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ABSTRACT

Two-port immittance (i.e. impedance or admittance) converters and
inverters are important active units used, in signal processing applica-
tions, for the realization of active RC networks suitable for micro=-
electronic implementation, In this thesis a generalization to
multiports of the concepts of 2-part converters and inverters is
proposed, the special case of 3-port converters and inverters suitable
for floating inductor simulation is studied in some detail, the
realization of inverters with a minimum number of active components is

discussed, and the concept of anti-reciprocity (which has close

associations with converters and inverters) is investigated.

According to the proposed generalization, conversion and inversion,
which are scalar operations when performed by 2-ports, become matrix
operations, when performed by multiports. One consequence is that a
distinction, which does not exist for 2-ports, has to be made between

multiport admittance and impedance converters or inverters,

Most of the circuits used for the active RC simulation of floating
inductors can be interpreted as 3-port admittance inverters or converters,
A classification of these inverters and converters, based on their
terminal description (as distinct from their port description), is
developed, which clarifies the relationships between known realizations

and shows the possibility of new ones,

It is known that 2-port positive inverters containing resistors and
only one operational amplifier can be realized if only one port is
grounded, It is proved that this is impossible if both ports are grounded

(a similar restriction concerning positive inverters using only one ideal



-3 -

transistor is also proved). The consequences of this conclusion

regarding the realization of 3-port inverters are examined.

Some converters and inverters (e.g. the gyrator) have bgen regarded
as possessing a kind of extreme non-reciprocity or "anti-reciprocity”.
It is pointed out that two existing definitions of anti-reciprocity
are incorpatible. An investigation of this question leads to the
introduction of a "complete set" of network properties related to the
concept of reciprocity., Various rules concerning the interconnection
of multiports possessing these properties are derived. A generalization
of the definitions of reciprocity and anti-reciprocity is presented,

and the consequences of the proposed generalization are evaluated.
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- NOTAT ION

In this thesis matrices and vectors are denoted by caﬁital letters
and scalars by small letters. However, Ry, L and C are used to denote
resistance, inductance and capacitance, respectively. The unit matrix
of order n is denoted by ln; the subscript will be omitted when
evident from the context. Zero matrices are denoted by Q. At denotes

the transpose of A and det A denotes the determinant of A,

The 1literal symbols corresponding to network variables (currents,
voltages, scattering parameters) denote the Laplace-~transformed or

frequency-domain representation of these variables; for example,

denotes the vector of the Laplace-transformed currents., The instantaneous
or time-domain values are denoted by indicating explicitly the

dependence of time (t); for example,

I(t) = _il(t)—

i,(t)

-]

i (t)

. -

Several auxilliary matrices are used in the thesis to write some
equations in a compact form, Those that are used in more than one

section are listed below:
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CHAPTER 1

INTRODUCT ION

1.1 - IMMITTANCE CONVERTERS AND INVERTERS -~ GENERAL CONSIDERATIONS

This thesis is concerned with an investigation into various aspects
of immittance (impedance and admittance) converters and inverters,
These are specific types of linear and time-invariant multiports; they

can, however, be active or passive, reciprocal or non-reciprocal,

Immittance converters and inverters have in the past been considered
as 2-ports (an extension to multiports of the concepts of immittance
conversion and inversion will be proposed in this thesis)., The gyrator
is a familiar example of an inverter; an example of a converter is the
negative impedance converter (NIC). A detailed review of the formal
definition and main properties of converters and inverters will be
deferred until chapter 3. This section will be concerned with a
discussion, in general terms, of the role played by these 2-ports in

modern network theory,.

What is of primary interest in a converter or inverter is the
relationship between the immittance at one of the ports and the
immittance of a *load!' l-port connected to the other port: the two
admittances (or impedances) are proportional in the case of the converter,
and one is proportional to the inverse of the other in the case of the
inverter., The simplicity of the mathematical relationships involved
(direct proportionality and inverse proportionality) explains the

extensive use that has been made of these 2-ports in various methods
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of network synthesis.

The main application of converters and inverters is in the field
of active RC networks (an example of application in a different field
is the use of the gyrator in microwave systems). In the context of
active RC networks the converters and inverters are always actively
realized, i.e. realized using active components (although they may in
some cases be passive as far as the ideal port behaviour is concerned).
For this reason converters and inverters are usually classified as
active units or sub-networks. They are 2-ports described by two non-
zero parameters and are therefore less elementary than other active
elements: controlled sources are described by one non-zero parameter
only and both the transistor and the operational amplifier are, in the

ideal case, described by zero-valued parameters,

Widespread interest in converters and inverters is contemporary
with the development of micraelectronic technology. Highly frequency-
selective networks suitable for microelectronic implementation must be
realized as Active RC networks. This becomes necessary due to the fact
that microelectronic inductors are not available (except at very high
frequencies) and RC networks are not selective enough., It has been
found that active RC filters derived fromdoubly terminated LC ladder filters
possess very low sensitivity (this will be discussed in greater detail
in chapter 3). One method of obtaining these low-sensitivity active
filters consists in the simulation of each inductor in an LC prototype
filter (terminated by resistors) by an Active RC circuit. Many of the
circuits available for this purpose are interpretable as immitténce
inverters (usually gyrators) terminated by a capacitor. Other circuits
can be interpreted as iﬁmittance converters terminated by a resistor
(some circuits can be regarded either as an inverter or as a converter,

as discussed later), Another method of deriving active filters from
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LC ladder filters requires the use of one-~ports with admittances
proportional to s2 (s is the ccmplex frequency variable). These

special one-ports, often called FDNR's (Frequency Dependent Negative
Resistors) can be obtained by using appropriate converters and inverters,
Both these methods, simulation of inductors and use of FDNR's,have been
intensively investigated in recent years and lead to active filters

which are able to satisfy very demanding specifications.

In addition to being very useful in the realization of active net-
works, converters and inverters are also of great interest from a
purely theoretical point of view., Some converters and inverters have
always been regarded as typical examples of reciprocal and non-reciprocal
2-ports: the gyrator (which is an inverter) is usually considered as
the prototype of a non-reciprocal 2-port, in contrast to the -
reciprocal transformer (which is a converter, when regarded as an ideal

transformer),
1.2 - OUTLINE OF THE THESIS

The present general introduction will be followed by two chapters
which are also of an introductory nature., One of these presents general
background material consisting of a survey of some basic concepts of
network theory which are extensively used in the thesis. The other
provides more specific background by giving a review of 2-port converters

and inverters and their application in active RC networks,

The presentation of the results of the research done by the'author
starts in chapter 4, where a generalizations to multiports of the
concepts of 2-port conversion and inversion is proposed. In chapter 5
the possibility of realizing multiport converters and inverters with

2-port converters and inverters is investigated,
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Most of the circuits proposed for the simulation of floating
inductors can be identified as special cases of the multiport converters
and inverters proposed in this theses: they are 3-port admittance
converters or inverters., A comparative study of various methods of
realization of these 3-port converters and inverters is presented in

chapter o6,

The realization of various types of inverters with a minimum
number of active components is considered in chapter 7; in particular,
2-port positive inverters with a grounded terminal common to both ports
are investigated. The results obtained are used in the discussion of

the realization of 3-port inverters for floating inductance simulation,

Some converters and inverters have often been considered as *anti-
reciprocal? 2-ports. It will be shown that the two definitions of
anti-reciprocity given in' the literature do not coincide. An investiga-
tion suggested by this incompatibility of the two definitions is
reported in chapters 8 and 9. Some types of multiport converters and

inverters play an important part in this investigation,

Finally, in the conclusions, the main results obtained in the

thesis are summarized and a number of unsolved questions related to

those investigated in the thesis, are pointed out,

1.3 - STATEMENT OF ORIGINALITY

A clear distinction is made throughout this thesis between new
results obtained by the author and known results that can be found in

literature.

It is believed that the results reported in chapters 4 to 9 are

original., The main contributions contained in the thesis are,in the
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author's opinion, the following:

Chapter 4:

Chapter 6:

Chapter 7:

Chapter 8:

Chapter O:

The generalization to multiports of the concepts of

admittance and impedance converters and inverters; the

" discussion of their properties and in particular the

difference between admittance and impedance converters and

inverters; the introduction of the concept of multiport

*hybrid convertert,

The classification, based on the terminal description, of
active RC circuits simulating floating inductors by

admittance inversion and conversion [104],

The proof of the impossibility of 2~port positive inverters
("active gyrators') with both ports grounded, using
only one operational amplifier with grounded output or

using only one transistor [103],

The generalization to multiports of one of the two existing
definitions of anti-reciprocity and the introduction of a
new network property related to the concept of reciprocity;
the establishmer* of various rules concerning inter-
connections of two multiports when one or bgth possess one

of these two properties [105]°

The generalization of reciprocity and antireciprocity in
terms of a parameter which can assume different values
and the establishment of rules concerning the interconnection

of multiports possessing these generalized properties,
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CHAPTER 2

REVIEW OF SOME BASIC CONCEPTS

2.1 - MULTIPORTS

Definition

A physical system is regafded as a multiport when all interaction
with the outside of the system, namely the energy flow, only takes
place at a certain number of locations called ports. With each port
are associated two quantities, the port variables, whose product has
the dimension of power. The internal constitution of the system is
ignored (the system is regarded as a *black box') and the multiport

is characterized only in terms of the port variables.

In the multiports to be considered here a port is a terminal-
pair with which a voltage and a current can be associated [1-6]. A
terminal pair is only a port if the instantaneous value of the current
flowing into one terminal is equal to the instantaneous value of the
current flowing out of the other terminal (Fig. 2-1). It is assumed
that this condition is a consequence of the external connectionsj; it
is not required to be a constraint imposed by the internal constitution
of the multiport. Only the voltages between pairs of terminals that
constitute ports are considered, the voltages between terminals of

different ports being regarded as of no interest.

A multiport with n ports is called an n-port (Fig. 2-2). The
reference directions: for the voltage and current at each port will

be chosen in such a way that when the instantaneous voltage and

current are both positive the instantaneous power flows into



Fig., 2~1 :

Fig. 2-2 :

An n-port

An n-port with n+l terminals
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the multiport (Figs. 2-1 and 2-2).

Two or more ports may share a common terminal. In particular,
it is possible for all the ports to have a common términal. In this
case the n-por& is an (n + 1l)-terminal network described in terms
of the currents at n terminais and the voltages between each of these

n terminals and the remaining one (Fig. 2=3).

General description of an n-port

The multiports considered in this thesis are linear, time~
invariant and contain only lumped components. Such multiports can be
described, in terms of the Laplace transforms of the zero-state port-
currents and port-voltages, by a set of linear homogeneous equations,
whose coefficients are rational functions of the complex frequency
variable s. By zero-state it is meant that all the initial conditions
are zero. The equations describing the multiport can be written in
matrix form(*) as

MI + PV = O (2-1)

where I and V are n-vectors whose components are the port-currents

and port-voltages, respectively,

—-— T - 8 n
I= 11 A" vl
o *
o L]
i
[ 0] L ™

)

It should be noted that in this thesis matrices and vectors are
denoted by capital letters.
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* % . .
) whose elements are rational functions of

and M and P are matrices
S. Both M and P have n columns. The number r of independent scalar
equations in the description of‘the n-port is called the dimension-

ality of the n-port [5]. It will be assumed here that.r = n since

this is always the case for multiports with physical meaning [7] (for

a detailed discussion of the cases where r ¥ n, usually regarded as
"pathological”, see [5, 7, gl). It will also be assumed that the matrix
equation (2-1) contains only independent scalar equations, i.e. the

number of rows of M and P is n (M and P are therefore n-square

matrices).
"

A description in the form of equations (2-1) has the advantage
of being the most general frequency-domain representation of lumped
linear time-invariant n-ports. However this representation is not
unique, since, if an n-port is represented by (2-1), it can equally be
represented by the equation obtained by left-multiplying (2-1) by

any non-singular square matrix (of appropriate dimension).

Since it is assumed that the n-port is described by n independent
equations with 2n variables, it is possible to express n of the
variables in terms of the n remaining variables. The choice of a
specific set of n dependent variables is subject to the requirement:
that the columns of M and P which multiply these variables in (2-1)
be linearly independent. This will be illustrated by means of an

example:

(**)

The coefficient matrices in (2-1) are denoted here by M and P
instead of A and B which is the usual notation [ 4,5]. This is
done in order to avoid confusion with the submatrices A and B
of the transmission matrix of an (n + n)-port (to be introduced
later).



- 27 ~

The following description of a 3-port in the form MI + PV = O,

(a) (b)) (c) (a) (e) (£)

0.5 O_ 1 il -2 6] -1 Vl

o 1 o i, |+ o o -~1flv| ., 2-2)
o’ 8] (8] . i3 1 1 6] V3

becomes, after a rearrangement of the variables, accompanied by a

corresponding interchange of columns in M and P,

(a) (b)) (e) (d) (c) (£)
0.5 0] 6] i1 =2 1 -1 vy

6] 1 0 i2 + 0 6] -1 i3 =0 (2-3)
(6] (o) 1 v2 1 0] 0] v3

Since the first matrix in (2-3) is non<singular (the determinant is

0.5) it is possible to use its inverse to left multiply (2-3)

leading to
- - - -
i, 2 6] Oq -2 1 -1 \
12 + (6] 1 0 O (0 -1 13 =0
v 0 0 1 1 0 0 v
or L 2 | | J L 3 )
- - - Tr
11 4 -2 2 v1
12 = (0] (0] 1 13
v -1 0 (0] v
L 24 L JL3

This 3-port cannot be described by a set of equations having il, iz,
and V3, as dependent variables, since the corresponding columns (a),

(b) and (f) in (2-2) are not independent:

(a) () ()
0.5 0 -1
det O 1 -1} =0

0 0o 0
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Hybrid descriptions

Among the descriptions of an n-port where n variables are
expressed in terms of the n remaining variables, the hybrid descrip-
tions are particularly important. In a hybrid description the
set of n dependent variables contains one variable (voltage or current)

of each port (the same applies to the set of n independent variables),

A notation appropriate for dealing with hybrid descriptions will
now be introduced. By E will be denoted an n-vector whose components
are some currents and some voltages chosen among the n currents and
n voltages at the n ports of the multiport (Fig,IZ-Z) in such a way
that one (and only one) variable of>each port is included., The n
remaining port variables form another vector denoted by F., It will
be assumed that the variables are arranged in E and B in such a way
that the subscripts (which indicate the ports with which the variables
are associated) appear in the same order, For example if
ig v6]t; a different

E=[i t,then F=[v

1 V2 V3 14 V5 16] L iy iz vy
ordering of the variables might have been chosen, e.g.

. s s t _ .. . 1t .
E = [11 11 V5 V3 VS] and B = [vl‘y4 Ve 15 13 15] « It is not per-

mitted to have, for example, E = [i vy v5]t since two variables

1344 V2
of the same port (14 and v4) appear in E, Any hybrid description of
the n-port will be of the form

E = HF 2-4)

where the n-square matrix H is called a hybrid matrix of the n-port,

When all the variables in E are currents, E = I, then all the
variables in F are voltages, F = V, and (2-4) becomes the admittance
description of the n-port:

I=YV 2-5)

Similarly, when all the dependent variables are voltages, E = V and
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F =1, (2-4) becomes the impedance description of the n-port:
V=21 . (2-6)

Thus the admittance and impedance descriptions are regarded as limit-
ing cases of hybrid descriptions where all the independent variables
(and, consequently, all the dependent variables) are of the same

nature (all currents or all voltages).

Well-defined multiports

A multiport that possesses at least one hybrid description is
said to be well—defined.[S]. The existence of a hybrid description

has important consequences which will now be examined.

The set of independent variables in a hybrid description
contains one variable of each port. A port whose voltage appears as
an independent variable will be called a shunt port; a port whose
current appears as an independent variable will be called a series
port [ 5]. Since the value of the independent variables can be freely
chosen, it is possible in a well-defined multiport to impose the
voltage at the shunt ports and the current at the series ports. This
means that a well-defined multiport can be driven by voltage sources
at some of the ports (the shunt ports) and by current sources at the
remaining ports (the series ports). In particular,.any of the shunt
ports can be short-circuited, since this corresponds to imposing Vv = O,
and any of the series ports can be open-circuited, which corresponds

to the choice of i = O,

It should be noticed that a multiport may possess different
hybrid descriptions corresponding to different choices of the
independent variables. A port which is a shunt port with respect to

a specific hybrid description may be a series port with respect to a
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different hybrid description., To each hybrid description corresponds
an admissible pattern for the connection of voltage and current
sources to the ports and, in particular, for the short and open-

circuiting of the ports.

When a certain number of ports in a given multiport are rendered
inaccessible by short-circuiting some of them and open-circuiting the
others, it is often necessary to find the description of the reduced
multiport from the description of the original one. This will be

discussed now, assuming that the multiports are well-defined,

If a multiport has a hybrid description, it is always possible,
as discussed above, to short-circuit shunt ports and open—circuit
series ports (shunt and series ports associated with the hybrid
description under consideration). The hybrid matrix of the reduced
multiport is obtained from the hybrid matrix of the original multiport
simply by deleting the rows and columns corresponding to the ports

that have been eliminated. For example, given a 4-port described by

LM - - r A
(11 h h h h v

11 M2 M1z Mg 1 )
L P21 Baa Paz Moy V2
V3 by By Byg Bgy, 13
v h. h._ h i

h
4 | a1 42 43 Tad | 4

- -

if port 2 is short=-circuited (v2 = 0) and port 4 is open-circuited

(14 = 0) the remaining 2-port (ports 1 and 3) is described by
L P Mas V1
V3 By Bs3 i3

A different situation arises when some shunt ports are not short-
circuited but open~circuited and some series ports are short-circuited
instead of open-circuited, The description of the reduced multiport

can in this case be obtained following a procedure which will now be
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explained. When the ports are divided into two sets, associated with

subscripts 1 and 2, the hybrid description (2-4) can be written in the

form of
E H.. H F
vl _ | M M2 1 o7
E, Hyy Hys E,
or .
E) =H, F)+H,F - (2-72)
E. =H. F, + H.. F (2-7b)

2 21 1 22 2
If the shunt and series ports in set 2 are, respectively, opén and short
circuited, then
: B, =0 (2-3)

(note that E2 = 0 is not odrmissible if an is cingular).
[ AN

From (2-7b) and (2-8)

-1
BEy=-Hp iy F (2-9)
Substitution of (2-9) in (2-7a) yields:
E = (.. -H._HYIH )E (2-10)
1 11 12 22 21 1

which is the description of the reduced multiport. The matrix reduction
in (2-10),

..]_I

Hyp = Hyp Hyy Hyy

may be regarded as the matrix equivalent of pivotal condensation [2].

Scattering description

The n-port descriptions considered so far are relationships involving
the port currents and voltages. An alternative way of describing an
n-port consists in the use of the scattering variables instead of the
currents and voltages, Scattering variables are used for the description
of both distributed and lumped networks. Many methods of synthesis of
lumped networks have been given in terms of scattering variables

[4, 5, 6] .
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Although all the results in this thesis are given in terms
of currents and vqltages some results are also given in terms
of the scattering variables since it is believed that these
results may be of interest in connection with methods of multiport
synthesis that make use of the scattering description. Some
definitibns and relationships concerning scattering variables will
be summarized here for reference purposes (a detailed treatment

can be found, for instance in [6]).

The normalized current and voltage vectors I' and V* are
defined in terms of the port current and voltage vectors, I and

V, by the following equations:

1
It = R; I (2-11la)
s
vVt = R; \' (2-11b)
where )
Ro = d1a.g (rol, roz *« o o rOn)

3 1 4
Ro = diag (rol, r02 I S

on
-3 5 3
R “= dia r e a o T
o & (rol’ 02 n)

Although the normalization resistances or port normalization numbers
£iy2 To22 ¢ = ¢ T, can be selected arbitrarily, they are usually
related to the parameters of the networks under consideration in

order to obtain simple and easily interpretable expressions.
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The normalized admittance matrix Y' defined by It = Y! y¢

is related to the non-normalized admittance matrix Y (defined by
I = YV) by the following equation
T (2-12)

which is easy to obtain using (2-11),

The normalized impedance matrix Z' defined by V' = 2Z' I' is

related to Z by

o ; (2-13)

When a hybrid matrix is associated with the following ordering

of the variables

. T = ]
1 Y1
i v
T | =4u q (2-14)
q+l q+l
v 1
L n - . n -

the corresponding normalized hybrid matrix H* (relating the

normalized voltages and currents by an equation in the form of

(2—14)) is
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H* =Q H (2-15)

where
= di P .
[¢] iag (rol’ s roq’ ro(q+l)’

o o e roﬁ)

N

The scattering variables ) ! and Sr‘.’rare defined as
A= + 1) (2-16a)
b=y -1 (2-16b)

It follows immediatély that V' and I' are expressed in Q and ﬁ‘by
vt = b+ d> (2-17a)
It =0 -% (2-17b)
An n-port can be describeh by the scattering matrix S which relates
i;tOCQ:
£'= S (2-18)

The scattering matrix can be expressed in terms of the normalized

hybrid matrix H' (assuming that H' corresponds to the ordering of the

variables in (2-14)) by [5]:

_ v'l ]
s_@(1n+H) (ln-H) (2-19)
where
° -l(n-q)

and 1n is the unit matrix of order n. The expression of H' in terms of
S is

oo -1
H' = (1 -@S) (1 +@S) (2-20)

In particular, for the admittance matrix,@= ln and for the impedance

matrix @= -ln; equations (2-19) and (2-20) yield for these special cases:

*)

The scattering variables are usually denoted by A and B. The
decision to use here (% and ﬁr is based on the fact that A and B
are used to denote submatrices of the transmission matrix (which
will be introduced later).
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s=qa+y)y?t (L - Y") (2-21)

s=(z + 1t @ -1 (2-22)
and

Y' = (1 -5) (1+syt (2-23)

Zt = (L +8) (1 -8) "t (2-24)

Separation of the ports into two sets: (n + k )-ports

There are several situations, some of which will occur frequently
in this thesis, where the ports of a multiport are regarded as separ-
ated into two sets. In this case the multiport will be referred to as
an (n + k)-port (Fig., 2-4), The set containingn ports will be called
input, and the corresponding literal symbols will be denoted by subscript
1; the other set, containing k ports, will be called output, and the

corresponding symbols will be denoted by subscript 2.

In the case of an (n + k)-port it is convenient to consider the

current and voltage vectors (see Fig. 2-4) partitioned as:

I= I V = Vl
(2-25)
) \P)
where
= 3 T = B ] = B ] = i 7]
L= Iy = | the1 Yy vy Vo =1 Vne1
- ) * (-] L] (2_26)
i i v v
i n_ i n+k_ | D] L n+k_

The admittance and impedance matrices will also be partitioned:

I;W _ i1 Y2 vy

I 1Y Y A (2-27)
L 2 21 22 2
(v ]

A 211 %12 5

v.| " lz vA I (2-28)
2] 21 22 2
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— =

Fig. 2-4 :

An (n+k)-port
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n+k
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n+l

n+k
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where Y is n-square, Y is k-square, Y

1 22 is nx k and Y2 is kx n

12 1

(and similarly for the submatrices in 2Z),
A specific type of hybrid matrix that will often be used is the

" following:

I H H v
1 - 11 12 1 (2-29)

AP Hyy Hy [ 12

This specific type of hybrid matrix will be referred to as the shunt-
series hybrid matrix [5] since it corresponds to the assumption that
all the input ports are shunt ports and all the output ports are series

ports.

An important special case of (n + k)-port corresponds to n = k,
i.e., the two sets contain the same number of ports. Such a multiport
will be referred to as an (n + n)-port. Besides the various types of
descriptions which can be‘applied to the general (n + k)-port, a new
type of description can be defined for (n + n)-ports. This is the

transmission description [3, 4] which is, by definition:

' . V.
1 =T 2 (2‘1-30)

1 2

= (2-31)

where the four submatrices A, B, C and D are all n-square.

A conversion chart for several matrices describing an (n + k)-port
is given in Table 2-1. The admittance, impedance, shunt-series hybrid,
and transmission matrices are considered (the transmission matrix being
applicable only to (n + n)-ports). These matrices are defined in

(2-27, 28, 29, 30).



TABLE 2-1 : Conversion chart of (n+k)-port matrices

Y Z H (n = k)
o gty Fpy | DB c-DE™"
! S B i
1 1 1
Z » Hl;L ‘Hﬁ“}a Ac,l -B+A: D
(*) HoHy  HprBEEl O ¢
. Yy Yoot AR oy | ~2y)%, e -DeCA™B
R L5 %170 Zap-Tpy P10, W AB
T R 03| 2447 2y #2121 s ) HH,
(nsk) |y ¥, Y07, Yy Yo1 27 I EpHy) 'Iﬁa“’HnHiHaa

Note: Matrices on the same row are equal.

Sl -1
(Q1-Q) ,%7%7)

(*) -1

Q1

RO CIRLIN R D

1 1 -1
R Q51 (179 5%5% )

(9,72, 9779 5

)_1

—8£—
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2.2 - NULLCRS

v

Nullators, norators and nullors

-

The nullator is defined as a l-port for which both the current and
the voltage are zero; the norator is a l-port for which both the
voltage and the current are arbitrary [9, 8]. These l-ports will be
represented by the symbols shown in Fig. 2-5 : The nullor is defined
as a 2-port with zero current and zero voltage at one port and arbitrary
voltage and current at the other port [8]; it is thus equivalent to a

nullator-norator pair and will be represented as such (Fig. 2-5).

The number of independent equations describing the nullator is
greater than the number of ports: the nullator is a l-port described
by two independent equations

i=0 (2-32a)

v=2~0 (2-32b)

The number of equations describing the norator is smaller than the
number of ports: the norator is a l-port and the number of equations
is zero, since nothing is known about the values of the current and
voltage and these are unrelated. These l-ports are 'pathological' in
the sense that they differ from any 'normal ' multiport, for which the
number of independent equations equals the number of ports. The nullator
and the norator cannot be obtained by a limiting process from any
l-port characterized by one equation on v and i [8]. Although the
nullator and the norator can be represented by circuits containing
normal circuit components (e.g. gyrators and positive and negative
resistors), it has been shown [7, 8] that these circuits possess
"infinite sensitivity"™ in the sense that a change, however small, of

an element in the circuit prevents this from representing a nullator
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i=20 1 =
O :
v=20 v =
] - -
NULLATOR ) NORATOR
iy
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+
11= 0 <> 12:
v
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Fig. 2 - 5 : Nullator , norator and nullor
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or norator, even as an approximation. The nullator and norator can
therefore be regarded as mathematical concepts without physical mean-

ing [7]. They are however very useful concepts as will be shown later.

The number of equations describing the nullor is equal to the
number c¢f ports: the nullor is a 2-~port described by two independent
equations

i =0 (2-~33a)

v, = o (2-33b)

Thus the nullor is not 'pathological' and has physical meaning. It

can be represented by equivalent circuits with finite sensitivity
[7, 8].

The nullor provides an example of a 2-port which is not well-defined
since it does not possess any hybrid description, as shown immediately
by (2-33). It must be connected to a network that provides some
transmission between the two ports [7] (otherwise the nullator and the
norator would be isolated which cannot be accepted in view of the
foregoing discussion). This requirement does not apply to well-defined

o

multiports.

Networks containing nullors have physical meaning. Since a nullor
is equivalent to a nullator-norator pair, networks with nullators and

norators are acceptable provided that they contain an equal number of

nullators and norators. Since nullors can be approximated by physical

components and nullators and norators cannot, it might seem reasonable
to disregard the concepts of nullator and norator and consider only
nullors. However it is useful to consider the nullators and norators

explicitly for several reasons which will now be discussed,

In a network containing n nullators and n norators, these can be
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paired to form nullors in n! different ways. When the nullors are
replaced by physical components, -~ . : the net-
works corresponding to these different pairings have different non-
ideal behaviour, including different stability properties. The differ-
ent possibilities can be explored and the one that provides the best
performance for a givén application can be selected. This procedure
has been applied to the realization of various types of inverters and

converters [10, 11, 12, 13].

Another important justification to represent a network in terms of
nullators and norators is the possibility of making use of various
equivalences shown in Figs., 2 - 6, 7 and.8. By applying these equiva-
lences to a given network, other networks with the same ideal
performance are obtained which have different structure and different
non-ideal performance. This method has also been proved very useful

in connection with the realization of inverters and converters [13, 14],

In addition to these two objective reasons in favour of the use of
nullators and norators there is another reason based on human factors:
a network represented in terms of dissociated nullators and norators
(1-ports) has a less cumbersome circuit diagram and is more readily

interpreted than a network represented in terms of nullors (2-ports).

With reference to the equivalences in Fig. 2-%5e,f,g,h and Fig., 2-7
it should be noted that these cannot be used to incgease either the
number of nullators or the number of norators in a given network in
order to achieve equal number of nullators and norators. The resulting
network would remain equivalent to the original one and would be equally

devoid of physical meaning.
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nullators and norators.
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Fig. 2-8 : A nullor equivalence,
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Ideal transistors and ideal operational amplifiers

Controlled sources are 2-ports described by:

CCCS - current controlled current sSource: vy = o, i2 =\)il
VCVS - voltage controlled voltage source: i1 = 0, v; =/LV1
VCCS - voitage controlled current source: i1 = 0, i2 = gvl
CCVS - current controlled voltage source: A =0, v, = ri1

These four types of controlled sources can be represented by equivalent
networks containing resistors and nullors (resistor-nullor networks)
[15, 13]. 1t can be shown that all four types of controlled sources

become equivalent to a single nullor when the forward transfer para-

meter (91/L, g, r) becomes infinite [ll, 13}.

The basic active components with reference to present technology
are the transistor and the integrated circuit operational amplifier.
These active components can be modelled by equivalent circuits contain-
ing passive components and controlled sources. Since the controlled
sources can be replaced by their resistor-nullor equivalent networks,
both the transistor and the operational amplifier can be modelled by

networks containing nullors and passive components,

The simplest models of the transistor and the operational amplifier
are controlled sources with infinite forward transfer parameters,
which are equivalent to nullors. These simplified models are called

ideal transistor and ideal operational amplifier.

In the nullor model of the transistor the nullator and the norator

share a common terminal, as shown in Fig. 2-9:.

In the case of an operational amplifier with grounded input and

grounded output the nullator and norator must share a common ground
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Fig, 2-10 : Nullor model of the ideal operational amplifier.
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terminal. However the operational amplifiers commonly available have
differential input and grounded output. In their nullor model the
nullator and norator do n;t share a common terminal but one of the
terminals of the norator must be grounded, as shown in Fig. 2-10. It
will be assumed from now on that, unless otherwise stated, the

operational amplifiers have differential input and grounded output.

Thus a network containing nullators and norators will only be
realizable using transistors if it is possible to form nullator-
norator pairs all having a common terminal, and it will be realizable
with operational amplifiers if all the norators. have a terminal in

common which will be used as the ground terminal of the network.

In a network containing.n nullators and n grounded norators which
are to be paired and replaced by operational amplifiers there is no
restriction on the formation of nullator-norator pairs, As mentioned
above there are n! different ways of pairing the nullators and norators.
The input of the operational amplifiers has polarity and therefore
there are two possible ways of replacing a nullator by the input of an
operational amplifier; there are 2" different possibilities in the .
case of n operational amplifiers. Thus a network with n nullors can
be realized by 2". n! different operational amplifier circuits [12].
It is necessary to investigate the non-ideal performance of these
different realizations in ordér to decide which are to be preferred

[12, 13] (in particular some realizations can be unstable).

Node Analysis of networks containing nullors

It will now be shown how the nodal admittance matrix of a network
containing nullors can be related in a very simple way to the nodal

admittance matrix of the same network with the nullors removed [16]..
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Consider an (n + 1l)-node network which does not contain independent
sources and assume that each node is accessible from the outside via
a terminal as shown in Fig. 2-11la. This network can be connected to
some external network containing independent sources. The aefinite
admittance matrix Y [2] of the (n + 1)-node network relates the
currents entering n terminals to the voltages between these n terminals

and the remaining one (called reference terminal)

-, - _ - -
11 = Y vl
o ° (2"34)
i v
n n

If the network contains only 2-terminal components (excluding
nullators and norators) thé definite admittance matrix can be obtained
very easily by inspection [2]: the main diagonal elements Y;; are the
sum of all the admittances incident at node i, and each off-diagonal
element Yij is the negative of the admittance connected directly between

nodes i and j.

It is now assumed that a nullator is connected between nodes i and
j and that a norator is connected between nodes p and ¢, as shown in

Fig. 2-L1b.

