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ABSTRACT 

The research in this thesis is concerned solely with the 

properties of supersymmetric theories. First, we examine what 

supersymmetric models are renormalizable and ghost free. We show 

that the Wess-Zumino Lagrangian and its gauge extension are the 

only physically viable supersymmetric Lagrangians which can be 

constructed from scalar superfields, that has an interaction at 

most cubic in the scalar superfield. 

In the rest of the thesis we examine symmetry breaking in 

supersymmetric theories. The pattern of spontaneous and explicit 

symmetry breaking at the tree level is investigated in SU(N) 

supersymmetric gauge theories for the simplest representations. 

We calculate the one loop effective potentials for two supergauge 

models (SU(2) adjoint representation and U(1)) and find that they 

vanish if supersymmetry is conserved. Generalizing this result 

we prove that the effective potential vanishes to all orders in 

perturbation theory for those vacuum expectation values of the 

fields which conserve supersymmetry. Finally, we calculate the 

one loop effective potential for a general theory, which does 

not contain gauge particles, and speculate on the higher order 

effects. 

These calculations show that despite the aesthetic appeal and 

attractive technical features of supersymmetry there are severe 

difficulties in trying to construct realistic models where super-

symmetry is not explicitly broken. However, further progress may 

be made by considering, in more detail, models in which super- 
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symmetry is explicitly broken; in the hope that some unknown 

mechanism may justify this somewhat ad hoc approach. 
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CHAPTER I 

INTRODUCTION 
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1.1 Motivation and general introuction 

Supersymmetry arose in the context of dual models in 1+1 

dimension. The basic idea was put forward by Ramond
(1) 

and later 

developed by Gervais and Sakita, Iwasaki and Kikkawa, Neveu and 

Schwarz(2). However, it was only when Wess and Zumino(3)  construct-

ed a supersymmetric Lagrangian in the context of a conventional 

field theory in 3+1 dimensions that general interest was aroused. 

This model had the remarkable property that fermions and bosons 

were transformed into each other under the supersymmetric trans-

formation and therefore belonged to the same multiplet. Hence, 

it was possible to construct models in which there existed a deep 

connection between fermions and bosons. Such a connection has 

been believed by some to be fundamental to an explanation of 

particle physics. 

Since the transformation mixes commuting and anticommuting 

fields it must contain anticommuting parameters. Salam and 

Strathdee
(4) showed that supersymmetry could be understood in the 

context of an eight dimensional space (4 dimensions labelled by 

anticommuting parameters and usual 4 space-time dimensions). There 

remained the question of what are the properties of supersymmetric 

models. These properties fall naturally into two categories; 

1) The first category being those properties which ensure 

that the model is physically sensible and tractable; that is, it 

is renormalizable and has a well behaved energy spectrum. 

2) The second category being how far the properties of the 

physically sensible and tractable models relate to those of the 

actual world. 
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Chapter one comprises an introduction to supersymmetry and a 

derivation of the more important formulae used later in the thesis. 

Properties of category (I) are the concern of chapter two. As a 

consequence of the remarkable renormalization properties of the 

Wess-Zumino LagrangiaNt is natural to ask if there exist super-

symmetric models that are renormalizable although they would be 

conventionally regarded as non-renormalizable (meaning they 

contain interaction terms of mass dimension higher than four). 

Or, if there exist conventionally renormalizable supersymmetric 

models other than the Wess-Zumino Lagrangian. Because we can not 

carry out renormalization programmes on all such models we only 

consider the most likely class in chapter two. Here we show that 

the Wess-Zumino Lagrangian is the only viable supersymmetric 

Lagrangian which can be constructed from scalar superfields and 

the covariant derivative that has an interaction cubic in the 

scalar superfield. 

Properties in category (II) are discussed in the remaining 

chapters of the thesis. However, given a Lagrangian there exists 

no known way in general to calculate, with confidence, the physical 

scattering amplitudes except for the limit of small coupling. 

Therefore, we are forced to compare the properties of super-

symmetric theories not with those of the real world, but with the 

most acceptable theoretical models of reality; namely spontaneously 

broken gauge theories. Salam and Strathdee and Ferrara and 

Zumino(6)  showed that supergauge theories can be constructed. In 

the conventional gauge theories a realistic mass spectrum is 

obtained by spontaneously breaking the gauge symmetry via the 
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Higgs-Kibble mechanism. It is a trivial consequence of the 

supersymmetry algebra that, if supersymmetry is conserved, all 

particles in the same multiplet have the same mass. As spontaneous 

symmetry breaking is required in gauge theories it would be 

desirable if we could spontaneously break both the gauge and super-

symmetry. 

However, in contrast to conventional gauge theories, where the 

choice of tachyonic mass terms in the scalar sector will lead to 

breaking of the internal symmetry, there exists no such simple 

mechanism in supergauge theories. In fact, having chosen the 

fermionic content of the theory, the Higgs potential is completely 

determined. It is the search for spontaneous symmetry breaking 

mechanisms which is the central problem in constructing realistic 

supersymmetric theories. 

In chapter three we examine the pattern of symmetry breaking, 

at the tree level, for SU(N) supergauge theories for the simplest 

representations. We found that if a singlet was introduced it was 

possible to spontaneously break the internal symmetry, however, it 

was not possible to break supersymmetry. Also, we discuss the 

effect of introducing mass terms which explicitly break super-

symmetry. 

In the remaining chapter we consider the effect of the quantum 

corrections to the classical potential. These corrections are 

particularly important in supersymmetry for two reasons. Firstly, 

including the quantum corrections may radically enlarge the 

representations for which it is possible to induce spontaneous 

symmetry breaking; secondly, they are required to remove the 
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physical ambiguity in the vacuum state which is often encountered 

at the tree level. In chapter four we calculate the one-loop 

effective potential for two simple supergauge models (SU(2) adjoint 

representation and U(1)). It is found that the potential is 

complex if supersymmetry is violated and zero if supersymmetry is 

conserved. This result leads us to suspect that the supersymmetric 

effective potential would vanish to all orders of perturbation 

theory for fields whose vacuum expectation values conserve super-

symmetry. This result is proved for a general theory in chapter 

five. 

This investigation leaves open the question of the general 

behaviour of the supersymmetric effective potential in the region 

where the fields acquire vacuum expectation values which break 

supersymmetry. The result of chapter four would indicate that 

there might exist large areas in which it is complex in this 

region. Hence, in chapter six we partially answer this question 

by calculating the one loop effective potential for a general 

theory which does not contain gauge particles and speculate on 

the higher order effects. 

To conclude, supersymmetry has been shown to be a much more 

restrictive symmetry than originally supposed. We found that, 

at tree level, although it was possible, to break spontaneously 

the internal symmetry, it was not possible to break supersymmetry 

for the representations considered. Also, we proved that if super-

symmetry is conserved the effective potential vanishes to all 

orders of perturbation theory and hence the degeneracy often present 

at the tree level is unresolved and so leads to a physical 
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ambiguity in the vacuum state. (Put another way, if supersymmetry 

is conserved pseudo-goldstone bosons remain pseudo-goldstone bosons 

to all orders.) Several one loop calculations indicated that there 

is unlikely to exist a stable supersymmetry violating vacuum for 

theories which do not break supersymmetry at the tree level. 

However, explicit soft breaking (mass terms) of supersymmetry could 

lead for some representations to asymptotic freedom and spontaneous-

ly broken internal symmetry. Therefore, despite the aesthetic 

appeal and attractive technical features of supersymmetry there 

are severe difficulties in trying to construct realistic models 

where the supersymmetry is not explicitly broken. Nevertheless, 

a future programme for research could be to consider, in more 

detail, models in which supersymmetry is explicitly broken. It may 

be hoped that some mechanism will be discovered with improved 

calculation techniques that will justify this somewhat ad hoc 

symmetry breaking. 

The research contained in chapter two is published in Nuclear 

Physics 13!"-A d that contained in chapter five is to be published in 

Nuclear Physics B(1° 	, The research in chapter three is to be 

published in the Journal of Physics. Although the work on the 

SU(2) adjoint representation in chapter four was not submitted for 

publication by myself a similar piece of work was published in 

Physical Review D by G. Woo. 
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1.2 Introduction to Su ersymmetry 

This section is devoted to an account of the early develop-

ment of supersymmetry and an explanation of the notation and 

techniques which will be used in the rest of the thesis. It is 

convenient to use the formalism developed by Salam and Strathdee(7). 

This supposes the existence of an eight dimensional space. 

Four dimensions are those of space-time and the other four are 

labelled by anticommuting Majorana spinors; each point is represent- 

ed by the pair 	9,4 ) where 

Go, et' 	 = 0 
The group action on this space is the Poincare group and super-

symmetry. The transformation being 

x 	 A+ 

a —4' ect 	Cc, (ns) e 
and 

----* x = 	 & 

9d_ 	71- E 0( 

Where 
fl 
 U  \) denotes the Dirac spinor representation of the homo-

geneous Lorentz transformation A and E like () is a Majorana 

spinor. The properties of Majoranaspinors and the related conju-

gation matrix are given in appendix A. 

It is easy from equation (2) and (3) to calculate the algebra 

(1)  

(2)  

(3)  
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of the group generators:- 

(lc 	ep, otp 

s4) 
cr 

a 

The generators of the Poincare group are 	and 	and Sptis 

the generator of supersymmetry and is a Majorana spinor. It would 

of course be possible to drop the Majorana constraint throughout. 

However, this would lead to vastly more complex theories. 

Supersymmetry consists in constructing field theories, in the 

eight dimensional space, which are invariance under the transform-

ations given by equation (2) and (3). A scalar field is defined 

by 

Cp ()( 19) 	=- 	C )(1)  9 ' ) 	
(5) 

Higher spin fields may be defined, but these are not considered 

here and no realistic model has been constructed from such fields-

as, in general, they are non-renormalizable. It follows from the 

anticommuting nature of e that terms of the form 

00e  9 	001  
1 	2- 

vanish for VC> 4. Therefore, we can expand CPin the form 
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.(1)(x) 	R (x) 	e5v)(x) 

+!0&F(x) 	 G (x) -4- L 1-YOSc n v6() 
Zi* 	 4 	 4 

4 -69 -6-5)6(x) + (9e) Dcx) 
4 

Differentiation with respect to 0 can be defined in a 
straight forward way. 

be V 
where r5 c7 is infinitesimal. The above equation defines the 

right derivative and provided we always consider differentiation 

with the order of factors above it is unnecesary to consider the 

left derivative. 

It will prove extremely useful to the development of the 

theory to define a differential operator which is a scalar under 

supersymmetry and a spinor under the Lorentz group:- 

32 

(7) 

The important properties of D are given in appendix B. 

Although the scalar superfield is invariant under supersymmetry, 

we now consider its decomposition into irreducible parts. First 

consider the identity for the operator f) T) 

(8) 
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Since Di) is a covariant operatorisubspaces on which it has the 

same eigenvalues will form representations of supersymmetry. 

However, we can from equation (8) deduce these eigenvalues and the 

projectors onto the representation subspaces
( 
 $). They are 

E+ 	T5CI-Dsc)D 5Cli:oriyp 

5 t Oss—) D C — L'kr)D 
4-07-  

E , 	1 4-- 	I 	(75 D 
(9)  

• 
Applying these projectors to the scalar superfield and assuming 

the expansion given in equation 6 we obtain the following reduction 

into the subspaces +Iv)  0))._ and 
1 

R 	 R, + q, 

r._ 

A_ 4- 

qfi LP4 	0 a + 	1.1.1 

(10)  

fly, is transverse ( cY4.1  6„, cr 	Q 	) and (1/± are chiral 

Majorana spinors. 44)  & and cp, are irreducible represent-

ations of supersymmetry. 

