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ABSTRACT  

A wide class of statistical models involving 

structured covariance matrices is studied. The models are 

defined in terms of homogeneous constraints imposed on 

populaLion covariance matrices, with particular attention 

to models with vanishing conditional covariances. Special 

cases include factor analysis models, regression path 

models, linear covariance structures and linear inverse 

covariance structures. Certain scale related properties of 

maximum likelihood estimates for this class are derived, and 

numerical algorithms for computing constrained covariance 

estimates are developed. The final chapter considers ques-

tions of model selection, fitting and assessment using 

certain sample statistics whose joint distribution is 

approximately normal, and emphasizes graphical and heuristic 

rather than formal techniques. To illustrate a number of 

these points, a numerical example is provided which involves 

observations on a set of 66 variables. 
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Chapter 1 - INTRODUCTION 

A majority of the standard multivariate statistical 

methodology is based on assumptions of multivariate normality 

in which population and sample covariance matrices play a 

central role. Furthermore, with the development of new methods 

which relax normality assumptions (Dempster, 1971), it is 

likely that covariance matrices, perhaps with slightly modified 

definitions, will remain important (Devlin, et al., 1975). 

While a sample covariance matrix may represent a significant 

reduction of an extensive set of data, if the number of vari-

ables is moderately large then the number of sample covariances, 

and of covariance parameters that they estimate, is still very 

large. In order effectively to summarize the relationships 

among variables and to expose important features of the data 

(Tukey and Wilk, 1966) further reduction of the covariance 

matrix will be required. Dempster (1972) offers additional 

arguments in favor of parsimonious use of parameters in 

statistical models. 

In a sense, most multivariate methods can be regarded 

as attempts to impose additional structure on covariance 

matrices. Psychometricians have approached the problem 

explicitly in these terms, with hypotheses of patterns and 

symmetries (Guttman, 1955; Bock and Bargmann, 1966; Olkin and 

Press, 1969: Mukherjee, 1970). Factor analysis and simultaneous-

equation regression analysis correspond to lower dimensional 

factorizations of covariance matrix; and recently some authors 



have become interested in additive decompositions 

(Anderson, 1969; Rao, 1972). 

A main objective of the present work is to draw 

together many of these models as special cases of a. general 

structured covariance model, in which structure is defined 

by requiring certain functions of the variance and covariance 

parameters to vanish. Having done this we are able to derive 

certain properties of the general class, and to develop some 

unified approaches to estimation and model assessment. 

Chapter 2 explores in some detail one such property 

which essentially fixes the overall scale of the maximum 

likelihood parameter estimates in relation to the observations, 

regardless of the structural constraints, and leads to a 

simplification of likelihood ratio statistics. From one view-

point this is a direct consequence of scale invariance, but 

it also is shown to hold for certain members of the exponential 

family which, because of the discreteness of sample spaces, are 

not scale invariant. 

In Chapter 3 the structured Wishart model is 

formulated in general terms and a number of examples are dis-

cussed. A concise expression is derived for asymptotic 

covariances (under normal theory assumptions) of statistics 

that can be used to test structural constraints, and the con-

cepts of sufficiency, ancillarity and invariance are employed 

as a guide for choosing appropriate test statistics. 



Numerical maximum likelihood methods for fitting 

structured Wishart models are considered in Chapter 4. Of 

two iterative algorithms discussed, the first is essentially 

an adaptation to the Wishart problem of a Newton-Raphson 

procedure modified by Aitchison and Silvey (1960) to deal 

with equality constraints. The second is an apparently new 

fix-point algorithm based on a special property of the 

Wishart likelihood function. In order to compare costs and 

determine practical limitations, we report the results of 

computer runs in which both algorithms were applied to each 

of several numerical examples. 

Because of the inherent limitations of maximum 

likelihood methods applied to structured covariance models 

and in the belief that these models can still be useful for 

exploring extensive and complex sets of data, we develop in 

Chapter 5 some Methods based on the asymptotic joint normality 

of sample correlation statistics. One interesting consequence 

is that such disparate models as those which hypothesize zeros 

in E-1  on the one hand, and in E on the other, can be treated 

very similarly in this context. The ideas developed are shown 

to be relevant in the areas of model selection, fitting, and 

assessment. Although the approach is based on underlying 

assumptions of normality, it is recognized that the assump-

tions are often not satisfied in practice, so greater emphasis 

is placed on the use of graphical and heuristic rather than 

formal techniques. A final example illustrates a number of 



these points in connect:Ion with a search for inherent 

symmetries among a large set of cbserational vario73Lles. 

A short -7Jppendix is included to provide some 

matrix results used in the text. 



-10- 

Chapter 2 

SOlvlw, PROPERTIES OF :•:AXIMLIM LIKELIHOOD ESTE1ATES 

2.1 Introduction  

In several of the following chapters we deal with 

p-variate normal probability models where the population 

covariance matrix is unknown but assumed to have some 

known structure, and we often work with maximum likelihood 

estimates. The Wishart log-likelihood functions that occur 

--1 all involve a term proportional to tr(2, S), where I is the 

Wishart matrix parameter and S is a Wishart observation, 

and in a wide variety of situations the value of this term 

in the maximized likelihood is found to be exactly p, the 

dimension of the matrices I, and S. That is 

tr(I-1S) = p, 	 r .1-) 
where 7 is a maximum likelihood estimate of I. 

Since this result occurs repeatedly for the 

models considered, the present chapter examines it in 

some detail. We show that it generalizes in two apparently 

different but connected ways, and give examples of each. 

Finally we discuss some consequences and interpretations, 

and consider similar properties of estimates calculated by 

other methods. 



Bock and BargInann (1966) noted Eq. 2.1 in the 

context of fitting multivariate normal covariance structures. 

We shall consider generalizations of it, but the proofs 

of the theorems in this, chapter are essentially like 

theirs. 

2.2 Generalization of tr(I
n-1  S) - p to exponential famifies 

The equation trP]
-1S) = p is a special case of a 

property of certain exponential families of distribution: 

involving only homogeneous functions of the parameters. 

We shall call a real-valued function f(x) of the vector 

variable x homogeneous of degree p if f(-7,x) = -7\Pf(x) for any 

positive number '7\  and for almost every x, and we note that 

the following three conditions are equivalent to each other 

(Eulers theorem): 

1. f(7\x) = -7\Pf(x), 	a.e. x, 

2. Df(x) = pf(x), 	a.e. x, 

3. ID log f(x) = p, 	a.e. x, 

where D is the differential operator 

6  D = kxk ax. 

The main result of this section is given by the 

following theorem. 

Theorem, 2.1  

Suppose the multivariate probability density function 

f(y;e) belongs to an exponential family indexed by the vector 



parameter 

(Y;0 ) = exp 	a] M-01,-(Y) 	c(41 ) 1  d(Y)1 	(2.3) 
k=,1 

and suppose that the parameter space Q is closed under non-

negative scalar multiplication. Further suppose that the 

functions ak(A) are all homogeneous of the same degree r 

in the parameters 1''q' and that c(0) and ak(C) are 

almost everywhere differentiable with respect to all argu 
/N. 

ments. Let 0 , 0(y) be a value of n that maximizes f(y;5) 

over S for a given y. Then, 

m 

ak(e)bk(y) 	Dc(S), 
k,1 

so that 

f(y0) = exp (c(0) - Dc(e)/r + d(y)), 

)-  
UhereDisthedifferentialOIDeratore. ---  . 1 

asi i 

Proof 

Since 	is in s, so is 	by assumption for any 

positive scalar A. Define g(l) to be log f(y;A0). Since 

maximes f(y;C) for fixed y, the function g(A) must 

attain its maximum at A - 1, and we have 
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m 

dg 	0 
	

Dak(e))bk(y) + Dc("'). 

By ruler's equation, Dak(q = ra(0 ), since ak  is homogeneous 

of degree r. Formulas 2.4 and 2.5 follow directly. 

With one additional assumption about the form of 

the exponential family, a further simplification occurs, and 

we have 

Corollary 2.1  

If, in addition to the assumptions of the theorem, 

c(e) is the logarithm of a homogeneous function of degree 

t, then, 

a.
K 	

(y) = - 	, 	(2.6) 

k=1 

and 

•••• t 
r 

 

 

f(y;E ) = exp [c(0) - d(Y)1 . 	(2.7) 

The proof follows from the fact that Dc(F) 

which is a result of ruler's theorem given above. 

We note that the condition that 	is closed under 

multiplication by positive scalars is equivalent to saying 

that in all the models under consideration the parameters 

have a free (unknown) overall scale factor. 



- 

Example 2.1 - Continp;ency table with Poisson counts 

We consider an r by c contingency table of 

counts y = (yid ) which have independent Poisson distri-

butionswith parameters -N =
ij 

3, (1=1,...,r; 

and we wish to examine the plausibility of various hypo-

theses concerning the -xij' (This is closely related to a 

multinomialmodelinwhichN-E Yij— is fixed.) The 

probability density function is 

4Th. 

f(YW = e Y• 
1 j 

r - 
= exp l 	 (1o7\ Y. - sij; . - /  

with the following correspondence to the exponential family, 

Eq. 2.3, 

ak = log ;\ij, 	bk = 

c = - ) 	d = - log (y!). 

If we reexpress the model in terms of the natural parameters 

of the exponential fa lil!, P 1
j 

= log ij' the density becomes 

r 	 fp- 

f(Y3P) 	exp 	P. . Y. - 	
\

e 13 - , log 	.! )1 
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The new parameter space is 	=IRrc  which is closed under 

scalar multiplication. Now suppose that the various hypo-

theses of interest correspond to subsets of Q each of 

which is closed under scalar multiplication. For instance 

wemig.htassumethatp..
ij 
 =aI  

.4-(3j  for unknown parameters 

a.1  and f3., which derives from assuming independence of row 

and column effects. Then the assumptions of Theorem 2.1 

are satisfied for the full model and the submodels, so the 

maximum likelihood estimate p for any of these models 

satisfies, 

Y..  :Lj yid 

ePij\ 

and 

••■ 

P i. 
f(y;p) = 	e 	(pij-1)' 

or, in terms of the original Vs, 

f(Y;;N).  = 	Tip  (log ?sij-1). 



Fxnonentlal 

Supnose that the random variable Y. has an 

given by 

f
y 	exp (-YjAj), 	(j-1, ...,n), j 
j 

that the 'Yj  are independent, and that the parameter 
J 7  

which is the expected value of YI,is related to a p-vector 

x. of concomitant (or design) variables through an unknown 

vector parameter (3 by, 

• = 3 tj 

where c is a fixed number, positive or negative. The 

. likelihood of y 	T is 

f,( y I X ; 	exp 
-q 

ti 	 n 

T 	I 	+ log 11 I xT. 13 I q 	. 

j=1 	j=1 

Comparing this to the general form of Eq. 2.3 we see that 

 the functionsa0 	13 3) = 	I -q  are homogeneous of degree 

in the elements of 	and the function c(3) = 

log Fi I,T 	q is the log of a homogeneous function of 
j-1 

degree qn. Depending on c and x, the feasible parameter 

space for 	may be smaller than 13-P  but it is always closed 

under positive scalar multiplication, and we 1:11l1 only 
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entertain subhypothcses tht place homoc,eneous constraints 

on ,13. 

All of the as 	of Theorem 2.1 and 

Corollary 2.1 are seen to hold, and we conclude that any 

ma:ctmum likelihood estimate 13  satisfies, 

and 

j-1  
T 	-a an _ 	= n  

_q  

fy (y X;i3) = e-n/ 	1XT 	q  . 

j=-1 	j  

Furthermore, if we denote a fitted. y. by y.., we have 

Yi 	(Y • x 	- 	_ 	, q 
j 	- 	5 

and 

f (y, lx;,B) 	e-11/ 	Yl  • Y j 	j=1 

If we use a likelihood ratio to compare two hypo- 

theses NA  and HR 
concerning 	we find, 

LR 
	lik(f3;y) 	y/3,i  

	' 
lik( B;y) j=1 yAj  

That is, the likelihood ratio depends only on the ratios of 

fitted values under the hypotheses. 
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We note that if t}i -2. exponential parameters 

were linked to the desn variables x
j 
 and regression 

parameters 5 by 

, 	exe () 13), 

then the conditions of Theorem 2.1 would not be fulfilled, 

and the results would not hold. 

Example 2 	- Structured. Wishart models  

The most important example for subsequent chapters 

is a model in which a random p by o matrix S is assumed to 

have a Wishart distribution W (n. 1'2) , where I is unknown p 	n 

but repuired to lie in a subspace P.  of the space s of all 

positive definite matrices, and 00  is assumed to be closed 

under multiplication by any positive constant. The matrix 

S, for instance, might be a sample covariance matrix from 

a multivariate normal distribution with population covariance 

matrix I. The likelihood function is 

lik(I;S) - 
n tr  ISI'(n-P 	75  -1)exp- 	

-1
S)) 

   

1-9 (n4 p-1) 	1-P(P-1)
I 1 

n211 F 	 

1-1 
2 1- ■ 	'2' 	v 	■ 	2 - 

(2.9) 

which can be rewritten as 

n ^ ^ 

lik 	exP 
2 ij 

+ log I 	d(S)} 

(2.10) 
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Comparing the exponential family density Eq. 2.3 with 

Eq. 2.10, we see that 0 and y correspond to Z and S, 

respectively; ak(e) corresponds to Jij, the (- ,j) element 

- of. Z -1 , which is a homogeneous function of degree r = - 1 

in the variables (c11, 	
). b (y) corresponds 

11' 12-. 	' pp ' k 	n 
to - 	s - and c(0) corresponds to log Y j 	2  which is 7 ji' 
the logarithm of a homogeneous function of degree t = 

2 . All of the conditions for Corollary 2.1 are met 

and we conclude that if Z maximizes lik(Z;S) over 00'  then 

;ijs 	= - 2 (- L) = 
ji 	n 	r 	. 

1, J 
(2.11) 

We note that the exponential family under con-

sideration could equally well have been parameterized by 

-1 instead of Z. Since the elements of Z are homogeneous 

functions of degree -1 in the elements of Z-1, the functions 

-1) and 
 

ak(L ) and exp(c(z )) in the reparameterization are again 

homogeneous and the same results follow anew. 

Corollary 2.1 can be applied in this way to any 

Wishart model in which the parameter snace 00  is a sub-

set of the space of positive definite matrices defined by 

a set of constraints of the form h1(1) 	. . = hci(Z) = 0, 

where the hk 
are all homogeneous functions in the elements 

of Z. The condition that 00 
 is closed under multiplication 

by a positive constant follows, immediately. This is a 

very large class of models and includes many of the specialized 

np 



models in' common use in a number of areas of application. 

These include: 

1. Models in which X has a block structure, i.e. some 

oralloftheelements0-..are equal to each other in 

diagonal and in off-diagonal blocks. These models result 

from assumptions of interchangeability of subsets of the 

X. variables. 
1 

2. Models in which elements of Y, are constant in 

diagonal stripes. Covariance matrices of this sort arise 

for e=ple in the analysis of stationary Gaussian time 

series. In addition there illight be assumptions concerning 

the ratios of values in consecutive stripes, a constant 

ratio corresponding to first-order autoregressive process. 

3. Models which specify virtually any kind of pattern 

hypothesis on the elements pig of the correlation matrix. 

Since the pij  are homogeneous functions of degree zero 

in the elements of 1, any function of them is also homo-

geneous. In particular, some or all of the pig  can be 

assumed equal to known constants. 

4. Linear covariance structures, as defined by T. W. 

Anderson (1969), in which either 1, or 1-1  can be represented 

as a ljnear combination with unknown weights of a set of 

known symmetric matrices, say, 	= s lB1  + 	+ kBk. The 

set 0  of permissible 's.clearly has the necessary free 

scale parameter for the simplication results to hold, and 
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the representation in terms of homogeneous constraints 

can be shown exulicitly as follows. Let 	= 

and let o and b. reprr,sent the distinct elements of > and _1 

B. rolled out into column vectors of length 	.1.3p(p+1). 

Also, let B be the matrix whose columns are bi. Then the 

linear decomposition of Z can be written as 0 = TA.  , 

which means that o is constrained to lie entirely in the 

linear space Z(B) spanned by the columns of B. This in 

turn means that the projection of 6 into the space ortho-

gonal to Z(B) vanishes, a property which can be written 

as, 

(I - B(BTB) BT)C = 0. 

Similar results hold when Z-1 has a linear structure. 

5. Factor analysis models, in which Z is deemoosed 

into 	= eAoT + T where A and T are diagonal, 8 is ortho- 

gonal, and A has rank less than p = rank(Z). Since the 

elements of A and T are unspecified, it is clear that Z 

has the free overall scale parameter required by Theorem 

2.1 and Corollary 2.1. 

6. Models with certain constraints on the shape or 

orientationofthedistributionofthevariablesX..If 
1 

T i A 	is the eigenanalysis of Z, 9 can be interpreted as 

describing the orientation and A the shape of the distri-

bution, where "shape" means both size and relative spread 

along the principal ayes. The elements of A and 	are 



homogeneaus functions of degree 1 and C. respectively, 

in the elements of 	Hence Eq. 2.11 applies to classes 

of models that restrict 0 in any differentiable way, or 

that restrict A in any homogeneous way. 

7. Causal path models, which are characterized by 

the vanishing of certain conditional covariances among 

thevariablesX..These models are examined in some detail 1 

in chapters below. 

8. As an example of a structured Wishart model which 

does not satisfy the recuirements of Theorem 2.1, we 

assume that score or all of the variances iii  are equal to 

known constants. The parameters are then essentially 

the correlations (which may satisfy further pattern hypo-

theses), and the functions of them that enter the likelihood 

. do not meet the homogeneity requirements. Let e be a 

diagonal matrix with the known. variances as diagonal elements. 

Although Theorem 2.1 does not apply, one can employ argu-

ments like those in its proof to obtain 

--1  
tr(Z,  S) = tr(p

-1  S*) = p 	tr p
-2 

(S* - p), 

where p 1 
A-1 is the population correlation matrix, 

and 3* is A 1 
S 1

. 

2.3 generalization to scale invariant  families 
The property t --1S) = p can also be viewed 

as a special case of a result that derives from scale 
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invariance, which we define as follows. suppose that the 

m-vector I has density function f1(y;P) with parameter 

space 2, and fy(y;c) is absolutely continuous with 

respect to Lebesgue measure on e and differentiable with 

respect to each yi 
and each P . We wish to examine 

various hypotheses corresponding to subsets 520, 521, • 5 

of Q. Define a group 	of scale transformations on the 

sample space by 

Y 	),\Y, 	for each ?, > 0, 

and assume that Q induces a group E=x-  of transformations 

on 2, 

( -0 

such that every ci  is preserved under(Y- . We will also 

assume that each component of PM is a differentiable 

function of 	The model defined by fy(y;0) and any 

one of the subsets a, is then said to be scale invariant, 

and we have the following theorem. 