Since the current through the nullator is zero, the equations
expressing the currents ii and ij entering terminals i and j remain
the same after the connection of the nullator. There is zero voltage
across the nullatory, and therefore v, = vjo This means that vj can be
dropped from the voltage vector and column j deleted and added to column

i of Y in (2-34).

Since the current i* through the norator is arbitrary the new
values of the currents entering terminals p and q, denoted by i'p and

i'q are not defined, but their sum is,
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(a)

Fig. 2-11 : An (n+l)-node network with one nullor .
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The nodal description taking into account the presence of the norator
can be obtained from (2-34) by replacing ip by i'p + i'q, adding row g

to row P in Y, and deleting iq and row q of Y,

The nodal_admittance description of the network in Fig, 2-11b is
obtained from the nodal admittance description of the network in
Fig. 2-11a by performing both the operations that account for the
presence of the nullator and those that account for the presence of

the norator,
2.3 - RESISTIVE MULTIPORTS

A network containing resistors and active components (active R net-
work) can be considered as a multiport containing only resistors
(resistive multiport) with the active components connecteé to some of
the ports. Thus the realization of a given type of active R network
with a specified number of active components can be reduced to the
synthesis of a suitable resistive multiport. This situation arises in
the present thesis in connection with the investigation of positive
inverters with a minimum number of active components., It is therefore
appropriate to review here some results concerning the synthesis of

resistive multiports,

The question which is of interest here can be formulated as follows:
what are the necessary and sufficient conditions for an n-square matrix
to be realizable as the admittance matrix of a resistive n-port with

(n + p) terminals and a specified port structure. By port structure is
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meant the particular selection of terminal pairs to form ports,

As far as the author knows the problem of the synthesis of
resistive networks has been completely solved only for the ‘case of
n-ports with (n + 1l)=terminals [17]° For the case of (n + p)-terminals
with p > 1, although there are methods that can be applied to try to
find an n-port with a given admittance matrix, there is no assurance
that a definite conclusion will be reached (inability to obtain a

solution does not guarantee that a solution does not exist) [1819

In order to present some of the partial answers which have been
found for the questdion formulated above it is convenient to introduce

the definitions of paramount matrix and dominant matrix.

An n-square symmetric matrix with real elements is a paramount
matrix if each principal minor is not less than the absolute value of
any minor of the same order, built from the same rows (or columns)

[19, p.273].

An n-square symmetric matrix is a dominant matrix if each main
diagonal element is not less than the sum of the absolute values of

all the other elements in the same row [19, p.279].

o«
Every dominant matrix is also paramount; a paramount matrix is not

necessarily dominant [19, p. 372].

It is known that it is necessary but not sufficient for a matrix to

be realizable as the admittance matrix of a resistive multiport that it
be a paramount matrix [19, p.372]. It is also known that it is

sufficient but not necessary for a matrix to be realizable as the

admittance matrix of a resistive multiport that it be dominant [19, p.367].
It should be noted that in the statement of these conditions neither

the number of terminals, nor the port structure is specified,
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An n-square dominant matrix can be realized as the admittance matrix
of an n-port with 2n terminals, The procedure consists in connecting
resistors between each pair of ports according to the scheme shown in

Fig. 2-12 [19, p.367].

The case of n-ports with n + 1 terminals and specified port structure
has been completel? solved [l?]o The port structure in which all ports
share .a common terminal leads to particularly simple results: the
necessary and sufficient conditions to be satisfied by the matrix are
that it be dominant with non positive off-diagonal elements and the
synthesis procedure is obvious in view of the well-known properties of
the admittance matrix for this case (the off-diagonal elements gij are
the negative of the conductances connected directly between terminals
i and j; the main diagonal elements g;; are the sum of all the conduct-

ances connected to terminal i),

2.4 - ACTIVITY

The instantaneous power flowing into an n-port is

n o
p(t) = 21; i (£)v, (£)
or
p(t) = It(t) v(t) (2-=35)

A multiport is passive if the energy 6(to) initially stored in the
multiport plus the energy delivered to the multiport between to and t is
non-negative for any to and t and for any admissible voltages and

currents [20]:z

ﬁ(to) +jt It () Vv (T) d'b"; 0 (2=-36)
to

A multiport is active if it is not passives
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Fig, 2-12 : Realization of a dominant matrix as the

admittance matrix of an n - port with

2n terminals.
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In the case of the sinusoidal steady state, at a single frequency,
the definition of passivity can be expressed by the requirement that
the average power (average over 2 period) be non-negative [2]° It is
necessary and sufficient that any hybrid matrix (including ;he admittance

and impedance matrices) have an hermitian part positive semi-definite,

A multiport described by a matrix in which all the elements are

real constants will be called non-~reactive, The passivity condition

in this case is that any hybrid matrix be positive semi-definite.

If the instantaneous power into 2 multiport is zero for any admissible

voltages and currents, the multiport will be called non-energic,

It is important to note that the word active is often used to
designate networks containing active components, even when these
networks are used as multiports which are passive in the sense of the
definition given above (for example an actively realized gyrator is
passive as far as the ideal port behaviour is concerned), 1In order not
to depart from well established terminology, in this thesis the desig-
nations active network and active filter will be used to refer to
networks and filters containing active components. The designations
texternally active®' and 'externally passive®! will be used to refer to
multiports which are active or passive according to the definition given

above in terms of the port behaviour.

2.5 - INTERRECIPROCITY

Interreciprocal multiports

The concept of interreciprocity [21,5] involves two linear, time-
invariant multiports N and N with the same number of ports (Fig. 2-13),

The vector of the currents at the ports of N is denoted by I and the
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~ A
voltage vector is denoted by V., Similarly I and V are the current and

A
voltage vectors of N.

A
The two multiports N and N are interreciprocal if, for 'all voltages

and currents satisfying the equations of the multiports, the following

relationship is satisfied:
t n t ~
I(s)V(s) =V (s)Ifs)=0 (2=-37) .

where the superscript t denotes transposition., I(s), V(s), I(s) and
V(s ) are the Laplace transforms of the voltages and currents when all
initial conditions are zero (as in the definition of network functions),

Equation (2-37) can be written equivalently as

> L)V () =D v, ()% (s)=0
k- k- k. k.-
all ports all ports

It should be noted that the designations adjoint and transpose are often

used with the same meaning as interreciprocal,

The definition of interreciprocity can also be given in terms of

the instantaneous values of the voltages and currents [22]
A
IV (6 % V) - vEe) * T(8) = o (2-38)

where the symbol * means convolution. Equation (2-38) can be wriiten

in a more explicit way, as

Z i (b =YD -Z 5" v (t -%)i, @)aT=0
all ports © all ports °

This time-domain definition using the convolution of the time functions
is equivalent to the frequency-domain definition using the product of
the Laplace transforms, in view of a well-known property of the Laplace
transformation. In this thesis only the expression in terms of the
Laplace transforms will be used, In accordance with the notation used

in this thesis the dependence on s will not be explicitly indicated,
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Interreciprocity of well-defined multiports

f

The interreciprocity conditions in terms of the hybrid matrix (all
well-defined multiports possess a hybrid description) will now be

derived, A similar derivation can be found in reference [5,p.72 Jo

It is assumed that the two multiports N and'ﬁ (Fig. 2-15) have hybrid

descriptions of the form

I H 1 . 0 v
il P H | V2 PR R R R ERRC T3 ) 239
= . . . an 5 = N A A -39)
\2) 21 Hap 2 2 21 Tz | | L2
where
I1 = 11 I2 = lQ+T
i i
-q_ Lna
"~
and V , V,, fl, I, $1, V, are similarly defined.

With the current and voltage vectors partitioned, equation (2-37)

can be written as

t . £-[a t  t4[a
[1,” 1,7] Ak v, v, Jj1, |=0
A N
v, 1,
or
t t A £ A £ A
59+ Y, -V, T -V, T, =0 (2-40)
Making use of (2-39) in (2-40) leads to
Hov. +H. 1)t % + 1.t @, ¥ +H. I
(Hyg Vp #H, L)V +1L0 (Hyy vy + 1 I,
t A A A A t A
-Vy gy V) v Hp, I =y V) v Hy, L)L, =0
or
t .t oA .a t .t A A
Vi Wy = H DV H L Hy, +H,) V4

1.t @ i) 1 t i tyT =
g (Hyy =Hy) I, =V  (Hyy +Hy ) I, =0 5 1)

This equation must be satisfied for all possible values of the voltages

and currents, Since the voltages and currents in (2-41) are the inde-
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pendent variables in (2-39), they can be freely chosen., If 12 = 0 and

[a)
I2 = 0, equation (2-41) is reduced to

A A

t A
Hip - Hp =0

A
otherwise it would be possible to choose Vl and V1 such that (2-42)
would not be satisfied., Similar arguments lead to the conclusion

that all the factors enclosed by brackets in (2-41) must be zero.

A
Therefore the multiports N and N are interreciprocal iff

A - £ 5

Hll = Hll (2=43a)
A _ £ 3
Hy, = -H,) (2-43b)
i, =-u' 2-43
Hyp = M2 (2-43¢c)
B =nH' 43d
Hyp = Hyy (2-43d)

This result can be expressed in the more compact form
~ t
H=0H @ (2-44)

where @ is an auxiliary matrix defined as
1 0
Q= q
Since the admittance and impedance descriptions can be regarded as
special types of hybrid descriptions, it follows from (2-43a) and

(2-43d) that for interreciprocal multiports

¥ =y (2-45)

and

~N
Z=2 (2-46)
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The interreciprocity theorem : |

Before introducing the interreciprocity theorem some brief remarks

will be made,

A k-terminal element can bhe regarded as a (k - 1l)=-port with a
terminal common to all ports; two k-terminal elements will be considered
a; interreciprocal if they can be regarded as interreciprocal (k - 1)-
ports, In the graph of a network, k-terminal elements can be represented
by k - 1 branches having a common terminal (these branches correspond

to the k = 1 ports); it should be noted that these k = 1 branches are

coupled branches,
The interreciprocity theorem [21] can be stated as follows:

— Two multiports are interreciprocal if they are realized
by networks with the same topology and if the elements
placed in corresponding locations in the two networks are

interreciprocal,

The interreciprocity theorem can be proved very easily using
Tellegen's theorem [21]° Tellegen's theorem states that

*v=o (2-47)

where

(a) I is the vector of the branch currents associated with a

given graph and these currents obey Kirchhoff's current law.

(b) V is the vector of the branch voltages associated with the

same graph and these voltages satisfy Kirchhoff's voltage law.

If the port variables, Ip and Vp, are separated from the currents and
voltages in the internal branches which are denoted by Ib and Vb’ then

equation (2-47) can be written as

IV =1V . (2-48)



.
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(note that the port currents have a reference direction opposite to
' f

that which is used when the ports are regarded as branches),

Consider two networks N and N with the same topology. .If the

currents in N aﬁd the voltages in ﬁ are used in (2-48), then

I-tA"Ito (2-49)
p T Wb B

N
If the currents in N and voltages in N are chosen, then (2-48) yields

(after transposition)s:

t o~ _ t A 2.5
vp Ip-—Vb b (2-50)
Subtraction of (2-50) from (2-49) leads to
~
1YY vttt =17 v t? (2-51)

p p P p b b b b
This equation shows that if the components in N are interreciprocal with
the components in ﬁ, io€o,

t 2 t A
Ib Vb - Vb Ib =0

then the port variables of N and N satisfy the definition of inter-

reciprocity. This proves the interreciprocity theorem,

One consequence of the interreciprocity theorem is that the multi-
port which is interreciprocal with a given multiport containing
2-terminal components and nullors is obtained by interchanging the
nullators and norators in the given multiport. This follows from the
fact that any non-pathological 2-terminal component is interreciprocal
with itself and a nullor is interreciprocal with another nullor with

the nullator and norator interchanged (it can easily be seen that the

nullator and norator satisfy the definition of interreciprocit};)°

Reciprocal multiports

A reciprocal multiport is defined as a multiport which is inter-

reciprocal with itself [21,5]. This means that all the equations
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used in connection with interreciprocity are satisfied by.reciprocal
multiports if the symbol A instead of denoting the variables of a
different multiport, denotes different values of the variables of the
same multiport compatible with the equations describing the multiport.
Thus a reciprocal multiport must satisfy (2-37), 1.€.,

t
1 9-v'T=0 (2-52) .

The definition of reciprocity by equation (2-52) has been used by
several authors (see, for instance [2,21]); it has the advantage of

not being tied to a specific type of network description,

The reciprocity conditions in terms of the hybrid matrix follow
directly from (2-43):

ot _ ot ot
Hy, =Hyy Hy, = Hyy Hy, = -Hyy (2-53)

or, from (2-44),
H=@ H'Q ' (2-54)

In particular, for the admittance and impedance matrices

Y=Y ) (2-55)
z =zt (2256)

For 2-ports, these conditions become
Yi2 = Y231 Z12 = % Bia = -hyy @=57)

or, equivalently, in terms of the transmission matrix
det T = ad -« bc = 1 (2-58)

The Interreciprocity Theorem leads, immediately to the Reciprocity
Theorem [21,2]: a multiport made of reciprocal elements is itself

reciprocal,
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A multiport that does not satisfy (2-52) is said to be non-reciprocal,

Several authors have considered the concept of anti-reciprocity as a

kind of extreme non-reciprocity. Since an investigation of. anti-
reciprocity.is one of the questions investigated in the present thesis,
this subject will not be pursued here; a detailed discussion will be

given in chapter 8,
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CHAPTER 3

REVIEW OF 2-PORT IMMITTANCE CONVERTERS AND

INVERTERS IN THE CONTEXT OF ACTIVE RC NETWORKS

3,1 - ACTIVE RC NEI'WORKS

The classical approach to the reaiization of frequency-selective
networks (electrical filters) is based on the use of networks
containing resistors, inductors and capacitors (RLC networks),
Transformers are also used in some cases, and, in some particularly
demanding applications, electromechanical resonators, such as crystals,
haQe to be included, However, RLC filters are suitable for most
applications, These filters are usually doubly terminated LC 2-ports
(i.e., LC 2-ports with a resistor in series with the input - assuming
that it is driven by a voltage source - and a resistor across the
output). RLC filters have been used for many years and their theory

and design techniques have been developed to a high degree of perfection,

However, RLC filters, which are easily implemented using classical
discrete-component technology, cannot be realized using modern micro-
electronic technology. Although resistors and capa;itors can easily
be realized in microelectronic form, inductors cannot. Microelectronic
components are realized either in thin layers or as small discrete
components; inductors realized in this way have very small inductances
and therefore are only useful at'very high frequencies (in addition,

such inductors have fairly low Q-factors). Since microelectronic

circuits have very desirable properties (e.g. small volume and weight
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potential low cost, increased reliability) it is-justified to look for
new types of frequency-selective networks, suitable for microelectronic

realization,

The simplest inductorless frequency-selective networks ére obviously
networks containing only resistors and capacitors. However, the poles
of the tiansfer function of an RC network are restricted to the negative
real axis of the complex frequency s-plane and as a consequence an RC
network can provide considerably less selectivity than an RLC network
of a comparable degree of complexity [23]. Guillemin [24] and others
[25, 26] have shown that the transfer function of an RC network can
approximate any required filter characteristic, but, for high selectivity,
the attenuation in the pass-band is very high and the network contains
a large number of components arranged in a complicated structure,
Apparently, the possibilities of this approach have never been fully
evaluated and RC networks on their own have not been used in practice

to obtain high selectivitys

The restriction of the poles of the transfer function of RC networks
to the negative real axis can be removed by the inclusion of suitable
active components, Since active componen;s are easily realized in
microelectronic form, a natural solution to the problem of realizing
highly frequency-selective networks compatible with microelectronic

technology consists in the use of active RC networks.

Before reviewing some of the approaches to the realization of
active RC networks that have been proposed, it is useful to remember
that high frequency-selectivity is obtained by high order filters. By
high order it is meant that the degree of the denominator poynomial of
the transfer function is greater than 2 or 3 (in the case of some of
the filters used in frequency division multiplex (FDM) systems [27]

the order is typically 10 or 12),
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Historically, the first general methods proposed for the realization

of active RC networks are based on the use of only one active unit, The

method proposed by Linvill in 1954 [28] permits the realization of any
transfer impedance using resistors, capacitors and only one active
unit, namely one negative impedance converter (NIC) connected as shown
in Fig 3-1. There are other synthesis methods also using only one
active unit, for instance the methods proposed by Sandberg [29] and
Saraga [30]. However, it was soon found that active RC networks with
only one active unit are unsuitable for the realization of high order
filters since the sensitivity of the transfer function to changes of
the component parameters is intolerably high, This approach was
abandoned and the search continued for other methods able to proddce

high order filters with acceptable sensitivity.

Another approach to the realizations of active RC filters consists
in the factorization of the required transfer function into 2nd order
transfer functions (and a lst order factor if the order of the overall

transfer function is odd), The filter is then realized as a cascade of

2nd order sections (Fig. 3-2), Following an early publication on this

method by Sallen and Key [3L] many circuits that realize 2nd order
sections have been proposed and extensively studied (see, for instance,
[22, 32]). Filters realized in accordance with this method have a
sensitivity performance acceptable for many applications and are widely
used at present. This method, however, is unable to produce high-

performance filters, such as some of those required by FDM systems,

In 1966 Orchard [33] suggested that active filters with low

sensitivity might be obtained by simulation of doubly-terminated LC

ladder filters (Fig. 3-3), since these exhibit low sensitivity

properties (it is pointed out in [33] that in a doubly-terminated LC

filter the first order sensitivity of the amplitude characteristic to
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Fig., 3-1 : Linvill's method.
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Fig. 3-2 : Cascaded second order sections,
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Note : [ }— represents an LC l-port.

Fig. 3-3 : Coubly terminated LC ladder network,
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variations of any component is =zero at those points in the pass-band
for which the source delivers its maximum available power into the
load). Various methods based on this approach have been proposed and
intensively investigated in recent years. The results obtained have

clearly confirmed Orchard!s conjecture.

Since converters and inverters play a central part in some of the
methods based on the simulation of doubly terminated LC filters,

these methods will be discussed in some detail in the next section,
3.2 = SIMULATION OF DOUBLY-TERMINATED LC LADDER FILTERS
The first method proposed for the realization of inductorless

filters based on the simulation of doubly-terminated LC ladder filters

will be referred to as the inductor simulation method. It consists

simply in retaining the resistors and capacitors in the ladder and
using active RC circuits to simulate the inductors. The simulation of
the inductors can be done either by replacing each inductor individually
by an active RC circuit [33, 34, 35, 36] or by replacing the whole
inductor sub-network by an appropriate multiterminal active RC network

[37, 38, 39].

When the inductors are simulated one by one, it is important to
distinguish between grounded inductors and floating inductors, as will

now be explained.

It is desirable to use the same power supply for all the active
components in a system, In this case all the active sub~-networks
will have one terminal in common which is called the ground terminal,
A grounded port has one of its two terminals connected to the ground
terminal of the system., The designation *grounded 2-port! will be used

in this thesis to refer to 2-ports in which both ports have a common
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terminal connected to the ground,

If a iadder network (Fig. 3-3) is used as part of a system contain-
ing active components, the ground is normally the terminal which is
common to input and output. When the inductors in the 1addé: are
simulated by active RC netwofks, there is a distinction between
simulated grounded inductgrs, which have 2 terminals and can thus be
described as l-ports (Fig. 3-4a), and simulated floating inductors,
which are associated with 3 terminals (when the ground terminal is
included) and are conveniently described as 2-ports (Fig. 3-4b). The
circuits that simulate floating inductors are more complicated than
those that simulate grounded inductors. Therefore the presence of
floating inductors in the ladder filter to be simulated may influence
the choice between the inductor simulation method and the other
methods which will be mentioned next. A review of various active
RC networks that can be used to simulate inductors,‘both grounded
and floating, will be given later in this chapter, after the

discussion of converters and inverters,

Another method of simulation of doubly-terminated LC ladder filters
was originaliy introduced by Bruton [40] and will be referred to as

the impedance scaling method. It is based on the fact that the voltage

(or current) ratio of a filter, being a nondimensional quantity, is

not affected if the impedances of all the components are multiplied

by the same factor. Consider, as an example,‘the low-pass filter

in Fig. 3=5a. If all the impedances are multiplied by s”! (s is the
complex frequency variable) the inductors become resistors, the resistors
become capacitors and the capacitors become new components with an
impedance proportional to s—z° These new components are usually called
frequency dependent negative resistors (FDNR!'s), since if s = jw then

-2 -2

s = =W + The more specific designation super-capacitor is perhaps

to be preferred in order to distinguish these COmponedts from those
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Fig. 3-4 : Active RC simulation of grounded and

floating inductors,
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. . . 2 s . .
with impedances proportional to s which will be called super-inductors;

both the super-capacitor and the super~inductor are FDNR's.

As a result of the impedance scaling, the network in Fig, 3-5a
becomes the network in Fig, 3-5b, containing resistors capacitors and
super~capacitors., The super-capacitors are then realized by active

RC networks, usually immittance converters, as will be seen later,

In the impedance-scaled network (Fig. 3~5b) all the super-capacitors
are grounded, whereas the original network (Fig. 3-5a) has several
floating inductors; the number of inductors is larger than the number
of super~capacitors and, because the inductors are floating, they are

also more difficult to simulate,

Impedance scaling consisting of multiplication by s (instead of s—l)

has also been found useful in connection with high~pass filters when

the inductors in the ladder are grounded (the advantage of this procedure
with respect to the simulation of the inductors is that capacitors

become resistors, which are easier to adjust). 1In this case grounded
super-inductors are obtained, which can be simulated using appropriate

impedance converters.

The realization of band~pass filters using impedance scaling can
be based on a ladder network consisting of a low-pass section followed
by a high pass section, each section being subject to the appropriate
type of scaling (a suitable converter is used to impedance~match the

two sections),

The impedance scaling method has recently been used to produce

high-performance filters [41, 42, 43 ],

In the two methods discussed so far, inductor simulation and
impedance scaling, the ladder structure of the passive network is

maintained in the active network that simulates it; to any current in
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the first corresponds a current in the second network and the same is
true for the voltages. There are however other methods of simulating
doubly-terminated LC ladder filters that reproduce the equations
describing the original ladder but do not lead to active ne£w0rks having
a ladder structure, One of these methods leads to active filters

which are usually calied leapfrog feedback filters; another method leads
to a class of filters which have been called wave active filters.

Only a very brief reference to these methods will be made here, since

they are not directly associated with the use of converters and inverters,

Leapfrog feedback filters and LC ladder filters can be represented

by the same signal-flow graph, i.,e, both filters are described by
equations of the same form, However, the network topology is
different and both voltages and currents in the ladder are represented
by voltages in the leapfrog feeback realization. This method was
originally proposed by Girling and Good [44]. Leapfrog feedback filters
are usually included in a class designated as multifeedback filters
(see, for instance [45-48]), Of the various multifeedback structures
only the leapfrog has been derived from LC ladder filters; it appears
that so far no rela%ionship "1as been established between other multi-

feedback structures and passive ladder filters,

Wave active filters is a designation that has been suggested for

active filters which realize the equations, expressed in terms of
scattering variables, of doubly-terminated LC ladder filters [49, 50].
This method is based on the same principles that have been previously
used to realize wave digital filters (which are digital filters
derived from LC l1adder filters), A more general method, which includes

wave active filters as a special case, has recently been proposed [51]0
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3.3 = TWO-PORT CONVERTERS AND INVERTERS

A 2-port admittance converter is defined as a 2-port which, when

terminated at port 2 by any admittance 1) (Fig. 3-6), presents at

port 1 an admittance 14 related to Y by
= 17
v, =k v, (3-1)

where kz depends only on the 2-port (i.e. is independent of y2) [52]0

The factor kz: will be referred to as the admittance conversion factor

(in kz the superscript denotes admittance and the subscript denotes
conversion). The factor kz is not necessarily a real constant: it

is in general a rational function of the complex frequency variable s,

A 2-port admittance inverter is a 2-port which, when terminated at

port 2 by any admittance Yy presents at port 1 an admittance Yy related
to Yy by

i
where kz depends only on the 2-port [52]. The designation 'admittance
y

inversion factor’will be used to refer to ki which, in general, is a

rational function of s,

The definition of impedance converter and impedance inverter is
obtained by replacing the word admittance by impedance in the above

definitions. For the impedance converter
(3-3)

z .
and kc is designated as the impedance conversion factor. In the case

of the impedance inverter
(3-4)

z
and ki is the impedance inversion factor,
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Fig. 3-6 : Definition of 2-port converters and inverters,



-75 =

By taking the inverse of both sides of (3-1) of (3-2) it is seen
that if a 2-port is an admittance converter (or inverter) it is also
an impedance converter (or inverter)., Therefore the designations
admittance, impedance, and dimmittance converter (or inverter) are
entirely equivalent, The impedance conversion and inversion factors
are the inverse of the admittance conversion and inversion factors,

respectively,

Equation (3=1) can be written (see Fig. 3=1) as

He

C V.

i
1. - ky' (_ 2
2

or

i Y -1 i
2 (kC ) _ 1

) Y1

which means that if port 1 is terminated by an admittance Y, the

admittance yz presented at port 2 is

)—l

= Y
YZ - (kc y1

Thus, if in a 2-port converter the ports are interchanged the resulting
2-port is also a converter; the value of the admittance or impedance
conversion factor when the converter is used in one direction is the
inverse of the value when it is used in the other direction. Thus
when specifying a conversion factor it is necessary to indicate with
which direction it is associated. This can be done, in a diagram,
— - — -
by using the labels kz or kz (similarly kz or kz ) where the arrow

points towards the port to which the load immittance is to be connected

(with reference to equations (3-1) or (3-3)).

In a similar ﬁay it follows from (3-2) that if a 2-port is an
inverter in one direction it is also an inverter in the other

direction. However, the admittance or impedance inversion factors haye

the same value in both directions,
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A necessary and sufficient condition for a 2-port to be a converter

i& that it possesses a hybrid description of the form:

i 0 h v .
2
1 - 1 1 (3-5a)
Va Bap © )
where h12 and h21 are related to the admittance conversion factor kzr
by

Vo= -
ke = hyp b21 (3-50)

(a proof of this condition is not given here since it follows immediately
from a more general result in terms of multiport converters, which

will be presented in chapter 4).

Converters do not have an admittance or impedance descriptionj; they

have a transmission description

v a O v,
o S 2 " (3-6a)

11 0 d -12

where
a= 1/h21 and d = -h12
and hence
y _ d

kc = - ) (3-6b)

When the admittance conversion factor is a real constant the

converter is called Positive Immittance Converter (PIC) if ki is

positive, and Negative Immitance Converter (NIC) if kz is negative

(some authors have used a different definition of PIC that includes,

; . . 2
for instance, converters with kz proportional to s or s [37]). The
simplified designations positive converter and negative converter will

often be used in this thesis.

The ideal transformer is a non-reactive converter (i.e.,a converter
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for which h12 and h,, in (3-5) are real constants) with

h12 = -b21 (or ad = 1), It will sometimes be found convenient in this

thesis to use the designation Positive Transformer (PT) instead of

ideal transformer and introduce the name Negative Transformer (NT) to

designate a non-reactive converter for which h12 = th (ad = =1),

The power flowing into a non-reactive converter is

P

it gty

or, making use of (3-5a)

P = (h, +h, ) vjif (3-7)

This shows that the ideal transformer, for which h12 + h21 = 0, is

non-energic, i.e., the instantaneous power flowing into it is always
’ ) g

zero. In all other cases (h12 + h # 0) the converter is active

21

since vy and iz can be chosen to make p <O (note that vy and i2 in
(3-7) can be freely chosen since they are the independent variables

in (3-53))0

A necessary and sufficient condition for a 2-port to he an inverter

is that it possesses an admittance description of the form

i 0 y v
2
N 1 1 (3-82)
2 Va1 © Y2
The admittance conversion factor is given by
A (3-8b)

i - N2 Y21
(this follows from a more general result to be proved in chapter 4).
Inverters have both an admittance and an impedance description and do
not have a hybrid matrix (excluding the interpretation of the
admittance and impedancé matrix as special hybrid matrices), It is

possible to describe inverters by a transmission matrixs:



Y . 2 (3-92)
i, ¢ O -i,
where b = —l/y21 and ¢ = Via and therefore
V. = £ -
ki 5 (3-9b)

When the admittance inversion factor is a real constant the

inverter is called Positive Immittance Inverter (PII) if kz' is

positive, and Negative Immittance Inverter(NIDiszijsnegative, The
simplified designations positive inverter and negative inverter will

often be used in this thesis,

The gyrator is a non-reactive inverter with y (bc = 1),
12

=¥

In a similar way as in the case of the transformer, the gyrator will

be sometimes referred to as Positive Gyrator (PG), and the designation

Negative Gyrator (NG) will be used for a non-reactive inverter with

Y12 =Yy, (bc = =1),

The power flowing into a non-reactive inverter is given by

P = (v, + V) Vi) (3-10)

which shows that the positive gyrator for which Yi2 + Yy = 0, is

non-energic. It is therefore externally passive, even when realized

using active components, All other non-reactive inverters are active
1 2

since v, and v, can be chosen in such a way that p becomes negative

(note that v1 and v, are the independent variables in (3-8a)).

By making use of equations (3-5) it is easy to prove the equivalences
shown in Fig, 3-7. The connection of a l-port with admittance'ya
in parallel with port 1 of a converter is equivalent to the connection
of a l-port with admittance Yo in parallel with the output (Fig. 3-=7a)

if
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Fig. 3-8 : An inverter equivalence,
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or, in terms of impedances

A similar equivalence applies to the connection of a l—port‘in series
with the ports of a converter (Fig. 3-7b). Using equations (3-8) it
can be proved that the connection of a l-port with admittange Y, in
parallel with one of the ports of an inverter is equivalent to the
connection of a l-port with admittance b in series with the other
port (Fig. 3=8) if

g

Ya b T %4

or, in terms of impedances

Zz
z z_ = k,
a b i

(since an inversion factor has the same value in both directions, it

does not matter which of the ports is port 1 and which is port 2),

It follows immediately from the definitions (3-1) and (3-2) that
(a) the 2-port resulting from the cascade connection of two converters
or two inverters is a converter and (b) the 2-port resulting from the
cascade connection of a converter and an inverter is an inverter.
For converters and inverters with real and constant conversion and
inversion factors the result of cascading any two of these 2-ports is
as indicated in Table 3-1, This table shows that the set of four 2-ports
{pIC, NIC, PII, NII} is a commutative group with respect to the
operation of cascading, the PIC being the unit element [53]0 A group

with the structure shown in Table3-is known as Klein®s 4-group [54].
3.4 - ACTIVE REALIZATION OF CONVERTERS AND INVERTERS

In the context of active RC networks, converters and inverters are
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TABLE 3-1 : The result of cascading positive and

negative converters and inverters.

PIC NIC PIX NIT

PIC PIC NIC PII NIT
NIC NIC PIC NII PIL
PII PIX NII PIC NIC

NITI NII PII NIC PIC
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realized using active components, i.eoatransistors or operational
amplifiers. A very large number of circuits that realize converters

and inverters can be found in the literature., A few simple examples
will be given hére using a nullator-norator representation of the active
components. In all the circﬁits shown the nullors can be replaced by
operational amplifiers with differential input and grounded output

(it should be noted that the ground may not be the terminal which is

common to input and output),

Negative immittance converters (NIC's) can be realized by the
simple circuits in Fig. 3-9, which contain only one nullor and two

resistors.

