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ABSTRACT 

Two-port immittance (i.e, impedance or admittance) converters and 

inverters are important active units used, in signal processing applica-

tions, for the realization of active RC networks suitable for micro,. 

electronic implementation. 	In this thesis a generalization to 

multiports of the concepts of 2-port converters and inverters is 

proposed, the special case of 3-port converters and inverters suitable 

for floating inductor simulation is studied in some detail, the 

realization of inverters with a minimum number of active components is 

discussed, and the concept of anti-reciprocity (which has close 

associations with converters and inverters) is investigated. 

According to the proposed generalization, conversion and inversion, 

which are scalar operations when performed by 2-ports, become matrix 

operations, when performed by multiports. One consequence is that a 

distinction, which does not exist for 2-ports, has to be made between 

multiport admittance and impedance converters or inverters. 

Most of the circuits used for the active RC simulation of floating 

inductors can be interpreted as 3-port admittance inverters or converters. 

A classification of these inverters and converters, based on their 

terminal description (as distinct from their port description), is 

developed, which clarifies the relationships between known realizations 

and shows the possibility of new ones. 

It is known that 2-port positive inverters containing resistors and 

only one operational amplifier can be realized if only one port is 

grounded. 	It is proved that this is impossible if both ports are grounded 

(a similar restriction concerning positive inverters using only one ideal 
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transistor is also proved). The consequences of this conclusion 

regarding the realization of 3-port inverters are examined. 

Some converters and inverters (e.g. the gyrator) have been regarded 

as possessing a kind of extreme non-reciprocity or "anti-reciprocity". 

It is pointed out that two existing definitions of anti-reciprocity 

are incor.patible. An investigation of this question leads to the 

introduction of a "complete set" of network properties related to the 

concept of reciprocity. Various rules concerning the interconnection 

of multiports possessing these• properties are derived. A generalization 

of the definitions of reciprocity and anti-reciprocity is presented, 

and the consequences of the proposed generalization are evaluated. 
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NOTATION 

In this thesis matrices and vectors are denoted by capital letters 

and scalars by small letters. However, R, L and C are used to denote 

resistance,inductance and capacitance, respectively. The unit matrix 

of order n is denoted by ln; the subscript will be omitted when 

evident from the context. Zero matrices are denoted by O. At denotes 

the transpose of A and det A denotes the determinant of A. 

The literal symbols corresponding to network variables (currents, 

voltages, scattering parameters) denote the Laplace-transformed or 

frequency-domain representation of these variables; for example, . 

I 
	1

1 

i2  

denotes the vector of the Laplace-transformed currents. The instantaneous 

or time-domain values are denoted by indicating explicitly the 

dependence of time (t); for example, 

I(t) = 

in(t) 

Several auxilliary matrices are used in the thesis to write some 

equations in a compact form. Those that are used in more than one 

section are listed below: 



[0 	1n 

1 0 n 

[1n  0 

O 0E1k 

= 

[ 1n 0 

O -1k 

O 1n 

[-1n 0 

= 
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CHAPTER 1 

INTRODUCTION 

1.1 - IMMITTANCE CONVERTERS AND INVERTERS - GENERAL CONSIDERATIONS 

This thesis is concerned with an investigation into various aspects 

of immittance (impedance and admittance) converters and inverters. 

These are specific types of linear and time-invariant multiports; they 

can, however, be active or passive, reciprocal or non-reciprocal. 

Immittance converters and inverters have in the past been considered 

as 2-ports (an extension to multiports of the concepts of immittance 

conversion and inversion will be proposed in this thesis). The gyrator 

is a familiar example of an inverter; an example of a converter is the 

negative impedance converter (NIC). A detailed review of the formal 

definition and main properties of converters and inverters will be 

deferred until chapter 3. This section will be concerned with a 

discussion, in general terms, of the role played by these 2-ports in 

modern network theory. 

What is of primary interest in a converter or inverter is the 

relationship between the immittance at one of the ports and the 

immittance of a 'load,  1-port connected to the other port: the two 

admittances (or impedances) are proportional in the case of the converter, 

and one is proportional to the inverse of the other in the case of the 

inverter. The simplicity of the mathematical relationships involved 

(direct proportionality and inverse proportionality) explains the 

extensive use that has been made of these 2-ports in various methods 
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of network synthesis. 

The main application of converters and inverters is in the field 

of active RC networks (an example of application in a different field 

is the use of the gyrator in microwave systems). In the context of 

active RC networks the converters and inverters are always actively 

realized, i.e. realized using active components (although they may in 

some cases be passive as far as the ideal port behaviour is concerned). 

For this reason converters and inverters are usually classified as 

active units or sub-networks. They are 2-ports described by two non-

zero paraMeters and are therefore less elementary than other active 

elements: controlled sources are described by one non-zero parameter 

only and both the transistor and the operational amplifier are, in the 

ideal case, described by zero-valued parameters. 

Widespread interest in converters and inverters is contemporary 

with the development of microelectronic technology. Highly frequency-

selective networks suitable for microelectronic implementation must be 

realized as Active RC networks. This becomes necessary due to the fact 

that microelectronic inductors are not available (except at very high 

frequencies) and RC networks are not selective enough. It has been 

found that active RC filters derived fromdoublyterminatedLCladderfilters 

possess very low sensitivity (this will be discussed in greater detail 

in chapter 3). One method of obtaining these low-sensitivity active 

filters consists in the simulation of each inductor in an LC prototype 

filter (terminated by resistors)by an Active RC circuit. Many of the 

circuits available for this purpose are interpretable as immittance 

inverters (usually gyrators) terminated by a capacitor. Other circuits 

can be interpreted as immittance converters terminated by a resistor 

(some circuits can be regarded either as an inverter or as a converter, 

as discussed later). Another method of deriving active filters from 
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LC ladder filters requires the use of one-ports with admittances 

proportional to s
2 
(s is the complex frequency variable). These 

special one-ports, often called FDNR's (Frequency Dependent Negative 

Resistors) can be obtained by using appropriate converters and inverters. 

Both these methods, simulation of inductors and use of FDNR's,have been 

intensively investigated in recent years and lead to active filters 

which are able to satisfy very demanding specifications. 

In addition to being very useful in the realization of active net-

works, converters and inverters are also of great interest from a 

purely theoretical point of view. Some converters and inverters have 

always been regarded as typical examples of reciprocal and non-reciprocal 

2-ports: the gyrator (which is an inverter) is usually considered as 

the prototype of a non-reciprocal 2-port, in contrast 	to the 

reciprocal transformer (which is a converter, when regarded as an ideal 

transformer). 

1.2 -OUTLINE OF THE THESIS 

The present general introduction will be followed by two chapters 

which are also of an introductory nature. One of these presents general 

background material consisting of a survey of some basic concepts of 

network theory which are extensively used in the thesis. The other 

provides more specific background by giving a review of 2-port converters 

and inverters and their application in active RC networks. 

The presentation of the results of the research done by the author 

starts in chapter 4, where a generalizations to multiports of the 

concepts of 2-port conversion and inversion is proposed. In chapter 5 

the possibility of realizing multiport converters and inverters with 

2-port converters and inverters is investigated. 
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Most of the circuits proposed for the simulation of floating 

inductors can be identified as special cases of the multiport converters 

and inverters proposed in this theses: they are 3-port admittance 

converters or inverters. A comparative study of various methods of 

realization of these 3-port converters and inverters is presented in 

chapter 6. 

The realization of various types of inverters with a minimum 

number of active components is considered in chapter 7; in particular, 

2-port positive inverters with a grounded terminal common to both ports 

are investigated. The results obtained are used in the discussion of 

the realization of 3-port inverters for floating inductance simulation. 

Some converters and inverters have often been considered as /anti-

reciprocal' 2-ports. It will be shown that the two definitions of 

anti-reciprocity given in the literature do not coincide. An investiga-

tion suggested by this incompatibility of the two definitions is 

reported in chapters 8 and 9. Some types of multiport converters and 

inverters play an important part in this investigation. 

Finally, in the conclusions, the main results obtained in the 

thesis are summarized and a number of unsolved questions related to 

those investigated in the thesis, are pointed out. 

1,3 - STATEMENT OF ORIGINALITY 

A clear distinction is made throughout this thesis between new 

results obtained by the author and known results that can be found in 

literature. 

It is believed that the results reported in chapters 4 to 9 are 

original. The main contributions contained in the thesis are,in the 
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author's opinion, the following: 

Chapter 4: The generalization to multiports of the concepts of 

admittance and impedance converters and inverters; the 

discussion of their properties and in particular the 

difference between admittance and impedance converters and 

inverters; the introduction of the concept of multiport 

'hybrid converter'. 

Chapter 6: The classification, based on the terminal description, of 

active RC circuits simulating floating inductors by 

admittance inversion and conversion [104]. 

Chapter 7: The proof of the impossibility of 2-port positive inverters 

('active gyrators') with both ports grounded, using 

only one operational amplifier with grounded output or 

using only one transistor [103]3 

Chapter 8: The generalization to multiports of one of the two existing 

definitions of anti-reciprocity and the introduction of a 

new network property related to the concept of reciprocity; 

the establishment of various rules concerning inter-

connections of two multiports when one or both possess one 

of these two properties [105]. 

Chapter 9: The generalization of reciprocity and antireciprocity in 

terms of a parameter which can assume different values 

and the establishment of rules concerning the interconnection 

of multiports possessing these generalized properties. 
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CHAPTER 2 

REVIEW OF SOME BASIC CONCEPTS 

2.1 - MULTIPORTS 

Definition 

A physical system is regarded as a multiport when all interaction 

with the outside of the system, namely the energy flow, only takes 

place at a certain number of locations called ports. With each port 

are associated two quantities, the port variables, whose product has 

the dimension of power. The internal constitution of the system is 

ignored (the system is regarded as a 'black box') and the multiport 

is characterized only in terms of the port variables. 

In the multiports to be considered here a port is a terminal-

pair with which a voltage and a current can be associated [1-6]. A 

terminal pair is only a port if the instantaneous value of the current 

flowing into one terminal is equal to the instantaneous value of the 

current flowing out of the other terminal (Fig. 2-1). It is assumed 

that this condition is a consequence of the external connections; it 

is not required to be a constraint imposed by the internal constitution 

of the multiport. Only the voltages between pairs of terminals that 

constitute ports are considered, the voltages between terminals of 

different ports being regarded as of no interest. 

A multiport with n ports is called an n-port (Fig. 2-2). The 

reference directions. for the voltage and current at each port will 

be chosen in such a way that when the instantaneous voltage and 

current are both positive the instantaneous power 	flows into 
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Fig. 2-1 : A port 
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Fig. 2-3 : An n-port with n+1 terminals 



- 25 - 

the multiport (Figs. 2-1 and 2-2). 

Two or more ports may share a common terminal. In particular, 

it is possible for all the ports to have a common terminal. In this 

case the n-port is an (n 	1)-terminal network described in terms 

of the currents at n terminals and the voltages between each of these 

n terminals and the remaining one (Fig, 2-3). 

General description of an n-port 

The multiports considered in this thesis are linear, time- 

invariant and contain only lumped components. Such multiports can be 

described, in terms of the Laplace transforms of the zero-state port-

currents and port-voltages, by a set of linear homogeneous equations, 

whose coefficients are rational functions of the complex frequency 

variable s. By zero-state it is meant that all the initial conditions 

are zero. The equations describing the multiport can be written in 

matrix form(*) as 

MI + PV = 0 	(2-1) 

where I and V are n-vectors whose components are the port-currents 

and port-voltages, 

I = . 	- 
1 

i
n 

respectively, 

V = v
1 

• 
0 

v
n 

(*) It should be noted that in this thesis matrices and vectors are 
denoted by capital letters. 
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(**) 

and M and P are matrices 	whose elements are rational functions of 

s. Both M and P have n columns. The number r of independent scalar 

equations in the description of the n-port is called the dimension-

ality of the n-port [5]. It will be assumed here that r = n since 

this is always the case for multiports with physical meaning [7] (for 

a detailed discussion of the cases where r ¢ n, usually regarded as 

"pathological", see [5, 7, 8]). 	It will also be assumed that the matrix 

equation (2-1) contains only independent scalar equations, i.e. the 

number of rows of M and P is n (M and P are therefore n-square 

matrices). 

A description in the form of equations (2-1) has the advantage 

of being the most general frequency-domain representation of lumped 

linear time-invariant n-ports. However this representation is not 

unique, since, if an n-port is represented by (2-1), it can equally be 

represented by the equation obtained by left-multiplying (2-1) by 

any non-singular square matrix (of appropriate dimension). 

Since it is assumed that the n-port is described by n independent 

equations with 2n variables, it is possible to express n of the 

variables in terms of the n remaining variables. The choice of a 

specific set of n dependent variables is subject to the requirement 

that the columns of M and P which multiply these variables in (2-1) 

be linearly independent. This will be illustrated by means of an 

example: 

(**) 
The coefficient matrices in (2-1) are denoted here by M and P 
instead of A and B which is the usual notation [4,5]. This is 
done in order to avoid confusion with the submatrices A and B 
of the transmission matrix of an (n + n)-port (to be introduced 
later). 
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The following description of a 3-port in the form MI + PV = 0, 

(a) (b) (c) 	(d) (e) (f) 

0.5 0 1 -2 0 -1 v1 
0 1 i2 0 0 -1 v2 = 0 (2-2) 

0 0 0 3_ 
1 1 0 

v3 
 

becomes, after a rearrangement of the variables, accompanied by a 

corresponding interchange of columns in M and P, 

(a) (b) (e) 	(d) (c) (f) 

0.5 0 0 -2 1 -1 v1  
0 1 0 i2 0 0 -1 i3  = 0 (2-3) 

0 0 1 v
2-  

1 0 0 v3 

Since 

0.5) 

leading 

Or 

the 

it 

i
t 

i2  

_ v2 

ll  

i2  

v2 

first 

is possible 

to 

+ 

= 

matrix in 

to use 

	

0 	1 

	

[ 2 

	0 

	

0 	0 

	

4 	-2 

	

0 	0 

	

-1 	0 

0,  

0 

1 

2 

1 

0 

(2-3) 

its 

is 

0 

[ -2 

1 

v1 
i3 

v
3 

inverse 

non-singulAr 

to left 

1 	-1 

0 	-1 

0 	0 

(the 

multiply 

v1 

i3 

v3 

determinant is 

(2-3) 

0 

This 3-port cannot be described by a set of equations having il, i2, 

and v3, as dependent variables, since the corresponding columns (a), 

(b) and (f) in (2-2) are not independent: 

(a) (b) (f ) 

0.5 0 -1 

det 	0 	1 	-1 	= 0 

0 0 0 
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Hybrid descriptions 

Among the descriptions of an n-port where n variables are 

expressed in terms of the n remaining variables, the hybrid descrip-

tions are particularly important. In a hybrid description the 

set of n dependent variables contains one variable (voltage or current) 

of each port (the same applies to the set of n independent variables). 

A notation appropriate for dealing with hybrid descriptions will 

now be introduced. By E will be denoted an n-vector whose components 

are some currents and some voltages chosen among the n currents and 

n voltages at the n ports of the multiport (Fig. 2-2) in such a way 

that one (and only one) variable of each port is included. The n 

remaining port variables form another vector denoted by F. It will 

be assumed that the variables are arranged in E and F in such a way 

that the subscripts (which indicate the ports with which the variables 

are associated) appear in the same order. For example if 

E = [ii  v2  v3  i4  v5  io]t,then F = [v1  12  13  v4  15  v6]t; a different 

ordering of the variables might have been chosen, e.g. 

i E = [i
1 
i
4 
i
6 
v
2 
v
3 
v
5
]t  and F = [v1  v4 

v6 i2 
i3 15

]t. It is not per- 

mitted to have, for example, E = [11  14  v4  v2  v3  v5]t  since two variables 

of the same port (i4  and v4) appear in E. Any hybrid description of 

the n-port will be of the form 

E = HF 	 (2-4) 

where the n-square matrix H is called a hybrid matrix of the n-port. 

When all the variables in E are currents, E = I, then all the 

variables in F are voltages, F = V, and (2-4) becomes the admittance 

description of the n-port: 

I = YV 	 (2-5) 

Similarly, when all the dependent variables are voltages, E = V and 
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F = I, (2-4) becomes the impedance description of the n-port: 

V = ZI 	 (2-6) 

Thus the admittance and impedance descriptions are regarded as limit-

ing cases of hybrid descriptions where all the independent variables 

(and, consequently, all the dependent variables) are of the same 

nature (all currents or all voltages). 

Well-defined multiports  

A multiport that possesses at least one hybrid description is 

said to be well-defined [5]. The existence of a hybrid description 

has important consequences which will now be examined. 

The set of independent variables in a hybrid description 

contains one variable of each port. A port whose voltage appears as 

an independent variable will be called a shunt port; a port whose 

current appears as an independent variable will be called a series 

port { 5j. Since the value of the independent variables can be freely 

chosen, it is possible in a well-defined multiport to impose_the 

voltage at the shunt ports and the current at the series ports. This 

means that a well-defined multiport can be driven by voltage sources 

at some of the ports (the shunt ports) and by current sources at the 

remaining ports (the series ports). In particular,.any of the shunt 

ports can be short-circuited, since this corresponds to imposing 11 = 0, 

and any of the series ports can be open-circuited, which corresponds 

to the choice of i = 0. 

It should be noticed that a multiport may possess different 

hybrid descriptions corresponding to different choices of the 

independent variables. A port which is a shunt port with respect to 

a specific hybrid description may be a series port with respect to a 
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different hybrid description. To each hybrid description corresponds 

an admissible pattern for the connection of voltage and current 

sources to the ports and, in particular, for the short and open-

circuiting of the ports. 

When a certain number of ports in a given multiport are rendered 

inaccessible by short-circuiting some of them and open-circuiting the 

others, it is often necessary to find the description of the reduced 

multiport from the description of the original one. This will be 

discussed now, assuming that the multiports are well-defined. 

If a multiport has a hybrid description, it is always possible, 

as discussed above, to short-circuit shunt ports and open-circuit 

series ports (shunt and series ports associated with the hybrid 

description under consideration). The hybrid matrix of the reduced 

multiport is obtained from the hybrid matrix of the original multiport 

simply by deleting the rows and columns corresponding to the ports 

that have been eliminated. 	For example, given a 4-port described by 

i
1 

h
11 

h
12 

h
13 

h
14 

v1 

i
2 

h
21 

h
22 

h
23 

h
24 

v2 

v
3 

h
31 

h
32 

h
33 

h
34 

i
3 

v
4 

h
41 

h
42 

h
43 

h
44 

1
4 

if port 2 is short circuited (v2  = 0) and port 4 is open-circuited 

(i
4 
= 0) the remaining 2-port (ports 1 and 3) is described by 

[ 	= {:11 h13] 	vl 

v
3 	

h
31 

h
33 	i3 

A different situation arises when some shunt ports are not short-

circuited but open-circuited and some series ports are short-circuited 

instead of open-circuited. The description of the reduced multiport 

can in this case be obtained following a procedure which will now be 
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explained. When the ports are divided into two sets, associated with 

subscripts 1 and 2, the hybrid description (2-4) can be written in the 

form of 

or 

El] [7H11 H12 I [F11 (2-7) 

1,E2 	
H21 H22 	F2 

E
1 
= H

11 
F1 H12 F2 - 	(2-7a) 

E
2 

= H
21 F1 H22 F2 	

(2-7b) 

If the shunt and series ports in set 2 are, respectively, open and short 

circuited, then 

(2-3) E, = 0 

(note that E.., = 0 is not cimiF.-sible if H
22 

is cinEular). 

From (2-7b) and (2-8) 

-1 
F2 = -H22 H21 F1 

Substitution of (2-9) in (2-7a) yields: 

_1 
E
1 
= (H

11 	
H12 H22 H21

)
1 

(2-9) ' 

(2-10) 

which is the description of the reduced multiport. The matrix reduction 

in (2-10), 

-1 
H11 - H12 H22 H21 

may be regarded as the matrix equivalent of pivotal condensation [2]. 

Scattering description 

The n-port descriptions considered so far are relationships involving 

the port currents and voltages. An alternative way of describing an 

n-port consists in the use of the scattering variables instead of the 

currents and voltages. Scattering variables are used for the description 

of both distributed and lumped networks. Many methods of synthesis of 

lumped networks have been given in terms of scattering variables 

[4, 5, 6] . 
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Although all the results in this thesis are given in terms 

of currents and voltages some results are also given in terms 

of the scattering variables since it is believed that these 

results may be of interest in connection with methods of multiport 

synthesis that make use of the scattering description. Some 

definitions and relationships concerning scattering variables will 

be summarized here for reference purposes (a detailed treatment 

can be found, for instance in [6]). 

The normalized current and voltage vectors I' and V' are 

defined in terms of the port current and voltage vectors, I and 

V, by the following equations: 

where 

I' = R2  I 0 

1 
V' = R2 V 

0 

R
o 

= diag (r
ol
,  r

o2 . . . ron
) 

1' 	1 	i 	1 
R2  = diag (r2 	r2 	2 
0 	ol' o2 . . . ron) 

11 
Roe= diag (r 2  r-2  • • . r 

01 2  o2 	on' 

Although the normalization resistances or port normalization numbers 

rot, ra, • • • ron  can be selected arbitrarily, they are usually 

related to the parameters of the networks under consideration in 

order to obtain simple and easily interpretable expressions. 
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The normalized admittance matrix Y' defined by I' = Ye V" 

is related to the non-normalized admittance matrix Y (defined by 

I = YV) by the following equation 

1 
Y1  = R2  Y R2  

0 	0 
(2-12) 

which is easy to obtain using (2..11). 

The normalized impedance Matrix Z' defined by V' = Z' I' is 

related to Z by 

Z' = R-2  Z R-' 
0 	0 

(2-13) 

When a hybrid matrix is associated with the following ordering 

of the variables 

   

H (2-14) 

    

V  n 

  

the corresponding normalized hybrid matrix H' (relating the 

normalized voltages and currents by an equation in the form of 

(2..14)) is 
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H' = SA H 	(2-15) 

where 

= diag 	. . ,, r. oq o(q+1)' 
• , r on' 

 

The scattering variables(*)  a and are defined as 

Ot= 	+ It) 

l'Y= 1(V' - I') 

 

(2-16a) 

(2 -16b) 

It follows immediat&ly that V' and I' are expressed in aand frby 

(2-17a) 

I' = Ot - 11- 	 (2 -17b) 

An n-port can be described by the scattering matrix S which relates 

17-= s 	 (2-18) 

The scattering matrix can be expressed in terms of the normalized 

hybrid matrix H' (assuming that H' corresponds to the ordering of the 

variables in (2-14)) by [5]: 

S = 0 (ln  + H') 1  (ln  - H') 	(2-19) 

where 

8  = [12  o 
o -1(n-d 

and 1
n 

is the unit matrix of order n. The expression of H' in terms of 

S is 

H' = (1-  -E) S) (1n 
 +0 S)-1 	(2-20) 

In particular, for the admittance matrix,0= ln  and for the impedance 

matrix 0= -1; equations (2-19) and (2-20) yield for these special cases: 
n 

 

(*) The scattering variables are usually denoted by A and B. The 
decision to use here a and 'SY is based on the fact that A and B 
are used to denote submatrices of the transmission matrix (which 
will be introduced later). 
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S = (1 +
1 
(1 - 	) (2-21) 

S = (z' + 1)-1  (z' - 1) (2-22) 

and 

Y'  = (1 - S) (1 + S)'•-1  (2-23) 

Z'  = (1 + S) (1 - S) -1 (2-24) 

Separation of the ports into two sets: (n + k )-ports 

There are several situations, some of which will occur frequently 

in this thesis, where the ports of a multiport are regarded as separ-

ated into two sets. In this case the multiport will be referred to as 

an (n + k)-port (Fig. 2-4). The set containingn ports will be called 

input, and the corresponding literal symbols will be denoted by subscript 

1; the other set, containing k ports, will be called output, and the 

corresponding symbols will be denoted by subscript 2. 

In the case of an (n + k)-port it is convenient to consider the 

current and voltage vectors (see Fig. 2-4) partitioned as: 

I= [ I
1
] 	V= [V1] 

I2 	V2 

where 

I2 = n+1 

(2-25) 

(2-26) 

i
n+k 

	

1 = v1 
	V2 = n+1 

	

vn 
	v

n+k in 

The admittance and impedance matrices will also be partitioned: 

Yll Y12] [111 
[12 	Y21 Y22 V2 

(2-27) 
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+ 
vn+1 

. 	 . 
• i n+k  •: . 1n 

+ 	 + 
vn 	

vn+k 

I1= i1 

• 

V1= 

• 
in 
- 	1 

v1 

in 
v 

12= 
_ 

in+1 
. 

in+k 

V2= v n+1 
• 

vn+k 

Fig. 2-4 : An (n+k)-port 
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where Y11 is n-square, Y22 is k-square, Y12  is n x k and Y21  is k x n 

(and similarly for the submatrices in Z). 

A specific type of hybrid matrix that will often be used is the 

following: 

[1 	[H
11 

H
12 

V1 
1 

V2 	H21 H22 I 12 

(2-29) 

This specific type of hybrid matrix will be referred to as the shunt-

series hybrid matrix [5] since it corresponds to the assumption that 

all the input ports are shunt ports and all the output ports are series 

ports. 

An important special case of (n + k)-port corresponds to n = k, 

i.e., the two sets contain the same number of ports. Such a multiport 

will be referred to as an (n + n)-port. Besides the various types of 

descriptions which can be applied 

type of description can be defined 

transmission description [3, 

or, with the transmission matrix 

4] 

V1  

: [ 

1 

1 

1 

T 

which 

to the 

for 

= 

(n 

is, 

T 

[A 

c 

partitioned, 

general 

+ 

by 

LI2] 

B 

D] 

n)-ports. 

definition: 

(n 

v21 

[-I2 

+ k)-port, a new 

This is the 

(20.30) 

(2-31) 

where the four submatrices A, B, C and D are all n-square. 

A conversion chart for several matrices describing an (n + k)-port 

is given in Table 2-1. 	The admittance, impedance, shunt-series hybrid, 

and transmission matrices are considered (the transmission matrix being 

applicable only to (n + n)-ports). These matrices are defined in 

(2-27, 28, 29, 30). 



TABLE 2-1 : Conversion chart of (n+k)-port matrices 

Y Z H T 	(n = k) 

Y Z-1 

(*) 

H11- 111211-2 1121 	1112112.32-  

1 	1 -HH 22 22 21 	
H- 

DB 1 

-1 -B 

C-D 1A B- 

B-1A 

Z 
y-1 

(*) ■ .........-..............e....... 

H-1
11 

-1 
H21H1, ' 1 

1 
-R111112 

H22-H21H111112 

AC71  

C 1 

-B+AC 1D 

C 1D 

H 
Y 	-Y 	Y-1Y 11 	12 22 21 

-Y22Y21 

Y 	Y  
12 22 

1;2 

Z11 	
-Z11Z12 

Z 	Z-1 	Z 	-Z ,Z- Z 
21 	 1 	22 	21 	 1 12 

1 
 

CA 	. 

Al 

-D+CA IB 

A-1B 

T 

(n=k) 

-Y21Y22 

y 	_y 	y-ly 
12 	11 21 22 

-Y21 

..y. 	1.....1 

Z11Z21 	-Z 	+Z 	Z 	 Z 12 	11 21 22 
-1 	-1 
Z21■ 	Z21Z22 11 21  

H 21 
v 	v-1 
-11-21 

HH 21 22 
vv  

-111214111-21-22 

Note: Matrices on the same row are equal. 

0-10 (0 n n-ln )-1 
-'22"21"11-"12.".22"211  

(*) 

Q  

Q11 Q12 -1

12 Q22  

n  -ln  
[ (4111-'12"n22'21) -1  

n-ln ln n n-ln   
-'11'12"22"27:(1112

)-1  

)
-1 

(422 n41-'2111"
n 
 12 
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2.2 - NULLORS 

Nullators, norators and nullors 

• 

The nullator is defined as a 1-port for which both the current and 

the voltage are zero; the norator is a 1-port for which both the 

voltage and the current are arbitrary [9, 8]. These 1-ports will be 

represented by the symbols shown in Fig. 2-5p The nullor is defined 

as a 2-port with zero current and zero voltage at one port and arbitrary 

voltage and current at the other port [8]; it is thus equivalent to a 

nullator-norator pair and will be represented as such (Fig. 2-5). 

The number of independent equations describing the nullator is 

greater than the number of ports: the nullator is a 1-port described 

by two independent equations 

i = 0 	 (2-32a) 

v = 0 	 (2 -32b) 

The number of equations describing the norator is smaller than the 

number of ports: the norator is a 1-port and the number of equations 

is zero, since nothing is known about the values of the current and 

voltage and these are unrelated. These 1-ports are 'pathological' in 

the sense that they differ from any 'normal' multiport, for which the 

number of independent equations equals the number of ports. The nullator 

and the norator cannot be obtained by a limiting process from any 

1-port characterized by one equation on v and i [8]. Although the 

nullator and the norator can be represented by circuits containing 

normal circuit components (e.g. gyrators and positive and negative 

resistors), it has been shown [7, 8] that these circuits possess 

"infinite sensitivity" in the sense that a change, however small, of 

an element in the circuit prevents this from representing a nullator 
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Fig. 2 - 5 : Nullator , norator and nullor 
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or norator, even as an approximation. The nullator and norator can 

therefore be regarded as mathematical concepts without physical mean-

ing [7]. They are however very useful concepts as will be shown later. 

The number of equations describing the nullor is equal to the 

number of ports: the nullor is a 2-port described by two independent 

equations 

ii  =0 	 (2-33a) 

v =0 
	

(2 -33b) 

Thus the nullor is not 'pathological' and has physical meaning. It 

can be represented by equivalent circuits with finite sensitivity 

[7, 8]. 

The nullor provides an example of a 2-port which is not well-defined 

since it does not possess any hybrid description, as shown immediately 

by (2-33). It must be connected to a network that provides some 

transmission between the two ports [7] (otherwise the nullator and the 

norator would be isolated which cannot be accepted in view of the 

foregoing discussion). This requirement does not apply to well-defined 

multiports. 

Networks containing nullors have physical meaning. Since a nullor 

is equivalent to a nullator-norator pair, networks with nullators and 

norators are acceptable provided that they contain an equal number of 

nullators and norators. Since nullors can be approximated by physical 

components and nullators and norators cannot, it might seem reasonable 

to disregard the concepts of nullator and norator and consider only 

nullors. However it is useful to consider the nullators and norators 

explicitly for several reasons which will now be discussed. 

In a network containing n nullators and n norators, these can be 
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paired to form nullors in n! different ways. When the nullors are 

replaced by physical components, 	 the net- 

works corresponding to these different pairings have different non-

ideal behaviour, including different stability properties. The differ-

ent possibilities can be explored and the one that provides the best 

performance for a given application can be selected. This procedure 

has been applied to the realization of various types of inverters and 

converters [10, 11, 12, 13]. 

Another important justification to represent a network in terms of 

nullators and norators is the possibility of making use of various 

equivalences shown in Figs. 2 - 6, 7 and 8. 	By applying these equiva- 

lences to a given network, other networks with the same ideal 

performance are obtained which have different structure and different 

non-idealperformance. This method has also been proved very useful 

in connection with the realization of inverters and converters [13, 14]. 

In addition to these two objective reasons in favour of the use of 

nullators and norators there is another reason based on human factors: 

a network represented in terms of dissociated nullators and norators 

(1-ports) has a less cumbersome circuit diagram and is more readily 

interpreted than a network represented in terms of nullors (2-ports). 

With reference to the equivalences in Fig. 2-6  e,f,g,h and Fig. 2_7 

it should be noted that these cannot be used to increase either the 

number of nullators or the number of norators in a given network in 

order to achieve equal number of nullators and norators. The resulting 

network would remain equivalent to the original one and would be equally 

devoid of physical meaning. 
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Note: The symbol --4 	represents any 1-port excluding 

the nullator,the norator,the short and the open circuit. 

Fig. 2-6 : Equivalences of 2-terminal networks containing 

nullators and norators. 
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(a) 

(b) 

Fig. 2-7 : Equivalences of 3-terminal networks containing 

nullators and norators. 

a 

 

c 	a 
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Fig. 2-8 : A nullor equivalence. 



-45- 

Ideal transistors and ideal operational amplifiers 

= 0, 

Controlled sources are 2-ports described by: 

CCCS - current controlled current source: v
1  

VCVS - voltage controlled voltage source: it  = 0, v2  =liv 
/- 	1  

VCCS - voltage controlled current source: it  = 0, i2  = gvi  

CCVS - current controlled voltage source: v 
1 
= 0, v2  = ri 1 

These four types of controlled sources can be represented by equivalent 

networks containing resistors and nullors (resistor-nullor networks) 

[15, 13]. It can be shown that all four types of controlled sources 

become equivalent to a single nullor when the forward transfer para-

meter (NA., g, r) becomes infinite [11, 13]. 

The basic active components with reference to present technology 

are the transistor and the integrated circuit operational amplifier. 

These active components can be modelled by equivalent circuits contain-

ing passive components and controlled sources. Since the controlled 

sources can be replaced by their resistor-nullor equivalent networks, 

both the transistor and the operational amplifier can be modelled by 

networks containing nullors and passive components. 

The simplest models of the transistor and the operational amplifier 

are controlled sources with infinite forward transfer parameters, 

which are equivalent to nullors. These simplified models are called 

ideal transistor and ideal operational amplifier. 

In the nullor model of the transistor the nullator and the norator 

share a common terminal, as shown in Fig. 2-9,  

In the case of an operational amplifier with grounded input and 

grounded output the nullator and norator must share a common ground 



-46- 

B 

C 

E 

 

  

Fig. 2-9 Nullor model of the ideal transistor. 

Fig. 2-10 : Nullor model of the ideal operational amplifier. 
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terminal. However the operational amplifiers commonly available have 

differential input and grounded output. In their nullor model the 

nullator and norator do not share a common terminal but one of the 

terminals of the norator must be grounded, as shown in Fig. 2-10. It 

will be assumed from now on that, unless otherwise stated, the 

operational amplifiers have differential input and grounded output. 

Thus a network containing nullators and norators will only be 

realizable using transistors if it is possible to form nullator-

norator pairs all having a common terminal, and it will be realizable 

with operational amplifiers if all the norators have a terminal in 

common which will be used as the ground terminal of the network. 

In a network containing n nullators and n grounded norators which 

are to be paired and replaced by operational amplifiers there is no 

restriction on the formation of nullator-norator pairs. As mentioned 

above there are n! different ways of pairing the nullators and norators. 

The input of the operational amplifiers has polarity and therefore 

there are two possible ways of replacing a nullator by the input of an 

operational amplifier; there are 2n  different possibilities in the 

case of n operational amplifiers. Thus a network with n nullors can 

be realized by 2n. ni 	different operational amplifier circuits [12]. 

It is necessary to investigate the non-ideal performance of these 

different realizations in order to decide which are to be preferred 

[12, 13] (in particular some realizations can be unstable). 

Node Analysis of networks containing nullors 

It will now be shown how the nodal admittance matrix of a network 

containing nullors can be related in a very simple way to the nodal 

admittance matrix of the same network with the nullors removed [16]. 



Consider an (n 1)-node network which does not contain independent 

sources and assume that each node is accessible from the outside via 

a terminal as shown in Fig. 2-11a. This network can be connected to 

some external network containing independent sources. The definite 

admittance matrix Y [2] of the (n 	1)-node network relates the 

currents entering n terminals to the voltages between these n terminals 

and the remaining one (called reference terminal) 

(2-34) 

= 	v1 

0 	 0 

0 	 0 

0 	 0 

in 
	vn 

If the network contains only 2-terminal components (excluding 

nullators and norators) the definite admittance matrix can be obtained 

very easily by inspection [2]: the main diagonal elements yii  are the 

sum of all the admittances incident at node i, and each off-diagonal 

element yij  is the negative of the admittance connected directly between 

nodes i and j. 

It is now assumed that a nullator is connected between nodes i and 

j and that a norator is connected between nodes p and q, as shown in 

Fig. 2-11b. 

