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ABSTRACT 

The problem of scattering of electromagnetic waves by two-

and three-dimensional dielectric bodies has been investigated in the 

resonance region i.e., where the dimensions of the scatterer are 

comparable to the electromagnetic wavelength. The scatterers can 

be lossy and inhomogeneous materials. The two-dimensional bodies 

can have arbitrary cross-section, but particular attention has been 

given to rotationally symmetric scatterers in the case of three-

dimensional problems, though it is possible to extend the analysis 

to arbitrary three-dimensional bodies. 

The proposed method of solution defines regions where the 

field can be represented uniquely as an infinite series of cylindri-

cal harmonics with unknown constant coefficients for the two-dimen-

sional case and as a multipole expansion of spherical harmonics for 

the three-dimensional case. These regions are homogeneous in their 

material composition. In regions where it is not possible to repre-

sent the field as an infinite series of known harmonics with constant 

coefficients(inhomogeneous regions in material parameters), the 

field is represented by a similar infinite series which uses harmonics 

with unknown radial functions but known angular dependence. The 

system of differential equations for these unknown radial functions 

is deduced from the wave equation relevant to such regions. Solving 

this system numerically and using the standard boundary conditions 

on the surfaces(circles and spheres are used for the two-dimensional 

and three-dimensional cases respectively), which separate homogeneous 

regions from the inhomogeneous ones, gives the unknown scattering 

coefficients. 

As a comparison to the proposed method, the state-space 
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formulation of scattering which was devised for the solution of same 

type of problems has also been examined. 

Applications are made to two-dimensional and three-dimensional 

problems. Infinitely long homogeneous dielectric cylinders with 

different cross-sectional shapes have been considered throughly both 

for TM and TE polarizations of the incident field. The results 

have been compared to previously existing ones. Agreement is very 

satisfactory. For three-dimensional problems spherically symmetric 

scatterers were considered first. Spherical dielectric shells 

with perfect conductor cores and stratified in the radial direction 

have been examined, as well as Luneburg and Eaton lenses excited by 

plane waves. The agreement with existing results is very good. 

For spherically symmetric scatterers the necessary number of 

coefficients to be taken in the expansion of field, is approximately 

twice the nearest integer to krmax, where k is free-space wavenumber 

and r max  is the radius of the sphere. This is also the case for m 

circular dielectric cylinders. The limit defined above as 2krmax  

works satisfactorily for infinitely long cylinders with arbitrary 

cross-section but is not a sufficient one for non-spherical scatterers. 

As a non-spherical scatterer, an off-centre dielectric sphere 

has been considered. Since the scattering parameters in the far 

field are not affected by the location of coordinate origin, the 

results for the latter scatterer should be the same as for the same 

scatterer with origin located at the centre. Since the latter is 

an easy problem to solve, this type of comparison is a reasonable 

one. The backscattering cross-section and the scattering pattern 

in the two cases are very close to each other and it was observed 

that increasing the number of terms in the expansion increases the 

accuracy. 
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The proposed method was also checked against results for a 

dielectric oblate and a prolate spheroid excited by a plane wave. 

The agreement with these results was found to be very good. 

A computer programme has been developed to calculate the 

multipole coefficients of the scattered field for rotationally 

symmetric scatterers. The incident wave is not restricted to 

propagate along the symmetry axis of the scatterer, it is taken as 

an obliquely coming plane wave. 

As an engineering application, scattering properties of 

individual raindrops which are assumed to be homogeneous oblate 

spheroids or kidney-type shapes have also been investigated by the 

proposed method. This is a problem of practical interest in calcu-

lating the effect of rain on attenuation and cross-polarization of 

radio waves as they pass through a rainy medium. Multipole coeffi-

cients are tabulated and forward scattering amplitudes are computed. 



1. INTRODUCTICN 

1.1 Descrintion of the Problem 

The scattering of electromagnetic waves by bodies of arbitrary 

shape and physical properties is a problem of both theoretical and 

practical interest. Some commonly encountered engineering applica-

tions may be stated as follows: in radar engineering,, determining 

the scattering properties of radar targets is essential. These tar-

gets may be complex structures in both their geometry and physical 

composition. The usual and straightforward way to find the scattering 

characteristics of such complex structures is to decompose them into 

smaller pieces and to consider the contribution of each piece to the 

total scattering separately. Neglecting the interaction between indi-

vidual pieces and adding up their own contributions gives the total 

scattering approximately from such complex entities. Therefore, 

precise determination of the scattering behaviour of some geometri-

cally and physically 'simple' building blocks at radar frequencies 

is important in itself. 

The problem of attenuation and cross-polarization of electromag-

netic waves due to rain is important in radar meteorology and also in 

microwave relay system design. Thus the precise scattering charac-

teristics of raindrops are a desirable aim. 

Light scattering from colloidal particles is another field of 

application from colloidal chemistry. 

Absorption properties of human brain and tissues subjected to 

microwave radiation must be deduced for safe microwave applications in 

the biomedical field. Therefore the interaction of electromagnetic 

waves, in the microwave region, with biological material and man is 

an important application of electromagnetic scattering in this frequ- 
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0.ncy 1-cLion. 

Scattering properties of radially stratified optical fibres are 

again important to know, because of the practical problem of deter-

mining the refractive index profile from the measured diffracted field. 

The scattering problem also has theoretical importance. Mathe-

matically, even the simplest problem requires sophisticated mathema-

tical techniques. Generally, some ingenuous mathematical methods 

have been'devised for the solution of the problem and applied success-

fully. Nevertheless, due to the inherent, complexity of the problem, 

the exact analytical techniques remained small in number. For example 

3-dimensional scattering by homogeneous, isotropic bodies can be 

solved analytically in only the following coordinate systems: rec-

tangular, spherical, prolate spheroidal, oblate spheroidal, ellip-

soidal, parabolic, paraboloidal, conical, circular cylinder,and 

parabolic cylinder. 

If the boundary surfaces of scatterers coincide with one of the 

above coordinate surfaces, then analytical solution of the scattering 

problem is possible. Classically this solution is achieved by expemt-

ding the incident and scattered fields in terms of the vector wave 

functions of the associated coordinate system and applying the stan-

dard boundary conditions on the scatterer surface. This gives the 

unknown expansion coefficients directly. For the geometric shapes 

such as the sphere and circular cylinder, the scattering coeffici-

ents are obtained in terms of spherical and cylindrical Bessel and 

Hankel functions respectively whose arguments are ka, where k is the 

wave number and a is the radius of sphere or cylinder. 

If the surface of the scatterer does not coincide with one of 

the surfaces generated in the above coordinate systems(by equating one 

coordinate variable to a constant), then the Helmholtz equation is no 

longer separable and a compact, closed form solution involving known 

functions of mathematical physics is not possible. 
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This inadequecy of analytical solutions for problems involving non-

separable scatterer surfaces opened the way for some powerful approxi-

mate methods. Among these, variation and perturbation solutions can 

be mentioned. 

After the invention of high speed digital computers, methods of 

solution of scattering problems were revolutionized. Some of the in-

tractable problems of the pre-computer era became straightforward com-

puter applications. The integral equations of antenna and scattering 

problems were put into suitable forms for machine computation. Harr-

ington's(1) first introduction of moment methods in 1965 gave a power-

ful practical tool to the field-scientists. After that time, many 

field nroblems were examined carefully and previously nonexisting 

practical data was presented. 

The computer solution of field problems, however, brought its 

own problems. Finding the most appropriate form of equation for com-

puter implementation is a problem whose origin lies in physical reaso-

ning. If the equation to be solved is not properly selected, nume-

rical instabilities and errors are introduced and probability of gett-

ing meaningless results becomes high. This is the case, for instance 

in the selection of electric field integral equation(IFIE) or magnetic 

field integral equation(MFIE) for a particular thin wire antenna prob-

lem. 

In the computer solution of a field problem the most important 

factors to be considered are computation time, storage requirements, 

numerical stability and programming simplicity. When two numerical 

solutions of the same electromagnetic field problem are compared, 

the important comparison parameters are the factors mentioned above 

assuming that both methods have the same accuracy. 

In a scattering problem the scatterer is either a perfect con-

ductor or a lossy, anisotropic and inhomogeneous body, with time 

varying material parameters in the most general case. However most 
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of the 7roblems of practical interest require the body to be isotropic, 

homogeneous and time-invariant. Scatterers with inhomogeneous physi-

cal parameters are next more complicated case. 

Generally the scattering problem is stated as follows: consider 

a radiating structure of electromagnetic waves such that when this 

structure radiates into free space, its electromagnetic field all 

over the surrounding space can be determined from the source distri-

bution over the structure using the well known free space potential 

functions. This radiated field is termed the incident field and 

ideally it is independent of the existence of the obstacles in space. 

The incident field is assumed to be known in most scattering problems. 

If a body is introduced into the space, then the initial distributi-

on of the incident field is disturbed. This disturbance of the elec-

tromagnetic field is called the scattered field. This field is a func-

tion of several parameters among which geometry, material composition 

and dimensions of scatterer (measured in terms of wavelength of radia-

tion) can be identified. The scattered field, in the general case, 

interacts with the sources of the incident field and redistributes 

these sources. Hence the assumption of the incident field being 

known completely is not generally true. However, if the distance 

between the source and the scatterer is 'large' enough, then the in-

teraction is negligible and is assumed to be nonexistent. In prob-

lems where this interaction is not negligible, finding the disturban-

ce caused by the scattered field in the primary source distribution is 

a part of the overall scattering problem. In practical applications 

the incident field is almost invariably taken as a plane wave; but 

excitation by infinitely thin dipoles or loops.is also considered. 

The total field,viz., the vector sum of incident and scatte-

red fields, is termed as the diffracted field. 

The first scattering problems to be solved exactly were scattering 

from spheres and infinitely long cylinders. For harmonic time depen- 
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dence the scattering by spheres was first investigated by rie(2) at 

the beginning of this century. Since the wave equation is separable 

in spherical coordinates the resultant solution can be expressed in a 

closed, compact form. The fields are represented by an infinite 

series of spherical harmonics, the coefficients of which are determi-

ned using boundary conditions on the sphere. The infinite series is 

known as the Mie series and it is an exact representation of the field 

for all points in space, for all frequencies and for all radii of the 

sphere. The radial dependence of the spherical harmonics is repre-

sented by spherical Bessel functions. The angular dependence is go-

verned by associated Legendre functions in angle e, and trigonometric 

functions in azimuthal angle 0. Starting from the Mie series, im-

portant qualitative conclusions can be drawn about the scattering be-

haviour of a sphere over the whole frequency range. The most impor-

tant parameter in the Mie series is ka, where k is wavenumber and a 

is the radius of the sphere. This parameter is called as the,"opti-

cal radius" of the sphere. For long wavelengths(k is small) it is 

observed that the first few terms in the series are enough to repre-

sent the field with sufficient accuracy. As the frequency increases 

the number of terms to be taken increases correspondingly. For very 

large optical radii the convergence of the Mie series is slow. For 

example for ka=100 the necessary number of terms in the Mie series for 

a satisfactory representation of the field is more than loo. There-

fore, summation of the Mie series for large ka is both time consuming 

and sensitive to numerical errors. To circumvent this difficulty 

Watson(3) devised a method which is known as the Watson transformation. 

Watson thought of the Mie series as a residue series and devised a 

complex integrand with a corresponding contour such that evaluation of 

the integral by residue method results in a residue series which is 

identical to the Mie series. The next step is to deform the contour 

of the equivalent integral such that convergence of. the new residue 
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series(with respect to the new contour) is faster. This method,  

although seemingly attractive is only applicable to problems where a 

Mie type of series with known coefficients is available. It has been 

applied to spheres and circular cylinders. 

Following the analysis based on the Mie series, it is possible 

to distinguish three frequency regions for all scattering problems, 

although this is quite arbitrary and the regions do not have definite 

boundaries. 

The first region is characterized by a 'small' optical radius 

(for noncircular or nonspherical scatterers this radius is taken as 

the radius of the smallest circle or sphere which encloses the scatt-

erer completely). This frequency region is called the Rayleigh re-

gion. In this region it is possible to represent the scattered and 

incident fields by convergent series, known as the Rayleigh series, 

a typical term of which is Prikn, where Fn  represents the n'th-order 

electric or magnetic field vector and k is the wavenumber. 

Although the convergence of the series is established rigorously, its 

radius of convergence is not known for a large class of scatterers. 

Kleinman(4) introduced an iterative method for explicitly deter-

mining the successive terms in the Rayleigh series. The method requ-

ires the solution of the corresponding static potential problem for 

the same scatterer. 

In the Rayleigh region the scattered field of the electric and 

magnetic dipoles induced by the incident field inside the scatterer 

is the dominant field. The frequency dependence of the scattered 

field is f2  (so scattered power varies as f4  or 1/0 with the fre-

quency or wavelength respectively). This frequency dependence is the 

well known Rayleigh scattering law. 

If the wavelength of the incident radiation is very small com-

pared to the principal radii of curvature on every point of the scat-

terer surface then high frequency techniques must be used for the solu- 
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tion of the scattering problem. In this frequency region the scatte-

ring phenomena is specular,i.e. the incident wave is reflected at po-

ints on the scatterer surface according to the laws of geometrical op-

tics. The relevant methods for this frequency range are Geometrical 

and Physical optics. Keller's(5) geometrical theory of diffraction 

is an improvement over geometrical optics where it fails to predict 

the fields in the scatterer shadow. 

Rayleigh series and high frequency techniques are very good app-

roximations in their corresponding frequency ranges. The frequency 

region where both of the methods mentioned above fail to give correct 

results is a region between low and high frequency limits. This re-

gion is called the resonance region. Scattering phenomena are very 

sensitive to body shape and body dimensions in resonance region in 

contrast to the low frequency phenomena where shape of the scatterer 

is not so decisive(for long wavelengths, the volume of the body rat-

her than its detailed shape,  is important). For short wavelengths the 

shape of the scatterer is again important and it comes into the solu-

tion through the local radii of curvature of the scatterer. 

One of the important characteristic features of the resonance 

region is that, not only are the electric and magnetic dipoles in-

duced in the scatterer but higher order multipoles are also generated. 

The scattered power varies with frequency in an oscillatory manner. 

The scattered field is almost invariably represented by an infinite 

series of 'characteristic modes'. For separablesurface scatterers 

these modes are the elementary solutions of the vector Helmholtz equ-

ation in the corresponding separable coordinate system. For an ar-

bitrary scatterer, characteristic modes are not so straightforward 

to define. However, there are attempts, notably by Garbacz(6) and 

Harrington & Mautz(7), to extend the characteristic mode approach to 

arbitrary scatterers. 

The convergence properties of the characteristic mode expansion 
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are very essential in the resonance region. ,amost all solution met-

hods devised for this frequency region require the solution of an in-

finite dimensional linear system either in the form of linear algeb-

raic equations or in the form of linear differential equations. It 

is therefore necessary to truncate the series at a finite number of 

terms in order to extract a solution from the corresponding infinite 

system. However, this truncation number is not known a priori, 

although'the truncation operation is meaningful physically. If the 

scatterer surface is a separable one, experience shows that the nea-

rest integer to 2krncan be used as the truncation number satisfactorily. 

Here rmis a maximum linear dimension of scatterer defined with res-

pect to a chosen origin. If the scatterer is non-separable but the 

fields are expanded in terms of the functions of a separable coordi-

nate system the truncation limit roughly defined above may not work. 

More terms than the ones allowable by the above limit are necessary 

for accurate representation of the fields. The motivation behind 

the concept of characteristic modes for scatterers with arbitrary geo-

metry is partly due to the fast convergence of such series using these 

modes as their typical terms. 

The usual procedure for finding the necessary truncation num-

ber works as follows: the problem is solved with a truncation num-

ber(this may be taken as 2krm), then this number is increased and 

the results of two computations are compared. If the results do not 

change appreciably, then the first truncation number is taken as the 

proper one. If increasing the truncation number changes the results 

appreciably the above procedure is repeated for higher truncation num-

bers until an unchanged result is obtained. It is obvious that this 

procedure is cumbersome and time consuming, but no satisfactory so-

lution to this difficulty has yet been presented. 

In this thesis consideration is confined to resonance scattering 

for time harmonic fields. Low and high frequency techniques are not 
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considered at all. 

1.2 Rewiew of Methods of Solution 

1.2.1 Scattering by Perfectly Conducting Bodies 

Scattering of electromagnetic waves by perfectly conducting 

bodies of arbitrary shape was first formulated through an integral 

equation for the surface current by Maue(8) in 1949. The solution of 

this integral equation for surface current density is a formidable 

task even for rotationally symmetric scatterers. It is a vector in-

tegral equation on the scatterer surface, therefore it is equivalent 

to two coupled scalar integral equations. 

Attempts have been made to solve Maue's equation approximately. 

Kodis(9) introduced a variational technique for the solution of the 

integral equation. Mei & Bladel(10), in 1963, solved the integ-

ral equation with a different method. In their method, the surface 

current density is represented approximately by the first N terms of 

an infinite series in the mean square sense and the integral equation 

is enforced at N points on the surface of the body; This results in 

a linear system of algebraic equations for the unknown coefficients 

in the finite series representing the surface current density. This 

technique has been applied to scattering by perfectly conducting rec-

tangular cylinders. One important numerical inconvenience has been 

observed in the solution process. This occurs when the wave number 

k approaches one of the internal resonance wavenumbers of the scatterer 

This makes both the integral operator and the equivalent matrix singu-

lar. For such wavenumbers the solution is no longer unique. 

This numerical difficulty has been overcome by Waterman(11) in 

1965. In his analysis the boundary condition used is that the in-

duced surface currents distribute themselves on the scatterer surface 

in such a way that their radiated field precisely cancels the incident 

field throughout the interior volume. This is called the extended 
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boundary condition. The inte:ral equotion resulting from the mathe-

matical formulation of the above condition is called the extended in-

tegral equation and its solution is unaffected by internal resonances. 

The solution of the extended integral equation gives the unknown sur-

face currents. 

Hizal & Marincic(12) set up an integral equation with the total 

fields as unknowns rather than the total surface currents. Represen-

ting the fields by finite series of spherical vector harmonics with 

unknown coefficients and converting the integral equation to a matrix 

relation gives the expansion coefficients by inverting the matrix. 

The scattered fields are found by summing the finite series. 

The same procedure, namely starting from an integral equation, 

representing it by an equivalent first order linear system of algeb-

raic equations and solving the final matrix relation numerically is 

also employed by Andreasen(13) and by Avetisyan(14) in scattering by 

perpectly conducting bodies of revolution, by Richmond(15) in scatte-

ring by conducting rods of finite length, by Baghdasarian and Angela-

kos(16) in scattering of a plane wave by a conducting loop. 

Kennaugh(17) solved the scattering problem for perfectly conduc-

ting prolate and oblate spheroids excited by a plane wave propagating 

along the symmetry axis using a point matching technique. 

Erma(18,19,20), in 1968, developed a boundary perturbation 

technique to solve the electromagnetic scattering by perfectly conduc-

ting rotationally symmetric and arbitrary bodies. Erma expresses the 

surface of the body as a perturbation of a spherical one. The resul-

ting expansion coefficients are expressed as a power series in the per-

turbation parameter and the unknown perturbation coefficients. The 

zeroth order coefficients, being identical with the scattering coeffi-

cients of the optimum unperturbed sphere about the given non-spherical 

body, are obtained as the infinite summation of certain surface integ-

rals which involve only known constants and perturbation coefficients 
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of lowerorder. 

Garbacz(6) in 1965 and Karnishin,et.al.(21) in 1970 proposed a 

method to calculate the characteristic modes of arbitrarily shaped per-

fectly conducting bodies. Garbacz approaches the problem by diago-

nalizing the scattering matrix. By doing this he arrives at the conc-

lusion that the mode currents are real and the tangential electric mode 

field is of constant phase over the surface of the body. Garbacz, 

Turpin, and Wickliff(22), (23), (24) used this property to find the 

characteristic currents in a few cases, but they did not obtain con-

venient formulas for computing the mode currents in general. 

In 1971 Harrington & Mautz(7) approached the same problem from 

an alternative point of view by diagonalizing the operator relating 

the current to the tangential electric field on the body. By choosing 

a particular weighted eigenvalue equation, they obtained the same 

modes as defined by Garbacz. 

Variational techniques used by Kouyoumjian(25) give results for 

metallic plate, wire loop and wire scattering. In these methods, 

the far field amplitude is expressed in a form stationary with respect 

to small variations of the surface current about its true value. The 

accuracy of the technique depends on the initial choice of trial func-

tion for surface current which must not be too far from the true sur-

face current distribution. 

Wilton & Mittra(26), in 1972, developed a method for scattering 

by two-dimensional bodies of arbitrary cross-section. In this method, 

the scattered field is represented by an expansion in terms of cylin-

drical harmonics the coefficients of which are unknowns. The boundary 

conditions are satisfied either using an analytical continuation proce-

dure, in which the far-field pattern is continued into the near field 

and the boundary conditions are applied at the surface of scatterer, 

or, the completeness of the modal wave functions are used to approxi-

mately represent the fields in the exterior regions of the scatterer 
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directly. 	Th? coefficients of the cylindrical hersonics ore o'otaine:' 

by an inversion of a matrix whose elements depend only on the shape 

and material properties of scatterer. 

Recently, in 1974, Hizal(27) attempted to formulate the scatte-

ring problem for perfectly conducting bodies as an initial value prob-

lem. In this method, the exransion coefficients of the scattered 

field satisfy a system of linear first-order differential equations. 

It seems,, however, that some modifications are necessary before app-

lying the formulation to practical problems. 

Another approach to the scattering problem for perfectly conduc-

ting bodies which is completely different from the previous ones, is 

based on the transient response of the scattering body. The main 

idea of the method is to evaluate the impulse response of the scatterer 

The evaluation is based on several moment conditions which the impulse 

response function must satisfy and on the understanding of the depen-

dence of the response waveform on the geometry of the scatterer. This 

technique is attracting more attention today. Teche's(28) singularity 

expansion technique is a related one in this respect 

1.2.2 Scattering by Dielectric Bodies 

The problem of scattering of electromagnetic waves by dielectric 

bodies which is the main concern of the present thesis can be attacked 

using different methods. One way of tackling the problem is to con-

sider it as a reradiation problem. By this the following is meant; 

the incident wave, which is generated by a distant source, polarizes 

the medium in which the scatterer is located. The polarized(or indu-

ced) sources radiate into all space. The degree of polarization at 

a particular point inside the scatterer is a function of total field 

at that point(incident plus scattered fields) and the permittivity of 

the scatterer. Thus the induced source density is unknown because 
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the scattred field is not known before the cos-olete solution of the 

problem is obtained. 

For scatterers having a refractive index not too different from 

that of the surrounding medium the polarization can be assumed to be 

due to the incident field alone. The total induced sources are then 

known throughout the scatterer volume and the scattered field is ob-

tained by a volume quadrature of these sources. This approximation 

is known as the Born approximation and it does not work when multiple 

reflection phenomena become important. 

Since the scattered field is an integrated effect of the induced 

sources, and the induced sources depend on the scattered field, the 

above reasoning leads to an integral equation for the unknown scattered 

field. Richmond(29) deduces this integral equation for infinitely 

long dielectric cylinders of arbitrary cross-section. His solution 

proceeds by first dividing the cross-section of the cylinder into a 

finite number of cells in which the material parameters are assumed 

to be constant. The values for these constants are taken as the values 

of the permittivity function at the centre of each cell. The values 

of electric field in.each cell are assigned as unknowns of the prob-

lem. The above procedure converts the integral equation into a set 

of algebraic equations. The final solution of the unknown field valuesin 

each cell is obtained by matrix inversion. This is actually the 

moment method of solution of the integral equation with two-dimensional 

step functions as test functions combined with point matching. The 

scattered field is obtained by a surface quadrature of the evaluated 

electric field over the cross-section of the cylinder. In this way, 

Richmond calculates the scattering patterns of cylindrical shells of 

circular cross-section, a dielectric shell of semi-circular cross-sec-

tion, a thin homogeneous plane dielectric sheet of finite width, and 

an inhomogeneous plane sheet. 

The above method is a two-step procedure for finding the far 
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field quantii.i-s. 	Increasing the nu::ber of cells 	th. accu- 

racy but increases the computation.  time and storage correspondingly. 

The scattering of a plane wave by a dielectric ring has been in-

vestigated by Van Doeren(30) using a very similar method. The diffe-

rence is in the representation of the total unknown field. Here the 

total field is expanded into a series of functions with unknown coeffi-

cients. Substitution of this series into the integral equation toget-

her with the point matching technique(enforcement of the integral equa-

tion at a sufficient number of points within the dielectric volume) 

results in a system of algebraic equations for unknown expansion coeffi-

cients. 

Hizal & Tosun(31) also considered the problemasa reradiation 

problem. In their method, the fields inside the scatterer are ex-

panded into an infinite series of spherical vector wave functions, the 

coefficients of which are not constants but functions of radial dis-

tance from the coordinate origin. The system of integral equations 

satisfied by these coeffcients are of Volterra type. Instead of sol-

ving the integral equation, the equivalent linear first order system 

of differential equations obtained by differentiating both sides of the 

integral equation are solved. This system of differential equations 

is not of initial value type but a two-point boundary value type. Its 

mathematical form is the standard state-space form which is often en-

countered in linear system theory. The unknown initial conditions 

and the expansion coefficients for the region defined by 1...r2  (r2  is 

the radius of the enscribing sphere) are found simultaneously by solving 

the differential system with zero initial conditions(zero state solu-

tion), by calculating the elements of the state-transition matrix and 

finally by inverting a matrix. Their method, which is called the 

state-space formulation of scattering, has been developed for arbitrary 

inhomogeneous and anisotropic scatterers but has been applied only to 

spherically symmetric scatterers which are isotropic and stratified in 
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the radial direction. The state-space formulation of scattering will 

be examined in more detail and compared with the method which is presen-

ted in this thesis, in later chapters. 

Waterman(32) extended his extended boundary condition method to 

the problem of scattering by dielectric scatterers. His starting po-

int is the vector Huygen's principle according to which the total elec-

tric field outside the scatterer can be represented by a surface quad-

rature of,the tangential components of the total electric and magnetic 

fields over the bounding surface of the scatterer. The integral rep-

resentation which gives the correct electromagnetic field outside the 

scatterer cancels the incident field precisely for. points inside the 

scatterer. Within the inscribed sphere the free space Green's func-

tion has a unique infinite series expansion in term of regular sphe-

rical harmonics. This fact is utilized to obtain the extended integ-

ral equation for the unknown surface currents which are actually the 

tangential electric and magnetic fields. For a perfect conductor, 

the tangential electric field is zero on the scatterer surface, so 

the integral equation is to be solved for the unknown tangential com-

ponent of magnetic field. For a dielectric scatterer there are two 

unknowns in one integral equation. The solution goes as follows: 

the field inside the object is expanded into a series of regular vec-

tor wave functions of the interior wave equation with interior wave-

number as in the arguments of radial functions. Then the continuity 

of tangential fields on the surface of the scatterer is employed. 

In this way, the integral equation is transformed into a system of 

algebraic equations for unknown expansion coefficients and the final 

solution follows. The interior field can be expanded into a series 

of spherical harmonics of the interior wave equation only if the scatt-

erer is homogeneous. Therefore Waterman's method cannot be applied 

to inhomogeneous scatterers in its present form. If, however the 

interior fields of an inhomogeneous body are found by some means(for 
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example by finite-difference or finite-element techniqu:s) the method 

works for such scatterers as well.. 

Another integral equation approach is made by I•Iitzner(33) to 

solve the scattering problem for an imperfect conductor. He formu-

lates the scattering from a body of large but finite conductivity in 

terms of two coupled integral equations relating the effective electric 

and magnetic surface currents. From the integral equations, he then 

derives approximate. relationships between the two type of effective 

surface currents. The final solution is achieved by solving the in-

tegral equations numerically. 

A different attack on the scattering problem for dielectric bo-

dies has been made by Erma(20) and Yeh(34). Erma extends his pertur-

bation-expansion technique to dielectric scatterers. However, he 

does not illustrate his method with a concrete example. Yeh has got 

results for scattering by oblate and prolate dielectric spheroids 

with small eccentricities. The excitation is a plane wave propagating 

along the symmetry axis of the scatterer in each case. The boundary 

of the dielectric obstacle is expressed in spherical c000rdinates in 

, the general form r=ro11+8f1(6,0)+8
2  f2o,0)+...] where ro  is the ra-

dius of an optimum unperturbed sphere, fn(0,0) are arbitrary single 

valued and analytic functions, S is the perturbation parameter and 
co 

is chosen in such a way that 	lelfrt(020) I <1, 

Detailed analysis is carried out to the first order by Yeh(Erma extends 

the analysis for higher order perturbations) together with the proce-

dure to obtain higher order terms. The perturbation solutions are 

valid for the near zone of the scatterer as well as for its far zone 

and they are applicable for the whole frequency range. The pertur-

bation expansion technique is only applicable to scattering problems 

with homogeneous dielectric media. Although the method is claimed 

to be capable of solving problems of highly perturbed scatterers, no 

practical applications are touched inthe work mentioned above. 
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A technique, which is similar to the one mentioned before in re-

lation to Kennaugh's work for perfectly conducting bodies has been used 

by Greenberg and Libelo(35) for the solution of the problem of scatte-

ring by axially symmetric penetrable particles. In this method the 

standard boundary conditions are apnroximately satisfied at the scatte-

rer surface. The technique has been applied to the scattering of sca-

lar waves by prolate spheroids and tilted cylinders. 

Spherically symmetricdielectric scatterers stratified in the ra-

dial direction have received considerable attention in the literature. 

Wyatt(36), in his analysis has got two second order differential equ-

ations for the two unknown functions which appear in the scattering 

coefficient expressions. One of these differential equations is of 

Schr6dinger type. For some refractive index profiles, like Cauchy 

and square root parabolic profiles, Wyatt's differential equations 

have solutions as hypergeometric and confluent hypergeometric functions. 

The method of invariant-embedding has been employed by Latham(37) 

for the solution of scattering by cylindrically and spherically stra-

tified dielectric obstacles. In this method, the field is represen-

ted by an infinite series of cylindrical(orspherical) wave functions 

with two set of coefficients. One set of coefficients is determined 

by the incident field and the set of values of the ratio of the second 

coefficient to the first(this ratio is called the modal reflection co-

efficient and denoted by Rn) may be determined by considering the chan-

ge in Rn, when a thin homogeneous cylindrical(or spherical) shell is 

added to the original cylindrically(or spherically) inhomogeneous body. 

By this procedure a nonlinear differential equation for Rn  is obtained. 

This differential equation is solved numerically with the initial con-

dition Rn(q)=0 at q=0 where q is the cylindrical(or spherical) radial 

variable. Once Rn is found the scattered field follows directly. 

The computation of electromagnetic scattering from concentric 

spherical structures by means of the rigorously exact Mie series is 



18. 

discussed b2,• 	Murphy(38). 	They present results for three 

different problems: a dielectric sphere, a dielectric shell spaced 

away from a central perfectly conducting sphere and both 5 and 10 

discrete layer approximations to the Luneburg and Eaton-Lippman lenses. 

Scattering by cylindrically symmetric dielectrics, stratified 

in the radial direction , has been investigated by Shafai(39) using 

the method of phase and amplitude functions. In this method, the 

field is represented by an infinite series in the inhomogeneous region 

with radial dependence unknown but with known angular dependence. 

This series is substitutedinto the partial differential equation sa-

tisfied by the field variable in the stratified region. Using the 

orthogonality properties of trigonometric functions on the interval 

(0-2n) gives a Sturm-Liouville type differential equation for the un-

known radial function. Suitable phase and amplitude functions(which 

involve the integrals of unknown radial functions)are defined and the 

unknown radial function is expressed in terms of these. This proce-

dure results in two nonlinear ordinary differential equations for the 

phase and amplitude functions and these are solved numerically subject 

to the initial conditions obtained from boundary conditions on field 

vectors. 

Shafai(40) has also solved the problem of scattering by cylin-

drical objects of arbitrary cross-section and physical properties by 

the conformal mapping technique. 

Wilton & Mittra's previously mentioned point-matching method for 

perfectly conducting scatterers is also valid for homogeneous two-di-

mensional dielectric scatterers. However the practicability of this 

method is questionable. 

Recently Mei(41) has developed "uni-moment" method of solution 

for field problems. This method of solution seems to be promising 

in some respects. It can be applied both to two-dimension and three-

dimensional problems. The origin of the method goes back to the 
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attempts made by some wor!:ers to solve the exterior boundary problems 

(scattering problems) involving localized inhomogeneous media using 

finite-difference or finite-element techniques(42) together with in-

tegral equations or harmonic expansions which satisfy the radiation 

condition automatically. These methods result in large matrices 

which are partly full and partly sparse. The methods to solve them 

such as iteration or banded matrix methods proved to be unsatisfactory. 

The reason is that direct inversion of such matrices is impractical 

and iterative methods are slow, and always diverge when the source 

frequency is higher than a critical value. This is usually the lowest 

resonant frequency of the finite-difference or finite-element region. 

The uni-moment method developed by Mei is claimed to eliminate 

these difficulties by decoupling exterior problems from the interior 

boundary vaue problems. This is accomplished by solving the interior 

problem many times so that N linearly independent solutions are gene-

rated. The continuity conditions are then enforced by a linear combi-

nation of the N independent solutions which may be done by solving much 

smaller matrices. The successful application of the uni-moment met-

hod depends on how fast the trial function pairs(N linearly indepen-

dent interior solutions of the wave equation) can be generated. These 

function pairs are found by solving the field equations inside the 

scatterer volume by finite-difference approximations. The finite dif-

ference form of the Helmholtz equation(or actually the wave equation 

for inhomogeneous media) is solved by three different methods which 

are the "shooting" method, the Riccati transformation, and the sparse 

matrix algorithm. The shooting method is basically an unstable nu-

merical algorithm, but where it is applicable it gives satisfactory 

results. For problems involving scatterer of large dimension the 

Riccati transformation is a more stable computational technique. The 

uni-moment method using the Riccati transformation to generate N li-

nearly independent solutions of the wave equation inside the scatterer 
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has been applied to solve biconical antennas. 

Pettit's work is very similar(for two-dimensional problems) (43) 

to the method presented in this thesis. It will be mentioned in 

detail in chapter 2. 

Related to raindrop scattering, Oguchi(44) and Morrison&Cross 

(45) have worked on the problem of scattering by lossy oblate 

spheroids. Scattering properties of raindrops for two orthogonal 

polarizations are important in the estimation of crosstalk in the 

microwave relay systems which use both orthogonal polarizations to 

give two channels at the same frequency. Oguchi has obtained 

results for the field intensities both in the forward and backward 

directions by solving the related boundary-value problems with a) a 

point matching technique and b) a perturbation technique at 19.3GHz. 

At 34.8GHz, in addition to the above methods (a) and (b), he has 

solved the problem with a third method which is a spheroidal function 

expansion method. He has considered 13 different sizes of rain-

drops. 

Morrison&Cross, in their paper, give details of the analytical 

and numerical calculations used to solve the problem of the scattering 

of a plane wave by an axisymmetric raindrop. In the analysis, the 

shape of the raindrop need not be an oblate spheroid. Applications 

are made for oblate spheroids with various eccentricities. An exact 

solution using oblate-spheroidal wave functions is also presented 

and the results of approximate solutions, such as the perturbation 

and least-square fitting, are compared with the exact solution. 

1.3 Summary of the Present Work 

In this thesis scattering of electromagnetic waves by dielectric 

bodies is investigated in the resonance region by using a new method 
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of solution. The method developed works as follows: in circular 

or spherical regions with homogeneous material parameters throughout 

the electromagnetic field quantities are represented by infinite 

series of cylindrical or spherical harmonics depending on whether the 

problem is two-dimensional or three-dimensional. These expansions 

are convergent in their respective domains, where they represent 

the fields uniquely. 

The radial functions appearing in the above harmonic expansions 

are cylindrical Bessel and Hankel functions in two-dimensional 

problems and spherical Bessel and Hankel functions in the three-

dimensional case. The coefficients of the harmonics are unknown 

constants to be determined by the boundary conditions. The angular 

dependence in the former case is governed by circular trigonometric 

functions, in the latter case this dependence is with spherical 

angular harmonics which are combinations of Associated Legendre 

functions in angle 6 and trigonometric functions in angle 0. In 

regions where material parameters are not constant but vary with 

position, the field quantities are again represented by infinite 

series. The radial functions of this expansion, however, are 

no longer known functions. The angular dependence is assumed to be 

the same as the one used for homogeneous regions. For two-dimen-

sional problems, this assumption is equivalent to a Fourier series 

representation of fields(in angle 6) in the corresponding inhomogeneous 

regions. For three-dimensional problems, it is a Fourier series 

representation in angle 0 combined with the representation of the 

6-dependence of fields in terms of Associated Legendre functions. 

The differential equation satisfied by the unknown radial 

functions is obtained by substituting the infinite series expansion 

of the field into the corresponding wave equation valid in the 

inhomogeneous region and using the orthogonality properties of 
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angular functions appearing in the expansion. 

The above procedure assumes that the fields in the inhomogeneous 

region can be represented exactly by an infinite expansion involving 

unknown radial functions. The validity of such an expansion follows 

from a theorem proving the existence of an infinite series expansion 

involving vector angular spherical harmonics for an arbitrary function 

of angles e and 0. For two-dimensional problems this is reduced to 

the existence of Fourier series of an arbitrary periodic function. 

The unknown radial functions, in addition to the differential 

equations mentioned above, must satisfy the conditions which are 

imposed on them by the standard boundary conditions on field vectors. 

It is then possible to find the unknown expansion coefficients 

for the homogeneous region by solving the system of differential 

equations numerically. 

As in almost all of the methods used in the resonance region, 

the infinite summations must be truncated at a certain number in 

order to solve a finite dimensional system of equations. This 

truncation number is not known a priori, however. By numerical 

examples it is shown thatfor two-dimensional problems the truncation 

number taken as the nearest integer to 2kr 
max  works quite satisfac-

torily. However, this is not the case for non-spherical three-

dimensional scattering problems. By considering a spherical scatterer 

with the coordinate origin shifted by a distance from the centre of the 

sphere(so with respect to this coordinate system the scatterer is 

no longer spherically symmetric) it is shown that the truncation 

limit defined above is not a sufficient one. For example, for a 

sphere of optical radius 0.8, the origin is shifted along the 

z-axis by an optical distance of 0.2, so that the maximum optical 

dimension of the scatterer with respect to the shifted origin is 1, 

satisfactory results are achieved by a truncation number of 4 (which 
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is twice that expected). 

The method developed, then, is essentially a harmonic ex-

pansion and boundary matching technique. 

Since the cylindrical or spherical harmonics are not the 

'natural modes' of non-cylindrical or non-spherical bodies, the 

convergence of the series is not to be expected to be as fast as 

the one which uses the natural harmonics of the scatterer.. The 

determination of such harmonics for arbitrary dielectric scatterers, 

although is mentioned in (46), has not yet been fully explored in 

the literature. The present method is, however an improvement 

over the ones which use a spherical or cylindrical harmonic expansion 

with constant coefficients even inside the inhomogeneous regions 

((41),(45)). This is due to the fact that although the cylindrical 

or spherical harmonics are not the proper solutions of wave equation 

valid for the inhomogeneous region, the radial functions employed 

in the present work are generated directly from the wave equation 

for such regions. 

The present method is developed for rotationally symmetric 

scatterers in the three-dimensional case. It can also be extended 

to arbitrary bodies, but this is not done in the thesis. All the 

derivations and numerical computations are carried out either for 

spherically symmetric or rotationally symmetric scatterers. 

The following scatterers have been used in the analysis for 

two-dimensional problems: the circular dielectric shell, the circular 

dielectric shell stratified radially with a perfect conductor core, 

dielectric shells with semi-circular cross-section, elliptic, 

square and rectangular dielectric cylinders, two circular cylinders 

with different radii located a distance away from each other, ogive 

and two-dimensional Luneburg lenses. The resulting scattering 

patterns have been compared with the previously existing ones. 
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Agreement is remarkably good. 

Spherically symmetric scatterers stratified radially are easy 

to solve with the present method. Spherical shells, spherical 

shells stratified radially with a perfect conductor core, Luneburg 

and Eaton lenses have been selected as the spherically symmetric 

scatterers. 

As examples of non-spherical scatterers, the off-centre sphere 

prolate and oblate spheroids, a dielectric cylinder of finite 

length, and two dielectric spheres with the same radius located a 

distance away from each other along the z-axis have been considered. 

A practical application is to raindrop-scattering. The forward 

scattering amplitudes are calculated for oblate spheroidal and 

kidney-shaped raindrops for an obliquely incident plane wave. It is 

not attempted, however to evaluate the scattering properties of 

raindrops in every detail. 

For rotationally symmetric scatterers, it is shown that the 

azimuthal modes are excited inside the scatterer independently of 

each other. The index m related to these modes comes into the 

calculations as a parameter. Hence, computations are carried out 

for each azimuthal mode separately. The above statement is valid 

only if the material parameters of the scatterer are independent of 

the azimuthal angle 0. 

In the representation of the fields by infinite series, the 

solution of the vector Helmholtz equation in spherical coordinates 

has been utilized. This representation is known as the Multipole 

expansion of the electromagnetic field. A brief introduction to 

Multipole fields is given in chapter 4. The full theory of Multipole 

fields can be found in (47). 

In the numerical computations, it is required to solve a 

linear system of differential equations. The characteristic matrix 
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of this differential system is a (4Nx4N) complex matrix, where N is 

the truncation number. The elements of the characteristic matrix 

depend on the geometry and physical properties of the scatterer. 

This matrix is independent of the excitation. Hence, whatever the 

excitation is, the numerical solution of the differential equations 

is unaffected by it. The form of the differential equations is the 

well known state-space form with no excitation term. There are 

ready numerical routines for the solution of such a system of diffe-

rential equations. The numerical algorithms Runge-Kutta and 

Predictor-Corrector are adopted in the present work. The important 

parameters of both of these algorithms are step size and error bound 

for local accuracy. They are standard subroutines which can be found 

in almost all subroutine packages. In addition to the solution of 

the differential equations a matrix inversion is necessary for the 

final solution. This is again a 4NAN complex matrix. 

A computer programme has been developed to calculate the 

scattering coefficients, bistatic cross-section patterns and back-

scattering cross-sections of rotationally symmetric homogeneous 

dielectric scatterers. The shape of the scatterer appears in the 

programme as part of a subroutine. Hence, by making small changes 

in this subroutine with the rest of the programme unchanged, it is 

possible to solve the scattering problem for various scatterers. 

As the dimension of the scatterer in terms of wavelength gets 

larger, the size of the matrices employed increases correspondingly. 

This, in turn increases the computation time and storage. This 

feature is characteristic of the resonance region. Although it is 

possible, in principle, to use the present method for frequencies 

above the resonance region, this is not practicable because of the 

time and storage limitations of computers used for the solution. 

The main objective of the present work is to introduce a new 
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method for the solution of scattering problems for dielectric obstacles 

and to give a detailed analysis of its theoretical and computational 

aspects. For this reason, the examples considered in the thesis 

are not difficult from the computational point of view. Handling 

optically large scatterers or presenting lots of data for some 

practical problems are not attempted in the thesis. 

In the first part of the thesis only two-dimensional problems 

have been tackled. In chapter two, both the state-space method 

and the new method are developed for infinitely long dielectric 

cylinders of arbitrary cross-section. A detailed comparison of the 

two methods from the numerical computation point of view .is done. 

The new method is tested by solving the two-dimensional scattering 

problem for various scatterers. The convegence properties of the 

solution are investigated with several truncation numbers. Both 

polarizations of the incident radiation, TM and TB, are considered. 

It is observed that for TM-polarization the convergence of the 

solution with respect to the truncation number is faster than in 

the TE-polarization case. The degree of accuracy in the state-

space method and in the new method is the same, but the computation 

times are much lower for the new method. The method developed for 

two-dimensional problems has also been compared with the solution 

by the method of moments. 

In chapter three the new method is developed in elliptical 

coordinates. No numerical computations are made. Using elliptical 

coordinates makes the solution of scattering problem for certain 

scatterers easier. A detailed theoretical and numerical comparison 

is done about the properties of the new method in circular cylin-

drical and in elliptical coordinates for rectangular cylinders of 

high major-to-minor axis ratio. A practical application of such 

a comparison can be the selection of the most suitable method for 
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the scattering problem for dielectric strips. 

In chapter four the necessary mathematical tools are given for 

the solution of the scattering problem for three-dimensional scatterers. 

The multipole expansion of the electromagnetic field is investigated 

briefly. The original state-space method is extended to three-

dimensional scatterers. 

In chapter five the new method is developed for spherically 

symmetric scatterers stratified in the radial direction. Dielectric 

shells stratified radially with conductor cores are considered first. 

Use of such scatterers is typical when a method of solution is to be 

tested, since in this case the solution of the scattering problem 

for spherically symmetric bodies is relatively easy. The differential 

equations for the two functions(in the radial variable) appearing 

in the Multipole series of the electromagnetic field are decoupled. 

The size of the characteristic matrix of each differential system 

is 2x2. Hence, for spherically symmetric scatterers, storage is 

no problem. Luneburg and Eaton lenses are also considered. The 

results obtained using the new method are compared with other results 

obtained by different methods. The agreement in all cases is 

excellent. 

In chapter six the new method is extended to problems involving 

rotationally symmetric scatterers. All computational steps are 

investigated in detail. The superiority of the method to the 

original state-space method is shown. To test the method an off-

centre dielectric sphere is considered first. It is shown that the 

far field quantities are independent of the selection of coordinate 

origin. The role of the truncation number on the results is inves-

tigated by taking various truncation numbers. Scattering by oblate 

and prolate spheroids of small eccentricity is solved by the new 
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method, and the results are compared with the ones obtained using 

perturbation expansion techniques. Again the agreement is found 

to be very good. 

A dielectric cylinder of finite length and two dielectric 

spheres of the same radii are also considered as scatterers. 

The values for the maximum optical radii of these scatterers are 

taken from the lower part of the resonance region. The results 

are not compared to any other results, they are just presented. 

Finally, the method is applied to the solution of the scatte-

ring problem for a single raindrop. Two shapes are considered for 

raindrops. One is the commonly used oblate spheroid, the other 

is the kidney shape. The kidney shape was not introduced into 

the raindrop scattering calculations before. Recent theoretical and 

experimental investigations, however show that it is actually the 

shape of the raindrop as its size becomes greater than a certain 

limit. Multipolecoefficients and forward scattering amplitudes are 

listed for each case for a plane wave incidence and for a certain 

truncation number. The direction of the incident wave is taken as 

perpendicular to the axis of symmetry of the raindrop. Again the 

results are just presented but not compared to any other one. 

Their accuracy cannot be assured unless they are checked against 

reliable data , either in the form of theoretical results or in 

the form of experimental investigation. 
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2. TWO-DIMENSIONAL SCATTERING PROBLEMS 
	29. 

