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ABSTRACT 

A theoretical study has been made of steady-state forced 

convective mass transfer from a system of two equally sized spheres 

with an isothermal, incompressible, Newtonian fluid flowing 

parallel to their line of centres. The stream function and 

vorticity distributions around the two spheres were obtained from 

numerical solutions of the Navier-Stokes equations and the 

concentration distributions from numerical solutions of the 

diffusion equation. Bi-spherical coordinates were used in the 

study because of the ease with which they can be used to describe 

the geometry of the flow region. The finite-difference forms of 

the equations were solved using an explicit extrapolated Gauss-

Seidel method. Two computer proarammes were developed: one for 

obtaining solutions of the Navier-Stokes equations and the other 

for obtaining solutions of the diffusion equation. Solutions were 

obtained for various Reynolds and Peclet numbers and for a range 

of sphere spacings. 

Five different sphere spacings corresponding to two equally 

sized spheres nearly touching one another and being one, three, 

five, and ten diameters apart were considered in this study. For 

each sphere spacing, numerical solutions of the Navier-Stokes 

equations were obtained for a series of Reynolds numbers ranging 

from 0.001 to 500; also, numerical solutions of the diffusion 

equation were obtained for a series of Peclet numbers ranging from 

0.001 to 500 using the previously obtained stream function 

distributions for Reynolds numbers of 0.001, 1, 10, and 100. The 

resultant distributions of vorticity, stream function, and 

concentration around the spheres were used to calculated surface 
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pressures, angles of flow separation, drag coefficients, and 

local and overall Sherwood numbers. 

It was observed that the vorticity and stream function 

distributions were dependent on the sphere spacing and on the 

Reynolds number, and that the calculated rates of mass transfer 

from the spheres were dependent on three parameters: the sphere 

spacing, the Reynolds number, and the Peclet number. The distance 

between the spheres was found to be an important factor in 

determining both the fluid dynamics and the mass transfer rates. 

For each of the five sphere spacings considered in this study, 

particle-to-particle interaction was observed to exist between 

the spheres and to increase in extent as the sphere spacing was 

decreased. It was also observed that for each sphere spacing at 

Reynolds and Peclet numbers less than 1.0 the total drag 

coefficients and the overall Sherwood numbers were approximately 

the same for both of the spheres; while at higher Reynolds and 

Peclet numbers they were found to be larger for the upstream 

sphere than for the downstream sphere. For'the larger sphere 

spacings the results approached those for a single isolated sphere. 

The results for the upstream sphere were closer to those for a 

single isolated sphere than were those for the downstream sphere. 
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The transport processes of heat, mass, and momentum from 

particles to fluids are important in Chemical Engineering 

processes. Because of the complexity of multiparticle systems in 

theoretical studies, a single solid sphere, liquid drop, or gas 

bubble is nearly always studied in order to understand transfer 

mechanisms.The spherical particle is the most common unit for 

these studies, and the results are valuable in the absence of 

results for multiparticle systems. 

A major disadvantage of studies of single particle systems 

is that the particle-to-particle interactions that occur in real 

situations cannot be fully understood. In view of this problem, 

a two-particle system was thought to be a suitable starting point 

for multiparticle studies, and the present project was initiated 

to investigate steady, incompressible, isothermal, Newtonian flow 

around, and mass transfer rates from a system of two equally sized, 

stationary solid spheres placed one behind the others with their 

line of centres parallel to the direction of flow. Many research 

workers have claimed that the study of a single particle system 

is the first step towards gaining an understanding of the behaviour 

of multiparticle systems, accordingly, the present study can be 

claimed to be the second step in this long journey. 

The transport of momentum and mass may be described by 

three equations: the Navier-Stokes equations, the equation of 

continuity, and the diffusion equation. Owing to their non-

linearity, analytical solutions of the Navier-Stokes equations 

are very difficult to obtain. The only exact solutions available 

for flow around two spheres are those for Stokes flow, ie, the 

limiting case when the Reynolds numbers are very much less than 
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unity. These solutions were obtained by Stimson and Jeffery(1926). 

For flows at intermediate Reynolds numbers, these equations can 

only be solved numerically. 

In this thesis, the system of equations is expressed in 

the two-dimensional bi-spherical coordinate system and is solved 

using a finite-difference method. The Navier-Stokes equations 

and the equation of continuity are expressed in terms of vorticity 

and stream function, and the resultant equations: the vorticity 

transport and stream function equations, which are coupled, are 

solved simultarieously with the appropriate boundary conditions. 

Using the calculated stream function distribution, the diffusion 

equation is then solved in order to obtain the concentration 

distribution. 

The distance between the two spheres is an important factor 

in determining the influences and interactions of one sphere on 

the other. In the present study, five sphere spacings are 

considered: the two spheres nearly touching and being one, three, 

five, and ten diameters apart. For these sphere spacings, numerical 

solutions of the Navier-Stokes equations and the equation of 

continuity are obtained for a range of Reynolds numbers from 0.001 

to as high as 500. while the diffusion equation is solved for a 

series of Peclet numbers from 0.001 to 500 at some selected 

Reynolds numbers. From the distributions of vorticity. stream 

function. and concentration, the drag coefficients, the surface 

pressure distributions, the angles of flow separation, and the 

local and overall Sherwood numbers for the spheres are calculated. 

This study of a system of two equally sized spheres with 

a fluid flowing parallel to their line of centres shows the 

existence of particle-to-particle interaction between the spheres, 
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and shows that the extent of the interaction decreases as the 

sphere spacing increases. The distributions of vorticity, stream 

function, and concentration, as well as the distributions of 

surface pressure and local Sherwood number around the two spheres 

are affected by the closeness of the spheres; however, the 

distributions become closer to those around a single isolated 

sphere when the distance between the spheres becomes larger. At 

low Peclet numbers of 0.001 to 0.1, overall Sherwood numbers of 

less than 2.0 are obtained for all Reynolds numbers when the 

sphere spacings are small. At higher Peclet numbers, the overall 

rates of mass transfer from the upstream sphere are always larger 

than those from the downstream sphere, and the difference between 

the rates becomes larger when the Reynolds number is increased 

and when the distance between the spheres is decreased. 

Two computer programmes have been developed for.solving 

the Navier-Stokes and diffusion equations. The programmes are 

arranged in such a way that they can be used to solve the 

equations for various sphere spacings. It is hoped that this 

study will lead to further understanding of the complex transfer 

processes in multiparticle systems. The results obtained have 

applications in many Chemical Engineering unit operations, such 

as spray drying, extraction, fluidization, and combustion. The 

results are also useful in meteorological studies, ion exchange, 

and gas chromatography. 
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CHAPTER 2. LITERATURE SURVEY 

2-1. Brief review of single sphere theoretical fluid dynamics. 

The theory of viscous flow was first developed by Navier( 

1822) and Stokes(1845). The fourth order partial differential 

equations which describe the viscous flow field of a Newtonian 

fluid were then formulated. Because of their non-linearity, exact 

analytical solutions of these equations are difficult to obtain. 

Stokes(1851) opened a new era in theoretical viscous fluid 

dynamics by solving analytically the Navier-Stokes equations 

without the inertial term for a steady creeping flow around a 

solid sphere. The development of boundary layer theory by Prandtl( 

1904) for high Reynolds number viscous flow in which the Navier-

Stokes equations can be reduced to third order partial 

differential equations was another great leap forward in this field. 

However, for intermediate Reynolds number flows, owing to 

the presence of the inertial term, the only way to study the 

fluid dynamics is by numerical solution. Thom(1928) began the 

study of computational fluid dynamics by solving the Navier-

Stokes equations for flow around a cylinder for a Reynolds number 

of 10. For the case of flow around a sphere, the first numerical 

solution was obtained by Kawaguti(1950) for a Reynolds number 

of 20 using Thom's method. Jenson(1959) obtained numerical 

solutions for Reynolds numbers of 5, 10, 20, and 40 using 

relaxation methods. He used spherical polar coordinates with an 

exponential transformation of the radius coordinate. With the 

advent of modern computers, the development of theoretical fluid 

dynamics has been very rapid and Hamielec, Hoffman, and Ross( 

1967) used Jenson's finite-difference equations to solve the 
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Navier-Stokes equations for viscous flow around a sphere for a 

series of Reynolds numbers ranging from 0.1 to 200 by the method 

of sucessive optimal displacement by points with relaxation. 

Al-Taha(1969) also used Jenson's method to obtain numerical 

solutions for a sphere and for oblated spheroids for Reynolds 

numbers between 0.001 and 500. He also investigated the effect 

of the location of the outer boundary on the viscous flow field 

and solved the energy equation for a sphere and oblated spheroids 

for Peclet numbers in the range of 0.001 to 2000. 

2-2. Review of low Reynolds number fluid dynamics for two-sphere 

systems. 

Nearly three quarter of a century after Stokes(1851) fikst: 

mn1v=w1 Fh= 	rmglim4-4nno cnr nr,mtnp4ng 

sphere, Stimson and Jeffery(1926) used bi-spherical coordinates 

to obtain an exact solution of the same equations for axisymmetric 

creeping flow around two spheres with their line of centres 

parallel to the direction of flow. A new chapter in theoretical 

fluid dynamics for multiparticle system thus opened. Their method 

of using bi-spherical coordinates was unique• in the sense that 

their solutions satisfied the boundary conditions on the two 

spheres simultaneously and converged for all sphere spacings. 

Before this exact solution was obtained, an approximate 

method called "the method of reflection" had been inaugurated 

by Smoluchowski(1911). The method of reflection was widely used 

for solving multiparticle problems at low Reynolds numbers. In 

this method, a systematic scheme of sucessive iteration was 

adopted for solving the Navier-Stokes equations for creeping 

flow to any degree of approximation by considering the boundary 

conditions associated with one particle at a time. The 

• 
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transformation of the reflected fields from coordinates at the 

centre of one sphere to those at the centre of the other was 

accomplished in an approximate way by means of Taykr series 

expansions about the points corresponding to the two coordinate 

system origins. The results obtained using this method agreed 

with the exact solutions of Stimson and Jeffery for the 

axisymmetric two-sphere case. 

Faxan and Dahl(1925) extended Smoluchowski's technique in 

order to study flow around two spheres along with their line of 

centres parallel to the direction of flow. They used a conformal 

transformation involving "inversion in a sphere" to transform 

the reflected field from coordinates at the centre of one sphere 

to those at the centre of the other. Their results agreed with 

the exact solution s of SLifftsoll and Jeffery when sphere spacings 

of the two equally sized spheres were large. 

Owing to the presence of inertial forces even at Reynolds 

numbers less than unity, Oseen(1926) presented a new treatment 

for the case of two spheres in which he simply used Smoluchowski's 

development for two spheres in creeping motion, but substituded 

Oseen velocity fields for Stokes fields to approximate particle 

interaction. For the case of two equally sized spheres following 

each other, he found that the force exerted by the fluid on the 

leading sphere was greater than that on the following sphere. 

For the case of two equally sized spheres falling side by side, 

he found that the force on each sphere was the same. 

A technique involving spherical harmonics was used by 

Wakiya(1957) to solve two-sphere problems. The harmonics for the 

second sphere were developed directly with respect to the origin 
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of the first sphere in order to obtain a set of relationships 

among some characteristic constants by using the boundary 

conditions on the first sphere. In the same way, another set 

of relationships was obtained using the boundary conditions 

on the second sphere. By eliminating one set of these 

characteristic constants from the two sets of relations, a 

simultaneous system of equations of infinite order with respect 

to the other set of characteristic constants was obtained. 

Wakiya solved this infinite series of equations numerically by 

the method of sucessive approximation. His results agreed with 

those of Faxen and Dahl(1925) for two spheres following each 

other. 

Kynch(1959) derived expressions for the velocity fields 

Al"^"rld 4'W^ eThercs moving slowly under external forces Lhiouyh 

a viscous fluid. His method was similar to that of Wakiya. He 

developed solutions for the second sphere with respect to the 

origin of the first. Instead of using spherical harmonic functions, 

however, the solution was developed in terms of derivatives of 

the basic solution. A series of equations with unknown constants 

was obtained and was solved by sucessive approximations for two 

spheres moving along and moving perpendicular to, their line of 

centres. Kynch noted that a general solution for any two-sphere 

flow problem could be obtained by combining these two solutions. 

In a study of the theoretical collision efficiency of 

small spheres falling under the influence of gravity, Hocking( 

1958, 1959) noted that the two-sphere flow problem could be 

solved by superimposing the flows for two spheres falling along, 

and perpendicular to, their line of centres. He employed a method 

similar that of Kynch for finding numerical solutions for these 
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two basic problems. 

A general disadvantage of these approximate methods, which 

are based on the method of reflection , is that the convergence 

of the solutions is poor when the spheres are close together or 

are touching. On the other hand, exact solutions in terms of 

bi-spherical coordinates converge for all sphere spacings. 

By making use of bi-spherical coordinates, Jeffery(1915) 

first obtained exact solutions for the case of two spheres 

rotating about their line of centres. The historic work of 

Stimson and Jeffery(1926) then followed. They solved Stokes's 

equation for two spheres translating with equal velocities 

along their line of centres. An extension of Stimson and Jeffery's 

work to obtain solutions for two spheres moving with different 

velocities along their line of centres was carried out by 

Brenner(1961). These are the exact solutions for axisymmetric flow. 

For the case of asymmetrical flow, exact solutions could 

only be obtained after Dean and O'Neill(1963) and O'Neill(1964) 

developed the "sphere and plane" theory for deriving exact 

solutions for asymmetrical flows caused by the motion of a solid 

sphere in a viscous fluid bounded by a plane wall. 

Exact solutions for the flow field generated by two spheres 

moving either with equal translational velocities or with equal 

and opposite angular velocities perpendicular to their line of 

centres were obtained by O'Neill(1964), and independently by 

Goldman, Cox, and Brenner(1966), and by Wakiya(1967) using a - 

modified form of the sphere and plane theory. As point out by 

Berker(1963), Brenner(1964), and others, the linearity of the 

governing differential equations and boundary conditions permits 
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one to decompose the general problem, in which the line of 

centres between the spheres is arbitrarily oriented relative 

to their direction of motion through the fluid, into a number 

of simpler sub-problems involving various types of translational 

and rotational motions, both parallel and perpendicular to the 

line of centres. O'Neill(1970) obtained another exact solution 

for slow viscous flow of two spheres in an infinite fluid caused 

by either the rotation of two equally sized spheres with uniform 

angular velocities about diameters perpendicular to their line 

of centres, or by the translation of the spheres with equal and 

opposite velocities along directions perpendicular to their 

line of centres. 

2-3. Review of. low Reynolds number experimental studies for 

two-sphere systems. 

The motion of two spheres in viscous fluid at low Reynolds 

numbers can be resolved into the two problems of spheres falling 

along and perpendicular to their line of centres. It is convenient 

to consider these cases separately. Experimental data for both 

cases are available from the works of Eveson, Hall, and Wart( 

1959) and Bart(1959), and additional data for two spheres 

following each other from those of Happel and Pfeffer(1960), 

Isaakyan and Gasparyan(1966), and Steinberger, Pruppacher, and 

Neiburger(1968). In all cases, spheres were dropped in a vessel, 

usually cylindrical, and not in aninfinite medium as most of 

the theoretical works assumed. 

A brief survey for the case of two spheres falling along 

their line of centres now follows. 

The experimental data of Bart(1959) for Reynolds numbers 
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less than 0.05 showed good agreement with the exact 

theoretical results obtained by Stimson and Jeffery(1926) for 

two spheres nearly touching and for spheres separated by 

distance up to twenty diameters apart. The data of Eveson et al 

(1959) were also in good agreement with the solutions obtained 

by Stimson and Jeffery. 

Happel and Pfeffer(1960) carried out experiments for two 

two equally sized spheres falling along their line of centres 

in the low Reynolds number range of 0.008 to 0.73. Their data 

agreed very well with the solutions obtained by Stimson and 

Jeffery over the Reynolds number range of 0.008 to 0.25. A 

definite attraction between the two spheres was observed in the 

Reynolds number range of 0.25 to 0.7. Happel and Pfeffer claimed 

...... 

without affecting the second sphere. Hence, their results 

confirmed qualitatively the prediction of Oseen(1926) that even 

at low Reynolds numbers of less than unity, inertial forces are 

important. 

Isaakyan and Gasparyan(1966) carried out experiments over 

a Reynolds number range of 0.037 to 0.50. They observed that 

two equally sized spheres falling through a vertical column 

tended to approach each other. For the case of a large distance 

between the spheres, the upper sphere retarded the lower one 

compared with the velocity of free fall, while the upper sphere 

always fell with a velocity greater than that of free fall. They 

thus concluded that their results confirmed the Oseen solution 

qualitatively. 

Steinberger et al(1968) studied the motion of two equally 
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sized spheres falling along their line of centres for Reynolds 

numbers ranging between 0.060 to 0.216. They observed that both 

spheres accelerated as they fell and that the upper sphere fell 

faster and accelerated more than the lower sphere. The drag 

coefficients for the upper sphere were also significantly smaller 

than those for the lower sphere. 

From the above brief survey, it is obvious that most of 

the experimental studies of two-sphere systems were made by 

allowing the spheres to fall in a viscous fluid at low Reynolds 

numbers. However, owing to the presence of inertial forces at 

low Reynolds numbers, the distance between the spheres cannot 

be kept constant. The fluid dynamics and particle-to-particle 

interaction between the spheres are thus not fully understood. 

• 
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2-4. Review of theoretical studies of forced convective heat 

and mass transfer. 

The velocity fields obtained from the Navier-Stokes 

equations can be used to obtain solutions of the energy or 

diffusion equations thus enabling forced convective heat or mass 

transfer rates to be calculated. This survey is started with a 

brief study of transfer rates from a single sphere because they 

have been widely studied. 

Langmuir(1918) showed that the value of the Nusselt number 

for thermal conduction from a single sphere into an infinite 

stagnant fluid medium was 2.0. In an experimental study of the 

rates of mass transfer from oblate spheroids, Cornish(1961) 

derived a general expression for the rates of mass transfer from 

oblate spheroids by molecular diffusion. His expression can be 

reduced to that of a single sphere as a limiting case. 

By using the Stokes velocity field for low Reynolds number 

flow, exact solutions of the energy and diffusion equations have 

been obtained for both small and large Peclet numbers. In the 

case of small Peclet numbers, the contributions made by convection 

are small in comparison with those made by thermal conduction 

or molecular diffusion. Exact solutions of the energy equation 

had been obtained by Kronig and Bruijsten(1951), Yuge(1956), 

and Acrivos and Taylor(1962) for the rates of heat transfer from 

a single sphere using a perturbation method. Friedlander(1957), 

who employed the solution of the linearized Navier-Stokes 

equations due to Tomotika and Aoi(1950), solved the diffusion 

equation for a single sphere at both small and large Peclet 

numbers. On the other hand, for the case of large Peclet numbers, 

the effect of molecular diffusion and thermal conduction is very 
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small and can be neglected everywhere except within a thin 

boundary layer near the fluid-solid interface where the 

temperature or concentration variation occurs. With this 

boundary layer approximation, Friedlander(1957) solved the 

energy equation and Levich(1962) solved the diffusion equation 

for a single sphere at very high Peclet numbers. 

For intermediate Reynolds number flows, the velocity 

field for flow around a single sphere is impossible to obtain 

analytically, hence, it is not possible to obtain an analytical 

solution of the diffusion and energy equations. With the help 

of the boundary layer approximation, Baird and Hamielec(1962) 

managed to predict analytically the forced convective heat and 

mass transfer rates from solid and fluid spheres for Reynolds 

	

-- 	Inn m1 	-1- --- of solving t1.1 diffusion and 

	

------- -e 	 Imulf 

energy equations is to use a numerical method with the velocity 

field obtained from the numerical solution of the Navier-Stokes 

equations. 

For high Reynolds number flows, the diffusion and energy 

equations can be expressed in terms of boundary layer equations. 

As in the case of the hydrodynamic boundary layer equation, 

there are two kinds of solutions: exact and approximate. A 

method of obtaining exact solutions was developed by Erossling 

(1940) for flow around axisymmetric bodies of revolution. Green 

(1968) derived the boundary layer equations in orthogonal 

curvilinear coordinates and obtained exact solutions for spheres, 

discs, and oblate spheroids. Approximate solutions of the thermal 

boundary layer equation have been developed by Aksel'rud(1953), 

Grafton(1963) for spheres, and by Rojey(1967) for oblate 

spheroids. 
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For the case of intermediate Peclet numbers for low and 

intermediate Reynolds number flows, relatively few exact solutions 

of the energy or diffusion equation have been Obtained. Al-Taha 

(1969) solved the energy equation numerically for spheres and 

oblate spheroids for a wide range of Peclet numbers from 0.001 

to 2000.0. The velocity fields were obtained from the numerical 

solutions of the Navier-Stokes equations for a Reynolds number 

range from 0.001 to 500.o. This was a great advance in the study 

of forced convective heat and mass transfer. With the advent of 

modern computers, numerical solutions have become important 

and powerful tools for studying heat and mass transfer processes 

from particles of different shapes. 

For multiparticle systems, Pfeffer(1964), and Pfeffer and 

Happel(1964)observed that the transfer rate from a single sphere 

decreased with an increase in the voidage. In multiparticle 

systems, such as fluidized beds, values of the Nusselt number 

less than two have been measured. Cornish(1965) presented an 

argument that the minimum possible rate of heat and mass transfer 

from a sphere may be much less than the value of two applicable 

to a single sphere in an infinite stagnant medium. He noted 

that for the case of two equally sized spheres, with their centres 

100 radii apart, the Nusselt number is approximately one percent 

less than the limiting value of two. When the centres of the 

spheres are only 4 radii apart, the Nusselt number is approximately 

1.6. For the limiting case when two spheres touch, Cornish 

predicted that the Nusselt number will be 1.386. 

Solution of the diffusion equation for two-sphere systems 

requires the expression of the equation in bi-spherical 

coordinates. Solutions are difficult to obtain even though the 
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diffusion equation is linear. Aminzadeh(1970), Aminzadeh, Al-

Taha, Cornish, Kolansky, and Pfeffer(1974), used the velocity 

field of Stimson and Jeffery(1926) and Al-Taha's method of 

solution in order to obtain numerical solutions of the diffusion 

equation for a range of Peclet numbers from 0.001 to 100 for 

two spheres of equal size. They found that at low Peclet numbers 

the overall Sherwood numbers for the spheres were less than two 

when the sphere spacings were small. They also found that for 

each sphere spacing at high Peclet numbers, the overall Sherwood 

numbers were larger for the upstream sphere than for the 

downstream sphere. 

From this survey, it can be seen that most of the works 

done so far for two-sphere systems were for creeping flow. For 

intermediate Reynolds number flows both the inertial and 

convective effects are important and solutions of the Navier-

Stokes equations and solutions of the energy and diffusion 

equations are non-existent: In order to fill this gap, the 

present project of forced convective mass transfer from a system 

of two equally sized spheres to an incompressible Newtonian 

fluid flowing in steady flow parallel to their line of centres 

was undertaken. The Navier-Stokes and diffusion equations were 

expressed in bi-spherical coordinates and the solutions for the 

equations in finite-difference form were obtained numerically 

using an iterative method. 
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CHAPTER 3. THEORETICAL ANALYSIS 

3-1. The basic equations governing steady viscous fluid flow 

and mass transfer for two-sphere systems. 

The basic equations which describe steady-state forced 

convective mass transfer from a system of two equally sized 

solid spheres to a viscous fluid flowing parallel to their line 

of centres are the equation of continuity, the equation of motion, 

and the diffusion equation. For an isothermal, incompressible, 

Newtonian fluid with properties continuous both in space and 

time, and with a small mass flux so that the density of the fluid 

does not change much, the three basic equations become: 

The equation of continuity: 

V.V = 0 	 (3-1-1) 

The Navier-Stokes equations: 

A A 
1  

(V.V)V = "' -VP + vV2V (3-1-2) 

Equation(3-1-2) can also be expressed in the following form: 

A A 	A 	A 	
1 1/2V(V-V) - Vx(VxV) = - -VP + v{V(V-V) - Vx(VxV)) 	(3-1-3) 

The diffusion equation: 

(V•V)C = D V2C 
	

(3-1-4) 

A 

In the above equations, V is the fluid velocity vector, 

C is the concentration of the transferrable material in the 

fluid, and v, p, and Dare  the kinematic viscosity, density, 

and diffusivity, respectively. The term P in equations(3-1-2) 

and (3-1-3) is the modified fluid pressure which is measured 

relative to the undisturbed hydrostatic pressure which would 

occur if the fluid was stagnant at the point considered. 
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By taking the curl of equation(3-1-3) and applying the 

equation of continuity, the Navier-Stokes equations are 

transformed into the vorticity transport equation with no 

pressure term: 

A A 	 A 

Vx(VxW) = vVx(VxW) 	 (3-1-5) 

where the vorticity vector, W, is defined as: 

A 	A 

W = VXV 
	

(3-1-6) 

The vorticity transport equation can also be expressed in 

another form by taking the curl of equation(3-1-2): 

A A 	 A 

(V•V)W = (W•V)V + vV2W 	 (3-1-7) 

The flow of fluid with no swirl around two equally sized 

spheres parallel to their line of centres is axisymmetric. Hence, 

the orthogonal curvilinear coordinates(xl, x2, x3) can be used 

to describe the flow with x1 being taken in the flow direction 

around the surfaces, x2  normal to the surfaces, and x3  in the 

direction of rotation of the bodies about the axis of symmetry. 

For axisymmetric flow, the velocity and all other variables 

are independent of x3-direction, and the velocity component in 

the x3-direction is everywhere zero, i.e., 

3V 3 _ 	DC _ - 0 , u 3- 0 ; V3  = 0 (3-1-8) 

From these conditions, it is clear that the present flow problem 

becomes a two-dimensional flow problem. The vorticity vector, 

which is defined by equation(3-1-6), has only one non-zero 

component W(0,0,0 in the x3-direction which is normal to the 
A A 

plane of flow. Also, the term (W-V)V in equation(3-1-7) is 

zero. Hence, the vorticity transport equation(3-1-7) can be 
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simplified as follows: 

(V.V)C = VV 2 

	

(3-1-9) 

Similarly, the vorticity transport equation in the form of 

equation(3-1-5) becomes: 

Vx(Vxc) = yVx(Vx0 	 (3-1-10) 

There is a close analogy between the vorticity transport 

equation in the form of equation(3-1-9) and the diffusion 

equation(3-1-4). The terms on the right-hand side of equations 

(3-1-4) and (3-1-9) represent the diffusion of material and 

vorticity, respectively; while the terms on the left-hand side 

of these equations represent the convection of material and 

vorticity, respectively. 

From the above considerations, the equations governing 

the present problem of forced convective mass transfer from a 

system of two spheres are equations(3-1-1), (3-1-4), and ( 

3-1-10). These equations are expressed in vector form, so that 

an appropriate coordinate system has to be chosen before they 

can be solved. 
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3-2. System of equations in bi-spherical coordinates. 

The system of equations: the equation of continuity(3-I-1) 

, the vorticity transport equation(3-I-lO), and the diffusion 

equation(3-I-4), is rewritten here: 

A 

V-V = 0 

Vx(VxC) = yVx(VxC) 

0.. 

(V•V)C = DCV2C 

(3-2-1) 

(3-2-2) 

(3-2-3) 

With the help of the orthogonal curvilinear coordinate system( 

x1, x2, x3) and their corresponding scale factors(h1, h2, h3), 

the system of equations(3-2-1) to (3-2-3) becomes: 

The equation of continuity: 

h1h 
1 

 2
h3  Dx 

3 

1 	

a 

2 
1 	(h2  h3  V1 	Dx ) + ---(111h3V2)1 = 0 

The vorticity transport equation: 

V1 c 	a c  

h1 3x1' 
( 
h3)  -1- h2 2 3x2( h3)  = 	 2E2(h3°  h3 

where, 

E2 - 
h3 	a 	h2 	a 1  „ a ( hl 	a ) 1  
h1h2CDx1

( h1h3 Dx1' ' ax2  '112h3  ax2  

(3-2-4) 

(3-2-5) 

(3-2-6) 

The diffusion equation: 

V1  DC 	V2  ac 	D
C  r a t

h2h3 DC a 	
ax2( 	

3C 

h1  ax1 ' 
, h

2  ax2 	h1h2h3'Dx1' h1 ax1)  ' 
,_ 

Dx2' h2 3x2)1  

(3-2-7) 
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The non-zero component of the vorticity vector, 	which is 

also_called_the vorticity,is derived from equation(3-1-6) as: 

= 
i 	a 	a 

ax (h1V1)1 h1h {ax 
 

2 
 

2 
(3-2-8) 

In order to reduce the number of the variables of the 

system of equations by one, the stream function, *, is introduced 

to replace the velocity components V1  and V2. The stream function 

is defined by the following two expressions: 

-1  a* V - 1 	h2h3 ax2 

+1  a*  V = 2 h1h3 ax1 

(3-2-9a) 

(3 -2 -9b) 

Equations(3-2-9a) and (3-2-9b) satisfy the equation of continuity 

(3-2-1). With this introduction of the stream function, the 

system of equations can thus be written in terms of variables: 

vorticity, stream function, and concentration. 

The vorticity transport equation(3-2-4) becomes: 

at 	a ( 	alf, 	a , c . 	
h1

h2 2 
ax1 

ax2 h3
) 	ax2 	h3)  = v(  h3  )E (h3C)  (3-2-10) 

Equation(3-2-8), which defines the vorticity, becomes the stream 

function equation: 

E2(*) = h3 
	 (3-2-11) 

and the diffusion equation(3-2-7) becomes: 



a - h - 0 	CoshZ - Cos0 (3-2-13) 

36 

h h 	4 DC  a / 	3  DC 1 r 	,h2h3 DC , 	
)/ 	

Dlp DC 
DOTRt—E TR )  ax2  h2 ax2 

h1 	1 	
axi  ax2 	ax2  axi  

(3-2-12) 

The bi-spherical coordinate system(Z, e, 0 is an 

orthogonal curvilinear coordinate system. Because of the ease 

with which bi-spherical coordinates can be used to describe the 

locations of the two spheres and the boundary conditions of the 

system of equations, they are used in this study. A detailed 

description of the bi-spherical coordinate system has been given 

by Happel and Brenner(1965). A description is also given in 

Appendix A. 

Hence, the three general orthogonal curvilinear coordinates 

become: x1 = Z, x2 = 6, and x3 = (I), and the three corresponding 

sc:ale idetors become; 

h = h - 1 	Z CoshZ - Case 

• 

a 

aSin0  h = h - 3 	(I) 	CoshZ - Cosa 

where a is the characteristic dimension in bi-spherical 

coordinates which is defined by Figure(A-1). With the 

substitution of these coordinates and scale factors, the 

governing system of equations in bi-spherical coordinates is 

finally formulated as follows: 

The two velocity components, equations(3-2-9a) and (3-2-9b) 

become: 
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CoshZ - Cos()
)(

CoshZ - Cos()
) 
4 VZ  = - ( a 	aSine 	36 

CoshZ - Cos°
)(
CoshZ - Cos°) 4 

VA 
= + ( a 	aSine 	DZ 

The stream function equation(3-2-11) becomes: 

E2(4)) - ( 	aSine 
CoshZ - Cosec  
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(3-2-14) 

(3-2-15) 

(3-2-16) 

The vorticity transport equation(3-2-10) becomes: 

E2( 	aSine 	
•C) 	

Sine CoshZ - Cos°
){
4 	

(
CoshZ - Cos()  

CoshZ - Cos6 	a 	9Z 96 	aSin0 

4 a fCoshZ - Cos6.0)  
- ae az' 	aSin6 (3-2-17) 

where: 

E2 - (CoshZ - Cose 2 a2 	SinhZ 	a2  
a 	) 	-9Z-2.- 	(CoshZ - Cos°) 	T-13-7  

CoshZ.Cos6 - 1 	a 
1 	(3-2-18) - Sine(CoshZ - Cos6) 96 

The diffusion equation(3-2-12) becomes: 

9C 	SinhZ 	9C 	 a 2C 	CoshZ.Cose - 1 	9C 
az 	(CoshZ - Cos6 	+  3Z T-32-  Sine(CoshZ - Cosa) 36 

1 	aSine 	a ac a ac 
• - 	 - • D 	CoshZ - Cosa ){  3Z 90 	ae az}  (3-2-19) 

Hence, equations(3-2-16), (3-2-17), and (3-2-19), are the 

model for forced convective mass transfer from a system of two 

spheres. 
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3-3. System of equations in dimensionless form. 

Numerical solutions of equations(3-2-16), (3-2-17), and 

(3-2-19), can be obtained more conveniently if the equations 

are expressed in dimensionless form. In view of this, the 

following dimensionless quantities and groups are introduced 

into the present system of equations with the help of the 

characteristic dimension R, which is the radius of the spheres, 

and the undisturbed fluid velocity U: 

a 	* _ 11 	2RU 

	

a = 	• = UR- , 	Re = v 

C - Co 	 2Rhp  

	

, C = 	• Sc = — , Shy  = 	Pe = RexSc 
Cs - Co 	DC 	DC  

(3-3-1) 

where the groups Re, Sc, Sh0, and Pe, are the Reynolds, Schmidt, 

overall Sherwood, and Peclet numbers, respectively; while hp  

is the overall mass transfer coefficient. The term Cs is the 

concentration of the transferring substance adjacent to the 

solid surface and C is the concentration in the main stream • o 

outside the outer boundary. 

With these dimensionless quantities and groups, the system 

of equations(3-2-16), (3-2-17), and (3-2-19), can be expressed 

in dimensionless form. 

The stream function equation becomes: 

* 
a Sine 

E*2(**) - ( 	•
*
) 

CoshZ - Cose 
(3-3-2)- 

and the vorticity transport equation becomes: 
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*2 
* 

a Sine * 
* 

a Sine 
* 
4 a 	CoshZ - Cose * 

E( ) - hRe( ) C • ( 	* 	C 	) 
CoshZ - Cose CoshZ - Cose 9Z De 	a Sine 

* 
alp a CoshZ - Cose * 
• ( (3-3-3) 

ae DZ 
* 	

C a Sine 

where, 

CoshZ - Cose 	a2 	SinhZ 	a 	a2 

E*2 - ( 	)2 + ( 	) 	+ 
a 	az2 	CoshZ - cose az 	ae2  

CoshZ•Cos0 - 1 
	

a 
	} 
	

(3-3-4) 
SinO(CoshZ - Cose) ae 

By defining two vorticity functions, g and f, in the 

following ways: 

* 
a Sine 
	 C ) 
CoshZ - Cose 

* 
* 	a Sine 	CoshZ - Cose * 

f = C / ( 	) - ( 	* 	C ) 
CoshZ - Cose 	a Sine 

(3-3-5) 

(3-3-6) 

equations(3-3-2) and (3-3-3) can be further simplified as 

follows: 

E
*2

(*
*
) = g (3-3-7) 

* 	a Sin0 	[alp of 	4 of 
E 2

(g) = kRe( 	) 

	

CoshZ - Cose 3Z DO 	30 3Z 
(3-3- 8) 

  

Similarly, with the help of dimensionless quantities, 

the diffusion equation(3-2-19) becomes: 

D 2C* 	SinhZ 	ac 	a 2c 	CoshZ,Cose - 1 	aC*  
	) 	+{ 	} 

az2 	CoshZ - Cos0 3Z 	ae2 	SinO(CoshZ - Case)) ae 

CoshZ - Cos° 	4
* 

ac
* 

D
* 	*

Ip 
1/2FtexSc( 	* 	)  

a Sin0 	az ae 	De az 

(3-3-9) 
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This system of dimensionless equations, equations(3-3-7) 

to (3-3-9), consists of elliptic type second order partial 

differential equations. Equation(3-3-8) is non-linear in C 
* 	* 

while equations(3-3-7) and (3-3-9) are linear in 1p and C , 

respectively. The appropriate boundary conditions of the system 

of equations(3-3-7) to (3-3-9) are specified in the next section. 

With these boundary conditions, the coupled stream function 

and vorticity transport equations can be solved simultaneously 

for the stream function and vorticity distributions in the flow 

region for a series of Reynolds numbers. Using the calculated 

stream function distribution for any specified Reynolds number, 

the diffusion equation(3-3-9) can then be solved for the 

concentration distributions in the same flow region for a 

series of Peclet numbers. 

r 
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3-4. Boundary conditions. 

In order to solve the system of equations(3-3-7) to ( 

3-3-9) for the stream function, vorticity, and concentration 

distributions in the flow region at any sphere spacing, the 

boundary conditions for these variables must be prescribed. 

For a system of two equally sized spheres with fluid flowing 

parallel to their line of centres, the boundary conditions 

are defined and given in the following sections 

(1). The boundary conditions on the solid surfaces(Z=-Zs and 

Z=+Zs). 

The locations of the two spheres are controlled by the 

sphere spacing parameter, Zs. For the surface of the upstream 

sphere, the Z-coordinate has a value of -Zs, while for the 

surface of the downstream sphere, it has a value of +Zs. Since 

the locations of the spheres are not dependent on the e—

coordinate, then, once the sphere spacing parameter Zs is 

specified, the positions of the surfaces of the spheres and 

the distance between the spheres are fixed in the space . In 

general, the distance between the spheres is always measured 

in terms of unit of R, which is the radius of the spheres. 

The application of the non-slip conditions on the solid 

surfaces of the two spheres gives: 

v =ve  = o , • =o , 
a** 
	a2* 

— o 	— o 

ae 	302 	az 

(3-4-1) 

The vorticities at the surfaces can be obtained from the 

Str-Qa,rvI 4unei-(4 n 	equation(3-3-7) and the boundary condition ( 

3-4-1), They have the following forms: 

4 
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* 
Cosh(-Zs) - Cose Cosh(-Zs) - Cose 2 

( 	
az* 

— Z=-Zs 	 ) ( 	 
a Sine 	a 	az2  

 

Z=-Zs 

 

(3-4-2a) 
and, 

Cosh(+Zs) - Cose Cosh(+Zs) - Cos°,2 

	

Z=+Zs 	

a2* 
( 

	

	) ( 	 
a Sine a 	

az2  Z=+ZS 

(3 -4 -2b) 

The concentrations at the solid surfaces of the two 

spheres, Cs, are always maintained at a constant value, such 

that: 

* 

	

Cs = 1.0 
	

(3-4-3) 

(2). The boundary conditions along the axes of symmetry(e=0  

and 0=70.  

For two spheres described by the bi-spherical coordinates, 

the axis of symmetry(0=0) composes two lines: one normal to 

the front stagnation point of the upstream sphere and the other 

normal to the rear stagnation point of the downstream sphere. 

On the other hand, the axis of symmetry(e=70 is a straight line 

joining the rear stagnation point of the upstream sphere and 

the front stagnation point of the downstream sphere. 

For the Navier-Stokes equations, the boundary conditions 

along these axes of symmetry are the conditions of axisymmetry 

which are defined as follows: 

a*
* 	

a211)
*  

= 0 , 	 - o 	= o 
az 	az2 	Be 

(3-4-4) 

* 
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The boundary conditions for the vorticity (Ave obtained from the 

stream function equations(3-3-7) and the boundary condition( 

3-4-4). It is necessary to use 	L'Hospital's rule to obtain 

the following: 

C = 0 , g = 0 , f = 0 	 (3-4-5) 

For the diffusion equation, the boundary conditions along 

the axes of symmetry, 0=0 and 8=ff, are: 

DC 
= 0 	 (3-4-6) 

DO 

(3). The boundary conditions along the outer boundary(Zo, %). 

The outer boundary of the flow region is taken to be a 

large sphere which has a radius of r and a centre at the origin 

of the bi-spherical coordinate system. The outer boundary 

surrounds the two spheres completely. When values of r and Zs 

are specified, the coordinates along the outer boundary(Zo, 80) 

can be obtained from equation(A-2-8) as shown in Appendix A. 

Along and outside this outer boundary, the flow is assumed to 

be uniform and parallel, so that the vorticity is zero. Also, 

the concentration along and outside the outer boundary is taken 

to be Co. Hence, the outer boundary conditions for the system 

of equations can be summarized as follows: 

*
Sineo  2 

P 
* 	 a 

= 1( 
CoshZo - Cos8o 

* 
=0 , g=0 	f =0 

C =0 

(3-4-7)-  

(3-4-8) 

(3-4-9) 
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With these boundary conditions, equations(3-4-1) to ( 

3-4-9), and the system of equations(3-3-7) to (3-3-9), the 

problem of forced convective mass transfer from a system of 

two equally sized spheres with fluid flowing parallel to their 

line of centres is fully described. The numerical techniques 

employed for the solutions are presented in the next chapter. 



* 
a 

( 	)2g 
CoshZ - Cose 

(4-1-1) 
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CHAPTER 4. NUMERICAL TECHNIQUES 

4-1. Introduction. 

The system of equations, equations(3-3-7), (3-3-8), and 

(3-3-9), is rewritten here as follows: 

The stream function equation: 

* 	* 	* 
a 2*

* 
SinhZ 	a* 	a2* 	CoshZ.Cos0 - 1 	DIP 

+ ( 	) 	+ 	. 
az2 	CoshZ - Cose DZ 	362 	SinO(CoshZ - Cosa) DA 

The vorticity transport equation: 

a2g 	SinhZ 	Dg 
( 

a 2g CoshZ-Cose - 1 	Dg 

az2 	CoshZ - Cose DZ 

a Sine) 

362 SinO(CoshZ - 

of 

Cos0) 	ae 

D a 
kRe( ) 	( 

2 
) = • • - 	— 

CoshZ - Cos0 CoshZ - Cose DZ ae DO 	3Z 

(4-1-2) 

The diffusion equation: 

32c* 	SinhZ 	ac 	32c 	CoshZ-Cose - 1 	aC*  

az2 	CoshZ - Case DZ 	ao2  SinO(CoshZ - Cos0) 30 

CoshZ - Cose 4
* 
 DC

* 
 a**  3C 

= kRexSc( 	) 	
. 

 
a Sine 	3Z DO 	De 3Z 

 

(4-1-3) 

  

The geometrical configuration of the present system of 

two equally sized spheres with fluid flowing parallel to their 

line of centres is illustrated in Figure(4-1-1). The upstream 

sphere is designated as sphere A while the downstream sphere as 
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Figure(4-1-1) Flow configuration. 
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sphere B. The flow region is a' region bounded by the solid 

surfaces of the two spheres and the outer boundary sphere which 

has a radius of r and a centre at the origin of the bi-spherical 

coordinate system. 

By specifying the sphere spacing parameter, Zs, the 

locations of the two spheres are determined with Z = -Zs for 

the surface of sphere A and with Z = +Zs for the surface of 

sphere B. The centre- to-centre distance between the spheres, 

L, which equals to 2d, is 2Ra •CoshZs or 2a •CoshZs. 

In the case of a single sphere described by polar 

coordinates(r, (3) in a meridian plane, the angle 71 measured 

the normals to the front stagnation point and to a point on 

the surface, has the same value as that of the 6-coordinate 

which passes through the point on the surface. On the other 

hand, in the case of two equally sized spheres described by 

bi-polar coordinates(Z, 6) in a meridian plane, the angle n 

measured between the normals to the front stagnation point and 

to a point on the surface of sphere A, or between the normals 

to the rear stagnation point and to another point on the surface 

of sphere B, is not the same as that of the 6-coordinate, 

except at the front aid rear stagnation points and unless the 

two spheres are an infinite distance apart. 

In two-sphere fluid dynamic and mass transfer problems, 

many important quantities, such as surface vorticity 

distributions, angles of flow separation, surface pressure 

distributions, and local mass transfer rates, are easy to 

interpret using the angle n. Hence, it is desirable to develop 

a new scheme of distributing the grid lines for the 0-direction 
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using equal increments in the values of n instead of the 

conventional scheme of distributing the grid lines using equal 

increments in the values of 0. With the adoption of this new 

scheme, the results obtained can then be interpreted in the 
way 

sameNas those for a single sphere. The method of obtaining 

values of 8 corresponding to a constant increment in the values 

of n is stated in section(A-3)(Appendix A). For the five sphere 

spacings considered in this study: Zs = 0.20. 1.32, 2.07, 2,48, 

and 3.09, the values of e corresponding to -a constant increment 

of 6°  in the values of n are shown in Table(A-1). It is obvious 

that for each sphere spacing, the values of 0 and n are not the 

same, i.e., an equal increment in the values of 8 does not 

result in the same increment in the values of n and vice versus. 

For small sphere spacings, especially the smallest sphere 

spacing Zs = 0.20, the differences between the values of 0 and 

n are large; while for large sphere spacings they are generally 

small. 

In Figures(4-1-3) to (4-1-12), the distributions of the 

grid lines for both the Z- and 8-directions around two equally 

sized spheres are shown for all the five sphere spacings 

considered in this study. In these figures, the grid lines for 

the Z-direction are distributed according to a constant 

increment of IZs/101in values of Z varying from Z = -Zs to Z = 

+Zs, while the grid lines for the 0-direction are distributed 

with a constant increment of 6°  in the values of 8 and with a 

constant increment of 6°  in the values of n. From these figures, 

it can be seen that the grid lines for the 0-direction are more 

evenly distributed in the flow region using the new scheme, 

especially for the two smallest sphere spacings Zs = 0.20 and 

Zs = 1.32. Therefore, in addition to the advantage of interpreting 
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Figure(4-1-3) Distribution of grid lines for Z- and 0-directions around 

two spheres with Zs=0.20 (AZ=IZs/101,A0=6°). 

Figure(4-1-4) Distribution of grid lines for Z- and 0-directions around 

• two spheres with Zs=0.20 (AZ=IZs/101,An=6°). 
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Figure(4-1-5) Distribution of grid lines for Z- and 8-directions around 

two spheres with Zs=1.32 (AZ=1Zs/101,A0=6°). 

Figure(4-1-6) Distribution of grid lines for Z- and 0-directions around 

• two spheres with Zs=1.32 (AZ=IZs/101,An=6°). 
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Figure(4-1-7) Distribution of grid lines for Z- and 6-directions around 

two spheres with Zs=2.07 (AZ=IZs/101,A6=6°). 

Figure(4-1-8) Distribution of grid lines for Z- and 0-directions around 
D 

two spheres with Zs=2.07 (AZ=IZs/101,An=6°). 
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Figure(4-1-11) Distribution of grid lines for Z- and 0-directions around 

two spheres with Zs=3.09 (AZ=IZs/101,A0=6°). 

Figure(4-1-12) Distribution of grid lines for Z- and 0-directions around 

two spheres with Zs=3.09 (AZ=1Zs/101,An=6°). 
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the numerical results for the two spheres in the same way as 

those for a single sphere, the adoption of the new scheme in 

the present study has the advantage of distributing the grid 

lines for the 0-direction more evenly in the flow region. 

Unfortunately, this scheme also introduces unequal increments 

in the values of 0 which complicates the finite-difference 

approximations of the system of equations(4-1-1) to (4-1-3). 

In Figure(4-1-2), the transformed flow region for the 

present two-sphere problem is shown to be bounded by four 

straight lines: Z = -Zs, Z = +Zs, 0 = 0, and e = ir,as well as 

by the broken line representing the outer boundary. The 

rectangular mesh of the flow region corresponds to the scheme 

of distributing the grid lines for the Z-direction according to 

a constant increment in the values of Z and of distributing the 

grid lines for the 0-direction according to a constant increment 

in the values of 11. For each sphere spacing, a mesh spacing of 

6°  measured in terms of the angle n is used for the 0-direction. 

Because of the unequal distribution of grid lines for the Z-

direction around the spheres and because of the large distances 

between any two neighbouring grid lines in the region upstream 

of sphere A, two different mesh spacings corresponding to 

increments of IZs/101 and IZs/201 in Z are used. Hence, for 

each sphere spacing, the number of mesh points in the flow 

region is 21x31 when an increment in Z of IZs/101 is used and 

41x31 when an increment in Z of IZs/201 is used. For each sphere 

spacing, the system of equations is solved for the stream 

function, vorticity, and concentration distributions using these 

two different distributions of grid lines in the flow region. 

The grid lines for the Z-direction are indicated by the 
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index i, which varies from 1 at the surface of sphere A to n 

at the surface of sphere B. On the other hand, the grid lines 

for the 0-direction are indicated by the index j, which varies 

from 1 at 0 = O( and n = 0) to m at e = Tr(and n = Tr). These 

indicies are shown in Figure(4-1-2). 

• 
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4-2. System of equations in finite-difference form. 

To obtain numerical solutions of the system of equations 

(4-1-1) to (4-1-3), it is necessary to replace the second 

order partial differential equations by their finite-

difference approximations. For each sphere spacing, the mesh 

spacing in the flow region for the Z-direction has a constant 

value, h, while the mesh spacings for the 0-direction are a 

series of unequal increments, k1 	
3-1 	.1* * • km-1' 

which are calculated from the values of the 0-coordinate in 

Table(A-1) by the relations: k 	= 0 - 0 	, k. = 0. 	- e 3-1 j j-1 3 3+1 j,  
where j = 2, 3, 	m-1. 

A five-point star computational molecules as shown in 

Figure(4-2-1), is adopted for the numerical solutions. By using 

B 

h 0 

(i- 1,j) 

A 

(i+l,j) 

   

Figure(4-2-1) Five-point star computational molecule 

Taylor's series expansions correct to second order derivatives, 

the values of any function at the four neighbouring points, 

(i+1,j; i-1,j; i,j+1; i,j-1), can be expressed in terms of its 

value at the central node, (i,j), as follows: 

9X. . 	h2 a2x„ 
. . + h. 	+ 	• X 	= x i+1,i 	
1,3 3Z 	2 az2  

+ • • (4-2-1) 

9X. 4 	h2 a2x, 
+ • 	— 

1,3 DZ 	2 az2  
(4-2-2) 
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3X. 	k 2  92X • . 
i,j+1 Xi 	1L k..--/ _2_. 

,J4 	3 ae 	2 302  
÷ • • • 
	 (4-2-3) 

DX. . 	k2 	a 2 x. . 
X. . 	= x.1  . — k3. 	• 	1, 	3-1, 	1, 

,3-1 	,3 	-1 ae 	2 	302  

With appropriate manupulations and eliminations, the first and 

second order partial derivatives with respect to both Z and e 

at the central node point (i.j), can be approximated in terms 

of the values at the points (i+1,j; i-1,j: i,j+l; i,j-1) of 

the computational molecule as shown in Figure(4-2-1). 

2/iLi  Xi+1,j  - 	
(4-2-5) 

9Z 	2h 

X1+1,j -.2X1—1  1 
. . + Xi_i,j  

a 
(4-2-6) 

az2  

 

h2 

9X.1,. (1-A) 	- (1+B)X. . 	- {(1-A)-(1+B)1X.1  . Xi,j+1 	1,3-1 	,3 

(c. ) kj_l  DO 

(1-C)Xi,j+1  - 2Xi,j  + (1+C)Xi,j-1  

(kj•kj_i) 

(4-2-7) 

(4-2-8) 
362 

where, 

A - 

k. - k. 	k. - k. 	k. - k. 3 	3-1 	3 	3-1 	3 	3-1 
, B = 	 , C = 	 

k .. + k. kj_i 	k. 	3-1 

(4-2-9) 

If the increments in the 0-direction are constant, i.e., 

k. = k.3-1 = k, then A = 0, B = 0, and C = 0, and equations( 3   

4-2-7) and (4-2-8) reduce to: 

ax.1,1 . x i,j+1 	Xi,j -1  

30 

(4 -210) 
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a2x. . 1, 

 

X. . 	- 2X. . + 
,3+1 	1,3  (4-2-11) 

ae2  

 

k2 

Equations(4-2-10) and (4-2-11) are then similar to equations( 

4-2-5) and (4-2-6). 

By substitution of equations(4-2-5) to (4-2-8) into 

equations(4-1-1) to (4-1-3), the finite-difference approximations 

of the Navier-Stokes and diffusion equations are formulated 

as follows: 

The stream function equation in finite-difference form: 

1 	SinhZ. 1 
+ 

1 SinhZ. 1 
)1 11 1-1,j 211(CoEalZ.1-Cose.

3 - 	
i+1 h2  2h CoshZ.-Cos0, 

J 

[k.k. 	k.+k. 	Sine.(CoshZ.-Cos6.) 

	

(1-C) 	(1-A) 	CoshZ.-Cos6 -1 - I  

	

3-1 	3-1  

[

3

1+C) 	(1+B) 	CoshZ.-Cos6.-1 1 

	

k.k.-1 	k.+k.'-1 	7 
Sin6.(CoshZ -Cose.) 3 	3 3  

 

i,j+1 

 

2 	2 	( 1-A)-(1+B)CoshZ-.Cos6.-1 
/1)-1 4 

h2 kikj_i  k.+k 3 j-1 Sin6.(CoshZ.-Cos6.) 

a 2 ( 	) gili CoshZi-Cos6. 
(4-2-12) 

Equation(4-2-12) can also be written in the following way: 

* 	 * 	* 	.,* 
1 *. ,3  . = B1 	. 1+1,3 + B2  (i,j)*i_i j  + B3(i,3)Tifj+1 

* 
+ B 	' 	1 j)*. . 	+ D' 4 	, 3-1 	1,3 (4-2-13) 

7 



where, 

B1(i,j) 

B2(i,j) 

B3(i,j) 

B4(i'j) 

D!. 	- 1.3 

= 

= 

- 

- 

1 	SinhZ. 1 + / BB(i,j) 

/ BB(i,j) 

1 	3 
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/ BB(i,j) 

/ BB(i,j) 
• 

2 	( 
h 	2h CoshZ.-CosO. 

[1. 	

1 

[1. 	1 	SinhZ. 1 
h2 	2h CoshZ.-Cosh. )] 1 

(1-C) 	(1-A)CoshZ.*Cose.-1 

(1+C) 	(1+B) 	CoshZ..Cos0 1 	j -1 
+ 

[c.k. Sin0 3-1 	k.+k.-1 	j 3 	3 	3 

* 
a 

	

)2 	. 	. 	/ BB(i,j) 

(CoshZ.-Cos0.) 
1J  

( g 1  .3 CoshZ.-Cosh. 1 	3 

1-2 	2 	(1-A)-(1+B) 	CoshZ.-Cos0.-1 
1 	3  BB(i,j) = 	+ 	 

Lh 	k.k. 	k.+k. 	Sin0.(coshZ.-Cos0.).1 

	

3-1 	3 3-1 	3 	1 	3 

The vorticity transport equation in finite-difference form: 

	

[1 	1 	SinhZ.

1 	1 	

SinhZ. 

	

h 	2h CoshZ.-Cosh. 

1 	

[, 

1  

	

i+1,j h2 2h 	 1-1,j 
1 	 1 

(1-C) 	(1-A) 	CoshZ..Cos0.-1 
1 	3  +   	.

3  

(1-C) 	(1-A) 

 k.+k.-1 	ej Sin0.(CoshZ.-Cos ) 3 	3 3 	3 	1  
gi,j+1 

 

(1+C) 	(1+B) 	CoshZ..Cos0.-1 
1 	3  + 	 + 	. 	

g i,j-1 kiki_l 	ki+kj_l  Sin0.(CoshZ.-Cose
3
.) 

3 	1  

	

2 	(1-4)- (1+S) 	Costa .1..Cos0 .-1 
-2 + 	• 	  

	

k.k.3-1 	k.+k.-1  Sin0.(CoshZ.-Cos0.) 
gi,i 

3 	3 3 	3 	1 	3 
* 

	

Re-Sin0. 	a 	3[ * 	* . _ 	3   
. 	4h(k.+k1 

	

( 	 
CoshZ.-Cos0. ) 	(*i+1,j- *i-1,j)ffiej+1(1-A)  4  	) e... 	3 j- 	1 	] 

[h2  



	

[1 	1 
1  

2 - 	( 	

SinhZ. ) 	Pe ( 	*  CoshZ.1  -Cose. 

il3+1 

	

h 	2h CoshZ.-Cose. 	4h (k 
J  3
+k. 1  ) 	a Sine. 1 	3 	- 
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-(1+B) - 	[(1-A)-(1+B)3 1 - { 	(1-A)-*. . 	(1+B) fi,j-1 	fi,j 	*i,j+1 	1,3-1 

- *. 	r(1-A)-(1+B)] (fi+l,3 	. 1-1,3)  (4-2-14) 

Equation(4-2-14) can also be arranged in the following way: 

gi,j 	B1(i,j)gi+1,j  + B2(i,j)gi_i,j  + B3(i,j)gi,j4.1  

+ B (i,j)g. . 	+ D". 4 	1,3-1 	i,3 (4-2-15) 

where B1(i,j), B2(i,j), B3(i,j), and B4(i,j), are exactly the 

same as in equation(4-2-13). The non-linear term, D!' 	is 

different from that in equation(4-2-13) and is as follows: 

D!'. - 1,3 
-Re-Sine 	a 

3  ( 	)3[ 
4h(kj+ kj-1  )CoshZ.-Cose. 

3 
i+1,j 1-1,3){  

f.j 	j (1-A)-f. 	j (1+B)-f. 	[(1-A)(1+B)11 - { 1,+1 	1,-1 	I, 

1Pi,j+1(1-T0-1Pi,j(14- (1-A)- (l+s)] 1 ( fi+1,j 

fi-1,3 	/ BB(i,j) 

The diffusion equation in finite-difference form: 

r  
- Ii,j_1(1+B)-*i,j01-A)-(1+B)]l I Ci+1,i 

e 
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[1. 	1 	SinhZ. 	Pe 	CoshZ.-Cosh. 	* 
2 

	

1 	 1  
	( 	* 	J){11)i,j+1  (1-A) h2h CoshZ -Cose. 	4h(k.+k.3-1  ) 	a Sine. j  

* 
-g • (1+B)-1p. .1..(1-A)-(1+B)D C. 	. / ,3-1 	1,3 	1-113 

(1-C) 	(1-A) 	CoshZ.°Cose.-1 
1  

Sine (CoshZ.-Cose.) 

Pe(1-A) CoshZ.-Cose. * 	

* 

	( 	* 1  
)(1g+1.j-ig-lrj) Ci,j+1 4h(k.+k.3-1  ) 	a Sinej 3  

(1+C) 	(1+B) 	CoshZ. -Close. -1 
1 	3  

k:j +ki_1  Sine. (CoshZ.-Cose .
3
) 

3 	1  

Pe(l+B) CoshZ.1-Cose. 

3 

	( 	*  
3 4+1,jg-1,j) Ci,j-1 4h(k.+k.-1  ) 	a Sine. 

C. 	

2 (1-A)-(1+B) CoshZ..Cose.-1 

	

1 	J = — + 	 + 	. 
h2 k.k.-1  k.+k.-1  Sine.(CoshZ.-Cose.) 3 3 	3 3 	3 	1 	3 

PeE(1-A)-(1+B)] CoshZ.-Cosei 	* 	( 	* 1  
)(*i+1,j-4)i-1,j) Ci,j 4h(k.+k.3-1  ) 	a Sinej 3  

(4-2-16) 

Equation(4-2-16) can also be arranged in a different form by 

separating those terms on the left-hand side of the equation 

which contain the stream function, and grouping them into a 

separate term as follows: 

[1. 	1 	SinhZ
* 	 1  [1

' 

 1 SinhZ. 
	)i C. 	+ 	+ 	( )] C. 

h2 	2h CoshZ.-Cose. 	1+1,j 	h 	2h CoshZ.-Cose. 1-1,j 
1 	3 	 1 	3 

(1-C) 	(1-A) 	CoshZ.-Cose.-1 
1  * 

3  	• 	Cirj+1  

3 
ki+ki_i  Sine.(CoshZ.-Cose.) 1  
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(1+C) 	(1+B) 	CoshZ..Cose.-1 
1  	• 	Ci,j-1  

[c:ycj._.1 ki+I i _i.  Sine. (CoshZ.-Cose.) 1 	3 

Pe 	CoshZ.-Cose. 	 * ( 	* 1 
J)  (tPi,j+1 	*i,j-11 (1-A)- 	(1+B)-4). ,3  .L(1-A) 

4h(k.+k. ,) 	a Sine. 
3 3-1 	3 

* 
-(1+B)11(c 	. . - 4) 	){(1A)  i+1, j-c  1-1,3 ) 	( i+1,j 1-1,j 	Ci,j+1 

j(1+B) Ci,3-1 

2 	2 	(1-M-(1+12.) 	CoshZ..Cos0,
J
-1 

. 	1 = -- + 	 + 	 
h kiki-1  k.3+k.3-1 Sinej(CoshZ.-Cos8.) 