Since the current through the nullator is zero, the equations 

expressing the currents i. and i. entering terminals i and j remain 

the same after the connection of the nullator. There is zero voltage 

acrossthehullatorgandthereforev.= v . This means that v. can be 
1 	

j 

dropped from the voltage vector and column j deleted and added to column 

i of Y in (2-34). 

Since the current it through the norator is arbitrary the new 

values of the currents entering terminals p and q, denoted by it and 

itq  are not defined, but their sum is, 



v1 

(a) 

vo=  0 

vo= 0 
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Fig. 2-11 : An (n+1)-node network with one nullor . 
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it = i + it 
P 	P 

it = i - it 
q 	q 

and 

it + it = i + i 
q 	P 	q 

The nodal description taking into account the presence of the norator 

can be obtained from (2-34) by replacing i by it + it q, adding row q 

to row P in Y, and deleting i and row q of Y. 

The nodal admittance description of the network in Fig. 2-11b is 

obtained from the nodal admittance description of the network in 

Fig. 2-11a by performing both the operations that account for the 

presence of the nullator and those that account for the presence of 

the norator. 

2.3 - RESISTIVE MULTIPORTS 

A network containing resistors and active components (active R net-

work) can be considered as a multiport containing only resistors 

(resistive multiport) with the active components connected to some of 

the ports. Thus the realization of a given type of active R network 

with a specified number of active components can be reduced to the 

synthesis of a suitable resistive multiport. This situation arises in 

the present thesis in connection with the investigation of positive 

inverters with a minimum number of active components. It is therefore 

appropriate to review here some results concerning the synthesis of 

resistive multiports. 

The question which is of interest here can be formulated as follows: 

what are the necessary and sufficient conditions for an n-square matrix 

to be realizable as the admittance matrix of a resistive n-port with 

(n + p) terminals and a specified port structure. By port structure is 
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meant the particular selection of terminal pairs to form ports. 

As far as the author knows the problem of the synthesis of 

resistive networks has been completely solved only for the 'case of 

n-ports with (n + 1)-terminals [17]. For the case of (n + p)-terminals 

with p >1, although there are methods that can be applied to try to 

find an n-port with a given admittance matrix, there is no assurance 

that a definite conclusion will be reached (inability to obtain a 

solution does not guarantee that a solution does not exist) [18]. 

In order to present some of the partial answers which have been 

found for the question formulated above it is convenient to introduce 

the definitions of paramount matrix and dominant matrix. 

An n-square symmetric matrix with real elements is a paramount 

matrix if each principal minor is not less than the absolute value of 

any minor of the same order, built from the same rows (or columns) 

[19, p.273]. 

An n-square symmetric matrix is a dominant matrix if each main 

diagonal element is not less than the sum of the absolute values of 

all the other elements in the same row [19, p.279]. 

Every dominant matrix is also paramount; a paramount matrix is not 

necessarily dominant [19, p. 372]. 

It is known that it is necessary but not sufficient for a matrix to 

be realizable as the admittance matrix of a resistive multiport that it 

be a paramount matrix [19, p.372]. It is also known that it is 

sufficient but not necessary for a matrix to be realizable as the 

admittance matrix of a resistive multiport that it be dominant [19, p.367]. 

It should be noted that in the statement of these conditions neither 

the number of terminals, nor the port structure is specified. 
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An n-square dominant matrix can be realized as the admittance matrix 

of an n-port with 2n terminals. The procedure consists in connecting 

resistors between each pair of ports according to the scheme shown in 

Fig. 2-12 [19, p.367]. 

The case of n-ports with n 1 terminals and specified port structure 

has been completely solved [17]. The port structure in which all ports 

share.a common terminal leads to particularly simple results: the 

necessary and sufficient conditions to be satisfied by the matrix are 

that it be dominant with non positive off-diagonal elements and the 

synthesis procedure is obvious in view of the well-known properties of 

the admittance matrix for this case (the off-diagonal elements g.. are 

the negative of the conductances connected directly between terminals 

i and j; the main diagonal elements gii  are the sum of all the conduct-

ances connected to terminal i), 

2.4 - ACTIVITY 

The instantaneous power flowing into an n-port is 

n 
p(t) = :El 	ii(t)vi(t) 

i=f 

or 

p(t) = It(t) V(t) 	(2-35) 

A multiport is passive if the energy L(to) initially stored in the 

multiport plus the energy delivered to the multiport between to and t is 

non-negative for any to and t and for any admissible voltages and 

currents [20]: 

(to) +St It (n 	0 	(2-36) 
to 

A multiport is active if it is not passive.. 
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Fig. 2-12 : Realization of a dominant matrix as the 

admittance matrix of an n - port with 

2n terminals. 
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In the case of the sinusoidal steady state, at a single frequency, 

the definition of passivity can be expressed by the requirement that 

the average power (average over a period) be non-negative [2]. It is 

necessary and sufficient that any hybrid matrix (including the admittance 

and impedance matrices) have an hermitian part positive semi-definite. 

A multiport described by a matrix in which all the elements are 

real constants will be called non-reactive. The passivity condition 

in this case is that any hybrid matrix be positive semi-definite. 

If the instantaneous power into a multiport is zero for any admissible 

voltages and currents, the multiport will be called non-energic. 

It is important to note that the word active is often used to 

designate networks containing active components, even when these 

networks are used as multiports which are passive in the sense of the 

definition given above (for example an actively realized gyrator is 

passive as far as the ideal port behaviour is concerned). In order not 

to depart from well established terminology, in this thesis the desig-

nations active network and active filter will be used to refer to 

networks and filters containing active components. The designations 

'externally active' and 'externally passive' will be used to refer to 

multiports which are active or passive according to the definition given 

above in terms of the port behaviour, 

2,5 - INTERRECIPROCITY 

Interreciprocal multiports  

The concept of interreciprocity [21,5] involves two linear, time-

invariant multiports N and N with the same number of ports (Fig. 2-13). 

The vector of the currents at the ports of N is denoted by I and the 
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Fig. 2-13 : The two n-ports in the definition of 

interreciprocity. 
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A 
voltage vector is denoted by V. Similarly I and V are the current and 

A 
voltage vectors of N. 

A 
The two multiports N and N are interreciprocal if, for'all voltages 

and currents satisfying the equations of the multiports, the following 

relationship is satisfied: 

	

It 	t 
(s) V(s) - V (s) I(s) = 0 	(2-37) 

where the superscript t denotes transposition. I(s), V(s), I(s) and 

V(s) are the Laplace transforms of the voltages and currents when all 

initial conditions are zero (as in the definition of network functions). 

Equation (2-37) can be written equivalently as 

	

(s) 	(s ) - k 	k. 	
v
k 
 (s) 

k
(s) = 0 

It should be noted that the designations adjoint and transpose are often 

used with the same meaning as interreciprocal. 

  

The definition of interreciprocity can also be given in terms of 

the instantaneous values of the voltages and currents [22] 

It  (t? 	AV(t) - Nit  (t) * 1(t) = 0 	(2-38) 

where the symbol * means convolution. Equation (2-38) can be written 

in a more explicit way, as 

i (t 	- k 
all ports ° 

Sot 
vk( t "6' )1-k  (5)(0. 7- 0 

all ports 

This time-domain definition using the convolution of the time functions 

is equivalent to the frequency-domain definition using the product of 

the Laplace transforms, in view of a well-known property of the Laplace 

transformation. In this thesis only the expression in terms of the 

Laplace transforms will be used. 	In accordance with the notation used 

in this thesis the dependence on s will not be explicitly indicated. 

all ports 	all ports 
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Interreciprocity of well-defined multiports 
f 

The interreciprocity conditions in terms of the hybrid matrix (all 

well-defined multiports possess a hybrid description) will now be 

derived. A similar derivation can be found in reference [5,p.72]. 
• 

A 
It is assumed that the two multiports N and N (Fig. 2-15) have hybrid 

descriptions of the form 

r1I 	[71 Hil  1-112  vi  [i-111 '1'12] [ .1"1.1 (2-39) and A 	A 	A 	A. 
V
2 	

H
21 

H
22 	22 	V2 	H21 1122 	12 

where 

= i1 I2 = q+1  
0 

0 

q 

0 

n 

and V
1,  V2' 

1 	i 2' V V2 are similarly defined. 

With the current and voltage vectors partitioned, equation 

can be written as 

(2-37) 

[Ilt 	I2t] 	V1  [ - 	[lilt  V2t] 11  = 0 

V2 12 

Or 

t 	t A 	t A 	t A 
Il 	V1 + 12 	V2 - V1 	- V2 	12 = 0 (2-40) 

Making use of (2-39) in (2-40) leads to 

A 	A A  ^ 

(H V + H12 
	
V +I 	(H V + H 

11 1 	12 2 	1 2
t 
 21 1 H22 

-v1t (H11 'N)112 i2) - (H21 V1 + H22 I2)t 2 = 0 

or 

t t A A ttA 

V1 
 (H11 - H11) V1  + I2 (H12 + H21) V1 + 

4:2) 22  - Vlt  12t  622 - 	(H12  H21) 	= 	(2-41) 

This equation must be satisfied for all possible values of the voltages 

and currents. Since the voltages and currents in (2-41) are the inde- 

I 
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pendent variables in (2-39), they can be freely chosen. If 12  = 0 and 

12 = 0, equation (2-41) is reduced to 

ttAA V1 (H11 - H11) V1 = 0 
(2-42 ) 

which means that it is necessary that 

t 
H11 - H11 = 0 

A 
otherwise it would be possible to choose V

1 
and V

1 
such that (2-42) 

would not be satisfied. Similar arguments lead to the conclusion 

that all the factors enclosed by brackets in (2-41) must be zero. 

Therefore the multiports N and N are interreciprocal LET 

H11 1111 	11 

1112 = -H21  

H21 	t 21 = -H 12 

= H 
1122 	22 

This result can be expressed in the more compact form 

(2-43a) 

(2-43b) 

(2-43c) 

(2-43d) 

= E) Ht  0 	(2-44) 

where 8 is an auxiliary matrix defined as 

8  = lq  co 
—1 O n-q 

Since the admittance and impedance descriptions can be regarded as 

special types of hybrid descriptions, it follows from (2-43a) and 

(2-43d) that for interreciprocal multiports 

yt 
(2-45) 

and 

Z = Z
t 

(2-46) 



-59- 

The interreciprocity theorem 

Before introducing the interreciprocity theorem some brief remarks 

will be made. 

A k-terminal element can be regarded as a (k - 1)-port with a 

terminal common to all ports; two k-terminal elements will be considered 

as interreciprocal if they can be regarded as interreciprocal (k - 1)- 

ports, 	In the graph of a network, k-terminal elements can be represented 

by k - 1 branches having a common terminal (these branches correspond 

to the k - 1 ports); it should be noted that these k - 1 branches are 

coupled branches. 

The interreciprocity theorem [21] can be stated as follows: 

—Two multiports are interreciprocal if they are realized 

by networks with the same topology and if the elements 

placed in corresponding locations in the two networks are 

interreciprocal. 

The interreciprocity theorem can be proved very easily using 

Tellegen's theorem [21]. Tellegen's theorem states that 

	

It V=0 	 (2-47) 

where 

(a) I is the vector of the branch currents associated with a 

given graph and these currents obey Kirchhoff's current law. 

(b) V is the vector of the branch voltages associated with the 

same graph and these voltages satisfy Kirchhoff's voltage law. 

If the port variables, I and V , are separated from the currents and 

voltages in the internal branches which are denoted by Ib  and Vb, then 

equation (2-47) can be written as 

	

I
p
i  V

p 
= I

b
t 

Vb 
	(2-48) 
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(note that the port currents have a reference direction opposite to 

that which is used when the ports are regarded as branches). 

A 
Consider two networks N and N with the same topology. If the 

currents in N and the voltages in N are used in (2-48), then 

t 	t 
1
p 

Vp = Ib Vb (2-49) 

A 

If the currents in N and voltages in N are chosen, then (2-48) yields 

(after transposition): 

t A 	t A 
Vp Ip = Vb Ib 

Subtraction of (2-50) from (2-49) leads to 

t ^ 	t ^ 	t ^ 	t Ip Vp - Vp Ip = Ib Vb - Vb Ib 

(2-50) 

(2-51) 

This equation shows that if the components in N are interreciprocal with 

the components in N, i.e., 

t 
Ib Vb - Vb Ib = 0 

then the port variables of N and N satisfy the definition of inter-

reciprocity. This proves the interreciprocity theorem. 

One consequence of the interreciprocity theorem is that the multi-

port which is interreciprocal with a given multiport containing 

2-terminal components and nullors is obtained by interchanging the 

nullators and norators in the given multiport. This follows from the 

fact that any non-pathological 2-terminal component is interreciprocal 

with itself and a nullor is interreciprocal with another nullor with 

the nullator and norator interchanged (it can easily be seen that the 

nullator and norator satisfy the definition of interreciprocity). 

Reciprocal multiports  

A reciprocal multiport is defined as a multiport which is inter- 

reciprocal with itself [21,5]. 	This means that all the equations 
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used in connection with interreciprocity are satisfied by/reciprocal 

multiports if the symbol i% instead of denoting the variables of a 

different multiport, denotes different values of the variables of the 

same multiport compatible with the equations describing the multiport. 

Thus a reciprocal multiport must satisfy (2-37), i.e., 

I
t 

V - 1ft  I= 0 
	

(2-52) . 

The definition of reciprocity by equation (2-52) has been used by 

several authors (see, for instance [2,21]); it has the advantage of 

not being tied'to a specific type of network description. 

The reciprocity conditions in terms of the hybrid matrix follow 

directly from (2-43): 

„i22 
t 

H
11 

= 	H22  = . H
11 	 H12 = -H21 

or, from (2-44), 

H =9 Ht  

In particular, for the admittance and impedance matrices 

(2-53) 

(2-54) 

Y = Y 
	

(2-55) 

Z = Z 
	

(2=56) 

For 2-ports, these conditions become 

Y12 = 21 
	

z12 	z21 
	

h12 = -h21 
	(2-57) 

or, equivalently, in terms of the transmission matrix 

det T = ad - be = 1 	(2-58) 

The Interreciprocity Theorem leads, immediately to the Reciprocity 

Theorem [21,2]: a multiport made of reciprocal elements is itself 

reciprocal. 
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A multiport that does not satisfy (2-52) is said to b9 non-reciprocal. 

Several authors have considered the concept of anti-reciprocity as a 

kind of extreme non-reciprocity. Since an investigation of anti-

reciprocity is one of the questions investigated in the present thesis, 

this subject will not be pursued here; a detailed discussion will be 

given in chapter 80 
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CHAPTER 3 

REVIEW OF 2-FORT IMMITTANCE CONVERTERS AND  

INVERTERS IN THE CONTEXT OF ACTIVE RC NETWORKS  

3.1 - ACTIVE RC NETWORKS 

The classical approach to the realization of frequency-selective 

networks (electrical filters) is based on the use of networks 

containing resistors, inductors and capacitors (RLC networks). 

Transformers are also used in some cases, and, in some particularly 

demanding applications, electromechanical resonators, such as crystals, 

have to be included. However, RLC filters are suitable for most 

applications. These filters are usually doubly terminated LC 2-ports 

(i.e., LC 2-ports with a resistor in series with the input - assuming 

that it is driven by a voltage source - and a resistor across the 

output). RLC filters have been used for many years and their theory 

and design techniques have been developed to a high degree of perfection. 

However, RLC filters, which are easily implemented using classical 

discrete-component technology, cannot be realized using modern micro-

electronic technology. Although resistors and capacitors can easily 

be realized in microelectronic form, inductors cannot. Microelectronic 

components are realized either in thin layers or as small discrete 

components; inductors realized in this way have very small inductances 

and therefore are only useful at very high frequencies (in addition, 

such inductors have fairly low Q-factors). Since microelectronic 

circuits have very desirable properties (e.g. small volume and weight 
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potential low cost, increased reliability) it is justified to look for 

new types of frequency-selective networks, suitable for microelectronic 

realization. 

The simplest inductorless frequency-selective networks are obviously 

networks containing only resistors and capacitors. However, the poles 

of the transfer function of an RC network are restricted to the negative 

real axis of the complex frequency s-plane and as a consequence an RC • 

network can provide considerably less selectivity than an RLC network 

of a comparable degree of complexity [23]. Guillemin [24] and others 

[25, 26] have shown that the transfer function of an RC network can 

approximate any required filter characteristic, but, for high selectivity, 

the attenuation in the pass-band is very high and the network contains 

a large number of components arranged in a complicated structure. 

Apparently, the possibilities of this approach have never been fully 

evaluated and RC networks on their own have not been used in practice 

to obtain high selectivity. 

The restriction of the poles of the transfer function of RC networks 

to the negative real axis can be removed by the inclusion of suitable 

active components. Since active components are easily realized in 

microelectronic form, a natural solution to the problem of realizing 

highly frequency-selective networks compatible with microelectronic 

technology consists in the use of active RC networks. 

Before reviewing some of the approaches to the realization of 

active RC networks that have been proposed, it is useful to remember 

that high frequency-selectivity is obtained by high order filters. By 

high order it is meant that the degree of the denominator poynomial of 

the transfer function is greater than 2 or 3 (in the case of some of 

the filters used in frequency division multiplex (FDM) systems [27] 

the order is typically 10 or 12). 
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Historically, the first general methods proposed for the realization 

of active RC networks are based on the use of only one active unit. The 

method proposed by Linvill in 1954 [28] permits the realization of any 

transfer impedance using resistors, capacitors and only one active 

unit, namely one negative impedance converter (NIC) connected as shown 

in Fig 3-1. There are other synthesis methods also using only one 

active unit, for instance the methods proposed by Sandberg [29] and 

Saraga [30]. However, it was soon found that active RC networks with 

only one active unit are unsuitable for the realization of high order 

filters since the sensitivity of the transfer function to changes of 

the component parameters is intolerably high. This approach was 

abandoned and the search continued for other methods able to produce 

high order filters with acceptable sensitivity. 

Another approach to the realizations of active RC filters consists 

in the factorization of the required transfer function into 2nd order 

transfer functions (and a 1st order factor if the order of the overall 

transfer function is odd). The filter is then realized as a cascade of  

2nd order sections (Fig. 3-2 ). Following an early publication on this 

method by Sallen and Key [3i] many circuits that realize 2nd order 

sections have been proposed and extensively studied (see, for instance, 

[22, 32]). Filters realized in accordance with this method have a 

sensitivity performance acceptable for many applications and are widely 

used at present. This method, however, is unable to produce high-

performance filters, such as some of those required by FDM systems. 

In 1966 Orchard [33] suggested that active filters with low 

sensitivity might be obtained by simulation of doubly-terminated LC  

ladder filters (Fig. 3-3), since these exhibit low sensitivity 

properties (it is pointed out in [33] that in a doubly-terminated LC 

filter the first order sensitivity of the amplitude characteristic to 
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Fig. 3-1 : Linvill's method. 
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Fig. 3-2 : Cascaded second order sections. 

Note : 	represents an LC 1-port. 

Fig. 3-3 : Doubly terminated LC ladder network. 
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variations of any component is zero at those points in the pass-band 

for which the source delivers its maximum available power into the 

load). Various methods based on this approach have been proposed and 

intensively investigated in recent years. The results obtained have 

clearly confirmed Orchard's conjecture. 

Since converters and inverters play a central part in some of the 

methods based on the simulation of doubly terminated LC filters, 

these methods will be discussed in some detail in the next section, 

3,2 - SIMULATION OF DOUBLY-TERMINATED LC LADDER FILTERS 

The first method proposed for the realization of inductorless 

filters based on the simulation of doubly-terminated LC ladder filters 

will be referred to as the inductor simulation method. It consists 

simply in retaining the resistors and capacitors in the ladder and 

using active RC circuits to simulate the inductors. The simulation of 

the inductors can be done either by replacing each inductor individually 

by an active RC circuit [33, 34, 35, 36] or by replacing the whole 

inductor sub-network by an appropriate multiterminal active RC network 

[37, 38, 39]. 

When the inductors are simulated one by one, it is important to 

distinguish between grounded inductors and floating inductors, as will 

now be explained. 

It is desirable to use the same power supply for all the active 

components in a system. In this case all the active sub-networks 

will have one terminal in common which is called the ground terminal. 

A grounded port has one of its two terminals connected to the ground 

terminal of the system. The designation 'grounded 2-port' will be used 

in this thesis to refer to 2-ports in which both ports have a common 
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terminal connected to the ground. 

If a ladder network (Fig. 3-3) is used as part of a system contain-

ing active components, the ground is normally the terminal which is 

common to input and output. When the inductors in the ladder are 

simulated by active RC networks, there is a distinction between 

simulated grounded inductors, which have 2 terminals and can thus be 

described as 1-ports (Fig. 3-4a), and simulated floating inductors, 

which are associated with 3 terminals (when the ground terminal is 

included) and are conveniently described as 2-ports (Fig. 3-4b). The 

circuits that simulate floating inductors are more complicated than 

those that simulate grounded inductors. Therefore the presence of 

floating inductors in the ladder filter to be simulated may influence 

the choice between the inductor simulation method and the other 

methods which will be mentioned next. A review of various active 

RC networks that can be used to simulate inductors, both grounded 

and floating, will be given later in this chapter, after the 

discussion of converters and inverters. 

Another method of simulation of doubly-terminated LC ladder filters 

was originally introduced by Bruton [40] and will be referred to as 

the impedance scaling method. It is based on the fact that the voltage 

(or current) ratio of a filter, being a nondimensional quantity, is 

not affected if the impedances of all the components are multiplied 

by the same factor. Consider, as an example, the low-pass filter 

- 1 
in Fig. 3-5a. If all the impedances are multiplied by s 	(s is the 

complex frequency variable) the inductors become resistors, the resistors 

become capacitors and the capacitors become new components with an 

impedance proportional to s
2
. These new components are usually called 

frequency dependent negative resistors (FDNR's), since if s = jw then 

s
-2 

= -w
2. The more specific designation super-capacitor is perhaps 

to be preferred in order to distinguish these components from those 
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(a) GROUNDED INDUCTOR  

1 
Y 

sL 
L 

(b) FLOATING INDUCTOR  

1 1 -1 UVV 
Y = 

aL -1 1 

o 	• 

Fig. 3-4 : Active RC simulation of grounded and 

floating inductors. 
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(a) 

0 	T T T 0 

	0 

    

    

(b) 

   

0 	T T T 0 

(c) v = k s -2 i 

Fig. 3-5 : Application of the impedance scaling method 

to a low - pass filter. 
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with impedances proportional to s
2 

which will be called super-inductors; 

both the super-capacitor and the super-inductor are FDNR's. 

As a result of the impedance scaling, the network in Fig. 3-5a 

becomes the network in Fig. 3-5b, containing resistors capacitors and 

super-capacitors. The super-capacitors are then realized by active 

RC networks, usually immittance converters, as will be seen later. 

In the impedance-scaled network (Fig. 3-5b) all the super-capacitors 

are grounded, whereas the original network (Fig. 3-5a) has several 

floating inductors; the number of inductors is larger than the number 

of super-capacitors and, because the inductors are floating, they are 

also more difficult to simulate. 

Impedance scaling consisting of multiplication by s (instead of s
-1) 

has also been found useful in connection with high-pass filters when 

the inductors in the ladder are grounded (the advantage of this procedure 

with respect to the simulation of the inductors is that capacitors 

become resistors, which are easier to adjust). In this case grounded 

super-inductors are obtained, which can be simulated using appropriate 

impedance converters. 

The realization of band-pass filters using impedance scaling can 

be based on a ladder network consisting of a low-pass section followed 

by a high pass section, each section being subject to the appropriate 

type of scaling (a suitable converter is used to impedance-match the 

two sections). 

The impedance scaling method has recently been used to produce 

high-performance filters [41, 42, 43]. 

In the two methods discussed so far, inductor simulation and 

impedance scaling, the ladder structure of the passive network is 

maintained in the active network that simulates it; to any current in 
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the first corresponds a current in the second network and the same is 

true for the voltages. There are however other methods of simulating 

doubly-terminated LC ladder filters that reproduce the equations 

describing the original ladder but do not lead to active networks having 

a ladder structure. One of these methods leads to active filters 

which arc usually called leapfrog feedback filters; another method leads 

to a class of filters which have been called wave active filters. 

Only a very brief reference to these methods will be made here, since 

they are not directly associated with the use of converters and inverters. 

Leapfrogfeedbackfilters and LC ladder filters can be represented 

by the same signal-flow graph, i.e, both filters are described by 

equations of the same form. However, the network topology is 

different and both voltages and currents in the ladder are represented 

by voltages in the leapfrog feeback realization. This method was 

originally proposed by Girling and Good [44]. Leapfrog feedback filters 

are usually included in a class designated as multifeedback filters 

(see, for instance [45-48]). Of the various multifeedback structures 

only the leapfrog has been derived from LC ladder filters; it appears 

that so far no relationship %as been established between other multi-

feedback structures and passive ladder filters. 

Wave active filters is a designation that has been suggested for 

active filters which realize the equations, expressed in terms of 

scattering variables, of doubly-terminated LC ladder filters [49, 50]. 

This method is based on the same principles that have been previously 

used to realize wave digital filters (which are digital filters 

derived from LC ladder filters). A more general method, which includes 

wave active filters as a special case, has recently been proposed [51]. 



-73- 

3,3 - TWO-PORT CONVERTERS AND INVERTERS 

A 2-port admittance converter is defined as a 2-port which, when 

terminated at port 2 by any admittance y2  (Fig. 3-6), presents at 

port 1 an admittance yl  related to y2  by 

y = kY  y 
1 c 2 

(3-1) 

where kY  depends only on the 2-port (i.e, is independent of y2
) [52]. 

The factor Or  will be referred to as the admittance conversion factor 

(in k
c 

the superscript denotes admittance and the subscript denotes 

conversion). The factor Or  is not necessarily a real constant: it 

is in general a rational function of the complex frequency variable s. 

A 2-port admittance inverter is a 2-port which, when terminated at 

port 2 by any admittance y2  presents at port 1 an admittance yl  related 

to y2  by 

- y = k.Y  y21 21  
(3-2) 

where ki depends only on the 2-port [52]. The designation admittance 

inversionfactor / willbeusedtorefertok.which, in general, is a 

rational function of s, 
43 

The definition of impedance converter and impedance inverter is 

obtained by replacing the word admittance by impedance in the above 

definitions. For the impedance converter 

z 
z = k z c 2 

(3-3) 

and k
c 

is designated as the impedance conversion factor. In the case 

of the impedance inverter 

-1 z
1 
= k. z2  

and k. is the impedance inversion factor. 

(3-4) 
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it 	 i2 

±1(s) 
	 i2(s) 

yl 

 

Y2— 

 

  

v1(s) v2(s) 

CONVERTER  

y
i 

= k
c 
y
2 

INVERTER  

y -1 
yi = kc  y2  

Fig. 3-6 : Definition of 2-port converters and inverters. 
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By taking the inverse of both sides of (3-1) of (3-2) it is seen 

that if a 2-port is an admittance converter (or inverter) it is also 

an impedance converter (or inverter), Therefore the designations 

admittance, impedance, and immittance converter (or inverter) are 

entirely equivalent. The impedance conversion and inversion factors 

are the inverse of the admittance conversion and inversion factors, 

respectively. 

Equation (3-1) can be written (see Fig. 3-1) as 

	

i
1 
	 i2 = k 

	

-vi 	v2  

or 

i2 	= (kY )1 ( 	i1 ) 

v2 	v1 

which means that if port 1 is terminated by an admittance yl  the 

admittance y2  presented at port 2 is 

y2 = 	
)_1 y

1 

Thus, if in a 2-port converter the ports are interchanged the resulting 

2-port is also a converter; the value of the admittance or impedance 

conversion factor when the converter is used in one direction is the 

inverse of the value when it is used in the other direction. Thus 

when specifying a conversion factor it is necessary to indicate with 

which direction it is associated. This can be done, in a diagram, 

z.
Z by using the labels k

c 
or kT (similarly k

c 
or k

c 
) where the arrow 

points towards the port to which the load immittance is to be connected 

(with reference to equations (3-1) or (3-3)). 

In a similar way it follows from (3-2) that if a 2-port is an 

inverter in one direction it is also an inverter in the other 

direction. However, the admittance or impedance inversion factors haNe 

the same value in both directions, 
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A necessary and sufficient condition for a 2-port to be a converter 

is that it possesses a hybrid description of the form: 

it 	[0 	h12] [vil 
(3-5a) 

[v2.1 	h21 
0 	i2 	• 

where h12 
and h21 

are related to the admittance conversion factor kc 

by 

kc
= -h

12 
h
21 
	(3 -5b) 

(a proof of this condition is not given here since it follows immediately 

from a more general result in terms of multiport converters, which 

will be presented in chapter 4). 

Converters do not have an admittance or impedance description; they 

have a transmission description 

where 

	

[

v1 	a 0 v2I 

	

i1 	[0 d {-i2 

(3-6a) 

a = 1/h
21 

and d = -h12 

and hence 

ky = 
c 	a 

(3 -6b) 

When the admittance conversion factor is a real constant the 

converter is called Positive Immittance Converter (PIC) if kc 
is 

positive, and Negative Immitance Converter (NIC) if kc 
is negative 

(some authors have used a different definition of PIC that includes, 

r 	1 
for instance, converters with k

c 
proportional to s or s

2 
 1.37j). The 

simplified designations positive converter and negative converter will 

often be used in this thesis. 

The ideal transformer is a non-reactive converter (i.e.,a converter 
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for which h12  and h21  in (3-5) are real constants) 
12 	21 	

with 

h12 = h21  
- 	(or ad = 1). It will sometimes be found convenient in this - 

thesis to use the designation Positive Transformer my instead of 

ideal transformer and introduce the name Negative Transformer (NT) to 

designate a non-reactive converter for which h12  = h21  (ad = -1). 

The power flowing into a non-reactive converter is 

P = ipvi0+ i2(t)v2(t) 

or, making use of (3-5a) 

p = (h
12 + h21) vlltli  2(t) 
	

(3-7) 

This shows that the ideal transformer, for which h
12 + h21 

= 0, is 

non-energic, i.e., the instantaneous power flowing into it is always 

zero. In all other cases (h12 + h21 V 0) the converter is active 

since v
1 

and i
2 can be chosen to make p <0 (note that v1 

and i2 in 

(3-7) can be freely chosen since they are the independent variables 

in (3-5a)). 

A necessary and sufficient condition for a 2-port to be an inverter  

is that it possesses an admittance description of the form 

1 ii  .... 0 y12  vi  

[12  - [y21  0 ] [v2] 

The admittance conversion factor is given by 

Y' k. = -y12 y21 

(3-8a) 

(3 -8b) 

(this follows from a more general result to be proved in chapter 4). 

Inverters have both an admittance and an impedance description and do 

not have a hybrid matrix (excluding the interpretation of the 

admittance and impedance matrix as special hybrid matrices). It is 

possible to describe inverters by a transmission matrix: 
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where b = -1/y21  and c = 

il1  

y12  

	

0 	b 

= 	[ c 	0 

and therefore 

k'1 = 

v2  

2 

(3-9a) 

(3 -9b) 

When the admittance inversion factor is a real constant the 

inverter is called  Positive  Immittance   11Nr 	(P II)  if ky is 
1 

positive, and Negative Immittance Inverter (NII) ifkYi  is negative. The 

simplified designations positive inverter and negative inverter will 

often be used in this thesis. 

The gyrator is a non-reactive inverter with v = 
'12 	-y21 ,21  (bc = 1). 

In a similar way as in the case of the transformer, the gyrator will 

be sometimes referred to as Positive Gyrator (PG), and the designation 

Negative Gyrator (NG) will be used for a non-reactive inverter with 

y
12 

= y
21 (bc = -1). 

The power flowing into a non-reactive inverter is given by 

P = (Y12 + Y21)  vitIvit) 
	

(3-10) 

which shows that the positive gyrator for which y12 
y21 = 0, is  

non-energic. It is therefore externally passive, even when realized 

using active components. All other non-reactive inverters are active 

since v
1 

and v
2 can be chosen in such a way that p becomes negative 

(note that v
1 
and v2 are the independent variables in (3-8a)). 

By making use of equations (3-5) it is easy to prove the equivalences 

shown in Fig. 3-7. The connection of a 1-port with admittance ya  

in parallel with port 1 of a converter is equivalent to the connection 

of a 1-port with admittance yb  in parallel with the output (Fig. 3-7a) 

if 

Y
a = kY  
Yb 
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CONVERTER 

if 

Ya 	Y - kc 
Yb 

(or za/zb  = k: 

(b) 

Fig. 3-7 : Converter equivalences. 

(or za  zb = ki  ) 

Fig. 3-8 : An inverter equivalence. 



-8o- 

or, in terms of impedances 

za = k2.  
zb 

A similar equivalence applies to the connection of a 1-port in series 

with the ports of a converter (Fig. 3-7b). Using equations (3-8) it 

can be proved that the connection of a 1-port with admittance ya  in 

parallel with one of the ports of an inverter is equivalent to the 

connection of a 1-port with admittance yb  in series with the other 

port (Fig. 3-8) if 

y y k
i  a b 

or, in terms of impedances 

z
a 
z
b 
= k. 

(since an inversion factor has the same value in both directions, it 

does not matter which of the ports is port 1 and which is port 2). 

It follows immediately from the definitions (3-1) and (3-2) that 

(a) the 2-port resulting from the cascade connection of two converters 

or two inverters is a converter and (b) the 2-port resulting from the 

cascade connection of a converter and an inverter is an inverter. 

For converters and inverters with real and constant conversion and 

inversion factors the result of cascading any two of these 2-ports is 

as indicated in Table 3-1. This table shows that the set of four 2-ports 

EPIC, NIC, PII, NI* is a commutative group with respect to the 

operation of cascading, the PIC being the unit element [53]. A group 

with the structure shown in Table3-1 is known as Klein's 4-group [54]. 

3.4 - ACTIVE REALIZATION OF CONVERTERS AND INVERTERS 

In the context of active RC networks, converters and inverters are 
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TABLE 3-1 : The result of cascading positive and 

negative converters and inverters. 

PIC NIC PII N11 

PIC PIC NIC PII NII 

NIC NIC plc NII PII 

PII PII NII PIC NIC 

NII NII PII NIC PIC 
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realized using active components, i.e.ltransistors or operational 

amplifiers. A very large number of circuits that realize converters 

and inverters can be found in the literature. A few simple examples 

will be given here using a nullator-norator representation of the active 

components. In all the circuits shown the nullors can be replaced by 

operational amplifiers with differential input and grounded output 

(it should be noted that the ground may not be the terminal which is 

common to input and output). 

Negative immittance converters (NIC's) can be realized by the 

simple circuits in Fig. 3-9, which contain only one nullor and two 

resistors. 

The circuit in Fig. 3-10 is a negative immittance inverter (NII) 

and it also contains only one nullor and two resistors. 

A negative resistor can be obtained by terminating with a resistor 

any one of the three circuits in Figs. 3-9a, 3-9b or 3-10. The 

resulting circuit, shown in Fig. 3-11, is the same in all three cases. 

The circuit in Fig. 3-11 can be regarded either as the NIC of Fig. 3-9a 

terminated by gd, or as the NIC of Fig. 3-9b terminated by gb, or as 

the NII of Fig. 3-10 terminated by gc. 

The four circuits shown in Fig. 3-12 are Nil's. The negative 

resistors might be _realized by the circuit of Fig. 3-11. 

A positive immittance converter (PIC) can be obtained by cascading 

two NIC's or two Nil's. Similarly, a positive immittance inverter 

(PII) can be realized as the cascade of a NIC with a NII. An example 

is the PII circuit of Fig. 3-13, obtained by cascading the NII of Fig. 

3-12a with the NIC of Fig. 3-9a. This circuit is a gyrator if gl  = g2. 

The simple circuits presented so far will now be used to illustrate 

several comments that can be made concerning realizations of converters 
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[6. 