In this chapter scatterers are taken as dielectric cylinders of 

arbitrary cross-section. The cross-sectional plane is taken as the 

x-y plane. The generator of the cylinder is along the z-axis. The 

scatterers are assumed to be homogeneous in shape along the z-axis 

and they are infinitely long along this axis. This assumption of in-

finitely long cylinders makes the solution independent of the z-coordi-

nate. Hence the problem is two-dimensional. Cylinders of finite 

length must be treated by the method developed for three-dimensional 

problems in chapter 6. 
The excitation is assumed to be either a plane wave or an infi-

nitely long line source. The plane of incidence is taken as the x-y 

plane without loss of generality. Both of the two orthogonal pola-

rizations TM and TE are considered so that a more general polarizati-

on can be treated by linear superposition. 

2.1 STATE-SPACE FORMULATION OF TWO-DIMENSIONAL PROBLEMS-TM CASE 

In this section state-space formulation of scattering which has been 

developed for three-dimensional problems(31) will be carried out 

for two-dimensional scatterers excited by a TM-polarized incident field. 

Consider an infinitely long dielectric 

cylinder with an arbitrary cross-section. 

A monochromatic plane wave with its elec-

tric field vector in the z-direction(TM-

polarized) is incident on the scatterer. 

The direction of propagation of this inci-

dent wave is defined by the angle -% with 

respect to the x-axis as shown in figure 

2.1.1. 
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The incident field is denoted by Vo. The scattered field is assumed 

to be due to the sources induced inside the scatterer by the incident 

field and it is denoted by V1. The permittivity and the conductivity 

of the scatterer are assumed to be functions of position on S and they 

are denoted by C and a. Permeability is taken as vo  everywhere. 

In the analysis that follows cylindrical coordinates p and 0 

are used. Whenever they are primed they represent source points. 

The'scattered field(also TM-polarized) is given by the following 

formula(48): 

V1(p0)=- 
k  
-2Z2  ii-J z 1 (0) H o 	o )(k R) dS' 
4 

(2.1.1) 

where (13 20) are observation point variables, p' is short for (p'2959 

and denotes source points, S is the cross-sectional area of the scatte- 

rer, ko  is the free space wavenumber, Zo  is the intrinsic impedance 

of free space, H(2)( 0R)is the zeroth order Hankel function of the 

second kind(eiwt  time dependence assumed), R is the distance between 

source and observation points and is equivalent to; 

R. [p244,12_2ppi  
Cos(0 -01  The induced current density is given 

by the following formula: 

. cr 
Jz(F9=jwe' [Vo(p',01) + V1(p1 ,01 , where C' = C -00  -j w  

The surface integral in (2.1.1) can be separated into two surfa- 

ce integrals over Si  and S2  in such a way that in S1  p> p' for all p' 

and in S
2 0>p for all p' (here the observation point is assumed to 

be inside the scatterer ) as shown below: 

Z 
Vi(P,O) =- 

k 
 °J( 
4 	

Pz(TO) H(2)(koR) dS' k°Z° 	( JI  Jz(p') Ho2)  (koR) dS1  

St Sz 
r 	

4 
< P 

The addition theorem for Hankel.functions(49) gives the follo-

wing representation for H(2)(k R): 

P'› P 	(2.1.2) 
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Ho
(2)(ko  R) = > Jm  (k o  p') H

(2)(ko  p) eim(°-°9 	for p>pl  
m.-00 

H!2)(k0R) = 7Jm(kmp) Hr(f12)(kmpl) eim(°-°1) 	for p<p' 
Als-00 

( Jm(kmp) and Hm2)  (kmp) are m'th order Bessel and Hankel functions res-

pectively. 

These expansions for H(2)(koR) are next substituted into (2.1.2). 

Since the series for H(2)(koR) is uniformly convergent in p' the summa-

tion and integration orders are immaterial and they can be interchan-

ged legitimately. 

The following result follows for V1  : 

00 

V1(P30) =T[s(p) Ht!2)(kmp) + s:(p) Jm(kmp)1 ejm° 	where the 

m.-.. 

scattering coefficients s1 and s2m are defined as: 

k_Z_ 
siln(p) =- v v  4  1.1,1z(pi) Jm(kmp) e imo' as, (2.1.3) 

s!(p)  ._ kozo  if 
jz • (-1;1) H(2)(ko  p) e-im°'  dS1 	(2.1.4)  

4 S2 

The aim of the state-space method is to find s1(p) for the re-

gion p;>p2  , where p2  is the radius of the enscribing circle. Ac-

tually it is enough to find sm
1  (p) at only p=p2  , since sm1  (p) is cons-

tant for O p2. ( sm2  (p)a0 for p;>„ p2  ). This is achieved by deducing 

the differential equations satisfied by s1 and s2m  and solving them nu-

merically. merically. First Jz(T1) is expressed by the following series: 

Jz(F1) =jw£1 1rV0  + 	[s(p') HI(112)(kmpl) + s:(p 1 ) Jm(kop')] ei1146j 
171,..co 

This series for Jz(17 1) is next substituted into the expressions 

(2.1.3) and (2.1.4) with the following result:(summation and integra-

tion orders have been interchanged ) 
00 jk2 

sm(P) 	[ffel(P1,93.)  4 	(k nt) H(2)fk 	ej(n-m)°'  si( 	dS' m or 	n 	oP 1 	P n.,00 	s, 
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ije;(131)0') Jua(k0P9 
5, 

+.1161.(p',01) Jm(kopi) Jn(kopi) ej(n-m)(P'sin(p') 

SI  

.J
n
(kp') ej(n-m)q5E

n 
dS',1 	(2.1.5) 

el 	 - 
where 6' = G and E

n 
= j

1 jive 
e 	which comes from the expansion 

0 

of V
o 
into the following infinite series: 

vo( ia,0) = eikoPc°s(0-40 	jn  Jn(kop) ejn(931)  (Unit 
nv-00 

amplitude is assumed for Vo  ) 

By using the summation convention over index n and showing the 

double integral 	dS' explicitly, (2.1.5) becomes: 
s, 

-j k
2 	.P  

sm
1
(p) = 	

1 	(2) 
jrs

n
(p1 ) Hn  (kop1 ) Jm(k0p0) p' dp' j'el„(p',09 ei(n-m)56'  

4 	0  

.c101  + other terms ...T 
	

( 2.1.6) 

(fii) denotes that the limits for the angular integral over 0' 

depend on the first integration variable p'. The domain of 0' is com-

posed of the parts of circle with radius p' which lie inside the scatte-

rer. 

The final step in deducing the differential equation for si(p) is 

to differentiate both sides of (2.1.6) with respect to p. 	This gives: 

ds
1  

	

=0)11(p) s..1(p) 	wEll:(p) s:(p) 4. in e-jny,  12 1 
° Mn(p) 

TIT 

2

j where 	wmn
11 	

k
o 

(p) - 	p Jm(kop) Hn
(2) 

 (kop) Inm(p) 

j k
2 

12 
wmn(p) =- -4--  p Jm(kop) Jn(kop) Inm(p) 

( summation convention over n has been used above ) 

The same procedure is followed for s
m

2  
 with the result: 

ds
2 	

w

1211,11.

(p) s,1_1(P) 	

w22(p) 4(p) + in e-jnY.'„ 
w22(p) 

- = 
dp- 

j k2  

with 	w
mn

21 
(p) = 	

4 

(2) 	(2) 
p Hm  (kop) Hn  (kop) Inm(p) 



) a 

2 ko 2 	j 	.(2 . wm
2
n(p) = 	f. m  (kop) Jn(kop) Inm(p) 4 
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where. 	Inm(p) = f e(10,0) ej(n-m)954 
CO 

By truncating  the infinite series at a finite number N a linear 

system of coupled differential equations is obtained in state-space 

form. As it is seen from the definitions of sl  and s2: 

61(0) = 0 	sm
2  (0) / 0 

41-1(p2) 1 6 , 	sm
2  
(P2) = 

The conditions on the scattering  coefficients are not specified 

at a single point. Therefore the problem is not an initial value prob- 

lem but a two-point boundary value problem. A matrix inversion is 

required to convert the two-point boundary value problem into an ini- 

tial value one. 

As an example consider a circular dielectric cylinder with 

e(p,0) = V(p). For such a permittivity function I becomes; nm 
2n 

Inm(p) 	si e(p$93) ej(n-r°9545 = G(p) Jr ei(n-m)93  do = 2n Er(p)813m  

where 8 nm is the kronecker delta. The system of differential equa- 

tions takes 

.1 

.2 
m 

the following  form: 

11 	1 	w12(x
) 

 

	

wm (x/ 	m  

22 

	

w21(x) 	wm  (x) 

sm 

2 sin 

12 wm 

22 wm 

.m e  -iM)v 

(2.1.7) 

where 	.n (011(x) =7.1--x Cl(x) J (x) H(2)(x) 	w12(x) =_;22:_x e, p (30] 2 m 	2 	r 	m 	m 	" 	\ ' -12 	r m\ ' 

w:1(x) =j  it_ x e;(x)  [H1(112)(x)]2 $ 	422(x)  = - will .x. / , x =kop 

For this particular scatterer the summation over n drops out. 

• Coefficients sm
1  and sm

2 
  satisfy their own differential equation system 

1 1 1 for each m. 	There:As no coupling between s1 and s2' s3' ...etc. 
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If the scatterer is not circularly symmetric the Inn  factors 

take the following form: 

at a distance p; 

Inm  = J70,0) ei(n-m)°  do = fe;(p,o) e3(11-n1)95  
M a 	032  

dO 	fel(p,O) ei(n-m)°  dO 
04 

The integrals indicated above are to be evaluated at each step 

of the numerical integration. 

In order not to go into algebraic complexities the Ti. case is 

not presented, although the same principle applies for this excita-

tion as well. 

The details of the method of solution will be given in section 2.3 

The state-space method is applicable to multi-body scattering 

as. well. It is also applicable when the scatterer has a surface dis-

continuity where the surface normal can not be defined uniquely. 

It is interesting to notice that with state-space approach it is 

possible to represent the field :exactly with an infinite series of 

cylindrical harmonics in a region where the medium parameters are 

functions of position. The characteristic feature of such a represen-

tation is its position dependent expansion coefficients s
m
1 
 and sm

2  
. 

Such an exact representation of the field in an inhomogeneous region 

is not possible using cylindrical harmonics with constant coefficients. 

This series with constant coefficients can represent the field only 

approximately. 

The complex permittivity function comes into the solution as a 

multiplying factor in certain integral expressions and not in the argu-

ments of the Bessel and Hankel functions. 

The scattered field and the field inside the scatterer are found 

by summing a finite series once the scattering coefficients are found. 

No surface quadrature is necessary in finding the scattered field 

throughout the space. In this sense the state-space method is a one- 
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Fig.(2.2.1) 

35- 
step pr6cedure. 

2.2 NEW METHOD OF SOLUTION FOR TWO-DIMENSIONAL PROBLEMS-TM CASE 

Consider an infinitely long dielectric cylinder, 

the cross-section of which is denoted by C as 

shown in Fig. 2.2.1. The circles C1 and C2 
are 

termed as inscribing and enscribing circles. They 

are defined as: C1 is the largest circle inside C 

and touches it from inside, C2  is the smallest 

circle outside C and touches it from outside. The incident field is 

a TM-polarized plane wave. Its direction of propagation makes an 

angle vs with the positive x-axis. 

The permittivity of the scatterer is assumed to be constant and 

its conductivity zero. By such an assumption no generality is lost 

as will be shown later in this chapter. 

Inside the circle C
1 

and outside the circle C2, the medium is 

homogeneous. The wave equation in these regions is the scalar Helm-

holtz equation. It is known that the Helmholtz equation has a unique 

and convergent infinite series solutions, in term of cylindrical har-

monics with constant coefficients, in such regions(50). These solu-

tions have the following representation: 

co 
Vi(ps0) = Tam  Jm (cp) eimo 	P4P1  (3‘0‘271 

m=-00 

(2.2.1) 

V
3
(p
'
0) = ft,  J m  (ko  p) + bm  H

(2)(kop) .] ejm° 	ri> 1)2, 049k,527t , 

(2.2.2) 
where am and bm are unknown coefficients, t are the expansion coeffi- 

cients cients of the incident field, %.1=0m jmy!,  e 	°. k = ko  V7 1r 
is the  r 

relative permittivity of the scatterer. 

The region defined by pi< p <p2  is not homogeneous in its mate-

rial composition, as can be seen from the stepwise dependence of per- 
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mittivity on p and 0. The wave equation(obtained from Naxwell's equa-

tions treating  e as a function of both p and 0) is no longer the scalar 

Helmholtz equation. A similar series to the ones used for V1 and V3 

can be used to represent the field in this region. This time the ra-

dial functions are not known functions. Denoting these unknown func-

tions by fm(p) the representation takes the following form: 

v
2(p,0) = > fm(P) e3mO 	Pl‘J4132 

, 	0 se...43 4,.2 7t . (2.2.3) 

     

This representation is actually that of the electric field by a 

Fourier series in angle 0, fm(p) being the Fourier coefficients. 

Pettit(43), in his work, expands the permittivity function into 

a Fourier series. Although his approach leads to the same results as 

given by the present work, expansion of the electric field into a Fou-

rier series seems to be more proper, because the permittivity function 

in region 2 is a stepwise discontinuous function of 0 for a fixed p but 

the z-component of electric field is continuous throughout the range of 

0. The necessary number of terms to be taken in the Fourier series 

may be greater in the case of a discontinuous function compared to a 

smooth function. 

The functions fm(p) are not arbitrary. Their differential equ-

ation is found by first substituting (2.2.3) into the wave equation re-

levant to region 2, and then using the orthogonality of trigonometric 

functions in the range (0-2n). 

The wave equation for region 2 is: 

a 	8V 	a2V 

P 
2 A 	12 	2 1 _ (p 	/ + 	w 	e(p 0) v 	o 

aP 	aP 	2 	0 	/ 	2 
P 

substitution gives the following; 

d2fm  df m 	m 2 t 

dp 2 
+dp - 2 fm + ko

2  erkp,O, ftnj e im0  o 

Each term in the above summation is multiplied next by e jn0 and 
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m=-oo 2iT 

nm 	2711er(x'°) e  where 	a 	j (m-n).0 1 dO 	and x = kop. 

(x,0) is the relative permittivity function for region 2 and 

it should not be confused with the relative permittivity of the scatte-

rer which is a constant. 

In order to simplify the algebra in the analysis that follows 

some assumptions are made without losing any generality. If the scat-

terer has an axis of symmetry, the incident Tit-polarized plane wave 

can be decomposed into even and odd parts. For both even and odd 

components the infinite summations above start from 0 and go to co 

This is due to the fact that for even excitation left  = 'Vii, and for odd 

excitation -14),,= _•Ly (see appendix A). 	The problem for even and odd 

excitations is solved separately and the results of each solution are 

superposed linearly. It is now permissible to start the summations 

from 0 . The new coefficients of f
m
(p) are denoted by y . nm For 

even excitation y =a + a 
nm nm 	n,-m -anm 8mo , for odd excitation 

y
nm 

a
nm 

a
n 

-a 
nm  8  mo 	

where 8mo  is the Kronecker delta. = 	-  

Decomposition of the incident wave into even and odd parts and 

treating each part separately will be compared with the solution with-

out any decomposition in section 2.4. 

Assuming even or odd excitation, the differential equation has 

the following form: 

d2fn  
x 
_ 

dx 

dfn 
X2 2n  + 	fn + 	Ynm fm = ° 

dx  m-zo 

This differential equation is converted.into state-space form 

which is more convenient for numerical treatment by i) truncating the 

d2fn 1 
x dx 

dfn na 	
cc. 

2n  + 	fn 	anm fm = ° 
dx  

00 
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series at a finite number N and ii) making the following definitions: 

fn(X) = yn(X) , 	df n zn(x) , then dx 

=  dx 	zn 	dzn n2  y  _ 1_ z  _ 	(x) y  

in matrix form: 

dyn  

dx x
2 n x n 	nm 

. m=0 

        

        

       

 

0 

 

U 

 

y(x) 
(2.2.4) 

       

       

 

S 

 

-U/x 

 

z(x) 
IMO 

 

       

       

        

        

where U is the (N+1)x(N+1) identity matrix, 0 denotes the (N+1)x(N+1) 

null matrix, y(x)= [y0 y1yNJ
T 	

z(x) = izo 	 are 

(N+1)xl column vectors, T denotes transpose, . means differentiation 

with respect to the argument, S is an (N+1)x(N+1) matrix whose expli-

cit form is given as: 

02 + 
2 aoo -Yol 

x. 
YoN 

S 
12 

alo 	—2 - Yll x 

+ a
14
_ 	2 
-0  

 N2  - YNN 

YIN 

(+) sign for odd excita-

tion, and (-) sign for 

even excitation. 

If the excitation were not separated into even and odd parts the 

matrix S would be a (2N+1)x(2N+I) matrix. 

The solution procedure is given in detail below. 

The solution to (2.2.4) can be written symbolically as: 

ilrx1)  

4.4 f(xl) 
(2.2.5) where xl = kopl = op-

tical radius of the ins- 
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cribing'circle. 

.„ • • (x) = rfo 	, iT ... 	 = [fo f1 	
• 

•• • 	
J r

f 
 

T1, 2 3 4 are (N+1)x(N+1) square matrices. 

The matrix 

1)3 : 4'4 

is called the state-transition 

matrix. 

The columns of the 	matrix can be obtained numerically very 

easily. For this purpose, the system of differential equations 

(2.2.4) is solved with canonical initial condition vectors. By this 

the following is meant; to find the j'th column of the 	matrix, 

(2.2.4) is solved with the initial condition vector (0 0 ... 1 	0 )r  

the element 1 is at j'th place from top. Then, (2.2.4) is solved 

(2N+2) times subject to the (2N+2) canonical initial conditions to 

find the elements of 1? matrix. 

Generation of the 5 matrix numerically is essential for the final 

solution, that is the determination of the scattered field coeffici-

ents bm. The rest of the solution proceeds as follows. 

The boundary conditions on circles p = pl  and p = p2  give the 

following equations: 

am jm(x1d)  = fm(xl)  

V c am jm(x1d)  = fm(xl)  

Jm(x2) bm  H
(2)(m x2  ) = f m  (x2  ) 

J
m
(x
2) + bm Hm(x2) = fm(x2) 

where . denotes differentiation with respect to the argument, x1=k
op1, 

x2  =k o  p2 xld =x1 Nre , Cr  is the relative permittivity of the scatte-

rer. 

The above equations have the following matrix representation: 



Jo (xld)  
0 

J1(xid) 

0 	• • 
jN(x1d)  

• 

Jxid) 	0 

j1(x1d)  
0 

JN (xld)  

r 

• • 
"(2) HN  (x) 

0 

0 

• ( 
HN

2) (x
2)  

1(xl)  = jld f(x ) =H b+ e 2 H2  &AI 
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. 	• 	and ' 	. 	. 
f(x1) = Jld  a 	f(x2) =II b+ g 2 - 	2 . - 

(2.2.6) 

where a +0  al  ... al l T , b = Lb0  bi 	loN]T are (N+1)xl column 

vectors. 

Ho
(2)(x2  ) 

( 
H1

2) 
 (x2)  

O
2)(

x2
) 
.(2) 
H1 (x2)  

0 

0 
2= 

The above matrices are (N+l)x (N+1) square diagonal matrices. 

e 	 j 2  g =I_o2 V (x1  i J1(x2)... 14-;1 g1  = [rJ o  (x2  ) 	1 c.2  ... NN  ) 	(x2  )1T   
r 

are (N+1)xl column vectors. 

Using (2.2.5) together with (2.2.6) the following equations re- 

suit: 

f(x2) =,(x2)f(x2.) 	f(xl) =ft(.42)Jid + v(2) Jid] a = H2 b + gi 

f (x2)  = 13()(2)  f (x1)  + () f (xi.)  = kx.a) jid 	Jicd a = H2 b g2  

define : 
P  = '*1(X2)  jld +("5"Pljld 	(11-1-1)x(N+1) matrix 

• 

Q =t()(z)jld V2)jld -7-- (N+1)x(N+1) matrix 

-r 



(2.2.9) 

m2 

2 - r X 

0 

zm(x) 

41. 

then 

Pa=  Ha  b gi  .and Q a = H2  b + g2  , or 

IQ 

	

2 - 2 	b Q -H2 g2 

1>  

- I 

	

P -H2 a gl 	a P -H2 gl 
(2.2.7) 

Once b is found from (2.2.7) the scattering parameters follow. 

Before analysing the above solution procedure numerically it is 

worth looking at the solution for a circular dielectric shell strati-

fied radially. 

The incident wave is assumed to be propagating along the posi-

tive x-axis, so 

ao 

vo(p0) = e-ikox e-jkop Coso = 	m  
Jm(kop) ejm° 

it is seen that 	'Sryl.!=(-j)m  . 

The factors a take the following form for Cr(x,O) = Cr(x) : 11[11 

2ff 	 2n 
C (x) j(m-n)0 	(m-n) anm 	2 

1E jer(x2 0) e 	dO = 	irei-. 	-0 do = C (x) 8 2n 	r 	nm 
0 	 0 

and the differential equation for fm(x) becomes 

2 2f d m 1 dfm r + Ler 	- m2 -I fm = o  dx2 x dx  (2.2.8) 

The summation disappears and each fm  satisfies its own differen-

tial equation for each m . There is no coupling bettween ft)  and fl, 

f2, ...,fN  

The state-space equivalent of (2.2.8) is : 

-1 
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where ym = fm 	zm  = fm  and x = kop 

The solution to (2.2.9) is symbolically: 

fm(x) 	4'2n7 rm(x2.)  

fm(x) d53,„ 	Awn  fm(xl) 

(2.2.10) 

The boundary conditions on the circles x = xi and x = x2  give 

fm(xi)= am  Jm(xl) 
	

fm(x2)= (-j)m  Jm (x2) + bm  Hr(112) (x2) 

fm(xi)= am  Jm(xi

) of x =x, 	
fm(x2)= (-j)m  m(x2) + bm  C11(312) (x2) 

aix=x2  

Combining (2.2.10) with the above equations gives : 

fm(x2 )= (-j)m  J m  (x2  ) + bm  H(2)  (x2  ) =[(x_)Jm xl  ( ) + ()(2) m  (x1  )1 a im 2 	 in 

fm(x2)= (j)m  Jm  (x2  ) + bm H((2) (x2) ) =[€Rx„)Jm i.  (x., ) + RX2):Tm i.  (x_ ) . a 3rn 	 4 m 	 in 

solving the above equations for bm  gives 

Jm  (xi  )(xa) + J
m 
 (xi) t(x,t) jm(x2)-GmJm(x2) 

m  bm  - 

	

	 .(-j) where GM 
-  

G H(2)(x2 ) -H(2)(m -
x
e) 

Jin(X.i)tX1) 	ra (Xi ) in(X2) 
m  

The elements of the 	matrix are obtained by solving (2.2.9) 

numerically subject to the initial condition vectors ( 1 0 )T  and 

( 0 1 )T , the former being for
m M 
	 and the latter for 	.5.%m  . -.3 	 2m 

From the above solution, it is observed that whatever the trun-

cation number the matrices employed in the solution are always (2x2) 

matrices. This property is associated with the scatterer being cir-

cularly symmetric and stratified only radially. This property is not 

met in the solution of integral equations by moment methods(29). For 

example, in the case of a spherical shell, the shell is divided into 

N cells, then the matrices employed are NxN matrices. The present 

method of solution requires the solution of (2.2.9) N times for a trun- 
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A = 
NM 

43. 
cation number N. 

For this partictlarly simple problem the differentialequations 

to be solved in both the state-space and the new methods are compared 

below from the computational point of view. 

The characteristic matrices are denoted by Ass 
 and A 

in the 

two methods respectively. The explicit forms of Ass  and A are: 

-j2 	r x CI(x)Jm  (x)H
(2)

(x) 	-j 	x e Jm(x)Jm(x) 

0 	 1 

m2 C (x) 	-1/x 

X
2 r 

As it is seen, the elements of A
ss  are more complicated functi-

ons of x compared to the elements of Anm. Generation of Bessel and 

Neumann functions at every step of the numerical solution is both time 

consuming and sensitive to numerical errors. Additionally the state-

space differential system has a forcing term(inhomogeneous part) as a 

part of the system. Also, even for a=0(pure dielectric) the elements 

of Ass 	 n 
are complex in contrast to A 

m  being a purely real matrix. 

Whether or not the characteristic matrix is complex is important in 

computer programming. 

In order to compare the two methods further, the rest of the 

solution procedure is given for the state-space method below. 

The system of differential equations has the following form: 

j 2 x C;(x)Ii(ii2)(x)H(2)(x) 
	

x C;(x)Jm(x)H1(112)(x) 

	

{

.1 	11 	12 

	

sm 	wm 	wM 

	

.2 	21 	22 

	

sm 	wm 

   

- 
12 
wm 

 

    

 

1 sm 

 

(-0m 	(2.2.11) 

     

 

2 
s
m - 

 

22 
CO _ 
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The solution to (2.2.11) is symbolically: 

      

sm
1  (x) 

- 
m 

    

  

    

(2.2.12) 

sm
2  
(x) 

,1)21 t22 

 

sm2(x1) 

  

      

      

      

      

where the matrix is the state-transition matrix and the zm 

column vector is the zero-state solution to (2.2.11) (zm is obtained 

by solving (2.2.11) numerically with initial condition column vector 

equated to zero) 

The relation (2.2.12) follows from the linearity of relation 

(2.2.11). In writing (2.2,12), what is really done is the separation 

of the solution into two parts, i) independent of the excitation and 

linearly related to the initial conditions, ii) independent of the 

initial conditions and totally dependent on the excitation, and super-

posing the two solutions. 

Since sl(x..) = sf(x2) = 0 by definition of sl  and s2, it foll-

ows directly that 

      

      

      

sl ( 

m` 2) 

 

11 	 /2 
If.m(x2) tO(z) 

 

0 

 

     

  

2 
ox 4■„„p oy 	c  

   

0 

  

x  s2 ( 

m‘ 1)_ 

    

    

22 
From the second row it follows that s2(x1  ) = -z2(x2 	0(2) , 

and from the first row that 

si(x2  ) = -(P.p2 m  )z2(x2  )/em k)) + zni
1  (x2) . m  

This is the final solution for the scattering coefficients for 

the region x>ex2. 

Therefore the following computational steps are required for the 

state-space method. 

i) to find 4and 4::, the differential equation (2.2.11) is 

solved once with the forcing term equated to zero and initial condi- 
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tion vector (0 1 )T 

1 ii) to find z
m 
and z-  , (2.2.11) is solved once with zero-vec- 

1. tor initial condition. The rest is simple algebra to find s
mlX2j. 

For the new method; 	the differential equation (2.2.9) is sol- 

ved twice to find the columns of the state-transition matrix with ini-

tial condition vectors ( 1 0 )T  and ( 0 1 )T. Hence in both met-

hods a system of differential equations iN solved numerically twice, 

but one system is obviously simpler than the other. Numerical results 

endorsing the last statement will be given in the last section of this 

chapter. 

2.3 NUMERICAL INVESTIGATION OF THE STATE-SPACE METHOD 

In this section the state-space method is investigated numeri-

cally for a noncircular scatterer. The cross-section of the scatte-

rer is assumed to be symmetrical with respect to the x-axis. The ex-

citation is a TM-polarized plane wave propagating along the positive 

x-axis. It is also assumed that the permittivity of the scatterer 

is constant and its conductivity is zero. 

  

	,r X ox is 

  

The associated system of differential equations is: 

       

: W12 s
1 

s2 

   

     

(2.3.1) 

 

W22 

  

w22 

 

       

        

        

[,1 sl 	1] T s 	. [8: sl ... 	T where s1 	'o 1 ". sN 	 are (N+1)xl 

column vectors. 	Wii  (1=1,21  j=112) are (T+1)x(11+1) square matrices 

whose elements are given explictly below 

w11= - 	E I J (x)H(2)(x) 1 	w12 	j = - 	xEI J (x)J (x) mn 	2 	n mn m 	n 	_ 	mn 	2 	n mn m 	n 
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w21= 	xf 	H(2)(x)H(2)(x) 	w22 - 	x€ 	H
(2)

(x),T(x) mn 2 	n MI1 m 	mn 	2 	n  mn m 	n  

it 	 44 
where. I = 61

r  f Cosmo Cosno 8.0 + Cr I Cosmo Cosn0 dO and e=1±8no ITal 	 n 

	

lei 	 03 

e 41 -j -1 j ... (-011] T  is an (N+1)x1 excitation column vec-

tor. 

In arriving at the above expressions use has been made of the 

relations 

Let 

1 s-m 

Q = 

= (-1)m s1 

wll 	w]2 

w21 	4122 

and 

	

2 	2 s-m = (-1)
m 
 sm 

	

, a 	(2N+2)x(2N+2) complex matrix, 

and u = w12 e 	v  w22 e 	both being (N+1)xl column vec- 

tors. 

Also define 

and 

QR  = real(Q) 	fiR" = real(u) , f 	= real(v) 

QI  = imag(Q) 	fl = imag(u) 	fl = imag(v) 

[s 

[81  

1  

	

= 2 	2  sI =  2 

	

ER 	sI 

These definitions are made to convert the complex algebra into 

real, because the differential equation subroutines available in 

subroutine packages are based on real arithmetic. 

With the above definitions; 

(4N+4)x(4N+4) 	(4N+4)x1 

or more explicitly; 
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(2.3.2) 

f2  

fl  

f2 -R 
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1 sI  

2 sR  

2 

The solution of (2.3.2) is written symbolically as: 

The (4N+4)x(4N-1-4) 

(2.3.3) 

matrixf??] is the state-transition matrix. 

z is the (411+4)x1 zero-state solution, obtained by solving (2.3.2) 

numerically with zero initial conditions. 

For all single scatterer problems the coordinate origin is lo-

cated inside the scatterer(although this is not essential) so that 

xi  = 0. 

The conditions on s1  and s2 	namely s/(x1  ) = s2(x2  ) = 0 

are used in (2.3.3) with the following result: 

0 

0 

slR  (x2  )- 
Alow §11(X2) t3(x2) 14(29 

	0 

§.2,(xz) • 	,zzo(,) 	icx) 	0 

1'4  2) 	4200 4.3(4): txd 

I3(x2) 

4(x2) 

(2.3.4) 
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and from the 3rd and 4th rows; 

f'31X2) (xZ) s(x1) 	23(x2) 

[ 
143(xz) (t'(xz) Ei2(xi) =7. 

	
Z4(x2) 

f 

(2.3.5) 

The unknown initial conditions are found by solving the linear 

algebraic system of equations (2.3.5). The scattering coefficients 

si(x2) are next obtained as 

siR(x2)1 	{.1.13((2) 	[43(xd 	{z3 (x2 ) 	zl (x21 

s(x ) 	
1(2) 	'(4(x.2) 	4.00 346'2) 	z cx ) I 2 	 -2 2 

(2N+23x(2N+2) 

The following numerical computational steps are necessary to 

find the scattering coefficients s1(x2): 

i) to find z(x2) the differential equation (2.3.2) is solved 

once with zero initial conditions. 

ii) to find the elements of matrices pand 	, (2.3.2) is 

solved numerically (2N+2) times with a zero forcing term, the initial 

conditions being the canonical ones. 

iii) inversion of matrix 4 numerically. 
iv) multiplication of matrix- q Pi  by the column vector 

( Z3 	
IT 

• 
As a numerical example consider x2  =2 and N = 6. Then 

i) (2.3.2) is solved numerically 15 times, one with zero ini-

tial conditions, the remaining 14 with a zero forcing term. 

ii) inversion of a (14x14) matrix. 

iii) multiplication of a (14x14) matrix by a (14x1) column vec-

tor. 

In more detail, the numerical solution of (2.3.2) goes as fol- 

lows: 
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The numerical algorithm adopted for the solution of (2.3.2) was 

the Runge-Kutta algorithm. In this method the right hand side of 

(2.3.2) is evaluated 4 times at every step of numerical solution. 

This means that at each step the (4N+4)x(4N+4) characteristic matrix 

must be multiplied by a (4N+4)xl column vector and the resultant co-

lumn vector added to another (4N+4)xl column vector four times. As-

sume that there are M steps in the overall numerical routine(the num-

ber M depends on the stepsize, local accuracy criteria and the range 

of the variable x), then the elements of the characteristic matrix 

are to be generated 4M times and this matrix must be multiplied by a 

(4N+4)xl column vector also 4M times. Assume that the generation of 

the characteristic matrix takes a time of T(N) seconds, the mul-

tiplication of this matrix by the (4N+4)xl column vector takes a time 

of T (N) seconds. Then for the whole numerical process the approxi-

mate solution time is 4M. [Tw(N) + Tm(N)] 

Generation of the column vector z(x2) and matrices 4>f. and 

numerically requires the solution of (2.3.2) (2N+3) times. The 

overall time for this operation then is 4M(2N+3). [Tw(N) + Tm(N)1 

(assuming that the solution of z and the solution of every column of 

the matrices .1" and cf is achieved after approximately the same num-

ber of steps, which is taken as M ) 

The inversion of matrix 	takes a time of a(2N+2)3, where a is 

2 2. 
a proportionality constant, and multiplication of 	by ( p11  p

T
a) 

' takes a time of T (N) seconds. Therefore, the total computation 

time for the solution of scattering coefficients is approximately 

ttot
al = f 4M(2N+3) [ Tw(N) + Tm(N)]-4-a(2N+2)3  + T (N)1 

One additional feature of the state-space method is that the 

numerical solution of the differential equations starts from x = 0 and 

goes to x = x2, even for a homogeneous scatterer. In the new method 

this range is from xl  to x2  for a homogeneous scatterer, where xi 
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is the Optical radius of the inscribing circle. Correspondingly 

computation times are higher in the state-space method. For inho-

mogeneous scatterers the range is from 0 to x2  in the two methods. 

.2.4 NUMERICAL INVESTIGATION OF THE NEW METHOD 

The associated system of differential equations has the form 

• ' z 	0 E U 	z 

z S -U/x z 
..•■•• 	 • • .1 	. 

(2.4.1) 

where 0 denotes the (I+1)x(N+1) null matrix, U is the identity 

matrix. 

Matrix S is given explicitly as: 

5= 

2 
2 

- alo 

• • • 
-c4No 

a 	coloo 

1  2 
=2 - X11 11 

N1 -1 	... 

"' 

2TT 

..Ar 

N2 -2 - YNN 

where anm = 2 1 C (x1  0) ei(m-n)95  d95 and ynm  = a nm  + an -m
0 

n ir r  

-a 8 nm mo 

Define matrix C as: 

S 	-U/X1 

U 

C is a (2N+2)x(2N+2) square real matrix (or = 0 is assumed) 

It is seen that there is no forcing term in the differential 

system (2.4.1). 

In the numerical solution of (2.4.1) the Runge-Kutta algorithm 

C= 
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is used; This requires the evaluation of the right hand side of 

(2.4.1) four times at every step of the numerical computation. How-

ever, there is no need to generate the whole matrix C, since the 

three submatrices are either constant matrices or can be generated 

very easily. If (2.4.1) is written explicitly as 

= z , Z = S y - z/x 

the first equation is just a substitution in computer arithmetic, the 

second part of the right hand side of the second equation is again me-

rely a substitution. Hence it is only reqUired to generate an (N+l)x 

(N+1) matrix and multiply it by an (N+1)xl column vector. 

Generation of S is much easier compared to the generation of W 

in the state-space method. The elements of S are similar to the Inm  

in the elements of the W matrix, but the elements of W have the Inm  

multiplied by Bessel and Hankel functions whose accurate evaluation 

requires appreciable generation times and is a task of major importance. 

2n 
r  The integral expression anm = 2n ) er(x20) ej(m-n)95 dO can be e   

evaluated analytically in a compact form when the shape of the scatte-

rer cross-section and the form of the inhomogeneity of the material 

parameters are known by way of analytical expressions. 

Let the generation time for matrix S be Ts(N) and the multipli-

cation time of S by z be Tms(N). Then at each step of the numeri-

cal process the amount of time spent is Ts(N)+ TMS  (4). For exactly 

the same problem, the number of steps in the numerical solution of the 

differential equations is obviously less for the new method compared 

to the state-space formulation, since the solution range is ( 0-x2  ) 

in the state-space method but is ( xl-x2  ) in the new method(xi> 0, 

is the radius of the inscribing circle). Call this number P. Then 

for the solution of the differential equation the required computation 

time is 4P Ts
(N) + TMS  (N) . Since (2.4.1) is to be solved (2N+2) 
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times to find the elements of the state-transition matrix, generati-

on of this matrix requires a computation time of 1113(2N+2).[T(N)+Ti.i (1 

seconds. 

The scattering coefficients am and bm are found by inverting a 

(2N+2)x(2N+2) matrix. The c"mputation time for this is a(2N+2)31  

a is an appropriate proportionality factor. Final computation 

time is spent on the multiplication of a (2N+2)x(2N+2) matrix by a 

(2N+2)xl column vector. Let this time be Tr(N). The total compu-

tation time for the solution of the scattering coefficients bm  is 

then approximately: 

ttotal = 1iP(2N+2). [Ts(N)+Tms(N)] +a(2N+2)3  + Tr(N) 

Since Ts(N) '(T,;,(N) Tm (N)Tm(N) 	P<N and (2N+2) K(2N+3) 

the computation time for the new method is obviously much smaller 

than for the state-space method. Numerical results supporting the 

above claims are given in the last section of this chapter. 

Before analysing the new method for T2 excitation there are two 

more points to be mentioned. 

The first point is related to the inhomogenity of the scatterer. 

Thus far only homogeneous scatterers have been considered. Assume 

now that the material parameters ( C, o ) of the 

scatterer are functions of position in C. The 

region defined as p) p2  is again a homogeneous 

region, so the solution of the Helmholtz equation 

as an infinite series of cylindrical harmonics is 

unique and convergent in this region. However it 

is no longer possible to define an inscribing circle such that the 

field inside this circle can be represented by a series of regular 

cylindrical harmonics. Actually the radius of this circle is zero. 

The region defined as p<p2  is totally inhomogeneous(which has no 

completely homogeneous subregion). Thus following the previous 
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reasoning the field is represented by a Fourier series in this region. 

The differential equations satisfied by the Fourier coefficients are 

again deduced by substituting the Fourier series into the wave equation 

valid in this region and by using the orthogonality of trigonometric 

functions. However there is a diffuculty here. The differential 

equations of Fourier coefficients have singularities at x = 0 which 

must be taken into consideration in the numerical solution of these 

equations. The following way of circumventing this difficulty seems 

to be convincing. A circle with a radius very small compared to p2  

is assumed to be located concentric with the enscribing circle. 

Material parameters of the scatterer are assumed to be constant 

throughout the interior of this circle. These constant values are 

taken as the values of C and o-  attained at the coordinate origin. In 

this way the numerical singularities are eliminated. This procedure 

has been followed in the solution of a two-dimensional Luneburg lens 

problem. A numerical value for the radius of the small circle can 

be taken as 0.1p2. This has proved to be reasonable in applications, 

such that decreasing the radius of the small circle beyond this limit 

does not change the results appreciably( at least in the range of p2 

considered in the applications). Surely the size of the small 

circle must depend on the variations of C and a 

The second point is related to the excitation. In the numeri-

cal comparisons made in previous sections, plane waves propagating 

along the symmetry axis of the scatterer have been considered as the 

excitations. It was argued that a plane wave coming at an arbitrary 

angle with respect to the symmetry axis of the scatterer can be de-

composed into even and odd parts. For each part the problem is 

solved separately and the results are superposed linearly. In this 

way it is possible to work with smaller matrices. However it can 

easily be shown that the characteristic matrices of the system of 

differential equations corresponding to even and odd excitations 
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depend on initial excitation. In computational terms this means that 

the state-transition matrix corresponding to the real excitation is not 

equal to the sum of the state-transition matrices corresponding to 

even and odd excitations. Hence it is necessary to evaluate the 

state-transition matrices for each different excitation. When, how-

ever, the excitation is not decomposed into even and odd parts, 

although the matrix sizes get bigger (from (N+1)x(N+1) to (2N+1)x(2N+1)) 

the state-transition matrix is independent of the excitation. Exci-

tation comes into the calculations through the boundary conditions. 

Therefore, once the state-transition matrix is found for a scatterer 

it is the same matrix for all incidence angles of the incident field. 

If the scatterer has no symmetry axis, decomposition of the 

incident wave into even and odd parts and solving the problem for each 

part separately does not work. In this case summations start from 

-N and go to N. Matrix sizes are (2N+1)x(2N+1). 

2.5 NEW METHOD OF SOLUTION FOR TWO-DIMENSIONAL PROBLEMS-TE CASE 

The incident wave has a magnetic field 

with only a z-component. The electric 

field is in the x-y plane and can be ob-

tained from this magnetic field using 

Maxwell's equations. 

Fig.2. 5.1 

	

	
The scatterer is an infinitely long di- 

electric cylinder with constant permitti-

vity and zero conductivity throughout its cross-section. 

The z-component of the magnetic field is denoted by V. V takes 

the subscripts 1,2 and 3 in regions p<pi, pl<p<s2  and p> p2 res-

pectively. 

Folowing the same procedure as in the TM case the fields are 
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represented by 

cc  
V,( p2 95) = :> am  Jm  (kp) ejm° 

m=-do 
P‘Pl 	():56,27t  

V2(p0) = 	fm(P) eim° 	, 	P1,;();1)2 S  
111=-00 

0..<„,"0$,c2n 

V3(ps0) =- fLfVm(kop) + bm  H!"(kop)] .eJ17156 	P) P2 
m=-00 

0 , <27E 
• ■ 

The partial differential equation for V2  is found from Maxwell's 

equations treating G as a function of p and 0 in. region 2; 

anG2 av2 1 anC2  av2  
v2v +w2e(p20)1101,2-  ap 	ap 	p2 ao t 2 	 aro = 0 	(2.5.1) 

where V2  is the Laplacian operating in x-y plane. 

Substituting the series for V2  into (2.5.1) gives: 

0, 	2 	 Co,c5T. [ d fm + 1_ dfm 

	

m2 	 alale2rf - 
x dx 	fm  e ejm°  + 2> [Cr(xsOf - 1--n1  

m x2 00 m x2 mj rn....-00 frz..4''' dx2 

aLne df - 	 2r dxm lejm0 . 0  
ax 

where x =kop. Multiplying each term in the above series by ejn° 

and integrating over ( 0-2n ) gives: 

df d2fn 1. 1 dfn 	n2 „ 

dx2 	x dx 2 In "frn.._.3)nm(x)fm +114x)11lcbc 	= 	(2.5.2) 

o nm 2n r(x,0)  

where 2TT ane, im 	
e

r] _jkm-n/0 do 
, 
and (x) = 1-f[e 	a 4 
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(2.5.6) 

• 
y 

277' 

1- 	
aLnE2rj (m-n)0 e do 

nm 	2n f ax 
o 

56• 

The differential equation (2.5.2) is converted into state-space 

form by defining; 

fn = yn 

nZ 

5rn = 2n ' 2n = 2 Yn - 

tn = zn , then 

N 
1 

	( nm m + gnm m z ) x 2n 	P  
M=0 

(2.5.3) 

where it is again assumed that the excitation is either odd or even 

for algebraic simplicity, hence summations starts from zero. The 

series is also truncated at a certain number N. The factors prim  and 

qnm  are: 

prim=  ntar 	- rim 8mo and cinm= 11  nm -711  -m trim 8mo 
( 2 5• it) 	(2.5.5) 

In matrix notation (2.5.3) has the following form: 

where y = ( yo y1 ". 7N )T 	= ( 2o 21 '" a )T  are (N+1)xl 

column vectors, 0 is the (N+1)x(N+1) null matrix, U the unity matrix. 

The matrices S1 and S2 are given explicitly as: 

Oa 

00 -pa  p ON 

12 

Jlo 2 -1311 •  . -PIN x 
 

N2  
--5No -PN1 ". x2 PNN 

-(1 oo 4-1/k ) cloN 

-1710 -(c1114.1/x)  '" -q1N 

-1 No -(01 4.1/x) -qta '" 	-NN 

Si  = S 
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When the characteristic matrix of the system (2.5.6) is compared 

with the characteristic matrix (2.4.1) it is observed that S2 is a di-

agonal matrix for the TM case but is a full matrix for TE case. 

From the above analysis it seems that it is necessary to perforL: 

two integrations at each step of the numerical solution of (2.5.6). 

For a homogeneous scatterer, however, this is not the case. Again 

as in the TM case only one integration is to be perfomed. This is 

because of the fact that the permittivity function in 'the second 

medium is a step function in both p and 0 and its derivatives which 

are delta functions appear in the integrands. This is shown quanti-

tatively as follows 

Consider a homogeneous scatterer having a permitti-

vity Cl. The logarithm of the relative permitti-

vity function in the second medium is expressed in 

terms of step functions as Fig,25.2 

Lne2r = Inelr [u(0-02  )-u(0-0-)+u(0-0 )-u(0-01)] 

The derivatives with respect to x and 0 are 

aLne 	do, 	do 

ax  
2r= 	lr lane [ -5(0-02  ) 	8(0-03) 	8(0-04) Tx  +5(0  dx 

00 	
= Ln6, [8(0-02)-8(0-03) +8(0 -04) -8(0-01)] 

Substitution of these derivatives into the expressions forljnm  

and 'Tiam  gives: 

217 

m' ' 2n (x1= 1-je (x -4) ei(m-n)° d0 + -12- 2 LnCir(ei(m-n)951 -ei(m-n)°2 n 	r 2ux 
0 

aLnC2r 

+ sj(m-n)°3 - ei(m-n)914) (2.5.7 



f (x )=b H(2)(x )+(3.  J (x m 2mm2m2 

X=X 
fm▪ (x2  )=b mm  

H()(x
2 
 )+1.  J

m 
 (x 

m 
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qnm ) 	
J 

Lne, 
r ( ei(m-n)°1 24dx1  -.ei(m-n)932 242 + ei(m-n)933 

dd-  
dx  

ej(m-n)0k ) 
dx (2.5.8) 

It is seen that 	as a whole and the second part of 	are rtm 

_ not integrals. The first part of §ilm  is identical to anm  in the 

TM case: 

When the standard boundary conditions on field vectors are 

satisfied on both the inscribing and the enscribing circles, the 

following equations result: 

fm(xl)=amJm (x1d)  

f (x )=IIT a J 
m 1 	lr m m• GL  Id 

These equations have exactly the same form as the ones in TM 

case. Hence the solution for the scattering coefficients bm  

proceeds in exactly the same way. From the numerical point of view 

this means that a computer programme with the modification of just 

a single subroutine can give the solution of the dcattering problem 

for both polarizations of the incident wave. The modification is 

in the characteristic matrix of the system of differential equations. 

For this reason the solution process and the numerical investigation 

of TE case will not be repeated here. 

As is seen in the expression forTinm  (2.5.8) there are derivative 

factors dO/dx. At some points on the boundary of the scatterer 

cross-section these factors may become infinite. Hence on approaching 

such points care must be taken. One way to tackle this problem is 

to deform the boundary of the scatterer cross-section locally at such 
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singular points. This deformation should be by such an amount that 

it does not affect the scattering behaviour of the object, but at 

the same time eliminates the numerical singularities at these points. 

