3.9%0.05

In this case the modes have large growth rates in the
- MHD spectrum of flgure IIT1 and correspondingly broad, well

resolved elgenfunctlons. Thevcorrespondence of the actual
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Suydam parameter with the cuf-off value predicted from
figure II10 is seén to bé remarkabiy good. The predicted
value is,'in all cases, slightly too small énd thus too
pessimistic of the requirements for stability.

When the growth rate is smaller in.the MHD limit so
that thebeigenfunction is correspondingly thinner and less
vell resolved; less precise agréemenf.between the two
| results is found as shown ?h table-IIIZ with er/m=-0;025
using the parameters of figure III1. .

’ Table TII2.

N m|W TA1 A2 1 Al A5 | A2 .
cut~off A3 from
| fig.II10
50 2| 0.0051 1.84 | 2.01 | 0,011} -0 pb.o24 2.9%0.05
100 3| 0.0021 1.84 }2.01{0.005| o b.oot 2.5%0.03

Table 'I1T3 displays the comparison for the cut-offs of

figure III1 (broken lines).

Table ITI3.

N m er/m A1 A2 1 Al A5 A2
at

g Crit-
A
“cut-off 7 from
fig.TI1I10

30 2 | -0.0245 1.85 |1.88 | 0.005 | 0 p.011 2.45

100 | 2| -0.028 1.8 |2.99 [0.016 | 0 b.o1 3.2

Agreement appeafs better for the .larger m number in both
tables III2 and III3 as the differing numbers of mesh points
cannot account for the discrepancies involved. Thus, in
these cases, the increasing mode localisation thét arises as
m becomes larger éppears to reduce the disagreement between
the numerical and fheoretical results. Note that, in the

last two tables presented, the theory of chapter II over
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_estimated the size of A2 that could be stabilised by the FIR
effects present éo that the:effecfs of delocalisation at low
m appear unfavograble to stability.
'In order to investigate the effects of the Righi-Leduc
terms that appeared in the first term of A% in chapter II,
an ion’temperature profile with a steep gradient in the
neighbourhood of the reéonant surface was employed. As
this had the dual effect of altering Qi , and hence the
effect of the familiar diamagnetic‘terms, és well as
introducing a qéi contribution, computations were performed
. both with and without the heat flux terms included. The |
fesults are shown in figure III7. Clearly, in spite of'the
very steep temperature profilé employed, the Righi-ILeduc
- terms have only a minor stabilising influenée on the instab-
ilities.' This can be understood in the context of the theéry
of chapter II since, for the parameters and ﬁrofiles employed'
in figure III7, the value of the quantity A4 (equation II27)
.is found to be only -0.13.‘ Thus, whilst larger values of this

quantity can be expected to produce a greater stabilising

oo

——— with Bx YT '

— — without Bx¥T

Figure III?7 - FLR stabilisation of
Suydam modes illustrating the
effect of the Righi-Leduc heat
flow.

W,=10, B =0.5, lzcrx/m=-0.03,
M =0.01/(0.25+a%),
- n=exp(~0.5(a/0.3)),
?z0cexp(—50a4).

004~

* Growth rote
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influeﬁce, they can only ariée in' exceedingly unlikely
physical situations. qéivenfered the problem as a physically
cohceptually difficult cross-effect in the stress ténsor
.‘whefeby the-distqrtion of the distribution function .
constifuting heat flow contributed to the equation of motion
‘of the plasma. Its effect in realisable configurations may
thus intuitively be expected to be of smaller magnitude than
formally considefed in the expansion of the Vlasov equation -
that lead to the eigenvalue equation considered.

So far, the calculatioﬁs havé been confined to phenomena
assoclated w1th a single resonant surface within the plasma.
Current distributions confined to surface layers tend to
arise in pinch-1like devices and give rise to profiles of/xthat
are peaked off axis. Modes posessing two resonant surfaces,
one on each side of the peak °€V , are thenvpossible. Such
a situation is modelled in figure IIIS. Clearly, no resonant
surfaces exist when -er/m exceeds the peak value o%u ,but
as the former is peduced below the peak, two surfaces appear
in the plasma.  Further reduction of the mode pitch causes
the innermosf surface to contract into the axis so that
when —er/m (/.1 axis only the outermost resonant surface
remains. At very small mode pltch this expands through the
bounding wall.

The MHD (solid) curves of figure III8 afe readily
explained in terms of the behavior of the resbnant surfacese.
uaximum growth rates occur where the two resonant surfaces
cbalesce, %F/da = 0 and A2 diverges. In this region{ growth
ratgs exceed those of the single resonant surface case
(figure ITII1) by almost a factor of two, indicating the de-

stabilising influence of the extra surface. Increase of
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Figure III8 - The varlatlon of the growth rate of Suydam
modes with normalised axial wavenumber with:

P_o 5, W,=10, n=exp(-0. 5(a/0 3)%),
}1 =0. 003(1/(0 08+(a=0.4) 2y + 1/(0 08+(a+0. 4) ) )

WF-O on solid lines, WF-O.OOB on broken lines.

—er/m beyond this value removes the resonant surfaces from

the plasma so that, for m »1 at least, shérp cﬁt—offs occur.
The low [k| cut-off of the m »1 modes occurs as the inner
resonant surface contracts into the axis. Although the outef
surface remains, it is stable to Suydam instability (A2=0.15
<& 1 ) since the plasma density, and hence pressure, is small
.at the radius concerned. The m=1 mode is plainly insensitive
to the Suy@gmlcfiterion. At large [kl = géntle cut-off is

present after the resonant surfaces vanish, but at small (kl

Figure III9 - Radial dependence
- of the complex eigenfunctions’
of figure III8 with Wp=0,
er/m-—o 035.
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the truncation ofvthe‘curve indicated arises as the outer
resonant surface passes through the wall.

The eigenfunctions associated with two resonant surface
.phenomena are of inherent interest. Figure III9'displays
these for the case er/m = =0.035 for which fiéure III8 shows
that both resonant surfaces play an important role. All
three modes in figure 1119 di;flay-pfominent featurés associated
with each resonant surface. df/dr is greatest, in all cases,
at the outermoét surface where the plasma density and hence 
inertia is less.' The m=3 mode,vin particular, appears to
indicate that the relative ease of perturbation at thevtwo'

resonant surfaces allows large displacement of the volume of

‘ plasma in the intervening region.  Figure III10 pbrtrays the
m=1 mode as the axial wavenumber is varied through the sPectrum‘:
of figure III8. Note that a prominent feature exists at tﬁe'
oufer resonant surface fhroughout. As this passes through
the wall, the large perturbation'gradient involved generates

‘the perturbed wall currents causing cut-off as described

ke, /m=0-01

Radius———— 1
1

Fiéure 11110 - Eigenfunctions of
the m=1 mode of figure IIIS8.

kry/m=0-025
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previoﬁsly. At larger ikl . fhe mode coﬁcéntrates around
tﬁe radius at;whi@h/u‘is maxi@um. Close to their low lk'Cut;
off, explained above, m»1 modes wére'found_to show only a
very small feature at the outer resonant surface compared to
a large, highly localised perturbation near the axis. |

The broken cﬁrves of'figurg III8 indicate the effect of
FLR on the perturbétions. Note that,'as tﬁe'ion temperature
profile‘is constant and the density profile Gaussian, the FLR
. terms of the eigenvalue equation vary only slightly, due to
finiteF’effects, betwéen wall and axis. Thus, increased wF
succeeds in stabilising the low ’k,'end of the m=1 mode where
dg/dr is largest. In a physiéal situation, reduced ion'
temperature near the wall would reduce this effect. The
. highef‘m modes are influenced more strongly by FLR. As in the
- single surface case, the‘greatest inflﬁence arises near the
low lkl cut~off where‘the most localised perturbations occur
that are the most difficult fo_;eéolve oﬁ the discrete qesh'
of the numerical scheme. |

L) Rotational Effects.

Instabilities associated with a rotating cylindrical
plasma were studied extensively by Bowers (10,27,28) in the
absence of Bg in fhe stationary state. The work of this section

pdrsues these effects into situations with B, present.

e
Just as the pressure gradient term in G of the
eigenvalue equation (I11) drove the Suydaﬁ modes, so the

2
term containing a;i[ ¢ (w, - ”.;_ile)]produces rotational

effects. ‘Since ﬁ), contains the Doppler shift, mug/r, this
tern is independent of Ugs it does, however, comprise the

only term in (9 in the equation not involving the combination

NN S St ot e e
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uJ+mug/r and, as shown in chapter II thus éives rotation its
_destabilising in?;ugpcg{ w;Lj_‘ |

When the ﬁreséure gradient effecﬁs responsible for'the.
_Suydam,modes'are small compared to the rotational term
‘and axial velocities negligible, the axial wavenumber, k,

and the azimuthal ﬁagnétic field B, are only important in the

e
: compination k+mBg/(rBz)A. This is the component of the
wdvenumbef in thé direction_of the magnetic fiéld,(g.g)/B.
Thus, phenomena pertaining to k=0 in Bowers (10,28) work
occur at (5.2):0 in the present cases An example of this
may be seen in figure III11 for which 39/(bBZ) was taken
to be 0.05, independent of radius. The slight deviations
from symmetry of the diagram about kr#/m ==0.,05 arise from
the residﬁal influepce of the preésure gradient as a large
axial béta was empléyed. Whilst figure III1i differs little
fromvthe resultsnof Bowers apart from the shift in wave-
number;~the m=1 mode deserves further comment. The diagram
" plots the behavior of the most unstable mode for each me. The
discontinuities that appear in the frequency (Re(w) ) of the
m=1 mode clearly indicate that different modes dominate in
different pa}ﬁs of the speétrum.‘ It was f;und that'the
dominant mode in the ceéntre of the spectrum,>characterised by
the largest‘frequency of.osdillation, possessed a radial node
whereas the outer wings bf the diagram are produced by the
more famiiiar Tkink!-type seen prévioﬁsly in the WE=O limit
(e.g. figure III6). The f;rmer type of m=1 mode will hence-
forth be described as the 'wobbling'! mode.

| The dominance of the wobbling mode at k=0,:BG=O was

ascribed by reference (28) to result from the requirement

that the centre of mass of the plasma should not move so
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0 o
: o er/f.ﬂgl

Figure III11 - Growth rate,(73 and frequency (Wg) versus

normalised axial yavenumber for W,=10,M=0.05,
n=exp(—0.5(a/0.3) P P =0.5,'WE=1’ "]F=Ooo1.

that the kink mode could not arise. This requirement may be

violated for k=0 when either BQ%O or the plasma extends to

the wall. In the former case, equation III12 indicates that

an electromagnetic wall reaction can occur and-.in the latter,

finite plasma pressure at the rigid wall causes a-net force
on the plasma column.v‘The effect of increasing the latter
may be seen in figure III12 where the width of the density

distribution is varied. At sufficiently large wall pressure,

.the growth rate of the kink mode can be made to exceed that

of the wobbling mode. The form of the eigenvalue equation



e e s T e s e, A e e o s e

T k0w
. ;_;_____;—~’f’”/”1¥”fT
o5 - \
": @y,
‘ L
(\AS
02
0 - 1
015 0-25

o

'Flgure IIT12 - The dependence of the growth rate (3) and
frequency (wp) of the two m=1 modes at k=0
upon the width of the density profile,o .

M. =0, W,=10, ¥ =0, Vp=1, n=exp(-0.5(a/& )7).

solved indicates that, at low beta, properties associated

- with k=0 when B.=0 are associated with E¥k+mBg/(rBé)=O in

e
the case of figure iII11. In this case, hewever, since k#0
when E%Q there is no implicit constraint on motion of the
centre of mass of the plasma cross sectien. The reason for
the weakness of the m=1 kink mode when k=0 everywhefe and

‘the plasma is cold and tenuous near the wall lies in the
characteristic‘of the perturbationbin this limit of leaving
 the direction of the magnetic field unaltered. This feature
cadses neighbouring plasma cross sections not to interact with
one another so that,»again, the centre of mass of each must

- remain fixed and the kink mode is subdued.

Resonant surface effects must again be considered when
/}(°CB9/(rBZ) ) is a function of radius. A range of.values
of k now exists for vwhich k=0 at some radius within the
plasma. As the rotational effects considered are, however,
considerably stronger than the effects of pressure gradient,

localisation is poor so that the constraints of chapter II

are readily violated.
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Flvure III13 ~ The varlatlon of growth rate (¥) and frequency
(@g) of rotationally dominated modes with
‘normalised axial wavenumber W1th°F =0.5

Wp=1, V=0, M =0. 01/(0 25+a )y -

n—exp(-O 5(a/0.3) ).

a).The m=1 'wobbling' mode.
b) The m=1 'kink' mode.:

Figure,III?B.employs the Lorentzian profilerf}Lused
in section 3 for the study'of Suydam ﬁodes. (0.008<yr<b.o4).
. Clearly, whilst the unstable range of er/m is. determined
largely by the existénce of a resonant surface, this range
extends beyond that of/ﬂ in both limits for all the m numbers
shown. Clearly, these excursions from resonant k values are
.less than those of figure'III11 displaying the stabilising
influence of magnetic shear in demanding enérgy to bend the

field lines.

The most unstable mode pitch (er/m) occurs with a

resonant surface much closer to the wall than in figure III.
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Figure III14 - Eigenfunctions for the m=1 modes of figure
1II13. S
a)'Wobbling’ mode with kr_/m=-0.02.

b) 'Kink' mode with kr¥/m=§0.035.
Broken lines denote the resonant surfacese.

As the centrifugal force at a particular radius depends on
e r for a-given rotationvfrequency,,ug/r; this ﬁendency.for
fhe most unstable pitch to decrease is qualitatively explained.
"‘Thus,»as rotation succeeds pressure gradient as the dominahﬁ
driving force for instabilities, so the most unstable
resonant surface occurs at larger radius.

The m=1 mode merits further discussion. Figure III13
shows that, whilst>§he wobbling que_dominates the kink
mode near the most unétable k number, the difference in
'growth rate is slight. The two types of eigenfunction con-
cérned are portrayed in figure III14 and clearly display none
of the localisation to the résonant-surface seen in figure
III6. At k=0, the kink-type m;de dominateg, indicéting the
" influence of Plasma-wall interaction. Equatio; IITI12 shows
that, in this 1iﬁi£, the wall current is prppbrtiénal to Bg.
The manner in which the growth rate jncreases as the magnitude
of}A is reduced is displayed in figure II115. From this, we
conclude that, for this example, the wall interaction
allowing the kink-type modé derives principly from the broad

. equilibrium plasma density distribution employed.(see fig.III12)
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Figure III15 - The dependence of growth rateﬂ{, and frequency,
Wp , on the magnitude of Bg for the k=0, m=1,
kink-type mode. - ‘

Wp=0, W=1, W,=10, P =0, n=exp(~0.5(a/0.3)%),

p =% (0.01/(0.25¢a%) ).

Figure III16 employs narrower density and pitch profiles.
Although f’lwan is less than that for figure III13, the '
greater centralisation of the plasma méss ﬁas produced the
most unstable resonant surface much closer to the axié. In
addition, the m=1, k=0 instability has a considerably:
reduced growth rate due to the smaller plas@a—wail interaction.

Comparison of figures III16 and III17 reveals the
distinctly curiéus:effect of including FLR (WF). Whereas,
near the large ‘k‘ cut-offs of the n1>1-spectra,‘gyro-viscOUS
stabilisation is plainly evident, in the vicinity of the
spectral peak of m=2, larger growth rate has arisen. This
phenoﬁenon will bﬁtdiscussed later. The contribution of beta
may be seen by gomparing figures III17 and III18. Larger B,
and hence increased gyro-frequency caused by finite beta
rgduces the destabilising influence that the FLR appears to
have generated in figure III18.

The two m=1 modes behave differently under the influences
of P and WF so that the window of dominance-of the wobbling
mode varieé considerably as a result. Finite beta is seen
to encourage the kinthype mpde whereas the wobbling-mode,

"that-possesses_the more complicated eigenfunction containing
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Figure III16 - Ax1a1 wavenumber dependence of the growth rate

~ of rotational modes. V=1, W,=10, ‘6 _o 5,

n=exp(-0;5(a/0.14)2),JU =0, 004/(0 1+a ).
a and b denote dominance of wobbling and
kink~type m=1 modes respectively in the

regions indicated. :

20 0. )
0-02,.k X/OOA

Flgure IITI17 - Growth rate spectrum with FLR included
(W_=0.04) and other parameters as in fig. III16.
The window of dominance of the m=1 wobbling
mode is indicated.

0
| =002 r,/ 004

.Flgure II118 - Growth rate spectrum with =0 and other
parameters as in figure III17. The window of
dominance of the m=1 wobbling mode is indicated.
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the larger derivatives, is réadiiy.stabilised by increased WF.
Temperature increases thus cause the wobbling mode to be less
important thén the kink. 'Additional computafions have

revealed that'reductioh,im elgctric rotation (WE) leads to

kink mode dominance so that, as W

E‘falls to zero, the spectrum

pf figure IIIN finall& results.

An explanation for the peculiér-effeqt of FLR on the
‘rotationélvmodes may be gained from figure III19. As WF
- rises, the Hall term in equation II29 gives an increasing

contribution to the net plasma rotation. When WE>'O, this
contribution augments the ExB rotation and Qicefversa.
E:Q.E, the increased rotation dué to the initial

rise in WF causes destabilisation. Further increase causes

Thus, with W

gyro-viscous stabilisation to dominate so that cut-off results.

Rapid stabilisation when W_=-0.5 is explicable since rotation

E

decreases and gyro-viscosity increases as W rises. The m=1

F
mode in the diagram is of the kink type. As the effect of

04

0‘4 n1:3
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W; We

Figure ITI19 -~ FLR stabilisation of rotational instability
F:o-.5, ¥,=10, L:rﬁ/m:-0.028,}l =0.01/(0.25+a

- n=exp(-0.5(a/0.3)%). a) W =0.5, b) w'E=-o.5.

2)’
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gyro-viscosity is greater in the eigenvalue“equation, I11 for
larger d§/dp, the peak_groyth rate for the'wobbling'modé
occursvgt smaller WF than.for the much smoother kink mode.
Nearer marginal stability, fhe destabilising effect of any
rotation present is, by.defiﬁition, small so that the peak .
-growth rate oécurs'at avsmallér WF as, for example, the largé
'Ik)cut-off of figure III16 is approached. Thus, the effect
- of FLR in figure ITI17 of stabilising at large [k , but
increasing growth rate at smaller lk‘ is readily explained.

The very mild influence of FLR on the m=1 kink mode,
discussed above, is emphasised by figure ITII19. Figure I1120
employs a profile of ion temperature with a steep gradient in

~the region of the resonant surface. Whilst this.has only
minor significance for the mD1 instabilities, the dependence
~of'the m=1vmode growth rate on WF is considerably altered. |
Even for the ver& large ion temperatures (WF) considered,
no cut-off is apparent. Observe that no peaking phenomenon

occurs at small wF. This suggests that the roles of rotation

04

n1§1

0 1 i 1 ) 1

01 w, 02 03 0%
Figure IIT20 - The effect of an ion temperaturé profile on
figure III19.

?incexp(-50a4), Wp=045.
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and gyro-viscosity have been re#ersed at small WF and that the
two effects tend to canéel at high ion temferatures. Such an
extreme sensitivity to profile indicates the caution_fequired
when attempting to apply numerical résﬁlts of this'type ih'a
qualitative wéy to any real plésma.

As the-rotation included is such a strong destabilising
influence, the-températurés concerned are very 1afge. Ih
~order to gain some estimate, consider B = 1T, n = 1019m—3,

r_ = 0.3m as for figure III4. This indicates that the m=2

x
mode is stabilised at T ‘L4V1Okev. As modern devices operate
at considerably lover temperatures, the influence of a large
ExB rotation of positive sign might éasily become more -
dangerous és the ion temperature is ‘raised.

Finally,‘in this section, we consider thé effect of
varying the electric rotation, WE.

the Suydam limit discussed extensively in section 3. As

WE=O corresponés to

mentioned above, reduction in W_ causes the kink-type m=1

E
mode to dominate the wobbling mode. Figure III21 portrays

the dependence of growth rate on WE when FLR is included.

08

Growth rate

. e e . ___,,_VIE . - )
Figure 11121 =~ The dependence of growth rate upon'?xB rotation

when FLR is included. W,=10, p =0.5, wF_o .01,
. kr /w=-0.03, n—exn( 0. 5(a/0 142 )
)1 0.01/(0. 25+a e
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In its absenee, of course, such a diagram would be symmetric
aﬁqut wE=o. Inclusion of FLR makes the flot appear symmetric
abouf Wp=-0.2. At.this point, equation IT24 yields A1=1.0k
.whiéh agrées with the A1=1 predictidﬁ of chapter II‘within
the limits of the numerical error of the computation. The
diagram emphasises the relative insensitivity Qf the m=1
mode to rotational destabilisation compared with m >1 modes.

5) Heat Flux Modes.

As heat fluxes entered thé problem via peculiar cross-
effects in the stress tensor rather than via an energy
equation, their influence cannot be readily understood..
Previously, in section 3, the effects of'the Righi-Leduc
flux were considered;.here ve consider the role of axial heat
flow, q;i. Recall that this involves only the fiux of gyration
(perpendiculaf) energy.

The study of the effe&ts of q;i allows investigation of
the second term of Al in equation 1I27. This could not be
adequately described by thg localised theory of chapter II
as its magnitude was severely limited by the constraints of
that theory. The main features of the results discussed
below also apply to ﬁhe effects of dq;?/dr and to a large
extent to those of duz/dr as well; these are the other
contributions to theArelevant term of Ab.

Figure III22 displays the effect of the parémeter WQZ
on the growth rate for both diréctions of axial heat flow.
At large WQZ’ the main effect of this parameter is to allow
the function F of the eigenvalue equation (I11) to vanish
within the plasma even when the growth rate is non zero.

Thus, including the terms of immediate interest, F=0 implies:
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Figure I1i22 - The dependence of growth rate upon the axial
flux of the ion energy associated with thermal
velocity perpendicular to the magnetic field.
The right hand half concerns d-~ in the positive
z direction and the left hand half,
oppositely directed. Solid lines relgte'to
W_=0 (no FLR), broken lines have W =0.03.
ﬁF_o 5, W,=10, krﬁ/m—-o .03,

n=exp(-0. 5(a/o.3) ,/a =0.01/(0.25+a%)

Qw,(w,— :Mﬁé?,)):ﬁ-f(k + ':%:f)t(k +M[;Bi\—m—r%:‘ jgz 1113

where qgl has been substituted from equation 116 and the

Righi-Ledug contribution omitted. Since the appropriate choice
of k will make the right hand side of eqﬁation III13 negative
for any non-zero q;i, this implies that unstable heat flux
modes of this type always exist if all k valu%srare allowved.
Since equation III13 applies at every point within the plasma,
it describes a contihuum of instabilities, the most unstable
mode of which is plotted in the large q;i‘parts of figure I1II22.
Caution must be exercised at this point, however, since the
vanishing of F within the plasma causes a singularity in the
eigenfunction at that point. 'Since the ordering gpproximations
on the scale length of the perturbation break down in such a

situation, the physical reality of the singular modes at
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- large q, is questionable.

The importance of ihvestigatinglthe form taken by the
eigenfunctiohs is emphasised by a situation of this sort
wherein the growth rates‘ére independent of changes'in mesh
;izé, but the modes appear unphysical. Such modes will be
further discussed in section 7.

 The effects of finite Vg, ds indicated by the broken

lines of figure III22, are largely accounted for by the

‘presence of the diamaghetic term in equation ITI13. The

apparent peculiarity of the m=1 mode in this case afises
Qs & 2. 5, this was
indicated by a frequency change in the results calculated.
At sméller WQZ the growth rate'Curve§ displayed merge
into those of the Suydam modes discussed in section 3 .
Recall from chapter Ii that the heat flux contribution to Ak

was shown to move the mode localisation away from the

—

Wez =0

k WeuzD3
Wox= 06 Fizure II1I23 - Eigenfunctions for
" Radius— the m=2 mode of flgure IIT22 with

) q <O wF_O .
Wy20-9

Wo=1-2

(

O
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resonant surface. This effect may be observed in the computed
éigenfunctions when the Suydam médes are perturbed by small
amounts of axial heat flux. Figuré III23_demonstrates this
for the‘m=2 mode of figure III22 with q;%( 0. As the mode is
displaced by the increased heat flux, so the sharp gradient
preseht becomes steeper unfil a singularity dev§1ops. The
. position of the singularity is given by that of the minimum
of the (negative) right hand side of equation III13. This
ﬁclearly indicates fhat, at this stage, the stress tensor
| contributi@n of q;icombletely dominates the more familiar
'intéfchange driviﬂg force.

It must be stressed that q;i was included in the
description of the equilibrium without reference to any
possible mechanism by which it might be produced. Whilst
this is formally consistent with the derivation of -the
eigenvalue equation, it probably implies a vélocity
distribution function éf a type unlikely to occur in practice.
Thus,~the extreme conditions that'produce the singular
instabilities probably correspond to unphysical situations
and the useful results of this section are largely the
demonstration of the manner in which Suydam modes are
perturbed by small amounts of gzi.

6) Pressure Anisotropy.

Two effects occur as the temperature anisotropy
parameter, WM’ is increased from zero. At small values,
the main effect is to increase the magnitude of the
1nterchange mode dr1v1ng force which is proportlonal to

(éié!;L+R# ) The effect upon the growth rate is thus,

at small W, , a general magnification -L( 4 5(0”)///0[")
oy # generat mgmirieation Ul ()

evaluated at the resonant surface as seen in figure III2L.
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Figure IIi24 ~ Dependence of growth rate,?f, upon temperature

anisotropy, e W,=10, er/m=-0.03, =0.5,

n=exp(-0.5(a/0.3)%), M =0.01/(0.25+a).

WF=O on solid lines, wF=o.02 on broken lines.

As the growth rate rises, with increasing WM’ so the width of

the perturbation about the resonant surface rises due to the

increaséd kinetic energy involved. This is displayed in
vfigure ITI25. Clearly, the destabilisation mechanism displayed
in figure III24 is the addition of extra parallel energy to
the plasma that may be released into the magnetic field

distortion when the interchange mechanism operates.

-

| m=2 Figure III25 - Eigenfunctions
| for the W_=0 curves of figure
; a b C II12’+; a)§M=O, b) WM=15,
1 c) WM=30.

m=3

a b C

Radius ———
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Figure III26 - Growth rate,?(, of the dominant mode versus
normalised axial wavenumber: W, =10, wM=15,

ﬁ =0.5, W,=0, n= exp(—O 5(a/0. 3)5),

=0. O1/(O.25+a ). W =0 on solid lines,

WF=O.02 on broken lines.
At larger values of wM, tﬁf effectlve Alfven speed, C
2 I
given by: CP = =~ —B~ "‘f(P/fP))
)p Q o spetieg
becomes imaginary so that the growth rates increase due to

ff.’

this additional effect. This is the fire-hose instability (35)
driving mechanisme. Note; from the function F of equation I11
that the terms responsible vary as (k ii@_e) Qﬁﬂ Thus,
the axial wavenumber spectrum of figure I1126 displays, at the
extremes of k where (k+mBg/(rBz) ) is large within the plasma,
a significant contribution from the fire-hose instabilitye.
Observe that, because of the presence of this mbde} associated
with large (k.B) rather than with the presence of a resonant
surface, no cut-off wavenumber is present for the set of
parameters used.

