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ABSTRACT

A wide class of statistical models involving
structured covariance natrices is studied. The models are
def’ned in terms of howmogeneous constraints imposed on
populabion covariance matrices, with particular attention
to models with vanishing conditional covariances. Special
cases include factor analysis models, regression path
medels, linear covariance structures and linear inverse
covariance structures. Certain scale related properties of
maximaum likelihood estimates for this class are derived, and
nurerical algorithms for computing constrained covariance
estimates are developed. The final chapter considers ques-
tions of model selection, fitting and assessment using
certain cample statistics whose joint distribution is
approximately normal, and emphasizes graphical and heuristic
rather than formal techniques. To illustrate a number of
these points, a numerical example is provided which involves
observations on a set of 66 variables.
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Chapter 1 - INTRODUCTION

A majority of the standard multivariate statistical
methodology is based on assumptions of multivariate normality
in which population and sample covariance matrices play &
central role. TFurthermore, with the development of new methods
which relax normality assumptions (Dempster, 1971), it is
likely that covariance matrices, perhaps with slightly modified
definitions, will remain important (Devlin, et al., 1975).
While a sample covariance matrix may reprcsent a significant
reduction of an extensive set of data, i1f the number of vari-
ables is moderately large then the number of sample covariznces,
and of covariance parameters that they estimate, i1s still very
large. 1In order effectively to summarize the relationships
among variables and to cxpose important features of the data
(Tukey and Wilk, 1966) further reduction of the covariance
matrix will be required. Dempster (1972) offers additional
arguments in favor of parsimonious use of parameters in
statistical models.

In a sense, most multivariate methods can be regarded
as attempts to impose additional structure on covariance
matrices. Psychometricians have approached the problem
explicitly in these terms, with hypotheses of patterns and
symmetries (Guttman, 1955; Rock and Rargmann, 1966; 0lkin end
Press, 1969: Mukherjee, 1970). Factor analysis and simultaneous-
equaticn regression egnolysis correspond to lower dimensional

factorizations of covarience matrix; and recently some authors



have become interested in additive decompositions
(Anderson, 1G69; Rao, 1972).

A main cbjective of the present work is to draw
together many of these models as special cases of a general
structured covariance model, in which structure is defined
by requiring certain functions of the variance and covariance
parameters to vanish. Having done this we are able to derive
certain properties of the general class, and to develop some
unified approaches to estimation and model assessment.

Chapter 2 explores in some detail one such property
which essentially fixes the overall scale of the maximum
likelihood parameter estimates in relation to the ocbservations,
regardless of the structural constraints, and leads to a
simplification of likelihood ratio statistics. From one view-
point this is a direct conseguence of scale invariance, but
it also is shown to hold for certain members of the exponential
family which, because of the discreteness of sample spaces, are
not scale invariant.

In Chapter 3 the structured Wishart model is
formulated in general terms and a number of examples are dis-
cussed. A concise expression is derived for asymptotic
covariances (under normal theory assumptions) of statistics
that can be used to test structural constraints, and the con-
cepts of sufficiency, ancillarity and invariance are employed

as a guide for choosing appropriate test statistics.
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Numerical meximum likelihood methods for fitting
structured Wishart models are considered in Chapter 4. oOf
two iterative algorithms discussed, the first is essentially
an adaptation to the Wishart problem of a Newton-Raphson
procedure modified by Aitchison and Silvey (1960) to desl
with equality constraints. The second is an apparently new
fix-point algorithm based on a special property of the
Wishart likelihood function. In order to compare ccsis and
determine practical limitations, we report the results of
computer runs in which both algorithims were applied to each
of several numerical examples.

Because of the inherent limitations of maximum
likelihood methods applied to structured covariance models
and in the belief that these models can still be useful for
exploring extensiva and complex sets of data, we develop in
Chapter 5 some methods based on the asymptotic joint normality
of sample correlation statistics. One interesting consequerce
is that such dispérate models as thcse which hypothesize zeros
in Z'l on the one hand, and in 2 on the other, can be treatsd
very similarly in this context. The ideas developed are shown
to be relevant in the areas of model selection, fitting, and
assessment. Although the approach is based on underlying
assumptions of normality, it 1s recognized that the assump-
tions are often not satisfied in practice, so greater emphasis

is placed on the use of graphical and heuristic rather than

formal techniques. A final example illustrates a number of
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Chapter 2

SOME PROPERTILS OF MNAXIMUM LIKELTHOCD BESTIMATES

2.1 Introduction

)

1§t

In sevcral of the following chapters we deal with
p-variate normal probability models where the ponulation
covariance matrix is unkncwn but assumad to have some

newn structure, and we often work with maximum likelihood
estimates. The Wishart log-likelihood functicns that ccour
all involve a term provortional to tr(E—lS), where 2 ig the
Wishart matrix parameter and 3 1s a Wishart observation,
and 1n a wide variety of situations the value of this term

in the meximized likelihood i3 found to he exactly p, the

dimension of the matrices 2 and S. That is

(Z—ls) = P, (

N

+

N

=

~

where 2. iz a maximumn likelihood estimate of X.

Since this result occurs repeatedly for the
models considered, thz present chapter examlnes it in
some detail. We show that 1t generalizes 1in two apparently
different bul connected ways, and give examples of each.
Finally we discuss some consequences and interpretations,
and consider similar provertics of estimates calculated by

other methods.
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Bock and Bargmarm (1906) noted Tq. 2.1 in the
context of Titting multivariate normal covariance structuras.
We shall consider generalizations of it, but the proofs
of the theorems in this chapter are essentlally like
theirs.

: . . =1 . s
2.2 Genceralization of tr/Z 7S) = p to exponential families

The eguation tr(g_ls) = p i8 a speclal case of a
property of certain exponential families of distributicns
involving only homogeneous functions of the parameters.

We shall call a real-valued function £(x) of the vector
variable x homogeneous of degree p if f(Ax) = }pf(r) for any
positive number A and for almost every x, and we noie that
the fellowing three conditions are equivalent to esch other
(Fulerts theorem):
1. f(ax) = APT (%), a.e. X,
2. Df(x) = pf(x), a.e. X,

3. D log f(x) = p, a.e. X,

where D 1s the differential operator

B .9
D = Zkkk 6’5{‘; .

The main result of this section is given by the
fellowing theorem.

heorem 2.1

Suppose the multivariate probability density Tunction

f{y;#) belongs o an exponential family indexcd by the vector
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paraineter 2,

u
=
—

N
w
s

r(y:f) = exp { E; (9)o, (y) +c(?) + d(y)} ,

and suppose that the parameter space O is closed under non-

negative scalar multiplication. Further sucpose that the

17

almost everywhere differentiable with respect

ments. Let € == b(y) be a value of A that maximizes £(y;?)

in ths parameters 6 ""Qq’ and that c¢(6) and ak(G) are

L
[

over O for a given y. Then,

m
) o 1 3 I
/. e (y) =- 3 Del®) (2.4)
k=1
so that
£(y3®) = exp {c(9) - De(?)/r + d(y)], (2.5)
where D is the differential operator }; Qi o .
A
1 3
Proof

Since € is in @, so ig »& by assumption for any
positive scalar . Define g(n) to be log f(y;»8). Since

5 maximizss £{y;0) for fixed y, the fuanction g(a) must

attain its maximum at » = 1, and we have
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a1l T 0 = (Dak<“>)bk\}) + Dc(?).
1—:1

By Tuler's equation, Dak(ﬁ) = ra,

of degree r. Formulas 2.4 and 2.5 follow directly.

("), since a, 1s homogeneous

With one additional assumpticn about the form of
the exvonential family, a further simplification occurs, and
ve have

Corollary 2.1

If, in eddition to the assumptions of the theorem,

c(f) is the logarithm of a homogeneous function of degree

T, then,
m
Y (gb 3 = 1 26
L_,a"ii“)k<”])—_?’ ()
k=1

and
fly;f) = exp {c(€) - % +d(y)) . (2.7)

The procf follows from the fact that DC(F) = t,
which is a result cf Buler's theorem given above,

We note that the condition that 0 is closed under
multinlication by positive scalars is eguivalent to saying
that in all the models under consideration the parameters

have a free (unknown) overall scale factor.
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mxample 2.1 - Contingoney tahloe with Poigsson counts

We consider an r by ¢ contingency table of

[ EES

counts y = {yij} which have independent Polssen distri-

butions with pvaramcters ) = [xi o (A=, ..., vy J=1,...,¢),

J
and we wish to examine the plausibility of varicus hypo-
theses concerning the ij' (This is closely related to a

multinomial model in which N = 2 y.. is fixed.) The

Y4
probability density function is
—27‘. . y
1. i
(< Y: T 1
= r < o \ , N \ _ e :
exp L ,(1 3 11]/ NEE LJ7J_J LJIOD< 1j')J s

with the following correspondence to the exponential Tamily,

Egq. 2.3,

a, = log An. bk = V35

C:—}:'}\ij’ d:—.LE 1Og (y](jl)'

If we reexprees the model in terms of the natural parameters

of the exponential family, p = log %ij’ the density becomes

1]
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The new parameter space is Q =1]R'® which is closed under
scalar multivnlication. Now suppose that the various hyvo-
theses of interest correspond to subsets of O each of

which is closed under scalar multiplication. Tor instance

we might assume that pij = 0y + Bj for unknown parameters

oy and Bj’ which derives from assuming independence of row

and column effects. Then the assumptions of Theorem 2.1
are satisfied for the full model and the submodels, so the
maximum likelihood estimate p for any of ftThese models

satisfies,

T~ v pl
. dJ
Zpij Yij -0 () e >

and

il
it
®
o)
I_’.
C
N
ol
|.4
[}
|
;—_1
S
A"

£(y3p)

or, in terms of the original \'s,

fysn) = Z nyg (Log 2y =1)-



—ifr=

pramplo 0,72 - Txoonentlal rogsression

Supgrosce that the random voriable Yj has an

poncntial distrituvition with parameter xJ > 0, given by

1 , .
fy_(Yﬁ;xj) = 5 exp (—Yj/xj), (=1, ...,n),
J o ° J ‘
that the Yj are independent, and that the parameter xj,

lated to a p-vactor

C‘

which 1s the expected value of Y.,is r
()

Xj of concomitant (or design) variables through an unknowm

vector paramater 3 Dy,

N T 49
/\j"lxj {

P ,

where ¢ is a fixed number, positive or negative. The

likZzelihood of y = (yl,...,yn)T is
n n
fY(y | x:8) = exp - {: }z | xg 5] 74 Vs + leog ]T | yg A ]q‘}
J=1 j=1

Comparinz this to the gencral form of Eq. 2.3 we see that
| «T ‘

x: B | 9 are nomogeneons of degree
L&

the functionsa, (8) =
-q in the elemenis of B, and the function c(3) =

g T
log T' ixt 8! % is the log of a hcmogeneous function of
degree an., Derending on ¢ and X, the feasible parameter

clos=4d

693

Jdueys

o

space for B may be smaller Tlan'm but it is

under positive scalar multinlication, and we will only
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entertain subnypotheses thet place homogencous constbraints
on B.
A1l of the assumptions of Theorem 2.1 and

4

Corcllary 2.1 are seen to hold, and we conclude that any

mestimum likeliheocd estimate B satisfies,

N
o
YT ATy, ooy
L. J Y1 -q
j=1

and
.. N <1 a
£y, (¥ | x38) = e /jﬂll X5 B |

o~

Furthermore, 1f we denote a fitted yj by yj, we have

- ) ~ T g
.= F 7. : nT B
5;J p (33 J |

and
R n
-n -
i 7. 7:B8) = ..

If we use a likelihood ratio to compare two hypo-

theses HA and HB concerning p, we find,

1k (B, 3v) Vs
IJR = __*.é_’— = 7_}-3'—_1

1ik(Bysy) Jj=1 Yn 3

[Jamnn e

That ig, the likelihcod ratioc depends only on the ratics of

fitted values under the hypotheses,



~-16-

We note that if the exponential narametors
kj were linked to the design variables Xj and regroesalon
paramcters 8 by

T
%J = e¥D (Xj B),

then the conditions of Theorem 2.1 weuld not be fulfilled,
and the results would not hold.

Exampnle 2.3 - Structured Wishart models

The most importent example for subsequent chapters

3

is a model in which a rendow p by o matrix S 1s assumed o
- b A s s — 1« o s .
have 2 Wishart distributicn Rh(n: ﬁ”‘) , where 2 1s unknown

but reqauired te lie in a subspace o, of the space @ of all
positive definite matrices, and QC 1s assumed to he closed
under multiplication by any positive constznt. The matrix
S, Tor instance, might be a sample covariance matrix from

a multivariate normal distribution with population covariance

matrix . The likelihood function is

I_I
-
.
ri
—
i
\se
[@p]
—
il
wn
Y
)
e
[
ol
(_L
Py
g
dp.
—”
p——

.

which can ve rewritlten s
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Comparing the exponential family density Eq. 2.3 with
Eq. 2.10, we see that @ and y correspond to % and S,

resnectively; a, (€) corresponds to 013: the (i,J) element

k

-1 . . . ‘
of 2 7, which is a homogeneous function of degree r = - 1

in the variables (Gll’ Cpos +o e Gpp); bk(y)_cgrreSponds
to - % Sjis and c(f) corresponds to leg | 3 | 2 which is
the logarithm of & homogencous function of degree t =

np
2

and we conclude that if & maximizes 1ik(Z:;S) over QO’ then

A1l of the conditions for Corollary 2.1 are met

-1 pai = 2 t
tI‘(/ %) = Z OjJSJ‘j_ = - = (— ?‘.) =P (2.11)
15

We note that the exponential family under con-

sideration could equally well have been parameterized by

-1

2 instead of 2. Since the elements of 2 are homogeneous

functions of degrse -1 in the elements of Z-l, the functions
ak(Z_l) and exp(c(Z_l)) in the reparameterization are again
homogeneous and the same results follow anew.

Corcllary 2.1 can be applied in this way to any
Wishart model in which the parameter space QO is a sub-
set of the space of positive definite matrices defined by

a set of constraints of the form hl(Z) = ... = nq(Z) = 0,

vhere the h,_ are 211 homogenzous functions in the elements

k

of Z. The condition that 9. is closed under multiplication

0

by a positive constant follows immediately. This is a

very large class of models and includes many of the specialized
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models in’ commnon use in a nwaboer of areas of apnlication
These includc:

1. Medels in which 2 has a bleck structure, i.e. somc
or all of th= eclements Gii are equal toc each other in

J
diagonal and in off'-diagonal hlocks. These models result
from assumptlions of interchangeability of subsets of the
XK. variables.
i

2. Models 1n which elements of 2 are constant in
dizgenal stripes. Covariance matrices of this sort arise
for cxomple in the anslysis of stationary Gaussien time
geriecs. In addition there wight bz asscumptions concerning
the retiog of walues in consecutive stripes, & conctand
ratio corresponding te first-order autoregressive process.

3. Models which egpecify virtually sany kKind of pactern
hypothesls on the elaments pij of thz correlation maotrix.
Since the pij are homogeneous functions of degree zero
in the elements of 2, any functicn of them is also homo-
geneous. In particular, som= or all of the pij can bhe
assumed egual to known constants.

4. Linear covariance structures, as defined by T. W.
Anderson (1969) in which either 2 or &7 © can be represented
as a linear combinaticn with unknown weights of a set of
known symmetric matrices, say, 2 = & B + ...+ EkBk' The

seb QO of permissible €'s.clearly has the necessary free

scale parsmcter for the simplication results to hold, and
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the repriscntation in terms of homogeneous constraints

T
can be sheovn exnlicitly as follows., Iet g = (El,...,éK)*,
and let S and bi represent the distincet elements of 2 and
Bi r0lled out into column vectors of length g = %p(p+l).
Also, let B be the matrix whose columnns are Ei' Then the
linear decomposition of £ can be written as o = BE ,
which means that ¢ is constroined to lie entirely in the
linear space £/B) spanned by the columns of B. This in
turn means that the projection of ¢ into the space ortho-

gonal to £(B) vanishes, a property which can be written

as,
(T - B(B'B)” B

1

Similar rezults hold when s has & linear structure.

5. TFachbor analysis models, in which Z is decomoosed
into 2 = @ﬁ\GT + ¥ where A and Y are diagcnal, © 1is ortho-
gonal, and A has ranlt less than p = rank(Z). Since the
elements of A and ¥ are unspecified, it is clear that 2
has the free overall scale parameter reculred by Theorem
2.1 and Corollary 2.1.

6. Modcls with certain constraints on the shape or
orientation of the distribution of the variables X.. IT

i
2 = @1\®T is the eigenanalysis of 2, © can be intecrnreted
describing the orientation and A the shape of the distri-
bution, where "shape" means both size and relative spread

along the principal axes. The clements of A and 8 are

a.s



homogencous functions of degree 1 and O, respeoctively,
in the elements of 2. Hence LBg. 2.11 apnlies fto classes
of models that restrict C in any differentiable way, or
that restrict A in any homogeneous way.