Theorem 2.2  

If C is a maximum likelihood estimate of the 

vector parameter in a scale-invariant model with para-

meter space 00  as defined above, and if (c)  is held fixed 

at C, then fr(y;E) satisfies, 



In 

6 log 
P log f

Y 
 (y;c) , 
•• 

k=1 	Yk 

(Y;fl) 
- m. (2.14) 

Proof 

Le A A be any measurable set in the sample space 

and let T, be a positive scalar, then 

pr(:\Y e A;() = pr(Y c A;C(-°). 

Equivalently, in terms of density functions, 

fy(7,y;q6(?\y) = fy(y;C(-0)dy. 

	

The Jacobian of the transformation y 	-Ny is -x111, so 

d(AY) = TIT*, 

and 

f (XY;e )?\M  = 

	

(T )) .  

Taking logarithms and differentiating both sides of this 

equation with respect to T , we are led to, 

L. 

a log fy(-Ny;0) yk 	m  = 6 log fy(y;0(0) 	
(2.15) 



Wow Wow fix (n  at the aximum likelihood estimate 	for the 

hypothesis O. Since 0. "')  e 00  for each -x by assumption, 

and (1)  = r, we must have 

	 = o 
	

for 	1, = 1, 
6?, 

and Eq. 2.15 becomes 

log fy(y;0) 

Yk = 

which comr)letes the nroof. 

To help clarify this theorem we note the 

following points. First, scale invariance as defined 

here is slightly more general than scale invariance 

in a family defined by, 

1 	V ;  v.P 	("5 	(2) y(k" . 	
ell 

g 
 

since 0 in the expression on the right must in general 

be allowed to depend on u. Second;  despite the similarity 

between Eq. 2.14 and Euler's formula, it does not follow that 
e". 

for fixed 0, f(y30) is homogeneous in the arguments y1,..., 

ym. The reason is that Eq. 2.14 holds only at the one 

point y for which 	was calculated. However, if 6 is 

allowed to vary with y, then with one small additional 

assumption (which is perhaps not strictly necessary) 
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f(y;'(y)) is homogeneous, as shown in the following 

theorem. 

Theorem 2.3  

Under the conditions of Theorem 2.2, if 0  can 

be reparameterized in a neighborhood of 0(y) in a con-

tinuous and differentiable way by a vector T whose elements 

are not subject to equality constraints in that neighbor-

hood, then the probability density function fy(y;0(y)) 

is homogeneous of degree -m in yl,...,ym. 

Proof  

@(y) corresponds to T(y) in the new parameteriza-

tion, and e(y) , e(cp(y)). Writing g(y) = log f(y3e(y)) 

we have, 

g(Ty) 
Dg(y) - 	 

?\=1 

- 	 - 	- 
nogf(?\y;6(-xy)) )__ nogf{-xy;0(TD\y))) (1). 
	 ± 	 - 	 1 

,6"/, 

	

)Y1,.. 	
i 	6cp. 

	

_,_ 	i 	J -N=1 

  

• 

Now the derivatives of log(f) with respect to Tj  are zero 

by the maximum likelihood conditions, so the second 

summation is zero. Also, the first summation is equal to 

-m for ?\ =1 by Theorem 2.2. Hence Dg(y) = -m for almost 

all y, and it follows that f(y;0(Y)) is homogeneous of degree 

-m in y .1 • • • .9 Y rn • 
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Example 2.4 - Structured Wishart models (cont' d)  

All of the Wishart models discussed in Example 2.3 

are scale invariant, since the transformation g: S -\S 

induces g*: 	1 >I on 0. Differentiating the log of the 

Probability density, Eq. 2.9, with respect to S we have 

logf(S;Z) 	n - (1)+1) -1  -L 	(2.16) 
as 	2 	 , 	- 

Before applying Theorem 2.2 we must take into account the 

symmetry of S. Although S is a p by p matrix, there are 

only J.p(p+1) functionally independent elements, which we 

can take to be the elements in the upper triangle, including 

the diagonal. Then each element of S is a homogeneous function 

of degree 1 in these . 
1 1)(p+1) elements, and we can show 

logf(S) 
s = ..  

as . 1J 

logf(S) 
	 s.. 

as 	1 j (2.17) 

where the derivatives on the left hand side take account 

of symmetry. The correct value of m in Ea. 2.14 is 

?:;p (p+1) and combining Eos. 2.14, 2.16, and 2.17, we have 

-P(P4-1) 	nogf(S;Z) 
S = 	 = tr 	 

2 	aS 

n 	(p+1) 

2 	- tr(2] S) .  7 



It follows that tr(> S) - p. 

The structured Wishart models described in 

Examples 2.3 and 2.)-1 can be derived from normal models 

In which the population moans are unknown an unrestricted. 

The bishart likelihoods can be equivalently thought of as 

marginal or conditional likelihoods. As an example where 

Theorem 2.l does not apply but scale invariance does, we 

consider the normal model itself in which there may be 

restrictions on the means as well as covariances. 

Example 	5  - Normal model with structured mean and covariance  

Suppose that Yi  (i=1, ...,n) are independent 

normally distributed p-dimensional vectors with common 

mean vector and covariance matrix Z. The parameter 

space for the full model is T -1T-PxQ where 2 is the space 

of positive definite matrices. We want to compare the full 

model to submodels that impose homogeneous constraints 

on both p, and 	Let Y be the n by p matrix whose rows 

T 
are _and let M be the n by p matrix whose rows are all 

equal to
T 

	
Thai the probability density function is 

f (, 7
) = exp _ - 

	-1 
Y-M)T (Y.A -.1721!,  log 

np 
log (2v)] . 
° 

(2.18) 



This is an exponential family, but the functions corresponding 

to ak  (C) 	
m are not homogeneous of the sac degree in the 

elements of p, and Y., so Theorem 2.1 does not apply. 

Nevertheless this model is scale invariant, 

the transformation g: Y 	?NY inducing the transformation 

- g*: (;\,Z) ---)(?%-1t1,-N
-2  2_,) on the parameter space, so Theorem 

2.2 does apply. Let (11,I) be the maximum likelihood 

estimates over some homogeneous subspace To  (I 	Using 

matrix derivative formulas A7 and A8 from Appendix A, 

we have 

nogf(y;_1,7) --1 m 	- 
6y 

and from Ea. 2.14, noting that the proper value of m is 

now np, 

	

logf(Y;p,,Z )T 	--1 T 
- np = tr   Y 	= - tr(Y-M)Y Y . 

.)Y 

(2.19) 

In order to simplify this result further we can 

write S = 	(Y-M) 
T  (Y-M) which is a (biased) mean squares 

and cross-products matrix corrected not for the usual 

sample means, but for means estimated according to the 

constraints. Then applying Lemma 2_.3 below, Eq. 2.19 

becomes, 



tr(2, m) 	p, 	 (2.20) 

which is analogous to Eq. 2.1. 

The lemma t:hat is required to complete the 

derivation is 

Lemma 2.3 

If. Y is an nxp random matrix whose rows are 

independent observations from a multinormal distribution 

with unknown mean and covariance, 

EY = M and F(Y-M)T  (f-K) = nZ, 

where 14 and k may be subject to homogeneous restrictions, 

and if M maximizes the likelihood for some fixed estimate 

of Z, then 

tr(M 	m = tr(14 	MT  ). 

Proof 

The proof follows the pattern of other proofs 

in this chapter by writing the likelihood as 

fy(y;?\M, 	differentiating with respect to ?„ and 

setting the result to zero for "N=1. 

2.h Generalization to a class of fitting criteria  

The foregoing sections have dealt with a single 

estimation criterion, maximum likelihood, and several 

families of probability models. We now fix our attention 



on the family of structured Wishart models and consider 

various possible estimation criteria. In particular, we 

show that maximum likeliihood„ least squares, and generalized 

least squares are all formally special cases of a general 

criterion, and that the condition tr( -1S) = p is a special 

case of a relationship that holds more generally. 

For a fixed sample covariance matrix S, the basic 

problem is to find a matrix Z in a given homogeneous set 

0
0 
 that optimizes some objective function, 	;";S). Maximum 

(Wishart) likelihood corresponds to minimizing 

ML: log 	tr 
	s), 	 (2.21) 

unweighted least squares requires minimizing 

LS: l.tr(Z-S)2 	2 , tr(yZ 	+ ytrSc-, 

and generalized least squares in which the squared deviations 

of Gij  from s. . are weighted by the inverse of their asymp-

totic covariance matrix, leads to minimizing 

GLS: 	
1(F_s)12 	tr[ 	--(Z-1s)21 

Apart from terms not involving Z, these last two are clearly 

special cases of 



lorr 	- 1 :1 m = log s  , a —> 0 

Q0 

gP:'.; 3, a, b 	tr 	7-7717 
	.-(a41) ,(b-1)>  

) 	b 
J 
	 (2.22) 

where a and b are positive or negative integers, and an 

(2 
expression like 	<>7,

(2
-/
1 
 ,S\- i

1  
'> means >S2.7.)'. In fact the 

ML criterion also fits the form of g(I;S, a,b) if the 

notational conventions in the following paragraph are 

adopted. 

If X is any square symmetric matrix with 

eigenvalue decompositlon X - HAHT, and f is any analytic 

function, let f(X) be the ma:,tr:lx-valued function 

f(X) = 	dia 
	

f 

In particular, the matrix logarithm function log(`) is 

well-defined for any positive definite 2], and its inverse 

is the matrix exponential function. It follows immediately 

that 

log 	tr{ log (I) ) 

Furthermore, as in the case of the scalar logarithm we 

have 



) 0 -DJ 

75   1 ,0 
so that in a formal sense 	is log  7,, apart from a 

I I constant" term. Note especially that the formal rule 

for differentiating  a power works properly for the log  

expressed this way, when 01 is taken to be 1. For 
0 

- 
consistency, vie 	 2_,

0  
e define 	(without the factor ) to be 

0 

the identity matrix. (See Eq. A6.) 

With these conventions established, Eq. 2.21 

becomes 

ML: tr 

which is in the form of g(7;S,a,b). 

Now letting  E be a point in the S-2,0 
 that maxi-

mizes g, and observing  that the derivative cf 

g(-A  Z;S,a,b) with respect to 	must vanish for ?,=1, we 

have 

tr {0,(a+1),5(b-1)>  _<:_,(a).s(b);Ir 	0. 	(2.23) 

This is the generalization to g(Z;S,a,b) of the 

relationship t"0(2-1,S) = D. 

Table 2.1 summarizes results for various values 

of a and b. The cases indicated by * require some 

interpretation. LS* is simple least squares applied 

to the residuals aii - sii. GLS" is generalized least 

squares applied to the same residuals, but using  the fact 

that asymptotically the covariances of elements of S 
-1 
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TA5LE 2.1 

Method 

- Relation7hip of 	:t to S 	for 	various estimation 	methn.:s 

a 	b 	Eauation 	2.23 

ML -1 1 tr (I 	- 	i 1S) = n= 	tr 	S) 

LS 1 1 tr (i2 	- 	iS) = 0 = 	- S) 

GLS -2 2 - 	i-1ST 1S) = 0 = 	tr 	-1S (I 	- 	1 1S) 

ML* 0 0 tr (IS-1 	- 	I) = 0 = 	tr i(S-1 	- 	1-1) 

LS* -2 0 tr (I•-1S-1 	- 	i-2) = 0 = 	tr '1-1-(S-1 	- 

GLS* 1 -1 tr(iS-liS-1 	- 	'S-1) = 0 = 	triS-1(2S-1 	- 	I) 

TABLE 2.2 - Taxonomy of estimation methods 

-4 -3 -2 -1 0 1 2 3 

6 

GLS 

	

-+ 	---.----,,,i- 	._41 7,7 =.,,-..- tt. 	 

1 M L 	 LS 	
i 

4-- 	-1- 	 --ii.,_,..,..,,...,,...y — ----1- -t-rtererrs,eam 	1----  -+  ,.., 

	

, 	1lLs* 	I, tiL* 	1 

i 

• • C 

a: 	• • • 

4 

3 

2 

b: 1 

0 

- 1 

-2 

-3 

	

GLS* ; 	j 1.. 
•• .• 

z........„..----- • /•,,,,,,--„--) 

	

I 	 [3 

	

1     ___I 

I

{ 

 .c.,m-....,-..4. 
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bear the same relationship to — 	as the covariances of 

elements of S bear to Z. EL* can be interpreted as 

maximum Wishart likelihood if S 1  is assumed to have a 

Wishart distribution (which it does asymptotically). 

<2,(a)s(b)› 	<z(a+l)s(b-1),›  
In order for 	and 

both to be expandable as alternating factors of >7, and S, 

the values of a and b must be restricted to the region 

outlined in Table 2.2. 

Returning to Eq. 2.23 and Table 2.1, since we 

can interpret tr(XY) as the inner product of two vectors 
2 

in Euclidean 2317  space, the last equation in each row of 

Table 2.1 is really an orthogonality relationship . In each 

case the vector pf residuals (on some scale) is orthogonal 

to fitted values (on a possibly different scale). A,ihen the 

two scales are the same, we note the following interpretation. 

If A and B are two points (vectors) in Euclidean space and 

A I (B-A), then the point A must be on the hypersphere 

whose diameter is the line segment from 0 to D. In the 

LS case, for instance, I, must lie on the hynerspherc whose 

diameter is O,S . 

Finally, we note an interesting relationship 

between GLS and T1L 	Since GLS 
minimizes the function 

h(Z) = tr(Z-1S-I)2  > 0, 



we can employ the PLC lin- of Tab 	2.1 to obtain 

--1 
h('7'ca,$) - tr 	S(>:GLF, s - I) - 	S - I) 

-  
tr2-GLS S 	 T). )' 

Hence, 

tr(ZG.s  S) 	p 	h ( GLS) 	P' 

--1 
Thus, tr(ZGLS 	

always S) is 	less than tr(aL S) by an amount 

h(.22CILS)* 

2.5 Consequences and interprettions 

As a theoretical point the property developed 

and generalized above is interesting in itself, but we now 

consider ways in which it provides useful insight into the 

structure of models for which it holds. 

First, consider the homogeneous exponential 

models satisfying the conditions of Corollary 2.1, with 

estimation done by maximum likelihood. Since the quantities 

ak = ak
(0) are the exponential parameters of the model and 

bk  = bk(y) are the sufficient statistics, the condition 

kakbk = constant 

can be interpreted to mean that the length of the projection 

of the estimated vector a of natural parameters on the 

vector b of sufficient statistics is constant. 
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The main consequence of this result is a 

simplification of likelihood ratio statistics that occurs. 

If two competing submodels are defined by subsets QA  and 

B 
of the parameter space, and if eA  and e are the 

 B 

corresponding estimates of the parameters, then under 

Corollary 2.1 the likelihood ratio statistic for testing 

A against B becomes 

f(37;°A)  LR = 	̂ 	= exp (c(eA) - c(9B)1. 
f(3730B) 

For the exponential regression model in Example 2.2 it 

was shown that LR is consequently just the product of 

ratios of fitted values. And for the broad class of 

structural Wishart models in Examples 2.3 and 2.4 it 

follows that the likelihood ratio statistic is 

det(±,A) ) n/2  
LR 

det(iB) 

This means that LR depends only on the ratios of eigen- 
/S. 

values of EA  and EB. Insofar as each normal distribution 

corresponds to an ellipsoid in p-dimensional space)  LR 

depends only on the "shapes" and relative"sizes" of the 

fitted distributions, and not on their "orientations" 

as determined by the eigenvectors. Nor does LR depend 

on the locations of the fitted distributions, since the 

■•■ 
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property was extended in Example 2.5 to models with 

structure in the means. This principle has been 

generally overlooked in the statistical literature, 

since authors who develop various Wishart models with 

specialized structure proceed to calculate the likelihood 

contribution from tr(E-1  S) in each case, always obtaining 

p. 

Finally, we indicate the possibility of using 

the results of this chapter to compare maximum likelihood 

estimates of P with estimates obtained by other methods. 

If we agree to compare two estimates (71  and 62 
by computing 

the quantity 

d(61,22) = 70ak(61) - a(62)}bk(y), 

which is essentially the length of the projection of 
e". 

) - a(02 
 ) on b(y), and is in the Wishart case 

- , 
d(7,1,Z2) = tr(L, - L2  )0, 

then the position of 61,11,  along this coordinate direction 

is fixed and known, and the distance from any other 

estimate to eML can be obtained without calculating 

P
ML 

itself. The principle can be used in reverse as a 

computational aid. If, in a large and complex problem, an 

iterative calculation is to be used to obtain a maximum 

likelihood estimate for Z so that a good initial value 
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(0) Will be helpful, one might first calculate, say, a — 

least squares estimate Zrs, and then derive s(0) from 

, LLS by requiring tr(Z(0)  S) = p to hold. This could be 

accomplished by rescaling ZLS  or by projecting 	into 

the linear space defined by tr(Z-1S) = p. 
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Chapter 3 

COHSTRATUED WISH= nnuELs 

3.1 Introduction  

Chapter 2 examined some properties of estimators 

for certain general models that have either an exponential 

or a scale invariant structure. We now focus on the sub-

class of structured Wishart models discussed in Examples 

2.3 and 2.4, working primarily with their formulation in 

terms of functional constraints among the elements of the 

Wishart parameter matrix. We first describe the general 

model and a number of special cases. We then develop some 

asymptotic formulas for use in subsequent chapters for 

model testing. The chapter concludes with a discussion of 

the limited extent to which the principles of minimal 

sufficiency, ancillarity and invariance can be applied 

to this class cf models. 

3.2 IS=eneral formulation  

Suppose that the random pxp matrix S has a 

1 Wishart distribution W (n, — Z), and that the parameter 
p 	n 

matrix >1 is positive definite. The probability density 

function is 

I t  
HI 7°1-P-1)e= /- 2  tr(E-1s)1 L 2 	 

l) iz 	in" 	02;4_ 1 _ 
n 	2-- 

 7 -1) 
4 	

r 	
) 

I 



leads to a likelihood func Lion for Z, proporlenal 

to 

f 	. exp — [log 17,-1  - pr(7, -1 - 2 (3.2 ) 

Following the general approach taken by Silvey (1970, 

Section 4.7), we shall be interested in a general model 

corresponding to a parameter space 

(Z: E is positive definite ), 

and in restricted models in which the elements of 7 satisfy 

certain constraints of the following form. If h(Z) 

(h1 	r( )) is a vector-valued function mappin 0 

into Tiir, then 

c, h(Y) = 

That is 0  is the intersection of 0 and the null space 

of the function h. Further assume that the functions hi  

are continuous, differentiable, and homogeneous in the 

elements of 	that they are functionally independent, 

and that 0.0  is not empty. 

