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ABSTRACT  

The present work is aimed at the investigation of the 

development of cracks under biaxial loading conditions, and 

two co-related problems are approached. 

In the first one, a purely theoretical study of a practical 

problem is carried out. The finite element method, the J contour 

integral method, Bueckner's method and stress field analysis, 

are combined in order to study the influence, that the point of 

crack initiation and the direction of crack propagation, have 

on the stress intensity factor. 

The second problem tackled here is that concerning the 

determination of parameters that control direction of crack 

propagation. A combined computational-experimental approach is 

developed, and contributions are made in three areas. 

(i) Development and testing of a computer approach to obtain 

characterising parameters which reflect fracture 

behaviour. 

(ii) Design of an experimental method to control' direction of 

crack propagation, and its implementation by means of a 

rig with which a biaxial stress field is applied on 

cracked specimens. 

(iii) The directional stability parameter is identified as the 

second coefficient in the Williams' series (A
2
) and it 

is shown how loading and geometry influence its value. 

It is demonstrated that three different physical con-

ditions affect the A
2 

value, i.e. geometry, opening load, 

and transverse load. The experimental crack path is 

followed and at different points of the path,  a pro-

Tagation angle (a) is measured, and it is shown a direct 

co-relation between A2 and a. 
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SYMBOLS AND NOTATION  

p 
	notch root radius 

m 
	maximum stress at notch root 

k 
	stress concentration factor (SCF) 

K 	stress intensity factor (SIF) 

stress intensity factor for bending configuration 

K
c 
	stress intensity factor caused by a directive 

compressive stress 

a
1 	

maximum principal stress 

a
2 	

OV-Rd - principal stress 

. 
a
3 	rntrivivnInftprincipal stress 

(r,*) 	polar coordinator with the crack tip as origin 

a 	crack length 

a 	applied stress to a plate or specimen 

T 	surface tension 

E 	Young's modulus 

a
x 	

normal stress along x 

ay, 	normal stress along y 

axy 	shear stress on the plane xy 

critical value of the stress intensity factor 

t 	thickness of plate or specimen 

K
IC 	

critical stress intensity factor under plane-strain 

conditions, with limited crack tip plasticity 

K
I 	stress intensity factor in mode I 

K
II 	stress intensity factor in mode II 

K
III 	

stress intensity factor in mode III 

G _ 	energy release rate 

load 

X 	compliance 



B thickness 

a 	proportionality parameter for obtaining the value 

of K (depends on specimen and crack geometry) 

SEN 	single edge notch 

R 	fracture toughness as defined by Gurney and Hunt 

Poisson's ratio 

W/A 	specific fracture energy 

1 	function of test geometry (Turner's (1972) Chapter 3 

COD 	crack opening displacement 

J contour integral as defined by Rice 

curve surrounding the crack tip 

W strain energy 

ds 	element of arc length along 

T 	traction vector 

1.1 	displacement vector 

p 	pressure applied on a crack face 

(as given by Hutchinson and Turner (1975)) 

X(r,t) 	Williams' stress function 

A. coefficients in the Williams' series for the 1 

symmetric case 

B. coefficients in the Williams' series for the 

antisymmetric case 

u crack face displacement along the x axis 

✓ crack face displacement along the y axis 

n number of terms being considered in the expansion 

of the Williams' series 

k 	
3- for plane stress 
1+v

v  
 as considered in the 

k 	3-4v for plane strain J Williams' series 

. . 
e
x 	

strain along the x axis 

strain along the y axis 



Yxy 
shear strain 

shear modulus 

angle of crack propagation when the coefficient 

B1, from the Williams' stress series, becomes 

apparent. Energy 	function of A., B. 

even terms for the Williams' stress function 

odd terms for the Williams' stress function 

energy function in terms of Ai, Bi  

column vector 

two dimensional matrix 

transpose of a column vector = row vector 

transpose of a matrix 

stress vector 

coefficients vector 

[0(rolf] = [y] a function of (r,$) 

strain energy 

strain vector 

constitutive elasticity matrix (strain-stress) 

[B] = [p]T[c][y]rdrd* = BVEC as specified within program ANGCRK 

Cu) 	displacement vector = D as specified within 

program ANGCRK 

(t) 	traction vector - BDYLD as specified within 

program ANGCRK 

a 	space interval 

length of crack extension (Cotterell) 

Pc 	
critical value for the directional stability para- 

meter (a*  on S), evaluated at a radius ro
, from the 

crack tip, characteristic of the material 

r
o
. 	core radius as defined by Sih 



S 	strain energy density 

a sc 	
characteristic stress value of the material, for 

direction of crack extension (Williams and Ewing) 

S
c 	

strain energy density value characteristic of the 

material (Sih) 

Sx 	uniform stress applied on the specimen along the 

x axis (lb/in) 

Sy 	uniform stress applied on the specimen along the 

y axis (lb/in) 

a(S ),u(s  ) 	stress at the crack tip, due to Sx,Sy  
y x 

as 	apparent initial angle of crack extension 

aF 	final angle of crack extension 

P
r 	point at which aF is measured 

P 	opening load applied to specimens 



1 

CHAPTER 1  

GENERAL PROBLEM AND INTRODUCTION - 

1.1 General Problem  

Aspects of initiation, propagation, and re-initiation of 

cracks have been the main concern in the study of Fracture 

Mechanics. A further aspect that has recently started to develop 

is that of directional stability of crack propagation. In 

problems of practical interest, such as the one of a gear wheel 

in which if a crack develops, it would be preferable for the 

crack to run in a direction that cuts off a tooth and not towards 

the centre of the wheel. Another instance in which directional 

stability is of interest is that of turbine blades and also 

pressurised containers. Welded joints are also of interest 

concerning direction of crack propagation, here the main point 

is that when joining two different pieces, for example pressure 

vessel nozzles or reinforced components such as pipes, the 

material becomes heterogeneous in the welded zone, and imper-

fections and flaws that are crack starters appear. It is there 

when it becomes necessary to identify direction of crack propa-

gation so that proper reinforcement is given. 

In the first part of this study, the determination of stress 

fields and crack parameters takes an alternative philosophy to 

this problem - try to stop a crack starting on macroscale by 

rejecting gear blanks with defects near critical size, whilst 

in the second part, the problem is tackled directly by trying to 

identify crack parameters which define direction of crack 

propagation. 
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1.2 Introduction  

The purpose of this work is to study the propagation of a 

crack when the conditions of rectilinear extension are dis-

turbed. Once this happens, there arises a problem of 

determining not only the dimensions of the crack, but also the 

path of the crack propagation under such conditions of loading 

that a slow, quasi-static crack development is possible. This 

problem can actually be subdiviclad into two parts: 

(1) obtaining the criteria for the determination of the 

dimensions and paths of the crack extension; 

(2) determination of the expressions for the character-

istics of the stress-strain state which are constituent 

of these criteria, through the geometry of the cracked 

solid with the loads applied. 

The present work is devoted to the investigation of the 

development of cracks under biaxial loading conditions and two 

different but related problems have been approached. In the 

first one, a purely practical problem was tackled by using a 

well known finite element method, with the objective of obtaining 

the stress intensity factor for a cracked gear subject to 

operative conditions, and an analysis is made of the effect of 

a crack interfering with the stress field produced in a gear 

tooth in:- 

(a) working loading conditions, 

(b) residual stresses of the gear tooth. 

The most probable position for crack initiation is deduced, 

crack propagation is permitted, and stress intensity factors are 

calculated. The second and main problem tackled here is that 

concerning the determination of parameters that control direction 
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of crack propagation. While in the former problem only analytical 

aspects are covered, in the second instance a hybrid experimental-

computational system is devised to test the predictions of 

fracture mechanics, attention being focussed in mode I crack 

behaviour. 

As a background to the determination of stress intensity 

factors for the gear case, a brief survey of general work developed 

in the field is made in Chapter 2. The whole of Chapter 3 is 

. devoted to the description of work done in this study towards 

the determination of stress intensity factors, pointing out 

details and parts that presented difficulties and how they were 

overcome. Chapter 4 presents the background to the problem of 

directional stability of crack propagation, in order to set the 

foundation to back the analytical work described in Chapter 5, in 

which an account is made of the mathematical method used to model 

crack behaviour, and its computational implementation as well as 

a summary of the work done to test it. It was also necessary to 

produce experimental data to complement the computer procedure 

and in Chapter 6 a description is made of the development of the 

experimental rig to implement physically the computer work. A 

brief discussion is also made of special points which were a 

source of trouble and the way they were overcome. Experiments 

performed are described, and results are given as well as a dis-

cussion of the implications they have in relation to the parameters 

being sought. In Chapter 7 further work, both experimental and 

computational, is described and conclusions are reached. Finally 

in Chapter 8 the scope for future work is given, two main 

sections can be noticed. (a) Fundamental points that were 

originally included in a first list to be studied under the 
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present work - but time did not permit. (b) Further work 

that now seems to be desirable in the light of this work. 

1.3 Brittle and Ductile Fracture  

When a geometrical discontinuity occurs in a stressed 

material a stress concentration is likely to arise. When this 

geometrical discontinuity takes the form of a notch and its 

position and dimensions are such that they interfere dangerously 

with the behaviour of the material, then conditions are set for 

catastrophic failure that is breaking of the material, if the tip 

radius of a notch and the included flank angles tend to zero 

then the notch becomes a crack. There is a notable difference 

between a geometric discontinuity and a crack. In a typical 

machined geometrical discontinuity the stress level at the notch 

root could be raised in the order of 10 or 20 times if the root 

radius "p" is small, as if the crack is thought of as an 

elliptical void. Mathematical analysis shows that the stress 

level is raised to 

a
m 
=a (1+ 2 1/75 ) 

whilst in the case of the crack the stress concentration is such 

that the state of stress at the tip could be raised conceptually 

to infinity. The stress concentration originated in geometric 

discontinuities is known as stress concentration factor SCF and 

denoted by "k", while that originated in a crack is called stress 

intensity factor SIF and denoted by K and can be demonstrated 

that 

1 
k = lim z  am 

(np)2  
p > o 

K has dimensions [stress lerlf - grh]. a
m 

= maximum stress at notch 

root, p = notch root radius. 
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The study of the stress conditions arising from situations 

like the one just depicted must tackle and overcome the very 

special characteristics of the singularity at the crack tip. 

The application of linear elasticity to the complicated 

situations around cracks has been called Fracture Mechanics. 

Generally speaking one may classify the fracture of solids 

into two broad categories, namely Brittle Fracture and Ductile 

Fracture. By definition, all materials "in the ductile state" 

will undergo yielding before they ultimately fracture. Materials 

will be said to be in a "brittle state" if fracture takes place 

before any appreciable plastic flow occurs. Ductile fracture 

is usually associated with large deformations, very high rates 

of energy dissipation, and slow fracture velocities. Brittle 

fracture is a low-energy failure which, because of unstable 

loading conditions, takes place in a catastrophic manner, 

• meaning that the fracture velocities are usually high. 

McClintock and Irwin (1964) suggested that the fracture 

problem could be studied at nine distinct levels of size 

i.e. ions and electron cloud (10
-7 

cm), dislocations (10
-6
cm), 

subgrain boundary precipitates (10
-5cm), subgrain slip band 

(10
-4cm), grain inclusions voids (10

-3an),large plastic 

strains (10
-2cm), elastic plastic fields (10

-1cm), elastic 

singularity (1cm) and specimen or component (10cm). These 

could as well be grouped in three levels, i.e. atomistic (10
-7
cm), 

microscopic (about 10
3cm), and macroscopic (10

-1cm and greater). 

In the first case fracture occurs when bonds between atoms are 

broken and a new surface is created, in the last two cases 

fracture results from the passage of a crack through a region 

of material. Sometimes it is a repetitive cycling of loading 
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which starts up the mechanism of fracture, while another way 

to fracture a material is to raise the load to such a level 

that the material fails locally around discontinuities, and 

cracks or tears then spread. The growth of cracks prior to 

catastrophic fracture is conveniently divided into processes 

of initiation as microcracks, and propagation as macrocracks. 

The macroscopic theories of fracture assume the existence of 

cracks, voids, or other imperfections which may readily act 

as fracture nuclei, the size of these imperfections is 

assumed to be sufficiently large, compared to the characteristic 

dimensions of the microstructure, to justify the use of the 

tools of continuum mechanics. 

Under such conditions it can be shown that a concept of 

crack growth during test is that the crack extension force 

(called G in the literature) is raised to a value corresponding 

to the point of instability, and Fig.1.1(a) and 1.1(b) show 

the response of brittle and ductile materials to the conditions 

described. An infinite set of variations could occur which 

could be placed between these two stages of brittle and ductile 

fracture, and which depend on many different physical parameters 

such as dimensions, structure, state of strain, strain rate, 

temperature, etc. but these are phenomenological aspects that 

will not be the concern of the present work. 

Fracture behaviour is called brittle if the local ductility 

is too low to relieve the peak stresses and fracture propagates 

rapidly with little or no deformation of the material adjacent 

to the crack surface. A brittle material is one for which the 

strain at fracture is less than a given value, usually less than 

5%. The conditions under which brittle materials fracture depend 
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very much on statistically variable local effects such as 

inclusions, grain boundaries, minute imperfections, etc. and 

usually test procedures are designed around a rigorous mathe-

matical analysis involving specimen dimensions, loading 

conditions, and their relationship with the stresses intro-

duced at the crack. The study of fracture initiation must 

be accomplished at the microscopic or atomistic level, whereas 

the events preceding and following fracture initiation are 

often controlled by the above influencing factors, and research 

related to these factors is normally accomplished on a macro-

scale level using continuum mechanics. 

This study will be concerned with "Brittle Fracture" and 

by that it is intended to mean "a complete absence of irre-

versible effects measurable on the macroscopic scale". Some 

other conditions which will be considered as operating are, 

perfect isotropy, constant temperature and no influence of 

time effects such as creep, relaxation, etc. 

1.4 Failure Criteria  

Different theories have been proposed in trying to explain 

the fracture process, the ones described below are well known 

and depending on general conditions, are usually used to develop 

fracture criteria for crack propagation. They are distinctly 

applied to brittle fracture (no plastic flow) or onset of 

yielding, by defining a local stress value to start the in-

stability mechanism. 

(a) Maximum tensile stress theory 

This is a very simple approach for the failure of brittle 

materials without initially considering cracks at all. It is 

considered that fracture can be intiated by many mechanisms, 
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but in order to propagate a fracture surface across the section 

of a component and to cause separation, it is necessary to have 

a tensile stress normal to the fracture surface. The maximum 

tensile stress theory postulates that fracture is determined 

by the maximum principal tensile stress a1, regardless of the 

magnitude of the other principal stresses, where al > a2  > a3. 

When applied to the case of an already existing crack, 

it has already been shown that a1 -› m when r -> 0 and there 

is not a general agreement on how the failure criterion could 

be applied although an idea of using a core region in con-

junction with this criterion, has been put forward by 

Williams (1973) and Ewing (1972). 

(b) Maximum strain theory  

The maximum strain theory assumes that, under a given 

state of stress, there is a limiting strain of depletion of 

ductility which governs fracture. One popular form of limiting 

strain is the maximum elastic strain at the ultimate of the 

uniaxial tensile test for applying this criterion it is 

necessary to define the point in the material, in which this 

strain is taking place. 

(c) Maximum shear stress theory  

This is usually used for onset of plastic flow, i.e. yield-

ing so it is not applicable to brittle materials and here it is 

only mentioned as additional information, the maximum shear 

stress theory states that fracture will occur when the maximum 

shear stress reaches a limiting value. 

(d) Octahedral shear stress theory  

This criterion is used to define onset of yielding, The 

octahedral shear stress is related to the strain energy of 
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distortion which is the total elastic energy stored in a unit 

volume, minus the elastic energy of volume dilatation. The 

maximum octahedral shear stress theory is widely accepted for 

the initiation of plastic flow and has been applied for those 

materials which exhibit large amounts of flow before fracture. 

The criterion of failure can be described as a limiting shear 

stress on the octahedral plane which has a normal stress equal 

to the mean stress. This is also called the distortion energy 

or 1bn Mises theory. 

(e) Mohr theory  

The Mohr theory is a more general theory than the maximum 

shear stress theory, in that flow or failure is initiated 

either (a) when the shearing stress reaches a critical value 

which depends on the normal stress acting on the same slip 

plane, or (b) when the maximum principal stress reaches a 

limiting value. 

It has been mentioned that the conditions under which 

brittle materials fracture depend very much on statistically 

variable local effects such as inclusions, grain boundaries, 

minute imperfections, etc. At first thought it might seem 

rather hopeless to expect that any macroscopic criterion could 

predict fractures which originate at highly localised random 

imperfections at an atomic level (or, more likely, at the 

level of individual grains). However, Griffith (1924) showed 

that fractures originating near the tips of randomly oriented 

elliptical cracks lead to a macroscopical stress criterion 

failure. 



10 

CHAPTER 2  

A SURVEY ON THE DEVELOPMENT OF FRACTURE MECHANICS  

AND BRIEF DISCUSSION ON DIFFERENT METHODS TO  

DETERMINE STRESS INTENSITY FACTORS  

Chapter 2 is directed to two main aspects; one concerns 

theoretical and experimental work done in the field, and the 

second is centred on the use of the finite element method in 

relation to Fracture Mechanics. Within the review described 

here, care has been taken to select work that from this 

author's point of view is highly relevant to either the field 

in general, or the particular objectives of this work, speci-

fically, initiation and propagation of Brittle Fracture, 

although some work related to non-linear material behaviour is 

discussed when necessary. 

2.1 Review of Work Done on Fracture Mechanics  

Griffith's (1920,1924) approach to the problem of fracture 

marked the beginning of the development of fracture studies; 

from then on investigators in the fracture field have shared in 

the general growth of applied mechanics. 

Inglis (1913) made one of the earliest contributions to the 

field, he studied the behaviour of the stress field around 

elliptical holes in a flat sheet, and showed that the stress 

concentration at a crack point is infinite. Griffith and 

Taylor (1917) using soap films for torsion problems determined 

contour lines for shearing stress. Griffith (1920,1924) 

established the concept of crack propagation, he calculated 

the stresses and strains due to typical scratches with the 

help of metheatical work conducted by Inglis (1913) and the 

soap film method of stress estimation already mentioned, and 
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concluded that the scratches ordinarily met with 

could increase the maximum stresses from two to six times, 

according to their shape, and that this increase of the 

stresses was not enough to make the material fail. In view of 

the inadequacy of the ordinary hypothesis he attacked the 

problem of rupture of elastic solids by using the "theorem 

of minimum energy", according to this theorem the equilibrium 

state of an elastic solid, deformed by specified surface 

forces, is such that the potential energy of the whole system 

is a minimum, and the criterion of rupture was obtained by 

adding to this theorem. the statement that the equilibrium 

position, if equilibrium is possible, must be one in which 

rupture of the solid has occurred, if the system can pass 

from the unbroken condition by a process involving a continuous 

decrease in potential energy. 

In order, however, to apply the extended theorem to the 

problem of finding the breaking loads of real solids, Griffith 

found it necessary to take account of the increase in potential 

energy which occurs in the formation of new surfaces in the 

interior of such solids. He reasoned that, in the formation 

of a crack in a body composed of molecules which attract one 

another, work must be done against the cohesive forces of the 

molecules on either side of the crack. This work appears as 

potential surface energy, and if the width of the crack is 

greater than the very small distance called the "radius of 

molecular action", the energy per unit area is a constant of 

the material, namely, its surface tension. 

A general theorem was stated as "in an elastic solid body.  

deformed by specified forces applied at its surface, the sum of 
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the potential energy of the applied forces and the strain 

energy of the body is unaltered by the introduction of a crack 

whose surfaces are traction free", and offered proof of it. 

The concept of crack propagation he arrived at was:- "An 

existing crack will propagate if thereby the total energy of 

the system is lowered". Another statement in Griffith's paper 

is that:- "The general conclusion may be drawn that the weak-

ness of isotropic solids, as ordinarily met with, is due to 

the presence of discontinuities, or flaws, whose ruling 

dimensions are large compared with molecular distances. The 

effective strength of technical materials might increase to 

ten or twenty times at least if these flaws can be eliminated". 

Griffith's theory is regarded as describing situations of pure 

brittle fracture. 

In 1934 the advent of the dislocation theory, and in 1939 

Weibull's statistical theory, both helped to explain pheno-

menological material behaviour. 

Zener and Holloman (1944) related the Griffith crack 

propagation concept to the brittle fracture of metallic 

materials. Orowan (1945) presented an interesting discussion 

on X-ray work which showed extensive plastic deformation on 

the fracture surfaces of materials which had failed in brittle 

fashion. Irwin (1948) pointed out that the Griffith-type 

balance must be between the strain energy stored in the specimen, 

and the surface energy plus the work done in plastic deformation. 

He was the first to appreciate the importance of the fact that 

the local stress near a flaw depends on the product of the 

nominal stress a and the square root of the flaw depth 2a, and 

coined the term "stress intensity factor" to emphasise this 
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fundamental relationship. This stress intensity factor may be 

physically interpreted as a parameter which reflects the re-

distribution of stresses in a body, due to the introduction 

of a crack. In particular, these stresses indicate the type 

(mode) and magnitude of force transmission through the crack 

tip region. 

Mott (1948) formulated the conditions for the dynamics of 

crack propagation and proposed that the velocity of crack 

extension is governed by the supply of kinetic energy to the 

crack field. This provided further evidence for Griffith's 

proposition for static, or slowly applied loads, that the energy 

necessary to support a brittle fracture must be provided from 

the available part, at the instant preceding fracture, of the 

elastic energy stored within the body which is being cracked. 

Orowan (1955) demonstrated that the modified Griffith 

condition for brittle fracture is not only a necessary, but 

also a sufficient condition for crack propagation. 

Irwin (1957) showed that the energy approach is equivalent 

to a stress-intensity approach, according to which, fracture 

occurs when a critical stress distribution, characteristic of 

the material, is reached. 

Further work done by other investigators is to be dis-

cussed later on, as it is relevant to particular aspects of the 

fracture process that will be covered. 

2.2 General Background  

Briefly, Griffith's approach can be explained by stating 

that crack growth under plane stress conditions will occur if 

da 	a2 	 + 4 Ta) = 0 
	 2.1 
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where it can be shown that 

s  au 	(.47'7),/  

thickness, under a stress, a, 

Hof ,0 ifruly C14.1 710 Gnarl  measured far away from the crack, 

ebtAioWif 
;,;.= 	ra) if a crack of length 2a was 

suddenly cut into the plate at 

right angles to the direction 

of a. 

F ,^ A 	.41/14.21/.. 1.11./Ipy  .■•• • h--• 
!-(71 1-1Wzl 

[4aT] represents the energy gain of the plate due to the 

creation of the new surface with a surface tension T. 

When the elastic energy release due to an increment of 

crack growth, da, outweighs the demand for surface energy for 

the same crack growth, the crack will become unstable, and it 

is under this condition that a gross critical fracture stress 

can be defined as 

a = (2 ET/Tra)1 
	

2.2 

which has, in the form of a VS= constant, been shown to hold 

quite well for brittle and semibrittle materials, but for semi-

brittle materials T being effective surface energy, not just 

surface tension. 

The linear theory of elasticity provides unique and single 

relationships among stress, strain, and energy. Therefore, a 

fracture criterion expressed in terms of an energy concept has 

its equivalent stress and strain criterion. The statement that 

"fracture occurs when the stress condition in a sufficiently 

large volume exceeds a critical value" may become a mathematical 

model by the use of Westergaard's (1939) stress field equations 

for cracks. 

a na'
p  ]represents the elastic 

energy loss of a plate of unit 
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* 

(1 + sin 	sin 7,T) 	2.3 

a= ( 211r) -12 cos 
2 
— sin 2 cos 34, 

xy 	 2 

in which, K the stress intensity factor, is a function of 

applied stress and crack geometry and, for a crack of length 2a 

in an infinite plate, is given by K = a (7a)1. If the critical 

stress system under which failure occurs is characterised by 

a critical value of the stress intensity factor, Kc
, then a 

Griffith-type relationship results, without consideration of 

any energy-dissipation process involved. This energy-dissipation 

process is related to the problem of plasticity, but it will 

not be considered as this study is concerned with Brittle 

Fracture and as such, plasticity effects are considered to be 

negligible and there is no other effect than a local addition 

to the surface energy. This is based on the fact that, for 

brittle materials, where yielding in the region of the crack 

tip is very restricted, linear stress analysis implies that 

the local stresses and deflections depend on the stress intensity 

factor, K, and a criterion for brittle fracture in the presence 

of a crack, is that crack instability occurs when K attains a 

critical value. 

According to the modes of separation that can occur at the 

crack tip the material behaviour can be described as 

Mode I. The tensile component of stress is applied in 

the y direction, normal to the faces of the crack, either under 

plane-strain (thick plate, t large) or plane stress (thin plate, 

t small) conditions. 

K 
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Mode II. The shear component of stress is applied normal 

to the leading edge of the crack either under plane-strain or 

plane-stress condition. 

Mode III. The shear component of stress is applied 

parallel to the leading edge of the crack (antiplane strain). 

And for each different mode a corresponding KI, Ku  or 

K
III value can be calculated. 

In a section thick enough to encourage plane strain, mode I 

is found for this opening mode of crack deformation, load dis-

placements are such that the crack surfaces move directly apart. 

Under plane-strain conditions, with limited crack tip plasticity, 

the critical stress intensity factor is designated Kic. The 

value of KIC can be considered as a material property which 

represents the material's fracture toughness, or resistance to 

fracture by mode I separation in the presence  of a crack, this 

appears to be the lowest value of toughness found and hence, its 

practical significance. (K11  and K
III 

have hardly ever been 

found as pure cases but as value KIC  < K
c
, where K

c 
is some mixed 

mode partly I and III.) Any combination of applied loads, 

structural configuration and crack geometry and size, which 

gives a stress intensity factor KI' equal or greater than the 

value of K
IC 

for the material will result in failure of the 

structure. 

As already described, there are two approaches to the study 

of Fracture Mechanics; the energetic treatment and the stress 

parameter approach. It has been mentioned that in the Griffith 

theory (1920,1924) the crack system is treated as a whole, 

assuming that cracks will propagate if the elastic energy 

released by their growth is greater than the energy required to 
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create new fracture surfaces. Alternatively, Irwin (1960) 

emphasised the stress conditions in the vicinity of the crack 

tip and used the critical intensity of the local stress field 

as a material constant commonly referred to as Kic. It can 

be shown that there is a correspondence between Griffith's 

and Irwin's approaches to the crack problem. Under Irwin's 

approach the main crack parameter is defined as the energy-

release rate, G. The stress intensity factor, K, is directly 

related to the energy-release rate in the fully linear leastic 

situation by: 

K2  = E'G 

E' = Young's modulus (plane stress) 

E' = Young's modulus/1 - v2  (plane strain) 

Irwin (1960) has noted that 

1 
K = lim Z a

m 
(7p)2  

(2.4) 

(2.5) 

where a
m 

= maximum stress at notch root; p = notch root radius. 

In this relationship, K will become insensitive to root radius 

whenever am is inversely proportional to p2. This is the case 

when the root radii are small compared to the notch depth or 

the slit length. Experimental data show that, in a finite 

radius specimen, it is possible to reach and exceed a value of 

strain energy release rate that is sufficient to satisfy the 

conditions for unstable fracture, and yet not have fracture 

ensue, making it evident that more than just the attainment of 

a critical value of G (or K) is involved in unstable fracture. 

(This point will be discussed further in Chapter 7.) It is 

thought that two conditions are needed to characterise fully 

the unstable fracturing of materials. One of these pertains 

to the conditions in a very small localised region near the 
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crack tip which are necessary to initiate unstable fracturing. 

The so-called failure criteria described in Section 1.3 are 

among" others, the theoretical models developed to describe 

conditions more remote from the crack tip which are necessary 

to sustain unstable crack motion once the initiation condition 

has been fulfilled. Some work related to these will be dis-

cussed in Section 2.3. 

The compliance calibration is an experimental method for 

making a stress intensity calibration for tension-loaded 

plate test specimens containing through-the-thickness cracks. 

Calibration curves are obtained by machining a progressively 

longer slot (simulating the crack) into a calibration test 

specimen and determining the compliance at each known slot 

size for conditions of elastic loading. A graph of compliance 

versus crack length is constructed and the slope of the graph 

may be substituted into the known equation 

P
2 

b G — — 
2B as 

( 2 . 6) 

and K can be calculated through equation (2.4). In all cases 

the stress intensity factor has the form 

K aci/77i a. 	 (2.7) 

its units being [stress x length2], a is a parameter depending 

on specimen and crack geometry, and one main objective of 

fracture mechanics is to determine the stress intensity factor. 

In general most of the research done in fracture is 

directed to two aspects, (a) crack initiation, (b) crack 

propagation. 

Under point (a) attention is focussed on the conditions 

that are conducive to initial separation of the material. It 

is an observed fact that regions of higher stress are more 
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conducive to fracture initiation, and that, in relation to 

point (b), once a crack has started to develop it is most 

likely to extend along the axis of symmetry of the stress 

field (if there is one), and follow a path dictated by the 

releasing of the stresses in the material. For this pro-

pagation to be kept going, energy considerations are of 

overriding importance. The criterion for extension_ 

(Griffith's) is that the energy required for separating the 

surfaces was just less than the decrease in elastic energy 

when the crack propagated. This approach has been proved 

to be right for brittle materials, such as glass in which 

there is no evidence of a dissipative flow process taking 

place (although even for glass,surface energy / T, as there 

are effects such as moisture in atmosphere, and local plastic 

flow, that increase T to some "effective valuel, and so the 

experimental and calculated values of the energy criterion 

are in good agreement. The extension of the Griffith theory 

to real materials which are not fully brittle in which dis-

sipative processes, such as plasticity, take place, makes it 

necessary to take into account the work done by deforming a 

localised region of material as the crack progresses. If 

sufficient energy cannot be supplied for this process, then 

crack propagation will be inhibited; so the work necessary 

for plastic deformation is a great deterrent to crack pro-

pagation and plays a vital part in its study. There are 

still other factors such as temperature, environment, strain 

rate, geometry, etc., that affect the fracture process. For 

example, the first three factors affect Kic  (a material 

property), by altering the stress flow and/or micromechanism 
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of separation, while the geometry affects K. This leads to 

the conclusion that care should be exercised in order to 

prevent these effects from interfering in experimental work. 

It has been mentioned in Section 2.1 that the work of 

Mott (1948) took into consideration the dynamics of crack 

propagation. Before this, some experiments involving stable 

fractures (by stable it is meant to have certain external 

control on crack propagation) in mica were made by 

Obreimoff (1930); later on, Wells (1954) concluded that a 

moving crack must also be associated with movement of the 

material near the crack, and so with exchanges in kinetic 

energy. Naturally, if there is insufficient energy, available 

to supply the requirement for creating fresh surface there 

can be no propagation, excess energy beyond that necessary 

to create surface is converted into kinetic energy of the 

separating parts, and the crack velocity is maintained or 

increased. 

Roesler (1956) showed under which conditions fracture 

can be stable (i.e. it can be propagated at an arbitrarily 

slow speed) showing as well that even in brittle materials 

such as glass the fracture process involves energy dis-

sipation. 

The development of stable fractures in more practically 

important materials, such as plastics, was described by 

Benbow and Roesler (1957). They showed how by introducing 

an auxiliary compressive stress parallel to the crack, its 

direction and speed can be controlled. Using this technique 

it is possible to produce stable fractures in sheets, or 

strips of plastic. 
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Berry (1960) derived the equations of motion of cracks in 

tensile and cleavage (the cleavage specimen is designated 

single edge notch (SEN) specimen somewhere else) specimens, 

and showed that the behaviour of cracks in tensile samples 

depends on their initial size, and that large cracks are, in 

one sense, more stable than small cracks. He also showed that 

the behaviour of cracks of all sizes in cleavage samples 

resembles that of large cracks in tensile samples. 

Svensson (1961) studied the variation of fracture energy 

with temperature. He found that the energy associated with a 

cleavage failure (micromode) decreases with increase in 

temperature, due to the greater thermal energy of the mole-

cules, on the other hand, the strain energy absorbed in shear 

deformation preceding the growth of the crack is increased to 

a maximum and then falls. The increase is due to an increase 

in ductility at bo substantially constant shear stress, at 

moderate temperatures. As the temperature is increased the 

ductility still increases, but the shear stress drops con-

siderably until it is very low, when the material softens. 

Thus, the fracture energy should first fall with increase in 

temperature, rise to a maximum, and then fall to a low value 

at the softening temperature. 

Gurney and Hunt (1967) called all the work that was 

necessary for cracking, above that required for elastic 

deformation, the local work to spread the crack. They con-

ducted experiments in which cracks were spread quasi-statically, 

deformation modes other than fracture were suppressed so that 

all the work done = the fracture work, and by recording both 

load and corresponding displacement of load, the local specific 
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work of crack spreading, or fracture toughness (R) was deduced 

without calculating the elastic stress distribution or even 

measuring the shape of the test piece. The work done during 

cracking divided by the increase in crack area was termed R-

value of the material, and is synonymous with fracture energy 

and fracture toughness. This term (R) includes surface 

energy together with non linear elastic work due to large 

strain at the crack front, and delayed reversible and irre-

versible effects associated with atomic configurational changes, 

as well as plastic and viscous deformation at the crack surface. 

Barr (1968) worked on the same lines obtaining similar con-

clusions. 

Turner (1972) took.the specific fracture energy (W/A), 

considered it as an approximation to G10, the fracture tough-

ness of a brittle material, and derived an exact relationship 

between these two terms from linear fracture mechanics, to 

give the compliance and hence the work done. He showed that 

G = WrAwhere 11 is a function of the test geometry, and com-

pared against experimental data finding good agreement with 

fracture toughness derived conventionally from the fracture 

load, provided that the fracture is completely brittle. 

Mai et al (1975) working with tapered single edge notch 

(SEN) specimens found that they exhibited less stability than 

parallel SEN test pieces cracking under stiff testing conditions. 

He also conducted tests with load and crack applied at the 

thick base, instead of near the apex finding that regarding 

path direction, experiments agree with theory. This type of 

loading provides better cracking directional stability and 

thus easier control of the crack path together with a wider 

range of crack velocities in one test. 
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2.3 Computational Methods to Determine Stress Intensity  

Factors  

There are a great number of numerical methods to deal 

with the determination of stress intensity factors. The most 

successful one, because of general applicability, seems to be 

that which makes use of a finite element method. Much liter-

ature has been devoted to the subject per se. Briefly the 

finite element method furnishes one with estimates of the dis-

placement vector and stress tensor components at a limited 

(but more or less evenly distributed) number of points through-

out a loaded structure. Although generally very good these are 

not exact but are approximations to the true solution. 

In order to implement the method to achieve the solution 

of a problem by means of a finite element method (for cracked 

bodies) the points described hereafter have to be considered. 

(a) Modelling geometry. Both, overall and localiz.gd, the 

mesh arrays have to be designed keeping in mind crack position 

so that the process of crack propagation is facilitated. 

(b) Material properties. Elastic, (Young's modulus, 

Poisson's ratio) criterion of yielding post-elastic (stress-

strain curve and laws of plastic flow), etc. 

(c) Loading. Tractions, displacements, plane-stress, 

plane strain. 

(d) Numerical evaluation of parameters and how to compare 

them with physical response in experimental work. 

(e) Inherent limitations. Stiffness method, linear 

elasticity, material non-linearities, geometric non-linearities,1 

limit loads, COD. 

(f) Other aspects. Singularity representation, ordinary 

analysis, special elements. 
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(g) Beyond planar analysis. Axisymmetry, bending, three 

dimensions. 

And for deciding on these aspects there is no substitute 

for experience. A number of investigators have used the finite 

element method in relation with elastic stress intensity factors, 

and a review of articles on the subject include those by Rice 

and Tracey (1973), Oglesby and Lomachy (1971), and Jerram and 

Hellem (1972). 

Two basic approaches have evolved. When conventional 

finite elements, with polynomial interpolation functions, are 

used in the crack tip region, the characteristic elastic square 

root singularity necessitates the use of an indirect procedure, 

such as extrapolation of a field parameter to the crack tip or 

an energy method, to determine the stress intensity factor. 

In the first one, by choosing a value of V, the value of a 

particular stress component (or displacement component) may be 

plotted as a function of r, from the results of a finite element 

analysis and by fitting a polynomial in r 2  and higher powers 

of r to these results, the value of K1  may be estimated, although 

it seems that an accuracy no better than 5% can be expected. 

The finite element analysis method will never, of course, 

register an infinite stress, however, if there are points at 

which a continuum analysis would give a singular result, a 

finite element analysis will indicate a high degree of stress 

concentration. 

Watwood (1969) made use of a finite element method to 

obtain stress intensity factors and reported poor accuracy 

from this method unless extremely small elements are used near 

the crack tip, and abandoned it in favour of a direct computation 
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of the strain energy release rate which is equivalent to K. 

This procedure consists of computing the strain energy for 

two slightly different crack lengths and employing numerical 

differentiation to determine the strain energy release rate. 

A method similar to this one is used and described in 

Chapter 3. 

Chan et al (1970) discussed the extrapolation procedure 

in conjunction with constant strain triangular elements. 

1 
They plotted the product of t2  with a stress component as a 

function of distance, r, along a ray emanating from the tip, 

and performed a tangent extrapolation of this quantity to the 

crack tip, r = 0. Alternatively, the extrapolation may be 

based on the product r 2  with a displacement. 

tlowbray (1970) used an energy method very similar to 

experimental compliance methods to compute the energy release 

rate. He solved the same specimen geometry for several cracks 

of slightly varying length, and was able to obtain the com-

pliance as a function of crack length. Numerical different-

ation of this relationship with respect to crack length enables 

determination of G and hence K. 

Hayes (1972) made some applications of the finite element 

method in conjunction with two well known approaches; the J 

contour integral (this will be described in Chapter 3) and 

Bueckner's formulation (1958), and developed an efficient and 

accurate method that overcomes some of the usual difficulties 

encountered when using the finite element method approach, and 

originated in the singularity inherent to the stress field. 

A brief description of Bueckner's formulation (1958) follows. 

If sufficient care is taken in producing geometrical data, the 

strain energy Ud  may automatically be evaluated for increasing 
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(or decreasing) crack length. One simply determines the point 

loads for each node and computes the crack face displacement. 

The next crack length is then analysed by simply relaxing the 

boundary conditions at the crack tip node and introducing new 

nodal point forces. This means that the total stiffness 

matrix of the finite element representation once produced, is 

simply adjusted for each crack length, by altering the appro-

priate terms (a maximum of four per nodal point), for each 

change in crack length. If the crack length is increased by 

small increments each displacement field will be very similar 

to that obtained previously. Thus the number of iterations 

required to determine the new displacements (by the finite 

element method) will be very small. Having, usually auto-

matically, determined Ud  for the range of crack lengths of 

interest, it is then simply a matter of determining its 

derivative with respect to crack length. Once again this 

procedure may be fully automated so that the net result of a 

single computer run is the desired relationship between crack 

extension force, or stress intensity factor, and crack 

length. 

An alternative to these indirect procedures involves 

direct embedding of the elastic singularity in the displace-

ment function for the near tip elements. Tracey (1972) used 

a mesh of isosceles trapezoidal elements focussed into the 

crack tip. The ring of elements nearest to the crack tip had 

1 
a r2  displacement variation specified, while the adjacent 

elements were ordinary isoparametric elements. He obtained 

5% accuracy for the plane strain double edge notched, and 

notched round tensile bars using 248 degrees of freedom. 
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Parks (1974) presented a method based on the energy 

release rate whiCh requires no special crack tip elements. 

Further, the solution for only a single crack is required, 

and the crack is "advanced" by moving nodal points rather 

than removing nodal tractions at the crack tip and performing 

a second analysis. 

There are a great many works in the field that have not 

been mentioned because either they deal with non-linear material 

behaviour or simply because the time is limited and does not 

permit a rather extensive review of the literature in this 

part of the field. However, it is thought that the material 

selected describes quite well the general trend followed in 

the finite element method as applied to fracture mechanics. 

2.4 General Approach to the Problem under the Present Work  

A further point concerns Hayes' work (1970), he described 

a general procedure for designing against fracture (when the 

K
IC concept is valid), it is as follows: 

(i) Carry out overall stress analysis of the structure 

to determine positions where cracking would be 

dangerous; 

(ii) Carry out detailed analysis of these regions; 

(iii) From the results of (ii) and using any of the 

approaches already described, evaluate stress 

intensity factors for the worst crack (generally 

oriented normal to the plane of maximum direct 

stress) for a series of crack length; 

(iv) Using available test data for IC=  for the material 

to be used, determine the maximum size of flaw 

that is tolerable; 
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(v) 	In view of the results of (iv) accept or alter 

the design and/or material. 

Within this work, use will be made of methods developed 

by Hayes, as the facilities are available; the approach used 

and described in Chapter 3 is very similar to the general 

procedure proposed by Hayes. 

The problem to be tackled is a very particular one, so it 

is necessary to develop special subroutines to furnish the 

required data. Actually a whole computer program was built up 

in which the next steps were executed. 

Subroutine 1. Mesh generation and boundary conditions. 

