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ABSTRACT 

This thesis is in two parts: Chapters One and Two. 

In Chapter One 

We investigate to all orders in perturbation theory 

certain eigenvalue conditions for asymptotic freedom obtained 

from the renormalization group equations for any non-Abelian 

gauge theory and called the Chang eigenvalue conditions. 

It is shown formally that, for a non-Abelian gauge 

theory which is known to be supersymmetric for some choice of 

coupling constants, the supersymmetric theory will correspond 

to a solution of the Chang eigenvalue conditions for the theory. 

The conjecture is also made that the Lagrangians corresponding 

to some particular solutions of the Chang eigenvalue conditions 

will possess a higher symmetry. 

It is also found that the Chang eigenvalue conditions 

are satisfied to all orders in perturbation theory provided 

that the coupling constants can be made to satisfy, (a) the 

Chang-conditions to the one loop approximation and (b) a new 

system of "existenceconditions which are easily derived from 

the one loop computations. 

The Chang eigenvalue conditions are computed explicitly, 

to the order of one loop, for two non-Abelian gauge theories 

known to be supersymmetric for certain choices of coupling 

constants. 	The supersymmetric solutions are found not to be 

unique. 	We also consider the one loop renormalizability of 

the supersymmetric theories. 	It is found that the super- 

symmetric constraints on the masses and coupling constants are 

preserved by the renormalization. 
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In Chapter Two 

The "strong corrections" to the weak (V-A) current for 

hadronic strangeness conserving processes, as expressed in 

terms of the p and n fundamental quark-fields, are worked 

out perturbatively to one loop within the context of a unified 

model for strong, weak and electromagnetic interactions. 	It 

is found that the vector part of the current remains unrenor-

malized and is equal to its "bare" value. 

• 
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CHAPTER ONE 

EIGENVALUE CONDITIONS FOR 

ASYMPTOTIC FREEDOM AND SUPERSYMMETRIES 

a 

a 



SECTION I  

INTRODUCTION 

The motivation for the work described in this Chapter, 

Chapter One, has been a paper by N.P. Chang(1) on the problem 

of asymptotic freedom for gauge theories involving Higgs scalar 

fields. 	As it will become clearer shortly, such theories 

are asymptotically free if the response of the renormalized 

coupling constants, for the Yukawa and self-quartic Higgs 

scalar vertices, to a change of the "subtraction point" can 

be described using only the corresponding change of the gauge 

coupling constant of the theory, and that the gauge coupling 

constant does vanish asymptotically
(2) 	

The observation made 

. by N.P. Chang(1)  is that such a "description" for the "effective" 

Yukawa and self-quartic scalar coupling constant is possible, 

i.e. being explicit functions only in the "effective" gauge 

coupling constant, provided that certain eigenvalue conditions, 

obtained from the renormalization group equations of the theory, 

are satisfied. 

Before we proceed to give more precise meaning to these 

general ideas, it would be in order to consider briefly the 

renormalization group techniques(3-7)  and the concept of 

asymptotic freedom. 	We shall subsequently see that the 

aforementioned system of eigenvalue conditions is essentially 

an infinite system - though finite when considered to any 

finite order in the gauge coupling constant of the theory. 

The problem of existence of solutions for the Yukawa and self-

quartic scalar couplings, for any gauge theory, such that the 
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eigenvaiue conditions for the theory are satisfied to all 

orders is considered in section II. 

In this introductory section we also give a brief 

review of the "Supersymmetry-Formalism" and, in particular, 

of the construction of supersymmetric Yang-Mills Lagrangian 

theories
(8-11) 	

The two supersymmetric and SU(2) gauge 

invariant Lagrangians
(10,11)

that are studied in sections 

III and IV, in connection to the "Chang-problem", are given 

in a manifestly supersymmetric form and also, for a special 

gauge"), in component form 
 

(a) The Renormalization Group and Asymptotic Freedom 

A powerful tool for studying the asymptotic properties 

of renormalizable field theories is the "renormalization group 

techniques" developed by various authors(3-6):  in each case 

there is a definite equation which governs the behaviour of 

the renormalized Green's functions of the theory under scaling 

of the external momenta. 

Any renormalizable field theory contains two types of 

parameters; masses or coupling constants with positive dimen-

sions of mass, "the generalized mass terms",and secondly 

dimensionless coupling constants. 	When we consider a Green's 

function for large space-like momenta, so as to exclude any 

Landau singularities, we would expect that the "masses" can 

be neglected and the leading asymptotic behaviour of the Green's 

function, therefore, to be the same as that of the massless 

theory. 	This can be shown to any finite order using Weinberg's 

theorem. 	Furthermore - if we pursuit this argument intuitively 

- since the massless theory contains no dimensional parameters 
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to set the scale momenta, the asymptotic behaviour of the 

Green's function would be expected to be determined by dimen- 

sional analysis. 	This is called canonical scaling, but it 

does not occur in practise because renormalizable field theories 

contain a "hidden" dimensional parameter p which sets the scale. 

This parameter p is arbitrary and is the point at which the 

subtractions are performed to make the theory finite or alter-

natively, when the n-dimensional regularization method
(12) 

is 

used, p is defined(6'13)  as the "unit of mass" for the re-

normalized theory. 

The renormalization group equations can be obtained by ex-

ploiting the fact that the unrenormalized Green's functions are 

independent of the arbitrary parameter p, and reflect the fact 

that any change of the point p can be compensated by a corre-

sponding change of the charges, the scale of the fields, and 

the gauge parameter (for gauge theories) - and also of the 

"masses" (if present) in the techniques developed by Weinberg(5)  

and t'Hooft
(6) 

 

We consider the renormalization group equations(3-6)  for 

a renormalized, connected, and amputated Green's function 

r
ren

(Ap/, Xpn, gi, p) at some large unexceptional space-like n-

momenta Xpl..Xpn, where X(X?-.1) is a parameter whose limit X -4- 00 

is studied, and the "masses" of the theory are neglected. This 

equation, obtained simply by considering the massless theory 

as outlined above, assumes a simple form in the Landau gauge 

(for gauge theories) and is given by 

L 
1.11_ 	,.„(c,3;.) 	(9; ) 	t::„„( 	 ; \A) 	0 

a% (1.1) 

where g., i = 1,2.... are the dimensionless renormalized 
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coupling constants of the theory, and 

with the bare parameters being kept constant, and Z being the 

overall multiplicative renormalization factor of the Green's 

function; 	i .e . ct„(1? ;.it,y) 	 ; 9
0
L ) 

The general solution of the renormalization group 

equation (1.1) is expressed in terms of the so called effective 

ef4 , 
coupling constants 9 1(  4 

	

(,(K) 	, where 	, which 

can be understood physically to be the renormalized coupling 

constants of the theory corresponding to the "subtraction 

point" 	VI,= 1.0t= 1A e.4. 
	

The effective coupling constants 

satisfy the linear differential equations 

K 	111... 

(1.2) 

neff 
with the boundary condition 'OK ( 	v, ) = C 1(  , and the general 

solution to the renormalization group equation (1.1) is given 

by 

4  ff 	( 	I 
rite n 	Pt 	; t 	

Dp 
A co( 	

fff 
(x)) ax 

(1.3) 

where Dr  gives the dimensions of the Green's function V in 

units of mass. 

The ultraviolet behaviour of the Green's function 

L',,014); 9t, IA) 
	

as ?$'"/ 	, can be studied by considering 

the behaviour of the expression on the left hand side of 

(1.3) as t 4 co . 	This is basically a study of the effective 
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x. 	eff 
coupling constants to this limit. 	If 4 d K (A- ,%0 exists 

J. 

and equals some given set denoted by gk, called an ultra-

violet stable point, then the theory at this limit is deter-

mined by the coupling constants gk  and all information of 

the initial values (t = o) of the coupling constants is "lost". 

It is due to this consequence that this approach enable us to 

handle the dynamics of strongly interacting field theories as 

it has been stressed in the literature() 

A renormalizable field theory is said to be asymptoti- 

* 	eff 
cally free if gi  = 0, i.e. ,&m 9, (410 	0 	for all i. 

+.402 

The asymptotic behaviour of amplitudes of asymptotically free 

theories is calculable by ordinary perturbation theory. 	The 

anomalous dimensions of the Green's functions X(9 ) 	are zero 

when the theory is asymptotically free and canonical scaling 

is obtained up to calculable logarithmic corrections. 	Asymp- 

totically free theories offer an explanation for the observed 

scaling in deep inelastic lepton-hadron scattering. 	It has 

been shown(14) that Bjorken scaling can be obtained only if 

the strong interactions are described by asymptotically free 

theories. 

The existence of an ultraviolet stable point other than 

the origin in the space of coupling constants of the theory is 

only a conjecture. 	The stability or otherwise for the origin, 

though, may be determined by investigating the system (1.2) 

perturbatively in a small region near the origin. 

Coleman and Gross have shown(15) that no renormalizable 

field theory without non-abelian gauge fields can be asymp- 

totically free. 	The asymptotic properties of non-abelian 

gauge theories have been studied extensively by a number of 
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authors (2,16,17) 	
In general any non-abelian gauge theory 

contains three types of dimensionless parameters: the gauge 

coupling constant g; the Yukawa-type of coupling constants 

hi, i = 1,2..p; and the self-quartic scalar coupling con-

stants Aa, a = 1,2...q -with the system (1.2) for the 

effective coupling constants of the theory, where the t-

dependence is understood and we dispense with the superscript 

(eff). 

43 = (1.11,1) 	al .15,„( 93,:n , bOk 	P Ac4 ( 
C 	 ctA. (1.4) 

for i = 1,2..p and a = 1,2..q, and with the notation that 

h and 	stand for the sets itli; 4.=1,2...pl and Pc(; 

respectively. 

In a small region near the origin the 13-functions of 

(1.4) can be approximated by their lowest order terms in the 

effective coupling constants of the theory. 	It is found 

that(2,16,17) 
	

(55(9,k),) = _6,93(4-) , h. orders. 	Hence 

g(t) -4 0 as t 	0 provided that the constant b
l' whose sign 

depends on the overall number of matter fields of the theory, 

is positive (and having assumed that the "higher order terms" 

neglected in (55  vanish asymptotically faster than g3(t) - 

which is found to be true if hi  (t) and )te„(-11 -4 0 	as } -4 0 ) 

The condition bl  ) 0 	is found
(16,17) 

not to be restrictive 

in constructing "realistic models" for the strong interactions. 

Similarly the functions 	and Nct 	for i = 1,2..p 

and c( = 1,2..q are also computed only to the one loop approxi- 

mation. 	The analysis of the system of coupled differential 
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equations (1.4) obtained to this order may be simplified 

by factoring out their dependence on g(t) by defining a new 

set of variables 11i(t) = hi(t)/g(t) and 5,a(t).= ›t a(t)/ (i4(t) 

for all i = 1,2..p and a = 1,2..q. 	The system of coupled 

equations (1.4), to this order, in terms of the new variables 

have the form (t-dependence understood). 

t (I1) 	Sr 	a 	Q, 	,a) 
'32(.0 ci 	 TO-) 4- (1.5) 

for i = 1,2..p and a = 1,2..q, and with similar notation as 

previously that h stands for 	0 	and k for 

f ; 	. 1,2... ci 3 
We summarize the general conclusions obtained

(16,17) 

for the asymptotic behaviour of the coupling constants hi(t) 

and Aa(t). 

(a) For h(0 -4 0 as t-4 co for all i = 1,2..p we have the 

-* 
condition(17) that there must exist a point h

i 
such that: 

(1) (; ) _ 	_* = 0 	for all i = 1,2...p, and 
1100 = hj  

(ii) all the eigenvalues of the matrix defined below 

have negative real parts. 

{ a Y(-1,)}1 
J1;  

It is found
(17) 

that the effective Yukawa coupling constants 

do vanish asymptotically for most (gauge) theories of interest, 

but they vanish faster than the gauge coupling constant, i.e. 
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h. = 0 for i = 1,2..p, and hence their contributions to the 

coupled equations for the effective self-quartic scalar 

coupling constants are neglected. 

(b) Similarly the system of coupled equations in )1a(k)  (1.5) 

is investigated along parallel lines; having set h(t) = 0 

in the functions Qa 	). 	It is found(16,17)  that the 

effective self-quartic scalar coupling constants vanish asymp-

totically only if the number of Higgs scalar multiplets in the 

theory is smaller than some critical number which depends on 

the dimensions (no. of generators) of the particular non- 

abelian gauge group considered. 	Furthermore this critical 

number is found
(16,17) 

to be much smaller than that needed to 

break the gauge symmetry spontaneously and generate masses for 

all the gauge fields according to the Higgs-Kibble mechanism
(18) 

The conclusion was drawn(16,17) that in order to construct 

realistic asymptotically free models for the strong interactions 

the masses of the gauge fields would have to be generated by 

dynamical means(19)  

N.P. Chang(1) has pointed out recently that solutions 

K 
of the form h.

1 
 (t) 1). 	4 0   (t) K_11  

group equation, for the general non-abelian gauge theory 

considered above, provided that certain eigenvalue conditions 

- are satisfied. 	The coefficients h.
(1) 	

, hi2) 	... are con- 

stants independent of t and the eigenvalue conditions are 

obtained by substituting "these solutions" in the equations 

(1.4) and requiring consistency of the system; 	i.e. denoting 

this substitution into any function F(g,h 2 1 ) by F(g,h,k )/E.C. 

we obtain from (1.4) that 

exist to the renormalization 
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IE.0 

c° — (10 1<-1 
E x hi 2 	st7 	Ni c (3,V1,A) 

84 

and for consistency 

00 

( 	K  1.1(./()  ,k-1 ) 
k=i 	u 3 N( 2 ,[1,H s.c. 	phi (5,11,A)1 

E.0 

for all i = 1,2..p, where the constants TIC" 	, h.-(2)  
., must 

satisfy these conditions to all orders in g and A 	The 

basic idea is that, if such a solution exists, the Yukawa 

coupling constants vanish asymptotically like g(t), i.e. for 

(1) 
ui 0, i = 1,2..p, and their non-trivial contributions to 

the renormalization group equation for the self-quartic scalar 

coupling constants cannot be neglected. 	This is found(1) to 

improve "the critical number of Higgs scalar multiplets" for 

a non-abelian gauge theory to be asymptotically free. 

The self-quartic scalar coupling constants can also be 

treated in a similar way and eigenvalue conditions obtained 

-(2) it 
for which k4(4) = 	1.) (51(-k) 	)t 	4:3(-) +h. orders in g(t) , where 
-Ti(i) 	(9.) 

) 	• • - • • 	are constants independent of t. 	We shall of.  

refer to the total system of eigenvalue conditions obtained 

this way as the Chang eigenvalue conditions. 	We note that, 

for any given gauge theory, if a solution exists satisfying 

the Chang eigenvalue conditions of the theory to all orders 

in g(t) then one of the following two cases is true: 

(1) either tim g(t) = 0; the origin is an ultraviolet stable 
t400 

point and the theory asymptotically 

free 
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(2) 	or, tim g(t) = 0; 	the origin is an infrared stable 
t-,,- co 

point. 

(b) Supersymmetric and non-Abelian Gauge Invariant Theories  

The word Supersymmetry is used to describe the funda-

mental global Fermi-Bose symmetry firstly introduced by Wess 

and Zumino
(20) 	

These authors constructed a Lagrangian 

theory which is invariant up to a total 4-divergence under 

certain transformations which mix Bose and Fermi fields. 

Salam and Strathdee have shown that these transfor-

mations may be viewed
(21) 

as the realization of the "Super-

symmetry group" on some generalized fields, called superfields 

and defined over an 8-dimensional space whose points are 

labelled by ( 	Oa  ); where Xi, denotes the ordinary 

space-time coordinate and Oa  is an anticommuting Majorana 

spinor (see Appendix I). 

The anticommutativity of the Majorana spinors implies 

that any superfield 	 1?( x .0 ) is a polynomial in 00t, and 

is fully specified by sixteen ordinary functions of space-

time which are the coefficients in its expansion in powers 

of 0 . 	The transformation properties of these coefficients 

or components under the action of the Poincare or the Super-

symmetry group can be determined from those of the superfield; 

i.e. for a scalar superfield, by definition, 4;( X,01 ) = cl)()c,0) 

 
where < 	, 0a.) 	( 	, 0ot) 	is given by(11) 

0:, CX:(A) OA 	for the Poincare group 

(1.6) 
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for the Supersymmetry group 

(1.7) 

where the matrix 0
Ca
(I\ ) denotes the Dirac spinor represen-

tation of the homogeneous Lorentz transformation A and the 

parameter Ea  is an anticommuting Majorana spinor. 

In the construction of supersymmetric Lagrangians one 

uses the so called chiral superfields
(11,22) (1)4.(x,0) 	and 

	

C ,() ) 	rather than the general 16-component superfield 

	

CID( X , G ) • 	They are defined as the general solutions to the 

following two linear differential equations 

[1-ors .D] 134.(x,e) 	0 	, 	1+-1. 	, D]ck ( y,,e) 
1 2 	 1 2 

where 	Oct  s d 	ti( v, )„ 
-60,. 	 x 

(1.8) 

(1.9) 

and may be given in powers of 0 by 

x,e) = A-±(x) 	TA• (x) +1 	F±(x) 	)(S 0 i Ft  ( X) + 
4. 

(IteIse (± i.a, A ±( x)) 1-1- 60 (-0'T., ( x)) 4- :L. (00)x' (- )7\ (x)) 
11. 	 11 	 (1.10) 

where A +  (x) and F4. (x) are complex boson fields, `1) 	and 

are right- and left-handed Dirac spinors respectively; 

4/4. _ 1.11-1Xs 	• 	It is possible to identify 00_ with 

the complex conjugate of q)+' 	If this is done kle and 1/411 
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are identified as the left and right handed components of a 

Majorana spinor. 

When products of superfields are considered the follow-

ing multiplication laws are obtained
(11) 

(in obvious notation). 

• 1-31+.1)24. = 1334 	(chiral), 	= qy 	(chiral) 	(1.11) 

(1)..1+ 	4141).3 	(general superfield) 
	

(1.12) 

The construction of supersymmetric Lagrangians in this 

formalism is rather simple. 	It is found that the action 

integral of a Lagrangian density x_cq 
	

is invariant 

under the transformations (1.7) if every 0-dependent term 

in 	( (I)+' 4110_) has the form of spacetime divergence; 

	

1)o 1 	 by (1.7) 

E 	cfy, 	( 	) 	surface terms = 0 
ae 

Salem and Strathdee have shown that it is always possible to 

construct Lagrangians having any 0-dependent terms as a 

total divergence. 	We list their conclusions(11)  

For chiral superfields 

—C 5.D ) (1)÷ 
	

F+ (the component of (P4- ) + total 4-divergence 

(1.13) 

For any general superfield 



21 

, 
60 2  for 1  i(D.D) 	(x,o)= coeff. of term ( 	Y 	total 4- 

64 divergence 

(1.14) 

The operator (DD) is invariant under the transformations (1.6) 

and (1.7), where B" = (C-1)d f5  1)1  , C being  the charge 

conjugation matrix. 

It has been shown that supersymmetric Lagrangians 

invariant under local abelian(8) or non-abelian(9-11) group 

transformations can be constructed. 	The two supersymmetric 

and SU(2)-gauge invariant Lagrangians which we consider in 

Sections III & IV are given by: 

(11) 
Model I, 	for matter superfields (P.;-(X,O) (4.1.1.) transforming  

as doublets of SU(2); 	i.e. 	(1)±(X,0) 	0-1-(X,e) (1)4-(x,0) 	(1.15) 

+ 1 ( D) (4.  e" (13+  + 	-04)  ckl 	(I) D.) [ef;"_. 4+ (lb.: 4 8 	 2. 

(10,11) 	 K 
Model II, 	for matter superfields 441C14- 	defined by 1)1+ = sr+ T 

ri-NR 	A (  Al(*1 
where 	are the Pauli matrices and 1"4- 	[11. =1"..7.) transform 

as triplets under SU(2);  i.e. 