At the low Ik, end of théfspectrum of figureinIZG, the
fire-hose instabilities present result as ( k+mB,/(rB,) )2
becomes large due to the nén—cancellation of the B9 cbntribution.

As the Suydam term in G of the eigenvalue equation I11 is

proportional to k2, it makes only a small contribution in this

e e
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limit. Thus, as in the case of heat flux modes, the growth
rate is given by an F=0 dispersion law: | 2

" m Bo 2
w (w— 2d (%)) (ke ) Cp
v QT’J} K r oz
and is accompanied by 51ngular instabilities of non-physical
éppearance, localised near the origin where the maximum
growth rate is produced.",CIearly, such eigenfunctions

indicate failure of the analysis in this limit. The fire-
Mgé?

hose instability that dominates the spectrum when ('k + [‘B
: =z

becomes large at large (~er/m) ( to the right of figure

III26 ) differs in this respect. In this case, the Suydam
term in G‘makes a significant contribﬁtion and the resulting
inétaﬁilities are spread out over the entire plasma radius.
The inclusion of FLR is indicated by the broken Eurvgs
of figure IXI26. Clearly it has little effect on strongly
unstable firehose modes, but produces considerable growth
rate reduction of the m > 1 modes in the interchange-like
part of the spectrum. The m=1 (kink-type) mode again shows
very slight succeptibility to FLR effects. .
(Note that figure IXIIZ26 differs from figure 17 of reference
(30). This“arisés from a program error in the temperature
anisotropy term of F discovered subsequent to publication).

7) Some Comments on Singulaf, F=0, Instabilities.

In sections 5) and 6) of this chapter, large axial heat

flow and large temperature anisotropy respectively were shown

-:to produce continua of singular modes characterised by F of

the eigenvalue equation,I1ﬁ,vanishing within the plasma. The

instabilities calculated in these cases corresponded to the

most unstable part'of the continua and hence related to F
vanishing as the one particular point within the plasma that

produced the largest growth rate. Normal mode analysis

f
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profides a'péor describtionAof the perturbafioﬁs in situations - -
of this soﬁt;Aigﬂfgalitg, t@e displacement haé a growth rate
’ varying with radius. Thus, as the instability deveiops, thé‘
‘mode becomes increasingly more. localised about the most
unstable region. As the growth fate is a smooth function
of'rédiué,.the pe:fﬁrbations cannot be expected to reach the
singular stage, ihdicgted by the normal mode analysis, before
non-linear limitations become significant. Thus, the unphysical
nature of the normal modes dqesnotnecessarily constitute
grounds for dismissing the possibility of suchiinstabilifiés.

8) Conclusion.

‘This chapter has attempted to indicate the effect of
the,plethor; of physical parameters, associated with the
éollisidnless eigenvalue equation,I11; upon the growth rate
of instability. Thé manner in which Suydam médes, highiy
localised near the resonant surface, blend into the delocalised
-instébilities associated with other physical influences has
vbéen-discussed in all cases. In particular, the effect of
axial ﬁeat flu# in mqving the dbminant region of the modes;
eventually producing unphysically singular perturbations has
Ibeen illustré£ed. This demonstrates the egfects of the
second term of A4t (equation II27) of chapter Ii that violated
the approximations. of that theory.

- of primary significance is the manner in Which rotational
influénces interact with interchange modes. The m=1 mode
is shown to be dominated by its interchange-like (wobbling)
-second harmoniq in certgip situations, but its more familiar,

kink-type first harmonic tends to be the most important when

'rotétional destabilisation is small. Minimum growth rate is

found to result for the Roserbluth and Simon(17) special case
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of rotation, generalised for finite beta effects, for which

the centre of mass rotgﬁioh equals half thé diamagnetic

rotation.

When strong &estabiliéing'forcés arevpresent, large amounts
of FLR apd hence unreasoﬁably high ion temperatures are
required to producé significant stabilisation. Thué, Ve
conclude that, in general, the finite ion Larmor radius effect
is only of importance in those equilibria whigh are very

close to marginal stabilitye.
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Chapter IV.:

A Numerical Approach to Resistive Instabilities.

1) Introduction.

The computational investigation of tﬁe SOlu£ion of Pott;s
collisionless equation, I11, employed a technique in which the
eigenfunction was célcqlatéd over the whole width of the
plasma. Once a numerically defined fﬁnction has been determined
whése roé£s can Be iterated,.the investigation of the dependence
of the growfh rate of an instability upon the parameters of
the system may be relatively easily performed. |

The most flexible numerical téchnique employed in linear
instébility theory is ciearly that of linearising the
equations, applying fourier analysis upon the iénorable spatial
coordinates (@ and z in cylindrical, radially dependent
equilibria) and investigating the long-time evolution of a
randdm perturbatibn. This has been successfully employed by
many authors to vefy detailed mo-dels. (Sykes and Wesson (L4k4),

" Killeen (43), Furzer | et al.(46) ). The disadvantage of such.
a method ig that leng#hy computations must be performed for
each.of a series of parameter values, whereas, in the root~
solving scheﬁe, parameter_ﬁerturbation me£hods may be used,
once the growth rate has-been found for one case. . By this
méans, when the method sﬁéceéds, the groch rate curve may
be plotted at small parameter intervals with minimal
computational effort. '

The collisionless Pott (30) equation is, however, only
second drder and is therefore, numerically a comparafively
simple case to consider. Inﬁreasing the order of the systen

of -perturbation eguations, or the number of dimensions upon
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which fhe equilibrium depends, fapidly inqreases the siéé of
the determinants to be ﬁumerically iteratéd and hence reduces
thé feaéibility of obtaining roots with reasonable computational
economy. For these.reasons, the direct nunmerical approach was
only applied to low betaiplasma vhen finite resistivity was
inclﬁded. As will be seen below, this produces a foﬁrth order
set of eigenvalue equations;s the'sixfh order set produced

‘when'finite beta effects are included is investigated in
chapter V using deeper analytical investigation.

Sblving-tﬁeAeigenvalue equations across the fuil width
of the plasma allows an investigation into the limits of

_ validity of previous analytic theory (discussed at the
beginning éf chapter V ) and indeed, complpments theée
results in many wayse. Compufations of this sort have been
performed by Wesson (60) for resistive insﬁabilities'using a
sheet pinch model. VWesson's results tend to those of (7) in
the low resistiéity limit where the latter wérk is ﬁost
accurate. Whilst Wessont's (60) tearing mode éigenfunctions
have similar characteristics to those displayed in this
chaptér, tﬁé present work includes the complications of
c&lindrical geometry which will be seen to be of importance
in considering the region of breakdown of the analytic k?)
results. In addition, FLR effects will, of course,be
considered.

The work of Furth et al. (47) was not applicable to the
resistive m=1 mode due to.the separate solution of the
region around fhe resonant surface ('innef' région near k.B=0)
and the remainder'of the plasma. As inertial terms are
present evérywhere; in the present work, such solutions are

possible.
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The general problem of resistive instabilities has Beqn
considered by many authors. These, e.g.(@?), solve separately

for the re51st1ve boundary layer ‘about the resonant surface

‘(1nner region) and the surrounulng hydromagnetic region.

Agl r;f's.w
,Matchlng is achieved by requiring the identity of[} =~
| | Gr ol" -5
(calculated from the outer region) with A ,_B O[Bf ¥ "> @2
' f ‘17& Lﬂéb -

(ffom'the-'inner}-region) where x = r - fs and Ly is the
resistive scale width of the layer. The computations of

Furth et al.(47) concentrate upon calculating [l from the

foutef‘ hydromagnetic region, whereas much of the work of

other authors evolve.s around ‘Ehe evaluation ofA in the ‘tinner'
region. (Coppi, Greene & Johnson (6) ). A detailed consideration
of this'work is'deferrea»until the beginning»of chapter V

which contains furthe£ calculation upon these lines._

2);Tﬁe System of Equations.

As discussed above, tﬁe system was feduced to a simultaneous
pair of second order aifferenti%i eguations by res?ricting
cohsideration to low beta plasma so that the effects of
compressibility could be heglected. (This will be checked
below). o

Thus, we use:
Ohm's Law:
E+uarb
Incompressibilitys

V‘L"‘ :O oo Ive .

Conservation of Mass.

"
| 3
&t
+
Sia
n
o~

Dp £ - 2 |
- « - + U
= 0 wherg DE af Iv3
. Pressure Eauation.

ELP =0 'where heat fluxes have been vk

De. neglected.



.Momentum Equation.

e' DLL F t ‘?', = = ) /£B

DE

where ’U is the gyro-viscous stress tensor.

Resistivity Variation.
B4 .0
DE

Maxwell's Egquations.

vGo

Moj 2 Vab
VAE = —278’

!l

In addition, we employ'pe = p
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s

Iv6

V7
IV
V9

Ve again consider the equilibrium to be that of a

cyiindrical plasma bounded by rigid, conducting walls. ‘Steady

state plasma diffusion arising from the inclusion of

resistive effects is neglected.

This omission is justified

since the instabilities expected have growth rates dependent

upon fractional‘pbwers of resistivity whereas the diffusion

velocity of the 'steady state! varies in proportion to‘?.

This point is discussed more fully in chapter V and is

confirmed by the growth rates computed.

Using the finite Larmor radius parameter,§,we define

an ordering scheme identical to that used by Coppi (31) and

consistent with that outllned in chapter I, sectlon 3e

p gt

39 iz EQ Er
— 7 — N e ~r E lf'.r
BZ 62' ‘.Bz

U ~ gv:t‘ , Uy ~ g oyt

A . Z_N LY
o L }‘DL.L

The last ordering appears to contradict the preceedlng

paragraph. However, the effect of the resistivity depends
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on the scale 1ength‘of the perturbation'which is,vin_practice;
shorter than that of the equilibrium. Thus, this last
6rdering arises as a consequence of taking:

LJ_perturbation ~ ;LLequilibrium
for convenience purposes. So long as the Larmor radius
'rémainé much smaller than the perturbation scale length,
the theory is still Valid.‘ For the ﬁearing mode, Coppi (6)
has shown that this applies for'large FLR effects,'thé latter
causing an increase in the width of the perturbation about
- the resﬁnant gurface. This point is, again, of deeper |
significance in chapter V where it is fully discussed.
- The validity of the incompressible approximation,IV2,
may now be‘investigated.

- The axial component of IV5 yields to lowest order:
1
U, ~ Ler . ¢ /Ly
L »
w//e £2ﬂ¢
’ u, ~ €Uy

ae

"IVl yields to lowest order the purely collisionless result:

u'- =4 Ee — -L-t' a—f '
& AT 56

' ~Er 4+ L af< ' 1
u = - . V11

Iv10

therefore:

L 20 - &ﬁ_l (%2! 2 L)
Vi = pp (gr | Y] eB.r\ e ér(ﬁ) {r(?@()

so that: . »
| ~1 ¥z _ 1 12 )Brc P ) 1)

Y4 = B 3t X Qrﬂz( ( )0 or ae( )

Since, from IV5(f>+- B ) is constant, both in equilibrium

and perturbation, to 1owest order Bz, f that -?-82 =0
. . ii ~ F so tha e S
to lowest order. Hence, on con51de§ation of IV3 and IVh,

V.g vanishes to lowest order ing ,consistent with equation
Iva.

The stress tensor 2: is taken to consist of
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merely the gyroffiscous terms. Although the parallel viscous

terms are of a lower order in collision frengncy than the

: < _ BA ,
FLR terms, the former make contr;ibujbions/\/(-ﬁg to the equations
. , 2 :

(due to transforming the tensor from magnetic field to
cylindrical coordinates) and are hence neglected in this
worke. Further discuésion. of this appears in chapter V.
In order to manipulate the equations into a suitable form,
defineg :;“{ and seek perturbations of the form
_ ' u
exp(i&at+m9+kz)). @, is defined as W= w o+ 'H‘Je

IV9 and the © component of IV1 yleld respectlvely.

E hr&e -CJf’gr 4 EB - wi + .""“F Iv12
i B 2aer

Convectlve perturbations for den31ty, Pressure and
resistivity are found from IV3, IV4 and IV6 respectively,
using which, the z~component of IV1 yields:

4 (8/-REB)+ & dp(Ryn. ~8!) w4, Ji+ 15, o 0

Using IV8 and IV7, we substitute for j! to obtaln.

d (,.‘solﬁ’r) (w=1) Br = ——mri'(—'— 4(‘14)4 (rBg) V13

dr g dr/dpe
g P (’Pﬂ dr
where k = h + ”.;T-ée

The momentum equation, IV5 is developed in a manner
entirely analogous to the coi1isionless problem, but is here
not complicated by heat fluxes, finite beta effecfs
et cetera , ip;thé stress tensor. Ve take the
z-component of the curl of IV5. Only B'.cannot be eliminated

in terms of E « The ensuing algebra finally yields:

il‘,[(?r;w, "‘-’""‘“ ‘.{F‘ d‘g’] [CM*') QV.‘U. ~3“"’j{f«)
WAUS

+ Pt 4.?]
[ ) )
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Substitution from IV13 ylelds

Ia(qéj;) +6 5 —xlr =0 - Ivi5
o 'v:ﬁére ;"—' -r;‘ | = %Z ,aff v T = wall radius. |
= (R Pt —m Wed® u.f;(ﬁ?))wﬂ | - 1916
ke 48 2l (~~3) '
G =" (W\ 2;59) 0] ( 1,\ aF%“T AA R
(A=) Er [ J.‘ ki 4 Bo \ w2 W, ‘_n)
wsd [ “ +( +dgz) Aa("] da ( )]Wg
K = mia (hru ‘,,6193(&,' ~2aWe A (xT) ) W'f; - 1vi8 |
. 1 m abz na aa

o —m W, d(aja(%gz))wfz
where n,b’,T.are profiles of number density, resistivity
‘and température normalised to unity .at a=0 -s0 that P 2R e‘o.'
| =1, and T=T T, .
B /(}(o 0ol )\b‘ . Alfvén frequencye.
KTD /{2@32 rxl) Ion drift frequencyyIV19

Wy
W

4WR = qfro /(ﬂorxl)

Equation IV13 may be cast into similar form:

"

Equilibrium resistive

diffusion frequency.

die ¥\ s ¢ w~vIL =
da(‘i Ia) tow->h =0 =
with
F:L: 43WR Ive1
-3
A ~(m-g ~t4 (w,-—l-:WFA(q’r)) V22
1 a 4 1 na da
-maf = A\ W gl_ * bo
V= (-1 ala) FACE 4 e
. 3 —
~mia( krx, Bo - 2 tlp i(“T))
. ']_(Wkﬂﬂ’z(w wa dah
Equathn IV“I'I‘g:Lves: uB . - Er‘ + wF 9! (H :,*_)
'ﬁ; Aa da

Equations IV15 and IV20 form the basis of the computational
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study of this chapter. |
.An impdftant“prqpertyﬂof these equations is now aﬁparent.

Considér the set of parametérs (wA, wF,'wR, er/m, BQ/(aBZ) )
which produces the results (;y‘f,td). On multiplying |
equations IV15 and IV20 throughout by'an arbitfqry factor f3 )
we see that the parémgters‘(wA, wa, fWp, fer/m, fBQ/(aBZ) )
pfoducebthe results (;', f% ,f W ). As the low resistivity
limit (low WR) is of interest in coﬁparisén,withvanalytic
theories, this property is of great utility in ensuring .
that the resulting difference equations (see below) are
well;conditioned for numerical solution.

| As no artificial gravity to drive an interchange mode
has been inéluded in the derivation of IV15 and IV20, the
only instabilities possible are the rippling mode arising
ffom convection of resistivity and the tearing mode resulting
in topology change of the magnetic field. The former will bé
eliminated in the bulk of the investigation by choosing
constant profiles of T and;i 5 the latter mode will be the

prime subject of investigation.

3) Numerical Procedure.

The numéfical problem consists of differencing equations
IV 15 and IV20 on a discrete mesh and constructing a determinant
from thé resulting algebraic.equations the zeros of which |
approximate the complex eigenfrequéncies,al. This is -
.entirely analogous to the investigation of fhe collisionless
equation, but is complicated by the fact that the perturbation
equations constitute a fourth order differential set és opposed
to the second order one éreviously considered.

At the rigid conducting wall (a=1)3 =4 -o. Thus, on

dividing the interval 0< a ¢1 into N discrete segments and
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defining the vectors; g(N)and ll/()we can setz '&V =0.

As in the collisionless case, symmetry considerations

determine the boundary conditions at the origin:

_ 43 del
0‘ h‘q:p ZZ(Q:

0’»";0‘ Y, for m # 1
The space step may be defined as$ =1/N so that

for m = 1

differencing IV15 yields:

)
%{ (;nﬂ'f w-l;‘u;’\) r g“f (gn-n ~§n-—1) 1'6“,‘1;“ ~Xulf, = O 1vah

and IV20 gives:

, F Zn’xn’ l)n denote the

1n 2n'

continuous functions evaluated at the nth. mesh point. In

where the vectors F._ , G
o 1n

fact, in order to minimise computation,; these functions ﬁere
evaluated 0.018 on either side of each mesh point, as in the

colllslonless case, so that, for example:

w\ -‘L(F ( V\-}ool)fr(h}{){w))

@ pSon (R (e ) ( nsedl) )

analogous with the procedure adopted in chapter III.

The boundary condition of m=1 at a=0 remains the only
problem. For this case, differentiate IV15 and IV20 three

times at 270 to obtain (analogous to the collisionless case):
(] it tn
| F, 16, ¢~ =0 _ V26

at a=0

WA d ‘r F 6" ((’ -v"% =0 Iva?
Here we have used the symmetry reqﬁirements thet each of
G, Fy & and¥y together with their first and second
derivatives vanish at a=0 when m=1.

The symmetry of the mode requires that ;'d:;: ;"’I'.,:q: 50

that differencing at n=0 yields:
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(/1(;_1; )/5 ll/ _ &’;{/q/o" -0 e
BY (4w /$* + <7 —¥,'% =0 ey

Now F‘""(o)ﬁ,_g_(ﬁ"(é) "( S)) "'),«— 2.’-;(5)

and Similarly.for the other functions, so that IV28'and Iv29

?zfome. ' |
G5 - “"" %o - 2%% =
-IV31

_.—..M,Fz‘ (({’;‘WD)"" 2‘67 L l.fo - l”' ;o =0
¥ T o
) Equations IV30 and IV31 cbntain only functions that are
feadily available from the coding required for all points of
" the mesh.

In order to describe the solution of the difference

wn=q,n i %m1=;n

s0 that equations IV24 and IV25 may be written:

equations define the vector wn-

{ 3 by |
e _1\;\{1“_3 R . 2u_,+R ,,“-LR W o ws2
' g V33
&“WJ“_,_ TRJ. an‘"R U +R wlui—l
where | L F : 2 o=
Fem F’n . 9 ™
Rlv\"l - S" 2—8 b} Rlnﬂ 6ll'\ T‘)—
: ) Fi F.
Rzu-i = =&, : ) Rln-l - ';: * "5:""5‘
2
‘:zv\ = -%—;‘ -'El!‘ ) R:ln z ~Va

RQV\ ES

The coefficients RJ are, in general, quadratic in the
unknown frequency,a),'and complex. For speed of iteration
it is>convenient to calculate and store the three quadratic

coefficients for each R;. This is the largest storage
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fequirement of the problém, needing 60N words of core.
The difference equations IV32 and IV33, repeated for all
n, clearly constitute a quin—diagonai homogeneous matrix
equation. Hence, fhe calculation of the eigenfrequencies,@,
requires the evaluation of thé quin-diagonal determinant
50 that its zeros may be foﬁnd by iteration. The Mﬁller!sv

algorithm, coded for the collisionless equation, was used

" for this latter purpose; the evaluation of the determinant

requires further comment.
A ﬁethod of evaluating a quin-diagonal determinant

for root-solving purposes must be as rapid as possible, since

‘many iterations may be required, use as little working storage

as possible, since large numbers of mesh points are desirable,
and yet remain free from gross numerical errors. In order to
maintain speed, the quin-diagonal structure of the determinant

must be employed to greatest effect. Consider the determinant:

a? :aﬁ_-a?
ag az ag ag
1 2 3 L s
83 8z 83 &3 &3
ay o ap = af
NONSO DY
NN NN
NN DY N N
NSNS NN N
NOoTALAN 3N b5
AN -5%N-5"N-52N~52N=~5
1 2 3 4L 5
i A N A YA T A T
1 2 3 L
AN-3N-37N-37N=-3
1 2 3
AN-2BN-2%N -2

Three methods of evaluation are apparent ( 39, 48, 49):

a) Diagonals 1 and 2 may be eliminated from row n by

subtracting multiples of preceeding rows. Thus, row 1 may
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be used to eliminate ag and a;, row 2 to remove a% and al etc.

. This leaves an upper triangular matrix whose determinant is

the product of the diagonal elements.
b) The matrix may be reduced to (upper) Hessenberg form
by eliminating diagonal 1. Then we may set wN_a =1 and

calculate W to W, in turn by scanning up the rows of the

N=3 1
3

matrix. The determinant is tﬁen given by a1w1+aﬁw2+a?w3.
(see reférence 39 page 105). |

c) The eliminatioﬁ of diagonals 1 and 5 reduces the matrix
£o tri-diagonal form. This is the fqrm that resulted in the
cbllisionless‘case and the determinant may be evaluated using
thé same recursion formulé (see reference 7 ). '

Since the detérminant calculated must approach zero as
the iteration scheme for @ converges, one of the diagonal
elements of the final matrix produced by method a) must tend
to zero. This clearly means that, close to convergence, the
guin—diagonal matrix is ill-conditioned for the eliminationms
required in method a). Whilst this could be overcome by
pivoting (éwapping rows) to ensure that the final diagonal
element tended to zero after elimination, this incurs time=
consuming complexity. | |

Method c¢) is by far the s;mplest to program and hence the
most attractive to use. However, if, for some set of paramet-
ers, the matrix were ill-conditioned to the el%minations
réquired, pivoting to correct for this would not be possible
aé it would destroy the final tri-diagonal form.

The second method (b), although more complicated than (c¢)
and hence marginally slower, has two advantages. Firstly,
pivotiné may be incorporated if found necessary to improve the

conditioning towards elimination and secondly, the final
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recursion involved yields the eigenvector_without further
computatione.

In practice, method c¢) was used for the bulk of the
, computations as this was' found sufficiently adcurate when
scaling (see section 2).of the parameters of the prbblem-
.was_employed to produée numepicai stability in the determinant
evaluation. When eigehfunctions'weré required, method b) was
»empldyed. The agreeﬁent of ﬁalues of & iterated by these
two methods separately provided a good defence against
spurious.reSults generated.by numericﬁl instability;'

Fof a given set of parameters, using a mesh of ﬁ steps,
all of the roots of'the quin-diagonal métrix‘were calculated
by repeated iteration, dividing‘out'known roots from the
calculated determinant at each evaluation. Since equation
IV15 is quadratic in w and equation IV20 linear, 3(N-1) such
roots ﬁere found for m#1 and 3N for m=1.(allowing for
boundary conditions).

Two possible sources of numerical error éxist: 1) Errors
in the evaluation of the roots of the discrete (differenced)
problem. Z)MDeviation of these roots from those of the
continuous (differential) problem. The first was checked
in two ways. Demanding that the iteration scheme calculate
more roots than were analytically known to exist for the
discrete problem and observing that.the scheme, always diverged
after calculating the.correct number, asserted that all roots
had been effectively divided out. In the limit W =0 with
resistivity préfiled so that g,; (tlyg) =0 in the steady state,
Furth et al.(?) shbwea that Re(itw) is only positive when
In(iw)=0. .Otherwise, complex values of iw occur in complek

conjugate pairse. Three types of roots were found to the
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discrete problem when WF=0=d§7da. These corresponded to the
two mentioned above‘plus a selection that were zero to the
accuraéy of the calculations; these became finite when either
of Wy or dqyda was made npn—zerp.

As there always exist eigenfunctibns describing the
oscillation of the discretised mesh, there are always roots
of‘the determinant fhat bear no relation to those of the
differential problem. VEigenfunctions with few nodes, ‘a
property that characterises the mOSt‘unstable, may be
represented, if oﬁly approximafely, with a mesh of 6n1y
20 points. It was found that the most unstablebeigenfunction,
that of primary interest, ;as usually of this type and the
corresponding root forr&?coulé be improved by using the
value calculated from é 20 point mesh as an initial guess
for a search on one of finer spacing. Typically,'meshes
of 50 or 1100 points were.finally employed, the roots.being
sought by gradual increases in the number of mesh points.

The magnitude of the fiﬁgl discrepancy could Be estimated only
by varying mesh éize. A variation of £ 10% when the mesh

size was doubled was considered to constitute a reasonable
approximation.

The technique of selecting the one required root from the
selection of_54>calculated is clearly extremely uneconomical
with computer time. However, once found, the dependence of
a root upon the various pafameters of the problem could be
investigated by parametér perturbation methods as discussed
ih section 1. This only broke down when the parameter change
required to ayoid Skipping to an incorrect root became
unreasonabl& small; such.behavior was characterised by the

mesh becoming too coarse to resolve the eigenfunction as the
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parameter concerned was varied.

4) Comparison of Results with Previous Theory.

As the numerical appfééch adopted calbulates the eigen—
function across the whole plasma, a comparison of the results
obtained with those of conventional theory in the absence of
FIR is required in brdér to distinguish the infiuence of the
latter from effects merely due to fhé breakdown of the
approximéﬁions of the analytic theory. BExplicit growth rates
éould be extracted from puﬁlished theory by substituting
values of the logarifhmic derivative discontinuity of B;

() taken from reference (47) into the expression for the
growth rate in terms of this quantity found in reference (7).
The. former reference calculates f} for three separate profiles

(peaked, rounded and flattened) as a function of the position

l

L0003
(32x10?