To construct supersymmetric Lagrangians we must state some 
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important properties of db.„ and 461  whichcan be derived from 

equation (10). 	49± (1  ) Ci9+ 62-) 	is a representation of 

supersymmetry of 4 type, but any other product is a general 

scalar superfield. The scalar superfield transforms under an 

infinitesimal supersymmetric transformation are 

-s 	 G- 	t 	 9b R7 e  

15 F = 	4b qi 
2- 

	

- 4  E 	9t  T_ 

	

worr  x 	-"J 	 1p 

rz 	D ci) F ; ch G- 	)ssq 	E 

The Lagrangian must consist of terms which are Lorentz and super-

symmetric invariant or at least invariant up to a divergence. The 

only possibilities are the F and D terms of chiral superfields 

( 4) and the D terms of the other types (416) 	). These com- 

ponents can be selected in an invariant way by the appropriate 

number of operations with the covariant derivative; twice for an 

F term and four times for a D term. 

The simplest model is in fact the Wess-Zumino Lagrangian 
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c‘, 8 
where 

C 1)±' 	= 1Y.‘.., 401: 	-I-  >% ck÷ 
2- 	13! 	— 

When calculated in components. 

a,IA.Nd"Aq_ 	altin)i, 96 cP t 14.FL 

-1- (r+ A+2.+E B.2.- - R.. ry_c  (1)- — A;C1,,+ 	) 
2 

In appendix .0 we give some useful formulae for the expansion of 

superfields into components. 

Salam and Strathdee and Ferrara and Zumino(6) demonstrated 

that it was possible to construct supersymmetric gauge Lagrangians. 

Since these involve spin 1 particles they must include a full 

superfield. The Lagrangian is 

t CY 4- 	;7 

t cr  = 	1476,44. (Ptc— 	k el 

(12)  

where 

r)  031/./(5-)1) It1:23(Pil *‘ 	-) :"i" 21411 

t--.A  
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and 

vez  are the possible invariant interaction terms. 4,, is invariant 

under 

cibt 
rimmmal■41 

ei 	(x, 

11 4. 	gq/ 
-r— 

where 	A t () 	= 	IF r 	± (x) &) 	with 

the group generator and 1:r+ ) E)) an arbitrary chiral 

field. The component form 	t is given in chapter three. 

The calculation of Feynman diagrams in supersymmetric theories 

is considerably simplified if it is performed in a manifestly 

supersymmetric theory. Here we outline the supersymmetric Feynman 

rules. The propagator for the Wess-Zumino Lagrangian can be 

derived using functional techniques. 

1,1 are are the chiral superfield sources for the fields. The result-

ing equation of motion is 
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The propagator is given by 

Using supergauge invariance of the vacuum 

(x 	:t 1 b/ 	9 -6) t 	1 2. IL   k o> 

ti c (121  (Yr  >c,_si 6,Yea)e,-0 R(6)> 
t 	 2- 

ONO. 
fee* 

1 prt 
From the equation of motion 

    

1 	1:21a1 

2.- 
lbw 

we obtain 

dt ( -61  c xs-81 4 

Sr  2.e -I-  Iv -61 ( 	 `(>(, x.L) 

Similarly for 



22. 

At vertices constructed from superfield of the same chirality 

we must take riP and for vertices constructed from superfields of 
2. 	 r..1 2= 

different chirality or non-chiral superfields we must take 0) ).).) 

Finally, we note some important results concerning spontane-

ous symmetry breaking. It is easy to see from the supersymmetric 

transformations given in equation (11) that Lorentz invariant 

field expectation values break supersymmetry if and only if the 

auxiliary fields (fields whose derivatives do not appear in the 

Lagrangian that is the F and D's) acquire vacuum expectation values. 

If supersymmetry is broken there appears a Goldstone fermion 

associated with the broken generators of supersymmetry. The 

expression for the Goldstone fermion was shown by Salam and Strathdee
(9) 

to be 

< cs - •?fs. > q (x) 

>■1 1,1 a w 	 1  

N is a normalization factor and !tiv, and 1),-/ ,„ are the 
and 1) components of the gauge field. 
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CHAPTER 2 

PHYSICAL VIABILITY OF A CLASS OF 

SUPERSYMMETRIC LAGRANGIANS 
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2.1 Introduction 

Perhaps the most remarkable technical feature of supersymmetric 

theories is their renormalization properties. In order to make a 

conventional renormalizable field theory finite one is required to 

regard all parameters in the bare Lagrangian as infinite (coupling 

constants, masses and the implicit wavefunction normalization). 

Hence, a conventional renormalizable theory comprising one scalar, 

one pseudo scalar and a fermion field would require 13 infinite 

bare constants to renormalize the theory. The analogous super-

symmetric theory is the Wess-Zumino Lagrangia411hich involves only 

3 coupling constants at the tree level. The relations between the 

couplings are preserved when the theory is renormalized. However, 

only one infinite (wavefunction) renormalization is required, 

instead of the three expected, to make the theory finite. Consequent-

ly, it is natural to ask if there exist some conventionally non-

renormalizable theories which become renormalizable when the coupling 

constants are constrained to admit supersymmetry. Or, if there 

exist theories, other than the Wess-Zumino Lagrangian and its gauge 

extension, which are renormalizable on conventional grounds. 

This chapter consists of a search for such theories. Because 

it is not possible to test all supersymmetric theories we examine 

only those which are closest to conventionally renormalizable 

theories (containing no term in the Lagrangian of dimension greater 

than four). The actual class considered is supersymmetric 

Lagrangians constructed only from superfields and the covariant 

derivative that has an interaction at most cubic in the superfields. 
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Theories which have interactions quartic in the superfield will 

contain terms with scalar fields to the sixth power. The simplest 

such theory was examined by DelbourgoM  

and was found to be non-renormalizable. 

A renormalization programme consists in absorbing all the 

infinities which arise in perturbation theory into the coupling 

constants. More precisely, given the bare Lagrangian o.. C do06) J N.) 

we shift all coupling constants (30 	cr5c8 such that 8  is 

finite and 	o may be infinite. 

Although ct 	04) is finite, infinities occur when its Feynman 

graphs are calculated. In a renormalizable theory it is possible 

to choose 15(4  such that the Feynman for 	c ( C)))  $5) graphs 

contributing to a given process are finite at each order of 

perturbation theory. For example, if the infinities occuring in 

the first order of pergurbation theory can not be cancelled by the 

infinites occuring in aaC the theory would be non-renormalizable. 

To examine the physical viability of the Lagrangians we must check 

that the theory has a well behaved energy spectrum as well as being 

renormalizable. Hence, having expressed the Lagrangian in component 
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form we must check for the presence of ghosts, because these lead 

to an energy spectrum which is unbounded below. If no ghosts are 

present we examine the renormalizability of the Lagrangian. This 

entails calculating the counter-terms required to cancel all 

infinities occuring in the first order graphs arising from X,(* D. 

If these counter-terms can not be found in bde then the theory 

is non-renormalizable. Since it is hoped that cancellations due 

to supersymmetry will render the theories renormalizable, the 

calculations will be more transparent and quicker if performed in 

supersymmetric formalism. To this end the supersymmetric Feynman 

rules are derived by the methods set out in chapter one. 

The Lagrangians to be considered are 

ki= CD1))12- iik5D-2.m)0 + g c3  

6-5e (4)+$) 	(1)D)2g  (c))+,-(1)..)* 

gi  having been already suggested by Salam and Strathdee(2). 
It will be shown that kl is non-renormalizable and the source 

of the non-renormalizability is 4, . This leads us to 	which 

is renormalizable, but contains ghosts. On the other hand ,e
3 

is 

non-renormalizable. In the class of supergauge lagrangians consider-

ed above, the Wess-Zumino lagrangian is unique in that it alone is 

renormalizable and contains no ghosts. 
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2.2 Non-Renormalizahility of 

(A) The action 

S = 	Sd 4x si fix, 9) 
is rendered supergauge invariant by demanding that t is trans-

formed into a 4 divergence under variation. This is implemented 

by the rule already stated in the introduction. 

A comparison of the infinities present in the second order 

diagrams and the normal counter terms generated by 4„ 	quickly 

shows that t %  is non-renormalizable. This calculation is 

grossly simplified if we work in superfield notation rather than 

try to treat each component field individually. The super-

propagators are calculated using functional methods. To this end 

we introduce a classical supercurrent j into the lagrangian 

can be expanded in a complete set of $ .s 

(X ) 	(c) + 9  k.P(x) 	F (x)+6)cs--8G-Cx) 
4 	4- 

6T)-  s)-1-Txx) 
4 	 4 	3 2 

In order to get the correct source-field combinations we define J 

to be 



2, (x + ig  

29. 

v g 	 32 
SI  

When evaluating 01.-t 	in terms of its component fields we need only 

pick out the coefficient of the 94  term because 

Sax 

1-20dvF-2FD-2G-e)v i),v +2n,dv Cr 

+ RC 2( 	4)- ryci x dvt-r-d, LI/ 2vvt (AD 

rl+ C;2"-- (7> 	Tcc + fir  
interaction terms 

(2.1) 

The equations of motion for j = 0 are 
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Using the equations of motion F, D, A v  and X can be eliminated. 

The equations of motion can be rewritten in superfield notation: 

(TiD z 	 (2.2) 

from which it follows that 

r2 
e +m2  z LY" 

1 
(2.3) 

(B) Using supergauge invariance of the vacuum 

2.) = 	< T cb'(x, , 91) 43' (xi, e-2_) > 

< T (1)(x, oix.) ())(0,0)> 
	

c ,(K, 012-) 

'')(2.4) 

where 

X 	)<2 1.: T5 ) 	92. 	9 ' 

Using (2.3) and (2.4) and 

RIft 
16 

1  IR C-69)-L  
2. 	64. 

+ terms not involving jA  

+ terms not involving jA  

t We used the fact that ( D .1))3  = 	4 cr-  15 D. 



it follows that 
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ck=„it ite-er 	1(2 j 
-4.m-t-1 4m 	12--g 	1 6 

_C--et- Goz.5;1  
4144 

+ terms not involving jA. 

Hence 

066_ 

41A4 (d
2
4-149 

-014:. 42.)). 9,11b:1444:21 

32 

(C) Armed with the propagator we can calculate the Funman 

graphs. The second order diagrams are produced by 

T Sbp)'-- cr(i) (1)1))1-(113(2.)dX2.1 
2- 

The second order self energy diagram with only A external lines is 

(c2ii 904. colli:).4 	rictL6)1” 	(5-4-L.  
Now 	

5: 61  cb(92. 	_ „ 15, ,LA  
1-56(,-xt.) +(GOO 

rif 7". 	 3 Z 

The only term to survive the edifferentiation is e,9* 	E121,1-) but 

t As 	 (5 0 ED 2.. 	2..  is just a translation on the IS function. 
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-612. 9tit -e- 	= (01,2:sh_Y- 197  9tC) 7. 

0 

Then 	(11 7,Piz: ( -6.1  cA804  Ll<ra)  + terms with less 9's 
4_ 1.  2 	04-L.  

(?),1 61 )-7-CEIG3iort-)-?-  6Z,(1-x.0 	+ terms with less 6 's 

yv'- g 	1 CI" 

C 
a,) 

4 M.'" 
In momentum space this gives rise to a logarithmic divergence 

(analogous to Oltheory) D( (cr" )-1' 	(q the external 

momenta). 

Similarly we can calculate the second order self energy for 

other external lines. For example A and F 

(c1 	)2.   R F 	ael„x  Ao, 	a 	062: 
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(in momentum space Ok tiel-Lt1). 