	

1 	3 

Pe E(1-A)-(1+B)] CoshZ.-CosO 
J 

	

1 	* 
* 	*  

	( 	"*.i.+1,j-iPi-1,j) Ci,j 4h(k.+k. ) 	a Sine, 

	

3 j-1 	J 

(4-2-17) 

Equation(4-2-17) can further be arranged into the following 

form: 

C. . = A (i,j)C. 	. + A (i,j) 	+ A (i,j)C. . 
1.3 	1 	1+1,3 	2 	Ci_11i 	3 	1,3+1 

111. 
+ A„(i,j)C. 	+ D, 1,3-1 	i,3 

(4-2-18) 

where, 

[I1 

	SinhZ. 

1 
Al(i,j) = 	2 	1 	/ AA(i,j) 

h 	2h CoshZ.-Cose. 

1 	SinhZ. 
A2(i,j) = 	

1 ( 	).] / AA(irj) 
h 	2h CoshZ-Cose. 1 	3 

A3 ' (i j) - 
[(1-C) 	(1-A) 	Cosia.°C00.-1 1  / AA(i,j) 

3 3-1 	3 3-1  
ainej(CoshZ.-Cose.) 1 	3 

• 
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3  
[k.k.-1 
	3 

k.+k.-1 
	 3 
,Sine.(CoshZ-Cose.) 

A4(i,j) =  	 / AA(i,j) 

2 	(1-A)-(1+B) 	CoshZ..Cose.-1 
1  

AA(i,j) = 	• 
1 

+ 
1 	

3 
k.k.-1 
	3 

k.+k.
-1 
 Sine.(CoshZ.-Cose.) 

3   

Pe[(1-A)- (1+B)] CoshZ.-Cose.
3  

* 
	* 
)(4)i+1,j-111i-1,j)  

4h(k-
3
+k. ) 	a Sine 
 3-1 

fll Pe 	CoshZ -Cose 	* 

D. 4 	

3 

- 	( 	*1  
1" 	4h(k.+k.

-1  ) 
	a Sinej  j)  

3  

* 
11)1  (- • 	L 1-A)-(1+B)] (C 	-C. 	.) 

,i 	 1+1,j 3.-1,3 

- (*i+1 	. 	. A.) 	-(1+B) ,.-* 
	

){(1-Ci,j+i 	Ci,j_ll / AA(i,j)  

Hence, equations(4-2-13), (4-2-15), and (4-2-18), are 

the system of equations in the required finite-difference form. 

* 
The values of the dependent variables: stream function, * 

* 
vorticity function, g, and concentration, C , at any node 

point are related to their values at four neighbouring mesh 

points. By using. these finite-difference equations at every 

internal mesh point in the flow region, a set of simultaneous 

algebraic equations is obtained, which can be solved by an 

iterative method using the boundary conditions which must also 

be expressed in finite-difference form. 

(1+C) 	(1+111) 	CoshZ.•Cos6.-1 

3 
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4-3. Boundary conditions in finite-difference form. 

For the present system of two equally sized spheres with 

fluid flowing parallel to their line of centres, there are two 

types of boundary conditions: the boundary conditions which 

do not change throughout the process of computation, and the 

boundary conditions which need special- treatment or which may 

not remain the same during computation. The finite-difference 

approximations of the boundary conditions are as follows: 

The constant boundary conditions: 

(1). At the surface of sphere A(Z = -Zs, i = 1). 

=  1,j 	0 , Cl .j 	
1 11,   

(2). At the surface of sphere B(Z = +Zs, i = n). 

0 n,3 	C n,3 

(3). Along the axis of symmetry e = 0(j = 1). 

= 0 , 	= 0 ' gi,1 = ° 

(4). Along the axis of symmetry 6 = r (j = 

*i,m = 0 , i,m = 0 , gi,m = 0 

(4-3-1) 

(4-3-2) 

(4-3-3) 

(4-3-4) 

(5). Along the outer boundary (Zo  , 60). 

* 
a Sineo  

*4 • = 1/2( 	)
2 (4-3-5) 

CoshZo - Cosao 

. 	, g
1 
 . = 0 	f 	. = 0 	(4-3-6) ,3 	. 	, 1,3  
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For each sphere spacing Zs, the above boundary conditions 

remain the same throughout the numerical solution of the Navier-

Stokes and diffusion equations, and have to be specified 

before the start of the solution procedure. 

The specially treated boundary conditions.  

(1). Vorticities and vorticity functions g and f at the surfaces 

of the spheres(i = 1 and i = n). 

The surface vorticities expressed by equations(3-4-2a) 

and (3-4-2b) become: 

CoshZ
1 	2 
-Cosa. CoshZ1-Cosh. a 2* 

	

1,j 
— ( 	

*  
3) ( 	* 	) 	

2 a 	a Sine. 	az 
 

CoshZ-Cose. CoshZ -Cos°. 	ark, 

	

( 	
n 	

3) ( 	
n 	j

)
2 	n,  

a Sine] 	a 	6t2-- 

(4-3-7) 

(4-3-8) 

and require evaluations of the second order stream function 

derivatives with respect to Z at the solid surfaces of the 

spheres. By using a Taylor's series expansion for the stream 

function in the vicinity of the surfaces, two cubic polynomials 

can be obtained for the second order derivatives as follows: 

* 	0* 	- * a2 n , 	
4.,1, . 	IP 

= n-1,3 n-2,j  

az2 	2h2 

24. • 
az2  

* 	* 
811)
4
^ 
.] 
• - 

_  

2h2 
(4-3-9) 

(4-3-10) 

Hence, the vorticities at the solid surface of sphere A(Z = -Zs, 

i = 1) are as follows: 

• 
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1 CoshZ1-Cos0. CoshZ1
* 	(4,
-Cose 

1,j -)( 	
j
)
2 	

.-
* 

a 	2,3 *  3,3 2h2( a
*
Sin8. 

(4-3-11) 
* 

a Sine. 
gi 	)*C1  4 	 (4-3-12) 

CcisilZ1-C(3se * 	-"j  
* 
a Sine, 

f1,j = Ci 
" 
.; / ( 	J  ) 

- 	CoshZ1  -Cos0j 

(4-3-13) 

and the vorticities at the surface of sphere B (Z = +Zs, i = n) 

are as follows: 

1CoshZ1I-Cos8, 
	)(

CoshZn -Cose, 
4 = 

11-  .)( 	
J1/11,11* 

11-1,j'n-2,j)  n" 2 	a Sinej 	a 

a Sine, 

	

gn,j 	( 	J  
CoshZn-Cos0,) C

n,j 

* 
a Sine, 

3  
fn' 

▪ 

= 11. 

▪ 

/ ( 

	

j 	1j CoshZn-Cos°. 
(4-3-16) 

(2). Vorticity function f along the axes of symmetry, 0 = 0 

and 8 = n (j = 1 and j = m). 

* 
Since both c and Sine are zero along the axes of symmetry 

= 0 and 0 = 7, the vorticity functionfi 1 	m and f. 	are 
 

undettermined. Hence, a special treatment is made for the 

functions by means of L'Hospital's rule..  

* 
For 0 = 0: Sin8 = 0, Cos° = 1, and Ci,1  = 0, eguation(3-3-6)- 

becomes: 

 

* 
* a Sin81  
 / ( Ci,1 CoshZ.-Cos0 1 	1 

* * 
_ (aCi,1)/( 	

a 
 

DO 	CoshZ -1 
fi 1 = lim ' 	0+0 
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* 	* 
2 	a 

(,_..) / ( 	) 
k1  CoshZi  -1 

(4-3-17) 

* 
For 6 = 7: Sine = 0, Cosh = -1, and Ci,m  = 0, equation(3-3-6) 

becomes: 

 

* 

	

* 	a Sine 

	

C. 	/ ( 	
m  ) 

,m CoshZ.
1-Cos6m 

* 	* 
a _ 

ae 	CoshZ.
1
+1 

f. 	= lim I,m 
6+7r 

 

* 	 * 

- (
Cim-1

) / ( 	
a 	

(4-3-18) 
km-1 	CoshZ+1 

(3). The diffusion equation along the axis of symmetry 6 = 0 ( 

j = 1). 

The fourth term on the left-hand side and the term on 

the right-hand side of the diffusion equation(4-1-3) require 

	

* 	* special treatment because -57(C.,) = 0, 	= 0, and 

Sine = 0. With the application of L'Hospital's rule, a limiting 

process is used as follows: 

 

* 
CoshZ..Cos6 -1 	9 1 	1 	

C1.,1 

Sine
11  
(CoshZ.-Cos61  ) 30 

  

lim 
e±o 

2C. 

ao2 
(4-3-19) 

   

 

* 	* 	* 	* 
1 	4. 	aci 1 	a*J. 	1 aci 1, 	. 	, 	. 	1 ) 

Sine]. 	ae 	az 	az 	ae 

a2iPi,i.aci  

ae2 	az 

 

lim 
e+o 

 

 

(4-3-20) 

By substitution these two expressions into equation(4-1-3), 

the diffusion equation along the axis of symmetry 6 = 0 

becomes: 
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n 	* 34C.
*  
	SinhZ. DC. 	a 

* 
1,1 	1 	14 	2  ci 1) 

az2 	CoshZ.-1 az 	302 
1 

CoshZ4-1 D211)! 3C1*. 1,1 	,1 = -1/211e( 	* 	) • 
302 a 	az 

14-3-21) 

By the use of a Taylor's series expression, equation(4-2-3), 

the second order partial derivative with respect to e, can be 

obtained along the axis of symmetry 6 = 0 as follows: 

a2 c
* 

2(C. 	- C. 	) i,1  _ 	i,2 	1,1  
302 	k1 

n  il.* 
	 - 21'i,2 
ae2 	k1 

(4-3-22) 

(4-3-23) 

From these two equations, the finite-difference approximation 

of equation(4-3-21) is formulated as follows: 

[ 

1 	1 	SinhZ.1 	Pe CoshZ.1  - 1 	* 	* 
( 	) + 	2( 	* 	).*1. 	C. ,2 1+1,1 h2 	2h CoshZ1  . .- 1 	2hk1 	a 

1 1 SinhZi  ) 

+ 	
+ 	( 

 h2 	2h CoshZi  - 1 [ 

Pe CoshZ. - 1 	* 	* 1  

	

tip. 	C. 1,2 1-1,1 2hk2 a* 
	) 

 1 

[ 4 ] * 	[2 4. 4 ] * 

2 	
c 
 1,2 	h2 	,2 Ci11 

 

. 

k1 a. 

(4-3-24) 

Equation(4-3-24) can be arranged into the following form: 

1 	SinhZ. 
( 	1 	* 	[1 	1 ' SinhZ. 

. 	CoshZ h2 	2h 	- IA 1+1,1 4- 2 	2h + 	( [ 	i 	h 	CoshZi  1- ld 1-1,1 

[4 CoshZ. - 1 

C1,2  +   
	.* 

* 	)(ci+1,1 Ci-1,1) 

ir 
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4 ] * 
2 C. 

k
l  

(4-3-25) 

Equation can further be arranged into the following form: 

C. 	= D1(i)Ci+1,1 + D2(i)Ci-1,1  + D3Ci,2 + DA 
	

(4-3-26) 

where, 

[1.  1 SinhZ. 
D1  (i) = 	1 	)j / DD 

h2 	211 CoshZ. -1 
1 

1 1 SinhZi  
D2 (i) = —f + 	( 	 ) / DD 

h 	2h CoshZ.-1 
1 

4 
D3  = F-7.] / DD 

L 

* 
1 	Pe 	Cash:Z.-1 

*i,2 	1 	* 	* DA = 	( 	* 	) ( 	. 

	

2 	Ci+1,1-C  1-1,1).] / DD 

	

2hk
1 	a  

[2 4 
DD = 	+ 

2 	2 h  

(4). The diffusion equation along the axis of symmetry 0 = 

j = rri). 

* 	9 * As 9  7(Cirm) = 0, TT(Ipi,m) = 0, and Sine = 0, the diffusion 

equation(4-1-3) also requires the same special treatment as 

the previous case: 

 

* 
CoshZ.-Cosem-1 DC. 1 	1,m 

Sinela(CoshZ.1-Cosem) DO 

  

lira 
0+7 

32Cirm  

302 
(4-3-27) 

   

* 	* 	* 	* 
1 a*. 	ac.2. 	a*. 	ac 
	( 	1,m. 	,m + 	 1,m.  i,m) 
Sinem 	

DO 	9Z 	az 	DO 



70 

= 	
th a2 
Yi,m  DCi,m 

	

302 	DZ 
(4-3-8) 

By substitution of these two limiting expressions into 

equation(4-1-3), the diffusion equation along 0 = Tr becomes: 

* 	 * 32C 1,m 	ac
* 32c  

( 
i,m 	i  ) •  i'm  + 2( 	 i,m

) 
3z2 	CoshZ.+1 3Z 	8e2 1 

CoshZ.1+1 32**  m  3C. * ). 	
 1,.. 1,m 

= 	1/2Pe( 
a 	302

• 
3Z 

(4-3-29) 

By Taylor's series expansion equation(4-2-4), the second order 

partial derivatives with respect to 8 in equation(4-3-29) are: 

2 	- 3 c  
i,m _ 2(Ci,m-1 	C.  (4-3-30) 

(4-3-31) 

2 

	

302 	km-1 

	

*32th 	2*. 
Yi,m _  1,m-1 

2 

	

ae2 	km-1 

Hence, the finite-difference. approximation of the diffusion 

equation along 8 = Tr, equation(4-3-29), becomes: 

	

[1 1 SinhZ. 	Pe CoshZ.+1 * 	* 

	

1 	1  
( 	( 	* 	)64) 

	C* 
h2 	2h. Cbsh2.+1 	2hkm

2 
1 	-1 a 	

i,m-1 i+1,m 
 

1 SinhZ. 	Pe CoshZ.+1 1 	c* 
	 ) + 	2 	* h-  2h CoshZi+1 	2hkm_i 	a 	'1,m-1 i-1,m  

+ 

4 

] 
* 	_ 

Ci,m-1 

2 

k2 m-1 
[2 

4 * 
. 

+ 	

CI k2 I 	,m = 0 	(4-3-32) 
m-1 
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Similarly, equation(4-3-32) can be arranged into the following 

form: 

C. 	= E1  (i)Ci+1,m + E2(i)Ci_ilm  + E31 
 C. ,m-1 + EA' 	(4-3-33) 1,m  

where, 

[i 1 SinhZ. 
E1(i) = 1)] / EE 

h2 	211 CoshZ.+1 1 

[1 1 SinhZi  
E2(i) = -7  + 	( 	/ EE- 

h 	2h CoshZ.+1 1 

E 3 

EA 

EE 

- 

- 

= 

1 
/ EE 

Costa.-1-1  ,m-12. 	* 
(
____7  ___)(C - 

* 
C. -1,m) 1 / EE 

[ km_ 

* 
-Pet,. 1 

2hk2  m-1 

2 	4 
+ 

I+1,m  
a 

2 h2 	km-1 

Hence, equations(4-3-26) and (4-3-33) are the diffusion 

equations applied to the axes of symmetry: e = 0 and e = n. 

The concentration at each node point on the axes of symmetry 

is related to three neighbouring point values as shown in 

Figure(4-1-2). 

During the computational process of the system of finite-

difference equations(4-2-13), (4-2-15), and (4-2-18), the 

constant and specially treated boundary conditions are computed 

or specified at the beginning of each iteration until they are 

S 



• 
72 

prescribed everywhere on the boundaries. The system of finite-

difference equations is then solved for each mesh point in the 

flow region. At the end of each iteration, the specially treated 

boundary conditions are recalculated using the newly obtained 

values. This process of solving the system of equations and 

recalculating the specially treated boundary conditions 

continues until the desired accuracy of the solutions has been 

achieved. 
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4-4. Iterative method with relaxation. 

The system of equations, equations(4-2-13), (4-2-15), 

and (4-2-18) , can be written for each internal mesh point in 

the following general form: 

Xi ,
J = f( X. 	., Xi -1,J' X. . 	, X. . 	, Di ,j) 	(4-4-1) 

1.7 	1+1,3 1-1,] 1,J+1 1,J-1 1,3 

whereX.,standsforlq,j,gi,j,andC.;whilep.stands 
1.7  

for the non-linear and convective terms of the equations. 

Equation(4-4-1) can be solved by successive iteration with 

re\com-Hoel 

In the Gauss-Seidel method, equation(4-4-1) at the nth 

iteration is arranged as follows: 

X. 	. 1,3 
n-1 f( 	X. 	., 1+1,3 X. 	., 1-1,3 

n-1 X. 	. 	, 1,3+1 X. 	. 	, 1,3-1 D. 	. 1,3 ) (4-4-2) 

By introduction of the coefficients from the finite-difference 

luations which may be denoted by B1(i,j), B2(i,j), B3(i,j), 

and B4(i,j), equation(4-4-2) becomes: 

1 	 n-1 n 	= B (i j)Xn. 	+ B (i,j)X. 	+ B (i,j)X. . Xi,j 1 ' I+1j 2 	1-1,j 3 	1,3+1 

+ B (i j)X. 	+ Dn 4 '1,j-1 i,j (4-4-3) 

Equation(4-4-3) can be arranged in the following form by the 

-1 addition and substaction of a term X.n  . from the right-hand 
1,3 

side of equation(4-4-3): 



74 

X. 	Xi ,j + 	(i j)Xn. 	. + B (i,j)0 
1,j 	1,3 	1 	1+1,3 	2 	1-1,j 

n-1 + B (i,j)X. 	+ B (i j)Xn 	+ D. 	- 

	

3 	1,j+1 4 ' i,j-1 I,j 	1,j 

n-1 	*n - X. n-1, = X. . + (X. .  1,3 	1,3 	1,) 

n-1 = X. . + R, . 1,3  
(4-4-4) 

where X . n * 
1,3 . denotes the value of 

ir.1I,j  calculated using equation( 

Rn is the amount by which the value of Xn 4-4-3), and 

changes for one iteration. At complete convergence, RI.1  is i,j 
equal to zero. 

In order to accelerate the rate of convergence, a 

relaxation factor, w, which has a value that lies between 0.0 

and 2.0, is introduced into equation(4-4-4) as follows: 

n-1 

	

X. . 	+toe' 	== )er.1- 	u,Deb.11. 	X. .) 

	

1,3 	1,3 	1,J 	1,3 	1,J 	1,] 
(4-4-5) 

This is the Gauss-Seidel iterative method with relaxation. This 

method is a powerful tool for solving both linear and non-linear 

partial differential equations expressed in finite-difference 

form. 

Ihsan(not published) has developed a new scheme for 

solving a set of non-linear finite-difference equations by 

controlling the non-linear terms. His scheme starts with the 

following equation: 

. . n-1 	. . n-1 	n-1 
X. 	= B (1 j)X. 	. ± B (3. j)X 	+ B (i j)X . 
1,3 	1 ' 	1+1,j . 	2 ' 	i-1,3 	3 ' 	1,3+1 
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+ B (i j)X.n 	+ D. 
4 ' 1,j-1 I,j (4-4-6) 

ByaddingatermmXn.. - to both sides, equation(4-4-6) becomes: 
1,3 

	

-1 	-1 	. n-1
)X. 	. + B3' . )x. . 

X. 
. + mX.n  . 	= B1 ' (i j)X.n 	. + B

2  (i,3 	
(i 3 

1,3 	1,3 	1+1,3 	1-1,3 	,3+1 

1 
+ B (i j)Xn-1 	+ (m'+w)D.n  4 ' i,j-1 	I,j (4-4-7) 

	

-1 	n-1 wheremX..=m,D..and wD.
'n 

 . = D. . . This results in a 1,J 	1,J 	1,J 	1,3 

modification to the "initial guess" before the next iteration. 

With the assumption that the difference between X.n  . and X' 
1,3 	1,3 

is small, equation(4-4-7) can be written as follows: 

n-1 	n-1 	n-1 . 	
n 	/ . 	. % 	1 

. 	. ,n 	— , „ .,_
X1+1,j 	-1,j . n 	 N.X  1,j+1  t 	.. 	.... 

X 

'J 
 	

.  

1+M 	 liln 	 11111 

Xn-1 . 	. 
+ B

4
(i
'
j). 1,-1  

l+m 

(m 1 +w)D.n  . 
1,3  

l+m 
(4-4-8) 

When complete convergence of equation(4-4-8) has been achieved, 

n-1 X.. = X. . , and equations(4-4-8) and (4-4-7) become identical. 
1,3 	1,3 

Therefore, with suitable selection of the three parameters: m, 

re, and w, the non-linear term of equation(4-4-8) can be made 

to be positive in order to ensure the stability of the 

numerical solutions. 

With these conceptsin mind, a similar scheme is developed 

for the present system of equations. The scheme started with 

equation(4-4-3) and with the assumption that the difference 

between X? and X. 	is small, the following equation is 
1,3 	I,j 

formulated: 
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n   =  	

Xn-1  	Xn   Xn. -1 

X1,3 	B1(i'j) 
i+,

+ B2(i'j)11
,

+ B3(i'
j)1, . 1 

	

l+m 	l+m 	l+m 

n-1 n-1 n X. . 	mX. . + D 	. 1, -1 	1,3 	i,3  + B4(i'j) 	+ 
l+m 	l+m 

Equation(4-4-9) has only one extra parameter, m. When m = 0, 

equation(4-4-9) reduces to the Gauss-Seidel equation(4-4-3). 

Hence, with a suitable choice of the parameter of m at each 

node point, the non-linear term of equation(4-4-9) can be 

conditioned to be positive. The best solutions are obtained 

when the non-linear term is controlled to be positive, constant, 

and small. This scheme also ensures stability of the numerical 

solutions. To accelerate the rate of convergence, the value of 

Xr
1
.1  . obtained from equation(4-4-9) is then substituded into 

3 
X. of equation(4-4-5) for further relaxation. 
1,3 

In this computation process, the convergence criterion, 

E, of each variable has to be specified before iteration process 

is started. In the solution of the Navier-Stokes equations, 

because of large differences in the values of the stream function 

and vorticity over the whole flow region, two different types 

of point-convergence tests: relative and absolute, were used: 

 

n X. . - X-1 . 	. 1,3 	1,3  

X. 
1,3 

 

WhenXi,j  > 1.0 : 4 E 	(4-4-11) 

  

n-1 When X1,j0 : 	IX. 	X.,j 4 1. 1  1 4 e I,j  (4-4-12) 

(4-4-9) 

On the other hand, in the solution of the diffusion equation, 

the absolute point-convergence test was used because the 
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* 	- 
concentration in the flow region varies from C = 1.0 to 0.0: 

le _ xn-1 
I 1,j 	1, i 1 ' `` e  (4-4-13) 

The convergence criteria for the stream function, vorticity 

function g, and concentration are designated as c**, eg, Cc*, 

respectively. 

• 
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4-5. Calculation of surface pressures, drag coefficients, and 

local and overall Sherwood numbers. 

For each sphere spacing Zs, the solutions of the system 

of equations(4-2-13), (4-2-15), and (4-2-18), produce the 

stream function, vorticity, and concentration distributions 

in the flow region at different Reynolds and Peclet numbers. 

From these distributions, some important quantities of the 

two-sphere dynamic and mass transfer problems are calculated. 

The derivations of the appropriate relationships for the 

calculation of these quantities are given in Appendices B and C. 

The following quantities can be obtained from the vorticity 

distributions: 

(1). The pressures at the surfaces of the spheres are expressed 

in terms of the dimensionless pressure coefficient, K, which 

is defined as (P - Po)/kpU
2, where Ps and Po are the pressures 

at the sphere surfaces and in the undisturbed main stream, 

respectively. The dimensionless pressure coefficients at the 

front stagnation point of sphere A, Km, and at the rear 

atagnation point of sphere B, KB0, are calculated from the 

following two expressions: 

KAO = 

KBO = 

1.0 

1.0 

8 Z=0 	9c 
I dZ 

-Zs 

+Zs dZ 

(4-5-1) 

(4-5-2) 

+ 
Re 

8 

Z=-Zs 36 

Z=0 	3c 
I 	(---) 
Z=+Zs 36 

+ — 
Re 

(2). The surface pressure distributions along the solid surfaces 

of the two spheres are calculated .as follows: for sphere A, the 

calculation starts from the front stagnation point and then 
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proceeds along the surface towards the rear stagnation point; 

while for sphere B, the calculation starts from the rear. 

stagnation point and then proceeds along the surface towards 

the front stagnation point. 

For spheresLA and B, the expressions are as follows: 

4 	p
e 

K K + 	-- Ae AO Re 0 	3Z 

 

Sinh(-Zs) 
de 

-Zs cosh(-Zs)-cose 1,3  

  

* 
4 

e a 
K = K + 	I BO BO Re 0 	3Z 

(4-5-3) 

-Sinh(+Zs) 
	): .4.] de 

+Zs Cosh(+Zs)-Cose " 

(4-5-4) 

 

where KA0  and KB0  are the dimensionless surface pressure 

coefficients for spheres A and B, respectively. 

(3) The total drag coefficient of each sphere consists of two 

components: the frictional drag coefficient and the pressure( 

or form) drag coefficient. For sphere A, the frictional drag 

coefficient, CDFA/I,the pressure drag coefficient, CDPA,  and 

the total drag coefficient, CDTA, are calculated from the 

following three equations, respectively: 

* 	* 
w * 	a 	a Sine 

C 	= 8— I 	.Sinn( 	)( 	) dO DFA Re l.i.j 

	

0 	Cosh(-Zs)-Cos0 Cosh(-Zs)-Cose 

(4-5-5) * 	* 
a 	a Sine 

CDPA = +2 j KA0Cosn( 	) ( 	) de 
Cosh(-Zs)-Cose Cosh(-Zs)-Cose 

(4-5-6) 

CDTA CDFA CDPA 
	 (4-5-7) 

Similarly, for sphere B, the frictional drag coefficient, CDFB, 
• 
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the pressure drag coefficient, CDpB, and the total drag 

coefficient, CDTB, are calculated using the following three 

equations: 

* 	* 
7 * 	a 	a Sine 

C 	= I-- f..Sinn( 	) ( 	) de DFB Re Cn,j 0 	Cosh(+Zs)-Cosa Cosh(+Zs)-Cosa 

(4-5-8) 
* 	 * 

a 	a Sine 
	) ( 	) de CDPB = -2 	K BOCosn(
Cosh(+Zs)-CosO Cosh(+Zs)-Cosa 

(4-5-9) 

CDTB = CDFB + CDPB 
	

(4-5-10) 

From the concentration distributions in the flow region 

adjacent to the surfaces of the spheres the local and overall 

rates of mass transfer from the spheres expressed in terms of 

the local and overall Sherwood numbers, can be obtained as 

follows: 

(4). The local Sherwood numbers for spheres A and B, ShAL(0) 

and ShBL(0), are given by the following two expressions: 

* 
Cosh(-Zs)-Cosa 3C 

ShAL(0) = -2.0( 	)  
a 	3Z = -Zs 

(4-5-11) 

   

* 
cosh(+zs)-cose ac 

ShBL(e) = -2.0( 	 
a
* 

3Z 

  

Z=+Zs 
14-5-12) 

   

(5). For each specified sphere spacing, Reynolds number, and 

Peclet number, the overall Sherwood numbers for spheres A and B, 

ShAO and ShBO, are obtained using the following two expressions: 

4 

{Cosh(-ZS)-11{COSh(-ZS)+1} 	7 	
Sine

-  ShAO -* 	  I ( 	  
a 

 
0 Cosh(-Zs)-Cose 
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DC 

•az 
de 

Z=-Zs 
(4-5-13) 

   

{Cosh(+Zs)-1}{Cosh(+Zs)+1} 	Sine 
ShBO -   I ( 	  

a 	0 Cosh(+Zs)-Cos6 

* 
DC 

de 
Z=+Zs 

(4-5-14) 

  

3Z 

where a = lSinhZsl. 

In the calculation of some of the above quantities, the 

evaluation of first order derivatives of a function with 

respect to Z and 6 are required. Because a constant mesh 

spacing is used in the Z direction and variable mesh spacings 

are used in the 0-direction, these derivatives have to be 

derived separately. 

* 
At any value of Z, say Z , the first order derivative of 

a function with respect to Z may be obtained from a Taylor's 

series expansion using a forward difference approximation 

correct up to third order derivatives, the derivative may be 

expressed as follows: 

DX 

 

-11X1  + 18X2 - 9X3 + 2X4 
(4-5-15) 

  

* - 
Z=Z 	6h 

 

az 

  

     

* 
Equation(4-5-15) evaluates the derivative at a given value Z 

in terms of four successive equally spaced values of the 

function, X1  to X4. From equation(4-5-15), the first order 

derivative of the function Xi,j  with respect to Z at the surface 

of sphere A becomes: 

• 
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3X. . 	-11 	18 	9X . + 2 
1.3  _ 	

Xl,i  + 	X2,i  - 	
3,] 	

X4,i 

az 	6h 
(4-5-16) 

and the first order derivative of the function X, . with 

respect to Z at the surface of sphere B becomes: 

0X.-11X11,j+18Xn-1,j - 9Xn-2,j + 2Xn-3,j - 
aZ 	6h 

(4-5-17) 

Because of the variable mesh spacings in the 0-direciton, the 

derivation of the first order derivative of a function with 

respect to 0 is complicated and tedious. With the same 

procedure and putting L1  = k1, L2  = ki  + k2, L3  = ki  + k2  + k3, 

the derivative of a function X.. with respect to 6 at the axis 
1 3 

of symmetry 0 = 0 is: 

L2
2
L1 
2
(L -L )(X. -X. ) 2 1 1,4 1,1 

- L2L2(L
3 
 -L

1 
 )(X. -Xi,1  ) 3 1 	1,3  

+ L23L
2(L -L )(X. -X. ) 3 2 1,2 1,1 

(4-5-18) 
L
3
L
2
L
1
(L

3
-L2)(L3

-L
1
)(L2-L1) 

Similarly, by putting Li = km_i, LI = km_i  + km_2, and LI = 

km-1 + km-2 + km-3' the first order derivative of the function 

Xi,i  with respect to 0 at the axis of symmetry 0 = ¶ is: 

L
2
2L
1
2(L'-L1I')(X.,m-3-X. )  ,m 

- L3
2
L1

2
(L3-L')(X. 	2- ,m-X. m) 1 I I, 

	

+ L 2L 2(L-L) (X
1
. 	-X. )

m  ax 	3 2 	3 2 	,m-1 1,m — 	 

	

ae 	L'L'L'(L'-L1 )(L'-L 1 )(L1 -L') 3 213 2 	312 1 

(4-5-19) 

If the mesh spacings in the 6-direction are constant, i.e., • 
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k1 = k2 = k3 = k, and km-1 = km-2 = km-3 = k, then equations( 

4-5-18) and (4-5-19) reduce to: 

9Xi
4_ - -11Xi,1 

+ 18Xi,2 - 9Xi,3 + 2X1.14 
De 	6k 

(4-5-20) 

ax. 	-11x. 	+ 18 	- 9X. 	+ 2X. 1,m _ 	1m 	Xi,m_i 	1,m-2 	1,m-3  (4-5-21) 
DO 	 6k 

Equations(4-5-20) and (4-5-21) are similar to equations(4-5-16) 

and (4-5-17), respectively. 

In the numerical integration process, the trapezoidal 

rule is used. For the integration of a function X(Z) over the 

limits Za and Zb with n-1 equally spaced intervals between 

them, the following expression is adopted: 

Zb 
I x(z)dz = h(kXa + X2 

+ 	+ x
n-2 + kXb) Za 

(4-5-22) 

Similarly, the integration of a function X(0) over the limits 

Oaandftwithm-lun-equallyspacedintervaleky where j = 1, 

, m-1, between the limits, the following expression is used: 

Ob 
I x(e)de = kpxa+X)k1 + (X +X3)k2 +... + (X.+X. )t:f 3+1 3 Oa 

+ ..-+ (Xliv_i+X]a)km_i] 	(4-5-22) 

With the aid of these numerical differentiation and integration 

expressions, the distributions of vorticity, stream function, 

and concentration in the flow region can be converted into 

quantitative physical information. 

• 
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4-6. Computational procedures for the solution of the system 

of equations. 

For each sphere spacing, the Navier-Stokes equations, 

expressed in terms of the stream function equation(4-2-13) and the 

vorticity transport equation(4-2-15), are solved simultaneously 

for the stream function and vorticity distributions in the flow 

region for a series of Reynolds numbers. The diffusion equation 

(4-2-18) is then solved separately for concentration 

distributions in the same flow region for a series of Peclet 

numbers using the calculated stream function distribution at 

any specified Reynolds number. 

Two computer programmes: Program 1 and Program 2, which 

are listed and explained in Appendix F, are developed for the 

simulation of the viscous fluid flow around two equally sized 

spheres and the calculattion of the mass transfer rates from 

the spheres. Program 1 is solely for the solution of the Navier-

Stokes equations while Program 2 is for the solution of the 

diffusion equation. In the computational process, two magnetic 

tapes are needed to store the flow information as well as the 

converged numerical results. Tape 1 is used for Program 1 and 

Tape 2 for Program 2. 

Before entering the computational process, the flow region 

and the controlling parameters are specified for each sphere 

spacing, and the boundary conditions prescribed for each 

dependent variable. For the first solution obtained of the 

Navier-Stokes equations, the initial values for the stream 

function and vorticity are supplied from the analytical solutions 

obtained by'Stimson and Jeffery(1926) for creeping flow around 

e 
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two equally sized spheres at the appropriate sphere spacing. 

For the first solution obtained for the diffusion equation, an 

array of arbitary initial values for concentration is supplied. 

In subsequent runs, the initial values are always supplied from 

the converged results stored on magnetic tapes for the nearest 

lower Reynolds number or Peclet number. 

For each specified Reynolds number, when the solution of 

the Navier-Stokes equations is obtained, the converged stream 

function and vorticity distributions in the flow region are 

printed out and at the same time stored on Tape 1. The surface 

pressures and the drag coefficients for the two spheres are then 

calculated. In order to understant the stream function and 

vorticity distributions around the spheres, the contours of 

the stream function and vorticity distributions are searched 

for and plotted using the computer. Similarly, for each specified 

Reynolds and Peclet numbers, when the solution of the diffusion 

equation is obtained, the converged concentration distribution 

in the flow region is printed out and stored on Tape 2. The 

local and overall rates of mass transfer from the spheres are 

calculated and the concentration contours around the spheres 

are located and plotted using the computer. 

Detailed descriptions of the computational procedures 

for solving the Navier-Stokes and diffusion equations for any 

sphere spacing are given separately in the following sections. 

0 
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(A). Summary of the computational procedures for solving the 

Navier-Stokes equations. 

1. Specify the sphere spacing, Zs. 

2. Specify the position of the outer boundary by assigning a 

value to the ratio, (r/d), where r is the radius of the 

outer boundary sphere and d is the distance between the 

centre of either sphere and the origin of the bi-spherical 

coordinate system. 

3. Specify the mesh spacing in the Z-direction, h. The un-equal 

mesh spacings in the 0-direction, k , j =.1, 	, m-1, are 

obtained from equation(A-3-3) by assigning values of n  with 

a constant increment of 60 The outer boundary coordinates( 

Z0, 60) are obtained by solving equation(A-2-8). The number 

of internal mesh points in the flow region and the number 

of irregular mesh points which lie on the boundary and 

require special treatment are calculated. The total number 

of the unknown quantities in the finite-difference equations 

is the product of the dependent variables( stream function 

IP and vorticity ) and the total number of mesh points in 

in the flow region. The total number of mesh points is the 

sum of the numbers of regular and irregular mesh points. 

4. Calculate all the flow region information which are functions 

of Z and 0, such as SinhZ, CoshZ, Sine, Cosh, etc. At this 

point, the flow region is fully described. 

5. Specify the Reynolds number, Re, the convergence criteria 

and the relaxation factors for the stream function and 

vorticity, and the maximum number of iterations allowed for 

the computation. 

6. Before entering the iteration process, the initial values 
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for the dependent variables have to be supplied. For the 

first solution obtained, the initial values are supplied 

from Stimson and Jeffery's analytical solutions for Stokes 

flow at the appropriate sphere spacing and these values 

together with the flow region information and calculated 

quantities are stored on Tape 1. In subsequent runs, the 

initial values for the dependent variables for the iteration 

process are supplied from the previously obtained values 

which have been stored on Tape 1. The values used are those 

for the nearest smaller value of Reynolds number. 
* 	* 

7. Specify the constant boundary conditions for Ip,C,gand 

f at the solid surfaces of the spheres, the axes of symmetry 

0 = 0 and e = 7, and the outer boundary. 

V. %,421uu.LaLc aa.J. Luc UUcti_tLaCILLb LU. LUC L.Ln_i_Le-utLLeIenee 

equations(4-2-13) and (4-2-15), and the coefficients of the 

specially treated boundary conditions. 

Up to this point, all the information and parameters 

required for the solution of the Navier-Stokes equations at a 

specified Reynolds number have been supplied. The iteration 

process for the solution is then started. 

9. Calculate the specially treated surface vorticities and 

surface vorticity functions: 	;11,j, gl,j, gn,j, fl,j, 

and fn,j, using the most recently obtained available results 

and apply the point convergence test of equations(4-4-11) 

and (4-4-12) as soon as the values at each mesh point on 

the solid surfaces are obtained. The values of the vorticity 

function f along the axes of symmetry 0 = 0 and 0 = Tr: f
i,1 
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and fi,m, are also calculated using the newly obtained 

results. 

10. The iteration process for the solution of the Navier-Stokes 

equations is then carried out for each internal mesh point. 
* 	* 

A set of values: V 	, 	, g. , and f 	, are obtained 
i fj 	irj 	1,i 	i,j * 

for each 'flesh point. For the stream function 	and the 
11)1,j 

vorticity 	the point convergence test of equations( 

4-4-11) and (4-4-12) is then applied as soon as the values 

are obtained. At the end of each iteration a test is made 

to determine whether the solution has converged at every 

mesh point. If this test is satisfied the overall convergence 

has been obtained. 

11. Repeat steps 9 and 10 until either overall convergence of 

the results is achieved or the maximum number of iterations 

specified is reached. When overall convergence has been 

achieved, an extra iteration is allowed for the specially 

treated boundary conditions to be satisfied as well. If 

overall convergence of the stream function and vorticity 

cannot be obtained within the maximum number of iterations 

allowed, a pair of new relaxation factors are supplied and 

the computational process is re-started from step 6. 

12. When overall convergence has been achieved, the surface 

pressures and the drag coefficients for the spheres are 

calculated. The stream function and vorticity distributions 

around the two spheres are printed out in tabulated form 

and their contours located and plotted. Finally, the converged 
* * 

values of P  , 	, g, and f, together with the flow region 

information are stored on Tape 1, and are available for the 

solution of the Navier-Stokes equations at a higher Reynolds 

number. At this point, the numerical solution of the Navier- • 
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Stokes equations for a particular case is complete. 

13. A new case with a higher Reynolds number is initiated by 

starting the computational process at step 5. 

(B). Summary of the computational procedures for solving the 

diffusion equation. 

1. Specify the sphere spacing Zs and Reynolds number Re. The 

flow region information and the stream function distribution 

at the specified sphere spacing and Reynolds number are 

supplied from Tape 1. 

2. Specify the Peclet number Pe(Pe = RexSc), the convergence 

criterion_and the relaxation factor for the concentration, 

and the maximum number of iterations allowed for the 

computation. 

3. Supply an array of initial values for the concentration. 

For the first solution to be obtained, the set of initial 

values is provided in an arbitrary way. In subsequent solutions, 

initial values are supplied from the converged results 

which have been obtained previously for a lower value of 

the Peclet number and which have been stored on Tape 2. 

4. Specify the constant boundary conditions for the concentrations 

at the solid surfaces and the outer boundary of the flow 

region. 

5. Calculate the coefficients of the diffusion equation(4-2-18) 

and the two modified diffusion equations(4-3-26) and (4-3-33) 

which apply to the axes of symmetry, 6 = 0 and 6 =•1t, 

respectively. 

Up to this point, all the information and parameters 
• 
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needed for the solution of the diffusion equation and the two 

modified diffusion equations at the specified Peclet number 

have been supplied. The iteration process for the solution of 

the diffusion equation then proceeds as follows: 

6. Solve the modified diffusion equations along the axes of 

symmetry 6 = 0 and 8 = Tr for Ci  , and Cim. The diffusion 
* 

equation(4-2-18) is then solved for C. 
	

at each internal 
ri 

mesh point. The point convergence test of equation(4-4-13) 

is applied as soon as the value at each mesh point is obtained. 

At the end of each iteration the results are tested for 

overall convergence. 

7. Repeat the iteration process of step 6 until either overall 

converaence of the results has been achieved or the maximum 

number of iterations specified has been reached. When overall 

convergence has been achieved, an extra iteration is allowed 

for the boundary conditions along the axes of symmmetry 8 = 0 

and e = Tr to be satisfied. When overall convergence cannot 

be obtained within the maximum number of iterations allowed, 

a new relaxation factor is supplied and the computational 

process is re-started from step 3. 

8. From the converged concentration distribution , the local 

and overall Sherwood numbers are calculated. Also, the 

distribution of concentration in the flow region is printed 

out in tabulated form and the concentration contours around 

the spheres are located and plotted. Finally, the flow region 

information, the stream function distribution, and the 

concentration distribution are stored on Tape 2 and are 

available for the solution of the diffusion equation at the 

next higher Peclet number. At this point, the numerical 
• 
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solution of the diffusion equation for a particular Peclet 

number is complete. 

9. A new case with a higher Peclet number is initiated by 

starting the computational process from step 2. 

The procedures for solving the Navier-Stokes and diffusion 

equations are quite similar. However, it is important to note 

that Program 1 is designed such that for each sphere spacing 

the Navier-Stokes equations can be solved independently for a 

series of Reynolds numbers; while Program 2 , which is dependent 

upon Program 1 to supply the flow region information and the 

stream function distribution at any specified Reynolds number, 

is for the solution of the diffusion equation for a series of 

Peclet numbers. 
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CHAPTER 5. 

DISCUSSION OF SOLUTIONS OF THE NAVIER-STOKES EQUATIONS. 

5-1. Introduction. 

Numerical solutions of the Navier-Stokes and diffusion 

equations for a system of two equally sized spheres with a 

fluid flowing parallel to their line of centres were obtained 

separately using two computer programmes: Program 1 and Program 

2, respectively. The computer programmes were arranged in such 

a way that for each sphere spacing, the vorticity, stream 

function, and concentration distributions in the flow region 

could be generated over a wide range of Reynolds and Peclet 

numbers. 

The distance between the centres  of  the  spheres whirth ic 

governed by the sphere spacing parameter Zs, is an important 

factor in determining the extent of particle-to-particle 

interaction between the spheres. Five sphere spacings: Zs = 0.20, 

1.32, 2.07, 2.48, and 3.09, corresponding to two equally sized 

spheres nearly touching, being one, three, five, and ten 

diameters apart, respectively, were considered in this study. 

The Navier-Stokes equations were solved by means of Program 1 

for the vorticity and stream function distributions for a wide 

range of Reynolds numbers between 0.001 and 500. Similarly, 

the diffusion equation was solved by Program 2 for concentration 

distributions over a range of Peclet numbers from 0.001 to 500 

for some selected Reynolds numbers. From the resultant 

concentration distributions the local and overall Sherwood 

numbers for the spheres were calculated. The mass transfer 

results will be discussed in the next chapter. The resultant 

vorticity and stream function distributions were used to 
• 
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calculate fluid dynamic quantities; such as surface vorticity 

distributions, surface pressure distributions, drag coefficients 

and angles of flow separation. These results are discussed in 

this chapter. 

The accuracy of the numerical solutions of the Navier-

Stokes equations depends upon many factors; such as mesh 

spacings, convergence criteria, and numerical methods used to 

obtain the solution. An analysis of these factors is given in 

the following section(5-2). The distributions of vorticity 

and stream function around the spheres are given in sections( 

5-3) and (5-4), respectively; while the phenomenon of flow 

separation from the surfaces of the spheres and the surface 

vorticity distributions are discussed in sections(5-5). In 

sections(5-6) and (5-7), the surface pressure distributions 

and the drag coefficients for the spheres are presented 

separately. 

• 
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5-2. Analysis of the factors affecting the numerical solutions. 

The usefulness of large computers for theoretical studies 

in fluid dynamics often depends upon the accuracy with which 

numerical solutions can be obtained. In the present two-sphere 

problem, the accuracy of the numerical results depended upon 

many factors, such as the coordinate system used, the distribution 

of grid lines in the flow region, the choice of convergence 

criteria, and the methods of solution. An understanding of these 

factors and the influences and limitations which they imposed 

upon the accuracy of the numerical results is necessary. 

Because of the ease with which it is possible to describe 

the locations of the two spheres and the associated boundary 

conditions, the bi-spherical coordinate system was used in the 

present study. However, two bi-spherical coordinates: the bi-

polar coordinates Z and e, appeared in the coefficients of the 

terms in the Navier-Stokes equations, equations(4-2-13) and ( 

4-2-15), so that a large amount of computer memory storage was 

needed for the solutions in terms of the vorticity and stream 

function. Also, the replacement of the partial differential 

equations by their finite-difference approximations introduced 

a truncation error. Furthermore, during the numerical iteration 

process, an error called the round-off error was introduced. 

The dilemma of dealing with these two errors was that by 

reducing the size of the mesh spacings for the Z- and 8-directions 

in the flow region, the truncation error of the solution 

decreased while the round-off error of the solution generally 

increased. This was because of an increase in the total number 

of algebraic equations resulted in an increase in the number of 

iterations required to obtain a solution. Hence, the distribution 

• 
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of grid lines in the flow region had to be chosen with these 

factors borne in mind. 

Two distributions of the grid lines for the Z- and 8-

directions in the flow region for each sphere spacing were used 

for the solution of the Navier-Stokes equations. In these two 

distributions, the grid lines for the Z-direction were 

distributed according to two mesh spacings of IZs/101 and IZs/201 

, while those for the 8-direction were distributed accroding to 

a constant increment of 6°  in the angle n. Hence, in the first 

case the number of mesh points was 21x31 while in the second 

case it was 41x31. The outer boundary of the flow region, which 

had its centre at the mid-point of the line of centres of the 

spheres, was chosen to have a radius of 7.0 times the distance 

between the centres of the spheres for the smallest sphere 

spacing Zs = 0.20, and a radius of 3.5 times the distance between 

the centres of the spheres for the four large sphere spacings 

considered. With these two distributions of grid lines in the 

flow region for each sphere spacing, numerical solutions of the 

Navier-Stokes equations were obtained using a CDC6400 computer 

with 65k storage locations. 

The main reason for using two different distributions of 

grid lines in the flow region for each sphere spacing, i.e., 

using two different mesh spacings for the Z-coordinate, arose 

because of the inherent characteristic of the bi-spherical 

coordinate system of providing unequal distances between any 

two neighbouring grid lines in the Z-direction around the spheres 

as shown in Figures(4-1-3) to (4-1-12). A new term called the 

"grid-line spacing", which measures the distance between any 

two neighbouring grid lines along any grid line in another 
• 
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direction, is introduced here to describe the uneven distributions 

of the grid lines for both the Z- and 6-directions. The distance 

between any two neighbouring grid lines in the Z-direction is 

called the Z-grid-line spacing, while that in the 6-direction 

is called the 8-grid-line spacing. It is important to note that 

the grid-line spacing is different from the mesh spacing which 

is solely used for indicating the increment in the two bi-polar 

coordinates: Z and e, as well as the angle 11 in this study. The 

Z-grid-line spacings decrease around each sphere when the 6-

coordinate changes from the value of 0 = 0 to 0 = Tr; hence, they 

are the largest along the normals to the front stagnation point 

of sphere A and to the rear stagnation point of sphere B; while 

they are smallest along the normals to the rear stagnation point 

of sphere A and to the front stagnation point of sphere B. These 

unequal Z-grid-line spacings around the spheres, especially 

near the upstream surface of sphere A, created some difficulties 

in the calculation of quantities, such as the surface pressures 

and the local Sherwood numbers, which were related to the 

vorticity and condentration distributions. This was particularly 

the case near the upstream surface of sphere A, because at high 

Reynolds and Peclet numbers the thickness of the fluid dynamic 

and diffusional boundary layers in that region were small in 

comparison with the large Z-grid-line spacings. This defect 

could have been overcome by a continuous reduction of the mesh 

spacing in Z. However, as this was done the number of mesh points 

in the flow region increased enormously although most of the 

mesh points remained concentrated in the region between the 

spheres where they contributed little to the improvement of the 

results over the upstream surface of sphere A. Also, because of 
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limitations imposed by the availability of computer memory 

storage, the flexibility of altering the mesh spacing in Z in 

order to improve the numerical solutions at the upstream surface 

of sphere A was greatly restricted. However, the use of two 

mesh spacings in Z allowed the sensitivity of the numerical 

solutions to variations of the mesh spacing in Z to be investigated 

The Z-grid-line spacings, in addition to varying with 

position around the sphere, also increase as the distance from 

the surfaces of the spheres increases. Similarly, the 6-grid-

line spacings are not equal along any Z-coordinate except for 

those adjusted to a constant increment in n which are equal 

along the solid surfaces of the spheres where Z = -Zs and Z = 

+Zs. The 6-grid-line spacings become larger when the Z-coordinate 

around sphere A changes from Z = -Zs to Z = 0 and the Z-coordinate 

around sphere B changes from Z = +Zs to Z = 0. Hence, both the 

Z-grid-line and the 8-grid-line spacings are large in the region 

far away from the surfaces and are relatively small near the 

surfaces and in the region between the spheres. Accordingly, 

the truncation errors derived from the central finite-difference 

approximation of the Navier-Stokes equations were of different 

magnitudes throughout the flow region. The truncation errors 

of the solutions at the mesh points near the outer boundary of 

the flow region were large, and became even larger as the ' 

distances between the outer boundary and the spheres and between 

the centres of the spheres were increased. These large 

truncation errors may have been a source of numerical instability. 

Because of its rapid rate of convergence and simplicity 

of use, the extrapolated Gauss-Seidel method was used in the 

present work to obtain solutions of the Navier- 
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Stokes equations. Over-relaxation of the solutions was found 

to be satisfactory for low Reynolds numbers. However, numerical 

solutions at high Reynolds numbers were difficult to obtain, 

and it is necessary to adopt a scheme of under-relaxation in 

order to obtain solution for a wide range of Reynolds numbers 

with satisfactory rates of convergence and stability. The 

relaxation factors, which were supplied by trial-and-error, 

decreased with increasing Reynolds number. 

In the computational process, the convergence criteria 

for the stream function and vorticity were specified with 

consideration of two factors: the desired degree of accuracy 

of the numerical solutions and the computing time required. The 

accuracy of the solution was improved when stringent convergence 

criteria were specified, but a large number of iterations, and 

thus a large computing time, was required to achieve convergence 

of the solutions at every mesh point in the flow region. On 

the other hand, convergence of the solutions at each mesh point 

could have been obtain more rapidly by using less stringent 

convergence criteria, but at the expense of the accuracy of the 

solutions. Based on these considerations, the convergence 

criteria for the stream function and the vorticity function g 

were specified to be 10 3. When the convergence criterion for 

the stream function was changed from 10-3 to 10-4 the number of 

iterations required to obtain a converged solution for a 

specified low Reynolds number was more than doubled while the 

results were improved only slightly. Hence, the flexibility of 

of altering the convergence criteria in order to improve the 

accuracy of the numerical solutions of the Navier-Stokes 

equations was restricted. In addition, because the values of 

0 
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the stream function and vorticity function varied from very 

large to very small values, a relative point convergence test 

for the solutions always produced a small number of points at 

which the solutions did not converge no matter how many 

iterations were performed. The points in question were the points 

at which the values were small. In order to overcome this 

problem, a less stringent absolute convergence criterion was 

applied at points at which the values were less than unity. In 

this scheme, a relative point convergence test was applied when 

a point value was greater than unity, while an absolute point 

convergence test was used whenever a point value was equal to 

or less than unity. By this means, convergence of the solutions 

at all mesh points in the flow region was obtained rapidly. 

Unfortunately:  the use of the absolute point convergence  fast 

in this way resulted in a decrease in the accuracy of the 

solutions. 
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5-3. Vorticity distributins around two spheres. 

The numerical solutions of the Navier-Stokes equations 

were expressed in terms of the stream function and vorticity 

distributions over the whole flow region. For each sphere 

spacing, the tabulated results of the stream function and 

vorticity distributions at each Reynolds number were interpolated 

and the streamlines and vorticity contours plotted around the 

spheres. Using these plots, the fluid dynamics as well as the 

variation of the flow patterns with Reynolds number and sphere 

spacing were studied qualitatively. The vorticity distributions 

around the spheres are discussed in this section and the stream 

function distributions in the next section(5-4). 

The vorticity distributions around two equally sized spheres 

at five sphere spacings: Zs = 0.20, 1.32, 2.07, 2.48, and 3.09, 

obtained using a mesh spacing of IZs/101 in Z and a mesh spacing 

of 6°  in n, are shown in Figures(5-3-1) to (5-3-19) for a wide 

range of Reynolds numbers. In each figure, five vorticity 

contours with values of 	of 0, 0.1, 0.5, 1.0, and 2.0, are 

plotted around the spheres. It is important to note that the 

axes of symmetry are coincident with the zero vorticity contour. 

For the largest sphere spacing considered in this study: 

Zs = 3.09, L/R = 22.022, the vorticity distributions around the 

spheres are shown in Figures(5-3-1) to (5-3-3) for some selected 

Reynolds numbers ranging from 0.001 to 150. At low Reynolds 

numbers of 0.001 to 0.1, the vorticity contours change very 

little and are symmetrical about a plane through the mid-point 

of the line of centres normal to the direction of flow. This 

shows that the effect of convection upon the diffusion of 
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vorticity from the spheres is almost negligible at these low 

Reynolds numbers. However, when the Reynolds numbers reaches 

unity, the vorticities around both spheres begin to be convected 

more rapidly towards the rear than they diffuse forwards from 

the surfaces of the spheres. As the Reynolds number is further 

increased, the vorticity contours upstream of each sphere are 

confined to an increasingly narrower region and at high Reynolds 

numbers a fluid dynamic boundary layer is developed over the 

upstream surface of each sphere. At the same time the vorticity 

contours downstream of each sphere extend rapidly rearwards. 

These results indicate that when the Reynolds number is greater 

than unity, the effect of convection upon the diffusion of 

vorticity from the spheres is significant and increases 	with 

innrcamcing  AmyrnlAc nilml,mr Alan +110 1=rgc,r c,x+nnc4nn ^f 4-110  

vorticity contours rearwards from sphere A than from sphere B 

indicates that the effect of convection upon the diffusion of 

vorticity from sphere A is larger than upon that from sphere B. 

As a result, the difference between the vorticity distributions 

around the two spheres increases with increasing Reynolds number, 

and the onset of flow separation from the rear surface of each 

sphere occurs at a different Reynolds number. For sphere A, a 

flow separation is observed at a Reynolds number of 20, while 

for sphere B it is not observed until the Reynolds number is 50. 

A detailed discussion of flow separation is given in section(5- 

5). It is important to note that as the outer boundary of the 

flow region is thirty-three diameters upstream from the front 

stagnation point of sphere A and is the same distance 

downstream from the rear stagnation point of sphere B, the effect 

of the location. of the outer boundary upon the vorticity 
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distributions near the surfaces of the spheres is likely to be 

small. 

The vorticity distributions around the two spheres have 

common features in that the most intensive vorticities are 

always generated at the upstream surfaces of each sphere and 

that these vorticities are subsequently convected rearwards 

and persist at large distances downstream from the surfaces of 

the spheres. However, the continuous process of convection of 

vorticity downstream from the surface of sphere A eventually 

results in an interaction of the vorticities from sphere A with 

the vorticities diffused upstream from the surface of sphere B. 

This interaction is illustrated at a Reynolds number of 30 in 

Figure(5-3-2) by the vorticity contour C = 0.1. Instead of 

separate contours existing around each sphere, the contour 

generated around sphere A extends downstream and meets that 

diffusing upstream from sphere B so that the two contours 

become combined together in the region between the spheres. For 

the present axisymmetrical flow, the vorticity, which is defined 

as the differential circulation per unit area enclosed in the 

fluid, is also the angular velocity of the fluid around a 

direction normal to the plane of flow, so that when vorticity 

diffusing and convecting downstream from sphere A interacts 

with vorticity diffusing upstream from sphere B the vorticity 

contours change their positions in the region where the 

vorticities interact. Furthermore, the distributions of vorticity 

around the spheres, especially in the region between the spheres, 

are quite different from those around a single isolated sphere 

at the same Reynolds number. This indicates the existence of 

particle-to-particle interaction between the spheres. 
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For the sphere spacings: Zs = 2.48, L/R = 12.025; and 

Zs = 2.07, L/R = 8.0510, the vorticity distributions around 

the spheres are shown in Figures(5-3-4) to (5-3-7) for some 

Reynolds numbers ranging from 0.001 to 200, and in Figures( 

5-3-8) to (5-3-10) for some selected Reynolds numbers ranging 

from 0.001 to 180, respectively. For each sphere spacing, the 

variation of the distributions of vorticity around the spheres 

with Reynolds number is similar to that for the largest sphere 

spacing Zs = 3.09. However, because of the smaller distance 

between the spheres, the interaction between the vorticity 

diffusing and convecting downstream from the surface of sphere 

A and the vorticity diffusing upstream from the surface of sphere 

B becomes apparent at a lower Reynolds number than that for the 

largeSt SPhere spacing. Thie•  can 	 u) 

and (5-3-9) which show that as the spheres become closer 

together the two separate contours with a vorticity of 0.1 

merge into a combined contour at progressively lower Reynolds 

numbers, also the distributions of vorticity around the spheres 

become increasingly unlike those around a single isolated sphere. 

Based on these observations, it is clear that the extent of 

particle-to-particle interaction between the spheres increases 

when the spacing between the spheres decreases. 

On decreasing the sphere spacing further to Zs = 1.32, 

L/R = 4.0106, the vorticity distributions around the spheres, 

given in Figures(5-3-11) to (5-3-14) for some selected Reynolds 

numbers ranging from 0.001 to 300, become more complicated, 

particularly in the region between the spheres. The contours 

= 0.1 become a combined contour joining the two spheres at 
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a Reynolds number as low as 0.001. This is because the distance 

between the spheres is so small that the vorticities diffusing 

downstream from the rear surface of sphere A and upstream from 

the front surface of sphere B interact in the small region 

between the spheres even at very low Reynolds number. Despite 

this, the vorticity distributions around the spheres remain 

almost unchanged as the Reynolds number is increased from 0.001 

to 0.1. Also, the vorticity distributions remain symmetrical 

about a plane pass through the mid-point of the line of centres 

and normal to the direction of flow. Thus, at low Reynolds 

numbers the effect of forced convection upon the diffusion of 

vorticity from the surfaces of the spheres is negligible. 

For Reynolds numbers greater than unity, the vorticity 

around each sphere is convected more rapidly rearwards than it 

diffuses forwards from the surface of the sphere. This pattern 

of behaviour is similar to that for larger sphere spacings. 