0-002

0-001

0 ! .
. - 0-003 0-005
0-001 0008
Figure IV1 - Growth rate scaled by (wR)3/5 versus axial wave-
number for wR = 1) 3.2x1076 , 2) 1072,
3) 3. 1x10‘5 4) 107", T was calculated from the
results of Furth et ale (4). m=2, L =100,

n=exp(-0.5(a/0.3)%, B /(aB_)=5. 45310 3/(1+1+a )
(peaked profile)
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of the resonant surface.
| "Figure IV1-~illustrates the resistive deéendence of the
growth rate fof the peaked profile of Furth et al.(47). (Note
that, in this chapter, the frequency scale is defined by
VWA=1OO units.) The 'theoretical! curfe, T, wvas calcplated

from the expression derlved in reference (7):

365 m 2/s ’-IE(X ‘rlswf*/;w‘/s pn¥%
[Aa de rp

where r_ is deflned as [ / )] the scale
p qu dd dgz
length of the magnetic pitch profile. V_ was taken as '

R

appropriate to curve 1. The computed curves on this diagram
are scaled by (WR)B/5 asvappropriateito tearing.instabilities.
.Hence, aﬁcording to the analysis, they should all correspond
to the single 'theoretical' curve. Evidently, as the
resistivity increases, so the errors in the analysis become
more severe. Varying er/m moves the position of the-resonant
surface in the piasma. As the magnitude of this parameter
increases, so0 the resonant surface moves in towards the orlgln.
In’ this region, the analyses break down for two reasons.
Firstly because they neglect curvature in comparison with the
thickness of the resistiVe region and secqqdly since.the
pitch profile peaks at a=0, dﬁe to symmetry considerations,.
causing the resistive scéle length to diverge. The
computafions indicate that tﬁe radius to which these
discrepancies are important decreéses as resistivity falls.

In figure IV2 we séé the behavior of the growth rate of
the more unstable rounded and flattened profiles of reference
(47). With the resonant surface distantvfrom the axis
.(low \%§x‘) the computations for the rounded and flattened
profiles apprbach more closely the results of analysis. In

Y

particular,‘the computations agree well with the cut-off
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Figure IV2 - Growth rate versus axial wavenumber.
F: flattened profile, Be/(aB ) =0. 0059#5/(1+(2a) )“
RF rounded proflle, BQ/(aB ) =0. 0053/(1+(2a) )%
P: peaked profile, B /(aB ) =0. 00545/(1+4a )
n=2, wR= 10“4, W= 100, FT, Ry and P, are the
corresponding curves calculated from Furth et al.(4)

P:r l taken from reference (47). (CP, Cps Cp for the peaked,
rounded and flattened profiles respectively). From figure IV1,
we observe that this cut-off does not depend strongly on the

resistivity. Close to the axis (large l%§x ), the modes are

cut off as the resonant surface approaches a=0. The appropriate
~kr o .

values of X are indicated by AP’ AR’ AF respectively. The

peakes of the curves in figure IV2 occur with resonant surfaces

near the regions of maximum pitch gradient ( Aa( ))

(indicated by P,, P PF) indicating the importance of the

R?
current profile in driving tearing modes.

Figure IV3 shows the resistive dependence of the instab-
ilities discussed above. The -%§x values employed are close
to those giving the~maximuﬁ growth rates in figure IV2. Two
features are apparent. 1) At small resistivity the curves

approach the wR3/5 law indiqated by the broken lines, but

deviate at larger resistivityj the growth rates pass through
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Flattened
T k o /mz—O'OO 5 ‘

1

0-06}

004}

ol Rounded = ——
0-02 kr,/m=-0-00425 |

W

Peaked  kr, /m=-0-0038
S R 6 8
10*W4

Figure IV3 - Growth rate versus resistivity for the three
profiles compared to prediction from Furth et
al.(4). kr_/m values are chosen to approximate
those at the peaks of the curves in figure IV2.

m=2, W,=100, Eéexp(-0.5(a/0-3)2)- ’

maxima and fall as WR rises further. The analytical formulae
clearly over-estimate the growth rate except at very small -

resistivity. ' The line 3’¥1OOW asses close to the peaks;

R P
recall that the growth raté,Q(, must greatly exceed the
resistive diffusion of thé steédy state for the theory to

be valid. To the right of the peaks, therefore, the basis
‘of the initial assumptioﬁs begins to become suspect.

2) At W= 10'4, the value used on figure IV2, the growth
rate of the peaked profile mode is close to the maximum of
its plot, whereas those of the other two profiles lie to the

. left of the peaks. This explains the poorer agreement with

the theoretical curves found in figure IV2 for the peaked
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profile.

Onbpaésiﬁg from flattened to rounded to peaked profilé,,
thé radial displacement (;) becarnie increasingly localised in
the region of the résonant surface and hence more difficult
to compute. This localisation might be explained by the
decreasing scale length of the profiles at small radius having
a gféater restriction on the magnitude of the perturbation in
this region so that the resistively generated.displacement
becomes isolated about the resonant surface.

The behavior of'the growth réte‘peak at various positions
.of the resonént surface is illusfrated for the peaked pfofile
in figure IV#. Curve 1 has the resonant surface furtheét

‘ /
from the axis and hence ﬁhe“pggk in .D(yp) occurs at the

0-006

0-003

0 | 5 10
10° W,

Figuré IV4 - Growth rate versus resistivity for the peaked
profile: 1) kr /B ==0. 00289, 2) er/m—-O 0038
3) er/m—-o 0045 . m=2, W,=100,

A
n=exp(-0.5(a/0.3) )
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largest_wR. As the sﬁrfaca apprdaches r¥0, 50 thevpeak occurs
at smaller resistivity confirming that deviation from the
analytic behavior is'connected‘with the singularities
associated‘with the axis.- |

FigurevaV5 and IV6 demonstrate tﬁe dependence of thé '

instabilities upon azimuthal mode number for the flattened

041

0-05r

0 | 0003 -kg/m  0-005

Figure IV5 - Growth rate versus axial wave number with various
m numbers for the flattened profile.
W denotes (Bg/(aB ) )wall’

A denozes (Bg/(aB ) )ax1s
Wp=10"", ¥,=100, n=exp(-0.5(2/0.3) 2y.

Figure IV6 - Growth rate versus
resistivity with various m
numbers for the flattened
profile. er/m—-O .005, W -100

n=exp(-0.5(a/0.3)%).

O
wnt
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profile. The m=1 mode is particularly noteworthy as the‘theory
of Furth et al.. (47)ﬂis€inqpplicable'to this case. The resistive
dependence of this mode confirms that the instability found |
does not exist in the collisionless limit. From the dependence

"of its growth rate upon %fx , we see that this moderdoes.not
cut off like the hiéher m number instabilities untii the
resonant surface comes within the influence of the conducting
wall. (st er/m ==0.0015) . This'behavior was characteristic
of .the m=1 mode in the collisionless limit. Since, in the
manner of collisionless modes, the instabilities become
more localised aboﬁt the resonant surface as the m number
increases, the m=3 instability became too fine to resclve
on a 100 point mesh when the resonant surface became
detached from the effects of the axis. Nevertheless, a
decrease in growth rate with increasing mode number is
clearly displayed;

Theeigenfuncticnsthemselves indicate the reason for the
ultimate failure of the analytic tﬁeory. These are portrayed
in fugures IV?7 a,b and ¢ for m=1, 2 and 3 modes respectively.
On the m=2 anq 3 diagrams,<the region within which large
deviation occurs from the“collisionless relationship
B]'? = -}EEBZ is indicated." ‘As resistivity is reduced, the
region is seen to become.narrower. Inspection shows that,
for all resistivity, the scale leﬁgth of the displacement,

E,is very much less than that of the magnetic field
perturbation near the resonant surfacej; this is the basis of
the 'constant Y ' approximation used in the relevantvanalytic
theories (see reference ( 7) ). However, at resistivities |
comparable to that causing the maximum growth rate, this

- ¥ o .
‘inner' region around the resonant surface occupies a
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flattened profile, kr /m = -0.005,
K'!A = 100, .I; = exp(-0.5(a/0.3)2).

+ denotes largest resistivity,

- denotes smallest resistivitye.
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x-arR=8.2x1o’LP & 4.5x10-5.
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significant.fraction of the total plaéma radius éo that neither
the 'constanti{'”normthg:;ggalisation‘assumptions of the
analytic theory may be considered valid. Breakdown of the
analytic reéults thﬁs arises from the violation of the 'constant

Y ' and localisatgon approximations. This leads to the
incorporation within the resistive layer of regions of
significaltltly lower magn'etic shear((ﬂ'(‘—?-gz) than present
.precisely at the resonant surface so that, on average, a
smaller driving force is exerfed.

Since reduction of resistivity in the regime far to the
left of the peak of the '3/(WR) diagram, results in gradients
of §' on an inbredibly fine scale as shown in figupe Iv?7,
the computational method failed as attempts at further
resistivity reduction -were made. Nevertheless, computation
using a 100 point.mesh managed to reach 1/200 of the peak

resistivity in one'particular case attempted, for which a
0.52

growth rate dependence of (WR) was attained before
computations ceaséd. Thus, computation and analysis cannot
readily be made to describe the same.situation, but afe
complemeﬁtary in their applicability.

figure i&S shows the 5ehavior of m$2‘;igenfunctions as -
the resonant surface moves through the plasma. The negativé
dip hn?tmyond ﬁhe resonént surface clearly increases in size
as the sgrface approaches the wall. Increased localisation
of the displacement arises due to detachment from the effects
of the axis and the reduction in inertial effects in the.plasma
of lower density necarer the wall. The magnetic field
perturbatidn clearly attains its maximum value when the

resonant surface is near the position that gives the maximum

growth rate.
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:0@ :0—4 1 Figure IV8 -~ Eigenfunctions with
I 1

0l 1 ﬂ 3 the flatZened profile. m=2,
ct |. ; wR=6x1o' , W,=100,
o FRRRI n = exp(~0.5(a/0.3)%).
‘ ' 1) kr /m = -0.005
o x
' - 2) er/m = -0.00425
3) er/m = =0.00311

Iﬁtroducing a temperature profile, with fesistivity
varying as"I'—B/2 has two main effects. Firstly, the
resistivity at the resonant surface depends upon' its position
within the plasma and secoﬁd;y,'rippling modes driven by
resistivity convection af the resonant surface appear. The
former phenomenon is manifest by an enhancement of the
grqwth rate at lower ,%%x whére the.resonant'surface occurs
in the cooler outer regions of the plasma. Rippling modes
appear when” the full éet of roots for a small mesh is

‘computed.in the first stages of thé calculations. The
cluster of roots around the origin, found ﬁreviqusly,is
replaced by a collection of further modes; those having
Re()#0 occur in pairs with complex conjugate values of i as
required by the form of the equatiohs.

An interesting example of a case with a flat temperature
profile cutting off steeply at a certain radius is shown in
figure IV9. ?ﬁe rapid rise in resistivity at this particular
radius is intended to model the interface between a confined

hot plasma coiumn, perhaps defined by limiters, and surrounding
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Figure IV9 - Growth rate versus axial wave-number for the
. flattened profile. m=2, WA=1OO,
PJR=2X1O—6, .x-l. =exp(-0.5(a/0.3)2) I
T =0.01+0.495(tanh(10(a+0.5))-tanh(10(a-0.5))),

n =‘(.'f)-fs/a. The broken line arises from the
téaring mode formula of Furth et al.(7), not

including dﬁydr effects.

cooler regions of low density. The rippling driving force

enhances the growth rate above that ‘predicted by the pure

tearing mode formﬁla when, at low %§%Lthe resonant surface lies
in the highly resistive-région of the plasma. This is perhaps
a better model of a confined plasma than the flat resistivity
profiles considered beforé since less emphaéis is ‘placed on

the regions around r=0 where the analysis is ihapplicable

and the resisfivity of an eﬁperimental plasma is too small
for‘resiétiﬁe modes to exist. Consideration of this last
example therefore indicates a less pessimistic view of the

merits of the analytical approach.

5) The Effect of FLR Terms.

As discussed in the collisionless limit, care must be
taken, vhen considering FLR phenomena, to define the steady
state rotation. In what follows, the stéady state electric.
field (E,) is taken as zero, so that the rotation is given
by the ion pressuré-gradient (see equation IV11 ), Coppi(31)
shbwed thaﬁ, in partesian geometry, steady state velocity

merely caused a Doppler shift of the perturbations. 1In the
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'presént, cylindrical, case this is‘not precisely true due
+to centrifugal effects‘preéent in the dﬁ/da term of 61
(eq. IV17)Awhich depends on U;'rather thancql. As this does
not depend on any derivative éf'g, whibﬁ becomes large close
to the resonant surface, the aestabilising effects of rotation
are of minor importance.
‘ The first effects of including terms in VW

F

induced into the frequency spectrum of the roots of the

are the changes

coarse mesh determinant. Complex conjugate pairs of iw no
longer appear and the cluster of modes located around the
origin take finite frequencies. As will be seen later,

édditional unstable modés arise. Although the removal of the

016
X;‘Ug
,
008
0
| 002 , 005

Figure IV10 = Growth rate'xr and frequencybﬁ{versus FLR effect.
. wR=2.5x10-3, WA=1gO, er/m=-00002,
n=exp(~0.5(a/0.3)7),

'BG/(aBz)=O.002(tanh(10(a+o.5) )=tanh(10(a=0.5)))

(*tanh' profile of B,/(aB ). ‘
_The broken curve shows § for m= whefi an electron
pressure term is omitted.
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origin cluster speeds the 6omputationally'lengthy iteration
for all the ppéﬁé”9f~thg_co§pse mesh, the proliferati&n that
clutters the complex plane complicates the study of the
pérametric.dependence of any mode of interest.

Figure IV10 shows the effect of increasing the FLR
factor, WF. As will be seen bélqw, the initial rise‘in
gfowth rgte is only present when WR exceed$ the value giving
maximgm gfowth rafe. At large wF, no cﬁt-off is produced
as for collisionless (Suydam ) modes, but a continual growth
rate reduction arises as FLR effects increase. Such behavior
was -described by Coppi (31). The frequency of oscillation
coﬁtrastsvthe results of 00ppi(31).in this larger resistivity
régime. Although it peaks after its initial rise and gefs

smaller at larger W,y Coppit's results indicate that it should

F

be negative, tending to the diamagnetic rotation frequency as
WF becomes large.l From the diagram, FLR stabilisation, as

' might be expected, is more effective on m=2 than on m=1 modes.

The bfoken curve of figure IV10 displays the results that -
arisg if the electron preésure contribution to the Hall terms
of equation IV13 is omitted. This omissionAreproduces the:

FLR induced 6uf—off effect that is familia;‘from collisionless
results., .

The resistive dependénce of the growth rate for various o
values of wF appears in figure IV11a. Figure IV11b shows the
corresponding frequencies of oscillation. Note that computations
ceased as the latter approached or passed through.zero; this
will be discussed below.

As FLR increases, figure IV11a indicates a less violent

'dependence of growth rate upon resistivity and a tendency for

the peak growth rate. to occur at larger WR. The former behavior
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Figure IV11 ~ The resistive dependence of a) growth rate
and b) frequency of oscillation using:
'tanh!' profile of Bg/(aB ), m=2, er/m-—o .002,

W —100, n=exp(=-0.5(a/0.3) ).

1) Wp=0, 2) W =5.01x1077, 3) W =10
L) uF-1 .5x10 E, 5) WF_3x1O -2
of a) shows the growth rate of an additional
‘mode with Wp= 1.5x1072,

2

. The dashed‘curve

is in qualitative accord with Coppi (31) who showed that, in

the limit of large WF

Owing to the behavior of steady state resistive

, growth rate varied linearly with
resistivitye.
diffusion and the vefy small growth rate when FLR effects
are large, the validity of the perturbation theory in this
limit is suspect; neglect of steady state diffusion was based
upon assuming a growth rate with a fractional power la&
dependence upoh resistivity.

Vhen WR is less than the value producing maximum growth

rate at wF=o, figure IV11a indicates that the peaking observed

on figure IV10 might not appear. This is confirmed by
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Figure IV12 - Growth rate?‘and frequency)cdh'verous the FLR

effect. WA = 100 er/m = ~0.002, m = 2

n=exp(-0.5(a/0.3) ), 'tanh' profile of Bg/(aB ).

figure IV12. Note that, in thls case, the oscillatory
frequency peaks at-a considerably smaller value than in the
previous, higher resistivity, case indicatiné that the
behavior of the low resistivity limit investigated by Coppi(31)
is being approached.

In order to investigafg the reason for the failure of
the computations at resistivities greater.than in the wF=o
situation consider the behavior of the eigenfunctions given
4_in figure IV13 relevant to the computations of figure IVi2.
Whilst the effect on B; is slight, minor phase-shifted
perturbations appearing in the region of the resonant surface,
'§ has developed considerable modifications. Wave like
features have appeared in both its real and imaginary
parts on either side of the resonant surface indicating the
formafion of waves travelling away from the strongly perturbed

resonant region. Since the amplitude of these waves increases

as the ion diamagnetic drift. frequency, wF, rises we may infer



119

" oorr

Im{c@l
B. O

N
bt e e ]
S N

)
€

-0-01

002
" RelcB,)

[\

Imlc$)

Relc¥) | "’fz 1 5

0 ‘ , ’ ; 1 '
B a— 0:5)2 T
L
b)

Figure IV13W- Perturbations a) B! and b)<g as a function of:
normalised radius.’ 1) W, =0.005, 2) W, =0.012.
Parameters and profiles of figure IV12.

that they arise from the ions being phase-delayed by finite
Larmor radius phenomena with respect to.electromagnetig
effects rortrayed by B;. An extreme example of this, even
if in a less valid regime of the theory, is shown in figure
IV1i4; this is the form of‘ghat the termination of computation
of curve 5 of figure IV1iia.

The dependencé.of FLR stabilisation upon the position
of the resdnant surface is shown in figure IV15 which employs

the flattened profile of Furth et al. (47) discussed in the
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Figure IV14 - Eigenfunctions for the case: 'tanh!' profile of

Bg/(aBz), Eéexg(-0.5(a/0.3)2), er/m =-0.002,
‘m=2, wF=,3x1o‘ . wR=9.4x1o‘ .
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Figure IV15 -~ Growth rate,w’, and oscillation frequency,uﬁl,
versus axial wavenumber. m=2, Héexp(-O.B(a/O.B)Z),
wR=1.2x1o‘4, flattened profile of Bg/(aBz).

;= - -3
1) W, =0, 2) Wy =1.2x10"~.
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previous seétion. Evidently, the stabilisation is greater with
the resonant surface farther from the axis (small’-—x ) where
the conventional driving force for the instability is
weakest. Note that, in:this :egion, where the analytical
limit is most clbsely approached, the oscillation fregquency
is negative as predicted by Coppi(31).

A feature of FLR mentioned abové and indicated by the
»broken line on figure IV1i1a is additional modes introduced.
The curve on figure IV11a indicates that, under certain

conditions of W the extra mode indicated is more unstable

R?
than the more conventional tearing inétability.and has a
growth rate strongly dependent upon resistivity. Numerical
investigation has revealed that this mode depends for its
existance on the electron pressure contribution to ther
radial induction equation (substituted from Ohm's law) IVA13.

.Figure IV16 shows the FLR dependence of the growth rate of

this mode.__ The initial rise might be explqiﬁed by the effects

004
5

0-02r

0 | 00 , .
| 0-01 W, 0-02

Figure IV16 ~ Growth rate and oscillation frequency of
'additional' modes found. 'Flattened profile of
i
g/(aB ), m=2, v.A_1oo, W.=1.2x10 ', er/m--O 005,

n—exp(-o 5(a/0.3)°).
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Figure IV17 - Eigenfunctions of the 'additional! mode from

figure IV16. 1) WF= 2.8x10—3, 2) WF= 10-2.

of the induction equation terms mentioned above, whilst the

large W decéj no doubt arises from the stéﬁilising influence

F
of the ion gyro-viscous sﬁress tensor. The oscilla?ion
frequency takes the sign of the ion diamagnetic rotation
but is several times larger in magnitude, being of the ordef
of the growth rate; the mode.is strongly overstable.

The eigenfunctions of these instabilities are characterised
by short wavelengthioscillations; these are, of course, many
times longer than the mesh size and independent.of doubliﬁg

"the number of mesh points used in the numerical scheme.

Their dependence on FLR is shown in figure IV17. Note the
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Figure IV18 - Eigenfunctions of the 'additional' mode using

the flattened profile, m=2, V

A

-2
=100, W =10"°,

Wo=1.2x107", T=exp(-0.5(a/0.3)%).

1) er/m
2)'er/m

increase in B! as W
r F

-0.005,

--0.0039..

rises and the phase difference between

B; and E « The connection of the modes with the resonant

surface is apparent in figure IV18 which shows their behavior

as the axial wavenumber is varied. Closer investigation of

the eigenfunctions reveals that, near the wall, the

collisionless relationship, B, =k ng,is satisfied. Within

the radius of the resonant surface, however, B; and £ are

4,

mutually phase shifted indicating that resistivity is active

in this region.

The effect of the small resistivity present

is enhanced by the scale lengths of the perturbation being so

short compared to those of equilibrium quantities.

Modes of this sort display the need for computations of
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the type performed seéking solutions for the eigenfunctions
across the entire plasma without confining the effects of
resistivity and FLR to the narrow resonant region.

6) The Effect of Two Resonant Surfaces.

Two resonant surfabés mé}‘be preseht within a confined
plasma when skin-current phenomena occur. This effect was
modelled by selecting a Gaussian profile of Bg/(aBz), peaked
off axis. At’WF=O the instabilities encountered were, as
expected, far more unstable than in any of the singleisurface
calculations prefiously performed. Figure IV19.illustrates
the resistivity dependence of the growth rates for diffarent

m numbers. Observe that, for this more unstable profile,

‘the curves peak at considerably larger resistivity than

03
Y

02;

07001y, 002

Figure IV19 - Growth rate versus resistivity with two resonant

surfaces present. _ 2
er/m = =0.0025, wA=1oo, n=exp(-0.5(a/0.3)°),

By/(aB_)=0.004(exp(-25(a+0.5)%) +exp(-25(a=0.5)%) ).
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Figure IV20 - Eigenfunctions of the m=1 mode from figure IV19

1) V= 7x107, 2) WR=_2-5x10"3, 3) Wg= 1.25%10%.

R

previously fognd. The ratio of peak growth rate to W_ at the
maximum rem;iﬁs approximately constaﬁf; howéver, taking a. |
value of the order of 0.0{ for all of the cases studied so
far. |
Figure IV20 shows the behavior of the m=1 eigenfunctions
as resistivity is varied; Note the manner in which large‘
perturbationé arise between the two resonant surfaces and
the way in which these penetrate into the outer regions as
resistivity rises. In particular, observe that the instability
loses a node as WR passes through its most unstable value.
Such behavior merely further illustrates the increasing
inaccuracy of any localisation assumption as resistivity rises.
The axial wavelength dependence of the m=2 instabilities,
shown in figure iV21 is egplicable in terms of the pitch
profile used. This has a maximum of 0.00k so that the curve
of figure IVEi cuts'pff before this value. The peak of the

diagram occurs with the resonant surfaces close to the radii
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Figure IV21 - The dependence of growth rate upon axial
wvavenunber when two resonant surfaces are present.

m=2, W -1oo, wR_o .025, n=exp(-0. 5(a/0 3) ),‘
Bg/(aBz) = 0.004(exp(~25(a+0.5) )+exp(-25(a-0 5) )).

of maximum shear(&a (ff;)) .

FLR stabilisation of the two resonant surface case occurs

in a manner exactly analogous to that discussed for the single
surface situation. )
7) Conclusion.

The numerical approaéh to.the study of resistive
instabilities in a low beta cylindrical plasma has revéaled
important results complementing and extending the published

analytical approach. The effect of the breakdown of the

localisation and 'constant W' approximations have been
illustrated and additional instabilities, generated by FLR

_effects'and not detectable by a localised approach have been
‘discovered. In the low resistivity limit of this work, the

localised analytic approach appears accurate to the degree
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required df such‘a‘theory.

As a numericél technique, the iteration of the quin-
diagonal determinant required an order of magnitudé more
computer time than the tri-diagonal one required for the
cémputationaliy simpler collisionless case, This vast increase
in effort may be ascribed to: 1) the excess diagonals in the
determinant.that'required time-consuming elimination, 2) the
Alarger dimensions,éf thg determinant arising from the need
_td solve two equaﬁions Simultaneou51y, 3) the larger number of
roots present fér a mesh of a givgn nﬁmber of points. The |
last point has a two-fold effect. Firstly, more time is
requifed as more roots must be found in the initial
procedure and sécondly, the function solved (effectively but not
explicitly a polynomial) has a complexity in proportion to
the number of its zeros; each root therefore requireé more
iterations in order for it to be determined to a given
accufacy; In cbnclusion, therefére, the numerical method is
not suitable for extension to higher order systems of
equations associated with,.for example, the inclusion of

finite beta effects in the calculations.
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Chapter V.

Finite Larmor Radius Effects and the Resistive Tearing HMode

at Non-Zero Beta.

1) Resistivity and Plasma Instability. -

‘For many years the model of a confined plasma as a column
of';hfinitely conducting fluid surrounded by a (perfectly
insulating) vaéuum region has been kﬁan to provide inadequate

'stability criteria. The region'between'the hot plasma core
~and the cooler outer environmeﬁt is better modelied'uSing

a profile of resistivity. Kink-like, non-localised; modes

é?é then possible when the resonant surface lies within the
plésmé; the perturbation remains finite at the resonant surfaée
owing t; fﬁe enhanced perfufbed resistive diffusion in - this
neighbourhood de-coupling plasma and mégnetic field. Such 
'ihstébilities have been called 'tearing modes'>by Furth,
Killeen and Rosenﬁluth‘(?).

" Within the fegiop of denser plasma, Furth et al. (7)
shbwed that Suydam modes driven by adverse maénetic field
curvature and localiﬁeé about the resonant surfacé exéended"
bejond MHD-étability lihifs when finite resistivity effects
were included. This is because enhahced field diffﬁsibn near

~the resonant surface reduces the stabilising influence of the
magnetic shear. They modelled these instabilities at zero
beta in rectangular geometry with incompressible plqsma‘using
a fictitious gravity to represent the destabilising influences
of field curvature. This'procedure has been shown to be valid
‘only when the field curvature, and hence the driving force

for instébility,Ais.extremely weak. (Hosking and Marinoff (55».
Both interéhénge and rippling modes, caused by convective

resistivity perturbation, were shown to have faster growth
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réfés than téaring modes in the low resistivity limit. When
modelling toroidal devices, however, the favourable curvature
of the toroidal field fowards the inside of the torus tends
to create stability towards interchange effects. Thus, in
these‘cifcumstances it is more relevant to consider the non%
localised resistivé—kink (or teéring) instabilitiés which are
believed to be less affected by toroidal influences (See
Shafranov (1), Glasser, Greene and Johnson (50) ).