(D) The normal counterterms are generated through the 

substitutions 

1  $1)0 	7.-.1 	) 	0 =1 	2.  a ; 	0 ` M .1r 5'141  
1.3/12- 6 

in the bare Lagrangian. From the expression for OCI written out 

in terms of component fields, equation ( 1.), it is clear that the 

above substitutions can not produce a counterterm looking anything 

like :j: 	Wv-)1-44 	(The 145  graph, however does have 
a counterterm from the wave function renormalization to the JyF,  dvA 
term). Since there exists no counterterm coming from wave function, 

coupling constant or mass renormalization to account for :% 	F, 
we could only put in an arbitrary counterterm 	D)16-5P4) to 

remove the divergence. This counterterm has no immediate physical 

interpretation and we conclude that Oel is non-renormalizable 

in the conventional sense. 

	

If we started with the Lagrangian 	-11- (0) 04 we 

could generate the counterterm required to cancel the troublesome 

divergence. However, this would lead to ghosts in the theory. 
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2.3 Origin of the Non-Renormalizability of i% 

In order to see which irreducible part of the superfield 

causes the non-renormalizability and to compare
1 
with 4Axa 

the renormalization of which was carried out in superfield notation 

by Delbourgo and Capper(3), we calculate the propagators between 

the irreducible parts of the superfield. This is achieved by 

applying the projectors Elt ) El  to equation (2.4). 

Et 	5 Ca :wfs-) 1) 70 (1-t:oss-)po 
7._ 	 'Z. 

Then 

±.< (Pk, 00 4(°) 0 ):: <-r clzfr ) 011.)1R0)0y? = 

I * -(314.A%..9 :1- . 15, t  ?s-0,,,,, dt 	2_t. Yv  'Ors- A t; OV- (6, to, tY-ol 5( 
o 0' Vi-po) 	7-vv% 	i-_%44 	it-

(2 
3 "2- 

.5)  

Similarly 

-1.,(6,/,01).6( 
cr-  32 

1■•■■ 
Own 

4v4 

(2.6) 



„ (1,7) 	- I 
4-,64 32 

70(1- xt) 
(2.11) 
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Using the properties of the projectors and propagators we find that 

ECt.)(X)  0).a.) 	ci)(x g 	cko, 0) >v.,  CT tit)(x)  0, ,) CD, 0)›.  

() (()) o)  C) b( 	) > < 	sy6(xL. 	C))(+k ) 3)> (-It ) i 

Hence 

<-19S (x, 1 )ciSk Go> 	9(>(2.,e) 
(-it) 

Application of the projectors to the above equation gives the 

-r 0(x) e,,,) 	(0, c)) 

propagators in terms of E..1. acting on the propagators of equations 

(2.5) and (2.6). Use was made of the result (3D,  ) - i4 = _/0"-E 

9te 
L+(1)i  1-)= 	 , 

3 

9, 5 (x,-x;) 
(2.8) 

56 Y4— 9 
m 	rx• 	 6c, 

cP-Ca2:i-mez—) 	
(2.9) 

2.10) 
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A+-1- and tk-4 are very similar in form to those of 

except for an extra L  in Q _t . That is for(2) 4 

+ 

- yyl 444? 	et 4) eta- 61%.(1  )6") 6‘,1_ 	x i  - 
"2- 	 (2.12) 

• 41) -61  qi 13, 	-612 9b Ys—e., 	xt-) 
(2.13) 

We can now recalculate the self-energy diagrams with only A 

external lines 

g+ + g , tins 	JT_ 

o 0 
fid 
	4 

as the highest possible number of s. from the propagators is(731-, 

hich is finite 

r. 

of, Di) 	I 
— 	 ?-1-(e4 W1 1 

rt. 

which is finite 

+-I- 	•■••• 



so 

W 

so 
■••• 
■•■■• 
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-y,j 
01-W344.-L) 	?'" 

which is finite. 

There remains 

 

tic Ca 	)1/4  

which is the cause of the logarithm divergence. It is clearly 

which is responsible for the non-renormalizability of the theory. 

Further this difficulty is inherent in any theory which contains a 

self-interacting superfield 	, i.e. constructed out of 	and Do  , 

as can be seen by the following: 	, unlike k, has the 

property that 	is a general superfield and so that Lagrangian 

must be of the form 

ct = (r5  Dr 	1;1) DOL 	I 
We now consider the case in which f is allowed to be an 

arbitrary function of 	and and I) 4) consistent with 	being 
ott.. 

at least superficially a sensible Lagrangian when written in terms 

of its component fields. The kinetic term can only be constructed 

from Da 	, but My) ) has the property that 

Di)st• 	.(4)) 1)64 (I) 	—63  D)10)04 3cco) cc0 
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and so can be cast in the form (15Dr*  1.4)  T5DCO . The 

difficulty stems from the fact that Di) 	= 0 so the 0111), 

part of 	has the form 

Z 	ytA V-  4 ;„-t,,,-„,17., 

This results in the 	propagator of equation (2.11) and so 

the divergent graph ocicr12,„, h. The counterterm must be 

generated from ED- Dr.  giso 
(0Z 

 which if added to the original 

Lagrangian produces ghosts. 

If the theory were not self interacting, but described a gauge 

interaction between a (I)
1 
superfield and two other chiral super- 

DO- 
fields the gauge symmetry can make it renormalizable. The(15 61) PDT) 

term is still needed to make the Lagrangian renormalizable but this 

is the usual gauge fixing term. The ghosts introduced from this 

term decouple from the physical matric elements as a consequence of 

gauge Ward identities. We note that this argument does not include 

theories which make explicit use of ordinary differentiation, 

in the supersymmetric Lagrangian. 
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2.4 Renormalizability and Ghosts of 	2. 

Motivated by the preceding  argument we examine g,2. * Since 

(50T-  c14. 	0, j= 0  =EDDY 	D UP+ 04PA 
the propagators of equations (2.8) and (2.9) are those for 

Using  these propagators it can be shown that to second order only 

mass-renormalization is required (see Appendix D). By working  with 

the 

4-rost. 
( a++ 	_ 	L+ 	6...+) 	=. Atai. el" 

wt = a 	1 b 

propagator it can be shown that 	2. is renormalizable to all 

orders in the m = 0 case. The essence of the proof is to find the 

highest number of 	's which can come from the exponentials in 

the propagators subject to the restrictions that for an n vertex 

graph any polynomial of 9 's greater than 4n vanishes and 

e ev, 1 	= O. This number enables us to calculate 

the superficial degree of divergence of the graphs and leaves only 

graphs for which Vertex + External lines 45 8 whose finite nature 

is not accounted for. Of these remaining graphs all are finite 

exceptthoseinFig.2.2 which are accounted for by mass-renormalization 

and adding  a harmless (DD)114,3 to the Lagrangian respectively 
(see Appendix 0). The theory has in the m = 0 case exactly the 

same renormalization pattern as ordinary 	
423 

 theory. 

Examination of the propagator of equation (2.9) leads us to 
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suspect that the theory has ghosts. Writing z  out in terms 

of its component fields confirms this possibility. 

-14.; 	On +4- c).' Òv 0)- 2. yvt en 

i- C- 	- d dv  11 + 	cl) (I)) + interaction terms 

Where the component fields are labelled by 

11: 

4.161.2CvYs-0 4,013 + 1O  	0  0 	+ (6 	r).'-  9) 
4 	4- 	3 2- 

The equations of motion are 

IAA f: = al' f) 	+ interaction terms 

Ott 	== 	+ interaction terms 

After eliminating F and G we obtain terms like dy 1 c:Tv  d-LF3 
i.e. ghosts. If we renormalized so that the physical mass was 

zero then we could no longer eliminate F and G as above. However, 

as 

ray  1 jv F 	61A+ Odv04-F)— 01,(14—F)Ov  r'-) 

where A and F are hermitian fields, we again have ghosts. 
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Whether the problem concerned with ghosts can be consistently 

avoided in this theory has not been examined. A possibility for 

eliminating such ghosts is to consider the larger class of 

Lagrangians which contain terms of the form .tc)11+ which is a 

supergauge invariant because 	SAL the supergauge infinitesimal 

operator commutes with displacements: 
	

Esc!. 
To use such terms is in some senses a departure from the super-

field techniques. 
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2.5 Non-renormalizability of cts  

It is sufficient to consider only second order diagrams with 

only A external lines. The propagators for 43 are the same as 

for 	and were given in equations,(2.12) and (2.13). 

The second order self energy graphs for A external lines 

mole sm. 
••■••• t mow 

4 411■••••• 

•■■•• 
.1111•11 

as the only term to contribute is ( 	02.. )4 In momentum space 

these divergent graphs are (Of-LA. For which there is no 

normal counterterm generated by 	. 
3 
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The reader may wonder why the Lagrangian 

c);0_. 
m/- (5D) f 	interaction 

2. 

is not considered. This is because when 	is written out in 

terms of components it contains terms like 	dv (PA) 1p and so 

has ghosts. It is nevertheless of interest to note that provided 

the interaction does not couple (),,tb 	then in this theory the 

only non-zero propagators are 

0) )-3 	-6I2. (tZ)f-s-) 611;e4  
rrr 

•.• 

as a consequence of which only tree graphs are non-zero. 
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CHAPTER 3 

SYMMETRY BREAKING IN SUPERSYMMETRIC 

SU(N) GAUGE LAGRANGIANS AT THE TREE LEVEL 
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3.1 Introduction  

In the previous chapter we saw that there probably exists only • 

one well defined type of supersymmetric theory; namely the Wess-

Zumino Lagrangian and its gauge extension. It is the comparison 

of the properties of these supersymmetric theories with those of 

experiment that will decide if supersymmetry is a realistic 

symmetry. The theoretical models which have been most successful 

are the spontaneously broken gauge theories proposed by Salam and 

Weinberg. However, their popularity only arose after spontaneously 

broken gauge theories were shown to be renormalizable by t'Hooft. 

The reason for this was that one could use the Higgs-Kibble 

mechanism to spontaneously break the symmetry and give masses to 

the vector particles. The actual gauge symmetry to be used is not 

well established and is the subject of considerable debate. The 

most favoured symmetry groups being SU(N) (N)3) and SU(N) x SUM 

(N,M13). The presence of U(1) subgroups is not desirable as these 

would destroy the asymptotic freedom properties of the theory. 

Therefore, it is natural to try to construct realistic supergauge 

theories. An inherent feature of supersymmetric theories in which 

supersymmetry is conserved is that all particles in the same super-

multiplet have the same mass. Consequently, it is hoped that super-

symmetry and the internal symmetry will be broken. 

However, in contrast to conventional gauge theories where the 

choice of tachyonic mass terms in the scalar sector will lead to 

breaking of the internal symmetry, there exists no such simple 

mechanism in supergauge theories. Supersymmetry places very strong 
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constraints on the classical potential and we will find that only 

for certain representations will any symmetry breaking take place. 

Despite the initial speculations of Wess and Zumino that 

supersymmetry was never spontaneously broken, Ilioupolous and Fayet
(1) 

found two supergauge models where supersymmetry was spontaneously 

broken at the tree level (for a U(1) and SU(2) x U(1) local symmetry). 

In this chapter we do not attempt to construct realistic 

theories, but rather to explore the general difficulties and pattern 

of spontaneous symmetry breaking in supersymmetric gauge theories. 

As a suitable class of Lagrangians to study we examine those 

having SU(N) local symmetry for the simplest representations:-

quark and self adjoint. We also consider the (m,-6) representation 

of SU(M) x SU(N). 