The right amount of deformation is found by observing the changes in 

the scattering quantities due to chancing the size of the deformation. 

For example, consider the following scatterer which 

has an elliptic cross-section. The derivative dO/dx 

is infinite at x=x1(0=0), since C is circular in 

the region of 0=0. This point is the starting point 

of the integration range. 

The boundary curve C is deformed in the following way. 

A circle with centre 0 and radius x1+6 is drawn, 

where E is a positive quantity which is very small 

compared to xi. The points of intersection of this 

circle with C are denoted by 1,2,3 and 4. The 

circular arcs (1,2) and (3,4) are denoted by C1  and C2  and the 

elliptical arcs (1,2) and (3,4) are denoted by El  and E2  respectively. 

The new boundary of the scatterer cross-section is composed of 

the set of points given by C1  U C2  U [C -(E1  U E2)] 

The inscribing circle now is the one with radius x1+ C , since 

the medium inside this circle is homogeneous throughout. The 

enscribing circle is the one with radius x2. In this way it is 

possible to isolate the singular point xl  and get rid of the numerical 

inconveniences. 

Another way to eliminate the numerical singularity at x=x, is 

to use the defining equation oflnin  at this• point instead of using 

(2.5.8). From the defining equation of 1nm  it follows thatinm(x1)=0 

This condition is used in the actual computations. 

If there is more than one point on C in the neighbourhood of 

which C is circular(dO/dx-*co) the first approach is more suitable. 
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2.6 TWO-DIMENSIONAL MULTI-BODY.SCATTERING BY THE NEW METHOD 

The method developed in previous sections for 
 . 	-. . 

. 	\ 	a single scatterer can easily be extended to .  .  
\ multi-body scattering. For this purpose, 

A! t consider infinitely long dielectric cylinders 

\̀ CZ 2 , .  . - _ - 	, 	Three regions labelled as 1,2 and 3, are , 
.. 

3 
Fig.2.6.1 	shown in figure 2.6.1. 

In regions 1 and 3, the fields are uniquely represented by infinite 

series of cylindrical harmonics. These series are convergent in 

their respective domains. Region 2 is inhomogeneous in its material 

composition. The field in this region is represented by a Fourier 

series. The Fourier coefficients are functions of the radial 

variable p and satisfy a linear second order differential equation. 

The analysis is exactly the same as in the single body case. 	(Now 

the ynm  are more complicated functions of x and xld xis  unless the 

coordinate origin is located in one of the scatterer cross-sections. 

For the multi-body problem it may not be possible to find a 

symmetry axis for the whole assembly even though the individual 

scatterers may have their own symmetry axes. This means that even 

and odd decomposition of the incident wave does not work and the 

summations appearing in the differential equations start from -N and 

go to N. 

with cross-sections Cl  / 	' 2 ' • • • 2  M • 
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2.7 NUI•TERICAL APPLICATIONS 

. In this section the results of the application of the new method 

to various problems are presented and, where possible, are compared 

with existing data. 

2.7.1 Homogeneous and Inhomogeneous Circular Dielectric Shells 

a) Consider a dielectric shell with the following parameters: 

kop1=.5 	This problem has been solved by 

kop2=.6 	three different methods, in all of 

Cr  = 4 	them excitation being a TM-polarized 

plane wave propagating along the 

x-axis. These are 1) the state-

space method ii) the eigenfunction method(see Appendix C) iii) the 

new method. 

The scattering coefficients are tabulated below. 

e Re(be) -state -space Re(be)-Eigenfunction Re(be) -New Meth. 

1 -0.5547499E-1 -0.5547498E-1 -0.5547499E-1 

2 0.2004804E-1 0.2004803E-1 0.2004804E-1 

3 0.1414056E-6 0.1414056E-6 0.1414057E-6 

4 -0.3243477E-5 -0.3243476E-5 -0.3243479E-5 

5 -0.2544811E-15 -0.2544810E-15 -0.2544824E-15 
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e Im(be)-State-space Im(be)-Eigenfunction Im(be)-New method 

1 -0.2289050E0 -0.2289050E0 -0.2289050E0 

2 -0.4020854E-3 -0.4020853E-3 -0.4020854E-3 

3 0.3760394E-3 0.3760393E-3 -0.3760394E-3 

4 0.1052014E-10 0.1052014E-10 0.1052015E-10 

5 L0.1595246E-7 -0.1595246E-7  -0.1595251E-7 

b) Consider the same dielectric shell as in (a), now with 

p1=0.2X( k0p1=0.511 ) and p2=0.3X ( k0p2=0.6n ). 

The scattering coefficients are: 

e Re(be)-State-space Re(be)-Eigenfunction Re(be)New method 

1 -0.5962773E-1 -0.5962772E-1 -00.5962772E-1 

2 0.4830531E0 0.4830531E0 0.4830532E0 

3 0.1675881E0 0.1675882E0 0.1675881E0 

4 -0.2996321E-1 -0.2996322E-1 -0.2996321E-1 

5 -0.1829289E-5 -0.1829290E-5 -0.1829289E-5 

k 

e Im(be) -State -space Im(be)-Eigenfunction Im(be) -New method 

1 -0.2367958E0 -0.2367958E0 -0.2367958E0 

2 -0.6290724E0 -0.6290724E0 -0.6290722E0 

3 0.3735001E0..  0.3735002E0 0.3735001E0 

4 0.8986016E-3 0.8986019E-3 0.8986015E-3 

5 -0.1352511E-2 -0.1352511E-2 -0.1352511E-2 

It is seen that agreement between the exact results(eigenfunc- 
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tion) and the ones obtained by the present method is very good. The 

state-space method also gives results in excellent agreement with the 

other two. The computation times, however differ considerably in 

the state-space and the new methods as shown below: 

for problem (a): 	computation time(state-space) : 9.752 Sec. 

computation time(new method) : 3.276 Sec. 

The scattering patterns(echo width per wavelength) are given in 

Fig. 2.1 and Fig. 2.2. For problem(a) line-source excitation has 

also been considered and the scattering pattern has been shown for 

this excitation. 

The analytical expression for the scattering pattern is given 

below. 

The scattering pattern is defined as: 

2 

=Lim 27cp , where VI is the scattered electric field. 
P-Do 11/012  

For a plane wave of unit amplitude 'Vo l = 1, for a line-source 

 Vo 	If 
=- --H 

0
(2) (k R s), where Rs is the distance from the line-source o  

and it is taken as the distance between the line-source and the centre 

of the scatterer. 

The scattered field is given as: 

VT = ›- bm  H(2)(kop) eim° , since Lim H!2)(kop)=\ 1 /1 -0  jm+1/2  
rn,c0 	 ao 	

7; 
 

Lim VS  1 
oo 

1/2 -jk P 	im- b eini°  j e 0 	m 
n_-00 

and 

  

2 

 

s Lim IV1 12 = 2 nk 
P-->co 	

op eini° m 

   



Fig.(2.1) Scattering Pattern(echo width per wavelength) of 

a Homogeneous Dielectric Shell 



5. 

Present Method 

Exact 

4. 

3. 

2.- 

1. 

0° 	20° 	40° 	60°  80' 100' 120°  140°  160°  180°  . 

Fig.(2.2) Scattering Pattern(echo width per wavelength) of a 

Homor7eneous Dielectric Shell 



kl(x2)jm(x1)+erl 12(x2):11n(xl)  = m 
(x )J (x )-PC qrs 22 	).7 	) 21 2 m 1 rl 	2 m 1 

64. 
and finally; 

co 	2 

1 	
3 ' bm eim°1 

1 • 1 co 	I V0  12r.- 

If the relation b-m=(-1)mbm holds(which is the case when a 

plane wave is incident on a symmetrical scatterer along the symmetry 

axis) the expression for a (per wavelength) becomes, 

2 
X 

= — 
2  1 	

.m b
m Cosm01 	for plane wave excitation, a 

=LI>
on 

	

	
2,/// 	•(,1 • 2 E im  bm Cosmol 	IH'"'(k R )1 for line-source m 	o 	o s 

m=o 
excitation. 

Where E m= 2-8 is the Neumann factor. mo 

c) The homogeneous dielectric shell of section (b) is considered 

again with the same parameters but excited with a TE-polarized plane 

wave. 

The scattered field coefficients are found from the following 

formula: 

er2P'111m(x2)-Jm(x2)  b - 
( m H(2)

(x2 )-Cr2  Pm  H
2)
m  (x2  ) 

where 

and Cr1  = 6r(x1) , er2 = r(x2). 

The elements 11
(x2)  , 	21(x2) 	12(x2) and 	.222(x2) are 

found by solving the following system of differential equations nume- 

rically: 

M=0 
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ym(x) 

zm (x) 

0 
2 2
2 - 6r(x) 

1 

2 dx 
— Lne -1/x 

ym (x) 

zm (x) 
(2.7.1) 

note; to find 11 11(x2) and 23.. (x2) , (2.7.1) is solved with the 

initial condition vector ( 1 0 )T  ; to find 	12 (x2  ) and 22(x2) 

(2.7.1/is solved with the initial condition vector ( 0 1 )2  . 

The scattered field coefficients are tabulated below and compa-

red with the eigenfunction solution results. 

e b
e
(Eigenfunction expansion) be

(New method) 

1 -0.6290724E0-J0.4830531E0 -0.6290722E0-J0.4830552E0 

2 0.8094046E-1-j0.659485E-2 0.8094042E-1-j0.6594844E-2 

3 0.3934550E-1+j0.1944156E0 0.3934548E-1+j0.1944156E0 

4 -0.5305816E-1+j0.2823138E-2 -.0.5305815E-1+j0.2823138E-2 

5 -0.2320779E-4-j0.4817390E-2 -0.2320778E-4-j0.4817390E-2 

The scattering pattern is given in Fig.2.3. 

d) An inhomogeneous dielectric shell is considered with the 

following parameters: 

x1=0.5 , x2=0.6 , er(x). x: / x2  . 

The excitation is a TM-polarized plane wave. The scattering 

coefficients are found by both the state-space method and the new 

method. The scattered field coefficients are tabulated below. 

Echo width per unit wavelength is given in Fig.2.4. 
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e be(State-space method) be(New method) 

1 -0.2114058E-3-j0.1453826E-1 -0.2114059E-3-j0.1453827E-1 

2 0.1111659E-2-j0.1235788E-5 0.1111661E-2-J0.1235791E-5 

3 0.41336o5E-94-jo.2033127E-4 0.4133632E-9+jo.2033134E-4 

4 -01.1649965E-6-Fio.2722383E-15 -0.1649989E-6+jo.2722462E-13 

5 -0.5720227E-18-j0.7565218E-9 -0.5720951E-18- 0.7563697E-9 

Computation time (state-space): 11.565 Sec. 

Computation time (New method) : 3.296 Sec. 

e) Dielectric shell with a perfectly conducting core and strati-

fied radially. 

The excitation is a TM-polarized plane wave. 

Thd inner optical radius is fixed at kop1=1. The 

permittivity has the functional form Cr= 25.1A02  

Four different values for the outer optical radius 

have been taken. The results for the backscatte-

ring cross-section have been compared with Shafai's(39) results. 

The method of solution needs a small modification due to the 

presence of the perfectly conducting core as follows. 

The representations of the z-component of electric field in 

regions pi<*p<p2  and p> p2  are respectively; 

co 

V1 . 7- fm(p) eim° 	P2 

 

• 

tbm
(  Hm2)  (kop) 	`S m  Jm(kop) 

 

V2  = e lm 0 
P>,  P2 • 

m=-00 

The differential equation for fm(x) is 



zm 
= m  2 

0 

e 

r (x) 
1  -1 x / 

2 
x 

Ym  

(2.7.2) 
zm 

d
2
fm 1 dfm  

dx 	
[C

r(x)- 
+ 
x dx 

= 0 	x=k
o
p. 
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In state space form: 

where ym=fm  , zm=fm  

The boundary conditions are: 

fm (xl). 0 
, fm(x2)=bmlit(112)(x2)4-  m jm(x2)  

•  
fm(x2)=bmH

(
m-)  (x2)+ 	Jm(x2) 

Combining the solution of (2.7.2) with the above boundary con-

dition relations gives the following expressions for bm  : 

(x ) J (x )- 	(x ) J (x 22 2 m 2 12 2 m 2 	. m bm 

where § 12(x2
) and 22(x2) are obtained by solving (2.7.2) numerically 

with the initial condition vector ( 0 1 )T  . 

It is seen that only one column of the state-transition matrix 

need be generated. 

The values of the backscattering cross-section per wavelength 

are compared with the ones given by Shafai in the following table 

(TM-polarization is considered) 

x2 2. 2.5 3 3.5 4 

abA (New method) 
1.041 0.458 1.658 1.676 

0.445  

o'h  A (Shafai) 1.04 0.45 1.65 1.69 0.45 

(x 	/1(2)(x 	15, x  ) H(2)(x  
12 2'1 	2

)
_ 22

( 
 2 m 	2

) 
 



Scattering coefficient 
x2=3.1 TM case 

Scattering coefficient 
x2=3.1 TE case 

b 

-0.1208E0+j0.3259E0 

0.4897E0-j0.6005E0 

0.8996E0+j0.3004E0 

-0.2082E0+j0.4543E-1 

-0.2145E-3-j0.1464E-1 

0.8830E-3-j0.7798E-6 

-0.9660E0-v.1810E0 

-0.3664Eo-jo.1598E0 

0.1665Eo+jo.3725Eo 

-0.4097Eo+jo.2134E0 

-0,1049E-1-jo.1019E0 

0.1034E-1-jo.1069E-3 

1 

2 

3 

4 

5 

6 

68. 

The echo width per wavelength is shown in the figures(2.5) and 

(2.6) for x1=1 and for various values of x2. 

As examples of the dielectric shells stratified radially with 

a conductor core, two more permittivity profiles have been considered. 

The scattering coefficients are tabulated below for the corresponding 

permittivity functions and size parameters. 

b Scattering coefficients 
by the new method-TM case 

Scattering coefficients 
by the new method-TE cas3 

1 -0.2981411E0+0.4574418E0 -0.3467391E0-j0.4759318:0 

2 0.4949034E0-J0.4287918E0 -o.1860019E0rj0.9441136:o 

3 0.9756283E04-j0.2542003E0 0.9871638E04-v.1125675m 

4 -0.4959141Eo+jo.5637902E0 -0.4972911E0+j0.4480232o 

5 -0.404488E-2-j0.6347062E-1 -0.1996162E-1-j0.1398684E0 

6 0.4095463E-2-V.1677510E-4 0.1498699E-1-j0.2246605E-3 

7 0.4592408E-7+j0.2142990E-3 0.1298894E-5+0.1139690E-2 

8 -0.8692108E-5+j0.7555274E-10 -0.6324609E-4+j0.4000068E-8 

9 -0.7650585E-13-v.2765933E-6 -0.6939229E-11-p.2634242E5 

-x/10 
x1=1  x2=3 

s  6r.3 e 
 

The echo width per wavelength is plotted in Fig.(2.7) 
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0.1791E-8+j0.4252E-4 

-0.1595E-5+j0.2558E-11 

-0.2287E-14-j0.4782E-7 

0.1164:-8-j0.1556E-17 

0.5271E-6-1j0.7260E-3 

-0.5756E-4+j0.159613-8 
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b Scattering coefficients 
. x2=5.1 	TM case 

Scattering coefficients 
x2=5.1 	TE case 

1 -0.4919E04-J0.4999E0 -0.1508E0-J0.5371E0 

2 0.4317E0-J0.2478E0 -0.1912E0-j0.9616E0 

3 0.9195E0+j0.2722E0 0.9444E-1-j0.2924E0 

4 -0.4636E-14-jo.9978m -0.3795E0+j0.1744Eo 

5 -0.2665E0-J0.4421E0 -0.4999E0-j0.5000E0 

6 0.4088E0-v.2122E0 0.4291E0-J0.2454E0 

7 0.6204E-5+j0.2490E-1 0.1515E-1+j0.1158E0 

8 -0.2522E-2+j0.5592E-5 -0.1659E-1+j0.2688E-5 

9 -0.3625E-7-N.19°4E-3 -0.5564E-5-j0.1854E-2 

10 0.1297E-4-j0.1682E-9 0.1624E-5-j0.2659E-7 

2 C
r 

 = x2 / x2 . Scattering pattern is plotted in Fig.(2.8) 2 

f) Two-dimensional Luneburg Lens Excited by a Plane Wave. 

The Luneburg lens is characterized by the following permittivity 

function: 

/ 
er(p)=2-(p/p2)2  , where p2  is the radius of the lens. 

Since the lens is a solid structure the coordinate origin(which 

is also the centre of the lens) is included in the range of numerical 

integration of (2.7.1) and (2.7.2). The systems of differential 

equations (2.7.1) and (2.7.2) however have singularities at the ori- 
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gin. These singularities are eliminated by considering a circle of 

small radius around the origin and concentric with the lens cross-

section. The permittivity. inside this circle is assumed to be 

constant whose value is taken as Cr(0). In this way the problem is 

converted into a dielectric shell problem which is free of any 

numerical singularity. The value of the radius of the small circle 

is taken as 0.01p2  in actual calculations. This selection proved 

to be satisfactory. Since the region defined by p<ps(ps  is the 

radius of the small circle) is not vacuum but a dielectric the 

formulas of section (2.2) for bm should be changed accordingly, to 

Jm(x2Aim-Jm(x2) b  

m  H(2)(x 2'l_w  ;1(2)(x 2) 
m m  

where W =  - 12 2 lr m

▪ 

(x12 )4-01m  (X Aft-  J  

In 

§n  211 (x2 )jm (x1d)4e22 (x2 Vc.rjm▪ (x1)  

for TM excitation, 

Cr(x2)PmJm(x2)-(1m(x2) b
m H

M
(2)(x 2 

r 
(x 

 2 
)p Ti(2)(x 

 2

) 

m m 	' 

where P 41(x2)jm(  d) - 12 2 lr 	l ) X-, +19  (X (X)VC  LT (X  
for TE excitation. 

2 .1pm  (x )J (x )+ ? (x )\FC- 	(x ) 	• 1 2 m ld 22 2 lr m ld 

where xld xilcr ' Clr=er(°) =2 /  C r  (x2  )=1. 

w..n1 	 n1  ,111 	7-111 	.., 
11 / 12 / '21 2  '22 are the 

matrix corresponding to (2.7.2) 

the elements corresponding to (2.7.1). 

The scattering coefficients are tabulated below for x2=1.256657 

x1=0.01x2 and N=5. 
	Both polarizations, TM and TE, are considered. 

elements of the state-transition 

and •P°11 '10 	'01 	are 11 12 / 21 '22 
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b Scattering Coeff.-TM Scattering Coeff.-TE 

1 -0.2130351E0-J0.4094522E0 -0.4473277E-1+j0.2067166E0 

2 0.7732062E-1-j0.6014654E-2 0.2493011E0-j0. 6658455E-1 

3 0.1507155E-44.j0.5615456E-2 0.2798522E-2+j0.5282699E-1 

4 -0.9488705E-4+j0.9005552E-8 -0.2815921E-2+j0.7918217E-5 

5 -0.2480553E-11-j0.1574914E-5 -0.6137911E-8-j0.7854482E-4 

The echo widths per wavelength are plotted in Fig.(2.9 ). 

2.7.2 Non-circular Homogeneous Scatterers  

In this section scatterers with various cross-sections are 

considered. Scattering coefficients are tabulated, the factors anm  

are given as analytical expressions for each particular scatterer 

and scattering patterns are plotted. 

a) Off-centre Circular Dielectric Cylinder 

In order to check the accuracy of the new method for a scatterer 

of non-circular cross-section an off-centre circular cylinder is 

considered first. As shown in the figure the coordinate origin is 

located at a distance d from the centre of 

the circle. With respect to 0 then, the 

cross-section is no longer circular. The 

far field behaviour of the scattered field 

(which is expressed quantitatively in the 
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scattering pattern expression) is.not affected by the location of 

the coordinate origin. Therefore far field patterns evaluated with 

respect to the points Oc  and 0 must be the same. The scattered 

field can be found exactly for the coordinate origin Oc  as an eigen-

function expansion. For this reason this example is a proper one 

to see how the new method will work for non-circular scatterers. 

A simple calculation gives the factors mum  as: 

1-C 
=C 6 + 	 Sin [(m-n)c6 a nm r nm n m-n 	• 

where 2 2 2 
0o(x)=Cos-1( a 	-xd-d 

 ) , a is the optical radius of the 

cylinder, a=koa' 	d is the 

optical distance between 0 and Oc  

d=ko
d' and x=kop. 

The scattering coefficients are tabulated below for three 

different values of d together with the exact coefficients(obtained 

from an eigenfunction solution). Echo widths per wavelength are 

also given for different values of d. a is taken as 1. 
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e Scattering Coefficients 

1 -0.3402741E0-j0.4505634E0 

el. o 
ti 

-ID 

2 

3 

-0.5184136E-1+j0.7930950E-1 

0.1132450E-1-jo.2846656E-2 

4 -0.8514854E-3-j0.2227839E-3 

5 0.30145591]-4+V.3043797E-4 

6 -0.5953815E-7-j0.2055864E-5 

e Scattering Coefficients 

1 -0.3443746E0-v.4416278w 

2 -0.340299813-1+j0.1014166E0 
.--t 
51 3 0.1344719E-1-j0.7383164E-2 

If -10.1475394E-2+j0.3309008E-4 

5 0.8922338E-44.0.3542388E-4 

6 -o.309olo8E-5- jo.364816oE-5 

e Scattering Coefficients 

1 -0.3467227E0-V.4304807E0 

in 
d 

2 -0.1599273E-14-V.1227562E0 

II 3 0.1462512E-1-j0.1298680E-1 

11 -0.2177481E-2+j0.5423446E-3 

5 0.1810077E-3+j0.2141630E-4 

6 -0.9848968E-5-j0.5065307E-5 

As is seen from the above table, the scattering coefficients 

are different for different values of d. This is expected, since 

when d changes both the cross-sectional shape and the maximum optical 

radius change. The scattering coefficients take such values as to 

make the far field scattering parameters of the scatterer independent 
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of distance d. 

The echo width per wavelength is given below for three different 

values of d. 

d a/X(exact) a/Md=.3) a/Vd=.4) a/Md=.5) 

0°  0.3641 0.3637 0.3636 0.3636 

20°  0.3514 0.3511 0.3510 0.3509 

40°  0.3169 0.3167 0.3166 0.3166 

60°  0.2696 0.2695 0.2694 0.2694 

80°  0.2197 0.2197 	
. 0.2197 0.2197 

100°  0.1756 0.1757 0.1757 0.1756 

120°  0.1415 0.1416 0.1416 0.1416 

140°  0.1184 0.1385 0.1185 0.1185 

160°  0.1054 0.1054 0.1054 0.1055 

180°  0.1013 0.1012 0.1013 0.1013 

As expected, the far field.auantity o does not change appre-

ciably with d . 

b) Semi-Circular Dielectric Rins- TM Case 

pi=0.25X 

p2=0.30X 

C = 

This problem was solved by Richmond(29) in 1963 using a moment 

method for TM-polarized plane wave excitation. The echo width per 

wavelength obtained by the present method is compared with Richmond's 

results. The agreement is excellent. 
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The factors a are define:7 as: Tun 

er+(-1)m-n 	
Sin(m-nn/2) 

a= 	 
IIM 	2 

The scattering coefficients and echo width per wavelength are 

given below for various truncation numbers N. The latter is plotted 

in Fig.(2.10). 

N=5 N=6 N=7 N=8 

b1 
-.287E0-j.474E-2 -.288E0-j.613E-2 -.288E0-j.611E-2 -.288E0-j.649E-2 

b2 -.322E0+j.188E0 -.321E0+j.189E0 0-.321E0+j.189E0 -.321E0-1-J.189E0 

b3 -.392E-1+j.226E0 -.383E-1+j.228E0 -.383E-1+j.228E0 -.382E-1+j.228E0 

b4 .156E4+j:536E-1 .137E-14-J.536E-1 .138E-1+j.536E-1 .138E-1+j.536E-1 

b5 .312E-2-J.865E-4 .306E-2-j.364E-3 .306E-2-J.364E-3 .509E-2-J.405E-3 

b6  .500E-4-j.956E-3 .439E-4-j.956E-3 .435E-4-j.956-3 

b7 
-.280E-4-j.646E-5 -.282E-4-j.378E-5 

b8 -.851E-6+j.113E-4 

0A(N=5) o/?(N=6) cA(N=7) crA(N=8) 

o° 0.9552 0.9629 0.9632 0.9655 

40°  0.4493 0.4524 0.4524 0.4529 

800  0.2103 0.2097 0.2097 0.2099 

120° 0.1706 0.1706 0.1706 0.1706 

160°  0.04924 0.04743 0.04747 0.04705 

180° 0.03215 0.03010 0.03016 0.02975 

c) Semi-Circular Dielectric RinE-TE case 

This problem has been solved by Mei using his 

(m-n)n/2 
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Fig.(2.10) Scattering Pattern(echo width per wavelength) of a 

Semi-Circular Dielectric Ring-TM Excitation. 
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'uni-moment' method. The results obtained by the present method have 

been compared with Mei's results. The agreement is very good. 

In region 2 the permittivity is a function 

of angle 0 only. In applying the boun-

dary conditions on the circles p=p1  and 

p=p2  some matrix manipulations characte-

ristic of only this shape are necessary. 

Because of this aspect of the problem, the solution is given briefly 

as follows. 

The representation of the magnetic field in regions 1 , 2 and 3 is 

Vi(p,0)= EamJm(kop) eim° 

V2(p20)= 	fm(p) ejm° 
m=-00 

V3(p10)=Z[bmilm(2)  (kop)+ tmJm(kop)1• ejmO 
m=-03 

where the functions fm(p) satisfies the following differential 

equation; 

d2f 	df 	2 	co 

dx2
n 

x dx
n 	

xn2 
fn m 	

fm  (x) = 0 	(2.7.2.1) p
nm.-00 

where x=kop and 

2Ti 	2Tr 

Ate = 
 2n 
. 1 .re  (,) ej(m-n)0 do_ Atm. r ciao Iner(0). ej(m-n)0 do  

r 	j r 2nx 

Defining yn=fn, zn=fn  converts (2.7.2.1) into the following 

form: (again a symmetrical excitation is assumed so that summation 

over m starts from m=o amd goes to m=0°) 
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S —U/x 

    

       

where y = yo  yi 	yu %T 
	

z = ( zo  zi 	zu )a  are both 

(g+1)xl vectors, U is the identity matrix, S has the following 

explicit form: 

-POO -(Pol+Po,-1)  • 

12 

2-(P11+P1,-1) . 

• • 

• • 

—(PoN+Po, -N)  

-(P 1N+01,-N)  
S= 

-(PN +PI1,-1 ) 	• 
N2  • • 2 (PNNI-PN, -N)  x  

After some algebraic manipulation the factors p nm  are found as: 

Pte= 

	

+( -1)m -n  .Sin(m-n7V2) 	mime r   m-n 2r  Sin(n/2) 2 

	

(m-n)7V2 	nx 

The boundary conditions: 

i) Vi(p,0)=V2(p,95) 	0.4,:,.;:oqn at p=p1 	or equivalently; 

am J (k o  p1  ) eim91= 	 mP1 e ( ) im°  m  m,-co 
(2.7.2.2) 

from (2.7.2.2) it follows 

amJm(x1)=fm(xl) 	(2.7.2.3) 

where xi=kopi  

ii) 1 	avl I i av2 
C ap  P=P1 = 7770  ap P=Pi 



O 

'11(xl) 

• 

0 

where e(0)=.  

<7-- 2 	2 

("" 
2 	2 
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or 

Cr(°)  :E■ amjial (Xi) eini°  = 
	

fm(x1) eirn° 
n11:-.03 

multiplying each term of above equation by e-J1195  and integrating 

over (0-2n) gives 

21T 
A ej(m-n)0 do fn(x1) = 	a J (x 	1 	e kO) 

m.-co 
m m 1 -nm, where qnm= 

	

27c 	r si  

0 

It is seen that the derivative vector f is not connected to the 

coefficient vector a by a diagonal matrix J(x1). This new matrix 
• 

is a full matrix given as GJ lb , where matrices G and Jlb are given 

explicitly: 

goo gol+go2-1 • . qd-q0,-N 

glo gll+gl, -1 • • • g1N+g12-N 

G= • lb 
• 

• 

gNo gN1-1-qN2-1 • I  • gN11-1-qN2-N 

The boundary conditions at x=xI then become 

i(xl)  =J1b a 
	and 	f(xi) = G a 

	
(2.7.2.4) 

Similarly at x=x2  : 

f(x2) = 112  b + J2  1. 
	

R f(x2) = H2  b + J21 	(2.7.2.5) 
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where the matrix R is given as: 

e+eol 	• 

• 

. e + ol -1 oo 	e oN os-N 

elo e11+e11-1 . 

• 

. e1  +e N 1,-N 

2if 
__1 	ej(m-n)0 

e 
nm 	2u 	C (0) 	elgs 

0 

eNo eNl+eNs  -1 • • . eNN+eN _N  

R = 

Combining the solution of the system of differential equations 

with the boundary conditions (2.7.2.4) and (2.7.2.5) gives the 

following: 

Pa=II b+J 2 — 2 — 
(2.7.2.6) 

Qa=11 b+J 2 — 2 

where P = 1(x2)  Jlb + 2(x2) G Jlb 

Q = R q5.
3
(x2) Jlb 

+ R(x
2) G J lb 

Solution of (2.7.2.6) is straightforward. 

The factors e 	have the following form: nm 

e nm 

(-1)m-n  + 1/Cr  Sin(m-nn/2) 

2 	
(m -11)A/2 

In summary, for the problem of TE plane wave scattering by a 

semi-circular dielectric ring, the boundary conditions are somewhat 

different in mathematical form from the corresponding conditions for 
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other scatterers. 

The scattering coefficients are given below for various trunca-

tion numbers. Echo width per wavelength is plotted in Fig.(2.11). 

N7_.-.5 N=6 N=7 N=S 
b1  -.155E0-j.425E0 -.129E0-j.424E0 -.129E0-J.423E0 .126E0-j.425E0 

b2 -.558E-1+j.564E-1 -.362E-1+j.562E-1 -.554E-1+j.564E 1 -.557E-1+j.565EH 

b3 .197E-1+j.111E0 .157E-1+j.107E0 .156E-1+j.107E0 .152E-1+j.10510 

b4 .256E-1+jaC0E-1 .256E-1+j.102E-1 .249E-1+j.994E-2 .249E-1+j.100E-1 

b
5 
.574E-2-j.395E-2 .608E-2-J.336E-2 .610E-2-j.331E-2 .629E-2-3.307E-2 

-.209E-3-j.475E-3 -.956E-4-j.409E-3 -.946E-4-j.41 E-3 b6  
b7  -.108E-3+j.395E-4 -.118E-5+j.232E-4 

b8 00713-54i.3872-5 

o/X(N=5) 0A (11=6) cA(1I=7) 0A(P1=8) 

0°  0.4259 0.4147 0.4110 0.4039 

40°  0.1887 0.1873 0.1871 0.1859 

8o°  0.03646 0.03819 0.03846 0.03962 

120°  0.06821 0.06957 0.06953 0.07023 

160°  0.1636 0.1591 0.1598 0.1567 

180°  0.1826 0.1758 0.1770 0.1728 

d) Elliptic Dielectric Cylinder 

Only TM excitation has been considered. The 

factors a are: nm 
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Fig.(2.11) Scattering Pattern(echo width per wavelength) of 

a Semi-Circular Dielectric Ring-TE Excitation. 
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1-C 	Sin(m-n00) a  =en 	r 	)m—n] • 	 
n!..1 	r nn 	R 	L 

(M-11) 

2/A 
where 	r; = 0.5 Cos 

   

= 	F 
b  a-  br- 

2 

 

A 

a and b are the semi-major and semi-minor axis of the ellipse 

respectively. 

The scattering coefficients and echo width per wavelength are 

tablaated below for a=0.2X, b=0.3). and Cr= 2. 	The latter is 

plotted in Fig.(2.12). 

N=5 N=6 N =7 N;8 
b1  -.440E0-j.507E0 -.440E0-j.507E0 -.440E0-j.507E0 -.440E0-j.507E0 

b2 -.350E0+j.137E0 -.350E0+j.137E0 -.350E0+j.137E0 -.351E0+j.137E0 

b3 .115E-1+j.762E-1 .115E-1+j.761E-1 .115E-1+j.762E-1 .115E-1+j.762E-1 

b4 .146E-1-j.474E-2 .148E-1-j.477E-2 .148E-1-j.477E-2 .148E-1-j.477E-2 

b5 -.102E-3-j.202E-2 -.102E-3-j.201E-2 -.102:-3-j .202E -2 -.102E-3-j.202E-2 

b6 -.237E-3+j.678E-L -.237E-3+j.678E ' -.238E-3+j.679E-4- 

b7  .274E-6-1-j.234E-4 .274E-6+j.234E-4 

b8 .199E-5-j.516E-6 

-0-- 
6A (N=5) crA (N=6) crA (N=7) GA(N=8) 

0°  1.6115 1.5937 1.5981 1.5985 

40°  0.9936 0.9742 0.9751 0.9751 

80°  0.2844 0.2794 0.2799 0.2797 

120°  0.06276 0.06544 0.06520 0.06519 

160°  0.02419 0.02599 0.02585 0.02584 

180°  0.02222 0.02351 0.02343 0.02341 



Fig.(2.12) Scattering Pattern(echo width per wavelength) of a 

Dielectric Elliptic Cylinder-TM Excitation. 
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The same problem has been solved with the following different 

parameters: 

a=0.26226316X2  b=0.56752526X Cr=2. 

The scattering coefficients are given below for N=8. The 

echo width per wavelength is plotted in Fig. (2.13) 

e Scattering Cofficient e Scattering Coefficient 

1 -0.4295595E -1 -jo.4676394Eo 5 -0.4835812E -1 -j0.6424163E -1 

2 -0.5277653E0+j0.6495442E0 6 -0.1557146E-1+j0.4422051E -2 

3 0.4001604m+j0.4422845E0 7 0.2500505E -2+j0.3963558E.:2 

4 0.1642194E0-50.7996024E-1 8 0.7236911E-3-p.1418121 E-3 

e) Square Dielectric Cylinder 

The factors a for TM-polarization are: nm 
IY 

6t.  
a —44 

a =8 + 1-er(..1)m-n]rin(m -n01) -Sin(m-n6
2)] 

nm nrn m-n 

The factors Ynni and 	for TE-polarization are: 

r m-n 	
1-C mime 

=8 
nm 

 + 	 iSin( 	01  )-Sn(m-n 62  ) j( -- m-n  4-I. 	r 
nm 	 i  

x2 

and 	 de, 
= 	r  [1+(-1)m-n][Cos(iz.a 0 )+Cos(m-n e )] 

11111 

	

	 2 dx 

-1 ka/2) where e1=cos ( 	) 0 	-6 
' 2 2 1 



0=0.26226316N 
b.-.0.567525261,  

er1'2. 

A °- A 

0 
0° 	20-° 	60-  • 100° 	120° 	140' 	160" 	180°  

Ez  

Fig.(2.13) Scattering Pattern(echo width per wavelength) of a 

Dielectric Elliptic Cylinder-TM Excitation. 
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The scattering coefficients.  and echo width per wavelength are 

listed below for various truncation numbers, for both polarizations 

and for a=0.6X. 

PA-Case 

N=5 N=6 N =7 N=8 
b1  -.495E0-j.509E0 -.495E0-j.509E0 -.495E0-j.509E0 -.495E0-j.510E0 

b2 -.488E0-Fi.682E0 -.486E0+j.683E0 -.486E0+j.683E0 -.487E0+j.682E0 

b3 .422E-1-j.201E0 .422E-1+j.201E0 .425E-1+j.201E0 .415E-1+j.199E0 

b4 .363E-1-j.235E-1 .359E-1-j.237E-1 .359E-1-j.237E-1 .365E-1-j.246E-1 

b
5 

-.513E-2-j.703E-2 -.513E-2-j.703E-2 -.513E-2-j.703E-2 -.515E-2-j.704E-2 

b6  .150E-2-j.146E-2 .150E-2-j.146E-2 .151E-2-.149E-2 

b7  -.453E-4-j.213E-3 -.467E-4-J.223E73 

b8  -.490E-44-J.235E-4 

_g-- a/k(N=5) a/X(N=6) 0/X(N=7) a/X(N=8) 

0°  5.0387 5.0167 5.0196 5.0128 

40°  2.5170 2.5243 2.5252 2.5221 

80°  0.3071 0.3043 0.3036 0.3059 

120°  0.03067 0.02996 0.03019 0.02908 

160°  0.3644 0.3649 0.3643 0.3674 

1800  0.4402 0.4368 0.4362 0.4409 

The echo width per wavelength is plotted in Fig.(2.14). 
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Fig.(2.14) Scattering Pattern(echo width per wavelength) of a 

Dielectric Square Cylinder-TM Excitation. 
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N=5 N=6 N=7 N.8 
b1 -.705E0-j.475E0 -.660E0-j.499E0 -.680E0-j.492E0 -.680E0-j.492E0 

b2 -.452E0+J.328E0 -.503E01-J.456E0 -.488E0+j.397E0 -.478E04-J.391E0 

b3 .219:0+j.414:0 .1741:0+J.379E0 .191E0+j.391E0 .191E0-1-J.391EO 

b4 .672E-1+j.168E-1 .424E-1+j.474E-1 .516E-1+j.356E-1 .406E-1+j.411E-1 

b5 -.796E-2-J.140E-1 -.158E-1-j.192E-1 -.134E-1-J.179E-1 -.134E-1-j.179E-i 

b6 -.407E-24-j.180E-2 -.357E-2+J.13621-2 -.341E-2-1-J.106E-2 

b
7 

-.763E-3-j.153E-2 -.763E-3-j.153E-2 

b8 -.116E-3-j.579E-4 

-g- cA(N=5) o/X(N=6) a/MN=7) 0A(N=8) 

0°  5.6091 5.8738 5.7477 5.5727 

40°  2.0007 2.4160 2.2365 2.2228 

800  0.1439 0.2047 0.1757 0.1769 

120°  0.05543 0.07045 0.06053 0.06557 

1600  0.1509 0.01634 0.05713 0.06781 

180°  0.2389 0.05586 0.1151 0.1382 

a/X is plotted in Fig.(2.15) 

f) Ogive 

Ogive is a geometrical shape obtained by 

intersecting two circles of the same radii. 

c,..____1_1 ---hf-a7.-C7Cors a 	for TM excitation are: nm 

1-C 	 m-n i 	0  Sin( 	0) a =c 8 	r [..11.+(_1)m-nj 	 
nm r nm n 

m-n 
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Fig.(2.15) Scattering Pattern(echo width per wavelength) of a 

Dielectric Square Cylinder-TE excitation. 
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For TE excitation the factors knm  and Tinm  are: 

L 1.81.1m+ [14-(-1)m-n] 
	LnE 	Sin(m-n 00) 

=e [(1-C r )+m 2 m-n 

LnC 
r  [1+(-1)m-nj Cos(m-n 00) Ifo 

The scattering coefficients and echo width per wavelength are 

tabulated below for b=0.341. and a=0.2X • 

TM-Case 

N=5 N =6 N=7 N=8 

b1 -.185E0-j.396E0 -.184E0-j.395E0 	-.185E0-J.396E0 -.185E0-j.3961:0 

b2 -.319E-1+j.101E-2 -.315E-1+j.991E-.! -.317E-1+j.1E-2 -.317E-1+j.1E-2 

b3 .298E-2+j.754E-2 .301E-2+j.762E-2 .299E-2+j-757E-2 .299E-2+j.757E-2 

b4 .239E-5-J.707E-5 .246E-3-J.723E-5 .242E-5-j.714E-5 .242E-3-j.714E-5 

b
5 

-.241E-4-j.661E-4 -.237E-4-j.656E-4 -.240E-4-j.660E-4 -.240E-4-j.66E-4 

b6 -.123E-5+j.358E-7 -.125E-5+j.368E-7 -.125E-5+j.368E-7 

b
7 

.106E-6+j.303E-6 .106E-6+j.303E-G 

o b0 
.358E-8-j.102.,]-9 

_g_ of/X(N=5) a/1(N=6) 0A(N=7) a/VN=8) 

0°  0.1681 0.1669 0.1677 0.1677 

40° 
0.1501 0.1490 0.1497 0.1497 

800  0.1191 0.1182 0.1188 0.1188 

1200  0.1023 0.1017 0.1021 0.1021 

160°  0.09961 0.09924 0.09948 049948 
______-------- 
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180° 	0.09973 	0.09939 	0.09961 	0.09961 

fl.■. 	....-. 

N.4 N-,-.5 N=.6 N---7 
b1 -.688E-2-j.920E-1 -.850E-2-j.102E0 -.850E-2-je102EC -.793E-2-j.979:0 

b2 -.148E0+3.215E-1 -.140E0+j.193E-1 -.139E0+j.189E-1 -.139E0+j.189E-1 

b
3 

-.543E-3+j.514E-2 -.802E-3+j.29E-2 -.80221-3+j.29E-2 -.808E-3+j.256E-2 

b4 
.381E-2-j.513E-3 .392E-2-5.502E-3 .399E-2-j.506E-3 .399= -2-5.506E-3  

b5  .526E-5-j.112E-3 .526E-5-j.112E-3 .508E-5-j.113E-3 

b6  -.283E-4+j .339E-5 -.283E-4+j .339E-5 

b7 -.610E-7+j.234E-6 

-.0.- a/1.(N=4) a/VN=5) ex(N=6) crA(N=7) 

0°  0.1065 0.1019 0.1003 0.09760 

wo 0.06490 0.06390 0.06281 0.06100 

80°  0.01090 0.01298 0.01287 0.01227 

120°  0.001932 0.0007692 0.0006906 0.0008597 

160°  0.02190 0.01716 0.01651. 0.01759 

180°  ' 	0.02676 0.02151 0.02076 0.02203 

40A is plotted in Figs.(2.16) and (2.17) for TM and TE cases. 

g) Two Circular Cylinders 

As an example of multi-body scattering two homogeneous dielectric 

cylinders of circular cross-section are considered. The radii of 

the cylinders are different. The excitation is a TM-polarized plane 

wave propagating along the x-axis. 
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Fig.(2.16) Scattering Pattern(echo width per wavelength) of a 

Dielectric Ogive-TM Excitation. 
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Fig.(2.17) Scattering Pattern(echo width per wavelength) of a 

Dielectric Ogive-TE Excitation. 
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The factors a are: nm 

a c 6 	1-er [Sinft=ii 01) Sin(m-n 00)] 
nm r nm 	m-n 	m-n 	, for  

D-R
d(P<d+ro 

1-0r 	
m-n 

Sin(m-n 0 ) 
anm=8nm n for D.1-2r0-Ro<p<D+R.0  -  

where 

2  q.co 1( -111T12  -- ) 00.cos-  l( D 	) 	s-  

Computations are made for the following set of parameters: 

R
o=0.2X , ro=0.1X D=0.25X d=0.15X Cr=2. 

The scattering coefficients and the echo width per wavelength 

are tabulated below for various truncation numbers. The results are 

compared with the ones given by Mei. Mei has solved this problem 

using two different methods, i) the uni-moment method ii) the exact 

method in which he uses the addition theorem of Hankel functions. 
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b N=4 N=5 N=6 N=7 

1 -.196E0-j.254E0 -.210E0-J.268E0 -.211E0-J.273E0 -.214E0-j.271E0 

2 -.323E04.j.460E0 -.323E0+j.457E0 -.321E0-1-J.460EO -.319E0+J.457E0 

3 -.412E-1-1-J.221E0 -.328E-11-J.222E0 -.332E-1+j.228E0 -.300E-1+j.228E0 

4 -.578E-2+j.943E-1 -.103E-2-1-J.923E-1 -.142E-2+j.963E-1 -.120E-2+j.969:-1 

5 .493E-2+j.212E-1 .469E-2+j.228E-1 .569E-2+j.232E-1 

6 .133E-2+j.437E-2 .158E-2+j . 436E-2 

7 .963E-3+j.209E-2 

-g- a/X(N=4) a/X(N=5) 0/X(r4=6) a/X(N=7) 

0°  1.5876 1.5768 1.5973 1.5961 

40°  1.0561 1.1339 1.1463 1.1428 

8o°  0.1787 0.1724 0.1824 0.1801 

120°  0.1660 0.1412 0.1473 0.1444 

160°  0.2595 0.2363 0.2361 0.2260 

180°  0.2462 0.2262 0.2318 0.2211 

The echo width per wavelength is plotted in Fig.(2.18) 
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3. NEt•1 METHOD FOR TWO-DIMITITSIONAL PROBLMIS USING 1717,IPTICAL 

COORDINATES 

In the previous chapter a new method has been developed to 

solve the electromagnetic scattering problem for infinitely long 

dielectric cylinders of arbitrary cross-section. In this method 

three regions have been defined. Two of these regions are homoge-

neous in their material composition and one is inhomogeneous(for 

inhomogeneous scatterers the number of homogeneous regions reduce to 

one as explained before). The homogeneous and inhomogeneous regions 

are separated by circles, that is one of the homogeneous regions is 

a bounded circular region and the other is an unbounded Fuinnlar 

region. The region between these two, which is the inhomogeneous 

region, is a bounded annular region. Defining such circular 

regions both makes the application of boundary conditions straight-

forward and the representation of the fields in terms of the cylin-

drical harmonics possible. 

For some cross-sectional shapes, however choosing circles as 

the boundary shapes may not be convenient from the numerical solution 

point of view. For example, for rectangular cylinders with high 

side ratio the radius of the inscribing circle is very much smaller 

than the radius of the enscribing circle, and consequently the range 

of the numerical solution of the differential equations is large. 

This, in turn increases the computation times considerably. One 

possibility to eliminate this inconvenience can be the use of ellipses 

instead of circles as the boundary curves. Selection of ellipses 

requires the representation of the fields in terms of elliptical harmo-

nics(solutions of the Helmholtz equation in elliptical coordinates. 

In this chapter the possibility of using elliptic regions will 
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be examined by repeating the same procedure used in the previous 

chapter, but this time using elliptical coordinates. Since the 

_solution of the Helmholtz equation in elliptical coordinates is not 

so familiar as in cylindrical coordinates,. a brief introduction 

to this subject is given first. 

3.1 Solution of the Helmholtz Equation in Elliptical Coordinates 

The three elliptical coordinates are denoted byy,n7, z. 	z is 

the usual cartesian coordinate. The relation between ,77 z and 

x,yoz are: 

	

x= e Cosh Cos/ 	y= e Sinht Sin?? , z=z. e is the 

half focal distance. 

Coordinate surfaces are confOcal cylinders and planes: 

x2 . 1 	elliptic cylinders when is 

(eCosh)2 	

2 

(eSinh)2 held constant. 

