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ABSTRACT

The problem of scattering of electromagnetic waves by two-
and three-dimensional dielectric bodies has been investigated in the
resonance region i.e., where the dimensions of the scatterer are
comparable to the electromagnetic wavelength. The scatterers can
be lossy and inhomogeneous materials. The two-dimensional bodies
can have arbitrary cross-section, but particular attention has been
given to rotationally symmetric scatterers in the case of three-
dimensional problems, though it is possible to extend the analysis
to arbitrary three-dimensional bodies.

The proposed method of solution defines regions where the
field can be represented uniquely as an infinite series of cylindri-
cal harmonics with unknown constant coefficients for the two-dimen-
sional case and as a multipole expansion of spherical harmonics for
the three-dimensional case. These regions are homogeneous in their
material composition., In regions where it is not possible to repre-
sent the field as an infinite series of known harmonics with constant
coefficients(inhomogeneous regions in material parameters), the
field is represented by a similar infinite series which uses harmonics
with unknown radial functions but known angular dependence. The
' system of differential equations for these unknown radial functions
is deduced from the wave equation relevant to such regions. Solving
this system numerically and using the standard boundary conditions
on the surfaces(circles and spheres are used for the two-dimensional
and three-dimensional cases respectively), which separate homogeneous
regions from the inhomogeneous ones, gives the unknown scattering
coefficients.

As a comparison to the proposed method, the state-space
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férmulation of scattering which was devised for the solution of same
type of proﬁlems has also been examined.

Applications are made to two-dimensional and three-dimensional
problems. Infinitely long homogeneous dielectric cylinders with
different cross-sectional shapes have been considered throughly both
for TM and TE polarizations of the incident field. The resﬁlts
have been compared to previously existing ones. Agreement is very
satisfactorye For three-dimensional problems spherically symmetric
scafterers were considered first. Spherical dielectric shells
with perfect conductor cores and stratified in the radial direction
have been examined, aé well as Luneburg and Eaton lenses excited by
plane waves. The agreement with existing results is very good.

For spherically symmetric scatterers the necessary number of
coefficients to be taken in the expansioﬁ of field, is approximatelj
twice the nearest integer to krmax, where k is free-space wavenumber
and T ax is the radius of the sphere. This is also the case for
circular dielectric cylinders. The limit defined above as Zkrmax
works satisfactorily for infinitely long cylinders with érbitrary
cross-section but is not a sufficient one for non-spherical scatterers,

As a non-spherical scatterer, an off-centre dielectric Sphe:e
has been considered., Since the scattering parameters in the far
field are not affected by the location of coordinate origin, the
results for %he latter scatterer should be the same as for the same
scatterer with origin located at the ceptre. Since the latter is
an easy problem to solve, this type of comparison is a reasonable
one. The backscattering cross-section and the scattering pattern
in the two cases are very close to each other and it was observed
that increasing the number of terms in the expansion increases the

accuracye.



The proposed method was also checked against results for a |
dielectric oblate and a prolate sphercid -excited by a plane wave,
The agreement with these results was found to be very good.

A computer programme has been developed to calculate the
multipole coefficients of the scattered field for rotationally
symmetric scatterers, The incident wave is not restricted to
propagate along the symmetry axis of the scatterer, it is taken as
an obliquely coming plane wave.

As an engineering application, scaétering properties of
individual raindrops which are assumed to be homogeneous oblate
spheroids or kidney-t&pe shapes have also been investigated by the
proposed methods This is a problem of practical interest in calcu-
lating the effect of rain on attenuation and cross-polarization of
radio waves as they pass through a rainy medium. Multipole'coeffi-

clents are tabulated and forward scattering amplitudes are computed.



1. INTRODUCTICN

1.1 Descrivtion of the Problem

The scattering of electromagnetic waves by bodies of arbitrary
shape and physical properties is a problem of botﬁ theoretical and
practical interest. Some commonly encountered engineering applica-
tions may‘be stated as follows: in radar engineering, determining
the scattering properties of radar targets is essential. These tar-
gets may be complex structures in both their geometry and physical
composition. The usual and straightforward way to find the scattering
characteristics of such complex structures is to decompose them into
smaller pieces and to consider the contribution of each piece to the
total scattering separately. Neglecting the interaction between indi-
vidual pieces and adding up their own contributions gives the total
scattering approximately from such complex entities. Therefore,
precise determination of the scattering behaviour of some geometri-
cally and physically 'simple' building blocks at radar frequencies
is important in itself,

The problem of attenuation and cross-polarization of electromag-
netic waves due to rain is important in radér meteorology and also in
microwave relay system design. Thus the precise scattering charac-
teristics of raindrops are a desirable aim.

Light scattering from colloidal particles is another field of
application from colloidal chemistry.

Absorption properties of human brain and tissues subjected to
microwave radiation must be deduced for safe microwave applications in
the biomedical field. Therefore the interaction of electromagnetic
waves, in the microwave region, with biological material and man is

an important application of electromagnetic scattering in this frequ-
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cnicy region.

Scattering properties of radially stratified optical fibres are
again important to know, because of the practical problem of deter-
mining the refractive index profile from the measured diffracted field.

The scattering problem also has theoretical importance. Mathe-
matically, even the simplest problem requires sophisticated mathema-
tical techniques., Generally, some ingenuous mathematical methods
have been'devised for the solution of the problem and gppliéd success-
fully. Nevertheless, due to the inherent complexity of the pfoblem,
the exact analytical techniques remained small in number. For example
3-dimensional scattering by homogeneous, AisotrOpié bodies can be
solved analytically in only the following coordinate systeﬁs: rec-
tangular, spherical, oprolate spheroidal, oblate spheroidal, ellip-
soidal, parabolic, paraboloidal, conical, circular cylinder,and
parabolic cylinder,

If the boundary surfaces of scatterers coincide with one of the
above coordinate surfaces, then analytical solution of the scatteriné
problem is possible. Classically this solution is achieved by expem-
ding the incident and scattered fields in terms of the vector wave
functions of the associated coordinate system and applying the stan-
dard boundary conditions on the scatterer surface. This gives the
unknown expansion coefficients directly. TFor the geometric shapes
such as the sphere and circular cylinder, the scattering coeffici-
ents are obtained in terms of spherical and cylindrical Bessel and
Hankel functions respectively whose arguments afe ka, where k is the
wave nuﬁber and a is the radius of sphere or cylinder.

If the surface of the scatterer does not ‘coincide with one of
the surfaces generated in the above coordinate systems(by equating one
coordinate variable to a constant), then the Helmholtz equation is no
lénger separable and a compact, closed form solution involving known

functions of mathematical physics is not possible,
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This inadequecy of analytical solutions for problems involving non-
separable scatterer surfaces opened the way for some powerful approxi-
mate methods. Among these, variation and perturbation solutions can
be mentioned. |

After the invention of high speed digital computers, methods of
solution of scattering problems were revolutionized. Some of the in-
tractable problems of the fre-computer era became straightforward com-
vuter applications., The integral equations of antenna and scattering
problems were put into suitable forms for méchine compﬁtation. Harr-
ington's(1l) first introduction of moment meéhods in 1965 gave a power-
ful practical tool to the field-scientists. After that time, many
field nroblems were exaﬁined carefully and previously nonexisting
practicalfgata was presented.

The computer solution of field problems, however, brought its
own problems. Finding the most appropriate form of equafion for com-
puter implementation is a problem whose origin lies in physical reaso-
ning, If the equation to be solved is not properly selected, nume-
rical instabilities and errors are introduced and probability of gett-
ing meaningless results becomes high. This is the case, for instance
in the selection of electric field integral equation(IFIE) or magnetic
field integral equation(MFIZ) for a particular thin wire antenna prob-
lem,

In the computer solution of a field problem the most important
factors to be considered are computation time, storage requirements,
numerical stability and programming simplicity. When two numerical
solutions of the same eiectromagnetic field problem are compared,
the important comparison parameters are the factors mentioned above
assuming that both methods have the same accuracy.

In a scattering problem the scatterer is either a perfect con-
ductor or a lossy, anisotfoPic and inhomogeneous body, with time

varying material parameters in the most general case. However most
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of the nroblems of practical interest require the body to be isotropic,
homogeneous and time-iﬁvariant. Scatterers with inhomogeneous physi-
cal parameters are next more complicated case.

Generally the scaftering problem is stated as follows: consider
a radiating structure of electromagnetic waves such that when this
structure radiates into free space, its electromagnetic field all
over the surrounding space can be determined from the source distri-
bution over the structure using the well known free space potential
functions. This radiated field is termed the incident field and
ideally it is independent of the existence oé the obstacles in space.
The incident field is assumed to be known in most scattering problems.
If a body is introduced.into the space, then the initial distributi-
on of the incident field is disturbed, This disturbance of the elec-
tromagnetic field is called the scattered field. This field is a func-
tion of several parameters among which geometry, material.composition
and dimensions of seatterer{measured in terms of wavelength of radia-
tion) can be identified. The scattered field, in the general case,
interacts with the sources of the incident field and redistributes
these sources. Hence the assumption of the incident field being
known completely is not generally true. However, if the distance
between the source and the scatterer is 'large' enough, then the in-
teraction is negligible and is assumed to be nonexistent., In prob-
lems where this interaction is not negligible, finding the disturban-
ce caused by the scattered field in the primary source distribution is
a part of the overall scattering problem. In practical applications
the incident field is almost invariably taken as a plane wave; but
excitation by infinitely thin dipoles or loops .is also considered.

The total field,viz., the vector sum of incident and scatte-
red fields, is termed as the diffracted field.

The first scattering'problems to be solved exactly were scattering

from spheres and infinitely long cylinders. For harmonic time depen-
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dence the scattering by spheres was first investigated by Mie(2) ot
the‘beginning of this century. Since the wave equation is separable
in spherical éoordinates the resultant solution can be expressed in a
closed, compact forms The fields are repfesented by an infinite
series of spherical harmonics, the coefficients of which are determi-
ned using boundary conditions on the sphere. The infinite series is
known as the Mie series and it is an exact representation of the field
for all points in space, for all frequencies and for all radii of the
sphere, The radial dependence of the spherical harmonics is repre-
sented by spherical Bessel functions. The angular dependence is go-
verned by associated Legendre functions in angle 6, and trigonometric
functions in azimuthal angle g.  Starting from the Mie series, im-
portant qualitative conclusions can be drawn about the scattering be-
haviour of a sphere over the whole frequency range. The most impor-
tant parameter in the Mie series is ka, where k is wavenumber and a
is the radius of the sphere. This parameter is called as the "opti-
cal radius'" of the sphere. For long wavelengtbs(k is small) it is
observed that the first few terms in the series are enough to repre-
sent the field with sufficient accuracy. As the frequenc& increases
the number of terms to be taken increases correspondingly. For very
large optical radii the convergence of the Mie séries is slow,. For
example for ka=10g the necessary number of terms in the Mie series for
a satisfactory representation of the field is more than loo. There-
fore, summation of the Mie series for large ka is both time consuming
and sensitive to numerical errors. To circumvent this difficulty
Watson(3) devised a method which is known as the Watson transformation.
Watson thought of the Mie series as a residue series and devised a
complex integrand with a corresponding contour such that evaluation of
the integral by residue method results in a residue series which is
identical to the Mie series. The next step is to deform the contour

of the equivalent integral such that convergence of. the new residue
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series(with.respect to the new contour) is faster., This method,
although seemingly attractive is only applicable to problems where a
Mie type of series with known coefficients is available, It has been
applied to spheres and circular cylinders.

Following thé analysis based on the Mie series, it is possible
to distinguish three frequency regions for all scattering problems,
although this is quite arbitrary and the regions do not have definite
boundaries, |

The first region is characterized by a 'small' optical radius
(for noncircular or nonspherical scatterers this radius is taken as
the radius of the smallest circle or sphere which encloses the scatt-
erer completely). This frequency region is called the Rayleigh re-
gion. In this region it is possible to represent the scattered and
incident fields by convergent series, known as the Rayleigh series,

a typical term.of which is fnkn, where Fn represents the n'th-order
electric or magnetic field vector and k is the wavenumber.
Although the convergence of the series is established rigorously, . its
radius of convergence is not known for a large class of scatterers.
leinman(h) introduced an iterative method for explicitly deter-
mining the successive terms in the Rayleigh series, The method requ-
ires the solution of the corresponding static potential problem for
the same scatterer.

In the Rayleigh region the scattered field of the electric and
magnetic dipoles induced by the incident field inside the scatterer
is the dominant field. The frequency dependence of the scattered
field is 2 (so scattered power varies as f’Jr or l/ku with the fre-
quency or wavelength respectively). This frequency devendence is the
well known Rayleigh scattering law.,

If the wavelength of the incident radiation is very small com-
pared to the principal radii of curvature on every point of the scat-

terer surface then high frequency techniques must be used for the solu-
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tion of the scattering problem, In this frequency region the scatte-
ring phenomena is specular,i.e. the incident wave is reflected at po-
ints on the scatterer surface according to the laws of geometrical op-
tics. The relevant methods for this frequency range are Geometrical
and Physical optics. Keller's(5) geometrical theory of diffraction
is an improvement over geometrical optics where it fails to predict
the fields in the scatterer shadow.

Rayleigh series and high frequency techniques are very good app-
roximations in their corresponding frequency ranges. fhe frequency
region where both of the methods mentioned above fail to give correct
results is a region between low and high frequency’limits. This re-
gion is called the resonance region. Scattering phenomena are very
sensitive to body shape and body dimensions in resonance region in
contrast to the low frequency vhenomena where shape of the scatterer
is not so decisive(for long wavelengths, the volume of the body rat-
her than its detailed shape is important). For short wavelengths the
shape of the scatterer is again important and it comes into the solu-
tion through the local radii of curvature of the scatterer.

One of the important characteristic features of the resonance
region is that, not only are the electric and magnetic dipoles in-
duced in the scatterer but higher order multipoles are also generated.
The scattered power varies with frequency in an oscillatory manner.
The scattered field is almost invariably represented by an infinite
series of 'characteristic modes'. For separable-surface scatterers
these modes are the elementary solutions of the‘vector Helmholtz equ-
ation in the corresponding separable coordinate system. TFor an ar-
bitrary scatterer, characteristic modes are nét so straightforward
to define., However, there are attempts, notably by Garbacz(6) and
Harrington & Mautz(7), to extend the characteristic mode approach to
arbitrary scatterers, |

The convergence properties of the characteristic mode expansion
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are very esseuﬁial in the resonance rsgion. Almost all solution met-
hods devised for this frequency region require the solution of an in-
finite dimensional linear system either in the form of linear algeb-
raic equations or in the form of linear différential equations. It
is thereforec necessary to truncate the series at a finite number of
terms in order to extract a solution from the corresponding infinite
system. However, this truncation number is not known a priori,
although ‘the truﬁcation operation is meaningful physically; If the
scatterer surface is a separable one, experience shows that the nea-
rest integer to 2kr, can be used as the truncation number satisfactorily.
Here r is a maximum linear dimension of écatterer.defined with res-
pect to a chosen origin. If the scatterer is non-separable but the
fields are expanded in terms of the functions of a separable coordi-
nate system the truncation limit roughly defined above may not work.
More terms than the ones allowable by the above limit are necessary
for accurate representation of the fields. The motivation behind

the concept of characteristic modes for scatterers with arbitrary geo-
metry is partly due to the fast convergence of such series using these
modes as their typical terms.

The usual procedure for finding the necessary truncation num-
ber works as follows: the problem is solved with a truncation num-
ber(this may be taken as qu“), then this number is increased and
the results of two computations are compared. If the results do not
change appreciably, then the first truncation number is taken as the
proper one., If increasing the truncation numﬁer changes the fesults
app;eciably the above procedure is repeated for higher truncation num-
bers until an unchanged result is obtained. ‘It is obvious that this
procedure is cumbersome and time consuming, but no satisfactory so-
lution to this difficulty has yet been presented,

In this thesis consideration is confined to resonance scattering

for time harmonic fields. Low and high frequency techniques are not
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considered at all.

1.2 Revwiew of Methods of Solution

1.2.1 Scatterine by Perfectly Conductine Bodies

Scattering of electromagnetic waves by perfectly conducting
bodies of arbitrary shape was first formulated through an integral
equation for the surface current by Mauc(8) in 1949. The solution of
this integral equation for surface current density is a formidable
task even for rotationally symmetric scatterers, It is a vector in-
tegral equation on the scatterer surface, therefore it is equivalent
to two coupled scalar integral equations,

Attempts have been made to solve Maue's equation approximately.
Kodis(9) introduced a variational technique for the solution of the
integral equation. Mei & Bladel(10), in 1963, solved the integ-
ral equation with a different method. In their method, the surface
current density is represenfed approximately by the first N terms of
an infinite series in the mean square sense and the integral equation
is enforced at N points on the surface of the body. This.results in
a linear system of algebraic equations for the unknown coefficients
in the finite series representing the surface current density. This
technique has been applied to scattering by perfectly conducting rec-
tangular cylinders. One important numerical inconvenience has been
observed in the solution process. This occurs when the wave number
k approaches one of the internal resonance wavenumbers of the scatterer
This makes both the integral operator and the equivalent matrix singu-
lar. For such wavenumbers the solution is no longer unigue.

This numerical difficulty has been overcome by Waterman(1l) in
1965, In his analysis the boundary condition used is that the in-
duced surface currents distribute themselves on the scatterer surface
in such a way that their radiated field precisely cancels the incident

ficld throughout the interior volume., This is called the extended
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boundary_coniition. The integral equation resulting from the mathe-
matical formulation of the above condition is called the extended in-
tegral equation and its solution is unaffected by internal resonances.
The solution of the extended integral equation gives the unknown sur-
face currents.

Hizal & Marincic(12) set up an integral equation with the total
fields as unknowns rather than the total surface currents. Represen-
ting the fields by finite series of spherical vector harmonics with
unknown coefficients and converting the integral equation to a matrix
relation gives the expansion coefficients bi inverting the matrix,

The scattered fields are found by summing the finite series.

The same proceduré, namely starting from an integral equation,
representing it by an equivalent first order linear system of algeb-
raic equations and solving the final matrix relation numerically is
also employed by Andreasen(l3) and by Avetisyan(lh) in scaftering,by
perpectly conducting bodies of revolution, by Richmond(15) in scatte-
ring by conducting rods of finite length, by Baghdasarian and Angela-
kos(16) in scattering of a plane wave by a conducting loop.

Kennaugh(1l7) solved the scattering problem for perfectly conduc-
ting prolate and oblate spheroids excited by a plane wave propagating
along the symmetry axis using a éoint matching technique.

Erma(18,19,20), in 1968, developed a boundary perturbation
technique to solve the electromagnetic scattering by perfectly conduc-
ting rotationally symmetric and arbitrary bodies. Erma expresses the
surface of the body as a perturbation of a spherical one. The resul-
ting expansion coefficients are expressed as a power series in the per-
turbation parameter and the unknown perturbatian coefficients. The
zeroth order coefficients, being identical with the scattering coeffi-
cients of the optimum unperturbed sphere about the given non-spherical
body, are obtained as the infinite summation of certain surface integ-

rals which involve only known constants and perturbation coefficients
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of lower order.

Garbacz(6) in 1965 and Karnishin,et.al.(21) in 1970 proposed a
nethod to calculate the characteristic modes of arbitrarily shéped per-
fectly conducting bodies. Garbacz approaches the problem by diago-
nalizing the scattering matrix. By doing this he arrives at the conec-
lusion that the mode currents are real and the tangential electric mode
field is éf constant phase over the surface of the body., Garbacz,
Turpin, and Wickliff(22), (23), (24) used this property to find the
characteristic currents in a few cases, but they did nﬁt obtain con-
venient formulas for computing the mode currents in general.

In 1971 Harrington & Mautz(7) approéched the same problem from
an alternative point of §iew by diagonalizing the operator relating
the current to the tangential electric field on the body. By choosing
a particular weighted eigenvalue equation, they obtained the same
modes as defined by Garbacaz,

Variational techniques used by Kouyoumjian(25) give results for
metallic plate, wire loop and wire scattering. In these methods,
the far field amplitude is expressed in a form stationary with respect
to small variations of the surface current about its true value. The
accuracy of the technique depends on the initial choice of trial func-
tion for surface current which must not be too far from #he true sur-
face current distribution,

Wilton & Mittra(26), in 1972, developed a method for scattering
by two-dimensional bodies of arbitrary cross-section. In this method,
the scattered field is represented by an expansion in terms of cylin-
drical harmonics thelcoefficients of which are unknowns. The boundary
conditions are satisfied either using an analytical continuation proce-
dure, in which the far-field pattern is continued into the near field
and the boundary conditions are applied at the surface of scatterer,
of, the completeness of the modal wave functions are used to approxi-

mately represent the fields in the exterior regions of the scatterer
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dircctly. Th2 coefficients of the c¢cylindricnl hormonics are obinined
by an inversion of a matrix whose elements depend only on the shape
and material properties of scatterer.

Recently, in 1974, Hizal(27) attempted to formulate the scatte-
ring problem for perfectly conducting bodies as an initial value »rob-
lem, In this method, the exransion cosfficients of the scattered
field satisfy a system of linear first-order differential equations.

It seems, however, that some modificafions are necessary before app-
lying the formulation to practical problems.

Another approach to the scattering préblem for perfectly conduc-
ting bodies which is completely different from the previous ones, is
based on the transient response of the scattering body. The main
idea of the method is to evaluate the impulse response of the scatterer
The evaluation is based on several moment conditions which the impulse
response function must satisfy and on the understanding of the depen-
dence of the response waveform on the geometry of the scatterer., This
technique is attracting more attention today. Teche's(28) singularity

—
expansion technique is a related one in this respect

l.2.2 Scattering by Dielectric Bodies

The problem of scattering of electromagnetic waves by dielectric
bodies which is the main concern of the present thesis can be attacked
using different methods. One way of tackling the problem is to con-
sider it as a reradiation problem. By this the following is meant;
the incident wave, which is generated by a distant source, polarizes
the medium in which the scatterer is located. The polarized(or indu-
ced) sources radiate into all space., The degree of polarization at
a-particular point inside the scatterer is a function of total field
at that point(incident plus scattered fields) and the permittivity of

the scatterer. Thus the induced source density is unknown because
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the scattored field ic not knowan before the comnlete solution of the
proglem is obtained.

For scafterers having a refractive index not too different from
that of the surrounding medium the polarizafion can be assumed to be
due to the incident field alone. The total induced sources are then
known throughout the scatteref volume and the scattered field is ob-
tained by a volume quadrature of these sources. This approxima£ion
is known as the Born approximation and it does not work when multiple
reflection phenomena become important.

Since the séattered field is an integrated effect of the induced
sources, and the induced sources depend on the scattered field, the
above reasoning leads to.an integral equation for the unknown scattered
field. Richmond(29) deduces this integral equation for infinitely
long dielectric cylinders of arbitrary cross-section. His solution
proceeds by first dividing the cross-sectién of the cylinder into a
finite number of cells in which the material parameters are assumed
to be constant, The values for these constants are taken as the values
of the permittivity function at the centre of each cell. The values
of electric field in each cell are assigned as unknowns of'the prob-
lem. The above procedure converts the integral equation into a set
of algebraic equations. The final solution of the unknown field valuesn

each cell is obtained by matrix inversion., This is actually the

moment method of solution of the integral equation with two-dimensional
step functions as test functions combined with point matching. The
scattered field is obtained by a surface quadrature of the evaluated
electric field over the cross-section of the cylinder. In this way,
Richmond calculates the scattering patterns of cylindrical shells of
circular cross-section, a dielectric shell of semi-circular cross-sec-
tion, a thin homogeneous plane dielectric sheey of finite width, and
ah inhomogeneous plane sheet,

The above method is a two-step procedure for finding the far
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field quontities.  Increasing the number of cells increases the accu-
racy but increases the computation time and storage correspondingly.

The scattering of a plane wave by a dielectric ring has been in-
vestigated by Van Doeren(30) using a very similar method. The diffe-
rence is in the representation of the total unknown field, Here the
total field is expanded into a series of functions wifh unknown coeffi-
cients., Substitution of this series into the integral equation toget-
her with the point matching technique(enforcement of the integral equa-
tion at a sufficient number of points within the dielectric volume)
results in a system of aléebraic equations for unknown expansion coeffi-
cients,

Hizal & Tosun(31) élso considered the problemasa reradiation
problem, In théir method, the fields inside the scatterer are ex-
panded into an infinite series of spherical vector wave functions, the
coefficients of which are not constants but functions of rédial dis-
tance from the coordinate origin. The system of integral equations
satisfied by these coeffcients are of Volterra type. Instead of sol-
ving the integral equation, the equivalent linear first order system
of differential equations obtained by differentiating both sides of the
integral equation are solved. This system of differential equations
is not of initial value type but a two-point boundary value type. Its
mafhcmatical form is the standard state-space form which is often en-
countered in linear system theory. The unknown initial conditions
and the expansion coefficients for the region defined by rrr, 05. is
the radius of the enscribing sphere) are found simultaneously by solving
the differential system with zero initial conditions(zero state solu-
tion), by calculating the elements of the state-transition matrix and
finally by inverting a matrix, Their method, which is called the
state-space formulation of scattering, has been developed for arbitrary
iﬁhomogeneous and anisotropic scatterers but has been applied only to

spherically symmetric scatterers which are isotropic and stratified in
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the radiql direction. Tﬁe state-space formulation of scattering will
be examined {n more detail and compgred with the method which is presen-
ted in this thesis, in later chapters.

Waterman(fz) extended his extended boundary condition method to
the problem of scattering by dielectric scatterers. His starting po-
int is the vector Huygen'é principle according to which the total elec-
_t;ic field outside the scatterer can be represented by a surface quad-
rature of ,the tangential components of the total electric and magnetic
fields over the bounding surface of the scatterer, The integral rep-
resentation which gives the correct electroﬁagnetic field outside the
scatterer cancels the incident field precisely for points inside the
scatterer, Within the.inscribed sphere the free space Green's func-
tion has a unique infinite series expansion in term of regular sphe=-
rical harmonics. This fact is utilized to obtain the extended integ-
ral equation for the unknown surface currents which are actually the
tangential electric and magnetic fields., For a perfect conductor,
the tangential electric field is zero on the scatterer surface, so
the integral equation is to bhe solved for the unknown tangential con-
ponent of magnetic field. TFor a dielectric scatterer there are two
unknowns in one integral equation. The solution goes as follows:
the field inside the object is expanded into a series of regular vec-
tor wave functions of the interior wave equation with ihterior wave-
number as in the arguments of radial functions. Then the continuity
of tangential fields on the surface of the scatterer is employed.

In this way, the integral equation is transformed into a system of
algebraic equations for unknown expansion coefficients and the final
solution follows. The interior field can be expanded into a series
of spherical harmonics of the interior wave equation only if the scatt-
erer is homogeneous. Therefore Waterman's method cannot be applied

to inhomogenecous scatterers in its present form. If, however the

interior fields of an inhomogeneous body are found by some means(for
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cxample by Tinite-difference or {inite-element techniqucs) the method
works for such scatterers as well..

Another integral equation approach is made by Mitzner(33) to
solve the scattering problem for an imperfect conductor. He formu~
lates the scattering from a body of large but finite conductivity in
terms of two coupled integral equations relating the effective electric
~and magnetic surface currents. From the integral equations, he then
derives approximate. relationships between the two type of effective
surface currents. The final solution is aghieved by éolving the in-
tegral equations numerically.

A different attackon the scattering problem for dielectric bo-
dies has been made by Erma(20) and Yeh(34). Erma extends his pertur-
bation-expansion technique to dielectric scatterers, However, he
does not illustrate his method with a concrete example. Yeh has got
results for scattering by oblate and prolate dielectric sfheroids
with small eccentricities. The excitation is a plane wave propagating
along the symmetry axis of the scatterer in each case. The boundary
of the dielectric obstacle is expressed in spherical cooordinates in
the general form r=r°[1+6f1(6,¢)+62f2(6,¢)+...] where r is the ra-
dius of an optimum unperturbed sphere, fn(9,¢) are arbitrary single
valued and analytic functions, & is the perturbation pgrameter and
is chosen in such a way that g lﬁnfn(6,¢)' {1, 046<&=n, 0g&gL2m
Detailed analysis is carried out to the first order by Yeh(Erma extends
the analysis for higher order perturbations) together with the proce-
dure to obtain higher order terms. The pertufbation solutions are
valid for the near zone of the scatterer as well as for its far zone
and they are applicable for the whole frequency range. The pertur-
bation expansion technique.is only applicable to scatteriﬁg problems
with homogeneous dielectric media.  Although the method is claimed
fo be capable of solving éroblems of highly perturbed scatterers, no

practical applications are touched inthe work mentioned above,
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A technigue, which is similar to the one mentioned before in re-
lation to Kennaugh's work for perfectly conducting bodies has been used
by Greenberg and Libelo(35) for the solution of the problem of scatte-
ring by axially symmetric penetrable particles. In this method the
standard boundary conditions are apnroximately satisfied at the scatte-
‘rer surface, The technique has been applied to the scattering of sca-
lar waves by prolate spheroids and tilted cylinders,

- Spherically symmetricdielectfic scatterers stratified in the ra-
dial direction have received considerable attention in the literature.
Wyatt(36), in his analysis has got two secénd order differential equ-
ations for the two unknown functions which appear in the scattering
coefficient expressions; One of these differential equations is of
Schrédinger type. For some refractive index profiles, 1like Cauchy
and square root parabolic profiles, Wyatt's differential equations
have solutions as hypergeometric and confluent hypergeometric functions.

The method of invariant-embedding has been employed by Latham(37)
for the solution of scattering by cylindrically and spherically stra-
tified dielectric obstacles. In this method, the field is represen-
ted by an infinite series of cylindrical(orspherical) wave functions
with two set of coefficients. One set of coefficients is determined
by the incident field and the set of values of the ratio of the second
coefficient to the first(this ratio is called the modal-reflection co-
efficient and denoted by Rn) may be determined by considering the chan-
ge in Rn’ vhen a thin homogeneous cylindrical(or spherical) shell is
added to the original cylindrically(or spherically) inhomogeneous body.
By this procedure a nonlinear gifferential equation for R is obtained.
This differential equation is solved numerically with the initial con-
dition Rn(q)=0 at q=0 where q is the cylindrical(or spherical) radial
variable. Once Rn is found the scattered field follows directly.

The computation of electromagnetic scattering from concentric

spherical structures by means of the rigorously exact Mie series is
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discussed by Hiluls!id f: Murrhy(38). They present results for three
different problems: a dielectric sphere, a dielectric shell spaced
away from a central perfectly conducting sphere and both 5 and 10
discrete layer approximations to the Luneburg and Eaton-Lippman lenses.
Scattering by cylindrically symmetric dielectrics, stratified
in the radial direction , has been investigated by Shafai(39) using
the method of phase and amplitude functions. In this method, the
field is represented by an infinite series in the inhomogeneous region
with radial dependence unknown but with known angular &ependence.

This series is substitutedinto the partial Aifferential equation sa-
tisfied by the field variable in the stratified region. Using the
orthogonality propertieé of trigonometric functions on the. interval
(0-21) gives a Sturm-Liouville type differential equation for the un-
known radial function. Suitable phase and amplitude functions(which
involve the integrals of unknown radial functions)are defined and the
unknown radial function is expressed in terms of these. This proce-
dure results in two nonlinear ordinary differential equations for the
phase and amplitude functions and these are solved numerically subject
to the initial conditions obtained from boundary conditions on field
vectors.

Shafai(40) has also solved the problem of scattering by cylin-
drical objects of arbitrary cross-section and physical properties by
the conformal mapping techmique.

Wilton & Mittra's previously mentioned point-matching method for
perfectly conducting scatterers is also valid for homogeneous two-di-
mensional dielectric scatterers., However the practicability of this
method is questionable.

Recently Mei(41) has developed "uni-moment" method of solution
for field problems. This method of solution seems to be promising
in some respects. It can be applied both to two-dimension and three-

dimensional nroblems. The origin of the method goes back to the
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attempts made by some worliers to solve the exterior boundary probleus
(scéttering problems) involving localized inhomogeneous media using
finite—differénce or finite-element techniques(42) together with in-
tegral equations or harmonic expansions which satisfy the radiation
condition automatically. These methods result in large matrices
which are partly full and partly sparse. The methods to solve them
such as iteration or banded matrix methods proved to be unsatisfactory.
The reason is that direct inversion of such matrices is impractical
and iterative methods are slow, and always diverge when the source
frequency is higher than a critical value, This is usually the lowest
resonant frequency of the finite-difference or finite-element region.
The uni-moment mefhod developed by Mei is claimed to eliminate
these difficulties by decoupling exterior problems from the interior
boundary vd ue problems. This is accomplished by solving the interior
oroblem many times so that N linearly indépendent solutions are gene- ~
rateds  The continuity conditions are then enforced by a linear combi-~
nation of the N ipdependent solutions which may be done by solving much
smaller mgtrices. The successful application of the uni-moment met-
hod depends on how fast the trial function pairs(N lineariy indepen-
dent interior solutions of the wave equation) cai be generated. These
function pairs are found by solving the field eduations inside the
scatterer volume by finite-difference approximations. The finite dif-
ference form of the Helmholtz equation(or actually the wave quation
for inhomogeneous media) is solved by fhree different methods which
are the '"shooting'' method, the Riccati transformation, and the sparse
matrix algorithm. The shooting method is basically an unstable nu-
merical algorithm, but where it is applicable it gives satisfactory
results. For‘problems involving scatterer of large dimension the
Riccati transformation is a more stable computational technique. The
uni-moment method using the Riccati transformation to generate N 1li-

nearly independent solutions of the wave equation inside the scatterer
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has beén applied to solve biconical antennas.

Pettit's work is very simil%r(for two-dimensional problems) (43)
fo the method presented in this thesis. It will be mentioned in
detail in chapter 2.

Related to raindrop scattering, Ogﬁchi(44) and Morrison&Cross
(45) have worked on the problem of scattering by lossy oblate
spheroids. Scattering properties of raindrops for two orthogonal
polariz;tions are important in the estimation of crosstalk in the
microwave relay systems which use both orthogonal polarizations to
give two channels at the same frequency. Oguchi has obtained
results for the field intensities both in the forward and backward
directions by solving the related boundary-value problems with a) a
point matching technique and b) a perturbation technique at 19.3GHz.
At 34,8GHz, in addition to the above methods (a) and (b), he has
solved the problem with a third method which is a spheroidal function
expansion method. He has considered 13 different sizes of rain-
drops.

Morrison%Cross, in their paper, give details of the analytical
and numerical calculations used to solve the problem of the scattering
of a plane wave by an axisymmetric raindrop. In the analysis, the
shape of the raindrop need not be an oblate spheroid. ’ Applications
are made for oblate spheroids with various eccentricities. An exact
solution using oblate-spheroidal wave functions is also presented
and the results of approximate solutions, such as the perturbation

and least-square fitting, are compared with the exact solution.

1.3 Summary of the Present Work

In this thesis scattering of electromagnetic waves by dielectric

bodies is investigated in the resonance region by using a new method
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of solution. The method developed works as follows: in circular
or spherical regions with homogeneous material parameters throughout
the electromagnetic field quantities are represented by infinite
series of cylindrical or spherical harmonics depending on whether the
problem is two-dimensional or three-dimensional. These expansions
are convergent in.their respective domains, where they represent

the fields uniquely.

The radial functions appearing in the above harmonic expansions
are cylindrical Bessel and Hankel functioﬁs in two-dimensional
problems and spherical Bessel and Hankel functions in the three~
dimensional case, Tﬁe coefficients of the harmonics are unknown
constants to be determined by the boundary conditions. The angular
dependence in the former case is governed by circular trigonometric
functions, in the latter case this dependence is with spherical
angular harmonics which are combinations of Associated Legendre
functions in angle € and trigonometric functions in angle ¢. In
regions vhere material parameters are not constant but vary with
position, the field quantities are again represented by infinite
series. The radial functions of this expansion, however, are
no longer known functions. The angular dependence is assumed to be
the same as the one used for homogeneous regions, Fo¥ two~dimen~
sional problems, this assumption is equivalent to a Fourier series
representation of fields(in angle 6) in the corresponding inhomogeneous
regions. For three-dimensional problems, it is a Fourier series
representation in angle ¢ combined with the representation of the
0-dependence of fields in terms of Associated Legendre functions.

The differential equation satisfied by the unknown radial
functions is obtained by substituting the infinite series expansion
"of the field into the corresponding wave equation valid in the

inhomogeneous region and using the orthogonality properties of
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angulaé functions appearing in thg expansion.

The above procedure assumes that the fields in the inhomogeneous
region can be represented exactly by an infinite expansion involving
unknown radial functions. The validity of such an expansion follows
from a theorem proving the existence of an infinite series expansion
involving vector angular svherical harmonics for an arbitrary function
6f angle§ 6 and g. For two-dimensional problems this is reduced to
the existence of Fourier series of an arbitrary periodic function.

The unknown radial functions, in addition‘to the differential
equations mentioned above, must satisfy the conditions which are
imposed on them by tﬁe standard boundary conditions on field vectors.

It is then possible to find the unknown expansion coefficients
for the homogeneous region by solving the system of differential
equations numerically.

As in almost all of the methods used in the resonance region,
the infinite summations must be truncated at a certain number in
order to solve a finite dimensional system of equations. This
truncation number is not known a priori, however. By numerical
examples it is shown thatfor two-dimensional problems the truncation
number taken as the nearest integer to 2kr>max works quite satisfac-
torily. However, this is not the case for non-spherical three-
dimensional scattering problems. By considering a spherical scatterer
with the coordinate origin shifted by a distance from the centre of the
sphere(so with respect to this coordinate system the scatterer is
no longer spherically symmetric) it is shown that the truncation
limit defined above is not a sufficient one.,  For example, for a
sphere of optical radius 0.8, the origin is shifted along the
z;axis by an optical distance of 0.2, so that the maximum optical
dimension of the scatterer with respect to the shifted origin is 1,

satisfactory results are achieved by a truncation number of 4 (which



23,
is twice that expected).

The method developed, then; is essentially a harmonic ex-
pansion and boundary matching technique.

Since the cylindrical or spherical harmonics are not the
"natural modes' of non-cylindrical or non-spherical bodies, the
convergence of the series is not to be expected to be as fast as
the one which uses the natural hafmonics of the scatterer.. The
determination of such harmonics for arbitrary dielectric scatterers,
although is mentioned in (46), has not yet been fully explored in
the literature. The present method is, however an improvement
over the ones which use a spherical or cylindrical harmonic expansion
with constant coefficients even inside the inhomogeneous regions
((41),(45)). This is due to the fact that although the cylindrical
or spherical harmonics are not the proper solutions of wave equation
valid for the inhomogeneous region, the radial functions employed
in the present work are generated directly from the wave equation
for such regions.

The present method is developed for rotationally symmetric
scatterers in the three-dimensional case. It can also be extended
to arbitrary bodies, but this is not done in the thesis. All the
derivations and numerical computations are carried out either for
spherically symmetric or rotationally symmetric scatterers.

The following scatterers have been used in the analysis for
two-dimensional problems: the circular dielectric shell, the circular
dielectric shell stratified radially with a perfect conductor core,
dielectric shells with semi-circular cross-section, elliptic,
square and rectangular dielectric cylinders, two circular cylinders
.with different radii located a distance away from each other, ogive
and two-dimensional Luneburg lenses, The resulting scattering

patterns have been compared with the previously existing ones.
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Agreement is remarkably good.

Spherically symmetric scatéerers stratified radially are easy
to solve with the present method. Spherical shells, spherical
shells stratified radially with a perfect conductor core, Luneburg
and Eaton lenses have been selected as the spherically symmetric
scatterers.