	

gl/g2vl 	it O -1 

1 	
] 

	

0 2 	

= Lgilg2 a] rl  i l 

(a) 
	

(b) 

Fig. 3-9 : Negative Immittance Converters (NIC's).  

gl 
	±2 

Fig. 3-10 : Negative Immittance Inverter (NII). 

ga -0-  
ga = 

gbgd 

 

gc 

Fig. 3-11 : Simulation of a negative conductance. 



g 
	'VVy  	0 

gl g2 

g1 g2 

gd 

Fig. 3-14 : TWO different operational amplifier realizations 

of the nullor circuit in Fig. 3-13. 
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g g 
	-g -g 	-g 

0 -g . g 0 g 
Y = 
[ 

Y = 
[0 0 	-1 

Y = 
[ 

Y 
-g 0 g 0 -g 	0 g 0 

(a) 
	

(b) 
	

(c) 
	

(d) 

Fig. 3-12 : Negative immittance inverters. 

Fig. 3-13 : PII obtained by cascading the NII in Fig. 3-12a with 

the NIC in Fig. 3-9a. 

(a)  

(b)  
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and inverters. 

In most applications, converters and inverters must have at least 

one grounded port; there are applications (some of them will be 

discussed later) in which converters and inverters with both ports 

grounded are required. When the nullor is replaced by an operational 

amplifier (with grounded output) the NIC of Fig. 3-9a will have both 

ports grounded, whereas in the NIC of Fig. 3-9b only one port will be 

grounded. Whereas the NII of Fig. 3-10 will have only one grounded 

port, the NIIts in Figs. 3-12a and 3-12d will have both ports grounded 

if the negative resistors are realized by the circuit of Fig. 3-11 

(with the nullor replaced by an operational amplifier). The PII in 

Fig. 3-13 will have both ports grounded; however a PII obtained by 

cascading the NIC of Fig. 3-9a with the NII of Fig. 3-10 will have only 

one grounded port. 

Some circuits realizing converters or inverters require that the 

components be related in a specific way; if one component changes 

(for instance the value of a resistor changes) the circuit is no longer 

a converter or inverter. This is the case with the NIIts of Fig. 3-12 

which are only inverters when the conductances are related as indicated 

in the circuit diagrams. There are other circuits which remain 

converters or inverters independently of the values of some or all the 

components; only the value of the conversion or inversion factor will 

be affected if one component changes. Examples of this are the 

circuits of Fig. 3-9 which are converters for any values of gl  and g2, 

and the circuit of Fig. 3-10 which is an inverter for any gl  and g2. 

The circuit of Fig. 3-13 remains an inverter for any values of gl  and 

g
2 but the remaining conductances in the circuit must be related as 

shown in the diagram. 
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It was mentioned before (section 2.2) that different operational 

amplifier realizations of the same nullor circuit can differ very much 

in their non-ideal performance. This is the case with 'the two 

circuits in Fig. 3-14 which correspond to two different ways of 

pairing the nullator and norators in the PII of Fig. 3-13 to form 

nullors which are then replaced by operational amplifiers. It has 

been shown [11] that the circuit of Fig. 3-14b has better stability 

properties than the circuit of Fig. 3-14a. 

Another useful observation concerning realizations of converters 

and inverters is the following: there are circuits which produce 

different converters and inverters corresponding to different choices 

of 2-terminal components which are extracted to form ports [13, 52, 

55-58]. As an example, consider a 1-port network with port admittance 

y
I 
related to the admittances y

2' y3 and y4 of some 2-terminal components 

inside the network, by the equation 

y
1  = k  Y2 Y3 

Y4 
(3-11) 

where k is independent of y2, y3  and y4  [52]. If y2  is extracted and 

regarded as the termination of a second port, then the resulting 2-port 

is a converter. If, instead of y2, y3  is extracted, another converter 

is obtained, and if y4  is extracted the resulting 2-port is an inverter. 

If port 1 is terminated by an admittance yi  and two of the other three 

admittances are extracted to form ports, converters are obtained by 

extracting y2  and y4  or y3  and y4, and an inverter will result from the 

extraction of y2  and y3. This follows from the fact that if y2, y3  and 

y
4 are extracted to form ports (Fig. 3-15), equation (3-11) leads to 

-k v
1 

v
4 	

v
2 v3 

i2 i3 



y1
=kY2 Y3 

Y4 

-i2 	-i3 
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y3 

Y4 

v3  

v4 

Fig. 3-15 : A circuit that realizes various converters 

and inverters. 
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In this case, four admittances are involved in (3-11) and there-

fore there are ( In = 6 different combinations of two ports leading each 

one to a converter or inverter. It should be noted that (depending on 

the actual circuit involved) different combinations may lead to convert-

ers or inverters with the same circuit diagram. It should also be 

noted that the number of admittances appearing in an equation with the 

form of (3-11) can be different from 4. 	In particular, a circuit for 

which only two admittances can be related by an equation similar to 

(3-11) (i.e. yl  = k y2  or yl  = k y21) realizes only one converter or 

only one inverter. 

An example that illuatrates the above discussion is provided by 

the circuit in Fig. 3-11 for which equation (3-11) is applicable. It 

has already been pointed out that this circuit leads to the NIC's of 

Fig. 3-9 	or to the NII of Fig. 3-10 depending on which of the 

conductances g
d' gb or gc

, respectively, is considered as the termina-

tion of a second port. It can easily be verified that the other three 

possible 2-ports (extraction of gb  and gc, gd  and gc  or gb  and gd) 

have the same circuit diagrams as the NIC's in Fig. 3-9 or as the NII 

in Fig. 3-10. 

3.5 - SIMULATION OF GROUNDED AND FLOATING INDUCTORS 

Inductors can be simulated by a positive inverter terminated by 

a capacitor. This can be seen immediately from equation (3-2) applied 

to this case (y2  = sC): 

where 

	

Y 1 	1 y
1 
= ki 

	

.sC 	sL 

L = 

(3-12) 

ky 
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is the simulated inductance. The positive inverters employed are 

usually gyrators. 

Alternatively, an inductor can be simulated by a converter with 

an admittance conversion factor of the form 

kY = k s -1 

where k is a positive real constant. When such a converter is terminated 

by a resistor of conductance g, equation (3-1) yields: 

Y1  
_ 1 

sL 
(3-13) 

where 

1 
kg 

is the simulated inductance. 

The simulation of inductors by terminated 2-port converters is 

applicable to grounded inductors since these can be regarded as 1-ports. 

The converters or inverters must in this case have one grounded port. 

Some of the circuits that can be used to simulate inductors can be 

regarded either as a PII terminated by a capacitor or as a converter 

terminated by a resistor, depending on whether a capacitor or a resistor 

is considered as the termination. An example of such a circuit is 

shown in Fig. 3-16. This circuit can be regarded as a cascade of two 

of the NIC circuits. of Fig. 3-9a (with the resistors replaced by general 

2-terminal components) terminated by y6. The input admittance of the 

circuit in Fig, 3-16 is given by 

_  Y2 y4 y6 
11  - 	Y3  Y5  

(3-14) 

This circuit has been referred to in the literature as a PIC in view of 

the fact that the right hand side of (3-14) is preceded by a plus sign 

(if yi  -y2  y4  y6/y3  y5  the circuit would be called a NIC). According 

L 
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Yl 

Y 
Y2 Y4 Y6 

- 1 - 	
Y3 Y5 

Fig. 3-16 : A circuit that can be used to simulate 

inductors or FDNR's. 

sc 
5 

Fig. 3-17 : Inductor simulation by an operational amplifier 

realization of the circuit in Fig. 3-16. 
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to the terminology adopted in this thesis such a circuit will only be 

called a PIC when a converter is formed by extraction of one of the 

admittances in the numerator of (3-14) and the conversion factor is a 

positive real constant. The designation generalized impedance converter 

(GIC) has also been used for the circuit in Fig. 3-16. 

The circuit In Fig. 3-16 can be used to simulate an inductor by 

using a capacitor in the place of one of the 1-ports with admittances 

y3 or y5
, and resistors elsewhere. The resulting circuit can be 

regarded as a positive inverter terminated by the capacitor or as a 

converter terminated by one of the resistors whose conductances appear 

in the numerator of (3-14). 

The circuit of Fig. 3-16 is useful in connection with the active 

RC simulation of doubly-terminated LC ladder filters not only when 

the inductor simulation method is used, but also in the case of the 

impedance scaling methOd. As discussed before, this last method 

requires the use of FDNR's which can be either supercapacitors, with 

admittances proportional to s
2 
or superinductors, with admittances 

proportional to s
2
. As shown by (3-14), a supercapacitor can be 

obtained by using capacitors to produce two of the admittances in the 

numerator and resistors to realize the remaining admittances; a 

superinductor is obtained if y3  and y5  are realized as capacitors and 

y2, y4  and y6  as resistors. 

All the converters derived from the circuit of Fig. 3-16 behave as 

converters for any value of the admittances of the components; the 

same applies to the inverters. This is a desirable property, since it 

seems reasonable to expect a better sensitivity performance than in 

the cases where the components have to be related in a specified way. 

The circuit of Fig. 3-16 can be realized with two operational 

amplifiers (with differential input and grounded output) in many 
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different ways. The non-ideal performance of the different realizations 

has been extensively investigated [13, 34, 59-63]. It has been shown 

that some realizations have very good performance and these have been 

widely used in active filters simulating doubly-terminated ladders. 

This is the reason why the circuit was chosen here as an example. 

The inductor simulation circuit in Fig. 3-17 is a particular realization 

of the nullor circuit in Fig. 3-16. It has been shown that this 

realization possesses particularly good high-frequency performance [60]. 

It may be noted that the inverters obtained from Fig. 3-16 if the 

nullors are replaced by operational amplifiers will have only one 

grounded port; in the converter obtained by extraction of y6  both ports 

will be grounded. 

Although most of the circuits that have been used for the simulation.  

of inductors are interpretable as terminated inverters or converters, 

this is not true for all inductor simulation circuits. An example of 

a circuit that can be used to simulate inductors but cannot be inter-

preted as a converter or inverter is shown in Fig. 3-18 [30, 64, 65]. 

This circuit only simulates an inductor if the relationships given in 

Fig. 3-18 involving all the components are satisfied. Thus it is not 

possible to extract one component and consider it as the termination 

of a converter or inverter since it is not possible to write equations 

in the form of (3-1) or (3-2) valid for any value of the terminating 

admittance. 

Inductor simulation using converters or inverters leads to lossless 

inductors, assuming ideal performance of all the components involved. 

The same is true for the circuit of Fig. 3-18. There are, however, 

circuits that have been proposed for the simulation of lossy inductors; 

an example of such a circuit [66] is given in Fig. 3-19. 
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Fig. 3-18 : Inductor simulation by a circuit which cannot 

be interpreted as an inverter or converter. 
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Fig. 3-19 : Simulation of a lossy inductor. 
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It is useful to note that a circuit that simulates a lossless 

inductor using only one capacitor (in addition to resistorsand nullors) 

must be an inverter terminated by the capacitor, since the defining 

equation for an inverter (3-2) is necessarily satisfied for any 

termination. 

As mentioned beforelan active RC circuit that simulates a floating 

inductor can be regarded as a 2-port (Fig. 3-4b). Later in this 

thesis it will be shown that most of the circuits that have been 

proposed for the simulation of floating inductors can be interpreted 

as 3-port inverters terminated by a capacitor or as 3-port converters 

terminated by a resistor. These 3-port inverters and converters are 

special cases of the multiport converters and inverters which are 

proposed in this thesis as a generalization of 2-port converters and 

inverters. 	Since a study of floating inductor simulation using 

3-port inverters and converters is one of the main questions investigated 

in this thesis (chapter 6), in the present review chapter only two 

well known circuits, one using two grounded 2-port inverters, the other 

employing two grounded 2-port converters, will be mentioned. 

The circuit in Fig. 3-20 uses two grounded positive inverters and 

one capacitor to simulate a floating inductor [67]. The circuit of 

Fig. 3-21 uses two grounded converters and one resistor [37, 68]; 

the admittance conversion factor of both converters must be 

Or  = h
a 
h
b = k s-1  

where k is a positive real constant. 

The grounded converter obtained from the circuit in Fig. 3-16 by 

extraction of gb  could be used to realize the circuit of Fig. 3-21. The 

inverters derived from the circuit of Fig. 3-16 are not grounded (it 

is impossible to ground both ports) and therefore cannot be used to 
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Fig. 3-21 : Floating inductor simulation with two grounded converters: 
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realize the circuit of Fig. 3-20; an :inverter of the type shown 

Figs. 3-14 could be used. 

3.6 - THE (ad, bc)-PLANE 

It has been found useful to represent 2-ports described by real 

parameters as points in the (ad, bc)-plane [69-71, 32]. The symbols 

a, b, c and d represent the elements of the transmission matrix 

a b T  = [  

From the transmission description of converters and inverters (section 

3.3) it follows immediately that PIC's are represented by points on the 

positive (ad)-axis and NIC's are represented by points on the negative 

(ad)-axis, as shown in Fig. 3-22. Similarly, PII's and NIIts are 

represented by points on the positive and negative (bc)-axis, respectively 

(Fig. 3-22). 

Reciprocal 2-ports for which 

det T = ad - bc = 1 	(3-15) 

are represented by points in the 'reciprocal line' shown in Fig. 3-22. 

The positive transformer (PT) and the negative gyrator (NG) are repre-

sented by the points of intersection of this line with the ad and bc 

axes, respectively (the PT and the NG were introduced in section 3.3). 

Two-ports for which 

det T = ad - bc = -1 	(3-16) 

have been considered as anti-reciprocal [69-71] (this is suggested by 

the contrast with reciprocal 2-ports for which det T = ad - bc = +1). 

Such 2-ports are represented by points on the 'anti-reciprocal' line 

shown in Fig. 3-22. The positive gyrator (PG) and the negative 

c d 



ITIC PIC PIC 

ad-• 

POS. TRANSFORMER 1s 

NEG. TRANSFORMER 

t 
be 
H 
H 
P4 

--- POS. GYRATOR 

H H 

ti 

-<-- NEG. GYRATOR 

-97- 

Fig. 3-22 : Converters and inverters in the (ad,bc)-plane. 
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transformer (NT) are represented by the points of intersection of this 

line with the coordinate axes (Fig. 3-22). 

The four 2-ports, positive and negative transformer and positive 

and negative gyrator, provide very clear examples that reciprocity--

non-reciprocity and activity-passivity can be combined in all possible 

ways: 

PT: reciprocal and passive 

NG: reciprocal and active 

PG: non-reciprocal and passive 

NT: non-reciprocal and active 

There has always been a close association of converters and inverters 

with the concepts of reciprocity and anti-reciprocity. This is 

particularly true in the case of the gyrator which has been regarded 

since its introduction by Tellegen [72] as a prototype non-reciprocal 

network element. The results of an investigation of various network 

properties related to the concept of reciprocity and anti-reciprocity 

will be considered later in this thesis. 
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CHAPTER 4 

MULTIPORT CONVERTERS AND INVERTERS 

4.1 - INTRODUCTION 

As discussed in the previous chapter, 2-por't immittance converters 

and inverters are important active units used in the realization of 

active RC networks. A review of the definition and more salient 

features of 2-port converters and inverters was presented in section 3.3. 

It was seen that ideal transformers and gyrators are special cases of 

2-port converters and inverters, 	respectively. Multiport versions 

of these special converters and inverters can be found in the 

literature. These are the 'multiwinding transformer' [4-6] and the 

'multiterminal gyrator' [38, 39]. It is believed, however, that a 

full extension to multiports of the general concepts of 2-port 

(*) 
immittance conversion and inversion has not been given in the literature. 

Such an extension will be proposed and discussed in this chapter. 

Multiport admittance and impedance converters and inverters will 

be defined in terms of the operation performed on the matrix description 

of a 'load' multiport, since it is this operation which is directly 

relevant to the application of these multiports. The matrix description 

(F) There is a brief mention in [22] of 'n-port generalized converters 
and inverters'. 	This, however, has little relationship with the 
approach followed here (the n-port inverter is there defined as 
any n-port described by a non-singular admittance matrix, which 
leads, for n = 2, to the inclusion of many 2-ports which are not 
immittance inverters according to the usual definition). 
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of the converters and inverters is derived from the definitions. 

The alternative approach of giving the definitions in terms of the matrix 

description has the disadvantage that multiports with a.different 

description might perform the same operations and hence be equally 

suited for a specific application. The approach taken here eliminates 

such a possibility by establishing necessary conditions for the operations 

of conversion or inversion to take place. 

It will be shown that the proposed definitions include, as special 

cases, the 2-port converters and inverters, the multiwinding transformer, 

the multiterminal gyrator, and many of the circuits used for the 

simulation of floating inductors and floating negative impedances. 

However, it is found that they do not include the circulator (which 

might in some respects be regarded as a multiport version of the 

gyrator). 

Examination of the properties of multiport converters and inverters 

leads to a somewhat unexpected result: it is shown that, in contrast 

to 2-port converters and inverters, multiport admittance converters 

(or inverters) are not in general simultaneously impedance converters 

(or inverters). This is a consequence of the definitions proposed here, 

which do not include the requirement of simultaneous admittance and 

impedance conversion (or inversion). The inclusion of such a require-

ment in the definitions would be unduly restrictive, since this would 

lead to the exclusion of several circuits which seem clearly associated 

with admittance or impedance conversion or inversion, for example most 

of the circuits used in the active RC simulation of inductive networks. 

Finally, it will be shown that admittance and impedance converters 

and inverters can be regarded as special cases of a more general 

multiport, the 'hybrid converter', which is introduced and briefly 

discussed in the last section of this chapter. 
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4.2 - DEFINITIONS 

In order to introduce the definitions of multiport converters and 

inverters, consider an (n 	k)-port N with n input ports and k output 

ports (Fig. 4-1). Assume that a 'load' k-port N2  with an admittance 

matrix Y
2 

or an impedance matrix Z2 
is connected to N as shown in 

Fig. 4-1. It is assumed that the n-port resulting from this connection 

of N and N2  has an admittance matrix Yi  or an impedance matrix Z1. 

The definition of the 2-port admittance converter involves the 

equation Y
1 
= k

c  y2  , where kc is a scalar that depends only on the 

converter and not on the terminating one-port. A first attempt to 

define a multiport admittance converter might result in the use of an 

expression of the form Y1  = K Y2  or Yi  = Y2K where K is a matrix that 

depends only on the converter. However, since matrix multiplication is 

not commutative, these two expressions are not equivalent. Furthermore, 

expressions of this form cannot be used if the square matrices Y, and 

Y
2 

have different dimensions. Therefore it seems natural to use an 

expression of the form Y_= 
H12 Y

2 H21. Expressions of this form will 

also be used for the impedance converter and for the admittance and 

impedance inverters. 

The following definitions are proposed: the (n 	k)-port N is an 

Admittance Converter, Admittance Inverter, Impedance Converter or 

Impedance Inverter(*)  if equations (4-1), (4-2), (4-3) or (4-4) 

respectively, are satisfied: 

Ck ) The reason for having two types of converters (admittance and 
impedance) and similarly two types of inverters instead of one 
immittance converter and one immittance inverter will be discussed 
later. 
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ADMITTANCE CONVERTER: Y1 
= H12 

Y2 
H21 

ADMITTANCE INVERTER: Y1 
= G12 Z2 

G21 

IMPEDANCE CONVERTER: Z1  = K12  Z2  K21  

IMPEDANCE INVERTER: Z1 = R12 
Y2 R21 

In these equations, Y
2 

and Z
2 

are k-square matrices, Y
1 and Z1 

are n-square, letters with subscripts 12 denote (n x k) matrices and 

letters with subscripts 21 denote (k x n) matrices. The matrices H12, 

H21, G12, G21, K12,  K21, R
12  and R21  depend only on the (n + k)-port N. 

The defining expressions must be valid for any load k-port N2  that 

possesses an admittance description in the cases of (4-1) and (4-4) 

or an impedance description in the cases of (4-2) and (4-3). 

The justification for the designations is obvious in the case of 

the converters. The choice of the name 'admittance inverter' for the 

multiport to which equation (4-2) applies is suggested by the fact 

- that if N7  has an admittance description, then Z2 
= Y

2
1 
 and (4-2) 

becomes Y1 = G12 1 	It should be noted, however, that it is not ,21 G21. 

required in the definition of the admittance inverter that N
2 

has both 

admittance and impedance description: it is only required that it has 

an impedance description and hence the appearance of Z2, instead of 

Y21, in (4-2). Similar considerations apply to the impedance inverter. 

Two-port converters in which the conversion factor is a rational 

function of the complex frequency variable s are often useful. In a 

similar way, for the multiport converters and inverters, it will be 

assumed that matrices H, G, K and R need not be matrices over the real 

field: they can, in general, be matrices 	over the field of rational 

functions of s. 

Having proposed these definitions, it remains to be seen if they 

lead to meaningful consequences. This will be done in the next sections. 
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4.3 - MATRIX DESCRIPTION 

The necessary and sufficient conditions, in terms of the matrix 

description, for the (n + k)-port N to be a converter or an inverter 

according to the definitions given above are presented in Table 4-1 

(equations (4-5) .to (4-8)). It can be seen that there is a very 

simple relationship between the non-zero submatrices in the matrix 

description and the matrices that appear in the definitions (Table 4-1), 

The sufficiency of the type of descriptions shown in Talbe 4-1 can 

easily be verified. 	The proof of necessity is less straightforward 

and will now be presented. 

	

The admittance converter will be considered first. 	Since it is 

not known a priori which types of matrix description the converter will 

have, 	it is assumed that N is described by the general equation 

MI + PV = 0 with the matrices partitioned in correspondence with the 

partition of the ports of N in n input and k output ports (Fig. 4-1): 

M11 M12 [ P11 P12 [ V1 
= 0 (4-9) 

M
21 

M
22 

1
2 	P21 P22 V2 

where 

I1 	11 	I
2  = 
	i

n+1 

i
n 	i

n+k 

and the submatrices M
11 

and P
11 

are n-square M22 and P22 are k-square, 

M12  and P12  are (n x k) and M21  and P21  are (k x n). 

Equation (4-9)-remains valid after both M and P are subjected to 

the same elementary row-transformations (interchange of two rows; 

multiplication of a row by a scalar; addition of one row multiplied 

	

v = v1 
	V2 = 

	
n+1 

	

vn 
	v

n+k 
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TABLE 4-1 : Definition and matrix description of multiport converters and 

inverters. 

DESIGN. DEFINITION MATRIX DESCRIPTION 

ADMITTANCE 

CONVERTER 11=  1112/.21121 
(4-1) 

[111 	[ 0 	o. H12 

1 H 	0 V 	- 2 	7 21 	

1 ki  

I2 

[ll 
(4-5) 

ADMITTANCE 

INVERTER 
Y
1=  G12Z2G21 (4-2) 

ll [ 	12  [I 	0 	oc G 

I 	- -- G 
2 	a. 21 	

0 

V1 

V2 

1 
(4-6) 

CONVERTER 

IMPEDANCE 

 

Zi= Kl2Z2K21 
(4_3)  

I 	- —1 	K 
2 	0, 	21 	

0 	V2 

	

[VI [ 0 	ocK11{21 
(4-7) 

IMPEDANCE 

INVERTER Zl=  R12Y2R21 (4-4) 

i  

V2 

L 0 	oc Ril 

1 R 	0 - 7.t 	21 

Il 

12 

(4-8) 

Note: xis an arbitrary non-zero scalar. 
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by a scalar to another row). Since it is always possible to reduce 

a square matrix to an upper-triangular form by row-transformations, 

it can be assumed, without loss of generality that either M or P in 

(4-9) is upper-triangular. In the case of the admittance converter 

it is convenient to assume that M is upper-triangular and consequently 

	

M21 =-0. 	Taking this into account, (4-9) can be 	written as 

	

M
111 

+ M
12 

1
2 + P11 V1 + P12 V2 = 0 	(4-10a) 

	

M22 12 + P21 V1 + P22 V2 = 0 	(4-1013) 

The load k-port N2  (Fig. 4-1) is described, in the case of the 

admittance converter, by 

12 = -Y2 V2 
	

(4-11) 

where the (-) sign results from the choice of the reference direction 

for 12  into the k output ports of N and therefore out of N2. 

Equations (4-10), in conjunction with (4-11) yield: 

M
11 

I
1 + P11  V1 + (P12 

- M
12 Y2) V2 = 0 

P
21 

V
1 
+ (P22 - M22 Y2) V2 = 0 

According to the definition, (4-1), Y1  must exist for any Y2. 

This means that it must be possible to terminate the (n + k)-port 

N by connecting any Y2  to the output and imposing the value of V1  at 

the input. With such a termination it must be possible to determine 

the value of all voltages and currents at the ports of N, since, if a 

multiport has physical meaning, all port voltages and currents can be 

determined when the multiport is terminated (i.e. connected to an external 

network which includes independent sources) in a permissible way [7]. 

Therefore it is required that (P22 - M22 Y2) be non-singular for any Y2  

(otherwise it would be impossible to determine V
2
). One consequence of 



- 107- 

this is that P
22 

must be non-singular, so that the case Y
2 
= 0 is 

included; another consequence is that it is necessary that 

	

M
22 

= 0 
	

(4-13) 

since it can be shown (Appendix, Lemma I ) that otherwise y
2 
can 

always be chosen such that (P22 
- M22 Y2)  is singular. Taking these 

results into account and noting that Y11  must be non-singular (other-

wise the n-port resulting from the connection of N and N2 would not 

have an admittance description) it follows from (4-12) that 

	

Y
1 
 = -M

11 
(P

11 - P12 P22 P21) M11 
M12 Y2 P22 P21 

	(4-14) 

Since, for an admittance converter, Y
1 

must be related to Y
2 

by 

an equation of the form of (4-1), i.e. 
Yi = H12 Y

2 H21, it follows that 

	

-1 	-1 

	

M11 (P11 - P12 P22 P21) = 0 	(4-15) 

and 

-1 	-1 -M11 M12 Y2 P22 P21 = H12 Y2 H21 (4-16) 

It can be shown (Appendix, Lemma II) that if (4-16) is satisfied for 

any Y2, then 

-1 -M11 M12 =ot.  H12 

and 

P-1  P = 	H 22 21 oc 21 

where at is an arbitrary non-zero scalar. 

From (4-10b) and (4-13) it follows that 

-1 V2 = -P22 P21 V1 

or, making use of (4-18), 

(4-17) 

(4-18) 

(4-19) 

(4-20) 
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From (4-10a) and (4-19) it follows that 

I1  = -M11 
M12 I2 - M11 (P11 - P12 P22 P21) V1 

or, taking into account (4-15) and (4-17), 

= a. H
12 

1
2 
	(4-21) 

Equations (4-21) and (4-20) can be written in the form of (4-5), in 

Table 4-1, which is thus the description that is necessary and sufficient 

that a multiport possesses in order to be an admittance converter. 

The proof of the necessity of (4-6) for the admittance inverter 

follows a similar pattern. The results for the impedance converter, 

(4-7) and inverter,(4-8), are then immediate, since all their equations 

have the same form of those applying to the admittance converter and 

inverter, respectively, if the V's and I's are interchanged. 

4.4 - THE DIFFERENCE BETWEEN 'ADMITTANCE' AND 

'IMPEDANCE' CONVERTERS AND INVERTERS 

The (n + k)-port N will only be simultaneously an admittance 

converter and an impedance converter if it accepts both a description 

in the form of (4-5) and in the form of (4-7). Since these two 

descriptions differ by the interchange of dependent and independent 

variables, the matrix in (4-5) 

must be non-singular. This means that it is necessary that the sub- 
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matrices H
12 and H21 

are square (n = k) and non-singular; otherwise 

det H = 0 (this follows from the expansion of the determinant using 

minors of order.n or k, whichever is smaller). This conditions is 

also sufficient, since, as can be easily verified, H 1 has the form 

required by (4-7). 

In a similar way it can be proved that an admittance inverter 

is simultaneously an impedance inverter if and only if 
G12 and  G21 

in (4-6) are square (n = k) and non-singular. 

Since for 2-ports n = k = 1 and the submatrices in (4-5) and (4-6) 

become scalars, the conditions for simultaneous admittance and 

impedance conversion or inversion are automatically satisfied. In the 

case of multiports these conditions are not always satisfied; for 

instance, in a multiport with an odd number of ports, admittance and 

impedance conversion (or inversion) can never take place simultaneously 

since it is impossible to have the ports separated into two sets 

containing the same number of ports. 

The fact that, in contrast to 2-ports, a multiport admittance 

converter (or inverter) may not be simultaneously an impedance 

converter (or inverter) will now be illustrated by means of a simple 

example using 3-port inverters. 	If two 2-port gyrators are connected 

as shown in Fig. 4-2a, a 3-port admittance inverter is obtained , as 

can be recognized from its matrix description. 	It could be used, 

when terminated by a capacitor, to simulate a network consisting of an 

inductor and an ideal transformer (Fig. 4-2a). This 3-port is not an 

impedance inverter since equation (4-4) is not satisfied (when port 3 

is terminated by a 1-port, the resulting 2-port does not even have an 

impedance description). However, the same 2-port gyrators could be 

connected as shown in Fig. 4-2b in order to. produce a 3-port impedance 
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inverter. This 3-port could be used, when terminated by a capacitor, 

to simulate the inductor-transformer network shown in Fig. 4-2b. 

It should be emphasised that the designation admittance converter 

(or inverter ) is always used in this chapter to refer to all multiports 

satisfying (4-1)(or (4-2));it does not refer exclusively to those 

converter.; which are only of .the admittance type (and not of the 

impedance type). A similar remark applies to the designation impedance 

converter (or inverter). 

4.5 - SOME PROPERTIES OF MULTIPORT CONVERTERS AND INVERTERS 

From the definitions and matrix descriptions in Table 4-1 it is 

possible to obtain several properties of multiport converters and 

inverters. 	Some of these properties will now be discussed. 

Interchange of Input and Output  

The definitions of multiport converters and inverters require a 

partition of the ports into two sets: a set of n ports labelled 

"input" and a set of k ports labelled "output". When the load 

multiport is connected at the output the result of the operations of 

conversion or inversion is observed at the input. The consequences of 

interchanging the input and output sets of ports (denoted by subscripts 

1 and 2, respectively) will now be examined. 

An admittance converter is described by equation (4-5), 

I
1 	0 	cc H

12 	V
1 

= 

....«.i 
V2 	

- , H21 	0 	[121 

which can also be written as 
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1 
V
2 	0 	- H21 {_I2] 

[Ii] LtH
12 0 	V1 

This equation, apart from an interchange of subscripts 1 and 2, has 

the form of (4-7) which describes an impedance converter. This shows 

that if the input and output sets of ports (denoted by subscripts 1 

and 2, respectively) of an admittance converter are interchanged, the 

resulting multiport is an impedance converter; in other words, if 

conversion of the admittance type is possible in one direction, then 

conversion of the impedance type is possible in the other direction 

(in those converters which are of both types simultaneously the two 

operations are possible in both directions). 

An admittance inverter is described by (4-6), 

1 0 = 	ceG121 [111] 

[I2  kip2  o V2  
and this can be written as 

1 n  I2 • 	0 7̀211 [V2] 

[I
1  = [0CG12 0 	V

1 

This equation retains the form of (4-6) but subscripts 1 and 2 are 

interchanged. A similar result is obtained for the impedance inverter 

described by (4-8). This means that for inverters the interchange of 

input and output is not accompanied by a change of type: an inverter 

is of the admittance, or impedance, type in both directions. 

Duality 

As pointed out before, every equation involving the port variables 

of the admittance converter and inverter has a corresponding equation 

which applies to the impedance converter and inverter, respectively. 

These corresponding equations have the same form, but voltages and 

currents are interchanged. It can therefore be stated that the dual 

of a multiport admittance converter (or inverter) is an impedance 

converter (or inverter). 
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Interreciprocity 

The description of the multiports which are interreciprocal 

(transpose or adjoint) of multiport converters and inverters can be 

found by .applying the interreciprocity conditions (chapter 2, 

section 2.5) to the matrices in (4-5) to (4-8). By doing this, it 

can be shown that the interreciprocal of a converter or inverter is 

itself a converter or inverter, respectively, of the same type 

(admittance or impedance). This property, in conjunction with the 

new 
interreciprocity interreciprocity theorem, can be used to derive realizations of 

converters or inverters from existing ones. 

4.6 - MULTIPORT TRANSFORMERS AND GYRATORS 

If an admittance or impedance converter is non-reactive (the elements 

in the matrices are real constants) and described by a skew-symmetric 

hybrid matrix, then it is non-energic, i.e. the instantaneous power 

flowing into it is always zero. This is easily verified by substitution 

of (4-5) or (4-7) in the expression of the instantaneous power 

P = It1(t)V12 (t)+Ii(t)V2  (1,) 

The matrix description (4-5) of the non-,energic admittance converter 

takes the form of 

[ I1  [ 0 H il [111] 

V2 -H12, 0 22  

and, similarly, for the non-energic impedance converter, (4-7) becomes 

V1 	0 K12  [Il i 

[  12 	 -K12 0 V2 1 
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Both the admittance and the impedance converter, may be called, in 

this special case, ideal multiport transformers. According to the 

discussion in the previous section, if a multiport ideal transformer 

is of the admittance type in one direction it will be of the impedance 

type in the other direction. 

Similarly it can be shown that non-reactive admittance and 

impedance inverters are non-energic if described by skew-symmetric 

admittance or impedance matrices, respectively. In both cases it 

seems natural to use the designation multiport gyrator for these 

special inverters. There are thus two types of multiport gyrator: 

admittance multiport gyrator and impedance multiport gyrator. It is 

only when n = k and G12  is non-singular that the multiport gyrator is 

simultaneously an admittance and an impedance gyrator. The 'multi-

terminal gyrator', presented in [38, 39] is a multiport gyrator of the 

admittance type; it will be of both types simultaneously if these 

conditions are satisfied. 

It may be interesting to note that the 3-port circulator [6] is not 

a multiport gyrator according to this definition, although it might be 

regarded, in some respects, as a multiport version of the gyrator: 

it is non-energic, is described by a skew-symmetric matrix, either 

admittance or impedance (but not both), and a 2-port gyrator is 

obtained if one of the ports is short or open-circuited. However, unlike 

the multiport gyrator considered above, it is not an inverter as can 

easily be seen by considering a 3-port circulator with an admittance 

description 

a./ 
i1 

 0 	g 	-g 1 

i2 -g 	0 	g v2 

i
3 g 	-g 	0 v3 

which clearly cannot be written in the form of (4-6). 



or 

[

Y =-2--c- 	g13 g31 	g13 g32 
(4-24) 

g23 g31 	g23 g32 
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4.7 - FLOATING INDUCTOR SIMULATION 

It has been seen in chapter 3 (section 3.2) that a floating 

inductor, when simulated by an active RC circuit has three terminals 

(including the ground terminal) and can therefore be described as a 

2-port (Pig. 4-3a),with an admittance matrix 

Y = 
[  1 1 -1 

sL -1 	1 
(4-22) 

A floating inductor can be simulated by a 3-port admittance 

inverter terminated by a capacitor. Consider that the 3-port in 

Fig. 4-3b had an admittance description of the form 

   

   

it  

i2 

0 0 g13 vl 

= 0 0 g23 v2 

g31 g32 0 v3 

(4-23) 

   

   

which corresponds to a 3-port admittance inverter with port 3 as the 

output port (as seen by comparison of (4-23) with (4-6)). It will be 

assumed that the 3-port in Fig. 4-3b is active R (contains only resistors 

and active components) and therefore the elements of the admittance 

matrix in (4-23) are real constants. If a capacitor is connected to 

port 3, y3  = sC, the resulting 2-port (ports 1 and 2) will have an 

admittance matrix which can be obtained using (4-2): 

g13 	
sC 

[g31 g32]  

g23 

Y 
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-1 
11  y=(sL) 12  

0 

1 	 v2 	v1  PORT 1  PORT 2 	v2 

(a) 	 (b) 

Fig. 4-3 ; Floating inductor simulation. 
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This will be equal to the admittance matrix of a floating inductor 

(4-22) if and only if 

g 	e  - = g 
13 	- a 	(ga > 0) 

= 
g31 -g32 + 32 + b 	(gb> 0) 

(4-25a) 

(4 -25b) 

where - g
a is introduced here to denote the common value of g13 

and 

-g
23

, and + g
b 
to denote 

of (4-25) in (4-24) yields 

Y = 

the common 

ga gb 

value of g
31 

and -gam, 	Substitution 

[ 1 	-11 
(4-26) 

-1 	1 sC 

which corresponds to a floating 	inductor (4-22) with inductance 

L = C (4-27) ga gb 

Substituting (4-25) in 

it  

(4-23) leads to 

0 	0 	ga 1 

i2 

i
3 

0 	0 	-ga 

-gb 	gb 	0 

v2 

v
3-  

(4-28) 

which is thus the description of a 3-port admittance inverter that will 

simulate a floating inductor when terminated by a capacitor. 