2 
X 	 2  ---3 = 1 	hyperbolic cylinders when is -1 

(eCos,)" (eSin7P- 
held constant. 

z = Constant 	planes. 

It is known that the Helmholtz equation is separable in ellip- 

tic coordinates(51). 	Therefore, a product solution 0q171,z)=-: 

ad(7) Z(z), when substituted into the Helmholtz equation V20+1c20= 0 

results in the following ordinary differential equations for H, !and 

(52). 

2 d H ...ka2+a3e
2  Cosh2̀ fi)H 0 
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2 A  

d  
`4 	+(a

2.5 
+a_e2  Cos21)Y= 0 

i   

2 d Z 	f 
+kk

2  +a
3
)z = 0 

dz 
 

For two-dimensional problems, where 0 is independent of z-

coordinate the separation constant a
3 

is equal to -k
2 
and the first 

two equations then become 

di 
- (a2-k

2e
2 Cosh21)H = 0 

des 

2 
+ (a2  -k

2
e
2  Cos 77)'x.' = 0 

d71 

2 2 
If q= ke 	

k2 

 
e2 

2 
and 	X=a

2
- 
	

, where a2  is the separation 

constant to be determined by the boundaiy conditions, then solution 

to (3.1.1) and (3.1.2) can be written as: 

li()=Amcem(4,q)+Bmfem(j1,q) or BW=Amsem(g,q)+Bmgem(jy,q) and 

1,('7)=Amcem (11 q)+Bmfem('7, q) 	or yo)=Amsem(710+Bmgem  ("7 , q) 

where Am, B
m 
 are constants to be determined by the boundary conditions. 

The functions ce
m 
and se

m 
are periodic solutions of (3.1.2), fern 

and gem  are nonperiodic solutions. These functions are called 

Mathieu functions. 

If  q=_k2e2 /4,,  and X=a2-2q the solutions have the same form 

as the above equations except q is replaced by -q. 

The details of the solutions in and are examined below. 

i) Solutions in  

The functions ce n 
I 

(1,q) have the following series representa - 
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cen(13q)= 

oo 

72)7A2r - (a) Cos(2r7) , for n even 

r=0 
• 

00 

cen(lpq)= T- A3r+1(q) Cos[(2r+l)ril , for n odd. 
r=o 

tions: 

It is seen that cen(73
q) is even in/ . The constants An • m 

have to satisfy certain recurrence relations together with the follo- 

wing normalization condition: 

2ff 

jrce:(72,q) c1'7= 
0 

The corresponding values of X are : X=an(q) (n=0,1„... ). 

This means that, for a given value of q(for scattering problems it 

is the square of half of the optical focal distance), there is a 

denumerably infinite set of numbers, called characteristic numbers, 

an(q), and for each characteristic number an 
there is an even 

periodic function cen.  
For the same q, there is another denumerably infinite set of 

numbers bn 
corresponding to odd periodic functions sen, where 

.0 
.en0130. E B3,(q) sin,/  , for n even 

r=0 

03 
Sen07,0=  	13141(q) Sin U2r+1)7/1 	for n odd, 

r=o 

with X=bn(q) and 

2n 

jrse221,013q) d'7 = It 

The orthogonality relations among the functions cen  and sen  

are: 

211 

jrcem,('7,q) cen(73q) d1 = TESnm 
	(3.1.3) 

0 
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21T 

jrsem,(,),q) sen(11,0 al = 718nm 	(3.1.4) 
0 

27T 

jcem(77,q) sen(7,q) dr]= 0 
	

(3.1.5) 

ii) Solutions in 

( . These solutions are. denoted by Mcnj)  (g,q), where j takes 

the values 1,2,3, or 4. The series representations of Mci(lj)(t,q) 

are given by 

co 

Mc 0( pq) (, 	1 

	

s = 776
fq
7 	 2 

A (-1)(n-2r)/ n 
r(q) L2r (214OoshI) 

r=o 

for n even 

(j) 	1 	TI .(21-(2r+1))/2An 	1,) (2piCosh1) Mcn (Lg.). ---7--- 	(-1) 

	

cen
k0,q) 	2r+1 2r+1 

r=0 

for n odd 

The series above converge when ICoshti>1 and Re(f);>0. 

When these conditions do not hold, other expansions are to be used. 

4) The functions L(1,2,3, 	are cylindrical Bessel, Neumann an:': 

( Hankel functions respectively, that is m, Yom, Hm1.2) . 

The following relation holds 

Mc(3'4)  =Mc(1) 	j Mc(2)  n- 

The expressions for Ms(nj)(M) are similar. Only the func-

tions cen(0,q) are replaced by the functions sen(01q) in these 

expressions. 

After this brief introduction to the general solution of the 

Helmholtz equation in elliptic coordinates, the next thing to do is 

to solve the scattering problem by a homogeneous elliptic cylinder. 
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3.2 Scattering of a TM-polarized plane wave by a homogeneous 

cylinder of elliptic cross-section 

Consider an elliptic cylinder. The cross-

sectional curve C is described by the 

equation Y.,-40  

The incident wave is propagating along the 

vector F. and is TI:-polarized. This wave is denoted by V
o 
and is 

given by 

Vo(x,y)= e
-jk

o
(xCos0

o
+ySin0

o
) 

where the amplitude of the 

incident field is assumed to be unity. 

The expansion of Vo(xly) into an infinite series of Mathieu 

functions is given by(53) 

CO 	 CO 

Vo(M)=2E -j)mce 
m
(0 
o
sq 
o
)ce 

m
(77,q

o 
 )Mc(1)(I,q

o 
 + 21[(:-Omsem(00,q0) 
 

m=c, 	 m=4 

.semcl,q.)ms.(m1)(i ,q0)] 

k
2
e
2 

where q0= 4 	e is the distance between the two focii of the 

ellipse. 

The representation of the fields inside and outside the ellipse 

is given in terms of the Mathieu functions as: 

Co 	• 	 00 

v
l
( 	=2FR -j ) ma ce (7) ,q)Mc 	10] +2 D-oribinsern  (-7,,C1)MSzn(1)  

m m 
01=0 	 m=4 

2 2 C k
2
e
2 

where q- ke = r 4
o = Cr  clo 	Cr  is the relative dielectric 

constant. 

00 

V2  (V 077)=2ER -j )m-ame em  (1, q0)Mcm(4) ( ', cid] +2ER -j figrasern  (-7 ,q0)Mstn(l+)  

m=0 	 Mr-! 	. 

ti 
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In the representation of V the functions Mc(1) and Ms(1)  

have been used to satisfy the radiation condition at infinity. 

These functions are excluded from the representation of V
l' since 

they are singular at the origin. am  , 	) bm  ,bm are constants 

to be determined by the boundary conditions..  

The boundary conditions are specified below. 

i) The tangential component of the electric field is continuous 

on 	This condition is equivalent to the following: 

V1(k)4)=V0( 04)+V2( 0;9) or 

D-i)mamcem(1,0 1)(102(1)+(-j)rniam  se m  enoq s )n (1)( 
m.0 	 m 

co 
c em  ( 00  qo  )Mcn(11)  (ct 0  , q0)+gmMcni( 4)  (I°  , go)] em  (1/, q0)± 	( -j ) r/  [ sem  (d, °Igo) 

1'4   Ms(1)( 	q )+b Ms(4) 	q)] se ('),q in 	o' o 	m in o' 0 	m 	0  (3.2.1) 

Multiplying each term of above equation by cen(11,q0) and 

integrating over the range (0-270 results in the following equation: 

63 
(1) I. 	I 

2:( Yee  a Yes  b )= (-j)n  R[oe (0 , )Mc 	4-a Mc(4)q nm 	nm m 	nocion 	o,q /onn 	o,qo 
Mc 0 

(3.2.2) 

The relations (3.1.3) and (3.1.5) have been used in deriving 

(3.2.2). 	The factors ycc and y 	are given by 

271 

Ynm -  
cc _ (_,)m Mc(

m 	o
1)( ,q) fcem1('73q) Cen(1,(10) dl 

pin t 
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211 
yc 

m  
s 	(....pmmo(1)( o ,q) j-  s e m(7,q)cen(77,qohtei 
n 	m  

0 

It can be shown that Ynms
= 0. Also it is easy to show the 

following: 

cc 	m (1) 
Ynm =7"-J) Mcmo'q)  p=o 

Amp(q)An  (q o) for m,n even 2p  

co 
ycc .11(..j)mmo(1)(t 

o 
 ,q):T 

 2  
Am 
 p+12  
(q)An

p 
 ( go,) for m odd, n even 

nm 	m  
P=0 

y =n(-j)mM
cM
1)
qo,q):57- A:p(q)A4(q0) for m odd , n even 

p=o 

yccnm =n(-0 m  mMc(1)q02-2 
Am
p+12 (q)Anp+1 (q o) for 

m,n odd. 
p=o 

where the A's are defined in section (3.1). 

The relation (3.2.1) then becomes(using matrix notation) 

Gcc a = D11+ 2, 	(3.2.3) 

where Gcc  is the matrix with elements yZ D1  is the diagonal 

. matrix with elements ( )nnmoi  4)(50,q0/ and di  is the column 

vector with elements ( )nncen(00,q0)Mcn(1)( oo). 

Similarly multiplying each term of (3.2.1) by sen(71,q0) and 

integrating over (0-2n) gives the following equation: 

G88 b=D 	+ d  D2 - 2 (3.2.4) 

G88  is the matrix with elements 

2TT 
% 	( 	 . 	1 y8nm =n(-j/ Msm1)  ky,q/ Ise m(i,q)sen(1,q0)d-ri 

oo 
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(( 

D
2 
is the diagonal matrix with elements n(-j) Asm4)  q01q0) and 

d
2 
 is the column vector with elements 7(-J)nsen(0olqo/Nsn

(1) 
oo). 

ys can be shown to have the following explicit form: 
nm 

00 

nm 	
( DinMsr(fillq0,q):› BlIp(q) Bn  (q ) for m,n even. 2p o 	

For yss =n,_ 

p=c) 

other combinations of m and n similar relations to the ones for ypc nm 

hold. The B's are defined in section (3.1). 

ii) The tangential component of magnetic field is continuous 

on _ o. This is equivalent to: 

av1 81/o2 = at 

Following the same procedure as in (i) gives the following two 

equations: 

ccd 	- 
G 	a = Di a  + Li 	(3.2.5) 

Gssd 
b = D b + d d 	d 	(3.2.6) 
— 2 — —2 

The expressions for matrices G
ccd, Gssd 

'1  
Dd 
' 2 
Dd and the 

column vectors di  d2  are exactly the same as the ones defined in 

(3.2.3) and in (3.2.4). Only the functions in are replaced by 

their derivatives with respect to evaluated at 

In order to solve (3.2.3)-(3.2.6) for a and b first a 

truncation operation is necessary. Fixing the truncation number at 

N gives 
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GCC 

0 

Gccd 

0 

0 

G55  

0 

Gssd 

-D
1  

0 

-D 
1 

0 

0 

-D
2 

0 

-D
2 

a 

b 

a 

2 

a3 

—4 

(3.2.7) 

This linear system of equations is solved for the unknown 

expansion coefficients. 

It should be noted that there is no exact eigenfunction solution 

for a homogeneous elliptic dielectric cylinder, although the Helmholtz 

equation is separable in the elliptic coordinates. In the circular 

cylinder case it was also necessary to truncate a series which repre-

sents the field, but this series is an exact solution of the scatte-

red field. In the elliptic case truncation is necessary before 

getting an exact representation of the field. This is an important 

difference, since in the circular cylinder case the exact solution 

is approached by taking more and more terms in the series, but in 

the elliptic cylinder case the exact solution is approached by 

increasing the dimension of the matrix in (3.2.7). 

Generation of Mathieu functions numerically is not an easy 

task. This is because of the fact that Mathieu functions can not 

be classified as Hypergeometric functions and consequently they do 

not satisfy proper recurrence relations. This makes the solution 

of the scattering problem in elliptic coordinates less attractive. 

3.3 New Method in Elliptic Coordinates 

Consider two confocal ellipses descri-

bed by the equations .1„ and 
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Inside the ellipse ,=Y1 the medium is homogeneous and is characterized 

by the permittivity el. The conductivity is assumed to be zero. 

Outside the ellipse =2  the medium is vacuum. The medium between 

the two ellipses = 1 anei=V2  is assumed to be inhomogeneous and is 

characterized by the permittivity function e2(M). 

A TM-polarized plane wave is incident on the scatterer at an 

angle 00  with respect to the x-axis. The problem is to find the 

scattered field. 

In complete similarity to the circular case,the fields in 

regions 1,2 and 3 are represented by the following series: 

v1q,-rd.21.  (-0manicem  , omemm( ,q)+2Z(-Vnibrasem (Ti,q)Msm(1)q 

(3.3.1) . 

	

00 	 OD 

V2(5217)=27 ('''011Cem('iplo)fm(M)+27 (-016%(2 2C10)gm(pC10) 

M=0 	 M=1 

(3.3.2) 

co 
I/
3
(t,12)=2(-J)mgm  ce m(12,qo m  )Mc(4)(,qo  )4-2E( -j)m5 se m m 'no)MsM4)(1'clo)  moo 	 m=i 

(3.3.3) 

where am , m 1  bm ,T)m are the expansion coefficients to be deter- 

	

mined. fm 	 o) and gm(,c1o) are unknown functions in whse diffe- 

rential equations are obtained as follows. 

The partial differential equation for V2  is obtained from 

Maxwell's equations 

a2v2 	
2 	/10 

a2V
2 ) 142 G 

2 
0iv 

2 
/ 	= 0 	(3.3.4) 

r i- e2 
	 ( 
(Coshi-Cos) a 	aq.  

M=0 	 M=1 

If (3.3.2) is sustituted into (3.3.4), the following relation 
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results: 

1 
Co 	d2f 

m  +f 	) 
d2ce ( ,q 

m  
) 00 

(-Vm  2 
e 6A317) 	 

2\> 	(-j)m[cem(1,q ) ni=o 	 u qoq " dyL2 
M=1 

d2g 	d2se 	2 _ 	= ^ 
[em(712(1.0) 

M 
	
gm( 11:1 )

d
7171 	W 110t;2 Y2T1 V2 	V   o 	2 or*2 

(3.3.5) 

where Q%,"7)=Cosh2 -Cos2/.  

In addition to equation (3.3.5) there are the following two 

equations: 

2 d cem%71,q0/ 

d1 
	 (am- 2q0C os21)cem(1,q0) = 0 

ese 01,q^) 
m 	  
dl2 

	

	
+ (p -2q Cos21)sem,(11,q0) = 0 m o 

(3.3.6) 

(3.3.7) 

am, 
p
m are the characteristic numbers corresponding to the same go. 

The equations (3.3.6) and (3,3.7) are next substituted into 

(3.3.5) with the following result: 

0o 	
rd
2
f 	 oo 	rd

2
g- • 

	

+ Kin(;17,q0)fnlcem(1,q0)+;› 	+ Lm( 
 M

9(10)gm m=0 	 m=1  

	

.sem.(1,q0)= 0 	(3,3.8) 

where 
	

Km ( $712q0)=2q0e  2r(5 0)(cosh4-cos22)-(am-2locos21) 

lim(Msc10)=2q0e2r(171 )(Cosh4-Cos271)-(Pm-2q000s272) 

If, now, each term in (3.3.8) is multiplied by cen07,q0) 
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and integrated over (0-2n) the following differential equation is 

obtained 

d2f  
n 	m

°° 	oo 

cl 	cl 2 .Z-- 	
tk 	i 

	'"nm‘Y'egm‘-"o/1 
	0 	(7 7 n) = m=o 	m=i 

where 
2n 

T( 1(10)=(-Dm-11  Jr Km 	1q0)cem  07 , q0)cen(7 , q0)dri.  

0 

2TT 

WItm(spq0)=(-j)m-laiLm(i7,q0)sem(1,q0)cen(12q0)d1 
0 

similarly for gn0,q0) 

d
2
g co 	 00 

n  	 Y 	)f (ylq ) + 	(ysq )g ( 
d 2 m=0  nm 	o m 	o   nm 	o m 

I 
) = 0 

(3.3.10} 

where 2-n- 
Y(,q0)=(—j)m—n r Kni ,72,q0)cem (?,q0)sen(72,q0)dvi and 

0 

2Tr 

Z(,q0)=(-j)ni-n  Lm(y,l,q0)sem(71,q0)sen()2,q0)dri 

Truncating the above series at a finite number N, converting 

the differential equations (3.3.9) and (3.3.10} into state-space form 

and using matrix notation gives the following: 

xl  

2 

3 - 4 -. 

0 

-T. 

0 	: 

-Y • 
L 

1: o: 0 

0 -W. 0 

0 ' 0 . I 

0 • - —Z: 0 
2C4_ 

as3  

xl  

2 (3.3.11) 
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where 
• • T 

211=(fo fl ••• fN
)T 
' a2=(fo fl *** fN) 	

x3- go gl 	gN)  

and 
. 0 

4=(go gl 	g1,1)T  

T,W,Y and Z are square matrices whose elements are given above. 

Before getting the complete solution for the scattering coeffi-

cients a
mm 

 , b
m 

and 7)ra , it is interesting to examine the so-

lution of (3.3.11) from the numerical viewpoint. 

The characteristic matrix of (3.3.11) contains certain integral 

expressions. The integrands of these integrals contain Mathieu 

functions. Thus, at each step of the numerical solution of (3.3.11) 

these functions must be evaluated. However, generation of Mathieu 

functions is a problem in itself. 

Previously it has been shown that the new method is superior 

to the original state-space formulation in the following respect: 

in the new method cylindrical Bessel and Hankel functions are not to 

be generated at each step of numerical process. Since the solution 

in elliptical coordinates requires the evaluation of rather more 

difficult functions at each step of numerical integration, circular 

cylindrical coordinates seem to be more convenient to use, although 

the integration range in the circular coordinates is much larger 

compared to the one in elliptical coordinates. 

Therefore, as it is, solution of (3.3.11), although it is 

achieved in a small range, does not seem to be competitive with the 

one which uses circular cylindrical coordinates in the analysis. 

However, a modification of the procedure followed above can be made 

to lead to a more convenient formulation of the problem in elliptic 

coordinates. This goes as follows. 

Instead of expanding the field into a series of Mathieu func-

tions inil(the functions in being unknown) in region 2, the field 
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is expanded into a Fourier series inn. Since V2(,7) is periodic 

inlIwith period 2n, this expansion is meaningful. 

Let the Fourier series representation of V2 be as follows : 

CO 	 00 
V2 71).>  fm( )cosmi +> 	 gmcpsinmq 

m=4  
(3.3.12) 

where fm( ) and gm() are unknown Fourier coefficients. 

The partial differential equation for V2(,'1) was shown to be 

the following : 

a2V2 a2V2 

a22 + 
+)4,71)112 = 0 

where x(;)].) =k:e2erq ,1) Cosh-Cost' 

When (3.3.12) is substituted into the above equation, the 

result is 

2 ria 
+ (X q )-m2) f Cosml 

m.0 2  

d2g 

Ed 
42 4-(X(M)-m2)glij Sinm1 = 0. 

(3.3.13) 

If each term of (3.3.13) is multiplied by. Cosni and integrated 

in the - ranee (0-2n), the following differential equation is found 

for fm(): 

d2f 0 c° 
n 	4->  a ()f 	()gmq) = 0 

m=o rim 	III 5 () +713nm  
m= f  

(3.3.14) 

where 

a = nm 

2T 
!a(,'!)Cosm'1Cosn+idrl  aE n 

21T 

= 	1 74,1)sinmiicosnari 
nm nE n 

and En=1+8no 



. • 	• 

x2  
3 • • . 

• • 	..... 	• 	• 

O 0 ' 0 	I 

A 	B • 0 	0 
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Similarly multiplying each term of (3.3.13) by Sinnland integ-

rating over (0-2n) gives the second differential equation as: 

2 	00 
d  gn 2 	

00 

2 -n gn 	Ynm()fm() +Z8 ()gm() = 0 d 	m= 	tm=1 
nm (3.3.15) 

where 
2TE 	 2TE 

1 y = --irX(M)Sinm1Sinnldri 	S= 	jX(M)Cosm1Sinnrid7 
MI It 	 ' nm 

Truncating the series in (3.3.14) and (3.3.15) at a finite 

number N and converting the resultant finite dimensional linear 

system into state-space form gives the following system of differen-

tial equations in matrix form: 

o o xl  

2 

Lc3  
(3.3.16) 

C • D 	0 • 0 

T IT 	f. • 	• T 
where xi=(f0  fl 	fN) , a2=(go  gl 	gN, 	E3=kfo  fl  ... 	

I 

T 
and 	4.--(go  gi 	gli) and the matrices A,B,C,D have the following 

explicit forms: 

02-a 	-aol • • • -a ON  oN 
, -alo 	.1.2 -all • • • -alN 

• 
• 
• 

mtio 	 mN1 • • • N2 -mNN 

o -001 • • • -PoN 

O -011 	• -131N 

• 
• 

• -0N1 	-NN 

A B = 



0 .- 
8o1 ' • ' -SON moo -Yol • ' • -YoN 

12 t 
-u 	• • • ll 	-81N Flo -I.11 • • • -Y1N 

D = C = 
• 
N2 -8N1 . ' • -'NN -1-No -YN1 • ' ' ANN 
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A,B,C,D are (N+1)x(N+1) square matrices. Their elements are 

integral expressions whose integrands do not contain Mathieu functions. 

This is an improvement over the previous analysis. Compared to the 

solution in circular cylindrical coordinates there are two unknown 

functions fm() and gm(V). This means that the matrix sizes are 

twice the ones in circular cylindrical coordinates even for symmetri-

cal excitation. For non-symmetrical excitation all the summations 

start from -N and go to N when the scattering problem is formulated 

in circular cylindrical coordinates. Therefore, for such an exci-

tation the matrix sizes are nearly the same in the two formulations. 

In order to be able to compare the two formulations further 

the complete solution of the scattering coefficients am,beam,bm  is 

required. 

Boundary conditions at =V1  give the following equations: 

00  
-j)mammcin(1) ,q)ceni(Yi,q)+2>  (-0mbmms,(.1)q,,q)sem (-9 ,q) = 

11= I M = 0 

00 
Ifm(s )Cosmq +7-gm(§1)Sinm1.  

m=0 	m=4 
(3.3.17) 

00 co 
(-1)m Ma(1)q a)ce 	q) +2>-(-0mb Ms(1)q q)se 07 q) = m=o  - am m 	m 	m=t 	m m 	12 	m 

. 00 • 	00 .  
"S--f m  ( 1  )cosmi,  +>--  gm1)Sinn m=0 	m=i 

(3.3.18) 
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If each term in (3.3.17) is multiplied by Cosnq and integrated 

over(0-27) the following results: 

c n(i1)=25 (-Dmam  M (1)( l'q  c)r s  1 m=o 

co 
,q)Cosnrid1+2:>:(-j)mb m  Ms(1)( 	a) 1, - MIT4 

. 2n 

.4rsem(1,q)Cosnldri 	(3.3.19) 

Consider the integrals appearing in the above equation. 

21T 
Let I1=Scem(1,q)Cosnidri . The function cem(I,q) has the 

following series representation: 

00 

cern(Y),q)=ZET:(q)Cosri.  where 
r= c) 

Em(q)= 
Am  2r m even 

A2r+1 m odd 

( A2r 	2 and  Amr+1  have been defined in section (3.1). Then, 

arc, 	 00 	2n 

11= ZET(q)Cosrrposnridyi = "2__El!"(q) 
5

Cosrfosnridri = nEn(q) 
T= 0 	 T.: 0 

2U 
since 	jrCosr1Cosnidi = 	

r. 
	Second consider the integral 

2TT 
I2= 	m'q s  (12 )Co nndn 	The function sem,(11,q) has • 

0 

the following series representation: 

 

00 

sem(-11,q) =>---  F(q)Sinrri p where 
r=  r  

• B:r  m even 

e(q)= 
B2r+1 m odd 

and 2n 00 

I2  =.7  Fm(q) SinriCosnidr) = 0 
r=1 	0 

Hence the equation (3.3.19) becomes 

 



[(-j)mMc (
m
1) 

1n lq)Em(q)] am  (3.320) 
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Following the same procedure results in: 

incy= 	R-. m 1l.!1)0,q)E:(0] am  
al= 0 

*0 

gn 1)=22: [(-j)m msm 
(1),, 

m=i 	
ki,n)Fm(nll b n  

(3.3.21) 

(3.3.22) 

gn(Y= 
CO 

m= t  
-J)m ;s!')( 1,(1)F:(01 -tm 	(3.3.23) 

el  and Fr:11  are assumed to be known when q is given(when the 

dimensions of the scatterer and the frequency are specified). 

The equations (3.3.20)-(3.3.23) can be put into matrix form 

as shown below: 

1(Y1)  = 133A , 11 ) = P'a 

(3.3.24) 

g( 1) = Rih 	 = Rib 

where f(V1)(fo(V1) fl(§1) . . fN(Y1) )
T 
 , similar expresions 

for f(Y1) g(M g(Y,) . 

a=(ao  al  . . . aN)T 	b=(bo  bl  

Tr', P PI EL EL! are square matrices with elements 2(-j) Ac(1) 	0)Em  
m 	n 

2(-J )mNcT(111)(51,0E: 2(-j )mms!1)( 1,0F:(q) 2(-Pm  148!"(1,q)/41,11  

respectively. 

Boundary conditions a0.5:= 2 give the following equations: 
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• 

f(52)--pa 	f-( 2)=Pg 
(3.3.25) 

g( 2)=R2is g( 2)=R211  
OM* 

where f(2)=(f0(2) fl(2) 
	

. fN(V2))T  , similar expressions 

-forf s g s g. 

= 
IT . . N )T 2 0 b1  • ; • ow  

P2  , PZ , R2  R2 are square matrices with elements 

2c-pmmc!4) ( 220:(0, 2(-DmAn(34)q220E:s 2c-ommeq2,0F:(0, 

2( -j)mk(4)( 2,q)F:(q) respectively. 

The solution to the system of differential equations (3.3.16) 

can be written symbolically as: 

z(t)=(D z(y 
	(3.3.26) 

• '  
where z( W(f(D 	f g )

T 
 is a (4N+4)xl column vector. 

• MM, 	 ■11,  

§(1) is a (4N+4)x(4N4.4) state-transition matrix. 

The boundary conditions (3.3.24) and (3.3.25) can be written 

in terms of z as: 

)=M c 	)=N 1 	 s 	- 2 -s (3.3.27) 

where the matrices M and N, and the column vectors c5  and C.s 
 are: 
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P
2 

0 

0 	R
2 

P
2  
I 0 

0 	RI 
2 

- 
a" 	a 

P1 0  

° 	R1 

PI 0 
1 

N= = -s M= C = —s 
b b 

0 	Rl 

Combining (3.3.26) with (3.3.27) gives 

=NC.  2) M c s s 

This system of linear algebraic equations is solved for the 

unknown scattering coefficient vectors cs  and 	. This completes 

the solution. 

In the light of the above analysis the following conclusions 

can be drawn. 

Conclusions 

As the analysis in section (3.3) shows, the new differential 

formulation works equally well in elliptic coordinates. The 

motivation behind using elliptic coordinates is the possibility of 

decreasing the interval in the numerical solution of the system of 

differential equations for scatterers for which the radius of the 

enscribing circle is very much greater than the radius of the 

inscribing circle. However, there are now new complications which 

are not present in the formulation using circular cylindrical coor-

dinates. 

The main features of the solution in elliptic coordinates 

can be summarized as follows. 

0 The sizes of the matrices employed in the solution which 
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uses elliptic coordinates are twice the sizes of matrices in the 

solution which uses circular cylindrical coordinates. This is true 

for symmetrical excitation and for symmetrical cross-sections. For 

an arbitrary scatterer cross-section the sizes of the matrices are 

(2N+1) and (2N+2) respectively. 

ii) The characteristic matrix of the system of differential 

equations in circular cylindrical coordinates is generated once the 

factor ate, which is given as, 

an 
an; 27t jr-ler(x0) ei(m-n)°  dO 	is obtained. 

0 

In the elliptic coordinate solution there are four different 

factors, a , pnm y
nm 
 and 8 and these are more difficult 

expressions to generate. Evaluation of the factors anm  in the two 

cases are compared below. 

Consider a scatterer with rectangular cross-

section. The minor axis is a .and the major 

axis is b. The permittivity of the 

scatterer is denoted by Cr  and assumed to 

be constant. 

The factors a are evaluated first in 
nm 

-31 

circular cylindrical coordinates. 

2 b 2 1/2 
The range of numerical solution is P;p4 	+(2) 

2 	2] 1/2 
The permittivity function for the region 1 	a 	b4 	{{(2) f 

is given as: 

er(p,0)=1 for -00 <  -Ø < 0 <00  and R-0< 0 00.00  

Cr(p,0)=Cr  for 00<0  0 0-0 and Ir+00<0<21E-0 



Cr(p,0)=1 for -00<0<00  and 0l<0 •<71-. 01  and n-00.<0<n+00  and 71+ 01  <0 <2n-01  

Cr(p,0)=Cr  for 00<0<01  and n-01<0<n-00  and n+00(0<n+01  and 2n-01:042n-00  

2 	21 1/2 
°for 114 p‘ [(i) +(II) 

Then the factor a can be easily obtained as: nm • 

1-C 	 Sin(m---ii 00 	
for .2., ) 

a =C r  8 + R  r  [1+(-1)m-n1 	m-n 	
a 	b < 

nm nm  

1-e 	 -n 1 	0  Sin(m 0) -Sin(m -n 
a  =8 + ---E [1+( -1)m  -11 .1 	  nm nm n 	 m-n 

	

2 	2] 1/2 
12  

	

for 	„.< p < [(a) 4.(14) 
2 - 	2 

- 	. where 00=Cos-1( 222) , 
01=Sin 1 13 2 )  

It is to be noticed that the factors anm  can be evaluated by 

hand and can be put in a closed, compact form for a homogeneous 

scatterer. 

Consider now the evaluation of the factors 

anm in elliptical coordinates. The 

■ inscribing and enscribing ellipses are 

tv 	
shown by a dashed line and defined by V=42.  

and 2  respectively. 

1 and c 2 are given in terms of a and b as: 

- 1 	\/ 
1=Cosh ( b/ b2  -a2 ) '2  1- =Cosh 1( 10'/V02-a'2 ) 

where bl= b(b-42-a2) 	b (b42-a2 	Vb (a+b )  
2 	 2 	J 	2 



a/2 	
a(2 b) 
	1 

and a'-  	2 	• and hence 2=Cosh ( V1-(b/2b' )2  

k2  e2 	217 

a = oe Er(,-11) Cosm1 Cosnri (Cosh -Cos??? ) dri nm 10E
n 
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The intermediate ellipse is shown by a solid line. 

The factors a have the form: 
nm 

(3.3.28) 

k
2 e2 

	

let 6,mn(t11)= 	Cosml Cosnyi(Cosh2t-Cos77) 
n 

The permittivity function Er( ,1)is given as 

Er( ,,1)=1 for -1;01<110  and Ii.. 10:-111  and 7E-71601 <7010  

and 	71.4-13.<  77 <211-711 

Er( ,1))=Cr  for -70.<1 <711  and 7t-711<i) <11-10  and 

n+710.<1 <Tc-1-)71  and 27:-113.<11 <27E-10  

then (3.3.28) becomes 

10 	Tr-11 	IT+10 	27r-ii  

atm=  jAran(  21') ) dr fAnn( ,77) dr fAmn  (g ,7)) d7i+ SL,mn( ,Y) ) dY) + 
-1. 	 11 	 Tr-1. 	g+'1, 

f 	71.-1° 	1r4-11 	2I1-- 710  

Er  ,61„.. ,1) d'1 + fAcir,(% ,-9 ) dr `L an( ,71 ) dl + sfrAinnil ,71) aid r _,,,I. 	 Tr, It 	r4-1,, 	27r-1, 

13/2e,  

	

- 	a/2e  1  

	

where 110=c°8 
1 
 ( SinhV 	11=S 

1( 	 ) 
Cosh ' 

It is clear that, 'although it is still possible to evaluate 

anm's in the elliptical coordinates by hand, this is more difficult. 
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Additionally the other three factors p , y and 8 are to be nm nm nm 

evaluated. 

Consider now the ranges of numerical integration in the two 

cases for b=5a. 

In the circular cylindrical case this range is (0.5a12.55a) 

In the elliptical case it is 	). For b=5a ti  and 

Y2 are  

/-- =Cosh 1( 5/'4 ) 	
1 

2=Cosh ( v 5/2 ) 

Assume a=1, then the range in the former case is (0.5 , 2.551  

but in the latter case is (0.202 , 0.481). 

It is seen that in elliptical coordinates the range of numerical 

solution of the system of differential equations is very small 

compared to the one in circular cylindrical coordinates. 

iii) For the final solution of the scattering coefficients 

the rather more complicated Mathieu functions, compared to the 

cylindrical Bessel and Hankel functions, are to.be generated. 

The matrices, which connect the column vectors f() , f() 

g() and g() to the scattering coefficient vectorsa,b, and 

at'c='Yi  and 	are not diagonal matrices but full matrices. 

The formulation of the scattering problem by the new method 

in elliptical coordinates is seen to have some advantages compared 

to the formulation in circular cylindrical coordinates as well as 

some disadvantages. In the present work no computations have been 

made using the formulation in elliptical coordinates due to lack of 

time. Therefore, the real merit of the formulation in elliptical 

coordinates is still an open question, which can only be answered 

after a thorough numerical investigation has been undertaken. 
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4. THREE-DIMENSIONAL SCATTERING PROBLEMS-THE STATE-SPACE METHOD 

In the solution of two-dimensional scattering problems, the 

fields were represented by infinite series of cylindrical harmonics. 

( These were H
m
2)  (kr) e

imo 
 and Jm(kr) ei

m0  which are the elementary 

solutions of the scalar Helmholtz equation in cylindrical coordinates. 

Corresponding harmonics in spherical coordinates are found by solving 

the Helmholtz equation in spherical coordinates. Since spherical 

harmonics are going to be used in the analysis of three-dimensional 

scattering problems, a brief introduction to the properties of these 

harmonics will be given below. For a comprehensive treatment of the 

subject reference should be made to(47). 

After introducing the necessary mathematical tools in the first 

two sections, the state-space method is investigated in the last 

section of this chapter. 

4.1 BRIEF THEORY OF MULTIPOLE FIELDS 

4.1.1 The Solution of the Scalar Helmholtz Equation in Spherical 

Coordinates 

In a source free region of empty space a scalar field '(r,t) 

satisfies the homogeneous wave equation, 

ati(T,t) 
V2  (1.10-   - 0 , where c is the velocity of light 

c 	at2 

in free space. 

For time harmonic fields the above equation reduces to the 

scalar Helmholtz equation 

V21.k(T.,w)+kii(;,w)= 0 
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1.2 where k=w/c and V(7,(A))= .1(r,t) eiwt  dt , 	is is short for (x,y,z) 
- 00 

Using the separation of variables technique in spherical 

coordinates, the Helmholtz equation can be shown to have the follo-

wing general solution(47): 

(1) (1) 	-(2) h(2)(kr)ly (es) Y(;)=z 2jk h (kr) Aem e 	' em em e e=0 m.-e 
(4.1.1a) 

where 12(7) has been used instead ofV(.1.,w). The constants A(I) 

and A ) are determined by the sources and boundary conditions. em 

The functions he
(1)  (kr) and h(2)(kr) are the spherical Hankel functions 

of the first and second kind respectively. It is customary to de- 

fine spherical Bessel and Hankel functions, denoted by je(x), ne(x), 
(1 he

2)  ' (x), as follows: 

je(x)=(n/2x)1/2 Je+1/2(x) 

ne(x)=(A/2x)
1
/
2 
Ne+1/2(x) 

h(1,2)(x)=01/2x.
)
1/2 

P e+1/2 I ille4-1/2(x)]  e 

where the superscript 1 corresponds to +, and 2 corresponds to - . 

J and N are cylindrical Bessel and Neumann functions respectively. 

For real x, h(2)(x) is the complex conjugate of he
(1)  (x). From the 

series expansions of J01/2  and Ne+l/2  it can be shown that 

je(x)=(...x)e ( 1 137)e ( S',Icnx)  

ne(x)._(...x)e ( 	)e ( Cocsx) 
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For the first few values of e explicit forms are: 

jo(x)=  am 	n  (x). 	
ho 

Cosx 	(1)(xi 1 1 	= eix  
, o 	 jx 

j 1 (x)=  Sin Cosx 	ni(x)=- Cosx Sinx 

x  x2 
, h(1)  (x)=- 

jx 
e  (1+ 1-) x x 

j2(x)=( 	- l_ I inx_ 19.2o 	1  , n2(x)=-( -1- - -)Cosx-3 Sinx x 	x ' x x x  

x (1) 	.je-i 	• 
h2 (x).= 	(1+ 	- 

x  

The spherical Bessel functions satisfy the recurrence formulas, 

2e+1 ze(x)=ze-1(x)+ze+1(x)  

zse(x)= 2e+11.  feze-1 (x)-(e+1)ze+1(x)] 

where ze(x) is any one of the functions je(x),ne(x),h!
1)(x),h(2)(x). 

The spherical angular harmonics Yem(010) are defined as: 

Yem(e20)= [24ne+l (717
e_m)

07.1
.11/2 

	

7 	P:(Cose) eim0  

where Pm(Cose) is an associated Legendre function. In terms of the 

ordinary Legendre polynomial of order e, P: is given by, 

dmP 
P:(z)=(-1)m(1..z2p/2 me 

dz 

where z=CosO 

Pe is the ordinary Legendre polynomial of order e. The first 

few of these polynomials are 

Po(Z)=1 Pi(z)=z P2(z)= 2(3z2  -1) , P3(z)=. 2.(5z3  -3z) 
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1 P4(z)= r(35z4  -30z2  -10) 

For fixed m the functions form an orthogonal set in the index 

e on the interval -1 z 1. They satisfy the following orthogonality 

condition: 

I 

JI P:(z)P:(z)dz= Iltag 8 
(e-01  en 

For a few small e values and m 0 the explicit form of Yem(0,0): 

Y =1/07in oo 

{ Y.— \I578n Sine d0  

71o=4-----'  3/4E Cose 

Y22= If V 	singe eJe320  

e=2 	1Y21=- \/15/8n SineCose ei0  

Y20= \5771;(  2 Cos20-  2  1- )  

For negative m the following formula is used for Pm  e 

 12=21  Pm(z) e   
(e+m)! e  

4.1.2 Multipole xpansion of the Electromagnetic Field 

In a source free region of empty space, Maxwell's equations 

are(assuming eiwt  time dependence) 

e= 0 

e=1. 
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CuriE=-JoNloR 
	

div2=0 

curiff.jwej 	• 

Eliminating either E or H from the above equations results in 

(v2+1c:)11.0 , divR=0 

(v24-k2)E=0 , divE=0 	where k o 
	o o 

These equations are the vector Helmholtz equations. Their 

general solution, as an infinite series of vector spherical harmo-

nics can be shown to have the following form:(Appendix B) 

oo 
ral 	(7.4 	

Rem 
 l (7,4as Rs (17.4  1_ 

Rem 
 s 

z_ Lem em 	k 	 em  . em em  . k 	 emkrij (4.1.2a) 
e=o 

ao 
 4 	

N1 	
, 	 1 - 	s Ns ()+ 5 gs (r)] E=-jz 	4.1 - al 	a 

in.-e
7 

 0 	ko em em 	em em 

(4.1.2b) 

The expansions (4.1.2a) and (4.1.2b) are called the multipole 

expansions of the electromagnetic field. The constant coefficients 

aem and  Rem are the electric and magnetic type multipole coeffici-

ents respectively. They are determined from the sources and 

boundary conditions. 

The spherical vector wave functions Rem  an Rem are defined as: 

R:m(;)=z:(kor)2em  with divRa  (;)=0 
em 

R:m(;)=curiR:m(;) with divRa  (;)=0 em 

where the vector spherical angular harmonics 51 em(e 0) are defined by 



119. 

Rem  (e 193)= 
 ;:cV

Yem  to 10) with divRem=0 and Zl= [e ( e+1)] 1/2  

t z(k or) is any one of the spherical functions je(kor),he
(1)  \lcor,, e  

h(2)(ko  r). The superscript a takes the values 1,2 or s, such that 

zt(kor)=Je (kor) , 4(kor).11!1)(kor) , z:ocoo=h(2)(kor). 

- 	-a The vectors Me
a 
m 

N
em and  Rem have the following components: 

Na =0 	Ma =za(k 	Ma =za(k emr 	eme e o eme 	em0 e or)X  em0 

zm(k r) 
[ _ a N emr  =JAe 

er  o 
Yem (e, 0) Neme--  

	

r dr rzem ck 	x o 	em0(e 0) 

Na = 1 d 	X 	/" 	P: em 	ejm0 m(k] 	=-m em0 r dr [rz or) eme(e0)  
9 	X eme 	deem 

 Sine 

Y dg°  era e imo 	 1/2 
Xem0=-J 	d7"—  e 	, where Ae= [e(0-1)*J1

4/,2 Tem={2e4:11 e.777m  
e • 

- 	- The spherical vector wave functions Me
a 
m and Ne

a  
m are orthogonal 

on a spherical surface 

][gas.vp 
em "em da=zm r z(3(k r)8 18 	$ fie*  . 	dfL=0  

	

em 	e 1 m 
J1 

where-Q denotes the solid angle, da=Sineded0, denotes complex 

conjugate,8 -ee' and 8mm, are the kronecker deltas. 

Another useful relation between ga  and Na  is em 	em 

Curir (;)=Or em 	o em 



Fig.4.2.1 

120. 

4.2 SOLUTION OF THREE-DIMENSIONAL  SCATTERING PROBLEMS BY THE 

STATE-SPACE METHOD 

Consider a scatterer characterized by the 

material parameters C(r10,0) and cr(r28,0) 

where C is the permittivity, o is the conduc-

tivity and (r20,0) are spherical coordinate 

variables. Assume that an incident field is 

is generated by a distant primary source. No 

interaction is assumed between this source and the scattered field. 

The incident field polarizes the medium where the scatterer 

is located. These polarized sources radiate into all space. For 

points inside the scatterer this scattered field together with the 

incident field(total field) is found as follows. 

At a distance r from the coordinate origin, a spherical vacuum 

shell is assumed to be located. If an expression for the electro-

magnetic field is found in this vacuum shell, the field at the same 

r but inside the dielectric can be found easily using the standard 

boundary conditions on field vectors. 

The scattered field in the vacuum shell is due to both volume 

V1  and volume V2 as shown in Fig.4.2.1. For the contribution of 

volume V1 the magnitude of the position vector r is always greater 

than the magnitude of the source vector r. For the contribution 

of volume V2 the reverse is true. 

Since Green's dyadic has unique, convergent expansion for 

these two cases, the scattered electric field in the shell is 

expressed as follows: 

co e E jzoT y 
a

LL -1 1 -1 1 s . 	 s 	s -s --- a N +p m 
ewo m.-e o 	o 
	 Lk emN  em emm  em+  k em em em err] 
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The induced current density is 

3-T3p+3c weo[ r
-1+I E

d 
iweo 

where Jp  and 3
c are polarization and conduction current density 

vectors respectively, Cr  is the relative dielectric constant, o is 

conductivity, Ed  is the total electric field inside the dielectric 

at the point r. 

Let C'=C + 	then 3=jme (C 1-1)2 r r 4 we 	r 	d 
o 

The incident field is also represented by a multipole series as: 

E
e inC._ jz  z  pi Ra Go+  _1_ ai 	(;)] 0 	em em 	ko em em 

where a
i
m 	e 
and pim  are multipole coefficients of the incident field e  

and generally they are assumed to be known. Depending on the 

relative position of the primary source with respect to the scatterer 

a becomes 1 or s. For example, if the incident field is a plane 

wave coming from a 'distant' source, assuming the scatterer has a 

finite extent in space, a=1. If the primary source is a dipole 

( or loop) antenna located at the centre of a concentric spherical 

dielectric shell(assuming the extent of the antenna is smaller than 

the inner radius of the shell)then a=s. 

The total electric field inside the scatterer at a point r 

is expressed as: 

Ed= 1 
	f-sc -inc " -sc -inc " -sc -inc kE +E ) a +(E +E )

e
a
e+(E +E ) a el(7) 	r r 	 0 0 

where ( )
r denotes the r-component of vector ( ), similarly for 

( ) and ( )
0. 



r 

(3m 	o 	e (r)=-5k2 	ff.rl'  em(-9r'2dr'do. 

% 
Pe
1 

 m(r)=-jko
2  

O sgr) 0 .a.(0 

ffj.171::(;1 )r 112dr i dc/, 	al  (r)=-jk fiti.n24t(P9r12dr'&0. em 	o 	em 
r 12(r) 	 r 11(r) 

asm  (r)= -jko 	e fir m  j.N1*(7°)r'2drida e  
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In dyadic notation Ed  takes the following form: 

(;). V. (Eac+Einc ) where 	It= 1 	'A +S -F/A.a e,(;)  rr ee 00 

The multipole coefficients of the scattered field, a
s ,a1 and 
em em 

Rs ,p1 can be shown to have the following representations in terns em em 

of the total current density J(31): 

where r2 
is the radius of enscribing sphere. The volume integral is 

explicitly written in each case. ii denotes the solid angle. As 

indicated, the multipole coefficients are not constants but functions 

of the radial variable r. In spite of the fact that the scatterer 

is inhomogeneous in its material composition so that the wave equation 

can not be solved by the standard separation of variables technique 

the fields are still represented exactly by the vector harmonics 

which are outcomes of the separation of variables technique. 

However this representation with constant coefficients is not possible, 

as was shown above. 

The induced current density J is next represented as an infinite 

series of vector spherical harmonics as: 

J.J0e o(e1r1'2 d.4wc  (
er1'

6.(Esc+Einc
'  
. jko  (c

_ 
1)U.(Esc42inc)  

0 

Using the representations for Esc  and Einc  as infinite series 

the following form for J is found: 

m e S -s 1 s -s 1 -1 1 1 -1 i -a 1 i -a j=k t  -1).2 Z[13 M — 	R 	m + 	R 	m 	R 
o(er 	em em+  k em em+p em em k em em+0  em em+  k em eM1 

e.o m=-e 	o 
a 	

o 
cc 	

o
a 
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y - A 	- A 	- 

	

where 	R' = 	N' (r)a +N' (r)a +N'
v 
 (r)a 	y=,2,a. 

em C' emr r em6 	6 em0 0r 

If the above series is substituted into the expressions for 

Rs ,a
s ,p1 ,a1 , a system of coupled integral equations for these 

em em em em 

coefficients, results. In order to reduce the order of this system 

from infinity to a finite one, the series is truncated at a certain 

index, p=N. This number is determined by the maximum optical 

dimension and complex permittivity of the scatterer. 