It follows immediately that n0  is closed under 

multiplication by any positive constant. This model is 

essentially the one discussed in Examples 2.3 and 2.4 

where it was shown to be a scale-invariant exponential 



family composed of homogeneous functions and it encompasses 

all of the special cases of Example 2.3. We n..)te that the 

unconstrained parameter space 0 is an open convex conical 

region of!!q where q = -p(pA-1), and that 00 is in general 

a q-r dimensional nonlinear manifold which is not convex. 

(If the equations ht(X) - 0 are linear or equivalent to a 

set of linear equations then 00 is linear and convex.) 

When necessary we shall denote the unknown true 7 by It 

to distinguish it from other points in S or 00. 

The constrained covariance model thus defined 

can be compared to the model formulated by Browne (1974), 

who writes 7, as a function of an unknown vector parametr 

y. The two approaches are formally equivalent since y can 

be taken as an arbitrary parameterization of Do, but from 

a practical viewpoint, the model appropriate to a parti-

cular problem may be easy to write down one way and 

extremely difficult to formulate the other way. This point 

was made by Aitchison and Silvey (1960) who refer to formu-

lations in terms of constraint equations and freedom 

equations. Since many of the constrained conditional 

covariance models studied in later sections cannot be 

easily written in terms of a. vector 	we shall work 

primarily with the constraint formulation. 

Although the model described above is defined 

in terms of Wishart distributions, in most cases the 

matrix S will in fact be the sample covariance matrix 

of a set of n observations of a p-variate normally 



. 
distributed random variable 	j (X_, ... Xp  )T 

 witn 

covariance matrix 7. Furthermore, 	may represent either 

raw observations, or residuals after fitting some pre-

liminary linear model, with an appropriate adjustment to 

n for the number of parameters fitted. 

It must be stressed that to study the covariance 

structure of the variables X j  and assume joint normality is 

essentially to study only linear regression relationships 

among the X.. Also, although the model as described 

requires all the X. tc be random, there are many situations 

in which some nonstochastic and design variables can be 

accommodated. These are cases in which the constraints 

h- and any test statistics depend only on conditional 

covariances of the stochastic variables given subsets of 

the fixed variables. 

Example 3.1 - Flock structure  

In certain biological and psychological appli-

cations it is not unreasonable to assume that a set of 

random variables can be partitioned into subsets such that 

the variables within each subset are interchan7,eable with 

regard to their joint statistical behavior (Arnold, 1973; 

Elston, 1975). For example, 	X2, and X3  might be 

measurements of some attribute on each of three brothers, 

and X)1, K5  and 16  the measurements for three sisters in 

families with three children of each sex. An immediate 



consequence of interchanealillity is that the nobulation 

covarianc:2 matrix of these variables has a constant-in-

blocks structure, e.g. 

a b b 
b a , b 
b b a 
e e e 

e e e 

P e e  

e e 0 

e e e 
e e e 

c d d 
d c d 
d d c 

When sample variances are all standardazed to 1 sc that 

covariances become correlations, this becomes the intra-

class correlation model studied by Fisher (1921) and 

The simplest case of course has a single block, i.e., all 

correlations are ecual. 

The block structure model can be useful in 

exploratory data analysis when there are many variables 

available and it is desired to choose a representative sub-

set of them for further work. One possibility is to find 

an appropriate partitioning of the variables and select 

one representative variable from each group. This will 

be illustrated in an example in Chapter 5. The advantages 

of proceeding in this way rather than taking "best'' linear 

combinations of the original variables as representatives 

(as is done in factor analysis, principal component analysis, 

or canonical correlation analysis) include the fact that 
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the chosen variables retain a direct meaning in terms of' 

the original system, and that whatever further analvs -,,  

are done may be repeated on other similar sets of data 

without having to collect and process such a large set 

of variables. 

The two equivalent formulations of this model 

in terms of constraint eavations and freedom ecuatlons 

are obvious. We note, however, that since the number of 

free parameters is relatively small, the number of con- 

straints is large. 

Ixample "B.2 - Vanishing covariances  

One obvious way to reduce the effective number 

of covariance parameters is to require some subset of t,,' 

covariances (or equivalently the correlations) to be zero. 

Constraints of this sort are clearly homogeneous. In a 

normal theory framework each vanishing covariance corresponds 

to the fact that a pair of variables are marginally inde- 

pendent. Hills (1969) has used this idea in an exploratory 

analysis of a set of data s=arized by a 10x10 sample 

correlation matrix. He assumes all population co relations 

to be zero except those between pairs of variables whose 

sample cDrrolation differs from zero by some threshold 

amount that is statistically significant. 

Example 3.3 Covariance selection  

In contrast to the last example, we mention a 

class of models proposed by Dempster (1972) in which elements 
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of 	are assumed to vanish. Dempster also discusses 

data dependent procedures for selecting approeriate subsets 

of fciii) to set to zero. Motivation for this model derives 

partly from the fact that the elements of >2_,
-I are the 

natural exponential parameters of the probability model, 

i.e., the functions ak(C) in the notation of Section 2.2. 

Hence, setting certain Gij  to zero removes parameters in a 

natural way, and also reduces the dimension of the sufficient 

statistic b = (sll,s12,...,spp). Clearly this is also a 

Wishart model subject to homogeneous restrictions. 

Dempster does not give an interpretation in terms 

of independence of the variablesX1, but by observiniT 

that 

612 
 = 

-c
12.c (3.3) 

2 - 
11.c

c
22.c 	O12.c 

where c is the index set (3,4,...,p), we see that each zero 

in Z-1  corresponds to conditional independence of two 

variables given all the other variables in the model. 

Although Dempster has proposed the covariance 

selection model partly as a data analytic tool, it suffers 

from one serious drawback in this regard. When studying 

complicated sets of data it is not unusual to have a large 

number of variables available, and one often considers 

including additional variables derived from the original 



set by combning and transforming them in various ways. 

An important initial task is to select a subset of 

variab] es to analyze, and having done this one is rarely 

able to say with certainty that exactly the correct set 

has been chosen. When dealing with covariances directly 

as in Example 3.2, the consequences of this selection are 

minimized by the fact that the marginal covariance matrix 

of any subset of variables is just the corresponding 

partition of the overall covariance matrix. But when one 

takes Dempster's approach and studies the inverse covariance 

matrix, the whole set of parameters, and in particular patterns 

of zeros among them, are affected by the inclusion or 

exclusion of additional variables. The problem becomes 

acute, for instance, when the sample covariance matrix is 

. singular and thus not invertible, which can occur when the 

number of potentially interesting variables exceeds the 

number of observations, or when some variables are exact 

linear combinations of others. The latter situation occurs, 

for example, in the data example that Hills presents. A 

close look at his correlation matrix reveals that among 

his ten variables, exact linear identities hold between 

variables 1,2 and 3, and between variables 7,8 and 9. 

Clearly, two variables must be removed before Dempstec's 

model could be apelied, and considerations external to the 

data must be invoked to decide which variables to exclude. 
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ExarIP 	.4 - Causal path - fldel 

SewaJ1 Wright 	193)t) proposed the use of 

diar-:;rams to represent the causal links among a 

set of random variables, in which nodes represent variables 

and arrows represent the causal paths. E.p., 

Associated with each path is a number called a path 

coefficient which measures the strength of causation 

along that path. The idea is intuitively attractive and 

has been discussed by several authors subseouently 

(e.g., Li, 1956; Turner 	Stevens, 1959; J. W. Tukey, 19514; 

Blalock, 1968). Additional assumptions are required in 

order to define a complete statistical model, a sufficient 

set being; the following: 

i) All causal effects are linear, 

ii) Each variable is measured from its mean, 

iii) Each variable can be written as a linear combination 

of the variables that point toward it in the 

diagram, plus a random error tens. 
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a.„X, + aon2  DI 	JC
X + a.33X3  

+a lb  n V n 
"11°'-'m  "re_ e"_L 

iv) Me ran(,om ex.ror tr:srms are unorreiate:d and haw,  

finite variances which are constant across cheer- 

vatiom 

The case of core elated error terms can be formally accommo-

dated by introducing additional (unobservable) variables 

as common oauses. 

With these assumptions a path diagram translates 

into a set of simultaneous linear regression equations which 

can be written, for the diagram 3.4, 

or, in matrix notation. 

A X = 	 (3.6) 

With appropriate scaling the errors el, all have variance 

equal to 1, and the covariance matrix of X is 

cov(X, XT) = 	= A-1(AT) , 

-1 = ATA . 	 (3.7) 



The models thus defined are formally equivalent 

to the simultaneous linear regression systems studied in 

econometrics (Christ, 1966). The equations 3.5 are linear 

structural equations, and Eq. 3.6 is the reduced form. 

However the reverse mapping of structural equations Lo 

path diagrams is not unique. If prior knowledge is avail-

able to restrict the possible directions of causation 

(usually in the form of a partial ordering of variables 

in time), then ambiguity is reduced, but not necessarily 

eliminated. 

For model selection and testing it is the missing 

Paths in the causal dig. gram that are of interest, each 

missing path corresponding to a zero in a fixed position 

of A. Since the elements of A are homogeneous functions 

(of degree .2-) in the elements of Z, a vanishing path 

corresponds to a homogeneous constraint on 

In summary, then, with regard to the joint distri- 

bution of the variables X1, ... 	' .X 	there is an equivalence 
- p 

between linear causal path diagrams, systems of simultaneous 

linear regression equations, and constrained covariance 

models in which the constraints take the form of zeros in 

a certain factorization of I. These constraints are 

homogeneous, so with the additional assumption that the 

error distributions are normal, such models are examples 

of the constrained covariance model defined at the 

beginning of this chapter. 
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Comparing causal path models with the covariance 

selection model of Example 3.3, we note that the two classes 

of models are for the most part distinct: zeros in E
-1 do 

not generally produce zeros in the A
TA factorization of 

Z
-1, nor does the reverse hold. One interesting special 

case where the two classes of models do overlap is the 

following: Suppose that among the variable X1,...,X13, 

direct causal links connect each variable to the q 

variables immediately following, but to no others. Then 

the matrix A has non-zero entries on the major diagonal 

and on q subdiagonals, with zeros elsewhere, and Z
-1 , 

. AT I A is non-zero on the diagonal, on a subdiagonals, and 

on q superdiagonals. The representations in terms of zero 

patterns in A and in Z
-1 are completely equivalent. 

Example 3.5 - Non-cyclical causal path models  

An important special case of Example 3.4 occurs 

when the causal path diagram contains no closed cycles. 

In this case the variables can always be ordered into a 

list in which all paths of causation point downward in 

the list (although the ordering is usually unique only up 

to permutions within certain subsets of the variables). 

If Z is the covariance matrix of the variables so ordered, 

then the matrix factor A in Eq. 3.7 is lower triangular, 

that is, it has zeros above the major diagonal, and is the 

inverse of the Cholesky decomposition of I. 
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Each missing path in a non-cyclical path model 

has an interpretation in terms of conditional independence, 

as described in the following lemma. 

Lemma 3.1  

If X is a pxl vector of random variables whose 

distribution is determined by a non-cyclical causal path 

diagram of the kind described above, and Xi  are ordered 

as above, then a component variable X. is conditionally 

uncorrelated with all predecessors which are not immediate 

causes, given those variables which are immediate causes. 

A proof of this fairly obvious lemma can be 

based on the fact that an element a.. of A for i > j 
1 

is -a. times ij-12...i-1' 
the multiple regression 

coefficient of Xj  when Xi  is regressed on X1,...,Xi_1, 

(Dempster, 1969, p. 157) which in turn is equal to 

Tt follows that a non-cyclical causal path 

model can be completely characterized as a constrained 

covariance model in which the constraints are all of the 

form 6ij .a = 0, where the conditioning set a depends on 

i and j. 

Example 3.6 - Path models containing cycles 

There has been some discussion in the literature 

on whether a set of random variables representing measure-

ments of an actual physical system can ever logically be 



be said to have a closed loop of causation (Turner 

Stevens, 1959; Wright;  1960). Nevertheless such models 

do exist formally as sets of simultaneous regression 

enuations, even though their interpretation as causal 

systems requires some care. Consider the following example: 

(3.8) 

It is fairly easy to show that Lemma 3.1 extends 

to any variable such as X5  which is not itself involved in 

a closed loon. For the purpose of the lemma, the variables 

need only be ordered in a way that puts those variables 

whicharedirectlyorindirectlyaffectedbyX„beyond 

X in the list. For instance, either of the following 5 
orderings would suffice: 

(X1, X2, X3, X4, X5, x6,  x7, x8  ) 

or 

(X2, X3, X )1., X1, X5, X ' 	X6 ) • 

The principle of conditioning on variables that 

are immediate causes in order to produce conditional 

independence applies in some cases to variables involved 
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in closed loops. . It works for instance when.there is a 

single loop: 

X5  • 

h 0. However Here, 013.25  = 0 -' 024.31 °' 	a52.14 

it fails in 

where the only conditional covariance that vanishes 

identically is 013.24 (which means, incidentally, that 

13 
= 0). In this second example, 

2 2 2 
013.4 = a23a42a41'

/ 
 (1-4-a411 

j a
421a42a2 )  ' 

which is not zero unless either X1  is independent of the rest 

(a41 - 0), or the diagram degenerates into one without a 

closed cycle (a23  = 0 or a42  = 0). 



These examples serve to show that despite  a 

close connection between conditional independence and 

linear causal path models, if closed cycles of causation 

are allowed then the effective covarl.ance constraints 

cannot necessarily be written as vanishing conditional 

covariances. 

Examnie 3.7 - Conditional covariance constraints 

In one sense Examples 3.2 and 3.3 are at 

opposite extremes as special cases of a more general 

Wishart model which is constrained by having one or more 

conditional covariances vanish: in Example 3.2 the con-

ditioning sets are empty and hence the smallest possible. 

whereas in Example 3.3 each contains all the other variables. 

The non-cyclical path models (and some with cycles) are 

. intermediate between these two extremes. The general 

model, which is discussed in later sections, can be formu-

lated as a Wishart model whose matrix parameter -2: satisfies 

a set of r homogeneous constraints, 

hi (X)= G. 	= 0, 	(k=1,...,r), 
ikjk.ak  

where ik  is not equal to jk, the pairs (ik,jk) are distinct 

for different k, and the conditioning sets may be empty or 

may overlap in any way. 
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It is worth noting that the specification of such 

a nodel in terms of conditional covariance constraints is 

not always unique. For instance if there are four variables 

with two constraInts given by 

G12.4 — 0, 	and 	013.4 = 0, 

then the first constraint can ecuivalently be written as 

012 . 3 =  0,  

which follows from the i (:1,_entity, 

G12.34 = G12.4 - 013.4G- 	' 23. 	33.4 

Then by sy:T.Intry, the second constraint can be replaced by 

13.2= 0. 
4 

3.3 Asymptotic coariances of functions of S  

Subsequent chapters consider methods to test the 

adequacy of fit of various constrained Wishart mcde]s to 

observed data, the general approach being first to co' cute 

the constraint functions from the sample covariance matrix, 

then to decide whether the values obtained can be explained 

by statistical variation alone (Silvey, 1970, Section 7.3). 

Some knowledge of the joint distribution of the constraint 



functions under the model is required, and approxlmtions 

to these distributions will be used, based on asymptotic 

moments for which formulas are derived here. 

When calculating-  moments of functions of the 

elements of a sample covariance matrix S, the symmetry of 

S leads to certain complications. To simplify the formulas 

we introduce a special symmetric derivative notation: 
. 

If f is a function of the elements of S and 
df 
 is the ab 

matrix (.C) f  ) without taking the symmetry of S into account, os. 

then define a matrix derivative with a double bar as 

(df dfm  

dS dSi  
(3.9) 

Three obvious points to note are, first, that 

df . — Is symmetric; second, that if f is symmetrically defined 
dS 
with respect to S and S (e.g., f =

13
+s
31
)) then 

df df, = ,--, ; and third, that the total derivative of f with 
dS dS 	

of ___ 
respect to s12' say, with symmetry considered is 	+ 

12 C)f --̀-f- 	or equivalently 2 -3f , and not simply 
6s

21 	
6s

12 

of 

12 

With this notation the required asymptotic 

variances and covarinaces are given by Lemma 3.2 belo7:r. 



Lemma 3 

If f and g are continuous real-valued functions 

of the elements of S with first and second derivatives in 

a neighborhood of Z, and S is distributed as W(n, I), then 

to terms of order n-1 the covariance of f(S) and g(S) is 

cov(f,g) = 2  tr 	( f=r1 7  

. df df I 
where ..-- is == evaluated at S = Z. Alternatively, 

dY, 	ciS 

cov(f,g) 	c(  ,),(,) tr (d_  1Q 
ct2
5 f 7  d log 	7  

u 

and 
2 tr 0:__E 47,1  ) • cov(f,g) 

d7 

(3.10) 

(3.11) 

(3.12) 

All of these formulas are valid when fa g, giving the 

asymptotic variance of f in that case. 

Equation 3.11 is essentially like a formula given 

by Siotani (1968), who uses a different device to deal with 

the symmetry of S. 

We indicate briefly a derivation of these formulas 

based on the notation of Browne (19)-I). If S is a pxp 

symmetric matrix, let vec(S) = s be a column vector formed 
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from all the elements of S, and let s be a column vector 

of the elefoents of S on and below the major diaETnal. Let 

7 
K-  be the matrix of l's, Ors and J.-rs that macs s into s 

(by averaging elements in symmetrically opposite positions), 

so that 

S = K-  s 
P 

and 

-rn 
s = K 	 (3.13) — P 

where K 

- 

= (KT K )
-1 

K
T is a left generalized inve7-se 

P 	p p 	P 
of K . Finally, let M be the symmetric idemDotent matrix 

P 	P 

M =KK 

- 

=K (K K ' -1  K-  . p pp P P P' 

It follows from Eq. 3.13 and Eq. Alo in the Appendix, 

that 

df = 	df 
ds 	"*1],  ds 

Now the familiar covariance fo=la for pairs 

of elements from a Wishart matrix, 

COV 	- -1 	( 0 	-j- 0. 0. ), ., s 	n 	ilc. 
O • 
	 jk 

can be written (as shown by Browne) as 
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- 
cov(s, 	-n 

2 	PO2_,) K , 

where 0 is the Kronecker outer product. It follows that 

cov(s,sT) = 
	Mp 

 (E0Z) MD . 
n  

Starting from the usual asymptotic covariance formula for 

two functions f and g of s, we have 

df 	T dg 
cov(f,g) - 	Coy (S, S ) 

dcT 	do 

df -1{ KT toy,\K 
p 
 {K- 

do n p 	p doT 

= 2 df 	z  .5_:\ m  dg 
n 	7 	) p do do 

- 

( 3.14 ) 

The matrix M has the property M
P
vec(X) = vecCt(Xd-XT)) for 

any square matrix X, whence 

e•-• 

dg M 	- vec p do 
/dg 

dZ 
(3 .15) 

Also, using the following formula from Browne, 

vec(X)T(A 0 B)vec(Y) 
	(xAvTE) , 	 (3.16) 

which holds for any square matrices A, B, X and Y, one can 

derive Ea. 3.10 from Eqs. 3.1)1 and 3.111. Equation 3.11 

follows as an immediate consequence, and Eq. 3.12 follows 

from Appendix formula A5. 