As examples of mon-spherical scatterers, the off-centre sphere
prolate and oblate spheroids, a dielectric cylinder of finite
length, and two dielectric spheres with the same radius located a
distance away from each other along the z~axis have been considered.
A practical application is to raindrop-scattering. The forward
scattering amplitudes are calculated for oblate spheroidal and
kidney-shaped raindrOps for an obliquely incident plane wave. It is
not attempted, however to evaluate the scattering properties of
raindrops in every detail.

For rotationally symmetric scatterers, it is shown that the
azimuthal modes are excited inside the scatterer independently of
each other, The index m related to these modes comes into the
calculations as a parameter. Hence, computations are carried out
for each azimuthal mode separately. The above statement is valid
only if the material parameters of the scatterer are independent of
the azimuthal angle g.

In the pepresentation of the fields by infinite series, the
solution of the vector Helmholtz equation in spherical coordinates
has been utilized. This representation is known as the Multipole
expansion of the electromagnetic field. A brief introduction to
Multipole fields is given in chapter 4. The full theory of Multipole
| fields can be found in (47).

In the numerical computations, it is required to solve a

linear system of differential equations. The characteristic matrix
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of this differential system is a (4Nx4N) complex matrix, where N is
the truncation nunber., The elements of the characteristic matrix
depend on the geometry and physical propefties of the scatterer.

This matrix is independent of the excitation. Hence, vwhatever the
excitation is, the numerical solution of the differential equations
is unaffected by ite The form of the differential equations is the
well known state-space form with no excitation term. There are
ready numerical routines for the solution of such a system of diffe-
rential equations., The numerical algorithms Runge-Kutta and
Predictor-Corrector are adopted in the present work. The important
parametérs of both of~these algorithms are step size and error bound
for local accuracy. They are standard subroutines which can be found
in almost all subroutine packages. In addition to the solution of
the differential equations a matrix invefsion is necessary for the
final solution, This is again a 4Nx4N complex matrix.

A computer programme has been developed to calculate the
scattering coefficients, bistatic cross-section .patterns and back-
scattering cross-sections of rotationally symmetric homoéeneous
dielectric scatterers. The shape of the scatterer appears in the
programme as part of a subroutine. Hence, By making small changes
in this subroutine with the rest of the programme unchanged, it is
possible to solve the scattering problem for various scatterers.

As the dimension of the scatterer in terms of wavelength gets
larger, the size of the matrices emplqyed increases correspondingly.
This, din turn increases the computation time and storage. This
feature is characteristic of the resonance region. Although it is
possible, in priﬂciple, to use the present method for frequencies
above the resonance region, this is not practicable because of the
time and storage limitations of computers used for the solution.

The main objective of the present work is to introduce a new
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method for the solution of scattering problems for dielectric obstaclcs
and to give a detailed analysis of its theoretical and computational
aspectss Ior this reason, the examples considered in the thesis

are not difficult from the computational point of view. Handling
optically Large scatter;rs or presenting lots of data for some
practical problems are not attempted in the thesis.

In the first part of the thesis only two-dimensional problems
have been tackled. In chapter two, both the state¥space nethod
and the new method are developed for infiﬁitely long dielectric
cylincers of arbitrary cross-section., A detailed comparison of the
two methods from the ﬁumerical computation point of view.is done.

The new method is tested by solving the two-dimensional scattering
problem for various scatterers. The convegence properties of the
solution are investigated with several truncation numbers. Both
polarizations of the incident radiation, TM and TE, are considered.
It is observed that for TH~polarization the convergence of the
solution with respect to the truncation number is faster than in

the TE~polarization case. The degree of accuracy in the state-
space method and in the new method is the same, but the computation
times are much lower for the new method. The method developed for
two-dimensional problems has also been compared with £he solution
by the method of moments.

In chapter three the new method is developed in elliptical
coordinates. No numerical computations are made. Using elliptical
coordinates makes the>solution of scattering problem for certain
scatterers easier. A detailed theoretical and numerical comparison

.is done about the properties of the new method in circular cylin-
drical and in elliptical coordinates for rectangular cylinders of
'high major-to-minor axis ratio. A practical application of such

a comparison can be the selection of the most suitable method for
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the scattering problem for dielectric strips.

In chapter four the necessary mathematical tools are given for
the solution of the scattering problem for three-dimensional scatterers.
The multipole expansion of the electromagnetic field is investigated
briefly. The original state-space method is extended to three-
@imensional scatterers.,

In chapter five the new method is developed for spherically
symmetric scatterers stratified in the radial directibn. Dielectric
shells stratified radially with conductor cores are considered first.
Use of such scatterers is typical when a method of solution is to be
tested, since in this.case the solution of the scattering problem
for spherically symmetric bodies is relatively easy. The differential
equations for the two functions(in the radial variable) appearing
in the Multipole series of the electromagnetic field are'decoupled.
The size of the characteristic matrix of each differential system
is 2x2. Hence, for spherically symmetric scatterers, storage is
no problem. Luneburg and Eaton lenses are also considered. The
results obtained using the new method are compared with other results
obtained by different methods., The agreement in all cases is
excellent.

In chapter six the new method is extended to problems involving
rotationally symmetric scatterers. All computational steps are
investigated in detail, The superiority of the method to the
original state-space method is shown. To test the method an off-
centre dielectric sphere is considered first. It is shown that the
far field quantities are independent of the selection of coordinate
origin, The role of the truncation number on the results is inves-
tigated by taking various truncation numbers. Scattering by oblate

and prolate spheroids of small eccentricity 1s solved by the new
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method, and the results are compared with the ones obtained using
perturbation expansion techniques. Again the agreement is found

to be very good.

A dielectric cylinder of finite length and two dielectric
spheres of the same radii are also considered as scatterers.
The values for the maximum optical radii of these scatterers are
taken from the lower part of the resonance region. The results
are not compared to any other results, they are just presented.
Finally, the method is applied to éhe solution of the scatte-

ring problem for a single raindrop. Two shapes are considered for
raindrops. One is the commonly used oblate spheroid, the other
is the kidney shape. The kidney shape was not introduced into

the raindrop scattering calculations before. Recent theoretical and
experimental investigations, however show that it is adtually the
shape of the raindrop as its size becomes greater than a certain
limit. Multipolecoefficients and forward scattering amplitudes are
listed for each case for a plane wave incidence and for a certain
truncation number. The direction of the incident wave is taken as
perpendicular to the axis of symmetry of the raindrop. Again the
results are just presented but not compared to any other one.

Their accuracy cannot be assured unless they are checked against
reliable data , either in the form of theoretical results or in

the form of experimental investigation.
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2. TWO=-DIMENSICNAL SCATTERING PROBLEMS

In this chapter scatterers are taken as dielectric cylinders of
arbitrary cross-section. The cross-sectional plane is taken as the
x-y plane. The generator of the cylinder is along the z-axis, The
scatterers are assuﬁed to be homogeneous in shape along the z-axis
and they are infinitely long along this axis. This assumption of in-
finitely long cylinders makes the solution independent of the z-coordi-
nate. Hence the problem is two-dimensional. Cylinders of finite
length must be treated by the method developed for three-dimensional
problems in chapter 6,

The excitation is assumed to be either a plane wave or an infi-
nitely long line source. The plane of incidence is taken as the x-y
plane without loss of generality. Both of the two orthogonal pola-
rizations TM and TE are considered so that a more general polarizati-

on can be treated by linear superposition.
2.1  STATE-SPACE FORMULATION OF TwWO-DIMENSIONAL PROBLEMS-TM CASE

In this section state-space formulation of scattering which hasbeen

developed for three-dimensional problems(31l) will be carried out
for two-dimensional scatterers excited by a THM-polarized incident field.
Consider an infinitely long dielectric
cylinder with an arbitrary cross-section.
A monochromatic plane wave with its elec-
tric field vector in the z-direction(TM=-
polarized) is incident on the scatterer.

The direction of propagation of this inci-

dent wave is defined by the angley with
c . respect to the x-axis as shown in figure

Fig.(2.1.1) 2.1.1.
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The incident field is denoted by Vo. The scattered field is assumed
to be due to the sources induced inside the scatterer by the incident
field and it is denoted by Vl.v The permittivity and the conductivity
of the scatterer are assumed to be functions of position on S and they
are denoted by © and . Permeability is taken as o everywhere,

In the analysis that follows cylindrical cdordinates p and ¢
are useds Whenever they are primed they represent source points,

The scattered field(also THM-polarized) is given by the following

formula(48):

k 2
o

o]
I\

vy (pyg)=- H J,(p") Héa)(koR) ds" (2.1.1)
& |

where (p,g) are observation point variables, p' is short for (p',s')
and denotes source points, S is the cross-sectional area of the scatte-
rer, kb is the free space wavenumber, Zo is the intrinsic impedance

of free space, Hga)(koR) is the zeroth order Hankel function of the
second kind(ed®? time dependence assumed), R is the distance between

source and observation points and is equivalent to:

R= [92+P'2-2pp' Cos(¢-¢')]1/2. The induced current density is given
by the following formula:
Jz(p')=3w6' [Vo(p',¢') + Vi(p‘,¢‘iL where €' = C—QO-J-ZT—'
The surface integral in (2,1.1) can be separated into two surfa-
i i 4 1 1
ce integrals over Sl and 52 in such a way that %n Sl p:>p for all p
and in 52 p'™> p for all p' (here the observation point is assumed to

be inside the scatterer ) as shown below:

k 7
v, (p,g) =- ]sz(p') 12 (x 7) ast - : 2 fsz(p') 12 (R as'
S, 5,

P'L P P'> P (2.1.2)

k Z
0 O
b

The addition theorem for Hankel functions(49) gives the follo-

wing representation for ng)(koR)f
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12 (e ») =D 30" B2 (1 p) oInle-8") for p> p!
M=-c0 .
Héz)(koR) = ZJm(kop) HélZ)(kop') oIn(s-s') for p¢p’

Jm(kop) and Héz)(kop) are m'th order Bessel and Hankel functions res-
pectively. _

These expansions for H§2)(koR) are next substituted into (2.1.2).
‘Since the series for Héz)(koR) is uniformly convergent in p' the summa-
tion and integration orders are immaterial and they can be interchan-
ged legit;i.mately.

The following result follows for Vl :

oo .
Vl(P,¢) =Z[sg;(p) Hn(12) (kop) + SE(P) Jm(kop)] ejm¢ s Wwhere the

~M=—00

scattering coefficients si and si are defined as:

1 k% - - jmg" |
s, (p) == Jisz(p') J (kp) e as!' (2.1.3)
b s
k 2 o
si(p) =~ °4° JJ’JZ(E') Hf)(kop) e I asr (2.1.4)
SZ

The aim of the state-space method is to find si(p) for the re-
gion p2>p2 s where Po is the radius of the enscribing circle. Ac-
cp s . 1 . 1 .
tually it is enough to find sm(p) at only P=p5 » 51nce,sm(p) is cons-
2/ Vu . s . .
tant for p3p,. ( sm(p)—O for p2p, ). This is achieved by deducing
the differential equations satisfied by si and si and solving them nu-

merically. First JZ(E‘) is expressed by the following series:

Loead .
JZ(E') =jw€'{PV° +:E:[S;(p') Héz)(kop‘) + si(p') Jm(kop')] e3m¢i}

mz=.00 .
This series for JZ(E‘) is next substituted into the expressions
(2.1.3) and (2.1.4) with the following result:(summation and integra-

tion orders have been interchanged )

oo 2

z:: Jk : '
sl(p) = -2 e1(p',g') J_(x p') H(a)(k p*) eJ(n'm)¢ Sl(p') ast
m b T m o n o n

Nz-0c0
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. [ ot v .
*L[]é’(P J#') 3 _(k_p') 3 _(k p') od(n-m)s_(p') ast + Ji[é;(P »8') (i p")
s .

5,

I (k p') ej(n'm)*”'En dS'] (2.1.5)

] . -
where 8; = —g— and En = jn e 9% yhich comes from the expansion

of Vo into the following infinite series:

vV (p,g) = oJkopCos(o=¥) Zj“ J (k_p) A
N=-oc0

amplitude is assumed for v, )
By using the summation convention over'index n and showing the
double integral _U dS' explicitly, (2.1.5) becomes:
> 5 , ,
[ ot 5@aems 5,000 1 o fogtonn o3
e 2)

si(p) =

.dg' + other terms ...] (2.1.6)
2(¢') denotes that the limits for the angular integral over g'
depend on the first integration variable p'e The domain of g' is com-
posed of the parts of circle with radius p' which lie inside the scatte-
rer,
The final step in deducing the differential equation for si(p) is

to differentiate both sides of (2,1.6) with respect to pe This gives:

1
d 1
T = (p) 53(p) + wi2(p) 2(p) + §° &TIF W12(p)
2
5 %o (2)
vhere (p) === p J_(k_p) B ™ (kp) I (p)

j k2
(p) = p Ik p) I (kp) I (p)

( summation convention over n has been used above )

The same procedure is followed for si with the result:

2
1 J kz (2) (2)
. 2 2 2
vith w (p) = —-Kg— pH (e p) H “"(k_p) Inte)
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22 - (2)
w (p) = _Tril_ p iy T (kp) 9 Gep) I (p)
vhere Inm(p) = ..Ieé(p,¢) ej(n-m)¢a¢

:1(9)
By truncating the infinite series at a finite number N a linear

system of coupled differential equations is obtained in state-space
2

form, As it is seen from the definitions of si‘and sm:

1 _ 2
,sm(O) =0, sm(O) #0
1 p 2 .
s;(ps) O, so(py) =0
The conditions on the scattering coefficients are not specified
at a single point. Therefore the problem is not an initial value prob-
lem but a two-point boundary value problem. A matrix inversion is
required to convert the two-point boundary value problem into an ini-
tial value one,
As an example consider a circular dielectric cylinder with
G;(p,¢) = G;(p). For such a permittivity function I  becomes;
21

Inm(P) = ,[ 6;(9!¢) ej(n—m)¢d¢ = 6;(9) J’ ej(n-m)¢ dg = 2n eI"(P)énm
(5) °

where 6nm is the kronecker delta. The system of differential equa-

tions takes the following form:

- - - r "
éi 1 Wt () wia(x) si 1 wiaw
- + B mdmy;
2 21 22 2 22 (2.1.7)
Lsm - (x) w (x) | l-:sm | me |

where wil(x) =-j2£-x CI'.(x) Jm(x) Hnia) (x), w#a(x) =-j§—x el [Jm(x):l 2

wil(x) j g— x G;(x) [Héa)(x)]a s wia(x) = - wil(x) » x =k p

For this particular scatterer the summation over n drops out.

Coefficients s; and si satisfy their own differential equation system

for each m. There. is no coupling between si and sé, s;, .eectc,
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If the scatterer is not circularly symmetric the Inrl factors

1.

-take the following form:

at a dlstance £3

I Jng|(P ¢) eJ(n -m)g dg = J'e'(P9¢) eJ(n -n)#

nm

&) g (
ag + J'G'(p g) 3ln-m)e y
2

The integrals indicated above are to be evaluated at each step
of the numerical integration.

In order not to go into algebraic complexities the TE case is
not presented, although the same principle’applies for this excita-
tion as well,

The details of the method of solution will be given in section 2.3

The state-space method is -applicable to multi-body scattering
as. well. It is also applicable when the scatterer has a surface dis-
continuity where the surface normal can not be defined uniquely.

It is interesting to notice that with state-space approach it is
possible to represent the field sxactly with an infinite series of
cylindrical harmonics in a region where the medium parameters are
functions of position. The characteristic feature of such a represen-
tation is its position dependent expansion coefficients si and si.
Such an exact representation of the field in an inhomogeneous region
is not possible using cylindrical harmonics with constaﬁt coefficients.
This series with constant coefficients can represent the field only
approximately.

The complex permittivity function comes into the solution as a
multiplying factor in certain integral expressions and not in the argu-
ments of the Bessel and Hankel functions.

The scattered field and the field inside the scatterer are found
by summing a finite series once the scattering coefficients are found,
No surface quadrature is ﬂecessary in finding the scattered field

throughout the space. In this sense the state~space method is a one-
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step procedure,

2.2 NEW METHOD OF SOLUTION FOR TWO-DIMENSIONAL PROBLEMS-TM CASE

Consider an infinitely long dielectric cylinder,
the cross-section of which is denoted by C as
shown in Fig. 2.2.1. The circles C1 and 02 are

termed as inscribing and enscribing circ¢les. They

are defined as: Cl is the largest.circle inside C
Fig.(2.2.1) ‘and touches it from inside, C, is the smallest
circle outside C and touches it from outside., The incident field is

a TM=polarized plane wa&e. Its direction of propagation makes an
angle y;, with the positive x-axis.

The permittivity of the scatterer is assumed to be constant and
its conductivity zero. By such an assumption no generality is lost
as will be shown later in this chapter,

Inside the circle C., and outside the circle C the medium is

1l 27
homogeneous. The wave equation in these regions is the scalar Helm-
holtz equation. It is known that the Helmholtz equation has a unique
and convergent infinite series solutions, in term of cylindrical har-

monics with constant coefficients, in such regions(50). These solu-

tions have the following representation:

[~ -]

Vl(p,¢) = Zam Jm(kp) o Jmg s P&Py s 0{g4{2n (2.2.1)

M=-oco

Vo(ps¢) = Z[}‘me(kop) + b Hn(f)(kop)] e85 PYP2, 0ggg2n,
me-e (2.2.2)
where a and bm are unknown coefficients, 3; are the expansion coeffi-
cients of the incident field, 3 =i" e™I"%, i = ,ko\/é_'r , €_is the
relative permittivity of the scatterer.
The region defined By pl{p(p2 is not homogeneous in its mate-

rial composition, as can be seen from the stepwise dependence of per-
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mittivity on p and ¢g. The wave equation(obtained from Haxwell's equa-
tions treating € as a function of both p and @) is no longer the scalar
Helmholtz equation. A similar series to thernes used for V1 and V3
can be used to represent the field in this region, This time the ra-

- dial. functions are not known functions. Denoting these unknown func-

tions by fm(p) the representation takes the following form:

-_— . m . .
V,(p,¢) = Z £ (p) LU P4PLP, s O4BLan. (2.2.3)
m=-co

This representation is actually that of the elecfric field by a
Fourier series in angle g, fm(p) being the Fourier coefficients.

Pettit(43), in his work, expands the permittivity function intc
a Fourier series. Altﬂough his approach leads to the same results as
given by the present work, expansion of the electric field into a Fou-
rier series seems to be more proper, because the permittivity function
in region 2 is a stepwise discontinuous function of ¢ for é fixed p but
the z-component of electric field is continuous throughout the range of
Be The necessary number of terms to be taken in the Fourier series
may be greater in the case of a discontinuous function compared to a
smooth function.

The functions fm(p) are not arbitrary. Their differential equ-
ation is found by first substituting (2.2.3) into the wave equation re-
levant to region 2, and then using the orthogonality of trigonometric
functions in the range (0-27).

The wave equation for region 2 is:

3 v 2%V

1 2 1 %%, 2
S e—(p 5= ) + = + o p €(p,g) V, =0
pop F3p 02 of o “tPa?) ¥y

substitution gives the following;

as) 2
d fm dfm m2 2 img
2 +dP T2 fm * ko er(P’¢) fm € =0
dp P

M=-o00

Bach term in the above summation is multiplied next by e-"-’n¢ and

o



integrated over (0-2x) with the following rosult: 37.

dzfn 1 dfn n2 o
St e T ) G O
dx x P
) 21 - s
Rt i(m-n) -
where &= 5 j’Gr(x,¢) e dg and x = k_p.
o

Gr(x,¢) is the relative permittivity function for region 2 and
it should not be confused with the relative permittivity of the scatte-

rer which‘is a constant, |

In order to simplify the algebra in the analysis that follows
some assumptions aré made without losing any generality. If the scat-
terer has an axis of symmetry, the incident TM-pﬁlarized plane wave
can be decomposed into even and odd parts. For both even and odd
components the infinite summations above start from O and go to 0O .
This is due to the fact that for even excitation ¥,k = 44, and for odd
excitation W=-,, (see appendix A). The problem for even and odd
excitations is solved separately and the results of each solution are
superposed linearly. It is now permissible to start the summations
from O , The new coefficients of fm(p) are denoted by Yom® For

even excitation =t a - . .
Yom “am n,-m 5mo s for odd excitation

Y. = a._ - - )

a where & is the Kronecker delta.
nm nm n,-m nm mo

mo *

Decomposition of the incident wave into even and odd parts and
treating each part separately will be compared with the solution with-
out any decomposition in section 2.k4.

Assuming even or odd excitation, the differential equation has

the following form:

s, af, 2 o3
2 + X ax 2 fn * z Ynm fm =0
m=o0

dx x
This differential equation is converted into state-space form

which is more convenient for numerical treatment by i) truncating the
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series at a finite number N and ii) making the following definitions:

f.(x) =y &), daf,
: = - zn(x) s, then
dy .
n—
&= " ML, % (x)
dx 2 n " x %n }E:Y}ml Im

. M=o

in matrix form:

$(x) O U (y&)

- _ E - (2020 Ll')
s) | | s iUk | |2

—— : -_ J

where U is the (N+1)x(N+1) identity matrix, O denotes the (N+1)x(N+1)
. - T _ T

null matrix, z(x)—[yo Ty oo yN] , i(x) = [zo Zy eeo zy] are

(N+1)x1 column vectors, T denotes transpose, . means differentiation

with respect to the argument, S is an (N+1)x(N+1) matrix whose expli-

cit form is given as:

0%+
2 a°o ﬁol s 0ePEe P YON
x
+ !._2
alo x2 Yll 09 & »o s YlI\I
S= (+) sign for odd excita-

. tion, and (-) sign for
;' =¥, . N2

- Mo N1 soeseescs =5 = Ynn even excitation.

If the excitation were not separated into even and odd parts the
matrix S would be a (2N+1)x(2N+1) matrix.
"The solution procedure is given in detail below.

The solution to (2.2.4) can be written symbolically as:

...............
" .

. ' e (2.2.5) where x, = k p, = op-
ESCY LA A E{C) 1 7 %P1

tical radius of the ins-
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cribing circle,

2,%,%,8 are (+1)x(N+1) square matrices.
The matrix %% is called the state-transition

éa §4 matrix.

The columns of the & matrix can be obtained numerically very
easily. For this purpose, the system of differéntial equations
(2.2.4) is solved with canonical initial condition vectorsv. By this
the following is meant; <to find the j'th column of the matrix,

(2.2.4) is solved with the initial condition vector (0 0 ... 1 ... 0 )7

the element 1 is at j'th place from top. Then, (2.2.4) is solved
(2N+2) times subject to the (21+2) canonical initial conditions to
find the elements of & matrix. '
Generation of the & matrix numerically is essential for the final
solution, that is the determination of the scattered field coeffici-
ents bm. The rest of the solution proceeds as follows.

The boundary conditions on circles P = and p = P> give the

following equations:

| _ (2) _
a Jm(xld) = fm(xl) Jm(xa) + b‘m B (xa) = fm(xa)
\/Er am :Im(xld) = ;m(xl) 3m(x2) M bm I.{m(XZ) = %m(xa)

where . denotes differentiation with respect to the argument, x1=kopl
I

x2=kop2, X6 er R Cr is the relative permittivity of the scatte-
rer.

The above equations have the following matrix representation:



1
[
o
F
~~
~
N
"
a2}

£64) =Jd 2 Lix, > bt g

. . : and ‘ . . (20206)
g(xl)

1
(o]
]

i

~
»
-]
]
fas

T T
vhere a =[}o 2y e aN] s b= [po by ... bN] are (N+1)x1 column

vectors.,
- . ]
J (x )
0*1d 0 Iy ) 0
3 (x, ) _ .
Ja= o ' XI? Ja= Jl(xld)-_ Ve,
Iy ) ° "3 )
L N N‘¥14
- - J
— . [ i
(2)
B (x,) ) 0 ng)(xz) o) 0
2 *(2
Hl (x,) (x.)
H= ° = R
o *e _ 0 ‘.
B2 ) 22 ()
L.

The above matrices are (N+1)x (N+1) square diagonal matrices.

T . . «T
5 - [$9.6x) 33,0, ... CNCRI LIS [5,3,0x,) fS'Jl(xa)....szgl

are (N+1)x1l column vectors.

Using (2.2.5) together with (2,2.6) the following equations re-
sult:

£0xy) =B0IE0x) +BEGe) =[BT, + BT, ]2 =Hy b +
i) =B00E0y ) +&0 £0x)) =[800 T, 4 + 86 )2 = Hy b+
define : | = 3y 914 +<,§z(xz)3l g~ (H1)x(N+1) matrix

Q =86 J, 5 + 0T, g ~—--  W+1)x(N+1) matrix
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then
Pas= H2 b + El and Qa=H,b+ g> » OF
PooE e &1 2 P |E
— p— - (2.2.7)
@ CHyl )k 82 L @ E e

Once b is found from (2.2,7) the scattering parameters follow.

Before analysing the above solution procedure numerically it is
worth looking at the solution for a circular dielectric shell strati-
fied radially.

The incident wave_is assumed to be propagating along the posi-
tive x-axis, so

o0
Volpsg) = & HT = &P BT 2 ) ()" 5 epp) &7

Me~0
it is seen that §=(-3)" .

The factors a  take the following form for Gr(x,¢) = Cr(x) :

o .
. € (x)
®rm = _%;.j—er(x’¢) eJ(m-n)¢ dg = —EE- ‘J.ej(m-n)¢ dg = Cr(X) 6nm
o) o '

and the differential equation for fm(x) becomes

2
d fm

de

daf 2
1 m m =
R CACR Sl =0 @a®

The summation disappears and each fm satisfies its own differen-

tial equation for each m ., There is no coupling bettween fo and fl,
f2, ooo,fN R

The state-space equivalent of (2.2.8) is :

;rm(x) 0 1 ¥, x)
. = (2.2.9)
Zm(X) -ﬁ- - € (x) -1/x z (x)

2 r m

bid



where T, = fm TE fﬁ and x = kop

The solution to (2.2.9) is symbolically:

fm (X) §!n": %'

2m fm(xl)

(2.2.10)
fm(x) éém By m fm(xl)

The boundary conditions on the circles x = Xy and x = X5 give

£ (q)=a Jm(xl) £ (x,)= (-3)" In(xs) + b H;Z)(xa)
at X::X, al X:Xz
£,0q)= 2, Jm(xl) £(xp)= -3)" ROV N Héa) (x,)

Combining (2.2.10) with the above equations gives :
£,6ep)= (=07 ,Gey) + b B2 ) fBe0s (o) 86056 | o
£ ()= I T Gey) + b B (x) (B a,00) +EWT ) |,

solving the above equations for bm gives

3, G B0+ T ) §, 0

b = Jﬁ(xz)'Gme(xz) «(=3)®  where G =
m

“(2) (2) I (e )30+ T (x. ) B0

G H <" (x,)-H “/(x;) m 1’ %5m m 1’ %m
The elements of the & matrix are obtained by solving (2.2.9)

numerically subject to the initial condition vectors ( 1 O )T and

T A
(0 1), the former being for £ > ésmand the latter for f;m, I

From the above solution, it is observed that whatever the trun- _

cation number the matrices employed in the solution are always (2x2)
matrices. This property is associated with the scatterer being cir-
cularly symmetric and stratified only radially., This property is not
met in the solution of integral equations by moment methods(29). For
example, in the case of a spherical shell, the shell is divided into
N cells, then the matrices employed are NxN matrices. The present

method of solution requires the solution of (2,2.9) N times for a trun-
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cation number N,

For this particfilarly simnle problem the_differentialequations
to be solved in both the state-space and the new methods are compared
below from the computational point of view.

The characteristic matrices are denoted by Ass and Anm in the

two methods respectively., The explicit forms of ASS and Anm are:

-j'g- x C;(x)Jm(x)H£2)(x) -3 g— x G; Jm(x)Jm(x)
A=
s
’ j5 x c;(x)Héla)(x)Hlflz)(x) iz x CI"(x)Jm(x)Hn(lZ) (x)
) . .
A =
NM -1/
'EE - Gr(x) *
x
L p

As it is seen, the elements of ASS are more complicated functi-
ons of x compared to the elements of Anm' Genera#ion of Bessel and
Neumann functions at every step of the numerical solution 'is both time
consuning and sensiéive to numerical errors. Additionally the state-
space differential system has a forcing term(inhomogeneous part) as a
part of the system. Also, even for o=O(pure dielectric) the elements
of Ass are complex in contrast to Ahm being a purely real matrix.
Whether or not the characteristic matrix is complex is important in
computer programming,

In order to compare the two methodé further, the rest of the
solution procedure is given for the state-space method below.

The system of differential equations has the following form:

-

1 Al J2 1 J12
mi—=1 " o L o L F e L (2.2.11)



The solution to (2.2.11) is symbolically:

1 T _n ‘o2l 1, 4]
s G| |8, @, 5 (:c_l) z (x)
S| |8 8 ||s, ) 2 (x)

: i

where the  matrix is the state-transition matrix and the z

column vector is the zero-state solution to (2.2,11) (z_ is obtained
by solving (2.2.11) numerically with initial condition column vector
equated to zero)

The relation (2.2.12) follows from the linearity of relation
(2.2.11). In writing (2.2,12), vhat is really dome is the separation
of the solution into two parts, i) independent of the excitation and
linearly related to the initial conditions, ii) independent of the
initial conditions and totally dependent on the excitation, and super-
posing the two solutions,

Since sl(xl) = 52(x,) = O by definition of s  and 52, it foll-

m m m m

ows directly that

n 12
sl(x ) ém(x'{) @msz) 0 zl(x )
m -2 |_ m 2
= +
% 52& Wi 2 2
0 3, (x2) "t sm(xl) zm(xz) |

. 2 - 2 22
From the second row it follows that sm(xl) = -zm(xz)/ & %)

and from the first row that
1 _ 2., 22 1
sm(xz) = -(Eﬂ(xz)zm(xa)/ém(xz)) + zm(xz) .

This is the final solution for the scattering coefficients for
the region x),xa.
Therefore the following computational steps are required for the
state-space method. -
12 22
i) to find $ and € , the differential equation (2.2.11) is

solved once with the forcing term equated to zero and initial condi~-
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tion vector (0 1)

9

e

ii) to find z end zi s (2.2.11) is solvcd once with zero-vec-
tor initial condition., The rest is simple algebra to find si(xa).

For the new method; the differential equation (2,2.9) is sol-
ved twice to find the columns of the state-transition matrix with ini-
tial condition vectors (1 O )T and ( 0 1 )T. Hence in both met-

7 hods a system of differential equations il solved numerically tuice,
but one system is obviously simpler than the other. Numerical results
endorsing the last statement will be given‘in the last section of this

chapter,
2.3 HNUMERICAL INVESTIGATION OF THE STATE-SPACE METHOD

In this section the state-space method is investigated numeri-
cally for a noncircular scatterer. The cross-section of the scatte-
rer is assumed to be symmetrical with respect to the x-axis. The ex-
citation is a Tl-polarized plane wave propagating along the positive
X=-axis. It is also assumed that the vermittivity of the scatterer
is constant and its conductivity is zero.

Sikox ;s..-:_;;f/-\
e k| »X-OXis

—>

L

The associated system of differential equations is:

s e S R w2

_ : e (20301)
el = |, o] A Jereen] &
EZ w21 g w22 §? W22

yhere §1 = [si si ooe s%] T, §? = [si si cos SS] T are (1)1

column vectors. W9 (i=1,2, j=1,2) are (N+1)x(N+1) square matrices

whose elements are given éexplictly below

11_ (2) 123
W= =5~ xET J G " (x) , @ =-5-xE€I T (x)d (x)

mn 2 mn 2
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(@) (x)Jn(x)

21 H
n m

[0 T e

22 _ 4
m 2 @,

@) y2) -
X €Lt (‘{)Hn ), m - 2 €y

®, ®,
where . Imn = G; i Cosmg Cosng d¢g + C;, _q[ Cosmg Cosng dg and £n= 1+3 no
1 3 :

e =[1 =] =1 J eee (-j)“] T is an (N+1)x1 excitation column vec-

tor.
In arriving at the above expressions use has been made of the
. 1 _ ,qyn 1 2 _ (.qym 2
relations s_ = (=1) s and s__ (-1) S_ e
A
Let Q = s a (2a+2)x(2N+2) complex matrix,
22
and u = w2 e , ¥= w2 e , both being (N+1)xl column vec-
tors.
Also define
: 1 2
Qg = real(Q) , fp =really) , £fp = really)
Qr = imag(Q) , _f_% = imag(u) , f% = imag(y)
and En s
L ’ & % |2
-~ I18R 51

These definitions are made to convert the complex algebra into .

real, because the differential equation subroutines available in

subroutine packages are based on real arithmetic.

With the above definitions;

...... ceeens ceennd]  #
B Qr Qr 57 E
! L
b)) T (e )a

. or more explicitly;
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-y o~ . . - r - - -

ST a R @) &[5
g| R F ) g g
s | |t '.Wié | x| s |T |5 (2.3.2)
‘:s- . Lwél szl w§2 wgz N -§§ -i:ZJ
- a L

The solution of (2.3.2) is written symbolically as:

Pl - r . . : A "'1 1 s
-§R(X) éu §12 . éu .ém- -S-R(xl) -El(x)
g1(x) & . &, ézs '§24 sr(x;) 2,(x)
D0 =0 RSN [ CPEII) U EE
sp(x) : . 85(x,) 2, (x)
=978 s, e, g| 5N 5
% R R IR Y N T
5-(x) ' . . s7{x,) z) (x)
L.L J L§‘"‘ é}z‘ "‘43: §4"; LIX_—LA --l!. J
(243.3)

The (4N+4)x(4N+4) matrix[$]is the state-transition matrix.
2z is the (WN+4)x1 zero-state solution, obtained by solving (2.3.2)
numerically with zero initial conditions.

For 211 single scatterer problems the coordinate origin is lo-
cated inside the scatterer(although this is not essential) so that

% =0
2

The conditions on §1 and g° , namely §1(x1) = gz(xz) =0,

are used in (2.3.3) with the following result:

s0)| B Bow B0 caw] [ o ] [z, (x,)]
)| |, Bor 200 L Ew)| | © 2, (x,)
:.. ...... _+_
o |Tlaw s am am | de| T (20
1o | [zm: gm0 200 g | S6) 2,0,

(2.3.4)

[

e re——

v,

\ ea—

- ety s
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and from the 3rd and 4th rows;

; 2(; ) z_(x,)
B 00| (530 =72 (2.3.5)
2 - —
/
§P—> (2N+2)x (2N+2)

The unlnown initial conditions are found by solving the linear
algebraic system of equations (2.3.5). The scattering coefficients

§1(x2) are next obtained as

- '
56| (B0 sm| [Bw S [256) 2z )
=- +
5% (x,) B0 B o Em) 25, (%) 2y (x,)
1§
(2N+2)x (2N+2)

The following numerical computational steps are necessary te
find the scattering coefficients g}(xa);

i) to find g(xa) the differential equation (2,3.2) is solved
once with zero initial conditions. .

ii) to find the elements of matrices §Fand-§q, (2.3.2) is
solved numerically (2N+2) times with a zero forcing term,. the initial
conditions being the canonical ones.

iii) inversion of matrix &, numerically. |
iv) multiplication of matrix -§§§¥1 by the column vector
z), )L,

As a numerical example consider x, =2 and N =6, Then

2

i) (2.3.2) is solved numerically 15 times, one with zero ini-
tial conditions, the remaining 14 with a zerc forcing term.

ii) inversion of a (14x14) matrix.

iii) multiplication of a (14x1h4) matrix by a (14x1) column vec-
tor.

In more detail, the numerical solution of (2.3.2) goes as fol-

lows:
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The numerical algorithm adopted for the solution of (2.3.2) was
the Runge-Kutta algorithm. 1In this method the right hand side of
(2.3.2) is evaluated 4 times at evéry step of numerical solution.

This means that at each step the (UN+4)x(41+4) characteristic matrix

0]

must be multiplied by a (UN+4)xl column vector and the resultant co-
lumn vector added to another (4N+4)x1 column vecfor four times, As-
“sume that there are M steps in the overall numerical routing(the num-
ber I dep;nds on the stepsize,> local accuracy criteria and the range
of the variable x), then the elements of the characteristic matrix
are to be generated 4 times and this matrix must be multiplied by a
(4N+4)x1 column vector also 4M times. Assume that the generation of
the characteristic matrix takes a time of Tw(N) seconds, .the mul-
tiplication of this matrix by the (4N+4)x1 column vector takes a time
of TH(N) seconds. Then for the whole numerical process.the approxi-
mate solution time is M. [T, (N) + T, ()]

Generation of the column vector z(x,) and matrices & and 24
numerically requires the solution of (2.3.2) (2N+3) times. The
overall time for this operation then is 4M(2N+3). [TW(N) + TM(N)]
(assuming that the solution of 2z and the solution of every column of
the matrices §% and é% is achieved after approximately the same num-
ber of steps, which is taken as M )

The inversion of matrix &, takes a time of a(2N+2)°, where a is

a proportionality constant, and multiplication of by ( §§ §§)T

takes a time of Tq(N) seconds. Therefore, the total computation

time for the solution of scattering coefficients is approximately
= 3
trotar = 1 WI(@W3) [ T,0N) + TN [alaw2)® + 2 ()

One additional feature of the state-space method is that the
numerical solution of the differential equations starts from x = O and
goes to x = X5, even for a homogeneous scatterer. In the new method

this range is from Xy to X5 for a homogeneous scatterer, where Xy



. 50,
is the optical radius of the inscribing circle., Correspondingly
computation times are higher in the sfate-Space method, For inho-

mogeneous scatterers the range is from 0 to x5 in the two methods.

2.4 NUMERICAL INVESTIGATION OF THEZ NEW METHOD

The associated system of differential equations has the form

z.z‘ 6 . 7T X '
=l L (2.4.1)
S E =U/x| |z ’

In.

vhere O denotes the (N+1)x(N+l) null matrix, U-is the identity

matrix.

Matrix S is given explicitly as:

2

- 1
S= "o i SRR YN
. 2
- -Y eoe _1! -
| "No N1 2 = Ty
21T
o1 j(m-n)g -
where « =57 Gr(x,¢) e dg and ¥ =@ -
o
“%rm °mo

Define matrix C as:

C is a (2N+2)x(2N+2) square real matrix (o = O is assumed)

It is seen that there is no forcing term in the differential

system (2.4.1).

In the numerical solution of (2,4.1) the Runge-Kutta algorithm
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is used." This requires the evaluation of the right hand side of
(2.4.1) four times at every step of the numerical computation, How-
ever, there is no need to genérate the whole matrix C, since the
three submatrices are either constant matrices or can be generated
very easily. If (2.4.1) is written explicitly as

=z , z=Sy-zX

g o

‘the first equation is just a substitution in computer arithmetic, the

second pa;t of the right hand side of the second equation is again me-
rely a substitution. Hence it is only required to generate an (N+1)x
(N41) matrix and multiply it by an (N+1)x1 column yeétor.