7. Causal path models, which are characterized oy
the vanishing of certain conditicnal covariances among
the varisbles X.. These models are examined in some detail
in chaepters below.

8. As an example of a structured Wishart model which
docs not satisfy the reoulrements of Theorem 2.1, we
assume that some orv &1l of the variances Gii are equal to
knovmn constants. The parameters are then essentially
the correlations (which may satisfy Turther pattern hypo-
theses), and the functicns of them that enter the likelihocd

o

do not meet the homogena2ity reocuirements. ILet A” be a
diagonal matrix with thz known variances as diagonal elements.
Although Theorem 2.1 doecs not apply, one can emnloy argu-
ments like those in its prcof to obtain

_18) = tr(g_l S*¥) = p -~ tr pTe (s* -

~ ~

tr(Z

)

[ ge)

where p = A "2 A~ is the population correlation matrix,

and 5% is AL g AL,

2.3 Ceneralization to scale invariant families
-1

The property tr(Z "S) = p can alsc be viewed

as a gpecial case of a result that derives from scale
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invariance, which we definc as follows. Suppose that the
m-vechtor Y has dz=nsity functicon fY(y;F) with paramater
space ¢, and fY(y;f) is absolutely continuocus with
resnect tc Lebesgue measure on " ard differentisble with
respeact to each Vi and each Qj' We wish to examine

various hypotheses corrcsoending to subsets Ql""’

OJ
of Q. Define a group (i of scale transfomations on the

sample zpace by
. 1 Y = 1Y, for each 3 > O,

and assume that Q induces a group ((* of transformations

on 9,

such that every Qi is preserved under G¥ ., We will also
assume that each component of P(%) is a differentiable
unction of 3. The model defined by fY(y39) and any

one of the subseté Qk is then said to be scale invariant,
and we have the following theorem.

Theoren 2.2

-~

If ¢ is a maximum likelihood estimate of the
vector parameter in a scale-invariant mcdel with para-

meter space QO as defined above, and if 6 is held fixed

at €, then fr(y;F) satisfies,

“
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N i“ E‘) log fxf( y;(;»)
Dy log IY(y;ﬁ) = ) ' Y, = - m. (2.14)

k41 Byk

Proof

Let A be any nmeasurable set in the samnle gvace

and Jlet 3 be a positive scalar, then
pr(AY € A3") = pr(Y € A;F(l)).
Bguivalently, in terms of density functilong,
- oG \ a0 ()
r (v )d(ay) = fy(ysotn/)dy.

RN

. . , o L . m
The Jacobian ¢’ the transformation vy — 2y 1s %, S50
i
d(ay) = » dy,

and

m .
T8N = I (y;f“))-
Y Y
Taking logarithms and differentiating hoth sides of this

L

equation with respect to , we are led to,

™~
Q/
S
>J
o/
>’

Vi A
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asy 3

Now fix ¢ at the marimum likelihood cstimate for the

o~
hypothesis QO' Since O\A> € QO for each )\ by assumption,
and o (1) =M, we must have
o A
aw{y;f& ))
. =0 for A o= 1,
5PN
and Ea. 2.15 becomes
- J log 1f(y 7)Y
= - 7
Ve 1

& OV

which comnletes the proof.

Tc help clarify this theorsm we note the
following points. TFirst, scale invariance as defined
here is slightly nmore general than scele invariance

in a famlly defined by,

1 v o \
fY<y;f3, U) :—E)E g(—g N (:/,
since ¢ in the pression on the right must in general

be allowed to depend on O, Second, desplte the similarity
between Eg. 2.14% and Euler's formula, it does not follow that
for fixed g, f(yga) is homogeneous in the arguments yl;...,
Yy,+ The reason is that Eq. 2.14 holds only at the one

point y for which 8 was calculated. However, if 6 is

alloved to vary with y, then with one small additicnal

assumption (which is perhaps not strictly necessary)
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f(y;°(y)) is homogeneous, as shown in the following

theorem.

Theorem 2.3

Under the conditions of Theorem 2.2, if QO can
be reparameterized in a neighborhood of a(y) in a con-
tinuous and differentiable way by a vector ¢ whose elements
are not subject to equality constraints in that neighbor-
hood, then the probability density function fY(y;g(y))
is homogencous of degree -m in Yis oo s ¥y
Proof

~

@ (y) corresponds to ¢(y) in the new parameteriza-
tion, and €(y) = 6(o(y)). Writing g(y) = log £(y;€(y))

we have,
Dg(y) =

~

B ’—Zyk d10gf (Ay:6 (1Y) . E ologf{ny;€(o(ny))} 653.;

oA
_k Ve ] a@j A=l

~

Now the derivatives of log(f) with respect to $j are zero

by the maximum likelihocd conditions, so the second
summation is zero. Also, the first summation is equal to

-m for A=l by Theorem 2.2. Hence Dg(y) = -m for almost

all y, and it follows that f(yga(y)) is homogeneous of degree

-m in yl,...,ym.
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Example 2.4 - Structured Wishart models (cont'd)

A1l of the Wishart models discussed in Example 2.3

are scale invariant., since the transformation g: S — AS

induces g¥*: 3 — Z on (0., Differentiating the log of the

|

probability density, Egq. 2.9, with respect to S we have

dlogf(S3;Z) n - (p+l)
a5 B 2

-1 -1

5 . (2.16)

|
wn

gl
2

Before applying Theorem 2.2 we must take into account the
symaetry of 3. Although S is a p by p matrix, there are
only #p(p+1) functionally independent elements, which we

can take to be the elements in the upner triangle, including

the diagonal. Then each element of S is a homogeneous function

. 1 .
of degree 1 in these ép(p+1) elements, and we can show

- Qlogf(s) . 0logf(S)
}L _ s, = EZ _ s, ., (2.17)
= dS. . +] . os., . -

1] 1J 1, L

where the derivatives on the left hand side take account

of symmetry. The correct value of m in Eqg. 2,14 1is

roj

s5p(p+l) and combining ELgs. 2.14, 216, and 2.17, we have

-p(p+1) dlogf(5;2) l
—_— tr‘{ g
@ 95 J
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It follows that tr(Z S) = p.

The structured Wishart models described in

‘xamples 2.3 and 2.4 can be derived from normnl models

in which the population moans are unknown ana unrestricted.

The Wishart likelihocds can be eguivalently thought of as
nargioal or conditional likelihoods. As an example where
Thaorem 2.7 does not apply but scale invariance does, we

consider the normal model i1tself in which there may be

restrictions on the means as well as covariances.,

Exsmnle 2.5 - Wermal model with structured mean z2nd covaris:

Supposc that Y.

; (i=1,...,n) are independent

ncrmally distributed p-dimensional vectors with commen
mecan vector y and covariance matrix 2. The parameter

space for the full model is Y = TR°x0 where £ is the space

of positive definite matrices. We want to compare ths full

model to submodels that impose homogeneous constraints
on both pp and 2. Let Y be the n by p matrix whose rows

are Y? and let M be the n b matrix whose rows are all
17 y P

egual to HT. Then the probablility density function is

A~ ~—~_'1 r‘p - ar
fY(y;‘L;_,) = eXD - fl}'tI {L (Y"‘:M>—( "1"_‘)} - Tg' lOg
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a.

This 1s an exponential family, but tho functions corresponding

to ak(O) are not homogenceocus of the cawme degree in the

elements of  and 2, so Thzorem 2.1 does not appily.
Vevertheless this model is scale invariant,

the transformation g: Y — »Y inducing the transformation

X —1 —2\—1 » : ~

g% (W, 2) = (e %) on the paramcter gpace, so Theorem

2.2 does apnly. Leb (i, 2) be the maximum likelihood

estimates over some homogeneous subspzce YO<: V., Using

matrix derivative formulas A7 and A8 from Appendix A4,

we have

510gf(ngu:7) ~ oo
oY

and from Eq. 2.14, noting that the proper value of m is

now np,

)
>

e

Alogf (Y3,
np = tr {

- ) 1 -~
Y’ } - - tr(v-T) 3T
dY

In order to simplify this result furlher we can

write S = % (Y-M)'(Y-M) which is a (biased) mean squares

~

and cross-products matrix corrected not for the usual

m

ample means, but for means estimated according to the
constraints. Then applyilng Lemma 2.3 below, Bg. 2.19

becomes,
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tr(g“]g) = D, (2.20)

which 1is analegous to Fg. 2.1,
t is reaqulred to complete the
derivation 1is

If Y is an nxp randcom matrix whose rows are
independent observations from 2 multinormal distribution

with unknown mean and covariance,
: — M slel TV =1 T/ 15 — 5
EY =M end E(Y-M) (¥Y-1) = nZ,

where M and 2 may be subject to homogeneous restrictions,
and if M maxlimizes the likelilhood for some fived estimate

o~

2 of Z, then

The proof follows the pattern of other proofs
in this chapter by writing the likelihood as
f (y-xﬁ, 5), differentiating with respect tc 3, and
setting the rcsult to zero for \=1.

2.1l Generalizaticn to 2 class of fitting criteria

The foregoing sectlons have dealt with a single
estimation criterion, maximum likelihood, and several

families cf probability models. We now fix our attentlion
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on the fémily of structured Wishart models and consider
various possible estimaticn criteris. 1In particular, we
show that maximun likelihood, least squares, and generalilzed
least squares are all formally spccial cases of a general

~ -
. . B . -1

criterion, and that the condition tr(Z ~S) = p is a specilal

case of a relationship that holds more generally.

For a fixed sample covarianc atrix S, the basic
problem is to {ind a matrix 2 in a given homogeneous set
24 that optimizes some objective function, gi(£3S). Maximum
(Wishart) likelihocd corresponds to minimizi

ML: log

unweighted least sauares requires minimizing

LS: = tr(32°-29) + Ftra©

=
i
p=
T
—~

and generalized least soguares in which the squared deviatlons
of Oij from Sij are weightaed by the inverse of their asymp-

totic covariance matrix, leads to minimizing

cLs: ber(z H(3-9)1° = tr{ -3 + 2(=715)%) 4+ .

Apart from terms not involving 2, these last two are clearly

special cases of



( e
C)(/SSP‘)’a”b) = LJ_" 1:0_%-_ (i;_:‘(d.‘{u-), S(b 1)>
1 ) N .
T a TSI L) } ) (2.22)

where a and b are positive or negative integers, and an
expression like <Z(2),S(?>> means 28z3. In fact the
ML criterion also fits the form of g(2;3,a,b) if the
notaticnal conventions in the following paragraph are
adopted.

If X is any square symnetric matrix with
cigenvalue decomposition X = HAH, and f is any analytic

function, let £{X) be the mutrix-valusd function

X}

P(X) = E diag (£(n;))H.

In particular, the matrix logarithm function log(Z) is
well-definad for any poesitive definite Z, and its inverse
is the matrix expcnential function. It follows immediately

that

Furthermore, as in the case of the scalar logarithm we

have




1 .0 . i S
so that in a formal sense s 57 iz leog %, apart from a

@

"eonstbant” term. Note cspecially that the formzl rule
for differentiating 2 power works properly for the log
. 1 . . -
expressed this way, when 0= 1is taken to be 1. Foz
X 1
o <0 . P ; -

consistency, we define Z° (without the factor 6) to be
the identity matrix. (See Eg. AG.)

With these conventions establiched, Ig. 2.21

becomes

1 <0 -
ML tr{ 'C—)- 2 - 2
which is in the form of g(Z;S,a,b).
Now letting 2 be a polnt in the QO that naxi-
mizes g, and observing that the derivative cf

g(n 238,2,b) with respect to » must vanish for )=1, we

have

. {<i(a+l)’s(b—l)> —<<i<a>5s(b)>} - 0. (2.23)

This is the generalization tc g(2;S,a.b) of the

&\
s . N N
relationship tx(2 7S} = p.
Table 2.1 summarizes results for various values
of a and b. The cases indicated by * require some
interpretation. LS* is simple least squares applied

. ~14 ij . o .
to the residuals o079 - s, @rs* is generalized least

squares applied to the same residuals, but using the fact
-1

that asymptotically the covariances of elements of 8
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bear the same relationship to ™ as the covariancces of

elements of S bear to 2. ML* can be interpreted as

. . S . R .
mazximum Wishart likelihood il S is assumed to have

J]

Wishart distribution (which it dees ssympltotically).

m order for <2(®)g(Bh anq (@tl)g(b-1)y
hoth to be expandable as alternabting factors of 2z and S,
the values of a and b must be restricted to the region
outlined in Table 2.2.

Returning te Ta. 2.23 and Table 2.1, since we
can interpret tr{XY) as the inner croduct of two vectors
in Fuclidean TR’ space, the last eguation in cach row of
Table 2.1 is really an orthogonality relationshiin. In each
cage the vector of residuals (on scme scale) is orthogonal
to Titted values (on a possibly different scale). Vhen ths
two scales avre the same, we note the following interpreuation.
If A and B are two peluts (vectors) in Euclidean space and
A 1 (B-A), then the point A must be on the hypersphere
whose diameter 1s the line segment from O to B. In the
LS case, fcr instance, 5 must lie on the hyverspherc whose
diameter is G, 3

Finally, we note an interesting relationship

between GLS and ML Since ZGLS minimizes the function

2

-1
s-I)° > 0,

n(z) = tr(s



we can euploy the GLS line of Teble 2.1 to obtain

o s-1 [ad -1 (. - t7 Al
h{Zgrg) = B Fgrg S 8 - 1) = O {3gpg 8 - 1)
o]
o 5 «
tr(“GLS 5 - T).

c-1 : ; a-]
(

Thus, tr(=Z S) is always less than tr(Z.. S) by an amount
- (_T.LIS 1L

M (2arg)-

2.5 Conseoguences and internratations

As a theoretical point the provnerty developed
and generalized above 1s interesting in itself, but we now
consider ways in which 1t provides usceful insight intc ths
structure of models for which it hclds.

Pirst, consider the homogencous exponential

models satisfying the conditions of Corollary 2.1, with

stimation done by maximuwa likelihood. Since the quantities
8y = ay(O) are the exponential paramecters of the mcdel and
™
bk = bk(y) are the sufficient statistics, the condiftion
kaka = constant ,

can be interpreted to mean that the length of the projection
of the estimatzd vector a of natural parameters on the

vector b of sufficient statistics 1s constant.
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The ma consequence of this result is a
simplification of likelihood ratio statistics that occurs.
If two competing submodels are defined by subsets QA and
QB of the parameter space, and if gA and EB are the
corresponding estimates of the parameters, then under
Corollary 2.1 the likelihood ratio statistic for testing
A against B becomes

v3f,) . -
LR —:_; = exp [C(GA) - c(@B)}

i
H ' H
/\ Ve

For the exponential regression model in Example 2.2 i1t
was shown that LR 1s consequently Jjust the product of
ratios of fitted values. And for the broad class of
structural Wishart models in Examples 2.3 and 2.4 it

follows that the likelihcod ratio statistic 1is

det(iA) n/2

IR = S . ZEm

det(ZB)

This means that LR depends only on the ratios of eigen-

values of ZA and %B. Insofar as each normal distribution
corresponds to an ellipsoid in p-dimensional space, LR
depends only on the "shapes'" and relative''sizes'" of the
fitted distributions, and not on their "orientations"

as determined by the eigenvectcrs. Nor does LR.depend

on the locations of the fitted distributions, since the
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property was extended in Lxample 2.5 to models with
structure in the means. This principle has been
generally overlooked in the statistical literature,

since authors who develop various Wishart models with
specialized structure proceed to calculate the likelihood
contribution from tr(g—ls) in each case, always obtaining
D.

Finally, we indicate the possibility of using
the results of this chapter to compare maximum likelihood
estimates of ¢ with estimates obtained by other methods.
If we agree to compare two estimates El and 52 by computing
the guantity

~

1) - :1]{(62) }bk(y),

joX
—~
D
=
N
Ii
™
o
——
Q
=y
DR

which is essentially the length of the projection of

a(”,) - a(0,) on E(y), and is in the Wishart case

S | -

then the position of GML along this coordinate direction

is fixed and known, and the distance from any other

~

estimate to GML can be obtained without calculating

pML itself. The principle can be used in reverse as a
computational aid. If, in a large and complex problem, an
iterative calculation 1s to be used to obtain a maximum

likelihood estimate for 2 so that a good initial value
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Z(O) will be helpful, one might first calculate, say, a

least squares estimate ZLS’ and then derive E(O) from

~

Z1q by requiring ur(2(6> S5) = p to hold. This could be

accomnlished by rescaling ZLS or by projecting ZLS

into

-1
the linear space defined by tr(Z "S) = p.