Subroutine 2. Crack development. 

Subroutine 3. Load application. 

Subroutine 4. 	Stress computation. 

Subroutine 5. K calculation. 

Whereas subroutines 1, 2, and 3, were specially developed 

for this work, subroutine 4 is a standard finite element pro-

gram, and subroutine 5 which calculates K through a J contour 

integral approach, was available from former work carried out 

by Sumpter ( 1973). 

For the work described in the next chapter, elastic cal-

culations were made with finite element computer programs 

devised at Imperial College. The finite element method is now 

well documented in numerous papers and in the book by 

Zienkiewicz (1971) and here it is necessary to give only a brief 

description of the program used. It employs elements of tri-

angular shape, the apices of which will be referred to as nodes. 

The deformation characteristics of the elements are such that 

the displacement varies linearly over the element. The computer 
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program, calculates the deformation of each element composing 

the body in such a way that under the applied forces and dis-

placements, there is equilibrium and displacement compatibility 

at the nodes. Stress components are calculated from the nodal 

displacements, and finally stresses are constant in any one 

element and taken to act at the centroid. 



30 

CHAPTER 3  

FRACTURE MECHANICS APPROACH TO A PRACTICAL PROBLEM  

In this chapter the solution of two practical problems are 

described. For each one a different technique for determining 

the stress intensity factors, for a cracked body was used. 

The first one applies the J contour integral method mentioned 

in Section 2.3, and described in Section 3.4. In the second 

problem use is made of the method developed by Bueckner and 

described in Section 2.3. In doing this study computer 

programs which are commonly utilised at Imperial College were 

used although modifications were needed to suit the special 

requirements of these cases. A program to generate a gear 

profile and a finite element mesh within it was developed as 

well as additional subroutines to build up the whole com-

putational approach and obtain a solution. 

The stress intensity factor determination itself, is not 

a new contribution, originality here rests in the fact that 

the problem tackled is purely practical and there are a number 

of details which have to be considered to achieve a solution. 

A detailed discussion, of some of the most interesting aspects 

of this problem, is presented. 

3.1 Problem Definition  

The failure of gear teeth from small surface or subsurface 

defects can be posed as an example of the type of design 

problem to which fracture mechanics might contribute an under-

standing. It has been found that in gear manufacturing, a 

certain quantity of gears have reached a final stage of fabri-

cation and are then rejected because of defects in the blanks. 

It is intended to include Fracture Mechanics Analysis as part 
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of the research work to find out what are the maximum defects 

permissible in such blanks (type of defect, dimension, position, 

quantity, interelation, etc.) with the purpose of developing an 

acceptance criterion which could be applied in the early stages 

of fabrication, some of the work done towards this aim is 

described hereafter. 

on information provided by industry it was decided to use 

a gear wheel typical of current design practice whose particulars 

are given in Appendix 3a. Two main problems are to be tackled*. 

(a) Cracking of the gear under working conditions. 

(b) Cracking of the gear originated on Residual Stresses. 

3.2 Approach and Numerical Results  

The general approach to the solution of these problems is 

given below: 

Because of the finite element computer programs available 

(time and core) it was necessary to cut out a local region from 

the whole shape, former studies on the subject, Urriolagoitia 

(1970), set the basis to establish the general dimensions, and 

Figs.3.1a to 3.1e show the section to be used in a Finite 

Element Analysis. 

The form of the tooth shown in Fig.3.1 represents the 

normal cross section of the helical gear with a normal pitch 

of 0.8. 

A preliminary finite element analysis was made for this 

section; a program to generate the external contour, as well 

as a rough mesh within, was prepared. The boundary conditions 

The problem is a single one but here it is presented as two 
different cases because of the approach needed to tackle it, as 
there are two calculations, each one with a different method, 
which will have to be added together to give the effective value 
of K in service for a given tooth'load plus residual stress. 
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imposed on the portion of the gear are shown in Fig.3.2; a 

load of 1001b.is applied at the pitch circle, in the com- 

putation plane strain is assumed and unit thickness taken. 

This implies the loading is per unit slant length along the 

helical face rather than per unit thickness of gear although 

the computational model is a two dimensional representation. 

From the preliminary finite element analysis contours of 

principal stress near point A (Fig.3.1d) at the tooth root 

are shown in Fig.3.3 as a function of depth below the surface 

in the untracked body. These stresses are taken to relate to 

the centroids of the elements, at the surface element the 

stress value is 768 lb/in2  whereas the extrapolated value 

(Fig.3.4) is 804 lb/in2. 

Based on simple beam theory, using the circumferential 

component of force only, the nominal bending stress in the 

tooth root at A is 398 lb/in2  giving a stress concentration 

factor of approximately 2.2. If the radial component of force 

is allowed for, there is a direct stress of 53 lb/in2  and a further 

bending stress of 58 lb/in2  (both compressive at the root of 

the loaded flank) giving a final nominal stress of 287 lb/in2  

and a stress concentration factor of 2.8 as detailed in 

Appendix 3b. 

Point A was chosen as the point of maximum stress from the 

initial calculations. Subsequently in a more detailed analysis, 

a stress 2% higher was noted at an adjacent point B, one element 

removed from A, towards the root. Such discrepancies are within 

the limits of accuracy of the Finite Element Method. 
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K Calculations  

A crack was introduced from point A, nominally normal to 

the surface. The crack direction is along a line of elements 

radial to a nominal circular arc connecting the flank and 

root circle. The true profile at the root is not this circular 

arc and this true profile is approximated to by the outer edge 

of the element (Fig.3.1d). The crack is thus not normal, by a 

few degrees, to the true local curvature. Since the precise 

direction of cracking is unknown this nominal radial direction 

was thought to be good enough. It arose in the first instance 

by reason of simplicity of mesh generation and as load is 

applied far away from the crack, the response obtained is 

thought to be a good one. However, for the case in which 

residual stresses are to be considered it is absolutely 

necessary to obtain a true normal direction to the surface and 

in that special case a modification is made. 

Six crack length cases were computed, crack lengths of 

0.24, 0.35, 0.5, 0.68, 0.83 and 1.03 mm were simulated, later 

on a 3mm crack was also tried. The smallest element size thus 

varied from approximately a/2 for the shortest crack to a/10 

for the longest one. Even though Aida et al (1973) give a 

rough idea of the crack profile, there is not enough accurate 

data available, so a close representation of the crack profile 

was not attempted and the direction of crack propagation was 

assumed to be as shown in Fig.3.5 by line P-T.This first 

approximation was the result of an early attempt to analyse the 

shape with a very rough finite element mesh. The stress field 

though well defined, is not accurate enough to give reliable 

data concerning future fracture. Further analysis of the stress 
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field obtained with better meshes and described in Section 3.3 

seems to indicate that the crack profile should be slightly 

different from the one studied, but by now it is considered 

that for the objectives of this study it is adequate to con-

sider the crack paths as they stand. 

K was calculated from the J contour integral method 

described in Section 3.4 using J = G for elastic behaviour 

and K2  = EG/1 - v2  for plane strain. J is averaged over 10 

contours which give values constant to within + 3%. This 

variation is within the variation hitherto found for such 

contour evaluations. 

Contours of maximum principal stress are shown in Fig.3.7 

for the cracks up to 1mm. It is thought that study-of stress 

trajectories combined with other calculations on energy release 

rate for selected crack orientations might reveal the direction 

in which a crack would propagate under a given applied load, 

and further analysis on this is described in Section 3.3. 

Discussion and Conclusions  

Values of K for particular cracks in the root of one tooth 

form are given in Table 3.1. The computed values are appreciably 

less than a simple approximation sometimes used for cracks in 

regions of stress concentration, K = k a 	where k a is the 

true local stress. The computed values are only some 10% or so 

more than a very simple approximation K = a F-r.a7  where a is the 

actual stress in the uncracked body at the point where the tip 

of the crack is subsequently located. These uncracked body 

stresses are appreciably under estimated by simple bending 

theory for combined loading (Appendix 3) so that a good estimate 

of the uncracked body stresses would be required in order to 
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apply this approximation for K. It cannot be said how widely 

or narrowly applicable such an approximation might be since 

only the one geometry is here considered. 

The accuracy of the very short crack results might also 

be in question owing to the small number of elements along 

the crack, further discussion on this topic is given in 

Section 3.4. 

In connection with the longest crack (3mm) the computed 

K value is 172 psi AT. A simple estimate of it could have 

been made by using the stress values given in Appendix 3, 

which are 

Major Bending Stress 	+ 398 lb/in2  

Eccentric Bending Stress - 58 lb/in2 

Direct Stress 	- 53 lb/in2  

Combining the first two into an effective bending stress 

of 340 lb/in2  this may be taken together with a calibration 

factor Y from the well known solutions for bending configurations. 

The span/width ratio is here small since the tooth height to the 

load point is less than the root width. With a/W = 0.16 	is 

extrapolated from the span width ratio s/W = 4 to give Y = 1.65 

for this a/W 

Kb  = (1.65)(340) 1/5777 = 193 (lb in units) 

The directive compressive stress is taken to cause a K 

value as for a single edge notch (SEN) piece, to be subtracted 

from the effective bending value. 

K
c 

= 2.3 x 53 R:TET. 42 

Thus the estimated value of K is 

K = 151 psi ITT 

in fair agreement with the computed value. 
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3.3 Stress Field Analysis and Determination of Most Probable  

Crack Place  

For arbitrary crack paths some form of criterion is 

required to assess direction of propagation from any instant-

aneous tip position of the growing crack. Here an attempt is 

made to predict crack behaviour by analysis of the stress 

field around the crack tip. Results from different work done 

by other researchers is useful for this purpose. It has been 

found that in brittle coatings, when the strain transmitted 

from the surface of the specimen to the lacquer reaches a 

critical value in tension, the lacquer will crack perpendicular 

to the direction of maximum tension. The first crack will 

initiate at the point in the specimen developing the highest 

strain and, as loading is continued will grow. Here it is 

important to note that a stress field is developed in the speci-

men and any change that occurs in this field would be in 

magnitude but not in distribution and the crack follows that 

magnitude change. On analysis of the growth of a crack in the 

specimen, it can be seen that the stress field will change in 

shape and magnitude as the crack advances (this can be observed 

in Fig.3.7). It is the view of this author that the stress 

field in the neighbourhood of the crack (immediately before 

crack expansion) could help to establish the direction of crack 

propagation; D. Post (1954) observed that "The eccentricity of 

load, or degree of non uniformity of the tensile field, appeared 

to have no effect on the orientation and shape of the inner 

loops of the isochromatic patterns, however, the outer loops 

showed a tendency to tip forward with increased eccentricity 

(see Fig.3.6a,b). Thus, close to the crack the stress pattern 
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is primarily a function.  of the sharp stress concentration, 

and a little further away the influence of the non-uniform 

tensile field becomes perceptible". Experiments using photo-

elastic techniques are reported by R.P. Hubbard (1969), among 

the results presented two photographs of the isochromatic 

field are of interest, in them it can be clearly distinguished 

a small deviation of the crack from the horizontal plane, and 

as a result, the photoelastic pattern becomes asymmetrical 

about the crack plane. M.L. Williams (1957) working through a 

mathematical series showed that the isochromatic fringe pattern 

for a symmetric case should be as shown in Fig.3.6c with loops 

emanating from the crack and perpendicular to the line of 

cracking (symmetry about the crack plane). While in the anti-

symmetric case, that is mode II crack behaviour, the loops are 

parallel to the crack surfaces (Fig.3.6d) (loading parallel to 

crack surface on top and bottom but different values), so:- 

If the crack is only mode I, the loops should be per-

pendicular. 

If the crack is only mode II, the loops should be parallel. 

A combination of mode I, mode II would show loops with an 

inclination either backward or forward, but there still would 

be symmetry of the loops around the crack plane provided there 

is symmetry in both the loading and the specimen geometry. 

When this is not the case and one has an odd geometry as well 

as/or load asymmetry, the stress field will be peculiar, but 

by considering the already mentioned points it should be 

possible to identify and roughly separate effects and predict 

possible crack behaviour. 
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In relation to the present work, the preliminary analysis 

established within which zone the mesh had to be refined. From 

here a new finite element analysis was performed and the pattern 

of lines of maximum principal stress shown in Fig.3.7a was 

obtained. Being lines parallel to the gear surface there was 

no clear indication of the paint in which the crack would 

initiate. On the other hand, in the neighbourhood of the 

tooth root the differences in the individual values of the 

stresses, either for the elements or for the nodes, are so 

small that they could be attributed to intrinsic errors con-

tained in the finite element mesh. On this basis it was 

concluded that in the tooth root there is a zone about 1mm 

wide within which the highest possibility of crack initiation 

is present, so it was decided to consider five different 

points of crack initiation within this zone. The refinement 

of the finite element mesh was such that it allows the intro-

duction of a crack in any one of these five points, and the 

elements were fairly small (i.e. a/10) so crack growth could 

be followed in adequate increments. Because of the stress 

field pattern present in the uncracked body, it was thought 

that any crack developing in the proposed zone would have a 

high probability of increasing in a direction normal to the 

boundary of the specimen, so the refined mesh had been designed 

contemplating this possibility. Table 3.2 gives the mean 

characteristics of these cracks. 

The results from the finite element analysis in these five 

cases were used to trace and analyse. 
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(a) Isochromatics field. 

(b) Isostatics field. 

(c) Isoentatics field. 

In Fig.3.8 the isochromatic field for each one of the five 

cases is given. It can be noticed that for case 5 (Fig.3.8e) 

the loops are totally asymmetrical (here it is not intended to 

imply absolute symmetry but roughly separate the stress field 

in two zones above and below the crack surface) and as the 

crack position is changed the stress field tends to become a 

symmetric one until finally in case one (Fig.3.8a) these 

loops are normal to the crack faces. Even though there is 

still asymmetry in the dimension of the loops it was thought 

that this could be taken as indicative that provided the 

crack initiates at this point it will propagate along the line 

given. The asymmetry observed in the other cases could mean 

that the crack should have deviated before reaching those 

lengths. In addition, the isostatic field for case 1 and case 

3 are shown (Figs.3.9a and 3.9b respectively). Arad (1972) 

reported that in tests on direction of crack propagation, it 

was found that the crack turned to grow along the minimum 

principal stress trajectory passing through its tip. So the 

criterion for extension was taken to be that the crack pro-

pagates along lines of minimum principal stress. It can be 

seen that in case 3 the highest line of minimum principal 

stress makes an angle with the crack surface, and the loops 

with high values are away from the extension of the crack line, 

whilst in case 1, these loops envelop this line and there is 

some kind of symmetry,(here one also has to consider the fact 

that there is no symmetry of the centroids of the elements 
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around the crack tip). This should make the stress on the 

element whose centroid is the nearest below the tip to be the 

highest, while the nearest element above the tip has the next 

highest stress. This suggests that if symmetry of the centroids 

of the elements around the crack tip is present it would produce 

a better symmetry of the stress field in the very near neighbour-

hood of the crack tip, which could partially take account of 

the fact observed, in the stress field, that the lines of 

stress seem to point towards a zone on top of the tip, while 

it was expected that these lines would be directed towards 

some point ahead of and on the line of the fracture. But still, 

for the nearest elements to the crack tip in case 3, the stress 

values are 636 lb/in` above the crack tip, and 422 lb/in2  below, 

that is, even though the centroid of the element below the crack 

tip is closer the stress is lower, so there is a strong natural 

asymmetry in the stress field. On the other hand in analysing 

case 1, it can be seen that the stress values are 535 lb/in2  and 

572 lb/in2  for the same elements as above, which suggests that 

allowing for asymmetry of the mesh, there is a strong possibility 

of the stress field being totally symmetric. 

In Fig.3.7 the isochromatic fields for different lengths 

of the same crack are reproduced and it is important to point 

out that 

Fig.3.7a 	Body uncracked (crack length equal zero), 

the isochromatics are practically parallel 

to the boundary (within the highest stressed 

zone). 
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Fig.3.7b 	Commencement of cracking (crack length = 

0.0116mm). There is still a certain degree 

os symmetry for the stress field, the zone 

above the crack is stressed the most. 

Fig.3.7c 	Crack extension (length = 0.0238mm). An iso- 

chromatic loop pattern has formed, and the 

axes of symmetry for the different loops, 

above and below the crack, follow directions 

approximately parallel to the gear surface. 

Fig.3.7d, 	Further crack extension (lengths = 0.036mm, 
3.7e 

0.0521mm) the axis of the loop above the 

crack has only a slight variation in direction 

while the one below moves gradually to approach 

the direction of the axis above. 

Fig.3.7f, 	Full crack (lengths = 0.068mm, 1.03 mm) the 
3.7g 

axes convergence reached for case of Fig."e" 

is kept. 

A further point is that once the notch is introduced the 

correlation between stress values above and below the crack tip 

is roughly the same, the value above being always higher. 

The final conclusion from the analysis of the stress field 

above was that the crack should initiate at the point for which 

the coordinates are x = - 8.914mm, y = 416.977mm (with reference 

to the gear centre) and continue to extend along a line with an 

angle of 0.80078 radians in relation to the horizontal axis, 

this seems to be confirmed by results and analysis of the K values, 

given in the next section. 
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3.4 J Values and Determination of Most Probable Crack  

Using the method described by Hayes (1970) and by Sumpter 

(1973) (actually as a subroutine of the finite element program) 

the values of J for the different cracks (lengths and positions) 

were calculated, these are given in Table33 and depicted in 

Fig.3.10a. In relation to this set of results it is important 

to point out that in this Fig.3.10a there are two zones of 

special interest. In zone 1, crack length range 0.0 to 0.5 

there is no clear definition of the different K curves, it is 

thought this is due to the natural limitations of the finite 

element method as the relationships between element size and 

crack length are 1, i, 1/3 and 1/4, so rather poor results can 

be expected within this zone. If it was decided that values 

in this region were needed, it would be a matter of refining 

the finite element mesh. However, for the present case, where 

a crack 1mm long is being analysed, it is thought the present 

mesh is small enough. 

The fact of having both the highest K value (here again it 

has to be pointed out that it cannot be firmly established 

which one of them is a better one, the one for 0.80078 or that 

for 0.82747) for an angle between 0.80078 and 0.82747, and that 

the curves are almost coincident, seems to indicate that the 

critical crack position is somewhere within these limits. It 

could be possible to define a narrower zone than this one by 

adjusting the finite element mesh and running cracks within that 

zone but this would not improve the analysis already done so it 

was decided that the point is adequately substantiated and no 

further extension of the work (unless experimental) in relation 

with this topic seems to be necessary. 
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3.5 Alternatives to Approach the Residual Stress Problem  

and Discussion 

The aim of this part of the work is to obtain the K value 

for a cracked tooth under residual stress. Two sets of inform-

ation are available:- 

1. Stress pattern depicted in Fig.3.11 

2. Results and work done in the former cracked gear and 

described in the first part of this chapter. 

To solve this case, the first step concerns the method to 

be used. 

Because of the conditions given as well as availability of 

programs and computer facilities, two methods could be considered 

as a possibility, these are the J contour integral and Bueckners 

Method. 

On revising work published, Rice (1968), it was noticed 

Rice's statement that when the crack faces are not stress free 

his method is not applicable; a plausible reason for this is 

described below. 

As it is well known, the J contour integral is defined as 

Ou J 	(Wdy - T . — ds) 
Jr  Ox 

J being an average measure of the strain on the crack tip, T' is 

a curve surrounding the crack tip, the integral being evaluated 

in a contraclockwise sense starting from the lower crack surface 

and continuing along the path to the upper crack surface. T is 

the traction vector defined according to the outward normal along 

rn, Ti  = a..n., u is the displacement vector, and ds is an 
I] _I 

element of arc length along F'. The analysis by Rice was as 

follows. "Consider any two paths (Fig.3.12a)
1 
and r2  surround- 

ing the crack tip; traverse r in the contraclockwise sense, 
1 
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continue along the upper flat notch surface to where T'2 
intersects the crack, traverse 2 

in the clockwise sense, 

and then continue along the lower flat notch surface to the 

starting point where 171  intersects the crack. This describes 
,CO iour stAta  

a closedlintegral of Wdy - T(bu/bx)ds vanishes. But T = 0 and 

dy = 0 on the portions of the path along the crack surfaces. 

Thus the integral along I71  contraclockwise and the integral 

along r2  clockwise sum to zero. J has the same value when 

computed by integrating along either r1 or 172' and path 

independent is proven". 

In examining the case under study one is interested in 

the term 

T . bx  ds 

where , in relation with the present case we have 

The traction T 
	

On the path from ri  to 1"2  at the 

upper crack face, this traction is 

negative (as it is directed going 

in to the body). 

The element of arc 
	Is positive (it is measured from 

length ds 
	tor) the integration is being per- 

formed formed along the positive x direction. 

The traction T 
	

On the path from r2  to q at the 
lower crack face is negative (same 

reason). 



Is negative (integration being carried 

out from r2 to 11 
in the negative x 

The element of 

arc length ds 

direction). 

The partial 

bu differential — 
ax 

Is the strain on the path followed. 
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It is quite clear that provided bu/bx is the same both in 

the upper and lower face the integration over these parts of 

the path would be zero, for this to be true it is necessary to 

have symmetry in loading and in geometry. For this case, 

symmetry in loading exists but not in geometry, so the quantities 

T O
x  
u 

ds, corresponding to the upper and lower crack faces, do b 

not cancel out and the J contour integral becomes different for 

different points on the crack face, so the conclusion is that 

loads applied (tractions) on the crack faces do make a difference 

on the J contour integral and so it is not possible to use this 

method in the present case. 

Further comments on this topic were made by Hutchinson 

and Turner (1975) who gave a formula to obtain J for cracks 

loaded on the face by say pressure p 
-r1  

j . 	+ 2 j
-r 

p Ox 
dx 

r2 	
2 

1 

where r
1 
and r

2 
are the distances from the crack tip over which 

p is applied, v is crack face displacement, J = 	 , as r1  > 0, 

SO 
	

1,1 r2 
J =5 -4- 2fp=11- dx 

bx 
1'2 	

0 
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If p is constant from the tip to same radius r2, then 

J 	I _I- 2 p v (r2) 

r2 
If this is to be path independent then 

J 
 must itself vary 

with r
2 

to compensate for the variation of p v (r
2
), and this 

formulation could be used for residual stress problems by 

Bueckner's method, which is the next possible choice as most 

of the computer material developed for the former case could 

be used although some additions are necessary. 

Bueckner's(1958) method for evaluation of K is well known 

and a generalised description is presented to approach the 

problem, two situations are considered. 

1. A body with prescribed boundary conditions on which certain 

tractions on surface S
1 

and boundary displacements on surface 

S
2 
are given. A crack is presumed to exist in the body with 

upper and lower faces C1  and C2  (Fig.12a). 

2. Consideration of the same body, subject to the same loading, 

after a virtual crack extension resulting in new surfaces C' 
1 

and C2 (Fig.3.12b). 

The combination of these two situations towards a sum 

state (Fig.3.12c) and a difference state (Fig.3.12d) allows 

the evaluation of tractions on the crack face which can be 

regarded as those tractive components of stress which act on 

the notional surfaces C1 and C2 prior to virtual crack 

extension. With these tractive components and the displace-

ments obtained on applying them to the body it is possible to 

obtain the potential energy Hud" and by allowing the crack to 

go progressively from zero to full length it is possible to 

obtain bud/ba, that is obtain G. 
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Boundary Conditions and Loading  

The dimensions are those already given. A finite element 

analysis is to be used, for plane strain and unit thickness, 

with the same boundary conditions as in the former case but 

with no load at the pitch circle. 

From analysis of the data given it is concluded that 

(a) the stress distribution on points under the surface of the 

body is compressive and parallel to the body's surface; 

(b) the crack will be perpendicular to the body surface, being 

the stress pattern imposed normal to the crack surfaces; 

(c) there is no shear stress accompanying this normal stress; 

(d) it was concluded that an opening effect takes place at 

some stage of the process in which the residual stresses are 

set up into the body, so the effect of the normal stress is to 

open up the crack. 

The mesh used in the former case should be slightly modified 

so that the crack length is 3mm and normal to the true local 

surface of the tooth root. 

The loading for this case is introduced as concentrated 

forces (tractions) applied to the nodes on the crack face, the 

value of each individual load as calculated from the stress 

pattern is given in Table 3.4 A preliminary analysis done in 

order to find out how well this loading would reproduce the 

stress pattern given, was carried out and the results of this 

are shown in Fig.3.13, (further discussion is given in Section 

3.6). 
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3.6 Analysis of the Stress Field  

In the computer simulation of this problem there are some 

characteristics of the stress field which must be preserved, 

and provided this is done in the computer analysis, the 

simulation will be a reliable one. In this case the data given 

establishes certain known values for the stresses on the crack 

faces, i.e. normal stress is as the pattern given in Fig.3.11(a) 

and shear stress equal to zero along the crack faces. Relevant 

results from the finite element analysis when the loading method 

described is applied, are given in Fig.3.13b. From this figure 

it could be wrongly concluded that the necessary conditions are 

not preserved as differences are encountered on the stress 

pattern produced in the body, but it is the singularity intro-

duced by the crack in the stress field, and its influence in 

the neighbourhood of the tip that projects a deceptive pattern. 

Proper analysis of the stress field proves the correctness of 

the loading method. In order to illustrate this point use is 

made of Fig.3.14 which shows the neighbourhood of the crack as 

well as the respective positions of lines to which reference is 

to be made in the analysis below. 

In Table 3.5 and 3.G values of normal and shear stresses along 

lines perpendicular and parallel to the crack face are given. 

Plots of normal and shear stresses along those lines are given 

in Figs.3.15 (a to j). 

In analysing Figs..3.15(a,b,c) it can be seen that: 

the shear stress on elements which are the nearest to the crack 

face are -951 lb/in2  and 693', 1982' and 798', 2635' and -2828' 

(by definition negative shear on the upper crack face and 

positive shear on the lower one mean positive traction, and the 
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other way around), for lines 1, 3 and 5 respectively; from 

these figures one can conclude that it is not the particular 

value of the stress in an element which should be looked at, 

but the whole stress field. If these values were considered 

either each one by itself or the six, without relating them to 

the whole of the stress field, the conclusion would undoubtedly 

be that the shear stress at the crack surfaces is different 

from zero (even though it is known that the shear boundary 

forces fed to the finite element programme are zero). Proper 

analysis of the whole zone shows the fact that the stress field 

in the neighbourhood of the crack faces tends to zero and it is 

this tendency which shows that all these values are a computer 

approximation to zero. This is very clear in Figs.3.15a, 3J5b 

and 3.15c although in the latter one it is not as clear as in 

the former two cases. Obviously, the singularity introduced by 

the crack becomes apparent at the neighbourhood of the tip. A 

finer mesh in this zone would show that the already described 

tendency of the shear values towards zero for the former two 

cases, applies to the third one as well. Another point to con-

sider is that the straight lines drawn on Fig.3.14 do not always 

cross the elements through the centroids. As the line is nearer 

or farther away from a centroid the stress value for the element 

is respectively more or less representative of the true stress 

on that segment of the line. Because of this, some of the 

values are not really representative of the true stress in 

certain zones, and this is obvious for those zones in which 

the line (along which the stress is being evaluated) crosses 

the element far away from its centroid. 
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The argument already used for shear, applies to normal 

stresses and with relation to Figs.3.15d to 3.15j the points 

described below are relevant. 

Fig.3.15d. Plot of normal stress values along line "1" 

(the farthest away from the crack tip). The stress value on 

the nearest element to the crack face is -14206 lb/ir2  but 

the tendency of the stress curve is towards a smaller value, 

the expected value (from Fig.3.13) is around -11500 lb/i2. 

The conclusion is that the stress pattern is the correct one 

in that zone. The same analysis applies to Fig.3.15a with 

reference to line "2". 

Fig.3.15f. Here, it can be seen that the influence of 

the x coordinate starts to show up and in order to perform a 

better analysis one has to split the stress values of at least 

the first 8 elements along this line. Obviously the true stress 

value for points on the line would be somewhere in between 

these values. It is thought that it is relevant to find out 

the tendency of the stress curve, and the two plots on this 

figure are good enough for this purpose showing similar tendencies 

in the neighbourhood of the crack surface. This tendency is 

clearly towards the value given in Fig.3.13. The same analysis 

is applicable to Figs.3.15g and 3.15h although for these it 

could seem that the stress values are different from the ones 

expected. However, it is thought that in this neighbourhood 

the influence of the stress field singularity is such that any 

small change of the coordinates greatly affects the stress value 

obtained (it has to be kept in mind that the stress values are 

for the centroids of the elements and these centroids are away 

from the crack face), but this stress field, on approaching the 
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crack face, has a tendency towards the expected value. A finer 

mesh would show this point. However, in solving the present 

problem this finer mesh is not necessary and so far, the 

analysis of results has shown that the stress values on the 

crack faces are as expected so it is thought that the whole 

stress pattern is correct. 

3.7 Elastic Potential Energy and K Values  

Results from the finite element calculations were used to 

obtain the values of the elastic potential energy for different 

crack lengths and these are given in Table 33 By differentiating 

these values with respect to crack length and later on fitting a 

polynomial, the curve of KI 
values given in Fig.3.16 was 

obtained. 

In relation to this stress intensity factor curve, it is 

fundamental to point out that for the present case there is a 

combined mode I mode II behaviour. This is because even though 

there is symmetry in the loading, the geometry of the specimen 

is asymmetrical, but the mode II effect is a negligible one. 

This statement rests in the fact that there is no shear stress 

on the crack surface so there is not a singularity on the mode II 

crack behaviour, that is, in considering the mathematical 

• representatiOn of the stress field around the crack, the first 

coefficient corresponding to the antisymmetric representation 

(directly proportional to KII
) equals zero. Only higher order 

terms are considered and these approach zero when the crack tip 

is approached. For the case treated in the first part of this 

chapter this is not so (there is a singularity in mode II) as 

the loading is not symmetric, and it has to be pointed out 

that'the K values given there include mode I and mode II crack 

behaviour. 
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CHAPTER 4  

FRACTURE UNDER COMPLEX STRESSES AND 

DIRECTION OF CRACK PROPAGATION  

4.1 Instances in which it is Desirable to Control Direction of 

Crack Propagation  

A case has already been discussed in which it was necessary 

to have a criteria for directional stability of crack propagation. 

The case of the gear tooth presented in Chapter 3 is only one 

among many in which it is desirable to control direction of crack 

propagation so that failure, if it occurs, is by loss of a tooth 

rather than complete severence of the gear. Another instance 

similar to the gear case in which this approach might apply, con-

cerns turbine blades. Most of the research being conducted in 

laboratories uses test specimens which deal only with cracks loaded 

symmetrically (mode I behaviour), however, it will be shown 

(Section 4.5) that even when loading and geometry are symmetric, 

there may be a natural tendency for the crack to run away from 

the axis of symmetry. This tendency immediately introduces 

mode II behaviour and it has been shown (Section 2.2) that this 

makes slight changes in parameters such as fracture toughness 

that are considered to be dependent on only mode I behaviour. 

The nature of this change is negligible for the purposes of 

fracture toughness determination, but it surely has a strong 

influence (i.e. this influence is not negligible) in two 

other aspects, (i) fracture initiation mechanism, (ii) direction 

of crack propagation. It is well known that the stress intensity 

factor Ku  designates the amplitude of the crack-tip stress owing 

to skew-symmetric loading, so it will only operate When asymmetry, 

either in loading or geometry, is present. In experimental work 
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this asymmetry is always present, sometimes coming from non-

alignments in the experimental rig (this effect could be a 

very strong one), or from inhomogeneities in the material (which 

set up local stress concentrations). These effects have always 

shown up in the laboratory, the very fact that strong differences 

in crack path have been obtained in experiments which are 

supposed to be repetitive in their operative conditions, show 

the differences that a minor defect in material homogeneity 

could make. 

In practice, problems of this type arise in multi-phased 

materials such as composites, bridge and aircraft structures, 

welded materials reinforced components, etc. in which inhomo- 

geneities and flaws already exist and/or develop because of 

natural working circumstances. If conditions to control crack 

path can be known, then it should be possible, when a crack exists 

and propagates into a body, to drive its tip towards a zone in 

which arresting conditions exist. 

The onset of rapid crack extension (and any other experimental 

behaviour) is not always sharply defined, but the load at which it 

occurs (for brittle materials) is very little different from the 

maximum load recorded. It is not clear how, for a practical case, 

one would calculate a representative value of say Klc, or any other 

parameter which would agree with those obtained from a different 

specimen design, and because of this it can be said that some 

degree of uncertainty always exists, and that some specimens are 

conservative (standard K
lc 

method with its limitations on thick-

ness, linearity, etc. seems to have overcome this difficulty). 

Since it is not known how conservative they are, a penalty may be 

imposed on the material that is being evaluated if a wrong 
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specimen type is used to evaluate the necessary parameters, so 

special care must be exercised when deciding upon specimen type. 

If this is so for the case of such a parameter as Klc, which has 

been so extensively studied, then it can be seen how difficult 

the task of obtaining parameters to define directional stability 

of cracking could be. Surely there are a lot of questions which 

have to be answered before having a solution to this problem, 

they concern the effect of local inhomogeneities, anisotropies, 

residual stress, biaxiality, rate effect, is only a rapid crack 

unstable in direction or would a slow crack also be unstable? 

does scatter in K
lc values really matter? eg do high values of 

scattered K
lc data correspond to cracks wandering off direction? 

The conclusion is that when performing experimental work, 

intended to define directional stability of crack propagation, 

it is necessary to select one of these aspects as variable and try 

to keep the others as constant as possible. For the purpose of 

the present study, mainly the effect of loading biaxiality will 

be looked at, but it is necessary to keep an open mind and try to 

identify possible co-relations between experimental results and 

any of the topics already mentioned. 

4.2 Review of Work Done on Directional Stability of Crack  

Propagation 

A great deal of valuable work has already been conducted 

regarding directional stability of crack propagation, a short 

summary of some of the most important is given hereafter. It is 

felt by this author that the review presented is brief but this 

is because only work highly relevant to the specific objective of 

the present study was selected and presented here with the purpose 

of using it as an additional tool to expand the understanding of 

the phenomena that is being dealt with. 
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One of the very first comments on direction of cracking is 

found in Griffith (1920) who stated that, "it is necessary in the 

present application, however, for the resulting stress system to 

be symmetrical about the crack, as otherwise it is not obvious 

that the latter will remain straight as it spreads. The only 

stress distribution which will be considered, therefore, is that 

in which the principal stresses in the plane of the plate, at 

points far from the crack, are respectively parallel and per-

pendicular to the crack, and are the same at all such points. 

This is equivalent to saying that, in the absence of the crack, 

the plate would have been subjected to uniform principal stresses 

in and perpendicular to its plane. It is also necessary, on 

physical grounds, for the stress perpendicular to the crack and 

in the plane of the plate to be a tension, otherwise the surfaces 

of the crack are forced together instead of separated, and they 

cannot remain free from traction". 

Obreimoff (1930) was the first one to study stable crack 

spreading. By wedging open a crack in mica and finding the 

length of crack in equilibrium with a given displacement normal 

to the crack surface, he also estimated the local work of crack 

spreading from simple beam theory. 

Irwin (1957). In a discussion of the stress field parameters 

which significantly influence the fracture process, proposed that 

cracks will grow in a direction controlled by the orientation of 

the maximum stress direction at the crack tip. 

Benbow and Roesler (1957). The aim of their work was the 

determination of a specific fracture energy which is shown to 

govern crack propagation. They used a wedge as the instrument 

for opening the crack on a flat strip specimen, and showed that 

inunslustcompression inhibits the crack growth normal to the plane 
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of symmetry and so it must, to some extent, provide directional 

stability of crack propagation. 

iativa 
Forsyth (1961). Proposed that the racture process occurs 

in metals through two steps, phase I. Flaw growth takes place 

in a direction parallel to the crystallographic plane of maximum 

shear stress. Phase II - macroscopic fracture propagates in a 

direction perpendicular to that of the maximum stress. 

Guernsey and Gilmain (1961). Reported photoelastic work 

made on the stress distribution in the vicinity of the root of the 

crack in a SEN specimen. This work indicated the nature of the 

deformation sustained by the uncracked region but did not explore 

the stress distribution over the complete sample as a function of 

crack length. They showed that the gradient of the maximum tensile 

stress in the vicinity of the crack tip is such that the crack 

tends to deviate from its median position and turn towards the 

edge of the sample, a tendency which increases with increasing 

deviation, so it is necessary to apply constraints to the sample 

to so change the stress distribution that the crack remains in 

the median plane. In relation to this topic, in Section 3.3 a 

similar analysis is made for a cracked gear, here the stress field 

was obtained numerically, but there is ample evidence that these 

field values are as good as the experimental ones, and it leads to 

the conclusion that the crack should propagate along a line of 

minimum principal stresses emanating from the crack tip, 

i.e. perpendicular to maximum principal stress. 

Erdogan and Sih (1963) carried out a study of the initial 

direction of crack growth in a biaxial stress field and re-

examined the original hypothesis of Griffith that the crack 

extends in a direction perpendicular to the local maximum tensile 
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stress. A series of fracture experiments on plexiglass sheets with 

an inclined crack was performed and the results checked reasonably 

well with the criterion of maximum stress. They stated two hypo-

theses for the extension of cracks in brittle materials under 

slowly applied loads:- 

(a) the crack grows in a direction normal to the maximum local 

stress at the tip of the crack; 

(b) the crack growth in this direction releases the maximum energy. 

They also showed the first hypothesis to be true for the initial 

stages of propagation. 

Schijve (1964). Studied the effect of the fracture angle on 

the shear stress distribution in the neighbourhood of the crack, 

describing the nucleation and the growth of a fatigue crack as 

being geometrical consequences of dislocation movements at the 

surface and in the crack tip region respectively. In his report 

he mentions some work carried out at NLR (Nationeal Luct-en 

Ruimtevaantlaboratorium, Amsterdam) in which a fatigue machine 

combined with a microscope and stroboscopic light was developed 

to follow crack propagation. Fatigue experiments were carried out 

and the results showed a constant rate of crack propagation while 

the crack was running straight. When a change of orientation in 

the crack occurred it was preceded by a slowing down of the growth 

(at the surface). Then no crack growth was observed for some time 

after which growing continued in another direction. The first part 

of this new crack extension sometimes occurred quite rapidly. 

Schijve argued that it is possible that the direction of growth 

before the change of orientation could not be maintained, because 

it was not compatible with the path of the crack below the surface. 

This restrainireleased the shear stress on the slip system being 

active at the surface, and the crack growth slowed down. Crack 

growth along another slip plane required an increase of shear stress 



58 

on that plane, which was effected after the crack below the surface 

had gone through some further growth, such a process leads to un-

balanced crack extension at the surface and probably it will occur 

at the interior of the material as well, which implies that crack 

extension does not simultaneously occur along the entire crack front. 

Valluri (1965). Made a study of the biaxial failure of metals 

and polymers, developing failure envelope concepts in which, failure 

planes described by the principal stress components, were used as 

loci of points of limiting stability for fracture under multiaxial 

loading conditions. 

Cotterell (1965). Defined two classes of fracture: 1. fracture 

path completely predictable, and 2 fracture path predictable only 

after initial random propagation. Class I fracture occurs when 

there is a line of principal stress passing through the tip of the 

initiating notch or slit, across which the stress is a maximum 

away from the tip. (Cotterell did not establish a dimension for 

the distance "away from the tip", what his analysis states is not 

that a
n is an absolute maximum but that the direction of maximum 

release of energy and of propagation in a perfect solid, is along a 

line of local symmetry.) All Class II fractures eventually become 

Class I. He also showed that although the probability for incre- 

mental growth in any one, direction is low, the line of local 

symmetry is a highly probable path for macroscopic growth, and 

concluded that concerning crack behaviour, after a possible 

initiation of random Class II fracture, the macroscopic fracture 

path becomes very predictable. Fracture growth will be along the 

line of local symmetry across which the principal stress is a maxi- 

mum, confirming the hypothesis that cracks will extend in a radial 

direction from the tip normal to the direction of maximum tangential 

stress. Later on Cotterell (1966), from consideration of the 

second term in the power series solution of the stress field in a 
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cracked body, reached the same conclusion, i.e. that a crack will 

propagate along the principal stress plane passing through its 

tip. Cotterell considered that there is only one line of 

principal stress passing through the tip of the crack - the line 

of local symmetry. In general two lines of principal stress 

normal to each other would be expected, but it must be 

remembered that the crack is considered to be the limit of an 

ellipse and in the limit the second line of principal stress 

becomes the line of the crack in the negative direction. 

Gurney and Hunt (1967). The main topic of this work has 

already been presented in Chapter 2, i.e. determination of the 

local specific work of crack spreading or fracture toughness (R). 

Under this same work a principle controlling the path of a quasi-

static crack is proposed that is, crack paths should be those 

directions into which strain energy is released at the maximum 

rate of entropy production for a cracking process, and offers 

some experimental confirmation. 

Barr (1968). Found that the direction of rolling of the 

material during manufacturing, has an influence on the crack path. 

He also tried different geometries in trying to obtain directional 

stability of crack propagation, this involved linear variations 

of the I value (second moment of inertia of the section), sudden 

change of cross section, gradual change of cross section, special 

loading conditions, etc, but only partial success was obtained. 