Rather than regard supersymmetry as an exact symmetry we could 

consider it to become exact only in the high energy limit. In this 

case, as long as the coefficients of the leading terms (terms which 

have dimensionless coupling constants) in the Lagrangian are 

constrained by supersymmetry, we are free to choose the coefficients 

of the non-leading terms. In particular, we can choose the mass 

terms to conserve the internal symmetry and violate supersymmetry. 

If we choose them so as to produce tachyonic masses they will 

inevitably lead to spontaneous symmetry breaking at the tree level. 

In part two of chapter two we consider this possibility in the 

context of Lagrangians having an SU(N) local symmetry for the quark 

and adjoint representation. We also consider the possible impli-

cations for asymptotically free and infra red stable theories. 
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2. SUPERSYMMETRIC GAUGE LAGRANGIANS 

Supersymmetric gauge Lagrangians have been developed by Salam 

and Strathdee2  and Ferrara and Zumino3. 	Ile refer the reader to 

these papers for the techniques and formalism used. 	These theories 

are constructed out of 44.  and (1)._ chiral irreducible superfields 

which also form the basis vectors for the representation of a group, G, 

and the gauge fields, p = pr  Fr  in the adjoint representation. 	Fr  

are the matrix generators of G in the given representation and must obey 

I
F
r,= 

f 
 rst Ft 

where f
rst 

are the structure constants of the group, G. 

The Lagrangian is generally of the following form 

ot 	+t
M 

where' 

- 
G 	.+ 

+ h.c. 

1-T i 1 

of - 	
5  { 2 

2 	
)0 	g* ( 5  D) ±2g4J1 

2 	2 e  f 
12-g 

In a special gauge
4 
 p  can take the form 

y5 	v +
1  60 -5yx+(

Te
)
2 
 D 

v 	
2V-2- 

Then 

= Tr 1_ 1112. 	i4x  
G 2 	4  pv - P  } 

where 

V =a W-a W+gWxW) 
tiv u v v u 	u v 

V x= au  X+g(W x x) 

where (A x B)
r 

= f
rst 

A
s
B
t' 
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2   
m (P) (, 

4 
e291P  4 

If 4 is labelled as 

40+  = e-7.411 Y56  (A+  + 5 	+ 	5(1 ±iy5)0 F+) 

Then 

0E14  = v A+  v A+ 	+ 
+ 	+ + F F+  

+ 

	p 	+ + 

+ iga 	4 - 	A A+) + g 	DA+  

where the covariant derivatives are given by 

v
u  A+ 

 = a
u  A+ 

 -ig Wu A+. 

We can also include a (p_ term if required. 

The transformation properties which leave t invariant are.  

I A+ 
4+  e 

; A gip A+ 
e" 4-e tee 

where A+  = 	Fr  and c+r  are arbitrary functions of x and 0. 

ce I  includes all possible interaction terms compatible with the 

representation used. 

3. SPONTANEOUS SYMMETRY BREAKING 

The effective potential in the tree approximation is found by eliminat-

ing the auxiliary fields and can be written in the form 



52. 

V= 1 	E 	D2 + 	E 	(F
+ 
F + F4*  F_) 2 	 - 

gauge 	matter 
fields 	fields 

Supersymmetry places very strong restrictions on the type of potential 

allowed. 	V is positive and is a function of the matter fields A. 	The 

auxiliary fields are of the form a constant, x + powers of A+, A+  up to 

second order. 

If x = 0 then the choice A. = 0 implies V = 0 which also minimizes V. 

Therefore, if spontaneous symmetry breaking is to occur a term linear in the 

auxiliary fields must be present in the Lagrangian (15Dx4). 	The requirement 

that such a term be compatible with the symmetry of the Lagrangian places 

strong conditions on the fields needed. 	For there to be a term linear 

in a gauge auxiliary field a U(1) symmetry must be present, since under a 

gauge symmetry 

(51p = i (A++  - A+) + 4-(A++  + A+, i) 

to first order in the group parameter. 	A term linear in a matter auxiliary 

field can only arise from the F-term of a singletunder the group, because 

under a gauge transformation (54 = i A+  4. 

The signal for spontaneous symmetry breakdown is when one of the 

auxiliary fields acquires a vacuum expectation value at the minimum of V(5). 

This is equivalent to saying V > 0 in the ground state. 

Since:in this paper we only consider the group SU(N) we can only 

trigger a spontaneous symmetry breakdown by the addition of a singlet. 

4. QUARK REPRESENTATION 

Invariants in SU(N) are formed from the fields and the two invariant 

tensors: - the Kronecker.delta(d
a
) and the alternating symbol 

1 



53. 

Since 

i A
+)

+ 

e
iA
+ = e 

E+ 
r 
Fr je 

+r 
Fr 

+ 
(e 	 1 

many terms which are invariant with respect to ordinary symmetries are not 

invariants in supersymmetric theories. 	The possible interactions divide 

into two separate classes depending whether 	is related to c_or not. 

If c
+ 
/ c the only possible interaction terms are for SU(2) and SU(3). 

For SU(2) 

5D f Eab (Pi+a 	Eij 

A global SU(2) symmetry has been introduced as the antisymmetry of the C tensor 

would make this term vanish if more than one field was not present. 

For SU(3) 

i j k 
15D f Eabc +a cp+b (1) +c cijk  

The global SU(3) symmetry has been introduced for the same reason. 

The other case is for c = c_. 	We can construct a mass term for all 

SU(N): - 

f DD 	(pi' 4 + 4: (1)_} 

Aer. 
Terms cubic in the superfields are invariant.. 

Apart from the kinetic terms the only terms compatible with renormali- 

zation are the F-components of terms at most cubic in the superfields. 	A 

singlet, 5+  is required to break the symmetry. 	However, given an invariant 

mass term we can always couple in 	- 

f bD{cp-i-  4 	+ cp: 	S_} 

We now consider the above possibilities. 
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(a) The most general Lagrangian with El.  = C_ apart from the direct 

mass terms and the terms cubic in S
+ 

(see last section) 

=
G 
 +x

m +etI 

Where 

-15D 2  
= 	(0+  egl' 0 + 0+  e-g* 
M 8 + +  

(s  w-z +. s _) 	50 0+  0_ s_ 	(!)
+ 

s+ 	s+ +ASJ+ h.c. 

2 
= 	(Si" S + S÷  

w-z 	+ 	S_)  

The inclusion of the direct mass terms and the cubic scalar term 

results in no spontaneous breakdown of supersymmetry or internal 

symmetry because we can make V = 0 by setting Ai.  = 0 and choose the 

value of A
1 
so as to eliminate the one mass parameter A. 

The above Lagrangian can be rewritten in a more illuminating 

way. Define 

(fS_ + fl*S:) 	f
*
S
+ 
 + f

I
Si.) 

X_ = 	; 	- 
K 

* 
1 	 S 	1 	1* S - f S

+ 
X_ - 	 x+ = f 	 

K 	 K 

K = 11f12+ Ifi l 

1) 
Then 	= (7)2  (x+x_ 4- X

1 
 X.I.J 

bb 
+ 	K {X_ 0+  0_ 	X.f. 0 0+} 

1 1* 	* 1 	1* 1 	* + (A f + A f)T. 4 + (x 	f + Af 
1 
 x_ 

1 * * 1 
+ -A f + A f 

1 
 x,

1 
+ (-A

1* 
f + xf

1*1 X!. 
K "r* 
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From which we see that x_

1  
 and x

1 
= x

1+ 
decouple from the rest of 

the Lagrangian. 

1 
V = g2(1- -a) (A++   A+  - A+ A J2 

	

+ 2g2(e+JA+  A+  A_ - 	A_I2) 

	

1 1* 	* 1 2 	1 * 	* 
(X f 	+ X f)T. I +I(-A1  f + X f

1 1 2 
 

We can rotate A
+ 
to the form (

6
) V assumes a minimum when A_  

is of the same form as A
+ 

with + 

V+ V+  = v1. v_ +  

v+  v- f
1* 

+ x
* 
 f) 

The SU(N) symmetry is broken to SU(N-1). 	However, supersymmetry 

is broken in the free piece which decouples from the rest and to 

that extent is irrelevant to the quark fields. 	The SU(N) symmetry 

can be broken to any SU(m) (m<N) by the addition of more quark 

representations and singlets. 

(b) 	If
+ 	

c
-  the only non-trivial Lagrangians are for SU(2) and 

SU(3). 	Although for SU(3) we have an interaction term cubic in 

the superfields we cannot couple this to a singlet (as we are liable 

to destroy renormalisability) so no symmetry breakdown can occur. 

+ 1K A+  A_ 
+  



We can rotate A+  such that it is of the form 21
); 	real. 

0 A22 

A 
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However, for SU(2) we can couple in a singlet 

oe =.5t +i 
G 

f
M I 

it 2  
M = (IT) Tr (cp+  e2g* (pi.) 

oe _ D 
'cab 4' 

,
÷aa 4 

A 
- 2 	4bi3 cce8S-i-i+ s } +et ) W-Z + 

We do not include a (I)_ field as 44.  and (p_ do not mix. 	0+  is a 2 x 2 

matrix transforming according to SU(2) local Et SU(2) global. 

V = 2 	k 
E D2 4. 

+ 
F1+ F1 

k 

= g2  {i(A+  A + A+  A _A+ A -A+ A )2 
11 11 	21 21 	12 12 	22 22 

+ 21A+  A - A+  A 	+ 12f det A + 
11 12 21 22 

The choice A21  = 0; A22  = K.eis where els k2 = - .- minimizes V. 	The local 

symmetry is completely broken but supersymmetry is not. 

5. SELF ADJOINT 

By definition the self adjoint representation has the structure constants 

of the group as its generators 

(F k)km = i fare 

fpm are antisymmetric for SU(N). 
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Consider for simplicity that 	/ E_ then the most general Lagrangian 

is 

	

at 
=G 	

+Ct 
I 

OD 

	

M = (ig 	
Tr (cp: 	(1)4.  e-") 

ce m  
- 	{- Tr (p2  + 	Tr 4)3  + lf Tr 4) 2  S 

I - 	2 	+ 2 	+ 	2 	+ 

+ p S
2 
+ K S

3 
+ x S

+ 
+ h.c.} + 44- (S ) 

w.z + • 

We emphasize again that (1)._ is omitted since it cannot couple to (1).1.- 

The Euler-Lagrange equations for the auxiliary fields are 

k + 
D +3A+  x 	= 0 

m 	+ 2f A . A 	. A . A 	= 0 
+1 	+1 + 	ijk +J +k 

1+ 

	

.4
1 -r 

14. 	A. A4.  )+ kA
12 

+ x = 0. 

Thedijk  are defined by 

=— 4 6.. + d
i
. 

	

J , 
	

3 1,) 	jk 
X  k 

We choose p = k = 0 otherwise the solution becomes trivial, viz. the choice 

	

A+ = 0 and kA
12 	

pA
1 + x = 0 minimizes V and leads to no symmetry breaking. 

We now show that we can simultaneously choose all auxiliary fields to vanish. 

First)
we define A4. = , A

a A +a = 
"

( i.k
a 
1- iB

a
) = (a + ib) . where a and b 

 

are hermitian traceless matrices. 



Ai - 	 
: -s ± 	2 + 4A1  

2 
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Dk  = 0 implies (a, b) = 0 

Since a and b commute we can utilize the one unitary transformation 

to diagonalize them both. 