Vthen finité beta effects are included in cylindrical
geometry, thus superceeding the fictitious gravity as the
interchange driving force, (Coppi, Greene and Johnson (6) )
the'manﬁer in which the various modes merge into one another
becomes clear. As a Suydam parameter, D, is increased
toﬁa;ds its hydromagnetic»marginal stability value, the
growth rate of the resistive interchange mode becomes large

y X
thus demonstrating that it is a continuation of the infinite
condﬁctivity interchange. As the tearing mode driving force,
Zl s, is reduced, at small D, the-gro&th rate of the instability
no longer tends to zero with ﬂ but becomes asymptotic to the
A =0 axis. The growth rate changes from the 0‘,3/5 behavior,
characterlstlc of tearing modes to thevy} behavior that
characterises interchange modese In this regime, the instability
growth.rate becomes depéndeﬁt upon compressibility; this
must be included in thelcalculatibn for consistency with the.
finite-beta, firilite-res‘istivity combination. WhenA<O, thus.
providing no tearing mode driving force, this finite-beta
region occurs only when the equilibrium pressure gradient
is directed into the plasma cylinder. Otherwise, branch-
péint behavior is exhibited, two unstable modes being present

above a cut-~off value of A . Between cut-off and branch-point,
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tﬁese two‘modeS'are overstable, have equél growth rate, buf
.osgillation frequenéies.opposite in sign. (Giasser<&tal.(50) ).
Thus, the tearing mode merges with the resistive interchange
mode»ﬁhen the respective-driving fafces of éach are sufficiently
' smali.v. |

Cbppi (31) modified the cartesian, incompressible, low-
bet;, low-shear model of Furth et al. (7) to include the
effects of finife ion Larmbr radius (FLR) phenomena using
equal electron and ion temperatures. He showed that the Hall
term in Ohm's‘léw and the gyro-viscous contribﬁtion'to the
stress tensor are of equal importance in his model. In the
Abéencé of finite~beta desfabilising effeéts,'Coppi found
tixat the téaring mode is present for allﬂ greater than zero
just as in the absence of the FLR térms. However; atA>0, the
growth fate of the modég is reduced by the FLR terms. At
largeﬂ s FLR becones insignilficant. The mode is overstable
for all A , with an oscillation ffequency tending to twice the
ion diamagnetic drift ffequency as FLR becomes large.

fhe.validity of Coppi's calculation aepends upon the
ion Larmor iadius being small compared to the scale length of
the perturbation in the région of the resonant surface. For
the tearing mode, this is a valid approximation s;nce Coppi
showed that the width of this region becomes determined'by
FLﬁ as its effect increases. When considering the resistive
grafitational (modelled .interchange) mode, however, Frieman
et al. (52) showed that, unlike the tearing mode, this develops
severe spatial oscillations near to the resonant surface, as
collisional viscosity 1s reduced, so that the latter
becones impbrtantbefore the resistive layer is of the order

of an ion Larmor radius wide. Thus, tearing modes may be
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studied freely without the complications of collisibnal
viscosity, vhereas qguﬁ;pgmmust be exercised when cbn;idefing
gravitational 6r iﬁterchange phenomena.

The forﬁ of the traceless stress tensor to bé~usedvin a
fluid-like apalysis of collisional plasma phenomena hés
been widely»debated. Colliéionless expénsions of the Vlgsov
'equafion have shown (eg. Bowers and Haines (28) ) that éyro—
viscous répresenfation of finite ion Larmor radius drift
bheﬁomena is only valid when the magnetic'field curvature is
small. Liley(9) has shown that an‘expanéion of moment equations
in 1/( Collision time x.ion gyro frequency ) = 1/(%.n)
pfoduces parallel viscosity, proportional to ¢ in lowest
order, with gyro-viscosity and collisional perpendicular
viscosity arising in subsequent orders. This result is,of
‘ course,ﬁnly valid so long as the collisional mean free path
is considerably.lESS than the scale lengths describing the
plasma equiiibrium. Parallel yiécous effects, however, depend
upon the square of the magnetic. field curvature ( (BG/Bz)a
in éylindrical'geometry) and are thus considerably reduced
in importance in situations where the gyro-viscous model of
FLR effects Qay be used. ?ﬂe relevance»of.parallel viscosity
to tearing modes has been discussed by Marinoff (52).

The influence of tofoidél curvature upon’tearing modes
has been investigated by Glasser et al. (50) working in non-
- orthogonal Hamada coérdinatesland taking appropriate averages
around flux surfaces. Such a moéel is far too complicated to
envisage the incorporation of FLR phenomena. |

2) Resistive Instability at Finite Beta Including FLR.

So far, all of the analysis of resistive instabilities

involving FLR has been carried out at zero beta, using the
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gravitational approximation for interchange modes. (Frieman

et al. (52), Coppi(31) ). A treatment of the problem in the

manner of Coppi et al. (6), but now including FLR phenomena
follows. Thesé effects were omitted by reference (6) for
don&eniénce.

| We shall consider instability of a cylindrical
plasma, initially in a cylindrically symmetric state. The
model under cbnside:ation is described by the following
-system';f equations: |

Momentum Equation

'e%‘é tp(w9d = jAB -~y -7 T W

Ohm's Law | ,
E+daB =q] 43 (348 ~¥p) vz
Energy Equation
’QW(%'-‘;(Q‘Y))(PPJJ = (Yf—l)»ﬂ_({ll V3
Conservation of Mass_”_ .

%(g K | v.(p4) =0

Electro-magnetic Equations
E - -2 |
me = T3 | | V5

Vi

Y

P =0 | ) . _ vé-
/lo

where standard notation has been used, W denoting the traceless

v7

A
) |
Ya..

A

part of the stress tensor ( ref.(30) and eqns. A12 to A16).
For simplicity, consider isotropic resistivity and equal
electron and ion temperatures so that:

P, =Py =p/2 - v8

The Ohmic heating term hasrbeen included in V3, but plays no
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‘role in the final calculation owing'tb the ordefing‘of plasna
pressﬁfe tﬁat wili be made later. Ih order that the stress
' tensor in V1 may be.validly taken to be the collisionless
FLR viscosity (see Bowers and Haines (28) ), the appropriate
ordering of the equiliﬁrium quantities in the ion Larmor

radius must be observed. (28) :

Ton Larmor radius _ _
Scale length normal to B R L S T

wheretaéis the ion thermal velocity and S+ is the ion gyro

Define §

' frequency;

Then we require, as described in chapter I, .
L Lo L £ ~ ELL. A EEL . L al vo
Ly <IpB- {IBE.L o fBy Vg (R |
' Ordering in¢ y Ve take F"-io, so that we retain tkhe maximum
number of_phyéical phenomena in the eqﬁations.

This ordering of equilibrium quantities is primarily to
ensure that the gyro-viscous stress tensor is an adequate
representation of the>ién drift phenomena that are to be
considered. In addition, it produces considerable simpiifi—
cation in the subsequent calculation.

The displacement'éurrent is omitted frém equation V7
since the instabilities to be studied occur on verj slow
time scales. Ohm's law, équétion,VZ, contains the Hall
tefms which aré of the same o?der as gyro—viscous'effects.

Terms in the heat flux, g , and its divergence are omitted
throughout, in both the energy equation, V3, akd in the stress
tensor,@f;.Thermal conductivity will not be considered_in this
work. Such effects transport energy from compressed regions
and might thus be modelled by reducing the effective specific
heat ratio,’l; |

Heat fluxes in the stress tensor are, in the collisionless
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case, (see reference (30) ) fihite_beta effeéts and thus will
be small.for teéring moaes; such collisiénless heat fluxes
wéfe shown to ﬁave only a very small effect on instabilities.
It wili be noted that thevincompréssible approxiﬁation
--------- has not been made. Incompressibility is only consistent gt
zero betg (Coppi (310 when resistivity is included-and its
inciﬁsiqn is a further consequence of considering finite
plAsma pressufe effecté. Recall, hbwevér‘that in the-
éollisibniéss case (30), perturbations were found to be
incompressible at high-beta due to the rigid coupling of

plasma and magnetic field.

3)7The Unperturbed State.

We consider the problem of a diffuse plasma cylinder
subjected to a magnetic field (O,Bg,Bz)a All quantities depend
oniy on radius,Te. In order to demonstrate thevreduction to
the collisionless case (BQ), equilibrium velocities (O,ug,uz)
will be included in the first part of the calculation and
subseéuently droﬁped'when specialisation to the tearing mode
is made. |

When conéidering resistive instabilities, the unperturbed
state is not strictly an equilibrium. This may be seen as
follows:

The © comfonent of V2 yields; Eg-u,B, = 4jg in the
unperturbed‘state. Thus, initially, Eg or u, pust strictly
be non-zero since jg is finite in order to provide the

pressure balance: 39 '—dp/dr from equatlon V1. Aﬁfo, V5 and-

V2 (omitting Hall terms ) glve.Vx(i'_J_ - uxB)= - ‘)(: .

‘Hence (Witpout equilibrium velocity) :

_ 3_13 - 4 2& {neglecting resistivity
o€ ﬂo : gradients)
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This- descrlbes dlffu51on on a time scale given by
For any perturbatlon analy51s based on this initial stateitp
be-vélid,~therefore, much faster timescales must be involved.
Since the growth rates of resistive instabilities depend

upon fractional powers of q , this condition is satisfied

for sufficiently small resistivity and the motion of the

initial sfate.may be safely negiected. The physical reason

~for this is that the scale lengfhs of the perturbation, short

compared to those of equilibrium quantities in.the region of

the resonant .surface, cause the pertﬁrbed diffusion driving

the modes to dominate.

4) Perturbation Analysis I - FLR Expansion.

- Following Coppi (31) and Frieman et al. (52), the .

perturbation expansion proceeds in two stages. The first,

Larmor radius, expansion occurs as a consequence of the
ordering necessary fér_the use of the gyro-viscous stressA
tensor (See'éection 2). Secondly, the re51st1ve expansion
arises when spe01allslng to the particular 1nstab111ty

under study. This procedure is strictly valid'so long as the
first expagéion parameter is very much smaller than the
second as has been discuésed in section 1.

Since the initial state chosen depends on radius only
and it chaﬁges neglegibly on the timescaie of the instabilities
involved, perturbations propoftional to exp(i(tvt+m9+kz) )
are sought. Perturbed quantities are denoted by primes.

The Induction Equation.

g Substituting V2 into 'vs and using V7 yieé_%s: ¥
2 confurs -1 g -1, (46 —g( 5 .L))]
b1y T e T M e 2pe X

To second order in & , the z component yields:
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: |

v10

r*uo
(Ignore at present the numbers above each term).

wvheres

: 4 '

- ; ~ &y

w, s ,«-u;de,.qu &k"kf""‘;ﬁ? ':75’ T w, V11
=

To third order in& , the radial compo nt yields:
(g Sh56,)= § ~im B2 im 52 8.

. w;@ f“p' W‘D( &bt )
..t( RJQ 11(@.,. 2; kP, /(J‘/(a)

vi2

AELow) gy

e Contlnulty nquatlon.

Equatlon vh yields: : '
=c§If fi(’(v.u) , Vi3

The Enersy Equwtlon.

U51ng V13, equatlon VP ylelds'
W(vu) — (—{)uzo :’L? ) v
1~(‘b’-l)( ' 12—9‘,'15’0 ol )
Taklnﬂkioc T 3/2, we can write the re51st1v1ty perturbatlonf

l1 |1(}. B, Bz +3 lé?i{ faC,l(V,u)) ?15,

The Momentum Eouatlon.

i) First Order in €

To this order, V1 shows that the r and © components of

the momentum equation yield

3 (f;o .‘,r) and .- (f{z +P = . respectively

The first of these expresses the equilibrium pressure balance
of the plasma. In perturbation, the maintenance of this

condition eliminates the rapid magnetosonic waves from the

calculation.
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Thus, for the ﬁerturbation: j v . .
lﬂ"-‘ - “.E_g’ - V16
‘ }10 _ :

ii) Second Order in€ .

To second ofder, the first order condition is duplicated
1 .
since FLR expansions are essentially in € . However, to
second order, the FLR stress tensor enters the z component of

V1. This may be uritten:

e,wu,-f-ew,go(dz ) Bo-Jgbr -,p,, -(v...)
v (g u) (r Rre) + iRz

r F
whlch upon substltutlng for)G 'andfT sz yields:

(v, = B[ d () * (£) 4]

where p =p/2 has been used andJL is the ion gyro frequency.

From V7 }‘0 JF > " rm 32 /I‘
2 “2 E Br’clB:

therefore: Qi“’l uz + twl E du 21

dr
i~ _W(f) Cf Aaz

_Hence: ((,Qw,f-—r‘;ﬁé%’l)' dj%‘j-]‘!;(t? 58 lcaBr-)
2 ea” (
" dr

Note that in the collisionless limit (30), when the

vi7?

3]

pressure perturbation is purely convective, this reduces to
l.g Aj‘}z as required. The denominator in V17 is
a marked feature of this analysis and plays an important role
in many of the results obtained. Note that the last pair of
terms in fhe numerator arise purely as a finite beta effect.
Only these.reméin vhen equilibrium velocities are neglected

later in the anal&sis.

iii) Third Order in & .

To this order, the-off-diagonal compoﬁents of the stress
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-tensor‘¢ontribute.to the r and © coméonents of V1. The
higher ordér scalar bressure terms in these componenfs may
be'eliﬁinatea betWeeﬁ the two equations‘by taking the z
component of the curl of equation V1 expressed to third order
in & . This’?rocedure is lengthy and will be carried out
'separately for the distinct sets of ferms invoived.

a) Gyro—V1scoﬁs Terms.

We need to calculate the quantlty[YA(VW)]

[V»A(V-")] -L 4, (r(z0))e ~ & (e

where:

roL R T Y
(Y“g)p = p2 aTr (r2Tpp) *';?’ Tre "”h"rrz

- ' -
(v =k, & (¢2Trp) ~ LW 4 TkT

“q

where the result Mep >~Tigg has been used.

Thus:

2
[YA(?."E)]z l'%olr j 1.+ rs ]”PG rs! (l“lTpp) |

iR d (7 + ’.a—':."'lhl'r
'Falr( 2‘9) rFo

Substitution of the expressions for the components of iy

-

from eduations A12 to A16, eliminating u! using the relation:

e
! ¢ 1 ' . ! ,
g = 9 5-'_ (!‘ur) - !g; U> ""!.;:(v'“) V18

eventually yields:

[vaceD)],=

L d¢fd (rcwf) CVu)'A(ﬁP)?_(v;f-l)f . Q'
F’ ard o\r rr b

14;‘{ e o”‘ z.n.) ? (WLU w,§ d ( )

f L low' 55 g ()t 2-'1)]}

'al |
;-'; j{_fl’“gcuz J{’(i—ﬁ) - (IJL uz]g (continued)
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> 4rl La df lr

N @P&szr:(r Ar( 3o{5r (er:t) B )
4 g 'cJ ( 4 A ( c‘uaz J? ) )

rar Ar Bz

L gl (Y- B F )

2R

b) lMasnetic Terms.

- Ve need to evaluate [ 5 8)]

V7 gives
Ei c,,m] [-* \u(wcv,s)]
[v,. (g-wB ],
=;L £ 4:£80 2080 ikr8- B0
+ SR8 B,» + 2 Be /549}7]
V6 gives: .
Bo - ~ f‘_(rﬁ )“""B s

Hence, upon substitution and re-arrangement

[ GaD], = - B2 5 (P ) -5 6 )
* gfr" %r(rs ir (F B2 )
"d 2t ! . 2 /
B (rrd )(g e 17 8,62 J¢ 2 5. ]

¢) Inertial Terms.

The remaining terms are:

Cualpfden-viu) ]

A little manupulation involving substituting for ué from V18

yields:

Tulefferiells

_.(Jf;w( JE? +st’ UI[O! (Prw)fleJ (m)]-g-fl‘w 0[ (U&)}
' m A A

(continued)
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+‘§( e dr‘:‘\’w‘d (Pw‘} lﬂ(@j (_’_’w) 1.? j"lrtfw'é (rse)]

. Mwl - Wu J
+ O 4 ;rﬁ)

[-H (gmw.) f~(’“~'. .+ 2im _(;“6} (rab)
rid Wi g P d p2ple —po s m)!
P[44 Cored e e eagle —e 8] cou!

Collecting terms and using V17 to substitute selectively for

u; yields the reduced momentum equation:

© |
j[(e;?ui mr%& d'i]  Cod? ,)'g((mw —ww‘ (f’)) .,

—-2?kga~1u'2(w -"‘-‘;_9‘9)1475'[‘ (’(w ”;“‘9)2 wo
@ @
& ( hn Ar (Y_‘;‘) (V ((’ K ”t‘t.;. r j)

+ (s L)) mP (Vu) f’e‘rz(wl@mﬂe )2‘ @ b()
lhl‘lf’ Auz — —Erf’q-z
""“xff u(w.[‘gd )H )] L .: ch

i R 2 L)

+(ML-‘)iEmK;,E + Rfklgﬁz 2
e N . A jio

'*(Z‘Ji% oldurz yﬁ_gz)f(i d (3 d_{&;-') c“‘,&') 8, )

+ 8 (4, dr(r} (% )~ w44 [ j‘:f mz]))

=0

- In order to verify V20, we may check the collisionless

~©

- limit in which perturbations are purely convective (28) and

incompressible.
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ie. "z X (T A . ',‘ ds.. l .'ﬁ,‘ ,
e 1 broRS6ey 622 TE4EL (0)SiT 4 (1)

~Substitution of these into V20 followed by considerable

algebraic manipulainn yields the result:

| j‘(fﬂ‘g]*(’? 0w
with:

EF- Cr3w, F3F 82 -wuw;"d( )4—75144»?0!!-(:.
' ﬂo 2 dr

(?~ ~(mr-‘)F Pag[e(w, mug)] k)‘ 1({- (jz)

which is the collisionless equation expected upon consideration
of equation I11.

Equations V10, v12, V14, V15, V17 and V20 are thus a
complete set of equatione for the perturbed quantities ué s
(., B;,;?', B} and § « Since Vik, Vi5 and V17 are
explicit e?pressions, this is a set of three simultaneoﬁs

lsecond'order differentiai eéuations in the variables B;; Bé
and§ . A sixth order set of equations of this sort cannot
reasonably be solved numerically across the wﬁole plasma by
the'techﬁique employed on the second order collisionless
equation in chapter III since the matrlceu produced would be

© at least heptadlagonal and hence dctermlnant calculation too
slow for reasonable speed’of iteration. Further analysis

must therefore be employed using the properties of resistive
instabilities to reduce the problem to a nunerically manageable
form.

5) 'Outer' Region Solution.

The first simplification of the problem to be made is to
consider initial states in which the plasma velocity is
neglegible; ie. no greater than the resistive diffusion. (see

section'B). From equation V2 we observe that this implies the
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existance of a radial eéuilibrium electric field when the Hall
term is includqdl;OQFeiﬁh%§wis realised, Uy = 0 and u =0 may
be substituted‘into the perturbation equations.

For resistivitj to produce ihétability in the plasma, a
region of large perturbation gradient must occur within the
plasma to enhance the resistive diffusion above equilibrium
rates. Outside .this region, perturbation gradiénts are too
smail for.resistivity to céntribute (see Coppi et al. (6) ).
From the infinite bonductivity equation V21 we see that such
regions occur when F becomgs small. Hence we must order both
‘frequencxfﬂ,and the FLR term to be small compared to their
values in collisiénless instabilities‘so that Ir is
sufficiently large near the resonant surface for enhanced
resistive diffusion of the perturbations to occur. The
accuracy of this ordering must be Qstimated from the results
finally obtained; If this ordering is made, then to lowest
order in the resistivity we obtain at a point within the plasma

away from a resonant surface:

B I ~ () RrB2 < 2 k3P )T =
-d}(k‘rﬁzj})‘f'((f z ” P/‘a'{'ﬁgoVEE

When discussing the’ﬁearing mode, we -Observe from Coppi
et al. (6) that the presshfe gradient term responsible for
interchange modes must aiéo be a very small quantity. Hence,
except near k=0 (r = rs) the effects of resistivity and

FLR are neglegible and the perturbation is described by:

‘% (r’Fl 321 ds ) - (-1 rk? 3: E =0 v23
d AF

Near k = 0, the full set of perturbation equations must be solved
and the solutions matched to those of V23. This is the
standard procedure for all resistive instabilities.

For the purposes of the tearing mode, it is more convenientA
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to work in térms of B;'than }E in the outer region.

Transformation of V23 yields: . . |
- ' ! : ‘
d (p3FB. 48! —r38'd (% sz))-(ml-:)k‘rezs,. =0
Ar dr dr " | _
The form of the solution to be matched near the singularity

at k = O can be found by expanding about r = Ty Following

Coppi.et al. (6) this takes the form:

(C|+C2(-L Gb.lxl))(x4 f;x ) vak

where 3 = ’::B ’- ( - Mjla dJ2’ . dh
o X Bz drlr-y”’ Ar Peiy
and 4 and ¢, are the arbitrary constants.

Thus, the solution of the eigenvalﬁe problem is reduced
to\fwo parts. Firstly, using profiles of the plasma current
and of the.magnefic field, V23 must'be'int?grated (probably
numerically) to obtain the ratio c,]/c2 oﬁ either side of r = rSQ
Such computations have been carried out by Rutherford et al.(12).
.Secondly, the full set of perturbation equations must be solved
to find the change in c,]/cé as a function of the instability
growth ratee. By obse[rvmni f};?t b . Ps AE,.] P$+£.

{0 f‘~i ¢l Bf drdhi-€

this matching may more conven1ent1y be expressed as a matching

' N+&
. b;“ r3 C‘g}:] d :
A g=20 Ll BF dr I~

the discontinuity in the logarithmic derivative of B; across

of [\, where [\ is defined as:

the resistive or 'inner' region. Oﬂiy this segond task involves
the physics associated with FLR and resistivity and will be -

" subject of the work that follows.

6) The 'Inner' Repion Solution - Discussion.

The 'inner' region is that region around the resonant
* surface ior w?ich lkl = ,k+mB9/(rBz)l<5<']kl . As we assume

it to be a narrow region compared to equilibrium scale lengths
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in the'plasma; it ié consistent to treat equilibrium quantities
as cqnstants throughout -and expand i '= & r X where x and X are
definediin'section 5. Furth et al. (7) and Coppi et al.(6)
_~identify different modes characterised by different orderings
of the equilibrigm parameters. This work will concentrate
on the tearing ordering which permits analysis to proceed
sufficiently, when FLR is incl#déd, for a tractable numerical
pfoblém to be défined. ‘The slow interchange ordering'wherein
tﬁe mode ié driven by pressurevgradients within’tﬁe resistive
regionjwill be considered briefly in appendix B, buﬁ the
quatioﬂs that .result are less numerically tractable than those
of Cdppi‘et al. (6), without FLR corrections, for which sevére
numericél ﬁroblems were encouniered'on only a ;implified
version. Additiohél compiications arise due tﬁ spatial
‘oscillation caused by the FLR terms. This effect ié discussed
by Frieman et al. (52) and mentioned in section 1.

7) Perturbation Analysis II - Tearing Mode Ordering and Expansione.:

Coppi, Greene and Johnson (6) argue that‘when the growth
rate of resistive instability is sufficiently small due to -
small resis%ive layer pressure gradients, the resistive
thickness becomes less than the resistive skin depth for the
frequencies concerned and the.perturbations become driven by .
influences external to the resistive regioﬁ. This 1s the
'tearing mode' limit first considered by Furth; Killeen and
Rosenbluth. (7)-' These modes are characterised by large
perturbations in thé 'outef‘ region which undergo rapid
variations in fhe resistive layer. Physically, this may be
pictured as the piﬁching or filamentation of a current layer
(egz. Jukes'(57).) and is known to lead to 'magnetic islands®

in the non-linear limit which are tﬁought to be possibly
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involfed in the disruptive instability in toroidal devices.
( see (59) ). 1In order to adopt the ordering scheme given in
Coppi‘et al. (6) describing these modes, we define the
following quantities: 

Complex frequency of

w .
the mode.
N Equilibrium resistive
WpT s . _
/{ § diffusion frequencye.
2 Hydromagnetic frequency
Wli = iy E_z_

F = _& Plasma beta.

( mBe )2‘ Suydam parameter,

= U ~%+ violates the
I B: /quo Suydam criterion.

( U=~ D in the notation of reference (6) ).

To. describe FLR, define

. M dp
Qr = Arne dr

For this to be significant, we clearly need L@)A/QF.

The tearing mode ordering from reference (6) is thus:

Wr N L U I~
| Vﬁh “/¢, ’ Wi f Wy
r..r"vz. ~'2' u’\'ﬁl
T ¢ F 2 |

-wvhere @ is merely an indicator of the relative magnitudes of
the various terms and might formally be defined by any of the
above‘expressions.
Hence the combined ordering of the various quantities
in &€ and # is |
p~F
.Be ~ £¢Bz'
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W, ~ {7‘(15&

w ~ £ qfé;fL‘a. Gh: ‘

L . g9 = F-T5 ~ plar

Fy T
| | 3
k ~ 2" Skr~sg

WR' v £ g I
Now define the scale length and frequency characteristic
of tearing modes: y ' '
5 ; - 2 2\Vs
.zrs( ) Qe = (Wi W)
é. L
and the dlmen51onless quantity, ,{_ < R/f; .

{le shall also need:

' . Scale length of plasma
L = p/Cdpldr)
' pressure.
Scale length of plasma
ne =@ (CA¢ddr) & _
density.
CL < T_EF —-'

Le

R di= . L 3 J (B R
J(’“o(/g:éﬁ or*Bs A r(PIr(Rgz)

" Thus, in the manner of Coppi et al. (§) we may define
normalised or 'stretched' variables in the 'inner' region:

Frequencies:

q * w/QR' Mode.

GQF /QQR FLR.

v)

e

Length variable:

X = (-R)/Lg = e /c4b

Perturbations: ( g
. D - io ‘) Ro = 8 B’:z L 3 R:. s 8 BIE! L
f} 2 & ré R z X R (continued)
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2 Ezz(mﬂe/l‘gz)

( BéO=Bé1=Béé=Bé1=O on expansion of the perturbation equat;ons
in g to lowest orders). |
| The lowestlsignificanf order in @ of the various terms:
in equations V10, V12.and V20 is indicated by the juxtaposed
numbers. Observe that equation V15 is reduodant since y]'
occurs in V14, V10 and V12 only to a high order. This
effects the previously mentioned elimination of the Ohmic
heating terms arising principly from the low ordering of -
beta.  The relative size of the perturbed variables to
lovest Signifioant orders is thus seen to be:
o BomEfy By~
wf cop A by o~ fo B
¢ B, B,
(Pu) ~ & o glur
Iy =
Selectlng the lowvest order term from V20 yields:
¢ﬂ‘3r =0
de

This the fconstant W (ie.B')' approximation of Furth et
al. (7) produced by the formalism of Coppi et al. (6).
Henceforth, we shall take B' to be a constant in the inner
region and later show that it is entirely consistent to
1
neglect dBrE/dr'

To next 51gn1flcant order, V20 yields:

w(fr"w vt ( )‘J_i - "'!f‘lP a-:i( (P.u
+ ':I ""_ (lz"“z) * 23 K128, B _ kB d __6;@
Mo Mo de?

+i’; a—l-;(r“[ (_EB ))

V25
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To lowest 51gn1f1cant order, V10 yields:

0= KRB uz ~ ch-u)(l—'—ﬁ’} 5{) Va6
ARG R

2r 0 M o ir’- ,
V12 produces 6 8 JB
. i -JvH 2
(i ~RT8)= 2 B (iPB; + Bn ;r.~> .
w4 A‘Br,l,_

Mo dr*

(V.u)* and u! may be substituted into V25 to V27 from
V14 and V17 respeotively. Transformation to the stretched

variables defined above then yields.'