A 3-port admittance converter terminated by a resistor can also be 

used to simulate a floating inductor. The 3-port in Fig. 4-3b will 

be 	an admittance 

described by 

inverter with port 3 as the output 

0 	0 	h
13 

port 

v1 

if it is 

i2 

v 3 

0 	0 	h23 

h
31 	

h
32 	0  

v2 

i
3 

(4 -2q) 

which is in the form of (4-5). 	The admittance matrix of the 2-port 



[ h13  h31  h13  h32  

y = -g  
h
23 

h
31 

h
23 h32 

(4-30) 

v1 

v2 

0 	ha 

(4-34) 0 0 -ha 

-hb hb 0 i3  

where 

h
a 
h
b 
= k s-1 (4-35) 
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obtained by termination of port 3 by a resistor, y3  = g, is (from (4-1)): 

Y = - [1113 	g [h31 
h32I 

h23 

This admittance matrix will have the form of (4-22) if and only if 

h13 = -h23 = ha 

h
31 

= -h
32 

= -h
b 

(4-31a) 

(4 -31b) 

where h
a 

and h
b are introduced simply to provide a convenient notation. 

Substitution of (4-31) in (4-30) leads to 

Y = ha hb 
g 1 -1] 

(4-32) 

If ha hb = k s
-1, where k is a positive real constant, then (4-32) 

represents the admittance of a floating inductor of inductance 

L = (ha hb 
g s)-1 (4-33) 

Thus a floating inductor can be simulated by a 3-port admittance 

converter with the two input ports grounded (Fig. 4-3b), terminated 

by a resistor, if its description is of the form 

and k is a positive real constant. 
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These 3-port admittance inverters and converters suitable for 

floating inductance simulation will be studied in greater detail 

later in this thesis. It will then be seen that almost all the 

circuits that have been proposed for the simulation of floating 

inductors can be interpreted as terminated inverters or converters. 

It may be noted that the simulation of floating negative resistors 

or capacitors can be obtained using 3-port admittance converters or 

inverters terminated by a (positive) resistor or capacitor. These 

3-port converters or inverters will have a matrix description in a 

form very similar to the description of the converters or inverters 

for floating inductance simulation. For instance, a converter 

described by (4-34) with 

h
a 
h
b 
= -k 
	

(4-36) 

where k is a positive real constant will simulate a floating negative 

resistor when terminated by a resistor at port 3, as shown by (4-32). 

A circuit that can be interpreted as such a converter was proposed in 

[73]. 

The 3-port admittance converters or inverters for floating inductor 

simulation cannot be simultaneously impedance converters or inverters 

since the total number of ports (n + k = 3) is odd. Since many circuits 

used for the simulation of grounded inductors are 2-port converters or 

inverters, it seems very natural to find that, as already mentioned 

most of the circuits used for floating inductor simulation are 3-port 

converters or inverters. It would have been impossible to describe 

these circuits as multiport converters or inverters if the demand for 

simultaneous admittance and impedance conversion or inversion had been 

incorporated in the definitions. 
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4.8 - HYBRID CONVERTERS 

The conversion and inversion discussed so far are operations 

performed by a multiport N on the admittance or impedance matrix 

of a load multiport N2  (Fig. 4-1). The fact that N2  can have other 

types of matrix description(e.g. hybrid, transmission, scattering) 

suggests the possibility.of considering other types of conversion or 

inversion. Of these, only 'hybrid conversion.' will be considered 

here since it will be shown that it includes, as special cases, 

admittance and impedance conversion and inversion, which are the main 

concern of this chapter. It will be shown that hybrid inverters are 

only a particular type of hybrid converter and therefore need not be 

considered separately. 

The hybrid converter will be defined with reference to Fig. 4-1. 

It is convenient to use the notation appropriate for dealing with 

hybrid descriptions that was introduced before (chapter 2, section 2.1). 

E
1 denotes an n-vector whose components are some currents and some voltages 

chosen among the n currents and n voltages at the input ports of N in 

such a way that one variabl:! (voltage or current) of each port is 

included. The n remaining port-variables, form another vector F1  in 

which they are arranged with the port subscripts in the same order 

i used in El  (for example: El  = [ii  i2  v3  i4  v5j
t 
 ; F1  = [v1  v2  13  v4  15]

t
). 

E
2 

and F
2 are two k-vectors formed in a similar way from the k currents 

and k voltages at the output of N. It is assumed that the n-port 

resulting from the cascade-load connection of N and N
2 

has a hybrid 

description 

E
l 
= H

1 
F
l 
	(4-37) 

and that N
2 has a hybrid description 

p E2 = -H2 L F2 
	 (4-38) 
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where is a diagonal matrix of dimension k such that the main 

diagonal elements are 1 if, in AE2' they operate on voltages, and -1 

if they operate on currents (for example, if E
2 
= [v1 v2 

i
3 
i
4
]t  

then A= diag. (1, 1, -1, -1)). The need for the use of A in (4-38) 

results from the choice of the reference directions of the voltages 

and currents in E
2 

and F
2 

in the usual way with respect to N and not 

with respect to N2, The (n 	k)-port N is a Hybrid Converter if, for 

any H2, 

H1 = q12 H2 Q21 
	(4-39) 

Since the inverse of a hybrid matrix is itself a hybrid matrix 

(corresponding to an interchange 	of dependent and independent 

variables) it is not necessary to consider hybrid inverters 

-1 
(H
1 
= P

12 H2 P21): 
 these are a special case of hybrid converters. 

Taking into account that QQ= 1, equations (4-38) and (4-39) can 

be written in the form 

	

E2  = -( A H2 Q  ) F2 	(4-40) 

Hi = Q12 Q ( Q H2  L1 ) A Q21 	.(4-41) 

The matrix description that N must have in order to be a hybrid converter 

can very simply be obtained by noting that equations (4-37), (4-40) and 

(4-41) have the same form as the equations for the admittance converter: 

Il = Yl  V1, 12  = -Y2  V2, and Y1 = H12 Y2 H21* Therefore the result 

expressed by equation (4-5) for the admittance converter shows that 

the hybrid converter must have a description of the form 

[E

l

l 

	0 	
0Q12 Al[Pl] 

= 	 (4-42) 
F2 	- a '` An21 

	

0 	E2 

It is easy to see that the admittance and impedance converters and 

inverters discussed before are in fact special cases of hybrid converters 
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if the admittance and impedance description are regarded as hybrid 

descriptions- where all the dependent variables are of one type 

(all currents or all voltages) and all the independent variables 

are of the other type. The admittance converter corresponds to 

the choice of variables E
1 
= I

1, E2 = I2 
(and consequently 

F
1 

= V
1, 

F
2 

= V
2
) and the impedance converter corresponds to 

El  = V1  and E2  = V2. For the admittance inverter Ei  = I1, E2  = V2  

and it can be regarded as an impedance-to-admittance converter. 

Similarly the impedance inverter is interpreted as an admittance-to-

impedance. converter:, 

It should be noted that these are limiting cases in the sense that 

the vector variables considered do not contain mixed voltages and 

currents. A 'true' hybrid converter could be, for example, one 

for which E
1 
= [i

1 
i
2 

v
3
]
t 
and E

2 
= [v

4 
i
5
it. It is also possible 

that only one of the matrices H1  and H2  is a 'true' hybrid matrix: 

i if E
1 
= [i

1 
i
2
}t  and E

2 
= [i

3 
v
4
]t  the hybrid converter is a'hybrid-

to-admittance' converter. The converters in these two examples 

do not have a 2-port counterpart since 2-port converters (and inverters) 

operate on a load 1-port for which a hybrid description has no meaning. 

4.9 - CONCLUSIONS 

The present chapter was concerned with the generalization of the 

concepts of imittance conversion and inversion from 2-ports to 

multiports. According to the generalization proposed here, admittance 

and impedance conversion and inversion, which are 'scalar' operations 

when performed by 2-ports, become 'matrix' operations when performed 

by multiports. 	One consequence of this is a distinction, which does 

not exist for 2-ports, between multiport admittance and impedance 
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converters (or inverters). 

Most of the circuits that can be used for the simulation of 

floating inductors have been associated, in a somewhat intuitive way, 

with immittance inversion or conversion. In terms of the definitions 

proposed here these circuits can be formally described as 3-port 

admittance (not impedance) inverters or converters. Multiport 

transformers and gyrators are also special cases of multiport converters 

and inverters. The theory of general multiport converters and inverters 

proposed here provides a better understanding of these important 

special cases. 	It is believed that it is also useful as a contribution 

to general multiport theory. 

It has also been shown in this chapter that admittance and 

impedance converters and inverters can be regarded as special cases of 

a more general concept, that of "hybrid converter". Other types of 

multiport converters, e.g. scattering converters, could be studied 

following the approach that was taken here. 



a.. 
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APPENDIX 

Lemma I. In Y = A - BX, where X and Y are square matrices and 

B / 0, X can always be chosen such that Y is singular. 

Proof: 	If B 0 it has at least one entry bik  0. If X is 

chosen such that all rows are 0 except row k and x
k  satisfies j  

a.. - b. x . = 0 for all values of j, then row i in Y is a zero 
ij 	ik kj 

row-vector and hence Y is singular. 

k 

Y 

A 

ik 

B 

xkj 

X 

x 
k 

1 Lemma II. If AXB 	
06 

= CXD 0 for any X, then A =CIC and B = — D where 

L is an arbitrary non-zero scalar. 

Proof: If X is chosen such that only one entry is non-zero, 

x.. = 1, then a 	b. = c 	d. 	This result is true for all possible 
ii 	pi jk pi jk 

combinations of the values of the subscripts p, i, j and k. This means 

thatAbik =Cd.for all j and k and hence A = aC (C4= d
jk jk 
lb ) jk  

1 	• 
and B = D. 
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CHAPTER 5 

REALIZATION OF MULTIPORT CONVERTERS AND INVERTERS  

USING 2-PORT CONVERTERS AND INVERTERS 

5.1 - INTRODUCTION 

The formal theory of multiport converters and inverters has been 

presented in the previous chapter without any 	reference to the 

realization of these multiports. In the present chapter it will be 

shown that multiport converters or inverters can be realized by a 

suitable interconnection of 2-port converters or inverters, respectively. 

The problem of synthesising multiport converters and inverters can 

thus be reduced to the synthesis of the appropriate 2-port converters 

and inverters. 

The realization using 2-port converters and inverters is straight-

forward and creates the possibility of using the vast amount of 

knowledge about the realization 	and performance of these 2-ports. 

There are however, limitations resulting from the fact that the 2-port 

behaviour of the converters and inverters is not necessarily guaranteed 

after the interconnection. Active realization requires a common 

ground terminal for all the 2-ports and this further restricts the 

configurations that can be used. These restrictions will be discussed 

in some detail. A number of particular configurations using 2-port 

converters and inverters having a grounded terminal common to both 

ports will be considered (these 2-port converters and inverters with 

a grounded terminal common to both ports are referred to, in this 
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thesis, by the simplified designations 'grounded converters' and 

'grounded inverters'). 

All the realizations of multiport converters and inverters 

considered in this chapter are obtained from a general configuration 

which realizes any well-defined multiport as an interconnection of 

2-ports. 	This configuration will be derived, in a straightforward 

way, from the description of a general well-defined multiport. 

The realizations of multiport converters and inverters are based 

on the matrix descriptions that were obtained in the previous 

chapter and are shown there in Table 4-1. 	It will be assumed through- 

out the present chapter that the scalar ot.,, appearing in the matrix 

descriptions in Table 4-1, is 

= 1 

since this does not affect the generality of the results obtained. 

In view of the complexity of many of the diagrams considered 

in this chapter it has been found convenient to introduce a simplified 

representation. It is believed that this representation leads to 

diagrams which are easier to interpret. This simplified representation 

will be introduced in the next section. 

5.2 - A SIMPLIFIED REPRESENTATION OF THE INTERCONNECTION OF MULTIPORTS 

The present chapter is essentially concerned with the realization 

of certain multiports as an interconnection of 2-ports where it is 

assumed that the port behaviour is always maintained. For this 

situation, the usual circuit representation, in which a port is 

represented as a pair of terminals, is unnecessarily cumbersome and 

can be simplified, since it is assumed that the current flowing into 

one terminal is always equal to the current flowing out of the other 



- 127- 

terminal. 	A simplified representation which will be extensively 

used in this chapter will now be introduced (this representation will 

not, however, be used in other chapters of the thesis). 

The basic conventions associated with the simplified representation 

are the following: 

(a) A line represents a pair of wires. The voltage between the 

two wires is written above or on the left-hand side of 

the line. The current, assumed as having the same value 

and opposite directions in the two wires is written below or 

on the right hand side of the line. 

(b) A multiport is represented by a box. 	One of the matrices 

describing the multiport is given inside the box. The 

independent variables associated with the matrix inside 

the box%are always shown at each port; the dependent variables, 

when shown, are enclosed in brackets. 

(c) Arrows may be used to denote the reference direction for the 

flow of energy. 

(d) A dot, e , represents a parallel junction, where three ports 

are connected in parallel. A circle, o , represents a series 

junction, where three ports are connected in series. 

These conventions are summarized in Table 5-1. An example, showing 

the same network with the usual representation and with the simplified 

representation, is given in Fig. 5-1. 

The representation of two or more wires by one line and the use of 

parallel junctions are very common in power systems diagrams. It may 

also be mentioned that the use of one line and parallel and series 

junctions are 	basic features of the lbond graph notation [74] with 

which the simplified representation used here has some similarity. 



TABLE 5-1 : Simplified representation of the interconnection of multiports. 

USUAL REPRESENTATION SIMPLIFIED REPRESENTATION ,EQUATIONS 

2-PORT 

i1 	i2 i
11 

v2 

h 	h 
h11 	12 

h21 	h22 

vl  
- 

i2 

_. 
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+ 
v2 
_ 

v1 
0 —4. -- 

h11 	h12 

1121 	h22 

(
-- 

v2) 
v1  
_ (11)  

-44-0 

i2 

- 

PARATJM, 

JUNCTION 

i1 	i2 + 	+ v1 	v2 	, v i  = v2  = v3  

i1 = i2 
+ i

3 

v1  v2 
it  

v 

i2 

'  
3 

- 
i 
3 

+ v
3 
- 

- 

SERIES 

JUNCTION 

ii 	i2 
+ 0 	 0 1- vl 	v2  

	

i1 = i2 . i3 	. 

- v 
1 
v 	+ v 

- 	2 	3 

v1 	v2 
"Oh 0 .. p- it  i2 

i l 	i 3  

- v3  + 

. 1 
 ± 	2 
3 



i =h.. 12i  2 
v =.-h21

v
1 

i 

+ v1 

i2 
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(a) Usual representation 
	

(b) Simplified representation 

Fig. 5.1 : Example of the simplified representation. 
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It should be emphasized that the simplified representation leads 

to power-flow diagrams which must not be confused with signal-flow 

diagrams, such as the block-diagrams used, for instance, to represent 

control systems: In a power-flow diagram two variables, the product 

of which represents power (current and voltage in the present case), 

are associated with each line; in a signal-flow diagram a single 

information-carrying quantity is associated with each line. As a 

consequence, in the simplified representation, a box representing a 

2-port is associated with four parameters, whereas a block in a signal-

flow diagram represents a single transmission operator. 

5.3 - REALIZATION OF WELL-DEFINED MULTIPORTS USING 2-PORTS 

It was mentioned in chapter 2 (section 2.1) that a multiport is 

said to be well-defined if it has at least one type of hybrid 

description, the admittance and impedance descriptions being regarded 

as particular types of hybrid descriptions. It will now be shown 

how any hybrid matrix can be realized by an interconnection of 

2-ports. 

A multiport described by an admittance matrix can be realized by 

an interconnection of 2-ports as shown in Fig. 5-2, where the 

simplified representation described in the previous section has been 

used. Having in mind the meaning of the parallel junction (see Table 5-1) 

it is easy to see that the set of 2-ports interconnected as shown in 

Fig. 5-2 will have the admittance description given in the same figure. 

In a similar way it can be seen that a multiport with an impedance  

description can be realized as shown in Fig. 5-3 (the meaning of the 

series junctions used in this figure is explained in Table 5-1). 



yin 

Y2?) 

931  3  

viz 9,3 	. 	• 	• 

5Z2 9z3 	. 

432. Y33 	• 	• 	• 	• 

qii 

92.1 

931 

• 

_ (irif 	9)12. 	/OYU 	• 	• 	9nn_ 

tr2 

f tri 4-(911),vi. 

- 131 - 

I, 	, 	\ 
k, 	qic-=- 	tqlig 

Ui 	922.= .1* (q22.) 

17-3 	 433=  ±  033)i 
: 	 . 	1 

Irn 	 9hti=  Z (94n)( 

1.(9,1) , tri + 912 Lr21 

(901 

921 	(92.2.)1 

[(9 i1 )2 U 	9,3 

(9i02 	99 

13, 	033)1  

1)-3 
-4  

[934 Lri "I" (933) , 

111 
[(9ir )n 	t vin kin 

kra  

[(922)2 6-2 4.  923 ‘1.3 

U2 

[ (1122)71 112 4.  V2ntrn 

(91i)n 	Yin 

9111 	(97)n) 

(922)2 	923 

932 	(933)2 

(Y22),, 	92n 

9112 	(9411)2 

trn  

1-i +Wnn)4 47n 

0-3 

32 Ir2 4 (933)2 /.3 

(rn 

172 1r2 1- (1/4n)211.11  

U-3 

(V33)11 Ira + 9377 u;i 

(933))1 	93n 

9n3 	(13nn)n 

tYn  

13n3Y3 +(ln 

O 	 • • • 
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A multiport with a general hybrid description can be realized as 

shown in Fig. 5-4. In this figure the n-port described by an 

admittance matrix can be realized as shown in Fig. 5-2 and the k-port 

described by an impedance matrix can be realized as shown in Fig. 5-3. 

In all three cases (Figs. 5-2, 5-3 and 5-4) the number of 2-ports 

required is the number of off-diagonal elements in the matrix to one 

side of the diagonal. 	In order to realize an m-port, the number of 

2-ports required is therefore 

1 
2 m (m 	1) 

A smaller number of 2-ports may be required if the matrix contains 

pairs of zeros placed symmetrically with respect to the main diagonal. 

It may be noted that the main-diagonal elements of an m-port 

matrix are the sum of the main-diagonal elements in m of the 2-ports 

(Figs. 5-2, 3, 4). This means that all but m 2-ports can be chosen 

with zero main-diagonal elements and will therefore be 2-port converters 

or inverters. 	Even those 2-ports with non-zero main-diagonal elements 

can be replaced by 2-port converters or inverters with 1-ports connected 

in parallel or in series with the ports, as shown in Fig. 5-5. 

It is important to mention that the realizations given here 

require that for all the 2-ports the port constraints be maintained 

after the interconnection, so that the 2-port description applies. 

If this were not assumed, it would not even have been possible to 

use the simplified representation. It must not be forgotten that 

a port is a terminal pair where the current flowing into one terminal 

equals the current flowing out of the other; consequently the 2-port 

description is only a partial description of a 4-terminal network. 

Although the port constraints in the 2-ports are not always 

guaranteed after the interconnection, there are cases where they are 

satisfied. One such case is when the port constraints are a consequence 
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of the internal structure of the 2-ports, for instance when 'isolating* 

transformers are used cascaded with the ports. Another situation 

in which the port constraints are satisfied corresponds to the special 

case where each of the ports of every 2-port coincides, on its own, 

with one port of the final multiport. 

If the 2-ports are actively realized, they will usually have to 

share a common ground terminal. This is an additional factor to be 

taken into account when verifying if the port constraints are main- 

tained, since, 	in general, a 2-port with a ground terminal is in 

fact a 5-terminal network. It may be noted, however that the realization 

of a multiport with admittance description (Fig. 5-2) is always 

possible, in the general case, using grounded 2-ports (i.e. 2-ports 

with a grounded terminal common to both ports). Several special 

cases of multiports with impedance or hybrid descriptions can also be 

realized using grounded 2-ports (without resorting to the use of 

transformers). Some of these special cases will be considered in 

connection with the realization of multiport converters and inverters. 

5.4 - REALIZATION OF MULTIPORT CONVERTERS AND INVERTERS 

It was shown in the previous chapter (section 4.5) that multiport 

converters have the following property: an admittance converter becomes 

an impedance converter if the sets of input and output ports are inter- 

changed. 	This means that it is not necessary to consider separately 

the realization of admittance and impedance converters, since a 

realization of an admittance converter is also a realization of an 

impedance converter. 

Multiport inverters are, in this respect, in a different situation, 

since a change of type does not accompany an interchange of input and 
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output: the multiport resulting from the interchange of the input and 

the output of an admittance inverter,is also an admittance inverter 

and, similarly, the multiport resulting from the interchange of the 

input and the output of an impedance inverter is also an impedance 

inverter. Therefore the realization of admittance inverters has to 

be considered separately from that of impedance inverters. 

The configurations considered in the previous section will now be 

particularized for the case of multiport converters and inverters. 

Multiport converters can be realized using solely 2-port converters 

connected as shown in Fig. 5-6, which is a special case of Fig. 5-4. 

Admittance inverters can be realized as shown in Fig. 5-7, which is 

a special case of Fig. 5-2, and impedance inverters as shown in Fig. 5-8 

which is a special case of Fig. 5-3. 	Although the configurations 

of Figs. 5-7 and 5-8 are different, 2-port inverters are used in both 

cases. 

It can be seen from Figs. 5-6, 5-7 and 5-8 that an (n + k)-port 

converter or inverter requires, in general,(ri.k)2-port converters 

or inverters. 

It should be noted that all the comments made, in the previous 

section, concerning the need for the port constraints to be maintained, 

apply-  to the realizations of multiport converters and inverters 

considered here. If microelectronic realization of multiport converters 

and inverters is envisaged, the use of isolating transformers is ruled 

out and actively-realized 2-ports with a common ground terminal have 

to be considered. By using grounded 2-port inverters (inverters with 

both ports grounded) it is possible to realize any multiport admittance 

inverter (i.e. with any number of ports and without restrictions on 

the value of the elements in the matrix). Also several particular 

types of converters and of impedance inverters can be realized using 
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grounded 2-port converters and inverters, respectively. This will be 

considered in the next section. 

5.5 - MULTIPORT CONVERTERS AND INVERTERS USING GROUNDED 

2-PORT CCNVERTERS AND INVERTERS 

This section deals with the realization of multiport converters 

and inverters using 2-port converters and inverters with both ports 

grounded. Two-ports with only one port grounded or without any 

port grounded (but with a ground terminal) can be used only in very 

degenerate cases which will not be discussed here. 

The admittance inverter is the only type of multiport converter 

or inverter which can be realized, with grounded 2-ports, in its 

most general form (without additional precautions such as the use of 

isolating transformers). By stating that the admittance inverter can 

be realized ii. its most general form, it is meant that the number of 

ports and the value of the non-zero elements in the admittance matrix 

are not restricted in any way. The multiport admittance inverter is 

therefore of particular interest concerning microelectronic realizations  

where the use of isolating transformers is ruled out. 

The realization of the general admittance inverter is shown in 

Fig. 5-9 where the usual representation (as opposed to the simplified 

representation used in previous sections) is employed. 

It may be observed that a special case of the realization in 

Fig. 5- 9 is the circuit for the simulation of floating inductors using 

two grounded inverters (usually gyrators) [67]. This circuit was 

discussed before (chapter 3, Fig, 3-20) and is reproduced here as 

Fig. 5-10. 
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The realization of admittance or impedance converters using 

grounded 2-port converters is possible only in special cases, some of 

which are shown in Fig. 5-11. 

It may be noted that the "multi-PIC" network [37], which can be 

used for the simulation of inductor-networks has the configuration 

given in Fig. 5-11a. Special cases of the realization in Fig. 5-11c 

are the circuits with two grounded converters used for the simulation 

of floating inductors [37,68] and for the simulation of floating 

negative resistors [ 73 ]. These circuits were considered before 

(chapter 3, Fig. 3-21) and their configuration is reproduced here in 

Fig. 5-12. 

Also in the case of multiport impedance inverters only some 

special types can be realized with grounded 2-port inverters. Some 

of these types are shown in Fig. 5-13. 

All the configurations considered in this section are potentially 

suitable for microelectronic realization, since the 2-ports used have 

a common ground terminal and since 2-port behaviour is guaranteed 

without any need for isolating transformers. 

5.6 - CONCLUSIONS 

In this chapter it is shown how any well-defined multiport can 

be realized using 2-ports. This method is then applied to the 

realization of multiport converters and inverters using only 2-port 

converters or inverters, respectively. 

The need to ensure 2-port behaviour of the interconnected 

converters or inverters, and the requirement that all 2-ports share a 

common ground terminal, restricts the number of configurations that can 

be used without appropriate precautions (e.g. use of transformers to 
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ensure port-behaviour). However, 2-port converters and inverters 

with both ports grounded can be used to realize the general 

multiport admittance inverter and several particular types of converters 

and impedance inverters. 

The circuits for the simulation of floating inductors using two 

grounded inverters or two grounded converters are special cases of 

the realizations considered here (the same applies to the circuit for 

the simulation of floating negative resistors employing two grounded 

NIC's). 
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CHAPTER 6 

A CLASSIFICATION OF 3-PORT INVERTERS AND CONVERTERS 

USED IN THE SIMULATION OF FLOATING INDUCTORS  

6.1 - INTRODUCTION 

When the simulation of grounded inductors was reviewed in chapter 3 

(section 3.5) it was mentioned that most of the circuits that have been 

proposed in the literature are either 2-port inverters (usually gyrators) 

terminated by a capacitor, or 2-port converters terminated by a resistor. 

In some cases the same circuit can be considered either as an inverter 

or as a converter depending on whether a capacitor or a resistor is 

regarded as the termination. 	It has also been mentioned that not 

only lossy inductors but also lossless inductors can be simulated by 

circuits which cannot be interpreted as inverters or converters. 

A similar situation is found in the case of the simulation of 

floating inductors. It was shown in chapter 4 (section 4.7) that a 

floating inductor can be simulated by a 3-port admittance inverter 

terminated by a capacitor or by a 3-port admittance converter terminated 

by a resistor. These 3-port inverters and converters are special 

cases of the multiport inverters and converters introduced in this 

thesis as a generalization of 2-port inverters and converters. Some 

circuits simulating a floating inductor can be interpreted either as 

a terminated inverter or as a terminated converter, depending on 

whether a capacitor or a resistor is considered as the termination 

(an example of this will be considered later in this chapter). It is 
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also possible to simulate a floating inductor by circuits which 

cannot be interpreted as inverters or converters. Examples of such 

circuits can be found in [ 75 ] and [ 761 (the circuits in [ 75 ] 

simulate a lossy inductor and the circuit in [ 76 ] simulates a 

lossless inductor). It should be emphasized, however, that the vast 

majority of circuits that have been proposed for the simulation of 

floating inductors are interpretable as terminated inverters or 

converters. 

It will be assumed that the inverters used for floating inductor 

simulation (FIS) are realized as active R networks and are therefore 

described by a matrix whose elements are real constants. It was 

shown in chapter 4 that an inverter suitable for FIS must have a 

description of the form: 

     

     

it  
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3 

0 0 ga 

0 0 -ga 

-gb gb 0 
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v
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v
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(6-1) 

     

     

     

where ga  and gb  are positive real constants. 

A converter that simulates an inductor when terminated by a 

resistor must contain at least one capacitor. It will therefore be an 

active RC network described by a matrix in which some elements are 

dependent on the complex frequency variable s and, as shown before 

(chapter 4), it must have a description of the form 

0 0 ha 1 

v2 
	(6-2) 
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and k is a positive real constant. 

Although all inverters suitable for FIS have the same 3-port 

description, expressed by equation (6-1), they may have different 

terminal descriptions. Similarly, all converters for FIS must have 

the 3-port description (6-2) but different realizations may have 

different terminal descriptions. In this chapter a classification Gf 

3-port inverters based on their terminal description will be 

established. A parellel classification will also be applied to the 

3-port converters. According to this classification, circuits that 

belong to different classes are distinguishable by terminal 

measurements. 

It is believed that the classification proposed here clarifies 

the relationships between the different realizations of inverters and 

converters that can be used for the realization of floating inductors. 

It will be made clear that whereas some realizations can be distinguished 

by external measurements, others cannot. It is shown that some circuits 

that are apparently unrelated, do in fact belong to the same class; it 

may be possible, if two circuits have the same terminal description, 

to derive one from the other. This possibility is applied to the 

derivation of several 3-port gyrators using three operational amplifiers 

from an initial circuit with two gyrators, each gyrator containing two 

amplifiers. 

It should be noted that the inverters and converters considered 

here may have other applications besides their use in the simulation 

of floating inductors. Inverters with a description in the form of 

(6-1) can be used to synthesize constant resistance all-pass networks 

[ 77 ]. Converters described by (6-2) where 

ha hb = -k 	(6-4) 

and k is a positive real constant can be used to simulate floating 
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negative immittances [ 73 ]. 

6.2 - TERMINAL DESCRIPTION OF 3-PORT INVERTERS 

FOR FLOATING INDUCTOR SIMULATION 

A 3-port admittance inverter that simulates a floating inductor 

when terminated by a capacitor has the general 5-terminal configuration 

shown in Fig. 6-1. The 3-port formed in the way indicated in Fig. 6-1 

must have a description in 

i1 

i2 

i
3 

the form 

= 	- 

of equation (6-1), 

0 	0 	ga 

0 	0 	-ga 

-gb 	gb 	0 

i.e. 

v
1 

v2 

v3  v4  

(6-5) 

where i
3 
= -i

4 
and the voltages are defined between each terminal and ' 

the ground terminal O. 

The 5-terminal network in Fig. 6-1 becomes a 3-port inverter 

described by (6-5) when the ports are formed as indicated in the 

figure. The form of the required terminal description will now be 

derived. 

The most general description of a linear time-invariant and non- 

reactive 5-terminal network (terminals 

as reference) is: 

0, 	1, 2, 3, 4, with terminal 0 

mll 	m12 	m13 	m14 
it  P
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where all m., and all P. are real constants. If the 5-terminal 
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Fig. 6-1 : Floating inductor simulation 

by admittance inversion. 
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network is constrained to be a 3-port in accordance with Fig. 6-1, then 

i
4 
= -i

3 
	(6-7) 

With this constraint, (6-6) can be written in the form 

mll 

m21 

m
31 

41 m41 

m12 

m22 

m
32 

m42 
 
42 

(m13 

(m23 

(m33 

fra 
s 43 

- m14)  

- m241  

- m34) 

- m444 44 

t
i  

i2 

i 3_4 

1)11 

P21 

P31 

P41 

P12 

P22 

P32 

1)42 

1)13 

p23 

p33 

P43 

1)14 

P24 

P34 

p44 

1 

v2 

v3 

4 

0 

(6-8) 

This matrix equation corresponds to four scalar equations. If the 

3-port is to be a 3-port inverter described by (6-5), i.e. 

; ga (v3 - v4 )  = 0  

. t2 - g
a 
(v

3 
- v4) = 0 

(6-9) 

i3 - gb (v1 - v2) = 0 

then these three equations must be obtainable from (6-8). It will 

be assumed that the first three equations in (6-8) have been reduced 

to the form of (6-9). 	It can be seen by comparison of (6-9) with (6-8) 

that (6-6) 	must be of the form 

1 	o 	a 	v., 11 0 	0 	g
a 	

_g
a 1 

'2 0 	0 	-ga 	ga v2 
= 0 (6-10) 

o 	o 	1+ p i3 
_g

b 	gb 	0 	0 v3 

m41 m42 	
m43 	m44 4 P41 	p42 	P43 	P44 114 

where oz., 	, m4.1  and p4i  (j = 1, 2, 	3, 	4) are arbitrary real constants. 

The equations in (6-10) can be rearranged in the form 
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1 

0 

1 

m
41 

0 

0 

1 

m
42 

1+ 0 

r 

m
43 

(3 

m
44 

1 

i2 

i3 

i4 

0 

-gb 

P41 

0 

gb 

'42 

g
a 

0 

P43 

-
ga 

0 

P44 

v1 

v2 

v
3 

4 

= 0 (6-11) 

where the 3rd rows of the matrices in (6-11) are obtained by adding 

the 1st and 2nd rows of the matrices in (6-10), with .r= M+8 , and the 

2nd rows of the matrices in (6-11) are the 3rd rows in (6-10). 

The 5-terminal active R network in Fig. 6-1 must have a description 

in the form of (6-11). In equation (6-11) there are several arbitrary 

parameters. Each specific set of these parameters defines a specific 

5-terminal network (but different sets do not necessarily denote 

different networks, as mentioned in 2.1). All such 5-terminal networks 

become the same 3-port inverter with the description given by (6-3). 

Some of these special cases, corresponding to different values of the 

arbitrary parameters in (6-11), are of particular practical and concept-

ual interest and will be discussed in the next sections. Three cases 

will be considered. The first two impose constraints on the terminal 

configuration of Fig. 6-1, whereas the third case imposes a constraint 

on the terminal currents: 

Case 1: Terminal 4 (or 3) coincides with terminal O. 

Case 2: Terminal 4 (or 3) coincides with terminal 1 (or 2). 

Case 3: The current i
o
, entering the network through terminal 0 

is zero. 

For reasons which will become clear later, these cases will be 

discussed in the order 1, 3, 2. 	Realizations that do not fall into 

any of these special cases will also be discussed. 
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6.3 - FOUR-TERMINAL INVERTER 

In this section, the special case where terminals 4. and 0 are 

coincident (Fig'. 6-2) will be considered. 	It should be noted that 

the case where terminals 3 and 0 coincide differs from this only by 

a different numbering of the terminals. 

In this case the basic 5-terminal becomes a 4-terminal network 

which, if a 3-port inverter with common terminal 0 is to be obtained, 

must have a terminal description which is identical with the 3-port 

description given 	by (6-1), i.e. 

it  0 0 ga 171 

i2 0 0 -ga v2 
(6-12) 

i
3 

-gb  gb  
0 v3 

If the network in Fig. 6-2 is regarded as a 5-terminal network, 

thm the equation 

V4  = 0  

must be considered together with (6-12) leading to 

This can also be written 

1 	0 	0 	0 

0 	0 	1 	0 

1 	1 	0 	0 

0 	0 	0 	0 

it  

i2 

i
3 

v4_ 

it  

i2 

i3  

as 

0 

-gb 

0 

0 

O 	0 	g 

O 	0 	-g 

-gb 	gb 	0 

0 	0 	0 

0 	g
a 	

-g
a 

gb 	0 	0 

0 	0 	0 

0 	0 	1 

a 

a 

0 

0 

0 

0 

v
1 

v
2 

v3 

v 

v1 

v
2 

3 

i4 
 

= 0 

(6-13) 

(6-14) 
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3 

Fig. 6-2 ; Special case of Fig. 6-1 where terminals 

4 and 0 coincide ( 4-terminal inverter ). 
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Fig. 6-3 : Four-terminal inverter using two grounded inverters. 

Fig. 6-4 : 4-terminal inverter with 3 operational 

amplifiers ( Deboo's circuit ). 
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It can be seen that (6-14) is a special case of (6-11). In 

this case there are no arbitrary parameters in the terminal 

description of the network. It is therefore impossible to distinguish 

between different circuits belonging to this special case (apart 

from the values of ga  and gb). Since this realization of the 3-port 

inverter is a 4-terminal network it will be designated as a 

4-terminal inverter. 