Similarly, the vorticity contours in the region upstream of 

sphere A are confined to an increasingly smaller region and at 

high Reynolds numbers a fluid dynamic boundary layer is formed 

for sphere A. On the other hand, because of the very small 

distance between the spheres and the strong interaction of 

vorticities in the region between the spheres, a fluid dynamic 

boundary layer does not become fully developed at the upstream 

surface of sphere B even at high Reynolds numbers. Another 

feature of the vorticity distributions for this sphere spacing 

is that when the Reynolds number is greater than 30, there are 

two zero vorticity contours in the region between the spheres: 

one originating from the rear surface of sphere A and the other 

from the front surface of sphere B. In addition, when the 
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Reynolds number reaches 100, a third zero vorticity contour 

originating from the rear surface of sphere B appears.Points 

of flow separation are characterized by the intersection of a 

solid surface with a zero vorticity contour. The appearance of 

flow separation from the front surface of sphere B may be a 

result of the closeness of the spheres in that more and more 

vorticity is convected downstream from sphere A to the vicinity 

of the front surface of sphere B. Eventually, a backward flow 

is induced near the upstream surface of sphere B resulting in 

the establishment of a standing eddy or vortex in the region 

between the spheres. 

For the smallest sphere spacing considered in this study: 

Zs = 0.20, L/R = 2.0402, the vorticity distributions around the 

two nearly touching spheres for Reynolds numbers ranging from 

0.001 to 500 are shown in Figures(5-3-15) to (5-3-19). The 

pattern of the variation of the vorticity distribution with 

Reynolds number is similar to that for the sphere spacing Zs = 

1.32. However, there are some observable differences between 

the distributions of vorticity for these two smallest sphere 

spacings. The two zero vorticity contours in the region between 

the spheres, which appear at a Reynolds number of 

50 for sphere spacing. Zs = 1.32, become one combined contour 

joining the two spheres at Reynolds numbers as low as 0.001 for 

the smallest sphere spacing Zs = 0.20. This indicates that flow 

separation from the front surface of sphere B occurs at about 

the same Reynolds number as that at which flow separation 

appears at the rear of sphere A. Also, for this closest sphere 

spacing, the merging of two separate vorticity contours with 

0 

	the same magnitude of vorticity into a combined contour joining 
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Figure(5-3-1). Vorticity distributions around two spheres with Zs = 3.09. 
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Figure(5-3-3). Vorticity distributions around two spheres with Zs = 3.09. 
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Figure(5-3-4). Vorticity distributions around two spheres with Zs = 2.48. 
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Figure(5-3-5). Vorticity distributions around two spheres with Zs = 2.48. 
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Figure(5-3-6). Vorticity distributions around two spheres with Zs = 2.48. 
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Figure(5-3-7). Vorticity distributions around two spheres with Zs = 2.48. 
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Figure(5-3-8). Vorticity distributions around two spheres 
with Zs = 2.07. 
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Figure(5-3-9). Vorticity distributions around two spheres 
with Zs = 2.07. 
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Figure(5-3-10). Vorticity distributions around two spheres 

with Zs = 2.07. 



Zs = 1.32 

Re = 0.00 

0 • 5 

0 • 1 

0 • 5 

Zs= 1.32 

'Re = 1.0 

'Zs = 1.32 

Re = 0.01 

116 

Figure(5-3-11). Vorticity distributions around two spheres 

• with Zs = 
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Figure(5-3-12). Vorticity distributions around two spheres 

with Zs = 1.32. 
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S 
Figure(5-3-13). Vorticity distributions around two spheres 

with Zs = 1.32. 
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Figure(5-3-14). Vorticity distributions around two spheres " 

with Zs = 1.32. 
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Figure(5 -3 -15). Vorticity distributions around two spheres 

with Zs = 0.20. 
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Figure(5-3-16). Vorticity distributions around two spheres 

with Zs = 0.20. 
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Figure(5-3-17). Vorticity distributions around two spheres 

with Zs 7 0.20. 
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Figure(5-3-18). Vorticity distributions around two spheres 

with Zs ,= Q.20. 
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Figure(5-3-19). Vorticity distributions around two spheres 

with Zs = 0.20. 
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the spheres occurs at very low Reynolds numbers in comparison 

with the larger sphere spacings. For instance, for this smallest 

sphere spacing the formation of combined contours with large 

vorticities of 0.50 and 1.0 takes place at Reynolds numbers of 

10 and 100, respectively; while for the sphere spacing Zs = 1.32 

these combined contours are formed at Reynolds numbers of 50 

and 250, respectively. As a result of this strong interaction 

of vorticity in the region between the spheres, the distributions 

of vorticity around the two nearly touching spheres become very 

complicated and quite different from those around a single 

isolated sphere. This indicates the existence-of-very strong 

particle-to-particle interaction between the spheres. 

Prnm *ha al-in/rtm Aicnilcainn 44- 4o clear  nl ea that the  

distributions of vorticity around a system of two equally sized 

spheres with fluid flowing parallel to their line of centres 

are dependent on the Reynolds number and the sphere spacing. A 

brief summary of the behaviour can be summarized as follows. 

For each sphere spacing, the vorticity distributions at low 

Reynolds numbers of 0.001 to 0.1 are symmetrical about a plane 

through the mid-point of the line of centres normal to the 

direction of flow, and the diffusion of vorticity from the 

spheres is predominant. At higher Reynolds numbers, the 

vorticity is convected more rapidly rearwards than it diffuses 

forwards. Hence, the effect of convection upon the transpoit 

of vorticity becomes significant and increases in importance 

with increasing Reynolds number, however, it is always stronger 

for sphere A than for sphere B. As a result, at high Reynolds 

numbers a fluid dynamic:boundary layer is developed at - the 

upstream surface of each sphere, however, the development of 
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a boundary layer at the upstream surface of sphere B becomes 

less obvious as the sphere spacing is decreased. 

Another feature of the distributions of vorticity is the 

interaction of the vorticities diffusing and convecting 

downstream from sphere A and those diffusing upstream from 

sphere B in the region between the spheres. The interaction of 

vorticity becomes apparent at a lower Reynolds number when the 

distance between the spheres is decreased. As a result, for 

each sphere spacing considered in this study the distributions 

of vorticity around the two spheres are always at least slightly 

different from those around a single isolated sphere; the 

difference becomes larger when the sphere spacing decreases. 

This indicates the existence of a particle-to-particle 

interaction between the spheres and the extent of interparticle 

interaction increases with decreasing sphere spacing. 

• 
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5-4. Stream function distributions around two spheres. 

The distributions of the stream function around two 

spheres at five different sphere spacings: Zs = 0.20, 1.32, 

2.07, 2.48, and 3.09, are shown in Figures(5-4-1) to (5-4-13) 

for a wide range of Reynolds numbers. In each figure, five 

streamlines with values of i  of 0, 0.1, 1.0, 2.0, and 4.0, are 

plotted around the spheres. It is important to note that the 

axis of symmetry 0 = 0 in the region upstream of sphere A, the 

surface of sphere A, the axis of symmetry 0 = n in the region 

between the spheres, the surface of sphere B, and the axis of 

symmetry 6 = 0 in the region downstream of sphere B, are all 

coincident with the streamline with zero stream function. In 

these plots, a qualitative picture of the flow pattern around 

the spheres is presented. 

For the three largest sphere spacings: Zs = 3.09, 2.48, 

and 2.07, the distributions of the stream function around the 

spheres for some selected Reynolds numbers are shown in Figures( 

5-4-1) to (5-4-2), Figures(5-4-3) to (5-4-5), and Figures (5-4-6) 

to (5-4-7), respectively. In the following discussion, it is 

useful and convenient to divide the region between the spheres 

into two regions: an inner region and an outer region. The 

region bounded by the rear surface of sphere A, the front surface 

of sphere B, and the surface of a cylinder obtained by the 

rotation of a straight line which is parallel to the line of 

centres between the spheres and is one sphere radius from it, 

is referred to as the inner region between the spheres; while 

all the other part of the region downstream of sphere A and 

upstream of sphere B is referred to as the outer region between 

the spheres. For each of the three largest sphere spacings, the 
• 
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streamlines are approximately parallel to the axis of symmetry 

0 = 0. The presence of sphere A forces the streamlines to change 

their direction as the fluid flows around it.In the region 

downstream of sphere A but upstream of sphere B, the streamline 

* = 0.1 moves into the inner region between the spheres and 

close to the line of centres, whereas the streamlines with 

larger values of stream function stay in the outer region between 

the spheres and are almost parallel to one another. Similarly, 

the streamlines change their direction once again when the 

fluid flows around sphere B and eventually become approximately 

parallel to the axis of symmetry 0 = 0 in the region well 

downstream of the sphere. It is obvious from the figures that 

the distributions of the stream function around the spheres 

at low Reynolds numbers in the ranae of 0.001 to 1.0 do not 

change much as the Reynolds number is increased and that the 

distributions are almost symmetrical about a plane through the 

mid-point of the line of centres of the spheres and normal to 

the direction of flow. 

For Reynolds numbers greater than 1.0, the distributions 

of the stream function around the spheres become asymmetrical 

about a plane through the mid-point of the line of centres 

normal to the direction of flow. Upstream of each sphere the 

streamlines generally move closer to the surface of each sphere 

as well as closer to the axes of symmetry. With the exception 
* 

of the streamline * = 0.1, the streamlines downstream of each 

sphere also tend to move slightly closer to the axes of symmetry. 

However, when flow separation from the rear surface of each 

sphere occurs, the streamlines generally move away from the 

axes of symmetry. It is important to note that the onset of flow 

• 
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separation from the rear surface of sphere A always appears 

at a lower Reynolds number than from the rear surface of sphere 

B. The regions enclosed within the separated streamlines with 

zero stream function, which are termed the wake region, 

increases in extent with increasing Reynolds number. For each 

of the three sphere spacings, the wake region downstream of 

sphere A is always larger than the wake region downstream of 

sphere B. 

For the sphere spacing Zs = 1.32, the distributions of 

the stream function are shown in Figures(5-4-8) to (5-4-10) for 

a wide range of Reynolds numbers from 0.001 to 300. The main 

difference between the flow patterns around the spheres at 

this sphere spacing and those at larger sphPre spacings is 

that for all Reynolds numbers, the streamline * = 0.1 does 

not move into the inner region between the spheres and does 

not come close to the upstream surface of sphere B. When the 

Reynolds number reaches 100, the streamline * = 0.1 becomes 

almost parallel to the streamlines with larger values of the 

stream function and remains outside of the inner region between 

the spheres; hence, almost the entire inner region between the 

spheres is contained within the volume bounded by the streamline 

with zero stream function(wake region). Flow separation from 

the rear surface of sphere A first appears at a Reynolds number 

of 20 and as the Reynolds number increases the separated region 

extends downstream of the sphere towards the upstream surface 

of sphere B. At a Reynolds number of 70 the streamline with 

zero stream function reaches the upstream surface of sphere B 

and a backward flow is induced in the inner region between the 

• 	spheres.. This development continues until at a Reynolds number 
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of 100 most of the inner region between the spheres becomes a 

wake region. In addition, at a Reynolds number of 100 another 

wake region appears in the region downstream of sphere B, 

however, it is always small compared with that in the inner 

region between the spheres. 

For the smallest sphere spacing considered in this study: 

Zs = 0.20, the stream function distributions around the two 

nearly touching spheres are shown in Figures(5-4-11) to (5-4-

13) for Reynolds numbers ranging from 0.001 to 500. With the 

exception of the streamline with zero stream function, which 

separates from the rear surface of sphere A and reaches the 

front surface of sphere B at a Reynolds number as low as 0.001, 

the distributions of the streamlines around the spheres and 

their variation with Reynolds number are similar to those 

obtained for the sphere spacing Zs = 1.32. Hence, a wake region 

always exists in the tiny region between the spheres, and when 

the Reynolds number reaches 100 it nearly occupies the whole 

region. On the other hand, the separation of the streamline 

with zero stream function from the rear surface of sphere B 

does not appear for a Reynolds number less than 200. As the 

streamline * = 0.1 and the streamlines with larger values of 

the stream function always lie outside of the inner region 

between the spheres and are approximately parallel to each 

other, it is obvious that the two nearly touching spheres • 

behave like a single combined object when the fluid flows around 

them. 

From the above discussion, it is clear that the stream 

function distributions around a system of two equally sized 
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Figure(5-4-1). Stream function distrioutions around two spheres with Zs = 3.09. 

• 



Zs = 3.09 , Re = 150.0 

Zs = 3.09 , Re = 100.0 

Zs = 3.09 , Re = 70.0 

• 

Figure(5-4-2). Stream function distributions around two spheres with Zs = 3.09. 
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Figure(5-4-3). Stream function distributions around two spheres with Zs = 2.48. 
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Figure(5-4-4). Stream function distributions around two spheres with Zs = 2.48. 
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Figure(5-4-5). Stream function distributions around two spheres with Zs = 2.48. 
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Figure(5-4-6). Stream function distributions around two 

spheres with Zs = 2.07. 
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Figure(5-4-7). Stream function distributions around two-

spheres with Zs = 2.07. 
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Figure(5-4-8). Stream function distributions around two 

• spheres with Zs = 1.32. 
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Figure(5 -4 -9). Stream function distributions -around two 
• spheres with Zs = 1.32. 
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Figure(5-4-10). Stkeam function distributions around two 

• spheres with Zs = 1.32. 
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Figure(5-4-11). Stream function distributions around two 

spheres with Zs = 0.20. 
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Figure(5-4-12). Stream function distributions around two 

spheres with Zs = 0.20. 
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Figure(5-4-13). Stream function distributions around two 

spheres with Zs =.0.20. 
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spheres are dependent on Reynolds number and on sphere spacing. 

A brief summary of the behaviour is given as follows. At low 

Reynolds numbers of 0.001 to 1.0, the distributions of the 

stream function around the spheres for each sphere spacing are 

almost symmetrical while at higher Reynolds numbers the 

distributions of the stream function around the spheres are 

asymmetrical about a plane through the mid-point of the line of 

centres normal to the direction of flow. The separation of the 

streamline with zero stream function from the rear surface of 

sphere A always appears at a lower Reynolds number than for 

sphere B. As a result, the wake region downstream of sphere A 

is always larger than that downstream of sphere B. For the two 

smallest sphere spacings, because of the small distance between 

the senores, at 11.11 Reynolds numbers almost the entire inner 

region between the spheres becomes a wake region. 

The variation of sphere spacing has a significant effect 

upon the distributions of the stream function especially on 

those in the inner region between the spheres. As the sphere 

spacing decreases, the most obvious change is shown by the 

streamline I = 0.1 which moves away from the line of centres 

of the spheres, and becomes completely outside of the inner 

region between the spheres for the two smallest sphere spacings 

Zs = 1.32 and 0.20. Meanwhile, the deflection of the streamline 
* 
* = 0.1 downstream of sphere A becomes larger while that , 

downstream of sphere B becomes smaller; consequently, the 

separation of the streamline with zero stream function from the 

rear surface of sphere A first appears at increasingy lower 

Reynolds numbers while separation from the rear surface of 

sphere B first appears at increasingly higher Reynolds numbers. 

• 
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This may be because as the two spheres come closer to each 

other, they behave more and more like a combined and elongated 

object when a fluid flows around them. On the other hand, the 

distributions of the streamlines with large values of the stream 

function change only slightly with variation in sphere spacing, 

and the-streamlines remain approximately parallel to each 

other outside of the inner region between the spheres. Moreover, 

for each sphere spacing the distributions of the stream function 

around the spheres are always at least slightly different 

from those around a single isolated sphere with the same Reynolds 

number, and the difference becomes larger as the sphere spacing 

decreases. This indicates the existence of particle-to-particle 

interaction between the spheres for all the five sphere spacings 

J-L 
COnSiLlGred in 	 StUdY, and the extent of •interparticle 

interaction increases with decreasing sphere spacing. The 

conclusion that there is interaction between the spheres is 

exactly the same as that drawn from the distributions of 

vorticity around the spheres as discussed in the previous 

section(5-3). 
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5-5. Surface vorticity distributions and flow separation. 

The phenomenon of flow separation occurs when the Reynolds 
Ywe_r- 
Ijs sufficiently high. Accoring to non-slip condition, the 

surface vorticity is zero at the point where the flow separates 

from the surface of a sphere or bluff body. Hence, the angle of 

flow separation can be determined either by numerical 

interpolation of the surface vorticities which change from 

positive to negative values or by plotting the surface vorticities 

against the angle n, and determining the point at which the 

curve cuts the n-axis corresponding to zero surface vorticity. 

However, the results obtained graphically were less accurate 

than those obtained by interpolation. Hence, interpolation was 

used to determine the angles of flow separation for the two 

spheres and the results are shown in Tables(5-5-1) to (5-5-5) 

for the five sphere spacings considered in this study. For 

each sphere spacing, there are two sets of results corresponding 

to the two solutions obtained from the Navier-Stokes equations 

using two different distributions of grid lines. In the tables, 

the angles of flow separation are recorded in terms of the angle 

n. For sphere A, the angles of flow separation are denoted by 

nAS' • while for sphere B, they are denoted by nBSF and nBSR for 

flow separation from the front and rear surfaces of sphere B, 

respectively. It is important to note that for sphere A, the 

angle n is measured from the normal to the front stagnation 

point while for sphere B, it is measured from the normal to 

the rear stagnation point. 

Because of a close relationship between the angles of 

flow separation and the surface vorticity distributions, the 

surface vorticities for each sphere spacing are plotted for 
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the two spheres against the angle n for some selected Reynolds 

numbers. The surface vorticity distributions for the five 

sphere spacings obtained using a smaller mesh spacing of IZs/201 

in Z are shown in Figures(5-5-1) to (5-5-5); while those 

obtained using a larger mesh spacing of IZs/101 in Z are shown 

in Figures(5-5-6) to (5-5-10). 

For the largest sphere spacing: Zs = 3.09, the surface 

vorticity distributions and their variation with Reynolds 

number, as shown in Figures(5-5-1) and (5-5-6), are similar 

to those for a single isolated sphere. For Reynolds numbers 

greater than 30 for sphere A and for Reynolds numbers greater 

than 50 for sphere B, the surface vorticities near the rear 

stagnation -points of the spheres become negative. This 

indicates the existence of a backward flow as well as the 

occurence of flow separation from the rear surfaces of the 

spheres. As the Reynolds number increases, the vorticities at 

the front surface of each sphere become larger and the point 

at which the surface vorticity is the most intensive move closer 

to the front stagnation point; on the other hand, the vorticities 

at the rear surface of each sphere become smaller and the point 

of minimum surface vorticity moves away from the rear stagnation 

point. Another important feature of the distributions is that 

as the Reynolds number increases, the vorticities at the front 

surface of sphere A increase faster than those for sphere B; 

while the vorticities at the rear surface of sphere A decrease 

more rapidly than those for sphere B. Consequently, at Reynolds 

numbers greater than 10, the vorticities at the front surface 

of sphere A are larger than those at the front surface of sphere 

• 
	B and the region where the surface vorticities have negative 
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values is larger for sphere A than for sphre B. 

For the sphere spacings Zs = 2.48 and 2.07, the surface 

vorticity distributions for the two spheres and their variation 

with Reynolds number are similar to those for the largest sphere 

spacing. The main observable difference is that the surface 

vorticities close to the front stagnation point of sphere B 

begin to decrease instead of increasing when the Reynolds 

number is greater than 100 for the sphere spacing Zs = 2.48, 

and when the Reynolds number is greater than 50 for the smaller 

sphere spacing Zs = 2.07. This is a consequence of the closeness 

of the spheres in that flow separation from the rear surface 

of sphere A cause the vorticities at the front surface of sphere 

B to decrease. This eventually results in the development of 

a very small backward flow at the upstream surface of sphere B 

when the Reynolds number reaches 150. As the sphere spacing 

decreases, particle-to-particle interaction becomes more 

intense and the decrease in the front surface vorticities of 

sphere B first occurs at lower Reynolds numbers, meanwhile, 

the most intensive vorticity at the surface of sphere B move 

further downstream from the front stagnation point. 

When the sphere spacing is reduced to Zs = 1.32, the 

surface vorticity distributions and their variation with 

Reynolds number, shown in Figures(5-5-4) and (5-5-9), are 

similar to those for the sphere spacing Zs = 2.07. However; 

because of the smaller distance between the spheres and the 

increase in particle-to-particle interaction, the surface 

vorticities at the front of sphere B begin to decrease at a 

Reynolds number of 30 and become negative when the Reynolds 

number reaches 100, and a reverse flow is developed at the 
• 
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upstream surface of sphere B. Hence, in addition to the flow 

separation from the back of each sphere, there is flow 

separation from the front of sphere B. 

For the smallest sphere spacing: Zs = 0.20, the surface 

vorticity distributions for the two nearly touching spheres 

have some distinctive differences from those for the sphere 

spacing Zs = 1.32. The most interesting feature of the 

distributions is the existence of a small region between n = 

156°  and n = 180°  on each sphere where the surface vorticities 

are nearly zero. These regions, which are near the rear 

stagnation point of sphere A and the front stagnation point of 

sphere B may be due to the existence of stagnant fluid in the 

tiny inner region between the spheres. For this smallest sphere 

spacing, the surface vorticity distributions from n = 00  to n = 

156°  are similar to those from n = 0°  to T1 = 180o for the sphere 

spacing Zs = 1.32. Also, the variation of the surface vorticity 

distributions with Reynolds number is similar. For this smallest 

sphere spacing, in addition to flow separation from the back of 

each sphere, there is also flow separation from the front 

surface of sphere B. 

From this discussion, it is clear that when the spheres 

are not far apart, the surface vorticity distributions for the 

two spheres and their variation with Reynolds number are not 

similar to those around a single isolated sphere, except for 

the surface vorticities at the front of sphere A and at the 

back of sphere B. As the sphere spacing is decreased, then at 

any specified high Reynolds number the vorticities at the front 

surface of sphere B become smaller and the point at which the 

• 
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surface vorticity is most intense move further downstream from 

the front stagnation point. A backward flow is induced at the 

front surface of sphere B for the two smallest sphere spacings, 

Zs = 0.20 and 1.32. 

It is important to note that at high Reynolds numbers, 

the vorticities over part of the front surface of sphere A for 

each sphere spacing and the vorticities at the front surface 

of sphere B for the largest sphere spacing Zs = 3.09, become 

independent of Reynolds number. This is mainly a result of the 

inherent characteristic of the bi-spherical coordinate system 

of providing unequal distances between any two neighbouring 

grid lines in the Z-direction around the spheres, as has been 

described in section(5-2), combined with the existence of a 

fluid dynamic boundary layer at the upstream surface of each 

sphere. For each sphere, the boundary layer becomes thinner as 

the Reynolds number increases; and it becomes so thin at high 

Reynolds numbers that the boundary layer over part of the 

upstream surface is contained within the Z-grid-line spacing 

immediately next to the surface of the sphere. As a result, the 

surface vorticities which were calculated using equations(4-3- 

- 7) and (4-3-8) become independent of Reynolds number. As the 

Reynolds number is further increased, the vorticities become 

independent of Reynolds number over a larger part of the 

upstream surface of each sphere because a larger section of 

the increasingly thinner boundary layer becomes contained within 

the first Z-grid-line spacing. Another consequence of this -

development is that as the Reynolds number is increased, the 

most intensive surface vorticity moves further downstream from 

the front stagnation point instead of moving closer to it. 

• 
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Because the Z-grid-line spacings upstream of sphere B are 

always much smaller than those upstream of sphere A, the region 

where the surface vorticities become independent of Reynolds 

number is much smaller for sphere B than for sphere A. On the 

other hand, as the sphere spacing increases the vorticities 

become independent of Reynolds number over a larger part of 

the front surface of sphere A. This is because for a constant 

number of mesh points, the grid-line spacing for the Z-direction 

becomes coarser as the sphere spacing is increased. However, 

for each sphere spacing, when a smaller mesh spacing in Z was 

used, the anomalies were greatly reduced and did not occur 

until higher Reynolds numbers were attained(see Figures(5-5-1) 

to (5-5-5)). 

The separation of flow from the surfaces of the two 

spheres is closely associated with the existence of regions 

where the surface vorticities have negative values. It is thus 

clear from the surface vorticity distributions that for each 

sphere spacing and at sufficiently high Reynolds number, there 

is always flow separation from the back of each sphere, and for 

the two smallest sphere spacings Zs = 0.20 and 1.32 there is 

also flow separation from the front of sphere B. As the regions 

where the surface vorticities are negative increase in extent 

with increasing Reynolds number, the angles of flow separation 

measured from the rear stagnation point of each sphere together 

with the angles of flow separation measured from the front 

stagnation point of sphere B also become larger with increasing 

Reynolds number as shown in Tables(5-5-1) to (5-5-5). It is 

important to note that for each specified sphere spacing and 



• 
162 

Reynolds number, the angle of flow separation measured from 

the rear stagnation point of sphere A is larger than that 

measured from the rear stagnation point of sphere B. Also, for 

the two smallest sphere spacing the angle of flow separation 

measured from the rear stagnation point of sphere A is always 

larger than that measured from the front stagnation point of 

sphere B. Moreover, the pattern of the variation of angles of 

flow separation with Reynolds number remains nearly the same 

when'the mesh spacing in Z changes from IZs/101 to IZs/201. 

The size of sphere spacing has a noticeable effect upon 

the angles of flow separation. As the sphere spacing decreases, 

the angle of flow separation measured from the rear stagnation 

point of sphere A becomes larger while that measured from the 

rear stagnation point of sphere B becomes smaller. This is 

because when the two spheres approch each other they behave 

more and more like a combined and elongated object as discussed 

in the previous section. For small sphere spacings, the angles 

of flow separation from the back of sphere A are larger while 

those from the back of sphere B are smaller than the angles of 

flow separation from the back of a single isolated sphere 

obtained by Al-Taha(1969). However, as the sphere spacing 

increases, the angles of flow separation from the back of each 

sphere become closer to those of a single isolated sphere. The 

angles of flow separation measured from the front stagnation 

point of sphere B become smaller with increasing sphere spacing. 

and eventually there is no flow separation from the front of -

sphere B. 
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5-6. Surface pressure distributions. 

The pressures along the surfaces of the two spheres are 

expressed in terms of the dimensionless pressure coefficients 

which are defined by equation(B-3-8). The dimensionless 

surface pressure distributions for sphere A were calculated 

using equation(4-5-1) and (4-5-3); while those for sphere B 

were calculated using equations(4-5-2) and (4-5-4). Detailed 

derivations of the equations are given in Appendix B. For each 

sphere spacing, the resultant surface pressures are plotted 

against the angle n for seven selected Reynolds numbers of 1, 

2.5, 5, 10, 25, 50, and 100. For the five sphere spacings 

considered in this study, the surface pressure distributions 

obtained for the two spheres using a mesh spacing of IZs/201 

in Z are shown in Figures(5-6-1) to (5-6-5); while those 

obtained using a larger mesh spacing of IZs/101 in Z are shown 

in Figures(5-6-6) to (5-6-10). 

For the three largest sphere spacings: Zs = 3.09, 2.48, 

and 2.07, the pressure distributions at the surfaces of the 

spheres are generally similar to those at the surface of a 

single isolated sphere. For Reynolds numbers up to 5.0, the 

pressures at the surface of each sphere decrease continuously 

from maximum values at the front stagnation point to minimum 

values at the rear stagnation point. This pattern becomes 

different for higher Reynolds numbers as the region of minimum 

surface pressure moves away from the rear stagnation point. As 

a result, the surface pressures for each sphere decrease from 

maximum values at the front stagnation point to minimum values 

and then increase slowly until the rear stagnation point is 
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reached. From the figures it can be seen that as the Reynolds 

number increases, the dimensionless pressure coefficients at 

the front surface of each sphere become smaller while those 

at the rear surface of each sphere become larger. 

For the two smallest sphere spacings considered in this 

study : Zs = 1.32 and 0.20, the pressure distributions at the 

front surface of sphere A and at the rear surface of sphere B 

are generally similar to those for the three largest sphere 

spacings, however, the pressures at the rear surface of sphere 

A and at the front surface of sphere B are affected by the 

closeness of the spheres. For the sphere spacing Zs = 1.32, 

the surface pressures for sphere A always decrease from maximum 

values at the front stagnation point to minimum values and then 

increase slowly until the rear stagnation point is reached. 

For sphere B, the surface pressures increase slowly from the 

front stagnation point to maximum values at the front surface 

of the sphere and then decrease continuously to minimum values 

at the rear stagnation point. Hence, the surface pressure 

distributions show that for this sphere spacing and at low 

Reynolds numbers, the minimum surface pressures of sphere A are 

not at the rear stagnation point of the sphere and the maximum 

surface pressures of sphere B are not at the front stagnation 

point of the sphere. For the smallest sphere spacing Zs = 0.20, 

the surface pressure distributions for the spheres are similar 

to those for the sphere spacing Zs = 1.32 except near to the 

rear stagnation point of sphere A and near to the front 

stagnation point of sphere B where the surface pressures become 

independent of position. The regions of constant surface 

pressure may be a result of the existence of stagnant fluid in 
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Figure(5-6-4). Surface pressure distributions for two spheres with Zs = 1.32. 
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Figure(5-6-5). Surface pressure distributions for two spheres with Zs = 0.20. 
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the inner region between the spheres. The variation of surface 

pressures with Reynolds number for these two smallest sphere 

spacings is similar to those for the larger sphere spacings 

in that as the Reynolds number increases the dimensionless 

pressure coefficients at the front surface of each sphere become 

smaller while those at the rear surface of each sphere become 

larger. 

From the above discussion, it is clear that the closeness 

of the spheres affects the pressure distributions at the rear 

surface of sphere A and at the front surface of sphere B. As 

the sphere spacing decreases, the dimensionless pressure 

coefficients at the rear surface of sphere A become larger 

whil. 4-11,,.= =4- +h. c,,,h+ 0,11.-Cmnim 	 „m=11„..17  

that the surface pressure distributions for the two spheres 

become further away from those for a single isolated sphere. 

On the other hand, the pressure distributions at the front 

surface of sphere A and at the rear surface of sphere B do not 

change much when the sphere spacing decreases from Zs = 3.09 

to Zs = 0.20. 

It is important to note that in comparison with the 

behaviour at smaller Reynolds numbers, the surface pressures 

over sphere A decrease very rapidly from the front stagnation 

and affect the pressure distributions at the rear surface of 

the sphere. The absolute values of the negative dimensionless 

pressure coefficients at the rear surface of sphere A are larger 

at Reynolds numbers of 50 and 100 than at a Reynolds number of 

25. This dependence of the downstream surface pressure 

coefficients on the Reynolds number appear to be abnormal. 
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This may be a result of the combined effect of the large 

Z-grid-line spacings adjacent to the upstream surface of sphere 

A and the existence of a thin fluid dynamic boundary layer. 

The boundary layer becomes sufficiently thin at high Reynolds 

numbers of 50 and 100 that the boundary layer over part of the 

upstream surface of sphere A is contained within the large 

Z-grid-line spacing immediately next to the surface of sphere A. 

As a result, the dimensionless pressure coefficients at the 

upstream surface of sphere A obtained from the vorticity 

distributions in that region are too small. This fact thus 

contributes to the anomalous pressure distributions calculated 

for the downstream surface of sphere A because the surface 

pressures calculated for the downstream surface of sphere A 

are dependent  nn 	accuracy of the surface pressures 

calculated for the upstream surface of the sphere. Fortunately, 

this anomaly becomes less acute when either the sphere spacing 

or the mesh spacing in Z is made smaller. 
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5-7. Drag coefficients. 

When a viscous fluid flow around a solid sphere , a drag 

force is produced in the direction of flow which tends to 

resist the motion of the sphere in the fluid. The total drag, 

DT, on the submerged sphere is the sum of the frictional drag, 

DF, which is a result of the shear stresses acting on the 

sphere and is thus dependent upon the extent and character 

of the boundary layer; and the pressure drag, D , which arises 

from the pressure variation over the surface and is thus 

dependent upon the shape of the immersed object and on flow 

separation. The frictional drag on the sphere is obtained by 

integration of all the shear forces on the sphere which are 

tangential to the surface, while the pressure drag is obtained 

from the integration of the pressures on the sphere. The drag 

forces exerted on the sphere are expressed in terms of drag 

coefficients which are obtained from the division of the drag 

forces by hpU2A, where A is the cross-sectional area of the 

sphere. Hence, the total drag coefficient, CDT, is the sum of 

the frictional drag coefficient,CDF, and the pressure drag 

coefficient, CDP. 

Similarly, for a Newtonian fluid flowing around a system 

of two equally sized spheres parallel to their line of centres, 

the resistance to the motion of the spheres or the drag forces 

exerted upon the spheres are also expressed in terms of drag 

coefficients. For sphere A, the frictional drag coefficient, 

the pressure drag coefficient, CDPA, and the total drag CDFA' 

coefficient, CDTA, were calculated using equations(4-5-5) to 

(4-5-7), respectively; while for sphere B, the frictional drag 
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coefficient, CDFB, the pressure drag coefficient, CDpB, and 

the total drag coefficient, CDTB, were calculated using 

equations(4-5-8) to (4-5-10), respectively . Detailed 

descriptions of the derivations of these equations are given 

in Appendix B. 

For each sphere spacing, there are two sets of results 

corresponding to the two solutions obtained from the Navier-

Stokes equations using two different mesh spacings in Z. For 

the five sphere spacings: Zs = 3.09, 2.48, 2.07, 1.32, and 0.20, 

the total drag coefficients, the frictional drag coefficients, 

and the pressure drag coefficients of the two spheres are 

plotted against Reynolds number as shown in Figures(5-7-1) to 

(5-7-10)i and the numerical results are given in Tables(5-7-1) 

to (5-7-10)(Appendix E). The results obtained using a mesh 

spacing of (Zs/201 in Z are shown in Figures(5-7-1) to (5-7-5) 

and in Tables(5-7-1) to (5-7-5); while those obtained using a 

larger mesh spacing of IZs/101 in Z are shown in Figures(5-7-6) 

to (5-7-10) and in Tables(5-7-6) to (5-7-10). 

For each sphere spacing, except those at high Reynolds 

numbers, the frictional drag coefficients, the pressure drag 

coefficients, and the total drag coefficients of the two spheres 

decrease nearly linearly with increasing Reynolds number on 

logarithmic plots, and the frictional drag coefficients are 

always larger than the pressure drag coefficients. It is 

important to note that flow separation from the surfaces of 

the spheres results in the pressure drag coefficients being 

larger than the frictional drag coefficients. Hence, at high 

Reynolds numbers the pressure drag coefficients are larger 
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than the frictional drag coefficients except for sphere B for 

the smallest sphere spacing Zs = 0.20 where the pressure drag 

coefficients are always smaller than the frictional drag 

coefficients. The range of Reynolds numbers over which the drag 

coefficients decrease nearly linearly with the Reynolds number 

is smaller for sphere A than for sphere B. This may be because 

for each sphere spacing, the flow separation from the back of 

sphere A is always larger than that from the back of sphere B. 

It is important to note that for each sphere spacing, the 

pattern of the variation of the drag coefficients with Reynolds 

number remains similar when the mesh spacing in Z changes from 

IZs/201 to IZs/101. 

Except at high Reynolds numbers, the total drag 

coefficients of sphere A for each sphere spacing are smaller 

than those of a single isolated sphere obtained by Al-Taha( 

1969). Also, except at high Reynolds numbers for the largest 

sphere spacing Zs = 3.09 the total drag coefficients of sphere 

B are always smaller than those of a single isolated sphere 
L 

obtained by Al-Taha(1969). It is clear from Figures(5-7-1) to 

(5-7-10) that for each sphere spacing, the agreement of the 

present results with those of a single isolated sphere obtained 

by Al-Taha(1969) is better for sphere A than for sphere B; on 

the other hand, the agreements of the present results of the 

two spheres with those of a single isolated sphere are better 

for large sphere spacings than for small sphere spacings. 
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CHAPTER 6. 

DISCUSSION OF SOLUTIONS OF THE DIFFUSION EQUATION. 

6-1. Introduction. 

In the present two-sphere forced convective mass transfer 

problem, numerical solutions of the diffussion equation were 

obtained separately after the corresponding numerical solutions 

of the Navier-Stokes equations had been obtained. For each 

sphere spacing, the solution of the diffusion equation over a 

flow region required the stream function distribution in the 

flow region at a specified Reynolds number. The computer 

programme, Program 2, used for the solution of the diffusion 

equation was arranged is such a way that for each sphere spacing 

and Reynolds number the concentration distributions in the flow 

region could be generated for a wide range of Peclet numbers. 

The distance between the spheres, which is governed by 

the sphere spacing parameter Zs, is an important factor in the 

study of the particle-to-particle interaction between the 

spheres in the two-sphere mass transfer problem. Five sphere 

spacings: Zs = 0.20, 1.32, 2.07, 2.48, and 3.09, corresponding 

to two equally sized spheres nearly touching, being one, three, 

five, and ten diameters apart, respectively, were considered 

in this study. For each sphere spacing, four Reynolds numbers 

of 0.001, 1.0, 10.0, and 100.0, were selected in order to 

study the fluid dynamic effect upon the rates of mass transfer 

from the spheres. For each sphere spacing and Reynolds number, 

the diffusion equation was then solved for concentration 

distributions for a wide range of Peclet numbers from 0.001 to 

as high as 500. From the resultant concentrations, the 
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concentration contours around the spheres were interpolated 

and plotted by the computer line-printer, and the local and 

overall rates of mass transfer from the spheres were also 

calculated. 

The study of the present two-sphere mass transfer problem 

is divided into four sections. The factors affecting the 

accuracy of the numerical solutions of the diffusion equation 

are analyzed in section(6-2). The qualitative study of the 

concentration profiles around the spheres is given in section( 

6-3), while the quantitative studies of the local and overall 

rates of mass transfer from the spheres are presented in 

sections(6-4) and (6-5), respectively. In the last three 

sections, the variations of the concentration distributions 

around the spheres, the local and overall rates of mass transfer 

from the spheres, with three parameters: sphere spacing, 

Reynolds number, and Peclet number, are considered in detail. 

Because of the similarity between the forms of the diffusion 

equation and the vorticity transport equation, the methods of 

solution and the arrangements of the computer programmes for 

solving the diffusion equation were generally similar to those 

for solving the Navier-Stokes equations, and the resultant 

distributions of concentration and vorticity around the spheres 

were also similar in character. 
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6-2. Analysis of the factors affecting the numerical solutions. 

The factors affecting the accuracy of the numerical 

solutions of the diffusion equation, such as the coordinate 

system used, the distributions of grid lines in the flow region, 

the methods of solution, and the choice of convergence 

criterion, etc, were similar to the factors affecting the 

accuracy of the numerical solutions of the Navier-Stokes 

equations. An understanding of these factors and the influences 

and limitations which they imposed upon the accuracy of the 

numerical results of the diffusion equation is necessary. 

Bi-spherical coordinates were used in the present study 

because of the ease with which they can be used to describe 

the locations of the two spheres and the associated boundary 

conditions of the Navier-Stokes and diffusion equations. It is 

important to note that the flow region and the distributions 

of grid lines in the flow region for which the solutions of 

the diffusion equation were obtained were exactly the same as 

those with which the solutions of the Navier-Stokes equations 

were obtained. For each sphere spacing, two distributions of 

grid lines in the flow region were used. In these two 

distributions, the grid lines for the Z-direction were 

distributed according to two different mesh spacings of IZs/101 

and IZs/201 in Z, while those for the 0-direction were 

distributed according to a constant increment of 6°  in the 

angle n; hence, the numbers of mesh points in each flow region 

were 21x31 and 41x31, respectively. The outer boundary of the 

flow region, which has its centre at the mid-point of the line 

of centres of the spheres, was chosen to have a radius of 7.0 

times the distance between the centres of the spheres for the 
• 
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smallest sphere spacing Zs = 0.20, and a radius of 3.5 times 

the distance between the centres of the spheres for the four 

larger sphere spacings considered. 

The reason for using two different distributions of grid 

lines in the flow region at each sphere spacing, arose because 

as has been described in section(5-2), of the inherent 

characteristic of the bi-spherical coordinate system of 

providing unequal distance between any two neighbouring grid 

lines in the Z-direction around the spheres. The large Z-grid-

line spacings around the upstream surface of sphere A created 

some difficulties in the calculation of the correct local 

Sherwood numbers in that region and subsequently affected the 

accuracy of the overall Sherwood numbers obtained for sphere A 

at high Peclet numbers. This was because at high Peclet numbers 

the thickness of the diffusional boundary layer in the region 

upstream of sphere A was very small compared with the large 

Z-grid-line spacings. The limitations imposed by the 

availability of computer memory storages upon the solutions of 

the Navier-Stokes equations, restricted the flexibility of 

altering the mesh spacing in Z in order to improve the numerical 

solutions of the diffusion equation at the upstream surface 

of sphere A. 

Because of its rapid rate of convergence and simplicity 

of use, the extrapolated Gauss-Seidel method was used to obtain 

solutions of the diffusion equation. Although over-relaxation 

of the solutions was found to give a faster rate of convergence, 

at high Peclet numbers numerical solutions of the diffusion 

equation were difficult to obtain and it was necessary to adopt 

a scheme of under-relaxation. The relaxation factor, which was • 
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supplied by trial-and-error, was decreased with increasing 

Peclet number. The convergence criterion for the dimensionless 

concentration was specified to be 10-4, and an absolute point-

convergence test was used. With this method, convergence of 

the solutions at all mesh points in the flow region was obtained. 

In order to understand the influence of the convergence 

criterion for the dimensionless concentration on the numerical 

solutions of the diffusion equation, solutions were obtained 

for the limiting case of zero Peclet number for two different 

magnitudes of the convergence criterion: 10-4 and 10-6. 

Similarly, in order to understand the influence of the 

distribution of grid lines in the flow region on the numerical 

solutions of the diffusion equation, for each specified sphere._ 

spacing solutions were obtained for the limiting case of zero 

Peclet number for three different distributions of mesh points: 

21x31, 41x31, and 41x61. In each case, the stream function was 

set to zero throughout the flow region. The overall Sherwood 

numbers obtained from these solutions are presented in Table( 

6-2-1) for each of the five sphere spacings considered in this 

work. It can be seen from the table that, as predicted by 

Cornish(1965), all the values of the overall Sherwood numbers 

are less than the limiting value of 2.0 obtained from a single 

isolated sphere with molecular diffusion alone to an infinite 

medium. For each sphere spacing and value of the convergence 

criterion for the dimensionless concentration, the overall 

Sherwood numbers increase slightly when the distribution of 

mesh points changes from 21x31 to 41x31; however, they become 

smaller when the distribution of mesh points is further changed 

from 41x31 to 41x61. It is interesting to note that the 
• 



195 

Table(6-2-1). The effects of the variations of convergence criterion 

and distribution of grid lines upon the overall 

Sherwood numbers of the spheres at zero Peclet number. 

ZS. E * C 
The distributions of mesh points. _

R =r/d  o 

21x31 41x31 41x61 

ShAO ShBO  ShAO ShBO ShAO ShBO 

0.20 10-4 1.59584 1.59109 1.60807 1.59280 1.58067 1.57592 14.0 

10-6 1.57808 1.57804 1.58704 1.58690 1.56881 1.56875 14.0 

1.32 10-4 1.84224 1.83902 1.85567 1.85092 1.82892 1.82216 7.0 

10-6 1.82715 1.82711 1.83198 1.83194 1.81441 1.81434 7.0 

2.07 10-4 1.92461 1.92211 1.93429 1.92979 1.91659 1.91097 7.0 

10-6 1.90781 1.90778 1.90950 1.90945 1.89999 1.89993 7.0 

1.48 10-4 1.95779 1 °"" ' 	96021 1.955G5 1.95160 1.94622 7.0 

10-6 1.93828 1.93826 1.93281 1.93277 1.93310 1.93304 7.0 

3.09 10-  1.98106 1.97857 1.99244 1.98781 1.98232 1.97698 7.0 

10-6  1.95427 1.95424 1.95967 1.95962 1.95915 1.95909 7.0 

Table(6-2-2). Comparison of numerical overall Sherwood numbers for 

the limiting case of zero Peclet number with theoretical 

values. 

Zs. 
Theoretical values 

(Cornish). 

Numerical results 

(Aminzadeh et al), 

Present results 

AZ=IZs/201,An=3o cC4e* 

ShAO 	ShBO ShAO 	ShBO 

0.20 1.3920 1.39239 	1.39231 1.44563 	1.44555 10-6 

1.00 1.5232 1.54658 	1.54653 1.56287 	1.56280 10-6 

2.10 1.7852 1.80739 	1.80693 1.80723 	1.80662 10-5 

3.00 1.9056 1.92645 	1.92597 1.91962 	1.91907 10-5 
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limiting overall Sherwood numbers for the spheres obtained 

using the distributions of mesh. points of 21x31 and 41x61 are 

close to each other even though the mesh spacings for the Z-

and 6-directions have been each reduced by half. On the other 

hand, for each sphere spacing and distribution of mesh points, 

the limiting overall Sherwood numbers for the spheres decrease 

by less than 2% when the convergence criterion for the 

dimensionless concentration decrease from 10-4 to 10-6, and 

the small improvement in the results was obtained at a great 

expense in computing time. Hence, it can be concluded that the 

use of a value of 10-4 for the convergence criterion for the 

dimensionless concentration and the use of the distributions 

of mesh points of 21x31 and 41x31 in the present work were 

Aminzadeh, Al-Taha, Cornish, Kolansky, and Pfeffer(1974) 

computed the overall Sherwood numbers for the limiting case of 

zero Peclet number for four sphere spacings of Zs = 0.20, 1.00, 

2.10, and 3.00, by using a large value for the outer boundary, 

r/d = 40, and by setting the velocity components Vz  and Ve  

equal to zero. In order to compare the effect on the solutions 

of the diffusion equation of distributing the grid lines for 

the 6-direction according to a constant increment in the angle 

n, with the effect of distributing the grid lines for the 6-

direction according to a constant increment in the values of 6 

as used by Aminzadeh et al, overall Sherwood numbers were 

calculated for the limiting case of zero Peclet number for the 

four sphere spacings with the same outer boundary specification, 

convergence criterion, and number of mesh points in the flow 

region as used by Aminzadeh et al, but with the distribution 

• 
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of grid lines for the 8-direction set with a constant increment 

in the angle n and by setting the stream function equal to 

zero. The two results together with the theoretical values 

predicted by Cornish(1965) are listed in Table(6-2-2). It is 

clear from the table that for the two largest sphere spacings, 

the present results are in very good agreement with the 

theoretical values predicted by Cornish and with the numerical 

results obtained by Aminzadeh et al. However, for the two 

smallest sphere spacings, especially the smallest sphere 

spacing Zs = 0.20, the present results are noticeably larger 

than the theoretical values predicted by Cornish and the 

numerical results obtained by Aminzadeh et al. The difference 

in the two sets of numerical results may be because the present 

8-direction in the flow region than the scheme used by 

Aminzadeh et al, particularly when the sphere spacing is very 

small, as shown in Figures(4-1-3) to (4-1-12). 

• 
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6-3. Concentration distributions, 

The numerical solutions of the diffusion equation were 

expressed in terms of the concentration distributions over 

the whole flow region. For each sphere spacing, the tabulated 

results of the concentration distributions at each specified 

Reynolds number and Peclet number were interpolated and the 

concentration contours plotted around the spheres. From these 

plots, the variation of the concentration profiles with Peclet 

number, Reynolds number; and sphere spacing, can be studied. 

The concentration profiles around two equally sized 

spheres at five different sphere spacings: Zs = 0.20, 1.32, 

2.07, 2.48, and 3.09, are shown in Figures(6-3-1) to (6-3-29) 

1 V 1 07 VILL V1 	four selected ncylly A.t.to Lutu..=.176.  Of V. 001 
	

eA 

10.0, and 100.0, each for a wide range of Peclet numbers. In 

each figure, six concentration contours with values of C of 

1.0, 0.80, 0.50, 0.25, 0.10, and 0.05, are plotted around 

the spheres. It is important to note that the surfaces of the 

two spheres are coincident with the contours C = 1.0. 

For the smallest sphere spacing considered in this study: 

Zs = 0.20, L/R = 2.0402, the distributions of concentration 

around the two nearly touching spheres are shown in Figures( 

6-3-1) to (6-3-6) for three selected Reynolds numbers of 0.001, 

1.0, and 100.0, each for a series of Peclet numbers. The most 

interesting feature of the distributions is that for all the 

Reynolds and Peclet numbers shown, all of the contours, except 
* 

those with C = 1.0, envelop the two spheres and the inner 

region between them. This indicates that the two nearly touching 

spheres behave like a single combined object and that the fluid 
• 
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in the inner region between the spheres contains a high 

concentration of the material transferred. As .a consequence, 

the rates of mass transfer from the spheres to the fluid in 

the inner region between the spheres are greatly depressed. 

For each Reynolds number, the concentration profiles 

around the spheres at low Peclet numbers of 0.001 to 0.1 remain 

almost unchanged and are symmetrical about a plane placed 

normal to the direction of flow and passing through the mid-

point of the line of centres. This is because the transfer of 

material from the solid surfaces to the flowing fluid is mainly 

by means of molecular diffusion and thus the material diffuses 

uniformly in all directions. However, for Peclet numbers greater 

than 0.1, the concentration contours upstream of sphere A move 

closer to the front surface of that sphere, those in the region 

between the spheres move nearer to the line of centres, while 

those downstream of sphere B extend further away from the rear 

surface of that sphere and eventually develop into a tail at 

high Peclet numbers. This is because the material around the 

spheres is convected more rapidly rearwards than it diffuses 

forwards from the surfaces of the spheres. Hence, at high 

Peclet numbers the concentration profiles upstream of sphere A 

are confined in an increasingly narrower region and a diffusional 

boundary layer is developed at the upstream surface of the 

sphere. On the other hand, because of the closeness of the two 

spheres and the existence of a pool of highly concentrated 

fluid in the inner region between the spheres, the concentration 

profiles upstream of sphere B do not change much with increasing 

Peclet number and a diffusional boundary layer is not developed 

at the upstream surface of sphere B even at high Peclet numbers. 
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It is clear that for Peclet numbers greater than 0.1, the effect 

of convection on the rates of mass transfer from the spheres 

is significant, and increases in importance with increasing 

Peclet number. However, the effect of convection on the rates 

of mass transfer is always stronger for sphere A than for 

sphere B. 

At low Peclet numbers of 0.001 to 0.1, variations in the 

flow field around the two spheres have very little effect upon 

the concentration profiles which remain almost unchanged when 

the Reynolds number changes from 0.001 to 100.0. On the other 

hand, at high Peclet numbers the concentration profiles are 

influenced by variations in the flow region, in particular, 

the contours with small values of concentration move closer to 

the front surface of sphere A and the line of centres between 

the spheres when the Reynolds number becomes larger. This 

suggests that at high Peclet numbers, the strong effect of 

convection upon the rates of mass transfer from the spheres is 

further strengthened at higher Reynolds number. 

For the enlarged sphere spacing: Zs = 1.32, L/R = 4.0106, 

the concentration profiles for three selected Reynolds numbers 

of 0.001,'1.0, and 100.0, each for a series of Peclet numbers, 

are shown in Figures(6-3-7) to (6-3-12). Because of the larger 

distance between the spheres and the consequent lower 

concentration of the fluid in the inner region between the 

spheres, the concentration profiles for this sphere spacing 

have some obvious difference from those for the smallest sphere 

spacing. The contour C = 0.80, which envelops the two nearly 

touching spheres and the inner region between them at the 

• previous sphere spacing, becomes two separate contours 
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each forming a closed path around a sphere, and the contour 

C • = 0.50 becomes the first contour to envelop the two spheres 

which are at one diameter apart, and the inner region between 

them. On the other hand, the variations of the concentration 

profiles with Peclet and Reynolds numbers for this sphere 

spacing are similar to those for the smallest sphere spacing, 
* 

except for the contour C = 0.80 in the inner region between 

• the spheres and upstream of sphere B. When the Peclet number is 

increased, for Reynolds numbers of 0.001 and 1.0 the contour 

C • = 0.80 move closer to the front surface of the sphere and 

for a Reynolds number of 100 the contour moves further away 

from the front surface of sphere B. This may be because at a 

high Reynolds number of 100 the flow separates from both the 

rear surface of sphere A and from the front surface of sphere B 

so that nearly the whole inner region between the spheres 

becomes a wake region with a consequent increase in the 

concentration. of the fluid in the inner region between the 

spheres, especially upstream of sphere B. 

For the sphere spacing: Zs = 2.07, L/R = 8.0510, the 

concentration profiles for three selected Reynolds numbers of 

1.0, 10.0, and 100.0, each over a wide range of Peclet numbers, 

are shown in Figures(6-3-13) to (6-3-18). From the figures, it 

is clear that for all Reynolds and Peclet numbers, the contours 
* 

C = 0.80 and C = 0.50 form closed paths around each of the 
* 

two spheres, while the contour C = 0.25 is the first contour 

to envelop the two spheres and the inner region between them. 

For each Reynolds number, the concentration profiles at low 

Peclet numbers of 0.001 to 0.1 remain almost unchanged and are 

• 
	 symmetrical about a plane through the mid-point of the line of 
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centres normal to the direction of flow showing that the 

transfer of material from the spheres is dominated by molecular 

diffusion. However, for higher Peclet numbers the material 

around the spheres is convected more rapidly rearwards than it 

diffuses forwards from the surfaces of the spheres. Hence, the 

effect of convection upon the rates of mass transfer from the 

spheres becomes significant and increases in importance with 

increasing Peclet number. Because of the larger distance 

between the spheres, the concentration profiles in the inner 

region between the spheres vary rapidly with increasing Peclet'. 

number and the contour forming closed paths around sphere A 

move further downstream while the contours forming closed paths 

around sphere B move closer to the front surface of sphere B. 

As a result, at high Peclet numbers a diffusional boundary 

layer is observed to have developed at the upstream surface of 

each sphere, however, its development at the upstream surface 

of sphere B is less well established than that at the upstream 

surface of sphere A. It is important to note that the numerical 

solution for a Reynolds number of 100.0 shows that flow 

separation occurs from the rear surface of sphere A and that 

at high Peclet numbers a pool of highly concentrated fluid is 

formed near the point of flow separation and over the 

downstream surface of sphere A where the rates of mass transfer 

will be greatly depressed. 

When the Reynolds number changes from 1.0 to 100.0, the 

concentration profiles at low Peclet numbers of 0.001 to 0.1 . 

remain almost the same. However, at higher Peclet numbers the 

concentration profiles change with Reynolds number, in particular, 

as the Reynolds number is increased the contours with small 

• 	 values of concentration move closer to the front surface of 
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each sphere as well as closer to the line of centres between 

the spheres. This indicates that at high Peclet numbers, the 

already strong effect of convection upon the rates of mass 

transfer from the spheres is further strengthened by an increase 

in the Reynolds number. However, for high Peclet numbers and 

all Reynolds numbers the effect of convection upon the rates 

of mass transfer is always stronger for sphere A than for 

sphere B. 

The concentration profiles for four selected Reynolds 

numbers of 0.001, 1.0, 10.0, and 100.0, each for a series of 

Peclet numbers are shown in Figures(6-3-19) to (6-3-25) for 

the increased sphere spacing: Zs = 2.48, L/R = 12.0250. It is 

clear from the figures that the variations of the concentration 

profiles with both the Peclet number and the Reynolds number 

are similar to those for the sphere spacing Zs = 2.07. 

Similarly, at this sphere spacing, the contours C = 0.80 and 
* 
C = 0.50 form closed paths around each sphere, while the 

* 
contour C = 0.25 is the first contour to envelop the two 

spheres and the inner region between them; however, when the 

Peclet number reaches unity, the contour C = 0.25 becomes 

two separate contours and the contour C = 0.10 becomes the 

first contour to envelop the two spheres and the inner region 

between them. This may indicate that for each sphere spacing, 

the concentration of the lowest concentration contour which 

envelops both spheres is primarily dependent on Peclet number. 

On the other hand, because of the larger distance between the 

spheres, the development of a diffusional boundary layer at 

the upstream surface of sphere B becomes more clearly established 

for this sphere spacing than for the sphere spacing Zs = 2.07. 
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For the largest sphere spacing considered in this study: 

Zs = 3.09, L/R = 22.022, the concentration profiles are shown 

in Figures(6-3-26) to (6-3-29) for two selected Reynolds 

numbers of 1.0 and 100.o, each for a series of Peclet numbers. 

From these figures, it can be seen that the variations of the 

concentration profiles with Peclet number and Reynolds number 

are similar to those for the sphere spacing Zs = 2.48. On the 

other hand, because of the very large distance between the 

spheres, all contours except those with C = 0.10 and C = 0.05 

form closed paths around each of the spheres. The most 

interesting feature of the concentration profiles is that when 
* 

the Peclet number reaches unity, the contour C = 0.10 which 

envelops the spheres and the inner region between them at 

PecleL numbers less Lhau 1.0 becomes two. separate contours 
* 

and the contours C = 0.05 becomes the sole contour to envelop 

the two spheres. Furthermore, as the Peclet number is further 
* 

increased, the contour C = 0.10 which forms a closed path 

around sphere A extends rapidly downstream and eventually 
* 

recombines with the contour C = 0.10 which forms a closed path 

around sphere B. The combined contour envelops once again the 

spheres and the inner region between them. This phenomenon 

occurs at Peclet numbers of 100 and 50 for the Reynolds numbers 

of 1.0 and 100.o, respectively. Because of the very large 

distance between the spheres, a diffusional boundary layer is 

always developed at the upstream surface of each sphere when 

the Peclet number is high; however, its development at the 

upstream surface of sphere A is always more advanced than that 

at the upstream surface of sphere B. It is clear that for this 

largest sphere spacing, the concentration profiles around the 

w 
	 spheres are generally very similar to those around a single 

isolated sphere. 
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Figure(6-3-.1). Concentration profiles around two spheres with Zs = 0.20. 
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Figure(6-3-2). Concentration profiles around two spheres with Zs = 0.20. 
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Figure(6-3-3). Concentration profiles around two spheres with Zs = 0.20. 
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Figure(6-3-6). Concehtration profiles around two spheres with Zs = 0.20. 
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Figure (63-8) . Concentration profiles around two spheres with Z5'= 1.32. 
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Figure(6-3-10). Concentration profiles around two spheres with Zs = 1.32. 
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Figure(6-3-11). Concentration profiles around two spheres with Zs = 1.32. 
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Figure(6-3-12). Concentration.  profiles around two spheres with Zs = 1.32. 
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Figure(6-3-13). Concentration profiles around two spheres with Zs = 2.07. 
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Figure(6-3-14). Concentration profiles around two spheres with Zs = 2.07. 
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Figure(6-3-15). Concentration profiles around two spheres with Zs = 2.07: 
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Figure(6-3-16). Concentration profiles around two spheres with Zs = 2.07. 
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Figure(6-3-17). Concentration profiles. around two spheres with Zs = 2.07. 
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Figure(6-3-18). Concentration.profiles. around two spheres with Zs = 2.07. 
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Figure(6-3-19). Concentration profiles around two spheres with Zs = 2.48. 
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Figure(6-3-20). Concentration profiles around two spheres 

with Zs = 2.48. 
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Figure(6-3-22). Concentration profiles around two spheres 

"with Zs = 2.48. 
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Figure(6-3-2.3). Concentration profiles anpund two spheres with Zs = 2.48. 
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Figure(6-3-24). Concentration profiles around two spheres with Zs = 2.48. 
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Figure(6-3725). Concentration profiles around two spheres 
with Zs = 2.48.. 
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Figure(6-3=26). Concentration profiles around two spheres-

with Zs =.3.09. 
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Figure(6-3-27). Concentration profiles around two spheres 

with Zs = 3.09.- 
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Figure(6-3-28). Concentration profiles around two spheres 

with. Zs = 3.09. 
• 
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Figure(6-3-29). Concentration profiles around two spheres with Zs= 3.09. 
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From the above discussion, it is clear that the 

concentration distributions around two equally sized spheres 

with a fluid flowing parallel to their line of centres is 

dependent on the Peclet number, the Reynolds number, and the. 

spacing between the spheres. A brief summary of this dependence 

is as follows. 