1,(?, {¢ ("\/1?))0 ""7;7-? 2 +| 2-XR i-Ro'J“J va8

:LD'U
-p j:f (l)ﬁz 4-'5'"2 FI1Z - Ka) -0
le (1-{;:) AE

iz fo (T 1)1‘2(‘%“ (g1 a49) v

. , y
.Rz =ik (‘L’l‘lp)“‘xio 2—3&&1‘(

Vhere superscript prime denotes differentiation with
respect to X.

The quantity C. is proportional to d(pf 1,)/dr and must

L
therefore vanlsh in a plasma produced by adlabatlc compre551on
from an initial homogeneous state; it represents the
contribution of the specific'entropy profile. Note that,

apart from the contribution arising via u;, CL prefixes the
FLR paramoter,‘qF, in V29. The factor of 2 in V30 multiplying
qF may be found to arise due to a term involving total preésure
in the initial equations (rather than just ion pressnre) and‘
hence this term would be electron-dominated in situations

" where T, g T;, not considered here.

In order to consider-matohing conditions with the outer
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fegion and.té justify the omission of Ré, foilowing Coppi ef
al. (6) we take the large X limit éf the solution.of v28 to
V30. Equations V28 and V29 are iﬁhomogeneous in D and 2 since
'30 is indepehdent of X. (R" in V28 may be ellmlnated from V30)
Their general solutlon ConolStS of (see below) a pair of
exponentially growing modes in space, a pair of decaylng modes
plug a particular integrai. The first must be eliminated as
oné paif of Boundary coﬁditions,‘the second can play no
part in the large X solution'and_the particular integral
matches with the outer regién. Thus,.for matching purposes,
it suffices to find the latter. |

At large X, derivatives of D and % will be sﬁall in X in
the particular integral since it néither exponeﬁtially ETows
nor decayse _ -

Taking terms to highesf order in X, V29 gives:

. R — (q )(
zr 4(bx 7{1,(3 L F ‘L ZF ‘
" V28 may.be written: 7 4 64 ‘ZX R
F iZX_Ho )
o x —xRY vhoJyriz~ £ 20 & (e [IFF])
Substituting for Rg and iZ from V30 and V31 respectively
Yields to highest order in X:
2
- i D +R Rou
0= \.XiﬁoflfLX o?r ‘f":(z’_é
Hence, at 1arge'x:

U o
P 5"(1",%”,(" 6, x> )

V31 gives:

. R (‘il .....
12 = Ne| zex
Thus, from V30, substituting for Z and D and integrating yields:

Ry = kX +C_R_El’xz+(ﬂcfa¥f+cﬂ-: )(;(L,‘lxl -X)
B

A
" Roth L Xl
16

where RO = R6'+ CRX has been used and K1 is an arbitrary constant.
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Using 16X = x,we find:

R ti l 2 + (R.;?P + C-&u ) fé{h‘hIN,b«Lé-I}),‘-.

The total R (normalised B') is thus:
1 {68, - RS -fff_z_" ¥ kX +Cf£_3_p_
246 A
+(R"Jff(gu)(zc/.ulz.l-)() Rp Jpx-‘nl .-
Due to the ofderlqg of QF, this is the same result as found

in reference (6) so that, as in that cése, we choose

6 6
- % 3 -
CR—ROJPI 1n(l”) so that we find:
. 6 — * * .
RO + 1 R2 = RO + K1x + ROJpxlnlx‘ + seeeseees

Coﬁparison of this with the outer region expansion V24 shows

that XK, = R* c1/c oh matching the leading terms. Since the

1
particular integral is unique and the large X expansibn,isv
independent of direction, only‘the value of K1 differs at the
opposite boundary. Hence the 'inner' and outer’ solutions
match in their respective asymptotic iimits if fhe change in
K1 across the inner region matcheé the changé in c,‘/c2 across

the singularity in the outer region solution. As previously

stated this implies that:

Is+¢
1 Mz]"’” d B/ 9 st
A Lo X XD ~C0 570[ gf Zr]

from !'inner! from 'outer!
solution. ; solutione.

These results are independenﬁ of the inclusion of FLR and
appear identically in reference (6).

Note that the value of Ré that had to be chosen for the
maéching is of the order of 16R6. Hence, from the definition
of l6 :

Ry~ P°RZ
and may thus be omitted from the equations consistently.

Henceforth, therefore, the asterisk wi1l be dropped.
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, Substitution of V29 and V30 into v28 yields: o
: v‘l(tl 1:(1- ‘ILY))D , : 3 V33
T ex( 1020 e ) B ]

| 27ilg-q) Litolg-q)

.1.'0[)(1(—;(" - ‘.CLF(‘?’"(L‘LF) )—‘ ;CL‘lFfblq,*CLq.F)J

2% (4-4¢) TP
viz' (a5l
“;Z["' +lfap(zi(,F) fxz(l%é%(“' wcﬁf’fw ))
L g _
+ X',?[f‘u (grag g +x* (L 1& -1.-)") ]
8) The Calculation of /A - The Mathematical Manipulation.

In order to calculateﬂ as a function of q, equations
V29 and V33 must be solved simultaneously to determine D and Z
as functions of the constant,RO. A is then determinéd by
integrating V30 as:

L dRa X2 | -2 -—HLX-Q" Zfic( dX 3t
R:; dx ];K~9 00 ‘ﬂ i; (1‘ i Ro  URo

As in Coppi et al. (6) observe that contributions to
13 are made only by the parts of D and 2 anti-symmetric in
X.  Since the coefficients of D and Z in the homogeneous
parts of equations Vé9 and V33 are all symmetric in X, the
required parts of D and.Z may be found by taking only the
anti-symmetric inhomogeneous terms in these equations. Thus
the Jp‘te;m in V33 may be omitted without effect on the

value of Zl.

Equations V29 and V33 take the form:

7}”7170 (75R4x:+:rDR 3)R 1~(T}c;fsrpg’(z) D
+ T,,szz +(T,,z 1—X1TD +X“T‘* ) Z

V35
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T° 2_2 ) '
z RoXng *DT ( +x Tzz Z V36

At 1afge X, seek asymptotic forms for D and Z of the type
ekp(-pXZ/Z) from the homogeneous parts of equations V35 and
V36. Thus to highegt order in X, the value of p is found

from:

- 2 o
P T Xt T XE

)]
0

‘ , . 2 *xﬁ
o -
Upon substituting the appropriate values for the -

coefficients, a quadratic equation for p2 results which has

the following solution:
N [ 1L
() -1(10—1,:(1- Yar))

V37

by [1+C_1s (eeii/gr_ ) -
(1-‘{F (i- ‘/:.r)) 1«0‘*'_1{-‘“ ~%r))

In the special case, C_=0, wherein the specific entropy

L
is constant in space, d(pffgydr = 0, then p2 simplifies to:

g — [l Ly Qelry ]--‘/L] V38
'(‘{,’{LF) 1~9e(1~"ay)

The inclusion of FLﬁ thus splits the four asymptotic

forms into.two distinct pairs. Both in the incompressible
FLR case of Coppi(31) and the zero FLR, compressible case of
Coppi, Greene and Johnson(6) only one value for p2 was found.
This property permitted both of the previous works to achieve
analytic results by these methods. 1In the present case,

~ expansion will be carried out numerically using eifher one

of the two values of p2 available.
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Physically, of course, 1[[;1 defines a scale length of
the problém. From the results of Coppi (31) we see that in
the loQ beta limit the scale length of the tearing mode becomes
large and hence the effective p becones small.‘AAs no such
behaviér is exhibited by fhe p values caiculated above, but
the resulting theory is shown below to agree‘excellently wifh
phat of Coppi (31) in the appropriate limit, we conclude
that the subsequent terms of the series approximations té the
perturbations méy make an exponential contribuinn so that
1/'IE?.is not necessarily a good measure of the width of the
 {inner'jregion. The thickness of this region-compared to‘
the ion Larmor radius (ie. the size off€ in the FLR expansion)'
is the most severebrestriction of this theory.

At this point we change independent variable from X to
G = XJp « Either of the two square roots may be taken in
V37, but'since the solution cannot increase exponentially
with X, we take the square root éf p2 with positive real
part. We are free to choose the square root of p having
positive real part. Thus,Afrom this point onwards, two_
éqlutions are produced from the two values of p2. The degree
of agreement between the two.values ofﬂ calculated from
these provides a good check on the. accuracy of the calculation.

For convenience, define:

V5g = P4 (q’-—‘LF(!f \ar) ) V39

Voo = [ 14290 + ilic ]/p o

”va
S if9r
Vop = -~
" b (g—q, F pPla

vi1



e ot e Sy ey S b,

LS
Liiq —19c(q+49F)
v iq —19¢(qtCdr )
s H-y ~ieus
W T,
Vooz Tl (Q.“%)

Ve if e i - ‘L"(,Fﬂ [‘L-t CLq,)
Iz ki (4-¢¢) ¥PpuU
VS; = ~&F(l L )

up l&Y(q;i,:)
v e -
P2 led (‘L"‘it’)zrl
V'I'P - U
pd { (CL iF)Z r?{z
- 24
Voo = Tigp (17416
V;Z = -brﬂ‘jg (1-’(L1F)
A | L
Vaz = Pz('i"lF)

Seek solutions for D and Z of t.he form:
D = K (@) exp(-67/2)
2 = K, (G) exp(-G2/2)
and put R*= R, exp(Gz/Z)
With these subsikitutions, V33 gives:

Vi ( (VKo + (kg =26K5))

154

Vug |
Vhé
vil |
vhs

vhi6

- Vi

V48

vio
V50

V51

V52

! 2
2 (Vpe 6 Vi, 63) RP (Vi +6M V5 Ko ~V 002 671G
+ 6 _Vp‘vz Kz’ . (V0; * (,"V,i‘z + 6 Vf{z) I,
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and V29 yields: | | |
(6™ 1) Ky + (k' =26 4 ) = P @Vzrz i Vzap V53

"*( ng +&* sz ) &z

Hére, of course, the superscript primesindicate differentiation
with respect to G.

From V53:

C_, 2, = (R*G Var~(i= 1<7F2)H\onm +<lH/z=)Kz)
(l—-v;z)

. V37 implies: A - 2
Wz . Vpn ~Vap) -0
[—v2 0 - V55
ze2 Vo .
" Upon substituting V54 into V52, the left hand side of

V55 arises by design as the coefficient of GZKD.‘ Hence, this

process produces the equation:

O = —Vpp (I =266, ) o s
- 4 ! i 0 )
I ve + V2o (Vg ~Vpgy t Yoz (1#VE, )]
3,3 %V,
+R%6 [ Voz Var ]
v Vﬂﬂ + (("Vl
: V>
z[ Voo (=2 Dz pp= I — sz))
- (K _‘26(&')["02-"00 -H/Z (s V35)
( 1-vzz) (l- -vi.)
-6 (K -26k )
("‘Vz‘z'z)

{ l
+ G Vo= Iz

+ R <7[VDP

v! !
B~V s U0t (16022) ]
(‘-'sz)( Dz i (l"'szz) )

Now expand K., and K 1n'series of Hermite polynomials,

D 4
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Only odd pblynomiéls are required since only the anti-symmetric

parts of D and Z are being calculated.

1§. put Ky = 220 cmH2m+1(G)
= = '
KZ m=0 de2m+1(G)

The following propefties of Hermite polynomials are
required (16)

5 H =) H,, (z)eziz -A ”‘.4[,[?5:1

ZHM(z)— n H ~,(z) +J_ Hig (=)
5-‘ (%0 (2) = =€ Moyt (=)
| Z |

4 H,(=z) = 2"\““;-1 (=)
d= |

From these, in the manner of Johnson et al. (51) we derive:

‘ :E I/,_z 2[ Ha () ]

" (ardd

P '/22 [ Hingi (=) ]
= "‘"L L [ Grmri)

>3 5 2l g4 [ Chmsdu,,, N(ZJJ

A W CEPY )
Z Ha(z) = h(ﬂ‘*)Hn..;_Cz)+(n+‘/,_)H.4(2)+1 H, (2)
Using these, take ( -C? H ((7)( """ )ol(7 of equations

. V53 and V56 to obtaln difference equations for the dm and Che

(ie. equate coefficients of Hm)

V53 yields:

Cm = UM..‘('~ szz) (2 13)Coratt)

Voo

~d [ Viz 1y (:+vz’;)(am+3))
o L o .
20 V=p

Afviwg_| ( "“‘/:5;) - Ro nE? LG;Q
LV, V3 b\ et
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The result of this operatibn upon V36 is lengthy and will

not be quoted. However, substitution of V58 into this
followed by the change of &ariaﬁle:

’Zpk'_"olmi e 3,) J2! V59
(vhich ensures that gamma functions occur only in ratios and
do not lead to subsequent numerical overflow) jields,lafter
'sﬁbstitution from V39 to V51, the following three term

recufsion formula:
~(1 t44) Dot [( | )( i 9 ("'.(‘L“‘ZF)
m g% P
4 (et ) Wi q:(rﬁp(t-vﬂ)))

g B | P (g +Gq)
] 24 3 (lpom—1) € i i9p
+1 — - 4-
%F( § (g, )( ki (g+6 g,) ))J ,
'FP..""[ + Bige + (l{—m+g)17F{li (‘Z ZF(( ‘/2.3'))-*4.(!(9 } |
K gl(i"ip) . ‘

2ilg-qe)i (‘L‘f Gq)

+(ll'?f3)( '((L f’)(l‘f 'CL(F _*'(i 4 )))]

= Dt (mm[ p .‘:E-ip)( ig 4% (4~ ¢)

" P
b0 L) 1 (g =g (1= )
| - i(Q:(L 9¢)
+ "‘Ls( 21® _ __P_ ( (fpims?) CLig . \3.‘) )] |
P i\ b (g rag) b

2 r‘(wu}/z) S (le—m+3) |
+ 2 i(g-2¢ ) 1 "?
rlz p(w“ [ - ?'F Zr‘( l(i“?_(;) ((af(t.ip ]

=0
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Using the expressions in V57 for D and %, the integrals
in V34 forJA may be evaluated using the propertles of Hermlte

polynomlals.w Thls yields:

- l(?“ligl P(*ﬂf%),fj .
A szsio[j JF' 0 () ver

ﬁﬁnn+z (g Cim + A ghu
( '3/))(”{« + ,&;r:( )

(Pko
¢, may be ellminated from this using V58. Finally,

after employing the transformation of variable V59, an

expressn.g for A 1ln E\erms of the D resul;s. 1 )
L( 2\ (b2 [Pl'( Rk A=

A 1" T (ortt) ( Iz
2‘5(‘(&%«#7 +D (17"}3(1%w=f3) .f.l(——(bl(j“liF))

“l’ i (4¢,0) Ui (g -¢e) pu

The recursion formula V60, with the boundary conditions

v62

D_,=0 and Dm—?O as m~> 00, plus expression V62 forl define

the numerical problem to be solved belov.

L
il

Thus, if we set =0 in V60, the coefficients of D and
q.F m+1

Dm 1-vanish leaving an explicit expression for D N This is,

From V37 we see that F vanishes as qfe,o.

as required, 1dent1cal to the result obtalned by Coppl, Greene

and Johnson (6) (equatlon 150 in that uork). In this limit

J_r’(L«4\L) 1
M Plasr)  lz
Hencg the partial sunmatlon up to finite m, which is all that

3

can be computed numerically, convérges as 1/m“e This property

we see that the terms of-the summation are A~

is of importance in what follows.

9) The Numerical Problem.

The numerical solution of V60 requires that the sequence,

Dm be truncated at some large value of m (:M) by setting DM+1=O;

~ the resulting tri-diagonal matrix is then inverted. This

approximates the large m boundary réquirement of the convergence
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of Dm; the degree 6f error depends on the magﬁitude of DH+1-
in a hypothetical exact solution to the recursion formula.
The effect of fhis error may be seen by considering the
general solution to fhe problem:

| D = é1S(m) + aaB(m) + P

where S(m) énd'B(m) are complementary functions and P the
particular intégral, Tyﬁically,.one of the former (say S) will
cénverge'for large m and the other diverge. Thus, thé-large
m boundary condition is, accurately, a2=0;' The effgct of the
truncation is thus to make a, small, but finite, so that the
last few Dm calculated will be in serious error due to thg
contribution from B. The precise number of such terms is

determined by the magnitude of a. and hence the severity of

2
the truncation error. 1In evaluating /A from V62, therefore,

the series was summgd until, for some m=M%§ M the contributions
began to diverge. (The equality applies'for qF=O).

Figure V1 shows the variation of the series forA for a
particular set of parameters as larger numberé of terms Qere
included. Note that even with FLR terms included, the series
varies line;rly with,1/ﬁ% for sufficiently large me A better
approximation for A can ve produced by extrapolating a graph
of this sort to the 1/m%9»0 limit. Numerically, this was
effected by regressing the last ten partial sums found against-
1/m% and extrapolating this best fit to 1/m%=0; From figure
V1 it may be seen that this extrapolation involves only a 3%
change in the yalue of /] éalculated and is hence of the order
of the errors involved in the computation; its importance is
that it re@oveé systematic érror enabling the value of M used

to be altered, whilst vafying a parameter, without a

discontinuity appearing in the calculated value ofzs as a



160
83 -
47-4
Re(4) ~Im{a)
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1/v/m
Figure V1 - Asymptotic behavior of the series expansion for [};
m is the number of terms included in the sum.
function of the parameter changed. ‘Further justification for
this procedure was found when A vas calculated taking the
other sign in equation V37. As a function of 1/m%, the two
approximations were found to converge'towafds one another in
the 1/m%;9o limit as is to be expected from the nature of the
analysis. |
The success of the computations clearly depends upon the
convergence of the series fort3 « In situations when p ié
very large, the scale length involved in the Hermite expansion
becomes very short and hence large numbers of terms are
required. From V37, we see that this is likely to occur
when q€>qF or q->qF(1—1/(233 )e In regimes such as this,
considerable computational difficulty was experienced and M
as large as 1000 was frequently uséd. Situations more typical
of the tearing mode, howéver, vere accurately soluble using
typicall& 250 terms; excellent agreement to less than 1% was
found between computations using the two different values of
P2.

The only.remaining constraint on A to be satisfied is that

it should be real. This can be achieved via iteration by
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'varying the real part of the normalised frequency,q, until
-ihe imaginary.part of ll ;'calculated by the ébove procedure,
is reduéed to_zefo. Clearly;fhis is a problem of root—solving
# real function (the imaginary part_of[l.) and was carried out
using a linezr interpolation algorithm, a standard method for
thig purpuse. |

vThg iteration~aﬁove serves to cémpute'the fuﬁction‘[l(g)
vhere g is the normalised gfowth rate (-Imtq)‘). Computation
of g(P) at fixedﬂ':ﬂo, where P is an arbitrary parameter of
the prt;blem, involves root-solfing the complex funcfionﬂ(z)'-‘ﬂo'.
This involves considerably more computational effort than the
caléulation of[l(g), but was attenmpted, ﬁhen required, using
the Mulleris algorithm codéd for the work of chapter TII.

10) Checks on the Calculation.

There are two limits in which thesg calculations can ‘be
checked with previously published work:

a) In section 8, it was oﬁserved that setting qF=0 :
reduced V60 tﬁ the results of Coppi et al.(6). The coding -
of the equations was checked by taking this limit and comparing
the fesulté.with those obtained from the explicit formula for
11 given in reference (6). Excellenf agreement was found,
but, since this is the limit in vhich the two values of pa
coincide, this cannot be used és an indication of the accuracy
of the finite g calculations. .

| 5) At non-zero FLR, Coppi's calculations (31) apply to
the f=0 (and hence U=0) limit. Computations were performed
for a suitable.set of parameters taking theﬁ:ﬂ)]imit; the
results of this aré-shown in figure V2. Note the accurate
agreement ﬁetween thé curves constructed from the present

calculation and the points derived from Coppi's work.(31).
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Figure V2 - Comparison of the calculation in the @ =0 limit
with the results of Coppi(6). The circled points
vere calculated from Coppi's work; the bold lines
arise from the present theory. )

The minute deviations that appear can largely be explained by

the errors involved in extracting data from the 2in. square

gréph in Coppi's (31) figure 3.

11) Nyquist Techniques - General Comments.

Glasser, Greene and Johnson (50) investigated their‘
dispersion relation, A(q)éa, using Nyquist plots. This
inv;alves searching for ranges of unstable ﬁalues of A by
mapping the lower half of thg complex q plane onto the complex
A} plane. Any ‘part of the re_alA axis enclosed within the
mapped region will exhibit instability. Numerically, this
may be attempted by plotting ll on the complex plane as q is
varied along that part of the real axis.in which significant
effects are likely to occur and outside of which simpler theory
(eg. (6) ) provides an adequate description. In the case of

FLR phenomena, we clearly wish to investigate the regime

<
quF.

Owing to the eiistance of singularities in V37 on the



163
real q axis, numerical methods are incapable of producing'a
complete Nyquist plot of the type indicated above. A liftle
more information can be numerically extracted from the dispersion
léw.by considering only instabilities with a growth rate larger
than a éﬁééified value. This may be accomplished by computing
the'contour beiow, rather than along, the real g axis. As
will be seen later, this approach'yiélds diagrams'whichAcontain

various loops in the regime Re(q)as q The diagrams are still

P
incomplete, however. The study of fhe behavior of such looﬁs
is a useful key to understanding the behavior of thé dispersion
1gw. Since they expand and contract rapidly as a function of
the.growth rate employed in the plot, maximum and minimum
growth ratés of modes at particular'values' 'ofA can be
estimated from the potential ability of the loops to inteisect
the realfl axis. In particular,‘the existénce of a mode at

a noighbouring parameter value is often indicafed by the

. presence of such a loop not intersecting the real [} axis.

if sucb intersection océurs, eithef the enclosed or the
excluded part of the realﬂ axis may have the larger growth
rate. Features of this type are no doubt due to poles in the

numerically defined dispersion lawe.

12)»Resu1ts of the Computations.

In order firstly to ensure that the results blend

continuously into those of (6) in the 1limit q &< q and

“F
- secondly to gain an overall view of the regime in which FLR
effects are important, consider the results presented in
figure V3a foria seé of parameters giviné qF=-1O.1. The curve
indicating the qF=O.situation was derived from equations

151 and 152 of reference (6) omitting the S parameter of that

work since it does not arise in the present calculation owing
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Crowth rate, g _:

Figure V3 - B =27, By=0.002B o1 B = 102703, 7 = 100ev,

LB—rS-O 1n, Lp--O .lm, Le——O .17m (C -O),m 2

Q= 4ots™ e (1p= (BQ/(rBz))/é(Bg/(rB War)

~ a) The dependence of [y on the normalised growth
rate,g. FLR is most effective with gﬁqu‘. At

- large g the two curves approach one another as

required.
b) The frequency of oscillation corresponding to a).

to the ordering ofBg/BZ in€ . Note that, at large q, the
" two curves approach one another. The major effect of the FLR

terms is observed below anaqF.
Figure V3b indicates the behavior of the oscillation
frequency fof'the same sét of parameters. Vhen g is unimportant,
at large growth rate,g, the frequency tends to a roughly con-
stant value, small compared to the growth raté. The host |
marked feature is the rapid‘rise of the freqﬁency towards EqF

" as g tends to zero. This is the value predicted by Coppi(31)
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Figure Vi - (g) for B_=6T, B,=0.002B,_, n=10""n">, r_=0.1m.

a)‘LP= O«m =Ly ; Lp=0.17m. (CL=O)
b) LP; ~0.1m =Ly 3. Lp=~0.17m. (CL=O)

in the limit vherein FLR effects dominate.

In figure Vh4, we see the situation, Bz=6T, B,=0.002B,_,

n= 10°'w™>, m=2, |z =0.1m = |LB| , {Zel =0.17m where Ly is
defined as:

vw B _
I/G( © )} at the resonant surface..

Fliz

For these conditions we find the following parameters:

Temperature in eV | @ in s Jag|
100 1533 2.2
500 360 46.3
700 266 87.7

Note the large variation in the scale frequency, QR, due to
the T-B/2 dependence of the resistivity. The larger ﬁariation
ofqulis due to the increase in Larmor radius, as temperature

rises, superimposed on the resistive decrease in the normalising
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frequency, QR. Wheﬁ considering FLR ‘effects on resisfive modes,
thercfore, we are concerned with a strongly temperature depend-
ent phen&menon (qfﬂ>T1.9). In the absence of FLR, q varies
little with temperature and hence, for clarity, the positions
of the curves have merely been indicated.

Comparisﬁn of Vha and Vhb, with ¥ p positive and negative
respecti#ely, reveals very close similarity in this A
dominant regime. Both sgts of curves cut off at éimilar
sets of values ofzﬁ iqstead of exhibiting any,of'the pressure
dependent characteristics that appear in the absence of FIR.
In particular, Coppi et al. (6) found that, at qF=O, tthp(O
case showed no cut-off A . wherea.s the ¥ p> 0 case exhibited
a minimum in [} (q) below which Glasser et al.(50) later
showed that an overstable branch cut off at posifiveﬂ - In
the light of collisionless theory (30), FLR induced cut'off
can be interpreted as . stabilisation‘of the pressure
'drivgn interchange phenomena preéent when the tearing mode
d‘riving force,A y is small. Hence, 1t is analogous to the
FLR stabilisation of Suydaﬁ modes.

At larger /A ve observe from figurc V4 that the reauctién
in the normalised growth rate, g, increases for any given ﬂ.as
temperature rises. This is due to increased QF; resistivity
variations are accounted for in the frequency normalisation.-
Reduction of[l, however, reduces tﬁe degree of stabilisation.

in figure V5 the beta dependence of the cut-offf] is
exﬁibited. Note that this tends to zero aé beta falls to
zero (the limit of Coppi (31)7). The cut-off of the téariné
mode by FLR is thus identified as a finite beta effect not
predicted by earlier theérigs. In to;oidal devices,

reference (50) indicates that, in the ap=0 case, the mode must
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Figure V5 - Varying the mag-
nitude of the finite beta
terms included in order to.
study the cut-off A .

B_=6T,B.=0.002B_,

"z e z
rS=L'P=LB=O o In ,Le=o o 7m Py
T =1keV.

P ]
0 A , -01 ' f02

e

be stabilised by creating sﬁfficient favourable average
magnétic field curvature to overcome adverse pressure gradient.
Clearly such constraints méy be relaxed if FLR aids the stabil-
isation. Devices with less favourable curvature may be |
considered.

Increased FLR stabilisation at higher temperatures occurs
duevto increased ion Larmér radius and redﬁbed resistive
scale length. Breakdqwn.bf the theory readily occurs if
extremely high temperatures are considered since § (the FLR
expansion paranmeter) then approaches unity. The difficulties
associated with identifying the scale length in fhis calcul-~
ation were discussed in section 8. For safety, the
temperature is kept sufficiently low in this work so that
the ionlLarmor radius is less than the scale length calculated
- from 1/,5_1. " If the FLR ordering fails, then the fluid model

used provides an inadequate description of the situation so that



168

200 ’
Figure V6 - [ (g) with
A , ' , larger Bge
| 700eY" 5 | B,=6r, By= 0.028,, n= 102'n>,
100+ L L = =0.1 .- 0.1
1008V - Bg® Lp= -0.0m, Ig= -0.17m, .
: r = 0.1m.
s
_~Fithout FLR
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particle drift and resonant effects play an important role.