3.4 Minima] sufficiency and ancillarity  

It is interesting to consider the extent to which 

certain general principles of inference can be applied to 

the class of structured Wishart models defined in this 

chapter. Very little can be said concerning the most 

general formulation, so we confine our attention in this 

and the following section to the class of models formu-

lated in Ex. 3.7 whose structure is defined by the vanishing 

of r conditional covariances. 

It was shown in Ex. 2.3 that the Wishart distri-

bution belongs to an exponential family whose natural 

parameters are the q = ko(p+1) distinct elements G.'.  of 

E-1. The distinct elements of S form a minimal set of 

sufficient statistics for a full (unconstrained) model. 

For a structured model where Y, is constrained to belong to 

a subset 00  of 0, let no  = (E-1: E E 00) denote the restricted 

natural parameter space. So long as no  does not lie in an 

affine space of dimension less than q, S remains the minimal 

sufficient statistic. It is clear from Eq. 3.3 that if one 

of the constraints is 

a.. 	= 0, 	c = 	 - (1,j), 	(3.17) 

then 0* is a subset of the linear subspace (7,-1: Gij 	0), 0 

so that a constraint like* 3.17 removes aid from the set of 

natural parameters, and removes sib from the set of minimal 
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sufficient statistics. There are other situations as 

shown in Ex. 3.7 where several constraints, none of which 

is explicitly of the form of Eq. 3.17, still force an 

element of 7]-1 to be zero, but these are the only circum-

stances under which 0
0 
 lies in an affine subspace. 

Except for the special case where all r con-

straints are equivalent to the vanishing of r elements 

of 7] ' (which is the "covariance selection" model described 

in Ex. 3.2), the dimension of the sufficient statistic will 

exceed the effective dimension of the parameter space, and 

it will follow that S is not a complete statistic. This 

can be seen directly by observing that if Gij.b  = 0 is 

one of the constraints, then sij.b being an unbiased 

estimate ofij.b 
is a function of S with zero expectation 

for every E e oo. 

in order to test proposed models against observed 

data, it is desirable to find ancillary statistics, i.e., 

statistics whose distributions under the model assumptions 

are completely known, and which are functions of the minimal 

sufficient statistic. Each single constraint Gii.b 	0 

in the present model produces an ancillary statistic, namely 

the sample partial correlation coefficient, 

S
. - ij.b 

sij.b 
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That rij. b  has a marginal distribution not depending on 

c n0  follows from Fisher's (1924) result that if 

F(r In,pij) is the distribution function of rij  based on 

a sample of size n, then the distribution function of 

rijb  is F(r In-qb,pij.b), where qb  is the number of indices 

in b. 

Although there are r statistics that are individually 

ancillary when Q0  is defined by r constraints, they are not 

jointly ancillary in general. For example, if p = 4 and 

00  = (E: 612  = 034 = 0), then the asymptotic covariance of 

r12 and  r34 is (Elston, 1975), 

. cov(r12,r34) = '77 (0 	1, 	o  n  13.24 .14.23' 

which depends on other unknown parameters in the model. 

Since the rij.b  are not jointly ancillary, they cannot be 

used to form an exact test of the constrained model against 

the full model. Nevertheless,approximate tests can be 

based on them, since their joint moments can be estimated. 

This will be pursued further in Chapter 5. It does not 

seem possible to construct a set of r jointly ancillary 

statistics. 

3.5 Invariance  

Continuing with the Wishart model characterized 

by vanishing conditional covariances, we now apply invariance 

arguments to support the use ofrij.b  as a test statistic, 
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but we will show that when there are several constraints, 

this line of argument also encounters some difficulties. 

The group of linear scale transformations along 

individual coordinates in X-space leaves both the population 

and sample correlation matrices unchanged. Sincer 	
and 

ij b 

pij.b  are functions only of the sample and population 

correlation matrices, respectively, and since a 	is ij.b 

zero if and only if pii.t  is zero, it follows that 0 

and its complement 0A  = 0 - 00  are invariant under the 

group of scale transformations, and that ( 	) 

form a set of invariant statistics. 

Ideally, we should like ( 	) to be a ri
k
j
k
.13
k 

maximal invariant set of statistics, but before examining 

this point we must identify the largest group of trans-

formations under which the testing problem is invariant 

(Cox & Hinkley, 1974, Section 5.3). Suppose for the 

moment there is only one constraint,612.b = 0. Partition 

the indices into three sets, a - (1,2), b, and c = (com-

plement of a -)b). Then define a group CI of transformations 

on the sample space by 

S 

 

GSGT, 

 

where G is any non-singular matrix of the form 



12.b 
0 	0 

0 

0 

1  (3-19 ) 

0 

-6 

- 

It is easily 

group of 

0 

0 
aD 

0 

group, 	and the 

space is 

(3.13) 

induced 

essen- 

0 	- bb 0 

[ 	G G
ca 	co 

verified that Cj  

transformation on 

cc 

is a 

the parameter 

tially the same, 

 11 
G-. 

It can be shown directly that r12.h 
and p,- I  are jnvariant, 

under these transformations; furthermore, (7  is the largest 

group of linear transformations that leaves r12 	and 12 

unchanged. 

Under this group c of transformations, r12 	is a 

maximal invariant statistic, which means that if S and S* 

-y: 
are any two sample matrices such that r12.,o  = r12.b' 

then 

there is a transformation inCt that maps S into S. To • 

establish this it is enough to show that there exists a 

G c (7  that maps S into 

1 
r12.b 
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The i:equied values in the upper-left four partitions 

of G ore obtait;ed by tal:ing 

11.b 
0 

0 "22.b 

G 
 

C 	- S 2  bb bb ' 

Gab = -GS S i  aa 's Lb a 	' 

and since there are no restrictions on the space in t,) 

the coordinat,es c are mapped, suitable choices of Gca, cb 

and G 	can always be made to obtain the other partitions cc 

of G. It follos that r12.1)  is maximal invariant. 

Nevertheless, as with ancillarity, the princiole 

of maximal invariance runs into difficulties for the general 

model under consideration because of complications that 

arise when there are more constraints. The appropriate 

group of transformations should have the structure 3.18 

with regard to all constraints simultaneously. For 

instance, if J12.ce = (-3/1.de = 0, then we should define 

q by non-singular matrices of the form 



0 g22 

0 

gll 	0  

G ac 
0 0 ac 

0 

X33 

0 

0 

g44. 

0 0bd r 
- bc 

0 0 0 cc 0 G cc 

0 0 0 G dd C. 
- de 

0 0 1 	0 0 G
ee 

When we try to demonstrate maximal invariance by transforming 

S into a form analogous to Ed. 3.19, we are able to choose 

the various partitions of G as functions of S to obtain 

G= 

1 	r12,ce 

r12.ce 	1 
 

? 0 ? 0 

1 
r34.dc 

r34.de 	1 
? 0 0 

0 ? I ? 0 

0 ? I 0 

0 0 0 0 ? 

030T  

but the elements in the partitions labeled "?" remain 

functions of S, and there is not in general any other trans- 

formation which completely removes this dependence. It follows 
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that although two sample matrices S and S* might lead to 

the same values for r12.ce and 	 de r-hj14. 	, there is in general  

no transformation in Q that maps S into S*, so the set 

(rij..0)k  is not maximal invariant. 

We note a close connection here with the failure 

of joint ancillarity. For if t = (rikjk-bk were a 

maximal invariant statistic, then I = (p. . 	would be 

maximal invariant for the parameter Z, and the distribution 

of t would denend only on T. But under the model assumptions,  

T = (0,0,...,0), so the distribution of t would not depend 

on any of the remaining parameters, and t would be ancillary. 

Example 3.8 Covariance selection (cont'd)  

Returning to Dempster's model discussed in 

Ex.3.3 in which elements of Z-1  are forced to zero, we 

recall that a constraint like 612 = 0 is equivalent to 

c12.c 
= 0 where c is the complement of (1,2) in (1,2,...,p). 

The invariant ancillary statistic corresponding to this 

constraint is therefore r12.c
. The partial correlation 

coefficients for several constraints of this kind can be 

obtained easily from S-1 using the following lemma. 

Lemma 3.3  

If R* is a correlation matrix formally computed 

from S-1, then each off-diagonal element of R*.is the 

negative of the conditional correlation coefficient of 

the corresponding pair of variables, given all the other 



variable 2, i.e., 

1 '  

   

c = [1, 	, p 1 - ij 

 

.17 
C, 

CT' 

Proof 

For a 2x2 covariance matrix, the result follows 

immediately. Now let a - Li, j) and c = complement of a. 

Then rij.c is the correlation coefficient computed from 

the 2/2 matrix Saa.c.  Letting S
1=-1
--p, 

 
represent the (a, 

partition of S-1, we have. -1 	= S
aa 

 and the lemma 

follows by applying the2x2 result to S-1 aa.c 

We note that if R is the usual correlation 

matrix, then E* is not R-1. Houo-cr, I u can be calculated 

from R - by follnally converting, R 	to a correlation 

i.e., by multiplying on the right and left by the diagonal 

matrix diPcr(rii)- 
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Chapter 4 

MAXIMUM LIKELIHOOD ESTIMATION FOR 
CONSTRAINED WISHART MODELS 

4.1 Introduction  

Having defined a general class of patterned covariance 

models, one faces the problem of calculating constrained co- 

variance estimates. 	If one's purpose is to explore various 

pattern hypotheses concerning I, it would be convenient to have 

a simple general method to do the fitting and avoid the need to 

develop specialized computer programs for each model, but the 

large number of parameters involved in many problems of 

practical interest makes it impossible to meet this objective. 

When maximum likelihood is used for estimation, models, 

can be classified as in Fig. 4.1 according to the complexity of 

calculation. 	In category Al, direct calculation of maximum 

likelihood estimates is most efficient, although in some cases 

the closed-form solution may be difficult to obtain. 	Examples 

include some linear covariance structures (Anderson, 1969), and 

non-cyclical path models. 

For many problems a closed-form solution cannot be 

obtained, but it may be possible to re-express the constrained 

covariances as continuous functions of a smaller set of un-

constrained parameters. This defines category Bl. Categories 

Bl and B2 involve the freedom-equation and constraint-equation 

representations discussed by Aitchison and Silvey (1960). Since 
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FIGURE 4.1 - Models classified by difficulty of fitting 

Constrained Wishart models 

Al: A closed form 	A2: no closed form 
solution exists 	solution exists 

Bl: reparameterization 
	B2: reparameterization 

is straightforward 	is difficult 

Cl: q is small 
V 

C2: q is moerate 
to large 

Dl: r is small 	D2: r is large 
(i.e. q-r is small) 
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each equality constraint formally reduces the dimension of the 

parameter space by 1, the number of parameters in principle is 

q-r (q is the number of variances and covariances and r is the 

number of constraints), and an explicit representation of the 

reduced parameter space can lead to considerable economy in 

numerical computation. Examples include JOreskog's generalized 

factor analysis model (1970), general linear path models, block 

structure models, and the rest of Anderson :s linear covariance 

models. 

Computational methods based on the constraint formu-

lation for models that are not easily reparameterized (category 

B2), are inherently more difficult. Aitchison and (3ilvey (1958; 

1960) describe a general approach using Lagrange '-iultipliers, 

which we adapt in Section 4.2 to the Wishart problem. 	This 

approach seems suitable for small problems (category C1), but 

the fact that it enlarges rather than reduces the working para-

meter set is a severe disadvantage for large problems (category 

C2). 

Many problems in category Dl, where the number of 

constraints is small, can be treated by an alternative approach 

developed in Section 24.3 which is based on a fix-point iteration 

and a series of r-dimensional optimizations. 

The final category D2, remains difficult to treat in 

general, but models in it can often be approximated by certain 

reparameterized models in category Bl. 
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4.2 Maximum Likelihood By Direct Iteration 

This section adapts the constrained maximum Wishart 

likelihood problem to solution by a general least-squares 

optimization program. 

There are in fact two kinds of constraints to 

consider: the explicit equality constraints defined by 

h(Z) - (0,...,0)T, and an implicit set of inequality constraints 

that require k  to be positive definite. To deal with the former 

we use a set of Lagrangian terms, and for the latter we shall 

reparametrize the problem in terms of the Cholesky lower tri-

angular decomposition of 2]-1, i.e., Z-1  = ATA. The a = 2p(p+1) 

non-zero elements of A form an unrestricted parametrization of 

the set of positive definite matrices Z. 

The unknown true A will be estimated by a stationary 

point of the function 

(1)(A, A) = 	tr(ATAS) - 	log IATAI - )\Th(A), 	(4.1) 

1 which, apart from terms not involving Z, is - F times the log- 

likelihood plus a Lagrangian term for each constraint. Here A 
ti 

is a column vector of Lagrangian multipliers, a is a column ti 
vector composed of the elements on and below the diagonal of A, 

and 0 is the combined vector (aT,AT)T 
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A stationary point of 4) is a point where the vector 

p of partial derivatives vanishes, that is, 

1 

d(1)(0) 	-  

2Q )  - 	- q = 0 . 
ti 	

-h 	• 
q+r 

(4.2) 

dO Here is defined to be 
ti da • 

ti 

This set of simultaneous non-linear equations can be 

solved by treating the components of p as residuals and minimizing ti 
the sum of their squares, the minimum being attained when each 

component vanishes. A computer program for this based on the 

Gauss-Newton algorithm requires evaluation of both the residual 

vector p, and the matrix G of its derivatives with respect to 
11, 

the parameters 0, which can be partitioned as, 
ti 

drit 

dcp 	daT  
G= 

dOT  dh 	dh 

dar 	 ,?,T ) 

     

(4.3) 

 

-H T 	0 

 

      



110 re )  

	

(in 	2, a C: 

	

H = 	''' 	and 	, .r,  

	

CI a 	 r i 1 • 

 dada 

To compute these quantities, we return to 7q. 

. 

	

and write q) as (T.) + 	where 	- 2 tr(A AS) - 	leg 1A-A1 is 

the contribution from the Wishart likelihood, and (:)7\  - -?\Th(A) 

represents the sun of the Lagrangian terms. Similarly, 

+ 	and F-Fw +F . For the likelihood contributions 

to and F we have 

w 
11./ w da 

which is a column vector formed from the lower-trianle eieme=:its 

of 

W 
dA 	- 	 - AS - diag(—=—)  a.. (4.5) 

This expression follows from Eq. A8 and the fact that 
p 

ATA1 = H.11 a
2ii since A is t elementiangular. A general element of   

F is given by 
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r 

	 - 5. s . + 5. .5 	5 	/a2. . ()a. .oa 

	

	ij 	jk kf, ki 
(4.6) 

where a. . is the Kronecker delta function. 1j 

Note the particularly simple form of these expressions, 

	

especially Eq. 4.6. 	The second derivative matrix of the 

Wishart likelihood, expressed in terms of Cholesky parameters, 

is nearly constant; only p diagonal elements depend on a, and 
ti 

out of the q2 = [b(p+1))2 elements, only 3a are non-zero. 

For the Lagrangian contributions to * and F we have 

	

*;\ 	da (-hT 	 (4.7) 
ti 

where H is defined by Eq. 4.4 , and 

F = 
dV/ d2hk  

daT 	-2\1<- 	T 
k=1 	_ti 

 • 
(4.8) 

There remains only the calculation of the first and 

second derivatives of the constraint functions hk with respect 

to the elements of a, which are required for H and F in Eqs. 

4.3 , 4.7 and 4.3 . They must be calculated for each 

particular model. If the functions hE(E) can be expressed 
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easily in terms of the ai 	then this is straightforward, but 

in other cases the following formulas are helpful: 

dh 	dh -   L., 
-7:1 (4.9) 

dh 
dA = 2 • lower triangle [A dh_1i,  

dZ 
(4.10) 

and 

0211 
 

5;a, 	2 b 	611
+ 

  4 
ij 	

=  
6on TJ 

- k=1 

 

a. a ik 2n 
o Ii' 
—K-ry.):111 
Z)G 6 

 

  

(4.11) 

The practical limitation of this computational 

method now becomes apparent, for at each iteration the (q+r) x 

(q+r) matrix G must be computed and the least-squares program 

must essentially solve the set of linear eouations 	- 

4.3 Constrained Estimation By Fix-Point Iteration  

Another approach to the calculation of constrained 

estimates, which is suitable especially when the number of 

constraints is small, is based on a certain partially linear 

structure that exists in contrained Wishart models. This method 



can be used with several different estimation criteria and 

does not require the calculation of second derivatives of the 

constraint functions. 

Consider the following four estimation criteria from 

among those discussed in Section 2.4, ML: maximum Wishart 

likelihood, LS: simple least squares applied to the elements 

of 	LS*: least squares applied to the elements of (2-1-S-1), 

and GLS: generalized least squares which weights the squares 

of the elements of Z-S by the inverse of their covariance matrix. 

In each case, one seeks to optimize the criterion within the 

class 00  = (Z E 0: h(Z) - 0). Writing Lagrangian terms for 

the constraints, one wants a stationary point of one of the 

following expressions: 

ML: log IZ-11 - tr(Z-1S) +2-2, khk(Z) 

LS: 2  tr(Z-S)2  + 	Ak  hk  (Z) 

LS*: 	tr(2-1-S-1)2 + 	k
h
k
(Z) 

GLS: 
	

tr(7,-1  (Z-S))2  d 	'k hk  (2, ) . 
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Equating the derivatives of these expressions to zero produces 

ML: 	= S kGk(L)' 

LS: L = S 	AkGk(Z),  

(4.12) 
LS*: Z-1  = S-1  -I -2\kk  G*(Z) ' 

-1 	-1 	-1 * 	-1 GLS: 	= S 	(S 	Gk(Z)S ), 

where 

dhk(Z) Gk(Z) - 	(k=1,...,r), 
dZ 

and 

dhk 	(Z) Gk(Z) = 

	

	Z'G 	(k=1,...,r). 
d2.-1  

We concentrate on the ML formulation, although it 

is clear from Eq. 4.12 that similar arguments could be 

applied to the other formulations. For fixed 27, let f, (7) 
2 

denote the linear subspace of IRP  spanned by the matrices 
2 * 

GkR, (k=1,...,r), where pxp matrices represent points in RI' . 
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Then Eq. 4.12(141'4 	says i;hat. if 2 is a maximum likelihood 
solution to the constrained problem, then S is in the linear 

manifold E + (Z). Furthermore if C represents the set of all 

symmetric matrices that satisfy the constraints, then Z is the 

linear projection of S into C along L(>]). These facts 

suggest a fix-point iterative calculation: 

1. First take Z(0)  = S to be an initial approximation 

to E. 