The mathematical equivalent of what was said in the above 

paragraph is as follows(first only psm  is considered): e 

r 0, e. S -s 	1 8 - Ps  (r)=-jkjr.f[k (C' -1)7 — Be m Me m r. + 	a 	Rs  

	

em 	o 	o r 	" "( ) k e'm' e'm'(i70)+ er.0 
O 

al l tRl i t (p)i.  1 al pl (10 4,i va (=I I+  _1_ ai Ra 
'de m e m 	ko e'm' e'm' 	' et mt"e1 m1•J* 1 	ko e'm' e'm' 

.Me 
em 

Since the series over(e',m') is uniformly convergent in r' 

the order of integration and summation can be changed, with the 

result that 

11° e I r -1* 2 	1 
Ps  (r)=-jk)1::_111136„(r9(C'-1)11s„.M rl dr'd11+ 	(r') 

	

em 	oezom'- 	e m 	 em em 	k J em 
A(r') 	 0 .12(r9 

r 	 r 
(e1-1)ir t  ..Pr°2drIal+JP11  (r9g1 	fil*r'2drld +.11(ale1m'(r1) e 	em 	e m' 	e'm'' em 

0 ..0.6-1 	 0 42(e) 

r 	• 
(C!-1) 

(C1-1)171a  .14 r dr 
-iy- ,2 Id  + 2. ai 

	

r 	Rl 	RI*212dr'da+ni- - k
o e1 m 1 e'm' em 

	

k
o 	e'ml.  em 	'''e'm' 	r 

• 0 .1201 

r 

	

J f 	 * (CI-1)R
e
a 
'm' 

-I
em
r'2  

0120-9 



124. 

The above integral equation, is of Volterra type. Differen- 

tiation of both sides with respect to r results in a system of 

first order differential equations as shown below. 

dp:m 	N e 
=-jk3Zr2f3s, 

m 	 e 
l(r)j)V(;)-i]iis 1 m 

(D.R1*(Dds1+ ... similar 
dr 	o 	e 	em 

1161 	 terms 

Now define: 

32-  
IMM" e'm' 

	o 
=-jk3r2.1 1(r -) 

em, 	
41g1,70(;).gP*(;)da 

12.(r) 	
em 

2 2fr 7.  :1 —Y 
=-jk r 03l(r)-1.0- 	(T-) RI"'(-)da 

	

. 	• 	r 

	

em,e'm' 	o 	r 	elmi 	em 

where y=1,s,a and p=1,2. 

With the above definitions the derivative of pem is written as: 

N e 

	

dpem =Z(   imms1 	
ps  +IRMs1 	

as +Immll 	
pi  +IRMil  

dr  

	

I 	1   1 

	

  em  	m   e   m  	em   e'm'   e'm' P.  	em   e'm'   e'm' em ,elms  

a
1 	 ai 	al 

elm'

+Immal 

em
+IRM

em e'm'
a 
 e

1
mt) 

Similarly; 

Aa 	N l e -vdrem 	z(u.m/s2 	ns 	
a
s 	12 	. 1 

e.o reer,e■ emle
I
M
IF
e

1M 
RM::selm, elm,+IMM

em,e'm'P 

1 
+IRM

2 	 i a2 

emle'm'
a
Om'

+IMM
:Mse11 

 
m Pe 

m141101  em e'm'
a
e'm')  

Next the following two functions are defined: 

IMNYP,e'm' 

	

	 e 
=-jk

o
r2PC'(i:)-1]fro 1.i1

em
(Dda 

em  

.12.(r) 
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IRTeremP leono= -jr21{Eri (i) -11 gom i .111::(1-)d.2 
11(r) 

Using these functions.the differential equations for a:m  and 

a1 are: em 

das 	N e 
em sl as +IRNsi mill 
dr emle1 m IVef m 1 	em,eI m f

as 
ef m1 	em,emI(e m f  

o 

	

+I2s11 	1 	i 	al 
emselm'aelm'

+IMN p +IRNemle1 mlaem
1)  

1 daem 	
N e 

dr 	
IMNs2 	s2 

em,e1
m
1p
e

t
ml
+IRN

em,e m e m 	

,1 
I tasII +IMN M.eImIPeIm 1 

ee=orrir.-e° 

	

+IRN12 	 i  fmfl em,e1 m
ae
1

m
+IMN

a 	
e e se1 mIPeIM

f+I RN
::,e1 mla  

l 
From the definitions of (3s em 

,as  em,(3emsal 
 
em, it is seen that: 

ps
em 	e 
(0)=as  m  (0)=0 and (31  (r2 

 )=a1 (r2  )=0. em 	em  

Since the multipole coefficients are not specified at a single 

point, the problem is not an initial value problem but a two-point 

boundary value problem. The method of solution follows the same 

line as the two-dimensional problems. 

For a rotationally symmetric body it can be shown that summation 

over m' drops out and azimuthal index m comes into the solution as 

a parameter. Then the scattering problem is solved for each m 

separately. 

The state-space differential system has the following matrix 

form for a rotationally symmetric scatterer. 
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• - Immsl IRmsl IMmll  IM11-  

IMNsl Immll I21/11 IRNsl  

-IMMs2 -IRMm
s2  -IMM12 -IRM12 

_I  s2 _I  s2 -IMN12 -IRN12 

IMMal  IRmal 

Inmal  I RN al 

IMMa2 IRMa2 

IMNa2 IRNa2 

   

   

   

4- 

 

a 

where IMM,IRM,IMN,IRNis are (NxN) square matrices(summation over e 

starts from 1 and goes to N, for e=0 vector spherical harmonics are 

identically zero), j 	ar  are (Nxl) column vectors(y=s,l,i). 

As an application a spherical scatterer with C;(;)=C1.(r) is 

considered. For such a scatterer the previously defined functions 

take the following form: 

IMNYegset mI=IRMrP „.0 , IMMrP 	=-jk3r2[es (r)-1] Zrl(kr)zPlkr)8 8 
em,e m 	ern, et m 	r 	e 	eeimm' 

IRN 	=-J r2 	(r)-11 -41  ;.7.1')* d 	) d 	(rzel] -e-e+  dr -0' dr em,e 	 See1 6mm' 

In matrix notation; 

[;:l 
•1 
pm 

sl  IMMm 	
[mei'

m 
1-  

-IMMs2 

	

-IMM121 	Imm"2  

	

m m 	m 

• {- 
as  IRNsi  IRN11 as  iiI a  RN I 
m 	m 	m m 	

m ai  

= 	 m 

a1 -IRNs2 -IRN12 

	

a1 	IRNa2 
m_ 	m 	m - m 	m 

It is seen that a and coefficients are decoupled for a sphe-

rically symmetric scatterer stratified in the radial direction. Also 
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all summations over e' drop out. Whatever was said previously for 

circular dielectric cylinders which are stratified in the radial 

direction can be extended to spheres which are also stratified in 

the radial direction. 

In the two-dimensional case the characteristic matrix of the 

differential equation system was a (2x2) one. Here it is seen that • 

there are two (2x2) characteristic matrices. The difference comes 

from the fact that, for the two-dimensional case the excitation was 

taken as a TM-polarized plane wave(or TE-polarized). Here the exci-

tation is a combination of both TM and TE polarized plane waves. 

If the excitation for two-dimensional problems were chosen as a more 

general one than TM, there would be two more scattering coefficients 

to describe the scattered field uniquely, or alternatively if the 

excitation were only magnetic or electric type for three-dimensional 

problems, either p or a would be zero and the two coefficients 

would be enough to represent the scattered field uniquely. 

For spherically symmetric objects stratified in the radial 

direction the elements of the characteristic matrix contain spherical 

Bessel and Hankel functions. Generation of these functions nume-

rically at every step of the numerical integration process may 

require relatively large computation times. 

As was shown above, the spherically symmetric scatterers 

require the differential equations to be solved for each m separately. 

This means that it is only necessary to generate one spherical Bessel 

and Hankel function for each coefficient. Spherical Bessel and 

Hankel functions are obtained using their series expansions. If 

recursion formulas are used to generate these functions, certain 

numerical inconveniences may occur. For example, for small arguments 

generation of an N'th order spherical Bessel function by forward 
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recursion formulas(i.e., first evaluating the zeroth order and first 

order functions by using their series expansions and then generating 

the higher order functions using their recursion formulas) has been 

shown(%) to be a source of roundoff error. This is due to the fact 

that, by this process, two similar numbers have to be subtracted 

from each other to obtain a higher order Bessel function(subtraction: 

of two very close numbers using a computer is a source of roundoff 

error though). 

The method of solution of the two-point boundary value problem 

for the three-dimensional case is exactly the same as in the two-

dimensional case. First the problem is converted to an initial 

value one by a matrix inversion and scattering coefficients are found 

by a matrix multiplication. 

The state-space method can be applied to multi-body scattering 

problems as well. However, in practice, even application to 

rotationally symmetric single scatterers is difficult. 
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5. THREE-DIMENSIONAL SCATTERING PROBLEMS BY THE NEW METHOD 

-SPHERICALLY SYMMETRIC SCATTERER CASE- 

In this chapter the method developed for two-dimensional 

problems will be extended to spherical scatterers stratified in the 

radial direction. For this purpose, spherical dielectric shells 

with and without conductor cores, Luneburg and Eaton lenses are 

treated as examples. The results are compared to existing ones. 

5.1  Dielectric Spherical Shell Stratified in the Radial Direction 

Consider a spherical dielectric shell the 

permittivity of which is a function of the 

radial variable r and whose conductivity is zero. 

The inner optical radius is xl  and the outer Fig.5.1.1 

optical radius is x2. The incident field is a plane wave propagating 

along the z-axis. The regions denoted by 1 and 3 in the figure are 

free space. The magnetic field vectors in regions 1 and 3 satisfy 

the vector Helmholtz equation and have zero divergence. Therefore 

they can be represented as: 

er 	
r 
Feriain(r)+  

0 011.-e 

1 
ko 

1 	-  pernNem(r)1 	, 0 4.r (5.1.1) 

m e Rs (7.,+ 	(;,+(zi 	G,+ 	 raj  r2  Z- 	em em ' kb /jem em 	em em 	kovem em ' - e.0 mw-e 

(5.1.2) 

Region 2 is not homogeneous and the wave equation is not 

generally separable in this region. Hence an exact representation 

of fields with infinite series of vector spherical harmonics is not 
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possible. However, assuming the fields in this region to have the 

same angular dependence as the fields in regions 1 and 3, and 

putting unknown functions for their radial dependence, leads to the 

following representation for the magnetic field in region 2. 

co e 
,.Z1-f (r)5C- em  + 	Curl(gem(r)R -=. 	 em)1 	rl 	, {r2 (5.1.3) 

In the above expansions; a
l  
em pa

s  
emspe

l  eps  em  are unknown multipole 

coefficients, aiem 
,pem are multipole coefficients of the incident 

field and are assumed to be known, fem(r) and gem(r) are unknown 

functions whose differential equations are to be found. 

The corresponding expansions for the electric field in regions 

1,2 and 3 are obtained using the equation Curlff=jwa with the following 

result: 

c4) 6  

22.(r)=".4ZZFL  a N'L (P+rli  R1  GI] J e.„_eko  em em 	em%  (5.1.4) 

jZ • 

22(1)=---11--YIL- . f 	 em  k  em 	r em em em f (r)curiR:+ 	f(r)a x7c +G X ] 
E (r) e.orn.-e 
r 

(5.1.5) 

e 
2

3
(;)=—jZ 	 N (r)+0

em
M
em
kr/4- -a N (r)+13emMern krij k em em "0 10-z-e 	k

o 
em em 

(5.1.6) 

[e(e+1) 	
• 2 

where G 	
) 

(r1= -1 	
2 dg

em 	gem 
em 	gem(r)- 

 r dr 	

_ d a rn 
em 	

e  
dr 

(.) denotes derivative with respect to r. 

The next step is to find the differential equations satisfied 

by fem  and gem  . For this purpose the wave equation in region 2, 

1 	- 2 
which has the form Curl( -u- Cur1H)=w

oH is utilized. 

0 
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Using a well known identity of vector calculus gives the 

following expansion: 

Curl[e
r
(02

2
]=6

r
(r)Curi2

2r
(r)a

r
x2
2 
	(5.1.7) 

w e 	• 
From (5.1.5) C r 

 (r)E
2 
 =-JZo 	ko  f  em  (r)Cur151  em k + -71

0
-f em  a r  x2 +G em Reau 1 em  e=om...e 

Operating with the Curl on both sides gives: 

Curl(Cr
(r)E

2
)=-jz 	(OR em+Curl(Gem(ORe 	(5.1.8) oe4,0„,„e  ko  em  

df 	d
2f 

where 	F (r). e(e+1) f (r)...  2 	em 	 CS 	and the 
em ' r2 em ' r dr 	

2 2  dr 

following identities have been used at intermediate steps before 

arriving at (5.1.8): 

+ - 
Curl Curlyem

= e(e
2
1) X

em r  
em 

al}CCUr151
em

=- --- r 

1=  Fe(e+1)f(r)_. 	df 12 
Curlff(r)Cur1R 	

L 	I  r dr J em r 

Curl(arx7em
).- em 	Curl[f(r)ArxRe 	

( 1 df 	d2f )2 
r. dr dr

2 ' em 

Curl Curl[f(r)Rej= [e(e21)  f(r) - 
r 

 

f(r)-f(r)iRem 

 

If, now, the expansions (5.1.3),(5.1.5) and (5.1.8) are 

substituted into (5.1.7) the following equality results: 

[-F 	r (f +f )+k2 g f (r)1 	+[E Curl(g) 
ee0 ma-eke 	em 	r 	em o r em 	em r 	emem 

C
r  G

em
arxX

em
-Curl(G

emem
)]=.0 Er 

 
(5.1.9) 

r 
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The next and final step is to take the dot product of each 

term in (5.1.9) with Rem  and integrate over the whole solid angle. 

The differential equation for fem  follows as: 

f 
F
em
(r)+ C ( -22  +f )+k2C f = 0 

r 	
r 	em o r em 

( The following equalities have been used: i)
J 	 1?' 

em
. 
 e'm' 	8eel8mm l  

ii) jrCurl(g X ).Rs , ,dft=0 , iii) pa xR ).R* dri. 0 ) em em e m 	r em elm' 
rZ 	 s/ 

Similarly taking the dot product of each term in (5.1.9) with 

ar and integrating over the whole solid angle gives the following 

differential equation for gem: 

d2g 	dg 	2 em 	e 	em 	f 	e(e+1)1 + [k C (r)- 	 jg = ° 
dr2 r dr 	o r 

r2 em 

These differential equations for fem(r) and gem(r) can be made 

independent of ko  by defining x=kor, with the result that 

2 
d f df 

d Lner 
	LC 1/4xi- 1 d G em r em 	2 

--441 	
x2 J 'em= 0 

e(e+1)1 4. 
dx 	dx dm

2 
+( 	

x dx r 

(5.1.10) 

and 2 
d gem  —2— deem + re (x i_ 2.1211 
dx
2 	

1 
x dx 	r ' 	2 ] gem = ° (5.1.11) 

As can be seen the f
em and gem functions satisfy independent 

differential equations. 

Solution of (5.1.10) and (5.1.11) numerically, together with 

the boundary conditions specified at x=x1  and x=x2, gives the 

unknown multipole coefficients as the following computations show. 
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The following boundary conditions give the corresponding relations 

shown on the right: 

At x=x
1 

- 	- A  
a) H. n=H2. n 		 

b)  

eoE1.a.e22.a  

d) fix2141x22  

   

(33e-mie(x1)=gem(xl )  

01.4( c1)=gem(xl)  

   

   

   

   

	 aemie(x1)=fe(xl)  

	>  l aeme(x1)='em(xl)  

A A where n=ar, is unit vector in the r direction, 

(xi) 
'se(x1).[er(71)-1] 	+cr(xl)J:(xl)

xl  

At x=x
2 

e) R2.;=413
SI 	0:mh(e2)(x2)+0:mje(x2)=ge(x2)  

f) nxii24kri3 	> PIs mh(2)(x2)+131emie(x2)=ge(x2) 

g) e(x )2 .ii=eE a 	(2) (x 	j (x )=f (x ) 2 2 	o 3' 	 a emh  e 	2 em e 2 e 2 

h) 4A24=23 	 asm  p e  (x2 e )+ai m  q e  (x2  )=f e  (x2  ) e  

(2) 	1 
, where pe=n 	

he  x2  2  +er(x2)he(2)  kx2) 

Consider first the solution of as : em 

The differential equation for fem(x) is converted into state-

space form by defining: 

ye(x)=fe(x) 	ze(x)=fe(x) , 	then 
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where 

- • 

Ye 
• 
ze 

CI 

= 

e=e 

9 

-ge 	-Pe 

1  (x)- 

Ye]
ze 

Lne 
dx 	r r x 

(5.1.12) 

_ E2±12 	2 d -  Lne 
Pe=  x 	dx 	r x2 

were defined for convenience. 

The solution to (5.1.12) can be written down symbolically as 

follows: 

11 ile2 [fe(xil 

(5.1.13) 
21 22 

ge ge fe(xl)  

where the columns of the matrix are obtained by solving (5.1.12) 

numerically subject to the initial condition vectors (1 0)T  and 

(0 1)T  respectively. 

Using now the boundary conditions (c),(d),(g) and (h) together 

with (5.1.13) gives: 

fe(x2)=a:11(e2)(x2)1-aieje(x2)=We-1(x2)je(x1)442(x28e(x1)] cc  

f 	)=asp 	( )- 	21 	( ) e2 	( 	1  

	

e2 e e 2 aecle x2 - 	(x2)J e xl 	(x 	xl)   2 

eliminating a1 gives: 

as_ 
- qe(x2)Te-je(x2) 
	 .ai  e (21  
he /(x2)-Tepe(x2) 

ee:1(x2)je(x-
1
)-42(x-ne(Y 

, where Te 
  

21 	22 
ke (x2)  ie (x3.)-Fk (x2)le (x2 

Following the same procedure for P: gives: 



_
W
e 	- 2/x zel 

ye 

Ee 

0 

(5.1.14) 

135. 

ue4(x2)-je(x2) s 	 i .pe  , where 
h(2)(x 

2 
 )_u 

 e  ;
1(2)(x 2) 

U 
11 	12 

(x2)je(x1)+Ie (x2)4(xl)  - 

-- e 	
. 4321(x

2 
 )j 
e 
 (x
1  )+ 	(x2 e  )J I(x1  ) - 2e2  

e 

Here ejIs are obtained by solving the following differential 

equation system with initial condition vectors (1 0)T  and (0 1) 
, 

where 	We(x)=- 6r
(x) e(e+1) 

x  

As can be seen that (5.1.12) and (5.1.14) have very simple 

characteristic matrices. 

Since the computational aspects of two- and threedimensional 

problems are very similar, the details of the comparison of the two 

methods(the state-space and the new method) will not be repeated here. 

5.2 Applications 

The new method developed in the previous section has been 

applied to various problems. The results obtained have been compared 

with the results obtained by the following methods: the eigenfunction 

expansion technique(for homogeneous spheres), the state-space 

method(for radially stratified spheres with perfect conductor core 

and for Luneburg and Eaton lenses), the discrete-layer approximation 

technique(for Luneburg and Eaton lenses) and the high frequency 

techniques(for spheres stratified radially with conductor core). 
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5.2.1  Homogeneous Spherical Dielectric Shell 

A spherical shell with the following parameters has 

been taken: x1=0.8 , x2=1. Gr=3. 

This problem has also been solved as an eigen-

function expansion solution. The incident wave is 

a plane wave of unit amplitude propagating along 

the positive z-axis. The multipole coefficients obtained by the two 

methods have been tabulated below. 

e 

as e 
(Evaluated by the new method) 

as e 
(Evaluated by eigenfunction ) 

expansion 

1 -0.8429795E-1+j0.7144788E0 -0.8429815E-1+j0.7144796E0 

2 0.7529042E-1-j0.7152019E-3 0.7529069E-1-j0.7152071E-3 

3 0.8052376E-6+j0.2748141E-2 0.8052478E-6+j0.2748158E-2 

4 -0.5179999E-4+j0.2523092E-9 -0.5180044E-4+j0.2523137E-9 

5 -0.3001909E-13-P.5940861E-6 -0.3001967E-13-j0.5940919E-6 

e 
0:  

(Evaluated by the new method) 
13: 

(Evaluated by eigenfunction ) 
exnansion 

1 -0.5197019E-2+j0.1785567E0 -0.5197020E-2+j0.1785567E0 

2 0.7535358E-2-j0.7163385E-5 0.7535336E-2-J0.7163341E-5 

3 0.2561388E-8+j0.1549939E-3 0.2561173E-8+j0.1549874E-3 

4 -0.1881964E-4+j0.3330402E-12 -0.1881595E-54-j0.3329096E-12 

5 -0.1941611E-16-j0.1510886E-7 -0.1939252E-16-j0.1509968E-7 

As can be seen, the coefficients are in excellent agreement in 

the two methods. The magnitudes of the coefficients start rapidly 
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decreasing after the first two terms. The truncation limit defined 

as the nearest integer to 2krmax  works satisfactorily for this example 

The coefficients after the second one can be shown to contribute to 

the far field scattering parameters negligibly. 

5.2.2 Radially Stratified Spherical Shell with Conductor Core 

The inner optical radius of the shell is fixed at 

x
1
=8. Results for three different values of x

2 

are given with the permittivity function 6(x)=(x/X2)2, 

and a=0. This problem was solved by Alexoupoulos(55 

using high frequency techniques and by Hizal&Tosun(51) using the 

state-space method. 

Since the region 0 <x<xi  is not vacuum but a perfect conductor 

the method of solution developed in section (5.1) for spherical shells 

must be modified accordingly. The modification proceeds as follows: 

Two of the four boundary conditions imposed at x=xlare modified 

as S.F12(x1)=0 and rix22(xl)=0. 

The first can be shown to be equivalent to gem(xl)=0 and the 

second to fem+xifem(x1)=0. Employing these new conditions in the 

analysis, which has already been given in section (5.1), results in 

the following expressions for a
s and s : 
em 	em 

a
s 

j
e
(x
2
)A

e
-q

e
B
e 
 ai 

em p B -h(2)(x )A 	em 
eee 2 e 

where Ae.x eel(x2)-42(x2 ) 

1 	12 
Be=xpe

1 
 (x2) -k (x2) 

andos 4522(x2  'J  )4 
 e 
 (x
2 
 )-72(x

2  )41(x2  )  
I3em 

em 	12 	a (2) 	22 	(2) 
(x2)he  (x2)-§e  (x2)he  (x2) 
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In the above formulas the ijIs are exactly the same as those 

in section (5.1). 

It is seen thet only one column of the state-transition matrix 

is to be generated to find the multipole coefficients a 
em  and  Rem'  

Hence, introducing a perfect conductor core simplifies the computa-

tion of the multipole coefficients. The reverse is the case in the 

state-space method. Since the problem is formulated as a reradiation 

problem(not as a boundary value problem) in the state-space method, 

the radiation from the sources generated by the total field on the 

surface of the core must be taken into account. Quantitatively, 

the effect of the radiated fields of these true surface currents is 

experienced through the modification of the initial conditions in 

the solution of the differential equations. This is explained in 

(31) in detail. 

The multipole coefficients asem 	e and ps m  are tabulated below. 

The truncation number has been taken as the nearest integer to 

2x2. As can be seen from the tables, the magnitudes of the multipole 

coefficients after the nearest integer to x2  start decreasing rapidly. 

The contribution of these coefficients to the far field quantities 

can be shown to be negligible. 

The bistatic scattering cross-section per square wavelength is 

plotted for three different outer radii. On the same graphs the 

results of Hizal&Tosun(they compare their results with Alexopoulos's 

with a satisfactory agreement) are also shown. The agreement is 

remarkably good. ( See figures 5.1 , 5.2 and 5.3 ). 

Since the outer optic radii are 9,9.5, and 10 in the three 

cases considered, the truncation number(defined as the nearest 

integer to 2x2) can be taken as 20. 

In the evaluation of the spherical Bessel and Hankel functions 

care must be taken against numerical errors because of the large 
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arguments and big indices involved. In the actual computations, 

generation of these functions using recurrence relations proved to 

be satisfactory. 

e as e e as e 
1 -0.5579670E+1-j0.1768115E+1 11 0.2133592E-5+j0.6022684E-2 

2 0.3613104E+1+j0.2334389E+1 12 -0.2019523E-2-j0.2301032E-6 

3 0.2884493E+1+j0.4328187E+1 13 —0.2620162E-7+j0.6947163E-3 

If —0.2332444E0—j0.1062961E+2 14 0.1269248E-3+j0.8438969E-9 

5 —0.5184076E+1+j0.5837397E+1 15 0.1443681E-10—J0.1688023E-4 

6 0.1686751E+1+j0.2266181E0 16 -0.1787855E-5-j0.1569649E-12 

7 0.3232812E0+j0.2081811E+1 17 -0.1181596E-14+j0.1574178:-6 

8 0.1973965E+1- j0.2716420E0 18 0.1182338E-7+j0.6483018E-17 

9 —0.2851144E-1—j0.6631311E0 19 0.2676611E-19—j0.7697705E-9 

10 -0.1110796E0+j0.7595810E-3 20 -0.4260354E-10-j0.7996399E-22 

Ai=8 xa=-9  

e 0 : e C3:  

1 -0.5334029E0+j0.1729322E+1 11 0.8188744E-3-j0.1179866E0 

2 -0.3528383E+1+j0. 576845 2E+1 12 -0.1873480E-1-j0.1980268E-4 

3 0.6010233E+1-0.4499638E+1 13 —0.3074480E-6+j0.2379739E-2 

If 0.1347174E+1-j0.1734859E0 14 0.2495837E-3+j0.3263059E-8 

5 —0.8745974E+1—j0.5131811E+1 15 0.2474152E-10—j0.2209816E-4 

6 0.2783194E+1+j0.1214346E+2 16 -0.1679556E-5-j0.1385246E-12 

7 0.6520818E+1-j0.6856066E+1 17 -0.5879597E-15+j0.1110435E-6 

8 -0.4795354E+1-j0.1791600E+1 18 0.6456675E-8+j0.1933357E-17 

9 —0.2615143E0+j0.1993114E+1 19 0.5010570E-20-j0.3330521E-9 

10 0.5686481E0+j0.1992993E-1 20 -0.1514066E-10-j0.1009934E-22 
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Fig.(5.1) Scattering Pattern of a Spherical Dielectric Shell 

Stratified Radially with Conductor Core. 
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It can be seen from the above tables that the coefficients 

after the tenth start decreasing rapidly to zero. Their contribution 

to the scattering parameters becomes negligible. The computations 

suggest that the truncation number for this problem should be the 

nearest integer to x2, rather than 2x2. 

5.2.3 LuneburE and Eaton Lenses  

5.2.3a Luneburg Lens  

This lens is characterized by the relative permittivity function 

6
r(x)=2-(x/X2)2 ' where x2 is the optical radius of the lens. 

The analysis developed in section (5.1) can easily be applied 

to this case. However, the following modification is necessary: 

the Luneburg lens is not a spherical shell but is a solid dielectric. 

Therefore the centre of lens(also the coordinate origin) is in the 

numerical integration range. On the other hand the characteristic 

matrices of the differential systems (5.1.12) and (5.1.14) are 

singular at the origin. This singularity is eliminated by surrounding 

the origin of the coordinate system by a homogeneous sphere of very 

small radius compared to the radius of the lens. The permittivity 

of this sphere is taken as the value of Cr
(x) attained at x=0 which 

is 2. This modification isolates the origin and again a spherical 

shell problem has to be solved. Since the region x<xh(where xh  

is the radius of the surrounding sphere) is not vacuum but a dielectric 

of relative permittivity 2 a quantitative modification is necessary 

in the formulas developed in section (5.1) as follows: 
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j 	)-P(x )T s e2 e2 e 	ai 
" 

13erri  . h(2) 
e (x2)Te-he

(2)  (x2) 	
em 

2 e 
)j (xid  )+e(x2)4(x/a) e  

where Te- 

	

	 xld x1 1̀1c11=x1\17  
ee(x2)je(xid)+Z(x2)j;(xid) 

• 

s je(x2)-qe
Ue  .m 

- 	em ( em p
e
Ue-he

2) (x
2) 

e1(x )j (x- )4Ae (02 1- 	x- e 2 e Id 	r 4 e(x 2)jq e Id)  

e where 	U- 

h(2)(x ) 
pj[cr(x2) 1] 	e  x  2  +6r(x2)h(e2)(x2) 

2 

r 	(x2)  
cle=tYx2)-1] ex2 +er(x2)4(x2)  

In both asm  and p:m  , the 	'i's are obtained by solving (5.1.12) 

and (5.1.14) numerically, subject to the initial condition vectors 

(1 0)T  and (0 1)T  . 

Since er(x2)=1 the equations for pe and qe  simplify to: 

Pe=he
(2) (x

2)  ' cle=4(x2)' 

In the numerical applications xl  has been taken as 0.01x2. 

The excitation is a circularly polarized plane wave propagating along 

the positive z-axis the multipole coefficients of which are given as: 

ai =(-)e-1V4n(2e+1)  
em 	 13em=c(em 

Multipole coefficients are tabulated first, for four different 

radii. Secondly the bistatic differential scattering cross-section 

per square wavelength(see chapter 6 for the definition) are plotted. 

12!(x2)4(xldm/er(o)e:(x2)4(xid) 
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Back-scattering cross-sections in each case are compared to the 

results of Mikulski&Murphy(38) (They use a layer approximation in 

their analysis) and also to the results of Hizal&Tosun wherever it 

is possible to do so. 

x2  , =1 x1=0.01 

e as e 0: 

1 -0.3077682E-1-j0.4336142E0 -0.2191222E-3-j0. 3667906E-1 

2 -0.2373057E-1+j0.710444E-4 -0.1040812E-2+j0.1366642E-6 

3 0.3930975E-7+j0.6071935E-3 0.2754114E-10+j0.1607193E-4 

4 0.8912898E-5-j0.7469846E-11 0.1566438E-6-j0.2307280E-14 

5 -0.6068476E-15-j0.8446766E-7 -0.9481357E-19-j0.1055810E-8 

x2=2 , x1=0.02 

e as e 0: 
1 -0.8294598E0-J0.2098773E+1 -0.169135030-j0.10049262,+1 

2 -0.5990455E0+j0.4553356E-1 -0.1101457E0+j0.1530838E-2 

3 0.4039813E-3+Jo.6155286E-1 0.4869032E-5+J0.6757688E-2 

4 0.3679487E-2-J0.1273059E-5 0.2673970E-3-Jo.6723366E-8 

5 -0.1731921E-8-J0.1426969E-3 -0.4567267E-11-J0.7327888E-5 
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X2=3 x1=0.3 

e ae 0: s  

1 -0.2175749E+1-j0.2936857E+1 -0.2724757E+1-j0.3051930E+1 

2 -0.2625766E+1+j0.9946039E0 -0.1436908E+1+j0.2697252E0 

3 0.5840659E-1+j0.7378217E0 0.4025255E-2+j0.1942697E0 

4 0.1006570E0-j0.9524198E-3 0.1725598E-1-j0.2800749E-4 

5 -0.6891069E-5-j0.9001063E-2 -0.1001165E-6-j0.1084982,]-2 

6 -0.5636298E-3+j0.2485486E-7 -0.501145E-4+j0.1 964947E-9 

, x1=0.05 

e s S. ae 0: 

1 -0.5846554E+1-j0.1310534E+1 -0.5654106E+1-J0.1657429E+1 

2 -0.3162358E+1+j0.6351945E+1 -0.5011957E+1+j0.6539586E+1 

3 0.4519717E+1+j0.4686400E+1 0.4851190E+14-j0.4686683E+1 

4 0.5414829E+1-j0.1241456:+1 0.2150912:+1-j0.4544499E0 

5 -0.8268954E-1-j0.9825276E0 -0.1174951E-1-J0.3714868E0 

6 -0.1786093E0+j0.2496419E-2 -0.4875176E-1+j0.1859560E-5 

7 0.4275149E-4+j0.2422704E-1 0.1830251E-5+j0.5012802E-2 

8 0.3002340E-2-j0.4343231E-6 0.8898701E-3-j0.5417811E-7 

9 -0.3034700E-7-J0.2054265E-3 -0.3076946E-7+j0.6895265E-5 

10 -0.1306691E-3+j0.1112179E-10 0.1517394E-3+j0.1068358E-8 

In the following table forward and backward scattering cross-

sectional values have been compared against existing data for four 

different radii. 
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x2 
2(present)  

af" 'method ' 
af/x2(H sc T)  00,2(grem :t

) 0
2(M&M) 

5 layer 

a' A
2(M&M) b 

10 layer 

1 0.004829 0.002597 0.0031 0.0031 

2 0.3455 0.01248 0.0092 0.0116 

3 4.0356 4. 0.05447 0.05 0.0544 

5 66.95 66. 0.0934 0.078 0.094 

H&T is short for Hizal&Tosun and M&M is for Miqulski&Murphy. 

It is clear from the above table that, as the optical radius 

of the lens increases the scattered wave in the forward direction 

dominates over the wave scattered in the backward direction.(The 

backscattered field is practically zero for x272. This is the 

lens action as should be expected. a/0 is plotted in Figs.( 5.4) 

and (5.5). 

5.2.3b  Eaton Lens 

This lens is again a solid dielectric sphere stratified in the 

radial direction with the permittivity function er(x)=(2x2-x)/x. 

x2 is the optical radius of the lens. er(x)is singular at x=0. 

This singular behaviour of the permittivity is approximated by 

assuming a perfect conductor core concentric with the lens. The 

radius of this conductor core is taken to be very small compared to 

x2. The formulas developed in section (5.2.2) fit this problem 

and they have been used to get the following tables and graphs. 
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x2=1 , X1=0.01 

e S 
ae 0: 

s  

1 -0.1333421E0-j0.8949498E0 -0.7990355E-3-30.7003862E-1 

2 -0.3620120E-1+j0.1653351E-3 -0.1603914E-2+j0.3245429E-6 

3 0.7324153E-7+jo.8288115E-3 0.5324481E-10+j0.223468121-4 

If 0.1145574E-4-j0.12340142-10 0.2048876E-6-j0.3947348E-14 

5 -0.9268702E-15-V.1043903E-6 -0.1492101E-18-j0.1324493E-8 

x2  , =2 x1=0.02 

e as 
e P: 

1 -0.4619618E+1-j0.2650170E+1 -0.1695863E+1-j0.2745283E+1 

2 -0.1060405E+1+j0.1444918E0 -0.1921474E0+j0.4660520E-2 

3 0.8308098E-3+j0.8826907E-1 0.1029032E-4+j0.9824066E-2 

If 0.4829715E-2-jo.2193395E-5 0.3572002E-3-j0.1199768E-7 

5 -0.2705160E-8-jo.1783393E-3 -0.7360280E-11-j0.9302460E-5 

x2=3 , x1=0.03 

e a8 e P: 

1 -0.1184141E+1+j0.242247E+1 -0.3419372E+1+j0.3050033E+1 

2 -0.3815383E+1+j0.5036089E+1 -0.3519454E+1+j0.2140855E+1 

3 0.1612229E0+j0.1219060E+1 0.1105252E-1+j0.3217744E0 

If 0.1392511E0-j0.1823668E-2 0.2421915E-1-j0.5515615E-4 

5 -0.1129559E-4-j0.1152404E-1 -0.1694900E-6-jo.1411636E-2 

6 -0.6911522E-3+jo.3737410E-7 -0.6232844E-4+j0.3039456E-9 

In the following table forward and backward scattering cross- 
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sectional values are compared with existing data for various optical 

radii. 

x  2 6A
2(present)  

f 	method 
/x2(m)  

4°/-1' 
a  /X2(present)  
b 	method 

a  .2 
b
fx (M&M) a

b
/X2(M&M) 

5 layer 10 layer 

1 0.01991 0.01193 0.0128 0.012 

2 1.7820 0.1662 0.146 0.169 

3 4.633 4.2 0.6664 0.497 0.71 

a/5∎2  is plotted in Fig.(5.6) 
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6. THREE-DIMENSIONAL SCATTERING PROBLEMS-NON-SPHERICAL SCATTERERS • 

In practice scattering problems are generally three-dimensional 

Thus far only idealized scatterers such as infinite cylinders and 

radially stratified spheres have been considered. In this chapter, 

the method developed for such ideal scatteres will be extended to 

non-spherical three-dimensional scatterers which are rotationally 

symmetric. These cover a wide range of practical scattering bodies. 

No attempt is made to extend the method to purely arbitrary bodies 

because of the difficulties to derive the necessary algorithms and 

long computer times. 

6.1  Representation of the Electromagnetic Field .4ith Multipole Series  

Consider a scatterer as shown in Fig.6.1.1. 

The permittivity and conductivity are 

assumed to be constant. - 

The inscribing and enscribing spheres with 

corresponding radii r1  and r2  are also 

shown in the figure. 

Regions 1 and 3 are homogeneous. The 

wave equation in these regions is the homogeneous vector Helmholtz 

equation and it has the following convergent and unique infinite 

series solutions for the magnetic fields(with zero divergence) in 

terms of the vector spherical harmonics: 

0o e 
1-41d +k  1 

1 	em laem em J ' (6.1.1) 

r.,Sri 	, 0 r6.,<:.2it 



e 1 	 - 	 3. 	i - M1 [13s Ns  . +k s Ms 	N +k a k 	em em o em em em em o em em oe=0 m=-e 
(6.1.2) 

150. 

r>/r2, 0 4e,<TE, 0‘c6271 

where ki=wVIE1;o  , 1  CI is the complex permittivity of the scatterer 

and 

A7A=4  riR gid=CurlTild  
em de 1"2 em ' em 	em 

The above representations can be deduced by a) starting from 

the scalar Helmholtz equation as in section (4.1.1) and (4.1.2) 

b) starting from the expression for the vector potential A which is 

proportional to the volume quadrature of the current density, the 

weighting factor being the free space Green's function, and expanding 

the Green's function into a multipole series. Since the multipole 

expansions of the free-space Green's function,for regions 1 and 3 are 

both convergent and unique(56), the corresponding multipole series 

for the electromagnetic field in these regions are also convergent 

and unique. Also the radiation conditions at infinity are auto-

matically satisfied by choosing s-type of functions(outgoing wave 

functions) in region 3. 

Region 2 is not homogeneous in its material composition. The 

wave equation in this region is not the homogeneous vector Helmholtz 

equation. The partial differential equations for the field vectors 

E and H in region 2 can be shown to have the following form: 

v22+0E.(k2-k2)2.45, [.17(1,nC12)] 
o o 2  

V211+k211=(k2-k2)11-44wVe?2 o o 2  

o'2(r20) 
where 	k2=u)  VC  Po and TC2(1.10) j 	 
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These are inhomogeneous vector Helmholtz equations. The 

inhomogeneous terms are functions of the unknown field vectors.* It 

is known that(47),(57) such inhomogeneous vector partial differential 

equations can also have multipole expansion solutions similar to the 

above ones. Here, the radial dependence of the solution consists 

of unknown functions in the radial variable which reduce to the 

spherical Bessel and Henkel functions outside the inhomogeneities. 

Such series solutions have been given by both (47) and (57) in their 

attempt to represent the electromagnetic field with multipole series 

in source regions. Although region 2 in the present case is not a 

source region, the inhomogeneous terms in the above partial diffe-

rential equations can be thought of as some kind of source terms. 

Mathematically such a representation with unknown radial functions 

is actually the representation of a vector field(which should satisfy 

certain regularity conditions such as having finite energy,etc.) 

with an infinite series of spherical vector angular harmonics Rem. 

The validity of this representation has been proved as a theorem(56). 

This reasoning results in the following series for 112: 

, co e 

=R+Curl(gR)] 	(6.1.3) 2 k 0 e.o 	em em 	em em 

r1----- 	0<6 4.7t 0 <0<21-c. 

where fem and gem are unknown radial functions, the factor ko has 

been put separately in the expansion(actually it can be thought of 

as in fem and gem) in order to preserve the similarity of this 

series to the other two. 

lsls 
emlaem,pemem are the unknown electric and magnetic multipole 

coefficients respectively. The incident wave has been assumed to 

be a plane wave generated at distances farfrom the scatterer. Its 

multipole coefficients ai m and Rem  and they are assumed known. e 
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The corresponding expansions for the electric fields are 

obtained by using the equation jwCZ=Curlil . These are: 

v r,,1 	+ 1 1 
21=-jZ1I L rm-em 	aem-  end 	(6.1.4) 

-jZ 	m e o  
2 - 	>12Tem7em+kocuri(remRem)] 	(6.1.5) 2 k2C'2r 

 (r
' 	

rn 0) e=0 r- 
o  

m e 

	

._4z  V VriaS RS 4. 	aS RS +ni R1 + 1 ai 111 	(6.1.6) 3 	oL- L-rem em ko em em 'em em k
o 

em emJ er..o rn- 

e(e+1) 	2 dgem d2gem 

r2 I'm-  r dr 

	

dr
2 2

o 	
i= 

6' 
where Gem(r)= 

1 

6.2 Procedure of Deducing the Differential Equations for fem  and gem  

The starting point is the expansion of the following vector 

relation: 

Curl[ r(r,0)22]=C r(r,e)Cur122  +grade rx22 	(6.2.1a) 

or 

Curl[C r(r28)E21=-Jw06 r(r„(3)1712  +gradC rx22 	(6.2.1b) 

p e 
But from (6.1.5) e° (r16)t =- ° 	+k Curl(f

em em
)] 

2r 	2 	k2 e.0 	em o 
0 

(6.2.2) 

Hence substitution of (6.1.3), (6.1.5) and (6.2.2) into (6.2.1) 

results in the following equality: 
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m• e 	co e  
k2C' Y‘'>jk f 	1-Curl(gemem)]+  :Ey_grad(Lne' )43 	+k Curl(femead] o 2r 4- o em em 	 2r 	em em o e=o 

co e 

	

rk emem+Curl(GemRem)] 	(6.2.3) o  e.o 

The next step is the dot multiplication of each term of (6.2.3) 

by Xelm,  and integration over the whole solid angle. The result 

follows es: 

W e 
■ * 

F e m 1=1Z  em  (r)ko  ie2r'  (r 6)2 em .Xe'ml da+ -1- G 	2 em (r)irgrad(Lnel  r  )x5C 

	

ko 	em e.om, 	
j 

 
• 

IC'.Xe
*
'm'da+ko 	' (r 6)Curl(gemem).Xenisda+ 	2 irgrad(LnO' r  )xCurl(femem) 2r 

4,5r, Ida] e m 

(where the relations IR em  . 'm' da=8ee'8mm' and e 
12 

jrCurliAem(r)RemJ.XemIda= 0 have been utilized) 
11 

The following relations are established after some algebra. 

81,ne' 

	

krad(Lne2 	2r  

	

l 	.2* 	(X * 	- * 
r)x2 emJ e'ml 	Or 	en0x 	x011 e'me0 	06x  em0)  (6.2.4) 

81.41C1  -* 	 - - 
2  bgrad(Lne' r  )xCurl(fememl)].Xem

1— 	
Or2r  , -21  +fem)Xem•Xe1 m1-j 

Ae
2 r  

gine' 

a6 2r 
 	 f em  (r)Y  em e X*1  m 10 	(6.2.5) 

1/2 

71-  
s 	[L-11 (e-mAj1/2 where LV[e(e+1)] 	y
em4n (7-71 	Pm(Cos0) eim° e 
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The following vector equalities have been used in deriving 

(6.2.4) and (6.2.5): 

arxCur1Rem=- 
eM 

 cx('arxRem)=-Rem 

Xem6 1)66  aexCur1Rem= r ar-  r 'ern
A 

 

A. A - 
aex(arxXem)=Xeme

a
r 

Consider now the explicit evaluation of the integral expressions 

above for a rotationally symmetric scatterer. 

The components of the vector Rem  are 

m 
mr: 	jm95 

em6 INe  Sine X=- e 
 Ye  dPm  

X
em0

=-j 
 Ae de

e ejm0 

Then the dot product Rem.e0m, has the following explicit 

form: 

m m' 	 m m 
y
e
y
e 

[de  

gym ' 
- -* 	mm

2 rePet e 
-m m 11 j(m -m,)0 Xem.Xelml= p A 	de dO e-t' 	Sin 6 

Consider first the integral Ii=,Nr(r,e)Xem.R:ImIda. 

The integral over S2. is written explicitly as 

m m'  Tr _m _no 	 2rr 
y-y-, 	dP-  dP- ee Fe e' mm' + 	PmPm1C' (r 6)SinOdef j(m-m1)°d0 1  = 	Lde de 1 pAlk, 	Si00 e e 1  2r ' 	- 	e  
' ' o 0 

2Tr 

Since jlei(m-mt)56  d0=2n8 mm1  it follows that 
0 

m mt 	rr 
tYe1 	dPm  dPmt  

	

1 	_m ml 
6 	fel  (r,e 1  r e .......s. + mm' P-P - ] Sinede 11=2 It 6e'e I mal I 	 r 	' L de de Sin20 e e I 

0 
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Consider now, 12= f 
	

.a grad(Lne r)xCurl(femRem).R:Imtd 
 ..0. 

using the relation (6.1.11) and following the same procedure as for 

I
1 the expression for 12 is 

Tr 	 1 m ml 
1 ._271 Ye Ye' ( 

2m + dfemp, Y Y 1 	f 	axe 	dPm  dP111  2r r e _1'4. mm' pmpel 
2 	r 	dr 'mm' 	ar la de 	e 0,1 Sin 2e Aa6b° 	0 

Y le 4. 	Tr  
AeYeAre° 'em 	. 	aLne r m  dPlIel, 

Sinede+ 	.21commi --ae2r  Pe  70.- Sinede Ze' 	r2 o 	. 

The third integral is 1
3 

igrad(LnC°2r  )367 em.R* 

Using the relation (6.2.4) together with the above procedure 

gives: 
Tr 	1, m m ,  r aLne, 	dpm- 	dpm  YeYel 6 	, 	2r ( ,m 	e' 4. I,m' 	e) de  Mr dO +m' r ar 	e de 	el de I3=-J271 pea  , mm' j  e 	0 

Finally; I
4
=leLr(2.20)Curl(gemem).2:,m dS22  or explicitly 

m ml 	 Tr 	 dpml 	d.Pra Y Y 	g 

	

=_,2n  e e  ( em 	r 	im m 	e' 	Ip  m ml 
4 	p, 	r be

)8 
 min' 

e 
 2r
( 
 ' '
o
‘

p 
 e de 	e' dee)de ee 

 

0 

Defining now the following quantities results in the differen-

tial equation for fem  as shown below. 

	

1 	2 

	

aLne'r  dP: dP111 	m2 
 )Sinede , 	 n  anem(x)=Rnem (e2r- 	

)( 
ax- de dO Sin

2 
 e Peen  

0 

7  alme 	dPm  

	

2m 	odd 
+9nem f ae

r Pe den si n 
 

0 

Tr 

	

aLnel.  dpm  dpm 	2 
b
nem

(x)=-R
nem I ax

2r( 
 doe 

171 	m PP
e nPP )Sinede Si20  



f C2 (x 	 (PmPM)de re) 
' 	de e n 

0 

c
nem

(x)=-jmn
nem 
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dnem
(x)=-jmR

nem 

eLnet 
2r S1--(Pl"Pni)de 

ex de e n 
0 

m m 

where x=ko
r and Rnem

=2n; Ye

ebh 

m m 

0 2n 
yeyn e 

= 
An  

The differential equation for fem  involving these quantities 

is then: 

	

dfem 	gam co 
F (x)=>--KLemfem(x)+bnem nm 	dx 

+o
nem

( -
)T 

+g
em

)+d
nem

G
emi 

ecf 

(6.2.6) 

As it is seen summation over m in (6.1.9) drops out. This is 

because of the presence of the kronecker delta 8 mm
, in the expressions 

for 11,12,13,14. The azimuthal index m is a parameter in (6.2.6). 