-



CONSTRATIIIED VWISHART MODELS

3.1 Introduction

Chapter 2 examined some preperties ol estimators
for certain genzral models that have cither an <Xponential
or a scale invariant structure., We now focus cn the su
class of gtructured Wishart models discussed in Ixamples
2.3 and 2.4, working primarily with their forrulaticn
terins of functional constraints among the elements of the
Wishart pavameter matrix., We first describe the gencral

T

model and o number o

gpecial cases. We then develop some
asympltotic formules for use in subsecuent chapters for
model testing. The chanter concludes with a discussior of

the limited extent to which the principles of minimal

2]

”:uffj_ :-LG‘Q

(@]
0

y, ancillarity and invariance can be

"

O]
)
o]
T
—
1
(@]

7

s c¢f models.

[_}
©
"

to this ¢

3,2 UGeneral formulation

Suppose that ths random pxp matrix 5 has a
. R . 1 o - )
Wishart distribution Wp(n, q %), and that the parameter
matrix 2 1s positive definite. The probability dencity

function is

£ (S;2) =

-5 (n4p=1),5np 5P (p-1) N7 n+l-i )
n_® P o:NP i PP | =1 @ I r (_4?_:



- .
v

which leads fo a likelihood funclion for Z pronorsicn]
to

1ik(538) = exp 2 {log | 271 - tr(z7te)). (3.2

n
2

-
},_l
O
~l
O
e

Following the gecneral approach taken by Silve
Section 4.7), we shall be interestbed in a general model

orrasponding to a parameter space

[}

0 = (2: 2 is positive definite],

and in restricted models 1In which the elements of 2 satlis

[\/

i

certain constraints of the following form. If h(Z)

(2),...,h (2)) is a vector-valued functicn mapping v

.
Y)

O IRT, then

)

That 1is, 24 is the intersection of 9 and the null spzce

of the function h. Further assume thaet the functicns h.

¢

i
are continuous, differentisble, and homogencous in the
elements of 2, that they are functlonally independent,
and that 2 is not empty.

It follows imreediately that Q. 1s clcsed under

0
multiplication by any vositlve constant. This meodel is

essentially the one discussed in Examples 2.3 and 2.4

where it was shown to be a2 scale-invariant =xponentizl
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Tamily compesed of honogencous funcltlions and 1t encompassas
all of the special cases of Ixample 2.3. We note tha
unconstrained parcmeter space £ 1s an open convex conical

region of Zﬁg where g = %p(p+1), and that QO ig in genceral
a g-r dimensional nonlinear manifold which is not convex.
(If the eguations hi(i) = 0 are linear or eguivalent to a
set of lincar equations then Q, is lincor and convex.)
When necessary we shall denote the unknown true 2 by Zt

to distinguish it from other points in & or

-

The constrained covariance model thus defined
can be compared to the model formulated by Brovme (197&),
wno writes 2 as a function of an unknown vector pavamectsr
¥. Tha two approaches are formally equivalent since ¥ cun
be taken as an arbitrary parameterization of QO’ but Trom
a practical viewpoint, the model appropnriate to a parti-
cular problem may be easy to write down one way and
extremely difficult to formulate the other way. This point

vwas made by Altchison and Silvey (1960) who refer to formu-

lations in terms of constraint equations and freedonm
equations. Since many of the constrained conditional
covariance models studisd in later sections cannot be
easily written in terms of a vecltor », we shall work
primarily with the constraint formulatilon,
Although the model described above is defined

in terms of Wishart distributions, in most cases the
masrix S will in fazft be the sample covariance matrix

L

of a set of n observations of a p-variate normally
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it ot ‘o - T
distributed randowr variable X = (X],...,X ) with

par

covariance matrix y. TFurthermorve, X wmay reprosent either
raw observations, or residuzls after Titting some pre-
liminary linear model, with an appropriate adjustment to
n for the number of parameters fitted.

Tt must be stressed that to study the covariance
joint ncermrallity 1is

o

structure of the variables Kj and assume
essentially to study only linear regression relationships
among the Xj‘ Als0, although the model as described
reauires all the Xj te be randem, there are m=zay situations

in which some nonstochastic and design variables can be
accommodated. These are caczes in which the ccenstraints
hi and any test statistics dopnend only on conditicnal
covariances of the stochastic variables given subsets of

the fixed veriabiles.

Example 3.1 - Block structuare

n Certain biological and psychological appli-
cations it is not unreasoneble to assurme that a set of
random variables can be partitioned into subsets such that
the variables within each subset are interchangeseble wWith
recard to their joint statistical behavior (Arnold, 1973;
Elston, 1975). For example, I, X,, and X3 might be
measurements of some attribute on each of three brothers,

and XH’ X5 and X6 the measurements for three sisters in

families with thiree children of each sex. An immediate
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conzeguence of Interchangeability 1s that the population

covariancs matrix of these varlables has a constant-in-
blocks structure, =.g.
a b b e e C
b a b e e e
b b e e e
2= -
e e e C d d
e e e d C d
e e e d C

When sanvnle variances are all standardazcd to 1L sc that
covariances become correlations, this becomes the intra-~

class correlation model studied by Fisher (1921) and othars.

The

93}

implest case of course hes a single block, L1.e., all
coryelations agre equal.

2

The block structure model can he useful in
exploratory deta analysis when there are many varizbles
> J J o

avallable and 1t is desired to choose & represgentvative sub-

)

set of them for further work. One poscibility iz to find
an aporopriate partitioning of the varlables and celect
ne representative varieble from each group. This will

be illustratad in an example 1n Chapter 5. The advaniagss

b

of proceeding in this way rather than taking "vest'" linear
combinationz of the original variables as reprssentatives
(as is done in factor analysis, principal componont analysis,

L

or canonical correlation analysis) incilude the fact that



~5—

e

the cheoson variableg retain a direct meaning 1n terms of
[

the original system, and that whatever further analysss

cy ™

are done may be repeated on other siwilar sets of data
without having to collect and process such a largs se

of variables.

o,
(D
|_J

The two equivalent formulations of this mo
in terms of constraint eaustions and fresdom scguaticns
are obvious. We note, however, that since the numver of
free parameters is relatively small, the nunber cf con-
straints 1is large.

xample 3.2 - Vanishing covariancss

One obvicus way to reduce ths effective number
of covariance parameters is to reguire some subset of the

covariances (or eculvalently the correlations) to be zero,

m

Constraints of this sort are clearliy homogeneous. In
normal theory framework each vanishing covariance correzponds
to the fact that a pair cf variables are marginelly inde-
pendent. Hills (1969) has used this idez in an exploratory

analysis of & set of data swmarized by a 10x10 szmple

ool
o)
A

um 211 repulaticn correlaticns

03]

~
)

o

correlation matrix., He

of veriables wnese

(..J

to be zero except those between pa
sample coHrrelation differs from zero by scme threshcld
amount that is statistically signifiicant.

Example 3.3 Covariance selection

In contrast to the last examole, we mznticn a

class of models proposed by Dempster (1072) in which elzmants
Py - A - by ~ Fi
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N

of = are assumed to vanish., Dempster also discu

~

585es -

U

data dependent procedurcs lor selecting appronriate subsets
of {Oij] to set to zero. Motivation for this model derives
partly from the fact that the elements of 2_1 are the
natural exponential parameters of the probabllity model,
i.e., the functions ak(F) in the notation of Scction 2.2.
Hence, setting certailn Ojj to zerc removes parameters in a

natural way, and also reduces the dimenslon of the sufficient

statlistic b Clearly this 1s alsc a

= (s Sarms e .38 .
( 11° 712’ ’”pp)
Wishart model subject To hcomogenecus restrictions.

Dempster does not give an interpretation in terms

of independence of the varianles Xl,...,X?, but by observing
that
12 ““12.¢ ‘2 2
) = - . 5 k] (3'_))
c o o
11.c 22.¢c 12.c

vwherc ¢ 1s the index set {3,4,...,p), we see that each zero
. =1 . s .
in 2 corresponds to conditional independence of two

variables given all the other varilables in the model.

3

Although Dempster has proposed the covariance

(

selection model partly as a data analytic tool, 1t suffers
from one serious drawback in this regard. When studying
complicated sets of data it is not unusual to have a large
number of variables available, and one often considers

including additional variables derived from the original
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sel by cozmbiuing and tranaforming thom in various ways.

An lrportant initial task is to select a subset of

variablzs to analyze, and having done this one 1s rarcly
able to say with certainty that exactly the correct sev

has been chosen. When dealing with covariances directly

as in Exemple 3.2, the consequences o this selection are
minimized by the fact that the marginal covariance matrix

of any subset of variables is just the corresponding
partiticon of the overall covariance matrix. But when one
takes Dempster's epproach and studlec the inverse covariance
matrix, the vhole set of parameters, and in particular patierns
of zeros among them, are affected by the inclusion cw
exclusion of additional variables. The prchlem becomes
acute, Tor instance, when the sample covarisnce matrix is

singular and thus not invertible, which can occur when the

number of potentially interesting variables exceeds the
numter of chservationsz, or when some variables are exact

linear comtinations of others. The latter situation occurs,
for erample, in the data example that Hills presents. A
close look at his correlation matrix reveals that among

his ten variables, exact linear 1dentities hold between
variables 1,2 and 3, and between variables 7,8 and 9.
Clearly, two variables must be rcomoved before Dempster's
model could be apnlied, and considerations external to the

data must be invoked to decide which variables to exclude.



Trarmle 3.5 - Causal woth wmodel

Sewndl Wright (191¢; 193&) proposcd the us~ of
simple diagrams to repra2gont the causal links among &

set ol random variables, in which nodes represcent veriabl

e
and arrcwe represent the causal paths. E.g.,
a.,
31
1T TR X5
\\ s
au 1/
a
32
N
/ N
[ e e e e g N 30N
- i 1,_) . (.) . {/
2 20 |
Assoclated with each path is a number called a path
coefficient which measures the strazngth of causation

alcng that path. The idea is intuitively attractive and
has been discussed by several authors subseaquzntly

(e.g., i, 19563 Turner & Stevens, 19593 J. W. Tukey, 1954
Blalock, 1958). Additional assumptions are required in
order to dcfine a complete statistical model, a sufficient

set being the following:

i) All causal effects are linear,

‘r_h
=

1) Bach variable is measured from its mean,
11i) Each variable can be written as a linear combination
of the variables that point toward it in the

diagram, plus a random error term.
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iv) The random error toims are uncorrelated and have
Tinite variances tnich are constant across ovser-
vations,
The case of corr:lated crror lLeyms can be Tormally accommo-
doted by Iintrecducing additional (unobservable) variables
.S comnorn causes,

With thesgse assumptions a path dlagram translates
into a set of simultancous linear regression eguations which

can be written, for the diagram 3.4,

SRR = £

—~
(o)
-

\ 0
~

a31X1 4 5070 4 a33A3 = 53

0
ro

' N —
aul.u.l ! + a..}l)_lXL‘ = &

n

or, in metrix notation.

=
]

il
tm

(3.6)

With aporopriate scaling the errors €1 all have variance

equal to 1, and the covariance matrix of X is
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The modsls thus defined are forwnlly saoulvalont
to tha simultancous linear regression cystems studied in

e T NI
econometrics (Christ, 195

C

V. he egquations 3.5 are linear
) 1

T
structural eguations, and Ea. 3.0 1is the reduced form.
However the reverse mapping of sitructural caquations to

path diagrams 1s not unicue. I prior knowledge is avall-

hossible divectlons of causation

—

[

able Lo restrict the
(usually in the form of 2 partial ordering of variables
in time), then ambliguity is reduced, but nol necessarily

BN

Feor wcdal zelection and testing it is the missing

o

ilesram that are of interest, each

\

paths 1n the causal

I'e

missing path corresponding to a zero 1n a Tixed positilon
of A. Since the =lements of A are homogencous functlons
(of degree %) in thz elements cof 2, a vanishlng path
corresponds to a homogeneous constraint on 2.

In summary, then, with regard to the joint distri-
buticn of the varliables Xl""’xp’ there 1s an equlivalence
between linear czusal path diagrams, systems of simultaneous
linear regrecsion equaticns, and constrained ccvariance
models in which the constralints take the form of zeros In
a certain factorization of Z. These constraints are
homogz=necus, so with the additional assumption that the
error distributionsare normal, such models are cxamples

oi the constrained covariance model defined at the

0

pter.

beginning of this ch
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Comparing causal path models with the covariance

selection model of Example 3.3, we note that the two classes

of models are for the most part distinct: zeros in 57t do

not generally produce zeros in the ATA factorization of

-1, nor does the reverse hold. Onz interesting special

Z
case where the two classes of models do overlap 1s the
following: Supvosc that among the variable Xl"“’XD’
direct causal links connect each variable to the g
variables immediately following, but to no others. Then
the matrix A has non-zero entries on the major diagonal

. . r-w-l
and on g subdiagonals, with zeros elsewhere, and 2 =

ATA igs non-zero on the diagonal, on g subdiagonals, and
on g superdiagonals. The representations in terms of zero

patterns in A and in Z-l are completely eguivalent.

Example 3.5 - Non-cyclical causal path models

An important special case of Example 3.4 occurs
when the causal path diagram contains no closed cycles.
Tn this case the variables can always be ordered into a
list in which all paths of causation point downward in
the list (a2lthough the ordering is usually unique only up
to permutions within certain subsets of the variables).
If £ is the covariance matrix of the variables so ordered,
then the matrix factor A in Eq. 3.7 1s lower triangular,
that is, 1t has zeros above the major diagonal, and is the

inverse of the Cholesky decomposition of 2.
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[Fach missing path in a non-cyclical path model
has an Interpretation in terms of conditional independence,
as described in the following lemma.

Temma 3.1

IT X is a px1l vector of random variables whose
distribution is determined by a non-cyclical causal path
diagram of the kind described above, and Xi are ordered
as above, then a component variable Xj is conditionally
uncorrelated with all predecessors which are not immediate
causes, given those variables which are immediate causes.

A proof of this fairly obvious lemma can be

based on the fact that an element aij of A for i > j

te —a"? fima . .
is -a;% times Bij-l?...i—l’ the multiple regression

coefficient of Xj when Xi is regressed on Xl""’xi—l’
(Dempster, 1969, p. 157) which in turn is equal to
®i5.10...1-17 %312, . .i-1"

Tt follows that a non-cyclical causal path
model can be completely characterized as a constrained
covariance model in whilch the constraints are all of the
form Oij a = O, where the conditioning set a depends on
i and J.

Example 3.6 - Path models containing cycles

There has been some discussion in the literature
on whether a set of random variables representing measure-

ments of an actual physical system can ever logically be
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be said to have a closed loop of causation (Tuiner &
Stevens, 19593 Wrisht, 1950). Neve=bheless such models
do exist formally as sets of szimultancous regression

equations, even though their interpretation as causal

systems rcaoulres some carc., Conslder the Tollowling example:

X

/J 2\" /P‘,i(:?
N o = [}x

—~
w

<0
S~

It is falrly easy to show that Lemma 2.1 extends
to any variable such as XS which 1s mnot itself invelved in
a closed lcocopn. For the purpose of the lemme, the variables
need only be ordered in a way that puts those variables
wnich ave directly or indirectly affeccted by X5 beyvond
X5 in the 1ist. TFor instance, elther of the following

orderings would suffice:
(Xl’XE’X3’XM’X5’X6’XT’X8)
or
4 ' hvs
(XE,XB,Xu,kl,XS,XS,XY,A6).

The principle of conditlioning on variebles that
are immediate causes in order to preduce conditional

independence applies In some cases to variables Involved
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in closed loops. . It works for instance when. there is a

N
N/

single loop:

X

3
X —-u———m——Xu
Here, 013.25 = 0, 024'31 = 0, ..., 052_14 = 0. However
it fails in
a XB
3l
a a
43 2
‘ea'LI.Z\X

where the only conditional covariance that vanishes
identically is 913 04 (which means, incidentally, that

13 0). In this second example,

o o 2
O13.4 = Bp3lypdyy/ (liay; ta) e 0a54)

which is not zero unless either X, is independent of the rest

(341 = 0), or the diagram degenerates into one without a

closed cycle (a23 = 0 or ay, - 0).
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B3P B,

;

These examples scrve bo show that despite a
close connccetion betweesn conditional independence and
linear causal path models, if closed cycles of causation
are allowed then the effective covarisnce constraints
cannot necezsarily be written as vanishing conditional
covariances.

Txemple 5.7 - Conditlional covariance constraints

L)

In one sense Ixamples 3.2 and 3.3 are at
opposite extremes as special cases of a mors general
Wishart model which i1s constrained bty having cne or more
conditional covariances vanish: in Example 3.2 the con-
ditioning sets are empty and hence the smallest possitle,
whereas in Example 3.3 each contains all the othsr variables.
The non-cyclical path models (and some with cycles) are
intermediate batween these two extremes. The general
rodel, which is discussed in later scctilons, can be forau-

lated as a Wishart modzl whose matrix parameter 2 satisfies

0]

a set of r homogeneous constraints,

h'l

L{.