2. Denoting by E(m)  the current approximation to Z, 

compute the matrices q(Z(m)) which define Z(Z(m)). 

3. Project S into C along L(Z(m)) to obtain a new 

estimate 7,(m+l), as in Fig. 4.2, and return to 

step 2. 

If this process converges, then a solution to Eq. 4.12(ML) has 

been found. 

The crucial step is the projection of S into C along 

2,(E (m)), which in itself requires solving a set of r non-linear 

equations, 

hk ) = 0, 	(k=1,...„r) 
	(4.13) 

in r variables, Ni,...,?\10  where 

N 
	S-N1  G1 	• - 	- ArGr  . 



S 	Y (y,( 0 )) 

(a) 	(1) + 56 (z 

z (2) 

S + y(E(1)) 

81- 

FIGURE 4.2 - Fix-point algorithm 
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Here, the matrices 

ahk  Gk -1 1 	
, (k=1,...,r), 

	

6z- 	(m) = 

are fixed. As before, these equations can be solved with an 

iterative least-squares fitting program by minimizing a sum-

of-squares objective function '6 

P,(Z) = 	11,0\ i 	
) 
' 

The required derivatives of h/A with respect to A are ti 

	

6h
1.1\ 	,e)\ 	

a 

TT— k 	. . 	
o 
 Aij 	, k 1,3 

tr(G.op:), 	 (4,14) 

where G2A  = G e(22). 

The projection of S into C requires an initial 

value for A which one can take to be A(0) = (0,...,0)T  on the 

first outer step. On subsequent steps one can. use the final 

A from the previous outer step as a new 2\(0)  , although in some f\,1   

of the numerical examples it will be shown that better stability 

is achieved by taking A(0)  = (0,0,...,0)T  at each step. 
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Solving the constrained likelihood equations in this 

way replaces the (h(p41)+r)-dimensional optimization problem 

of Section 4.2 by a fix-point iteration in 2p(pd-1)-dimensional 

space and a sequence of r-dimensional optimization problems. 

If r is small then the inner iterations will go quickly and 

the method will be effective even if p is fairly large. The 

main storage requirement is rp2 locations for the matrices G* ' 

which can become a limitation. 

A potential problem is that the fix-point procedure 

is not guaranteed to converge if a poor initial approximation 

to f is used, but in practice S is usually adequate. A more 

practical matter is that convergence when it occurs is linear 

and not quadratic as for the one-stage algorithm of Section 4.2, 

so high precision can be costly. 

An interesting property of ML estimates for 5  car. be 

seen by examining Eq. 4.12 . If all of the matrices Gk(L) 

have a zero in the same position, then au  is exactly sij  in 

that position, and a similar property holds for LS and LS*. 

This is illustrated in the following example. 

Example 4.1 - Covariance selection (cont'd)  

In Dempster covariance selection model (Ex. 3.3) 

the constraints are all of the form aid = 0, so that each matrix 

Gk has a 	in position (ik'jk)  and zeros elsewhere. Hence the 

solution 2 matches S in every unconstrained position, a property 

that Dempster establishes by a different argument. In particular, 

the variance estimates 	are unaffected by imposing constraints 
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* 
of this type We also note that since the matrices GOL) do 

not depend on 	the correct linear manifold E(2) for 

projecting S into is known exactly, and final convergence 

occurs after one outer step. 

4.4 Existence of Positive Definite Solutions  

The foregoing sections tacitly assumed that the 

constrained optimization problem has a solution. We now show 

that a solution does exist, and briefly consider some related 

points. 

As before, let C) represent the space of pXp positive 

definite matrices, let C)0  = [Z c C): h(X) = 0), and assume 

that 00  is not empty. Then we have 

Theorem 4.1 

For fixed positive definite S the log V:Hhart 

likelihood g(Z) = g(X;S) assumes a maximum value for some 

in no. 

Proof. 	The set C)0  is not empty by assumption, so the 

constraints do not force all 	c 00  to be singular. Let A be 

some fixed element of 00, and let be the closure of 0. 

Since g(Z) is maximized over C) when X = S, the constrained 

problem reduces to that of maximizing the continuous bounded 

function g(X) over the compact set 

-05 	h-1(9) r" {E: g(A) < g(Z) < g(S)) . 
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Hence the maximum is attained at some point > in 
	

and it 

remains to show only that Z is not on the boundary of n. But 

g(Z) goes to - co as 	approaches any singular Z* from inside 

C.), so L cannot be singular. 

Some authors who have used general numerical methods 

to obtain maximum likelihood solutions have expressed concern 

over whether the "solutions" obtained might be matrices that 

are neither positive definite nor positive semidefinite (e.g., 

McDonald 197)4). It is true that the Wishart likelihood is 

unbounded above in any neighborhood of the zero matrix for 

negative definite matrices of the form -ogmT, (a > 0), but this 

is a minor practical issue, first because the problem can be 

reparametrized as in Section 4.3 to exclude consideration of 

matrices that are not positive definite and second because 

g(Z) goes to -co as > approaches any boundary Point from within 

O. 

4.5 Derivatives for Conditional Covariance Constraints  

Several of the examples discussed in Chapters 2 and 

3 are defined by constraints that require conditional covariances 

to vanish, for example, 

h (-' ) 	°12.b = 0,  

where b is some subset of the indices 	This 

section obtains the derivatives that are required by the 

numerical algorithms of Sections 4.2 and 4.3. 
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First we consider the partial derivatives of °12.b 
with respect to the elements of T 	-Z-1. Let a denote the 

complement of the set b of conditioning indices, so that in 

particular (1,2) E axa. Since612.b  is the (1,2) element of 

the matrix SWF(b)Z, where SWP is an operator related to Beaton's 

SWP (see Appendix), we have using Eqs. A13 and A15, 

12.b =  [SWP(b)Z]i2 

= [swip(a)T]12  

as ]12 • 

Thus,  612.b is the (1,2) element in the inverse of the (a,a) 

partition of -T. It follows that the derivatives of c12.b 

with respect to elements of T outside 	are zero, and the 

derivatives inside 	are obtained from Eq. A4, 

12.b 

lk;2,2 
1/J
-Las 

for (k,;') E axa 

0 	otherwise, 
(4.15) 

ij 
where 1//aa denotes the (i,j) element of Taa

1 . But the inverse 

of -Taa is aa.b which is the (a,a) partition of SWP(b)Z, so 

Eq. 4.15 becomes 



L2.b 	, for  (k, C.) c axe. 

0 	otherwise. 

In partitioned -i-r.atrix viotation, this is 

! 	0 
, >' , 	, 	1 	0  

a`71C--.z.b 	aiD --a.F.) 	! 	0  

1.. 

 

0 
	

i 0 ' 0 
1 	

1 0 

(Rows and c!ciThJmns have been ordered in a way that laellit,itbes 

comparisons with fo-i-=las be2ow.) It is clear that; it we nsa 

SWPNI to eom-rute h = 012 	then the derivatives follow with 

very little extra work. 

When the symmetry of I  is taken into account, as in 

Section 	4.16 becomes, 

011.b ok2.b ) (k,,g) s axa 

otherwise. 

Further,, oe, the second derivatives of c_12.1)  which are rermired 

in Section 4.2 are obtained by applyinfr Eq. 4.16 taice, 
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2
12.b 	0 

	a 
ft lk.b 	.baj2.-b11 

. 	a j
.10 k.b L2.13,   ij"k,eca 

60.k;), Gij 	0 	
otherwise. 

With symmetry explicitly allowed for, there are eight terms. 

Next we consider the derivatives of h = 012.b with 

respect to the elements of :Z. Although one could use Eq. 

4.17 and the formula 

12.b 	-112.1D --1 
dL 	- 

- 

a direct approach produces a more useful result. Writing 

G
12.b 	012 

- si  -17  
b-bb-b2 ' 

ignoring symmetry, and differentiating with respect to each 

partition of 	in turn, gives 

	

1 	1 
O 1 	0 1 	0 

	

1 	i 

	

-i 	---f- 

	

i 	1 
O 	I 	0 I 	1 

G12.b 	
1 	1 

	

1 	1 
aZ 	1 	1 

O 1 	0 : 	0 

	

1 	i 

O 0 	- -.1.2] _ 	bb b 

0 

2',2bZbb 

0 	

1 	a 
1 -  

2 

1---1 	b Z
bb

,._,
bl

-
2b

>_.
bb_ 	) 



l2.1 if -- a 
11.122.b 12.1 21.1 

Observe that 	which we shall write as 	„ is a row c_u.0 

vector consisting of the multiple reression coefficients of 

variable A2 regressed on variables X 	(j c b), anu it is also 

the (=l b) partition of the matrix SWP(1)Z. Thus 

I 0 I 0 	0 	0 

—21.1 0 0 

J 	L 

0 

b1,1 	bi.b-2b.1 0 -7 	 7 

which can also he calculated directly from SWP(1):==. 

The relationship of a vanishing covariance constaint 

to f on the one hand and to Z-1  on the other has an interesting 

symmetry, which we show by introducing a modified form of the 

constraint. Requiring h(E) to vanish is equivalent to requiring 

11 -1T- (>2, ) - h(l) p(g) 	(11-.19) 

to vanish, where pH is any continuously differentiable 

function without zeros or singularities in O. In particular, 

if h = 	then define h to be 

0 0 0 
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The functions h and h' define the same constrained subspace 

of O. Whereas h is the (1,2) element of gdP(b)Y,, h#  is the 

(1,2) element of SWP(1,2,b)Z. Now define new index sets a 

and p, 

a = b 	{1,2}, 	p = a - {1,2} , 

which are depicted below, 

a 
/-"••••-•".-"""-", 

x x 	x 1 2 x x 	x 

a 

Let T = -1, as before. Since 

SWP(1,2,b)Z = SWP(a)> = SWP(P)T , 

it follows that the, alternate constraint function h# is just 

h# * - 	r12. p 

which is formally a conditional covariance derived from the 

'Tcovariance" matrix T. Noting that 
V(1243 has the same 

relationship to (T,7,,a,p) as 
612.b  has to (E,T,a,b), we can 

write 



-*12. 
2 *ii.p*22.p-412.p 12.p 	2 and a12.b 

12.b 

611.ba22.b-012.b 

* 	12.p _ 
31 	6T-1 	

[-- 

*12.p 	0 

0 

O- 

0 0 0 

-7 T al. p 2 a. p 

i
I  (4.20).  
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and obtain the derivatives of *12.13 
 directly from Eqs. 4.17 

and 4.18 , 

-T 	0 T 	0 pl.p 2p.p 	pLp 

T 	.p 	0 i 	1 	i 0 2p 
L 	J  0 0 i0 

0 i 	0 	0 _ 

12.p 12.p  

)>]-1 	6\3! 
0 

0 

(4.21) 

Both of these matrices, as well as the value of *1243 itself 

can be computed easily from swP(p)T = SWP(1,2,b)E. 

This duality between h and h#  has some theoretical 

and practical relevance. By differentiating Eq. 4.19 one 

sees that 6111  and  ?h#  —T. are proportional to each other when 

evaluated at any > that lies in the constrained subspace. 
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Therefore, the extra zeros that appear in Eq. 4.21 must 

also occur in Eq. 4.17 . Those in positions (1,1) and (2,2) 

k  
are important because they remain zero when Gk  - 	 is 

6z-1 
computed from 6hk  . Having thus identified a larger set of 

zeros in each G* one can in some cases find additional k,  

elements of 2 that are equal to the corresponding elements of 

S. 
The practical importance of this duality is that by 

using h#  instead of h to define the linear manifold L(2(m)) 

one can improve convergence of the fix-point calculation in 

some cases. 

4.6 Exact Solution for Non-Cyclical Path Models  

It was stated above that path models without cycieE' 

(Ex. 3.5) have closed-form maximum likelihood solutions We 

develop this point here partly because of its intrinsic 

interest, and partly to provide numerical examples with known 

solutions for testing the iterative computational methods 

developed above. 

Starting from Ex. 3.5,one can order the variables 

in a way that allows the inverse covariance matrix for a non-

cyclical path model to be factored into 

-1 	T_ C DC , 
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where D is a non-negative diagonal matrix and C is lower 

triangular with ones on the diagonal. (The matrix A in Ex. 3.5 
is D2C in this notation.) The missing forward paths in the 

diagram define a fixed pattern of zeros in the lower triangle 

of C. Apart from constants, the log Wishart likelihood as a 

function of C and D is 

L(C,D) 
	

tr(CTDCS) 	log dkk 	()4 .22) 
k 

Differentiating first with respect to an element of D we have, 

- [CSCT]kk 	d
1 

 odkh 	hk 

from which follows, 

2,, C .kiC .S. . hj ij 
i-1 j-1 

(4.23) 

Now differentiate Ea. 4.22 with respect to C, 

using Eq.A8, 

61, = 2 • lower triangle (DCS) . 6C 
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cij 	j) not constrained to be zero we have, 

aL  - 2 d.. (s,+ 	c. s ) ' 

	

ac. . 	II i j 	ik kj 

	

ij 	k<i 

so the likelihood equations become 

c.skj =-sij (j  < i)  
k<i 

The first few of these written out are 

i j 

2 1 

3 1 

3 2 

4 1 

4 2 

4 3 

c21s11 
= 

21 

c s +.c s 	-s- 31 11 	32 21 	j1 

c31s12 	e32522 = -s32 

c41s11 	c42s21 	c

• 

43s31 -s41 

c - 41s12 1- ic42s22 	c

• 

43s32 	-s42 

c41s13 4- :c42s23 	c

• 

43s33 	-s43 

rt 

(4.24) 

• • • 

Each group of equations exactly determines one row of C. 
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Now suppose the path from X, to x4  is missing, so 

that c11  is zero by assumption. Then the (4,1) equation in 

4.24 is removed since we no longer have 	 = 0, and the 
ac41 

terms involving c41  vanish, so the equations in the third 

group reduce to those in the dashed box, and the number of 

equations matches the number of c's in the box. It follows 

that the non-zero elements in the k-th row of C are the 

negatives of the multiple regression coefficients of Xk  

regressed on just those variables that are its immediate 

causes in the path diagram. Essentially, maximum likelihood 

leads to the fitting of each regression equation separately. 

The matrix C can be calculated easily using the SWP 

operator and the following scheme which is a modification of 

a procedure given by Dempster (1969, p. 63) for the unconstralnea 

case. 

i) At stage k, S has been swept on those indices 

in (1,...,k-1) that correspond to ckj's in the 

k-th row of C which are not constrained to be 

zero. Partition the resulting matrix as 

 

1 
1 	T 

S -  G11. H21 11 ' 21 *  

H21 1 G 21 1  22 
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ii) Take the non-zero elements of the k-th row of 

from the corresponding positions in the first row 

of H2L. The rest of the k-th row of C is filled 

with zeros except for a 1 in position (k,k). 

iii) SWP S* on the indices in the symmetric difference 

of the sets of indices not constrained in the k-th 

and (k+1)-st rows of C. Let k - k+1 and return to 

step (i). 

After 6 is computed in this way, B is obtained from 

Eq. 4.23 , and 
	1 from  2-1 = 6T15.6. 

)4.7 Numerical Examples  

Two examples are provided here to compare the per-

formance of the computational algorithms developed above. 

Example 4.2 - A five variable path model  

Consider a path model with five variables, each 

affected only by its immediate two predecessors, i.e., 

This is a non-cyclical path model (cf. Ex. 3.4) with three 

missing forward paths, 1744, 1/)5 and 2745, corresponding to 

three conditional covariance constraints, 
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a 
14.23 = °' (515.34 	0,  (525.34 	0 • 

	(4.25) 

Suppose the following sample covariance matrix has been 

observed: 

1.0 	.5 	.5 	.5 	.5 
.5 1.0 .5 .5 .5 

S 	.5 1.0 .5 .5 
.5 .5 .5 1.0 .5 
.5 .5 .5 .5 1.0, 

The direct calculation in Section 4.6 was used to 

obtain the exact solution. which is shown in Fig. 4.3. The 

computation took .031 seconds on the Honeywell 6070, a 

computer which requires 3.1 microseconds for a floating point 

multiplication. 

Note that the matrix 2 matches S in every uncon-

strained position. This is consistent with the fact mentioned 

in Ex. 3.14 that the constraints here are equivalent to three 

constraints on E-1, namely, G-14  = G15 = a25 = 0. The equality 

between elements of 2 and S for such models was established in 

the discussion of Ex. 4.1. 



C = 

-1 T^^ 
7 	= C CC = 

_op_ 

FIGURE 4.3 - Maximuql likelihood solution to Ex. 4.2 

1.0 0 0 0 

-.50 1.0 0 0 

.37 -.37 1.0 0 

0 -.37 -.37 1.0 

0 0 -.37 -.33 

1.0 0 0 0 

0 1.37 0 0 

0 0 1.5 0 

0 0 0 1.5 

0 0 0 0 

1.5 -.5 -.5 0 

-.5 1.65 -.33 -.5 

-.5 -.37 1.833 -.33 

0 -.5 -.37 1.6 

0 0 -.5 -.5 

1.0 .5 .5 

.5 1.0 .5 .5 

.5 .5 1.0 .5 

.33 .5 .5 1.0 

.27"7 .37 .5 .5 

0 

0 

0 

0 

1.0 

0 

0 

0 

0 

1.5 

0 

0 

-.5 

-.5 

1.5 

.277 I 

.33 

.5 

.5 

1.0 
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The single-stage iterative calculation of Section 

4.2 was next applied to this model. The parameter space is 

effectively 18-dimensional, including the lower triangle of 

A and three Lagrange multipliers. The initial approximation 

was taken to be A(0)  = I5X5 and ?‘(()) = (0,0,0)T, and Table 

4.1 shows the details of the run. 

In Table 4.1, line (i) displays the Euclidean 

distances between the exact maximum likelihood estimate 

and successive approximations A(n). Line (ii) shows the L2 

norm of the "residual" vector cp at each iteration, i.e., the 
ti 

vector of derivatives of the Lagrangian log-likelihood function 

with respect to the parameters. Both lines clearly show that 

convergence of the algorithm is quadratic (up to the 8-digit 

precision of the computer), that is, the error is approximately 

squared at each step. The computation would normally be 

stopped when 

6 In this example, an accuracy of s = 1E-5 required three 

iterations and .487 seconds of computer time. 