For each sphere spacing and Reynolds number, the 

concentration profiles at low Peclet numbers of 0.001 to 0.1 

remain almost unchanged and are symmetrical about a plane 

through the mid-point of the line of centres normal to the 

direction of flow. This is because molecular diffusion is the 

dominant mode of transfer and the material diffuses uniformly 

in all directions. At higher Peclet numbers, the material is 

convected more rapidly rearwards than it diffuses forwards from 

the surface of each sphere. Hence, the effect of convection 

upon the rates of mass transfer from the sphetes becomes 

significant and increases in importance with increasing Peclet 

number. The convective effect is, however, always stronger for 

sphere A than for sphere B. As a result, at high Peclet numbers 

a diffusional boundary layer is always developed at the upstream 

surface of sphere A whereas when the sphere spacing is small, a 

diffusional boundary layer is not developed at the upstream 

surface of sphere B. However, as the sphere spacing increases, 

a diffusional boundary layer does become established at the 

upstream surface of sphere B. 

For each sphere spacing, the concentration profiles at 

low Peclet numbers of 0.001 to 0.1 remain almost the same when 

the Reynolds number changes from 0.001 to 100.0. On the other 

hand, at higher Peclet numbers the concentration profiles are 
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influenced by the fluid dynamics, in particular, as the Reynolds 

number increases the contours with small values of concentration 

move closer to the front surface of sphere A and closer to the 

line of centres, also for large sphere spacings move closer to 

the front surface of sphere B. This indicates that at high 

Peclet numbers, the already strong effect of convection upon 

the rates of mass transfer from the spheres is further 

strengthened by an increase in the Reynolds number. 

The distance between the spheres is an important factor 

affecting the concentration profiles around the spheres 

especially in the region between the spheres. As the sphere 

spacing increases, the number of contours in the figures which 

form closed paths around each sphere increase so that the 

concentration of the lowest concentration contour which envelops 

the two spheres and the inner region between them decreases. 

For the smallest sphere spacing Zs = 0.20, all contours shown 

in the figures envelop the two nearly touching spheres and the 

inner region between them, while for the largest sphere spacing 

Zs = 3.09, nearly all contours form closed paths around each 

sphere except for the contours C = 0.10 and C = 0.05 which 

envelop the two spheres and the large inner region between them. 

It is clear that as the sphere spacing increases, the concentration 

profiles in the inner region between the spheres change 

significantly and the concentration profiles around the two• 

spheres become closer to those around a single isolated sphere. 

It is important to note that for each of the five sphere spacings 

considered in this study, the concentration profiles around the 

two equally sized spheres are always slightly different from 

those around a single isolated sphere, and the difference 

• 
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becomes smaller when the two spheres are further apart. This 

indicates the existence of particle-to-particle interaction 

between the spheres. As the sphere spacing increases, the 

extent of inter-particle interaction upon the rates of 

mass transfer from the spheres decreases. 

I 
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6-4. Local Sherwood numbers. 

In this two-sphere mass transfer problem, quantitative 

insight into the rates of mass transfer from the two spheres 

to the flowing fluid around them was obtained from studies of 

the local and overall rates of mass transfer from the spheres 

in relation to sphere spacing, Reynolds number, and Peclet 

number. The results of the studies of the local and overall 

rates of mass transfer from the spheres are given in this and 

the next sections, respectively. The local rates of mass transfer 

from spheres A and B were expressed in terms of the local 

Sherwood numbers, ShAL(n) and ShBL(r1), )Which were obtained 

from the concentration profiles using equations(4-5-11) and ( 

4-5-12), respectively. 

For each of the five sphere spacings considered in this 

study: Zs = 0.20, 1.32, 2.07, 2.48, and 3.09, and each of the 

four selected Reynolds numbers of 0.001, 1.0, 10.0, and 100.0, 

the plots of the local Sherwood numbers against the angle n 

obtained using a mesh spacing of IZs/201 in Z are shown in 

Figures(6-4-1) to (6-4-10); while those obtained using a larger 

mesh spacing of (Zs/101 in Z are shown in Figures(6-4-11) to 

(6-4-20). The Sherwood number curves in Figures(6-4-1) to (6-4-10) 

are plotted for seven selected Peclet numbers of 0.001, 1.0, 

10.0, 30.0, 50.0, 100.0, and 200.0; while those in Figures(6- 

4-11) to (6-4-20) are plotted for six selected Peclet numbers 

of 0.001, 1.0, 10.0, 30.0, 50.0, and 100.0. It should be noted 

that for sphere A, the angle rl is 0°  at the front stagnation 

point and is 180°  at the rear stagnation point; while for 

sphere B, the angle n is 180°  at the front stagnation point 

and is 0°  at the rear stagnation point. From these plots, the 
S 
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the local rates of mass transfer from the two spheres and 

their variations with the three parameters: sphere spacing, 

Reynolds number, and Peclet number, can be investigated. At 

the end of this section, the influence of the mesh spacing in 

Z upon the results, especially at the front surface of sphere 

A, will also be discussed. 

For the smallest sphere spacing considered in this study: 

Zs = 0.20, L/R = 2.0402, the most important feature of the 

local Sherwood number curves for the two nearly touching 

spheres as shown in Figures(6-4-1) to (6-4-2) and in Figures( 

6-4-11) to (6-4-12), is the existence of two regions where the 

local Sherwood numbers are approximately zero for all Reynolds 

and Peclet numbers: one near the rear stagnation point of 

sphere A and the other near the front stagnation point of 

sphere B. The very small values of the local Sherwood numbers 

in these regions arise because of the closeness of the two 

spheres so that the highly concentrated stagnant fluid in the 

tiny inner region between the spheres reduces the driving 

force for mass transfer to nearly zero. 

For each Reynolds number and Peclet number, the local 

Sherwood numbers for sphere A always decrease from their 

maximum value at the front stagnation point to almost zero in 

the region near the rear stagnation point. As the Peclet number 

increases, the local Sherwood numbers at the front surface of 

sphere A increase rapidly because of the decrease in the 

thickness of the diffusional boundary layer; while those at the 

rear surface of sphere A increase only slightly or remain 

unchanged. On the other hand, at low Peclet numbers of 0.001 to 

1.0 the local Sherwood numbers for sphere B increase i 
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continuously from the region at which their values are very 

low to the rear stagnation point; while at higher Peclet numbers 

they rise to a maximum value at around n = 900  and then fall 

off until the rear stagnation point is reached. Except in the 

regions close to the front and rear stagnation points the local 

Sherwood numbers for sphere B increase with increasing Peclet 

number. It is thus clear that for this smallest sphere spacing, 

the difference between the rates of mass transfer from the 

front surfaces of the spheres is very large and that it becomes 

even larger when the Peclet number is increased. 

At low Peclet numbers of 0.001 to 1.0, the local Sherwood 

number curves remain nearly the same when the Reynolds number 

is increased from 0.001 to 100.0; however, at higher Peclet 

numbers the local Sherwood number curves change with Reynolds 

number, in particular, the local Sherwood numbers at the front 

surface of sphere A increase rapidly with increasing Reynolds 

number. As a result, at higher Reynolds numbers the difference 

between the rates of mass transfer from the front surfaces of 

the spheres becomes even larger. The very rapid increase in the 

local Sherwood numbers near the front stagnation point of sphere 

A when the Reynolds number increases from 10.0 to 100.0, may 

be a result of the development of increasingly thinner fluid 

dynamic and diffudional boundary layers. For sphere B, this 

phenomenon does not appear because of the very small distance 

between the spheres so that neither a fluid dynamic nor a 

diffusional boundary layer is formed even at high Reynolds and 

Peclet numbers. 

For the sphere spacing: Zs = 1.32, L/R = 4.0106, the 

• 
	curves of Figures(6-4-3) to (6-4-4) and Figures(6-4-13) to 
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(6-4-14) show that the local Sherwood numbers near the rear 

stagnation point of sphere A and those near the front 

stagnation point of sphere B are no longer close to zero. This 

is because the larger distance between the spheres results in 

a lower concentration of the diffusing material in the fluid 

in the inner region between the spheres and thus a larger rate 

of mass transfer from the surfaces adjacent to the inner region 

between the spheres. All the curves, except those for a Reynolds 

number of 100 at high Peclet numbers show that the local 

Sherwood numbers for sphere A decrease continuously from their 

maximum values at the front stagnation point to their minimum 

values at the rear stagnation point. For a Reynolds number of 

100 and for high Peclet numbers, the local Sherwood numbers 

for spheire A dPnrpasr,  to a minimum At the hack of the sphere  

at an angle which is approximately coincident with the point 

of flow separation, and then increase slowly until the rear 

stagnation point is reached. On the other hand, at low Peclet 

numbers of 0.001 to 1.0 the local Sherwood numbers for sphere 

B increase steadily from the front stagnation point to the rear 

stagnation point; while at higher Peclet numbers they first 

increase to a maximum and then fall off until the rear 

stagnation point is reached. This indicates that when the two 

spheres are one diameter apart, the depression of the rates of 

mass transfer from the front surface of sphere B by the 

concentrated fluid in the inner region between the spheres is 

still very marked even though it is smaller than that for the 

smallest sphere spacing. It is important to note that for each 

Reynolds number, the rates of mass transfer from the front 

surfaces of the two spheres increase with increasing Peclet 

number althOugh the increase is much faster for sphere A than 

for sphere B. 
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• 

In a similar way to that for the smallest sphere spacing, 

the local Sherwood number curves for Peclet numbers of 0.001 to 

1.0 remain almost unchanged when the Reynolds number is increased 

from 0.001 to 100.0. On the other hand, at higher Peclet numbers 

the local Sherwood numbers at the front surfaces of the spheres 

generally become larger when the Reynolds number is increased, 

however, there is an exception for the local Sherwood numbers 

near the front stagnation point of sphere B which at high 

Peclet numbers of 100 and 200 become smaller when the Reynolds 

number is increased from 10.0 to 100.0. The reason for this 

exception is that at a Reynolds number of 100.0, there is flow 

separation from the back of sphere A as well as from the front 

of sphere B. This flow separation results in nearly the whole 

of the inner region between the spheres bec:oming a wake region 

with a consequent increase in the concentration of the diffusing 

material in the fluid near the upstream surface of sphere B 

thus depressing the rates of mass transfer from that region. 

For the sphere spacing: Zs = 2.07, L/R = 8.0510, the 

local Sherwood number curves for the two spheres are shown in 

Figures (6-4-5) to (6-4-6) and in Figures (6-4-15) and (6-4-16). 

For each Reynolds number, the distributions of the local 

Sherwood number around sphere A and their variation with Peclet 

number for this sphere spacing are similar to those for the 

last sphere spacing that was discussed. However, because of the 

larger distance between the spheres and thus the lower 

concentration of the diffusing material in the inner region 

between the spheres, the rates of mass transfer from the front 

surface of sphere B although depressed are greater than those 

in the previous case. The depression in the rates of mass 
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transfer from the front surface of sphere B is particularly 

obvious at a Reynolds number of 100.0 because at this Reynolds 

number the flow separations from the rear surface of sphere A 

and the highly concentrated fluid in the inner region between 

the spheres is convected close to the front stagnation point 

of sphere B thus reducing the driving force for mass transfer, 

from that region. On the whole, the local Sherwood numbers at 

the front surfaces of the two spheres increase with increasing 

Peclet number. Except at very high Peclet numbers the local 

Sherwood numbers for sphere B generally decrease continuously 

from the front to rear stagnation points. At very high Peclet 

numbers the local Sherwood numbers for sphere B first increase 

to a maximum and then decrease continuously until the rear 

stagnation point is reached. 

At low Peclet numbers of 0.001 to 1.0, the local Sherwood 

numbers for the spheres remain nearly the same when the Reynolds 

number: changes from 0.001 to 100.0. On the other hand, at higher 

Peclet numbers the local Sherwood numbers for the spheres change 

with Reynolds number, in particular, the local Sherwood numbers 

at the front surfaces of the spheres increase rapidly as the 

Reynolds number is increased. The most important feature of the 

distributions of the local Sherwood number around the spheres 

at this sphere spacing is that the rates of mass transfer from 

the front surfaces of the spheres increase with both Peclet 

and Reynolds numbers although the increase is always faster for 

sphere A than for sphere B. 

For the sphere spacing: Zs = 2.48, L/R = 12.0250, the 

local Sherwood number curves of Figures(6-4-7) to (6-4-8) and 

• 	Figures(6-4-17) to (6-4-18) show a similar variation with both 

• 
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Peclet and Reynolds numbers as those for the sphere spacing 

Zs = 2.07. However, because of the larger distance between the 

spheres and thus the lower concentration of the diffusing 

material in the inner region between the spheres, the rates of 

mass transfer from the front surface of sphere B are larger 

than in the previous case although still depressed at high '  

Peclet and Reynolds numbers. Except at a Reynolds number of 

100.0 and at high Peclet numbers, the local Sherwood numbers 

for both spheres always decrease from the front to rear 

stagnation points. At a Reynolds number of 100.0 and high 

Peclet numbers, the local Sherwood numbers for sphere A decrease 

to a minimum value at the back of the sphere at an angle which 

is approximately coincident with that of flow separation and 

-4...L. 4 L-Licas 	 t-IAG 4.cca.L. 	 4_cco...LLGLA.; 

while those for sphere B increase to a maximum value at the front 

of the sphere and then fall off until the rear stagnation point 

is reached. 

For the largest sphere spacing considered in this study: 

Zs = 3.09, L/R = 22.022, the local Sherwood'number curves of 

Figures(6-4-9) to (6-4-10) and of Figures(6-4-19) to (6-4-20) 

show that the variations of the local Sherwood numbers for the 

two spheres with Peclet number and Reynolds number are similar 

to those for the previous sphere spacing Zs = 2,48. For both 

spheres, the rates of mass transfer from the front surfaces 

increase with both Peclet and Reynolds numbers. Because of the 

very large distance between the spheres, the depression of the 

rates of mass transfer from the front surface of sphere B by 

the concentrated fluid in the inner region between the spheres 

is quite small, and the distributions of the local Sherwood 
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number around the two spheres are generally similar to each 

other and are also similar to those around a single isolated 

sphere. 

Before summarizing the results for the five sphere 

spacings, there are two important features regarding the values 

of the local Sherwood numbers near the front stagnation point 

of sphere A which must be considered. The first feature is the 

rapidity of the increase in the local Sherwood numbers near the 

front stagnation point with increasing Peclet number. The 

second feature is that for the large sphere spacings the rapid 

increase in the local Sherwood numbers with increasing Peclet 

number suddenly ceases and the local Sherwood numbers become 

independent of Peciet number over a region near the front 

stagnation point of sphere A. The maximum values of the local 

Sherwood numbers appear to be dependent upon Peclet and Reynolds 

numbers and upon sphere spacing. The anomalous behaviour is 

mainly a result of the combined effect of the inherent 

characteristic of the bi-spherical coordinate system of 

providing large Z-grid-line spacings upstream of sphere A and 

the existence of a thin diffusional boundary layer at the 

upstream surface of sphere A at high Peclet numbers. It is 

clear that as the Peclet number increases, the thickness of the 

diffusional boundary layer decreases. Hence, when the Peclet 

number is sufficiently high, the diffusional boundary layer' 

over part of the front surface of sphere A falls within the 

three Z-grid-line spacings closest to the front surface of 

sphere A and, as a result, the concentration gradients at the 

surface calculated using equation( 4-5-16), which is based on 

a four-point forward difference approximation, become abnormally 
• 
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0 

large. Similarly, when the Peclet number is further increased, 

the diffusional boundary layer over the front surface of sphere 

A becomes so thin that over part of the surface of sphere A it 

falls within the Z-grid-line spacing closest to the front surface 

of sphere A with the result that the local Sherwood numbers 

near the front stagnation point of sphere A calculated using 

equations(4-5-11) and (4-5-16) become independent of Peclet 

number. It is important to note that the size of the region 

over which the local Sherwood numbers become independent of 

Peclet number increases with Peclet number, Reynolds number, and 

sphere spacing. Also, as the sphere spacing is increased the 

local Sherwood numbers near the front stagnation point of 

sphere A first become independent of Peclet number at lower 

nr=1.elcbc of  4-he pc,nles* FYI Acalrinnlrie nvirrirc Minc, rler.onelenno rf.. 

sphere spacing arises because, for a constant number of mesh 

points used in each flow region the Z-grid-line spacings 

become coarser as the sphere spacing increases so that the 

diffusional boundary layer over part of the upstream surface 

of sphere A becomes contained within the first Z-grid-line 

spacing at lower Peclet and Reynolds numbers. It should be 

noted that for each sphere spacing when the mesh spacing in Z 

was reduced from IZs/101 to IZs/201 the anomalous behaviour 

associated with the combined effect of the large Z-grid-line 

spacings and the thin diffusional boundary layer over part of 

the upstream surface of sphere A was greatly reduced and did 

not occur until higher Reynolds and Peclet numbers had been 

attained. For sphere B these problems did not occur even for 

large sphere spacings and at high Reynolds and Peclet numbers. 

This is because the Z-grid-line spacings upstream of sphere B 

were generally very small compared with those upstream of 

sphere A. 
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From the above discussion, it is clear that the local 

rates of mass transfer from a system of two equally sized spheres 

with fluid flowing parallel to their line of centres, are 

dependent on the Peclet number, Reynolds number, and sphere 

spacing. A brief summary of this behaviour is made as follows. 

Except from the front surface of sphere B for the smallest 

sphere spacing, the rates of mass transfer from the front 

surfaces of the two spheres for each specified sphere spacing 

and Reynolds number increase with increasing Peclet number. The 

increase is always larger for sphere A than for sphere B. At 

low Peclet numbers of 0.001 to 1.0 the local rates of mass 

transfer remain nearly the same at each sphere spacing as the 

Reynolds number is increased from 0.001 to 100.0. At higher 

Peclet numbers the local rates of mass transfer increase with 

Reynolds number, particularly from the front surfaces of the 

spheres, and the increases are larger for sphere A than for 

sphere B. As a result, for each sphere spacing the difference 

between the rates of mass transfer from the front surfaces of 

the spheres is very large at high Reynolds and Peclet numbers. 

In contrast, for each sphere spacing the rates of mass transfer 

from the rear surfaces of the two spheres either remain nearly 

the same or change only slightly with Reynolds and Peclet 

numbers. Alst, for each sphere spacing the distributions of 

the local Sherwood numbers around the two spheres do not change 

much when the mesh spacing in Z is changed from IZs/101 to 

IZs/201 except over that part of the front surface of sphere A 

which at high Peclet and Reynolds numbers are affected by the 

relative thinness of the diffusional boundary layer in comparison 

with the relative coarseness of the Z-grid-line spacings. 
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The distance between the spheres is an important factor 

which affects the distributions of the local Sherwood number 

around the spheres especially at the front surface of sphere 

B. Except for the anomalous results at high Peclet and Reynolds 

numbers, the local Sherwood numbers.at the front surface of 

sphere A do not change much as the sphere spacing is increased 

although at the rear surface of sphere A they do increase, 

particularly when the sphere spacing is increased from Zs = 0.20 

to Zs = 1.32. On the other hand, the rates of mass transfer 

from the front surface of sphere B increase while those from 

the rear surface of sphere B remain nearly the same when the 

sphere spacing is increased. The increase in the rates of mass 

transfer from the front surface of sphere B with increasing 

anhAmrci crN=ci rsef 40 m=4?-11N, V.,nn=lisca 4-1, 	lmrevesr ..... 

the spheres results in a lower concentration of the diffusing 

material in the fluid in the inner region between the spheres 

and thus in increased rates of mass transfer from the front 

surface of sphere B. As a consequence, when the distance 

between the spheres increases the difference between the rates 

of mass transfer from the front surfaces of the two spheres 

becomes smaller and the distributions of the local Sherwood 

number around the two spheres become closer to each other as 

well as closer to those around a single isolated sphere. 
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6-5. Overall Sherwood numbers. 

The overall rates of mass transfer from a system of two 

equally sized spheres were expressed in terms of the overall 

Sherwood numbers ShAO and ShBO for spheres A and B, respectively. 

For each specified sphere spacing, Reynolds number, and Peclet 

number, the overall Sherwood numbers for the two spheres were 

obtained from the integration of the local Sherwood numbers 

over the entire surfaces of the spheres using equations(4-5-13) 

and (4-5-14) for spheres A and B, respectively. 

For each of the five sphere spacings considered in this 

study: Zs = 0.20, 1.32, 2.07, 2.48, and 3.09, and for each of 

the four selected Reynolds numbers of 0.001, 1.0, 10.0, and 

100.0, there are two sets of results corresponding to the mesh 

spacings of IZs/201 and IZs/101 in Z used in the solution of 

the diffusion equation. The overall Sherwood numbers obtained 

using the smaller, mesh spacing of IZs/201 in Z are tabulated 

in Tables(6-5-1) to (6-5-5); while those obtained using the 

larger mesh spacing of (Zs/101 in Z are tabulated in Tables( 

6-5-6) to (6-5-10). Plots of the overall Sherwood numbers 

against Peclet number are shown in Figures(6-5-1) to (6-5-16). 

For each specified sphere spacing and Reynolds number, the 

overall Sherwood numbers for the two spheres are plotted 

against Peclet number as shown in Figures(6-5-1) to (6-5-9). 

From these plots, the difference between the overall Sherwood 

numbers for the two spheres at each specified sphere spacing 

and Reynolds number can immediately be seen over a wide range 

of Peclet numbers. Also, in Figures(6-5-10) to (6-5-16) the 

overall Sherwood numbers for the two spheres at each specified 

sphere spacing are plotted against Peclet number separately 
• 
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with the four selected Reynolds numbers as parameter. From 

these plots, the influence of Reynolds number upon the overall 

Sherwood numbers for each of the two spheres can easily be 

studied,. 

From Figures(6-5-1) to (6-5-9), it is clear that for 

each sphere spacing and. Reynolds number, the overall Sherwood 

numbers of the two spheres are approximately equal and constant 

at low Peclet numbers of 0.001 to 0.1 in which range the 

transfer of material is mainly by means of molecular diffusion. 

At higher Peclet numbers, the overall Sherwood numbers for the 

two spheres increase steadily with increasing Peclet number, 

and the increase is larger for sphere A than for sphere B. These 

indicate the increasing importance of convection upon the 

transfer of material from the spheres and the effect of 

convection is greater for sphere A than for sphere B. Hence, as 

the Peclet number is increased the difference between the 

overall rates of mass transfer from the two spheres becomes 

larger. This is because sphere A is upstream of sphere B and 

encounters fresher fluid than sphere B; also, the diffusional 

boundary layer at the upstream surface of sphere A may be more 

highly developed than that at the upstream of sphere B. For 

these reasons there is a larger driving force for mass transfer 

from the front surface of sphere A than from the front surface 

of sphere B. It should be noted that the front surfaces of the 

spheres contribute most to the overall rates of mass transfer 

from the Qphgr-Qc. For  each sphcrc  spacing, except at high 

Reynolds and Peclet numbers the overall Sherwood numbers for 

the spheres generally do not change much when the mesh spacing 

in Z changes from IZs/101 to IZs/201. At high Reynolds and 
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Peclet numbers, the overall Sherwood numbers for sphere A are 

influenced by the combined effect of the large Z-grid-line 

spacings and the thin diffusional boundary layer over part of 

the upstream surface of sphere A (this has been discussed in 

the previous section). A further consequence of this combined 

effect is that the overall Sherwood numbers for sphere A 

increase more slowly than those for sphere B with increasing 

Peclet number, and at high Peclet numbers the overall Sherwood 

numbers for sphere A eventually become smaller than those for 

sphere B. It is important to note that this anomalous behaviour 

is generally not obvious except for the two largest sphere 

spacings considered in this study: Zs = 2.48 and Is = 3.09. 

For each sphere spacing, the influence of Reynolds 

number upon the overall rates of mass transfer from the spheres 

can be seen directly from Figures(6-5-10) to (6-5-16). For 

sphere A, the overall Sherwood numbers are independent of 

Reynolds number over the range of Peclet numbers from 0.001 to 

0.1; while for sphere B, the overall Sherwood numbers are 

independent of Reynolds number over the larger range of Peclet 

numbers from 0.001 to 1.0. The range of Peclet numbers over 

which the overall Sherwood numbers for sphere B are independent 

of Reynolds number become larger when the sphere spacing becomes 

smaller. On the other hand, at higher Peclet numbers the overall 

Sherwood numbers for the two spheres increase with increasing 

Reynolds number although the increase is always larger for 

sphere A than for sphere B. Hence, when both the Reynolds and 

Peclet numbers are large the difference between the overall 

rates of mass transfer from the two spheres is also large. 

From Figures(6-5-1) to (6-5-16) and Tables(6-5-1) to ( 



• 287 

6-5-10), it can be seen that the overall rates of mass transfer 

from the spheres increase with increasing sphere spacing, 

however, the increase is always larger for sphere B than for 

sphere A. The reason for this larger increase in the overall 

Sherwood numbers for sphere B than for sphere A is that increases 

in the distances between the spheres result in the lower 

concentration of the diffusing material in the fluid in the 

inner region between the spheres and thus in the larger rates 

of mass transfer from the front surface of sphere B. Except 

when the sphere spacing changes from Zs = 0.20 to Zs = 1.32, 

the rates of mass transfer from the rear surface of sphere A 

increase only slightly with increasing distance between the 

two spheres. As a result, when the sphere spacing is increased, 

she a; ! !r!rce bet een the overall rates of mass transfer 'r-m 
the spheres becomes smaller. 

It is important to note that for each sphere spacing 

and for all Reynolds numbers considered in this study, the 

overall Sherwood numbers for sphere A in the Peclet number:: 

range of 0.001 to 0.1 and the overall Sherwood numbers for 

sphere B in the Peclet number range of 0.001 to 1.0 are either 

less than or slightly larger than the limiting value of 2.0 

obtained for a single isolated sphere with molecular diffusion 

alone to an infinite medium. These values also increase with 

increasing sphere spacing. 
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CHAPTER 7. CONCLUSIONS 

The results of the present study are summarized as 

follows: 

1. Numerical solutions of the Navier-Stokes and diffusion 

equations have been obtained for a system of two equally sized 

spheres with a steady, isothermal, incompressible, Newtonian 

fluid flowing parallel to their line of centres. 

2. The bi-spherical coordinate system was used in the 

present study because of the ease with which it may be used 

to describe the locations of the two spheres and the boundary 

conditions of the system of governing equations. Unfortunately, 

it also introduced unequal distributions of grid lines in both 

the Z- and 6-directions in the flow region. 

In order to remove the unequal increments along the 

surfaces of the two spheres which arose from tsing the • 

conventional scheme of distributing the grid lines for the 

6-direction according to a constant increment in the value of 

6, a new scheme of distributing the grid lines according to a 

constant increment in the angle n was adopted. This new scheme 

had the advantages of distributing the grid lines for the 

6-direction more evenly in the flow region, particularly.when 

the sphere spacings were small, and of allowing many important 

quantities for the two-sphere fluid dynamic and mass transfer 

problems to be studied and interpreted in the same way as 

those for a single isolated sphere. 

3. An explicit extrapolated Gauss-Seidel method with 

under-relaxation was used to obtain solutions of the finite- 

• 
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difference forms of the Navier-Stokes and diffusion equations. 

Suitable values of the relaxation factors were supplied by 

trial-and-error in order to ensure that at each mesh point 

the solution converged with the desired accuracy. Computational 

times were reduced by using results obtained for immediately 

lower Reynolds and Peclet numbers as initial values for the 

iterative solutions of the Navier-Stokes and diffusion equations, 

respectively. 

4. In this study, five different sphere spacings: Zs = 

0.20, 1.32, 2.07, 2.48, and 3.09, corresponding to two equally 

sized spheres having a centre-to-centre distance of 2.0402, 

4.0106, 8.0510, 12.025, and 22.022 radii, respectively, were 

considered. The Navier-Stokes equations were solved for the 

stream function and vorticity distributions in the flow region 

for a series of Reynolds numbers ranging from 0.001 to 500; 

while the diffusion equation was solved separately for the 

concentration distributions in the same flow region for four 

selected Reynolds numbers of 0.001, 1.0, 10.0, and 100.0, each 

for a series of Peclet numbers from 0.001 to 500. The resultant 

distributions of vorticity and stream function were used to 

calculate the surface-pressures, angles of flow separation, 

and drag coefficients for the spheres. Similarly, the resultant 

distributions of concentration were used to calculate the local 

and overall Sherwood numbers. 

5. The vorticity distributions obtained for flow around 

two equally sized spheres were found to be dependent on the 

Reynolds number and on the sphere spacing. For each sphere 

spacing, the vorticity distributions at Reynolds numbers less 

i 
	than unity were symmetrical and those at higher Reynolds numbers 
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were unsymmetrical about a plane through the mid-point of the 

line of centres normal to the direction of flow. At high 

Reynolds numbers, a fluid dynamic boundary layer was observed 

to have developed at the upstream surfaces of the spheres, 

however, its development at the upstream surface of the 

downstream sphere, sphere B, became less pronounced when the 

distance between the spheres was decreased. 

It was also observed that for each of the five 

sphere spacings considered, the distributions of vorticity 
Weft 

around the two spheres alwaysat least slightly different from 

those around a single isolated sphere and that the difference 

became larger as the distance between the spheres decreased. 

This showed the effect of particle-to-particle interaction 

between the spheres upon the flow around the spheres. The 

extent of the interparticle interaction increased with 

decreasing sphere spacing. 

6. The stream function distributions around the two 

spheres were also found to be dependent on the Reynolds number 

and on the sphere spacing. For each sphere spacing, the 

distributions of stream function at low Reynolds numbers of 

0.001 to 0.1 were symmetrical while those at higher Reynolds 

numbers were unsymmetrical about a plane through the mid-point 

of the line of centres normal to the direction of flow. The 

main influence of sphere spacing upon the stream function 

distributions was shown particularly in the inner region 

between the spheres. As the sphere spacing was decreased, the 

streamlines with small values of the stream function moved 

further away from the line of centres of the spheres. For the 

• 
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two smallest sphere spacings: Zs = 0.20 and 1.32, at high 

Reynolds numbers nearly the whole inner region between the 

spheres became a wake region. 

7. The distributions of surface vorticity at the front 

surface of the upstream sphere, sphere A, and at the rear 

surface of the downstream sphere, sphere B, were found to be 

almost independent of sphere spacing whereas those at the rear 

surface of sphere A and at the front surface of sphere B were 

affected by the closeness of the spheres. In particular, as 

the sphere spacing was decreased the surface vorticities at the 

rear surface of sphere A for high Reynolds numbers became 

negative over a larger region while those at the front 

surface of sphere B for high Reynolds numbers decreased and 

eventually became negative for the two smallest sphere spacings 

considered in this study: Zs = 0.20 and 1.32. Also, for the 

smallest sphere spacing Zs = 0.20 the surface vorticities near 

the rear stagnation point of sphere A and near the front 

stagnation point'of sphere B were found to be nearly zero for 

all Reynolds numbers indicating the existence of stagnant fluid 

in the tiny inner region between the two nearly touching spheres. 

8. For each sphere spacing, at high Reynolds numbers 

there was flow separation from the rear surface of each sphere 

and that the angles of flow separation were always larger for 

sphere A than for sphere B. As the sphere spacing was increased, 

the angles of flow separation from the back of sphere A 

generally became smaller while those from the back of sphere B 

became larger until they both became close to that for a single 

isolated sphere. For the two smallest sphere spacings: Zs = 0.20 

and 1.32, flow separation from the front surface of sphere B 
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was observed; and the angle of flow separation was smaller 

for the larger of these two sphere spacings. 

9. It was observed that the distributions of surface 

pressure at the front surface of sphere A and at the rear 

surface of sphere B did not change much with sphere spacing; 

while those at the rear surface of sphere A and at the front 

surface of sphere B were affected by the closeness of the 

spheres. As the sphere spacing was decreased, the surface 

pressures at the rear surface of sphere A became larger while 

those at the front surface of sphere B became smaller so that 

as a result, the distributions of surface pressure around the 

two equally sized spheres became further away from those 

around a single isolated sphere.-It was also observed that 

for each sphere spacing, theNsurface pressures at the front 

surface of each sphere decreased with increasing Reynolds 

number. 

10. It was found that for each sphere spacing, the 

pattern of variation of the frictional, pressure, and total - 

drag coefficients for the spheres with increasing Reynolds 

number was generally similar to that for a single isolated 

sphere. It was also found that the total drag coefficients for 

each of the two spheres were less than those obtained by 

Al-Taha(1969) for a single isolated sphere. As the sphere 

spacing was increased, the total drag coefficients for each 

of the two spheres became closer to those for a single isolated 

sphere although the approach was closer for sphere A than for 

sphere B. 

11. The concentration profiles around the two spheres 

were found to be dependent on three parameters: the Peclet 
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number, the Reynolds number, and the sphere spacing. 

At low Peclet numbers of 0.001 to 0.1, the 

concentration profiles were symmetrical about a plane through 

the mid-point of the line of centres normal to the direction 

of flow, and remained nearly unchanged when the Reynolds 

number was increased. At higher Peclet numbers, the region of 

high concentration of the diffusing material was confined 

into a narrow zone upstream of each sphere. Also, the regions 

of high concentration became increasingly thinner as the 

Peclet number was increased so that at high Peclet numbers a 

diffusional boundary layer was observed to have developed at 

the upstream surface of each sphere. However, the development 

of a diffusional boundary layer at the upstream surface of 

sphere B became less pronounced when the sphere spacing was 

decreased. Meanwhile, at high Peclet numbers the concentration 

profiles around the spheres were influenced by the fluid 

dynamics, in particular, as the Reynolds number increased the 

regions of high concentration of diffusing material were 

confined into narrower regions upstream of the spheres. 

It was also observed that for each of the five 

sphere spacings considered, the concentration profiles around 

the two spheres were always at least slightly different from 

those around a single isolated sphere, and the difference 

became larger when the distance between the spheres was decreased. 

This showed that the particle-to-particle interaction between 

the spheres affected the rates of mass transfer from the 

spheres and that the effect of the interparticle interaction 

increased with decreasing sphere spacing. 

ft 
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12. It was observed that the local Sherwood numbers 

at the rear surface of sphere A and at the front surface of 

sphere B were affected by the closeness of'the spheres. As 

the sphere spacing was decreased, the higher concentration of 

the diffusing material in the fluid in the inner region between 

the spheres reduced the rates of mass transfer from the regions 

near the rear stagnation point of sphere A and near the front 

stagnation point of sphere B, and for the smallest sphere 

spacing Zs = 0.20 the mass transfer rates were nearly zero for 

all Reynolds and Peclet numbers. As a result, the distributions 

of local Sherwood number around the two spheres became 

different from those around a single isolated sphere. 

Except for sphere B at the smallest sphere spacing, 

the local Sherwood numbers at the front surfaces of the spheres 

increased with increasing Peclet number because of the decrease 

in the thickness of the diffusional boundary layer. It was 

observed that at low Peclet numbers of 0.001 to 0.1, the local 

Sherwood numbers,for the spheres were almost independent of 

Reynolds number although at higher Peclet numbers the local 

Sherwood numbers at the front surfaces of the spheres increased 

with increasing Reynolds number. It was found that the increase 

in the local Sherwood numbers with increasing Reynolds and 

Peclet numbers was always larger for sphere A than for sphere 

B. In contrast, the local Sherwood numbers at the rear surfaces 

of the spheres either remained nearly the same or increased 

only slightly when the Reynolds and Peclet numbers were 

increased. 

13. At low Peclet numbers of 0.001 to 0.1, the overall 

• 
	 Sherwood numbers for the spheres were approximately equal and 
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and constant. For the three smallest sphere spacings, the 

overall Sherwood numbers were less than the limiting value of 

2.0 obtained for a single isolated sphere by molecular 

diffusion alone to an infinite medium whereas for the two 

largest sphere spacings they were slightly greater than 2.0. 

At higher Peclet numbers the overall Sherwood numbers for the 

two spheres increased with increasing Peclet number although 

the increase was observed to be larger for sphere A than for 

sphere B. 

The overall Sherwood numbers for sphere A were 

independent of the Reynolds number over the Peclet numbers 

range of 0.001 to 0.1; while those for sphere B were independent 

of the Reynolds number over the larger Peclet number range 

of 0.001 to 1.0. At higher Peclet numbers, the overall Sherwood 

numbers for the spheres increased with increasing Reynolds 

number, however, the increase was larger for sphere A than for 

sphere B. 

It was also observed that the overall Sherwood 

numbers for the spheres increased with increasing sphere 

spacing; however, at high Peclet numbers the rate of increase 

was faster for sphere B than for sphere A. As a result, 

when the distance between the two spheres was increased the 

overall Sherwood numbers for the two spheres became closer to 

each other as well as closer to those for a single isolated 

sphere. 

14. The use of the bi-spherical coordinate system in 

the present study had a disadvantage which arose mainly from 

the inherently unequal distances between any two neighbouring 

• 
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grid lines in the Z-direction around the spheres. 

At high Reynolds and Peclet numbers the thicknesses 

of the fluid dynamic and diffusional boundary layers at the 

upstream surface of sphere A were both small in comparison 

with the large Z-grid-line spacings close to the upstream 

surface of sphere A. This resulted in some anomalous 

behaviours of the surface vorticities, surface pressures, and 

local Sherwood numbers obtained for that region which 

subsequently affected the accuracy of the drag coefficients 

and the overall Sherwood numbers for sphere A. Fortunately, 

this effect was significantly reduced when the sphere spacing 

was small and when a smaller mesh spacing in the Z-direction 

was' used in the solutions of the Navier-Stokes and diffusion 

equations. For sphere B, this disadvantage was either not 

present or very small because the Z-grid-line spacings close 

to the upstream surface of sphere B were generally very small 

in comparison with those close to the upstream surface of 

sphere A. 

15. The computer programmes used in the present study 

were developed solely to predict the flow conditions around 

two equally sized spheres parallel to their line of centres 

and to predict the rates of mass transfer from them. However, 

there is scope for these programmes to be used in studies of 

two spheres of different sizes. Furthermore, with appropriate 

modification and combination, the computer programmes can be 

extended to studies of two-sphere free convective, interacting 

free and forced convective mass transfer problems, as well as 

to studies of time-dependent two-sphere fluid dynamic and mass 

transfer problems. 
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APPENDIX A. BI-SPHERICAL COORDINATE SYSTEM. 

A-1. Bi-spherical coordinates(Z,0,0). 

A system of two spheres is formed by the rotation of 

two circles about their line of centres. The relationships 

between the bi-spherical coordinates(Z,04) and the rectangular 

Cartesian coordinates(yi,y2,y3) are as follows: 

aSinhZ 
y 

  

(A-1-1) 1 CoshZ - Cos() 

Y2 = 

 

aSineSin4) 
(A-1-2) 

 

CoshZ - CosO 

Y3 - 

 

aSinhZCos0 
(A-1-3) 

- CoshZ - CosB 

with the ranges of the coordinates as follows: 

-= < Z < += , 0 < 0 < 7 , 0 < < 27 	(A-1-4) 

For an orthogonal curvilinear coordinate system, the scale 

factors, (hi, i = 1,2,3), are related to the rectangular 

Cartesian coordinate system by the following expression: 

3 	Iric 2 ]1/2 h. 	E 
k=1 Bxi  

(A-1-4) 

where (yk, k = 1,2,3) represent the rectangular Cartesian 

coordinates, and (xi, i = 1,2,3) represent the orthogonal 

curvilinear coordinate system. 

For the bi-spherical coordinates, xl  = Z, x2  = e, x3  = 0, 

the following scale factors: hi.  = hz, h2  = he, and h3  = ho, are 

• 
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obtained by substituting equations(A-1-1) to (A-1-3) into 

equation(A-1-4): 

a 	aSine 
hZ = he  =  	h 

CoshZ - Cos8 	CoshZ - Cos() 
(A-1-5) 

The element of area on the surfaces of the spheres with 

Z = ±Zs (Z = -Zs represents the upstream sphere while Z = +Zs 

represents the downstream sphere) is: 

dS = h2h3dx2dx3 

a 	aSin8 
- 	( (A-1-6) ) 	( 

Cosh(±Zs) 	- Cose 	Cosh(±Zs) 	- CosO 

and the total surface area of each of the spheres is: 

47ra2 a2 

S - - 41r (A-1-7) 2 Cosh(±Zs) 	- 1 Sinh2(±Zs) 

Similarly, the element of volume of each of the spheres is: 

dV = h1h2h3dx1dx2dx3 

aaSin0 
- ( 	)

2
( 	)dZdedcp (A-1-8) 

Cosh(±Zs) - Cose 	Cosh(±Zs) - CosO 

and the volume of each of the spheres is: 

  

a3 

  

V = 4 3 

  

(A-1-9) 

 

3 Sinh (±Zs) 
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Figure(A-1) Bi-polar coordinates (Z,O) in a meridian 

plane. 

0=,r 

0=02 

0=01 
0 

-Zs -Z -Z 1 2 Z2  z1 

	 0=0 
+Zs . 

Figure(A-2) Transformed bi-polar coordinate(Z,O) plane. • 
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A-2. Reduction of bi-spherical coordinates to bi-polar 

coordinates. 

The flow of a fluid around two equally sized spheres 

parallel to their line of centres is independent of the angle 

of rotation, 4), and is axisymmetrical. Hence, the bi-spherical 

coordinate system may be reduced to the bi-polar(Z,O) coordinate 

system so that the bi-polar coordinates(Z,O) in a meridian 

plane are the only coordinates required to describe the flow. 

The relationships between the bi-polar coordinates(Z,O) 

and the Cartesian coordinates(yi,y2) are obtained from the 

transformation of: 

yl  + iy2  = ia.Cot1/2(O + iZ) 

(A-2-1) 
with a > 0 

which, on equating the real and imaginary parts, leads to the 

following relations: 

aSinhZ 

yl 

 

(A-2-2) 
CoshZ - Cos° 

y2 - 
aSine 

(A-2-3) 
CoshZ - Cos0 

Equations(A-2-2) and (A-2-3) describe the physical plane shown 

in Figure(A-1). 

On eliminating El from equations(A-2-2) and ( A-2-3), the 

following relationship is obtained: 

2 (yl  - aCothZ)2  + y2  = a2  Csch2  Z (A-2-4) 
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Equation(A-2-4) describes, for different values of Z, a family 

of non-intersecting, coaxial circles with their centres lying 

along the yl-axis. For 2: = -Zs = constant, it describes a 

circle lying entirely to the left of the plane yl  = 0 which has 

its centre at tha point(yi  = aCoth(-Zs), y2  = 0) and which has 

a radius of aCsch(-Zs); while for Z = +Zs = constant, it 

describes another circle lying entirely to the right of the plane 

y/  = 0 which has its centre at the point (yl  = aCoth(+Zs), v2  = 

0) and which has a radius of aCsch(+Zs). It is important to 

note that those two circles have the same radius and that their 

centres are the same distance from the origin of the bi-polar 

coordinate system- The points (-a, 0) and (+a, 0), are the 

centres of the two circles of zero radius ( Z = -00 and Z = +00). 

	

“n=n , 	equations(A-2-2) and ;A 2-3), 

the following relation is obtained: 

	

+ (y, 	2 - aCot9) = a2Csc26 	(A-2-5) 

which describes, for different values of 6, a family of circles 

with their centres lying along the y2-axis. 

The conformal mapping of the bi-polar coordinates(Z,O) 

into the rectangular Cartesian coordinates(yi,y2) is obtained 

through an exponential function:? = eZ + i6 = e
y
1 + iy2 , which 

gives: yl  = Z and y2  = 0. The transformed coordinates(Z,6) are 

shown in Figure(A-2). It is clear that the two planes of Figures 

(A-1) and (A-2) correspond co each other. The semicircles 

constant and the circular arcs 6 = constant shown in the upper 

half of the physical plane of Figure(A-1) corresponding to the 

vertical lines Z = constant and to the horizontal lines 9 = 
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constant, respectively, in Figure(A-2). Similarly, the two 

shaded areas in the two figures also correspond to each other. 

For a system of two equally sized circles with Z = -Zs 

and Z = +Zs, surrounded by a large. boundary circle of radius r 

which has its centre at the mid-point of the line of centres, 

the flow region in the upper half of the physical plane of 

Figure(A-1) which is bounded by 0 = 0, O = n, Z = -Zs, Z = +Zs, 

and the enveloping large semicircle, maps into a rectangular 

plane of Figure(A-2) which is bounded by the straight lines 

= 0, e = n, Z = -Zs, Z = +Zs, and by the curve corresponding 

to the enveloping semicircle. 

The location of the enveloping semicircle is determined 

as follows: 

2 2 	2 	aSinhZo 	aSinOo 	2 r = y1  + y2  - ( 	)
2 
+ ( 	) 

 

CoshZo - Cos°o 	CoshZo - Cos°o 

2 	 CoshZo 	() + Cos o
) = a ( 

	

	 (A-2-6) 
CoshZ - Cos()o 

Division of equation(A-2-6) by d2, where d = alCothZsl is the 

distance between the centre of either-circles to the origin of 

the bi-polar coordinate system, gives: 

r 2 

	

a CoshZo + Cost)o 	CoshZo + Cos()o  (-) = (-) 2( 	) = tanh2Zs( 
d 	d CoshZo - Cos()o 	CoshZo - Cos°o 

(A-2-7) - 

rearrangement of equation(A-2-7)_ gives: 

{ (r/d) 2/tanh2Zs}- 

	

CothZo  = 	. 	2 	• .Cos0 	• 	. . • {(r/d) /tank 	1 	° 
(A-2-8) . 
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Table(A-1). Values of. 8_ corresponding to values of n incremented 

by a constant value of-60. 

Zs = 0.20 1.32 2.07 2.48 3.09 

n e 

0 0.0 0.0 0.0 0.0 0.0 
6 0.6 3.5 4.7 5.1 5.5 
12 1.2 7.0 9.3 10.2 11.0 
18 1.8 10.5 14.0 15.3 16.5 
24 2.4 14.0 18.7 20.4 22.0 
30 3.1 17.6 23.5 25.5 27.5 
36 3.7 21.3 28.3 30.7 33.0 
42 4.4 25.0 33.2 36.0 38.6 
48 5.1 28.9 38.1 41.3 44.2 
54 5.8 32.8 43.1 46.6 49.9 
60 6.6 36.9 48.3 52.0 55.6 
66 7.4 41.2 53.5 57.5 61.3 
72 8.3 45.6 58.8 63.1 67.1 
78 9.2 50.2 64.3 68.8 73.0 
84 10.3 55.0 69.9 74.6 78.8 
90 11.4 60.1 75.6 80.4 84.8 
96 12.6 65.4 81.5 86.4 90.8 
102 14.0 71.1 87.6 92.5 96.9 
108 15.6 77.0 93.8 98.7 103.0 
114 17.5 83.0 100.1 104.9 109.1 
120 19.6 90.1 106.7 111.3 115.4 
126 22.1 97.2 • 113.4 117.8 121.7 
132 25.2 104.8 120.3 124.5 128.0 
138 29.1 112.9 127.4 131.2 134.4 
144 34.1 121.3 134.6 138.0 140.8 
150 	• 40.8 130.3 141.9 144.8 147.3 

156 50.2 139.6 149.4 151.8 153.8 
169 64.4 144.4 1 56.9 1 58.8 1 6(1.3 

168 87.0 159.4 • 164.6 165.8 166.9 

174 124.5 169.6 172.3 172.9 173.4 

180 180.0 180.0 180.0 180.0 180.0 
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When values of Zs and (r/d) are specified, equation(A-

2-8) can be solved for Zo  for any specified value of 60. Pairs 

of values of Zo and eo are the bi-polar coordinates of the 

outer boundary of the flow region which, when plotted, provided 

the dashed-line curve in Figure(A-2). 

A-3. Calculation of the value of 0 Which correspond to values 

of r  incremented by a constant value. 

From Figure(A-1), it is clear that for each specified 

value of 6 there are two points on the circumferences of the 

circles: one on each circle, with the same value of angle n 

measured from the axis of symmetry 6 = 0°. For sphere A, n is 

the angle between the normal to the front stagnation point and 

the normal to a point on the circumference; while for sphere B, 

it is the angle between the normal to the rear stagnation point 

and the normal to a point on the circumference. Except at the 

front and rear stagnation points of the circles, the value of 

6 is always different from that of n. 

In order to study and understand the results of the two-

sphere fluid dynamic and mass transfer problems in the same 

way as those for a single isolated sphere, it is desirable to 

adopt a scheme of distributing the grid lines for the 6-direction 

with a constant increment in the values of n instead of 

retaining a constant increment in the value of 6. From the 

relationship between n and 6 as shown in Figure(A-1), the 

following expressions are obtained using equations(A-2-2) and 

(A-2-3): 
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For circle A (Z = -Zs).  

71A 

aSinh( -Zs) 
(A-3-1) 

Cosh(-Zs) - CosO 

aSin8 

Y2A 

 

(A-3-2) 
Cosh(-Zs) - Cose 

YlA 	 twin = 	 (A-3-3) 
Y2A 	1Cosh(-Zs)I 

For circle B (Z = +Zs).  

aSinh(+Zs) 

Y1B 

 

(A-3-4) 
Cosh(+Zs) - Cose 

aSine 
Y2B 

 

(A-3-5) 
Cosh(+Zs) - Case 

tang = 	1B 	
(A-3-6) 

Y2B 	1Cosh(+Zs)I 

When values of the sphere spacing Zs and the constant increment 

in fl, are specified, then, because of symmetry values of 0 can 

be obtained from either equations(A-3-1) to (A-3-3) or from 

equations(A-3-4) to (A-3-6). 

Values of 0 for five sphere spacings: Zs = 0.20, 1.32, 

2.07, 2.48, and 3.09, and for a constant increment in the angle 

of 6°  are shown in Table(A-1). It is clear that the values of 

0 and n  are not the same, and that the difference between them 

are very large when the sphere spacing is small. This scheme of 

distributing the grid lines for the 6-direction according to a 

constant increment in fl also has the advantage of distributing 

the grid lines more evenly in the flow region than that using 

a constant increment in e. 
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APPENDIX B. SURFACE PRESSURE DISTRIBUTIONS AND DRAG 

COEFFICIENTS. 

B-1. Physical components of the stress tensor for an 

incompressible Newtonian fluid. 

For an incompressible Newtonian fluid, the symmetrical 

Newtonian stress tensor is as follows: 

T
ij 

= -p.  Sij  + p. 
	

( B-1-1) 

where p is the static-fluid pressure, Sij  is the Kronecker 

delta(6ij = 1 for i = j, and (Sij = 0 for i 	j), and eij is 

the symmetrical rate of strain tensor. 

The nine components of the stress tensor expressed in 

bi-spherical coordinates(Z, 0, (I)) are as follows: 

CoshZ-Cose av z 	Sine 
TZZ 	-p + 2p(- 	) 	( 	)V 	(B-1-2) 

a 	az 	CoshZ-Cose 
i. 

	

CoshZ-Cose av 	SinhZ 
T00 = -p + 2p(  	)Vz (B-1-3)  

a 	ao 	coshz—cose 

T 	= -p + 2p( 
CoshZ-Cose 1 31.7(0  SinhZ 

a Sine acp CoshZ-Cose)Vz 

CoshZ.Cose-1 	1 

	

)Ve] 	(B-1-4) 

CoshZ-Cose avz 	Sine 	ay
e  T

ze 
= TOZ  = p( 	) 	+ ( 	)Vz + a 

Sine(CoshZ-Cose) 

Laz 	
CoshZ-Cose 	az 

+ ( 	 
CoshZ-Cose)] 

0 
SinhZ 

(B-1-5) 
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T4  

T
04) 

= 	T(1)Z 

= T 

CoshZ-Cosa 1 aV 
+ .Z_ 

3V 
(I)  = 	II( 	) 

a 

SinhZ 
+ 

Sine 

1.7] 

1 

34) 

3V e 

3Z 

3V (1) 

( 
CoshZ-Cosa 

CoshZ-Cosa 
= p( 	) 

a Sine a(1) ao 

CoshZ Cose-1 
{ 

	

	} V 
Sine(CoshZ-Cose) 

(B-1-6) 

(B-1-7) 

B-2. The Navier-Stokes and diffusion equations in 

bi-spherical coordinates. 

For steady incompressible Newtonian flows, the continuity, 

Navier-Stokes and diffusion equations are given as follows: 

A 

V .V = 0 

A 	24 V-VC = D V C7 

A ^ 	^ 	A 	
1 	

A 	 A 

1/2V(V.V) 	Vx(VxV) = - —VP + v[7(V.V) - Vx(VxV)] (B-2-3) 

When expressed in terms of bi-spherical coordinates these 

equations become as follows: 

1. The continuity equation in bi-spherical coordinates: 

	

CoshZ-Cose aV 	SinhZ 	aV 
	) { " 2( 	)Vz} + 

a 	az 	coshz-cose 	ae 	(B-2-4) 

CoshZ.Cose-1 	Sine 	1 aVA  
(  	)V 	-• = 0 
SinO(CoshZ-Cose) 	CoshZ-Cose 	Sine 3(1) 

• 
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2. The diffusion equation in bi-spherical coordinates: 

CoshZ-Cosh DC 3C V 31 
	) Vz 	+ Ve• — + 	D 

 V
2C (B-2-5) 

a 	3Z 	36 	Sin() 34) 

where: 

V
2 CoshZ-Cos0 
- 	

2 
32 

+ 	( 

9 

-SinhZ 
) + 

] 

a
2 

(B-2-6) 

( 	) 
a 

CoshZ-Cos6-1 

3Z2 CoshZ-Cose DZ 

1 	a

2  

ae
2 

SinO(CoshZ-Cos6) ae 
2 	' 	2 Sin 0 	9cp 

3. The Z-, 0-, and cp-components of the Navier-Stokes 

equations in bi-spherical coordinates are as follows: 

Z-component of the Navier-Stokes equations: 

CoshZ-Cos0 
) V 

3V DV Z V 3V Z -Sine ( 	)VV 
a 3Z 

+ V
e 
ae Sine 36 

6Z CoshZ-Cos6 

-SinhZ 	-SinhZ 	 2 (
CoshZ-Cos6

)V
e 
+ (

CoshZ-Cose
)V2] 

	

p((
CoshZ-Cos0 ap 	CoshZ-Cose 	a 
	). 	+ v( 	) 2 [-(

CoshZ-Cos
) 2 • V2Vz  

a 	DZ 	a 

+ {-2( 
-SinhZ 

) 
2 
+ 

-Sin6 
( 	)

2
}Vz  

CoshZ-Cos0 CoshZ-Cos6 

-SinhZ 2 -SinhZ 	-Sine 
+ {2( ) + 	( )( )1V0  

CoshZ-Cos0 CoshZ-Cose 	CoshZ-Cos6 

-Sine V e -SinhZaV 
+ 2{( )* ). 

CoshZ-Cos0 3Z CoshZ-Cos0 	96 



• 
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1 -SinhZ 3V41 

Sine CoshZ-Cosa 34) 
(B.-2-7) 

0-component of the 

CoshZ-Cosa 

Navier-Stokes equations: 

3V 	3 
0 	Ve 	V 	Ve 

• V 
-Sine 2 

) 
a 

-SinhZ 

Vz 	e  • 	+ 
az 

+ 

De 	Sine 	acp 

CoshZ-Cose-1 21 V 

)Vz CoshZ-Cos0 

+ 	( 	)VzVe  
CoshZ-Cos0 Sine(CoshZ-Cosa) 

CoshZ-Cos0 DP 	CoshZ-Cos0 	a 
). 	+ v( 	)

2 
[(

CoshZ-Cose

)2V2 
1( 	 Ve 

a 	ae 	a  

-Sin() 	av 	a z 	-SinhZ 	vz  
+ 21 ( 	). 	+ ( 	)- 

CoshZ-Cos0 3Z 	CoshZ-Cosa ae 

1 CoshZ•Cos0-1 DV
(1) 	

-Sine 	-SinhZ 
} • • 	) ( 	)Vz  

Sine Sine(CoshZ-Cose)4 	CoshZ-Cos0 CoshZ-Cosa 

-SinhZ 	-Sine 	CoshZ•Cose-1 ] 
- Ve{( 	)

2 
+ ( 	)

2 
+ ( 	

)2, 
 

CoshZ-Cosa 	CoshZ-Cosa 	SinO(CoshZ-Cosa) 

(B-2-8) 

--component of the Navier-Stokes equations: 

CoshZ-Cos0 av v av 
	) vz.__ 	v  .2ii 	(1)  

a 	az 	30 	Sine 34)' 

-SinhZ 
+ ( 	)VZ  V0  + CoshZ-Cosa  

CoshZ•Cos0-1 

Sine(CoshZ-Cos0) 6 
	4,V V 

1(
CoshZ-Cose DP 	CoshZ-Cosa 	a 	2 2 
	)a 	+ v( 	)

2 
[( 	) •V V 

P- 	 ci) a 	Dcf) 	a 	CoshZ-Cosa 

• 
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2 -SinhZ avz  2 CoshZ.Cos0-1 3Ve + 	( 	). 
Sin8 CoshZ-Cosh aq) 	Sin8 Sine(CoshZ-Cosh) 34) 

-SinhZ 	CoshZ.Cos8-1 
- 	{ ( 	)

2 
+ ( 	)` ve 	 }.] 	(B-2-10) 

CoshZ-Cos8 	SinO(CoshZ-Cos8) 

For axisymmetrical flow with no swirl, V , its 

derivatives, and all derivatives with respect 	to cp are zero 

so that equations(B-2-4) to (B-2-10) reduce to simpler forms. 

B-3. Surface pressure distributions. 

The pressures at the surfaces of the two equally sized 

spheres can be determined from the Navier-Stokes equations 

when the vorticity distributions around the spheres are known. 

For an axisymmetrical flow without swirl, there are only two 

components of the Navier-Stokes equations so that the two 

components of velocity: Vz  and Ve, are related to the single 

component of vorticity of the fluid, 	in the 4)-direction. 

Therefore, a relationship can be obtained for the surface 

pressure distributions in terms of the vorticity distributions 

around the spheres. This relationship is derived below. 

The components of the Navier-Stokes equations in the 

Z- and 0-directions, when expressed in terms of vorticity 

become-as follows: 

The Z-component of the Navier-Stokes equations: 

+ 
3VZ 1 

	

3P 	3 	CoshZ.Cos8-1 
V + . __ .--- —. 	. - v(__ 	•0 	(B-3-1) Z 	 p  Dz aZ 	ae Sine(CoshZ-Cos0) 
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The e-component of the Navier-Stokes equations: 

3Ve 	3Ve 	-SinhZ 	-Sine 
(Vz• — + V.---) + ( 	) -v v 	) 

2 
z e 	. vz  

az 	ae 	CoshZ-Cosa 	CoshZ-Cosa 

aP 	-SinhZ _,_ 1 — = v•(-- + ( 	)*C} 
P  ae 	3Z 	CoshZ-Cosa 

(B-3-2) 

where, 

CoshZ-Cosa r2Ve 	-Sine 	91.7z 
( 	)1 	+ ( 	)* ve  

a 	Laz 	CoshZ-Cosa 	ae 

-SinhZ 
+ ( 	)*Vd 

CoshZ-Cosa 
(B-3-3) 

The pressures at the front stagnation point of sphere A 

and at the rear stagnation point of sphere B can be obtained 

in the following ways: 

Figure B-1. Fluid flows.around a system of two equally 

sized spheres. 

Along the axis of symmetry, e = o: t, ve, and all their 

derivatives with respect to Z are zero, and the vorticity 

defined by equation(B-3-3) becomes zero also. Because the 

second term on the right-hand side of equation(B-3-1) is 



1/2pU2  

Ps - Po K - (B-3-7) 

S 
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indeterminate, it is necessary to use the limiting rule of 

L'Hospital to give: 

CoshZ-Cos6-1 	ac 	ac ae   lim 	-c 	_  
6-)-0 SinO(CoshZ-Cos6) 	Case 	36 

Hence, equation(B-3-1) becomes: 

avZ 	1 aP + 	= - 2v( --) 
3Z 	P az 	36 

(B-3-4) 

(B-3-5) 

Integrating equation(B-3-5) along the axis of symmetry from 

points A to B gives: 

3c P1 	2 
-(P -P ) + k(V )1 - k(V2)1 = -2v fB( --) dZ 	(B-3-8) B A 	Z 1B 	IA k AA 

The dimensionless pressure coefficient K may be defined 

as follows: 

where Ps is the pressure at the surfaces of the spheres and 

Po is the pressure in the undisturbed fluid. The dimensionless 

pressure coefficients at the points A and B are denoted by KA  

and KB, respectively. 