(1)-1- (X,O) —4 cit (X,O) 1)44-(X,O) O.+ (Y.,0) 
	

(1.16) 

Isu 	+ ± (1501  TA. 	e" 11).4. 
16 

The Lagrangian Xty, for the gauge superfield T(X,O) a general 

hermitian and pseudascalar superfield, will be considered 

shortly. 	The remaining  terms of Models I and II are super- 

symmetric by (1.11 - 1.14) and invariant under the trans- 
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formations (1.15) and (1.16), respectively, for egY  trans-

forming according to (g is just a constant) 

e'VP 	Q- e94) 
	

(1.17) 

with the condition 

.Q1 

The Lagrangian Sy is constructed by defining the superfield 

V by(9)  

= i+0 51 
L 	2 	.1 cc [elY D?, e" 

using the eqns (1.8) that Q.+ satisfy, it has been shown(9)  

that V. and V 
	

transform under the gauge transformation 

(1.17) according to 

-1 
V Q.+ V q+ + i S2+ c/ 	Q- 	Q- +1..i Q.-) P_- 1.4 	14 	 kA 

9 

and furthermore that 

[ 1_i O5 Di vM  
2 	c( 

11+ Is  Di \I: 
I- 	2 	ix 

transform homogeneously under gauge transformations and are 

chiral, hence 

• ■dii 	f 	\64-11  

3
_12 5.D -141(C i 1-tX5) ( 	\iy,) 	 /0 ) 	1+ 1-Xs)  ( Dot\c) ( NVt, 

I. 	1 

( flo D) 14\11, \t‘,, 	 total 4-divergence 

123 
(1.18) 
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is gauge invariant and supersymmetric by (1.11) and (1.13). 

We shall now give the models I and II in component 

form using (1.10) for °IP+ , the components being doublets and 

triplets of SU(2) respectively, and a special gauge (8'10) for 

T for which 

t X15 G VJy + 1 5o ()Isl. 4_ 1 (00)1 1)5  
24-21 	 16 

K 
"E where \.n1 a 
	- 	= ?R'  & b5  7, 	-0( and W is transverse. 

si - - Ft 	Y + 	I(.0.1`41EKti\Al l,"X.i) + (D%,A)4  (D I,A) 

+(D 8)4 ( D,,b) + 	X" D‘A`i) 	M 	- 	- 	el?) 

+ L9 A4.  5i.`-t` 	- 	Tt  X.' A + 	6* 	-c` 	_ 	 ci 	XI.  
2 	 2 	 2 	 2 

- 9( A+  A) (84.11) + 9. 	84  A) + 	( 	A)2  + (32  ( A'r.B)1  

where 

F 	 w 	vd i 
V4 

_ - 	V 	IA 	E 	v\iv 

A+ =(A-i-LB)Ari, both A & B being complex fields, and 41  r- ‘j(j.v  

(a Dirac spinor) 

+ I  ( 	AL * (3 e' i K 	)1  + 1 (a 	+ (1 II(  W ly  V )1  

2. 
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where A1± 	A1 ± 81  )/5 	and 	t 	)It  VE. where 7Ci  & 

(;are the Majorana spinors of the superfields 	( x ,9 ) 	and )+(X,6)  

respectively. 

Finally we point out that the fields D 5  for M)(x,G) and 

F+ 	for (P± (x,0) 	of Models I and II are "auxiliary" and 

have beer eliminated from the Lagrangians using their field 

equations. 

• 
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SECTION II  

THE CHANG EIGENVALUE CONDITIONS AND SUPERSYMMETRIES 

In section I.a the Chang eigenvalue problem
(1) 

was 

formulated. 	It was pointed out that if certain eigenvalue 

conditions are satisfied, for any non-abelian gauge theory, 

we obtain the solutions 

11L(.9 	2()1 	h. orders in g(t) 

(1) 2. 

!la(+) = as (4) + h. orders in g(t) 

(2.1) 

for i = 1,2..p and a = 1,2..q, and the theory is asymptoti-

cally free if Zim g(t) = 0; we use for convenience the same 
+400 

definition of coupling constants as that given in section I.a. 

On the other hand it has been shown that internal local 

symmetries are compatible with supersymmetries(9-11) 	The 

main feature of the supersymmetric and non-abelian gauge 

invariant Lagrangians that have been constructed(10,11) is 

that the only independent coupling constants of these theories 

are the gauge coupling constants (see section I.b). 	This 

class of Lagrangians are asymptotically free provided that 

the renormalizability preserves their supersymmetric nature 

and that 2im g(t) = O. 	Slavnov(23) has shown very recently 
4- co 

that the renormalization of the supersymmetric and gauge 

invariant Lagrangians does preserve the nature of these 

theories. 
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The problem that presents itself is whether the super-

symmetric Lagrangians can be obtained as solutions of the 

eigenvalue conditions obtained by Chang; as it would be 

expected if everything is consistent
(24) 

Furthermore we 

would expect that a solution corresponding to some super-

symmetric theory will belong to a special subclass of solutions 

of the Chang eigenvalue problem. 	This special subclass, 

by definition, consists of solutions of the form hi 	h
i
(1)g(t) 

 
-Cl) 2 

and 	71,x(t) 	Ack g (t) satisfying the Chang eigenvalue 

conditions of the theory to all orders, i.e. no higher order 

corrections in g(t) are obtained. 	This is basically a problem 

to all orders of perturbation theory in the effective coupling 

constants of the theory. 

This section is divided into three parts: in part (a) 

we study to the one loop approximation the general form of 

the bare Lagrangian which "corresponds" to a renormalized 

theory with its Yukawa and self-quartic scalar coupling con-

stants satisfying the Chang eigenvalue conditions to this order; 

i.e. given by (2.1). 

In part (b) we investigate what the necessary and 

sufficient conditions are for the existence.of the aforementioned 

special subclass of solutions to the Chang eigenvalue conditions. 

It is found that these conditions are satisfied by any choice 

of coupling constants for which the Lagrangian is known to be 

supersymmetric. 

Finally in part (c) we consider the Chang eigenvalue 

conditions to any finite order in perturbation theory for 
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solutions of the general form (2.1). 	We obtain the system 

of simultaneous equations for the unknown coefficients, of 

the power series in g(t) solutions (2.1), and study the exis-

tence of the higher order terms for any given lowest order 

 
solution h.

(1)  and X
a
(1) 

• 	
Sufficient (but not necessary) 

conditions are found for the Chang eigenvalue conditions to 

be satisfied to all orders, for any given lowest order solution 

obtained to the Chang-problem. 

(a) The Chang-Problem and the One-Loop Renormalization of  

the Theory  

The general solution of the type (2.1), an infinite 

series in g(t), does not hold for (t = 0) if the renormalized 

gauge coupling constant of the theory, g(t=0), is a "strong 

coupling constant". 	In this case the renormalized coupling 

constants for the Yukawa and self-quartic scalar vertices are 

given functions of the renormalized gauge coupling constant 

determined by analytically continuing the solutions (2.1) 

beyond the given radius of convergence for their validity. 

We shall assume that the renormalized gauge coupling 

constant, g(t = 0), is a weak one or that the solutions of 

the type (2.1) are finite series in g(t) so that their validity 

extends to (t = 0). 	Given the renormalized Lagrangian corre- 

sponding to the solution (2.1) for t = 0, we can raise the 

following question: What, if any, are the relations among 

the bare coupling constants for the theory to be finite? 

We shall only attempt to answer this question to the 

one-loop approximation. 	It will follow naturally that the 
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supersymmetric Lagrangians can be obtained as solutions to 

the Chang eigenvalue conditions considered to lowest order. 

We use the regularization method of analytically 

continuing  the dimensions of space-time(12), denoted by the 

letter n. 	All the subtractions that need be performed to 

render the vertices finite, to the one loop approximation, 

appear as simple poles at n = 4. 	The coupling  constants of 

the bare Lagrangian t 	I 	have non-zero dimensions 

for n 	4. 	Their general forms, in terms of the renormalized 

dimensionless coupling constants 19,[4,),„1 , are given to 

this approximation by: 

( f  62/  133  
h— 

	

o 	1.- rya, / 1)4'  ( 	9 )  
F . 

 

11- 

Not 

	

X:( 	 .)‘c( f  6, ( ,  
h-4 

(2.2) 

for v ? 

(2.3) 

for a= 	(2.4) 

Where 	is the arbitrary unit of mass introduced in defining  

the dimensionless renormalized coupling constants of the 

theory. 	We have used the coupling  constant symbols as super- 

scripts on the residues of the poles at n = 4 in an obvious 

notation; i.e. one to one correspondence with the bare coup- 

ling constants of the theory. 	The dependence of the residues 

on the renormalized coupling constants has also been explicitly 

shown to the approximation considered, with the shorthand 



(2.5) 

for 1= 	p (2.6) 

for cx 	 (2.7) 
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notation that h stands for the set [ 	; 	and )■ 

for 	}1,* 	. 	We also observe that the residues 

	

1D41  ( ft, 9) 	are homogeneous in g and t h t and of order 3, 

1).1  ( , while 	6 	h. ) 	are homogeneous in 	I , 	3 and g2 

and of order 2. 

The differential equations for the effective coupling 

constants of the theory can be easily computed following the 

work by 't Hooft(6'25). 	Using the expressions (2.2), (2.3) 

and (2.4) we obtain 

The Chang eigenvalue conditions considered to the one 

To) 
loop approximation determine only the coefficients 	and 

	

V: of the solution (2.1). 	We substitute in the equations 

(2.6) and (2.7) the forms 

k1 (4.1 = 	 le 	A d  (1) = 	 (2.8) 

and obtain 

g 	khi L 	11() , 	) 

GI+ 	 for 	 p 	(2.9) 
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for 0(= 	(2.10) 

The constant coefficients i- 1")  and (1)  are determined from 
a 

the system of simultaneous equations obtained by substituting 

the equation (2.5) in the equations (2.9) and (2.10). 	The 

dependence on g can be factored out and the Chang eigenvalue 

conditions are, in obvious notation. 

h. - 	i 
1
(1) 

13g 
 
1 = b 	(h

(1) 
 , 1) 1 	1 for i = 1,2...p 	(2.11) 

2  dal)g 	(1) 	 (1) 
=b

A
1

ct 
 ( A 	, ft 	, 1) 	for a = 1,2...q 	(2.12) 1 

We shall assume that a non-trivial physically acceptable 

solution exists to the system of equations (2.11) and (2.12). 

The solutions (2.8) for t = 0 can be substituted in the express-

ions for the bare coupling constants (2.3) and (2.4), we obtain 

dE 

111.  = y2-1112  { 1.(t1)  9 4- 6hi ( 	, 9)  
(h- 4) 

1.4`1--‘1 	1`,1)  ' 4- 1:: ( V' 	, TI".) $ , 9 )  
(n- 

Substituting (2.11) in (2.13) and using 

, 02_t112 1,(..1.) 9 	v...) 	 1 
ni = 

(n- 
for i = 1,2..p 

(2.15) 

for i = 1,2..p (2.13) 

for a = 1,2..q (2.14) 

(2.2) we obtain 

Similarly substituting (2.12) in (2.14) and using (2.2) we obtain 
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= vit-h  IT 1 1  24! 01 el = 74190 	h. orders in g°  
(h-4) 

for a = 1,2...q 	(2.16) 

We conclude that a solution to the Chang eigenvalue 

problem of the form (2.1), valid for t = 0, implies the re-

lations for the unrenormalized coupling constants given by, 

to lowest order in go  

lo- (f) 	o 	ft) nl 
n 	0 	st 	A a 7.- A a 	o 

for i = 	& a = 1,2..q 	(2.18) 

The implications of this result are obvious. 	We 

observe that all the relevant vertices of the Lagrangian 

corresponding to the Chang solution (2.1) are rendered finite, 

to the one loop approximation, by a single arbitrary sub-

traction, i.e. 0Vg = go-g. 

It also follows simply that the supersymmetric Lagrangians 

can be obtained as solutions of the Chang eigenvalue problem. 

That is, given a non-abelian gauge theory known to reduce to 

a supersymmetric one for a given choice of coupling constants, 

then the coupling constants corresponding to the supersymmetric 

theory satisfy the Chang eigenvalue conditions considered to 

lowest order. 	The proof will be given for completeness sake. 

Let us assume, for convenience, that the Lagrangian 

considered reduces to a supersymmetric one for the choice of 

coupling constants given by (2.18). 	Renormalization preserves 
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the supersymmetric nature of the theory(23), so the coupling 

constants are given by (2.8) after the one loop renormalization 

of the supersymmetric theory. 	We substitute (2.8) and (2.18) 

in the expressions (2.3) and (2.4) and obtain 

k(3°
(
i
) 	

T1(11)  (3 + 6i ( t.1 9,9)  
(h- 

for i = 1,2..p 	(2.19) 

and 

IT( 901  = .11.1.-r) 	te. 4.  6lia  ( -Vs) 	1.1('° s 	) 

( - 

for a = 1,2..q 	(2.20) 

We stress that the consistency of the expressions (2.2), (2.19) 

and (2.20) follows from the fact renormalization preserves 

the constraints on the coupling constants of the supersymmetric 

theory
(23) 	

Substituting (2.2) in (2.19) and (2.20) we obtain 

that the Chang eigenvalue conditions (2.11) and (2.12) are 

satisfied, Q.E.D.. 

(b) The Chang-Problem and Solutions of Higher-Symmetries  

It has been pointed out that within the general class 

of solutions (2.1) to the Chang eigenvalue problem there may 

exist a special subclass which is of particular interest; 

i.e. the solutions 

6011 	t 1:3 (&) 	and 	c(. R) 	51d, (3200 
	

(2.21) 

for 	cc 
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to all orders of perturbation theory. 	We shall now proceed 

to investigate what the necessary and sufficient conditions 

are for the existence of these special solutions (2.21). 

The differential equations for the effective coupling 

constants of the theory can be worked out formally to all 

orders of perturbation theory. 	Using this system of differen- 

tial equations, we can calculate the Chang eigenvalue conditions 

corresponding to the special type of solutions (2.21). 	An 

infinite system of simultaneous equations in \ IN, 

and t 	; 	1,2..9. 1 is obtained. 	The problem is to find the 

necessary and sufficient conditions for the existence of a 

solution to this infinite system of simultaneous equations. 

Our analysis of the Chang eigenvalue conditions to the 

one loop approximation is very suggestive to what these con- 

ditions should be. 	If we assume that a special solution 

exists, then it satisfies the Chang eigenvalue conditions to 

all orders, order by order; i.e. to the mth  order t
(
ll)  Idtn}  

and  ?■(:) 	a  (e"))9.  . 	It has been shown that the relevant 

vertices of the theory corresponding to this solution are 

rendered finite, to the one loop approximation, by a single 

arbitrary subtraction. 	Hence,"naively",this is a property 

that should hold to all orders or equivalently, it is a 

necessary condition for the existence of special solutions to 

the Chang eigenvalue problem; , i.e. the (m+l)th  order counter- 

terms for the Yukawa and self-quartic scalar vertices are given 

by 

6(1714-'0_ 1.. 111) 	t 	9( m)1 	8.,  rt:
(
4-1)._ 1( lc-12 	v cro.))1_ (Vnl- } 

for i=1,2..p 	and a = 1,2..q 
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It is fairly obvious that this necessary condition should 

also be sufficient. 

We shall, therefore, formulate "the single coupling 

constant renormalization" problem. 	This problem can be 

stated simply in notational form: we make the assumption that 

the bare and renormalized coupling constants of the theory 

may be given by 

Act 	as 	y d.  
(2.22) 

for i 	and 'X=1 $1...ct 

where {Xi ; 	?) 	and [ \Jo, ;al:1,1-1:11 are unknown 

finite constants. 	Given the stringent assumption (2.22), all 

the relevant vertices must be rendered finite to all orders, 

order by order, by a single arbitrary subtraction. 	Hence a 

system of simultaneous equations is obtained for the unknowns 

Xi 	i=1,1..p 	and kja 	c( r. 	. 	It will be shown that 

this system of simultaneous equations is exactly equivalent 

to the Chang eigenvalue problem obtained for the solutions of 

the special form (2.21). 

The bare coupling constants of the non-abelian gauge 

theory, considered to all orders in the renormalized set of 

coupling constants, are given by(6) 

y2-tv2 
	+E Oc iv  9$  

( 	 J 

co 	ht  

= 	{ hi. k E_ a, ( 9 , h $ )}  1 
')=1 	(h-Lt)v  

(2.23) 

(2.24) 

for i = 1,2..p 
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Y 	+ °. a?: ( a u. 	L 	 )  1 
V=1 	( n- ) 

for a = 1,2...q 

(2.25) 

Subtractions of higher order poles at n = 4 are generally 

needed to render a theory finite beyond the one loop approxi- 

mation. 	The sum over all such subtractions, for the relevant 

vertices considered, are given in the expressions (2.23 - 2.25); 

where the letter V denotes the order of the poles and is used 

as a postscript for the corresponding residues av(9,110%) 

We use the same notation as in the one loop problem for the 

explicit dependence of the relevant residues on the coupling 

constants of the theory. 	We note that there is no dependence 

on the coupling constants of the self-cubic scalar vertices of 

the theory or masses(6'13)  

The differential equations for the effective coupling 

constants of the theory are given in terms of the residues of 

the simple poles by(6). 

Lal((3,11,7%)-19 d 	a 	 8-L-1 al-(cSjit?■) 
eca 	 cTiv, 	1 	01,-xct 

(2.26) 

ht hi 
otilt = 1  at (I,11 0) -{9 	+E ht L +Z._ aci 	\ oci<1,1100 

{=3. 	a7"1- 	daa 

(2.27) 

for 	1 



36 

lot 
= 0):t('1 1 11:),)- 	d 	E A, 91_ 1 ai  ( 1,11,A) 

al 	 2 6N 	a-1„ 	coct  
(2.28) 

for a = 1,2...q 

The residues of the simple poles are essentially poly-

nomials in the coupling constants of the theory and may, 

therefore, be redefined as 

5 	00  
a 

	

	E 
, 

(( 11 A) 
‘.4.1 

a1̀   7- L 6„ 	,)1/4) 

(2.29) 

for i = 1,2...p 	(2.30) 

for a = 1,2...q 	(2.31) 
m 	c° 	Act 

bw (9,11,A) 
W.1 

tht 
where 0„, ( 3 ,60,) 	and bw  (301,X) are homogeneous 

functions of g, h and " 'X" and of order (2W+1). 	Similarly 

6:(1)11,N) 
	

are homogeneous in g
2, h

2 
and -X and of order 

(W+1). 

We substitute (2.29 - 2.31), correspondingly, in the 

differential equations (2.26 - 2.28) and obtain 

49 bdd
4 9 ,6 1-A ) 
	 (2.32) 

of 	 \A 	( 	11 5)1) 
dk 	w=1 (2.33) 

for i = 1,2...p 
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co 	a 
ol•L„ 	L \AJ 

(2.34) 

for a = 1,2...q 

The Chang eigenvalue conditions for the special sub-

class of solutions (2.21) can be easily derived from the 

renormalization group equations of the theory (2.32 - 2.34). 

We substitute (2.21) in the system (2.32 - 2.34) and obtain 

for consistency: 

From (2.32) and (2.33) 

_ 	 co 	_ 
91. 	\r4 	cs 	vit 

W=1 	 W =1 

(2.35) 

for 	= 1,2...p 

Similarly from (2.32) and (2.34) 

2 	0 et°  NA Ow  03 :CO 	s 	,,(9,v1,x(1) 
W=1 	 v4=1. 

(2.36) 

for a = 1,2...q 

Equating the coefficients of terms of the same order in g of 

the left- and right-hand sides, respectively, for each of the 

identities (2.35) and (2.36) we obtain 

t 	, 	, 	61„' ( , 	, 	for i = 1,2...p (2.37) 
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1 	,?toc 	_ 	_ 
2 bw ( 1, , ) 	bw  , , ) for a = 1,2...q (2.38) 

for all w = 

We have obtained an infinite system of simultaneous 

equations for the variables hi, i = 1,2..p and 5%0‘ , 

	

cc = 1,2... 9. 	• 	The solutions of the special form (2.21) are 

found, therefore, by solving (?) this infinite system of 

simultaneous equations. 	Equivalently, we may say that a 

special solution exists if the Chang eigenvalue conditions 

(2.37) and (2.38) are satisfied. 	Practically speaking all 

the roots to the Chang eigenvalue problem are found at the 

one loop approximation, i.e. from the system (2.37) and (2.38) 

for W = 1 only. 	Hence a given solution is of the special 

kind if it is shown to satisfy the conditions (2.37) and (2.38) 

for W = 2,3,... co . 	A formidable task to show explicitly, 

to say the least. 

We shall now consider the "single coupling constant 

renormalizationu  problem and obtain the system of simultaneous 

equations for the variables X. , i= 1,9....p and va , a= to, . szt 

defined by the relations (2.22). 	The general principle used 

is simple and has been already outlined. 	A set of consistency 

conditions is obtained from the expressions for the bare 

coupling constants (2.23), (2.24) and (2.25) when the con-

straints on the coupling constants (2.22) are assumed. 