The circuit in Fig. 3-10 is a negative immittance inverter (NII)

and it also contains only one nullor and two resistors,

A negative resistor can be obtained by terminating with a resistor
any one of the three cifcuits in Figs, 3=9a, 3-9b or 3-10. The
resulting circuit, shown in Fig. 3-11, is the same in all three cases.
The circuit in Pig. 3-11 can be regarded either as the NIC of Fig. 3-9a
terminated by By» Or @S the NIC of Fig., 3-9b terminated by g,s OT as

the NII of Fig. 3-10 terminated by B °

The four circuits shown in Fig, 3=12 are NII's. The negative

resistors might be realized by the circuit of Rig. 3-11,

A positive immittance converter (PIC) can be obtained by cascading
two NIC*s or two NII's, Similarly, a positive immittance inverter
(PI1) can be realized as the cascade of a NIC with a NII. An ex;mple
is the PII circuit of Fig. 3-13, obtained by cascading the NII of ERig.
3-12a with the NIC of Fig. 3-9a. This circuit is a gyrator if g, = &y°
The simple circuits presented so far will now be used to illustrate

several comments that can be made concerning realizations of converters
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(a) | (b)

Fig, 3-10 : Negative Immittance Inverter (NII).
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Fig, 3-11 : Simulation of a negative conductance.
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Fig, 3-12 : Negative immittance inverters.
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Fig. 3-13 : PII obtained by cascading the NII in Fig, 3-12a with

the NIC in Fig, 3-9a.
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Fig, 3-1% : Two different operational amplifier realizations
of the nmullor circuit in Fig. 3-13.
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and inverters,

In most applications, 6onverters and inverters must have at least
one grounded port; there are applications (some of them- will be
discussed laters in which converters and inverters with both ports
grounded are required. When the nullor is replaced by an operational
amplifier (with grounded output) the NIC of Fig. 3-9a will have both
ports grounded, whereas in the NIC of Fig. 3-9b only one port will be
grounded, Whereas the NII of Fig. 3-10 will have only one grounded
port, the NII's in FRigs. 3-12a and 3-12d will have both ports grounded
if the negative resistors are realized by the circuit of Rig. 3-11
(with the nullor replaced by an operational amplifier), The PII in
Fig. 3-13 will have both ports grounded; however a PII obtained by
cascading the NIC of PFig, 3-9a with the NII of Fig. 3-10 will have only

one grounded port.,

Some circuits realizing converters or inverters require that the
components be related in a specific way; if one component changes
(for instance the value of a resistor changes) the circuit is no longer
a converter or inverter, This is the case with the NII's of Fig. 3-12
which are only inverters when the conductances are related as indicated
in the circuit diagrams. There are other circuits which remain
converters or inverters independently of the values of some or all the
components; only the value of the conversion or inversion factor will
be affected if one component changes, Examples of this are the
circuits of Fig. 3-9 which are converters for any values of 81 and 859
and the circuit of Fig., 3-10 which is an inverter for any g, and 850
The circuit of Fig. 3-13 remains an inverter for any values of gy and
8, but the remaining condﬁctances in the circuit must be related as

shown in the diagram,
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It was mentioned before (section 2.2) that different operational
amplifier realizations of the same nullor circuit can differ very much
in their non-ideal performance. This is the case with ‘the two
circuits in Fig; 3~14 which correspond to two different ways of
pairing the nullator and norétors in the PII of Fig. 3-13 to form
nullors which are then replaced by operational amplifiers., It has
been shown [11] that the circuit of Fig. 3-14b has better stability

properties than the circuit of Fig. 3~l4a.

Another useful observation concerning realizations of converters
and inverters is the following: there are circuits which produce
different converters and inverters corresponding to different choices
of 2-terminal components which are extracted to form ports [13, 52,
55-58]° As an example, consider a l-port network with port admittance
Y, related to the admittances Yy Y3 and Y, of some 2-terminal components
inside the network, by the equation

Y, = k Y273
Va4

(3~11)

where k is independent of y,, y; and Y4 [s2]. 1f ¥y, is extracted and

regarded as the termination of a second port, then the resulting 2-port
is a converter. If, instead of Yy V3 is extracted, another converter
is obtained, and if y4 is extracted the resulting 2-port is an inverter,
If port 1 is terminated by an admittance Y1 and two of the other three
admittances are extracted to form ports, converters are obtained by
extracting Y, and Y, 0T Vg and Y 40 and an inverter will result f;om the
extraction of s and Y3e This follows from the fact that if Yy V3 and
y4 are extracted to form ports (Fig. 3-15), equation (3-11) leads to

i i i2

1 4 = -k

Vl V4 . V'2 v

i3

3
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Fig. 3-15 : A circuit that realizes various converters

and inverters.
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In this case, four admittances are involved in (3-11l) and there-
fore there are (g) = 6 different combinations of two ports leading each
one to a converter or inverter, It should be noted that (depending on
the actual circuit involved) different combinations may lead to convert-
ers or inverters with the same circuit diagram. It should also be
noted fhat the number of admittances appearing in an equation with the
form of (3=11) can be different from 4, In particular, a circuit for
which only two admittances can be related by an equation similar to
(3-11) (i.e. v, = k ¥, 0r vy, = k ygl) realizes only one converter or

only one inverter.

An example that illuatrates the above discussion is provided by
the circuit in Fig. 3-11 for which equation (3-11) is applicable. It
has already been pointed out that this circuit leads to the NIC's of-
Fig. 3=9 or to the NII of Fig. 3-10 depending on which of the
conductances 842 Bp OF 8> respectively, is considered as the termina-
tion of a second port. It can easily be verified that the other three
possible 2-ports (extraction of 8, and B.r By and 8. O 8, and gd)
have the same circuit diagrams as the NIC's in Pig., 3-9 or as the NII

in Pigu 3—100 ©
3.5 - SIMULATION OF GROUNDED AND FLOATING INDUCTORS
Inductors can be simulated by a positive inverter terminated by

a capacitor. This can be seen immediately from equation (3-2) applied

to this case (y2 = sC):

_ .Y 1 _ 1
V.2 R = ¢ sL (3-12)

where
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is the simulated inductance. The positive inverters employed are

usually gyrators.

Alternatively, an inductor can be simulated by a converter with

an admittance conversion factor of the form
ky = k s_1
c

where k is a positive real constant. When such a converter is terminated

by a resistor of conductance g, equation (3-1) yields:

k 1
15 58 % or (3-13)

where

is the simulated inductance.

The simulation of inductors by terminated 2-port converters is
applicable to grounded inductors since these can be regarded as l-ports,

The converters or inverters must in this case have one grounded port,

Some of the circuits that can be used to simulate inductors can be
regarded either as a PII terminated by a capacitor or as a converter
terminated by a resistor, depending on whether a capacitor or a resistor
is considered as the termination., An example of such a circuit is
shown in Fig., 3-16, This circuit can be regarded as a cascade of two
of the NIC circuits.of Pig. 3-9a (with the resistors replaced by general
2-terminal components) terminated by Voo The input admittance of the
circuit in Fig, 3-16 is given by

b R (3-14)
375

This circuit has been referred to in the literature as a PIC in view of

the fact that the right hand side of (3-14) is preceded by a plus sign

Gf Y, ==V, Y, y6/y3 Vs the circuit would be called a NIC). According
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Fig, 3-16 : A circuit that can be used to simulate

inductors or FDNR's,

€o g3 gy

Fig. 3-17 : Inductor simulation by an operational amplifier

realization of the circuit in Fig, 3-16.
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to the terminology adopted in this thesis such a circuit will only be
called a PIC when a converter is formed by extraction of one of the
admittances in the num erator of (3-14) and the conversion factor is a
positive real constant. The designation generalized impedance converter

(GIC) has also been used for the circuit in Fig. 3-16.

The circuiti&fFigo 3-16 can be used to simulate an inductor by
using a capacitor in the place of one of the l-ports with admittances
Y3 OF Vs and resistors elsewhere. The resulting circuit can be
regarded as a positive inverter terminated by the capacitor or as a
converter terminated by one of the resistors whose conductances appear

in the numerator of (3-14),

The circuit of Fig, 3-16 is useful in connection with the active
RC simulation of doubly-terminated LC ladder filters not only when
the inductor simulation method is used, but also in the case of the
impedance scaling methéd. As discussed before, this last method
requires the use of FDNR's which can be either supercapagitors, with
admittances proportional to s2 or superinductors, with admittances
proportional to s_z. As shown by (3=-14), a supercapacitor can be
obtained by using capacitors to produce two of the admittances in the
numerator and resistors to realize the remaining admittances; a
superinductor is obtained if Y3 and V5 are realized as capacitors and

Yz, Y4 and y6 as resistors,

All the converters derived from the circuit of Fig. 3-16 behave as
converters for any value of the admittances of the components; the
same applies to the inverters. This is a desirable property, since it
seems reasonable to expect a better sensitivity performance than in

the cases where the components have to be related in a specified way.

The circuit of Fig. 3-16 can be realized with two operational

amplifiers (with differential input and grounded output) in many
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different ways. The non-ideal performance of the different realizations
has been extensively investigated [13, 34, 59-63]. It has been shown
that some realizations have very good performance and these have been
widely used in active filters simulating doubly-terminated ladders,

This is the reason why the circuit was chosen here as an example.

The inductor simulation circuit in Fig. 3-17 is a particular realization
of the nullor circuit in PFig. 3=-16. It has been shown that this

realization possesses particularly good high-frequency performance [60].

It may be noted that the inverters obtained from Fig, 3-16 if the
nullors are replaced by operational amplifiers will have only one
grounded port; in the converter obtained by extraction of y6 both ports

will be grounded,

Although most of the circuits that have been used for the simulation’
of inductors are interpretable as terminated inverters or converters,
this is not true for all inductor simulation circuits. An example of
a circuit that can be used to simulate inductors but cannot be inter-
preted as a converter or inverter is shown in Fig. 3-18 [30, 64, 65 o
This circuit only simulates an inductor if the relationships given in
Fig. 3-18 involving all the components are satisfied. Thus it is not
possible to extract one component and consider it as the termination
of a converter or inverter since it is not possible to write equations
in the form of (3-=1) or (3-2) vélid for_igz value of the terminating

admittance,

Inductor simulation using converters or inverters leads to lossless
inductors, assuming ideal performance of all the components in&olved.
The same is true for the circuit of Fig. 3-18. There are, however,
circuits that have been proposed for the simulation of lossy inductors;

an example of such a circuit [66] is given in Fig. 3-19,
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Fig. 3-18 : Inductor simulation by a circuit which cannot

be interpreted as an inverter or converter.
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Fig, 3-19 : Simulation of a lossy inductor,
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It is useful to note that a circuit that simulates a lossless
inductor using only one capacitor (in addition to resistorsand nullors)
must be an inverter terminated by the capacitor, since the defining
equation for an inverter (3-2) is necessarily satisfied for any

termination,

As mentioned before,an active RC circuit that simulates a floating
inductor can be regarded as a 2-port (Fig. 3—4b)° Later in this
thesis it will be shown that most of the circuits that have been
proposed for the simulation of floating inductors can be interpreted
as 3-port inverters terminated by a capacitor or as 3-port converters
terminated by a resistor. These 3-port inverters and converters are
special cases of the multiport converters and inverters which are
proposed in this thesis as a generalization of 2-port converters and
inverters, Since a study of floating inductor simulation using
3-port inverters and converters is one of the main questions investigated
in this thesis (chapter 6), in the present review chapter only two
well known circuits, one using two grounded 2-port inverters, the other

employing two grounded 2-port converters, will be mentioned.

The circuit in Fig. 3-20 uses two grounded positive inverters and
one capacitor to simulate a floating inductor [67]. The circuit of
Fig. 3-21 uses two grounded converters and one resistor [37, 68];

the admittance conversion factor of both converters must be

where k is a positive real constant,

The grounded converter obtained from the circuit in Fig., 3-16 by
extraction of g, could be used to realize the circuit of Fig. 3-21., The
inverters derived from the circuit of Fig. 3-16 are not grounded (it

is impossible to ground both ports) and therefore cannot be used to
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realize the circuit of Fige. 3-20; an .inverter of the type shown

Figs., 3=14 could be used,
3.6 - THE (ad, bc)-PLANE

It has been found useful to represent 2-ports described by real
parameters as points in the (ad, bc)-plane [69-71, 32]° The symbols

a, b, ¢ and d represent the elements of the transmission matrix

Erom the transmission description of converters and inverters (section
3.3) it follows immediately that PIC's are represented by points on the
positive (ad)-axis and NIC'!s are represented by points on the negative
(ad)-axis, as shown in PBig., 3-22. Similarly, PII's and NII's are
represented by points on the positive and negative (bc)-axis, respectively

(Fig. 3-22). .
Reciprocal 2~ports for which
det T=ad -bc =1 (3=15)

are represented by points in the 'reciprocal line' shown in Pig. 3-22.
The positive transformer (PT) and the negative gyrator (NG) are repre-
sented by the points of intersection of this line with the ad and bc

axes, respectively (the PT and the NG were introduced in section 3.3).
Two~ports for which
det T = ad - bc = -1 (3=16)

have been considered as anti-reciprocal [69-71] (this is suggested by
the contrast with reciprocal 2-ports for which det T = ad - bc = +1),
Such 2-ports are represented by points on the 'anti-reciprocal' line

shown in Fig, 3-22, The positive gyrator (PG) and the negative
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Fig. 3-22 : Converters and inverters in the (ad,bc)-plane,
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transformer (NT) are represented by the points of intersection of this

line with the coordinate axes (Fig. 3-22),

The four 2-ports, positive and negative transformer and positive
and negative gyrator, provide very clear examples that reciprocity--
non-reciprocity and activity-passivity can be combined in all possible

ways:

PT: reciprocal and passive
NG: reciprocal and active
PG: non-reciprocal and passive

NT : non-reciprocal and active

There has always been a close association of converters and inverters
with the concepts of reciprocity and anti-reciprocity. This is
particularily true in the case of the gyrator which has been regarded
since its introduction by Tellegen [72] as a prototype non-reciprocal
network element. The results of an investigation of various network
properties related to the concept of reciprocity and anti-reciprocity

will be considered later in this thesis,
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CHAPTER 4

MULTIPORT CONVERTERS AND INVERTERS

4.1 - INTRODUCTION

As discussed in the previous chapter, 2-port immittance converters
and inverters are important active units used in the realization of
active RC networks. A review of the definition and more salient
features of 2-port converters and inverters was presented in section 3.3.
It was seen that ideal transformers and gyrators are special cases of
2-port converters and inverters, respectively. Multiport versions
of these special converters and inverters can be found in the
literature. These are the 'multiwinding transformer' [4-6] and the
'multiterminal gyrator' [38, 39]. It is believed, however, that a
full extension to multiports of the general concepts of 2-port
immittance conversion and inversion has not been given in the literaturef*)

Such an extension will be proposed and discussed in this chapter.

Multiport admittance and impedance converters and inverters will
be defined in terms of the operation performed on the matrix description
of a '"load' multiport, since it is this operation which is directly

relevant to the application of these multiports. The matrix description

(*) There is a brief mention in [22] of 'n-port generalized converters
and inverters.', This, however, has little relationship with the
approach followed here (the n-port inverter is there defined as
any n-port described by a non-singular admittance matrix, which
leads, for n = 2, to the inclusion of many 2-ports which are not
immittance inverters according to the usual definition),
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of the converters and inverters is derived from the definitions.

The alternative approach of giving the definitions in terms of the matrix
description has the disadvantage that multiports with a.different
description might perform the same operations and hence be equally

suited for a specific application. The approach taken here eliminates
such a possibility by establishing necessary conditions for the operations

of conversion or inversion to take place.

It will be shown that the proposed definitions include, as special
cases, the 2-port converters and inverters, the multiwinding transformer,
the multiterminal gyrator, and many of the circuits used for the
simulation of floating inductors and floating negative impedances.
However, it is found that they do not include the circulator (which
might in .some respects be regarded as a multiport version of the

gyrator).

Examination of the properties of multiport converters and inverters
leads to a somewhat unexpected result: it is shown that, in contrast
to 2-port converters and inverters, multiport admittance converters
(or inverters) are not in general simultaneously impedance converters
(or inverters). This is a conseqQuence of the definitions proposed here,
which do not include the requirement of simultaneous admittance and
impedance conversion (or inversion). The inclusion of such a require-
ment in the definitions would be unduly restrictive, since this would
lead to the exclusion of several circuits which seem clearly associated
with admittance or impedance conversion or inversion, for example most

of the circuits used in the active RC simulation of inductive ﬁetworks.

Finally, it will be shown that admittance and impedance converters

and inverters can be regarded as special cases of a more general

multiport, the 'hybrid converter', which is introduced and briefly

discussed in the last section of this chapter,
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4.2 - DEFINITIONS

In order to introduce the definitions of multiport converters and
inverters, consider an (n + k)-port N with n input ports and k output
ports (Fig. 4-1). Assume that a 'load' k-port N2 with an admittance

matrix Yé or an impedance matrix Z2 is connected to N as shown in
Fig. 4-1. It is assumed that the n-port resulting from this connection

of N and N2 has an admittance matrix Yl or an impedance matrix 2Z

1
The definition of the 2-port admittance converter involves the
equation Yl = &zyé ,» where kZ is a scalar that depends only on the
converter and not on the terminating one-port. A first attempt to
define a multiport admittance converter might result in the use of an
expression of the form Yl = K Yé or Y1 = YZK where K is a matrix that
depends only on the converter. However, since matrix multiplication is
not commutative, these two expressions are not equivalent. Furthermore,
expressions of this form cannot be used if the square matrices Yl and
Y2 have different dimensions. Therefore it seems natural to use an
expression of the form Yl = le Y, Hzl' Expressions of this form will

also be used for the impedaace converter and for the admittance and

impedance inverters.

The following definitions are proposed: the (n + k)-port N is an
Admittance Converter, Admittance Inverter, Impedance Converter or
* -
Impedance Inverter ') if equations (4-1), (4-2), (4-3) or (4-4)

respectively, are satisfied:

(*)

The reason for having two types of converters (admittance and
impedance) and similarly two types of inverters instead of one
immittance converter and one immittance inverter will be discussed
later.,
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. = -1

ADMITTANCE CONVERTER: Yl le Y, H21 (4-1)
TRT - = -'2

ADMITTANCE INVERTER: Yl c:;12 z, G21 (4-2)
. = : 3

IMPEDANCE CONVERTER: Z; K, Z, ¥, (4-3)

= Y, R : (4-4)

IMPEDANCE INVERTER: Z1 = R12 2 Ry

In these equations, Y2 and 22 are k-square matrices, Yl and Zl

are n-square, letters with subscripts 12 denote (n x k) matrices and

letters with subscripts 21 denote (k x n) mtrices, The matrices le,

H21, G12’ G21’ K12’ K21, R12 and R21 depend only on the (n + k)-port N.

The defining expressions must be valid for any load k-port N2 that
possesses an admittance description in the cases of (4-1) and (4-4)

or an impedance description in the cases of (4-2) and (4-3).

The justification for the designations is obvious in the case of
the converters, The choice of the name 'admittance inverter?! for the
multiport to which equation (4-2) apblies is suggested by the fact

1

that if N, has an admittance description, then Z, = Y; and (4-2)
~1

becomes Y, =G Y G

1 12 1 21° It should be noted, however, that it is not

required in the definition of the admittance inverter that N2 has both
admittance and impedance description: it is only required that it has
an impedance description and hence the appearance of 22, instead of

Y;l, in (4-2). Similar considerations apply to the impedance inverter.

Two-port converters in which the conversion factor is a rational
function of the complex frequency variable s are often useful. 1In a
similar way, for the multiport converters and inverters, it will be
assumed that matrices H, G, K and R need not be matrices over the real
field: they can, in general, be matrices over the field of rational

functions of s,

Having proposed these definitions, it remains to be seen if they

lead to meaningful consequences., This will be done in the next sections.
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4.3 - MATRIX DESCRIPTION

The necessary and sufficient conditions, in terms of the matrix
description, for the (n + k)-port N to be a converter or an.inverter
according to the definitions given above are presented in Table 4-1
(equations (4-5) to (4-8)). It can be seen that there is a very
simple relationship between the non-zero submatrices in the matrix
description and the matrices that appear in the definitions (Table 4-1),
The sufficiency of the type of descriptions shown in Talbe 4-1 can
easily be verified. The proof of necessity is less straightforward

and will now be presented,

The admittance converter will be considered first. Since it is

not known a priori which types of matrix description the converter will
have, it is assumed that N is described by the general equation
MI + PV = O with the matrices partitioned in correspondence with the

partition of the ports of N in n input and k output ports (Fig. 4-1):

M M| 15 Piry P2 || Yy
+ = 0 (4-9)
M1 M| L2 Por Paa || V2
where

= [~ ] = | ] = | T = [ ]
5 4 L= [t Vi®= v AP Va1
J'n 1n+k Vn ' Lvn+k
- - - and - o "o

and the submatrices M11 and Pll are n-square M22 and P22 are k-square,

M and P are (n x k) and M21 and P are (k x n).

12 12 21
“Equation (4-9)'remains valid after both M and P are subjected to

the same elementary row-transformations (interchange of two TOWS

multiplication of a row by a scalar; addition of one row multiplied



- 105 =

TABLE L4-1 : Definition and matrix description of multiport converters and

inverters.
DESIGN. DEFINITION MATRIX DESCRIPTION
ADMITTANCE T 0 2: NS
Y= BV H, (4-1) . 2 (4-5)
CONVERTER v 1y o Iz
2 = 2L 2
ADMITTANCE .1 Fo «a_llv
T,= 6,206, (4-2) L 2t (4-6)
INVERTER I g o v
2 [_' = 2L 2
IMPEDANCE v 0 K I
_ _ 1 12{~1 _
Zy= K 2K, (4-3) . (4-7)
CONVERTER
_Iz_ [_‘ =K O 1%
B -
IMPEDANCE vy 0  «R, L
Z.= R_Y.R (L4-4) (4-8)
INVERTER | * Mt v _ir o li1
| 2; ot 21 2

Note: ot is an arbitrary non-zero scalar.
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by a scalar to another row). Since it is always possible to reduce
a square matrix to an upper-triangular form by row-transformations,
it can be assumed, without loss of generality that either M or P in
(4-9) is _upper;triangular. In the case of the admittance converter

it is convenient to assume that M is upper-triangular and consequently

My =0, Taking this dinto account, (4-9) can be written as
My I+ M, I, +P  V, + P12 vV, =0 (4-10a)
M I, + P VvV, + P vV, =0 (4-10b)

The load k-port N, (Fig. 4-1) is described, in the case of the

2

admittance converter, by

(4-11)

where the (-) sign results from the choice of the reference direction

for I2 into the k output ports of N and therefore out of Ng'

Equations (4-10), in conjunction with (4-11) yield:

Mll I1 + P11 Vl + (P12 - M12 Yz) V2 =0 (4-12a)
P21 Vl + (P22 - M22 Y2) V2 =0 (4-12b)

According to the definition, (4-1), Y, must exist for any Y,.

1 2

This means that it must be possible to terminate the (n + k)-port

N by connecting any Y2 to the output and imposing the value of Vl at

the input. With such a termination it must be possible to determine

the value of all voltages and currents at the ports of N, since, if a
multiport has physical meaning, all port voltages and currents can be
determined when +the multiport is terminated (i.e. connected to an external

network which includes independent sources) in a permissible way [7].

Therefore it is required that (P22 - M22 Yé) be non-singular for any Y2

(otherwise it would be impossible to determine Vz). One consequence of
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this is that P22 must be non-singular, so that the case Yé =0 is

included; another conseqQuence 1is that it is necessary that

My, =0  (4-13)

since it can be shown (Appendix, Lemma I ) that otherwise Y, can

always be chosen such that (P Yé) is singular. Taking these

22 = My,

results into account and noting that Y11 must be non-singular (other-

wise the n-port resulting from the connection of N and N2 would not

have an admittance description) it follows from (4-12) that

R | -1 -1 -1
1 = -Mll (p,. - P P..)-M_, M., Y

¥ 11 - P12 Pan Poi 11 M2 Y5 Pan Ppy

(4-14)

2
it follows that

Since, for an admittance converter, Y1 must be related to Y, by

an equation of the form of (4-1), i.e. Yl = le Yé H21,

-1 -1
Mg Py = Pip Py Pyy) =0 (4-15)
and
-M‘l”M Y p‘l P,. =H,, Y. H (4-16)
11 712 "2 "22 "21 T 12 2 21

It can be shown (Appendix, Lemma II) that if (4-16) is satisfied for

any Y, then

-1
-M11 M12 = ot le (4-17)
and
=1 _ 1
P22 P21 = = H21 (4-18)
where o¢ is an arbitrary non-zero scalar,
From (4-10b) and (4-13) it follows that
v, =-plp v (4-19)
27 Tt22 "21 "1 -
or, making use of (4-18),
v, =-iu v (4-20)

2 a 21 1
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From (4-10a2) and (4-19) it follows that

-1 -1 -1

Ty =My My I, = M) () = By Py R0 V)
or, taking into account (4-15) and (4-17),
I, = otH I (4-21)

Equations (4-21) and (4-20) can be written in the form of (4-5), in
Table 4-1, which is thus the description that is necessary and sufficient

that a multiport possesses in order to be an admittance converter,

The proof of the necessity of (4-6) for the admittance inverter

follows a similar pattern, The results for the impedance converter,

"(4-7) and inverter,(4-8), are then immediate, since all their equations
have the same form of those applying to the admittance converter and

inverter, respectively, if the V's and I's are interchanged.

4.4 - THE DIFFERENCE BETWEEN 'ADMITTANCE® AND
*IMPEDANCE' CONVERTERS AND INVERTERS

The (n + k)-port N will only be simultaneously an admittance
converter and an impedance converter if it accepts both a description
in the form of (4-5) and in the form of (4-7). Since these two
descriptions differ by the interchange of dependent and independent

variables, the matrix in (4-5)

_ . -
0 :oLle n
H = .ﬂ..l’.ﬂb:..ﬂﬂ.ﬂ...
1 H 0 k
= %t N
[ | l.
! Al e |
n k

must be non-singular. This means that it is necessary that the sub-
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matrices le and H21 are square (n = k) and non-singular; otherwise
det H = O (this follows from the expansion of the determingnt using
minors of order n or k, whichever is smaller). This conditions is

also sufficient, since, as can be easily verified, # ! has the form

required by (4-7).

In a similar way it can be proved that an admittance inverter
is simultaneously an impedance inverter if and only if G12 and G21

in (4-6) are square {(n = k) and non-singular,

Since for 2-ports n = k = 1 and the submatrices in (4-5) and (4-6)
become scalars, the conditions for simultaneous admittance and
impedance conversion or inversion are automatically satisfied. In the
case of multiports these conditions are not always satisfied; for |
instance, in a multiport with an odd number of ports, admitfance and
impedance conversion (or inversion) can never take place simultaneously
since it is impossible to have the ports separated into two sets

containing the same number of ports.

The fact that, in contrast to 2-ports, a multiport admittance
converter (or invgrter) may not be simultaneously an impedance
converter (or inverter) will now be illustrated by means of a simple
example using 3-port inverters. If two 2-port gyrators are connected
as shown in Fig. 4;2a, a 3-port admittance inverter is §btained,, as
can be recognized from its matrix description. It could be used,
when terminated by a capacitor, to simulate a network consisting of an
inductor and an ideal transformer (Fig. 4-2a). This 3-port is not an
impedance inverter since equation (4-4) is not satisfied (when port 3
is terminated by a 1-p§rt, the resulting 2-port does not even have an

impedance description). However, the same 2-port gyrators could be

connected as shown in Fig. 4-2b in order to. produce a 3-port impedance
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Fig, 4-2 ; Wxample showing the difference between

admittance and imoedance inverters.
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inverter. This 3-port could be used, when terminated by a capacitor,

to simulate the inductor-transformer network shown in Fig., 4-2b.

It should be emphasised that the designation admittance converter
(or inverter ) is always usedin this chapter to refer to all multiports
satisfying (4-1)(or (4-2));it does not refer exclusively to those
converters which are ohiy of ‘the admittance type (and not of the
impedance type). A similar remark applies to the designation impedancé

converter (or inverter).
4.5 - SOME PROPERTIES OF MULTIPORT CONVERTERS AND INVERTERS

From the definitions and matrix descriptions in Table 4-1 it is
possible to obtain several properties of multiport converters and

inverters., Some of these properties will now be discussed,

Interchange of Input and Output

The definitions of multiport converters and inverters require a
partition of the ports into two sets: a set of n ports labelled
"input™ and a set of k ports labelled "output", When the load
multiport is connected at the output the result of the operations of
conversion or inversion is observed at the input. The consequences of
interchanging the input and output sets of ports (denoted by subscripts

1 and 2, respectively) will now be examined,

An admittance converter is described by equation (4-5),

which can also be written as



This equation, apart from an interchange of subscripts 1 anq 2, has
the form of (4-7) which describes an impedance converter., This shows
that if the input and output sets of ports (denoted by subécripts 1
and 2, respectively) of an admittance converter are interchanged, the
resulting multiport is an impedance converter; in other WOfds, if
conversion of the admittance type is possible in one direction, then
conversion of the impedance type is possible in the other direction
(in those converters which are of both types simultaneously the two

operations are possible in both directions).

An admittance inverter is described by (4-6),

I 0 7
1] aGlZ v1
1
I, -3, L 0 v,

and this can be written as

L1 O -EG1| |V
I %G ° Y

This equation retains the form of (4-6) but subscripts 1 and 2 are
interchanged. A similar result is obtained for the impedance inverter
described by (4-8). This means that for inverters the interchange of
input and output is not accompanied by a change of type: an inverter

is of the admittance, or impedance, type in both directions,

Duality

As pointed out before, every equation involving the port variables
of the admittance converter and inverter has a corresponding equation
which applies to the impedance converter and inverter, respectively.,
These correspondiﬁg equations have the same form, but voltages and

currents are interchanged. It can therefore be stated that the dual

of a multiport admittance converter (or inverter) is an impedance

converter (or inverter),
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Interreciprocity

The description of the multiports which are interreciprocal
(transpose or adjoint) of multiport converters and inverters can be
found by . applying the interreciprocity conditions (chapter 2,
section 2.5) to the matrices in (4-5) to (4-8). By doinglthis, it
can be shown that the interreciprocal of a converter or inverter is
itself a converter or inverter, respectively, of the same type
(admittance or impedance), This property, in conjunction with the

‘new

interreciprocity theorem, can be used to derive 'realizations of

converters or inverters from existing ones.
4,6 - MULTIPORT TRANSFORMERS AND GYRATORS

If an admittance or impedance converter is non-reactive (the elements
in the matrices are real constants) and described by a skew-symmetric
hybrid matrix, then it is non-energic, i.e. the instantaneous power
flowing dinto it is always zero. This is easily verified by substitution

of (4-=5) or (4-7) in the expression of the instantaneous power
P o= IV(t)V () +IE) V. ()
1 1 2 2

The matrix description (4-5) of the non-energic admittance converter

takes the form of

I ' 0 Hyg v
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Both the admittance and the impedance converter, may be called, in

this special case, ideal multiport transformers, According to the

discussion in the previous section, if a multiport ideal transformer
is of the admittance type in one direction it will be of the impedance

type in the other direction.

Similarly it can be shown that non-reactive admittance and
impedance invertefs are non-energic if described by skew-symmetric
admittance or impedance matrices, respectively. 1In both cases it
seems natural to use the designation multiport gyrator for these
special inverters. There are thus two types of multiport gyrator:
admittance multiport gyrator and impedance multiport gyrator., It is
only when n = k and G12 is non-singular that the mul tiport gyrator is
simultaneously an admittance and an impedance gyrator. The 'multi-
terminal gyrator' , presented in [38, 39] is a multiport gyrator of the
admittance type; it will be of both types simultaneously if these

conditions are satisfied.