Generation of'S is much easier compared to the generation of W
in the state-space method. The elements of S are similar to the Inm
in the elements of the W matrix, but the elements of W have the Inm
multiplied by Bessel and Hankel functions whose accurate evaluation

requires appreciable generation times and is a task of major importance,
2n

The integral expression a = E%- Gr(x,¢) ej(m-n)¢ dg can be
evaluated analytically in a compact formowhen the shape of the scatte-
rer cross-section and the form of the inhomogeneity of the material
parameters are known by way of analytical expressions,

Let the generation time for matrix S be TS(N) and the multipli-
cation time of S by y be Ty (N). Then at each step of the numeri-
cal process the amount ofrtime spent is TS(N) + TMS(N). For exactly
the same problem, the number of steps in the numerical solution of the
differential equations is obviously less for thé new method compared
to the state-space formulation, since the solution range is ( O-x2 )
in the state-space method but is ( X=X ) in the new method(xl>r0,
is the radius of the inscribing circle). Call this number P. Then

for the solution of the differential equation the required computation

time is 4P TS(N) + TMS(N) o Since (2.4,1) is to be solved (2N+2)
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times to find the elements of the state-transition matrix, generati-
on of this matrix requires a qompﬁtation time of hP(2H+2).[TS(N)+TM3(Hﬂ
seconds,

The scattering coefficients a and bm are found by inverting a
(N+2)x(2N+2) matrix, The computation time for this is a(2N+2)3,
a is an appropriate proportionality factor. Fiﬁal computation
time is spent on the multiplication of a (2N+2)x(2N+2) matrix by a
(2N+2)x1‘column vector. Let this time be Tr(N). The total compu-
tatiog time for thg solution of the scattering coefficients bm is
then approximately:

B0 = | 4P(22). [T (0)+m, ()] +a@m2)? + T 0]

Since TS(N) << T,._J(N) , TMS(N)«TM(N) » P{N and (2N+2) ((2N+3)
the computation time for the new method is obviously much smaller
than for the state-space method., Numerical results suprorting the
above claims are given in the last section of this chapter.

Before analysing the new method for TZ excitation there are two
nore points to be mentioned,

The first pointAis related to the inhomogenity of the scatterer.
Thus far only homogeneous scatterers have been considered, Assume
now that the material parameters ( €, o ) of the
scatterer are functions of position in C.  The
@ region defined as P> o is again a homogeneous

region, so the solution of the Helmholtz equation

as an infinite series of cylindrical harmonics is

unique and convergent in this region. However it
is no longer possible to define an inscribing circle such that the
‘'field inside this circle can be represented by a series of regular
cylindrical harmonics., Actually the radius of this circle is zero.

The region defined as p<:p2 is totally inhomogeneous(which has no

completely homogeneous subregion). Thus following the previous
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reasoniﬁg the field is represented by a Fourier serieoni; this region.
The differential equations satisfied by the Fourier coefficients are
again deduced by.substituting the Fourier series into the wave equation
valid in this region and by uoing the orthogonality of trigonometric
functions. However there is a diffuculty here, The differential
equations of Fourier coefficients have singularities at x = O which
must be taken into consideration in the numerical solution of these
equationo. The following way of circumventing this difficglty seems
to be convincing. A circle with a radius very small compared to Ps
is assumed to be located concentric with the enscribing circle,
Material parameters of the scatterer are assumed to be constant
throughout the interior of this circle. These constant volues are
taken as the values of € and o attained at the coordinate origin. In
this way the numerical singularities are eliminated. This procedure
has been followed in the solution of a two—dioensional Luneburg lens
problem, A numerical value for the radius of the small circle can
be taken as 0.192: This has proved to be reasonable in applications,
such that decreasing the Eadius of the smali circle beyond this limit
does not change the results appreciably( at least in the range of Ps
considered in the applications). Surely the size of the small
circle must depend on the variations of € and o &

The second point is related to the excitation. In the numeri-
cal comparisons made in previous sections, plane waves propagating
along the symmetry axis of the scatterer have been considered as the
excitations., It was argued that a plane wave coming at an arbitrary
angle with respect to the symmetry axis of the scatterer can be de-
composed into even and odd parts. For each ﬁart the problem is
éolved separately and the results are superposed linearly. In this
way it is possible to work with smaller matrices. However it can

easily be shown that the characteristic matrices of the system of

differential equations correSponding to even and odd excitations



Sk

depend én initial excitation. In computational terms this means that
the state-transition matrix correséonding to the real excitation is not
equal to the sum of the state-transition matrices corresponding to
even and odd excitations. Hence it is necessary to evaluate the
state-transition matrices for each different excitation, VWhen, how-
ever, the excitation is not decomposed into even and odd parts,
although the matrix sizes get biggér (from (M+1)x(N+1) to (2N+1)x(2N+1))
the state-transition matrix is independent of the excitation. Exci-
tation comes into the calculations through the boundary conditions.,
Therefore, once the state-transition matrix is found for a scatterer
it is the same matrix for all incidence angles of the incident field.

If the scatterer has no symmetry axis, decomposition of the
incident wave into even and odd parts and solving the problem for each
part separately does not work., 1In this case summations start from

-N and go to N. Matrix sizes are (2N+1)x(2N+1).
2.5 NEW METHOD OF SOLUTION FOR TWO-DIMENSIONAL PROBLEMS~TE CASE

Tﬁe incident wave has a magnetic field
with only a z-component., The electric
field is in the x-y plane and can be ob-
tained from this magnetic field using

Maxwell's equations.,

The scatterer is an infinitely long di-
electric cylinder with constant permitti-
vity and zero conductivity throughout its cross-section.

| The z-component of the magnetic field is denoted by V. V takes
the subscripts 1,2 and 3 in regions P<Pl’ P1< p<p2 and p> p, res-
pectively,

Folowing the same procedure as in the TM case the fields are
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represented by

0 .
Vl(P;¢) = zame(kp) T G 0<¢é27‘
. =& .
VZ(P:¢) = mzfm(f-") eI"? s 91<P\<P2 ’ 0Lp2n
(2)
V3(P,¢) = nﬁm[%‘J (kp) + b H (kop)] _edm8 p>P5

The partial differential equation for V5, is found from Maxwell's

equations treating € as a function of p' and ¢ in region 2;

aln€, oV oLn6, v
b —_—s 2 2 2
VoV, +0°6(p, g V. TR e R =0  (2.5.1)

where V- is the Laplacian operating in x-y plane.

Substituting the series for V2 into (2.5.1) gives:

2
®. &t as 2 o dln€
—n 1 m o m jmg - dm 2r

Z[ * x dx 2 fm] © * Z[Gr(x’¢)fm 2 g fm
Mz- de X M=~00 X

dln€._ df .

- _____2_1‘ _.L] eJm¢ =0
ox ax )

where x =k°p. Multiplying each term in the above series by e~Ing

and integrating over ( 0-2n ) gives:

2
n 1 n n - m _
&2 M x dx - 2 fn +Z[§rm(x)*m +YL£‘X) dx ‘J =0 (2.502)
. X Mz~
27
where oLn€
.1 m 2r] 3j(m-n)
Enm(x) =55 [Gr(x,pﬁ) - jE— ‘—a;;— ] ed ¢ dg , and
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dLn€

,-lnm(x) IR 2r ej(m-n)¢ ag A

2n ox
o

The differential equation (2.5.2) is converted into state-space

form by defining;

£ =Y, ’ £, =2, , then
: N N
n- % 2T 2T x " 4_(pnmym+ zm)
x m=0

(2.5.3)
vhere it is again assumed that the excitation is either odd or even
for algebraic simplicity, hence summations starts from Zero. The

series is also truncated at a certain number N, The factors Ppm and

qm ares

pnm=§nm+'§‘n,-m -gnm 6mo_ -a.nd qnmznnm +?ln,-rn -T(nm 6mo
. (2-9-4) (2.5.9)
In matrix notation (2.5.3) has the following form:

e

=1 - |- (2.5.6)
s, - 8 z

o B

1
=)
\Y)

. T T
where y= ( Yo ¥y eee ¥y ) 227 (2, 2] oee 7y ) are (N41)x1
column vectors, O is the (N+#1)x(N+1) null matrix, U the unity matrix.

The matrices Sl and 32 are given explicitly as:

- EOO "'Pol ooe PON 1 -( ’Y)oo-l-l/x) _q01 oo _qOI;l
f, L |
- -3 =P sese =P - _
S 1o xa 11 w s T? lo (qll+1/x) ese -qlN
= =
1 2 ]
. § N2 '
L - NO -le see xZ pNN | L -q No -qu see '(qNN"'l/X)_
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Wﬁen the characteristic matrix of the system (2.5.6) is compared
with the characteristic matrix (2.4.,1) it is observed that S2 is a di-
agonal matrix for the T case but is a full matrix for TE case.

From the above analysis it seems that it is necessary to perfor:
two integrations at each step of the numerical solution of (2.5.6).
For a homogeneous scatterer, however, this is not the case. Again
as in th? TM case only one integration is to be perfomed. . This is
because of the fact that the permittivity function in the second
medium is a step function in both p and ¢ and its derivatives which
are delta functions appear in the integrands., This is shown quanti-
tatively as follows
Consider a homogeneous scatterer having a permitti-~
vity Gl. The logarithm of the relative permitti-
vity function in the second medium is expressed in

terms of step functions as

In€, = In€ [u(¢'¢2)-11(¢f¢3)+u<¢f¢4)-u(¢-¢1)]

The derivatives with respect to x and ¢ are

3aln€ dg d¢ dg dg,y
2r 2 } L
= = Lnglr [-5(¢_¢2) —_—t 5(¢_¢3) — 6(¢-¢L|.) —_— +5(¢_¢1)—:-]

=727 = 106y [ 8(pmpiy)-8(sss) +5(p-p,)=8(s )]

Substitution of these derivatives into the expressions for (§nm

and q?nm gives:
21
. %nm(x): .]2;.1.[ er(x’¢) ej (m‘n)¢ dg + _1“.1_2 Lnelr(ej(m-n);zsl _ej (m-n)¢2

27X
°

+ ej(m-n);zs3 _ ej(m-n)¢4) (2.5.7
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Ine .
Y, ()=m —2E ( Jn)ey 28y _ 3lnn)dy ddy , Jmmn)gs &

_ odlmnlg, g—}%u ) (2.5.8)

it is seen thatv  as a whole and the second part of”%nm are
not integrals. The first part of '§ is identical to a__ in the
nm nm
™ case.
When the standard boundary conditions on field vectors are
satisfied on both the inscribing and the enscribing circles, the

following equations result:

fm(xl)=ame(xld) fh(x2)=bmH;2)(x2)+Ime(x2)
° . X=X1 . (2) . . =
fm(xl)=J§irame(xld) fm(xz.):bmHm (x2)+?th(x2) ‘

These equations have exactly the same form as the ones in T
case. Hence the solution for the scattering coefficients bm
proceeds in exactly the same way. From the numerical point of view
this means that a computer programme with the modification of just
a single subroutine can give the solution of the sgcattering problem
for both polarizations of the incident wave, The modification is
in the characteristic matrix of the system of differential equations.
For this reason the solution process and the numerical investigation
of TE case will not be repeated here. |

As is seen in the expression for*lnm (2.5.8) there are derivative

factors dg/dx. At some points on the boundary of the scatterer

-cross-section these factors may become infinite. Hence on approaching

such points care must be taken. One way to tackle this problem is

to deform the boundary of the scatterer cross-section locally at such
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singular points., This deformation should be by such an amount that
it does not affect the scattering behaviour of the object, but at
the same time eliminates the numerical singularities at these points.
The right amount of deformation is found by observing the changes in

the scattering quantities due to changing the size of the deformation.

b4
For example, consider the following scatterer which
‘ has an elliptic cross-section. The derivative dg/dx
X
is infinite at x=xl(¢=0), since C is circular in
C

the region of ¢=0, This éoint is the starting point
of the integration range.
The boundary curve C is deformed in the following way.
A circle with centre O and radius x1+€ is drawn,
where ¢ is 'a positive quantity which is very small
( )c, compared to X . The points of intersection of this
circle with C are denoted by 1,2,3 and 4, The

circular arcs (1,2) and (3,4) are denoted by C, and C_, and the

1 2

elliptical arcs (1,2) and (3,4) are denoted by E, and E, respectively.
The new boundary of the scatterer cross-section is composed of

the set of points given by C, UC, U [c-(El U EZ)] .

The inscribing circle now is the one with radius x1+e s since
the medium inside this circle is homogeneous throughout. The
enscribing circle is the one with radius X5 In this way it is

possible to isolate the singular point x, and get rid of the numerical

1
inconveniences,

Another way to eliminate the numerical singularity at X=Xy is
to use the defining equation of'lnm at this point instead of using
(2.5.8). From the defining equation of Tpy it follows that"]nm(xl)=0
This condition is used in the actual computations.

If there is more than one point on C in the neighbourhood of

which C is circular(dg/dx—>o) the first approach is more suitable.
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2.6 TWO-DIMENSIONAL MULTI-BODY.SCATTERING BY THE NEW METHOD

The method developed in previous sections for
a single scatterer can easily be extended to
multi-body scattering. For this purpose,
consider infinitely long dielectric cylinders
with cross-sections C1 ’ 02 y oo e ,CM .

Three regions labelled as 1,2 and 3, are

Fig.2.6.1 | shown in figure 2.6.1.

In regions 1 and 3, the fields are uniquely represented by infinite
series of cylindrical harmonics. These series are convergent in
their respective domains. Region 2 is inhomogeneous in its material
composition. The field in this region is represented by a Fourier
series. The Fourier coefficients are functions of the radial
variable p and satisfy a linear second order differential equation.
The analysis is exactly the same as in the single body case. (Now
the Yo 8Fe more complicated functions of x and X470 unless the
coordinate origin is located in one of the scatterer cross-sections.
For the multi-body problem it may not be possible to find a
symmetry axis for the whole assembly even though the individual
scatterers ﬁay have their own symmetry axes. This means that even
>and odd decomposition of the incident wave does not work and the
summations appearing in the differential equafions start from -N and

gotONc



61,
2,7 NUMERICAL APPLICATIONS

In this section the results of the application of the new method

to various problems are presented and, where possible, are compared

with existing data,

2.7.1 Homogeneous and Inhomogeneous Circular Dielectric Shells

a) Consider a dielectric shell with the following parameters:

kopl=.5 This problem has been solved by
k_p,=.6 three different methods, in all of
"a|'l X
A Gr = L them excitation being a Til-polarized

plane wave propagating along the
Fig.2,7.1a '
These are i) the state-

x=axis,.
space method ii) the eigenfunction method(see Appendix C) iii) the
new method,

The scattering coefficients are tabulated below.

e Re(be)-state-space

Re(be)-Eigenfunction

Re(be)-New Meth.

1 | =0.5547499E-1
2 0.2004804E-1
3 0.1414056E~6
b | =0.3243477E=5

5 =0.2544811E~15

-0, 5547498E-1
0.2004803E-1
0.1414056E-6

=0.3243476E-5

-0.2544810E-15

~0.5547499E-1
0.2004304E-1
0.1414057E~6
=0, 3243479E-5

=0.2544824E-15
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Im(b )-State-space

Im(bé)-Eigenfunction

Im(be)-New method

~0.2289050E0

-0.4020854E-3
0.3760394E~3
0.1052014E-10

=0.1595246E~7

- =0.2289050E0
-0.4020853E~3
0.3760393E-3
0.1052014E-10

~0.1595246E~7

~0,2289050E0

-0.4020854E~-3

-0.3760394E~3
0.1052015E~10

=0.1595251E~7

b) Consider the same dielectric shell as in (a), now with

=0.2x( k_p,=0.57 ) and p,=0.3% ( k_p,=0.6% ).

The scattering coefficients are:

Re(be}-State-space

Re(be)-Eigenfunction

Re(be)—New method

=0.5962775E-1
0.4830531E0
0.1675881E0

-0.2996321E-1

-0.1829289E~5

-0.5962772E-1
0.4830531E0
0.1675882E0

-0.2996322E-1

-0.1829290%-5

-0.5962772E~1
0.4830532E0
0.1675881x0

=0.2996321E-1

-0.1829289E-5

Im(be)-State-space

Im(be)—Eigenfunction

Im(be)-New method

-0.2367958E0
~0,6290724E0
0.3735001E0

0.8986016E-3

-0.1352511E-2

-0.2367958E0
~0.6290724E0
0.3735002E0

0.8986019E-3

- =0.1352511E-2

-0,2367958E0

-0.6290722E0
0.3735001EQ
0.8986015E-3

-0.1352511E~2

It is seen that agreement between the exact results(eigenfunc-
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tion) éﬁd the ones obtained by the present method is very good, The
state-space method also gives results in excellent agreement with the
other two. The computation times, however differ considerably in
the state-space and the new methods as shown below:

for problem (a): computation time(state-space) : 9.752 éec.

computation time(new method) : 3;276 Sec,

The scattering patterns(echo width per wavelength) are given in
Fige 2.1 and Fig. 2.2. For problem(a) line-source excitation has
also been considered and the scattering paftern has been shown for
this excitation.

The analytical expression for the scattering pattern is given
below.

The scattering pattern is defined as:

sl .

,2 s Wwhere 1 is the scattered electric field.

o =Lim 2mp
P—o0 ,Vo

For a plane wave of unit amplitude lVol =1, for a line-source

J
V == -H(Z)(k R ), where R_ is the distance from the line-source
o L "o o's s

and it is taken as the distance between the line-source and the centre
of the scatterer.

The scattered field is given as:

Ve = S (2)(k p) eImg , since Lim H(Z)(k p) Vi 2 m+l/2 eI

1
m_.—oo ‘ P—)DO
L:LmV =/= 2 ¢ _JRPZJbe
OP M=-00
and 5
L1m I ] E{jm bm eI™P

M=-co



>l8

045

Plane wave
Loy Line source
.035
-03 i .

— g —

’

.025

’ ) o
= é
X Une Sourc
02 4“!E=il’ o
ko£,=05
.015 5,205
k° &:1.
011 €, =4
, 0051
i 4 . ,¢
¢ 207  &° 60 &  for 1200 %0T 60" 180’

Fig.(2.1) Scattering Pattern(echo width per wavelength) of

a Homogeneous Dielectric Shell



5.t
4.t
EZ
£1=0,25»
3.. 1 £=030AN
€ =4.

Present Method

s 0.0 Exact

\}.&

0 200 i 60° 80 1000 1200 W%O° _ 160° 180

Fig.(2.2) Scattering Pattern(echo width per wavelength) of a

Homozeneous Dielectric Shell



. 6k,
and finally;

L& img 2
= ] -jm
o= EJ bme L X X
% 'Mz-o0 IV
o

If the relation b_m=(-1)mbm holds(which is the case when a
plane wave is incident on a symmetrical scatterer along the symmetry

axis) the expression for o (per wavelength) becomes,

L]

o0

Zg ™ b Co 2
(83 J m Sm¢

m=

for plane wave excitation,
f///

Where & = 2-8 is the Neumann factor.
m . mo

g .2
A T

o (2)(, o 4] 2
- = HY/(k R )l for line-source
o os .

:IN

0o
E .m

Em J bm Cosmg
m=o

excitation.

¢) The homogeneous dielectric shell of section (b) is considered

again with the same parameters but excited with a TE-polarized planc

wave,

The scattered field coefficients are found from the following
formula:

o €.oP Jd ()0 (x,) <,

2 @y

2 * (2
Cm @m .
vhere P = B, (x)0, ey 1€ 21,009 Oxy )

m m m~ . :
@21 (XZ)Jm (xl)+€rl ?22 (xa)Jm (xl)

and erl = er(xl) ’ era = er(xZ)‘

The elements éll(xa) s §21(x2, s §12(x2) and §22(x2) are

found by solving the following system of differential equations nume-

rically:
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;' () 0 1 y (%)
.m | 5 : m (2.7.1)
z ()| 2—2 - €_(x) > '?E In€_ -1/x z_(x)

_note; to find P,(x,) and §21(x2) , (2.7.1) is solved with the

initial condition vector (1 © )T ; to find )ana & _(x)) ,

222
T
)

12¢%
(2.7.1) 'is solved with the initial condition vector ( 0 1 .

The scattered field coefficients are tabulated below and compa-

red with the eigeﬁfunction solution results.

e | b (Bigenfunction expansion) b, (New methéd)

1 -0,6290724E0~30.4820531E0 -0.6290722E0-30.4830532E0

2 0.8094046E-1-30.659435E~2 0.8094042E-1-30 6594844 E~2
3 0.3934550E-1+340.1944156E0 0.3934548E-1+30. 194415650
y | -0.5305816E-1+30.2823%138E-2 -0.5305815E-1+30.2823138E-2
5 | =0.2320779E-4=30.4817390E-2 ~0.2320778E=l=30.48173905=2

- The scattering pattern is given in Fig.2.3.

d) An inhomogeneous dielectric shell is considered with the

following parameters:

~ _ _ .2 2
x,=0.5 , x2—0.6 s Gr(x)— x5 / x .

The excitation is a TM-polarized plane wave. The scattering
coefficients are found by both the state-space method and the new
method. The scattered field coefficients are tabulated below.

"Echo width per unit wavelength is given in Fig,2.4.
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e be(State-space method)

be(new method)

1 | =0.2114058E=3-30.14558265-1
2 | 0.11116§9E-2-j0.1235788E-5
3 0.1 33605E-9+30,2033127E~4
4 -o.1649965E-6+j0-2722383E-13

5 =0,5720227E-18-30.7563218E-9

~0,2114059E-3=-30,1453827E-1
0.1111661E~2-30.1235791E-5
0.4133632E-9+350,2033134E-4

-0.1649989E~-6+30.2722462E~13

-0.5720951E-18-30.7563697E~9

Computation time (state-space): 11,565 Sec.

Computation time (New method) : 3,296 Secc.

e) Dielectric shell with a perfectly conducting core and strati-

fied radially.

The excitation is a TM-polarized plane wave.

The inner optical radius is fixed at k p,=l. The

‘ permittivity has the functional form €r= 25.1/i<zp2
Four different values for the outer optical radius

have been taken.

The results for the backscatte-

ring cross-section have been compared with Shafai's(39) results.

The method of solution needs a small modification due to the

presence of the perfectly conducting core as follows.

The representations of the z-component of electric field in

regions p, L PP, and p>p, are respectively;

=
11
™

o0

8

'

jng
£ (p) %, PP Po

(2) \ jm
2 [bm Hm (kop) * ‘Sm Jm(‘cop)] eJﬂ“¢ ’ P>/ Po e
M=-00

' The differential equation for f'n(X) is
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+ {6 (x)-—=|f =0 , =x=kop,
[_] .

In state space form:

ih 0 1 Yy
=] 42 (2.7.2)
2 —;E - Gr(x) -1/% z

where ym=fm ’ z =f
The boundary conditions are:
£ ()=0, £ ()b 13 )+ T 7 (x)
m L P 'm 2" mm 2 m m° 2
o _ 0(2) .
£ (x,)=b H < (x, )+ ‘gm I (x5)

Combining the solution of (2.7.2) with the above boundary con-

dition relations gives the following expressions for bm :

B,,0,) T G- BoGe,) T () ¥

~(2) (a)
%2 x,) B (x,)- 2 ¢ x,) B (x,)

where §12(x2-) and éaa(xa) are obtained by solving (2.7.2) numerically
with the initial condition vector ( 0 1 )T

It is seen that only one column of the state-transition matrix
need be generated.

The values of the backscattering cross-séction per wavelength
are compared with the ones given by Shafai in the following table

(TM-polarization is considered)

X

. 2. 2.5 3 3¢5 4
1.676

05/1 (New method) 1.0k 0.458 1.658

crbA (Shafai) 1.04 0.45 1.65 1.69 0.45




2.6) for x, =1 and for varicus values of x
xy .

a conductor core,

68,

The echo width per wavelength is shown in the figures(2.5) and

As examples of the dielectric shells stratified radially with

two more permittivity profiles have been considered.

The scattering coefficients are tabulated below for the corresponding

permittivity functions and size parameters.

b Scattering coefficients Scattering céefficients

by the new method-TM case by the new method-TE cas:2
1 -0.2981411E0+0, 457441 8E0 -0.3467391E0-30, 475931320
2 0.4949034E0-30. 428791 8E0 -0,186C019E0=30. 9441156%
3 0.9756283E0+j0.1542003E0 0.9871638E0+j0.1125675E0
4 | -0.4959141EC+30.5637902E0 -0, 4972911E0+ 30 . 448023230
5| =0.404488E-2-30.6347062E-1 -0.1996162E-1-30.1398684E0
6 0. 409546 3E-2=j0 ,1677310E-4 0.1498699E-1-30.2246605E-3
7 0.4592408E-7+30.2142990E-3 0.1298894E=5+0.1139590E-2
8 | -0.8692108E-5+30.7555274E-10 ~0.6324609E~l+ 50, LOOOOGSE-8
9 -0.7£503858-13-j0.2765933L-6 -0.69392295-11~ j0.26342425-5

x1=l R x2=3 s €r=3 e-x/lO

The echo width per wavelength is plotted in Fig.(2.7)
b Scattering coefficient Scattering coefficient

x,23.1 TM case x2=3.l TE case
1 -0,1208E0+30.3259E0 -0.9660E0-j0.1810E0
2 0.4897E0-30.6005E0 -0, 3664E0- j0.1598E0
3 0.8996E0+ jO. 3004E0 O.i665ECHjO.3725EO
L -0,2082E0+ j0. 4543E-1 -0.LO97EO+ jO.2134E0
5 -0.21458-3-30.1464E-1 -0.10491-1-30.1019E0
6 0.8830E-3-30.7798E-6 0.1034E-1-3j0.1069E-3
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LConductor Core



12¢

114

104

koflz". s €r=25%k°?)2
l-

S 120 %0° . 100 180

OD 200
Fig.(2.6) Scattering Patterns of a Radially Stratified Dielectric
Shell with Perfect Conductor Core



>l

80° 100° 120°  u0° 180° 180°

Fig.(2.7) Scattering Pattern(echo width per wavelength) of a

. Dielectric Shell Stratified Radially .



69.

7 0.17915-8+3j0.4232E-4 0.5271E-6+30,7260E=3
8 -0.1593E-5+3j0.2538E-11 -0.3736E=l+30.13961-8
9 -0.2287E-14-30.47825-7 -0.2136E-11~-30.1461E-5
10 0.1164E-8-30.1356E~17 0.4486E-7-30.2C135~14
b ‘ Scattering coefficients Scattering coefficients
x,=5.1 TH case x,=5.1 TG case

1 -0.491950+ 0. l999EQ -0.1308E0-3j0.3371E0

2 0.421720-30.247820 -0.1912E0~30.9616E0

3 0.9193E0+j0;2722E0 0.9444E-1~30.292470

L -0, 4636E-1+3j0.,9978L0 -0, 3795E0+ 0, 1744E0

5 ~0.2665E0-30. 4421E0 -0.4999E0~3jO.5000E0

6 0, 408820-3j0.21.22E0 0.429130-jo.243430

7 0.6204Z-3+ jO,2450E-1. 0,1313E-1+3j0,1138E0

8 -0.2322E-2+30.53G2E-5 ~0.16395-1+ j0.26835-3
9 -0,3625E-7=30.1904E~3 -0.3364E-5-30.18345-2
10 0.1297E-4~-j0.1682E-9 0.1624E-3-3j0.2639E-7

=1, €= xg /%2 . Scattering pattern is plotted in Fig.(2.8)

f) Two-dimensional Luneburg Lens Excited by a Plane Wave.

The Luneburg lens is characterized by the following permittivity

function:

Cr(p)=2-(p/pz)2 » where p, is the radius of the lens.

Since the lens is a solid structure the coordinate origin(which
is also the centre of the lens) is included in the range of numerical
" integration of (2.7.1) and (2.,7.2). The systems of differential

equations (2.7.1) and (2.7.2) however have singularities at the ori-
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gin, These singularities are eliminated by considering a circle of
small radius around the origin and concentric with the lens cross-
section. TheApermittivity‘inside this circle is assumed to be
constant whose value is taken as Cr(O). In this way the problem is
converted into a dielectric shell problem which is free of any
numerical singuwlarity. The value oi the radius of the small circle
is taken as O.Olp2 in actual calculations. This selection proved
to be satisfactory. Since the region defined by p(bs(ps is the
radius of the small circle) is not vacuum but a dielectric the

formulas of section (2.2) for b should be changed accordingly, to

L m [
b = I 05 ¥y I, O € here = By ()9, 0y 1487, 0, WL T Gy )
n @) @)y

Ry Gep)=iliy ™ ) ‘ B0 ()0 0y )80 (e, WELL T, 3,6 24

for TM excitation,

€. (x )P J (x )- J (x )

b =

m m

(2)(}( )- C (x )P H(Z)( )

Wn(xz)‘l (xy 4 )% 12("2)\/—1 Jm(x

where P = for TE excitation,

NCRLRCIR L ACRICE AT

where X, .= xif_— e —G (0) =2 , C (x )=1.

éll ’ @12 ’ éal N @22 are the elements of the state-transition
matrix corresponding to (2.7.2) and 1??1 ,ﬁkﬁz ,ﬁyn ,2222 are

the elements corresponding to (2.7.1).

The scattering coefficients are tabulated below for x2=1.256637

x1=0.01x2 and N=5, Both polarizations, TM and TE, are considered.
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Scattering Coeff,-TM

Scattering Coeff,-TE

-0.2130351E0-30. 409452250
0.7732062E~1~30. 60146 54E-2

0.1307155E-4+jO.3615436E-2

-0.4473277E-1+30.2067166E0
0.2493011E0-3j0.6658455E-1

0.2798522E-2+30.5282699E-1

4 | -0.9488705E-4+3j0.9003552E-8 -0.2813921E-2+jo.79182173-5

5 | -0.2480353E-11-30.1574914E-5 | -0.6137911E-8-30.7834482E-4

The echo widths per wavelength are plotted in Fig.(2.9 ).

2.7.2 Non-circular Homogeneous Scatterers

In this section scatterers with various cross-sections are

considered. Scattering coefficients are tabulated, the factors L.
are given as analytical expressions for each particular scatterer

and scattering patterns are plotted.

In order to check the accuracy of the new method for a scatterer
of non-circular cross-section-an off-centre circular cylinder is
considered first. As shown in the figure the coordinate origin is
| ~located at a distance d from the centre of

the circle, With respect to O then, the

X cross-section is no longer circular,. The
far field behaviour of the scattered field

(which is expressed quantitatively in the

ot P
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scattering pattern expression) is not affected by the location of
the coordinate origin., Therefore far field patterns evaluated with
respect to the points 0c and O must be the same. The scattered
field can be found exactly for the coordinate origin 0c as an eigen-
function expansion. For this reason this example is a proper one
to see how the new method will work for non-circular scatterers.

A simple calculation gives the factors x o as*

o €5 + 1-€, {_sin [(m-n)g ]
nm ronm % m-n o

where
-l( a2-x2-d2 )

Sxd , a 1is the optical radius of the

¢°(x)=Cos
cylinder, a=k°a‘ s, d 1is the
optical distance between O and Oc »

d=k a' and x=k_p.

The scattering coefficients are tabulated below for three
different values of d together with the exact coefficients(obtained
from an eigenfunction solution). Echo widths per wavelength are

also given for different values of d¢ a is taken as l.
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e Scattering Coefficients

1 -0.3402741E0-30. 45056 34EO0

2 -0.5184136E~1+3j0.79309505~1
?‘3‘3 3 0.1122450E-1-30. 284665622
Ty -0.8514854E-3-30,2227839E~3

5 0.30145595-4+ 5O, 3043797E-4

6 -0.5953815E-7-30.2055864E-5

e Scattering Coefficients

1 -0. 3443746E0-40. 44162780

2 -0.34029982-1+30.1014166Z0
-
S| 3 0.1344719E-1-30.738316LE-2

4 -0.1475394E-2+30 . 2309008E-4

5 0.8922338E-4+ j0.3542388E-4

6 -0.3090108E-5-3j0.36481602-5

e Scattering Coefficients

1 -0.346722720-30.4304207E0
ol 2 -0.15992735-1+3j0.1227552E0
j 3 0.1462512E-1~30.1298680E-1

4 -0.2177481E-2+30,5423446E-3

5 0.1810077E-3+30.2111630E-14

6 -0.9848968E-5-30.5C653075-5

As is éeen from the above table, the scattering coefficients
are different for different values of d. | This is expected, since
when d changes both the cross—-sectional shape and the maximum optical
radius change., The scattering coefficients take such values as to

make the far field scattering parameters of the scatterer independent
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of distance d.
The echo width per wavelength is given below for three different

values of d.

p o/A(exact) o/n(3=.3) o/ (d=.4) o/n(a=.5)

0° 0.3641 0.3637 0.3636 0.3636
20° 0.351h 0.3511 0.3510 0.3509
40° 0.3169 0.3167 0.3166 0.3166
60° 0.2695 0.2695 0.2694 0.269%
80° 0.2i97 0.2197 ©0.2197 0.2197
100° 0.1756 0.1757 0.1757 0.1756
120° 0.1415 0.1416 0.1416 0.1116

- 140° 0.1184 0.1185 0.1185 0.1185
160° 0.1054 0.1054 0.1054 0.1055

180° 0.101.3 .7 0.1012 0.1013 0.1013

As expected, the far field.quantity o does not change appre-

ciably with d .

el‘
>X pl=0.25k
&
S p2=0 <300
€.= 4

This problem was solved by Richmond(29) in 1963 using a moment
method for TM-polarized plane wave excitation. The echo width per
wavelength obtained by the present method is compared with Richmond's

results. The agreement i's excellent,



- The factors «
nm

€r+(-1

are definel as:

)m-n

Sin(m-nn/2)

X
nm

2

(m=n)=n/2

75

The scattering coefficients and echo width per wavelength are

given below for various truncation numbers N. The latter is plotted

in Fig.(2.10).

N=5

N=6

N=7

N=8

-, 28750-3 . 4P4E-2

-.322E0+3,188E0
-.302E-1+j ,226E0
«1326E-%1+j.536E-1

.312E~2~3 . 8655~

- . 288E0-3 .61 3E~2

- . 321E0+3j.189E0

- . 383E-1+3.,228E0
«137E-1+j.536E~1

.500E=}-3 . 956E~3|

., 288E0~j.611E~2

- . 321E0+3.18950

- . 383E~1+3.228E0
«138E~1+3 .536E=1
.306E-2~3 . 2642-3
< L39E-L=3 . 9565~
- ,280E-!1-j .H6LEE=S

- . 288E0~j .649E~2

. 321E0+j.189E0

- . 382E-1+3,228E0

+138E~1+j.536E-1
+309E=2-3.40SE=3
< 435E=-4~3 . 956E-3
-.282E=4~j.378E~5
-.851E=6+3.113E~4

g o/A(N=5)
0° 0.9552
40° 0.4493
80° 0.2103

120° 0.1706

160° 0.04924

180° 0.03215

o/ \(=6)

0.9629
O.452h
0.2097
0.1706
0.04743

0.03010

o/A(N=7)

0.9632
0.4524
0.2097
0.1706
0.04747

0.03016

——— 0 S - S - — ) ot T S04 e D S D D s T B S e G e M M B B g S S S

o/A(N=8)

0.9655
0.4529
0.2099
0.1706
0.04705
0.02975

This problem has been solved by Mei using his
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‘uni-moment' method. The results obtained by the present method have
been compared with M;i's results. The agreement is very good.
In region 2 the permittivity is a function
of angle ¢ only. In applying the boun-
dary conditions on the circles P=pPy and
L7} p=p, some matrix manipulations characte-
ristic of only this shape are necessary.
Because of this aspect of the problem, the solution is given briefly

as follows,

The representation of the magnetic field in regions 1 , 2 and 3 is

v, (p,g)= Za J (k p) ed

. 0o .
Vo(p,)= > £ (p) eJ"9

M=-co

V5(py0)= Z[b B o) § g (ke p)]. 7P

Me-co

where the functions f (p) satisfies the following differential

equation;
dafn 1 dfn n.2 i :
do i e o = f + B f (x) = O (2.7.2.1)
dxa x dx x.2 n & nmm

where x=k°p and

21 ZTT
B 2}{ fe () eJ(m -n)g dg- :'21;__ e In€ (¢) eJ(m -n)g ag
)

Defining y =f , =z =f converts (2.7.2.1) into the following

form: (again a symmetrical excitation is assumed so that summation

over m starts from m=o amd goes to m=°)



where y = ( Yo ¥p eve Iy )t y z'= (2 Z) e Zy )T are botn

(N+1)x1 vectors, U is the identity matrix, S has the following

explicit form:

( “Boo “(Boy*Bo,1) o o o mBytB, )
2
B 1 -
lo xa (Bll+Bl,'l) e o e (B]N+Bl,—N)
S= .

2
-;5-(6NN+BN,4N)

Byo  ~PutBy,a) -

After some algebraic manipulation the factors Bnm are found as:

€ +(-1)""  sin(mnn/2)  mln€ _
. B= L 5 - 2r Sin(m~nn/2)
. (m-n)n/2 =

The boundary conditions:

i) Vl(p,¢)=V2(p,¢) , 05;¢5;2n at p=py or equivalently;

. N .
M=z-co Ma-oo

from (2,7.2.2) it follows
ath(x1)=fm(x1) (2.7.2.3)
vhere x1=kopl

ov. ov

"€ %p lp=py  €(g) 3p lp=p,
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€ -G
where €(g)= )
' b T
€ %< 5

e}
or

€9 > 2.9, 0x) % =S 1 (x)) I

=00 m‘—" (-]

multiplying each term of above equation by e ng and integrating

over (0-2n) gives

- m-n
fn(xl) ;%;jme(xl)lnm, where UYm E%—‘I er(¢) e dg
o

It is secn that the derivative vector f is not connected to the
coefficient vector a by a diagonal matrix J(x;). This rew matrix

is 2 full matrix given as  GJyy = pore patrices G and J)

p are given
explicitly:
[ q a.-%q e o o qtq 1 3 Cxl) ]
00 ‘0l “o,-l ol o,=-N o O
. . 3,6 )
Qo M1 %,-1° ¢ WNY,-N .
G= * Jlg O .
. i Ty Gey)
WNo W1tWN,-1* ¢ ¢ WN,-N
- B
The boundary conditions at X=Xy then become
£0q) =0, a and flx) =Ga (2.7.2.4)

Similarly at X=X,

£x,) =H, b+, R flx,) =H

> b b+ J, Y (2.7.2.5)

2 -




where the matrix R is given as:

eoo eol"'eo,-l . ° . eON+eO,-N
+ . . +
0 ©117%,1 ° €INTC,-N
R = .
“No eNiteN,-1 ° * ° °mN eN,N
- N

79

1 oJ (m-n)#

2T
L d
» ®mm- 2n | T€_(g) P
g r

Combining the solution of the system of differential equations

with the boundary conditions (2.7.2.4) and (2.7.2.5) gives the

following:
Pa=H,b+J,§
(2070206)
Qa=H,b+J, 3
where P= §1(x2) Jip * éz(xz) G Jpy

Q=R §3(x2) Jy, + R éL;(xa’ G Iy

Solution of (2.7.2.6) is straightforward.

The factors € have the following form:

(=)™ 4+ 1/6 Sin(n—nn/2)
e = :
nm 2 (m-n) /2

In summary, for the problem of TE plane wave scattering by a

semi-circular dielectric ring, the boundary conditions are somevhat

different in mathematical form from the corresponding conditions for



other scatterers.

80,

The scattering coefficients are given below for various trunca-

tion numbers. Echo width per wavelength is plotted in Fig.(2.11).

factors «o
nm

are:

N=5 N=6 N=7 N=8
1 |-+13550-3.42300 |-.129E0~3.k24E0 |-.129E0-3.k2320 +.126E0-3.42380
s = 358E=1+j S64E=] =.302E=1+j.562E=1 =.354E~1+j.564E41 =,357E-1+].5630H
3 .19?E;1+j.111EO .157E=1+j.107E0  ,156E=1+j.107E0 ,132E=1+3.105:0
+ «256E=1+§.,100E=]] .256E-1+3.1025-1 .249E-1+§.994E~2 .249E~1+j.100E-1
5 ¢574E=2=3j . 30552 |,608E=2~3.336E=2 | ,610E=2-3.331E-2| .529E-2-3.3075-2
b ~+209E-3~] . k758=3 |- 9568=k=3  LOIE=3 |- . Q46 E=Lt=3 1L 35-3
o - 108E~3+3,395E=1 |-, 118L=3+3.2325~1
8 +307E~5+3 . 3875-5
; o/A(11=5) o/\(1=6) o/ A (11=7) o/A(11=8)
o° 0.4259 0.4147 0.4110 0.4039
40° 0.1887 0.1873 0.1871 0.1859
80° 0.03646 0.03819 0.03845 0.03962
120° 0.06821 0.06957 0.06953 0.07023
160° 041635 0.1591 0.1598 0.1567
180° 0.1825 0.1758 0.1770 0.1728
d) Elliptic Dielectric Cylinder
, ,
AN Only TM excitation has been considered, The
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Fig.(2.11) Scattering Pattern(echo width per wavelength) of

a Semi-Circular Dielectric Ring-TE Excitation.