We obtain from (2.23), (2.24) and (2.22) 

	

o0 	
i 	 c0 	1.1;.  

x i { (3 + Z._ ay (9, X9 , Vil  )  ] 7.---= { )(1 + L cx, (1, xi , 'A)  

	

1)=1. 	 »...1 
c h-zi.))) 	 (11-4)9  

for i = 1,2...p 
	(2.39) 
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Similarly from (2.23), (2.25) and (2.22) 

9c(t s+ 
v.i 	(h_L)v 

1,9
2

+E. al) (9,x1,q)  
h- 1-1-)v  

• (2.40) 

for all a = 1,2...q 

with the notation that x stands for the set k 	p 1 

and y for 	t9o. 	a.= 1,2..9.1 • 

The set of relations (2.39) and (2.40) are identities 

and should hold for any arbitrary dimensions of space-time 

(n) and gauge coupling constant g. 	A system of conditions 

for the variables Xi} 	and iAmi is obtained by equating 

the same order residues of the left- and right-hand sides, 

respectively, of the identity (2.39), and (2.40). 	All these 

conditions though are not independent. 	It is known from the 

work by 't Hooft that the residues of the poles at n = 4, needed 

to render the theory finite, are not all independent(6) 
	

In 

particular the residues of all higher order poles can be deter- 

mined from the residues of the simple poles. 	It follows, 

therefore, that the non-trivial independent conditions for 

the existence of a solution to the single coupling constant 

renormalization problem are obtained by equating the residues 

for the simple poles only. 	We refer the reader to the 

Appendix II for further details on this point. 

From (2.39), for \) = 1 

co 	), 
x i  L 6,4  ( ,3, x(3 , 9ce- ) 	E 	 v31 ) 

w.i (2.41) 

for i = 1,2...p 
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Similarly from (2.40), for .\) = 1 

2 Yet (3 E13.. 	( c xi)”.1)x (11 %) (S1 ) 
N14.1 	— (2.42) 

• for  a = 1,2...q 

where we have used the expressions (2.29 - 2.31) for the 

residues of the simple poles. 	We equate the coefficients of 

terms of the same order in g for the identity (2.41) and, 

similarly, for (2.42) and obtain 

1 9 
xi  bw  (1,x ,y) = bw (i s x,y) 

1 	1 9 	as 
2Vcc  bw (i,x,y) = 	(1,x,y) 

(2.43) 

(2.44) 

for all W = 1, 2...0o , i = 1,2...p and (A.= 1,2...q. 

The system of conditions (2.43) and (2.44) for the 

single coupling constant renormalization problem is exactly 

equivalent to the system (2.37) and (2.38) obtained for the 

special solutions (2.21) to the Chang eigenvalue problem; 

i.e. x. =
i 

and 	y =5„. 	for all i = 1,2...p and 	col= 1,2..q. ot. 

In other words the necessary and sufficient condition for the 

existence of a special solution (2.21) to the Chang eigenvalue 

problem is that the Lagrangian theory corresponding to this 

solution be renormalizable; the renormalizability of the 

theory preserving the given relations for the coupling constants 

to all orders in perturbation theory. 
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We have seen that this result had been expected on 

the grounds of the so called naive argument used at the beginning 

of this subsection, but it is worth stressing further the sig- 

nificance of this analysis. 	What we mean is that the valid 

idea proposed by Chang and qualified to the special solutions 

(2.21) had to be shown rigorously to "tie up" with the re-

normalizability of such theories, as it has been explained. 

We wish to stress that it is due to the powerful methods of 

the renormalization group techniques for the regularization 

method of analytically continuing the space-time dimensions 

of the theory developed by 't Hooft
(6) 

that we were able to 

prove the aforementioned equivalence. 	In particular the 

recurssion formula obtained by t'Hooft for the residues of 

the poles at n = 4 and its consequence that only the simple 

pole residues are independent was essential in the proof, 

see Appendix II. 	In our view this is a "kind of confirmation" 

for the validity of this rather intriguing recurssion formula 

or, in a stricter sense, simply a consistency test. 

The conjecture is made that if a special solution exists 

to the Chang eigenvalue problem for a given gauge theory, then 

the theory corresponding to this solution will possess a 

higher symmetry. 	This higher symmetry is associated with 

the Ward-identities needed to guarantee that the single 

coupling constant renormalization conditions are satisfied to 

all orders. 

Lastly, it follows that the supersymmetric theories can 

be "obtained" as solutions of the Chang eigenvalue problem, 
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considered to all orders in perturbation theory, if the 

constraints on the coupling constants of the supersymmetric 

theory are preserved by the renormalization of the theory 

to all orders. 	From the recent work by Slavnov(23)  it 

appears that this is indeed the case. 

• 

Let us also consider now, in more detail, the con-

dition, given the existence of a Chang solution for any non-

abelian gauge theory, that the theory be asymptotically free, 

i.e. Zim g(t) = 0. 
dt -2, co 

In secticn I.a this condition was discussed briefly. 

In particular the differential equation for the effective 

• gauge coupling constant (1.4) was considered to lowest order, 

i.e. eqn (2.5), and the condition obtained for Lim g(t) = 0 

is that the constant bg  be greater, 	g  than zero; if b is zero, 
1 

then we need to compute the lowest non-vanishing term of the 

function 5. vg in order to determine the asymptotic properties 

of the theory. 

A closed expression has been computed(16,17) for the 

constant b1 for any non-abelian gauge theory: if we let 

Cab be the antisymmetric structure constants of the group 

considered and cra  the representation matrix of the generators 

on some basis, bg is given by 

=  1  	11  Cl(G) 	T(M) 	1— cD) — 
le, 71- 	3 	3 	3 

T(S) 	TOO 
	(2.45) 

3 	 6 
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where 

Coica C6cci, = (/ (G) cCotb 

Trace(cyclo-b) 	-T(R) Eco, 

where R stands (notationally) for M, D, Sc  and SR  according 

to whether the representation matrices cr a  are defined on a 

basis formed by a Majorana-, Dirac-, complex scalar-, or real 

scalar- multiplet, respectively, and the letter E in (2.45) 

denotes the sum of the contributions from all multiplets of 

the theory of a given type. 

Hence, from the expression (2.45), we may determine the 

maximum number of matter fields for the theory to be asymptoti- 

cally free provided a Chang solution does exist. 	This 

general analysis, therefore, is of particular interest only 

when the theory considered is known to correspond to a super-

symmetric one, for a given choice of coupling constants, so that 

at least one solution is known to exist to the Chang-conditions. 

On the other hand, if that is the case, the maximum number of 

"matter fields" for the theory to be asymptotically free can 

also be given in terms of the corresponding number (M) of 

matter superfields. 

We consider this maximum number for a general (renor-

malizable) SU(N) gauge Lagrangian known to describe a super-

symmetric theory(9-11) for a given choice of coupling constants. 

The theory would, therefore, contain at least one Majorana 

spinor transforming according to the adjoint representation 

of the gauge group, which is associated with the gauge field 
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of the supersymmetric theory; i.e. a component of the gauge 

superfield. 	Furthermore, we assume that the remaining matter 

fields of the theory are the components of M chiral superfields 

CI)+ and 13  of the corresponding supersymmetric theory. 
	For 

each chiral superfield 1? that can be and is identified with 

the complex conjugate of (its parity conjugate) 	superfield, 

the component matter fields obtained are two real scalar fields 

(a scalar and a pseudoscalar) and a Majorana spinor. 	While, 

if we do not identify cp+ with cle_, we have two complex 

scalar fields and a Dirac spinor. 

The two cases that we consider explicitly are: 

Case 1, all M matter superfields transform according to the 

A.% 
vector representation of the gauge group (i.e. 1p+ 	

1 
 

Using that T(vector R) = 1 and T(adjoint R) = N = C
2(N), we 

obtain from (2.45) for bf 

(16 	) [4 = t_l3 
 N- 3 N - 	

1 	3 M 	- 2M (11 1 
2 

hence, we have the condition for the theory to be asymptoti-

cally free that M < 3N; for M = 3N we need to compute the 

next order contribution to the p -function. 
g 

Case 2, all M matter superfields transform according to the 

adjoint representation of the gauge group* with CI° = 1)*  

From (2.45) we obtain for 14.  

(16-e) 	. t 11 Nf 	N -2 N1(N) - 1  2IN1(N)li 
3 	3 	3 	6 

and for the theory to be asymptotically free we have the con- 

(10 11) 
dition 	' 	that M < 3. 	For M = 3, the next order term of 
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the B g-function has been computed and the theory found not 

to be asymptotically free(26) 

Likewise the maximum number of matter superfields trans- 

forming according to different (plus higher) representations 

of the gauge group can be determined for the theory to be 

asymptotically free. 	We note that the two supersymmetric 

Lagrangians
(10,11)  , considered in section I.b, are asymptoti- 

cally free. 	In contrast, in the "conventional analysis for 

asymptotic freedom", a SU(N) gauge theory containing two 

scalar multiplets, transforming according to the vector 

representation of the gauge group, is asymptotically free
(16,17) 

for N > 4 and similarly, for only one scalar multiplet trans-

forming according to the adjoint representation, for N > 6. 

(c) The Problem of Existence of the General Chang Solutions  

There is no definite criterion for knowing whether 

physically acceptable solutions exist to the Chang eigenvalue 

conditions for any gauge theory that we may consider; unless, 

of course, we possess the foreknowledge that there exists a 

choice of coupling constants for which the theory is super-

symmetric, as it has been explained. 

On the other hand, it is in practise impossible to check 

explicitly that the Chang eigenvalue conditions, for any gauge 

theory, can be satisfied order by order to all orders in g - 

equivalently, that a (general) Chang solution does exist - though 

it is a relatively simple problem to check these conditions to 

lowest order, as explained in part (a) of this section. 

The question that we shall investigate is whether the 

Chang eigenvalue conditions can be satisfied to all orders in 

perturbation theory by the general assumed Chang solution 



00 
r- 

h.(t) = 	
h(r) 
. 
I g(

2 1  
) 

r=1 
i = 1,2...p 

-(0 
Xa(t) = 	A

a 
	g2r (t)  

r=1 

CO 

a = 1,2...q 
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(2.46) 

if they are satisfied to lowest order by a given set of numbers 

(1) 	 (1) 
' h. 	and X 	- 	itwillbecomeclearlateronwhyh.(t) and Xa

(t) 
a  

are odd and even powers in g(t), respectively. 

This is essentially a qualified statement for the existence 

of general solutions to the Chang eigenvalue conditions for any 

gauge theory, given the set of lowest order solutions to this 

problem. 

We proceed by assuming that the Chang eigenvalue conditions 

are satisfied up to some finite order (N-1), the coefficients 

(l) 	-(2) 
...h  

-(N-1) 
 and 	 (1) • • • A 

7(N1) 
hi 

, h
i 	

having been determined, 
a 	a 

and consider whether the Chang conditions can be satisfied to 

the next order. 	That is, we shall consider whether the simul- 

taneous equations obtained for the coefficients of the next 

order terms of (2.46), which we shall represent from now on by 

(N) 	(N) 
X. 	and Za ' 

is a consistent system of equations so that the 

Chang eigenvalue conditions for the Yukawa and self-quartic 

scalar coupling constants are satisfied up to the orders g
2N+1 

and g
2N+2, respectively, and the solutions obtained are given 

by (the t dependence of the coupling constants understood) 

N-1 -(0 2r-1 (N) 2N-1 
h. = 	E 	h. 	g 	+ X. 	g 
1 

r=1 
(2.47) 

N-1 2r (N) 2N 
= 	E

r 
	+ Z et  g 

'1 a  

for all i = 1,2...p and e = 1,2...q. 
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The Chang eigenvalue conditions up to the order N 

(i.e. to the orders g2N+1 for Yukawa and g2N+2 for the self-

quartic scalar couplings) are obtained by substituting the 

tentative solution (2.47) in the differential equations (2.32) 

to (2.34) - which need be considered only up to the order of 

N loops (W = 1,2..N) - and we obtain for consistency 

14-1 
V0 Vt.-1 

(2)E.--0 h 	 +0.N-1 x(14) ce N -2. 1   

X fvti'q I)‘4' s) 11 '1) I 	

tv 
\A b,ccs,\A ,),)  

1E.c 	 IE.c) 

N-1 —) - 	(,,,,N) 2N-11 f, 	2.k )■ «. 	N 	9 
I. A=1 

N 

\Ai 	 (2,1) 	I 
W=1 	 L'A=3- 

(2.48) 

(2.49) 

for all i = 1,2..p and c = 1,2..q;where (2.48) is an identity 

up to the order 
g2N+1 

and (2.49) up to the order g2N+2. 	The 

notation used is that for any function of the coupling con- 

stants F(g,h,), ), F(g,h, 	)/EC  means that we have substituted 

for h. and ') ot  the tentative solutions given by (2.47). 

The identities (2.48) and (2.49) are satisfied up to 

the orders g2N-3 and  g
2N-2

, respectively, since by assumption 
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(2.47) with X = Z = 0 is a solution to the Chang eigenvalue 

problem up to the order (N-1). 	The system of simultaneous 

( 
equations for the variables X.

(N) 
 and Z ot

N) 
 are obtained by 

differentiating (2.48) 2N+1 times and (2.49) 2N+2 times with 

respect to g and then setting g = 0. 	We obtain 

From (2.48) 

	

1N+1 	 , 

1 	
'1+1 

[(iN -1) X(:) 	Di  k (1 5  n A) 
(2 N+1) 	993  

	

— ( 9 x 	
)19-0 - 

t 	1  
(2.N÷1) 1. a9114+4 	 \14 \pv4 (e\15)‘)1  

11T.r.0 

--t  1  
(2N+1) of 92N+1 .1 	 W=1 	- 	

1 
I E.0 	I =0 

for all i = 1,2...p 	(2.50) 

From (2.49) 

AlN+2 	 "Not 
00 2N-1 

	 /N 	bi 	11001 	‘)/(tSs1101 
(2N+1)1 (192N+1 	 EX 	E. 

=0 
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N 

(e)..N.o.)k. 	l'IN4-2  	) 

1N+ 	t4-1 	 si 

I 	 a 1  [( E 	3tc(t.t) 	Z 	13,4 ,‘,01 

	

vN+2- t.i 	v4=1. E.c1 )19.0 

for all a = 1,2...q 	(2.51) 

since 

N 

cL92N+1 {  	9  
2N-2. 

W.2. 	 ]119-:° 

N) 
We shall now consider the X.

( 	
and Z

(N) 
 dependence of the 

equations (2.50) and (2.51). 	The equations (2.50) are ex- 
h. 

pressed in terms of the functions bx,i(g,h,) ) and bwi(g,h,1 ) 

for 1 4 W 4 N. 	They are,homogeneous functions in the coupling 

constants with a typical term being gg  hm  'X it  where s+m+2n E 

2W+1. 	When we substitute the tentative solution (2.47) we 

obtain 

4- 	(2.47) 

tn N-1 N-1  (.%) Vc 	( 	W-1. 	(ti) 
-4 	5" 	e3 	+ xt 	I [T. 	z ci. (.3 

nr.A. 

hence, for s+m+2n = 2W+1 

0 

( 9 s 

   

N-1 

21 Tv° 21.-1  
4=1 

  

E.0 

2W+1. 
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Int-1 
N-1 (N) 1.N-2 z 	r-2) 	0(r_Lis. 	 , 

 (121.4) 4_ %  

+ 11 

We 

,.,(N) 	N 
L ot  

are 	interested 

N1 

= 

in 

that the only terms in X. and Z that contribute to this 

order are linear in X or Z and only for W = 1. 	That is only 

the one loop contributions to equation (2.50) have X and Z 

dependence, 	Furthermore for W = N the only contribution of 

interest arises for the value of the brackets given by r = 1, 
h. 

i.e.bgendbNl areevaluatedeffectivelyeth.=i;(1) g and 

'1(1)  2 
-Act _ 	g . 

as 
When we consider bw(g,h,)% )/, , we obtain similar 

results but for the terms of order 
g2N+2 

 since, in this case, 

r+m+2n 	2W+2 for the terms 
gr hm 70.  

We can also justify now why the general solutions (2.46) 

for the Yukawa and scalar quartic coupling constants are odd 

and even power series in g respectively. 	We conclude from 

(2.52) that both the left and right hand sides of equation 

(2.48) are odd power series in g so we obtain a consistent 

system for the assumed solutions (2.46). 	Similarly we can 

conclude that both the left and right hand sides of (2.49) 

are even power series in g. 	In fact a more detailed study 

yields that these are the most general solutions and only in 

exceptional cases can we possibly "accomodate" a general power 

r-1 

,t 1 
 

(irt -9, 4.  0 ( 
) + ) 

(2.52) 

terms of order 
g2N+1 

hence we observe 

( 
 

(N) 



1  
(2n4-1)1. 7.N4-1 

tii 

b (9,11E.c 
012N-1-1 
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series in g for the scalar quartic coupling constants. 

It is known from the one loop studies of any gauge 

theory that: 

g b1(g'h,)■) E b1
3 
 (bi 

just a constant) 

and 

hi 	hi  
b

1 
 (g,h, 	E bl  (g,h) 	(independent of ?%) 

hence we observe that (2.50) is of the form 

A ti X) 
	C-1-1 	 (2.53) 

where 

	

YU 	9 (- 

	

Ai; 	(2N-1) 	Ohl  - 

and 

11441 

6,(•=3 ,v1)1 
1,(2N+1)1 	 - 

C  Yu N 	( 1 :6(1)  )") ) -h
t

1;1  ,4  ( ,I (" )  V.1)  ) 

{
1 	CeN+1 

 N-1 
E 

(2.N+01 aceN+1 '4=2 
ht  9,11,21 

E.0 
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2. 	 E) 
1 	

14+1 	(N-1 	—kC 
, 11 (2A-1) , 9  

ct ,r+1 [ 

N-1 
E \A 6,4(1,, .),)1 
w=1 	IE.c 

 

Similarly (2.51) is of the form 

( (N) 	b c,3  x;
N ) 

 
SC 

(2.54) 

where 

B cLici3  2 N 0.1  Tc,q, ) r s  d"4.2  \cL 

(2N+2)! a92"2 
( 9, 1% :)) Lc] 

Yu 

Baj 
a2N+2 

	 [  1    b 
'Na 

 

(3")  (2N+2)1 (192N+2 	
[Ex] 	0  

- (1) 19 	-.-vo _(.1) - N 	( 1,1)(i), 	— 	)■ 01 	( 	, 4.‘ , 

{.  1 ci2N+1 

d92N+2  ":6( (3, \A 

 

(N) Q  
%cm =0 , & = 

   

N-1 
+ 
 f

1   	Ew 6 (9,11, A)I 
(2,N+2.)1 5'N+1 W=2 	- 	 1E.0 

civ4+2, 	N-1 	 N-1 -, Vt.) vt._ 	 9 
{.  1 	 - 	 L_ 	( , ,"/ 

	

(2 N+ 2 a 2N+2  [ (A" 	 W=2 	 E.0  0 

and 



53 

Finally we conclude that the Chang eigenvalue conditions 

are satisfied up to the order 	N 	if solutions exist to the 

system of linear simultaneous equations (2.53) and (2.54). 

 
If C. 	and Ca

“  
 are equal to zero for all i = 1,2..p 

and a = 1,2..q then the Chang eigenvalue conditions are satis- 

fied trivially to this order. 	On the other hand if C1 	and 

s' - B” 	") 3 	are different from zero, where the variables c„.3 X(3 

( 
X.
N)  are determined from equation (2.53), then we obtain the 

conditions 

d
Yu 	Sc

et A 
 

0 0 	and 	det B (2.55) 

for the Chang eigenvalue conditions to be satisfied to this 

order. 

The conditions (2.55) are very useful practically because 

Yu 	Sc 
the matrices A.. and Ba p 	can be determined from the one loop 

contributions to the differential equations for the effective 

coupling constants of the theory. 	Furthermore, they are 

simple functions of N, the number of loops considered, and we 

may check easily whether the conditions (2.55) are satisfied 

to all orders and if not: what orders may present problems 

and must be considered explicitly in order to determine that 

the system of simultaneous linear equations (2.53) and (2.54) 

is consistent. 

In fact - although in general the conditions (2.55) have 

to be checked out explicitly for each lowest order solution 

Yu 
obtained - a closer look at the matrix A.. and from the stan- 

13 

dard results of the conventional analysis for asymptotic free- 
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dom
(17) 

we find that, when we consider a solution such that 

all the Yukawa couplings vanish asymptotically like the gauge 

couplingconstant,i.e.h(1) 	o for all i = 1,2..p, then the 

determinant of the matrix A.
vu.  

is different from zero for all 

N = 2,3.. oo. 