(2) = o, . =0, (k=1,...,7),

vhere i, is not egual to j the pairs (i,, ] are distinct
k 9 Jx b (L)es Jyc) .
for different k, and the conditioning sets may be empty or

may overlap in any way.
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Tt is worth noting that the spocification of such
a model 1n texms of ceondifional zovariance constraints is

Fal

not always unique. For instance 1F there arce four variables

with twe con

¢!

=
Jav)

aints given by

= 0, and Y = 0,

13.4

thern the first constraint can equilvalently be written as

o)
It
Q

o=

i
Q
J
)
=

:)

SN

w
I
‘._l
N

()
[y IS

W
0
L

Then by symmeatry, the second constraint can be re»dl

o~

D
<
3

3.3 Asymntotic covariances of Tunchtions of S

Subsequant chapters conslilder metheds to test the
adequacy of it of varilous constrained Wishart mcdels to
observed date, the general approach being Tirst to conpute
the constraint functions from the sample covariance matrix,
then to decide whether the valuez obtained can be explainsd
by statistical variation alone (Silvey, 1970, Section 7.3).

el

Some knewledga of the joint distributlon of the constraint
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functions under the model is recoulired, and approximutions
to these distributions will be used, bascd on asymntotic
moments for which formulas are derived here.

When calculating moments of functions of the
elements of a sample covariance matrix S, the symmetry of
S leads to certain complications. To simplify the formulzs

we introduce a special symmetric derivative notation:

Iy

. . ar .

If £ is & function of the elements of S and a5 1s the
- K af LR ) L T 2 . . ;
matrix (6° ) without teking the symmetry of S into account,
then define a matrix derivative with a double bar as

ar >F > 1 (1i _ ar \ (5.0)

B = R = e - . -

as CS. 2 - T -

iJ as ggt 7/

Three obvious points to note are, first, that
af . s P R P e
== 15 symmetric; second, that 1if f is symmetrically deflinec

ds m
S - o 4= 3 + ~ — J; ~
with respect to S and S° (e.g., T 2(513+531)), then

df _ aL . ang third, that the total derivative of f with

as as S

respect to S,,, say, with symmetry consideved is S_ 4+
12 8519

=S or equivalently 2 of , and not simply

5821 8812

_of_

9815

With this notation the required asymptotic

variances and covarinaces are given by Lemma 3.2 below.
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i £ and g are continuous real-valued functions
of the elements of S with first and second derivatives in
a neighborhcod of 2, and S is distributed as W(n,2), then

to terms of order n ' the covarisnce of f(3) and g(S) is

1 . S
cov(f,g) = % t af - dz 5 >, (3.10)
~d2 az
af .. ar . . Lo .
vhere = 1s == evaluated at S = 2. Alternatively,
dz dS
COV(f, g) = % I"(Z)g(.Z) tr %—:l—g—i;—]: 2 d;—%i—"& 2 > s
3.11
and ( )
PN 2 . daf ¢&r
cov(f,g) = - = tr (= === ) . (3.12
1 as  gr-+ )

All of these formulas are valid when £ = g, giving the

asymptotic variance of f in that case.

Fguation 3.11 1s essentially like a formula given

whe uses a different device to deal with

by Sioteni (1968)

the symmetry of S.

We indicate briefly a derivation of these formulas

based on the notation of Browne (197H). IS is a pxp

symmetric matrix, let vec(S) = s be a column vector formed



from all the 2lements of 5, and let e a colurm vector

¢

of the elements of & on and below the major diagonal., Let

m
L : . .
hﬂ be the matrix of 1t's, O's and 3's that maps s into s

2

(by averaging elements in gsymmetrically opposite pcsiticn

so that
rrA
s
and
5 = KEL S, (3.13)
where K_ = (KT K )_1 KT is a left generalized inverse
p S J i

of Kp. Finally, let M_ be the symmetric ldempotent matrix

K (kT k)7 T
pL T’ P

1l

i = K-
hp Kp&p

1t follows from Eq. 3.13 and Lg. A10Q In the Apwnendix,

thet

Qs
-

= ar
ds

|

o
FR
o]

Now the familiar ccovarilance fornmula for ovairs

of elements from 2 Wishart matrix,

L) =2 (o

cov{s. ., s .0, 4 0.0,
V147 Tkl 9 ik j1 il j&b

(8

-
)
p

can be written (as shown by Browne) as

3\
i

.
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s
S

cov(i,z*) =

AT e
54 2@2) K
T (o)

pJ

where ® 1s the Kronecker outer product. Tt follows that

cov(g,_s_T) = Mp(ZQDZ) M

Starting from the usual asymptotic covariance formula for

two functions £ and g of s, we have

ar T, dg
cov(f,g) = E—T cov (s,87) F5
c - ~
) ~TL [2 T sy
- {5 B o) {4
o d4ar . de
= 5 o IL (2OZ) Mh ac (3.14)

The matrix MD has the proverty Mpvec(X) = vec{%(X+XT)} for

any sguare matrix X, whence

Mp a% = vec (;ﬂ- (3.15)

Also, using the following formula from Browne,

T

vee (X)T(A @ B)vec(Y) = tr (XAY'B), (3.16)

which holds for any square matrices A, B, X and Y, one can
derive Tg. 3.10 from Egs. 3.1/ and 3.14. Equation 3.11
follows as an immediate conzeaquence, and EkEg. 3.12 follows

from Appendix formula AD.
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3.4 Minimal sufficiency and ancillarity

It is interesting to consider the extent to which
certain general principles of inference can be applied to
the class of structured Wishart models defined in this
chapter. Very little can be said concerning the most
general formulation, so we confine our attentlion in this
and the following section to the class of models formu-
lated in Ex. 3.7 whose structure is defined by the vanishing
of r conditional covariances.

Tt was shown in Ex. 2.3 tha*t the Wigchart distri-
bution belongs to an exponential family whose natural

parameters are the g = %p(p+l) distinct elements ¢ of

2_1. The distinct elements of S form a minimal set of

sufficient statistics for a full (unconstrained) model.

For a structured model where Z 1s constrained to belong to

* -1 o
aant = .

a subset 0, of @, let 05 = {2 ~: Z,EQO]

*
natural parameter space. So long as QO does not lie in an

denote the restricted

affine space of dimension less than q, S remains the minimal
sufficient statistic. It is clear from Eg. 3.3 that if one

of the constraints is

Ois o = Oy c ={1,2,...,p}) - (1,3}, (3.17)

. N .
then 25 is a subset of the linear subspace {Z 1: otd - 0},

so that a constraint like 3.17 removes otJ from the set of

natural parameters, and removes Sij from the set of minimal
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sufficient statistics. There are other situations as
shown in Ex. 3.7 where several constraints, none of which
ig explicitly of the form of Eq. 3.17, still force an
element of Z_l to be zero, but these are the only circum-
stances under which Qg lies in an affine subspace.

Except for the special case where all r con-
straints are equivalent to the vanishing of r elements
of =% (which is the "covariance selection"” model described
in Ex. 3.2), the dimension of the sufficient statistic will
exceed the effective dimension of the parameter space, and
it will follow that S is not a complete statistlc. This
can be seen directly by observing that if Gij.b = 0 is
one of the constraints, then Sij.b being an unbiased

estimate of o, . is a function of S with zero expectation

1J.b
for every = ¢ ”O‘
Tn order to test nroposcd models against observed
data, it is desgsirable to find ancillary statistics, i.e.,
statistics whose distributions under the model assumptions
are completely known, and which are functions of the minimal
sufficient statistic. Fach single constraint Uij.b =0

in the present model produces an ancillary statistic, namely

the sample partial correlation coefficlent,

S, .
r.. = 1i.b

ij.b
/%110 %3550
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That r. has a marginal distribution not depending on

ij.b
Z e 9, follows from Fisher's (1924) result that if
F(r ln,pij) is the distribution function of oy based on

a sample of size n, then the distribution function of
i3 b is F(r In_qb’pij.b)’ where g, 1s the number of indices
in b.

Although there are r statistics that are individually
ancillary when QO is defined by r constraints, they are not
jointly ancillary in general. For example, if p = 4 and

9 12
ri, and r3) is (Elston, 1975),

= (Z: 0,5, = 0,5, = 0}, then the asymptotic covariance of
34

\ . 1
cov(ryp, Tay) = 5 (PrzPoy + P1uPp3)

which depends on other unknown parameters in the model.
Since the rij.b are not jointly ancillary, they cannot be
used to form an exact test of the constrained model against
the full model. Nevertheless,approximate tests can be
based on them, since their joint moments can be estimated.
This will be pursued further in Chapter 5. It does not
seem possible to construct a set of r jolntly ancillary
statistics.
3.5 Invariance

Continuing with the Wishart model characterized
by vanishing conditional covariances, we now apply invariance

arguments to support the use of rij p 25 & test statistic,
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but we will show that, when there are several constraints,
this line of argument also encounters some difficulties.

The group of linear scale transformations along
individual coordinates in z-space leaves both the population

and sample correlation matrices unchanged. Since r.lj b and

pij p are functions only of the sample and population
correlation matrices, respectively, and since Gij b

is zero, it follows that QO

is
zero if and only if pij b

and its complementhA = = QO are ianvariant under the

group of scale bransformations, and that {r, . ]
T d Py

form a set of invariant statistics.

Tdeally, we should like {r. } to be a

T dg Py

maximal invariant set of statistics, but before examining
this point we must identify the largest group of trans-
formations under which the testing problem is invariant
(Cox & Hinkley, 1974, Section 5.3). Suppose for the
moment there is only one constraint, 010 1 = 0. Partition
the indices into three sets, a = {1,2)}, b, and ¢ = {com-

plement of a “Yb}. Then define a group (, of transformations

on the sample space by

n

= GSGT,

where G is any non-singular matrix of the form
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0]
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@

o
Dy
™

G

1

. (3.18)

ca

- - Y . . L) : a - - ~
Tt is easily verified that ( is a group, and the induced

2

¢
U

.
is &3schn-

group of transformaticn on the parametler spac
tially the sane,

- T
2 --LTD-—C' E G N

S - - < B 7y Ty e 4 3 , P’ -3 PRIy
Tt can be shown directly that Ty, 4 AN0 Pis gy are Invarisnd

cng; furthermore, ( is the larges

'.J-

vwnder these transformat
group of linear transforaations that leaves Ty, 4 end Poaa
unchangsd.
mder this group ( of transformations, Tq. o is a
: ¢ Lo .2
maximal invariant statistic, whiech means that if $ and 5%
t le matri h that T § t1
re any two sample rices such that r . = ; ne
are any o sample matric such tha 129 Ty 1o en
there is a transformation in (G that maps S into S*. To
establish this it 1s enough to shou that there exlists a

G e (0 that maps S into

2

r L
12, . (319>
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requiraed valucs in the upper-leflt four partitions

of G are obtalned by toking

and
the

and

of G

&
“11.b O
G =
aa, s
~-%
O S?Z.b
_ o"%
Cpp = Spp 0
G G S .glk
ab az"ab~bth

since there are nc restrictions on the space into which.

coordinaies ¢ are mapped, suitable cholces of G, G

ca cb

ch can always be made to cbtain the other partiticns
[

. 1t folloms that r iz maxlimral invariant.

12.Db

Nevertheless, as with ancillarity, the princiole

of maximal invariance runs into difficulties for the general

model uvnder consideration because of complications that

arise when there are more constraints. The appropriate

groun of transformations should have the structure .18

with regard to all constraints simultaneously. For

Il

instance, if o = C then we st 2fine
instance, 1 9,5 .. 30 de 0, then we should define

(} by non-singular matrices of the fom
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When ws try to demonstrate maximal invariance by transforming

S intc a T

@]

m analogous to Ta. 3.19, we are able to choese

the various partitions of G as functions of 5 to obtain

1 T _ i
12.ce ® 0 9 0
lnl2.ce 1
— 1 r
csel - o 3. de . o o
il ge L ’

0 2 1 o O

7 O ? T 0

0 0 0 0 ?

but the elements in the partitions labeled "?" remain

functicns of S, and thare is not in general eny other trans-

formaticn which completsly removes this dependznce. Tt follows
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that although two sample matrices S and S5* might lead to
the same values for 1o ce and r34.de’ there is in general
no transformaticn in (§ that maps S into S*, so the set

{rij.b}k is not maximal invariant.

We note a close connection here with the faiiure

of joint ancillarity. For if t = {r. . } were a
= lka'bk

maximal invariant statistic, then 1 = {p.l would be

. }
kJk " Pk
maximal invariant for the parameter 2, and the distribution
of t would denend only on 1. But under the model assumptions,
T = (0,0,...,0), so the distribution of t would not depend

would be ancillary.

t
[a Y
on any of the remaining parameters, and t

Example 3.8 Covariance selection (cont'd)

Returning to Dempster'!s model discussed in

Ex.3.3 in which elements of X 1 are forced to zero, we
recall that a constraint like 012, e 0 is equivalent to
O1p o = O where c is the complement of {1,2) in {1,2,...,P}.
The invariant ancillary statistic corresponding tc this
constraint is therefore ro. e The partial correlation
coef'ficients for several constraints of this kind can be

: using the following lemma.

obtained easily from S~
Lemma 3.3

If R*¥ is a correlation matrix formally computed
from S_l, then each off-diagonal element of R*. is the

negative of the conditional correlaticon coefficient of

the corresponding pair of variables, given all the other



s
¥ &g =
11_1;] = '——:'_"*;-_—-—': = - TJ_:.C’ c = {]‘J"‘Jp} - {l_,j].

FProef

For a 22 covariance matrix, the result follows

tminediately. Now let & = {i,j} and ¢ = complement of a.

Then rij c is the correlation ccefficient computed from
5 Vs s ot - - . Y a8, A

the 2¥2 matrix Spn . o- Letting S represent the (a,a)

T »

R R -1 aa.

partition of & 7, we have 8 = 877, and the lemnu

: aa.c g

. . -1

Tollows by applying the 2x2 result to S

aa.c’

We note that 17 R is the usual correlation

. v x o=l . .. } ;
matrizx, then R* is net R 7. Howevor, R¥ can be calculated

.
- - . v o - L R R e
from R by Tormally converting R S0 a correlation maoria.

i.e., by multiplying on the right and left by the diagonal

i
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Chapter U

MAXIMUM LIKELIHOOD LSTIMATION FOR
CONSTRAINED WISHART MODLLS

4,1 Introduction

Having defined a general class of patterned covariance
models, one faces the problem of calculating constrained co-
variance estimates. TIf one's purpose is to explore various
pattern hypotheses concerning 2, 1t would be convenient to have
a simple general method to do the fitting and avoid the need to
develop specialized computer programs for each model, but the
large number of parameters involved in many problems of
practical intercst makes it impossible to meet this objective.

When maximum likelihood 1s used for estimation, models,
can be classified as in Fig. 4.1 according to the complexity of
calculation. In category Al, direct calculation of maximum
likelihood cstimates is most efficient, although in scme cases
the closed-form solution may be difficult to obtain. Examples
include some lincar covariance structures (Anderson, 1969), and
non-cyclical path models.

For many problems a closed-form solution cannot be
obtained, but it may be possible to re-express the constrained
covariances as continuous functions of a smaller‘set of un-
constrained parameters. This defines category Bl. Categories
Bl and B2 involve the‘freedom—equation and constraint-equation

representations discussed by Aitchison and Silvey (1960). Since



FIGURE 4.1 - Models classified by difficulty of fitting

Constrained Wishart models

- !

Al: A closed form AZ: no closed form
solution exists solution exists
\'/
Bl: reparameterization B2: reparameterization
is straightforward is difficult
l W
Cl: g is small C2: g is modarate
to large
l’ W
Dl: r is small D2: r is large
(i.e. g~r is small)
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eazch equality constraint formally reduces the dimension of the
parameter space by 1, the number of parameters in principle is

(g is the number of variances and covariances and r 1is the
number of constraints), and an explicit representation of the
reduced parameter space can lead to considerable economy in
numerical computation. Examples include JOreskog's generalized
factor analysis model (1970), general linear path models, block
structure models, and the rest of Andersoriis linear covariance
models.

Computational methods basged on the constraint formu-
lation for mcdels that are not easily reparameterized (category
B2), are inherently more difficult. Aitchison and Silvey (19583

JOO) describe a general approach using Lagrange multipliers,
ch we adapt in Section 4.2 to the Wishart prcblem. This
approach seems suitable for small problems (category CL)}, but
the fact that it enlarges rather than reduces the working para-
meter set is a severe disadvantage for large problems (category
c2).