Tr A
2 

F
+
+ 

= 0 implies sA
+  + A

2 	 
+ N 

=0 

m + 2f A
1 

where s - 	g + and we use the relation 

d
a c 

A
c 

= 	, 	—f Tr {Aa, Ab} 

lf we label the elements of A as diag(Xl, 

2 
2 	

A. 
s A. + A. = 

• • • , AN) the equation F
+ 

0 becomes 

(1) 

+ 	
i = 0 implies 

2 
1 	

A. 
-- 	1 	2x 	1 

N 
— Tr A

+  A+ 
 "' 	- 	- A 

As A
a 
is traceless so is A+ 

	1 
i.e. E A. = 0 

Equations (1) and (2) are equivalent to 

2 s A. + A. = Al  

E A. = 0 
i 

The solutions to equation (3) are 

(2)  

(3)  

Let us suppose that in n cases we take the positive square root and in t 

cases we take the negative square root (n+t = N). 
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Then 

= 0 - EA 	
-N s + (n-t) is2 + 4X1 

i 1 	 2 

s - 2 	(n-t)2 4xs 
 2  
N - (n-t)2' 

Hence 

X. = ± (X1 v'TT"  if +ve square root 

if -ye square root 

The pattern of symmetry breaking is arbitrary up to the choice in n(n < N or 

=0) 

SU(N) SU(n) SU(N-n) 

For SU(3) n can only equal 1 or 2 in either case 

A = ± 	diag {1, 1, -2} 

So SU(3) 	SU(:2) Q U(1). 
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6. 	m, n) REPRESENTATION OF SU(m) x SU(n)  

0+  is an n x m matrix which transforms as 

-i A
±2 

e
i A±1 

= 
rr  C±r ; 	A±2 =  172±r 

and 2 
r r are the n x n and m x m matrix representation of the group 

1  

gene raters respectively. 	To introduce an interaction we assume A41  = A. . 

I
G 
42

14  + I  

D 

	

 2 	, 

M - (
D

1-6) Tr (4 e 
2g, 0
" 0+  e

-29 
2 2)  

-2g1 p1 	
2g2  0, 

	

+ e 	' 0_ e ") 

where 

0_ S_ 
D 	

x S_ + fl  Tr 0+ 4. 	+ Al  S+1 + 	(S+, 	. 
I = —2

D 
 1— 	.1.  

The Euler Lagrange equations for the auxiliary fields are 

131k 	gl Tr(A:  xlk A+ - A+  Xlk A-) 

p2k g2  Tr(A+ A2k A++ - A- A2k 	° 

F
1+ 

+ f
1 
Tr A

+ 
A -+ xl = 0 

Fl  + f Tr A
+
+ 

A -+ A=O 
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Men 

V = 
k 1 
(D 

 " 
+ Dk) + F

1+ 
 F

1
+ + F

1+ 
F
1 

+ 	- 

The analysis to find the minimum of V is very similar to that for 

the simple quark case. 

D
2k 

= D
lk 

= 0 	Fl 	0 and F
1+ 

0 

with 

Tr A
+ 
A . 	

fl 
x1 

+ f
* 
 ax 

 

However, there are more variables than equations and the exact pattern of 

internal symmetry breaking is not determined at this level. 

1f12 	1f1 12 
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7. FERMION NUMBER 

The apparent arbitrariness with which certain terms were disguarded 

from the Lagrangians so that spontaneous symmetry breaking would occur can 

be made compatible with a symmetry - fermion number(6) (2) 

-a  .5 
S e

- 
 S 

S is the supergauge generator. 

In the quark case the following fermion number assignments to the 

fields will prohibit the terms 4)t 4)- 	± 	± 	- 	- +,S2 ,S3,S 	S2 ,St S2  and allow the +  
terms (pi. 	S_ , 	 S 	S. . — — — + +' 

—2 
fi 

44' 
	— 

0 "- 

2. 

-cc yr  

	

or 4)+(x,e) 	4)+(x, e 	3 	) 

4.,2i a 	-a y 

	

S+(x,e) 	e 	S+(x, e 	59 ) 

Similar assignments exist for the adjoint representation and quark represen-

tation of SU(2) (involving only the 40+  field) such that the direct mass terms 

and terms cubic in the singlet are excluded. 
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3.8 Explicit soft breaking of supersymmetry 

In the introduction it was noted that it is not possible to 

obtain a realistic model which has supersymmetry as an exact 

symmetry. The natural way to overcome this difficulty is for 

supersymmetry to be spontaneously broken. However, at the tree 

level, this possibility is only realized in a few exceptional cases. 

Perhaps a more tractable approach is to explicitly break super-

symmetry in a soft way. That is we would allow the mass terms to 

break supersymmetry, although still conserve the gauge symmetry. 

This approach could be viewed in two not unconnected ways. 

Firstly, we could regard supersymmetry as becoming manifest only 

at high energies and so not relevant to the mass terms which do not 

affect the high energy behaviour; secondly we could regard this 

ad hoc choice of mass terms as a prescription which might be 

justified by some as yet undiscovered underlying mechanism. 

(Similar to the breaking of gauge symmetries by hand before the 

advent of spontaneously broken symmetries.) This is not altogether 

implausible when one considers our inability to calculate Feynman 

diagrams, in general, to more than a few loops. 

Here, we make a preliminary study of this procedure in context 

of SU(N) in order to contrast the results with those of spontaneous 

symmetry breaking. At first sight there would appear to be no 

problem, we could make the mass terms tachyonic and so induce the 

internal gauge symmetry to be spontaneously broken. However, the 

quartic terms in the classical potential are restricted to be 

supersymmetric invariant and there may exist directions in the 
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field space for which they vanish. It is possible that in these 

directions the now tachyonic mass terms do no vanish and result in 

the classical potential being unbounded below and so the theory 

is unstable and hence rejected. 

(i) Adjoint representation of SU(N)  

The quartic terms of the potential are given in the 

previous section and are 

tC s 

For these to vanish implies that 

( 1 ) 

R+./ +,-= 	(2) 

Equation one implies that we can use the group symmetry to 

diagonalize both degrees of freedom in A. Let diag A+  = 

Equation two then implies 

ti 	
411  Ar2-  

't  

R÷  However, 

For N odd, A4,1.: 0 and there exist no directions in which the 

quartic terms vanish. Consequently, the potential for N odd is 
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bounded below regardless of the mass terms present and so spontane-

ous symmetry breaking can always be induced. For N even the quartic 

terms vanish if A has an equal number of + A and— N down its 

diagonal. 

The possible mass terms for SU(N) are 

2* 	 DI I-  0 

;4A 2- ( 	RZ-) 

Substituting the directions above for N even and defining 

01+ i.. 17 the mass term becomes 

N 
PA12- .1-2") +1A112.+ 	lo"-+ 4-Ax 

( TA477 z,A 	 / 

+ 	2 et 

Hence, the potential is bounded below for N even if and only 

AA I 	IV° 	0  

(3) 2-/A 	NT /A 	44441 	C3 
 

if 
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The question to be answered is do the above constraints prevent 

spontaneous symmetry breaking for N even. Because it is difficult 

to calculate the minimum of the potentials resulting from even 

quite small N we perform the calculation for SU(2). (In particular, 

we have in mind the 'clever model',the effective potential of which 

is calculated in the next chapter.) 

C. 	c,,_ , 	c, g 	4-L(A x 5) 

Where A and B are real fields. 

The constraints for stability given by equation (3) 

2 
C, 	O ) 	c 	 4_ ci  C-2_ 

The minimum of V is given by 

2. c 	c, (14  )( 13 ) 0 

dV 2.- C2  ,f3 + 	
11. 

CJ 
et 	 ° 

This implies that 

s 	2 . ( O 

Using the constraints on 	e1  and C 
	

implies that 

the minimum is at 

7- 0 
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Hence, for SU(2) adjoint representation no spontaneous 

symmetry breaking is possible even if supersymmetry is softly 

broken. 

(ii) The quark representation of SU(N)  

Since the mass terms need no longer be invariant under 

supersymmetry, we do not need both d4 and 	to form a mass 

term. Retaining only i)l'and (1) the classical potential is 
4 

•+t . 	.ftr + )-2" L. 
This theory is stable ir,altktand for dol.A. 	< 	Q spontaneous 

symmetry breaking takes place. SU(N) 	In particular, 

SU(2)--Pno symmetry. 

To summarize, provided we are prepared to introduce mass terms 

which break supersymmetry the gauge symmetry can be spontaneously 

broken for the quark representation of SU(N) and the adjoint 

representation of SU(N) for N odd. For the adjoint representation 

of SU(2) it is not possible to induce spontaneous symmetry breaking 

of the guage symmetry and it is plausible that this is the case for 

higher even N. 

There is an important point to be made concerning the 

asymptotic freedom properties of these models. Firstly, consider 

the supersymmetric (without the mass breaking terms) quark represent-

ation. The only coupling to enter into the theory is the gauge 

coupling. The formula for the 	function of the gague coupling, 

was given by Gross and Wilezecno be 
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°F,c) 
.2" 1G-Tt  

Cz(G) - 	Li- T(I) 
3 	 3 

-gervwz(4.(c 

Where 

I 
	

T ) 
Sc mkt. vs 

!z (G ) 

 

Iv 

 

 OV) 

 

o t:Kt 

The SU(N) quark representation has one adjoint fermion, one quark 

fermion and one quark scalar and so 

bii% 3 	2- 

6 

(Majorana fermions have a factor i). 



69. 

Hence the theory is asymptotically free for all N. 

We now present a heuristic argument to demonstrate that for 

N = 2 the theory is asymptotically free and infra-red stable. If we 

introduce the supersymmetric breaking masses, as shown above, we 

can cause the SU(2) symmetry to be completely spontaneously broken. 

Explicit calculations confirm the fact that all vector mesons 

acquire mass and there is only one massive scalar in accordance 

with the Goldstone theorem. Hence, with the mass terms the theory 

is infra-red stable. However, we have destroyed the supersymmetry 

and the dimensionless coupling constants are no longer related to 

one another. To examine the asymptotic freedom,  properties of the 

theory we would have to calculate a r function for each coupling 

constant. The 	function is independent of the masses in the 

theory and if we adjust the dimensionless coupling constants to 

satisfy the supersymmetric constraints when renormalized we must 

recover the .3 function of equation (4) (for consistency). There-

fore, we have an infra-red stable asymptotically free theory. 

It was shown byCheng, Eichten and Ling-Fong Li(Viat SU(2) with 

one quark representation is not asymptotically free. Consequently, 

the ultra-violet fixed point we have found is unstable in the group 

space and we have really found a solution in the same class as 

those found by Chan
9)
Even the slightest deviation of the couplingg. 

constant renormalization conditions from the supersymmetric values 

would not result in an asymptotically free theory. 

A similar argument can be applied to the adjoint case. 

O'Raifeartaigh and T. Sherry 
(10)  
showed that the adjoint representation 

is asymptotically free. Once the mass terms are included it is 
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likely that the SU(3) will break to U(1) or U(1) x U(1) and hence 

will be infra-red stable and asymptotically free according to the 

above argument. 
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Conclusion  

We have seen that spontaneous symmetry breaking can only 

be forced to occur in SU(N) gauge theories if a singlet is 

introduced. 	The internal symmetry is broken in a way similar 

to that in a normal gauge theory
(11)

. 	In the representations 

considered, however, supersymmetry does not break. 	A fermion 

number conservation is required in order to exclude certain 

terms which would prevent symmetry breaking. 

Nevertheless, if we are prepared to introduce supersymmetry 

breaking mass terms we can in many theories spontaneously break 

the gauge symmetry. 	This is the case for SU(N) adjoint 

representation for N odd and for SU(N) quark representations 

for all N. 	However, we showed that this is not always the case; 

it is not possible to induce spontaneous symmetry breaking of 

SU(2) adjoint representation without the theory becoming unstable. 

These theories are likely to be asymptotically free and those in 

which the residual symmetry is no symmetry at all or a U(1) gauge 

symmetry will be infra-red stable and asymptotically free. 



72. 