This may be seen by noting, as it can be easily deduced 

• Yu 
from the expression (2.52), that the matrix A. 	can be written 

in the following equivalent form 

" A 2 ( N — 	gi  ci;1    6 
)V311 I  

(2.56) 

For the effective gauge coupling constant to vanish asymptoti- 

cally (t--) co) we have the condition that 14 ) 0. 	Hence a 

Yu 
sufficient condition for det A 	0 for all N = 2,3—co is 

that the eigenvalues of the matrix given within the brackets of 

expression (2.56) are all positive. 	Furthermore, from the 

previous work on the subject(17) it follows that this condition 

issatisfiedwhen 0 for all i = 1,2..p which is the type 

of solution of particular interest('), if it exists (h
(1) 
 real), 

to the eigenvalue conditions for the Yukawa couplings.. 

An argument along parallel lines may also be given for 

the matrix B
Sc 

of equation (2.54) but it is essentially of 

no practical use because the lowest order eigenvalue conditions 

1 
for the scalar quartic couplings and solutions ?k

(
ot.
) 
	lack the 

simplicity of those for the Yukawa couplings. 	Even so, it 
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is worth writing the matrix B
sc 	

in the equivalent form, as 

it can also be easily deduced from the expression (2.52), 

sc 	 -Xot, 

Bap = 2AN-11 1)1(Col,p+ [2615 — 	t)1,  (1;01r) 
" N:(0 (2.57) 

And in similar way we obtain that for det B
Sc. 
	0, for all 

N = 2,3.. co, a sufficient condition is that the real eigen-

values of the matrix within the brackets of expression (2.57), 

are all positive. 	What is rather interesting is to compare 

these sufficient conditions for the determinants of the matrices 

AXIA. and B sc 	any 	
(1) 	 W 

pforaYgivenlowestordersolution01., a  ),  

to be different from zero to all orders N, with the conditions 

obtained in the conventional analysis for asymptotic freedom(17): 

which state that a theory is asymptotically free if a solution 

1) 	 1) 
exists (hi  , )%a  ) such that all the eigenvalues of the 

matrices "within the brackets" of expressions (2.56) and (2.57) 

have negative real parts. 

In most cases, therefore, we would only need to check 

whether the determinant of the matrix Ba
sc  
p  is different from 

 
zero to all orders N, for every solution Aa 

O.) 	
h
i
1) 
 obtained 

from the Chang eigenvalue conditions of the theory considered 

to lowest order - having that h
i
(1) 	

0 for all i = 1,2..p, as 

often needs to be the case
(1)

. 

If this sufficient condition is satisfied, then the 

higher order terms to these solutions are obtained formally 

from the equations (2.53) and (2.54), and the Chang eigenvalue 
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conditions are satisfied to all orders. 

On the other hand, if some lowest order solution does 

not satisfy this condition for at least one value of N, then 

the status of this lowest order solution is not clear. 	It 

would be necessary to consider that given order N explicitly 

to determine whether the coefficient matrix B5,4 and augmented 

sc 	(N) matrix ( B
scp 
	, — ua.x. ) of the equation (2.54), where the a 
( 

variables Xj
N) 
 have been determined from equation (2.53), 

have the same rank so that the system of simultaneous equations 

(2.54) is consistent. 	Otherwise that particular lowest order 

solution does not correspond to a solution satisfying the 

Chang eigenvalue conditions to all orders and must be rejected. 

The only cases known for which Cd. 
sc 

= 0 = C.
]. 
 , being non—

incidental and to all orders, are the solutions corresponding 

to supersymmetric theories and no problems are envisaged for 

these solutions. 	We shall return to this problem for a 

specific Lagrangian model considered in section IV. 
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SECTION III 

MODEL I - A ONE LOOP STUDY 

In section II it was shown formally that the Chang 

eigenvalue conditions, for a given Lagrangian, are satisfied 

by any choice of coupling constants known to be such that the 

corresponding Lagrangian describes a supersymmetric theory
(24) 

In this section we shall calculate to the order of one 

loop the (3-functions of the differential equations for the 

effective coupling constants of a particular SU(2)-gauge 

Lagrangian theory. 	This Lagrangian describes for a given 

choice of coupling constants the supersymmetric model I, 

given in section I.b by the Lagrangian 1SI 
in the special 

gauge for the superfield 

We wish to show here explicitly that the Chang eigen-

value conditions for the theory are satisfied to the one loop 

approximation by the given supersymmetric choice of coupling 

constants. 

We have seen that this is equivalent to showing that the 

one loop infinite contributions of all the vertices of the 

supersymmetric theory can be absorbed into a single redefinition 

for the gauge coupling constant of the theory only 	We shall 

naturally extend, therefore, our analysis to the complete study 

of the one-loop renormalizability of the supersymmetric theory. 

This section is divided into two parts: 

In part (a) we consider the one loop renormalizability 

of the supersymmetric theory and show that the supersymmetric 
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constraints on the masses and coupling constants of the theory 

are preserved by the renormalization. 

In part (b) we raise the question of uniqueness of 

the supersymmetric case as a solution to the Chang  eigenvalue 

conditions for the theory and investigate whether any other 

physically acceptable solutions exist. 

(a) The One-Loop Renormalizability  of Supersymmetric Model I  

The particular SU(2)-gauge invariant Lagrangian that we 

consider is constructed using  the same "matter" multiplets as 

for the Lagrangian 	IS 

= 	(c) \i‘ - )1\74 	g 	-\)14v)1  + 	Y it  

)(it( 	+ 	ell, 	r 	(D A)+ 	Dv A) 4- 

DIA B ( 04  6) 	M 	- 	A} 	- 	B 

Tc.'"e 	- 11, Cf")  T1" X;* A 4- 	B4.  1-`-c' Ys 	-E` 	B 

- (A'. A )1 	- 	134. 	- Al ( AA: A ) ( Q+ B) 

- ALt A+. B) l D+. A) 	-A5( 134-.0x  - X5 ( A+. Mt  

where 	D. = 	- 2 	VI4 

Apart from the supersymmetric constraints on the masses, this 

is the most general renormalizable SU(2)-gauge invariant 

Lagrangian that can be constructed using the given set of 
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matter fields; parity being conserved. 	Furthermore this 

Lagrangian is identical to the supersymmetric Lagrangian 
SI' 

by construction, for the following choice of coupling constants 

111' 	= 	, 0 	, 	=2. 5 = - 22. 	(3.1) 

2. 

We consider here the one loop renormalizability of the 

supersymmetric theory, 	
SI. 	Our calculations will be carried 

out though in terms of the arbitrary coupling constants of 

the Lagrangian 	and the counterterms obtained that render 

):I finite will be subsequently considered at the supersymmetric 

point (3.1), in the space of coupling constants. 	We follow 

this procedure rather than considering j:
SI directly so that 

we can determine simply afterwards the Chang eigenvalue con-

ditions for the Lagrangian J:I. 

A gauge fixing term is added to the Lagrangian I
I and 

also the effective Lagrangian for the compensating ghost fields 

obtained in the usual way 
 

(aµA4) 	 c i• jK 	3` 	( 	v. r-LK) 
za 

The counterterms that must be added to the renormalized 

Lagrangian 	+ LG are obtained in the standard way by 

where X.°  + I°  is the bare Lagrangian of the theory, with the 

unrenormalized parameters distinguished from the renormalized 
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by the superscript (0). 	The notation we use is: 

(1) for the wavefunction renormalizations 	CI)  (1-q(1'  )16- (13°  

where CI)  stands for any field of the theory 

(2) the subtraction of the proper vertex diagrams for any 

given vertex of interaction-strength X is represented 

x 
by X 2, 	, where X stands for any coupling constant 

of the theory, and 

(3) multiplicative renormalization for the mass given by 

Mo = (14-2 )M. 	The mass counterterms obtained this way 

will not render the masses finite for the Lagrangian 

This is immaterial though because we are interested in the 

mass counterterms only at the supersymmetric point (3.1). 

We use the regularization method of analytically con-

tinuing the dimensions of space-time
(12) 

The infinite sub- 

traction constants are determined by the requirement that the 

coupling constants, masses and wavefunctions of the Lagrangian 

XIG -1-a be finite in 4-dimensions. 	A general list of 

the momentum integrals that are met in our calculations are 

given in the Appendix III. 

We shall work in the Landau gauge given by a = 0, and 

use the following graphical representation for the fields of 

the theory. 

W -field: 	/N./N./IL/N.7\ 

Ghost-field: -7111-trYnnrif• 	A-field: 

x-field: 	 B-field: 

The Slavnov-Taylor (29)  identities for the theory guaran- 

tee that a single redefinition of the bare gauge coupling con- 
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stant g° renders finite all the vertices of 

I 

	interaction- 

strength 	 o 
 g

o of the Lagrangian. 3._ + G . We may, therefore, 

consider the renormalization of the gauge coupling constant 

for the interaction vertex tp-ip-W only. 	The contributing 

diagrams to the order of one loop are given in Figure I. 

It is found that the infinite contributions to the 

gauge coupling constant renormalization from the diagrams in.  

group (b), and similarly for group (c), of Fig. I add up to 

zero. 	This is.a general feature (and necessary for the 

renormalization) of gauge theories which we have already used 

in section II. 

We obtain that for the gauge vertices to be rendered 

finite to this order the unrenormalized gauge coupling con-

stant is given in terms of the renormalized by 

7° 17-- 	+ 	5 V3  

16 11-2*(n (3.2) 

The relevant diagrams for the renormalization of the 

coupling constants of the Yukawa and self-quartic scalar ver-

tices to the order of one loop are given in Figures II to VII. 

We shall firstly consider, though, the wavefunction and mass 

renormalizations for the fields of the theory to this order. 

The self-energy parts of the fields  

We observe that the supersymmetric Lagrangian of
SI is 

invariant under the discreet transformation 

W5X. , 	B 	B-i -A 	(3.3) 



D
A
(1) 

P 

p a 
- — 

1) 

DA (2) 
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This guarantees that the Majorana field x remains massless 

to all orders and also that the masses and wavefunction re-

normalizations of the scalar and pseudoscalar fields A and 

B are equal to all orders. 

The wavefunction and mass renormalizations of the 

• 	 A-field are defined by 

t Z.,,A ( pit -R)S-0( F,-21 M mt g 
p 

.finite at (11.?- 1-1-) 

and we need to calculate only the infinite contributions of 

the one loop self-energy diagrams of the A-field. 	Using the 

Feyman rules of the theory we have 

• pt 

DA  (1) J cf12 (2P+12)p(2P+0,, ('31,v-kplqvie)  
E pool- pfx 	 le 

(3
2   ce p  

/ 
— ( P/  	( R e (1-'0 r(3)  

 l   	 11 e[k42xp.k 4x xM1 [+2x 	x  

performing the integrations and neglecting terms finite at 

n = 4. 

1-4 DA (i) 	6 L 	z 
t 	.31  ce,p 	( 	m2 ) 
31. Tr'.  (h-4) 
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DA  (9.) = - 1111 ( 	:`)a15 	cfiR 	[(.+)x]  
( 

DA(2) = g 	( ILL') p 
16 Tr' (r1-4) 

- 151+ 	= 

= 244 	Lp  t_l_ ( 0L,04. 
1611.1(h-4) 

plus the diagrams 

e* — ", 	 ,;=.::, 	 /r=z: 
I 	1 	 fi 

 
l% 	

Iti ( 	1 	 0 
I/ A  

,, 	q 
16  at 	*.. 	a 

	 *, ,q -- - --2. _ - (_ 	- ( - N.._  _ - F- 
p 

Contributin 	

t 6 	+ , A l  A- A4-1 .1 (ft? 	
Rz-- dc„

, 

performing the loop integration and neglecting finite terms 

at n = 4, we obtain the infinite contribution 

[ 6A, 4- 2 A3 + Ad  M2  S",3 
16 Tr% (n-LF) 

Adding up all the infinite self-energy contributions for the 

A-field we obtain that 

V• 4- 12. 11' 1 
1 6Tri( h- 4) 	2. 

(3.4a) 



z 	-..  	V'+ 12 	- z( 6 At + 2 A3 ),f) 
16 	h-10 

— 	 61; I 
(3.4b) 

(3.5b) 

16 Tr2  
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z  	3_ V1-1- 12. [it  — ( 6 N I  +2 	+ A4)1 
167-2 (n-10 	2  

(3.5a) 

The wavefunction and mass renormalization for the B-

field are determined by a similar set of diagrams to those 

of the A-field. 	Furthermore it is easily deduced that the 

self-energy infinite contributions for the B-field may be 

obtained simply from those determined for the A-field by the 

substitution A
l 
4 A2 

and h
1 	h2 (note that y5

2   =-1 for the 

convention used). 	We obtain 

The wavefunction and mass renormalization of the Dirac 

spinor q) are defined by 

c_4_42 
 < 	

-7  
4 t 	(rf— M) 	— m M Sc(r = finite at (n = 4) 

where the one loop self-energy diagrams contributing are 

-P 

o: 

P 	 k 

-;--- = --.. 
lr  
4 	\\ 
11 	A 

a 	/I 	
t% 	p %1 	' 

4 	
ii 	 

D (1) D ( 2 ) D (3) 
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A Wv  (-p-tx+m)  r  c 7tiv  k v iz,/ le) 

C( P+ V- 

= 2% 	p 0dx A t 01-0 +(3-11)..r.F(1-1,)4(  _ 	(P.p) (1-4 r(3)  
lie+axp.k+x 	x MT* 	EIR2+2xplz+xp2-xMlr 

performing the momentum integrations and neglecting terms 

finite at n = 4 we obtain 

Dy 	6L  92  
161-12  NJ+ / 	32 TFt(11-9 

D (21 = h2 ( -c`-c`ap S criz 	4c+ x  
( pi-02  ( k2- mt) 

Int Dm, (1)   fl.'11)413 
16 Tr2 (n-4) 

-31 	ti) Mi 
1672  th- IF) 

The contribution of the third diagram, DI1)(3), can be obtained 

from that of Dil)(2) by the substitution hl 	h2. 	Adding up 

all the infinite contributions of the above three diagrams we 

obtain that 

7-4 = 	3 	t 	+ 	 (3.4c) 
1611'1  01- 10 

	

9 	— 3 ( 1-11, 	6.2. ) 
	

(3.5c) 
16 TT-1  (n- 	z 
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It has been pointed out that the Majorana field X 

remains massless in the supersymmetric theory, to all orders, 

because of its invariance under the discrete transformation 

(3.3). 	Hence we consider only the infinite wavefunction 

renormalization for the X-field of the Lagrangian II, deter-

mined by a similar set of diagrams to those considered for 

the Dirac spinor i. 

In the Landau gauge, only the two self-energy diagrams 

for the field x similar to D,(2) and D,(3) contribute to 

and we note that these contributions may be obtained from 

those of D (2) and D (3) by the substitution (III;loq, 	2 Tic( 1-"1--3 ) 

The factor 2 is the combinatorial factor for the two ways of 

"attaching" the external X-lines. 	We obtain that 

Lz = 	1-11, 	 (3.4d) 
16 	( 

We also give for "completeness" the wavefunction re-

normalization of the gauge field W . 

The gauge field remains massless to all orders by the 

gauge invariance of the theory and in particular only the 

transverse part of the propagator is renormalized. 	The 

infinite wavefunction renormalization is determined by 

14  
Nvw 

1 _ L  y z 	 ) = finite at (n=4) 

where 

-x-vva 	
17" 

"'N." 	nnA,0-.) /V./ 4- /vv.. 	 "NV % 4".evy 
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and hence (in the same order as the contributing diagrams) 

7 vi 1 	t 4  It+ 	g 52, + i 	 _ 2_,6,511=  -It 51. 	(3.4e) 
3 	3 	3 	3 	3 

We may now evaluate the mass and wavefunction re-

normalizations obtained at the supersymmetric point (3.1). 

We find that the mass renormalization Z
M'  determined separately 

for each of the fields A, B and 4  (3.5a' - 3.5c), is consistent-

ly given by 

391  
16 -Ft (n-4-) 

We conclude, therefore, that a single mass renormalization 

renders all masses of the supersymmetric theory finite to the 

	

order of one loop. 	That is the constraints on the masses of 

the supersymmetric theory are preserved by the one loop re-

normalizability of the theory. 

On the other hand we obtain for the wavefunction 

renormalizations of the fields (3.4a - 3.4e), at the super-

symmetric point (3.1), that 

-7  13 	-7  A 	W 
r. 2, = 	2. 	L- 

Hence these cannot be absorbed into two overall wavefunction 

renormalizations, one for each superfield of the theory. 

However since the Lagrangian
SI  in the special gauge used 

for the gauge superfield i  is not "manifestly supersymmetric", 

10) being invariant only under ordinary gauge transformations(8' 

and 
	2. 
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this presents no problems. 	We shall also see shortly that 

the supersymmetric constraints on the coupling constants of 

the theory are preserved by the renormalization. 	This is a 

similar set of results to what has been obtained by Wes,s and 

Zumino(8)  for a different supersymmetric Yang Mills theory 

and, hence, not completely unexpected. 

The coupling constant renormalizations  

We shall now determine the bare coupling constants, in 

terms of the renormalized, so that all the vertices of the 

Lagrangian f I  are finite to the one loop approximation. 

We have already determined the wavefunction renorma-

lizations of the fields and the bare gauge coupling constant 

in terms of the renormalized one. 	We only need therefore to 

compute the subtraction constants Zi t s which render finite 

the proper vertex diagrams of the Yukawa and scalar quartic 

vertices. 	It is a simple matter then to obtain the corre- 

sponding bare coupling constants and consider whether these 

are consistent with the renormalization of the gauge coupling 

constant (3.2) at thesupersymmetric point (3.1). 

The masses of the fields are neglected, for convenience, 

in our calculations since the coupling constant infinite 

renormalizations are independent of the masses of the theory(6,13) 

The proper vertex diagrams for the Yukawa vertices are 

given by the groups (a) of Fig. II and III. 	Using the Feyman 

rules of the theory, we obtain for the group (a) of Fig. II 
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For diagram 1: 

{-hi m 	(-c-tni),„EnieL f cfk 	(-t:+g) (45c.-Tf,+.k-) 	ofiy  
( pi 4- 	( 	P, 12)2  

k  

4 
I -CI, -Cm  Jap en"  Sot  06 1A 1 4-  finite 

1":121-2XP.R+XPli 
contrib 

performing the integrations and neglecting terms finite at 

n.  = 4. 

(1) = 

For diagram 2: 

rhi  (2.) = L 

- 6 5211, -Cò  
16-rf1 (n-4) 

T. L .TYri )ar, 	cfk AKc ( -K,pt ir  c-1T 	 
(1“p,)1 	C R-az? 

= -I [11  T ap L (Ix 	I  
[ki+2xpr Izi-xp;11+  

finite contribution 

7 7 

where we have used that C y, 	y, 	Performing 

the integrations and neglecting terms finite at n = 4 we obtain 

n-fin. r (1) 
icrrt (1-4) 

The contribution of the third diagram of this group (a) may 

be obtained from that of the second diagram by the substitution 



note after some simple algebra that Z
1
2 

can be obtained from 
h1 Z11 
 by the interchange h

1
4.-1 h2. 

The bare coupling constant for the vertex 11)---A to the 

order of one loop is obtained by substituting the relevant 

computed subtraction constants in the expression 

70 

2 
h3 4- -h1 h2. 	

This is easily derived using the properties of 

the Xs-matrix; [C,Y5L-1-  0 , Xs= 65  

inf 	qz  (3) 	 k  2 k, 1,.  
16 Tr1  (11-4-) 

Adding up all the infinite contributions computed we obtain 
h
1 

that the subtraction Z1 is given by 

16 Tt l (11-11) 

h2 
The subtraction constant Z1 

for the proper vertex 

diagrams of Fig. III can be determined in the same way. 	We 

(i+VT1 (i+nr2  ( i+  

we obtain that 

33  .2%1,, 	a 	_ IL 	 (3.6a) 2 1611101-LO 
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and similarly that 

6°, = k„ 	1 	33 51. 	125_ 	!!- 611:111 / 	(3.6b) 
167r1(n-q 	 2 	2. 

The proper vertex diagrams of the self—quartic scalar 

• 	 vertices are given in Fig. IV to VII, and have been classified 

into the three distinct groups (a), (b) and (c) distinguished 

by the type of field that forms the closed loop. 

We note, therefore, that the same loop momentum integral 

to be computed is obtained for all the diagrams given by the 

groups (a) of Fig. IV—VII. 	Assuming that the net momentum 

flow into the "loop" is given by q, we have 

where a,a,y,c = 1,2 are the SU(2)— 

indices of the scalar fields forming 

the loop, and the loop integral Is  

obtained is 

(S0(p Sye 1 c 
k (0.1)1 

c 	  S■qa gy6 .,0  six fk  
[le+2.xci:k+vti l  

performing the integrations and neglecting terms finite at 

it = 4 we obtain 

2.1 S;i3  dYE  

16 rr t  (h-4-) 

Similarly,we obtain the same loop momentum integral to 

be computed for all the diagrams in the groups (b) of Fig. IV 



tSo dx SIR 	3  
+ finite contributions 

kl+ 2 x 	x 919. 