The fix-point iteration of Section 4.3 was also 

applied to this model, projecting S repeatedly into the con-

strained parameter space. Initially, )\(0)  was taken to be 
ti 

(0,0,0)T, and on subsequent outer steps to be the final ?■ from ti 
the previous iteration. 

Hot became smaller than some preassigned constant, 
ti 



a(1,1) 
a(2,1) 
a(2,2) 
a(3,1) 
a(3,2) 
a(3,3) 

.a(4,1) 
a(4,2) 
a (4,3) 
a(4,4) 
a(5,1) 
a(5,2) 
a(5,3) 
a(5,4) 
a(5,5) 

(i) nA ( n ) - 

TABLE 4.1 - Single stage iteration 

  

Iteration 

     

Exact 5 
	

0 	 2 	3 	 4 

(ii) cp 

(iii) max 

1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
-.577350 .000000 -.571429 -.577320 -.577350 -.577350 
1.154701 1.000000 1.142857 1.154539 1.154701 1.154701 
-.408248 .000000 -.400000 -.408163 -.468248 -.408248 
-.408248 .000000 -.400000 -.408163 -.408248 -.438248 
1.224745 1.000000 1.200000 1.224490 1.224745 1.224745 

.000000 .000000 .000000 .009000 .000000 .000003 
-.408248 .000000 -.400000 -.408163 -.408248 -.408248 
-.408248 .000000 -.400000 -.408163 -.408248 -.400248 
1.224/45 1.000000 1.200000 1.224490 1.224745 1.224745 
.000000 .000000 .000000 .000000 .000000 .020000 
.000000 .000030 .000000 .000000 .000000 .000000 

-.408248 .000000 -.400000 -.408163 -.428248 -.408248 
-.408248 .000000 -.400000 -.408163 -.408248 -.408248 
1.224745 1.000000 1.200000 1.224490 1.224745 3.224745 

.204124 .000000 .200000 .204082 .204124 .204124 

.204124 .000000 .200000 .204082 .204124 .204124 
.204124 .000000 .200000 .204052 .204124 .204124 

1.228331 .049198 .4932E-3 .5662E-7 .6452E-8 

1.581139 .060434 .5963E-3 .7357E-7 .1893E-7 

laC )- 	-(n-1)1  ' 	13 -.571429 .2449E-1 .2550E-3 .2980E-7 

(iv) time 

(v) cur. 

(sec.) .1603 .1631 .1617 .1622 

time .1603 .3254 .4371 .6493 
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Table 4.2 shows the results after each outer itera-

tion. The parameter space is represented her by rather 

than A, but to facilitate comparison with Table 4.1 line (ii) 

shows the distance to the solution in terms of A. There are 

two stopping criteria to choose here. For the inner iteration 

the length of the constraint vector (line (iii)) was required 

to be less than E1 == 1E-6; the numbers of iterations needed to 

achieve this are shown in line (v). For the outer iteration 

the maximum change in Gii  (line (iv)) was required to be less 

than 62. If 62  = 1E-5, then three steps and .212 seconds of 

computer time are required, which is less than half the 

computer time taken by the other iterative method. One must 

bear in mind, however, that exact comparisons are difficult 

since the efficiency of the coding is a critical factor. It 

is interesting to note that convergence is irregular here, 

with a significant jump in accuracy occuring in the second 

outer step. This illustrates the point made at the end of 

Section 4.5. Since the constraints in this example can be 

written in terms of -1 alone, as soon as a trial value E(1) 

is obtained which lies in the constrained space C then the 
\ correct linear manifold L(E (x1  J) = e(f) is obtained exactly, 

and the next iterate coincides with the correct solution, 

2  E 	= 2, apart from round-off errors. 



TABLE 4.2 - Fix-point iteration 

Exact e 0 

Outer 

1 

iteration 

2 3 4 

7(1,1) 	1.000000 1.000000 .831978 1.000001 1.000000 1.030000 
7(2,1) 	.500000 .500000 .419824 .500000 .500000 .500000 
7(2,2) 	1.000000 1.000000 .919849 1.000000 1.000000 1.000000 
7(3,1) 	.500000 .500000 .500000 .503000 .500000 .500000 
7(3,2) 	.500000 .500000 .500000 .500000 .500000 .500000 
7(3,3) 	1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
7(4,1) 	.333333 .500000 .313381 .333333 .333333 .333333 
7(4,2) 	.500000 .500000 .500000 .500000 .500000 .500000 
7(4,3) 	.500000 .500000 .500000 .500000 .500000 .500000 
7(4,4) 	1.000000 1.000000 .912179 1.000000 1.000000 1.000060 
7(5,1) 	.277778 .590000 .268675 .277778 .277778 .277776 
7(5,2) 	.333333 .500000 .323663 .333333 .333333 .333333 
7(5,3) 	.500000 .500300 .500000 .500000 .500000 .500000 
7(5,4) 	.500000 .500000 .445112 .500003 .500300 .500000 
7(5,5) 	1.000000 1.000000 .849763 1.000000 1.030000 1.030000 

?\(1) 	-.750000 .000000 -.790387 -1.037261 -.749999 -.750000 
(2) 	-.500000 .0000 	0 -.577568 -.895549 -.499.999 -.500000 

:\(3) 	-.583333 .000000 -.576966 -.841130 -.583333 -.583333 

(i) !,12,(n)- 	ill .458123 .291496 1.0394-6 4.6529E-8 3.4143E-8 

(ii) HA(n)- 	Ail .548909 .271476 8.5847E-7 4.3579E-8 3.2127E-8 

H 	H .238675 8.2127E-7 7.0224E-9 5.6553E-6 2.4970E-9 

-3 (n) 	(n) (iv) max 	h7.. 	- 3.01 
.231325 .168023 7.1526E-7 2.2352E-8 

(v) no. 	inner 	steps • 1 1 1 

(vi) time 	(sec.) .0897 .0604 .0616 .0618 

(vii) cum. 	time .0897 .1501 .2117 .2735 
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Example 4.3 - A sequence of path models of increasing size  

In order to explore the ways in which computer 

resource requirements for these computational methods increase 

with the number of variables and number of constraints, we 

consider a family of path models defined by an ordered 

sequence of random variables in which each variable is 

directly affected by its immediate predecessor and by pre-

decessors at lags 3, 5, 7, etc. As before, these models have 

easily calculated exact solutions. The path diagram is, 

The matrix factor A in -1  = A A has zeros in the 

subdiagonals numbered 2, 4, 6, 	etc. 

a population covariance matrix Et  = 

For this 

(AtT  At)-1  , 

example we take 

where 

1 
-.6 1 0 
0 -.6 1 

(.6)2  0 -.6 1 
0 (.6)2  0 -.6 1 

-(.6)3  0 (.6)2  0 -.6 1 
0 -(.6)3  0 (.6)2  0 -.6 1. 

• • • 
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and we use an observation from a pseudo-random Wishart. 

W12x12(30,Zt) generator to obtain a sample covariance matrix 

S. 

In order to define an increasing sequence of models, 

we take initial sequences of p variables, for successive 

values of p. Each of these models corresponds to the uper- 

left partitions of the matrices T,t'  At, and S. 	The number of 

covariances q and the number of constraints r both increase 

quadratically with p, and the amounts cf computer storage for 

working data arrays required by the two iterative methods are 

shown in Table )1.3. Clearly the rapid increase in storage 

reouirements sets a practical limitation of about p = 13 or 

on the size of problem that can be accommodated by either 

method. 

When applying the fix-point procedure in the form 

used in Ex. 4.3, a difficulty was encountered: the approximation 

T(1)  obtained after the first fix-point step was so far from 
ti 

the true 5■ that using it as an initial value for the second 
ti 

step caused the calculation to diverge. But when the procedure 

was modified to take T(0) = 0 each time, satisfactory conver-

gence was achieved. 

An overall convergence criterion of El  = 1E-4 was 

employed, along with a limit of 6 on the number of (outer) 

iterations. The inner stage of the fix-point was terminated 

by e2  = 1E-6. Table 4.4 compares the numbers of iterations 



no. X's 

no. constraints 

no. var's & cov's 

p 

1 	2 
r=

1
{ -f(P +1)-P} 

q=10(0+1) 
2'  

	

6 	8 	10 	12 	14 

	

6 	12 	20 	30 	42 

	

21 	36 	55 	78 	105 

   

no. 	param's,l-stage q+r 27 48 75 108 147 

storage for I-stage (q+r)24-5(q+r) 864 2544 6000 12204 22344 

storage for 2-stage p2(r+4)+r2+5r 426 1228 2900 "5946 10990 
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TABLE 4.3 - Storage requirements for Ex. 4.3 

TABLE 4.4 - Computer times for Ex. 4.3 

exact 
calc. 

single-stage fix-point 	(2--stage) 

p time number 
iter's 

time number 
outer steps 

number 
inner steps 

time 

5 .042 4 .648 5 6 .533 

6 .075 4 1.451 5 7 1.420 

8 .144 4 6.204 6* 10* 9.164 

10 .305 4 21.148 6* 10* 30.628 

12 .577 4 60.575 - - - 
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and computer times for the two iterative methods, as well as 

the time required by the exact calculation. . 

The starred entries in Table 4.4 are cases in which 

the iteration limit was reached before the convergence criterion 

was satisfied. In both such cases an accuracy of about 1E-3 

had been attained, with convergence at the rate of about one 

order of magnitude for two outer steps. 

As in the previous example a detailed comparison of 

computer times betWeen methods is not really meaningful, since 

either might have been more or less efficiently coded. However 

the orders of magnitudes and trends are important. For problems 

of this sort where the number of constraints increases in 

fixed proportion to the number of covariances and where high 

accuracy is not required, the fix-point method does well for 

small problems but is soon surpassed by the single-stage method. 

If the number of constraints were to remain small, the com-

petitive advantage of the fix-point method would increase, but 

if higher accuracy were required, it would decrease. It is 

interesting to note that the number of iterations to convergence 

fbr the one-stage procedure does not increase in the larger 

problems in this range, but computer times increase quadratically 

with the number of parameters, q+r. It is clear that a model 

with p-10 and r=20 is at or beyond the limit of routine cal-

culation for exploratory purposes. 
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Chapter 5 

THE USE OF CORRELATIONS IN THE STUDY 
OF STRUCTURED WISHART MODELS 

5.1 Structured Correlation Models  

A majority of the structured Wishart models discussed 

in Chapter 3 are invariant under coordinate scale transformations. 

They consequently can be characterized by patterns or con-

straints imposed on the population correlation matrix, with 

the sample correlation matrix forming a set of invariant 

statistics. It seems natural that methods for selecting 

appropriate models from families of this kind, for fitting them, 

and for testing their fit to observed data, should be based on 

the sample correlation matrix. 

5.2 Normalizing Transfor-mations  

In certain respects sample correlations are difficult 

statistics to work with, because the distribution function of 

even a single sample correlation r under normal theory assump-

tions has a complicated form. Although the distribution is 

asymptotically normal with increasing sample size, the approach 

is too slow to be of much direct practical use for samples of 

moderate size. A standard method has been to apply a trans-

formation to r to improve its distributional properties. Of 

several transformations proposed (Hotelling, 1953), the most 

useful has been that suggested by Fisher (1915), 
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z(r) = tanh-1(r) = i log (1±E) 1-r (5.1) 

This transformation has the following desirable 

properties: 

pl. Whereas r is confined to the interval (-1,1), z(r) 

has a distribution that ranges over the entire 

real line. 

p2. The expectation of z(r) is z(p) + 0(n-1), where 

p is the population correlation and n is the sample 

size. 

p3. The variance of z(r) is 1/(n-2) + 0(n-2) which 

to this order of approximation does not depend cn 

(The n here is the effective number of observations 

that remain after the mean and possibly other linear 

effects have been removed.) 

IA. The skewness and kurtosis of z(r) are reduced, 

making the distribution of z(r) approach normality 

considerably faster than that of r. 

As a result of these properties, even for small samples, the 

distribution of z(r) can be treated for most practical purposes 

as if it were N(z(p), 1/(n-2)). 

When there are several variables to consider and 

thus a matrix of sample correlations, the situation is more 

complicated. By analogy with the bivariate case, cne would 
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like to transform the set of q = 2p(p-1) correlations to 

approximate joint normality so that statistical and data 

analytical techniques based on the multinormal distribution 

might be used. 	In place of pl, one now seeks to extend the 

range of the distribution from a subset of the unit hyper-

cube in 10 to all of 30. The properties p2, p3 and p4 are 

still desirable for the marginal distributions of the trans-

formed rij, but they are not sufficient for joint normality. 

And when a normalizing transformation is found, the trans-

formed statistics will almost certainly have a correlation 

structure that depends on the unknown pufs,and this will have 

an effect on inferences. 

There are several ways to generalize z(-) for use 

with 3x3 and larger correlation matrices. One approach which 

will be pursued in the following section is to transform each 

rij . . individually. Another, which we mention only briefly here 

and which follows from a suggestion from J. W. Tukey (1973), 

is to ask whether there is a matrix analytic function (cf. 

Lancaster, 1969, p. 183) which generalizes z(r). We find that 

the matrix logarithm, which appeared in a different context in 

Section 2.4 does this, since 

log 
r r 

r 

1 

l 

[

i log (l+r)(1-r) 

i log (l+r)/(1-r) 

L' log (l+r)/(1-1 

)2- log 	(l+r)(1-r) 
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Whether it is a useful normalizing transformation when applied 

to 3x3 and larger correlation matrices remains to be explored, 

but we note the following relevant points. First, log(-) maps 

the set of positive definite matrices onto the whole set of 

symmetric matrices (Nagao, 1973), so at least when applied to 

covariance matrices it removes the positive definiteness 

restriction. Second, it preserves constant-in-blocks structure, 

and thus might be a particularly useful transformation when 

block-structure models are contemplated. Third, since 

log R-1 	- log R, an analysis of R on the log scale is 

virtually the same as an analysis of R-1. 

5.3 The Element-By-Element Generalization of z  

The normalizing transformation z = tanh-1(-) can be 

applied to a sample correlation matrix by transforming ea:h 

correlation separately. Fisher (1924a) did this to a table 

of correlations derived from rainfall statistics, as did Hills 

(1969) in the paper mentioned in Ex. 3.2, but neither author 

examined the joint distribution of the transformed r. ts . lj 

That the rij  . . are themselves correlated, and so are the statistics 

zu, was stressed by Elston (1974), but a thorough study of 

the joint distribution does not seem to have been published. 

We note that z(-) can be used quite generally as a 

normalizing transformation for any conditional (i.e. partial) 

correlation, since such a statistic has the same marginal 



distribution as an ordinary sample correlation but with a 

modified effective sample size (cf. Section 3.5). Insofar as 

sample partial correlations are the invariant ancillary 

statistics for most of the models discussed in Chapter 3, 

z(.) is potentially useful in a fairly wide range of problems. 

It is often implicitly assumed that the joint dis-

tributionofasetofzu is nearly normal. We will make this 

assumption as well, noting that it extends to sets of • 

zij.a =z(rii.a), and citing the following points as support: 

(i) the statistics zii.a  are all continuous twice-differentiable 

functions of the sample covariances which are asymptotically 

jointly normal as sample size increases (Cramer, 1946, p. 366; 

Anderson, 1958, p. 77); (ii) the marginal distributions 

approach normality quickly; and (iii) some preliminary computer 

simulations of pairs of zij.a, 
have shown no systematic departure 

from joint normality. 

Having assumed joint normality, we next consider the 

correlations among the zu.a. One approach to estimating 

these correlations is to apply one of the asymptotic covariance 

formulas from Lemma 3.2, namely, 

2 	d log  r 	d log r' 
cov (r, 	) = 1771- rr' tr ( 5 - 2 ) 

and to substitute for the unknown true aij. .'s values a.lj 

estimated within the structured model. Covariances among the 
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r's are converted to correlations, which are also the asymptotic 

correlations among the corresponding z's, and the asymptotic 

variance of z. ..a  is aj 

1  
var(zij  ) = .a 	n-2-qa  ' (5.3) 

where qa  is the number of indices in the set a. The matrix 

derivatives required in Eq. 5.2 are obtained from the formulas 

in Section 4.5, especially Eq. 4.18 . Although Eq. 5.2 

does not simplify much for general pairsrij  ..ea  and r 

there are some interesting special cases of which six are 

discussed below. 

5.3.1.  The asymptotic covariances between pairs of 

o-rftnary correlations are obtained from Eq. 5.2 or as 

special cases of Elston's (1974) formulas for intraclass cor-

relations. The two relevant cases are pairs of rij  in the 

same row (or column) and pairs in distinct rows and columns: 

1 )(1- 2 - c°v(r12'r23) 	P 13 	P 12 -1P12P23 (1-42-43-P3 )1 

(5.4) 

1 LI 	2 2 2 2 
c°v(r12'r34)  = ri 1 2P1213340313 4314-432341)24)  

P 1.2P 13P lk+P 12P 32P 4-2 +P 13P 23P 43 -1 P 1)-I-P 24) 34 ) 

13P 211-±P 1)-1-1"
n 
 231 
1 
 • 

	 (5.5) 
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These are converted to correlations with the help of 

1 	2  
var(r12)  = H(1-P12)2  

(5.6) 

(In fact, Eqs. 5.4 and 5.6 are really special cases of Eq. 

5.5. ) 

5.3.2.  The ancillary statistics for testing the 

presence of zeros in 2-1  were shown in Ex. 3.8 to be conditional 

correlationsrij 	ij.c r,where the set c = cij contains all 

other indices besides i and j, and the r*ij  are in turn the 

negatives of "correlations" formally computed from S-1, 

rt = -sij/lkisjj  . ij 

Asymptotically S-1 has a Wishart distribution with parameter 

2.-1, so it follows that the asymptotic variances and covariances 

of the zifj  are obtained from Eqs. 5.3 - 5.6 by replacing 

the parameters pij  with 

pt. 
	aii 1J 

where uij  is an element of V-1. 

5.3.3. The joint distribution of ordinary sample 

correlationsr..is simplified when the population correlations 
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pij  are all zero. This is the case considered in Hills' paper 

referred to in Ex. 3.2. He warned that the effect.of the 

dependence between the correlation coefficients might be 

difficult to predict, but we are able to observe that according 

to Eqs. 5.4 and 5.5 	all pairs of rij  are asymptotically 

uncorrelated. In fact much stronger results obtain: all pairs 

of correlations are exactly uncorrelated and statistically 

independent. Furthermore, statistical independence holds 

among all correlations in any set of rij  in a single column or 

row of R (Anderson, 1958, Ch. 7, Ex. 9), and indeed for any set 

of sample correlations with the property defined in the follow-ing 

lemma: 

Lemma 5.1  

	

Suppose that S is distributed as Wp(n,Z), that 	= Ipxn, 

and that R = (rij) = (sijA/siisjj). Let J = I(ik,jk)) be a 

subset of the indices ((i,j), 1 < i < j < p) which has been 

ordered so that for each k, at most one of the pair (ik,jk) 

appears as an i or a j earlier in the list. Then the statistics 

r. . , k = 1,2,... are statistically independent. 1kjk 
A proof can be constructed by observing that the 

rij's are cosines of angles among p independent spherically 

distributed random vectors in n-dimensional space. Then, by 

first conditioning on the variables X. ,X. ,...,X. 	,X. 
11 31 	1k-1 3k-1 

each r. . can be shown to be independent of r. 	,...,r. 
1k-Ak 	 1101 1k-ljk-1 
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The set J in this lemma can be equivalently defined 

in graph theoretic terms as follows: J has the property that 

the directed graph with nodes numbered 1,2,...,p, and an edge 

connecting node ik  to node 	for each (ik,jk) in J, has no 

closed loops. 