REFERENCES  

1. P. Fayet and J. Iliopoulos, Physics Letters, 51B, 461 (1974). 

P. Fayet, Nuclear Physics, B90, 104 (1975). 

2. Abdus Salam and J. Strathdee, Physics Letters, 51B, 353 (1974). 

3. S. Ferrara and B. Zumino, Nuclear Physics, B71, 413 (1974). 

4. J. Wess and B. Zumino, Nuclear Physics, B78, 1 (1974). 

5. Abdus Salam and J. Strathdee, Letters in Math. Phys., 1 3 (1975). 

6. Abdus Salam and J. Strathdee, Nuclear Physics, B87, 85 (1975). 

7. D. Gross and F. Wilczek, Physical Review, D8, 3633 (1973). 

8. T. Cheng, E. Eichten and Ling-Fong Li, Physical Review, D9, 2259 

(1974). 

9. N. Chang, Physical Review, D10, 2706 (1974). 

10: S. Browne, L.0!Raifeartaigh and T. Sherry, 'Asymptotic Freedom, 

Infra-red Convergence and 

Supersymmetry', Dublin Preprint. 

11. Ling-Fong Li, Physical Review, D9, (1973) (1974). 



73. 

CHAPTER 4 

TWO ONE LOOP SUPERSYMMETRIC 

EFFECTIVE POTENTIALS 
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4.1 Introduction to the Effective Potential  

In the remaining chapters we consider the quantum corrections 

to the classical potential of supersymmetric theories. These 

corrections were first calculated by Coleman and Weinberg
(1) 

and 

here we outline a derivation of the equations used to calculate 

the effective potential later in the thesis. 

In the presence of an external source j(x) the vacuum to 

vacuum amplitude is given by 

(1) 

Where IL.RI is the action of the theory. Repeated indices are 

to be taken to imply summation over group, Lorentz and space-time 

indices. We define the function Cec't, by 

W •••• 	
›.5 

•  •■•••■ 

< (2) 

The effective action, r Ece,41 is now defined by a functional 
L egendre transform 

cee 
	W[q — 	te 1 	(3) 

r 	can be expanded in a Taylor series, 

r 6%) 
• • •-A.„. • • • Ce * C 4. vt 



I Cc-3 

Ce.l. 	ceo 

• 

4. 1 — • 

(6) 

75. 

Ml 

It is possible to show that the coefficients, Fit, 	in this 

series are the one particle irreducible Greens functions(2). 

However, we can also expand fl  in powers of momentum, 

iTe, t 	Vae,)+ 
(5) 

The quantity of interest is WR.c), and is the effective potential. 
As must be the case, it is an ordinary function of Cet  and reduces, 

at the tree level, to the classical potential. It is not hard to 

shoPhat Wec)is the energy density of the theory when the fields 

of the theory acquire vacuum expectation values 	Ce 

Comparing the expansions of II given by equations (4) and (5) we 

note that V is just the sum of all one particle irreducible graphs 

with all possible field insertions at zero momentum. 

However, apart from exceptional cases, one of which is consider-

ed in chapter 5, we can not compute an infinite sum of Feynman 

diagrams. As such,' we need an approximation which is invariant 

under the field translations required when theories are spontaneously 

broken. The crudest approximation which fulfills this requirement 

is an expansion in Planks constant,1 , or equivalently a loop 

expansion.-( 4)  

The expression for the one loop approkimation can easily be 

derived from the functional formalism given above. Let us denote 

to be the solution to the classical field equations i.e. 
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Consider expanding 	I t, ce1 /- 	ce.,; 
	

in a Taylor 

series about 
00, 

IE-le.3 'l c 	[teal 4 14 Ce,i, 

D. (eon (&- 	 (4):s 	eP0.1  2), 
Where 

‘CCeO) 	 sue— 

 

Utilizing this expansion in the vacuum to vacuum amplitude of 

equation (1) gives 

%ey? wpol 
	

1 Re 0J 
	ce; 0_, x 

Carrying out the Gaussian integration 

.sw? ..trr#V CA1 
	

1- [.(eso] t j.4 (e04 

 

higher order corrections 
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Implying 

11,1 C-s 3 = I ice 03 + 	# -lit LA- 4)z bl Disk)) 

+ n er-). 

Equation (2) implies that 

0  4 	0 (1+:2-  
and hence 

CO -4 1 fLe 3 + Z. 	Lt: d7 c Ce- (9(14) 

To obtain V we set Ce to be a constant 

ct) \4t.e.t  (t) 	SAla 	(CD(hict)(  71- 06-7). 

In equation (7) the determinat is to be taken to operate only on 

internal indices and not those of space-time. Also 

is the Fourier transform of 	cti Cte.) 
Finally we can carry out the integration in equation (7) to 

obtain 

Cce ) 
4- 71' 

 

(2-s +-1)C- 011  

 

3 

Cm;-  )2-1.4 vvtl- 

 

(8) 
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Where rA (Q..) = du i- 	0* 61 1.= a) 
	

and the 

sum of .° is a sum of overspins for all the particles. 
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4.2 Two One Loop Supersymmetric Effective Potentials  

The results of the previous chapter demonstrate that spontaneous 

symmetry breaking is much more difficult to induce in supersymmetric 

gauge theories than in the corresponding conventional gauge 

theories. In fact, demanding spontaneous symmetry breaking at the 

tree level requires the presence of certain representations of 

specific symmetries (global and/or gauge). However, once the 

symmetry is broken the pattern of spontaneous symmetry breaking is 

analogous to that in conventional gauge theories. 

Although Fayet and Ilioupoulos(5)  demonstrated in the context 

of a U(1) gauge symmetry that it is possible to break supersymmetry 

spontaneously, this is not the case for most symmetry groups and 

their representations. We saw that it was often possible, under 

certain conditions, to break the internal symmetry at the tree 

level. Nevertheless, it is often the case that the pattern of 

breaking of the internal symmetry is not completely resolved at 

the tree level. This results in a physical ambiguity in the 

vacuum state. 

It might be hoped that the higher order contributions to the 

effective potential may change this situation. In particular, they 

may lead either to supersymmetry being broken or, if supersymmetry 

is conserved, to a resolution of the physical degeneracy in the 

vacuum state often occuring at the tree level. 

We saw in the introduction to this chapter that to calculate 

even the modest one loop correction requires us to diagonalize an 

arbitrary mass matrix. Further, to find the vacuum state in this 
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approximation we must minimize the effective potential which is 

a function of as many variables as there are fields which acquire 

vacuum expectation values. Such a calculation is only possible for 

theories with a small number of fields. Hence, a suitable candidate 

is the so called 'clever model' of Salam and Strathdee(6)  which is 

an SU(2) gauge model. 

4 
	4 	1(5?....F0-1--  

("c7 13) 	42 x -4-  

2— 

Where 

)( V 

(4.9) 
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The Majorana fermions from the matter and gauge fields combine to 

produce the Dirac spinor,X. This model admits the fermion number 

symmetry which excludes the possible mass term. We consider the 

two cases (i) <1)6> z< Pr x 	C) and (ii) < j> 	0 

corresponding  to supersymmetry conserving and breaking solutions 

respectively. 

As shown in the previous part, the one loop effective potential 

is most easily calculated by shifting the fields by arbitrary 

amounts and then calculating  the resulting  mass matrix. In order 

to avoid mixing  terms of the form 	, Y X <J9 

we must choose the Unitary () or the Landau gauge. The choice only 

affects the scalar mass matrix and we choose the Unitary gauge, 

which for this model is 

< R > 	 ‹F> 	0(4.10) 

D = 0. We choose the field expectation values 

A = (0,0,a) 

B = (0,0,b) 

The unitary gauge condition becomes 

„, 4- a. fl  Q. 	r- 0 

(4.11) 

We now calculate the mass matrix when the fields are shifted for 

each sector of the model. 
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The vectors acquire mass from 

z 	 C x s )2-1 

+ 17') 1/7".  4- V' .0.401. 	 eol" 

The fermions acquire mass from 

1.1••• 

X x < A 

(-4 co )6 2. xI . 7)61 

§( 4-  (Ct. -1- 1q- 6)xt  

where (X 41  1 — 
The scalars acquire mass from 

g2"  

2 

r 
Imposing the Unitary gauge and keeping terms only bilinear in the 

fields this term becomes 

ct.2- ÷021 hz"- R71 
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However, imposing the Unitary gauge condition on the kinetic terms 

in the Lagrangian forces us to renormalize the fields, i.e. 

ate'+ 

The free part of the Lagrangian becomes 

j 1;4  2- 
al-  4 171-  

10,,q; 	(oL, r# 
2. 

+ rl 2  
• 

To summarise, the mass spectrum resulting from shifting the 

fields is given in Figure 1. 

Upon substituting these values into the equation for the one 

loop effective potential (equation 4.8) we obtain 

( oyt+ v-)r.tvt 2Ect;1--+ 6-9)1 

2 z 

(ii) 	D A 0. We choose the field expectation values to be 
A = (0,0,a); 	B = (0,b,0). 

The unitary gauge conditions becomes 

ct. 	6B3  =o 

Fl 	
(4.12) 

13 t 
	0 
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FIGURE 4.1  
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The vectors acquire mass from 

x <A) r- (\,1.,- x<13 b>.Y4-  
IA2* 	 17.2" 	V 	4- 6 ' 4.  6.t-)  /4' 1- 	et3 2— 

The fermions acquire mass from 

x < B+y5-g> 

.110•1 
11•011 (--:(- 0L) 	 97 1 IX  71 

'btl) 	T(3 	%) ?s-23  

	

-IT a:77W 	7YC 

where 

\r2.' 	1 047.-+ 61- ' 
The remaining combination 

	

5E 	 is 

	

massless. 
	451 6%-t 

The scalars acquire mass from 

a9.1 	< R > ) z  (  
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Upon imposing the Unitary—gauge condition and only keeping terms 

bilinear in the fields this term becomes 

2.(1111.22-  + 1 3  2 	 2 	4 (a B, .4- 6 113  
Imposing the Unitary gauge condition on the kinetic part of the 

Lagrangian requires us to renormalize the field; t) 
42 m 

The scalar masses are 

1  %-2. 	C1-7-4  17 	67* 17.1) t ti zea 17 

and 

C 61-7-4 47') 
To summarise, the mass spectrum is given in Figure 2. 

In accordance with Goldstones theorem Substituting these masses 

into the equation for the one loop effective potential gives a 

complex effective potential. 

To conclude, the potential vanishes if supersymmetry is 

conserved and is complex is supersymmetry is violated. A complex 

effective potential signals an instability in the theory and so no 

supersymmetry violating vacuum state is stable. On the other hand, 

if supersymmetry is conserved we gain no further information about 

the true nature of the minimum than we learnt from the tree potential 

i.e. D= 	A 	x 	B 	= 0. This leaves us with a physical 

degeneracy in the vacuum state. Or stated another way pseudo-

Goldstone bosons remain massless at the one loop level. 

Performing the calculation in the Landau gauge does not affect 
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any of the conclusions, although the actual form of the potential 

is changed. The recent work of Iliopoulos and Papanicolaou (8)on 

the gauge invariance of physical quantities associated with the 

effective potential leads us to expect the conclusion to be valid 

in all gauges. 

Finally, we note that had the one loop effective potential 

been non-zero in the supersymmetry conserving region we would have 

obtained an infra-red stable asymptotically free theory. The usual 

problems of the region of validity of the one loop potential would 

not be encountered as the tree potential vanishes in this region. 

As a second example, we calculate the one loop effective 

potential for the U(1) supergauge model of Fayet and IliopoulosP)  

	

A. 1  (4,v,"32.).  - 	r- 	A. A. + 	i 
4- ,1"1  

Jr 	Viz 	(112. 	ZPI (111 	(47)2A).2_) 2. 