72 

to VI. 	This is given by 

where i,j,Z,m = 1,2,3 are the SU(2)- 

indices of the gauge field forming the 

closed loop, and the loop integral Iv  

obtained is 

Iv  = c1Lj S„ f cthk -L 9" - tele/ 121) 	r- N4 9.c(K+.9r 
	

%iv cre 

le 

+ .(k+ca/ (1Z+9.)1= S-;.1 f 
( k+9.)9-  

performing the integrations and neglecting terms finite at 

n = 4 we obtain 

Infin. Iv  = 	6 L(IS:1.1 vfm 

1 671  (h- 

It is mainly a problem in combinatorics to obtain, 

using these results, the contributions of the relevant diagrams 

Act to the subtraction constants Zia  a 	1,2,3 and 4. 	The con- 

tributions obtained will not be given here explicitly since 

they can be easily identified in the final expressions for 

the bare self-quartic couplings given at the end of this sub-

section. 



(1) (2) 

1/ \ 6 ,9.1 	 r 

a'P, 
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Finally we consider the contributions to the subtractions 

Z
1
Act 
 due to the Yukawa vertices of the theory, given by the 

groups (c) of Figs. IV to VII. 

The overall momentum integrals obtained for these dia-

grams are found to be essentially all the same but due care 

must be taken regarding their overall signs. 	We calculate 

explicitly the contributions of these diagrams for the Fig. IV 

and infer all others from these. 

The spinor loop contributes an overall factor of (-1) for these 

diagrams like for quantum electrodynamics; with the momentum 

flow as indicated for the Majorana spinors. 	Using the Feyman 

rules of the theory we obtain for Diagram (1) 

B (i) = 	[14-. 	-cl )„f,(t -CI 46 

L 	CR-g)1 	( 	'It+ 	k- R)1  

4 1 	. 	. 
= 	( 	(TI T:L)  t4xicA 	 

[ 	k.1), + x 

 

+ finite contributions 

 



V,411-10 
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performing  the integrations and neglecting finite terms at 

n = 4 we obtain 

14 B 	( T.L.Ti )c(p (C3-ClyE 	
. 
	 ( 4  Sgk. gvi3  + LP ;6 ) 16-e (11-0 	 16 	(n-4) 

We note that the contribution of diagram 2, B(2), may 

be obtained from that of diagram 1, B(1), by the following 

interchange of the SU(2)-indices and momenta "' q1) ÷+(c,  q2 ).  
We obtain therefore 

Inf B(2.) = 	 (.-t"-Ei)0E CEitlep, = 8 	1-11+, 	(ligg  gve+g,;(6.43) 
16 -e(n- ) 	 1611-1(n-9 

The remaining  two diagrams in groups of Fig. IV are 

(q.-k) 	\ 	 / 	(11-1?) 
, 	 \ M 6(11 7 	 n-E.`12. 

(3) 
	

(4) 

We observe that the diagrams (3) and (4), with the momentum 

flow as indicated, differ from the diagrams (1) and (2), 

	

respectively, by the exchange of two Majorana X-lines. 	So 

the spinor loops contribute an overall factor of (+1 ) for 

these diagrams, and we obtain for diagram (3) 
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[3 (3) 	1-14, ( -EL -6, p TLCihr e 

x 	Ctlk A. 	(#1.-g)C 	1 (i);+"Pi- 	. 	 g )1- 
[ (P,-101 	(etP1-01 (9,-W 	le .1 

T / 1*./ 
since (C 	

I 
= (C 	60 we note that the infinite contribution 

of the above integral is minus that obtained for diagram (1) 

and hence 

Int B(3)   (tt ti).q,(tLti)xe  

16 T1 (n- 
 t [141 	( 5 S,,(6 gvp, 4SaP Exe 

1611.1(4-0 

Similarly the infinite contribution of diagram (4) obtained 

i s 

I4 B(4) 	, T
y )„ ILCi)y g -8 t 	c, U!! wrE -li ...4e .416, 

1611-1 (n-4) 	 16 To (11-0 

Adding up all the infinite contributions computed for 

the diagrams in group C of Fig. IV we obtain 

14 [Fig 	
1. 

= 	-24 ri 	{ 	g411 gy6 	gc(E Skop ) 
 16111 (h-10 (3.7) 

A 
And the term in the subtraction constant X

1 
Z
11 which renders 

finite these diagrams equals minus the expression in the first 

bracket, on the left hand side of (3.7). 

The infinite contributions of each of the diagrams in 

group C of Figs. V to VII may be obtained by comparing these 

with the corresponding diagrams of Fig. IV that have been 
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computed. 	We note that these may differ only by an overall 

factor of (-1) from the corresponding ones in Fig. IV - having 

made the appropriate substitutions for the coupling constants 

- due to the presence of the y5  matrices in the traces ob- 

tained for the spinor loops of these diagrams. 	We find that 

only the contributions of the diagrams 2 of Fig. VI and 3 and 

4 of Fig. VII have an overall (-1) factor relatively to the 

corresponding diagrams of Fig. IV. 	Hence the infinite contri- 

bution of the diagrams in group C of Fig. V may be obtained 

from (3.7) by the substitution h 	h4 ' while the corresponding 1 	2 

infinite contributions of Figs. VI and VII are given respective-

ly by 

ItIf.[ Fi 2  V I.c] -,_ -112 [Ii 1;2. 	) f 32 P.. 1,7; 	( 	s.,<€ 	) 
1671(n-to 	 ,6,2(t.,4) 

1 4 [ 	= 	16 k2, k; 	- 	( 	S'ye + gote. Esp) I 
16 1T1  (1-4-) 

Finally, having computed all the infinite contributions 

of the diagrams in Figs. IV to VII as explained, we obtain 

that, for the self-quartic scalar vertices of the Lagrangian 

j!1 to be rendered finite to the one loop, the corresponding 

bare coupling constants are given in terms of the renormalized 

by 

A, 	1 	zit 	+ z )k3 4 4- 	4- 4 Y.5 
16 Tr2  

-z4 11: 	- 9 e a, + 	11.■ 
(3.8a) 



= 1- 
1610 (k-1-1f) 

A, 	z A, + 
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-2.4 11:1 +1 	- 9 	+z Clix Al 1 

(3.8b) 

xo, 1611l 	 t 	)ti 	IF )14 Oti )kz)  + 	)1; 4- 2,  Ati. (n-LO 

0- 1 1  
+ 	).\2.5 - 	hi 112. + 9 	I+.  

Lt 
5113  12, HI; qtDis 1 

(3.8c) 

x4.  = 	I  
( 	+ ) + 4 Alt + V A3 X4 + 32 )15  

	

16-e(n-4) 	 

+32 h1 1111  -q(32  a4 + 	+ 	a41 

(3.8d) 

5 — 	1 	Li- A s  ( )■1+ X7.) + 8 A3 As + 	XaAs 
161T10-1-4-) 

+16 II, V)2 	A5 + 12 ( 	Xs\ 

(3.8e) 

It is now a simple matter to check whether the re-

normalizability of the Yukawa and self-quartic scalar vertices 

of the supersymmetric Lagrangian SI  is consistent with that 

of the gauge coupling constant of the theory. 

We substitute for the renormalized coupling constants 

in the expressions (3.6) and (3.8) the supersymmetric values 
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(3.1) and, using (3.2), we find that the bare coupling con-

stants of the theory also satisfy the supersymmetric constraints 

(3.1). 

Alternatively, substituting in the expressions (3.6) 

and (3.8) the supersymmetric values for both sets of bare and 

renormalized coupling constants of the theory we find that 

the resulting expressions for the bare gauge coupling constant 

of the theory are consistent with that of (3.2). 

We conclude therefore that the supersymmetric constraints 

on the coupling constants of the theory are preserved by the 

renormalization to the order of one loop. 

It also follows, as explained in section II, that the 

Chang eigenvalue conditions for the Lagrangian
1 
 are satis-

fied by the supersymmetric values for the Yukawa and self-

quartic scalar coupling constants given by (3.1). 

(b) The Chang Eigenvalue Conditions for Model I  

An interesting question that we have already raised is 

whether the supersymmetric solution is a unique solution to 

the Chang eigenvalue conditions for the theory; which we 

shall now proceed to investigate. 

There is, of course, no "hidden" implication in this 

question that in general the solutions found to the Chang 

eigenvalue conditions for any gauge theory correspond to 

supersymmetric theories only. 	Indeed we have seen in section 

II how more restrictive the Chang-conditions are for the solutions 

of the special kind compared to the general ones. 
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The problem of existence, though, of lowest order 

solutions to the Chang eigenvalue conditions for any gauge 

theory is still an open question, whether these correspond 

to general or special solutions. 	Furthermore we would ex- 

pect that the existence of lowest order solutions depends, 

in general, critically on the interplay between the dimensions 

of the non-abelian gauge group and the number of Higgs multi-

plets for the theory considered; not unlike the results 

obtained in the conventional analysis for asymptotic free-

dom("47)  

The model that we consider here is the smallest SU-

gauge group with two scalar vector multiplets which is super-

symmetric when the coupling constants are given by (3.1). 

The idea of uniqueness is, therefore, a question of whether 

the hidden supersymmetric invariance guarantees the existence 

of the supersymmetric solution while (somehow) no other so-

lutions exist to the Chang eigenvalue conditions for this 

theory. 

The differential equations for the effective coupling 

constants of model I can be easily computed(6) from the ex-

pressions (3.2), (3.6) and (3.8) for the bare coupling con-

stants of the theory. 

16 TT' 	- 5 4e 
	

(3.9) 

i t 
16 1T1 	= is 	+ 	h, ht  - 33 71  

	

2 	2 	4 
(3.10a) 
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16 Ti2 j ki 	15 1-;2. 	11 	k; _ 33 51 
	

(3.10b) 

167' 	), 0( 	( 	) 	 (3.11) 

Asi+ 

where (in order to avoid repetition of long  expressions) 

bXa(g,h,X) for a = 1,2,3 and 4 are the residues of the poles 

at n = 4 of the corresponding  bare coupling  constants X: of 

the theory, given by the expressions (3.8). 

We consider now the Chang  eigenvalue conditions of 

the theory to lowest order. 	We define a new set of variables 

given by 

. 11 
5 

for 1= 1,1 and 	Ad for a = 1,1... 5 

and look for solutions to the system of differential equations 

(3.9) to (3.11) for which the barred variables are constants 

independent of t. 

From equations (3.9) and (3.10) we obtain for 	- 0, 
dt 

= 1,2 

	

—1 	—% 

	

I, (-13 -4- is 11, 	11 h, ) = 0 
4 	2 	2 	 (3.12a) 

( 	13 	15 hi 	11 k, ) 

	

if- 	2 	1 (3.12b) 

It is found that the solutions h1=h2=0; 0=13 R =0. 
1 20' 2 ' 

(or 171=0, R -11) 1 	of the equations (3.12) do not correspond to 2 20 
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any Chang-solutions for the total system of equations (3.9) 

to (3.11). 	For example, for h2=0 from equations (3.9) and 

(3.11) for the coupling A2  we obtain 

)k% 1 43  )1.  ( 	+ X IS 4 --X.13 4- Ltlis = — 101 / 9 6 

We now consider the only solution to the equations 

(3.12) such that both Yukawa coupling constants vanish asymp-

totically like the gauge coupling constant of the theory. 

This solution of interest is 

(3.13) 

From the differential equations (3.9) and (3.11) we 

obtain the following system of simultaneous equations in the 

- variables 	for Oka = 0, 	= 1,2..5,and h2  l  = h2
2  = 1/4 

Ti 	:1 
+2 A; + 1 A3 Alt 	A4 4 	As 	7  )i,= 3 /g 

4 A i  + 	13 + 	A 3 A 1, 	Al+. 4 it IS 4" rl 	= 3 / 2  

	

1213 	it-14  (A,+-A1) 	3■23 	-A: s 	 icIpt 	(3.16) 

	

X ii. 	+ 	+ 4 A4 + 	+ 32. A 5 + 7 A 	 (3.17) 

4 	 + 8 XI Xs + 12 X4. 5 + I s 	- 	
(3.18) 

Eliminating the variables (T1J2) and A 3  from the 

equation (3.17) using equation (3.18),we obtain the equation 
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( z A5 -14 ) + 	3i5 	- 	) = 0 

This equation factorises and using equation (3.17) once more 

we observe two cases 

Case 1 	215 = Alt- 

Case 2 16L 4-(Al+L)+04.+43X1+7  

 

The system of simultaneous equations (3.14) to (3.18) 

is symmetric in the variables Al  and A2. 	From the equations 

(3.14) and (3.15) we obtain that, for all real solutions 

to this system of simultaneous equations, a for a = 1,2. 

satisfy the inequality 

3/8 - as -7
;

0 	or 	< 0 ' 05 
	

for 
	a= 1,2. 

and furthermore that 1  = A2 and/or Al + T2 = -7/24. 

We may now consider each of the two cases separately, 

reduce the number of unknown variables and proceed to solve 

the system of equations (3.14) to (3.18) completely for each 

case. 	This is a rather long winded and tedious business so 

we shall just list the solutions found. 

Case 1  

A l 	
A2 - 

= X' - -0.231, 	A3  =0.63423 5  

1 
T,2 	-0.018, A

3 - _ , 	0.421, 25:5 

4 (3.19a) 

= A4 
 
---0 .548 (3.19b) 

= X4 - - 	-0.547 (3.19c) 

A l  -= A2 = 0, A3 
- 1 
- 2 2A5 	

A4 
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A 	= 1 -0.03, 	A2 	= -0.261, 	A 3  = 0.536, 	2A5 	= A4 
' -0.527 

(3.19e) 

Al 
	LI -0.261, 	A2  = -0.03, = 	0.536, 	2A5 = A4 = 	-0.527(3.190 

Al 
	
= -0.062, 	T2 	, 	-0.229, 	A 3  = 0.682, 	2X5 	= A4  = -0.237 (3.19g) 

A 1 -0.229, 	A2 	= -0.062, 	A3  = 0.682, 	2A5 	= A4  = -0.237 (3.19h) 

Case 2 

A l  = A2 = -1/8, 1/4, A4 = -1, 	A5 	= 1/4 (3.20a) 

= 	-0.163, A 3 	= 	0.272, A4  = 	-1.001, A5  = 0.242 (3.20b) 

A l  L.: -0.11, X2  = -0.181, T3  = 0.249, 	= -1.00, A5  = 0.239 

(3.20c) 

A l  = -0.181, A2  = -0.11, A 3  = 0.249, A4  m -1.001, A5  = 0.239 

(3.20d) 

It is seen that there is a rather large number of 

solutions to the Chang eigenvalue conditions for the theory 

considered to lowest order. 	This is rather interesting, and 

illustrates the point raised by N.P. Chang(1) on the signi-

ficance of the contributions of the Yukawa vertices to the 

coupled equations for the effective self-quartic scalar coup- 

ling constants of the theory. 	We note that, for the model 

considered here, both Yukawa coupling constants had to be 

taken to vanish asymptotically like the gauge coupling constant 



84 

of the theory, i.e. solution (3.13), in order to find any 

solution to the eigenvalue conditions for the scalar quartic 

coupling constants. 

The solution (3.19a) is known to correspond to a theory 

that is supersymmetric and satisfies therefore the Chang 

eigenvalue conditions to all orders. 	All other solutions 

found must be assumed to be of the general Chang-type with 

higher order corrections needed in order to satisfy the Chang 

eigenvalue conditions to all orders, as it was explained in 

section II. 

There are two questions that have to be considered though, 

(a) whether higher order terms can be found for each of the 

lowest order solutions obtained such that the Chang eigenvalue 

conditions are satisfied to all orders, and (b) whether all 

such solutions found are physically acceptable, that is they 

correspond to well defined Lagrangian theories. 

The first question raised will not be considered here in 

great detail. 	As it was pointed out in section II.c the 

answer is affirmative for each lowest order solution found 

when the determinant of the corresponding matrix B
a8
SC  of equation 

(2.54) is different from zero for all N = 	We have 

only checked this condition for the lowest order solution 

(3.20a), which is exact, and found that it is satisfied for 

all N. 	The application and use of these conditions will be 

considered in more detail in section IV, for the solutions of 

model II which are more interesting. 

We shall now consider the second question raised. 	We have 

for example the conditions that the self-quartic scalar coupling 
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constants Al and 12 of the Lagrangian theory I must be greater 

than or equal to zero. 	This is obtained from the requirement 

that the potential of the theory be bounded from below. 	The 

potential is defined, in the conventional way, with an overall 

minus sign to that given explicitly in the Lagrangian 	I. 

The Chang-solutions must be checked therefore against 

such requirements as that given above, and only solutions 

which describe theories with potentials bounded from below 

being physically acceptable. 	The difficulty is though that 

these conditions on the effective self-quartic scalar coupling 

constants are valid for t = O. 	This implies that in general 

such solutions must be known exactly to all orders in the 

effective gauge coupling constant of the theory in order that 

we can determine their values at t = O. 

On the other hand we have obtained only the lowest order 

terms of the general Chang-solutions for model I, hence we 

cannot check whether these conditions on the self-quartic 

scalar coupling constants hold for an arbitrary gauge coupling 

strength. 	However when we consider a weak gauge coupling 

constant for the theory so that the infinite series Chang-

solutions are valid for t = 0 and the lowest order terms are 

the leading terms of these solutions, then the physical con-

ditions for the potential of the theory to be bounded from 

below must be satisfied by the lowest order terms of the Chang-

solutions. 

We observe that there exist no lowest order solutions to 

the Chang eigenvalue conditions for the theory with X
1 

and ),
2 
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greater than zero, and the only solution with Al  = X2  = 0 

is the one that corresponds to the supersymmetric theory. 

We conclude that the supersymmetric solution is the only 

physically acceptable solution when we consider a weak gauge 

coupling constant for the theory. 
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SECTION IV  

THE CHANG EIGENVALUE CONDITIONS FOR MODEL II  

In section III it was shown explicitly that the Chang 

eigenvalue conditions, for the particular theory considered, are 

satisfied to lowest order by the choice of coupling constants 

for which the theory is supersymmetric. 	This was a direct 

consequence of the fact that all the vertices of the supersymmetric 

theory are rendered finite to the one loop by a redefinition of 

the gauge coupling constant only. 	The question, though, of 

uniqueness of the supersymmetric case as a solution of the Chang 

eigenvalue conditions was not resolved in a completely satis-

factory manner: the problem being that no definite conclusion 

can be drawn for the lowest order solutions obtained, when the 

gauge coupling constant of the theory is taken to be a "strong 

one. 

In this section we consider the Chang eigenvalue conditions 

to the one loop approximation for a general renormalizable SU(2) 

gauge invariant Lagrangian, with the same "matter fields" as 

the supersymmetric model II given in section I.b. 	It is shown 

that, apart from the solution corresponding to the supersymmetric 

theory, there exists another solution which corresponds to a 

theory with a potential bounded from below, when we consider a 

weak gauge coupling constant for the theory. 

Another interesting feature of the model considered here 

is that a solution exists to the Chang eigenvalue conditions 

for the theory, considered to all orders, whose higher order 

terms are not determinded uniquely in terms of the gauge coupling 

constant of the theory. 	Furthermore the lowest order terms of 
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the Yukawa and self-quartic scalar coupling constants for this 

solution are given exactly by the supersymmetric set of coup-

ling constant "values" (for model II), and the supersymmetric 

theory is only a particular case of the Lagrangian theory 

corresponding to this solution. 

The model that we consider is given by the Lagrangian 

LIL 	(ar \-34,1  )0741, +5 \-Aii", 	+ 	(31,-)g, 

• -1- (4 11 	C:\ivt A B ) + L 	)14kYL -t- 6t3lt  Witt V() 

• L 11, Et jk 	kr 
	

+ L h2 E" 	'V X s 

— 	— 	( 	— 	-A 	11. -6 — xit ( Alo 

The supersymmetric model II, in the special gauge (8, 10)  

for the gauge superfield 	corresponds to this Lagrangian, by 

construction, for the choice of coupling constants given by 

112 = 7 	, 	= 2. = A3 = ° 	I 	Ait = 51/2 
	

(4.1) 

The asymptotic properties of the Lagrangian )9
_II were 

firstly studied by M. Suzuki(30). 	He pointed out in his work 

that the differential equations for the effective coupling con-

stants of the theory are satisfied "trivially" by the super-

symmetric choice of coupling constants; i.e. a lowest order 

solution to the Chang eigenvalue conditions for the theory. 