The summation over e starts from 1 not from zero, since for e=0 the 

	

vector spherical harmonics are identically zero. 	(6.2.6) is the 

first differential equation for fem  and gem. The second equation 

is found as follows: 

Consider again (6.2.3) 

co e 	 e 
k2oC r(r,e)EZikofemrCem+Curl(gemRemn+Zgrad(Lne•  )xp R + 

e=i ro—e 	e.1 m=-e 	2r 	em em 

oo e 
koCurl(f em em

)] 	[k o Feme m+Curl(Geme m e=i m=-e 

The above equation is dot multiplied by iar  with the result: 

	

aLne' 	k
of
. 

1 
21k

2
oe2r1l  (r e)g em  (r)j 6

e 
Yem 	

— 
r 	em r 	

ae
2r x em0 r 

__.kf 
 em 

 +1  em/r) 

aLne
2r 	

00 e 

de 
X
eme 
=G

em
(r)j Y

em m=-e 
(6.2.7) 

e.1 m=-e 
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where the following vector relations have been used 

A 	A 1 A 
	, 
	

a 
A 	 A e 

	

Cur151
em 	 r 	em r em 
=j 

e 	
a Y 	+ - a xX 	.Cur1R =j 	Y 

r em r r r em  

A 
ane' 

a
r
.igrad(LnC2I 

r 
 )x2 

 em
1= := 	

2r 

 r ae 
X
em0 

nue' . 
yj. 	 gr

ki  ,_ +f /r)X "6. .[grad(Lnel  )xCurl(f
emem 	r  ae 	em em 	eme 

Next each term of (6.2.7) is multiplied by X:ImleSine and 

integrated over the whole solid angle S2 . The result is given below. 

	

4A 1,2 	
innet m e 

f EL, (r 3 e )YemX*e  m  sine +G 
em 

-----•
ae 

2r X

em 0
X
e m 

Sine d12. 

e.r 

aLnel m e 	
* 

. 	X
eme X*elmie Sine 

= z zjzs
e

G 
em
SYemX +k

o
(f

em
+f

em
/r)j 80 
	 el  m t e

Sineda  

e.1 
2r 

J1 	
• 

(6.2.8) 

The integrals appearing in (6.2.8) are explicitly evaluated in 

a similar way to the previous case. The second differential equation 

involving fem  and gem  is then; 

Gnm 	

e=, 
(x)= Y[u g (x)+v (f +f /30+w G (x)] 	(6.2.9) nem em 	nem em em 	nem em 

where x=kr and 0 o 

u
nem 	- 

(x)=Onem ir e' (x' e)Rme'Sinede 
r 	e n 

0 

if 
v
nem

(x)=jmR j'aLnel -m-m 
do nem ------ r 

ae

2r 

 n e  O 

Tr aLnet  
2r -m 

4  r 12: nem nem 	 Sine de =- 
nem nemf ae 	n de 

O 

AL 
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The relation 	fP11210P1  Sine d0= 	(e+m)! has also been used 2 
e.el 	2e+1 -57131  see') 

0 

to take G outside the summation sign. nm 

6.3 Putting the Differential Equation for f and g in a 
-ear 	em----- 

Convenient Form 

The differential equations (6.2.6) and (6.2.9) are not in 

convenient forms for numerical solution. Some manipulations are 

necessary to convert them into forms which are ready for solution, 

as shown below. 

The differential equations (6.2.6) and (6.2.9) are written 

once more: 

F =7 	f +b f+ 1  —c g + c 	+d G l 
nm L_ nem em nem em x nem em nem em nem emj 

00 
 1 

G =7,[— v f +v f +u g +w G 1 nm 	 x nem em nem em nem em nem eml 
Est 

where denotes derivative with respect to x. 

Consider first the equation for Gnm. The summation is truncated 

at a finite number N. This equation has the following matrix form: 

G =v f +v f +u g +w 
—m xm—m m—m mom m

G
—m (6.3.1) 

. 
where Gm=(Gim  G2m  . . . G_ ;

T  , f(f f 	f )T 
1m 2m • • • Nm 

gm=(gim  g2m  . . . gNm)T  are Nxl column vectors. V JIV 11 
XM M" 

Tr 

um 
and w

m 
are NxN matrices, one of them, v

xm  2  is shown explicitly 

below; the others have similar forms. 
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v 	/X . 	• llm/x 	v 12m 	. . v 

V21m /X 	v22m/X . . . v2Nm/X 

v 2m/X . . vN  /X Nm 

The expressions for vnem are given in the previous section. The 

index m is shown explicitly in each term to stress the dependence of 

every quantity on this index. 

(6.3.1) can then be solved for G as 

G =V f +V f 	g -m xm -m m -m m (6.3.2) 

where Vxm  =(I-Wm) 1Vxm ' Vm
=(I-W

m
) -1V

M 1 
U
m
=(I-Wm  ) U m 

I is the NxN unity matrix. 

Substitution of (6.3.2) in the expression for Fnm  gives: 

F = A f +B f +C g +c A -m m-m m-m xm m ram (6.3.3) 

where 
 Fm 

=(F
lm 

F
2m • • • FNm )

T 
is an Nxl column vector. -  

and Cm are NxN square matrices and are given by 

A IB I  C 
m m xin 

Am=Ara4-1)mVxm  2 =Bm+DmVni 	C U xm
=C
xm
+D
mm 

The matrices A 2Bm ICxm  and Dm have the their elements defined m  

in the previous section as anem,bnem,cnem and  dnem. 

Any element of the column vectors F and G then has the 

v = xm 
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following form: 

oQ 

Fnm=  :E6'nemfem413nemfem+cxnemgem+cnemem) 	(6.3.4) e.: 

G  = nm 2--(791xnemfem4nemf i  em nem ) 	
(6.3.5) 

em 
 

	

where a 	 V y u 	are the elements of the _ 	
nem

,b
nem

,c
xnem

,y
xnem' nem nem 

corresponding matrices denoted by the same but block capital letters. 

The differential equations (6.3.4) and (6.3.5) are in the desired 

form.The next step is to put them into state-space form which is 

convenient for numerical computation. 

6.4 Converting the Differential Equations for  f
em 

and gem  into 

State-space Form 

In (6.3.4) and (6.3.5) the equivalents of F and Gnm  are 

substituted with the result 

	

n(

x

n+l) 	
2 f 
• " 	 - 	• - 

-f = 	 (a 	 0 	g ) 
x nm rim 	nem

f 
 em
+b 

 nem
f 
 em
+c 

 xnem°em
+c 

 nem em 2 

 fn_ 
- 

 e.I 

(6.4.1) 

ft 
n(ni.1) 2 • 	•• 	 , 	• 

m 	- e —R = 	(V 	f +v f +u g ) 	(6.4.2) 

x
2 -nm x -nm -nm 	xnem em nem em nem em 

Now define; 

fnm=4m ;nm=Y:m gnM=Yla gnm=4m. , then 

Y nm nm ' JnM=Ynm 
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.2n(n+1) 1 	- 
Y = 	v - 2 2  v - 	v  1 +b 	2 y +-6 	y3  +c y4  ) 
nm 

x
2 -nm x -nm 	nem-em nem em xnem em nem em e.1 

.4 n(n+1) 3 	4 
7= 	

y-  - 2 - y - y(ir- 	Y 	Y
2 4
T1  Y3  ) nm 

x
2 	nm x nm 	xnem em nem em nem em e=i 

The above system of equations is complex, because the elements 

anem sb  nem etc. are complex. The subroutines available for the 

numerical solution of differential equations use, however, real 

arithmetic. For this reason it is necessary to convert the above 

equations to purely real form. 

In matrix form the following system of real differential 

equations result: 

. ..... 

-2 

3 

0 	• 	I 	' 	0 	- 0 
. 	. 	. 	. 	. ... 	.. 	. 

Sl ' 	S2 	S3 • S4 

0 	• 	0 	0 	I 

T•T 	•T 	•T 

 

T1 . 	2 , 	3 	. 	4 _ 

Z7'1 

2 

1.3  
(6.4.3) 

where 0 denotes (2Nx2N) null matrix, I is the unity matrix. 

4 
YR1 

are all 2NX1 column 
If 
7I 	vectors. 

R denotes the real and I the imaginary part of the corresponding 

matrix. 

1 („ 	IT 	2 	IT  
7 = lm - 

g  2m . . . ' , kb' ' 	=(flm f2m . . . 'Nal' 	
t 
‘glm g2m • ' • 

•=10 	 01•111 

1: 
	2 

ZR 
z2= 	13= 	-E4= 

YI 

gN) 



1.2 - 
-allm 4  x2 	12m • • • 

-a21m 	at..1- 	• 
2 a22m 
x 

az m 
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The matrices Si,S22S32S4  and Ti2T22T3,T4  are (2Nx2N) real 

matrices. Their explicit forms are shorn below. 

A1R 	 AlI A2R 	-A21-  • 
A3R 

S1= S2= S7  = 

Al1 	AIR A21 	A2R A31  A3R_ 

-A31 
S4= 

A4R -A41 

A4I A4R_ 

B1R -21/k -B1I 	B 	-B21  

T2= 	T
3
= 
B3R -B3I 

T
4
= 

B11 ,R_ B21 B2R  B3I B3R, 0 	-21/X 

T1= 

The matrices AllA2,A3,A4  and B1,B2,B3  are (NxN) complex 

matrices. Their explicit forms are 

- 	-2/x 4 	• • •  12m 	1Nm 

:I)21m :1)22m-2/x . , Nm  

Ai= A2=  

2m* • • N(N+1)- 
x2 aNNm 4/Nlm 4N2m • • • :473NNm4 

%11m 

.6x21m 

• 
• 

• 

6 
xNlm 

% 12m • • 

• -6X22m • 

BxN2m • • 

. - %1Nm 

•-0x2Nm 

• 4xNlim 

A
4 

 

-c
1
im 

-C21m 

• 

• 

• 

eNlm 

-e12m • 

-c2 	• 2m • 

-eN2m • 

• 

• 

• 

.  

• 

-eINm 

- e2Nm 

-eNNm 



4• • • - 
xllm 

-v
xl2m 	3i x1Nm 

efte 

• • -v
x21m 

-v
x22m • 	- vx2Nm 

• 

• 

• 
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-v
xNlm 

v
02 • • 

. v
xNNm 

..;"; -v
llm

• . -v
12m • 	• 1Nm 

/MO 	 •■•••11 

-v
21m 

 -v
22m . 

. . 
 

-v
2Nm 

. 

. 

. 

••■•• 

4Nm -v
Nlm 	N2m 

• • • -71  

B
2
= B

1 
 

B332  
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Before getting into the solution procedure for the unknown 

multipole coefficients, the next step is the application of boundary 

conditions on both the inscribing and enscribing spheres. 

6.5  Application of Boundary Conditions 

1) R1.M12:ar at  r=r1. This condition is equivalent to: 

1 
 e 	 e 

mo
o

-zol

em 

Nld 

ko

D.  emr 
 Z 	.Curl(g

emem
) 

r ew■ rn=-e 
(6.5.1) 

ld . 
where N

emr 
 is the r-component of the vector Near  and is given as 

ld 	
j
e
(kir) 

N 
emr 

 =JCS.e 
	r 	Yem(0,0) 	(6.5.1) then becomes; 



0 . j k_r 	=j 
em e e(  1 1 em 	lr 	

gem(r1
Y
em 

eat m=-e e=1 rrt.•_e 
(6.5.2) 

2.64. 

where ellr  is the relative complex permittivity of the scatterer. 

Multiplication of each term of (6.5.2) by Y:110  and integration 

over the whole solid angle gives the following relation: 

je(xid)P'e-m- Vqrgem(x1) 
	

(6.5.3) 

where x1=kor1 and xld  =x1 \,467lr  and the relation J em Y
*
el m! da=8eel8mm' 

1/ 
has been used. 

2)  ar414r42 at  r=r1. 

Or 

co e 	 co e 
C-  1 ̂  -1d 	1 A 1d] 1 -- 

-‘27111  a_xNem  +klaemarxMem  = 	 em rn: em r 

after some algebra following vector relation is found: 

plem dr [rye  (kir)] 5! em  +klaemje(kirl)arxRen/qr r 1 	r1  

co e 

arx 5 em -C-sem5C'em] 

where sem=4;em+gem/r 

If each term in the above equation is dot multiplied by ntm, 

and integrated over the whole solid angles  the result follows; 

r  (  	 em(r1)  d 
Peml. 	r1 	dr Je(iclr1)1-Ve l  lr 	r

1 	dr gem] 

substitution of (6.5.3) in the above relation gives 
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iTh77-1-10ern=gem(xi) 
	(6.5.4) 

where ' denotes derivative with respect to the argument. 

3) eqr elf, a =c12 
2 1'  2.  r 1 1

a 
. r 

at r=r

1. 

Assuming C(r1,0)=Ci which is the case for Fig.6.1.1(but may 

not be the case for all type of rotationally symmetric scatterers, 

for example a half-dielectric spherical shell does not satisfy this 

condition and the solution procedure should be modified accordingly) 

the following relation holds: 

Z1 -LC:I 	

a a .N =Z 

1 A -1d 

em r em o k 2Z- 

a.curi(f 	) 
em em 

C 

° 	

e 

rna_e 	 06.1 m.-e
r 
 

a similar procedure as in (1) and (2) gives: 

Je(xidale-m=fem (x1)  

 

(6.5.5) 

r

x21=a

r

x2

2 	

at r=r

1 

 

co e  
aerx emrcem+ko  >ziZZa x [131  j (kir

1

)5Z

em+ 

al 
 -id 

 

1= 

 

eat .m,..er 	
em e 

 

k 
 emNeml= 

k

c2) 

 

0 lr 

C

u

rl(f

em

2

em

)] 

following the same procedure as in (2) gives: 

Zi 1 d 

r 

°r

[rje(kiri)J 

4'1 	1  

1 

mem  = 

Z 

k CI 

0 lr 

. 

(f

em em

/r

1

) 

Substitution of (6.5.5) in above relation results in; 
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11,_ 1 = 1 

J 	
11. ( 

e‘'41e.
ia 
 ern:JET' em xl)  

v it 

(6.5.6) 

5) ff2r5.1Ar at r=r2 

  

 

h(2)(x )p 	cK )(31  =g (x ) similarly e 2 em e 2 em em 2 (6.5.7) 

 

6) /arx22
=arxft3 at r=r2 is equivalent to 

 

     

.(2) h (x )Ps  +P(x )pi e 2 em e 2 em em (6.5.8) 

  

7) e2(r2' e)22. a r  =C o E3* ar  at r=r2 gives; 

 

( 	A 	x A  a h 2) (x as  +j t 	=f (x ) e 	2/  em e 2/  em em 2 (6.5.9) 

A - =a  - 8) arxE2rxE3 	at r=r2 

 

 

h(2) 	
. . 

(x2 )asem  +P(e x2  )aem =fem (x2  ) (6.5.10) 

6.6 Solution of the Unknown Multipole Coefficients a:m  and psem  

In this section the results of sections (6.4) and (6.5) will be 

combined to solve the unknown multipole coefficients. 

First define the following column vectors 

both are (4Nx1) column vectors. s — —a— 
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With these definitions the system of differential equations 

(6.4.3) has the following solution in symbolic form: 

s a(x) al(x) 	"(x) acc (xl)  
(6.6.1) 

.. ..93(x) 'Yi (x) 	J4(x) Ep(xl)  

where li,?2,15 and '4  are (4Nx4N) square matrices. The matrix 

is (8Nx8N) and is called the state-transition matrix. The columns 

of this matrix are obtained by solving (6.4.3) numerically subject 

to the canonical initial condition vectors as in two-dimensional case. 

The boundary conditions developed in section (6.5) are now put 

into matrix form as shown below. 

sa (x1 )=Q wa1  —- (6.6.2) 

where Qa is a (4Nx2N) rectangular matrix, a1 is (2Nx1) column 

vector. The explicit form of 	and a1 are 

ldR j1dI 

j1dI j1dR 

c 	 0 

j1dR j1dI 

cc 
j1dI j1dR 

a1= 

a1 	J1(x1d) 	0 —R 

1 with J
ld
= 	

J2(x1d)  aI  

0 	 • 41(xid) 

gam  

and 

Verrji(xid)  
*c Jld  

0 

. viriA(x1d) 

    

0 



H
2R 

-H
2I 

H
2I 

H
2R 

t 
4Nx2N 

J 0 

O J
2 

J
2 

0 

O J
2_ 

4Nx2N 

hi
2) 

 (x2) 
(:) 

( h
2
2)  (x2) 

• (2) hn  (x2) 

where 

H
2R 

-H
21 

11a= 
H
21 	

H
2R 

Ja= with H
2
= 
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R denotes the real part and I denotes the imaginary part of the 

corresrondin: matrix. 

The second boundary condition relation is 

le (x1)=Q01 
	

(6.6.3) 

- where Q is a (4Nx2N) rectangular matrix, b
1 
 is a (211x1) column 

vector. 

       

 

JldR 
-J 
1dI 

     

     

ii(xidWqr 
0 

j2(xid )i E1]. 

0 	
511(xid)07 

   

al- 

 

 

Jb 	
JldR 

  

QP=  b1= 

  

, with Jld  

j1dR -J1d1 

j1dI ldR 

  

     

      

The boundary conditions at r=r2 
are also given in matrix 

form as: 

sa  (x2 
 )=H a

as+J a
ai  

 

s (x2 
 )=H abs+J a— bi  

(6.6.4) 

(6.6.5) 
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Bs 
-R 

    

J2=Real(H2) as= b6  

 

SIR 

bi= $ _ 

   

 

a = 
al  

   

           

           

           

are (2Nx1) column vectors. 

Evaluating (6.6.1) at x=x2  and using (6.6.4) and (6.6.5) 

together with (6.6.2) and (6.6.3) gives the following equations: 

.-1a(x2)=HaaS+jaai=a1(X2)Qaa1+  -32(X2)4Q0131 

S
p 

 (X
2 
 )=H mbs+J abi= (x  3 2 	

1+ a, 
4

( 
x2  "

p 
V= 

define WI= alQa  , W2= Y2Q 9 W3=  Y3Qct  Wif=  ;go 

then the following linear system of equations results 

{

Ha 0 -W1 -42 

0 	Ha -W3 —W
4 

Gi 
(8Nx8N) 

s a 

bs  

a  

b1 

(8Nx1) 

-Ja 0 ail - 

0 	-J 	12.1. 

(mx4N) 

 

(6.6.6) 

 

Inverting the system (6.6.6) gives the unknown multipole 

coefficients both for region 1 and region 3. 

In the sections that follow the computations that lead to 

(6.6.6) will be examined more closely. 
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6.7 Detailed Analytical and Numerical Investigation of the 

Computational Steps in the Solution of MultiDole Coefficients  

The most important part of the overall computational procedure 

id the generation of the characteristic matrix of the system (6.4.3). 

This procedure involves the numerical evaluation of the elements of 

matrices Si,S2,S3,S4  and Ti,T2,T3,T4  . Most of the overall compu-

tational time is spent in doing this. 

In order to generate the above matrices, first the factors 

a ,b ,c ,d ,u ,v 	and w 	must be evaluated for every nem nem nem nem nem nem 	nem  

n and e in their respective ranges and for all m. Below, these 

factors are evaluated for a homogeneous, rotationally symmetric 

scatterer. 

The factors are explicitly given below. 

aLnel, 	m 	2 (c, 	2r  )( dPM  e  	m PmPm)Sinedd dP 
anem(x)=R 	( 	

1 
nen[j 2r x ax 	d e de Sin

20 e n 
0 

TraLt 
j( 	2r m dP m  Sine de ' 	

a

nem 	ao Pe 711  
0 

aLnC2r  
bnem

(x)=-R
nem 

jr-- 	( E'Tel 	m
2 

Pe  )Sinede 
Sin2e e n 

0 

rr 
c nem  (x)=-JmRnem2r'  (x 0) 	n de e -1-(PmPm)de 

0 

aLnel 
dnem (x)=- jmRnemf Ox 

2r 1 (pnelp:
)d
e  

0 

rr 

unem(x)=Qemf2t 	
el 
r 
 (x
' e n 
e)PmPm  Sine de 

0 

ITane 1  v (x)=jmR 	pmpm de  
nem nem a62r  e n 

Tr 

rr 

0 



• 5' 
• 

x 

Fig.6.7.1 

171. 

aLnC' 	dPm 2r -m 

	

nem(x)  -R f 	r --e Sine de nem • de 	n de 
0 

Investigation of the above expressions shows that there are 

7 different integral quantities which are defined as: 

l 
rr 
dime2r  dPm  dPm 	2 

Inem 
.4 

 ax 
 (  

de
e   
do 
_, + __m_ Pm  Pm  )Sin6 de " 

O Sin26 e n 

m 
Tr 

	

mo 	&net 
12  =jr----= pm  -=-=-n Sine de 	13  =.1" 	2r IL(pmpm)de  
nem 	ad 	e de 	2  new 	dx de e n 

O 0 

,5 . 1 	PmPm 1nem 
4 =je2r de t L1 -(PmePnm) de 2  "'nem 	ae

2r 
 e n de  

0 

2 dPm  dPm  16 =IC' PmPm  Sine de 	17  4c1  ( e  —n + m  PMPM  ) Sine de 
O a 

nem 	2r e n 	2  nem 	2r de de Sin26 e n 

For a homogeneous body the function LnC2r  is stepwise dis-

continuous in region 2, hence its derivatives both with respect to 

x and 6 are delta functions. This property makes the evaluation of 

the integrals with such integrands very easy. There is no need to 

compute these integrals numerically. 

Consider the homogeneous rotationally 

symmetric dielectric body with relative 

complex permittivity Cir. The inscribing 

and enscribing spheres are shown in the 

figure. The function LnC2r(x,0) is 

expressed in terms of the step functions 

in region 2 as 

1,21C r(x,0 )=InCir [ 1. -u(0-60)] 
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the angle e0  being  a function of x, is shown in the above figure. 

The derivatives of LnC2r  with respect to x and 0 are respectively; 

aLne' 	aLne' 

ax 
2r= Lnet 8(0-0 ) --o 	= Lne' [ 	-8(0 -0

o
)] de 

lr 	o dx 	ae
2r 	

lr 

If these derivative expressions are substituted into the 

integral expressions above, the following  results: 

	

deo 	2) dpm( ) dpm( 
In em= LnC' 'ine 	

m2 

nem 	o dx L zo dze zo 7171  zo 	_ Pm(z )Pm(z )] 2 eono 1-zo 

1 	l 	
dP 2 = Lnel (1-z2-  (z --n(z nem 	r o e

m 
 o dz o)  

m 

	

Sine d00 	) 	dP 13  =-Lne' Sine --o r lz ) --n(z )+Pm(z ) --e(z )j nem 	lr 	o dx 	e o dz o n o dz o 

=(el -1)Pm(z )Pm(z ) 	15  =-Lne' Pm(z )Pm(z ) nem lr eono 	nem lreono 

where zo=Coseo , eo is obtained from the functional relation 

describing  the shape of the scatterer. 

The integrals Inem   and Inem   contain neither the derivatives 

of Lne2r 	143  nor the derivatives of 	and Pm . For this reason 

numerical evaluation of these integrals is necessary. However as 

the analysis below shows, numerical evaluation of I6 and I7 nem 	nem 

is necessary only when n=e. 

-m m 16 =ire' (x 0)y P Sine de , with the definition z=Cose I6 nem 	2r 	e n 	 nem 
0 

is transformed into 
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1nem 
6 

-1 

define 

K1 
nem 

since 

for 

Pme  Pmn  dz + 

K1 	= nem -t 
4 

4.K2 	..ipM 
nem 	e 

 j(Pm  e 

n/e 	Knem 

Clr  ' 
z. 

Pm Pm  e 

pm dz n 

Pm  dz= n 

=-K2 nem 

Pme  Pmn  dz 

n dz 2 	m -m Knem= 	Pe en dz 	then 
4 

2n
2 
 +1 

and 

en 

16 	=(1-0' )K1  nem 	lr 	nem 

where 

It can be shown that(See Appendix D) 

io 	2 (1-z) 
15(%)] KIn.-em="0:P: dz= Vel(zo) 15(z0)-11(zo) (6.7.1) 

n/e. 

-1 	ten 

yen  =e(e+1)-n(n+1) 

Therefore the expression 

6 	(1-z
2
) 

n/e 

for In6  em  for n/e becomes 

din 	1 ) 	)-Pm(z 	-37e(z dz 1.(1 -CI ) 	jr(z nem 	lr en  ==n(z 	) 	)j e 	o 	dz 	o 	n 	o 	uz 	o 

1 -2 	(n+lt  For n=e 	Knnm+Aimm= 
2n+1  (n-m I 

2 	(n+m)t and 	16 =(1-C' )K1 +et nnm 	lr nnm 1r.  2n+1 TIT-7 

4 
2 

where 	K nnm  =f[Pm(z)] dz and this integral must be evaluated 

-1 numerically. 
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The definition of P: is in terms of ordinary Legendre polyno- 

mials: 

PTI(z)=(-1) ( z2)  
m/2 af 

mdz  

d P i since Pn(z) is a polynomial of degree n, ---n is a polynomial of dzm  

degree n-m. 

12 2 m  dmP 2  [Pm(z)j =(1-z ) (---n ) , in which the first factor on the right 
dzm  

is a polynomial of degree 2m . Hence, the integrand of K  is nnm 

a polynomial of degree 2n. 

In the actual numerical calculations Gaussian quadrature 

formulas have been used to evaluate Kam.If a Gaussian quadrature 

formula of order M is used, it can evaluate the integrals of poly- 

nomials up to the degree 2M-1 exactly . Using this fact, the 

degree of the quadrature formula is selected with respect to the 

truncation number. If this number is N, then the integrand of 

O.  can be a polynomial of degree 2N at most. Hence M should be 
selected in such a way that 

At every step of the numerical solution of the differential 

equations these N integrals must be evaluated. 

Similarly for In em' nem 

n 

	

mm 	2 -m 17 .fel (x,e)( dP  e  dP --n + m_   r -  Pm  )Sine de nem 2r 	de de Sin 20  e n o 
 

with the definition z=CosO 

Z. 
m m 2 

m  dz 17  =ill-z2) LIE: 	+ 	pm?)]ci. +el Al- 2) dP 	+ 	PmP z 	e --n nem 	dz dz 	 dz dz 
-1 	1-z2 e n 	'lr 

go 	1-z
2 e] 

Z. 

	

2 dPm dPm 	m2 m m define L1  =f[(1-z ) --e —n + 	P P dz nem 	dz dz 

	

1-z2 e n 	- 
-1 
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4 

L2  44-z2) 9-"e Pm  dPm 	m2 --n + 	Pm.Pm] dz nc=m 	dz dz 1-z2 e n 

then Ll 4.L2 =f[6-z2) 	dPm 	m2  PmPm]dz= 2n(n+1) (e+m)! nem nem 	dz -57 	2n+1 77-77 'en 
-1 	1-z2 e n 

for rise , Li  =-L
2 and 17  =(1-e' )L1  

	

nem nem 	nem 	lr nem 

It can be shown that(Appendix D); for nee 

ze  

	

2 dPM  dPm 	m  .411 	
1-z2 0116M  12" =j41-z ) --e --n + --- r Pull:1z= -g-2[e(e+1)Pm(z ) --n(z ) nem 	dz dz 	 e o dz o 

-1 	1-Z
2 e n 5en 

m  -n(n+1)Pm  ( zo) dP —dze  zo (6.7.2) 

therefore, 

(1-z2) 	m 	iPm 17  =(1-01  ) 	dP Fa(e+1)Pm(z ) --n(z )-n(ntl)Pm(z ) -c-i-z•c e(z(J 
nem 	lr en 	e o dz o 	n o 

nee 

where 	=e(e+1)-n(n+1) en 

for n=e 
7 .(1-6, )L1 +e, 2n(n+1) (n+m)! 
nnm 	it nnm lr 2n+l 	(n-m)[ 

Ze  
m 2 	2 	2.  

where Li  =.1[(1-z2)( d--1-'n . + m 2 n (Pm) ] dz nam 	 dz ) 
1-z 

-1 

The integrand can be shown to be a polynomial of degree 2n-2. 

The degree of Gaussian quadrature is to be selected then according 

to the inequality 2N-24-:2M-1. 

Therefore there is no accuracy problem in relation to the 
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numerical evaluation of integrals for homogeneous scatterers. 

These integrals are evaluated exactly. If, however the complex 

permittivity of the scatterer is a function of position, the integ-

rals are calculated only approximately. 

After establishing the above integral expressions, the factors 

and wnem are expressed in terms of anemsbnem,cnemIdnem,unempvnem 

them as: 

1 1 a =R (I7 - - I )+ 1  - 0 I2 nem nem nem x nem x2 'nem nem 

b =-R I1 c=-JmR 14 d nem nem nem 	nem nem , nem 	
I 

nem em 

w =-R 12  

	

unem=QnemInem 	vnem=jmRnem
I
?tem , nem nem enm 

In the subsection below the Gaussian Quadrature formula for the 

approximate evaluations of the integrals is given. 

6.7.1 Gaussian Quadrature Formula 

Consider the integral I=ff(0) de . The variable 0 is 
a 

changed to a new variable x in such a way that the limits of the 

integral with respect to x is -1 and 1. This transformation is 

achieved by the relation, 
b-a e. x b+a  
2 	2 ' 

4 

	

b
2
-a f b-a 	b+a I= 	f 1/4

2  
ba 

X ± 2 
b+al

/ x + —) dx s  define F(x)= baf( 2 	2 	2  
-1 

hence 1= f F(x) dx 

then 

The Gaussian Quadrature formula is: 
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I=IF(x) dx=7w.[F(x.)+F(-x )J +Rn 

	

- J 	J .)=-1 

where the remainder R
n is given as 

22n-1-1(xi!)4 R - 	f(2n) (x) 	( -1<x<l) 

	

n  (2n+1) [(2n)!1') 	
0 	0 

 

the abscissa xj  is the j'th zero of the n'th degree Legendre 

polynomial Pn(x). 

weights : w. 

(1-x 12 	IP (X) j' dx n ix=x. 

In the actual numerical calculations, the relevant subroutines 

in IBM SSP(Scientific Subroutine Package) have been used. They are 

designated as QG3A4G4AG5setc., the numbers in the third place 

showing the degree of the Gaussian Quadrature formula. 

The next computational step in the overall solution of the 

multipole coefficients is the evaluation of (I-W)-1. This is 

examined in the next subsection. 

6.7.2 Computation of (I-1•!)-1  

The inversion of the matrix (I-Id) is necessary at every step 

of the numerical solution of the differential equations. It can be 

inverted by the standard techniques like Gauss-Seidel or Gauss 

elimination. However, a different approach'has been taken in the 

present computations. The procedure goes as follows. 

In Linear System Theory the inversion of the matrix (sI-A) is 

extremely important(where s is the Laplace transform variable), 

2 



178. 

because once it is known the transfer function matrix of the linear 

time-invariant system 

x(t)=Ax +Bu 

z(t)=Cx 

(where x(t) is the state variable vector, u is the excitation 

vector, y(t) is the output variable vector, A,B and C are constant 

matrices) 

is deduced immediately as H(s)=C(sI-A)-1B. 

For this reason a very efficient algorithm has been developed 

to invert (sI-A), s being a parameter. This is known as the 

Faddeeva algorithm and is given as(61); 

n-1 	n_2  
(sI -A) 

	

&s)I. os 	• • 	4-Rn...2s+ Rn_i] 	n is the 

order of A. 

where A(s)=det(sI-A)=sn+alsn-1+a2s
n-2+ . . . +an 

and the matrices R1,R2, . . . ,Rn  together with the scalars alsa2, 

. . . ,an are obtained by the following iteration scheme: 

R.  =I 	al=-tr(A) 

RI=A+alI 	a2=- 2 tr(R,A) 

R2=ARl+a2I 0  a3=- 1 tr(R2A) 

• 
• 
• 
• 
• 

R =AR 	=- - tr(R
n-1

A) 
n-1 	n-2

-1-cc 
 n-1I , a n 

1  
n 

where tr(F) denotes the trace of matrix F and equals to the sum of 
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the diagonal elements of F. 

The matrix, (I-d) can then be inverted using the above algorithm 

and putting s=1. The compact form result is 

(I-W)-1= 

1-Ea. 
i=t 

As it is seen the algorithm only requires the multiplication 

of (NxN) matrices and evaluation of traces. , This way of evaluating 

the inverse of (I-W) proved to be more effective compared to standard 

inversion techniques. The inversion times of the present algorithm 

and the standard techniques have been compared with each other: the 

time is appreciably less in the present algorithm with the same 

accuracy. For example, it took 1.2 seconds to invert a 4x4 

complex matrix A with the subroutine MINV in SSP(which uses standard 

Gauss-Jordan method). The same matrix was inverted with the present 

technique in 0.8 seconds. 

For a single matrix inversion operation such amount of time 

difference may seem to be not so important. However, 	(I-w) is 

inverted so many times in the solution of the diferential equations 

that the gain in time in each inversion builds up to an appreciable 

amount. 

A computer subroutine, called CONT(A,N) has been written to 

calculate (I-A)-1 A is given as input, the order of A, which is 

denoted by N, is also given as input. The inverse (I-A)-1 returns 

to the main program and is stored in A. 

It is interesting to notice that a general complex matrix A 

can also be inverted by the present algOrithm. For this purpose 

a new matrix A' is defined as AI=I-A and the subroutine CONT is called 

-1 as A' being the input. Since CONT evaluates (I -A/) it means that 
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it effectively evaluates [I-(I -A)] -1  , which is A
1 

Subroutine CC:TT is given at the end of the thesis. 

The next subsection gives a brief outline of the numerical 

technique used in the solution of the system of linear differential 

equations. 

6.7.3 Numerical Solution of the System of Differential Equations 

In the numerical solution of differential equations, Hamming's 

modified predictor-corrector method has been used. It is a stable 

fourth-order integration procedure that requires the evaluation of 

the right-hand side of the system only two times per step. This is 

a great advantage compared with other methods of the same order of 

accuracy, especially the Runge-Kutta method(which has been used in 

the solution of two-dimensional problems), which requires the 

evaluation of the right-hand side four times per step. Another 

advantage is that at each step the calculation procedure gives an 

estimate for the local truncation error; thus the procedure is able 

without a significant amount of calculation time, to choose and 

change the step size h.(This property is very important in relation 

to the truncation number, because it may not be necessary to solve 

the complete problem for the unknown multipole coefficients for a 

truncation number N and then to increase this number and to see how 

the results change. This comparison can be made locally without 

solving the complete problem. However this has not been employed 

in the present work). 

On the other hand, Hamming's predictor-corrector method 

itself is not self starting; that is, the functional values at a 

single prbvious point are not enough to get the functional values 
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ahead. Therefore, to obtain the starting values, a special Runge-

Kutta procedure followed by one iteration step is added to the 

predictor-corrector method. 

The description of the method goes as follows:(IBM,SSP,Dp;337-339) 

Given the general system of first-order ordinary differential 

equations: 

dyi  

Yi=  dx = f1(xa1a21 . . . Yn) 

dy2  

Y2=  dx = f2(x'Y1a2' . . . Yn) 

• 

• dyn  

41=  dx = in(x'Y1'Y2' . " Yn)  

and the initial values: y1(x0)=y1,0  y2(xo)=y2,o . 	. n(xo)=yn,o 

and using the following vector notations: 

Y(x)=(yi(x) y2(x) . . . yn(x))
T 
 , F(x,Y)=(fi(x,Y) f2(x,Y) . . fn)T  

and, Y
o
=(y

lso y2,0 . . ynso)
T 

where Y,F and Y
o 
are column 

vectors, the given problem appears as follows: 

dY 
Yt= 	= F(x,Y) with Y(x )=Y dx 	o o 

For stability purposes, the modification by Hamming of Milne's 

classical modified predictor-corrector method is preferred. Thus, 

knowing the results at the equidistant points xj_3, xj_21  x 	and j_i   

xj, the results at point xj+1=xj+h are computed by the formulas 

below. 

Predictor: 	
411 =Y. + — (2Y'-Y' +2Y' ) 	(1) 

	

j+l J-3 3 	j-1  j-2 
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112 Modifier: M +1 =P +1 121 - 	CP j-C.) ; 	(2) j 	j  

Mt =F(x 	Mj+1' j+1 ) 3+1 
	(3) 

Corrector: C.11.1= 	+yaw 1-21.!-Y1 )1 
0 j 3-2 	j+1 j  3-1 

Final value: Y =C + -2- 	-c ) Y. 	j+1 121 j+1 j+1 

where YIYI,P,M,MI F and C are column vectors. 

Formulas (1) and (4) have local truncation errors: 

T 
1
= — 454 h 	1 	t1 j+1 
1 5Y  (5) 

	
) with x . 	x 	and 

T2=- 4o 	2 2 	+1 3 
=- h5Y(5)(2) with x < <x. j-  

respectively, such that Y(5)(x) does not vary to any great extent 

in the interval (xj-3 ' xj+1 ), it follows that: 

T 	-3L(P. -C j  ) 2 121 3+1 +1 

This formula shows that the components of the column vector 

Pj+13 -C.+1 are measures for the local truncation errors in the 

components of column vectorYj+1,  and therefore control of accuracy 

and adjustment of step size h can be done by generating the following 

test value: 

8=:Ea1.1P. 	. - C. 3+1,1 	3+1,i1 
	

(6) 

where the coefficients a.1  are error weights specified in the input 

of the procedure. 

If 8 is greater than a given tolerance C, the increment h 

is halved and the procedure computes Yj+l/2'  that is Y(x j+h/2), 

after having interpolated Yi_1/2=Y(xj-h/2) and Yi_3/2=Y(xj  -3h/2), 

(4) 

(5) 
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with previous increment h, using the sixth-order interpolation 

formulas: 

Yj -1/2-   256 (80Y3  +135Y j-1+ 40Yj -2 +Y  j-3)    (-Y1j  +6Yj -1  +Yj -2) 	(7) 

1 	 h  Y 	= 	+135Y +108Y +Y. )+ — 	( -YI -18Y,  +9Y' ) j-3/2 2,o 	j 	j-1 	j-2 3-3 2 128 	j 	j -1 j -2 

(8) 

If 8 is less than St  the resultYj+1  is assumed to be correct 

and is handed, together with xj+1  and the vector derivatives 

Yj+1 =F(xj+1' Yj+1 ), to a user-supplied output subroutine. 

Starting Hamming's modified predictor-corrector method requires 

the functional and derivative values at four preceding equidistant 

points; that is xo,xilx2  and x3. The values Yo  and Y;=F(x0,Y0) 

are specified by the input. For computation of Y1,Y1,Y2,Y,Y3  and 

Y3 and for adjustment of the step size h to accuracy requirements, 

a special Runge-Kutta procedure suggested by Ralston is used. 

Starting at xj, values at point xj+1=xj+h are computed using the 

following formulas: 

Iyh.9 

K2=h.F (x j+0.4h , Y +0 . 

K3=h.F(x j+0.45573725h,Y j+0.29697760y0.15875964K2) 

K4=h.F(x i+h,Yi+0. 21810038K1-3.03096514K2+3.83286476K3) 

and y
j+1

=Y
j
+0.17476028K1-0.55148066K

2+1.20553559K2+0.17118478K4) 

where Yi,Yi+1,K,,K2,K3  and K4  are all column vectors. 

In the actual computations a subroutine named HPCG has been 

used. This subroutine is in IBM SSP. The same computations have 
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been made with the subroutine RKGS(uses Runge-Kutta algorithm) which • 

takes considerably more times compared to HPCG. 

6.7.4 Generation of Spherical Bessel and Hankel Functions  

Spherical Bessel and Hankel functions together with their 

derivatives are required at only two points, namely x=x, and x=x2. 

The argument of the spherical Bessel function at x=x, is complex in 

general and is given as xyqr. The argument at x=x2  is x2  and 

is purely real. Whatever can be said about the properties of spherical 

Bessel and Hankel functions for real arguments can be extended to 

the complex arguments, because of the analytical continuability of 

these functions into the complex plane. In what follows z denotes 

the argument and can be real or complex. 

The spherical Bessel function is defined in terms of the 

cylindrical Bessel function as; 

in(z)=Vi 	J114-1/2( z)  

The spherical Neumann function is defined in a similar way as: 

yn(z)=\)/t n/z Yr141/2(z) 

in terms of these, the spherical Hankel functions of the first and 

second kind are 

h(1)(z)=41(z)+Jyn(z) 	and 	h(2)(z)=41(z)-jyn(z) 

in(z) and yn(z) are plotted below for 4 different values of n 

(0,1,2,3) and for real z. 
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The recurrence relations are also given below. 

fn-1(z) + fn+1(z)=(2n+1) fn(z)/z 

df nfn-1(z)-(n+l)fn+1(z)=(2n+1) --ntzi 	(2) dz 

n+1  fn  (z)+ (z)+ --n(z)=fn-1(z) z 	z 

n f n 	dz (z)- illn(z)=fntl(z) z  

where fn(z) denotes either one of these four functions, 3n(z) , yn(z), 

h(1)(z) h(2)(z). 

Two computer subroutines have been written to evaluate the 

spherical Bessel and Hankel functions numerically. These are 

designated as SHAN and SBES. SHAN evaluates the spherical Hankel 

functions for real arguments. Its argument list is Z,L,HAN,DHAN. 

For a given argument z subroutine computes the spherical Hankel 

functions and their derivatives up to the order L. The zeroth and 

first order Hankel functions(with their derivatives) are given as 

function statements. Then the relations (1) and (3) are used to 

compute the higher order functions. The values of the spherical 

Hankel functions for a set of arguments and indices have been 

computed and compared with the values tabulated in (5 ). There is 

a 7 or 8 digits agreement between the two sets of values. 

Subroutine SBES computes the spherical Bessel functions and 

their derivatives for complex arguments. Its argument list is 

Z 	,SB, DS, where Z is the complex argument, L is the order of 

the highest Bessel function. The computed results for the Bessel 

(3)  

(4)  
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function and its derivative are stored in one-dimensional arrays SB 

and DS. Again the explicit functional forms of the zeroth and first 

order functions are utilized. Having these lowest order functions, 

forward recursion using the relations (1) and (3) above gives the 

higher order functions. 

6.7.5 Generation of Associated Legendre Functions 

The definition of the Associated Legendre functions given in 

(47) was adopted in the present work. This is 

m/2 
Pm(z)=( -1)m  (1 -z2) 	(4 r e 

dz 

where Pe is the Legendre polynomial of order e. 

dPm  A computer subroutine has been written to compute Pm  and --e dz 

for a given z,e and m. This subroutine has the name ASSLEG. Its 

argument list is X , INDEX , MAZ , AL , DAL. Here X is the argument 

of the Associated Legendre function, INDEX corresponds to e, MAZ 

corresponds to m. The computed values for P: and dPM  

in AL and DAL respectively. 

dPm  If In> el  the subroutine sets Pe and --e equal to zero, since dz 

a polynomial of order e gives zero when it is differentiated greater 

number of times than its order. 

If m=0, ASSLEG computes the ordinary Legendre polynomials. 

If m=e$  then the following formulas are used directly to 

compute the function and its derivative 

Pm(z)=( -1)m 1?-22)  (1-z2)
m/2 

 ' 71 dPm  -- mz  Pm  7 2 mr 	1-z2 m 

dze are stored 



188. 

For e> m, the following recurrence relations together with the 

first starting functions are used 

(2e-1)zPm  (z)-(e+m-1)Pm  e-1 	e-2 
Pe  (z)= 

e-m 

= e m) P-1 -ez Pm(z) e 

The first two starting functions are 

dPM 	(2m+1)Pm-(m+1)zPm
+  m Pm  (z)=(2m+1)zPm(z) m+1 	 dz +1 

	m 1 
 

Subroutine ASSLEG is not to be used for x=T1 in its present 

form because of the numerical singularities arising from the factors 

(1-x
2
) being in the denominators of some ratios. The value of Pm 

at x=7-1 is zero, but its derivative may go to infinity depending on 

the value of m. These cases must be treated with care. In the 

present work the points x=1 or x=-1(corresponding to 6=0 and 0=n 

respectively) are not included in the range of evaluation of P: 

dPm   
and 70 . The values of the quantities involiing Pe  and 70 

dPm 

at x=1:1 are obtained separately using their defining equations at x=-1-1. 

If ASSLEG is to be used for some other purpose, the points 

x=-71 must be treated appropiately. 

1-z
2 
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6.7.6 Applications 

In this section the method developed in the previous sections 

is applied to some problems. Some of these problems have solutions 

obtained by using different techniques. The results obtained by 

the present method are compared with these. The scatterers consi-

dered are: an off-centre sphere with a real permittivity, an off-

centre sphere with a complex permittivity, an oblate spheroid and 

a prolate spheroid with small eccentricities, a dielectric cylinder 

of finite length, an oblate spheroidal raindrop, a kidney-shaped 

raindrop and finally as an example of multi-body scattering in the 

three-dimensional case, two dielectric spheres of the same radii 

and spaced a certain distance apart. Among these the off-centre 

sphere problem has an exact solution. The oblate and prolate 

spheroid problems(with small eccentricities) have solutions as 

boundary perturbation expansions. The other solutions for a cylinder 

of finite length, for two spheres and for raindrops are not compared 

with any other solution but they are just presented. The excitation 

is always assumed to be a plane wave propagating along the symmetry 

axis of the scatterer, except for raindrop problems where it is a 

plane wave obliquely incident on the scatterer. 

a) Off-Centre Dielectric Sphere 

In order to test the method for non-spherical scatterers the 

first scatterer to be considered is an off-centre sphere, since the 

exact solution for such a scatterer(as an eigenfunction expansion) 

can be obtained very easily. 
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The coordinate origin is located at the point 0 

a distance d' away from the centre of the sphere 

as shown in the figure. The permittivity of the 

scatterer is e1 and its conductivity is zero. 

The excitation is a linearly polarized plane wave propagating along 

the positive z-axis. 

The multipole coefficients of the incident wave are given by 

(31) 
1/2 ii 

0en en =5 1 
e-1[4n(2e+1)] m,- 

where the upper and lower signs are for and - helicity circularly 

polarized waves, respectively. 