/A.02,;A  ga.  A' 

trile/#. 11)2,) 	 - EN 1 1-32.  es(n,4 	s 

-V 
where 

V 	( 	13?-• + 5.21  + 	) 
7.. 

I;11—+ ̀a3;1  B 2— 	2- 

J /11-3,- P2.0I4B, 
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The calculation is analogous to that for the 'clever model'. 

For simplicity we only shift the nx fields  < P27 r." 

The result is 

'2. — al-  T- ( we - + 3 try.) 

-3/4. 	3 ( 	1".  

- 4 ( 	 (vvI-4 

The classical potential is minimized by 	kr 
IL 

 9k
1)- 

 T.:. 	 cx 1M 
'2- 

and we chose 	to be positive and also '( 	r.1) 	0 

This result is not very illuminating but two useful features 

can be noticed. )11  is complex for 	U lLe- 	wt.') < 
2- 

reminiscent of a X iS potential. 

By insisting that the model admit a slightly different fermion 

number conservation we can force m = 0. In this case the model 

does not break supersymmetry at the tree level because the classical 

potential is 
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Setting m = 0 in the above formula for the one loop potential gives 

2. ( 
-z_ 

) V 	- % a 

+ 018' r- 	18  4 

4 (- 13 + -121-18.2-yz-A,„„ 

1+ 	3 (62- 

4. ( k)-7-2.7 Z. C z  0,z-) 

kence,
l 

is complex unless 	 'a 	(supersymmetry 
'2.. 

is conserved) and in this case vanishes, similar to the clever 

model. 
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CHAPTER 5 

GENERAL SUPERSYMMETRIC EFFECTIVE POTENTIAL 

WHEN SUPERSYMMETRY IS CONSERVED 
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5.1 Introduction 

Spontaneous symmetry breaking has played an important role in 

many attempts to construct realistic supersymmetric theories. 

However, it is very often the case that the classical potential has 

a larger symmetry than the supersymmetric Lagrangian. Therefore, a 

knowledge of the higher order contributions to the effective potential 

is required to resolve the resulting degeneracy in the physical 

vacuum state. 

Now, in a general supersymmetric theory the tree potential can 

be written as the modulus squared of auxiliary fields (fields whose 

derivatives do not appear in the Lagrangian). If supersymmetry is 

conserved these auxiliary fields have zero expectation values. 

Consequently, at the tree level conservation of supersymmetry 

implies the effective potential vanishes. Several authors have 

noted that this result persists at the one loop level in some models, 

an example being the supergauge theory based on the SU(2) adjoint 

representation (Salam, Strathdee and Duff, myself (unpublished) and 

Woo
1
). We prove that this result is true to all orders in perturb-

ation theory and therefore the vacuum state degeneracy when it 

exists, remains unresolved if supersymmetry is conserved. 



is 
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5.2 Lagrangian and Propagators  

A sufficiently general renormalizable supersymmetric Lagrangian 

Where 	 2.1.  and 	are the matter chiral superfields ( (}),... may 

equal ).i7.1.  ) and li is the gauge superfield. t , (lli) is a 
' 

complicated function of y which is no more than the usual kinetic 

term for the gauge fields. The group indices and matrices are not 

indicated, but are understood to be present. Since the actual 

group structure is irrelevant to the proof indices will be assumed 

to be present, but not actually indicated from now on. 

The superpropagators for the matter fields were derived by 

Salam and Strathdee(2)  and are 

L++  0) 2) 	y\A (B1,11?rs-01 
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where 

7v 0) 9f...J., (61  yorcgct-e.zir s-e,$), 
4 

(2)  

01,7-ems , t.‘ 
144°1-'  

Ferrara and Piguet(3)  showed that in the Feynman gauge the 

vector propagator is 

2
. 92-) 	( -61 2_ 01.1) (1 )  

6 
All gauge calculations will be carried out in this supergauge. 

The supersymmetric Feynman rules are given in the introduction. 

They are those for an ordinary theory except that at every matter 

vertex we must take two derivatives with respect to 6) • 

= 	a 
i.e. V 

	\ 
\ &Qt. :1-1 ) 

and at every gauge vertex four derivatives with respect to 

7- 

(3)  
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5.3 Effective Potential in the absence of Gauge Particles  

The quantum corrections to the effective potential were shown 

by Coleman and Weinberg
(4) to be all one particle irreducible graphs 

with all possible insertions of the field at its vacuum expectation 

value at zero momentum. We will show that all such super-graphs 

vanish. Since the proof will only depend on the structure of the 

anticommuting objects in the graph, in what follows the phrase two 

graphs are equivalent will mean they have the same 6)  structure up 

to multiplicative c numbers (mathematically we will denote this by 

the symbol''). In this new notation the propagators are: 

1.2.91 ,Q4
r4

(61if?rol_itior_ce4 

+;(52).1-. .uxp 5;0r  gz; 	t (1-5-1 )17f s-9 1+6,irrs_6073.  

We note that the factors like exp ( Ehell(9 ) always cancel 

at any internal vertex (in the absence of gauge particles) and so 

we may just work with the propagators 

L++ (I) 2) '24  eta_ 912t 

At:T(112) 	 1(-61erfez-i..) 

We are considering the effective potential only in the region 

where the vacuum expectation values of the fields, < 
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conserve supersymmetry. This implies that 4 	I3,pt 	) 	is 

independent of e , i.e. only the < A 'term is non-zero. There 

is only one kind of field insertion corresponding to a c))-3 vertex 
which we depict in Figure 5.1. 

Lemma 1  

Two propagators connected by an insertions vertex are equivalent 

to a single propagator (see Figure 5.2). As an example we prove 

it for the vertex of Figure 5.3. The relevant part of the graph is 

V(e2)1 R411"51  (E),_ 	kli(%,11 

70312) 	 TC613 ,re,2....) 

-6a i3 	
e‘. 

Theorem 1  

Any series of propagators connected only by field insertions 

vertices is equivalent to a single propagator (using Lemma 1). 

Hence every supersymmetric diagram contributing to the effective 

potential is equivalent to a supersymmetric vacuum diagram. 

Lemma 2  

A one loop self energy is equivalent to a single propagator 

or vanishes (see Figure 5.4). The self energy part is equivalent to 
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.€1,1 B4+ 	k v. 01  

-124(pi 	fe2.7. 	 .11). 

Lemma 3  

The one loop vertex correction either vanishes or is equiva-

lent to the same graph with one chirality changing line deleted from 

the loop (see Figure 5.5). Proof: the triangle part of the 

diagram is equivalent to 

r)is els t uT I -§ 	91.4  + 	93  t 

..111•1 
'MEL 61 3 (913t .91x? 	k 	+ I 

Theorem 2 

All diagrams up to 5 loops contributing to the effective 

potential vanish. Proof: since every such diagram is equivalent 

to a vacuum diagram with the same number of loops (Theorem 1) which 
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must contain a one loop self energy or vertex correction graph. 

The previous lemmas can be used to simplify such loops further and 

finally to show that the graph vanishes. The most complicated 

example is drawn in Figure 5.6. 

We now prove that for 	< ) 	independent of 9 

(i.e. supersymmetry conserving) the effective potential vanishes 

to all orders. A general diagram will contain 13 ++  propagators. 
n. 

However, we note that 	.§+.04, acts as a delta function in 

space and therefore carrying out the 	E) differentiative at one 

end of the L++  propagator is equivalent to contracting the 
propagator to a point (see Figure 5.7) (momentum still being 

conserved). The vertices resulting from such a process are equiv-

alent to those arising from terms like 6: (n arbitrary) in the 

Lagrangian, see Figure 5.8). The vertex in Figure 8 is equivalent 

to 

( 9  lz) 	? 

(F41, 

Similarly for a - vertex. Using lemma 1 and the above observation 

we can make any graph.equivalent to a vacuum graph constructed from 

only A1:i  propagator. Suppose that in this resulting graph 

)1-1- . Carrying out the E) differentiations at every 

vertex (as in equation 	) results in a sum of terms containing 

the product of 1,k4 	(Ls co differences. Now, if 	\_ 7 Y1 i.. 
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the graph must vanish as there exist more 9 derivatives than 

. If Yt+ = 4_ there are the same number of 0 s as 

derivatives; however since all 	9 ' , occur in the form of differences 

any ® in a loop can be eliminated in favour of the other Ds in 

the same loop: i.e. — 	c.813 	 44+ • .. 	We can 

repeat this until there is only one loop left. Since the remaining 

loop vanishes unless there are twice the number of 	0 I  s as there 

are vertices it must of the form 

a 

)2. 912._ • • " 	• • • • -941_ 
Al 

However, this also vanishes by eliminating one of the CIS and 

using the identity above 

C17..6 0, 
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5.4 Effective Potential in the presence of the Gauge Particles  

It follows from supersymmetry conservation that the vacuum 

expectation value of the gauge field, < 	1 4 1 7 must be 
independent of f) . We now show that graphs in which gauge propa-

gators appear are equivalent to graphs constructed only of matter 

fields. The gauge propagator can appear in essentially only 3 ways. 

(i) Two gauge propagators in succession. This is equivalent 

to a single gauge propagator (see Figure 5.9). Proof: the vertex 

is equivalent to 

v%) 	912, r r624  02., 24 6-11 13 Y- 

(ii) A gauge propagator between two matter propagators. This 

is equivalent to a single matter propagator (see Figure 5.10). 

Proof: here we must be careful when gauge lines are present as the 

factors like exp 	p'c'e) in the propagators no longer cancel 
11- 

at the vertices. Taking this into account the contribution from 

the gauge line is 

-1  5 3 - 
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;I:2  5. to 

ii 
111■11■•••••• 

41' 	5. 12, 
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xi- 	( es))7-  4wis 

\I(es+) v(9,.).eix? re-14.,yes_I 

(iii) A gauge propagator leading into a vertex, for example 

see Figure 5.11. 

The factors from the gauge line in Figure 5.11 are 
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(see Figure 5.11). Similarly if the gauge line is between two 

vertices (see Figure 5.12). Any other possibility trivially 

reduces to one of the three cases considered above. 

Having shown that any gauge line can be removed in favour of 

matter lines, the super-graph vanishes by the previous theorems. 

Conclusion 

It has been shown that for field expectation values which 

conserve supersymmetry the effective potential vanishes to all 

orders in perturbation theory. Therefore, if supersymmetry is 

conserved we gain no more information about the vacuum state by 

computing higher order corrections to the effective potential than 

was given by the classical potential. Hence, any degeneracy is not 

removed. It remains an open question as to whether there exists 

a stable minimum of the effective potential which breaks super-

symmetry only when Quantum corrections are included. If such 

minimi do not exist then apart from a few exceptional models for 

which there is no vacuum degeneracy the only ambiguity free models 

are those which break supersymmetry at the tree level. 
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CHAPTER 6 

THE ONE LOOP EFFECTIVE POTENTIAL 

FOR CHIRAL SUPERFIELDS 



6.1 Introduction  

Although we have proved that the effective potential vanishes 

for field expectation values which conserve supersymmetry, it is 

much more difficult to establish a corresponding result for field 

expectation values which break supersymmetry. In chapter four we 

showed that for the two models which conserve supersymmetry at the 

tree level the one loop effective potential was complex for field 

expectation values which break supersymmetry. This might lead one 

to speculate that in this region the effective potential has quite 

large areas in which it is complex and hence unstable. This, 

coupled with the fact that at the tree level supersymmetry tends 

to be conservedlleads one to suspect that there does not exist a 

supersymmetric breaking absolute minimum induced by radiative 

corrections alone. 