Naturally, if a transformation like z(.) normalizes 

the marginal distributions of two variables that are statistically 

independent, it normalizes their joint distribution. In the 

present case, although the zij  are not independent as an entire 

group, all pairs, most triples, and many subsets of up to p-1 

of the zij  are. This is strong evidence to support the view 

that the multinormal distribution closely approximates the 

joint distribution of the zij  when the pij  are all zero. 

5.3.4.  Next take the case of a set of conditional 

correlations all with the same conditioning set, b. If a is 

the complement of the set b, and if S is distributed as W 

then Saa.b is distributed as 	 ' Iaa.b)' Wa(n B 	where a and p are 
x --.   

the numbers of indices in a and b. It follows that Eqs. 5.3 

to 5.6 can be used to obtain asymptotic expressions for the 

variances and covariances of the zij.bts  provided that n, rid  

and pij  are replaced by (n-s), rij.b  and pij.b, respectively. 

5.35.  Consider a pair of partial correlations. rij.a  

and r 	with the property that the indices i,j and the 

conditioning set a are all contained in the set b. Thenrij  .. .a 
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and rki.b  are statistically independent regardless of the values 

of the population correlations. This follows from a special 

property of the Wishart distribution (Dempster, 1969, p. 297), 

namely, that if S has a Wishart distribution, b and c are 

complementary sets of indices, and Scc.b = Scc 	Scb'
c
bb„,

c bc' 

then Sbb and Scc.b are statistically independent. In the case 

under consideration, rij.a is a function only of the elements 

of Sbb' andrk,g.b  is a function only of the elements of Scc.b' 

Hence, they are independent. The asymptotic covariance 

formula (Eq. 5.2), can be shown to give a zero covariance in 

this case, as it must do. 

5.3.6.  Finally, consider a case that is rather 

different from the rest but has some practical importance. 

Suppose that a certain fraction of the data is missing on some 

or all of the variables X1,...,Xp. If the mechanism which 

causes the data to be missing is statistically independent of 

the data values, then consistent estimates of the aij  and other 

parameters derived from them can still be obtained. 

Suppose that 71 denotes the mean of variable X, cal-

culated over the ni  observations available for that variable, 

and that sf denotes the covariance calculated over the n. 
13 	 ij 

observationsforwhich. XI  and X are both present, (other 

definitions are possible). Thus the elements of the matrix 

S' 	(sij) are based on different, usually overlapping, subsets 
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of the data. Conditionally, given the observed numbers and 

patterns of missing values, the statistics sij  are asymptotically 

jointly normal, as are the elements of the matrices R' and Z' 

formed from S', but the variances and covariances of these 

statistics are no longer those obtained from the Wishart dis-

tribution. Instead, the covariance of sij  and ski  is proportional 

to the number, nijki, of observations present on all four 

variables. In particular, ignoring some small terms due to the 

particular definition of 7!, we have 

eov(s/q) 	
ni jnk

ii47ijnk 
 
i
(a
l
. 
 k 
ajy +- ifaj  k ) 
	

(5.7) 

(5.7) 
nnijki  

laij 	 cov(s..,s ), n. n ij 

where any of the indices i,j,k,2 may be equal to each other, 

where sij  and ski  represent covariances based on complete data 

(if it were available), and where, for example, n112  = n12. 

Equation 5.7 can be used in turn to obtain modified 

formulas for the asymptotic variances and covariances of the 

rij  and zij. The new formulas resemble Eqs. 5.3 to 5.6 , 

but each term has an additional factor of the form .(nnijki/nijnki). 

These formulas serve to show the general way in which the 

covariance structure of the zij  is altered when datq is missing, 

but since the effect of a small fraction of missing data on the 
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correlationsofthez..IJ  is small, and since we are dealing 

only with asymptotic approximations, it will not be worthwhile 

to do the extra calculations in most cases. We note that to 

use the modified formulas one must perform the additional 

task of tabulating the numbers ni, nij, nijk, and nijki  while 

the s'ij  are being calculated. For a problem with many variables 

this might require a prohibitive amount of additional computer 

storage, especially for {n 	and ( 	1. An often useful ijk 	n  ijk2 

compromise 	 and to 

adjust only the standard errors of the zij. This will be 

illustrated in the example in Section 5.4. 

5.4 Model Selection and Assessment  

Assuming now that the application of z or some 

other transformation to a set of simple (or partial) correlation 

statistics renders their joint distribution approximately normal, 

we consider how these transformed statistics might be employed 

in the study of structured Wishart models. The paragraphs 

below outline three stages of such a study in which they are 

potentially useful. 

5.4.1 Data Dependent Model Selection 

Suppose that one is interested in Wishart models whose 

essential structure is preserved under the chosen transformation, 

as in for example the models of Section 3.2 that require some 

set of correlations or partial correlations to vanish. If it 

is assumed that such a class of models is appropriate, but it 

is not known in advance which member of the class to choose, the 
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selection might be based on the observed magnitudes of the 

statistics z.. This is the course followed by Hills and ij oa 

by Fisher in seeking a small number of departures from pij  = 0, 

but the approach can be applied to other problems such as the 

simultaneous-equation subset regression problem of Ex. 3.5, and 

Dempster's covariance selection model in Ex. 3.8 and Section 

5.3.2. In the latter case, in which a pattern of zeros in 2-1  

is sought, the appropriate test statistics are ztj  = z(rij.c), 

where c = [1,2,...,p) - [i,j), and their empirical distribution 

should be compared to N(0,1/(n-p)), perhaps using a probability 

plot. 

5.4.2 Model Fitting  

If as in the last paragraph the model displays a 

simple structure after the normalizing transformation is aT)p1ie-1, 

but if certain parameters must be estimated, the estimation 

might sensibly be done on the transformed scale, especially if 

the structure is linear on that scale. An illustration is 

provided by Example 3.1 in which correlations are assumed to 

equaleachotherwithinblocks.Aftertransforming(rijIto 

{zij}, one can apply usual normal-theory estimation procedures. 

If one chooses to ignore the correlation structure of the z. 

this leads to calculating simple averages of the zip's  in blocks. 

Or, if the correlation structure is to be taken into account, 

then the set of, z. .'s should be weighted by the inverse of their 

estimated covariance matrix. Since the "correct" weights depend 
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on the parameters being estimated, this could be done iteratively, 

perhaps stopping after two steps, In either case, the resulting 

point or interval estimates of z(pij) may be back-transformed 

to give estimates on the original correlation scale. 

There are some situations in which the pij  might be 

related to other quantitative variables also indexed by i and 

j. For instance, it might be appropriate to regress z(rij) 

linearly on certain other variables, suitably re-expressed. 

Whether or not the fitting of structured covariance 

models on a z-transformed scale produces asymptotically efficient 

estimates is a matter for further study. We note that the 

procedure does provide an opportunity to use robust estimates, 

since averages of zij. .'s can easily be replaced by robust 

estimates of location (say, a-trimmed means). However, this 

should riot be thought of as protection against individual out-

liers in the original data (which can be treated by robustly 

calculating the correlation matrix itself, as in Devlin, et al., 

1975); rather it is protection against isolated discrepancies 

between the true and hypothesized models. 

There is a connection here with the results of 

Chapter 2. Invariance arguments show that, in a structured-

correlation model,maximum likelihood estimates of pij  depend 

only on the sample correlation matrix R. Therefore estimation 

can proceed in two stages; first the correlations are estimated 
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from R, then variances from sii and (pij). If maximum likeli-

hood in the first stage is replaced by a z-based procedure 

for expedience, but retained in the second stage where the 

number of remaining parameters is much smaller, then the 

property tr(2-1S) = p 'still holds. 

5.4.3 Assessment of Residuals  

Once a structured covariance model has been fitted, 

however the fitting was done, it may be useful to asses the 

quality of fit by examining residual correlations on a trans-

formed scale. Let pij  represent a correlation estimated by 

maximum likelihood (or by some other method). The statistics 

eij  = z(rij) - z(pij), or, generally, eij.a 	z(rl_j.a) 	z(pij.a), 

can be regarded as residuals. If the original data is normally 

distributed and the chosen structured model is adequ'..,te, then 

the eij  should be approximately jointly normally distributed 

with zero means and known variances, and a covariance structure 

that can be estimated from the matrix (pij) using the asymptotic 

formulas in Eqs. 5.3 - 5.6 . One can construct a formal X2 

statistic from such a set of residuals, but their real value 

will often lie in their use as a diagnostic aid to judge not 

only whether, but how the model fails to fit. By sorting and 

plotting these residuals against expected normal order statistics, 

one can explore to what extent they resemble a sample from an 

unstructured normal population, or, more precisely, from a 
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normal population with a certain correlation structure. 	In 

particular, one might be able to isolate pairs or groups of 

thevariablesX.whose correlations don't conform to the hypo-

thesized pattern. This will be illustrated in Example 5.1. 

There is a connection between this approach and the 

ideas developed by Wald (1943) and by Aitchison and Silvey (1960). 

Those authors propose to test a general model whose vector 

parameter e must satisfy some restrictions, h(0)- (h1,...,hr) = 0. 

They first compute h(9), where 9 is the unrestricted 

maximum likelihood estimate, and then calculate a 

x2 statistic W from h(9) and its estimated asymptotic covariance 

matrix. If their functions hk(0) are identified with z(pii), 

then their W statistic is the x2  statistic mentioned above. 

The present approach puts less emphasis on formal testing and 

more on the heuristic use of the residuals. Also by working 

in a more restricted framework, that of structured Wishart 

models, we are able to find a re-expression of the parameter 

space (namely, C = z(c)) which improves the distributional 

approximation for finite sample sizes. 

We note that the points made in Section 5.4-.1 and 

5.4.3 above are quite closely connected, since it is usually 

by fitting "null" models and detecting systematic departures 

from them that more refined models are developed. 
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We also consider briefly the question of using 

normal probability plots, which assume independent observations, 

to study statistics that are correlated, as suggested in Sections 

5.4.1 and 5.4.3. The issue has not received much attention in 

the statistical literature, although some authors have suggested 

that mild correlation should have little effect (e.g. Cox and 

Lauh, 1967). The main result of practical importance was 

mentioned briefly by Mallows (1969), namely, that if X1,X2,...,Xn  

are marginally and pair-wise normal, all with equal means and 

variances, and with correlations pij  = corr(Xi,Xj), then to a 

certain approximation the order statistics behave as though all 

correlations were equal to their average, 

2  
P n(n-17 '2, P it  

i<j 

We observe further that the order statistics from an 

equicorrelated sample are like those from an independent 

sample, but with a modified variance and a randomly shifted 

sample mean. In particular, if X1,...,Xn  are jointly normal 

with mean zero, variance a2, and corr(X.,X j) = 75; theh the 

sample configuration statistics 

(X1-7), ..., (Xn-7) 

are like those from a set of independently normally distributed 

— 
variables Yi,...,Yn  with variance a (1-p). This means that a 
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normal probability plot of the Xis will on average be a straight 

line with slope a l/l-F , but it will be subjected to a random 

vertical displacement with variance var(Y) = 
2(1-T)  + alp. 

By contrast, the vertical displacement of a probability plot of 
,-\ 

the Y's has variance var(7) 	
a211_77" 

	 . D. R. Cox (1975) has 

suggested that the quantity 

Cr 	,V1 0 (5.8 ) 

be called the "effective standard deviation" because its square 

is on average the variance within samples from the ecrrelteo 

distribution. 

From the arguments outlined here, and from studying 

a series of probability plots of correlated normal :,bscr\ctions 

simulated by computer, we feel justified in using probability 

plots of z-transformed residual correlations in the study of 

structured Wishart models, bearing in mind that the slopes of 

these plots are affected by the correlations. This viewpoint 

is further strengthened by the fact that Mallows' approximation 

improves when the correlations are close to their average; when 

dealingwiththestatisticsz..the correlations obtained from 

Eqs. 5.3 to 5.6 are typically more moderate than the puts 

themselves. 
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Example 5.1 - AT&T ene:ineerinF and service indicators 

To illustrate some of the points made above, we 

consider a set of data recently studied by Fowlkes (1975). The 

data consist of 66 variables which describe various characteristics 

of 61 geographical districts of several telephone operating 

companies in the Bell System. The variables apply to a single 

month and include such things as total number of customers, 

total expenditures of various kinds, numbers of new orders 

received and completed, quantity of equipment currently in use, 

number of customer trouble reports, etc. The study had the 

rather general objectives of summarizing the data, discovering 

underlying relationships, and exposing interesting anc: peculiar 

features. 

We note that because of the large number of variables 

involved, this problem is beyond the capabilities of the 

iterative maximum likelihood methods developed in Ch. 24, so we 

employ analyses based on the approximate normality of the 

statistics z(rii). 

After some preliminary analysis which suggested 

transformations of certain variables to improve marginal and 

pairwise distributions, Fowlkes computed a 66x66 correlation 

matrix R for variables across the 61 districts. Since a 

significant proportion of data was missing, each correlation 

was computed using all the data available for that pair of 

variables. The number of observation pairs entering each 
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correlation ranged from 6 to 61, and averaged 38. 

One of the analyses performed by Fowlkes was a 

hierarchical clustering of the variables using absolute value 

of correlation as a measure of similarity, Starting with 

Fowlkes' correlation matrix. we consider a clustering with a 

different objective: in order to discover underlying symmetries 

among the variables, we seek to determine how well the 66x66 

correlation matrix or some subset of it can be fit by a constant-

in-blocks structure, of the kind described in Ex. 3.1. If such 

a structure can be found, then the variables entering each 

diagonal block form a symmetrical set, that is, in terms of their 

correlations with other variables, they are interchangeable. 

An appropriate distance measure for this purpose is 

derived from the correlation matrix in the following manner. 

If two variables, say X1  and X2, are interchangeable, then pairs 

of correlations in the first two columns of R have identical 

expectations, as do their z-transforms. Hence, if 

	

di 	zil 	z i2 ' 

then 

E(di) 	 o, i = 3,4, 	66 . 	(5.9) 

(In fact, Eq. 5.9 holds exactly when the numbers of observations 

nil and 	entering 	and 	respectively, are equal, but nit 	ril 	rig, 
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only to order 0(..
1 	n1 

i2 ) otherllise.) Simethed-are  

approximately normally distributed with zero mean, they can 

be used to form a statistic 

66 

	

t12 = 	d. 	, 	 (5.10) 

which is an index of dissimilarity for the variables X1  

and X2: a high value of t12  results when E(di) f 0 and X1  

andx2 arenotinterchangeable.Thequantitiesw.are weights 

which should he proportional to the variances of the di. To 

obtain empirical weights, we ignored the covariance of z. ar.d IL 
but took account of the missing data. Hence, zit, 

wi  = var(z) + var(7 4 -12) 

1 	1  

	

nil- 	nit-3 

(In fact, not only could the covariances be used and estimated 

as in Section 5.3.6, but the covariances of the di  could be 

considered as well. Then t
12 

would be defined as d
T
W
-1
d, where 

w is a 64x6)4 matrix. But to do this for each of (26) pairs 
of variables would be a prohibitively expensive calculation.) 
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The fact that the tip  and.ri  . provide different bases j  

for clustering is shown by Fig. 5.1 in which tip  is plotted 

against z(ri ) for the 400 smallest values of tip. Bearing in 

mindthatsmallvaluesoftu correspond to greater inter-

changeability, one can clearly see that some pairs of variables 

are highly correlated but not highly interchangeable, and 

conversely. 

A hierarchical clustering (Johnson, 1967; Warner, 1969) 

wasperformedusingtu as a distance measure, and the results 

are displayed as a tree in Fig. 5.2. The identification 

numbers of the variables appear at the top, and the num DC:-'fS on 

theleftareaveragevaluesoft..within the least compact ij 

cluster defined at each level. of the tree. 

Thestatists..are roughly distributed as xe:),+  tij 	 )- 

for interchangeable pairs of variables. It seemed reasonable 

to cut the tree at the arbitrary level 8 which corresponds 

approximately to the .95 quantile of the 2 

defined 18 clusters whose sizes range from 1 to 9 variables, of 

which seven clusters containing 5 or more variables account for 

42 of the total, as shown in Table 5.1. 

By rearranging rows and columns, we partition the 

corresponding42><42submatrixofzip into a 7x7 configuration 

ofblocks,andfitaconstalatTij within each block. Again 

ignoring the correlations among the zip, we use weights that 

reflect the missing data, and trimmed averages to guard against 

x64  distribution. This 
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FIGURE 5.1 	- 	Dissimilarity index vs. correlation 
for 4o0 pairs of variables 
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1 	26.7 

	

7 	34,4 

	

3 	40.9 

	

4 	50.3 

	

S 	52.3 

	

6 	63.9 

	

7 	89.1 

	

8 	87.2 

9 104.3 

10 119.5 

11 139.9 

12 180.3 

13 210.3 

14 287.3 

15 428.5 

16 908.7 



TABLE 5.1 - Clusters formed by cutting the tree at level 10 

Cluster i 	Variables 

1-‘ 7 8 9 12 14 

6 32 34 26 27 35 53 54 

20 29 55 40 56 

11 24 25 58 59 

15 16 51 57 61 

44 48 38 60 39 10 23 49 64 

4. 28 63 65 66 
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afewoutliers.Table5.2showsthefittedT..'s with their 

standard errors, and Table 5.3 the correorl'I'ncr r(7ij)'s. 

Whether this fitted block correlation structure, 

which is completely described by 28 distinct correlation para-

meters, provides an adequate summary of the 42x42 correlation 

matrix with 861 distinct entries, is a question that can be 

answered in part by examining the residuals from the fit. The 

normal probability plot of the 861 residuals in Fig. 5.3 shows 

an appreciable curvature at the ends, suggesting a poor fit or 

longer-than-Gaussian tails. However, since missing data has 

caused the zij  to have different variances, it seems more 

appropriate to standardize each zij  by dividing by its standard 
-1 

error, (nij-3)2. Figure 504 is a probability plot of the 

standardized residuals with a superimposed line of unit sloe 

and zero intercept which is the average configuration when the 

model assumptions are all satisfied. Except for about 15 

extreme points out of 861, the empirical distribution of 

residuals agrees remarkably well with a normal configuration, 

suggesting that a block correlation structure is a reasonable 

model for a vast majority of this data. The improvement of 

linearity of Fig. 5.4 over Fig. 5.3 gives added support to the 

recommendation in Section 5.3.6 that a weighted analysis be 

done when a substantial amount of data is missing. 