This implies, from the work on section II, that all the vertices 

of the supersymmetric model II are rendered finite to the order 



89 

of one loop by a redefinition of the gauge coupling constant 

of the theory only. 

We shall now proceed to determine all other solutions 

to the Chang eigenvalue conditions of the theory considered to 

the one loop approximation. 	The differential equations for 

the effective coupling constants of the theory are given by 

C-12 	611 '53 	 53  
iCff l  

01 	- 	1 	— 12 }I, 	I 
1670 

ct 	_ b: (1, 	=  I 	t 	1131  - 12111 
CFI 	16 ril 

(4.2) 

(4.3) 

(4.4) 

of 	= 	( 	i x) =  I 	{ ge 	+ 6 	+ 4 )1 4  4. 	(4.5) 
16 Tit 

	

)1 3 	-7-1+ )k% (11  + 16 	- 4 hi+)  + 3 

cl 	_ 6;1( 5, h 	= 	 88 A1  + 6 	+ 
i672  (4.6) 

+8}13 	- lit A, f2.•  4- 1 6 )■7_ hi 	.-111.2.  4. 3 se 

ci )13  -= 	13);3  ( 5 ,6,  A) = 	1 	  [ 40 a3 ( X,+ 	+ 16 )13 
c14- 	 16 TO- 	 (4.7) 

+ 16 )14. ( -42.) + Attt  - 203 (22  + 	( + 110 - s h, 	+ 6 

= - 	=  1 	16 )4 0,+W +3014 
cl+ 	 1b T-ri 

+12 A4 24  n4 11 	$ 	112 1  + 	) )114 - 3 54- 1 

(4.8) 



90 

We now define a new 

h. 

set of variables by 

A 
hi  = — 	for 	= 1,2 and a 	

= -'2 	for a 	= 	1,2,3,4 

(4.9) 

and look for solutions 	to the system of equations 	(4.2) to 

(4.8) for which the barred variables are constants, independent 

of t. 

From the equations (4.2) to (4.4) we obtain for di; = 0 
dt 

1
(h

1 

2 
2(h2 

- 	1) 

- 	1) 

= 

= 

0 

0 

(4.10) 

(4.11) 

Any solution of the equations (4.10) and (4.11) for which either/ 

or both the "barred Yukawa couplings" are zero does not correspond 

to a Chang-solution for the total system of equations (4.2) to 

(4.8). 	This is a similar result to that obtained for model I 

of section III and may be easily deduced for, say
, 

h
1 

= 0 from 

the equations (4.2) and (4.5). 

We now consider the solution of equations (4.10) and (4.11) 

given by 

2 -2 h1  = h2  = 1 (4.12) 

From the equations (4.2) and (4.5) to (4.8) we obtain the 

following system 

(4.9) 	for 

of 

= 0, 	a 

88 	A
l 
2  

88 	A
2 

 

simultaneous equations 

= 	1,2,3,4. 

2 
+ 6 X

3 
+ 4 V + 8 	

3 4 

+ 6 3,
3  
2 
+ 4 V + 8 3 4 

in 

5:
4 	

= 

4 = 

the variables 

1 	(4.13) 

1 	(4.14) 

dt
--a 



20 

16 

X3  (X1 +X2) 

X(a+X
2) 

+ 8 X2 	+ 8 X4  (X1 +X2) 3  

+ 	32 	A 3  A
4 + 	12 X24  = 

+ 4 X2  = 1 4  

3 
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(4.15) 

(4.16) 

- 	-2 where we have substituted for h
1
2 
 and h

2 
their values given by 

(4.12). 

The equations (4.13) to (4.15) are symmetrical under the 

interchange Al  4-÷ A2 and we observe two cases 

Case 1 
	

-A2 

Case 2 
	

A2 

The case 1 would not lead to any solutions that we would 

be interested in since either A
l 

or A
2 would be negative unless 

Al = X2  = 0. 	In fact the only solution obtained for case 1, 

and for real Xa, is the supersymmetric solution (4.1). 

We now consider case 2 in more detail. 	We eliminate the 

variable 2 and consider an equivalent system of simultaneous 

equations in the variables A1, A3  and A4  by taking the following 

linear combinations of the equations (4.13) to (4.16). 

Eqn. (4.13) - Eqn. (4.15): 

-2 44 X
2 
 - A

3 
+ 4 A 3  A

4 
- 20 A

3 
X
1 
- 8 A

4 
X
1 

= 1 0 	(4.17) 

3xEqn. (4.13) + 3xEqn. (4.15) - 2xEqn. (4.16): 

-2 	 2 132 A 
	

21
.

A
3 
- 20 A3  A

4 
+ 60 A

3 X1 - 8 74 X1 = 0 	(4.18) 

plus equation (4.16); for X2  = Xi  

32 A l X4 + 32 A3  A4 + 12 X24  = 3 
	

(4.19) 
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The equation (4.17) factorises and we obtain the two 

solutions 

2 A l  =3 

22 T
1 
	A

3 
- 4 A4  = 0 

Substituting for the variable A3, given by (4.17b), in the 

equation (4.18) and completing the squares we obtain 

183 
Al
2 4. (.189 

64 	8 Al 

_ 2 
- 4 X) = 0 

The only real solution of this equation is. Al  = A4  = 0, but 

A4 
	0 by equation (4.19), hence the solution (4.17b) is rejected. 

We consider now the solution (4.17a). 	We substitute 

for T
3' 

given by (4.17a), in the equations (4.18) and (4.19) 

respectively and obtain 

- - - 
7 X2 --

4  A1 
 = 0 

1  
(4.20) 

4 A
4 	

32 T
4  A

l  = 1 	 (4.21) 

The equations (4.20) and (4.21) can be solved trivially. 	All 

the solutions obtained to the Chang eigenvalue problem of model 

II are 

h
2 = h2 	 2 
1 	2 = g , 

 
= A2 = A 3 = 0 & A4 = g

2
/2 	(4.22a) 

	

h = h
2 

	g
2
, 

1 	2 	
= A2 = A3 = 0 & A4 

= -g2/2 	(4.22b) 

h
2 

= h2
2  
 = g

2
, 	2A 1 

= 2X
2 

= 
2 

(4.23a) 	 & A4 = -7 	g
2 

2/T-(5.3. 	2 
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2 
h
1
2 = h

2 = g2, 
2 	2 

2A1  = 2X = A = 	-g 	& A = _7 	g 	(4.23b) 
21/Y.63- 	247-(M.  

Unlike the previous model that we have considered in 

section III, we observe that there are two physically acceptable 

lowest order solutions if we consider a weak gauge coupling 

constant for the theory. 	That is, either of the solutions 

(4.22a), the supersymmetric, or (4.23a) correspond to theories 

with a potential bounded from below; the potential being defined, 

in the conventional manner, as minus that given in the Lagrangian 

The solution (4.23a) is not known to correspond to any 

supersymmetric theory and it must be assumed that it corresponds 

to some general Chang solution. 	The question that must be 

investigated though is whether a general Chang solution with 

its lowest order terms given by the solution (4.23a) exists. 

In section II.c we found certain sufficient conditions, 

but not necessary, for the existence of a general Chang solution 

given its lowest order terms. 	We shall now proceed to investi- 

gate whether they are satisfied by the solution (4.23a) and if 

not, what orders of the Chang eigenvalue conditions must be 

checked out explicitly. 

We consider firstly the determinant of the coefficient 

YU. 
matrix A.. (for i,j = 1,2) of equation (2.53) which is used to 

determine the higher order corrections to the lowest order 

solutions for the Yukawa couplings (4.12), for each of the 

Chang solutions obtained (4.22) and (4.23). 	As explained in 

section II.c, the determinant of the matrix A . for each of the 

(1) solutions (4.12), i.e. h
i 	

0 for i = 1,2, is different from 
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from zero for all N 	This may be easily shown 

explicitly to be the case, using the convenient form for the 

XA 
coefficient matrix A.d  given by (2.56) and substituting in 

it for the relevant computed functions for the theory con- 

sidered, given by the equations (4.2) to (4.4). 	For complete- 
Yu 

ness, the coefficient matrix A.. evaluated at the point (4.2) 

is given - which for the model considered turns out to be 

diagonal and (hence) independent of the relative sign of the 

values of h1  and h2 for the solutions (4.12). 	We find that 

(16712)Al  .i  = (8N+12) dij 
	= 1,2 

and hence its determinant is different from zero to all orders 

N. 	No problems are, therefore, encountered in satisfying the 

Chang eigenvalue conditions for the Yukawa couplings to all 

orders in perturbation theory, for any of the lowest order Chang 

solutions obtained for the Lagrangian model II. 

We shall now consider in more detail the determinant of 
r t  

the coefficient matrix B
ccB defined by the equation (2.54), which 

determines the higher order terms to the general Chang solutions 

for the self-quartic scalar coupling constants. 	We use the 

convenient form for the matrix BSC  (2.57) given by 

(Bisoccp- zNI“p- 

where for the model studied a,I3 = 1,2,3,4, bf = 4/(16712) and 

a 	- - 
the functions b1 (1,h,X) are given, in terms of the "unbarred 

variables", by the equations (4.5) to (4.8). 	Hence, for the 

Sc 
model considered we obtain the explicit form for the matrix B

a8 
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BSS = 1 	t B ( N- 1) ca a + Q0, 1 
16 (4.24) 

where  

0 	 VI + 3t4. 

116 XX 	 12 3+3 4  g 3t4 

Ito 	+ 16  A4 	311.3 + ItO (3t1+Xt) 	16 ( 	+ )ti,) 

16 It 	31 14 	16a, 	2X3) + ilr Xtri 

A3 

sc 	 -2 	-2 
and having evaluated the matrix Ba8 at the point h1 

= h
2 = 1. 

We now substitute for the barred variables in the matrix 

se 
Ba8 the values obtained for the solution (4.23a) and compute 

its determinant. 	We obtain that 

det Bsc 	128 	11 	1  (94K
2 	1344) 

(16w2)4  (K 	
) f2K(K

2 	356 
105 /M 	/T1T1 

where K E 2(N-1). 	We observe that the determinant of the matrix 

a01for the solution (4.23a), is different from zero to all 

orders N, N = 	It is concluded therefore, as explained 

in section II.c, that the lowest order solution (4.23a) does  

correspond to a definite Chang solution satisfying the eigen-

value conditions to all orders in perturbation theory. 

We shall now consider a rather interesting case that 

arises for the solution (4.22a) of model II, which corresponds 

to the supersymmetric theory. 	If we compute the determinant of 

Sc 
the matrix Beta with the barred variables evaluated at their 

supersymmetric values, "determined" by the solution (4.22a), we 

obtain that it vanishes for N = 1, N = 2 and is different from 
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zero for all other positive integer values of N. 

We believe that this property of the supersymmetric 

solution for model II is incidental, without any underlying 

physical significance. 	The determinant of the coefficient 

matrix for model I has been checked for the corresponding 

supersymmetric solution and it has been found that it is 

different from zero for all positive integer values of N. 

The fact that the determinant of the matrix BSC  vanishes 

for N = 1 is irrelevant in so far as the Chang eigenvalue con-

ditions are concerned, but this is not so for the root N = 2. 

In section II.c it was explained that, for any other lowest 

order solution but the supersymmetric, it would have been 

necessary in this case to compute and verify explicitly that 

the Chang eigenvalue conditions can be satisfied to two loops. 

For the supersymmetric solution no problems are encountered 

because no higher order corrections are needed for such solutions 

in order to satisfy the Chang eigenvalue conditions to all 

orders. 	This has been shown in section II.b to be closely 

related to the fact that the relations of the coupling constants 

of the supersymmetric theory are preserved by the renormalization 

of the theory. 

On the other hand, strictly speaking, the supersymmetric 

solution in this case is only a particular solution of a class 

of solutions to the Chang eigenvalue conditions for model II 

whose lowest order terms are given by (4.22a). • This is a 

simple consequence of the fact that the determinant of the matrix 

vanishes at N = 2 for the solution (4.22a), which we shall 

discuss in more detail. 
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We consider the equations (2.53) and (2.54) to two 

loops, for the next order terms to the Yukawa and self-quartic 

(2) 3 	(2) g scalar couplings 	g 	= 1,2 and za 	a = 1,2,3,4,  

respectively, when their lowest order terms are given by the 

solution (4.22a). 	Using the same notation as in section II.c, 

- whereforthesolution,(4.22a)b,. (1)  =1 for i = 1,2, Aa
(1)  = 0 

• 

for a = 1,2,3 and Ai(t1)  = I, we obtain the equations 

A (%) 	
( lilt 	-0) 	() 	 5 	-141) 	-340) ) 

L5 Xj 	2 t bz ( 1, h , 	) 	b2  

05C 	(I) 	m Yti 	 I I Alt 	- (I) - (i) 	- (I) 	9 	-0) - (i) 
(2) 

Bap 211 + bc(i 	 Oz.  ( 1, h , A ) - 2 X,/ 101(1, h , X ) 

(4.25) 

(4.26) 

and for the vertices of the supersymmetric theory to be rendered 

finite to any order N by a redefinition of the gauge coupling 

constant only, we have the identities (for the simple pole 

residues at n = 4 of the bare coupling constants of the theory) 

-0 - 	 -m m 
b N  ( 	h , 

0 
 ) s ( 	6 , X 	 ) 

,ht 	-W -0 	-W 	-0 r0 
bN (1, 	, A ) 	Ac( 	bN  (1, 	, 	) 

(4.27) 

(4.28) 

for all N = 	i = 1,2 and a = 1,2,3 & 4. 	All the 
Sc. 

matrices of the equations (4.25) and (4.26), Bal3  given explicitly 

for the model by (4.24), have also been evaluated at the point 

given by the solution (4.22a) and for N = 2. 

The left hand sides of the equations (4.25) and (4.26) 

are equal to zero by the identities (4.27) and (4.28), respective- 

ly, for N = 2. 	From the equation (4.25) we obtain that 

for i = 1,2, since det AYU  0 0. 	The determinant, though, of 



2 0 1 1 

2  Sc 0 2 1 1 
(167r) B

aO 2 2 2 2 
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1 
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z(2) = 
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St 
the matrix Ba8 

of equation (4.25) is equal to zero and a non- 

trivial solution exists for this equation. 

The matrix B 	and (hence) the solution to the equation 

(4.25) are given by 

where £ is an undetermined parameter. 

The general solution to the Chang eigenvalue conditions 

for model II corresponding to the lowest order solution (4.22a) 

is of the form 

= 2 + I-1, (2,1) 

= 	?4  + A i  t,2) 
1: 

54  + 	(t, fl 

wherethefunctions11.1(t,g) 

cf,$) 

Na . €54  t A, ( e d 1) 	(4.29) 

A 4 .132 4.e.34 + A 4 ct,1) 

= 1,2 and Aa(2,,g) a = 1,2,3,4 are 

the higher order contributions to the solution obtained to two 

loops. 	These are determined uniquely as functions of t by 

the equations (2.53) and (2.54) since, for the solution (4.22a), 

det B
sc 

0 0 for N = 	Furthermore, using the identities 

(4.27) and (4.28), we observe that the constants Ci  i = 1,2. 

and Ca a = 1,2,3,4. of the equations (2.53) and (2.54) for 

N = 3,4..03, determined to each order by the known form of the 

solution (4.29) to that order, vanish for 9, = 0. 	Hence we 
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obtain that 

Hi(g,g)I 	= 0 and A
a
(9„,g)1 = 0 

=o 	k=o 

for all i = 1,2. and a = 1,2,3,4. 	The supersymmetric theory is, 

therefore, given by the solution (4.29) for 2, = 0, as it would 

have been expected, and it is only a particular case of the 

Lagrangian theory corresponding to the solution (4.29). 

In conclusion, we have obtained for model II that (a) a 

general Chang solution exists whose lowest order terms (4.23a) 

correspond to a theory with a potential bounded from below, 

and (b) the Chang eigenvalue conditions do not fix uniquely 

the higher order terms of the lowest order solution (4.22a) - 

corresponding to the supersymmetric theory - to be zero. 

The existence of the solution (4.29) is rather interest- 

ing. 	It illustrates that the Chang eigenvalue conditions may 

be satisfied to all orders by solutions which are not completely 

fixed in terms of the gauge coupling constant of the theory. 

In such cases, the Chang eigenvalue conditions fail to eliminate 

completely the arbitrariness of the Yukawa and scalar quartic 

coupling constants of the initial theory. 

On the other hand, on theoretical grounds, it is a 

desirable feature that the requirement of a gauge theory to be 

asymptotically free should eliminate "all" arbitrariness in the 

Yukawa and self-quartic scalar coupling constants(1) 	It is 

more likely than not, though, that if in general the deter- 

sc 
minant of the coefficient matrix B 	of equation (2.54), for 

some given lowest order Chang-solution, vanishes at some order 
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N, then the Chang eigenvalue conditions cannot be satisfied at 

that order. 	This is because, in general, it is highly im- 

probable that the "constants" (Ca 
- Bscj 

j  
x(N)) of equation 

a  

(2.54), where x
(N) 
 are determined by the equation (2.53), are 

accidentally zero at that order so that we obtain a consistent 

system of equations - strictly speaking the system of simul-

taneous linear equations (2.54) would be consistent if the 

coefficient matrix B"  and the augmented matrix, for this sys-

tem, have the same rank. 

It is also of interest to note that the infinite contri-

butions of the proper vertex diagrams for the self-quartic scalar 

vertices of the supersymmetric model II add up to zero, i.e. 

only finite contributions are obtained. 	This may be seen by 

considering the right hand sides of the differential equations 

(4.5) to (4.8) from which the simple pole residue contributions 

of the relevant proper vertex diagrams can be easily identified. 

Furthermore it is easily seen that this is related to/or implied 

by the fact that (a) the simple pole residue at n = 4 of the 

bare gauge coupling constant of the theory equals minus the 

residue of the wavefunction renormalization of the scalar or 

2 
pseudoscalar field for h

1
2 
 = h

2 
= 1, and (b) that all the vertices 

of the supersymmetric theory are rendered finite to one loop by 

a redefinition of the gauge coupling constant, only. 

Since the above argument holds for all the solutions found 

to the Chang eigenvalue conditions for the theory considered to 

lowest order, it follows that the sum of the proper vertex 

diagrams for the self-quartic scalar vertices of the Lagrangian 
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corresponding to the solution (4.23a) are also finite, as it 

may be seen directly. 

Essentially these relations for the various subtractions 

constants of the theory have been implicit in our calculations. 

sc 
In fact the vanishing of the determinant of the matrix Bas 

(4.24) for the solution (4.22a) when N = 1 can be understood 

along these lines; i,e. for N = 1 and A l  = a2  = 0 the matrix 

Bs  (4.24) has two identical rows. 	That the elements of the 

diagonal matrix in (4.24) are proportional to (N-1), rather than 

some other function of N, follows from the aforementioned ob-

servation (a) on the relations obtained for the subtraction 

constants of the theory. 
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CHAPTER TWO 

ONE LOOP "STRONG CORRECTIONS" TO THE 

HADRONIC WEAK CURRENT 
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Introduction 

The local current-current Lagrangian for weak inter-

actions(31)  gives a very good description, in lowest order, of 

all known leptonic and semileptonic processes. 	But being a 

non-renormalizable Lagrangian and with bad high energy beha-

viour(31), it may be viewed only as a phenomenological theory 

for weak interactions. 

In recent years there has been great progress in the 

field of weak interactions
(32) Weak and electromagnetic 

interactions share the common property of being universal and 

attempts to unify these theories seemed natural. 	On the other 

hand, in contrast to the photon, the weak charged boson mediat-

ing the weak interactions is expected to be massive so that an 

effective current-current point interaction is obtained for 

small momentum transfer weak processes. 

In 1967 a unified model for the weak and electromagnetic 

interactions was constructed(33) based on the gauge group 

SU(2) x 11(1). 	The photon and weak charged boson were identi- 

fied with certain linear combinations of the gauge fields of 

the theory with appropriate masses being generated by the Higgs- 

Kibble mechanism
(18) 

One byproduct of this scheme was the 

appearance of a neutral heavy intermediate boson, orthogonal 

to the massless linear combination of gauge fields identified 

as the photon. 

It was shown later on that gauge theories with a spon- 

taneously broken symmetry, due to the non-vanishing of the 

(18) 
vacuum expectation value of the Higgs scalar fields 	, are 
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renormalizable (28,34) 
	

About the same time, a large number 

of models for the weak and electromagnetic interactions 

appeared in the literature based on different gauge groups but 

essentially with the same ingredients as the initial Weinberg- 

Salam model(33) 	In extending the unified models to the des- 

cription of semileptonic as well as leptonic processes, with a 

Cabbibo form for the hadronic weak current, a problem was to 

ensure the absence of strangeness changing neutral currents. 