1-€ . Sin(a=ng )
« =65 +—L [l+()"T] o
w1l r o 7 _ (:1=11)
- 2/A B .
vhere g = 0.5 Cog ( ——— - ) R S T S R
ls] d o 2 2 <
P A a b a - b

a and b are the semi-mzjor and semi-minor axis.of the ellipse
"respectively.

The‘scattering coefficients and echo width per wavelength are
tabulated below for a=0.2%, bH=0.3n and €.=2. The latter is

plotted in Fig.(2.12).

N=5 N=6 N =7 " N=8

- 440E0~3,507E0 |, 440EC=3.507E0 |- .440EO~-3.507E0 =, 440503 .507EQ
~<350E0+3.137E0 [,35080+3,137E0 [=.350E0+j.137E0 |=.351E0+j.137ED
«115E~1+3j.762E-1 [.115E=1+3.761E-1 [,115E=1+3.7625E-1 |,115E~1+3.762E=1
b, ¢146E=1-3 47432=2 [.148E-1=j.477E-2 [.148E=1-3.477E=-2 |.148E=1~] . 47752

by |[=+e102E=3-7 . 202E=2] =.1023=3~3.201E=2 ~.1023-3-3,2025~-2 =.102E-3-3,202%2

bg = 237E=3+].678E=4 ~,237E-3+}.678E-4 -.2385-3+j.679E-4
b, 27UE=6+3.234T=1) . 274E~6+] 234E-1
by .199Z-5~3 . 51656
4 o/A(N=5) a/A(lN=6) a/A(N=7) o/A(N=8)
o° 1.6115 1.5937 1.5981 1.5985
40° 0.9936 0.9742 0.9751 0.9751
80° 0.2844 0.2794 0.2799 0.2797
120° 0.06276 0.06541 0.06520 0.06519
160° 0.02419 0.02599 0.02585 0.02584

180° 0.02222 0.02351 0.02343 0.02341
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Fig.(2.12) Scattering Pattern(echo width per wavelength) of =a

Dielectric Elliptic Cylinder-TM Excitation.
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The same problem has been solved with the following different
parameters:
a=0.26226316A, b=0.56752526A ,‘er=2.
The scattering coefficients are given below for N=8. The

echo width per wavelength is plotted in Fig. (2.13)

e Scattering Cofficient e Scattering Coefficient

1 | -0.4295595E-1~3j0.4676394E0 5 | =0.48335812E-1~-30.6424163E-1
2 | =0.5277653E0+30.6495442E0 6 | -0.1557146E-1+30. 4422051E=-2
3 0.4001604Eo+jo.44228u5E0 7| 0.2500505E-2+30.39633585-2
4 | 0.1642194E0-~3j0,7996024E=1 8| 0.7236911E-3-30.14181215-3

e) Square Dielectric Cylinder

AY
T‘ The factors a — for THM-polarization are:
i kS 1-€_ non 7 [FLn(@=m0, )-Sin(E=me )
€r a_ =5+ [L+(-1)"™"]
mm mn % L n-n
le—a —l ‘

The factors ?nm and .qnm for TE-polarization are:

) - o€
Y ) I e, My

gnm~8nm+ ————=— [sin(ma 61)-51§(m-n 62)]( = 2 )
and In€ do

’qnm= - L EL+(-l)m_n][Cos(m-n 81)+Cos(ﬁ:ﬁ 62)] E;l

k a/2)
-1, o =2 _

where 81‘:008 ( " ) ’ 92" > 81



a.
—
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Fig.(2.13) Scattering Pattern(echo width per wavelength) of a

Dielectric Elliptic Cylinder-TIM Excitation.



listed below for various truncation numbers,
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The scattering coefficients and echo width per wavelength are

and for a=0c6)\-

for both polarizations

TM-Case
N=5 N=6 N=7 N=8
b, | -.49580-3.509E0 | -.495E0-3.509E0 | -.495E0-3.509E0 | ~.495EO-j. 51050
{1, -+ 488EQ+] 68210 | -.486E0+3.683E0 | -.4BEEO+ . 68350 | - . 487EO+ §.682E0

by |-4228-1-§.20180 |.420E-1+].20080 |,425E-1+1.201E0 |.4L5E-1+.199E0
by, «363E-1-3j.2355-1 |.3598-1~3.2375-1 |.359E~1~3.237E-1 |.365E~1~j.246E-1
by [--5138-2-§.7038-2) ~.5138-2-§.703E2 —.513E-2—j;703E-2 - .515E-2-3. 70452
bg «1508-2~3 . 146E-2 ,150E-2-j.146E-2] ,151E-2-,149E-2
by = b53E- 1= 21 38-3 - 467E-4-. 22583
bg -.A9OE—4+j.255E-4
2 o/A(li=5) o/A(N=6) g/AW=7) g/ (li=8)

0° 5.0387 5.0167 5.0196 5.0128

40° 2,5170 2.52443 2.5252 2.5221

80° 0.3071 0.3043 0.3036 0.3059
120° 0.03067 0.029% 0.03019 0.02908
160° 0.36k44 0.3649 0.3643 0.3674
180° 0.4402 0.4368 0.4362 0.4409

The echo width per wavelength is plotted in Fig.(2.14).
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Fig.(2.14) Scattering Pattern(echo width per wavelength) of a

Dielectric Square Cylinder-TM Excitation.
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8k,

gse

N =5 N=6 N=7 N=8

-.70550-3.47520 | -.66080-3.499=0 |[~.68CE0-3.492EC [.680E0-3.492EC

b, | =.452E0+3.328E0 | -=.503E0+j.456E0 |-.488E0+j.397EC [-.478E0+3.391EO

« 21920+ 3 . 414E0 «174E0+j, 37920 | L191E0+j.391E0 «1G1E0+j . 391L0

b4 «6725-1+3.1683=1 | JL424E-1+j.474E-1 |,516E=1+j.356E-1 |.4O6E~1+3.411E~1

bg - . 796E8-2-3,140E-1| -.158E-1~3.192E-1 -.134E-1-3.179E-1 -.134E-1-j.179%
bg - 407E-2+3.180E-2 -.357E-2+§.1365-2 -.341E=2+3j.106E-2
b7 ~-.763E=3-3.153E=2 =.763E~3-j.153E-2
b 8 -.116E-3-3.579E-4]
B g/A(N=5) g/A(N=6) o/A(=7) o/A(N=8)

0° 5.6091 © 5,8738 5.7477 5.5727

40° 2.0007 2.4160 2.2365 2.2228

80° 0.1439 0.2047 0.1757 0.1769

120° 0.05543 0.07045 0.06053 0.06557

160° 0.1509 0.01634 0.05713 0.06781

180° 0.2389 0.05585 0.1151 0.1382

o/\ is plotted in Fig.(2.15)
£) Ogive

= Ogive is a geometrical shape obtained by

intersecting two circles of the same radii.

X (\“Egg/fizzsrs a o for TM excitation are:

1-€ Sin(m=n ¢o)

‘ a_ =€ 5 + —=L [1+(-1)"""]

m=1n



a=06X
e-2.
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Fig.(2.15) Scattering Pattern(echo width per wavelength) of a

Dielectric Square Cylinder-TE excitation.



where

¢O=Cos-1(

R2_D2 o2 )

2pD

For TE excitation the factors Ehm and 7 are:

§nm£r6nm+

né€
r
n

nm

"l

[1+(-1)""2] [

bLs

(l-Cr)+m

Ln€ Sin(m=n

85.

8o)

Zr ]

m-n
X

El+(-l)m—n] Cos(m-n ¢ ) gfo

The scattering coefficients and echo width per wavelength are

tabulated below for b=0.34\ and a=0.2A .

TM-Case
N=5 N =6 N=7 N=8

by -.185E0-3.396E0 (-.184E0-3j.39580 -,185E0-3j.396E0 ~.185E0-j.396:0
b, | =+319E-1+3.101E-2 -.315E-1+j.991E~3 -.317E-1+j.1E~2 |.317E-1+].1E-2
by «298E-2+3j.754E~-2 |.301E~2+3.762E=2 |.299E-2+j.7575=2 | .299E-2+j.757E~2
b4 «2398-3-3.,707E-5 | .246E-3-3.723E-5| .242E=3~3j.714E-5 242E-3~j.714E-5
b5 ~ e le»lE-ll»-j 0661E"l|' -e 237E"'4‘j o656E"L|' e le-oE-l}-j 0660E-ll’ e 21{'0E-L|"'j ) 66E-4'
b =.123E-5+j.358E~7 |=.125E-5+j . 368E-7| - . 125E-5+j. 36 8E-7
b7 +106E-6+3.303E-6{ ,106E-6+3j.303E-6
b .358E-8-3j.102E-2

8
2 /A (N=5) o/A(N=6) a/A(N=7) o/\(N=8)

o° 0.1681 0.1669 0.1677 0.1677
10° 0.1501 0.1490 0.1497 0.1497
80° 0.1191 0.1182 0,1188 0.1188
120° 0.1023 0.1017 0.1021 0.1021
160°  0.0991 0.09924 0.09943 0.dogu8

N —
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180° 0.09973 0.09939 0.09961 0.09961
TE-Case
 N=4 N=5 N=6 N=7

by - .688E=-2~3.920E-1 |~.850E-2-3.102E0| -.850E-2-j,102E] ~-.793E-2-3j.97920
b, -.148E0+3j.215E-1 |-.140E0+j.193E-1| -,139E0+j.189E~1] -.13950+j,189E-
b3 -.543E-3+3.514E-2 |-.8025E-3+j.29E-2 |- . 802E=3+3.29E=2 |-.808E-3+3.235E~2
by, | +381E~2-3.513E=3 |.392E=2~3.502E=3 | .399E~2=}.506E~3 .3993-é-j.506E13
b5 «526E-5=1.112E~3 | ,526E-5-3.112E-3| .508E-5-3.113E-3
be -¢283E=4+§ . 330E~5| =, 283E-4+§ . 330E-5
b7 7-610E-7+5.234E-6
- o/Ali=h) o/AN=5) o/A(N=6) o/2(1=7)

0° 0.1065 0.1019 0.1003 0.09760

40° 0.06490 0.06390 0.06281 0.06100

80° 0.01090 0.01298 0.01287 0.01227
120° 0.001932 0.0007692 0.0006906 0.0008597
160° 0.02190 0.01716 0.01651 - 0.01759
180° " 0.02676 0.02151 0.02076 0.02203

o/\ is plotted in Figs.(2.16) and (2,17) for ™ and TE cases.

g)

As an example of multi-body scattering two homogeneous dielectric

cylinders of circular cross-section are considered.

the cylinders are different.

wave propagating along the x-axis.

The radii of

The excitation is a TM=-polarized plane
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Fig.(2.16) Scattering Pattern(echo width per wavelength) of a

Dielectric Ogive-TM Excitation,
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Fig.(2.17) Scattering Pattern(echo width per wavelength) of a

Dielectric Ogive-TE Excitation.
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X
The factors a__ are:
nm
1€ Sin(w=n ¢1) Sin(m=m ¢o)
a =€ & + [ - ] s for
nm rnom X m-n m-n
D-Rd(p<d+ro
1-€, Sin(@m=n ¢ )
= . for D+2r°-R° <p<L D+Ro
where
2 2, 2 2 2 2
_r.~1¢ D"-R7+p -l, r =d-p
¢°-Cos ( 2pD ), ¢l=Cos ( 2pd )

Computations are made for the following set of parameters:

Ro=0u2)\ ’ r°=001)\ ] D=0025). ] d=0015). ’ er=2.

The scattering coefficients and the echo width per wavelength
are tabulated below for various truncation numbers. The results are
compared with the ones given by Mei. Mei has solved this problem
using two different methods, i) the uni-moment method ii) the exact

method in which he uses the addition theorem of Hankel functions.
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b N={ N=5 N=6 N=7

1 |-.19650~-3j.254E0 -.210Eo-j.268E0' -.211E0-3.273E0 |-.214E0-j.271E0
2 |~ +323E0+j 460EO |-.323E0+3j. 4S7EO |-.321EQ+j . 460EQ |-.319E0+j.457EO
3 |~ o j12E~1+j . 221EO |=.228E-1+3 .222EQ [=.332E~1+j.228E0 |-, 300E~1+j.228E0

I |- ,578E~2+3 « 94 3E~]] -.103E-2+j.923E—% = 142E~2+3 . 963E~1 =.120E-2+j.969E-1

5 ——————  |.493E-2+3.212E-1 | .469E-2+§.228E-) .569E-2+j.232E-1
6 —_— 133E~2+§. 43753  .158E-2+3.436E-2
7  — '. «963E-3+3 . 209E~2
8 o/A(N=lt) o/A(N=5) o/A(N=6) C g/ M=7)

0o° 1.5876 1.5768 1.5973 1.5%1

40° 1.0561 1.133§ 1.1463 1.1428

8o° 0.1787 0.1724 0.1824 0.1801

120° 0.1660 0.1412 0.1473 0.144k

160° 0.2595 0.2363 0.2361 ~ 0.2260

180° 0.2462 0.2262 0.2318 0.2211

The echo width per wavelength is plotted in Fig.(2.18)
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3, NEJ METHOD FOR T4O-DIMENSIONAL PROBLEMS USING ELLIPTICAL

COORDIHATES

In the previous chapter a new method has been developed to
solve the electromagnetic scattering problem for infinitely long
dielectric cylinders of arbitrary cross—section., In this method
three regions have been defined. Tw§ of these regions are homoge-
neous in their material composition and one ;s inhomogeneous(for
inhomogeneous scatterers the number of homogeneous regions reduce to
one as explained before). The homogeneous and inhomogeneous regions
are separatgd by circles, that is one of the homogeneous regions is
a bounded circular region and the other is an unbounded anmilar
region. The region between these two,  which iz the inhomogeneous |
region, is a bounded annular region. Defining such circular
regions both makes the application of boundary conditions straight-
forward and the representation of the fields in terms of the cylin-
drical harmonics possible. |

For some créss—sectional shapes, however choosing circles as
the boundary shapes may not be convenient from the numerical solution
point of view, For example, for rectangular cylinders with high
side ratio the radius of the inscribing circle is very much smaller
than the radius of the enscribing circle, and consequently the range
of the numerical solution of the differential equations is large.
This, in turn increases the computation times considerébly. One
possibility to eliminate this inconvenience can be the use of ellipses
instead of circles as the boundary curves. Selection of ellipses
requires the representation of the fields in terms of elliptical harmo-
nics(solutions of the Helmholtz equation in elliptical coordinates.

In this chapter the possibility of using elliptic regions will
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be examined by repea}:ing the same procedure used in the previous
chapter, bu-t this time using elliptical coordinates. Since the
_solution of the Helmholtz equation in elliptical coordinates is not
so familiar as in cylindrical coordinates,. a brief introduction

to this subject is given first,

3,1 Solution of the Helmholtz Equation in F1liptical Coordinates

The three elliptical coordinates are denoted by § 57 2o 2 is
the usual cartesian coordinate. The relation between§ 37 s 2 and

X,¥sZ are:
x= e Cosh§Cos] , y= e Sinh Sinm , 2z=z. e is the

half focal distancee.

Coordinate surfaces are confocal cylinders and planes:

2 2
X L =1 —>

elliptic cylinders when is §
(eCosh®)® (eSinng)?

held constant.

2
X L =1 —> hyperbolic cylinders when is V)

(e(lc:os"))2 ) (eSin7)2

held constant.
z = Constant -——> planes.

It is known that the Helmholtz equation is separable in ellip-
tic coordinates(51), = Therefore, a product solution g(€,7,2z)= H(E)
W (1) Z(z), when substituted into the Helmholtz equation V2¢+k2¢= 0

results in the following ordinary differential equations for H,¥and 2

(52).
a4 “(a ta &2 Cosh2§)H =0

3
a°
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2
:qgf +(a2+a3e2 Coszv)ﬂf= 0

dZZ

d22

+(k2+a3)z =

For two-dimensional problems, where ¢ is independent of z-
coordinate the separation constant a3 is equal to -k2 and the first

two equations then become

&%

L2 - (ayk 2e® CoshZt)H = 0 (3.1.1)
dk
&y 2

—3+ (a ~Ke Cos q)ff'= 0 (3.1.2)
47)

22 22
_k’e . _ ke . .

If g= T and k-az— S s where 2, is the separation

constant to be determined by the boundary conditions, then solution

to (3.,1.1) and (3.1.2) can be written as:

H(§)=A ce (j§,q)+B fe (j§,q) or H(§)=A se (j%,q)+B ge (j§,q) and
ﬁf¢7)=AmcemC7,q)+Bmfem67,q) or 1((7)=Amsem(7,q)+3mgemf7,q)

where Am’ Bm are constants to be determined by the boundary conditions.
The functions ce, and se  are periodic solutions of (3.1.2), fem
and ge are nonperiodic solutions. These funcﬁions are called
Mathieu functions.

If q=-k2e2/h ;nd A=a,=2q the solutions have the same form
as the above equations except q is replaced by —q.

The details of the solutions inv andt are examined below.

The functions cenC7,q) have the following series representa-



22,

tions:
00

'cen('],q)= E Agr(q) Cos(2r)) , for n even
=0
o0

éen(q,q)= ZAgr_l_l(q) Cos [(2r+l)77} , for n odd.

r=0
It is seen that cen(q,q) is even in 7 . The constants A:;
have to satisfy certain recurrence relations together with the follo-

wing nomalization condition:
an

jcei(f),q) an ==

o

The corresponding values of A\ are @ R=an(q) (n=0,1,+.. ).
This means that, for a given value of q(for scaﬁtering problems it
is the square of half of the optical focal distance), there is a
denumerably infinite set of'numbers, called characteristic numbers,
an(q), and for each characteristic number a there is an even
periodic function ce .

For the same q, there is another denumerably infinite set of

numbers br corresponding to odd periodic functions se , where

00 .
‘ n .
s.en('],q)= E Bar(q) Sinzrn , for n even
rY=0

o0
sen("],q)= Z Bgﬁl(q) sin[(2rt1)7] , for n odd,
=0

an
with 7\=bn(q) and jsei(ﬂ,q) dn ==
(=

The orthogonality relations among the functions ce and se,

21 .
fcem('r],q) cen("},q) dp =15 (3.1.3)

nm
(e}
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am .
‘rsequ,q) sen(v,q) d7 = m o (3alolt)

o

i
=
(o

2T

[ oo sa) se, (,a) @

o

(3.1.5)

n
o

. These solutions are. denoted by Mcia)(§,q), wvhere j takes

the values 1,2,3, or 4, The series representations of Mcia)(s,q)

are given by

00

for n even

oo
}Icia)(g,q)= —7—cei o,q)z('l)(n- (2r11))/ Zag 41 Lég}_l(ZﬁCosh})
r=0
for n odd

The sefies above converge when [Cosh®[>1 and Re(f)>0.
When these conditions do not hold, other expansions are to be used.

(1,2,3,4)

m

Hankel functions respectively, that is Jm’ Ym,

are cylindrical Bessel, [eumann and
H(1’2).
m

The functions L

The following relation holds

M033,4) =Mci1) + Mciz)

The expressions for Mséj)ﬁf,q) are similar, Only the func-
tions cen(O,q) are replaced by the functions sen(O,q) in these
expressions.

After this brief introduction to the general solution of the
Helmholtz equation in elliptic coordinates, the next thing to do is

to solve the scattering problem by a homogeneous elliptic cylinder.
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3.2 Scattering of a TM-polarized vlane wave by a homogensous

¢v7linder of elliptic cross—-section

Consider an elliptic cylinder. The cross-

X sectional curve C is described by the i
=5 equation ¥ =§° .
The incident wave is propagating alongz the

vzctor k and is Til-polarized. This wave is denoted by Vo and is

given by

Vo(x,y)= e-ako(xCosﬁo+y51n¢o) , where the amplitude of the
incident field is assumed to be unity.

The expansion of Vo(x,y) into an infinite series of Mathieu

o e a——

functions is giver by(53) ;

(] oo
v EM=2) [-3)Pce (5,0 )ce (0 oM (¥,0 0] + 2 [(<9)%se_(g_,q,)

m=o m=4
(1) /%
.sem(’],qo)Msm (},qo)]
2.2
ke
where Q= 04 s © is the distance between the two focii of the

ellipse.
The representation of the fields inside and outside the ellipse

is given in terms of the Mathieu functions as:

v (8,7=2) ()" ce (e (% ,q]] +2 Z[(—j)mbmsem(v,q)l'Isrgl) (%,0)]
m=0 m=¢

k:ze2 erkiea
where g= el = Cr q, s Gr is the relative dielectric

constant.

oJ o)
Vo829 e, Chaghieg (B0 )] w2 [ o, (ong ey 60
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In the representation of V2 the functions I-Icu(ll) and Msril)

have been used to satisfy the radiation condition at infinity.

These functions are excluded from the representation of V since

1,

s bm s bm are constants

s a
i

they are singular at the origin, a, "

to be determined by the boundary conditions..
The boundary conditions are specified below.
i) The %tangential component of the electric field is continuous

on F=§o. This condition is equivalent to the following:

Vl< §o’7)=vo(§o’7)+v2(go’1” o or

5 l 3 1 ‘ = . tH
;E(‘j)mamcem ("],Q)ch(l )(Eo’q)-‘-(-‘])nbmsem(q’q)l'lsn(ll) (go,q}] =;b(_3)m[

(1) (4) -
cem(gso’qo)lvlcm (Eo’qo)+gnnblcm (%o’qo)]cem(v’qo)+ Z(—j)m' [sem(¢o’q0)

Msél) (Eos qo)%‘m}isn(]“ (Eo’qo).] sem("], qo) (3.2.1)

Multiplying each term of above equation by ce (7,q J and

integrating over the range (0-27) results in the following equation:

& e cs _ ¢ 1 (1) (4)
Z( Yo 20t Yom Py J= (~3) n[cen(¢o,qo)Mcn (§o,qo)+anMcn (Eo,qo)]

(3.2.2)

The relations (3.1.3) and (3.1.5) have been used in deriving

(3.2.2). The factors Y;; and Y;; are given by

cC

amn
= " et ) Jcem(”l,q) ce,(hq,) &
’ (o]
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E = (-j)mMcrgl) (%o’q) J S em-(v’q)cen(q’qo)dyl
o

It can be shown that ‘Y‘n:s = 0, Also it is easy to show the

following:

vEC =n(- ;j)mMc(l)(g »a) ZA (q) (q ) for myn even
p=o

cC ¢ . (1) S m n
v~ =n(=j )mMcm (§°,q)pz A2p+1(q)A2p(q°) for m odd, n even
. =

¥¢ =x(- j)mMc(l)(§ ,Q)ZAzp(q)Azp(q ) for modd , n even
P=o

ycC —n(-a)mMc(l)(f ,Q)Z 5 +1(q)A2 +1 ) for m,n odd.

where the A's are defined in section (3.1).
The relation (3.2.1) then becomes(using matrix notation)

cC

a=D &+ g (3.2.3)

where G°C is the matrix with elements y:i; s D is the diagonal

matrix with elements (-;j)n-;ﬂ“lcl(lu) (§° »9,) and & is the column

(1)(§

vector with elements (-3)%nce (¢ 2q, Me ,qo).

Similarly multiplying each term of (3.2.1) by sen(ﬂ,q;)) and

integrating over (0-2n) gives the following equation:

Gssb=D

b =D, (3.2.4)

b+d
G5 45 the matrix with elements

217
Y!smsl =1r,(-j)mMsn(ll) (§°,q) j Sem(rl ,q)sen(")_, qo)d‘q
o
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D2 is the diagonal matrix with elements ﬂ(-j)nMséu)(Eo,qo) and

. - . .11 (1)
4, is the column vector with elements n(-3)"se (8 ,q Ms ~ (¥ ,q_).

Yii can be shown to have £he following explicit form:

00
Yﬁ: =“(‘j)mMS£1)(§o:q);§:ngp(q) ng(qo) for m,n even., For
=0

other combinations of m and n similar relations to the ones for Yz;

hold. The B's are defined in section (3.1).

ii) The tangential component of magnetic field is continuous

on §=§o. This is equivalent to:

avy _ v, \ av, w6 & oF
3% 0% 3% 0

Following the same procedure as in (i) gives the following two

equations:
ced  _ d
G a=D &+ 9-1 (3.2.5)
ssd
¢y . D<21 b+ gczl (3.2.6)

The expressions for matrices G°°¢, G554 ,Dg , Dg and the
column vectors gg ’ Qg are exactly the same as the ones defined in
(3.2.3) and in (3.2.4). Only the functions in are replaced by
their derivatives with respect to evaluated at % =§6.

In order to solve (3.2.3)-(3.2.6) for a and b first a

truncation operation is necessary. Fixing the truncation number at

N gives
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a¢° ] -D ] W -a— f 1
1 SIEIRE:!
ss '
] G ] -D2 b ge , ,
30247
ccd d ~ =
G 0 —D1 0 a 93
ssd d ||~
0 G ] —D2 b 24
L— - e - - -

.This linear system of equations is solved for the unknown
expansion coefficients.

It should be noted that there is no exact eigenfunction solution
for a homogeneous elliptic dielectric cylinder,. although the Helmholtz
equation is separable in the elliptic coordinates. In the circular
cylinder case it wﬁs also necessary fo truncate a series which repre-
sents the field, but this series is an exact solution Qf the scatte-
red field. In the elliptic case truncation is necessary before
getting an exact representation of the field. This is an important
difference, since in the circular cylinder case the exact solution
is approached by taking more and more terms in the series, but in
the elliptic cylinder case the exact solution is approached by
increasing the dimension of the matrix iﬁ (3.2.7).

Generation of Mathieu functions numerically is not an easy
task. This is because of the fact that Mathieu functions can not
be classified as Hypergeometric functions and consequently they do
not satisfy proper recurrence relations. This makes the solution

of the scattering problem in elliptic coordinates less attractive.

3.3 New Method in Elliptic Coordinates

Consider two confocal ellipses descri-

e X bed by the equations §=% and ¥ =%,
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Inside the ellipse §=§, the mediun is homogencous and is characterized
by the pemittivity Gl. The conductivity is assumed to be zero.
Outside the ellipse“é =§2 the medium is vaéuum. The medium between
the two ellipses‘§'=’§'l and‘§='?2 is assumed to be inhomogeneous and is
characterized by the permittivity function ea(g,q).

A TM~polarized plane wave is incident on the scatterer at an
angle ¢o with respect to the x-axis. The problem is to find the
scattered field. |

In complete similarity to the circular case,the fields in

regions 1,2 and 3 are represented by the following series:

[~ 00
v, & ,"’1)=2mZ_o(-:])mamcem(Q,q)Mcn(ll)(E,q)+2r;(-;j P se_(7,a)s ) (€ ,q)

(3.3.1)
o

[+ ¢]
Va (§,"))=2Z (=3 )mcem (7 ,qo)fm(f,q)‘*e > (-j)msem('fz ,qo)gm(g,qo)

M=o m

(3.3.2)

0o oo )
V3(§ »)=2 Z(-j )m'é.'mcem(vz , qo)Mc;“ (%, q°)+2mz_4(-j )"kﬁ'msem (vz s qo)Hsu(]LlL) k, qo)

M=ao

(3.3.3)

wvhere a s ’ém ’ bm ’ 'Bm are the expansion coefficients to be deter-
mined. fm("j,qo) and gm("g‘,qo) are unknown functions in whse diffe-
rential equations are obtained as follows.

The partial differential equation for V2 is obtained from

Maxwell's equations

2%V 3%y

1 %% 2 2
( + ) o p e (&mIV, =0 (3.3.4)
¢?(Cosh™~Cos™)  oF o2 fe2 S

If (3.3.2) is sustituted into (3.3.4), the following relation

2
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results:

. 25?5( 3™ [ce G f oty +£ (§,q) ooy ’q°)] + 2ﬁ§5( )"
- - ce ’q - ’q - =J
eaA(§,ﬁ){ m=o n 1% d§2 ™ © d’[z m=1{

dagm dasem >
ealtiag) S50 sBun) )+ e 20 G

where A('§ ) )=Cosh2} —Cosarl

In addition to equation (3.3.5) there are the following two

equations:

dacem("'[, qo)

af

+ (am-Zquosa"'pcem(’z,qo) =0 (3.3.6)

dasem('],qo)

a2

+ (Bm-EqOCOSE"l)Sem("l,qo) 0 (3.3.7)

a

? Bm are the characteristic numbers corresponding to the same q,e

The equations (3.3.6) and (3.3.7) are next substituted into

(3.3.5) with the following result:

dag

2 .
da-f . i '
m Z .
d’g‘a * Km('g’q’qo)fm] ceIIl(yl’qo)‘Pmﬂ -3 [dE S Lm("_'g,"'l,qo)gm]

]
S )]
m=o0

'sem(.’l’qo)= 0 (39308)
where K &, qo)=2qo€2r (§,7) (Cosh2g-Cos2n)-( am-aqOCos?_'vz)
L (§,7, qo)=2q062r (% ;M) (Cosh2}-Cos27 )- (Bm—aqocosayz)

If, now, each term in (3.3.8) is multiplied by cen(vl,qo)
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and integrated over (0-27n) the following differential equation is

obtained

2
af [>] ©o
B> T (§,q0f (§,q.) + D W_(§,0 )g (§,0) =0 (3.3.9)
m=o0

m=¢{

ag®
‘where o
Tnm(E’qo)=("J)m-n J Km(§ ,'7,qo)cem(7 ,qo)cen(q,qo)dq :
o .
21

W (§,q )=(-3 ) f L & ,’l,qo)sem(’z,qo)cen("l »q,)d7
6 .

similarly for gn(§ ’ qo)

dagn oo . |
d§2 "‘mZo Ynm(quo)fm(E:qo) + sz(f,qo)gm(’i,qo) =0
= m=y (3.3.10}
where o

Ynm(g,qo)=(_j)m'nojKm(*?,vz,qo)cem(q,qo)sen(rz,qo)dq and
21

7 (€,a,)=-3)"" [ T Ce,7.0 )50 (00 )se, (750, )an
o

Truncating the above series at a finite number N, converting
the differential equations (3.3.9) and (3.3.10) into state-space form

and using matrix notation gives the following:

B0 A

J.C -T. 0 =W. O p.4

..'.2. P .. - . . ., . . . .2. (3.3.11)
. 0" 0. I

.%3.. [P N . ) '5:3'

x . -

|“h] [T O 20 O] | =y
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T _ L L] T _ T
E -(fO fl aece fN) ’ 52—(f° fl s fN) } _353-(30 gl sse gN)

* L ] [ ] T
and §4=(go By oo gN)

T,W,Y and 2 are square matrices whose elements are given above.
Before getting the complete solution for the scattering coeffi-

- ~
cients a, s a

s, b ,andd , it is interesting to examine the so-
m m ’ m

lution of (3.3.11) from the numerical viewpoint.

The characteristic matrix of (3.3.11) contains ;ertain integral
expressions. The integrands of these integrals contain Mathieu
functions. Thus, at each step of the.numericai solution of (3.3.11)
these functions must be evaluated. However, generation of Mathieu
functions is a problem in itself.

Previously it has been shown that the new method is superior
to the original state-space formulation in the followingvrespect:
in the new method cylindrical Bessel and Hankel functions are not to
be generated at each step of numerical process. Since the solution
in elliptical coordinates requires the evaluation of rather more
difficult functions at each step of numerical integration, circular
cylindrical coordinates seem to be more convenient to use, although
the integration range in the circular coordinates is much larger
compared to the one in elliptical coordinates.

Therefore, as it is, solution of (3.3.11), although it is
achieved in a small fange, does not seem to be competitive with the
one which uses circular cylindrical coordinatés in the analysis.
However, a modification of the procedure followed above can be made
to lead to a more convenient formulation of the problem in elliptic
.coordinates, This goes as follows.

Instead of expanding the field into a series of Mathieu func-

tions inn(the functions in% being unknown) in region 2, the field
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is expanded into a Fourier series inn. Since V2(§,7) is periodic
in“]with period 2n, this expansion is meaningful.

Let the Fourier series representation of V2 be as follows :

oo oo
V,(E,)=) £ (§)Cosm) +> g _(§)Sinmy (3.3.12)
M=0 m=1 .

where f () and gm(E) are unknown Fourier coefficients.
The partial differential equation for V2(§,Q) was shown to be

the following :

aav2 azv2
—2 + —2 @V, =
%2 of AP

where 1(§,Q)=k§e2€rC§,?) Cosh?%-Coszq

When (3.3.12) is substituted into the above equation, the

result is
= 00 d2 ,
mz [ +(A (8, )—mz)fm] Cosmy) +Z [d§§m +(n Gk ,*l)-mz)gm] Sinmvl =
L= m={

(3.3.13)

If each term of (3.3.13) is multiplied by Cosny and integrated
in the range (0-2n), the following differential equation is found

for fm(§):

2

d f *®
—2 o°t +Z e () (§) *ZB €)e (¥) = (3.3.14)
d§2 m={
where ’ | ALl
@« = Te, ‘(X(§,Q)Coschoandq, Bom™ ﬂi A(§,7)Sinm)Cosnydn
ns

and gn=l+6no
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Similarly multiplying each term of (3.3.13) by Sinmand integ-

rating over (0-2n) gives the second differential equation as:

2
dg,
';2' n°g_ ZY (%)z_(%) +Za (g (}) = (3.3.15)
M=
"~ where ‘
VAL 217
Y™ :7!;0 A (E »1)Sinm)Sinmady , I nl k(’? ,Q)Cosmrlslnnvldq
6

Truncating the series in (3.3.1%4) and (3.3.15) at a finite
number N and converting the resultant finite dimensional linear
system into state-space form gives the following system of differen-

tial equations in matrix form:

Al A
% 0.0 0  I||x
3 T DR I (3.3.16)
X A B 0 0
g S *
&) L ¢ D ° 0] [ X |

where _15_1=(f° £, .o fN)T ’ _:_c_2=(g° gy oee gN)T, —3=(fo £y eee fN)

and §4=(éo él cos éN)T and the matrices A,B,C,D have the following

explicit forms:

p— 2 1 - : P
© %00 o1 0 0 T%N 0 -Bol * st -BoN
2
0o L TEy e e e SEy O —Byy o o o By
A=|" B=|*
—-aNO -aNl e o o Na-aNN_ 0 "BNl o o o ‘BNN
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[ ’ . _ 7]
Yoo Yor* * * You ] . 0 6ol £ ® 6oN
2
Mo Y1+ ¢ Y 17 =byy » e ¢ By
C =l e D = ™
2
| o L+ ¢t T | R IR

[y

A,B,C,D are (N+1)x(N+l) square matrices. Their elements are
integral expressidns whose integrands dp not contain Mathieu functions,
This is an improvement over the previous analysié. Compared to the
solution in circular cylindrical coordinates there are tﬁo unknown
functions fm(f) and gm(?). This means that the matrix sizes are
twice the ones in circular cylindrical coordinates even for symmetri-
cal excitation. For non-symmetrical excitation all the summations
start from -N and go to N when the scattering problem is formulated
in circular cylindrical coordinates. Therefore, for such an exci-
tation the matrix sizes are nearly the same in the two formulations.

In order to be able to compare the two formulations further
the complete solution of the scattering coefficients a.m,bm,am,bm is

required.

Boundary conditions at 5 =§1 give the following equations:

m=o

oo 0
2> (=3)% Mol (5 a)ce_(1,a)%2) (~3)" 1s{E q)se_Cp,q) =
M=1

me@l)cOsmq +mZ—.4gm(§1)Sinmq' (3.3.17)

M=o

oo . @0 .
2;;;(-j)mamMcil)(El,q)cequ,q) +%;E;(-j)mmesél)(§l,q)sequ,q) =

o . co ,
:E:fm(§1)Cost t;g;gm(§l)Sinmn (3.3.18)

M=o



106.

If each term in (3.3.17) is multiplied by Cosnn and integrated

over(0-2n) the following results:

- 2n o
nfn(§l)=2n_?;—o(-j )mamMcél) (El, q)ojcel'm , q)Coandq*‘E;'(-j )mbml'iséll) (5_;=l »q)

.20
. jsem(q,q)coandq (3.3.19)
o

Consider the integrals appearing in the above equation,

am
Let Il=jcem(fl,q)Coan_dq o The function cem('fl,q) has the
)

following series representation:

Al m even
o0 m 2r
cem(f),q)=z nr(q)CosrrI s where E‘:(q)=
T=o0 AT n odd
2r+]1
m m ) . o
( A2r and Azr*-l have been defined in section (3.1). Then,

moo oo 21T
_m - o
Il= j br(q)Cosquoandq = rZOEr(q) fCosr72Cosnvldrl = ng, En(q)
° : - © '

Y=o

2
since jCosrrzCoandr) = nenbnr o Second consider the integral
o

217
Iz= fsem(q,q)Coandq « The function sem(f),q) has
the following series representation:

- m
: B m even

o0 2r
sem(q,q) =rZ‘ F’:,(q)Sinrq , where FT.(q)=
- B" m odd
2r+l

an

and *
Ia=; F:i(q) J SinrnCosnqdn = O

Hence the equation (3.3.19) becomes
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5,602 [-9)7e Y 6 ) @] o (3.320)

‘Following the same procedure results in:

f & )_ZZO( -3)" (1)@1,q)E (q)] 3, (3.3.21)
g8y )=2> [0 w6, 0ma)] v, (3.3.22)
én(§1)=2;é;lk-j)m ﬁsél)C§l,q)F2(q)]'%m (3.3.23)

E':; and F[:; are assumed to be known when q is given(when the
dimensions of the scatterer and the frequency are specified).
The equations (3.3.20)-(3.3.23) can be put into matrix form

as shown below:

£ =Pa ,  I6) =Pla -
(3.3.24)

g®,) =

o
2

£G,) =

where £(§1)=(fo(§l) fl(El) e o o fN(El) )T , similar expresions

for £(5) , &G5,) , &) .

a=(a_ja; . .. aN)T » b=(b by ... br-{)T

Ps 1,R1 R| are square matrices with elements 2(- J)mrflc(l)@l,

203" &, 203t (6 ,a)F ), 20307 Wl (5, q) T

respectively.

Boundary conditions at §=§2 give the following equations:

m
n
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2(§2)=Pé§ , i(§2)=p£§

(3.3.25)

sk, s()RE

where ;(§2)=(fo(§2) f1(§2) o o o fN(‘Ea))T , similar expressions

for £, 8,8 .

BG, By ..y B, By By

P, » P} , R, , R} are square matrices with elements

230" (5,002 (0), 2P &0, 29" (8, 00F ),

2(=j )mﬁm(l"’) (§2 ,q)Fi(q) respec-tively.

The solution to the system of differential equations (3.3.16)

can be written symbolically as:

z(§)=2(§) _Z_(El) (3.3.26)
where z(§)=(£(§) g(8) ;_'_ ;)T is a (4N+4)x1 column vector.

B(¥) is a (4N+4)x(4N+h) state-transition matrix.