Many troblems in category D1, where the number of
constrainte is small, can be treated by an alternative approach
developed in Section 4.3 which is based on a fix-point iteration
and a series of r-dimensional optimizations.

The final category D2, remains difficult to treat in
general, but models in it'can often be approximated by certalin

reparameterized models in category 3Bl.
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4.2 Maximum Likelihood By Direct Iteration

This section adapts the constrained maximum Wishart
likelihood problem to solution by a general least-squares
optimization program.

There are in fact two kinds of constraints to
consider: the explicit equality constraints defined by

- )T

h(Z) = (0,...,0

(oY)

, and an implicit set of inequality constraints
that require % to be positive definite. To deal with the former
we use a set of Lagrangian terms, and for the latter we shall
reparametrize the problem in terms of the Cholesky lower tri-

i s =1 . =1 T _ 1
angular decomposition of =4 —, i.e., & = ATA. The o = 5p(p+l)
non-zero elements of A form an unrestricted parametrization of
the set of positive definite matrices 2.

The unknown true A will be estimated by a statlionary

noint of the function

h(a), (4.1)

LaYs

O(A,2) = % tr(aTAS) - % log [ATA| - 2

(a¥)

which, apart from terms not involving Z, is - % times the log-

likelihood plus a Lagrangian term for each constraint. Here )

[aY]

is a column vector of Lagrangian multinliers, a 1s a column
~~

vector composed of the elements on and below the diagonal of A,

and 6 is the combined vector (aT,AT)T.



-Th4-

A stationary point of & is a point where the vector

0 of partial derivatives vanishes, that is,

. . ad
/
Here g is defined to be ag :

This set ¢f simultaneous non-linear equations can be
solved by treating the components of o as residuals and minimizing
the sum of thelr squares, the minimum being attained when each
component vanishes. A computer program for this based con the
Gauss-Newton algorithm requires evaluation of both the residusl

vector ¢, and the matrix G of its derivatives with respect to
[a V]

the parameters Q, which can be partitioned as,

§ a ay
do da® 1 dmxT
¢ = _"’T. = | -
a6 dn ! dh
~ —__f:'_ i . fvl
gal | df
l
r - H :
Sl B e : (4.3)
1



o i-)..\
Here,
!‘1
dn- d?F
H = 2 and T = ——g .
aa . i\
~ dada
e No
To compute these guantities, we rcturn
L e te e oL opnThay L
and write & as & + ®,, where & = 3 tr(A A3Y - 3
the contribution from the Wishart likelihood, and
represents the sum of the Lagranglian terms, Simi
Yy o= 4+ ¥ oand [ =17 _ +T'_ . IPor the lihelihood
~ W ~ A w A
to ¥ and T' we have
d®
4 o
W de
s
which is a colunn vector formed from

W . 1
= = AS - dlag(z3/).
3 ii
This expressicn follows from Lg. A& and the fact

' 2 .
]ATAI = I, ; aj;, since A is triangular. A gener
' is given by

(qw1;>
Vo Ty. L1
log [A*a| is
LT
Oy = m2h(A)

larly,

g
]

contiibution

the lower-trisnile elem&nis

(4.5)

elenent ol



-76-

i o
31300, k555 * Pi%5k0kp/211 (4.6)

where 6ij is the Kronecker delta function.

fote the pmarticularly simple form of these expressions,
especially Eq. 4.6. The second derivative matrix of the
Wishart likelihood, expressed in terms of Cholesky parameters,
is nearly constant; only p diagonal elements depend on 2, and
ouvt of the qg = {%p(p+l))2 elements, only 3g are non-zero.

For the Lagrangian contributions to ¥ and ' we have

d

, = i —
gx d% ( Q

>

Ty = -Hy (4.7)

2

where H is defined by Eg. 4.4 , and

r 2
aw d hk L8
ro= 2= % o, —5 . (4.8)
A daT = k QQQgT

There remains only the calculation of the first and

second derivatives of the constraint functions hk with respect

to the elements of a, which are required for H and I', in Egs.

A
4h.3 , 4.7 and 4.2 . They must be calculated for each

particular model. If the functions hy (4) can be expressed
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easily in terms of the aij’ then this 1s straightforward, but

in other cases the following formulas are helpful:

dh . dh <
praiiniaiil ol (+.9)
%% =2 .+ lower triangle {A ggzl}, (4.10)
az"
and
52 ~ ] 4 Y
------ N oo, =90 4y E N e =2
@aijga}m ig aOmJ = ﬁ ik7in BGK-J a‘r i
S . (4.11)

The practical limitation of this computational
method now becomes apparent, for at each iteration the (q+r) X
(a+r) matrix G must be computed and the least-squares program
must essentially solve the set of linear equations Q§ - - 9.

4.3 Constrained Estimation By Fix-Point Tteration

Another approach to the calculation of constrained
estimates, which is suitable especially when the number of
constraints is small, is based on a certain partially linear

structure that exists in contrained Wishart models. This method
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can be used with several different estimation criteria and
does not require the calculation of second derivatives of the
constraint functions.

Consider the following four estimation criteria from
among those discussed in Section 2.4, ML: maximum Wishart
likelihood, LS: simple least squares applied to the elements
of i—S, LS*: least squares applied to the elements of (§—1_3-1>,
and GLS: generalized least squares which weights the squares
of the elements of §~S by the inverse of theilr covariance matrix.
In each case, one seeks to optimize the criterion within the
class Oy = {2 e O h(z) - 0}. Writing Lagrangian terms for
the constraints, one wants a stationary point of one of the

following expressions:

ML: log [271| - tr(z7is) +Z Ny (2)
K

o >
Ls: 3 tr(2-5)° + >y (2)
k
-1 (1,2 |
Ls*: % tr(27-s7H)% + > an ()
K
-1, 2
GLS: 5 tr{277(2-8)}° + 22 nhy (2)

k
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Equating the derivatives of these expressions to zero produces

ML: Z = 8 z k(z \
_25 AKGK(Z),

s=1 ~1. N *
LS*: 570 = 8 "Ei NGy (2)5

gy
n
™
Il
U

(4.12)

rs: =71« g7t Y o (7 (2)sTh), )
where
dh, (Z)
6 (2) = =5, (ke1,...,1),
az
anad
dh, (2)
G (5) oeiimp= = 200, (2)3, (ke 1 osy)

We concentrate on the ML formulation, although it
is clear from Eq. 4.12 that similar arguments could be

applied to the other formulations. For fixed =, let & (%)
2

denote the linear subspace of RP spanned by the matrices

2

¥ =

GK(Z), (k=1l,...,r), where pXp matrices represent points in RP
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”
Then Eg. 4.12(ML) says that if 2 is a maximum Likelihood

colution to the constrainced problem, then S is in the linear
manifold 3 +—£(£). Furthermore if C represents the set of all
symmetric matrices that satisfy the constraintes, then g 13 the
linear projection of 8 into C along E(g). These facts
suggest a fix-point iterative calculation:
l. PFirst take Z<O) = S to be an initial approximation
to g.

-~

2. Denoting by Z(m) the current approximation to 2,
)
compute the matrices Gi(z(m/) which define S(Z(m)).
3. Project S into C along E(E(m)) to obtain a new

estimate Z(m+l)

, as in Pig. 4.2, and return to

step 2.
If this process converges, then a solution to Tq. L.12(ML) hes
been found.

The crucial step is the projection of S Iinto ¢ along
E(Z(m)), which in itself requires solving a set of r non-linear

equations,
h (2,) =0, (k=1,...,7) (4.13)

in r variables, xl,...,xr, where
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FIGURE 4.2 - Fix-point algorithm
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Here, the matrices

« ©oh ( )
G o et » k=l,...,I‘ )
kol L _ s(m)

Q/ |

are fixed. As before, these equations can be sclved with an
iterative least-squares fitting program by minimizing =z sumn-

of-squares objective function ¢,
" .2 2w
=4 s
Y :L hs 25 hy(Zy)
)

The required derivatives of hﬂ with respect tolé are

A

oh Ohpy A%,
YN N g0 ... ON.
k i, AL K
* , ,
- tr(Gﬂka), (4,14)

where G, = GB(ZA)‘

The projection of S into C requires an initial
value for‘b which one can take to be'b(o> = (O,...,O)T on the
first outer step. On subsequent steps one can use the final
A from the previous outer step as a new b(o), although in some

of the numerical examples it will be shown that better stability

is achieved by taking X(O) = (O,O,...,O)T at each step.
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-Solving the constrained likelihood equations in this
way replaces the [%p(p+l)+r}-dimensional optimization problem
of Section 4.2 by a fix-point iteration in %p(p+l)—dimensional
space and a sequence of r-dimensional optimization problems.
If r is small then the inner iterations will go quickly and
the method will be effective even if p is fairly large. The
main storage requirement is rp2 locations for the matrices Gﬁ,
vhich can become a limitation.

A potential problem is that the fix-point procedure
is not guaranteed to converge if a poor initial approximation
to £ is used, but in practice S is usually adeguate. A more
practical matter is thal convergence when it occurs 1s lineary
and not quadratic as for the one-stage algorithm of Sectiocn 4,2,
so high precision can be ccstly,

An interesting property of L estimates for £ carn be

¥*

seen by examining Eq. U4.12 . If all of the matrices Gk(f)

have a zero in the same position, then gij is exactly 85 4 in

9]
that position, and a similar propecrty holds for LS and LS¥.
This is illustrated in the following example.

Example 4.1 - Covariance selectiq&_gcont’d)

In Dempsters covariance selection model (Ei. 3.3)
the constraints are all of the form Oij - 0, so that each matrix
G; has a % in position (ik’Jk) and zeros elsewhere. Hence the
solution £ matches S in every unconstrained position, a property
that Dempster cstablishes by a different argument. In particular,

the variance estimates 0y4 are unaffected by imposing constraints
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of this type. We also note that since the matrices G;(i) do

not depend on 2, the correct linear manifold ﬁ(i) for

M>

projecting S into is known exactly, and final convergence
occurs after one outer step.

4.4 Existence of Positive Definite Solutions

The foregoing sections tacitly assumed that the
constrained optimization problem has a solution. We now show
that a solution does exist, and briefly consider some related
points.

As before, let O represent the space of pXp positive
definite matrices, let OO = {2 ¢ O Q(Z) = 0}, and assume

that OO is not empty. Then we have

Theorem 4.1

For fixed positive definite S the log I shart
likelihood g(2) = g(2;3) assumes a maximum value for some
in QO.

rooft. The set Cb is not empty by assumption, so the

g M

i

constraints dc not force all 2 ¢ OO to be singular. Let A be
some fixed element of OO, and let O be the closure of 0.
Since g(2) is maximized over () when > = S, the constrained
problem reduces to that of maximizing the continuous‘bounded

function g(2) over the compact set

0 AnTrHo) A (3 g(a) < 8(2) < &(s)) .
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Ilence the maximum is attalned at some point 5 in 5, and 1t
remains to show only that 2 is not on the boundary of 0. But
g(2)) goes to - w» as 2 approaches any singular Z* from inside
0, so 2 cannot be singular.

Some authors who have used general numerical methods
to obtain maximum likelihood solutions have expressed concern

" obtained might be matrices that

over whether the "solutions'
are neiﬁher positive definite nor positive semidefinite (e.g.,
McDonald 1974). It is true that the Wishart likelihood is
unbounded above in any neighborhood of the zero matrix for

negative definite matrices of the form -0 (a > 0), but this

ML’
is a minocr practical issue, first because the problem can be
reparanetrized as 1in Section 4.3 to exclude consideration of
matrices that are not positive definite and second because
g(Z) goes to -« as Z approaches any boundary voint from within

0.

4.5 Derivatives for Conditional Covariance Constraints

Several of the examples discussed in Chapters 2 and
3 are defined by constraints that require conditional covarilances

to vanich, for example,

o
TN
Y
1l
Q
1l

0,

where b is some subset of the indices {3,4,...,p). This
section obtains the derivatives that are requlred by the

numerical algorithms of Sections 4.2 and 4.3,
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First we consider the partial derivatives of 012 b

.

with respect £to the elements of ¥ = -2 —, Let a denote the
complement of the set b of conditioning indices, so that in
particular (1,2) € axa. Since 0,5, 1s the (1,2) element of

the matrix SWP(b)Z, where SWP is an operator related to Beaton's

SWP (see Appendix), we have using Eas. Al3 and Al5,

12.b

Thus, 04, 4 1s the (1,2) element in the inverse of the (a,a)

partition of -¥Y. It follows that the derivatives of 612 b

with respect to elements of ¥ outside Yaa are zero, and the

derivatives inside Waé are obtained from Eg. A4,

1k, A2 e
5012 N Vo aVaa TOT (k, £) € axa
g = (4.15)

k4 0 otherwise,

J
a

1

i
e v
wher ’/a a

denotes the (1i,j) element of W; But the inverse
of -¥ ., is Zaa.b which 1s the (a,a) partition of SWP(b)2, so

Eq. 4.15 TDecomes



1n

Sacti
oo

Murthernore,

in

Section

r——

15.h 2.
ho16)
- (/h.16)
0 otherwise.
rtitioned wetrly nouvatlicn, this is
C } )
______ e N
5 L5 S P N 1 sa
12.b 21.h Za.b G 2
dzmt L \ .
O 10 1 G C D
1 ! J s
(4. 17)
and cclwns have been ordered in z vway thal tacillitabes
rizons with Teommulas below,) It Lle clear that i1 we use
)= tco compute h o= Clo 1o then the cderivatives fellow with
.k
littls extra work.
Vhen the symmetry of 2 is taken into account, as in

4,16

becones,

(k,1) ¢ axa

otherwilse.

SO

th

o

(S ¥el
o

D e

ol

Con
1=.

are obtainad by applying Eqg.

cond vatlives of b vwhich are regulied

i

T e

2

L1656 twice,
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52012 b “1kp%21.0% 2.0 T 9110 % %2 p B doks b el

SKi~-13
907700 lO otherwise,

With symmetry explicitly allowed for, there are eight terms.
Next we consider the derivatives of h = 012 b with
respect to the elements of 2., Although one could use Eq.

4,17 and the formulsa

9515 1 -1 910y 1

3% 52—1 - ’

a direct approach produces a more useful result. Writing

B R,
912.p T %12 T “1p"pp 702 ?

ignoring symmetry, and differentiating with respect to each

partition of 2 in turn, gives

B i 1 T
010 1 0 0
—-——l—-—-——*— ————————————————————
t !
-1
olo | 1 . 1
1oy R . bbb *
o2 | v -
olo ! o 0 2
I 1 1 | b
orly o lerls s oss
L0 © bb bl “bb b172b b | j
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. =1 . . . N 4
2 os o viiieh we shell write a3
dD L,‘l)

) Vo

vector concglisthing of the multiple regression coclficiconts of

Observe Lhat

variablie ¥, regiressed on variables ”J (j € b), 2nd it is also
the (2,b) partition of the matrix SWP(D)Z. Thus

{0 | O 0
! i K
—— e —— b el el £
o1 -3
35p 4, O 9 2b.b 1
. _ \ oAy
55T T i mmdmmmmb e mm e fmm s (H.15)
o lo | 0 o)
i |
T 1
o 'o '-=.. L5 s
- bl.b bl.b 2b.b
which can also be calculated directly from SHP(b)=.
The relationsnip of a vanishing covariance constraint
- =1 , .
1o 2 on the one hand and to 2 ot the other has an 1nterzeting
symmetry, wnich we ghow by introducing a medified form of the

.

constraint. Requiring h(2) to vanish is equivalent to reguiring

1L
h(2) = h(2) p(2) (4.19)

to vanish, where p(») is any continuously differentiable
function without zeros or singularitizs in O. In particular,

;J'L
if h = then define h” to be

Yo p2

, -J
4o 12.%
911.1%2.b" % 2.p%21.1p
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3
The functions h and h% define the same constrained subspace
of 0. Whereas h is the (1,2) element of SWP(b)Z, W' is the
(1,2) element of SWP(1,2,b)2. Now define new index sets o

and B,
a=5b “v{i,2}, B =a - {1,2} ,

which are depicted below,
a b

. R
X X vee X1 2 X X eea X
M

e e

B o

Let ¥ = -27%, as before. Since
SWP(1,2,b)2 = SWP(a)Z - SWP(B)Y¥ ,

it follows that the alternate constraint function h# is Just

#
h/ - wlg.ﬁ 3

which is formally a conditional covariance derived from the
"covariance" matrix ¥. Noting that V1o 5 has the same

relationship to (¥,Z,a,B) as %15 1 has to (2,Y,a,b), we can

write
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-0, -y
12.R
==t andio Spppsies 5 ;

2.b “"11.511’22.5“‘”12.[3

and obtain the derivatives of y;, o directly from Eqs. 4.17

p
and 4.18 ,
o [oto1 o 1 ]n
OV O, 0 o 1
= :)L{"S =: _.._la'ﬁ 6" - v E o (4.20)
od oyt - al.B'2a.B J |
0
£ 1 \r l 7
“Yp1.p¥2e.8| 01 ¥p1.p 1 °
¥ 01 1 10
Eglg;ﬁ = éfEELE ! G I denm (4.21)
de~1 QY o 0y 0 10
o ] e [ ——— i —
- 0 of 0 | Oz

Both of these matrices, as well as the value of.wl2 5 itselif
can be computed easily from SWP(B)Y = SWP(1,2,b)Z.
This duality between h and h# has some theoretical

and practical relevance. By differentiating Eq. 4.19 one

i#
sees that EE:I and éﬁ:_ are proportional to each other when
2 oz

evaluated at any 2 that lies in the constrained subspace.