It may be interesting to note that the 3-port circulator [6] is not
a multiport gyrator according to this definition, although it might be
regarded, in some respects, as a multiport version of the gyrator:
it is non-energic, is described by a skew-symmetric matrix, either
admittance or impedance (but not both), and a 2-port gyrator is
obtained if one of the ports is short or open-circuited. However, unlike
the multiport gyrator considered above, it is not an inverter as can
easily be seen by considering a 3-port circulator with an admittance

description

1l (0] g -g v1
i, = -g o] g v2
i - 0 v

L 3...1 | & & . L 3_4

which clearly cannot be written in the form of (4-6).
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4.7 ~ FLOATING INDUCTOR SIMULATION

It has been seen in chapter 3 (section 3.2) that a floating
inductor, when simulated by an active RC circuit has three terminals
(including the ground terminal) and can therefore be described as a

2-port (Fig., 4-3a),with an admittance matrix

1 1 -1
Y = T (4-22)
S -1 1

A floating inductor can be simulated by a 3-port admittance

inverter terminated by a capacitor., Consider that the 3-port in

Fig. 4-3b had an admittance description of the form

o i} e A
1 0 0 Biz| | ™1
i, = ) o 83 v, (4-23)
*3 | | 831 8 9 []| Vs3]

which corresponds to a 3-port admittance inverter with port 3 as the
output port (as seen by comparison of (4-23) with (4-6)). It will be
assumed that the 3-port in Fig. 4-3b is active R (contains only resistdrs
and active components) and therefore the elements of the admitfance
matrix in (4-23) are real constants. If a capacitor is connected to
port 3, Y5 = sC, the resulting 2-port (ports 1 and 2) will have an

admittance matrix which can be obtained using (4-2):

e h
Y= g15] L [e5; 83,]
sC
823]
or
Y = ”'?é? 813 831 B13 B3
(4-24)
833 B31 B33 B3
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(a) (b)

Fig. 4.3 ; Floating inductor simulation.
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This will be equal to the admittance matrix of a floating inductor

(4-22) if and only if

~633 % _ B,

g3 (g, > 0) (4-25a)

(gb> 0) (4-25b)

E31 T “B32 T 4 By

where t g, is introduced here to denote the common value of 8,3 and
-8, 39 and + gy, to denote the common value of 83, and =83y Substitution

of (4-25) in (4-24) yields

Yy = fa Bp (4-26)

which corresponds to a floating inductor (4-22) with inductance

L = (4-27)
g, gb
Substituting (4-25) in (4-23) leads to
i, 0] o gaw vy
il = ¥lo o (4-28)
2| © 0~ “Ba V2 -
i -g g o v
| 3~ B b b 1 L 3~

which is thus the description of a 3-port admittance inverter that will

simulate a floating inductor when terminated by a capacitor,

A 3-port admittance converter terminated by a resistor can also be

used to simulate a floating inductor. The 3-port in Fig. 4-3b will
be an admittance inverter with port 3 as the output port if it is

described by

1] © © hi3 V1
L= o o ngllw, (4-29)
RE | s P O 13

which is in the form of (4-5). The admittance matrix of the 2-port
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obtained by termination of port 3 by a resistor, Y3 = 85 is (from (4-1)):

Y=- by, g [y by
b,3
hy3 By Byz By )

Y = -g (4-30)
h _ h h

This admittance matrix will have the form of (4-22) if and only if

hjs=-hy, =h, (4-31a)

hyy = ~hgy =-hy (4-31b)

where ha and h, are introduced simply to provide a convenient notation,

b
Substitution of (4-31) in (4-30) leads to

1 -1
Y=nh hy¢g (4-32)
-1 1
If h h_ =k s_l, where k is a positive real constant, then (4-32)
a b
represents the admittance of a floating inductor of inductance
L=¢(_ h gs)t (4-33)
a b

Thus a floating inductor can be simulated by a 3-port admittance
converter with the two input ports grounded (Fig. 4-3b), terminated

by a resistor, if its description is of the form

- _ o -
i, .0 (0] ha vl
2| = o 0 -h, A (4-34)
1/'3 —hb hb 0 L 13
whe re
h h =k s"1 (4-35
a b ‘ =35)

and k is a positive real constant,
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These 3-port admittance inverters and converters suitable for
floating inductance simulation will be studied in greater detail
later in this thesis. It will then be seen that almost all the
circuits that h&ve been proposed for the simulation of floating

inductors can be interpreted as terminated inverters or converters,

It may be noted that the simulation of floating negative resistors
or capacitors can be obtained using 3-port admittance converters or
inverters terminated by a (positive) resistor or capacitor. These
3-port converters or inverters will have a matrix description in a
form very similar to the description of the converters or inverters
for floating inductance simulation. For instance, a converter

described by (4-34) with
L}
h, h = -k (4-36)

where k is a positive real constant will simulate a floating negative
resistor when terminated by a resistor at port 3, as shown by (4-32),.
A circuit that can be interpreted as such a converter was proposed in
[73].

The 3-port admittance converters or inverters for flooting inductor
simulation cannot be simultaneously impedance converters or inverters
since the total number of ports (n + k = 3) is odd. Since many circuits
used for the simulation of grounded inductors are 2-port converters or
inverters, it seems very natural to find that, as already mentioned ,
most of the circuits used for floating inductor simulation are 3-port
converters or inverters. It would have been impossible to describe
these circuits as multiport converters or inverters if the demand for
simultaneous admittance and impedance conversion or inversion had been

incorporated in the definitions,
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4.8 ~ HYBRID CONVERTERS

The conversion and inversion discussed so far are operations
performed by a multiport N on the admittance or impedance matrix

of a load multiport N, (Fig. 4-1). The fact that N, can have other

2 2

types of matrix description(e,g° hybrid, transmission, scattering)
suggests the possibility .of considering other types of conversion or
inversion. Of these, only 'hybrid conversion ' will be considered
here since it will be shown that it includes, as special cases,
admittance and impedance conversion and inversion, which are the main
concern of this chapter. It will be shown that hybrid inverters are
only a particular type of hybrid converter and therefore need not be

considered separately.

The hybrid converter will be defined with reference to Fig. 4-1.
It is convenient to use the notation appropriate for dealing with
hybrid descriptions that was introduced before (chapter 2, section 2.1),
El denotes an n-vector whose components are some currents and some voltages
chosen among the n currents and n voltages at the input ports of N in
such a way that one variabl: (voltage or current) of each port is
included. The n remaining port-variables, form another vector Fl in

which they are arranged with the port subscripts in the same order

. . t _ . "
used in El (for example: E1 = [i 1 Fl = [vl vy iV, 15] o

1293 % 7Y
E2 and F2 are two k-vectors formed in a similar way from the k currents
and k voltages at the output of N. It is assumed that the n-port

resulting from the cascade-load connection of N and N, has a hybrid

2

description
E. = H, F (4-37)

and that N2 has a hybrid description

A EZ = -H, A F, (4-38)
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where A is a diagonal matrix of dimension k such that the main
diagonal elements are 1 if, in ﬁ&Ez, they operate on voltages, and -1
if they operate on currents (for example, if E, = [vl v,y 13 i4]t
then A= diag. (1, 1, -1, -1)). The need for the use of A in (4-38)
results from the choice of the reference directions of the voltages
and currents in E ana F_, in the usual way with respect to N and not

2 2

with respect to N The (n + k)-port N is a Hybrid Converter if, for

20
any H,,

H) = Q) H, @

(4-39)
Since the inverse of a hybrid matrix is itself a hybrid matrix
(corresponding to an interchange of dependent and independent

variables) it is not necessary to consider hybrid inverters

-1 . . :
(Hl = P12 Hz P21). these are a special case of hybrid converters,

Taking into account that AA= 1, equations (4-38) and (4-39) can

be written in the form

E, = -(C AH

s AN F, (4-40)

2

H =Q, A ( A\ H, L )y A Q,, 4oa1)

<

The matrix description that N must have in order to be a hybrid converter
can very simply be obtained by noting that equations (4-37), (4-40) and

(4-41) have the same form as the eqQuations for the admittance converter:

I Y  V I, = -Yé Vz, and Y1 = le Yé H21. Therefore the result

17 71 "1 2

expressed by equation (4-5) for the admittance converter shows that

the hybrid converter must have a description of the form

oL
E 0 Q, Al E
= (4-42)
1
E, -z Do, o |lE

It is easy to see that the admittance and impedance converters and

inverters discussed before are in fact special cases of hybrid converters



- 122 -

if the admittance and impedance description are regarded as hybrid
descriptions - where all the dependent variables are of one type
(all currents or all voltages) and all the independent variables
are of the other type. The admittance converter corresponds to

the choice of variables El = Il’ E2 = 12 (and consequently

Fl = Vl, F2 = Vz) and the impedance converter corresponds to

El = Vl and E2 = V2. For the admittance inverter Ei = Il, Ez = V2

and it can be regarded as an impedance-to-admittance converter,

Similarly the impedance inverter is interpreted as an admittance-to-

impedance. converter:, .

It should be noted that these are limiting cases in the sense that
the vector variables considered do not contain mixed voltages and
currents., A 'true' hybrid converter could be, for example, one

. I t _ . 1t . .
for which B, = [11 i, v3] and E, = [v4 15] . It is also possible
that only one of the matrices Hl and H2 is a ' true' hybrid matrix:
A FUR . t . e s
if El = [11 12] and E2 = [13 V4 the hybrid converter is a'hybrid
to-admittance' converter. The converters in these two examples

do not have a 2-port counterpart since 2-port converters (and inverters)

operate on a load l-port for which a hybrid description has no meaning.
4.9 -~ CONCLUSIONS

The present chapter was concerned with the generalization of the
concepts of imittance conversion and inversion from 2-ports to
multiports. According to the generalization proposed here, admittance
and impedance conversion and inversion, which are 'scalar' operations
when performed by 2-ports, become 'matrix' operations when performed
by multiports, One consequence of this is a distinction, which does

not exist for 2-ports, between multiport admittance and impedance
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converters (or inverters).

Most of the circuifs that can be used for the simulation of
floating inductors have been associated, in a somewhat intuitive way,
with immittancé inversion or conversion, In terms of the definitions
proposed here these circuits can be formally described as 3-port
admittance (not impedance) inverters or converters. Multiport
transformers and gyrators are also special cases of multiport converters
and inverters. The theory of general multiport converters and inverters
proposed here provides a better understanding of these important
special cases, It is believed that it is also useful as a contribution

to general multiport theory.,

It has also been shown in this chapter that admittance and
impedance converters and inverters can be regarded as special cases of
a more general concept, that of "hybrid converter". Other types of’
multiport converters, e.g. scattering converters, could be studied

following the approach that was taken here.
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APPENDIX

Lemma I, In Y = A - BX, where X and Y are square matrices and

B # O, X can always be chosen such that Y is singular.

Proof: If B # 0 it has at least one entry bik # 0. If X is

chosen such that all rows are O except row k and xkj satisfies
a,, -b, x . =0 for all values of j, then row i in Y is a zero
1j ik kj

row-vector and hence Y is singular,

J k J

|| 1 I

i H l

1 1 |

: — '

Y = - X }
k f—- %5
A B X

Lemma II. If AXB'= CXD # O for any X, then A =¢/C and B = éD where

® is an arbitrary non-zero scalar,

Proof: 1If X is chosen such that only one entry is non-zero,

=1, th . L, = . . : s .
xij s en apl ka cpl dJk This result is true for all possible

combinations of the values of the subscripts p, i, j and k. This means

that A bjk =C djk for all j and k and hence A = & C (&= djk/bjk)

1 .
and B ——&D.
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CHAPTER 5

REALIZATION OF MULTIPORT CONVERTERS AND INVERTERS

USING 2-PORT CONVERTERS AND INVERTERS

5.1 - INTRODUCTION

The formal theory of multiport converters and inverters has been
presented in the previous chapter without any reference to the
realization of these multiports. In the present chapter it will be
shown that multiport converters or inverters can be realized by a
suitable interconnection of 2-port converters or inverters, respectively,
The problem of synthesising multiport converters and inverters can
thus be reduced to the synthesis of the appropriate 2-port converters

and inverters,

The realization using 2-port converters and inverters is straight-
forward and creates the possibility of using the vast amount ofu
knowledge about the realization and performance of these 2-ports,
There are however, limitations resulting from the fact that the 2-port
behaviour of the converters and inverters is not necgssarily guaranteed
after the interconnection. Active realization requires a common
ground terminal for all the 2-ports and this further restricts the
configurations that can be used., These restrictions will be discussed
in some detail. A number of particular configurations using 2-port
converters and inverters having a grounded terminal common to both

ports will be considered (these 2-port converters and inverters with

a grounded terminal common to both ports are referred to, in this
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thesis, by the simplified designations 'grounded converters!' and

tgrounded inverters?®).

All the realizations of multiport converters and inverters
considered in this chapter are obtained from a general configuration
which realizes any well~defined multiport as an interconnection of
2-ports. This configuration will be derived, in a straightforward

way, from the description of a general well-defined multiport,

The realizations of multiport converters and inverters are based
on the matrix descriptions that were obtained in the previous
chapter and are shown there in Table 4-1, It will be assumed through-
out the present chapter that the scalar o/, appearing in the matrix

descriptions in Table 4-1, is

=1

since this does not affect the generality of the results obtained.

In view of the complexity of many of the diagrams considered
in this chapter it has been found convenient to introduce a simplified
representation, It is ©believed that this representation leads to
diagrams which are easier to interpret. This simplified representation

will be introduced in the next section.

5.2 - A STMPLIFIED REPRESENTATION OF THE INTERCONNECTION OF MULTIPORTS

The present chapter is essentially concerned with the realization
of certain multiports as an interconnection of 2-ports where it is
assumed that the port behaviour is always maintained. For this
situation, the usual circuit representation, in which a port is
represented as a pair of terminals, is unnecessarily cumbersome and
can be simplified, since it is assumed that the current flowing into

one terminal is always equal to the current flowing out of the other
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terminal. A simplified representation which will be extensively
used in this chapter will now be introduced (this representation will

not, however, be used in other chapters of the thesis),

The basic conventions associated with the simplified representation

are the following:

(a) A line ¥epresents a pair of wires. The voltage between the
two wires is written above or on the left-hand side of
the line. The current, assumed as having the same value
and opposite directions in the two wires is written below or

on the right hand side of the line.

(b) A multiport is represented by a box, | One of the matrices
describing the multiport is given inside the box. The
independent variables associated with the matrix inside
the box.are always showﬁ at each port; the dependent variables,

when shown, are enclosed in brackets,

(¢) Arrows may be used to denote the reference direction for the

flow of energy.

(d) A dot, e , represents a parallel junctiocn, where three ports
are connected in parallel, A circle,a, represents a series

junction, where three ports are connected in series.

These conventions are summarized in Table 5-1., An example, showing
the same network with the usual representation and with the simplified

representation, is given in Fig. 5-1.

The representation of two or more wires by one line and the use of
parallel junctions are very common in power systems diagrams. It may
also be mentioned that the use of one line and parallel and series
junctions are basic features of the 'bond graph’notation [74] with

which the simplified representation used here has some similarity.



TABLE 5-1 :

Simplified representation of the interconnection of multiports.

USUAL REPRESENTATION

SIMPLIFIED REPRESENTATION

. EQUATIONS
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(a) Usual representation
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Fig. 5.1 : Example of the simplified representation.

(v) Simplified representation
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It should be emphasized that the simplified representation leads

to power-flow diagrams which must not be confused with signal-flow

diagrams, such as the block-diagrams used, for instance, tp represent
control systems, 1In a p;wer—flow diagram two variables, the product

of which represents power (current and voltage in the present case),
are associated with each linej; in a signal-flow diagram a single
information-carrying quantity is associated with each line. As a
consequence, in the simplified representation, a box representing a
2-port is associated with four parameters, whereas a block in a signal-

flow diagram represents a single transmission operator,
5.3 - REALIZATION OF WELL-DEFINED MULTIPORTS USING 2-PORTS

It was mentioned in chapter 2 (section 2.1) that a multiport is
said to be well-defined if it has at least one type of hybrid
description, the admittance and impedance descriptions being regarded
as particular types of hybrid descriptions. It will now be shown
how any hybrid matrix can be realized by an interconnection of

2-ports.

A multiport described by an admittance matrix can be realized by
an interconnection of 2-ports as shown in Fig. 5-2, where the
simplified represeptation described in the previous section has been
used. Having in mind the meaning of the parallel junction (see Table 5-1)
it is easy to see that the set of 2-ports interconnected as shown in
Fig, 5-2 will have the admittance description given in the same figure,
In a similar way it can be seen that a multiport with an impedance
description can be realized as shown in Fig. 5-3 (the meaning of the

series junctions used in this figure is explained in Table 5-1),
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Fig. 5-4 : Realization of a multiport with

a hybrid description.
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A multiport with a general hybrid description can be realized as
shown in Fig. 5-4. In this figure the n-port described by an
admittance matrix can be realized as shown in Fig. 5-2 and the k-port

described by an impedance matrix can be realized as shown in Fig. 5-3.

In all three cases (Figs. 5-2, 5-3 and 5-4) the number of 2-ports
required is the number of off-diagonal elements in the matrix to one
side of the diagonal, In order to realize an m-port, the number of

2-ports required is therefore
im (m-1)

A smaller number of 2-ports may be required if the matrix contains

pairs of zeros placed symmetrically with respect to the main diagonal,

It may be noted that the main-diagonal elements of an m-port
matrix are the sum of the main-diagonal elements in m of the 2-ports
(Figs. 5-2, 3, 4). This means that all but m 2-ports can be chosen
with zero main-diagonal elements and will therefore be 2-port converters
or inverters, Even those 2-ports with non-zero main-diagonal elements
can be replaced by 2-port converters or inveréers with l-ports connected

in parallel or in series with the ports, as shown in Fig. 5-5.

It is important to mention that the realizations given here
require that for all the 2-ports the port constraints be maintained
after the interconnection, so that the 2-port description applies.

If this were not assumed, it would not even have been possible to
use the simplified representation. It must not be forgotten that

a port is a terminal pair where the current flowing into one terminal
equals the current flowing out of the other; consequently the 2-port

description is only a partial description of a 4-terminal network.

Although the port constraints in the 2-ports are not always
guaranteed after the interconnection, there are cases where they are

satisfied. One such case is when the port constraints are a consequence
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Fig. 5-5 : Realization of 2-ports using converters and inverters.
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of the internal structure of the 2-ports, for instance when 'isolating?
transformers are used cascaded with the ports. Another situation

in which the port constraints are satisfied corresponds to the special
case where @ach of the Eorts of eévery 2Z2-port coincide§, on its own,

with one port of the final multiport.

If the 2-ports are actively realized, they will usually have to
share a common ground terminal, This is an additional factor to be
taken into account when verifying if the port constraints are main-
tained, since, in general, a 2-port with a ground terminal is in
fact a 5-terminal network. It may be noted, however that the realization
of a multiport with admittance description (Fig. 5-2) is always
possible, in the general case, using grounded 2-ports (i.e. 2~-ports
with a grounded terminal common to both ports). Several special
cases of multiports with impedance or hybrid descriptions can also be
realized using grounded 2-ports (without resorting to the use of
transformers), Some of these special cases will be considered in

connection with the realization of multiport converters and inverters.
5.4 - REALIZATION OF MULTIPORT CONVERTERS AND INVERTERS

It was shown in the previous chapter (section 4.,5) that multiport
converters have the following property: an admittance converter becomes
an impedance converter if the sets of input and output ports are inter-
changed. This means that it is not necessary to consider separately
the realization of admittance and impedance converters, since a-
realization of an admittance converter is also a realization of an

impedance converter,

Multiport inverters are, in this respect, in a different situation,

since a change of type does not accompany an interchange of input and
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output: the multiport resulting from the interchange of the input and
the output of an admittance inverter ,is also an admittance inverter
and, similarly, the multiport resulting from the interchange of the
input and the output of an impedance inverter is also an impedance
inverter. Therefore the realization of admittance inverte;s has to

be considered separately from that of impedance inverters,

The configurations considered in the previous section will now be
particularized for the case of multiport converters .and inverters.
Multiport converters can be realized using solely 2-port converters
connected as shown in Fig. 5-6, which is a special case of Fig. 5-4.

Admittance inverters can be realized as shown in Fig. 5-7, which is

a special case of Fig. 5-2, and impedance inverters as shown in Fig. 5-8

which is a special case of Fig. -5-3. Although the configurations
of Figs. 5-7 and 5-8 are different, 2-port inverters are used in both

cases.

It can be seen from Figs. 5-6, 5-7 and 5-8 that an (n + k)-port
converter or inverter requires, in general, (i.k)2-port converters

or inverters.

It should be noted that all the comments made, in the previous
section, concerning the need for the port constraints to be maintained,
apply” to the realizations of multiport converters and inverters
considered here., If microelectronic realization of multiport converters
and inverters is envisaged, the use of isolating transformers is ruled
out and actively-realized 2-ports with a common ground terminal have
to be considered. By using grounded 2-port inverters (inverters with
both ports grounded) it is possible to realizé any multiport admittance
inverter (i.e. with any number of ports and without restrictions on
the value of the elements in the matrix). Also several particular

types of converters and of impedance inverters can be realized using
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Multiport impedance inverter.
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grounded 2-port converters and inverters, respectively. This will be

considered in the next section,

5.5 - MULTIPORT CONVERTERS AND INVERTERS USING GROUNDED

2-PORT CONVERTERS AND INVERTERS

This section deals with the realization of multiport converters
and inverters using 2-port converters and inverters with both ports
grounded, Two-ports with only one port grounded or without any
port grounded (but with a ground terminal) can be used only in very

degenerate cases which will not be discussed here.

The admittance inverter is the only type of multiport converter
or inverter which can be realized, with grounded 2-ports, in its
most general form (without additional precautions such as the use of
isolating transformers). By stating that the admittance inverter can
be realized ii. its most general form, it is meant that the number of
ports and the value of the non-zero elements in the admittance matrix
are not restricted in any way. The multiport admittance inverter is
therefore of particular interest concerning microelectronic realization,

where the use of isolating transformers is ruled out,

The realization of the general admittance inverter is shown in
Fig. 5-9 where the usual representation (as opposed to the simplified

representation used in previous sections) is employed,

It may be observed that a special case of the realization in -
Fig. 5~ 9 is the circuit for the simulation of floating inductors using
two grounded inverters (gsually gyrators) [67], This circuit was
discussed before (chapter 3, Fig,., 3-20) and is reproduced here as

Fig. 5-10.
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The realization of admittance or impedance converters wusing
grounded 2-port converters is possible only in special cases, some of

which are shown in Fig. 5-11.

It may be noted that the "multi-PIC" network [37], which can be
used for the simulation of inductor-networks has the configuration
given in Fig. 5—-11a° Special cases of the réalization in Fig. 5-1lc
are the circuits with two grounded converters used for the simulation
of floating inductors [37,68] and for the simulation of floating
negative resistors [ 73 ]. These circuits were considered before
(chapter 3, Fig. 3-21) and their configuration is reproduced here in

Fig., 5-12.

Also in the case of multiport impedance inverters only some

special types can be realized with grounded 2-port inverters. Some

of these types are shown in Fig. 5-13,

All the configurations considered in this section are potentially
suitable for microelectronic realization, since the 2-ports used have
a common ground terminal and since 2-port behaviour is guaranteed

without any need for isolating transformers.

5.6 -~ CONCLUSIONS

In this chapter it is shown how any well-defined multiport can
be realized using 2-ports. This method is then applied to the
realization of multiport converters and inverters using only 2-port

converters or inverters, respectively.

The need to ensure 2-port behaviour of the interconnected
converters or inverters, and the requirement that all 2-ports share a
common ground terminal, restricts the number of configurations that can

be used without appropriate precautions (e.g. use of transformers to
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ensure port-behaviour). However, 2-port converters and inverters
with both ports grounded can be used to realize the general
multiport admittance inverter and several particular types of converters

and impedance inverters.

The circuits for the simulation of floating inductors using two
grounded inverters or two grounded converters are special cases of
the realizations considered here (the same applies to the circuit for
the simulation of floating negative resistors employing two grounded

NIC's).
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CHAPTER 6

A CLASSIFICATION OF 3-PORT INVERTERS AND CONVERTERS

USED IN THE SIMULATION OF FLOATING INDUCTORS

6.1 - INTRODUCTION

When the simuiation of grounded inductors was reviewed in chapter 3
(section 3.5) it was mentioned that most of the circuits that have been
proposed in the literature are either 2-port inverters (usually gyrators)
terminated by a capacitor, or 2-port converters terminated by a resistor.
In some cases the same circuit can be considered either as an inverter
or as a converter depending on whether a capacitor or a resistor is
regarded as the termination. It has also been mentioned that not
only lossy inductors but also lossless inductors can be simulated by

circuits which cannot be interpreted as inverters or converters.

A similar situation is found in the case of the simulation qf
floating inductors. It was shown in chapter 4 (section 4.7) that a
floating inductor can be simulated by a 3-port admittance inverter
terminated by a capacitor or by a 3-port admittance converter terminated
by a resistor. These 3-port inverters and converters are special
cases of the multiport inverters and converters introduced in this
thesis as a generalization of 2-port inverters and converters. Some
circuits simulating a floating inductor can be interpreted either as
a terminated inverter or as a terminated converter, depending on
whether a capacitor or a resistor is considered as the termination

(an example of this will be considered later in this chapter). It is
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also possible to simulate a floating inductor by circuits which

cannot be interpreted as inverters or converters. Examples of such
circuits can be found in [ 75 ] and [ 76"] (the circuits in [ 75 ]
simulate a lossy inductor and the circuit in [ 76 ]| simulates a
lossless inductor). It should be emphasized, however, that the vast
ma jority of circuits fhat have been proposed for the simulation of
floating inductors are interpretable as terminated inverters or

converters,

Tt will be assumed that the inverters used for floating inductor
simulation (FIS) are realized as active R networks and are therefore
described by a matrix whose elements are real constants. It was
shown in chapter 4 that an inverter suitable for FIS must have a

description of the form:

i ]
Fll (0] 0 ga v1
. .+
12 = . (0} (o] —ga V2 (6— 1 )
i -g g o v
| 73 | b b 1 L73]

where g, and gb are positive real constants,

(2]

A converter that simulates an inductor when terminated by a
resistor must contain at least one capacitor. It will therefore be an
active RC network described by a matrix in which some elements are
dependent on the complex frequency variable s and, as shown before

(chapter 4), it must have a description of the form

111 0 0 ha v1

. +

i, - o) 0 ~-h, v, (6-2)
v =h h (0] i
| 3] L b 413

where
-1
h ks (6-3)
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and k is a positive real constant.

Although all inverters suitable for FIS have the same 3-port
description, expressed by equation (6-1), they may have different
terminal descriptions. Similarly, all converters for FIS mﬁst have
the 3-port description (6-2) but different realizations ma& have
different terminal descriptions. In this chapter a classification ¢f
3-port inverters based on their terminal description will be
established. A parellel classification will also be applied to the
3-port converters. According to this classification, circuits that
belong to different classes are distinguishable by terminal

measurements,

It is believed that the classification proposed here clarifies
the relationships between the different realizations of inverters and
converters that can be used for the realization of floating inductors.
It will be made clear that whereas some realizations can be distinguished
by external measurements, others cannot. It is shown that some circuits
that are apparently unrelated, do in fact belong to the same class; it
may be possible, if two circuits have the same terminal description, )
to derive one from the other. This possibility is applied to the
derivation of several 3-port gyrators using three operational amplifiers

from an initial circuit with two gyrators, each gyrator containing two

amplifiers,

It should be noted that the inverters and converters considered
here. may have other applications besides their use in the simulation
of floating inductors. Inverters with a description in the form of
(6~1) can be wused to synthesize constant resistance all-pass networks

[ 77 ]. Converters described by (6-2) where

h, h = -k (6-4)

and k is a positive real constant can be used to simulate floating
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negative immittances [ 73 ].

6.2 - TERMINAL DESCRIPTION OF 3-PORT INVERTERS

FOR FLOATING INDUCTOR SIMULATION

A 3-port admittance inverter that simulates a floating inductor
when terminated by a capacitor has the general 5-terminal configuration
shown in Fig. 6-1. The 3-port formed in the way indicated in Fig. 6-1

must have a description in the form of equation (6-1), i.e.

B B T T 1
11 0 0 ga vl
i = Ilo 0 '
2 T - ~Ba V2 (6-5)
| *3 ]| -8, 8 O | [V3 V4]
where i_ = -i_, and the voltages are defined between each terminal and

3 4

the ground terminal O,

The 5-terminal network in Fig. 6-1 becomes a 3-port inverter
described by (6-5) when the ports are formed as indicated in the
figure. The form of the required terminal description will now be

derived.,

The most general description of a linear time-invariant and non-
reactive 5-terminal network (terminals O, 1, 2, 3, 4, with terminal O

as reference) is:

= 7 . 7] [~ . (— h

M1 ™2 ™3 Mg |11 Pip P2 Pz Pl V1

Map Maa Myz Myt |12 Pyy Paz Faz FPouf | Va
+ = 0 (6-6)

M M2 M33 M3g| | '3 Pa1 Paa P33 Pag| | V3

Lm41 "2 a3 Taa| |4 Far Faz Faz Fas | V4

where all mij and all Pij are real constants., If the S5-terminal
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Fig, 6-1 ; Floating inductor simulation

by admittance inversion.
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network is constrained to be a 3-port in accordance with Fig. 6-1, then
i = -i (6-7)

With this constraint, (6-6) can be written in the form '

) A ) e o
My My (Mg =m i b e NPy Py P Pra e 0
M1 Map (Mag = Myl iy Prr Bap Pyz Pyl Va
(6-8)
My My (mgz = mg)) | iz Psr Pa2 Paz Pag Vs
_m41 Myg (Myz = myy) LP41 Pia Paz Py Lf4

This matrix equation corresponds to four scalar equations. If the

3-port is to be a 3-port inverter described by (6-5), i.e,

i + g, (v3 - V4) 0

.+ _
i, - g, (v3 - v4) =0 (6-9)
- + -

i3 = gy (vy-vy)=0

then these three equations must be obtainable from (6-8), It will
be assumed that the first three equations in (6-8) have been reduced
to the form of (6-9). It can be seen by comparison of (6-9) with (6-8)

that (6-6) must be of the form

B sl m M.
1 ) o o |4, ) 0 g, -€ ||V,
0 1 ) ) i o o -g g v
2l = a a 2l = 0 (6-10)
0 0 1+3 g iz ~8h €y o) 0] V3
Lm41 Ma2 M43 Ma4|ta Par Paz Puz Pyl Vs

where o, 3,8 , m,. and Py (j =1, 2, 3, 4) are arbitrary real constants,

4]

The equations in (6-10) can be rearranged in the form



- “r. T
1 o o o i, o o B, "B, vy
0 0 1+ @ i _|-s g 0 0 v
21 x| P b 2120 (6-11)
1 1 by ¥ i, o o 0 o vy
| "1 M2 ™3 e [P [ Par Paz Paz Pagl[ V4

where the 3rd rows of the matrices in (6-11) are obtained by adding
the 1lst and 2nd rows of the matrices in (6-10), with §'= o+ 8 , and the

2nd rows of the matrices in (6-11) are the 3rd rows in (6-10).

The 5-~terminal active R network in Fig. 6-1 must have a description
in the form of (6-11). In equation (6-11) there are several arbitrary
parameters. Each specific set of these parameters defines a specific
5-terminal network (but different sets do not necessarily denote
different networks, as mentioned in 2,1). All such S5-terminal networks
become the same 3-port inverter with the description given by (6-3).
Some of these special cases, corresponding to different values of the
arbitrary parameters in (6-11), are of particular practical and concept-
ual interest and will be discussed in the next sections. Three cases
will be considered., The first two impose constraints on the terminal
configuration of Fig. 6-~1, whereas the third case imposes a constraint

on the terminal currents:
Case 1: Terminal 4 (or 3) coincides with terminal O.
Case 2: Terminal 4 (or 3) coincides with terminal 1 (or 2).

Case 3: The current io, entering the network through terminal O

is zero.

For reasons which will become clear later, these cases will be
discussed in the order 1, 3, 2. Realizations that do not fall into

any of these special cases will also be discussed,
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6.3 - FOUR-TERMINAL INVERTER

In this section, the special case where terminals 4 and O are
coincident (Fig; 6~2) will be considered, It should be noted that
the case where terminals 3 and O coincide differs from this only by

a different numbering of the terminals.

In this case the basic 5~-terminal becomes a 4-terminal network
which, if a 3-port inverter with common terminal O is to be obtained,
must have a terminal description which is identical with the 3~port

description given by (6=1), i.e.

1l 0 0 ga vl

i = ¥ 0 0 v (6=12)
2 = - “Bal| V2 -

13 “8, 8, O '3 |

If the network in Fig. 6-2 is regarded as a 5-terminal network,

then. the equation

must be considered together with (6-12) leading to

S - o .
11 0 0 g, 0 v1
i (8] 0 -8 0 v
2
_ o+ 2 2 (6-13)
13 8, &, © O V3
bv4_ i 0 0 0 0~ _14_
This can also be written as
™ . 7 - 1T T .
1 (8] (8] (8] 11 0 (8] ga -ga vl
O O 1 0 i -g g 0 0 v
2 - b b 2
+ =0 (6—14)
1 1 0 0 13 (8] (8] (8] (8] v3
_0 0 0 0_ _14H _.0 0 0 1 v4
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g

Fig, 6-2 ; Special case of Fig, 6-1 where terminals

4 and 0 coincide ( 4-terminal inverter ).
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Fig. 6-3 : Four-terminal inverter using two grounded inverters.
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Fig. 6-4 : L-terminal inverter with 3 operational

amplifiers ( Deboo's circuit ),
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It can be seen that (6-14) is a special case of (6-11). 1In

this case there are no arbitrary parameters in the terminal
description of the network. It is therefore impossible to distinguish
between different circuits belonging to this special case (apart

from the values of g, and gb)° Since this realization ofnthe 3-port
inverter is a 4<terminal network it will be designated as a

4-terminal inverter.