The boundary conditions (3.3.24) and (3.3.25) can be written

in terms of z as:

z(€))Me  , 2(E)NE (3.3.27)

where the matrices M and N, and the column vectors < and Es are:
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(p, O rp2 o ]
a a
0o R 0 R,
M= N= c = ¢ =
PP O PL O s b S %
0 Rij 0 Réj

Combining (3.3.26) with (3.3.27) gives
§(?2) M gsﬁﬂgs

This system of linear algebraic equations is solved for the
unknown scattering coefficient vectors Sg andﬂﬁs o This completes
the solution.,

In the light of the above analysis the following éonclusions

can be drawn.

Conclusions

As the analysis in section (3.3) shows, the new differential
formulation works equally well in elliptic coordinates. The
motivation behind using elliptic coordinates is the possibility of
decreasing the interval in the numerical solution of the system of
differential equations for scatterers for which the radius of the
enscribing circle is very much greater than the radius of the
inscribing circle. ~However, there are now new complications which
are not present in the formulation using cireular cylindrical coor-
dinates, .

The main features of the solution in elliptic coordinates
can be summarized as follows.

i) The sizes of the matrices employed in the solution which
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uses elliptic coordinates are twice the sizes of matrices in the
solution which uses circular cylindrical coordinates. This is true
for symmetrical exéitation and for symmetfical cross-sections, For
an arbitrary scatterer cross-section the sizes of the matrices are
(2N+1) and (2N+2) respectively.

ii) The characteristic matrix of the system of differential
equations in circular cylindrical coordinates is generated once the

factor @ which is given as,

21
1 (m-n) . .
ané-.-a-;t—fer(x,;a) ej ¢ dg , is obtained.
[+]

In the elliptic coordinate solution there are four different
factors, @ ? .Bnm s Yom and Bnm and these are more difficult
expressions to generate., Evaluation of the factors @ m in the two

cases are compared below.

& Consider a scatterer with rectangular cross-
/ éo "ﬁ‘ .
A section, The minor axis is a and the major
( \ axis is b.  The permittivity of the
w b scatterer is denoted by € and assumed to
>~ be constant.
le—a —

The factors a n are evaluated first in
circular cylindrical coordinates.
a a 2 b 2 1/2
The range of numerical solution is -Z-\Lpé [( §') +(§-) ] .
' a a2 27172
* The permittivity function for the region S<¢p4 [(E) '*'(’é') ]

is given as:

er(p,¢)=1 for -¢ < ${g, and g { g{ntg for

Y [
IN
O
IN

nlo?

€.(p,g)=€  for g (g<mg  and mwg gl2n-g,
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€.(p,#)=L for - (#<g, and ¢ (F-g) and 78 (B{RHg and g (FRT-F)

Gr(p,¢)=cr for # L BBy and 7c-¢1<¢(1t-¢o and 1r+¢o<'¢<1r+¢1 and 21c-¢l<¢(27:-¢0

2 1/2
tor 3¢ [@7 )]
Then the factor a o can be easily obtained as:
1-€ Sin(m-n #_)
_ r m-n o a b
a =€.8 + [1+(-1)""2] ——  for 3€p&3
1-€ [Sin(r'ﬁ-—ri g )-Sin(@=7 ¢ )]
- 0 1 -
a_ =5
nm
m=-n
1/2
ror 2¢pe [@ @) ]
where ¢ =Cos( 9"@) , & =Sin~T ( b/2 )
° P 1 P
It is to be noticed that the factors % m C20 be evaluated by
hand and can be put in a closed, compact form for a homogeneous
scatterer,
Yy
A~ Consider now the evaluation of the factors
am s :
/ // , \ \'} . @ in elliptical coordinates, The
I /
‘: / \\\ inscribing and enscribing ellipses are
\
! 7% shown by a dashed line and defined by §=F
\\ ' ,' ,l % ? o
\ / =
A\ §$7 // , and > respectively.
\\’/éz %1 and '§2 are given in terms of a and b as:

§1=Cosh-1( b/ b2-a2) , §2=Cosh-1( b'/\/b! 2_g12 )

b(b+ V22 Vb(a+b)

where b'= 2[ b(b
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and a's a/2 = a(;+b1 .and hence §2=Cosh-1( \/EI:); )

\/1—(b/2b')‘2

The intermediate ellipse is shown by a solid line.

The factors a  have the form:

m.
22 20 .
k.oe 5
% e j Gr(E,")) Cosmv) Cosnn (Cosh?? -Cos 1]) dn (2.3.28)
) n o -
k2 e2
o)

let A (§7)= —— Cosm Cosny (Cosh% ~Cos7)
n

The permittivity function Sr(E »7) is given as

er(’E MN)=1 for -T)o<71<72° and 71(7'}(1:-’11 and =7 < <n+7]o

and w7 <2n-1,

Gr(%ﬁ])=€r for 1L <171 and 1t-71<77 <1t-"}° and
w1 <7 <m71 and 27%-7<7) <21r-7o

then (3.3.28) becomes

-7, T+%0 ar-,
JA <’§n)dv+fﬁ &) d’r’fﬂ &) dv*fA ®) a+
o 77, mH),
v—’]o T+ 27-7,
Un%(%m dq+JA €7) dq+J'A \ ,7)) dn+ JA €,7) dv)]
Mo -1 ™, Zr-7),
~where 7 ,=Cos "1 S_iﬁ_% ) , ", =5in el -C—Eésifé )

It is clear that, "although it is still possible to evaluate

anm's in the elliptical coordinates by hand, this is more difficult.
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Aé.ditionally the otl}er'three factors Bnm » Yom and 5nm are to be
evaluated, |
Consider now the ranges of nwnericai integration in the two
cases for b=5a.
In the circular cylindrical case this range is (0.5a,2.55a)

In the elliptical case it is (§1 ) 5 ). For b=5a ?1 and
3%2 are -

“_%1=Cosh-1( sA2k ), §2=C05h-1( V5/2)

Assume a=1, then the range in the former case is (0.5 , 2.55)"
but in the latter case is (0.202 , 0.481).

It is seen that in elliptical coordinates the range of numerical
solution of the system of differential equations is very small
compared to the one in circular cylindrical coordinates.

i1ii) For the final solution of the scattering coefficients
the rather more complicated Mathieu functions, compared to the
cylindrical Bessel and Hankel functions, are to .be generated.

The matrices, which connect the column vectors §(§)., iC?) ’
g(§) and é(?) to the scattering coefficient vectors a , 2 , b , and
i at§=§l_and §=i€2, are not diagonal matricés but full matrices.

The formulation of the scattering problem by the new method
in elliptical coordinates is seen to have some advantages compared
to the formulation in circular cylindrical coordinates as well as
some disadvantages. In the present work no computations have been
made using the formulation in elliptical coordinates due to lack of
time., Therefore, the real merit of the formulation in elliptical
coordinates is still an open question, which can only be answered

after a Ehoi‘bﬁgh numerical investigation has been undertaken.
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4, THREE-DIMENSIONAL SCATTERING PROBLEMS-THE STATE-SPACE METHOD

. In the solution of two-dimensional scattering problems, the

fields were represented by infinite series of cylindrical harmonics.

These were H;a)(kr) e3™  ana Jm(kr) e3™® Lhich are the elementary
solutions of the scalar Helmholtz equation in cylindrical coordinates.
Corresponding harmonics in spherical coordinates are found by solving
the Helmholtz equation in spherical coordinates. Since spherical
harmonics are going to be used in the analysis of three-dimensional
scattering problems, a brief introduction to the properties of these
harmonics will be given below. For a comprehensive treatment of the
subject reference should be made to(47).

After introducing the necessary mafhematical tools in the first
two sections, the state-space method is investigated in the last

section of this chapter.

4,1 BRIEF THEORY OF MULTIPOLE FIELDS

4,1.1 The Solution of the Scalar Helmholtz Equation in Spherical

Coordinates

In a source free region of empty space a scalar field]f(i,t)

satisfies the homogeneous wave equation,

o WG,
v (F,t)- 25 ———— =0, uhere ¢ is the velocity of light
c ot

in free space.

For time harmonic fields the above equation reduces to the

scalar Heimholtz equation
V2§E(§,w)+k2§{_/(;,w)= 0
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oo
where k=w/c and 1£(F,w)=‘fxg(§,t) oot gy , T is short for (x,y,z)

Using the separation of variables technique in spherical
coordinates, the Helmholtz equation can be shown to have the follo-

wing general solution(47):

© e .
Y(T)=> Z[Aii’ hil) (kr) + Agi) héa) (kr)] Y, (6,9) (4.1.1a)

£=0 m=-g

where W(r) has been used instead of W(r,w). The constants Aéi)
(2)

and Aem are determined by the sources and boundary conditions.

The functions hgl)(kr) and héa)(kr) are the spherical Hankel functions
of the first and second kind respectively. It is customary to de-
fine spherical Bessel and Hankel functions, denoted by je(x), ne(x),

hil’z)(x), as follows:

;je(x)=(1t/2:c)]‘/2 J (x)

e+l/2

n,Ge)=(r/2x /M2 N, o ()

et+l/2

1121’2)(x)=(11/'?_x)]'/2 [Je+1/2 z jNe+1/2(x)]

where the superscript 1 corresponds to +, and 2 corresponds to - .

J and N are cylindrical Bessel and Neumann functions respectively.

For real x, héa)(x) is the complex conjugate of‘hil)(x). From the

series expansions of J and N

it can be shown that

etl/2 e+l/2

3o Ge)=(=)® (= L)° ( Emx
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For the first few values of e explicit forms are:

Sinx 3x
X

)= - Cosx s h(l)(x)= =
x o ix

jo(x)=

s no(x

_ Sinx Cosx _ C Sinx (1), ,_ géf
30 5 - R om0 BB S, )= S i)

3,00=( &5 = Ldsime 25, 0, ()==( 3= - H)0osx-3 2

2
X x

1) = :
h, (x)= j%— (1+ %‘L - -ié')

The spherical Bessel functions satisfy the recurrence formulas,

giil ze(x)=ze_1(x)+ze+1(x)
28 (x)= Sorz[ez, ) (x)-(etl)z, )]

where ze(x) is any one of the functions je(x),ne(x),hél)(x),héz)(x).

The spherical angular harmonics Yem(e,¢) are defined as:

2et1 (e-m)l 112
Tleo= (253 (] e o,

where PZ(Cose) is an associated Legendre function. In terms of the

ordinary Legendre polynomial of order e, P: is given by,

a"p
e

dzm

where 2z=Cosf

P(2)=(-1)"(1-22)"/2

Pe is the ordinary Legendre polynomial of order e. The first

few of these polynomials are

P (2)=1 , P (z)=z , P,(a)= 3-(32°-1) , Py(z)= 3-(52-32) ,
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B, (z)= 3-(352"-302%3)

For fixed m the functions form an orthogonal set in the index
e on the interval -1 2z 1. They satisfy the following orthogonality

condition:
1

J-Pg(z)Pi(z)dz= -2 Sﬁiﬁﬂ 8
bl |

2n+l (e_m )I en

For a few small e values and m O the explicit form of Yem(6,¢):

e= 0 Y =1/fkn

Y, =-\[3/Bx 5in ed?

Yl°= 3/4n Cosb

a=

: 1. 2, 32
Y 5= -\ 15/2x sin% oJ27
s Y, =-\/15/8% 5in8Coso eI?

Y, = \/5/4m ( g— Cos26- %—)

For negative m the following formula is used for Pﬁ

P(2)=(-1)" Le=mk gy
© (etm)l ¢

4,1.2 Multipole Expansion of the Electromagnetic Field

In a source free region of empty épace, Maxwell's equations

are(assuming eIt tine dependence)
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CurlE=-juwu i ’ divE=0

- Curlfi=jug B , aivi=0

Eliminating either E or H from the above equations results in

(Vz+k§)ﬁ=0 , divil=0
2= .- -
(V2+ko)E-O y divE=0 , where k =0 Qopo
These equations are the vector Helmholtz equations. Their

general solution, as an infinite series of vector spherical harmo-

nics can be shown to have the following form:(Appendix B)

©0 e
ﬁ=zgam (F)+ = 1N1()a S (F)+ ;3 F° (7)) (4.1.2a)

o e
i::-jzoz 4&— emNe (r)+ 61 Ml (r)+ 1—0 a; Mo (x)+p] M (r)'_]

(4.1.2b)

The expansions (4.1.2a) and (4.1.2b) are called the multipole

expansions of the electromagnetic field. The constant coefficients

L. and Bem are the electric and magnetic type multipole coeffici-

ents respectively. They are determined from the sources and
boundary conditions.,
The spherical vector wave functions ﬁem and ﬁem are defined as:
5X ()=, % . L TR Ty
Mem(r) ze(kor)zem with dlvMem(r) 0
N2 (r)=Curlfi® (¥)  with aivil® (¥)=0
em em em

where the vector spherical angular harmonics iem(e,¢) are defined by
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©,4)= =L Y_(0,9) with aivk_=0 and A= [e(e1)] /2

Ae

z, (k r) is any one of the spherical functions j (k o) h(l) (x ),

(2) (k r). The superscript a takes the values 1,2 or s, such that
1 - 2 (1) s .(2)
ze(kor)-je(kor) , z.e(kor)—he (kor) , ze(kor)-he (k_r).
-a - . ' .
The vectors Mem R Nem and xem have the following components:

a -
emr_o ! "emb “e*o Temd ? M emg ze(kor)Xe mg

1l 4 x
= [rze(kor):] xem¢(e’¢)

N -_-_Ld_[r“(k )N x (0,4) X = .._eE.iZ_ Jmg
emg r dr Ze or] em6 019 ’ g~ i €

em Ae 5iné
X ==3 Vem e Jng here A\ —[ ( +1)]{/2 _|2e1 (e-m)l 1/2
emg=3 A, ® e » whereA = e(e , T m.

The spherical vector wave functions ﬁ:m and ﬁ:m are orthogonal

on a spherical surface

= =03 _ (5] =a¥* =B -
A_]'Mem‘me'm' a=z (k r)z (x r)See, mt 2 JMem o NT, v d2=0
LL o
where Q denotes the solid angle, dQ =SinS5d0dg, » denotes complex
conjugate,d

cot and ) mt 2Te the kronecker deltas.

Another useful relation between ﬁ:m and ﬁ:m is

-2 ,- -
CurlNem(r) —kiMem
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4,2 SOLUTION OF THREE-DIMZINSIONAL SCATTERING PROBLEMS BY THE

STATE~-SPACE METHOD

Consider a scatterer characterized by the
material parameters €(r,8,¢) and o(r,0,¢) ,

where € is the permittivity, o is the conduc-

tivity and (r,0,g) are spherical coordinate
Fig.h.2.1 variables, Assume that an incident field is
is generated by a distant primary source. No
interaction is assumed between this sour;e and the scattered field.

The incident field polarizes the medium where the scatterer
is located. These polarized sources radiate into all space. For
points inside the séatterer this scattered field together with the
incident field(total field) is found as follows.

At a distance r from the coordinate origin, a spherical vacuum
shell is assumed to be located. If an\exPression for the electro-
magnetic field is found in this vacuum shell, the field at the same
r but inside the dielectric can be found easily using tﬁe standard
boundary conditions on field vectors.

The scattered field in the vacuum shellvis due to both volume
V, and volume V, as shown in Fig.4s2.1. For the contribution of
volume V1 the magnitude of the position vector r is always greater
than the magnitude of the source vector T . ‘For the contribution
of volume V2 the reverse is true.

Since Green's dyadic has unique, convergent expansion for
these two cases, the scattered electric field in the shell is

expressed as follows:

l 1 it + =L 5 7S +5 §®
= JZ em em’ em Tom” ko aemNem+BemMemJ

2-0 m--e



121.

The induced current demsity is

J= +Ec=jw€o [er-l+ » ] E

P Jw d

(o]

where 3p and 30 are polarization and conduction current density
vectors respectively, Cr is the relative dielectric constant, o is
conductivity, Ed is the total electric field inside the dielectric

at the point r.

Let €'=€ + -< then J=ju€ (€!-1)E
r r . or d
Ju

The incident field is also represented by a multipole series as:

e=om= em em

co e
Erayz S SR AT @) %o ot W ()]

where aim and Bim are multipole coefficients of the incident field
and generally they are assumed to be known., Depending on the
relative position of the primary source with respect to the scatterer
a becomés 1l or s. For example, if the incident field is a plane
wave coming from a 'distant' source, assuming the scatterer has a
finite extent in space, a=l. If the primary source is a dipole

( or loop) antenna located at the centre of a concentric spherical
dielectric shell(assuming the extent of the antenna is smaller than

' the inner radius of the shell)then a=s.

The total electric field inside the scatterer at a péint T

is expressed as:

= 1 =sc,mincy A _/=6C, =incy ~ | =5c,=incy A
E= (E°“+E )rar+(E +E )eae+(E +E )¢a

€Lr) ?

where ( )r denotes the r-component of vector ( ), similarly for

( )e and ( )¢.



122,

In dyadic notation Ed takes the following form:

E ()= U.(B5CE) wnere U= 2—%5 445452

exm T PP

1l
em

The multipole coefficients of the scattered field, a:m,a and
Bzm’aim can be shown to have the following representations in tems
of the total current density J(31):
T T
ﬁzm(r)=—jk§ff3.ﬁl‘;(;‘)r‘adr'dn , S (r)=-gk f [a.0, G e Partan
° qafr) ' ) o £LuUr)

) G
1y a2 L R IR 1oy - PV JU
Bem(r) K, ffJ.Mem(r Jrt€dr'dn , aem(r)— gkoffJ.hem(i‘ JrtSartdn

r L) r adlr)

where r, is the radius of enscribing sphere, The volume integral is
explicitly written in each case. f2 denotes the solid angle. As
indicated, the multipole coefficients are not constants but functions
of the radial variable r. In spite of the fact that the scatterer

is inhomogeneous in its material composition so that the wave equation
can not be solved py the standard separation of variables technique
the fields are still represented exactly by the vector harmonics

which are outcomes of the separation of variables technique.

However this representation with constant coefficients is not possible,
as was shown above.

The induced current density J is next represented as an infinite

series of vector spherical harmonics as:

—1)U (Esc+Einc

:T:jweo (e;‘-l)ﬁd=jw€0 (Gzl._l)ﬁ. (ESC —inc

Using the representations for Esc.and ﬁinc as infinite series

the following form for J is found:

+ 1. 8 85 4al =1 1 1sl dgza,1l 1=za
- | - a— 4 —— & [—
k (€ UZO mz_‘l;_aem em k aemRem+BemMem ko aemRem+BemHem+ ko aemReml
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2 LN (s ()3 Y (D)2 =
where R, = =57 Nemr(r)arﬁ-Neme(r)ae+Nem¢(r)a¢ y ¥=1,2,x.

If the above series is substituted into the expressions for

]
em’ em

B

coefficients, results. In order to reduce the order of this system

,B , a system of coupled integral equations for these

from infinity to a finite one, the series is truncated at a certain
index, e=N. This number-is detérmined by the maximum optical
dimension and complex permittivity of the scatterer.

The mathematical equivalent of what Qas said in the above
paragraph is as follows(first only szm is considered):

e m‘ e m'

B (r)=-jk Jﬂk <e--1)§_§_'( LS, LG 2 o8, 1)+
e:o o]

o )

Bi,m,ﬁi,m,(;l)+ -%; ai,m,Ri, (7 )+p 'm

e m' e'm' e'n*

)+ = o, RS, )
o

oﬁl* (;" )r'adr'dﬂ
em

Since the series over(e',m') is uniformly convergent in r' ,
the order of integration and summation can be changed, with the

result that

v
Bem("')"-ﬂ‘BZ Jﬂ S, (1) (e, A rrPartaas %HZ’

n em
om0 ()

T ' r
L yES a¥ .20 1 gl S 2. 1 .
(€1-1)R ., 4ol r!ar dQ+j Borps (F' My 0 M riartd + @y ()
o () o 2(r")
Cr) g2 s Sy w2 13
] ] | - 1 L} ——
k etmt *Men®' 97 A2 oy (er l)Me‘m"Memr drid + = G
° > ) °
v .
- =%
(er-1)RE, i rt2artan

o f(r!)
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The above integral equation is of Volterra type. Differen-
tiation of both sides with respect to r results in a system of

first order differential equations as shown below,.

g’
em _-JKBZ Zr B 'm* (r)f 2 (r)—l] M e'm! (r)'M (r)dﬂ + ..o similar
N 7 e o e ' terms
Now define: > o :
IMM:g e! m'—-JkBr e'(r)-l] M o' (I‘).I'izm(r)dn.

4(r)

- 2 2 - —’f - -p* -
ImYP’ == JKCT ‘Eex"(r)—ﬂRe'm'(r),Mem(r)dQ_
26

where ¥=l,s,a and p=l,2.

With the above definitions the derivative of B:m is written as:

5
dag N ¢
em S sl s 11 1 11
dr -;,g;‘(el,}mem e! m'Be 1o PR em,e'm'"e? m'+mMem,e'm'Be‘m'+ RMem,e‘m'

1 al i al i
ae'm‘+IMMem,e'm'ae'm'+IRMem,e'm'ae'm')
Similarly;
1
N e
s2 s 12 1
;Z::_(Emem e! m'Be m' em,e'm‘ae‘m'+mem,e'm'6e'm'
12 1 a2 a2 i
+IRMem,e'm‘ae'm' 1 em,e'm'Be‘m'+IRMem,e'm'ae'm‘)

Next the following two functions are defined:

P g f (-, i Gan

em,e'm
(r)
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i? =3[l ) BE, iR (F)an
() .

Using these functions.the differential equations for azm and

1 .
a__ are:
em
sl 8 11 1
-Ziji( em,e’ m'Be m'+IRN em e'm'ae'm'+IMNem,e'm'ﬂe'm'
=0 m'=-g' 4
11 1 al S 3 } i
rIR em,e' m'ae'm‘+IMNem e' m'ﬁe m'+I em,e'm'ae'm')
1 .
da N ¢
em  __ s2 ] s2 s 12
dr gi'wlvaem,e'm'Be'm'+I em,e'm'ae'm'+I em,e'm'Be'm'
12 1 a2 i a2 i
+
: IRNem,e‘m'ae'm'+I em,e'm'ﬁe'm'+ em,e'm'ae'm')
1 .
From the defln}tlons of Bem ’Bem’ en’ it is seen that:

aim(o)=a§m(o)=o and Bi‘m(rzkaim(ra):O.

Since the multipole coefficients are not specified at a single
point, the problem is not an initial value problem but a two-point
boundary value problem. The method of solution follows the same
line as the two-dimensional problems.

For a rotationally symmetric body it can be shown that summation
over m' drops out and azimuthal index m comes into the solution as
a parameter. Then the scattering problem is solved for each m
separately.

The state-space differential system has the following matrix

form for a rotationally symmetric scatterer.
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gl‘:T st el oAl 1mel] p°] |zt Rt

m m m m m m
0 | pest el omwtl et | |eS | [ De® o1me®t |
b ] _ m m m m -m m m ﬁ;
o | 2 &2 12 2|l

o2 ore®® omed? aamet? | gt | D 1REP ||

m m m m m m al

2] |- 1 ook el | |l | | De®2 Ime®
2nl L m m m m Jll-m] | m m ]

where IMM,IRM,IMN,IRN's are (NxN) square matrices(summation over e
starts from 1 and goes to N, for e=0 vector spherical harmonics are

identically zero), Q? af are (Nxl) column vectors(y=s,1,i).

? =

As an application a spherical scatterer with G;(;)=€;(r) is
considered. For such a scatterer the previously defined functions

take the following form:

o, IMMYP

Y? | =1RMYP
'm em,e'm'

320,
em,e em,e'm'" =-3k2r e r(r)-l] z.g,(lu‘)zg(lu‘)s

r
In matrix notation;
Bs IMMSl IMM11 Bs IMMal
m m m m m Bl
= + m
B1 _IMMS2 _IMM12 B1 IMMaZ
m m m m
o] [ 1l el ) (e8] [1mRn®]
m m m m m oA
= + m
o] |-1rvs2 et | ot | 1me®@
m m m m

It is seen that o« and B coefficients are decoupled for a sphe-

rically symmetric scatterer stratified in the radial direction. Also

ee! énm'
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all summations over e' drop out. Whatever was said previously for
circular dielectric cylinders which are stratified in the radial
direction can be extended to spheres which are also stratified in
-the radial direction, |

In the two-dimensional case the characteristic matrix of the
differential equation system was a (2x2) one. Here it is seen that .
there are two (2x2) characteristic matrices. The difference §Omes
from the fact that, for the two-dimensional case the excitation was
taken as a TM-polarized plane wave(or TE-polarized). Here the exci-
tation is a combination of both TM and TE polarized plane waves.

If the excitation for two-dimensional problems were chosen as a more
general one than TM, there would be two more scattering coefficients
to describe the scattered field uniquely, or alternatively if the
ekcitation were only magnetic or electric type for three-dimensional
problems, either 8 or a would be zero and the two coefficients
would be enough to represent the scattered field uniquely.

For spherically symmetric objects stratified in the radial .
direction the elements of the characteristic matrix contain spherical
Bessel and Hankel functions. Generation of these functions nume-
rically at every step of the numerical integration process may
require relatively large computation times.

As was shown above, the spherically symﬁetric scatterers
require the differential equations to be solved for each m separately.
This means that it is only necessary to generate one spherical Bessel
and Hankel function for each coefficient.  Spherical Bessel and
Hankel functions are obtained using their series expansions, If
recursion formulas are used to generate these functions, certain'
numerical inconveniences may occur. For example, for small arguments

generation of an N'th order spherical Bessel function by forward
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recursion formulas(i.e., first evaluating the zeroth order and first
order functions by using their series expansions and then generating
the higher order functions using their recursion formulas) has been
shown(54) to be a source of roundoff error. This is due to the fact
£hat, by this process, two similar numbers have to be subtracted
from each other to obtain a higher orﬁer Bessel function(subtraction:
of two very close numbers using a computer is a source of roundoff |
error though).

The method of solution of the two-point boundary value problem
for the three-dimensional case is exactly the same as in the two-
dimensional case. First the problem is converted to an initial
value one by a matrix inversion and scattering coefficients are found
by a matrix multiplication.

The state-space method can be applied to multi-body scattering
problems as well. 'However, in practice, even application to

rotationally symmetric single scatterers is difficult.
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5. THREE-DIMENSIONAL SCATTERING PROBLEMS BY THE NEW METHOD

-SPHERICALLY SYMMETRIC SCATTERER CASE-

In this chapter the method developed for two-dimensional
problems will be extended to spherical scatterers stratified in the
radial direction. For this purpose, spherical dielectric shells
with and without conductor cores, Luneburg and Eaton lenses a£e

treated as examples, The results are compared to existing ones.

5.1 Dielectric Spherical Shell Stratified in the Radial Direction

Consider a spherical dielectric shell the

3
' permittivity of which is a function of the
radial variable r and whose conductivity is zero.
Fig.5.1.1 The inner optical radius is x, and the outer

1
optical radius is X5e The incident field is a plane wave propagating

along the z-axis. The regions denoted by 1 and 3 in the figure are
free space, The magnetic field vectors in regions 1 and 3 satisfy
the vector Helmholtz equation and have zero divergence. Therefore

they can be represented as:

- 2871 1 1
Hj'=gog[aemMem( ) _k— BemNim( )] ’ Ogrérl (5.1.1)

= S <orS5ms =y, 1 555 =y, izl =, 1 iz
H3— ZEX Mm(r)+ koﬁ N~ (r)+a mMem(r)+ —k—oﬂemN

1 ,-
em em e em(r):l ’ r>/r2

(5.1.2)

Region 2 is not homogeneous and the wave equation is not
generally separable in this region. Hence an exact representation

of fields with infinite series of vector spherical harmonics is not
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possible. However, assuming the fields in this region to have the
same angular dependence as the fields in regions 1 and 3, and
putting unknown functions for their radial dependence, 1leads to the

following representation for the magnetic field in region 2.

0 e - |
ﬁ;; mz.-Eem(r)xem+ _:}l‘; Curl(gem(r)xem)] s Ty $r<r2 (5.2.3)

In the above expansions; « are unknown multipole

em’aem’Bem’Bem
coefficients, aie'm,ﬁje'm are multipole coefficients of the incident
field and are assumed to be known, fem(r) and gem(r) are unknown
functions whose differential equations are to be found.

The corresponding expansions for the electric field in regions

1,2 and 3 are obtained using the equation Curlﬁ=jw€ﬁ with the following

rgsult:
El(r)--az;Z a; BT (F)p] i (7] (5.1.4)
e-onvg_e o
==y 34 & 1 .
E,(r)=- r)ZZ‘.LTO f (r)CurlX +—k-; £ ¢ ) X o emxem]
€.
(5.1.5)
By()=-32,) > Feal BS (F)+p2 B (F)+ ol o (2)+pl T (7)]
€zom=-¢ "'g o
(5.1.6)
1 [efet) 2 98y | dagem
vhere Gem(r)=-:5 [_ré- Bop¥)- T - =2 -l

o

(.) denotes derivative with respect to r.
The next step is to find the differential equations satisfied

by fem and Bop * For this purpdse the wave equation in region 2,

which has the form Curl( —- Curlf)=w’y f ie utilized,
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Using a well known identity of vector calculus gives the

following expansion:

Curl[€r(r)§2]=€r(r)Curle+Gr(r)§fx§2 (5.1.7)
1 1 A b brd
From (5.1.5) € (r)E,=-j2 ZZ[T £, (x)CurlX_ + -l-c—femarxxemmemxem]

e:o m=-¢ "o

Operating with the Curl on both sides gives:

Curl(6_(r)E,)=-32, ZZ[——F (r)X, +Cur1(G (®F )] (5.1.8)

eso msz.g

2
daf af
_ele+1) _ 2 em _ em
where Fem(r)- = 2 fem(r) — 3 Pl and the

following identities have been used at intermediate steps before

arriving at (5.1.8):

= _ e(etl) = A = _ “em
Curl CurlXem— rz Xem s aerurlxem— -

rele+1) 1 df
B - ey

>l

Curl[f(r)Curliem]=
r

Curl (8% )=- | Curd[F(x) o)== ( - 4 P Loz

r dr

Curl Curl[f(r)iea]= [Eiigll £(r)- —%— %(r)-;kr)]iem

If, now, the expansions (5.1.3),(5.1.5) and (5.1.8) are
substituted into (5,1.7) the following equality results:

*
e

o €.t .
D> = [F - E (B )l s (r)]X +[e curi(e X )

e<o m=-eko € T em em
r
Gr _
+g— G 3k -Curl(G_ X )]=.0 (5.1.9)

r emr em em em
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The next and final step is to take the dot product of each
term in (5,1.9) with }'cem and integrate over the whole solid angle.

The differential equation for fem follows as:

€
Fem(r)+-—( +f)k€f=0
r
( The following equalities have been used: i) fiem.ig,m,dn =8
£

ee' mm!

ii) qurl(gemXem). otg1d2 =0 , iii) f(a .x otg132=0)
L0

Similarly taking the dot product of each term in (5.1.9) with
ﬁr and integrating over the whole solid angle gives the following

differential equation for 8o’

g ag )
em 2 em 2 ele+l _
a2 T T +[k €.(r)- 2 ]sem_

These differential equations for f_ (r) and gem(r) can be made

independent of kb by defining x=k°r, with the result that

2

ar daf
em 2 a . em 1ld e(e+l)
dxa +( x  dx nGr) dx +E6r(x)- x denEr - 2 ] fem
x
(5.1.10)
and .2
d'g dg
em 2 em e(etl) _
w2 | x ax +[e, G- 2 leg = © (5.1.11)

As can be seen the fem and Ben functions satisfy independent
differential equations.
Solution of (5,1.10) and (5.1.11) numerically, together with

the boundary conditions specified at X=Xy and x=x gives the

2’
unknown multipole coefficients as the following computations show.
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The following boundary cond:?.tions give the corresponding relations

shown on the right:

At x=x1

- A m A 1 .
a) Hl.n=H2.n ::—_j Bemae(ﬁ)=gem(x1)

A= A= 1 -
b) nXHl_anZ _ Bemj;(xl)_gem(xl)

e) €°E1.3=€E2.’ﬁ P ——— a]e'm e(x1)=fe(x1)
A A= 1 :
a) mcﬁl=an2' _ aem;(xlkfem(xl)

AA . . . . :
where n=a_, is unit vector in the r direction,

3,0xy)
T )= [e G )-1] 3;:1 6 _Gx)31xy)

At x=x2

e) Rybell,d ——> ﬁ:mhia)(x2)+B§mje(x2)=ge(x2)
1) fllodl, > g% 2 0y gt 51 Cey) ot ()
8) €0x,)E, 56 Bfi s o® n i )ral 5 Ge)ot e,
h) ﬁxﬁa=ﬁxﬁ3 — ajmpe(xz)m:elmqe(x2)=§e(x2)

h(Z) (x .
where p_= [Er(xa)-l] -e—x—z-—é- +€r(x2)h£2) (xz)

je(xa)

qe= [er ("2) -1] +er (xa) j:e (XZ)

)

Consider first the solution of a:m:
The differential equation for f_  (x) is converted into state-

space form by defining:

Yol)=t, () , 2 )=t (x) , then
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+
where Qe=€r(x)- —}%— g—x- In€ - 3(—92—12 , P= _;2;— - ?E In€
x

were defined for convenience.
The solution to (5.1.12) can be written down symbolically as

follows:

‘ 11 12
L& 1B B | [T
— (5.1.13)

. 21 22 .
fe(x) &, 3, fe(xl)

where the columns of the ® matrix are obtained by solving (5.1.12)
numerically subject to the initial condition vectors (1 0)T ana
(o l)T respectively.

Using now the boundary conditions (c),(d),(g) and (h) together

with (5.1.13) gives:

£,(x,) =“2h£2) (x,) +°‘ij o Xp) =[§i1(x2) Jo (x1?+§i2 ()%, (xp) ] “t
’ ' 1
fe(x2)=azpe(x2)+aiqe(x2)= [3§21(x2)je(xl)ﬁﬁiz(xa)ke(xl)J o

eliminating ai gives:

C o )T g k) a1 )Y, ()
@ = ) & s where T = N ”
no*’ (x,)-1_p_(x,) FSCRERCRE Sl CW)ARED

Following the same procedure for 6: gives:



135,

11 . 12
. (x,)3 (e 48 “(x )5 (%, )
.Bi , where Ue=§§e Tolle 1 Fe ¥plle ™

8 ()0 0 () B (x, )3, (o 1B ()31 (x, )

5_ Uejé(xa)-je(xa)

e

Here Qia's are obtained by solving the following'differential

equation system with initial condition vectors (1 0)7 ana (0 )F

Yo 0 1 Yo
= (5.1.14)
ze we -2/x Ze 1
where W (x)=- € (x)=- e(e+1)
=] r xe

As can be seen that (5.1.12) and (5.1.14) have very simple
characteristic matrices.

Since the computational aspects of two- and three-dimensional
problems are very similar, the details of the comparison of the two

me thods(the state-space and the new method) will not be repeated here.

5.2 Applications

The new method developed in the previous sectioﬁ has been
applied to various problems. The results obtained have been compared
with the results obtained by the following methods: the eigenfunction
expansion technique(for homogeneous spheres), the state-space
method(for radially stratified spheres with perfect conductor core
and for Luneburg and Eaton lenses), the discrete-layer approximation

technique (for Luneburg and Eaton lensés) and the high frequency

techniques(for spheres stratified radially with conductor core).



the positive z-axis.

Er

X2

i

methods have been tabulated below.

been taken: x1=0.8A, X,

This problem has also been solved as an eigen-

136,

5.2.1 Homogeneous Spherical Dielectric_Shell

= o i Ml o e e et e e e i et S . T - —— - — . w5 = =

A spherical shell with the following parameters has

=lo ’ er=30

function expansion solution. The incident wave is
: a plane wave of unit amplitude propagating élong

The multipole coefficients obtained by the two

8
x

e
(Evaluated by the new method)

aS

e
(Evaluated by eigenfunction )
expansion

-0.8429795E-1+3j0.7144788E0
0.75290428-1~ jO.7152019E-3
0.80523765-6+30.2748141E-2

-0.5179999E-k+ 30 . 2523092E~9

-0, 3001909E8-13-3j0.5940861E~6

-0.8429815E-1+3O. 71L44796E0
0.7529069E-1-j0.7152071E-3
0.8052478E-6+j0.2748158E-2

-0.5180044E-L+30. 25231375-9

-0, 3001 9675-13-30. 594091 9E-6

8

B
e
(Bvaluated by the new method)

8

Be
(Evaluated by eigenfunction )
expansion

-0.5197019E-2+30.1785567E0
0.7535358E-2~30.7163385E-5
0.2561388E-8+50.1549939E-3

-0,1881964E-L4+30. 3330402E-12

-0.1941611E-16-3j0.1510886E-7

-0.5197020E=-2+j0.1785567E0
0~7535§35E-2-j0-71633413-5
0.2561173E-8+§0.1549874E-3

-0.1881595E-5+ 0. 3329096 E-12

-0.1939252E-16-3j0.1509968E-7

As can be seen, the coefficients are in excellent agreement in

two methods. The magnitudes of the coefficients start rapidly
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decreasing after the first two terms. The truncation limit defined
as the nearest integer to 2krm%x vorks satisfactorily for this example
The coefficients after the second one can be shown to contribute to

the far field scattering parameters negligibly.

5.2.2 Radially Stratified Sphericai Shell with Conductor Core

The inner optical radius of the shell is fixed at
x1=8. Results for three different values of x,
‘ are given with the permittivity function G(x)=(x/x2)2,
and 0=0. This problem was solved by Alexoupoulos(55)
using high frequency techniques and by Hizal&Tosun(3l) using the
state~-space method.

Since the region 0 {(x<x, is not vacuum but a perfect conductor

1
the method of solution developed in section (5.1) for spherical shells
must be modified accordingly. The modification proceeds as follows:

Two of the four boundary conditions imposed at x=x,are modified

A = A =
as n.HZ(xl)-—O and ana(xl)—O.

The first can be shown to be equivalent to g, (x,)=0 and the
second to femﬂclfem(xl)=0. Employing these new conditions in the
analysis, which has already been given in section (5.1), results in
the following expressions for «°  and Bs :

em em
je(xa)Ae-que i

. G where Ae=xl§il (x 5 ) -@22 (x 5 )

s
= peBe-h«i2 ) (xa ) Ae

o

11 12
B @i G, )B ()

and 22 . 12
s e (xa)ae(xz)-ﬁe (xz)j&) N
Bem™ * Bem

§1’2(x2)1.122) (xa)-éia (xz)hia) (x2)
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In the above formulas the @ij's are exactly the same as those
in section (5.1).

It is seen thet only one column of the state-transition matrix
is to be generated to find the multipole coefficients “zm and B:m.
Hence, introducing a perfect conductor core simplifies the computa-
tion of the multipole coefficients. The reverse is the case in the
state-space method. Since the problem is formulated as a reradiation
problem(not as a boundary value problem) in the state-space method,
the radiation from the sources generated by the total field on the
surface of the core must be taken into aécount. Quantitatively,
the effect of the radiated fields of these true surface currents is
experienced through the modification of the initial conditions in
the solution of the differential equations. This is explained in
(31) in detail.

The multipole coefficients azm and Bzm are tabulated below.

The truncation number has been taken as the nearest integer to
2x2. As can be seen from the tables, the magnitudes of the multipole
coefficients after the nearest integer to X, start decreésing rapidly.
The contribution of thesé coefficients to the_far field quantities
can be showp to be negligible.

The bistatic scattering cross-section per square wavelength is
plotted for three different outer radii. On the same graphs the
results of Hizal&Tosun(they compare their results with Alexopoulos's
with a satisfactory agreement) are alsq shown, The agreement is
remarkably good. ( See figures 5.1 , 5.2 and 5.3 ).

Since the outer optic fadii are 9,9.5, and 10 in the three
cases considered, the truncation number(defined as the nearést
integer to 2x2) can be taken as 20.