Several of the circuits that have been proposed for the simulation 

of floating inductors are 4-terminal inverters. This is so in the 

case of the circuit proposed by Holt and Taylor [67] using two 

grounded inverters (usually gyrators); this circuit has been mentioned 

in previous chapters, and is reproduced here in Fig. 6-3. The circuit, 

using 3 operational amplifiers, published by Deboo [78] is also a 

4-terminal inverter (Fig. 6-4). Likewise, the transistor circuits 

described in [79-82] are 4-terminal inverters. 	It may be noted that 

the designation 'semi-floating' gyrator has been used for some of these 

circuits (apparently in order to indicate that the capacitor is 

grounded but the simulated inductor is floating). 

6.4 - FLOATING INVERTERS 

The special case where in the 5-terminal network of Fig. 6-1 

i
o = 0 or i1 

+ i
2 

+ i
3 
+ i

4 
= 0 	(6-15) 

will now be considered. Then the description of the 5-terminal network 

corresponds to (6-11) with 

r = 1 

i.e.: 
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1 0 c. m it  0 0 g
a 

-g
a vl 

 

0 0 1+(3 p i
2 - gb-  gb 

0 0 v2 
-=0 

1 1 1 1 i3 0 0 0 0 v3 

m41 
m
42 

m
43 

m
44 

i
4 P41 P42 P43 P44 

v
4 

It is obvious that = 1 is sufficient to satisfy (6-15). To prove 

that i5- m 1 is also necessary, assume that -6'0-  1. Then, in order to 

satisfy (6-15) it becomes necessary to choose the 4th rows of the 

matrices in (6-11) to be [1 1 1 1] and [0 0 0 0]. If rows 3 and 4 are 

now interchanged a description is obtained which is a special case of 

(6-16). 

The realizations of the 3-port inverter that belong to this special 

case will be designated as floating inverters. This designation is 

suggested by the fact that the 2-port formed by combining terminals 

1 and 2 to obtain one port and terminals 3 and 4 to obtain the other 

port is an inverter which is 'floating,  i,e.,isolated from the ground 

terminal (in the sense that i
o 
= 0). 

There are a number of obvious ways in which floating inverters can 

be realized: 

(a) by using an ordinary 2-port inverter connected to a floating 

power supply, for example a battery, which is not connected 

to ground; 

(b) by using, as in (a), an ordinary 2-port inverter but a grounded 

power supply and a "gyrator-floatation circuit" [83] which is 

inserted between inverter and power supply, simulating a high 

impedance; 

(c) by using an ordinary 2-port inverter which contains, instead of 

conventional amplifiers with grounded output ports, special 

(6-16) 



- 160- 

amplifiers with floating output ports (and differential input 

ports) [84]. 

Two possible examples of floating inverters are shown in Fig. 6-6 

in a nullator-norator representation. The circuit in Fig. 6-6a can 

be described by 

11  = g (v3  - v4) 	(6-17a) 

	

-i4 = .-g (v1 - v2 ) 
	

(6-17b) 

it  + i2 + i3 + i4 = 0 	
(6-17c) 

v1 	V4 	
(6-17d) 

and the circuit in Fig. 6-6b by 

i1 = g (v3 	v4) 	
(6-18a) 

12 	
-g (v3  - V4) 	(6-18b) 

13  = -g (V1  - v2) 	(6-18c) 

i
4 

= g (vi 	Ar2) 	(6-18d) 

Equations (6-17), when written in matrix form are a special case of 

(6-16) and it is easy to see that (6-18) can be brought to a form which 

is also a special case of (6-16). However, whereas the circuit 

described by (6-18) has an admittance description, the circuit described 

by (6-17).does not have such a description, since equation (6-17d) 

involves voltages only and for the existence of an admittance description 

it is required that all voltages can be imposed independently. This 

shows that, although both circuits satisfy the same 3-port inverter 

matrix, with the same values for ga  andgb , and belong to the same 

class of 3-port inverters as defined by (6-16), they can be distinguished 

by external terminal measurements. Thus the situation is different 

from that encountered in the case of the circuits in Figs. 6-3 and 6-4 
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Fig. 6-5 : Special case of Fig. 6-1 where 3.0=0 (Floating Inverter), 

= g (v3-v4)  

-i4 =-g  (v3-v4) 
i1+ i2+ i3 + 4 = 0 

V = v4  
4 

   

	o
3 

i1 = g (v3-v4) 

12  =-g (v3  v4) 3  

i3 --g (v -v ) 3 - 	1 2 

/ 4,  = g (v1-v2)  

   

(b) 

  

	04  

Fig. 6-6 : Two examples of floating inverters. 
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which cannot be distinguished by terminal measurements. 

6.5 - FLOATING 3-TERMINAL INVERTER 

The special case where terminals 4 and 1 coincide (Fig. 6-7) will 

now be e:zamined. 	It should be noted that the four cases corresponding 

to terminals 4 of 3 coincident with 1 or 2 only differ from each other 

by the numbering of the terminals. 

The terminal description (6-11) for the present case, must contain 

the equation 

vl 	v4  

Also, since terminals 1 and 4 are connected (Fig. 6-7) the voltages and 

currents must be affected in the same way by it  and i
4 and therefore 

these currents must always occur in (6-11) combined as (i
1 + i4

). This 

means that the coefficients multiplying it  and 14  must be equal,i.e, 

mil 	mi4 
for i = 	1, 2, 	3, 	4 

Therefore (6-11) becomes 

1 	0 1 	1 0 0 	ga -ga v
1 

0 	0 1 	0 i2 -g
b g

b 	
0 0 v2  

0 (6-19) 

1 	0 1 	1 i3 0 0 	0 0 v3 

0 	0 0 	0 i4 1 0 	0 -1 

Comparison of (6-19) and (6-16) shows that (6-19) is a special case of 

(6-16). Thus the case of terminals 4 and 1 coinciding is revealed - 

unexpectedly - as a special case of floating inverter. Since two of 

the terminals coincide this case will be referred to as floating 

3-terminal inverter. 	One possible way of realizing it is by using 

any 2-port inverter which is 3-terminal and making it "float" by one 
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Fig. 6-7 : Special case of Fig. 6-1 Talere terminals 

4 and 1 coincide ( Floating 3-terminal inverter ). 
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Fig. 6-8 : A 3-port circulator. 
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of the methods mentioned in the previous section. 

If the network of Fig. 6-7 is regarded as a 4-terminal network 

(terminals 1 and 4 are merged) then the terminal description will 

be, from (6-19) 

i
1 

i
4 

g
a 	

g
b 

-g
b ga vi 

i2 
11•■ ga 0 -ga '7

2 
(6-20) 

i3 -gb gb 0 v
3 

If ga  = gb, (6-20) 

i1 + j4 

i2 

i3 

becomes the 

= 	- 

description of a 3-port 

	

0 	-g 	g 

	

g 	0 	-g 

	

-g 	g 	0 

circulator: 

vl 

v2 

v3_ 

(6-21) 

It should be noted, however, that although the same network that 

realizes a 3-port circulator can be used to realize a 3-port inverter, 

these two 3-ports are quite distinct: the ports, are formed in a 

different way and the port descriptions are very different. 

The use of a circulator to simulate floating inductors was proposed 

by Rollet [85]. 	A circulator can be actively realized in different 

ways. 	A circuit that realizes a 3-port circulator, with all three 

ports grounded, and which contains 3 operational amplifiers [86, 87] 

is shown in Fig. 6-8. 

6.6 - THE 'GENERAL' INVERTER 

Most of the circuits that have been proposed for the simulation 

of floating inductors by admittance inversion belong to the special 

cases considered in the previous sections, i.e.,they can be classified 



- 165 - 

either as 4-terminal inverters or as floating inverters (this includes 

the circuit using a circulator, which is regarded as a floating 

3-terminal inverter), However, there are 3-port gyrators suitable for 

floating inductor simulation which do not belong to any of these 

special cases. An example of such a 'general' inverter ('general' 

means simply that the inverter does not belong to one of the special . 

cases) appears as part of a circuit in a recent publication [49] on 

wave active filters, derived from doubly terminated LC ladder filters. 

In [49] a floating inductor is replaced by the circuit shown here in 

Fig, 6-9. This circuit uses only one capacitor. If the capacitor 

is extracted and regarded as the termination of a port, the remaining 

circuit is a 3-port inverter of the 'general' type, as will now be 

shown. 

The circuit in Fig. 6-.9a can be redrawn as shown in Fig. 6-9b 

where the operational amplifiers are replaced by nullors. Analysis 

of this circuit shows that it can be described by 

1 0 0 0 it  0 	0 g/2 -g/2 v1 

0 0 0 -1 i2 -g/2 g/2 0 	0 v2 
= 0 (6-22) 

1 1 0 0 i
3 0 	0 0 	0 v3 

0 0 0 0 i
4 -1 	0 1/2 1/2 4 

This equation is in the form of (6-11). However, the circuit is not 

a 4-terminal inverter since it is not constrained to have any voltage 

equal to zero. It can also be seen that i
3 does not appear in the 

equations describing the circuit and therefore the currents are not 

constrained to be i
t + i2 + i3 

+ i
4 = 0 or i0  = 0, which means that 

the circuit is not a floating inverter. 

It might be asked whether it is possible to distinguish, by 

terminal measurements, between different 'general' realizations of the 
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Fig. 6-9 : A 'general' inverter. 
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3-port inverter. 	This question can be answered, in the affirmative, 

by considering the circuit of Fig. 6-10 which is a 'general' inverter 

as the circuit of Fig. 6-9 but has a different terminal description. 

The circuit of Fig. 6-10 can be described by 

it  = g
a 
(v
3 
- v

4
) 

i2 = -ga (v3 - v4)  

i
3 

= -g
b 
(v
1 - v2

) 

i
4 	gb (v1 v2)  + go v4 

These equations show that the circuit is a 'general' inverter since 

neither any of the voltages is constrained to be zero nor does 

i
o = i1  + i2 + i3 

+ i
4 = 0 apply. This circuit has an admittance 

description and can therefore be distinguished from the circuit of 

Fig. 6-9 which does not possess an admittance description as shown 

by the fact that the matrix multiplying the current-vector in (6-22) 

is singular (the circuit of Fig. 6-10 is presented here only to 

illustrate the possibility of distinguishing between different 'general' 

inverters;itEsnotclaimed that this circuit is of practical interest). 

An additional example of 'general' inverter is provided by a circuit 

that has recently been proposed for the simulation of floating inductors 

[ 88]. The circuit can be realized with 3 operational amplifiers and 

is shown in Fig. 6-11 in a nullator-norator representation. It is 

easily seen that if gl  = g5  m g and g5  g7  = g6  g8  the circuit is 

equivalent to a floating admittance: 

The floating admittance will represent a floating inductor if y2  (or y4) 

is realized by a capacitor and y3  and y4  (or y2) are realized by resistors. 
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1 
11 = ga (v3-1r4)  

2 	i3 = -gb (v1-v2) 

ilt 12  = 0 

13 	= go 4 

Fig. 6-10 : Another 'general' inverter. 

it= gig5 	3  (v1-v2) 
Y2Y4  

it  = -i2  if gl  = g5  and g5g7  = g6g8  

Fig. 6-11:A circuit for floating inductor simulation which can be 

interpreted either as a converter or as an inverter. 
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The resulting circuit can be regarded either as a 3-port inverter 

terminated by the capacitor or as a 3..port converter terminated by the 

resistor that realizes y3. 	It can be shown that the two inverter 

circuits obtained by extraction of y2  or y4  are 'general' inverters, 

6.7 - THREE-PORT CONVERTERS FOR FLOATING INDUCTOR SIMULATION 

The 3-port admittance converters that simulate a floating 

inductor when terminated by a resistor have the general 5-terminal 

configuration shown in Fig. 6-12. Although different realizations 

must have the same 3-port description, expressed by equation (6-2), 

they may have different terminal descriptions. Since the situation is 

similar to that encountered in connection with the inverters, a 

classification parallel to the one developed in the previous sections 

can be applied to the 3-port converters used for the simulation of 

floating inductors. 	Given the close similarity between the two 

classifications, only a brief outline of the classification of the 

converters will be given here. 

a 

It can be shown that the 

description in the form 

1 	0 a 

0 	0 	(3 	(3  

1 	1 	V' 

m
41 43 m42 	

m 	
m44 

of 

it  

i2 

i
3 

i4 

5-terminal network of 	Fig. 6-12 

0 	0 	0 	0 

h
b 	

-h
b 	1 	-1 

0 	0 	0 	0 

P41 	P42 	p43 	p44 

must 

v1 

v2 

v3 

4 

have 

= 0 (6-24) 

The same special cases that were considered in connection with 

the inverters will now be examined. 
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Fig. 6-12 : Floating inductor simulation 

by admittance conversion 
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Terminals 4 and 0 coincide: 4-terminal converter 

In this case the 5-terminal network of Fig. 6-12 assumes the 

particular 

equation 

configuration 

(6-24) becomes: 

1 	0 	-ha • 	0 

0 	0 	0 	0 

1 	1 	0 	0 

0 	0 	0 	0 

1 

i2 

i3 

i4 

shown in Fig. 6-2. 

0 	0 

b 	-b 

0 	0 

0 	0 

0 

1 

0 

0 

It is 

0 

-1 

0 

1 

easy 

v
l  

v2 

v3 

_ 4_ 

to'show that 

0 	(6-25) 

io 
0 : floating converter 

In this case 	b" 

1 	0 	-h
a
+ct 

0 	0 	(3  

1 	1 	1 

m
41 	

m42 	m43 

m 	1 

c. 

(3  

1 

m44 

in 

ii  

i
2 

i3 

i
4 

equation (6-24): 

0 

h
b 	

-h
b 

0 	0 

41 	P42 

0 

1 

0 

p43 

0 

-1 

0 

44 

v.1 

v2 

v3 

v
4 , 

= 0 (6-26) 

A floating converter can be obtained from an ordinary 2-port converter 

by using one of the methods mentioned in connection with the floating 

inverter (section 6.4). 

Terminals 4 and 1 coincide: floating 3-terminal converter 

Equation (6-24) becomes 

1 

0 

1 

0 

0 

0 

1 

0 

-ha+1 

0 

1 

0 

1 

0 

1 

0 

ii  

i2 

i3  

i
4 

0 

-hb 

0 

1 

0 

hb 

0 

0 

0 

1 

0 

0 

0 

-1 

0 

-1 

v1 
v2 

v
3 

4 

= 0 (6-27) 
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As for the inverters, this case can be recognized as a special 

floating converter since (6-27) is a special case of (6-26). 

If the 5-terminal network which has in this case the configuration 

shown in Fig. 6-7 is regarded as 4-terminal by merging terminals 1 and 

4, its description can be written (from 6-27)) as 

1
1
+1
4 

0 0 h
a
-1 v

1 

i2 0 0 -ha v2 (6-28) 

v3 
1-hb h

b 0 v3 

In view of the correspondence between this case and the floating 

3-terminal inverter, equation (6-2e) corresponds to (6-20). However 

whereas (6-20) with ga  = gb  is recognized as the description of 

a circulator, no way has been found of associating (6-28) with any 

well known 3-port. 

A 3-port converter can be realized by two grounded 2-port converters. 

The resulting circuit has already been met in previous chapters and is 

reproduced here in Fig. 6-1?. If the 2-port converters have the descrip-

tion in Fig. 6-13, then the terminal description of the 5-terminal network 

can be written as 

1 

0 

1 

0 

0 

0 

1 

0 

-h
a 

0 

-h
a 

0 

0 

 0 

-h 
 

0 

it 

i2 

i3 

4_ 

0 	0 

hb -hb 

0 	0 

hb 	0  

0 

1 

0 

1 

0 
-1 

0 

0 

v1 

v2 

v3 

v
4 

= 	0 (6-29) 

This equation shows that the realizations of Fig. 6-13 does not belong to 

any of the special cases, except if ha  = -1, when it becomes a floating 

converter. 

It has already been mentioned that the circuit shown in Fig. 6-11 can 

be interpreted either as a converter or as an inverter. In contrast 
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i2 

Fig. 6-13 : Three-port converter using 

two grounded converters. 
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the circuit of Fig. 6-13 can only be interpreted as a converter since 

it must contain more than one capacitor (both 2-port converters contain 

at least one capacitor). 

It appears that the circuit shown in Fig. 6-13 is the only one that 

has been proposed so far for the simulation of floating inductors 

that can be interpreted as a 3..port converter but not as a 3-port inverter. 

6.8 . A FAMILY OF 3 -PORT INVERTERS USING 3 OPERATIONAL AMPLIFIERS 

It has been mentioned before that the 3-port inverter circuit 

using two grounded 2-port inverters (Fig. 6-3) and the circuit 

published by Deboo, employing three operational amplifiers (Fig. 6-4) 

have the same terminal description and therefore cannot be distinguished 

by external measurements. In terms of the classification proposed here 

the two circuits belong to the same class: they are both 4-terminal 

inverters. However, these two circuits appear to be otherwise 

unrelated: one of them contains 3 operational amplifiers; the other 

uses 2 grounded positive inverters each of which requires at least 

2 operational amplifiers (a proof that a grounded positive inverter 

requires at least two operational amplifiers will be presented in the 

next chapter). However, it will now be shown that when two specific 

positive inverter circuits, each containing two operational amplifiers, 

are connected in accordance with Fig. 6-3, one of the operational 

amplifiers can be made redundant; if the redundant amplifier is 

supressed, a 4.terminal inverter containing 3 amplifiers is obtained. 

In fact, the two inverters can be connected in four different ways and 

in each case one amplifier can be suppressed. In this way a family of 

four different circuit configurations which realize the 4-terminal 

inverter is obtained. These four circuit configurations will be given 

in a nullator-norator representation; each configuration contains 



- 175 - 

three nullors which can be replaced by operational amplifiers. One of 

the operational amplifier realizations of one of the four nullor 

circuits is the circuit proposed by Deboo. 

The two specific positive inverter circuits to be connected in 

accordance with Fig. 6-3 are the two gyrator circuits of reference [78] 

shown here, in a nullator-norator representation, in Fig. 6..14. For 

convenience, the two gyrator circuits will be designated as circuit A 

and circuit B. These two circuits can be connected in the four 

possible combinations: 

AA 	AB 	BA 	BB 

Circuit AA: 

When two gyrator circuits of type A are connected to form a 3...port • 

4.terminal inverter (Fig. 6-15a), it is very easy to see that it is 

possible to eliminate one nullor. In the circuit of Fig. 6-15a there 

is a positive resistor ill parallel with a negative resistor between 

terminal 3 and the ground (the negative resistor is realized by the 

circuit of Fig. 3-11, in chapter 3). This parallel combination of 

two conductances g and 	is equivalent to an open-circuit and can 

therefore be eliminated from the circuit of Fig. 6-15a2  leading to 

the circuit of Fig. 6-15b with only 3 nullors. 

Circuit BA: 

This case is shown in Fig. 6016. Two equal resistors of conductance 

g can be connected between node a and the ground and between node b and 

the ground, as shown in Fig. 6-16a (without affecting the port behaviour)* 

This is so because the part of the circuit between a and b is a negative 

imittance converter with conversion factor -1 (if the equivalence of 

Fig. 3-7a is applied and one of the two additional resistors is transferred 



CIRCUIT A 

CIRCUIT B 

Fig. 6-14 : Two grounded gyrators. 
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Fig. 6-15 : Circuit AA 
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2 

Fig. 6-16 : Circuit BA 
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to the other side of the NIC, its conductance changes sign and cancels 

the other additional resistor). When the two additional resistors are 

inserted in the circuit a parallel combination of a positive and a 

negative resistor appears between terminal 3 and the ground. If this 

combination is eliminated, the 3-nullor circuit of Fig. 6-16b is 

obtained. 

Circuit AB: 

This configuration is given in Fig. 6-17. Two equal resistors of 

conductance g/2 can be added to the circuit between points d and e and 

the ground, since the part of the circuit between d and e is a NIC 

with conversion factor -1 (Fig. 6-17a), The voltages and currents in 

the circuit, with the exception of the currents in the norators, will 

not be altered if the part of the circuit shown in Fig. 6-17b is 

replaced by the circuit 	shown in Fig. 6-17c. If this replacement 

is carried out, the parallel combination of a positive and a negative 

resistor with conductances g and -g appears between terminal 3 and the 

ground. If this is eliminated, the circuit of Fig. 6-17d is obtained. 

Circuit BB: 

The connection of two gyrator circuits of type B is shown in 

Fig. 6-18a. Two equal resistors of conductance g can be connected 

between points b and d, and the ground. Another pair of resistors with 

conductance g/3 can be connected between points f and h and the ground 

(Fig. 6-18a). If the part of the circuit shown in Fig. 6.18b is 

replaced by the circuit shown in Fig. 6-18c, the voltages and currents 

in the remaining circuit, apart from the currents in the norators, will 

not be affected. When this replacement is carried out, the parallel 

combination of a positive and a negative resistor appears between 
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Fig. 6-17 : Circuit AB. 
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terminal 3 and ground. The supression of this combination leads to 

the circuit of Fig. 6-18d which contains 3 nullors. 

It can easily be seen that the circuit in Fig. 6-17d, obtained from 

the configuration AB, is a nullor representaticnof Deboots circuit 

(Fig. 6-4). 

All four circuits can be realized using 3 operational amplifiers 

with differential input and grounded output. As mentioned before 

(section 2.2) a circuit with n nullators and n norators can be 

realized in 2n  n! different ways (there are n! different possibilities 

for pairing the nullators with the norators and 2n  different choices 

for the polarity of the inputs of the n operational amplifiers). 

For n = 3 there are 48 different operational amplifier realizations 

which have different non-ideal performance (including different 

stability properties). 

6.9 - CONCLUSIONS 

In this chapter the various methods of active RC simulation of 

floating inductors based on admittance inversion and conversion have 

been examined; in particular, the possibility of distinguishing 

between different circuits by external measurements was considered. 

All 3-port admittance inverters suitable for floating inductor 

simulation have the same port description (equation (6-1)) and 

therefore cannot be distinguished by port measurements (apart from 

different values of ga  and gb); similarly all 3-port admittance 

converters for floating inductor simulation are described by (6-2) and 

cannot be distinguished by port measurements (apart from the values of 

ha and hb). However, these 3-port converters and inverters are in 
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general 5-terminal networks which may have different terminal descrip- 

tions. 	It may thus be possible to distinguish different realizations 

by terminal measurements. 

The possibility of distinguishing different inverters by their 

terminal description has been used to establish a classification of 

inverters suitable for floating inductance simulation. In general 

their terminal description can be written in the form of equation 

(6-11) which contains several unspecified parameters. A special case 

is the "4-terminal inverter", described by (6-12) which includes, 

among others, Holt and Taylor's 2-gyrator circuit and Deboo's 3-amplifier 

circuit. Another special case is the "floating inverter", with a 

description in the form of (6-16), which includes any 2-port inverter 

with an individual, ungrounded power supply. A special floating 

inverter is the "floating 3-terminal inverter". The circuit using a 

circulator corresponds, in terms of the classification, to a floating 

3-terminal inverter for which ga  = gb. 

According to the classification proposed here, circuits of different 

classes have different terminal descriptions, i.e. are distinguishable by 

terminal measurements. Whereas all 4-terminal inverters have the same 

terminal description, it has been shown, by means of an example, that 

different floating gyrators may have different terminal descriptions. 

All floating 3-terminal inverters, however, have the same terminal 

description. It has been shown that different 'general' inverters 

(i.e. inverters that are neither 4-terminal nor floating) can have 

different terminal descriptions. 

A similar classification has been established for converters used 

in floating inductance simulation. Apart from those circuits that 

can be interpreted either as a terminated converter or as a terminated 
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inverter, the only converter circuit for floating inductor 	simulation 

referred to in the literature is apparently the circuit using two 

grounded 2-port converters, which belongs to the general case. This is 

in contrast with the situation encountered with inverters of which many 

realizations have been published, almost all of them belonging to the 

special classes. 

Finally it has been shown that a family of 4-terminal inverters 

with 3 operational amplifiers can be derived from the circuit using two 

grounded gyrators, when these are replaced by two specific gyrator 

circuits. Although each gyrator has two amplifiers, one amplifier can 

be made redundant after the two gyrators are connected and can there.. 

fore be eliminated. One of the 3-amplifier circuits obtained is the 

circuit proposed by Deboo. It is thus shown that this circuit, which 

belongs to the same class as the 2-gyrator circuit, can, in addition, 

be derived in a simple way from a realization employing two specific 

gyrator circuits. 
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CHAPTER 7 

INVERTERS WITH A MINIMUM NUMBER 

OF ACTIVE COMPONENTS  

7.1 - INTRODUCTION 

The present chapter is concerned with the realization of inverters 

with a minimum number of active components; in particular, 2-port 

positive inverters using only one active component will be considered 

in detail, and the possibility of grounding both ports in such 

inverters will be investigated. The results obtained are useful as 

contributions to the subject of minimal realizations of 2-port inverters, 

and have also direct consequences regarding the realization of multi•• 

port inverters, in general, and of 3-port inverters for floating 

inductance simulation, in particular. This is so because multiport 

admittance inverters and also some types of impedance inverters can 

be realized as an interconnection of grounded 2-port inverters, as 

discussed in chapter 5 (see Figs. 5-9 and 5-13). It should be noted 

that the designation 'grounded 2-port* is used in this thesis for 

2..ports in which the ports have a common terminal which can be grounded. 

The investigation of the minimum number of active components 

required to realize a network with a given description is not only of 

theoretical interest but is also very interesting from a practical 

point of view. A. reduction in the number of active components in a 

network leads to a reduction in the d.c. power required, the heat 

generated, the cost, and also the volume and weight. It may be noted, 
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however, that there is often a trade-off between number of active 

components and sensitivity [89]: a reduction in the number of active 

components is in many instances accompanied by an increased sensitivity. 

It will be assumed that the inverters to be considered here are 

described by real and constant parameters. It has been mentioned before 

(chapter 3) that a 2-port positive inverter has an admittance description 

of the form 

12 1 	
0 	Y 	1 

[ y21 0 _I v2  

where y12  and y21  are real constants with opposite signs. If 

1 Y121 = 1  Y211 	the positive inverter is externally passive and is 

	

called a gyrator. If (y12 1 # 1y211 	the positive inverter is 

externally active. The designation 'active gyrator' has sometimes been 

used in the literature to refer to externally active positive inverters. 

These are referred to in this thesis simply as positive inverters, the 

designation 'gyrator' being restricted to externally passive inverters. 

In the context of active RC networks 2-port inverters described by 

real and constant parameters are realized with resistors and active 

components (this applies also to the gyrator although it is externally 

passive). The active components of practical interest in the context 

of present technology are the transistor and the operational amplifier* 

The operational amplifiers commonly available have a differential input 

and grounded output. It will be assumed, throughout this chapter that, 

unless explicitly stated otherwise, the operational amplifiers have 

differential input and grounded output. 

It is convenient to use the nullor model of transistors and 

operational amplifiers discussed in chapter 2, section 2.2, and shown 

in Figs. 2-9 and 2-10. It should be remembered that in the nullor 
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model of the transistor the nullator and the norator must have a 

common terminal; in the nullor model of an operational amplifier with 

differential input and grounded output the nullator and norator do not 

have to share a common terminal but one of the terminals of the 

norator must be grounded. 

It is known that although the realization of gyrators ( I y12 I 	Y2I1  

with nullors and resistors requires at least two nullors, it is possible 

to realize externally active positive inverters (1y121 ;6 1  y211) with 

only one nullor. The main contribution in this chapter is the proof 

that in such one-nullor positive inverters it is not possible to 

ground both ports if the nullor is realized either as an ideal 

operational amplifier with grounded output or as an ideal transistor. 

The operational amplifier realization of 2-port negative inverters 

and of 3-port inverters for floating inductor simulation will also be 

discussed. 

7.2 . A REVIEW OF POSITIVE INVERTERS WITH A MINIMUM NUMBER OF 

ACTIVE COMPONENTS 

It is well known that positive inverters can be realized by 

circuits containing resistors and two nullors. There are circuits 

in which the nullors can be replaced by operational amplifiers and 

circuits in which the nullors can be replaced by transistors. In both 

cases it may be possible for the inverter to have both ports grounded. 

Several examples of 2-nullor positive inverters which illustrate these 

statements will now be considered. 

The two circuits in Figs. 7-1 and 7-2 are positive inverters (these 

circuits can be regarded as a cascade of the NIC of Fig. 3-9a and 

the NII of Fig. 3-10, in chapter 3). The circuit in Pig. 7-1 can be 
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Fig. 7-1 : Gyrator realizable 

with 2 op. amplifiers. 

Fig. 7-3 : Grounded gyrator  

Fig. 7-2 : Gyrator realizable 

with 2 transistors. 

0.5g 

Fig, 7-4 ; Grounded positive inverter 

realizable with 2 op. amps. 	realizable with 2 transistors. 

o 	
1  

Fig. 7-5 : Grounded gyrator realizable with 2 operational 

amplifiers with grounded innut and output. 
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realized with 2 operational amplifiers (with differential input and 

grounded output) since the norators have a common terminal. The circuit 

of Pig. 7-2 contains 2 nullators and 2 norators which can be paired to 

form nullors that can be replaced by transistors (problems associated 

with d.c. bias and stability of the transistor realization are not taken 

into account here). The two circuits in Figs. 7-1 and 7-2 behave as 

positive inverters for any value of the conductances; if all the 

conductances are equal both circuits are gyrators. Neither of these 

circuits can have both ports grounded. 

A grounded gyrator realizable with two operational amplifiers [11] 

is shown in Fig. 7-3. The circuit in Fig. 7-4 [90] is a grounded 

positive inverter which can be realized with two transistors. In 

contrast to the two previous inverters (Figs. 7-1 and 7.2) the circuits 

of Figs. 7-3 and 7-4 only behave as inverters if the values of the 

conductances are suitably related (the values given in the figures are 

one possible set of conductance values). 

The circuit in Fig. 7-5 [91] is very interesting with respect to 

the present discussion of inverters with a minimal number of active 

components2 it shows that a grounded gyrator can be realized with 

2 operational amplifiers with grounded input and grounded output. 

The above examples show that, in addition to resistors, two nullors  

are sufficient to realize a positive inverter, in general, and a 

gyrator, in particular. A natural question is whether two nullors are 

necessary. 	This question will now be discussed. 

It has been proved by Martinelli and Di Porto [92] that the 2-port 

obtained by embedding one nullor in a resistive 4-port network 

(Fig. 7-6) described by an admittance matrix cannot be a gyrator. 

Adams and Deprettere [ 93] have proved the same result without the 

restriction that the resistive 4-port must have an admittance description; 
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Fig. 7-6 : Connection of one nullor 

to a resistive 4-port. 

g1 

Fig. 7-7 : Gyrator with 3 nullors 

and only 2 resistors. 
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the same authors have also shown [93, 94, 95] that a gyrator requires 

at least 2 nullors and 4 resistors (Figs. 7-1 and 7-2) or 3 nullors 

and 2 resistors (Fig. 7-7). Willson and Orchard [96] have .proved that 

it is impossible to.. realize a gyrator by connecting a controlled 

source of any kind to one of the ports of a well defined 3-port contain-

ing resistors and ideal transformers, where the controlling variable 

is a voltage or current inside the 3-port. This last proof is more 

general, not only due to the inclusion of ideal transformers, but 

also due to the fact that a controlled source cannot always be 

modelled using resistors and only one nullor. However its significance 

is similar to the previous proofs if consideration is restricted to 

realizations employing resistors and either operational amplifiers or 

transistors, since these can be modelled, in the ideal case, by a 

controlled source of infinite gain, which is equivalent to a nullor. 

Until recently it was generally believed that 2 nullors would be 

necessary to realize a positive inverter (or, equivalently, 2 nullors 

would be necessary to simulate a lossless inductor using only one 

capacitor).  However, the above proofs of the necessity of 2 nullors 

only apply to gyrators, i.e.,to externally passive positive inverters 

( 1 Y12 	= I y21 1  ). 	The circuit in Fig. 7-8, due to Orchard and 

Willson [97] shows that, in fact, it is only the gyrator that requires 

2 nullors; the circuit of Fig. 7-8 is an externally active positive 

inverter 
(13'12 1 	

I y211)  and contains only one operational amplifier. 

Another realization of a positive inverter using only one operational 

amplifier is the circuit in Fig. 7-9 [98]. 

It is interesting to know whether positive inverters (2-ports) 

with only one active component can be used to realize multiport 

admittance inverters (Fig. 5-9) and, in particular, 3-port inverters 

for floating inductance simulation (Fig. 5-10). Since these applications 
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R2 = R3 (1+ 	(1+ 	- 
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RZ 	R 	RR6  

Fig. 7-8 : A positive inverter with only one operational 

amplifier ( Orchard and Willson ). 

Fig. 7-9 : Another positive inverter with only one 
operational amplifier ( Schmidt and Lee ). 
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require 2-port inverters with both ports grounded, it is of interest 

to know whether it is possible to ground both ports of a positive 

inverter containing only one active component. The present chapter 

is mainly concerned with the investigation of this question. The 

active components to be considered are the transistor and the 

operational amplifier. 

It may be helpful to consider the diagram in Fig. 7-10. It should 

be noted that when a 3-terminal network, used as a 3-port, contains 

one amplifier with grounded output, it may be possible to have both 

ports grounded, only one port grounded, or even neither port grounded, 

depending on the way the output of the amplifier is connected to the 

circuit. In the case of a transistor realization, a 3-terminal 

network can always be used as a 2-port with both ports grounded. 

The circuit of Fig. 7-8 is an inverter of type D, in terms of the 

diagram of Fig. 7-10, since it is 3-terminal, and has only one port 

grounded. The circuit of Fig. 7-9 is of type F. The circuit inter-

reciprocal with that in Fig. 7-8 (which is obtained simply by inter- 

changing the nullator and norator) is an inverter of type C. 	The 

possibility of realizing inserters of type E is confirmed by the circuit 

of Fig. 7-11. 	This circuit (which was obtained by the author of this 

thesis) is presented here solely to illustrate the existence of 

gyrators of type E; it is not claimed that this circuit is of any 

practical interest. In fact, inverters of types C and E are not of 

practical interest, since neither port can be grounded (when an operational 

amplifier with grounded output is used). 

The cases A and B, in the diagram of Fig. 7-10 correspond to 

inverters with both ports grounded. These cases will be considered 

in the present chapter, and it will be proved that such inverters are 

impossible. The possibility of realizing non 3-terminal inverters with 
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3-TMRMINAL  	NON 3-TERMINAL 

both ports grounded 

only one port grounded 

neither port grounded 

Fig. 7-10 : Different types of 1-nullor positive inverters. 
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Fig. 7-11 : A positive inverter of type E. 
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one transistor, i.e. inverters of type E, is an interesting question 

which remains unsolved; however, some comments on this question will 

be made. 

7.3 - THE ADMITTANCE PARAMETERS OF A GROUNDED 2-PORT CONTAINING 

RESISTORS AND ONE OPERATIONAL AMPLIFIER 

In this section it will be proved that the admittance parameters 

of a grounded 2-port containing resistors and one operational 

amplifier are subject to the following constraints: 

	

if yll  = 0 then y21 	0 
	

(7-la) 

	

if Y
22 = 0 then y12 	0 
	

(7 -lb) 

The results expressed by (7-1) have various consequences regarding 

the realization of inverters with operational amplifiers. These 

consequences will be examined in the next section. 

Fig. 7-12 shows the general configuration of a 2-port consisting of 

resistors and one nullor, with both ports grounded and realizable with 

one operational amplifier with differential input and grounded output. 

If the resistive 6-terminal network contains more than 6 nodes, then 

star-mesh transformations [99, p.131] applied to the internal nodes will 

transform the network into an equivalent network with only 6 nodes and 

positive resistors. 	In this equivalent network, the conductance of 

the resistor between nodes i and j will be denoted by g..
1J

, and the sum 

of the conductances of the resistors connected to node i by g..: 

5 

	

g.. 	(i X j) 	(7-2) 
=0 	

1J 

In view of the meaning of g..
J 
 it is clear that 

1  

g11..  

g.,  
1J 	gil 
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r 

Fig. 7-12 : Grounded 2-port realizable with one 

operational amplifier. 
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and that 

gib 
 

Since g
34 

and g
50 

refer to the resistors in parallel with the nullator 

and the norator, they can be assumed to be zero without loss of 

generality. 