Several of the circuits that have been proposed for the simulation
of floating inductors are 4-terminal inverters. This is so in the
case of the circuit proposed by Holt and Taylor [67] using two
grounded inverters (usually gyrators); this circuit has been mentioned
in previous chapters, and is reproduced here in Fig. 6~3. The circuit,
using 3 operational amplifiers, published by Deboo [78] is also a
4-terminal inverter (Fig. 6-4). Likewise, the transistor circuits
described in [79-82] are 4-terminal invérters. It may be noted that
the designation 'semi-floating' gyrator has been used for some of these
circuits (apparently in order to indicate that the capacitor is

grounded but the simulated inductor is floating),

6.4 - FLOATING INVERTERS

The special case where in the 5-terminal network of Fig. 6-1

10 = 0 or 11 + 12 + 13 + 14 = 0 (6=15)

will now be considered. Then the description of the 5-terminal network

corresponds to (6~=11) with

i.€a0



- S - } T
(0] oL oL 11 (0] ¢ ga -ga V1
o 0 1+Q ) i, ) =By 8y o 0 vy
: ' =0 (6-16)
1 1 1 1 i 0 0 0 o || vs
a1 g2 ™3 M4g 4 Par P2 Paz Paa || V4
L. —J . - L —

It is obvious that ¥ = 1 is sufficient to satisfy (6~15), To prove
that ¥ = 1 is also necessary, assume that ¥# 1. Then, in order to
satisfy (6~15) it becomes necessary to choose the 4th rows of the
matrices in (6-11) to be [1 1 1 1] and [0 0 0 0]. If rows 3 and 4 are
now interchanged a description is obtained which is a special case of

(6~16).

The realizations of the 3-port inverter that belong to this special

case will be designated as floating inverters. This designation is

suggested by the fact that the 2-port formed by combining terminals
1 and 2 to obtain one port and terminals 3 and 4 to obtain the other
port is an inverter which is t*floating' i.e.,isolated from the ground

terminal (in the sense that io = 0)o.

There are a number of obvious ways in which floating inverters can

be realized:

(a) by using an ordinary 2-port inverter connected to a floating
power supply, for example a battery, which is not connected

to ground;

(b) by using, as in (a), an ordinary 2-port inverter but a grounded
power supply and a '"gyrator-floatation circuit" [83] which is
inserted between inverter and power supply, simulating a high

impedance;

(c) by using an ordinary 2-port inverter which contains, instead of

conventional amplifiérs with grounded output ports, special
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amplifiers with floating output ports (and differenti2¥ input
ports) [84].
Two possible examples of floating inverters are shown in Big. 6-6

in a nullator-norator representation. The circuit in Fig. 6-6a can

be described by

il = g (vg3 = v,) (6=17a)

-i4 =g (v, = V) (6-17b)

il + 12 + 13 + 14 = 0 (6=17c)

vl = V4 (6-17d)

and the circuit in Pig. 6-6b by

il = g vy = v4) (6-18a)

i, =-g (Vg =V,). (6-18b)

i3 ® =g (Vl - Vz) (6-18c)

i4 = g (v1 - vz) (6-18d)

Equations (6-17), when written in matrix form are a special case of
(6-16) and it is easy to see that (6=-18) can be brought to a form which
is also a special case of (6-16). However, whereas the circuit
described by (6-15) has an admittance description, the circuit described
by (6-17) does not have such a description, since equation (6-174)
involves voltages only and for the existence of an admittance description
it is required that all voltages can be imposed independently. This
shows that, although both circuits satisfy the same 3«port inverter
matrix, with the same values forga andgb , and belong to the same

- class of 3-port inverters as defined by (6-~16), they can be distinguished
by external terminal measurements, Thus the situation is different

from that encountered in the case of the circuits in Figs, 6-3 and 6-4
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Fig. 6-5 : Special case of Fig. 6-1 where i =0 (Floating Inverter),

()
N/
1 3
o NN——"WN 4AVAY, r—o i, =g (v3-v,)
g g 24
-i’-} =-g (VB-Vu)
(a) : _
o\ 1+, +ig4d), =0
g v =v
o - AWM~ e 1
2 ) L
e
1 3
il =g (VB-VL")
?g Cb& i, =-g (vB-VL,_)
JV;/\, 13 =-g (vl-vz)

(b) | i, =g (Vl-vz)

1

Fig., 6-6 : Two examples of floating inverters.
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which cannot be distinguished by terminal measurements,

6.5 - FLOATING 3-TERMINAL INVERTER

The special case where terminals 4 and 1 coincide (Big. 6-7) will
now be examined, It should be noted that the four cases corresponding
to terminals 4 or 3 coincident with 1 or 2 only differ from each othef

by the numbering of the terminals,

The terminal description (6~11) for the present case, must contain

the equation

Vi BV

Also, since terminals 1 and 4 are cohnected (Fig. 6=-7) the voltages and

currents must be affected in the same way by il and'i4 and therefore

these currents must always occur in (6-11) combined as (i, + i4)o This

1
means that the coefficients multiplying il and i4 must be equal,i.c.
m., ® m., fori = 1,2, 3, 4
Therefore (6-11) becomes
1 0 1 1 11' 0 ¢] g, -8, vy .
o) 0] 1 0 i -g g 0 0 v
2 : b b 2 = 0 (6=-19)
1 0 1 1 1, 0 0 ¢] 0 v3
o 0o o o] |i,] |t o o -1 ][v,]

Comparison of (6-19) and (6-16) shows that (6-19) is a special case of
(6=16), Thus the case of terminals 4 and 1 coinciding is revealed =
unexpectedly - as a special case of floating inverter., Since two of
the terminals coincide this case will be referred to as floating

3-terminal inverter. One possible way of realizing it is by using

any 2-port inverter which is 3-terminal and making it "float" by one
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Fig. 6-7 : Special case of Fig, 6-1 vhere terminals

4 and 1 coincide ( Floating 3-terminal inverter ).

3l & 81
—\M— AN NV
81 &) g1
AN——= —\\ > AN——=
NN + ALY £ AN\ -
g g g
1 2 39

Fig, 6-8 : A 3-port circulator,



- 164 -

of the methods mentioned in the previous section.

If the network of Fig. 6-7 is regarded as a 4-terminal network
(terminals 1 and 4 are merged) then the terminal description will

be, from (6-19)

- L — TIr
Lt i, B, "8, "B, B |[|Y
i = o - v (6-20)
o) -7 Ba ga 2
13 L "5 B, O 113

NN " o _g e B

11744 & 1
i = g 0 -g v (6-21)
2 2 ~
13 L-g 4 0_ Lv3A

It should be noted, however, that although the same network that
realizes a 3-port circulator can be used to realize a 3-port inverter,
these two 3-ports are quite distinct: the ports, are formed in a

different way and the port descriptions are very different.

The use of a circulator to simulate floating inductors was proposed
by Rollet [85]. A circulator can be actively realized in different
WaySe A circuit that realizes a 3-port circulator, with all three
ports grounded, and which contains 3 operational amplifiers [86, 87]

is shown in Fig. 6-3,

6.6 « THE 'GENERAL' INVERTER

Most of the circuits that have been proposed for the simulation
of floating inductors by admittance inversion belong to the special

cases considered in the previous sections, i.eo.ythey can be classified
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either as 4wterminal inverters or as floating inverters (this includes
the circuit using a circulator, which is regarded as a floating
3-terminal inverter). However, there are 3-port gyrators suitable for
floating inductor simulation which do not belong to any of these
special cases. An example of such a 'general! inverter ('general!
means simply that the inverter does not belong to one of the special
cases) appears as part of a circuit in a recent publication [49] on
wave active filters, derived from doubly terminated LC ladder filters.
In [49] a floating inductor is replaced by the circuit shown here in
Fig. 6~9, This circuit uses only one capacitor. If the capacitor

is extracted and regarded as the termination of a port, the remaining
circuit is a 3-port inverter of the *general! type, as will now be

showno,

The circuit in Fig. 6-9a can be redrawn as shown in Big. 6-9b
where the operational amplifiers are replaced by nullors, Analysis

of this circuit shows that it can be described by

— 1 r . ] B —] [~ W
1 o (0] 0 11 0 0 g/2-g/2 v1
0O 0 o0 =1 i, -g/2 g/2 0 O v,
- =0 (6-22)
1 1 (o] O 13 o 0 0 0 V3
o o (0] 0 i -1 o 1/2 1/2 v
I 117% ] 4 L7

This equation is in the form of (6-11), However, the circuit is not
a 4-terminal inverter since it is not constrained to have any voltage

equal to zero., It can also be seen that i3 does not appear in the

equations describing the circuit and therefore the currents are not

constrained to be il + i2 +in 4 i, =0or i, = O, which means that

0

the circuit is not a floating inverter,

It might be asked whether it is possible to distinguish, by

terminal measurements, between different 'general' realizations of the
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(a)

(b)

"g

0§ 88
2!

Fig., 6-9 : A 'general' inverter.
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3-port inverter. This question can be answered, in the affirmative,
by considering the circuit of Fig. 6-10 which 1is a 'generalt inverter
as the circuit of Fig. 6-9 but has a different terminal description.

The circuit of Fig. 6-10 can be described by

o= e, (vi3=vy)

i, ==, (vz-v,)

13 = -gb (v1 - v2)

i, = g (v, =v,)+g Vv
4 b 1 2 o 4

These equations show that the circuit is a 'general! inverter since
neither any of the voltages is constrained to be zero nor does

io = i; + i, + 13 + i4 = 0 apply. This circuit has an admittance
description and can therefore be distinguished from the circuit of
Fig. 6=9 which does not possess an admittance description as shown

by the fact that the matrix multiblying'the current-vector in (6=22)
is singular (the circuit of Fig. 6-10 is presented here only to

illustrate the possibility of distinguishing between different ?general?

inverters;itis ﬁntclaimed that this circuit is of practical interest),

An additional example of 'general' inverter is provided by a circuit
that has recently been proposed for the simulation of floating inductors
[ 88]. The circuit can be realized with 3 operational amplifiers and
is shown in Fig. 6-1l in a nullator-norator representation. It is

easily seen that if g, =85=8 and s 8, ® By Bg the circuit is

equivalent to a floating admittance:

2
= g 73 (6=23)
2 Y Y4 | -1 1l v

The floating admittance will represent a floating inductor if Yy (or y4)

is realized by a capacitor and V3 and Y4 (or yz)'are realized by resistorse
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i o= g, (vé-vu)
iy = gy (vl-vz)

il+ :'1.2 =0

i +1
3t

g

io

Fig, 6-10 : Another 'general' inverter,

-

O
Y2
; e W—p—o
I3 M 85 12
— M
o/
IVWV L O
g6 g7 g8
. V3
i) T g8y —— (vi'VZ)
il = —iz if gl = g5 and g5g7 = g6g8

Fig. 6-11: 4 circuit for floating inductor simulation which can be

interpreted either as a converter or as an inverter.
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The resulting circuit can be regarded either as a 3-port inverter
terminated by the capacitor or as a 3mport converter terminated by the
resistor that realizes Y3e It can be shown that the two ipverter

circuits obtained by extraction of ¥, or y, are 'general' inverters,

6.7 - THREE-PORT' CONVERTERS FOR FLOATING INDUCTOR SIMULATION

The 3=-port admittance converters that simulate a floating
inductor when terminated by a resistor have the general 5-terminal
configuration shown in Fig, 6-~12. Although different realizations
must have the same 3=~port description, expressed by equation (6-2),
they may have different terminal descriptions. Since the situation is
similar to that encountered in connection with the inverters, a
classification parallel to the one developed in the previous sections
can be applied to the 3-port converters used for the simulation of
floating inductors. Given the close similarity between the two
classifications, only a brief outline of the classification of the

" converters will be given here.

It can be shown that the 5=terminal network of Fig. 6-~12 must have

a description in the form of

B T . W [
1 0 -hia « i 0 0 0 0 v,
0 0 @ B i, . hb —hb 1 -1 vy
= 0 (6-24)
1 1 ¥ ) i 0 0 0 0 v,
" M4z M43 Taa| | te| P Paz Faz Pag || ]

The same special cases that were considered in connection with

the inverters will now be examined,
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Fig. 6-12

111 -1
Y= —
sL |-1 1
Vl L v2
I il iz I
PORT 1 PORT 2
o |
(o2 O
v=0
o _ 1
(b)

: Floating inductor simulation

by admittance conversion
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In this case the 5«terminal network of Fig. 6-12 assumes the

particular configuration shown in Fig. 6-2.

equation (6=24) becomes:

1 0 b . 0]
a
O 0 ©0 o
1 1 0 o
o o 0 o0
_ 4 L

i = 0 : floating converter

o]

0 0
-b 1
0 0
0 0

In this case § = 1 in equation (6-24):

_ } -
1 0 —ha+ o o
0 0 6 @
1 1 1 1
Ma1 M2 M43 Ma4

i

=

o o
h <h,
0 0
Pa Pa

ol

-1

Ps3

P

= 0

44 | |4

It is easy to show that

(6-25)

= 0 (6=26)

A floating converter can be obtained from an ordinary 2-port converter

by using

inverter (section 6.,4),

Terminals 4 and 1 coincide: floating 3-terminal converter

Equation (6-24) becomes

B -ha+i 1 W

0 0 0 0

0 0
-hb hb
0 0
B 1 0

o 0
1 -1
0 0
0 -1

€

one of the methods mentioned in connection with the floating

0 (6-27)
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As for the inverters, this case can be recognized as a special

floating converter since (6-27) is a special case of (6=26).

If the 5-terminal network which has in this case the configuration
shown in Fig. 6-=7 is regarded as 4-terminal by merging terminals 1 and

4, its description can be written (from 6-27)) as

Yl B 11 e ]
11+14 4] 0 ha 1 vy

i, = 0 0 -ha v, (6=238)
B V3 | _l—hb hb 0 ] | v3 |

In view of the correspondence between this case and the floating
3-terminal inverter, equation (6-28) .corresponds to (6-20). However
whereas (6-20) with g, = &, is recognized as the description of

a circulator, no way has been found of associating (6-28) with any

well known 3-porte

A 3-port converter can be realized by two grounded 2-port converters,
The resulting circuit has already been met in previous chapters and is
reproduced here in Fig, 6-=-1%, If the 2-port converters have the descrip-
tion in Fig. 6-13, then the terminal description of the 5-terminal network

can be written as

(1 0 -n, 07 [ o 0o o o] [v
o 0 o 0 i h, =hy, 1 =1 v
: 2| b b 21 = o (6-29)
- - i 4] 4] 0 4] v
1 1 ha ha *3 3
o 0 0 0| | i) | by O 1 0] | V4

This equation shows that the realizations of Fig. 6-13 does not belong to
any of the special cases, except if ha = -1, when it becomes a floating

converter,

It has already been mentioned that the circuit shown in Fig. 6-11 can

be interpreted either as a converter or as an inverter. . In contrast
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il= ha 13 ! " iz'—"ha il}

v.=-h vy vu:-hb 7

Fig., 6-13 : Three-port converter using

two grounded converters.,

v2
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the circuit of Fig. 6-13 can only be interpreted as a converter since
it must contain more than one capacitor (both 2-port converters contain

at least one capacitor).

It appears that the circuit shown in BRig, 6=13 is the only one that
has been proposed so far for the simulation of floating inductors
that can be interpreted as a 3wport converter but not as a 3=port inverter.

6.8 =« A FAMILY OF 3-PORT INVERTERS USING 3 OPERATIONAL AMPLIFIERS

It has been mentioned before that the 3-port inverter circuit
using two grounded 2-port inverters (Fig. 6-3) and the circuit
published by Deboo, employing three operational amplifiers (Rig. 6-4)
have the same terminal description and therefore cannot be distinguished
by external measurements., In terms of the classification proposed here
the two circuits belong to the same class: they are both 4eterminal
inverters. However, these two circuits appear to be otherwise
unrelated: one of them contains 3 operational amplifiers; the other
uses 2 grounded positive inverters each of which requires at least
2 operational amplifiers (a proof that a grounded positive inverter
requires at least two operational amplifiers will be presented in the
next chapter). However, it will now be shown that when two specific
positive inverter circuits, each containing two operational amplifiers,
are connected in accordance with Fig. 6=3, one of the operational
amplifiers can be made redundant; if the redundant amplifier is
supressed, a 4-.terminal inverter containing 3 amplifiers is obtained,
In fgct, the two inverters can be connected in four different ways and
in each case one amplifier can be suppressed, In this way a famil§ of
four different circuit configurations which realize the 4-terminal
inverter is obtained. These four circuit configurations will be given

in a nullator-norator representation; each configuration contains
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three nullors which can be replaced by operational amplifiers., One of
the operational amplifier realizations of one of the four nullor

circuits is the circuit proposed by Deboo.

The two specific positive inverter circuits to be conngcted in
accordance with Fig. 6=~3 are the two gyrator circuits of reference [78]
shown here, in a nullatorenorator representation, in Pig. 6«14, Por
convenience, the two gyrator circuits will be designated as circuit A
and c¢ircuit B, These two circuits can be connected in the four

possible combinationss:

AA AB BA BB

Circuit AA:

When two gyrator circuits of type A are connected to form a 3eport °
4wterminal inverter (FPig. 6-15a), it i; very easy to see that it is
possible to eliminate one nullor. In the circuit of Fig. 6=-15a there
is a positive resistor in parallel with a negative resistor between
terminal 3 and the ground (the negative resistor is realized by the
circuit of Pig. 3-11, in chapter 3). This parallel combination of
two conductances g and =g is equivalent to an open-circuit and can
therefore be eliminated from the circuit of Fig. 6-152, leading to .

the circuit of Fig., 6~15b with only 3 nullors.

Circuit BA:

This case 1s shown in Fig., 6«16, Two equal resistors of conductance
g can be connected between node a and the ground and between node b and
the ground, as shown in Fig. 6-~16a (without affecting the port behaviour).
This is so because the part of the circuit between a and b is a negative
imittance converter with conversion factor -1 (if the equivalence of

Pigo 3=~7a is applied and one of the two additional resistors is transferred
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CIRCUIT A

CIRCUIT B

(a)

(130}
(W)
‘H)
<’,m
N

o—+ : I a +—0

Fig. 6-15 : Circuit AA
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Fig. 6-16 : Circuit BA
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to the other side of the NIC, its conductance changes sign and cancels
the other additional resistor). When the two additional resistors are
inserted in the circuit a parallel combination of a pogitive and a
negative resistor appears between terminal 3 and the groun-d° If this
combination is eliminated, the 3=nullor circuit of Fig, 6=16b is

obtained,

Circuit ABg

This configuration is given in Rig. 6=17. Two equal resistors of
conductance g/2 can be added to the circuit between points d and e and
the ground, since the part of the circuit between d and e is a NIC
with conversion factor -1 (Fig. 6-17a)., The voltages and currents in
the circuit, with the exception of the currents in the norators, will
not be altered if the part of the circuit shown in PFig. 6=17b is
replaced by the - circuit - shown in Fig., 6=17c., If this replacement
is carried out, the parallel combination of a positive and a negative
resistor with conductances g and =g appears between terminal 3 and the

ground, If this is eliminated, the circuit of Pig. 6=17d is obtained.

Circuit BBs

The connection of two gyrator circuits of type B is shown in
Figo, 6=18a. Two equal resistors of conductance g can be connected
between points b and d, and the ground., Another pair of resistors with
conductance g/3 can be connected between points f and h and the ground
(Figo, 6-18a), If the part of the circuit shown in Fig. 6-18b is
replaced by the circuit shown in Pig., 6-18c, the voltages and currents
in the remaining circuit, apart from the currents in the norators, will
not be affectede When this replacement is carried out, the parallel

‘combination of a positive and a negative resistor appears between
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Fig. 6-17 : Circuit AB,
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Fig, 6-18 ; Circuit BB,
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terminal 3 and ground., The supression of this combination leads to

the circuit of Fig. 6~18d which contains 3 nullors.

It can easily be seen that the circuit in Fig. 6-17d, obtained from
the configuration AB, is a nullor representatim of Deboot's circuit

(Figo 6=4)o

All four circuits can be realized using 3 operational amplifiers
with differential input and grounded output, As mentioned before
(section 2.,2) a circuit with n nullators and n norators c¢an be
realized in 2” n! different ways (there are n! different possibilities
for pairing the nullators with the norators and 2™ different choices
for the polarity of the inputs of the n operational amplifiers),

For n = 3 there are 48 different operational amplifier realizations

which have different non-ideal performance (including different

stability properties).

6.9 = CONCLUSIONS

In this chapter the various methods og active RC simulation of
floating inductors based on admittance inversion and conversion have
been examined; in particular, the possibility of distinguishing
between different circuits by external measurements was considered.
All 3-port admittance inverters suitable for floating inductor
simulation have the same port description (equation (6-1)) and
therefore cannot be distinguished by port measurements (apart from
different values of g, and gb); similarly all 3-port admittance
converters for floating inductor simulation are described by (6-2) and
cannot be distinguished by port measurements (apart from the values of

ha and hb). However, these 3~port converters and inverters are in
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general S5-terminal networks which may have different terminal descripe
tions, It may thus be possible to distinguish different realizations

by terminal measurements,

The possibility of distinguishing different inverters by their
terminal description has been used to establish a classification of
inverters suitable for floating inductance simulation. 1In general
their terminal description can be written in the form of equation
(6=11) which contains several unspecified parameters. A special case
is the "4-terminal inverter", described by (6-12) which includes,
among others, Holt and Taylor's 2=gyrator circuit and Deboo's 3eamplifier
circuit,. Another special case is the "floating inverter", with a
description in the form of (6=16), which includes any 2-port inverter
with an individual, ungrounded power supply., A special floating
inverter is the "floating 3-terminal inverter", The circuit using a
circulator corresponds, in terms of the classification, to a floating
3-terminal inverter for which B, = Bpe

According to the classification proposed here, circuits of different
classes have different terminal descriptions, i.e. are distinguishable by
terminal measureménts. Whereas all 4-terminal inverters have thée same
terminal description, it has been shown, by means of an example, that
different floating gyrators may have different terminal descriptions.

All floating 3-terminal inverters, however, have the same terminal
description., It has been shown that different *genéral' inverters
(i.e. inverters that are neither 4-te£minal nor floating) can have

different terminal descriptions,

A similar classification has been established for converters used
in floating inductance simulation. Apart from those circuits that

can be interpreted either as a terminated converter or as a terminated

-
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inverter, the only converter circuit for floating inductor simulation
referred to in the literature is apparently the circuit using two
grounded 2-port converters, which belongs to the general caseo This 1is
in contrast with the situation encountered with inverters of which many
realizﬁtions have been published, almost all of them belonging to the

special classes,

Finally it has been shown that a family of 4-terminal inverters
with 3 operational amplifiers can be derived from the circuit using two
grounded gyrators, when these are replaced by two specific gyrator
circuits., Although each gyrator has two amplifiers, one amplifier can
be made redundant after the two gyrators are connected and can theree
fore be eliminated. One of the 3-amplifier circuits obtained is the
circuit proposed by Deboo, It is thus shown that this circuit, which
belongs to the same class as the 2egyrator circuit, can, in addition,
be derived in a simple way from a realization employing two specific

gyrator circuits.
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CHAPTER 7

INVERTERS WITH A MINIMUM NUMBER

OF ACTIVE COMPONENTS

7.1 « INTRODUCTION

The present chapter is concerned with the realization of inverters
with a minimum number of active components; in particular, 2-port
positive inverters using only one active component will be considered
in detail, and the possibility of grounding both ports in such
inverters will be investigated. The results obtained are useful as
contributions to the subject of minimal realizations of 2-port inverters,
and have also direct consequences regarding the realization of multie
port inverters, in general, and of 3-port inverters for floating
inductance simulation, in particular. This is so because multiport
admittance inverters. and also some types of impedance inverters can
be realized as an interconnection of grounded 2-port inverters, as
discussed in chapter 5 (see Figs. 5-9 and 5-13), It should be noted
that the designation 'grounded 2-port! is used in this thesis for

2«ports in which the ports have a common terminal which can be grounded,

The investigation of the minimum number of active components
required to realize a network with a given description is not only of
theoretical interest but is also very interesting from a practical
point of view. A. reduction in the number of active components in a
network leads to a reduction in the d.c, power required, the heat

generated, the cost, and also the volume and weight. It may be noted,
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however, that there is often a trade-off between number of active
components and sensitivity [89]: a reduction in the number of active

components is in many instances accompanied by an increased sensitivity.

It will be assumed that the inverters to be considered here are
described by real and constant parameters. It has been mentioned before
(chapter 3) that a 2<port positive inverter has an admittance description

of the form

where Y12 and Yy, 2re real constants with opposite signs. If

| Y12| = | y21| s the positive inverter is externally passive and is
called a gyrator. If |y12| # |y21[ , the positive inverter is
externally active., The designation 'active gyrator' has sometimes been
used in the literature to refer to externally active positive inverters,
These are referred to in this thesis simply as positive inverters, the

designation ' gyrator' being restricted to externally passive inverters.

In the context of active RC networks 2-port inverters described by
real and constant parameters are realized with resistors and active
components (this applies also to the gyrator although it is externally
passive). The active components of practical interest in the context
of present technology are the transistor and the operational amplifier,
The operational amplifiers commonly available have é differential input
and grounded output. It will be assumed, throughout this chapter that,
unless explicitly stated otherwise, the operational amplifiers have

differential input and grounded output.

It is convenient to use the nullor model of transistors and
operational amplifiers discussed in chapter 2, section 2.2, and shown

in Figs. 2-9 and 2-10. It should be remembered that in the nullor
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model of the transistor the nullator and the norator must have a
common terminalj in the nullor model of an operational amplifier with
differential input and grounded output the nullator and norator do not
have to share a common terminal but one of the terminals of the

norator must be grounded,

It is known that although the realization of gyrators ( 17521 = |Y211)
with nullors and resistors requires at least two nullors, it is possible
to realize externally active positive inverters (lylzl # | y21|) with
only one nullor. The .main contribution in this chapter is the proof
that in such one-nullor positive inverters it is not possible to
ground both ports if the nullor is realized either as an ideal

operational amplifier with grounded output or as an ideal transistor,

The operational amplifier realization of 2-port negative inverters
and of 3-port inverters for floating inductor simulation will also be

discussed,

7.2 = A REVIEW OF POSITIVE INVERTERS WITH A MINIMUM NUMBER OB

ACTIVE COMPONENTS

It is well known that positive inverters can be realized by
circuits containing resistors and two nullors. There are circuits
in which the nullors can be replaced by operational amplifiers and
circuits in which the nullors can be replaced by traﬁsistorso In both
cases it may be possible for the inverter to have both ports grounded,
Several examples of 2-nullor positive inverters which illustrate these

statements will now be considered,

The two circuits in Figs, 7«1 and 7-2 are positive inverters (these
circuits can be regarded as a cascade of the NIC of Figo. 3~09a and

the NII of PFig. 3=-10, in chapter 3). The circuit in Pig. 7=1 can be
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Fig. 7-1 : Gyrator realizable Fig., 7-2 & Gyrator realizable
with 2 op. amplifiers. with 2 transistors.
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Fig. 7-3 : Grounded gyrator Fig, 7-4 : Grounded positive inverter
realizable with 2 op. amps, realizable with 2 transistors.,

Fig, 7-5 ¢ Grounded gyrator realizable with 2 operational

amplifiers with grounded invut and outout.
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realized with 2 operational amplifiers (with differential input and
grounded output) since the norators have a common terminal, The circuit
of Pigo, 7=-2 COntéins 2 nullators and 2 norators which can be paired to
form nullors that can be replaced by transistors (problems associated
with d.c. bias and stability of the transistor realization;are not taken
into account here)., The two circuits in Pigs. 7-1 and 7-2 behave as
positive inverters for any value of the conductances; if ail the
conductances are equal both circuits are gyrators., Neither of these

circuits can have both ports grounded,

A grounded gyrator realizable with two operational amplifiers [11]
is shown in Fig. 7=-3. The circuit in Fig. 7-4 [90] is a grounded
positive inverter which can be realized with two transistorso in
contrast to the two previous inverters (Figs. 7=-1 and 7=2) the circuits
of Figso. 7=3 and 7=4 only behave as inverters if the values of the
conductances are suitably related (the values given in the figures are

one possible set of conductance values),

The circuit in Fig. 7=5 [91] is very interesting with respect to
the present discussion of inverters with a minimal number of active
componentss it shows that a grounded gyrator can be realized with

2 operational amplifiers with grounded input and grounded output,

v

The above examples show that, in addition to resistors, two nullors

are sufficient to realize a positive inverter, in general, and a

gyrator, in particular. A natural question is whether two nullors are

necessary. This question will now be discussed.

It has been proved by Martinelli and Di Porto [92] that the 2-port
obtained by embedding one nullor in a resistive 4-port network
(Fig. 7-6) describéd by an admittance matrix cannot be a gyrator.
Adams and Deprettere [ 93] have proved the same result without the

restriction that the resistive 4-port must have an admittance description;
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RESISTIVE
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Fig. 7-6 : Connection of one nullor

to a resistive U-port,

€1

‘\ \_J X 4W\f'
g
=2

Fig. 7-7 : Gyrator with 3 nullors

and only 2 resistors,
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the same authors have also shown [93, 94, 95] that a gyrator requires
at least 2 nullors and 4 resistors (Figs., 7-1 and 7-2) or 3 nullors

and 2 resistors (Fig. 7-7). Willson and Orchard [96] have .proved that
it is impossibie to.. realize a gyrator by connecting a controlled
source of any kind to one of the ports of a well defined 3-port contain-
ing resistors and ideal transformers, where the controlling variable
is a voltage or current inside the 3-port. This last proof is more
general, not only due to the inclusion of ideal transformers, but
also due to the fact that a controlled source cannot always be
modelled using resistors and only one nullor. However its significance
is similar to the previcus proofs if consideration is restricted to
realizations employing resistors and either operational amplifiers or
transistors, since these can be modelled, in the ideal case, by a

controlled source of infinite gain, which is equivalent to a nullor.

Until recently it was generaily believed that 2 nullors would be
necessary to realize a positive inverter (or, equivalently, 2 nullors
would be necessary to simulate a lossless inductor using only one
capacitor). However, the above proofs of the necessity of 2 nullors
only apply to gyrators, i.e.,to externally passive positive inverters
¢ 1 lel = | Y21| ). The circuit in Fig. 7-8, due to Orchard and
Willson [97] shows that, in fact, it is only the gyrator that requires
2 nullors; the circuit of Fig. 7-8 is an externally active positive

inverter (Iylzl # | ) and contains only one operational amplifier.

Iy,
Another realization of a positive inverter using only one operational

amplifier is the circuit in Fig. 7-9 [98].

It is interesting to know whether positive inverters (2-ports)
with only one active component can be used to realize multiport
admittance inverters (Fig. 5-9) and, in particular, 3-port inverters

for floating inductance simulation (Fig. 5-10)., Since these applications
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Fig. 7-8 : A positive inverter with only one operational

amplifier ( Orchard and Willson ).
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Fig. 7-9 : Another positive inverter with only one
operational amplifier ( Schmidt and Lee ).
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require 2-port inverters with both ports grounded, it is of interest
to know whether it is possible to ground both ports of a positive
inverter containing only one active component. The present chapter
is mainly concerned with the investigation of this question; The
active components to be considered are the transistor and the

operational amplifier.

It may be helpful to consider the diagram in Fig. 7-10. It should
be noted that when a 3-terminal network, used as a 3-port, contains
one amplifier with grounded output, it may be possible to have both
ports grounded, only one port grounded, or even neither port grounded,
depending on the way the output of the amplifier is connected to the
circuit. In the case of a transistor realization, a 3-terminal

network can always be used as a 2-port with both ports grounded,

The circuit of Fig. 7-8 is an inverter of type D, in terms of the
diagram of Fig. 7-10, since it is 3-terminal, and has only one port
grounded. The circuit of Fig. 7-9 is of type F. The circuit inter-
reciprocal with that in Fig. 7-8 (which is obtained simply by inter-
changing +the nullator and norator) is an inverter of type C. The
possibility of realizing inverters of type E is confirmed by the circuit
of Fig., 7-11, This circuit (which was obtained by the author of this
thesis) is presented here solely to illustrate the existence of
gyrators of type E; it is not claimed that this circuit is of any
practical interest. 1In fact, inverters of types C and E are not of

practical interest, since neither port can be grounded (when an operational

amplifier with grounded output is used),

The cases A and B, in the diagram of Fig. 7-10 correspond to
inverters with both ports grounded. These cases will be considered
in the present chapter, and it will be proved that such inverters are

impossible., The possibility of realizing non 3-terminal inverters with
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(Fig. 7-11)
of Fig. 7-8 )
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Fig. 7-10 : Different types of l-nullor positive inverters.
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Fig., 7-11 : A positive inverter of type E.
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one transistor, i.,e. inverters of type E, is an interesting question
which remains unsolved; however, some comments on this question will

be made.