We note that this particular 7X7 block structure 

hypothesis cannot be formally tested with this set of data 

because the statistical significance level would be artifically 



TABLE 5.2 

A 

	

- Average zij  within blocks, 	and 

B 	C 	D 	E 

standard errors 

F 

A 2.815 1.067 0.718 0.363 0.430 0.089 0.240 
(0.046) (0.026) (0.031) (0.034) (0.041) (0.030) (0.031) 

B 1.067 1.385 0.752 0.522 0.71'7 0.173 0.664 
(0.026) (0.035) (0.028) (0.030) (0.035) (0.025) (0.028) 

C 0.718 0.752 0.780 0.420 0.475 0.096 0.287 
(0.031) (0.028) (0.054) (0.036) (0.0)3) (0.031) (0.032) 

D 0.363 0.582 0.420 0.531 0.364 0.114 0.304 
(0.034) (0.030) (0.036) (0.062) (0.048) (0.034) (0.035) 

E 0.430 0.747 0.475 0.364 0.733 0.197 0.744 
(0.041) (0.035) (0.043) (0.040) (0.089) (0.041) (0.012) 

F 0.089 0.173 0.096 0.114 0.197 0.110 0.243 
(0.030) (0.025) (0.031) (0.034) (0.041) (0.045) (0.031) 

G 0.240 0.664 0.287 0.304 0.744 0.243 1.406 
(0.031) (0.028) (0,032) (0.035) (0.042) (0.03i) (1- .05'11 

TABLE 5.3 	- Fitted correlations derived from ij 

A 

A 0.993 0.788 0.616 0.348 0.405 0.089 0.236 

B 0.788 0.882 0.637 0.524 0.634 0.171 0.581 

C 0.616 0.637 0.653 0.397 0.442 0.096 0.279 

D 0.348 0.524 0.397 0.486 0.349 0.114 0.295 

0.405 0.634 0.442 0.349 0.625 0.195 0.632 

F 0.089 0.171 0.096 0.114 0.195 0.099 0.238 

G 0.236 0.581 0.279 0.295 0.632 0.238 0.887 
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FIGURE 5.3 - Normal probability plot of raw residuals 
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FIGURE 5.4 - Normal probability plot of standardized residuals 
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inflated from having used the same data 	in the clustering 

stage to select the model. An analysis o1' this kind is 

intended to be info: real in any event, and to form the basis 

for further examination of the data. The few large residuals, 

for example, draw attention to pairs of variables that 

require closer scrutiny, and one would want to judge whether 

the clusters in Table 5.1 correspond to meaningful groupings 

in terms of the definitions of the variables. 

These questions go beyond the scope of the present 

example, but we make one final point concerning the degree 

to which 	block structure model adequately fits this set of 

data. The single probability plot of Fig. 5.4 is only a very 

rough guide. Ideally the residuals, which are shown in Table 

5.4, should have no discernable structure beyond that impsed 

by the fitting process itself, but clearly there is some 

additional structure. 	Table 5.5 shows where the residuals of 

greatest magnitude fall, with residuals indicated by rank and 

negative values denoted by underscores. Since disproportionately 

many large residuals fall in diagonal blocks, we conclude that 

this particular block structure is more satisfactory for 

modelling correlations across rather than within groups. Also, 

we note that group F is rather different from the rest in that 

the within-group fitted correlation is small (.099), and it 

contains variables such as 39 and 49 which have excessively 



TABLE 5.4 - Standardized residuals (x100) from block fit 

7 8 9 12 14 6 26 27 32 34 35 53 54 20 29 40 55 56 IA 24 25 58 59 15 16 51 57 61 10 23 38 39 44 48 49 62 64 28 41 6J R5 66 
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65 

-5 

3 

-52 

-22 

-42 

-47 

-18 

4 

-10 

-13 

138 

143 

108 

111 

-49 

53 

-7 

-12 

-93 

-82 

-123 

-123 

-14 

18 

-48 

-44 

32 

92 

16 

72 

20 

8 

14 

12 

46 

38 

49 

44 

-53 

-82 

-73 

-82 

69 

47 

72 

67 

-75 

3 

-33 

-43 

78 

50 

78 

57 

-75 

-38 

-61 

-70 

15 

71 

46 

44 

-31 

-32 

-14 

-39 

-53 

-16 

-39 

-36 

-22 

-4 

-15 

-9 

2 

12 

4 

12 

-28 

21 

6 

11 

-66 

-41 

-56 

-54 

62 

61 

56 

59 

97 

102 

90 

90 

-46 

-23 

-35 

-39 

 48 

59 

28 

34 

19 

1 

8 

1 

-97 

-46 

-85 

-85 

-55 

-72 

-67 

-59 

-69 

-55 

-57 

-58 

74 

25 

33 

35 

58 

64 

49 

47 

-109 

-61 

-94 

-94 

83 

89 

SS 

611 

-3 

9 

-S 

-S 

-10 

-8 

-25 

-27 

15 

26 

11 

0 

-59 -205 399 385 14 -26 12 135 -12 -98 -2 57 0 43 -79 58 -48 81 -69 47 -17 -29 9 24 3 -44 72 108 -32 36 6 -28 -60 -61 45 24 -84 97 19 -9 25 

-7 65 -5 3 .4 -126 -66 -127 259 -146 -272 -159 123 -82 12 -28 17 -143 -123 9 -104 -63 9 76 59 -174 36 -78 -87 125 -138 -7 -85 -86 23 -47 -1.1 -114 -76 -291 -197  

-50 -22 -42 -47 -96 -126 155 -30 -121 478 222 117 -54 -84 98 148 227 -51 -6 142 171 127 . -109 -63 -36 24B 77 43 -18 -18 -12 173 61 -119 -83 52 121 214 43 -2 26 

-18 4 -19 .0 14 -66 155 -45 -47 135 232 131 -98 -216 7 39 127 -92 -35 104 123 207 -57 -18 112 254 6 38 -56 16 -64 160 34 -65 .-118 67 54 167 70 -1 -2 

139 14) 168 %11 135 -127 -30 -45 -76 -13) 52 99 13 -296 -125 47 -32 -112 -91 59 56 46 -97 -47 -69 52 11 44 -3) -14 -73 114 -96 -46 -23 36 -47 61 -86 -124 -90 
. 

-49 53 -7  .12 -12 259 -121 -47 -76 -170 38 4e 42 -165 -4 -26 79 -52 -32 226 91 139 -59 -49 51 206 17 10 25 119 -116 99 -146 -23 -76 -64 28 28 -45 -69 -116 

-93 -92 -111 -123 -90 -149 478 135 -133 -170 -154 20 -58 7 154 112 94 -151 -99 22 -28 0, -27 -69 -22 -38 147 14 -/3 -32 9 55 12 -199 -1 74 -1 99 42 11 32 

-14 18 -48 -44 -2 -278 222 232 52 38 -154 367 -74 -23 -149 -52 93 9 -77 -5 95 -39 	-16 -36 -47 14 138 85 01 45 113 21 -82 -122 49 24 -48 196 18 -9 1 1 

17 9. 16 22 57 -154 117 131 99 42 20 367 -73 -36 -31 -4 54 -76 -72 25 81 26 -26 -45 -3 21 122 196 26 129 79 44 -49 -126 58 -3 -7 237 32 5 94 

20 8 14 12 8 123 -54 -96 13 42 -58 -74 -21 -238 -68 -46 -437 14 -127 121 9 -15 -16 -37 -68 0 -16 3 -123 34 -124 -71 -8 -47 15 47 -69 32 -71 -70 -54 

45 18 49 44 43 -82 -84 -216 -206 -165 7 -23 -36 -218 47 16 -31 159 17 -42 -189 -231 -124 -90 -163 -162 127 49 93 -57 152 -113 -121 -104 91 172 -61 29 -31 -59 -72 

-53 -82 -73 -42 -75 12 90 7 -195 -4 154 -149 -31 -88 47 2)1 216 29 -194 -12 31 -57 24 45 40 -9 97 62 -37 -41 - 	9 -21 -19 -101 -29 78 79 60 173 1 30 

59 47 72 67 58 -28 140 39 47 -29 112 -52 -8 -96 16 231 91 -96 -8 -18 1 -134 36 49 35 39 -21 77 0 124 1 38 57 -137 -4 -118 -1 169 5 -21 53 

-75 3 -33 -47 -41 17 227 127 -32 79 84 93 54 -137 -32 216 91 84 182 172 125 21 -41 -53 70 134 27 83 -1e -31 79 87 -19 -104 -39 123 ID 37 44 -51 0 

70 27 78 5/ al -143 -51 -90 -112 -52 -151 9 -76 14 159 28 -96 84 9 -25 -163 -189 -73 -56 -228 -110 -71 59 72 -130 128 -62 -199 -52 -115 52 -114 -17 -5' -114 -116 

-75 -34 -51 -1 0 -69 -173 -6 -35 -91 -32 -84 -77 -72 -127 17 -104 -8 190 4 . 159 -89 -136 -95 -102 -207 2 -2 111 28 -73 169 289 37 -49 -163 19 -9 22 -158 -53 -70 

15 71 46 44 47 9 142 104 59 226 22 -5 35 121 -42 -12 -18 172 -25 159 177 115 -15 -12 -156 194 35 99 -87 -188 9-43 190 -18 -53 -135 51 7S 44 -4 -1 -89 

-31 -32 -34 -39 -17 -164 ,.71 123 56 91 -28 95 01 9 -189 31 1 125 -151 -99 /27 169 -26 18 47 413 97 42 -264 89 74 158 42 -162 44 41 227 251 149 77 119 

-58 -16 -39 -36 -29 -63 127 287 46 138 8 -39 28 -15 -231 -57 -134 21 -161 -116 135 169 120 143 97 291 164 -8 -155 0 -53 144 -19 71 -35 -43 92 101 1 13 -48 -107 

-22 -4 -15 -9 0 9 -100 -57 -97 -58 -27 -18 -26 -16 -124 84 36 -41 -73 -95 -15 -26 129 525 -6 -64 12 -63 -75 4 -190 14 78 2 -1 -64 -101 -72 -2; -73 -69 

2 12 4 10 24 26 -63 -IV -47 -49 -68 -36 -46 -37 -90 45 49 -58 -56 -102 -12 18 161 925 -12 -86 10 -72 -51 20 -342 66 09 44 SP -2, -108 -99 9 -122 -31 

-19 21 6 11 3 59 -36 112 -69 51 -22 -47 -2 -66 -163 49 35 70 -228 -247 -156 47 97 -6 -12 47 -123 5 20 50 -375 -87 163 -49 -71 -47 116 -42 6 -157 49 

-66 -41 -56 -54 -44 -174 248 264 52 206 -38 14 71 8 -162 -9 39 134 -112 2 194 413 291 	-69 -96 47 121 76 -78 190 -86 139 60 -91 83 12 216 204 164 -35 119 

62 61 56 59 7e 36 77 6 11 17 147 139 120 -16 127 97 -21 27 -71 -2 35 97 16E1_1) 10 -123 122 -69 51 55 -116 84 70 12 214 -89 -7 1E9 107 -33 -13 

0 7 102 99 .4 144 -74 63 30 44 18 11 85 105 3 49 62 77 91 59 114 94 41 -4 	-63 -77 5 76 -69 -4 -74 -92 58 94 7 -81 -115 -82 -111 -111 -249 -235 

-46 -23 -35 -39 -32 -87 -18 -56 -13 25 - 9 3 81 28 -123 91 -37 8 -10 72 21 -87 -204 -155 	-75 -51 29 -72 51 -4 161 124 92 2 41 -31 -79 -14 -52 -55 -146 -65 

48 ''.9 28 34 3R 125 -19 16 -14 116 -32 45 121 24 -57 -41 124 -31 -134 -73 -188 89 C 	4 20 SO 190 55 -74 101 -49 296 29 5 399 -156 193 209 44 241 225 

19 1 41 1 6 -138 -12 -64 -73 -116 0 103 79 -124 152 9 1 79 1.9 965 -43 74 -53 	-309 -342 -375 -86 -116 -92 125 -49 226 -217 -196 -162 -142 -142 25 -211 -1 -29 

-97 -46 -85 -89 -98 -7 173 180 114 99 55 21 44 -71 -113 -21 38 87 	-52 299 1911 152 11t 	14 66 -67 130 04 52 92 296 206 64 -56 25 -3 131 44 -3 81 16 

-55 -72 -67 -68 -60 -85 61 34 -96 -146 18 -62 -48 -8 -121 -19 57 -18 	-199  37 -19 42 -15 	78 89 163 68 78 94 2 29 -217 64 -16 122 9 159 92 125 26 224 

-68 -55 -57 -50 -61 -46 -119 -65 -46 -73 -199 -122 -126 -47 -104 -101 -137 -164 	-39 -44 -53 -162 7, 	2 44 -49 -91 12 7 41 5 -196 -56 -16 54 -65 -155 -222 -95 -114 -201 

70 25 13 35 45 23 -81 -118 -22 -78 -1 41 56 15 92 -29 -4 -281-115 -.63 -136 44 -'9 	-1 411 -71 83 214 -81 -31 199 -169 29 122 54 125 111 191 239 132 214 

50 64 49 47 24 -42 52 67 30 -66 79 24 -J 47 172 74 -118 123 	..2 19 44 41 -47 .64 -8 -47 12 -89 -115 -79 -158 -142 -3 9 -15 125 -21 -14 71 73 95 

- 
169 -61 -14 -44 -81 -3E0 18 1 54 -47 29 -I -48 -7 -68 -61 79 -4 40 	- 1 t2 -y 70 297 4:1

f
-101 -104 116 216 -7 -82 -14 191 -148 131 150 -1 134 112 -21 29 47 -19 33 

113 49 69 94 97 -114 214 167 SI 24 99 196 2)7 22 20 60 109 37 -17 22 43 251 191 	-72 -99 -42 2114 160 -111 -52 280 25 44 02 -272 181 -35 29 -51 -31 362 

-3 9 ,9 _9 19 -76 43 74 -06 -45 42 58 32 -71 -31 173 9 99 .97 -154 -4 148 1 9. 	-27 0 6 164 107 111 -55 44 -211 -3 125 -95 239 71 47 -41 ■71 -62 

-69 -9 -15 -24 -2 1 -201 -2 -1 -124 -66 11 -81 5 -39 -59 1 -11 -53 	1'9 -53 -I, 77 -4' 	-78 -112 -192 -35 -33 -249 -1'0 141 -1 01 36 -194 172 73 -15 -31 -71 53 

15 26 )1 6 2'1-117 22 -2 -90 -5l6 77 1 94 -14 -77 19 9) 0,-.18 -79 .99 119 -l.' 	-49 -29 42 139 -1) -215 -99 225 -29 16 124 -241 719 95 81 162 -81 53 

7 

8 

9 

12 

14 

6 

26 

27 

32 

34 

3S 

53 

54 

22 

29 

40 

45 

55 

11 

24 

25 

58 

59 

IS 

16 

51 

57 

61 

10 

23 

30 

79 

44 

46 

49 

68 

64 

28 

41 

63 

65 

46 



-138- 

L 

TABLE 5.5 - Locations of largest residuals, by rank 

A 13 C E F J• 
• 

1,5 
6,7 

.. 

__ 

3,9 
1 L  ._ , f 17 

_ - 
_ _ _ 

_ _ - _ 

i 

- 16 4,14 2 - 

8 	11 —`--- 
12  

13 

10 

-- 
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APPENDIX 

A number of definitions and formulas are collected 

here to facilitate derivations in the text. Equations Al 

through A10 refer to matrix derivatives, and the rest 

describe properties of a. SWP operator similar but not 

identical to Beaton's (1964). All of these formulas can be 

verified easily from first principles. 

Al. (Def.) If f = f(X) is a scalar function of the elements 

f of the matrix X, then d  is defined to be the matrix dX 

A2. (Def.) If the elements of the matrix X are functions 

dX of the scalar v, then dy 
(axii  
7T) • 

defined to be the m,--A -rix 

A3. If the elements of the square matrix X are functions of 

	

dX-1 	-1 d HX -1 the scalar y, then  dy   - X 	yi  X . 

A4. If the elements Xij of the matrix X-1  are considered as 

)xij 	ik tj functions of the elements of X, then 	- x x and 
dX
kt 

 
)x
kt 	x. ikx  

A5. If f is a scalar function of the elements of X, then, 

f 	f 	- df _1  - -X T  dal  XT 	d and ay 	-(XT)-1 2.1 	(X-T L. . 
dX 	 dX 



AG 	.--. log det(X) dX 

d 
A7. -al  tr(XA) = a7  tr(AX) 

A8. TA- tr(AXBXT) = 2ATXBT. 

A9. (Chain rule) If the scalar y is a function of the elements 

of the matrix X which are in turn functions of a scalar z, 

then 

dy 
=tr  (gi ZT) = 	(d u dY\  Ti) • tr 

dX 

A10. If f = f(x) is a scalar function of the elements of the 

vector x, and x = Ay, where A is a matrix of constE%Lts 

and the vector y may have fewer elements than x, then 

df 	nT df 
dy - dX " 

All. (Def.) If X is a square matrix then Y = SWP(k)X is 

defined by . 

ykk = -1/xkk 

Yik  = xik/Ixkk l 

Ykj = xkj/Ixkki  

yij 	xi j  - xikxk /xkk 

for i 	k 

for j 	k 

for i / k, j 	k. 

This operator combines Beaton's SWP and RSV, and is its 

own inverse. If xkk > 0, SWP coincides with Beaton's 

SWP; if x
kk < 0, it is equivalent to Beaton's RSW. 



Al. 	if the covariance 

then Eaa.b =  
covariance of 

Zaa 

1...r...p 

matrix 

Zab 

is partitioned as 

7-17  
is the conditional 

X l'''''Xr given 

Zalc&bbba 

variables 

Zba 

aa, 

the 

`'bb 

Xr+1"*"Xp 

-1 -lam  
aa Zaa` 

A13. SWP(a)E = SWP(1,. .,r)E = 	 

baaa- ibb .a  
, and 

aa.-1,) 

-17  
2-tb-b 

-1 - 
-ab bb 

-1 
bb 

SWP(b)7. 

A14. aVP(1,2,...,p)E = -E-1. 

A15. If a and b are complementary sets of indices then 

SWP(a)E = gWP(b)(-E-1). 
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