It should be noted that gii  g 0 (for all i) since otherwise the 

corresponding terminal would not be connected to the resistive 

network (Fig. 7-12). 

The indefinite admittance description of the resistive network is 

(assuming that g34  = 0 and g50  = 0): 

it  g
11 	

-g
12 	

-g
13 	

-g
14 	

-g
15 	

-g
10 J. 

i2 
-g12 	

g
22 	

-g
23 	-g24 	

-g
25 	

-g
20 v2 

i3  -g13 	-g23 	g33 	
0 	- 	- g35 	-g30 

v3  (7-3) 

i
4 -g14 	-g24 	0 	g

44 	
-g
45 	-g40 v

4 

i
5 

_ 	- 	- 	_ 
g15 	g25 	g35 	-g45 	g55 	0  

v
5 

i0 -g10 	-g20 	-g30 	-g
40 	

0 	
g00 0 

Taking into account the nullator and the norator 

it  g11 -g12 -(g13+g14)  -g15 -g
10 

v
1 

i
2 -g12 g22 -(g23+g24) -g

25 
-g
20 

v
2 

3 -g13 -g23 g33 
-g

35 
-g

30 
v
3 

i4 -g14 -g24 g44 -g45 -g
40 

v
5 

i+i
0 -(g15+g10)  -(g25+g20)  -(g354-g45+g304-g40)  g55 g 00 

v 
0 

(the matrix in this equation is obtained from the matrix in (7-3) by 

adding columns 3 and 4 and by adding rows 5 and 0). Making 

(7-4) 



11 gll 7g12 -(g13+g14)  

i2 -g
12 g22 -(g23 +g24 ) 

0 -g13 -g23 g33 

0 -g14 -g24 g44 

-g15 
	1 

-g25 
	v2 

(7-5) 
-g35 
	

3 

-g45 
	v5 
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i3  = i4  = i5  = 0 and taking terminal 0 as the reference, equation 

(7-4) yields: 

The admittance matrix describing the 3-terminal network (terminals 

1, 2, and 0) that remains after the connection of the nullator and 

norator 

[

il yll Y12 [V1 

i2  y21 y22 v2 

can be obtained from (7-5) by elimination of v
3 and v5: 

Y21 Y22 	
_
g12 	g22 J L -(g2324) -g25 [g44 g45 -g

14 
-g
24 

This leads to the following expressions for the admittance parameters of 

the 3-terminal network: 

V 
y11 

y
12 

Y21 

Y22 

= 	g 	(P. 
'11 	°13 

= -g 	-(g 
12 	13 

= -g12 -(g23 

= 	g22 -(g23 

Cio 

	

' 
g 
14 	X g14 ) 

g) 

	

14 	N 

N 
g24)  N 

g24)   X 

g 
'15 

- g 
g15 

g25 

- g25 

N 

a 
N 

(7-6a) 

(7-6b) 

(7-6c) 

(7-6d) 
X 

X  = g44 g35 g33 g45 

	

= g14 g35 g13 g45 
	

g24 g35 	g23 g45 

(3= g14 g33 	g13 g44 
	

g24 g33 g23 g44 
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It will now be shown that the admittance parameters given by (7-6) 

are subject to the constraints (7-la) and (7-1b) for any choice of the 

values of the conductances in the network. It will first be assumed 

that all conductances are finite. The degenerate cases, where one or 

more resistors are replaced by short circuits, will be considered 

afterwards. The proof will be presented separately for the three 

cases: (1) a= 0, (2)X> 0, (3)X < 0. 

(1) X= 0  

It will be shown that, in this case, y12  0 and y21 
	

(in this 

case it is not necessary to considerY
ll 
 = 0 or y22  = 0). 

As g33  # 0 and g44  # 0 the last two equations in (7-5) can be 

written as: 

	

v3  = (g13/g33) vl  + (g23/g33) v2  + (g35/g33) v5 	(7-7a) 

	

v3  = (g14 /g44 ) v1  + (g24 444 ) v2  + (g45/g44) v5 	(7-7b) 

For X = 0 
(g35/g33 = g45/g44)2  

these equations lead to ——  

(g13/g33 	g14/g44) vl 	(g23/g33 	g24/g44) v2 = 0 
	„(7-8) 

Since in a 2-port with an admittance description the voltages at both 

ports can be freely chosen, it follows from (7-8) that 

0 and g23/g33  /g33 - g24/g44 
 /g44 = 0. In this case equations g13/g33 g14/g44 =  

(7-7) are not independent and therefore v5  cannot be eliminated. 

Substituting (7-7a) in the first 2 equations of (7-5), and denoting 

g
a 
= g

13 
+ g

14 
and gb  = g23  + g24, yields: 

	

g13 	g23 	g35 

1
1 	

g
11-ga .g33 	

-g
12
-g

a g 	
_
g15-ga g33 33 

= 

	

i2 ..g12 -gb 
 g
13 	g22 -gb  g23 -g25-gb 

g35 

	

g33 	g33 	g33 

   

   

   

 

1 

v2 (7-9) 
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Since in a 2-port described by an admittance matrix i1 and i2 are 

uniquely determined by v1  and v2, the 3rd column in the matrix in 

(7-9) must be zero. 	The remaining elements of the matrix are the 

admittance parameters and it is clear that v12 * 0 and y21< 0, '  

since all gii> 0. 

It will be shown that y21>  0 is incompatible withyll = 0. Since 

y12 and  y22  only differ from y21 and y11  by an interchange of the 

numbering of terminals 1 and 2, it follows thaty12  0 is incompatible >. 

with y22  = 0. 

Equation (7-6c) shows that, when ..X›o, in order to make v21  positive, '  
either cc or (3 must be negative. 	These two cases, (2a) cc <0 and 

(2b) (3 <0 will be examined separately. 

(2a) OC < 0. Equation (7-6a) shows that, when X>0 and cx<o, 

it is required for yll  = 0 (note that gll 	0) that p0, i.e., 

g14 7 g13 g44/g33 

This inequality, in conjunction with the condition for cc <0, 

g13 g45 > g14 g35 

leads to 

g13 g 45 7 g13 g35 g44/g33 

but this is incompatible with X>0 (g45<g g44/g 33 ).  -33 )*  

(2b) a<0.  When A>0 and p <0, equation (7-6a) shows that for 

y11 = 0 (note that g11 	g13 + g14  and g11 	0) it is required that )1...“11,, .--  
and, hence 

g35 (g44 - g14) < g45 (g33  - g13) 35 44 14 -- 45 33 13 
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This inequality and the condition for X>0, 

g45 < g35 g44/g33 

leads to 

g35 (g44 g14)<g35 (g44 g13 g44/g33)  

which can be simplified to 

g14 > g13 g44/g33 

This result is incompatible with the assumption that (3<0 

(g14 < g13 g44/g33).  

(3) X <0 

As in case (2) it will be shown that 
Y21"› 

 0 is incompatible with 

y
11 = 0. As explained before, this implies that it is also true that 

y12  0 is incompatible with y22  = 0. 

It will be shown first that, in the present case 
(A40), yll = 

requires that et 	From equation (7-6a) it follows that, if X <0 

and ei.>0, then y11  = 0 requires that (3 <0, i.e. 

g13  > g14 g33/g44 

This, in conjunction with the assumption that OL>0, i.e., 

g14 g35  > g13 g45 

leads to 

g14 g35 > g14 g33 g45/g44 

Since this result is incompatible with the condition for X <0, 

g35 < g45 g33/g44 

it follows that the assumption 	cu>o must be re jected, 
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If 	0C...50 and X <0, equation (7-6c) shows that 
Y21; 

 0 requires 

that (3>0. In order to have yll  = 0 (see equation (7-6a)) it is 

required that 	'XI Lc 	, and hence, 

	

g45 (g33 	g13) -5'=g35 (g44 	g14)  

This, together with the condition for X <0, 

g35 < g45 g33/644 

leads to 

g 	(g - g13) g 	(g 	g g  ig  ) 

	

45 33 13 	45 33 14 33 44 

This last inequality can be simplified to 

g13 > g14 g33/g44 

but this is incompatible with the condition for 	>0 (2 e g g 1g --13 - -14 -33- -44' ° 

Thus, it has been shown that, as long as the conductances are 

finite, the conditions expressed by (7-la) and (7-1b) are satisfied by 

the admittance parameters of the 2-port of Fig. 7-12. The degenerate 

cases where one or more resistors are replaced by short circuits will 

now be examined. It is convenient to list the conductances of all the 

resistors in the network: 

g12 

g13 	g23 

g14 	g24 	g
34 = 0 

g15 	g25 	g35 	g45 

g10 	g20 	g36 	g40 	g50 = 0 

If, in the network of Fig. 6-12, one of the conductances g12, g15,  
g
10
,  g

25 
and  g

20 is replaced by a short-circuit the 2-port will not have 

an admittance description. 	In the cases of g
10 

and g20, one of the 
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ports would be short-circuited. In the case of g12, the two ports 

would be directly connected and therefore vl  = v2. In the cases of 

g15  or g25, the norator would be connected across one of the ports, 

and this means that the current at that port would be indeterminate. 

As to the remaining conductances 
g13, g14, g23, g24, g35, g30 

g
45 

and g40, it is sufficient to examine the cases where g13, g35  or 

g
30 

are replaced by short circuits, since all the other cases only 

differ.from these by a different numbering of the terminals. The 

expressions of the admittance parameters in terms of the conductances 

can be obtained, in those cases that have to be examined, either by 

taking the limit of (7-6) when the relevant conductance tends towards 

infinity or, alternatively, by derivation from the admittance matrix 

of the resistive network (in the same way as (7-6) was derived from 

(7-3)). 	In the following only the results will be given, since the 

derivation using either of these methods is straightforward. 

If g13  is replaced by a short-circuit, then y21  and y22  become 

y
21 

= 
-g12 g23 

 - 
g24 

 g (g 	g Vg 
12 23 	- 25 44 14 45 

and 

y22 = g22 
g g 

22 	22 	25 24
/g 

 45 

Since g
44 31" g14, Y21 cannot be positive (irrespective of the value of g44  

	

y11)° As y22 = 0 is not possible (g22 	0) it is not necessary to 

examine y12. 

When g35  is replaced by a short-circuit, then 

Y12 = -g12 g24 (g13 g14 	g15)/(g40 g14 g24)  

(g 	g 
'21 = -g12 
	 /(g + g °12 ■ g14 (g23 	g24 g 25) -40 g14 	g24)  

This shows that y12  <0 and y21  <0 (irrespective of the values of 

yil  and y22). 
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Finally if g30  is replaced by a short circuit, 

= 	a a /a 
'11 	'11 	g15 '14 '45 

and 

y
22 

= g
22 

g
25 

g
24
/g
45 

These equations show that Yll 7' 0 and y22  0 and therefore it is not 

necessary to examine y21  and Y12° 

This completes the proof. 

7.4 - ON THE REALIZATION OF VARIOUS TYPES OF INVERTERS' USING 

OPERATIONAL AMPLIFIERS 

An immediate consequence of the result proved in the previous 

section, (7-1), is that grounded positive inverters cannot be realized 

with only one operational amplifier (in a positive inverter 

y11 = y22 = 0 and y12 
and y

21 
 have opposite signs). Thus, positive 

inverters of type A (see Fig. 7-10) are not possible. 

Another consequence of (7-1) concerns the realization of negative 

inverters with resistors and operational amplifiers. A negative inverter 

has an admittance description 

i
1 

l2 [ 

of the form 

0 	y12 

Y21 	0 	] 

v
1 

{v2] 

where y12  and y21  are real constants with the same sign. The constraints 

(7-1) show that it is impossible to realize a grounded negative 

inverter with only one operational amplifier if y12  and y21  are positive. 

Such an inverter can be realized with two operational amplifiers, as 

- shown by the circuit of Fig. 3-12d with the negative resistors realized 
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by the circuit of Fig. 3-11 (see Chapter 3, section 3.4). A grounded 

negative inverter can be realized with one amplifier if y
12 

and y
21 

are 

negative; an example is the circuit of Fig. 3-12a. 

The result expressed by (7-1) can also be used in connection with 

the realization of 3-port admittance inverters for floating inductance 

simulation. 	One way of realizing such 3-port inverters uses two 

grounded 2-ports connected as shown in Fig. 7-13a. Although the 

type of connection is the same as used in the case of the realization 

with two grounded inverters (Fig. 6-3), the grounded 2-ports in 

Fig. 7-13a do not have to be inverters: they can have the description 

shown in the figure. When g = 0 the 2-ports in Fig. 7-13a become 

inverters and the circuit in Fig. 7-13a coincides with the circuit 

in Fig. 6-3. 

It can be seen, by inspection of the 2-port descriptions in 

Fig. 7-13a, that one of the 2-ports must violate the constraints 

expressed by (7-1) and cannot therefore be realized with only one 

operational amplifier. The configuration shown in Fig. 7-13a cannot 

thus lead to a 3-port inverter with two amplifiers. It can, however, 

be realized with 3 amplifiers, as shown by the circuit in Fig. 7-13b, 

which is one of the 3-nullor circuits derived in chapter 6 (section 6.8, 

Fig. 6-15b). 

Whether or not a 3-port inverter for floating inductor simulation 

can be realized with two amplifiers is an unsolved question. The above 

discussion shows that a 2-amplifier realization cannot be achieved by 

using the configuration shown in Fig. 7-13a. It is possible, however, 

that some other method may lead to 3-port inverters for floating 

inductance simulation with only two operational amplifiers. 
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(a) 

[1+1 0

gb tg v3 

1[1  

-  
2 
1. 

[0 	-gai [v21 

gb 	;g 	v3 

• II i2 

2 
i3 

0 	0 	ga 	vl 
0 	0 	-ga 	v2 

gb 	gb 	0 	v3_  

g > 0 ; gby 0 a 
g> 0 

(b) v3  

Fig, 7-13 : Realization of a 3-port admittance inverter 

for floating inductor simulation, 
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7.5 - ON THE REALIZATION OF POSITIVE INVERTERS 

USING TRANSISTORS 

In this section it will be shown that it is impossible to realize 

a grounded positive inverter using only one transistor (this is an 

inverter of type B, in terms of the chart in Fig. 7-10). The realizability 

of a positive inverter with one transistor, when the requirement of 

grounded ports is removed (type G in Fig. 7-10) will also be examined; 

however, this last question will remain unsolved. 

Proof of the  non-realizability of grounded positive inverters with one  

transistor. 

A grounded 2-port, consisting of resistors and one nullor, and 

realizable with one transistor, must have the general configuration shown 

in Fig. 7-14 (note that the nullator and the norator have a terminal 

in common as required for a transistor realization). 

The resistive network in Fig. 7-14 has an equivalent circuit with 

6 nodes and positive resistors. Their conductances will be denoted 

by g.., as in section 7.3. As g35  and g45  are in parallel with the 

nullator and the norator, they will be assumed to be zero without loss 

of generality. As before, gii  denotes the sum of the conductances of 

all the resistors connected to node i. It is assumed that all 

g..›.0,since 
gll  ..=.0 would mean that node i is not connected to the 

resistive network. 

The definite nodal admittance description of the resistive network, 

with terminal 0 as reference, is: 
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1 

Fig. 7-14 : Grounded 2-port realizable 

with one ideal transistor. 
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it  

i2 

i
3 

i
4 

i5 

g
11 

-g
12 

-g13 

g14 

-g
15

.  

-g
12 

-g
23 

- g24 

-g25 

g
-e 

-g
13 

 -g2 3 

g
33 

-g34 

0 

-g14 

-g24 °24 

-g
34 

g44 

0 

-g
15 

-25 

0 

0 

55 

v1 

v2 

v3 

4 

v
5 

(7-10) 

By taking into account the presence of the nullator and norator, the 

admittance description becomes: 

i3 

11  

i2 

	

g11 	-g12 

	

-g12 	g22 

	

-g13 	
-g
23 

-(g13+g15) -g14 

-(g23+g25) -g24 

g33 	-g34 

i4+i5 -(g144-g15) -(g244-g25) 	g344-g55 	g44 

If terminals 3, 4 and 5 are rendered inaccessible (i
3 = i4 = i5 

= 0) 

the admittance matrix of the remaining 3-terminal network can be 

obtained as follows: 

The result is: 

	

0: 	Of  
Yll = gll - (g13 4. g

• 

15)  X - g

• 

14 X 

rs   
Y12 = -

• g

12 - (g13 + g

• 

15'
1 
 X - g

• 

14 X 

	

I  a' 	(31  
Y21 = -

• g

21 - (g23 + g

• 

25)  X - g

• 

24 X 

1'  
Y22 = 'g22 - (g23 + g

• 

25'
) 
 X - g

• 

24 X 

(7-12a) 

(7-12b) 

(7-12c) 

(7-12d) 

1 

v2 
(7-11) 

v
3 

v
4-  



g34 (g14 g15)  

g33 (g14 g15)  

g34 (g24 g25)  

g33 (g24 g25)  

414 	g13 g44 

= g13 g34 

'6%11= g23 g44 

81  g23 g34 

g13 g55 

g23 g55 
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where 

X =  g g 
g33 g44 + g34 (g55 r g34)  

„/ 
The above equations show immediately that Ce>0 and 	 ;r.O. 

Taking into account that 

J g1  -- 

it is easy to verify that 

ce+ 	 (7-13) 

and therefore )IC3.0. It will now be shown that A cannot be zero and 

therefore is always positive. The expression of kin.terms of the 

conductances can be written as 

2   
(g33 g44 	g341) 

 
 g34 g55 

%, 
g33 ■ - g342 g44 ! g34 Since 

	

	and g5.5:> 0 it follows that A= 0 can only 
-  

be obtained if g
34 

= O. But even with g34 
= 0, II cannot be zero, - 

1  since g
34 

= 0 means that 1\=g
33 

g
44 

and neither g
33 

nor g
44 

can be 

zero. 

It will now be shown that the 2-port of Fig. 7-14 cannot be a 

positive inverter for any choice of the values of the conductances. 

The case where all the conductances are finite will be considered 

first, and it will be shown that if y11  = 0 and y21:› 0 then y12  = 0. 

Since y
22 

and y
21 

only differ from y
11 

and y
12 

by an interchange of the 

numbering of terminals 1 and 2, it follows that if y
22 

= 0 and y12›-  0 
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then v
21 
 = O. As a consequence the 2-port of Fig. 7-14 cannot have 

-  

= 0 and y12  and y21  with opposite signs, as required by a Yll = ' v22  

positive inverter. 

0 	,/ 
Taking into account that, as mentioned above, A>0 and ot?:0, 

equation (7-12c) shows that y21  ;› 0 requires 01
1  <0. Since 

. x,  
g11 g13 

+ g
15 

 , equation (7-12a) shows that y11 = 0 requires 
OC.3%A . > -  

Taking into account (7-13), i.e. 	..ki >pe-i-ir , it follows that 

DC/  = Al  

which means that 

r'= 0 

Equation (7-12a) shows that with Ceza1 ' v 11 = 0 requires 

+ g15, which means that g
13 
 and g

15 
 are the only non-zero 

g11 = g13  

conductances connected to terminal 1, and therefore 

g12 = 0 and g14 = 0 

These last two equations, together with r= 0, when used in (7-12b) 

show that y12  = O. 

The case where one or more resistors are replaced by short-circuits 

will now be considered. 	The list of all- resistors, denoted by their 

conductances, is: 

g12 

	

g13 	g23 

	

g14 	g24 	g34 

g15 g25 g35.m.0 g45=0 

	

-g10 	g20 	g30 	g40 	g50 
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If one of the conductances g12 ,g10 or 
 g20 is replaced by a short-

circuit, the 2-port does not have an admittance description. 

The replacement of g34  by a short-circuit leads to - the nullator 

being in parallel with the norator, and a parallel combination of a 

nullator and a norator is equivalent to a short-circuit. 

If either 
g40 or g

50  is short-circuited, the norator is connected 

to the ground terminal 0 and the resulting circuits are special cases 

of the circuit in Fig. 7-12, which, as proved in the previous section, 

cannot be a positive inverter. 

As to the remaining conductances, only the cases of a -155g13/g14 

and g30  have to be considered, since for g23, g24  and g25  the circuits 

obtained only differ from the previous ones by the numbering of the 

terminals. 

If g15 is replaced by a short-circuit, then 

	

y22 
s 
 g22 	 ig 

22 	22 	° 
g g
23 '24 '34 

and this shows that Y22 /6 0. 

If g13  is replaced by a short circuit, then 

Y12 = -(g12 + g23) 	(g24 + g25)  (g14 + g34)/g44 

Y22 = g22 - (g24 + g25) g24/g44 

Since g
44 

 > g24  and g22 -- 24 + 
g
25
,  y22 = 0 requires that g

44 
= g

24 --  

and g22 = 
g24 g25° This means that g14 

+ g
34 

= 0 and g12 + g23 = 0, 

and therefore v12 = 0. This argument is not invalidated by the '  

possibility of g24  or g25  becoming infinite (in addition to g13). Even 

when g24  becomes infinite a -24' -/a  44 = 1; the case of g25  not being finite 

has already been rejected (if a positive inverter is not possible for 

infinite g15  it is also not possible for infinite g25). 
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If g14  is replaced by a short-circuit, then 

y21 = - (g12 
+ g

24
) - (g

23 	
g
25

)  (g
13 

+ g
34

)/g
33 

Y22 = g22 	(g23 g25) g23/g33 

and an argument similar to the previous one shows that if y22 m 

then y21  = 0. 

Finally, when g30  is replaced by a short circuit, then 

Y12 = g

• 

12 g

• 

14 (g24 g

• 

25)/g44 

Y21 m g

• 

12 g

• 

24 (g14 g

• 

15)/g44
-  

This shows that y12 and y21 
cannot have opposite signs. 

As all possible cases have been considered and rejected, the proof 

is now complete. 

An unsolved question 

It has just been shown that a positive inverter cannot be realized 

with only one transistor if the two ports have a common terminal. It 

may be possible, however, to realize a positive inverter with only one 

transistor if the requirement of a common terminal for both ports is 

abandoned. Such a positive inverter corresponds to type G, in terms 

of the chart in Fig. 7-10; this is the only type in the chart for which 

neither an example nor a proof of impossibility have been found. 

Although the investigation of the realizability of 1-transistor 

gyrators has not led to a conclusion, some brief comments on this 

question will now be presented. 

A 2-port containing resistors and an ideal transistor modelled by 

a nullor, must have the general configuration shown in Fig. 7-15a. If 

the nullor is extracted, the resistor 4-port of Fig. 7-15b is obtained. 
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(a)  

(b)  

Fig. 7-15 : Connection of one ideal transistor 

to a resistive 4-port. 



Yll = gll g13 g14/g34 

Y12 = g12 g14 g23/g34 

y21 
 = g - g g 
 21 	13 24

/g 
 34 

Y22 = g22 g23 g24/g34 

(7-15a) 

(7-15b) 

(7-15c) 

(7-15d) 
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It will be assumed that this 4-port has an admittance description, 

g12 g13 g14 14 1 

g22 g23 g24 v2 
(7-14) 

g23 g33 g34 
v3 

g24 g34 g44 ̂   L  v4 

g11 

i2 	g12 

i3 	g13 

14 J 	 g
14 

It should be noted that the g 	(i 	j) in this matrix are not conduct- 
ij 

ances of individual resistors as in sections 7.3 and 7.4; they may 

thus be positive or negative. Since ports 3 and 4 have a common 

terminal, g34  is negative (for the reference directions of voltages and 

currents in Fig. 7-15b). 

The admittance parameters of the 2-port obtained by connecting a 

nullor to ports 3 and 4 (Fig. 7-15a) are obtained from (7-14) by 

taking into account the nullor constraints, 13  = 0 and v3  = 0. The 

result is 

For the 2-port of Fig. 7-15a to be a positive inverter it is required 

that y11 = 0, Y22 = 0 and that y12  and y21  have opposite signs. This '  

can be achieved, for example, by choosing the values of g.. as 
ij 

14 -5 2 -7 

-5 14 -7 2 

2 -7 10 -1 

-7 2 -1 10 
- . 

It is seen, by inspection, that this matrix is dominant; therefore it 
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is also paramount since any dominant matrix is paramount (the defini-

tions of dominant and paramount matrices can be found in chapter 2, 

section 2.3). Since paramountcy is a necessary condition for a 

matrix to be realizable as the admittance matrix of a resistive multi-

port, it might be possible to realize the admittance matrix in the 

example by a resistor 4-port with the port structure shown in Fig. 7-15b. 

However, as far as the author knows, conditions which are both necessary 

and sufficient for a matrix to be realizable as the admittance matrix 

of a resistive 4-port with the port structure of Fig. 7-15b are not 

known and a synthesis procedure applicable to this case is not available. 

Although this investigation remained inconclusive it is thought 

that the above discussion is useful since it shows that the necessary 

paramountcy condition can be satisfied by the matrix in equation (7-14), 

when the requirements for the 2-port of Fig. 7-15a to be a positive 

inverter are imposed. 

7.7 - CONCLUSIONS 

In this chapter it has been proved that in a grounded 2-port 

containing resistors and one operational amplifier (with differential 

input and grounded output) the admittance parameters are such that if 

yil  = 0 then y21  5; 0 and if y22  = 0 then y12  5..;10. This result has 

several consequences concerning the realization of inverters using 

operational amplifiers: 

(a) It is not possible to realize a grounded positive inverter with 

only one operational amplifier (although positive inverters 

with one amplifier are possible if only one port is grounded). 
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(b) It is not possible to realize a grounded negative inverter 

with positive y12  and y21  using only one operational amplifier. 

(It is possible to employ only one amplifier if y12  and y21  

are negative.) 

(c) The method of realizing a 3-port admittance inverter for 

floating inductor simulation using two grounded 2-ports 

connected as shown in Fig. 7-13a (which includes, as a 

special case, the use of two grounded positive inverters, 

Fig. 6-3) requires more than two operational amplifiers. 

It has also been proved that a grounded positive inverter cannot be 

realized with only one ideal transistor. The possibility of realizing 

single-transistor positive inverters without the restriction that both 

ports must be grounded, is an interesting question that remains 

unanswered. 
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CHAPTER 8 

A SET OF NETWORK PROPERTIES  

RELATED TO THE CONCEPT OF RECIPROCITY  

8.1 - INTRODUCTION 

Immittance converters and inverters have a close association with 

reciprocity and non-reciprocity (i.e., the absence of reciprocity). 

Some types of converters and inverters are usually regarded as 

typical examples of non-reciprocal networks. The gyrator has played 

an important part in the clarification of the relationship between 

reciprocity-nonreciprocity and passivity-activity. Before the intro-

duction of the gyrator concept by Tellegen [72] , reciprocity was 

often assumed to be a necessary accompaniment of passivity. Since then 

it has become well known that this is not true as demonstrated by the 

fact that the gyrator is both passive and non-reciprocal. 

Several authors have used the concept of anti-reciprocity as a 

kind of extreme non-reciprocity. A search of the literature reveals 

that two different definitions of anti-reciprocity have been in use. 

The only common feature of the two definitions is the fact that both 

include the gyrator; apart from this, they are quite distinct. Sur-

prisingly, the incompatibility of the two definitions appears to 

have remained unnoticed until now. 

The examination of the two definitions of anti-reciprocity shows 

that one of them is given for multiports and permits the establishment 

of an anti-reciprocity theorem which closely resembles the reciprocity 

theorem. However, it will be shown that, according to this definition, 
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there are only two types of anti-reciprocal 2-ports (these are the 

gyrator and the ideal transformer, if non-reactive 2-ports are 

considered) and all anti-reciprocal multiports are equivalent to an 

interconnection of these 2-ports. This severely restricts the use-

fulness of the anti-reciprocity theorem, since it only applies to a 

very limited class of networks. Furthermore it seems somewhat strange 

that this definition is satisfied by the transformer which is usually 

regarded as typically reciprocal, in contrast to the non-reciprocal 

gyrator. 

The other definition of anti-reciprocity has been given in the 

literature only for 2-ports, but it applies to a larger set of 2-ports 

than the previous one and leads to several interesting properties 

regarding the cascade connection of 2-ports. 

Clearly the existence of two incompatible definitions for anti-

reciprocity requires clarification. This was the motivation for the 

investigation that led to the results reported in the present chapter. 

The designation anti-reciprocity will, in this thesis, be 

associated with the definition given in terms of multiports. The 

other 'anti-reciprocity', defined in terms of 2-ports, will be renamed 

'bireciprocity' (there is some justification for this choice of 

designations, as will be seen later). 

The definition of bireciprocity, so far restricted to 2-ports, will 

be extended to multiports. It is believed that this extension is not 

a trivial one and might, to some extent, be regarded as the intro-

duction of a new fundamental network property related to the concept 

of reciprocity. 

A comparison of reciprocity (R), anti-reciprocity (AR) and bi-

reciprocity (B) will lead to the introduction of a fourth network 

property, which will be named anti-bireciprocity (AB), in order to 

produce a 'complete pattern'. A 'complete' set, R4, of four network 
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properties, R4 = {RI  B, AR, AB} , is thus created, in which AB is 

related to AR in the same way as B is related to R. 

The meaning of the four properties forming the set R4 and the 

relationships between them will be examined in detail. Various rules 

concerning the interconnection of multiports which possess properties 

belonging to R4 will be derived. 

It will be shown that the multiports that possess simultaneously 

two of the properties belonging to the set R4 are special cases of the 

multiport converters and inverters with which this thesis has been 

concerned in the previous chapters. 

A note on the value of the determinant of the transmission 

matrix of (n+n)-ports possessing a property belonging to the set R4 

and a reference to the relationship of the four properties with 

activity and passivity will also be included. 

8.2 - RECIPROCITY 

In this section the concept of reciprocity will be reviewed with 

the aim of establishing the background for the study of anti-reciprocity 

in the following sections. 

The definition of reciprocity has already been considered in 

chapter 2. A linear, time invariant multiport is reciprocal if the 

currents and voltages, ii,V} and Lg. corresponding to any two 

possible excitations, satisfy the equation 

t 	 t 
/ V 	V I = (8-1) 

A 	A 

(I, V, I and V are the Laplace transforms of the zero-state currents 

and voltages, i.e., it is assumed that the initial conditions are 

zero). 
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It will be assumed here that the multiports are regarded as 

(n+k)-ports, as shown in Fig. 8-1. This is not required by the 

definition of reciprocity but is a convenient assumption, since it 

makes easier the comparison of later results with the results which 

apply in the case of reciprocity. Wh'n the multiport is regarded as 

an (n+k)-port, equation (8-1) can be expanded as 

t 	t 	t 	t 

	

Il V1 + 12 V2 - V1 	- V2 12 = 0 (8-2) 

where subscripts 1 and 2 refer to the sets of n and k ports, respect-

ively (see Fig. 8-1). 

The constraints imposed by the definition of reciprocity on var-

ious matrices describing the (n+k)-port can be derived from (8-2). 

These constraints are shown in the first column of Table 8-1. The 

hybrid matrix considered is the one that corresponds to the choice of 

I1 and V2 as the dependent variables, i.e. 

[1 	11 [ 11 

	

1 	H12.1 	V1 

	

V2 	H21 H22 I2 

(8-3) 

The transmission matrix T, which exists only for n=k, is defined by 

[V1 	A 	B 	I V2] 

	

II] = [ C 	B 	-12  
(8-4) 

The reciprocity conditions in terms of the hybrid matrix were 

derived in chapter 2, section 2-5. The well known conditions in 

terms of the admittance and impedance matrices can be viewed as a 

special case of the conditions for the hybrid matrix. The conditions 

in terms of the transmission matrix appear in [100] but the deriva-

tion given there is not entirely general, since it relies on the 

assumption that the (n+n)-port accepts an admittance and an impedance 

description, in addition to having a transmission matrix; in fact the 
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Fig. 8-1 An (n + k)-port. 



TABLE 8.1 : Reciprocity, Anti-reciprocity, Bireciprocity and Anti-bireciprocity. 

RECIPROCAL (R) ANTI-RECIPROCAL (AR) BIRECIPROCAL (B) ANTI-BIRECIPROCAL (AB) 

_ 	A t 
1 	V-V

t
I= 0 

A 
I
t 
 V + V

t
I = 0 I

t 
 8 V- V

t 
 8 1 = 0 it  9 Cr + vt  9 i = o 

H 	=H
t  

11 	11 H 	=-Ht 

H 	=Ht 	
12 	21 

22 	22 

(H=GHt9 ) 

H • --H
t 

11- 	11 H 	--H
t 

H 	
_-Ht 	12- 	21 

22 	22 

(7.-Ht ) 

H 	=Ht  
11 	11 H 	=Ht 

H 	=Ht 	
12 	21 

22 	22 

(H=Ht) 

H 	=-H
t  

11= 	11 H 	=Ht  

H 	_-Ht 	12 	21 
22 	22 

(a.-C)Hte ) 

t 
Y 	=Y 
11 	11 	

=
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Y 	Y 
t 	12 	21 

Y 	=Y 
22 	22 
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t 
Y 	=-Y 
11 	11 	t 

Y 	--Y 
t 	12- 	21 

Y 	=-Y 
22 	22 

(y.,...y t ) 

t 
Y 	=Y 
11 	11 	t 

Y 	--Y 
t 	12- 	21 

22 	22 Y22 Y22 
 

(y= Gyt 0  ) 

t 
Y 	=-Y 
11 	11 	t 

= Y 	Y 
t 	12 	21 

Y 	--Y 
22- 	22 

(y=_ e yt e  ) 

	

I Z 	=Zt  
11 	11 	t 

Z 	=Z 
t 	12 	21 

	

Z 	Z 
22

= 
 22 

(Z=Zt) 

2, 	=-Zt  
11 	11 	t 

Z 	=-Z 
t 	12 	21 

Z 	-Z 
22

= 
	22 

(Z=-Zt) 

Z 	=Zt 	
- 11 	11 	t 

Z 	-Z 
t 	12- 	21 

Z 	=Z 
22 	22 

(Z=eZt9 ) 

Z 	 -Zt  
11 	11 	t 

Z 	=Z 
t 	12 	21 

Z 	--Z 
22- 	22 

(z=-C) zt  9 ) 

A
tC=C

tA 
A
t
D-C

t
B=1 

BtD=D
tB 

( T ck Tt  Cl)t=1) 

AtC=-C
t
A 

A
t
D+C

tB=1 
BtD=-b

tB 

(T T Tt  LI/ =1) 

A
t
C=C

t
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A
t
D-C

t
B=-1 

BtD=DtB 

( T 4) Tt  e=_1) 

• 

A t 
	t 
C=-C A 

A
t
D+C

t
B=-1 

BtD=-D
't
B 

(TcpTtL]?„,) 
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conditions for the transmission matrix are derived in [100] from 

the conditions for the Y and Z matrices. A derivation from equation 

(8-1) will now be presented. 

The transmission description, (8-4), can be used in conjunction 

with the definition of reciprocity, (8-2), to give 

(VtCt-ItDt  

	

)(Aii -BI  ) 	_(vtAt_itBt)(61. 	
- -Di ) Vti - 0 2 	2 	2 	21 	2 2 	2 	2 1‘ 2 	2 	2 2 -  

or 

	

\A 	t, V2(C
t  A - At  C)V2  + V2(A

t  D - CtB - 1n)12  

t, t 	t = + I2(-D A + B
tC + 1n)V2  + 12(D B - Bt  DA2  - 0 (8-5) 

This equation must be satisfied for any I2, V2, 12  and V2. Chosing 

12 = 0 and 12 = 0 leads to 

(ctA - AtC)V2  = 0 	(8-6) 

which requires that 

C
t
A - AtC = 0 
	

(8-7a) 

Similar arguments for 12 = 0 and V2 = 0 (or 12 = 0 and V2 = 0) and 

for V2 = 0 and V2 = 0 lead, respectively to 

AtD - CtB = in 

and 

(8-7b) 

B
t
D - DtB = 0 (8-7c) 

Equations (8-7) are equivalent to 

D -C 1n 0 CtI [At  

Bt 	Dt -B A [0 1n 

(8-8) 

By introducing a matrix (1) defined as 

0 	1n  
(1)  = 

-1n 0 
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equation (8-8) can be written as 

	

Tt T (4) T
t 

= 12n 
	 (8-9) 

Transposing both sides of (8-9) leads to 

013, Tt (Dt T 	
2n 
	 (8-10) 

This shows that 

T1 . 4). Tt t  

and therefore the product of T and (2 Tt  (I) is commutative. Therefore 

equation (8-10) can also be written as: 

T (I) Tt 	= 12n 
	 (8-11) 

Equations (8-7) to (8-11) are equivalent ways of expressing the 

reciprocity conditions in terms of the transmission matrix of an 

(n+n)-port. 