Also, introduction of the dimensionless velocity u*, where 

u* = Vz/U, into equation(B-3-6), gives: 

KB - KA + ue- u*
A
2 = 

-8 	B ac 
f 	dZ 

Re A 36 
(B-3-8) 

• 
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If point A is well upstream of sphere A and point B is at the 

front stagnation point of sphere A, then: 

u* = 0, 	= 1, KA  = 0, and 
K1 = KAO 

so that equation(B-3-8) becomes: 

* 
8.0 Z=0 ac 

KAO = 1.0 + 	f 	(---) dZ 
Re Z=-Zs 38 

(B-3-9) 

Similarly, if point A is at the rear stagnation point 

of sphere B and point B is well downstream of sphere B, then: 

u* = 1, u*A  0, = 0 KA  = KBO'  and KB = 0 

so that equation(B-3-8) becomes: 

* 
8.0 Z=0 

KBO = 1.0 + 	
f 	dZ 

Re Z=+Zs ae 
(B-3-10) 

where KAO and KBO are the dimensionless pressure coefficients 

at the front stagnation point of sphere A and at the rear 

stagnation point of sphere B, respectively. 

The surface pressure distributions for the two equally 

sized spheres can be obtained from equation(B-3-2), the ()-

component of the Navier-Stokes equations, in the following way: 

On the surfaces of the spheres, Z = ±Zs: i, Vz, V8, and 

all their derivatives with respect to e are zero. Also, from 

the continuity equation, 31.7z/3Z = O. Hence, equation(B-3-2) 

becomes: 

ap 	9C 	SinhZ 
1•- = 	)*Cs 
P  ae 	az 	CoshZ-Cos8 

(B-3-11) 
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Figure(B-2) Pressures and viscous stresses on the 

surfaces of the spheres. 

For sphere A, the integration of equation(B-3-11) around the 

surface from points C to D, as shown in Figure(B-2), gives: 

Sinh(-Zs) 

TS-(1)D-PC) = v I 	- ( 	 ).clrlde 	1B-3-12) 
C 3Z Cosh(-Zs)-CosO 

In terms of dimensionless functions, equations(B-3-12) becomes: 

4 D ac 	. Sinh(-Zs) 
- 	) 's]d8 (B-3-13) K = D  Kc  
Re C aZ 	Cosh(-Zs)-Cose 

If the point C is considered to be at the front 

stagnation point of sphere A and the point D to be on the surface 

at a reference angle e, then Kc  = KAO  and K = KAO. Thus 

equation(B-3-13) can be rewritten as: 

4 e ac 	Sinh(-Zs) 
KK 	)C dO (B-3-14) 

Re 0 aZ 	Cosh(-Zs)-Cos8 s  

where KAO is given by equation(B-3-9) , while' KAe is the 

dimensionless pressure coefficient at an angle 8 on the surface 

of sphere A. 

On the other hand, for sphere B the integration of 

equation(B-3-1l) around the surface from points C' to D' gives: 

0 
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-Sinh(+Zs) 1 —(P-P ) = v f 	 de (B-3-15) p D' C' C' 3Z Cosh(+Zs)-CosO s  

In terms of dimensionless functions, equation(B-3-15) becomes: 

	

4 DTC 	-Sinh(+Zs) 
K ' = K 	+ 	I 	( 	de (B-3-16) D C' 

	

Re C' 3Z 	Cosh(+Zs)-Cos0 s  

If the point C' is considered to be at the rear stagnation 

point of sphere B and the point D' to be on the surface at a 

reference angle 0, then Kc, = KBO  and Kr), = KBe. Thus, 

equation(B-3-16) becomes: 

* 

	

4 0 	Sinh(+Zs) 
KBe = KBO + 	I 	+ ( 	)c dede (B-3-17) 

	

Re 0 	az 	cosh(+zs)-cose 

where KBO is given by equation(B-3-10), while KBe is the 

dimensionless pressure coefficient at an angle 0 on the surface 

of sphere B. 

B-4. Drag forces and drag coefficients. 

The total drag force on each of the two spheres is the 

sum of the pressure and viscous forces exerted by the fluid 

on the surface of each sphere in the direction of flow. Hence, 

the total drag force, DT, can be expressed as the sum of the 

frictional drag force, DF, and the pressure drag force, DF: 

DT = DF + DP 
	 (B-4-1) 

Dividing each term of equation(B-4-1) by kpU2A, where A is 

the cross-sectional area of each sphere gives: 

• 
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CDT = CDF + CDP 
	 (B-4-2) 

where CDT,  CDF/ and CDP, are the total, frictional, and 

pressure drag coefficients, respectively. 

For each sphere, the frictional drag force is evaluated 

from the sum of the tangential viscous stresses in the direction 

of flow at all points on the surface; while the pressure drag 

force is obtained from the summation of the pressure forces 

in the direction of flow at all points on the surface. 

On the surfaces of the two equally sized spheres, Z = ±Zs: 

VZ/ V0, and all their derivatives with respect 	to 0 are 

zero, hence, from equation(B-1-5) Tze, which is the only non-

zero component of the Newtonian stress tensor, becomes: 

CoshZ-cose DV 

TZO = 	) • 	= 11 s a 	BZ 
(B-4-4) _ 

Also, the average normal pressure at any point on the sphere 

surface is P. It is important to note that the horizontal 

components of the pressure and viscous forces contribute to 

the drag force; while the vertical components of the pressure 

and viscous forces contribute to the lift force which is zero 

in the present case of flow around a system of two equally 

sized spheres parallel to their line of centres. 

Hence, the frictional drag force for each sphere is: 

D = ff Tze  .Cosa dS 
	

(B-4-5) 

and the pressure drag force for each sphere is: 

• 	 D = II 	dS 
	

(B-4-6) 
S 
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where a is the angle between the tangential plane and the 

direction of flow far from the spheres as shown in Figure(B-2), 

and dS is the element of surface area given by equation(A-1-6). 

From Figure(B-2), it is clear that the relationship 

between a and n is as follows: 

0 = kIT - n 	 (B-4-7) 

Hence, 

Cosa = Sinn 	 (B-4-8) 

Sins = Cosn 	 (B-4-9) 

where n can be obtained either from equation(A-3-3) of 

equation(A-3-6). 

From equations(B-4-4), (B-4-5), and (B-4-8), the 

expressions for the frictional drag forces on spheres A and B: 

DFA and DFB, are obtained as follows: 

rr 	 a 	aSine 
DFA = 2wp ssinn( 	) 	) de 

0 	Cosh(-Zs)-Cose Cosh(-Zs)-Cose 

(B-4-10) 

a 	aSine 
DFB = 271p I s

Sinn( 	) ( 	) de 
0 	Cosh(+Zs)-Cose Cosh(+Zs)-Cose 

(B-4-11) 

Similarly, from equations(B-4-6) and (B-4-9), the 

expressions for the pressure drag forces on spheres A and B: 

DPA and DPB, are obtained as follows: 

71' 	 a 	aSine 
DPA  = 2w f +PCosn( 	) ( 	) de PA 	

o 	Cosh(-Zs)-Cose Cosh(-Zs)-Cose 

(B-4-12) 
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a 	a•Sin6 
DPB = 27f -PCosn( 	) ( 	) de 

0 	cosh(+zs)-cose cosh(4-zs)-cose 

(B-4-13) 

In terms of drag coefficients, the above four 

expressions become: 

* 
8 	Tr * 	a* 	a •Sine 

CDFA 	- = -- I sSinn( 	)( 	) de 

	

Re 0 	Cosh(-Zs)-Cose Cosh(-Zs)-Cose 

(B-4-14) 

* 	* 
8 7 * 	a 	a •Sine 

CDFB = 	I Sinn( 	) ( 	) de s 

	

Re 0 	Cosh(+Zs)-Cosa Cosh(+Zs)-Cosa 

(B-4-15) 

	

Tr 	 a 	a .Sin0 

-DPA 	0 	 Cosh(-Zs)-Cose Cosh(-Zs)-Cose 

(B-4-16) 

* 
a -Sine a* 	• 

CDPB = -2 	Kecosn( 	) 	) de 
0 	Cosh(+Zs)-Cosa Cosh(+Zs)-Cosa 

(B-4-17) 

and the total drag coefficients for the spheres are: 

=+ 	 (B-4-18) CDTA CDFA CDPA 

=  
CDTB CDFB CDPB 	 (B-4-19) 

where CDFA' CDPA' CDTA' are the frictional, pressure, and total 

drag coefficients for sphere A; while CDFB,  CDPB, and  CDTB' 

are the frictional, pressure, and total drag coefficients for 

sphere B. 

• 
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APPENDIX C. LOCAL AND OVERALL SHERWOOD NUMBERS. 

C-1. Local Sherwood numbers. 

According to Fick's law of mass diffusion the local 

diffusional mass fluxes normal to the surfaces of the two 

spheres are: 

For sphere A: 

For sphere B: 

-D 
JA 
	(ac) 

DZ Z = -Zs 
11Z 

-D 
JB - 	

(ac) 
3Z Z = +Zs 

Z 

(C-1-1) 

(C-1-2) 

where D is the diffusivity of the diffusing material in the 

The local mass fluxes can also be expressed in terms of 

the local mass transfer coefficient, hp(6), as follows: 

JA = hD(6)(C s  - Co) 

JB = hD(0)(Cs  - Co) 

Hence, equations(C-1-1) to (C-1-4) give: 

For sphere A: 

For sphere B: 

hD(6) 
- (

Cosh(-Zs)-Cos0 1  ac 
a 	)C -C (DZ)Z=-Zs (C-1-5)  Dc 	s o 

hD(6) - (Cosh(+Zs)-Cose 1  3C a 	)
C s -C  o  ( aZ

)Z=+Zs (C-1-6) 
D
c  

The local Sherwood numbers for the two spheres, spheres A and 

B, are defined as follows: 
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ShAL(8) - 

ShBL(8) - 

211.hD(8) (C-1-7) 

(C-1-8) 

DC  

2R.hD(8) 

Dc  

where R is the radius of the spheres. 

Hence, from equations(C-1-5) and (C-1-7), the local Sherwood 

number for sphere A is obtained as follows: 

Cosh(-Zs)-Cose 3C 
ShAL(8) = -2.0( 	) 	Z=-Zs a 	3Z 

(C-1-9) 

and from equations(C-1-6) and (C-1-8), the local Sherwood 

number for sphere B becomes: 

* 
Cosh(+Zs)-Cos8 ac 

--- ShBL(8) = -2.0( 	 
a* 	

)( 	)Z=+Zs 3Z 
(C-1-10) 

* 
where a = ISinhZsl. Thus, when the concentration distributions 

around the two spheres are known, the local Sherwood numbers 

for the spheres can be obtained using equations(C-1-9) and 

(C-1-10). 

C-2. Overall Sherwood numbers. 

The overall rates of mass transfer from the spheres to 

the fluid flowing around them, are either expressed in terms 

of the overall mass transfer coefficient, hp, or the overall 

Sherwood number (Sh0  = 211•11D/DC). 

The total mass flux from the surface of each sphere, Qp, 

is evaluated by the summation of the products of mass flux and 
• 



hDA 	1 	1 DC 

Dc 	S(C s  -C o) S 	hz 3Z 
	 It ---( --) Z=-Zs dS 	(C-2-5) 

hDB 	1 	1 DC 
	 II ---(--) 	dS Z=+Zs D 	S(Cs  -Co  ) S 	h DZ 

For sphere (C-2-6) 

• 
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area for all points on the surface. 

For sphere A: 	QDA = If JA dS 

For sphere B: 	QDB = II JB dS S 

(C-2-1) 

(C-2-2) 

where dS is an element of surface area. 

On the other hand, the total mass fluxes from the spheres 

can also be expressed in terms of the total mass transfer 

coefficients, hDA  and hDB, as follows: 

For sphere A: 	QDA = hDAS(Cs-Co) 

For sphere B: = h S(C C ) QDB DB s o 

where S is the total surface area of the spheres. 

From equations(C-2-1), (C-2-3), and (C-1-1), and from 

equations(C-2-2),,(C-2-4), and (C-1-2), the overall rates of 

mass transfer from the spheres, measured in terms of the 

overall Sherwood number coefficients, are obtained as follows: 

For sphere A: 

where, for a system of two equally sized spheres dS and S are: 

a2Sin6 	 41ra2 

dS = 	2  4364 , and S - 	 2 (Cosh(±Zs)-Cos6) 	Cosh (±Zs)-1 
• 
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By substitution of these values into equations(C-2-5) and 

(C-2-6), the overall Sherwood numbers for the two spheres are 

obtained as follows: 

For sphere A: 

Cosh2(-Zs)-1 Tr -Sine 	3C 
ShAO  = ( 	* 	) f ( 	-de 

a 
 

0 Cosh(-Zs)-Cose 3Z Z=-Zs 

(C-2-7) 

For sphere B: 

Cosh2(+Zs)-1 it -Sine 	ac* 

ShBO - ( 	) I ( 	 )(--) Z=+Zsde a
* 

0 Cosh(+Zs)-Cose 3Z 

(C-2-8) 

where ShAO and ShBO are the overall Sherwood numbers for 

spheres A and B, respectively. 
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APPENDIX D. STIMSON AND JEFFERY'S ANALYTICAL SOLUTIONS. 

For steady-state creeping flow, the continuity and 

Navier-Stokes equations are as follows: 

A 

V.17 = 0 

2A  VP = pV V 

(D-1)  

(D-2)  

Equations(D-1) and (D-2) had been solved by Stimson and 

Jeffery(1926) in bi-polar coordinates(Z,O) for the case of 

two equally sized spheres falling.parallel to their line of 

centres 

in term 

where, 

in an incompressible 

of the Stokes 

TP(Z,6) 	= 	(CoshZ-CosB) 

Un(Z) 	= A Cosh(n-11)Z 

An = -(2n+3)K 

Bn = (2n-1)K 

K - 

Newtonian fluid. The 

stream function is given as 

-3/2 E U 	(Z)V 	(6) n=1  n 	n 

+ BnCos(n+1.5)Z 

2(1-e- (2n+1)  a)+(2n+1)(e2a-1) 

solution 

follows: 

(D-3)  

(D-4)  

(D-5)  

(D-6)  

(D-7)  

(D-8)  

2Sinh(2n+l)a + 	(2n+1)Sinh2a 

(2n+1)a 	-2a 2(1-e- 	)+(2n+1) (1-e 	) 

a2U(n+l)n 

2Sinh(2n+1)a + (2n+1)Sinh2a 

{2(2n-1)(2n+1)(2n+3) } 

a = IZsi, surfaces of the spheres. 
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Vn(8) = Pn-1(Cos()) - Pn+1(Cos()) 
	

(D-8) 

Pn = Legendre function. 

For the case of two fixed spheres with fluid flowing 

around them parallel to their line of centres, the solution 

of equations(D-1) and (D-2) is given as follows: 

aSin0 
11)(Z,O) 	= 1/2U( )2 + 	(CoshZ-Cose)-3/2 E Un(Z)Vn(8) n=1 CoshZ-CosO 

(D-10) 

where the first term on the right-hand-side of equation(D-10) 

is the stream function in the undisturbed bulk flow. 
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APPENDIX E. TABLES OF RESULTS. 

Tables(5-5-1) to (5-5-5). 

Tables(5-7-1) to (5-7-10). 

Tables(6-5-1) to (6-5-10). 

• 
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Table(5-5-1). Angles of flow separation for two spheres 

with Zs = 0.20. 

Az = 	Izs/lol, 	An= 6-
, 

 AZ = 	Izs/201, 	An = 6°  

Re fl
AS 

nBSF nBSR nAS nBSF nBSR 

2.5 146.6 147.1 143.5 143.7 

5.0 143.1 143.2 144.2 144.8 

7.5 143.5 143.8 

10.0 143.7 143.9 146.2 146.7 

12.5 143.5 143.8 

15.0 143.3 143.7 146.9 147.5 

17.5 143.2 143.6 

20.0 143.0 143.5 147.3 147.9 

25.0 142.4 143.2 147.8 148.4 

30.0 140.1 141.9 148.7 149.3 

40.0 139.3 141.5 148.9 149.6 

50.0 137.5 140.7 148.4 149.4 
1 

60.0 '135.8 139.6 147.2 148.9 12.7 

70.0 134.0 138.2 135.1 142.8 21.6 

80.0 131.7 137.3 131.3 140.7 23.7 

90.0 129.9 136.5 129.3 137.9 24.4 

100.0 127.6 135.4 126.6 136.6 24.7 

110.0 125.5 134.2 124.7 135.2 26.8 

120.0 124.1 132.6 12.5 123.1 133.8 28.8 

130.0 121.1 130.0 22.8 121.8 132.2 31.1 

140.0 120.5 129.2 24.4 121.4 131.9 31.3 

150.0 119.3 128.2 28.2 120.5 131.5 33.2 

160.0 117.6 125.5 33.4 119.9 131.3 34.5 

170.0 117.3 125.1 34.6 119.1 131.0 36.0 

180.0 116.8 124.8 36.4 118.5 130.7 36.7 

190.0 115.8 124.4 38.1 117.5 130.3 37.7 

200.0 115.2 124.1 39.3 116.2 129.8 38.8 

225.0 113.7 123.5 42.3 113.4 128.6 41.3 

250.0 112.4 122.8 44.4 111.5 126.3 43.2 

275.0 112.1 122.6 44.8 109.6 123.8 45.0 

300.0 110.4 121.9 47.6 107.9 120.4 47.1 

350.0 107.5 120.8 49.8 106.2 117.6 49.7 

400.0 107.1 120.5 50.2 

450.0 104.0 119.5 52.5 

500.0 103.4 119.2 52.9 
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Table(5-5-2). Angles of flow separation for two spheres 

with Zs = 1.32. 

AZ = 	zs/lol, An = AZ = IZs/201, An 	= 6°  

Re nAS nBSF nBSR nAS nBSF nBSR 

15.0 170.6 

17.5 167.5 

20.0 161.3 168.3 

22.5 158.6  

25.0 154.6 166.1 

30.0 148.2 161.6 

40.0 140.7 169.6 147.8 

50.0 135.8 161.9 142.8 

60.0 131.5 155.7 137.4 

70.0 127.8 149.1 133.2 172.0 11.3 

80.0 .125.2 145.7 130.0 165.2 18.6 

90.0 122.8 142.4 128.0 161.2 22.4 

100.0 1 	120.3 139.5 8.1 125.8 157.9 25.9 

110.0 118.32 136.6 17.8 125.0 161.9 27.4 

120.0 117.2 136.4 18.5 123.9 160.8 29.6 

130.0 116.1 136.0 20.9 122.4 159.1 31.5 

140.0 115.1 135.6 23.4 122.1 158.6 31.8 

150.0 114.1 135.2 24.9 121.3 157.5 32.8 

160.0 113.0 134.8 26.9 119.7 149.9 34.8 

170.0 112.0 134.3 29.6 118.7 148.6 36.2 

180.0 110.9 133.6 31.4 117.9 147.1 37.1 

190.0 110.8 133.6 31.6 

200.0 109.8 133.1 32.9 

250.0 106.2 131.1 38.5 

300.0 104.7 130.4 40.2 

a 
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Table(5-5-3). Angles of flow separation for two spheres 

with Zs = 2.07. 

AZ =Izs/lol, 	An = 6°  Az = 	IZs/201, 	An = 6°  

Re nAS nBSF nBSR nAS nBSF nBSR 

22.5 168.1 

25.0 159.5 

30.0 152.1 164.0 

35.0 148.2 

40.0 146.4 148.3 

45.0 143.1 

50.0 142.0 142.8 6.9 

60.0 138.0 137.8 14.5 

70.0 . 135.2 134.0 20.0 

80.0 131.5 131.1 25.3 

90.0 128.5 128.2 30.8 

100.0 125.4 125.9 34.1 

110.0 122.9 6.8 124.4 36.7 

120.0 122.7 7.2 122.7 38.6' 

130.0 121.6 9.7 120.8 - 40.7 

140.0 118.8 15.1 118.8 167.2 42.2 

150.0 118.7 21.8 117.9 166.0 42.9 

160.0 118.6 22.4 

170.0 118.0 25.0 

180.0 117.0 29.0 

• 
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Table(5-5-4). Angles of flow separation for two spheres 

with Zs = 2.48. 

AZ = 	IZs/101, 	An=6°  Az = 	IZs/201, 	An = 6°  

Re nAS nBSR [ 	nAS nBSR 

25.0 170.6 173.8  

30.0 159.1 163.4 

40.0 149.4 149.3 

50.0 142.2 142.1 6.3 

60.0 136.8 137.4 11.0 

70.0 128.8 134.4 25.7 

80.0 125.0 9.4 _131.3 29.8 

90.0 121.9 14.4 128.9 33.2 

100.0 119.2 18.:5 126.5 36.5 

110.0 117.2 124.9 38.0 

120.0 116.1 123.7 39.5 

130.0 115.3i, 122.3 41.1 

140.0 114.4 120.8 42.4 

150.0 113.8 

160.0 113.4 

170.0 113.0 

180.0 112.7 16.6 

190.0 112.4 24.7 

200.0 112.2 26.5 

210.0 112.0 28.9 

220.0 111.8 30.5 

230.0 111.7 31.3 

240.0 111.6 31.8 

250.0 111.5 32.4 
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Table(5-5-5). Angles of flow separation for two spheres 

with Zs = 3.09. 

( AZ = 	1Zs/101, 	An=6°  AZ = 	IZs/201, 	An=6°  

Re nAS nBSR nAS nBSR 

20...0 173.3 171.2 

22.5 164.2 

25.0 157.9 157.9 

30.0 149.4 152.1 7.6 

40.0 140.8 144.6 19.8 

50.0 133.3 21.5 139.9 27.5 

60.0 128.3 38.7 136.4 31.4 

?rt.^ 	' 125.6 42.8 132.9 -Jr 	A .Ja • -z 

80.0 125.4 45.5 130.7 37.2 

90.0 125.4 45.8 128.1 39.0 

100.0 123.5 49.3 125.4 41.4 

110.0 123.1 50.3 123.6 • 43.0 

120.0 122.9 51.0 120.6 45.0 

130.0 122.8 51.1 118.4 46.1 

140.0 122.7 51.3 116.6 47.5 

150.0 122.6 51.5 114.3 49.1 

• 
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Table(5-7-1). Drag coefficients for two spheres with Zs = 0.20. 

(AZ = IZs/201, An = 6°) 

Re w *,wg CDFA CDPA CDTA CDFB CDPB CDTB 

0.001 1.00,0.80 13859.359 7901.519 21760.879 13810.748 7440.773 21251.221 
0.01 1.00,0.80 1385.7464 786.0597 2171.8061 1380.2568 739.7086 2119.9654 
0.1 1.00,0.80 138.4757 77.3069 215.7827 137.7387 72.6073 210.3460 
1.0 1.00,0.80 15.7137 8.3114 24.0252 13.2921 6.3193 19.6114 
2.5 0.80,0.50 7.4858 4.4658 11.9516 5.9801 3.4302 9.4103 
5.0 0.50,0.30 3.9735 2.5301 6.5036 2.9710 1.6045 4.5756 
10.0 0.40,0.25 2.4185 1.7602 4.1787 1.6865 1.2684 2.9550 
15.0 0.40,0.25 1.9739 1.4315 3.4054 1.3371 1.0013 2.3385 
20.0 0.40,0.25 1.6220 1.0994 2.7214 1.0603 0.7683 1.8287 
25.0 0.40,0.25 1.2656 0.9360 2.2017 0.8524 0.7344 1.5869 
30.0 0.40,0.25 1.1804 0.8039 1.9844 0.7965 0.6627 1.4592 
40.0 0.40,0.25 0.9607 0.6626 1.6233 0.6173 0.5044 1.1217 
50.0 0.40,0.25 0.8354 0.5574 1.3929 0.5156 0.4175 0.9332 
60.0 0.30,0.20 0.7334 0.4876 1.2210 0.4380 0.3522 0.7902 
70.0 0.30,0.20 0.6856 0.4280 1.1137 0.3856 0.2629 0.6486 
80.0 0.30,0.20 0.6219 0.3985 1.0205 0.3348 0.2215 0.5563 
90.0 0.30,0.20 0.5735 0.3735 0.9470 0.2992 0.2032 0.5025 
100.0 0.30,0.20 0.5365 0.3547 0.8912 0.2743 0.1925 0.4669 
110.0 0.30,0.20 0.5049 0.3407 0.8457 0.2535 0.1798 0.4334 
120.0 0.20,0.10 0.4755 0.3330 0.8085 0.2348 0.1676 0.4024 
130.0 0.20,0.10 0.4513 0.3292 0.7811 0.2188 0.1579 0.3767 
140.0 0.10,0.05 0.4214 0.3020 0.7234 0.2033 0.1457 0.3490 
150.0 0.10,0.05 0.4039 0.3244 0.7283 0.1905 0.1418 0.3324 
160.0 0.10,0.05 0.3846 0.3234 0.7080 0.1791 0.1342 0.3133 
170.0 0.10,0.05 0.3703 0.3413 0.7117 0.1691 0.1279 0.2970 
180.0 0.10,0.05 0.3561 0.3508 0.7070 0.1598 0.1203 0.2802 
190.0 0.10,0.05 0.3455 0.3765 0.7221 0.1514 0.1117 0.2631 
200.0 0.10,0.05 0.3376 0.4113 0.7489 0.1433 0.1005 0.2438 
225.0 0.10,0.05 0.3176 0.4806 0.7983 0.1254 0.0748 0.2002 
250.0 0.10,0.05 0.3000 0.5287 0.8287 0.1082 0.0389 0.1472 
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Table(5-7-2). Drag coefficients for two spheres with Zs = 1.32. 
(AZ = IZs/201, Lin = 6°) 

Re CO 	* 1p LO .erg . g CDFA CDPA CDTA CDFB CDPB CDTB 

0.001 1.00 0.80 14606.9990. 7022.7204 21629.7195 14617.1312 7011.6375 21628.7682 
0.01 1.00 0.80 1461.0836 702.1453 2163.2289 1461.9492 700.9800 2162.9293 
0.1 1.00 0.80 147.8850 71.1841 219.0691 144.7703 68.5987 213.3690 
1.0 1.00 0.80 16.3051 7.7674 24.0725 14.2159 6.6614 20.8774 
2.5 0.80 0.50 7.7786 3.8925 11.6712 6.3433 3.1320 9.4753 
5.0 0.50 0.30 4.4706 2.3076 6.7783 3.4401 1.7795 5.2196 

10.0 0.50 0.30 2.6564 1.4196 4.0761 1.9628 1.0584 3.0213 
15.0 0.50 0.30 1.9051 1.1265 3.0317 1.3265 0.7652 2.0917 
20.0 0.30 0.20 1.4846 0.8092 2.2939 1.0555 0.5954 1.6509 
25.0 0.30 0.20 1.2874 0.7955 2.0830 0.8579 0.5217 1.3796 
30.0 0.30 0.20 1.1240 0.7058 1.8298 0.7316 0.4717 1.2034 
40.0 0.30 0.20 0.9491 0.5805 1.5297 0.6118 0.4618 1.0736 
50.0 0.30 0.20 0.8054 0.4969 1.3024 0.5227 0.4279 0.9506 
60.0 0.30 0.20 0.7138 0.4384 1.1523 0.4616 0.3914 0.8530 
70.0 0.30 0.20 0.6489 0.3966 1.0455 0.4146 0.3594 0.7740 
80.0 0.30 0.20 0.5995 0.3695 0.9691 0.3770 0.3322 0.7092 
90.0 0.20 0.15 0.5541 0.3509 0.9050 0.3481 0.3036 0.6454 

100.0 0.20 0.15 0.5189 0.3440 0.8629 0.3131 0.2807 0.5938 
110.0 0.10 0.10 0.4830 0.3359 0.8190 0.2865 0.2579 0.5444 
120.0 0.10 0.10 0.4541 0.3402 0.7943 0.2645 0.2412 0.5058 
130.0 0.10 0.10 0.4336 0.3621 0.7957 0.2462 0.2260 0.4722 
140.0 0.05 0.05 0.4050 0.3357 0.7408 0.2287 0.2075 0.4363 
150.0 0.05 0.05 0.3870 0.3673 0.7544 0.2144 0.1998 0.4142 
160.0 0.05 0.05 0.3759 0.4144 0.7903 0.2028 0.1946 0.3974 
170.0 0.05 0.05 0.3677 0.4574 0.8241 0.1981 0.1831 0.3749 
180.0 0.05 0.05 0.3570 0.4905 0.8476 0.1809 0.1698 0.3507 
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Table(5-7-3). Drag coefficients for two spheres with Zs = 2.07. 

(AZ = IZs/201, An = 6°) 

Re W**, Ws CDFA C
DPA CDTA C

DFB CDPB CDTB 

0.001 1.00 0.80 15721.5803 8287,9309 24009.5113 15787.4513 8129.3211 23916.7725 
0.01 1.00 0.80 1573.3286 826.8176 2400.1462 1579.1992 811.2530 2390.4523 
0.1 1.00 0.80 157.6160 82,0900 239.7061 158.0019 80.6187 238.6206 
1.0 1.00 0.80 18.1597 9,4672 27.6270 15.8949 8.1472 24.0422 
2.5 0.70 0.40 7.8707 4.4388 12.3096 6.6271 3.6490 10.2761 
5.0 0.40 0.25 4.3697 2.6789 7.0486 3.5650 2.2250 5.7901 
10.0 0.40 0.25 2.5507 1.6064 4.1572 2.0986 1.4168 3.5155 
15.0 0.40 0.25 1.8971 1.1977 3.0949 1.5598 1.0700 2.6298 
20.0 0.40 0.25 1.5582 0.9795 2.5377 1.2601 0.8599 2.1201 
25.0 0.40 0.25 1.3431 0.8378 2.1810 1.0697 0.7430 1.8127 
30.0 0.40 0.25 1.1932 0.7378 1.9311 0.9381 0.6610 1.5992 
40.0 0.40 0.25 0.9955 0.6110 1.6066 0.7612 0.5487 1.3100 
50.0 0.30 0.20 0.8526 0.5276 1.3802 0.6364 0.4755 1.1120 
60.0 0.30 0.20 0.7627 0.4826 1.2454 0.5584 0.4303 0.9887 
70.0 0.30 0.20 0.7107 0.4680 1.1787 0.5075 0.3947 0.9022 
80.0 0.30 0.20 0.6523 0.4707 1.1230 0.4611 0.3796 0.8408 
90.0 0.30 0.20 0.6290 0.5346 1.1636 0.4272 0.3512 0.7784 
100.0 0.30 0.20 0.5987 0.6213 1.2200 0.3931 0.3289 0.7221 
110.0 0.25 0.15 0.5730 0.7213 1.2943 0.3627 0.3127 0.6754 
120.0 0.25 0.15 0.5499 0.8092 1.3591 0.3337 0.2948 0.6286 
130.0 0.25 0.15 0.5290 0.8881 1.4171 0.3042 0.2742 0.5822 
140.0 0.20 0.15 0.5063 0.9454 1.4517 0.2704 0.2563 0.5268 
150.0 0.15 0.10 0.4804 0.9513 1.4317 0.2529 0.2529 0.5064 
160.0 0.10 0.05 0.4530 0.9165 1.3696 0.2359 0.2364 0.4723 

• 
	 • 
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Table(5-7-4). Drag coefficients for two spheres with Zs = 2.48. 

(AZ = IZs/201, An = 6°). 

Re W ip*, W4 '  CDFA CDPA CDTA CDFB CDPB CDTB 

0.001 1.00 0.80 15033.4306 7872.4978 22905.9285 15178.4670 7823.9431 23002.4102 
0.01 1.00 0.80 1505.6325 787.0880 2292.7205 1519.3672 781.9425 2301.3098 
0.1 1.00 0.80 151.3662 78.5653 229.9415 152.4424 77.9537 230.3961 
1.0 1.00 0.80 18.0925 9.3736 27.4661 16.3326 8.4516 24.7842 
2.5 0.70 0.40 7.8553 4.3653 12.2207 6.8946 3.7958 10.6904 
5.0 0.50 0.30 4.3503 2.5397 6.8901 3.7670 2.2197 5.9868 
10.0 0.50 0.30 2.6167 1.5648 4.1815 2.2534 1.4057 3.6591 
15.0 0.50 0.30 1.9391 1.1711 3.1103 1.6592 1.0655 2.7247 
20.0 0.40 0.25 1.5667 0.9542 2.5210 1.3245 0.8635 2.1880 
25.0 0.40 0.25 1.3520 0.8231 2.1752 1.1267 0.7427 1.8694 
30.0 0.40 0.25 1.3114 0.8129 2.1243 1.0543 0.7272 1.7816 
40.0 0.40 0.25 1.1120 0.6826 1.7947 0.8695 0.6019 1.4714 
50.0 0.40 0.25 0.9553 0.6351 1.5905 0.7481 0.5419 1.2901 
60.0 0.40 0.25 0.8431 0.6384 1.4816 0.6504 0.4835 1.1339 
70.0 0.30 0.20 0.7859 0.7366 1.5225 0.5835 0.4381 1.0217 
80.0 0.30 0.20 0.7403 0.8950 1.6354 0.5323 0.4213 0.9536 
90.0 0.30 0.20 0.6997 1.0319 1.7316 0.4853 0.4041 0.8895 

100.0 0.30 0.20 0.6582 1.1114 1.7696 0.4445 0.3866 0.8312 
110.0 0.20 0.15 0.6195 1.1596 1.7791 0.4112 0.3860 0.7972 
120.0 0.10 0.10 0.5870 1.1963 1.7833 0.3810 0.3782 0.7593 
130.0 0.10 0.10 0.5418 1.1043 1.6462 0.3517 0.3490 0.7008 
140.0 0.10 0.10 0.5201 1.1429 1.6630 0.3285 0.3431 0.6716 
150.0 0.05 0.05 0.4855 1.0659 1.5514 0.3065 0.3192 0.6257 
160.0 0.05 0.05 0.4552 0.9977 1.4530 0.2873 0.2985 0.5858 
170.0 0.05 0.05 0.4284 0.9358 1.3642 0.2703 0.2796 0.5499 
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Table(5-7-5). Drag coefficients for two spheres with Zs = 3.09. 

(AZ = IZs/201, tn = 6°) • 

Re w**, Wg CDFA CFPA CDTA CDFB CDPB CDTB 

0.001 1.00 0.80 16476.8832 8018.3040 24495.1870 16438.3902 8005.6204 24444.0106 
0.01 1.00 0.80 1647.2863 801.6569 2448.9432 1643.4864 800.4306 2443.9170 
0.1 1.00 0.80 164.5631 80.1122 244.6753 164.1736 79.9415 244.1152 
1.0 0.80 0.50 19.2479 10.4051 29.6531 17.7909 9.6104 27.4014 
2.5 0.50 0.30 8.6531 4.6409 13.2944 8.1119 4.4469 12.5588 
5.0 0.50 0.30 4.7629 2.7228 7.4858 4.4169 2.5510 6.9679 
10.0 0.50 0.30 2.8827 1.6901 4.5729 2.6200 1.5551 4.1751 
15.0 0.50 0.30 2.2003 1.2416 3.4420 1.9813 1.2084 3.1897 
20.0 0.50 0.30 1.8607 C.9977 2.8585 1.6783 0.9666 2.6450 
25.0 0.50 0.30 1.5865 C.8849 2.4715 1.4198 0.8344 2.2543 
30.0 0.50 0.30 1.4003 C.8072 2.2075 1.2395 0.7512 1.9908 
40.0 0.50 0.30 1.1863 C.7504 1.9367 1.0194 0.6261 1.6455 
50.0 0.30 0.20 1.0212 C.7890 1.8102 0.8730 0.5812 1.4542 
60.0 0.20 0.15 0.9399 C.9879 1.9279 0.7727 0.5480 1.3207 
70.0 0.20 0.15 0.8890 1.2521 2.1411 0.6986 0.5619 1.2627 
80.0 0.10 0.10 0.8293 1.3953 2.2246 0.6366 0.5946 1.2312 
90.0 0.10 0.10 0.7872 1.5235 2.3108 0.5895 0.6469 1.2364 
100.0 0.10 0.10 0.7452 1.5897 2.3350 0.5505 0.7194 1.2700 
110.0 0.10 0.10 0.6991 1.5860 2.2851 0.5180 0.8009 1.3190 
120.0 0.10 0.10 0.6669 1.6138 2.2807 0.4861 0.8824 1.3685 
130.0 0.10 0.10 0.6299 1.5851 2.2150 0.4509 0.9101 1.3611 
140.0 0.10 0.10 0.5954 1.5465 2.1420 0.4204 0.9298 1.3503 
150.0 0.10 0.05 0.5631 1.4944 2.0576 0.3901 0.9112 1.3013 

., 

Ln 

• • 



Table(5-7-6) Drag coefficients for two spheres with Zs = 0.20. 

(AZ = IZs/101, An = 6°) 

Re (1) v,, Wg   CDFA  CDPA. CDTA CDFB CDPB CDTB 

0.001 1.00 0.80 10849.8113 3810.0517 14659.8631 10901.2203 4155.3803 15056.6002 
0.01 1.00 0.80 1085.2755 384.8513 1470.1269 1090.9970 419.2379 1510.2350 
0.1 1.00 0.80 118.2033 56.0603 174.2636 116.3036 53.9319 170.2355 
1.0 1.00 0.80 13.6737 6.6439 20.3176 11.9996 5.4787 17.4783 
2.5 0.80 0.50 6.7309 3.2949 10.2258 5.4089 2.6139 8.0229 
5.0 0.50 0.30 3.8370 2.].539 5.9910 2.8669 1.4964 4.3633 
7.5 0.50 0.30 2.7419 1.5860 4.3284 1.9384 0.9517 2.8901 

10.0 0.50 0.30 2.2262 1.3111 3.5374 1.5141 0.7911 2.3053 
12.5 0.50 0.30 1.8998 1.1206 3.0204 1.2682 0.6812 1.9495 
15.0 0.50 0.30 1.6740 0.9867 2.6608 1.0926 0.5795 1.6722 
17.5 0.40 0.25 1.4929 0.8729 2.3658 0.9505 0.4851 1.4357 
20.0 0.30 0.20 1.3461 0.7821 2.1283 0.8383 0.4163 1.2547 
22.5 0.20 0.15 1.2203 0.6997 1.9201 0.7482 0.3709 1.1191 
25.0 0.20 0.15 1.1327 0.6666 1.7993 0.6780 0.3363 1.0143 
30.0 0.20 0.15 1.0400 0.6189 1.6589 0.5990 0.3211 0.9200 
35.0 0.10 0.10 0.9024 0.5304 1.4328 0.5174 0.2762 0.7936 
40.0 0.10 0.10 0.8073 0.4996 1.3069 0.4554 0.2441 0.6996 
50.0 0.10 0.10 0.7099 0.5382 1.2481 0.3724 0.1959 0.5684 
60.0 0.10 0.10 0.6386 0.5881 1.2267 0.3228 0.1826 0.5054 
80.0 0.10 0.10 0.5340 0.6412 1.1752 0.2583 0.1572 0.4156 

100.0 0.10 0.10 0.4665 0.5608 1.1273 0.2151 0.1297 0.3449 
150.0 0.10 0.10 0.3582 0.5233 0.9816 0.1437 0.0710 0.2147' 
200.0 0.06 0.06 0.2863 0.5291 0.8155 0.1010 0.0402 0.1413 
250.0 0.04 0.04 0.2359 0.4453 0.6812 0.0776 0.0338 0.1115 
300.0 0.02 0.02 0.1992 0.3748 0.5741 0.0627 0.0330 0.0957 
350.0 0.02 0.02 0.1732 0.3255 0.4987 0.0517 0.0325 0.0842 
400.0 0.01 0.01 0.1519 0.2806 0.4325 0.0446 0.0295 0.0742 
450.0 0.01 0.01 0.1363 0.2518 0.3882 0.0379 0.0316 0.0695 
500.0 0.01 0.01 0.1230 0.2241 0.3472 0.0337 0.0299 0.0637 
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Table(5-7-7). Drag coefficients for two spheres with Zs = 1.32. 

(AZ = `Zs/101, An = 6°) 

Re Wel  Wg  CDFA CDPA CDTA CDFB CDPB CDTB 

0.001 1.00 0.80 14381.2595 6372.5549 20753.8145 14307.8766 6421.3984 20729.2750 
0.01 1.00 0.80 1437.2063 637.4898 2074.6962 1430.2022 642.5788 2072.7810 
0.1 1.00 0.80 143.3138 63.8835 207.1973 142.7738 64.5178 207.2916 
1.0 1.00 0.80 16.6161 8.1718 24.7880 14.6344 7.2537 21.8881 
2.5 0.60 0.40 7.5968 4.1079 11.7047 6.1838 3.2906 9.4744 
5.0 0.50 0.30 4.3321 2.4349 6.7670 3.4468 1.9964 5.4433 
7.5 0.50 0.30 3.1404 1.7635 4.9039 2.4323 1.3854 3.8178 

10.0 0.50 0.30 2.5378 1.4180 3.9558 1.9137 1.1002 3.0139 
12.5 0.50 0.30 2.2181 1.1674 3.3855 1.6250 0.9094 2.5344 
15.0 0.50 0.30 1.9113 1.0256 2.9369 1.3696 0.7613 2.1309 
17.5 0.40 0.25 1.7028 0.9314 2.6342 1.1940 0.6776 1.8716 
20.0 0.40 0.25 1.5506 0.8642 2.4148 1.0683 0.6238 1.6922 
22.5 0.30 0.20 1.4165 0.7982 2.2148 0.9656 0.5730 1.5386 
25.0 0.30 0.20 1.3184 0.7694 2.0878 0.8872 0.5384 1.4256 
30.0 0.30 0.20 1.1763 0.7556 1.9319 0.7706 0.4850 1.2557 
40.0 0.20 0.15 0.9896 0.8436 1.8332 0.6131 0.4031 1.0163 
50.0 0.20 0.15 0.8676 0.9322 1.7999 0.5173 0.3654 0.8828 
60.0 0.20 0.15 0.7825 0.9860 1.7686 0.4522 0.3396 0.7918 
80.0 0.20 0.15 0.6544 0.9965 1.6510 0.3529 0.2989 0.6519 
100.0 0.20 0.15 0.5550 0.9244 1.4794 0.2810 0.2787 0.5598 
120.0 0.10 0.10 0.4732 0.8212 1.2945 0.2299 0.2670 0.4969 
140.0 0.06 0.06 0.4120 0.7346 1.1466 0.1992 0.2634 0.4625 
150.0 0.04 0.04 0.3866 0.6944 1.0810 0.1861 0.2578 0.4439 
200.0 0.02 0.02 0.2983 0.5597 0.8580 0.1408 0.2516 0.3924 
250.0 0.02 0.02 0.2440 0.4713 0.7153 0.1135 0.2574 0.3710 
300.0 0.01 0.01 0.2044 0.3967 0.6011 0.0954 0.2465 0.3419 
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Table(5-7-8). Drag coefficients for two.  spheres with Zs = 2.07. 

(AZ = 	IZs/101, An = 6°) 

Re 6311)* , Wg  CDFA CDPA. CDTA CDFB CDPB CDTB 

0.001 1.00 0.80 14505.4272 7276.5202 21781.9474 14550.8926 7228.6553 21779.5469 
0.01 1.00 0.80 1451.2047 727.2688 2178.2688 1455.5387 722.3004 2177.8391 
0.1 1.00 0.80 145.4019 72.4000 217.8019 145.7338 71.9528 217.6866 
1.0 1.00 0.80 17.0813 8.5093 25.5906 15.3290 7.7070 23.0360 
2.5 0.80 0.50 7.6149 3.9842 11.5991 6.6126 3.4993 10.1120 
5.0 0.50 0.30 4.2184 2.3197 6.5382 3.5737 • 1.9918 5.5655 
7.5 0.50 0.30 3.1000 1.7155 4.8156 2.5895 1.4683 4.0579 

10.0 0.40 0.25 2.4862 1.3777 3.8640 2.0443 1.1621 3.2065 
12.5 0.40 0.25 2.1658 1.1910 3.3568 1.7408 0.9777 2.7185 
15.0 0.40 0.25 1.8908 1.0630 2.9538 1.5012 0.8588 2.3601 
17.5 0.40 0.25 1.7029 0.9928 2.6957 1.3426 0.7843 2.1269 
20.0 0.40 0.25 1.5660 0.9575 2.5235 1.2199 0.7145 1.9345 
22.5 0.40 0.25 1.4643 0.9576 2.4219 1.1217 0.6564 1.7782 
25.0 0.40 0.25 1.3930 1.0054 2.3985 1.0411 0.6044 1.6455 
30.0 0.30 0.20 1.2579 1.1231 2.3810 0.9023 0.5420 1.4443 
35.0 0.20 0.15 1.1388 1.1754 2.3143 0.7941 0.5062 1.3003 
40.0 0.10 0.10 1.0304 1.1614 2.1918 0.7069 0.4617 1.1686 
45.0 0.10 0.10 0.9614 1.1967 2.1581 0.6465 0.4514 1.0979 
50.0 0.06 0.06 0.8837 1.1412 2.0250 0.5891 0.4195 1.0086 
60.0 0.06 0.06 0.7757 1.1138 1.8896 0.5111 0.4219 0.9331 
80.0 0.06 0.06 0.6382 1.0394 1.6777 0.4208 0.4679 0.8887 

100.0 0.06 0.06 0.5424 0.9424 1.4848 0.3644 0.5386 0.9031 
120.0 0.02 0.02 0.4622 0.8207 1.2829 0.3162 0.5405 0.8568 
140.0 0.02 0.02 0.4033 0.7362 1.1396 0.2857 0.5994 0.8852 
150.0 0.01 0.01 0.3768 0.6883 1.0651 0.2675 0.5663 0.8338 
160.0 0.01 0.01 0.3535 0.6460 0.9996 0.2514 0.5473 0.7988 
170.0 0.01 0.01 0.3338 0.6121 0.9460 0.2398 0.5377 0.7776 
180.0 0.01 0.01 0.3171 0.5870 0.9040 0.2317 0.5303 0.7621 
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Table(5-7-9). Drag coefficients for two spheres with Zs = 2.48. 

(AZ = IZs/101, An = 6°) 

Re wv" cog CDFA c
DPA 

CDTA CDFB CDPB CDTB 

0.001 1.00 0.80 12536.5133 6207.2107 18743.7244 12628.3063 6237.1321 18865.4383 
0.01 1.00 0.80 1254.8536 621.1800 1876.0337 1263.9118 624.0446 1887.9583 
0.1 1.00 0.80 130.2453 64.4085 194.6539 128.0635 61.3363 189.3999 
1.0 0.90 0.75 15.2650 7.5806 22.8457 13.9335 6.9900 20.9236 
2.5 0.80 0.50 6.8379 3.4009 10.2388 6.0797 3.0434 9.1231 
5.0 0.50 0.30 3.7150 1.9957 5.7107 3.2336 1.7306 4.9643 
10.0 0.50 0.30 2.2310 1.2486 3.4796 1.8858 1.0510 2.9369 
15.0 0.50 0.30 1.6944 0.9828 2.6773 1.4190 0.8081 2.2272 
20.0 0.50 0.30 1.4123 0.9177 2.3300 1.1621 0.6566 1.8188 
25.0 0.50 0.30 1.2693 1.0360 2.3053 0.9861 0.5579 1.5541 
30.0 0.30 0.20 1.1431 1.1251 2.2682 0.8625 0.5366 1.3992 
40.0 0.30 0.20 0.9705 1.1961 2.1667 0.7001 0.5170 1.2171 
50.0 0.30 0.20 0.8488 1.1831 2.0319 0.6087 0.5705 1.1793 
60.0 0.30 0.20 0.7418 1.1052 1.8470 0.5414 0.6428 1.1842 
80.0 0.20 0.15 0.5966 0.9650 1.5605 0.3896 0.6189 1.0086 

100.0 0.20 0.15 0.4928 0.8368 1.3296 0.3422 0.7453 1.0876 
120.0 0.20 0.15 0.4158 0.7199 1.1357 0.3018 0.7336 1.0354 
140.0 0.10 0.10 0.3603 0.6342 0.9946 0.2743 0.7256 1.0000 
150.0 0.10 0.10 0.3385 0.6000 0.9385 0.2600 0.7118 0.9718 
160.0 0.10 0.10 0.3192 0.5697 0.8889 0.2445 0.6876 0.9321 
180.0 0.08 0.08 0.2878 0.5226 0.8104 0.2092 0.6221 0.8313 
200.0 0.06 0.06 0.2610 0.4787 0.7398 0.1802 0.5520 0.7323 
220.0 0.06 0.06 0.2386 0.4253 0.6801 0.1580 0.4959 0.6539 
240.0 0.04 0.04 0.2197 0.4089 0.6286 0.1405 0.4496 0.5901 
250.0 0.04 0.04 0.2113 0.3945 0.6058 0.1331 0.4304 0.5635 
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Table(5-7-10). Drag coefficients for two spheres with Zs = 3.09. 

(AZ = iZs/101, An = 6°) 

Re w.e, wg C
DFA 

C
DPA 

C
DTA 

C
DFB 

C
DPB 

C
DTB 

0.001 1.00 0.80 16973.1418 8179.5579 25152.6997 16965.3059 8070.1682 25035.4742 
0.01 1.00 0.80 1697.7022 816.9335 2514.6358 1696.6237 806.1358 2502.7623 
0.1 1.00 0.80 169.9186 79.8014 249.2010 169.0169 78.5502 247.5671 
1.0 1.00 0.80 19.8887 9.4823 29.3710 18.8448 9.0937 27.9386 
2.5 0.80 0.50 8.9352 4.4840 13.4193 8.3280 4.1904 12.5185 
5.0 0.50 0.30 5.0674 2.7138 7.7812 4.6393 2.4735 7.1128 
7.5 0.40 0.25 3.7742 2.1064 5.8806 3.3858 1.8355 5.2213 

10.0 0.40 0.25 3.1204 1,8721 4.9925 2.7630 1.5471 4.3102 
12.5 0.40 0.25 2.7625 1.8859 4.6485 2.4161 1.4033 3.8195 
15.0 0.40 0.25 2.5525 2.1261 4.6786 2.1324 1.3196 3.4521 
17.5 0.40 0.25 2.3628 2.2767 4.6396 1.9148 1.3293 3.2442 
20.0 0.40 0.25 2.2033 2.3499 4.5533' 1.7478 1.3661 3.1140 
22.5 0.30 0.25 2.0578 2.3605 4.4184 1.6181 1.4410 3.0592 
25.0 0.30 0.25 1.9392 2.3545 4.2938 1.5247 1.5674 3.0922 
30.0 0.30 0.25 1.7275 2.2626 3.9902 1.3705 1.7394 3.1100 
40.0 0.10 0.10 1.3918 1.9818 3.3737 1.1407 1.7638 2.9045 
50.0 0.08 0.08 1.1658 17389 2.9047 0.9233 1.5408 2.4642 
60.0 0.06 0.06 1.0009 1.5316 2.5326 0.7271 1.2477 1.9749 
70.0 0.04 0.04 0.8668 1.3460 2.2129 0.5965 1.0344 1.6309 
80.0 0.02 0.02 0.7595 1.1804 1.9399 0.5194 0.9018 1.4213 
90.0 0.01 0.01 0.6756 1.0509 1.7265 0.4606 0.8004 1.2611 

100.0 0.01 0.01 0.6137 0.9752 1.5890 0.4090 0.7290 1.1381 
110.0 0.01 0.01 0.5605 0.8957 1.4563 0.3710 0.6678 1.0388 
120.0 0.01 0.01 0.5157 0.8281 1.3438 0.3396 0.6161 0.9557 
130.0 0.005 0.005 0.4765 0.7660 1.2425 0.3134 0.5696 0.8831 
140.0 0.005 0.005 0.4429 0.7129 1.1558 0.2910 0.5299 0.8209 
150.0 0.005 0.005 0.4140 0.6678 1.0818 0.2715 0.4960 0.7676 

0 
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Table(6-5-1). Overall Sherwood numbers for two spheres with Zs = 0.20. 

(AZ = IZs/201, An = 6°) 

Re = 0.001 Re = 1.0 Re = 10.0 Re = 100.0 

Pe w
C* Sh

AO Sh
BO wC* ShAO Sh

BO 
 wC* Sh

AO 
 ShBO . 

C* 
Sh

AO 
Sh
BO 

0.001 0.80 1.4725 1.4809 0.80 1.4725 1.4809 0.80 1.4725 1.4808 0.80 1.4726 1.4808 
0.01 0.80 1.4748 1.4830 0.80 1./752 1.4834 0.80 1.4753 1.4833 0.80 1.4753 1.4833 
0.1 0.70 1.5090 1.5020 0.70 1.5113 1.5029 0.70 1.5185 1.5026 0.70 1.5227 1.5009 
1.0 0.50 1.7606 1.5037 0.50 1.7802 1.5028 0.50 1.8627 1.4981 0.50 1.9218 1.4922 
2.4 0.30 2.0295 1.5552 0.30 2.0484 1.5481 0.30 2.2212 1.5591 0.30 2.3599 1.5746 
5.0 0.30 2.4071 1.7104 0.30 2.1 610 1.7011 0.30 2.7269 1.7470 0.30 2.9675 1.8196 

10.0 0.30 2.8706 1.9552 0.30 2.9393 1.9369 0.20 3.2493 1.9137 0.30 3.6296 2.0494 
20.0 0.20 3.3857 2.1812 0.15 3.4285 2.0818 0.20 3.9613 2.2512 0.10 4.2884 2.2624 
30.0 0.20 3.7812 2.4208 0.15 3.8541 2.3077 0.20 4.4418 2.5077 0.10 5.0339 2.5533 
50.0 0.20 4.3533 2.7692 0.10 4.3905 2.5148 0.10 5.0782 2.7099 0.10 5.8966 2.9546 
70.0 0.10 4.6503 2.8659 0.10 4.8467 2.7765 0.05 5.3780 2.7683 0.05 6.4547 3.0898 

100.0 0.05 5.0021 2.9502 0.05 5.].215 2.8456 0.05 6.0813 2.9792 0.05 6.8040 3.1209 

150.0 0.05 5.7444 3.2349 0.05 5.9048 3.1220 0.05 6.8480 3.3220 0.05 8.1445 3.1970 
200.0 0.05 6.2402 3.5402 0.05 6.4168 3.4196 0.05 7.4799 3.6798 0.05 9.6639 3.3210 
250.0 0.05 6.6224 3.7811 0.05 6.7968 3.6318 0.05 8.0656 4.0233 0.05 11.3509 3.5245 
300.0 0.05 6.9749 4.0145 0.05 7.1837 3.8756 0.05 8.5544 4.1942 0.05 12.6378 3.6935 
400.0 0.05 7.6060 4.4318 0.05 7.8572 4.2779 0.05 9.6930 4.6.390 0.05 15.1210 4.0857 
500.0 0.05 8.0799 4.7059 0.05 8.4066 4.5418 0.05 10.7916 4.8975 0.05 16.6059 4.3403 
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Table(6-5-2). Overall Sherwood numbers for two spheres with Zs = 1.32. 

(AZ = IZs/201,An = 6°). 

Re = 0.001 Re = 1.0 Re = 10.0 Re = 100.0 

Pe wC* ShAO ShBO wC* ShAO ShBO wC* ShAO  ShBO  WC* ShAO ShBO 

0.001 0.80 1.8929 1.8879 0.80 1.8929 1.8879 0.80 1.8930 1.8878 0.80 1.8930 1.8878 
0.01 0.80 1.8925 1.8875 0.80 1.8925 1.8874 0.80 1.8925 1.8874 0.80 1.8925 1.8874 
0.1 0.70 1.8841 1.8721 0.70 1.8846 1.8723 0.70 1.8858 1.8690 0.70 1.8868 1.8656 
1.0 0.50 2.0573 1.7860 0.50 2.0759 1.7817 0.50 2.1502 1.7688 0.50 2.1908 1.7653 
2.4 0.30 2.3179 1.8134 0.30 2.3574 1.8062 0.30 2.5244 1.8237 0.30 2.6290 1.8561 
5.0 0.30 2.7358 2.0178 0.30 2.7927 2.0057 0.25 3.0085 2.0255 0.25 3.1925 2.1205 

10.0 0.25 3.1705 2.2747 0.25 3.2452 2.2551 0.25 3.5739 2.3725 0.25 3.8662 2.5374 
20.0 0.20 3.7107 2.6114 0.20 3.8075 2.5871 0.20 4.2297 2.7363 0.20 4.6846 3.0096 
30.0 0.20 4.0932 2.9028 0.20 4.2121 2.8800 0.20 4.6881 3.0543 0.10 5.2585 3.3728 
50.0 0.20 4.6495 3.3116 0.20 4.7730 3.2511 0.20 5.3475 3.5491 0.10 6.1099 3.7711 
70.0 0.05 4.7977 3.3664 0.10 5.1278 3.4163 0.05 5.6532 3.6237 0.10 6.8391 4.1353 

100.0 0.05 5.4109 3.6278 0.05 5.5212 3.5705 0.05 6.3073 3.8866 0.05 7.8783 4.5436 

150.0 0.05 6.0650 3.9990 0.05 6.2677 4.0058 0.05 7.1010 4.2863 0.05 9.7011 4.8608 
200.0 0.05 6.4581 4.2399 0.05 6.7219 4.3055 0.05 7.8186 4.6659 0.04 11.8098 5.1749 
250.0 0.05 6.9361 4.5988 0.05 7.1379 4.5775 0.05 8.5145 4.9503 0.04 12.9151 5.2912 
300.0 0.04 7.3033 4.7985 0.05 7.5227 4.8186 0.05 9.2454 5.1933 0.04 14.4099 5.5468 
400.0 0.05 8.3209 5.2872 0.05 10.8938 5.6349 0.04 16.2257 5.8329 
500.0 0.05 9.0211 5.5711 0.05 12.7151 6.0293 0.04 17.6917 6.1679 
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Table(6-5-3). Overall Sherwood numbers for two spheres with Zs = 2.07. 

(AZ = IZs/201,Afl = 6°) 

Re = 0.001 Re = 1.0 Re = 10.0 Re = 100.0 

Pe 
w C* 

ShAO  Sh
BO w C* ShAO ShBO  WC* ShAO ShBO wC* ShAO ShBO 

0.001 0.80 1.9735 1.9687 0.80 1.9735 1.9687 0.80 1.9735 1.9687 0.80 1.9735 1.9687 
0.01 0.80 1.9726 1.9679 0.80 1.9726 1.9679 0.80 1.9726 1.9678 0.80 1.9724 1.9676 
0.1 0.80 1.9622 1.9431 0.80 1.9630 1.9422 0.80 1.9643 1.9395 0.80 1.9653 1.9419 
1.0 0.80 2.2661 1.9829 0.70 2.2973 1.9836 0.70 2.3435 2.0046 0.40 2.3093 1.9318 
2.4 0.50 2.5386 2.1596 0.50 2.E899 2.1609 0.30 2.5484 2.0847 0.25 2.6997 2.0940 
5.0 0.30 2.7900 2.3070 0.30 2.6701 2.3099 0.20 2.9795 2.2801 0.20 3.2435 2.4324 

10.0 0.20 3.2141 2.6028 0.20 3..7,185 2.6027 0.15 3.5160 2.6513 0.20 3.9243 2.9732 
20.0 0.15 3.7659 3.0280 0.15 3.E;983 3.0319 0.15 4.1673 3.1782 0.15 4.7530 3.5373 
30.0 0.10 4.0662 3.2577 0.15 4.2848 3.3458 0.10 4.5928 3.5251 0.15 5.3660 3.9494 
50.0 0.10 4.6936 3.7300 0.05 4.7722 3.5756 0.05 5.0852 3.8192 0.10 6.4097 4.4600 
70.0 0.05 4.9217 3.9096 0.05 5.2128 3.9062 0.05 5.6297 4.1412 0.10 7.4407 4.8566 

100.0 0.05 5.5046 4.3092 0.05 5.7338 4.2620 0.05 6.2247 4.5015 0.05 9.1387 5.2353 

150.0 0.05 6.1407 4.7414 0.05 6.2732 4.7298 0.05 7.1656 4.9674 0.04 11.8959 5.6438 
200.0 0.05 6.6115 5.1343 0.05 6.9224 5.1043 0.04 8.1196 5.3371 0.04 12.3629 5.6407 
250.0 0.05 7.0489 5.4232 0.05 7.4653 5.3954 0.04 9.1720 5.6195 0.04 12.9520 5.6610 
300.0 0.04 7.4446 5.6203 0.05 8.0167 5.6348 0.04 10.3177 5.8691 0.04 13.9373 5.7581 
400.0 0.04 8.4260 6.0145 0.05 9.2206 6.0205 0.04 12.8268 6.2808 0.04 15.9366 6.2469 
500.0 0.04 9.3737 6.3584 0.05 10.5342 6.3573 0.04 14.7548 6.6787 0.04 17.0903 6.8264 
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Table(6-5-4). Overall Sherwood numbers for two spheres with Zs = 2.48. 