As is seen for a right-hand circularly polarized plane wave 

propagating along the z-axis the azimuthal index m takes the value 

1.(It is -1 for a left-hand circularly polarized plane wave) 

The scatterer is described by the following polar equation: 

e=Cos-1(r
2
+d'

2
-a'
2) 

2rd' 

The formulas developed in section (6.7) for anew  , bnem  , c 2 nem 

d
nem

, unem , vnem and wnem fit this case completely. The factors 

zo and Sineo  de o/dx are given by 

dO 	1 zo=Cog, - 
x 	2-1-ci2-a 	and Sin e°  e°  ao = -o - o 2xd 

where x=kor d=d'ko a=k
o
a'. 

The multipole coefficients are listed below for various 

truncation numbers and for a=0.8 , d=0.2 Cr=3 . The eigenfunction 
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solution results are also given. 

N=2 N=3 N=4 

ail  -0.1520E0-j0.9613E0 -0.1207E0-j0.8943E0 -0.1161E0-J0.8412EO 

a21  -0.5925E-1-j0.4457E-1 -0.5781E-1-j0.3345E-1 -0.6051E-1-J0.3479E-1 

a31  -0.3910E-2+j0.1638E-2 -0.4329E-2+j0.1888E-2 

alil -0.2545E-3+j0.4372E-3 

N=2 N=3 N=4 

07.1  -0.1101E0-j0.8015E-1 -0.1035E0-j0.8109E-1 -0.9980E-1-j0.8124E-1 

p21 -0.7356E-2-J0.5614E-2 -0.6880E-2-j0.5336E-2 -0.6416L-2-j0.5284E-2 

as 
'31 -0.3472E-3-J0.1894E-3 -0.3177E-3-j0.1772E-3 

1341 -0.6932E-5-J0.2537E-5 

e 
as 

(EigenfunStion Exp.) 
: 

(Eigenfunction Exp.) 

1 -0.122720-j0.8594E0 -0.1481E-2-j0.9537E-1 

2 -0.3692E-1+j0.1720E-3 -0.2093E-2+j0.5531E-6 

3 0.5676E-7+jo.7296E-3 0.6553E-104-p.2479E-4 

4 0.8065E-5-jo.6117E-11 0.1811E-6-v.3084E-14 

It can be seen from the above tables that the magnitudes of 

the multipole coefficients decrease much more rapidly with the index 

e in the eigenfunction solution case. This is due to the fact that 

the spherical wave expansion of the fields for a homogeneous dielectric 

sphere is the 'natural' expansion for these fields and the spherical 

vector wave functions are the 'natural' modes. For the off-centre 

sphere a spherical wave expansion is not the 'natural' expansion and 
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the spherical harmonics are not the 'natural' modes. 

The bistatic scattering cross-section G(6) for the plane wave 

excitation is plotted in Fig.(6.1) for N=2,3 and 4. 
The analytical expression for or(6) is defined and derived below. 

The bistatic scattering cross-section ais defined as 

2  Its  

2 

1  
cr=Limii 71r 	2 

lEinc  I 

where 2 
'R,s 
 is the scattered electric field vector and Einc  is the 

incident electric field vector. 

Es 
and E

inc  are given by the following infinite series: 

e ES=_4z=  ZjaS RS 	aS RS I 
0e0 	 em ko  em em 

-inc . 
E =-JZ 

jai R1 1. ai R11 

e.o 	em k
o 

em eml 

-s 	- 
From the definitions of M

em 
and N

e

s  

m 
it is easy to show that 

Lim
-s .e+1 e-jkor  - 

	

M
em
=j 	

k
o
r 

X
em 

r--.03 

s e e
-jk

o
r 

A 

	

Lim N
em
=j 	

remr r-.00 

Hence, 

W e 

	

Lim  Es._iz  e-ikor 	 +.,eas a  xrc  1 
o k

o
r ogo 	em em 	em r end T-,00 

m e 
I De  [if3:m5tem+a:marx2emi e.o m..e 

and 

It% 
cr=  

k 
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Fig.(6.1) Scattering Pattern of an Off-Centre Dielectric Sphere 

for Various Truncation Numbers and for a Plane Wave 

Excitation. 
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Let 
Co e 

.e 	s 
1_313  X +Ct r  S  

e.o 	em em em 	em  

The 0 and 0  components of 5 are 

co e Pm e+1 Yem ( s dPm ) ejm0 
GO=Z z- 3

e 
"cern d@em Sine 

m 	 Pm e )i 
G =ZZ-je -2M (mas -72 em Sine Jv  +4aem s 4 	e 

do ) 0 e.0 
JIM  
4 

where (2e+1) 
'rem [ kn 

(e-m)! 
1/2 

e47-7-31 I Ae= [e (e+1) 1 
1/2 

Then in terms of G0  and G0  , o becomes 

cr = 
2 	2 

1G 1 +I G I J 
k2 	. e 	0 

0 

In what follows, o will be derived for a linearly polarized 

plane wave propagating  along  the z-axis. 

A linearly polarized plane wave is composed of two circularly 

polarized plane waves, one is + helicity, the other is - helicity. 

Thus m takes the values +1 and -1 in the corresponding  summations. 

The components Ge  and G
0 
 then become 

/51 
-1 .e+11- Yel (as dP3e-  _e 	)eic5+ 

Ye 	(as 	+ p:3-1  
De 	e,-1 du 

-ez=-3 	1.4a 	el de 	el Sine 

-1 
Pe 'L. -J0] 
Sine 

and 



1:13e.  
AD1  

m 	.e 

I s  s 	0  ),JY) 	k  —cc  G 	 [r  (as —T-7 +JO 
de-  '- 
	

Ye,-1 e, -1 Sine 
0 4—e.o 	 el el Silly 	e 

aP- -41 4° 

+JP:1-1 dy e  )eJ  

(p m)I 	 [ 

le+m)! e 	

(2e+1) (2+m) 	
1/2 

-m  Using P=(-1)m  4===4:- P 
m 
 with 'th 

e,-m 4n ke-m)! 

it follows that 

le
em

Pem  =( -1)m  Ym pm  
s
-  

e e 

Since pt = Pt;  = (-j)e-1[4n(2e+1)11/2  

it follows from the linearity of Maxwell's equations that 

Similarly a =-a 

em em 

it follows that 	a

e 	ael el,-   

• 

Then G0  and G become 

1 

As 
e )Cos0 	and 

G .25:je+1 	as dP1  

e 	 o 	
( 

' el Fe  - 	Sine 

„1 

-4 	

Y 	

1 

	

el  ( s 	 LIE G-4  =2j 2- -Je  7-- ael Sine 	 e )Sin0 
el de e=o Lae 

0 is then given as 

	

2 .) 	 ,2 

1:12-1
1 

= 	(0) I Cod-0 +IF2(0)1 Sin'95.] 
k

2 
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where 121 ( as dP 
- 

ms 	e ) F
1
(e).2je+1 

el de 	Sine 

	

P1 	
• s dP1  1 F(0)=2j -je  -2- ( as 	e  el Sine JP 	 e ) 2  el de 

It is interesting to consider a(8,0) in directions which lie 

in the planes 0=0 and 0=71/2 , for which the scattered wave is 

linearly polarized. 

Then for 0=0(in the E-plane) o reduces to 

2 

QE(6) = 2 k  
[(1)e./8ine)°:1+ 	a:11 e=r 

This form of 0-  (e) has been used in the calculations. 

b)  Off-Centre Dielectric Sphere With Complex Permittivity 

The computer programme(developed for the solution of scattering 

by rotationally symmetric scatterers)is capable of solving the 

scattering problems for scatterers with complex permittivity. In 

order to test it, again an off-centre sphere is considered with the 

following parameters: 

a=0.7 d=0.2 , Cr=5+j2. 

The multipole coefficients are tabulated below. The bistatic 

cross-section is plotted in Fig.(6.2). 
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N.2 N.3 N=4 
ail 

 0.3257E0-j0.1363:+1 0.2509E0-j0.1009E+1 0.1354E0-V.9113E0 

as 
21 -0.5519E-1-j0.6817E-1 -0.4996E-1-J0.5484E-1 -0.6323E-1-J0.5309E-1 

a31 1 -0.5002E-2+j0.1014E-2 -0.6824E-24.J0.10292-2 

a41 -0.5402:-3+j0.37342-3 

N.2 N.3 N=4 
pT, 

qi  

-0.8097E-1-v.1601m 

-0.3021E-2-j0.1046E-1 

-0.5304E-1-j0.1444E0 

-0.1829E-2-j0.9413E-2 

-0.4647E-1-j0.1330E0 

-0.1235E-2-j0.8584=-2 

133 X31 -0.1093E-3-J0.3916E-3 -0.8452E-4-j0.3431E-3 

Pisa -o.3827E-5-jo.82831,5 

e 

s ae 
. ( Eigenfunction Exp.) 

P: 

(Eigenfunction Exp.) 

1 0.7668E-1- jo.9948Eo 0.6737E-1-j0.1017E0 

2 -0.2835E-1-j0.4917E-2 -0.1681E-2-J0.9506E-3 

3 -0.6840E-4+jo.4202E-3 -0.8122E-5+jo.1517E-4 

If 0.3520E-5+j0.5530E-6 0.8458E-7+j0.4418E-7 

c) Oblate Spheroid 

The shape of an oblate spheroid is obtained 

by rotating the ellipse shown in the figure 

about the z-axis. 

The polar equation describing the ellipse is 

-1/2 
r=bt(1-Vsin2

e) 
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t.2 where b' is the semi-minor axis,v=1-(-b2) , is the eccentricity of a 

the ellipse, a' is the semi-major axis of the ellipse. 

The integral expressions 1i em  (j=1,22...27) defined in section n 

(6.7) have the following forms for oblate spheroid: 

Aldo m Il  =-Lne1r 	o Sine 72(11+(-1)el [(1-z2) 2::(z ) =n(z ) + nem 	 o dz o dz o 	2 l-z 

• Pm(z on  ) Pm(z o)1 Pe(z0)  

„m 2 r • ,e+n] m• 	ar • . 1 = -Lnelr(1-zo)11+k-li 	P kz --nkz e o dz o nem 

dPm 	dP )] 13  =Lne Sine -- deo  [i_(_1)e+31] pe3(zo)  __n  
dz (zo) 	142111(zo)  71; 	o nem 	lr 	o dx 

illem.(1-eir ) [i-(-1)e+1111(zo )  Prini(zo)  

1nem  =Lnelr  [1-(-1)
e+n11°e(z on  ) Pm(zo  ) 

(1-e gi-z2) 6 .[_(]...e )j 	(n+m)! 
lr 2 2n+1 	

lr  
nem 	711-77] 6ne 

en 

[1+ (-1) e+n] 

dPm 	mom -1 
le(e+1)PrIe/(zo) dz (zo)-n(ntl)P:(zo) =e(z0)] 

7 r 
I-  = [7(1-C )L + 2n(n+l) (n+m)V1 
nem 	lr 2 2n+l 	(n-m)! 'ne 

(1 -eir )( i -z:) 
[1+(-1)e471] 

( en 

dPm  . [e(e+1)Pm(z o dz ) 1411(z o  )-n(n+1)Pm(z  o dz ) --e(z o)1 e 	n  
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where 	
ze
r 	/2 2 dPm  2 	2 	2 

J2= p."(z).1 dz 	L2= f [(1-z )(-d7zn) + m2  (Pm) 	dz 
2 	n 1-z -4 	-10 

	

"en e(e+1)-n(n+1) 	Zo= 

dO 	b2 

o Sine --o =  dx Vz x3 0 

1-v 11/2 

V 1  

x=kor , b=kobl 

de It must be observed that as x.,a(a=fcoa')' zo ___>0 and Sine --o odx 

goes to infinity. This singularity is to be eliminated in the 

numerical computations. This is done in a similar way to the two- 

dimensional case(see section 2.5). The defining equations for In  em 

and Inem   are used at x=x2. 

Yeh(54) solved the scattering problem for oblate spheroids with 

small eccentricities using a perturbation technique. His results 

are compared with the ones obtained by the present method, below. 

First consider the following parameters: 

b=0.7 , a=0.735 , Cr=1.7689 

The multipole coefficients are tabulated below for N=4. 

e as e 13: 

1 -0.2004770E-1-j0.3394949E0 -0.2740478E-1-J0.1759193E-1 

2 -0.1525808E-1-j0.2285183E-1 -0.1116973E-2-j0.9449989E-3 

3 -0.6965890E-3-J0.845774 	-3 -0.2660009E-4- 0.1685197E-4 

4 0.2648692E-4-j0.1548128E-3 0.1764057E-54-j0.6132718E-6 

The bistatic scattering cross-section is plotted in Fig.(6.3). 

Yeh evaluates the' backscattering cross-section for this 

scatterer as enb'2=0.042. (This value is read from a curve so the 
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Fig.(6.3) Scattering Pattern of a Dielectric Oblate Spheroid Excited 

by a Plane Wave. 
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probability of its being in error should be considered.) The present 

method gives a/T:13'2=0.0446. 

The multipole coefficients are now given for b=0.8 , a=0.84, 

r=1.7689 and for N=4 and N=5. 	or/X2 is plotted in Fig. (6.4). 

N=4 

e as e P: 

1 -0.6844390E-2-V.5066590J0 -0.4673722E-1-j0.2814950E-1 

2 -0.2283191E-1-j0.3792757E-1 -0.11594852-2-j0.2021811E-2 

3 -0.1234420E-2-jo. 4904404L-2 -0.12513462-3-jo.1038665E-3 

If  0.1710695E-5-V.55810292-3 0.2169135L-4+j0.6245543E-6 

N =5 
as 
e P:  

1 -0.1172132E-1-v.4990890E0 -0.4681494E-1-j0.2784257E-1 

2 -0.224996E-1-j0.4578446E-1 -0.1343945E-2-J0.2025682E-2 

3 -0.7085312E-3-j0.2865440E-2 -0.7614141E-4-jo.8460433E-4 
4 0.2202254E-3-j0.4285576E-3 0.1629453E-5+j0.5610561E-6 

5 0.3355402E-4-v.4983086E-4 0.5037925E-6+jo.9586356E-7 

The backscattering cross-sections are: 

a =0.07317 (N=4) 

a =0.07170(N=5) 

a -0.063 (Yeh) 

nlal 2 

nbl2 

ubl2 
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/ 

Fig.(6.4) Scattering Pattern of a Dielectric Oblate Spheroid 

Excited by a Plane Wave. 
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d) Prolate Spheroid 

The coordinate origin is located at one of 

the foci of the ellipse. It could be 

located at the centre of symmetry 0 of the 

ellipse. The reason for F being selected 

as the origin is twofold i) the polar 

equation describing the ellipse is simpler 

ii) the singularity coming from the factor Sineodeo/dx at x=b is 

eliminated(as can be seen from the expression for Sineodeo/dx which 

is derived with respect to F). However, the cost of the above 

advantages is that the maximum optical radius of the body(which is 

c+a now, compared to a) increases. This in turn increases the 

truncation number and computation times correspondingly. 

The polar equation is 

b2 \ x- a-cCosO 	where c= g=.1? 	x=k r a=k a' , b=k b' . 

b 2  Defining 8=l-(;..) 	(eccentricity of the ellipse) the equation 

takes the form: 

(1-8)a  x- 1-1-6' Cos() 

The expressions for the integrals Inem(j=1,2,... ,7) defined in 

section (6.7) are the same as the ones for an off-centre sphere with 

1 	 - a zo=0oseo= 48 - 
(18) 

 x  16 	2 	and 

de  Sine 	(1-8) a2 

x 
odx /6 

x
2 

The multipole coefficients are tabulated below for a=0.7 



0 

Tat
2 Ica'2 

cr =0.0288(Present method) =0.029(Yeh) 
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b=0.665 , Cr=1.7689 and a=0.8 b=0.76 , Cr=1.7689. 	In both cases 

N=4. 

e a
s 
e 0: 

1 -0.1468606E-1-j0.2690638L0 -0.2732461E-1-j0.1281299E-1 

2 -0.1170997E-1-j0.1981354E-1 - 	-0.1989889E-2-j0.7981297E-3 

3 -0.8212338E-3-j0.5997347E-3 -0.1039584E-3-j0.3279272E-4 

4 -0.4584642E-4-J0.1796943E-4 -0.4131699E-5-j0.1066894E-5 

The backscattering cross-section: 

e a
s 
e 0: 

1 -0.7996370E-1-j0.3857422E0 -0.4592253E-1-j0.1736844E-1 

2 -0.1719272E-1-j0.2462507E-1 -0.2587539E-2-J0.1685603E-2 

3 -0.3170531E-2-j0.9963463E-3 -0.3409492E-3-j0.3437772E-4 

If -0.6431438E-3-j0.4008573E-4 -0.8220002E-5-J0.4097042E-5 

 

=0.047 (Present Method) 

  

=0.045 (Yeh) 
vast na12 

The bistatic scattering cross-sections are plotted in figures 

(6.5), (6.6) . 



.1 

.1 4 

.12 

.o8 

2 )( 0-00\ 2 10  

kF1 =0,7 
kp=0.665 

er,-- 1.76 89 

00  20°  40°  60°  80°  100°  120°  140° 160°  180°  

Fig.(6.5) Scattering Pattern of a Dielectric Prolate Spheroid 

Excited by a Plane Wave. 
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Fig.(6.6) Scattering Pattern of a Dielectric Prolate Spheroid 

Excited by a Plane Wave. 
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e) Dielectric, Cylinder of Finite Length 

The height of the cylinder is taken as twice 

its radius. Thus the cross-sections of the 

cylinder with e=constant planes are squares. 

The integral expressions 1J  em(j=1,2,...27) 

have the following form for this scatterer: 

nem =Lnelr  [1+(-1)e+11] [Cilem(z2)Sine2 	-Enem (z-)Sine1  dx  29-1] dx  

2- m - 1:em=-LnCir  [1+(-1)e41 [(1-4)P:(zi) 15(z1)-(1-z2)P;(z2  

de. 	dO 1 =LnC EL-(-1)e-4111 pF (z.)SinO --1-F 	(z )Sin02 dx21 nem 	11.1_ 	J nem 	1 dx nem 2 

[Pe(z1) Pm( z1)-Pe( z2) P:( z2 )] 

1nem  =Lnelr  [1 -( -1)e+1 [Pflei(zi) P:(zi) -Pm(z2  ) Pm(z2)] 

)j  2 (n+m)! A (1-elr)[1+(-1)e+n] 
n =-72(1-6 emlr 6 2n+1 (n-m)1 

en 
• 

-4)Gnem(zi) -(1 -4)Gnem(z2)j 

(1 -C1r)[1+( -1)e411] 
I =[-72(1-C )j  2n(n+1)  (n+m)f 
nem 	lr 7 	2n+1 717-TITFI'ne 

en 

[(1-z1)Lnem(zi )-(1-.Nem( z2 )] 



Zf 

J
7
= 
1
[(1.-z2)( 

Zp 

2 
2 (Pm) n dz 

1-z2 
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a where z1=Cose1 x = - 	=Co =Sin() z2  e  2 • 1--  1-z

2  

	

1 	x=kor and 

dPm  Pm(z) Pm(z) Pm(z)  n  E
nem(z)=(1-z

2  ) --e(z) --n(z)+ e  
dz 	dz 1-z2 

Anm 
Fnem (z)= Pm(z) -dz  -n(z) + Pm(z) Le(z) 	(z) e  

dPm
z 
 dP G (z)= Pm(z) --n(z) - Pm(z) ) —m z ( ) nem e dz n dze  

dPm  Lnem (z)= e(e+1)P:(z) 	- n(n+1)P Tp(z) 	dPM :(z) -(717(z) 

2 
J
6 	n
=1{Pm(z)] dz 

zz 

The multipole coefficients are listed below for a=0.3 1  Cr=3 , 

N=4. The excitation is a plane wave propagating along the z-axis. 

The bistatic scattering cross-section is plotted in Fig.(6.7). 

e as e P: 
1 0.1419672E-1-j0.7465113E-1 0.3246884E-3-j0.1888603E-2 

2 -0.6911777E-3-j0.1247356E-2 -0.8768957E-4+j0.9174785E-5 

3 -0.3336756E-4-j0.1134983E-4 0.4962860E-6-j0.1057645E-5 

4 0.4184466E-6-j0.9212301E-6 0.2070233E-6+J0.3383398E-7 



AlOx T(Oyft- 

11/4 ine 
E H 

.12 

.1 • 

.08* 

.06 

.04 -  

.02- 

o.o° 

 

140° 	160° 	1800 20°  40°  60°  80°  100°  120°  

Fig.(6.7) Scattering Pattern of a Dielectric Cylinder of 

Finite Length Excited by a Plane Wave. 
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f) Two-Spheres  

As an example of multi-body scattering in three 

dimensional problems, consider the problem 

	

0 	of scattering of a plane wave propagating 

along the z-axis by two dielectric spheres of 
-0 

the same radii. The centres of the spheres 

are 2D' distance apart. The radius of each 

sphere is a'. The coordinate origin is 

located at the point 0 which divides the line joining the centres of 

spheres into two equal segments. With respect to 0, then, the 

scatterer cross-section has the following polar equation 

-1, 
x 2x Da 

2-a  , 2 

	

6o=Cos 	, where x=ko
r, D=koD' a=koa' . 

The integral factors nem(j=1,2,...,7) , apart from a negative 

sign, are exactly the same as the ones for oblate spheroid. 

Since region 1, in this case, is not a dielectric but a 

vacuum, the spherical Bessel functions which are supposed to be 

generated at x=x1 
have real arguments regardless of the permittivity 

of the scatterer. 

The multipole coefficients are listed below for a=0.1 , D=0.2 , 

r
=3 and N=4. a/X2 is plotted in Fig. (6.8). 

e 
s 
e 0: a 

1 -0.4893465E-5-j0.5407832B-2 -0.1958317-6+j0.1113332E-2 

2 -0.1059484E-3-J0.1085637E-7 -0.1340527E-4+jo.1424267E-7 

3 -0.1178725E-7-j0.1303877E-4 0.2704340E-114-jo.46526202-7 

4 -0.1137411E-6-jo.1096259E-l0 .-0.1365339E-7+j0.1206869,:-10 
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Fig.(6.8) Scattering Pattern of Two Dielectric Spheres of the 

Same Radii Excited by a Plane Wave. 
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g) Raindrop Scattering 

The effect of rain on the attenuation and cross-polarization 

of electromagnetic waves at centimeter and millimeter wavelengths 

is an important problem both in radar meteorology field and in design 

of dual-polarization microwave communication systems. Therefore, 

computation of scattering properties of individual raindrops is 

essential to calculate the phase rotations and attenuations which are 

important in the estimation of crosstalk, and in designing microwave 

circuits which compensate for the crosstalk. 

In almost all methods in the literature, the raindrop is 

assumed to be a homogeneous oblate spheroid. The relation between 

the deformation(from a sphere) and the drop size is approximated by 

a linear relation. 

The common computational techniques to solve the scattering 

problem for raindrops are a) the point-matching technique, b) sphe-

roidal function expansions and c) perturbation technique. 

The angle between the direction of propagation of the incident 

plane wave and the axis of symmetry of raindrop is usually taken as 

900 because of its importance in terrestrial microwave relay systems. 

However, other values for this angle are also of interest for 

satellite systems. 

The method presented in this thesis has been applied for the 

solution of two raindrop scattering problems. In one of these 

problems the shape of the raindrop is assumed to be an oblate spheroid. 

In the other it is assumed to be a kidney shape. Recent investi-

gations(58) show that as the drop size gets bigger the shape of the 

raindrops is deformed into an asymmetric oblate spheroid with an 

increasingly pronounced flat base and for a 200011, where a is the 
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radius of the enscribing sphere of the raindrop, drops develop a 

concave depression in the base which is more pronounced for larger 

sizes. The results of these investigations show also that the 

drop shapes predicted by the proposed model agree well with those 

experimentally observed in wind tunnels. 

The polar equation describing such a kidney shape is 

r=rm Sin( e-bCose  ) 	(1) 

where r
m 
is the radius of the enscribing sphere of the shape described 

by the above equation, b is a parameter depending on the drop size. 

For b=0 the raindrop is a sphere, for small b's the shape described 

by (1) is nearly an oblate spheroid. For large b's (1) describes 

a kidney shape. 

The complex permittivity of raindrops is assumed to be constant 

throughout the raindrop volume and values for it can be found in (59) 

for various temparatures. (59) sets an empirical model of the 

complex refractive index for liquid water. This model is applicable 

from -20°C to 50°C . The spectral interval for which the model 

applies extends from 2p to several hundred meters in wavelength. 

In what follows, the multipole coefficients are tabulated and 

the forward scattering amplitudes are computed for the two raindrop 

shapes mentioned above(the forward scattering amplitude is an impor-

tant parameter in raindrop scattering, because the attenuation and 

phase rotation of waves due to rain can be expressed in terms of 

this amplitude). 

In both problems the incident wave is assumed to be a linearly 

polarized plane wave of unit amplitude whose electric field vector 

or magnetic field vector is in a plane containing the axis of 

symmetry corresponding to H polarization or E polarization. 
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The multipole coefficients of such a plane wave are given by(60). 

km- 
aem(H) =-j

e+i(-1)m 	em 
de A e! e=w e   

Pm(CosW) 
Pem(H) = j

e-1
(-1)

m 4-7E y
e  

A 	
m S lei en' 	in 

for H polarization. 

For the E polarization(orthogonal to the H polarization), the 

coefficients are given by 

ai (E) = pi (H) em 	em 

Pem(E) = a
i m(H) e 

The angle yd is the angle between the symmetry axis of the object 

and the direction of propagation of the plane wave. 

i) Oblate-Spheroidal Raindrop 

The geometrical parameters and the integral expressions Iliem  

(j=1,2,...,7) are described in section 6.7.6. 	The multipole coeffi- 

cients are listed below for a(koa9=0.42987065, b(kob9=0.35464347, 

N=3,  Np=90° and et =(34.94093-06.78290)(corresponding values for 

a' and b' at f=19.3GHz are a'=1.0634617 , b'=0.87735639). 
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m e s aem 
as 
vem 

1 0.1554394E0+j0.2731460E0 0,+j0. 

0 2 -0.7173232E-11+j0.10639392-11 0.+j0.  

3 0.29583C6E-3+j0.3876584E-3 0.+j0. 

s ,s 
in e aem Pem 

1 0.7079224E-9-j0.5710243E-9 -0.3902621E-1+jC.2111218E-2 

1 2 -0.1474611E-3+j0.2751226=-2 0.3090521E-11-j0.6747894E-13 

3 -0.3705687E-13-j0.2839943E-11 0.3692775E-4-J0.40246753-5 

m e as 
em 

as 
vem 

1 0.+j0. 0.+j0. 

2 2 0.3359451E-11+j0.7683537E-13 0.1250020E-3-J0.2987728E-3 

3 -0.5372847E-4-p.2505431E-4 0.4455198E-144- j0.60942027-14 

in e S a em 
as 
as 

1 0.+j0. 0.+j0. 

3 2 0.+j0. 0.+j0. 

3 0.1087967E-14+j0.1624020E-13 0.6884764E-6+j0.4912938E-6 
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ii) Kidney-Shaped Raindrop 

Er 

H' 

In terms of x= or, the shape of the raindrop is described by 

the following equation 

x = xm Sin( e-bCose  ) 

The initial point of the integration range is obtained by 

putting 0.0 in the above equation, hence 

xi = xmSin( e-b  ) . The final point is x2=km. 

The integral expressions 1i 
em
(j=1,2,...,7) have the following 

n 

form: 

for xi4x4x
c
(where xc  is shown in the figure and is given by 

xc = xm
Sin( eb  )): 

ebzo  1 

	

zo=Coseo= - - 	-1( Lc  )] , Sineo dx  1E0 

	

b 	xm x
m
bCos(e

-bz
0) 

r 	2 dPm  dPm 	2 	1 m 

	

=-Lne
lr

1.(1-z ) -e 
 --n + 	Pm(z P (z )] Sine 112-0 nem 	o dz dz 	2 e o 	o 	o dx 1-zo 

dPm  
Inem
2 = -Lae

lr 
 (1-z

2 
 ) P

m 
 (zo  ) --n(zo  ) o e dz  



z 	Ln[sin-1(  _x 
o b 	x

m 

z1=- lb- 
Ln[7E-e-bzo] 

bz dO 	e o  
bz o  D  =sine —0= 	, 

e o) e odx bxmCos  

ebz1  

bxmCos(e-bz1) 

ao D =Sine ldx  --1 
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dPm 	 Alp 
13  =Lne [Pm(z )(zo  ) + Prn(zo dz  ) =-1.e(z o  )i Sine nem 	lr e o dz 	 o ax 

Illem=(1-eir) pm(z0) Pm(z0) 

I5  =Lne Pm(z ) Pm(z ) nem 	lr e o n o 

(1-e1r  )(1-z2) 

	

1 	.  
n 	

1 	(n m). 
em  1(1 -6ir)%pm  + 2Clr 2n+1 IT-717 

A 
J 8ne 

dPm  .[Pe(z0) 15(z0)- P:(z0) V(z0)] 

	

n(n+1) (n+m)! A 	(1-eir)(1-ZO
2  

)  

nem [(1•4 )L +2e 

	

lr nnm lr 2n+1 	]'ne 
en 

	

. [e(e+1)P.:(zo) 15(zo) - n(n+i)P:(zo) 2: 	1  
dz (zo)J 

for x . x 4x c 	m 

m  2 1 	r 	 dP Inem=Lnelr L(1-z2  dz 	dz,) —edPm(zi) —n(zi) + m 2 ) P:(z1)  "Del 



[ (1-zo) cilzme(zo) Ad4 (zo) 	
2

e P(zo-) Pni(zo) i• Deo} 
o 

12 .-Lne [(1-z2)10m(z ) IETI(z )-(1-z)Pm(z,) em(z1 )] nem 	lr 	o e o dz o 	e 	IP J. 

	

13 	LnC 	Pn(z ) 1114(z )+Pm(z ) ALe(z )j.D - [Pm(zi) nem 	lr 	e o dz o n o dz o 	e 

+P:(zi) 5(z.1)  ]-De 

IiLm= (1 -eir) [P:(z.) 10:(z0)- P:( ) P:(z1)] 

Inem Lnelr[p:(z0 ) pm( z0 ) - p:( zi ) p:(z1)] 

+ 
2 	(n+m)i. 	(1-C ) lr (i_z21. 16 = 	)M nem 	lr nnm 2n+1 Z17-707 -ne 	 0en 

[P:(z.) -d-Ime(zo)-Pril(Zo) c5E/1( Z0 )] -(1-zi2) [P2(zi) 11-:(z1)-Pnel(- ) --nem (zj dz 1)i  

)11 	2n(n+1) (n+m)i 1 	(1-£1r ) 	2 
nem 	lr nnm 2n+1 e !s en 

m 

	

[e(e+1)Pme(z0) 4.(z0)-n(n+1)P:(zo) dz) 	-(1-4) [e(e+1)Pnel(zi). dz 

d
m

z (zi)-n(n+i)P:(zi) 	2:1 (zi)]] 

	

where 	4 	 1 
„inm 2 	2 

K = 5 [Pm( zf dz 	L = i [(1-z2)( ===n ) + m (Pm)21dz nnm n 	' nnm 	dz 

	

zo 	 1-z2 n j 
zo 
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71) 
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z6 

m 2 	2 	2 
N = jr [(1-z2)( dz ) 	m  2  ( P: ) dz 

1-z 
Z, 

.270 
2 

M = [Pilia(z)] dz 

z, 

The multipole coefficients are tabulated below for rm=lmm, 

f=19.3GHz, N=3, er=34.94093-j36.7829 	'AP =90°  and the incident 

wave is H polarized(as shown in the above figure). 

m e as em Ps em 

0 

1 

2 

3 

0.3406388E-1+j0.1900453E0 

-0.9580840E-3-j0.3331632E-2 

-0.2326362E-4-p.1174554E-3 

O.+jO. 

0.+JO. 

0.+j0. 

m e s a em e em 

1 0.9698734E-1+j0.1676412E0 -0.3142404E-1+j0.8013959E-2 

1 2 0.2175271E-2+j0.1144539E-1 0.5619762E-3-j0.7619557E-5 

3 0.8637959E-4-j0.1503094E-3 0.2343796E-4-j0.7948916E-5 

m e as PS em em 

1 O.+jO. o.+jo. 

2 2 -0.5735428E-3-J0.4512083E-4 0.4510307E-4-j0.1036925E-3 

3 -0.3118413E-4-J0.7012180E-5 -0.1392447E-5+j0.2712876E-5 

m e as em Os em 

1 O.+jO. 0.+j0. 

3 2 0.+JO. 0.410. 

3 0.1337575E-6-jo.5856818E-6 0.2267100E-6+j0.1721018E-6 

The multipole coefficients for negative m can easily be obtained 
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from the ones with positive m as shown below. 

First it is shown that the solution of the differential 

equations is insensitive to the sign of m. 

Consider the integral expression Inem. Whatever is shown to 

be true for I1 can be easily extended to other 13  's. For a nem 

rotationally symmetric body 

	

tm.Lneir  [(1.z2) dz 
2
dz: 
	

2 e Pn  
 Si e oad  

1-z 
r  

Putting  -m instead of m gives 

I 	, 21  dP-m drm 	m -m 	de 
ne2-m=Ln0lr 	/ --e --n + m22 

 Pe Pn Sine --o o dz dz 1-zo 	
odx 

	

-m 	m e)pm() ' i  z since P (z)=( -1) ( ----T-  

	

(e+m)! e 	nel-m becomes  

1 (e-m)!(n-m)t  2 	m 	(e-m)! (n-m)!  
nes-m-  (e+m)!(n+m)! 	nem 	let "J en 	(e+m)! (11-101 

then I1 	m I1 nes-m = Jen nem 

in a similar manner it is easy to show that=jm ne-m en nem 2   

(j=2,3)..,7). 
Consider now the factor anem • It is given by 

1 
1 

	

_2. 	
12 a  = R (17  - nem ) x `nem nem nem nem nem x 	

0 
 

for negative m 

Ine
1  

a 	= R 	_ 	-m ) 	2 ( 17 	4. _ 1 2  n 	I ne)  -m ne2-m 	ne,-m 	x 'ne -m ne -m 
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271  41.zra 
ne,-m 	

Ae An 

Y Ye 	Y s-m 	22,-m 1  [(2e+1)(2n+1) j 
11/2 

' 
= kit 

1/2 
I (e+m)! (n+m)!  ] 
L (e-m)! (n-m)! j 

_ 1/2 
so 	R 	. 	(2e+1)(2n+1)  

ne,-m 2 e(e+l)n(n+1) 

1/2 
ij = (2e+1)(2n+1) Vlym 

and R 	 (j=1,...7) ne,-m nel-m 2 	e(e+l)n(n+1) 	• 	en nem 

Substituting the equivalent of kim n  in the above equation gives e 

Yem 
 Ynm IJ = R R 	= 2n ne,-m ne, -m 

4 .se An 	nem 	nem nem 

Since Quem=e(e+1)14nem  Qn 	I2 ne,-m-=  Qn 	
2 

em 
T  
-nem 

follows that 

and  it 

ane, -m = anem  

It can easily be shown that the other factors do not change 

with the sign of m. This means that the solution of the differential 

equations are unaffected by a sign change of m. 

The next thing is to see what happens to the multipole coeffi-

cients of the incident wave when m is replaced by -m. 

i 	.e+1 	4n y 

e de 
m are  aem=-J 	(-1)m 	-- 

e  

Fern e-1 	m Pe  J (-1) 
4n yem  

Ae  

pm(Cos10 
m 	Sin'W 
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putting m=-m gives 

al- 4e+1 t_117m 	( 	P 
-m ) 

e -m J • 
I 

' Ae  . de Ye,-m e 	0='11  

p-M  
a 	= 4e-1 (...1)-m 42E (_m)  e97m e_ •■••••■•• Pe,-m e 

Since (-1)-m  = (-1)m  and Ye -m e 15-111  = (-1)m  y em e Pm 

ai 	m i m i and 	Re,-m ==(-1) e -m = k-1) a 	
Rem em 

From the linearity of the equations(which follow from the 

linearity of Maxwell's equations) involved in the solution it is 

found that 

m s 	Psem  aes-m = (-1)m  a:m 	and 	P ep-m = -(-1) 

The forward scattering amplitude is defined for H -polarized 

incident wave as: 

1 	^ ^ 	jk r -sI S = x-Sinyvaz). Lim jkore o E H 	 e=7E--tp s0=0 o 	r-, co 

- whereLis the amplitude of the incident wave, Es  is the scattered 

field. By the help of the analysis given in section 6.7.6 it can be 

shown that 

m e 	Priel(Cos1) 	dPm(Cosy)] E.s 	,je+1 (..1.)e+m [a: m 	 

SinY 
+  as 	e  

H 	m 	em 111.-e 

or truncating the series over e at e=N(=3 for this particular rain-

drop scattering problem) 



3  4 
+ 

fr1=-5 
(-1)m+3  km  m 

P3(Cosy') 	 ,8 
-3m 	dy 

SinAF 
3 
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E.S =i 	
P(Oos1) 	s dPlal(Oosy)] 

ije+1  (-1)e+1  [as  m 
m 
e 	+ a 	 

1  H 	 'ern Sin? em dy J 

The above equation is equivalent to 

16T(OosV) 	s  dPT(Cos?)] L .2 E.SH=E a (-1)m+1[Ps  m A' 	 1 i  
1 	ni-L 	lm 	Sin 	+ aim 	dv 	i 

111 (Cos1) 	s  dI(Oos1)] 2 

4-  J3  (-1)m+2 [02% m 
P2 (Cos*) 

 	 +  a2m 	dy 	2 
2 	 Simi, 

After some algebra, it can be shown that for y=90°  

I = 2 	- a' 1 2 .11 lo 

= z2
2 

as _ _42 a8 1 
21 2 '22' 

13= (-721(333  + 242a32  + 26(331  - 24a30  )/16 

Using the values for the multiloole coefficients the forward 

scattering amplitudes for the two raindrop problems are found as 

E.ISH 
( Oblate Spheroid ) = -0.2267027-j0.2722655 

EiSra( Kidney Shape ) = -0.4088939E-3-1-J0.4945158E-4 
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7. General Remarks and Future Work 

The electromagnetic scattering problem has a growing importance 

both in the theoretical field and also in the actual engineering 

applications. Some of these have been mentioned in the first 

chapter of this thesis. 

The frequency region where the present work has been confined 

is the resonance region in which the wavelength of the incident 

radiation is in the order of some characteristic dimension of the 

scattering. object. 

The methods of solution for the scattering problem in this 

frequency region are limited in number especially for scatterers 

which have nonseparable surfaces. The problem poses many mathema-

tical difficulties even for rotationally symmetric scatterers. 

The moment methods which are powerful techniques for linear 

antenna problems have not been used for the solution of three-dimen-

sional scattering problems involving nonspherical scatterers, 

because of the very large matrices involved in the solution. 

Direct solution of the integral equations set up for the 

unknowns of the problem, is extremely difficult if not impossible 

to solve either analytically or numerically. These integral equations 

are vector integral equations, their kernels are complicated functions 

of the unknown vector quantity(derivatives of the unknown vector 

are involved) and they are surface integral equations(for perfectly 

conducting scatterers) or volume integral equations(for dielectric 

scatterers) Also the convergence of the standard solution techniques 

such as Neumann iteration , is by no means guaranteed numerically 

because finding the zeroth order approximation which should give 

convergent higher order iterations, is a problem in itself. 
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Characteristic mode approach to the solution of scattering 

problem is a newly developed powerful technique. It has been 

applied to certain scattering problems involving perfect conductor 

scatterers successfully. It gives physical insight about the 

underlying mechanism of scattering phenomena.in the resonance region. 

However, for dielectric scatterers, the characteristic mode approach 

is still in theoretical form and no actual practical problems have been 

solved by using it. 

Finite-difference and finite-element methods, although were 

applied to various electromagnetic field problems with remarkable 

success, have not been used to solve three-dimensional scattering 

problems to the best of author's knowledge. 

The present method should be considered as a step in the 

development of solution methods toward a really efficient one, both 

from the point of view of computational simplicity, capability of 

providing reliable results with experiments and giving pysical insight 

into the actual happenings in the scattering process. 

The present work, like most of the others treats the problem 

in the frequency domain. Actually this is understood implicitly 

when the frequency region is specified as the resonance region. 

Transient scattering problem is another aspect of the general scattering 

problem and more attention is given to it today because of its extreme 

practical importance. 

The method developed in this thesis for two and three dimensional_  

time harmonic electromagnetic scattering problems can be improved in 

the following aspects. In chapter 3 , it was said that for some 

scattering cross-sections using elliptical boundaries may be better 

from the computational viewpoint. This assertion must be endorsed 

with a set of numerical applications. If the results of such an 

investigation turns out to be positive a natural extension of this 
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modification of the method is to the scattering problem for long 

(but not infinite) dielectric cylinders. This time inscribing and 

enscribing shapes are prolate or oblate spheroids. 

The scatterers considered in the thesis for three-dimensional 

scattering problems are not optically large. The reason for this is 

not to use too much computer time when unavoidable programming 

mistakes are made. The first aim is to show that the method works. 

Therefore, another investigation is needed to examine the computational 

aspects of the method for optically large scatterers. Then the 

advantages of the method and its place among the other solution 

techniques available at the moment will be much more clear. 

Another interesting point to be investigated is the effect of 

the magnitude of the complex permittivity of the scatterer on the 

required truncation number. It was observed in actual computations • 

that as the magnitude of the complex permittivity increases the 

number of terms to be taken in the infinite series representations of 

the fields increases correspondingly. This point of the method is 

especially important in the raindrop scattering, since raindrops 

have relatively large refractive indices. 

The computer programme can be improved in many respects, 

among which a better programming, decreasing the execution times 

by eliminating the unnecessary computational steps can be mentioned. 



220. 

APPENDIX A 

Decomposition of a Plane Wave into Even and Odd Parts for a 

Symmetrical Scatterer 

Consider a scatterer with cross-section C. 

C is assumed to be symmetrical with respect 

to x-axis. 

A plane wave whose direction of propagation 

makes an angle 00  with the x-axis, is incident on this scatterer. 

The incident wave is assumed to be TM-polarized. Denoting the 

electric field(in z-direction) of the incident wave by Vo  and assuming 

unit amplitude for it gives the following expression: 

V e jko (Coscsoxi-Sinfooy) = e jkopCos(0 -00 ) 

Vo can also be written as 

V=  1 ejkopCos(0-00)+  1 _jk_pCos(0+0 )4. 1 jk pCos(0-00) 1 jk° 
 pCos(0-4) 

o 2 	2  " 	° 2 e  ° 	- 2 e  

v = rejkopCos(0-00) ejk0pCos(04-00)] 
oe 2 

v = Pk,pCos(0-0o) - ejkopCos(0+00)] 
00 2 	- 

V=V+V 
o oe oo 

Since the Helmholtz equation is linear, solutions to the 

Let 

then 
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excitations Voe 
and Voo can be found separately and the results are 

linearly superposed to find the solution for the excitation Vo. 

It is obvious from the expressions for Voo  and Voo  that 

Voe(P'-56)=Voe(P°95) 	
and Voo(p,-0)=- Voo(134) 

V excites the scatterer symmetrically with respect to the 
oe 

 

x-axis. It is therefore possible to write the following 

V2(p,-0)=V2(p,O) V3(p,-0)=V3(p,O) , where V
2  and V3  are the 

z-components of the electric field between the inscribing and ens-

cribing circles and outside the enscribing circle respectively. 

Using the series representation for V2  the following is 

obtained 

00 

fifm(p) ejm° =:Elfm(p) eim° =:Er-m(p) e-jm° 	
0,&!,0,21t 

and consequently f_m(p)=fm(p) 

Similarly for V
3
: 

b H(2)(kop) e
-3m0  411) H(2)(kop)eimg5=J>:b H

(2)(k p) e-Jm° 
4— M M 	rT1-00 

M M 	ma-co —M —M 

,
m
(2), 

since H
(2)(k 

o 
 p)=(-1)

m
n kkop. , 

it follows that (-1)mb- 
 =b

m 
 or 

-m 	
m  

b_  (-1)m  bm. 

For the excitation V : oo 

V
2
(p' 

-9)= -V2(p0) 
	

and V3(p,-0)=-v3(p,0) 
	, since V oo 

excites the scatterer asymmetrically with respect to the x-axis. 



c°  H(2) (k  H (k p) e-im0  
rnico m ° 

(2) 	im0 	H(2)(k ) e 111°  b H (k p) e 	_m  op 
m m 

n1=-c0 m_ CO  

222. 

fm(p) e-im°  =- :Ef (p) eim°  -t° f_m(p) e-im°  
rrl 	 m=-00 M 	 111=-m 

f_m(p)=-fm(p) and 

and finally 

b-m=-(-1)m  bm.  

This way of decomposition of the incident wave into even and 

odd parts decreases the sizes of the matrices employed in the solution. 

If, however, the scatterer.has no axis of symmetry, it is not 

possible to decrease the sizes of the matrices by such a decomposition. 
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APPENDIX B 

Derivation of Equations (4.1.2a) and (4.1.2b) 

In section (4.1.2) it has been shown that in a source free 

region of empty space the electric and magnetic field vectors satisfy 

the following equations: 

(v2+0)11=0 , V.171=0 with E given by E= =1- Curl 	(Bo) 
weo 

and 

(V2+k2)E=0 	V.E=0 with E given by H=-1- CurlE 	(B.2) 

- - 
Consider the scalar quantity r.A , where X is a well-behaved 

vector field. It is straightforward to verify the following vector 

relation 

e(i..x).;.(v2x)+2v.x. 

From (B.1) and (B.2) it therefore follows that the scalars 
- - 	- - 
r.E and r.H, both satisfy the Helmholtz wave equation: 

(v2+0)(1..2).0 	(v2+0)(m).0 
0 	 0 

The general solution for ;.E is given by (4.1.1a), namely, 

 
i 	 ) ( 2 ( 	r)IY .t. 1.  x.kem  he1)  (kor)+A()  2)(k em e o em

(8,0)  e=om,e 

and similarly for M., • 
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Now a 'magnetic multipole field of order (elm)1 is defined by 

the conditions, 

- -M)_ e(e+1) 	- -(M) 
r.He
(
m 	ge(kor)Yem(0,0) 	r.Eem 

_ - 0 (B.3) 

(2) (2) where g 
e
(k

o 
 r)=A(1)h

ft)
(k

e 	o 	ee 
r)+A h (k

o  r). 

The presence of the factor 
	e(e+l) is for later convenience. 

o 

Using  the Curl equation in (B.2), (;.2) can be related to the 

electric field: 

(410;.2=j;.Cur12=j(;x17).2=-L.2 , where L=.-j(";.0) 

With (;.2) given in (B.3), the electric field of the magnetic 

multipole must satisfy 

and 

L.E(M)(r,e,0)=e(e+1)ge(kor)Yem(0,0 em 

;.E(M)=0. em 

(B.4) 

To determine the purely transverse electric field from (B.4), 

it is first observed that the operator L acts only on the angular 

variables (0,0); This means that the radial dependence of 2(em)  

must be given by ge(ker). Second, the operator acting  on Yem  

transforms the m value according  to the following  relations, but 

does not change the e value. 