Figure V6 illustrates the case: B,= 6T, Bg= 0.0232,
n= 1021m“3, m=2, Lp=-6.1m =Ly, Le=-0.17m,-rs=0.1m. These
conditiOns.yield‘the parameters:
| | Table V2.

Temperature in eV. Qg in s™1. . -
100 _ : 3850 | ~-0.86
500 , | 905 ‘=18
700 661 -

The larger BQ has increased the scale frequency, QR’ 6f
the problem"and thus reduced Ao The latter is, however,
still sufficiently great to exceed the growth rate at which
pressure driven effects occur in the absence of FLR. The
diagram (V6) shows that, owing to reduced g (ie. more
dominant hydromagnetic effects) the stabilisation aé large
'A is considerably reduced, even when the change in scale
frequencies is taken into éccount. However the value of the
cut-offA has béen neglegibly changed for an order of

magnitude alteration in B The case of f pp0 is entirely

Q.
"~ analogous.

The above computations leave two basic questions
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unansvered. 1);has-the introduction of finite gyro radius_
effects at finite beta in£r6duced gny additional instabilities?
. 2) As systemé of smaller aﬁd sﬁaller'qF areGOnéidered,how Qo
the-insfébilities found merge into those present in the’qF=C
1imit? The latter is particularly relevant to L< O situations
wherein the inclusion of.qF has apparently crgated a stable
range of [} values where none was present in its absence. (see(6))

In order to study these questions, the Nyquist technique -
, used by Glasser et.al. (50) and discussed previously, was
implementéd. Figure V7 shows the diagram obtained by
, _cromputing ﬂ along the- real g axis for the parameters of .
figure Via (500eV). The numerical mefhod became inacburate,
as determined by the disagreement of the lﬂ values determined
frOm the different.choiceg of pz, betweén the two free ends
of the curve on the diagram, although, in this region, the
recursion formula was not truncated until the 1001st term.
The region of breakdown began as é approached Ao when p2 began
t6 diverge, and ended with q<'gF(1-1/(233 ). The diagrgm for
the 500eV curve of figurg Vib was similar to figure V7 inverted
about the real[ﬁ axis. The work of Glasser et al.(50) indicétes -
that A and B are joined by a loop to the right at infinity.
in-the absence of FLR these authors showed that the path Aﬁ&éﬁ :
~was followed by curvés of this sort; they pass very close to
the origin on the scales of figure V7. The Lﬁé'o case took
the path Aﬁ%ﬁﬁ. '

Let us consider the behavior of arg(8) in the region of
~the singuiarity at 9=9qp. Denoting ;\=q-qF, V60 indicates
that Dmﬂ'l%' V62 then indicates thatf] C('p%, hence Acc},-%.
Thus, if: q-q, >0 - arg(@) =-/8

-~ _Q"‘IF< 0 arg(Qd) =T/8
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Figure V7 - Nyquist plot appropriate to : g=0, BZ=6T, B,=0.002B,, .

a= 10°'m™2, T= 5006V, Ly= r = L= 0.1m, Lp=0.17m,

(qp= 360-1 s

independent of the sign of the pressure gradient. Thus, in
"~ figure V7, the curve becoming asymptotic to OD as gq->qg, must

return from infinity along CO. Since this must eventually join
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the free end in the iower right haﬁd quadrant, the missing
segment of the curve must intersect tﬁe real axis. This«
in&icétes the existance of at least ome further'instability
- for some range of values of A, |

. In figure V8, additional modés are sought'by méving
the contour‘slightly downwards in the complex g plane thus
mapping out the region in the complex A plane having growth
réte greater than the specified valué. The loopé in.figures-
v8a and V8b enclosing segments -of the real ] axis clea?ly
indicate the presenée éf additional modes. Arrows on
thgse-plots indicate the direction of motion éf the curves as
the growth rate rises. Note that, although extra instabilities
have been diécovered, the numerical method was still unable
" to close the diagrams. This was achieved in figure V8¢
with a growth'rate éf g=10 (g=-Im(q) ) inaicating that, however
' many instabilities may exist in additipn to the main tearing
mode, all have a normalised growth rate less.than 10 for the
;et of parameters used. _
Figure V9 shows the dependence of 44 on the growth rate.
of the two modes found. It éppears that both modes are
» present for all A . 1In voth the large positi.ve and large
negative f} limits, thé growth rate of each of these new
modes appears to tena asymétotically to one particular value.
This behavior portrays an insensitivity of the-growth rate
to A , indicating that another driving force produces the
instability. Mathematically, a pole in the function A(q) is
indicated by each such mode. Since behavior of this sort
is not indicated by the results of references (6) or (31), the
possibility of thesg wealkly .growing iﬁstabilities is associated

equally with finite beta and with finite ion Larmor radius
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- Figure V8 -~ Nyquist plots with increased g, demonstrating

further instabilities. B_= 6T, B.= 0.002B_,
21 z e z

n =10 m‘3, T = 500eV, Lg= r_= L = O.1m,
. -1 5 p
LQ= 017, (QRz 3601 5 e
effects.
The relation between the new modes and figure Vha is
indicated by figure V10. This diagram concerns the region

close to the origin in Vlha. The 500eV and 700eV tearing mode

. curves lie far above the top of this plot. Broken lines
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indicate evaluation of the qp=0 formula of reference (6) together
with a caléulation of the branch below the minimum by iteration
of the same formula; thereby varying Re(q) .to reduce Im(f}) to
zero. Clearly, both in position and in separation, the two

modes féund;are associated with the.minimum in the qF=O curveé.
Since this is found over such a wide temperature range, a
connection with the associated physics is strongly implied.

As the mimima are produced by the interchange'mechanism

beginning to dominate that of the.tearing mode, pressure

gradient effects must be important in driving %he new

instabilities. From Coppi et al.(6) we see that the transition

region is characterised by:

hgd  2u
¥ip2 R

on comparison of the relevant terms in the series expansion

fofllim.reference (6). Thus, the growth rate of this region
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Figure V10 ~ The instabilities of figure V9 at different
temperatures compared to the FLR~free curves
for the tearing mode. Parameters as for
figure V4#a. Only the 100eV tearing mode curve
from figure Vi4a lies within the diagram vhen
FLR effects are includede
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The range of qF-studied in the above examples.satisfies

is roughly given by:

lapi D a, 54, S0 that the former completely dominates

_pressure-driven effects.. If'we deflnecocrit.=Qchrit.
"%(w

4
,rf) whilst Q¢ T. Hence

we

see that w c ~T

rit crite.
the dp dominant regime will always be a characteristic of
higher temperatures.

In order to study the regime of lower A and the change~

over to FLR-free characteristics, we now consider systems of
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b)

Figure V11 - Instabilities with qF;%qS§1t°. Bz= 67T, By= 0.1B,,
T = 100eV, ~m=2,' n =10 m 1y Ixe=r‘_=LB= O<1me
2o = A
(Qp= 7330 s~ ', q =0.5). a) A(g),

b) Nyquist plot.

crit.
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larger BQ. This has the effect of increasing @ ; the écéle
Afrequency of the problem,'due to a_lérger hydromagnétic
contributioh,'Whilst leaving beta unaitered. N

Figure V11 describes the Bg= O.’lBz situation at.100eV with
n =1021, LpzszLq=O.1m,’B;= 6T. TFor these parameters
‘qF’/qcrit. = 0.91. Figure V11a shows the main tearing mode
branch tending-tq'the overstable qF;QAbranch at small groﬁth
rate. The other zero Larmor radius mode to the left of the
branch point has ifs coﬁnterpart in theAinétability indicated
‘which extends beyond the range of Z& of the dp =0 result. Thus,
for certain ranges oflﬂ_, this mode is destabilised by the
introduction of FLR. Consideration of figure V11b, the
Nyquist plot at g= 0.0135, shows the lattgr mode as a loop
expanded around the zero-FLR curvee.

Figure V12a shows the more intefesting case of negative
. pressure gradient. ih the iimit takeh, the main mode of this
diagram has the limiting chgracteristics of the qF=O theory,
némely that it does not cut off a’c'anyﬂ . The sharp change
of slope near g = 0.9 is of importance in interpreting the
transition Behavior. ,A Nyquist plot at g = 0.0135 is shown
in figure V12b. The loop of the qF=O theory has again been
expanded; the main tearing mode of V12a is indicated at the
intersection ,A, of the curve with the real axis. Since
the smaller, complete, loop expands rapidly as g is reduced,
as indicated by tﬁe g=0 curve, the behavior of the secondary
mode at. positive Zlis gqualitatively that indicated by the
chain line in'figure V12a although this could not be computed
exactly.

The transition from the subdominant to the‘dominant

dp regime may.be investigated by studying the behavior of the
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Figure V12 ~ Instabilities with qu‘ <qcrit . Lg;LP:LB:-O.’Im.

Other parameters as in figure V11,



178

a)

Figure V13
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-~ Instabilities with [qFl just less than q_ ..

B_= 6T, By= 0.075B_, n= 102"w™2, 7 = 100ev,
r_= 0.1m, L = Lp= LQ_ ~0.1me( q_, _'0.46,

QR= 4533 s ')

a) A(g) and J(W) for the instabilities found.

b) Nyquist plot with g = 0.01k.
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crossing poinﬁs, A, B.and C ( on figure V12b) as a function
.Ofng and of growth ratej Ee Cléarly, in the present example,
és g iﬁcreaséé;méﬂé ioaﬁhﬁéméhrinks below the reaJ.zﬂ_axis, |
thus producing thé maximum in () for the secondary mode,
hence leaving A to continue as the main modee.

Figure VjBé shows the @ase with B
[ag] /2 0

through the transition region (the transition is at By/B, =0.09%

o~ 0.075BZ for which

= 1.1.. Note that this reduction in B. has passed

crit.
and could not be accuratgly computed). Observe that the peak
of the secon@aryrmOde occurs at a larger growth rate than ip,

, figure V12a. Thé corresponding Nyquist plot of figure V15b
aﬁpears similar in form to figure V12b, but, considering V13a,
we conclude that, as g rises, the loop Ac; rather than BC, rises
above the real [l axis. Since the transition itself must be
the limit of the behavio: both from above and below, we deduce
thét this correspbnds Eo the coincidence of A, B aﬁd C at the

peak of g(QA). From figure Vika ('BQ= 0.01687, qul =3.1q )

‘ crit.
we observe that the peak of the secondary mode has moved to
lower g and higher [X s0 that we may diagrammatically envisage

the transition on the A (g) plot as in figure V15:

| 1) ' 2) h 3)
A ,
o’ g P g
qul <.qcrit. I quif-"—qcrit. qu, > qcrit.
‘ !

Figure V15 - Sketch showing the transition to large A
behavior as ap increases.
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b)
Figure Vit - A case with four types of instability present.

B, =6T, By= 0.016B_, n =10°Tn™2, ¢ = 100ev,

-1
I‘s—(.).']m', LP—LB - LQ—- -O.1mo (QR —3522 S )
a) A (g) and A(W).

b) Nyquist plots.
Note that the coincidence of A, B and C implies that
Re(q) for the two modes is also identical at transition. The

method of calculation fails'to resolve the secondary mode for
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l(ﬁisncrit. and hence this was nqt seen in figure Vib. 1In

that regime, howvever, its growth rate is yery small.

For Lﬁ} 0, no such transition phenomenon occursﬁ'since
the tearing mode cuts off at Qg =0. The secondaxy méde of
figure V11a, however, becomes the counterpart of that dis-
cussed fcx Lﬁ(‘o as”qF rises and, correspondingly, its
maiimﬁm growth rate falls.

An interesting feature of figure V1l is the moﬁé occurring
ove;r a small range of {} . (approximately 0.4<A<1.1). On
figure V14b this is seen to arise as a loop in the Nyquist
plot which lies on the realﬂ axis. As 9p i‘s. increased, this
‘ioop arises from the kink marked D in figﬁre V12bj this
feafure deforms and paéses ﬁpwards through the axis. At large
Ao this produces the.closed loop corresponding to its
positive Lp counterpart shown in the lower right-hand quadrant
of figure V7.- Thé manner in which a loop of the kind in
figure V7 is present as the remnant of an instability occurring
at-a different set of parameter'values is an important‘and
useful feature in the numerical study of Nyquist plots of this
kind; it is fhe investigation of the behavior of thesé as
"parameters wéfe varied that led to the dié;overy of many of
the additional FLR modes,in this work. Good examples appear
in fhe g = 0.02 curve of.figure Vikb,. Tracing\this curve
from the lower left-hand guadrant, evidence of all the modesl
on figure Vﬁ4a may be found although the curve crosses the
real [} axis only three'times. The first crossing is the
main tearing mode (2 on Vika) and the second and third
correspond to the mode discussed above. (mode 3). After the
" cusp-like feature, the dip produces mode 1 at lower g and

the subsequent loop yields mode L.



a1 L rrmt B b L e s S e 0 ‘o #0 toA  t es eee  ea tm

j82

Figure V16 - A collection of
'type I instabilities.

ol 0,02 //.C)OA B, = 6T, By= 0.003B,, rs=23'2§’
' L,= Lp= Lg= -O-Tm, n = 10" m
T = 100eV, (Q, = 2211 sf1)
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/'.\TVﬁhOUt
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Mode &4 is ieadily identified as being of the type seen
in figure V9; it occurs with |Re(q)| just less t@an qul and
was previously associated with a pole in fA(q). A series of
computations has revealed the behavior of this mode as a
function of BQ. At low Bg,bas exemplified by the\B9

case shown in figure V16, a series of three such modes is found;

=0.0058,

the number increases as B, is reduced. Comparison of figure

e

V16 with figure V9 ( for whose parameters a similar diégram
results for the negative Lp case) indicates that the dollecfion

of modes spreads out in g as B, is reduced still férther, The

e

variation of the scale frequency with B, must always be

e
considered, however. In figures V17 a and b ve see tﬁe large
lﬂ‘ asymptotic g and the corresponding unnormalised growth

rate (in 5—1) respectively as functions of By. We see that,

for sufficiently large Bg, fhe growth rate, although rising
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JCPOZa. o .'Vp<o ;

0 002 004
'w.u;,' ) BB,

Vp<0

1 !

| O 002 0-04
S - By/B,

Figure V17 - The variation of a) normalised and b) un-
normalised growth rate with BQ for *type 4t
instabilities. B_=6T, T=100eV, n= 10°'n >,
Lp=LB=LQ= =0.1m, rsz O«1m. HMore than one mode

"is calculable at low Bg.
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rapidly, does not exceed the rise of QR and hencé that of the
main tearing mode.

Note-that, at.small B,, more than one mode is calculable.

e

On the Nyquist diagram,cthis-is manifested by one or more

loops following that found at large Bg

finally fails. The curves drawn indicate the behavior of the

before the calculation»

mode that persists at 1arée'Bg. This ﬁode was clearly
identified by the position of its associated loop on the
Nyquist plot.

The Bydependence of the other modes shown in figure Vika
will now be briefly considered. Mode 1 was considered in the
discuésion of the transition phenomenon where it was shown

that g decreased as B, was reduced. The main tearing mode

e
is designated mode 2. VWith Bg below the transitional value,
the cut-off of this mode rises to thét shown in figures V7 and
V16 as Bg is reduced. Mode 3 is presént as an instability

for only a short range of B, values for which its loop on the’

e

- Nyquist diagram (see figure V1h4b) rises through the real
axis. The behavior of this loop indicates an interaction
wifh the cut~off of the main tearing mode. This may be

gqualitatively understood in terms of figure V18:

Nyquist Plot. . ' Dispersion Diagram.

1
. 8=

In(Q) ' gives:

Re (DD ; g
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Nyquist Plot. A . Dispersion Diagram.

2) ‘ =0 , | ‘ 4
Im(ﬂ) gives:
| /U Re@) 8
3 | o A
. _ g:O
- Im(l) gives:
Re(Q) . ‘ &
k) g= .
gives:
Im(4)
= |
////\"} Re (D) &
A
5)
g:
Im(A) gives:

/ ~ Re (4 g
Figure W8 - Sketch showing the interaction of a 'type 3' mode

' with the main tearing mode. B_falls progressively
on passing from 1) to 5).

Stage.B)‘is analogous to the transition effect discussed

earlier. In this case, the definition of main and additional
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modes below the maximum of the former becomes indistincte.

The case of positive ?feséure gradient has less complicationé
than those discﬁSsed»abové for L§< 0; this might be expectéd
upon inspection of figure V11a in which the approach td tﬂé
qF=Q ;imit appears selffevident. Modes analdgbus to types
1,2 and 4 wére found upon pe?forming systématic series of
computations of the type discussed for the negative pressure
gradient_éase. |

Type 1, which wés important in the transitional phenomenon,

appears to tend to the pressure driven branch of thequ=O limit::

'%
qp=0

q#0 | A
_—

A

—  w—
T s g

\/

g g

Figure V19 - Sketch illustrating the low 9p limit
of 'type 1' modes when V¥ p >O.

Il

/

|

i
_As BG was reduced, so that qp rose, the peak g of this mode
fell as for the Lﬁ‘ O case. This may be seen in figure V20
as far as numerical accuracy allows.

The main tearing mode branch (type 2) moved its cut-off
value ofllonly very slightly for a factor of ten reduction in
Bg. .

Type three modes did not occur as the requisite loop in
the Nyquist plot did not have to cross the.real[} axis to
attain its position in figure V7.

Modes of type &4 were evident throughout the Bg variation,
but with growth rates generally less than before. The variation

of the largelﬂ! asymptotic growth rate of these is indicated

in’ figure V21; figure V21b takes into account the Bg dependence
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+ Figure V20 -~ Supplementary, Ap dfiven, instabilities with
positive pressure gradient. Bz= 6T, T = 100eV,

21 3 T o= T o= T oas
107", r_ = L= Ly= Lp= O.1m.

of QR. Since the growth rates are 1ower, computational diffi-

n =

culties are more épparent. These modes appear to approach the
same low Bg limit as those in the adverse pressure gradient
case, but move to smaller growth rates at larger Bg. As in
.the previous case, more than one such mode arises when Eg is
small.

-The nature and physical origin of the type 4 modes appears
mysterious. They are characterised by their asympéotic
appr.oach to a particular g;owth rate as A@j_’ Q. Thus, except
for a region nearﬂ:O, their growth rate is virtually independent
of A « These modes voccur- wi't-:h an oécillation frequency just

less in magnitude than the ion drift frequency (ie. IRe(qjit;A )N
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0 002 004

Vp>0

! 0 _ 002
' EgEalEgzz

‘Figure V21 - The variation of a) normalised and b) un-

normalised growth rate with Bg for some 'type 4'

instabilities. B_=6T, T= 100eV, L_=L,.=Lp=r_=0.1n,
, . 21 -3 z p B € s
'n = 10 m . More than one mode is calculable at

.1ow BG?
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From the results given above, they ﬁave larger grbwth rate with
negative pressure gradient, but thiswis very much lesé'than
than of‘the ﬁéinﬁféa;igéiﬁéé; éxcept at small positive or at
negative[k .

In order to gain some insight into”the cause of type &4
modés, the dependence of their largellll asymptotic growth
rate upon the th;ee‘important‘qﬁantities, resistivity (q),.
FLR (qB and plaéma pressure (P),waé investigated. |

Figure V22a portrays the resistive dependence of the
asympfdtic_growth réte with B9= 0.005BZ and negative pressure

gradient. At low Bg, three modes were calculable, a fourth

400r
300t
Relql)
: XQp\ !
in,
. . S
L0t , »200—
gQ,
o T Q,=3333s"
1 | 0 1
1 r\ 2~ - r\FA‘ 2
a) | b)

Figure V22 - The result of altering the effect of resistivity
] ] - -
on a ‘type 4 mode.Z? _qupitzerquAC' BZ—GT,
B.= O.OOSBZ,,n = 10" m

y T = 0-1m, L =L_=Lp= -0.1me.
e s P B ?
a) The effect on the unnormalised growth rate.

b) The effect on the oscillation freguency.( Note
that changes in frequency are a small fraction of
Iy and hence subject to numerical error.)

being just detectable when the'resistivity was reduced by a

factor of 20. lNote that, as resistivity is reduced, there is
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.first a peak and then‘a sharp drop in growth rate. The latter
indicates that the mode does not exist in»fhe collisionless
limit (;) =0) apd has an ;]“ (0 <M{1) dependence at smgll
resistivity. The'émallii ends of the éurves shown have &
in thé range 0;05<3b<0.4 . As & variesramongst the various
examples calculated, no preciée value can be ascribed to the
. 14>O limit.
| The shape of thel\ (g) curves also varies systematically

as the resistivity is reduced. This may be seen from the

following table for modes with By= o.oosBZ, n = 10°Tm~2,
T = 100eV, BZ='6T’ Lp=LB=LQ= -O.‘Im,_rs=0.1m, |1= 1Spitzerxl1FAC'
Table V3.
s () Sg) s~ §)
Hrac R §(z Qpole) s
1 0.01 33,5 2.2
2 : 3352
21 0.018 603 2.6
1 0.013 28.7 A
1 21 2211 0.02 i 2 4,5
3 0.015 33,1 5
1 0.014 20.4 6
0.5 | 2] 1459 0.024 35 6
| 3 0.02 29 2
1 0.028 15.6 18
2 0.028 15.6 18
0.1 556 |
3 0.027 15.0 23
A 0.025 13.9 22

§ (g) and§(Q) refer to the separation of the two stationary

points in g(fA) that characterise type 4 modes. Thus, as
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resisti#ity is reduced, the[](g);curve for each mode becomes
thiﬁner ( QRS(g)"béqgmes;émallef ) in s_1‘and‘ta11er (§C0)
becomes larger). Hence, in the q =0 limit, it may reasonably
be asSumed that curves-of‘A versus gQR'(ie. un-normalised
growth‘réte) vanish by collapsing into the f) axis;

Figure V22b shows the deviation of the real part of the

- frequency from QF as a function of q FAC® The sharp reduction

of this quantity as;reo indicates that in this limit, g

approaches q_. Thus, this implies that the type 4 modes
F N

result from a collisionless oscillation destabilised by

resistivity.
In figufe'VZB the calculable dependence of the growth
rate atﬂ =1 upon FLR is shown for a particular type 4 mode.

For this purpose, qF,'calculated from the parameters stated,

was multiplied by an arbitrary factor dp
' E FAC

95 is reduced, the growth rate of the mode becomes smaller.
FAC

Reasonable extrapolation implies that the growth rate tends

« Clearly, as

to zero as Ap tends to zero.
FAC .
The beta dependence of another such mode appears in

figure V2k. For this purpose, beta was reduced by the factor

PFAC' Evidently, the existance of type ! instabilities

depends on the inclusion” of finite beta effects in the

calculation.
Figure V2% -~ The result of
004+ reducing the effect of FLR
9 on a 'type 4' mode.
d.(used) = q_(calculated)xq
¥ ¥ | : FFAC'
0-02- for the parameters of figure
. v22.
1 1 1

0 025 05 075 1

Feac
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004

0 035 05 0975 1
fru

Figure V24 - The result of reducing the effect of beta on a
‘type 4' mode. P (used) = P(calculated)xFFAC
for the parameters of figure V22.

13) Discussion and Conclusions.

The numerical analysis has revealed two regimes of the

parameter q?: qF2> Uopit. and qF“ qpit. where:

\
Q. = ( RUTEYE
Cflt’ 'l".

'Removing normalisation, this yields corresponding conditions
on Q‘F with respect to chit. where: Lol )/3

Qerie .= Yerit @ = (2UYpWRWy )=
Observe that Q__. has the 3 dependence of the resistive

crit. ﬁ

interchange mode. The two regimes can thits be physically

identified. In the first (QES>Q ), the resistive interchange

crit.
contribution to the smallﬂ limit of the tearing mode is totally
dominated by the effects of FLR, just as, in the collisionless.
limit, Suydam modes are stabiliséd‘by this effecf. Hénce,

since the interchange driving force derives from adverse

pressure gradient, in this linit of large QF’ the computed

results are independent of U and hence of the sign ofV p.

< Q

s crit.) is characterised by the FIR

The second regime (QF
being inadeguate to dominate interchange driving forces. Thus,
pressure gradient éffects are important and the results appear
to merge with published findings (references (50) & (6) ) in

the ap=0 limit. The existance of the m&in tearing mode cut-off

associated with the first regime (QF)b»Q ) is thus seen

crite

to be independent of beta. Since the pressure gradient effects
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are unimportant, the: cﬁt-oi‘i‘ at f} =0 found at F =0 by Copiai (31
merely rises to 1arge'rA , as seen in figure V5 as beta increases.,
The study of the transition phenomenon that occurs with
negative pressure gradient ét small 9 revealed the existance
of another mode (t&pe 1) with.growth rates that became too
small to be detected as ap became iarger. This is the analogue
éf the resistive interchange branch, is driven principglly by
pressure gradient effects and was found to exist for larger
ranges of flwhen FLR effects were included.
| Type 4 insfabilities,'characterised by an asympﬁofic
4g;owth rate at 1arge,ﬂ‘ ,‘were found to pervade both regimes
of Ape They were shpwn to dgpend on the simultaneous inclusion
_of FLR, finite beta and resistivity in the,théory. As they -
occur with q 4 Qs they may be viewed as grising from the
involvement of significant axial veloéity perturbation within
the theory (see equation V17) since, mathematically, they

undoubtedly arise from terms in arising in equations

Pt
‘ (g-9¢) |
V60 and V62. Frpm equation V37 we see that, with q 2« Apy P
becomes 1arge and hence the scale length involved in the
expansion becomes small. Although-a larger number of terms
were required %o describe these modes, compared to the main
‘tearing modes, this indicate§ the existance of considerable
spatial oscillation about fhe resonant surface. Such a
behavior, analogous té that of the resistive-g mode (52)., might
render important the effects of collisional viscosity_due to
the possibly severe perturbation derivatives involved; an
investigation éf this is beyond‘the scope of the present work
as it requires a complete reformulation of the equations.

" The occurrence of the denominator in 9-9p in equation V37

implies that the type 4 modes might possibly be described
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" as a form of resistive ion drift instab}i]_.i‘ty; the same
denominator also éuégeéts; however, that a treatment of the
problem from the basis.of,kineticbequations might produce
Landau-type damping of-these modes. |

The results presented, pertaining to the stabilisation
"~ of the main‘teariﬁg mode, appear encquraging with respect ﬁo
'the relaxation of the constrainté on fa&ourablé avérége
curvatufe required in toroidal devices (cf. (50) ) . 4On .
the comparativély long time scéles required for containment,
however, the additional modes found on including FLR effects
could easily prove dangerous. Although these are reduced
in growth rate by choosing favourable pressure gradieﬁt, the
effect is not so marked as that on fhe main teafing node iﬂ
the absence of FLR. The type &4 modes,»in'particular, have
greater growth rate than the normal resistive interchange'
branches at small positive or at vnegative A and, if they.
are not com?letely stabilised Sy the possible effects
mentiohed, could become a source of anxiety in future

containment projectse.
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Chapter VI.