(AZ = IZs/201, An = 6°). 

Re = 0.001 Re = 1.0 Re = 10.0 Re = 100.0 

Pe w C* Sh
AO 

 SHBO  BO w C* ShAO  ShBO 
 w C* ShAO Sh

BO w
C* ShAO ShBO 

0.001 0.80 2.0040 2.0000 0.80 2.0044 1.9997 0.80 2.0044 1.9997 0.80 2.0044 1.9997 
0.01 0.80 2.0026 1.9987 0.80 2.0028 1.9981 0.80 2.0028 1.9981 0.80 2.0028 1.9982 
0.1 0.80 1.9899 1.9723 0.80 1.9909 1.9708 0.80 1.9920 1.9685 0.80 1.9930 1.9665 
1.0 0.80 2.2846 2.0641 0.50 2.2902 2.0204 0.70 2.3586 2.0871 0.40 2.3516 2.0379 
2.4 0.40 2.4693 2.1759 0.30 2.5010 2.1370 0.30 2.5959 2.2142 0.30 2.7335 2.2799 
5.0 0.25 2.7586 2.3845 0.20 2.8289 2.3581 0.20 2.9999 2.4780 0.20 3.2436 2.6373 

10.0 0.25 3.2219 2.7911 0.20 3.3376 2.7927 0.20 3.5574 2.9439 o.20 3.9404 3.1761 
20.0 0.10 3.6276 3.1206 0.15 3.8839 3.2316 0.15 4.1754 3.4336 0.15 4.8251 3.7756 
30.0 0.10 4.0651 3.4380 0.15 4.2698 3.5599 0.15 4.5854 3.7721 0.15 5.5513 4.2911 
50.0 0.10 4.6173 3.8974 0.10 4.8211 3.9628 0.15 5.2262 4.3434 0.15 6.9328 4.7543 
70.0 0.10 5.0003 4.2474 0.10 5.2269 4.2991 0.10 5.6847 4.5869 0.10 8.5036 5.1641 

100.0 0.05 5.3930 4.5626 0.05 5.6525 4.6163 0.04 6.2909 4.8582 0.05 10.3937 5.6388 

150.0 0.05 6.0254 4.9721 0.05 6.3951 5.1235 0.04 7.5931 5.2930 0.05 12.4773 6.3251 
200.0 0.05 6.5241 5.3433 0.04 6.9604 5.3978 0.04 8.9787 5.7434 0.05 13.8443 7.1130 
250.0 0.05 7.0355 5.6257 0.04 7.6865 5.6430 0.04 10.4849 6.1206 0.05 14.8149 7.9835 
300.0 0.05 7.5619 5.8642 0.04 8.4416 5.9296 0.04 12.0050 6.4885 0.05 15.5513 8.9114 
400.0 0.05 8.7562 6.3378 0.04 10.0915 6.3887 0.04 14.5287 7.2373 0.05 16.6113 10.8438 
500.0 0.05 10.0114 6.7586 0.04 11.3989 6.8822 0.04 16.0824 8.1392 0.05 17.3391 12.9881 

• 
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Table(6-5-5). Overall Sherwood numbers for two spheres with Zs = 3.09. 

(AZ = IZs/201, An = 6°) 

Re = 0.001 Re = 1.0 Re = 10.0 Re = 100.0 

Pe w C* ShAO  ShBO w C* ShAO  ShBO wC* ShAO  ShBO w C* ShAO ShBO 

0.001 0.80 2.0471 2.0431 0.80 2.0471 2.0431 0.80 2.0471 2.0431 0.80 2.0471 2.0431 
0.01 0.80 2.0414 2.0375 0.80 2.0409 2.0370 0.80 2.0407 2.0367 0.80 2.0400 2.0360 
0.1 0.80 2.0253 2.0110 0.80 2.0257 2.0100 0.70 2.0268 2.0133 0.60 2.0277 2.0169 
1.0 0.60 2.2892 2.1283 0.60 2.3221 2.1413 0.40 2.3318 2.1251 0.50 2.3979 2.1851 
2.4 0.30 2.4728 2.2825 0.30 2.5303 2.3069 0.25 2.6289 2.3547 0.30 2.7870 2.4901 
5.0 0.25 2.9204 2.6317 0.25 3.1256 2.8356 0.25 3.3518 2.9597 

10.0 0.25 3.2858 3.0050 0.25 3.3843 3.0477 0.20 3.6117 3.2425 0.25 4.0549 3.5265 
20.0 0.10 3.7331 3.4187 0.10 3.8761 3.4693 0.15 4.2439 3.7694 0.20 5.1156 4.1575 
30.0 0.10 4.1362 3.7523 0.10 4.2804 3.8046 0.15 4.6772 4.1466 0.20 6.1415 4.6768 
50.0 0.10 5.0063 4.5376 0.10 4.8527 4.2999 0.10 5.4029 4.7135 0.10 8.4107 5.4622 
70.0 0.05 5.0063 4.5376 0.10 5.2612 4.6438 0.10 6.0778 5.0356 0.10 10.0869 6.3358 

100.0 0.05 5.5036 4.9079 0.10 5.8410 5.0413 0.05 7.2061 5.5316 0.10 11.4495 7.7738 

150.0 0.05 6.3305 6.0432 0.05 6.8377 6.1462 0.05 9.5730 6.4647 0.05 12.7111 10.5650 
200.0 0.05 7.1273 6.5827 0.05 7.9551 6.8191 0.05 11.9561 8.7574 0.05 13.5036 13.6448 
250.0 0.05 8.0359 7.1743 0.05 9.2108 7.5457 0.04 12.7570 9.6098 0.05 14.0773 16.7084 
300.0 0.05 10.1029 8.5713 0.05 10.5438 8.3296 0.04 13.6579 10.8306 0.05 14.5122 17.6828 
400.0 0.05 11.2107 9.3234 0.05 13.3007 10.1380 0.04 15.0669 13.2085 0.05 15.1823 18.2884 
500.0 0.05 15.2440 12.0942 0.04 16.1793 15.5447 0.05 15.6098 18.8208 

• 



Table(6 -5 -6). Overall Sherwood numbers for two spheres with Zs = 0.20. 

(AZ = IZs/101, An = 6°) 

Re = 0.001 Re = 1.0 Re = 10.0 Re = 100.0 

Pe wC* ShAO ShBO wC* ShAO ShBO wC* ShAO ShBO w
C* ShAO ShBO 

0.001 0.80 1.6307 1.6248 0.80 1.6307 1.6248 0.80 1.6307 1.6247 0.80 1.6308 1.6247 
0.01 0.80 1.6262 1.6207 0.80 1.6262 1.6207 0.80 1.6257 1.6201 0.80 1.6248 1.6191 
0.1 0.80 1.6122 1.5901 0.80 1.6132 1.5886 0.80 1.6156 1.5846 0.80 1.6174 1.5808 
1.0 0.80 1.8538 1.6013 0.80 1.8823 1.6012 0.80 1.9475 1.6030 0.80 1.9963 1.6019 
2.4 0.50 2.1283 1.7033 0.80 2.2064 1.7380 0.80 2.3371 1.7574 0.80 2.4483 1.7810 
5.0 0.30 2.4395 1.8302 0.50 2.5559 1.8842 0.50 2.7598 1.9221 0.30 2.9410 1.9409 

10.0 0.20 2.8257 2.0118 0.30 2.9721 2.0711 0.30 3.2578 2.1287 0.20 3.5919 2.2049 
20.0 0.20 3.4914 2.3334 0.20 3.8724 2.4093 0.20 4.5524 2.6005 
30.0 0.15 3.6697 2.5064 0.20 3.8E31 2.5678 0.30 4.3252 2.6514 0.20 5.4298 2.8829 
50.0 0.15 4.1625 2.8455 0.20 4.3961 2.8931 0.20 5.0986 2.9878 0.20 7.2101 3.2541 
70.0 0.15 4.5486 3.1069 0.20 4.8469 3.1482 0.15 5.8548 3.2241 0.15 8.3243 3.5135 

100.0 0.10 5.0515 3.3687 0.10 5.4E49 3.3843 0.10 7.1116 3.4892 0.10 9.3751 3.7519 

150.0 0.10 5.8663 3.7337 0.10 6.5:48 3.7415 0.10 9.0847 3.8656 0.05 10.4714 4.0144 
200.0 0.05 6.6516 3.9109 0.05 7.6224 3.9189 0.05 10.2651 4.0703 0.05 11.2103 4.1760 
250.0 0.05 7.6024 4.1458 0.05 8.8272 4.1553 0.05 11.1710 4.3117 0.05 11.7565 4.3943 
300.0 0.05 8.4921 4.3267 0.05 9.7E55 4.3542 0.05 11.8625 4.5126 0.05 12.1642 4.5740 
400.0 0.05 10.1052 4.6835 0.05 12.9111 4.8417 0.05 12.7484 4.8244 
500.0 0.05 13.6631 5.1114 0.05 13.1668 5.0557 
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Table(6-5-7). Overall Sherwood numbers for two spheres with Zs = 1.32. 

(AZ = IZs/101, An = 6?) 

Re = 0.001 Re = 1.0 Re = 10.0 Re = 100.0 

Pe 
w C* 

ShAO Sh
BO 

w
C* 

Sh
AO 

 ShBO 
w C* Sh

AO 
 ShBO w C* ShAO ShBO 

0.001 0.80 1.8666 1.8630 0.80 1.8666 1.8630 0.80 1.8667 1.8630 0.80 1.8667 1.8629 
0.01 0.80 1.8650 1.8615 0.80 1.8653 1.8618 0.80 1.8651 1.8614 0.80 1.8645 1.8608 
0.1 0.80 1.8603 1.8345 0.80 1.8613 1.8340 0.80 1.8641 1.8299 0.80 1.8662 1.8262 
1.0 0.80 2.1532 1.8310 0.80 2.1743 1.8273 0.80 2.2411 1.8350 0.80 2.2897 1.8496 
2.4 0.50 2.4739 1.9784 0.50 2.5144 1.9732 0.50 2.6407 2.0100 0.50 2.7475 2.0746 
5.0 0.25 2.8165 2.1433 0.25 2.8573 2.1130 0.25 3.0510 2.1768 0.20 3.2432 2.2694 

10.0 0.25 3.2423 2.4398 0.25 3.3235 2.4362 0.25 3.5816 2.5324 0.20 3.9976 2.7044 
20.0 0.20 3.7588 2.8188 0.20 3.8534 2.7727 0.20 4.2386 2.8932 0.20 5.2788 3.2175 
30.0 0.20 4.1032 3.0619 0.20 4.2298 3.0320 0.20 4.8049 3.1682 0.20 6.6525 3.5273 
50.0 0.20 4.6805 3.4343 0.20 4.8949 3.4086 0.20 6.0002 3.5534 0.20 8.2670 3.9737 
70.0 0.15 5.2095 3.6896 0.20 5.5455 3.6878 0.20 7.4121 3.8400 0.15 9.1043 4.2786 

100.0 0.10 6.0452 3.9623 0.15 6.6369 3.9787 0.15 9.0143 4.1484 0.10 9.8723 4.6313 

150.0 0.10 7.6895 4.3380 0.10 8.6450 4.3178 0.10 10.5248 4.5130 0.10 10.6668 5.1855 
200.0 0.05 9.0215 4.5369 0.05 9.9174 4.5225 0.05 11.4486 4.7476 0.05 11.1441 5.8276 
250.0 0.05 10.2918 4.7828 0.05 10.9423 4.7762 0.05 12.1457 5.0100 0.05 11.4597 6.3714 
300.0 0.05 11.1213 5.0202 0.05 11.6727 5.0074 0.05 12.6680 5.2571 0.05 11.7092 6.9368 
400.0 0.05 12.3398 5.4329 0.05 12.7609 5.4141 0.05 13.4343 5.6956 0.05 12.0724 8.1375 
500.0 0.05 13.1817 5.8108 0.05 13.5187 5.7532 0.05 13.9648 6.0973 ,0.05 12.3280 9.2361 

•cr 
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Table(6-5-8). Overall Sherwood numbers for two spheres with Zs = 2.07. 

(AZ = IZs/101, An = 6°) 

Re = 0.001 Re = 1.0 Re = 10.0 Re = 100.0 

Pe wC*  ShAO ShBO wC* ShAO  ShBO w 
 C* 

ShAO ShBO w C* 
ShAO ShBO 

0.001 0.80 1.9515 1.9487 0.80 1.9513 1.9484 0.80 1.9516 1.9486 0.80 1.9516 1.9486 
0.01 0.80 1.9501 1.9472 0.80 1.9496 1.9468 0.80 1.9501 1.9472 0.80 1.9497 1.9467 
0.1 0.80 1.9463 1.9207 0.80 1.9477 1.9186 0.80 1.9501 1.9166 0.80 1.9512 1.9149 
1.0 0.80 2.2850 2.0100 0.80 2.3176 2.0144 0.80 2.3635 2.0334 0.80 2.3907 2.0465 
2.4 0.50 2.5484 2.1852 0.50 2.6027 2.1947 0.50 2.6942 2.2432 0.80 2.7857 2.3092 
5.0 0.25 2.8652 2.4776 0.30 2.9212 2.4045 0.30 3.0789 2.5021 0.25 3.2594 2.5274 

10.0 0.25 3.2316 2.7113 0.20 3.3313 2.7015 0.20 3.5658 2.8245 0.25 4.0723 2.9694 
20.0 0.20 3.7361 3.1294 0.20 3.8741 3.1183 0.15 4.3399 3.2479 0.15 5.6786 3.4361 
30.0 0.15 4.0936 3.3474 0.15 4.3161 3.3661 0.15 5.1313 3.5309 0.15 7.1168 3.7995 
50.0 0.15 4.8305 3.7134 0.15 5.2409 3.7297 0.15 7.0770 3.9313 0.15 8.3991 4.4308 
70.0 0.10 5.5951 3.9656 0.10 6.2877 3.9842 0.10 8.4473 4.2585 0.10 9.0431 5.0522 

100.0 0.10 6.9688 4.2970 0.05 7.7983 4.2799 0.10 9.6356 4.7751 0.10 9.5210 6.1263 

150.0 0.10 9.2005 4.8655 0.05 9.9201 4.8780 0.05 10.7317 5.7154 0.05 10.1441 8.1390 
200.0 0.05 10.4543 5.4812 0.05 10.9737 5.6292 0.05 11.3944 6.8846 0.05 10.4520 10.2403 
250.0 0.05 11.2672 6.1592 0.05 11.6835 6.4097 0.05 11.8444 8.1169 0.05 10.6669 12.2500 
300.0 0.05 11.8762 6.8585 0.05 12.2014 7.2248 0.05 12.1788 9.3309 0.05 10.8291 14.0544 
400.0 0.05 12.7259 8.2332 0.05 12.9269 8.7745 0.05 12.6363 11.5656 
500.0 0.05 13.2750 9.7346 0.05 13.3972 10.3911 0.05 12.9397 13.3126 

S 



Table(6-5-9). Overall Sherwood numbers for two spheres with Zs = 2.48. 

(AZ = IZs/101, An = 6°) 

Re = 0.001 Re = 1.0 Re = 10.0 Re = 100.0 

Pe 
w C* 

Sh
AO 

 ShBO  WC*  w Sh
AO 

 ShBO 
w C* Sh

AO 
 ShBO 

w C* ShAO ShBO 

0.001 0.80 1.9898 1.9871 0.80 1.9899 1.9871 0.80 1.9899 1.9870 0.80 1.9899 1.9870 
0.01 0.80 1.9882 1.9854 0.80 1.9879 1.9852 0.80 1.9882 1.9854 0.80 1.9884 1.9856 
0.1 0.80 1.9808 1.9588 0.80 1.9821 1.9572 0.80 1.9837 1.9558 0.80 1.9847 1.9550 
1.0 0.80 2.2744 2.0595 0.80 2.3083 2.0696 0.80 2.3443 2.0895 0.80 2.3705 2.1011 
2.4 0.80 2.4981 2.2262 0.40 2.5322 2.2195 0.40 2.6262 2.2697 0.30 2.6623 2.2442 
5.0 0.25 2.7262 2.3964 0.25 2.8419 2.4425 0.24 3.0038 2.5518 0.23 3.2222 2.6193 

10.0 0.25 3.1459 2.7527 0.25 3.2633 2.7950 0.20 3.4848 2.8987 0.20 4.0256 2.9607 
20.0 0.20 3.6161 3.1356 0.20 3.7909 3.1843 0.20 4.3147 3.3489 0.05 5.5049 3.2764 
30.0 0.20 3.9908 3.4014 0.20 4.2717 3.4573 0.20 5.2245 3.6642 0.05 6.8423 3.6685 
50.0 0.20 4.7691 3.7834 0.20 5.3338 3.8600 0.20 7.3171 4.2282 0.05 8.1084 4.7343 
70.0 0.15 5.6333 4.1107 0.15 6.5910 4.2300 0.15 8.4971 4.8691 0.05 8.6296 5.8788 

100.0 0.10 7.1273 4.6144 0.10 8.4006 4.8390 0.10 9.4847 5.9911 0.04 9.0685 7.8798 

150.0 0.10 9.3150 5.6700 0.10 9.9993 6.1532 0.05 10.3742 8.1572 0.03 9.4829 11.5330 
200.0 0.04 10.2809 6.7884 0.05 10.8022 7.6111 0.05 10.8957 10.5353 0.03 9.7308 14.8594 
250.0 0.04 10.9945 8.0813 0.05 11.3520 9.1237 0.05 11.2395 12.7653 0.03 9.9060 17.5792 
300.0 0.04 11.4834 9.4251 0.05 11.7426 10.6895 0.05 11.4824 14.6809 
400.0 0.04 12.1301 11.9534 0.05 12.2523 13.3710 0.05 11.8001 17.8984 
500.0 0.04 12.5218 14.1766 0.05 12.5728 15.9449 0.05 12.0053 20.4117 
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Table(6-5-10). Overall Sherwood numbers for two spheres with Zs = 3.09. 

(AZ = Izs/lol, An = 6°) 

Re = 0.001 Re = 1.0 Re = 10.0 Re = 100.0 

Pe cod* Sh
AO 

ShBO co
C* . 	

Sh
AO 

ShBO  cod*  Sh
AO 

Sh
BO 

co
C* 

Sh
AO 

Sh
BO 

0.001 0.80 2.0268 2.0240 0.80 2.0268 2.0240 0.80 2.0268 2.0240 0.80 2.0268 2.0240 
0.01 0.80 2.0210 2.0183 0.80 2.0206 2.0178 0.80 2.0204 2.0175 0.80 2.0201 2.0173 
0.1 0.70 2.0123 1.9940 0.80 2.0140 1.9917 0.70 2.0155 1.9903 0.50 2.0123 1.9989 
1.0 0.70 2.3426 2.1876 0.50 2.31565 2.1734 0.50 2.4131 2.2029 0.50 2.4397 2.1545 
2.4 0.30 2.5546 2.3678 0.30 2.6293 2.4029. 0.30 2.7455 2.4773 0.30 2.8443 2.3723 
5.0 0.30 2.9179 2.6865 0.20 2.9781 2.7015 0.25 3.2206 2.8497 0.20 3.4970 2.7055 

10.0 0.20 3.3186 3.0332 0.20 3.4589 3.0889 0.20 4.0067 3.3306 0.20 4.8567 3.0380 
20.0 0.20 4.0391 3.5255 0.20 4.3390 3.6415 0.20 5.9602 4.2345 0.20 6.8587 4.4758 
30.0 0.20 4.8170 3.9861 0.20 5.4502 4.1958 0.20 7.3318 5.3635 0.20 7.5549 5.8772 
50.0 0.20 6.7987 5.0573 0.19 7.7950 5.5884 0.20 8.5032 8.1678 0.20 8.1811 8.7339 
70.0 0.15 8.3996 6.3531 0.15 8.8403 7.2702 0.15 9.0545 10.8282 0.15 8.4721 10.3713 

100.0 0.10 9.4817 8.5585 0.10 9.6295 9.9166 0.10 9.5122 13.0238 0.10 8.7257 11.9759 
..! 

150.0 0.05 10.2890 11.3850 0.05 10.2739 11.3242 0.05 9.8995 14.8483 0.05 8.9445 13.7849 
200.0 0.05 10.6835 11.8167 0.05 10.5898 11.6404 0.05 10.1104 16.3010 0.05 9.0586 15.0810 
250.0 0.05 10.9157 11.9766 0.05 10.7911 11.8213 
300.0 0.05 11.0732 12.0954 0.05 10.9314 11.9496 
400.0 0.05 11.3000 12.2568 0.04 11.1125 12.1038 
500.0 0.05 11.4208 12.3642 0.04 11.2595 12.2073 • 
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APPENDIX F. COMPUTER PROGRAMMES. 

F-1. Introduction. 

Two computer programmes have been developed for solving 

the Navier-Stokes and diffusion equations in the present 

study of forced convective mass transfer from a system of two 

equally sized spheres with fluid flowing parallel to their 

line of centres. Program 1 is for the solution of the Navier-

Stokes equations, while Program 2 is for the diffusion 

equation. The computer programmes can be used to obtain 

solutions for any sphere spacing by specifying a value to the 

sphere spacing parameter Zs, which controls the distance between 

the spheres.They were written in Fortran IV language and have 

been run on CDC6400, CDC6600, and CDC Cyber 7314 computers. 

The numerical techniques employed to obtain the solutions of 

the Navier-Stokes and diffusion equations have been presented 

in Chapter 4. 

In the computational process, for each sphere spacing 

considered two magnetic tapes are needed: one for each computer 

programme, to store the flow information and numerical results. 

The Navier-Stokes equations expressed in terms of the stream 

function and vorticity transport equations are solved 

simultaneously using Program 1 for stream function and vorticity 

distributions in the flow region, and from which important 

quantities: such as the surface pressures and the drag 

coefficients for the spheres are calculated. The diffusion 

equation is solved using Program 2 for the concentration 

distributions over the same flow region using the stream 

a 
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function distribution which has been obtained for a specific 

sphere spacing and Reynolds number. From the results, important 

quantities; such as the local and overall Sherwood numbers for 

the spheres are calculated. 

The two computer programmes are developed solely to 

predict the flow conditions around two equally sized spheres 

parallel to their line of centres and to predict the rates of 

mass transfer from them, however, there is scope for these 

two computer programmes to be used in studies of two spheres 

of different sizes. Furthermore, with appropriate modification 

and combination, the computer programmes can be used to studies 

of two-sphere free convective, interacting free and forced 

convective mass transfer problems, as well as the time-

dependent fluid dynamic and mass transfer problems. 

F-2. Brief descriptions of the structures of the computer. 

programmes. 

The structures of the two computer programmes are 

generally similar to each other. For each programme, it consists 

of a main routine and some subroutines. The subroutines which 

perform various calculattions and operations are called at 

various stages of computation to perform the required operations. 

Some of the subroutines in the two computer programmes are 

identical, others differ slightly or completely. 

The basic structures of the computer programmes are 

shown as follows, in which those subroutines related to do an 

operation are put together. 



CALL RESTAB 

I STORE RESULTS ON TAPE  

N5=N5-1 	STORE RESULTS ON TAPE 
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	 CALL SETUP 

( CALL GRID ) 

( CALL INPUT ) 

( CALL COEFF 

( CALL CNSTBC 

No 

MMX1 = MX1  

I NPR = NPR1 	I 

( CALL VARBC ) 

( CALL RESTAB 
	

CALL SOLVE 	) 

Yes  SUPPLY NEW RELAXATION 

FACTORS 

= N+1 MMX1 = MMX1 -1 

Yes 

( CALL RESTAB ) 

( CALL PDCOEF 

SUPPLY NEW CASE ( CALL VFIELD ) 

1.  
CALL CNPLTP  

STOP 

Figure(F-1). Flow chart of computer Program 1. 
• 



CALL SETUP ) 

CALL GRID ( 	 ) 

( CALL INPUT ) 

1  
( CALL COEFF ) 

SUPPLY NEW RELAXATION 
FACTOR 

Yes  

CALL RESTAB 

I STORE RESULTS ON TAPE I 

No 
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i CALL 
‘ RESTAB  

" 

NPRC = NPRC1 

1 CALL VARBC 

( CALL SOLVE 

I N = N+1, MMX1 = MMX1 -1  

CALL RESTAB  

1 
1 N =

7

0  1 	 (  CALL NSNSEE ) 

i  
I SUPPLY NEW CASE I 	( CALL CNPLTP  

iNo 	
1 

I STORE RESULTS ON TAPE 

N5 = N5-1 

STOP 

• 
Figure(F-2). Flow chart of computer Program 2. 
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Program 1. 	Program 2.  

MAIN 	 MAIN 

SETUP 	 SETUP 

GRID , CNVERT 	GRID 

INPUT , VELDIS 	INPUT 

CNSTBC 

COEFF 	 COEFF 

VARBC 	 VARBC 

SOLVE 	 SOLVE 

RESTAB 	RESTAB 

CNPLTP , CNPLOT 	CNPLTP , CNPLOT 

PDCOEF 	NSNSEE 

VFIELD 

SKPFILE 	SKPFILE 

The flow charts of the two computer programmes are shown 

in Figures(F-1) and (F-2). The function of each subroutine is 

described in the listings of section( F-4). Also, in section( 

F-3) some important Fortran symbols which are widely used in 

the computer programmes together with their meanings are listed. 

With these, the user can thus understand the computer programmes 
I 	

and subsequently use them without much difficulty. 

• 
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S 

F-3. List of Fortran symbols. 

A list of the important Fortran symbols used in the two 

computer programmes is given below. All the other symbols used 

in the programmes are either defined in terms of these symbols 

or are self-explanatory in the subroutines. 

Fortran symbol 	Meaning 

AK(J)' 	 local surface pressures for sphere A. 

AKFSP 	Surface pressure at the front stagnation 

point of sphere A. 

AKRSP 	Surface pressure at the rear stagnation 

point of sphere A. 

ANU(J) • 	Sh„(0), local Sherwood numbers for sphere A. 

ANRAT(J) 	Ratio of local Sherwood number to local 

Sherwood number at the front stagnation 

point of sphere A. 

AVNU 	ShAO, overall Sherwood number for sphere A. 

Bl(I,J) 	B1(i,j) or Al(i,j). 

B2(I,J) 	B2(i,j) or A2(i,j). 

B3(I,J) 	B3(i,j) or A3(i,j). 

B4(I,J) 	B4(i,j) or A4(i,j). 

BK(J) 	KBO'  local surface pressures for sphere B. 

BKFSP 	Surface pressure at the front stagnation 

point of sphere B. 

BKRSP 	Surface pressure at the rear stagnation 

point of sphere B. 

BNU(J) 	shBL(e), .local Sherwood numbers for sphere B. 

BNRAT(J) 	Ratio of local Sherwood number to local 

Sherwood number at the front stagnation 

point of sphere B. 
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Fortran symbol 	Meaning 

BVNU 	ShBo, overall Sherwood number for sphere B. 

C(I,J) 	C. 
j 
 , dimensionless concentration. 

r 
CDFA 	Frictional drag coefficient for sphere A. 

CDFB 	Frictional drag coefficient for sphere B. 

CDPA 	Pressure drag coefficient for sphere A. 

CDPB 	Pressure drag coefficient for sphere B. 

CDTA 	Total drag coefficient for sphere A. 

CDTB 	Total drag coefficient for sphere B. 

CPT 	Central Processor Time(in seconds) allowed 

for each computer run. 

COSETA(J) 	Cos .n3. 

CS(J) 	• 	cose.. 

CSH(I) 	CoshZ.1. 

Dl(I) 	D1(i). 

D2(I) 	D2(i). 

D3 	D3. 

DTHETA(J) 	ej  in degrees. 

El(I) 	E1(i). 

E2(I) 	E2(i). 

EPSC 	Convergence criterion for concentration. 

EPSG 	Convergence criterion for vorticity. 

EPSU 	Convergence criterion for stream function. 

ETHA(J) 	nj  in radians. 

F(I,J) 	f. 
1,3•  

FACTOR 	Parameter for controlling the size of the 

non-linear terms of the Navier-Stokes and 

diffusion equations. 

• 

• 
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Fortran symbol 	Meaning 

FPLOT(K) 	Numerical symbol used for the kth contour. 

G(I,J) 	gi,j, vorticity function. 

H3(I,J) 	a /(CoshZ.-Cose.). 

i, subscript used to indicate the increment 

in Z. 

11(J) 	Value of i where the outer boundary begins. 

12(J) 	Value of i where the outer boundary ends. 

IETHA(J) 	flj  in degrees. 

INTAPE 	When equals to 1, flow information and 

results for the previous case are read from 

magnetic tape, otherwise they are computed. 

IXSTEP 	Number of line-printer steps to be used 

for plotting half the flow region. 

IYS 	Scaling factor used in plotting contours 

on computer output. 

J 	j, subscript used to indicate increments 

in both 8 and fl. 

JOMIT 	Maximum value of j which cuts the outer 

boundary. 

KNC 	Number of concentration contours to be 

plotted. 

KNP 	General counter for contours to be plotted. 

KNU 	Number of stream function contours to be 

plotted. 

KNV 	Number of vorticity contours to be plotted. 

KS 	k, mesh spacing in the angle n. 

LVC1(K),LVC2(K) 	Factors control the, searching of two points 

for each value of j for the kth contour 

ft 	 in the first and in the second halves of 

the flow region, respectively. 
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Fortran symbol 	Meaning  

M 
	

Equal to m-1. 

Ml 
	

m, number of the grid lines in the 

0-direction. 

MD 
	

Equal to (m+1)/2. 

MM 
	

Equal to n-1. 

MM1 	 n, number of grid lines in the Z-direction. 

MMD 
	

Equal to (n+1)/2. 

MNPR 
	

Maximum permissible number of point values 

unconverged, generally equal to O. 

MX1 
	

Number of iterations after which the current 

solutions are to be printed out. 

MMX1 
	

Set to MX1 initially; when it becomes zero 

the current solutions are printed out. 

MXITER 
	

Maximum number of iterations allowed for 

each case of Reynolds or Peclet numbers. 

N 
	

Iteration counter. 

N2 
	

Total number of irregular points on the 

boundaries requiring special treatment. 

N3 
	

Equal to 0 when overall convergence of.the 

solutions has been achieved, otherwise 

equal to 1. 

N5 
	

Number of cases to be solved for each 

• 

NDTAPE 

NOMIT 

NPC 

computer run. 

When equal to 1 the flow information and 

results are stored on magnetic tape. 

Number of grid points outside the outer 

boundary to be omitted. 

Number of unconverged point values of 

concentration on the boundary. 
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Fortran symbol 	Meaning 

NPC1 	Number of point values to be obtained for 

concentration on the boundaries. 

NP1 	Number of unconverged irregular point values. 

NPR 	Number of unconverged point values. 

NPR1 	Number of point values to be obtained for 

both the stream function and the vorticity. 

NPRC 	Number of unconverged point values for 

concentration. 

NPRC1 	Number of point values to be obtained for 

concentration. 

NPRU 	Number of unconverged point values for the 

stream function. 

NPRU1 	Number of point values to be obtained for 

the stream function. 

NPRV 	Number of unconverged point values for 

the vorticity. 

NPRV1 	Number of point values to be obtained for 

the vorticity. 

NSKIPR 	Number of files on magnetic tape to be 

skipped before reading data from it. 

NSKIPW 	Number of files on magnetic tape to be 

skipped before writting data on it. 

NSKPR1 	Number of files on magnetic tape to be 

skipped before reading from Tape 1 the 

stream function distribution in the flow 

region. 

PE 	Peclet number. 

PTIME 	Central Processor Time(in seconds) allowed 

S 	
per computer run for storing unconverged 
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Fortran symbol 	Meaning 

results on magnetice tape. 

R1(I,J) 	a Sin6j/(CoshZi-Cosej). 

RD 	Ro or r/d. 

RE 	Reynolds number. 

RPC 	Relaxation factor for concentration. 

RPG 	Relaxation factor for vorticity. 

RPU 	Relaxation factor for stream function. 

RN(J) 	Equal to Oi- Oi_1, j = 2, 3, 	, m. 

RPLOT 	Radius of the two spheres. Normally set to O. 

RRA 	Starting point of the contours to be plotted 

in the flow region upstream of sphere A. 

RRB 	Mid-point between the spheres. 

RRC 	Terminating point of the contours to be 

plotted in the flow region downstream of 

sphere B. 

RRCU 	Terminating point of the stream function 

contours to be plotted in the region 

downstream of sphere B. 

RRCV 	Terminating point of the vorticity contours 

to be plotted in the region downstream of 

sphere B. 

RRL 	Scaling factor for the contours to be 

plotted on computer output. 

SC 	Schmidt number. 

SINETA(J) 	Sinn.. 

SH 	h, mesh spacing in Z. 

SK 	Kt  mesh spacing in the angle n(radians). 

SM(J) 
	

Equal to 6.3+1 	3 - e., j = 1, 2, 	m-1. 



0 	 362 

Fortran symbol 	Meaning 

SN(J) 	Sine.. 

SNH(I) 	SinhZ.. 

THETA(J) 	O. in radians. 

U(I,J) 	V. ., dimensionless strain function. 
* 

V(I,J) 	. ., dimensionless vorticity. 

VCC(K) 	Value of the kth concentration contour. 

VCU(K) 	Value of the kth stream function contour. 

VCV(K) 	Value of the kth vorticity contour. 

VT(I,J) 	Velocity component in the 9-direction. 

VZ(I,J) 	Velocity component in the Z-direction. 

Xl(J,K),X2(J,K) 	Y1-coordinates of the first and second 

points on the kth contour for sphere A. 

X3(J,K),X4(J,K) 
	

Y1-coordinates of the first and second 

points on the kth contour for sphere B. 

Y1(J,K),Y2(J,K) 	Y2-coordinates of the first and second 

points on the kth contour for sphere A. 

Y3(J,K),Y4(J,K) 
	

Y2-coordinates of the first and second 

points on the kth  contour for sphere B 

Z(I) 
	

Z .1. 

ZS 	Zs, sphere spacing parameter. 

ZVC1(K),ZVC2(K) 	Values of Z of the first and second points 

on the kth contour for sphere A. 

ZVC3(K),ZVC4(K) 	Values of Z of the first and second points 

on the kth contour for sphere B. 

• 
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F-4. Computer programmes listings. 

A. Computer Program 1. 

PROGRAM FLOw(INPUT.OUTPUT.TAPE5=INPUT.TAPE6=OUTPUT,TAPE1) 
C---- THIS PROGRAMME SIMULATES VISCOUS INCOMPRESSIBLE NEWTONIAN FLUID 
C---- 	FLOWING AROUNfl A SYSTEM OF TWO EQUALLY SIZED SPHERES 
C---- 	PARALLEL TO THEIR LINE OF CENTRES. 

COMMON/GRID1/ Z(41 ).SNH(41),CSH(41).SN(31).CS(31) 
COMv.ON/GRIU2/ IETHA(31).ETHA(31).TNETA(61),DTIIETA(31) 
COmRON/GRID3/ H3(41.311.R1(41,31) 
COMmON/UVGFC/ U(41,31).V(41.31).G(41131).F(41.31) 
COMmON/M1MM1C/ M.M1,MMD,MM.MM1,MJD,SP,SK.KS 
COMMON/NRRC/ N.NXITERI 1 X1,MMX1,MNRR.N2.NOMIT I  

1 

	

	NPR.NPR1.NPRUINPRU1INPRV,NPRV1INP2 
COMMON/CNTROL/ N31L4.INTAPE.NDTAPEINSKIPW.NSKIPR 
COMMON/CNSTC/ ZS.REIEPSUIEPSG.RFU,REG 
COMMON/IRREGC/ JOMIT.I1(31),I2(31) 
COmmON/RRABC/ RHA,RRR,RRC.RRCU.RRCV,RRL 
COMMON/FACTOR/ FACTOR 

C---- CPT IS THE MAXIMUM TIME AI LOWED FOR EACH COMPUTER RUN. 
C---- N5 IS THE COUNTER OF CASES TO BE SOLVED FOR EACH RUN. 
C---- NXITER IS THE MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR EACH CASE 
C---- 	CF REYNOLDS NUMBER. 

CPT=890.0 
pTIME=5.0 
N5=1 
CALL SETUP 

60 CALL GRID 
CALL COEFF 
CALL INPUT 
CALL CNSTBC 
N=0 

50 IF(M.GE.MXITER) GO TO 4000 
WRITE(611000) 

1000 EORMAI(1H1,48H*****HERE STARTS A CROUP OF MX1 ITERATIONS.*****) 
WRITE(6,1001) ZS.RE.RFU1RFG.XFTOR 

1001 FORMAT(1H0,//,1X,4HZS =.F6.3,5X.4HRE =1F8.3.5X,5HRFU =,F6.2.5X.5HR 
lEG =IF6.2,5X17HXFTOR =,F6.2) 
WRITE(6.1002) NPRU1.NPRV1,NPR1,NOMIT 

1002 FORIVAT(1HU, /910X.7HNPRU1 =1I5111Y17HNPRV1 =.15110)(16HNPR1 
1xONNCMIT =.I5./) 
WRITE(6,1003) EPSUIEPSG 

1003 FORMAT(1H0110X.61-IEPSU 1-_,F10.6.10X.6HERSG =1F10.61//) 
C---- HERE BEGINS THE ITERATION SECTION FOR A GIVEN REYNOLDS NUMBER. 
C---- A GROUP OF MX1 ITERATIONS IS SUPPLIED BY SETTING MMX1=MX1. 

mmxI=Mx1 
C---- A NEW ITERATION BEGINS WITH NPR=NPR1. 
C---- 	NPR1 IS THE TOTAL NUMRER OF POINT VALUES TO BE OBTAINED. AND 
C---- 	NPR IS THE TOTAL NUMBER OF UNCONVERGED POINT VALUES, 

40 NPR=NPR1 
CALL VARBC 
CALL SOLVE . 
CALL SECOND(CPSEC).  
IF((N/5)*5.NE.N) GO TO 20 
WRITE(6.2000) N.CPSEC.NPRU.NPRV.NRR.NP2 

2000 FORMAT(1HO.3HN =,I5.5x.5HCPT =,F6,2115X16HNPRU =II5,5,06HNPRV =I I5 
1,5X.5HNPR =,1515X15HNP2 
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20 TLEFT=CPT-CPSEC 
IF(TLEFT.LE.PTIRE) GO TO 2 

C----  AN ITERATION IS COMPLETED. 
N=N+1 
MMX1=MMX1-1 

C---- TEST FOR THE OVERALL CONVERGENCE. IF mPR IS LESS THAN OR EQUAL TO 
C---- 	VNPR, THE OVERALL CONVERGENCE OF THE PRESENT SOLUTIONS HAS 
C---- 	OBTAINED. 	 • . 
C---- IF MMX1=0, THE GROUP OF MX1 ITERATION HAVE BEEN PERFORMED, 
C---- 	OTHERVISE GO TO 40 AND START A NEW ITERATION. 

IF(NPR-'lN1R) 200.200,100 
100 IF(MMX1) 300,300140 

C---- SFT N3 TO ZERO IF THE OVERALL CONVERGENCE HAS BEEN OBTAINED. 
200 N3=0 

C---- AN EXTRA ITERATION IS ALLOWED FOR THE BOUNDARY CONDITIONS TO BE 
SATISFIED. 

NPR=NPR1 
CALL VARBC 
CALL SOLVE 
IF(NPR.GT.MNPR) GO TO 40 

300 CALL RESTAB 
IF(N3.E0.1) GO TO 50 
WRITE(6.2004) 

2004 FORMAT(///.4011.*****THE PRESENT CASE IS CONVERGED.*****,//) 
C---- IF NOTAPE=11 STORE INFORMATION ON TAPE 1. 

IF(OnTAPreNP:1 ) crl In 7  
REWIND 1 	' 

IF(NSKIPW.GT.0) CALL SKPFILE(NSKIPW,1) 
WRITE(1) 1 /ETHA(J),ETNA(J),DTHFTA(J),THETA(J),I1(J),I2(J),J=101) 
WRITE(1) JOMITTN2oNPRU1,NPRV1,NPR1,NOMIT 
WRITE(1) ( SN(J),CS(J)•,J=1,M1) 
WRITE(1) ( (H3(I,J).R1(I•J)•I=1,MM1),J=1,M1) 
WRITE(1) ((U(T,d),I=1,MM1),J=1,M1) 
WRTTE(1) ((V(ItJ),I=1,MM11,J=1,M1) 
WRTTE(1) ((,(I,J),I=1,MM1),J=1.M11 
WRITE(1) ((F(Tod),I=1,MM1)1J=1,M1) 
END FILE 1 
WRITE(6.3000) ZS.RFoNSKIFRINSKIPW 

3000 FORMAT(///,10X,4HZS =,F6.A.10X,4HRE =,F8.3.10X.8HNSKIPR =.I4,10X18 
1HNSKIPW =.I4,//) 
NSKIPR=NSKIPW 
NSKIPW=NSKIPW+1 

C---- CALCULATING THE SURFACE PRESSURES AND DRAG COEFFICIENTS. 
CALL POCOEF 

C---- STREAM FUNCTION AND VORTICITY CONTOURS ARE LOCATED AND PLOTTED. 
CALL CNPLTP 

C---- CALCULATE THE VELOCITY COMPONENTS. 
CALL VFIELD 

3 N5=N5+1 
N=0 
N3=1 
FACTOR=1.0 
IF(N5.EQ.2) GO TO 11 
IF(N5.EQ.3) GO TO 12 
IF(N5.EQ.4) GO TO 13 
IF(N5.EQ.5) GO TO 14 
GO TO 1 

C---- SUPPLIES NEW RELAXATION FACTORS. 



• 

365 

4000 CONTINUE 
RFU=RFU...0.10 
RFG=RFG-0.05 
TF(RFU.LE.0.0) 	GO Ta 1 
TF(RFG.LE.0.0) 	GO 	TO 	1 
GO TO 60 

11 CONTINUE 
RE=0.01 
GO TO 50 

12 CONTINUE 
RE=0.1 
GO TO 50 

13 CONTINUE 
RE=1.0 
GO TO 50 

14 CONTINUE 
RE=2.5 	• 
GO TO 50 

C----  PRINT OUT THE CONVERGED RESULTS. 
2 CALL RESTAR 

C---- IF NOTAPE=11 	STORE INFORMATION ON TAPE 1. 
IFCNOTAPE.NE.1) GO TO 1 
REWINC 1 
IFINSKIPW.GT.0) CALL SKPFILE(NSKIPW,1) 
WRITE(1)(IETHA(J),ETHA(J).DTHETA(J).THETA(J),I1(J),I2(J).J=1,M1) 
WRITE(1) UOMIT.N2INPRU1.NPRV1INPR1INOMIT 
WRITE(1) (SN(J),CS(J),J=101) 
WRITE(1) ((H3(I.J).R1(1.,..1),I=101M1).J=1,M1) 
WRITE(1) ((U(Itd)11=1.MM1)..../=1.M1) 
WRITE(1) ((V(IeJ),I=1,MM1),J=101) 
WRITE(1) ((G(I.J)0=1,MM1)+J=1,N1) 
WRITE(1) ((F(I,J),1=1,MM1).J=301) 
END FILE 1 
WR1TE(6.3001) 2S.RE,NSKIPRoNSKTPW 

3001 FORMAT(///110X,4HZS =.F6.3110X.4HRE =.F8.3,10X,8HNSKIPR =.14.10X,8 
1HNSKIPW =,149//) 

1 STOP 
END 
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SUBROUTINE SETUP 
C---- THIS SUBROUIINE SUPPLIES PROGRAMME CONTROL PARAMETERS AND FLOW 
C---- 	REGION INFORMATION. 

COMMON/GRID1/ Z(41),SNH(41),CSH(41),SH(31),CS(31) 
COMMON/GR1D2/ IETHA(31).ETHA(31),THETA(31),DTHETA(31) 
COMMON/GR1D6/ H3(41,61),k1(41,31) 
COMMON/NPRC/ N.MXITER,MX1,MMX1,MNPR.N2.NOMITv 

1 	NPRINPR1oNPRU,NPRU1,NPRV,NPRV1,NP2 
COMMON/CNTROL/ N3.L4vINTAPE,NnTAPE,NSKIPW,NSKIPR 
COMMON/M1MM1C/ M.M1IMMO.MM,MM1,MD,SH,SKIKS 
COMmON/CNSTC/ ZS,RE.EPSUtEPSG.RFU.RFG 
COMMr1N/RPLOIC/ kPLOTIRPLOTUvRPLOTVITYS,IXSTEP 
COMMON/PLIPON/ VCU(10),VCV(10),KNO.KNVIKNP 
COMMON/IRREGC/ JOMITII1(31l,I2(31) 
COMMON/RRABC/ RRAIRRBIRRC,RROU,RRCVIRRL 
COMMON/FACTOR/ FACTOR 
COMMON/ROC/ RD 

C---- SPHERE. SPACING, MESH SPACING, AND BOUNDARY PARAMETERS. 
ZS=0.20 
SH=ZS/20.0 
PO=14.0 
KS=6 
SK=(3.1415926/1e0.0)*KS 
M=30 
MM=40 

C---- CONTROL PARAMETERS FOR SOLVING THE EQUATIONS. 
FAcToR=u.1'0 
RE=0.001 
RFU=1.00 
PFG=0.80 
NSKIPR=0 
NSKIPW=0 
INTAPE=0 
NDTAPE=1 
mXITER=600 
MX1=300 
EPSU=0.001 
EPSG=0.001 
MNPR=0 
N3=1 
L4=0 

C---- CONTROL PARAMETERS FOR PLATTING STREAM FUNCTION AND VnRTICITY 
C---- 	CONTOURS AROuND THE SPHERES. 

RRA=5,0ERRB=CoSH(ZS) 
RRL=7,0 
RRCU=6.0 
RRCV=7.0 
RPLOT=1.000 
IXSTEP=60 
IYS=1.6666*FLOAT(IXSTEP•1)+1.5 
KNU=8 
KNV=7 
VCU(1)=0.fliCU(2)=0.001fVCU(3)=0.01.EVCU(4)=0.1.EVCU(5)=0.5EVCU(6)=1. 
VCU(7)=2.00/CU(8)=4.0 
vcv( 1 )=0.0fvcv(2)=0.05fvcv(3)=0.10Evcv(4)=.0.25EVCv(5)=0.50 
VCV(6)=1.00fVCV(7)=2.00 
RETURN 
END 
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p 

SUPROUTINE GRID 
C---- THIS SUBROUTINE SUPPLIES GRID INFORMATION AT EACH NODE. 

COW4ON/GR1D1/ Z(41),SNH(41).CSH(41).SN(31),CS(31) 
COMP1ON/GRID2/ IETHA(31).ETHA(31).THETA(31)1DTHETA(31) 
COrqvON/GRID3/ H3(41.31).R1(41,31) 
COMNON/UVGFC/ U(41.31),V(41,31).G(41.31),F(41.31) 
COMNON/M1MMIC/ M,M1,MMI)INM,NM1,MD,SH,SK,KS 
COMNON/CNSTC/ ZS,RF.EPSU,FPSG.PFU1RFG 
COMNON/NPRC/ NtNXITER,MX1.MMX1,MNPR,N2,NOMIT, 

1 	NPRINPR1.NPRU,1JPRU1,NPRV.NPRV1,NP2 
COMMON/CMTROL/ N3.L4.INTAPEINnTAPEINSKIPW,NSKIPR 
COMFON/IRREGC/ JOMIT,11(31),I2(31) 
COMMON/OFOSC/ OF.OF4,0F3,0F2.0S.0S4.0S3,0S2 
COMMON/PFPSC/ PF,PF4IPF3,PF2IPS,PS4.PS3.PS2 

C---- CALCULATE THE FIELD DIMENSION MM1 AND Ml. • 
M1=M+1 
MM1=MM+1 
MD=(M1+1)/2 
mMD=(WM1+1)/2 

C---- COMPUTING FIELD VARIABLES. 
Z(1)=-ZS 
SNH(1)=-SINH(ZS) 
CSH(1)=COSH(ZS) 
DO 10 I=2,MM1 
Z(I)=Z(I-1)+SH 
SNH(I)=SINH(Z(I)) 
CSH(I)=COSH(Z(I)) 

10 cONTINUE 
C---- TF INTAPE=1, VALUES OF THE FIELD VARIABLES WILL BE READ FROM TAPE 

1, OTHERWISE: Gn TO 1 TO CALCULATE THEM. 
IF(INTAPE.NE.1) GO TO 1 
REWIND 1 
IF(NSKIPR.GT.0) CALL SKPFILE(NSKIPR.1) 
READ(1) (IETHA(J).FTHA(J),DTHETA(J),THETA(q),I1(J),I2(J),J=1,M1) 
READ(1) JOMIT.N2,NPRU1,NPRV1,NPR1,NOMIT 
READ(1) (SN(J),CS(J),J=1,M1) 
READ(1) ((H3(I.J),R1(I.J),I=10M1)1J=1.M1) 
READ(1) ((U(I.J),I=1,MM1).J=1.M1) 
REAP(1) ((V(Ivd),I=1IMM1).J=1oM1) 
READ(1) ((G(I1J),I=1,MM1),J=1,M1) 
READ(1) ((F(I,J),I=1.MN1).J=1,M1) 
GO TO 2 

C---- CNVERT SUPPLIES VALUES FOR THETA(J). 
1 CALL CNVERT 
DO 20 J=1,M1 
SN(J)=SIN(THETA(J)) 
CS(J)=COS(THETA(J)) 

20 CONTINUE 
DO 40 j=1.M1 
DO 30 I=1.MM1 
IF(J.E0.1.AND.I.EQ.MMD) GO TO 35 
H3(I.J)=SNH(MM1)/(CSH(I)-CS(J)) 
Pl(I.J)=H3(I1J)*SN(J) 
GO TO 30 

35 H3(I.J)=10.E+30 
R1(I,J)=10.E•30 

30 cONTINUE 
40 CONTINUE 
2 CONTINUE 
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C--- THIS SECTION SUPPLIES THE PARAMETERS FOR CALCULATION nF THE FIRST • 
C---- 	ORDER ANO SECOND ORDER DERIVATIVES WITH RESPECT TO THETA. 

TM2=THETA(2)-THETA(1).  
Tm3=THETA(3)-THETA(2) 
Tm4=THETA(4)-THETA(3) 
OL=Tm2+TM3+TM4 
OK=TM2+TM3 
OH=TM2 
OL2=OL*OL 
OK2=0K*OK 
OH2=0H*OH 
OLMK=OL-OK 
OLMH=OL-OH 
OKMH=0K-OH . 
OF=OL*0K*OH*OLMK*OLMH*OKMH 
OF4=0K2*OH2*OKMH 
OF3=0L2*OH2*OLMH 
0F2=0L2*0K2*OLMK 
OS=OL*OK*OH*OLmK*OLMH*OKMH 
0s4=0K*OH*(0K2-0H2) 
0s3=0L*OH*(oL2-0H2) 
0S2=OL*OK*(0L2-0K2) 

C 
TM29=THETA(29)-THETA(2p) 
TM30=THETA(30)-THETA(29) .  
TM31=THRTAiiii-TuE1A(6()) 
PL=TM29+TM3o+TM31 
PK=TM30+TM31 
pH=Tm31 
PL2=PL*PL 
PK2=PK*pK 
PH2=PH*PH 
PLmK=PL-pK 
PLMH=PL-PH 
PKMH=PK-pH 
PF=PL*PK*PH*PLMK*PLMH*PKMH 
PF4=PK2*PH2*PKMH 
PF3=PL2*PH2*PLMH 
PF2=PL2*PK2*PLMK 
PS=PL*PK*PH*PLMK*PLMH*PKMH 
PS4=PK*PH*(PK2-P112) 
PS3=PL*pH*(PL2-PH2)— 
PS2=PL*pK*(PL2-PK2) 

• 

RETURN 
END 
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SUDROUTINE COEFF 
C---- THIS SURROUTINE CALCULATES ALL THE COEFFICIENTS OF THE FINITE-

DIFFERENCE EQUATIONS. 
COMrON/GRID1/ Z(41),SHH(41).CSH(41).Sr\i(31),CS(31) 
COMMON/GRID2/ IETHA(31).ETHA(31),THETA(31).0THETA(31) 
COMMON/GRIDS/ H3(41131),R1(41,31) 
COMMON/M1MM1C/ MoM1,MMD,MM.MM1.MD,SH.SK,KS 
COMMON/COEFF/ 01(41,31),B2(41.31),R3(41.31),B4(41,31) 
COMMON/NCOEFF/ FC0F(41),FC0FM(41),CB2(31),REG(31),A(31) 
COMMON/KMKNC/ AA(31).RB(31) 
COMmON/SMRNC/ SM(31).RN(31) 

C---- B1(1,J)162(I1J),13(I.J)034(Ild),ARE THE COEFFICIENTS OF THE 
FINITE-DIFFERENCE STREAM FUNCTION AND VORTICITY TRANSPORT 

C---- 	EQUATIONS. 
SH2=1./(SH*SH) 
DO 1 J=101 
CR2(J)=0.5*SH2/(H3(1,J)*H3(1.J)) 

1 CONTINUE 
SM(1)=THETA(2)-THETA(1) 
RN(1)=0.0 
sm(M1)=0.0 
RN(M1)=THETA(M1)-THETA(M) 
DO 10 J=2.M 
SM(J)=THETAW+1)-TPET4(J) 
RN(J)=THEIA(J)-THETA(J-1) 
RIAMN=sm(J)*pH() 
SVPRN=SM(J)+RN(j) 
SMNIRN=SM(J)-RN(J) 
AA(J)=1.0-SOMRN/SM(j) 
RB(J)=1.0+s(IMRN/RN(J) 
CCP=1.0+SPMHN/SVPRN 
CCM=1.0-SfrMHN/SMPRN 
SKT=1.0/SMTHN 
DO 20 I=2.MM 
BA=SNH(I)/(2.0*SH*(CSH(I)-CS(J))) 
BC=ACSH(I)*CS(J)-1'.0)/((CSH(I)-CS(J))*SN(J)*SMPRN) 
A(J)=2.0*SH2+2.0*SKT-(AA(J)-BB(J))*BC 
REG(J)=-1.0/(4.0*SH*SMPRN*A(J)) 
B1(I.J)=(SH24-(0)/A(J) 
B2(I,J)=(SH2-RA)/A(J) 
B3(I1j)=(CCM*SKT-AA(J)*BC)/A(J) 
84(I,J)=(CCP*SKT+Bb(J)*BC)/A(J) 

20 CONTINUE 
10 CONTINUE 

DO 30 I=1.MM1 
FC0F(I)=1./(H3(I.1)*R1J(2)) 
FC0FM(I)=1.0/(H3(I,M1)*SM(M)) 

30 CONTINUE 
WRITE(6.1000) 

1000 FORMAT(1H1 110X.5HIETHA,10X15HTHETA,13X.2HSM113)(.2HRN.14X11HAt12X93 
1HREG.//) 
WRITE(6,1001) (IETHA(J),THETA(J).SM(J),RN(J).A(J).REG(J).J=20) 

1001 FORMAT(1H09I15,5F15.6) 
RETURN 
END 



• 
370 

SUBROUTINE CNSTBC 
C----  THIS SUBROUTINE SETS THE rONSTANT BOUNDARY CONDITIONS. 

coRmoN/GRID1/ Z(41).s1`lH(41)IcsH(43)esN(31).cs(31) 
CDMMON/GR1D2/ ILTHA(31).ETHA(31).THETA(31),DTHETA(31) 
COMMON/GRIDS/ H3(41,31),R1(41,31) 
CONIVON/MihM1C/ M.M1.MMDIMM,hMl.MOISP,SK.KS 
COMMON/UVGFC/ U(41.31).V(41'31),G(41,31),F(41.31) 
COVMON/CNSTC/ ZSIRFIEPSU,EPSGIRFU.RFG 
COmMON/NPRC/ NIMXITER,Xl.MNX1ONPRoN2.NOMIT. 

1 	NPR,NPR1.NPRU,NPRU11NPRV,NPRV1.NP2 
COMMON/IRREGC/ JOMIT.I1(31),I2(31) 
ALONG THE AXES OF SYMMETRY. THFTA = 0 AND 180. 
DO 10 I=IIMM1 
LICI.1)=0. 
V(T11)=0. 
G(T11)=0. 
u(T041)=0. 
V(I/M1)=0. 
G(I.M1)=0. 

10 CONTINUE 
C---- ON THE SPHERE SURFACES. 

DO 20 J=1,M1 
U(1,J)=0. 
U(MM1,J)=0. 

2n CW.iTINUE 
C---- ALONG THE OUTER BOUNDARY. 

DO 30 J=loJOMIT 
ILE-VT=11(J) 
IRIGHT=I2(j) 
nO 4n I=ILEFT.IRIGHT 
V(I/J)=0. 
G(T,J)=0. 
F(T.J)=0, 
U(I1J)=0.5*R1(I,J)*R1(I,J) 

40 CONTINUE 
30 CONTINUE 

RETURN 
END 
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SUPROUTINE VARE3C 
C---- THIS SUBRCUTINE SETS THE SPECIALLY TREATED BOUNDARY CONDITIONS. 

COMMON/GR1D1/ Z(41),SNH(41)1CSH(41),SN(31).CS(31) 
COMMON/GR1D2/ IETHA(31).ETHA(31)THETA(31),OTHETA(31) 
COMMON/GR7D3/ H3(41,31)01(41,31) 
COmMON/M1MM1C/ M01,MMn.MM,MM1vMDISH,SK,KS 
COMMON/W/14C/ U(41,31),V(41,31)1G(41.31),F(41,31) 
COMMON/COEFF/ B1(41,31),R2(41,31).B3(41,31),B4(41,31) 
COMMON/NCCEFF/ FC0F( 41),FcaM(41),CE2(31).REG(31).A(31) 
COMN'ON/KMKNC/ AA(31),RP(31) 
COMMON/IRFEGC/ JOMITII1(31),I2(31) 
COMMON/CNSTC/ ZSIRE,EPSHIEPSG,RFUIRFG 
COMMON/NPRC/ NWXITER.MX1q1JMX1,MNPR,N2INOMIT, 

1 	NPRINPR1,NPRUINPRU1INPRViNPRV1,NP2 
COMMON/CNTRUL/ N3,L4IINTAPEINDTAPE.NSKIPWINSKIPR 
comfroN/orosci OF,OF4,0E310F210S,OS4,0S3.0S2- 
COMMON/PFF.SC/ PF,PF4,1313,PF2IPS,PS4IPS3,PS2 

C---- SOLUTION OF THE SPFCIALLY TREATED BOUNDARY CONDITIONS. 
C---- NEW ESTIMATES OF THE VORTICITY AT THE SPHERE SURFACES. 