Barr discussed as well, the effect that bending stresses have on 

the path of the crack in a test specimen. 

Arad (1972). Some of the experiments he carried out were on 

grooved specimens and concluded that a general feature of the out-

come of the series of tests was that irrespective of the groove 

orientation angle, the crack did not extend along the plane of 

the groove. However, the specific characteristics of the crack 



60 

propagation process could be influenced by the depth of the 

surface grooves. Up to a groove with about 60% reduction in 

specimen thickness, the initial crack turned immediately to 

form along a minimum principal stress trajectory. 

Aida and Kobayashi (1969). Results obtained in their work 

suggest that a fatigue fracture that is initially under biaxial 

load will propagate initially in the direction of maximum value 

of K
I' 

and at the same time the KII 
value tends to decrease until 

it reaches its minimum value. In Section 5.3 of the present 

study, some work which is relevant to this topic, is discussed. 

Tuba and Wilson (1970). Proposed the use of a criticality 

plane described in terms of the three stress intensity factor 

components ICI, K11  and Km. 

Cotterell (1970). Reported tests on the criterion developed 

in relation with the sign of the second coefficient of the Williams 

series, and suggested a simpler criterion based on the engineer's 

theory, for the determination of the stability of fracture path 

in the compact tension test. This will be discussed in some 

detail in Chapter 7. 

Roberts and Kibler (1971). Found that under conditions of 

application of a combined static and reversed bending type of 

loading, the direction of fatigue crack growth on a macroscopic 

scale, was in the plane of the initial crack. Consideration of 

crack growth at a relatively lower scale, proved the growth 

mechanism to be as that described by Irwin (1957) and others, 

i.e. small extension in the direction perpendicular to that of 

maximum principal stress. However, due to the reversing nature 

of the load cycle, in each full cycle two principal stress 

directions, distributed symmetrically about the crack plane, are 

obtained and thus the crack tends to propagate in a saw-pattern. 
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Williams and Ewing (1972). Applied a uniaxial stress to 

thin plates of polymethylmethacrylate (PMMA) containing a crack 

angled to the stress field, and showed that inclusion of the 

stress component parallel to the crack can improve the corre-

lation between linear theory and experiment, using a critical 

stress at a critical distance for interpretation of the stress 

intensity factor. This inclusion of the stress component 

parallel to the crack means that the second term in the series 

expansion for the stress distribution in the neighbourhood of 

the crack tip is considered. 

Finnie and Saith (1973). Discussed Williams and Ewing's 

work, and pointed out an error in the mathematical development 

carried out. Finnie and Saith's correction gave an improved 

correlation between theory and experimental results for centre 

notched sheets in tension. 

Sih (1973). Proposed a new concept for fracture path pre-

diction. For elastic materials the new criterion is expressed 

in terms of the strain energy density factor S. The application 

of the S-factor to fracture prediction is based on two hypotheses:. 

(a) crack initiation occurs when the strain energy density factor 

reaches a critical value, (b) the initial crack growth takes place 

in the direction along which the strain energy density factor 

possesses a stationary maximum value. Since strain energy is 

considered, the prediction is a function of Poisson's ratio and 

will also differ for plane stress and plane strain conditions. 

Finnie and Weiss (1974). Performed two experiments with 

beryllium sheet in order to compare the new Sih theory with the 

original Erdogan and Sih approach. Beryllium was used for these 

tests as its Poisson's ratio in the plane of the sheet is almost 
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zero and the experiments were simplified by making 13 = 45 deg. 

(being 13 the angle between loading direction and crack). They 

state that their experimental results strongly support the 

original Erdogan and Sih analysis rather than Sih's new theory. 

Coughlan and Barr (1974). Carried out a finite element 

analysis for a square plate, with an angled crack, under biaxial 

loading conditions, as well as experimental work using PMMA 

(v = 0.3) and good agreement was obtained between the numerical 

and experimental results, and these results compare favourably 

with the results of Sih. 

Mai et al (1975). Carried out tests on tapered SEN specimens, 

suggesting a modified test with loading applied at the thick base 

instead of near the apex, showing that experiments agree with 

theory, providing a better control of the crack path, concluding 

that backface loading may be chosen as an optimum alternative 

means for the determination of valid fracture toughness of 

materials, especially when good stability of cracking is desired 

for experimental applications such as in environmental testing. 

They also concluded that the simple criterion a /0 > 1.0, coupled y x 

with elementary beam theory for the determination of a straight 

propagating crack along the mid plane of the specimen, is adequate 

for their analysis. 

4.3 Mathematical Description of the Stress Field in the  

Neighbourhood of a Crack  

Many investigators have studied the elastic stress distri-

butions around cracks, with some of the earliest contributions 

from Inglis (1913) who studied an external crack using elliptical 

bounding surfaces, Westergaard (1934) who initially treated the 

crack problem as a series of expansions and later on (1939) by 
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the complex variable technique. Williams (1952) investigated 

the plane-stress distribution near the vertex of an infinite 

sector of included angle a for various boundary conditions and 

in (1957) considered the case where two radial edges of the 

plate are unloaded and the included angle approaches 2n, which 

corresponds to the case of a crack with flank angle w = a - 2n ="0. 

He showed that the function 

2n-3 
x(r°°  = 	((-1)n-1  A2n-1r 

n+2[-Cos(n-3/2)* + (----2n+1)Cos(n+2)*J 

+ (-1)nA
2n
rn+1[-Cos(n-1)111 + Cos(n+1)*]) 

(4.3.1) 

+ E=1 ((-1)n-113
2n-1

rn+1[Sin(n-3/2)* - Sin(n+1)*] n 

n-1) + (-1)11B
2n
rn+1  [- Sin(n-3/2)4Y + (— Sin(n+1)*]) n+1 

describes the stress field in the neighbourhood of the notch with 

zero angle, pointing out that even though the field equation and 

the boundary conditions along the radial edges are satisfied, 

theconstantsA.andELare undetermined. Their values depend 

upon the loading conditions, more specifically, either upon the 

boundary conditions at infinity in the case of an infinite sector, 

or upon those at some fixed radius when the plate has finite 

dimensions. For the latter practical case, all the Eigen functions 

in general will be present in order to determine a solution in 

the large. 

From the general definition of the stress function it is known 

that 
1 -62

y  
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(4.3.2) 
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the mathematical development of these partial derivatives is 

shown in Appendix for Chapter 5 and the equations for the stress 

fields are obtained as 

ar = E ((-1)n-1 rn-3/2 A2n-1(n-i)[(n-7/2)Cos(n-3/2)* - (n-3/2) n=1 

Cos(nti)*] + (-1)nrn-1A2n n [(n-3)Cos(n-1)* - (n+1)Cos(n+1)10 

+(-1)n-irn-3/28 	'n- -1)[(n-7/2)Sin(n-3/2)* - (n+4)Sin(n+1)*] 2n-1 2  

, 	1  +(_1)nrP-1B
2n n[(n-3)Sin(n-1)* - (n-1)Sin(n+1)*]3 1 + v 

(4.3.3) 

a
* 
 - E 0-1)n-1rn-3/2A 	'n - -1)[(n+i)Cos(n-3/2)* - (n-3/2) 

n=1 2n-1 2  

Cos(n+i)*] 	(-1)nrn-1A2n n[(n+1)Cos(n-1)* - (n+1)Cos(n+1)fl 

(_1)n-1rn-3/2
B
2n-1

(n-1)[(n+2)Sin(n-3/2)* - (n+i)Sin(n+1)*] 

+ (-1)nrn-1132n71 
n[(n+1)Sin(n-1)* - (n-1)Sin(n+1)*]) 1 	4. v  

(4.3.4) 

a 	r(_1)n-1rn-3/ 2A
2n-1 	2  

(n--1)[(4-3/2)Sin(n-3/2)* - (n-3/2)Sin(n+1)*] r* n_ic  

+ (-1)nrn-1A2n nPn-1)Sin(n-1)* - (n+1)Sin(n+1)*] 

(n -3/2)[(n-3/2)* - (n+i)Cos(n+i)*] 2n-1 

+ (-1)nrn-182n 
n[(n-1)Cos(n-1)* - (n-1)Cos(n+1)*T1 	 1 + v 

(4.3.5) 

These equations fully describe the stress field in the neighbour-

hood of a crack and will be fundamental in the present study. 
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4.4 The Stress Field and Directional Stability of Crack 

Propagation  

Regarding the stress field, when a crack propagates there 

must be a gradual change in it, this has been shown in Section 

3.3. When a material is stressed, and the condition is reached 

that the strength in the material is equal to its toughness, the 

material separates, resulting in a longer crack, Clausing (1969) 

has presented a gocd discussion on this point. The new crack 

dimension depends on conditions existing just before extension 

occurs. To illustrate this point, let us take as an example a 

blunt crack (meaning by this, that its tip is slightly rounded, 

with a p radius/and apply an energy criterion for extension. 

As load is applied to the specimen, energy is being stored and 

of course, a stress field characteristic of the geometry, 

develops. When a critical energy level (which is a characteristic 

of the material and a function of p) is reached, the crack extends 

by a jump of the crack tip, the tip of the crack becoming sharp. It is 

fairly easy to understand this jump, as when the crack extension 

starts the change in geometry at the tip is a sudden one and 

there is an excess of energy available (as the energy necessary 

to propagate a blunt crack is higher than that necessary to pro- 

pagate a sharp crack), this energy is partially transformed into 

kinetic energy and partially into surface energy (brittle fracture). 

This jump has an effect on the stress field because new geometric 

conditions are settled, and this effect is basically that the 

principal stresses at the crack tip. (a1  and a2 ) change but the 

tangential stress remains zero, this is provided that the loading 

and geometry before and after crack propagation are symmetric. 

These changes could set up conditions conducive to directional 

instability of crack propagation, regardless of symmetry in geometry 

and loading. 
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It has been shown, Benbow and Roesler (1957), Cotterell 

(1966,1970), Mai et al (1975) that directional stability is 

achieved if, at the crack tip, the principal stress (ax) along 

the crack surface (as calculated theoretically) is equal to or 

lower than the stress perpendicular to the crack surface (a ). 

This effect is shown by the isochromatic field (a - a
x/2), as y

was shown in Section 3.1. Cotterell (1966) argued that as the 

crack length is increased, for certain loading conditions, the 

fringes (isochromatic lines) at the crack tip neighbourhood, 

become more upright and finally, for cracks longer than certain 

finite length, lean backwards. He also pointed out that for a 

SEN specimen only those fractures initiated from initial notches 

short enough to cause the isochromatic fringes to lean forward, 

run straight for any appreciable distance before deviating to 

one side or another. The work described in Section 3.3 of this 

study, leads to the same conclusions. 

The isochromatics behaviour already described, only shows 

the changes that are occurring in a1  and a2. With this as back-

ground, it can be stated that the conditions that govern directional 

stability change as the crack extends, and this is whether or not 

the specimen and loading conditions remain symmetric. This aspect 

will be discussed further in Chapter 7. 

A further point can be made by means of the following dis-

cussion, supposing that a SEN specimen is being analysed, and that 

in order to determine the stresses, the Williams' series is to be 

used. To start with, only transverse load is applied i.e. load 

parallel to the crack, and it is perfectly symmetrical so, under 

this loading, there will not be any stress singularities, 

i.e.A1 =131 .-.0(A.and B. are symmetrical and antisymmetrical 

coefficients in the Williams' series), the A
2 

coefficient will 
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have a value which when multiplied by F(e) should describe the 

transverse stress, and higher order terms have zero value 

coefficients. The next step is to introduce mode I and/or 

mode II behaviour. This will introduce a singularity and also 

the A
2 
coefficient will be modified, its full value being the 

addition of the effects of each load, but it will still deter-

mine the value of a and so could define (through ay/ax   > 1 

Cotterell, 1970) directional stability. So it can be said that 

the second coefficient in the series is very important because 

its value is directly related with ax  at the crack tip, and the 

already discussed changes in the stress field, are depicted by 

any change in this second coefficient. 

4.5 Directional Stability of Crack Propagation and Proposed  

Criteria  

It is thoughtthat a factor of considerable importance in 

the process of fracture under arbitrary loading conditions, is 

the determination of the path of crack extension. The aim of 

this part of the work is to investigate proposed criteria for 

directional stability of crack propagation, mainly under mode I 

although some aspects of mode II will be tackled as well. 

The bibliographical material which has been reviewed, as 

well as personal work, has led this author to think that the 

direction of crack propagation aspect of the fracture process, 

could be depicted as follows. 

There are two types of conditions that influence the fracture 

process. (a) Global conditions - such as geometry, loading, 

material, environment, etc. and (b) local conditions - such as 

flaws and material imperfections encountered in the neighbourhood 

of the fracture path. The former can be modelled mathematically 
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and the crack behaviour is predictable, the latter cannot be 

predicted (unless by statistical analysis), as they could be 

' thought of as accidental elements in a material's structure 

and as such they are unpredictable. Taking this into con-

sideration, the process of propagation of the crack could be 

described as: 

(1) Geometry, loading, material, environment, etc., 

establish global conditions which in the first instance deter-

mine, in a general way, where the crack will go. 

(2) As the loading process takes place (either displacement 

or load), local conditions become apparent. These are a con-

sequence of imperfections, and modify the stress field in the 

neighbourhood of the crack tip. 

(3) When the condition in which the stress in the material 

is equal to the critical fracture stress (material's toughness), 

the material separates and the fracture advances until its tip 

reaches a point in which arresting conditions exist, i.e. the 

stress level in the material is lower than the material's 

toughness, so crack propagation stops. 

(4) If, under (3), global conditions dominate the crack 

will extend in a prescribed way, a predictable path, according 

to Cotterell (1966) class I fracture and stop. If the local 

conditions are the ones that dominate, the crack will propagate 

in a random direction (most probably towards the imperfection), 

in a class II fracture and stop. 

(5) Once it has stopped, global conditions for the new 

general geometry are settled and a new process for further 

crack propagation starts. 
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Regarding global and local conditions, there are some 

factors that are known to influence this global condition, 

i.e. specimen dimensions (for SEN specimens, the square ones 

have a better directional stability than the long ones), 

grooving is another geometrical influence, and stressing (com-

pression) the specimen longitudinally to the crack surface has 

a stabilising effect as well. Up to now, the quantification of 

this directional stability has not been fully achieved, however, 

it is perfectly clear that there are experimental conditions 

which can set up a greater degree of directional stability 

i.e. in reference to a a
x stress (by this it is meant the magni-

tude of the transverse stress set up within the specimen because 

of the application of a compressive load parallel to the crack) 

the higher it is, the longer the crack runs straight, so even 

if limits are not numerically quantified, it can certainly be 

established that a specimen is highly stable (concerning 

direction of crack propagation) under certain experimental 

conditions. 

According to this and in relation with directional stability 

of the extension process, in point (1) above, the global con-

dition at the start of an experiment could be 

(a) highly stable 

(b) stable 

(c) unstable. 

For case (a), when (2) operates, two different situations 

could develope:- 

(i) the local condition could not be such as to overcome 

the global one, so the crack runs straight; 

(ii) the local condition is such that it overcomes the 

global one, so the crack extends in a random direction and stops. 
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Once it has stopped, new global conditions become apparent and, 

as the initial global conditions were highly stable, most 

probably the new ones are still highly stable and the crack 

will tend to come back to the original path. 

For case (b), when (2) operates, two different situations 

could develop:- 

(i) The crack runs straight unless a local condition 

becomes apparent. 

(ii) Any small local condition overcomes the global one 

and the crack runs away from the straight path. As the crack 
psi 

was/stable, any change in direction will make it more unstable 

and it will keep changing for the worse. 

For case (c), when (2) operates, the crack will only become 

more and more unstable. 

It has been pointed out that it is extremely difficult to 

predict local conditions, however this is not especially relevant 

as this author's view is that, regardless of what the local con 

ditions are, global conditions are the main factors that control 

crack path and if these conditions can be kept highly stable, 

the crack will continue its extension in the original direction. 

So, the first step under this part of the work should be to 

establish roughly which are the parameters that govern global 

conditions, so that in a second step they can be quantified. 

In the past, different criteria for directional stability 

have been put forward, here it is intended to do some work on 

two 	of these approaches, although only the first step already 

mentioned will be covered. 
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It is proposed:- 

1. To investigate the roll of the second coefficient of the 

William's series, as a parameter defining directional stability. 

2. To use the values determined for the coefficients in the 

Williams' series, and apply to the SEN specimen the criteria 

proposed by (a) Williams and Ewing (1972) i.e. determination of 

a critical stress at a core radius, (b) Sih (1973) i.e. deter-

mination of the critical Strain Energy Density Factor S. 

Further discussion on this topic is to be done in Section 

6.5. 



72 

CHAPTER 5  

THE WILLIAMS' STRESS FUNCTION AND  

ITS APPLICATION TO THE SINGLE EDGE PLATE SPECIMEN 

In this chapter the basic problem of analysis of a crack 

tip stress field is being examined by means of the Williams 

stress series. The main steps to develop a computer program 

for obtaining the values of higher order coefficients are dis-

cussed, and work on the testing of this program is done by 

comparing results with former work carried out by other 

researchers. 

5.1 The Coefficients of the Williams' Stress Series as Parameters  

Characterising the Behaviour of Cracked Specimens  

Williams (1957) obtained the function 
co 

X(r1
0 

= 
E ((_1)n-1A 	n+1 

2n-1r  
n=1 

[-Cos(n-3/2)1V + 
2n-3 Cos(n+1)*] 
2n+1 

+ (-1)nA
2n
rn+1  [- Cos(n-1)+y + Cos(n+1)1111 3 

co 

+ E ((-1)
n-1

B2n-1r
n+1 

n=1 

[Sin(n-3/2)* - Sin(n+1)11] 

+ (-1)nB
2n
rn+1[- Sin(n-1)$ + Ez1 n+1 Sin(n+1)*] 

(5.1.1) 

from which a complete stress field description in a crack tip 

neighbourhood can be obtained; in Section 5.2 it will be shown 

how the expressions for ar, a0 and are 
are arrived at from the 

expression given. Other researchers working in this field have 

obtained conclusions presented hereafter. 
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Cotterell (1965) in analysing the symmetric terms of the 

stress field (mode I only) defined two classes of fracture, 

this was done by taking into consideration the way a crack 

behaves. 

Class I, Fractures that, when they deviate from the ideal 

path, straight ahead of the crack (for mode I) have a tendency 

to return to the original path. 

Class II. Fractures that have the tendency to continue to 

deviate from the ideal path. 

Later on, Cotterell (1966) showed that the first term of 

this series determines the stress intensity factor generally 

accepted to control the initiation of fracture in a brittle 

material and the second controls stability of the crack direction; 

stability of crack propagation is controlled by the third term, 

and the fourth term determines whether the maximum shear stress 

on the prolongation of the crack increases or decreases with 

distance from the crack tip. In his study he considers a 

distance "Z" from the original crack tip to a point in which 

the extended crack is to have its new crack tip, and through a 

mathematical analysis obtains the expression 

A 
dg . [1 -! (17,2) 	

2 
 ]c10 

1 
(5.1.2) 

which relates the original angle of crack propagation de and the 

angle of further extension dO, establishing that if A2  is 

negative then dO > de (see Fig.5.1) and the fracture has the 

tendency to return to its original path, however, it seems some 

cases could not be fully accounted for with this criterion. 

According to Cotterell the fact of A2  being negative means that 

the crack goes back to its original direction, if the case of a 

straight notch is analysed, it is supposed that crack extension 
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has taken place from say point "a" to point "b", and the A2  

• value obtained here is to be 

applied to equation 5.1.2, so 

if A
2 
is positive, then de > dO 	CL 	I) 

and the crack is unstable and runs 	da.-.6 
away from the original direction. 

If A
2 
is negative, then dO is different from de so that the 

crack should also run away, and finally when A2  = 0;d0 = de = 0 

and the.  crack continues running straights  this discrepancy could 

be viewed as an exception. It will be shown that the A
2 

value 

for specimens with very small straight cracks, in a symmetric 

stress field, is very near zero, but as the crack advances a 

situation develops in which the A
2 value becomes positive, even 

though the crack keeps going straight, i.e. the crack becomes 

unstable. The fact that the specimen and loading are still 

symmetric, should be the only factor that makes the crack keep 

to the original path, and theoretically there is no other in-

fluence affecting this behaviour so there should not be any 

change in crack direction. Experimentally, the picture is quite 

different, any material has flaws and imperfections which are 

physical factors that affect the local stress field at the crack 

tip neighbourhood, and as directional stability is very weak, 

any small change of the stress field could drive the crack tip 

away from the original path and the crack obtained is depicted 

below. 
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The analysis for this configuration will be that given by 

Cotterell i.e. if A2  = 0, dO = dO and the crack in the next 

extension will follow a path parallel to the original one, if 

A
2 
= negative, dO > de and the next increment in crack extension 

is going back to the original direction, and finally if A2  = 

positive, dO < de and on further increments of crack extension 

the crack goes further away from the original crack. 

Results from further work made by Cotterell (1970) on 

specimens that exhibited directionally stable crack paths, made 

him conclude that equation (5.1.2) seems to fail to give a 

reasonable prediction of the stability of the path. However, 

this author in trying to reproduce Cotterell's work noticed a 

small error in his approach, this is reported in Section 5.6. 

Examination of the expressions for stresses shows that the 

sign of the coefficient A2  is directly related to the transverse 

stress (parallel to the initial crack) applied to the specimen, 

being negative whenever a compressive transverse stress is 

present at the crack tip. Other workers, Benbow and Roesler 

(1957), Guernsey and G 	(1961), Larsson and Carlsson (1973), 

have shown experimentally this relationship. 

In relation to the antisymmetric terms, the first term is 

also directly related to the stress intensity factor but in 

mode II, while the coefficient B
2 

turns out to be of no great 
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interest here in that it represents a rigid rotation term in 

the series for displacements and does not appear in the 

expressions for stress. 

The present chapter will be focussed on the determination 

of the second and higher order coefficients of the series ex-

pansion as applied to practical cases so that a relation between 

experimental work and the value of the coefficients can be 

established or otherwise. A secondary objective to keep under 

consideration is to study the influence of higher order terms 

on crack behaviour. 

5.2 Definition of the Stress Field from the Williams Series  

In order to define the equations expressing the stress 

field, it was necessary, under the approach being described 

here, to obtain expressions for the displacements "u" and "v", 

the mathematical development shown in Appendix 5a was done by 

Professor J.L. Swedlow (1974); it was obtained 
a 

211 u = ft(-1) n-1A2n-1rn2▪ [- 
 (k+n-3/2)Cos(n-1)* + (n-1)Cos(n-5/2)11 

0 

+ (-1)nA2nrn
[-(k+n+1)Cos n1 + nCos(n-2)] 

(-1)n-1B n-1rn-1 4.  
2Pk+n+2)Sin(n-1)1 - (n-1)Sin(n-5/2)1] 

+ (-1)nB
2n
rn[-(k+n-1)Sin n1 + nSin(n-2)1] 	Sin1 	(5.2.1) 

a 

2p v =f{(-1)n-1A 2n-1rn- lL (k+3/2-n)Sin(n-i-
)1 - (n-1)Sin(n-5/2)1] 

'- 
0 

+ (-1)nA
2n
rn[-(k-1-n)Sin n1 - nSin(n-2)*] 

+ (-1)n-1B
2n-1rn 

 -2[-(k-n-1)Cos(n4)* - (n-1-)Cos(n-5/2)11 

+ (-1)nB
2n
rn[(k-n+1)Cos n* + nCos(n-2)1] I Cos* 

	
(5.2.2) 

3+v 
y 

where k = 1 for plane stress, and k = 3-4v for plane strain, 

v is Poisson's ratio, and n is the number of terms being 
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considered in the expansion of the Williams' function. The 

procedure to obtain [a) is to find 

e
x 

= bu/ox 

 

e = ovitlY (5.2.3) 

from these 

Y 	= bu/bY + by/ax xy 

 

and finally 

ax =aex +Oe 

a = pex +ae y

CY = y 
xY 	xY 

(5.2.4) 

a +a 	a -a 
ar  = x

2  y 
	

2 
	xy  Cos 2t + a 	Sin 2t 

a +a 	a -a 
)---(--- + )--S-----Y- Cr = 	 Cos 2t - a Sin 2t t 	2 	2 	xy 
a 	a x 

a 	- 
2 

= 	Sin 24 
- 2 
— Sin 2t + a xyCos  2t 

This was done as shown in Appendix 5b, where only the 

derivation of a
r 

is shown; the whole expressions for the values 

of ar, ao  and are  arrived at by the procedure described, are 

given in Section 4.3, Equations 4.3.3, 4.3.4 and 4.3.5. Having 

obtained these relationships, it is possible to develop an 

approach for the determination of the coefficient values as 

described in Section 5.4. 

5.3 Value of the Coefficients and their Influence on the Stress  

Field 

In order to examine the influence of the different coefficients 

on the stress field, it was decided to start with a symmetric 

specimen. Many different researchers have reported the fact that 

when a SEN specimen is cracked, directional instability becomes 

apparent even though loading and geometric conditions are perfectly 

symmetrical. It can be shown experimentally, that the application 
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of symmetric opening loads on the cleavage specimen produces 

patterns that although symmetrical, present local maxima ahead 

of the tip, which are away from the crack plane, and these local 

maxima are the ones which are responsible for direction of crack 

extension. A brief mathematical description of the behaviour 

of the specimen, once this local maximum becomes apparent, is 

given hereafter. 

Consider a as given by the first three terms of the stress 

series, i.e. 

where for a
r 

C
l 

a -(f1  
(f1 + f2) ) + Cf3 4r2   

f
1 
 = [- 5 Cos + Cos 24A 

2 	2 1 

f
2 
= [- 5 Sin + 3 Sin 21  ]13 

2 	2 
]B
1 

(5.3.1) 

 

and for a 

f
3 

= 2(1+Cos 210A
2 

f1  = [- 3Cos i - Cos 11]A. 
1 	2 	2 1 

f
2 
= [3 Sin  - 3Sin 21113 

2 	2-  1 

f3  = 2(1 - Cos 2)A
2 

(5.3.4 

(5.3.5) 

(5.3.6) 

(5.3.7) 

The coefficient B
1 
has been included here. This term is 

an antisymmetric one, that is, its value is zero if symmetry in 

loading and geometry exists, but it has to be pointed out that 

the criteria being discussed here, establish that the stress 

conditions in the neighbourhood of the crack tip are the ones 

that determine the direction of crack propagation (experimentally 

it is possible that local anisotropies exist) and if there is a 

local anistropy away from the axis of symmetry, the crack would 

initially propagate towards this anisotropy as it is a stress 

concentrator. This fact makes the value of 	for the new 
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condition, become different from zero as the specimen is not a 

symmetric one any more, and it is then that the value of the A 2 

coefficient would determine if the crack goes back to the 

initial path or otherwise. 

A further point to be made (and it will be proved later) is 

that as both opening load and specimen geometry establish the 

Aalues for all the coefficients of the stress series, for most 

cases (with no transverse load) the coefficient A2 
is positive, 

(this is because it is proportional to the transverse stress at the 

crack tip. Whenever this stress is a tension, A
2 
is positive and 

otherwise). This means local instability, that is, there is a high 

possibility that if the crack deviates, it will not go back to its 

initial path. Furthermore, to start with, the coefficients being 

calCulated are for the straight crack; once it propagates the crack 

tip has got a new position and the value of A
2 
has to change. 

The view is taken that if initial propagation is along the ideal 

path, the value of the coefficient would be that one which is 

the least unstable for the conditions given. But as loading and 

geometry establish the initial value for the coefficient, if 

this value means instability to start with, then any propagation 

away from the axis of symmetry will make it more unstable and 

even if this initial value is just above the one for stability, 

the new conditions could bring it to instability. So if directional 

stability is desired, an initial condition in which a high direct-

ional stability exists is sought in order that, when crack 

extension puts the crack tip away from the ideal path, there is 

still directional stability and the crack tends to go back to 

the initial path. 
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In looking at numerical values for the stresses, Fig.5.2 (a,b,c) 

show plots of the functions f1,  f2, f
3 

and in Fig.5.2(d,e,f) is 

depicted another function resulting from the addition of the 

former three under different conditions. For selecting these 

conditions certain fixed values of coefficients 
A1,  B and A 

1 	'2 

have been chosen in order to substantiate the point; of course 

for real cases the relationship among them will depend on 

factors such as geometry, loading conditions, boundaries, etc. 

Fig.5.2(d,e,f) show the influence A2  and B1  have on the 

stress field and the position of its maximum. Different com-

binations of coefficients are shown for O. To start with, a 

hypothetical case in which only (f
1 
+ f

2
) Fig.5.2(d) is con-

sidered; a fixed curve which will be called initial condition 

is then obtained. When during an experiment, natural conditions 

arise that change crack path, its influence is shown by a change 

on the coefficient value, so that one of the functions becomes 

dominant; supposing that: 

(a) Coefficient 
1  
A is dominant. Then the maximum on the curve 

approximates to 1= 0. 

(b) Coefficient B
1 
is dominant. The maximum on the curve 

moves towards* = 01. 

(c) When initial conditions are set under A1, B
1 

a local maximum 

exists and if the third function is considered, its effect 

is to move this local maximum either away from* = 0 if A
2 

is positive or towards* . 0 when its value is negative. 

This is shown in Fig. 5.2e  for A2  positive and Fig. 5.2(f) 

for A
2 
negative. 

This brief discussion has been restricted to some of the 

first terms but of course each term makes its contribution and 
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will in turn have an effect on this maximum and its position; 

how significant this effect is, will depend mainly on the values 

of "r" and the coefficients. 

5.4 General Problem, Its Solution and Programming  

It has been shown that it is required to identify higher 

terms in the series representation of stresses at the crack tip. 

The aim of this section is to describe the work done in order to 

obtain these coefficients, so that 

(a) Former work on the significance of the second coefficient 

is confirmed or otherwise. 

(b) Further research on the implications of the second and 

higher order terms can be made. 

(c) Numerical analysis on different specimen configurations 

can be done, as it is expected to determine optimum specimen 

dimensions and conditions to carry on experimental work on 

direction of crack propagation. 

The information in hand is 

x(r,t) = xe(r, 0 + xo(rolt) 
	

(5.4.1) 

in which the even and odd terms of this series can be represented by 

2n-3 Cos(n+1] X (r,$)  = E 

	

	 * + 2n+1 	4 ((-1)n-1A2n-121+1 [-Cos(n-3/2) 
n=1,2,3.. 

 

+ P-1)1142n
ril+1  [-Cos(n-1)* + Cos(n+1)10 ) 	(5.4.2) 

and 

xo(r,t) = E 	n-1 t(-1) 	13
2n-1

rn+2 [Sin(n-3/2)1,4 - Sin(n+4)41] 
n=1,2,3.. 

n+11 n( - + (-1)1116
2n
rn+1 [-Sin(n-3/2)* 	

n 
+ 	Sin+1)fl } (5.4.3) 

It is sought to find a function 

C = J Wrdrdti; - f 	t. u. ds 
A 	s I 1 (5.4.4) 

in terms of the coefficients "A" and "g", and it is required that C 
1 
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is stationary (a minimum) with respect to the coefficients. 

For doing this it is necessary, at any point, to define the 

stress (a), this can be done as described in Section 

where 

a  so (o)T 
= Ear at art] a (al 	=[. 

a
rt 

4.3 

(5.4.5) 

the coefficients for the series can be represented as 

(A) (5.4.6) 

! 

and it is known as well that 

(a) 	= 	CO(r,t)](A) 

or . 

(5.4.7) 

(al = CyRA) 

and 

(5.4.7a) 

T 
W = 1 (a ) (€) 

where 

(el 	(C) (a) 	; being [C] 	-cte 

or 

(5.4.8) 

(5.4.9) 

W = z ( A IT  [cP fl  EC] Cy] (A) 

it is also knowithat 

(5.4.9a) 

u = fr Wrdrdt 

= z ( 	)T [c.p 	[C] 	[T]rdrdti (Al (5.4.10) 
J  A 

= 	A IT  [B] (Al 

and it has been shown (Appendix 5a) 
4 w 

u = 7LE ((-1)n1A2n-1rn  2[-(k+n-3/2)Cos(n-2)t + (n-i)Cos(n-5/3)t] 
`II  n=1 

-1  
+ (-1)n-182n-1rn  2E(k+n+1)Sin(n-l)t - (n-1)Sin(n-5/2)1] 

+ (-1)nA2nrn  [-(k+n+1)Cos nth + n Cos(n-2)t] 

+ (-1)nE2nr
n 
[-(k+n-1)Sin nor + n Sin(n-2)w]) (5.4.11) 



83 

v =
2 	

((-1)n-1A2n-1
rn-2  [-(k-n+3/2)Sin(n-1)11; - (n-i- 5/2)1y]-5/2)*] 

11 n_i  

n 1  
+ (-1)n-1B2n-1r--2

[-(k-n-i)Cos(n-z)111 - (n-1)Cos(n-5/2)C 

+ (-1)nA
2n
rn[-(k-1-n)Sin 	- n Sin(n-2)ii] 

+ (-1)nB2n
rn[(k-n+1)Cos nqt + n Cos(n-2)*] ) 

(5.4.11a) 

or 	Cu) = [V) = [e(r) t)] (A) 	 (5.4.11b) 

and specifying stresses on the specimen surface as tractions 
it 

(t) = 	 (5.4.12) 

t.u.ds 	( t. )T[0] (A )ois 
s' 1 1 s

a a , 

= I [t )T[e]ds(A) 	(R)T,A, 
	

(5.4.12a) 

a 
so 

= z ( A )T  [B] (A) - (R 	(A) 	(5.4. 

and by differentiating with respect to (A) in order to minimise, 

it is obtained 

	

[B] (A.) - (R) = o 	(5.4.13) 

The computer implementation of the program shown in Appendix 5c, 

used to obtain the solution to Equation (5.4.13), was developed 

using a finite difference method applied to the Taylor series. 

In this program, subroutine SET UP obtains BVEC as 

BVEC = f D.BDYLD.ds 	(5.4.14) 

where 	BVEC = [B] 

D = displacements of boundary points of the 

specimen 

BDYLD = Tractions applied to the specimen boundary 

points 

The numerical calculations within the program are actually done as 



84 

BVEC[NTRM] ED[NBPT,NTRM].BDYLD[I,NBPT] 

Where NTRM is the number of terms being considered in the 

expansion of the Williams' series 

NBPT is the number of boundary stations along the 

edges of the specimen. (Fig.5.3) 

I is equal to 1 or 2, depending on the applied speci-

men traction being considers [1 for x, and 2 for r traction]. 

The matrix D (displacements) is obtained as described in 

Appendix 5a and is given as 

D(I,N-3) 

	

	(-1)n-1rn-1([ (n-3/2-k)Sin(n-i)qr - (n-1)Sin(n-5/2)111]Cos* 

+ (n-3/2+k)Cos(n-1)11, - (n-1)Cos(n-5/2)flSintlf)BDYLD(M,N) 

D(I,N-2) = (-1)n-1rn-1([ (n+i-k)Cos(n-l)iit - (n-1)Cos(n-5/2)flCostl: 

- [(n+i+k)Sin(n-i)it - (n-1)Sin(n-5/2)flSir4)BDYLD(M,N) 

D(I,N-1) = (-1)nrn([(n+1-k)Sini, - Sin(n-2)11,]Cost 

+ E(n+1+k)Cost - Cos(n-2)111]Sin0BDYLD(M,N) 

D(I,N) 	= (-1)nril[E(n-1-k)Co0 - Cos(n-2)flCos* 

- [(n-1+k)Sintlt - Sin(n-2)]Sin0BDYLD(M,N) 	(5.4.15) 

and 

BDYLD(I,N) = t(I,N)/E' 	 (5.4.16) 

where 	N = number of the boundary station 

n = number of coefficients being considered 

E' = E(-1 + v) 
(r,41) = Polar coordinates at which stresses are evaluated. 

With relation to the actual application of the finite 

difference method to this problem, the main points are described 

below. 

To start with, a certain number of boundary points are chosen 

along the stressed boundaries, representing this boundary by the 

straight line shown below: 
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or 

	

Letx1c -x..Ar 	Ar + Alxk  - xi  

	

x.-x.1  = AL 	Ar - AL = xk  - 2xj  + xi  

The Taylor's series are given as 

1 f(x).f(x.)+Axf'(x)+1-Ax2f"(x)+ Axf'"(x )t... (5.4.17) 

from which, for consecutive points i,j,k 

1 
f 	f. + Arf' + 	-Arwfffl + 
k j 	j 	j 6 

f.
J 	

f. 
 J 

f. = f. - A/f'j 
+ iLef"j  - 6 	j j  

considering these functions up to the second term only, 

(5.4.18) 

(1) 
	

a f
k 

+ b f. + c f. = f'. 	(5.4.19) 

is cbtainea 	A/  = 
where 	a Ar(Ar + AL) 

Ar  
b 	A/(Ar + AL) 

Ar-AL  c - 
ArAL 

and 	a + b + c 0; Ara - A/c = 1; Ar2a + A/2c . 0 

(5.4.20) 

(2) 	a f
k
+b f. + c f. = f", 	(5.4.21) 

where 	
1  

a  - Ar(Ar + AL) 

b = - 1 
ArA.e 

(5.4.22) 

c _ AL(Ar + a) 

In cutting the Taylor series to the second derivative, it can be 

demonstrated that the error obtained in evaluating the function, 

is proportional to A
4
. 

The former equations have slightly different applications 

along the specimen boundary, i.e. 
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(a) First station. 

(b) Intermediate stations. 

(c) Last station. 

For first station the analysis is applied to 

A g_ 

O 4 2 	 'X- 

- Fq Fo 
= f1(Al 

	
38r 

+ 
r 4Ax ) 	f 

2 (
L 8E 

2Ar 
 ) (5.4.23) 

and the correspondance between the former work on D and this is 

f
1 

= D(1,j); 	f
2 

= D(2,j) 

For intermediate stations 

6r 
1 

a 

 

t 
F - F = f.(1/48A/)(-5A/2  + 5Ara + A/2) 
q p 

+ f
k
(1/48Ar)(Ar2  + 5Ara - 5a2) 	(5.4.24) 

+ f.(1/48Ara)(5Ar2  + 18Ar2A/ + 18ArA/2  + 5A/3) 
J 

where 

f. = D(N-1,j); f. = D(N,j); 	fk 	D(N + 1,j) 

and finally for the last station 

(c) 	
aQ 	 Lt" 

(b) A g_ 

  

 

- 

3 Ar2 	A
8 
 / Ar 

AL 
 2 

F - F = f Fn 	p 	(n-1) (Ar + 8 	
+ TAT) + f (n-2) (A8 	L12 

 ) 

(5.4.25) 

where f(n-1) 
 = D(M-1,j) and f(n-2) = D(M-2,j) 

and M = total number of boundary stations. 

So expression (5.4.15) is implemented and solved by means of 

subroutine SOLVER, and applied to obtain values of the coefficients 

An
,B
n 
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5.5 Test Cases, Results and Comparison against Methods  

Already in Use  

Convergence test for program ANGCRK. 

In applied mathematics, it is quite common to initialise 

the process of obtaining the solution to a problem, by starting 

with an approximate solution which does not quite satisfy the 

boundary conditions and then adjusting it until it does. In 

the science of Fracture Mechanics, this process has been called' 

"boundary'collocatiorY, and the solution already described in 

Section 5.4 is a kind of boundary collocation technique in the 

sense that the data that are being considered for the solution 

of the problem are the applied loads on points at the boundaries 

of the specimen. 

For the boundary collocation methods, there is no general 

proof for their convergence, thus it does not necessarily follow 

that the terms in the series expansion stabilise as the number 

of terms increase, so the accuracy of solution to a given problem 

can only be estimated by repeating the analysis for an increasing 

number of boundary points until the change in value of the terms 

become insignificant. Convergence within the present work was 

tested as follows:- 

(a) convergence with respect to the number of terms in the series; 

(b) convergence against the number of boundary stations. 

The actual value of the coefficients A
n 
for the stress 

series, depends on the number of coefficients considered in 

solving the system of equations. As the number of terms is in-

creased the real value of the coefficient is approached. To 

find out which value is the correct one, the curve(A
n vs n)should 

be plotted and stabilisation looked for. Another way to approxi-

mate the real value is by fixing a AA
n 
for successive values of 
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the number of terms. This was done and 20 terms proved to be 

an acceptable value. 

Fig. 5.4 shows the convergence curve for Al  and Ki/Prria 

obtained for two different specimens, i.e. 2.2 x 1.0 x 0.32 

as in Gross (1964),, and 12.0 x 1.0 x 0.32 as in Benbow (1957). 

It can immediately be seen that for a relationship 2/W small, 

the value of the coefficient A
l 

stabilises quite well for a 

small number of boundary stations. This is not so for the 

specimen 12.0 x 1.0 x 0.3/, which requires approximately 

200 boundary points to stabilise. 

A whole range of crack lengths, to simulate Gross' work 

(1966) was run and results are reported in Table 5.1. The 

values obtained with the present method agree completely with 

those by Gross. 