Such currents are known experimentally to be greatly suppressed 

relatively to the charged ones, but seem inevitable in model 

building if only the usual three fundamental quarks p, n and 

A are used. 	For the Weinberg-Salam type of model, strangeness 

changing neutral currents can be avoided by assuming the exis-

tence of an additional fourth quark x carrying a new quantum 

number called charm
(35) 

- with the quark fields p & n, and 

x & A introduced in a parallel way to the leptonic multiplets 

of the gauge group. 	The strangeness conserving neutral currents 

are a feature of most unified models and have been found experi-

mentally to exist. 

The introduction of strong interactions for the p,n,A 

and x fundamental quark fields into one unified theory for all, 

strong weak and electromagnetic interactions was just the next 

step to be taken. 	Experimentally it is known that for small 

momentum transfer semileptonic processes, like the S-decay, 

the strong interactions leave the vector part of the Cabbibo 

current unrenormalized. 	In this Chapter we consider the effects 

of the strong interactions on the effective semileptonic strange- 
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ness conserving interaction obtained within the framework of 

a unified model for the strong, weak and electromagnetic in- 

teractions(36) 

• 	

In particular we calculate the one loop 

"strong corrections" to the semileptonic process (Trye 	pe) 

and consider whether the vector part of the hadronic current 

remains unrenormalized. 

The Model 

In a paper by Pati and Salem(36) it was proposed that 

all the fundamental hadrons and leptons belong to the same 

irreducible representation (4,4 ) of the global symmetry group 

SU(4') x SU(4") for all matter. 	In scheme A of reference (36), 

the basic matter fields of the representation (4,4 ) are inter-

preted to be the known physical leptons, nine Han-Nambu type 

quarks and three charmed quarks. 

The unified model for the strong, weak and electromagnetic 

interactions that we consider is the first of two proposed by 

these authors(36,37) ▪ It is obtained(36)  by gauging the sub- 

group SU(2 7)1,  x U(1) x SU(3") of the global symmetry group, and 

may be viewed effectively as an extension of the Weinberg Salem 

model. 

The (4,4 ) fundamental matter multiplet is 

P: 	Pb 	Pc 

▪ 

I Ve 

1

- 

hb h e- ncl.  

\ rot 	Xb X4-c. 1  \I r 
-t

) p 
	

x (p,i.) 	Tr I 

‘o 
b 	)10  Aa 	c , 
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Where i = a,b,c corresponds to the SU(3") gauge group index 

(colour), a to the SU(2')L
-index and T

1 
is the conventional 

Pauli matrix. 	The superscript on the elements of the (4x4) 

array denotes the corresponding  charge of the particles (in 

obvious notation). 

Three Higgs scalar multiplets are also introduced and 

appropriate masses for the gauge bosons and fermion fields 

generated by the Higgs-Kibble mechanism. 	Two of these multi- 

plets, represented by(a u  ) a  and 	each consists of six com- 

plex components transforming  as (2,1,3 ) under SU(2')L x U(1) x 

SU(3"). 	The third is represented by (I)a, it consists of two 

complex components transforming  as (2,1,1) under the gauge 

group. 

The eight gauge bosons associated with.the SU(3") gauge 

group for the strong  interactions (coupling  constant f) are 

represented by V: m = 1,2..8. 	Similarly, the gauge bosons 

associated with the SU(2) and U(1) gauge groups are represented 

by Wu i = 1,2,3 and Up  respectively, they couple to matter with 

strengths g  and g' respectively. 

The unified model proposed(36) for the strong, weak and 

electromagnetic interactions is described by the SU(2')L  x U(1) x 

SU(3") gauge invariant Lagrangian 

	

-* 	-0 	4 	4 

	

fi 4 G 	14x 	- 
4 

+ i Tpu(tx,i) 	[ 	 ( 	 S-c)  

6 
5` 	gLi Uy, 	91)1.(ii:1) 	4-  



cle,. 	- i 	C 	+ 

TeR 	14  I aN  - 	 Terk  

dew  + 

10 7 

+ [ So 	at, —L 	\fth 	Eck  —i $ ('\-(Fk ‘.)r. )(4,0 	Tp,x  (#0,0 

i 	ckt - L5 ( 	Otiap dpF. 	5' uv, ef•,( 
et:: 1,1 

+ 2: r) 	-.40, ,\41.3  
t 3,2,3 
a= 1.2 

(1-00ap 
2 6 

Ur  au)„ 

+ terms obtained by the substitutions 

Tp 	Yx 	 Yµ ak; 
\ 

ci) 	cxt. 	clo• B + Liu 3\11  cr. B 	Pi.) 	+ 

bins iitit  cr. B + Ga  -XLR  cT B + G% 	1)41 	+ h. c. 

+ Gt. ilk 	B 	+ CT 	R  CPT. B .4)1, + h. c. 

( CI)  / 	/ C74 	C-e  

Where: 

The postscript L,R on any fermion field denotes the left and 

right hand components respectively of the field(38)  , i.e. 

1- Ys 	% _ 

	

2 	 2 

G rI V = 	a )1( Wt C:3 C4:44 A CI 

\ 
rn  ttv = Cy Vy — )y Vittn 	tY11( v; where fmkQ  are the structure 

constants for SU(3) 
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m,m = 1,2..8 are the Gell-Mann matrices for the 3 represen-

tation of SU(3). 

= 1,2,3 are the Pauli matrices. 

( (. )= 1 ( 3 -c + 	p 	, 	1 iR ) 4, 	(0  _,) 
6 

, 
and the matrix B 	

0 1 

	

= ( 	). -1 0)  

The gauge invariant potential V(4),a) is constructed by including 

all gauge invariant terms up to the fourth degree in the Higgs 

fields. 	It has been assumed(36) that for appropriate inter- 

actions among the scalar fields the non-zero vacuum expectation 

values of the Higgs multiplets are given by 

= (a 0 0 	<a 	= ,0 0 0) 	,A 
<a  u> 

 

	

0 a o' 	
> 	

o o a 	
<> = k o  

where a and A are real and a/A is small of the order 10-2 to 

to 10-3. 	The Higgs fields are redefined by a
u 

= <a 
u>+ 

a = <a >+ -Ik
e 

and 	= <4,>+w so that if , u and fLe have zero 

vacuum expectation values. 	On substituting the redefined 

Higgs fields in the Lagrangian I:l' the following eigenstates 

and masses are obtained
(36) 

for the gauge and fermion fields 

\J 	L V5  V1,1- = N1 ( 	= 

(V Ka , 91:w ) 

IF , COS g 	\± sinS 

nr• 

	\ 	
ot 

W 	= 	V\I 	Coss -- V e Sind 

; 	r10,1(1);*) 

+ 0(crIN) 

11( Cie) 	`n■ 4- 0(0"/X) 
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A-cc PI 2.S= — 	al L 1 _ 21104  + 3 0.2 

9 	31  Al  
very small. 

The electromagnetic field A (massless) and heavy neutral boson 

Z°  will not be exhibited here. The neutral bosons orthogonal 

to these which interact strongly are 

Vxo = V3—,rvs  
2, 

M(Vx0) = 

Vi o 	9 (9 w3 	(3/4) 	9141 	+ vo-3 	o (cyo,)  
t 11( 9249'2 ) 	$ C 92 + IT I 

M(Vx.) 	+ 0 (cr/N) 

Similarly for the fermions we have that the two neutrinos re- 

main massless and trip = )t y, 	rnx r- ACtx 	me = aGe 	= 	14  

and 

cos° hi — sing Xi 	, trql• = A [ Gt, + Cx x  - 2. cosec 20 L vo,i s X Cv;, 

AL = cose 	+ sin° 
	

X [ G„1  +GA lcosec 20 60,,x1 	X C-Vi 

where 0 is the Cabbibo angle, tan 2.0 = 	LIIN  

The gauge fixing Lagrangian 
£2 

that is added to of. is 

selected so that the bilinear terms in the gauge and Higgs fields 

of 
	

which give rise to "mixed propagators", are cancelled(28) 
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The Lagrangian 12  must be supplemented by an effective Lagran-

gian 3  which describes the closed loop contributions of the 

ghost fields and can be obtained(27,28) by performing an in- 

finitesimal gauge transformation on 1:2. 

-1 1 dr  V:. + t. MK* Be - 	me Be  It  
/ 

- 	(
14 

--zr 4. Me Bz° 	 ( 	A 	 ° 	M'f°  B.f °  

\l„or  + 	)1 	— 5 (fir  Ar )1  

where the letter B with subscript of a given gauge boson de- 

notes the corresponding Goldstone boson of the field. 	For 

example, for B- and B- we have 

Bt. 1 u. s i,s,,,g_ 7 .,cossiriol_eL),,-sCos.s.‘...-ca,._,1/44.11 

= 	tC Scrcosg+ asing tUlt- VA )1 1  * c sits  UYT1t.)2 

theory. 

We let
1  represent the renormalized Lagrangian of the 

The bare Lagrangian 
HrB 

has the same structure as 1' 
and we distinguish the unrenormalized parameters and fields by 

the superscript (B). 
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It has been shown that the gauge fixing terms remain 

unrenormalized
(34)

, and hence the same gauge fixing Lagrangian 

X.2 may be used for both the bare and renormalized theories. 
The only difference being that the mixing of the gauge fields 

with their corresponding Goldstone bosons for the bare Lagran- 

gian do not cancel. 	On the other hand the effective Lagrangian 

for the ghost contributions is renormalized, the renormalized 

and bare Lagrangians being invariant under different set of 

gauge transformations
(34) 

 , but this will not interest us here. 

The counterterms of the theory are obtained by 

/J6  J il l tJ fi. 	 (34) + 4,3 )- Y..07.31 according to the usual prescription 

That is, there is one overall wavefunction renormalization for 

each multiplet. 	Similarly, all other subtractions for the 

coupling constants, masses and vacuum expectation values must 

be carried out in a consistent way with the gauge invariance 

and overall structure of the theory. 	So, in general, the 

renormalized quantities may differ from the physical ones by 

finite overall renormalizations. 	We shall firstly, though, 

consider the diagrams of order f
2 

g
2 

contributing to the process 

n ve 	pe and then determine the counterterms needed according 

to the usual prescription. 

The Feyman rules of the theory are manifestly renormaliz-

able for 3 0 0 while for i= 0 all the unphysical scalar fields 

are transformed away and we obtain the unitary gauge. 	We shall 

work within the general renormalizable 1-gauge formulation of 

the theory and consider the gauge independence of the matrix 

element for nve 	pe . 
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The Effective Semileptonic AS=0 Interaction  

The lowest order diagrams contributing to the semi- 

leptonic strangeness conserving (AS = 0) process n ye 	p e 

are 

If we consider the effective coupling strengths of each 

of the above diagrams for small momentum transfer (Q2) compared 

to the masses of the gauge fields, we obtain that: 

Diagram (1) leads to an effective (V-A) current-current 

point interaction of strength - g
2
/M
2
- and also to (scalar+ 

pseudoscalar) current-current type of point interaction sup-

pressed by a factor - 1/M
2
-
w 
 (M

w  
- -. large) relatively to the 

(V-A) interaction. 

Diagram (2) leads only to the (scalar+pseudoscalar) type 

of interaction suppressed also by a factor 1/M2- relative to 

the (V-A) interaction of D.1. 	The contribution of the Gold- 

stone boson B- though cancels the term of the W-propagator 

having a negative metric scalar boson pole at Q2 = M2/1 (see 

relevant propagators in Fig. VIII). 	So although the Bi-q—contri- 

butions are suppressed, they will be retained because we shall 

be interested in the gauge independence of the matrix element 

(and as a check of our calculations). 
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Essentially D.4 represents two diagrams obtained by 

the exchange of (a) the Goldstone boson B- and (b) the physical 

charged scalar field Hpl  which is orthogonal to the fields 

B- and B-, and couples to fermions with strength -gamf /X M-. 

(m -fermion mass). 

The diagrams D.3 and D.4 arise only due to the small 

 
mixing of the fields W and Vp, i , 	.e. the small breaking of the 

SU(3") group for the strong interactions. 	They are suppressed 

by a factor - sin2 M
2
/M

2 
- (a

2
/X
2
) relatively to D.1 and D.2 w v 

and are therefore neglected. 

The Fermi coupling constant GE  to this approximation 

is 

2 GE/4-2 = g2  /8M*  with cos S = 1 

We now consider the diagrams of order f2g
2 

contributing 

to the above process. 	The Feyman rules of the theory are 

numerous but we find that most diagrams of the order f2g2 are 

suppressed by a factor a2/X
2 

and can be neglected. 	The only 

diagrams that need be considered are obtained from the diagrams 

D.1 and D.2 by 

(a) an insertion of a self-energy part of order f
2 for the 

p and n quark fields, and 

(b) the exchange of a gauge meson across the weak vertices 

for the n and p quark fields. 

We also consider briefly the type of diagrams that have 

been neglected, i.e. suppressed at least by a factor u
2
/A
2
. 

These are 

(c) the diagrams obtained from D.1 and D.2 by an insertion 
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f2, for the  + and BW  of a self-energy part, of order 	 propa- 

tors respectively, and 

(d) diagrams obtained from the "3-point vertices" of the 

gauge fields, Higgs scalar fields and mixed (gauge and Higgs 

fields) of order f coupled directly to the "fermion lines" 

n 4- p and Ve  -- e (to the order fg
2), plus 

(e) all possible f
2-corrections to the diagrams D.3 and D.4 

_+ 
and the diagrams obtained from further mixing of the W-  and V- 

P 

fields. 

We have also neglected the f
2-corrections to the vacuum 

expectation value 	A13 ) due to the small mixing of the Higgs 

multiplet T with the multiplets 	, since cl) is an SU(3") 

singlet, and hence the corresponding f
2-corrections to the masses 

of the fermions. 

The approximations are also made that the masses of 

the gauge mesons are all equal, represented by Mv, and similar- 

ly that the masses of the quarks p and n are also equal. 

The relevant counterterms needed to render finite the 

diagrams of order f
2g

2 retained are very few and simple. 

The infinite parts of the renormalizations of the parameters 

of the theory which are multiplied by the "suppression factor" 

0.2/-A2  will be effectively ignored. 

Strong interactions conserve parity and the wavefunction 

renormalizations of the left and right hand fermion multiplets 

are equal. 	Also, no further mixing is obtained to the order 

f2 for the n and A quark fields and we may choose, for con- 
' 
2 

venience, the same wavefunction renormalization (1+Z2) 	
for 

both fermion multiplets Wp  and IP . 
X 
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The wavefunction renormalization 	
2 	is defined so 

that the renormalized p-quark field has unit matrix element 

between the vacuum and the one particle p-state. 	In the 

approximaticinthatwensera=m_„this is also true for the 

corresponding matrix element of the renormalized 1-17quark field. 

The mass-subtractions for the p and n quark-fields are 

B 
also performed on the mass-shell. 	If we let 6m.. = m_ - ra- 

n 

and 6m = m - mB then from the bare and renormalized Lagran- 
P 

gians of the theory we have 

Smp  = ASGp  + Gp  6X & 6mn = X6G + Gft  6X 

where6G
P  =GP 	P 

-GB
n n ,6G_=G_ - G-B  and 6X = X - XB  . 	Hence for 

- 	, 	n 

(SA=0,6GP 
	n and6G-(equalinthiscaseform

P 
 =m_n)are deter- 

mined once the mass counterterms have been computed. 

Finally we consider the renormalization of the weak 

gauge coupling constant which can be determined, up to a finite 

constant, by considering any of the gauge interaction vertices 

of the theory. 	The effective semileptonic interaction to the 

order f2g2 to be computed will be expressed in terms of the 

physical coupling strength g for the vertex v- e 	The 

strong corrections to the weak vertex ve-e -W are suppressed 

by a factor a2/X2 and to this approximation the weak gauge 

coupling constant remains "unrenormalized". 	We also note that 

this choice for the renormalized weak coupling constant is con-

sistent with the constraint 614
w = 6(gX) to the approximation 

considered. 

The f
2 
self-energy contributions to the p

a or a quark 

fields are obtained from the diagrams 
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and performing the subtractions on the mass-shell (with m = 

mA E 
m), the mass and wavefunction counterterms are determined 

by 
 dz it  

ccp1 	 (co 	'Z., 
)ff 

The relevant Feyman rules of the theory are given in Fig. VIII, 

we have (with cos S = 1) 

= t( 	crk 	(-1) 	x, t 9" - (1-in) wile/ ( Ka)  

	

(4+E{- 	te- My  ) 

After some algebra and using the Feyman parametrization we 

obtain 

= r(1+)2, [ Jo Adctiit, 	- [(2-nA+ von .1-(2-h),K) 	(1-1/1) (91.-Yn)  
4 	kt+2xcl.k + x 	(1-)0 	[ 	)(tillv -(1-)0 filly 32  .S ll  

+ Li  x  Scriq 	( - 	) 	(1-1/3) L( ci%-)1)( 4-v11)+01-'70z (4-0)  
x rev. - (1-x) 	 [(k 	till ire-1111 t If- 112s') 

The last term is neglected as it does not contribute to the 

subtractions performed on the mass-shell, while the third 

	

term is zero on integration. 	The integrations over the loop 

momenta are given in Appendix III, and neglecting terms that 

(1) 
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vanish at n = 4 we obtain 

L (9.) 	f z (1+ y,11 ) L 	6mR3-n/z) _ 2( 91.-hiM3-hp2.) _ 	+ ryi + 
4 16Trz 	(n_io 	 (h-if) 

( J. 
+(Lori-19V ) 	[ X tri+(1.-%) Pity + X (X-1)1:11 ] clx + 	)0  x Qn[xmi.+ti-x)Mg 	dx 

So  + (1- in) (91-vro 	x 	+ (1-x) iviv 	+ 0 (c-m).2". 

Hence the counterterms defined by (1) are 

crm = - S2(1+X2/1-0 111  { 6 FC3-n/2)  + 1 + 2. 50  a+X) 	(1-X) My 	wit] ax 

	

16 Tr-2 	(n-4) 

(2) 

	

12 (1. +X-2/0 	2 FC3- h/2)  + 1 - (1- 1) 	[ x 	(i-x) 	dx 
16  Tr2 	3 ( n- 	

0 

+ 2 co  (1.-X) in{ X2  + 	Miv 	+ 0111  it, %(1- X2 ) C6  

	

C 	 +(t-1.) M1V 3 

( 3) 

This completes the discussion on the subtractions that need 

be determined to the approximation considered. 	The counter- 

terms 
 

'"1 terms obtained from 	1 for the vertices p
a
-fi

a
-t" and ' 

pa a-B- are given respectively by (with cos 6 = 1 and  w 

mp  

L 9 Lose 	9 4 (1.45) 	and 	-L cos° (tit 7_,P; dm) 
2I 	 42.  MW 
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We now consider the effective semileptonic AS = 0 

interaction to the order f
2
g
2
. 	The diagrams that have been 

retained to this order for the process n
a
((I

1
)

e
(p1) 

pa(q2) e (p2) are 

`N4 , Vie,Vy° 

plus the corresponding set of diagrams obtained from the ex-

change of the Goldstone boson 13,(4., instead of the weak boson W. 

From the Feyman rules of the theory we have, with Q11  E (q 2-q1) 11  

A„ 	t 92  COSO 	( J) e(1-Xs) u(N. [( 	- Qv 	Mw) 	Qv a14  
( 	- M.1,74 	tAlc, 	- 3241) 

. TA.(11? 	(1-Xs) + 1,7414  + X P(1- Xs) 1P2, 	Lt(g1) + 

9 cos@  Me 
M2  

. a(px) (14s) wpd 	1  
(a2 _ 

. CA(11) tltras + IB,74  +1rn 	—2 Ern ys) u(cio 	
(4) 

or in terms of the weak current form factors(31)  to be computed, 

and for small momentum transfer, Q2/m
2 

- 0 
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As1 	i gIF  cos°. 	 u(pi)  . twit) 9v (0:4) 	- 

— A  ( 	kt 05 	+ h,(al) at,. + gAm OS avk 

+t hA (e) xs 	IT' 3 Lugo + 0 ( 	, m me ) 

	

112c.1 	(5) 

Where I
p
r  and IB- 

denote, apart from a numerical factor, the f
2 

corrections to the vertices pa-ria--i;1 and p a-a a  -B-, respectively, 

which we shall now proceed to calculate. 	We consider firstly 

thef2-contributionstotheprocessdenotedbyIii,;which is 

understood to be "sandwiched" between the two spinors for the 

aa and pa 
quark fields. 