Therefore, the extra zeros that appear in Eq. 4.21 must

also occur in Eg. 4.17 . Those in positions (1,1) and (2,2)

h
are important because they remain zero when G; = ::E;: is
ahk oz-Li
computed from E;—Tf—. Having thus identified a larger set of
5=

zeros in each G¥., one can Iin some cases find additional

elements of & that are equal to the corresponding elements of
S.

The practical importance of this duality is that by
using h#>instead of h to define the linear manifold E(Z(m))
one can improve convergence of the fix-point calculation in

some cases.

4,6 Exact Solution for Non-Cyclical Path Models

It was stated above that path models without cycles
(Ex. 3.5) have closed-form maximum likelihood solutions. We
develop this point here partly because of 1ts intrinsic
interest, and partly to provide numerical examples with known
solutions for testing the iterative computational methods
developed above.

Starting from Ex. 3.5,o0ne can order the variables
in a way that allows the inverse covariance matrix for a non-
cyclical path model to be factored into

st 2 oTpe
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where ) is a non-negative diagonal matrix and C is lower
triangular with ones on the diagonal. (The matrix A in Ex. 3.5
is D%C in this notation.) The missing forward paths in the
diagram define a fixed pattern of zeros in the lower triangle
of C. Apart from constants, the log Wishart likelihood as a
function of C and D is

T

r(c,p) = tr(c’pcs) - » log d (4.22)
k

Differentiating first with respect to an element of D we have
3

<
oL . _ anm L o1
3a [CsC™ Iy a,,
from which follows,
k X
A = 21 21 CriCui®i5 - (4.23)
i=1 j=1

Now differentiate Za. .22 with respect to C,

using Eg. A8,

o/
-

|

2 + lower triangle {DCS]

Qi
«Q
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For each i3 (i > J) not constrained to be zero we have,

+J k<i

so the likeslihood equations become

Eﬂ CipSky = ~S13 (I <E) s
K<i

The first few of these written out are

i

g0 CETEh = }

3 1 031511 + c32521 = —531

3 2 31812 T C3p8pp = =835 (4.21)
Bl eypsyy * CupSpp T Cus3S3y T 7R

e im e e S e A P R e ium S B R B mm e e e e P A

Each group of equations exactly determines one row of C.
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Now suppose the path from X, to X; is missing, S0

1 +
that Ciyq is zero by assumption. Then the (4,1) equation in
4.2l is removed since we no longer have ?ﬁr = 0, and the
+1

terms involving Cuq vanish, so the equations in the third
group reduce to those in the dashed box, and the number of
equations matches the number of c¢'s in the box. It follows
that the non-zero elements in the k-th row of C are the
negatives of the multiple regression coefficients of Xk
regressed on just those variables that are its immediate
causes in the path diagram. Essentially, maximum likelihcod
Jeads to the fitting of each regression equation separately.
The matrix C can be calculated easily using the SWP
operator and the following scheme which is a modification ot
a procedure given by Dempster (1969, P 63) for the urnconstrained
case.
i) At stage k, S has been swept on those indices
in {1,...,k-1} that correspond to ckj's in the
k-th row of C which are not constrained tc be

zero. Partition the resulting matrix as

-

1
=

By sos iy DByess
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-~

ii) Teke the non-zero elements cf the k-th row of C
from the corresponding positions in the first row
of Heyo o The rest of the k-th row of € is filled
with zeros except for a 1 in position (k,k).

iii) SWP S* on the indices in the symmetric difference
of the sets of indices not constrained in the k-th

and (k+l)-st rows of C. Let k = k+l and return to

step (i).
After C is computed in this way, D is obtained fronm
Eg. 4.23 , and 71 from 571 - §THG.

B.7 Numerical Examples
Two examples are provided here to compare the per-
formance of the computational algorithms develcped above

Example 4.2 - A five variable path model

Consider a path model with five variables, each

affected only by its immediate two predecesscors, i.e.,

IR

This is a non-cyclical path model (cf. Ex. 3.4) with three
missing forward paths, 174, 1/ 5 and 2/ 5, corresponding to

three conditional covariance constraints,
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0, .0 . (. 25)

15.34 Yo5., 30t

Suppose the following sample covariance matrix has been

ocbhserved:

(1.0 .5 5 .5 5

5 1.0 .5 .5 .5

s -] .5 .5 1.0 .5 .5
5 .5 .5 1.0 .5

. .5 .5 .5 .5 1.0

The direct calculation in Section 4.6 was used to
obtain the exact solution which is shown in Fig. 4.3. The
computation took .031 seccnds on the Honeywell 607¢, a
computer which requires 3.1 microseconds for a floating point
multiplication.

Note that the matrix £ matches S in every uncon-
strained position. This is consistent with the fact mentioned
in Ex. 3.4 that the constraints here are eguivalent to three

- !
constraints on 2 l, namely, cllL 5 00 = 02 = 0.

The equality
between elements of £ and S for such models was established in

the discussion of Ex. 4.1.
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Maximum likelihood solution to Ex.

it

g

4.2
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The single-stage i1terative calculation of Section
4,2 was next applied to this model. The parameter space is
effectively 18-dimensional, including the lower triangle of
A and three lLagrange multipliers. The initial approximation
was taken to be A(°) = Iy and A(0) (O,O,O)T, and Table
4.1 shows the details of the run.

In Table 4.1, line (i) displays the Euclidean
distances between the exact maximum likelihood estimate K,
and successive approximations A(n). Line (ii) shows the Ly
norm of the "residual" vector ¢ at each iteration, i.e., the
vector of derivatives of the Lagrangisn log-likelihood function
with respect to the parameters. Both lines clearly show tchat
convergence of the algorithm is quadratic (up to the 8-digit
precision of the computer), that is, the error is approximately
squared at each step. The computation would normally be
stopped when |[¢]| became smaller than some preassigned constant,
€. In this example, an accuracy of & = 1lE-5 required three
iterations and .487 seconds of computer time.

The. fix-point iteration of Section 4.3 was also
applied to this model, projecting S repeatedly into the con-
strained parameter space. Initially, b(o) was taken to be
(O,O,O)T, and on subsequent outer steps to be the final b f'rom

the previous iteracicn.



(iii) max

(iv)

(

<7)

'

!
\

l -
'al

1.000220
-.577359
1.154791
-.4308248
-.408248
1.224745

LH88809
-.448248
-.408248
1.224745

LHEEHDD

.0oB%99
-. 408248
-.408248
1.224745

204124
. 204124
204124

nj)_

3 a

ij

time (sec.)

cum.

time

(n-1)

1.9000a00
.082062
1.0000002
.B089¢0
030600
1.0630062
LG06030
.030000
.BU8090
1.0090600
.B80050
L0685
L0660R0
086009
1.6002800

LB06889
0032000
.BQ8360
1.228331

1.581139

1.602000
-.571429
1.142857
-.400000
- 4603069
1.2000668

LOUEREY
~.4090200
-.40028%
1.280208

LEB0608

LNEdd60
-, 4006801
-.4¢0309
1.200609

200608
2800800
, 208300
.0491CE

.368434

Iteration

- —— - ————__—e = T e = S G e L S Fen T e G e G D W AT Y G — Y " G — i v 0 Y >

1.8000859
~.57732¢
1.154639
-.408163
~-. 468163
1.2244990

209990
~-.4€8163
-.408163
1.224493

LO3H249

L300880
-.408163
-.408163
1.224499

. 204082
.264982
.224082
459328~
«.5363E-
.2449E-
1631

.3254

TABLE 4.1 - Single stage iteration

3

2
5

1

1.600860
~.577358
1.154781
-.408248
-.408248
1.224745

AR ORLR0)
-.468248
-.488248
1.224745

.0GELoY

LB55009
-.408248
-.408248
1.224745

. 204124
.2904124
.204124

.5662E~7
. 7357E-7

.2558E-3

1.0080€9
-.577359
1.154701
-.4G824¢8
-.4082458
1.224745

.0920492
-.4£8248
-.403248
1.224745

.R22450

604500
-.408248
-.468248
1.224745

. 204124
204124
.204124

.6452E-8
.18930-7

«2980E-7

1622

.6493

-00T-
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Table 4.2 shows the results after each outer itera-
tion. The parameter space is represented here by & rather
than A, but tc facilitate comparison with Table 4.1 line (ii)
shows the distance to the solution in terms of A. There are
two stopping criteria to choose here. For the inner iteration
the length of the constraint vector (line (iii)) was required
to be less than € ~ 1E-63; the numbers of iterations needed to
achieve this are shown in line (v). For the outer iteration
the maximum change in Gij (1ine (iv)) was required to be less
than s IT En = 1E-5, then three steps and .212 seconds of
computer time are required, which is less than half the
computer time taken by the other iterative method. One must
bear in mind, however, that exact comparisons are difficult
since the efficiency of the coding is a critical factor. It
is interesting to note that convergence 1is irregulsar here,
with a significant Jump in accuracy occuring in the second
outer step. This illustrates the point made at the end of
Section 4.5. Since the constraints in this example can be
written in terms of Z—l alone, as soon as a trial value Z(l)
is obtained which lies in the constrained space C then the
correct linear manifold S(Z(l)) = £(£) is obtained exactly,
and the next iterate coincides with the correct solution,

2(2) =5, apart from round-off errors.



TABLE 4.2 -~ Fix-point iteration

e n = AT — — v — s T v =~ e — T A - - —— - - —— — D —— - . W W e T ——

2 Exact © @
o{l,1) 1.609000 1.0006060
02,1 500090 .500680
o(2,2) 1.009658 1.020309
c(3,1) .5A00G .5G0002
o(3,2) .500060 .506480
o(3,3) 1.066080 1.090009
o(4,1) .333333 .500000
o{4,2) .5368960 .520000
o(4,3) 500650 .5060600
o(4,4) 1.9908860 1.0890080
c(5,1) .277778 .500000
o(5,2) .333333 .545600
>5,3) 506600 590900
(5, 4) 504089 500000
o(5,5) 1.000086 1.005689

A(1) -.759009 .002020
A(2) ~.500000 LAE06G2
A(3) -.582333 .G20620
(i) nztMo 3y .458123
(i1) 1at™- Ay .548999
(iii) dnl . 288675

(n)_ {n=1y,
iy Tij
inner steps

(iv) max |o
(v) no.
(vi) time (sec.)
time

(vii) cum.

.831978
.419324
.919649
.5086808
.5249000
1.96500609
.313381
5858269
560880
.912179
.2€88675
323653
L5UB839
445112
.843763

~.796387
~.577568
~.576966
.291496
.271476
8.2127E~7
.231325
2
L6897

. 6897

1.066801
5480606
1.052860
.508820
559098
1.85699092
.333333
.508089
580069
1.00020608
.277778
.333333
.20003549
5800689
1.008249

-1.887261
-.895549
-.8411349
1.3394€8-6
8.5847E-7
7.0224E-9

.168923

l1.0622088
.508300
1.¢008200
.508200
598289
1.6009200
» 333333
5800646
5057408
1.908040
277778
.333333
589289
.509049
1.028026
-.749999
~-.4959399
-.583333

4.6529E-8
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L50806o
.50¢069
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598009
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Example 4.3 - A sequence of path models of increasing size

In order to explore the ways in which computer
resource requirements for these computational methods increase
with the number of variables and number of constraints, we
consider a family of path models defined by an ordered
sequence of random varlables in which each variable is
directly affected by its immediate predecessor and by pre-
decessors at lags 3, 5, 7, etc. As before, these models have

easily calculated exact solutions. The path diagram is,

The matrix factor A in z=1 2 ATA has zeros in the

subdiagonals numbered 2, 4, 6, etc. For this example we take

a population covariance matrix Zt = (AEAt)_l, where

i . :
-.6 1 0
0 -.6 1
. (.6)2 0 -.6 1
£ 2 ’
0 (.6) 0 -.6 1
-(.6)3 0 (.6)° 0 -.6 1
0 -(.6)3 0 (.6)° 0 -6 1
L =



~1 0l

and we use an observation from a psgeudo-ranaom Wishart
30,2 : T S8 samgle variance matrix
lgxlg(_50, t) generator to obtain a samcle covariance matrls
In order to define an increasing seguence of models,
we take initial sequences of p variables, for successive
values of p. Fach of these models corresponds to the urper-
lei't partiticns of the matrices Zt’ At’ and S. The nunmber of

covariances ¢ and the number of constraints r both increass

P

guadretically with p, and the amounts cf computer storage for
working data arrays requlred by the two iterative methcas are
shown in Table 4.23. Clearly the rapid increase in storage
reqguirements sets a practicel limitation of about p = 13 or &
on the size of problem that can be accommodated by elther
method.

When applying the fix-point procedure in the form
used in Ex, 4.3, a difficulty was encountered: the approximetion
b(l) cbtained after the first fix-point step was so far from
the true 5 that using it as an initiel value for the second
step caused the calculation to diverge. But when the orocedure
was modiiied to take 3(0) = Q each time, satislactory conver-
gence was achieved.

An overall convergence criterion of €1 = 1E-4 was
employed, along with a limit of 6 on the number of (outer)
iterations. The inner stage of the fix-point was terminated

by &5 = 1E-6. Table 4.4 compares the numbers of iterations
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TABLE 4.3 - Storage requirements for Ex. 4.3
no. X's e} 6 8 10 12 14
no. constraints r=%{%(p +1)-p} 6 12 20 30 42
no. var‘s & cov’s r;=%p(p+l) 21 26 5¢ 78 165
no. param’'s,l-sztage | g+r 27 48 75 1¢8 147
storage for l-stage (q+r)2+5(q+r) 8§64 2544 60680 12204 22344
storage for 2-stage | po(r+4)+r2+5r | 426 1228 2960 ‘5945 10990
TABLE 4.4 -~ Computer times for Ex. 4.3
exact single-stage fix-point (2-3tage)
calc.
P time | number time number number time
iter’s outer steps | inner steps
5 .42 4 .648 5 6 .533
6 L0075 4 1.451 5 7 1.420
B 144 4 6.204 6% 19* S.164
10 . 385 4 21.1438 6* 16* 38.628
12 .577 4 69.575 - - -
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and computer times for the two iterative methods, as well as
the time required by the exact calculation.

The starred entries in Table 4.4 are cases in which
the iteration limit was reached before the convergence criterion
was satisfied. In both such cases an accuracy of about 1lE-3
had been attained, with convergence at the rate of about one
order of magnitude for two outer steps.

As in the previous example a detalled comparison of
computer times between methods is not really meaningful, since
either might have been more or less efficiently coded. However
the orders of magnitudes and trends are important. For problems
of thls sort where the number of constrainis increasgses in
fixed proportion to the number of covariances and where high
accuracy is not required, the fix-point method does well for
small problems but is scon surpassed by the single--stage metnod.
If the number of constraints were to remain small, the com-
petitive advantage of the fix-point method would increase, but
if higher accuracy were required, it would decrease. It 1is
interesting to note that the number of iterations to convergence
for the one~stage procedure does not increase in the larger
problems in this range, but computer times increase quadratically
with the number of parameters, g+r. It is clear that a model
with p=10 and r=20 is at or beyond the limit of routine cal-

culation for exploratory purposecs.



Chapter 5

THE USE OF CORRELATIONS IN THE STUDY
CF STRUCTURED WISHART MODELS

5.1 Structured Correlation Models

A majority of the structured Wishart models discussed
in Chapter 3 are invariant under coordinate scale transformations.
They consequently can bec characterized by patterns or con-
straints imposed on the population correlation matrix, with
the sample correlation matrix forming a set of invariant
statistics. It seems natural that methods for selecting
appropriate models from families of this kind, for fitting them,
and for testing their fit to observed data, should be based on
the sample correlation matrix.