NPRU=NPRU1 
NPRV=NPRV1 
NP2=N2 
DO 10 J=2,14 
TN=CP2(J)*(8.0*U(21J)-(J(31J)) 
IF(TN.LE.1.U0U) 	GO 	TO 	1 
IF(ABS((G(1,J)••TN)/TN).LE.EPSG) 	GO 	TO 	11 
GO TO 12- 

1 IF(ABS(G(1,J)-TN).LE.EPSG) 	GO 	TO 	11 
(7:0 	TO 	12 

11 NP2=NP2•1 
NPRV=NPRV".1 
NPR=NPR••1 

12 G(1,J)=TN 
V(11J)=G(1,J)/R1(11J) 
F(11J)=V(1.J)/R1(11J) 

10 CONTINUE 	• 
DO 20 j=2,M 
TN=CB2(j)*(8.*U(MMIJ)U(MM11J)) 
TF(TN.LE.1.000) 	GO TO 2 
TF(ARS((G(MM11J)-TN)/TN).LE.EPSG) 	GO TO 21 
GO TO 22 

2 IF(APS(G(MM1,J)-TN).LE.EPSG) 	GO TO 21 
GO TO 22 

21 NP2=NP2...1 
NPRV=NPRV1 
NPR=NPR..1 

22 G(MM1.J)=TN 
V(MV1,J)=G(MM11J)/R1(MM1.j) 
F(MM1,J)=V(MM1.J)/R1(MM1...1) 

20 CONTINUE 
C 
C- --- CALCULATE F(I,1) 	AND F(I.M1) 	ALONG THE AXES OF SYMMETRY. 

no 30 i=1,mm1 
F(T11)=(oF4*(v(I.4)-v(i,1))-oF3*(v(I13)-v(ill))+0F2*(v(I12)-v(111) 
+))/(or*H3(I.1)) 
F(Itml)=WF4*(v(itml-3)-v(I'ml))-pF3*(v(i.mi-2)-V(I041))+pF2*(v(II 
+m1-1)-v(itm1)))/(PF*113(Ilm1)) 
F(I.1)=FC0F(I)*V(I,2) 
F(IIM1)=FC0FM(I)*V(I,M) 

30 CONTINUE 
• RETURN 

END 
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SUBROUTINE SOLVE 
C---- THIS SUBRUUIINE SOLVES THE' NAVIER-STOKES EQUATIONS FOR STREAM 

AND VORTICITY DISTRIBUTIONS IN THE FLOW REGION. 
COME✓SON/GRID1/ Z(41),SNH(41)1CSH(41),SN(31),CS(31) 
COMMON/GRID2/ IETHA(31),LTHA(31),THETA(31),DTHETA(31) 
cOMMON/GRID3/ H3(41,31),R1(41,31) 
COMMON/M1MM1C/ M,M1,MMO.MM,MM1vMD,SH,SKIKS 
cnvivx1N/uvGFC/ u(41.31),V(41,31),G(41131)1F(41.31) 
cOrmoN/CmsTC/ ZSIRE,EPSUIEPSG,RFU,RFG 
COMMON/COLFF/ R1(41,31),82(41,31)033(41,31),R4(41131) 
COMmON/MCOEFF/ FC0F(41),FC0FM(41),CR2(31).REG(31)1A(31) 
con,q.,ON/KmKNC/ AA(31),BB(31) 
COMMON/NPRC/ NtNXITER,MX1,MMX1eMNPRoN2,NOMIT, 

1 

	

	NFR.NPR1,NRRUINPRUloNFRV,NPRV1INP2 
COMMON/IRREGC/ dOMIT,I1(31),I2(31) 
COMMON/FACTOR/ FACTOR 
NEW ESTIMATE OF THE VORTICITY NEAR THE OUTER BOUNDARY. 
no 20 J=21JOMIT 
00 10 I=2,MM 
TF(I.GE.T1 (J).AND.I.EE.I2(J)) GO TO 10 
0F1=U(I+1+J)- i(I-14J) 
OF2=F(ItJ+1 )*AA(J)-F(I.J-1)*BR(J)-F(I,J)*(AA(J)BB(J)) 
OF3=U(I,J+1)*AA(J)-U(I.J-1)*BR(J)-D(IIJ)*(AA(J)-43B(J)) 
OF4=F(I+1,J)-F(I1iJ) 
C=DF1*DF2 
B=N- 31.0F4.  
0=r17 1:REG(..!;*R1(I,j)4,(C-G) 
yM=-(0/6(1,J))*FACTOR 
AGM=1.0+XM 
DP=(P+XM*G(11J))/AGM 
BG1=B1(I.J)*6(I+1,J) 
BG2=B2(I,J)*G(I-1,J) 
BG3=R3(I,J)*G(I,J+1) 
BG4=B4(I.J)*G(I1J-1) 
TN=HG1+BG2+BG3+BG4 
TNP=TN/AGM 
TN=TNP+DP 
TN=G(Itul)+RFG*(TN-G(I,J)) 
IF(TN.LE.1.U00) GO TO 1 
IF(ABS((G(I,J)-TN)/TN).LE.EPSG) GO TO 11 
GO TO 12 

1 IFIABS(G(I,J)..TN).LE.EPSG) GO TU 11 
GO TO 12 

11 NPFV=NPRV-1 
NPR=NFR1 

12 G(I,J)=TN 
V(I,J)=G(I.J)/RI(I,J) 
F(I1J)=V(I,J)/R1(I.J) 
NEW ESTIMATE OF THE STREAM FUNCTION NEAR THE OUTER BOUNDARY. 
D=-1113(T,J)*H3(IvJ)/A(J))*G(I.J) 
BU1=01(I,J)*U(I+1,J) 
BU2=B2(I,J)*U(I.1,J) 
BU3=B3(I,J)*U(I,J+1) 
BU4=B4(I,J)*U(I,J.-1) 
TN=BU1+0U2+BU3+RU4 
TN=TN+0 
TN=U(I,J)+RFU*(TN-U(I,J)) 
IF(TN.LE.1.u00) GO TO 2 
IF(ABS((U(I,J)TN)/TN).LE.EPSU) GO TO 13 

• GO TO 14 



• 
373. 

2 IF(ABS(11(11J)-TN).LE.FPSU) GO TO 13 
GO TO 14 

13 NPRU=NPRU-1 
NPR=NPR-1 

14 U(I•J)=TN 
10 CONTINUE 
20 CONTINUE 

C---- NEW ESTIMATE OF THE VORTICITY. 
JREG=J0M11+1 
CO 40 J=JREG.M 
DO 30 1=2,MM 
DF1=U(I+11J)-U(I-1.J) 
DF2=F(I,J+1)*AA(J)-F(I.J-1)*BR(U)-F(I,J)*(AA(J)-BB(J)) 
DF3=U(I,J+1)*AA(J)-U(I,J-1)*BB(J)-U(I,J)*(AA(J)-BB(J)) 
DF4=F(I+19,1)-F(1-11J) 
C=lF1*1)F2 
R=rF3*DF4 
O=RE*REG(J)*R1(I,J)*(C-B) 
XM=-(C/G(11d))*FACTOR 
AGM=1.0+XM 
DP=(0+XM*G(I1J))/AGM 
AG1=81(I.J)*G(I+1.J) 
BG2=B2(I.J)*G(I-1.j) 
BG3=B3(I.J)*G(I.J+1) 
BGLI=134(I.J)*G(I,J-1) 
TN=6G1+1=3G2+E3G3+BG4 
TNP=TN/AGN 
TN=INP+OP 
TN=G(I,J)+RFG*(TN-G(I.J)) 
IF(TN.LE.1.000) GO TO 3 
IP(ABSI(G(I,J)-TN)/TN).LE.EPSG) GO TO 31 
GO TO 32 

3 TF(ABS(G(1.J)-TN).LE.EPSG) GO TO 31 
GO TO 32 

31 NPRV=NPRV-1 
NPR=NPR-1 

32 G(I•J)=TN 
V(I,J)=G(I1J)/R1(I.J) 
F(I,J)=V(I.J)/R1(ItJ) 

C---- NEW ESTIMATE OF THE STREAM FUNCTION. 
0=-(H3(I.J)*H3(I.J)/A(J))*G(I,J) 
BU1=B1(I.J)*U(I+11J) 
BU2=B2(I.J)*U(I-11J) 
BU3=63(19J)*U(I,J+1) 
BU4=84(I.J)*U(I.J-1) 
TN=6U1+BU2+1iU3+6U4 
TN=TN+0 
TN=UCI,J)+RFU*(TN-U(I.J)) 
IP(TN.LE.1.000) GO TO 4 
IF(ABS((U(I•J)-TN)/TN).LE.EPSU) GO TO 33 
GO TO 34 

4 IP(ARS(U(I.J)-TN).LE.EPSU) GO TO 33 
GO TO 34 

33 NPRU=NPRU-1 
NPR=NPR-1 

34 U(I,J)=TN 
30 CONTINUE 
40 CONTINUE 

RETURN 

• 
	 END 
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SUPROUTINF CNVERT 
C---- THIS SUBRCUlINE CALCULATES THE VALUES OF THETA(J) CORRESPONDING TO 
C---- 	THE VALUES OF ETHA(J) WITH A CONSTANT INCREMENT.THE 
C---- 	COORDINATES OF THE OUTER BOUNflARY ARE ALSO DETERMINED. 

rOAANON/GRID1/ Z(41),SNH(41)IcSH(41).SN(31),CS(31) 
cON,m0N/GRID2/ IETHA(31),ETHA(31).THETA(31)1DTHETA(31) 
ror,4,0N/GRIL3/ H3(41,31),R1(41,31) 
CoVAON/CNSTc/ ZS,RE,EPSU,EPSG,RFU,RFG 
COmmON/m1Rm1C/ v011iMmoomMtmmitMD,SH,SKIKS 
COPMON/IRREGC/ JONITII1(31),I2(31) 
COfrMON/NPRC/ NINXITER.mX1,MMX1.MNPR,N2tNOMIT, 

1 	 NPR,NPR1OPRUINPRU1I1IPRV,NPRV1INP2 
COMMON/ROC/ RD 
DIMENSION YlA(31),Y2A(31).TN(31) 
IFTHA(1)=0 
ETNA(1)=0.0 
TN(1)=0.0 
00 20 J=2,  MD 
IETHA(J)=KS*(J-1) 
ETHA(J)=SV*FLOAT(J1) 
TN(J)=TAN(ETHA(J)) 

20 CONTINUE 
MDP1=MD+1 
00 30 J=MDP1,M1 
IETHA(J)=1-cS*(J•1) 
ETHA(J)=SV.*FLOAT(J•1) 
TN(0)=TAN(3. 1 4 1 s0g...rTHA(J)) 
TN(J)=-TN(J) 

30 CONTINUE 
C---- CONVERSION OF THE VALUES OF ETHA(J) INTO THE VALUES OF THETA(J). 

WRITE(6,1000) 
1000 FORMAT(1H1,10X15HIETHA,10Y,3HY1A110X,3HY2A19X,5HTHETA,9X16HDTHETA) 

A=SINH(ZS) 
AA=COSH(ZS) 
THETA(1)=0.0 
DTHETA(1)=0.0 
Y1A(1)=(•-A*A)/(AA•COS(THETA(1))) 
Y2A(1)=(A*S1N(THETA(1)))/(AA-COS(THETA(1))) 
DO 40 J=2,M1 
CHETA=THETA(J-4) 

1 CHETA=CHETA+0,017453292*0.01 
R=A*SIN(CHETA) 
RR=AA-.COS(CHETA) 
Al=R/RR 
B11=(-A*A)/(AA-00s(CHFTA)) 
IF(J.E0.MD) GO TO 3 
B1=TN(J)*(B11+AA) 
/F(J.GT.MD) GO TO 4 
ERROR=A1-ABS(B1) 
IF(ABS(ERROR).LE.0.000001) GO TO 2 
TF(ERROR.GT00.000001) GO TO 2 
GO TO 1 

3 RR=B11+AA 
IF(ABS(98).LE.0.000001) GO TO 2 
IF(BB.GT. 0,000001) GO TO 2 
GO TO 1 

4 ERROR=A1•ABS(B1) 
IF(ABS(ERROR).LE.0.000001) GO TO 2 
IF(ERROR.LT.U.000001) GO TO 2 

• GO TO 1 
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2 THFTA(J)=CHETA 
DTHETA(J)=CHETA*(360.0/(2.0*3.1415926)) 
YlA(J)=B11 
Y2A(J)=A1 

40 CONTINUE 
WRI1 E(6 I 1 U01)(IETHA(J),Y1A(J)IY2A(J)ITHETA(JIIDTHETA(J),J=1,M1) 

1001 FORMAT(11X114.2F13.6,F15.61F16.6,/) 
C---- DETERMINE THE RI-SPHERICAL ConROINATES OF THE OUTER BOUNDARY. 

RD2=RD*RD 
TNHZS=SINH(LS)/COSH(ZS) 
TNHZS2=TNN7S*TNNZS 
CTP1 =(R02/TNH7S2)+1.0 
CTM1 =(R02/TNHZS2)-.1.0 
C=CTP1/CTM1 
WRITE(6,2000) 

2000 PORMAT(1H0.10Xs5HIETHA,1 0Ye5HTHETA110X12HI1,10X.2HI2.10X.3HN2./) 
K=0 
MM2=0 
DO 50 J=11 M1 
CS(J)=COS(THETA(J)) 
CSHZ=C*CS(J) 
IF(CSHZ.L1.1.0) GO TO 5 
SNII7=SURT(CSHZ*CSHZ-1.0) 
EZ=CSHZ+SNHZ 
ZZ=ALCG(EZ) 
II=7Z/SH 

I2(J)=mmD+I1 
m2=12(J)-Il(J)+1 
MM2=MI/2+M2 
K=K+1 
WRITE(612(.01 )IETHA(J)IDTHFTA(J),I1(J),I2(J),M2,ZZ 

2001 FORPIAT(1H0.1160:15.6.3112,F15.6) 
50 CONTINUE 
5 jOMIT=K 

WRITE(6t2002) ZSIRDtSH/MM2vJOMIT 
2002 FORMAT(///.11X12HZSIFA.2,10X.2HRD,FE.2,10X.2HSH,F6.2.10X,3HMM29 I6. 

110X,5HJOMIT,I6,///) 
C---- CALCULATION OF THE TOTAL NUMBER OF MESH POINTS OUTSIDE THE OUTER 
C---- 	BOUNDARY WHICH IS TO BE OMITTED. 
C---- 	N2 IS THE TOTAL NUMBER of POINTS WHICH REQUIRE SPECIAL 
C---- 	TREA1MENTy( VORTICITY AT THE SURFACES OF THE SPHERES). 

NPR1 IS THE TOTAL NUMBER OF POINT VALUES TO BE OBTAINED. 
C---- 	NOmIT IS THE NUMBER OF POINTS OUTSIDE THE OUTER BOUNDARY. 

N2=2*(M-1) 
NOMIT=0 
DO 60 J=2,JOMIT 
NOMIT=NOMIT+I2(J)-I1(J)+1 

60 CONTINUE 
NPRu1=(M-1)*(MM-1)-NOMIT 
NPRV1=(M-1)*(MM-1)+N2-NOMTT 
NPR1=NPRUl+NPRV1 
RETURN 
END 
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SUBROUTINE INPUT 
C---- THIS SUBROUTINE CONTROLS ALL INPUT DATA REQUIRED TO START OFF 
C---- 	SOLUTION PROCEDURE. IT ALSO SUPPLIES INITIAL INFORMATION 
C---- 	FOR THE FIRST RUN. 

COMMON/GRID1/ Z(41),SNI1(41).CCH(41),SN(31),CS(31) 
COMMON/GRID2/ IETHA(31),ETHA(31),THETA(31).DTHETA(31) 
COMMON/GRID;/ H3(41,31),R1(41,31) 
COMMON/UV(-FC/ U(41,31),V(41,31),G(41,31),F(41.31) 
COMMON/M1MM1C/ F',M1,MMn,MM,MM1,MD,SH,SK,KS 
COMMON/CNSTC/ ZS.RE,EPSU,EPSG.RFU,RFG 
COMMON/NPRC/ NINXITER,MX1,MMX1,MNpR,N2,NOMIT, 

1 	NPR.NPR1,NPRUOAPRU1,NPRV.WPRV1,NP2 
COMMON/TRREGC/ JOMTT.I1(31)tI2(31) 
COMMON/CNTROL/ N3,1.4.INTAPEI1dDTAPE,NSKIPW.NSKTPR 

C---- INTAPE EQUAL 0, IT IS THE FIRST RUN AND STORE THE DATA ON TAPE. 
IF(INTAPE.E(.1) GO TO 1 
DO 10 J=1•M1 
DO 10 I=1,MM1 
G(I,J)=0.0 
F(I.J)=0.0 

10 CONTINUE 
C---- INTVAL SUPPLIES INITIAL VALUES FOR STREAM FUNCTION AND VORTICITY. 

CALL INTVAL 
nO 20 J=2,M 
no 20 I=2,MM 
G(TIJ)=V(1vJ)*R1(I1J) 

1%1131,, 	a• I .1 •srl—v %,■•■•1/“.A.t 
20 CONTINUE 

C---- IF NDTAPE=1, STORE INFORMATION ON TAPE 1. 
TF((JDTAPE.NL.1) GO TO 1 
REWIND 1 
IF(NSKIPW.GT.0) CALL SKPFILE(NSKIPW,1) 
WRITE(1)(IETHA(J)ILTHA(J),DTHETA(J),THETA(J),I1(J),I2(J),J=1,M1) 
WRITE(1) JOMIT,N2.NPRU1,NPRV1,NPR1.NOMIT 
WRITE(1) (SN(J),CS(J),J=11M1) 
WRITE(1) ((H3(I,J).R1(I,J),I=1,MM1).J=1,M1) 
WRITE(1) ((O(I,j),I=1.MM1).J=1.M1) 
WRITE(1) ((V(I,J),I=1,MM1),J=101) 
WRITE(1) ((G(I,J),I=1,MMi),J=101) 
WRITE(1) ((F(I,J),I=1,MM1),J=101) 
END FILE 1 
INTAPE=1 
NSKIPW=NSKIPW+1 

1 RETURN 
END 
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SUBROUTINE. INTVAL 
C---- THIS SUBROUTINE SUPPLIES INITIAL VALUES FOR STREAM FUNCTION AND 
C---- 	VORTICITY 

COMMON/GRID1/ Z(41),SNH(41).CSH(41).SN(31),CS(31) 
COMMON/GR1D2/ IETHA(31),ETHA(31).THETA(31),DTHETA(31) 
CONMON/GR1D3/ H3(41,31),R1(41,31) 
COMrON/M1NM1C/ V,M1,MMO,MM.MM1.MD.SH,SK,KS 
COMMON/UVGFO/ U(41.31),V(41.31),G(41.31).F(41,31) 
COMMON/CNSTC/ ZS.REIEPSU,FPSG,RFU,RFG 
COMVON/COEFF/ B1(41131).B2(41,31).R3(41,31),B4(41.31) 
COMMON/NCOEFF/ FC0F(41).FC0FM(41),CF2(31).REG(31).A(31) 
COMP'ON/NPFC/ N.MXITERWX1IMMX1,MNPR.N2,NOMIT. 

1 	NPR,NPRI.INPRU.NPRU1INPRV.NPRV1,NP2 
COMMON/IRREGC/ JOMIT.T1(31),I2(31) 
COMMON/VZVTC/ VZ(41.31). VT(41.31) 
DO 10 J=1041 
DO 10 I=1,MM1 
U(I.J)=0.0 
V(I.J)=0. 

10 CONTINUE 
C---- INITIAL STREAM FUNCTION AT ALL INTERNAL MESH POINTS. 
C---- SUPPLY STIMSOIJ AND JEFFERY ANALYTICAL SOLUTIONS. 

CALL VELD1S 
C---- INITIAL STREAM; FUNCTION AT THE SURFACES OF THE SPHERES. 

nO 13 J=1041 
Uf1;j)=0. 
U(Mrl.j)=D. 

13 CONTINUE 
C---- THITIAL STREAM FUNCTION ALONG THE OUTER BOUNDARY. 

DO 14 J=1.JOMIT 
ILEFT=I1(J) 
IRIWIT=I2(J) 
DO 14 I=ILEFT,IRIGHT 
U(T.J)=0.5*R1(I.J)*R1(I.J) 

14 CONTINUE 
C---- INITIAL STREAM FUNCTION ALONG THE AXES OF SYMMETRY. 

DO 15 I=2. MM 
U(II1)=0.0 
U(I,M1)=0.0 

15 CONTINUE 
C---- CONVERSION OF INITIAL STREAM FUNCTION INTO VORTICITY. 

nO 100 J=2,JOMIT 
nO 100 I=2,MM 
IF(I.GE.I1M.AND.I.LE.I2(J)) GO TO 100 
V1=IVT(I+11J)VT(I1.J))/(2.0*SH*H3(I.J)) 
V2=VT(I,J)*(SNH(I)/SNH(MM1)) 
V3=CVZ(I1J+1)-VZ(T.J-1))/(2.0*sk*H3(I.J)) 
V4=VZ(I.J)*(SN(J)/SNH(MM1)) 
V(I,J)=V1-V2-V3+V4 

100 CONTINUE 
JREG=JOMIT+1 
DO 101 J=JREG1 M 
DO 101 I=2,MM 
V1=(VT(I+1.J)VT(I1.J))/(2.0*SH*H3(I,J)) 
V2=VT(I.J)*(SNH(I)/SNH(MM1)) 
V3=(VZ(I.J+1).-VZ(I.J.-1))/(2.0*SK*H3(I,J)) 
V4=VZ(Itj)*(SN(J)/SNH(MM1)) 
ViI1J)=V1-a-V3+v4 

101 CONTINUE 
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no 110 J=20 
VGN1=(8.0*U(2,J)-•0(31.1))*CB2(J) 
V(11J)=VGN1/R1(11J) 
F(l1J)=VGN1 
VGNMM1=(8.0411(MV.J)-U(MN-1,J))*C132(J) 
V(10M11J)=VGNMP41/R1(MV1,J) 
G(M1`V1,J)=VGNMM1 

110 CONTINUE 
C---- PRINT OUT INITIAL VALUES FOR STREAM FUNCTION AND VORTICITY. 

WRITE(612000) 
2000 FORMAT(1H1,///,30Y.72H*****STREAM FUNCTION AND VORTICITY FROM STIM 

1SON-JEFFERY EXPRESSION.*****) 
WRITE(6,2002) 

2002 FORMAT(1H0,20)029H*****U—STREAM FUNCTION*****,////) 
WRTTE(6,200,5) (Z(I),I=1,MMDI2) 

2003 FORMAT(1H0t7X14HZ(T).11F11.2,//) 
WRITE(6,2004) (IETHAMIOTHETA(J),(1!(ItJ)II=1,MMD12)tJ=1,M1) 

2004 FORMAT(DclI6.2X,F5.1111F11.6) 
WRITE(6,2005) (Z(I),I=MMD,MM1.2) 

2005 FORMAT(1H1,//17X14NZ(I),11F11.2,//) 
WRITE(6,2006) lIETHA(J),DTHETA(J),(UtI,J),I=MMDIMM112),J=1,M1) 

2006 FORMAT(lY,I312X,F5.1,11F11.6) 
WRITE(6,2008) 

2008 FORMAT(1H1,20X,2911*****V----VO(ZTICITY 	*****,////) 
WRITE(6,2009) (Z(I),I=11MMDt2) 

2009 FORhAT(1NUI7X,4HZ(1),11F11.2,//) 
WRITE6,2016; iIETHA(J),OTHETA(0),(V(I,J).1=1,MMD,2),J=1,M1) 

2010 FORMAT(1X,I6,2X.F5.1,11F11.4) 
WRITE(6a1'11) (7(I),I=MMD,MM1,2) 

2011 FORMAT(1H0,7X,4HZ(I),11F11.2,//) 
WRTTE(6,2012) (IETHA(J),DTHETA(J)+(V(TIJ),I=MMO+MM1,2)+J=1,M1) 

2012 FORkAT(1XvI,5,2X,F5.1,11F11.4) 
C---- STREAK FUNCTION AND VORTICITY CONTOURS ARE SEARCHED AND PLOTTED. 

CALL CNPLTP 
RETURN 
END 

• 
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SUBROUTINE VELDIS 
THIS SUBROUTINE SUPPLIES STIMSONJEFFERYS ANALYTICAL SOLUTIONS. 
COMMON/GRID1/ Z(41),SNN(41),CSH(41),SN(31),CS(31) 
COMMON/GR1D2/ IETHA(31)eETHA(31),THETA(1),DTHETA(31) 
COMMON/GRIN/ H3(41+31),R1(41,31) 
COMMON/M1MM1C/ M.M1,MMn.MM,MM1IMD,SHISK,KS 
COMNON/UOFC/ U(41,31)0/(41,31),G(41,31).E(41131) 
COMMON/CNSTC/ ZSIRF,EPSU,ERSG,RFU,RFG 
COMMON/NPHC/ NIMXTTER,MX1,MMX1,MNPR,N2INOMITy 

1 	 NPR,NPR1,NPRU,NPRill,NPRV,NPRV1INP2 
COMMON/VZVTC/ VZ(41,31), VT(41,31) 
DIMENSION 1(31,20) 
DO 10 J=1,M1 
DO 10 IzltMM1 
VZ(I,J)=0.0 
VT(I,J)=0.0 
U(I1J)=0. 

10 CONTINUE 
C---- SUPPLY LFGENDRE POLYNOMIAL UP TO ORDER (0--19) 

NTFRM=19 
DO 5 J=1,M1 
y(J.1)=1. 
Y(J,2)=CS(j) 
DO 4 K=2,FtTLRM 
H=CS(J)*Y(J1K) 
Y(J,K+1)=2.0*HY(J,K-1)-(H-.Y(JsK-1))/FLOAT(K) 

4 CONTINUE. 
5 COOTINUE 

ROOT2=SORT(2.0) 
YZ2=2.o*zs 
E1=ExP(yz2) 
7Smil1=siNH(Yz2) 
DO 300 J=2,M 
X=CS(J) 
y1=SN(J) 
nO 200 I=2,MM 
X2=CSH(I).-CS(J) 
X3=SNH(I) 
X4=CSH(I) 
x2n1=SGRT(X2) 
x2M1=1.0/X2P1 
SUM1=o, 
suM2=0. 
SUM3=0. 
SUM4=0,0 
NORDER=10 
DO 100 N=1,NORDER 
YN=N 
YN2=2.0*YN 
YN21=YN2+1,0 
AK=YN*(YN+1.0)/(ROOT2*(YN2-•1.0)*YN21*(YN2+3.0)) 
AKU=AK*SNH(MM1)*SNH(MM1) 

C 
YZN21=11121*ZS 
yNm=YN-0.5 
yNp=YN+1.5 
ZYNM=yNm*Z(I) 
ZYNP=mp*Z(I) 
E2=1.0/EXP(YZN21) 
ZSNH2=siNH(YZN21) 
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AD=2.0*ZSPI12+YN21*ZSNH1 
D1=2.0*(1.0-E2) 
D2=YN21*([1-1.0) 
D3=YN21*(1.0-1.0/E1) 
AN=-(YN2+3.U)*AK*(P1+112)/AB 
ON= (YN2-1.1))*AK*(D1+03)/AB 
UN=AN*COSH(LYNM)+BN*COSH(ZYNP) 
DUN=YNM*AN*SINH(ZYNN)+YNP*RN*SINH(ZYNP) 
ANU=-(YN2+3.0)*AK11*(D14-O2)/AB 
BNU=(YN2-1.0)*AKU*(01+03)/AB 
UNU=ANU*CUSH(ZYNM)+BNU*COSH(ZYNP) 

C 
PNV1=y(J,N) 

PN=Y(J,N+1) 
PNP1=Y(J,N+2) 
PNP2=Y(J,N+3) 
VN=PNV1-PNP1 
DVN=IYN*(PN-X*PNM1)+(YN+2.0)*(X*PMPl-PNP2))/X1 
sUM1=SUM1+UN*VN 
sUrte2=sUm2+UN*OVN 
SUV3=SUM3+VN*DUN 
sUM4=SUM4+UNU*VN 

100 CONTINUE 
V1=(.1.0-X*X4)/X2 
V2=X2P1/X1 
V3=-X1*X3/X2 
V4-1.3*X2M1*X3/X1 
VZ(I1J)=V1+1.5*X2M1*SUM1-v2*SUM2 
vT(II‘J)=V3+V4*SUM1+112*SUM3 
v5=0.5*R1(I1J)*R1(I,J) 
V6=X2N1*X2M1*X2M1 
0(IIJ)=V5+V6*SUM4 

200 CONTINUE 
300 CONTINUE 

no 155 i=2,mm 
vz(1,1)=1.92*vZ(1,2)-1.44*vz(1,3)+0.64*vz(1,4)-0.12*v7(1,5) 
VZ(I01 1)=1.92*VZ(I,M)-1.44*VZ(I,M-1)+0.64*VZ(I,M-2)-0.12*VZ(I.M-3) 

155 CONTINUE 
WRITE(6,1000) 

1000 FORNIAT(1H11* VELOCITY IN THE Z-DIRECTION 	*) 
WRITE(6,3010) (Z(I),I=1,MMO.2) 

3010 FORMAT(1H0,11X111F11.21/) 
WRITE(6,3000) (TETHA(J),DTHETA(J), (VZ(I,J),T=1,MMD12),J=1,M1) 
WNTTE(6,3020) (2(I),I=MMD,1IM1.2) 

3020 F0RhAT(1H0,11X,11F11.2,/) 
WRITE(6,3000) (1ETHA(J),DTHETA(J), (VZ(I•J)•I=MMDIMM1.2),J=101) 

3000 FORMAT(1X,I3t2X1F5.1,11F11.4) 
WRITE(6,2000) 

2000 FORMAT(1H1•* VELOCITY IN THE THETA-DIRECTION *) 
WRITE(6,4010) (Z(1).1=10040,2) 

4010 FORMATC1HO•11X.11F11.2,/) 
WRITE(6,4000) (IETHA(J),DTHETA(J), (VT(I,J)II=1oMMD,2),J=10111) 
WRITE(6,4020) (Z(I),I=MMDOW112) 

4020 POPMAT(1H0111X111F11.2,1) 
WRITE(6,4000) (IETHA(J),DTHETA(J), (VT(I,J),I=MMD.MM1.2),J=101) 

4000 FORMAT(1X,I6,2X,F5.1111F11.4) 
RETURN 
END 

• 
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SUBROUTINE RESTAB 
C---- THIS SUORUUIINE PRINTS OUT THE STREAM FUNCTION AND VORTICITY 
C---- 	DISTRIBUTIONS IN TABULATED FORN., 

COMMON/GRID1/ Z(41),SNH(41)+CSH(41),SN(31),CS(31) 
COMrON/GR1D2/ ILTHA(31),ETHA(31),THET4(31),DTHETA(31) 
COMPON/ORID6/ H3(41t31),R1(41,31) 
COMMON/' 1VM1C/ VO-1104MO,MM,VM1,MD,SU,S1(tKS 
COPPMON/UV6FC/ U(41131),V(41,31)16(41,31),F(41,31).  
COMMON/CNSTC/ ZS,REIEPSU,FTSG,RFU,RFG 
COMNON/NPRC/ N,MXITER,MX1,MMX1,MNPR,N2,NOMIT, 

1 	NPRINPRloNPRUINPRU1,NPRV,NPRV1 I NP2 
C 

WRITE(6,100) REIRFU,RFG 
100 FORMAT(1H1, ///t1X,4HRE =,F10.515X,511RFU =tF10.5,5X,5HRFG =,F10,5) 

WRITE(6,102) NPRUltNPRV1,NPR1,N0MIT 
102 FORMAT(114.0e//,20)(+7HHPRU1 =,I5,11)(17HNPRV1 =,I5110)(16HNPR1 =tI5,10 

1X,7HNOMIT =tI51//) 
WRITE(6,101) NtI"PRU,NPRV,NPR,NP2 

101 FORMAT(1H0, //,1)(t3HN =II5,5X,6HNPRU =II5,5)(v6HNPRV =,I5,5)(v5HNPR 
1=,I5,5X,5HNP2 =1I5,11/) 
WRITE(6,200) 

200 FORMAT(1H0, 20X,29H*****U,STREAM FUNCTION*****,//) 
WRITE(6,201) (z(I),I=1,mmn,2) 

201 FORMAT(1H0,6X,4HZ(I)s11F10.2,//) 
WRITE(6,202) (IETHA(J),DTHETA(J),(U(I,J),I=1,MMD12),J=1,M1) 

202 FORMAT(1X,Iii2XIF5.1111F10.6) 
wRITr(g.,21iAl (7(7),T=Mmo.mM1,2) 

203 FORMAT(///lbX,41 4Z(I),111:10.2,//) 
WRITE(6,204) (IETM(J),DTHETA(J).(U(I,J),I=MMOIMM1,2),J=1,M1) 

204 FORMAT(1X,I312X,F5.1,11F1n.6) 
WRITE(613(60) 

300 FORMAT(1H1, ///,20X,29{*****V....--VORTICITY 	*****.///) 

WRITE(6,301) (Z(I),I=1,MMD,2) 
301 FORMAT(1)1003X14HZ(1),11F10.2,//) 

WRITE(6,302) (IETHA(J),DTHETA(J),(V(I,J),I=1,MMO12),J=1tM1) 
302 FORP'AT(1XtI312X,F5.1,11F10.6) 

WRITE(6.3(1 3) (Z(I),I=MMD,MM1,2) 
303 FORMAT(///,6X,4HZ(I),11F10.2,//) 

WRI1E(6,304) (IETHA(J),DTHETA(J),(V(I,J),I=MMD,MM1.2),J=1,M1) 
304 FOPMAT(1X.I312X,F5.1,11F10.6) 

RETURN 
FND 
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SUBROUTINE PDCOEF 
C---- THIS SURROUTINE CALCULATES THE SURFACE PRESSURES AND CRAG 
C---- 	COEFFICIENTS FOR THE TWO SPHERES. 

COMMON/ORID1/ Z(41),SNH(41),CSH(41).SN(31),CS(31) 
COMMON/GRID2/ TETHA(31)1ETHA(31),THETA(31).DTHETA(31) 
COMMON/GR1D5/ H3(41,31),R1(41,31) 
COMMON/UVGFC/ U(41131).V(41,31),G(41.31),F(41,31) 
COmMON/M1MM1C, M.M1,MMDIMM,MM1,Mn.SH,SK.KS 
COMMON/CNSTC/ ZS,RE,EPSUIEPSGIRFU,RFG 
COmMON/IRREGC/ JOMIT.I1(31).12(31) 
COMMON/OFOSC/ 01-.0F410F3.0F2.0c,OS4.0S3,0S2 
COVMON/PFPSC/ PF,PF4.P1-3,PF2,PS,PS4,PS3,PS2 
COMMON/PRESSC/ AKFSP,AKRSP.AKSTAR,BVFSP,BKRSP,BKSTAR 
COMMON/ABK/ AK(31).BK(31) 
nIFENSION SINETA(31),COSETA(31) 
nIvENSIoN uvDT(41) 
nImENsioN VTA(31)1vTB(31),vSNA2(31).vsNB2(31).AKsN2(31).oRsN2(31) 
RE4=4.0/RE 
SS=1.0/(6.0*SH) 
DO 1 J=1.M1 
SINETA(J)=-SIN(ETHA(J)) 
cosETA(J)=COS(ETNA(J)) 

.1 CONTINUE 
C---- ************************************************ 
C---- SURFACE PRESSURE DTSTRIBUTIONS FOR SPHERE A. 
C---- ************************************************ 
C---- CALCULATE THE PRESSURE AT THE FRONT STAGNATION POINT OF SPHERE A. 

iii=r1(1) 

00 10 ir.i.mmD 
DvDT(I)=(0F4*(v(I14)-V(I.1))-oF3*(V(1.3)-v(I.1))+0F2*(V(I.2)-V(I41 
1)))/OF .  

in CONTINUE 
SDVDT=0.50*DVDT(1) 
DO 11 I=2,II1 
SOVOT=SOVDT+DVDT(I) 

11 CONTINUE 
A1=SH*SDVDT 
AKFSP=1.0+8.0*A1/RE 

C 	- 
C---- CALCULATE THE SURFACE PRESSURES FOR SPHERE A FROM THE FRONT TO 
C---- 	REAR STAGNATION POINTS. 

DO 20 J=1.M1 
YY=SS*(-11.0*V(1,J)+18.0*V(2,J)-9.0*V(3.J)+2.0*V(4,J)) 
AA=•.SNH(1)/(CSH(1)-CS(J)) 
VTA(J)=RE4*(YY+AA*V(1,J)) 
VSNA2(J)=V(1,J)*SINETA(J)*H3(1,J)*R1(11J) 

20 CONTINUE 
AK(1)=AKFSR 
AKSN2(1)=0.0 
DO 25 J=2.M1 
AK(J)=AK(J-1)+0.50*(vTA(u)+vTAW-1»*(THETA(J)-THETA(J-1)) 
AKSN2(J)=2.0*AK(J)*COSETA(J)*H3(1...1)*R1(11J) 

25 CONTINUE 
AKRSP=AKIM1) 

C---- ************************************************ 
C---- SURFACE PRESSURE DISTRIBUTIONS FOR SPHERE B. 
C---- ************************************************ 
C---- CALCULATE THE PRESSURE AT THE REAR STAGNATION POINT OF SPHERE B. 

II7=I2(1) 
DO 50 I=PIMD:Mmi 
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DVOT( I ) =(CF4*(V(I,4)-V(I,1))-OF3*(V(I13)-V(I,1))+OF2*(V(I.2)-V(I.1 
+)))/OF 

5n CONTINUE 
SOvUT=0.51*uvnT(Mm1) 
00 51 I=I12,MM 
SDVDT=SDVDT+DVDT(I) 

51 CONTINUE 
R1=SH*SDVOT 
BKRSP=1.0-8.0*B1/RE 

C---- CALCULATE THE SURFACE PRESSURES FOR SPHERE B FROM THE REAR TO 
FRONT STAGNATION POINTS. 

no 60 J=1,m1 
yy=ss*(-11.0*v(roml,J)+10.0*V(mm,J)-9.0*V(mm-1,J)+2,0*v(mM-21 J)) 
AA=+sNH(MV1)/(CsH(r4m1)-CS(J)) 
VTB(U)=RE4*(Yy+AA*v(mmi,J)) 
VSNL.2(J)=V(MM1,J)*SINFTA(J)*H3(MM1,J)*R1(Mmi,J) 

60 CONTINUE 
BK(1)=BKRSP 
BKSN2(1)=0.0 
00 65 J=2.M1 
PK(J)=BK(J-1 )-0.50*(VIR(J)+VTB(J-1))*(THETA(J)-THETA(U-1)) 
PKSN2(J)=-2.*BK(J)*COSETA(J)*H3(MM1,J)*R1(MM1,J) 

65 CONTINUE 
BRFSP=OK(M1) 

C---- ********************************* 
C---- CALCULATION OF DRAG COEFFICIENTS. 
C---- ********************************* 

CnFA=0.0 
CDPA=0.0 • 
CDFB=0.0 
CDPB=0.0 
00 100 J=2,M1 
XX=0.50*(THLTA(J)-THETA(J-1)) 
CDFA=C0FA+0/SNA2(j)+VSNA2(J-1))*XY*8.0/RE 
CDFP=CDFB+CVSNB2(J)+VSNB2(J-1))*XX*8.0/RE 
rDPA=CDPA+(AKSN2(J)+AKSN2(J-1))*XX 
CDPB=CDPB+(BKSN2(J)+BKSN2(J-1))*XX 

100 CONTINUE 
CDTA=CDFA+CDPA 
COTB=CDFP+CDPB 

C---- PRINTS OUT THE RESULTS. 
WRITE(6,1000) ZS,RE 

1000 PORN'AT(1H1,1X,4HZS =,F6.2,5X,4HRE =,F10.3,//) 
WRITE(6,1001) 

1001 POPMAT(10X,5HIETHA,4X.6HDTHETA.7X,3HVTAI8X.2HAK,7X,3HVTB,8X,2HBK) 
WRITE(6,1002) 

1002 FORMAT(10Xt5H 	,4X,6H 	 
WRITE(6,1003) (IETHA(J),DTHETA(J)IVTA(J),AK(J),VTB(J),BK(J).J=1,M1 

+) 
1003 FORMAT(5X1I1OvF10.2,4F10.4) 

WRITE(6.1005) 
1005 FORMAT(///.1X,20HDVDT(T) OF SPHERE A.) 

WRITE(6,1006) (Z(I),DVDT(T),I=1.MMD) 
1006 FORMAT(5X,F6.2.5X,F10.4) 

WRITE(6,1007) 
1007 FORMAT(///.1X,20HDVDT(I) OF SPHERE B.) 

WRITE(6,1008) (7(I).DVDT(I)II=MMD,MM1) 
1008 FORMAT(5X,F6.2,5X.F10.4) 

WRITE(6,2000) RE,CDFA,CDPA1CDTA 
2000 FORMAT(////,1X,4NRE =.F8.315X.6HCDFA =,F12.5.5X16HCDPA =tF12.5.5XI I 

16HCDTA =1F12:51//) • 
WRITE(612001) CUFB,CDPB1CDT8 

• 
2001 FORMAT(18X.6HCOFB =, F12.5,5X,6HCnPB =IF12.515X,6HCDTB =,F12.5,//) 

RETURN 
END 	 _ 
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SUBROUTINE CNPLTP 
THIS SUBROUTINE EVALUATES PLOT POSITIONS OF CONTOURS AND CALLS 

THE LINE-PRINTER PLOTTING SUBROUTINE. 
COMMON/GR1D1/ Z(41).SNH(41),CSH(41).SN(31).CS(31) 
COMMON/GRID2/ IETHA(31),ETHA(31).THETA(31).DTHETA(31) 
COMMON/GRIDS/ H3(41131)021(41.31) 
COMMON/CNSTC/ ZS.RE,EPSUIEPSG.RFU.RFG 
CIIMMON/M1MM1C/ MtM1.MMDIMM,MM1.MDISHISK.KS 
COMMON/UVGFC/ U(41131),V(41,31).G(41.31)1F(41.31) 
COMMON/PLOT1/ X1(31,10)1X2(31,10).Y1(31,10)1Y2(31.10) 
COMMON/PLOT2/ X3(31,10).)0(31,10).Y3(31.10).Y4(31,10) 
COMMON/2VC1/ ZVC1(10)17VC2(10),LVC1(10) 
COMMON/ZVC2/ zVC3(10).7VC4(10).LVC2(10) 
COMMON/PLTPCN/ VCU(10),VCV(10),KNU.KNV,KNP 
COMMON/RPLOTC/ RPLOT,RPLOTU.RPLUTVITYS,IXSTEP 
COMMON/RRABC/ RRA,RF?B.RRC.RRCU,RRCV,RRL  

C 
C---- STREAY FUNCTION CONTOURS. 
C 	  

nO 1 J=101 
DO 1 K=1,KNU 
X1(J.K)=0.00EY1(J.K)=0.00 
X2(0,R)=0.00EY2(J.K)=0.00 
X3(J.K)=0.00EY3(J.K)=0.00 
X4(J,K)=0.00fY4(J.K)=0.00 

1 CONTINUE 
DO 10 l<=111KNU 
7VC1(K)=0.00E7VC2(K)=0.00ELVC1(K)=1 
7VC3(K)=0.U0EZVC4(K)=0.00ELVC2(K)=1 

10 CONIINUE 
C---- SEARCH AND INTERPOLATE BETWEEN TWO 1-LINE. 

no ion J=1,1411 
nO 110 1=2,mMi 
IF(I.EO.MMD.AND.J.E0.1) GO TO 110 
nO 110 KL-11KNu 
IF( O(I-1,J).GE.VCu(K).AND. U(I,J).LE.VCU(K)) GO TO 2nD 
TF( WI-1,J).LE.VCO(K).ANn. U(I,J).GE.vCU(K)) GO TO 2n0 
GO TO 110 
SEARCH THE STREAM FUNCTION CONTOURS FOR THE FIRST SPHERE. 

200 IF(I.GT.MMD) GO TO 201 
IF(LVC1(K).EQ.0) GO TO 101 
A=(VCU(K)-U(I-1.J)) 
IF(A.EQ.O.U/ A=10.E-30 
13=-(U(I.J)-U(I-1,J)) 
IF(B.EQ.0.0) B=10.E30 
SLOPE=A/B 
ZVC1(K)=Z(I-1)+SLOPE*(Z(I)-Z(I-1)) 
ZVC2(K)=0.0 
LVC1(10=0 
GO TO 110 

101 ArAVCU(K)"'U(I.-1.J)) 
IF(A.E0.000) A=10.E.•30 
B=(U(I,J)-U(I-1,J)) 
IF(E.EQ.0.0) 8=10.E-3D 
sLoPE=A/8 
ZVC2(K)=Z(I-1)+SLOPE*(Z(I)Z(I•4)) 
GO TO 110 

C---- SEARCH THE STREAM FUNCTION CONTOURS FOR THE SECOND SPHERE. 

201 IF(LVC2(10.EU.0) GO TO 102 
A=VCU(K).-U(I-.1.J) 
IF(A.E0.0.0).A=10.E..30 
R=(U(I,J)•U(I1.J)) 

• IF(B.EW.0.0) B=10.E•.30 
SLOPE=A/B 
ZVC3(K)=ZIP•1)+SLOPE*(Z(I)Z(I1)) 
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ZVC4(K)=0.0 
LVC2(0=0 
GO 10 110 

102 Ar-(VCU(K)-U(I-1•J)) 
TF(A.E0.0.0) A=10. E-311 

IF(R.EG.0.0) n=10.E-30 
sLoPE=A/P 
zVC4(K)=z(I-1)+sLopE*(z(I)-Z(I-1)) 

110 CONTINUE 
C---- CONVERT TO RECTAGULAR COORDINATES 

DO 300 K=1.KNU 
IF(ZVC1(K).EG,0.0) GO TO 301 
IF(ZvC1(K).(1.100.0) zvC1(K)=100.0 
IF(ZVC1(K).LT.-100.) ZVC1(K)=-100. 
A1=SINH(Zvc1(K)) 
Bi=OOSH(ZVCI(K)) 
B1J=B1-Cs(J) 
TF(B1J.EQ.0.0) B1J=10.E-30 
Y1(J,K)=SNH(MM1)*sN(J)/131J 
Xl(J,K)=S1'1H(MM1)*A1/B1J 
GO TO 300 

301 Xl(J,K)=0.0EY1(J,K)=0.0 
300 CONTINUE 

nO 310 K=1.KWU 
TF(ZvC2(K).L0,0.0) GO TO 311 
IF(ZvC2(K).GT.100.0) 7vO2(K)=100.0 
IF(ZVC2(K).LT.-100.) 7VC2(K)=•100. 
A2=SINH(Z.VC2(K)) 
H?:.COS6iZVC2iKii 
B2J=B2CS(J) 
TF(P2J07(a.0.0) P2J=10.r-30 
y2 ( Jo< )=srn ( mml )1,sN(J)/B2J 
X2(J,K)=SNH(MM 1)*A2/B2J 
GO TO 610 

311 x2(J,K)=0.0EY2(J,K)=0.0 
310 rONTINUE 

DO 320 K=1•KNu 
TFavc3(K).E.Q.0.0) GO TO 321 
7F(ZVC3(K).GT.100.0) ZVC3(K)=100.0 
IF(ZVC3(K),LT..•100.) ZVC3(K)=••10(). 
A3=SINH(ZVC3(K)) 
B3=COSH(zVC3(K)) 
B3J=B3-Cs(J) 
IF(P3J.EQ.0.0) B3J=10.E-30 
y3(J.K)=sNH(Mm1)*sN(J)/B3J 

• x3(J.K)=sNH(mm1)*A3/B3J 
GO TO 320 

321 Y3(J,K)=0.0fY3(J.K)=0.0 
320 CONTINUE 

nO 330 K=1,KNU 
IF(ZVC4(K).EQ.0.0) GO TO 331 
IF(ZVC4(K).GT.100.0) ZVC4(K)=1R0.0 
TF(LVC4(K).LT.100.) ZVC4(K)=-.100. 
A4=SINH(ZVC4(K)) 
R4=COSH(ZVC4(K)) 
B4J=84.-.CS(J) 
IF(B4J.E0.0.0) B4J=10,E-30 
Y4(J,K)=sNH(Mm1)*SN(J)/B4J 
x4(J,K)=sNH(Mm1)*A4/B4J 
GO TO 330 	• 

331 X4(J.K)=O.0£y4(J,K)=0.0 
• 330 CONTINUE 

DO 11 K=1,KNU 
2VC1(K)=0. 
7ur2 (141=f1. 
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LVC1(K)=1 
ZVC3(K)=0. 
ZVC4(K)=0. 
LVC2(K)=1 

11 CONTINUE 
100 CONTINUE 

C---- PLOT STREAM FUNCTION CONTOURS AROuND THE SPHERES. 
KNP=KNU 
RRC=RRCU 	• 
CALL CNPLOT 

C 	  
C---- VORTICITY CONTOURS. 
C 	  

DO 2 J=1. M1 
DO 2 K=1.KNV 
X1(J,K)=0.00fYl(J1K)=0.00 
X2(J,K)=0.00EY2(J,K)=0.00 
x3(J,K)=0.00EY3(J,K)=0.00 
X4(JIK)=0.00EY4(U.K)=0.00 

2 CONTINUE 
DO 12 K=1,KNV 
ZVC1(K)=0.00EZVC2(K)=0.00fLVC1(K)=1 
ZVC3(K)=0.0UEZVC4(K)=0.00ELVC2(K)=1 

12 CONTINUE 
C---- SEARCH AND INTERPOLATE BETWEEN TWO I-LINES. 

DO 120 J=101 
DO 130 I=21MM1 
IF(I.EQ.MI"D.ANO.J.EQ.1) GO TO 130 
DO 130 K=1,KNV 
IF( V(I-1.J).GE.VCV(K).AND. V(I.J).LE.VCV(K)) GO TO 210 
IF( V(I-1,J).LE.VCV(K).AND. V(I1J).GE.VCV(K)) GO TO 210 
GO TO 130 

C---- SEARCH THE VORTICITY CONTOURS FOR THE FIRST SPHERE. 
210 IF(1.GT.MMD) GO TO 211 

IF(LVC1(K).E0.0) GO TO 121 
C=(VCV(K)-V(I-19J)) 
IF(C.EQ.0.0) C=10.E-30 
D=(V(I.J)-V(I-1.J)) 
IF(D.EQ.0.0) D=10.E-30 
SLOPE:C/D 
ZVC1(K)=Z(I-1)+SLOPE*(Z(I)-Z(I-1)) 
ZVC2(K)=0.0 
LVC1(K)=0 
GO TO 130 

121 C=(VCV(K)-V(I-1,J)) 
IFIC.EQ.0.0) C=10.E-30 
DrAV(I.J)-V(I-1.J)) 
IF(D.EQ.0.0) 0=10.E-,30 
SLOPE=C/D 
ZVC2(K)=Z(I-1)+SLOPE*(Z(I)-Z(I-1)) 
GO TO 130 

C---- SEARCH THE VORTICITY CONTOURS FOR THE SECOND SPHERE. 
211 TF(LvC2(K).EQ.0) GO TO 122 

C=(VCV(K)-V(I-1.J)) 
TF(C.EQ.0.0) C=10.E..30 
D=(V(I.J)-V(I-1.J)) 
IF(D.E0.0.0) D=10.E-30 
SLOPE=C/D 
7VC3(K)=Z(I-1)+SLOPE*(Z(I)-Z(I-1)) 
7VC4(K)=0.0 
1VC2(K)=0 
GO TO 130 

• 
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122 C=(VCV(K)-V(I-1,J)) 
IF(C.EQ.0.0) C=10.E-30 
n=lV(I1J)-V(I-1.J)) 
IF(D.EQ.0.0) 0=10.E-30 
sLoPE=C/D 
ZVc4(K)=Z(I-1)+SLOpE*(Z(I)-Z(I-1)) 

130 CONTINUE 
C---- CONVERT TO RECTANGULAR COORDINATES 

Do 500 K=1.KNV 
IF(ZVC1(K).E0.0.0) GO TO 501 
IF(ZVC1(K).GT.100.o) ZvC1(K)=100.0 
IF(I.C1(K).LT,-100.) ZVC1(K)=-100, 
A1=SINH(n/C1(K)) 
B1=COsH(ZVC100) 
B1J=B1-cs(J) 
IF(B1J.Eo.0.0) B1J=10.E-30 
y1(J,K)=sNN(MM1)*sN(J)/B1J 
x1(J.K)=SNH(Mm1)*A1/131J 
GO TO 500 

501 xl(J,K)=0.0EY1(J0()=0.0 
500 CONTINUE 

o0 510 K=1.KNV 
IF(Z1/c2(K).E.0.0.0) GO TO 511 
IF(Zvc2(K).0T.100.0) ZvC2(K)=1n0.0 
TF(LVC2(K).LT.-100.) ZvC2(K)=-100. 
A2=SINN(ZVC2(1)) 
pp=cosiir \/(-2 00 
B2J=B2-CS(J) 
IF(02J.E0.0.0) O2J=10.E-30 
Y2(..J.K)=sNHOvim1)4c51'i(J)/B2J 
x2(J.K)=sNH(mml)*A2/B2J 
GO TO 51.0 

511 x2(J.K)=0.0EY2(J1K)=0.0 
510 CONTINUE 

DO 520 K=1,KNV 
IF(EVC3(10.E.O.0.0) GO TO 521 
IF(ZVC3(K).GT.100.0) ZVC3(K)=100.0 
IF(ZVC3(g).LT.-100.) ZvC3(K)=-100. 
A3=SINH(ZVc3(K)) 
B3=COSH(ZVC6(K)) 
63J=B3-CS(J) 
IF(B3J.E0.0.0) B3J=10.E-30 
Y3(J1K)=SNu(MM1)*SN(J)/B3J 
X3(J.K)=SNH(MW1)*A3/B3J 
GO TO 520 

521 x3(J.K)=0.0EY3(J.K)=0.0 
520 CONTINUE 

DO 530 ii=1.KNV 
IF(ZVC4(10.E0.0.0) GO TO 531 
IF(ZVC4(0.6T.100.0) ZVC4(K)=100.0 
IF(ZVC400.1..T.-100.) ZVC4(K)=-100. 
A4=SINH(ZVC4(K)) 
E4=COSH(ZVO4(K)) 
B4J=B4-cs(j) 
IF(B4J.E0.0.0) R4J=10.E-30 
Y4(J1K)=sNH(MM1)*SN(J)/134J 
X4(J.K)=SNHIMM1)*A4/B4J 
GO TO 530 

531 x4(J.11)=0.0Y4(J.K)=D.0 
530 CONTINUE 
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DO 13 K=11KNV 
zVC1(K)=0. 
7VC2(K)=0. 
LVC1(K)=1 
ZVC3(K)=0. 
ZVC4(K)=0. 
LVC2(K)=1 

13 CONTINUE 
120 CONTINUE 

C----  PLOT VORTICITY CONTOURS AROUND THE TWO SPHERES. 
KNP=KNV 
RRC=RRCV 
CALL CNPLOT 
RETURN 
END 

SUBROUTINE CNPLOT 
C---- THIS SUBROUTINE PLOTS STREAM FHNCTION AND VORTICITY CONTOURS. 

COMMON/GRID)/ Z(41)1SNH(41),CSH(41).Sm(31),CS(31) 	• 
COMNION/GR1D2/ IETHA(31).ETHA(31),THETA(31),DTHETA(31) 
COA,MON/GRIU3/ H3(41.31),R1(41,31) 
cOvMON/CNSTC/ ZS,RE.EPsUIEPSG,RFU,RFG 
COmVON/M1mM1C/ P.,,M1,MMD,MM,MM1,MD,SH,SKIKS 
COM1vON/PLCT1/ x1(31110),X2(31.10),Y1(31110),Y9(31110) 
CO11ION/PLOT2/ X3(31.10),X4(31.10).Y3(31,10).Y4(31110) 
COMNON/RPLOTC/ RPUIT.RPLOTU.RPLOTVIIYS,IXSTEP 
CONMON/PLTPCN/ VCU(10),VCV(10),KNUIKNV.KNP 
COmVON/RRABC/ RRAORB.RRCORRCU,RRCV,RRL 
DIMENSION cHAR(1201,FPLOT(8) 
DATA BLANK.PLOT,PLUSICROSS/1H .1H.11H+.1HX/ 
DATA FPLOT/ 1H1,1H2,1H311H4.1H5,1H6.1H7,1H8/ 

C---- THE ZERO-CONTOUR ALONG THE AXES OF SYMMETRY, THETA = 0 AND 180. 
DO 200 K=1.KNP 
X1(1.K)=SWH(MM1)*SNH(K)/(CSH(K)-CS(1)) 
y1(11K)=SNH(Mml)*SH(1)/(CSH(K)-CS(1)) 
X3(11K)=SNH(MM1)*sNH(mml-K)/(CsH(mMl-K)-CS(1)) 
Y3(11K)=sNH(MM1)*sN(1)/(CqH(Mml-K)-CS(1)) 

C 
X1(M1,K)=SNH(MMI)*SNH(K)/(CSII(K)-CS(M1)) 
Yl(M1,K)=SNH(MM1)*SN(M1)/(CSH(K)-CS(M1)) 
x3(M1.0=SNH(MM1)*SNH(MM1-K)/(CSH(MV1-K)-CS(M1)) 
Y3(M1,K)=SNH(MM1)*SN(M1)/(CSH(MM1-K)-CS(M1)) 

200 CONTINUE 
A=-CSH(1) 
R= CSH(1) 
RR1=A-RRA*RPLOT 
RR2=A+RRB*RBLoT 
RR3=B-RRB*RPLOT 
RR4=B+RRC*RPLOT 
XAU=-(CSH(1)+1.) 
XAUU=-(CSH(1)-1.0) 
XBU= (CSH(1)-1.) 
XBUU=(CSH(1)+1.) 
OX=RRL*RPLOT/(FLOAT(IXsTEP-1)) 
DX2=DX/2.0 ' 
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DO 5 L=1.120 
CHAR(L)=PLoT 

5 CONTINUE 
wRITE(6.100) CHAR 

100 FORNAT(1H1,3H,...120A1) 
DO 10 L=1.119 
CHAR(L)=BLANK 

10 CONTINUE 
C---- SPHERE A. 

XPLOT=RR1 
15 DO 25 J=10141 

DO 25 K=1.KNP 
DIF1=XPLOT-X1(J.K) 
ARDIF1=ABS(DIp1) 
DIE2=XPLOT-X2(J.K) 
ABDIF2=ABS(DIF2) 
IF(A(3CIF1.LE.DX2) GO TO 20 

22 IF(ABD1F2.LE.DX2) GO TO 21 
GO TO 25 

20 LL=IFLOAT(ITS)/(RRL*RPLOT))*Y1(J.K)+1.0 
IF(LL.E0.0.0R,LL.GT.119) GO TO 22 
cHAR(LL)=FPLOT(K) 
TF( J.EQ.1.0R, U,E0.1141) CHAR(LL)=FPLOT(1) 
GO TO 22 

21 LL=(PLOAT(ITS)/(RRL*RPLOT))*T2(J.K)+1.0 
IF(LL.E0,u,uR,LL.GT.119) nO TO 25 
CHAR(LL)=FPLOT(K) 
07( 	j.Ew.M1) CHARiLL)=FPLOT(1) 

25 CONTINUE 
IF((XPLOT.GT.XAU).AND.(XPLOT.LT.XAUU)) GO TO 1 

26 DFU=XPLOT-XAU 
DFUU=XPLOT-XAUU 
OFA=0,L0T-A 
ABrFU=ABS(DFU) 
ABDEUU=ABS(OFUU) 
ARDFA=ABS(DFA) 
TF((ABDFU.LE.DX2).0R.(ABDFUU.LE.DX2)) GO TO 40 
IF(ABDFA,LE.DX2) GO TO 41 
WRITE(6.101) CHAR 

101 FORMAT(1)(11H..3X.120A1) 
30 DO 35 L=1.119 

CHAR(L)=BLANK 
35 CONTINUE 

XPLOT=XPLOT+DX 
IF(XRLOT.CT.RR2) GO TO 50 
GO.  TO 15 

1 C=XPLOT-A 
IF(C.EU.0.0) C=10.E-30 
D=ABS(C) 
CL=1.0-D**2 
LC=CFLOAT(ITS)/(RRL*RpLOT))*SoRT(CL)+1.0 
IF(LC.EQ.1.OR.LC.GT.119) GO TO 26 
CHAR(LC)=PLUS 
GO TO 26 

40 CHAR(1)=PLUS 
WRITE(61102) CHAR 

102 FORMAT(1X.1H,13X1120A1) 
GO TO 30 

41 CHAR(1)=CROSS 	• 
WRITE(6.102) CHAR 

• nO TO 30 
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C---- SPHERE B. 
50 xPL0T=RR3 
55 DO 75 JB=1,111 

J=M1-JB+1 
DO 75 K=1,10IP 
DIF3=xPL01-X3(J,K) 
ABDIF3=ABs(0IF3) 
nIF4=XpL01-x4(J,K) 
ABD1F4=ABs(UIF4) 
TF(ABCIF3.LL.Dx2) CO TO 70 

72 TF(AeCTF4.LL.Dx2) Go To 71 
GO To 75 

70 LL=CFLoAT(IYS)/(HRL*RPLoT))*Y3(J,K)+1.0 
IF(LL,EQ.0.uR.LL.GT,119) GO To 72 
CHAR(LL)=FpLOT(K) 
IF( J.EQ.1.OR. J.Ecz.m1) CHAR(LL)=FPLOT(1) 
GO TO 72 

71 LL=(FLOAT(IYs)/(RRL*RPLOT))*Y4(J,K)+1.0 
IFILL.Eu.0,0R.LE.GT.119) GO TO 75 
cHAR(LL)=FPLOT(K) 
IF( J.EQ.1.OR. J.E0.m1) CHAR(LL)=FPLOT(1) 

75 CONTINUE 
IF((xFLOT.LT.x8UU).AND.(XPL0T.GT.xBU)) GO TO 3 

76 DFU=xPLOT-xBU 
nFUu=xpLOT-XBUU 
OFF1 =xPLOT-B 
ABDIU=ABS(OFU) 
AinfICIIIII—AncZonC1441% 
t k."-' • lo 4.. • 	11 	% 	II W.—,  

ARDFp=ARS(UFB) 
IF((A90Fu.LE.Dx2).oR.(AROFUU.LE.Dx2)) GO TO 90 
IF(ABCF3JE.0x2) GO TO 91 
wRITE(6,1v1) CHAR 
IF(XPL0T.(•E.RR4) GO TO 400 

80 DO 85 L=1,119 
CHAR(L)=BLANK 

85 CONTINUE 
XPLUT=XPLOT+DX 
GO TO 55 

3 c=XPLOT-B 
IF(C.E(J.0.0) C=10.E-30 
or.ABS(c) 
rL=1.0-D**2 
LC=AFLoAT(Ils)/(RRL*ROLoT»*soRT(cL)+1,0 
iF(LC.Ea.1.0R.Lc.GT.119) GO To 76 
CHAR(LC)=PLUS 
GO TO 76 

90 CHAR(1)=PLUS 
WRITE(61102) CHAR 
GO TO 80 

91 CHAR(1)=CROSS 
WRITE(6,102) CHAR 
GO TO AU 

400 DO 6 L=1,120 
CHAR(L)=PLOT 

6 CONTINUE 
WRITE(6,103) CHAR 

103 FORMAT(1X,4H 	,12oAl) 
RETURN 
END 



391 

SUBROUTINE VFIELD 
THIS SUBROUTINE CALCULATES THE VELOCITY COMPONENTS FOR THE 2- AND 

C---- 	THETA- DIRECTIONS. 
COMMON/GRID1/ Z(41).SN),(41),CSu(41).SN(31),CS(31) 
COMMON/GR1D2/ IETHA(31)vETHA(31),THETA(31).DTHETA(31) 
COmMON/GRI03/ H3(41.31)01(41,31) 
CORTIviON/UVGFC/ U(41.31).V(41131).G(41.31)tF(41,31) 
COMMON/M1MM1C/ M.M1,MMO,MM,MM1,MD I ShISKIKS 
COMMON/CNSTC/ ZSOF,EPSU.EPSG,RFU,RFG 
COMMON/IRREGC/ JOMIT,I1(31),I2(31) 
COMMON/OFOSC/ OF.OF4,0F3.0F2.0S.OS4,0S3,0S2 
COMMON/PFPSC/ PF.PF4.PF3,PF2.PS.PS4IPS3,PS2 
COMMON/VZVTC/ VZ(41,31). VT(41.31) 
COMMON/SMRNC/ SV(31),RN(31) 
IIIMENSION RS(31).SR(31) 

C---- VELOCITIES IN THE FLOW REGION. 
C---7 1I2(1.J) IS THE VELOCITY IN THE Z-DIRECTION. 
C---- VT(I.J) IS VELOCITY IN THE THETA- DIRECTION. 