Conclusion.

’The collisieﬁieeevaﬁeiyeis in the first part of this
thesis served two purposes. Firstly, the well-known stabilieing
naéure of the diamagnetic FLR terme was illustrated and, in
addition, the associated complex eigenfunctions were presented.
The detailed manner in which the stabilising gyro-viscous
influence interaeted with destabilising Hall rotation
introduced the'possibility of curious effects in the stability
of confined plasmas as ion temperature rises with improved
technology. - Secondly, the influence of the subeidiary FLR
terms in the stress tensor, namely sheared axial velocityt
Righi-Leduc heat flow and axial heat flux were inciuded in
the solutions of the eiéenvalue equation presented. The
sufficient stability cfiﬁerion of figure II& provides a

-concise display of the manner in which these additional
featﬁres perturb the stability of localised interchange
instabilities. Computational sdiutions in chapter.III
displayed the manner in which the dominance of Suydam modes

is supereeeded by effects due to the additional terms when.
these are present to suffieiently large magnitude. 1In
particular, 'singular! modee of dubious eut arguable character
can be produced by large ;emperature anisotropy, axial heat
flux (sheared or unsheared) and sheared axial velocity.

In chapter IV, the numerical study of a low beta reeietive
system displayed in detail the manner in which the conventional
analysis of resistive instabilities breaks down when resistivity |
becomes too 1erge. The linear growth rate of the tearing mode
may not be as large as Suspected, on the basis of published

analysis, for many confinement systems. Inclusion of FLR is
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seen to ripple the eigénfunctions in an alarming‘way, requifing
care to be taken in ensuring that the analysis is ébnsistent
when thesé terms are cohsidered. A peciliar new type of
resistive instabilify, dependent upon FLR for its existance,
was also found during these calculationse.

The chief.resdlt of the arduous_anaiysis of chapter V was
'that, when the FLR parameter exceeds a.critical value, the
growth rafe of tﬁe main tearing mode'falls to zero at a
finité value of the matching parameter involved in that
calculation. This cut-off is insensitiﬁe to the local
magnetic field pitch (Bg/(rBz)]and also to the sign of the
pressure gradient. Configurations, previously thought unstable
to the resistive interchange,.with small growth rate, may be
stabilised by this effect.' Howevef, the complexity of the-
study of FLR phenomena in this limit was illustrated by a
collection of adéitibnél modes of low growth rate but of
dubious reality owing té their'questionably short radial
scale length.f

In general, therefore, the diamagnetic FLR effects tend
to have an important stabilising influence on weakly unstable
configurati;ﬁ;. Care must:be taken, hdwé%ér, vhen relying
upon this characteristicq;in the consideration of hot plasma
stability, to ensure tha£ the less familiar, destabilising

aspects of FLR phenomena ‘are not dominant.
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Appendix A.

Pott's Derivation of the Collisionless Eigenvalue Equation.

The derivation begins with the Vlasov equation for a
species of particles of charge q and mass M : | »
b{ +0vf .%(Ef("ﬂg) v f =0 A1

This is expressed in cylindrical coordlnates 1n both
configuration and velocity space, using:

. Ue = VL.CO"»“ J U'e:lulg";““l Uz =z
A is thus the gyrophase angle to the order of the calculations.
(see equation I4). ’

The result is expanded in £ using the ordering assumptlonS'

I1 to IS of chapter I.
To zero order: - )i

_ | : 20 a2
This 1ndlcates symmetry 1n ve1001ty space about the magnetic
field direction in lowest order.

1st order:

F F'D + 24“ 2L -—2(" {"“4“ A3
S I S I S LT e
280 = T & o * B0 DV1 Gz(uz oy ‘3%-15

' I v éfo Er 9to ;. B ' o J
2'(11 = 3131'1‘ B: 5%% ‘E:( zi"~0 5{::)2)]

where f\(the gyrofrequency)= —2e

2nd order:

F ‘Ew "’an 1 21{;.9‘“ o +)~{n 2 R S

~2f3n n 2
3fo+u. Bfo-fﬂ Cz2 ?go,*_ ° A5

ot 92 B d0 . ¢
Er, 1 Rbe, ,
[jU]. gﬁ.*%:)-F ~%;;: (Tgitk4 Uy " '15::1,(({b§aé:'ubf(S%EL4ii;5j]fi|

2 ale(2 1) a2t (52 (3 ]r
TR TR e A R CR )
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L ANE D) 2 (2] 48
g AN AR
s34 5 3, u)%a;(w;,,;vz (5_,;;}))] £
At AT ST CET ST

291 Toq0 Tpp & T, yields

expressions for Uy ug,(le. perpendicular components of Ohm's

Taklng the appropriate moments of f f

law), the relevant componenté of the stress tensor and for the

flux of the energy of gyration, 9. qg :

ur =« -4 3f r B 4 Bz Ae-

¢ QQ# 06 Bzo = Ba:»
= A QEL° Ty + bort=o .‘
e, ot ar Bzo Bzo "
1 ) -l_ a__R_,LIO ‘_1&0 'é—_f:_[,o +1_§‘.9'.7f20 .
oy IR B T _ .ﬂ-ep' ar 620 +0

£ =1 Mo | 2Py, o2 Br !
c(;r| 'v Jf 96 ..Q.eol“ 20 CL:O A9

~ where | » = 7TM rf f do, der,

A reasonable estimate of 310 may be obtained (see ref.(10))
by taking fo to be double Maxwellian.

This gives:

20 A10

___.lq’zo A11
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Denoting the traceless stress tensor by ¥ ,

¥
o4 ‘CLG ~3q%, 1 dq} A2
’r"z'uﬁ.(“;' 3 r’ggr)
"'.P_‘EO ( (L_q: -— 3_(1_&: -1 B_Eﬁ)
I R T T e
+ _‘_3__,; ,tl‘ _B_e‘l rt
2@20 <9 2&20 92'
Yoo, = ~ Ty, a3
1 4 1
Crn. =+ ( °ln o Un -1 “2_‘(:01) Ak
Féx ~ o\ Hr r T 26
Pip ( 3%N ~Qh 1 3¥e
. g—é‘ /tl"z| + gf’ o=
l 20 2 2p
: J g+ P, du Br, ( |
s, = ~Mo 2820 ¢+ 25 (P A
Pz, = _n,.m‘b ° ar e Bug 7o~ PLo) 5

_ 102 g +Pi°9“20+@§'(|7,~ﬂ.0)‘ a6
’r82|° JL or 20 :D.- S; B2o “

Next take perturbations of the lowest order distribution
{ { .
function: fo = -ﬁo (r,u*_,_,u-z) up[n(wc- - m6+kz)]

Equation A5 nay' then be rearranged to yield:

160( = Lzo 2o | | A7

4Bz, /oll‘ ar ’
2t ¥ (8 +ifib B )

Bzpm 0 38, [Ar ) |
,,_L[u.z((g,\' ROR, ), i3 B2, B2 ﬂgB],,
d8z, /dr o}pazo/dr
L 3o 1 dBio Ao L Rren 2o
e [Bzo or '2[510 df U1 DU:L * V‘: _@_zo)i(rz]
-EU\Z 'l‘w +WU{? A—@Zp

Z_D_r 820 Ar
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where: ‘ k'—' R+ m _B_c?, 9 W we @;E_f}
. FB2, - bz, .
To lowest orde? i’h"{“,’”jéo =0 =0} . Thus, taking the

éppropriate moments of A17 and summing over species yields:
f \— [
oq = 0= (6 +iR B, Bsy YT, +(Ep, +,wr32082.,)1.1m
ol_sz/dr dﬂzo/dr

0= (67 v Ebaba \Top (B4 #18 BaBoo)y w1
d2 o =0 = _En‘fl EBZDB‘ZD I+( E&’ £ 100 B2, 525
i ( A8z, /dv )5 AB, , /dr )

Here, I1, 12 and I, are integrals involving the resonant

3

denominator present in the last part of equation A17. These

correspond to those of Bowers (10,20) with k replacing k in
;hat worke. | |
The vanishing of the determinant of equations A18 and
A19 yields the localised dispersion law for microscopic
modes discuésed by Bowers (10,28):
2 11 | 420

1 23
Macroscopic modes, considered in this work, are produced by

I

the solution: ( : B
‘ -
Bl‘, + iR B2, 8., =0 = Ee?', +10 820 31'0 ‘ A21
A B2, /dr o ABZD (dr

so that:

. | — ( s | 'ﬂ'
.w Eri =&k F», =0 v.') B., = Lﬁﬁ'%" A22

Expanding A22 and using -the induction equation ,
““*’B"‘."“,"?Ez', ~kEg,
yields:
_.(g.g)'=o . A23
a familiar result of collisionless theory.

Substituting A21 into A17 yields:
| UL iR
R or

A2k

o ol Ty
to = i hiP, s D A By, 1

e
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' .
whoL B, duzy . R.Llo - __Ei dr, A25
': * ) td.
A ar -E 0( (con )
The density perturbation implies: ‘
(V.u') =0 - . a26

Subutltutlon of thesn perturbed quantltles into A6 yields:

g’ = tlr = 'gﬁ

A27
. w, Rk |
vhere W= ws miUp .,,lzuz
: r
A26 yields: '
i d (r€) ~ ke CI_‘!?- A28
Uey = L dp (re$) ™ 1 ar

Manipulation of equations A8 and A9 using the expression for

Qébi. yields: L 4
q:;l (r %%3?91 +.:ll?q;z£,) g

¢ = A8+ 2 ) dlkeg) w0

A29

n

4

In addition,V B-Oy:.elds :

8:9” = " ("6 B, FE) ~ ,kri JBZD e |

{

Substitution of A22 to A31 into the r and © components of the
perturbed momentum equation followed by elimination of the .
high order pressure terms, corresponding to equation I10,
between the ﬁwo resulting‘relationships eventually leads to
the collisionless eigenvalue equation, I11, in the text of

chapter I.
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Appendix B.

The Resistive Interchange Ordering.

The FLR expansion produced equations V10, V12, V14, V17
and vV20. Coppi, Greene and Johnson (6) outline‘ﬁhe ordering
scheme appropriate to the resiéfivelinterchaﬁge mode which,
together with h’ﬂaJ;. QLP may be applied to the above

2888 Ay

mentioned equations.

The ordering may be summarised as:

We A, BF L w g, r=i nd? 5
VH~¢JWHNV}H ¢1.—F’-'\/¢]F ¢" B

with the frequencies as defined previously.

Qefine in addition: \
B L? . rk ( !!B ) 3
R Wi

(wy W)
4 = w/ox
e Q‘:/dﬁ

X : (t‘-n,)/LIR
7 = 2 _[_3_; ( Mg(g_/_rﬁz 2

Qr

e

Redefine:

"

"

" B2\ o
. B
= I
Bz..l-g KTy

Application of the above ordering scheme (B1) to the requisite
equations, followed by substitution of u! and (Y.u)' and
transformation to variables D, Z, R and X yields three
simultaneous 1linear second order differential equations for

_.D, %2 and R:

R"H'R(i-l%)-‘i'xcp* 2—%3‘% ~ B2



Xu T | | éoé
K (1-fes<‘f“m)J+D“[ 1 ‘“»f‘L‘LF)] >

2

(2
i [ ‘(‘(,"(L (H‘ﬂlz)) 1’ 3’ (c”{’("i ]

-t ) "
R [_g x3 9e
) i(q -1+ BR))
+fx('1§(§"*l)‘%1+i%c(?*31‘5‘57))]

[ e W)
.ﬂs(g ¢ L (‘Lf‘L‘LQ) !m'ﬁL:F — ”%))J V

41z —qucLF + 1X a2 Ip_C |
[ il (‘L ~0e (860" ¢ (1_%(1”3/1))'(%(” iesfx) |

~{9e2+R)) + 1(-1 - L (g60) +1]
_+ P4k C_%ixz'y o
4(q-q, (1475)) (RI-%)= o

These equations thus define the 'inner® region solution.

As they are a sixth order set, their asymptotic (ia;ge X)
solutions are found to consist of .a pair of solutions that
match the 'outer' region, a pair of exponentlally decaylng
solutions and a pair exponentlally increasing. Numerlcal ‘
solution of B2 to B4 must, therefore, by iteration, choose
initial conditions at X=0 such that the two exponentially

. ri;ing solutions play no part. As matching conditions at

large X are required, this is a formidable task. The paper
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of Coppi et él;(6) only succeeded in computing a fourth order
.set of equations (with_gne ekponentiallj‘rising solution) in
the szo limit. Inéiuéigé”FLR introdﬁces severe spatial
: oscillations to the solution and hence increases computational
difficulty. I do not therefore consider that the numeriéal
determination of matching conditions from B2 to Bt is a

feasible proposition.



-

Plasma Physics, Vol. 18, pp. 1 to 26. Pergamon Press 1976, Printed in Northern Ireland

STABILITY CONSIDERATIONS OF A HOT
CYLINDRICAL PINCH

R. J. WricHT, D. F. R. Port and M. G. HAINES
Physics Department, Imperial College, London SW7 2AZ, England
(Received 15 April 1975)

Abstract—An expansion of the Vlasov equation in the finite Larmor radius limit at high f leads to a
differential dispersion equation which involves the less familiar physics associated with anisotropic
pressure, rotation, sheared flow and heat fluxes. The stability is studied analytically and com-
putationally; in particular the modification of Suydam modes by finite ion Larmor radius and the
above effects is pursued.

1. INTRODUCTION

THE GENERAL assertion of the stabilising nature of ion gyro radius effects (FLR)
upon weakly unstable fluid-like perturbations in collisionless plasmas has long been.
upheld (LEHNERT, 1967). Copious literature upon this subject is available (Rosen-
BLUTH and SmMON, 1965), (KENNEL and GREENE, 1966), (BowErs, 1971). Detailed
study of the dependence of the modes upon the many types of equilibria embraced
by such theory has, however, rarely been performed. In particular there is a need to
carefully distinguish the effects of FLR, diamagnetism, and rotation on stability.
Considering an equilibrium with a straight magnetic field, BowerRg and HAINES
(1971) developed the FLR theory of the high-beta theta-pinch and investigated
computationally the effect of plasma rotation upon growth rate in a number of cases
using the differential dispersion relation produced by their analysis. STRINGER (1975),
using an approach based upon guiding-centre equations, investigated the effect of
FLR upon interchange (Suydam) modes associated with the singularities in MHD
equations at (k . B) = 0 (resonant or singular surface). Such theory can be improved
by beginning on the firmer basis of a strict ordering procedure applied ab initio to all
variables so that its validity and limitations are made apparent. The purpose of this
work is to develop on the lines of Bowers and HAINEs (1971), i.e. from the Vlasov
equation, a differential dispersion equation based upon the cylindrical equilibrium
of a system with a curved magnetic field. The differential quadratic eigenvalue
problem is then solved by two separate methods to illustrate the connection with
STRINGER’s (1975) localized mode theory and with the computational results of
Bowers. In this manner, the less familiar physics associated with temperature aniso-
tropy, heat fluxes, sheared flow and rotation may be investigated and their influence
on-plasma stability in general and interchange modes in particular be illustrated.
The relevance of the ion gyroradius a* to controlled thermonuclear fusion research
is twofold. Firstly most configurations under consideration are close to the margin
of stability causing a sensitivity to weak phenomena. Secondly, as one reaches fusion
conditions, if the containment time 7 is approximately oB2L  2[AnK(T, + T,) with
A » 1 then a*|L 2 is of the order of oM,/Ae*nr which for D—T conditions gives

a'lL, ~1 ]V 4. Neoclassical thermal conduction and diffusion could make a'/L, ~
102 to 1071,
1 : 1
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In Section 2 we discuss the details of the ordering procedure used so that those
classes of equilibria included within the theory may be defined. Section 3 is concerned
with the production of the differential eigenvalue equation itself using the collisionless
Vlasov equation as a basis together with the assumptions of Section 2. The connection
with the work of Stringer on interchange modes appears in Section 4, the influence
of rotation (and to a lesser extent heat flux) upon the theory being made apparent

at this stage. Results arising from the numerical solution of the equations appear in
Section 3.

2. ORDERING PROCEDURE

We consider the problem of the stability of a z =1 cylindrical plasma column
surrounded by a perfectly conducting wall. The plasma is taken to be so hot (~KeV)
that it may be considered collisionless with the ion gyroradius finite although small
in comparison with the radial scale lengths of plasma quantities. All equilibrium .
variables depend on the radius alone.

We define £ = v,*/L, Qf = a'[L, as the expansion parameter where v,* is the ion
thermal velocity, L, a plasma scale length [e.g. (1/p)(dp/dr)] and Qf the ion gyro
frequency. We consider standard FLR ordering assumptions as outlined by BowERs
(1971):

Uy E || E w

i eayiadcr~tag

e eE; eBzv, £°Q
where v, is the hydromagnetic veloc1ty normal to B. _| and | suffices refer to per-
pendicular and parallel to B and w is the frequency of the instabilities. There remains
the ordering of § and of By/B,.

Recall from Bowers (1971) that the motion of particles and perturbatlons along
B is described by a time scale:

1.6
_ T Ly
where C,, is the Alfvén speed and C, ~ v,/V/B. Thus
2of,Ca ¥

Lu II\/B

therefore 1/L, ~ ¢ V/B|L, using the definition of &.

In cylindrical coordinates we apply symmetry considerations and Fourier analyse
so that:

0 190 im
T ik 1o _, m
0z rab r
Thus
1 mBo §£€

L, "B, T L,
The cylmdncal geometry determines that
1 5 1

L..L perturbations L..L equilibrium
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hence we must choose

k2P

L > L.L perturbations ™ L_L equilibrium
L

B, < &/BB,

For B ~ 1, this restriction is identical to that of Bowers (1971) who argues that
By must be of this order so that effects due to curvature drift do not dominate those
due to FLR which are the subject of interest. The above ordering of B, illustrates
the incorporations of significant FLR effects at zero beta (ROSENBLUTH and SIMON,
1965), i.e. by employing a straight magnetic field. A f ~ &* ordering scheme employed
by CoprI (1964) is consistent with the above arguments. In what follows we take
f ~1 in order to include the maximum number of physical phenomena. Hence
J’,B‘, ~ &%, B, pertains in this case.

The scaling of quantities in ¢ in this work employs a scheme wherein corresponding
quantities of equilibrium and perturbation are ordered with the same power of e.
Schemes of this type, as will be seen below, produce a fluid-like description of the
effects of FLR. In regions of, for example, larger By, the incorporation of modes of
radial scale-length much less than the plasma scale length may include the effects
of finite gyration radius, but as may be seen elsewhere, such effects are not susceptible
to a fluid-like analysis of the type presented below (see e.g. CONNOR and HASTIE
(1975)).

3. THE DIFFERENTIAL DISPERSION EQUATION

Appendix A sketches the derivation of the FLR stress tensor by expansion of the
Vlasov equation. Familiar expressions for velocities u, and u, result by taking appro-
priate moments of the distribution function f which is not necessarily Maxwellian
in lowest order. Expressions for collisionless heat fluxes result by taking different
moments of the same expression for the expanded distribution function,

Appendix B indicates the calculation of the linearized perturbation of the lowest
order distribution function in the form f;'(r) exp [i(w? 4 m0 + kz)] together with
the relationships for fluid-type modes. (Primed quantities denote perturbations.
Subscripts refer to ordering in &.)

iB,' of; iB,' 8B, _ '
=120, B =Tt B, ' = kE,’ 1
=% "TF o U T ®
where
@:w—%; k=k+% @)
rB,, rB,,

obtained by requiring lowest order charge and axial current neutrality.
Taking the appropriate moments of fy, we obtain expressions for u,,’, pi,’,

PHo’: qu'L,
’ iBf:[’ _d_u_z_D ’ iBrll dp.LO Br:[, dp“o . L’ — iBrl, dq!ol

Uy = =

E dr 0 PO T g 7 PO E dr’ o k dr
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Substitution of these into A6 and A9 yields expressions for u,’, up, g5,*', g,,*'
which on substitution into Al2 to Al6 yield expressions for the components of the
perturbed stress tensor in terms of B,l’

In particular we find

5 — ur:l.’ — &:
(5] k
where
mu

w; may be interpreted as a Doppler shifted frequency. From iw,fy’ + u, (8f/ér) =0
we see that f,’ satisfies (D/De)(f, + f,') = 0 where D/Dt denotes the convective
derivative. The perturbation £ is thus a Lagrangian displacement of the plasma with
the centre of mass velocity. The momentum equation:

pg—:-l+p(u.V)u—cE—jAB+Vp+V.'_§=0 3)

is an exact moment of the Vlasov equation. To zeroth order in & we obtain pressure

balance.
2
V. (pl Bi ) =0
2p0

The first order equation is similar since the FLR expansion is essentially in &2

After linearizing and perturbing the third order part of (3) we take the z com-
ponent of its curl thus eliminating contributions from higher order pressure terms.
The result is an equation involving perturbed quantities all of which have been cal-
culated in terms of £ Following an episode of voluminous algebra during which
expressions for the perturbatlons are substituted and the result simplified, a differential
dispersion equation is produced of the form:

d¢
GE=0
() + o= @
where
B,\? B2
F = pr'o® + "a(k + M) ( 2 y—p)— '—z‘)
rB, species Ho
’ 2 d mr mB sdu, 1
ey d—(g,) + E( + rB:)( +—- )
mr* dB ¢ om 4
|k ia RALQUSEN
+QiB dr(qz +2rq0 )

L | [Py

¥ species Mo
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Note that ¢,** and ¢,** are fluxes of the energy associated with the perpendlcular
ion thermal velocity.

The first two terms of F may be produced from M.H.D. treatment of the problem,
with the addition of the effects of temperature anisotropy associated with firehose
instabilities. The third term gives rise to the principal stabilizing effects of FLR and
is to be found in all previous FLR analyses (e.g. BOwERS and HANEs, 1971). The
following term, linear in k . B, describes a secondary influence of finite gyro-radlus
contrasting in effect with the more familiar term. Destabilization due to shear in
the axial flow appears increasingly important as jon temperature rises and BOWERS
and HAINEs (1971) showed that, in the case of a straight equilibrium magnetic field,
this could overcome the conventional stabilizing effects of increased FLR in certain
cases. We note that a radial gradient of ¢,** has a similar effect, and so we might re-
gard the previous term not as a source of a Kelvin-Helmholtz instability but part of a
sheared energy flux which can produce its own instability.

The final contributions to F arise purely in high-8 situations, where VB effects
are significant and include the influence of the collisionless heat flux gy1?, another
consequence of FLR.

G manifests the effects of the cylindrical geometry. The form of the first term’
gives rise to the well-known differences in character of the m = 1 mode. The second
term introduces rotational destabilization to the theory and replaces the fictitious
gravity terms of plane geometry. Pressure gradient appears in the final term of G and
is purely a finite 8 effect. This term is responsible for Suydam instabilities and the
dangerous m = 1 kink mode of the diffuse pinch.

The eigenvalue equation developed thus encompasses not only the f‘am111ar simple
MHD equilibria, but includes some of the more subtle effects associated with those
plasmas that lie within the precisely defined limits of an FLR expansion scheme.

4, ANALYTIC APPROACH

We observe that in the limit w — 0, 4, — 0, g,1° —0 qz-L‘—> 0 the eigenvalue
equation produced bears similarities to that solved by STRINGER (1975). The dif-
ferences that appear are due to the more rigorous inclusion of cylindrical geometry
and are in accord with results of other authors (RosENBLUTH and SiMON, 1965),
(BowErs and HAINEs, 1971). In recognition of the similarities to Stringer’s equation,
we apply the same technique of solution [originated by KuLsrub (1963)] in order to
investigate the effects of the differences and of the additions to the physical content,

The technique involves assuming that the mode is localized in the region £,_,, = 0
(the va11d1ty of this assumption may be estimated from the numerical results in Fxg 9
and is clearly not upheld for m = 1). k is thus approximated by:

dk

ke (r—r)—
: re=r, '
and all other equilibrium quantities are approximated by their value at r =r,
The inclusion in the equation of the dp/dr term in G introduces the effects of rotation
to the problem and requires a slight generalization of the mathematics involved.
The method is developed in Appendix C.
There results the dispersion relation of the most unstable interchange mode of the

system: VX = H(4Y) (with H, X, ¥ defined in Appendix C) which may be expanded
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into the form:

/2
=11~ (a4 - £2 mants + as; — Al)zl)}:l ®)
where, using '
PRV
pdr\Q! )’ r,B,
=C01rs, m1=m+m_2+kuz
mu’ rs
A1 = e [1,_ pkr du, .CH’]
T muy dr/ dn
—4(_n )2[2( B_f)_(pdu,/dr)
A — Ty (d,u/dr dr spezcies(p" pl) Mo dp/dr
4 B2 ,
== 2% (py—pD
ljo species .
2
2
_16rsaﬂz[£( 2 (py—p)— B;L) - C&.‘j_ﬂ;{d—r’
A3 = dr \specles Lo Lp lh
: (m® — D)p(u')? '
: (dqz +p ¢ du, +&£gﬂ)
Ad— —1 i%(ld_’{i_l’_fd_h)_*_ d Prg, "B, ar
Q)| B, dr \2dr  p d B}
PL ) = r P Y (—"‘Z(Pu—h))
Ho species
. d
(u')zd—i
A5 =

d . B}
drjp ( > (py—pD)— ——) - (Cgu" (D )
T \8pecies Mo r[AJ_
The remainder of this section considers: du,/dr = 0.
The constraint [y| > [H(4y)|* may be written

[42(1 + A5(L — A1))] > [H(A2(1 + A5 —~ AP

Since, by the Schwartz reflection principle H(z*) = (H(2))* the two square roots
in (5) produce either pairs of real modes or complex conjugate pairs of values of £,
Thus when calculating £, it is sufficient to consider only one of the square roots in
the dispersion relation in order to extract the growth rates of the modes. This has
been observed in Figs. 2 and 3

The magnitude of u* describes the degree of FLR introduced into the problem.
We observe that Al describes the net plasma rotation velocity at the singular surface.
The condition 42 < 1 is merely a statement of the Suydam criterion including the
effect of anisotropic pressure and hence the possibility of a fire-hose instability.
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This can be written as

(d_u/ﬂ) L4 dgr(sps%m“’" + Pﬁ)

~ fs B Z (P|| ~py)

o specles

>0

Where the equilibrium pressure balance relation
d (B} )
—{Z= =0
dr (2[10 +spezcles Py

Hence the magnitude of (42 — 1) describes the degree by which the system is
MHD unstable due to adverse pressure gradient. 43 is the only parameter in which
m explicitly occurs and corresponds to the quantity used by STRINGER (1975) to
describe FLR. The first term in 44, using a Maxwellian distribution to estimate R,
describes the collisionless B x V7',* heat flux and hence is likely to be negative
[(dT,*/dr) < 0]. In the absence of a fire-hose effect the second term is positive and
destabilizing, but must be restricted in magnitude to remain within the limits of this
local expansion (using C5). Parameter A5 describes the effect of density gradient at
the resonant surface and from the dispersion relation we see that its magnitude
describes the influence that rotation may potentially have.