7.3 - THE ADMITTANCE PARAMETERS OF A GROUNDED 2-PORT CONTAINING

RESISTORS AND ONE OPERATIONAL AMPLIFIER

In this section it will be proved that the admittance parameters
of a grounded 2-port containing resistors and one operational

amplifier are subject to the following constraints:

= 0 then yzl <0 (7-1a)

0 then V1o € 0 (7-1b)

The results expressed by (7-1) have various consequences regarding
the realization of inverters with operational amplifiers. These

consequences will be examined in the next section.

Fig. 7-12 shows the general configuration of a 2-port consisting of
resistors and one nullor, with both ports grounded and realizable with

one operational amplifier with differential input and grounded output.

If the resistive 6-terminal network contains more than 6 nodes, then
star-mesh transformations [99, p,13l] applied to the internal nodes will
transform the network into an equivalent network with only 6 nodes and
positive resistors., In this equivalent network, the conductance of
the resistor between nodes i and j will be denoted by gij’ and the sum

of the conductances of the resistors connected to node i by 8;;

)
= ; s .

In view of the meaning of gij it is clear that

Biy T B3
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g.

ij

Z 0

Since 834 and 850 refer to the resistors in parallel with the nullator

and the norator, they can be assumed to be zero without loss of

generality,

It should be noted that B # 0 (for all i) since otherwise the

corresponding terminal would not be connected to the resistive

network (Fig. 7-12).

The indefinite admittance description of the resistive network is

(assuming that B34 = 0 and Bsg = 0):

Taking into account the nullator and the norator

i il- | €11 812 TBy3
iy ~812 B2 B3
iz = | -813 833 €33
i, 814 “8y4 O
is “815 “Bz5 “B3s

_io_ | 810 %20 E30

iy 11 “€12
i 'glé 622
I ~813 ~623
is “€14 Y
1s+i0_ ;(g15+g10) (655%8,0)

“€14

~€24

-(g) 3%, 4)

€33

g

44

~(835%845%830%8 40

)

b

“815
“825
~€3s
-g

a5

€55

(7-3)
81| v, |
“Ex0 || V2
“830 (|3
840 | Vs

€00 | | "0 |

(the matrix in this equation is obtained from the matrix in (7-3) by

adding columns 3 and 4 and by adding rows 5 and 0).

Making

(7-4)
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- - -

iz = i, =15 = 0 and taking terminal 0 as the reference, equation

(7-4) yields:

— . -—1 — _ _ — -3
1 811 T8B12 ~(By3*814) g15T V1
i2 (g.. .+ ) v
“812 822 83378247 B35 2
= (7-5)
0 “€13 833 €33 835 | | V3
0 L‘g14 “824 €44 845 | | V5|

The admittance matrix describing the 3-terminal network (terminals
1, 2, and 0) that remains after the connection of the nullator and

norator

1 v

1l P11 Y12 1

20 P21 Y22 V2

can be obtained from (7-5) by elimination of v_ and v_:

3 5

(8, 3+8,,) -
Y11 Y12 €11 "Bz | | "*813™814’ “Bys| | 833 "E35| |"B13 833
Y21 Va2 12 B2 ~(833%834) ~B3s5| | Bas Bas| |"E14 24

This leads to the following expressions for the admittance parameters of

the 3-terminal network:

Yip = 8y (813 * 8yy) %‘ ~ 85 -?- (mee)
Vi = "8y ~(8y3 + 8yy) '} - 815 ‘7§C' (7-6b)
Va1 T “Byp ~(8,3 *+ 8y,) -;i - 8,5 —;—3- (7-6c)
Yoz = 83 ~(8y3 * gz4)";‘:— - 835 'E:' (7-6d)
A= 844 B35 ~ B33 45
@ =84 835 7 813 845 ¥= 8,4 835 = 853 8,5

B= 814 833 ~ 813 844 5 = 834 833 ~ 833 84y
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It will now be shown that the admittance parameters given by (7-6)
are subject to the constraints (7-1a) and (7-1b) for any choice of the
values of the conductances in the network. It will first be assumed
that all conductances are finite. The degenerate cases, where one or
more resistors are replaced by short circuits, will be considered
afterwards. The proof will be presented separately for the three

cases: (1) A= 0, (2)3>0, (3)A<o0.

(L) A=0

It will be shown that, in this case, Y12 < 0 and Vo < 0 (in this

case it is not necessary to consider Y1 0 or Yoy = 0).

As 833 # 0 and g44 # 0 the last two equations in (7-5) can be

written as:

vy = (81378530 v + (85378530 v, + (835/833) Vs (7-72)
V3 T €1a78a0) Vit (8247840 Va t (By5/By) Vs (7-TD)

For A= 0 (g35/g33 = g45/g44), these equations lead to

Since in a 2-port with an admittance description the voltages at both
ports can be freely chosen, it follows from (7-8) that

g13/g33 - g14/'g44 = 0 and g23/g33 - g24/'g44 = 0, In_thls case equations

(7-7) are not independent and therefore Vs cannot be eliminated.

Substituting (7-7a) in the first 2 equations of (7-5), and denoting

By = B13 T 814 304 By T By3 + 8y ields:

i g,.-8 °13 8,58 °23 8..-8 f35 1 v |
g, =— 8,58, = 8,8, ——

1 11 "a 833 1 3 g4 15 "a 833 1

i| e -g 813 g,,-g, 823 gy~ 535 V2 (7-9)
2 1275p —= 227°b . 25 °b —
€33 33 £33
v
5
L N



- 200 -

Since in a 2-port described by an admittance matrix il and 12 are

uniquely determined by \ and Vs the 3rd column in the matrix in
(7~9) must be zero. The remaining elements of the matrix are the

admittance parameters and it is clear that ylzs 0 and Y31 S Q,

since all gij; 0.

2) A>0

It will be shown that y21>O is incompatible with Yy, T 0. Since
. d .
Y12 and Yoo only differ from Y5, 2nd y,, by an interchange of the

numbering of terminals 1 and 2, it follows that y12>0 is incompatible

with Yy = 0.

Equation (7-6c¢) shows that, when )\>0, in order to make Y21 positive,
either & or (3 must be negative, These two cases, (2a) ¢ <0 and

(2b) (3<0 will be examined separately,

(2a) ® < 0., Equation (7-6a) shows that, when A>0 and & <0,

it is required for Yll = 0 (note that 811 # 0) that (3>0, i.e.,

B14 > 813 8447833
This inequality, in conjunction with the condition for a <0, ©
€13 B45 > 814 B35
leads to
€13 845 > B13 B35 8447833

but this is incompatible With A>0 (g45<g35 g4 /7€)

4’833

(2b) 8<0. When A>0 and ( <0, equation (7-6a) shows that for

= 0 (note that 81,2 + 814 and €11 7% 0) it is required that ASOL,

11 €13

and, hence

B35 (Baq = B1g) < 845 (833 = €3)
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This inequality and the condition for A= 0,
Bas < B35 8447833
leads to
B35 (Bgq = B14)<B3s €4y = B13 E44/833)
which can be simplified to
B1q > B13 B4 B33

This result is incompatible with the assumption that (3<0

()4 < B3 B44/B33)-

(3) A<0
As in case (2) it will be shown that y21>0 is incompatible with

Y1 = 0. As explained before, this implies that it is also true that

Y12 > 0 is incompatible with Voo ¥ 0.

It will be shown first that, in the present case (A<0), Y1 = 0
requires that ®<0. From equation (7-6a) it follows that, if A <0

and & >0, then Vi, 0 requires that 3<0, i.eo,

By3 > 814 B33 By

This, in conjunction with the assumption that ® >0, i.e.,
B14 B35 > B13 Bys
leads to
14 B35 > B1gq B33 B4s5/By,
Since this result is incompatible with the condition for )\<0,
B35 <B45 B33/Byy

it follows that the assumption oL>0 must be rejected, i.e.,® <0,
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If o<0 and M\ <0, equation (7-6¢) shows that o et 0 requires
that (3>0. 1In order to have Vi = 0 (see equation (7-6a)) it is
required that |[\| < lal , and hence,

Bas (B33 = B13) S35 (Bgy = 814)

This, together with the condition for %-<O,
B35 < B45 833,644
leads to
Bys (B33 = B13) <845 (B33 = 814 B33/84,)
This last inequality can be simplified to
813 > 814 8337844
but this is incompatible with the condition for (3 >0 (g13 < 84 g33/g44).

Thus, it has been shown that, as long as the conductances are
finite, the conditions expressed by (7-1a) and (7-1b) are satisfied by
the admittance parameters of the 2-port of Fig. 7-12, The degenerate
cases where one or more resistors are replaced by short circuits will
now be examined. It is conveniént to list the conductances of all the

resistors in the network:

812

813 823

814 824 B34 =0

815 825 835 €45

€10 820 €36 840 850 = 0

If, in the network of Fig. 6-12, one of the conductances 8127 8152
glO’ g25 and g20 is replaced by a short-circuit the 2-port will not have

an admittance description, In the cases of_g10 and Byg? One of the
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ports would be short-circuited, 1In the case of glz, the two ports

would be directly connected and therefore vy E Ve In the cases of

g or gZS’ the norator would be connected across one of the ports,

15
and this means that the current at that port would be indeterminate,
As to the remaining conductances g B4 Bp3s B4 gés, 8307
845 and 840° it is sufficient to examine the cases where 8,37 835 OF

g30 are replaced by short circuits, since all the other cases only
differ from these by a different numbering of the terminals. The
expressions of the admittance parameters in terms of the conductances
can be obtained, in those cases that have to be examined, either by
taking the 1imit of (7-6) when the relevant conductance tends towards
infinity or, alternatively, by derivation from the admittance matrix
of the resistive network (in the same way as (7-6) was derived from

(7=-3)). In the following only the results will be given, since the

derivation using either of these methods is straightforward,

If 83 1s replaced by a short-circuit, then Y21 and Yas become

Va1 T “Bya = Ba3 = Bag T Bas (Byy ~ B14)/8ys

and

Y22 = B2z * B35 €347815

Since g44 2 8140 Y21 cannot be positive (irrespective of the value of
y11)° As Yoo = 0 is not possible (g22 > Q) it is not necessary to

examine Yia°

When g35 is replaced by a short-circuit, then

Yi2 = "812 " Ba4 (813 % 814 * 8150/ (Bgg + By 4 * Byy)
Va1 = =815 = 814 (Ba3 + 8y * 8350/ (8yy By + Byy)

This shows that V2 S 0 and Yy S 0 (irrespective of the values of

Y11 204 ¥ap)e
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Binally if 830 is replaced by a short circuit,

Vi1 = 811 * 815 8147845

and

Yoz = 83 * Ba5 8547845

These equations show that Vi1 ¥ 0 and V5o # 0 and therefore it is not

necessary to examine Va1 and Yi2°

This completes the proof.

7.4 -~ ON THE REALIZATION OF VARIOUS TYPES OF INVERTERS' USING

OPERAT IONAL AMPLIFIERS

An immediate consequence of the result proved in the previous
section, (7-1), is that grounded positive inverters cannot be realized
with only one operational amplifier (in a positive inverter
Vi1 = Yap = 0 and Vi2 and y21 have opposite signs). Thus, positive
inverters of type A (see Fig. 7-10) are not possible,

Another consequence of (7-1) concerns the realization of negative

inverters with resistors and operational amplifiers, A negative inverter

has an admittance description of the form

where Y12 and y21 are real constants with the same sign., The constraints
(7-1) show that it is impossible to realize a grounded negative

inverter with only one operational amplifier if Vis and ¥y, 3re positive.
Such an inverter can be realized with two operational amplifiers, as

shown by the circuit of Fig. 3-12d with the negative resistors realized
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by the circuit of Fig. 3-11 (see Chapter 3, section 3.4), A grounded
negative inverter can be realized with one amplifier if Vi and Y, 2re

negative; an example is the circuit of Fig. 3-12a,

The result expressed by (7-1) can also be used in connéction with
the realization of 3-port admittance inverters fér floating inductance
simulation. One way of realizing such 3-port inverters uses two
grounded 2-ports connected as shown in Fig. 7-13a. .Although the
type of connection is the same as used in the case of the realization
with two grounded inverters (Fig. 6-3), the grounded 2-ports in
Fig. 7-13a do not have to be inverters: they can have the description
shown in the figure. When g = 0 the 2-ports in Fig. 7-13a become
inverters and the circuit in Fig. 7-13a coincides with the circuit

in Fig. 6-3.

It can be seen, by inspection of the 2-port descriptions in
Fig. 7-13a, that one of the 2-ports must violate the constraints
expressed by (7-1) and cannot therefore be realized with only one
operational amplifier, The configuration shown in Fig. 7-13a cannot
thus lead to a 3~port inverter with two amplifiers., It can, however,
be realized with 3 amplifiers, as shown by the circuit in Fig. ?—13b,
which is one of the 3-nullor circuits derived in chapter 6 (section 6.8,

Whether or not a 3-port inverter for floating inductor simulation
can be realized with two amplifiers is an unsolved question. The above
discussion shows that a 2-amplifier realization cannot be achieved by
using the configuration shown in Fig. 7-13a, It is possible, however,
that some other method may lead to 3-port inverters for floating

inductance simulation with only two operational amplifiers,
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Fig, 7-13 : Realization of a 3-port admittance inverter

for floating inductor simulation,
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7.5 = ON THE REALIZATION OF POSITIVE INVERTERS

USING TRANSISTORS

In this section it will be shown that it is impossible fo realize
a grounded positive inverter using only one transistor (this is an
inverter of type B, in terms of the chart in Fig. 7-10). The realizability
of a positive inverter with one transistor, when the requirement of
grounded ports is removed (type G in Fig. 7-10) will also be examined;

however, this last question will remain unsolved,

Proof of the non-realizability of grounded positive inverters with one

transistor,

A grounded 2-port, consisting of resistors and one nullor, and
realizable with one transistor, must have the general configuration shown
in Fig. 7-14 (note that the nullator and the norator have a terminal

in common as required for a transistor realization).

The resistive network in Fig. 7-14 has an equivalent circuit with
6 nodes and positive resistors. Their conductances will be denoted
by gij’ as in section 7,3, As 815 and 845 are in paraliel with the
nullator and the norator, they will be assumed to be zero without loss
of generality. As before, 8;; denotes the sum of the conductances of
all the resistors connected to node i. It is assumed that all

8; 4 > 0, since 8;; = 0 would mean that node i is not connected to the

resistive network,

The definite nodal admittance description of the resistive network,

with terminal O as reference, is:
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RESISTIVE

NETWORK

Fig. 7-14 : Grounded 2-port realizable

with one ideal transistor.



| i11 i €11 "E12
i 812 B22
131 1813 “E23
ig] |B1a “E24
Lis_ _‘gls' 825

By taking into account

admittance description becomes:
1 811 €12 —(By3*8)5) -8y
) ~€12 o ~(8y37855) —Byy
13 “813 ~823 B33  “B34
t4s =(B14%815) ~(Bx4%8y5) = B34%Ess B4y

If terminals 3, 4 and 5 are rendered inaccessible (i3 =i
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“613 "B1a "Eis 11 "1T

€23 “Bagq “E2;s V2
E3 B3q O V3

834 B4q O !
0 0 €55 L Vs |

the presence of the nullator

(7-10)

and norator, the

(7-11)

4~ s

the admittance matrix of the remaining 3-terminal network can be

obtained as follows:

Y11 Va2 €11 ~B12

Y21 Y221 |12 €22

The result is:

i T fn
Y12 T "Bp2
Y21 T 782
Y22 T B2

~(g,5%8,) =g g g™
1376157 814} 833 34

(83378350 €24 |[B34*Es5 Eas

(8y3 * &15) E,\LT: = 814 %,

(€)3 + &y5) 'f‘\:' €14 ',%:

(€23 * &25) ';",' ~ 824 ‘fr‘,

(853 *+ 855 ',\TT', - 524',8{:‘

“613 “€23

-(g14+g15) -(g24+g25)
(7-12a)
(7-12b)

(7=12c)

(7=-124)
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where
]
A= 833 Byq * B34 (B55 = €34
/
A= g5 849 * 834 Brgq * B15)
/_ + ( + g,:)~ 8 g
(= 813 B34 * 833 8147 15 13 855

V4
T=g,5 844+ 834 (624 * 825)

r. , _ .
0 = g, B3q * B33 (834 * 825) ~ 823 Bss

/
The above equations show immediately that a’=20 and P =0.
Taking into account that

5

To i G#ED

it is easy to verify that
/ / /
Az o+ P (7-13)

f 1
and therefore X;ZO, It will now be shown that M cannot be zero and
!
therefore is always positive. The expression of A in-terms of the

conductances can be written as

X=

( 20+
833 844 = 8347 * B34 Bs5
. . x
Since 833 = 8342 8442 B34 and g55:> 0 it follows that A= 0 can only

/
be obtained if B34 = 0. But even with B34 = 0, A cannot be zZero,

!
since g34 = 0 means that A =_g33 g44 and neither 833 nor g44 can be

ZE€r0o

It will now be shown that the 2-port of Fig. 7-14 cannot be a

positive inverter for any choice of the values of the conductances,

The case where all the conductances are finite will be considered
first, and it will be shown that if Y;, = 0and y, >0 theny, =0,
. di .
Since Yas and Y1 only differ from Vi1 and Yi2 by an interchange of the

numbering of terminals 1 and 2, it follows that if Vyo © 0 and Vi >0
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then y = 0. As a consequence the 2-port of Fig. 7-14 cannot have
Vi1 T Va2 0 and Y12 and Y21 with opposite signs, as required by a
positive inverterx.

. 1 7
Taking into account that, as mentioned above, A=0 and & =20,

equation (7-12c) shows that 921 = 0 requires (5’< 0. Since

’
. _ = . =N,
gll? g13 + ng’ equation (7-12a) shows that Yll 0 requires .(

!
Taking into account (7-13), i.e. )\;D(’+‘6" , it follows that

= N
which means that
¥'=0
Equation (7-12a) shows that with o= /\l s ¥.. = 0 requires

11

= + i —
gu gl3 852 which means that g13 and g]Ls are the only non-zero

conductances connected to terminal 1, and therefore

= 0 and =0

€12 814
’
These last two equations, together with ¥ = 0, when used in (7-12b)

show that y12 = 0.

The case where one or more resistors are replaced by short-circuits
will now be considered, The 1list of.all resistors, denoted by their

conductances, is:

€12

€13 B23

€14 €24 €34

815 &5 835=0 84570
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If one of the conductances 8,5 3819 °F By is replaced by a shorte

circuit, the 2-port does not have an admittance description,

The replacement of B34 by a shortecircuit leads to the nullator
being in parallellwith the norator, and a parallel combination of a

nullator and a norator is equivalent to a short-circuit,

If either 840 or 850 is shortecircuited, the norator is connected
to the ground terminal 0 and the resulting circuits are special cases
of the circuit in Fig. 7-12, which, as proved in the previous section,

cannot be a positive inverter.

As to the remaining conductances, only the cases of gls,gl3,g14
and g30 have to be considered, since for g23, g24 and 85 the circuits
obtained only differ from the previous ones by the numbering of the

terminals,

If Bis is replaced by a short-circuit, then

Yoz = B2z * B33 834 83y
and this shows that Yoo ¥ 0.
If 8;3 is replaced by a short circuit, then >

V12 = =(81p * 8330 = (Byy * 8p5) (B4 + 8340844

/

Y2z T B2z T (8z4 * 835) B34 844

Since B4 = 824 and 855 =8,y + Ba57 Yo = 0 requires that g44 = 854
and Byy = g24 + By5° This means that 814 + B34 = 0 and 812 + 833 = 0,
and therefore Vi3 = 0. This argument is not invalidated by the
possibility of 84 OF 8,5 becoming infinite (in addition to g13). Even
when 8oy becomes infinite g24/g44 = 1; the case of Bys not being finite
has already been rejected (if a positive inverter is not possible for

infinite By 5 it is also not possible for infinite gzs)o



- 213 =

If 814 is replaced by a short-circuit, then

Yoy == (815 + 8y,) = (B33 % 8550 (813 + 83,4)/853

Yag = 8y = (By3 *+ 835) 8;33/833

and an argument similar to the previous one shows that if Vo = 0,

then y21 = 0,

Finally, when 830 is replaced by a short circuit, then

—

Yia = = B1p = 81y (Bap * 8350784

Ya1 == 812 " 824 (B1q * 81508y,
This shows that yl2 and Va1 cannot have opposite signs,

As all possible cases have been considered and rejected, the proof

is now complete,

An unsolved gquestion

It has just been shown that a positive inverter cannot be realized
with only one transistor if the two ports have a common terminal. It
may be possible, however, tu realize a positive inverter with only one
transistor if the requirement of a common terminal for both ports is l
abandoned, Such a positive inverter corresponds to type G, in terms

of the chart in Fig., 7-10; this is the only type in the chart for which

neither an example nor a proof of impossibility have been found.

Although the investigation of the realizability of 1l-transistor
gyrators has not led to a conclusion, some brief comments on this

question will now be presented,

A 2-port containing resistors and an ideal transistor modelled by
a nullor, must have the general configuration shown in Fig., 7-15a, If

the nullor is extracted, the resistor 4-port of Fig. 7=-15b is obtained,
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" RESISTIVE

4-PORT

(a)

(b)

Fig, 7-15 : Connection of one ideal transistor

to a resistive 4-port.
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It will be assumed that this 4-port has an admittance description,

~ 4 r o
! 811 812 B3 Bia || V2
) €12 B2 B33 B35 )| V2
= (7-14)
13 'B1z B3 B33 B33 1| V3
| Y| [B14 B24 B34 Baq || V4]

It should be noted that the g (i # j) in this matrix are not conduct-
1]

ances of individual resistors as in sections 7.3 and 7.4; they may

thus be positive or negative, Since ports 3 and 4 have a common

terminal, €34 is negative (for the reference directions of voltages and

currents in Fig. 7-15b),

The admittance parameters of the 2-port obtained by connecting a
nullor to ports 3 and 4 (Fig. 7-15a) are obtained from (7-14) by
taking into account the nullor constraints, i3 = 0 and vy = 0. The

result is

Y11 = 811 " 13 814783, (7-153)
Y12 = B12 ~ E14 8237834 . (7-15b)
Ya1 = 81 " B13 8247834 (7-15¢)
Y22 = B2z = B33 B24/834 (7-15d)

For the 2-port of Fig, 7-15a to be a positive inverter it is required

that Y11 0 = 0 and that Y12 and Y21 have opposite signs. This

3 Yzz
can be achieved, for example, by choosing the values of 83 ; as
(14 -5 2 -7]
-5 14 -7 2

2 =7 10 -1

-7 2 «1 10

It is seen, by inspection, that this matrix is dominant; therefore it
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is also paramount since any dominant matrix is paramount (the defini-
tions of dominant and paramount matrices can be found in chapter 2,
section 2,3), Since paramountci_‘is a necessary condition for a

matrix to be realizable as the admittance matrix of a resistive multi-
port, it might be possible to realize the admittance matrix in the
example by a resistor 4-port with the port structure shown in BRig, 7-15b,
However, as far as the author knows, conditions which are both necessary
and sufficient for a matrix to be realizable as the admittance matrix

of a resistive 4-port with the port structure of Fig. 7-15b are not

known and a synthesis procedure applicable to this case is not available,

Although this investigation remained inconclusive it is thought
that the above discussion is useful since it shows that the necessary
paramountcy condition can be satisfied by the matrix in equation (7-14),
when the requirements for the 2-port of Fig, 7-15a to be a positive

inverter are imposed,
7.7 = CONCLUSIONS

In this chapter it has been proved that in a grounded 2-port
containing resistors and one operational amplifier (with differential
input and grounded output) the admittance parameters are such that if
Y91 = O then Y21 < 0 and if Yoo = 0 then Y12 < 0. This result has
several consequences concerning the realization of inverters using

operational amplifierss:

(a) It is not possible to reéalize a grounded positive inverter with
only one operational amplifier (although positive inverters

withxnuaamplifier are possible if only one port is grounded).
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(b) It is not possible to realize a grounded negative inverter
with positive Y12 and Y5, using only one operational amplifier.
(It is possible to employ only one amplifier if Yo and Yoy

are negative,)

(c) The method of realizing a 3-port admittance inverter for
floating inductor simulation using two grounded 2-ports
connected as shown in Fig. 7-13a (which includes, as a
special case, the use of two grounded positive inverters,

Fig. 6-3) requires more than two operational amplifiers,

It has also been proved that a grounded positive inverter cannot be
realized with only one ideal transistor. The possibility of realizing
single-transistor positive inverters without the restriction that both
ports must be grounded, is an interesting question that remains

unanswered,
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CHAPTER 8

A SET QOF NETWORK PROPERTIES

RELATED TO THE CONCEPT OF RECIPROCITY

8.1 - INTRODUCTION

Immittance converters and inverters have a close association with
reciprocity and non-reciprocity (i.e., the absence of reciprocity).
Some types of converters and inverters are usually regarded as
typical examples of non-reciprocal networks. The gyrator has played
an important part in the clarification of the relationship between
reciprocity-nonreciprocity and passivity-activity. Before the intro=-
duction of the gyrator concept by Tellegen [72] , reciprocity was
often assumed to be a necessary accompaniment of passivity. Since then
it has become well known that this is not true as demonstrated by the
fact that the gyrator is toth passive and non-reciprocal. _

Several authors have used the concept of anti-reciprocity as a -
kind of extreme non-reciprocity. A search of the literature reveals
that two different definitions of anti-reciprocity have been in use.
The only common feature of the two definitions is the fact that both
include the gyrator; apart from this, they are quite distinct. Sur-
prisingly, the incompatibility of the two definitions appears to
have remained unnoticed until now.

The examination of the two definitions of anti-reciprocity shows
that one of them is given for multiports and permits the establishment

of an anti-reciprocity theorem which closely resembles the reciprocity

theorem. However, it will be shown that, according to this definition,
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there are only two types of anti-reciprocal 2-ports (these are the
gyrator and the ideal transformer, if non-reactive 2-ports are
considered) and all anti-reciprocal multiports are equivaient to an
interconnection of these 2-ports. This severely restricts the use=
fulness of the anti=-reciprocity theorem, since it only applies to a
very limited class of networks. Furthermore it seems somewhat strange
that this definition is satisfied by the transformer which is usually
regarded as typically reciprocal, in contrast to the non-reciprocal
gyrator.

The other definition of anti-reciprocity has been given in the
literature only for 2=-ports, but it applies to a larger set of 2-ports
than the previous one and leads to several interesting properties
regarding the cascade connection of 2-ports.

Clearly the existence of two incompatible definitions for anti-
reciprocity requires clarification. This was the motivation for the
investigation that led to the results reported in the present chapter.

The designation anti-reciprocity will, in this thesis, be
associated with the definition given in terms of multiports. The
other 'anti-reciprocity', defined in terms of 2=-ports, will be renamed
'bireciprocity' (there is some justification for this choice of
designations, as will be seen later).

The definition of bireciprocity, so far restricted to 2=-ports, will
be extended to multiports. It is believed that this extension is not
a trivial one and might, to some extent, be regarded as the intro-
duction of a new fundamental network property related to the concept
of reciprocity.

A comparison of reciprocity (R), anti-reciprocity (AR) and bi-
reciprocity (B) will lead to the introduction of a fourth network

property, which will be named anti-bireciprocity (AB), in order to

produce a 'complete pattern'. A 'complete' set, R4, of four network
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properties, R4 = { R, B, AR, AB}', is thus created, in which AB is
related to AR in the same way as B is related to R.

The meaning of the four properties forming the set R4 and the
relationships between them will be examined in detail. Various rules
concerning the interconnection of multiports which possess properties
belonging to R4 will be derived.

It will be shown that the multiports that possess simultaneously
two of the properties belonging to the set R4 are special cases of the
multiport converters and inverters with which this thesis has been
concerned in the previous chapters.

A note on the value of the determinant of the transmission
matrix of (n+n)-ports possessing a property belonging to the set R4
and a reference to the relationship of the four properties with

activity and passivity will also be included.

8.2 = RECIPROCITY

4

In this section the concept of reciprocity will be reviewed with
the aim of establishing the background for the study of anti-reciprocity
in the following sections. -

The definition of reciprocity has already been considered in
chapter 2. A linear, time invariant multiport is reciprocal if the

A A
currents and voltages, {I,V} and { I,V} , corresponding to any two

possible excitations, satisfy the equation
1% - v - o (8-1)

A A
(I, V, I and V are the Laplace transforms of the zero-state currents
and voltages, i.e., it is assumed that the initial conditions are

ZET0).
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It will be assumed here that the multiports are regarded as
(nt+k)-ports, as shown in Fig. 8-1. This is not required by the
definition of reciprocity but is a convenient assumption, éince it
makes easier the comparison of later results with the results which
apply in the case of reciprocity. When the multiport is regarded as
an (n+k)-port, equation (8-1) can be expanded as

~

I, = 0 (8-2)

t 3 t
1 2 72

t A
+ I, V, - Vl I. -V

t A
Il v 2 2

1
where subscripts 1 and 2 refer to the sets of n and k ports, respecte
ively (see Fig. 8~1).

The constraints imposed by the definition of reciprocity on var-
ious matrices describing the (n+k)-port can be derived from (8-2).
These constraints are shown in the first column of Table 8~1. The

hybrid matrix considered is the one that corresponds to the choice of

Il and V2 as the dependent variables, i.e.

I Hyy  Hyp V1

- (8-3)
v Hyy  Hy I,

The transmission matrix T, which exists only for n=k, is defined by

= (8-4)

The reciprocity conditions in terms of the hybrid matrix were
derived in chapter 2, section 2-5. The well known conditions in
terms of the admittance and impedance matrices can be viewed as a
special case of the conditions for the hybrid matrix. The conditions
in terms of the transmission matrix appear in [100] but the deriva-
tion given there is not entirely general, since it relies on the
assumption that the (n+n)=port accepts an admittance and an impedance

description, in addition to having a transmission matrix; in fact the
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V1‘1 +1

n+l

*k

]
v s P

in+l +

Fig, 8-1 : An (n+Xk)-port,



Reciprocity, Anti-reciprocity, Bireciprocity

and Anti-bireciprocity.

TABLE 8.1 :
RECIPROCAL (R) ANTI-RECIPROCAL (AR) BIRECIPROCAL (B) ANTI-BIRECIPROCAL (AB)
ti-oviizo tTeviTzo e i-vteT=o0 '@ t+viO =0

t Tt t t
Bty g ot fy=Hyy 0 oopt Hyp=Hy g ot Hllz“Hn g gt
L 127721 g oot 127721 - 12721 g ogt 127721
22722 22" 22 22722 227722
t
(H=0 E'0) (H=-HY) (H=HE) (H=-QH'@)
t t t t
117 _— Tyy=-4y v oyt 117 v oyt =1 -
. 12721 v .yt 127721 v .yt 1257721 __ 125721
227 22 2277722 227722 227" 22
t
(1=1%) (T=-1%) (Y=01°9) (=-0Y Q)
t t t t
213811 g gt 21177511 g gt 1170y g gt y1==%1y g gt
7 gt 1271 5 gt 127 %21 g gt 1277721 g gt 127%1
227%2 22""%2 22722 227" %2
t
(z=2%) (z=-2%) (2=020) (z=-02°0)
a%c=cta o 4 afc=-cta - ate=cta e 4 atc=-c%y .
bt A*D-C*B=1 bt A"DsCB=1 ot A“D-C"B=-1 ot A“D+C B=-1
B“D=D"B B'D=-D'B B'D=D"B B'D=-D'B
t t
(rdpTt $E=1) (TPTP =1) (TPt -=-1) (TPT P=-1)

-g¢ee -
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conditions for the transmission matrix are derived in [100] from
the conditions for the Y and Z matrices. .A derivation from equation
(8=1) will now be presented.