Finally on the same topic, specimens with dimensions 

12.0 x 1.0, 8.0 x 1.0, 6.0'x 1.0, 4.0 x 1.0, 2.2 x1.0, and 

crack lengths 0.32 were simulated for 198 NBPT (NBPT = number 

of boundary points), the value of the parameter KI/P Ina was 

calculated as described later .on within this Section 5.5, and - 

results are shown in Table 5.2. 	For all cases, the results 

from the present method are between those obtained by Gross 

(1964) and the ones obtained by Hayes (1970). 

Test cases, results and comparison against other methods already 

in use. Once a test for convergence was made, different cases 

were chosen to test the program developed. Work done by Wilson 

(1965), Gross et al (1964) and Hayes (1970) was taken as a reference. 

W.K. Wilson (1965) used a collocation method and the 

Muskhelishvilli complex variable method to determine the stress 

intensity factor for the standard Manjoine specimen, and com-

pared his results against those obtained from an experimental 

compliance method. 
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The dimensions of the specimen he simulated are given 

below, 

= 9/8in • a = lin 

= lin 	T = 1in 

W = 17/16in D = 5/16in 

A . 7/16 in B = lin 

and three different cases were considered, i.e. 

Case 1. H/L = 0.444 and a/L . 0.347 

2.  H/L = 0.444 and a/L = 0.444 

3.  H/L = 0.444 and a/L = 0.587 

The shape for a bidimensional computer simulation becomes 

2,14 

L 

With a constant unit 	width and either plane stress or 

plane strain defining the state of stress, only dimension ”ar is 

to be altered for each case simulated. The values of'a"are 

aI. = 0.39, 	a2  = 0.5, 	83  = 0.661 

The three cases were set on program ANGCRK and the values 

of the first coefficient of the Williams series, stress intensity 

factor (KI  = - Al p), and dimensionless parameter (Kifd/P) 

obtained were, 
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Case 1 Case 2 Case 3 

Al 
  

- 12.261 - 14.883 - 21.615 

KI  17.33 21.05 30.55 

K1 vrc/P 10.82 14.89 24.80 

The load used for the simulation carried out under the 

present work was 100lb. As this value (P) appears as an in-

verse factor on the values given in Wilson's paper, it is 

necessary to consider the relationship between any of the above 

values and the corresponding one in Wilson's paper, say the 

second case; so 

6.305/14.89 = 0.424 

Using this factor for the three cases:- 

Case 1 = 10.82 x 0.424 = 4.59; Case 2 14.89 x 0.424 = 6.305; 

Case 3 24.8 x 0.424 = 10.52 which can be compared with Wilson's 

values as shown in Table 5.3 	where DIF is the difference 
1 

encountered between the complex method and the collocation 

method, while DIF2 
is the difference of the complex method against 

results obtained with program ANGCRK. As can be seen the differ- 

ences are within the same limits and so it can be concluded 

that the present computational approach is an acceptable one. 

It has to be pointed out, as well, that Wilson's results are 

backed by experimental work which is reported in ASTM 410. 

Hayes (1970) using a finite element technique obtained 

the stress intensity factors for a series of plate length to 

width ratios of 2.0, 4.0 and 6.0. It was decided to simulate 

this work and the results obtained are shown in Fig. 5.5. 

A dimensionless parameter (K2W/P2) is applied to the results 

for the present work. Gross et al (1964) mention that for 

their work, "P" is the load per unit thickness, this point is 

not very clear as the approach is bidimensional and 
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supposes a unit 	thickness. In analysing results, it 

was concluded that this load P, for the program ANGCRK, is the 

value of the transverse load applied on each one of the boundary 

points, i.e. per unit width so for specimen 12 x 1, the values 

Of the dimensionless parameter KI
/o- r—ca (where a ,--_ P) are as 

follows: 

NBPT K
I  

a P K
I
/P
1 

rFa 

100 2.24 3.6 2.5 0.913 

162 2.15 3.6 1.429 1.5603 

200 1.94 3.6 1.25 1.604 

It can be seen that the value of the dimensionless para-

meter converges to around 1.6; this is in agreement with Gross' 

values for his specimen 2.2.x 1.0 and his statement that the 

curve [101,42/P2  vsa/w] (equivalent to [KI/PiTE vs .P/d] for 

Haye's cases) can be applied to any //d value greater than about 

0.8. The values obtained by the three different methods are 

Gross 

1.6628 

Hayes 	Present Method 

1.5796 	1.604 

this also seems to indicate that Hayes was right in his statement . 

that the correct value of KI 
could be somewhere between the 

values given by Gross and those calculated by him. 

5.6 Computer Simulations of Work done by Cotterell 

In trying to reproduce work done by B. Cotterell (1970) 

differences in the results were obtained in the values of the 

terms corresponding to the coefficients of the power series. In 

Cotterell's paper the following values are given. 

*Table 5.4 gives the whole set of results for different crack 
lengths. 
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2/W A
1 
 /(P/D) A

2
/(P/D) A

3 
 /(P/D) A

4
/(P/D) 

0.2 2.543 0.728 - 1.704 0.156 

0.3 2.554 1.444 - 2.826 0.186 

0.4 2.775 2.093 - 4.340 0.182 

0.5 3.260 2.774 - 6.851 0.180 

0.6 4.210 3.564 -12.150 0.448 

0.7 6.167 5.296 -26.860 2.250 

while the values obtained for computations made with program 

ANGCRK are 

2/W A1  /(P/D) A2/(P/D) A3/(P/D) A4/(P/D) 

0.2 2.190 0.241 - 0.693 0.187 

0.3 3.295 0.579 - 1.191 0.210 

0.4 4.780 0.885 - 1.870 0.194 

0.5 7.000 1.187 - 2.950 0.208 

0.6 10.800 2.52 -11.580 0.358 

0.7 18.230 2.52 -11.580 0.358 

Having found this difference in the results, it was noticed 

that the series presented in Cotterell's paper and that on 

which program ANGCRK is based, are slightly different, that 

is:- 

a 	values - the series used within program ANGCRK is given as 

rn-3/2(n-4)[(n+2)Cos(n-3/2),1 - (n-3/2)Cos(n+i)fl (5.6.1) 

rn-3/2(n-i)[(n+2)Sin(n-3/2) 	- (n+2)Sin(n+1)1] (5.6.2) 

rn-1n[(n+1)Cos(n-1) 	- (n+.1)Cos(n+1)1J (5.6.3) 

rn-1n[(n+1)Sin(n-1) 	- (n-1)Sin(n+1)1111 (5.6.4) 
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where(5.6.1) and (5.6.3) are the terms corresponding to the 

symmetric case, i.e. coefficients A1,3,5.. 
and  A

24,6.., 

while (5.6.2) and (5.6.4) are those for the antisymmetric case 

(coefficients B1, B
2)0 

Taking the symmetric case and substituting values of n = 1,2, 

the following results are obtained. 

Coefficient 	Function * 

Al 	4 ,rr [3 Cos 2 	2 
+ Cos 21] 

2 sin2if = 2(1-Cos 211) 

3r2  
[3 Cos 1  + Cos 11  ] 4 	2 	2 

A
2 

A
3 

(5.6.5) 

(5.6.6) 

(5.6.7) 

A
4 	

6r [Cos * - Cos 3 ilr] 	(5.6.8) 
As shown below all these terms, except the one for A3, 

are equal to those given by Cotterell. For A3  the terms are:- 

[5 Cos III + Cos 11  ] 
2 

[3 Cos + Cos -51] 
2 

Cotterell's 

Program ANGCRK 

This difference also exists for a
r and are. 

It is thoughtthat as results obtained with the present 

method are in full agreement with those obtained by Wilson (1965), 

Hayes (1970), Gross (1964), it can be concluded that the series 

being used here is correct. 

A further point to be made here concerns the correspondence 

between the coefficients used within this work (Ans
) and those 

in Cotterell's (A
nc), i.e. 

-it A
1s 

. A
1c 

where "2" is the length of crack extension. 

4 A
2s 	

A
2c 

3 /2 A3s  A c  

- 42A
4s 

= A
4c 

(5.6.9) 

(5.6.10) 

(5.6.11) 

(5.6.12) 
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The approach is as follows 

-A1  proportional to KI 
K lim 

r-4>o 
(5.6.13) 

A 
KI lim 	' 	4 1r r->o 

[-3Cos f 11 - Coss 31+ O[r°]) 2 

= lim r2F [7,7 [-3(1)-1] + 0(r°) 
r->o 

lim 	- A + 0(r9 )) 
r->o 

K 	- A1  Iffie • 

KI  - A1  f 	Al /7- 
a/77 a a riffa 	a 	a 

(5.6.14) 
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CHAPTER 6  

EXPERIMENTAL WORK AND COMPUTATIONAL SIMULATION 

ON DIRECTIONAL STABILITY OF CRACK PROPAGATION 

6.1 General Characteristics and Specimen  

The present section aims to describe the design of 

experiment, rig, and computer simulation. Under the study 

being carried out one is concerned with establishing the con-

ditions that improve directional stability of crack propagation 

and implement them practically; a second objective is the 

simulation of the experiments by means of a computer. 

Gurney and Hunt (1967) have discussed the main factors to 

bear in mind when selecting the test specimen, most of them are 

concerned with the recording of the load-displacement history 

in order to evaluate the energy put into the process. Even 

though the objective of the present work is basically different, 

it is interesting to note that most of those conditions are 

satisfied by choosing rectangular test specimens with either 

edge cracks or central cracks. It is recognised, Barr (1968),  

that uniform rectangular specimens with central cracks give 

better results than specimens with edge cracks. He found that 

there is a tendency for the crack to run out uncontrollably 

when it starts off as an edge crack. This had already been re-

ported by Benbow and Roesler (1957); Berry (1960) and others, 

who proposed different ways to avoid this problem such as apply-

ing transverse load to the specimen, Benbow and Roesler (1957), 

SvenSsQn(1966); groove the specimens in the direction the crack 

is required to propagate and/or change the specimen geometry, 

Barr (1968). The work done under the present study, and 

described in the previous sections, has led to choosing a specimen 
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with a single edge notch, 	so for the experimental work it 

is necessary to overcome this tendency to run out and it is 

obvious that the application of transverse load is the most 

suitable method to control cracking under the present work. 

It was decided that Perspex (PI1N4)  is a good material 

for the study of crack propagation. Some of the reasons for 

selecting it are: the material is brittle; easy to obtain and 

fairly cheap; easy to machine especially the initial slot from 

where the crack starts; it has photoelastic properties that 

could facilitate, if desired, a wider study of the stres 

field; as the material is transparent it is very easy to follow 

the crack path. 

6.2 Experiment Design and Rig Design  

In order to assess the correspondence between experimental 

and theoretical work it is absolutely necessary to establish 

which is the best set of circumstances that will produce the 

expected material behaviour and how this behaviour matches the 

theoretical approach. The selection of this set of circumstances 

concerns the experiment design, while for the rig design, one 

is concerned with the physical implementation of the conditions 

depicted by the above set of circumstances, by means of 

mechanical devices. 

The objectives of the experimental work to be performed can 

be described as:- 

(a) reproduce work done by Benbow and Roesler (1957), 

(b) measurement of the loads applied to the specimen, 

(c) assessment of the direction of crack propagation for 

different loading conditions, 

(d) contemplate the possibility of analysing the specimens 

photoelastically, 
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(e) test, in conjunction with computer work, the possible 

correspondence between the second coefficient of the 

Williams' stress series and directional stability of 

crack propagation. 

Work done by other researchers, as well as that described 

in Chapters 4 and 5 of this study have already shown that the 

cleavage specimen is the one to be considered, the relevant 

information about it is given hereafter. 

Specimen: 	Cleavage specimen (single cracked edge plate) 

Dimensions: 	Maximum 12 x 4 x 1/4 (in) see Fig. 6.1 

Minimum 4 x 1 x 1/4 (in) 

It should be possible to cover the whole range 

of dimensions between these limit values. 

Loading: 	(a) Transverse load: Maximum 500 lb/ins  

(Compressive) 

(b) Opening load: Maximum 600 lb 

Minimum 0 lb 

(c) Load to be applied independently. 

Other 	Constraint against buckling for narrow specimens, 
Limitations: 

rigidity of the rig is essential, availability 

of accessory equipment and apparatus to calibrate 

and operate the rig has to be considered. 

Very many problems were encountered during the design 

stage and most of them were solved satisfactorily. The rigid 

straining frame shown in Fig.6.2 was developed. By means of 

this frame, load is applied to an initially rectangular specimen 

which has a slot cut into it along the centre line parallel to 

the longer edges. The end of this slot is cut into a swallow-

tail shape with a sharp blade. This system was devised in order 
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to achieve control of the cracking process, provision was made 

to apply compressive transverse load so that direction of crack 

propagation could be controlled. The splitting force is trans-

mitted to the specimen through a set of pins passing through 

four specimen-holding blocks (two of them instrumented with 

strain gauges). These blocks are forced apart by a calibrated 

screw with right and left hand threads which in rotating induces 

the separation of the blocks. The load is measured by means of 

the strain gauges on the blocks. The compression force required 

to control the crack path is applied by means of eight individual 

fingers, at the far end of the plate, which are driven by 

horizontal screws. Each finger is instrumented with a couple 

of strain gauges in such a way that any bending stress applied 

is suppressed. This feature allows a good control of the whole 

stress field. 

In all, some 20 strain gauges are used for measuring the 

magnitude of opening load and eight pairs for the transverse 

loads. As the measuring equipment provides half a wheatstone 

bridge, it was necessary to provide dummy gauges to build up 

the half bridge needed (28 half bridges). The calculations of 

stresses for the measuring points of the rig are given in 

Appendix 6.a.In brief, the most relevant parts of the rig and 

their function are: 

Piece No. Named 	 Function  

   

3 	Opening load cell 	Plate that contains a set of 
five cantilever beams through-
out which load is applied. 
Strain gauges are conveniently 
located on these beams to 
measure opening load. 

5 	Opening bolt 	Double threaded screw to drive 
the opening movement of 
plates No.3. 
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Piece No. Named Function 

9 Lateral blocks Blocks to prevent buckling 
of the specimen. 

10 Base frame Frame to support the whole rig. 

13 Transverse load cell Elements to measure transverse 
load 

27 Transverse bolt Screw to apply transverse load. 

1 Opening frame Frame to hold opening load cells. 

12 Transverse frame Frame to hold transverse load 
cells. 

6.3 Experimental Data, Description and Results  

Apparatus  

(a) Instron Tensile Testing Machine 

Model TT-C, capacity up to 10,000 lb. 

(b) Data-Log with a capacity up to 100 Whzatstone bridges, 

facilities to make gauge readings of up to 4 readings/sec, 

and accessory equipment to record either by printing or 

punching the readings. 

Riq calibrations  

Two types of loads have to be calibrated. 

(a) Transverse load. The transverse frame holding the eight • 

transverse load cells was mounted on an Instron machine, the 

strain gauges on the load cells were connected to a "data log" 

(instrument for the automatic recording of the strains developed 

in the load cells). Each individual element was calibrated under 

compressive load. The results of these calibrations are shown 

in Table 6.1a and Fig.6.3a. The response of the measuring 

elements was an excellent one and no deviations from the ex-

pected linear behaviour were detected to within 2%. Photographs 

(Fig. No.6S)show the experimental calibration detail. 



100 

(b) Opening load. The same procedure was used as with the 

axial frame, but unexpected behaviour was detected and two 

kinds of problems became apparent. One was that the fit be-

tween the moving pieces was not as good as expected, and the 

second was that it was extremely difficult to simulate accurately 

the combined opening-transverse load needed to calibrate the 

beams, and extraneous effects were recorded. Problem one was 

easily overcome but it was not possible to solve the second 

one totally, and a rather poor calibration was obtained. 

As the calibration of the rig for the transverse load was 

successful it was decided to perform. .a whole set of experiments 

under these circumstances and later on use the computer to scan 

the zone of possible values for the opening load. Discussion 

of this work is given in• Chapter 7. 

Later on a modification to the rig was made. By then it 

had been found (Section 6.4) that it was not necessary to 

determine wholly the distribution of the opening load along the 

edge of the specimen but just its total magnitude, this simpli-

fied the modification needed to measure opening load. This 

time, the opening bolt was instrumented with four strain gauges 

put in such a way that two of them measure axial strain and the 

other two determine any torsional strain so, if required, the 

stress system could be theoretically analysed, this was not 

necessary as the calibration proved to be a successful one.' 

Another set of experiments was done and results and discussion 

are presented in Chapter 7. 

Experiments and operational description  

Two types of experiments were performed. 

(a) Specimen under opening load plus transverse load. 

•See Table 6.1b and Fig.6.3b. 
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(b) Specimen under opening load and no transverse load. 

Under experiment (a) the procedure was as follows: 

(1) Obtain an approximate value of transverse load under 

which one could expect straight crack propagation, this was 

done by means of results reported by Benbow and Roesler (1957). 

(2) Under no load, all the load cells were set to zero 

reading (it was found that this could be done within + 2 

micro strains). 

(3) Apply the transverse-load, determined in (1). Through 

the transverse load cells. 

(4) Record the readings for transverse load. 

(5) Apply opening load and print the readings. Usually 

readings were taken while load was being applied. This was 

repeated until it was noticed that the crack started to extend, 

then continuous readings were taken until the rate of crack 

extension was so small as to seem that crack propagation had 

stopped. (No detectable crack growth after five minutes.) 

In experiment (b) the same procedure was followed but 

for point 3. 

Specimens 12 x 4, 8 x 4, 6 x 4, 4 x 4 (in) were tried and 

the complete loading records are given in Tables 7.7 to 7.11 

Fig.7.17 show the loading history for specimen No.6/4 and 

discussion about it is made in Section 7.4. 

6.4 Computer Simulation of Experimental Work and Results  

In Section 5.4 the work done to develop the program to 

calculate the coefficients for the Williams' series has been 

described, in order to obtain these coefficients, the data 

required is; load applied on each boundary point, Young's modulus 
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Poisson's ratio and specimen dimensions. For the experimental 

work it is known that there are five precise points on which 

load is applied; as the coordinates of boundary points, as 

calculated with the computer program for the different specimens, 

will not always be coincident with those from the experimental 

work, it was necessary to test, with the computer, the effect 

of different loading on the values of the coefficients. This 

is reported hereafter. 
M1 

Effects of load applied on different boundary points  

Five cases were considered, Fig. 6.4 shows schematically 

the physical description and loading conditions are described 

below. 

General conditions. A transverse applied stress of 400 lb/in2. 

Specimen dimensions 12 x 4, crack length 

3.6 in. 

Particular conditions. 

(a) Total opening load, 100 lb applied on the boundary 

point of the cracked edge, the nearest to the crack surface. 

(b) Total opening load, 100 lb applied on a boundary 

point half way on the cracked edge. 

(c) Total opening load, 100 lb applied on the boundary 

point of the cracked edge, farthest away from the crack surface. 

(d) Four loads of 6.25 lb applied on boundary points at 

the neighbourhood of the crack face plus three loads of 25 lb 

applied on points at the edge further away; the coordinates of 

these seven points were approximately those of the real experi-

mental specimen. 

(e) The opening load is applied as a uniform stress on the 

edge; total opening load magnitude is 100 lb. 
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The values obtained for the first three coefficients of 

the Williams' series, are shown in Table 6.2. In relation 

to these results the first fact to be pointed out is that the 

computer formulation is critically sensitive to the application 

point only for that point the farthest away from the crack 

plane. 

It is considered that the values obtained for case (e) are 

the best ones. It can also be observed that the coefficient 

values are directly proportional to opening load, and for the 

different cases being the same load applied along the same 

direction, all values should be equal to those of case (e) 

(differences for cases (a) and (b) can be considered negligible 

and a consequence of the behaviour described below). 

Case (c) is the odd one, it is thought that the great 

difference encountered between the values for this case and 

those for the others is because the position of neighbouring 

points to that on which load is applied, influence the results 

obtained; for case (a) this is not as critical as there are no 

boundary stations on the crack face, but for case (c) one of 

the neighbouring boundary points is along the upper specimen 

edge and its X coordinate is an influencing factor. 

In reference to case (d), the values obtained are a con-

sequence of the point just discussed. In order to gain a better 

understanding about the computer program response, this case (d) 

was treated in two ways: 

(i) as described; 

(ii) as seven individual cases, four of these cases had one load 

of 6.25 lb applied to a different point, and the other three 

had a load of 25 lb applied on other points. 
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The superposition of effects under (ii) should reproduce case 

under (i), this was so, and data and results of these seven 

cases are given in Table 6.3. 

It is immediately apparent that allowing for the already 

described behaviour for the extreme points, the addition of the 

coefficients for cases 1 to 7 is approximately equal to case (e). 

In relation with A
2 
it has to be remembered that its value is 

proportional to both opening load and axial (this point will be 

discussed further in qhapter 7), so if it is desired to obtain 

the value of case (e) from these seven cases, only those parts 

of A
2 proportional to opening load should be considered, plus 

one of the parts proportional to the axial load. 

Additional work was done in connection with the influence of 

Young's modulus on the coefficient values. Some cases were run 

with the same data but different values of Young's modulus. 

The results obtained show that Young's modulus has no influence 

on the value of the coefficients, (most probably this should be 

clear from theoretical analysis, but this author has made no 

attempt towards probing this point). 

Finally, the conclusion from this section is that the experi-

mental work can be correctly simulated in the computer by 

applying a uniform stress along the edges of the specimen, which 

is equal in magnitude to the total opening load. 

The specimens tried experimentally were all simulated with 

the computer program, and a whole range of crack lengths up to 

0.9/ with a load of 10 lb was done for specimens considered. 

Coefficient values for these cases are shown in Table 6.4 and 

depicted in Fig.7.5. Analysis of these results is done in 

Chapter 7.1. 
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6.5 Computational Determination of Parameters Defining  

Criteria for Direction of Crack Propagation  

Up to now the work done in this study seems to indicate 

a straight correspondence between A2 
(second coefficient of the 

Williams' series) and direction of crack propagation, further 

discussion related to this point is given in Chapter 7. 

Here, the computer implementation for evaluating criteria of 

directional stability for crack propagation is discussed. 

For Brittle Fracture in an isotropic material under com-

bined stress, Griffith (1924) stated that the "general condition 

for rupture will be the attainment of a specific tensile stress 

at the edge of one of'the cracks". This is in fact the maximum 

normal stress criterion of fracture, which assumes that the 

crack moves along a path normal to the direction of greatest 

tension so that the component of shear stress on the line of 

expected extension of the crack is zero. Erdogan and Sih (1963) 

obtained results that checked reasonably well with this criterion, 

later on Cotterell (1966) and Pook (1971) confirmed the former 

work. More recently, Williams and Ewing (1972) have shown that 

data on direction of crack propagation can vary substantially 

depending on a critical distance from the crack tip where 

measurements were made. The second criterion to be considered 

is that due to Sih (1973), the S criterion, even though this 

one is not as yet fully tested. One of the basic concepts of 

the S criterion is that fracture initiates from an interior 

element near the crack tip. According to this criterion, 

incipient fracture is reached when the strain energy density 

factor at this interior element attains a critical value, "Sc
", 

characteristic of the material under consideration. In both 
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cases, Williams and Ewing with 	and and Sih with S, the approach 

to the problem is to obtain the maximum value of the critical 

parameter by differentiating the expression that defines it and 

equating to zero, i.e. 

dPc - 0 (6.5.1) 

 

where Pc 
= a* 

for Williams, and S for Sih. Since Pc 
f
(r,t) 

Williams and Ewing define a critical distance, r, which should 

be a material characteristic. Sih chose to analyse the fracture 

field defining a finite core region, surrounding the notch tip, 

such that r is not allowed to be any smaller than ro, which he 

relates to properties of the material and nature of deformation. 

So for both cases, it can be considered that Pc  = f(*), and 

through Equation (6.5.1), it is straightforward to obtain the 

value of t for which Pc 
is stable (maximum). 

In this work, obtaining the values for these criteria will 

follow a different approach, ie. define ro  and search for the 

maximum by means of a numerical method. So the function to be 

considered as a criterion is either 

a = E 0-1)n-1rn-3/ 2A 	(n-4) 
n=1 

2n-1 - 

[( +1)Cos(n-3/2)t - (n-3/2)Cos(n+i)t] 

+ (-1)nrn-1A2n 
n[(n+1)Cos(n-1)t - (n+1)Cos(n+1)t] 

(-1)n-1rn-3/2B 	(n- 
2n-1 	

2)[(n+2)Sin(n-3/2)* - (n+i)Sin(n+1)*] 

+ (-1)nrn-1B
2n
n[(n+1)Sin(n-1)t - (n-1)Sin(n+1)t] ) E  

1+V 

(6.5.2) 

or, as given by Sih (1973) 

2 	(a -a )2  -+ 4a2  ] S = 	[(1-2v)(yay) + y  x 	xy 8p, 
(6.5.3) 
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So in order to determine direction of crack propagation it 

is necessary to determine the r coordinate characteristic of 

the material and obtain the value of * for which the criterion 

under consideration (either a*  or S) attains a maximum, and 

provided this maximum is equal to or higher than a or S c 

(depending on which criterion is being used), characteristic of 

the material as well, the crack will propagate in that specific 

direction. 

It has been shown that the stress field in the crack 

neighbourhood is depicted by Equations 4.3.3, 4.3.4 and 4.3.5. 

These equations are repeated here for convenience. 
00 ((...1)n-1rn-3/2 A

2n-1(n-1)[(n-3/2)Cos(n-3/2)* n=1 

- (n-3/2)Cos(n+1)*] 

+ (-1)nrn-1A
2n n[(n-3)Cos(n-1)* - (n+1)Cos(n+1)11/1 

+ ([1)n-1rn-3/2b2n_1(n-i) Un-7/2)Sin(n-3/2)* 

- (n+l)Sin(n+1)*] 

+ (-1)nrn-1b
2nn[(n-3)Sin(n-1)* - (n-1)Sin(n+1)*]] 

r  E 
L1+vJ  

a 	0-1)n-1rn-3/2A 	,n_ 
1-)E(n+-DCOS(11-3/2)* = 

 n=1 	2n-1 2  

(6.5.3) 

- (n-3/2)Cos(n+1)*] 

+ (-1)nrn-1A2nn[(n+1)Cos(n-1)* - (n+1)Cos(n+1)*] 

(-1)n-1rn-3/210  
2n-1( i)[(n+l)Sin(n-3/2)* 

- (n+2)Sin(n+1)*] 

+ (-1)nrn-1b2nn[(n+1)Sin(n-1)* - (n-1)Sin(nt1)*] I 

(6.5.4) 
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tr 	R  n=1 
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n[(n-1)Sin(n-1)i;,  - (n+1)Sin(n+1)0] 

n 1 n-3/2 
+ (-1)--  r 	b

2n-1
(n-1)Cos(n-3/2)11 - (n+2)Cos(n+1)*] 

+ (-1)nrn-lb
2n

n[(n-1)Cos(n-1)111 - (n-1)Cos(n+1)*] 1 

[l
_Ev] 	 (6.5.5) 

Sih (1974), Chose to ignore the terms of higher order 

than one as their contribution for r << (than a characteristic 

length) is negligible in comparison with the 1/,rr terms; in 

the present work, all the calculated coefficients (about 20) 

for the Williams series are considered, and the directional 

stability criterions are evaluated from Equations 6.5.3, 6.5.4, 

6.5.5. 

Within the crack stress field, there are an infinite number 

of points in which the criterion function can be evaluated, 

and for localising the critical one an optimization approach 

should be employed. The author collaborated with Swedlow (1974) 

in the development of a computer program to search for the 

critical value of the function that defines directional stability, 

and a brief description of this approach is made hereafter. 

Mathematically, there are two ways to achieve the desired 

objective; 

(1) Indirect methods, in which the first and second derivation 

of the function are evaluated and from them the maximum is 

obtained. 

(2) Direct methods (specifically elimination),, in which the 

value of the function is calculated, and as information is 

accumulated one moves into regions where the maximum may lie 

and eliminates areas where it cannot be. 
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The elimination technique called the Golden Section, 

Wilde and Beightler (1967), has been employed to develop the 

computer program to determine the parameters desired. Some 

of the basic conditions needed to apply a method such as the 

one mentioned are:- 

(a) It is desirable to have but one variable as 

elimination methods are extremely effective then, so it was 

decided to fix "r" and vary "*". 

(b) The function should be an unimodal objective function 

defined in a closed region. Suppose that we wish to find the 

location X• where y(x) achieves its maximum value y* in an 

interval A < x < r. The unimodality of y(x) assures that there 

is only one local maximum, more precisely, y(x) is assumed to 

increase monotonically up to the maximum, after which it de-

creases monotonically (unimodal here does not require smoothness 

or even continuity). Strict unimodality makes it possible to 

say, after examining the results of any pair of evaluations of 

the objective function, that the maximum lies in some interval 

shorter than the original one. 

Having examined the function and decided that it can be 

treated by an elimination method, one has to establish the 

initial interval to evaluate and from there start searching for 

a maximum. Of course it is not known in advance how many 

evaluations to use and the procedure is usually to change the 

variable and keep experimenting until the change in value of the 

criterion of interest is negligible. A procedure like this 

would produce the desired result but would not be an efficient 

one. It is necessary to use a search plan so that the solution 

will close on the maximum as quickly as possible in the search, 
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and the already mentioned Golden Section search is such a 

technique that, being completely independent of the number 

of evaluations, is highly efficient. In it, if one represents 

by "j" the number of experiments already run, it can be 

demonstrated that the experimental plan should place success-

ive experiments in such a way that the interval "I" between 

successive experiments is given by 

n-jn-(j-1) 	In-(j-2) 
1 

. I 	+
1 (6.4.1).  

Actually, what is done by this technique is to hold the ratio 

of successive intervals constant; calling this ratio a, 

n-j I1  
In-(j -1) 
1 

a (6.4.2) 

by dividing equation 6.4.1 throughout by I
1 (j-1) and noting that 

In-(j+1) 
1  
In-(j-1) - 
1 

2 

it is found %2  = 	1 as shown in the diagram below 

In-(j+1) =%2n -(j -1) 
1 

In-(j-1) 	in-i 

Only one root of this equation is positive, and so it is seen 

that 

.1. 	1 + /5  
2 

The results of two experiments determine which segment is explored 

further, and the remaining segment will contain one of the previous 

trials and to continue the search it is only a matter of placing 



the next experiments symmetrically in the interval. After n 

experiments, the interval remaining is given by 

In _ 1  
n-1 

a 
so it is a matter of deciding which is a satisfactory minimum 

interval and performing a series of calculations on the 

criterion proposed until the maximum value of the function is 

obtained. Program Hunter (Appendix 6) was developed as 

described; data for it are specimen dimensions, coefficient 

values, stress state, and material constants. 

The values of the critical parameter and the crack 

extension angle for specific values of the radius were obtained 

for some of the specimens and are given in Table 6.3. Further 

discussion on these results is given in Section 7.7. 
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CHAPTER 7  

COMPUTER AND EXPERIMENTAL WORK ON  

DIRECTIONAL STABILITY OF CRACK PROPAGATION  

In this chapter a summary of computer and experimental 

work on Directional Stability of crack propagation is pre-

sented, and the relationship between the two sets of results 

are discussed. 

Computer study is made of cases that can be checked experi-

mentally, the results obtained are interesting and the 

correlation between experiments and computation seems to be a 

good one. There is, as well, some computer work that cannot 

be verified experimentally with the rig in its present state. 

However, provided the co-relation of the former work is a good 

one, tentative conclusions can be drawn purely on the basis of 

the computer work. 

Independent analysis either from the computer simulation 

on the experimental work is made and discussions are, presented 

on directional stability of crack propagation and other para-

meters already put forward by previous researchers which help 

to explain the phenomena that seem to be taking place. 

7.1 Analysis of Simple Approaches to Define Directional  

Stability of Crack Propagation  

Some of the earliest work done with the program ANGCRK 

was directed at obtaining the first coefficient values (speci-

fically A1, A2, A3) for a pair of specimens geometrically similar, 

i.e. dimensions 12 x 2, and 6 x 1 (Fig.7.1c), with the crack 

running up to 5/6 of the full length. The results are depicted 

in Figs.7.la,b. The values for the coefficients, as well as 

cracking conditions, are given in Table 7.1. 
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Cotterell's (1966) original approach was that only negative 

values of A
2 

would mean that the crack is directionally stable, 

so according to the values obtained, both cracks are unstable. 

However, a conclusion here could be that there is a higher 

instability for specimen 12 x 2 than for specimen 6 x 1. 

(Some work carried out at Imperial College on steel, for speci-

mens which are geometrically similar, i.e. dimensions are 2:1, 

have given results showing that smaller specimens are more 

stable, that is, proportionally the crack runs straight farther. 

This seems to agree with the computational work on A2.) 

A simple approach to this work, to try to explain the 

difference in A
2 values, was made. By using beam theory, the 

stress values at the crack tip, in the longitudinal direction 

(along X), are 
S 

II 	1 1 	1 1 

y  

1 	I 1 1 	1 	1 	...1,- 

SY-] 7Ib  
ax = a(S ) "(S  
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2
/b

2 

X 	
. b y  

 

  

a
x 

= 3 S a2/b2  - S 
 

and for the different crack lengths, the stress values are 

identical, as for both the relationship between a and b is kept 

constant. This approach through ax  was tried because it was 

thought that the difference between values of A
2 
for similar 

specimens was due to a possible difference in the stress value 

along the X axis, however, it seems that consideration of only 

a
x through beam theory cannot account for the differences in A2-

values, so some other condition has to be considered. 
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Cotterell (1970) suggested a similar approach to define 

directional stability, i.e. "if ay/ax   > 1, the crack is 

directionally stable". In order to test this, it was decided 

to apply the loading conditions, described by Cotterell (1970), 

i.e. the opening load is applied at the edge of the specimen 

as a concentrated load, see Fig.7.3, a feature not included in 

Cotterell's work, was the application of transverse load, and 

this has to be considered. The values of the transverse stress 

(a
x) at the crack tip are calculated as shown in Appendix 7, 

given in Table 7.2, and depicted in Fig.7.2. On account of 

these results, it could be said that for this case, a /a 
y x 

values being between zero and one, the specimen is in a zone 

nearly stable, but the values obtained would mean that as the 

crack advances, the specimen goes from an unstable condition for 

short cracks to a stable condition for longer ones, a fact which 

does not seem to agree with experimental work. 

A further point must be raised, the effect of the trans-

verse load S
x
, is to reduce the tension, along the x axis, 

introduced by the opening load at the crack tip. If there was 

a case in which a sufficiently high compressive stress was 

applied, say -1392 lb/in2, a /a would become negative, as 
Y x 

shown in Table 7.3. Clearly, for this case, as there is such 

high transverse stress applied, the crack will run straight, 

but a /a < 1. So it seems that this is not in agreement with 
Y x 

Cotterell's argument. However, it could be that Cotterell's 

criterion was meant to be applied to the case of the SEN speci-

ment with only opening load applied. In Section 7.2 a discussion 

is made of specimen geometry and its stabilising effect, it is 

possible that it is this effect which could be accounted for 

with Cotterell's argument. 
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7.2 Second Coefficient of the Williams' Series and its  

Dependence on Physical Parameters  

It will be shown that the value of the A
2 
coefficient 

depends on load and geometry, and that:- 

(a) The dependence on load can be split into that caused by 

the a stress (mainly opening load) and that caused by the ax 

stress (transverse load and opening load). 

(b) The dependence on geometry is centred on the dimensions 

length, width and crack length. In considering changes of 

geometry, two divisions will be made. (i) Dimensions "length 

and width", which have an influence on the proportionality 

between the A
2 

value and transverse stress, and (ii) the 

dimension crack length, which has an influence on the pro-

portionality between A
2 
and the opening load. 

Work on the determination of the values of A
2 
for the 

specimen depicted in Fig.7.1(c) of dimensions 6 x 1, 6 x 4 and 

6 x 6 from 0.2/ crack length was carried out. The values 

obtained are shown in Table 7.4. In this table the A
2 

values 

have been split so that there are two parts which, when added 

becoMe A
2 
for the composite load system. One part is pro-

portional to the load along the "y" axis, and the other to the 

load along the x axis. 

It is noticed that for the same geometry but different 

crack length, that part of A
2 

which is proportional to the 

transverse load , remains constant i.e. the crack length does 

not affect this value, however, that part of A
2 which is pro-

portional to opening load changes when the crack length is 

increased, and this change could be a notable one (see values 

for specimen 6 x 1). This could be explained by arguing that 

the normal stress, at the crack tip along the x axis (ax), 
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depends mainly on crack length. When the crack grows this 

stress is increased and as A
2 

mainly shows this effect, its 

value changes as well (positive for a tension stress and 

negative for compression). In order to reverse this effect 

(for stabilising direction of crack propagation), a higher 

compressive x stress is needed so that the tension stress 

from the opening load is nullified. 

There is another factor to be considered when determining 

proportional parts for A2. As can be noted in Table 7.4, the 

proportional part of A
2 dependent on the transverse load, is a 

function of specimen dimensions, i.e. a, b, L, and directly 

proportional to a
x
, this proportionality factor being equal to 

-0.31456 for the specimen 6 x 1 i.e. each compressive longi-

tudinal load of 101b changes the A2  value in -0.31456. For 

specimen 6 x 4 the proportionality factor is -0.5 and finally 

for specimen 6 x 6 it is -0.62476. So, . for specimen 6 x 1% 0.39 

if it is necessary to neutralise the effect of an opening load 

of 101b, the transverse load to be applied on the lateral 

boundaries of the specimen would be MI lb, while for specimen 

4.44x0Mit would be 34.5, and finally for specimen 	
A 2 

would become zero by applying a transverse load of only 6.21b. 

This is a point which could partially explain the observed 

fact of square specimens being more stable than rectangular 

ones (longer in the x direction). 

The specimen shown in Fig.7.3 was considered as well for 

calculation of A2. The values obtained are shown in Table 7.5. 

Conclusions similar to those reached for the former specimens 

can be drawn from these figures. Further work on this topic 

and experimental application is discussed in the following section. 
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7.3 Influence of the Applied Loads on the First Coefficients  

of the Williams' Series, and Link to Experimental Work  

In the test specimen in Fig.7.3, the factors affecting the 

values of coefficient A2  (a, £, b, Sx, py) are shown, and this 

dependence has already been demonstrated. Further work on the 

influence of Sx and py  over A2 
is to be discussed within this 

section. This time, the stress conditions chosen are 

S
x  = 0.0, 10.0, 20.0, 30.0, 40.0, 50.0 combined in each case 

with P = 10.0. 
y 

This loading was applied to specimens 

6.0 x 6.0, 6.0 x 4.0 and 6.0 x 1.0. Under these conditions 

program ANGCRK was run and the set of values obtained for 

coefficient A
2 
is shown in Table 7.6, and depicted in Figs.7.4. 

The following points are relevant: 

(a) the rate of change for A
2 
is higher for longer 

specimens (x directiad; 

(b) even though different transverse loads are applied 

the pattern of the curve (A2  vs a) Fig.7.4a,b,c, is kept. The 

way the transversal load affects this curve is by shifting it 

along the A2  axis; 

(c) for no transverse stress, there is a definite crack 

length for which A2  = 0 (about 2.2in for specimen 6.0 x 6.0, 

1.3in for specimen 6.6 x 4.0, and 0.35 for specimen 6.0 x 1.0); 

(d) the shifting of the (A2 
vs a) curve changes the crack 

length for which A2  = 0; 

(e) the shape of the curve (A
2 

vs a) is similar to the 

curve (a 
y  /0x 

 vs a). 

The A
2 
behaviour shown is significant. _In the past it has 

been put forward by Cotterell (1965) that this is the parameter 

defining directional crack instability and that the condition 
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A2 = 0, marks the critical point above which the crack is un-

stable (A2 
positive), becoming stable below the critical point • 

(A
2 
negative), and this seems to reflect quite well experimental 

behaviour, where it.has been shown, that cracks are made stable 

by applying transverse stresses. 

Computer work which is to be linked with experiMental work, 

was conducted on specimens 12.0 x 4.0, 8.0 x 4.0, 6.0 x 4.0" and 

4.0 x 4.0. In Figs.7.5 curves (A1  vs a//), (A2  vs a/A), and 

(A
3 vs a/A) are depicted, while the actual coefficient values 

are given in Tables 7.5. Initially only opening load was con-

sidered. The same specimen behaviour already noted in the former 

work was obtained, but for these a different combined loading was 

applied, i.e. (a) Transverse load = 0.10 lb/in (S x) 

= 10, 20, 40 lb (P ) 
y 

(b) Transverse load = 0, 20, 30 lb/in (S x) 

Opening load 	= 20 lb (Py) 

Coefficient values were obtained and plotted for each specimen. 

The following points are relevant. 

(i) As in former work, specimen dimensions define a 

characteristic slope for the curve (A
2 

vs transverse load). This 

is shown in Fig.7.7. Loading conditions used for these cases 

were those from "b". 

(ii) The values for coefficients A1,  A2,  A3, for these 

cases, are given in Tables 7.5, it is possible from these data 

to find out which is the main influence on the behaviour of 

these first three coefficients, opening load being responsible 

for the changes experienced by the three of them, while trans-

verse load affects solely the coefficient A2  and this effect (for 

A2) is not proportional -Co crack length. 