The difficulty with such calculations is that the tree potential 

does not vanish if supersymmetry is conserved and hence when 

calculating the minimum of a tree and one loop correction to the 

effective potential one often establishes a minimum only to find it 

is outside the range of validity of the approximation. (This is 

certainly the case when only one coupling constant is present.) 

The complexity of the calculations increases very rapidly as one 

attempts to go further than one loop. 

In this chapter we make a first attempt to establish some of 

the general features of the supersymmetric effective potential by 

calculating the one loop effective potential for a Lagrangian 

containing supersymmetric chiral fields. 
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6.2 The one-loop effective potential  

A sufficiently general renormalizable supersymmetric Lagrangian 

which does not contain gauge particles is given by 

05 DY- 	 D 
+a mg? +? 

I ct 	 tio  A.)  
- 	 p 

3tirlf 	 )f 

(6.1) 

where 	is equal to 	. We will calculate the one-loop 

effective potential for this Lagrangian by explicitly calculating 

all the contributing Feynman diagrams. As explained in the intro-

duction to chapter four these are all one loop, one particle 

irreducible, connected diagrams with all possible field insertions 

at zero momentum. The previous calculations demonstrate that the 

graphs are best evaluated in a manifestly supersymmetric manner. 

Also the combinatQricswill be considerably simplified if we treat 

the mass terms as part of the interaction. This is because the a+11- 

propagators are proportional to the masses and so vanish if the 

masses are to form part of the interaction. In general, one is 

not allowed to juggle with parts of the Lagrangian without destroy-

ing the approximation being used, however as we are performing an 

expansion in'iC it is permissible. Therefore, the propagators for 
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the above Lagrangian are 

.1 -tt 

± 	? r. 	41412 1 6, Ile,. 	sd, Or 01 

 

where 

As noticed in the previous chapter factors like en 67)1(Vg03 
always cancel at the type of vertex arising in the graphs being 

considered. Consequently, the propagator may effectively be written 

as 

+t otif 6J 2) 

t; 4)41'4 	(6.2) 
The vertices arising from the above Lagrangian are of either 

mass or field vertex type. The mass type have a factor 	fAT 

The field type vertex has a factor 

itt 	 4.4„. 
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8  ktpr  Rt +IWO+ F± 
For brevity we define the matrices 

Ant? a 	itcy•Nr RttY 

F 11 1: 12,1t? 
(6.3) 

The calculation is performed in two summations. First we sum 

all possible insertions (excluding F type) between two F vertices 

obtaining an effective F-F propagator; second we then sum the 

remaining F's. A typical diagram is shown in Figure 6.1. 

Two F's linked by propagators and insertions are either of the 

same chirality or they are not, see Figure 6.2a and 6.2b. 

Consider the case given in Figure 6.2a. Using Lemma 1 of 

chapter five we find that the graph in Figure 6.2a is proportional 

to that in Figure 6.3. This graph vanishes because the 9 structure 

is of the form 

(6.4) 
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F 

4; 6.2 ca. 

 

F 	F 
+ 
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Now consider the graph in Figure 6.2b. It contains n - 1 (+) 

vertices and (n 	1)(-)vertices (excluding the two outer F÷  

vertices) which may either be mass type vertices or field type 

vertices. The mathematical expression for the graph is 

f 	( el) 	(k 4 ) 	e, 
Jeisr 	troz.) A.. R49) ( 

14413 	5,„.1 	ez p„, 1  ezt,.. 19,K  r F+ 

+ all possible terms with m's in place of 	A 4. s 
(6.5) 

Carrying out the e differentiations 

( F4, R. 	P+ F.) 
+ all possible terms 

with m's in place of A's 	ci11.24 °1 

full. 	( viet 
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To calculate the effect of including all possible number of vertices 

we must sum over n; resulting in 

1 ?le s". ("" 	+ 

C.4 	E 

where 

(6.6) 

The second stage of the calculation is to sum over the 

remaining rt vertices. A typical graph is shown in Figure 6.4 

where the wiggly line represents the effect of the first summation 

given in equation (6.6). 

Carrying out the final summation over the F 	type vertices 

the one loop effective potential equals 

'gi3 	1 1: F.,  
vt a 

 

The bracket t IA  is to be taken to contain n F 4  is and n F. 

The 1 	factor arises from symmetry considerations. 
W2I0 

(6.7) 
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It is hoped that this compact formula for the effective 

potential will prove useful for evaluating the one-loop effective 

potentials and that it will give a clue to the general features of 

the effective potential for chiral superfields. 

We notice that it vanishes for F ut  = 0. This must be the 

case as a consequence of the conclusion of chiapter five. Also 

and hence 

Ft 	m 
em top 
4' 

From equation (6.6) we can express 	as 10%  \1 

01 F. 
Consequently, the one loop effective potential is a function of 

two variables F 	and 41 	(and there conjugates Eand 	). 

44 01- 	 AA+ We expect this to be true to all orders. 

Assuming that 	Fop 41,1  = 0, as would be the case if only 

one 14 and one 	were present equation (6.7) can be rewritten 

C ps  —n`)}  
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Sti Tv 	( 

2 to% re- 01-1 
If we diagonalized the mass matrices they would be in 3 

classes 

F: 	, 	F.,1  

4:28  

A complex effective potential arises from tachyonic masses and 

these can only arise from 
	4t 	F+ 

For the case of a single 4 field complexity arises if 
1C 

( 1 611w  f)."' 	) vei 
For large field expectation values it must be real. 

ir9 



121. 

Appendix A 

Here we discuss the properties of Majorana fields and the related 

conjugation matrix. The conjugation matrix C preserves the relation 

for Dirac matrices. That is 

Y 	1/1 " 2  3— 
and satisfies 

c- ' 	c 
A, 

It can be chosen to satisfy 

C 	 C: 
It is useful to remember that X (", 	and 03,11 C 	are 

/V6 

symmetric, while Ys— C and ;If y
sr- 
G 	are antisymmetric. 

.00.• 

A Majorana field is defined by 

pc a ( upt x,7 ) 	(.(,' 	4/3 
Given two anticommuting Majorana fields 41  and 	it is easy to 

deduce 

■-P3 	.Tc 	Ys- 	16- 

Kr) Yr% Xs- 
Using the the Fiery reshuffling properties we can deduce that 

40 rocs 4, 	Ys- 
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ziLy/,yry c-ocYccii 
and then prove that 

(kTx5-0\- (T/01  
rgsv?s-l' ,Pq/=.11)tx,-oLT(p=rpoL.)30slirid -s- cp:-. 

T'L.Y vv..5-4 7' 3 /AN/ CLP qd 

These properties are very useful in calculating supersymmetric 

Feynman diagrams. An example being 

k. el& (561 e2_ f 
IMMO 

;I. 	2* 

Also frequently used is the fact that 
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Appendix B  

The properties of the covariant derivative 

are given in this appendix. They generate a Clifford algebra, 

) t91 
As such there are 16 independent basic elements 

 

5 	D ) 4. ?,54- D, 

5 D Dot , (T) 1))82—  
Any product of D's can be reduced to a linear combination of these, 

for example 

OA, A SS  =— 
2. ri 	gp 	2* 

Ch's-  C)  
ra 	

— 	Ys— O,t?  11# 
4 	? 	 y  

From this expansion we can prove 
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The following is a table with which it is possible to simplify a 

product of four D's. 

D 

si5 P 	(n ms* 	- 2Z Fl IS AvITD 	2 :Iv  515s-D 

A zss-D 	2. i; ilvts ylv  s) 	 -2;.?„ 5 D 

q,.v05 e' 
?„. 65 6s-D 	2 1„ 

- 4 °4  (11,,AID- 

where left (right) factors are listed in the rows (columns). 

Frequently useful are the following formulae which give 

explicitly the action of the more important combination of the 

covariant derivative on the general superfield. 

'NT) (Lt t.r) 
	

G- 
2' 

( 	k Y() ( _ 4,0 (fr.) 

.05(1 -.T.;,Y6-)8(D-Atzta)9.1,) 
4 	2-  

+ 1 "6 4 v PiS". 6K-TI 	) (F. 	) 
4 
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+ 	6 e ciF 	it: 	(g° 4  9t) 	I"P 	 ) 

( 6))11.  D.) @.&). 

ci) 	V'm 	DetwIP .4 kb IC 3 
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Appendix C 

The expansion into components of the product of two super-

fields are given below 

(1. 	di) (2.)  e) = R CI) A C2) 

41- 

 

®C A6)4)(2.) + 	Atz)) 

+ 1  ft§9 ( R p-62.) — (1) co tpcx) g» K2)) 

+ 1 6 s.(31 ()(l G-C2) 	1 	 -V4 	CrO)AM) 

84; Yre 	vo.) 4 C45(1).;;Yrgia.) t hy(l)ft6)) 

4.1  -67e 6(A(1)Xm+ 0) Fa) - 	441) G' .)+ 	R 

Yvys- 	R IA) 4- FM 9/(9) 6.0) veva.) v(i li,tv  

ig er (OW + 2. Flt Fa) + 2. Or (1)G-41.)+ 1:),/1)1112, 
$2. 

1) (I) A el) -2 LT c(i ) %(z) 	'1-6-c(i) 	)) 
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WIA,C■14, 

w cY's 	cc-oaF 9)13  
From this we can derive the expansion for 

Rib) -1 840) c). C2.1 

44±.  (1)'2PteL)r: 

Repeated application of these rules enables one to quickly 

obtain the component expansion of 
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APPENDIX D  

It was stated in chapter two that to second order de N  required 

only mass renormalization. The only diagrams at this order which 

can diverge are of 2 4.4.type. Of these diagrams only those which 

pick up 9 from external lines will be non-zero because the prop- 

% 
agators contribute only a ( bia 	) 	factor (e.g. A lt and 

D 	external lines). On calculating the S-matrix element which 

gives rise to these divergent diagrams we note that it can be 

cancelled by the mass renormalization term of 	sci3 or-  4,c-  414 
The relevant S-matrix element being: 

65 DC1fa S c 5DC0fax.z. 	4. CI 	,$) +Mc! 

	

tr tbt  ct tz. 116'61,0 	± DitC2.) 2:1-Pli:(0tCt) 

® F: 	 2 F 0 Ft  (7.) 4. a 	G:1.6) 

+ 2. 	v 	:t1 	Ot 	fli-(131 
We noted that for 4 in the m = 0 limit all graphs for which 

the number of external lines 	the number of vertices are greater 

than 8 are convergent. In this class, with the exception of the 

two graphs in Figure 2.2 they all have divergences which are at 

most logarithmic. Therefore, it suffices to see if they are finite 

when the momenta on each external line are zero. This proof is 

considerably simplified by the two lemmas. 
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Lemma 1  

For subgraphs of the form in Figure A.1(a) no derivatives 

from the exponentials of the propagators can contribute to the 

divergence because 

‘.611%, 912, lika`t (5)0.4tt 15; 	4(1)i 	865% telap. 4 .46 ix 

'15 2. 6 2)i 	612, 9 b e 	.8211)2i 

611 eSit, 623 kg 3s, 	1924 a*: 

Lemma 2  

Consider graphs which contain a subgraph of the form in Figure 

A.1(b). If p is the loop momentum then no more than 3p factors can 

contribute from the exponentials in the propagators. 

tri 6161,0%,„ 621%, ̀6309,34  6 km  41 I  C 4192- 
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Isa  aleam 12, Fiz's Z' 1;0 (4 2 4, 11624- i so edyfl it 

,irk, + k, ft o34,15 612, i 024.  

Clearly it is not possible to bring down 4p factors. 

For example the graph in Figure A.2(c) requires 4 internal 

momenta factors to diverge and so is finite. 