DO 10 J=101 
DO 10 I=1,MM1 
VZ(I.J)=0.0 
VT(I.J)=0.0 

10 CONTINUE 
DO 20 J=200 
RS(J)=RN(J)/SM(J) 
SR(J)=Sg(J)/RN(J) 

20 CONTINUE' 
00 3U J=2,M 
DO 30 I=2,MM 
VTH=(RS(J)*U(I.J+1)-SR(J)*U(I,J-1)-(RS(J)-SR(J))*U(I,J))/(SM(J)+RN 

+(j)) 
VZ(ItJ)=-VTH/(H3(I.J)*H3(T.J)) 
VZZ=(U(I+1.J)-U(I-1,J))/(2.0*SH) 
VT(I,J)=+V2Z/(H3(I.J)*H3(T,J)) 

30 CONTINUE 
WRITE(6.200) 

200 FORMAT(1H1,1X,*+++++VELOCITY IM Z-DIRECTION.+++++*,//) 
WRITE(6.201) (Z(I),I=1.MMDt2) 

C 
201 FORVAT(6Xv4HZ(I).11F10.21//) 

WRITE(6.202) (IETHA(J)IDTHETA(J),(VZ(I,J),I=1.MMD.2)1J=11M1) 
202 FORMAT(1X,I612X,F5.1.11F10.6) 

WRITE(6.203) (Z(I),I=MMD.MM1.2) 
203 FORMAT(///.6X,4HZ(I).11F10.2,//) 

WRITE(6.204) (IETHA(J),DTHETA(J).(VZ(I.J),I=MMD.MM1.2).J=1.M1) 
204 FORMAT(1X.I6,2X.F5.1.11F10.6) 

WRITE(6.300) 
300 FORMAT(///,1X,*+++++VELOCITY IN THETA-DIRECTION.+++++*1//) 

WRITE(6,301) (Z(I),I=1.MMD+2) 
301 FORMAT(6)04H2(I).11E111.2.//) 

WRITE(6,302) (IETHA(J),DTHETA(J)1(VT(I.J),I=1.MMD12),J=1,M1) 
302 FORMAT(1X.I6.2X,F5.1,11F10.6) 

WRITE(6.303) (2(I),I=MMD,MM112) 
303 FORMAT(///16X,4HZ(I).11F10.2,//) 

WRITE(61304) (IETHA(J),DTHETA(J),(VT(I,J),I=MMD,MM1,2).J=1,M1) 
304 FORMAT(1)(013.2X.F5.1,11F10.6) 

RETURN 
END, 
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SUBROUTINE SKPFILE(NSKIP•NUNIT) 
C---- THIS SUBROUTINE SKIPS FILES ON MAGNETIC TAPE. 

L=0 
1 READ(NUNIT) DUMMY 

IF(E0F(NUNIT)) 10.11 
10 L=L+1 

IF(L.EO.NSK1P) RETURN 
11 GO TO 1 

END 

FUNCTION SINH(X) 
SINH=0.5*( ExP(X)-ExP(-x)) 
RETURN 
END . 

FUNCTION COSH(X) 
rOSH=0.5*(ExP(X)+EXp(-X)) 
RETURN 
END 
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B. Computer Program 2. 

PROGRAM mASS(INPUT,OUTPUT.TAPE5=INPUT,TAPE6=OUTPUT.TAPElo TAPE2) 
.0---- THIS PROGRAMME SIMULATES FORCED CONVECTIVE MASS TRANSFER FROM A 
C---- 	SYSTEM OF TWO EQUALLY SIZED SPHERES WITH FLUID FLOWING 
C---- 	PARALLEL TO THEIR LINE OF CENTRES. 

COMVON/GPID1/ Z(41),SNH(41).CSH(41).SN(31),CS(31) 
COMMON/GRI02/ IETHA(31)1ETHA(31).THETA(31)1DTHETA(31) 
COMMON/GRIDS/ H3(41131).R1(41131) 
COMMON/UC(:/ U(41.31).C(41,31) 
COMMON/M1MM1C/ M,M1.MMoOM.MM1lMO.SH.SKIKS 
COMMON/NPRC/ NIMXITER,"X1IMMX1.MNPR.NONITINPRCINPRC1.NPC.NPC1.N3 
COMMON/TAPEC/ INTAPE,NOTAPE.NSKIPWINSKIPR 
COmMON/CNSTC/ ZS,RE,SC,PE,EPSC,RFC 
COMMON/IRREGC/ JOMIT,I1(31),I2(31) 
COMMON/RRABC/ RRA,RRI3,RRC,RRL 
COMMON/FACTOR/ FACTOR 
CPT=890,0 
PTIME=5,0 

C---- INITIAL SETTINGS 
N5=1 
CALL SETUP 

50 CALL GRID 
rnil THPHT 
N=0 
N3=1 
CALL COEFF 

C---- MXITFR IS THE MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR EACH 
C---- 	COMPUTER RUN. 

10 IF(N.GE.MXITER) GO TO 2 
WRI1E(6,100U) 

1000 FORMAT(1H1,48H*****HERE STARTS A GROUP OF MX1 ITERATIONX.*****) 
WRITE(6.1001) ZSOF-..PEIRFC.EPSC 

1001 FORMAT(1H01//11X.4HZS .7.1F10.4,5X14HRE 7.-.1F10.4.5X14HPE =,F10.5,5Xe 
15HRFC .m.F10.4.5X16HEPSC =,F8.6) 
WRITE(6,1002) NPRC1.NPC1INOMIT 

1002 FORMAT(1H0./.10X171INRRc1 =.16.10X16HNPC1 =114,10Xv7HNOMIT =tI4,//) 
HERE BEGINS THE ITERATTON SECTION FOR A GIVEN PECLET NUMBER. 

C---- A GROUP OF MX1 ITERATIONS WILL BE STARTED WITH MMX1=MX1 
MMX1=MX1 

1 	C---- A NEW ITERATION BEGINS WITH NPRC=NPRC1 
C---- 	NPRC1---THE TOTAL NUMBER OF POINT VALUES TO BE OBTAINED. 
C---- 	NPRC---THE TOTAL NUMBER OF UNCONVERGED POINT VALUES. 

40 NPRC=NPRC1 
NPC=NPC1 
CALL VARBC 
CALL SOLVE 
IF(N.GE.300.AND.NPPC.EO.NPRC1) GO TO 4000 
IF(N.GE.300.AND.NPC.EO.NPC1) GO TO 4000 
CALL SECOND(CPSEC) 
IF((N/10)*10.NE.N) GO TO 30 
WRITE(6,2000) N,CPSEC,NPRC,NPC 

2000 FORMAT(1H0,3HN =,I5,5x,5HCPT =,F6.2,15Xv6HNPRC =,I5,5X15HNPC =915) 
30 TLEFT=CPTCPSEC 

IF(TLEFT.LE.PTIME) GO TO 2 
C---- AN ITERATION IS COMPLETED. 

• N=N+1 
MMX1=MMX1-1 
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C----  TEST FOR THE OVERALL CONVERGENCE. 
C---- 	IF NPRC IS LESS THAN 0K EQUAL TO MNPR, THE CONVERGENCE OF THE 
C---- 	PRESENT SOLUTION HAS BEEN OBTAINED. 
C---- IF MMX1=0, THE bROHP OF MX1 ITERATION_ HAVE BEEN PERFORMED. 
C---- 	OTHERWISE GO TO 40 AND START A NEW ITERATION. 

IF (NPRC-MNPR) 2001200.100 
100 IF(MMX1) 300,300140 

C---- SET M3 TO ZERO IF THE OVERALL CONVERGENCE HAS BEEN OBTAINED. 
200 N3=0 

C---- AN EXTRA ITERATION IS ALLOWED FOR THE BOUNDARY CONDITIONS TO BE 
C---- 	SATISFIED. 

NPRC=NPRC1 
NPC=NPC1 
CALL VARBC 
CALL SOLVE 
IF(NPRC.GT.MNPR) GO TO 40 

300 CALL RESTAB 
IF(N3.EQ.1) GO TO 10 
WRITE(6,2004) 

2004 FORMAT(///,40H*****THE PRESENT CASE IS CONVERGED.*****,//) 
C---- IF NnTAPE=11 STORE INFORMATION ON TAPE 2. 

IF(NOTAPE.NE.1) GO TO 3 
REWIND 2 
IF(NSKIPW.GT.0) CALL SKPFILE(NSKIPW.2) 
WRITE(2)( 1EIHA(J),ETHA(J),DTHETA(J),THETA(J),I1(J)/I2(J),J=1,M1) 
WRITE(2) JOMIT,NPRO1INPC1INOMIT 
WRITE(2) (S;J:ICS.f.114,17.1.M1, 
WRITE(2) ((H3(I,J),R1(T,J),I=1eMM1)+J=1,M1) 
WRITE(2) ((O(I.J),T=1.MM1),J=1,M1) 
wRITE(2) ((C(I,J)11=1,MM1),J=1,M1) 
END FILE 2 
WRITE(6.31:00) ZS+REIPE,NSKIPR+rJSKIPW 

3000 FORrAT(///110X14HZS =1F6.3,10X.4HRE =IF8.3.10X14HPE =,F10.4.10X.8H 
1NSKIBR =06,10)(18HNSKIPW =916.//) 
NSKIPR=NsKIPW 
NSK1PW=NSKIPW+1 

C---- CALCULATE THE LOCAL AND OVERALL RATES OF MASS TRANSFER. 
3 CALL NSNSEE 

C---- CONCENTRATION CONTOURS AROUND THE SPHERES ARE LOCATED AND PLOTTED. 
CALL CNPLTP 

C---- THIS SECTION SUPPLIES NEW VALUES FOR THE +ECLET NUMBER AND 
C---- 	RELAXATION FACTOR. 

N5=N5+1 
FAcToR=1.00 
IF(N5.EQ.2) GO TO 11 
IF(N5.EQ.6) GO TO 12 
IF(N5.EQ.4) GO TO 13 
IF(f'5.EQ.5) GO TO 14 
GO TO 1 

4000 CONTINUE 
RFC=RFC-0.05 
IF(RFC.LE.0.0) GO TO 1 
GO TO 50 

11 CONTINUE 
PE=0,01 
GO TO 50 

12 CONTINUE 
PE=0.1 
GO TO 50 

• 
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13 CONTINUE 
PE=0.7 
GO TO 50 

14 CONTINUE 
PE=1.0 
GO TO 50 

C 
C---- PRINT OUT THE CONVERGED RESULTS. 

2 CALL RESTAB 
C---- IF NDTAPE=1, STORE INFORMATION ON TAPE 2. 

IF(NDTAPE.NE.1) GO TO 1 
REWINC 2 
IF(NSKIPW.GT.n) CALL SKPFTLE(NSKIPW,2) 
WRITE(2)(IETHA(J),FTHA(J),DTHETA(J)ITHETAMIT1(J),I2(J),J=1,M1) 
WRITE(2) JOMITINPRC1,NPC1,NOMIT 
WRITE(2) (SN(J),CS(J),J=1,M1) 
WRITE(2) ((H3(I,J),R1(I,J),I=11MM1),J=1,M1).  
WRITE(2) ((11(I+J),I=1,MM1),J=1,M1) 
WRITE(2) ((C(I,J),I=10MM1),..1=1,M1) 
END FILE 2 
WRITE(6,3001) ZS,REIPE.NSKIPR,NSKIPW 

3001 FORMAT(///110)(14HZS =IF6.3,10X14HRE =,F8.3,10Xv4HPE =,F10,4■10X■8H 
1NSKIPR =,16110)(t8HNSKIPW =,I6,//) 
1 STOP 
END 

• 
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SUBROUTINE SETUP 
C--- THIS SUBROUTINE SUPPLIES PROGRAMME CONTROL PARAMETERS. 

COmMON/GPID1/ Z(41),SNH(41),CSH(41).S11(51),CS(31) 
COMmON/GRID2/ IETHA(31).ETHA(31),THETA(31).DTHETA(31) 
COMMON/GP1D3/ H3(41.31)1R1(41,31) 
COMMON/NPPC/ NIMXITER,MX1,MmThMNPR.NOMITINPRC,NPRC1.NPCINPC1.N3 
COMMON/TAPEC/ INTAPE1NnTAPE.NSK1Pt4,NSKIPR 
COP MON/M1MM1C/ M.M1OMn,MM.MM1.MD,SHISKIKS 
COMMON/CNSTC/ ZS,REISC.PE,EPSC,RFC 
COmMON/RPLOTC/ RPLOTIIYS.IXSTEP 
comMON/PLIPON/ Vcc(lo),KNrIKNP 
cWARON/RRABc/ tivAikRBORctRRL 
commoN/pACToR/ FACTOR 
COMPON/NSKPRC/ NSKPR1 

C---- SET SPHERE SPACING. MESH SPACING. AND BOUNDARY PARAMETERS, 
7S=0.20 
SH=ZS/20,0 
RRL=7,0 
RRA=5.0ERRB=COSH(ZS) 
RRC=7.0 
KS=6 
SK=(3.1415926/180.0)*FLOAT(KS) 
M=30 
MM=40 

C---- SET CONTROL PARAMETERS FOR SOLVING THE EQUATIONS. 
PE=0.001 
pE=0.001 
RFC=0,80 
FACTOR=0,0 
NSKIPR=0 
NSKIPW=0 
MXITER=800 
MX1=400 
MNPR=0 
INTAPE=0 
NDTAPE=1 
EPSC=0.0001 

C---- PARAMETERS FOR PLOTTING CnNCENTRATION CONTOURS AROUND THE SPHERES. 
RPLOT=1,000 
IXSIEP=60 
IYS=1.2500*FLOAT(IXSTEP-1)+1.5 
KNC=6 
VCC(1)=1,00EVCC(2)=0,80EVCO(3)=0.50fVCC(4)=0,25EVCC(5)=0.10 
VCC(6)=0,05 
RETURN 
END 
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SUBROUTINE GRID 
THIS SUBROUTINE SUPPLIES GRID INFORMATION AT EACH NODE. 
COMMON/01D1/ Z(41).SNH(41).CSH(41).SN(31).CS(31) 
COMMON/GRID2/ IETHA(31).ETHA(31).THETA(31).DTHETA(31) 
COMMON/GRIDS/ H3(41,31).R1(41,31) 
COMMON/UCC/ U(41,31).C(41.31) 
COMMON/M1MM1C/ M.M1,MMD.MM.MMi.MD,SHISK,KS 
COMMON/CNSTC/ ZS.RF.SC.PE.EPSC.RFC 
COMMON/NPRC/ NtMXITERIMX1IMMX1,MNPR,NOMIT,NPRC,NPRC1,NPC,NPC1,N3 
COMMON/TAPLC/ INTAPEOnTAPE.NSKIPW,NSKIPR 
COMMON/IRREGC/ JOMIT.I1(31),I2(31) 
COMMON/NSKPRC/ NSKPR1 

C---- CALCULATE THE FIELD DIMENSION MM1 AND Ml. 
M1=M+1 
MM1=MM+1 
MD=(M1+1)/2 
MMD=(NM1+1)/2 
COMPUTE FIELD VARIABLES. 
Z(1)=-ZS 
SNH(1)=S1NH(ZS) 
CSH(1)=COSH(ZS) 
DO 10 1=2,MM1 
Z(I)=Z(I•1)+SH 
SNH(I)=SINH(Z(I)) 
CSH(I)=COSH(Z(I)) 

10 CONTINUE 
IF INTAPE=1, VALUES Or THE FIELD VARIABLES WILL BE READ FROM TAPE 

C---- 	2. OTPERWIsE Go TO 1 TO OBTAIN THEM. 
IF(INTAPE.NE.1) GO TO 1 
REWIND 2 
IF(NSKIPR.GT.0) CAEL SKPFILE(NSKIPR,2) 
PFAC(2) (IEIHA(J).FTHA(J),DTHETA(J)ITHETA(J),I1(J),I2(J),J=1.M1) 
REAP(2) JOMITINFRC1INPC1INOMIT 
REAC(2) (SN(J).CS(J).J=11M1) 
READ(2) ((H.3(I.J).R1(I,J),I=1.MM1),J=101) 
READ(2) ((U(I,U),I=1.MV1).J=1,M1) 
READ(2) ((C(I,J),I=1.MM1).J=1.M1) 
GO TO 2 

C 
C--- READ FIELD VARTAPLES AND STREAM FUNCTION DISTRIBUTIONS IN THE FLOW 
C---- 	REGION AT THE SPECIFTED REYNOLDS NUMBER. 
C---- NSKPR1 IS THE NUMBER OF FILES TO PE SKIPPED IN ORDER TO READ THE 
C---- 	FIELD VARIABLES AND STREAM FUNCTION DISTRIBUTION FROM TAPE 1, 

1 REWIND 1 
IF(NSKPR1.GT.0) CALL SKPFILE(NSKPR1,1) 
READ(1) (IETHA(J),DTHA(J).DTHETA(J).THETA(J),I1(J),I2(J),J=1.M1) 
READ(1) JOMITIN2INPRUl.NPRV1,NPR1.NOMIT 
READ(1) (SN(J).CS(J).J=1,M1) 
READ(1) ((H3(I,J),R1(I,J),I=1,MM1),J=.101) 
READ(1) ((U(I,J),I=1.MV1).J=101) 

C---- CALCULATE NPRC1 AND NPC1. 
C---- NPC1 IS THE TOTAL NUMBER OF POINT VALUES WHICH REQUIRED SPECIAL 

TREATMENT, I.F. CONCENTRATION ALONG THE AXES OF SYMMETRY. 
C---- NPPC1 IS THE TOTAL NUMBER OF POINT VALUES TO BE OBTAINED. 
C---- NOMIT IS THE TOTAL NUMBER OF POINT VALUES OUTSIDE THE OUTER 
C---- 

	

	BOUNDARY WHICH IS TO BE OMITTED. 
NZEROz(MM.- I2(1))+(I1(1)2) 
NPI=MM..1 
NPC1=NZERO+NPI 
NPRC1=(1)*(MM1)+NPC1."NOMIT 

• 
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C---- IF NDTAPE=1, STORE INFORMATION ON TAPE 2. 
TF(NDTAPE.NE.1) GO TO 2 
REWIND 2 
IF(MSKIPW.GT.0) CALL SKPFILE(NSKIPW,2) 
WRITE(2)(IETHAMIETHA(J),DTHETA(J)ITHETA(J),I1(J),I2(j),J=1,M1) 
WRITE(2) JOMITIPPRC1INPC1INOMIT 
WRITE(2) (SN(J).CS(J).J=11M1) 
WRITE(2) ((H3(I.J).R1(I.J),I=1,MM1)1J=1,M1) 
WRITE(2) ((U(I.J),I=1.mM1),J=1,M1) 

2 RETURN 
END 

SUBROUTINE INPUT 
C---- THIS SUBROUTINE SUPPLIES INITIAL VALUES FOR CONCENTRATION. 

COMMON/GRID1/ Z(41),SNN(41),CSH(41).SN(31).CS(31) 
COMOON/GPID2/ IETHA(31)1ETHA(31).THETA(31),DTHETA(31) 
COMMON/GRID3/ H3(41.31)1R1(41131) 
COMMON/UCC/ U(41,31).C(41.31) 
COMMON/MMM1C/ V.M1.MMD,MM,MM11MD,SH,SK,KS 
COMMON/IRREGC/ JOMIT.I1(31)+12(31) 
COMMON/NPRC/ NtPXITER.MX1,MMX1,MNPRINOMIT,NPRCINPRC1,NPCINPC1,N3 
cOMMON/TAPEC/ INTAPE,NDTAPEINSKIPW.NSKIPR 

C---- IF INTAPF=1, TNTIAL VALUES OF CONCENTRATION ARE READ FROM TAPE. 
TFAINTAPE:EU.1) GO TO 1 
00 10 J=1.M1 
DO 10 I=1 011M1 
C(I,J)=0.0 

10 CONTINUE 
IF(NDTAPE.NE.1) GO TO 1 
WRITE(2) ((C(I.J),I=1.MM1)..J=1.M1) 
END FILE 2 
INTAPE=1 
NSKIPW=NSKIPW+1 . 

C---- FIXED KNOWN BOUNDARY CONDITIONS. 
C---- ON THE SPHERE SURFACES. 

1 DO 30 J=1.M1 
C(1,J)=1,0 
C(VM1.4)=1,0 

30 CONTINUE 
C---- ALONG THE OUTER BOUNDARY. 

DO 40 J=1,JOM1T 
ILEFT=I1(J) 
IRIGHT=I2(J) 
DO 50 I=ILEFTIIRIGHT 
C(I,J)=0.0 

50 CONTINUE 
40 CONTINUE 

RETURN 
END 

• 
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SUBROUTINE COEFF 
C---- THIS SUBROUTINE CAlCALATES ALL THE COEFFICIENTS NEEDED TO SOLVE 
C---- 

	

	THE oiFFusioN EDHATION FOR FLOW hRoHND TWO-SPHERES. 
COmMON/GRID1/ Z(41).SNH(41),CSH(41),SN(31)1CS(31) 
COMMON/GRID2/ IETHA(31)1ETHA(31)1THETA(31)1DTHETA(31) 
COmmO1\/GR1D3/ H3(41.31)1111(41,31) 
COrVON/CNSTC/ ZS.REtSC,PE,EPSC.RFC 
COrMON/m1Pm1C/ v.miolmo.MmIMMlImDISHISKIKS 
COMMON/UCC/ U(41.31),C(41,31) 
COrMON/COEFF/ B1(41.31),B2(41.1),B3(41,31),B4(41,31) 
COMMON/VCCEFF/ U1(41).D2(41).D3,E1(41).E2(41).E3 
COVMON/DCOEFF/ LD(41.31)1DB(41)1E0(41) 
COmMON/KmKNC/ Ah(31),BB(31) 
COMMON/SmRNC/ Sk(31),RN(31) 

C---- B1(I.J),B2(1.J).B3(I.J).B4(I.J).•--ARE THE COEFFS OF THE FINITE- 	. 
C---- 	DIFFERENCE CIFFUSION FOUATIONS TO BE USED IN SUBROUTINE SOLVE. 
C---- 01(I),D2(1),D3-...ARE THE COEFFS. (IF THE FINITE DIFFERENCE EQUATION 

FCR THETA=0.0 TO BE USED IN SUBROUTINE VARBC. 
C---- E1(1),E2(I),E3---.ARE THE COEFFS. OF THE FINITE DIFFERENCE EQUATION 

FOR THETA=180 TO BE USED IN SUBROUTINE VARBC. 
SH2=1.0/(SH*SH) 
SM(1)=THE1A(2)...THETA(1) 
RN(1)=0.0 
SM(M1)=0,0 
RN(M1)=THETA(M1)•THETA(M) 
DO 10 J=21M 
SM(J)=THETA(J+1)-THETA(J) 
RN(J)=THETA(J)THETA(J-1) 
SMTRN=SM(OI*KN(J) 
SMPRN=SM(J)+RN(J) 
SMMRN=SM(J)-RN(J) 
AA(J)=1.0-SMMRN/SM(J) 
BB(J)=1.0+SMMRN/RN(J) 
CCP=1.0+SMmRN/SPPRP 
CCm=1.1)-SPIMRN/SMPRN 
SRT=1.0/SMTRN 
DO 20 I=2,MM 
PEHR=PE/(4.0*SH*SMPRN*R1(I.J)) 
BA=SNH(I)/(2.0*SH*(CSH(I).-CS(J))) 
BC=(CSH(I)*CS(J).•,1.0)/(SMPRN*SN(J)*(CSH(I)CS(J))) 
BBB=2.0*S112+2.0*SKT+(AA(J)-BB(J))*(BC-PEHK*(U(I+1.J)-U(I1,J))) 
BD(I.J)=PEHK/BBB 
[31(I,j)=(SH2-BA)/BBB 
B2(I.J)=CSH2+BAUBBB 
B3(I.J)=(CCM*SKT+AA(J)*BC)/BBEI 
B4(I.J)=(CcP*SKT-BB(J)*BC)/BBB 

20 CONTINUE 
10 CONTINUE 

DO 3Q 1=2.MM 
IF(I.EO.MNZ) GO TO 30 
sMTRN=SM(1)*SM(1) 
SKT=1.0/Srl!TRN 
DDD=2.0*SH2+4.0*SKT 
DA=SNH(I)/(2.0*SH*(CSH(I)-CS(1))) 
DB(I)=PE*U(I.2)/(2.0*SH*SMTRN*H3(II1)*DDD) 
01(I)=(SH2OA)/DDD 
D2(I)=CSH2+DAUDDD 
03=4.0*SKT/DDD 

30 CONTINUE 
DO 40 1=2,MM 
SMTRN=RN(V1)*RN(M1) 
SKT=1.0/SMTRN 
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EA=SNH(I)/(2.0*SH*(CSH(I)-CS(M1))) 
EB(I)=PE*U(I,M)/(2.0*SMTPN*H3(I.M1)*EEE) 
F1(I)=(SH2-EA)/EEE 
F2(I)=CSH2+EAUEEE 
E3=4.0*SKT/EEE 

40 CONTINUE 
RETURN 
END 

sUBROLTINE VARBC 
C---- THIS SUBROUTINE SOLVES THE SPECIALLY TREATED BOUNDARY CONDITIONS 
C---- 	ALONG THE AXES OF SYMMETRY, THFTA = 0 AND 180. 

COMMON/GP101/ Z(41),SNH(41),CSH(41),SN(31),CS(31) 
COMr01 /GR1D2/ IETHA(31),ETHA(31),THETA(31),DTHETA(31) 
COMMON/GPI03/ H3(41,311,R1(41,31) 
CONWON/CNSTC/ ZSIREISCODEIEPSC,RFC 
COMMON/M1RM1C/ M.M1,MMnipMM,MM1IMO,SH,SK,KS 
COMRON/UCC/ U(41,31),C(41,31) 
COMMON/IRREGC/ JOMTTII1(31),I2(31) 
COMRON/COEFF/ B1(41,31).B2(41,31),B3(41.31),B4(41.31) 
COMMON/VCOEFF/ D1(41),D2(41),n3,E1(41),E2(41).E3 
COmNON/OCOEFF/ UD(41.31).0B(41).ER(41) 
COMMON/NPRC/ NIMXITERIMX1IMMX1,MNPRIINOMIT,NPRCINPRC1.NPC.NPC1,N3 
COMMON/FACTOR/ FACTOR 

C---- ESTIMATION OF C(I,1) ALONG THE AXIS OF SYMMETRY. THETA=0.0 
DO 10 I=2,mm 
IP(I.GE.I1(1).AND.T.LE.T2(1)) Go TO 1 
0=OB(I)*(c(i+1,1)-c(I-1.1)) 
IP(L(I11).Eu.0.00) C(I,1)=10.E-30 

c(it1)=-10.E-30 
Xm=-(0/c(1.1))*FACTOR 
ACm=1.0-4-xm 
IF(ACM.E0.0.00) ACm=10.E-M0 
IF(ACv.Eo.-u.00) ACM=-10.E-30 
De=(o+xm*C(111))/Acm 
TN=D1(1)*C(I+1,1)+1)2(I)*C(I-1,1)+D3*C(I12) 
TNP=TN/ACM 
TN=TNP+DP 
TN=C(I,1)+RFc*(TN-c(I.1)) 
IF(ABS(C(111)-TN).LE.EpSC) GO TO 20 
GO TO 30 

20 r'PRC=NPRC-1 
NPC=NPC-1 

30 C(I.1)=TN 
C---- ESTIMATION OF C(I,M1) ALONG THE AXIS OF SYMMETRY, THETA=180.0. 

1 D=-EB(I)*(C(I+1,M1)-C(T-1,M1)) 
iF(C(Ion).Eo.0.00) C(I,m1)=10.E-30 
iF(C(I0,11).EQ.-0,00) c(ilm1)=-10.E-30 
XM=-(0/C(I,mi))*FACTOR 
ACm=1,0+xM 
IF(ACP,E0.0.00) Aciv:=10,E-30 
IP(ACP.Eo.-0.00) ACM=-10.E-30 
DP=(D+xm*c(1.111))/ACM, 
TN=E1(I)*(:(1+101)+E2(I)*C(1-101)+E3*c(IIM) 
TNP=TN/ACM 
TN=TNp+DP 
TN=C(I041)+RpC*(TN-C(I,m1)) 
IP(ABVC(I0111)-TN).LE.EPSC) GO TO 40 
GO TO 50 

40 NPRC=NPRC•"1 
NPC=NPC-1 

50 o(i,M1)=TN 
10 CONTINUE 

RETURN 
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SUBROUTINE SOLVE 
C---- THIS SUBROUTINE SOLVES THE FINITE—DIFFERENCE DIFFUSION EQUATIONS 
C---- 	AT ALL INTERNAL MESH POINTS USING SUCESSIVE ITERATION WITH 
C--" 	RELAXATION. 

COMMON/GRID1/ Z(41),SMH(41),CSH(41),SN(31),CS(31) 
COMI'ION/GR1D2/ IETHA(31),ETHA(31),THETA(31),DTHETA(31) 
COMMON/GRIDS/ H3(41,31)01(41,31) 
COMMON/M1MM1C/ MtM1MMDIMM,MM1,MD,SH.SKIKS 
COMMON/CNSTC/ ZSIRF,SC,PE,EPSC,RFC 
COMMON/UCC/ U(41,31),C(41,31) 
COMMON/COEFF/ B1(41,31),P2(41,31),(13(41,31),R4(41931) 
COMVON/VCOEFF/ 01(41),D2(41),03,E1(41).E2(41),E3 
COMMON/DCOEFF/ HD(41,31).08(41),ER(41) 
COMPON/NPRC/ N,MXITERIMX1IMMX1,MNPR,N0MIT,NPRC,NPRC1,NPCINPC103 
COMMON/IRREGC/ JO4ITtI1(31),I2(31) 
COmMON/KMKNC/ AA(31),BB(31) 
COMMON/FACTOR/ FACTOR 

C---- AT EACH GRID POINT, THE PROCESS OF CALCULATION IS AS FOLLOW. 
C---- 	1. CALCULATE THE NFW VALUE OF THE CONCENTRATION, TN. 
C---- 	2. APPLY RELAXATION (OVER— OR UNDER— RELAXATION). 
C---- 	3. TEST FOR CONVERGENCE. 
C---- 	4. IF THE TEST IS SATISFIED, MPRC IS REDUCED BY 1. AND THE OLD 
C---- 	VALUE OF THE CONCENTRATUON IS REPLACED BY TN. 

jIPREG=j0MIT 
DO 10 J=2,JIRREG 
DO 20 I=2.MM 
IF(I.GE.I1(J).AND.T.LE.I2(J)) GO T0-20 
DF1=C(I+1,J)—C(I•19J) 
DF2=iAA(j)*Uii.j+1)-6"-;(j1.4,U(Iej-1)—(AA(j)—BRiji;*Uii.jii 
DF3=AA(J)*C(I.,..14-1)—BP(J)*C(I,J...1) 
0F4=U(I+1,J)—U(I-1,J) 
D=BD(I,j)*(UF1*UF2—DF3*DF4) 
IF(C(I,J).E(4.0.00) C(I,J)=10.E-30 
IF(C(I,J)9EO.-0.00) C(I,J)=-10.E•30 
XM=—(C/C(IIJ))*FACTOR 
ACM=1.0+XP 
IF(ACM.E0.0.00) ACM=10.E-30 
IF(ACM.E0...U.00) ACM=-10.E-.30 
DP=(D+XM*C(I,J))/ACM 
BC1=B1(I,J)*C(I+1,J) 
BC2=B2(I,J)*C(I-1,J) 
BC3=B3(I,J)*C(I.J+1) 
BC4=134(I,J)*C(I1J-1) 
TN=BC1+BC2+6C3+BC4 
TNP=TN/ACM 
TN=TNP+OP 
TN=C(I1J)+RFC9c(TN—C(I.J)) 
IF(ABS(C(I,J)—TN).LE.EPSC) GO TO 40 
GO TO 50 

40 NPRC=NPRC•1 
50 r(T,J)=TN 
20 CONTINUE 
10 CONTINUE 

C 
JREG=JOMIT+1 
DO 100 J=JREG,M 
DO 200 I=29MM 
OF1=C(I+1,J)—c(I-1,J) 
DF2=(AA(J)*U(I1J+1)—BB(J)*U(I.J-1)—(AA(J)•BB(J))*U(I,J)) 
OF3=AA(J)*C(I.J+1)—BB(J)*C(19J-1) 
DF4=U(I+19J)...U(I.•11J) 
D=BD(I,J)*(DF1*DF2-DF3*DF4) 
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IF(C(I,J).E0.0.00) C(I,J)=10.E-30 
C(I,J)=-10.E-30 

YM=—(C/C(1,J))*FACTOR 
ACM=1,0+XM 
IF(ACM.E0.0.00) ACM=10.E.-30 
IF(ACM.E0.—U.00) ACM=-.10.E-30 
DP=(D+XM*C(I,j))/ACM 
BC1=B1(I,J)*C(I+1,J) 
BC2=B2(I,J)*C(I-1,J) 
BC3=1:33(ItJ)*C(I,J+1) 
BC4=B4(I,J)*C(Ivj-.1) 
TN=PC1+BC2+BC3+BC4 
TNP=TN/ACP.1  
TN=1NP+DP 
TN=C(I,J)+RFC*(TN—C(I.J)) 
TF(ARS(C(Iti.1 )—TN).LE.EPSC) GO TO 400 
GO TO 500 

400 NPRC=NPRC-.1 
500 C(I,J)=TN 
200 CONTINUE 
100 CONTINUE 

RETURN 
END 

SUBPOUTINL RESTAB 

C---- THIS SUBROUTINE PRINTS OUT THE CONCENTRATION DISTRIBUTION IN 
TARVLATED 

COMMON/GR101/ Z(41),SNH(41),CSH(41),SN(31),CS(51) 
C014 P4ON/GR/02/ IETHA(31),ETHA(31),THETA(31),DTHETA(31) 
COMMON/GP/06/ H3(41,31),R1(41,31) 
COMMON/M1VM1C/ MvP11,MMD,MM,MM1IMD,SHISK,KS 
COMMON/UDC/ U(41,31),C(41,31) 
COMMON/CNSTC/ ZS,RE,SC,PE,EPSC,RFC 
COMMON/NPRC/ NoMXITER,MX1,MMX1,MNPRINOMIT,NPRC,NPRC1,NPCINPC1oN3 
WRITE(6,100) ZS,RE,PE,RFC 

100 FORMAT(1H11///t1X,4HZS =,F6,315X,4HRE =IF8.4,5X,4HPE =,F10.4,5Xo5H 
1RFC =,F8,4) 
WRITE(6,101) NPRC1,NPC1,NOMIT 

101 FORMAT(1H0,//t20Xt7HNPRC1 =II5,11X,6HNPC1 =,I5,11)(v7HNOMIT 
WRITE(61 102) NoNPRC,NPC 

102 EORMAT(1H0,// t 1X 1 3HN =,I5,5X,6HNPRC =,I5,5X15HNPC 7-1I5,///) 
WRITE(6,200) 

200 FORMAT(1H0,20x,29H****C(I,J)--CONCENTRATION****o//) 
WRITE(6,201) (2(T),I=1,MMOI2) 

201 FORMAT(1H0,6X,4HZ(I),11F10.2,//) 
WRITE(6,202) (IETHA(J),DTHETA(J),(C(I,J),I=1,MMD,2),J=1,M1) 

202 FORMAT(1X,I5,2X,F5.1,11F10.6) 
WRITE(61300) 

300 FORMAT(1H1, ///,20X029H****C(I,J)—CONCENTRATION****,//) 
wRITE(6,311) (Z(I),I=MMDIMM1,2) 

301 FORMAT(1H016X14HZ(I),11F10.2s//) 
WRTTE(6,302) (IETHA(J),DTHETA(J),(C(I,J),I=MMDOM1,2).J=101) 

302 FORMAT(1X,I6,2X,F5.1,11F10.6) 
RETURN 
END 
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SUHROUTIME NSNSEE 
C---- THIS SUBROUTINE EVALUATES THE LOCAL AND OVERALL SHERWOOD NUMBERS, 

COMMON/GRID1/ Z(41),SMH(41),CSH(41),SM(31),CS(31) 
COMMON/GRID2/ IETHA(31),ETHA(31),THFTA(31),DTHETA(31) 
COMMON/GR1D3/ H3(41,31),R1(41,31) 
COMmON/M11vM1C/ r:,M1,MM[,,MM,MM1,rfD,SH,SK.KS 
COfNON/UCC/ U(41.31),C(41,31) 
COMMON/CNSTC/ ZS,RE,SC,PE,EPSC,RFC 
CONMON/NPRC/ N,MXITER,MX1,MMX1,MNPR.NOMIT,NPRC,NPRCl,NPG,NPC1,N3 
COMMON/IRREbC/ JOMIT,I1(31),I2(31) 
COMMON/SMRNC/ SM(31),RN(31) 
DIMENSION ANU(31),BHU(31),ANRAT(31),BNRAT(31) 
DIMENSION SRTA(31),SRTB(31) 

C---- ANU(J)---THE LOCAL SHERWOOD NUMBER FOR SPHERE A. 
C---- AVNU--- THE OVERALL SHERWOOD NUMBER FOR SPHERE A. 
C---- ANRAT(J)---THE RATIO OF THE LOCAL SHERWOOD NUMBER TO THE FRONT 
C---- 	STAGNATION POINT SHERWOOD NUMBER FOR SPHERE A. 
C----  RNU(J)---THE LOCAL SHERWOOD NUMBER FOR SPHERE B. 
C---- BVNU--- THE OVERALL SHERWOOD NUMBER FOR SPHERE B. 
C---- BNRAT(J)---THE RATIO OF THE LOCAL SHERWOOD NUMBER TO THE FRONT 
c---- 	STAGNATION POINT SHERWOOD NUMBER FOR SPHERE B. 

SSH=-140/(12.0*SH) 
YA=0.0 
YB=0.0 
DO 10 u=1,m1 
CZA=SSH*( 4-25.0*C(1.J)-48.0*C(2,J)+36,0*C(3,J)-16.0*C(u.J)+3,0*C(5. 

1J)) 
SK1A(J)=-e.u/H6(1,J) 
ANU(U)=CZA*SRTA(U) 
ANPAT(J)=ANU(J)/AMU(1) 
C7ASCC=CZA*(SN(0)/(CSH(1)-CS(J))) 
yA=YA+CZASCCAESM(J) 
CZP=SSH*(+2b.0*C(MV1,J)-48.0*C(MM,J)+36.0*C(MM-1,J)-16.0*C(MM.-21 J) 

1+3.0*C(MV-3,J)) 
SRIB(J)=-2.0/H3(MM1,J) 
BNU(J)=CZB*SRTB(j) 
BNPAT(J)=ENU(J)/ANU(1) 
CZBSCC=CZP*(SN(J)/(CSH(MM1)-CS(J))) 
YB=1.B+CZBSCC*SM(J) 

10 CONTINUE 
SIS2Ar.(CSH(1)-CS(1))*(CSH(1)-CS(M1))/SNH(MM1) 
SIS2B=ACSH(MM1)••CS(1))*(CSH(MM1)-CS(M1))/SNH(MM1) 
AVNU=.-SIS2A*YA 
BVNU=SIS2B*YB 
WRITE(6.1000) 

1000 FORMAT(1H1.30X.19HSPHERE A (ZS = -VE).30X,19HSPHERE B (ZS = +VE)) 
WRITE(6.1001) AVNU,RVNIJ 

1001 F0RMAT(1X,25HOVER-ALL N(JSSELT NUMBER =.5X,F10.5140X,F10.5) 
WRITE(611010) 

1010 FORMAT(1X,//t5X.4HETHAI2X,6HDTHETA,12X.6HANU(J),4X113HANU(J)/ANU(1 
1),28)(.6HBNU(J)14X,13HBNU(J)/AMU(1)) 
WRITE(6.1011) 

1011 FORMAT(5X,4H----12X.6H 	,12X,6H 	.4)(.13H 	.28X. 
16H 	.4)(113H 	 
WRITE(6,1020) (IETHAMOTHETA(J),ANU(J),ANRAT(J).BNU(J),BNRAT(J). 

1j=1.M1) 
1020 FORMAT(5X1I412X.F6.2.F18.6,E17.6.20X.F14.61F17.6./) 

RETURN 
FND 
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SUBROUTINE CNPLTP 
C---- THIS SUBROUTINE EVALUATES PLOT POSITIONS OF CONTOURS AND CALLS 
C---- 	THE LINE-PRINTER PLOTTING SUBROUTINE. 

COMMON/GRID1/ Z(41).SNH(41).CSH(41).SN(31),CS(31) 
COMMON/GRID2/ ILTHA(31).ETHA(31),THETA(31),OTHETA(31) 
COMMON/GRID6/ H3(41.31),R1(41,31) 
COMON/CNSTC/ZStRE,EPS1.EPS2,RF1,RF2 
COmMON/M1MMIC/ M011,MMD,MM.MM1,MD,SH.SK,KS 
COMrON/UCC/ U(41.31),C(41,31) 
rOVMON/PLOT1/ X1(31.10),X2(31,10),Y1(31,10),Y2(31$10) 
rOMMON/PLOT2/ X3(31,10),X4(31,10),Y3(31,10)1Y4(31,10) 
COMMON/ZVC1/ ZVC1(10)1ZVC2(10),LVC1(10) 
COMMON/ZVC2/ ZVC3(10).ZVC4(10)9LVC2(10) 
COmMON/PLTPCN/ VCC(10),KNC.KNP 
COMMON/RPLOTC/ RPLOT,IYS.IXSTEP 
COMrON/RRABC/ RRAIRREI,RRC.RRL 

C 
C---- CONCENTRATION CONTOURS. 
C 	  

DO 11 K=1.KNC 
ZVC1(K)=0. 
ZVC2(K)=0. 
LVC1(K)=1 
ZVC3(K)=0. 
ZVC4(K)=0. 
LVC2(K)=1 

11 CONTINUE 
C---- SEARCH AND INTERPOLATE BETWEEN TWO. I-IINF---rONCENTRATTON CONTOUR_ 

nO 100 J=1011 
nO 110 I=2,MM1 
IF(I.E0.MMD.AND.J.EQ.1) GO TO 110 
nO 110 K=1.KNC 
iF(C(T-.1.J).GE.000(K).AND.C(I.J).LE.VCC(K)) GO TO 200 
IF(C(I-•11J).LE.VCC(K).AND.C(I.J).GE.VCC(K)) GO TO 200 
GO TO 110 

C 
C---- SEARCHING THE CONCENTRATION CONTOURS FOR FIRST SPHERE. 

200 IF(I.GT.MMD) GO TO `201 
IF(LVC1(K).E.0.0) GO TO 101 
A=(VCC(K)-C(I-11J)) 
IF(A.EQ.0.0) A=10,E-30 
B=(C(I,J)-C(I-1,J)) 
IF(B.EQ.0.0) B=10,E-30 
sLOPE=A/B 
7VC1(K)=Z(I-1)+SLOPE*(7_(I)-Z(I-1)) 
7VC2(K)=0.0 
LVC1(K)=0 
GO TO 110 

101 Ar-(VCC(K)..-C(I-1,J)) 
IF(A.E0.0.0) A=10.E-30 
B=M(I,J)-C(1-11J)) 
IF(h.EQ.0.0J B=10.E..'30 
SLOPE=A/B 
ZVC2(K)=Z(I-1)+SLOPE*(Z(I)-Z(I•1)) 
GO TO 110 

C 
C---- SEARCHING THE CONCENTRATION CONTOURS FOR SECOND SPHERE. 
201 TF(LVC2(K).E(J.0) GO TO 102 

A=VCC(K)-C(I-11.1) 
TF(A.E@.0.0) A=10.E-30 
Rzt(C(I,J)-C(I-1,J)) 
IF(R.E0.0.0) B=10.E-30 
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sLOPE=A/B 
ZVC3(K)=Z(I-1)+SLOPE*(Z(I)-Z(I-1)) 
ZVC4(K)=0.0 
LVC2(K)=0 
GO TO 110 

102 A=VCC(K)-C(1-11J) 
IF(A.E0.0.0) A=10.E-30 
B=(C(I,J)-C(I-1.J)) 
IF(B.EQ.0.0) B=10.E-30 
SLOPE=A/B 
ZVC4(K)=Z(I-1)+SLOPE*(Z(I)-Z(I-1)) 

110 CONTINUE 
C 
C---- CONVERT TO RECTAGULAR COORDINATES 

no 300 K=1,KNc 
IF(ZVC1(K).E0.0.0) GO TO 301 
1P(ZVC1(K).6T.100.0) ZVC1(K)=100.0 
IF(ZVC1(K).LT.-100.) ZVC1(K)=-100. 
A1=SINH(ZVC1(K)) 
B1=COSH(ZVC1(K)) 
B1J=B1-cS(J) 
IP(B1J.E0.0.0) B1J=10.E-30 
Yl(JIK)=SNH(MM1)*SN(J)/B1J 
Xl(J,K)=SNH(MM1)*A1/B1J 
GO TO 300 

301 Xl(J/K)=0.0fY1(J.K)=0.0 
300 CONTINUE 

no 310 K=1.KNC 
IP(ZVC2(K).E(:4.0.0) GO TO 311 
IP(ZvC2(K).('T.100.0) ZVC2(K)=100.0 
IF(ZVC2(K).LT.-100.) 7VC2(K)=-100. 
A2=SINH(ZVC2(K)) 
B2=COSH(ZVC2(K)) 
B2J=B2-Cs(J) 
IF(H2J.EG.0.0) B2J=10.E-30 
Y2(J,K)=sNH(Mml)*SH(J)/B261 
X2(J1K)=SNH(MM1)*A2/B2J 
GO TO 310 

311 x2(J.K)=0.0£Y2(J.K)=0.0 
310 CONTINUE 

no 320 K=1,KNC 
IF(ZVC3(K).E0.0.0) GO TO 321 
IF(ZVC3(K).GT.1(0.0) ZVC3(K)=100.0 
IP(ZVC3(K).LT.-100.) ZVC3(K)=-100. 
A3=SINH(ZVC3(K)) 
B3=COSH(ZVC6(K)) 
B3J=E33-CS(J) 
TF(P3J.EG).0.01 B3J=10.E-30 
Y3(J,K)=SNH(MM1)*SN(J)/B3J 
X3(J,K)=SNH(MM1)*A3/B3J 
GO TO 320 

321 X3(J.K)=0.0EY3(J,K)=0.0 
320 CONTINUE 

DO 330 K=11KNC 
IP(ZVC4(K).E(1.0.0) GO TO 331 
IP(ZVC4(K).GT.100.0) ZVC4(K)=100.0 
IP(ZVC4(K).LT.-100.) ZVC4(K)=-100, 
A4=SINH(ZVC4(K)) 
B4=COSH(ZVC4(K)) 
B4J=84-CS(J) .  
IF(B4J.E0.0.0) B4J=10.E-30 
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y4(J,K)=sNi1(mm1l*sN(j)/B4j 
X4(J,K)=sNH(Mm1)*A4/B4J 
GO TO 330 

331 x4(J,K)=0.0EY4(J,K)=0.0 
330 CONTINUE 

DO 15 K=11KNC 
ZVC1(K)=0. 
ZV02(K)=0. 
LVC1(K)=1 
zVC3(K)=0. 
ZVC4(K)=0. 
LVc2(K)=1 

15 CONTINUE 
100 CONTINUE 

C---- PLOT CONCENTRATION CONTOURS AROUN THE SPHERES. 
KNp=KNc 
CALL CNPLOT 
RETURN 
END 

SUBROUTINE CNpLoT 
C---- THIS SupRou1INE PLOTS CONCENTRATION CONTOURS AROUND THE SPHERES. 

COt"iON/GRID1/ Z(41),SNH(41),CS1-+(41).SN(31)1CS(31) 
COMON/GRID2/ IFTHA(31),ETHA(31),THETA(31).DTHETA(31) 
COMkON/GRID6/ H3(41.31),R1(41,31) 
CO!"N/rNc'T1/ 7c Di iSCIPE.EPSCIRFC 
CD"MON/M1"'M1C/ ".M1.MMD,MM.MM1,MD.SHISKIKS 
COMN'ON/PLOT1/ X1(33110).X2(31,10),Y1(31110).Y2(31910) 
COMN0N/PLOT2/ X6(31,10),X4(31.10).Y3(3111°)IY4(31,10) 
COMPON/RPLUTC/ RPLOT,IYS,IXSTEP 
COMFON/PL1PCN/ VCC(10).KNCtKNP 
COm"ON/RRABC/ RFA,RRF3,RRC,RRL 
DIMENSION CHAR(120)1FPLOT(8) 
DATA 6LANK.PLOT,PLUS,CROSS/1H .1H..1H+.1HX/ 
DATA FPL01/ 1H1.1H2,1H3.1H4,1H5.1H6,1H711H8/ 

C---- PLOTTING THL CONTOURS FOUND IN SUBROUTINE CNPLTP. 
C---- ALL CONTOURS ARE MARKED BY 
C---- THE FRONT AND REAR STAGNATION POINTS ARE MARKED (+). 
C-f.”. THE CENTERS ARE MARKED (X). 

A=...CSH(1) 
B= CSH(1) 
RR1=A-RRA*RPLOT 
RR2=A+RRB*RPLOT 
RR3=B-•RRB*RPLOT 
RR4=B+RRC*RPLOT 
XAU=-.(CSH(1)+1.) 
XAUU=-(CSH(1)•1.0) 
XBU= (CSH(1)•10) 
XBUU=(CSH(1)+1.) • 
DX=RRL*RPLOT/(FLOAT(IXSTEP.-1)) 
DX2=DX/2.° 
DO 5 L=1.120 
CHAR(L)=PLOT 

5 CONTINUE 
wRITE(6.100) CHAR 

100 poRMAT(1H1.5H....120A1) 
DO 10 L=1.119.  
CHAR(L)=BLANK 

10 CONTINUE 
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C 
C---- SPHERE A. 

XPLOT=RR1. 
15 DO 25 J=1,1411 

DO 25 K=1,KNP 
DIF1=XPLOT-X1(J,K) 
ABD1F1=ABS(UIF1) 
nIF2=XPLOT-X2(J,K) 
ABDIF2=ABS(DIF2) 
IF(ABDIF1.LE.DX2) GO TO 20 

22 IF(ABOIF2.LL.DX2) GO TO 21 
GO TO 25 

20 LL=(FLOAT(IYS)/(RR(*(PLOT))*Y1(J,K)+1.0 
IF(LL.EQ.O.OR.LL.GT.119) GO TO 22 
CHAR(LL)=FPLOT(K) 
GO TO 22 

21 LL=CFLOAT(ITS)/(RRL*RPLOT))*Y2(J,K)+1.0 
IF(LL.E0.0.0R.LL.GT.119) GO TO 25 
CHAR(LL)=FPLOT(K) 

25 CONTINUE 
IF((XPLOT.GT.XAU).AND.(XPLOT.LT,XAUU)) GO TO 1 

26 nFO=XPLOT-XAU 
rFUU=XPLOT-XAUU 
rFA=XPLOT-A 
ABDEU=ABS(DFU) 
ABDFUU=APS(UFUU) 
A[iCFA=AUS(DFA) 
TFI(ARrsH.(E,FIX2).nR4(AknF":"-,nX91) (In  TO 'le 
TF(ABCFA.LE.DX2) GO TO 41 
WRITE(6,101) CHAR 

101 FORRAT(1X+1H.,3X1120A1) 
30 CnNTINUE 

DO 35 L=1,119 
CHAR(L)=RLANK 

35 CONTINUE 
XPLOT=XPLOT+DX 
IF(XPLOT.GT.RR2) GO TO 50 
SO TO 15 

1 C=XPLOT-A 
IF(C.EQ.0..0) C=10.E-30 
D=ABS(C) 
CL=1.0-D**2 
LC=(FLOAT(IYS)/(RRL*RPLOT))*SORT(CL)+1.0 
TF(LC.E0.1.0R.LC.GT.119) GO TO 26 
CHAR(LC)=PLUS 
GO TO 26 

40 CHAR(1)=PLUS 
WRITE(6,102) CHAR 

102 FORMAT(1)01H..3X,120A1) 
GO TO 30 

41 CHAR(1)=CROSS 
WRITE(6,102) CHAR 
GO TO 30 

C 

SPHERE Be 
50 XPLOT=RR3 
55 DO 75 JE3=1,M1 

J=M1-,a+1 
DO 75 K=1,KNP 
DIF3=XPLOT-X3(J,K) 
ARDIF3=ABS(DIF3) 
DIF4=XPLOT.-X4(J,K) 
ABDIF4=ABS(DIF4) 



IF(ABDIP3.LE.Dx2) GO TO 70 
72 IF(ABDIF4.LE.DX2) GO TO 71 

GO TO 75 
70 LL=(FLOAT(1YS)/(RRL*RPLOT))*Y3(J.K)+1.0 

IF(LL.E0.0.0R.LL.GT.119) GO TO 72 
CHAR(LL)=EPLOT(K) 
GO TO 72 

71 LL=CFLOAT(ITS)/(RRL*RPLOT))*Y4(J.K)+1.0 
IF(LL.Eo.0.OR.LI.GT.119) GO To 75 
CHAR(LL)=FPLOT(K) 

75 CONTINUE 
IFf(XPLOT.LT.xBUU).AND.(XPLOT.GT.OU)) GO TO 3 

76 oFu=xPLOT-XBU 
DFUO=xPL01-xBuU 
OFB=XPLOT-B 
ABDFU=ABS(DPU) 
ABFIFUU=ABS(UFUU) 
ABnFB=ABS(DPB) 
IFA(AB0FU.LL.oX2).oR.(ABDFUU.LE.Dx2)) GO TO 90 
IF(ABcFB.LE.DX2) GO TO 91 
toRTTE(6.101) CHAR 
TF(XPLOT.GE.RR4) GO TO 40n 

80 DO 85 L=1.119 
CHAR(L)=BLANK 

85 CONTINUE 
XPLOT=XPLOT+DX 
GO TO 55 

3 C=XPLCT-B 
IF(C.EO.0.0) c=10.E-30 
D=ABS(C) 
CL=i.U-U**2 
LC=(FLOAT(ITS)/(RRL*RPLOT))*soRT(CL)+1.0 
IF(LC.EQ.1.OR.LC.GI.119) p,0 To 76 
CHAR(LC)=PLUS 
GO 10 76 

90 CHAR(1)=PLUS 
wRITE(61102) CHAR 
GO TO 80 

91 CHAR(1)=CROSS 
wRITE(6.102) CHAR • 
GO TO 80 

400 DO 6 L=1.120 
CHAR(L)=PLOT 

6 CONTINUE 
wRITE(6,103) CHAR 

103 FORMAT(1X.4H 	120A1) 
RETURN 
END 
SUBROUTINE SKFTILE(NSKTPINUNIT) 

C---- THIS SUBROUTINE SKIPS FILES ON MAGNETIC TAPE. 
L=0 

1 READ(NUNIT) DUMMY 
IF(EOF(NUNIT)) 10.11 

10 L=L+1 
IF(L.EQ.NSKIP) RETURN 

11 GO TO 1 
END 
FUNCTION SINH(X) 
sINH=0.5*(EXP(X)-Exp(-X)) 
RETURN 
END 

- FUNCTION COSH(X)  
rOSH=0.5*(EXP(X)+EXP(-X)) 
RETURN 
-FND - 
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