5.2 Normallzing Transformations

In certain respects sample correlations are dirfficult
statistics to work with, because the distribution funzction of
even a single sample correlation r under normal theory assump-
tions has a complicated form. Although the distribution is
asymptotically normal with increasing sample size, the approach
is too slow to be of much direct practical use for samples of
moderate size. A standard method has been to apply a trans-
formation to r to improve its distributional properties. OF
several transformations proposed (Hotelling, 1953), the most

useful has been that suggested by Fisher (1915),
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z(r) = tanh—l(r) = % log (%;;) -

(]

This transformation has the following desirable
properties:
pl. Whereas r is confined to the interval (-1,1), z(r)
has a distribution that ranges over the entire
real line.
p2. The expectation of z(r) is z(p) + O(n—l), where
p 1ls the population correlation and n is the sample
size.
p3. The variance of z(r) is 1/(n-2) + O(n_g) which
to this order of approximation does not depent cn .
(The n here is the effective number of observations
that remain after tre mean and poésibly other linear
effects have been removed.)
ph. The skewness and kurtosis of z{r) are reduced,
making the distribution of z(r) approach normality
considerably faster than that of r.
As a result of these properties, even for small samples, the
distribution of z(r) can be treated for most practical purposes
as if it were N(z(p), 1/(n-2)).
When there are several variables to consider and
thus a matrix of sample correlations, the situation is more

complicated. By analogy with the bivariate cass, one would
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like to transform the set of q = %p(p-l) correlations to
approximate joint normality so that statistical and data
analytical techniques based on the multinormal distribution
might be used. In place of pl, one now seeks to extend the
range of the distribution from a subset of the unit hyper-
cube in R to all of ;]RY. The properties p2, p3 and pl are
still desirable for the marginal distributions of the trans-
formed rij’ but they are not sufficlent for joint normality.
And when a normalizing transformation is found, the trans-
formed statistics will almost certainly have a correlation
structure that depends on the unknown pij's,and this will have
an effect on inferences.

There are several ways to generalize z(-) for use
with 3»3 and larger ccorrelation matrices. One approach vhich
will be pursued in the following section is to transicrm each
rij individually. Another, which we mention only briefly here
and which follows from a suggestion from J. W. Tukey (1973),
is to ask whether there is a matrix analytic function (cf.
Lancaster, 1969, p. 183) which generalizes z(r). We find that
the matrix logarithm, which appeared in a different context in

Section 2.4 does this, since

log (l+r)(l-r) % log (l+r)/(l—r}1

i_l
=

log

H

].__.I

N~ =
nj=

log (l+r)/(1-r) log (1l+r)(1l-r)
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Whether it is a useful normalizing transformation when applied
to 3x3 and larger correlation matrices remains to be explored,
but we note the following welevant points. First, log(-:) maps
the set of positive definite matrices onto the whole set of
symmetric matrices (Nagso, 1973), so at least when applied to
covariance matrices it removes the positive definiteness
restriction. Second, 1t preserves constant-in-blocks structure,
and'thus might be a particularly useful transformation when
block-structure models are contemplated. Third, since

log I log R, an analysis of R on the log scale is

. - . -1
virtually the same as an analysis of R .

The normalizing transformation z = tanh—l(-) can be
applied to a sample correlétion matrix by transforming cach
correlation separately. Fisher (1924a) did this to a table
of correlations derived from rainfall statistics, as did Hills
(1969) in the paper mentioned in Ex. 3.2, but neither author
examined the Jjoint distribution of the transformed rij’s.
That the rij are ithemselves correlated, and so are the statistics
Z3 49 was stressed by Elston (1974), but a thorough study of
the joint distribution does not seem to have been published.

We note that z(-) can be used quite gencrally as a

normalizing transformation ror any conditional (i.e. partial)

correlation, since such a statistic has the same marginal
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distribution as an ordinary sample correlation but with a
modified effective sample size (cf. Section 3.5). Insofar as
sample partial correlations are the invariant ancillary
statistics for most of the models discussed in Chapter 3,
z(.) is potentially useful in a fairly wide range of problems.
It is often implicitly assumed that the joint dis-
tribution of a set of Zij is nearly normal. We will make this
assumption as well, noting that it extends to sets of

Zij.a Z(rij.a)’ and citing the following points as support:

(1) the statistics Zg4.q BTC all continuous twice-differentiable
functions of the sampie covariances which are asymptotically
jointly normal as sample size increases (Cramér, 1946, p. 366;
Anderson, 1958, p. 77); (ii) the marginal distributions

" approach normality quickly; and (iii) scme preliminary computer

simulations of pairs of z,

ij.a have shown no systematic departure

from joint normality.
Having assumed joint normality, we next consider the

correlations among the z. One approach to estimating

ij.a’
these correlations is to apply one of the asymptotic covariance
formulas from Lemma 3.2, namely, .

cov(r,r') = % rr'tr(Z grl%izg s g:%gizgﬁ) : (5.2)

b

and to substitute for the unknown true Oij's values Gij

estimated within the structured model. Covariances among the
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r's are converted to correlations, which are also the asymptlotic
correlations among the corresponding z's, and the asymptotic

variance of 4. . is
“ij-a

1
ij.a) n—'—f'-qa ’ (5.3)

var(z
where a, is the number of indices in the set a. The matrix
derjivatives reguired in Eq. 5.2 are obtained from the formulas
in Section 4.5, especially Eq. 4.18 . Although Egq. 5.2
and r

kg.v’?
there are some interesting special cases of which six sre

does not simplify much for general pairs rij-a
discussed below.

5.3.1. The asymptotic covariances between palirs of
ovdinarvy correlations are obtained from Egq. 5.2 or as
special cases of Elston's (1974) formulas for intraclass cor-
relations. The two relevant cases are pairs of ry in the

J
same row (or column) and pairs in distinct rows and columns:

: 1 2 2.4 2 2 2
COJ(rlg:TQB) - H‘(p13(1'912'923)“2912923(l'plg'PlS p23)s

(5.4)
. 1 2 2 2 2
COV(Tryns I‘34) - n %p12p34(pl3+p14+p23+p24)

- (912913P14+p12p32942+Pl3923pu3+914924934)

[

+ Pl3P24+Pl)4,Pg3} : (5-))
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These are converted to correlations with the help of

1 2 \°
var(ryp) = Z(1-pyp) 5 (5.6)

(In fact, Egs. 5.4 and 5.6 are really special cases of Eq.
5.5.)
5.3.2. The ancillary statistics for testing the

presence of zeros in Z—l were shown in Ex. 3.8 to be conditional

correlations r¥. r.. _, where the get ¢ = c,. contains all
id ij.c id

other indices besides 1iand j, and the rgj are in turn the
-1

negatives of '"correlations' formally computed from &

T
'}_rJ =

¥, = -7/ sTsdd

iJ

Asymptotically 571

has a Wishart distribution with parameter
Z_l, so it follows that the asymptotic variances and covariances
of the Z?j are obtéined from Egs. 5.3 - 5.5 Dby replacing

the parameters pij with

% oid . 5 i 4
pij—o /ﬁ o k]
where 09 igs an element of Z_l.

5.3.3. The Jjoint distribution of ordinary sample

correlations Tij is simplified when the population correlations
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pij are all zerc. This is the case considered in Hills' paper
referred to in Ex. 3.2. He warned that the effect of the
dependence between the correlation coefficients might be
difficult to predict, but we are able to observe that according
to Egqs. 5.4 and 5.5, all pairs of rij are asymptotically
uncorrelated. In fact much stronger results obtain: all pairs
of correlations are exactly uncorrelated and statistically
independentr Furthermore, statistical independence holds

among all correlations in any set of rij
row of R (Anderson, 1958, Ch. 7, Ex. 9), and indeed for any set

in a single column or

of gample correlations with the property defined in the following
lemma:
Lemma 5.1

Suppose that S is distributed as Wp(nJZ), that & = T

Tpxp?
= ( A Si4 JJ) k’jk
subset of the indices {( ,J), 1 <i1<CjKL p} which has been

and that R = (r Iet J ={ (4 )} be a

13)

ordered so that for each k, at most one of the pair (ik,Jk)
appears as an i or a J earlier in the list. Then the statistics

el 3.2 k=1,2,... are statistically independent.
k“k
A proof can be constructed by observing that the

rij‘s are cosines of angles among p independent spherically

distributed random vectors in n-dimensional space. Then, by

first conditioning on the variables X Sty M ,X s X F
1779y -1 Jk-1
each r, . can be shown to be independent of r. . :.¢esT. . .
TxJk 191 Tk-19k-1
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The set J in this lemma can be equivalently defined
in graph theoretic terms as follows: J has the property that
the directed graph with nodes numbered 1,2,...,p, and an edge
connecting node ik to node jk for each (ik,jk) in J, has no
closed loops.

Naturally, if a transformation like z(.) normalizes
the marginal distributions of two variables that are statistically
independent, it normalizes their joint distribution. In the
present case, although the Zij are not independent as an entire
group, all pairs, most triples, and many subsets of up to p-1
of the Zij are, This is strong evidence to support the view
that the multinormal distribution closely approximates the
Jjoint distribution of the Zij when the pij are all zero.

5.3.4. Next take the case of a set of conditicnal
correlations all with the same conditioning set, b. If a 1s
the complement of the set b, and if S 1s distributed as Wp(n,Z),

then S is distributed as Wa(n—e, = ), where o and B are

aa.b
the numbers of indices in a and b. It follows that Egs. 5.3

aa.b

to 5.6 can be used to obtain asymptotic expressions for the

variances and covariances of the Zij b's provided that n, rij
L <.

and pij are replaced by (n—B), rij.b and pij.b’ respectively.
5.3.5, Consider a pair of partial correlations rij a

and rkz b with the property that the indices i, J and the

conditioning set a are all contained in the set b. Then rij 5
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and rkﬂob are statistically independent regardless of the values
of the population correlations. This follows from a special
property of the Wishart distribution (Dempster, 1969, p. 297),
namely, that if S has a Wishart distribution, b and c are

ce.b - See T Scbsgésbc’

then Spp and SCC p are statistically independent. In the case

]

complementary sets of indices, and S

under consideration, r i1s a function only of the elements

ij.a
pb? 204 Ty, p

Hence, they are independent. The asymptotic covariance

of S is a function only of the elements of S

cc.b®
formula (Eq. 5.2), can be shown to give a zero covariance in
this case, as it must do.

5.3.6. Finally, consider a case that is rather
different from the rest but has some practical importance.
Stppose that a certain fraction of the data is missing on some
or all of the wvariables Xl""’Xp' If the mechanism which
causes the data to be missing is statistically independent of
the data values, then consistent estimates of the Gij and other
parameters derived from them can still be obtained.

Suppose that Yi denotes the mean of variable X, cal-
culated over the n. observations available for that variable,

1

and that Sij denotes the covariance calculated over the nij
observations for which Xi and XJ are both present, (other
definitions are possible). Thus the elements of the matrix

5! = (s!

lJ.) are based on different, usually overlapping, subsets
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of the data. Conditionally, given the observed numbers and
patterns of missing values, the statistics sij are asymptotically
Jointly normal, as are the elements of the matrices R’ and Z’
formed from S’, but the variances and covariancegs of these
statistics are no longer those obtained from the Wishart dis-

tribution. Instead, the covariance of si and Siﬂ is proportional

J

to the number, of observations present on all four

D1 jke’
variables. In particular, ignoring some small terms due to the

particular definition of Yi, we have

n. .
. _AJKp 7
COV(Sij’SEE) = Ty (Gikcjz+oizojk) (5.7)
(5.7)
nn. .
ijkg 3
—==2  coV(S,.s8,,)s
nijnkﬂ ij°"ke

where any of the indices i, J,k,£ may be equal to each other,

where Sij and Sy represent covariances based. on complete data

y

(if it were available), and where, for example, Nyqp = nl2‘
Equation 5.7 can be used in turn to ohtain modified

formulas for the asymptotic variances and covariances of the

and z! The new formulas resemble Egs. 5.3 to 5.6,

r! 20
iJ

id
but each term has an additional factor of the form,(nnijkz/nijnkz).
These formulas serve to show the general way in which the
covariance gtructure of the Zij is altered when data ic missing,

but gince the effect of a small fraction of missing data on the
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correlations of the Zij is small, and since we are dealing
only with asymptotic approximations, it will ﬁot be worthwhile
to do the extra calculations in most cases. We note that to
use the modified formulas one must perform the additional
while

task of tabulating the numbers n,, n and n;

1j* Pigk? kg
the Sij are being calculated. For a problem with many variables
this might require a prohibitive amount of additional computer

storage, especially for (n, . } and (n, An often useful

ijk 1jkz}'
compromise will be to tabulate.only {ni) and [nij}, and to
adjust only the standard errors of the Zij‘ This will Dbe
illustrated in the example in Section 5.4.
5.4 Model Selection and Assessment

Assuming now that the application of z or some

other transformation to a set of simple (or partial) correlation
statistics renders their joint distribution approximately normal,
we consider how these transformed statistics might be employed
in the study of structured Wishart models. The paragraphs
below outline three stages of such a study in which they are

potentially useful.

5.4.1 Data Dependent Model Selection

Suppose that one 1s interested in Wishart models whose
essential structure 1s preserved under the chosen transformation,
as in for example the models of Section 3.2 that fequire some
set of correlations or partial correlations to vanish. If it
is assumed that such a class of models 1s appropriate, but it

is not known in advance which member of the class to choose, ths
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selection might be based on the observed magnitudes of the

statistics z. This is the course followed by Hills and

ij.a’
by Fisher in geeking a small number of departures from,pij = 0,
but the approach can be applied to other problems such as the
simultaneous-equation subset regression problem of Ex. 3.5, and
Dempster's covariance selection model in Ex. 3.8 and Section
5.3.2. In the latter case, in which a pattern of zeros in 2—1
is ;ought, the appropriate test statistics are Z?j = z(r
where ¢ = {1,2,...,p} - {1,j}, and thelr empirical distribution

ij.c)’

should be compared to N(0,1/(n-p)), perhaps using a prcbability
plot.

5.4.2 Model Fitting

If as in the last paragraph the model displays a
simple structure after the normalizing transformation is appiied,
but if certain parameters must be estimated, the estimation
might sensibly be done on the transformed scale, especilally if
the structure is linear on that scale., An illustration 1s
provided by Example 3.1 in which correlations are assumed to
equal each other within blocks. After transforming (rij} to
{zij}, one can aprly usual normal-theory estimation procedures.
If one chooses to ignore the correlation structure cf the z. .,

1J
this leads to calculating simple averages of the zij's in blocks.
Or, if the correlation structure is to be taken into account,

then the set of zij’s should be welghted by the inverse of their

estimated covariance matrix. Since the "correct" weights depend
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on the parameters being estimated, this could be done iteratively,
verhaps stopping after two éteps. In either case, the resulting
point or interval estimates ol Z(pij) may be back-transformed
to give estimates on the original correlation scale.

There are some situations in which the pij might be
related to other quantitative variables also indexed by 1 and
Jj. Tor instance, it might be appropriate to regress Z(rij)
linearly on certain other variables, suitably re-expressed.

Whether or not the fitting of structured covariance
models on a z-transformed scale produces asymptotically efficient
estimates is a matter for further study. We note that the
procedure does provide an opportunity to use robust estimates,
since averages of zij’s can easily be replaced by robust
estimates of location (say, a-trimmed means). However, this
should not be thought of as protection against individual out-
liers in the original data (which can be treated by robustly
calculating the correlation matrix itself, as in Devlin, et al.,
1975)5 rather it is protection against isolated discrepancies
between the true and hypothesized models.

There is a connection here with the results of
Chapter 2. Invariance arguments show that,in a strucéured-
correlation model,maximum likelihood estimates of pij depend
only on the sample correlation matrix R. Therefore estimation

can proceed in two stages; first the correlations are cstimated
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from R, then varianceg from Sig and (ﬁij). If maximum likeli-
hood in the first stage is replaced by a z-based procedure

for expedience, but retained in the second stage where the
number of remaining parameters is much smaller, then the
property tr(ﬁ_ls) = p still holds.

5.4.3 Assessment of Residuals

Once a structured covariance model has been fitted,
however the fitting was done, it may be useful to asses the
quality of it by examining residual correiations on a trans-

formed scale., Let aij represent a correlation estimated by

[4)]

maximuvm likelihood (or by some other method). The statistics

~

eij = z(rij) - Z(pij)’ or, generally, eij.a = Z(rij.a) - Z(pij.a)’

can be regarded as residuals. If the original date is normally

or

distributed and the chosen structured model is adsgusie, then

the eij should be approximately Jjointly normally distributed

with zero means and known variances, and a covariliance structure
that can be estimated from the matrix (ﬁij) using the asymptotic
formulas in Egs. 5.3 - 5.6 . One can construct a formal X2
statistic from such a set of residuals, but their real value

will often lie in their use as a diagnostic aid to judge not

only whether, but how the model fails to fit. By sorting and
plotting these residuals against expected normal order statistics,

one can explore to what extent they resemble a sample from an

unstructured normal population, or, more precisely, from a



normal population with a cexrtaln correlaticn structure. In
particular, one might be able to isolate pairs or groups of
the variables Xi whose correlations don't conform to the hypo-
thesized pattern. This will be iilustrated in Example 5.1.