The transmission description, (8-4), can be used in conjunction
with the definition of reciprocity, (8~2), to give

TR TR TPEPN &2 Bt bty a ta
(vzc -I,D )(AVZ-Blz) + IV, -(V2A -I,B )(cvz-sz) - VI, =0
or

t,.t t 5 t,,t t 2
v(ca - A c)v2 + V,(AD = C'B = 1n)12

t, .t t a t,.t t 2
+ 12(-D A+ BC+ 1n)v2 + I,(D'B - B D)I2 =0 (8-5)

This equation must be satisfied for any 12, V2, T, and 32. Chosing

2
I, = 0 and 32 = 0 leads to
V; (c’s - Atc)\?2 =0 (8-6)

which requires that

¢ - a%c =0 (8-7a)

Similar arguments for I, = 0 and ¥, = 0 (or I, = 0 and V, = 0) and
for V2 = 0 and V2 = 0 lead, respectively to

A% - ¢ =1 (8=Tb)

and

B°D - D'B = 0 (8=Tc)

Equations (8-7) are equivalent to

4 £ = (8-8)

By introducing a matrix $ defined as

@ 0 ln

-1 0
n



- 225 -

equation (8-8) can be written as

t t '
T (b T (IJ = 12n . (8'9)
Transposing both sides of (8-9) leads to

¢ 2* %1 1

This shows that

on (8-10)

T-l - Cb Tt cbt
and therefore the product of T and ¢ Tt<b is commutative. Therefore

equation (8-10) can also be written as:

A SR (8-11)

Equations (8-7) to (8-11) are equivalent ways of expressing the
reciprocity conditions in terms of the transmission matrix of an
(n+n)-port.

The reciprocity conditions in terms of the scattering parameters
will also be considered. The basic definitions concerning the scatter=-
ing description of multiports have been summarized in chapter 2. The
reciprocity conditions in terms of the normalized currents and volt-
ages, I’ and V', the scatt-ring variables, Ol and f», and the scatter=-
ing matrix S, are given in the first column of Table 8=2., All these
results can be easily derived from equation (8-1).

A very important result concerning reciprocity is the Reciprocity
Theorem: a multiport containing only reciprocal elements is itself
reciprocal. As already mentioned in chapter 2, section 2.5, the
reciprocity theorem is easily proved by using Tellegen's theorem in

conjunction with the definition of reciprocity [2,21] .
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TABLE 8.2 : Reciprocity, Anti-reciprocity, Bireciprocity and

Anti-bireciprocity in terms of the scattering variables.

RECIPROCAL ANTI- RECIPROCAL BIRECIPROCAL ANTI-BIRECIPROCAL
(R) (AR) (B) (AB)

- vtoo [t vM- o | fev- vie o] foV . viteto

t 9 t 5 t 2~ t 2 t t n t 9
WE-HA=0|l0a-%4%H=0lwah-Hal=0l0ed tehk-=0

s =gt sst-1 s=0s'0 sOs'E =1
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8.3 - TWO TYPES OF ANTI-RECIPROCITY

A multiport that is not reciprocal is said to be nonéreciprocal.

It seems natural to call anti-reciprocal those multiports that have

properties whiqh are, in some sense, the opposite of the properties
exhibited by reciprocal multiports.

A definition of anti-reciprocal multiports which has been proposed
by several authors [20,2,21] is obtained from the definition of
reciprocity given above by replacing the (-) sign in (8-1) by a
(+) sign:

I"V+v-I=o0 (8-12)

The constraints imposed by anti-reciprocity on various matrices
describing an (n+k)-port can be obtained from (8-12) through deriva-
tions similar to those used in connection with reciprocity. These
constraints are shown in the second cblumn of Table 8-1 (the anti-
reciprocity conditions in terms of the scattering parameters can be
found in Table 8-2).

Using Tellegen's theorem it is easy to prove the anti-reciprocity

theoren [2,21] H A multiport containing only anti-reciprocal

elements is itself anti-reciprocal.

Another definition of anti-reciprocity, in terms of 2-ports, has
been proposed by several authors (see, for example [69,70,71] ). 1In

contrast with reciprocal 2-ports, for which

ylz = yzl (8'133')
Zip = Zy (8-13Db)
hy, =-h,y 4 (8=13c)

det T =ad - be =1 - (8~134)
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tanti-reciprocal! 2-ports are defined by the following conditions

ylz = "YQ]_ . ' (8'143')
21, = ~Zy (8-14p)

det T = ad -~ bec = =1 (8~144)

These conditions are equivalent in the sense that the condition in
terms of one type of parameters implies the conditions in terms of
the other types of parameters (if they exist).

The conditions expressed by equations (8-14) are not special
cases of the anti-reciprocity conditions in Teble 8-l. For instance,
for the admittance matrix, the anti-reciprocity conditions in Table

8~1 require that

which means that

= O ;

Y22 Y12 = =Vo31

This is a much stronger condition than the one expressed by equation

(8-14a), which only requires that

Y12 “Jo1

In view of the fact that the two existing definitions of anti-
recipfocity do not coincide,.it seems appropriate to compare in some
detail the consequences of the two definitions. This will now be
done.

It is desirable to use different designations for the network
properties associated with the two different definitions. The des-
ignation anti-reciprocity will be maintained for the property defined
by (8—12). The designation bireciprocity will be applied to the
property defined by (8-14). This designation, bireciprocity, is not

entirely satisfactory, since it does not suggest the "anti-reciprocal
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nature of the property; however, as will be pointed out later, there

is some justification for this choice of nomenclature.

Using the anti-reciprocity conditions for the transmission matrix

(Table 8~1) it will be shown that there are only two types of anti-

reciprocal 2-ports. If the conditions for the transmission matrix

are particularized for 2-ports, the following equations are obtained:

ac = O (8-15a)
db = O (8-151)
ad + bc = 1 (8-15¢)

If the parameters a, b, ¢ and d are chosen in such a way that (8—15&)

and (8-15b) are satisfied, the following table is obtained:

a b c d ad + bc
0 # 0 #0 0
FO | £O 0 be
#£0 0 0 #0 ed
0 | £0 0 0 0

This table and the remaining condition (8-15c) show that there are
only two possibilities
1. a=0, d=0, bc=1 (8-16)

or

2, vb=0, ¢=0, ad=1 (8-17)

The first case corresponds to a 2-port with a description in the

form of

- _ (8-18)
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and the second case corresponds to a 2-port with a transmission

description of the form

= . (8-19)

If in (8-18) the parameter g is a real constant the 2-port is a
positive gyrator, and if ¥ in (8-19) is a real constant the 2=-port
is a positive transformer (the positive transformer and positive
gyrator have been introduced in chapter 3, section 3.3). Although
the 2-port described by (8-18) is only a gyrator if g is real and
constant, it is convenient, in this chapter, to extend the designation
positive gyrator to the case where g may be a function of s (a more
rigorous designation, such as ‘generalized positive gyrator) is not
used here because it would be too cumbersome). Similarly, the
designations positive transformer, negative transformer and negative
gyrator will, in the present chapter be applied to 2-ports described
by parameters which are allowed to be functions of s.

Thus, the only anti-reciprocal 2-ports possessing a transmission

description are the positive gyrator and the positive tiansformer.

Anti-reciprocal multiports will now be considered. These are
described by a skew=-symmetric hybrid matrix (Table 8-1). This applies
to well~-defined multiports since these always possess some hybrid
description. By using the realization method discussed in chapter 5,
section 5.3,it is easy to see that only 2-port positive transformers
and positive gyrators are required when the hybrid matrix is skew=-

(*)

symmetric. This means that any well-defined multiport which is anti-

reciprocal is equivalent to an intercornection of positive gyrators

and positive transformers. This shows that the set of all anti=-

(*) Although the author has not found any example of'an anti-reciprocal )
multiport that is not well-defired, it has not been proved that any anti-
reciprocal multiport must be well-defined has not been proved.
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reciprocal multiports is relatively 'empty' and therefore the useful-

ness of the antie-reciprocity theorem is very restricted.

The definition of bireciprocity does not lead to a theorem sim=

ilar to the reciprocity or antie~reciprocity theorems, since a multi-
port containing 6n1y bireciprocal components is not necessarily bi=-
reciprocal itself. However, the following statements apply to the
cascade of 2~-ports (they are a consequence of det T = 1 for
reciprocal 2~-ports, and det T = -1 for bireciprocal 2-ports):

(2) The 2-port resulting from the cascade connection of a

reciprocal and a bireciprocal 2-port is birecpirocal.

(b) The 2-port resulting from the cascade connection of two

bireciprocal 2-ports is reciprocal.

These statements are less general than the anti-reciprocity
theorem, since the type of connection involved (cascade) is specified.
However they apply to a much wider class of 2-ports.

The two statements (a) and (b) establish a means of effecting a
transformation from the universe of reciprocal 2-ports to the "anti-
universe" of bireciprocal 2-ports, and vice versa, via the cascading
with any bireciprocal 2~port, e.g., a gyrator. This indicates that
the set of all bireciprocal 2-ports is as "dense" as the set of all

reciprocal 2-ports. This is in contrast with the relative "emptiness"
of the set of all anti-reciprocal 2-ports which, aé seen before,

contains only the positive gyrator and the positive transformer.

This discussion of the two definitions can be illustrated (for
non-reactive 2-ports, i.e., 2-ports described by constant and real
parameters) by using the(ad,bc)-plane. As shown in Fig.8-2, reciprocal
and bireciprocal 2-ports are represented by two parallel lines. In

contrast with this, anti-reciprocal 2-ports are represented by two
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Fig. 8-2 : The (ad,bc)-plane.
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points only, one on the reciprocal line (positive transformer) and

the other on the bireciprocal line (positive gyrator).

The foregoing discussion shows that, whereas the definition of
anti-reciprocity, by equation (8-12), is valid for multiports and
leads to the anti-reciprocity theorem, the definition of bireciprocity,
by equations (8-14), is restricted to 2-ports, but leads to some very
interesting consequences. This suggests that it would be desirable
to extend to multiports the definition of bireciprocity so far
restricted to 2-ports.

Apparently the extension of (8-14a) and (8-14b) to multiports

would be

vig = vy (FA9) (8~20a)
and

25 = B G £ 3) (8-20n)

However, whereas equations (8-20a) and (8~20b) are equivalent in the
case of 2-«ports, for n-ports with n>2 these two equations are no
longer equivalent as shown by the following example.

A 3-port described by the admittance matrix

1 1 -1
Y = -1 1 1
1. =1 1

which satisfies (8-20a), can, equivalently, be described by the

impedance matrix

1 0
72 =171 = 5 |1 1 0
0 1 1

which does not satisfy (8-20b)
This shows that the extension to n-ports of equations (8-14),

which are valid for 2~ports, is not straightforward. However it will
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be shown in the next section that,by interpreting 2-ports as

(1+41)-ports, an extension of (8-14) to (n+k)-ports is possible.
8.4 = BIRECIPROCITY

The fact that, for 2-ports, the definition of bireciprocity,

ad - bc = ~l ' (8-21)
differs from the reciprocity condition,

ad -~ bc = +1 (8-22)
by a change in sign, suggests that the generalization of bireciprocity
for (n+n)-ports might be obtained from the reciprocity conditions in
terms of the transmission matrix,

t t

AD=~-CB = 1, (8-23a)
atc - cha - (8~23b)
8% = 1% (8-23c)

by changing +12n to -12n in (8—23a), since this is the equation that

for 2-ports leads to (8-22). Thus bireciprocity might be defined by

t t

AD~CB = =1, (8-24a)
A% = ¢t (8~24b)
3’ = D'B (8-24c)

A preliminary investigation of the consequences of (8-24) shows that
some of the interesting features of bireciprocity are maintained, but
a complete generalization has not yet been achieved, since (8-24) only
applies to (n+n)~ports and only to those which have a transmission
description. However this limitation can be avoided. It can be shown
that (8=24) can be obtained from an equation similar to (8-2):

t A t o t 2 t o ,
IV =T,V =V I, +V,1,=0 (8-25)
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(the derivation of (8-24) from (8~25) is entirely parallel to the
derivation of (8-23) from (8-2) given in section 8.2).

Equation (8—25) will now be regarded as the general definition
of bireciprocity. It implies that the ports are partitioned into two
sets, associated with subscripts 1 and 2, but these sets do not have
to contain the séme number of ports, i.e., the multiport is regarded
as an (n+k)=-port.

By using the auxiliafy matrix

1 0

©
n

0 -1k

equation (8-25) can be written in the more compact form

*ev - vet - o (8-26)
The bireciprocity conditions in terms of various matrices can be
obtained from (8~25) and are given in the third column of Table 8.1.
It should be noted that the specific hybrid matrix considered is the

one that corresponds to the choice of variables

I O3 Hpp Vi

= (8-27)

AP Hyp  Hyp 1

2

where subscripts 1 and 2 are associated with the sets of n and k
ports into which the ports have been partitioned as required by the
definition of bireciprocity. In fact, in the case of the hybrid
matrix two different partitions of the ports are involved: one
associated with the definition of bireciprocity, and the other with
the choice of variables for the hybrid description. Although these

two partitions do not have t0 coincide, in this chapter only the

particular H matrix is considered for which the two partitions coincide.



- 236 -

Similar considerations apply to the transmission matrix chosen:

Vl A B V2

= . (8-28)
I, ¢ »|]-1 |

This particular choice of variables for the hybrid and transmission
matrices leads to simpler equations which provide more insight.

The bireciprocity conditions in terms of the scattering para-
meters can be easily derived from (8-26) and are given in Table 8-2.

It is apparent that the results in Table 8-1 (3rd column) lead
to conditions (8-14) for 2-ports. This confirms that a generalization

of the original definition (8-14) of bireciprocal 2-ports has been

achieved,
8.5 = ANTI-BIRECIPROCITY

If equations (8-1), (8-12) and (8-26) are compared (first row of
Table 8.1), it becomes apparent that a 'complete pattern' will be

obtained if a fourth equation is considered:

e ¥+ v'e 1T =o0 (8-29)

This equation will be taken as the definition of a new networkﬁ
property which will be designated as anti-bireciprocity. As for bi-
reciprocity, a partition of the ports into two sets is implied by the
definition of anti-bireciprocity. Equation (8-29) can be expanded as

LV -, v I - -0 (8-30)

From (8-30) it is possible to derive the anti-bireciprocity
conditions for various matrices (Table 8.1); the conditions in terms
of the scattering parameters are also given (Tzble 8.2). The particular

hybrid and transmission matrices considered correspond to the same

choice of variables as in the case of bireciprocity.
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With Table 8.1 now complete, 2 comparison of the condi tions
imposed on the various matrices by reciprocity (R), anti-reciprocity
(AR), bireciprocity (B) and anti-bireciprocity (AB) confirms that a
complete pattern can only be obtained if anti-bireciprocity is included.
The set of thesg four network properties related to the concept of
reciprocity will be referred to as R4:

R4 = {R, AR, B, AB}
The abbreviation R will be used both for the noun reciprocity and for
the adjective reciprocalj the abbreviations AR, B and AB will be used
in a2 similar way. It is convenient to refer to a multiport possessing
one of the four network properties forming the set R4 as a multiport
'belonging to R4'.

From the conditions in Table 8.1 it can easily be seen that the
only AB 2-ports are the negative transformer, which has a description
of the form

=1
T

- ' | (8-31)

-17 1~ -

) (8-32)

In the (ad,bc)-plane, AB 2-ports are represented by two points, as
shown in Fig. 8=2, It is seen that AB, when added to R, AR and B
completes a pattern in the (ad,bc)-plane.

The ' completeness' of the set R4 = { R, AR, B, AB} will now be
examined from a different point of view.

The equations defining the four properties in R4, (8-1), (8-12),
(8-26) and (8-29) can be expanded as the algebraic sum of the four

terms
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t 5 t t 2

¥ Y., viT., v
I Voo ¥y L1y Vo I

1y ¥
equal to zero. The four equations only differ in the signs éssigned
to the four terms. The consequences, in terms of the admittance
matrix, of equations with all possible sign patterns are given in
the table on the next page.

It suffices to consider only the sign patterns which start with
a (+) sign, since the patterns starting with a (-) sign do not lead
to different equations (an equation corresponding to a pattern with
a leading (~) sign coincides with an equation with a leading (+)
sign multiplied by -1).

It can be seen from the table that all sign patterns that lead
to equations different from the four already considered, correspond

to degenerate multiports without interaction between the ports in

different sets, i.e.

Y12 = 0 and Y21 = 0
This shows that the 4 properties considered so far form a 'complete’
set in the sense that they are the only interesting properties defined

by equations of the type considered above.
8.6 = THE MEANING OF BIRECIPROCITY AND ANTI-BIRECIPROCITY

The definitions of both B and AB imply a partition of the ports
into two sets. Therefore the concepts of B and AB are not applicable
to l-ports. This contrasts with R and AR which have a meaning for
l~ports: alll-ports are R, and there are two (and only two) l-ports
which are also AR, the short-circuit and the open-circuit (the nullator
and the norator are not considered here, since they must always

occur as nullator-norator pairs (nullors), i.e.,as part of 2-ports).
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SIGN
ADMITTANCE MATRTX COMMENTS
PATTERN
t
Y..= t
+ = - - 117411 ¥,=-Yo, ¥, =Y, =0
Y. =y’ Yy =yt Y. _=-YC BIRECTPROCITY
- - 4 115511 227122 127"%21
t- - Y11=‘Y;1 Yez""Ygz Y12=Y§1 ANEL-
BIRECIPROCITY
PR Y, =¥t Y _=y% Y. _=Y__ =0
- 117 711 227 22 127217
+ o+ Y. =y¢ Y. -yt Y. _-YC RECIPROCITY
- - 117711 227 22 12721
b+ Y. =%t Y Y& Y. =Y. =0
B 117711 227 22 12”217
+ o+ o+ Y. =yt Y__-y° Y. _=Y..=0
- 117 11 227 22 127721
t t t
+ + + + Yllz—Yll 3{22_-3{22 YlZ__YZI ANTI-

RECTPROCITY
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So far B and AB have been formally cefired in terms of equations
(8-26) and (8-29). Further insight into the meaning of B and AB can
be obtained by considering separatcly relationships between 'ports
of the same set; and relationships between 'ports cf different sets'.
In this discussion, considering initially B multiports, only two
ports of a B multiport will be seclected for consideration; all the

)remaining ports will be either short-circuited or open-circuited.

This is done in accordance with the assignment of zero value to either
voltages or currents as independent variables in a hybrid description
(which is always possible for a well-defined multiport). Exam-
ination of (8-25) and (8-1) leads immediately to the following

conclusion:

-~ In a B multiport, any number of ports of the same set form an
R multiport, and any two ports of different sets form a B
2-port.

In a similar way, it can be seen from {8-30) and (8-12) that:

-~ In an AB multiport, any number of ports of the same set form
an AR multiport, and any two ports of different sets form an
AB 2-port. In other words, if a multiport is fB, any two
ports of the same set behave as a positive transformer or as
a positive gyrator, and ény two ports of different sets as a
negatvive transformer or negative gyrator .

The reason for the choice of the designation bireciprocal can now

be appreciated: there is a partition of the ports into two sets and
the ports of each set are reciprocal. Similarly, in the case of
anti-bireciprocity, there is a partition of the ports into two sets

and the ports of each set are anti-reciprocal.
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8.7 .CASCADE CONNECTION OF VARIOUS TYPES OF MULTIPORTS

Several rules can be established concerning the charaéter of an
(nt+k)-port N formed by the cascade connection of an (n+q)-port Ny
with an (q+k)-port N, (see Fig. 8-3) if N, and N, belong to the se?
R4. If n = k then additional rules can be derived which require that

only one of N1 or N, belong to R4.

2

If Nl and N, are both R, N is also R as a consequence of the

2

reciprocity theorem. Similarly, it follows from the anti-reciprocity

theorem that if Nl and N, are both AR, then N is also AR. These two

2
rules are well known. However, when, in addition to R and AR, also
B and AB are considered, several new rules can be obtained.

One of these new rules is that if Nl is R and N2 is B then N is
B. This is easily proved by applyingAthe defining equations (8-2)

and (8-25) to N, and N, (Fig. 8=3):

1
t o t 5 t 2 ty
LV, +1;V, -V I, -V, I, =0 (8-33)
and
t A t A t 4 t 2
-1, v2-13 V3+V2 12+v3 J:3 = 0 (8-34)

Blimination of the terms with sdbscript 2, leads to

I'{\“/ -I';\“r3 -v{il+v; i3 = 0 (8~35)
and this shows that N is B.

Folloﬁing a similar procedure several other rules can be
obtained. These combination rules are summarized in Tables 8~3a and
8-3b. The rules in Table B8-3a, involving R and B are isomorphic to
those in Table 8-3b, involving AR and AB.

It can easily be shown, by means of counter-examples, that similar

rules cannot be established concerning other combinations of two
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I T2:V2 -I2.75
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R aE—— —O-

n a ° q
. Ny :
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Fig., 8-3 : Cascade connection of 2 multiports.

TABLE 8-3 : Rules concerning the cascade comnection of an (n4q)-port

and a (q+k%)-port.

(a)
N
NG| R B
R R B
B B R

(v)
N
No AR AB
AR AR AB
AB AB AR

Ny N, N
L¢ R L¢
L¢ B -L¢
Ly AR Ly
LW _AB ~Ly
R M, My
B M My
AR My My
AB My ~My
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properties. For instance, if N1 is R and N2 is AR, N may or may
not possess a property belonging to the set R4.

For the special case where N, and N, are both (n+n)-ports possess-

2
ing transmission matrices, guantitative results regarding N can be
established. In this case only one of the sub-~networks N1 and N2 is
required to belong to the set R4. The various rules are expressed in

terms of four matrices which are related to the transmission matrix

as follows:

Ly = T¢ b X (8-36)
Ly = T VLAY (8-37)
My = & 7" @ T (8~38)
My = ¢TH T (8-39)

where ¢ and ¢ are auxiliary matrices that have been used before:

0 ln (0] ln
(I): (p::

-1 0 1 0
n n

The various rules are given in Table 8-=4. A proof will only

is arbitrary and N2 is either R or B.

The proofs for the other cases are very similar .

be given for the case where Nl

For the multiport N, with T = T1 TZ’ L¢ is, by definition

t ot 2t
Lyly = 7, T 0T, 7 (8-40)
or, taking into account that @cpt = 1,
t .t t 1%
Loly = (73T, d)P Ty & (8-41)
If N, is R, then T, 0 -'I'; @t = 1, and therefore
t 1t
(Ld) )N = T]_ (I) T]_ @
or

Toly = (1q )Nl ‘ , (8-42)
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. t t
If N, is B, then TZ(I) '1‘2 o = “lyne and consequently

Ty )y = =Ty my o - (8-43)
8.8 ~ MULTIPORT TRANSFORMERS AND GYRATORS

It has already been mentioned that the only AR 2-ports are the
positive transformer, which is also reciprocal, and the positive
gjrator, which is also bireciprocal; it has also been mentioned that
the only AB 2-ports are the negative transformer, which is also
bireciprocal, and the negative gyrator, which is also reciprocal.

This is clearly illustrated (for 2-ports described by real, constant
parameters) by the .representation of these 2-ports on the (ad,tc)~plane
(Fig. 8-2). There are thus four 2-ports which possess simultaneously

two properties of the set R4 = {R, AR, B, AB} :

Positive Transformer (PT) : R and AR
Negative Transformer (NT) : B and AB
Positive Gyrator (PG) : AR and B
Negative Gyrator (NG) : R and AB

The present section is concerned with multiports that possess
simultaneously two properties belonging to the set R4. A systematic
search for these‘multiports can easily be conducted using the results
in Table 8.1. In this search (n-k)-ports described by an admittance,
impedance, or hybrid description will be considered. The hybrid
matrix used is the one considered in Table 8.1 (which is discussed
in section 8.4). The results of the search are given in the table on
the next page.

It can be seen that if the degenerate multiports without inter-
action between the two sets of ports are discarded, only six (n+k)-ports

are left. These can be regarded as a generalization of the 2-ports
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TABLE 8.5 : Multiport Transformers and Gyrators

MATRIX DESCRIPTION PROPERTIES
DESIGNATION =
Y Z T (n=k) RECIPROCITY ACTIVITY IMMITTANCE TRANSF.°
POSITIVE 0 -(Kt)_l 0 2 ond A3 non-energic admittance converter
. — e r—— an s . 3
TRANSFORMER -Kt 0 K if K real in one direction
and
NEGATIVE 0 (Kt>'1 0 active inpedance converter
— — B and AB _ _ _
TRANSFORMER 0 -K if K real in other direction
(% *)
; 0 only exists| 0 ((;,t)‘l
Admittance . it nok admittance inverter
POSITIVE Gyrator -G O landlGlo | & © non-energic| in both directions
B and AR if
GYRATOR Impedance O?iy eiiStS 0 0 -R G, R real | impedance inverter
11 n= t ty- . . .
Gyrator and |R]£0 sy | =R &5 o in both directions
. . ty-1 . .
Admittance 0 G |only exists| 0 -(G") admittance inverter
t if n=k i . . .
NEGATIVE | Gyrator 6" 0 | alalow & O active | in both directions
R and AB if
GYRATOR only exists| 0 -
Impedance ifyn=k ¢ Ot 1 R G, Rreal | impedance inverter
0 :
Gyrator and [R|£0 () | * (R 0 in both directions

(*)

both directions.

(**)

‘If these conditions are satisfied, the (n+k)-port is simultaneously an admittance and an impedance inverter (in

If n=k and det K £ O the transformer is simultaneously an admittance gnd an impedance converter in both directions.

- ohe -
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discussed above and will be referred to by the same designations as
the corresponding 2-ports. The matrix description and more signific-
ant properties.of these multiports are given in Table-8-5.i It can
be seen that all the multiports in Table 8=5 are special cases of the
multiport admittance and impedance converters and inverters discussed

before in this thesis.
8.9 - THE DETERMINANT OF THE TRANSMISSION MATRIX

For 2-ports the determinant of the transmission matrix is +1 if
the 2-port is R, -1 if it is B, and has two possible values, il, both
for AR and AB 2-ports.

For a reciprocal (n+n)-port

t st
TOT P = 1,0
(see Table 8.1). Taking the determinant of both sides and taking into

account that (det @)2 = 1 it follows that

(det T )° = 1 (8-44)
This result is also obtained for AR, B and AB (n+n)-porvs. Thus for
(n+n)-ports belonging to the set R4, det T can only be +1 or -1. It
is of interest to know whether there are cases where it can be
decided whether det T is +1 or =1. Although the author has not found
an answer to this question, a conjecture will be proposed.

The multiport transférmers and gyrators with n=k are exampleé of
(n+n)-ports belonging to the set R4. Their transmission matrices are
given in Table B8-5. The value of det T can be determined by making
use of the laplace expansion using minors of order n. The following

results are obtained:
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P —= det T

(:)\’\ /2 o
o S
N,

Thus the value of det T for these particular (n+n)-ports follows

NT —» det T

PG —> det T

0

NG —» det T

the pattern

n odd 1 -1 -1 -1

n even 1l 1 1l 1

It is conjectured that these results are valid in general, since no
counter-example was found to disprove this.

It should be mentioned that it is proved in [101] that
det T = 1 for reciprocal (n+n)=-ports which have a transmission matrix

in which the submatrix C is non-singular.

8.10 - RELATIONSHIPS WITH PASSIVITY AND ACTIVITY

In this section some relationships between the four properties in
R4 = (R, AR, B,‘AB} and passivity-activity will be considered.

Concerning R and B, simple relationships with activity and
passivity are not apparent. Both R and B multiports can be passive
or active.

The only AR 2-ports are the positive transformer and the positive
gyrator which have beén assumed in this chapter, to be, in general,
described by parameters which can be functions of s. When both these
two ports are non~reactive, i.e., described by real‘and constant

parameters, they are non-energic (this is well known; a proof has
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been presented as part of the survey in chapter 3). Since, as

mentioned before, any AR multiport that is well-defined is equivalent
to an interconnection of positive transformers and positive gyrators,
it follows that:

-~ Any well-defined AR multiport described by real and

constant parameters is non-energic.

The only AB 2-ports are the negative transformer and the negatife
gyrator. When these 2-ports are non-reactive, they are active (among
all converters and inverters described by real and constant parameters
only the positive transformer and positive gyrator are not active,
as shown in 3.3). Since, as shown in section 8.6 an AB 2-port is
obtained by taking 2-ports of different sets and‘open or short-
circuiting the remaining ports, it follows that:

- Any AB multiport described by real and constant parameters

is active.
8.11 - CONCLUSIONS

It has been shown tha®: the concept of anti~reciprocity has,
until now, been covered by two conflicting definitions. An invest-
igation with the aim of clarifying this conflict, has led to the
generalization éf one of these definitions, which so far had been
given for 2-ports only, to multiports. The examination of the meaning
of this generalized definition has suggested that this type of
'anti~reciprocity' might be designated as bireciprocity (B); the
designation anti-reciprocity (AR) has been retained for the other
definition (a different nomenclature has been used in [105] ).

Comparison of the definitions of reciprocity (R), anti-reciprocity
(AR) and bireciprocity (B) has led to the introduction of a new net-

work property in order to obtain a !'complete pattern'., This new
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property hes been designated as anti-bireciprocity (AB). A set of
four network properties related to the concept of reciprocity,

R4 = {R, AR, B, AB} , is thus created and it is shown t"hat in
many respects B is related to R in the same way as AB is related to
AR.

The meaning and the consequences of B and AB have been examined -
in detail. The conditions in terms of various types of matrices
describing B and AB multiports have been derived. Various rules
have been established concerning the cascade connection of two
multiports if one of them, and if both of them, possess one of the
four network properties contained in the set R4.

It has been shown that multiport transformers and gyrators,
which are special cases of the multiport converters and inverters
considered in previous chapters, possess simul taneously two of the
four network properties in the set R4.

It has also been shown that the determinant of the transmission
matrix of (n+n)-ports possessing all of the four properties can only
be +1 or -1,

Finally, it has been pointed out that, in the case of well-defined
multiports described by real and constant parameters, all AR multi-
ports are non-energic and all AB multiports are active.

It is believed thaf the results given in this chapter, not only
clarify the conflict between the two existing defiﬁitions of anti-
reciprocity, but can also be helpful in the treatment of various

problems concerning non-reciprocal networks.



- 251 -

CHAPTER 9

A GENERALIZATION OF RECIPROCITY AND ANTI-RECIPROCITY

9.1 -~ INTRODUCTION

A previous chapter was concerned with-a set of four network
properties: reciprocity (R), anti~-reciprocity (AR), bireciprocity
(B) and anti-bireciprocity (4B). In the present chapter a general-
ization of these properties will be proposed. The generzlization
consists in the introduction of the concepts of generalized reciprocity,
R(«), and generalized anti-reciprocity,AR(a), which are defined in
terms of a parameter «.

It will be shown that the usual concept of reciprocity corresponds
to R(1), i.e., to generalized reciprocity with a = 13 bireciprocity is

interpreted as R(-1). This is represented symbolically as

R = R(1) and B = R(~1)
It will also be shown that
AR = AR(1) and AB = AR(-1)
Various results.established before in terms of R, AR, B and AB
can be expressed in a considerably more general form in terms of
R(a) and AR(a). These results include varicus rules concerning the
cascade connection of multiports. Other consequences of the definitions
of R{a) and AR(a) will be considered and the meaning of the two

generalizations will be discussed in some detail.
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9.2 GENERALIZED RECIPROCITY

It has been seen before that in the case of an (n+k)-port

(Fig. 8.1) the equation defining reciprocity

% - vt - o (9-1)
can be expanded as
t » t 2 t t s
I)V, + I, V, = VI, = V,I, =0 (9-2)

where subscripts 1 and 2 are associated with the sets of n and k ports,
respectively.

The definition of generalized reciprocity is obtained from (9-2)
by multiplying the terms associated with one of the two sets of ports
by a scalar « which can, in general, be a rational function of the
complex frequency variable s. If a # X1 it is necessary to specify
whether a multiplies the terms associated with the set of n ports
(subscript 1) or with the set of k ports(subscript 2). In the firs£
case generalized reciprocity (also generalized reciprocal) will be
denoted by R(a), and in the second case by ﬁ(a).(*) Both cases will
be referred to collectively as R{a).