Opening load 
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(iii) If Fig.7.6 is considered, by using the slope value 

characteristic of the specimen, Section 7.2, and knowing the 

loading conditions, it is straightforward to define a trans-

verse load value that makes A
2 

become zero or negative. 

Based on these facts, an experimental approach can be 

proposed as follows. 

Once the desired experimental conditions are defined, 

through them the behaviour of the coefficients of the Williams' 

series is set up as well. This is done as follows. For experi-

mental work, a factor which is necessary to consider is the 

material, as material properties will determine the opening 

load that is needed to extend the crack, i.e. K
IC 

or G
IC
' When 

in loading the specimen, the value of K1  (which is proportional 

to A
l 
and so to opening load) becomes equal to K

IC' the crack 

extends. The opening load level fixes specific values for all 

the coefficients in the Williams series, and it has been shown 

that for no transverse load, these coefficients are negative for 

Al  and A3, and positive for A2, so A2  being positive, the crack 

is directionally unstable. In order to stabilise the crack A
2 

should become zero or negative and for obtaining this condition 

it is necessary to proceed as follows:- 

(a) Define the opening load value necessary to reach Kic. 

(b) Obtain A
2 

value induced by the opening load defined 

from "a". 

(c) Know the proportionality factor between A
2 
and trans-

verse load (S
x
) characteristic of the specimen. 

(d) From "c", calculate S
x 
necessary to overcome the A

2 

value obtained from "b", and apply it to the specimen so that 

the experiment is carried out under directionally stable conditions. 
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7.4 Load Application, Rig Response and Physical Interpretation 

of Gauge Readings  

It has been shown in the computer analysis that the effects 

of the opening and axial load can be separated, this is a feature 

that if it could be applied to experimental results would be a 

great help to the analyst. In the sections to follow, it is 

shown that this is so, and the different characteristic behaviour 

is analysed as a consequence of geometry, transverse load, or 

opening load. 

In order to calibrate the rig, it was necessary to have a 

device to apply, upon the load cells, the combined transverse 

and opening load. It was found that this device should be a 

very special one because of the fact that the transverse and . 

opening load had to be applied simultaneously. PraCtically this 

introduced a high uncertainty in load determination, as when 

opening load is applied, there is a displacement of the loading 

point, and under the calibration conditions the response from 

the gauges was not repeatable, and it was not possible to 

properly calibrate the rig for the opening load. However, as a 

high number of attempts to calibrate in this initial state were 

made, it was possible to define a wide zone, within which the 

actual opening load value is located. Attempts were made to 

combine the results from calibration (regarding that opening 

load zone) with theoretical analysis of the configuration, but 

this implied assumptions and guesswork about the physical 

behaviour of the rig and specimen, which in brief would mean 

unreliable results, so two courses of action were plausible. 

(1) Design of an additional load cell (as described in 

Section 6.3). 
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(2) Carry out experimental work with the rig in its 

initial state (i.e. study of stress field and effect of trans-

verse load). 

The work under (2), was carried out while the elements 

needed for the rig modification were being made available, and 

is described hereafter. 

(i) Load application and rig response  

In Fig.7.161the gauges position within the rig is shown. In 

trying to get a better understanding of the phenomena taking 

place while the crack propagates, the loading records were 

plotted. Figs.7.17(ato h) depict the whole loading record given 

in Table 7.7(f) (specimen No.6/4). 	Five loading zones (although 

only four seem to be defined) are of interest here. 

Zone 1. Transverse load application. This is done through the 

transverse load cells at the far end of the specimen. As can be 

seen in Table 7.7(f), a balance of gauge readings, 60 ps, for 

gauges 21 to 27 was obtained (the small differences are because 

the calibration constants for each cell are slightly different). 

Zone 2. Opening load application. This is the actual process 

which leads to the crack extension. Some differences that show 

the physical behaviour of the specimen, can be noticed, i.e. in 

gauges 23,24 (nearest to the crack tip) the opening load effect 

at the crack tip zone is clearly noticeable. An initial higher 

normal stress (here, because of the way in which the gauges were 

connected to the bridge, compression is read as positive) 

originated on the transverse load, diminishing when the opening 

load has a small releasing effect on this compressive stress. 

the main; this compressive stress remains so that at the 

breaking point there is still compression parallel to the 
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crack tip. This should mean stable directional behaviour 

(actually the angle of crack extension was 2 deg). The 

gauges 22 and 25 show almost the same pattern as the former 

ones. For gauges 21,26 the opening load has a different 

effect, increasing the value of gauge readings. This means 

that compression is being put on. Finally, gauges 20,27 show 

a similar behaviour to 21,26. It is interesting to notice that 

in the first stages of opening load application, some irregularity 

in the expected trend of the curve is detected, however, it rapidly 

corrects itself and then the curve follows what is thought to be 

the correct pattern. This most probably shows the kind of be- 

haviour obtained during calibration. The rest of the gauges 

show reliable responses as they follow similar trends. The main 

fact to point out is that all the gauges show a load peak at the 

point of fracture. 

Zone 3. Crack extension. Within this zone different behaviours 

are obtained for the strain gauges, i.e. for those gauges farther 

away from the crack tip, 20 to 27, the stress is released at a 

uniform rate, and for those nearer to the crack tip, 0 to 19, 

the stress is released at a higher rate immediately after crack 

extension and then stabilises to a fairly constant decreasing 

rate. 

Zone 4. Removal of opening load. The remaining strain values, 

shown by strain gauges 20 to 27, after removal of opening load, 

are slightly lower than the original ones. The strains for 

gauges 0 to 19 show similar tendencies but this is not a uniform 

pattern. 

Zone 5. Removal of transverse load. Gauges at the far end (20 to 

27) show zero readings but the other ones (0 to 19) still show 

strain, this is a point that is not clear. Zero values were 
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expected. It is thought this behaviour is because once dis-

placements have taken place, on removal of the loading the 

relative position of pieces in the rig and those in connexion 

with the specimeh, do not go back to their relative original 

position, and keep the specimen slightly strained. 

A further attempt was made to obtain some kind of cali-

bration by measuring the distances involved in the position of 

the gauges on the rig, and through beam theory and the relative. 

electrical constants of interest, work out the theoretical 

stress values, but it was not possible to obtain any sensible 

result. 

The type of analysis using the loading measured at different 

boundaries, as depicted in Fig.7.17(a to h), seems to the writer 

to be a valuable one, because as the rig response is monitored 

at the boundaries on which load is being applied, it is possible 

to understand very well the way in which the stress field varied. 

But it is necessary to solve the technical difficulties encountered 

so that proper calibration of each gauge is achieved. Once this 

is sorted out, a more refined experimental method should be 

planned. This point will be put forward in Chapter 8. 

(ii) Physical interpretation of gauge readings  

When the crack propagates, for most cases there is a sudden 

initial crack extension after which a slow continuous propagation 

takes place, the readings from the gauges show this by means of a 

high change in the reading immediately after the peak value, and 

then keeping a slow rate of change of the magnitude of the 

readings. The fact that during the second stage of crack propa-

gation the velocity of crack extension is low, suggests that the 

readings are values slightly above the critical ones necessary 
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for the crack to stop (arrest). The observed effects of raising 

the load once the crack is prOpagating in this second stage or 

has stopped, are:- (a) it raises the rate of crack extension, 

(b) it originates a noticeable directional change. Roughly, it 

is possible to imagine how the crack developed by. just having a 

look at the loading record after initial crack extension. As 

can be seen in the different tables, when the crack continues 

to propagate by itself, i.e. without load increments, the 

direction of crack propagation changes but in a stable manner, 

whilst in changing loading conditions the change in direction 

is a sudden one. It could even be possible to form a rough idea 

of the way a crack has run by just having the loading record of 

the specimen, when in the loading history a sudden rate of 

change is observed between two subsequent readings (readings-

taken at constant rate), it can be assumed that load was applied 

at that instant, it could not be thought that the mentioned 

reading change was because of change in the direction of crack 

extension, as it would not take place unless an inhomogeneity 

was encountered, and this, for a slowly propagating crack, most 

probably would stop crack propagation. Another possibility 

would be that the small quantity of potential energy (which is 

being transformed into kinetic energy for the running crack) 

that the test piece still possesses, could be used to overcome 

the energy level necessary to surpass the inhomogeneity by 

separating the material, in which case, most probably a change 

in direction would take place as well as a reduction in the 

velocity of crack propagation, although the behaviour just 

described has not been observed in the experiments performed. 
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(iii) Effect of crack tip radius  

Two experimental cases are considered in relation to this 

topic, those of specimen 8 x 4 (case 1 and 5), for which the 

characteristics are 

Crack Tip Sttar? all n{ 

Load value to start 
crack extension 3251b 4121b  

Length of crack 
extension 

0.375in 0.75 in 

The same experimental conditions applied to both. Photographs 

in Fig.7.11 (a and e) show the crack path obtained. 

When examining the case of the blunt crack, it can be seen 

that the crack tip radius only affects the opening load necessary 

to extend the crack, this radius has the effect of reducing the 

stress concentration at the crack tip neighbourhood, so in order 

to raise the stress level to that corresponding to the fracture 

toughness, it is necessary to apply a higher opening load. When 

the material finally separates, there is in the body a certain 

state of strain. The separation of the material means a trans-

ition from a tip with a finite radius' to a tip with a sharp 

radius characteristic of the moving crack. This geometrical 

condition has the effect of producing a stress concentration in 

the neighbourhood of the crack tip, higher than in the former 

case so that within the new conditions of the system, there is 

no equilibrium. This stress level developed at the crack tip 

means in fact that there is an excess of strain energy within 

the body, which has to be spent. Berry (1961) hag shown that 

this energy is split between surface energy and kinetic energy, 

so the crack experiences a sudden jump. 
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The same can be argued for the case of a sharp crack, with 

a small difference. The sharp crack is made by means of fine 

tools, and it was found that at the best the tip radius approxi-

mates the natural characteristic one of a moving crack and so 

the obtained value of load (represented by the reading of 3421b) 

approximates the true fracture toughness of the material. This 

is easy to understand: the tip radius being smaller, a pro-

portionally higher stress concentration is produced(compared 

with the case of the blunt crack) and a lower opening load is 

needed to reach the fracture toughness. This in turn means less 

strain energy available and so a shorter length of jump for 

crack extension. Some researchers have obtained a practical 

sharp tip by pre-fatiguing their specimens, this could be done 

under the present approach for future work. 

Something else that must be pointed out is that regardless 

of crack tip geometry, the crack paths were identical, which 

again seems to show the influence of the transverse load as the 

factor controlling crack path. Further discussion on this topic 

is made in Section 7.6. 

7.5 Analysis of Experimental Crack Path under Biaxial  

Loading and Co-relation to Theoretical Predictions  

In the present section use is made of shadow photographs 

taken of the cracked specimens, in order to illustrate relevant 

points and how it is thought that through them, a link between 

theoretical results, obtained from the computer program, and 

experimental ones, could be established. 

Figs.7.8 to 7.12 show a visual record of the paths the 

cracks followed, when the loads of which details are given in. 

Tables 7.7 to 7.11, were applied on the specimens. 
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In all some 40 specimens were tested in two different experi-

mental stages. For the first experimental stage, as it had not 

been possible to achieve a proper calibration for the opening 

load see Section 7.4 an attempt was made to apply different 

levels of WAYNou6stress and see what effect it had on the crack 

path. Results were very promising as with no transverse load 

the crack path always went away from the original one, while 

on introducing a low transverse load, the deviation of the crack 

path was reduced, transverse load was subsequently increased 

until for a level high enough, the crack path became straight. 

For the second stage, a new load cell for the opening load had 

been introduced and proper calibration achieved so a whole 

analysis could be made quantifying all the parameters that have 

an influence in crack propagation. Within the different dis-

cussions to follow, use will be made of results from these two 

experimental stages and any relevant experimental detail will 

be given whenever it is necessary. 

In order to facilitate discussions on the crack propagation 

phenomena, it is necessary to define, for the present analysis, 

some terms to be used (see Fig.7.13). 

(i) In the experimental work, the actual crack propagation 

developed as follows:- 

(a) An initial slow crack propagation following the same 

direction as the original crack, under this "phase I" (see Fig. 

7.14) crack extension the surface of the crack appears as slightly 

rough areas with a fan shaped marking of lines . 

(b) A very fast crack propagation following a natural direction 

established by the different specimen parameters. For this 

"phase II" (Fig.7.14) crack extension the crack surface is very 

clean and smooth, like a mirror surface. 
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(c) A slow decreasing crack propagation, following the same 

trend of path initiated under phase II. The surface of the 

crack under this "phase III" (Fig.7.14) crack extension is very 

similar to that under phase I. 

(ii) For most cases, especially when there is a well 

defined radius at the crack tip or a blunt crack, there is a 

very short straight extension (phase I). Immediately after this 

the crack propagates (phase II) and deviates towards a direction 

with an "apparent initial angle" (aa), and as propagation con-

tinues there is a continuous change of this angle until at 

point P
r
, whose coordinates will be identified, the crack has a 

final angle (aF). Point Pr  could be either in the zone of phase 

II or of phase III. This is not highly relevant for the time 

being. 

For each specimen of interest, the already defined angles 

and lengths were measured and are given in Tables 7.12 to 7.15, 

in which is also included 

(i) the opening load (three quantities are given I = initial 

reading from the gauge, A = reading just after crack 

extension(for most of the cases under phase II) 

B= peak reading for opening load (has taken place). 

(ii) SC - this is the maximum load (lb) applied to the specimen 

by the opening load, it equals B-I, and should be equiva-

lent to the fracture toughness; 

(iii) Sload. It is the quantity (B-A) and it was expected 

(according to Section 7.4) that some kind of proportionality 

should exist between the phase II crack propagation length 

and this quantity; 

(iv) A
2 
coefficient value as calculated from Tables 7.5. 
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Tables 7.12 to 7.15 are self-conclusive, however, the 

following points are of interest:- 

(a) for most cases the fracture has a very small starting 

zone in which the crack runs straight. This is thought 

to originate in the fact that the crack tip did have a 

finite radius which creates a local stress field and 

establishes a local direction of propagation, but once 

the crack surpasses the local condition, the crack tip 

becomes sharp and the extension follows the natural path 

dictated by the specimen boundary conditions; 

(b) in Fig.7.8(a to d), a series of photographs of the different 

cracked specimens is shown, it can be clearly seen that for 

specimens 4, 6, 8, the apparent initial angle (aa) experi-

ences a gradual change, running away from the original 

straight path, and the change is a low one for the smallest 

specimen, becoming higher for specimen 6, and reaching its 

maximum for 8. It was expected that specimen 12 should 

have an even higher aa, but this was not so, and on 

repetition of the experiments on specimen 12, the same 

result was achieved; 

(c) regarding the value of the transverse load required to 

stabilise the crack path, it is shown that the value re-

quired to stabilise the smaller specimens is lower than 

that for the longer ones. Besides, it can be said that 

for the small specimens (square), under biaxial loading, 

the condition is achieved in which the crack really follows 

a straight path, while for the rectangular ones (larger in 

the transverse sense), one has to resort to a definition 

of straight path, i.e.; like the one mentioned by Benbow 

and Roesler (1959), and accept as straight paths, those 
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which are slightly away from the axis of symmetry. The 

Point which has to be kept in mind is that provided the 

apparent initial angle (aa) changes subsequently towards 

the initial crack direction, the crack is directionally 

stable (class I -fracture according to Cotterell (1965) 

definition), and this is a fact shown by all the crack 

paths, that is, whenever a transverse load is applied, the 

crack tends to come back to the straight path and the 

higher the transverse load, the smaller the initial 

deviation; 

(d) the subsequent point has already been mentioned in the last 

paragraph, but here it concerns specimen geometry. It is 

clearly shown by experimental results that the larger (in 

the transverse sense) the specimen, the higher is the 

transverse load necessary to stabilise crack path (for 

a specimen 12 x 4, it is clearly seen that a higher load 

is necessary to reduce the apparent initial angle; 

(e) for all the different specimens, no transverse load, pro-

duces a directionally unstable crack extension. When 

transverse load is considered instability is reduced, and 

as transverse load increases the instability diminishes 

until eventually, the condition of straight crack pro-

pogation is reached; 

(f) regarding the actual opening load value at which the crack 

extends, only for those cases of specimens 12 x 4 and 4 x 4, 

could it be said that a positive conclusion has been obtained, 

as for the first case (12 x 4) there are 5 cases in which 

the opening load values repeats, while for specimen 4 x 4 

this is so for four specimens. There is not enough inforth-

ation for specimens 8 x 4 and 6 x 4. Furthermore, it has to 
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be pointed out that from the opening load values, about 30% 

seem to be completely out of range, two causes may be rele-

vant:- (1) the specimens were cut from different sheets of 

material, some of them were tested after about three months 

had elapsed since they were cut, and others within a week, 

(2) the whole experimental method is still in a state of 

development, and even though great care was taken in trying 

to set experimental repeatable conditions, the method still 

needs to be refined. 

A further point to be discussed is that for most of the 

experimental cases tried, a tendency to directionally stable con-

ditions was obtained (this is a characteristic of the rig) and 

this was so in spite of the fact that there was directional ins-

stability for the initial conditions. (This point will be dis-

cussed further in Section 7.6.) When initial conditions are 

unstable and at the same time an imperfection either from the 

material or from the rig configuration becomes apparent, then 

the crack runs away. It is thought that there is still a small 

defect coming from the rig (introducing mode II crack behaviour) 

which is slightly interfering with the stress field. However, 

these are practical difficulties that can be overcome, the main 

point is to show that the directional crack response can be 

characterised by the coefficient A2, and it seems, according to 

the combined computer and experimental results that this is so. 

It can be seen (Tables 7.5) that the value of the coefficient A
2 

is negative for specimens with a transverse load high enough (for 

each geometry, depending on the opening load value, it is necessary 

toluwe a minimum transverse load), and experimentally these specimens 

showed directional stability. On the other hand A
2 
is always 

positive for cases in which no transverse load was applied and 

these experimentally, showed directional instability. 



132 

7.6 Directional Stability Level Transverse Load Influence, and  

Possible Co-relation with Energy Input to the System  

(a) Experimental directional stability, rig response and crack  

path. Some of the earliest experimental work (specimen No.1) 

showed that under combined biaxial loading, the crack initially 

extended showing it to be a class II fracture (Cotterell, 1965) 

tending to go back to the initial path. Once the crack extension 

had naturally stopped, the opening load was increased and the 

crack path changed direction still towards the original path. 

Within this section an attempt is made to co-relate this 

behaviour with the A
2 
coefficient. Actually, the loading record 

of the already mentioned specimen No.1 was not taken. However 

in the following discussion, use will be made of load values 

obtained from specimen 3/12, in order to illustrate the different 

points under consideration. 

The experimental work on crack extension under combined 

transverse and opening load for this specimen showed that:- 

when the crack is about to extend there is a peak opening load 

the value of which was 3401b, and the transverse load 360 lb/in. 

This opening load in turn sets the A
2 
coefficient value (originated 

in the combined loading) at +36.626. Once the crack had extended and 

deviated away from the transverse axis, further opening load was 

applied and the crack deviated towards the initial path. It.had 

been initially expected that it should be the other way around, 

i.e. increase in opening load means increase in directional 

instability and the crack should turn away from the original 

path, but this was not so. 

In examining the opening load values (for specimen 3/12) 

it was found that in crack extension from a = 3.35 in to 

a = 4.51 in, the opening load values went down from 3401b to 
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1401b, whilst the transverse load remained at 3601b/in. That 

is, the cracked situation could be viewed as a completely new 

case with: (a) opening load = 1401b, (b) transverse load = 

3601b/in, (c) crack length . 4.51 in and so, the A2 
coefficient 

value for this condition is set to 14.40 . Which means that the 

directional stability level is higher now than it initially 

was, and the crack should tend to go back to the original path, 

which explains satisfactorily the observed crack behaviour. 

(b) Transverse load and its influence on crack path. The data 

shown in Tables 7.15 as well as the photographs of the crack 

path in Fig.7.12, show different specimens (same dimensions), 

under the same loading conditions i.e. 2/12, 3/12, 4/12. It is 

shown as well, that for specimen 6/12 a high transverse load 

made the system partially overcome a tendency to behave 

asymmetrically. When the case with a lower transverse load is 

considered, this asymmetric tendency is more apparent, and its 

effect can be clearly noticed on the initial apparent angle 

and the crack extension path of the already mentioned specimens. 

While in specimen 6/12 the crack path tends to go back to the 

centre, this tendency is not as marked for specimen 2/12. 

Another experiment in which loading conditions were the same, 

was that for specimen 3/12 in which the crack followed the same 

path as it did for specimen 2/12. 

Having analysed the results, it was concluded that this 

tendency was because the blocks to apply the opening load 

(pieces No.3, opening load cells) were slightly out of centre 

with respect to the transverse load cells and on operation this 

introduced an unbalancing effect (mode II). The rig was dis-

mantled and corrected, and specimen 4/12 was tested with the 

same loading conditions as for specimens 2/12 and 3/12. This 
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time a better experimental result was obtained as the differ-

ence in crack path can show (Fig.7.12), as well as load values 

in Table 7.15, which are similar to those from specimen 6/12. 

This time the crack path is closer to the axis of symmetry 'of 

the specimen, than those of specimens 2/12 and 3/12, and the 

difference it shows when compared with specimen 6/12 is thought 

to be only because of differences in the transverse load magnitude. 

(c) Observed behaviour of crack propagation and possible  

co-relation with energy input. In general, for a cracked body 

under a rising load, it is an observed fact that, as the load 

increases, any crack existing in the body does not initially 

expand. When the load reaches a certain value the crack begins 

to spread, with the extension behaviour for a given material 

depending on the manner in which the load is applied. In 

some cases, the crack extends rapidly up to complete rupture-

of the body, in other cases it extends slowly, eventually 

stopping. Barenblatt (1961) in his approach to the theory of 

cracks, by an equilibrium model stated the hypothesis: 

(i) the tensile stress at the contours of the crack is 

finite; 

(ii) the opposite faces of a crack close smoothly at its 

contour; 

and from them the formulation of the problem of equilibrium 

cracks is possible. In the case of stable equilibrium, the 

slow quasistatic transition of cracks from one equilibrium to 

another takes place when the load is increased gradually. But, 

if the equilibrium is unstable, the slightest excess over the • 

equilibrium load is followed by a rapid crack extension. In 

some cases, when there exists no neighbouring stable states of 
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equilibrium, this could lead to complete rupture of the 

body. 

Practically, the statements above can be illustrated by 

results from specimens,1/8 and 4/8, for which the loading 

records are given in Table 7.14. The only difference between 

the conditions under which these specimens were tested, is the 

geometry of the crack tip (a geometric factor that obviously 

influences position of neighbouring stable states). In the 

first case, when the load level was raised to 3251b the crack 

showed the already mentioned slow quasistatic transition 

natural of a stable state. In the second case the behaviour 

of the unstable equilibrium state is obtained at a load level 

of 4121b, here, because of physical conditions (specifically 

crack tip radius) the crack is prevented from extending slowly 

so that the only way for the crack to spread, is by a sudden 

jump from a1  to a2. That is, because of crack tip conditions, 

when the material finally separates to make the crack grow, 

there has been put into the body a considerable amount of 

energy, which is in excess of that in the former case, so at 

the point of crack propagation there is energy available to 

create new surface and supply kinetic energy. 



136 

7.7 Transverse Load, Mode II Influence, and Crack Path  

Photographs in Fig.7.15 show the crack paths for different 

12 x 4 specimens, the loading records for these specimens are 

shown in Tables 7.11.* 
	

The first point to be made concerns 

the values of the recorded transverse loads in gauges 20 to 

27, it can be seen that for these tests the unbalance between 

gauges (20 to 23) and (24 to 27) is almost zero, which means 

that this time the alignment of the system is very good and 

the mode II influence for crack propagation is very small. 

This is shown as well in the magnitude of the transverse load 

necessary to make the crack run straight, it is noticed that 

with as little as 280 lb/in, the crack is already running 

straight, while in the former cases (Section 7. 6), in which 

it was concluded that mode II was operating, it was necessary 

to go up to 700 lb/in to obtain a path that could be considered 

straight. The photographs of Fig.7.15 are in a sequence start-

ing with the one with the least transverse load (160 lb/in) and 

up to 440 lb/in. It is clear that the transverse load has a 

strong influence in the direction of crack propagation and these 

figures show it quite well. However, when a more detailed 

analysis is made, i.e. measurement of the initial apparent 

angle (aa) and final angle (aF) already defined, the results 

shown in Table 7.16 	are obtained, and here the co-relation 

does not seem to be as straightforward. Clearly there is still 

another factor that is showing up in these results, i.e. the 

crack tip shape. In relation to this, two of the specimens 

had a tip completely blunt and they show the two highest 

initial apparent angles. This state of the crack tip is a 

local condition that dominates the initial stage of crack 

•Only three records are shown. 
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propagation and directs the path at random, but once this 

initial stage takes place, the local condition disappears and 

global conditions take over (in this case dominance of trans-

verse load) and re-direct the crack towards a path which is 

natural for the whole system, the straight path. 

The results from the two sets of experiments, i.e. those 

with a mode II effect (Section 7.6(b)) and those with no mode 

II effect (or at least a negligible one), seem to show that 

it is the influence of mode II behaviour (because of the bi-

axial stress field introduced by anisotropies, inhomogeneties, 

etc, that could appear at each stage of crack propagation) 

which is being controlled by the transverse load, and that 

the value of A
2'which effectively has a relation to direction 

of crack propagation, shows a level of directional stability. 

That is, for a symmetric specimen, if it is highly stable (a 

high negative A
2 

value), a strong local condition would be 

necessary to make the crack run away from the straight path, 

but once the local condition is overcome, the crack returns. 

If there is a weak stability (A
2 

very near zero), it is very 

probable that the crack will deviate, but with the possibility 

of the crack returning. Finally, if this A
2 
coefficient is 

positive, any local condition, perhaps at microscopic level, 

will make the crack turn away from the former path and it will 

never come back. However, when mode II behaviour starts to 

operate, the whole stress field in the neighbourhood of the 

crack is modified, i.e. global conditions are modified, and 

in order to overcome this situation, a strong transverse load 

is necessary. The function of this transverse load is to 

correct these global conditions so that the tendency of the 

crack path is again towards the original direction. 
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The writer's opinion is that stable and unstable directional 

behaviour develops as the crack propagates, this is reflected in 

A
2 
and when it decreases with crack extension (tending to a neg-

ative value), the crack can be considered directionally stable. 

This is a point which seems to be substantiated by results shown 

in Tables 7.12 to 7.15 in which positive values for A2  are obtained, 

but as the crack extends, the coefficient value diminishes. 

7.8 Angle of Crack Extension as obtained Computationally from  

the Criteria Considered  

A full discussion of the results obtained from computation 

for the expected angles of crack extension cannot be made because 

only a very limited number of cases were tried, and in addition 

experimental results would have to be found very carefully if 

comparison is to be meaningful. Some work was done with the 

specimens 12 x 4, 8 x 4, 6 x 4, 4 x 4, and others! These have 

been the first attempts to use this computational approach 

(regarding determination of the angle of crack extension) and 

there is still some uncertainty on the whole approximation as 

it is necessary to fully co-relate the mathematical numerical. 

approach, the behaviour of the criteria, zones of relevance, etc. 

Experience will show which is the best criterion to apply and 

this experience will be gained by means of a combined com-

putational-experimental approach. The first step has been the 

development of the computational method (i.e. Williams and Ewing 

criterion of a maximum circumferential stress al  at a core 

radius, and Sih's criterion of minimum strain energy density,(S) 

and the testing of this computational approach has only been 

initiated by the cases and discussion given within this section. 

It has already been shown, Section 6.5, how the stress field in 

•Results obtained are shown in Table 7.17. 
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the crack neighbourhood is scanned and the critical value of 

the criterion function is obtained, fixing the angle at which 

the crack is expected to grow. As expected, it was found that 

the value of the criterion function varies with the core radius. 

The conclusions that can be arrived at from the few cases run 

are very limited. 

(a) There are zones of disagreement between the two 

tested criteria. 

(b) Williams and Ewing's criterion seems to show results 

that are consistent and well behaved. The values obtained show 

a well defined trend. 

(c) The trend of values obtained from Williams and Ewing's 

criterion show a certain degree of similarity with experimental 

results (see Fig. 718) in which the apparent initial angle 

for the same specimens are shown). 

(d) For all the cases in which transverse load of the speci-

men was considered, the expected angle of crack extension is very 

near zero. 

(e) Another fact to point out concerns the dimension of the 

radius at which the criterion function should be evaluated. Both 

William and Ewing, and Sih point out that it is a material 

characteristic, and Williams and Ewing have given it to be 0.002in 

for PMMA. Probably this is the sort of dimension that would be 

involved for most of the materials and it can be seen that for a 

zone with that dimension, both criteria give very similar (equal) 

results. 

An attempt was made to obtain some sort of description of 

the curve of maximum values of the criterion function, and for 

this the values from the Williams and Ewing criterion were 
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considered. Fig. 7.18 depicts this curve for specimen 12 x 4 

and conditions given in Table 7.17(a). 

Extensive work needs to be done using this approach. 

Experimental work linked with the computational method should 

be carefully planned so that a better understanding of the 

phenomena can be achieved and if need be, the necessary modi-

fications to the numerical approach can be made. 

7.9 Initial and Final Directional Stability Level  

In Section 7.6(a) a particular case, in which the directional 

stability level for two stages of crack extension in a specimen, 

was discussed. As this point is considered to be of the greatest 

importance, the same approach was applied to all the remaining 

specimens for which experimental data was available. Table 7.18 

shows results obtained by a combination of the experimental and 

computational work for this, the two stages of crack extension 

considered were:- 

(i) Initial conditions. 

a. 	= Initial crack length. 

1  0.P. . = Opening load value, as measured from the 

experimental- rig, when initial crack 

extension took place. 

T.L. = Transverse load. 

(ii) Final conditions. 

a
F 
	= Final length of crack (considering that 

this final length is defined by the change 

in fracture surface i.e. phase II and 

Phase III). 

0.P.• = Opening load value measured just after 

extension under phase II has taken place. 

T.L. = Transverse load (same as for initial conditions). 
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For final conditions in most of these cases there was a 

small deviation of the crack path from the original direction. 

Neglecting mode II effects and considering the final crack 

length as a completely straight one, the first three 

coefficient values given in Table 7.18 	were obtained. 

These results clearly show that the value of A2  is 

positive to start with (directional instability and moves 

towards a negative A
2 

value gradually approaching a stable 

state). That is, the fact that A2  diminishes with crack 

extension means higher directional stability. 

In Table 7.18, a set of data which firmly establishes a 

relationship between the A
2 

value and the experimental angle 

of crack extension is given. All the values considered, 

except A2, were taken from the experimental work, and from these, 

the A
2 
coefficients were calculated as described in Section 7.2. 

(The program ANGCRK was used as well as a final check and the 

same values were obtained.) 

It has been considered, for the present discussion, that 

the mode II effect introduced by the crack running asymmetrically, 

is supposed to be negligible. 
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The figure above shows the typical observed crack path. 

For all cases, except those with no transverse load, whenever 

the angle of crack extension diminishes, the A2 
value decreases 

as well. As this analysis was the latest development of this 

study, it was made with the experimental data already available 

and so, only cracks that were within zone one were considered. 

However, specimen 5/8 (8 x 4) is the closest to the inflexion 

point, with a final angle very near zero, and the corresponding 

A
2 

value being already negative, i.e. negative A
2 

value means 

that the crack goes back towards the straight extension. Speci-

ment 4/4 (4 x 4) also shows a negative A2 
final value, although 

the final angle of crack extension is not still zero. 

Even though only one case is presented in which there is 

true straight propagation and a corresponding negative A2 
value, 

the tendency shown is quite clear and further work using this 

approach will prove this point. 
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CHAPTER 8  

CONTRIBUTIONS OF THE PRESENT WORK, CONCLUSIONS AND  

SCOPE FOR FUTURE WORK. 

8.1 Contributions -of-the Present Work  

The test procedure was designed around a rigorous mathe-

matical analysis involving specimen dimensions, loading 

conditions, material properties, and their relationships with . 

the stresses introduced at the crack. The experimental rig 

presented many problems. Most of them were satisfactorily 

overcome, and results were obtained so that correspondence 

between computational and experimental method was demonstrated. 

The discussion presented in Chapters 6 and 7 indicates 

that much valuable work can be carried out based on the 

solutions now available so that rational inclusion of this 

work can be accomplished within the already broad Fracture 

Mechanics fields. However, there is a need to refine these 

solutions in order to tackle most of the work proposed as scope 

for future work. 

In the first part of this study, an approach to a practical 

problem was presented. Use was made of the stress field in the 

neighbourhood of the crack and a correlation between this and 

crack behaviour was looked for. It was shown how valuable the 

finite element method is as a tool for Fracture Mechanics, when 

used in conjunction with the J contour integral and with 

Bueckner's method. Analysis of the stress field, prior to crack 

extension, was made and an attempt was made to co-relate it with 

future path, some conclusions were reached but experimental 

verification is required. 
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Under the second part of this work, a combined computational 

experimental method to obtain parameters of interest to Fracture 

Mechanics, was developed and proved to work properly. The method 

was applied to obtain a parameter defining directional stability 

and partial success was achieved. It is also possible, working 

through the first coefficients of the Williams' series, to 

obtain the values of KI and KII 
for complex loading situations, 

further work is required in this particular matter. There are 

some other aspects of Fracture Mechanics that could very well be 

tackled by using the present method but require further special 

work and/or modifications either to the method or to the computer 

approach or experimental rig, and because of this they are pre-

sented in Section 8.3 as scope for future work, where two parts 

are listed, under "1" there is a brief description of work that 

was originally intended to be done under the present study but 

time did not permit. In "2" some work is described that has 

become apparent in the light of the present study. 

8.2 Conclusions  

The computer program developed for determining the coefficients 

for the Williams series expansion has been fully tested, both by 

comparing results with those from other researchers and by experi-

mental work done under the present study. The results are 

satisfactory and the scope for future work using the method 

developed is wide. 

The main objectives of the project have been partially 

achieved. Correspondence between the second coefficient of the 

Williams series and the direction of crack propagation has been 

shown, it has been demonstrated as well that the geometry of the 

specimen has an influence on this second coefficient, i.e. a 
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co-relation exists between specimen dimensions, loading, and 

directional stability of crack propagation. 

It has also been established that for all cases of the 

rectangular or near square DCB type geometries (except for a 

few with extremely small crack lengths) the application of 

opening load, but no transverse load, produces positive A2  

coefficient values, which imply directional instability, and 

experimentally the crack behaviour is like this. 

There is evidence which indicates that the change in value 

of A
2 

is of the greatest importance for directional stability, 

it was pointed out in Section 7.9 that most of the specimens 

tested experimentally had conditions which according to A
2 
had 

certain initial level of directional instability and that on 

crack extension, neglecting deviations, the new directional 

stability level was higher (i.e. smaller A2  values),which agrees 

completely with the observed experimental behaviour. 

A final approach to fully substantiate the point that a 

negative A2  value means directional stability was made by apply-

ing the computer program ANGCRK to two specimens that are 

commonly known to be directionally stable, i.e. single edge 

crack bend (three point crack bending, a specimen with dimension 

8 x 2in was considered), and single edge crack tension (a specimen 

with dimensions 15 x 1.5in was considered). The values of the 

first three coefficients of the Williams series are shown in 

Tables 8.1. As expected the values of A
2 
are negative (up to 

a 0.8in for the single edge crack bend and up to a 0.6in for 

the single edge crack tension specimen), which again seems to 

demonstrate a co-relation between A2 
and directional stability. 
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8.3 Scope for Future Work  

(1) Two aspects originally intended to be developed within 

this work were not fully tested. 

(i) Definition of a critical value of A2 
as a parameter 

defining a point of directional stability. 

One of the initial objectives of this work was to obtain a 

qualitative relationship between the second coefficient of the 

Williams series and the direction of crack propagation. It has 

been demonstrated that whenever a sufficiently large transverse 

compressive load is applied to the specimen, the crack path 

follows the original path. However a critical point separating 

stable and unstable directional paths has not been identified, 

within the scope for future work and by refining the present 

method this could be done. 

(ii) Other criteria for directional stability. 

Some work on different criteria for directional stability 

of crack propagation had been planned and a computer program for 

evaluating these criteria was developed (Section 6.5). However, 

shortage of time rendered it impossible to fully test this pro-

gram. Some of the results obtained were given in Section 7.7 with 

a very brief discussion, but it is thought that a great deal of 

work is necessary in relation to this program and possible co-

relation with experimental implementation of it. 

(iii) Although it was not fully planned, during the design 

stage of the experimental rig it was found that provision could 

be made for making photoelastic studies at the crack neighbourhood, 

so this facility was incorporated. Work in this field should prove 

to be interesting, especially under complex loading, either by 

introducing an angled crack (which introduces mode II loading) 
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or by applying a fixed relationship between opening and 

transverse load to study biaxial effects. 

(2) In the light of the present work, some ideas for 

future work have evolved. They concern different topics 

most of which the writer knows only superficially and so only 

time would have permitted the development of the necessary 

method to obtain reliable information. However, a very brief 

attempt has been made to illustrate some of the points, and a 

description of these follows. The first point concerns: 

(i) Conditions of crack arrest - Fig. 8.1 shows the 

specimen crack surface obtained on crack extension, and Table 8.2 

gives relevant data about the conditions in which extension took 

place. The first point to be made here concerns the magnitude 

of the opening load. As could be expected it is practically the 

same for all the specimens. The small changes noticed can be 

easily explained by one of two facts:- 

(a) possible differences in tip radius; 

(b) as crack extension occurred during load application and 

there is no clear assessment of the rate with which load was 

applied it is quite possible that the point of maximum applied 

load occurs nearer or farther away in time from the last reading 

taken by the opening load cell. 

The second point concerns crack arrest. In Figs.8.1 (a to e) 

the difference in length of phase II crack surfaces can be clearly 

seen, so the initial crack extension can be measured. Even 

though this was not an objective of these experiments, it turned 

out that crack extension in specimen no. 6/12, Fig.8.1(a), was 

completely phase III (no sudden crack extension), while on 

specimens 4/12, 2/12, 3/12 the initial length of crack extension is 
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progressively higher and there is a direct correspondence 

between these lengths and the opening load value at which 

crack arrest (here crack arrest is taken as the change from 

a high velocity spreading to a low velocity) was obtained. 

This measurement of the value of load for crack arrest was 

obtained in all cases, so it is thought that within future 

work, the experimental rig could be used to study conditions 

for crack arrest. 

(ii) Studies on the fracture toughness value - The work 

done shows the fact, already known that the fracture toughness 

of the material is independent of the transverse load. It has 

also been shown that straight cracks can be obtained by apply- 

ing transverse load, so it should be possible to obtain 

multiple determinations of toughness for the same specimen at 

different crack lengths. Work can be done on the fracture 

toughness (R) as defined by Gurney. It has to be kept in mind 

that in the present method, load is applied through displacement 

of the specimen arms, so by measuring both, load and displacement, 

it should be possible to plot the curve (x - u) as Gurney did and 

compare results. The evidence obtained from the different speci- 

mens suggests that the actual opening load values for increasing 

crack lengths are as depicted in Fig.8.2. It should be pointed 

out that for the opening load, because of the way in which load 

is applied (a displacement of the specimen's arms), there is a 

reduction of the load value as the crack advances. As the 

objective of the experiment was not to co-relate opening load 

with crack lengths, no complete records of crack lengths were taken, 

the only true load values in the curve depicted (0p.load vs a), 

are those shown. Anyway, on the basis of the observed behaviour 
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an experiment can be devised in order to obtain the true 

experimental curve (Op.load vs a). It has also been shown 

that an opening load value for a given crack length, induces 

a particular positive A2  value, the curve (Op.load vs a) would 

be used to determine through A2, the transverse load necessary 

for straight crack propagation and from it the previously 

mentioned multiple determination of toughness can be made. 

(iii) In order to be able to apply the approach 

developed in this work, to more complex situations, say 

determination of critical parameters for complicated structures, 

a fully computed approach is proposed in which for application 

to real problems, the finite element method is combined with 

program ANGCRK. The approach would be to obtain the stress 

field developed within a cracked body, isolate a zone (with 

the form required for program ANGCRK, see Fig.8.3 and use the 

stress field to calculate normal and tangential tractions along 

the isolated zone boundaries. From these tractions the 

coefficients for the Williams series can be computed parameters 

of interest thus obtained. 
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TABLE 3.1  

STRESS INTENSITY FACTORS 

Crack Length 
, mm 

K psi fin 
computed na kta na f af  

1.03 147 281 116 

0.87 144 236 115 

'0.67 139 230 115.  