Inspection of the dispersion relation (5) yields two immediate results.

(i) We may expect A4 > 0 (due to the dominance of its second term) to desta-
bilize and 44 << 0 (due to the B x V7',* heat flux of the first term) to have a
stabilizing influence.

(ii) The case A5 = 0 yields marginal stability when { = 1 as solved by STRINGER

(1975). For 45 # 0, A1 =1 this situation remains. A1 = 1 implies

E, 1( 1 dp}

has been used.

e Y i ( 22))

2\pQ* dr 2pQ B2 dr
i.e. the centre of mass rotation equals half the diamagnetic rotation. Note
that ¢ =1 at marginal stability (/m(w) = 0) in the case A1 =1 corresponds
to Re(w) = 0. This special case of rotation has been dxscussed by ROSEN-
BLUTH and SmMoN (1965).

By differentiating (5) with respect to 42 (the Suydam parameter) we see that real
¢ implies real 8{/9(42). Thus for a range of values of 42 to exist for which ¢ is
complex, 9{/8(42) - oo at marginal stability. Thus for A1 £ 1, 45 > 0 the value
of 42 for which { =1 is less than 42y, (the value of A2 at marginal stability).
Hence a sufficient criterion for stability to localized modes is that 42 < A42,;.
Values of 42;_; calculated by hand iteration using a plot of H on the real axis, are
plotted against 1/43 in Fig. 1 for various values of § =1+ 45 (1 — A41)2. 8 =1
corresponds to STRINGER (1975) and is seen to be the most stable case. (Note that
when 6 = 1, AZG,“., = A2;=1.)

Using a Newton-Raphson iteration, the behaviour of { as a function of the five
parameters has been determined using the explicit case A5 = 0 toinitiate the procedure.
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|
o 002 co4

1/7A3

Fic. 1,—The sufficient condition for the stability of Suydam modes for four values
of 6 =14 A5(1 — Al)? with A4 = 0 and A5 = 0-05.

Figures 2 and 3 plot the complex frequency as a function of A2 for rotations
Al = —2 and +2 respectively. Observe that although modes become unstable in
order of increasing 1, modes of higher 7 number dominate where the Suydam param-
eter substantially exceeds marginal stability. Such behaviour is a characteristic of
finite density gradient (45 > 0) and is evident in the most stable case of rotation
(41 = 1) which has the same marginal stability characteristics as 45 =0. Note
that the real parts of the Doppler shifted frequency are no longer constant (as in
A5 = 0 and A1 = 1) at finite growth rate, but increase for A1 > 1 and decrease for
Al <1 as a function of increasing A2.

‘The dependence of growth rate upon rotation (Al) is illustrated in Fig. 4. Observe
that A1 = 1 is the most stable rotation possible. For comparison with Fig. 1, Fig. 5
plots marginal stability (42,,) against 1/43 for various rotations. The special case
Al = 1 corresponds, on these diagrams, to 45 = 0 and is the most stable. Collision-
less heat flux is considered in Fig. 6 by computing with 44 = —1. Observe that the
larger values of 42, imply stabilization by this phenomenon. However the increase
in (A2, — 1) due to this effect is small compared to that due to 1/43, the dominant
FLR term.
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FIG. 2.—Real and imaginary parts of the normalized complex frequency m{ plotted

against the Suydam parameter 42 for A5 = 0-05, Al = —2, A4 =0, A3 = 1600/

(m* —1). Note that the second stable solution has been omitted below marginal
stability.

5. NUMERICAL SOLUTION

For the purposes of numerical solution of (4) (on a CDC 6400) we identify a set
of scale frequencies:

WA2 — B202 . WE — Erz R WF — KT.LO‘
Polt Cbra:2 ra:B z0 eB zorm2
..L‘
u g0
WZ=-2; (WQZ)'=——2—
P Qfr, n'.sPD

K2 (Ty— T

W 2 — _8p ecles .

Three further parameters are required
m — azimuthal mode number

kro pitch of mode
m

K Zi Ty
f=—=2%2__ plasma beta
B.o* 21
Subscript , refers to a value on axis.
Subscript , refers to a value at the wall.
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Fic. 3.—Real and imaginary parts of the normalized complex frequency m{ plotted

against the Suydam parameter 42 for A5 =005, A1 =2, 44 =0, 43 = 1600/

(m* — 1), Note that the second stable solution has been omitted below marginal
stability,

~Im(m§)

[ ] ]

-a = o 2 4 6
Al .

F1G. 4,—The variation of the normalized growth rate with rotation parameter 41 for

A4 =0, A2 = 3, A5 = 0-05, 43 = 1600/(m? — 1),
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F16. 5.—Marginal stability values of the Suydam parameter 42 vs. dominant FLR
term (1/43) for different values of rotation (41) with 44 = 0, 45 = 0-05.

The equilibrium is described by normalized profiles of number density #,

E, .

— s T, ': T, s T, — T
rBz * sp‘ezcles . sp%les( I -L)
1By L

=T z 9 U,
@ B, q

Unless otherwise stated, temperature profiles were taken as constant following
Bowers and HAINES (1971), number density Gaussian and magnetic field pitch
Lorentzian. The latter was chosen to approximate the pitch produced by current
concentrated in a central channel.

By approximating the differential dispersion equation to a set of difference equa-
tions on & discrete mesh, the eigenvalue problem was reduced to finding the roots of a
function expressed as a tri-diagonal determinant each element of which is quadratic
in w. After computing all such roots on a mesh of about 20 points, the accuracy of
the most unstable root was asserted by searching for it on as large a mesh as required.
Muller’s method of quadratic interpolation (see e.g. TRAUB (1964)) was used to



12

R. J. WrigHT, D. F. R, PorT and M. G. HAINES

5
Al=)
-
Al=2
R
q Al =-2
2
L
]
[e] . 002
1783

Fia, 6.—Marginal stability values of the Suydam parameter 42 vs. the dominant FLR
term (1/A43) for different values of rotation (A1) with A5 = 0-05, A4 = —1.

005

Growth rate

-003 -0-04
ke, /m

F1G. 7.—The variation of the growth rate of Suydam modes with normalized axial
wavenumber for different azimuthal wavenumbers with g =05, W4 = 10,

0-0035 on broken lines.

n = exp (—0-5(r/0-3r)%), p = 001/025 + (r/r)?). WF =0 on solid lines, WF =
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determine the required roots. Parameter perturbation was sometimes used to follow a
mode as a function of the variables used.

(i) Suydam modes

Figure 7 (solid lines) illustrate the variation of growth rate of Suydam modes with
axial wavenumber in the absence of FLR. The waves are extrapolated below
» = 0-02 since, as MHD marginal stability is approached, the modes become too
singular to be resolved on a discrete mesh. It may be established, however, that cut-
off of m =2 and m = 3 modes occurs approximately where the Suydam stability
cirterion is violated but the m = 1 mode is unstable far beyond this limit and requires
. a wall for stabilization. Since increasing |kr,[m| moves the singular surface towards
the origin, cut-off at larger |kr,/m| occurs soon after r,((k . B),=,. = 0) passes through
zero. In the centre of the kr,/m spectrum, higher m number modes dominate, whereas,
as in Section 4, modes become unstable in order of increasing m as more unstable k
values are considered. The peaks of the curves shown occur when r, lies in the region
of greatest pressure gradient.

Figure 8 illustrates the effect of increasing FLR(WF) for a fixed k. Observe the
marked lack of influence of gyro radius effects upon m = 1 modes in comparison
with higher m instabilities, FLR increasing in effectiveness as m number increases.
The broken lines of Fig. 7 indicate the k spectrum of the instabilities when FLR is
included. Note that the region of sharply varying modes that could not be previously
resolved is completely stabilized and that the peaks of the separate spectra now occur
inreverse order of m number. Since FLR produces diamagnetic rotation of the plasma

0-08f

004

Growth rate

o 0005 o0l o0l5
WF

Fic. 8. The stabilization of Suydam modes by FLR effects, pyith WA = 10, f = 0-5,
kro/m = —0-03, n = exp (—0-5(r/0:3r,)®) u = 0-00-25 + (+/r.)D.
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F1G. 9,—Radial dependence of the complex eigenfunctions of Fig. 8 with WF = 0-002.

(in the absence of electric field), the real part of the frequency increases from zero as
WF rises. The eigenfunction itself becomes complex, an imaginary part being
generated with increased ion temperature. This signifies the superposition of a small
amplitude radial travelling wave component upon the MHD radially standing wave.
Figure 9 illustrates the radial plasma perturbations of several modes when FLR is
included (Note the expanded scale on the imaginary parts). Mode localization
increases markedly as m number increases, such that at m > 5, they appear symmetric
about the singular surface and show little of the curvature produced distortion of the
lower m modes. The mode structure varies little as FLR increases to sufficient
magnitude to quench the instability (except for the introduction of the imaginary
part). Recall, however, that very narrow MHD modes are stabilized by very little
FLR. As may be expected, the introduction of a steeper profile of u produces
narrower modes and reduced growth rates. It is clear that the analytical expansion of
Section 4 is most appropriate for the high m number modes where the numerical
approach is limited by the resolution of the finite mesh. To this extent, the two
approaches are complffientary and 309 agreement is the position of the cut-off is
found for m = 2.

In Fig. 10 we investigate the influence of the g,*' term in the equation. For this
purpose, the fourth moment, R, is estimated from a double Maxwellian distribution
so that qgl' is reduced to the B x VT',? heat flux (Righi-Leduc effect). A profile of
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004(~
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Fic. 10.—FLR stabilization of Suydam modes illustrating the effect of the Righi-Leduc

heat flow,
WA=10, B=035, krfm= —003, p=001/025 (r/r)?),
n =exp (—05(r/0-3r)?), T* cc exp (—50(r/r.)?).

T,* with a steep gradient was employed (exp (—50(r/r,)%), but in spite of this, the
stabilizing effect, indicated by the difference of the two sets of curves of Fig. 10, is
small.

The choice of a profile of x having a maximum at r % 0 enabled the study of
modes associated with two resonant surfaces (see NEwcoms, 1960) within the plasma.
The growth rate spectrum in this WF = 0 case is portrayed in Fig. 11 (solid lines) and
some of the characteristic modes in Fig. 12. With kr,/m ~ — 0-035, all modes show
structure associated with each singular surface. d&/dr is greater at the outermost
one since the plasma density is less in this region. Since the two singular surfaces
coalesce at —kr,[m = 0-04, all mode spectra show a peak at this wavenumber fol-
lowed by an abrupt cut-off at larger values of —k as resonant surfaces are eliminated
from the plasma. At small k number, m > 1 modes become localized near the origin
and cut off as —kr,/m falls below the value of g at r = 0 (0-025). These modes show
very small amplitude features at the outer resonant surface. The m =1 mode
persists to smaller k, cutting off abruptly as this outer surface passes through the
wall. This eigenfunction approximates a step function more closely as the outer
surface occurs in regions of lower and lower plasma density. Effects due to the outer
resonant surface are shear stabilized for m > 1 modes.

Figure 11 (broken lines) illustrates that the introduction of FLR has a relatlvely
small effect on the m = 1 mode, but decreases the growth rates of m > 1 modes,
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FiG, 11,—The variation of the growth rate of Suydam modes with normalized axial
wavenumber with 8 = 0-5, WA = 10, n = exp (—0-5(+/0-3r,)),
& = 0003{1/[0-08 + (rr, — 0-4)*1 + 1{[0-08 + (r/r, -+ 0-4)*1}
WF = 0 on solid lines, WF = 0-005 on broken lines.
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Fic. 12.—Radial dependence of the complex eigenfunctions of Fig. 11 with WF =0,

kr.jm = —0-035.

higher 7 number modes being most affected. The most noticeable effect is the stabili-
zation of the low k£ end of the spectrum (where the modes without FLR approach
singular behaviour).

The introduction of radial electric field (WE 54 0) into the equilibrium is illus-
trated in Fig. 13 for E,[rB, independent of r. These diagrams may be explained by
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Fie. 13—FLR stabilization when slight E x B rotation is included with g = 0-5,
WA = 10, u = 0-01/(025 + (r{r)?), kreJm = —0-028, n = exp (—0-5(-/0-3r.)%).

considering the effect of diamagnetic rotation, introduced as WF increases, on the
net plasma rotation (equation A-7). Positive E, causes an E/B drift that is augmented
by diamagnetism and vice-versa. Thus, the peak that occurs with E, > 0 may be
explained by the introduction of finite ion temperature initially destabilizing by in-
creasing rotation and finally reducing the growth rate as gyro-viscous effects dominate.
The converse initial effect is illustrated by negative E,.

(i) Rotationally driven modes

The pressure gradient effects of the first term of G in (4) produce Suydam modes,
whereas the preceding term induces rotationally driven modes. These were the
subject of study by Bowers and HAINES (1971) in the case B, = 0. The present
work allows the introduction of B, into the theory and a more complete discussion of
the eigenfunctions. (Note the difference in normalizing radius between BOWERS
and HAINES and this work.)

Bowers and HAINES (1971) found that the growth rates of the rotational modes
as a function of axial wavenumber k showed a peak at k = 0. The introduction of
constant # merely shifts this peak to finite kr,/m and occurs at the resonant wave-
number given by kr,fm + 4 = 0. When u is prescribed as a Lorentzian function,
again all modes show maximum growth rate at similar values of —kr,/m. This
value is smaller than for the peak of the Suydam spectrum indicating that the most
dangerous resonant surfaces occur in less dense plasma than in the pressure-gradient
driven case, due, no doubt, to the radial dependence of centrifugal destabilizing forces.
Thus as rotation is increased from zero, the most unstable axial wavenumber moves
to progressively smaller values of —kr,ym, the corresponding resonant surface moving
out towards the wall. Since stability is enhanced by the absence of singular surfaces
in the plasma, cut-off of the instabilities occurs at —kr,/m values just below that at the

2
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F16. 14.—The variation of the growth rate of rotationally dominated modes with
normalized axial wavenumber with =05, WE =1, WF =0, u = 001/(0-25 +
(r/re)?), n = exp (~0:5(r/03r,)".

cylmder wall. Thus, in many cases, growth rate is a very rapidly increasing function
of —kr,[m for values of this parameter in the neighbourhood of ;. A typical case
is portrayed in Fig. 14. The sharpness of the low k cut-off is increased still further as
WE is reduced.

The m = 1 mode merits further discussion. Referring to Fig. 14 we find that the
dominant mode within the central region indjcated has a radial node [see insert (a)],
whereas elsewhere a node-free mode [see insert (b)] predominates. Completely
different oscillating parts of the frequency are associated with each type of mode.
This effect is present in Bowers and HAINES (1971) where the region is centred on
k = 0. Generalization of the theory has thus indicated that the type (a) mode is a
feature of the peak region of the spectrum rather than specifically of k = 0.

When a radial node is present there is clearly no need for a change in position
of the centre of mass for ¥ = 0, m =1 and indeed a net electromagnetic force can
only cause such an interaction with the conducting wall if an equilibrium B, is present.
Thus type (b) mode structure which necessarily involves an acceleration of the centre
of mass cannot occur in a theta pinch unless the plasma pressure is non-zero at the
wall. By varying B we find that the stabilizing effect of finite plasma pressure on
m > 1 rotational modes is greater towards the cut-off of the growth rate spectra.
The m =1 type (b) mode (without a radial node) is found conversely to be de-
stabilized by increased f thus constricting the region of dominance of type (a). The
influence of FLR upon strongly rotationally unstable modes is slight and its effect
may be viewed as in the context of Suydam modes. Its chief effect is to stabilize
the m =1 type (a) mode possessmg a radjal node in preference to the more common
variety type (b), thus narrowing the window of dominance of the former.

As the electric field is reduced, so the rotational modes change continuously into
the Suydam spectrum. In this limit the dominant m = 1 mode is type (b) i.e. without
a radial node so that, as WE becomes smaller, the range of kr_/m values for which the



Stability considerations of a hot cy]indrfcal pinch 19

8]

Growth rate
-]
D
|

-1 -05 [ o5
WE
FiG. 15.—The dependence of growth rate upon E X B rotation when FLR is included.

WA = 10, f = 0-5, WF = 001, kr,/m = —0-03, n = exp (—0-5(r[0-14r,)"), t = 0-01/
(025 + (/r)").

type (a) mode dominates becomes smaller. Figure 15 illustrates the variation of
growth rate with electric field when FLR is included. Note the symmetry of the plot
about WE = —0-2. We calculate that this value of WE corresponds to a total
rotation frequency of +0-21 when diamagnetic effects are included in agreement with
the results of Section 4 that A1 = 1 produces a minimum growth rate.

(iii) Heat flux modes

In order to investigate the influence of the second term of A4 in Section 4 that
could not be adequately described by the localized theory, we considered the effect
of varying the parameter WQZ for both positive and negative directions of g,
The main effect of this is to allow F of equation (4) to vanish for complex w (negative
®? in the WF = 0 limit). Thus a continuum of unstable modes (with finite growth
rate) defined by F(r) = 0 at 0 < r < r, is introduced into the eigenvalue equation.
Since F = 0 defines a singular point of the equation at which the ordering approxi-
mations on the scale length of the perturbation break down, the physical reality of
such solutions is doubtful. The importance of calculating the eigenfunctions them-
selves is emphasized by a situation of this sort wherein the growth rates are indepen-
dent of changes in mesh size, but the modes appear unphysical.

As WQZ is raised from zero, the first effect is a perturbation on the Suydam
modes which shifts the peak of the eigenfunction in the direction indicated by relation
C1 and increases the growth rate as would be expected from the previous localized
mode theory. Larger heat fluxes, however, produce the singular modes mentioned
above and the growth rates of these dominate the system as seen in Fig. 16. Since the
Gaussian density profiles and Lorentzian u profiles produce the largest growth rate
of the continuum with the singularity near the origin, computations were performed
using a density profile much flatter near = 0. In this case the eigenfunctions moved
and became progressively steeper as the heat flux was increased until they became
discontinuous modes of the continuum. Figure 16 illustrates that, beyond stabilizing
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FIG. 16.—The dependence of growth rate upon the axial flux of the ion energy associated

with thermal velocity perpendicular to the magnetlc field. The right hand half con-

cerns g,-1* parallel to B, and the left half ¢,L* anti-parallel to B,. Solid lines concern

WF = 0 (no FLR), broken lines have WF = 0-03. [ = 0-5, WA = 10, kr.fm = —0-03,
n = exp (—0-5(r/0-3r.)%, p = 0-01/(025 + (r[r)?).]

the Suydam modes of the system, the effect of increasing FLR may be entirely
accounted for by the F =0 dispersion relation when the ion temperature term is
included in F.

(iv) Temperature anisotropy (Firehose) instability

As the temperature anisotropy parameter WM is increased from zero, the effec-
tive Alfvén speed

[Bf/#o — 2y = pl)] v
P .

falls to zero and then becomes imaginary so that growth rates increase. ‘The modes

spread out over the entire plasma radius, but remain peaked near the resonant surface.

Figure 17 shows growth rate of these instabilities as a function of axial wavenumber.
Notesthat the curve

6. SUMMARY

Using a standard FLR expansion of the collisonless Vlasov equation, we have
produced an eigenvalue equation describing an equilibrium containing B, < B, -
and many other physical quantities. First, following STRINGER (1975) and secondly
by direct computation, we have analysed the equation for the effect of the plethora
of physical parameters upon the growth rates of firstly the localized Suydam modes
and secondly delocalized modes generated by heat flux and anisotropic temperature,
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F16. 17.—Growth rate vs. normalized axial wavenumber with dominant temperature

anisotropy. Solid lines have WF =0, (no FLR), broken lines have WF = 009,

[B=035 WM=15 WA=10, n=exp(—05(/03r)"), g= 001025
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The manner in which the localized modes blend into the delocalized variety as various
driving forces increase has been described in all cases. In particular, the effect of
axial heat flux in moving the dominant region of the modes, eventually producing
unphysically singular perturbations has been illustrated. Large anisotropic tempera-
ture destabilizes and reduces localization. Of primary interest is the interaction
of rotational influences with interchange modes. The m = 1 mode is shown to be
dominated by its second radial harmonic under certain rotational circumstances,
rotation being, due to centrifugal effects, a destabilizing influence in most (but not
all) circumstances. The special rotational case of RoSENBLUTH and SimoN (1965)
has been extended into the realm of localized modes and the interesting result that,
when FLR is included, the plasma is most stable with a specific non-zero rotation,
has been firmly established. In particular, for maximum stability, the centre of mass
rotation should equal half the diamagnetic rotation. Even within the constraints of
the assumed ordering scheme it is found that the finite ion Larmor radius effect is
only of importance in those equilibria which are very close to marginal stability in
all cases.
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The manner in which the localized modes blend into the delocalized variety as various
driving forces increase has been described in all cases. In particular, the effect of
axial heat flux in moving the dominant region of the modes, eventually producing
unphysically singular perturbations has been illustrated. Large anisotropic tempera-
ture destabilizes and reduces localization. Of primary interest is the interaction
of rotational influences with interchange modes. The m = 1 mode is shown to be
dominated by its second radial harmonic under certain rotational circumstances,
rotation being, due to centrifugal effects, a destabilizing influence in most (but not
all) circumstances, The special rotational case of ROSENBLUTH and SiMoN (1965)
has been extended into the realm of localized modes and the interesting result that,
when FLR is included, the plasma is most stable with a specific non-zero rotation,
has been firmly established. In particular, for maximum stability, the centre of mass
rotation should equal half the diamagnetic rotation. Even within the constraints of
the assumed ordering scheme it is found that the finite ion Larmor radius effect is
only of importance in those equilibria which are very close to marginal stability in
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APPENDIX A

The distribution function is expanded in £ and evaluated order by order by a standard method
(Bowers, 1969). Zero order:
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To obtain a reasonable estimate of R ) ,, write f3 as a double Maxwellian distribution
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APPENDIX B ‘
Consider perturbations of the lowest order part of the distribution function of form

= £y’ (") exp [i(wt + mb + k2)].
Substitute B1, Al and A2 into A3 and obtain after rearrangement:
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(A10)

(A1D)

(A12)

(A13)

(A14)

(A15)

(A16)

(B1)

(B2)

(B3)

In lowest order we now apply the charge neutrality condition. Furthermore since as in Bowers
and Haines (1971) the lowest order non zero axial current is of the order of ezneu,‘/\/ B we take
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Jeo' = 0 by taking appropriate moments of f;’. Charge

ikB.oB. ({n); 9 )
t= 0= (B 4+ 0 xo) ( 20810’ )
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current
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where I, L, Iy are mtegrals involving the resonant denominator of the above expression for f;’,

together with suitable summing over particle species.
Resonant microscopic modes are described by the dispersion relation

L*= LI,
whereas the macroscopic modes considered in this work are produced by the solution:
, 4 ikByB.,
r —_— =0
B’ g, Jar (B9
i®B;oByy’
E ’, Z204-20 —_ 0
9, -+ 3Bl (B5)
Rearrangement yields
@B, ' — kEp' =0 (B6)
‘Brl dB
By = =2 ®B7
E dr

expanding B6 using B3 and the induction equation:

m
—CUBrI' = T 2 —kEol'

yields
Eﬂ’Bso + ErlBrll + BB,_ E01' =0
or 5 .
(E-B)Y =0 (B8)
a familiar result of collisionless theory. "
Substituting B4 and B5 into B2 yields
fr = iB,' zf__;
k or
APPENDIX C
Consider an interchange mode localized near k,—, = 0 and expand k = ax where x =r —r,,
" ak
dl‘ |r=rs

Write

B,*
n= r.“a’( 2 (- °)
species Ko

_ mard (- du, , dg,L | q.L dB,)
V2 ZQ(J‘dr+ dr+B, dr

P_L) m*r dB, (ldR_L p_j_dp)

Y3 = prom® — mw,r,’-d— (——- —_— = - L
dr\ Q QB,dr \2 dr . p dr
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where all equilibrium quantities are evaluated at r = r,, Transform from x to w:

— XN + ¥z Cl
YT G — v ' ©n
put
2 —
(m__r__zl) (syr — 727
X = 2 C2
it €3
d mup\® d B
ré g [ofon = 50) ] + e g (301 - p) - E)
Y= ( B,z) (C3)
32 - — ). .
réot (T —pL) =
Equation (4) then becomes
2 d*é d¢ 2 -
(W +1)d—w-z+2wa’+[—(w + DX+ Y)E=0. (CH)

Observe that C4 is symmetric about w = 0 and hence we may expect the mode to be localized at
this point. Since, originally, localization about x = 0 was assumed, we must apply the constraint:

(m’ _ 1)1/2 Ye
rt E

<1 ’ (C5)

in order that &k = ax is still valid.
Consider the case lY]:'( |X| required for localization and expand in two regions:

(i) w < V'Y[X inner region — Legendre's equation.
(i) w > 1 outer region — Bessel’s equation.
Apply boundary conditions

E—0 as |w—o

The symmetry of the equations and homogeneity of the boundary conditions imply that at
w = 0, either E=0or (B dé/dw=0.

In region (ii) the solution is
& o« Ky(w vX) /W ‘2 (C6)

where 1 = 3i(4Y — 1)'/% which decays exponentially to zero as w — co.

Note that since X = 0 for m = 1 this solution does not exist in this case and localization by the
Legendre functions alone which spatially decay as w1/ is insufficient for the theory to apply.

In region (i) the two cases are:

@ &<l (i — cot 12”) Pyiw) + Oyiw) W > 0
: n

) ¢ g (i+ tan%v) Py(iw) 4 Qu(iw) w >0

where v = —4 + 3i(4Y — 1)1/2

Matching the expansion of C6 about w = 0 with the asymptotic expansion of C7 about w — o

in the region
P
1<w< f e

yields a phase matching condition (STRINGER, 1975), KULSRUD (1963)
H,(4Y)= VX
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where

H@Y) = 16exp | 2 —3in [T (i i”) Si“h(—) "
im0
+ {0+ 0 (F2) Y (st [exp(= 5)]-5) - )]

- where # is an integer and 1 = (4Y — 1)/

(u is complex here) ) *
The upper sign is for case (b)) (odd symmetry modes) /.‘
The lower sign is for case (a) (cven symmetry modes)

The value of # is chosen such that H — 0 as 4Y — 1 in order that the Suydam criterion results in ‘
this limit. -

Thusn=1,2,3,...,00.

Maximizing H maximizes the growth rate and thus » = 1 produces the most unstable modes,

Since

tan-? I:exp (—'"—2")] —§<0 for 0<u< o

the choice of even symmetry modes maximizes the value of H;(4Y) and it is thus these modes that
will be discussed as the most unstable.
The constraint | ¥| > | X] of this localized theory may be written in terms of ¥ alone as

[Y1> [H 4D
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