The reciprocity conditions in terms of the scattering parameters 

will also be considered. The basic definitions concerning the scatter-

ing description of multiports have been summarized in chapter 2. The 

reciprocity conditions in terms of the normalized currents and volt-

ages, I' and V', the scatt-,ring variables, GI and 1r, and the scatter-

ing matrix S, are given in the first column of Table 8-2. All these 

results can be easily derived from equation (8-1). 

A very important result concerning reciprocity is the Reciprocity  

Theorem: a multiport containing only reciprocal elements is itself 

reciprocal. As already mentioned in chapter 2, section 2.5, the 

reciprocity theorem is easily proved by using Tellegents theorem in 

conjunction with the definition of reciprocity [2,21] . 
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TABLE 8.2 : Reciprocity, Anti-reciprocity, Bireciprocity and 

Anti-bireciprocity in terms of the scattering variables. 

RECIPROCAL 

(R) 

ANTI-RECIPROCAL 

(AR) 

BIRECIPROCAL 

(B) 

ANTI-BIRECIPROCAL 

(AB) 

iq, _ . v, ti, = 0  It ci, 4_ v, til ... 0  I, 	III _ v  , t eis=0 it  o1), ± v' t  81/.0 

at di,,, - Lt o6,  = 0  at a - e,:t .1,  = 0  at 8  ,s; - 19.t 0 01 _0  at e  6t_ ir_t ^  0  .„. =0  

S= St S St  = 1 S=0St e s est  e = 1 
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8.3 - TWO TYPES OF ANTI-RECIPROCITY 

A multiport that is not reciprocal is said to be non-reciprocal. 

It seems natural to call anti-reciprocal those multiports that have 

properties which are, in some sense, the opposite of the properties 

exhibited by reciprocal multiports. 

A definition of anti-reciprocal multiports which has been proposed 

by several authors [20,2.,21] is obtained from the definition of 

reciprocity given above by replacing the (-) sign in (8-1) by a 

(+) sign: 

t 	t I V+V 1=0 (8-12) 

The constraints imposed by anti-reciprocity on various matrices 

describing an (n+k)-port can be obtained from (8-12) through deriva-

tions similar to those used in connection with reciprocity. These 

constraints are shown in the second column of Table 8-1 (the anti-

reciprocity conditions in terms of the scattering parameters can be 

found in Table 8-2). 

Using Tellegen's theorem it is easy to prove the anti-reciprocity 

theorem [2,21] : 	A multiport containing only anti-reciprocal 

elements is itself anti-reciprocal. 

Another definition of anti-reciprocity, in terms of 2-ports, has 

been proposed by several authors (see, for example [69,70,71] ). 	In 

contrast with reciprocal 2-ports, for which 

Y12 	= 	Y21 (8-13a)  

z12 	Z21 (8-13b) 

h12 	-h21 (8-13c) 

det T = ad - be = 1 (8-13d) 
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'anti-reciprocal' 2-ports are defined by the following conditions 

•  
Y12 = -Y21 	

(8-14a)  

Z12 = •z21 	
.(8-14b)  

h12 . h21 	 (8-14c)  

det T . ad - be -1 	 (8-14d)  

These conditions are equivalent in the sense that the condition in 

terms of one type of parameters implies the conditions in terms of 

the other types of parameters (if they exist). 

The conditions expressed by equations (8-14) are not special 

cases of the anti-reciprocity conditions in Table 8-1. For instance, 

for the admittance matrix, the anti-reciprocity conditions in Table 

8-1 require that 

Y = -Y 

which means that 

Y11 °0  ; 	y22 = 0 ; 
	

Y12 = -y21 

This is a much stronger condition than the one expressed by equation 

(8-14a), which only requires that 

Y12 = -Y21 

In view of the fact that the two existing definitions of anti-

reciprocity do not coincide, it seems appropriate to compare in some 

detail the consequences of the two definitions. This will now be 

done. 

It is desirable to use different designations for the network 

properties associated with the two different definitions. The des-

ignation anti-reciprocity will be maintained for the property defined 

by (8-12). The designation bireciprocity will be applied to the 

property defined by (8-14). This designation, bireciprocity, is not 

entirely satisfactory, since it does not suggest the "anti-reciprocal" 
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nature of the property; however, as will be pointed out later, there 

is some justification for this choice of nomenclature. 

Using the anti-reciprocity conditions for the transmission matrix 

(Table 8-1) it will be shown that there are only two types of anti-

reciprocal 2-ports. If the conditions for the transmission matrix 

are particularized for 2-ports, the following equations are obtained: 

ac . 0 
	

(8-15a) 

db = 0 
	

(8-15b) 

ad + bc = 1 
	

(8-15c) 

If the parameters a, b, c and d are chosen in such a way that (8-15a) 

and (8-15b) are satisfied, the following table is obtained: 

a b c d ad + be 

0 0 / 0 / 0 0 

0 740 740 0 be 

}40 0 0 y0 ad  

0 / o 0 0 0 

This table and the remaining condition (8-15c) show that there are 

only two possibilities 

1. a = 0 , 	d=0 , 	be = 1 	(8-16) 

Or 

2. b = 0 , 	c=0 , 	ad . 1 
	

(8-17) 

The first case corresponds to a 2-port with a description in the 

form of 

(8-18) 
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and the second case corresponds to a 2-port with a transmission 

description of the form 

[ -1 0 	[v2  

0 	-i.2 
(8-19) 

If in (8-18) the parameter g is a real constant the 2-port is a 

positive gyrator, and if r in (8-19) is a real constant the 2-port 

is a positive transformer (the positive transformer and positive 

gyrator have been introduced in chapter 3, section 3.3). Although 
the 2-port described by (8-18) is only a gyrator if g is real and 

constant, it is convenient, in this chapter, to extend the designation 

positive gyrator to the case where g may be a function of s (a more 

rigorous designation, such as Igeneralized positive gyrator, is not 

used here because it would be too cumbersome). Similarly, the 

designations positive transformer, negative transformer and negative 

gyrator will, in the present chapter be applied to 2-ports described 

by parameters which are allowed to be functions of s. 

Thus, the only anti-reciprocal 2-ports possessing a transmission 

description are the positive gyrator and the positive transformer. 

Anti-reciprocal multiports will now be considered. These are 

described by a skew-symmetric hybrid matrix (Table 8-1). This applies 

to well-defined multiports since these always possess some hybrid 

description. By using the realization method discussed in chapter 5, 
section 5.3,it is easy to see that only 2-port positive transformers 
and positive gyrators are required when the hybrid matrix is skew-

symmetric. This means that any well-defined(*)  multiport which is anti-

reciprocal is equivalent to an interconnection of positive gyrators 

and positive transformers. This shows that the set of all anti- 

(*) Although the author has not found any example of an anti-reciprocal 
multiport that is not well-defined, it has not been proved that any anti 
reciprocal multiport must be well-defined has not been proved. 



- 231 - 

reciprocal multiports is relatively 'empty' and therefore the useful-

ness of the anti-reciprocity theorem is very restricted. 

The definition of bireciprocity does not lead to a theorem sim-

ilar to the reciprocity or anti-reciprocity theorems, since a multi-

port containing only bireciprocal components is not necessarily bi- . 

reciprocal itself. However, the following statements apply to the 

cascade of 2-ports (they are a consequence of det T = 1 for 

reciprocal 2-ports, and det T = -1 for bireciprocal 2-ports): 

(a) The 2-port resulting from the cascade connection of a 

reciprocal and a bireciprocal 2-port is birecpirocal. 

(b) The 2-port resulting from the cascade connection of two 

bireciprocal 2-ports is reciprocal. 

These statements are less general than the anti-reciprocity 

theorem, since the type of connection involved (cascade) is specified. 

However they apply to a much wider class of 2-ports. 

The two statements (a) and (b) establish a means of effecting a 

transformation from the universe of reciprocal 2-ports to the "anti-

universe" of bireciprocal 2-ports, and vice versa, via the cascading 

with any bireciprocal 2-port, e.g., a gyrator. This indicates that 

the set of all bireciprocal 2-ports is as "dense" as the set of all 

reciprocal 2-ports. This is in contrast with the relative "emptiness" 

of the set of all anti-reciprocal 2-ports which, as seen before, 

contains only the positive gyrator and the positive transformer. 

This discussion of the two definitions can be illustrated (for 

non-reactive 2-ports, i.e., 2-ports described by constant and real 

parameters) by using the(adlbc)-plane. As shown in Fig.8-2, reciprocal 

and bireciprocal 2-ports are represented by two parallel lines. In 

contrast with this, anti-reciprocal 2-ports are represented by two 
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Fig. 8-2 : The (ad,bc)-plane. 



- 233 - 

points only, one on the reciprocal line (positive transformer) and 

the other on the bireciprocal line (positive gyrator). 

The foregoing discussion shows that, whereas the definition of 

anti-reciprocity, by equation (8-12), is valid for multiports and 

leads to the anti-reciprocity theorem, the definition of bireciprocity, 

by equations (8-14), is restricted to 2-ports, but leads to some very 

interesting consequences. This suggests that it would be desirable 

to extend to multiports the definition of bireciprocity so far 

restricted to 2-ports. 

Apparently the extension of (8-14a) and (8-14b) to multiports 

would be 

and 

Yij  = -Y.-ji 	(i ) j) 

Z.. = 	 (i / j) 1J 	J1  

(8-20a) 

(8-20b) 

However, whereas equations (8-20a) and (8-20b) are equivalent in the 

case of 2-ports, for n-ports with n:...›2 these two equations are no 

longer equivalent as shown by the following example. 

A 3-port described by the admittance matrix 

	

[ 1 	1 	-1 

	

Y = -1 	1 	1 

	

1 	. 	-1 	1 

which satisfies (8-20a), can, equivalently, be described by the 

impedance matrix 

	

1 	0 	1 
- 

	

Z= Y 1 = 21 	1 	0 

	

0 	1 	1 

which does not satisfy (8-20b) 

This shows that the extension to n-ports of equations (8-14), 

which are valid for 2-ports, is not straightforward. However it will 
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be shown in the next section that,by interpreting 2-ports as 

(1+1)-ports, an extension of (8-14) to (n+k)-ports is possible. 

8.4 - BIRECIPROCITY 

The fact that, for 2-ports, the definition of bireciprocity, 

ad - bc 	-1 
	

(8-21) 

differs from the reciprocity condition, 

ad-be =+1 
	

(8-22) 

by a change in sign, suggests that the generalization of bireciprocity 

for (n+n)-ports might be obtained from the reciprocity conditions in 

terms of the transmission matrix, 

A
t
D - C

tB = 12n 
	(8-23a) 

AtC = C
t
A 
	

(8-23b) 

BtD 	DtB 
	

(8-23c) 

by changing +12n  to -12n in (8-23a), since this is the equation that 

for 2-ports leads to (8-22). Thus bireciprocity might be defined by 

A
t
D - C

t
B 	-12n 	(8-24a) 

A
t
C = C

tA 	(8-24b) 

BtD = D
tB 	(8-24c) 

A preliminary investigation of the consequences of (8-24) shows that 

some of the interesting features of bireciprocity are maintained, but 

a complete generalization has not yet been achieved, since (8-24) only 

applies to (n+n)-ports and only to those which have a transmission 

description. However this limitation can be avoided. It can be shown 

that (8-24) can be obtained from an equation similar to (8-2): 

t 	t 	t 	t 

	

I
1 
V
1 
• 12 V2 - V1 	+ V2 I2 = 0 (8-25) 
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(the derivation of (8-24) from (8-25) is entirely parallel to the 

derivation of (8-23) from (8-2) given in section 8.2). 

Equation (8-25) will now be regarded as the general definition 

of bireciprocity. It implies that the ports are partitioned into two 

sets, associated with subscripts 1 and 2, but these sets do not have 

to contain the same number of ports, i.e., the multiport is regarded 

as an (n+k)-port. 

By using the auxiliary matrix 

1n 	0 

= 
-1
k 

equation (8-25) can be written in the more compact form 

It  0 V- \Tt  9 1 	o 	 (8-26) 

The bireciprocity conditions in terms of various matrices can be 

obtained from (8-25) and are given in the third column of Table 8.1. 

It should be noted that the specific hybrid matrix considered is the 

one that corresponds to the choice of variables 

I1  

[

11

21 

H12 	V Hll 	1 

V2  H221 [ I2 [ 

(8-27) 

where subscripts 1 and 2 are associated with the sets of n and k 

ports into which the ports have been partitioned as required by the 

definition of bireciprocity. In fact, in the case of the hybrid 

matrix two different partitions of the ports are involved: one 

associated with the definition of bireciprocity, and the other with 

the choice of variables for the hybrid description. Although these 

two partitions do not have to coincide, in this chapter only the 

particular H matrix is considered for which the two partitions coincide. 
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Similar considerations apply to the transmission matrix chosen: 

V1  

Il  

A 

D C 	

B  V2 

-I2  

. (8-28) 

This particular choice of variables for the hybrid and transmission 

matrices leads to simpler equations which provide more insight. 

The bireciprocity conditions in terms of the scattering para-

meters can be easily derived from (8-26) and are given in Table 8-2. 

It is apparent that the results in Table 8-1 (3rd column) lead 

to conditions (8-14) for 2-ports. This confirms that a generalization 

of the original definition (8-14) of bireciprocal 2-ports has been 

achieved. 

8.5 - ANTI-BIRECIPROCITY 

If equations (8-1), (8-12) and (8-26) are compared (first row of 

Table 8.1), it becomes apparent that a 'complete pattern' will be 

obtained if a fourth equation is considered: 

It e 	vt e 	0 	 (8-29) 

This equation will be taken as the definition of a new network 

property which will be designated as anti-bireciprocity. As for bi-

reciprocity, a partition of the ports into two sets is implied by the 

definition of anti-bireciprocity. Equation (8-29) can be expanded as 

	

A 	t A 	t 

	

/
1 
V 	12 V2 + V1 	- V2  12 = 0 	(8-30) 

From (8-30) it is possible to derive the anti-bireciprocity 

conditions for various matrices (Table 8.1); the conditions in terms 

of the scattering parameters are also given (Table 8.2). The particular 

hybrid and transmission matrices considered correspond to the same 

choice of variables as in the case of bireciprocity. 
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With Table 8.1 now complete, a comparison of the conditions 

imposed on the various matrices by reciprocity (R), anti-reciprocity 

(AR), bireciprocity (B) and anti-bireciprocity (AB) oonfirmS that a 

complete pattern can only be obtained if anti-bireciprocity is included. 

The set of these four network properties related to the concept of 

reciprocity will be referred to as R4: 

R4 = {R, AR, B, AB} 

The abbreviation R will be used both for the noun reciprocity and for 

the adjective reciprocal; the abbreviations AR, B and AB will be used 

in a similar way. It is convenient to refer to a multiport possessing 

one of the four network properties forming the set R4 as a multiport 

'belonging to R4'. 

From the conditions in Table 8.1 it can easily be seen that the 

only AB 2-ports are the negative transformer, which has a description 

of the form 

vl 	Fl 	[ v2 

it = ° 	-i2] 

and the negative gyrator, which is described by 

(8-31) 

-1 	- v.2-  v 	0 

	

[it = g 	-0 g   	[-i2  

  

 

(8-32) 

  

In the (ad,bc)-plane, AB 2-ports are represented by two points, as 

shown in Fig. 8-2. It is seen that AB, when added to R, AR and B 

completes a pattern in the (ad,bc)-plane. 

The 'completeness' of the set R4 . R I  AR, B, AB} will now be 

examined from a.different point of view. 

The equations defining the four properties in R4, (8-1), (8-12), 

(8-26) and (8-29) can be expanded as the algebraic sum of the four 

terms 
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t 	t 	t ^ 	t 

	

IV IV VI 	V I 
1 l' 12  2' V1 l' 2 12 

equal to zero. The four equations only differ in the signs assigned 

to the four terms. The consequences, in terms of the admittance 

matrix, of equations with all possible sign patterns are given in 

the table on the next page. 

It suffices to consider only the sign patterns which start with 

a (+) sign, since the patterns starting with a (-) sign do not lead 

to different equations (an equation corresponding to a pattern with 

a leading (-) sign coincides with an equation with a leading (+) 

sign multiplied by -1). 

It can be seen from the table that all sign patterns that lead 

to equations different from the four already considered, correspond 

to degenerate multiports without interaction between the ports in 

different sets, i.e. 

Y12 = 0 	and 	Y21 = 0 

This shows that the 4 properties considered so far form a 'complete' 

set in the sense that they are the only interesting properties defined 

by equations of the type considered above. 

8.6 - TEE MEANING OF BIRECIPROCITY AND ANTI-BIRECIPROCITY 

The definitions of both B and AB imply a partition of the ports 

into two sets. Therefore the concepts of B and AB are not applicable 

to 1-ports. This contrasts with R and AR which have a meaning for 

1-ports: alil-ports are R, and there are two (and only two) 1-ports 

which are also AR, the short-circuit and the open-circuit (the nullator 

and the norator are not considered here, since they must always 

occur as nullator-norator pairs (nullors), i.e.,as part of 2-ports). 
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SIGN 
PATTERN 

ADMITTANCE MATRIX COMMENTS 

+ - - - 
t Yll=Y11  Y22=-Y22 Y12=Y21=0  

+ - - + 
t Y11=Y11 

t 
Y22-Y22 

t Y12=-Y21 BIRECIPROCITY 

+ - + - t Y11--Y11 
t Y22=-Y22 

t Y12=Y21 
ANTI- 

BIRECIPROCITY 

+ - + + t Y 	- 11--Y  11 
t 

Y22-Y22 Y12=Y21=0  

+ + - - t Y11=Y11 
t Y22=Y22 

t Y12=Y21 RECIPROCITY 

+ + - + t Y11-_ Y11 
t Y22=-Y22 Y12=Y21=0  

+ + + - t Y11=-Y11 
t 

Y22-Y22 Y12=Y21 0  

+ + + + t Y11=-Y11 
t Y22=-Y22 

t Y12=-Y21 ANTI- 
RECIPROCITY 
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So far B and AB have been formally defined in terms of equations 

(8-26) and (8-29). Further insight into the meaning of B and AB can 

be obtained by considering separately relationships between 'ports 

of the same set' and relationships between 'ports cf different sets'. 

In this discussion, considering initially 	B multiports, only two 

ports of a B multiport will be selected for consideration; all the 

remaining ports will be either short-circuited or open-circuited. 

This is done in accordance with the assignment of zero value to either 

voltages or currents as independent variables in a hybrid description 

(which is always passible for a well-defined multiport). Exam-

ination of (8-25) and (8-1) leads immediately to the following 

conclusion: 

- In a B multiport, any number of ports of the same set form an 

R multiport, and any two ports of different sets form a B 

2-port. 

In a similar way, it can be seen from (8-30) and (8-12) that: 

- In an AB multipart, any number of ports of the same set form 

an AR multiport, and any two ports of different sets form an 

AB 2-port. In other words, if a multiport is /3, any two 

ports of the same set behave as a positive transformer or as 

a positive gyrator, and any two ports of different sets as a 

negative.  transformer or negative arator . 

The reason for the choice of the designation bireciprocal can now 

be appreciated: there is a partition of the ports into two sets and 

the ports of each set are reciprocal. Similarly, in the case of 

anti-bireciprocity, there is a partition of the ports into two sets 

and the ports of each set are anti-reciprocal. 
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8.7 CASCADE CONNECTION OF VARIOUS TYPES OF MULTIPORTS 

Several rules can be established concerning the character of an 

(n+k)-port N formed by the cascade connection of an (n+q)-port N1  

with an (q+k)-port N2  (see Fig. 8-3) if N1  and N2  belong to the se:; 

R4. If n = k then additional rules can be derived which require that 

only one of N1  or N2  belong to R4. 

If N1 and N2 
are both R, N is also R as a consequence of the 

reciprocity theorem. Similarly, it follows from the anti-reciprocity 

theorem that if N1 and N2 
are both AR, then N is also AR. These two 

rules are well known. However, when, in addition to R and AR, also 

B and AB are considered, several new rules can be obtained. 

One of these new rules is that if N1 
is R and N2 

is B then N is 

B. This is easily proved by applying the defining equations (8-2) 

and (8-25) to N1  and N2  (Fig. 8-3): 

it 	it 	vt 	vt 
1 1 2 2 	1 1 2 2 

and 

t 	t 	t A 	t A  
-I2 V2 - 13 V3 

+ V2 12  V3 13  = 0 

Elimination of the terms with subscript 2, leads to 

(8-34) 

0 
	

(8-33) 

It 	_ It 	vt 	vt 
1 1 3 3 	1 1 3 3 

0 (8-35) 
and this shows that N is B. 

Following a similar procedure several other rules can be 

obtained. These combination rules are summarized in Tables 8-3a and 

8-3b. The rules in Table 8-3a, involving R and B are isomorphic to 

those in Table 83b, involving AR and AB. 

It can easily be shown, by means of counter-examples, that similar 

rules cannot be established concerning other combinations of two- 
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Fig. 8-3 : Cascade connection of 2 multiports. 

TABLE 8-3 : Rules concerning the cascade connection of an (n+q)-port 

and a (q+k)-port. 

(a) 
	

(b) 

N2 
N1  R B 

R R B 

B B R 

'.......,N,N.I.N.N..,  

N2 	1 AR AB 

AR AR AB 

AB AB AR 

TABLE 8-4 : Rules concerning the cascade of two (n-fn)-ports. 

N1 N2  N 

L.  R 4 

L4) B -L. 

LT  AR Ltp 

LT  _AB -Ly 

R. M4)  14  4) 

B M -M4) 4) 

AR M q)  m o 

AB My, -Mtp 
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properties. For instance, if N1  is R and N2  is AR, N may or may 

not possess a property belonging to the set R4. 

For the special case where N1  and N2  are both (n+n)-ports possess-

ing transmission matrices, quantitative results regarding N can be 

established. In this case only one of the sub-networks N1  and N2  is 

required to belong to the set R4. The various rules are expressed in 

terms of four matrices which are related to the transmission matrix 

as follows: 

L 	= T CI) Tt  41t■t 	(8-36) 

LT  = T f Tt 	(8-37) 

1.44, 	Tt  4)t  T (8-38) 

Mqj  = T4' T 	(8-39) 

where (1) and (I) are auxiliary matrices that have been used before: 

0 	1II] = [10 	1n 

n 0 	 1n 0 

The various rules are given in Table 8-4. A proof will only 

be given for the case where Ni  is arbitrary and N2  is either R or B. 

The proofs for the other cases are very similar . 

For the multiport N, with T = T1  T2, 11)  is, by definition 

T2 (L I )N  = T1 
T2  CI) T2 T

t  
I  (D,

t  

or, taking into account that at 	= 12n 

(1),  
(L )N  = T1(T2 

di  4 43t) 
 

If N2  is R, then T2  (1), T2 
	t  IT1 	= 12n  and therefore 

(L )11  = T1 cTti  (I) t  

or 

(8-40) 

(8-41) 

(8-42) 
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If N2  is B, then T2  Tt2 t 	
-12n' 

and consequently 
=  

(LION  = -(Lo  )N1  (8-43) 

8.8 - MULTIPORT TRANSFORMERS AND GYRATORS 

It has already been mentioned that the only AR 2-ports are the 

positive transformer, which is also reciprocal, and the positive 

gyrator, which is also bireciprocal; it has also been mentioned that 

the only AB 2-ports are the negative transformer, which is also 

bireciprocal, and the negati'Ve gyrator, which is also reciprocal. 

This is clearly illustrated (for 2-ports described by real, constant 

Parameters) by the ,representation of these 2-ports on the (ad,bc)-plane 

(Fig. 8-2). There are thus four 2-ports which possess simultaneously 

two properties of the set R4 = CR, AR, B, AB} : 

Positive Transformer (PT) 	: R and AR 

Negative Transformer (NT) • B and AB 

Positive Gyrator 	(PG) 	: AR and B 

Negative Gyrator 	(NG) : R and AB 

The present section is concerned with multiports that possess 

simultaneously two properties belonging to the set R4. A systematic 

search for these multiports can easily be conducted using the results 

in Table 8.1. In this search (n-k)-ports described by an admittance, 

impedance, or hybrid description will be considered. The hybrid 

matrix used is the one considered in Table 8.1 (which is discussed 

in section 8.4). The results of the search are given in the table on 

the next page. 

It can be seen that if the degenerate multiports without inter-

action between the two sets of ports are discarded, only six (n+k)-ports 

are left. These can be regarded as a generalization of the 2-ports 
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Y Z H 

R + AR 

Y=0 
11 

Y 	=Y 	 0 
12 	21 

Y 	=0 
22 

Z=0 
11 

Z 	=Z 	=0 
Z 	=0 	12 	21 
22 

H 	.0 
11 

H 	--H 
 

12- 	21 
H 	=0 
22 

POS. TRANSF. 

R + B 

t 
Y 	=Y 
11 	11 

Y 	=Y 	=0 
t 	12 	21 

Y 	=Y 
22 	22 

t 
Z 	=Z 
11 	11 

Z 	=Z 	=0 
t 	12 	21 

Z 	=Z 
22 	22 

H 	..,-H
t  

11 	11 TT 	u 	n  
t 	"12-"21="' 

H 	=H 
22 	22 

R + AB 

Y 	 0 	
= 

11 	t 
Y 	Y 
12 	21 

Y 	=0 
22 

NEG. GYRATOR 
	 --- 	 

Z 	 0 	
= 

11 	t 
Z 	Z 
12 	21 

Z 	=0 
22 

NEG. GYRATOR 

H 	 0 
11 

= H 	H 	=0 
12 	21 

H 	=0 
22 

AR + B 

Y 	 0 
11 	t 

Y 	--Y 
12- 	21 

Y 	=0 
22 

POS. GYRATOR 

. 	 

Z 	 0 
11 	t 

Z 	=-Z 
12 	21 

Z 	=0 
22 

POS. GYRATOR 

	. 

H 	=0 
11 

H 	=1-1 	=0 
12 	21 

H 	=0 
22 

AR + AB 

t 
11-- 
	

11 Y11=-Y11  
Y 	=Y =0 

t 	12 	21 
Y 	--Y 
22- 	22 

t 
Z 	=-Z 
11 	11 

Z 	=Z =01 
t 	12 	21 

Z 	--Z 
22- 	22 

t 
H 	=-H 
11 	11 

H 	-H 	=0 
t 	12 	21 

H 	--H 
22- 	22 

B + AB 

Y 	 0 
11 

Y 	=Y 	=0 
12 	21 

Y 	=0 
22 

. 

Z 	=0 
11 

Z 	=Z 	=0 
12 	21 

Z 	=0 
22 

H 	=0 
11 

H 	=H
t  

12 	21. 
H 	=0 
22 

NEG. TRANSF. 



TABLE 8.5 : Multiport Transformers and Gyrators 

DESIGNATION 

MATRIX DESCRIPTION PROPERTIES 

H Y Z T 	(n=k) RECIPROCITY ACTIVITY IMMITTANCE TRANSF.
° 

 

POSITIVE 	. 

TRANSFORMER 

	

0 	K 
t 

	

-K 	0 

-(Kt)-1  0 

0 	-K 
R and AR non-energic 

if K real 

admittance converter 
.  
in one .direction 

and 

inpedance converter 

in other direction 
(**) 

NEGATIVE 

TRANSFORMER 
, 

0 	K 

Kt K 	0 

(Kt)-1 	0 

0 	-K 
B and AB 

. 

active 

if K real 

POSITIVE 

GYRATOR 

Admittance 

Gyrator 

	

0 	G 
t 

	

-G 	0 

only exists 
if n=k 

andIGI/Op,) 

0 	(Gt)-1 

G 	0 

B and AR 

non-energic 

if 

G, R real 

admittance inverter 

in both directions 

Impedance 

Gyrator 

only exists 
if n=k 

andIRI/0(*) 

0 	R 
nt 	

0 -fl 

0 	-R 

-(Rt)-1  0 

impedance inverter 

in both directions 

NEGATIVE 

GYRATOR 

Admittance 

Gyrator 

0 	G 
t G 	0 

only exists 
=k if n

andIGI/Ow 

0 -(G
t
)
-1 

G 	0 

R and AB 

active 

if 

G, R real 

admittance inverter 

in both directions 

Impedance 

Gyrator 

only exists 
if n=k 

andIRI/O(*) 

0 	R 
p  
11t 
	

0 

0 	-R 

(Rt)-1 	0 
impedance inverter 

in both directions 

(*)If these conditions are satisfied, the (n+k)-port is simultaneously an admittance and an impedance inverter (in 
both directions. 

(-)If n=k and det K / 0 the transformer is simultaneously an admittance and an impedance converter in both directions. 
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discussed above and will be referred to by the same designations as 

the corresponding 2-ports. The matrix description and more signific-

ant properties.of these multiports are given in Table 8-5. It can 

be seen that all the multiports in Table 8-5 are special cases of the 

multiport admittance and impedance converters and inverters discussed 

before in this thesis. 

8.9 - THE DETERMINANT OF THE TRANSMISSION MATRIX 

For 2-ports the determinant of the transmission matrix is +1 if 

the 2-port is R, -1 if it is B, and has two possible values, tl, both 

for AR and AB 2-ports. 

For a reciprocal (n+n)-port 

T Tt 
	

= 12n 

(see Table 8.1). Taking the determinant of both sides and taking into 

account that (det 402  = 1 it follows that 

(det T )2  . 1 	(8-44) 

This result is also obtained for AR, B and AB (n+n)-ports. Thus for 

(n+n)-ports belonging to the set R4, det T can only be +1 or -1. It 

is of interest to know whether there are cases where it can be 

decided whether det T is +1 or -1. Although the author has not found 

an answer to this question, a conjecture will be proposed. 

The multiport transformers and gyrators with n=k are examples of 

(n+n)-ports belonging to the set R4. Their transmission matrices are 

given in Table 8-5. The value of det T can be determined by making 

use of the Laplace expansion using minors of order n. The following 

results are obtained: 
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PT 	det T 

NT 	det T = (-1)n  

PG --b. det T = (-1)n  

NG 	det T = 1 

Thus the value of det T for these particular (n+n) -ports follows 

the pattern 

R AR B AB 

n odd 1 - 1 -1 -1 

n even 1 1 1 1 

It is conjectured that these results are valid in general, since no 

counter-example was found to disprove this. 

It should be mentioned that it is proved in [101] that 

det T = 1 for reciprocal (n+n)-ports which have a transmission matrix 

in which the submatrix C is non-singular. 

8.10 - RELATIONSHIPS WITH PASSIVITY AND ACTIVITY 

In this section some relationships between the four properties in 

R4 = till  AR, B, A3) and passivity-activity will be considered. 

Concerning R and B, simple relationships with activity and 

passivity are not apparent. Both R and B multiports can be passive 

or active. 

The only AR 2-ports are the positive transformer and the positive 

gyrator which have been assumed in this chapter, to be, in general, 

described by parameters which can be functions of s. When both these 

two ports are non-reactive, i.e., described by real and constant 

parameters, they are non-energic (this is well known; a proof has 
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been presented as part of the survey in chapter 3). Since, as 

mentioned before, any AR multiport that is well-defined is equivalent 

to an interconnection of positive transformers and positive gyrators, 

it follows that: 

- Any well-defined AR multiport described by real and 

constant parameters is non-energic. 

The only AB 2-ports are the negative transformer and the negative 

gyrator. When these 2-ports are non-reactive, they are active (among 

all converters and inverters described by real and constant parameters 

only the positive transformer and positive gyrator are not active, 

as shown in 3.3). Since, as shown in section 8.6 an AB 2-port is 

obtained by taking 2-ports of different sets and open or short-

circuiting the remaining ports, it follows that: 

- Any AB multiport described by real and constant parameters 

is active. 

8.11 - CONCLUSIONS 

It has been shown tha'; the concept of anti-reciprocity has, 

until now, been covered by two conflicting definitions. An invest-

igation with the aim of clarifying this conflict, has led to the 

generalization of one of these definitions, which so far had been 

given for 2-ports only, to multiports. The examination of the meaning 

of this generalized definition has suggested that this type of 

'anti-reciprocity' might be designated as bireciprocity (B); the 

designation anti-reciprocity (AR) has been retained for the other 

definition (a different nomenclature has been used in [105] ). 

Comparison of the definitions of reciprocity (R), anti-reciprocity 

(AR) and bireciprocity (B) has led to the introduction of a new net-

work property in order to obtain a 'complete pattern'. This new 
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property has been designated as anti-bireciprocity (AB). A set of 

four network properties related to the concept of reciprocity, 

R4 = {R, AR, B, AB} , is thus created and it is shown that in 

many respects B is related to R in the same way as AB is related to 

AR. 

The meaning and the consequences of B and AB have been examined 

in detail. The conditions in terms of various types of matrices 

describing B and AB multiports have been derived. Various rules 

have been established concerning the cascade connection of two 

multiports if one of them, and if both of them, possess one of the 

four network properties contained in the set R4. 

It has been shown that multiport transformers and gyrators )  

which are special cases of the multiport converters and inverters 

considered in previous chapters, possess simultaneously two of the 

four network properties in the set R4. 

It has also been shown that the determinant of the transmission 

matrix of (n+n)-ports possessing all of the four properties can only 

be +1 or -1. 

Finally, it has been pointed out that, in the case of well-defined 

multiports described by real and constant parameters, all AR multi- 

ports are non-energic and all AB multiports are active. 

It is believed that the results given in this chapter, not only 

clarify the conflict between the two existing definitions of anti- 

reciprocity, but can also be helpful in the treatment of various 

problems concerning non-reciprocal networks. 
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CHAPTER 9 

A GENERALIZATION OF RECIPROCITY AND ANTI-RECIPROCITY 

9.1 - INTRODUCTION 

A previous chapter was concerned with a set of four network 

properties: reciprocity (R), anti-reciprocity (AR), bireciprocity 

(B) and anti-bireciprocity (AB). In the present chapter a general-

ization of these properties will be proposed. The generalization 

consists in the introduction of the concepts of generalized reciprocity, 

R(a), and generalized anti-reciprocitylAR(a), which are defined in 

terms of a parameter a. 

It will be shown that the usual concept of reciprocity corresponds 

to R(1), i.e., to generalized reciprocity with a = 1; bireciprocity is 

interpreted as R(-1). This is represented symbolically as 

R = R(1) 
	

and 	B = R( -1) 

It will also be shown that 

ADZ = AR(1) 
	

and 	AB = AR(-1) 

Various results established before in terms of R, AR, B and AB 

can be expressed in a considerably more general form in terms of 

R(a) and AR(a). These results include various rules concerning the 

cascade connection of multiports. Other consequences of the definitions 

of R(a) and AR(a) will be considered and the meaning of the two 

generalizations will be discussed in some detail. 
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9.2 GENERALIZED RECIPROCITY 

It has been seen before that in the case of an (n+k)-port 

(Fig. 8.1) the equation defining  reciprocity 

It  V - Vt  I = 0 	 (9-1) 

can be expanded as 

A 	 A 
I
1

t 
 V
1 	

12 V2 - V1 
	

- V2  12 = 0 (9-2) 

where subscripts 1 and 2 are associated with the sets of n and k ports, 

respectively. 

The definition of generalized reciprocity is obtained from (9-2) 

by multiplying the terms associated with one of the two sets of ports 

by a scalar a which can, in general, be a rational function of the 

complex frequency variable s. If a / ± 1 it is necessary to specify 

whether a multiplies the terms associated with the set of n ports 

(subscript 1) or with the set of k ports(subscript 2). In the first 

case generalized reciprocity (also generalized reciprocal) will be 

denoted by R(a), and in the second case by R(a).(*) Both cases will 

be referred to collectively as R(a). 