0.51 133 198 113 

0.35 122  198 108 

0.24 108 166 103 

TABLE 3.2  

CHARACTERISTICS OF THE DIFFERENT CRACK LENGTHS  

CONSIDERED ON THE GEAR 

Crack 
Initiating 

Point Angle 

(Rad 

Length 

(mm) in.x in.y 

1 -.35095 16.41645 0.80078 1.03 

2 -.35095 16.41645 0.82647 1.03 

3 -.35872 16.4043 1.10256 1.03 

4 -.36165 16.4043 1.10256 1.03 

5 -.36480 16.40175 1.13479 1.03 



TABLE 3.3  

J VALUES FOR DIFFERENT CRACKS 

Angle 
Rad 

Crack 
0.80078 0.82747 0.97397 1.09140 1.10256 1.13479 

Length 

0.11 85.797 85.7 80.798 94.9 91.101 88.639 

0.22 107.88 108.00 110.54 116.4 110.68 107.20 

0.35 121.95 121.00 123.34 123.04 119.89 116.27 

0.52 133.00 131.37 131.11 128.07 125.48 121.13 

0.68 140.35 139.28 135.86 131.74 129.27 126.00 

0.83 144.00 143.00 138.11 134.04 131.58 128.40 

1.03 146.11 146.97 140.7 136.05 133.94 131.26 
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TABLE 3.4  

LOAD VALUES TO BE APPLIED AT THE NODES  

ON THE CRACK SURFACES 

Nodes on the 
Lower Face Load(lb) Nodes on the 

Upper Face Load(lb) 

328 - 36.487 5 36.487 

329 - 95.352 254 95.352 

330 -172.14 255 172.14 

331 -205.77 256 205.77 

332 -179.18 257 179.18 

333 -174.36 258 174.36 

334 -170.70 259 170.70 

335 -147.49 260 147.49 

336 -112.07 261 112.07 

337 - 78.72 262 78.72 

338 - 49.16 263 49.16 

339 - 11.59 264 11.59 

340 - 	2.00 45 2.00.  



TABLE 3.5 

VALUES OF NORMAL STRESS ALONG THE DIFFERENT LINES  

, SHOWN IN FIG.3.14(1b/in2  )  

Line 1 Line 2 Line 3 Line 4 

Elem. Stress Elem. Stress Elem. Stress Elem. Stress 

467 -14206 472 -25823 476 -6776 477 -1581 

455 -10500 448 -24443 464 -10642 465 -6171 

443 -16076 424 -22718 452 -7100 453 -2581 

431 -12920 400 -21241 440 -11159 441 -6635 

419 -17467 339 -18641 428 -7308 429 -3000 

407 L15753 24 -16192 416 -11731 417 -7425 

395 -17995 30 -16308 392 -11734 393 -7813 

383 -16257 3 -14478 345 -8290 346 -8181 

33 -7343 347 -5000 

5 -7530 39 -6504 

74 -6617 40 -3971 

83 13645 41 -5142 

82 -7105 74 -6617 

83 13645 

82 -7105 	' 

153 
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TABLE 3.5 (cont.) 

Line 5 Line 6 Line 7 Line 8 

Elem Stress Elem Stress Elem Stress Elem Stress 

478 2016 356 21390, 467 -14206 479 -107444 

466 -1330 355 1047 468 -24306 480 -15157 

454 535 354 1500 469 -29988 481 -25745 

442 2314 353 13281 470 -28115 482 -31076 

430 2035 352 1057 471 -27068 483 -29138 

418  -3356 351 2525 472 -25823 484 -27840 

406 - 280 350 2642 473 -22492 485 -26192 

394 -3906 349 -1124 474 -17397 486 -22645 

348 -2941 40 -3971 475 -11994 487 -17329 

349 -1124 41 -5142 476 - 6776 488 -11612 

40 -3971 48 -2112 477 - 1581 489 - 6121 

41 -5142 42 1235 478 2016 490 - 	16 

74 -6617 83 13645 356 21390 586 17264 

83 13645 82 -7105 587 15939 



TABLE 3.6  

SHEAR STRESS VALUES ALONG THE DIFFERENT LINES SHOWN IN FIG.3.14(lb/in2)  

Line 1 Line 1 Line 3 Line 3 Line 5 Line 5 

Elem Stress Elem Stress Elem Stress Elem Stress Elem Stress Elem Stress 

467 693 479 - 951 484 1982 472 768 490 2635 478 -2828 

455 . 414 491 - 671 496 -1217 460 -1261 502 4093 466 -6306 

443 2684 503 -3401 520 58 448 - 420 514 4852 454 -3611 

431 1696 515 -3764 532 2460 436 -1368 526 4654 442 -2656 

419 4062 527 -5364 544 919 424 -1221 538 6838 430 -7074 

407 3275 539 -5931 556 2278 412 -1231 550 6914 418 -4889 

395 5227 551 -6720 374 2339 400 -1617 562 7723 406 -6735 

383 4504 563 -7496 373 3834 388 - 900 574 7789 394 -5527 

331 5763 382 -7608 372 2410 338 99 365 8746 348 -7746 

332 5937 381 -8265 79 3604 23 - 625 363 7065 349 -4484 

14 7103 330 -8083 67 1864 24 - 828 364 4471 40 -5202 

15 6022 329 -7562 6 1288 3 -2490 77 5799 41 -4113 

Upper Crack Lower Crack 
Side Side  

I I 



TABLE 3.6 (cont.) 

Line 1 Line 1 Line 3 Line 3 Line 5 Line 5 

El em Stress El em Stress El em Stress Elem Stress El em Stress Elem Stress 

11 4627 16 -4543 12 1596 4 -2610 71 4551 74 -5423 

20 3929 25 -2627 61 1022 64 -4075 78 5902 83 -7991 

28 2124 34 -1124 62 1194 73 -3581 87 2959 82 -4580 

37 1993 26 -1185 80 2254 80 2254 

35 - 615 81 - 76 88 2818 

44 - 297 

53 - 266 

45 403 

54 - 725 

13 - 	86 

70 - 356 

Upper Crack Lower Crack 
Side Side 

J 1 , 



157 

TABLE 3.7  

ELASTIC ENERGY VALUES FOR DIFFERENT CRACK LENGTHS 

Crack Length (in) Energy Value (1b/in) 

0.10503 19.088 

0.087261 18.818 

0.077362 17.656 

0.068877 16.007 

0.061894 14.090 

0.055089 11.806 

0.048370 9.2845 

0.041476 6.7247 

0.03467 4.4084 

0.027951 2.5285 

0.021235 1.1282 

0.014165 0.32527 



TABLE 5.1 

COMPARISON OF VALUES OF 27A
1 
 /P2 AS OBTAINED  

BY THE METHOD DEVELOPED IN THIS WORK, 

AND GROSS' RESULTS 

a// 
. 

A
l 

2.0,
1 
 /P2  

Present 
Method Gross 

0.1 

0.2 

0.3 

0.5" 

0.7 

-0.09561 

-0.1503 

-0.2224 

-0.48534 

-1.2425 

0.482 

1.191 

2.600 

12.410 

81.400 

0.445 

1.180 

2.603 

12.399 

- 

For the present method, NBPT = 182; 

P = 0.345 

1.58 
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TABLE 5.2  

NBPT 

L 

A 198 12.0 x 1.0 x 0.3/ 1.604 

N 
198 8.0 x 1.0 x 0.3/ 1.631 

G 

C 
198 6.0 x 1.0 x 0.3/ 1.652 

R 198 4.0 x 1.0 x 0.3/ 1.654 

K 
198 2.2 x 	.0 x 0.3/ 1.6599 

Gross 1.5796 

Hayes 1.6628 



TABLE 5.3  

VALUES OF K
Iv
ia/P AS GIVEN BY DIFFERENT METHODS 

1 

Loading 
Condition 

H/L C/L 

KI  /a/P 

Dif
2
* 

Complex 
Method 

Collocation 
Method 

Program 
ANGCRK 

Dif
1
* 

Shear Stress 

Shear Stress 

Shear Stress 

0.444 

0.444 

0.444 

0.347 

0.444 

0.587 

4.737 

6.305 

10.670 

4.599 

6.332 

10.600 

4.590 

6.305 

10.520 

2.8 % 

0.43% 

0.63% 

2.8 % 

- 

1.5 % 

Dif
1 

is the difference between complex method and collocation method 

Dif
2 
is the difference between complex method and Program ANGCRK 
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TABLE 5.4  

STRESS INTENSITY FACTORS FOR UNIFORMLY LOADED 

SINGLE EDGE CRACKED SPECIMENS  

(EFFECTIVELY INFINITE IN LENGTH) 

K
1 
 /a ,rna 

a/d 
Gross et al Hayes Present 

(1964) (1970) Method 

0.1 1.1864 1.1062 

0.2 1.3734 1.2961 

0.3 1.6628 1.5796 1.604 

0.4 2.1066 2.0079 

0.5 2.8298 2.6798 



TABLE 6.1(a)  

LOAD CALIBRATION FOR TRANSVERSE CELLS 

Load 
(lb) 

Load Cell Reading 	(µ v) 

20 21 22 23 24 25 26 27 

20 112 122 105 114 106 103 117 108 

40 220 249 218 228 221 208 235 217 

60 335 375 330 347 338 315 347 327 

80 448 498 444 463 457 425 462 435 

100 563 622 555 577 575 537 576 547 

120 677 745 668 698 696 650 690 660 

140 790 874 782 814 815 763 810 775 

160 909 995 893 935 935 878 930 890 

180 1020 1120 1008 1051 1053 993 1050 1002 

200 1135 1248 1124 1173 1175 1108 1168 1115 

0,17/Load 5.68 6.22 5.75 5.83 5.83 5.48 5.81 5.54 

162 
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TABLE 6.1(b)  

LOAD CALIBRATION FOR OPENING LOAD 

First Assemblage Second Assemblage 

(*von 
Load 
(lb) 

p, V p, V 
1 
* 

2 
* 

3 
alt 

1 
CIF 

2 
-4( 

3 

0 -46 40 52 0 -29 45 

100 26 102 120 46 16 95 

200 91 171 190 92 61 140 

300 166 242 261 138 109 187 

400 238 312 330 184 154 235 

500 308 380 400 229 203 278 

Load 
—V— 

1.413 1.470 1.438 2.182 2.16 2.15 

Average 1.44 2.164 

*if jetrt in.ci Ion/at:cubit c_ciArtaliow ( 	2.,1) di ULr1.Lvll 

vaQuaw nct 1aautaloHnE 	 cuepiiock h
ut. 

Con\ u.Actiovt, WI a -al. 0 pun v‘ta QoaA 
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TABLE 6.2  

RESULTS • 

Case A
l 

A
2 

A
3 

A
4 

a -40.3226 -0.4078 -21.2494 0.320 

b -39.3164 -0.8442 -20.6243 0.415 

c -64.057 9.3999 -33.241 1.291 

d -45.460 1.7205 -23.7423 0.661 

e -40.405 -0.349 -21.148 0.517 

TABLE 6.3  

Case Load Al  A
2 

A
3 

A
4 

1-198 1 6.25 - 2.52492 -15.60978 -1.37875 0.013097 

2-197 2 6.25 - 2.42185 -15.65214 -1.32460 0.012180 

3-196 3 6.25 - 2.47243 -15.63257 -1.35082 0.01292 

4-195 4 6.25 - 2.47043 -15.63385 -1.34870 0.01401 

6-193 5 25.00 - 9.83291 -12.67850 -5.19663 0.09838 

9-190 6 25.00 - 0.75057 -12.69464 -5.11628 0.14883 

12-187 7 25.00 -16.01811 -10.11745 -8.35084 0.31725 
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TABLE 6.4  

COEFFICIENT VALUES FOR SPECIMEN 4 x 4  COEFFICIENT VALUES FOR SPECIMEN 6 x 4  

Al  A2 A3 A
l  A

2 A
3 

- 0.68086 -0.012870 -00.17578 0.11 - 0.95084 0.057679 - 0.30236 

0.2 - 0.85622 0.10595 - 0.30783 0.2 - 1.24700 0.25484 - 0.51259 

0.3 1.04127 0.19862 - 0.41413 0.3 - 1.53919 0.44354 - 0.70979 

0.4 - 1.27620.  0.28472 - 0.53307 0.4 _ 1.84374 0.62667 - 0.90316 

0.5 - 1.62405 0.36351 - 0.69659 0.5 - 2.19409 0.80258 - 1.10287 

0.6 - 2.22784 0.44140 - 1.01109 0.6 - 2.71039 0.95420 - 1.33785 

0.7 - 3.44878 0.57641 - 1.87494 0.7 - 3.77872 1.07542 - 1.82175 

0.8 - 6.41977 1.13795 - 5.23577 0.3 - 6.69945 1.35074 - 3.84640 

0.9 -15.85566 5.78747 -27.06240 0.9 -17.86976 4.67371 -20.43743 

COEFFICIENT VALUES FOR SPECIMEN 12 x 4 COEFFICIENT VALUES FOR SPECIMEN 8 x 4 

Al  A2 A3 Al  A
2 A

3 

0.21 - 1.80256 0.47063 - 0.80076 0.21 - 1.31190 0.15279 - 0.46465 

- 3.0 282 1.02170 - 1.46217 - 1.80256 0.47063 - 0.80076 

0.3 - 4.04007 1.62739 - 2.10940 0.3 - 2.28660 0.78602 - 1.12740 

0.4 - 5.00505 2.21707 - 2.71333 0.4 - 2.77604 1.09078 - 1.44532 

0.5 - 6.02231 2.83414 - 3.38994 0.5 - 3.27723 1.40243 - 1.77803 

0.6 - 6.97822 3.45972 - 4.03048 0.6 - 3.83434 1.69837 - 2.10147 

0.7 - 8.03905 4.07437 - 4.70821 0.7 - 4.78749 1.93386 - 2.51018 

0.8 -10.11481 4.54930 - 5.57145 0.8 - 7.57352 2.13052 - 3.86985 

0.9 -22.82669 5.43279 -13.67574 0.9 -20.14883 4.52048 -17.30471 

Loading conditions for all cases 

Opening load 	10 lb (P y) 

Transverse load 0 	(S x) 

(Tables 7.5 are a complement for covering different S /P relationships) x y 



TABLE 7.1  

COEFFICIENT VALUES 

(i) A . 6 
	

(ii) A = 12 	a
x 

= 10 lb/ins 

	

b = 1 
	

b = 2 	a = 10 lb/ins 

a A/6 £/3 A/2 2A/3 5A/6 

A 
1 

i 

i 

ii 

-9.025 

-3.191 

-29.999 

-10.606 

-62.464 

-22.084 

1 

-105.885 

- 37.436 

-160.087 

- 56.599 

A
2 

i 

ii 

2.49625 

1.248 

13.5517 

6.775 

32.78309 

+16.391 

63.15581 

31.577 

109.33239 

54.666 

A
3 

i 

ii 

-6.369 

-4.503 

-26.097 

-18.453 

-58.630 

-41.450 

-107.607 

. 	76.089 

-179.529 

-126.946 

TABLE 7.2  

NORMAL STRESS VALUES AT THE CRACK TIP FOR  

Sx . 10 lb/in P . 10 lb V 

a a
y ax 

I 

a /a y x 
I 

0.2 5.975 28 0.214 

0.5 6.936 100 0.069 

1.0 7.8 220 0.0355 

2.0 15.94 460 0.0347 

3.0 31.66 700 0.0453 

4.0 78.75 940 0.0838 

5.0 345 1180 0.292 

5.5 1440 1300 1.109 

5.8 9225 1372 6.22 

166 
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TABLE 7.3  

NORMAL STRESS VALUES AT THE CRACK TIP FOR 

= 1392 and Py  = 10 

a a
y a

x a /a y 	x 

0.2 36.5 -1344 -0.0267 

0.5 41.0 -1272 -0.0322 

1.0 48.9 -1142 -0.0428 

2.0 80.4 - 912 -0.0728 

3.0 146.0 - 672 -0.217 

4.0 336.0 - 432 -0.776 

5.0 1376 - 192 -7.16 

5.5 5556 - 	72 -77.2 

5.8 55000 0 - 



TABLE 7.4  

PROPORTIONAL PARTS OF A
2 

VALUES FOR SPECIMENS  

6x 6, 6 x 4, 6 x 1, 

LOADING CONDITIONS S
x 	P = 10 lb/in 	= 10 lb/in  

y 

.21

4.21NN3  

Prop. 
a 

6.0 x 1.0 6.0 x 4.0 6.0 x 6.0 

0.2 

i 
ii 
iii 
iv 

-0.51950 
-0.20494. 
-0.31456 
Stable 

-0.54224 
-0.34201 
-0.50023 
Stable 

I 

-1.08600 
-0.46149 
-0.62451 
Stable 

0.5 

N•
  

1-."
 H

• 
H
. 

<
 F'•
 H

•  f
-'•

 

-0.0981 
0.21470 
-0.31280 
Stable 

-0.81937 
-0.31912 
-0.50025 
Stable 

-1.0509 
-0.42305 
-0.62785 
Stable 

1.0 

i 
ii 
iii 
iv 

1.77758 
2.08718 

-0.31018 
Unstable 

-0.71591 
-0.21616 
-0.49975 
Stable 

-0.98316 
-0.35840 
-0.62476 
Stable 

2.0 

i 
ii 
iii 
iv 

9.479 
9.79450 
-0.31550 
Unstable 

-0.04802 
0.45208 
-0.50010 
Stable 

-0.73216 
-0.10737 
-0.62479 
Stable 

3.0 

i 
ii 
iii 
iv 

23.20145 
23.51677 
-0.31532 
Unstable 

1.22262 
1.72227 

-0.49965 
Unstable 

-0.23829 
0.38541 
-0.62370 
Stable 

4.0 

i 
ii 
iii 
iv 

44.39859 
44.71380 
-0.31521 
Unstable 

2.79720 
3.29766 

-0.50037 
Unstable 

0.58688 
1.21127 

-0.62439 
Unstable 

i - Total value of A
2 

ii - Value of A
2 proportional to P  

iii - Value of A
2 

proportional to S
x 

iv - Stability condition according to sign of A2 

1.68 



169 

TABLE 7.5(a) 

COEFFICIENT VALUES FOR SPECIMEN 4.0 x  4.0 

WITH DittERENT LOADING CONDITIONS 

a Sx  /P 0/10 0/20 10/10 10/40 10/20 20/20 30/20 

,I, 
' 
° 

Al  
A 
A  
3 

- 0.680 
- 0.012 
- 0.175 

co. 
0  

A 
Al  
A3 

- 0.856 
0.105 

- 0.307 

7' 
`; 

A 
Al  

A3  

- 1.041 
0.198 

- 0.414 

-2.082 
0.397 
-0.828 

-1.041 
-0.001 
-0.414 

-4.165 
0.594 
-1.656 

-2.082 
0.197 
-0.828 

-2.082 
-0.002 
-0.828 

-2.082 
-0.202 
-0.828 

.̀c). 
r' 

A 
Al, 
A; 

- 1.276 
0.284 

- 0.533 

°. (N 

A 
Al  

A  
3 

-1.624 
0.363 

- 0.696 

1̀.  
(.1 

A 
Al  
A  
3 

- 2.227 
0.441 

- 1.011 

w  . 
N 

A 
Al  
A  
3 

- 3.448 
0.576 

- 1.874 

A 
Al  

A2 
3 

- 6.419 
1.137 

- 5.235 

3.
6
 

A 
Al  
2 A3 

-15.855 
5.787 

-27.062 

For a = 1.2; S = 101b/in -> A2'A  = - 0.19996 (constant for any crack 
P
x 

= 101b 	A20 
A2

= 0.19862 length) 
Y  . A + A 

2A A20 
(Table 6.4 gives a complete record for Sx/1, = 0/10 and a = 0.12 to 0.92) 
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TABLE 7.5(b) 

COEFFICIENT VALUES FOR SPECIMEN 6.0 x 4.0 

WITH DIFFERENT LOADING CONDITIONS 

a S /P 
xx y 

0/10 0/20 10/10 10/40 
p 

10/20 20/20 30/20 

c̀)
6  ° 

A 
 Al  

A
3 

- 0.950 
0.057 

- 0.302 
• 

`: 
Al  
A 
A  
3 

- 1.247 
00.254 
- 0.512 

00  ,21 

A, 
Al  
A2 
3 

- 1.539 
0.443 

- 0.709 

-3.078 
0.887 
-1.419 

-1.539 
1.524 

-0.709 

-6.156 
1.524 
-2.839 

-3.078 
0.637 
-1.419 

-3.078 
0.387 
-1.419 

-3.078 
0.137 
-1.415 

"1' . 
" 

A 
Al  
A  
3 

- 1.843 
0.626 

- 0.903 

° 
`4 

A 
Al 

A  
3 

- 2.194 
0.802 

- 1.102 

kr) . 
m 

A 
 Al  
2 
A3 

- 2.719 
0.954 

- 1.337 

c‘j 

4 

A 
Al 
A 
3 

- 3.778 
1.075 

- 1.821 

m 
4 

A 
Al 

A3  
3 

- 6.699 
1.350 - 3.846 

d ' 
in 

A 
Al 

A  
3 

-17.869 
4.673 

-20.437 

• 

For a = 1.8; Sx  = 	A2A  = - 0.24995 (constant for any crack length) 

Py = 10 	A20  = 0.44354 

and as these loads change, there is a proportional change in A2A  

A2 = A2A + A20 
(Table 6.4 gives a complete record for Sx/Py  = 0/10 and a = 0.12 to.0.92) 
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TABLE 7.5(c)  

COEFFICIENT VALUES FOR SPECIMEN 8.0 x 4.0 

WITH DIFFERENT LOADING CONDITIONS 

a S /P 
x y 

0/10 0/20 10/10 10/40 10/20 20/20 30/20 

m 
c; 

A1  
A2  
A
3 

- 1.311 
0.152 

- 0.464 

w 
4 

A  
Alo  
A`
3  

- 1.802 
0.470 

- 0.800 

,i. 

"' 

A 
Al 
2 A
3 

- 2.286 
0.786 

- 1.127 

-4.573 
1.572 
-2.254 

-2.286 
0.473 
-1.127 

-9.146 
2.831 

-4.509 

-4.573 
1.259 
-2.255 

-4.573 
0.947 
-2.255 

-4.574 
0.634 
-2.255 

,, 

(•• 

A 
Al 
A 
3 

- 2.776 
1.090 

- 1.445 

4.
0 

A 
Al  

A  
3 

- 3.277 
1.402 

- 1.778 

cc; 
4" 

A
1 A 
A2  
3 

- 3.834 
1.698 
- 2.101 

5.
6 A 

Al  

A  
3 

- 4.787 
1.933 

- 2.510 

6.
4 A 

Al 

A23  

- 7.573 
2.130 

- 3.869 

N 

A 
Al  

A  

-20.148 
4.520 

-17.304 
3 

For a = 2.4 in; S = 10 lb/in -> A2A = - 0.31250 (constant for any crack length) Py  = 10 lb 	-> A20  = 0.78602 

A
2 
. A

2A 
A
20 

(Table 6.4 gives a complete record for S /P = 0/10 and a = 0.12 to 0.92) x y 
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TABLE 7.5(d)  

COErrICIENT VALUES FOR SPECIMEN 12.0 x 4.0 

WITH DIFFERENT LOADING CONDITIONS 

a 
J 

L/p 
x y 

0/10 0/20 10/10 10/40 10/20 20/20 30/20 

CN1 
4 

A 
Al  

A 
3 

- 1.802 
 0.470 

0.800 

(NI 
A1  
A2  
A
3 

- 3.042 
1.021 

- 1.462 

t.D 

c° 

A 
 A l1 

 

A  
3 

- 4.040 
1.626 

- 2.109 

-8.081 
3.254 

-4.218 

-4.040 
1.211 
-2.110 

-16.160 
6.094 

- 8.438 

-8.080 
2.839 

-4.220 

-8.080 
2.423 

-4.221 

-8.080 
2.008 

-4.222 

m 
-; 

A 
Al 

 

A 
3 

5.005 
2.217 

- 2.713 

10  

A 
 Al, 

PL
3  

- 6.022 
2.834 

- 3.389 

,i 
t,,• 

Al 
A
2 A3  

- 6.978 
3.459 

- 4.034 

1̀. 
00  

A 
Al  o  
Ac'
3  

- 8.039 
4.074 

- 4.708 

t.0 
a: 

A 1  
A2  
A
3 

-10.114 
4.549 

- 5.571 

0  
; 

`-' 

A 
Al 

A  
3 

-22.826 
5.432 

-13.675 
t 

For a = 3.6 in; S = 10 lb/in > A2A = - 0.41558 (constant for any crack 
Px  = 10 lb • 	A20 = 1.62639 	length) 

. A
2A 

+ A
20 

Y  A
2 

 

(Table 6.4 gives a complete record for Sx/Py  = 0/10 and a = 0.11 to 0.92) 
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TABLE 7.6 

A
2 
COEFFICIENT VALUES FOR DIFFERENT LOADING CONDITIONS AND DIRECTIONAL STABILITY OF PROPAGATION 

Values depicted in Fig.7.4 

a s /P 	0/10 
x 	y 

10/10 20/10 30/10 40/10 50/10 

0.2 -0.44885 -1.086 -1.7232 -2.3604 -2.9976 -3.6348 

0.5 -0.41377 -1.0509 -1.6881 -2.2253 -2.8625 -3.4997 

1.0 -0.35840 -0.9831 -1.60785 -2.2326 -2.8573 -3.4821 

2.0 -0.10737 -0.7316 -1.3556 -1.9802 -2.6047 -3.2288 

3.0 0.38541 -0.23829 -0.8619 -1.4856 -2.1093 -2.7331 

4.0 1.2240 0.5868 ' 	-0.0370 -0.661 -1.3849 -1.9106 

5.0 7.57679 6.9539 6.3311 5.7083 5.0855 4.4627 

5.5 45.86069 45.2343 44.6080 43.9817 43.3554 42.729 

5.8 150.79623 150.1412 149.4862 148.8311 148.1761 147.5211 

U 
a) 
a 
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TABLE 7.6 (cont) 

a S /P 	0/10 
x 	y 

10/10 20/10 30/10 40/10 50/10 

1.0 -0.215 -0.715 -1.215 -1.715 -2.215 -2.714 

2.0 0.452 -0.048 -0.548 -1.048 -1.548 -2.048 

3.0 1.722 1.22 0.7229 0.223 -0.276 -0.776 

4.0 3.2972 2.7972 2.2969 1.796 1.296 0.7958 

5.0 7.2769 6.7769 6.278 5.779 5.281 4.782 

5.5 36.8899 36.3899 35.8957 35.4051 34.9072 34.4130 

5.8 170.3402 169.8402 169.341 168.857 168.3654 167.8738 

0.2 -0.20501 -0.5195 -0.8341 -1.1486 -1.4632 -1.777 

0.5 0.21462 -0.0981 -0.4109 -0.7237 -1.036 -1.349 

1.0 2.08776 1.777 1.4674 1.1572 0.847 0.5368 

2.0 9.7945 9.479 9.163 8.848 8.533 8.218 

3.0 23.20145 22.890 22.580 22.2696 21.959 21.648 

4.0 44.39859 44.083 43.769 43.455 43.139 42.8249 

5.0 76.61821 76.307 75.996 75.686 75.375 75.064 

5.5 89.71938 89.4063 89.0932 88.7802 88.4672 88.1541 

5.8 189.10466 188.7919 188.4791 188.12 187.8536 187.5409 
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TABLE 7.12(a)  

RELEVANT DATA ON THE CRACK PROPAGATION OF SPECIMENS 4.0 x 4.0  

ai  = initial crack length = 1.0 in 	of  = final crack length to calculate A2  values = ai  +(length under phase II) 

4 x 4 
Crack 
Tip 

Crack Length 
under Phase I 

mm () 
a a 

(deg) 

aF 

(deg) 

P
r coord. 
mm () 

Crack Length Under 
Opening 
Load 
(lb) 

Trans- 
verse 

Load 
(lb/in2) 

(t) 5  lb b  

A
2 

Initial 
Load 
Final 

Phase II 
(mm) 

Phase III 
(mm) 

1/4 Sharp P-1 1 8 13.6 y = 7 There is not a clear - NO 
Increases x = 23 difference 

2/4 Rounded 5.8 11.5 y = 5.5 7 21 B 194 NO 
205 

Increases x = 27 A 126 68 

3/4 Rounded 1 Decreases y = 7.1 B 192 80 
222 

1.32  
26 12.5 x = 21.8 11 12 A 115 77 1.06 

4/4 Rounded 16.5 8 y = 7  20 14 B 209 100 
227 

1.75 	' 
Decreases x = 33.5 A 	68 141 

0.22 

5/4 Rounded 1 18 11.5 y = 6.7 10 16 B 201 100 
222 

0.61 
Decreases x = 35.6 A 115 86 

0.51 

6/4 Sharp 1 9 3 y = 1.3 NO 24 - 160 - - 
' Decreases x = 24 

- ,. 



TABLE 7. 13 (a)  

RELEVANT DATA ON THE CRACK PROPAGATION OF SPECIMENS 6.0 x 4.0  

4 

Crack Crack Length Unde 

6 x 4 
Crack 

Length 
under aa a

F 
P
r 

Coord. 
Opening 
Load 

Trans- 
verse Sc Load 

A 
 Dimension- Tip 

Phase I (mm) Phase II Phase III (lb) Load (lb) (lb) 
less 

(mm) (de g) (deg ) (mm) (mm) (lb/in2) Initial/ 
Final 

1/6 Sharp No 19 30 y = 14.5 No - No - - 
Increases x = 31.5 

2/6 Slight 1 23 4 y = 11.2 23 28 - 160 - - 
ly Increases x = 51 

Roundea 

3/6 No 22 3 y = 11.0 36 17 B 312 160 318 142 7.58. 
Increases x = 51 A 170 9.6 

4/6 Rounded 1 14 5 y = 4.5 14 17 - 160 - - 
Decreases x = 38 

5/6 Sharp No 4 <1 y = 	1 No 52 B 296 360 296 109 
2.58 

Decreases x = 52 A 187 1.6 

ai  = initial crack length = 1.574 in 
a f  = final crack length to calculate A2  values = ai  + (length, unrier phase II) 



TABLE 7.14 (a) 

RELEVANT DATA ON THE CRACK PROPAGATION OF SPECIMENS 8.0 x 4.0 

8 x 4 Crack 

--13 
Tip  

Crack 
Length 
under 
Phase I 
(mm) 

aa 
(deg) 

aF 
(deg) 

P 
Coors. 
(mm) 

Crack Length Under 
_1 Opening 

Load 
(lb) 

Trans- 
verse 
Load 

(1b/in 2) 

Sc 
(lb) 

5Load 
(113) 

A 
2. 	. Dimension- 

less 
Initial/  

Final 
Phase II 
(mm) 

Phase III 
(mm) 

1/8 ' Sharp 1 21 46 y = 14.5 9 15 I 17 No 325 98 22,03 
Increases x = 20.0 B 342 

A 244 

2/8 Sharp < - 14 33 y = 	6.5 NO 14 - NO - - 
Increases x = 13 

3/8 Sharp < 4. 14 29 y = 11.7 NO 29 - NO - - 
Increases x = 26.5 

4/8 Blunt - 13.5 6 y = 3.8 240 
Decreases x = 20 _5 30 

5/8 Sharp < 4- 7 1 y = 2.5 I - 22 850 - - 
1.23 

Decreases x = 36 19 15 B 	390 412 140 1.95 
A 	250 . 

a. = initial crack length = 2.125in 
al.finalcracklengthtocalculateA2values=a.+(length under phase II) 

rn 



TABLE 7. 15 (a)  

RELEVANT DATA ON THE CRACK PROPAGATION OF SPECIMENS 12 x 4  

12 x 4 
Crack 
Tip 

Crack 
Length 
under 

Phase  I 
(mm) 

aa 
(deg) 

aF 
(dog) 

Pr 
Coord 
("II) 

Crack Lergth Under 
Opening 
Load 
(lbl 

Trans- 
verse 
Load 

(lb in2) 

5c 
(lb) 

$ Load 
(lb) 

Final 
Load 

A
2  

Dimension- 
less 

Initial/ 
FinAl 

Phase II 
(mm) 

Phase III 
(an) 

1/12 Blunt 3 10 21 y . 	6.3 35 B 327 No 327 46 49.6 

Increases x = 26.5 27 15 A 281 54.6 

2/12 Sharp No 18 13 y . 	7.5 I 	20 360 340 140 36.55 

Decreases x = 26.5 15 13 B 320 
A 181 (200) 20.95 

3/12 Blunt 1 17 9.5 y . 	6.8 29 9 I 2.18 360 340 201 36.55 

Decreases x . 26.5 B 342 
A 142 (110) 14.05 

4/12 Blunt 1 13 11 y = 	5.7 6 19 12.18 360 310 118 31,95 

Slight Decreases x = 26.5 B 312 
Sharp- 
ness 

A 194 (152) 17.20 

h 	a27' 

5/12 Blunt - 6.5 23 y = 	6.0 No 30 No - - 
Increases x = 26.5 7 4.5 

6/12 Blunt 1 12 	4.5 y = 	3.0 No 26 I 2.18 700 327 15 20.4 
Slight Decreases x = 26.5 B 129 
Sharp- 
ness 

A 314 

cm.. initial crack length 3.35.lat 

Clj  =final crack length to calculate A2  values 	ai  4. (length under phase II) 



TABLE 7.12(b)  

Load (lb) 

*Length(mm) 
Toaverse 

Case 1 
- 

- 
No  

Case 2 
67.5 

' 	15.26 

NO 

Case 3 
76.3 

. 	24 

BO 

Case 4 
142 

44 

100 

Case 5 
85 
22 

100 

Case 6 
- 
_ 

160 

A a 5.6 
Increases 

5.7 
Increases 

13.5 
Decreases 

8.5 
Decreases 

6.5 
Decreases 

6 
Decreases 

TABLE 7.13  (b)  

Case 1 Case 2 Case 3 Case 4 Case 5 

ad. +11 -19 -19 -9 -5 

04 Increases Decreases Decreases Decreases Decreases 

TABLE 7.14 (b)  

Case 1 Case 2 Case 3 Case 4 Case 5 

load 98 .- - 140 - 

ImAill. 
tml AL? 
r71-so_ 11 20 - - 41 - 

+ 25 + 19 + 15 - 7.5 - C 

a Increases Increases Increases Decreases Decreases 

TABLE 7.15 (b)  

Load 
(lb) 

Length 
under 
Phase II 
mm 

a 

Case 1 

46 

27 

+ 11 

Increases. 

Case 2 

140 

15 

- 5 

Decreases 

Case 3 

201 

29 

-7.5 

Decreases 

Case 4 

118 

6 

- 2 

Decreases 

Case 5 

15 

- 

-7.5 

Decreases 

The length of crack extension considered here is that under phase II 

There is a definite co-relation between the load value and the length of crack extension. 
There is a co-relation as Well between the change in the angle of the crack (Aa) 

increasing when there is no transverse load and decreasing when transverse load operates. 

198 



TABLE 7.16 

VALUES OF INITIAL APPARENT ANGLE AND FINAL ANGLE FOR SPECIMENS 12 x 4 (Fig.7.15) 

x
r 

31 mm 
a b c d e f g h 

Crack tip Sharp Sharp Sharp Blunt Blunt Sharp Sharp Sharp 

Load (1b/in) 160 240 280 320 320 320 400 440 

aa 12.5 16 7 19 24 7 10 14 

aF 12.5 7 4 - 2 0 3 2.5 5 
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TABLE 7.17 (a)  

r 1 
Specimen 14.1315 - 63.98 

12 x 4 

a . 3.6 

1 	0.2 0.60388E-03 0.0 

6.2757 - 88.07 
Coefficients 

0.5 0.8950E-04 94.32 
A
l -8.080 „.. 

A
2 	2.354 1.99681 -116.02 

A
3 -4.218 0.8 0.29126E-04 - 94.32 

Loading 

ax = 0.0 1.2 

-2.01791 

0.17664E-04 

0.91 

-123.18 
P 	= 20.0 
Y 

-2.74774 0.91 

1.6 0.4317E-04 - 43.40 

TABLE 7.17 (b)  

Specimen 7.62776 - 49.11 

8 x 4 

a . 3.6 

0.2 0.17460E-03 0.0 

3.16823 - 73.4 
Coefficients 

. 0.5 0.29263E-04 - 85.68 
A-4.972 
1 

A2  1.572 0.81072 - 74.65 

A
3-2.254 0.8 0.10817E-04 - 88.07 

Loading 

a
x 

= 	0.0 
1.2 

-0.87343 

0.98658E-05 

0.91 

- 94.32 
P 	= 20.0 
Y 

-1.27531 0.91 

, 	.., 1.6 
g 

0.11945E-04 - 43.62 



TABLE 7.17 (c)  

Specimen 

6 x 4 

a . 2.4 

0.2 

7.40398 

0.1105E-03 

- 48.58 

0.0 

Coefficients 5.91252 - 57.73 

A
1-3.078 0.5 0.40276E-04 - 71.49 

A
2 0.887 5.512 - 57.73. 

A
3-1.418 0.8 0.31101E-04 - 70.23 

Loading 5.29198 - 57.73 

ax = 0.0 1.2 0.25975E-04 - 71.14 

P 	=20.0 5.4247 - 47.61 
Y 

1.6 0.23079E-04 - 77.39 

TABLE 7.17 (d)  

Specimen 

4 x 4 

a = 1.8 

0.2 3.57991 

0.27715E-04 

0.91 

0.0 

1.34967 0.91 

Coefficients 0.5 0.7064E-05 - 67.28 

A1-2.082 0.48006 0.91 

A
2 
0.397 0.8 0.26177E-05 - 72.43 

A3-0.818 0.17672E-02 - 11.59 

Loading 1.2 0.18786E-05 - 19.66 

ax = 0.0 0.11072 - 14.75 

P 	=20.0 1.6 0.32395E-06 - 16.50 
Y 

201 
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TABLE 7.17 (e)  

Specimen 4 x 4  

Loading Coefficient Radius 

1 

_ 

Value 
of the Criteria 

1 

Expected 
Angle of 
Crack 
Growth 

,.(deg) 

lb ox = 10= in Al -4.1652 a  	= - 1.2725 0.91 

P
Y 
 = 401b A

2 0.5945 2.0 

a 	= 1.2in A3 -1.6565 S 	= 0.1945E-05 0.91 • 

ax = 0 Al  -1.04127 a
* 
 = 1.78392 0.91 

P
Y 
 = 101b A

2 0.19862 0.2 

a 	= 1.2in A3 -0.41413 S 	= 0.6928E-05 0.0 

lb ox = 207- in A1  -2.0827 a 	= - 3.5798 0.91 

P
Y 
 = 201b A2 -0.00268 0.2 

a 	= 1.2in A3 -0.8283 S 	= 0.17059E-04 0.91 

ax = 3a7-
lb  
In Al 1 -2.08283 a4 	= 3.5788 0.91 

P
Y 
 = 201b A2 -0.22026 0.2 

a 	= 1.2in A3 -0.82836 S 	= 1.3899E-05 0.91 
4 



TABLE 7.17 (f)  

Specimen 6 x 1  

Loading Coefficient Radius Criterion 
Value 

Angle of 
 

Expected 

Crack 
Growth 

lb 
ax = 4007— in A1  

-13.814 , = -306.462 av   0.91 deg 

P 	= 100lb A - 4.187 0.002 
Y 
a 	= 0.2in 

2 

A3 -17.880 S 	= 	0.147 0.91 deg 

, = - 90.148 av  0.91 deg 

ditto ditto 0.02 

S 	= 	0.0113 0.91 deg 

a
4 
= - 	9.816 0.91 deg 

ditto ditto 
0.2 

S 	= 0.000145 0.91 deg 

a
4 
= - 	0.736 0.91 deg 

ditto ditto 
2.0 

S 	= 0.000328 -35.11deg 

ditto 

Al -13.814 „ = -306.471 cv  0.91 deg 

A
2 + 4.187 0.02 

A
3  

-17.880 S 	=0.13565 0.91 deg 

A
l -13.814 a 	. -306.466 0.91 deg 

ditto A
2 

0.0 0.02 

A
3 

-17.880 S 	= 	0.1409 0.91 deg 

Al 
 

-13.814 a
4 
. -306.462 0.91 deg 

ditto A
2 

- 4.187 0.02 

A
3 

-17.880 S 	= 	0.1469 0.91 deg 

203 
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TABLE 7.18  

VALUES OF A2 
FOR EXPERIMENTAL CASES 

(a) Specimen 4 x 4 

Initial 3/4Final Initial "Final Initial 5 /Final 

O.L. 192 109 209 67.6 200 115 lb 

T.L. 80 80 '100 100 	• 100 100 lb/in 

a 1.0 1.414 1.0 1.788 1.0 1.433 in 

A
2 1.32 1.06 1.75 - 0.27 0.61 0.51 

a 26 18 16.5 10 18 15.5 degree 

(b) Specimen 6 x 4 

3/6 5/6 
Initial Final Initial Final 

0.L. 312 170 296 187 

T.L. 160 160 360 360 

a 1.574 2.992 1.574 2.2 

A
2 

7.58 9.6 2.58 1.6 

a 22 10 4 1 

(c) Specimen 8 x 4 

5/8 

Initial Final 

O.L. 412 250 lb 

T.L. 850 850 lb/in 

a 2.125 2.937 in 

A
2 

1.231 — 1.95 

a 7 1 deg 



TABLE 7.18 (cont.) 