In the evaluation of the spherical Bessel and Hankel functions

care must be taken against numerical errors because of the large



arguments and big indices involved.

generation of these functions using

be safisfactory.
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In the actual computations,

recurrence relations proved to

e as e (ZS
1 -O.5579670§+1—j0.1768115E+1 1i 0.21335923—5+§0.6022684E-2
2 | 0.3613104E+1+30.2334389E+1 |12 | =0.2019523E~-2-j0.23010322-6
3 | 0.28844935+1+30.4328187E+1 |13 | -0.2620162E-7+30.6947163E~3
4 | -0.2332444F0- j0.1062961E+2 14 | 0.1269248E-3+30.8438969E-9
5 | -0.5184076E+1+30.5837397E+1 |15 | O.1443681E-10-30.1688023E~4
6 | 0.1686751E+1+3j0.2266181E0 |16 | -0.1787855E-5~30.1569649E-12
7 | 0.3232812E0+3j0.2081811E+1 |17 | -0.1181596E-14+30.15741785-6
8 | 0.1973965E+1-30.2716420E0 |18 | 0.1182338E-7+30.6483018E-17
9 -o.25511443—1—30.6631311E0 19| 0.2676611E-19-3j0.7697705E=9
10| -0.1110796E0+ j0.7595810E-3 | 20 | ~0.4260354E-10=30.7996399E-22
x=8, %,=9
e 52 e 32 }
1 —o.5334029E5+j0.1729322E+1 11 | 0.8188744E-3~-30.1179866E0
2 | -0.3528383E+1+j0.5768452E+1| 12 | -0.1873480E-1-30.1980268E-4
3 0.6010233E+1-0.H499638E+1 13 | -0.3074480E-6+j0.23797395-2
4 | 0.1347174E+1-30.1734859E0 14 | 0.2495837E-3+30.32630595-8
5 -0.8745974E+1-50.5131811E+1| 15 | 0.2474152E-10-30.2209816E-4
6 | 0.2783194E+1+30.1214346E+2] 16 | ~0.1679556E-5~-30.1385246E~12
7 | 0.6520818E+1-30.6856066E+1| 17 | -0.5879597E-15+3j0.1110435E-6
8 | -0.4793354E+1-j0.1791600E+1| 18 | 0.6456675E-8+30.1933357E-17
9 | -0.2615143E0+50.1993114E+1 | 19 | 0.5010570E=-20~-30.3330521E~9
10| 0.5686481E0+3j0.1992993E-1 20 | -0.1514066E-10~-30.1009934E~22
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x1—8 » %X559.5

e a: _ e az

1| -0.5249333E+1-30.2162221E+1 11| 0.1834785E-2-30.1766052%0

2| 0.3848301Z+1+30.3015432E+1 | 12| -0.4073304Z-1-3O. 936097154
3| 0.2012995E+1+30.3850665E+1 13| -0.2941049E-5+50.73602832-2
L1 0.12129945+1-30 .1049452E+2_ 14| 0.1078895E-2+30. 60975333-7
5 —O.7490852E+1+j0.5653145E+l 15| 0.8790688=2-9-30.1317208E-3
6| 0.48909335+1+30.22773435+1 16 —0.13663923-4—jo.91682933-11
7 | 0.722896420-30.3066322E+1 17 | -0.7134251E-13+j0.12231893-5
8 | -0.2252585E+1-30.3558252E0 18 o.95684383-7+jo.42#5964E—15
9 | -0.119162420+30.1351697E+1 19| 0.19720355-17-30.6607329E-8
10| 0.5752754E0+30.20397775-1 20 | -0.4050648E-9-30.7228566E-20
e By e B2

1| -0.8429802:0+30.2113114E+1 | 11| 0.1365928E-2-30.1523810E0

2 | =0.3768704E0+3j0.5190043E+1 12| -0.2591495E-1-3j0.3789019E-4

3| 0.6683973E+1-j0.4244186E+1 | 13| -0.6824115E-6+j0.3545411E-2

4 | 0.5798098E0-3j0.3170601E~-1 14| 0.4034119E-3+30.8524930E-8

5 | -0.8021702E+1-3j0.5473982E+1 | 15| 0.7738786E-10-30.3908223E-4
6 | 0.2070098E+1+3j0.1243678E+2 | 16 | -0.3280326E-5-30.5284113E-12
7 10.7195534E+1-30.6856707E+1 17 | -0.2788083E-14+30.2418089E-6
8 | -0.5162555E+1-30.2135481E+1 | 18 6.1582705E-7+jo.1161701E—16 '
9 -0.3424375E0+jo.2274653E+1 19| 0.3887255E-19-30.9276628E-9
10| 0.6837488E0+30.2925432E-1 20 | -0.4856846E-10-30.1039230E-21




141,

x_l—8 ,' x2=10.

e az e az

1 |-0.4553923E+1~3j0.2687507E+1 11| 0.1415927E-1-30.4904264E0

2 | 0.3957408E+1+30.4179858E+1 12 -0.122807;Eo-j0.8509278E—3

3 o.9236560E0+j0.27945983+1 713 -0,3185718E-4+3j0.2422405E-1
4 | 0.31145752+1-30.9627089E+1 14| 0.3892335E-2+3j0.7936271E~6
5 |=-0.1022697=+2+30,.3955872E+1 15 0.1385862E-7-j0.5230014ﬁ-3
6 0.636516OE+1+j6.69611463+1 16 | -0,5991872E-4~30.1763044E~9
7 | 0.4790029E+1-3j0.6543676E+1 | 17 | -0.1682788E-11+jO.5940653E-5
8 | -0.5462245E+1~3§0.2453022E+1 18 | 0.5157691E-6+30.1233687E-13
9 | =-0.7646009E0+j0.3351107E+1 19 | 0.7081841E-16~;30.3959512E=7
10| 0.1490157E+1+30.1378640E0 20 | -0.2708399E-8-j0.3231680E-18
e By e Ba

1 | -0.1514177E+1+30.2646555E+1 | 11| 0.3613613E~2-3O.2478330E0

2 | ~0.3960698E+1+30. 4107656E+1 12 | -0.4815608E-1~3j0.1308370E-3
3 | 0.7758965E+1-30.3545330E+1 | 13 | -0.3106176E-5+30.7564085E-2
4 | -0.8338782E0-30.6579217E-1 14 | 0.9930056E-3+30.5165346E-7
5 | -0.6581628E+1-30.5836370E+1 15| 0.6294703E-9~30.1114629E~3
6 | 0.633276E0+30.1274989E+2 16 -0.1087621E-4-jo.5802489E-11
7 | 0.8516746E+1-3j0.6662926E+1 17 | 0. 4142441 E-13+j0.9320680E-6
8 =0.5851796E+1-30.2930394E+1 18 | 0.7092699E-7+30.233013E-15
9 | -0.5631297E0+j0.2895567E+1 19| 0.1052280E-17-30.4826521E-8
10 o.9865332E0+j0.60133§1ﬁ-1 20 | =0.2956295E=-9-30. 3850338E-20
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It can be seen from the above tables that the coefficients
after the tenth start decreasing rapidly to =zero. Their contribution
to the scattering parameters becomes negligible. The computations
suggest that the truncation number for this problem should be the

nearest integer to x rather than 2x

2° 2°

5¢2.3 Luneburg and Eaton Lenses

5e2¢3%a Luneburz Lens

This lens is characterized by the relative permittivity function

Gr(x)=2-(x/k2)2 s, where x, is the optical radius of the lens.

2
The analysis developed in section (5.1) can easily be applied

to this case. However, the following modification is necessary:

the Luneburg lens is not a spherical shell but is a solid dielectric,

Therefore the centre of lens(also the coordinate origin) is in the

numerical integration range., On the other hand the characteristic

matrices of the differential systems (5.1.12) and (5.1.14) are

singular at the origin. This singularity is eliminated by surrounding

the origin of the coordinate system by a homogeneous sphere of very

small radius compared to the radius of the lens; The permittivity -

of this.sphere is taken as the value of Gr(x) attained at x=0 which

is 2. This modification isolates the origin and again a spherical

ghell problem has to be solved., Since the region x<:xh(where X,

is the radius of the surrounding sphere) is not vacuum but a dielectric

" of relative permittivity 2 a quantitative modification is necessary

in the formulas developed in section (5.1) as follows:
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5 _ je(xz)-jé(xz)i‘e Bi
s (2) @y o
h, (xa)Te-he (xa)
1 >
(x,)3 (%, J+E2(x,)3 (x. )
where T = ii 2e 1d : 27l *1a s x1d=xl\[<-'3:(_6-)=x1ﬁ
o (x,)3, (g )+ £ (x,) 30 ()
o5 = je(xz)-que .ai'm

e peUe-hiajkxa)

1 ve (aya2 '
- é}e(xa)je(xld)+ gr(o)ﬁe(xgje(xld)
e —_—
ﬁ(XZ)je(xld)+ er(o)gi(’%)jé(xld)

where u

(2)
h ' (x.) .
_ 2 (2)
P [Cr(xa)-ll . X, +€r(xahfe ("2’

. 3 ()
% [er(xa)_l] ex < +€r(x2)jé("2)
2
In both af and S, the ggg's are obtained by solving (5.1.12)
and (5.1.1%) numerically, subject to the initial condition vectors
Q@ o)F aa 17T

Since Cr(x2)=1 the equations for P and q, simplify to:

pe=.22)(x2) ’ qe=jé(x2).

In the numerical applications x3 has been taken as O.lea.
The excitation is a circularly polarized plane wave propagating along
the positive z-axis the multipole coefficients of which are given as:

_ ai‘m=(-)e-1\/ Ln(2e+1) , Bi =t

em_ em

Multipole coefficients are tabulated first, for four different
radii. Secondly the bistatic differential scattering cross-section

per square wavelength(see chapter 6 for the definition) are plotted.
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Back-scattering cross~sections in each case are compared to the
results of Mikulski&Murphy(38) (They use a layer approximation in

their analysis) and also to the results of Hizal&Tosun wherever it

is possible to do so.

x2=1 » X1=0 .01

8
e

e x

8

Be

1 | =0.3077682E-1-30. 4336142E0
2 | =0.2373057E-1+j0. 71044 4E-L
3 0-39309753-;+j0.60719353-3
4| 0.8912898E-5-30.7469846E-11

5 | =0.6068476E-15- jO. 8446766E-7

~0.2191222E~3~30.36679065-1
~0.1040812E-2+ jO.1366642E-6
0.2754114E-10+j0.1607193E-4
0.1566438E-6-3j0.2307280E-14

-o.9481357E-19-j0.10558103-8

=2 , x,=0.02

) 1

=]
e

e x

8

B

1 | -0.8294598E0-30.20987735+1
2 -0.5990455E0+j0;4553356E-1
3| 0.4039813E-3+3j0.6155286E-1
4| 0.32679487E-2-30.1273059E-5

5 | -0.1731921E-8~-3j0.1426969E-3

-0.169135050~jO.10049265+1
-0.1101457E0+30.1530838E-2
0.4869032E-5+ j0.6757688E-2
0.2673970E-3-30.6723366E~8

-0.4567267E-11-30.7327888E-5




x2=3 ,'xl=0.3

: o

1 | -0.2175749E+1~30.2936357E+1 -0.2724757E+1~j0.3051930E+1
2 | -0.2625766E+1+j0.994603920 -0.1436908E+1+3j0.2697252E0
3 | 0.5840659E-1+30.7378217E0 0.4025255E-2+ j0.1942697EQ
4 | 0.1006370E0-30.9524198E-3 0.1725598E-1-3j0.2800749E-4
S | -0.6891069E-5-30.90010635-2 -0.1001165E-6-30.10849821-2
6 | =0.5636298E-3+30.2485486E~7 -0.551145E-4+j0.1964947E-9
x2=5 s x1=0.05

e 23 Be

1 | -0.5846534E+1-j0.1310334E+1 -0,5654106E+1~30.1657429E+1
2 | =0.31623585+1+30.635194558+1 -0.3011957E+1+j0.6539386E+1'
3 | 0.4519717E+1+j0. 4686400E+1 0.4851190E+1+30. 4686683E+1
4 | 0.3414829E8+1-3j0.12414365+1 0.21509125+1-3jO. 4544499E0
5 | ~0.8268934E-1~30.982527620 -0.1174951E-1-3j0.3714868E0
6 -0.1786093E0+jO:2496419E-2 -0.4875176E~1+ j0.1859560E-3
7 | 0.4275149E-4+ 30.2422704E~1 0.1830251E-5+j0.5012802E-2
8 | 0.3002340E-2-30.4343231E-6 0.8898701E-3-30.5417811E-7
9 | -0.3034700E-7-3j0.2054265E-3 -0.3076946E~7+30.6895263E-3
10| -0.1306691E~3+j0.1112179E~10 0.1317394E~3+ j0.1068358E-8

In the following table forward and backward scattering cross-
sectional values have been compared against existing data for four

different radii.
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x| o MEETESRE) 5 A2 & )| o APCEITSRE) o AR (M) | o /A% ()
- 5 layer 10 layer

1 0;004829 0.002597 0.0031 0.0071

2| 0.3455 0.01248 0.0092 0.0116

3| 4.0356 b4, 0.05447 0.05 0.0544

5| 66.95 66. 0.0934 0.078 0,094

H&T is short for Hizal&Tosun and M&M is for Miqulski&Murphy.

It is clear from the above table that,

as the optical radius

of the lens increases the scattered wave in the forward direction

dominates over the wave scattered in the backward direction. (The

backscattered field is practically zero for xéz,z.

lens action as should be expected.

and (5.5)0

5.2.3b Eaton lLens

S

This is the

is plotted in Figs.(5.4)

This lens is again a solid dielectric sphere stratified in the

radial direction with the permittivity function Cr(x)=(2x2-x)/x.

x5 is the optical radius of the lens.

er(x) is singular at x=0.

This singular behaviour of the permittivity is approximated by

assuming a perfect conductor core concentric with the lens.

The

radius of this conductor core is taken to be very small compared to

b 4

>+ The formulas developed in section (5.2.2) fit this problem

and they have been used to get the foklowing tables and graphs.
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S
x
e

S

Be

-0.1333421E0-3j0.8949498E0

-0.7990355E-3~30.7003862E-1

2| -0.3620120E-1+30.1653351E-3 -0.1603914E~-2+30.3245429E-6
3| 0.7324153E-7+30.82881133-3 0.5324481E-10+30.2234681E-4
ﬁ 0.1145574E-4=30.1234014E~10 0.2048876E~6-30. 3947348E-14
5 -O.92g8702E-15-j0.10439033-6 -0.1492101E-18~3j0.1324493E-8
x2=2 ’ x1=0.02

: = o

1 | -0.4619618E+1-30.2650170:+1 -0.1695863E+1-30.2745283E+1

2 | -0.1060405E+1+ j0. 144491850 -0.1921474E0+ jO . 4660520E~2

3| 0.8308093z-3+3j0.8825907E-1 0.10290322-4+jo.9824066E-2

4| 0.4829715E-2-~j0.2193395E~5 0.3572002E-3-j0.1199768E-7

5 | -0.2705160E-8-30.1783393E~-3 -0.7360280E~11-30.93024602-5
x2=3 ; x1=O.O3

: < o

1 | -0.1184141E+1+ 30, 242247E+1 -0.3419372E+1+ jO.3050033E+1

2 | -0.3815383E+1+3j0.5036089E+1 -0.3519454E+1+3j0.2140855E+1

3 | 0.1612229E0+30.1219060E+1 0.1105252E-1+30.3217744E0

4 o.1392511E0-jo.1823668E-2 0.2421915E-1;j0.5515615E-4

5 |-0.1129559E-4~30.1152404E-1 -0.1694900E-6~jO.1411636E-2

6 |-0.6911522E-3+350.3737410E-7 ~0.6232844E~L+ jO . 3039456E-9

In the following table forward and backward scattering cross-
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sectional values are compared with existing data for various optical

radii.

x, | o AEESt) | o A2 (aT) o NZ(PTESEn) | o AP () | oy /2% (Het)
5 layer 10 layer

1 0.01991 —— 0.01193 0.0128 0.012

2 1.7820  —— 0.1662 0.146 0.169

3 4,638 4,2 0.6664 0.497 0.71

/A% is plotted in Fig.(5.6)
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6. THREE-DIMENSIOMAL SCATTERING PROBLEMS-NON-SPHERICAL SCATTERERS

In practice scattering problems are generally three-dimensional
Thus far only idealized scatterers such as infinite cylinders and
radially stratified spheres have been considered. In this chapter,
the method developed for such ideal scatteres will be extended to
non-spherical three-dimensional scatterers which are rotationally "
symmetric. These cover a wide range of practical scattering bodies.
No attempt is made to extend the method to purely arbitrary bodies
because of the difficulties to derive the necessary algorithms and

long computer times.

6.1 Representation of the Electromasnetic Field with Multipole Series

Consider a scatterer as shown in Fig.6.1.1.
The permittivity and conductivity are
assumed to be constant. -

The inscribing and enscribing spheres with

corresponding radii ry and r, are also

Fig.6.1.1 shown in the figure.

Regions 1 and 3 are homogeneous. The
wave equation in these regions is the homogeneous vector Helmholtz
equation and it has the following convergent and unique infinite
series solutions for the magnetic fields(with zero divergence) in

terms of the vector spherical harmonics:

o e’
e b5 SELA AR L e

rgﬁ_,ogagn,o$¢
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.._1°°e - s i-l i-l
3 k;%;;;[ em e S0 emMem+BemNem+koaemMem] (6.1.2)

rz,ra, 0£o L, 0(gg2n

where kl-w\/C' 6' is the complex permittivity of the scatterer
and

T, 1d Curlﬁld

-ld

.The above representations can be deduced by a) starting from
the scalar Helmholtz equation as in section (4.1.1) and (4.1.2)
b) starting from the expression for the vector potential A which is
proportional to the volume quadrature of the current density, the
weighting factor being the free space Green's fugction, and expanding
the Green's function into a multipole series. Since the multipole
expansions of the free-space Green's function.for regions 1 and 3> are
both convergent and unique(56), the corresponding multipole series
for the electromagnetic field in these regions are also convergent
and unique., Also the radiation conditions at infinity are auto-
matically satisfied by choosing s-type of functions(outgoing wave
functions) in region 3.

Region 2 is not homogeneous in its material composition. The
wave equation in this region is not the homogeneous vector Helmholtz
equation, The partial differential equations for the field vectors

E and H in region 2 can be shown to have the following form:
= 2= 2 2in o fo ,
VB E=(c2-13)E-7 [E.v(Lne) )]

20 2% 2 2y .
VRN = (12-K0) - joveld

Oé(r,e)

A= 1 = -
where ky=w\/€lp  and €} Ga(r,e) i
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These are inhoFogeneous vector Helmholtz equations.  The
inhomogeneoﬁs terms are functions of the unknown field vectors. It
is known that(47),(57) such inhomogeneous vector partial differential
equations can also have multipole expansion solutions similar to the
above ones. Here, the radial dependence of the solution consists
of unknown functions in the radial variable which reduce to the
spherical Bessel and Hankel functions outside the inhomogeneities.
Such series solutions have been given by both (47) and (57) in their
attempt to represent the electromagnetic field with multipole series
in source regions. Although region 2 in the present case is not a
source region, the inhomogeneous terms in the above partial diffe-
rential equations can be thought of as some kind of source terms.
Mathematically such a representation with unknown radial functions
is actually the representation of a vecfor field(which should satisfy
certain regularity conditions such as having finite energy,etc.)
with an infinite series of spherical vector angular harmonics iem.
The validity of this representation has been proved as a theorem(56).

This reasoning results in the following series for'ﬁz:
f-LS5Shr & %
H,= = ZmZ[k £ X_+Curl(g_X_)] (6.1.3)

ry &rgr,, 046 <1, 0£g<L2m.

2)

where fem and Bop 2T° unknown radial functions, the factor ko has
been put separately in the expansion(actually it can be thought of
as in fem and gem) in order to preserve the similarity of this

series to the other two.

«> aS ,BL ,p°

;] are the unknown electric and magnetic multipole
%em?*em em

coefficients respectively. The incident wave has been assumed to
be a plane wave generated at distances farfrom the scatterer. Its

multipole coefficients aim and B:m and they are assumed known.
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The corresponding expansions for the electric fields are

obtained by'using the equation ijﬁ=Curlﬁ . These are:

oo e
o ol d, L1 —1d]
El_ 3412;25[ em em ky aemNem (6.1.4)
8z0 m=.g
E= ———2— = ( = eZMZL emxem+koCurl(femXem)] (6.1.5)
o 2r T i
Be-iz)y 5 S A2 b T b ] (616
3 oL & eem em em em "em em ko em em e

2
dg dg i ,/u
_ efet1) _ .2 em _ em A /Fo A/ b
vhere Gem(r)— 2 Bem” "t ar 2 2 ZVE o Bt .
r dr o] Gl

6.2 Procedure of Deducing the Differential Equations for fem and 8o

The starting point is the expansion of the following vector

relation:

1 £ =g B 1 +F
Curl [ear(r,e )EZ] €y _(r,6)CurlE, +grad€} xE, (6.2.1a)

or

1 B l=as 1 5y [
Curl[ear(r,e)Ea] jom €3 (r,0)H, +grad€} xE, (6.2.1b)

[} -.-_--
But from (6.1.5) ezr(r’e)E2 em em em

o S5 % +k Curl(e_ % )|
(6.2.2)

Hence substitution of (6.1.3), (6.1.5) and (6.2.2) into (6.2.1)

results in the following equality:
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©
1 ¥ ' X
k € erZ k £, X +Curl(g % )] e_zmzairad(an )x[ enten’ X0 Curl(femXem)]

_2 z ik F % +Cur1(Gem3_(em)] (6.2.3)

€n0 M=

The next step is the dot multiplication of each term of (6.2.3)
=%
by Xe'm' and integration over the whole solid angle. The result

follows as:

o e ’
= 2 ! X z* L ' X
Forgt=0 ZE‘em(r)ko f € (r,6)X X , a2+ —==G_ (r) f grad(Lo€} )xX
. Q0

e=0m=. _(2- [e]

Y

X¥ O an kJ-G' (r,0)Cur1(g, % )%, a2+ [grad(Loe) )xCuri(s, % )

em em”*"e'n! em em

Qo L.

ell

=%

e'm'dﬂ']

[ ]

X* A0 =5 .5

X and
em*e'm! ee' mm'

(where the relations f}-(
el

fcurl[A (r)X ].)'c*, 42 = 0 have been utilized)
em em e'n .

The following relations are established after some algebra.

a(1n€s )xX_].X" i S R ') (6.2.4)
[gra or/* emd **e ! or emd e'm'g e'm'® emg oce
oLn€! f .
, = ox 2r em 7 g* _; Qe
[grad(LnGzr)xCurl(femXem)] ’Xe'm'— or ( T +fem)xem'xe'm' J 2
oLn€!
2r *
% fem(r)YemXe,m, s (6.2.5)

. 1/2 1/2
where A = [e(e+1)] R I:Zz;l E:_::;;] P:(Cose) eJ9
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The following vector equalities have been used in deriving

-

(6.2.4) and (6.2,5):

X
xCurlX =- =2 | grx(a xX )==X
X ia
agxCurlX = emd 3 .22 y (8,8)a
r T T
ax(d xX_)=X_ 3
0™ 2 en’ " en6®r

Consider now the explicit evaluation of the integral expressions
above for a rotationally symmetric scatterer,

The components of the vector iem are

m
™o o g ¥ os Ye Em.e:imszs
emd A Siné ’ emg J Ae de
Then the dot product iem'i:'m' has the following explicit
form:
m m' m ..m' ) .
z or _ Ye¥er dP, dPc, mm'  gmpm’ jlm-m')g
xem'xe'm'-'zx ae a8 * 2 epe' e
el 5in“®
> '3 - = f = -*
Consider first the integral I, .fezr(r,e)xem.xe,m,d:z.
oK
The integral over (L is written explicitly as
m' T am
Y Y ! de dpm mm' . m_m’ j(m-m*) ¢
> pep’:,]eé (r,6)Sin6de | e ag
2 " i e er
o
21T
3 -m !
Since f ¢J(m-n') ¢d¢=2n6mm, it follows that
o
]
m‘:, dﬂdp“‘ - Pmm,]
Il=21t ¥ mmf (r, e) TRl 5~ P Pg | Sinddd

Sin ©
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Consider now, I,= f grad(La€} JxCurl(z_X )., ,da

em em e'nm!

using the relation (6.1.11) and following the same procedure as for

Il the expression for 12 is

1 r . ]
YO,z s IaLnG - dP: ar”
o

12=—21T. e e ( em + em)8

| |
JASA r ' dr mq or ds do si 2e e e
t s '
P + AeY:Yr: fem ' aLnGér p dpz'
Sin6de —-Ze'—"-' > .21!5 3% Fe ) Sinbdé
]

. - = ' ST )
The third integral is I3 Zfl grad(LnCZr)xXem.Xe,m, an

Using the relation (6.2.4) together with the above procedure

gives:

g

1

Yz-r':, aLne} dP':, , dP’: .

I,=-j2n 5 mP" +m'P? —=£ | a6
mm e do e

3 A A or dé
e“e! 4
Finally; I,= jeér(r,e)curl(gemiem) J'c:.m. d0, or explicitly
L2
m m? 3 '
Y .Y g
- e e em . _e e
Tz g o, fe (r,0) (mE? 2" + m'2%) —E)ap
o

Defining now the following quantities results in the differen-

tial equation for fem as shown below.

nem a8 de 2

m | OLn€y  aPl ap 2
on X)=R f(e' -= )( 0, B p"" )sineds
Sin“e ® 1

(o]

3Ln€ ., p’“ de
+Q’nemj ae . @ Simdd®

(o]

ax de 4o 2

aLn6) dP‘;’ dPl:; 2
b (x)=-R ( + P"P" )sinedse
nem nem e
Sine
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cnem(x)=-JmRne
o
7 aln€l . o
dnem(x)=-JmR m J’ ax EE( e n)de
o
Ye'n Ye¥nle
where x=k r and Rn " 2R AeAn s Qnem—zn A,

The differential equation for f_  involving these quantities

is then:
dfem Bem
an(X)=221:nemfem(X) bnem dx +cnem( = +gem)+d'nemGem]

(6,2.6)

As it is seen summation over m in (6.1.9) drops out. This is
because of the presence of the kronecker delta Bmm' in the expressions
for 1,,1,,15,1,. ‘The azimuthal index m is a parameter in (6.2.6).
The summation over e starts from 1 not from zero, since for e=0 the
vector spherical harmonics are identically zero. (6.2.6) is the
first differential equation for fem and‘geﬁ. The second equati&n
is found as follows:

Consider again (6.2.3)

© e
| § 1 -
K e (r,e)EE‘E [k £ X ourllg, % )]+ ez‘;g:ad(Lnezr)x[GemXer;
= = - C

o e

x Curl(femxem)] 22[1» F_X +Curl(Gem-em)]

x| Mmz=.g

' The above equation is dot multiplied by‘gr with the result:

oLn€!

o € A k
Ae 1. 2r T
:ETZZ[ € (r,e)g (r)j T Yem+Gem';' ag Xem¢+ r (fem+fem/r)
E={ M=a
aLnG
. -—35— ] zijZGem(r)J =< Y (6.2.7)

€={ M=-e
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where the following vector relations have been used

- e =] Vo -]__- A
CurdX =5 —2 ¥ & + 8 xX

A -
1 =
a_ [grad(LnGZr)xXem]

L . oLne€!

~ 1 H - _1_ 2r, ¢
8. [gz:ad(LnCar)xCurl(femXem)] = —55= £+ /1Ko

Next each term of (6.2.7) is multiplied by X:'m' Sin® and

]
integrated over the whole solid angle £2. The result is given below.

o e 5 . aLnGér *
3 ]

Z Z']Aekogem J’GZr (r,0 )Yemxe g S1n0aQ +Gemj 90 xem¢xe 1g1gSin0d 2

£ ST

e={ m=-&

Y aLnGér * o e X
+k°(fem+fem/r)j 3 Xemotetp1oSin0dl =3 5> JAG j ¥ Xorn1pSinedQ
NeR

e={ mz=.p
ek

(6.2.8)

The integrals appearing in (6.2.8) are explicitly evaluated in
a similar way to the previous case. The second differential equation

involving fem and Bom 15 then;

0% D [t I T g )8y )] (6:2.9)

nem-em nem em em nem em

where x=kor and

mw .
Yem = )zqnem j eér (x,0 )P':P;'Sinede

-
oLne!

2r de .

L[ % Pﬁ ¢ Sind de
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r (etm)!
The relation .(Pum Sind df= —— 2 Seim '8 has also been used

2etl (e-m)! Cee!

to tzke Gnm outulde the summatlon sign.

6.3 Puttinz the Differential Eguation for £ and g . in a
il <

Convenient Form

The differential equations (6.2.6) and (6.2.9) are not in
convenient forms for numerical solution. Some manipulations are
necessary to convert them into forms which are ready for solution,
as shown below,

The differential equations (6.2.6) and (6.2.9) are written
once more:

co e
1 o
+=c + c +d G
nm ze [nem em nem en X nemge nemgem nem emn

<l
Gnm-zg;[x vnemfem+vnemfem+unemgem+wnemGem]

where , denotes derivative with respect to x.
Consider first the equation for Gnm' The summation is truncated

at a finite number N, This equation has the following matrix form:

& v L £ +ug twG (6.3.1)

T _ T
...GNm) ,_f_m-(f f ooome)

where §m=(G 1m fom

1m %om

T
Emn(glm Bop * * ° gNm) are Nx1 column vectors. Voem?Vm?

u and W are NxN matrices, one of them, Vom? is shown eiplicitly

below; the others have similar forms.



159.

vllm/k V9o /X 0 e e VS /k

lem/x Vaam/x o o o V?ﬂm/x

pai) *
.

mm& vak...v M
L .

The expressions for Vien 2T given in the previous section. The
index m is shown explicitly in each term to stress the dependence of
every quantity on this index.

(6.3.1) can then be solved for G as

G =V _ £V ;m+trm [ (6.3.2)

= -1 =(T-w )L =(I-W )~
where V_ =(I-W )"V, Vm-(I W)V, Um-(I wm) 1Um

I is the Nxll unity matrix.

Substitution of (6.3.2) in the expression for F o Bives:

= + + +C &
Em Amim Bmim meEm Cmfm (6.3.3)
vhere F =(F, e« e o F )T is an Nx1 column vector. A ,B ,C

Inm 2m Nm m’ m’ xm

and Cm are IxN square matrices and are given by

A=A+DV__ , B=B+DV , C_=C_+DU
m m mxm m m mmnm Xm Xm mm

The matrices Am,Bm,me and Dm have the their elements defined

in the previous section as a__ ,b and d__ .
®nem?® nem’ “nem nem

Any element of the column vectors Eﬁ and.gm then has the
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following form: .
ad L]

= 2 : -l:v + + &
an EZfanemfem bnemfem ®xnemfem ‘nemSem) (6.3e4)
Grnm= QZ' (vxnemf emwnemfemmnemgem) (6.3.5)
where a__ ,b sC oV sV s are the elements of the
nem? “nem® smem?’ xnem? ‘nem?’ nem

corresponding matrices denoted by the same but block capital letters.
The differential equations (6.3.4) and (6.3.5) are in the desired
form.The next step is to put them into state-space form which is

convenient for numerical computation.

6.4 Convertins the Differential Equations for fem and g__ into

State-space Form

In (6.3.4) and (6.3.5) the equivalents of F__ and G = are

substituted with the result

o0
n{n+1) * .~ .
x2 i‘mn x fnm ez nem em nemfem."cxnemgem"-cnemg )
(6.4.1)
n{n+1) = PR
x2 Eym~ x Snm Enm Z'( xnem em nemfemmnemgem) (6.4.2)
Now define;
1 *
fnm=ynm’fnmmn’g y} ',then

1.2 '3 _ L
Yom I ? yim”ynm
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00
2 _nlmtl) 1 2 2 N A3 2.3 P+ by

[+] C
nm X2 nm x “mm ‘e, nemyem nemyem xnem" em nemyem

4 n(n+l) 2 b e 1 .~ 2 .~
= - - - +
yhm x2 yim pd yhm é;fvénemyem+vnemyem unemyzm)

The above system of equations is complex, because the elements
a___,b 4 etc. are complex. The subroutines available for the
nem? “nem
numerical solution of differential equations use, however, real
arithmetic, TFor this reason it is necessary to convert the above
equations to purely real form.

In matrix form the following system of real differential

equations result:

o2 T B - B B R N - (6.4.3)

24J

where O denotes (2Mx2N) null matrix, I is the unity matrix.

1- 2 L
IR iR Yg YR

&= 2 E3= 2,= are all 2Nx1 column

1 2 y} L
1 JI I ZI vectors.

R denotes the real and I the imaginary part of the corresponding

matrix,

l._ T 2- ] * [ ] T _
_’: "(flm fam *» o @ me) ) Z “(flm fzm ® o o me) ’ _}.}—(glm gam e o o gN)

)T

glmgamooogNm
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The matrices 51:52:53:54 and Tl,Ta,TB,TL} are (2Nx2N) real
matrices. Their explicit forms are shown below.
Ar A1 A Rl Mr A Ar R
5,= S,= S,= Sy
At Mg i T O B s S Ay Ay
Br “By1 Bor Bop Bop  =Bsp -2I/x 0
T = T,z T, T,
By B Bor B Bar Bap 0 -aL/x
The matrices Al’Aa’AB’Alf and Bl’BZ’B3 are (NxN) complex
matrices. Their explicit forms are
L2z s 3.1 ek Fo. .. %]
2 11m Bom ¢ %1 Nm 11m 12m * ° INm
o Se2 e e e TRy oy Pagym/% « e+ TPy
2 %2om
A1= . X A2= P
“m  “PNoge ¢ ¢ DAL by Pz ¢ ¢ * ~Pm K
| 2 aNde B n
“Cellm  “Sxiom * * * ~CxilNm| [ "%m %o ¢ vt "’mmT
“Cxo1m %k22m ¢ * "%xoNm “C21m  "C22m ¢ ¢ TCm
A_=1® A = .
3 e L .
“Canim  "Cxom ¢ ¢ * TCxNNm | “CNim  "%Nem * ° ° TCNNm
- L. -




Vx1im Vxiom ¢ * “Vx1lm Viim Viom ¢ °
“Vx2im Vx22m ¢ Vx2Nm “Voim “Voom * c °
By= | - B= 1.
"; "; e o @ -?; ."" o~
XNlm XNZ XNNm J -lem -'VNam » o o
L2 . s
xa Nim CTHop toe e Y Nm
33= ":{1 2. bowt e o o "?i
21m 5~Uson 2Nm
~ - N(N+1) -
“UNim UNoem  ° ° x2 UNNm
- _l

Before getting into the solution procedure for the unknown

163.

“V1Nm

“Volm

“Niim

multipole coefficients, the next step is the application of boundary

conditions on both the inscribing and enscribing spheres.

6.5 Application of Boundary Conditions

1) fi,.8 =H_.3_ at r=r.. This condition is equivalent to:
1" r 2 r 1

o0 € ca &
—]'—ZZ 1ya | -!'—ZZQ Lurl(g X ) (6.5.1)
kles( mz.p k m= er

em emr o=t em” em

where Nigr is the r-component of the vector ﬁig and is given as

N~ =]

1d o J U r)
enr e r

Yem(6,¢) (6.5.1) then becomes;
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oo

z Zsen e n(klr N em \/C_]'.-rzzgem(rl)beye:r (6.5.2)

@=| ma.p €t M=-e

where CZ'Lr is the relative complex permittivity of the scatterer.
Multiplication of each term of (6.5.2) by Y:'m' and integration

over the whole solid angle gives the following relation:

J (x'.!.d)eem V gern 1 (6.5.3)

where x =k r; and x;,=x,\/€] and the relation JYemY*' asy=8__,8

e'm!
£
has been used,

A b3 ~ L4
2) ar:dil—arxHZ at r=ry.

or

1. - 1a_71d]. 1 <& z z
gz Bem T em k’.L emarXMem] - Tz Z £ o X +3erur1(gemXem)]

S5 0-1 ok Sl0an] R, g GgmaR d o /6T,

!

o e
Z gLarxxem-sem em]

€=

where s r
em Sem i em/

If each term in the above equation is dot multiplied by Xe -

and integrated over the whole solid angle, ¢the result follows;

j (klr ) g (r))
Bem[ T, g_r' I ley7y) ] =\/€—]'.;[ emrll * % 8em]

substitution of (6.5.3) in the above relation gives

ee' 'mm



165.

'(x:L (x.) (6.5.4)

em eml

where ' denotes derivative with respect to the argument,

R~ =
3) 62(1' 6) G k . at r Ty,
Assuming C 6) =€] which is the case for Fig.6.l. l(but may

not be the case for all type of rotationally symmetric scatterers,
for example a half-dielectric spherical shell does not satisfy this
condition and the solution procedure should be modified accordingly)

the following relation holds:

oo

e
1 - =3 o
aem r’ em =2 o k ZZa cuI'l(femxem)

e-! mz-@ 0&=! ma.e

a similar procedure as in (1) and (2) gives:

1 _
je(xld)aem_fem (xl) (6.5.5)
- A -
L) a x —aerZ at r=ry
3 =& 5l o 1 1-1d] % =&, 3
Zl:/-—-'zarx[ emae(klrl)xem+ '1;1 emNem]= 2 Z Zarx [G emxem+ko
={ Mz.g k €Y exi ma.g
. o lr
Cv‘rl(fem em)]
following the same procedure as in (2) gives:
ﬁ-1-‘”—['( ol - —o (£ _+f /r.)
klrdrraeklrl]em' em “em’T1
1 ko:)eZ'Lr

Substitution of (6,5.5) in above relation results in;
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e et = L f (x)) (6.5.6)

similarly héa)(x2)92m+je(xz)aim=gem(x2) (6.5.7)

6) afx§2=arxﬂ3 at rar, is equivalent to

> (2) i _,
h, (x2)85m+jé(x2)62m=gem (6.5.8)

-

A

1 E 4 = F = ! »
7) Cz(ra,e)EZ.ar eoEB'ar at r=r, gives;

6 )ad 1y Godod =r ) (6.5.9)
8) %r -2=§r =3 at rer,

i
em

522)(x2)“2m43é(x2)“ =;‘em(x‘?) (6.5.10)

6.6 Solution of the Unknown Multipole Coefficients azm and Bzm

In this section the results of sections (6.4) and (6.5) will be
combined to solve the unknown multipole coefficients.

First define the following column vectors

both are (4Nxl) column vectors.



With these definitions the system of differential equations

(6.4.3) has the following solution in symbolic form:

5,(x) ¥ (x) E Yé(x) ' §a(x1)
(6.6.1)
gx) | | B - K@) | 506q)

where &1,&%,23 and}kh are (4Nx4N) square matrices. The matrix
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is (8Iix8N) and is called the state-transition matrix. The columns

of this matrix are obtained by golving (6.4.3) numerically subject

to the canonical initial condition vectors as in two-dimensional case.