The defining equation for R(a) is thus: 

	

A 	A 	A 	t It 

1 
V
1 

4-  a I2
t  V2 - V1

t 
 I1 - a V2 I2 	

= 	0 

Dividing  (9-3) by a 

1 It 17- 	4. It cr' 	_ l ift 1 	_ it i 	= 	 0 

	

a  1 	1 	2 	2 	a 	1 	1 	2 	2 

(9-3) 

(9-4) 

and this shows that if a (n+k) port is R(a) it is also 1i(1a1) • This 

result will be represented symbolically by: 

(*) If it is imagined that the set of n ports is on the left hand side 
and the set-of k ports on the right hand side, then the arrow 
points towards the set of ports associated with the terms 
multiplied by a. 
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1;(a) = N7.) 	 (9-5) 

The following discussion of R(a) will be done in terms of 

R(a) only, since any result valid for R(a) can immediately be trans-

lated into a similar result in terms of R(a), by means of (9-5). 

Equation (9-3), defining R(a), can be written in the more 

compact form 

Itc.,.1 	
= ov 	vja 

where 

ea = [ ln . a lk] 

i•e • 

0 	(9-6) 

diag (1,11..1, a,a,...a) 

R(a) contains as special cases the usual reciprocity (R), which 

corresponds to a = 1, and also bireciprocity (B), which corresponds 

to a = -1. This will be represented symbolically as 

R = 	= 1(1) 	 (9-7) 

B = 1(-1) = 1T(-1) 	 (9-8) 

The constraints imposed by R(a) on the hybrid matrix of an (n+k)- 

port will now be derived. It is convenient to use the notation appro-

priate for dealing with hybrid descriptions that was introduced in 

chapter 2. 

E denotes an (n+k)-vector whose components are some currents and 

some voltages chosen among the (n+k)-currents and (n+k)-voltages at the 

ports of the (n+k)-port, in such a way that one (and only one) variable 

(voltage or current) of each port is included. The (n+k) remaining 

port variables form another vector F in which they are arranged with 

the port subscripts in the same order as in E (for example, if 
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E -11  v2  v3  14  v5  16]t, then F = Fv1  i2  i3  v4 i5 	t ). Any 

hybrid description will be of the form 

E = H F 	 (9-9) 

Equation (9-6) which defines R(a) can be written, in terms of 

E and F, in the form of 

Et  F - Ft Ai 	0 	 (9-10) 

where )1 is a diagonal matrix of dimension (n+k) whose elements A.. 

JJ 

are chosen in accordance with the nature of the elements e. of E 

as indicated by the following rules: 

P 	 JJ 

(b) e. 	p>n (i is a component of 12) 	= a 

(c) e = v 	n (v is a component of V ) 

(d) e = vp, p > n (vp  is a component of V.2) t Aii 
	

-a 

It is easy to see that in all four cases the contribution to the 

left hand side of equation (9-10) is in accordance with equation 

(9-3): 

(a) el'. - f .8 = 	

P P vP P 	

(p 	n) 

(b)

J J 	J J 

- a f.e‘. = a i P P - ccv P P (p >n) 

(c) - el 	.. 	
A = -vi + 

	

J J 
+ f

J
e
J 	P P 

i 
P

v 
P 	

(p 45 n) 

 

(d) -a e.

J

f.

J 

 +af.

J

8. = -avPi 

P 

 +ai

P

v

P 

 (p > n) 

J  

The R(a) conditions in terms of a hybrid matrix H can be obtained 

by substituting (9-9) in (9-10): 

Ft(iit  A - 	H) P . 0 	 (9-11) 

Since this equation must be valid for any F and F, it follows that 

H = Htj\ 	 (9-12) 



or 

v  t 
Y11 = Y11 ' 	22 • 	Y = '22 1  Y12 = aY21 (9-16) 
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which means, since A 	At  that AH is a symmetric matrix. 

Equation (9-12) can be written as 

H  = A-1 Ht 	 (9-13) 

For the special case where the hybrid matrix corresponds to 

■t 
E = [ 

	

	,V2 	
t 
J j (and, consequently F = [Vl'I2j J.  

and 

H = 

= 

This 

A = 

(9-13) leads to: 

H11 	H12] 

H21 	H22 

t HII 	-aH21 

- 1 	t 	Ht a 12 	22 

shows that 

t 

	

H11 	= 	H11 	; 	H 

[ In 

0 

I
n 

	

0 	- 

	

22 	= 

0 - 

1 
ak 

t 
H22 

0 

-alk 

-
11 

H12 

1312 

t 

= 

H21 

H22 

-""21 
t 

1n 

0 

0 

-alk 

(9-14) 

The admittance matrix can be regarded as a special case of 

hybrid matrix, corresponding to E = [Ii  12] t. In this case 

A. ea  and it follows from (9-13) that 

 Y = ea Yt a 	 (9-15) 

Similarly, the impedance matrix can be regarded as the special case 

of hybrid matrix corresponding to E= [V1  1/2]t  and thus A- - 

From (9-13) it follows that 
t z 	z oa  (9-17) 



Z11 .Z• ; 11 	Z22 .Z• 

	

22 ' 	Z12 = aZ21 (9-18) 
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or 

The definition of R(a) in terms of the scattering variables can 

easily be obtained. The current and voltage vectors, I and V, are 

expressed in terms of the normalized current and voltage vectors I' 

and V' by 

-2 	 2 
I = Ro I' 	and V 	Ro V' 

where 
2 	 2 	2 
Ro = diag (rol' rot "") 

and 
- 2 	 2 
Ro = diag (rol' ro2 "") 

Substitution of (9-19) in (9-6) leads to 

It 	At 

- V 8
It ir 

I Oa  v a 

(9-19) 

(9-20) 

I 	1 
The scattering variables a and 4',- are related to I and V by 

Il  = a X.  - ,- 	and 	V
' 
 = (2, -14 	(9-21) 

Substitution of (9-21) in (9-20) yields the defining equation of R(a) 

in terms of the scattering variables 

t 	 t 	^ 
of e a 	- 	e a  a = 0  

The scattering matrix is defined by 

(9-22) 

fir = s cZ 	 (9-23) 

The R(a) conditions in terms of the scattering matrix are obtained 

by substitution of (9-23) in (9-22). This leads to 

t 
S = Oa S ea 	(9-24) 
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The rules obtained in the previous chapter concerning the nature 

of an (n+k)-port N resulting from the cascade connection of an 

(n+q)-port N1  with a (q+k)-port N2  (Fig. 8-3), when N1  and N2 are 

R or B in the 4 possible combinations (Table 8-3a) can be generalized 

by making use of the new concept of R(a). 

If (Fig. 8-3) N1  is R(a) and N2  is 7(p), then 

Ii t 	t 	t 

V1 a 12  V2  - V1  I, - a V2  12  = 0 	(9-25) 

- 	43'2  + p 1; 	+ 	i2  - p 	i3  = 0 

Multiplication of (9-26) by-a leads to 

A 	t A 	A  a It V - a Vt2 12 = a p 13 v3 - a p v
t
3 13 2 2 

(9-26) 

(9-27) 

and substitution of (9-27) in (9-25) yields 

t 	t 	t ^ 

	

I1 V1 + ap 13 v3 - vl 	- a p v3 13  = 0 	(9-28) 

which shows that N is R(ap). This result will be expressed by the 

symbolic equation 

R(p) 	ii(aP) 
	

(9-29) 

The rules in Table 8-3a are obtained from (9-29) by making 

a=- 1 and p - 1. 

Another result concerning the interconnection of multiports is 

the following: if an R(a) (n+k)-port is connected to a reciprocal 

(R) k-port as shown in Fig. 9-1, the resulting n-port is reciprocal. 

This follows immediately from the definition of R, equation (9-1), 
•-■ 

and the definition of R(a), equation (9-3). This result is applicable 

to those multiport converters and inverters which are R(a) since 

converters and inverters are associated with the type of multiport 

interconnection shown in Fig. 9-1. 



11 ' V1 
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12,V2 -I V 2' 2 

. n 
• ports 

.---...„,,,,e_........0..._._.....10...........■ 

Fig. 9-1 : An (n + k)-port terminated by a k-port. 

k : k 
ports 	ports 



- 259 - 

9.3 - GENERALIZED ANTI-RECIPROCITY 

The equation defining anti-reciprocity is obtained from (9-1) by 

replacing the (-) sign by a (+) sign, leading to 

It  e + Vt  I = 0 	 (9-30) 

or, in an expanded form, for (n+k)-ports: 

t 4 	t ^ 	t ^ 	t Il V1 + 12 V2 + V1 	+ v2 12 . 0 (9-31) 

The definition of generalized anti-reciprocity is obtained from 

(9-31) in the same way as the definition of generalized reciprocity 

was obtained from (9-2): the terms associated with one of the two 

sets of ports are multiplied by a scalar a. As for generalized 

reciprocity, there are two possibilities, represented by AR(a) and 
41- 

AR(a). These will be referred to collectively by AR(a). 

The defining equation for AR(a) is 

	

t 	 t A  

	

I
l

t 
 V

1 
+ a 12

t  V2 + V1 	+ a V2 12 = 

Division of (9-32) by a, yields 

0 	(9-32) 

1 t 	t 	1 t 	t ^ 
TT. 	v1 + I2 V2 + Ti V1 I1 + V2 12 = 0 	(9-33) 

"I-  1 which shows that if a multiport is AR(a) it is also AR(7). This is 

represented symbolically by 

AR(a) = ;42.-;) 	 (9-34) 

A more compact version of (9-32) is obtained by making use of 

the matrix ea defined before 
^ It ea  V + Vt ea  I = 0 (9-35) 

AR(a) includes, as special cases, anti-reciprocity (AR), which 

corresponds to a = 1 and anti-bireciprocity (AB), which corresponds 

to a . -1: 
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-0- 

AR . AR(1) 	AR(1) 	(9-36) 

AB 	a(-1) . AR(-1) 	(9-37) 

The AR(a) conditions in terms of the hybrid matrices will now 

be derived. 

Equation (9-35), which defines AR(a), can be written, in terms 

of the hybrid variables E and F, 

eP Et 	Ft 	, 	0 	(9-38) 

where F is a diagonal matrix of dimension (n+k) whose elements r 
JJ 

are 1 or a according  to the following  rule: both for e. = ip  and 

ej  

if p < n 	then 	F 

▪ 

= JJ 

if p> n 	then
JJ▪ 
. a 

The AR(a) conditions in terms of a hybrid matrix H can be obtained 

after substitution of E = BF in (9-38). The result is: 

rH 	 Htf 
	

(9-39) 

or, equivalently, 

H = - f1-1  Ht r 	(9-40) 

For the hybrid matrix which corresponds to E = [II  11.2] t, 	-8a 
and (9-40) becomes 

or 

-1 
H 	- ea lit A a (9-41) 

H11 = - H11 ; 	H22 = H22 ; 	H12 = a H21 	(9-42) 

For both the admittance and impedance matrices, regarded as 

special hybrid matrices, f'. ea. The AR(a) conditions for the 
admittance matrix are, from (9-40), 
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Y 	
_ occ-1 yt Ga 	(9-43) 

Or 

Y
11 

= -Y11 ' • 	Y
22 
 = - Y22 ' • 	Y

12 
 = - a Y21 	(9-44) 

The conditions for the impedance matrix Z have the same form. 

The definition of AR(a) in terms of the normalized currents 

and voltages, obtained by substitution of (9-19) in (9-35) is: 

A 	A 
I
tt 

Oa V
I 
 + V

it 
ea I

l 
 = 0 	 (9-45) 

Substitution of (9-21) in (9-45) leads to the definition of AR(a) 

in terms of the scattering variables 

at oa 	_ 	t oa 	= 0 	(9-46) 

From (9-46) the AR(a) conditions in terms of the scattering matrix S 

are easily obtained as 

Oa  = St  ea  S 

which can also be written in the form of 

-1 t 
S ea  S ea  = 1 

(9-47) 

(9-48) 

The rules obtained in the previous chapter (Table 8-3b) concern-

ing the cascade connection (Fig. 8-3) of AR and AB multiports can be 

generalized by using AR(a). It is easily shown that if an (n+q)-port 

Ni  is AR(a) and a (q+k)-port N2  is la(p), then the (n-k)-port N 

resulting from the cascade connection of N1  and N2  (Fig. 8-3) is 

■-•••• 

AR(ap). This will be represented as: 

AR(a) + AR(p) = AR(ap) 
	

(9-49) 
•-• 

This rule is analogous to the one that applies to the cascade of R(a) 

multiports (9-29) and is proved in a similar way. 



by 

	

[ V1 	[A B 	[ V2  

	

I1 	-I2 

(9-50) 

- - 262 - 

The rules in Table 8-3b are special cases of (9-49) for a - 1 and 

p =± 1. 

Another result concerns the interconnection of multiports shown 
—be 

in Fig. 9-1. If an (n+k)-port which is AR(a) is connected to an 

anti-reciprocal (AR) k-port, the resulting n-port is anti-reciprocal. 

This is very easy to see from the definitions of AR (equation (9-30)) 

and 111(a) (equation (9-32)). 

9.4 - THE SPECIAL CASE OF (n+n)-PORTS 

An (n+n)-port can be described by a transmission matrix T defined 

The R(a) and AR(a) conditions in terms of the transmission matrix can 

be obtained after substitution of (9-50) in the defining equations 

(9-3) and (9-32). The derivation is very similar to that given in 

the previous chapter for the case of normal reciprocity (section 8.2). 

The results for 7[1(a) are 

AtC = CtA 	; BtD = DtB 

or 

; AtD - CtB . a 1n 	(9-51) 

T clo• Tt It 	a 12n 
	(9-52) 

and for AR(a) 

AtC=-C
tA 	; B

t
D=-DtB 	; AtD + CtB = a in 	(9-53) 

or 

T 	Tt 	m 	e4 12n 
	(9-54) 

The auxiliary matrices CP and LI) have been used before; they 
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are defined as 

[

0 	1 n 

-1n 0 

   

   

and 	= 

0 

1n 0 

 

   

   

For both R(a) and AR(a) (n+n)-ports the value of the determinant 

of the transmission matrix is 

+  
det T = - n 
	

(9-55) 

This result is easily obtained by taking the determinant of both 

sides of(9-52) and (9-54) 

The rules (9-29) and(9-49) obtained in sections 9.2 and 9.3 

apply to the cascade connection of an (n+q)-port with a (q+k)-port 

(Fig. 8-3) where n, q and k can be different. If n = q = k several 

other rules can be obtained which are a generalization of the rules 

obtained in the previous chapter and given in Table 8.4. The 

generalized rules are also given in terms of four matrices related to 

the transmission matrix T: 

= 	T 	Tt  •j)t  M 	= (I) Tt 	T  

L q, 	= 	T LI) Tt  tP 	M 	= 	Tt 	T 

The rules are given in the following table (with reference to Fig. 

8-3 with n = q = k): 
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N1  
N
2 

N 

Lo R(a) a 	LO  

Ly AR(a) a L ki)  

R(ll) M4, a, 	M4, 

Ali(a) Mt, a 	M ti,  

The proof of these rules is entirely similar to the proof of 

the corresponding rules in the previous chapter (section 8.7). 

9.5 - MISCELLANEOUS COMMENTS 

Partition of ports into two sets  

The definitions of both R(a) and AR(m) are, in general, 

associated with a partition of the ports into two sets. It is only 

for the case a = 1 that the variables associated with the ports in 

different sets are treated equally and therefore a partition is not 

necessary. 

Equation (9-3) and (9-1) show that if in an i(a) (n+k)-port 

all ports of one of the two sets are either open or short-circuited, 

the reduced multiport obtained is reciprocal (R); if two ports, one 

of each set, are selected for consideration, and all the other ports 

are rendered inaccessible by open or short-circuit terminations, 

the 2-port obtained is R(a). 



- - = - 
Y21 	z21 	

h
21 
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In a similar way, equations (9-32) and (9-30) show that, in an 

AR(a) multiport, ports of the same set form an anti-reciprocal (AR) 

reduced multiport and any two ports of different set form an AR(a) 

2-port. 

The meaning of a  

The R(a) conditions in terms of the various matrices show that 

any 2-port is R(a) with 

Y12 	z12 	h12 a = 	 = ad - bc 	(9-56) 
Y21 	z21 	

h21 

-a. 

The AR(a) conditions show that an AR(a) 2-port must satisfy one of 

the following equivalent conditions 

Yll = Y22 0  ; z11 = z22 = 	hll = h
22 = 0 ; ac -a: bd =.0 

(9-57) 

If these conditions are satisfied the 2-port is AR(a) with 

In contrast with 2-ports, not all (n+k)-ports are R(a). An 

(n+k)-port with n > 1 or k > 1 is R(a) only if the relevant conditions 

are satisfied. 

The parameter a will now be examined in the context of the 

modelling of 2-ports by the cascade connection of a reciprocal with a 

non-reciprocal 2-port. One such model, first proposed in [102] , 

and also discussed in [2] , is obtained by noting that the admittance 

description of a 2-port 

it = Yll vl 	Y12 112 
	(9-59a) 

i
2 = Y21 vl 4- Y22 v2 
	(9-59b) 
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can, equivalently, be written in the form 

Y 
i
1 = Yllvl (Y12Y21)2 (

43 	
v  2 21 

Y — 	21 J, i
2 

	

	
)2 IT1  ( V 	„ v 

= (Y21j
,7 )2  
121 -12 	' °22 '2 

(9-60a) 

(9 -60b) 

These equations can be interpreted as describing the cascade connection 

of a reciprocal 2-port, described by 

1 = Yllvl (Y12Y21)  v 
	

(9-61a) 

if  = (Y12Y21)2 v1 y22 v 
	(9 -61b) 

with a non-reciprocal 2-port described by 

v Y12 ( 	v2  
Y21 

Y  
i2 = (21 )2 i  -12 

as shown in Fig. 9-2. 

The description of the non-reciprocal 2-port, (9-62), written in 

the form of 

V = a2 v2  

2 • . a 12  

where 
I 

a = (Y12/Y21)2  

(9-63a) 

(9-63b) 

(9-64) 

shows that it is a power amplifier with a power gain a, in the 

reverse direction, if the original two port is R(a). It can also be 

observed, from the hybrid description of the non-reciprocal 2-port 

(9-62a) 

(9 -62b) 

t 
-1 

v2 

1  
0 

a 	0 	:21 

(9-65) 

  

that it is R(a) (this is not surprising in view of the combination 

rule (9-29)). This non-reciprocal 2-port has been designated "anti- 



i2 

v2 Yll (Y12Y21)  v1 	
(Y12Y21° Y22 

I/2  

'' (Y121Y21)  v2 
14r.. 
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Fig. 9-2 : Model of a non-reciprocal 2-port using 

an 'anti-reciprocal transition'. 

o- 	

o 	 

T 

R(a) 

T1  
T1  

R(oc) —0 

RECIPROCAL NON-RECIPROCAL 

Fig. 9-3 : Model of a non-reciprocal 2-port. 
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reciprocal transition". It is interesting to note that it is not  

anti-reciprocal in the sense of any of the two definitions existing 

in the literature (AR and B restricted for 2-ports, as discussed in 

the previous chapter). It is, however, anti-reciprocal in the sense 

of the generalized definition proposed here: it is AR(a) with 

a = (31-12/Y21)2' as shown by the hybrid matrix in (9-65) (in fact 

this 2-port is both R(a) and AR(a), with a given by (9-64)). 

It may be of interest to note that the decomposition in Fig. 9-2 

is not unique if the only requirement is that one of the two ports 

in the model be reciprocal. A 2-port (with a transmission matrix T) 

is not affected by the cascade with two others (Fig. 9-3) if their 

transmission matrices are T1  and T11. If the original 2-port is 

R(a) and if T1 is chosen in such a way that the corresponding 2-port 

is R(1/a), i.e., aid,. - b1c1  . 1/a , then, in view of the combination 

rule (9-29) the 2-port resulting from the cascade of T and T1  is 

reciprocal and can thus be taken as the reciprocal part in the model 

(see Fig. 9-3). 

Unilateral (n+k)-ports  

Unilateral 2-ports are defined by the following equivalent 

conditions 

Y12 = 	/ 	z12 = 0  ' 	h12 =  0 
	(9-66) 

The R(a) conditions .(9-56) show that any unilateral 2-port is R(0) 

and vice versa. 

If unilateral (n+k)-ports are defined by the matrix version of 

equations (9-66) 

Y12 = 0 , Z12 = 0 	112  = 0 	(9-67) 
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then it can be stated that any (n+k)-port is unilateral if it is R(0), 

since the R(a) conditions for a = 0 include (9-67). It should be 

noted, however that, apart from 2-ports, unilateral (n+k)-ports 

are not necessarily R(0). 

Similarly it can be seen that all AR(0) multiports are unilateral, 

but unilateral multiports (including 2-ports) are not necessarily 

AR(0). 

Multipart Converters and Inverters  

It will now be shown that some multipart converters are simult-

aneously R(a) and AR(a) and that some multipart inverters are 

simultaneously R(a) and AR(-a)(for the same value of a). 

Equations (9-16) and (9-44) show that a multipart with admittance 
, 

description can only be both R(a) and AR(a) if the admittance matrix 

is zero. A similar conclusion can be reached with respect to the 

impedance matrix. However, if a multiport has the hybrid description 

for which (9-14) and (9-42) were derived, it will be both R(a) and 

AR(a) if 

H11  = 0 
	

H22 
	H12 = - a H21 

	(9-68) 

Such a multiport is a special case of multiport converter; if a . 1 

it is a positive transformer and if a = -1 it is a negative trans-

former (multipart positive and negative transformers have been 

discussed in the previous chapter, section 8.8). 

Equations (9-14) and (9-42) show that the requirement of sim-

ultaneous R(a) and AR(-a,) leads to a zero hybrid matrix (the hybrid 

matrix considered is the one for which (9-14) and (9-42) are valid). 

If the multiport possesses an admittance matrix, equations (9-16) 

and (9-44) show that it is both R(a) and AR(-a) if 
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Y11 = 0 ; Y22 = 0 ; Y12 = a"L21 
	(9-69) 

A similar result is obtained if the impedance matrix is considered: 

Zll = 0 ; Z22 = 0 ; Z12 = a221 
	(9-70) 

The multiports described by (9-69) or (9-70) are special cases of 

multiport inverters. If a =-1 they are positive gyrators, and if 

a = +1 they are negative gyrators (multiport positive and negative 

gyrators have been considered in section 8.8 of the previous chapter). 

On the possibility of a further generalization 

The definition of R(a) was obtained from the definition of R 

by multiplying two of the terms in (9-2) by a scalar a. It seems 

reasonable to investigate the possibility of a further generalization, 

which might be obtained by multiplying each term in (9-2) by a 

different scalar coefficient (one term can always be assumed to have 

coefficient 1): 

t " 	 ^ 	t 	A 

	

I1 V1 + a I2
t V2 + p vl 	+ 	V212 = 0 (9-71) 

The constraints imposed by (9-71) on the admittance matrix are 

(9-72a) 

(9-72b) 

(9-72c) 

(9-72d) 

Yll = P Yll 

t 
Y22 a -22 = 	Y22 

Y12 
t 

= /Y21 

t 
a -L21 = P Y12 

If equation (9-72d) is written in the form of 

Y12 = Y p 21 

and compared with (9-72c) it is seen that either 
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a 	 (9-73) 
or 

Y12 = Y21 = 0 
	

(9-74) 

Since (9-74) means absence of transmission between the two sets of 

ports, it will be assumed that the three coefficients are related 

according to (9-73). 

For networks with a hybrid description 

H11 	H12 	V1 1 

[V21 = 	H21 	H22 	12 

the constraints imposed by (9-71) are 

(9-75a) 

(9-75b) 

(9-75c) 

(9-75d) 

Hil = P Hil 

a H22 = ir H22 

t H12 = - a H21 

13 H12 = 	H2t1 

If (9-75d) is written in the form of 

H12 = - p H21 

and compared with (9-75c) it is seen that either 

IS' = 

or 

H12 = H21 . 0 

(9-76) 

(9-77) 

Since (9-77) means that there is no transmission between ports of 

different sets, it will be assumed that (9-76) applies. 

Equations (9-73) and (9-76) must be accepted together if it is 

postulated that (9-71) must be applicable to (n+k)-ports with trans- 
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mission between the two sets of ports, both when the multiports 

possess an admittance description, and when they possess a hybrid 

description. From (9-73) and (9-76) it follows that p = -11. If 

p = 1 then = a and (9-71) coincides with (9-32) which is the 

defining equation of AR(a). If p = -1, then T. - a and (9-71) 

is reduced to the form of (9-3) which defines R(a). This means that 

the two cases discussed in this chapter, R(a) and AR(a), are the only 

interesting cases contained in an equation of the form (9-71). 

9.6 CONCLUSIONS 

It has been shown that the definitions of reciprocity (R) and 

anti-reciprocity (AR) can be generalized in such a way that the two 

network properties introduced in the previous chapter, bireciprocity 

(B) and anti-bireciprocity (AB), become special cases of generalized 

reciprocity, R(a), and generalized anti-reciprocity, AR(a), respect-

ively. The various rules concerning the cascade connection of multi-

ports can be expressed in terms of R(a) and AR(a); the class of multi-

ports to which these rules apply has thus been significantly extended. 

The basic results concerning R(a) and AR(a) are summarized in Table 

9-1. 

Various questions have been examined, which provide a better 

insight into the meaning of the generalization proposed here. It has 

been pointed out that some multiport converters are both R(a) and 

AR(a) and that some multiport inverters are simultaneously R(a) and 

AR(-a), for the same value of a. 

Finally, it has been shown that R(a) and AR(a) are the most 

general network properties with interesting consequences which can 



TABLE 9.1 : Generalized Reciprocity and Generalized Anti-reciprocity. 

GENERALIZED RECIPROCITY 	7(a) = i(a71) AR(a) = AR(a 	) GENER. ANTI-RECIPROCITY
1  

DEFINITION 

	

A 	A 	A  
It V 	+ al

t 
 V 	- V

t 
 I 	-aV

t 	
- I 	0 

1 	1 	2 	2 	1 	1 	2 	2 - 

	

A 	A 	A 	A  

	

I
t 
 V 	+ aI

t 
 V 	+ V

t 
 I 	+ aV

t 
	= I 	- 0 

1 	1 	2 	2 	1 	1 	2 	2  

SPECIAL CASES iT(1) = R 	; 	i(-1) = B AR(1) = AR 	; 	AR(-1) = AB 

ADMITTANCE MATRIX 
t 	t 	t 

• Y 	• 
Y11=Y11 	' 	22=Y 

	Y 
22 	' 	12

=aY 
 21 

t 	t 	t 
 • 	• 	 aY 

Y11-_ 
	Y 
Yll 	' 	22--Y 
	Y 
22 	' 	12-- 

	
21 

HYBRID MATRIX H 
11 
=H
1 2 	; 

	H 
12- 

,aH
2
t 

1 	; 
	H 

22 
=H
2 1 

H 
11  
=-H

1 1 	; 	
H 
22- 

-H 
2
t 
2 	'

• 
	

H 
12- 

-aH2
t  
1 

TRANSMISSION MATRIX 

(n = k) 
A
t
C=C

t
A 	; 	B

t
D=D

t
B 	; 	A

t
D-C

t
B=a1

n 
A
t
C=-C

t
A 	; 	B

t
D=-D

t
B 	; 	A

t
D+C

t
B=a1

n 

CASCADE 	(Fig. 8.3) 

n +q) + (q+k)-.-(n+k) 
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be defined by an equation of the form: 

" 	^ 	t I1
t 
 V
1 + a I2

t 
 V
2 

+ p v11 + 1SV2 

where a, 3 and 	are are scalar coefficients. 
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CHAPTER 10 

CONCLUSIONS 

10.1 - SUMMARY OF THE MAIN RESULTS 

The conclusions of the research reported in this thesis have 

already been presented in the last sections of each chapter. The 

main results will now be reviewed. 

A generalization to multiports of the concepts of 2-port immittance 

conversion and inversion has been proposed. The conditions which the 

matrix description of multiport converters and inverters must satisfy 

have been derived from the proposed definitions. It is pointed out 

that whereas 2-port admittance converters or inverters are also 

impedance converters or inverters, and vice versa, this is not generally 

true for the multiport converters and inverters proposed here. However, 

the inclusion in the definitions of the requirement for simultaneous 

admittance and impedance conversion or inversion would be undesirably 

restrictive. 

A further generalization has also been suggested: the concept of 

multiport 'hybrid converter' is introduced and it is shown that it 

includes, as special cases, both converters and inverters (and both the 

admittance and the impedance types). 

Most of the circuits proposed for the simulation of floating 

inductors can be interpreted as 3-port admittance (and not impedance) 

converters and inverters. Multiport transformers and gyrators are also 

special cases of multiport converters and inverters. It is believed 

that the theory of multiport conversion and inversion that has been 
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developed here not only provides a better understanding of these 

important special cases but is also useful as a contribution to 

general multiport theory. 

It has been shown how any well-defined multiport can be realized 

as an interconnection of 2-ports. This is applied to the realization 

of multiport converters and inverters. The limitations arising from 

(a) the need to guarantee that after the 2-ports are interconnected 

all terminal-pairs still behave as ports, and (b) the existence of a 

ground terminal in all the 2-ports, in the case of active realization, 

are discussed. The possibility of using 2-port converters and invert-

ers in which the ports have a common terminal that can be grounded is 

investigated. 

A comparative study of various realizations of 3-port converters 

and inverters suitable for the simulation of floating inductors has 

been carried out. Although all 3-port inverters have the same port, 

description, different realizations may have different terminal des-

criptions. A classification of 3-port inverters for floating inductor 

simulation based on their terminal description is presented. A parallel 

classification is also applied to the 3-port converters. It is shown 

that some circuits that are apparently unrelated belong to the same 

class. It is believed that the proposed classification is useful in 

providing greater insight into various methods of floating inductor 

simulation. 

A well known method of floating inductor simulation uses two 

grounded gyrators. The resulting circuit can be interpreted as a 

4-terminal, 3-port admittance inverter. It is shown that when two 

specific gyrator circuits, each with two operational amplifiers, are 

used, one of the operational amplifiers becomes redundant and can 
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be suppressed, thus leading to a 3-port inverter with three operational 

amplifiers. There are four ways of associating the two gyrators and, 

in each case, one amplifier can be suppressed. Thus, a family of four 

different circuits is obtained. One of these circuits is known; the 

other three are believed to be novel. 

The realization of some types of inverters using a minimum 

number of active components has been investigated. In particular, 

minimal realizations of the 2-port positive inverter are discussed in 

detail. It is proved that for a grounded 2-port (i.e. a 2-port where 

both ports are grounded) containing resistors and one operational 

amplifier, the admittance parameters are subject to the following 

constraints: (a) if  y11 = 0 then y21 
 * 0, and (b) if y22 = 0 

then Y12 	
0. This result has various consequences regarding the 

- 

realization of different types of inverters; one of these consequen=es 

is that it is not possible to realize a grounded positive inverter 

with only one operational amplifier (although it is possible to 

realize single-amplifier positive inverters with only one grounded 

port). It has also been proved that it is not possible to realize 

a grounded positive inverter with only one ideal transistor (it is 

not known whether it is possible to realize a single-transistor pos- 

itive inverter with only one -grounded port). These conclusions are 

not only useful by themselves as results concerning the minimal 

realization of 2-port positive inverters but have also consequences 

regarding 3-port inverters: they show that the method of floating 

inductor simulation using two grounded positive inverters requires 

more than two active components (operational amplifiers or transistors). 
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Converters and inverters have often been associated with the 

discussion of reciprocity and non-reciprocity (the absence of 

reciprocity). The gyrator, in particular, has always been regarded 

as possessing a kind of extreme non-reciprocity or anti-reciprocity. 

Two different definitions of anti-reciprocity can be found in the 

literature. Surprisingly, the incompatibility of these two definitions 

does not seem to have been noticed before. An investigation started 

with the aim of clarifying this situation led to various new results. 

One of the definitions, so far restricted to 2-ports, is generalized 

for multiports. This generalized version, together with the other 

definition of anti-reciprocity and the definition of reciprocity, 

suggests the introduction of a fourth network property related to 

the concept of reciprocity in order to obtain a 'complete pattern'. 

The set of four properties is referred to as R4. The meaning of the 

new definitions is examined in some detail. Various rules concerning 

the cascade connection of two multiports, where one or both of them 

possess one of the four properties, are presented. It is shown that 

the only 'non-degenerate' multiports possessing simultaneously two 

properties belonging to the set R4 are special cases of multiport 

converters or inverters. 

It has also been shown that, although in some respects the set 

of four properties is 'complete', a further extension is possible. 

Both reciprocity and one of the types of anti-reciprocity are given 

a generalized definition in terms of a scalar parameter a. The two 

generalized properties, designated as R(a) and AR(a), contain as 

notable special cases the four properties forming the set R4. The 

rules, mentioned above, concerning the cascade connection of two 

multiports become special cases of more general rules in terms of 

R(a) and AR(a). 
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10.2 - SUGGESTIONS FOR FURTHER WORK 

A number of unsolved problems related to the subject of this 

thesis will now be mentioned. 

It is believed that the theory of multiport admittance and 

impedance converters and inverters (and also the concept of hybrid 

converter) presented in this thesis may be useful in connection with 

multiport synthesis. Since various methods of multiport synthesis 

that can be found in the literature are given in terms of scattering 

parameters, it might be useful to develop a theory of multiport 

converters and inverters in terms of the scattering variables. 

Most of the realizations of multiport converters and inverters 

considered in this thesis are based on the use of 2-port converters 

or inverters (other methods have only been considered in the case of 

3-port admittance converters and inverters for floating inductance 

simulation). It might be of interest to investigate other types of 

realization of multiport converters and inverters, for instance using 

nullors or using controlled sources. 

The classification of 3-port converters and inverters for float-

ing inductor simulation proposed in this thesis was established under 

the assumption that the converters and inverters have ideal performance. 

It is possible that circuits belonging to the same class have also 

common features concerning their non-ideal behaviour. It is believed 

that this question deserves further investigation. 

A comparison between converter and inverter methods of floating 

inductor simulation, taking into account the non-ideal performance, 

appears to be another interesting problem. For this comparison, 

3-port inverters and converters realized with two grounded 2-port 

inverters and with two grounded 2-port converters, respectively, might 

be considered. 
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There is a number of questions concerning minimal realizations 

of converters and inverters which remain unanswered. Two such 

questions have already been pointed out in chapter 7. One of these 

concerns the realization of positive inverters with resistors and one 

ideal transistor; the other refers to the realization of 3-port 

inverters for floating inductor simulation with two operational 

amplifiers. Another unsolved question, concerning converters (rather 

than inverters) with a minimum number of active components will now 

be mentioned. 

In connection with the method of simulation of LC ladder 

filters by impedance scaling (see chapter 3, section 3.2)one-ports 

with admittance proportional to s2 (super-capacitors) or proportional 

to s
-2 (super-inductors) are required. Converters with a conversion 

factor proportional to s
2 
or to s

1 
terminated by a resistor or 

terminated by a capacitor, respectively, can be used to realize super-

capacitors; the first type of converters can also be used to realize 

super-inductors. In some versions of the impedance scaling method, 

converters with a conversion factor proportional to s
1 
or s 2 

are 

indispensable for impedance matching different sections of a filter. 

Such converters can be realized with 2 operational amplifiers, for 

instance using the circuit of Fig. 3-16, in chapter 3. It would be 

of interest to know whether realizations with only one amplifier are 

possiblec*)  

(it) It may be noted that it has recently been shown [981 that super-
capacitors and super-inductors can be realized with only one operatio-
nal amplifier and the minimum number of capacitors required, wich is 
2 (earlier circuits with one amplifier and more than two capacitors 
had been proposed in [89] )5 the circuits in (98] and (89], however, 
are not interpretable as converters. 
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Finally, in connection with the investigation of anti-

reciprocity, an unsolved question concerns the value of the deter-

minant of the'transmission matrix T of (n+n)-ports which possess 

one of the four properties considered in chapter 8; it would be of 

interest to prove or disprove the conjecture presented in section 6.7. 

This question can be formulated in a more general form by considering 

the det T of (n+n)-ports that possess generalized reciprocity, R(a), 

or generalized anti-reciprocity, AR(a). 
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