(d) Specimen 12 x 4 

1/12 2/12 3/12 4/12 6/12 

Initial Final Initial Final Initial Final Initial Final Initial Final 

0.L. 327 281 340 200 340 140 310 192 329 lb 

T.L. 0 0 360 360 360 360 360 360 700 
lb/in 

a 3.38 4.44 3.38 3.97 3.38 4.52 3.38 3.616 3.38 in 

A
2 

49.6 54.6 36.55 20.95 36.55 14.05 31.95 17.8 20.4 

a 10 18 17 
t 

13 12 degree 
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TABLE 8.1  

COEFFICIENT VALUES FOR SINGLE EDGE CRACK BEND SPECIMEN  

AND SINGLE EDGE CRACK TENSION SPECIMEN.  

(a) 

a 0.2 0.4 0.6. 0.8 1.0 

Al -8.031 -11.059 -14.599 -19.145 -25.484 

A2 -5.116 - 3.583 - 2.181 - 0.643 1.515 

A
3 1.428 - 1.908 - 5.413 -10.035 -17.420 

(b) 

a 0.3 0.6 0.9 

A
l -18.027 -33.835 -370.759 

A
2 - 5.165 - 3.722 135.285 

A3 5.622 - 2.512 -444.330 
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TABLE 8.2  

CRACK ARREST 

Specimen Fig.8.1 O.L. Load 

Length of 
Crack Ext. 
(Phase II) 

T.L. 

6/12 a 327 0 0 700 

4/12 b 283 118 6 360 

2/12 c 320 140 15 360 

1/12 d 327 • 46 27 0 

3/12 e 342 201 29 360 

The crack extension for this specimen was not totally 

phase II, this can be noticed on the cracked surface. 
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Point 2 is 
Points 2-3 

Points 1-2 

fixed 
lie on a circular arc constrained to move circumferentially 
about the gear centre 
and 3-4 are allowed to move perpendicular to the radius 
from the gear centre 

Fig. 3.2 Boundary conditions for tooth stress calculations 
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Fig. 33 Lines of Laximum principal 
stress in uncracked tooth 
root per 100 lb load (lb/ire) • 
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Transverse Load 280 lb/in (C) 	Transverse Load 320 lb/in (A) 

Transverse Load 320 lb/in(a) Transverse Load 320 lb/in ( ) 
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APPENDIX'3  

(a) Study on determination of direction of crack propagation. 

(b) Determination of stress intensity factors. 

This study involves: finite elements, computation, programming, 

automatic mesh generation for the gear. 

The program developed works as follows. 

Data: Diametral pitch, pitch diameter, number of teeth, helic 

angle, pressure angle, boundary conditions, loading. 

It 

(a) computes the tooth profile, isolates a gear section; 

(b) generates a mesh suitable to be used in conjunction 

with program FLAP3, and applies the load; 

(c) cracks the tooth; 

(d) 1. by using Rice's contour integral, computes K 

or 

2. by using Bueckner's method, computes K. 

Additionally, the data supplied by FLAP 3 can be used to trace 

isostatics, isoentatics, isopaclines, isochromatics, etc. These 

were done manually when required and is a length process but it 

is very useful for the analyst to know deeply what is going on 

in the material and these fields show clearly critical zones. 



APPENDIX 3a 

= 

= 

33.54" 

0.8" 

Pitch circle diameter 

Normal pitch 

Base circle diameter = 31.074" 

Addendum circle diameter = 34.05" 

Dedendum circle diameter = 32.78" 

Number of teeth = 118 

Face width = 8.5" 

Axial pitch = 1.8" 

Normal p.a. 20
o  = 

Helix angle = 26° 23" 

Thickness of rim below dedendum circle = 2.14" 

Grinding allowance = 0.015" 

Carburised to D.G.S. 6017E to give 0.085 effective case 

depth and hardened to a surface level of 650 to 775 D.P.N. 

The gears are designed for a Lloyd's 'K' value of 424 

i.e. a tangential tooth load of 2727 lb/in face width. 
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APPENDIX 3b 

Circumferential component of 100 lb load = 92.6 lb 

Radial component of 100 lb load 	= 37.2 lb 

For point A: moment arm to pitch circle = 0.353 in 

root width 	= 0.702 in 

eccentricity of radial load = 0.128 in 

Simple bending stress 	= My/I 

= 92.6 x 0.353 x 3 
c).3st x.o.3st 

+ 398 lb/ins  

Direct stress 	 = W/A 

= -37.2/0.702 . -53 lb/in2 

Eccentric bending stress 	= (W€)y/I 

= 37.2 x 0.128 x 3/2 

(.351)2  

-58 lb/in2 

Simple bending stress 	= +398 lb/in2 

Simple combined stresses 	= 287 lb/in2 
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APPENDIX 5b 

Expressions for the stress field in the crack neighbourhood. 

e 	bu  bu br bu 
x bx br bx b* bx 

r =v'x2  +y2  

* = Tan -1  (y/x) 

Or 	b(x2  + 	(x2  + y2) 2  d(x2  + y2)  
bx = 	bx 	 2 	dx 

1 	dx2 	2x 	dx 	 
2(x2  + y2)7 dx 	2(x2  + y2)7 dx 

—x = Cos 
. Or 
. .  ox = Cos 

in the same way 

Sind' 
• • bx 

bu bu 	bu Sin 1)  e = 	 = 	Cos I;  x bx br 	b* r ' 

by by or by 	_ e  = 
y by br by o* by - 

fi 	
by 	by Cos if  = — Sin +  y Or 	bit r 

and 

bu by _ 
Yxy by bx 

that becomes 

si 	ou cos 	bi _ 	by Sin 

	

Y =xy br n  * F47 r 	Or -̀'us  * b* r 

u and v are given as shown in Chapter 5 and in order to simplify 

calculations, constants within the series were represented as 

follows: 
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In order to facilitate the handling of the whole expressions 

COE1, COE2, etc, are defined as: 

COE1 = [-(k + n - 3/2) Cos (n - 1)* + (n - 4-)Cos(n - 5/2)*] 

aCOE1 - [(k + n - 3/2)Sin(n - i)t - (n  
611.1 	

- i)(n - 5/2)Sin(n - 5/2)*] 

COE5 = [-(k + 3/2 - n)Sin(n - 1)* 	(n - 1)Sin(n - 5/2)*] 

aCOE5  
)* 	

- [-(k + 3/2 - n)(n - i)Cos(n - 1)* - (n - 1)(n - 5/2) 

Cos(n - 5/4] 

So 

n-1 n- 
u = E[(- 1) 	r 2

-1. [a
2n-1

COE1 + b
2n-1

COE3] 	
i)nrn 

 

[a2nCOE2 + b2nCOE4]) 

n-1 n- 
v = EP- 1) r -4 [a2n-1

COES + bn-1COE7]  + (-1)nrn  

[a
2n
COE6 + b2n 

COE8]) 

Considering here only those parts of the equations concerning a2n-1 

au 
= (-1)n-1(n - 

1)rn-3/2C2n-1
COE1 

ar 

au 	n-1 n-1 	COE1  
= (-1) 	r 2C

2n-1 a* 

ar Cosa((-1)n-1(n - 2n-3/2 CCOE1 Cos*) 

„Nu Sin 	 rn-3/2 C 	aCOE1 	 I Sin *3 
a* r 	2n-1 64 

ay 
	

= 0_1)n-1(n  - Drn-3/2 2n-1 COE5) 

av 	= 0_1)n-1 rn-3/2 	6C0E5C

2n-1 64 J  

ar 
Sint 	) ((-1'n-1' 	n-3/2  cn - 2)r 	C

2n-1 
COE5 Sin *) 

Cos* r = r,_ n-1 n-3/2 	aCOE5  
2n-1 tt 1) 	r 	Cos*) 



2 	2(1 - v) (ex + ey ) 
ax + ay  —  E  

+ [)-1)n-1rn-3/2C 	3C0E5  
Cosh] 2n-1 3* 
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n-3/2 r )u 	n-1 -Sin* = 1.(-1) 	(n - l)r 	C2n-1COE1 SinS) 

)u Cos 

 

- 	

{(-1) 3u 	c  
2n-1 )41 

3C0E1  Cos r 

v Cost) = 0-1)n-1(n - 1) rn-3/2 C2n-1 COE5 Cos*) )r 

,.\T ant 

- 

( ( _1)n-1 rn-3/2 	3C0E5  
)r r 	 2n-1 34 	Simi!) 

a +a 	a - ax  ar -2 	2 	Cos 2* + a xy  Sin 2* 

- ay y  
2 	2

• 

(1
E
+ v)  (ex - ey ) 

E  
a xy - 2

• 

(1 + v) Yxy 

. )u 	)r )u )0 e = 	— x 3x 3r 3x )0 )x 

e = Cos )u 	)u Sin  
* 	

*  
- x )r 	)* r 

ex  = [E(...1)n-1(n  - 1)rn-3/2c  2n-1 COE1 Cos*]-[(-1)n-1rn-3/2  

3C0E1  C2n-1 )* Sinfl 

e  = )v = )v)r 4.  )v It.  = 
III- Sino,  + ,v Cos 

Y 	3t 	'' )* r 

e = ([(-1)n-1(n - 1)rn-3/2C2n-1COE5 Sin*] 

	

)u )v )u)u Cost )v 	)v Sin*,  Y 	+ 	= 	Sin* + 	+ 	Cos* - xy )y )x 3r 	311 r 3r 	3* r 
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Cost] 2n-1 a* 
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xY (E(-1)n-1(n - -3-)rn-3/2C2n-1COE1 Sint] 

c(_1)n-1(n_2)rn-3/2c  2n-1 COE5 Cost] 

E(_1) 	n-3/2c 	)COE5  Sint]) 2n-1 6* 

e e  = (p_l)n-1(n - i)rn-3/2C
2n-1COE1 Cost] x y 

- P-1)n-1rn-3/2C 
	)COE1  Sint] 
2n-1 6* 

u_i)n-1(n  2)rn-3/2c 2n-1 COE5 Sint] 

. n-3/2c 	)C0E5  Cos t]) Lk 	2n-1 at 

	

C 
	(_1)n-1 rn73/2c  

2n-1. 

e + e = C [(n - 1) COE1 Cos* - 
)COE1 

 Sint + (n - 1)C0E5 Sint 

	

x y 	 3* 

6C0E5  + 	Cos*] 
3* 

)C0E1   
e - e = C[(n - 1) COE1 Cost 	(n - 1) CO E5 Sint 

	

x y 	 al 
sin. 

)C0E5  Cost] 
- ay 

- 
ax y  Cos 2t - 	 2 	2(1+v) 

(e
x 
 - e

y)Cos2* - 2(1+v)(ex 
 - ey)(1 - 2Sin2*) 

)C0E1 
(e - e )(1-2Sin23) = CE(n - 1)C0E1 Cos* - - Sin* - (n - 1)C0E5Sin* x y 	 3* 

)C0 E5  
COO] + [-2(M - 2)C0E1 Cost Sint 

	

+ 2 	CE5  Cos'
at  

+ 2(n - 1)C0E5 	Sin3t 	() 	Sint] 

axySin2.t -2(1+v) yxySin2t - 	 

	

2(1+v) 	xy2Sint Cost 

Yxy 	
CO  

	

= C((n 1)C0E1Sint 	
COE1  cost + (n - 1)C0E5 Cost - -

)t
E5  Sint) 
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bC0E1 
y 2Sin*Cos* C (2(n COE1Sin2 	2-----  Cost  *Sin* 
 b* 

oCOE5 
+ 2(n - 1)COE5 Coss*Sin* - 2-----  Sine  *Cos* I b* 

(ex 
 - e 

y  )(i - 2Sin
2*) + y

xY 
 2Sin*Cos* = C ((n - 1)C0E1Cos* 

oC OE1 	oCOE5  
Sin* - (n - 1)C0E5Sin* - 	Cos* 

b* 

600E1  n  . 	bC0E1  
+ 2 	Cos *Sin* + 2 	Sins* + 2(n - 1)C0E5Cos2*Sin* 

b* 	b* 

+ 2 (n - 1) COE5Sin3*1 = C ((n - 1)C0E1Cos* oCOE1 
 sine  

[1 - 2(Cos2* + Sins*)] - (n - 1)C0E5Sin* [1 - 2 (Coss* + Sins*)] 

ocoE5  cos*} 
b* 

C 
= 	- 1)C0E1Cos* oCOE1 Sin' . + (n - 1)C0E5Sin* - 

O
b*
OE5  coo] 

 

C (n - 1)([-(k + n- 3/2)Cos(n - 1)* + (n - 1)Cos(n - 5/2)*]Cos* 

+ [(k + n - 3/2)Sin(n - 1)* - (n - 5/2)Sin(n - 5/2)*]Sin* 

+ [-(k + 3/2 - n)Sin(n - 1)* - (n - 1)Sin(n - 5/2)*]Sin* 

- [-(k + 3/2 - n)Cos(n - 1)* - (n - 5/2)Cos(n - 5/J*]Cos41 1 

= C(n - 1)[- 2(n - 3/2)Cos* Cos(n - 1)* + 2(n - 3/2)Cos*Cos(n - 5/2)* 

+ 2(n - 3/0in*Sin(n - 1)* - 2(n - 3/2)Sin*Sin(n - 5/2)*] 

al = (n - 4)41 ; 	= 41a/-a2= (n - 3/2)* ct1+a2 = (n + 1)* 

a3 = (n - 5/2)* a4 	*a3-a4. 	7/2)x3+a4  = (n - 3/2) 

= C(n - 1)2(n - 3/2) (- 1 Cos(n - 3/2)* - 1 Cos(n + 1)* 

+ 1 Cos(n - 7/2)* + 1 Cos(n - 3/2)* 

+ 1 Cos(n - 3/2)* - 1 Cos(n + 1)* - 1 Cos(n - 7/2)* + 2  Cos(n - 3/2)*1 

= C (n - 1)2(n - 3/2) [-Cos(n + 1)* + Cos(n - 3/2)*] 

(ex  - e y
)Cos2* + y Sint* = (-1)n-1  n-3/2C2n-1

(n - 1)2(n - 3/2) 
 xy 

[Cos(n - 3/2)* - Cos(n + 1)*] 

This is being multiplied by 	 2(1 + v) 

eX  + e 

	

	 OCOE5 	1 
C [(n - 1)C0E1Cos* bC0E1  Sin* +  (n - 	---- 1)C0E5 Sin* + 	 -Cosh] 
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C(n - i) ([-(k + n - 3/2)Cos(n - 1)* + (n - i)Cos(n - 5/2)*]Cos* 

	

-[(k + n - 3/2)Sin(n - 	- (n - 5/2)Sin(n - 5/2)*]Sin* 

+[-(k + 3/2 - n)Sin(n - 1)* - (n - 1)Sin(n - 5/2)*]Sin* 

+ 3/2 - n)Cos(n - 3)* - (n - 5/2)Cos(n - 5/2)*]Cosif) 

C(n - 2) [-2k Cos*Cos(n - 1)* + 2Cos*Cos(n - 5/2)' 

-2k Sint Sin(n - I)* - 2Sin'sSin(n - 5/2)* 

al= (n - 14;a1-az n - 3/2 a3  = (n - 5/2)* a.3-a4  = (n - 7/2)* 

a2 = 	a'1-1-a2= n 	a4 =  a3+a =  

k Cos(n-3/2)* + Cos(n+1)* -+ Cos(n-7/2)* + Cos(n-3/2)* 

= -C(n-1) 4Cos(n-3/2)* - Cos(n+1)* 	-Cos(n-7/2)* + Cos(n-3/2)* 

= C(n-2) [-2 k Cos(n - 3/2)* + 2 Cos(n - 3/2)*] 

= C(n-Z) [-2(k - 1) Cos(n - 3/2)i] 

and 

K - 
1 + v 

- 2(k - 1) = -2 [3 	-
-6 + 2v 	-6 + 2v + 2 + 2v  

- 	+ 2 - 
1+ v 	J 	1+ v 	1+ 

	

-4 + 4v 	-4(1 - v)  
1 + v 	1 + v 

e
x 
+e = c(n - 

Y [
-4(1 - v) 

1 + v Cos(n - 3/2)*] 

Qx 

2 	- 2(1

E

- v) 
(ex + ey) = 2(1E 	+ v) 

C (n - z)(-4Cos(n - 3/2)0 

crx-
2 	

Cos 2* 	
xY 

+ a 	Sin 2* = C(n - 1)2(n - 3/2)[Cos(n - 3/2)* 

E  - Cos(n + 1)*] 2(1  

a _ !LL1L 5171L coo 	Sin2* 
r 	2 	2 	xY 

E  
2(1 + v 

C(n - 1) [(2(n - 3/2) - 4)Cos(n - 3/2)* - 

- 2(n - 3/2)Cos(n + 1)*] 

3 
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E 	C(n - -1)[(2n - 6/2 - 4) Cos (n - 3/2)4t - 2(n - 3/2) 
2(1 + v) 

Cos (n + 1)t] 

E  
2(1 + v 

C(n - 2)[2(n - 7/2)Cos(n - 3/2)t - 2(n - 3/2)Cos(n + 2)1J] 

if n = 1 

E  
or 	(1 + v) 4 

(-5 Cos(- 	+ Cos 21-) 
-  

As given by Williams 

Proceeding in the same way it was done, but for those terms with 
A
2n 

COE2 = [-(k + n + 1)Cos n t + n Cos(n - 2)10 

bC0E2  = [(k + n + 1)n Sin nt - n(n - 2)Sin(n - 2)] 
b* 

COE6 = [-(k - 1 - n)Sin nt - n Sin (n - 2)t] 

bC0E6  - [-(k - 1 - n)n Cos nt - n(n - 2)Cos(n - 2)11] 
ate 

bu 
br 	= (-1)11:n rn-1 A2n 

COE2 

au = (-1)
n rn-1 A bC0E2  

0* 	2n toll 

ou z-T-r- Cost = [(-1)n  n rn-1 A2n COE2 Cost] 

6,1 aint r(...1)n rn-1 A 	bC0E2  sinfl  
0111 r 	L 	2n bt 

b Sint = [(-1)n'n rn-1 A2n 
COE6 Sint] 

r 

bv cost [(_1)n rn-1 A 
bC0E6  Cost] 

bt r 	2n 0* 

Or 
.)- 11  Sint = [(-1)n  n rn-1 A2n 

COE2.Sint] 

au Cosibt = [(_1)n rn-1 A bC0E2 Est] , 
bt r 	2ni  bt 

n-1 A
2n 

COE6 Cost] Cosh= [ (-1)n  r 
br 

[(_.)n n-1 	o0
t  r A2n 	

Sin]
bt r 	

11,E6 
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au 	by au Sin* 	Cos ex  = 	Cos* - 	r 	; ey  = 	Sin + 	r  au 

C0E2 ex  + ey  = ((-1)n  n rn-1 A2n 	
b 

COE2 Cos* - (-1)n  rn-1 A
2n b* —  

+ ((-1)n  n rn-1 A2n 
COE6 Cos* 	(_1)n rn-1 A  LC2E6 Sin*) 2n b* 

C2n = (-1)
n rn-1 A2n 

e
x 

+ e
y 

C
2n
[n COE2 Cos* - 

bC0E2 
 Sint + n COE6 Sin* + bC0E6  Cos*] 

b* 	. 

bC0E2 ex  - ey  = C2n[n COE2 Cos* - -ET- 	bC0E6  Sin* - n COE6 Sin* - 	cosit] 

au 	Cos* by 	bv Sin*  
Y xy  = or  Sin* + 	r  + or  Cos* - 

07 r 

Y xy  = C2n[n COE2 Sint + bC0E2 
	bC0E6 Cost + n COE6 Cos* - 	Sin*] 

a -a 
Cos2* = 2 	2(1 + v) 

e
x 
 - e

y 
 Cos2* = 

2(1 + v) 
(e
x 
 - e

y)(1 - 2 Sine*) 

_ = C2nEn COE2 Cos* - bC0E2 	bC0E6 Sin* - n COE6 Sin* - 	Cos*] 

C0E2  sin2 [-2n COE2 Sine* Cos* + 2 bb 
	

* + 2n COE6 Sin3* 
4. 2  bC0E6 

 

Cos* Sine  1] 

a
E  xy  Sin2* - 2(1 	 v 	Sin2* - + v) 'xy 	2(1 + v) v

xy2Sint Cost 

bC0E2  = C2n  [2n COE2 Cos* Sine* + 2 	Sin* Cost* + 2n COE6 Cos3*Sint 

- 2 
LC E6 Sin2* COO] 
bt 

2 	Cos2* + a 	Sin2t = 

C2nEn COE2 Cos* - 
bC
b
0E2 	bC0E6 Sin* - n COE6 Sin* - 	Cosa] 
it 

72 z
sC

C0E2 
+ [+ 2 b t4  Sin3 

b 
* + 2 	Sin* Cost  * + 2n COE6 Sin3* 

+ 2n COE6 Cost* Sinl] 

bC0E2  C
2n 

 [n COE2 Cost - 
bit 	

Sin* [1-2(Sin2* + Cos2*) - n COE6 Sin* 

C0 
[1 -2(Sin* + Cos2*)] 

O E6 cos.0
/j 

a - x y 
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, = C
2n 

( nCOE2 Cosy oCOE2  Sin* 	
6C0E6 nCOE6 Sint - 	Cos1 ) 

n[-(k + n + 1)Cos n + n Cos(n - 2)1]Cos1 

[(k + n + 1) Sin n* - (n - 2)Sin(n - 2)1]Sin1 

C-(k - 1 - n)Sin n1 - n Sin(n - 2)*]Sin* 

- [-(k - 1 - n)Cos n* - (n - 2)Cos(n - 2)11C0s1] 

[ 

C2nn --2(n + 1)Cos*Cos n1 + 2(n - 1)SinOn - 2)1 

+ 2(n + 1)Sin*Sin n1 - 2(n - 1)Sin*Sin(n - 2)1 

Stn n[- 2(n + 1)Cos(n + 1)1 + 2(n - 1)Cos(n - 1)111] 

"2 
e - e )Cosil, + x y 

+ (n - 1)Cos(n - 1)1] 

(-1)A2n2(-2)Cos 2* 

4A2nCos 2* 

0E C  e
x 

+ e
y 

= C
2n [nCOE2Cos1 - bCb4f2 
	6 
Sin* + n COE6 Sin* + 	Cosy] 

6111
0E6  

 

c 2nn ([-(k  n + 1)Cos n1 + Cos(n - 2)1]Cos1 

-[(k + n + 1)Sin n* - (n - 2)Sin(n - 2)*]Sin* 

C-(k - 1 - n)Sin n* - n Sin(n - 2)1]Sin* 

+ [-(k - 1- n)Cos n1 - (n - 2)Cos(n - 2)11Cos* 

= C2nn  ( -2k Cos n1 + 2Cos(n - 2)1)Cos1 

+(-2k Sin n* - 2Sin(n - 2)1)Sin* 

= C2nn [-2k[cos(n - 1)1] + 2 Cos(n - 1)1] 

= C2n1.1[ -2(k - 1)Cos(n - 1)1] 

(k - 1) =r 

; k = 

- 2(1 - v) 3  -v - 1 - vj  
1 + v  

[2 1 
+ v  1 + v 

Stn 2n[-2 
(1-E1.1)Cos(n - 1)1] 

and when it is multiplied by 2(1
E  

xy 	21 = (-1)nrn-1A2n2n[-(n + 1)Cos(n + 1)0  , 
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- 2(1
E 

v)  C2n  2n[2 Cos(n - 1)1] 

and 

ar = 2 	2 y 
coo  +axy  Sin 21 

a
r = ((-1)n rn-1 A2n 2n[-(n + 1)Cos(n + 1)1 + (n - 1)Cos(n - 14] 

- (-1)n rn-1 A
2n 2n[2 Cos(n - 1)11) 	 

2(11+ v) 

- ar 	2(1+ v) (-1)n rn-1 A
2n 2n[-(n + 1)Cos(n + 1)1 + [(n - 1) - 2] 

Cos(n - 1)1] 

a r  - 2(1 + v) (-1)
n rn-1 A

2n 2n[-(n + 1)Cos(n + 1)1 + (n - 3)Cos(n -1)1] 

ar - 1 + v

• 

	
(-1)

n
■r.n-1 A

2n n[-(n + 1)Cos(n + 1)1  + (n.- 3)Cos(n - 1)1] 

for n = 1 

a r-1 + v

• 

	
(-1) r

o 
A
2 

[- 2 Cos 21 - 2 Cos 0] 

ar 	1 + v - 	

• 

	(-1) A2 [-2(1 + Cos 21)]  

 Ev A2  [- 2 [1 + 2 Cos2j - 1]] 

_ + 
1 + v 

A
2 

A Cos21  = 
1 + v 

4 A
2 
Cos2' • 

._--.= a
r 
 .., 1 
	

4 A
2 
Cos2 1 

+ v  

The same procedure is applied to those terms containing 
2n-1, 

and B
2n in order to obtain the full equation defining  the radial 

stress. Stresses at, and a / are obtained similarly by 

applying  the corresponding  relationships, this was done and the 

equations given in Section 5 were arrived at. 
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(1fin_z/z.c&x. 5. c 

PROGRAM ANGCRK (INPUT, OUTPUT, TAPE 5 = INPUT, TAPE 6 2  OUTPUT_ ) 
C 	PROGRAM ANGCRK (INPUT, OUTPUT, TAPE 7, TAPE 5 = INPUT, 
C, 	1 	 TAPE 6 = OUTPUT) 
CRACK AT AN ANGE PSO IN A SINGLE EDGE NOTCH SPECIMEN 

READ (5,100) KASE 
Do 20 K = 1, KASE 
KGO = 1 

C. READS IN DATA, LOCATES BOUNDARY POINTS, SETS LOAD VECTOR (BVEC) 
CALL. SET UP (KGO) 
Go TO clot 20), KGO 

C OBTAINS MATRIX OF COEFFICIENTS (A) 
10 CALL MATRIX 

C SOLVES EQUATION FOR COEFFICIENTS IN SERIES (XVEC) 
CALL SOLVER- 

C PREPARES AND PRINTS OUTPUT 
CALL ouTpuT 

20 wRITE (6,200) K, KASE' 
C. 	END FILE 7 

STOP 
C,  

100 FORMAT (I5) 
200 FORMAT (//27X11HEND OF CASE 13, 3H OF; 13) 

END 
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SU9ROUTINE SET UP (KG0) 
COMMON 	CDR(59201)9MSiD(201), BDYLD(2,201), DUM(2000).D(100.20) 
COMMON / PROBLM /A(20,20)9XVEC(20)98VEC(20)9NBRT.NTRM,KNO 
COMMON / CONSTS / EL. MH, WW, PSO, PI, CRK 
CoMMON / mATDAT / GMOD, YMOD, PRAT, CAY, F(3,3) 
COMMON/LOADS/ ML1, ML2, M819 432, MR1, MR2, MT19 MT2 
DIMENSION S1(5),S2(5),L1(5)'L2(5) 
DOUBLE CD ECISIYI A, BVEC 
READ ( 5 .500) EL. HH, WW, PSO, NBPT, NTRM, KND, IPRNT, LPAR, PAR 
READ (5955) PRAT, YMOD 

C. 	READ(59510)DLOADOWEDGE 
510 FORMAT (2F10.5) 

WRITE (6.600) rL. MN. WW, PSO. NBPT,  NTRM, KM). IPRNT, 1.:RAR, PAR 
WRITE (69665) DRAT, YMOD 

C 	WPITE (7,500) EL. HH, WW, PSO, NBPT, NTRM, KND, IPRNT 
WRITE (7'505) PRAT, YMOD 

C. CHECKS DATA TO ENSAE CONFORMABILITY TO PROGRAM LIMITS 
NT = (NTRq / 2) * 2 
IF (NT .GT. 40) NT = 40 
IF (NT .EQ. NTRM) GO TO 02 
WRITE (6.610) NTRM, NT 
NTRM = NT 

02 NB =• (NBPT / 2) 41.' 2 
IF (NB .GT. 200) NB = 200 
IF (NB •EQ. NBPT) GO TO 04 
WRITE (6,615) NBPT, NB 
NBPT =. NB 

04 IF (PSO .GE. 0.0 'AND. PSO eLT, 90.0) GO TO 06 
WRITE (6.620) PSO 
KGO ss: 2 
RETURN 

06 IF (NTRM 	NBPT) GO TO 07 
KG0 2 
RETURN 

C' SETS PARAMETERS 
07 PI = 3.14159265358979 

FA = 180.0 / PI 
ST = 2.0 * (HH + 2.0 * EL) 
DS =ST / NBPT 
_WH 
PSI = PSO / FA 
SPS=SIN(PS1) 
CPS=COS(PS1) 
CRK 	/ COS(PS1) 

C LOCATES BOUNDARY POINTS 
I = I 
MT1 =. i . 
COR(1,I) = WW 
COR(2,I) = EL 
ISID(1) =, 1 

7:9 IF (COR(1,I) 	DS 	WH) GO TO 10 
I = I * 1 
COR(1,I) = COR(1,1”1) • DS 
COR(29I) 	EL 
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MSID(I) =, 1 
Go TO 03 

10 MT2 =I 
SH = tqw - fo5 	(HH + coR(1,MT1) + COR(1.mT2)) 
DO 12 M = MT1,MT2 

12 COR(1,M) = cOR(10) 4 SH 
I a. I + 
ML1 =. I 
CO(R .1) = WH 
COR(2,I) 	EL - DS / 100.0 
MSID(I) 

14 IF (COR(2,I) .0- DS *LT. -EL) Go TO 16 
= I + 1 

COR(1,I) 	WH 
CoR(2.I) = COR(2,I-1) 	DS 
mSID(I) =:2 
GO TO 14 

16 ML2 p-  I 
Not. = ML2 	1 
IF ((mOL/2)*2 ,E0. NOL) GO TO 17 
I = I - 1 
ML2 r ML2 - 1 

17 SH 	0.5 * (COR(2,ML1) + COR(2,ML2)) 
DO 18 M =:MU1.ML2 

13 COR(2,M) =_COR(2,M) + SH 
mB1 12: I + 
mB2 = 	MT1 + MB1 
DO 20 m c MB1,M32 
I 	M 
K = mTi 	MB2 	M.  
COR(10) = COR(1,K) 
CoR(2,M) = P.EL; 

2o MSID(I) 
mRi =: / 4. 1 
MR2 = ML2 	ML1 	MR1 
DO 22 M = MR1,MR2. 
I •L M 
K = ML1 + MR2 	M 
CoR(10) = WW 
CoR(20)= COR(2,K) 

22 MSID(I) 	4 
IF (I ,E0. NBPT) GO TO 24 
WRITE (6,617) 4 PT, I 
NRPT = I 
IF (NRPT ,LE. 200) GO To 24. 
WRITE (6,619) 
KG() =- 2 
RETURN 

24 DO 26 I = 1.43P1-  
X = COR(1,I) 
Y = COR(2,I) 
R = SORY(X*X * Y*Y) 

= ATAN2(Y,X) 
P = T 	PS1 
COR(3,1) =;R 
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COR(4./) 
26 COR(5,/) = P 

IF (P .LT. -PI) P = P + 2.0 * PI 
C 'PINTS COORDINATES OF BOUNDARY POINTS (IF! IPRNT .NE. 0) 

IF (IPRNT .EQ. 0) GO TO 30 
WRITE (6,630) 
N2 = N2PT / 2 
DO 28 I = 102 
J = I • 42 
Ti = cOR(4,I) 	*. FA 
12 = COR(4,J) 	*- FA 
P2 = COR(5,J) 	* FA 
PI = COR(5,I) 	*. FA 
IF (I .E1. 	51) 	WRITE (6,680) 
WRITE (6,640) It (COR(L,I), L = 1,3), T1, P1, 

J! (COR(L,J), L = 1q), T2, P2 
28 CONTINUE 

C INVERSE HOOKEAN MATRIX 
30 GMDD = YMOD / 2.0 / (1.0 • PRAT) 

GMD2 = G400 * 2.0 
CAY = (3,0 	PRAT) / (1,0 + PRAT) 
F(1.1) = (CAY + 1.0) / (8.0 * GMOD) 
F(2.1) = (CAY 	3.0) / (8.0 * GMOD) 
F(3.1) = 0.0 
F(1,2) = r(2.1) 
F(2,2) = F(1.1) 
F(3.2) = 0.0 
F(1,3) = F(3.1) 
F(2,3) = F(3.2) 
F(3,3) = 1.0 / GMOD 

	

C SETS LOAD VECTOR 	VERTICAL LOADING ONLY 
C. - 	 

DO 32 J = 103pT 
DO 32 I = 1,2 

32 8DYLD(I.J) = 0,0 
MLJ = 0 
IF(LPAR.E0.1)G0 TO 56 
Go To (34, 40, 46), KM) 

C.SI4RLE TENSION 
34 DO 36 I = MT1,MT2 

	

36 8DY4D(2,I) = 	/ GMD2- 
DO 38 I = MB1,MB2 

38 BDYLD(2,I) = .1.0 / GMD2 
WRITE (6,650) 
GO TO 56 

C *URE RENDING 
40 DO 42 I = MT1,MT2 

	

42 BDYLD(2,I) = 	(1.0 + 2.0 * (COR(1.I) 	WW) / HH) / Gm02, 
DO 44 I = MB1,MB2 

	

44 BDYLO(20) = (1,0 • 2.0 * (COR(1,I) 	WW) / HH) / Gm02 
WRITE (6.660) 
GO TO 56 

C SHEAR AS IN CKS GEOMETRY 
46 TH = mCRK * SIN(PS1) 

DO 48 I = ML1,ML2 
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MLI 	I 
IF (COR(2,I) ,LT. TH) GO TO 50 

48 CONTINUE 

	

50 J 4 MLI 	'1L2 6" I 
MLJ = J 
R = NH / (FL .0  COR(2,J)) / GMD2 
DO 52 M = MLI,MLJ 

______52_8DY-LD(201)---g- 	--------- -- 
DO 54 M = ML/, ML2 

54 8DYLD(20) 4- 

WRITE (6,670) 
56 CONTINUE 

IF(LPAR.NE.1)G0 TO 57 
5T IF(IPRINT,EQ.0)G0 TO 58 

WRITE (6,680) 
C.  SHIFTS ORDER OF STORING COORDINATES TO BEGIN AT LOWER CRACK FLANK 

5B NBP1 = NBPT • 1 
DO 69 I=MTP,NBPT 
IF (o0R(5,/).4T•0.0)G0 TO 691 
ISMFT=I 

69 CONTINUE 
691 DO 70 I=1,IsHpr 

DO 60 J 	1,5 
60 COR(JOBP1) = COR(J,1).  

DO 62 J = 192 
62 BDYLD(J018P1) =BDYLD(J,1) 

MSID(NBP1) = MSID(1) 
DO 68 K = 1,NBPT 
DO 64 J = 1,5 - 

64 COR(J,K) = coR(q,K+1) 
DO 66 J = 1,2 

66 8DYLD(J,K) = BDYLD(J,K+1) 

	

68 MSID(K) 	mSID(K+1) 
=; 

70 CONTINUE 
72 NBPL = NEIPT 

MT1 = MT1 + NBPL 
MT2 = MT2 + NBPL 
ML1 = ML1 + NBPL 
MLJ = MLJ + NBPL. 
MLI =: 1 
ML2 = 
MR1=MR1NBLI 
MR2=MR240L1 
Mel = MB1 
MB2 = M82 
DO 74 J = 1,NTRM 

	

BVEC(J) 	0,000 
DO 74 I = 19NTRM 

74 4(I,J) = 0.0D0 

C 

C 

CALL LOADING 
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PAR=(2,01$0LOAD)FLOAT(ML2) 
Do 561 I=1,ML2 

C 	CY4= ..COR(2,I).PEL/200 
C' 	TSHOM=(2.0*OWEOGE*WH*CYM)/((EL**2)*FLOAT(ML2)) 
CC 	BOYLD(2,I)=, (4,60(NEDGE/FLOAT(mL2))/6m02 
C 	BDYLD(2,I)= ( 	QWEDGE/FLoAT(HL2))/3MD2 
561 CONTINUE 

C 	PAR=(2.000LOAD)/FLOAT(NBFT-ML1+1) 
DO 552 I=ILI,N3PT 
CyM=c0R(211)-ELi2,0 

C 	TsmOm=(2,0*(NEDGE*WH*CYm)/((EL!*2)*FLOAT(ML2)) 
C 	8DYL0(2,I)=”(4.0*(WEDGE/FLOAT(mL2))/GMD2 

3DY4D(20)=,-( 	QWEDGE/FLOAT(mL2))/3MD2 
562 CONTINUE. 