The boundary conditions developed in section (6.5) are now put

into matrix form as sﬁown below.

ga(xl)=Qagl | (6.6.2)

where Q  is a (4Nx2N) rectangular matrix, g} is (2Nx1) column

vector. The explicit form of Qa and g} are

Jiar 141
Jiat Y1ar (4. (x, ) |
&c _3c =R
1dR 1dI 1 , _
. . 2=, with  J) = 350014
JC JC EI .
1dI 1d.R .. ( )
L ) 0 -« 94
and - ' -
] L3 ]
Velral(xld) 0
’c _ el jl( )
34" \/¥1r92' %14
o L
]
i - Vel dntag/)
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R denoées the real part and I denotes the imaginary part of the

corresponding matrix,

The second boundary condition relation is

5 (xl)=QB_b_l

(6.6.3)

where QB is a (4ilx2N) rectangular matrix, Q} is a (2Nx1) column

[y

vector.
[.b b 1
Iy ar -JldI
1
b b B
Jar 14w R
1
QB= - ’ _'9 = 1
Jigr -7 81
141
Jiar  Jiax]

, with

b

14

3 G )A/6L
0
ACPRE
0

Inxpq) 4/6—

The boundary conditions at r=r, are also given in matrix

form as:

_uw .S i
8y () Ho2 I 8
17 .8 i
§6(x2)-ﬂa§ +J.0
where
kit H.. E;
2R 2T 2
H H 0
g=| 2L 2R| ;.

[+ 4 P . [+ 4 ™
Hop “Hor 95
o1 f 5o | ©

4Nx2N

with

4Nx 2N

(6.6.4)

(6.6.5)

H

B2 ()

(

héZ)(xz)

) héZ)(xz)
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s s i i
. 22 £x L &R

=Res S—- =3 i= i=
TpmReallly) , ™= | | b=l ofs 2 Al 2T
8 B &7 Br

are (2Nx1) column vectors.

Evaluating (6.6.1) at x=x, and using (6.6.4) and (6.6.5)

together with (6.6.2) and (6.6.3) gives the following equations:
e os,p i aLe wr ()0 ut
S,0x,)=0 2™+ a™= ¥ (x,)Q a™+ ¥, xa)th

_u 1.5 i 1 N1
§6(x2)—Hag +J b —'&%(xz)Qag +'&L(x2)QB§

define  Wh="1Q, » Wy=3Q » W= WQ, , W =HQ,

then the following linear system of equations results

H 0 =W -9 —as
a 1 2 = -J 0 ai
w. -w | |- °© - (6.6.6)
0 Ha -IJB —IJ}+ —l = oeVe
a o -3 | |
et T
G C
(8x8N) (8Nx1) (8Nx4LN) (4Nx1)

Inverting the system (6.6.6) gives the unknown multipole

coefficients both for region 1 and region 3.
In the sections that follow the computations that lead to

(6.6.6) will be examined more closely.
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6.7 Detailed Analytical and Numerical Investigation of the

Computational Steps in the Solution of Multipole Coefficients

The most important part of the overall computational procedure
i8§ the generation of the characteristic matrix of the system (6.4.3).
This procedure involves the numerical evaluation of the elements of
matrices 81’82’33’34 and T T2’ 32 4 . Most of the overall compu-
tational time is spent in doing this.

In order to generate the above matrices, first the factors
anem’bnem’cnem’dnem’unem’vnem and Woem must be evaluated for every
n and e in their respective ranges and for all m. Below, these
factors are evaluated for a homogeneous, rotationally symmetric

scatterer.

The factors are explicitly given below.

r 3LnE? B 450 2
= v L1 2r d dP m mye . ]
(x) R oem [_{(ear i v )( e g0 * '—S. 2N P’an)slneda
0]
olnE}
2r .m de
Qnewr. 3 P Egn Sino6de
o .
aLnC' m
b (x)=-R —ZL ( dar, 922 + Pum )Sinodse
nem nem ox dao - 4o 2
Sin™®
o
T
=— 1 a_
g0 ;ijnemfe (x,0) &-(2"0%)a0

(=]

bLnﬂar d mpm
d em(X) -ijnemjl ox (P )de

e}

m
u (x)=Q f €3,.(x,0 )Pin Siné e

nem
[}

dLne!

T

s 2r

vnem(x)-JmR f PmP dd
o]
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[§

T
oln€! ph
v (x)=-R [ ar ot Lo sing ao
nem  °  nem n dé
[}

. a0

Investigation of the above expressions shows that there are

7 different integral quantities which are defined as:

T
ALne! m 2
1 2r, ap™ gp” m .
Inem—J = ¢ @t @t 12 PGP, )sint do
° in0

m m
oln€! m dLne€!
12 =j 2rpn & sing a0 , ID =f 2r 4 (pTpM) a0
nem 4 o0 en

T " oLn€!
4 _:f ¢ 4 ,omom 5 _j:____gr
Inem- e2r de(PePn) @ , Inem- PP,
o]

nem 2ren do 2

. ) _
1° =(er PPP" Sino a8 , I’ =fc' (de—’imn+ Z— P°P" ) Sind ao
nem ar Sin°e en
o

For a homogeneous body the function Lneér_is stepwise dis-
continuous in region 2, hence its derivatives both with-respect to
x and 0 are delta functions. This property makes the evaluation of

the integrals with such integrands very easy. There is no need to

compute these integrals numerically.

¥ Consider the homogeneous rotationally
’,/"’ \\\\ symmetric dielectric body with relative
,’, €r \\\ complex permittivity Cir' The inscribing
{ N ":;15\‘ \ _ and enscribing spheres are shown in the
t\ W T / I,' X figure. The function In€s_(x,0) is
\\\ . /,/ expressed in terms of the step functions
\\‘~ ______ ,"/ in region 2 as
Fig.6.7.1

Lneér(x,e)=Ln€i£[ L_—u(e-ﬁo)]



172,

the angle 60 being a function of x, dis shown in the above figure.

The derivatives of LnGér with respect to x and O are respectively;

oLnE! oLne!
2r ' PO ) 2r_ ' " e
ox LnEer(e 60) ax° ? o0 Lnelr[ 8 6(6-60)]

If these derivative expressions are substituted into the

integral expressions above, the following results:

dae 2
1 _ ;o1 s 0 [(q_.2y aF" ap” m m
Inem_ Lnelrglneo dx [(1 zo) dze(zo) E;n<zo)+'l_22 Pz(zo)Pn(zo)]
(6}
12 = Lpe! (l-za)Pm(z ) ggi(z )
nem 1r o' e "0’ dz o

3 o 48 ae’ 4By
Inem——LnCirslneo 50 [PZ(ZO) E;n(zo)+P2(zo) dze(zo)]

M

ne;

_ _ m m 5 __- m
I m-(eir 1)Pe(zo)Pn(Zo) s Ien” “neirpe(zo)Pz(zo)

where zo=Cose° R 60 is obtained from the functional relation
describing the shape of the scatterer.

The integrals Iﬁe and IZem contain neither the derivatives

m

of Lneér nor the derivatives of Pg and Pi . For this reason

numerical evaluation of these integrals is necessary. However as

the analysis below shows, numerical evaluation of 16 and I7
nem nem

is necessary only when n=e,

Tr.

6-{! m o : _ 6

I .= le(x,e)ngn Sinb d8 , with the definition z=Cos8,I
[o]

is transformed into
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oz
16 =fpmpmdz+e' ij P" 4z
em e n e n

ir
——1 Zo
Z, ' X !
_(m
define K f s Knem- fPe Pr; dz then
=1 7,
‘
KE +k2 = f PP P gy
nem nem e 'n
ince me (e+m)!
& e 2n+1 (e-m)l “en
1 _ .2 6 '
for nfe Knem- Knem and n -(1 €y )Kl

It can be shown that(See Appendix D)

(1-22)
JPmP dz= -—?2— [Pr:( ) dpm(z )= Pm(z ) -—e(z )] (6.7.1)
en

nem

nfe
where §en=e (e+1)-n(n+1)

Therefore the expression for 1161em for n#e becomes

(1-22) m
6 ' o m dp ar"

I em —(1 elr) —-§en [Pe(zo) a—z-n(zo)-Pr;(zo) Eze(zo)] n#e.

2 (n+m)!

For n=e , +K2 = Soi (2_':0!

6 _ . e 2 (n+m)!

and =(1- e )nnm 1r* 2n+l (n-m)l

Z,

where Kinm f[Pm(z)] dz and this integral must be evaluated

- numerically.
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The definition of Pg is in terms of ordinary Legendre polyno-—

mials:
' : n/2 .m
Pz)=(-1)"-z2) &En
n m
dz
d&p
since Pn(z) is a polynomial of degree n, =—n is a polynomial of
az"
degree n-m,
2 2@ gfp 2
[Pﬁ(z)] =(1-2 ) ( =n ) , in which the first factor on the right
dz

is a polynomial of degree 2m . Hence, the integrand of Kinm is
a polynomial of degree 2n.

In the actual numerical calculations Gaussian quadrature

formulas have been used to evaluate Kinm' If a Gaussian quadrature

formula of order M is used, it can evaluate the integrals of poly-
nomials up to the degree 2M-1 exactly .. Using this fact, the
degree of the quadrature formula is selected with respect to the
truncation number. If this number is N, then the integrand of
Kinm can be a polynomial of degree 2N at most. -Hence M should be
selected in such a way that 2N&2M-1, |

At every step of the numerical solution of the differential
equations these N integrals must be evaluated;

7

Similarly for Inem;

de” 4o 2

7 m m de 2 m .
I =f € (x,0)( e——n -m-—P‘:Pn )Sin® de
> Sin8

with the definition z=Cos6 .

Zo i

2 m ..m 2
7 J ) dP“‘ m , 2y " m]
Inem kl d dz° * 1 2 P:Pﬁ)]dZ+91r Bl z") dze E;n * 2 Pzpn dz
"1 =z io l-'Z
: Zo
m ,.m 2
1l 2y dP 4P m m m
define Lnem J’F1 -z%) az8 at + ;:;E Pe Pn] dz
-1
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m 2
2 _ 2y 4P~ 4r m
nc-nfjkl-z ) dz” dz * 1_22 P’:; Pg] dz
Zo

2
then Ll +L2 m=,”:(1- 2 dpm QP.ZI o1 Pmpm]dz= 2n(n+1) (e+m)! 5
-1

nem ne 27324 1-g2 2ntl  (e-m)l “en
for nfe , Liem=-L121em and 17 =161 )L i’em

[y

It can be shown that(Appendix D); for n#e

Zo
2
Len™ f[‘l -2°) ii’" 3{;’" ¥ l‘“ 5 P, P ]dz— § 2[e(e+1)PI(z) :‘E"A(z )
-1 =2 en
@ 1)z ) Le(s ) 6.7.2)
-nln+l n'2%0’ 3z zoJ 07e2
therefore,
2
IZem_(l-eir) gen [e(e+1)P (z )—n(z J-n(n+ l)P (z ) e(z )}

n#e
where ?en=e(e+1)-n(n+1)

for n=e
7 _(r_er )l , 2n(o+1) (n+m)!
Innm (1-¢ )Lnnm+€lr 2n+l n-m)!|
Z,
m 2 2 2
1 _ _.2y¢ &P m
where Lnnm—y[(l z°)( e ) + ——1_22 (PE) } dz

-1

The integrand can be shown to be a polynomial of degree 2n-2.
The degree of Gaussian quadrature is to be selected then according
to the inequality 2aN-24{2M-1,

Therefore there is no accuracy problem in relation to the
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numerical evaluation of integrals for homogeneous scatterers.
These integrals are evaluated exactly. If, however the complex
permiftivity of the scatterer is a function of position, the integ-
rals are calculated only approximately,

After establishing the above integral e#pressions, the factors
anem’bnem’cnem’dnem’unem’vnem and wne; are expressed in terms of

them as:

7 _ 1 1 1
anem nem( nem X nem) 2 Qnem nem

1 b 3

b _==R T sy ¢ ==jmR T s @ ==jmR I
nem nem nem nem nem” nem nem nem nem
6 2
u =9 » V. __=jmR 12 s w__ ==R
nem ‘nem nem nem nem nem nem nem enm

In the subsection below the Gaussian Quadrature formula for the

approximate evaluations of the integrals is given.

6.7.1 Gaussian Quadrature Formula

b
Consider the integral I=~ff(6) 4 . The variable 6 is
a

changed to a new variable x in such a way that the limits of the
integral with respect to x is -1 and 1. This transformation is

achieved by the relation,

= b=a bta
6= 5 X + > 3 then

i
- b=a b=a bta : = b2, b-a bta
I= = Jf( 5o Xt ) dx , define F{x)= 5 £( 5 X+ 5 )
-1

{

hence I= fF(x) dx
-1

The Gaussian Quadrature formula is:
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! N
I=JF(x) dx=;wj [F(xj)fF(-xj)] +R_

where the remainder Rn is given as

_ 22 Gt
2 (2n+1) [(2a)1]°

f(zn)(xo) (-1<x < 1)

the abscissa x:I is the j'th zero of the n'th degree Legendre

polynomial Pn(x).

2

(l-x:j )2 -g-x- [Pn(x)]

weights ¢ wj=

x=xj

In the actual numerical calculations, the relevant subroutines
in IBM SSP(Scientific Subroutine Package) have been used. They are
designated as QG3,QG4,QG5,etc., the numbers in the third place
showing the degree of the Gaussian Quadrature formula.

The next computational step in the overall solution of the
multipole coefficients is the evaluation of (I-W)-l. This is

examined in. the next subsection.

6.7.2 Computation of (I-w)-l

The inversion of the matrix (I-W) is necessary at every step
of the numerical solution of the differential équations. It can be
inverted by the standard techniques like Gauss-Seidel or Gauss
elimination. However, a different approach has been taken in the
present computations. The procedure goes as follows.

In Linear System Theory the inversion of the matrix (sI-A) is

extremely important(where s is the Laplace transform variable),
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because once it is known the transfer function matrix of the linear
time-invariant system

x(t)=Ax +Bu

y(t)=Cx

(where x(t) is the state variable vector, u is the excitation
vector, y(t) is the output variable vector, A,B and C are constant
matrices)
is deduced immediately as H(s)=C(sI-A)"'B.

For this reason a very efficient algorithm has been developed
to invert (sI-A), s being a parameter. This is known as the

Faddeeva algorithm and is given as(61);

). [ n-1 n-2 .
(SI A) - m) ROS +%.S + o o o +Rn—ZS+Rn—1] s n is the
order of A,
where Als)=det(sI-A)=s™+a s® Tra P 2+ e
al 2 o o o n

and the matrices Rl’RZ’ o« o e ’Rn together with the scalars @y 5%y,

e o ¢ @, are obtained by the following iteration scheme:

where tr(F) denotes the trace of matrix F and equals to the sum of
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the diagonal elements of F,
The matrix, (I-¥) can then be inverted using the above algorithm

and putting s=L, The compact form result is

“

(1-w) 1= 2R

n
1+2;ai

As it is séen the algorithm only requires the multiplication
of (NxN) matrices and evaluation of traces. . This way of evaluating
the inverse of (I-W) proved to be more effective compared to standard
inversion techniques. The inversion times of the present algorithm
and the standard techniques have been compared with each other: the
time is appreciably less in the present algorithm with the same
accuracy. For example, it took 1.2 seconds to invert a lUxi4
complex matrix A with the subroutine MINV in SSP(which uses standard
Gauss-Jordan method). The same matrix was invertedwith the present
technique in 0.8 seconds.

For a single matrix inversion operation such amount of time.
difference may seem to be not so important. However, (I-W) is
inverted so many times in the solution of the diferential equations
that the gain in time in each inversion builds ﬁp to an appreciable
amount;

"A computer subroutine, called CONT(A,N) has been written to
célculate (I-A)_l, A is given as input, the order of A, which is
denoted by N, is also given as input. The inverse (1-2)"% returns
to the main program and is storéd in A,

It is interesting to notice that a general complex matrix A
can also be inverted by the present algérithm. For this purpose
a new matrix A' is defined as A'=I-A and the subroutine CONT is called

as A! being the input. Since CONT evaluates (I-A')"* it means that
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it effectively evaluates ﬁ-(I-AJ]—l s which is A-l.

Subroutine CCNT is given at the end of the thesis.
- The next subsection gives a brief outline of the numerical
technique used in the solution of the system of linear differential

equations.

6.7,3 Numerical Solution of the System of Differential Equations

In the numerical solution of differential equations, Hamming's
modified predictor-corrector method has been used. It is a stable
fourth-order integration procedure that requires the evaluation of
the right-hand side of the system only two times per step. This is
a great advantage compared with other methods of the same order of
accuracy, especially the Runge-Kutta method(which has been used in
the solution of two;dimensional problems), which requires the
evaluation of the right-hand side four times per step. Another
advantage is that at each step the calculation procedure gives an
estimate for the local truncation errorj thus the procedure is able
without a significant amount of calculation time, to choosz and
change the step size h,(This property is very iqportant in relation
to the truncation number, because it may not be necessary to solve
the complete problem for the unknown multipole coefficients for a
truncation number N and then to increase this number and to see how
the results change, This comparison can be madé locally without
solving the complete problem. However this has not been employed
in the present work).

On the other hand, Hamming's predictor-corrector method
jtself is not self starting; that is, the functional values at a

single previous point are not enough to get the functional values
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ahead., Therefore, to obtain the starting values, a special Runge-
Rutta procedurc followed by oné iteration step is added to the
predictor-corrector method.
The description of the method goes as follows:(IBM,SSP,nn;337-339)
Given the general system of first-order ordinary differential

equations:
yi= —= = £ (x,¥.,¥ y.)
1l dx 1 V1Yo 0 * I

dy2
y = fZ(X,yl,yZ, e o o yn)

ey

)
1
I

dyn
y£= ax fn(x,yi,yz, * e yn)

and the initial values: yi(xo)=yl,o R yz(xo)=y2,o s o o o ,yh(xo)=yn,o

and using the following vector notations:

Y)=(y, () 3,(x) o o v 3 DT, Fle,V)=tey (1) £,G0,Y) 4w )]

_ T
and, Yo_(yi,o Yo,0 ° * yn,o) where Y,F and Y are column

vectors, the given problem appears as follows:

04
e e = ] =
1= i = F(x,Y) with Y(x )=Y

For stability purposes, the modification by Hamming of Milne's
classical modified predictor-corrector method is preferred. Thus,

knowing the results at the equidistant points xj and

-3 F5-2* *3-1
xj, the results at point xj+l=xj+h are computed by the formulas

below.

 ctor: - ooy
Predictor: Py =Y .+ =5 (2Y5 Yj_l+2Y3_2) (1)
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N 112
Modifier: M,  =P,,- 121 (P,-C.) 3 (2)

LI A CITRP Y (3) |
Corrector: C,.= = [9Y -Y, _+3h(M! _+2Y!-Y! )] (4)
j*1 8 J j-2 J*1 77§ -1
Final value: Y, .=C. .+ =2 (P...C...) (5)

FLTUFL 121 ViU

where Y,Y',P,M,M'",F and C are column vectors.

Formulas (1) and (4) have local truncation errors:

54(5) .
T.= l*shY (B) with x; B (xyy  end

- L 54(5) .
Ty- e YD) wdth x KKy,

respectively, such that Y(s)(x) does not vary to any great extent

in the interval (xj_3 , xj+l)’ it follows that:

~ 2 -
T, 121(9j+1 Cj+l)

This formula shows that the components of the column vector
P, .-C, are measures for the local truncation errors in the
¥l 3+l
components of column vector Yj+l’

and adjustment of step size h can be done by generating the following

and therefore control of accuracy

test value:

6= z:a l jt1,i J+l,i_ 6)

where the coefficients a, are error weights specified in the input
of the procedure.
If & is greater than a given tolerance €, the increment h

is halved and the procedﬁre computes Y that is Y(xj+h/2),

jt1/2?

after having interpolated Y Y(x -h/2) and Y /2=Y(xj-3h/2),

j=1/2"
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with previous increment h, using the sixth-order interpolation

formulas:

B 15 (yiigys
Y, PO oY #=3 ( Y3+6Yj_l+Y5_2) (7)

(8OY +135Y 3-3 155

j=1/2" 256 j-1

= 5 B3 (yo
Yyo3/2" Tog 12T L30T HI0BY Yy )+ 5 3op (-YI8Y L *9YSS)

-3 8 j=1

(8)
If & is less than €, the result Yj+1 is assumed to be correct

and is handed, ~together with xj+1 and the vector derivatives

=F(x, 417 .+1), to a user-supplied output subroutine.

Y

Starting Hamming's modified predictor-corrector method requires
the functional and derivative values at four preceding equidistant

points; that is X %] 5%, and x3.
are specified by the input. For computation of Yl,Yl,Y Y3 and

Yé and for adjustment of the step size h to accuracy requirements,

1=
The values Yo and Yo F(xo,Yo)

a special Runge-Kutta procedure suggested by Ralston is used.
Starting at xj, values at point xj+1=zj+h are computed using the

following formulas:

K1=h.Y3

K2=h.F(xJ+o.4h,Yj+o.4K1)

K3=h.F(xj+0.45573725h,Y +o.29697760K1+0.15875964K2)

J

K4=h.F(xj+n,Yj+o.21810038K1-3.05096514K2+3.83286476K3)

Yj+1=Yj+o.l7476028Ki-0.55148066Ké+1.20553559K2+0.17118478Kq)

vhere j’ j+l’K1 K and Kq are all column vectors.

In the actual computations a subroutine named HPCG has been

used, This subroutine is in IBM SSP. The same computations have
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been made with the subroutine RKGS(uses Runge-Kutta algorithm) which

takes considerably more times compared to HPCG.

6.7.4 Generation of Spherical Bessel and Hankel Functions

Spherical Bessel and Hankel functions together with their

derivatives are required at only two points, mnamely x=x, and x=x_.

1 2
The argument of the spherical Bessel function at X=Xy is complex in

5 is x2 and

is purely real. \Whatever can be said about the properties of spherical

general and is given as x) Cir. The argument at x=x

Bessel and Hankel functions for real arguments can be extended to
the complex arguments, because of the analytical continuability of
these functions into the complex plane. In what follows =z denotes
the argument and can be real or complex.

The spherical Bessel function is defined in terms of the
cylindrical Bessel function as;

3(2)=/3 vz g

n+l/2(Z)

The spherical Neumann function is defined in a similar way as:

yh(z)= % vz Yn+1/2(Z)

in terms of these, the spherical Hankel functions of the first and

second kind arel
B g et (a) ama nP =g (-, (2)

jn(z) and yn(z) are plotted below for 4 different values of n

(0,1,2,3) and for real z.
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The recurrence relations are also given below.

fn_l(z) + fn+1(z)=(2n+1) fn(z)/z (1)

nt (2)-Gat1)s, (2)=Cer) $n(z) (@)

Eil fn(z)+ %ﬁn(z)=fn_l(z) (3)
af

% fn(z)- a;n(z)=fn+l(z) (4)

where fn(z) denotes either one of these four functions, jn(z) , yn(z),

hil)(z) ’ hiZ)(z).

Two computer subroutines have been written to evaluate the
spherical Bessel and Hankel functions numerically. These are
designated as SHAN and SBES., SHAN evaluates the spherical Hankel
functions for real arguments. Its argument list is Z,L,HAN,DHAN,
For a given argument z subroutine computes the spherical Hankel
functions and their derivatives up to the order L. The zeroth and
first order Hankel functions(with their derivatives) are given as
function statements. Then the relations (1) and (3) are used to
compute the higher order functions. The values of the spherical
Hankel functions for a set of arguments and indices have been
computed and compared with the values tabulated in (5 ). There is
a 7 or 8 digits agreement between the two sets of values.

Subroutine SBES computes the spherical.Bessel functions and
.their derivatives for complex arguments. Its argument list is
% ,L ,SB, DS, where Z is the complex argument, L is the order of

the highest Bessel function. The computed results for the Bessel
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function and its derivative are stored in one-dimensional arrays SB
and DS. Again the explicit functional forms of the zeroth and first
order functions are utilized. Having theée lowest order functions,
forward recursion using the relations (1) and (3) above gives the

higher order functions.

6.7.5 Generation of Associated Legendre Functions

The definition of the Associated Legendre functions given in

(47) was adopted in the present work. This is

m/2 .m

m _ m 2 aP
Pe(z)-(-l) (1-27) dz'me

where Pe is the Legendre polynomial of order e,
ap”

A computer subroutine has been written to compute P: and 32

for a given z,e and m. This subroutine has the name ASSLZiG, Its
argument list is X , INDEX , MAZ , AL , DAL, He?e X is the argument
of the Associated ﬂegendre function, INDEX corresponds to e, MAZ
corresponds to me The computed values for PZ and %EZ are stored

in AL and DAL respectively.
m
If m>e, the subroutine sets P: and gge equal to zero, since

dz
a polynomial of order e gives zero when it is differentiated greater
number of times than its order.
If m=0, ASSLEG computes the ordinary Legendre polynomials.
If m=e, then the following formulas are used directly to

compute the function and its derivative

/2 B0
P2(2)=(-1)m Lom)! (1-22)m R oz, ph
P m

2
2" ml 1-z

oo

-
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For ed> m, the following recurrence relations together with the

first starting functions are used

(Ze—l)zPZ_l(z)-(e+m-l)P:_2

P2(Z)=
e-m

(1-27) Lo ~(etm) P_ ez PNz)

The first two starting functions are

m aF . (em+l)PR-(m+1)zPT
P$+1(z)=(2m+1)sz(z) , el "
1-z

Subroutine ASSLEG is not to be used for x=+1 in its present '
form because of the numerical singularities arising from the factors
(l-xa) being in the denominators of some ratios. The value of PZ
at x=*1 is zero, but its derivative may go to infinity depending on
the value of m, These cases must be treated with care. In the
present work the points x=1 or x=-1(corresponding to =0 and 6==x
respectively) are not included in the range of evaluation of Pz
and %52 e« The values of the quantities involving P: and %%2 R
at x=¥1 are obtained separately using their defining equations at x=+1,

If ASSLEG is to be used for some other purpose, the points

=+1 must be treated appropiately.
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6.7.6  apvnlicaticns

In this section the method developed in the previous sections
is applied to some problems. Some of these problems have solutions
obtained by using different techniques. The results obtained by
the present method are compared with these., The scatterers consi-
dered are: an off-centre sphere with a real permittivity, an off-
centre sphere with a complex permittivity, an oblate spheroid and
a prolate spheroid with small eccentriéities, a dielectric cylinder
of finite length, an oblate spheroidal raindrop, a kidney-shaped
raindrop and finally as an example of multi-body scattering in the
three~dimensional case, two dielectric spheres of the same radii
and spaced a certain distance apart. Among these the off-centre
sphere problem has an exact solution. The oblate and prolate
spheroid problems(with small eccentricities) have solutions as
boundary perturbation expansions. The other solutions for a cylinder
of finite length, for two spheres and for raindfops are not compared
with any other solution but they are just presented. The excitation
is always assumed to be a plane wave propagating along the symmetry
axis of the scatterer, except for raindrop problems where it is a

plane wave obliquely incident on the scatterer,.

a) Off-Centre Dielectric Sphere

In order to test the method for non-spherical scatterers the
first scatterer to be considered is an off-centre sphere, since the
exact solution for such a scatterer(as an eigenfunction expansion)

can be obtained very easily.
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The coordinate origin is located at the point O
a distance d' away from the centre of the sphere

as shown in the figure. The permittivity of the

scatterer is Gl and its conductivity is zero.

The excitation is a linearly polarized plane wave propagating along
the positive z-axis.
The multipole coefficients of the incident wave are given by

(31)

ot <tab s, 5 0" ateen)]
where the upper and lower signs are for + and - helicity circularly
polarized waves, respectively.

As is seen for a right-hand circularly polarized plane wave
propagating along the z-axis the azimuthal index m takes the value
1.(It is -1 for a left-hand circularly polarized plane wave)

The scatterer is described by the following polar equation:

_ 2. 42__,2
6=Cos 1 (————r *dl ca )

2rd!

The formulas developed in section (6.7) for a

b c
nem ’ "nem °?

nem’

dnem 2 Yoom ? Vnem and Y em fit this case completely. The .factors

zq and Sind deo/ax are given by

. 2, .2 2
- - x*d =a” g B, -2,_1
zo—Coseo— 5%d and Smneo 0 " x° 3

= =4" = ]
where x—kor s d=d ko s & koa .

The multivole coefficients are listed below for various

truncation numbers and for a=0.8 , d=0.2 , €r=3 « The eigenfunction



solution results are also given.
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N=2 N=3 N=4
df; -0,1520E0-30.9613E0 | ~0.1207E0-30.8943E0 {-0.1161E0-30.841250
‘agl -0,5925E-1~-30, 4457E=1| =0.5781E=1~3O.3345E-1 |~0.6051E~1~jO. 3479E-1
a3 ~0.3910E~2+j0.1638E~2 | -0.4329E-2+30.1888E-2
aﬁl -0.2545E~3+30.43723-3
N =2 N =3 N= 4
pil -0.1101E0-3j0,8013E=1 |-0.1035E0-3j0.81092-1 |-0.9980E-1-3j0.8124E-1
521 =0,7356E-2-30.5614E=2| =0,6880E-2~30.5336E~2 | -0.6416E-2~3jO .5284E~2
B§1 =0.3472E=3=30.1894E=3 | =0, 3177E=-3-30.1772E=3
Bl ~0.6932E~5~JO.25375-5
as 5
e |(BigenfunStion Exp.) (EigenfunGtion Exp.)
1 -0.1227:0- j0.8594E0 -0.14815-2-3j0.9537=-1
2 -0.3692E-1+30.1720E-3 -0.2093E-2+j0.5531E-6
3 0.5676E-7+30.7296E-3 0.6553E~10+3jO. 247 9E-4
4 0.8065E=5-30.6117E-11 0.1811E-6-~30. 3084E-14

It can be seen from the above tables that the magnitudes of

the multipole coefficients decrease much more rapidly with the index

e in the eigenfunction solution case.

This is due to the fact that

the spherical wave expansion of the fields for a homogeneous dielectric

sphere is the 'natural' expansion for these fields and the spherical

vector wave functions are the 'natural'! modes.

For the off-centre

sphere a sﬁherical wave expansion is not the 'matural' expansion and
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the spherical harmonics are not the 'natural' modes.

The bistatic scattering cross-section o(6) for the plane wave
excitation is plotted in Fig.(6.1) for N=2,3 and 4.

The analytical expression for ¢(6) is defined and derived below.

The bistatic scattering cross-section ¢ is defined as

=inc

where E° is the scattered electric field vector and E is the

incident electric field wvector.

- =in
ES 1IC

and & are given by the following infinite series:

- (=] e 1 -s
=-jZoZ: Zi e em E emNem]

m:

=inc_ ., < N ]
s JZOZZIBem em koaemNem]

20 Me-

From the definitions of ﬁzm and ﬁ:m it is easy to show that

- -jk r
Lim S =.e-*-l e o]
em kr em
- OO o]
= e e-'.jkor A =
Lim N~ =j a xX
em T r em
- 00
Hence,
- "jk r T
Lim ES=-jz =2 Z 3°"18S X +3%5 & X ]
500 (o) k r esom em enm em r em
and
_ﬂ.mee.s +as’éx)-(]2
°_k2 ;23 [JBem em em r em
=D Mz
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Fig.(6.1) Scattering Pattern of an Off-Centre Dielectric Sphere
for Various Truncation Numbers and for a Plane Wave

Excitation,
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(o]

o0 e
Let =Z Z ;_je [jazmiem+a:mgrxiem]

ez

s}

The 6 and ¢ components of G are

o e ¥ P .
G=sze+l'_e;n_1_(as de_mﬁzm e )e3m¢

De em d6° Sind

m

o e e ’\'em s Pe s de 4m¢
=3 - ——— » 'J
G¢ ;Z‘_ej D (maem Sind +JBem BT ) e

(2e+1) (e-m)! 1/2

hn  (etm)i

T =

where
em

1/2
] y  BrF [e(e+1) ]

Then in terms of Ge and G¢ s O becomes

o= foo| 4o, ]

»

In what follows, o will be derived for a linearly polarized
plane wave propagating along the z-axis.

A linearly polarized plane wave is composed of two circularly
polarized plane waves, one is + helicity, the other is - helicity.
Thus m takes the values +1 and -1 in the corresponding summations.

The components G, and G, then become

5 8

G ‘;; e+l Yel ( s dPl s Pi ig Yez 1 dP-l
=2 3] [-—— a, e - Ty + ~ s S
® &= Ao el ®° ~Pe1 Eim Je Do (e, 1 @ * Pe,-1
-1
P
e —j¢]
Simo /¢

and



= ;]e o5 Pl diP1 id s P;I
G¢ Z-A [Yel el S::.nv jeel B° Jerm + Y (-ae,-l Sind
Ezo e
s -J¢
B, -1 dee e ]
1/2

_ )
Using Pem=(-1)m '((:?Pn;'!" Pr; with Ye,-m': {(22:;1) E:i:;:LJ

it follows that

_ m n
Ye,-m . =(-1) P

1/2

Since a:; = ;m = (-3)°7 [untzer1) ]

it follows from the linearity of Maxwell's equations that

S _ .S
Ber = Be,1
Similarly ai+ =™
em em
. 5 —_ S
it follows that %e,-1 “%e1
Then Ge and G¢ become
Pl
. e+l el dP _
?*Zo (agy 35° ~ Bey Sims JCos9 and -
1
00 ¥ P 1
21 -3 &L (s dP
G ”2320 SA ( a3} 55o5 *3By e JSing

o is then given as

2 2
G = &g-uﬂ}?l(e), Cosa¢ +|F2(5)! 55-11295]
o

.

194,
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1

. oo Y l P
_ etl _el s dP _ .5 __e_
where  F(6)=2 EZJ A Cagy ° ™ Per 5200 /
1
oy p 1
o .e ‘el s _¢e. o5 4P
F,(6)=2] EZ_O'J Ae (o, 506 * 3Bey 300

It is interesting to consider o(6,) in directions which lie

in the planes ¢=0 and g=%/2 , for which the scattered wave is

linearly polarized.

Then for g=0(in the E-plane) o reduces to

2

oo

e (2e+1) ol /e ap~
;gfe eZ:+1) [(Pe/51n6)521+ a.° “21]

1
o.(e) = emiam
E k?

[o]

This form of oE(B) has been used in the calculations.

The computer programme(developed for the solution of scattering
by rotationally symmetric scatterers)is capable of solving the

scattering problems for scatterers with complex permittivity. In

order to test it, again an off-centre sphere is considered with the

following parameters:
a=0.7 , d=0.2 , Cr=5+j2.
The multipole coefficients are tabulated below. The bistatic

cross-section is plotted in Fig.(6.2).
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Fig.(6.2) Scattering Pattern of an Off-Centre Dielectric Sphere
of Complex Permittivity for Various Truncation Numbers

and for a Plane Wave Excitation.
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: N=2 N=3 N=4
ail 0.325720~30.1363E+1 | 0.2509E0-30.1009E+1 | 0.1354E0~30.9113E0
“gl ~0.55193-1~-3j0.6817E-1 -0.4996E-1-30.5484E-1] -0.6323E~1~30.5309E-1
agl ~0,50028-2+ §0. 101 45-2| -0.68245~2+ 0. 102922
;zl -0.54028=3+30.37342-3
N=2 N=3 N=4
Bil ~0.8097E-1~3j0,1601EO | ~0.5304E-1~-3O.1444E0 | -0, 4647E-1~30.1330E0
le -0.3021E~2~j0.1046E-1}|~0.1829E-2~30.9413E=-2 | ~0,1235E-2~3j0, 85845-2
egl =0.1093E-3-30.391L6E~3 |=0.8452E-4-40. 3431E-3
eﬁl -0.3827E-5-40.8283E-5
az Bz
e | . ( Bigenfunction Exp.) (Eigenfunction Exp.)
1 0.7668E-1-3j0.9948E0 0.6737E-1-3j0.1017E0
2 -0.2835E-1-30.4917E=-2 -0.1681E-2-3j0.95065-3
3 ~0.6840E-4+ 30. 4202E-3 =0.8122E-5+j0.1517E-4
L 0.3520E-5+ 0. 5530E-6 0.8458E-7+ 0. 441 88-7

c) Oblate Spheroid

r=b' (1-vSin%6)

about the z-axis.

-1/2

VA The shape of an oblate spheroid is obtained

al ,j
&
d ™8,

bj rotating the ellipse shown in the figure

The polar equation describing the ellipse is
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- 2
?
where b' is the semi-minor axis,u=1-(§,) , is the eccentricity of

the ellipse ,' a' is the semi-major axis of the ellipse.
The integral expressions Igem (3=1,2,...,7) defined in section

(6.7) have the following forms for oblate spheroid:

2
1 40 e+n 2, ap” ap™ m
I =-Ln€, Sind o [1+(-1) ] [(l—zo) 1.2(z,) onlz) + 2

o

Pz ) Pz )]

m
2 __ _.2 _q)etn|m dp
L en” Ln€1r(1 zo) [1+( 1) ]Pe(zo) Ez-n(zo)

3 _ . 40 L_c_,yetn] [pm dp” m " ]
I ,~In€, Sind  “=o [1-(-1) ] [Pe(zo) 3r(z ) + P (2 ) Felz)

1 =06 ) -1z ) Pz )

Igem=ln€1r [1-(-1)e+n]P:‘(zo) P‘I‘l‘(zo)

(1-€. )(1-2°)
6 _ 2 (ntm)! 1r o e+n
1 en” ['(1'61:-)'12+ 2n+1 (o-m)! ] ne” ) [1+('l) ]

Sen

m m

) [e(e+1)1§:(zo) "gr—;'n(zo)-n(n*'l)Pg(zo) %Ee(zo):l
2
(l-Glr)(l-zo)

%en ' [1+ (-1) e+n]

2n(n+1) (n+m)!] ‘_
ne

?
T =|:_(1-elr)L2+ 2nt1l  (n-m)l

nem

[eter2)z ) Ents )onlwr1)z ) Loz )]
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zZo Zo
vhere 2 m 2 2 2
I DR _ _.2y 4P m m
J2~-f[fn(a)J dz LZ-‘f[(l z )(Egn)'+'—-‘§' (Pn) J dz
’ZO _zo 1'2
2 1/2
£ =e(et1)-nln+1) z =( L5 -1
n 1%
x
2
’ 3 g‘-@. = b = = '
Slnﬁo =l = 3 » x kor s b kob
. Vz x
o
- . de
It must be observed that as x.a>a(a=koa'), z,—> 0 and Sind ~~o

goes to infinity. This singularity is to be eliminated in the
numerical computations. This is done in a similar way to the two-
dimensional case(see section 2.5). The defining equations for Iiem
and Iiem are vsed at X=X,

Yeh(34) solved the scattering problem for oblate spheroids with
small eccentricities using a perturbation technique. His results
are compared with the ones obtained by the present method, below,

First consider the following parameters:

b=0.7 , a=0.735 , er=1.7689

The multipole coefficients are tabulated below for N=k,

5 8
e ae Be-

1 | -0.2004770E-1-30.3394949E0
2 | -0.1525808E-1-30.2285183E-1

3 | =0.6965890E-3-30.8457748E-3

-0.2740478E-1-30.1759193E~1
-0.1116973E-2-3j0.9449989E-3

-0. 2660009E-4-30.1685197E~}

L 0.2648692E-4-30.1348128E-3

0.1764057E-5+30.6132718E~6

The bistatic scattering cross-section is plotted in Fig.(6.3).
Yeh evaluates the backscattering cross-section for this

scatterer as c/nb‘2=0.042. (This value is read from a curve so the
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Fig.(6.3) Scattering Pattern of a Dielectric Oblate Spheroid Excited

by a Plane Wave.
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probability of its being in error should be considered.) The present

method gives of/nb'"=0.0446.,

The multipole coefficients are now given for b=0.8 , a=0.84,

€r=1.7689 and for N=4t and N=5, o/la is plotted in Fig.(6.4).