L
+
Y
em=4e-m)(e÷m+1) Ye,m+1 

L
-
Y
em4e+m)(e-m+1) Yesm-1 
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Lzy
em
=mY

em 

.30, 	a where L =L 	=y  e k 	+jC0te 	) x 	ae 	ao 

- 	8 L =L 	= e --id  (- — +jCot8 a ) 
- x y 	ae 	80 

a L 	
ao 

z = -j — 

Thus the components of f(M)  can be at most linear combinations em 

of Yera's  with different m values and a common e, equal to the e 

value on the right-hand side of (B.4). In order for E.2(M)  to em 

yield a single Y.em,  it is necessary to prepare the components of 

E(M)  beforehand to compensate for whatever raising or lowering of m em 

values is done by L. Thus, in the term LE+, for example, it 

must be that E+ is proportional to L+Yeth.  What this amounts to is 

that the electric field should be 

E
e
(
m
) =g

e(kr)LYem(0,0) together with 

(3.5) 

E(M)= 	CurlE(M) em 410  em 

(B.5) specifies the electromagnetic fields of a magnetic multipole 

of order (e,m). 	Since E(M)  is transverse to the radius vector, em 

these multipole fields are sometimes called transverse electric(TE) 

rather than magnetic. 

The fields of an electric or transverse magnetic(TM) multipole 

of order (e,m) are specified by the conditions, 

_  
r.E

e
(
m 

-E) = e(e+1) f e (k 0 r)Y 
em(e,0) 	) 

o 	• 

) r.He
(
m 

=0 
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Then the electric multipole fields are 

ne(Em)  =fe(kor)rzein(e psis) 

E2) 	duriR(e:)  

The function fe(ko
0 is given by an expression similar to the 

one for ge. 

By combining the two type of fields it is possible to write 

the general solution to the Maxwell's equations: 

we ll  

11= 	 [cemrem(;)+ 1"oo
1t (;)+a:Am(;)4.  tco:mnm(;)] 

- °°e[l 	- 
E=Z :E a 	em

M
em 	

- 	s 	(141 
k em

N em(r)+p 	
(r)+ a k emN em(r)+P em em e.o rn.-e 0 

where the coefficients aemem 
specify the amounts of electric (e,m) 

multipole and magnetic (e,m) multipole fields. These coefficients 

are determined by the sources and boundary conditions. 
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APPENDIX C 

In this appendix the solution referred as the eigenfunction 

solution will be explained briefly. 

Consider a homogeneous dielectric shell excited 

by a TM-polarized plane wave. 

The solutions of the Helmholtz equation in regions 

P<Pr plzp4p2  and p) p2  are respectively 

VfY am  Jm(kop) eiMO 

vzt" pbm  Jm(kip)+cm  H!2)( klp) dill° 
Ms..%) 

CO 
V
3 
 =>-- 

 m  
[i 111(212)(kor) 	Jm(kor)] eim°  

These series are convergent in their respective domains and 

they represent the field uniquely there. Since region 2 excludes 

both the origin and infinity, both functions Jm(kip) and H!2)(kip) 

are included in the solution(they are both nonsingular in region 2). 

H
m
(2)(k

o  p) is singular at the origin, so it is not in the expression 

for V1. a
m 
 , b

m 
, c

m 
, d

m 
are unknown expansion coefficients. 

m are the expansion coefficients of the incident wave and they are 

assumed to be known. k1  is the wave number for region 2 and is 

equal to kole- , where C is the permittivity of the shell. 

To find a
m 

bm  , Cm  , dm the standard boundary conditions at 

p=p, and p=p2  are applied. These are the continuity of the tangential 

components of both the electric and magnetic fields across the air- 
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dielectric boundaries. Quantitatively this is equivalent to 

amJm(x1)=bmJm<xid)+cmH11(12) (X1d) 	(C.1) 

am:jm1(x1)/i-r ['im:Tm(x1d)+cmil(2) 	1  

	

(x1d).1 	(C.2) 

where .xl=kop Xie 

to the argument. 

Similarly; 

r  xl 	. denotes differentiation with respect 

bm  Jm (x2d m m )+c H(2)(x2d m m )=d H(2) )+Vm(x2) (C.3) 

05.3jbm:lm(x2d)+cm;'(2)(x2d= dmH(2) (x2)+tm:Tm (x2) 	(c.4) 

where x =k p 	x 	x2  

Solving 

o 2 	2d r 2 

Solving the equations (C.1)2(C.2)2(C.3) and (C.4) for dm  gives: 

• 

d - jm(x2)-Fmjm(x2)  

m
Fm  H .m`

(2)( 
x2 

 )_H(2)(
mx 2

) 

1 j
m
(x
2
d)Gm+Hm(2)  (x2d) where Fm 	

(2) 1 [J
m
(x

2d
)G
m
+H
m (x2d .1 

(2)(
xld 
) • (( 	(xl)Hm jm(xl)Hm2) mid 	r m 

• 

VdrJm(xl)Jm(xid)-Jm(xl)Jm (xid)  

The infinite series for V
3 

with the expansion coefficients dm 

given above is an exact representation of the total field for region 

P >P2. 

and 
G
m 
 - 
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APPENDIX D 

Derivation of Equations (6.7.1) and (6.7.2) 

Equation (6.7.1) is the following: 

4 

fPin Pn  m dz= 
,m 

[Pe(zo) =ndz (z.)--P:(%) 2:dz (zo)1 ne 
en 

In the derivation of the above equation, the starting  point 

is the differential equation satisfied by the Associated Legendre 

functions: 

r 	-1Dmi 	2 
L(1-e) 	j+ (e+1)- m 	'Pm = 0 

dz 	dz 1-z e (D.1) 

Equation (D.1) is multiplied by P: with the following  result: 

Pn
m  dd 

z  
[k l-z2/  -z  e 

 
] +[e(e+1)- m 

2 

2
]Pme 

 Pmn  = 0 1-z 
 (D.2) 

Interchanging  the indices n and e in the above equation results 

in: 

2 
Pm 	[(1-z dz 	dz 

d 	`) ==nj +[n(n+1)- in  1PM Pm =  
Pe 1-z e n (D.3) 

Substracting  (D.3) from (D.2) gives the following: 

16 
 dz L r(-z2) n  

271.. pm 1- 
dzeJ e dz 

dP m i  

dz J 
+ 	Pm Pm = 0 	(D.4) en e n 

where 	en e(e+1)-n(n+l) 



230. 

Next, (D.4) is integrated from -1 to zo. 

R6 	 m 	4 	 zo  

{.(1-z2) n dz 	dz. dz- P — (1-z ) --n]dz + .1-Pm  Pm  dz= 0 jr m d [ 	2 dPm 

e dz 	dz 	en e n -1 

Using integration by parts in the first two integrals results 

in the following: 

(1-z2)Pmn  gt:  dz 

Zo 	Zo 

2 	dPm  dPm  f(1—Z ) 
dPm  (1 2, 

Z, 

1114 e dz dz 	dz 
-f 

zo 

f(1-z2) -dPnini dal dz dz dz 44en TPnel P
m  dz = O. 

-f 

Cancelling the second and fourth terms gives 

zo m 
fpm pm dz= 	1-a-z2)(Pm  --e - Pm 2n)] n Jen 	n dz 	e dz 

The value of the square bracket at z=-1 can be shown to be 

zero. The final result then follows as: 

zo  • 	
(1-z:) 

P: d z= 	P2(z ) 1.121(z )4m(z ) .-114(z n o dz o e o dz o (D.5) 

To derive equation (6.7.2), (D.3) is integrated from -1 to zoo - 

	

Zo 	Zo 2 ir  m d 	21 dPmi 

	

P 	(1-z --n dz +f[n(n-I-1)- m 	Pm  Pm  dz= 0 e dz 	dz 1-z2 e n 

The first integral is integrated by parts with the result: 



231. 
470 	

m2 
(1-z2)Pm cl•Pnin I - I(1-z2) e -Emn dz +J  [n(n+i) - 	2  

e dz 	dz dz 
-1. -1 	- -1 	1-z 

 

Pm
e  P

m  dz = 0 

Rearranging the terms above gives 

go 	 zo 

J 	
2 dPm  dPm 	m2  .4t1 ) --e 	+ — r Pm] dz =(1-z2)Fgi  un +n(n71-14PM  Pm  dz e 

1-z2 e n -1 	 -t 	-t 

Substituting (D.5) in above equation gives the required integral 

as: 

Zo  
2 dPm  dPm  m2 	1-0  -m-m 141-z ) --e --n + 	r ridz= 	[e(e+1)P:(zo) 5(z0) dz dz 1-z2 e n en -f 

dPm  -n(n+1)Pm(zo) —dze  zo 
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Description of the Computer Programme 

A computer programme has been developed for the scattering 

problem for rotationally symmetric dielectric objects. It calculates 

the multipole coefficients of the scattered field in its present 

form. Depending on the parameters of interest(for example back-

scattering cross-section or forward scattering amplitude) a small 

addition to the programme can be made to compute these parameters 

as well. 

It has been tried to form a close similarity between the 

variables used in the programme and the ones in the theoretical 

analysis. 

The description of the subroutines and function subprograms 

goes as follows. 

Subroutine SOMEF calculates the following quantities: 

1 	(e+m)! 'era nm 	Q
nem 

e(0.1)R
nem 

e(e+l) 
' 2e+1 T;:77r ' Rnem

=2n 

6en 

Its parameter list is ICF,MAZ,DEL2,AJK,R,Q. ICF is the 

truncation number(corresponding to N in theory), MAZ is the azimuthal 

index m. These two quantities are inputs to the subroutine, the 

other four are the outputs corresponding to the quantities whose 

explicit forms are given above. DEL2 and AJK are one-dimensional 

arrays, R and Q are two-dimensional arrays. 

Subroutine ASSLEG evaluates the values of the Associated 

Legendre functions and their derivatives for a given esm and z as 

inputs. Its detailed description is given in section 6.7.5. 

The -Variables ALFAI and BETAI denote the multipole coefficients 

of the incident field. They are complex variables. 

Subroutine HPCG solves the system of differential equations 
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numerically. It is called from IBM's SSP(scientific subroutine 

package). The algorithm which is used in this subroutine is the 

predictor-corrector' algorithm. Its argument list is PRMT,Y,DERY, 

NDIM,IHLF,FCT,OUTP,AUX. PRMT is a one-dimensional array. It 

specifies the parameters of the differential equations such as the 

starting point of numerical integration, end point, step size and 

local accuracy criteria. These are all given in the main programme. 

Y is used for the solution values of the differential equations. It 

is first used in the main programme to specify the initial conditions. 

After calling the subroutine, the values found as the solution to 

the differential system are stored in this one-dimensional array. 

DERY is another one-dimensional array to store the right hand side 

of the differential system. The error bounds(described in section 

6.7.3) are given initially.by way of DERY in the main programme. 

NDIM is the dimension of the system of differential equations. IHLF 

is a parameter supplied as an output of the subroutine and showing 

whether the system of equations stable numerically or step size is 

sufficient,etc. FCT is the name of another subroutine which is used 

for the computation of the right hand side of differential system. 

OUTP is the name of another subroutine which can be used for many 

purposes such as printing the intermediate solution values or termi-

nating the solution at any desired point,etc. AUX is an auxiliary 

storage array which is required by the subroutine. 

Subroutine REMZI computes the matrices Qa  and Q0 	Its argument 

list is X1D( 
=xld) 

 , SEPSR(= 	ICF(=N) , ICF2(=2N) , ICF4(=4N) 

QA(=Qa) and QB(=Q0) . The first five elements are the inputs 

supplied from the main programme. The matrices QA and QB are found 

in the subroutine and returned to the main programme. 

The three-dimensional array W corresponds to the factors Wi, 

W2,W
3 

and 	in in the theory. This array is stored in the main 
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programme. 

The two-dimensional array FT corresponds to J's in the theory 

and is stored immediately after calling HPCG and using the values of 

Y supplied by HPCG. 

Subroutine NEJAT computes the matrix Ha 	Inputs are ICF, 

ICF2,ICF4, and X2(x2). The output is the matrix HA. 

Subroutine MINV is taken from IBM's SSP. It is a matrix 

inversion subroutine and its description is given in full in this 

package. 

The elements of the final solution matrix G(see section 6.6) 

are stored in the two-dimensional array FT used before to store the 

elements of the state-transition matrix 	The reason for not 

using a new array for G is to hold the core requirements at the 

• 
minimum. Since the matrix F is not used after evaluating the 

three-dimensional array W, its role is an intermediate one and it 

can be used for other purposes. The inverse of G is again stored 

in FT. 

I Subroutine EXCIT computes the excitation vector (ai  toi !T  

and stores in the one-dimensional array E. The inputs are ICF, 

X2 , ALFR(=a1 ) ALFI(=a1 ) BETR(=p1 ) BETI(=p1 ) . The last 

four quantity are one-dimensional arrays. 

Subroutine GAUS is for the numerical evaluation of the integrals. 

It is again taken from IBM's SSP. Its name has been changed from 

QG to GAUS. There are small modifications in it as well. The 

algorithm used in the subroutine is explained in section 6.7.1. 

Subroutine INTEG computes the integral expressions nem(j=1,2, 

...,7) for a given n,e and m. The results are stored in the one-

dimensional array AI. The shape of the scatterer comes into the 

calculations in this subroutine. If the scattering problem is to 

be solved for a new scatterer only this subroutine is modified. 
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Subroutine SHAN evaluates the spherical Hankel functions and 

their derivatives. Its description is given in section 6.7.4 in 

detail). 

Subroutine SBES evaluates the spherical Bessel functions and 

their derivatives for complex arguments(see section 6.7.4). 

Subroutine CONT computes the inverse (I-4-1  using the 

algorithm given in section 6.7.2. 	 1/2 
[ Function. subprogram ZETA computes the factor (n-m)!  go 

for a given n and m. 	
l- 

2 

	

Function subprogram FC6 computes the integrand 	( P: ) 

Function subprogram FC7 computes the integrand 

m 2 	2 	21 
[(1-z2)( 1ln ) 	m  2  ( P: ) 

1-z 

A printout of the computer programme is given at the end of 

the thesis. 
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PlOGRANNE IC CALCULATE THE PULTIPOLE CCEFFICIENTS OF ThE 
S31TTERED FIELD FROM A ROTATICNALLY SYMMETRIC DIELECTRIC 
3COY, 	THE EXCITATICN IS A ?LANE WAVE OnIQUELY INCIDENT 
1N THE SCATTERER. 
PROGRAM SCAIT(INPUT,OUTPUTITAFE1=INPUT,TAFE3=OLTPUT) 

MON/GUC/CEY.MAZ.ICF,R(5,5),C(5.5),OEL2(5),ALIK(5) 
C'!MON/KIDNEY/EPS2,PEPSR,LPSi,EFS21X1,X2OCODI,EDIM 

CC'',FLEX EPSR,PEFSR,SEPSR,EFS1,EFS2,X10,ALFAI,FETAI,CEY,CLL, 
1ALFAS(5),RETAS(5) 
DI"ENSICN ALFR(5),ALFI(5),EETR(5) 1(3ETIt5),FRVT(),Y(40),(IERY(40), 

1i)1(20 / 10),C:i(20,10)0(4,2011)),FA(20,10),CS(20),E(40),AUX(16,40) 
0I"'ENSICN FI(24,24),L0F(24),MCF(24) 
OP ENSIGN G(12.12).LP(12)013(12) 
DI4ENSICN CSO(20) 
.44444,444.4444w4-!,44A44444444-44444..4),4***4.,,,,44.4*,*4.,,,,,,,***44**,,,,  

IN WHAT FOLLCWS THE ?ARAMETERS CF THE PRO2LEM ARE STORED 
4**-;;;-*A44.kt-Y-**44444-44-14, 4,-:=4-4=44-***-.32/.**4.4 

D1TA ICF,PI,CEY,3DIM,FREQ.R21M,STEPS,ACCU/3,3.14159265.(0.,1.), 
1.1 R ,19.331.5.025 .05/ 
-:T ENAL FCT,COT2  
EFSR=(34.94325,-.36.7325) 
ARITE(3,50)EPSR 

50 FCMAT(1H1.10X,4COMPLEX PERMITTIVITY CF THE SCATTERERE16.7, 
12NIE16.7) 
d3ITE(3,51) 

51 FC?NAT(////5X,--s'SHAPE FUNCTIO1 )(=X"1.SIN(EXP(-9.COSTETA))*) 
PE°SR=CLCG(EFSR) 
S'°SR=CSORT(ERSR) 
EFS1=1.-EPSR 
:F`i2=EPS1/FEPSR 
ICr2=ICF+ICF 
ICr4=ICF2-FICF2 
NO TM=ICF4+ICF4 
AT=1./FLCAT(NDIU 
X2'=.4042182E43 
:(1=X2''SINCIP(-711IM)) 
X:7:X24SIN(EXP(30I1)) 
X1r2=X14SEPSR 
ANGLE=90. 
RA9ANG=ANGLE"E3 I/180. 
ZRI=COS(PAON'G) 
211=SIN(RArANG) 
NA2=0 
W1ITE(3,52)R2NN,FRED.X2,3DIM 

52 FCRMAT(1//EWSI7E OF RAINDR1P=",F9.3,"MM4,2X,4FREOUENCY=:'-, 
1F2.3.4GHZ.2X,4MAX.7PTIC RADJ=*,:16.7,2X.*PARAt4ETLR 9='',F9.3) 
ARITE(35 53)ANGLE,STEPS,ACCU 

53 FCRMAT(////5I.ICIDINCE ANGLE-='',F9.3,2X,'ISIEnSI7E=*,F9.3, 
1,2ACCURACY=',F).7) 
C)LL SC1'EF(ICF,MAZ,DEL2,AJK,RIC) 
CN1"=(-1)"MAZ 

MULTIPCLE CCEFFICIENTS CF THE INCIDENT FIELD 

DC 4 I=1.1ICF 
CLL=CEY2"- ='(I-i1) 4C1P4-3ORT(8.'tPi `R (I,I)) 
.31-L ASSLEC 	.MAZ,Ati7Di4W) 

AI=CLL*Z vI=`DA,-I 
JETAI=-CLL4  F1CAT (MAZ)*AW/Z V I 
A LcR D=RE L (ALFA') 
A LFI 	(ALFA I) 
DETR(I)=REAL (DETAI) 

14 JETI(I)=AIMACLETII) 
1-44-444.4-0.-0 44 ...  

sCMPUTATION AND STORAGE OF TIE ELEMENTS OF THE STATE-TRANSITION 

-L 4.44A 4.4  4.3:4 4 1 444;,..m.-.3.....1 4A,1.4.3 	4,-tx4-4-$444, A4 4, 44 4-4 .4-44,4- 
1C 30 I=1,N2I1 
P■"!T(1)=X1 
`'R"T(2)=X2 

(3)=STEF 5  
PR"T(4)=ACCL 
00 10 K=1,NOL). 
DE'RY(K)=WGT 
YIL0=0. 
IF(I.EO.K)YK)=1. 

10 CCNTINUE 
CIT_L HPCG&FRMT,Y,DERY,NOIN,IiLF,FCT,CUTP,AUX) 
DC 20 K=1,NCIV 

20 Fl(K,I)=Y(K) 
30 CCNTINUE 

11TRIX 
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CF MATRICES CA AND CT.: 

'311_1_ RENZI X10, SEPSR, IGF ICF2 ICF4 GA ,09) 
4 4.4.4444 -4;i-4.N. X it#44-1 4 *....,t4.44 -I  Jr. 	 4+-*/-* 	4-44* .a..I. 

JALUATICN CF MATRICES 	k3, 

DO 200 I=1 ICF4 
I1=I+ICF4 
DC 230 J=11 ICF2 
DC 100 KUS=1,4 

100 14('<US, I,J)= G. 
DC 200 K=1 , ICF4 
1<I=K+ICF4 
it 11, I, J)=14(1,I, J)+FI 	10 4"DA 	,J) 
'442,I,J)=14(2,I,J)+FI (I,K1)4  C 3(K,J) 
` 1 ;3 ,I, J) =W (3 	J)+FI (II ,K)4OA K J) 

200 

	

	(4, 	J) =14 (4 y I,J)+FI 	K 13' 	(K t  J) 
CALL NEJ AT ( 1CF, ICF 2, ICF4 X2,,1A) 
IF (t'AZ 	I.] )G0 TO 7J1 

eIt4.1-14,--1.4 4444444-144 ,".44.4x-X-34 4 44-1 4-7. 'A.4.44-4-**-4-4*-:.1 -4.*;ter,-***4.;=.4=4*-44* 
T!IS PART IS FOR THE CONPULITICI\ OF THE MULTIPCLE COEFFICIENTS 
FCR 1=0 

-1434 I-x ,-1 4:4:4-4-4-‘ 	44444444 1 ;11 4 ,,?44-4=A44*44.4 .1".*444-“,x--4-:4-A 2e- ,44 -4 -i-"4-1.*-":;-1%*x. 
DC 300 1=1, ICF4 
DC 330 J=1 ICF2 
..11=J+ICF2 
G (I.5J)=HA (I;J) 

300 G IT,J1)=-9(1,I,J) 
GALL 1INV(G ,ICF4 ,OETi , LP , MP) 
CALL EXCIT(ICF,X2,ALFR,ALFI,3..-  TF ,BETI,E) 
90 400 I=13 ICF4 
C30(I)=C. 
DC 430 J=1 ,ICF4 

400 C .:0( I) =CSO(I)+G (I, J) 
DC 500 1=1; ICF 
ALFASR=CSO (I) 
A L F ASI=CSO ( I+ICF) 
LFAS(I)=Ct'FLX( ALFASR ALFAS I) 

500 Li ETAS (1)=( E ay 0.) 
GC TO 999 
„ t .! 1.1  4 ..% 4t 3 ' A "-A' 4`f  4-1'4 -4  4” ".4 -",  "z" 4 "1  -*. 4 t-*  1. 4 -V- . 4 4 4 4 T -1'47 ' 4 4 * 4* 444  i. , "1"i""i"4  4 -4  4 44 4 Z"1" J 

, 
J 	STORAGE ANC IN4ERSION CF THE SCLUTION MATRIX G 

,44-4:=44.**-4 x44-2-4-0-4.4.4.4 41A4 4 44-14-7-444444.44.14444.4,-*44.4.4.44.444-1-e-*4 
J 

700 00 600 I=1 ICF4 
I1=I+ICF4 
90 600 J=1 ICF2 
J1=J+ICF2 
../2 7=J1+ICF2 
J -3=J2+ICF2 
FI(I,J)=HA (I,J) 
FI (I,J1) =0 . 
F I (II ,J) =0 • 
F I (I1,J1)=t- A (I, J) 
F I (I ,J2) =-1.,  (1 ,I ,J) 
F I (I,J3)=-  (2, Is J) 
F I (II J2)=-IA (3, I, J) 

600 F I (I1 ,J3)=-11 (4,I, .1) 
C1LL MINv(FI,NOL1,OLT,LCP,M01) 

14. :1,4. -4.1444 -444 -444.. .4.444-. 444 ,z,  t 7 -4 -4,-4 4. 4 
ENERATICN CF 	:EXCITATION VECTOR E 

C ILL EXCIT (IGF,X2, ALFR,ALFI .3ET • 
C CMPUTATION CF THE MULTIP CLE CCEFFICIENTS CF TI-E SCATTERED FIELD • 4-v4-4 4-lx-,:-1-4=i ,, 44:+4,•-+,444-4 4.-44.,  
DC 800 I=1 ICF4 
C 	=0. 
DC 900 J=1 ,h1.3I1 

500 'DS (I)=CS(I)+FI(I 	(J) 
DC 900 1=1 ICF 
12-:I+ICF2 
I 3=12+ ICF 
AL F ASR-=CS( I ) 
A !..ASI=CS ( I+ICF) 

TASR=CS(I2) 
1 ..:TASI=CS 12) 
AL FAS( I) =Gt'FL X( ALFASR ,ALFASI) 

900 3 ETAS ( 1)=C:'PLY ( RE.TASR OETAS I) 
999 iiRITE (3, 10 CC) MAZ 

1000 F CRMAT(1H1,10X, 'AZ IMUTHAL INDEX M=.''•  ,I1) 
NR' ITE (3,11 C C) 

1100 FCRMAT (///29X,A ALFA CCEFFICI2.NTS-'  ,32X 	CCEFFICIEIsITS") 
C 1310 I=  1 p ICF 

;4 7i ITE (3 ,12 GO) I, ALFAS (I) ,DETAS (I ) 
1200 FORMAT (//2X 	,I1,11 X, 2(2X,E1E. 7) '11 X,2(2X,E1E.7) ) 

..z.4-144.4-4.0.44-41.ax**11-A.4,L 



1300 C:NTINUE 
3TCP 

N.FILFR SoACE 

SC.T:ROUTINE RELI(X104SEPSF,I7J,ICF22ICF4,A,i;) 
CCNFLEY CIV,VIC,X1D,53(5),D3(5),SEPR 
DI^IENSICN P(2S,10),3(20710) 
DC 10 I=1,ICF4 
DC 10 J=1,IT:F2 
A(T,J)=0. 

10 D(I,J)=0. 
GILL 3BES(X10,ICF,S3,DS) 
DC 20 I=1, ICF 
I1=I+ICF 
I2=I1+ICF 
I3=I2+ICF 
OC 20 J=1,ICF 
IF(I*NE.J)GC TO 20 
CIV=S0(I)/SEPSR 
JIC=SEPSR'SE(1) 
A(I,I)=REAL(S,AI)) 
A(I,I1)=-AIVAG(S3(I;) 
A(11,I)=-A(I,I1) 
A(I1,I1)=A(I,I) 
A(I2,I)=REAL(VIC) 
A(I2,I1)=-AIMAG(VIC) 
A(I3,I)=-A(12,Ii) 
A(13,I1)=A(12,I) 
1(1,I)=REALICIq) 
J(I,I1)=-AINAG(CIV) 
9(I1,I)=-3(I,I1) 
{D(I1,I1)=B(I,I) 
i(I2,I)=REAL(OS(I)) 
3(I2,I1)=-AIMAu(DS(I)) 
3(13,1)=-2(12,11) 
9(I3,I1)=e(I2,I) 

20 CCNTINUE 
R_:TURN 
EN9 

''FILER 1°ACE 

SU9R0UTINE SCMEF(ICF,VA2,DEL2,AjK,R,0) 
01"ENSICN CEL2(5),AJK(5),R(5,5),1I)(5,5) 
DC 1 I=1,ICF 

1 021_2(I)=FLCAT(I)"FLOAT(I+1) 
DC 2 I=1,ICF 
F17...5SCPT(F1CAT(I+I+1)/DEL2(I))"ZETA(T,NIAZ) 
DC 2 J=I,ICF 
0(1,J)=F1 4 ECRT(FLOAT(J+J+1)/)EL2(J))4ZETA(J,2) 

2 R:J,I)=R(I,J) 
DC 3 I=1,ICF 
DC 3 J=1,ICF 

3 )(T,J)=0EL2(J) 4R(I,J) 
DC 4 I=1,ICF 
AJK(I)=0. 
IF(I.GE.VA2)AJK(I)=1./FLOAT(I+I41)/(2ETA(I,MAZ)"2) 

4 CCNTINUE 
RETURN 
ENT) 

'FILER SDACE 

SU9ROUTINE NEJAT(ICF,ICF2,ICF402,HA) 
CCMPLEX F(5),OH(5) 
DI".ENSICN FA(20110) 
CALL SHAN ( X2,ICF,H2OH) 
DC 400 I=1,ICF4 
DC 400 J=1,ICF2 

400 HI(I,J)=0. 
OC 500 I=1,ICF 

I2=I1+ICF 
I]=I?+ICF 
DC 500 j=1,ICF 
IF(I.NE.J)GC TO 5u0 
HI(I,I)=REAL(H(I)) 



HA(I,I1)=--AIMAG(A(I)) 
H1(11,1)=-1-11 (1,11) 

HA(I2,I)=REAL(DH(I)) 
HA(I2rI1)=-4INAG(014 (I)) 

111(I3,I1)=FA(I2,I) 
500 CCNTINUE 

RETURN 

"'FILER S°ACE 

St.ROUTINE EXCIT(ICF02,ALFRJALFITL:ETRI3ETIyE) 
CVIPLEX h(S),DH(5) 
OP1ENSICN EEt5),D3(5),ALFR(5),ALFI(5),EETR(5),EETI(5),E(40) 
CALL SHAN(X2,ICF,HYDH) 
DC 300 I=1,ICF 
32(I)=REAL(1- (I)) 

300 02(I)=REAL(EF(I)) 
DO 700 I=1,ICF 
IS =I+ICF 

I 1A=I3+ICF 

I7=I6+ICF 
2;?)=-0E(I).4 ALFR(I) 
EI11)=-c.:AI)*ALFI(I) 
:12)=-0E(I)"ALFR(I) 

E(T3)=-'0R(I)''ALFI(I) 
E0:4)=-013(I)*BETR(T) 
E(I5)=-,Z(I) 4 2ETI(I) 
2(I5)=-CP(I) 43ETR(I) 

700 I(I7)=-0B(I) 4 eETI(I) 
RETURN 

IFILER 

FUNCTION FCE(U,N,1) 
OILL ASSLEC(U;NO,P5 07) 
FCc3=P"P 
RETURN 
`NO 

'PILER 3°ACE 

_ 	
L: 

FLNCTICN FC7fUANOI , 
ASSLC(U,M,.1,F,) ‘,1,1 _u4u 

F7:7=X7.*C FOc+LI-7-‘P-7-FLOAT(M)/X2 
R=TURN 
ENT: 

IPILER SpACE 

SL9ROUTINE FCT(X,Y,OERY) 
C,C'4NCN/GUC/CIY0A7_,ICF,F(5,5),O(5,5),8EL2(5),AJK(5) 
CC"),PLEX CEY54I(7,525),1J(5,5),4(5,5),J(5,5)1C(535),D(5,5),U(5,5), 
11(5,5),UF(5 25),VR(3,5),AR(5,3),EP(15),CR(t3,5),ASK 
JIMENSICN AR(4,5,5),AIM(4,515),ER(3,595),EIM(3,515),Y(40),OERY(40) 

=X-1'){ 
CALL INTEGIX,ICF,7 1AZ,DEL23 AJKIAI) 
DC 1 N=1,ICF 
DC 1 L=1,ICF 
A -3K=C'=Y 4FLCIIT(IAZ)'1R(N,L) 
A(N,L)=R(NJUACAI(702 L)-AI(1,N,L)/X)+O(NI L)'AI(2,H,L)/XX 
3(NI,L)=-•R(N,L) AI(i,N,L) 
i.;(N,L)=-ASK -'AI(4,N,L) 
JiN,L)=-.ASK 4 AI(3,N,L) 
U(NIL)=0(N;LAI(5,N,L) 
4(N,L)=ASK-4 4I(5,N,L) 

1 'd(N,L)=-R(N,L)"AI(2,L,N) 
C 6 I-L OCNT(,ICF) 
90 2 N=1,ICF 



DC 2 L=1,ICF 
UF(N,L)=(3.,3.) 
4F(N,L)=(0e0t) 
ac 2 K-1,IcF 
UP<N,L)=UF(NIL)+11(N,t0'1 U(K/L) 

2 VP(N,L)=VF(N,L)+N(N,K)'V(K,L) 
DC 3 N=1,ICF 
DC 3 L=1,ICF 
P(N,L)=A(N,L) 

3F(N,L)=!7(N,L) 
CF(NIL)=C(N,L)/X 
DC 3 K=1,ICF 
AP(N,L)=AP(N,L)+D(NIK)"4P(K,L)/X 
AF(N,L)=EF(bIL)+D(N,K)*VP(X,L) 

3 i3F(N,L)=CP(N,L)+D(11,K)*UP(KIL) 
DC 4 N=1,ICF 
DC 4 L=1,ICF 
A1(1,N,L)=REAL(-AP(N,L)) 
Ar4(1,N,L)=PIA6(-.AP(N,L)) 
AR(2,N,L)=REAL(-GP(N,L)) 
AIM(2,N,L)=4IMAG(-CP(N,L)) 
AR(3,N,L)=REAL(-1P(NI,L)) 
AI"(3,N,L)=nIMAG(-DP(N,L)) 
AR(4,N,L)=REAL(-C(NI L)) 
AIN(4,N,L)=4IMAG(-C(N,L)) 
3R(1,N,L)=REAL(-VP(N,L)/X) 
1IN(1,N,L)=PInkG(-VP(N,L)/X) 
DR(23 N,L)=REAL (-UP(N,L)) 
3I4(2,k,L)=PIMAG(-UP(N,L)) 
3R(3,N,L)=REAL(-VP(NIL)) 
1P'1(3,N,L)=AIMAG(-ID(N,L)) 
IF(N.NE.L)GC TO 4 
A7“1,N,N)=PR(1,N,A)+DEL2(N)/1X 
1R(3,N,N)=AR(3,N,N)-2./X 
JR(21NI N)=LR(2,N3 1)+IEL2(N)/X 

4 CCNTINUE 
DC 5 I=1,ICF 
I1=I+ICF 
I2=I1+ICF 
I3=I2+ICF 
14=I3+ICF 
13=I4+ICF 
I,3=I5+ICF 
I7=I6+ICF 
DERY(I)=Y(I2) 
D=RY(I1)=Y(I3) 
D=RY(I2)=0. 
DIRY(I3)=0, 
DEgY(I4)=Y(16) 
DERY(I5)=Y(I7) 
02qY(I6)=-2."Y(I6)/X 
DRY(I7)=-2,'Y(T7)/X 
DC 5 J=1,ICF 
J1=J+ICF 
J2=J1+ICF 
J3=J2+ICF 
J4=J3+ICF 
J3=J4+ICF 
JE=J5+ICF 
J7=J6+ICF 
DIRY(I2)=DERY(I2)+AR(1,I,J) 4Y(J)-AIM(1,I,j)-tY(J1)+AP(3,I,J)* 
1Y(J2)-AIM(3,I,J)*Y(J3)+,1 R(2,I,J)(J4)-AIV(29I,J)*Y(J5)+AR(4,I,J) 
2"t(J6)-AIN(4,LJ)4 Y(J7) 
DIE4Y(I3)=DERY(I3)+AIN(1,I,J) `Y(,)+AR(1,I,J)'Y(J1)+ATM(3,I,J)=Y(J2) 

1+.1R(3,I,J) 4 Y(J3)+AIM(2,I,J)'Y(J4)+AR(2,I,J)"Y(j5)+AIM(4,I,J) 
2'Y(J6)+AR(4,I,J)'Y(J7) 
DERY(I6)=0E5Y(I6)+R(1/ 1,J)Y(J)-,:IM(1,I1J)4-Y(J1)+BR(3,I,J)*Y(J?) 

1-73IM(3,I,J) 4 Y(J3)+BR(2,I,J)"1(.14)-3IM(2,I,J) 4.Y(J5) 
OCY(I7)=DER'YkI7)+0I1(1,I,J) -"f(,)4-3R(1,I,J)'Y(J1)+RIN(3,I,J)* 

1Y(J2)+BR(3 1 10)'!- Y(J3)+2IM(2,I,J)=4.Y(J4)+9R(2,I,J)4Y(J5) 
5 CCNTINUE 
R_TURN 
=NO 

TILER :(DACE 

CLPROUTINE ',:AUS(XL,XU,FC/Y,IA,It') 
A-=.5*(XU+XL) 
3=XU-XL 
C=.4305E824  
Y=81739274.4 (FC(AfC,I,IN)i-FNA-C,INIIN)) 
C=.169S95'2 
Y=9'(Y+,32E0726A(FC(A+C,IN,I1)+FC(A-C,IN,IM))) 



RFTURN 
END 

MPILER :DACE 

3L9ROUTINE CUTF(X,Y,DERY,IFiLF,NCIMOIRMT) 
DI"'ENSICN Y(NOIN),OERY(NDIN),FRNT(5) 
IF(IHLF.GT.10)WRITE(3,1)THLF 

1 FCRNiAT(///10X,4 IHLF=4 ,I1) 
IF(Y.GE.FRVT(2))RTZMT(5)=1. 
Ri:TURN 
END 

NPILER -"EACE 

FUNCTION ZET/I(LtA) 
M2=M+M 
IF(L-M)1,2;4 

1 ZITA=0. 
GO TO 8 

2 F1C=1. 
DC 3 1=102 

3 FAC=FAC 4FLCAT(i) 
TITA=1./SOFT(FAC) 
GC TO 8 

4 IF(14 )5,5,6 
5 ZITA=1. 

GO TO 8 
6 F)CT=1. 

DC 7 1=1,1'2 
7 FACT=FACT4FLOAT(L-M+I) 

21:TA=1./SORI(FACT) 
8 RiTURN 

P:N0 

MFILER :F ACE 

31.9ROUTINE 45-5,LaGtX,INOEX,MV!,PL,OAL) 
OPENSICN 2(5),R(5)20P(5),OZ(5) 
S2=1.-X*X 
Sn=.54SCRI(SZ) 
PI=ACOS(-1,) 
IF(INDEX-?4 /1 2)13204 

1 AL =0. 
D:) 1 =9. 
RF7URN 

2 F 1 /7,=i. 
DC 3 I=1/MA2 

3 F.)C=FAC'FLCAT:I+MA7) 
1L=FAC4 (-S2W"MAZ 
OIL=-FLCAT(NA 7 ) -L X"AL/SZ 
R1TURN 

4 IF(NAZ)5,51c 
5 Z(1.)=X 

92(1)=1. 
IF(INDEX-1)15,1576 

6 7(?)=1.54 X 4sA-.5 
D2(2)=X+X+X 
IFIINDEX-2)15)15,7 

7 L1-INDEX-1 
DC 8 I=2,L1 
CI=FLOAT(I) 
Ci1=OI+1. 
7.(I+1)=NCI+CI1)"X =- 7(I)-.CI-'Z(1-1))/Cil 

8 92(I+1):=X 4D2(I)+CI1-'( .7(I) 
15 AL=7AINCEX) 

D1L=OZ(INOEfl 
R:TURN 
FPC=1. 
DC 10 K=1,A7_ 

10 FAC=FAC4 FLCAT(K+AAZ) 
PPIAZ)=FAC 1 (-37M)"MAZ 
FP4.AZ -1- 1)=FLCAT(MAZ+MAZ+1) 4 X -"(PZ) 
A2-=MAZ+2 
IF(t'2.GT.II\CEX)G0 TO 10C 
DC 11 I=■'211NnEX 
AP=FLCAT(T -•fd AZ) 

11 PrE)=FLCAT(I+I-1)X-'(9(1-1)/AIFLOAT(MAZ+I-•1) *P(i-2)/AI 
100 OF(M4Z)=-FLCAT('1AZ)"X4P("1AZ)/SZ 



111=NAZ+1 
DC 12 L=M1,INDEX 

12 DP(I)=CFLOAT(Ii-t!AZ)`P(I-1)-FLCAT(I)*X4P(I))/S2 
ALP(INEEX) 
DlL=OP(INOFX) 

ENO 

vFILEg VJACE 

SLOROUTINE INTIG(X,ICF,14,07L2,AJK,AI) 
CC"'ION/KIONEY/EPSR,PEPSR,EPS1,EFS2,X1,X20C,PI,EDIM 
CCNPLEX FPSR,PEPSR,EFS1,EPS2J 4I(7,515),WZC,WZ1,LO,U1,AFI 
DP1ENSICN FC(5),P1(5),CF0(5)UP1(5)10EL2(5),AJK(5) 
E XTERNAL FCE,FC7 
IF(X.E0.Xl.CR.X.GE.X2)GC TO 1 
XX=X-”( 
AR=ASIN(X/X2) 
7C=-ALOG(AR)f?DIA 
'C2=1.-2C."2C 
::19=EXP(-9CIM-"ZO) 
7Rq=ECD*COS(ELjD)4X2*J17IN 
DI:RVO=1./ORV 
UC=PEPSR'ZC2 
UO=PEPSR"FLCAT(14 M)/Z02 
D'J 1 I=1,ICF 
C41_1_ ASSLEG 	1,CI,131) 
PC(I)=CI 

1 OP1(I)=OI 
DC 4 N=1,ICF 
DC 4 L=1,ICF 
lIti,N,L)=-0ERVO*(UO4CPC(L)-*DFC(N)+NZO*F0(L)*PC(N)) 
AI(2,N,L)=-140"PO(L)OPO(N) 
AI(31N,L)=FEP3R-'DERV04 (FO(L)4CFC(N)+PC(WOPC(L)) 
AI(4,N,L)=EPS1"P0(L)'PO(N) 
AT(5,N,L)=AI(4,N,L)/EPS2 
IF(N-L)3,21 3 

2 CALL GAUS(2C i 1.T FC6yY1,N,) 
CJILL QAUS(2C,1.,FC7,Y2,N,M) 
AI(6,NIN)=EFS14Y14-2.4 AJK(N)'EFSc 
AI(7,N,N)=EFS1'Y2+2,"AJK(N)*-1A2(N)*EPSR 
GC TO 4 

3 AFT=-EPS1'2C2/(DEL2(L)-CEL2(1)) 
A1(6,N,L)=AFI"(FO(L)'OPO(N)-3C(N)40PO(L)) 
II(7,N,L)=AFI"(DEL2(L)4F0(L)'EPC(N)-DEL2(N)"PC(N)"OPO(L)) 

4 CCNTINUE 
IF(X.LE.XC)R:TUR1 
21'=-ALOG(PI-AR)/iDIM 
Er291=EXP(-ECIM421) 
Z12=1.-21'21 
U17-7°EPSR"212 
1121=PEPSF*FtCAT(1)/7_12 
JR=EBD1"COS(Eq01)"X2'2DLI 
0E4V1=1./VR 
jC 5 I=1,ICF 
CALL ASSLEG(71,10,0I,DT) 
P1(I)=CI 

5 OP1(I)=CI 
DC 3 N=1,ICF 
DC 3 L=1,ICF 
Alt1,N,L)=AI(1,N,L)+OP41 4(Ui'CF1(L)40P1(N)44121 4P1(L)*P1(N)) 
II(?:NIL)=P1(2,N;L)+U1*F1(L)'EF1(H) 
AI(3,N,L)=AI(3,N,L)-TERq1"(P1(L)'OPI(N)+P1(N)YCF1(L)) 
AI(4,N,L)=AI(4,N,L)-EPS1*P1(L).4- F1(1) 
Al(5,N,L)=AI(4,N,L)/EPS2 
IF(N-L)7,6 3 7 

6 CALL GAUS(21,Z0,FC6,Y1,N,1) 
04 1-1. GAUS(21,20,FC7,Y2,N.M) 
AI(61N/N)=-EPS1-'Y1+2.-"AJK(N) 
AI(7,N,N)=-EPS1 4 Y24.2.4 AJK(WOEL2(N) 

TO 8 
7 AFI=EFS1"Z12/1DEL2(L)-CEL2(N)) 

AI(6,N,L)=AI(6,N,L)+IFI'(P1iL)4 CD1(N)-P1(N)*OP1(L)) 
.11.1(7.,N L)=PI(7N,L)+IFI-'(EFL-2(L)-4 P1(L)'On1(N)-CEL2(N)4-P1(M) 

1-4 0C1(d) 
8 CCNTINUE 

::ETURN 
9 DC 11 N=1,ICF 
00 11 L=1,ICF 
OC 10 K=1,7 

10 AI(K,N,L)=(:.,.) 
IF(N.W.L)GC TO 11 
AI(6,N,N)=2.4AJK(N) 



j (7,NiN)=AI(6,11,H.VO'EL2 (NJ 
IF ( X .Nt. X1) GC TO 11 
AI (6,N,N)=PI(6,N,N) 4EPSR 

(7, N, N)= 	(7.5 N, ‘1) 4 EPSR 
11 CCNTINUE 

RLETURN 
END 

!4PILER ;;" A CE 

SU9ROUTINE SFAN(Z,L,HAN,OHAN) 
,3C"IPLEX CEY IEUX , HO ,HAN (10 ),01-14N (10) 
CE.Y=(0., -1. ) 
7.1=1./7 
EUX=CE.XP (CEY'2) 
1-1C=-CEY -4 7I 4 EUX 
H1N(1)=- (1. 4C;"-Y'ZI) 4 ZI 4EIJX 
01-AN (1)=HC-2.-47I 411V1(1) 
HAN( 2)-=::.'ZI4 HAN (1)-I-10 
011AN(2)=HAN (1)-3. -"ZI*HAN (2) 
L1,=L-1 
DO 1 I=2,L1 

1 ILAN (I+1)=71-.7̀ FLOAT (i+I+1)*1-1AN (I) -HAM (I-1) 
OC, 2 1=311_ 

2 DH1N(I)=HAN (I-1)-ZI4FLCAT (I+1) 4 1-AN (I) 
RITURN 
;1101 

!FILER 3°11C.E. 

SL ROUTINE 	(Z,L,SD,DS) 
OCMPLEX Z,21,S3C,S0(10) 'OS(111 
ZI=1. /7 
S:(7=CSIN (Z) "Z1 
3] (1)=ZI 4  (SEC-CCOS (Z)) 
53(2)=3.'214 37(1) -SDO 
D'-:.(1)=500-2c 4 ZI'SB (1) 
DE (2)=SL, (1) -3.4 ZI'Sd ( 2) 
L1=L-1 
DC 1 I=2,L1 

1 S] (I4-1)=FLCAT(11-I+1)*ZI4 S0( I) -SE (I-1) 
DC 2 1=3,1_ 

2 05 (D=SE3 (I-1)-FLOAT(I+1) -"=7I -4 3E (1) 
R1TURN 
ENT.] 

SDACE 

319POUTINE CCM' (S, N) 
CCMPLEX S( E 15) ,S(JM t5,5) ' AUX (5,5) 	5 15) ,ALF,BEL 
N 1=N-1 
D=LIA= (1., C.) 
DC 1 I=1,N 
DC 1 J=1,11 
AUX ( , J)=. (I, J) 
SU",(I,J)= ( C.,0.) 
IF (I.E0.J) ELM(I,J)=(1.,C.) 

1 CCNTINUE 
DC 5 KUK=1,N1 
111.P=-- (O., 9.) 
DC 2 1=1,N 

2 A 1.=ALF-FAUY 
ALP=-ALF/FL CAT( KUK) 

5LTA=07:- LTP 41LF 
DC 3 1=1,N 
DC 3 J=1,N 
R (I, J)=AUX ( ,J) 
IF (I.EC.J)R (I,J)=R (I, J)4ALF 

3 SUM (I, J)=SL 	J) +R (I, J) 
OC 4 'I= 1. ,N 
DC 4 J=1,N 
AUX (I, J)=( C.O.) 
DC 4 K=1,N 

4 :)LX (I,J)-=ALX (I, J)+S(I,K)*R(K,J) 
5 DCNTINU17  

(0,, 0.) 
DC 6 I=1,NI 

6 

	

	Lc=ALF+AUY (1 
,tALF=-ALF/FLCIT(N) 



Fz0VoE; 6311dV■ 

CA: 

(ffir(als=tr us 2. 
vii:uirr'nos.(r‘I)w)E 

N'T=r L DO 
N'T=I L :C 