There is a connection between this approach and the
ideas developed by Wald (1943) and by Aitchison and Silvey (1960).
Those authors propose to test a general model whose vector
parameter 8 must satisfy some restrictions, h(@)—-(hl,...,hr)z.o.
They first compute h(ﬁ), where 9 is the unrestricted
maximum 1likelihood egtimate, ard then calculate a
X2 statistic W {rom h(5) and its =sstimated asymptotic covarisnce
matrix. If their functions hy (6) are identified with Z(Pij>’
then their W statistic is the Xg statistic mentioned above.
The present approach puts less emphasls on formal testing and
more on the heuristic use of the residuals. Alsc by working
in a more restricted framework, that of structured Wishart
models, we are able to find a re-expression of the parameter
space (namely, § = z(p)) which improves the distributional

approximation for finite sample sizes.

We note that the points made in Section 5.4.1 and
5.4.3 above are quite closely connected, since it is usually
by fitting "null" models and detecting systematic departures

from them that more refined models are developed.



We also consider hriefly the question of using
normal probability plots, which assume independent observations,
to study statistics that are correlated, as suggested in Sections
5.4.1 and 5.4.3. The issue has not received much attention in
the statistical literature, although some authors have suggested
that mild correlation should have little effect (e.g. Cox and
Lauh, 1967). The main result of practical importance was
mentioned briefly by Mallows (1969), namely, that if Xl’XE""’Xn
are marginally and palr-wise normal, all with equal means and
variances, and with correlations pij = corr(Xi,XJ), then to a

certain approximation the order statistics behave as though all

correiations were equal to their average,

~ 2 -
p - n(n-1) 21 Pig
i<

We observe further that the order statistics from an
equicorrelated sample are like those from an independent
sample, but with a modified variance and a randomly shifted
sample mean. In particular, if Xl""’Xn are jointly normal
with mean zero, variance 02, and corr(Xi,XJ) = p, then the
sample configuration statistics

(X=X)5 o v ey (X, -X)

n

are like those from a set of independently normally distributed

SN
variables Yl,..o,Yn with variance U“(l—p). This means that a
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normal probability plot of the X's will on average be a straight

line with slope o0 ./i-p , but it will be subjected to a random
vertical displacement with variance var(X) = Ug{i—f} + 025.

By contrast, the vertical displacement of a probability plot of
the Y's has variance var(Y) - 281%5E1~ . D. R. Cox (1975) has

suggested that the quantity

Oy = 0 4/1-F (5-.8)
be called the "effective standard deviation" because i1ts square
is on average the variance within samples from the ccrrelsicd
distribution.

From the arguments outlined here, and from studying
a series of preobability plots of correlated normal Cbeervetions
simulated by computer, we feel justified in using probability
plots of z-transformed residual correlations in the study of
structured Wishart models, bearing in mind that the slopes of
these plots are affected by the correlations. This viewpoint
is further strengthened by the fact that Mallows' approximation
improves when the correlations are close to their average; when
dealing with the statistics Zij the correlations cobtained from
Egs. 5.3 to 5.6 are typically more moderate than the pij’s

themselves.



Example 1 - AT&T engineering and service indicators

To illustrate some of the points made above, we
consider a set of data recently studied by Fowlkes (1975). The
data consist of 66 variables which describe various characteristics
of 61 geographical districts cf several telephone operating
companies in the Bell System. The variables apply to a single
month and include such things as total number of customers,
total expenditures of various kinds, numbers of new orders
received and completed, quantity of equipment currently in use,
number of custcmer trouble reports, etc. The study had the
rather gensral objectives of summarizing the data, discovering
underlying relationships, and exposing interesting wné peculiar
Teatures.

We note that because of the large number cf variable

[}

v

involved, this problem is beyond the capabilities of the
iterative maximum likelihood methods developed in Ch. 4, so we
employ analyses basecd on the zpproximate normality of the
statistics Z(rij)‘

After some preliminary analysis which suggested
transformations of certain variables to improve marginal and
pairwise distributions, Fowlkes computed a 66xX66 correlation
matrix R for variables across the 61 districts. BSince a
significant proportion of data was missing, each correlation

wag computed using all the data available for that pair of

variables. The humber of observation pairs entering each
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correlation r=nzed from € to 61, and averaged 38.

One of the analyses performed by Fowlkes was a
hicrarchical clustering of the variables using absolute value
of correlation as a meagure of similarity. Starting with
Fowlkes! correlation matrix. we congicder a clustering with a
different objective: 1in order <o discover underlying symmetries
among, the variables, we seek to determine how well the 66x66
correlation matrix or some subset of it can be fit by a constant-
in-blocks structure, of the kind described in Ex. 3.1. If such
a structure can be found, then the variables entering each
diagonal block form a symmetrical set, that is, in terms of their
correlations with other variables, they are interchangeable.

An appropriate distance measure for this purpose is
‘derived Tfrom the correlation matrix in the following mamnmer.
If two variables, say Xl and Xg, are interchangeable, then pairs
of correlations in the first two columns of R have identical

expectations, as do their z-transforms. Hence, if

then

E(d;) =0, 1 =3,b,...,66. (5.9)

(In fact, Eq. 5.9 holds exactly when the numbers of observations

n;q and 0,0 entering riq and Tsno respectively, are equal, but
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only to order O(:l— - —ln) otherwise.) Since the d; are

11, N.
il iz
approximately normally distributed with zero mean, they can

be used to form a statistic

2
tip = Ez ai/wy s (5.10)

which is an index of dissimilarity for the variables Xl

and X,: a high value of %, results when E(d,) # 0 and Xy

and X2 are not interchangeable. The quantities w, are weights
which should be proportional to the variances of the di. To

obtain empirical weights, we 1lgnorcd the covarlence of z., =@ d

il

Zsns but took account of the missing data. ence,
wy = var(zgq) + var{z;,)
n l— T a %3 :
il iz

(In fact, not only could the covariances be used and estimated
ac in Section 5.3.6, but the covariances of the d, could be
considered as well. Then tl2 would be defined as STW_%Q, where
W is a O4x6L matrix. But to do this for each of (26) pairs

of variables would be a prohibitively expensive calculation.)
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The fact that the tij and rij provide different bases
for clustering is shown by Fig. 5.1 in which tij is plotted
against Z(rij) for the 400 smallest values of tij' Bearing in
mind that small values of tij correspond to greater inter-
changeablility, one can clearly see that some pairs of variables
are highly correlated but not highly interchangeable, and
conversely.,

A hierarchical clustering (Johnson, 1967; Warner, 1969)
was performed using tij as a distance measure, and the results
are displayed as a tree in PFig. 5.2. The identification
numbers of the variables aprear at the top, and the numisrs on
the left are average values of tij within the least compact
cluster defined at each level of the tree.

The statistics t, are rovghly distributed as xZ,
for interchangeable pairs of variables. It seemed reasonable
to cut the tree at the arbitrary level 8 which corresponds
approximately to the .95 quantile of the ng distribution. This
defined 18 clusters whose sizes range from 1 to 9 variables, of
which seven clusters containing 5 or more variables account for
42 of the total, as shown in Table 5.1.

By rearranging rows and columns, we partition the
corresponding 42xl2 submatrix of zij's into a TX7 configuration
of blocks, and fit a constant Eij within each block. Again
ignoring the correlations among the Zj 40 we use weights that
reflect the missing data, and trimmed averages to guard agains’
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FIGURK 5.1 - Dissimilarity index vs. corre.atilon
for 400 pairs of variables
140 I — — ; -
y:c *‘d':n :: - ~.u "o
. W *a Ko o "
120 AP X .
" . " L] - n
AL T i L™ :N"“ o,
L] L]
e * . ® :" My » "
= N ;“m "‘ nﬂn Ll L)
L ® “
- nyto un " l::’: 2 " g
100 - ‘:{”‘g N o, . " W s
. ‘ LY [ 4.] L} :
D - " " "
° L
ey o .f"-"; X o .
" K My “"n‘ﬂ L] w * " -
. ,,.(f " 'u" : ;" w " )
3 » " L]
-I'j) 8OL' un;' " x:‘ - " 1
o - w ”,. ¥
~ " ” :‘; w KoMn » -
[a¥ PR " L] uulk 5 W
—i L -
o LI L] " w
‘5 n. . " &:u'u “ ,‘“
[99)] - . nu M M N ol
(7)) 60_ “:N P L My " L] =
o] P W Ll »
0 . " - " ™ "
" L} .1.
- o M . PR
n M u".h ™
" " s "~
uo_ L} " LY o N
L}
o ® .:', N " - Mo
” - w M
W " »” -
" .o - a
[
20 2
-
. -
-
| LA S 1 1 -

z{correlation)



66 variables based on dissimilarity index

i

.2 - Clustering o
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TABLE 5.1 - Clusters formed by cutting the tree at level 16

Cluster Variables
A 7 8 g 12 14
9 & 32 34 26 27 35 52 54
& 286 29 55 48 56
8] 11 24 25 58 L@
g 15 16 51 57 61
F 44 43 38 68 39 1lu 23 49 64
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a few outliers. Table 5.2 shows the rittecd Eéj’s with their
standard errors, and Table 5.3 the corresponding r(Zij)’s.
Whether thig fitted block corrslation structure,
which is completely described by 28 distinct correlation para-
meters, provides an adequate summary of the 42xU2 correlation
matrix with 861 distinct entries, is a guestion that can be
answered in part by examining the reslduals from the fit. The
normal probability plct of the 861 residuzls in Filg. 5.3 shows
an dppreciable curvature at the ends, suggesting a peoor fit or
longer-than-Gauvusslan talls. However, since missing data has
caused the Zij to have different variances, 1t secns more

<

aprropriate to standardize each Zij by dividing by its standerd
-1 :

ij-3)2. Figure 5.4 is a probability plot of the

error, (n
standardized residuals with a superimposed line of uvnit glione
and zero intercept which is the average configuration when the
model assumptions are all satisfied. Except for about 15
extreme points out of 861, the empilrical distribution of
residuals agrees remarkably well with a normal configuration,
suggesting that a block correlation structure 1s a reasonable
model for a vast majority of this data. The improvement of
linearity of Fig. 5.4 over Fig. 5.3 gives added support to the
recommendation in Section 5.3.6 that a weighted analysis be
done when a subgstantial amount of data is missing.

We note that this particular 7X7 block structure

hypothesis cannot be formally tested with this set of data

because the statistical significance level would be artifically
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TABLE 5.2 ~ Averag:a zjj within blocks, and standard errors

A B C D E F G

2.815 1.067 B.718 @.363 B.4306 p.089 g.2460
(6.046) (0.826) (0.031) (0.634) (0.841) (2.038) (8.031)

1.067 1.385 p.752 g.522 B.727 m.173 6.664
(6.026) (6.435) (0.€28) (8.530) (P.B35) (0.025) (0.028)

9.718 8.752 0.788 P.420 #.475 P.096 B.287
(0.031) (£.028) (9.054) (9.836) (0.043) (0.031) (0.032)

.363 P.582 0.429 2.531 P.364 £.114 W,304
(8.034) (0.630) (6.036) (0.662) (0.048) (B.034) (V.935)

0.430 0.747 0.475 2.364 6.733 0.197 0.744
{6.041) (0.835) (0.€43) {(6.948) (B.8892) (€.041) (£.0942)

0.0689 p.173 ¥.696 b.114 p.197 6.198 B.243
(0.830) (0.025) (B.B31) (¥.034) (6.841) (L.0645) (@.031)

6.240 2.664 0.287 b.304 D.744 Jg.243 1.446
(6.68231) (©.928) (9.032) (H.035) (£.642) (6.631) (¢.05%9)

(]

TABLE 5.3 -~ Fitted correlazations derived from

A B C D E F G
£.993 0.788 g.616 2.348 0.405 0.£89 B.236
0.788 p.882 #.637 .524 2.634 F.171 p.581
0.616 6.637 0.653 0.397 0.442 D.696 g.279
G.348 #.524 @#.397 0.486 B.349 B.114 D.295
0.4@5 D.634 .44z 0.349 #.625 P.195 0.632
0.089 6.171 P.196 p.114 @.195 g.299 0.238

2.236 #.581 0.279 2.295 b.632 0.238 6.887
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FIGUEE 5.3 - Normal probability plot of raw recsiduals
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FICURE 5.4 - Normal probability plot of standardized residuals
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inflated from having used the same data in the clustering
stage to select the model. An analysis of this kind is
intended to be informal in any event, and to form the basis
for further examination of the data. The few large residuals,
Tfor example, draw attention to pairs of variables that
require closer scrutiny, and one would want to judge whether
the clusters in Table 5.1 correspond to meaningful groupings
in terms of the definitions of the variables.

These questions go bevond the scope of the present
example, but we make one final point concerning the degree
to which irie block structure model adequately fits this set of
Gata. The single probability plot of Fig. 5.4 is only a very
rough guide. Ideally the residuals, which are shown in Tabie
5.4, should have no discernable structure beyond that impased
by the fitting piocess itself, but clearly there is some
additional structure. Table 5.5 shows where the residuals of
greatest magnitude fall, with residuals indicated by rank and
negative values denoted by underscores. Since disproportionately
many large residuals fall in diagonal blocks, we conclude that
this particular block structure is more satisfactory .for
modelling correlations across rather than within groups. Also,
we note that group F is rather different from the rest in that
the within-group fitted correlation is small (.099), and it

contains variables such as 39 and 49 which have excessively
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61
19
23
18
39

TABLE 5.4

- Standardized residuals (x100) from block
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TABLE 5.5 ~ Lecations of largest residuals, by rank
A B C D E E G
1,5 B B ~ _ . _
6,7

3,5 B . s " B
15,17
f B ._I S e e —
16 4,14 2 - -
,
8,11 13 -
12
| S — —
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many negative residuals. At a subsequent stage one might
decide 1o exclude this group from the hypothesis of black

strueture, or to subdivide it in some apprcpriate way.
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APPENDIX

A number of definitions and formulas are collected
here to facilitate derivations in the text. Equations Al
through A10 refer to matrix derivatives, and the rest
describe properties of a SWP operator similar but not
identical to Beaton's (1964). All of these formulas can be

verified easily from first principles.

Al. (Def.) If f = f(X) 1s a scalar function of the elements

arf

a7 is defined to be the matrix

of the matrix X, then

A2. (Def.) 1If the elements of the matrix X are functions

of the scalar y, then %% is defined to be the wmsatrix
(Bxij\
v/
A3. If the elements of the square matrix X are functions of
-1
. dXx el X -1
the scalar y, then a7 = X ay X .

AL, If the elements X*Y of the matrix X_l are considered as

ij . .
functions of the elements of X, then gi -xlkaJ
L
ox k

..—...i‘j = 7
BXET TixFse

and

A5. If f is a scalar function of the elements of X, then,

af _ T df T arf T
d_y"l = -X Ix X and ax —(X

-1 ar T, -1
—_q (X°) ".
ax

)
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A__6. ag\'&r 1og (163t(X> (XT)—l,

d . d PRI T
AT ax tr(Xa) gy Pr(AX) = A",
88. L tr(axexT) = oaTxal,

A9. (Chain rule) If the scalar y is a function of the elements
of the matrix X which are in turn functions of a scalar z,

then

dz / TN T dz/

dv _ <dy'dXT\ oty (dy Xy
7 -

AlO. If f = f(x) is a scalar function of the elements of the
vector x, and x = Ay, where A is a matrix of consitatis

and the vector y may have fewer elements than x, then

T 4af
ax

df

a—}-;:A

All. (Def.) If X is a square matrix then Y = SWP(k)X is

defined by
Vi = ~1/ %y
Yip = Xik/|xkk’ for i £ k
Vey = ij/lxkk] for j # k
Vij = ¥13 - Xikxkj/xkk for 1 £# k, j £ k.

This operator cocmbines Beaton's SWP and RSW, and is its
cwn inverse, If Xy > 0, SWP ceoincides with Beaton's
jaW oV

SWP; if X < 0, it is equivalent to Beaton's RSW.



Vo
A.Lc‘.,

>
-
)

|
I

1f the covariance matrix ¥ is partitioned as

1...r...%
Zaa | %an
Tha “bb_
. . Cae
then Zaa.b = zaa - Zab&bbzba is the conditionzl

covariance of the variables Xl""’Xr given

)4 s

r+1° " p’

SWP(a)Z = SWP(l,...,r)s , and

-1

Zaa.b |ZabZob

SHP ()T meif s
) -1 -1
Zbb*ba| "Zbb
o, -1
SWP(1,2,...,p)s = -=°1,

IT a and b are complementary sets of indices then

SWF(a)> = SWP(b)(-z'l).
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