Icht  = 	s' (11) Ahi? xe 	1 	eo._%,) 	1 	xcr 
91.1+X-1-11 	IA+ —In 

.15ecr —(1-1/1)12egal(k2— Mtl%)1  
(fie—  M2v 

After some rearrangement of terms and using the equations of 

motion for the spinors, the integral simplifies to 

TW = -,r(i.0(2 )  Scriz  f (2ce;+r,g) 	(29.1.0.4. gYa)  
( le+ 1. 	( e+212.9) ( 	M2:1) 

-e(1-10 	  
( 	111., PO 

and after some algebra of the y-matrices, the integral may be 

cast into the following form 
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_tr(1+z-) fahR {  1.4(41.41)+zk.(9,1+9.0+(h-4)kt1 	+2(2.-r) vAi (1-X5)  + 
te421R.9.2) 	1 .1+z1z.%) 	MN1 

[ 	1 	+ 	1  
( 1z1+ 2.12.qt) 	( 	11z-cti) 	1Z 2- 

21-11 [ 2 le — 	- 10`) Xs 1 - 4 (ch+V A (1-)(5)  
( 12.1 + 212.91) ( le+ 2 t.94) 	M2v)  

- 	(145) (1--1/1) 

 

1  
-Wu) ( 	11,241) 

 

We now combine the denominators by the standard Feyman parameter 

technique and perform the integrations. 	Using the results 

of Appendix III we obtain 

s 	X1 

1:-41  = 	 cixt dx,. (-t)e(11s)[  40,119.0 	(%49.21(xl.9.14Axi-No(03  10-170 (iTir  0 0 
D 

h - 	t (%1 (It ( 	X%) % )2  173- hh)  _ n r(2-1112) 	I 

i. 	(It 
— z (1-11) 	C1X2 [ 	Xt-X09.2. ) At+( Xi.-`14)112) i(1-vv2,) 	ru-N2) (.1.45) 0 	0 

D PV2 	 D
2—NZ .1 

(1. 

r(i-x5) r(2-niz) J dx 	1 	 1  
ki-x)Pitx2t,,r1/2+  ki-x)M,+x'ci,;12-rv' 

D3-"h 	 D'h 
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+2111 f(3-vo.)),,c1)ci clxx {. ()(1°.s +( 	92) - [ 	v.1 (xtIzii+(xt-x2.)ch)v  Y5 I 
D 3-11/2 

1.1 	(xi  
— 4 (91+ 9.1)14 	Jo  062. 	(Xt 91.1. + Xt- X2.) 521% ) 	YO  

D "i2  

• ri — (1-1) r (1-Xs) 172- h/i) Jo 	clx  
x My ci-x) M!.11)1-"12  

where 	D = [ (i- xt) Mt, +(X1.91 +(xi-X2)%)2 J  

[ 	xt) My + xtxt k11h + ( - xt 	+ X2. ( X7.* Xi) d 

We note that to the approximation mil,  = m
P 
 the integrals over 

the variable X2 whose numerators are odd power functions in 

(2X2  - X1) are zero. 	Hence it is found that to this approxi- 

mation no contributions are obtained for the weak form f actors 

hv(Q
2) and hA(Q2) associated with second class currents(31)  

The integral I/..1  is expanded about n = 4 and terms that 

vanish at n = 4 are neglected. 	Wealsocastl-in the stan- 

dard form of independent weak form factors using the identities 

acct) 	clockPt  = 1 to 	ciPv  Qv u(qi) 

u ( cto 	Q't 05 	2 trl U N  05 - cr" (94.4.9.0v IN I u(9.0 

IW = ni+)(11- ) - 2VO-YOF(3-hi2) + (1-1 ) d11(1.- Is) J clx Ad X MN' 	 # 
16 T1-1 	I (11- 
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(1 	(xi 
Jo  GIX 	{(1-XA +Xlel —7.(2e-Ct) r(1-X5) 	clx% 

D 
xi P4 

	

— r(1-Ys) + Y14(145) c)Xi clX2  CtlX1  4- 2 .en Di + 	S clx2  Xi  0 	

• 	

, 0 	0 

1. 
zi tri a." Qv I clxi xidx.), xi (1-xi)  — tri at4h 1 Jx, 1 cb.). xi + ( 2x1.-)(1.)%  o 	o 	 0 	o 

Hence, using the expression (3) for ZP  we obtain that 2 

	

Xi 	2.  

11;4  + V4(1-YS) .Z.P1 	g2(1+X2/4)  V1(140  [ clxi i 	{ Q ( 2-x0- it 	+ 	D 	+ 
16 TO. 1 	0 	0 

f l 	 ,1 	,X1 

—2 1 X int X1h1I+ (1-X) Pilv CIX + 	x 	x') dx 	+ 	clx, 41111  0 

	

° xl rat+ (1-x) M2,, 	
0 	0 D  

• txt 
+2 cri" Q, 

O 0 

txt 
xi (1- xi)  — 2 m 	f cixti 

0 	0 
xi  (2x,,- xi)9"  

D 
(6) 

We observe that (6) is finite and gauge independent. 	For 

gauge independence of the matrix element for n
a ve 	pa e we 

must have, from (4) 

ti(cy 	L-114  + V(1--X5) 2P2 + [ IN;  4- 2 )‘5(M 	S )1 U(%)=0 (7)  

From (6) we obtain that 

xi 
Q, [ 	 sl(i+){/4)  a m XS J Axi cx,, I if 	÷ 2 	+ 

16 Trl 	L 	° 
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2. 	(xi 
+ 2 I x 	[ 	 m2, I dx 	x (1.-x) dx 	Q fax, ) dx1  (2 xi- 

0   
° Urt?+(i-x) r11,1 

(8) 

In order to check the condition (7) we now calculate the 

• contributions denoted by 'B._ 

	

;_,„ 	e(i+ax) ftg 	1 	tri is 	1 	ya 

	

vi 	1 	( 911+X-rn) 	+.a -m)  

[9ea -(1-1/1) 42 e  lzo-/ (1-P.'11://1)1  
(te.- kiv ) 

After some algebra and using the equations of motion for the 

spinors, the integral may be cast in the following form 

rod) 2.hqs fah' 	4(qi.%)#(11-4) tzt 	4- 
4 	 e+ 2 `L) (W- 4-2.1Z 	(tzl- Mt) 

+ 	2 	 2  
(k2.0,1zat)( 	mtv) 	P2+ 2 R.9.0 ( 	ritv) 	te- M2v 	PASI )  

Upon integrating this and neglecting terms that vanish at 

n = 4 we obtain 

s2 t 
]: 	a(24.xPO 2105 	-2(3.0rim3-Invo 	+0.-1) ,cas txm2„.#(1.--)0m'vl Bc„, 

1671 h-4) 	1 

	

- k J dx -en NI. tr?-m''+u-x) Kt,] - 	) j1dx1  f 
xi 

 dx.2, 
0 0 

Hence we obtain that, using (2) and (3) 
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I8z14- 	7,13,1 - Ern ) = g(1+-1t1/4)  2111 XS  -2k111111-- 	IX:63, 1  + 
16-1T 2 	 ° 	° 	D 

+ 41'01' j 	x 	ax  
(9) 

Comparing (8) with (9), and after a simple integration by parts 

for (8), we obtain that the condition (7), for gauge indepen-

dence of the matrix element (4), is satisfied. 

The weak current form factors to the order f2 for the 

hadronic AS = 0 weak current may be easily obtained by com-

paring (4) with (5), where (It' + y//(1-y5)Z3) has been deter- 

mined to this order and is given by (6). 	For very small or 

at zero momentum transfer only the vector and axial vector 

parts of the hadronic weak current contribute to the effective 

semileptonic interaction considered. 	Setting the momentum 

transfer equal to zero (Q2 = 0) in (6) we note that the 

2 	1 "denominator" D/
Q2=0 = ((1-X1)Mv

2 
 + X1 m

2 
 ), and it is easily 

seen that 

1 

cjv (cLo) 	, 	9A(e1/4-.0).1_ r(tok'zi) fm2  x 3  61X  

16 T11 	(1_ /) 112v  + xi trill 

Hence, to the approximations that have been made, the vector 

part of the current remains unrenormalized while the axial 

vector part is renormalized. 	Furthermore we note that the 

finite renormalization to the axial vector part has a negative 

overall sign, integral positive, so that g
A
(Q2=0) < 1 and also, 
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since the mass of the gauge mesons My is assumed
(36) 

to be 

only a few GeV {3-4}, "the correction" is large for large f. 

So we face the problem of having considered a perturbation 

expansion with respect to the strong coupling constant. 	On 

the other hand the result obtained for the vector part of the 

current, which is equivalent to the Ward identity Z1  = Z2  for 

quantum electrodynamics, is expected to hold approximately to 

all orders in f, on the following qualitative argument(39) 

We note that the groups SU(2') and SU(3") for the weak and 

strong interactions commute. 	Hence if there was no mixing 

between the gauge fields Wi and V
m
, the strongly interacting 

V 

gauge mesons (linear combinations of Vm only) would behave as 

a set of U(1) bosons in the SU(2')-space (i.e. singlets of 

SU(2)) and the standard result for Q.E.D. Zl  = Z2  would apply 

to them to all orders in f; for mp  = m
n
. 	Mixing between the 

two sets of gauge fields does occur, though, but since the 

mixing obtained is small - only the photon spans all spaces 

"equally" - the above argument still holds but only approximate-

ly. 
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APPENDIX I 

In this Appendix we define the notation we use for the 

Dirac matrices and give a few supplementary details for hand- 

ling products of superfields. 	We refer the reader to the 

reference (11) for a very comprehensive list of the properties 

• of superfields - our notational conventions are the same. 

The metric tensor g" = g 	= diag. (+1, -1, -1, -1) 

The Dirac matrices satisfy {y/j , yv} = 2gPv  

and the matrix 15  is defined by y5  = yo  yi  12  13  

The r-matrices yo, yo  y5, yo  yp, i y
o 

y p  y5  and yo  apv  = 

yo(yp, yv) are hermitian. 	The adjoint spinors are defined 

by T = +
yo  and the charge conjugate of IP defined by 

	= c  T 
 

where CT = -C and C-1 y C = -y T; and the superscript (T) 

denotes the transpose of a matrix. 	We note that if 11, and x 

are anticommuting Majorana spinors then IP X. = X *, * Y5 X ' 

X Y5 i, * Yp  X ' -X Yp  *, 4) 11( 11  Y5 X = X 1Y11  Y5 4) and 4) (Jliv  X = 

-x apv 	Using the completeness property of the r-matrices 

and anticommutativity of the Majorana spinor 0
a we obtain 

op 	(S4  G O 	is)4  0wSe 	L wvt5), 61.ns 9 

This identity may be used to obtain further relations for the 

Majorana spinor Oa, which are used in "choosing" an independent 

basis for expanding the superfields and in considering their 

products. 
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Also, for the covariant derivative Da, given in section 

I.b, we have the following two properties: 	(a) distributive 

law Da0/  4)2) = (Da  4
1)4)2  ± 4)1(Da  qh2) with +(-) sign according 

to whether 41 is bosonic (fermionic) superfield, and (b) the 

covariant derivatives neither commute nor anticommute - their 

anticommutator is given by 

Da , 	= 	 C 

)(1?" 

• 
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APPENDIX II 

In section II it was stated that only the simple pole 

residues of the bare coupling constants are independent
(6) 

This was a crucial factor in our proof, on the equivalence 

of the "single coupling constant renormalization problem" 

with the Chang eigenvalue conditions for solutions of the 

special type, and we wish to elaborate the point further. 

In particular we shall show that given the conditions (2.41) 

and (2.42) of section II, then, the whole system of conditions 

obtained from (2.39) and (2.40) is satisfied. 

The recursion formula obtained by t'Hooft(6) for the 

residues of the bare "parameters" A
B
K  
 of a theory, relative 

to the poles at n = 4, is given by (in the notation of 

reference 6) 

E.. aK 	
,t 

y+i,., e(e) 	— ?(k) 	
c_ 	K 

a 	Cr(t) 	— 
J2 	 -e 

e(e) 	+ 	atoll 	PR 	Cr(K) aV 
.e 

(1) 

where: 

Lk
ry

v
k 
 It 	

4) 
ay  

av being the with-order residue of the bare parameter AB 

denoting a bare coupling constant or mass of the theory, and 

is a function of the renormalized coupling constants and masses 

of the theory, 	for K = 1,2... (to a total given number, 

(a) 

3 )■e, 
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characteristic of the theory considered) 

(b) 	o-,K)  + 	(1+ - v1) = ( y..)  

where D(K) gives the dimensions of the parameter 	for the 

theory in units of mass (u). 

• For the particular theory considered in section II, we 

have: 

(c) AR, 1% 	p+cift, 1349.4-2. ..p+ cr-lq) ; stands for 	the 

renormalized set of coupling constants of the theory 

{g; hi, i = 1,2..p; 	Act , a = 1,2...q} and for a total no. a 

of masses and coupling constants for the self-cubic scalar 

vertices of the theory. 

(d) (XL= 0 for all 2, = pi-q-1-2...p+q+1+$ when 

K = 1,2..p+q+1.; i.e. independence of the residues of the 

dimensionless, in 4-dimensions, bare coupling constants on the 

masses and coupling constants of the self-cubic scalar vertices 

of the theory
(6,13) 

(e) a
(K) 

 = 0 for the coupling constants g; h., 

i = 1,2..p and Aa, a = 1,2..q 

1;fortile""lingc"stantsgarldh.,i = 1,2..p 

If 	 It Aa  a = 1,2..q 

The total set of conditions obtained from the identities 

(2.39) and (2.40) of section II for the single coupling con-

stant renormalization problem is given by 
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r-vg av  = xt Lk 	 for i = 1,2..p 	(2) 

n,X°' 
k=0 
	 nr 	 for a = 1,2..q 	(3) 

for all v = 1,2,..m, where we have defined for convenience 

ag = g . 
We pointed, out that as a consequence of the recurssion 

formula (1) the system of conditions (2) and (3) for v = 1 only 

is exactly equivalent to the total set for v = 1,2,..m; i.e. 

for v = 1 

„, 	t-v  1 
k.-A- 	LA 

„ as 	r-v 
LA.1  = 2. ye(  Lki 

for 	i 	= 	1,2..p 	(4) 

for 	a 	= 	1,2..q 	(5) 

and when the conditions (4) and (5) are satisfied, the coupling 

constants of the Yukawa and self-quartic scalar vertices of 

the theory are given by 

ht. xi. 	 `id  (3 
	

for i = 1,2..p and a = 1,2..q 

(6) 

to all orders, order by order, in perturbation theory including 

the bare set. 

We wish to show using the recurssion formula (1) that, 

if the conditions (4) and (5) are satisfied, then all higher 

order residues of the bare coupling constants for the Yukawa 

and self-quartic scalar vertices are given by the expressions 

(2) and (3), respectively. 	The proof given will be by induction 
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We shall assume that the expressions (2) and (3) are valid for 

some v = m (m > 1) and show that they hold for v = m+1. 	In 

this case they must hold for any v since they hold for v = 1;  

i.e. the conditions (4) and (5). 

The total derivative with respect to g  of any function 

in the coupling  constants g, {hi} and {Act}, with {hi} and {Aa} 

given by (6), is 

d = 	 1_ xi,1 	21 	yot 
at) 	 owL 

Hence we obtain directly, using  (l.d), (1.e) and the relations (6) 

Eloyo 	= 	cl1 A 
(9  

(7) 

only for 2, = 1,2..p+q+1. 

The recurssion formula (1), for K = 1,2..p+q+1 only, 

may be simplified using  the conditions (4) and (5), the proper-

ty (l.d) and the relations for the coupling  constants (6). 

We obtain by (1.d), (1.e) and (7), for K = 1,2..p+q+1 

„K 	ENK 	
p+9.+i k 	 fN  

21_ 	 e(K) 	y+i 	E 	 t— 	LAA + 	5 a k....kt 
2 	 a9  

and using  (4) and (5) 

i 7 d cx:+1. — (i() C441 = 	a', {-4c11 	d  
c17 	 (19 	-A 	(8) 

We obtain from the recurssion formula (8) that the 

residues of the gauge coupling constant g satisfy 
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91_ 	- 	a_ a', j- a.. +1 
(9) 

for all v = 1,2..co, and we note that it holds identically for 

h. 
It is now assumed that the residue a

m  is given by 
h;  

(2), and we obtain from the recurssion formula (8) for CI - 
m+1 

9 cia1:1; _ ab' 
al  a 111+i oi_a.,„ 	.(3 a?, a71 by (2) 

for 1 = 1,2..p, and using the recurssion formula (9) 

7 °I ht" cla'"".1  di 	 (10) 

The general solution of the differential equation (10) is 

given by 

Ut. 	)(1 LA. trio.  i = 1,2..p 

where A. are the undetermined constants of integration. 	It 

is known that even the lowest order subtractions that we need 

perform to render the vertices of the theory finite are of 

theorderg3,henceA.=0. 	This concludes the proof, by 

induction, for the residues of the Yukawa coupling constants 

to be given by the expression (2), provided that it holds for 

v = 1; i.e. condition (4). 

Similarly we assume that the residue axa is given by 
the expression (3), and obtain from the recurssion formula 

(8) for axa 

v = 0, o  = g.  



1  + ji -  ai 2. 	- tvi  
by (3) 
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La):+1  cez.t .zy,4 d. 
2 81 

m 
Jo( 	I 	Cticit#i 8..5  

(letting s=r+1) 
111+1 

d 	01/ 	(-11 
= lot t- 	s 	—14 	s ct%  

Hence, since by definition ag - = g, we obtain 

-  1 [

as m+i 
- yd E a S ry 	1= 0 

s.0 
for all a = 1,2..q 

The general solution of the differential equation (11) is 

given by 

m+i r-y )■ot 
, IX= 

5=0 

where Ba are the undetermined constants of integration. 

Using similar arguments as in the case for the Yukawa vertices, 

we find that Ba = 0. 
	Hence, by inductionl all the residues 

of the self-quartic scalar coupling constants are given by 

the expression (3) provided that the condition (5) holds. Q.E.D. 

by (9) 



134 

APPENDIX III 

The regularization method of analytically continuing 

the dimensions of space-time
(12,32),  denoted by the letter n, 

has been used in all our work. 	The infinite contributions 

in four dimensions of the loop-momentum integrals are obtained 

as poles at n = 4. 

In this Appendix we give a list of the loop-momentum 

integrals encountered in our calculations and the final expres-

sions obtained as functions of n on performing the integrations. 

We also list some identities for the Dirac y-matrices in 

n-dimensions which are used to simplify the numerators of the 

integrals when spinor fields are involved. 

Identities and properties of the y-matrices  

tw r  = 2 ca liv ; 	 2v11  

r" ?f it -= h- to We r + 4 9 e 'r  

r xv 	(6,) ‘‘e r OV — ( 	Xe + r Xv - 42" Ica) 

, (Imo XV  W°- 	+ 1.(k-ki) (9" w1 4(2,"' 	- 

When the model considered does not have the Bell-Adler- 

) 
Jackiw triangle anomalies

(40 
 , the y5 matrix may be taken to 

anticommute with all the Dirac y-matrices. 	This definition 



fork 	Iet k' 	_ l Trnil (-1)°' P r(cc-N2) 4- 
[ 	Mli' 	r(.4) ( M2+ pl  )"2" 
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has been adopted in our work; for a generalization of the 

y
5-matrix in n-dimensions see reference (41). 

The loop-momentum integrals in n-dimensions  

f crt? 	1 	_ 	i Trniz  (-1)" F(cx-n/2)  
[ 	-P11 .1°̀ 	ruo 	159°'-'1/2,  

f c[nP 
 te+ 

_1314  ) 	i  Tr"h. (-1)" F(0(-11/2.)  
2 p.k 	 r(00 	fil+p1)°(""i2,  

S

crip 	lot lei 	IT% (-i)'  
[ te+ 2 p.R - ml] a roo 

pv  rca-np.) 

5" ( 	Rot- - niz) 

011,1,  pe 	pv + re pr. 1 ( K.+ 	Ror.  

t " 

The Feyman parameter method (for combining r factors 

D1
a
2 

a  
c/  1 D2..Dr

r 
 in the denominator, valid when the exponents 

al, a2—ar  are greater than zero): 

x, 
1 	r(011-tai+. . co 	f dxi f dx1 	. 

Dc̀ i 	. 	
pt 

• • tit t 	r(at) n 61-z) . Rat) ° 	° 

	

dl-1 	 -I  
x 	

N 
Xt-i. 	 Xt_i 	. 	. Xi )  

C c(1.+do..t. 

	

D, 	+ D, ( 	x,_,) + . . . 	(1- xi) 
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FIGURE VI 
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FIGURE VII 
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FIGURE VIII 

The propagator for any massive gauge field, say of mass 

M, obtained in momentum space and in the general `I  —gauge

formulation of the theory is given by 
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