N=4
: % o
1| -0.6844390E-2~30.5066590=0 =0.4673722E-1~j0.2814950:5-1
2| =-0.22831912-1-3j0.3792757E-1 ~0,.11594855=2-3j0.20213118-2
3| =0.12344205-2-30.49044045-2 -0.125134632-3-j0.1038665E=3
4 0.1710695E=-3~j0.5581029:-3 0.21691355-4+ jO.6245343E-6
N=5
8 S
ae ] 6e
1| -0.1172132E-1-30.4990890E0 -0.46814945-1~30.27842575-1
2| =-0.224996E~1-30.4578446E-1 -0.1343945E-2-j0.2025632E-2
3| -0.7085312E-3-3j0.2865440E-2 =0.7614141E-4-30. 8460433E-4
k| 0.2202254E-3~30.4283576E-3 0.1629453E-5+j0. 561036 1E~6
5 0.3355402E-4~30. 4983086E-4 0.5037925E-6+ j0.9536356E-7

The backscattering cross-sections are:

—9;5=o.o7317 (N=4)
]
i)

—9L§=o.o717o(N=5)
7b!?

Jox
7ib!

2=O.O63(Yeh)
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Fig.(6.4) Scattering Pattern of a Dielectric Oblate ‘Spheroid

Excited by a Plane Wave.
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r4

The coordinate origin is located at one of
the foci of the ellipse. It could be
located at the centre of symmetry O of the

ellipse, The reason for F being selected

as the origin is twofold i) the polar

V'E'i equation describing the ellipse is simpler
ii) the singularity coming from the factor Sineodeo/ax at x=b is
eliminated(as can be seen from the expression for Sineodeo/ax which
is derived with respect to F). However, the cost of the above
advantages is that the maximum optical radius of the body(which is
cta now, compared to a) increases. This in turn increases the
truncation number and computation times cdrrespondingly.

The polar equation is

2
_ b _M 2,2 = g ' = v
X= T oCoso where c¢=Va -b s X kor s & koa ’ b—kbb .

-
Defining 5=1-(§) (eccentricity of the ellipse) the equation
takes the form:

<= (1-8)a
1—36 Coso

The expressions for the integrals I3 (j=1,2,...,7) defined in

section (6,7) are the same as the ones for an off-centre sphere with

= -1 _(-8) a
zo—Coseo— el S > and

"

The multipole coefficients are tabulated below for a=0.7 ,




b=0.665 , er=1.7689 and a=0.8 , b=0.76 , er=1.7689.

N=k,

201,

In both cases

S
aQ
e

S

Be

-0.1468606E-1~30.269063850
-0.1170997E-1-30.1981354E=1
-0.8212338E-3-30.5997347E-3

~0. 45846 42E=1~30.179694 3E-4

-0.27324613-1-j0.12812993-1
-0.1989889z-2-30.7981297E-3
~0.1039584E-3-30. 327927254 '

=0.4131699E~-5-350.1066894E=5

The backscattering cross-section:

-9;2=O.0288(Present method)
m‘

—QLE =0.029(Yeh)

7t

=]
aQ
e

8

Be

-0,7996370E-1-30.3857422E0
-0.1719272E-1-30.2462507E-1
-0.3170531E-2-30. 996346353

-0.6431438E-3-30.4008573E-4

-0.4592253E-1-3j0.1736844E-1
-0.2587539E-2-30.1685603E~-2
-0.3409492E~-3~j0.3437772E-4

-0.8220002E~-5-30. 4097042E-5

!

_2;2 =0.047 (Present Method)

-£Lé =0.045 (Yeh)
ﬂa'

The bistatic scattering cross-sections are plotted in figures

(6.5), (6.5) .
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Fig.(6.5) Scattering Pattern of a Dielectric Prolate Spheroid

Excited by a Plane Yave.
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Az . )
& The height of the cylinder is taken as twice
o
r * its radius, Thus the cross-sections of the
2a b4
/ cylinder with 6=constant planes are squares.
L;e, T8, j
-5, The integral expressions Inem(j=l,2,...,7)

have the following form for this scatterer:

1 _ et o . a8, _ .A as
L £ E.+( 1) ][nnem(zz)slnea 2 Enem(zl)S:.nel dxl]

12
n

o= Lney [+ (1% [1-22)7(2 ) Lty )-1-22)P () En(z,)]
1131em=Ln€1r [1- (-1)e+n] [Fnem( 2"II.)Sinel ?Eel-Fnem ( &) )S:Ln82 %xe-z]

Iﬁem=(1-elr) [1-(—1)"""“] [P:(zl) P’i(zl)-P’;’(zz) P:;(zz)]

Iiem=Ln€1r[1"'1)e+n] [Pﬂ(ﬁ’ Pr;(zl)'P:(zz) Prrnx(zz)]

. etn
6 _ 2 (arm)l (1-6 ) [1+(-1) ]
L en” ["2(1-611')‘16+ 2n+l (n-m)i J ne .

gen
[(l-zi )Gnem ( zl)_ (l-zg)Gnem( z2 )]

a-e, ) i+(-1)*"

‘§en

7 _ 2n(n+l) (n+m)!
Tnen” [—2(1-81r)J7+ 2n+l (n—rr:)] :[ Sne ~

[Q-20)n, (2 )-Q-2)T_ (2,) ]

nem - 2
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- - _a - =Q3 - - 2 =
where zl—Cosel— ’ z2—C0562 S_:.nel 1 Zy s X kor and

Pr:(z) Pi(z)

2

I
B (2)=-22) Lelz) En(a)+ —

m

Fnem(z)= Pt:(z) g—'zi(z) + Pﬁ(z) %e(z)
ap™ ap™

Gnem(z)= Pg(z) E-z-n(z) - Pl;;(z) d—ze(z)_

Lo (2)= e(er1)P2(2) En(a) - n(r1)PP(z) Lola)

Zy

2
J6=j[PE(Z)] . dz
Z,
Zt 5., gp 2 (Pl;i)2 -
J,ff[(l-z ¢ e ) + 1-z2 J dz
22

The multipole coefficients are listed below for a=0.3 , €r=3 ’
N=4, The excitation is a plane wave propagating along the z-axis.

The bistatic scattering cross-section is plotted in Fig.(6.7).

e a® Bs

e e ]
1 0.1419672E-1-j0.7465113E-1 0.3246884E-3-30.1888603E-2
2| =0.6911777E-3-3j0.1247356E-2 -0.87689575-4+j0.9174785E-5
3| -0.3336756E-4-30.1134983E-4 0.4962860E-6-30.10576 45E=-5
4 0.4184466E-6-30.9212301E-6 0.20702338-6+30. 3383398E-7
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As an example of multi-body scattering in three
dimensional problems, consider the problem

8, of scattering of a plane wave propagating-

o along the z=axis by two dielectric spheres of
-6,

the same radii. The centres of the spheres

are 2D' distance apart. The radius of each
sphere is a's. The coordinate origin is
located at the point O which divides the line joining the centres of
spheres into two equal segments. With respect to O, then, the
scatterer cross-section has the following polar equation

2.2 2

"1( x +D =g

6°=Cos -7537—') » where x=k r, D=k°D' , a=k°a' .

The integral factors Igem(j=1,2,...,7) , apart from a negative
sign, are exactly the same as the ones for oblate spheroid.

Since region 1, in this case, is not a dielectric but a
vacuum, the spherical Bessel functions which are supposed to be
generated at %=Xy have real argﬁments regardless of the permittivity
of the scatterer.

The multipole coefficients are listed below for a=0.1 , D=0.2 ,

€ =5 and N=l, o/2% is plotted in Fig.(6.8).

e az ’

1 | -0.4893465E-5-30.5407832E-2 -0.1958317:5-6+30.1113332E-2
2 | =0.1059484E-3-3j0.1085637E=7 -0.1340527E=4+§0.1424267E~7
3 | -0.1178725E-7-3j0.1303877E-4 0.2704340E-11+30. 465262057
4 | -0,1137411E-6-30.1095259E-10 .=0.1365339E=7+3j0.1206369:2-10
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The effect of rain on the attenuation and cross-polarization
sf electromagnetic waves at centimeter and millimeter wavelengths
is an important problem both in radar meteorology field and in design
of dual-polarization microwave communication systems. Therefore,
computation of scattering properties of individual raindroﬁs is
essential to calculate the phase rotations. and attenuations which are
important in the eétimation of crosstalk, and in designing microwave
circuits which compensate for the crosstalk.

In almost all methods in the literature, the raindrop is
assumed to be a homogeneous oblate spheroid. The relation between
the deformation(from a sphere) and the drop size is approximated by
a linear relation.

The common computational techniques to solve the scattering
problem for raindrops are a) the point-matching technique, b) sphe-
roidal function expansions and ¢) perturbation technique.

~The angle between the direction of propagation of the incident
plane wave and the axis of symmetry of raindrop is usually taken as
90o because of its importance in terrestrial microwave relay systems.
However, other values for this angle are also of interest for
satellite systems.

The method presented in this thesis has been applied for the
solution of two raindrop scattering problems. In one of these
problems the shape of the raindrop is assumed to be an oblate spheroid.
In the other it is assumed to be a kidney shape. Recent investi-
‘gations(58) show that as the drop size gets bigger the shape of the

_raindrops is deformed into an asymmetric oblate spheroid with an

increasingly pronounced flat base and for a) 2000u, where a is the
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radius of the enscribing sphere of the raindrop, drops develop a
concave depression in the base which is more pronounced for larger
sizes; The results of these investigations show also that the
drop shapes predicted by the propoéed model agree well with those
experimentally observed in wind tunnels.

The polar equation describing such a kidney shape is

r=r_ Sin( e~PCosd ) (1)

where T is the radius of the enscribing sphere of the shape described
by the above equation, b is a parameter depending on the drop size.
For b=0 the raindrop is a sphere, for small b's the shape described
by (1) is nearly an oblate spheroid. For large b's (1) describes

a kidney shape.

The complex permittivity of raindrops is assumed to be constant
throughout the raindrop volume and values for it can be found in (59)
for various temparatures. (59) sets an empirical model of the
complex refractive index for liquid water. This model is applicéble
from -20°C to 50°C .  The spectral -interva.l for which the model
applies extends from 2u to several hundred meters in wavelength.

In wvhat follows, the multipole coefficienfs are tabulated and
the forward scattering amplitudes are computed for the two raindrop
shapes mentioned above(the forward scattering amplitude is an impor-
tént parameter in raindrop scattering, because the attenuation and
phase rotation of waves due to rain can be expressed in terms of
this amplitude).

In both problems the incident wave is assumed to be a linearly
polarized plane wave of unit amplitude whose electric field vector
or magnetic field vector is in a plane containing the axis of

symmetry corresponding to H polarization or E polarization.
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The multipole coefficients of such a plane wave are given by(60)

-

. Loy m
a]e.m(H) =_je+l(_1)m em d4pP

A, | 6=¥

. by y P (Cosv)
1 - &1, . m em e
cem(n) =3 ~(-1) A n Sinv

for H polarization,
For the E polarization(orthogonal to the H polarization), the
coefficients are given by

aim(E) - Bzm(H)

Bim(E) aim(H)

The angle y is the angle between the symmetry axis of the object

and the direction of propagation of the plane wave.

The geometrical parameters and the integral expressions Igem

(§=1,2,4+.,7) are described in section 6.7.6. The multipole coeffi-
cients are listed below for a(koa')=0.42987065, b(kob')=0.35h64347,
N=3, Y =90° and M =(34,94093-336.78290) (corresponding values for

a' and b' at £=19.3GHz are a'=1.0634617 , b'=0.877356329).
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=]
a
em

en

0.1554394E0+ j0.2731460E0
-0.71732328-11+3j0.10639395~11

0.29583C6E-3+30.3876584=-3

0.+j0.

O -+jo.

0.+30.

S
8
em

BS

em

'0.7079224E=9~30.. 5710243E-9
-0.1474611E~3+30. 275122652

-0.3705687E-13-30.2839943E~11

-0.3902621E-1+30,2111218E-2
0.3090521E-11-30.67473942-13

0.3692775E-4=30.40246755=5

S S
aem Bem
0.+30. 0.+30.

0.3359451E-11+j0.7683537E-13

-0.5372847E-4-30.25054315-4

0.1250020E-3-30.2987728E-3

0.44551.98E-11+30. 6094202714

S S
aem Bem
0.+30. 0.+30.
0.+j0. o.+jo.

0.1087967E-14+3j0.1624020E-13

0.6884764E~6+30. 49129386
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}
om
x

X

x)

n‘-’
In terms of x=k°r, the shape of the raindrop is described by

the following equation

x=x Sin( e-bCosG )

The initial point of the integration range is obtained by
putting =0 in the above equation, hence

o ci( b . e
X, = me:z.n( e ~ ) . The final point is X, .

The integral expressions Igem(j=l,2 yeees7) have the following

form:

for : 4x<x (where x_ 1is shown in the figure and is given b
X ¢ c v

- . b 4y,
X, = me:Ln( e’ )):

bz
= =1 -l x e 98, - e o
2,=Cosd = - + In [ss.n ( % )] , Sind o = e
m x _bCos(e o)
Ik =-Lng, [(1-22) ol @B g, ) g )] sine o
nem 1r %o’ dz° Az 1-2 € ©° 'n %o Mo &
o

2 _ 2y -m ap"
Inem--Lnelr(l-zo) Pe(zo) Eén(zo)
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’ m
3 [ m apr m dp . ae
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Inem=(1-elr) Pl:(zo) PI;(ZO)

17 o=In€; m(z ) Pm(z )

ne

2
(1-¢, )Q-z_)

g-en
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The multipole coefficients are tabulated below for §n=lmm,
£=19.3GHz, N=3, €r=34.9h093-j36.7829 ’ WV=90°_and the incident

wave is H polarized(as shown in the above figure).

aS
em

0.3406388E-1+30.1900453E0
-0.9580840E-3~- j0.3331632E-2

-0.2326362E~4~30.1174554E=3

5
x
em

Bem

0.9698734E-1+30.1676412E0
0.2175271E-2+30.1144539E-1

0.8637959E-4~3jO.1503094E-3

=0,3142404E-1+30.8013959E-2
0.5619762E=3-3j0.7619557E=5

0.2343796E-4-30.7948916E=5

=]
a
em

s
em

g

0.+30.
-0.5735428E-3-30. 4512083 E=4

-0.311.8413E~4- jO.7012180E-5

o.+jo.
0.4510307E-4~30,1036925E=3

-0.1.392447E-5+30,2712876E=5

5
x

=]

0.1337575E-6-3j0.5856818E~6

em Bem
0.+30. 0.+30.
0.+30. 0.+30.

o.aaé71003-6+jo.1721018E-6

The multipole coefficients for

negative m can easily be obtained
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ffom the ones with positive m as shown below. '

First it is shown that the solution of the differential
equations is insensitive to the sign of m;

Consider the integral expression Iiem' Whatever is shown to
be true for Iiem can be easily extended to other Igem's‘ For a

rotationally symmetric body

2
1 2, &P" aP" | m m].gg
Inem-Lnelr [(1 Zo) dz° dz * 2 Pg Pn 51n6odx°

Putting -m instead of m gives

2
1 2, P 2@ ®  a° _-m_-m a
Lie,n 226, [(1 2) & o 12 e 'm ]sineodxo
(o]

since P'e'm(z)=(-l)m iE:E%L P:(z) R becomes

(e+m)! ne,-m
(e-m)! (n-m)! _1 Let m _ {e-m)! (n-m)!
ne,-m (e+m)! (n+m)! “nem ’ Jen ° (etm)! (n+m)|
1 _ J; 1
then Ine,-m = Jen Inem
. . . j - m ]
in a similar manner it is easy to show that Ine,-m 'Jen Inem

(j=2,3,oo’7)o

Consider now the factor & em * It is given by

1

1 A
= 7 _ _nem 1 2
%nem Rnem(Inem x )+ x2 Qnem Inem
for negative m
1
=R 17 --Bemmy 1 12

a = x> %
ne,-m " ne,-m = ~ne,-m x x~ “ne,-m “ne,-m
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Y Y.

= op ~S2=0 D,=m
ne,-m A
. 1/2
1/2
I (e+m) [ (n+m)l
Ye,-n Yn,-m = Gn [(2e+1)(2n+1) ] . [ (e=n) | (n-m)| :l

st o) 1/2
2e+l)(2n+l /
50 Rne,-m [ e(e+1)n(n+1) } Zn

( )( ) V2 \/
J _ 1 2e+1)(2on+l
and Rne,-m Ine,-m- 2 [ eze*‘linin*'l;] : Jmn nem (3=1,...7)

Substituting the equivalent of Jzn in the above equation gives

Y. T
R Ij = oq —S@__nn Ij =R ~.Ij
ne,-m ~ne,-m AeDy nem nem’  nem

_ 2
Since Qnem_e(e+1) Rnem Qne -m ne,-m Qnem nem and it

follows that

a = 8a

It can easily be shown that the other factors do not change
with the sign of ms This means that the solution of the differential
equations are unaffected by a sign change of m.

The next thing is to see what happens to the multipole coeffi-

cients of the incident wave when m is replaced by -n.
i __.etl m em dP
Com —J (-1) De ae® 0=

m
bmy, P, (Cosv)
Sinvy

i = je""l (_1)111

Bem ‘Ae
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putting m=-m gives

i _ .etl -m ﬂ 4a -
L (-1) Do a6 Ye,-m Pe o=y
¥ ot (1
Be -m= .e-1 (_1)-111 _’-I-_TI (‘.m) e,~m e
’

e Siny

. -m _ _.ym -m o 4@
Since (-1)™™ = (-1)" and Ye,-n Po L% v, ﬁz

i - (o i i —(o ) Al
%e,-m - (-1) Cem 4 Bop = (-1) Bem

From the linearity of the equations(which follow from the
linearity of Maxwell's equations) involved in the solution it is
found that

5

___-ms 5 =__ms
%,-m (-1) %o and ee’_m (-1) Ben

The forward scattering amplitude is defined for H-polarized

incident wave as:

A S 0
8= Eizo( Coswa_ Slnwaz). iinmakore o" E [ 6=n-v , =0

where E; is the amplitude of the incident wave, E° is the scattered

field. By the help of the analysis given in section 6.7.6 it can be

shown that
@ € o1 etm[.s PelCos¥) _ aP(Cosy)
E'SH::ZZ -J (-1) Bem m * aem dv
1 eal m=-¢ Sin"i’

or truncating the series over e at e=N(=3 for this particular rain-

drop scattering problem)
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PZ(Cosy/) < dPlz(Cos}[/) ]

3.e
_ .+l o oyetl | s
Sy 2 3~ (1) [ B T %em T dw

ézifm=-¢& em Siny

The above equation is equi@ent to

L P?(Cosy) de(Coswa]
- .2 mtl| s 1 s 1
EySg=2_§~ (-1) [Blm m Sy Ym T dv 7L

2 - P2 (Cosy) aP™(Cosv)

+Z j3 (_1)m+2 BS m 2 + aS 2 ] Iz
m=_2 L 2m Sinw 2m dy
) r P2 (Cosvy) de(Cosya]

4 L ym*+3| .8 5
‘+mz=_—;'j (=1) L63m m — L+ a3m 3y ——*13

After some algebra, it can be shown that for ‘V=90° ’

~

_ s _ s
I 2 P11 %0

2 s
'2'2 Bo?

s—
21

= (= s s g _ 8
I= ( 721855 * 242732 + 26;331 2l+a3° )/16

Using the values for the multipole coefficients the forward

scattering amplitudes for the two raindrop problems are found as
EiSH( Oblate Spheroid ) = -0.2267027-30.2722655

EisH( Kidney Shape ) = -0.4088939E-3+30.4945158E-4
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7. General Remarks and Future Work

The electromagnetic scattering problem has a growing importance
both in the theo:etical field and also in the actual engineering
applications, Some of these have been mentioned in the first
chapter of this thesis.

The frequency region where the present work has been confined
is the resonance region in which the wavelength of the incident
radiation ié in the order of some characteristic dimension of the
scattering.object,

The methods of solution for the scattering problem in this
frequency region are limited in number especially for scatterers
which have nonseparable surfaces. The problem poses many mathema-
tical difficulties even for rotationally symmetric scatterers.

The moment methods which are powerful techniques for linear
antenna problems have not been used for the solution of three-dimen-
sional scattefing problems involving nonspherical scatterers,
because of the very large matrices involved in the solution.

Direct solution of the integral equations set up for the
unknowns of the problem, is extremely difficult if not impossible
to solve either analytically or numerically. These integral equations
are vector integral equations, their kernels are complicated functions
of the unknown vector quantity(derivatives of the unknown vector
are involved) and they are surface integral equations(for perfectly
conducting scatterers) or volume integral equations(for dielectric
scatterers) Also the convergence of the standard solution techniques
such as Neumann iteratioﬁ » 1is by no means guaranteed numerically
because finding the zeroth order approximation which should give

convergent higher order iterations, is a problem in itself.
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Characteristic mode approach to the solution of scattering
problem is a newly developed powerful technique. It has been
applied to certain scattering problems involving perfect conductor
scatterers successfully. It gives physical insight about the
underlying mechanism of scattering phenomena.in the resonance region.
However, for dielectric scatterers, the characteristic mode approach
is still in theoretical form and no actual practical problems have been
solved by using it.

Finjte-difference and finite-element methods, although were
applied to various electromagnetic field problems with remarkable
success, have not been used to solve three-dimensional scattering
problems to the best of author's knowiedge.

The present method should be considered as a step in the
development of solution methods toward a really efficient ome, both
from the point of view of computational simplicity, capability of
providing reliable results with experiments and giving pysical insight
into the actual happenings in the scattering process,

The present work, 1like most of the others treats the problem
in the frequency domain., Actually this is understood implicitly
wﬁen the frequency region is specified as the resonance region.
Transient écattering problem is another aspect of the general scattering
problem and more .attention is given to if today because of its extreme
practical importance.

The method developed in this thesis for two and three dimensional .
time harmonic electromagnetic scattering problems can be improved in
the following aspects. In chapter 3 , it was said that for some
scattering cross-sections using elliptical boundaries may be better
from the computational viewpoint. This assertion must be endorsed
with a set of numerical applicétions. If the results of such an

investigation turns out to be positive a natural extension of this
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modification of the m?thod is to the scattering problem for long
(but not infinite) dielectric cylinders. This time inscribing and
enscribing shapes are prolate or oblate spheroids.

The scatterers considered in the thesis for three-dimensional
scattering problems are not optically large. The reason for this is
not to use too much computer time when unavoidable programming
mistakes are made. The first aim is to show that the method works.
Therefore, another investigation is needed to examine the computational
aspects of the method for optically large scatterers. Then the
advantages of the method and its place among the other solution

‘techniques available at the moment will be much more clear.

Another interesting point to be investigated is the effect of
the magnitude of the complex permittivity of the scatterer on the
required truncation number. It was observed in actual computations
that as the magnitude of the complex permittivity increases the
number of terms to be taken in the infinite series representations of
the fields increases correspondingly. This péint of the method is
especially important in the reindrop scattering, since faindrops

have reiatively large refractive indices.

« The computer programme can be improved in many respects,
among which a better programming, decreasing the execution times

by eliminating the unnecessary computational steps can be mentioned.
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APPENDIX A

Decomposition of a Plane Wave into Even and Odd Parts for a

Symmetrical Scatterer

Consider a scatterer with cross-section C,

\“”~£L\_/// > C is assumed to be symmetrical with respect
¢ to x-axis.

A plane wave whose direction of propagation
makes an angle @o with the x-axis, is incident on this scatterer,
The incident wave is assumed to be TM-polarized. Denoting the
electric field(in z-direction) of the incident wave by V, and assuming

unit amplitude for it gives the following expression:
V= ejko(Cos¢°x+Sin¢oy) - ejkopCos(¢-¢°)
o
Vo can aléo be written as

v - 1k pCos(g-g ), % oJk pCos(gre ), % oIk pCoslg-g ) _ % oSk pCos(g+a)

\V]

Let Vv =5 [ejkOPCOS(¢_¢o) + ejkoPCOS(¢+¢o)]

=

=3 [ejkoPC°S(¢-¢o) - ejkopCos(¢+¢o)]
oo 2

then

V=V +V
o oe oo

Since the Helmholtz equation is iinear, solutions to the
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excitations V and V can be found separately and the results are

.llnearly superposed to find the solution for the excitation Vo.

It is obvlous from the expressions for V and voo that

v (ps=p)=V  (p,¢)  and V_ (ps=8)=-V,(ps2)

Vbe excites the scatterer symmetrically with respect to the

x-axis. It is therefore possible to write the following

Vé(p,-¢)=V2(p,¢) , VE(P’"¢)=V3(P’¢) s where Vv, and V3 are the
z-components of the electric field between the inscribing and ens-
cribing circles and outside the enscribing circle respectivelye

Using the series represeantation for V2 the following is

obtained

'Zf (p)e3m¢ Zf(p) 2% - Zf (p) e 9 mg | 0{g42m

me-co mz=5o Mz.-co

and consequently _f-m(9)=fm(9)

Similarly for V3:

mz-0

S n(2’<k ) &I =5 b 1@ (- S o 1@ p) &

m:-“ mz-co

since Hfi)(kop)=(-1)mH;2)(kop) , it follows that (-l)mb_m=bm or

— - m
b_ =(-1)" b .
For the excitation V_ 3
00

Vz(P"¢)=‘V2(Ps¢) and VB(P’_¢)=_V3(P’¢) , since V__

excites the scatterer asymmetrically with respect to the x-axise
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éi;ﬁn(p) e™Im? =—§Z:fm(p) eI = £_.(p) o~nP

mz=-00 mz-co

£_(p)=-£, (p) and

m

i bmH;ZJ (kOP) e-jm¢ =-i bmHlfla) (koP) ejm¢ = Z b—mez) (kOP) e—jm¢

mz=-o mz-00 m=-oo

and finally
I
b_m— -1)" v .

This way of decomposition of the incident wave into even and
odd parts de¢reases the sizes of the matrices employed in the solution,
If, however, the scatterer has no axis of symmetry, 4t is not

possible to decrease the sizes of the matrices by such a decomposition.
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APPENDIX B

Derivation of Equations (4.1.22) and (4.1,2b)

In section (4.1.2) it has been shown that in a source free
region of empty space the electric and magnetic field vectors satisfy

the following equations:

<v2+k§)ﬁ=o , V.I=0 with E given by BE= =l curlf  (B.1)

and
(V2+k§)E=0 » V.E=0 with H given by H= Gﬂ— CurlE (B.2)

Consider the scalar quantity r.A , where A is a well-behaved

vector field. It is straightforward to verify the following vector

relation

Y (F.R)=7. (V2A)+2V.1

From (B.1) and (B.2) it therefore follows that the scalars

r.E and 7.8, both satisfy the Helmholtz wave equation:
(V2+k§)(;.ﬁ)=0 , (V2+k§)(;.ﬁ)=0

The general solution for r.E is given by (4.1.1a), namely,

F.E= ii[ (1) (l)(k )+A(2) (2)(1: r)] _(6,9)

eme

and similarly for r.H.
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Now a 'magnetic multipole field of order (e,m)' is defined by

the conditions,

= z(M)_ e(;+1) ' - a(M)_ :
Tl == -—;;;' g (kT _(6,8) , T.E =0 (3.3)

where g (k_r)=actnt (e )@ e 1),

eletl)
)
Using the Curl equation in (B.2), (r.H) can be related to the

The presence of the factor -

is for later convenience.
electric field:
mpO;.ﬁ=j;.Cur1E?j(ExV).ﬁ=-i.E , where L=-3j(rxV)

with (r.H) given in (B.3), the electric field of the magnetie

multipole must satisfy

L5 (r,0, p)=e(e41)g (k_r)Y__(6,0) (B.4)
and  F.EW-o,
em

To determine the purely transverse electric field from (B.4),
it is first observed that the operator i acts only on the angular
variables (6,¢).,” This means that the radial dependence of ﬁé:)
.must.be given by ge(kor). Second, the 0perator‘i acting on Yem

transforms the m value according to the following relations, but

does not change the e value,

LY =\e-m) (e*m+1) Y,

em s+l

L_Yem=\ [(e+m) (e-m'*'l)' Ye ,m-1
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.LZYem=mY en
where L =L +jL = eI9( & +Coto %; )
L_;Lx;ij= e 38 gg +3Coto %; )
L =-3 %;

(M)

em

Thus the components of E can be at most linear combinations

of Yem's with different m values and a common e, equal to the e

(M)

em

value on the right-hand side of (B.4). 1In order for L.E to

yield a single Yem’ it is necessary to prepare the components of
ﬁi:) beforehand to compensate for whatever raising or lowering of m
values is done by L. Thus, in the term L E,, for example, it

must be that E_ is proportional to L+Yém. What this amounts to is

that the electric field should be

(M)

Eem =ge(k°r)iYem(9,¢) together with
(B.5)

8. L eyt
em ° em

(B.5) specifies the electromagnetic fields of a nagnetic multipole

=(M)

Eem is transverse to the radius vector,

of order (e,m). Since
these multipole fields are sometimes called transverse electric(TE)
rather than magnetic.

The fields of an electric or transverse magnetic(T™) multipole

of order (e,m) are specified by the conditions,

E)_ eletl)
m b

o

- =( . - -
r.E] f?(kor)Yem(6,¢) , 1.0
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Then the electric multipole fields are

=(B) _
Hen _fe(kor)iyem(e »9)

(B) _ =i, (&)
Eem - wE Curlﬁem
The function £ _(k r) is given by an expression similar to the
one for Bo°
By combining the two type of fields it is poss:.ble to write

the general solution to the Maxwell's equations:

15 itzl L@ el i Epad 18 G+ E S B2 ()]

em em ko em em em em

E:imi[l 1 gL (r) B (r) L .8R8 (F)+ B> (r)]

k em em eme

where the coefficients aem’ﬁem specify the amounts of electric (e,m)
multipole and magnetic (e,m) multipole fields. These coefficients

are determined by the sources and boundary conditions,
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APPENDIX C

In this appe:id:i.x the solution referred as the eigenfunction
solution will be explained briefly.
Consider a homogeneous dielectric shell excited
by a TM-polarized plane wave.
‘ The solutions of the Helmholtz equation in regions

PLPys - P LPLp, and p>p, are respectively

% jug
V1=Z a Jm(kop) e

mz=.00

00
_ (2) jmg
V= ;m[dm H2/ (k r)+T 3 (kr)] e
These series are convergent in their respective domains and

they represent the field uniquely there. Since region 2 excludes

C . o (2)
both the origin and infinity, both functions J (k p) and H “*(k;p)
are included in the solution(they are both nonsingular in region 2).
Héa)(kop) is singular at the origin, so it is not in the expression
for Vi. a bm » S dm are unknown expansion coefficients,

n are the expansion coefficients of the incident wave and they are
assumed to be known. kl is the wave number for region 2 and is
equal to ky€ , where € is the permittivity of the shell.

To find a s bm s cm s dm the standard boundary conditions at

P=pq and p=p, are applied,s These are the continuity of the tangential

components of both the electric and magnetic fields across the air-
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dielectric boundaries. Quantitatively this is equivalent to

ame(x1)=bme(x1d)+cmHé2)(xld) (€.1)
3 Ge)/E o 3 (e Jve B, )] (c.2)
%n°m 1 r[mmxld mm 14d °

where x,=k p , x1a=\/é'r X) s e denotes differentiation with respect
to the argument.

Similarly;
bme(.xa Jre 1P )= 12 )45 3 () (.3)
Ve [b T G 0ve 820, )] 52 G048 5 (x) (Gut)
where X,k p, , x2d=V§; X,

Solving the equations (C.1),(C.2),(C.3) and (C.4) for d_ gives:

) Jm(::g)-Fme (xa)

d
mo_ e(2) (2) m
FmHm (xa)-Hm (xa)
(2)
ere F o J (x2 d)G R (xad)
* . (2)
\/e—:r [J (xad)Gm+Hm (xad)]
: (2) *(2)
and .- Jm(xl)Hm (xld)-\/—G—er(xl)Hm ()

m * °
\/'C_er (xl )Jm (xld) -Jm (xl )Jm (xld)

The infinite series for V, with the expansion coefficients dn

3

given above is an exact representation of the total field for region

P>P2.
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APPENDIX D

Equation (6.7.1) is the following:

Z
o (1-z%) m
m.m ., _ s m d? ng
f}?e Pn = gen I:Pe(zo) ?l-zn(zo)-Pr;(zo) dze(zo)-] s nfe
-1

In the derivation of the above equation, the starting point

is the differential equation satisfied by the Associated Legendre

funct

where

ions:
[(1 -z ) J + [eter1)- f—i-é] P =0 (D.1)

Equation (D.1) is multiplied by Pﬁ with the following result:

Q

Pi = [(1-z2) %e] + [e(e+1)— maa]Pm PP=0 (D.Zj

=1

Interchanging the indices n and e in the above equation results

L [a-27) %ﬁ] +fatar)- B ]2 B = 0 (D.3)

1-z

Substracting (D.3) from (D.2) gives the following:

P gz [(1-z ) -—eJ Pl [(1— J £ p" Pl (D.4)

en e

gin=e(e+l)-n(n+l) ,
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Next, (D.4) is integrated from -1 to Ze

Zo .
f m 4 [1-2°) i’;]az j & [a-2°) —n]dz +§ f P} P dz= 0
-1 - .

Using integration by parts in the first two integrals results

in the following:

z, z,
(1-2 )Pm -—e f(l- 22) %Eﬂ 9%';' dz =(1-22) P g_-‘-z"; :
-1
P g ¢
f(l—zz) IR a.e 4z §n P‘: P;: dz = 0,

Cancelling the second and fourth terms gives

25 z

o P Fen [(1— 2°) (P2 gfe“ - P de ]_1

The .ﬁalue of the square bracket at z=-1 can be shown to be

Zero, The firal result then follows as:

Z, -

(l—z )
[em 2 aa
50 ¢ R . §en

[Pm(z ) ;‘P-;(z )-Pm(z ) d—Pz(z )] (D.5)

To derive equation (6.7.2), (D.3) is integrated from -1 to zo. -

Zo ‘ z.
J’ e dz [(l- ) —-n]dz +f[n(n+l)- ;2-2-} p: ?‘; dz= O

The first integral is integrated by parts with the result:
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Zo

Zs i
iP’m iP’m 3Pm 2
(1-22)P2 d—z'nE- :((1—22) 28 IR dz‘ +{[n(n+l) - 1'222 ] Pl: Pﬁ dz = 0

Rearranging the terms above gives

Zo | %o Zo
2, ap® ap® 2 2 ap®
jiﬁl'z )& lfza f Pﬂ] dz =(1-2°)P §m '+n(n+1{4'P§ P dz

-1

Substituting (D.5) in above equation gives the required integral

as:
Zo m 2 1

2, ap? gp m % gt
[[(l-z ) e aRt 1-32 PF:PZ]dz= Een [e(e+1)Pt:(zo) P (zo)

m
-n(n+l)Pg(zo) %Ee(zo):l
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Description of the Computer Programme

A computer programme has been developed for the scattering
problem for rotationally symmetric dielectric objects. It calculates
the multipole coefficients of the scattered field in its present
form. Depending on the parameters of interest(for example back-
scattering cross-section or forward scattering amplitude) a small
addition to the programme can be made to compute these parameters
as well,

It has been tried to form a close similarity between the
variables used in the programme and the ones in the theoretical
analysise.

The descfiption of the subroutines and function subprogranms
goes as follows,

Subroutine SOMEF calculates the following quantities:

1 (e+m)! Yem Ynm

2e+l (e-m)l ? Roen™2" ’ Qnem=e(e+1)Rnem *

nem A . An

e(e+l) ,

Its parameter 1list is ICF,MAZ,DEL2,AJK,R,Q. ICF is the
truncation number(corresponding to N in theory), MAZ is the azimuthal
index m. These two quantities are inputs to the subroutine, the
other four are the outputs corresponding to the quantities whose
explicit forms are given above., DEL2 and AJK are one-dimensional
arrays, R and Q are two-dimensional arrays.

Subroutine ASSLEG evaluates the values of the Associated
Legendre functions and their derivatives for a given e,m and z as
inputs. Its detailed description is given in section 6.7.5.

The variables ALFAI and BETAI denote the multipole coefficients
of the incident field. They are complex variables.

Subroutine HPCG solves the system of differential equations
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numerically. It is called from IBM's SSP(scientific subroutine
package). The algorithm which is used in this subroutine is the
predictor-corrector algorithm. Its argument list is PRMT,Y,DERY,
NDIM,IHLF,FCT,OUTP,AUX. PRMT is a one-dimensional array. It
specifies the parameters of the differential equations such as the
starting point of numerical integration, end point, step size and
local éccuracy criteria. These are all given in the main programme.
Y is used for the solution values of the differential equations. It
iz first used in the main programme to specify the initial conditions.
After calling the subroutine, the values found as the solution to
thé differential system are stored in this one-dimensional array.
DERY is another one-dimensional array to store the right hand side
of the differential system. The error bounds(described in section
6.7.3) are given initially. by way of DERY in the main progrémme.
NDIM is the dimension of the system of differential equations. IHLF
is a parameter supplied as an output of the subroutine and showing
whether the system of equations stable numerically or step size is
sufficient,etcs FCT is the name of another subroutine which is used
for the computation of the right hand side of differential system.
OUTP is the name of another subroutine which can be used for many
purposes such as printing the intermediate solution values or termi-
nating the solution at any desired point,etc. AUX is an auxiliary
storage array which is required by the subroutine.

Subrou%ine REMZf'computes the matrices Qa and QB . Its argument
list ilelD(=x1d) » SEPSR(= C!) , ICF(=N) , ICF2(=2N) , ICF4(=4N) ,

QA(=Qa) and QB(=QB) . The first five elements are the inputs

supplied from the main programme. The matrices QA and QB are found
in the subroutine and returned to the main programme.

The three-dimensional array W corresponds to the factors W.,

1l

wz,w3 and wh in the theory. This array is stored in the main
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programme.

The two-dimensional array FIA cdrresponds to $'s in the theory
and is stored immediately after caliing HPCG and using the values of
Y supplied by HPCG,

Subroutine NEJAT computes the matrix Ha o Inputs are ICF,
ICF2,ICF4, and xa(xa). The output is the matrix HA.

Subroutine MINV is taken from IBM's SSP, It is a matrix
inversion subroutine and its description is given in full in this
package.

The elements of the final solution matrix G(see section 6.6)
are stored in the two-dimensional arréy FI used before to store the
elements of the state-transition matrix . The reason for not
using a new array for G is to hold the core requirements at the

. whe
minimum, Since the matrix F is not used after evaluating the

threc-dimensional array W, its role is an intermediate one and it

can be used for other purposes. The inverse of G is again stored
in FI,

Subroutine EXCIT computes the excitation vector ( g} Q? )T
and stores in the one-dimension;l array E. The inputs are ICF,
X2 , ALFR(=a} ) , ALFI(=al ) , BETR(=pL ) , BETI(=p} ) . The last
four quantity are one-dimensional arrays.

Subroutine GAUS is for the numerical evaluation of the integrals.
It is again taken from IBM's SSP, Its name has been changed from
QG to GAUS, There are small modifications in it as well. | The
algorithm used in the subroutine is explained in section 6.7.1.

Subroutine INTEG computes the integral expressions Igem(j=l’2’
ees37) for a given n,e and m. The results are stored in the one-
dimensional array AI. The shape of the scatterer comes into the
calculations in this subroutine. If the scattering problem is to

»

be solved for a new scatterer only this subroutine is modified.
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Subroutine SHAN evaluates the spherical Hankel functions and
their derivatives. Its description is given in section 6,7.4 in
detail).

Subroutine SBES evaluates the spherical Bessel functions and
their derivatives for complex arguments(see section 6.7.4).

Subroutine CONT computes the inverse (I-w)-l using the

algorithm given in section 6.7.2. ' 1/2
(n-m)! ]

Function ‘subprogram ZETA computes the factor [ o

for a given n and m.
2
Function subprogram FC6 computes the integrand ( Pz ) .
Function subprogram FC7 computes the integrand

m 2 2 2
[(1-22)( %En ) + .z%;g ( Pz ) ]

A printout of the computer programme is given at the end of

the thesis.
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