The defining equation for'ﬁ(a) is thus:

t A t 2
1 V1 + a 12 V2 -

Dividing (9-3) by «

1

£ A £ A
Vi1 - aV, L 0 (9-3)

£ A b A 1t 4 b o
1Vt V=g Vi =V, =0 (9-4)

- L
and this shows that if a (n+k) port is R(a) it is also R(%). This

i
Lo

result will be represented symbolically by:

(*) If it is imagined that the set of n ports is on the left hand side
and the set of k ports on the right hand side, then the arrow
points towards the set of ports associated with the terms
multiplied by a.
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R(a) = RE) (9-5)
The following discussion of R{a) will be done in terms of
ﬁ(a) only, since any result valid for gka) can immediately'be trans-
lated into a similar result in terms of E(a), by means of (9=5).
Equation (9-3), defining R(a), can be written in the more

compact form

g ¥ - v'e T = o0 (9-6)
o o -
where
_ +

@a = [ ln « a lk]
l.€4y

@ = diag (1,1-,-nl, d,d,...a)

o N ——

n k
R(a) contains as special cases the usual reciprocity (R), which
corresponds to « = 1, and also bireciprocity (B), which corresponds

to a = ~1. This will be represented symbolically as

R = R(1) = R(1) (9-7)
B = R(-1) = R(-1) (9-8)

The constraints imposed by R(a) on the hybrid matrix of an (n+k)-
port will now be derived. It is convenient to use the notation appro-
priate for dealing with hybrid descriptions that was introduced in
chapter 2.

E denotes an (n+k)-vector whose coumponents are some currents and
some voltages chosen among the (n+k)-currents and (n+k)-voltages at the
ports of the (n+k)-port, in such a way that one (and only one) variable
(voltage or current) of each port is included. The (n+k) remaining
port variables form another vector F in which they are arranged with

the port subscripts in the same order as in E (for example, if
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E = [il Vo V3 iy Vs ié]t, then I"l= [vl iy 5, i5 vé]t). Any
hybrid description will be of the form ~
E = HF ' (9-9)
Equation (9-6) which defines E(a) 'can be written, in terms of
E and ¥, in the form of
EEAF - FPAR = o . (9-10)
where A is a diagonal matrix of dimension (n+k) whose elements Ajj

are chosen in accordance with the nature of the elements ej of B

as indicated by the following rules:

(a) ey = ip, p<n (:‘.p is a component of Il) :Aj,j = 1
(b) es5 = ip, P>n (:'|.P is a component of 12) :A,j,j = «
(c) ey =V, P<n (vp is a component of Vl) :Aj,j = =1
(a) ey =V, P>n (vp is a component of V,) :A,jj = =q

It is easy to see that in all four cases the contribution to the
left hand side of equation (9-10) is in accordance with equation

(9-3):

A A Vsl

f. = f.8 = 3 - <
(2) eyfy - £33, »'p ~ Vp'p (p<n)
b F.oaf.d = P v - 3
(b) « esf; - 53 iV, -« vpip (p >n)

n ~
-e.f. + £.8. = -v3i v <

(c) = ety 33 vplp ¥ i¥, (e n)

A I A
- £, b, = =aqa i i
(d) -« e;fy +a fgeg a vl +a iV (p > n)

The R(x) conditions in terms of a hybrid matrix H can be obtained

by substituting (9-9) in (9-10):
FPEPA - AR)F = 0 (9-11)

Since this equation must bte valid for any F and f‘, it follows that

AH = H'A . ' (9-12)
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which means, since A = A’ that AH is & symme tric matrix.
Equation (9~12) can be written as
-1 _% '
E = ANTH A (9-13)

For the special case where the hybrid matrix corresponds to

% %
E = [.Il,Vzi] (and, consequently F = [V1,12] )
1 0
n
A =
0 -alk
and (9-13) leads tos
% %
Hyp o Hyp 1, © By Hyy 1 0
H = -
1 % %
Hopy  Hyp 0 -3kl 2 Hoo 0 -aly
% g
Hyp =aly
1% %
- F2  Hyp
This shows that
% + ] t
Hyp = Hyp 3 Hyy = Hyy 5 Hyp = =ally (9-14)

The admittance matrix can be regarded as a special case of
hybrid matrix, corresponding to E = [Il IZ].t' In this case

A= 9a and it follows from (9-1%) that

_ _1. -t .
YT = @ Y @, » (9-15)
oxr
% ot "
Tip = ¥11 3 Yo = Ypp 3 Typ = aly (9-16)

Similarly, the impedance matrix can be regarded as the special case
of hybrid matrix corresponding to E= [Vl VZJ t and thus A= = ®a'

From (9-13) it follows that
z = 97 2" @ (9-17)
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or
%1 =12 $ Z2,, =2 s Z., = dZ (9~18)

The definition of R(a) in terms of the scattering variables can
easily be obtained. The current and voltage vectors, I and V, are

expressed in terms of the normalized current and voltage vectors I!

and V! by

I = R T and V = RV (9-19)
where

% %

R = diag (rol, roo cees)
and

3 4+ 4

R, = diag (rol’ T o cees)

Substitution of (9-19) in (9-6) leads to
I" 9, ©V - V' I (9-20)

t 1
The scattering variables a and.‘£7 are related to I and V by
' '
I =UW-% and V= 0O+3 (9-21)

Substitution of (9-21) in (9-20) yields the defining equation of ﬁta)
in terms of the scattering variables

A

t ~ t
0t Bq yis - Ir Oq a =0 (9-22)
The scattering matrix is defined by
Fr=su (9-23)

-
The R(a) conditions in terms of the scattering matrix are obtained
by substitution of (9-23) in (9-22). This leads to

s-8, s" @ (9-24)

a
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The rules obtained in the previous chapter concerning the nature
of an (n+k)-port N resulting from the cascade connection of an
(n+q)-port N, with a (g+k)=port N, (Fig. 8=3), when N and-N2 are
R or B in the 4 possible combinations (Table 8-3a) can be generalized
by making use of the new concept of R{«).

If (Fig. 8-3) N, is R(a) and N, is R(R), then

£ A £ A £ a T

L,V +algVy=-V I ~aV,I, = 0 (9-25)
tr\ th t/\ tl\ .

- Iy Uy +BI;Vy+ VI, - pV;I; = 0 - (9-26)

Multiplication of (9~26) by-a leads to

t t 4 t 3 t 2
eIy Vy=aVgly = aBIzV;=afV;I, (9-27)
and substitution of (9-27) in (9-25) yields
t t 4 t 2 t 2
I,V + o I, v3 -VyI;~apVzsI; = 0 . (9-28)

-
which shows that N is R(aB). This result will be expressed by the

symbolic equation
R(a) + R(p) — R(ap) (9-29)

The rules in Table 8-3a are obtained from (9-29) by making

«=+land p=2%1.

Another result concerning the intercomnection of multiports is
the following: if an ﬁ(a) (n+k)=-port is connected to a reciprocal
(R) k-port as shown in Fig. 9-1, the resulting n-port is reciprocal.
This follows immediately from the definition of R, equation (9-1),
and the definition of.ﬁ(a), equation {(9-3). This result is applicable
to those multiport converters and inverters which are R(a) since |
converters and inverters are associated with the type of multiport

interconnection shown in Fig. 9-1.
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o —0—
Fign 9-1

¢ An (n+k)-port terminated by a k-port,



- 259 -

9.3 = GENERALIZED ANTI-RECIPROCITY

The equation defining anti-reciprocity is obtained frbm (9-1) by
replacing the (~) sign by a (+) sign, leading to
1% + V"I = 0 (9-30)
or, in an expanded form, for (n+k)-ports:

t 2 t 2 t 2~ t 2
Il Vl + 12 V2 + Vl Il + v2 ;2 = 0 (9_31)

The definition of generalized anti-reciprocity is obtained from
(9-31) in the same way as the definition of generalized reciprocity
was obtained from (9-2): the terms associated with one of the two
sets of ports are multiplied by a scalar a. As for generalized
reciprocity, there are two possibilities, represented by Aﬁ(a) and
Aﬁ(a). These will be referred to collectively by AR{«).

The defining equation for ;E(a) is

t A t 5 t o2 t 2
L Vy+al, V + VI +aV, I, = 0 (9-32)

Division of (9-32) by «, yields

N

7

~

t t & 1 ._.t2
1V + I, v + = Vl I,+V, I, =0 : (9-33)

Rl

1 2

— g
vwhich shows that if a multiport is AR(«) it is also AR(%). This is

represented symbolically by
. — - 1
AR(a) = AR(Z) (9-34)

A more compact version of (9-32) is obtained by making use of
the matrix ©, defined before

e, v+ v g, 1T =0 (9-35)

«
AR(a) includes, as special cases, anti-reciprocity (AR), which

corresponds to « = 1 and anti-bireciprocity (AB), which corresponds

to a = =12
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AR = AR(1) = AR(1) (9-36)

AB = AR(-1) = AR(~1) . (9-3T)

The AR(a) conditions in terms of the hybrid matrices will now
be derived.
Equation (9~35), which defines Aﬁ(a), can be written, in terms

of the hybrid variables E and F,
Bl F+ 8 =o0 (9-38)

where [ is a diagonal matrix of dimension (n+k) whose elements rjj

are 1 or a according to the following rule: both for ej = ip and

.= v
7 'p?
if < n then . =1
P JJ
if p >n then L. = «
JJ

—_)
The AR(a) conditions in terms of a hybrid matrix H can be obtained

after substitution of E = HF in (9-38). The result is:

[H = -H'[ o (9-39)

or, eguivalently,

H = -["tetp (9-40)

For the hybrid matrix which corresponds to E = [Il V2] t, = 'ea

and (9-40) becomés

-1
| 4
BE=- 8 8 8 (9-41)
or
% % &
Hyp ==Hyy 3§ Eyp==-Hy 5 Hy=-aH, (9-42)

For both the admittance and impedance matrices, regarded as
special hybrid matrices, [ = 8@. The AR(a) conditions for the

admittance matrix are, frouw (9-40),
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-1t
Y = = @(1 Y @a (9-4‘5)
or )
t t t
Ty ==Yy 5 Tpp==Tpp 3 TYp==oaly (9-44)

The conditions for the impedance matrix Z have the same form.

The definition of AR(u) in terms of the normalized currents

and voltages, obtained by substitution of (9—19) in (9-55) ig:

Al 14 Al

' ¥ o+ vP e T o= o0 (9-45)

o o
Substitution of (9-21) in (9-45) leads to the definition of AR(a)

in terms of the scattering variables

o 0,8 - b ok 7O (49

From (9-46) the AR(a) conditions in terms of the scattering matrix S

are easily obtained as
O, = 85 @, S ‘ (9-47)
which can also be written in the form of

s @ts* @, = 1 (9-48)

The rules obtained in the previous chapter (Table 8-3b) concern-
ing the cascade connection (Fig. 8~3) of AR and AB multiports can be
generalized by using AR(a). It is easily shown that if an (n+q)=-port

N, is Eﬁ(a) and a (q+k)-port N, is Aﬁ(ﬁ), then the (n-k)=-port N

1
resulting from the cascade connection of Nl and N2 (Fig. 8-3) is
Aﬁ(ap). This will be represented as:

AR(x) + AR(B) = AR(op) (9~49)

This rule is analogous to the one that applies to the cascade of E(a)

multiports (9-29) and is proved in a similar way.
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The rules in Table 8-3b are special cases of (9-49) for « = Y1 and

g =121,

Another result concerns the interconnection of multiports shown
in Fig. 9-1. If an (nt+k)-port which is Aﬁ(a) is connected to an
anti-reciprocal (AR) k-port, the resulting n-port is anti-reciprocal.
This is very easy to see from the definitions of AR (equation (9-30))

and Aﬁ(a) (equation (9-32)).
9.4 - THE SPECIAL CASE OF (n+n)-PORTS

An (n+n)-port can be described by a transmission matrix T defined

by
B (9-50)

The R(a) and AR(«) conditions in terms of the transmission matrix can
be obtained after substitution of (9-50) in the defining equations
(9-3) and (9-32). The derivation is very similar to that given in
the previous chapter for the case of normal reciprocity (section 8:2).

—
The results for R(a) are

AtC - CtA 3 BtD = DtB 5 AtD - CtB = o 11‘1 (9-51)
or
t .t
TGP = aly (9-52)
and for AR(a)
AtC:___ CtA 3 BtD :—DtB H AtD + CtB = ln (9'53)
or
t
TP Y = al, (9-54)

The suxiliary matrices ¢ and P have been used before; they
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are defined as

q) = . and J =

For both R(a) and AR(x) (n+n)-ports the value of the determinant

of the transmission matrix is

det T = T8 (9-55)

This result is easily obtained by taking the determinant of both

sides of (9-52) and (9-54)

The rules (9-29) and(9-49) obtained in sections 9.2 and 9.3
apply to the cascade connection of an (n+q)-port with a (q+k)-port
(Fig. 8-3) where n, q and k can be different. If n = q = k several
other rules can be obtained which are a generalization of the rules
obtained in the previous chapter and given in Table 8.4. The
generalized rules are also given in terms of four matrices related to

the transmission matrix T:

T ¢ T PP Mg
T TP My

1
1

¢ 1t g1
VE LIV

Ly

1}
I

Ly
The rules are given in the following table (with reference to Fig.

8-3 with n = q = k):



- 264 -

Nl N2 N
Lo —R.(a.‘) a Ly
Ly AR(a) @ Ly
I—{(a) Mg « Mg
AR(a) My a My

The proof of these rules is entirely similar to the proof of
the corresponding rules in the previous chapter (section 8.7).

9.5 - MISCELLANEQUS COMMENTS

Partition of ports into two sets

The definitions of both R(a) and AR(a) are, in general,
associated with a partition of the ports into two sets. It is only
for the case o = 1 that the variables associated with the ports in
different sets are treated equally and therefore a partition is not
necessary.

Equations (9-3) and (9-1) show that if in an ﬁka) (n+k)-port
all ports of one of the two sets are either open or short-circuited,
the reduced multiport obtained is reciprocal (R); if two ports, one
of each set, are selected for consideration, and all the other ports

are rendered inaccessible by open or short-circuit terminations,

the 2-port obtained is R(a).
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In a similar way, equations (9-32) and (9-30) show that, in an
AR(a) multiport, ports of the same set form an anti-reciprocal (AR)
reduced multiport and any two ports of different set form an AR(a)

2—p0 I‘t [

The meaning of a

The ﬁ(a) conditions in terms of the various matrices show that

any 2-port is R(a) with

= ad - be (9-56)

The AR(a) conditions show that an AR(a) 2-port must satisfy one of

the following equivalent conditions

=0 3 29y = 255 = o h11 = h22 =0 ; ac=bd =0
- (9-57)

If these conditions are satisfied the 2-port is AR(a) with

pE
o= o122 _ | ;13 = ad + bc . (9-58)
Y21 Za 21

In contrast with 2-ports, not all (n+k)-ports are R(a). An
(n+k)-port with n > 1 or k > 1 is R(a) only if the relevant conditions
are satisfied. ‘

The parameter a will now be examined in the context of tﬁe
modelling of 2-ports by the cascade connection of a reciprocal with a
non-reciprocal 2-port. One such model, first proposed in [162] ,
and also discussed in [2] , 1s obtained by noting that the admittance

description of a 2-port
1 = Y Y9t T Vs (9-59a)

2 T YV tVn Y, | (9-59b)
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can, equivalently, be written in the form

. 3 N2\

11 = yllvl + (y12y21) ( ;;I) V2 . ' (9'603)
1 o1 %

. _ 5 21.\2 _

1 = (rpy7pp)° ( ylz) Vit Ve V2 (9-60b)

These equations can he interpreted as describing the cascade connection

of a reciprocal 2-port, described by

1
. 2
11 = yllvl + (y12y21) v . (9’613)

L
. 2
1= (Y¥py)f vy vV v (9-61b)
with a non-reciprocal 2-port described by

t Z]_:g)-%

(9-622a)
Y21 2

J P
i, = (27 (9-62v)
12
as shown in Fig. 9-2.

The description of the non-reciprocal 2-port, (9-62), written in

the form of
1
v o= B v, (9~63%a)
i' = d% i2 . (9‘63b)
where
a = (yi,/¥ 7% (9-64)
127721

shows that it is a power amplifier with a power gain «, in the
reverse direction, if the original two port is ﬁ(a). It can also be
observed, from the hybrid description of the non-reciprocal 2-port
.
= (9-65)
2 .2
that it is R(a) (this is not surprising in view of the combination

rule (9-29)). This non-reciprocal 2-port has been designated "anti-
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Fig. 9-2 : Model of a non-reciprocal Z-port using
an 'anti-reciprocal transition',
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Fig, 9-3 : Model of a non-reciprocal Z2-port.
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reciprocal transition". It is inteiesting to note that it is not
anti-reciprocal in the sense of any of the two definitions existing
in the literature (AR and B restricted for 2-ports, aé discussed in
the previous chapter). It is, however, anti-reciprocal in the sense
of the generalized definition proposed here: it is Eﬁ(a) with

o = (ylz/yZII%, as shown by the hybrid matrix in (9-65) (in fact
this 2-port is both R(a) and Kﬁ(a), with o given by (9-64)).

It may be of interest to note that the decomposition in Fig. 9-2
is not unique if the only requirement is that one of the two ports
in the model be reciprocal. A 2-pcrt (with e transmission matrix T)
is not affected by the cascade with two others (Fig. 9-3) if their
transmission matrices are T1 and Tzl. If the original 2-port is
R(«) and if T, is chosen in such a way that the corresponding 2-port

is‘i(l/a), i.e.y, a blcl = l/a y Uhen, in view of the combination

19 -
rule (9-29) the 2-port resulting from the cascade of T and T, is
reciprocal and can thus be taken as the reciprocal part in the model

(see Fig. 9-3).

Unilateral (n+k)-ports

Unilateral 2-ports are defined by the foliqwing equivalent
conditions

=0 , 2,,=0, h,=0 (9-66)

J12
The E(a) conditions (9-56) show that any unilateral 2-port is ﬁ(O)
and vice versa.
If unilateral (m+k)-ports are defined by the matrix version of

equations (9-66)

Y = O ] Z

12 =0 , H,=0 (9-67)

12



T - 269 -

then it can be stated that any (n+k)-port is unilateral if it is E(O),
since the-ﬁ(a) conditions for a = O include (9-67). It should be
noted, however that, apart from 2-ports, unilateral (n+k)-ports
are not necessarilylﬁ(o).

Similarly it can be seen that all KE(O) multiports are unilateral,
but unilateral multiports (including 2-ports) are not necessarily

iﬁ(o).

Multiport Converters and Inverters

It will now be shown that some multiport converters are simalt-
aneously E(a) and Aﬁ(a) and that some multiport inverters are
simultaneously E(a) and Eﬁ(—a)(for the same value of a).

Equations (9-16) and (9-44) show that a multiport with admittance
description can only be bothlﬁ(a) and Eﬁ(a) if the admittance matrix
is zero. A similar conclusion can be reached with respect to the
impedance matrix. However, if a multiport has the hybrid description
for which (9-14) and (9-42) were derived, it will be both.ﬁ(a) and
Kﬁ(a) if

t

=0 : H = - aHy (9-68)

H 12

1190 3 H

22
Such a multiport is a special case of multiport converter; if a =1
it is a positive transformer and if a = -1 it is a negative trans-
former (multiport positive and negative transformers have been
discussed in the previous chapter, section 8.8).

Equations (9-14) and (9-42) show that the requirement of sim-
ultaneous ﬁ(a) and AR(-a) leads to a zero hybrid matrix (the hybrid
matrix considered is the one for which (9-14) and (9-42) are valid).

If the multiport possesses an admittance matrix, equations (9-16)

and (9-44) show that it is both R(a) and AR(-a) if
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t
11150 5 Ty =0 5 Typ = alp (9-69)

A similar result is obtained if the iwpedance matrix is considered:

t

Z97 =0 5 Zyy =0 5 Zy, = oy (9-70)

11

The multiports described by (9-69) or (9-70) are special cases of
multiport inverters. If o =-1 they are positive gyrators, and if
o = +1 they are negative gyrators (multiport positive and negative

gyrators have been considered in section 8.8 of the previous chapter).

On the possibility of a further generalization

The definition of R(a) was obtained from the definition of R
by multiplying two of the terms in (9-2) by a scalar a. It seems
reasonable to investigate the possibility of a further generalization,
which might be obtained by multiplying each term in (9-2) by a
different scalar coefficient (one term can always be assumed to have

coefficient 1):

t t o t o t 2
I,V +al; Vi + BV I+ ¥V, I, = O (9-71)

The constraints imposed by (9-71) on the admittance matrix are

Y = B Yy (3-72)
@« Ty = ¥y, (9-72b)
Ylg = VY, (9-72¢)
“Yzi = B Yy , (9-724)

If equation (9-72d) is written in the form of

04
12 = 3

and compared with (9-72¢) it is seen that either
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(9-73)

»[R

or

t

Yip =¥, =0 - (9-74)

Since (9-74) means absence of transmission between the two sets of
ports, it will be assumed that the three coefficients are related

according to (9-73).

For networks with a hybrid description

5 Hyq Hyp \S
V2 Hyy Hoo I
the constraints imposed by (9-71) are
' - puH (9-752)
11 11 .
%
o« Hy, = THp (9-75b)
t
le = - (ZH21 (9"750)
B Hy = - YHy (9-754)

If (9-75d) is written in the form of

HY = o ¥ H
—_ 2
g 1

and compared with (9-75c) it is seen that either

¥ = ap (9-76)
or
Hjp = Hp1 = 0 (9-77)
Since (9-77) means that there is no transmission between ports of
different sets, it will be assumed that (9-76) applies.

Equations (9-73) and (9-76) must be accepted together if it is

postulated that (9-71) must be applicable to (n+k)=-ports with trans-
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mission between the two sets of ports, both when the multiports
possess an admittance description, and when they possess a hybrid
description. From {9-73) and (9-76) it follows that B = fi. If

B =1 then ¥= a and (9-71) coincides with (9-32) which is the
defining equation of IR(a). If B = -1, then §= -~ a and (9-T1)

is reduced to the form of (9-3) which defines<ﬁka). This means that -
the two cases discussed in this chapter, E(a) and Aﬁ(a), are the only

interesting cases contained in an equation of the form (9-71).
9.6 CONCLUSIONS

It has been shown that the definitions of reciprocity (R) and
anti-reciprocity (AR) can be generalized in such a way that the two
network properties introduced in the previous chapter, bireciprocity
(B) and anti-bireciprocity (AB), become special cases of generalized
reciprocity, R{a), and generalized anti-reciprocity, AR(a), respect-
ively. The various rules concerning the cascade connection of multi-
ports can be expressed in terms of R(a) and AR(«); the class of multi-
ports to which these rules apply has thus been significantly extended.
The basic results concerning R(«) and AR(a) are summarized in Table
9-1,

Various questions have been examined, which provide a better
insight into the meaning of the generalization proposed here. It has
been pointed out that some multiport converters are both g(a) and
Aﬁ(a) and that some multiport inverters are simultaneously ﬁ(a) and
Eﬁ(-a), for the same value of a.

Finally, it has been shown that R(a) and AR(a) are the most

general network properties with interesting conseguences which can



TABLE 9.1 : Generalized Reciprocity and Generalized Anti~-reciprocity.
GENERALIZED RECIPROCITY ﬁ’(a) = E(a'l) GENER. ANTI-RECIPROCITY AR(a) = E(a‘l)
t o t a t t o t o t o t o t 2
DEFINITION I, V) + ol ¥, - V) I ~aV; I, =0 LV +al; V, + VU I, +aV; I, = 0
SPECIAL CASES R(1) = R . R(-1) = B AR(1) = AR : AR(-1) = AB
ADMITTANCE MATRIX | Y..=¥f. ; v..=¥°® : ¥ _-ax® Y. ==Yt ;Y =-Y C Y. ol
11711 22522 ) 12°% 21 115711} 225" 22 i 1257% 1
HYBRID MATRIX H..=H'. ; H..=H° . H =-aH' H. =-H°. : H_._=-H° . H _—-gHS
117%11 ) 2™} 12°"%1 11771 22522 i 125"%
TRANSMISSION MATRIX | &, ot, . pgip pty AtD-CtB=a.ln atc=—cts ; Bip--D'B AtD+c’CB=a1n
(n = k)
CASCADE (Fig. 8.3) - - - - - -
(n+q) + (q+k)—(n+k) R(a) + R(B) — R(aB) AR(a) + AR(B) — AR(aB)
CASCADE Lq> + R(a) — aL;D L‘P + AR(a) — a.LLP‘
(n+n) + (n+n) — (n+n) ng . -

- ¢le -
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be defined by an equation of the form:

A ' ~
Y9+ pvEI 4 v‘v; I, = O

V. + a I 1 44 o

t
I1 1 2V2

where o, B and U are scalar coefficients.
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CHAPTER 10
CONCLUSIONS
10.1 - SUMMARY OF THE MAIN RESULTS

The conclusions of the research reported in this thesis have
already been presented in the last sections of each chapter. The
main results will now be reviewed.

A generalization to multiports of the concepts of 2-port immittance
conversion and inversion has been proposed. The conditions which the
matrix description of multiport converters and inverters must satisfy
have been derived from the proposed definitions. It is pointed out
that whereas 2-port admittance converters or inverters are also
impedance converters or inverters, and vice versa, this is not generally
true for the multiport converters and inverters proposed here. However,
the inclusion in the definitions of the requirement for simultaneous
admittance and impedance conversion or inversion would be undesirably
restrictive.

A further generalization has also been suggested: the concept of
multiport 'hybrid converter' is introduced and it is shown that it
includes, as épecial cases, both converters and inverters (and both the
admittance and the impedance types).

Most of the circuits proposed for the simulation of floating
inductors can be interpreted as 3~-port admittance (and not impedance)
converters and inverters. Multiport transformers and gyrators are also
special cases of multiport converters and inverters. It is believed

that the theory of multiport conversion and inversion that has been
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developed here not only provides a better understanding of these
important special cases but is also useful as a contribution to

general multiport theory.

It has been shown how any well-defined multiport can be realized
as an interconnection of 2-ports. This is applied to the realization_
of multiport converters and inverters. The limitations arising from
(a) the need to guarantee that after the 2-ports are interconnected
all terminal-pairs still behave as ports, and (b) the existence of a
ground terminal in all the 2-ports, in the case of active realization,
are discussed. The possibility of using 2-port converters and invert-
ers in which the ports have a common terminal that can be grounded is

investigated.

A comparative study of various realizations of 3-port converters
and inverters suitable for the simulation of floating inductors has
been carried out. Although all 3-port inverters have the same port
description, different realizations may have different terminal des-
criptions. A classification of 3~port inverters for floating inductor
simulation based on their terminal description is presented. A parallel
classification is also applied to the 3-port converters. It is shown
that some circuits that are apparently unrelated belong to the same
class. It is believed that the proposed classification is useful in
providing greater insight into various methods of floating inductor
simulation.

A well known method of floating inductor simulation uses two
grounded gyrators. The resulting circuit can be interpreted as a
L-terminal, 3-port admittance inverter. It is shown that when two

specific gyrator circuits, each with two operational amplifiers, are

used, one of the operational amplifiers becomes redundant and can
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be suppressed, thus.leading to a 3-port inverter with three operatiomal
amplifiers. There are four ways of associating the two gyrators and ,
in each case, one amplifier can be suppressed. Thus, a fahily ofvfour
different circuits is obtained. One of these circuits is known; the

other three are believed to be novel.

The realization of some types of inverters using a minimum
number of active components has been investigated. In particular,
minimal realizations of the 2-port positive inverter are discussed in
detail. It is proved that for a grounded 2-port (i.e. a 2-port where
both ports are grounded) containing resistors and one operational
amplifier, the admittance parameters are subject to the following
constraints: (a) if Y91 = 0O then Yo1 < 0, and (b) if ?éz =‘0
then Y5 = O. This result has various consequences regarding the
realization of different types of inverters; one of these consequenc €8
is that it is not possible to realize a grounded positive inverter
with only one operational amplifier (although it is possible to
realize single-amplifier positive inverters with only one grounded
port). It has also been proved that it is not possible to realize
a grounded positive inverter with only one ideal transistor (it is
not known whether it is possible to realize a single-transistor pos—
itive inverter with only one grounded port). These conclusions are
not only useful by themselves as results concerning the minimal
realization of 2-port positive inverters but have also consequences
regarding 3-port inverters: they show that the method of floéting
inductor simulation using two grounded positive inverters requires

more than two active components (operational amplifiers or transistoxs).
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Converters and inverters have often been associated with the
discussion of reciprocity and non-reciprocity (the absence of
reciprocity). The gyrator, in particular, has always beeﬁ regarded
as possessing a kind of extreme non-reciprocity or anti-reciprocity.
Two different definitions of anti-reciprocity can be found in the
literature. Surprisingly, the incompatibility of these two definitions
does not seem to have been noticed before. An investigation started
with the aim of clarifying this situation led to various new results.
One of the definitions, so far restricted to 2-ports, is generalized
for multiports. This generalized version, together with the other
definition of anti-reciprocity and the definition of reciprocity,
suggests the introduction of a fourth network property related to
the conéept of reciprocity in order to obtain a 'complete pattern'.
The set of four properties is referred to as R4k, The meaning of the
new definitions is examined in some detail, Various rules concerning
the cascade connection of two multiports, where one or both of them
possess one of the four properties, are presented. It is shown that
the only 'non-degenerate' multiports possessing simultaneously two
properties belonging to the set R4 are special cases of multiport
converters or inverters.

It has also been shown that, although in some respects the set
of four properties is 'compléte', a further extension is possible.
Both reciprocity and one of the types of anti-reciprocity are given
a generalized definition in terms of a scalar parameter a. The two
generalized properties, designated as R(a) and AR(a), contain as
notable special cases the four properties forming the set Rh. The
rules, mentioneé above, concerning the cascade connection of two

multiports become special cases of more general rules in terms of

R(a) and AR(a).
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10.2 - SUGGESTIONS FOR FURTHER WORK

A number of unsolved problems related to the subjectiof this
thesis will now be mentioned.

It is believed that the theory of multiport admittance and
impedance converters and inverters (and also the concept of hybrid
converter) presented in this thesis may be useful in connection with
multiport synthesis. Since various methods of multiport synthesis
that can be found in the literature are given in terms of scattering
parameters, it might be useful to develop a theory of multiport
converters and inverters in terms of the scattering variables.

Most of the realizations of multiport converters and inverters
considered in this thesis are based on the use of 2-port converters
or inverters (other methods have only been considered in the case of
3-port admittance converters and inverters for floating inductance
simulation). It might be of interest to investigate other types of
realization of multiport converters and inverters, for instance using
nullors or using controlled sources.

The classification of 3~port converters and inverters for float-
ing inductor simulation proposed in thisthesis was established under
the assumption that the converters and inverters have ideal performance.
It is possible that circuits belonging to the same class have also
common features concerning their non-ideal behaviour, It is believed
that this question deserves further investigation.

A comparison between converter and inverter methods of floating
inductor simulation, taking into account the non-ideal performance,
appears to be another interesting problem. For this comparison,
3-port inverters and converters realized with two grounded 2-port

inverters and with two grounded 2-port converters, respectively, might

be considered.
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There is a nﬁmber of questions concerning minimal realizations
of converters and inverters which remain unanswered. Two such
questions have already been pointed out in chapter 7. Oné of these
concerns the realization of positive inverters with resistors and one
ideal transistor; the other refers to the realization of 3~port
inverters for floating inductor simulation with two operational
amplifiers. Another unsolved question, concerning converters (rather
than inverters) with a minimum number of active components will now
be mentioned.

In connection with the method of simulation of IC ladder
filters by impedance scaling (see chapter 3, section 3.2)one-ports
with admittance proportional to 52 (super-capacitors) or proportional
to 8-2 (super-inductors) are required. Converters with a conversion
factor proportional to 8-2 or to s-l terminated by a resistor or
terminated by a capacitor, respectiveiy, can be used to realize super-
capacitors; the first type of converters can also be used to realige
super-inductors. In some versions of the impedance scaling method,
converters with a conversion factor proportional to s-l or s-2 are
indispensable for impedance matching different sections of a filter.
Such converters can be realized with 2 operational amplifiers, for
instance using the circuit of Fig. 3-16, in chapter 3. It would be
of interest to know whether realizations with only one amplifier are

possibles*)

() It may be noted that it has recently been shown [98] that super-
capacitors and super-inductors can be realized with only one operatio-
nal amplifier and the minimum number of capacitors required, wich is

2 (earlier circuits with one amplifier and more than two capacitors
had been proposed in [83] ); the circuits in [98] and [89], however,
are not interpretable as converters. ;
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Finally, in connection with the investigation of anti-
reciprocity, an unsolved question concerns the value of the deter-
minant of the transmission matrix T of (n+n)-ports which ﬁossess
one of the four properties considered in chapter 8; it would be of
interest to prove or disprove the conjecture presented in section 8.7.
This question can be formulated in a more general form by considering
the det T of (n+n)-ports that possess generalized reciprocity, R(a),

or generalized anti-reciprocity, AR(a).
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