C. 	PAR=(4,000LOAD)/FLOAT(►1R2-HR1.01) 
Do 563 I=mR10,02. 

5'63 CONTINUE 
C 	0C4AmPLI(04EDGE*WH*EL)/((EL**2)*FLOAT(ML2)) 
C- 	wRiTE(6,746)OLOADOWEDGE,0CLAmP 

746 FORMAT(1X,B6H THE PRESENT CASF IS A SIMULATION OF THE BENBOW PLATE'. 
1 WITH LATERAL COMPRESSION LOAD OF//1x,30x,3H O=,F7,313HLBsi1x,30H 
211 ALSO HAS AN OPENING LOAD OF//1X,30x,8H LwEOGE=,F7,3,3HLB,//5X13 
34HAND A CLAMPING MOMENT LOAD HLcLAM=,F9,3,3H030 

C 
WRITE(6,635) 
N2= N8PT / 2 
Do 98 I =.1,42- 
J 	N5 
T1 =-COR(40) p.  FA 
T2 = cOR(4,J ) a  FA 
P1 	coR(50) D' FA 
P2 = COR(5,J) * FA 
IF (1 ,E0., 51) WRITE (6,680) 
WRITE (6,640) I, 	(COR(L,I), L = 1,3), T1, P1, 

1 	J, (COR(L,J), L. = 1t3)t T2, P2 
98 CONTINUE 

WRITE(6,69)M71,MT2,ML1,MLJOLI,ML2,4810182,NBPT,MR1,02 
690 FORMAT(/,11I7,0 

wRITE(6,700) 
700 FORMAT(/42X,514 BOUNDARY LOADS FOR USE IN COMPUTATION ARE 

1 // 40x,4HNODE,2(4X,1Hg,5X),4x,2HFX,8x,2HFY//).  
DO 748 I=1,N8PT 
IF(8DyLD(1,I).ED.0,0,AND,BOYLD(2,I).E0,0.0)G0 TO 748 
xL34D=8DYLD(1,I)0GMD2 " 
YLoAD=BDYLD(2,I)*GMD2 
wRITE(6,71;)I,(COR(L,I),L=1,2),XLOAO,YLOAD 

748 CONTINUE 
710 FoRmAT(1X,39X,/4,4F100) 

C. SETS RVE.-7c,  
N4 = NTRM / 2' 
Go To (76 	76 	78 	79 ),KNO 

76 LS =. 
• 51(1) = WW 

S2(1) = 
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S1(2) a WH 
52(2) 	WW 
L1(1) c 41.1 
L2(1) = MT2 
L.1 (2) = M81 
L2(2) =- MB2' 
LESP = 2 
GO TO 80 

78 LS = 
TH= 	* 	(PSI) 
51 (1) = ELI 
S2(1)=TH 
S1(2) =- TH 
S2(2) 
L1 (1) = ML1 
L2 ( I) =NPIPT 
L1(2) = 
L2(2) 	ML2. 
LESP =. 2 
GO TO 80 

79 CONTINUE 
TH=-cRK*SIN (PS1) 
51(1)=EL E L1(1)=ML1 
S2 (1)=TH c 1.2 (1) =N8PT 
SI (2)=TH C L1(2)=1 
S2 (2)=c•EL1 C L2 ( 2)=ML2 
S1 (3)=WH £ Ll (3)=MB1 
S2 (3) =WW E L2 (3)=4(32 
S1 (4)=-.EL1 E L1(4)=MR1 
sa (40 =EL _e_1-2 
Si (5) =WW 	L.1 (5)=MT1 
S2 (5)=wH £ L2 (5) =MT2 
IF (KNO,E0,4.)LESP=5 

80 00 94 /=1,LESP 
= Li(I)  

N2 = L2 (I) 
DO t:12 N r.• N1012 
R = 	(30) 
P = COR(501) 
RT = SOT (R) 
DO 82 M 	1044. 
M4 = M 
S 
552 =• S 	2.5 
S21 = S • 2.0 
S32 =. S • 105 ••• CAY 
S11 = S 	1.0 	CAY 
S12 = S 	0.5 
P12 .=• S * 0.5 • CAY 
P11 = S + 1.0 • CAY 
RI = R** 
RR = R, i / RT 
R32=s-1.54oAY 
Al2=s4.0.5..cAY 
411=S+1.04.CAY 
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R11=S-1.0+CAY 
SE 	= 	.1.0 
IF 	((m/R)*2 	.EO. 
SM = 

M) 	SE = 	1,0 

SS52 = SiN(S52 * P) 
SS21 = STN(521 * P) 
SS12 = SIN(S12 * P) 
SS = SIN(S * P) 
CS52 = COS(S52 * P) 
CS21 = COs(S21 * P) 
CS12 = C0s(S12 * P) 
CS = COS (S * P) 
D(N,M4.1) ='Sm *RR * ( 	(S32*sS12 * S12*SS52) * CPS 

1 	 •(R32*CS12 	S12*CS52) a SPS )* BDYLD(2,N) 
D(N,M4 ) 	SE * RI 0  ( 	(R11*SS - S*SS21) * CPS 

1 	 A (All*cS 	S*CS21) * SPS ) * 8DYLD(2,N) 
Eli,  CONTINUE 

DO 94 N = N1942 
LS =. 2 
IFUNi,E1,4131.AND.N2.EQ,HB2),0R.(N1.EQ,MT1.AND.N2,ED0T2))LS=1 
DO 92 J = 1,NTRM 
IF (N1 * N) 84,86, 94 

84 IF (N - N2) 90, 88, 94 
86 Xc = S1(1) 

X1 = cOR(LS,N1) 
X2 = cOP(LS,N1.1) 
C1 = .x0 + (5.0*X1 • 3,0*X2)/8„0 + 0,5*(X1.X0)*(X1-Xo)/(X2*X1) 
C2 = 0.125*(X2-X1)*0.5*(X1-X0)*(X1-X0)/(x2.X/) 
DR = Cl * DiN,J) + C2 * D(14.10) 
GO TO 92 

88 XN = S2(I) 
Xm = COR(LS,N2) 
XL = cOR(Ls,N2,01) 
CM = XN • (5.°*XM+3.0*XL)/8.0 + 0.50(XN*Xm)*(XN-Xm)/(X1*XL) 
CL = 0.125*(xM.XL) 	0.5*(XN-xm)*(XN-xm)/(XM*XL) 
DB = CM *- D(N,J).  • CL * D(N-1,J) 
GO TO 92 
DR = cOR(LS,N+1) 	COR(LS,N ) 
DL = cOR(Ls0 ) 	COR(LS,N-1) 
CI = DL + 5.0 * DR * (1,0 - DR / DL) 
CJ = 18.0 0  (DR. 	DL) + 5.0 * (DR * DR / DL 	DL * DL / DR) 
CK =. DR + 5.0 * DL * (1.0 "' (.21_ / DR) 
DB = (CI * D(N-1,J) 	CJ * D(ri,J) + CK * D(N+1,J)) / 48.0 

92 BVEC(J) = 3VEC(J) 	D8 
94 CONTINUE. 

IF(LPAR.EQ.1)G0 TO 95 
RETURN 

95 LS = 2 
Tii=-cRK * $IN(PS1) 
IF(KND,E0,4)G0 TO 89 
S1(1) = EL; 
S2(1) = TH 
S1(2)= 
S2(2) =.'EU 
L1(1) = 
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L2 (1 ) =NBPT 
L1(2)=1 
L2 (2) = 
S1(3)=.EW 
S2(3)=EL.,. 
L1(3)=MR1 
L2 (3) =MR2 
LESP =: 3 
GO TO 87 

89 COITINUE 
TH=wCRK*SIN(PS1) 
S1(1)=EL 	L1(1)=ML1 
S2(1)=TH £ L2 (1)=N8PT 
S1 (2)=TM £ L1(2)=1 
S2(2)=..EL1 C L2(2)=ML2. 
S1 (3)=WH E Ll (3) =MB1 
S2(3)=WW £ 	(3)=MB2. 
S1 (4)=..ELI 	L.1(4)=MR1 
S2 (4) =EL £ L2 (0 =MR? 
S1(5) WW £ Ll (5) =MT1 
S2 (5) =WH e L2(5)=MT2 
LESP =. S 

87 DO 106 I=1.LESPI 
N1 = LW) 
N2 = L2(I) 
DO 96 N=N1e N2 
R = COR(3e1) 
P rt.  COR(5.01) 
RT = SORT (R) 
DO 96 M=1eN4 
M4 = M *" 2 
S =. M 
S52 = S 
S21 2: S 	2.0 
S32 	S 	1.5 • CAY 
Sll = S gs. 1.0 	CAY 
R32 = S 	1.5 	CAY 
Al2 = S + te.5 + CAY 
All =- S + 1.0 + CAY 
R11 = S 	1.0 + CAY 
512 = S 	6.5 
P12 	S + 0.5 ga' CAY 
P11 = S + 1.0 	CAY 
RI = R **- M. 
RR =: 	/, RT 
SE =' 
IF ((M/2)*2 .0. M) SE = 1.0 
SM = • SE' 
SS52 = SIN(S52 4*.  P) 
SS21 = SIN (S21 * P) 
SS12 = STN(S12 * P) 

— - 
CS52 = COS(S52 * P) 
CS21 = COS(S21 * P) 
CS12 = COS(S12 * P) 
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CS 	g.COS.(S 	* P) 
D(N,M4.1) 	SM * RR * ( -(S32*SS12 	S12*SS52) * SPS 

1 	 ...(R32*CS12 	S12*CS52) * CPS) * BDYLD(1,N) 
D(N,M4 ) 	SE * RI * ( ''(P11*SS 	S*SS21) * SPS 

1 	 (All*CS 	S*CS21) * CPS ) * 8DYLD(10) 
96 CONTINUE 

DO 106 N=N19N2 
• LS=2 
IFC(Nl.E1.431.ANDiN2.EQ.M32).OR.(N1.EQ.MTI.AND.N2.ED,MT2))LS=1 
DO 105 J=1,NTR1 
IF(N1-N);7,99,106 

97 IF(N..N2)1039101006 
99 X0=S1(I) 

XI = ',10R(LSIN1) 
X2 = COR(LS9N1+1) 
Cl =...X0 • (5,0*X1 • 3,0*X2)/8.0 	0,5*(X1+X0)*(X1.0(0)/(X2...X1) 
C2 = 0.125*(X2..X1)..0.5*(X18.X0)*(X1•.X0)/(X2'.X1) 
D8 =. C1 * D(N,J) + C2 *, D(N+1,J) 
GO TO 105, 

101 XN=S2(I) 
XM = COR(LS02) 
XL = COR(LRO2n1) 
CM = XN 	(5,0*XM.3,0*XL)/8.0 + 0.5*(XN”XM)*(XN.,XM)/(Xl..XL) 
CL = 0.125*(XMi.XL) 	0.5*(XN..XM)*(XN•X1)/(XMeXL) 
D8 	CM * D(N,J) + CL 	D(N•q,J) 
GO TO 105 

103 DR = COR(LS,N.01) 	COR(LS,N ) 
DL = bOR(LS9N ) 	COR(LS9Nr41) 
CI = DL • 5.0 * DR * (1.0 w DR / DL) 
CJ = 18,0 * (DR + DL) + 5.0 * (DR * DR / DL + DL * DL / DR) 
CK =. DR 4,  5.0 * DL * (1.0 	/ DR) 
DR = (CI * D(N-1,J) + CJ * D(N,J) + CK * D(N*19J)) / 43.0 

1G5 BVEC(J) = BVEC(J) • OB 
106 CONTINUE 

RETURN 
C,  
C 500 FORMAT (4F10.2, 515, 1F10,2) 
500 FORMAT(4F16.3, 51591Flo,3) 
5405 FORMAT (2E20.8) 
500 FORMAT (1H19 /2X39HTHE INPUT DATA WERE READ AS FOLLOWS 	18X: 

1 4F10,2, 5159 1F10,2) 
605 FORMAT (59X 2E20.8, 1) 
510 FORMAT (/2X34HTHE PARAMETER NTRM IS CHANGED FROM 14, 3H TO 14, 

1 30H TO CONFORM TO PROGRAM LIMITS. /) 
615 FORMAT (/2X34HTHE PARAMETER NI3PT IS CHANGED FROM 14, 3H TO 14, 

1 30H TO CONFORM TO PROGRAM LIMITS. /) 
517 FORMAT (12X34HTHE PARAMETER NEIPT IS CHANGED FROM 14, 3H TO 14, 

1 28H TO ADAPT TO BOUNDARY SHAPE. /) 
619 FORMAT (/2X39HTHE PARAMETER NFIPT IS N04 UNACCEPTABLE. /) 
620 FORMAT (/2X34HTHE PARAMETER RSO IS UNACCEPTABLE. /) 
530 FORMAT (/37X47HBOUNDARY COORDINATES FOR USE IN COMPUTATION ARE 

1 // 2(2X2HNO 7X1HX 9XiHy 9X1HR 7X5HTHETA 6X3HPS1 12X) /) 
640 FORMAT (2(14, 3FI0.39 2F10.29 11)()) 
650 FORMAT (/IX 8(15H TENSILE LOAD ) /) 
660 FORMAT (/1X 8(15H PURE BENDING ) /) 
570 FORMAT (/1X 8(15H COMPACT, CKS ) /) 
580 FORMAT (1H1) 

END 
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SUBROUTINE MATRIX 
COMMON COR(5,201), MSID(201), BDYLD(2,201), RA(20,2000) 
COMMON / CDNSTS / EL, HH, WW, PSOo PI, CRK 
COMMON / MATDAT / GMOD, YHOD, PRAT, CAY, F(3,3) 
COMMON / PROBLM /A(20,20),XVEC(50),EIVEC(20),NBPToNTRM,KND 
DIMENSION C(3,20) 	D(3,20) , XR(10) , RX(10) , WX(10) 
DOUBLE PREcISIoN A, BVEC 

RX(1) = 0,013046735741414 
RX(2) = 0,067468316655507 
RX(3) = 0,160295215850488 
RX(4) = 0.283302302935376 
RX(5) = 0,425562830509184 
WX(1) = 0.066671344308688 
4X(2) = 0.149451349150581 
4X(3) = 0.219086362515982 
4X(4) = 0.269266719309996 
WX(5) = 0,295524224714?53 
DO 05 I = 1.5 
J = 11 "''I 
RX(J) = 1,6 	RX(I) 

05 WX(J) = dX(I) 
N4 ='NTRM / 2 
DO q5 N = 1oN8PT 
REG = COR(30) - 
PSI =. COR(SoN) 

=- PSI 
DO 35 K 	1,10 
R = RrG * RX(K) 
RT = SORT(R) 
DO 10 M = 1oN4. 
M4 =: M * 
S =. M 
S72 =, S 	3.5 
S31 = S 	3.0 
S32 = S 	loS 
Sll =. S 	1.0 
512 =.S "1.  605  
P12 =. S • 8,5 
Pll 	S • 1.0 
RI = P ** (M-1) 
IF (M 	1) RI = 1.0 
SE = -1.0 
RR 	RI / RT 
IF((M/2)*2 'EA, M) SE g 1,0 
SM = 	SE. 
SS32 = SIN(S32 * P) 
Ss11 = SIN(S11 * P) 
SPI2 = SIN(P12 * P) 
SS12 = SIN(S12 * P) 
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CS12 = COS(S12 * Pi 
CS11 = COs(S11 * P) 
CS32 = COS(532 * P) 
CP12 = COS(R12 * P) 
Spil = SIN(P11 a  P) 
CPII = COS(P11 * P) 

C FINDS CONTRIBUTION TO STRESSES FOR EACH TERM IN SERIES, IN ORDER 
C A(2N-1), B(2N-1), A(2N), E3(2N), FOR N = 1, 2, 	, NTRM/4 (= N4) 

C. SIGMA R 
C(19M4-1) = SM *RR * 512 * (S72 * CS32 - S32 * CP12) 
C(1,M4 ) 	SE * RI * S 	(S3I * CS11 	P11 * CP11) 

C SIGMA PSI 
C(29M4-1) =, +54 * RR * S12 * (P12 * CS32 - S32 * CP12) 
C(29m4 ) =-SE * RI * S 	* (P11 * CS11 	P11 * Cff11) 

C. TAJ' 
C(39M4-1) =.-SM * RR 0  512 * (s32 * S532 - S32 * SP12) 
C(39M4 ) =s-SE * RI * S 	* (S11 * 5511 - P11 * SP11) 

10 CONTINUE 
710 FoRMAT(1X,7HS/sMA R//5X,6(2F12.595X)///) 
720 FORMAT(1X,9HSISMA PS1//5X16(2F1265.5X)///) 

_ 	FORMAT-1-1-x.-9HT-A_J_ReEPS1/4-5-46-(2-F 1 2-• 59 5 X.).1-01/4 - 

DO 20 J =-14INTRM 
DO 20 I =:1,3. 
SUM = 0.0, 
DO 15 L = 1.3' 

15 SUM =. SUM 4. F(19L) * C(L9J) 
20 0(1.J) = SUM 

Do 30 J = 19NTRM 
DO 30 I = 19NTRM 
Suvl = 0.0, 

= DO 25 L 	193 
;".-25 SUM = SUM a C(L4I) * D(L,J) 
30 RA(I.J.K) 	SUM 0 R 
35 CONTINUE 

DO Bo J = 19NTRM 
DO Bo 1 = 1,NTRM 

C. RADIAL INTEGRATION,(GAUSSIAN. 10 POINTS) 
DO 40 K =1.10 

40 XR(K) = RA(I.J,K) 
SUM =- 0.0 
DO 45 L = 1,10 

45 SUM = SUM + XR(L) * WX(L) 
C CIRCUMFERENTIAL.  INTEGRATION (EQUIVALENT TO TRAPEZOIDAL) 

IF ( 2 	N ) 50. 609 55 
50 IF (N-NBPT.1) 65, TO. 75 

C. FIRS1 POINT 
55 DLN = COR(5.1) • PI 

DRN =-cOR(5.2) 	C0R(5.1) 
DLP = DRN 
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DRP = COR(50) + COR(5,2) 
OP ='OLN + 0.375 * DRN + DLN**2 / (2.0*DAN) 

1 	+ (OLP' + 5.0 * DRP ! (1.0•ORP/DLP)) / 48.0 
GO TO 80 

C' SECOND POINT 
60 DL4 =. COR(511) + PI 

DR4 = COR(5,2) 	COR(591) 
DLN =. DR4 
DRN = COR(50) 	COR(5,2) 
OLP = DRN 
DRP = COR(5.4) • COR(5,3) 
DP = DRM / 8.0 ." DLM**2 / (240*DRM) 

1 	• (18.0 * (DRN+DLN) + 5.0 * (DRN**3 + DLN**3) / (ORN*OLN) 
2 	+ OLP + 5.0 * DAP * (1.0+DRP/DLP)) / 48,0 
GO TO 80 

C GENERAL (NTH) POINT- 
65 DL4 = COR(50+1) + COR(50+2) 

DRM = COR(5,N ) + COR(50-1) 
OLN = DR4 
DRN = COR(5,N+1) + COR(5,N ) 
DLP m 0124 
DRP = COR(5.N+2) - COR(5,N+1) 
DP = (DR4 + 5.0 * DLH ! (1.0+1)LM/ORM) 

1 	• 18.0 0  (DRN+DLN) + 5.0 * (DRN**3 + DLN**3) / (DRN!DLN) 
2 	+ OLP + 5.0 * DRP * (1.0..DRP/DLP)) / 48,0 
GO TO 80 

C PENULTIMATE POINT 
70 OL.1 = COR(5.N+1) + COR(50+2) 

DR4 = COR (5,N ) + COR(5.N+1) 
OLN = DRM 
DR4 = OOR(54N+1) • COR(5,N ) 
OLP = DRN 
DRP = Pt - COR(5,N+1) 
DP 	(DR4 + 5.0 * 	! (1.0+OLM/ORM) 

1 	+ 18.0 * (DRN+DLN) + 5.0 * (DRN**3 + DLN**3) / (ORN*DLN)) 
2 	+ DLP / 800 • DRP".2 / (2.0*DLP) 
GO TO 80 

C LAST POINT 
75 DL4 = COR(5,N-1) + COR(50•2) 

DRM = COR.(50 ) 	COR(59N-1) 
DL1 = DR4 
DRN = PI + COR(5,N) 
DP = (DR4 + 5.0 * DLw * (1.0+DLM/0RM)) / 48.0 

1 	+ DRN + 0.375 * DLN 	DRN**2 / (2.0*DLN) 
BO A(I,J) = 4(1.J) + SUM ! DP * REG / 2.0 
85 CONTINUE 

RETURN 
END 
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SuRROUTINE SOLVER 

COMMON / PROBL4 /A(20920),XVEC(20),BVEC(20),NBPT,NTRM9KND 

DIMENSION 3(20) 	NDX(20,2) , PIV(20) 	IPV(20) 

DOUBLE PRECISION A, AX, B, BVEC, PIV 

C SOLVES FOR XVEC, USING DOUBLE PRECISION ARITHMETIC 

NS m NTR4 

05 DO 1 0 I = 1,NS 

= BVE(I) 

10 IPV(I) = a 
DO 55  I = 1,NS' 
AX = 0.000 

DO 36 J = 1,NS 

IF(IPV(J) .EG, 1) GO TO 30 

DO 25 K = 1,NS 

IF (IPV(K) - 1) 20, 25, 65 

20 IF (DABS(4X) ,GE. DABS(A(J,K))) GO TO,  25 

IRON 

ICOL; =:K,  

AX m A(JtK) 

25 CONTINUE.  

30 CONTINUE 

IPV(ICOL) =. IPV(ICOL) + 1 

IF (IROW ,EQ, ICOL) GO TO 40 
DO 35 L = 1,NS: 

AX =- A(IROW,L) 

A(IROW,L) 	A(ICOL,L) 

35 A(ICOL,L) =: AX 

AX m B(IROW) 

B(IROW) = B(ICOL) 

B(ICOL) m 4X 

40 NDX(191) = IROW 

NDX(I,2) = ICOLI 

PIV(I) = A(ICOLtICOL) 

A(ICOL,ICOL) = 1.000 

DO 45 L =10■15 

45 A(ICOL,L) = A(ICOL,L) / PIV(I) 
B(ICOL) = B(ICOL) / PIV(I) 

DO 55 N = 1,NS 

IF (N .ED,  ICOL) GO TO 55 

AX = A(Nt/604) 

A(N,ICOL) = 0.000 

DO 50 L = ltNS 

56 A(N,L) 2  A(N,L) 	A(ICOL,L) * 4X 

	

B(N) = 8(N) • 3(ICOL) 	AX 

55 CONTINUE 

DO 60 I m ltNS: 

SO XVEC(I) m B(I) 

RETURN 

6b WRITE (6,100) 

RETURN 

Cr 
100 FORMAT (2X 3(21HBOMBED OUT OF SOLVER )) 

END 
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SUBROUTINE OUTPUT 
ColHoN / PROBL4 /A(20,20),XVEc(20).8VEC(20),NBPT,NTRm1KND 

/ coNSTS / 	HH, WW, PSO, PI, CRK 
DOUBLE PPECISION A, ENEC 

C,  PREPARES OUTPUT PAR;,HETERS 
RF = HH 
SP = EL *. 2.0 
Y1 = -xVEc(1) *. SORT(2.0 * PI / CRK) 
Y2 = xVEc(2) 	SQRT(2.0 * PI / CRK) 
RA = Y2 / Y1 
NTR2 = NTR4 

C,  PRINTS OUTPUT 
WRITE (6,600) NIBPT' 
GO To (10, 20, 30), KM? 

10 WRITE (61610) 
30 To 40 

26 WRITE (69620) 
30 To 40 

30 WRITE (6,630) 
40 WRITE (6,640) SP9 CRK, HH, PSo, WW, RF, Y19 RA, Y2 

WRITE(69666) 
660 FORHAT( /2X14HSYmMETIRc CASE') 

Do 50 I = 1,NTR2 
50 wRITE(69650)I,X4C(I) 
650 FoRMAT(Bx1HA 1292H =F13„8) 

C. 	WRITE (7,700) (XVEC(I), I 0  19NTRM) 
RETURN 

500 FORMAT ( 	/2X70HTHE FOLLOWING PROBLEM HAS BEEN SOLVED FOR COEFF: 
lICIENTS IN THE WILLIAMS /2X7OHEIGENVALUE SERIES, FOR A CRACK LYING 
2 AT AN ANGLE TO ITS USUAL POSITION /15X 5HUSING 14, 35t1 BOUNDARY P• 
3014Ts IN THE COMPUTATION ) 

610 FoRmAT (/4X66HSPECIMEN AND LOAD CONFIGURATION -- SINGLE: EDGE NOTCH 
1' PURE TENSION ) 

620 FoRHAT (/4x66HSPECIMEN AND LOAD CONFIGURATION -- SINGLE-EDGE NOTCH 
19 PURE BENDING ) 

630 FORMAT (/4X66HSPECIMEN AND LOAD CONFIGURATION -- COMPACT TENSION G 
1EoHETRy9 IDEAL ) 

540 FORMAT (/BX1OHLENGTH 	= F6.2, 4H INS 14X14HCRACK LENGTH = F6.29 
1 4H INS /8X10H4IDTH 	= F6.2, 4H INS 14x14HINCLINATioN = F6.29 
2 4H DEG /BX10HLIGAMENT = F6,2, 4H INS 14x14H(K-I LENGTH) = F6.29 
3 4H INS //8X5HY-I 0  F9,6, 6X10HK-II/K.I = F8.59 5X6Hy-I1 = F9.6, 
4 ///22x30HTHE COEFFIcIENTS /) 

C-  700 FORMAT (4E20.10) 
EN) 
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SUBROUTINE LOADING 
COMMENT C=SIG2/SIG1 t BEING SIG2=STRESS ALONG X 

SIG1=sTRESS ALONG Y 
- COMMON CoR(5,201),MSIP(201),BDYLD(2,201),DUM(2000)0(100,20)i 

ComMON/CONSTS/ EL, HH, WW, PSn, PI, CRK 
CoMIoNimATDAT/ GMOD, YmOD, PRAT, CAY, F(3,3) 
COMMON/LOADS/ ML1, ML2, MB1, mB2, MRI, MR2, Milt MT2 
COMMONIPROBLM/ A(20,20), XVEC(20),BVEC(20), NBPT, NTRM, KND 
DoJBLE PRECISIDN A,BVEC 
REAL LOADX,LOADY 
READ(5,50)AA, 9B, CB 
C = AA/ BB 
SIG2 = 10,6 * AA 
S/G1 = 10,0 *. BB 
SIGB = Step * CB 
SIG4A11=SIG1*EW 
WRITE(6,60)SIG2tSIG1,S/GB 
WRITE(6t63)SIGMAll 

60 FORMAT(1X,* THE LOADING ON THIS CASE IS 4)/ 
1 	 *// 
1 	* STRESS ALONG THE - X .• DIRECTION * 1F8,3// 
2 	* STRESS ALONG THE - Y • DIRECTION 0  1FB0// 
3 	* MAXIMUM BENDING STRESS 	* 1F8,3//) 

63 FORMAT(1X,* THE,  TOTAL OPENING LOAD DUE TO THE SHEAR STRESS APPLIED 
1 ON THE EDGE OF THE PLATE (-Y- DIRECTION) IS*,1FB,3) 
GMD2 = GMOD * 2.0 
DELY = COR(2,MT1) • COR(2,MB1) 
DELX = COR(1,MR1) * COR(1,1) 
XTF = SIG2 * DELY 
YTF g SIG]. * DELX 
LOADX = XTF: / FLOAT(MR2 * MR1 + 1 ) 
LOADY = YTF / FLOAT(MT2 • MT1 4. 1 ) 
DO 1 N = 1 t ML2 

1 BDYLD(1,N) = BDi'LD(10) - LOADX/GMD2 
DO 2 N = 	1 9 ML2 

2 BDYLD(201) = BDYLD(21N} * LOADY/GMD2 
DO 3 N = MR1 , MR2 

3 BDYLD(1,N) = BDYLD(1tN) * LOADX/GMD2 
Do 4 N = 41L1 	NBPT 	• 

4 BDYLD(201) = BOYLO(2,N) * LOADY/GMD2 
DO 5 N= ML1, N3PT 

5 BDYLD(1,N) = BOYLD(1,N) • LOADX/GMD2 
50 FORMAT(3F16.2) 

IF(CB.E0.0,0)G0 TO 10 
WRITE(6,61)BDYLD(1,ML1),BDYLD(1,NBPT),SDYLD(1,1),BDYLD(ItML2) 

61 FORMAT(1X,* THE MAGNITOD OF LOADS ON POINTS ML1, NBPT, 1, ML2 
1 	BEFORE APPLICATION OF BENDING STRESS IS RESPECTIVELY* 
2// 	12X,4F15.3) 
F1= (SIG2 * CB *EL**2) / (1.5*(COR(2,ML1) * COR(2,NBPT),)) 
BDYLD(1,ML1) = BDYLD(1,ML1) + F1/GMD2 
BDYLD(1,NBPT) = BDYLD(1,NBPT) * F1/G4D2 
BDYLo(1,1) = BDYLD(1,1) * F1/002 
BOYLD(104.2) = BDYLD(1,ML2) + F1/GMD2 
WRITE(6,62) BDYLD(1,MLOODYLD(1,NBPT),BOYLD(1,1),BDyLD(1,ML2) 

62 FORMAT(1X,*ONCE: THE BENDING STRESS IS APPLIED, THOSE LOADS BECOME* 
14F15,3/) 

10 RETURN 
ENO 



345 

APPENDIX 6a  

Stresses at measuring points in the rig. 

(a) Opening fingers. Loads to be applied. From Benbow and 

Roesler (1957) 

' H 

011  Q/2 

a = bM/4I ; 	M= Ps/2 ; 	Q=nbv, 
A 
 a 

1180 1.2 708 

262 2.4 315 

139 3.6 250 

91.4 4.8 219 

67.4 6.0 202 

a(lb/intl Q(1b) 

4240 849 

1890 378 

1500 300 

1315 263 

1212 243 

n = 0.25 ; 	b = 4 	;. 1 = 0.2 

P(lb) 	S in M(lb.in) 

The piece for measuring the loads is depicted below 

       

II 

  

       

S9/32.  

       

         

         

         

           

            

            

v: 

1- 	I 

in which each finger is considered as a cantilever beam loaded as 

shown. 



The maximum opening load for a specimen 12 x 4 wi th a crack 

3.6in in length (0.3~) is 1180lb. This load will be applied 

throughout the eight sections, shown in figure above. 

Maximum stress in the beam (opening load) 

( i) L 0.625in (5/8) 

'y 0.1093in (7/64) 

2.05 x 10-4in4 
I 

p 75lb 

a 75 x 0.625 x 0.1093/2.05 x 10-4 = 25000 lb/ina 

O.L. 

(ii) 

D.L. 

L 

Y 

I 

a 

0.75in (3/4) 

0.2343in (15/64) 

1.068 x 10-3in4 

150 x 0.75 x 0.2343/1.068 x 10~3 

stress due to transverse load 

a = 849/1.8437 x 0.25 = 1150 lb/in2 

24700 lb/ ina 

T.L •. 

The strain (e) is 

/E 07. 
e=a ;E=1 •• 

e = 26150/107' = 2615 x 10-6 

e = 2615 ~s 

(b) Compressive fingers. Load to be applied. 

Each individual finger is to stand a load of 849/8 = 106lb. 

The finger to apply transverse load are shown below. 
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If D = 0.35in and d = 5/16in 

A = 0.785 (D2  - d2) = 0.0222 in2  

P = 849/8 = 1061b (Eight fingers) 

P/A = 106/0.0222 = 52401b/in2 

and 	E = 1071b/in2 

e = a/E = 5240/107 = 524 x 10-6  = 524 p strain 

Buckling load [ p.184 Warnock-Benham Mechs. of solids and strength 

of materials] 

P = n II/4e 

I = n(D4 - d4)/64 

P= 9.88 x 107 x 54.8 x 10-4 x 3.14/64 x 4 x 2 x 2= 16651b 
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P7',OGRP1 HUNTER (INPUT )  OUTPUT )  TAPE 5 = I\PUT) TAPE 6 = DUTHUT)----  
COMMON C(3 5 40) )  COEF(4C)) EL, HH )  W4,, 'LET )  P1, kNSLE )  C.RK, 

GHOL, YHOi, Pr:AT) CAY, CLA(42)) Nc:PI )  
2 

	

	K1D ;  TG-i007 
PI = 3.14152.65357( 
FA 	18J.:! / PI 

(5)50E) KkSE 
DO OG 	K = 1 KASE 
READ (5) 305) EL, dH, 1111, PSO )  NLPT )  NT?4 )  KNO 

(5510) PR.AT. YMOD 
!,ErD 	(5) 515) (;Er(1)) 	= 11NTkM) 

A 	(5)520) 
WRITE (6) 5)0) EL) rili)  WW )  PSO, NL,PT )  NTRM) KNO 
W.,1TC (6)05) 	'rr)c) 
W7riE :6):11i;) (,OEF(1)) 	= 1INTiO) 
t4;:.116 (6) 515) H,A61 
WH = WW - HH 
FS1 = HS..) / FA 
CRK = -WH / COS(PSi.) 
LLT = 10.2 	PSO 
G10( = Y"135 / 2.0 / (1.0 + PRAT) 

C 	FL4 	SETE SS USE 
C 	CAY = (3.3 - PRA.0 / (1.0 + PRAT) 
C FOr. 'lLANE :.1 RAIN,JSE 
C 	CAY = 3.0 - 4.0 * PPAT 

GAY = 3. v - 4.0 * PKkT 
GO “) (1C x  20, 30) ;  KNJ 

10 

	

	(6)o5C) 
GO TO 43 

20 Wr1TE (6)655) 
GO YO 40 

30 W-:!IIL (6)660) 
CAU'l I 0 N - - - I7.HOOZ = 3 OP713N NOT FULLY TESTE) 

4C DU L..,3 	= 1)2 
GO TO (5L 5  60) 761 5  IL-(OOZ 

50 WrilL (6)  675) 
GO YO 30 

60 IL.:LTE (6,606) 
GO 70 30 

70 1,1:;1'i6 (6 ) 685) 
80 ANGLE = 

G,LL 4.,LUES (UVaL) 
CALL SEAR:::H (UVAL) 
Lri = -.,r F(1) * StILIt2.0*PI) 
L-F2 = 	C.OEF(2) * :A.Rit2.0*PI) 
1;,T = SF2 / SF1 
'INGLE = 'INGLE * F4 
IF (1CHOOZ .NE. 2) UVAL = -UVAL 

16 ) 695) LET, c.,F1) 5F2) RAT, RADIUS )  ANGLE, UVAL 
¶0 LGITILJE 

SOP 
C 

560 FOiMAT (:5) 
565 FOr',MAT t4F10.2) 415) 
510 FJf!..,T (2E2,-J.4;) 
515 FORVAT (4E2.j.16) 
520 FOrMA1 (F13.5) 

FOP.NA"; (1i1) /4X39HTHE INPUT DATA WERE READ AS FOLLOWS 
1 	/I 	4F10.2) 415) 

605 FORMAT (2E23.8) 
610 FOLMil (4E20.16) 
615 FO:,1A1 (F10.5) /) 
650 F1-7M0 (/3X 5(15h TENSILE LOAD 	)/) 
655 Ft.ii;T (/3X 5(16H 	:ErDING 	)/) 
660 FO  M, 	(/ -iX 5(16I COM1';1/4.1 )  (AS 	)/) 
675 FO":1A7 (/3X 7(26h :IAXINJM HOOP SlRES CPU ) /1 
61 FO731 AT (/3X 2(37JH MINIAUM STRAIN ENEP6Y DENSITY, S GRIT ) /) 
6(.5 FJ1J;T (/3X 2(42H hAXJ1U.., STRAI, E!sE.RGY DENSITY CRIT 	) /) 

t 4X 33hiHE 1111)._E OF 1,,,IkUK 1NLL1N.IiION /5 F6.2) 37H DEG. 	F 
10k. ),NIT LOADaNG) •IHL K . VALjEs /13H 	AR= K-I = F7.3, 8H) <-II = 
2 F7.3 4G-I )  LOTH IN U/IN2 	SORT(IN). K-II/K-T = F5.3) // 4X 
3 14HAt

),. 
 A RAILS OF F7.5, 43H IN)  THE ANGLE OF GROWTH Is P\t',-,1CIED 

1C-,0 E F7.2. 5h DEG. /4X 63H1Ht: VALUE OF IHE CKIIIGAL PAP,AMETER) FO 
5R Lan LO A OIN6, L.: EQUAL E13.6, //) 

END 
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SULLOUTINE SEAR3H 
COAMON t-DA(I64). PI, ANvLc.. XTR(E), XP(21), UV(21), TOL(4) 

C 	IF (SDA(164) gEO. 90.3) RETURN 
AP = 5.0L010 
Elp = 0.UCC10 pL 	-PI F AP 
PR = 	PI - $.-4P 
GS = 2.0 / (1.0 + S01•T(5.0)) 
GR = (1.6 / GS " 10 - 1.0) / GS 
XP( 1) = PL 
XP(11) = 44t LE 
XP(21) - PR 
LPL = (XP(11) - XP( 1)) / GR 
CPR = (XP(21) 	XP(11)) / GR 
CO i,5 	I = 1.9 
J = 11 + 1 
K = 11 
X2(J) = X?(J-1) + ['PR 
XPtK) = X3(K+1) 

67L FOtIc"i(lk.2-K=.4 .12.4")(P(K)= 4.)1F10.4.4- DPL=*11F1C.4.*G3= 4.,1F1D.4.*GR= 4  
1.1F12.-0 
OPR = OrT / GS 

05 DeL = 3PL / GS 
LJ(11) = UVAL 
15 = 1 
AlGLE = X(10) 
LhLL 4ALUES (UTIP) 
UV(1G) = JIMP 
IF (UilP - UJAL) 	10, 25 

10 LO 15 I = 1,9 
J = 13 •• 
ANGLE = 72(J) 
CALL JALU=S (i IMP) 
UV(J) = UIMP 
.F 	- UV(J+1)) 15, 15, 20 

15 CO117INuE 
r 1 

GO TO 25 
29 IS = 

JL = J 
JM = J + 1 
JR = J + 2 
GC Tt 60 

25 ANGLE = XP(12) 
CALL VALUiS tlTIP) 
L1(12) = JTMP 
-F 	- UVPL) 43 1  40, 30 

30 IF (IS) 50)  35) 40 
35 Ji. = 10 

Jl = 11 
JR = 12 
GC; Ti. 60 

43 LO 45 	I = iy 
J = 12 + L 
ANGLE = XP(J) 
t-LL 4kLIJ:IS tUTqP) 
Ult.!) = OIMP 
.F (LTV 	IA(J..-1)) 45, 451  50 

45 COW:INjE__,... 
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AAULL = XJ(11) 
(6,506) (XP(:), 1 = 1, 7), (UV(1), 1 = 1, 7)) 

(XPCL), 1 = 	(UV(1), I = 8,14), 
2 

	

	(XP(I), I = 15,21), (UV(I), I = 15)21) 
LETUU 

50 	= 
JL = J - 2 
J '•1 = 	J - 1 
J. = J 

6L IF (IS) 	70, 65, 70 
65 PA r (US * XP(J,,) + (1.0 	US) 	XP(JA) - XP(JL)) * GS 

ANGLE = PM 
Li',LL VALUES (UM) 

b0 TO 75 
70 PA = XR(JA) 

LA = UV(JI) 
75 1-L = XP(JL) 
• = UV(JL) 
• = XP(J0 
1.7-! = UV(JR) 
W“ITL(6,65::)J..,UV(J1),JL,UVOL),Jr.,UV(J) 

66C FOr(lXs 3(I5,F15.5)) 
DO 96 	I = 11 4C 
K = I 
IF (1-1 + 	- P" * 2.C) 77, 77, 76 

77 PT = PA - GS * (PR - PM) 
ANGLE = Pf 
CALL VALUES (UT) 
14,,T - (6,666),IGLEJUT 

666 FORVA1(1X 1 2F15.5) 8HLEVEL 77) 
IF 	— JM) 851 3C, 81 

78 PT :; PM + 	* (PM — PL) 
ANGLE: = oT 
CALL VALUES (UT) 
WIIT:(6,657)ANGLE I UI 

667 F7RNAT(1X2F15.5) ::HLEVEL 78) 
IF tUT - 	L31  c3, 14 

80 PL = PM 
UL = U9 
PA = PT 
Ul = UT 

TI' 85 
81 PR = PT 
• = UT 
k30 10 35 

= PA 
• = L1 9 
PA = PT 
U1 = UT 
bt: TO 85 

84 PL = PT 
UL = U 

115 IF (c_P — PR + PL) 90, 90 1  95 
9C '/PIT1(61652)PWM,P,ULI UMORI UT,I 

C 9C C,ATINU._-_ 
:5 iNG1E = Pi 

UVAL = Ul 
WZITE(6,651)UVALJ ANGLE 
N...,TE(6) 650)(XP(,), i = 1 1 7),(UVL)1  1 = 1,7), 

1 	(XP(1)1  1 = 5p14), (UV(i), 1 = 8,14), 
2 

	

	(XP(.); 	1:15,21), (UV(1), I =15)21) 
RETURN 
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LC: ROUTINE Vi-LUES ('JVI-L) 
C(3,4:1), CLEF(43), EL, HH, 	PI, ANGLE, CRK, 

1 	GMOD, YMO., PNAT, CLAY, bUN(42), N6Pit  NTM, 
2 	KMD, ICHOOZ 
P = PM;LE 
R = RA0D3 

= 
• NfisM / 4 
DO 10 	tt = 1)N4 
114 = 	* 4 

= M 
L72 = S - 3.5 
S31 = S - 3.0 
532 = S - 1.5 
L11 = S - 1.0 
12 = 	- 0.5 

P12 = S + 0.5 
P11 = S + 1.0 
RI = P " (H-i) 
iF (M 	1) RI = 1.0 
R7 = RI / RY 
• = -1.c 
IF((M/2)*2 .EQ. N) SE = 1.0 
S1 = - SE 
5532 = SIM(332 * P) 

SS11 = SIst(S11 * P) 
▪ 12 = 	* P) 
aP12 	I(P12 * P) 

= 	* P) 
LS32 = CLS(S32 	F) 
S11 = ,Cs(S11 * P) 

= COEA.A.2 * P) 
CP12 = CO_ (P12 	P) 
Lr11 	Uk,S(i-- 11 	P) 

C FINLS CON.;RIL.JTION 10 ',„IRFI.SES FOk E-;,LH TEiN.M ,N EE<i=5 iN 07,,DER 
C 	A(2N-1), s(2N-1), A(2 1), 6(2N), FOR N = 1, 2)  , , NTKM/-r (= .N+) 

G SIGMA R 
L(10,4-3) = Sr * 	' 312 * (S72 * CS32 .• 332 * CP12) 
L(104-2) =-LN * AL * 312 * (S72 u  5,S32 - P12 * SP12) 
Ct104-1) = LE * RI ' S 	* (S31 ' CS11 - P11 * CP11) 
L(104 ) = SE * RI * S 	* (S31 * SS11 - S11 * SP11) 

G 	PSI 
C(204-3) =-SM * RR * 312 * (P12 * LL:32 - 532 * 3P12) 
C(2)'14••2) = 	* RT: 4  S12 * (P12 * SS32 - P12 ' SP12) 
L(2;M4•1) =-L-.E * RI * S 	* (P11 * LS11 - P11 * OP11) 
L (20 4 ) =-SL * 	* 3 	* (i-11 * SS11 - S11 * SP/1) 

C ir.L R-PLI 
C(304-•3) =-EM * 	* 512 * (532 * SS32 - 532 * SP12) 
C(35 04-2) =-SM * RP * S12 * (332 * LS32 - P12 * CP12) 
L(31L4-1) =-SE * 	* S 	* (S11 	SS11 - P11 * SP/I) 
L(3.04 ) = SE * 	S 	* (511 * 	- S11 * 5211) 

10 CRPINUE 
= 0.0 

SGP = 3.0 
= 0.0 

DO 20 	N = 1,NTRM 
L'GR = 	* 1,(10) * LOEF(N) 
S6P = SoP 	L(204) * L)FF(N) 

2C 7,U = Tr:U + L(30) 	LOEF(N) 
CALL CHOICE (SG, SCP, 1 AU, DUAL) 
RE7URN 

LHU:CE 	J, G t  U) 
UMNON SPA(168)y GMOL, YH , PRAT, CAY, EdJMt42), IOL(3), I.:1002 
GO '10 (16, 2C, 23 	

Li 
), ICHOOZ 

MAXIMLN HOJP LIPESS 
12 U =  

R77PRN 
C 	ST!;:AIN ENEP.SY LENS17Y 

2E L = ((CAY+1.C)/8.3*(A+=)*(A+E) + G*0 - A*a) I (2,0*GMO0) 
• TL (1; 3C, IfC), 7C-1.,DZ 

S.IUkIN ENERGY LENsITY 
U = S 
K.;11..PN 
MAXIMUM STPAIN EMERSY DENSITY 

- ICHGOZ 1- 3 OPTION NOT FLLLY TESTE3 
40 lr = -S 

END 
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APPENDIX 7 

Stress values at the crack tip 

I- 	

s 

/3 

YIP 

-- A 

.■■■11.110 

 

18 

1

_  _La  /2. 	cr- Py 

CS. 

S
x 

P
x/b 

Section AA 

uyT = apy  + apx 

3Pw(2 + a) 
o-py  = 	/  

(2 - a)2  

P
x 	

S
x 
. b 

3Px b a  = 	 t  
Px 	(2 - a) 

3 	, _ 
YT 	(2 - a)2 LP(

,A  + a) + Pxbj 

Section BB 

aS = b2 
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